
HAL Id: tel-03842609
https://theses.hal.science/tel-03842609

Submitted on 7 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Efficient and Explainable Automated Machine
Learning Pipelines Design : Application to Industry 4.0

Data
Moncef Garouani

To cite this version:
Moncef Garouani. Towards Efficient and Explainable Automated Machine Learning Pipelines Design :
Application to Industry 4.0 Data. Artificial Intelligence [cs.AI]. Université du Littoral Côte d’Opale;
Université Hassan II (Casablanca, Maroc), 2022. English. �NNT : 2022DUNK0620�. �tel-03842609�

https://theses.hal.science/tel-03842609
https://hal.archives-ouvertes.fr

Doctoral thesis

Academic Field : Informatique and applications
Speciality : Sciences et Technologies de l'Information et de la Communication

Presented at Ecole Doctorale en Sciences Technologie et Santé (ED 585) of
Université du Littoral Côte d’Opale

and

at Ecole doctorale Sciences et Applications
of Université Hassan II de Casablanca

By

Moncef GAROUANI

In order to become Doctor from Université du Littoral Côte d’Opale

Towards Efficient and Explainable Automated Machine
Learning Pipelines Design

Application to Industry 4.0 Data

Defended on September 27, 2022, after the approval of the reviewers, in front of the
examining board:

Noura Yousfi, Professor, Université Hassan II de Casablanca President
Pierre Parrend, Professor, EPITA Strasbourg Reviewer
Abdellah Azmani, Professor, Université Abdelmalek Essaadi Reviewer
Sébastien Verel, Professor, Université du Littoral Côte d'Opale Examiner
Aicha Majda, Professor, Université Moulay Ismail de Meknès Examiner
Sebastian Ventura, Professor, Université de Cordoue Examiner
Mourad Bouneffa, Associate Professor HDR, ULCO Thesis supervisor
Mohamed Hamlich, Professor, Université Hassan II de Casablanca Thesis supervisor

Colophon

Doctoral dissertation entitled “Towards Efficient and Explainable Automated Machine Learn-
ing Pipelines Design”, written by Moncef Garouani, completed on October 13, 2022, typeset
with the document preparation system LATEX and the yathesis class dedicated to theses

prepared in France.

Doctoral thesis

Academic Field : Informatique and applications
Speciality : Sciences et Technologies de l'Information et de la Communication

Presented at Ecole Doctorale en Sciences Technologie et Santé (ED 585) of
Université du Littoral Côte d’Opale

and

at Ecole doctorale Sciences et Applications
of Université Hassan II de Casablanca

By

Moncef GAROUANI

In order to become Doctor from Université du Littoral Côte d’Opale

Towards Efficient and Explainable Automated Machine
Learning Pipelines Design

Application to Industry 4.0 Data

Defended on September 27, 2022, after the approval of the reviewers, in front of the
examining board:

Noura Yousfi, Professor, Université Hassan II de Casablanca President
Pierre Parrend, Professor, EPITA Strasbourg Reviewer
Abdellah Azmani, Professor, Université Abdelmalek Essaadi Reviewer
Sébastien Verel, Professor, Université du Littoral Côte d'Opale Examiner
Aicha Majda, Professor, Université Moulay Ismail de Meknès Examiner
Sebastian Ventura, Professor, Université de Cordoue Examiner
Mourad Bouneffa, Associate Professor HDR, ULCO Thesis supervisor
Mohamed Hamlich, Professor, Université Hassan II de Casablanca Thesis supervisor

Thèse de Doctorat

Mention : Informatique et applications
Spécialité : Sciences et Technologies de l'Information et de la Communication

présentée à l'Ecole Doctorale en Sciences Technologie et Santé (ED 585) de
l’Université du Littoral Côte d’Opale

et

à l’Ecole doctorale Sciences et Applications
de l’Université Hassan II de Casablanca

par

Moncef GAROUANI

pour obtenir le grade de Docteur de l’Université du Littoral Côte d’Opale

Vers une automatisation efficace et explicable des processus
d’apprentissage automatique

Application à l’Industrie 4.0

Soutenue le 27 Septembre 2022, après avis des rapporteurs, devant le jury d’examen :

Noura Yousfi, Professeur, Université Hassan II de Casablanca Président
Pierre Parrend, Professeur, EPITA Strasbourg Rapporteur
Abdellah Azmani, Professeur, Université Abdelmalek Essaadi Rapporteur
Sébastien Verel, Professeur, Université du Littoral Côte d'Opale Examinateur
Aicha Majda, Professeur, Université Moulay Ismail de Meknès Examinateur
Sebastian Ventura, Professeur, Université de Cordoue Examinateur
Mourad Bouneffa, Maître de Conférences HDR, ULCO Directeur de thèse
Mohamed Hamlich, Professeur, UH2C Directeur de thèse

The ULCO and the Université Hassan II neither endorse nor censure authors’
opinions expressed in the theses: these opinions must be considered to be those
of their authors.

Keywords: data analysis, machine learning, automl, explainable ai

Mots clés : analyse de données, apprentissage automatique, automl,
explicabilité de l’ia

This thesis has been prepared at the following research units.

Laboratoire d’Informatique Signal et Image
de la Côte d’Opale

Maison de la Recherche Blaise Pascal
50, rue Ferdinand Buisson
BP 719
62228 Calais Cedex
France

T (33)(0)3 21 46 36 53
v (33)(0)3 21 46 55 75
k secretariat@lisic.univ-littoral.fr

Web Site https://www-lisic.univ-littoral.fr/

Complex Cyber Physical System Laboratory

150 Avenue Nile Sidi Othman
20670 Casablanca
Maroc

T (212)(0)5 22 56 42 22
k contact@ensam-casa.ma

Web Site http://ensam-casa.ma/

Study and Research Center for Engineering
and Management

293 Boulevard Ghandi
20410 Casablanca
Maroc

T (212)(0)5 22 34 17 23
k contact@hestim.ma

Web Site http://www.hestim.ma/

xiv Abstract

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Application to Industry 4.0 Data

Abstract

Machine learning (ML) has penetrated all aspects of the modern life, and brought more
convenience and satisfaction for variables of interest. However, building such solutions
is a time consuming and challenging process that requires highly technical expertise.
This certainly engages many more people, not necessarily experts, to perform analyt-
ics tasks. While the selection and the parametrization of ML models require tedious
episodes of trial and error. Additionally, domain experts often lack the expertise to
apply advanced analytics. Consequently, they intend frequent consultations with data
scientists. However, these collaborations often result in increased costs in terms of unde-
sired delays. It thus can lead risks such as human-resource bottlenecks. Subsequently, as
the tasks become more complex, similarly the more support solutions are needed for the
increased ML usability for the non-ML masters. To that end, Automated ML (AutoML) is
a data-mining formalism with the aim of reducing human effort and readily improving
the development cycle through automation.

The field of AutoML aims to make these decisions in a data-driven, objective, and
automated way. Thereby, AutoML makes ML techniques accessible to domain scientists
who are interested in applying advanced analytics but lack the required expertise. This
can be seen as a democratization of ML. AutoML is usually treated as an algorithms
selection and parametrization problem. In this regard, existing approaches include
Bayesian optimization, evolutionary algorithms as well as reinforcement learning. These
approaches have focused on providing user assistance by automating parts or the entire
data analysis process, but without being concerned on its impact on the analysis. The
goal has generally been focused on the performance factors, thus leaving aside other
important and even crucial aspects such as computational complexity, confidence and
transparency. In contrast, this thesis aims at developing alternative methods that
provide assistance in building appropriate modeling techniques while providing the
rationale for the selected models. In particular, we consider this important demand
in intelligent assistance as a meta-analysis process, and we make progress towards
addressing two challenges in AutoML research. First, to overcome the computational
complexity problem, we studied a formulation of AutoML as a recommendation problem,
and proposed a new conceptualization of a Meta-Learning (MtL)-based expert system
capable of recommending optimal ML pipelines for a given task; Second, we investigated
the automatic explainability aspect of the AutoML process to address the problem of
the acceptance of, and the trust in such black-boxes support systems.

To this end, we have designed and implemented a framework architecture that leverages
ideas from MtL to learn the relationship between a new set of datasets meta-data and
mining algorithms. This eventually enables recommending ML pipelines according to
their potential impact on the analysis. To guide the development of our work, we chose
to focus on the Industry 4.0 as a main field of application for all the constraints it offers.
Finally, in this doctoral thesis, we focus on the user assistance in the algorithms selection
and tuning step. We devise an architecture and build a tool, AMLBID, that provides users
support with the aim of improving the analysis and decreasing the amount of time spent
in algorithms selection and parametrization. It is a tool that for the first time does not
aim at providing data analysis support only, but instead, it is oriented towards positively
contributing to the trust-in such powerful support systems by automatically providing
a set of explanation levels to inspect the provided results.

Keywords: data analysis, machine learning, automl, explainable ai

xvi Abstract

Vers une automatisation efficace et explicable des processus d’apprentissage auto-

matique

Application à l’Industrie 4.0

Résumé

L’industrie du futur introduit de nouveaux concepts, processus et pratiques conduisant
à des mutations profondes dans le pilotage des systèmes d’information associés. Une
des problématiques cruciales est l’utilisation de la quantité importante de données,
notamment celles produites par les différents dispositifs d’acquisition de données (Cyber
Physical Systems, etc.), pour en extraire de la connaissance destinée à la maîtrise des
processus de l’entreprise à travers un système d’information évolutif, réactif et adapté
aux spécificités de l’industrie 4.0.

L’intelligence artificielle et plus particulièrement l’apprentissage automatique fournit les
algorithmes, méthodes et outils permettant l’extraction de connaissances et de modèles
à partir des données représentant l’activité d’une entreprise et son environnement, et
l’apport de plus d’automatisation des processus sous-jacents. Cependant, de nombreuses
entreprises ne disposent pas de moyens humains leur permettant de déployer efficace-
ment des solutions d’apprentissage automatique. Cela s’explique notamment par le fait
que la construction de telles solutions est un processus long et difficile qui nécessite une
expertise hautement technique et intersectorielle et qui est une ressource limitée. Nous
nous intéressons donc à ce besoin d’assistance à l’analyse de données, qui commence à
recevoir une certaine attention des communautés scientifiques, donnant naissance au
domaine dit d’apprentissage automatique automatisé.

L’apprentissage automatique automatisé est devenu un domaine en plein essor qui
vise à rendre l’application des méthodes d’apprentissage automatique aussi dépourvue
d’intervention humaine que possible. A cet égard, les approches existantes se révèlent
souvent similaires et peu abouties. Ces approches sont concentrées sur l’assistance de
l’utilisateur en automatisant une partie ou l’ensemble du processus d’analyse de données,
mais sans se soucier de son impact sur l’analyse. L’objectif a généralement été axé sur
les facteurs de performance, laissant ainsi de côté d’autres aspects importants, voire
cruciaux, tels que la complexité du calcul, la confiance et la transparence.

Cette observation nous a amenés à orienter nos recherches vers le domaine du Meta-
Apprentissage (MtL) et à développer des méthodes alternatives qui apportent une aide
à la construction des techniques de modélisation appropriées tout en fournissant le
rationnel des modèles ML sélectionnés. En particulier, nous considérons cette demande
importante d’assistance intelligente comme un processus de méta-analyse, et nous
progressons vers la résolution de deux défis de la recherche en AutoML. Dans un premier
temps, pour palier au problème de la complexité du calcul, nous avons étudié une
formulation de l’AutoML en tant que problème de recommandation, puis proposé une
nouvelle conceptualisation d’un système expert basé sur le MtL capable de recommander
des pipelines ML optimaux pour une tâche donnée. Dans un second temps, nous avons
traité l’explicabilité du processus d’aide à la décision de l’AutoML pour prendre en
compte la problématique de l’acceptation et la confiance en ces systèmes généralement
vus comme des boîtes noires.

Mots clés : analyse de données, apprentissage automatique, automl, explicabilité de l’ia

Remerciements

I would first like to express my sincere gratitude to Dr. Mourad Bouneffa

and Dr. Mohamed Hamlich, my main PhD supervisors, for all their support
and help during the past two years. Granting me with trust, freedom, and yet
always the right level of scientific expectations, allowed me to thrive during this
rich period. I am very grateful for their guidance, support and encouragement
throughout the development of my thesis and daily life. Words cannot express
how grateful I am to have worked alongside theme. Their constant feedback,
time and dedication, inspired me to give my best every day.

I was lucky to have not just two but three advisors : professors Mourad
Bouneffa, Mohamed Hamlich, and Adeel Ahmad. Thank you Dear Adeel for all
the precious insights, suggestions, hard questions, and gentle pushes.

I would like to express my special gratitude to the honorable Committee
members for their time and hard work to review my thesis, and for giving me
valuable remarks to improve it.

LISIC provided me with not only excellent working conditions and brilliant
supervisors, but also a supportive community of fellow researchers and students.
More generally, I would like to thank the members of the LISIC laboratory, with
special thanks to the Knowledge Engineering team (IC), for providing a rich
and stimulating research environment. I’m also grateful for everyone I had the
pleasure to work with at ULCO Calais, an activity I’ve deeply enjoyed, and that
allowed me to get me out of my research from time to time. A big thank you to
the administrative team for always being helpful.

To my parents and life coaches, no words can express my feelings of grati-
tude. Thank you for being there every moment, showering me with love, support,
encouragement, sincere prayers, and care. I am extremely grateful for all the sac-
rifices you have done for making my future brighter. To my brothers : Mohamed,
and Chakib, thank you for all of the sacrifices that you have made on my behalf.
I love you.

xix

xx Remerciements

Special thanks to the University of the Littoral Opal Coast (ULCO), HESTIM
Engineering and Business School, and the National Center for Scientific and
Technical Research (CNRST) for supporting this work with a scholarship grant.

To you all, my most sincere thanks.

Table of Contents

Abstract xiii

Remerciements xix

Table of Contents xxi

List of Tables xxv

List of Figures xxvii

Acronyms xxix

Symbols xxxi

Introduction 1
Background and motivation . 1
Research focus and values . 4
Main contributions to the research area 5
Publications . 8

Journals . 8
International Conferences . 8
Posters . 9

Thesis structure . 9

I State of the art 11

1 ML algorithms selection and hyperparameters tunning 13
1.1 The algorithms selection problem 14
1.2 Hyperparameters tuning . 15

1.2.1 Definitions . 17
1.2.2 Hyperparameters tuning techniques 19

xxi

xxii Table of Contents

Grid Search . 19
Random Search . 19
Bayesian Optimization . 20
Genetic Algorithms . 21

1.3 Machine learning for industrial big data analysis 22
1.3.1 Application areas of ML in manufacturing 23

Advanced analytics practices at the process level 23
Advanced analytics practices at the machine level 24
Advanced analytics practices at the shop floor and supply
chain levels . 24

1.3.2 Challenges in building ML with industrial big data 25
Challenge 1 : efficiently performing features engineering . 26
Challenge 2 : efficiently selecting algorithms and hyperpa-
rameters values . 26

1.3.3 Common practices to apply advanced analytics for manufac-
turing related problems 27

1.4 Conclusion . 28

2 Automated machine learning 29
2.1 Automated machine learning . 30

2.1.1 Meta-learning based approach 32
Meta-data . 35
Meta-model . 40

2.1.2 Summary of literature overview 46
2.1.3 Ontology based approach 46
2.1.4 Background on AutoML sSystems 47

2.2 AutoML in the manufacturing industry 49
2.2.1 Using existing AutoML tools for manufacturing datasets . 50
2.2.2 Building AutoML for manufacturing datasets 52

2.3 Towards AutoML for industrial big data 53
2.4 Conclusion . 54

II Contributions 56

3 Towards the automation of industrial data science 58
3.1 Introduction . 59
3.2 Meta-learning for automatic algorithms selection 62
3.3 Conceptual description . 63

3.3.1 Learning phase . 64
3.3.2 Recommendation phase 65

Table of Contents xxiii

3.4 Prototypical implementation . 66
3.4.1 Datasets . 66
3.4.2 Meta-features . 67
3.4.3 Meta-knowledge base . 67

The pipelines generation 67
The measures . 69
The meta-knowledge base schema 70

3.4.4 The Meta-model . 70
3.5 Empirical study . 74

3.5.1 The experimental configuration 74
The evaluation method . 75

3.5.2 Experimental results . 75
3.6 Conclusion . 80

4 Learning Abstract Tasks Representation 81
4.1 Introduction . 82
4.2 Theoretical background and related works 84

4.2.1 The problem statement . 84
4.2.2 Data characterization . 85

4.3 The AekNN data characterization approach 87
4.3.1 AekNN foundations . 87

The KNN algorithm . 87
Autoencoders . 88

4.3.2 The AeKNN meta-model 90
4.4 Experimental study . 92

4.4.1 AeKNN architectures analysis 92
4.4.2 Results of latent meta-features extraction 93
4.4.3 Results of the algorithms selection process 96

4.5 Conclusion . 97

5 Towards Interactive Explainable Automated machine learning 99
5.1 Introduction . 100
5.2 The need for transparency to trust in AI and in AutoML 101
5.3 Explainable Artificial Intelligence 102
5.4 Visual Analytics for AutoML . 104
5.5 The Conceptual framework . 106

5.5.1 The AutoML Overview . 108
5.5.2 The recommendation-level View 108
5.5.3 The What-if analysis-level View 110
5.5.4 The refinement-level View 111

5.6 Conclusion . 113

xxiv Table of Contents

6 AMLBID : A self-explained AutoML software package 114
6.1 Motivation and significance . 115
6.2 Software description . 116

6.2.1 Software architecture . 116
The recommendation module 117
Explainer module . 118

6.2.2 The software Functionalities 118
6.3 Illustrative Example . 119

6.3.1 Recommender module . 119
6.3.2 Explainer module . 120

6.4 Impact . 120
6.5 Utility and usability study . 122

6.5.1 Demonstration test case 122
6.5.2 User interview . 122

6.6 Conclusion . 126

III Conclusion 127

7 Conclusion 129
7.1 Conclusion . 129
7.2 Publications . 131

Journals . 131
International Conferences . 131
Posters . 132

7.3 Challenges and future directions 132

8 Résumé étendu en Français 134
8.1 Introduction . 134
8.2 Contributions . 137
8.3 Perspectives . 140

Bibliography 142

A META-LEARNERS’ HP SPACE 165

B SETS OF META-FEATURES 168

C LIST OF DATASETS 170

D AeKNN COMPLETE EVALUATION RESULTS 183

List of Tables

1.1 Configuration space of some classification algorithms. 16

2.1 Simple measures and their characteristics. 36
2.2 Statistical measures and their characteristics. 37
2.3 Information-theoretic meta-features and their characteristics. . 38
2.4 Landmarking meta-features and their characteristics. 39
2.5 Data complexity meta-features and their characteristics. 39
2.6 Model-based meta-features and their characteristics. 40
2.7 Performance evaluation measures for classification algorithms 41
2.8 Summary of related studies applied to MtL. 45
2.9 Summary of related AutoML systems. 48
2.10 List (sample) of datasets used in the evaluation. 50
2.11 Performances of the selected AutoML frameworks on the bench-

mark datasets . 51
2.12 Runtime of selected AutoML frameworks on the benchmark datasets. 52

3.1 Statistics about the used datasets according to the number of
classes, predictive attributes and instances. 66

3.2 Statistics about the used datasets according to related tasks. . . 67
3.3 A sample list of meta-features used in current thesis. 68
3.4 Supported classification measures. 69
3.5 Performance of classification algorithms on various datasets. . 71
3.6 Meta-features of the datasets. 71
3.7 List (sample) of datasets used in the evaluation. 75
3.8 Performance of AutoML systems on the 30-benchmark datasets. 76
3.9 Comparative performance analysis of AMLBID and the baseline

AutoML tools on the benchmark datasets. 76
3.10 The run-time of the AMLBID, Autosklearn and TPOT tools on the

benchmark datasets. 78

4.1 Experimental configurations of AeKNN. 92

xxv

xxvi List of Tables

4.2 Performances of considered AeKNN architectures on the test
datasets. 93

4.3 Comparing each baseline meta-model against AeKNN on the 20-
benchmark datasets. 96

4.4 Results of RF, XGB, KNN, and AeKNN meta-models for recom-
mending optimal pipelines for test data. 97

5.1 Properties of XAI state of the art tools. 103

6.1 Post-Study System Usability Questionnaire (PSSUQ) overall and
subscale scores of the decision support tool. 124

A.1 SVM hyperparameters tuned in the experiments. 165
A.2 Adaboost Hyperparameters tuned in the experiments. 165
A.3 Random Forest & Extra Trees Hyperparameters tuned in the ex-

periments. 166
A.4 Decision Trees Hyperparameters tuned in the experiments. . . 166
A.5 Gradient Boosting Hyperparameters tuned in the experiments. 166
A.6 Logistic Regression Hyperparameters tuned in the experiments. 167
A.7 SGD Classifier Hyperparameters tuned in the experiments. . . 167

B.1 Meta-features used in the experiments. 168

C.1 Datasets used in the experiments. 171

D.1 List of benchmark datasets used in the evaluation. 184

List of Figures

1 Data analytics process. 2

1.1 The process of ML models selection for knowledge discovery. . 15
1.2 General view of the hyperparameters tuning schema. 16

2.1 The meta-learning process. 33
2.2 An overview of the steps to creat a meta-model. 34

3.1 The functional architecture and process flowchart of AMLBID. 63
3.2 The ERD schema of the knowledge base. 71
3.3 The cumulative gains chart of AMLBID and the baseline AutoML

tools over the state of the art datasets. 77
3.4 Predictive performance of the KNN and RF meta-models. . . . 79

4.1 k-Nearest neighbors algorithm in a bi-dimensional space. . . . 87
4.2 Schematic structure of an Autoencoder. 89
4.3 Overview of proposed AeKNN-based meta-model. 90
4.4 An illustrative example of the AeKNN inferring process. 91
4.5 The reconstruction error of an instance from the meta-features

set after it’s encoded and decoded by the li
n = (32) architecture. 94

4.6 3-D scatter plot of traditional meta-features of the datasets and
the latent ones extracted by our model. 95

4.7 Three different views of the same extracted latent meta-features. 95

5.1 From “Black-box”model recommendation and prediction to “White
box” model with explanations. 102

5.2 Diagram showing the different purposes of explainability in ML
models sought by different audience profiles. 105

5.3 The global architecture of the proposed white-box AutoML sys-
tem. 107

5.4 AutoML overview. 108
5.5 Recommendation-level view. 109

xxvii

xxviii List of Figures

5.6 Features importance. 109
5.7 What-if analysis-level view. 110
5.8 Refinement-level view. 111

6.1 The global architecture of the proposed white-box AutoML sys-
tem. 117

6.1 Illustrative code example of recommendation module. 119
6.2 Generated python file. 120
6.3 Illustrative code example of recommendation_explainer module 121
6.4 The Post-Study System Usability Questionnaire. 123
6.5 Results of the usability test. 124

8.1 Processus d’analyse de données.(répété à partir de la page 2) . 135
8.2 Principe de méta-analyse . 137

C.1 Histogram of the number of classes in our datasets. 170
C.2 Histogram of the number of attributes in our datasets. 170

D.1 Performance of baseline meta-models relative to AeKNN on the
benchmark datasets. 183

Acronyms

A | B | C | D | G | H | I | K | L | M | N | R | S | X

A

Acc Accuracy.
AE Auto-encoders.
AI Artificial intelligence.
AMLBID Automated Machine Learning tool for Big Industrial Data.
ANNs Artificial neural networks.
ASP Algorithm Selection Problem.
AUC Area Under Curve.
AutoML Automated Machine Learning.

B

BID Big Industrial Data.
BO Bayesian Optimization.

C

CASH Combined Hyperparameters Selection and Optimization.
CV Cross-Validation.

D

DA Data Analysis.
DM Data Mining.
DSS Decision Support System.
DT Decision Tree.

G

GA Genetic Algorithms.
GS Grid Search.

xxix

xxx Acronyms

H

HPO Hyperparameters Ooptimization.
HPs Hyperparameters.

I

I4.0 Industry 4.0.

K

KB Knowledge Base.
KNN k-Nearest Neighbors.

L

LOO-CV Leave One Out Cross-Validation.
LR Logistic Regression.

M

ML Machine Learning.
MtL Meta-Learning.

N

NNS Neural Networks.

R

RF Random Forest.
RS Random Search.

S

SMBO Sequential Model-based Optimization.
SVM Support Vector Machines.

X

XAI Explainable Artificial Intelligence.
XAutoML Explainable Automated Machine Learning.

Symbols

A Machine learning algorithms space

A(i)∗ Tuned version of an algorithm∈ A

D Dataset

Ei A predicive performace measure (e.g. Accuracy, Recall, AUC)

H Hyperparameters space

L Loss function

lni Number of neurons in the ith layer

m Meta-features vector

P Problems or tasks space

T Task (e.i. problem, dataset)

xxxi

Introduction

Outline of the current chapter

Background and motivation 1

Research focus and values 4

Main contributions to the research area 5

Publications 8

Thesis structure 9

Background and motivation

The rapid growth of data in terms of volume, variety and velocity has led to a

great development of ML tools, methods and large-scale models evidenced by

successes in robotics [1], healthcare [2], and autonomous driving [3]. However, in

general, capability of analyzing data lags far behind the capability of collecting it.

This is due to the fact that data analytics consists of several challenging and time

consuming steps, which have been grouped into the following [4] : data selection,

data pre-processing, data mining, evaluation and interpretation(cf. Figure 1).

Briefly, data selection represents the task of sifting out the data that may not

be relevant for the analysis. Data pre-processing represents the task of clean-

ing/wrangling the data, such that it will be ready for the analysis. Next, data

mining is the broad task of applying a ML/statistical modeling algorithm on

top of the pre-processed data (e.g., supervised learning, unsupervised learning).

Finally, interpretation is the task of interpreting the predictive results.

1

2 Introduction

Dataset

pre-processing Interpretation
&

Figure 1: Data analytics process, sometimes synonymously referred to as knowl-
edge discovery; adapted from [4]

Usually, most of computational time and resources are spent on the Data

mining step (selecting and tuning the algorithm(s) that can deliver the optimal

performance), while data scientists spend up to 80% of their time on setting up

the ML pipeline [5, 6].

Progress in this area allowed a large adoption of ML solutions by the industry.

Building ML solutions often involve several tasks, which include comparing

many algorithms, optimizing their hyperparameters (HPs), and exploring dif-

ferent features representations. However, recent trends towards larger models

and search spaces have drastically increased the computational cost of hyperpa-

rameters optimization. For example, training a simple state-of-the-art neural

network translation architecture can take days to weeks [7] and searching for

quality image classification architectures can require evaluating over 20k ar-

chitectures from a search space for neural architectures search [8]. For these

types of large-scale problems, trial and error strategies like grid search and

random search that allocate a uniform training resource to every configuration

are prohibitively slow and expensive. The long wait before receiving a feedback

on the performance of a well-tuned model limits users productivity, while the

high cost limits the broad accessibility of these solutions. Consequently, faster

and more cost efficient ML model selection and parametrization methods are

necessary for modern machine learning methods.

Multiple previous research efforts have tried to tackle the problem of

users (novices and experts) support by automating parts-to-whole data analysis

pipeline [9–12]— which is also the focus of this thesis. In this regard, existing

Background and motivation 3

approaches include Bayesian optimization, evolutionary algorithms as well as re-

inforcement learning have been proposed to select, rank, or predict the best HPs

settings of ML algorithms. Recentlly, Meta-Learning (MtL) [13] has emerged as a

promising paradigm to automate the algorithms selection and parametrization

process. The use of MtL by itself or in combination with optimization techniques

tends to be more computationally efficient when compared with the use of only

optimization techniques [13].

The usefof Automated Machine Learning mayfrelieve data scientists from the

repetitive and time-consuming steps in the design of a full data science solution,

including the data preparation, algorithm design and optimization tasks. Hence,

theyfcan allocate their time onfmore significant and probably difficult tasks.

Thus, the goal of AutoML is to facilitate and increase the use of data science

techniques by non-experts and to support data scientists in their work, notfto

replace them [12]. In this thesis, AutoML is considered for predictive tasks, in

particular, supervised classification tasks using the manufacturing industry as a

train and validation environment. Nevertheless, the issues investigated in this

thesis can be easily extended to other domains and tasks.

Although the plethora of state-of-the art techniques andftools that canfbe

used to achieve the automatic algorithms selection and parametrization, a ma-

jority still lack in their ability to effectively address the major challenges of big

data on the fly. For example, some offthe existing AutoML toolsfare not effective

and scalable enough tofhandle real world problems (large data streams) [14].

Afhighly acceptable AutoML method or tool should be able to address the three

major challenges of big data and should be flexible enough to adapt to changes

within the organization. Secondly, mostfof the openfsource systems require little

programming and/or data-science skills. When the userfhas no experiencefin

programming, cloud-based paid systems shouldfbe chosen, since they offer anf

easy to use interface. Another limitation offmany AutoML systems isfthe huge

timefand tedious process spent in finding the best ML algorithm to use on multi-

varying datasets, which is not always available. Lastly, another limitation offthe

most, if notfall the AutoML systems is thatfthey are often designed to focus the

performance factors, thus leaving aside other important or even crucial aspects

such as computational complexity, confidence and transparency.

4 Introduction

The absence of explanations for predicted performing factors makes these

decision support systems (DSS) usually black boxes, allowing the only prominent

exhibition of input and output parameters but concealed visibility of inherent

associations among them. It is more preferably desired to avoid such lack of

transparency in real-time/ critical applications such that in clinical and indus-

trial manufacturing processes. Since, these systems may imply critical decision

choices; it is necessary to have some justifications of individual predictions

which are perceived trough an AI algorithm, more particularly, in an automated

environment. Therefore, the acceptance of, and the trust in, an AutoML DSS is

highly dependent on the transparency of the recommendations.

This thesis addresses these requirements with the design and the develop-

ment of a novel meta-learning based decision support and expert system focused

on the automatic selection and parametrization of ML models. The major goal is

to achieve an optimal performance for a given task while providing the ratio-

nale traceability behind a recommendation or decision. The designed system is

particularly aimed at the provision of explanations of such rational traceability

and promising trend analysis of the area of industrial big data.

Research focus and values

In effectively designing an ML system, the first step after defining the achievable

goal, usually entails the process of deciding which ML approach or model to

select. However, since there is no clear and strictly defined “recipes” for building

the optimal ML pipeline for the problem at hand, many attempts at AutoML

systems both in academia and industry have been proposed [15]. Although some

AutoML systems (e.g. TPOT [11], AutoWEKA [10] and Auto-sklearn [12]) dis-

cussed in the section 2.1.4 of this thesis, are efficient in their own ways for model

selection, they still far from being widely adopted due to the computational com-

plexity and expertise requirements [6]. Some limitations other than those men-

tioned before they still include : complexity (much time and resources needed to

run), generalizability (data type requirements), interoperability (hardware and

software requirements), and explainability (black-box solutions that lack the

effective explanations of the predicted performance factors).

Main contributions to the research area 5

These limitations among others, form part of the problems and motivations

for undergoing this thesis. The main objective of this thesis is twofold : first,

investigate and develop an efficient AutoML-based decision support and expert

system able to recommend the best ML pipeline for a given problem and task.

This objective is accomplished by proposing a MtL-based recommender system

able to recommend the optimal or near-optimal ML pipelines (algorithms with

related hyperparameters configuration) according to a desired predictive met-

ric (e.g. Accuracy, Recall, F1-score). The second objective addresses the trust in

such black-boxes decision support systems by the conceptualization and devel-

opment of a transparent and self-explainable AutoML system for recommending

the most adequate ML configuration for a given problem, and explain the ratio-

nale traceability behind a recommendation. It may further allow to analyze the

predictive results in an interpretable and reliable manner.

As a field of application, we chose the Industry 4.0 (I4.0), and in particular,

the manufacturing industry. The goal is not to develop solutions specifically and

solely for the manufacturing industry domain but to use this domain to guide our

choices by its specific constraints and difficulties. Indeed, the I4.0 environment

is a messy concept that intrinsically poses a certain number of difficulties to ana-

lyze : grey areas of interpretation, many exceptions, non-stationarity, deductive

and inductive reasoning, non-classical logic, various types of data. Statistical

models often act as a black-box which is redhibitory for practical applications. In

other words, the I4.0 domain combines some of the most challenging elements

of today’s machine learning. Therefore, by imposing ourselves the constraints of

this specific field, we hope to design better AutoML decision support systems.

Main contributions to the research area

This thesis deals with several aspects of the algorithms selection and HPs tun-

ing problems, and makes contributions to ML, MtL and AutoML. The main

contributions of this thesis can be summarized as follows.

Contributions to ML and AutoML :

Motivated by the trend towards ever more expensive models, larger search

spaces and limits of existing tools, our first research challenge was specifically

6 Introduction

related to the problem of user support in the data analysis process. To be more

precise, the challenge was about defining new efficient, interoperable and easy

to use methods for providing user assistance in data analysis. Therefore, our

response was to conceptualize and develop a framework system with such an

aim. To this end, we proposed a framework system that leveraging ideas from meta-

learning able to provide support with the aim of improving the analysis and decreasing

the amount of time spent in algorithms selection and parametrization. It is a tool

that for the first time does not aim at providing data analysis support only for the

sake of algorithms selection and parametrization, but instead, it is oriented towards

positively contributing to the trust-in such powerful DSS by automatically providing

a set of explanation levels to inspect the provided results without having to depend on

a data scientist to generate and interpret all the extreme plots and tables.

We implemented a prototype of the proposed framework, AMLBID, on a Client-

Server architecture, where the server coordinates as the AutoML support system,

that given a problem (dataset), a desired predictive metric (i.e., Accuracy, Recall,

F1-score) recommends ML algorithms with related hyperparameters configura-

tion that are ranked according to their impact on the final result of the analysis,

while the client-side is composed of a user-friendly graphical toolbox that fa-

cilitates datasets entry, support visual simulation of various ML scenarios, and

facilitate the interpretation of the obtained results. Meanwhile we implement

a rule-based module that guides end-users, in case of the unsatisfying results

returned by the AutoML, intended to improve the predictive performances.

Thence, it may increase the transparency, controllability, and the trust-in Au-

toML.

Contributions to MtL :

Meta-learning is an alternative approach for addressing the algorithms selec-

tion problem (ASP). One aim of meta-learning is to assist the identification of

the most appropriate learning algorithm(s) for the problem at hand by mapping

datasets characteristics to the predicted data mining performance. To this end,

meta-learning systems use a set of data characteristics, called meta-features, to

represent and characterize data mining tasks, and search to identify the correla-

tions between these attributes and the performance of learning algorithms [13].

The proper identification of data properties is essential to map tasks to learning

Main contributions to the research area 7

mechanisms. As a data-driven approach, the effectiveness of meta-learning is

largely dependent on the tasks description (i.e., meta-features). Meta-learning

requires meta-features that represent the primary learning tasks or datasets to

transfer knowledge across them.

As a response to this challenge, we assessed the currently available approaches

and methods with respectfto meta-features usedfas inputfto quantify the tasks similar-

ity in the meta-learning process. We thoroughly analyzed the effectiveness of different

setsfof meta-features, andfwe performed a comprehensive metadata classification,

identifying important aspects that was overlooked by the current approaches. We

proposed afnovel neural network-based meta-model architecture thatflearns intrinsic

meta-features from familiesfof traditional ones. The goal isfto produce new mean-

ingful and more informational meta-features offhigher quality fromfthe initial data

characteristics.

The empirical evaluation of the proposed meta-model has shown that it can

provide successful suggestions as to which learning algorithm and HPs configu-

ration is more appropriate for a specific dataset. Furthermore, the meta-learing

models constructed by the inducers applied on the meta-learning problems

will allow us to have better understanding of these dataset characteristics that

affect the performance of the learning algorithms. Thus improve the effective-

ness of meta-learning and open up new directions of future works in which

they are applied to help solve similar problems presented by other traditional

meta-models.

Reproducibility of experiments :

AMLBID is implemented as an open source Python-package to reproduce

experiments, analyses, and allow further analysis. While AMLBID is still in

its initial stages, the package was downloaded more than 178931 times on

PyPI2(excluding mirrors thereof) in its first year. Feedback from the community

is highly positive, and several new applications have been proposed in addition

to multiple industrial requests.

1https://pypistats.org/packages/amlbid
2https://pypi.org/project/AMLBID/

8 Introduction

Publications

The content of this doctoral thesis is based on the following publications :

Journals

• Moncef Garouani et al. "Towards big industrial data mining through

explainable automated machine learning". In: The International Journal

of Advanced Manufacturing Technology (2022). doi :10.1007/s00170-022-

08761-9

• Moncef Garouani et al. "AMLBID: An auto-explained Automated Ma-

chine Learning tool for Big Industrial Data". In: SoftwareX 17 (2022).

doi :10.1016/j.softx.2021.100919

• Moncef Garouani et al. "Using meta-learning for automated algorithms

selection and configuration: an experimental framework for big industrial

data". Journal of Big Data 9, 57 (2022). doi :10.1186/s40537-022-00612-4

• Moncef Garouani et al. "Autoencoder-kNN meta-model based data charac-

terization approach for an automated selection of AI algorithms". [submit-

ted to Journal of Big Data]

• Moncef Garouani et al. "AMLBID2.0: An auto-explained Automated Ma-

chine Learning tool for Big Industrial Data". [submitted to SoftwareX]

International Conferences

• Moncef Garouani et al. "Towards the Automation of Industrial

Data Science: A Meta-Learning Based Approach". In: 23rd In-

ternational Conference on Enterprise Information Systems. 2021, pp.

709–716.doi :10.5220/0010457107090716

• Moncef Garouani et al. "Towards meta-learning based data analytics to

better assist the domain experts in industry 4.0". In: Lecture Notes on

Data Engineering and Communications Technologies (ICABDE’21). Springer,

Cham. doi :10.1007/978-3-030-97610-1_22

Thesis structure 9

• Moncef Garouani et al. "Towards an Automatic Assistance Framework for

the Selection and Configuration of Machine-Learning-Based Data Analytics

Solutions in Industry 4.0". In: The Fifth International Conference on Big Data

and Internet of Things (BDIoT’21). [In press]

Posters

• Moncef Garouani et al. "Towards industrial data science through ex-

plainable automated machine learning". POSTER InMTE Pole’s Doctoral

Day(2021), ULCO University, Calais, France

• Moncef Garouani et al. "Towards explainable Automated Machine Learn-

ing". POSTER In IA² – Institut d’Automne en Intelligence Artificielle (2021),

Sorbonne Université, Paris, France

Thesis structure

This thesis is organized in two parts. The first part provides a review of the

state of the art and relevant background in the various research fields covered

by the thesis in order to contextualize our work. The Chapter 1 presents a

detailed literature review on the machine learning algorithms selection and HPs

parametrization principles and tools in the ML research community and also

present detailed discussions on the industrial big data analysis. In Chapter 2,

we define the context of the thesis where we will introduce the problem of

supporting users in the modeling of their data mining processes. We present

the state-of-the-art approaches, which fall broadly into two main categories :

ontology-based DM workflow planning systems and meta-learning. We discuss

how meta-learning formalism can be used to help resolving the algorithms

selection and the parametrization problem. Finally, we present the limitations

of the current approaches and tools from which we defined the starting points

of the thesis.

The second part shows our contributions. The Chapter 3 describes the pro-

posed meta-learning based AutoML system design, architecture, components,

and characteristics. It also defines all methods used in this thesis and presents

10 Introduction

a detailed discussion of all pre-design experimentations including the setup,

algorithms considered, problems identified, and knowledge gained during the

experiments. Finally, it provides a comparative study to some of the current state

of the art AutoML related works and tools. The identified problems and knowl-

edge gained in this chapter, served as the basis for the design and modelling in

the next chapters. In Chapter 4, we review the existing works in characterizing

datasets; assess the currently available approaches and methods with respect to

meta-features used as input to quantify the tasks similarity in the meta-learning

process, and identify the important aspects that was overlooked by the current

works and tools. Furthermore, we establish the set of intrinsic meta-features

that will be used to describe the datasets, and to construct the meta-learning

problems. The idea of the Autoencoder-kNN based meta-model with built-in

latent features extraction is presented, and various issues are discussed concern-

ing the quality of the characteristics and the problems that they set. Finally, we

assessed thoroughly the effectiveness of the proposed meta-model based data

characterization approach and show that the approach significantly outperforms

the state-of-the-art methods in data characterization. In Chapter 5, we describe

the self-explainable AutoML framework, in which we used the meta-learning

for defining the algorithms selection and parametrization task, and which we

extend to overcome the black-box nature of such powerful support system. We

will explore the combination of AMLBID with, AMLExplainer, a developed

toolbox platform that makes it possible to provide features of explainability of

the AutoML resulting algorithms and models. Finally, in Chapter 6, we present

the open source AMLBID software package. A python based decision support

system for automated selection and tuning of implied hyperparameters for ma-

chine learning algorithms to cope with the prominent challenges posed by the

evolution of industrial big data. Furthermore, the tool is equipped with the

explainer module that makes the outcomes rather transparent and interpretable

for well-performing ML systems. Being based on meta-learning, the tool is able

to simulate the role of the machine-learning expert as a decision support system.

Chapter 7 summarizes and concludes the work and proposes directions for

further work.

Part I

State of the art

Chapter1

ML algorithms selection and

hyperparameters tunning

Outline of the current chapter

1.1 The algorithms selection problem 14

1.2 Hyperparameters tuning 15

1.2.1 Definitions . 17

1.2.2 Hyperparameters tuning techniques 19

1.3 Machine learning for industrial big data analysis 22

1.3.1 Application areas of ML in manufacturing 23

1.3.2 Challenges in building ML with industrial big data . 25

1.3.3 Common practices to apply advanced analytics for

manufacturing related problems 27

1.4 Conclusion 28

Machine learning has made significant advances with the rise of deep learn-

ing and large-scale models development evidenced by successes in robotics [1],

healthcare [2], and autonomous driving [3]. However, developing such solutions

is a resource intensive endeavour both in terms of computation and human exper-

tise. Applying machine learning to real world problems is a multi-stage process

13

14 CHAPTER 1. ML algorithms selection and hyperparameters tunning

requiring significant human effort from data collection to model deployment.

In this chapter, we present the ML algorithms selection and parametrization

problem, and the different approaches to solve it. In this thesis, we decided to

focus on the classification problem as it is one of the most widely studied in ML

due to the large amount of situations that can be modeled as such a problem.

Specifically, we focus on binary and multiclass classification problems.

1.1 The algorithms selection problem

The machine learning field has been evolving for a long time and has provided

us a variety of models and algorithms to solve supervised, semi-supervised and

unsupervised tasks. Designing and solving a classification problem is a time

intensive task consisting of many phases, that require a considerable technical

knowledge generally held by experts analysts.

Once a learning problem is defined, the practitioner needs to find adequate

learning tools to solve it. These tools can target different parts of the ML pipeline,

i.e., data preparation, features engineering, model selection, and hyperparameters

tuning or optimization. The quality of the available data is one of the most crucial

factors to achieve high performance solution. However, we will not go into the

details of data collection and the quality of the available data. The analyst’s

main task will be to select the most appropriate learning method (supervised

learning/classifier or unsupervised learning/clusterer), according to some per-

formance measures and within the constraint imposed by the application. The

analyst has to select the ones that better match the morphology and the specific

characteristics of the problem at hand. This selection is one of the most difficult

problems since there is no model or algorithm that performs better than all

others and independently of the particular problem characteristics, as it has

been observed in various empirical comparisons [16].

In figure 1.1, we give an overview of the analyst process. The analyst has

at his disposal a pool of learning tools, from which (s)he initially selects some

ones for the evaluation on the specific problem. The initial selection can be

based on knowledge of the problem, that means to select the algorithms whose

characteristics better match the characteristics of the dataset, or even on the

1.2. Hyperparameters tuning 15

analyst’s preferences for specific learning algorithms. The evaluation usually

requires an extensive experimentation, which consists in repetitive executions of

the selected algorithm(s).

Try a configuration

Learning Tools

Features

engineering

Model

selection

Hyper-

parameters

tuning

Model

validation

Data

cleaningFeedback

DATA
Domain expert

Figure 1.1: The process of ML models selection for knowledge discovery.

To obtain a good learning performance, (s)he will try to set a configuration us-

ing personal experience or intuition about the data and tools underneath. Then,

based on the feedback about how the learning tools performed, the practitioner

will adjust the configuration hoping that the performance shall be improved.

Such a trial-and-error process terminates once a desired performance is achieved

or the computational budget runs out.

1.2 Hyperparameters tuning

The selection of an algorithm or a family of algorithms that are more likely to

perform better on a given combination of datasets and evaluation measures is an

important task [17]. The machine learning algorithms generally have two kinds

of parameters : (1) The ordinary parameters that the model learns and optimizes

automatically based on its regular behavior during the learning phase; (2) The

hyperparameters (categorical and continuous) which are usually manually set

before beginning the training of the model (as shown in Table 1.1).

16 CHAPTER 1. ML algorithms selection and hyperparameters tunning

ML Algorithm Nb. of ordinary parameters Nb. of hyperparameters

SVM 2 5
Decision Tree 1 3
Random Forest 2 4
Logistic Regression 4 6

Table 1.1: Configuration space of some classification algorithms.

In contexts of manufacturing industry, it poses a major research challenge

to select the feasible ML algorithms and tuning of hyperparameters in the

context of a fresh problem. The algorithms selection and parametrization is a

complex process as generally the ML algorithms are used as “black boxes”. Their

performance is affected by multiple characteristics of the datasets and algorithms

hyperparameters [18]. Thus, the complexity of the selection and configuration

of appropriate algorithm(s) is an error prone and time-consuming process due

to the prevailing flaws while establishing the multiple configurations. Figure 1.2

illustrates the general hyperparameters tuning schema.

DATA Selected ML

algorithm

Optimal model Model training

Hyperparameters

tuning

Figure 1.2: General view of the hyperparameters tuning schema.

In many situations, the HPs tuning is carried out manually by the expert,

progressively refining a grid of values over the desired space. From a theoretical

point of view, selecting the ideal HPs values requires an exhaustive search over

all possible subsets of HPs. Depending on the number and types of the HPs, this

task becomes impractical. Therefore, for the ML community, it is often accepted

to search reduced HPs space instead of the complete space [19].

1.2. Hyperparameters tuning 17

1.2.1 Definitions

The HPs tuning process is usually treated as a black-box optimization problem

whose objective function is associated with the predictive performance of the

model induced by a ML algorithm. Formally this can be defined as follows :

Definition 1.2.1. Let H = {H1, . . . ,Hn} be the HPs space of an algorithm

A(i) ∈ A, where A is the set of learning algorithms space. Each A(i)∗ ∈ A rep-

resents a tuned version of A(i) and can be usually defined by a set of constraints.

Definition 1.2.2. Let D be a dataset divided into disjoint training Dtrain, and

validation Dvalidation sets. The function L : A(i) ×Hn ×D→ R measures the

predictive performance of the model induced by the algorithm A(i) with an

hyperparameters configuration Hn ∈ H on the dataset D. Without loss of gen-

erality, higher values of L(A(i),Hn,Dtrain,Dvalidation) mean higher predictive

performance.

Definition 1.2.3.GivenA,H andD, together with the previous definitions, the

goal of the algorithm selection problem (ASP) is to find the A(i)∗ that minimizes

or maximizes the L on D such that :

A(i)∗ ∈ argmin
A(i)∈A,Hn∈H

L(A(i),Hn,Dtrain,Dvalidation)

The combined algorithms selection and hyperparameters optimiza-

tion (CASH) involves identifying the most adequat algorithm A(i) ∈ A along

with related hyperparameters configuration Hn from a set of possible configu-

rations H. The search space defines this set of configurations, and can include

continuous or discrete hyperparameters in a structured or unstructured man-

ner [19, 20]. Examples of continuous hyperparameters include learning rate and

momentum for stochastic gradient descent, degree of regularization to apply to

the training objective, and the scale of a kernel similarity function for kernel

classification. Examples of discrete hyperparameters include choices of activa-

tion function, number of layers in a neural network, and number of trees in a

18 CHAPTER 1. ML algorithms selection and hyperparameters tunning

random forest. Finally, structured search spaces include those with conditional

hyperparameters (e.g., the relevant hyperparameters can depend on the choice

of supervised learning method) and other tree type search spaces [21].

The optimization of the HPs values can be based on any performance mea-

sure (e.g. Accuracy, AUC, Recall), which can even be defined by multi-objective

criteria. Further aspects can make the tuning more difficult, like :

• HPs configurations that lead to a model with high predictive performance

for a given dataset may not lead to high predictive performance for other

datasets;

• HPs values often depend on each other1. Hence, independent tune of HPs

may not lead to a good set of HPs values;

• The exhaustive evaluation of several HPs configuration can be very time-

consuming.

Given a search space, there are various search methods to select putative

configurations to evaluate. The most simple, and often used, are Grid Search (GS)

and Random Search (RS) [22]. The former is more suitable for low dimensional

problems, i.e., when there are few HPs to set. For more complex scenarios,

GS is unable to explore finer promising regions due to the large hyperspace.

The latter is able to explore any possible solution of the hyperspace, but also

does not perform an informed search, which may lead to a high computational

cost [23]. Meta-heuristics have also been used for HPs tuning, having the ad-

vantage of performing informed searches. Population-based methods, such as

Genetic Algorithms (GAs) [24], Estimation of Distribution Algorithms (EDAs) [25],

and Sequential Model-based Optimization (SMBO) [26], have been largely ex-

plored in the literature due to their probabilistic nature and faster convergence.

However, SMBOjitself has manyjHPs and doesjnot eliminate the shortcoming

offhaving to iteratively evaluatejthe function to be optimized. All these tech-

niques arejvaluable alternatives to GSfandjRS, but they might have a high com-

putational cost, since aflarge numberjof candidate solutions usually needs tofbe

evaluated.
1This is the case of SVMs

1.2. Hyperparameters tuning 19

1.2.2 Hyperparameters tuning techniques

Over the last decades, different hyperparameters tuning techniques have been

applied to ML algorithms [22–25]. Some of these techniques iteratively build

a population H of HPs settings, where L(A(i),Hn,Dtrain,Dvalidation) is computed

for each Hn ∈ H. By doing so, they can simultaneously explore different regions

of a search space. There are various population-based HPs tuning strategies,

which differ in how they update theH at each iteration. Some of them are briefly

described next.

Grid Search

Grid Search is the most straightforward approach to HPs tuning. It is an exhaus-

tive search through a subset offthe HPs space tofselect the best offa familyfof

models, parametrized byjafgrid ofjvalues. Itsfsimple execution is illustrated

infAlgorithm1.

Algorithm 1 GS pseudocode.
Bestglobal ← NULL

for each Hn ∈ H do
Sample a set of values V = vi1, vi2, . . . , vin from Hn

for each λ ∈ (H1, . . . ,Hk) = (V1, . . . ,Vk) do
Bestlocal ← f (A,D,λ)

Bestglobal ←max(Bestlocal)
return Bestglobal

GSjmay beja good choice forjspaces with fewfHPs. However, it suffers from

thejdimensionality offthe problem : the higher the number ofjHPs evaluated,

thejhigher the computational cost requiredjto solvejthe problem. Evenfso,

the manual selection ofjthe grid values that precedes the search may provide

somejtips onjhow thefHPs space surface behaves [19].

Random Search

Random Search isja simple technique thatjperforms randomjtrials inja search

space. Its usejcan reduce the computational costjwhen therejis ailargeinumber

20 CHAPTER 1. ML algorithms selection and hyperparameters tunning

of possible settings being investigated [22]. Usually, RSjperforms itsjsearch

iteratively onja population P in a predefined number of iterations. P(i) is ex-

tended (updated) by a randomly generated HPs setting h ∈ H injeach (ith) itera-

tion of the HPs tuning process. RS has obtained efficient results in optimization

for Deep Learning (DL) algorithms [19]. ThejRS simple workflow is described in

Algorithm2.

Algorithm 2 RS pseudocode.
t← 1
Bestglobal ← NULL

while Stoping criteria not satisfied do
Generate a population P(t) randomly
for each pi ∈ P(t) do

fpi ← f (A,D,pi)

Bestlocal ←max(fp)
if Bestlocal ≥ Bestglobal then

Bestlocal ← Bestglobal

t← t +1
return Bestglobal

Bayesian Optimization

Both, grid and random search, are stateless optimization techniques which do

not take previous evaluations into account. Bayesian optimization can be used

to overcome this lack. Considering the choice of algorithm configurations as a

black-box global optimization problem, BO can be used to automatically find

optimal configurations.

Bayesian optimization is an adaptive hyperparametric search method that

predicts the next combination that is likely to bring the most benefit based on

the currently tested hyper-parametric combinations [27]. Assuming that the

function f (x) of hyperparameter optimization obeys the Gaussian process, then

p(f (x)|x) is a normal distribution. The Bayesian optimization process is modeled

as a Gaussian process based on the results of existing N group experiments,

H = {xn, yn}
N
n=1, and calculates the posterior distribution p(f (x)|x,H) of f (x).

1.2. Hyperparameters tuning 21

After obtaining the posterior distribution of the objective function, an ac-

quisition function a(x,H) is defined to trade off in sampling where the model

predicts a high objective and sampling at locations where the prediction uncer-

tainty is high. The goal is left to maximize the acquisition function to determine

the next sampling point. The Bayesian optimization process is summarized by

the pseudo code in Algorithm3.

Algorithm 3 Bayesian Optimization pseudocode.
H←∅
for titteration ∈ N do

s′← argmaxxa(x,H)
evaluate y′ = f (x′)
H←H ∪ (x′, y′)
Remodeling Gaussian processes according to H, calculate p(f (x)|x,H)

return H

Genetic Algorithms

Bio-inspired techniques, such as Genetic Algorithms (GA), based on natural

processes, have also been largely used for HPs tuning [24]. In these techniques,

the initial population P generated randomly or according to the background

knowledge, is updated in each iteration according to operators based on nat-

ural selection and evolution. The GA general pseudocode is presented in the

Algorithm4.

Due to the underlying assumptions made by different search methods, the

choice of an appropriate search method can depends on the search space.

Bayesian approaches based on Gaussian processes [18, 28] and gradient-based

approaches [19, 29] are generally only applicable to continuous search spaces. In

contrast, tree-based Bayesian [30, 31], evolutionary strategies [21], and random

search are more flexible and can be applied to any search space. The application

of reinforcement learning to general hyperparameter optimization problems is

limited due to the difficulty of learning a policy over large continuous action

spaces.

22 CHAPTER 1. ML algorithms selection and hyperparameters tunning

Algorithm 4 Genetic Algorithm pseudocode.
t← 0
Generate initial population P(0)
Evaluate the current population P(t)
while Stopping criteria not satisfied do

t← t +1
Select population P(t) from P(t − 1)
Apply crossover operators in P(t)
Apply mutation opperatos in P(t)
for each new individual i in the current population P(t) do

Evaluate individual i fitness
Bestglobal ← best individual i from P(t) return Bestglobal

1.3 Machine learning for industrial big data analysis

Taking advantage of the Industrial Internet of Things and artificial intelligence,

the fourth industrial revolution is relying more and more on machine learning

methodologies. Nowadays, the ML algorithms are often used to satisfy the com-

mercial plans, meet the profitability requirements, productivity and delivery

time objectives [32]. The smart industrial monitoring systems integrate ubiqui-

tous sensors and processors like any other classical application in industry 4.0

processes for equipment monitoring and timely fault detection. The ML algo-

rithms, in this regard support the automatic defect inspection. They also deal

with the control of production processes, enabling real-time synchronization

of resources and product customization. Recently, Schmitt et al. [33] proposed

a machine learning predictive model-based quality inspection. The model is

trained on historic datasets in the cloud. The proposed system seeks to allow

the operators to make informed decisions regarding expected product quality as

well as maintenance operations. These results, among others, indicate a lot of

interest in ML research and development for manufacturing applications.

This section contains an overlapped overview of two research areas : (1) the

application areas of data analytics in manufacturing, and (2) the challenges of

applyingML algorithms as well as knowledge engineering in Industry 4.0 area.

Application areas of ML in manufacturing 23

1.3.1 Application areas of machine learning in manufacturing

In manufacturing industry, ML techniques have been applied across three differ-

ent fundamental stages composing the manufacturing projects that can be briefly

described by the terms : Plan (set of tasks that deal with demand forecasting and

jobs scheduling activities), Make (aims to optimize the manufacturing processes

with respect to quality, time, and cost criteria), and Maintain (concerns mainly

the activities like diagnostic & predictive maintenance). To understand machine

anomalies and states, these terms map the fundamental levels for manufacturing

projects, whose details are outlined below to analyze the internal mechanisms of

advanced analytics techniques.

Advanced analytics practices at the process level

The focus of modern manufacturing departments, with the progress in Industry

4.0, has shifted from reactive to proactive methods in the recent decades. There

has been significant development in defect prevention methodologies via process

improvements [34]. Overall, we can observe that monitoring and predicting

product quality is a crucial part of improving manufacturing processes [35].

In this context, data-driven machine learning methods provide an efficient

way to control products quality. Consequently, the necessary process information

can be learned directly from large amounts of production data [36]. Researchers

have successfully demonstrated the use of ML techniques to improve the produc-

tion quality by timely predicting faults and defects in industrial processes well

ahead of risks of failure [37]. Chen et al. [38] proposed a data-driven method that

enable automatic detection and localization of wire bonding defects in order to

inspect wire bonding defects in integrated circuits (ICs). The proposed method

principally involves three steps : (1) data pre-processing to locate and separate

IC chip image patches from the raw image, (2) features engineering to extract

geometric information from captured wire segments, and (3) machine learning

algorithms (i.e., CNN and SVM) for detection and classification. On a set of X-ray

images collected from a semiconductor factory, the authors, demonstrate the

effectiveness of their developed method.

Similarly, for the detection and identification of faults in rotating machinery

24 CHAPTER 1. ML algorithms selection and hyperparameters tunning

parts, Dimitrios et al. [39] proposed a diagnostic system architecture based on

multilayer perceptron with automatic relevance determination for the antici-

pation and mitigation of breakdowns in rotating machinery. The multilayer

perceptron (MLP) with Bayesian automatic relevance determination has been

used for the classification of accelerometer data. The obtained results showed

that using kurtosis and the integral of the acceleration signal together is a promis-

ing technique for detecting bearing fault locations. The proposed architecture

has increased the levels of accuracy in fault detection up to 99% for different

fault types.

Advanced analytics practices at the machine level

In some research works, the machine learning applications are deployed to

monitor and understand machine behaviors. Tool conditions, for example,

have been monitored using machine learning techniques. Monitoring tools

condition involves tracking the evolution of the tool state and detects a fault or

breakage [40–42].

Existing literature features the applications of Support Vector Ma-

chines (SVM) for the condition monitoring of tools. Medina et al [43] proposed

a machine learning based approach for fault classification in two mechanical

equipments (i.e. gearbox and roller bearings). The fault classification is obtained

by using a multi-class SVM. The proposed approach has been tested using a

10-Fold cross-validation strategy on the vibration signals of these equipments.

Their final results show that the proposed approach could achieve a classifica-

tion accuracy of 99.3% for the gearbox dataset and 100% for the roller bearings.

Similarlly, an adapted deep neural network strategy [40] has been proposed

for condition monitoring of an in-wheel motor (classification of the wear of

inner race and outer race). The classification results of the approach achieved a

classification accuracy of 99.8%.

Advanced analytics practices at the shop floor and supply chain levels

The advanced analytics are also applied in themanufacturing industry at a higher

level. It is aimed at the correct production planning and control which can lead

Application areas of ML in manufacturing 25

towards the global improvement in manufacturing production systems [44].

The utility of applied analytics has also proven to solve the supply chain

problems which are often complex np-hard combinatorial optimisation problems.

Carbonneau et al. [45] used Neural Networks (NNs) to forecast demands in a

supply chain to optimize the polynomial time costs and resource usage to fulfill

the orders. They compared this technique with regular regression and SVM,

concluding that SVMs and NNs are faster, but not more accurate than regular

regression models. Likewise, Wu [46] proposed a hybrid intelligent system com-

bining the wavelet support vector machine and particle swarm optimization

for forecasting car sales. The obtained simulation results demonstrate the pro-

posed approach as an effective solution in dealing with uncertain data and finite

samples.

1.3.2 Challenges in building ML models with industrial big

data

The Predictive modeling is crucial to transform large manufacturing datasets,

or “industrial big data” into actionable knowledge for various industrial appli-

cations. The machine learning is widely used in many industrial applications

across different levels, including processes, machines, shop floors, and supply

chain levels. For instance, machine learning models can be used to control

product quality [47], to monitor the condition of tools by tracking the evolution

of their state [48], or to monitor the health of machines by predicting the time

of occurrences of machine failures and also to estimate the criticality of these

failures [49]. However, despite its countless benefits and advances, building

a machine learning pipeline is still a challenging task, partly because of the

difficulty in manually selecting an effective combination of an algorithm and

hyperparameters values for a given task or problem. Both of these challenges

concern the features engineering (dealing with the inputs of the ML algorithms)

and the automatic selection and parametrization of the adequate model, as

detailed in the following :

26 CHAPTER 1. ML algorithms selection and hyperparameters tunning

Challenge 1 : efficiently performing features engineering

Features engineering is the process of generating and selecting features from

a given dataset for the subsequent modeling step. As the overall model perfor-

mance highly depends on the available features. Feature engineering is a crucial

process in the life cycle of a ML pipeline construction. The performance of a

ML pipeline can be increased many times over by building good features. In

many cases, the original features from the data may not be good enough, e.g.,

their dimensionality may be too high or samples may not be discriminable in the

feature space [50]. Consequently, it is necessary to perform some pre-processing

on these features to improve the learning performance.

Features engineering involves the application of some transformation func-

tions such as arithmetic and aggregate operators on given features to build new

features and remove data errors such as missing values in an input data entry,

invalid values or broken links between entries of multiple data sets.

Given a predictive modeling problem, an analyst manually examines the

quality of the available data, performs adequate transformations and then builds

the model which is evaluated later on. If the model accuracy is insufficient,

the analyst changes the applied transformation functions and operators for

some attributes and re-builds the model. This labor-intensive process requires

interactions between industrial professionals and computer scientists. Moreover,

it is often repeated many times before converging, causing a time and human

resource bottleneck especially in fields that do not tolerate delays such as the

manufacturing industry.

Challenge 2 : efficiently selecting algorithms and hyperparameters values

Owing to the development of open source ML packages and the active research

in the ML field, there are dozens of machine learning algorithms, where each

machine learning algorithm has two types of model parameters : (1) ordinary pa-

rameters that are automatically optimized or learned during the model training

phase; (2) and hyperparameters (categorical and continuous) that are typically set

by the user manually before the training of the model (cf. Table 1.1).

Given a modeling problem like, predicting whether an equipment failure

Application areas of ML in manufacturing 27

will occur, an analyst builds a model manually and iteratively. Initially, the

analyst selects an algorithm among the many other applicable algorithms like

Logistic Regression, SVM, Random Forest or Naïve-Bayes. Subsequently, (s)he

sets the hyperparameters values for the selected algorithm. Later on, (s)he trains

the model to automatically optimize the ordinary parameters. If the model

accuracy is insufficient, the analyst changes the hyperparameters values and/or

the algorithm and re-builds the model. This process is iterated until (s)he obtains

a model with sufficient accuracy,or (s)he no longer has time to optimize it or the

model accuracy cannot be improved anymore (cf. Figure 1.1).

Numerous combinations of algorithms and hyperparameters values result in

hundreds or thousands of labor-intensive manual iterations to build a model,

which can be difficult even for experts in machine learning [51]. It is largely

observed in the available literature and empirically proved that the algorithms

and the used hyperparameters values, affect the model accuracy. Thornton et

al. [52] have shown in their study that for the 39 ML algorithms in Weka, the

effect of HPs tuning on the models accuracy, in average is equal to 46% on 21

datasets and it is of 94% on one dataset. Even when considering only a few

common algorithms such as support vector machine and random forest; the

effect is still greater than 20% on 14 out of 21 datasets.

Furthermore, the effective combination of an algorithm and the hyperpa-

rameters values varies with respect to the problem we attempt to model. In

the literature, some authors explore the automatic search of algorithms and

hyperparameters values [51]. Evidently, it shows that automatic search methods

can obtain equivalent or even better results than those resulting from the manual

tuning done by machine learning experts [26].

1.3.3 Common practices to apply advanced analytics for manu-

facturing related problems

Predictive analytics have gained significant interest among the industry

4.0 community. Machine learning based data analytics techniques are widely

applied across different levels of the manufacturing industry. Wuest et al. [53]

summarized the ability of machine learning techniques to meet manufacturing

28 CHAPTER 1. ML algorithms selection and hyperparameters tunning

requirements. According to their work, expressively not every machine learning

technique is applicable to every manufacturing problem. As manufacturing

stakeholders do not possess the necessary expertise to achieve these tasks, they

often collaborate with data scientists who may provide guidelines for applying

machine learning techniques. In most cases, these collaborations are complex

and causes excessive consumption of time and effort [36]. Capabilities to perform

advanced analytics without strong data science knowledge are highly desired to

facilitate the application of advanced analytics in manufacturing.

1.4 Conclusion

Infthis chapter, the formal definition offthe algorithms selection and related HPs

tuning problemfis presented alongfwith their applications and challenges for in-

dustrial bigfdata. Subsequent sections also described the main techniques often

used tofsolve it, rangingffrom the most straightforward techniques GSfandfRS,

meta-heuristic like GA; tofmore complex approaches like BO. Allfthese tech-

niques can improve the predictive performance offthe final induced models,

butfthey can also befvery time consuming to find suitable HPs settings. More-

over, itfis not guaranteed thatfthe tuning process willflead neither to improved

ML modelsfnor significant improvements. As stated infthe thesis’ hypothesis,

Automated machine learning canfbe useful tofmake ML algorithms selection

and related HPs tuning more efficient andfless costly.

Chapter2

Automated machine learning

Outline of the current chapter

2.1 Automated machine learning 30

2.1.1 Meta-learning based approach 32

2.1.2 Summary of literature overview 46

2.1.3 Ontology based approach 46

2.1.4 Background on AutoML sSystems 47

2.2 AutoML in the manufacturing industry 49

2.2.1 Using existing AutoML tools for manufacturing

datasets . 50

2.2.2 Building AutoML for manufacturing datasets 52

2.3 Towards AutoML for industrial big data 53

2.4 Conclusion 54

Machine learning became afvital partjin many aspects ofjour daily life. To

give just a few examples, MLfcan suggest active user which booksfor newspa-

pers to read [54], what movies to watch [55], whatfmusic toflisten to [56], etc.

ML approaches hasjbeen employed to develop systems ablefto recommend

which places (e.g., cultural and artistic attractions [57]) to visit [58] and the

best itinerary tof get there [59], andfhave been provenfto befvery efficient in

29

30 CHAPTER 2. Automated machine learning

self-driving cars [60] and predictive maintenance in Industry 4.0 [61]. However,

along with these global applications, therejis also widespread awareness that,

givenja specific problem, the process of designing and implementing aftruly

effective and efficient ML systems requires considerable knowledge and effort by

highly specialized data scientists andjdomain experts. Eachfalgorithm is intrin-

sically optimized and its performance on a particular task depends on how well

its embedded fixed bias match the problem. Hence, there isfno single algorithm

thatfcan learn all the tasks efficiently and every algorithm can perform better

only on limited number of tasks. Thisfphenomenon is alsocalled performance

complementarity [62], and is alsojbeen confirmed by the well known No Free

Lunch theorem [63].

Sincejno single algorithm can bestflearn allfthe tasks effectively, the ques-

tion that fwhich algorithm should befused from the large numberjof available

algorithms for a given task has gain tremendous importance and attention. The

completefor partial automation of roles thatjtoday require human skills would

therefore be welcomed with great interest. Basedfon this motivation, Automated

Machine Learning [14] has now become one of the most relevant research topics

not only in the academic field butfin the industrial one too [64, 65]. Thefmain

purpose of AutoMLjis to provide seamless integration offML in various indus-

tries, which will reducefthe demand forjdata scientists by enabling domain

experts tojbuild ML applications automatically without extensive knowledge of

statistics andfmachine learning.

2.1 Automated machine learning

AlthoughjML algorithms dofnot require human interference whilejlearning,

preparing datajthat is goingjto be consumedjby these algorithms, findingfthe

right algorithm, and tweaking it tojget the best results require skilled data

scientists. Data scientists try different techniques for preprocessing and multiple

ML algorithms tofcome up with the combination that is thejmost efficient (cf.

Figure 1.1). Thesefprocesses are human dependent and require special skills

in computer science, programming, mathematics, and statistics, in addition to

business knowledge injthe area of thefprocessed data [53].

2.1. Automated machine learning 31

Ajnovel research areajhas then emerged. Its mainjgoal isj to enable non-ML

experts to effectively generate andfconfigure data analytics solutions, without

special assistance or intervention, onfthe real-world problems [14]. Further-

more, it leverages human expertise byjallowing users to define the conditions

thatjrestrict the algorithms as wellfas the performance metrics to be used while

evaluating candidate algorithms and thus save the time and effort for knowledge-

able practitioners. Thefcore problem considered by AutoML canfbe formulated

as follows : given a dataset, a machine learning task and a performance criterion;

solve the taskjwith respect to the dataset while optimizing the performance [66].

The goals of AutoML can be summarized as listed below :

− democratizing the application of ML to non-experts of data analysis by

providing them with “off the shelf” solutions,

− enabling the knowledge practitioners (e.g. engineers, researchers) to save

time and effort,

− increasing the productivity by playing the role of a shield against method-

ological errors and over/ under-estimations of performance.

Multiple approaches have been proposed to support the machine learning

automation. These approaches range from automatic data pre-processing [67]

to automatic model selection [68, 69]. Some approaches [70, 71] attempt to

automatically and simultaneously select the right learning algorithm and find

the optimal configuration of its hyperparameters. These approaches are also

referred as combined algorithm selection and hyperparameters optimization

problem (CASH) [71, 72]. A solver for the CASH problem aims to pick an

algorithm from a list of options and then tune it to give the highest validation

performance amongst all the possible combinations of algorithms and hyper-

parameters.

Owing to the immense potential of AutoML, different learning paradigms

have been applied to this task, and tools are available to the research community

such as Auto-sklearn [73], AutoWEKA [70], TPOT [71] as well as commercially

ones such as RapidMiner [74], H2O [75], Big ML [76], and Data Robot [77]. An

ongoing competition [78] around this goal has been running since 2015 focusing

on various budget-limited tasks for supervised learning.

32 CHAPTER 2. Automated machine learning

Automation of analytics workflows orftheir parts havefbeen studied

andfattempted actively overfthe past years. Asfa result, there are various ap-

proachesfto support data scientists and neophyte ML domain experts. Hereafter,

wefshow two main approaches respectively based onfthe meta-learning and the

usefof ontologies.

2.1.1 Meta-learning based approach

Whenfone learn new skills, (s)he rarely, iffever, starts from scratch. (S)Hefstarts

from skills learned earlier in related tasks, reuses approaches that worked well

before, and focuses onfwhat isflikely worth tryingjbased on experience [79].

With every learned skill, learningfnew skills becomes easier, requiring fewer

examplesfand less trial-and-error. In short, (s)he learns how to learn across tasks.

Likewise, when building machine learning models forja specific task, wefoften

build on experience withfrelated tasks, orfuse our (often-implicit) understanding

ofjthe behavior of ML techniques tofhelp make thejright choices.

SeveraljML algorithms havefbeen proposed forfprediction tasks. However,

sincefeach algorithm hasfits inductive bias, somejof them canjbe more appro-

priate for ajparticular dataset. Whenfapplying anfML algorithm to a dataset,

a higher predictive performance can be obtained if an algorithm whose bias is

most appropriate to thefdatasets isfused. Thus, non-experienced users become

overwhelmed and require support (e.g., to be recommended the algorithm and

related HPs configuration to use). Thejrecommendation of thefmost adequate

ML algorithm configuration forja new dataset is investigated infa research area

knownjas Meta-Learning (MtL).

Meta-learning or learning tojlearn isfthe process about learning howmachine

learning algorithms perform across afrange offtasks. Itjaims to learn which

algorithm willjwork wellffor a dataset withfcertain characteristics, or which

hyperparameters will givefa good performance. Thus, thefMtL investigates the

relation between tasks/problem domains and learning strategies. The goaljisjto

select thejmost promising algorithm forfa given taskfand to understand when

a particular learning strategy is more suitable than others. Thisftask is also

commonly referred tojas “Algorithms Selection” [80].

2.1. Automated machine learning 33

The idea of meta-learning for the algorithm selection and HPs tuning prob-

lems is based on the following assumption : “Algorithms show similar perfor-

mance for the same configuration for similar problems”. It consists of generating

a meta-model that maps the characteristics of problems to the performance of

algorithms that can be used to solve these problems.

The challenge in meta-learning is to learn from prior experiences in a system-

atic and data-driven way. As depicted in Figure 2.1, meta-learning consists of 3

main phases : first, a meta-learning space is established using meta-data that de-

scribe prior learning tasks and previously learned models. It consists of datasets

characteristics (meta-features) and a performance measure (meta-responses) for

data mining algorithms on these particular datasets. Then, there comes the

meta-learning phase. Here, a predictive meta-model is generated out of the meta-

dataset constructed in the first phase, to extract and transfer knowledge that

guides the search for optimal models for new tasks. Finally, in the third stage

when a new dataset occurs, its characteristics are extracted and the predictive

meta-model is used to recommend the most promising ML algorithms with

related HPs configuration.

MetaData Meta-Learner New dataset

M
e

ta

d
a

ta
s

e
t

M
e

ta

m
o

d
e

l

R
a

n
k

in
g

Meta-learning
space

Perform
learning

Recommend

Figure 2.1: The meta-learning process.

The workflow to build a meta-model is shown in Figure 2.2. In order to train

a meta-model, a meta-dataset from which to learn is required. A meta-dataset

contains informations about machine learning experiments. For instance, it

captures which ML algorithm is used, with which hyperparameters configura-

tion, and how well the resulting model performed. Additionally, for each such

experiment it also describes the dataset on which the experiment was performed.

The description of the dataset is done by meta-features that capture information

34 CHAPTER 2. Automated machine learning

about the data, such as the number of attributes, classes, kurtosis, skewness, etc.

 Machine Learning Experiments
various algorithms and con gurations

Dataset

Calculate Meta-Features

Meta-Dataset

Meta-Features of Dataset

Nr. Attributes: 15
Nr. Instances: 15
Nr. Classes: 2

Algorithm Performance on Dataset

k-nearest neighbors

Algorithm Hyperparameters

1. Collect Datasets

2. Compute metadata for each dataset

Logistic Regression

Accuracy

k=5 0.878
k-nearest neighbors k=7 0.931

with e.g. Random Forests

C=1.0, Dual=True 0.536

3. Create meta-dataset and learn a meta-model

Class Entropy: 0.695
Naive Bayes AUC: 0.862
Mean Skewness: 10.63

Learn a meta-model Performance Prediction Model

E.g predicts accuracy for k-nn with

 k = 3 and meta-features .

Figure 2.2: An overview of the steps to creat a meta-model.

The firstjstep to createfa meta-dataset isfto select afset of datasetsfto perform

ML experiments on. Thisfis illustrated asfthe firstfstep in Figure 2.2. In the

secondjstep, two actionsfhave tofbe performed onjeach dataset. Onfone hand,

the meta-features (characteristics) of the dataset needjto bejcalculated. Meta-

features describe the dataset in various ways. Examples include the numberfof

classes in the dataset, the mean skewness of numerical features or the accuracy

of simple classifiers. More information about thefvarious meta-features follows

infthe next section. On the otherfhand, ML experiments have to befrun on the

datasets. The type of ML experiments that are run should be the same type you

want the meta-model to make predictions about. In theffinal step, thefresults

of stepjtwo are combined intoja single meta-dataset. This dataset contains

afrow forfeach machine learning experiment, describing the used algorithms

2.1. Automated machine learning 35

and related hyperparameters configurations, the achieved performance, and the

meta-features of the dataset onjwhich theyfwere achieved.

Following these requirements, a suitable meta-dataset isfgenerated, and as

result ofjthe MtL process, a meta-model isjinduced. This meta-model represents

a mapping between the meta-features describing the datasets, andfthe predic-

tive performance obtained by thefgroup of learning algorithms whenfapplied

tojthese datasets. Therefore, the quality offthe meta-features is essential for the

predictive performance of the meta-models. Hence, itjcan be used to recommend

thefbest algorithms for afnew unseen problem.

The twojmain concepts of meta-learning are themeta-data and themeta-model.

In the following, we brieflyf discuss thesejtwo concepts.

Meta-data

To createfan effective meta-model, the meta-data fromfwhich to learn is required.

Meta-data are the necessary information requiredjto establish the meta-dataset.

In our definition, theyfconsist of: i) meta-features, and ii) performance measures

offthe considered algorithms — meta-responses. In statistics, thefformer are

called predictors and theflatter are called responses.

Meta-features A fundamental MtL question is : how to extract suitable informa-

tion to characterize specific tasks?. Researchers have been trying to answer this

question by looking for dataset properties that can affect learning algorithms

performance, measuring this performance outright [81, 82], investigating alter-

natives [83] and adapting/creating new measures based on existing ones [84, 85].

In all cases, different types of meta-features have been developed, ranging from

simple features such as the number of samples in a dataset, to more complex

ones. Next, we provide a concise overview of the most commonly used meta-

features, together with a short rationale for why they are indicative of model

performance. Where possible, we also show the formulas to compute them.

More complete surveys can be found in the literature [13, 86–88].

36 CHAPTER 2. Automated machine learning

1. Simple meta-features

The simple measures are directly extracted from the data and they rep-

resent basic informations about the dataset. They are the simplest set of

measures in terms of definition and computational cost [89–91]. Table 2.1

presents some of these measures. They are directly computed, free of hy-

perparameters and deterministic. Semantically, these measures represent

concepts related to the number of predictive attributes, instances, target

classes and missing values. These measures are relevant to characterize

the main aspects of a dataset, providing information that can support the

choice of a learning algorithm for a particular task.

Name Formula Rationale Variants

Nr instances n Speed, Scalability p/n, log(n), log(n/p)
Nr attributes p Dimensionality log(p),%categorical
Nr classes c Complexity, imbalance ratio,min,maxclass
Nr missing values m Imputation effect %missing
Nr outliers o Data noisiness o/n
attrToInst Dimensionality
instToAttr Sparsity

Table 2.1: Simple measures and their characteristics.

The number of instances and the number of classes by themselves do not

provide much information since they indicate the dataset size and its la-

bel diversity. However, when combined with the number of attributes,

different simple concepts can be captured. The measures attrToInst and

instToAttr represent the dimensionality and sparsity of the data, respec-

tively. The latter is a potential indicator for overfitting when its value

is too small, a learning model may take into account irrelevant details

in the training data, resulting in poor generalization [92]. Finally, some

measures assess dataset quality, such as the number of missing values in

the dataset attributes and instances, as well as the total number. Since

some ML algorithms can deal with missing values, these measures can

provide important information for the algorithms selection.

2.1. Automated machine learning 37

2. Statistical meta-features

Statistical measures are used to extract informations about the performance

of statistical algorithms or about data distribution, for instance, central

tendency and dispersion [89]. They are the largest and the most diversified

group of meta-features, as shown in Table 2.2. Statistical measures are

deterministic and support only numerical attributes.

Name Formula Rationale Variants

Skewness Feature normality min,max,µ,σ,q1, q3
Kurtosis Feature normality min,max,µ,σ,q1, q3
Correlation Feature interdependence min,max,µ,σ,ρXY
Covariance Feature interdependence min,max,µ,σ,CovXY
Sparsity Degree of discreteness min,max,µ,σ
Gravity Inter-class dispersion
ANOVA p-value Feature redundancy PvalXY

Table 2.2: Statistical measures and their characteristics.

Correlation and covariance capture the interdependence of the predictive

attributes [89]. They are computed for each pair of attributes in the dataset.

The former is a normalized version of the latter, and the absolute value of

both measures are frequently used, which changes the range from [−1;1]

and] −∞;+∞[, respectively. High values indicate a strong correlation

between the attributes, which can be interpreted as a level of redundancy

in the data [93].

3. Information-Theoretic meta-features

Information-theoretic meta-features capture the amount of information

in the data. Table 2.3 shows the information-theoretic measures, which

require categorical attributes and most of them are restricted to represent

classification problems. Moreover, they are directly computed, free of

hyperparameters, deterministic and robust. Semantically, they describe

the variability and redundancy of the predictive attributes that represent

the classes.

38 CHAPTER 2. Automated machine learning

Name Formula Rationale Variants

Class entropy H(C) Class imbalance
Norm. entropy H(X)

log2n
Feature informativeness min,max,µ,σ

Mutual inform. MI(C,X) Feature importance min,max,µ,σ

Uncertainty coeff. MI(C,X)
H(C) Feature importance min,max,µ,σ

Equiv. nr. feats H(C)

MI(C,X)
Intrinsic dimensionality

Noise-signal ratio H(X)−MI(C,X)

MI(C,X)
Noisiness of data

Table 2.3: Information-theoretic meta-features and their characteristics.

The entropy of the predictive attributes and the target values capture

the average uncertainty present in the predictive and class attributes [86],

respectively. In the former, all predictive attributes are assessed, thus

its summarization can provide an overview of the attributes capacity for

class discrimination. In the latter, it represents how much information

is necessary to specify one class. In a learning perspective, a predictive

attribute with a low entropy contains a low discriminatory power [89],

whereas a target attribute with low entropy contains a high level of purity.

Since the problem to be solved is usually a prediction problem, and, a

variable (or more) is defined to be the response, further meta-features

measuring the association between the predictors and the response have

been used. These measures are grouped into the Landmarking and Model-

based classes [94]. Yet, when performed on bigger datasets, these measures

may introduce significant computational costs.

4. Landmarking

Landmarking is an approach to characterize datasets using the perfor-

mance of a set of fast and simple learners, which extract information from

the learning models. Examples include the performance of a decision

stump, naive bayes classifier or linear discriminant analysis [94]. Table 2.4

lists the most common landmarking measures. Good landmarkers should

probably have a runtime complexity of at most O(nlog(n)). Moreover,

when using multiple landmarkers, they should have different biases [94].

2.1. Automated machine learning 39

If two distinct landmarkers have similar performance across all datasets,

then it probably suffisant to only use one of them [95]. These measures

were explored in studies such as [18, 73, 91].

Name Formula Rationale Variants

Landmarker(1NN) P(θ1NN , tj) Data sparsity Elite 1NN [96]
Landmarker(Tree) P(θT ree, tj) Data separability Stump,RandomTree
Landmarker(Lin) P(θLin, tj) Linear separability Lin.Disciminant
Landmarker(NB) P(θNB, tj) Feature independence More models [97]
Relative LM Pa,j −Pb,j Probing performance
Subsample LM P(θi , tj , st) Probing performance

Table 2.4: Landmarking meta-features and their characteristics.

5. Data complexity

Complexity measures are a set of measures which analyze the complexity of

a problem considering the overlap in the attributes values, the separability

of the classes, and geometry/topological properties. They were introduced

in [98] to capture the underlying difficulty of classification tasks. Table 2.5

summarizes the main characteristics of these measures. While a complete

survey of the complexity measures can be found in [99, 100].

Name Formula Rationale Variants

Fisher’s discrimin (µc1−µc2)2

σ2
c1−σ

2
c2

Separability classes c1, c2 See [100]

Volume of overlap Class distribution overlap See [100]
Concept variation Task complexity See [101]
Data consistency Data quality See [13]

Table 2.5: Data complexity meta-features and their characteristics.

6. Model structure-based meta-features

Contrarily to the previous data characterization methods that were calcu-

lated from the data distribution, the model based is an indirect character-

ization method and are calculated by inducing a decision tree model on

a dataset to get information about the hidden structures of the data [62,

40 CHAPTER 2. Automated machine learning

91]. The properties of the tree are used as meta-features. Its advantage is

that it does not only rely on the distribution of the data but consider the

representation of the data set in a special structure for getting information

about the learning complexity. However its drawback is that it has rela-

tively high computational cost associated with it. Table 2.6 shows the DT

model meta-features.

Name Formula Rationale Variants

Nr nodes, leaves, and branches |η |, |ψ| Concept complexity T ree depth
Nodes per feature |µX | Concept complexity min,max,µ,σ

Leaves per class |ψc |
|ψ| Feature importance min,max,µ,σ

Leaves agreement
nψi
n Class complexity min,max,µ,σ

Information gain Class separability min,max,µ,σ

Table 2.6: Model-based meta-features and their characteristics.

Many other non-traditional characterization measures have been reported

in the literature. Despite the fact they are not broadly used in MtL studies, due

to a high computational complexity or domain bias, they can be useful for a

particular learning scenario and MtL problem. Besides, some works show good

results when using those characterization measures [87, 98].

Meta-reponses Performance measures are different outputs that can be ob-

tained after the evaluation of data mining algorithms. Since we are dealing with

classification problems, then, the algorithms we consider are of classification

type. The performance is usually measured in terms of predictive accuracy,

precision, recall or the area under the roc curve (AUC). In Table 2.7, formulas for

calculating these measures are given.

Meta-model

After having generated a meta-dataset with all the necessary metadata, the goal

is to build a predictive meta-model that can learn the complex relationship

between the tasks characteristics (meta-features) and the utility of specific ML

pipeline to recommend the most useful ML algorithm configuration A(i)∗ given

2.1. Automated machine learning 41

Measure Formula

Accuracy (TP+TN)
(TP+FP+FN+TN)

Precision TP
(TP+TN)

Recall TP
(TP+FN)

AUC P(X2 > X1)

Table 2.7: Performance evaluation measures for classification algorithms.
TN - True Negatives; TP - True Positives; FN – False Negatives; FP - False Positives;
X1, X2 - Score functions of the classes.

the meta-featuresM of the new task tnew. Formally, each task tj ∈ T is described

by a vectorm(tj) = (mj,1...mj,K) of K meta-features. This can be used to define the

task similarity measure based on, for instance, the Euclidean distance between

m(ti) and m(tj), so that we can transfer information from the most similar tasks

to the new task tnew.

Different meta-learners havefbeen usedjin thefliterature, such as k-nearest

neighbors (KNN), decision trees, and XGBoost [4]. The various approaches in-

vestigating thejuse of MtLfin providing recommendation ofjthe ML pipelinefto

usejgive suggestion injone of thejfollowing forms, dependingjon the aspectfto

which MtLjis applied :

a) List of applicable algorithms

Injthis category, wejclassify alljthe approaches wherejthe suggestion con-

sists ofja single algorithm or alogirthms, that is (are) expected to perform

best onjthe dataset, according to the performance criterion thatjisjused. In

these approaches, the HPs settings are predicted without actually evaluat-

ing thejmodel on the new dataset [80]. In this category, we foundjthe

workjdonejby [102], wherejthe autors employed MtL tojrecommend

thejoptimal algorithm forja givenjtask. Thejauthors performed experi-

ments with C4.5, kNNjand SVM classifiers covering few of their HPs by a

grid design. Performances were evaluatedjover 100 UCI 1 datasets regard-

ing AUC. As a meta-model, thejkNN algorithm was appliedjto recommend

the bestjHPs setting for new unseen datasets. Similarly, [91] evaluated

1http://archive.ics.uci.edu/ml/index.php

42 CHAPTER 2. Automated machine learning

different ML algorithms over 54 datasets and used the performance pre-

dictions to develop a MtL system for automatic algorithms selection. In

[103], the authors conducted a similar study withjSVMs butjusing a Ge-

netic Algorithm (GA) to optimize HPs and perform features selection of six

meta-learners (kNN, SVM, J48, JRip, NB, and Bagging). Experiments were

carried outjover 78 classification datasets assessing HPsjsettings usingja

5-fold cross validation strategy andjthe Mean Absolute Deviation (MAD)

evaluation measure.

Meta-modelsjcan also generate ajranking of the top-Kjmost promising con-

figurations. [104] proposed the “autoBagging” tool, an AutoML system

that automatically ranks Bagging work-flows considering four different

Bagging HPs byjexploring past performances and datasets characterization.

Experiments werejcarried out on 140 OpenML 2 datasets and 146 meta-

features (extracted with post-processing aggregation functions). Theyjused

an XGBoost asja meta-learner tojpredict ranking of workflows, and eval-

uated results atjthe meta-level using a Mean Average Precision (MAP)

measure in a Leave-One-Out Cross-Validation (LOO-CV) strategy. The

advantage of a rankingjis that there isjan ordered setjof suggestions to try.

Additionally, a userjmay have preferences aboutjthe algorithm used, based

on e.g. computational efficiency or model interpretability.

b) Predict HPs tuning necessity and training runtime

A different approachjis to usejMtL to check thejHPs tunnig necessity.

[105] employed MtLjto predict the improvement obtained in a DT al-

gorithm varying its HPs. They selected the C4.5 algorithm andjdefined a

gridjof values for the hyperparameters C and M. A total ofj14 educational

datasets werejcharacterized by means ofj5 simple meta-features. Thus, the

MtL wasjused to predict whether the use of differentjHPs settings increase,

decrease or maintain the predictive performance ofjthe induced DTs. Simi-

larly, [106] used MtLjto identify when HPs tuning wouldjlead to significant

increase in accuracy. They carried out experiments using a PSO [107] tech-

nique to searchjthe hyperspace ofjseveral ML algorithms in 326 binary

2https://www.openml.org/

2.1. Automated machine learning 43

classification datasets. The analysis performed byjthe authors considered

different thresholds tojdetermine whenjan improvement wasjobtained or

not in thejdata collection, but nojstatistical analysisjwas performed.

Instead of predicting predictive performance, a meta-regressor canjalso

be trainedjto predict algorithms runtime (training/prediction time) when

induced by different HPs settings. For instance, Reif, et al. [108] predicted

the training runtimejof several classifiers : kNN, SVM, Multilayer Percep-

tron (MLP), and DT. Theyjdefined a discrete grid of HPsjsettings, evaluating

these settings on 123 classification datasets. The performance measures

used for HPs assessment were the Pearson Product Moment Correlation

Coefficient (PMCC) and Normalized Absolute Error (NAE). Similarly, [109]

predict both the predictive performance and runtime using polynomial

regression, based onlyjon the numberjof instances and features.

c) Estimate predictive performance for a given HPs setting

Meta-models canjalso directly predict thejperformance, e.g. accuracy

orjtraining time, ofja configuration on a given task, given its meta-features.

Thejfinal meta-target is to predict an estimation of the performance. This

makes thejtask a regression problem allowing to estimate whetherja config-

uration will be interesting enough to evaluate in an optimization procedure.

Early works [110, 111] used linear regression and rule-based regressors

tojpredict the performance of a discrete setjof configurations andjthen

rankjthem accordingly.

Tojpredict the performance ofja set ofjmachine learning algorithms, [112]

trained an SVM meta-regressor per classification algorithm to predict

itsjaccuracy, under default settings, onja new task tnew given its meta-

features. Similarly, [91] trained a meta-regressor onjmore meta-data to

predict its optimized performance. More recently, [113] adapted the acqui-

sition function of surrogate models by one optimized meta-model. They

evaluated several HPsjin a holdout fashion procedure over 105 datasets and

usedjthe meta-knowledge tojpredict the performance ofjnew HPs settings

forjnew datasets. The base-level algorithms explored werejthe AdaBoost

and SVM.

44 CHAPTER 2. Automated machine learning

Research papers from the detailed literature survey that either embedded or

used MtL to cope with these tasks are summarized in Table 2.8.

2.1.
A
u
tom

ated
m
ach

in
e
learn

in
g

45

Reference Task N. of
Meta-features

Meta- N. of Evaluation
learner(s) SI MS LM DC learner(s) datasets mearsure(s)

[104] Recommends HP settings 63
bagging

workflows

X X X - Xgboost 140 Kappa score

[102] Recommends HP settings 3 X X X X KNN 84 AUC
[114] Recommends HP settings

of SVM
1 X - - - KNN 40 Acc

[99] Recommends HP settings
of SVRs

1 - - - X kNN 39 NMSE

[115] Predicts training runtime 5 X - X - PMCC 123 NAE
[103] Predicts training runtime 6 X - - - SVM 78 MAD
[114] Recommends initial val-

ues for HP optimization of
SVM

1 X - - - kNN 40 Acc

[20] Recommends initial values
for HP optimization

3 X - X - kNN 57 Acc

[106] Predicts HP tuning neces-
sity

- X X X - J48, SVM,
RF

42 Acc

[113] Estimates predictive perfor-
mance for a HP setting

2 X - - - AdaBoost 25 -

[116] Ranked list of ML pipelines 22 X X X X KNN 115 Acc + Runtime
[117] Ranked list of ML pipelines 6 X X - - C4.5 ,

genetic
fuzzy

40 Acc + Runtime

[118] Ranked list of ML pipelines 17 X X X X EM 84 Acc + Runtime
[119] Ranked list of ML pipelines 21 X X X X link

prediction
131 Acc + Runtime

Table 2.8: Summary of related studies applied to MtL to support the automation of ML.

46 CHAPTER 2. Automated machine learning

2.1.2 Summary of literature overview

The literaturefreview on MtL related works, leadsfto identify some interesting
aspects. Overall, theffollowing aspectsfwere observed: :

• mostfof the studies created thefmeta-data using GSfto tunefthe algorithms’
HPs;

• mostfof them evaluated the resultant models withfa holdout orfsingle CV
resampling procedure andfthe simple Accuracy evaluation measure;

• thefmajority offthe studies used less than 100 datasets with few exceptions
that used more than 100 datasets [104, 115, 116, 119], but allfof them are
binary classification problems. Therefis no clear indication infliterature
regarding the adequate number of datasets atfthe meta-level, however,
reasonable number of datasets mustfbe considered that can appropriately
map the features space into the performance one [62, 120];

• different algorithms wereftried atfthe meta-learning levelfbut mostly con-
centrated byfthe same studyfand consider justfone evaluation measure;

• all investigated afsmall numberfof categories (simple and statistical) meta-
features to characterize thefdatasets. Therefore, different approaches to
generate meta-features are notfwell explored infthe literature;

• fewfof themfprovide the complete resources forf the reproducibility of
experiments;

• anfend-to-end MtL resolver forfthe CASH problemfhas notfbeen proposed
nor ivestigated;

• nonefof the studies foundfby the author combined allfthese previous is-
suesfor limitations.

2.1.3 Ontology based approach

The ontology-based approach for semantic data mining attempts to make use
of formal ontologies in the data mining process. A well-designed ontology
can assist data analysts and neophyte ML domain experts to select appropriate
modeling techniques and build specific models as well as the rationality for
the techniques and models selected in a number of ways. By expressing the
domain expertise in a formal structure, one can use logical reasoning to reduce
the search space and hence, find the most predictive model for a given problem.

2.1. Automated machine learning 47

In contrast to the conventional data-driven MtL approach, semantic data
mining is extensively co-driven by the knowledge of the data-mining process as
well as its components expressed in a data mining ontology and knowledge base.

Bernstein et al.[121] describe an ontology-based Intelligent Discovery As-
sistant (IDA). After analyzing an input dataset (to extract meta-data), the sys-
tem generates all possible workflows from the ontology and which are valid
within the characteristics of the input. The recommendations are then sorted
based on some criteria specified by the user (e.g., simplicity, performance metric,
etc.). Similarly, Nural et al.[122] provided a comparison of the meta-learning
approach as described in [123] with the ScalaTion ontology-based suggestion ap-
proach [124] on a set of 114 datasets. Using ScalaTion, each dataset is provided
as an input to the suggestion engine and the suggested modeling technique is
recorded. When predicting the top-1 performing technique, the ontology-based
approach achieved an accuracy of 51% compared to 75% with meta-learning.

2.1.4 Background on AutoML systems and their components

AutoML systemsfhave recently gained traction infthe research community
andfthere exists a multitude offapproaches, often accompanied by open-source
software. Bayesian optimization is a technique thatfoptimizes hyperparame-
ters forfML algorithms based on a well-known theoryfin probabilities called
Bayes’ theorem [18, 52, 64]. Other simpler techniques are also used such as grid
search and random search. Meta-Learning is another method for hyperparam-
eter optimization, wherefthe AutoML system learns from itsfown experience
of applying machine learning. The literature reveals a variety of AutoML tools
and platforms. Some of theme are open-source whilefothers are commercial.
Table 2.9 shows a comparison among some offthe mostfpopular AutoML plat-
forms, in termsfof cost, codingfrequirements, processing location, input data
requirements, andfsupported Operating Systems.

Auto-WEKA [70] is anfAutoML framework withfongoing improvements [72]
for building machine learning pipelines based on the Weka [125] ML library.
Auto-Weka addresses the CASH problem applying the Bayesian optimization.

Auto-Sklearn [73] is an AutoML toolkit implemented on top of the Scikit-
Learn3 data-mining library. Auto-sklearn extends the idea of configuring a
general machine learning framework with global optimization which was in-
troduced with Auto-WEKA. To improve generalization, auto-sklearn builds an
ensemble of all models tested during the global optimization process. It uses the
ensemble construction and Bayesian optimization search procedures to address

3https://scikit-learn.org

48 CHAPTER 2. Automated machine learning

System Cost Coding Data type
Operating system

need Linux Mac Windows

GoogleAutoML [126] Billable No Img, Txt
Tabular

Cloud computing

H2O.ai [75] Billable No Img, Txt
Tabular

Cloud computing

Rapidminer [74] Billable No Img, Txt
Tabular

Yes Yes Yes

Auto Keras [127] Free No Image Yes Yes Yes
Auto-Sklearn [73] Free Yes Tabular Yes No No
ATM [128] Free Yes Tabular Yes - -
TPOT [21] Free Yes Tabular Yes Yes Yes
Auto-WEKA [72] Free Yes Tabular Yes Yes Yes

Table 2.9: Summary of related AutoML systems.

the CASH problem. Auto-sklearn wraps a total of 15 classification algorithms,
14 feature preprocessing algorithms.

The Tree-based Pipeline Optimization Tool (TPOT) [21] employs the genetic
programming algorithms to optimize classification and regression ML pipelines
by exploring many different possible pipelines. Each pipeline consists of a ma-
chine learning model and their hyperparameters configuration. TPOT can only
handle categorical parameters; similar to grid search all continuous hyperparam-
eters have to be discretized. While their evolutionary strategy can cope with this
irregular search space, many of the randomly assembled candidate pipelines
evaluated by TPOT end up as invalid, thus, wasting valuable time that could
have been spent training the valid models.

Amongfthe big market actors, Google Cloud Platform recently released
thefAutoML Tables [126], a supervised learning service thatfhandles end-to-
end AutoML, but itfis only available onfGoogle Cloud asfa managed servicefof
the commercial framework.

While all of these tools provide partial or complete ML process automation,
each one works differently, and targets different dataset structure, platform,
algorithm, or end user, posing unique advantages and disadvantages at the
same time. For instance, Auto-Sklearn is embedded in Python, however, it only
operates on structured data using Linux Operating System. Auto-WEKA supports
Weka ML algorithms with the advantage of a graphical user interface (GUI), but
it is limited to statistical algorithms. RapidMiner provides features engineering
capability but requires expert guidance. While Google AutoML supports most

2.2. AutoML in the manufacturing industry 49

datasets and algorithms, the service is only cloud-based, and mostly commercial
for dedicated data processing.

In this thesis, we investigate a way of recommending ML algorithms with
their related HPs configurations. In the literature, there are some studies with
proposals close to our objectives. Unlike these related studies, the MtL exper-
iments described in this thesis explored a large number of heterogeneous and
real world datasets, an unbiased tuning methodology, and induced meta-models
for different target algorithms and predictive measures (cf. Chapter 3). These
meta-models generate promising configurations by the use of a novel and effi-
cient methodology to automatically extract more informational meta-features
from the traditional ones (cf. Chapter 4).

2.2 AutoML in the manufacturing industry

Although AutoML has been applied to a range of purposes and applications
such as crash prediction [129], clinical big data [130], disease diagnoses [131],
sentiment analysis [132] and educational data mining [133], few attempts have
been made to apply these techniques in the manufacturing field. It is largely
observed that the industrial needs are yet to be satisfied as the industrial actors
mostly use traditional ML processes rather than AutoML.

In manufacturing industry, there have been a few studies focused on im-
plementing AutoML systems that are specialized for manufacturing services.
Considering the lack of funds for industrial coding [129] and high data scientist
salaries [134], it is essential to find a cost-saving method that allows manufactur-
ing organizations to benefit from machine learning capabilities without huge
costs. More importantly, such a methods may improve production outcomes,
which is of paramount importance in developing any industrial tool. As an
emerging technology, AutoML can help achieve these goals for manufacturing
organizations, especially for extracting diagnoses from production data, which
is the focus of this thesis. This will save not only manufacturing workers’ time,
but it will also improve production outcomes by accelerating data treatment
planning and improving the accuracy of diagnoses.

Overall, we found two general approaches that have been studied to use
AutoML in the manufacturing industry. The first approach is to use already exist-
ing AutoML tools and platforms to perform predictive modeling or classification
on manufacturing related problems, while the second approach is to build new
AutoML tools for industrial big datasets. Below, we discuss these approaches in
more details.

50 CHAPTER 2. Automated machine learning

2.2.1 Using existing AutoML tools for manufacturing datasets

AutoML systems are tools that propose to automate the ML pipeline : integration,
preparation, modeling and model deployment. Although all AutoML systems
aim to facilitate the usage of ML in production, they may differ on how to
accomplish this objective, approaching the ML pipeline in different levels. The
purpose of this section is to, using currently available AutoML systems, evaluate
how each system approaches the ML pipeline and help a user to choose which
ML pipeline configuration to pick.

In order to asses the effectiveness of state-of-the-art AutoML systems for
manufacturing datasets, these were tested on a highly varied selection of 15
datasets that cover both binary and multiclass classification problems from the
perspectives of different industry 4.0 levels. These data are gathered broadly
from two major sources :

• OpenML AutoML benchmark: Datasets curated to serve as representative
benchmark for AutoML frameworks [135]. These datasets span various
binary and multi-class classification problems and exhibit substantial
heterogeneity in sample size and dimensionality.

• State of the art papers: Datasets collected from research papers deal-
ing mainly with industry 4.0 related problems using machine learning
solutions.

Benchmarked datasets characteristics are shown in table 2.10. The datasets
was pre-processed before being tested by each system. The evaluation results in
terms of predictive preformance and rutime are presented in the tables 2.11 and
2.12 respectively.

Dataset Num Classes Num Instances Task

[136] 4 959 Failure risk analysis
[137] 3 2000 Chatter prediction
[138] 2 61000 RUL prediction
[139] 2 7586 CNC Mill Tool Wear
APSFailure 2 60000 APS system failure prediction
Vehicle 2 846 Silhouette classification
CustSat 2 76020 Customer Satisfaction

Table 2.10: List (sample) of datasets used in the evaluation.

2.2. AutoML in the manufacturing industry 51

Dataset
AutoML tools Accuracy

Original paper result
TPOT Auto-sklearn AutoWeka

[136] 0.9120 0.8215 0.8353 0.85
[137] 0.9517 0.9632 0.9594 0.95
[138] 0.9907 0.9782 0.8398 0.9895
[139] 0.9991 0.9357 0.8868 0.9984
[140] 0.6711 0.908 0.9689 0.9677
[141] 0.7767 0.678 0.8334 0.9278
[142] 0.8899 0.6783 0.8477 0.884
[143] 0.7826 0.6702 0.8942 0.8659
vehicle 0.8415 0.9027 0.8415 -
Gas_Sens 0.9843 0.9256 0.9102 -
shuttle 0.9905 0.8429 0,9953 -
APS Failure 0.9933 0.9716 0.9559 -
CustSat 0.8276 0.8072 0.8571 -
car 0.9999 0.8549 0.9197 -
airlines 0.6758 0.7094 0.6493 -

Best performance 7 3 4

Table 2.11: Performances of the selected AutoML frameworks on the benchmark
datasets. The best performances among all AutoML frameworks are highlighted
in bold.

As shown in table 2.11, all systems presented a more than acceptable model
as a solution for particular manufacturing problems. It is obvious, that the
results of some machine learning solutions, oriented from manufacturing indus-
try, can be improved simply through the use of better ML models and related
hyperparameters configuration.

With state of the art results, a distinction between better and worse system is
hard to establish here. Performance also depends on the runtime, computational
complexity and running budget, since running bayesian optimization or genetic
algorithms based systems for more time can output better results.

In most of the state-of-the-art AutoML systems, one of the shortcoming
is their computational complexity [14]. Oftenly, they require huge time and
resources budget on non-conventional datasets. The available literature witness
that the majority of state-of-the-art tools evaluate a set of pipelines by actually
executing them on a given dataset prior to the recommendation [14]. It is
observed in table 2.12 that such executions may require considerable computing
time while consuming precious resources as per their availability [144].

52 CHAPTER 2. Automated machine learning

Dataset Dataset size
AutoML tools runtime

TPOT Auto-sklearn AutoWeka

[136] 959 00:08:14 01:23:47 00:32:14
[137] 2000 00:13:57 01:49:21 01:31:30
[138] 61000 03:42:09 04:19:05 04:02:27
[139] 274627 06:09:51 08:19:37 07:13:12
[140] 5000 01:38:36 02:31:07 03:20:27
[141] 1567 00:19:47 01:33:45 00:58:33
[142] 5388 00:55:51 01:56:50 01:57:44
[143] 1567 00:21:12 00:58:50 00:52:07
vehicle 8463 01:45:40 02:12:40 02:08:47
Gas_Sens 4188 00:42:36 02:47:20 01:16:14
shuttle 57999 04:26:03 05:15:45 04:02:27
APS Failure 60000 05:23:35 03:58:39 04:32:14
CustSat 76020 04:09:36 05:07:03 05:26:35
car 1728 00:40:07 01:38:30 01:04:10
airlines 5473 00:57:52 02:18:27 01:13:12

Table 2.12: Runtime of selected AutoML frameworks on the benchmark datasets.

From a manufacturing practitioner’s (e.g. engineer, researcher) perspective,
an adapted AutoML decision support system can be very useful as it does not
require any machine learning or coding experience. Therefore, manufacturing
professionals can use AutoML to identify different insights based on available
datasets of imaging, sensors data, production history, etc.

2.2.2 Building AutoML for manufacturing datasets

Despite the advances achieved in the field of AutoML, few works have been
conducted to apply these techniques in the manufacturing field and hence, the
industrial needs are yet to be fulfilled. As we mentioned before, there are several
challenges that tackle the application of machine learning in the manufacturing
space. One of the main challenges is the construction of a high quality and
representative dataset. Ideally, an ML model should be trained with data that
reflects as close as possible the original one. This is not easy as in amanufacturing
unit, data are heterogeneous and each individual process generates different
amounts of data with various formats (text, images, sensors data, etc.) and with
different quality levels.

Besides the difficulty of constructing a high-quality dataset, a much bigger

2.3. Towards AutoML for industrial big data 53

issue arises, consisting of a lack of transparency regarding the decisions made
by AutoML systems making them as black boxes [145]. The lack of transparency
leads machine learning experts and novices alike to question the results that
were automatically obtained. If users cannot interpret the obtained results,
they will not trust the AutoML system they are attempting to use and hence,
they will hesitate to implement the model in critical applications, especially in
manufacturing fields where interpretation and transparency of algorithms are
a must for a system to be adopted into a workflow [146]. Another reason that
justifies the low adoption rate of AutoML solutions in the industrial space is that
the current methods for the ML pipeline optimization are inefficient on the large
datasets originating from the manufacturing environment.

In order to overcome some of these issues, Lechevalier et al. [34] proposed a
framework for semi-automatic generation of analytical models in manufacturing
and a proof-of-concept prototype that allows practitioners to generate artificial
neural networks for prediction tasks through a user interface. Similarly, Zacarias
et al. [147] show a framework that automatically recommends suitable analytics
techniques with respect to a domain-specific problem at hand. Both frameworks
have represented promising approaches to tackle the problem of automated
analytics techniques configuration in the manufacturing domain. However,
these frameworks do not achieve the required goal of identifying the promising
combinations of analytics and the application areas in the first place. Therefore,
they cannot be used as decision-making tools at the managerial level [148].

All of these findings point to one take-away message : intelligent systems are
able to automatically design the whole or parts of machine learning pipelines,
which can save practitioners considerable amounts of time by automating one of
the most laborious parts of machine learning pipelines.

2.3 Towards AutoML for industrial big data

By addressing the aforementioned challenges and difficulties, remarkable bene-
fits for rechearchers, engineers and the industrial manufacturing system will be
achieved. This will significantly help with the lack of funds for industrial coding
in the manufacturing systems [149]. More importantly, significant improvement
in production outcomes can be achieved by faster and more accurate diagnoses
and prognoses. Although each manufacturing organization has different struc-
ture and size of IBD (Industrial Big Data), a potential AutoML tool will find
the best algorithm and settings that provide best accuracy without the need for
human interference, which will save time and costs by reducing the necessity of
highly skilled coders and data analyts in the industry.

54 CHAPTER 2. Automated machine learning

In addition, such a tool will assist manufacturing practitioners to better
manage their production systems and use their valuable time to deliver better
outcomes for processes. It can also contribute to improve industrial resources
management. Moreover, it will help practitioners increase manufacturing coding
team efficiency, reduce coding errors, improve coding quantity and quality, and
assist domain rechearchers through significantly cutting the time needed to
trial-and-error process for processing IBD.

2.4 Conclusion

The process of ML algorithms selection and parametrization is a complex and
time intensive task as it was already exhibited in Chapter 1. Motivated by the
academic dream and industrial needs, the automated machine learning has
recently became a hot topic in order to relieve the analysts (either experts or
novices) from the ML pipeline building difficulties. This chapter presented a
systematic review of existing AutoML approaches and tools with a highlight on
MtL as a promising paradigm for the algorithms selection and configuration
problem. We first defined what the AutoML problem is, and then introduced the
fundamental concept of AutoML and the related tools and techniques. We also
provided taxonomies of existing works based on “what” and “how” to automate,
which acts as a guidance to design new and use old AutoML approaches. Related
studies on MtL were split into three general categories according to the final
goal of the MtL system. The main aspects of these studies are presented and
discussed. We further review state-of-art AutoML tools and platforms. Finally,
we survey the potential of these tools on industrial big data.

Although the number of related works in the last years has been increasing,
there are still several aspects that need further investigations. Literature presents
some patterns : most of the studies produced meta-knowledge through GS
executions with a Holdout or single CV resampling, characterizing datasets
using simple and statistical meta-features, and recommending HPs with a kNN
meta-model. The reproducibility of the experiments and the sharing of results
are two key aspects that have not been explored yet. Additionally, an end-to-end
MtL resolver for the CASH problem has not been proposed nor ivestigated. These
aspects would benefit the research community with valuable meta-knowledge
for further works. Thus, exploring different experimental setups, meta-features,
and procedures applied to the learning tasks may open up new horizons in the
MtL research area.

Our work falls within a framework that directly uses informations drawn
from a dataset, without having to perform extensive experimentations, recom-

2.4. Conclusion 55

mends which ML algorithms and related HPs configuration to use. We took
special care in the construction of a modular meta-learning space and the defini-
tion of the meta-learning problems that populate it. The dataset characteristics
were chosen carefully in an effort to provide a set that can best discriminate
among the performance of different inducers; furthermore we proceeded to a
systematic experimentation to characterize their discrimination power. We also
undertook a systematic experimentation in order to determine the most appro-
priate inducer for meta-level learning, and compare our set of features with
various different approaches to dataset characterization. Finally, we also explore
the aspect of explainability of such decision support systems to address the
trust-in AutoML. Where our work differs from and where it resembles existing
approaches will be clarified in the forthcoming part.

Part II

Contributions

Chapter3

Towards the automation of industrial

data science : A MtL based approach

Outline of the current chapter

3.1 Introduction 59

3.2 Meta-learning for automatic algorithms selection 62

3.3 Conceptual description 63
3.3.1 Learning phase . 64
3.3.2 Recommendation phase 65

3.4 Prototypical implementation 66
3.4.1 Datasets . 66
3.4.2 Meta-features . 67
3.4.3 Meta-knowledge base 67
3.4.4 The Meta-model . 70

3.5 Empirical study 74
3.5.1 The experimental configuration 74
3.5.2 Experimental results 75

3.6 Conclusion 80

Advanced analytics are fundamental to transform large manufacturing data into
resourceful knowledge for various purposes. In its very nature, such “industrial
big data” can relay its usefulness to reach further utilitarian applications. In this
context, machine learning is among the major predictive modeling approaches

58

3.1. Introduction 59

that can enable manufacturing researchers and practitioners to improve the
product quality and achieve resources efficiency by exploiting large amounts
of data (which is collected during manufacturing process). However, disposing
ML algorithms is a challenging task for manufacturing industrial actors due
to the prior specification of one or more algorithms hyperparameters and their
values (cf. Chapter 1). Moreover, manufacturing industrial actors often lack the
technical expertise to apply advanced analytics. Consequently, it necessitates
frequent consultations with data scientists; but such collaborations tends to cost
the delays, which can generate the risks such as human-resource bottlenecks.
As the complexity of these tasks increases, so does the demand for support
solutions.

In this regard, existing AutoML solutions include evolutionary algorithms,
bayesian optimization, and reinforcement learning. These approaches mainly
focus on providing the user assistance by automating the partial or entire data
analysis process, but they provide very limited details concerning their impact on
the analysis. The major goal of these conventional approaches has been generally
focused on the performance factors, while the other important and even cru-
cial aspects such as computational complexity are rather omitted (cf. Chapter 2).
Therefore, in this chapter, we show that the combined algorithms selction and
parametrization problem can be addressed with the help of meta-learning, over-
coming the majority of the challenges stated by the related AutoML solutions.
We present a novel meta-learning based approach to automate ML predictive
models build over the industrial big data. The approach is leveraged with devel-
opment of, AMLBID, an Automated ML tool for Big Industrial Data. It attempts
to support the manufacturing engineers and researchers who presumably have
meager skills to carry out the advanced data analytics in order to conduct the
ML techniques for manufacturing problems.

3.1 Introduction

The fourth industrial revolution or Industry 4.0 is increasingly relying on ma-
chine learning based solutions [144]. This is particularly stimulated by the avail-
ability of large datasets concerning various real-world features [146] and also
through the increase of the computational gains which are generally attributed
to the powerful GPU cards [150]. The availability of such data combined with
the knowledge of manufacturing experts may be an opportunity to build AI
based processes and models providing high value insights and assets for decision
makers [32]. For example, ML algorithms have been applied with great success
at the process, machine, shop floor and supply chain levels, and have proven

60 CHAPTER 3. Towards the automation of industrial data science

effectiveness in the maintenance field by predicting the occurrence and severity
of machinery failures [151–153]. Recently, a predictive model [61] based on
machine learning has been used to estimate and predict the gradual degradation
of such machinery, allowing the operators to make informed decisions regarding
maintenance operations. These results, among others, show a heavy interest in
ML development and analysis for manufacturing applications.

As machine learning has proven its benefits and efficiency in many fields, its
successful implementation in the context of manufacturing industry requires a
large effort from human experts and practitioners since there is no one size fits
all algorithm that can perform well on all possible problems [63]. A data-mining
algorithm may perform differently on datasets with different characteristics, e.g.,
it might perform better on a dataset with continuous attributes rather than with
categorical ones, or the other way around. Typically, a learning algorithm needs
to be tuned before being mined, taking into account all the possible hyperpa-
rameters types, dependencies and values (cf. Chapter 1). However, building such
processes and models requires AI and data science skills and expertise that are
not always available in the manufacturing area workbenches and laboratories.

Expert users have the required knowledge to find the right data-mining
pipeline. However, when it comes to non-experts, even though being familiar
with manufacturing data, they are overwhelmed by the amount of ML algo-
rithms and it is challenging for them to find the HPs configurations that would
positively impact their analysis[36]. Existing support solutions either assume
that users have expert knowledge, or they recommend ML pipelines that are
only “syntactically” applicable to a dataset, without taking into account their
impact on the final analysis. To overcome such a lack, they often cooperates
with data science experts. Nevertheless, for this interactive process to converge,
a lot of effort and time is required from both sides. This is due to the fact that
devising and deploying ML solutions often needs to be started from scratch. This
long journey has to start from a lengthy data provisioning process. It continues
with finding the right collaborators which requires a continuous back-and-forth
exchange between ML experts and industrial actors. Hence, automating activi-
ties often require human expertise that would allow smart factories actors and
researchers to rapidly build, validate, and deploy ML solutions [34, 53].

Motivated by this goal, Meta-Learning opportunities present themselves in
many different ways, and can be embraced using a wide spectrum of learning
techniques. Every time we try to learn a certain task, whether successful or not,
we gain useful experience that we can leverage to learn new ones. We should
never have to start entirely from scratch. Instead, we should systematically
collect our “learning exhaust” and learn from it to build automated ML systems
that continuously improve over time, helping us tackle new learning problems

3.1. Introduction 61

ever more efficiently. The more new tasks we encounter, and the more similar
those new tasks are, the more we can tap into prior experience, to the point
that most of the required learning has already been done beforehand. The
ability of computer systems to store virtually infinite amounts of prior learning
experiences (in the form of meta-data) opens up a wide range of opportunities to
smart factories stakeholders to use that experience in completely new ways. We
are then only starting to learn how to learn from prior experience effectively.

In this chapter, we aim at providing assistance to non-expert users by recom-
mending ML pipelines that are ranked according to their impact on the final
analysis. In order to do that, we make use of the concepts of meta-learning to
automate ML predictive models build over the industrial big data. The approach
is leveraged with development of, AMLBID, an Automated ML tool for Big Indus-
trial Data. Given a dataset, and an evaluation metric (e.g., predictive accuracy,
recall, F1 score), AMLBID produces a ranked list of all candidate pipelines based
on their expected performance with respect to the desired metrics. This list is
produced based on a meta-knowledge base gained from previously analyzed
manufacturing datasets and combinations of pipelines, without executing indi-
vidual candidate pipelines. As a result, AMLBID has a computational complexity
near O(1). Therefore, the proposed solution may improve their quality of service,
productivity, and more importantly, reduce the need for ML human experts.

Contributions. The main contributions of this chapter can be summarized as
follows :

• We leverage ideas from meta-learning to present a technique for recom-
manding the optimal or near optimal ML pipelines depending on their
impact on the final result of data analysis and the desired evaluation metric.

• We show the benefits of our approach by implementing a prototype that is
capable of automatically recommending ML algorithms along with related
hperparameters configurations to the user.

• We perform an empirical study comparing the ability of state-of-the-art
solutions against our approach, on finding the well performing ML algo-
rithms(s) for a given dataset using a desired performance measure.

The rest of this chapter is organized as follows : an overview on MtL for
the automatic algorithms selection and configuration is given in Section 3.2.
Our proposed solution is formally defined in Section 3.3. A brief look at the
materialization of our proposed approach in terms of a prototype solution is
given in Section 3.4. The results of the experimental evaluations are reported in
Section 3.5. Finally, Section 3.6 summarizes the work shown in this chapter.

62 CHAPTER 3. Towards the automation of industrial data science

3.2 Meta-learning for combined algorithms selec-

tion and configuration

The AutoML problem we consider is to generate the optimal or near optimal
pipeline P (AH) : x 7→ y, induced by an algorithm A ∈ A and parametrized by
H ∈ H that automatically produces predictions for samples from the distribution
of a given task, while minimizing or maximizing the generalization metric L :

AH ∈ argmin
A∈A,H∈H

L(AH (xi), yi) (3.1)

In practice we have access to two disjoint, finite samples which we denote
as Dtrain and Dvalidation. For searching the best ML pipeline, we only have
access to Dtrain, however, the end generalization performance is estimated on
Dvalidation,e.g., by a K-fold cross-validation :

LCV (AH ,D) =
1
K

k
∑

k=1

L(A
D

(train,k)
train

H ,D
(valid,k)
valid) (3.2)

where D(train,k)
train denotes that AH was trained on the training splits of k-th fold

D
(train,k)
train ⊂ Dtrain, and it is then evaluated on the validation splits D(valid,k)

valid .

Having set up the problem statement, we can use this to further formalize
the goals. Instead of using random populations of pipelines and tune related
hyperparameters, e.g., by GA or BO, we will introduce an optimization policy
that aims at learning relationships between datasets characteristics and data
mining algorithms [154]. Given the characteristics of a dataset, a predictive
meta-model can be used to forcast the performance of a given combination of A
and H on a dataset D.

First, a meta-learning space from which to learn is established using meta-
data. The meta-data consist of datasets characteristics along with performance
measures of data mining algorithms on those particular datasets. Then, the
meta-learning phase generates predictive meta-model that defines the area of
competence of the data mining algorithms [4]. Finally, when a dataset arrives,
the dataset characteristics are extracted and fed to the predictive meta-model,
which predicts the potential well performing ML pipelines on the considered
dataset. At this point, by comparing the obtained predictions for the different
pipelines on simillar tasks, we are able to rank the pipelines depending on their
predicted impact on the given dataset. This concludes the recommending phase.

3.3. Conceptual description 63

3.3 Conceptual description

The global architecture of the proposed framework is depicted in Figure 3.1. The
algorithms recommendation and parametrization is provided by the Suggestion
Engine through the use of a knowledge base (KB) which is an inherent part of the
system. The knowledge base is simply a collection of inductive meta-features
that describe the datasets, the pipelines and their interdependency. When a
new dataset is presented to the system, the suggestion engine provides a recom-
mendation of the most appropriate classifiers. This is achieved by combining
the pipelines of the knowledge base with the morphological characteristics
originating from the meta-model.

Learning phase: Constructing the knowledge base and training the Meta-Model -----
1

Meta-Model
1
1

�

1
1
1 l 1
1
1
1

.. @ 1
1
1

Suggestion
engine

 1
1
1

L ____________________________ J

Inferring phase: Recommending optimal pipelines for the new Dataset

New Dataset

Meta-Features
extraction

Exploring related datasets
&

pipeline candidates

Ranking pipelines list according
to the performance criterion

Optimal pipeline

@

.,_ ·;::=
GI ftl - 0
'ï: a,
0 a:
GI •
o�
CU. .. .
E o ... 0
0�
't: œ
GI G1 o.. -

Datasets

Machine learning experiments various
algorithms and configurations

Calculate Meta-features

Figure 3.1: The functional architecture and process flowchart of AMLBID.

AMLBID has been developed on the meta-learning concept, consequently,
it consists of two main phases which are the learning phase and the inferring
one. During the learning phase, we evaluate different classification algorithms
with multiple hyperparameters configurations on a large collection of various
datasets, analyze the learning datasets (to extract meta-features), and train a
ranking meta-model. During the inference phase, the meta-model generated in
the training phase is used to produce a ranked list of promising ML pipelines
for a new dataset and a classification performance metric.

64 CHAPTER 3. Towards the automation of industrial data science

3.3.1 Learning phase

Two important activities are performed infthe learning phase. First, a meta-
knowledge base (i.e., set of meta-datasets) is generated forfallfthe considered
performance measures (cf. Algorithm5), andfthen onftop of it, a learning algo-
rithm is applied (cf. Algorithm6). As afresult, a statistical model (meta-model)
is generated forfevery considered perfomance measure. Thefinputs required to
construct the meta-knowledge basefare datasets, classification algorithms and
the hyperparameters values thatfare likely to improve the performance of the
considered classification algorithms.

For the sake of simplicity, let us consider that we want to create the meta-
dataset for a predictive metric (e.g., accuracy). In line 7 of Algorithm5, we
first extract the datasets characteristics (i.e., meta-features). Next, we apply the
classification algorithms with all possible and resonable HPs configurations and
then take the corresponding performance measures (e.g., predictive accuracy) —
line 10. The latter is the meta-response, which together with the meta-features
of the datasets compile the complete set of meta-data — see line 11.

Algorithm 5 Establish the meta-knowledge base.
1: Input: Classif icationAlgs[..], ⊲ available classification algorithms
HpSpace[..], ⊲ set of HPs configurations to be applied
Perf Measures[..] ⊲ set of performance measures to acquire

2: Output: meta_KB[#measure][#metadata] ⊲meta-knowledge base
3: function CreateMetaKB(datasets[])
4: metadata[] =∅

5: for each measure in Perf Measures do
6: for each dataset DS in datasets do
7: ds_mf = ComputeMetaFeatures(DS); ⊲ See Table 3.3
8: for each algorithm Alg in ClassAlgs do
9: for each hyperparameters_configuration Hp in HpSpace do

10: ds_pm = GetPerf ormanceWith5FoldCV (Alg,Hp,DS);
11: metadata[]← ds_mf ∪ ds_pm;

12: meta_ds[measure]←metadata[];
13: return meta_KB

Once a meta-dataset for each performance measure is obtained, next, a meta-
learner algorithm is applied on top — line 5 of Algorithm6, and as a result, a
meta-model for each of the performance measures is obtained. We used the KNN
and Random Forest algorithms as meta-learners. Better results were obtained
using the KNN meta-model (the comparative study is shown in next section).

3.3. Conceptual description 65

Algorithm 6 Create meta-models.
1: Input: meta_KB[..][..], ⊲ See Algorithm5

PerfMeasures[..] ⊲ set of available performance measures
2: Output: meta_models[..] ⊲meta-model for each performance measure
3: function PerformMetaLearning()
4: meta_models[] =∅

5: meta_model = KNN (); ⊲ a meta-model of choice
6: for each measure in Perf Measures do
7: meta_models[measure]← ApplyMetaModel(meta_KB[measure][]);

8: return meta_models

3.3.2 Recommendation phase

The recommendation phase is initiated when a new dataset to be analyzed arrives.
At this point, the user selects a performance measure to be used for the analysis
and the system automatically recommends the ML algorithms along with related
HPs configurations to be applied, such that the final result is optimal. This phase
is described in Algorithm7, where, first, the meta-features are extracted from the
dataset in lines 5. Next, the extracted features are then fed to the predictor (meta-
model) in line 6. The predictor in line 6 apply an already existing meta-model to
the extracted features, to find the the optimal or near optimal pipelines for the
given dataset. After, the ranked list of the potential well performing pipelines is
obtained for the given dataset and desired performance measure in line 7.

Algorithm 7 Recommend ML pipelines.
1: Input: Dataset[..], ⊲ new dataset chosen by the user

meta_models[..] ⊲meta-model for each performance measure
2: Output: MLpipelines[..] ⊲ML pipelines ranked according to the PM
3: function RecommandPipelines(Dataset[])
4: recommendations[] =∅

5: ds_mf = ComputeMetaFeatures(Dataset);
6: PotentialPipelines[]← ApplyMetaModel(ds_mf ,meta_models[measure])
7: recommendations[]← Rank(PotentialPipelines,desc = T rue)
8: return recommendations

For the sake of concreteness, let us assume that, the user wants to perform
predictive analytics to a dataset using the Recall performance measure, to deal
with a classification problem at hand. Our system, first, extracts the necessary
meta-features from the dataset and uses them as input to the predictive meta-

66 CHAPTER 3. Towards the automation of industrial data science

model which is specifically built for the Recall performance measure. The
meta-model is built by training a meta-learner (e.g., KNN) on historical meta-
data consisting of dataset characteristics and a performance measure (i.e., Recall)
of multiple ML pipelines on the datasets. This meta-model is used to produce a
prediction for provided dataset.

3.4 Prototypical implementation

In this section, we discuss the materialization of the proposed approach into
a prototype solution. In the previous sections we mentioned that in order
to build a predictive meta-model, we must firstly establish the meta-space —
denoted as learning phase in Figure 3.1. In our context, the meta-space needs to
be constructed out of meta-data that can be extracted from datasets and from the
executions of classification algorithms on these datasets. As a matter of fact, we
needed to fetch hundreds of datasets, extract their characteristics, run different
algorithms on them and get different evaluation measures. Finally, we use all
of these to feed the meta-knowledge base. In the following sections, we discuss
in detail the used datasets and their meta-features along with the performance
evaluation and the meta-knowledge base construction.

3.4.1 Datasets

In our study, we used 400 real-world manufacturing classification datasets that
have been collected from the popular Kaggle1, KEEL2, UCI3, and OpenML [155]
platforms. These datasets represent a mix of binary (71%) and multiclass (29%)
classification tasks, which are highly diverse in terms of dimensionality, and
class imbalance. The datasets characteristics are indicated in the AppendixC,
and summarized in the following Tables 3.1 and3.2.

Classes Attributes Instances

Min 2 3 185
Max 18 71 494051

Table 3.1: Statistics about the used datasets according to the number of classes,
predictive attributes and instances.

1https://www.kaggle.com/
2https://sci2s.ugr.es/keel/datasets.php
3https://archive.ics.uci.edu/

3.4. Prototypical implementation 67

It is worth noting that the used datasets cover a broad range of application
areas, including process level studies, machine related problems and the supply
chain level, among others (see Table 3.2). In order to ensure the fairness in our
performance comparison, we have not performed any preprocessing operation on
the datasets to avoid any potential bias or impact on the classifiers performances.

Task Number of
Average of

datasets Attributes Instances Classes

Process level 78 29 30529 3
Machine level 248 53 13942 2
Supply chain level 74 17 21726 2

Table 3.2: Statistics about the used datasets according to related tasks.

3.4.2 Meta-features

A meta-feature, also considered as a characterization measure, is a function that
extracts relevant characteristics from a dataset to characterize its complexity.
The description of a dataset by a set of meta-features produces a numerical
values vector. During this thesis, we considered 41 meta-features extracted
from the training datasets using the PyMFE4 tool [156] for the Simple, Statistical,
Information-theoretic, Model-based, Landmarking, and Data complexity measures.
The meta-features we specifically consider are highlighted in Table 3.3 and
detailed in Table B.1 in the Appendix B.

3.4.3 Meta-knowledge base

The pipelines generation

We used 08 classifiers from the popular Python-based machine learning library,
Scikit-learn5 in order to build the meta-knowledge base. These classifiers are
Support Vector Machines, Logistic Regression, Decision Tree, Random Forest, Extra
Trees, Gradient Boosting, AdaBoost, and Stochastic Gradient Descent classifier.
Detailed description of the algorithms and their tuned hyperparameters are
described on the TablesA.1-A.7 in the AppendixA.

4https://pypi.org/project/pymfe/
5https://scikit-learn.org

68 CHAPTER 3. Towards the automation of industrial data science

Type Dataset characterization measures (Meta-features)

1. Simple, Statistical & Information Theoretic

Simple Number of instances, Number of Attributes, Number of target concept
values, Proportion of minority target, Proportion of majority target, Propor-
tion of binary attributes, Proportion of nominal attributes, Proportion of
numeric attributes Proportion of instances with missing values, Proportion
of missing values, Geometric mean, Harmonic mean,

Statistical Kurtosis of data based on numerical attributes, Maximum eigenvalue Skew-
ness of data based on numerical attributes, Covariance.

Info theo Class entropy, Uncertainty coeff.

2. Model Based Measures

Model Based Height of tree, width of tree, Number of nodes in tree,number of leaves
in tree, maximum number of nodes at one level, mean of the number of
nodes on levels, length of the longest branch, Model Based length of the
shortest branch, Mean of the branch lengths, Standard deviation of the
branch lengths, Minimum occurrence of attributes, Maximum occurrence
of attributes, Mean of the number of occurrences of attributes, Standard
deviation of the number of occurrences of attributes

3. Landmarking Based Measures

Landmarking Naive Bayes, ii) 1-NN (Nearest Neighbor), iii) Elite 1-NN, iv) decision Tree
learner and v) a random chosen node learner.

4. Complexity Based Measures

Dimentionality Average number of points per dimension, Ratio of the PCA dimension to
the original dimension

Class balance Entropy of classes proportions, Imbalance ratio

Table 3.3: A sample list of meta-features used in current thesis.

The knowledge base consists of the accumulated experience of previous
optimizations of the classifiers on the datasets. It consists of their meta-features
m1, ...,m400 and the optimal hyperparameters values of the classifier found for

each dataset : KB = {(m1,A
(1)
H1), . . . , ()m400,A

(n)
Hn)}.

To better understand the construction of the knowledge base, let us consider
the execution scenario of the proposed framework. We actually generate at least
1000 different combinations of the hyperparameters configurations for every
single execution of an algorithm A over each dataset D. This execution process
results in an average of 8000 pipelines for each dataset. It might be useful to note
that during the construction of the meta-datasets, we performed a 10× 5-fold
stratified cross-validation strategy for estimating the pipelines performance, in
order to get stable performance. i.e., for each candidate pipeline applied on every

3.4. Prototypical implementation 69

problem (dataset), the 05 fold stratified cross-validation is repeated 10 times by
randomizing the order of instances. This process controls the variation imputed
by different choices of training and test instances [62]. As a result, the knowledge
base consists of more than 4 millions evaluated classification pipelines. It can be
observed the number of configurations/evaluations of any considered algorithm
is not the same due to the different variations of algorithms hyperparameters.
Finally, for each classification algorithm and for each performance measure, we
obtained a meta-dataset that was fed to the Meta-knowledge base.

Additionally, since the presented algorithm7 calculates the meta-features
of a dataset and returns the optimized hyperparameters values Hi of the most
adequat algorithm to use, this experience is added to the collaborative knowl-

edge base KBnew = KB ∪ (mnew,A
(i)
H i). This makes the propsed system smarter

by attaining more experience, based on the growing knowledge base that is
continuously improved over time by running more tasks.

The measures

As part of our core idea, we aim to recommend high-performing ML pipelines for
a given combination of datasets and evaluation measure. The point that most of
state-of-the-art systems do not take into account, the proposed system supports
various classification performance measures to evaluate the performance of
the ML pipelines (ML algorithms and related hyperparameters configuration).
Table 3.4 shows supported measures details.

Measure Description Importance

Precision Precision considered as a measure of
exactness or quality.

Precision is used to retrieve fraction of
instances that are relevant.

Recall Recall is a measure of completeness or
quantity.

Recall is used to retrieve fraction of
relevant instances that are retrieved.

Accuracy The accuracy is the proportion of the
total number of predictions that were
correct. Accuracy is related to the de-
gree of bias in the measurements

Accuracy is used to represent the cor-
rect answer or percentage of accurate
classification.

F1 score F1 score or F-measure is defined as the
harmonic mean of precision and recall.
Commonly used as a single metric to
evaluate the classifier performance.

A value closer to one implies that a
better combined precision and recall
is achieved by the classifier

Table 3.4: Supported classification measures.

70 CHAPTER 3. Towards the automation of industrial data science

The meta-knowledge base schema

The meta-knowledge base ERD schema is illustrated in Figure 3.2. The Knowl-
edge base is used to store the results of the experiments and allows easy access to
any operation and data during the inferring phase. As the KB is going to be used
mainly for storing and extracting data with no need for any high complexity
queries and because by definition, each dataset, pipeline, and experiments can be
different from one another, we choose to implement a NoSQL database structure.
Mainly we used MongoDB6. The schema contains the following entities, and it is
used as a base for our KB :

• Datasets. The datasets are associated with the metadata of their meta-
features and a learning job.

• Learning jobs. learning job is defined as the combination of a dataset and
a metric. It can be treated as the input for a given ML pipeline.

• Pipelines. storing pipelines that were generated beforehand while con-
ducting the experiments.

• Hyperparameters. The hyperparameters values are determined only when
associated with an algorithm, by the Pipeline entity.

• Experiments. results of running a pipeline on a learning job. The results
are the pipeline scores on the defined learning job’s metrics, the runtime,
and the RAM usage.

After obtaining the meta-data, hence constructing the meta-space, the meta-
knowledge base is first transformed into a learning dataset. Therefore a meta-
model can be trained on it to model the relationship between datasets character-
istics and performance information of candidate algorithms.

3.4.4 The Meta-model

Having stored the algorithms performances (see Table 3.5) and a set of datasets
characteristics (see Table 3.6), the goal is to build a mapping meta-model. The
mapping meta-model is intended to learn the complex relationship between a
task meta-features and the utility of specific ML pipelines, to recommend the
most useful ML algorithm(s) configuration according to the meta-features M of
a new task tnew.

6https://www.mongodb.com/

3.4. Prototypical implementation 71

 

 

  

 Experiments 

objectId
double

timestamp
double
objectId

Experiment_id
Learning_score
Runtime
Ram_usage
Learning job
Pipeline objectId

 Features 

objectId
objectId

Feautres_id
Dataset Meta-
features objectId

 Pipeline 

Pipeline_Id
Algorithm { }

Algorithm_Id
Name
Characteristics

Hyperparameters { }
Hyperparam_Id
Name
Type

objectId
Algorithm

objectId
string
string

Hyperparameters
objectId

string
string

 Learning job 

objectId
objectId

Learning_job_id
Dataset
Metric { } Metric

objectId
string

Metric_Id
Name
Type string

 Meta-features 

objectId
int
int
int
int
int

MF_id
Nb. instances
Nb. classes
Nb. attributes
Skewness
Kurtosis
more... object

 Dataset 

objectId
string

Dataset_Id
Name
Characteristics int

 Algorithm 

objectId
string

Algorithm_Id
Name
Characteristics string

 Hyperparameters 

objectId
string

Hyperparam_Id
Name
Type string

 Metric 

Metric_Id objectId
Name string
Type string

 

Figure 3.2: The ERD schema of the knowledge base.

Classif ier1 Classif ier2 · · · Classif ier8000

Dataset1 0.85 0.91 · · · 0.48
Dataset2 0.91 0.68 · · · 0.94

...
...

...
. . .

...
Dataset400 0.94 0.86 · · · 0.75

Table 3.5: Performance of classification algorithms on various datasets.

No. instances No.attributes · · · Meta− f eature41

Dataset1 2000 16 · · · 0.73
Dataset2 1340 11 · · · 0.89

...
...

...
. . .

...
Dataset400 61598 17 · · · 0.81

Table 3.6: Meta-features of the datasets.

Formally, each task (dataset) tj ∈ T is described by a vector F(tj) =
(mj,1, . . . ,mj,K) of K meta-features mj,K ∈ F, the set of all known meta-features.

72 CHAPTER 3. Towards the automation of industrial data science

This can be used to define the task similarity measure based on, for instance, the
Euclidean distance between m(tnew) and m(tj), so that we can transfer information
from the most similar tasks to the new task tnew. The distance measured between
meta-features of tnew and tj is given by Eq. (3.3) :

d
(

m(tnew),m(tj)
)

=

√

√

√

k
∑

i=1

(

mtnew,i −mtj,i

)2
(3.3)

One of the aims of our work is to produce an enriched meta-model able to
recommend the top-performing classification configuration(s) for a combination
of an unseen dataset and a classification evaluation measure. For this purpose, a
few basic criteria were followed for selecting the meta-learner to use. First, the
problem in the meta-learning space is of classification type. A class needs to
be predicted (a ML pipeline has the potential be be among the well performing
pipelines or not). The second criterion is that the meta-model needs to be more
sensitive. By this, we mean that the meta-model needs to be able to capture
even the slight meta-features that characterize the datasets. This is because we
need to predict the impact of the HPs values on the data mining results and
we need to be able to learn the correlation between the datasets meta-features,
the types and configurations of differents ML alogrithms. The third criterion is
that the meta-learner should handle missing values. Recall that some dataset
characteristics (meta-features) can be calculated on datasets that necessarily
contain either continuous or categorical attributes. As a matter of fact, two
state of the art learning algorithms were chosen to produce meta-models able
to predict the most appropriate pipelines for the dataset at hand : Random
Forest (RF) and k-Nearest Neighbor (kNN).

The KNN algorithm has proven to be generally effective, often referred to as
“nearest neighbor imputation" as well for the RF learner that complies with all the
above mentioned criteria. It suffers far less from the discreteness of the leaves,
because internally, a lot of trees (i.e., 500 trees) are built at random and at the
end, averages are taken to be used as predictions. Finally, it performs well when
missing values are present. Thus, we use the KNN and RF to build meta-models
for each data mining performance measure we consider.

Ranking using the KNN classifier is a commonly used strategy to obtain the
top-K rankings. When a new dataset is presented to the meta-learning system,
the KNN identify the k-nearest datasets (KND) of the candidate dataset in the
meta-knowledge base, using the Euclidean distance measure (Eq. (3.3)). Based on
this measure, a vector d = [d1,d2, . . . ,dk] containing the dissimilarity among all
characteristics (meta-features) of datasets is built and a weighted average of each
individual neighbor is used for forecasting the optimal pipeline configuration

3.4. Prototypical implementation 73

based on the relevant measure. The k-nearest datasets selection approach is
shown as pseudo code in Algorithm8.

Algorithm 8 K-nearest datasets selection.
1: Input: Ds[..], ⊲ new dataset chosen by the user

meta_KB[..] ⊲ the constructed knowledge base
2: Output: KND[..] ⊲ K-nearest datasets distance vector
3: function KND_Selection(Ds[])
4: KND =∅

5: ds_mf = ComputeMetaFeatures(Ds);
6: for each dataset d in meta_KB do

7: d←

√

∑k
i=1 (mDS −md)

2

8: KND← d
9: return K-nearest datasets distance vector

While for the Random forest meta-model, we produce for each supported
classification evaluation measure a large labeled training set using the following
process :

1. For each combination of d ∈ D and A(i) ∈ A, where D is the 400-learning
datasets, A(i) a learning algorithm configuration from the 4 millions evalu-
ated configurations, we retrieve the set of all best predictive results R(d,Ei)
for each evaluation metric Ei (e.g., accuracy, F1-score, recall and precision).

2. For each d ∈ D we designate the learner algorithm configuration A(i) as
Class 1 (top performer algorithm configuration for the dataset) if its best
predictive results for the dataset are greater than or equal to the highest
performance achieved by all other configurations. Otherwise we label the
A(i) for the dataset as Class 0 (low performer algorithm configuration).

3. For each combination of d ∈ D and A(i) ∈ A we generate a joint set
F = {Fd ∪ FA(i)}, where :

• Fd : the dataset’s meta-features generated in the learning step.

• FA(i) : a discrete feature describing the learning configuration A(i).

4. The joined meta-features vectors F are used to fit the RF meta-model for
the top performing algorithms configurations, using the meta-features
variables as predictors and the learner’s labels as targets of the meta-model.
For our Meta-Model, we have been mainly interested in optimizing the
prediction recall of Class 1 (the classifier has the potential to be among

74 CHAPTER 3. Towards the automation of industrial data science

the best performing classifiers). Therefore, we had to consider different
levels of the decision tree model hyperparameters configuration where the
configuration: {class_weight : {1 : 1,0 : 0.7}, criterion : gini,max_f eatures :
None} provided the best meta-model result.

The main functionality of the meta-model can be formally defined as follows :

given a set of learning algorithms space A = {A(1)
1 , . . . ,A

(i)
n } where i is the i-th

hyperparameters configuration of A, a dataset D divided into disjoint training
Dtrain, and validation Dvalidation sets, and an evaluation measure E, the goal is to
identify the ML algorithm(s) A(i)∗, where A(i)∗ ∈ A and A(i)∗ is a tuned version of
A(i) that minimizes or maximizes the E on D.

We used the Python programming language to construct a model for each one
of the considered performance measures. After that, the models were exported
to PKL files, and were next fed to the Suggestion engine in the inferring phase.

3.5 Empirical study

In the following sections, we describe the empirical study of the performance
achieved by the experiments with AMLBID on various manufacturing datasets.
Following the eventual experimental configuration, we demonstrate the ability
of AMLBID to effectively search the generated enormous hyperparameters space
to find the optimal algorithms and hyperparameters with a low computational
complexity. Finally, this leads us to a comparative evaluation of the performance
of AMLBID tool and the currently available state-of-the-art (i.e., the TPOT [157]
and Autosklearn [73]) ML pipelines generation tools.

3.5.1 The experimental configuration

To ensure meaningful comparison, we benchmark on a highly varied selection of
30 datasets that cover both binary and multiclass classification problems from
the perspectives of different industry 4.0 levels. These data are gathered broadly
from two major sources :

• OpenML AutoML benchmark : Datasets curated to serve as representative
benchmark for AutoML frameworks [135]. These datasets span various
binary and multi-class classification problems and exhibit substantial
heterogeneity in sample size and dimensionality.

• State-of-the-art-papers: Datasets collected from research papers dealing
mainly with industry 4.0 related problems using ML based solutions.

3.5. Empirical study 75

These 30 fresh datasets were not previously exploited by any learning method
during the offline phase in our framework. These are introduced to AMLBID to
evaluate the pipeline recommendations.

Dataset Num Class. Num Inst. Task

[136] 4 959 Failure risk analysis
[137] 3 2000 Chatter prediction
[138] 2 61000 RUL prediction
APSFailure 2 60000 APS system failure prediction
Higgs 2 110000 predictive maintenance
CustSat 2 76020 Customer Satisfaction

Table 3.7: List (sample) of datasets used in the evaluation.

The evaluation method

The recommended ML pipelines were trained on the benchmark datasets. Sub-
sequently, the performances of AMLBID were compared to those of the TPOT
and Auto-sklearn frameworks and also to the results of the related research
papers (that served as the source of original data). For TPOT, we used the default
settings (i.e. generation and evaluation of 100 pipelines for each dataset). While
for Auto-sklearn, we compared AMLBID with two versions, as the Auto-sklearn
has a “Vanilla” version that produces a single optimal pipline (Auto-sklearn(V))
and the other version that creates a set of 50 best pipelines (Auto-sklearn(E)).

To avoid hardware-dependent performance differences, we ran all AutoML
systems on our local hardware (Intel(R) Core(TM) i9-10900KF CPU @ 3.70GHz -
32Go RAM). We used the pre-defined setting, which divides each dataset into 5
stratified folds and runs each tool on 10 CPU cores to produce a final pipeline.

3.5.2 Experimental results

We refer to the table 3.8 to consult the comparative evaluation of the results
obtained by exposing the 30 datasets to the AMLBID, TPOT, and both versions of
Auto-sklearn. It can be observed that AMLBID performances are comparatively
better than those of the baseline even though any pipeline on the dataset was
not executed, prior to the recommendation. We can also observe and position
the results obtained by AMLBID as more accurate than the results obtained by
the TPOT, Auto-sklearn, and the related research papers on the same datasets in
table 3.9.

76 CHAPTER 3. Towards the automation of industrial data science

System > <

AMLBID 19 2
TPOT 6 5
Auto-sklearn 5 23

Table 3.8: Performance of AutoML systems on the 30-benchmark datasets. We
count how many times the system performs better (>) or worse (<).

Dataset AMLBID TPOT Auto-
sklearn(V)

Auto-
sklearn(E)

Original paper
result

[136] 0.9374 0.9120 0.8215 0.9283 0.85
[137] 0.9706 0.9517 0.9632 0.9356 0.95
[138] 0.9941 0.9907 0.9782 0.99 0.9895
[139] 0.9205 0.9991 0.9357 0.6863 0.9984
[140] 0.8971 0.6711 0.908 0.9723 0.9677
[141] 0.9706 0.7767 0.678 0.9843 0.9278
[142] 0.8967 0.8899 0.6783 0.7952 0.884
[143] 0.8748 0.7826 0.6702 0.7727 0.8659
Wafer-ds 0.8571 0.7312 0.8033 0.8953 -
HTRU 0.7841 0.7923 0.8038 0.8134 -
vehicle 0.8880 0.8415 0.9027 0.6591 -
Cnae-9 0.9671 0.8803 0.7922 0.8365 -
Gas_Sens 0.9739 0.9843 0.9256 0.9468 -
Covertype 0.8344 0.7307 0.7890 0.6521 -
Kc1 0.8793 0.7097 0.7697 0.8552 -
jannis 0.6719 0.7229 0.6171 0.6845 -
MiniBooNE 0.9645 0.9423 0.8343 0.8903 -
KDDCup 0.9740 0.8934 0.9331 0.95 -
segment 0.9735 0.9681 0.9337 0.9542 -
Higgs 0.713 0.726 0.7135 0.729 -
Credi-g 0.7921 0.7188 0.5739 0.6121 -
shuttle 0.9649 0.9905 0.8429 0.9362 -
APS Failure 0.9910 0.9933 0.9716 0.984 -
nomao 0.9708 0.9570 0.6995 0.7987 -
CustSat 85.59 0.8276 0.8072 0.8290 -
kr-vs-kp 0.9976 0.9209 0.6532 0.7593 -
car 0.9754 0.9999 0.8549 0.9462 -
albert 0.8759 0.8005 0.8288 0.7981 -
airlines 0.6982 0.6758 0.7094 0.5927 -
Numerai28.6 0.5207 0.4229 0.4836 0.4433 -

Table 3.9: Comparative performance analysis of AMLBID and the baseline
AutoML tools on the benchmark datasets.

3.5. Empirical study 77

As shown in table 3.9 and illustrated in Figure 3.3, the results of some ma-
chine learning solutions, oriented frommanufacturing industry, can be improved
simply through the use of better ML models and related hyperparameters con-
figuration. It can be useful to note that evaluating only the Top-1 recommended
pipeline makes AMLBID more efficient than Auto-sklearn and TPOT. As all state
of the art solutions support only the accuracy measure, a comparative study on
other important performance measures such Recall and F1-score could not be
done.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

[137] [138] [139] [141] [142] [143] [144] [145]

A
C

C
U

R
A

C
Y

DATASETS

TPOT Auto-sklearn Original paper AMLBID

Figure 3.3: The cumulative gains chart of AMLBID and the baseline AutoML
tools over the state of the art datasets.

In most of the state-of-the-art AutoML systems, one of the shortcoming is
their computational complexity. Oftenly, they require huge time and resources
budget on non-conventional datasets. On the contrary, AMLBID has the advan-
tage of the O(1) computational complexity, generating the recommendation in
significantly a negligible amount of time. This argument can be further testified
by the proven results shown in Table 3.10, which presents the performance
of AMLBID, TPOT and Autosklearn in terms of execution time on the same
machine for the benchmarked datasets.

The landscaped performance difference of AMLBID is accomplished be-
cause the other AutoML systems consume massive time to train the multiple
algorithms with various configurations on the same dataset to produce the rec-
ommendation.These require to train the ML model from scratch for the fresh
datasets prior to generate the list of recommendation configurations. Whilst, as
discussed earlier in section 3.4.3, the AMLBID meta-knowledge base is equipped

78 CHAPTER 3. Towards the automation of industrial data science

Dataset Dataset
size

AMLBID Autosklearn TPOT

[136] 959 00:00:05 01:23:47 00:08:14
[137] 2000 00:00:12 01:49:21 00:13:57
[138] 61000 00:05:29 04:19:05 03:42:09
[139] 274627 00:11:43 08:19:37 06:09:51
[140] 5000 00:01:27 02:31:07 01:38:36
[141] 1567 00:00:53 01:33:45 00:19:47
[142] 5388 00:00:57 01:56:50 00:55:51
[143] 1567 00:00:33 00:58:50 00:21:12
Wafer-ds 7306 00:02:17 03:44:26 01:42:21
HTRU 54641 00:06:59 03:42:09 02:57:11
vehicle 8463 00:02:28 02:12:40 01:45:40
Cnae-9 63260 00:05:47 04:07:39 03:24:52
Gas_Sens 4188 00:01:14 02:47:20 00:42:36
Covertype 25524 00:03:04 01:28:31 01:36:14
Kc1 2108 00:00:38 04:19:26 04:51:02
jannis 8641 00:01:41 02:31:07 01:41:51
MiniBooNE 52147 00:04:23 03:59:56 02:11:01
KDDCup 49402 00:05:06 03:47:20 02:37:38
segment 2310 00:00:25 01:15:45 00:33:02
Higgs 110000 00:06:16 07:37:55 05:43:24
Credi-g 30000 00:04:39 02:03:34 05:33:03
shuttle 57999 00:05:48 05:15:45 04:26:03
APS Failure 60000 00:05:39 03:58:39 05:23:35
nomao 31772 00:04:08 03:01:15 02:49:36
CustSat 76020 00:06:06 05:07:03 04:09:36
kr-vs-kp 3196 00:00:54 01:17:19 00:22:44
car 1728 00:00:38 01:38:30 00:40:07
albert 43824 00:06:27 04:09:17 03:01:03
airlines 5473 00:01:40 02:18:27 00:57:52
Numerai28.6 6574 00:03:22 02:07:39 01:16:17

Table 3.10: The run-time (in HH:MM:SS format) of the AMLBID, Autosklearn
and TPOT tools on the benchmark datasets.

3.5. Empirical study 79

with more than 4 millions of evaluated pipelines hence, it is capable to generate
the recommendation by comparative search of meta-features with most similar
existing datasets. Furthermore, with each iteration of fresh datasets, the meta-
knowledge base of AMLBID is further enriched with evolutionary training. The
confidentiality of the fresh dataset is respected by the fact that the knowledge
base of AMLBID consists of the meta-features of the datasets and not the data.

We can evidently conclude, from any of these obtained results, that AMLBID
is significantly more accurate than all the baseline AutoML frameworks.

We have used the k-nearest neighbor meta-model for the sake of comparison
to the decision tree meta-model because the rankings using KNN classifier is
among the most commonly used algorithms for obtaining top-k rankings in
meta-learning [158]. After identifying the closest neighbors of the dataset, using
the Euclidean Distance metric, the optimal pipeline configuration is forecast
using a weighted average of each individual neighbor’s ranking. The choice of
KNN meta-model over the random forest can be justified by the results shown
in Figure 3.4. It presents the performance of the RF and KNN meta-models
on suggesting the optimal predictive pipeline configuration. The KNN based
meta-model performance can be perceived as better than the random forest
classifier based meta-learner according to the accuracy metric.

0

20

40

60

80

100

A
c
c
u
ra
c
y

Dataset

KNN Random Forest

Figure 3.4: Predictive performance of the KNN and RF meta-models.

80 CHAPTER 3. Towards the automation of industrial data science

3.6 Conclusion

To enhance the production quality and improve the manufacturing industry, new
techniques are being developed consistently. The machine learning techniques
have been promising for the interests of the fourth industrial revolution. How-
ever, the customised knowledge required to use ML during the training process
has been among the major obstacles to incorporate and advance ML models
in manufacturing industrial domains. The dependence on manual crafting of
ML models to produce desired performance makes it a difficult task despite the
proven potential of ML models to improve the production. One approach that
may help in reducing human’s interventions in ML is automating the process of
ML algorithms design and learning.

In this chapter, we addressed the problem of assisting non-expert users to
perform algorithm selection and configuration with the goal of improving the
final results of their classification tasks. To provide assistance, we presented
the design, implementation, and evaluation of an automated ML system for
manufacturing industry. AMLBID, in this context, is a novel meta-learning-
based tool that address the problematic of automated selection and configuration
of ML algorithms. The proposed system uses a recommendation engine that
incorporates a meta-knowledge base maintained by the previous and ongoing
recommendation results in manufacturing domain. The AMLBID explicitly train
meta-models which are capable of identifying effective pipelines by exploring
the interactions between datasets and pipelines topology without performing
expensive computational analysis. In this regard, we presumably prevail the
major limitations of AutoML-based systems which have been the computational
complexity and excessive run-time performance losses.

Meta-learning systems use a set of data characteristics to represent and char-
acterize data mining tasks, and search to identify the correlations between these
attributes and the performance of learning algorithms. The proper identification
of data properties is essential to map tasks to learning mechanisms. As a data-
driven approach, the effectiveness of meta-learning is largely dependent on the
description of tasks (i.e., meta-features). Meta-learning requires meta-features
that represent the primary learning tasks or datasets to transfer knowledge
across them. In the next chapter, we attempt a novel approach to extract in-
trisic data characteristics after reviewing the existing works in characterizing
datasets, assess the currently available approaches and methods with respect to
meta-features used as input to quantify the tasks similarity in the meta-learning
process.

Chapter4

Learning Abstract Tasks

Representation

Outline of the current chapter

4.1 Introduction 82

4.2 Theoretical background and related works 84
4.2.1 The problem statement 84
4.2.2 Data characterization 85

4.3 The AekNN data characterization approach 87
4.3.1 AekNN foundations 87
4.3.2 The AeKNN meta-model 90

4.4 Experimental study 92
4.4.1 AeKNN architectures analysis 92
4.4.2 Results of latent meta-features extraction 93
4.4.3 Results of the algorithms selection process 96

4.5 Conclusion 97

Meta-learning, or learning to learn, is an AutoML approach that uses prior
learning experiences to expedite the learning process on unseen tasks. As a
data-driven approach, appropriate data characterization is crucial for the meta-
learning. A proper form of data characterization can guide the process of
learning algorithms selection and configuration. The recent literature witness
a variety of data characterization techniques including simple, statistical and
information theory based measures. However, these estimated traditionally as

81

82 CHAPTER 4. Learning Abstract Tasks Representation

engineered dataset statistics that require expert domain knowledge tailored
for every meta-task. Therefore, their quality still needs to be improved. This
chapter presents new measures, based on an induced Autoencoder-kNN network
architecture baptized as AeKNN, to characterize datasets for meta-learning in
order to select appropriate learning algorithms. The main idea is to induce
new intrinsic meta-features with lower dimensionality but more significant and
meaningful features as latent characteristics of datasets from the traditional ones.
Their effectiveness is illustrated through extensive experiments in an application
on a large-scale hyperparameters optimization task for 400 real world datasets
with varying schemas as a meta-learning task. We show that AeKNN offers
considerable improvements of the classical kNN as well as traditional meta-
models in terms of performance.

4.1 Introduction

Meta-learning refers to any learning approach that systematically makes use
of prior learning experiences to accelerate training on unseen tasks [159]. One
major goal is to build self-adaptive systems that adjust their learning mecha-
nisms automatically with new tasks. Automatic adaptation can be described
in a plethora of ways. It can be as simple as selecting an algorithm or a fam-
ily of learning algorithms, tuning hyperparameters, or simply warm-starting
a model [83]. Meta-learning relies on past experiences stored in the form of
meta-knowledge. One type of meta-knowledge encompasses families of meta-
features used as a form of data (or task) characterization. Meta-features capture
various types of data properties such as number of numerical attributes, de-
gree of class separation, Fisher’s Linear Discriminant [160], or level of concept
complexity [161].

As a data-driven approach, the effectiveness of meta-learning is largely de-
pendent on the description of tasks (i.e., meta-features). In the current context,
meta-learning requires meta-features that represent the primary learning tasks
or datasets to transfer knowledge across them. We observe, in the available
literature that several approaches in meta-learning use families of meta-features
as input to quantify task similarity. It is common to compute tasks similar-
ity as the Euclidean distance between two meta-features vectors. While these
approaches have shown to be effective in simple scenarios, they exhibit clear
limitations [162]. The foremost non-trivial task among the exhibited limitations
is the identification and selection of relevant meta-features. Several research
questions can emerge to better address these limitations such that What criteria
should we invoke to include or discard a family of meta-features? For instance, sta-

4.1. Introduction 83

tistical meta-features are not always intuitive and lack expressiveness. In [163],
the authors have shown how different datasets may share identical statistical
properties but noticeably they have different data distributions. Ultimately, the
selection of meta-features is an ad hoc process based on domain knowledge. It
is highly desirable to develop the more predictive meta-features and select the
more informative ones in order to improve the effectiveness of meta-learning [84,
164, 165].

We believe that traditional meta-features are not always able to capture
crucial characteristics of a given task, even though some of them are very task
specific [83]. This can be attributed to the fact that they only model the general
characteristics of the dataset (e.g. number of instances, classes imbalance, etc.).
Learning relevant meta-features can be useful to better identify the hidden
relationships across tasks, to necessarily build the accurate meta-models.

A different approach that has achieved popularity in recent years invokes
Artificial Neural Networks (ANNs). The strength behind ANNs is their capacity
to learn data characteristics from the diverse and large amount of data [166].
ANNs have had a strong impact in application areas such as image understand-
ing and speech recognition [83, 167]. However, their use in meta-learning is still
incipient and requires further investigations. The development of deep learning
for features generation has been largely studied in the literature. It represents
different datasets and tasks as embeddings generated by trained deep networks.
In [168], the authors solve different automatic speech recognition tasks through
a two-step learning process. In the first step, the algorithm performs a classifica-
tion with ANNs, which is followed by the extraction of intrinsic features from
the DNN output. In the second step, extracted features are used to improve
model predictions.

Our hypothesis is that ANNs provide the means to extract intrinsic meta-
features from data. In particular, Autoencoders are a type of artificial neural net-
works offering good results due to their architectures and operations [169–172].
In this chapter, we propose an instance-based algorithm, that learns latent meta-
features from families of traditional ones. Its objective is to obtain meaningful
and more informational meta-features. Specifically, the present chapter intro-
duces AeKNN, a kNN-based algorithm with built-in latent features extraction
strategy. AeKNN projects the training patterns into a lower-dimensional space,
with the help of an Autoencoder (Ae). The goal is to produce new meta-features
of higher quality from the initial data characteristics. In short, AeKNN combines
two reference methods, k-Nearest Neighbors (KNN) and Autoencoder, in order
to take advantages of Autoenconder in learning higher-level features. Thus,
it supports kNN in performing pipelines recommendation in meta-learning
paradigm.

84 CHAPTER 4. Learning Abstract Tasks Representation

The main contribution of this chapter is the design of a novel meta-model,
called AeKNN, which combines an efficient latent features extraction mecha-
nism (autoencoder) with a popular classification model (KNN). For the experi-
mentation purposes, a collection of 400 real world problems and 8ML algorithms
have been used to assess the competitiveness of the proposed meta-model.

The rest of the chapter is organized as follows : In section 4.2, a brief review
of the closely related works is introduced, including meta-learning for algorithm
selection and data characterization techniques. In section 4.3, the proposed
AeKNN meta-model is described. Finally, section 4.4 describes the experiments
illustrating the effectiveness of the proposed approach.

4.2 Theoretical background and related works

Meta-learning involves two basic aspects : the characterization of the learning
problems (datasets), and the identification of the correlation between the optimal
learning algorithms and the problems characteristics. Theffirst aspect relatesfto
the techniques for characterizing datasets with meta-features, which constitutes
the meta-data for meta-learning, whilstfthe second onefis the learning stage
atfthe meta-level, which develops meta-models forfthe selection of appropriate
algorithms and related hyperparameters configuration infrespect of previously
unseen datasets.

4.2.1 The problem statement

Given a classification task on a dataset D with n instances, our goal is to compute
a meta-feature F onD. A meta-feature is usually a hand-crafted characterization
function that captures a specific property of interest on a given task. Meta-
features are regarded as a form of meta-knowledge collected over a distribution
of tasks to learn how to learn. Not all meta-features are informative, and some
of them are very task specific [83]. Learning relevant meta-features can prove
useful in identifying hidden relationships across tasks, and is necessary to build
accurate meta-models.

Knowledge extracted across tasks, a.k.a. meta-knowledge, is a key feature
to the success of meta-learning by obviating learning from scratch on new
tasks [83]. By exploiting meta-knowledge, the meta-model can effectively con-
struct an optimal solution based on past experiences [162, 173] . For example,
a meta-model can identify that a new task is similar to previous ones and
warm-start a similar model with optimal hyperparameters. This avoids the
–sometimes painstakingly– slow processes of error and trial in building a new

4.2. Theoretical background and related works 85

model. Meta-knowledge can be understood as meta-features, model hyperpa-
rameters, performance measures, etc. In our work, meta-knowledge consists of
meta-features and performance measures gathered from previous tasks.

The process of meta-features extraction is formalized by [156] as a function
F : D → R

k that receives a dataset D as input, and returns a features vector
of k values characterizing the dataset, and that are predictive of algorithms
performance when applied to the dataset. Formally, it can be detailed as follows :

F (D) = σ(m(D)) (4.1)

Where D = {(xi , yi)|i ∈ {1, . . . ,n}} is a dataset with n instances; xi and yi indicate
the i-th training data and label respectively. The measurem :D→ R

k′ can extract
more than one value from each data set, i.e., k′ can vary according to D, which
can be mapped to a vector of fixed length k using a summarization function σ . In
meta-learning, where a fixed cardinality is needed, the summarization functions
can be, e.g., mean, min, max, skewness and kurtosis. Thus, a meta-feature can
therefore be seen as a combination of a measure and a summary function [156].

4.2.2 Data characterization

The task of characterizing datasets for meta-learning is to capture the infor-
mation about learning complexity on the given dataset and identify structural
similarities and differences among datasets [84]. The most early attempts to char-
acterize datasets in order to predict the performance of classification algorithms
were made by Rendell et al. [174]. We observe in the literature that broadly two
main strategies are proposed subject to characterize a dataset for suggesting
which algorithm is more appropriate for a specific task or dataset. Among them
are the methodologies using statistical measures and a set of simplified learners.
The former attempt to describe the properties of datasets using statistical and
informational measures. In the later, a dataset is characterized using the training
performance (e.g. accuracy) of a set of simplified learners, which became later
Landmarking [96].

The intuitive idea behind Landmarking is that the performance of classifiers
is related to the intrinsic features of the problem. Thus, classifiers with similar
accuracy may indicate problems with similar characteristics. Characterization
with the use of Landmarkers is known as indirect characterization because it is
not directly related to the attributes of the problem (cf. section 2.1.1 Chapter 2).

The characterization of datasets using statistical and informational measures
properties appeared for the first time within the framework of the STATLOG
project [175]. The authors used a set of 15 characteristics, spanning from simple
ones, like the number of instances and the number of attributes, to more complex

86 CHAPTER 4. Learning Abstract Tasks Representation

ones, such as the canonical correlation between the attributes and the classes.
This set of characteristics has been later applied in various studies for solving the
algorithms selection problem [17, 145, 176]. This characterization approach has
been later extended. It is currently known as direct data characterization [177]
and consists of extracting simple, statistical, and information-theoretic task
properties that can be straightforwardly extracted from datasets by capturing
information concerning data dimensionality, distribution, and the amount of
information present in the data.

Another characterization method is based on informations extracted by mod-
els built out on the problems [84]. For instance, from a decision tree model
constructed over a dataset, it is possible to extract structural informations about
the tree itself, such as the number of leaves, nodes, and the tree depth [178].
Similarly, in [17], the authors proposed AutoGRD, a meta-learning approach
for algorithms recommendation through graphical dataset representation. First,
they applied the Random Forest algorithm to create a hierarchical representation
of the datasets where the vertices represent the dataset instances and the edges
indicate the existence of a sufficiently high co-occurrence score among them.
Then, the Grid-Cross Downsampling method [179] has been used to generate the
embedding representation of the obtained graph that is fed to train an XGBoost
meta-model to predict the ranking of algorithms based on their performances.
However, this approach suffers from a computational complexity ofO(V4) where
V is the number of vertices in the analyzed graph. It is further observed that
this approach is not practical for large datasets of real world problems.

Meta-features or data characteristics can be transformed to summarize the
data, e.g., by reducing data dimensionality. For instance, in [180], the authors
performed Principal Component Analysis (PCA) [181] to select relevant compo-
nents, subsequently, a filter is used to extract the discriminating features and
eliminate the redundant ones.

A different approach that has achieved popularity in recent years in learning
most relevant features from data involves deep autoencoder neural networks. We
blieve that Autoencoders provide the means to extract intrinsic meta-features
from traditional ones. In this process, traditional meta-features are used by
the Ae to learn relevant features, then, the knowledge captured in the hidden
layers of autoencoder is used to extract latent meta-features. Once identified
and extracted, they can be used by any meta-learning algorithm. Meta-features
extractors should therefore satisfy the following constraints in order to be useful :

1. Schema Agnosticism & Expressivity. The meta-features extractor shouldfbe
able to extract meta-features forfa population of meta-tasks with varying
schemasfand complexity, e.g., datasets containing different predictors and
target variables, also having a different numberfof predictors and targets.

4.3. The AekNN data characterization approach 87

2. Scalability. The meta-features extractor should befable tofextract meta-
features fast, e.g., it shouldfnot require itself somefsort of training onfnew
meta-tasks.

3.Correlation. The meta-features extracted byfthe meta-feature extractor
should correlate wellfwith the meta-targets, i.e., improve the performance
on meta-tasks suchfas hyperparameters optimization.

4.3 The AekNN data characterization approach

AekNN, the meta-model proposed in this chapter, is a kNN-based meta-model
with bluit-in latent features extraction method designed to deal with the algo-
rithms selection problem. This section outlines the essential concepts AEkNN is
founded on, such as the k-nearest neighbors classifier and Ae networks.

4.3.1 AekNN foundations

The KNN algorithm

kNN is a non-parametric algorithm developed to deal with classification and
regression tasks. In classification, kNN predicts the class for new instances using
the information provided by the k nearest neighbors, so that the assigned class
will be the most common among them. Fig. 4.1 shows an example on how kNN
works with different k values. As can be seen, the prediction obtained with k = 3
would be B, with k = 7 would be A and with k = 15 would be B.

Figure 4.1: k-Nearest neighbors algorithm in a bi-dimensional space.

88 CHAPTER 4. Learning Abstract Tasks Representation

An important feature of this algorithm is that it does not build a model for
accomplishing the prediction task. Usually, no work is done until an unlabeled
data pattern arrives, thus the denomination of lazy approach [182]. Once the
instance to be classified is given, the information provided by its k nearest
neighbors is used as explained above.

One of kNN’s main issues is its behavior with datasets having a high-
dimensional input space, due to the loss of significance of traditional distances
as the dimensionality of the data increases [183]. In such a high-dimensional
space distances between individuals tend to be the same. As a consequence simi-
larity / distance based algorithms, such as kNN, usually do not offer adequate
results. The point that most of the state of the art studies, that use the KNN as a
meta-model, overcome by reducing the number of meta-features. Thus, losing a
set of important features that characterize the datasets.

In our work, kNN has been selected to perform meta-learning tasks. kNN
is very popular since it has a good performance, uses few resources and it is
relatively simple [182]. The objective of this proposal is to present a meta-model
that combines the advantages of kNN to classify with Autoencoder networks to
extract latent meta-features with lower dimensionality but more significant and
meaningful characteristics.

One of the primary concerns in the selection of meta-model is the extensibil-
ity of the system, because a meta-learning system accumulate knowledge and
evolves with experience as more meta-examples are added to the knowledge base.
Hence, the addition of new meta-examples to the meta-knowledge base without
the requirement of remapping the relationship of datasets and performance
measures of candidate algorithms makes KNN a good choice for meta-model.

Autoencoders

Autoencoders are a type of artificial neural networks designed to learn efficient
data representations (encoding) in an unsupervised manner [184]. An autoen-
coder is composed of two networks concatenated together : an encoder network
and a decoder one. It has a similar structure to the feedforward neural network
Multi-Layer Perceptron (MLP) [185]. However, the primary difference is that
the number of neurons in the output layer is equal to the number of inputs,
whereas the autoencoder tries to generate the inputs from the learnt represen-
tation (encoding) as close as possible to its original input. Consequently, in its
simplest form, an autoencoder uses hidden layers to try to recreate the inputs.
We can describe this algorithm in two parts :

1. an encoding function Z = E(X) that encodes the high-dimensional in-
put data X = {x1,x2, . . . ,xn} into a low-dimensional hidden representation
Z = {z1, z2, . . . , zm} by an activation function f (x) = Sf (Wx + b), and

4.3. The AekNN data characterization approach 89

2. a decoding function X ′ =D(Z) that produces a reconstruction of the inputs
X ′ = {x′1,x

′
2, . . . ,x

′
n}.

The goal is to create a reduced set of codings that adequately represents X
by minimizing the reconstruction error L(X,X ′), which measures the differences
between the original input data X and the consequent reconstruction X ′. There
are two ways of formulating the reconstruction error : square error and cross-
entropy. Their formulas are shown below :

Square error :

L(X,X ′) =
1
2

n
∑

i=1

‖ xi − x
′
i ‖

2
2 | i ∈ {1, . . . ,n} (4.2)

Cross-entropy :

L(X,X ′) = −
n

∑

i=1

(xi logx
′
i) + (1− xi) (xi log(1− x

′
i)) (4.3)

The general architecture of an autoencoder is described by the number of
hidden layers lni and by the number of neurons per layer, where i is the index for
the hidden layer and n is the total number of neurons in that layer. Each layer
contains a learnt latent representation of the input data. The encoded hidden
layer in the middle of the autoencoder, often called the bottleneck layer, comprises
the final learnt latent features, where each latent variable is a representation
of the original input in an abstract space. The number of latent variables is
user defined by controlling the number of neurons in that layer. By training
an autoencoder on the traditional meta-features space, we can learn a new
representation (latent meta-features). The resulting deep neural network serves
as a features extractor where the learnt latent space Z is extracted from the
middle hidden layer. This process is highlighted in Figure 4.2.

Figure 4.2: Schematic structure of an Autoencoder.

90 CHAPTER 4. Learning Abstract Tasks Representation

4.3.2 The AeKNNmeta-model

AeKNN consists of two main phases : the learning phase and the inferring one.
The former phase is carried out using the meta-dataset from the previous chapter
to train the autoencoder model. It allows the extraction of latent meta-features of
data. Later, the recommendation (inferring) phase is performed that principally
uses the feed forward autoencoder model which has been generated in the
learning phase to extract the latent meta-features of the test data and, later
on, the recommendation and ranking of the optimal pipeline (s) are estimated
based on nearest neighbors in the meta-knowledge base. Figure 4.3 elaborates
this process, while the Algorithm9 shows the pseudo-code of AeKNN that is
thoroughly discussed in the following.

Datasets

Meta-Dataset

Encoder

KNN

Decoder

Autoencoder

Encoder

F1 F2 F3 F4 … F6 F7 F8 F9 F n

Meta-features vector

Optimal
pipelines

P1 | P2 | Pk

MFE: Meta-Features Extraction

LMF: Latent Meta-Features

LMF

Inferring_______________________

Learning______________________

 Dataset

KB

•Meta-Datasets
• Performance results

Figure 4.3: Overview of proposed AeKNN-based meta-model.

The proposed methodology constructs an autoencoder which can be used as
a latent features extractor. After providing traditional meta-features as input,
we train the autoencoder to learn a meaningful latent representation of the meta-
dataset. Once the autoencoder is trained, the meta-dataset is forward propagated
to extract the latent variables from the middle hidden layer to induce the AeKNN
meta-model. The process consists of two phases. The first phase corresponds
to the learning of AeKNN (lines 1-5) while the second phase (lines 6-8) refers
to the inferring phase. During learning, AeKNN focuses on learning a new

4.3. The AekNN data characterization approach 91

Algorithm 9 AeKNN algorithm’s pseudo-code.
Input : Train Data, Test Data, KB ⊲ KB is the constructed knowledge base
Output : P< P1,P2,P3, . . . ,Pn > ⊲ Suggested pipelines
Learning phase :

1: MetaData← MetaFeaturesExtractor(TrainData)

2: AE← Autoencoder(MetaData)

3: EncoderModel← FeedForwardAEModel(AE)

4: LatentMetaFeatures← EncoderModel(TrainData)

5: AeKNN ← KNN(LatentMetaFeatures, KB)

Inferring phase :
6: MetaFeatures← MetaFeaturesExtractor(TestData)

7: LatentMetaFeatures← EncoderModel(MetaFeatures)

8: OptimalPiplines← AeKNN(LatentMetaFeatures, KB)

representation of the data to extract latent meta-features from traditional ones (cf.
Section 3.4.2—Chapter 3). This is done through the feed forward autoencoder
model, using the training meta-data to learn the weights linking the units of
autoencoder. During the inferring phase, the optimal pipelines are generated.
The process, performed internally in this phase, transforms the extracted meta-
features using the autoencoder model which is generated in the training phase.
It produces a new dataset characterization (latent meta-features), which is more
compact representative (line 7) of data. In fact, this new set of features is used
by the AeKNN meta-model to recommend the optimal pipeline (s) for the given
problem (line 8). An illustrative example of this process is shown in Figure 4.4.

𝑿𝒏×𝒑

𝒏 samples

𝒑 features 𝒛𝟏

𝒙𝒑

𝒙𝟐

𝒙𝟏

𝒛𝟐

𝒛𝒎

𝒛𝟏 = 𝑺𝒇(𝒘𝟏𝒙𝒋 + 𝒃) 𝒛𝟐 = 𝑺𝒇(𝒘𝟐𝒙𝒋 + 𝒃)
𝒛𝒎 = 𝑺𝒇(𝒘𝒎𝒙𝒋 + 𝒃) KB

Optimal
pipelines

P1 | P2 | Pk

KNN

Latent meta-features extraction

Initial MF

Latent MF

Dataset
MFE

Search for similar tasks

Figure 4.4: An illustrative example of the AeKNN inferring process.

92 CHAPTER 4. Learning Abstract Tasks Representation

4.4 Experimental study

This section describes the experimental design to induce latent meta-features
and the evaluation of the proposed approach. In this respect we made use of
the constructed meta-knowledge base from the last chapter. Subsequently, the
experimental results are presented and discussed in substantial detail.

4.4.1 AeKNN architectures analysis

AeKNN is characterized by the aforementioned li
n parameter that establishes

the architecture of the network. This parameter allows the selection of different
architectures in terms of depth (number of layers) and number of neurons per
layer. Table 4.1 shows the considered architectures. For each model the number
of hidden layers, as well as the number of neurons in each layer are shown.

Model Number of
Number of neurons per layer

Architecture li
n

hidden layers L 1 L2 Latent layer L 4 L5

AeKNNf1 1 - - 32 - - (32)
AeKNNf2 1 - - 16 - - (16)
AeKNNf3 1 - - 8 - - (8)
AeKNNf4 3 32 - 16 - 32 (32,16,32)
AeKNNf5 5 32 16 8 16 32 (32,16,8,16,32)

Table 4.1: Experimental configurations of AeKNN.

The results produced by the considered architectures using a benchmark of
20 real world datasets with different characteristics (as shown on the table D.1
in the AppendixD) are presented as grouped by datasets. Table 4.2 summarizes
the evaluation results of each recommended pipeline for each configuration.

The results presented in table 4.2 shows the evaluation results of the recom-
mended pipelines by AeKNN with different architectures. The obtained results
indicate that the architectures with single hidden layer get better results in 17
out of 20 datasets, whereas the architectures with three hidden layers gets 2 out
of 20 datasets and the five hidden layers architecture obtained best results in 1
out of 20 datasets. In the rankings obtained, it can be seen that single hidden
layer architectures are the ones winning more times (17). The li

n = (32) works
best for most cases (14 win), while li

n = (16) shows disparate results, the best
values for some cases and bad results for other cases.

4.4. Experimental study 93

Dataset
AeKNN

(32) (16) (8) (32,16,32) (32,16,8,16,32)

APSFailure 0.9921 0.9734 0.86475 0.9033 0.8325
Higgs 0.7283 0.6911 0.4872 0.6398 0.5316
CustSat 0.8155 0.7826 0.5318 0.8559 0.6943
car 0.9999 0.9808 0.7049 0.9203 0.8277
kr-vs-kp 0.9985 0.8130 0.6532 0.7330 0.7291
airlines 0.7021 0.6833 0.5627 0.7167 0.4334
vehicle 0.8952 0.8964 0.3591 0.8004 0.4098
MiniBooNE 0.9730 0.9217 0.8143 0.85 0.7436
jannis 0.7229 0.6843 0.6371 0.6911 0.6608
nomao 0.9884 0.9919 0.5395 0.6994 0.4659
Credi-g 0.8037 0.6502 0.5121 0.3871 0.4768
Kc1 0.8905 0.8754 0.3597 0.7488 0.5691
Cnae-9 0.9800 0.8923 0.5622 0.5208 0.6049
albert 0.8790 0.8131 0.6981 0.8439 0.9053
Numerai28.6 0.5591 0.4530 0.3029 0.4760 0.2810
segment 0.9867 0.9622 0.8837 0.9508 0.5791
Covertype 0.8637 0.7189 0.6521 0.6305 0.4620
KDDCup 0.9781 0.8514 0.8034 0.8821 0.8572
shuttle 0.9362 0.9997 0.6429 0.8576 0.6744
Gas_Sens-uci 0.9843 0.9755 0.7256 0.9667 0.7032

Table 4.2: Performances of considered AeKNN architectures on the test datasets.
The best performances among all architectures are highlighted in bold.

Therefore, it is considered that li
n = (32) is the best among them with a

reconstruction error standard deviation of 0.020025 (Figure 4.5). Thus, in the
following, the results of AeKNN using the presented architecture are compared
against the classical kNN as well as other state-of-the-art meta-models.

4.4.2 Results of latent meta-features extraction

We extracted latent features of datasets form traditional ones by using the
li
n = (32) Autoencoder architecture. To comprehend the features extracted by

AeKNN more intuitively, the obtained 32-dimensional meta-features were re-
duced to a 3-D space {X,Y ,Z}. This was accomplished by the t-Distributed
Stochastic Neighbor Embedding (tSNE) [186] which is used in the conversion of

94 CHAPTER 4. Learning Abstract Tasks Representation

Figure 4.5: The reconstruction error of an instance from the meta-features set
after it’s encoded and decoded by the li

n = (32) architecture.

high-dimensional data visualization into low dimensional embeddings. It con-
verts high-dimensional Euclidean distance between data points into conditional
probabilities for mapping low-dimension space and adopts kullback-leibler
divergence [187] to minimize mismatch on the low-dimensional data representa-
tion. Using this technique, we can acquire more interpretable data visualization
on high dimensional representations. In this experiment, we used the tSNE
technique for mapping data into a three-dimensional plane for the Autoen-
coder based latent features selection and extraction. Figure 4.6 shows that the
AeKNN features could separate different datasets reasonably well, as the differ-
ent datasets are located in a sequence of regions. The same data are portrayed in
Figure 4.7 in the space of different views 3-D scatter plots of the learned latent
features. Marker shapes are the superposed datasets (each circle represents a
dataset).

Among the visualizations of the extracted latent meta-features over the
traditional ones, it is obvious that the datasets in the AeKNN features space are
more sharply delineated, and the features associated with each class are mostly
separated from those of others, although a small number of overlaps can be seen.

The results of latent features visualization show that our method can ef-
fectively extract meaningful characteristics (meta-features) of datasets for the
meta-learing process. This method avoids the overlaps of separation and com-
bination caused by the complex background of tasks (datasets) when using the
traditional meta-features measures.

To validate and assess the competitiveness provided by the deep autoencoder-
KNN based meta-model, we perform a comparative study to other state-of-

4.4. Experimental study 95

Figure 4.6: 3-D scatter plot of traditional meta-features of the datasets and the
latent ones extracted by our model.

Figure 4.7: Three different views of the same extracted latent meta-features.
The plots have been rotated to illustrative angles.

the-art meta-models with an oversampling approach using the 20-benchmark
datasets. We compared AeKNN to three widely used meta-models including
random forest, k-nearest neighbor, and XGBoost [17, 145, 176, 188].

96 CHAPTER 4. Learning Abstract Tasks Representation

4.4.3 Results of the algorithms selection process

This section is intended to assess the competitiveness of the proposed meta-
model. In this regard, a comparison has been made between the results obtained
by AeKNN, using the li

n = 32 architecture as selected in the previous section,
and the results obtained with the baseline meta-models on the same datasets.
Table 4.3 provides a pairwise one-to-one comparison of the baseline meta-models
against AeKNN for recommending optimal pipelines for the test data. The
results of all meta-models are presented jointly in Table 4.4, and the best ones
are highlighted in bold. More peculiar and detailed results are presented in the
AppendixD.

Meta-model Wins Losses Champion

AeKNN - - 16
KNN 1 19 1
RF 0 20 0
XGB 3 17 3

Table 4.3: Comparing each baseline meta-model against AeKNN on the 20-
benchmark datasets. Listed are the number of datasets where each meta-model
produced better predictions than AeKNN (Wins), worse predictions (Losses), or
more accurate predictions than all of the other 3 meta-models (Champion).

The results shown in Table 4.4 indicate that AeKNN performs better than
most of the traditional meta-models especially the classical kNN and RF for
most datasets. The AeKNN improves kNN in 18 out of 20 cases, obtaining the
best overall results in 16 of them and obtains better results than the Random
Forest meta-model in all cases. In the presented ranking, the results of AekNN
with the li

n = 32 architecture appear first, clearly highlighted with respect to
the other obtained values. Therefore, it is considered that AekNN obtains better
predictive performance, since the reduction of dimensionality generates more
significant features. Table 4.3 confirms this trend.

Summarizing, it can be observed that the results obtained through AeKNN
improve those obtained with the RF, XGB and KNN algorithms for most of the
datasets. The quality of the results with AeKNN in terms of algorithms selection
performance are better than those of baseline meta-models in most cases. This
means that the high-level meta-features obtained by the AeKNN algorithm
provide more relevant information than those obtained by the state-of-the-art
algorithms.

4.5. Conclusion 97

Dataset
Accuracy

AeKNN KNN XGB RF

APSFailure 0.9921 (0.11)N 0.9910 0.9673 0.8950
Higgs 0.7283 (1.53)N 0.7130 0.6801 0.6072

CustSat 0.8155 (4.04)H 0.8559 0.8715 0.7382

car 0.9999 (2.45)N 0.9754 0.9462 0.8549
kr-vs-kp 0.9985 (0.09)N 0.9976 0.7593 0.6532
airlines 0.7021 (0.39)N 0.6982 0.7094 0.5927
vehicle 0.8952 (0.72)N 0.8880 0.9027 0.6591
MiniBooNE 0.9730 (0.85)N 0.9645 0.8903 0.8343
jannis 0.7229 (5.10)N 0.6719 0.6845 0.6171
nomao 0.9884 (1.76)N 0.9708 0.7987 0.6995
Credi-g 0.8037 (1.16)N 0.7921 0.5739 0.6121
Kc1 0.8905 (1.12)N 0.8793 0.7697 0.7097
Cnae-9 0.9800 (1.29)N 0.9671 0.8365 0.7922
albert 0.8790 (0.31)N 0.8759 0.8288 0.7981
Numerai28.6 0.5591 (3.84)N 0.5207 0.4836 0.4229
segment 0.9867 (1.32)N 0.9735 0.9542 0.9337
Covertype 0.8637 (2.93)N 0.8344 0.7890 0.6521
KDDCup 0.9781 (0.41)N 0.9740 0.9331 0.8934

shuttle 0.9362 (2.87)H 0.9649 0.9649 0.8429

Gas_Sens-uci 0.9843 (1.04)N 0.9739 0.9468 0.9256

Table 4.4: Results of RF, XGB, KNN, and AeKNNmeta-models for recommending
optimal pipelines for test data. The triangles (N,H) denote the gain/ loss obtained
with AeKNN compared to the traditional KNN meta-model.

4.5 Conclusion

In this chapter, a novel meta-model based latent features extraction method,
namely AeKNN, is proposed. This model is based on kNN to recommend the
optimal pipelines while its major objective is to mitigate the high-dimensional
data characterization limitations. In this regard, AeKNN internally incorporates
a model-building phase which is aimed at an extraction of latent meta-features,
using a feed forward autoencoder. The main reasons that has led to the design
of AeKNN are the good results that have been obtained by the Autoencoders
networks when they are used to generate higher-level features and those of KNN

98 CHAPTER 4. Learning Abstract Tasks Representation

for performing pipelines recommendation in meta-learning systems. AeKNN
relies on a feed forward Autoencoder to extract latent representations of a higher
level that replaces the original meta-features.

In order to assess the competitiveness of the proposed approach, a series of
experiments are carried out. Initially, the analysis of the results have allowed
to determine the architecture of AEKNN that works better. Furthermore, in the
later parts of the conducted experiments, the results of the adopted architecture
have been compared with the results produced by the state-of-the-art meta-
models. It is observed that AeKNN offers a considerable improvement of the
results obtained by all baseline meta-models. These results show that the use of
autoencoders can be helpful to extract relevant meta-features which are more
significant and informative. It thus improve the effectiveness of meta-learning,
and broadens the directions of future works. They can be applied to support
the solution of similar problems in a better manner than the traditional meta-
models.

Chapter5

Towards Interactive Explainable

Automated machine learning

Outline of the current chapter

5.1 Introduction 100

5.2 The need for transparency to trust in AI and in AutoML 101

5.3 Explainable Artificial Intelligence 102

5.4 Visual Analytics for AutoML 104

5.5 The Conceptual framework 106
5.5.1 The AutoML Overview 108
5.5.2 The recommendation-level View 108
5.5.3 The What-if analysis-level View 110
5.5.4 The refinement-level View 111

5.6 Conclusion 113

To relieve the pain of manually selecting machine learning algorithms and
tuning related hyperparameters, automated machine learning methods have
been remarkably successful for a wide range of application areas to automatically
search for the best models. However, such a highly positive impact of theses
powerfull black-boxes solutions is coupled with a significant challenge : how do
we understand the decisions suggested by these systems in order that we can trust
them?. Users tend to distrust automatic results and increase the search budget as
much as they can, thereby undermining the efficiency of AutoML.

99

100CHAPTER 5. Towards Interactive Explainable Automatedmachine learning

In an effort to identify open challenges and address these issues, we de-
sign and implement, a framework for interactive and explainable AutoML that
enables users to (1) understand the reasoning behind a recommendation; (2)
understand the provided results and diagnose model limitations using different
explainable AI methods; as well as (3) explore the possibilities of performance
refinement. To operationalize the framework, we present AMLExplainer, a visual
analytics system for interactive and explainable AutoML that instantiates all
phases of the suggested pipeline(s) within the commonly used Bootstrap Dash
environment.

5.1 Introduction

The Rapid evolution of artificial intelligence technologies in the last decade has
brought us many novel use cases and futuristic applications never seen before.
The performance of ML techniques is becoming more than satisfiable, due to
the large amount of available data. To ease the difficulty of developing ML
models, automated machine learning methods have been proposed. Instead
of searching algorithms and tuning hyperparameters manually, AutoML auto-
matically iterates through various machine learning algorithms and optimizes
hyperparameters in a predefined search space (i.e., a set of feasible ML pipelines).

The interest of building complex AI models that are able to achieve unprece-
dented performance levels has been gradually replaced by a growing concern for
alternative design factors leading to an improved usability of the resulting tools.
Indeed, in a manifold of application areas, complex AI models become of limited
practical utility [189]. The major reason lies on the fact that AI models are often
designed to focus the performance factors, thus leaving aside other important
and even sometimes crucial aspects such as confidence, transparency, fairness
or accountability. The absence of explanation for predicted performing factors
makes the AI models usually black boxes, which only allows the prominent
exhibition of input and output parameters but conceals the visibility of inherent
associations among them. It is more preferably desired to avoid such a lack
of transparency in real-life applications such that in industrial manufacturing
processes. Since, these applications may imply critical decision choices, it is fa-
vorable to have some justifications of individual predictions which are perceived
trough an AI algorithm, more particularly, in an automated environment. There-
fore, the acceptance of, and the trust in, an AutoML system is highly dependent
on the transparency of the recommendations.

Because of the lack of transparency in AutoML systems as Decision Support
Systems (DSS), users tend to question the validity of automatic results, such

5.2. The need for transparency to trust in AI and in AutoML 101

that : did the AutoML run long enough? Did the AutoML miss some suitable models?
Did the AutoML sufficiently explore the search space? Did the recommended con-
figuration over or under fit? Etc. Such queries may cause reluctance for users to
apply the results of AutoML in more critical situations [190]. Meanwhile, when
AutoML provides unsatisfactory results, users are unable to reason and thus
cannot improve the obtained results. They may only increase the computational
budget (e.g., the run-time) as much as possible, which can result as barriers of
the AutoML effectiveness.

It is therefore a preliminary objective of this chapter to make the outcome
from such well-performing AutoML systems transparent, interpretable and
self-explainable. This shall make AutoML support systems more reliable and
operational through a set of different visual summary levels of the provided
models and configurations. It may render the AutoML systems more transparent
and controllable, hence increasing their acceptance.

5.2 The need for transparency to trust in AI and in

AutoML

Black-box AI systems have been used in various areas. Their implication in
critical domains, like in power consumption forecasting or supply chain manage-
ment usually have less focus to consider the quality features such as transparency
and explainability rather considering more importantly the system’s overall per-
formance. However, even if these systems fail, e.g., the Quality Control System
is mostly not able to detect the failure, the Equipment Failure Prevention system
are less expected to identify the exact cause of failure and generally produces
false or inaccurate predictions. The consequences are rather underwhelming.
In industrial critical applications, the situations are different where the lack
of transparency of ML techniques can be a disqualifying factor, if not limited.
Specifically, a single wrong decision can be highly risked to put in danger the
entire production line (e.g., failure of a critical unit) and can cause significant
financial deprivations (e.g., product conformity). It is therefore, relying on an
incomprehensible black-box data-driven system would not be the best option.
The lack of transparency is among the most relevant reasons to question the
adoption of AI models in manufacturing industry. The stakeholders are more
cautious than doing so in the consumer entertainment, or e-commerce industries.

Predictive accuracy metrics, e.g. precision and recall, may not be reliable
enough to assess the usefulness of a ML model [191, 192]. For many tasks,
in order to trust a ML model and use it for making real-world decisions, it is

102CHAPTER 5. Towards Interactive Explainable Automatedmachine learning

needed to understand what relationships the model has learned, how the model
produces its outcomes, how the model’s decision logic differs in different parts
of the features space, possible biases in the data and model, and the collective
influence of features on the model output (Figure 5.1).

Dataset

AUTOML

Recommended
model config.

Sensor_01
Sensor_03
Sensor_04
Sensor_09

Sensor_01
Sensor_03
Sensor_04
Sensor_09

Tool state:
61.36% Normal

Tool state:
61.36% Normal

Figure 5.1: From “Black-box” model recommendation and prediction to “White
box” model with explanations.

Explaining the reasoning behind one’s decisions or actions is an important
part of human interactions in the social dimension [193]. As the explanations
help to build trust in human-to-human relationships, similarly, these should
also be part of human-to-machine interactions [146]. In this chapter, we in-
vestigate the contributions and feasibility of a process designed to make such
powerful DSS transparent, interpretable and self-explainable to foster trust,
both in situations where the AI system has a supportive role (e.g., production
planning) and in those where it provides directions and decision-making (e.g.,
Quality Control, predictive maintenance or autonomous driving). In the former
cases, explanations provide extra information, which help the human in the
loop to gain an overall view of the situation or the problem at hand in order to
take decisions. It is similar to an expert who has to provide a detailed report
explaining his/her findings, a supportive AI system should explain the decisions
in detail instead of providing only a prediction or a decision.

5.3 Explainable Artificial Intelligence

Explainable AI (XAI) [189] refers to artificial intelligence technologies that can
provide human-understandable explanations for their outputs or actions [194].

5.3. Explainable Artificial Intelligence 103

End users, by nature, may wonder about the reasoning behind how and why algo-
rithms make or arrive to decisions [195]. As the complexity of the AI algorithms
and systems grows, they are viewed as “black-boxes” [196, 197]. Increasing
complexity can result in the lack of transparency that hampers understanding
the reasoning of these systems, which negatively affects the users trustiness.

Model explainability can be divided into two categories : global explainability
and local explainability. Global explainability means the users can understand
the model directly from its overall structure. Local explainability just consider a
specific input and tries to find out why the model makes a certain decision.

The development of methods for explaining, visualizing and interpreting
machine learning models has recently gained increasing attention under the
XAI area [189, 190, 194–196]. In the recent years, the advancements in XAI are
grown rapidly but there are still broader gaps to generalize XAI approaches. The
current major XAI methodologies are only applicable to specific type of data
and models. Such specificities mostly require the pre-configuration of input
parameters that are not easily coded by non-experts [190]. A variety of XAI
methods characteristics in terms of data explanations level, data and model
dependency, and pre-configuration requirements are highlighted in Table 5.1.

XAI method
Level Dependency

Require
Local Global Data Model pre-configuration

LIME[190] • ◦ • ◦ •

ANCHORS[198] • ◦ • ◦ •

Node-Link Vis[199] • • ◦ • •

SHAP [200] • • ◦ ◦ •

DeepTaylor[201] • ◦ • • •

Occlusion [202] • ◦ • • •

Saliency [203] • ◦ • • •

Table 5.1: Properties of XAI state of the art tools. Level is the interpretability
coverage: local or global. Dependency specifies necessary inputs.

The Local Interpretable Model-Agnostic Explanations (LIME) [190] is one
such methods. It uses the models output on a data sample to generate a linear
surrogate model that explains the features importance. A similar technique,
ANCHORS [198], additionally focuses the most influential input areas, so-called
anchors, to formalize decision rules. Both methods do not consider the un-
derlying model (model-agnostic) but use the sample inputs and outputs of the
model (data-dependent) to explain a (local-level) decision boundary generated
by the model.

104CHAPTER 5. Towards Interactive Explainable Automatedmachine learning

A different type of XAI methods is represented by Saliency [200]. They built
a visual representation for features importance by highlighting aspects in each
sample as a mask of how the model perceives its input data. In contrast to LIME
and Anchors, they are only used for artificial neural networks (models-pecific).

Other XAI methods only allow for a low-abstraction, such as visualizing
convolutional filters [204], or showing the dataflow through the computational
graph [205]. These methods are especially useful for model developers, who
want to improve their models using a low abstraction XAI method as a quality
metric.

While all the existing methods are highly-specialized to their use-cases and
cover the respective insights and application constraints. They provide only
some XAI methods without an interactive machine learning (IML) workflow.
Therefore, they cannot be used as XAI components in an AutoML DSS. An ideal
system for explaining ML models needs to provide a collection of different XAI
levels and should be flexible enough to adapt to the AutoML output (model and
data agnostic).

5.4 Visual Analytics for AutoML

Recent design recommendations put more focus on the importance of intuitive
interfaces, along with a clean and concise presentation, among the explanation
facilities, and easy user interactions [206]. Visual Analytics (VA) can be applied
to the IML workflow to boost the model development and deployment processes
through tailored visual interfaces, and tightly integrates the user to promote
further sensemaking during the data analysis workflow [207].

During our review of existing IML/VA systems, we identified three stages
of explanations according to how they can cover the provenance tracking and
reporting of the AutoML. Moreover, we show why a general XAI system, com-
prising all stages and tasks, is needed to address the variance in interpreting
black-boxes AutoML solutions.

The understanding stage can be interpreted in different ways depending
on the target user group (see Figure 5.2). For a model novice, an interactive VA
system can be used as an “educational” tool to explain ML concepts. For instance,
Harley [204] visualizes changes of an image along with the affected layers of an
ANN. Smilkov et al. [208] also provide an interactive, visual representation of
an ANN. Further work offers various ways to explore the graphical represen-
tation of DNNs. From these examples, we derive the need for an interactive
exploration during the understanding phase. In contrast to the educational
goals of model novices, model users and developers need to understand the

5.4. Visual Analytics for AutoML 105

model inner-workings. Rauber et al. [209] focus on this aspect by visualizing the
ANN training, as well as, both, neuron-neuron and neuron-data relationships.
Bilal et al. [210] visualize the hierarchical abstraction of CNNs, highlighting the
importance of multiple abstraction layers. Based on the lessons learned from
these works, we conclude that there is a need for providing tailored AutoML
explanations on different model abstractions levels to understand the algorithms
recommendation and diagnosis process.

Visual Analytics systems can address this gap by focussing on model di-
agnosis in an IML workflow to enable the detection of problems on different
abstraction levels. Some systems support a model diagnosis by focusing on
features importance [200, 211], the reaction of the model to real or adversar-
ial input examples [212, 213]. Others focus on specific elements, such as the
neuron activation [214], hidden states of a cell [215] or action patterns of rein-
forcement learning algorithms to allow model-specific diagnosis. While all these
approaches allow for an integrated diagnosis, they fall short of addressing the
identified issues in a subsequent refinement step [216].

• Who? Data scientists, developers,
product managers

• Why? Ensure/improve performance,
research, etc.

• Who? Managers and executive board
members

• Why? Understand AI systems

• Who? Affected users by models
decisions

• Why? Understand factors, Verify
decisions, etc.

• Who? End users (Physicians, engineer)

• Why? Trust/confidence, gain insights
knowledge, etc.

Target audience

in XAI

Figure 5.2: Diagram showing the different purposes of explainability in ML
models sought by different audience profiles. Image partly inspired by the one
presented in [217], used with permission from IBM.

An IML Expert system can go beyond the understandig and diagnosis phases,
and target the refinement of ML models. We have identified works that are
designed to diagnose and refine single ML models, e.g., [218, 219]. Others target
multi-model visual comparison for refinement [220, 221]. In addition to this
distinction, various interactive refinement approaches are used in iterative cycles
on medical images [222]. Such examples highlight the need for interactive and
iterative refinement cycles in our self-explainable AutoML vision. Further, the
ability to assist on the selection, configuration and refinement of adequat ML

106CHAPTER 5. Towards Interactive Explainable Automatedmachine learning

models is essential for assessing the quality of different models and selecting the
most suitable for a given context.

In our system implementation, we attempt a transparent and interactive XAu-
toML pipeline that can cover different pathways through all of the addressed
stages and tasks. Given a dataset, the system automatically recommends the
most adequate ML configurations and explains the rationale traceability behind
its recommendation. It is intended to support the analysis and inspection of all
machine learning classification models without any data type or model depen-
dency. The goal is manifold : (1) facilitate the models working and performance
inspection through linked visual summaries and textual information, (2) provide
a visual summary of all evidence items and their relevance for the computation
result, and (3) present a guided investigation of the reasoning behind the rec-
ommendation generation and for performances refinement possibilities. In the
proposed approach, the end users can explore the AutoML process at different
levels, such as described in the following :

• The AutoML-oriented level (i.e. exploring the AutoML process from rec-
ommendation to refinement).

• The Data-oriented level (i.e. exploring data properties through different
visualization levels).

• The Model-oriented level (i.e. exploring the models provided by the Au-
toML system (e.g. model performance, what-if-analysis, decision path,
etc.)).

5.5 The Conceptual framework

Given a predictive modeling problem for an industrial application, it is often
difficult to build an accurate machine learning based predictive model that is
easy to develop and to be interpreted by non-ML experts. The key idea for our
transparent and explainable automated machine learning vision is to separate
recommendations from explanations by using two modules simultaneously. The
first module is used to recommend the most adequate ML configuration for a
problem at hand and aims to maximize the requested predictive performance
metrics (e.g. Accuracy, Precision, Recall). The second module is used for provid-
ing the rationale behind the recommended configuration as well as automatically
explaining the inner workings of the model.

The following section describes the design and implementation choices of
the proposed tool that is intended to provide a complete, transparent and self-
explainable AutoML system. As it is shown by the Figure 5.3, for the rec-
ommender module (AMLBID), when a new dataset is presented, AutoML is

5.5. The Conceptual framework 107

performed, and a list of candidate pipelines is provided based on the task at
hand (cf. Chapter 3). The dataset characteristics, AutoML output and candidate
pipelines list are supplied to the explanatory module to generate an interactive
dash to help the end-user understand the provided results, diagnose the perfor-
mance of the generated pipelines and explore the possibilities of performance
refinements.

 Pipelines recommendation (AMLBID)

Interactive dashboard generation Data input

Reporting & Trust building

Dataset

Tasks

AMLExplainer

XAI

Input

Explanations

generation

XAI

Output

Explanations

Ameliorations

(Visualisation, plots..)

(ANOVA analysis)

Recommendation properties

Model summary & Classification stats.

Features importance & dependence

What-if-analysis & Interaction

Decision path

Recommendation refinement

R
e
fi

n
e
m

e
n

t
U

n
d

e
rs

ta
n

d
in

g

D
ia

g
n

o
s
is

AutoML

Input

AutoML

Output

Pipeline1

Pipeline2

Pipeline3 (2) (1)

Properties

(1) Search space exploration
(2) Ranked recommendation

Figure 5.3: The global architecture of the proposed white-box Au-
toML (AMLBID and AMLExplainer).

AMLExplainer is implemented as a client-server tool integrated with the
recommender module. The server coordinates as an AutoML support system.
As the client, the visual interface provides graphical interactions with AutoML
results and maps the summary data for visualization through a set of different
visual summary levels of the recommended models. AMLExplainer users are
allowed to explore the models provided by the AutoML process at four main
levels of detail (i.e. AutoML Overview, Recommendation-level View, What-if
analysis-level View, and Refinement-level View). Meanwhile, AMLExplainer
provide end users with a guidance, when AutoML returns unsatisfying results,
to improve the predictive performances. Thence increases the transparency,
controllability, and the acceptance of AutoML.
The workflow of the proposed auto-explanatory AutoML system consists of two
main components :

• The AutoML component, which shows the high-level of the AutoML pro-
cess from recommendations to refinements.

• The XAutoML component, that allows users to inspect the recommended
model’s inner working and decision’s generation process.

108CHAPTER 5. Towards Interactive Explainable Automatedmachine learning

5.5.1 The AutoML Overview

The AutoML overview level (Figure 5.4) summarizes high-level information of
the AutoML process. Users will be able to compare and choose between the
top K recommended configurations. They can focus their analysis on the top
model configuration on the next level view, which highlights the corresponding
algorithm in the detail views.

Figure 5.4: AutoML overview.

5.5.2 The recommendation-level View

The recommendation-level view enables users to inspect recommendations
with respect to performance distribution. As shown in (Figure 5.5), a detailed
explanation about the top performed recommendation is generated through
multiple granularity levels of abstraction, such as statistics about the configu-
ration performances (Figure 5.5(A)), Tree based explanation of the conducted
predictions (Figure 5.5(B)), the importance of features and the contribution of
features to the individual predictions (with the help of SHAP tool that finds the
shapely values of a contribution to the predictions) (Figure 5.6),

By providing intelligible explanations about the process and reasoning be-
hind an individual prediction, as illustrated in the Figure 5.5, it is clear that

5.5. The Conceptual framework 109

the decision-maker whether a manufacturing engineer or a machine learning
practitioner is much better positioned to make decisions since (s)he usually have
prior knowledge about the data and the application domain, which can use
to trust in and accept or reject a prediction if the reasoning behind it is well
explained.

Figure 5.5: Recommendation-level view.

Figure 5.6: Features importance.

110CHAPTER 5. Towards Interactive Explainable Automatedmachine learning

5.5.3 The What-if analysis-level View

The What-if analysis-level view : (Figure 5.7) is designed to investigate the ma-
chine learning models. It enables understanding models by enabling end users
to investigate attribution values for individual input features in relation to model
predictions. Explaining the inner working of the model helps to gain an under-
standing of what the model does and does not do. This is important so that they
can gain an intuition for when the model is likely missing information and may
have to be overruled. Therefore explore scenarios, test, and evaluate / validate
business assumptions, and gain intuition for modification.

Figure 5.7: What-if analysis-level view.

5.5. The Conceptual framework 111

5.5.4 The refinement-level View

The refinement-level view : (Figure 5.8) shows the correlation between perfor-
mances and hyperparameters of a recommended algorithm. To accomplish
that, we takes as input performances data gathered with different hyperparam-
eters settings of the algorithms (from the recommender module’s knowledge-
base) , fits a random forest model to capture the relationship between hyperpa-
rameters and performances, and then we apply a functional Analysis of vari-
ance (ANOVA [223]) to assess how important each of the hyperparameters and
each low-order interaction of hyperparameters is to the performance. Guided
by this in-depth analysis, end users have a guidance, when AutoML returns
unsatisfying results, to improve to predictive performances. In the following we
give an overview on how the functional ANOVA is used to efficiently compute
the importance of all hyperparameters.

Figure 5.8: Refinement-level view.

Assessing hyperparameters importance

The functional ANOVA framework is an efficient technique for assessing the
importance of hyperparameters of a machine learning algorithm based on the
efficient computations of marginal performance. More specifically, functional
ANOVA specifies the contribution of each hyperparameter to the variance of the
ML algorithm performance. We address the following problem, given :

• an algorithm A with n hyperparameters in the hyperparameters space H;

112CHAPTER 5. Towards Interactive Explainable Automatedmachine learning

• a large number of datasets D1, . . . ,Dm, with m being the number of
datasets (in our study, m = 400);

• for each of the datasets, a set of empirical performance measurements
〈Hn, yi〉

k
i=1 for different hyperparameter settings Hn ∈ H, where yi is the

performance of the algorithm A measured by the considered performance
measures (i.e., Accuracy, Precision, Recall, F1 score);

• themarginal performance ân(Hn) is defined to be the average performance of
the algorithmA for all complete configurationsHn that have in commonH;

We apply the functional ANOVA on each of the 08 considered classifiers
as follows. First we collect performance data 〈Hn, yi〉

k
i=1 for each algorithm

A with the k = 1000 different configurations (cf. section 3.4.3). Next, we fit
a random forest model to the performance data and then use the functional
ANOVA to decompose the variance in performance of the random forest ŷ :
H1 ×H1 . . .Hn → R into additive components that depends on subsets of the
hyperparameters Hn :

ŷ(H) =
∑

u∈n

f̂u(Hu) (5.1)

where the components f̂u(Hu) are defined as follows :

f̂u(Hu) =



















f̂∅ if u = ∅

âu (Hu)−
∑

w∈u f̂w(Hw) otherwise
(5.2)

where f̂∅ is the mean value of the function ŷ over its domain. The unary func-
tion f̂{j}(H{j}) captures the importance of the hyperparameter j average over all
possible values for the rest of the hyperparameters, while f̂{u}(H{u}) captures the
interaction effects between all hyperparameters in H. The functional ANOVA
decomposes the variance V in the ŷ into the contributions Vu of all possible
subsets of hyperparameters SHu of the algorithm A.

V =
∑

u∈n

Vu , Where Vu =
1
||Hu ||

∫

f̂u(Hu)
2dHu (5.3)

The importance of an hyperparameter or a set of hyperparameters is captured
by the fraction of the variance of the hyperparameter or the set of hyperparame-
ters is responsible for; the higher the fraction, the more important the hyperparameter
or the set of hyperparameters is to the model. Thus, such a hyperparameter should
be tuned further in order to achieve a good performance.

5.6. Conclusion 113

5.6 Conclusion

There has been significant progress in democratizing the application of ML to
non-experts of data analysis by providing them with "off the shelf" solutions.
However, these powerful support systems fail to provide detailed instructions
about the recommended configurations and the inner working of these models,
thence making them less trustworthy highly performant black-boxes. In this
chapter, we presented an interactive visualization toolbox that supports machine
learning experts and neophytes in analyzing the automatic results of an AutoML
DSS.

To our knowledge, the proposed toolbox is the first application of the gen-
eral explanation methods of AutoML systems as decision support systems. We
explored several levels of explanations, ranged from individual decisions to
the entire model’s recommendations and predictions. The explanations of the
predictive models and what-if analysis proved to be an effective support for man-
ufacturing related problems. In the next chapter, we present the materialization
of the self-explainable AutoML tool as an open source software package. A set
of evaluations demonstrate the utility and usability of AMLBID in a real-world
manufacturing problem. We show how powerful black-box ML systems could
be made transparent and help domain experts to iteratively evaluate and update
their beliefs.

Chapter6

AMLBID : A self-explained AutoML

software package

Outline of the current chapter

6.1 Motivation and significance 115

6.2 Software description 116
6.2.1 Software architecture 116
6.2.2 The software Functionalities 118

6.3 Illustrative Example 119
6.3.1 Recommender module 119
6.3.2 Explainer module . 120

6.4 Impact 120

6.5 Utility and usability study 122
6.5.1 Demonstration test case 122
6.5.2 User interview . 122

6.6 Conclusion 126

The growing concern over digital transformation has led to the widespread adop-
tion of machine learning solutions. Although, in most of the current systems, the
ML sufficiently assists the large data analysis for the decision-making purposes
but the human expertise is often required. The large number of algorithms and
hyperparameters configurations could make infeasible exhaustive search exe-
cutions. Therefore, expert data-scientists are highly desired. The identification

114

6.1. Motivation and significance 115

of the most appropriate algorithm in an automatic manner is among the major
research challenges to achieve optimal performance of ML tools. In this chapter,
we present the open source AMLBID software package. A python based decision
support system for automated selection and tuning of implied hyperparameters
for machine learning algorithms to cope with the prominent challenges posed by
the evolution of industrial big data. Furthermore, the tool is equipped with an
explainer module that makes the outomes rather transparent and interpretable
for well-performing ML systems. Being based on meta-learning, the tool is able
to simulate the role of the machine-learning expert as a decision support system.

6.1 Motivation and significance

The Machine Learning based solutions have achieved a great success in online
advertising, recommender systems, bioinformatics, manufacturing and many
other fields. In almost all of these successful ML applications, skilled resources
are involved in all ML stages including : transforming real world problems
into machine learning tasks, collecting data, performing features engineering,
selecting or designing the model architecture, tuning model hyperparameters
and evaluating model performances. As the complexity of these tasks is often
beyond non-experts, the rapid growth of ML applications has created a demand
for off-the-shelf methods and solutions that can be used easily without expert
knowledge. The algorithms selection and configuration is one of the most
difficult tasks in a ML pipeline. The identification of the most appropriate
algorithm in an automatic manner is among the major research challenges to
achieve optimal performance of ML tools.

The selection of an algorithm or a family of algorithms that are more likely to
perform better on a given combination of datasets and their evaluation measures
is a challenging task [17]. The algorithms selection and configuration (tuning of
hyperparameters) is a complex process as mostly the ML algorithms are used as a
“black box”. The performance of such algorithms is affected by multiple charac-
teristics of the dataset and hyperparameters [18]. It is therefore, the complexity
of the selection and configuration of appropriate algorithm(s) is an error prone
and time-consuming process due to the prevailing flaws while establishing the
multiple configurations. It hence emphasizes the need to automate this process.

Owing to the immense potential of AutoML, multiple approaches have been
proposed to tackle the above problem (cf. Section 2.1). In this context sev-
eral tools are available in the research community such as Auto-sklearn [18],
AutoWEKA [224], and TPOT [71]. However, the lack of explanations for the
predicted performance factors makes them typically black-box solutions. These

116 CHAPTER 6. AMLBID : A self-explained AutoML software package

also involve the computational complexity of these solutions and the great deal
of time required to generate recommendations [17]. As such, they only allow the
prominent exhibition of input and output parameters, but conceals the visibility
of inherent associations among them. Users tend to raise objections to the valid-
ity of automatic results due to the lack of transparency in AutoML systems with
respect to the Decision Support Systems (DSS). Therefore, the acceptability and
the trust in, an AutoML support system are highly dependent on transparency
in the recommendation generation process [146].

In this chapter, we show the materialization of our contributions from the
previous chapters into a software package. In this context, AMLBID [144] is a
transparent, interpretable and self-explainable meta-learning based tool for rec-
ommending the optimal or near-optimal ML configurations for a given problem,
and for explaining the rationale traceability behind a recommendation.

6.2 Software description

Given a predictive modeling problem for an industrial application, it is often
difficult to build an accurate predictive model based on machine learning that
is easy to be interpreted by ML non-experts [144, 225]. The key idea behind
the transparent and auto-explainable automated machine learning vision is to
separate the recommendations from the explanations by using two modules
simultaneously, as shown in Figure 6.1. The Recommender module (AMLBID)
for recommending and the Explanatory module (AMLExplainer) for explanations.
The first module is used to provide the most appropriate ML configurations for
a given problem. It is aimed at maximizing the requested predictive metric (e.g.
Accuracy, Recall, Precision). The second module is used for providing the
rationale behind the recommended ML configurations as well as automatically
explaining the insight workings of the model in an interpretable manner through
an interactive multi-view toolbox (cf. Chapter 5).

6.2.1 Software architecture

The workflow of the proposed self-explanatory AutoML system consists of two
main components : the AutoML component, which presents the AutoML process
at the abstract-level (from ML pipelines recommendation to the refinement), and
the explanatory one, which allows users to inspect both the process of decision
generation and the inner working of the recommended models.

6.2. Software description 117

 Pipelines recommendation (AMLBID)

Interactive dashboard generation Data input

Reporting & Trust building

Dataset

Tasks

AMLExplainer

XAI

Input

Explanations

generation

XAI

Output

Explanations

Ameliorations

(Visualisation, plots..)

(ANOVA analysis)

Recommendation properties

Model summary & Classification stats.

Features importance & dependence

What-if-analysis & Interaction

Decision path

Recommendation refinement

R
e
fi

n
e
m

e
n

t
U

n
d

e
rs

ta
n

d
in

g

D
ia

g
n

o
s
is

AutoML

Input

AutoML

Output

Pipeline1

Pipeline2

Pipeline3 (2) (1)

Properties

(1) Search space exploration
(2) Ranked recommendation

Figure 6.1: The global architecture of the proposed white-box AutoML system.

The recommendation module

The Automated Machine Learning tool for Big Industrial Data (AMLBID) is a
meta-learning based system in order to automate the problem of algorithm se-
lection and configuration. It uses a recommendation system that is bootstrapped
with a knowledge base. The actual knowledge base is derived on a large set of
experiments conducted on 400 real-world manufacturing classfication datasets.
These are collected from the popular repositories, such as the OpenML1, UCI2

and Kaggle3, among other real world scenarios. It accumulates the generation
of more than 4 million evaluated ML configurations (pipelines). Each pipeline
consists of a choice of a machine learning model and the configuration of its
hyperparameters (cf. Chapter 3). The system is able to identify effective pipelines
without performing expensive computational analysis through exploring the
interactions between datasets’s meta-features (characteristics) and pipelines
topology.

The recommendation phase is initiated with the arrival of a new dataset to
be analyzed. At this stage, the user selects a predictive analytical metric (e.g.
Precision, Accuracy, Recall) to be used for the analysis. Then AMLBID automati-
cally provides a set of machine learning algorithms and intended configuration
of their related hyperparameters, so that the predictive performance becomes
the first-rate.

1https://www.openml.org/
2https://archive.ics.uci.edu/
3https://www.kaggle.com/

118 CHAPTER 6. AMLBID : A self-explained AutoML software package

Explainer module

AMLExplainer is implemented on a client-server architecture along with its
integration with the recommendation module. The server coordinates as the Au-
toML support system (i.e. AMLBID), while the client-side visual interfaces provide
graphical interactions with AutoML services, which maps the data summaries
to the visualizations through a set of multiple visual summary levels of the
recommended models. Meanwhile, AMLExplainer guides the end-users, in case
of the unsatisfying results returned from AutoML, intended to improve the
predictive performances (cf. Chapter 5). Hence, it may increase the transparency,
controllability, and reliability of AutoML DSS.

6.2.2 The software Functionalities

AMLBID is a Python-package representing a meta-learning based framework
intended to automate the process of algorithm selection and the tuning of hyper-
parameters in supervised machine learning. In the literature we observe that the
majority of state-of-the-art tools evaluate a set of pipelines by actually executing
them on a given dataset prior to the recommendation. It can be noted that such
executions may require considerable computing time while consuming precious
resources as per their availability [144]. The proposed system (AMLBID) immedi-
ately produces a list of potential top-ranked pipelines using its knowledge base
at an imperceptible computational time, hence it notably economises resource
cost and their provisional availability. In particular, AMLBID is considered as the
pioneer open-source, transparent and auto-explainable AutoML system for rec-
ommending the most adequate ML configuration for a given problem. It guides
the end-users for improving the utility and usability of the AutoML process with
the following main features :

• It automatically selects the most appropriate ML pipelines through the
use of a collaborative knowledge base that is continuously improved over
time by running more tasks. It makes AMLBID smarter by attaining more
experience, based on the growing knowledge base.

• The framework is equipped with an explanation module, which allows the
end-user to explore and understand the diagnostic design of the returned
ML models using various explanation techniques in a trustful manner,
through linked visual summaries—textual information for a higher trust.

• It provides the assistance when AutoML returns unsatisfying results, in
order to improve the predictive performances by assessing the importance
and the correlation between the algorithm hyperparameters.

6.3. Illustrative Example 119

Therefore enabling end users to rapidly ask a serie of what-if scenarios when
probing opportunities to use predictive models to improve outcomes and reduce
costs for various tasks as well as the need of classical collaborations.

6.3 Illustrative Example

AMLBID broadly has the AMLBID_Recommender module for recommending and
building highly-tuned ML pipelines and the AMLBID_Explainer module to in-
tercept the inner working of the generated pipeline (s). These are described in
the following sub-sections.

6.3.1 Recommender module

Script 6.1 summarizes the interactions required to use AMLBID to recommend a
pipeline. Subsequently, it attributes a score to the chosen pipelines and export
the best pipeline to a dynamically stored .py file.

1 from AMLBID . recommender import AMLBID_Recommender

2 from AMLBID . loader import ∗

3

4 #Load dataset

5 Data , X_train , Y_train , X_test , Y_test=load_data (" Dataset . csv ")

6

7 #Generate the optimal conf igurat ion

8 model=AMLBID_Recommender . recommend(Data , metric="Accuracy " ,

9 mode="Recommender")
)10 model . f i t (X_train , Y_train)

11

12 print (model . score (X_test , Y_test))

13

14 #Export conf igurat ion ’ s corresponding Python code

15 model . export (’ Recommended_pipeline . py ’)

Listing 6.1: Illustrative code example of recommendation module.

On line 5, we define the root directory of the dataset to be loaded. The
recommend function (as shown on line 8) initializes the meta-learning process
to find the highest-scoring pipeline according to the desired performance cri-
terion. Then, the recommended pipeline is trained on the test-set of the pro-
vided samples (as shown on line 10). Once this code finishes its execution,
Recommended_pipeline.py (shown in script 6.2) shall contain the correspond-
ing Python code for the optimized pipeline using the export function (as shown
on line 15).

120 CHAPTER 6. AMLBID : A self-explained AutoML software package

1 import numpy as np

2 import pandas as pd

3 from sklearn . tree import Dec i s ionTreeC lass i f i e r

4 from sklearn . metrics import c l a s s i f i c a t i on_ repo r t

5 from sklearn . model_selection import t r a i n _ t e s t _ sp l i t

6

7 data = pd . read_csv (" Dataset . csv ")

8

9 X = data . drop (’ c l a s s ’ , axis =1)

10 Y = data [’ c l a s s ’]

11

12 X_train , X_test , Y_train , Y_test = t r a i n _ t e s t _ sp l i t (X , Y ,

t e s t _ s i ze =0 .3 , random_state=42)

13

14 model= Dec i s ionTreeC lass i f i e r (c r i t e r i on = ’ entropy ’ ,

15 max_features=0.5672564 ,

16 min_samples_leaf =5 ,

17 min_samples_split =20)

18

19 model . f i t (X_train , Y_train)

20

21 Y_pred = model . predict (X_test)

22 score = model . score (X_test , Y_test)

23

24 print (c l a s s i f i c a t i on_ repo r t (Y_test , Y_pred))

25 print (’ P ipel ine tes t accuracy : %.3 f ’ % score)

Listing 6.2: Generated python file.

6.3.2 Explainer module

The AMLBID_Explainer module allows users to inspect the insight working of
the recommeded model and the decision generation process. Its use is illus-
trated in script 6.3. It provides explanations on several levels of abstraction
like feature importance, feature contributions to individual predictions (such as
the SHAP tool that provide the interaction shapely values of a contribution for
some prediction [226]), “what-if” analysis, visualization of individual decision
path, hyperparameters importance, and correlations as shown in Section 5.5 of
Chapter 5.

6.4 Impact

In practice, the machine learning modeling process is a highly iterative ex-
ploratory process. In particular, there is no one-size-fits-all model solution, i.e,

6.4. Impact 121

1 from AMLBID . recommender import AMLBID_Recommender

2 from AMLBID . explainer import AMLBID_Explainer

3 from AMLBID . loader import ∗

4

5 #Load dataset

6 Data , X_train , Y_train , X_test , Y_test=load_data (" Dataset . csv ")

7

8 #Generate the optimal conf igurat ions

9 model , config=AMLBID_Recommender . recommend(Data ,

10 metric="Accuracy " ,

11 mode="Recommender_Explainer")

12 model . f i t (X_train , Y_train)

13

14 #Generate the in te rac t i ve explanatory dash

15 Explainer = AMLBID_Explainer . explain (model , config ,

16 X_test , Y_test)

17 Explainer . dash ()

Listing 6.3: Illustrative code example of recommendation_explainer module

there does not exist a single model or algorithm which can be used to achieve the
highest accuracy for all datasets varieties in a certain application domain. Hence,
trying many ML algorithms with different hyperparameters configurations is
usually considered as an inefficient, tedious, and time consuming process.

The main objective of the AMLBID has been focused towards the design of
a decision support system in order to enable the non-expert practitioners and
researchers, prospectively in the domain of industry 4.0 to take maximum
benefit of ML techniques. In [36, 227], we studied the effectiveness of the
recommender module for the selection and parameterization of ML for the
problems more often related to the manufacturing industry. The evaluation
results respond the basic research question that how some machine learning
oriented manufacturing works could be further improved, simply through the
use of a better ML algorithm configuration using the AMLBID decision support
system. Since AMLBID is built upon the meta-learning concept, in the broader
sense, it is not only beneficial for the manufacturing actors and researchers but
also for the general public.

In this context, the application of AMLBID is twofold : primarily it makes
possible for non-data science specialists (engineers and researchers) to build
robust ML pipelines without the need for specialist’s assistance or intervention
and even having to write a single line of code. Subsequently, the white-box
specificity of the proposed AutoML tool makes it possible to interactively inspect
the inner-workings of the ML predictive models without having to depend on a
data scientist to generate and interpret all the extreme plots and tables. Finally,

122 CHAPTER 6. AMLBID : A self-explained AutoML software package

the AMLBID is useful for academic purposes, helping academia to build and
understand ML predictive models behavior. The complete documentation and a
detailed list of features with an illustrative example are available in the Github
repository4 and can also be installed easily via the Python package manager.

6.5 Utility and usability study

The following section describes the evaluation methodology of the proposed
auto-explainable AutoML tool in an empirical evaluation with humans. We
globally draw the insights from the feedback that we have received from the
various target users.

6.5.1 Demonstration test case : application to manufacturing

quality prediction

The proposed system is designed for the machine learning based predictive
modeling problems. The major goal of the work has been to show the feasibility
to achieve maximum possible performance for a specific predictive modeling
problem, and automatically explain the results for any machine learning pre-
dictive model. We evaluate the intuitiveness and the usability of the automatic
explanation method on a Manufacturing Quality Prediction use case (real-life en-
vironment). The data contains 187.156 historical 1-year records of a production
unit. Among these records, 74.39% are diagnosed as compliant products.

6.5.2 User interview

Participants and Apparatus To evaluate the proposed white-box AutoML sys-
tem as a decision support system, we conducted a semi-structured qualitative
user study with two different groups of target users. These groups range from
ML novices to experts (53% male and 47% female who are aged between 24 and
38 years with an average age of µ = 26.78 years). Among the ML-users, 48% were
the participants with particular knowledge in the industrial big data analysis.
While, among the ML-experts, 52% were the participants with experience in
developing ML models for their domain problems. All of these participants
have the experience in ML or data analysis, but none of theme had prior experi-
ence with AutoML. The evaluation studies are conducted on a set of dedicated
computers equipped with an Intel Core i5-3,10GHz - 8Go RAM DDR4.

4https://github.com/LeMGarouani/AMLBID

6.5. Utility and usability study 123

Tasks and Procedure The evaluation study began with a tutorial session, in
which the tasks and the usage of the self-explainable AutoML system were intro-
duced to the participants. Participants were asked to complete the Post-Study
System Usability Questionnaire (PSSUQ), third version [228], when performing
the explanatory module on the three tasks understand, diagnose, and refine.

The PSSUQ-3 is a 16 item measure (as shown in the questionnaire sheet 6.4).
The questionnaire consists of an overall satisfaction scale (the mean value of
items 1 through 16) and three subscales. System usefulness subscale assesses the
ease of learning and use of the system (i.e. the mean value of items 1 through 6).
The information quality subscale evaluates the feedback provided by the system
to the user (i.e. the mean value of items 7 through 12). Finally, the interface
quality subscale quantifies the familiarity of the user with the system, as whether
the system has met the the expected functionality (i.e. the mean value of items
13 through 16). For all the scales, the rating range was between 1 and 7; the lower
the score, the higher the satisfaction with the tool.

1 2 3 4 5 6 7

1 Overall, I am satisfied with how easy it is to use this system.

2 It was simple to use this system.

3 I was able to complete the tasks and scenarios quickly using this system.

4 I felt comfortable using this system.

5 It was easy to learn to use this system.

6 I believe I could become productive quickly using this system.

7 The system gave error messages that clearly told me how to fix problems.

8 Whenever I made a mistake using the system, I could recover easily and quickly.

9 The information (such as online help, on-screen messages, and other
documentation) provided with this system was clear.

10 It was easy to find the information I needed.

11 The information was effective in helping me complete the tasks and scenarios.

12 The organization of information on the system screens was clear.

13 The interface of this system was pleasant.

14 I liked using the interface of this system.

15 This system has all the functions and capabilities I expect it to have.

16 Overall, I am satisfied with this system.

Strongly

disagree
Strongly

agree

Figure 6.4: The Post-Study System Usability Questionnaire.

The results of the usability questionnaire are summarized in Table 6.1 and
Figure 6.5. The PSSUQ overall and subscale scores were extremely positive, with
an overall total mean score of 1.53 (standard deviation 0.71) and a range from
strongly agree to neutral (1 to 5). In this context, the mean system usefulness,

124 CHAPTER 6. AMLBID : A self-explained AutoML software package

information quality, and interface quality subscale scores were 1.74, 1.09, and
1.22 respectively.

PSSUQ Score

Total score 1.53± 0.71 (1− 5)
System usefulness subscale 1.74± 0.83 (1− 5)
Information quality subscale 1.09± 0.37 (1− 3)
Interface quality subscale 1.22± 0.95 (1− 4)

Table 6.1: Post-Study System Usability Questionnaire (PSSUQ) overall and sub-
scale scores of the decision support tool. Data are presented as : score ± standard
deviation (range).

0% 20% 40% 60% 80% 100%

Willing to use

Confidence

Easy to learn

Easy to use

strongly desagree desagree neutral agree strongly agree

Figure 6.5: Results of the usability test.

As shown in Figure 6.5, most of the participants agreed that the auto-
explainable AutoML DSS is easy to learn and use. Among them, 80% of the
participants strongly agreed that they are confident in their recommended
model(s). We also conducted semi-structured post-study interviews to gather
more detailed feedback from participants. The interviews reflect the difference
between the initial expectation and the experience during the pair analytic
regarding the workflow of the system.

We collected the participants feedback about the AutoML module as a
black-box decision support system assisting the experts to choose and con-
figure ML models for their problems initially and afterwards with the entire
system (recommendation module and the explanatory one). Based on their
feedback, we summarize two main appreciations of the proposed software :

• AutoML can help stakeholders (neophyte as well as experts) to improve
the applications of machine learning algorithms. AutoML enables quick

6.5. Utility and usability study 125

experimentation with a large number of models and configurations, whose
results could provide useful knowledge to ML researchers and domain
practitioners. On the test set, the recommended machine learning pre-
dictive model configuration achieved an accuracy of 97.81% while their
configuration based on their understanding of the algorithms and their
observation of the data achieved a predictive accuracy of 91.42%. These
findings can inform the users about the importance of hyperparameters
tuning for ML algorithms. The participants highlight the fact that being
able to match prior knowledge about machine learning to the visualizations
produced by AMLExplainer creates confidence in the underlying AutoML
process and increases the likelihood of adopting AutoML.

• The participants appreciated the human-machine interaction introduced in
AMLExplainer. They observed such interaction could improve an AutoML
process and enhance user experience and make such powerful black-boxes
trust worthy. One of the experts commented : “Users with more domain
knowledge, such as myself, are usually critical of automated methods and like to
be in control. I do not like getting a score back and hearing trust me".

Overall, the feedback on the system remains positive. In addition, the users
provided several suggestions for complementary features. For the understanding
and diagnosis tasks, in addition to the provided explanation levels, users wanted
to gain insight into the underlying data. Such exploratory data analysis fea-
ture [229] is an integral part for any knowledge discovery process. For example,
a data profiling level could review the dataset characteristics and quality and
show it to the user. For results reporting, the feedback is mostly unified. All
participants liked the code export function of the recommended ML pipeline and
they are aspirant to use that for the communication of their results. Further-
more, in the perspectives of the code export, participants came up with several
suggestions for enhancing this feature, such that possibility to store /export the
overall explanation levels as PDF report file.

For the refinement task, there are mixed feedback and expectations. Most
of the participants are optimistic and they suggest additional ways to interac-
tively refine the recommended model(s). Rather than providing static guidance
content, some individual non-ML experts ask further guidance to select the ap-
propriate refinements. Moreover, the ideas to enhance its functionality include
the propositions of code fragments, providing building blocks, or even scaling
it up to a click-to-refine functionality. In the future, the current system should
be extended with the suggested refinement methods and additional guidance to
select the appropriate refinements.

Our documentation of the real-world evaluation case illustrates how to over-
come the transparency problem of AutoML systems as decision support systems.

126 CHAPTER 6. AMLBID : A self-explained AutoML software package

For instance, the absence of human interaction and analysis of the inner work-
ing and reasoning of such tools. This could extend the use-of and trust-in the
intelligent AutoML systems to areas where they are so far neglected due to their
insistence on comprehensible models. Separating the automatic selection and
configuration of machine learning algorithms from model explanation is another
benefit of expert and intelligent AutoML DSS.

6.6 Conclusion

The machine learning based applications are increasingly desired due to their
robustness for the large data analysis. Also, they can rapidly integrate “off-the-
shelf" solutions in multiple areas. However, the non-expert data analysts are
more inclined to adapt the ML based solutions that are more easily persuadable,
among diverse algorithms, with the help of their rational traceability. We argue
that the adaptability of the powerful decision support systems based on the
ML based solutions can be further enhanced with the help of comprehensive
instructions regarding the recommended pipelines and their insights. Thus,
making them more trustworthy instead of black-box solutions.

Aiming to bring our contributions in this thesis into real life practice, we
presented the requirements, architecture, characteristics and components of the
self-explainable AutoML software packge developed in this thesis. It is a novel
transparent and auto-explainable AutoML support system. To our knowledge,
the proposed system is the first application of the general explanation methods of
AutoML systems as decision support systems. A set of evaluations demonstrate
the utility and usability of AMLBID in a real-world manufacturing problem. We
show how powerful black-box ML systems can be made transparent and help
domain experts to iteratively evaluate and update their beliefs.

Part III

Conclusion

Chapter7

Conclusion

Outline of the current chapter

7.1 Conclusion 129

7.2 Publications 131

7.3 Challenges and future directions 132

In this chapter, we present the conclusions of our work and highlight the current
challenges along with suggesting future research directions.

7.1 Conclusion

The increasing data availability hasffueled the popularity of ML-based solutions
able tofrelieve humans from many risky, repetitive and tedious activities. In
many cases, this requires thatfML algorithms arefused in newfand innovative
ways. This development process is heavily basedfon human experts tofperform
manual tasksfsuch as data preprocessing, features engineering and evaluation
of several possible ML algorithms. Mostfof the employed ML algorithms have
hyperparameters, which usually affectftheir predictive performance. Although
HPs tuning may lead tofmore accurate models, the optimization processffor
finding these HPs settings is still very time-consuming. Nevertheless, therefis no
guarantee that tuning will generate better results than just using the default HPs
settings provided byfML packages and tools (Chapter 1). Therefore, whenfthe
technical expertise and computational resources are limited, knowing before-
hand which ML algorithm is more adequate canfreduce the computational cost

129

130 CHAPTER 7. Conclusion

of the MLftask and increase productivity. It is also important to know which
HPs values to set when tuning is required. Hence, asfthe complexity of such
processes increases, so does the demand for automated support solutions that
canfbe used easily and without high human intervention.

In this sense, the so-called MtL and AutoML can increase the widespread
use of efficient ML solutions and free data scientists and practitioners from
repetitive and time-consuming tasks. Thus, more applications can benefit from
the use of ML, and data scientists can allocate their time on more creative and
important tasks than fine tuning algorithms. The goal of this dissertation is to
provide support to the analyst in selecting the most appropriate learning algo-
rithm for a classification problem refraining from the tedious task of systematic
experimentation with various learning algorithms.

Asfa first step tofthat goal, the survey partfof this dissertation present a
thorough overview of important dimensions of meta-learning for the algo-
rithms selection and answer the research questions that were formulated on
three important dimensions i.e.,meta-features, meta-models and meta-targets. Re-
lated works from literature are summarized and critically analyzed in this
regard (Chapter 2).Within this approach our workfspans the whole range of
tasks required forfthe solution of aftypical classification problem. That is, we
searched for an appropriate formulation of the meta-learning space, and we
constructed it in such a wayfso thatfit closely simulates the steps followed by
the analyst when he has to select among different learners (Chapter 3).

As the performance of algorithms recommendation methods is largely depen-
dent on the quality of meta-features, special care was given to the meta-features
extraction part of the process, in order to have a set of characteristics that can
best discriminate between different datasets and the inherent biases of vari-
ous candidate algorithms. A step that involved the conception of new latent
meta-features with lower dimentionality but more significant and meaningful
data characteristics. We proceeded to a systematic experimentation of different
learners on the meta-level and compared the set of characteristics that we estab-
lished with sets of characteristics from previous similar works (Chapter 4). We
thoroughly made advances towards the acceptance of and the trust in AutoML
as black boxes support systems (Chapter 5).

To this end, we materialized our contributions into the transparent, inter-
pretable and auto-explainable AutoML software package AMLBID, that given
a classification algorithm recommends transformations that positively impact
the analysis (Chapter 6). We extensively evaluated our recommendations from
three perspectives. In the first one, we checked how accurate our predictions
were. In the second, we analyzed how much gain they provided to the final
non-experienced user. Finally, in the third, we analyzed the performance of

7.2. Publications 131

AMLBID compared to humans in a realistic utility and usability scenario.

7.2 Publications

Several papers have been published during the development of the research for
this thesis. Hence, part of the results reported throughout this thesis can be
found in these publications, as presented :

Journals

• Moncef Garouani et al. "Towards big industrial data mining through
explainable automated machine learning". In: The International Journal
of Advanced Manufacturing Technology (2022). doi :10.1007/s00170-022-
08761-9

• Moncef Garouani et al. "AMLBID: An auto-explained Automated Ma-
chine Learning tool for Big Industrial Data". In: SoftwareX 17 (2022).
doi :10.1016/j.softx.2021.100919

• Moncef Garouani et al. "Using meta-learning for automated algorithms
selection and configuration: an experimental framework for big industrial
data". Journal of Big Data 9, 57 (2022). doi :10.1186/s40537-022-00612-4

• Moncef Garouani et al. "Autoencoder-kNN meta-model based data charac-
terization approach for an automated selection of AI algorithms". [submit-
ted to Journal of Big Data]

• Moncef Garouani et al. "AMLBID2.0: An auto-explained Automated Ma-
chine Learning tool for Big Industrial Data". [submitted to SoftwareX]

International Conferences

• Moncef Garouani et al. "Towards the Automation of Industrial
Data Science: A Meta-Learning Based Approach". In: 23rd In-
ternational Conference on Enterprise Information Systems. 2021, pp.
709–716.doi :10.5220/0010457107090716

• Moncef Garouani et al. "Towards meta-learning based data analytics to
better assist the domain experts in industry 4.0". In: Lecture Notes on
Data Engineering and Communications Technologies (ICABDE’21). Springer,
Cham. doi :10.1007/978-3-030-97610-1_22

132 CHAPTER 7. Conclusion

• Moncef Garouani et al. "Towards an Automatic Assistance Framework for
the Selection and Configuration of Machine-Learning-Based Data Analytics
Solutions in Industry 4.0". In: The Fifth International Conference on Big Data
and Internet of Things (BDIoT’21). [In press]

Posters

• Moncef Garouani et al. "Towards industrial data science through ex-
plainable automated machine learning". POSTER InMTE Pole’s Doctoral
Day(2021), ULCO University, Calais, France

• Moncef Garouani et al. "Towards explainable Automated Machine Learn-
ing". POSTER In IA² – Institut d’Automne en Intelligence Artificielle (2021),
Sorbonne Université, Paris, France

7.3 Challenges and future directions

While, collectively, the community hasfmade significant progress towards effi-
cient automated machine learning, therefremains important outstanding direc-
tions forffuture research. Externally, the 3 Vs— Volume, Velocity and Variety
impact offbig data associated withfthe large-scale machine learning and the
shortage of MLftalent present tough challenges but also opportunities for ad-
vances in AutoML to makefan outsized impact. We present some thoughts from
our work in termsfof challenges and future research directions.

• One offthe limitations of developing MtL-based AutoML systems isfthe
computational cost associated withfthe evaluation of all the candidate
algorithms in the algorithm space A on all the datasets in the problem
space P . Furthermore, increasing the number of candidate algorithms or
datasets increase the computational costfof enriching the meta-knowledge
base. This hinders the rigorous exploration of the algorithms and problems
space. Although we used a reasonable numberfof candidate algorithms and
datasets, stillfthe initial computational cost isfhigh for enhancing the sys-
tem. This drawback can be covered in future works by incorporating data
in the meta-knowledge base from platforms like Kaggle1 and OpenML2.
Such collaborative datafscience platforms have on-line data repositories
infwhich analyts share their experimental results from the application
of algorithms onfdatasets. It would not only reduce the computational

1https://www.kaggle.com/
2https://www.openml.org/search?type=run

7.3. Challenges and future directions 133

costfbut will also provide the opportunity to rigorously explore the prob-
lem and algorithm space and will ensure that no bias is induced into the
system at the meta-level.

• Another possibility of research isfto expand the ideafof AutoML system
covered in this thesis. In this case, the system would not only recommend
ML algorithms butfalso preprocessing methods, and post-processing analy-
sis ablefto explain the experimental results. Thus, given a new dataset, the
AutoML system would recommend thefmost suitable components tofsolve
the input problem. In fact, we have already begun work in this direction.

• Experiments described in Section 4.4.3 also open new possibilities for
Neural networks use in MtL. Given the results reported there, a NN system
could be developed to recommend which ML pipeline to use. Thus, a more
focused tuning could be performed using a smaller number of evaluations
and only the most important HPs.

• Finally, our study was limited to classification problems. That is, we are
providing user support in ML algorithms selection and parametrization
only if the problem at hand is of classification type. However, our method
can be directly extended to regression, clustering and distributed ML
libraries (e.g., SparkML [230]) since we are dealing with industrial big data.

Chapter8

Résumé étendu en Français

Outline of the current chapter

8.1 Introduction 134

8.2 Contributions 137

8.3 Perspectives 140

8.1 Introduction

La récente explosion des masses de données en termes de volume, de variété et de
vitesse a conduit à un grand développement d’outils, de méthodes et de modèles
d’apprentissage automatique à grande échelle. Le domaine de l’apprentissage
automatique est en constante évolution et produit une multitude de modèles et
d’algorithmes pour effectuer des tâches d’analyses avancées, tels que les arbres
de décision, les réseaux de neurones, les inducteurs de règles, le plus proche
voisin, etc. Cependant, en général, la capacité d’analyser les données est loin
derrière la capacité de les collecter. Cela est dû au fait que l’analyse de données
consiste en plusieurs étapes difficiles et chronophages, qui ont été regroupées
comme suit [4] : sélection des données, prétraitement des données, exploration des
données et évaluation/interprétation des résultats obtenues (Figure 8.1).

Une fois qu’un problème d’apprentissage est défini, l’analyste doit trouver
les outils d’apprentissage adéquats pour le résoudre. La qualité des données
disponibles est l’un des facteurs les plus cruciaux pour obtenir une solution de
haute performance. Cependant, nous n’entrerons pas dans les détails de la col-
lecte des données et de la qualité des données disponibles. La tâche principale de

134

8.1. Introduction 135

Jeux de
données

Sélection des
données

Données
cibles

Données
prétraitées

Algorithmes
candidats

Évaluation

Connaissance

Prétraitement
des données Interprétation

&

Figure 8.1: Processus d’analyse de données.(répété à partir de la page 2)

l’analyste sera de sélectionner et de paramétrer, parmi ces modèles et algorithmes,
ceux qui correspondent le mieux à la morphologie et aux caractéristiques spé-
ciales d’un problème donné. Cette sélection qui est conduite souvent par des
experts de différents domaines ayant peu d’expérience en science des données est
un problème extrêmement fastidieux étant donné qu’il n’existe pas de modèle ou
d’algorithme qui ait une meilleure performance que d’autres indépendamment
des caractéristiques spécifiques du problème, comme cela a été confirmé dans
différentes comparaisons empiriques par différents théorèmes du type "no free
lunch" [16, 231].

Chaque algorithme a une "supériorité sélective", càd qu’il est meilleur que
les autres pour un type de problèmes particulier [231]. Ceci est dû au fait que
chaque algorithme à ce que l’on appelle un "biais inductif" engendré par les
hyperparamètres faites afin de généraliser d’une donnée d’entrainement à des
exemples jamais vus auparavant. Selon Michel Lutz [232], "le biais inductif
d’un algorithme d’apprentissage est l’ensemble de toutes les hyperparamètres
requises pour justifier ses inférences inductives comme étant des inférences
déductives". Donc, l’analyste doit posséder beaucoup d’expérience pour pouvoir
identifier la configuration des hyperparamètres de l’algorithme le plus approprié
à la morphologie du problème posé (cf. Chapitre 1).

La tâche de sélection et de paramétrisation des algorithmes d’apprentissage
automatique est une tâche itérative. L’analyste doit tout d’abord sélectionner
un algorithme ou une classe d’algorithmes, par exemple sélectionner entre la
classe d’algorithme d’arbres de décision ou la classe d’algorithme des réseaux de
neurones. A l’étape suivante on sélectionne un algorithme particulier implémen-
tant une méthode spécifique pour chercher à travers l’espace représentationnel
associé au modèle choisi. L’algorithme est ensuite appliqué et la qualité de ses
prédictions est évaluée. Si les résultats d’évaluation sont médiocres, le processus
est répété à partir du stade antérieur avec de nouvelles configurations ou sélec-
tions (cf. Figure 1.1). La procédure d’évaluation est ainsi assez coûteuse en temps

136 CHAPTER 8. Résumé étendu en Français

et devient problématique lorsque le volume de données est important. Ceci
implique souvent de leur part un investissement important, pour des analyses
parfois triviales. On s’intéresse donc à ce besoin d’assistance à l’analyse de don-
nées, qui, toujours insatisfait, a donné naissance au domaine de la méta-analyse
et d’apprentissage automatique automatisé.

L’apprentissage automatique automatisé (AutoML) est devenu un domaine en
plein essor qui cherche à sélectionner, composer et paramétrer automatiquement
les modèles d’apprentissage automatique afin d’atteindre un niveau optimal de
performances sur une tâche et / ou un problème donné. Ce domaine relative-
ment nouveau présente encore de nombreux verrous. Un des plus fondamen-
taux concerne les définitions de l’analyse de données, qui, dans la littérature,
sont nombreuses et divergent selon les méthodes qu’elles englobent. De plus,
l’effervescence de nouvelles approches d’analyse nécessite une adaptation con-
stante, au risque d’une obsolescence rapide des méta-analyses incapables de
prendre en compte les innovations du domaine. Enfin, l’interaction avec des
utilisateurs d’autres disciplines se révèle souvent très complexe, nécessitant un
important travail d’adaptation de la part de l’utilisateur pour comprendre les
concepts d’analyse manipulés, souvent au détriment de la réalité de terrain qui
l’intéresse (cf. Chapitre 2).

Les premières approches d’assistance à l’analyse basés sur le méta-analyse se
révélant ainsi souvent similaires et peu abouties (aucune à notre connaissance n’a
atteint un réel déploiement). L’objectif principal de notre étude est d’étudier de
nouvelles approches de méta-analyse pour adresser ce problème d’assistance à
l’analyse de données. Notre objectif, issu d’un cheminement décrit au Chapitre 3,
peut se résumer comme suit : Proposer de nouvelles approches performantes de
méta-analyse à des fins d’assistance à l’analyse de données notamment adaptée
à des utilisateurs n’ayant pas l’expertise technique nécessaire de mener des
analyses avancées.

En particulier, cela consistera à prendre avantage de la connaissance que
l’on peut avoir du domaine pour recommander des processus d’analyse adaptés
au contexte de l’utilisateur, comme illustré en Figure 8.2. Pour ce faire, on
dispose d’une connaissance du domaine de l’analyse de données sous la forme
d’une base d’expériences passées (voir partie inférieure de la Figure 8.2), chacune
représentant l’application d’un processus d’analyse complet (ou workflow) à
un jeu de données et en qualifiant les résultats. Afin de trouver dans cette
base les expériences passées potentiellement pertinentes pour le problème de
l’utilisateur, on peut discriminer selon deux critères :

1. L’une des hypothèses fondatrices du méta-apprentissage stipule qu’un
même algorithme exhibera souvent des performances similaires sur des jeux
de données semblables [13]. On peut étendre ici cette hypothèse à l’ensemble

8.2. Contributions 137

du domaine de l’analyse pour supposer qu’un processus d’analyse qui s’est
bien comporté sur un jeu de données semblable à celui de notre utilisateur
a de bonnes chances d’être également efficace sur ce dernier. On peut alors
simplement employer les dissimilarités proposées au chapitre 4 pour trouver ces
jeux de données semblables, et donc les processus y ayant été employés (voir
en Figure 8.2).

2. Ensuite, on peut exprimer le besoin d’utilisateur par un ensemble
d’indicateurs de performances attendus, et chercher parmi les expériences
passées celles maximisant ces indicateurs (voir en Figure 8.2).

Figure 8.2: Principe de méta-analyse

Afin d’atteindre nos objectifs et de proposer de nouvelles approches per-
formantes de méta-analyse pour l’assistance à l’analyse de données, différents
verrous ont dû être levés. On rappellera ci-dessous ce cheminement et le bilan
des travaux et contributions qui en ont résultés.

8.2 Contributions

Assistance à l’analyse de données - Motivés par la tendance vers des mod-
èles toujours plus efficaces, des espaces de recherche plus grands et les limites
des outils existants, le premier verrou à adresser était spécifiquement lié à la
problématique de d’assistance des utilisateurs dans le processus d’analyse de
données. Plus précisément, l’enjeu consistait à définir de nouvelles méthodes
efficaces, interopérables et simples d’utilisation pour l’assistance des utilisateurs

138 CHAPTER 8. Résumé étendu en Français

dans l’analyse de données. Par conséquent, notre réponse a été de proposer et
développer un système de cadre avec un tel objectif. À cette fin, nous avons
proposé un framework qui tire parti des idées du méta-apprentissage reposant
sur les dissimilarités entre jeux de données capable de fournir un support dans
le but d’améliorer l’analyse et de réduire le temps passé dans la sélection et
la paramétrisation des algorithmes. C’est un outil qui, pour la première fois,
ne vise pas à fournir un support d’analyse de données uniquement pour la
sélection et le paramétrage des algorithmes, mais plutôt, il est orienté vers une
contribution positive à la confiance dans un système d’aide à la decision aussi
puissant en fournissant automatiquement un ensemble de niveaux d’explications
pour inspecter les résultats fournis sans avoir à dépendre d’un data scientist
pour générer et interpréter tous les tracés et résultats extrêmes. Nous avons
implémenté un prototype du cadre proposé, AMLBID, sur une architecture
client-serveur, où le serveur coordonne en tant que système d’assistance AutoML,
qui, étant donné un problème (ensemble de données), une métrique prédictive
souhaitée (précision, rappel, score F1) recommande des algorithmes ML avec
une configuration d’hyperparamètres associés qui sont classés en fonction de
leurs impact sur le résultat final de l’analyse (cf. Chapitre 3), tandis que le côté
client est composé d’une interface graphique conviviale qui facilite la manip-
ulation des ensembles de données, prend en charge la simulation visuelle de
divers scénarios, et faciliter l’interprétation des résultats obtenus (cf. Chapitre 5).
Parallèlement, nous implémentons un module basé sur des règles d’inférences
qui guide les utilisateurs finaux, en cas de résultats insatisfaisants renvoyés par
l’AutoML, destiné à améliorer les performances prédictives. Par conséquent, cela
peut augmenter la transparence, la contrôlabilité et la confiance en AutoML.

Une preuve de concept recommandant simplement l’emploi du workflow
passé le plus pertinent a été développée, et a permis de valider l’intérêt de
l’approche de méta-analyse envisagée. Une importante série d’expériences de
méta-apprentissage a été réalisée pour démontrer la praticabilité de ce cadre
d’évaluation. Ces contributions ont donné lieu à des publications en conférences
et revues internationales [145], [36], [37]. Le cadre d’évaluation produit a de
plus été réemployé systématiquement pour évaluer les différentes propositions
et améliorations possibles au méta-niveau, lors de la levée des verrous suivants.

Dissimilarité entre jeux de données - Il existe en effet une forte dépendance
entre l’efficacité du méta-apprentissage et la caractérisation des jeux de données
étudiés. Afin de permettre de nouvelles approches de méta-analyse et pouvoir
identifier les expériences pertinentes dans le contexte de l’utilisateur, nous nous
sommes ensuite intéressés à un verrou majeur du domaine : la caractérisation
de jeux de données. Suite au constat d’une importante perte d’information dans
les méthodes de caractérisation communément employées, nous avons proposé

8.2. Contributions 139

l’emploi de nouvelles techniques de dissimilarité entre jeux de données. Nous
avons défini un ensemble de propriétés désirables pour proposer des fonctions
capables de prendre en compte l’entièreté de l’information disponible, ce qui
passe par la caractérisation des attributs particuliers de ces jeux de données (cf.
Chapitre 4). Nous avons ensuite montré que ces dissimilarités permettent de
caractériser l’adéquation d’algorithmes de classification avec des jeux de données
plus efficacement que des distances traditionnelles, et qu’elles peuvent être
employées avec de bonnes performances dans un contexte de classification au
méta-niveau pour la sélection d’algorithmes. Au-delà du simple intérêt de
l’approche, nos évaluations par analyses dimensionnelles ont permis d’étudier
en détail l’impact des différents facteurs et composants de ces fonctions de
dissimilarité sur la performance au méta-niveau. On peut ainsi proposer un
candidat qualifié comme brique de base pour de nouvelles approches de méta-
analyse. Ces fonctions de dissimilarité ont enfin permis le développement d’un
prototype d’assistant à l’analyse de données basé sur de nouvelles approches de
méta-analyse. Cette contribution a donné lieu à une future publication en une
revue internationale de Big Data [233].

Reproductibilité des résultats - À cette fin, nous avons matérialisé nos con-
tributions dans le progiciel AutoML transparent, interprétable et auto-explicable
AMLBID, qui, étant donné un algorithme de classification, recommande des al-
gorithmes d’apprentissage automatique qui impactent positivement l’analyse (cf.
Chapitre 6). AMLBID est implémenté en tant que package Python open source
pour reproduire les expériences, des analyses et permettre une analyse plus
approfondie. Nous avons longuement évalué nos recommandations sous trois
angles. Dans le premier, nous avons vérifié la précision de nos prédictions.
Dans le second, nous avons analysé le gain qu’ils apportaient à l’utilisateur
final non expérimenté. Enfin, dans le troisième, nous avons analysé les perfor-
mances d’AMLBID par rapport aux humains dans un scénario réaliste d’utilité
et d’utilisabilité.

Bien que AMLBID en est encore à ses débuts, le package a été téléchargé
plus de 178931 fois sur PyPI2 (à l’exclusion de ses liens externes) au cours de sa
première année. Les retours de la communauté sont très positifs et plusieurs
nouvelles applications ont été proposées en plus des multiples demandes in-
dustrielles. A divers stades de maturité, cette contribution a donné lieu à une
publication en une revue internationale qui référence les nouvelles découvertes
scientifiques en terme de progiciel dans les différents domaines de la recherche
scientifique [144].

Le domaine étudié étant large et en grande partie inexploré, on pourra noter

1https://pypistats.org/packages/amlbid
2https://pypi.org/project/AMLBID/

140 CHAPTER 8. Résumé étendu en Français

que chaque verrou levé apporte de nouvelles perspectives, chaque contribution
soulève davantage de questions que de réponses. Devant les résultats encour-
ageants des expériences empiriques effectuées, leurs développement est appelé
à se poursuivre. Les contributions et propositions détaillées au cours des dif-
férents chapitres ont donné lieu à de nombreuses perspectives d’amélioration
pour l’assistance à l’analyse de données. Nous détaillerons ainsi dans les para-
graphes suivants les principales opportunités de recherche se présentant à court
et long termes.

8.3 Perspectives

• L’une des limites du développement de systèmes AutoML basés sur le méta-
analyse est la complexité computationelle associée à l’évaluation de tous les
algorithmes candidats dans l’espace algorithmique A et sur tous les ensem-
bles de données dans l’espace problème P . Cependant, l’augmentation du
nombre d’algorithmes ou d’ensembles de données augmente le coût de cal-
cul pour l’enrichissement de la base de méta-connaissances. Cela entrave
l’exploration rigoureuse de l’espace d’algorithmes et de problèmes. Bien
que nous avons utilisé un nombre raisonnable d’algorithmes et d’ensembles
de données, le coût de calcul initial est toujours élevé pour améliorer le
système. Ce challenge peut être couvert dans des travaux futurs en in-
corporant des données dans la méta-base de connaissances à partir des
plates-formes Kaggle et OpenML. Ces plates-formes collaboratives de
science des données disposent de référentiels de données en ligne dans
lesquels les analystes partagent leurs résultats expérimentaux issus de
l’application d’algorithmes sur des ensembles de données. Cela réduirait
non seulement le coût de calcul, mais offrirait également la possibilité
d’explorer rigoureusement l’espace d’algorithmes et de problèmes et garan-
tirait qu’aucun biais n’est induit dans le système au méta-niveau.

• Une autre possibilité de recherche est d’élargir l’idée du système Au-
toML couvert dans cette thèse. Dans ce cas, le système recommanderait
non seulement des algorithmes d’apprentissage automatique, mais égale-
ment des méthodes de prétraitement et d’analyse post-traitement capables
d’expliquer les résultats expérimentaux. Ainsi, étant donné un nouvel
ensemble de données, le système AutoML recommanderait les composants
les plus appropriés pour résoudre le problème d’entrée. En fait, nous avons
déjà commencé à travailler dans ce sens.

• Les expériences décrites à la section 4.4.2 ouvrent également de nouvelles

8.3. Perspectives 141

possibilités d’utilisation des réseaux de neurones au applications basés sur
le méta-apprentissage. Compte tenu des résultats qui y sont rapportés, un
réseau de neurones artificiels pourrait être développé pour recommander
le pipeline ML à utiliser. Ainsi, un réglage plus ciblé pourrait être effectué
en utilisant un plus petit nombre d’évaluations et uniquement les HPs les
plus importants.

• Enfin, nos études s’est limitées aux problèmes de classification. Autrement
dit, nous fournissons une assistance aux utilisateurs dans la sélection et
la paramétrisation des algorithmes ML uniquement si le problème en
question est de type classification. Cependant, notre méthode peut être
directement étendue à la régression, au clustering et aux bibliothèques
d’apprentissage automatique distribuées (par exemple, SparkML [230]).

Bibliography

[1] Jens Kober, J. Andrew Bagnell, and Jan Peters. “Reinforcement Learning
in Robotics: A Survey”. In: The International Journal of Robotics Research
32.11 (Sept. 1, 2013), pp. 1238–1274. doi: 10.1177/0278364913495721.

[2] Hayit Greenspan, Bram van Ginneken, and Ronald M. Summers. “Guest
Editorial Deep Learning in Medical Imaging: Overview and Future
Promise of an Exciting New Technique”. In: IEEE Transactions on Med-
ical Imaging 35.5 (May 2016), pp. 1153–1159. doi: 10.1109/TMI.2016.
2553401.

[3] Chenyi Chen et al. “DeepDriving: Learning Affordance for Direct Percep-
tion in Autonomous Driving”. In: 2015 IEEE International Conference on
Computer Vision (ICCV). Dec. 2015, pp. 2722–2730. doi: 10.1109/ICCV.
2015.312.

[4] Besim Bilalli. “Learning the Impact of Data Pre-processing in Data Anal-
ysis”. Barcelona: UNIVERSITAT POLITÈCNICA DE CATALUNYA, 2018.

[5] Data Engineering, Preparation, and Labeling for AI 2019. Cognilytica.
url: https : / / www . cognilytica . com / document / report - data -

engineering-preparation-and-labeling-for-ai-2019/.

[6] Alexandre QUEMY. “End-to-End Approach to Classification in Un-
structured Spaces”. Poland: POZNAN UNIVERSITY OF TECHNOLOGY,
2020.

[7] Liam Li et al. “Towards Efficient Automated Machine Learning”. 2020.

[8] Esteban Real et al. “Regularized Evolution for Image Classifier Archi-
tecture Search”. Feb. 16, 2019. arXiv: 1802.01548 [cs]. url: http://
arxiv.org/abs/1802.01548.

[9] Iddo Drori et al. Automatic Machine Learning by Pipeline Synthesis Using
Model-Based Reinforcement Learning and a Grammar. May 24, 2019.

142

Bibliography 143

[10] Lars Kotthoff et al. “Auto-WEKA: Automatic Model Selection and Hy-
perparameter Optimization in WEKA”. In: Automated Machine Learning:
Methods, Systems, Challenges. The Springer Series on Challenges in Ma-
chine Learning. Cham: Springer International Publishing, 2019, pp. 81–
95. doi: 10.1007/978-3-030-05318-5_4.

[11] Randal S. Olson and Jason H. Moore. “TPOT: A Tree-Based Pipeline Opti-
mization Tool for Automating Machine Learning”. In: Automated Machine
Learning: Methods, Systems, Challenges. The Springer Series on Challenges
in Machine Learning. Cham: Springer International Publishing, 2019,
pp. 151–160. doi: 10.1007/978-3-030-05318-5_8.

[12] Matthias Feurer et al. “Efficient and Robust Automated Machine Learn-
ing”. In: Proceedings of the 28th International Conference on Neural Infor-
mation Processing Systems - Volume 2. NIPS’15. Cambridge, MA, USA:
MIT Press, Dec. 2015, pp. 2755–2763.

[13] Joaquin Vanschoren. “Meta-Learning”. In: Automated Machine Learning:
Methods, Systems, Challenges. The Springer Series on Challenges in Ma-
chine Learning. 2019, pp. 35–61. doi: 10.1007/978-3-030-05318-5_2.

[14] Automated Machine Learning: Methods, Systems, Challenges. en. The
Springer Series on Challenges in Machine Learning. 2019. doi: 10.1007/
978-3-030-05318-5.

[15] Mitar Milutinovic. “Towards Automatic Machine Learning Pipeline De-
sign”. UC Berkeley, 2019.

[16] Alexandros Kalousis. “Algorithm Selection via Meta-Learning”. Univer-
sity of Geneva, 2002. doi: 10.13097/archive-ouverte/unige:104435.

[17] Noy Cohen-Shapira et al. “AutoGRD: Model Recommendation Through
Graphical Dataset Representation”. In: Proceedings of the 28th ACM In-
ternational Conference on Information and Knowledge Management. CIKM
’19. New York, NY, USA, Nov. 2019, pp. 821–830. doi: 10.1145/3357384.
3357896.

[18] Matthias Feurer et al. “Efficient and Robust Automated Machine Learn-
ing”. In: Proceedings of the 28th International Conference on Neural In-
formation Processing Systems - Volume 2. NIPS’15. Dec. 2015, pp. 2755–
2763.

[19] James Bergstra and Yoshua Bengio. “Random Search for Hyper-Parameter
Optimization”. In: The Journal of Machine Learning Research 13 (Feb. 1,
2012), pp. 281–305.

144 Bibliography

[20] Matthias Feurer, Jost Tobias Springenberg, and Frank Hutter. “Initial-
izing Bayesian Hyperparameter Optimization via Meta-Learning”. In:
Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence.
AAAI’15. Austin, Texas: AAAI Press, Jan. 2015, pp. 1128–1135.

[21] Randal S. Olson et al. “Evaluation of a Tree-Based Pipeline Optimization
Tool for Automating Data Science”. In: Proceedings of the Genetic and
Evolutionary Computation Conference 2016. GECCO ’16. 2016, pp. 485–
492. doi: 10.1145/2908812.2908918.

[22] Sigrún Andradóttir. “A Review of Random Search Methods”. In: Hand-
book of Simulation Optimization. International Series in Operations Re-
search & Management Science. New York, NY: Springer, 2015, pp. 277–
292. doi: 10.1007/978-1-4939-1384-8_10.

[23] Rafael Gomes Mantovani et al. “Rethinking Default Values: A Low Cost
and Efficient Strategy to Define Hyperparameters”. July 8, 2021. arXiv:
2008.00025 [cs, stat].

[24] Taciana A. F. Gomes et al. “Combining Meta-learning and Search Tech-
niques to SVM Parameter Selection”. In: 2010 Eleventh Brazilian Sympo-
sium on Neural Networks. 2010 Eleventh Brazilian Symposium on Neural
Networks. Oct. 2010, pp. 79–84. doi: 10.1109/SBRN.2010.22.

[25] Luis Carlos Padierna et al. “Hyper-Parameter Tuning for Support Vector
Machines by Estimation of Distribution Algorithms”. In: Nature-Inspired
Design of Hybrid Intelligent Systems. Studies in Computational Intelli-
gence. Cham: Springer International Publishing, 2017, pp. 787–800. doi:
10.1007/978-3-319-47054-2_53.

[26] Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. “Practical Bayesian
Optimization of Machine Learning Algorithms”. Aug. 29, 2012. arXiv:
1206.2944.

[27] Rémi Bardenet et al. “Collaborative Hyperparameter Tuning”. In: Pro-
ceedings of the 30th International Conference on Machine Learning. Vol. 28.
Proceedings of Machine Learning Research 2. Atlanta, Georgia, USA:
PMLR, June 17–19, 2013, pp. 199–207. url: https://proceedings.mlr.
press/v28/bardenet13.html.

[28] Kirthevasan Kandasamy et al. “Multi-Fidelity Gaussian Process Bandit
Optimisation”. Mar. 15, 2019. arXiv: 1603.06288.

[29] Dougal Maclaurin, David Duvenaud, and Ryan P. Adams. “Gradient-
Based Hyperparameter Optimization through Reversible Learning”.
Apr. 2, 2015. arXiv: 1502.03492.

Bibliography 145

[30] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. “Sequential
Model-Based Optimization for General Algorithm Configuration”. en. In:
Learning and Intelligent Optimization. Lecture Notes in Computer Science.
Berlin, Heidelberg, 2011, pp. 507–523. doi: 10.1007/978-3-642-25566-
3.

[31] James Bergstra et al. “Algorithms for Hyper-Parameter Optimization”.
In: Proceedings of the 24th International Conference on Neural Information
Processing Systems. NIPS’11. Red Hook, NY, USA: Curran Associates Inc.,
Dec. 12, 2011, pp. 2546–2554.

[32] Jichang Dong et al. “A framework of pavement management system
based on IoT and big data”. In: Advanced Engineering Informatics 47
(2021), p. 101226. doi: 10.1016/j.aei.2020.101226.

[33] Jacqueline Schmitt et al. “Predictive model-based quality inspection
using Machine Learning and Edge Cloud Computing”. In: Advanced
Engineering Informatics 45 (Aug. 2020), p. 101101. doi: 10.1016/j.aei.
2020.101101. url: https://doi.org/10.1016/j.aei.2020.101101.

[34] David Lechevalier et al. “A Methodology for the Semi-Automatic Genera-
tion of Analytical Models in Manufacturing”. In: Computers in Industry
95 (2018), pp. 54–67. doi: 10.1016/j.compind.2017.12.005.

[35] Zhaoguang Xu, Yanzhong Dang, and Peter Munro. “Knowledge-driven
intelligent quality problem-solving system in the automotive industry”.
In: Advanced Engineering Informatics 38 (2018), pp. 441–457. doi: 10.
1016/j.aei.2018.08.013.

[36] Moncef Garouani et al. “Towards the Automation of Industrial Data
Science: A Meta-Learning Based Approach”. In: 23rd International Con-
ference on Enterprise Information Systems. May 2021, pp. 709–716. doi:
10.5220/0010457107090716.

[37] Moncef Garouani et al. “Towards Big Industrial Data Mining through
Explainable Automated Machine Learning”. In: The International Journal
of Advanced Manufacturing Technology (Feb. 10, 2022). doi: 10.1007/
s00170-022-08761-9.

[38] Junlong Chen, Zijun Zhang, and Feng Wu. “A data-driven method for
enhancing the image-based automatic inspection of IC wire bonding
defects”. In: International Journal of Production Research 59.16 (Sept. 2020),
pp. 4779–4793. doi: 10.1080/00207543.2020.1821928. url: https:
//doi.org/10.1080/00207543.2020.1821928.

146 Bibliography

[39] Dimitrios Kateris et al. “A machine learning approach for the condition
monitoring of rotating machinery”. In: Journal of Mechanical Science and
Technology 28.1 (Jan. 2014), pp. 61–71. doi: 10.1007/s12206-013-1102-
y. url: https://doi.org/10.1007/s12206-013-1102-y.

[40] Xian-Bo Wang et al. “Automatic representation and detection of fault
bearings in in-wheel motors under variable load conditions”. In: Ad-
vanced Engineering Informatics 49 (2021), p. 101321. doi: 10.1016/j.aei.
2021.101321.

[41] Yiyuan Gao and Dejie Yu. “Intelligent fault diagnosis for rolling bearings
based on graph shift regularization with directed graphs”. In: Advanced
Engineering Informatics 47 (2021), p. 101253. doi: 10.1016/j.aei.2021.
101253.

[42] Cong Zhou, J. Geoffrey Chase, and Geoffrey W. Rodgers. “Degradation
evaluation of lateral story stiffness using HLA-based deep learning net-
works”. In: Advanced Engineering Informatics 39 (2019), pp. 259–268. doi:
10.1016/j.aei.2019.01.007.

[43] Rubén Medina et al. “Gear and Bearing Fault Classification under Dif-
ferent Load and Speed by Using Poincaré Plot Features and SVM”. In:
Journal of Intelligent Manufacturing (2020) (). doi: 10.1007/s10845-020-
01712-9.

[44] Juan Pablo Usuga Cadavid et al. “Machine Learning Applied in Produc-
tion Planning and Control: A State-of-the-Art in the Era of Industry 4.0”.
In: Journal of Intelligent Manufacturing 31.6 (2020), pp. 1531–1558. doi:
10.1007/s10845-019-01531-7.

[45] Real Carbonneau, Kevin Laframboise, and Rustam Vahidov. “Application
of Machine Learning Techniques for Supply Chain Demand Forecasting”.
In: European Journal of Operational Research 184.3 (2008), pp. 1140–1154.
doi: 10.1016/j.ejor.2006.12.004.

[46] Qi Wu. “Product Demand Forecasts Using Wavelet Kernel Support Vec-
tor Machine and Particle Swarm Optimization in Manufacture System”.
In: Journal of Computational and Applied Mathematics 233.10 (2010),
pp. 2481–2491. doi: 10.1016/j.cam.2009.10.030.

[47] Miguel Cuartas et al. “Machine Learning Algorithms for the Prediction
of Non-Metallic Inclusions in Steel Wires for Tire Reinforcement”. en.
In: Journal of Intelligent Manufacturing (July 2020). doi: 10.1007/s10845-
020-01623-9.

Bibliography 147

[48] Rubén Medina et al. “Gear and Bearing Fault Classification under Differ-
ent Load and Speed by Using Poincaré Plot Features and SVM”. en. In:
Journal of Intelligent Manufacturing (Nov. 2020). doi: 10.1007/s10845-
020-01712-9.

[49] Anahid Jalali et al. “Predicting Time-to-Failure of Plasma Etching Equip-
ment Using Machine Learning”. In: 2019 IEEE International Conference
on Prognostics and Health Management (ICPHM). June 2019, pp. 1–8. doi:
10.1109/ICPHM.2019.8819404.

[50] Yoshua Bengio, Aaron Courville, and Pascal Vincent. “Representation
Learning: A Review and New Perspectives”. Apr. 23, 2014. arXiv: 1206.
5538.

[51] Gang Luo. “PredicT-ML: A Tool for Automating Machine Learning Model
Building with Big Clinical Data”. In: Health Information Science and Sys-
tems 4.1 (June 8, 2016), p. 5. doi: 10.1186/s13755-016-0018-1.

[52] Chris Thornton et al. “Auto-WEKA: Combined Selection and Hyperpa-
rameter Optimization of Classification Algorithms”. In: Proceedings of
the 19th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. KDD ’13. 2013, pp. 847–855. doi: 10.1145/2487575.
2487629.

[53] Thorsten Wuest et al. “Machine Learning in Manufacturing: Advantages,
Challenges, and Applications”. In: Production & Manufacturing Research
4.1 (2016), pp. 23–45. doi: 10.1080/21693277.2016.1192517.

[54] Sirian Caldarelli et al. “A Signal-Based Approach to News Recommenda-
tion”. In: UMAP. 2016.

[55] Claudio Biancalana et al. “Context-Aware Movie Recommendation Based
on Signal Processing and Machine Learning”. In: Proceedings of the 2nd
Challenge on Context-Aware Movie Recommendation. CAMRa ’11. New
York, NY, USA: Association for Computing Machinery, Oct. 23, 2011,
pp. 5–10. doi: 10.1145/2096112.2096114.

[56] Melissa Onori, A. Micarelli, and G. Sansonetti. “A Comparative Analysis
of Personality-Based Music Recommender Systems”. In: EMPIRE@RecSys.
2016.

[57] Giuseppe Sansonetti et al. “Enhancing Cultural Recommendations
through Social and Linked Open Data”. In: User Modeling and User-
Adapted Interaction 29.1 (Mar. 1, 2019), pp. 121–159. doi: 10.1007/
s11257-019-09225-8.

148 Bibliography

[58] Giuseppe Sansonetti. “Point of Interest Recommendation Based on Social
and Linked Open Data”. In: Personal and Ubiquitous Computing 23.2
(Apr. 1, 2019), pp. 199–214. doi: 10.1007/s00779-019-01218-z.

[59] Alessandro Fogli and Giuseppe Sansonetti. “Exploiting Semantics for
Context-Aware Itinerary Recommendation”. In: Personal and Ubiquitous
Computing 23.2 (Apr. 1, 2019), pp. 215–231. doi: 10.1007/s00779-018-
01189-7.

[60] Ruturaj Kulkarni, Shruti Dhavalikar, and Sonal Bangar. “Traffic Light
Detection and Recognition for Self Driving Cars Using Deep Learning”.
In: 2018 Fourth International Conference on Computing Communication
Control and Automation (ICCUBEA). Aug. 2018, pp. 1–4. doi: 10.1109/
ICCUBEA.2018.8697819.

[61] Jose-Raul Ruiz-Sarmiento et al. “A Predictive Model for the Maintenance
of Industrial Machinery in the Context of Industry 4.0”. In: Engineer-
ing Applications of Artificial Intelligence 87 (2020) (). doi: 10.1016/j.
engappai.2019.103289.

[62] Irfan Khan et al. “A Literature Survey and Empirical Study of Meta-
Learning for Classifier Selection”. In: IEEE Access 8 (2020), pp. 10262–
10281. doi: 10.1109/ACCESS.2020.2964726.

[63] D.H. Wolpert and W.G. Macready. “No Free Lunch Theorems for Opti-
mization”. In: IEEE Transactions on Evolutionary Computation 1.1 (1997),
pp. 67–82. doi: 10.1109/4235.585893.

[64] Bobak Shahriari et al. “Taking the Human Out of the Loop: A Review
of Bayesian Optimization”. In: Proceedings of the IEEE 104.1 (Jan. 2016),
pp. 148–175. doi: 10.1109/JPROC.2015.2494218.

[65] Jonathan Waring, Charlotta Lindvall, and Renato Umeton. “Automated
Machine Learning: Review of the State-of-the-Art and Opportunities for
Healthcare”. en. In: Artificial Intelligence in Medicine 104 (Apr. 2020),
p. 101822. doi: 10.1016/j.artmed.2020.101822.

[66] Iddo Drori et al. AlphaD3M Machine Learning Pipeline Synthesis. 2018.

[67] Besim Bilalli et al. “PRESISTANT: Data Pre-Processing Assistant”. In:
Information Systems in the Big Data Era. Cham, 2018, pp. 57–65. doi:
10.1007/978-3-319-92901-9_6.

[68] Roman Vainshtein et al. “A Hybrid Approach for Automatic Model
Recommendation”. In: CIKM ’18. New York, NY, USA: Association for
Computing Machinery, 2018, pp. 1623–1626. doi: 10.1145/3269206.
3269299.

Bibliography 149

[69] Matthias Reif et al. “Automatic Classifier Selection for Non-Experts”. In:
Pattern Analysis and Applications 17.1 (2014), pp. 83–96. doi: 10.1007/
s10044-012-0280-z.

[70] Lars Kotthoff et al. “Auto-WEKA: Automatic Model Selection and Hy-
perparameter Optimization in WEKA”. In: Automated Machine Learning:
Methods, Systems, Challenges. Cham, 2019, pp. 81–95. doi: 10.1007/978-
3-030-05318-5_4.

[71] Randal S. Olson and Jason H. Moore. “TPOT: A Tree-Based Pipeline
Optimization Tool for Automating Machine Learning”. en. In: Automated
Machine Learning: Methods, Systems, Challenges. The Springer Series on
Challenges in Machine Learning. Cham, 2019, pp. 151–160. doi: 10.
1007/978-3-030-05318-5.

[72] Lars Kotthoff et al. “Auto-WEKA 2.0: Automatic Model Selection and
Hyperparameter Optimization inWEKA”. In: Journal of Machine Learning
Research 18.25 (2017), pp. 1–5.

[73] Matthias Feurer et al. “Auto-Sklearn: Efficient and Robust Automated
Machine Learning”. In: Automated Machine Learning: Methods, Systems,
Challenges. Cham, 2019, pp. 113–134. doi: 10.1007/978-3-030-05318-
5_6.

[74] RapidMiner | Data Science & Machine Learning Platform. url: https:
//rapidminer.com/.

[75] H2O.Ai | AI Cloud Platform. url: https://www.h2o.ai/.

[76] BigML. Machine Learning made easy. url: https://bigml.com/.

[77] DataRobot. DataRobot | AI Cloud. url: https://www.datarobot.com/.

[78] Isabelle Guyon et al. “Analysis of the AutoML Challenge series 2015-
2018”. In: AutoML. Springer series on Challenges in Machine Learning.
2019.

[79] Brenden M. Lake et al. “Building Machines That Learn and Think Like
People”. Nov. 2, 2016. arXiv: 1604.00289.

[80] R. Vilalta et al. “Using Meta-Learning to Support Data Mining”. In: Int. J.
Comput. Sci. Appl. (2004).

[81] Hilan Bensusan, Christophe Giraud-Carrier, and Claire Kennedy. “A
Higher-Order Approach to Meta-Learning”. In: Proceedings of the
ECML’2000 workshop on Meta-Learning: Building Automatic Advice Strate-
gies for Model Selection and Method Combination (2000), pp. 109–117. url:
https://research-information.bris.ac.uk/en/publications/a-

higher-order-approach-to-meta-learning.

150 Bibliography

[82] Bernhard Pfahringer. “Meta-Learning by Landmarking Various Learning
Algorithms”. In: (May 23, 2001).

[83] Mikhail M. Meskhi et al. “Learning Abstract Task Representations”.
Jan. 28, 2021. arXiv: 2101.07852.

[84] Yonghong Peng et al. “Improved Dataset Characterisation for Meta-
learning”. In: Discovery Science. Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer, 2002, pp. 141–152. doi: 10.1007/3-540-
36182-0_14.

[85] Bruno Almeida Pimentel and André C. P. L. F. de Carvalho. “A New
Data Characterization for Selecting Clustering Algorithms Using Meta-
Learning”. In: Information Sciences 477 (Mar. 1, 2019), pp. 203–219. doi:
10.1016/j.ins.2018.10.043.

[86] Adriano Rivolli et al. “Characterizing Classification Datasets: A Study of
Meta-Features for Meta-Learning”. Aug. 26, 2019. arXiv: 1808.10406.

[87] R. G. Mantovani. “Use of Meta-Learning for Hyperparameter Tuning
of Classification Problems”. In: 2018. doi: 10.11606/T.55.2018.TDE-
15102018-092202.

[88] Matthias Reif et al. “Automatic Classifier Selection for Non-Experts”.
In: Pattern Analysis and Applications 17.1 (Feb. 2014), pp. 83–96. doi:
10.1007/s10044-012-0280-z.

[89] Ciro Castiello, Giovanna Castellano, and AnnaMaria Fanelli. “Meta-Data:
Characterization of Input Features for Meta-learning”. In: Modeling Deci-
sions for Artificial Intelligence. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer, 2005, pp. 457–468. doi: 10.1007/11526018_45.

[90] M. Reif. “A Comprehensive Dataset for Evaluating Approaches of
Various Meta-learning Tasks”. In: ICPRAM. 2012. doi: 10 . 5220 /

0003736302730276.

[91] Matthias Reif et al. “Automatic Classifier Selection for Non-Experts”.
In: Pattern Analysis and Applications 17.1 (Feb. 1, 2014), pp. 83–96. doi:
10.1007/s10044-012-0280-z.

[92] Petr Kuba et al. “Exploiting Sampling and Meta-learning for Param-
eter Setting forSupport Vector Machines”. In: (2002). url: https :

/ / www . semanticscholar . org / paper / Exploiting - Sampling -

and - Meta - learning - for - Parameter - Kuba - Brazdil /

a3c5fbdf3a1a3d8f12412186cc9eb4a8c126908c.

Bibliography 151

[93] A. Kalousis and M. Hilario. “Model Selection via Meta-Learning: A Com-
parative Study”. In: Proceedings 12th IEEE Internationals Conference on
Tools with Artificial Intelligence. ICTAI 2000. Nov. 2000, pp. 406–413. doi:
10.1109/TAI.2000.889901.

[94] Pieter Gijsbers. Automatic Construction of Machine Learning Pipelines.
Eindhoven: Eindhoven University of Technology, Oct. 2017. url: https:
//research.tue.nl/en/studentTheses/automatic-construction-

of-machine-learning-pipelines.

[95] Johannes Fürnkranz and Johann Petrak. “An Evaluation of Landmarking
Variants”. In: Undefined. 2001. url: https://www.semanticscholar.
org / paper / An - Evaluation - of - Landmarking - Variants - F % C3 %

BCrnkranz-Petrak/13d8643dbad0f78d650c7fda8f60b3ba095a4402.

[96] B. Pfahringer and Hilan Bensusan. “Tell Me Who Can Learn
You and I Can Tell You Who You Are: Landmarking Various
Learning Algorithms”. In: Undefined. 2000. url: https : / / www .

semanticscholar . org / paper / Tell - me - who - can - learn -

you - and - I - can - tell - you - who - Pfahringer - Bensusan /

78e71a6a649dd6778bb1c0923f626d6573cc2b06.

[97] Daren Ler. Utilising Regression-based Landmarkers within a
Meta-learning Framework for Algorithm Selection. 2005. url:
https : / / www . semanticscholar . org / paper / Utilising -

Regression - based - Landmarkers - within - a - for - Ler /

5202b6dbf82aba17e8d95221ec9525f46bf31dec.

[98] Luís P. F. Garcia, André C. P. L. F. de Carvalho, and Ana C. Lorena.
“Noise Detection in the Meta-Learning Level”. In: Neurocomputing. Re-
cent Advancements in Hybrid Artificial Intelligence Systems and Its
Application to Real-World Problems 176 (Feb. 2, 2016), pp. 14–25. doi:
10.1016/j.neucom.2014.12.100.

[99] Ana C. Lorena et al. “Data Complexity Meta-Features for Regression
Problems”. In: Machine Learning 107.1 (Jan. 1, 2018), pp. 209–246. doi:
10.1007/s10994-017-5681-1.

[100] Tin Kam Ho and M. Basu. “Complexity Measures of Supervised Classifi-
cation Problems”. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 24.3 (Mar. 2002), pp. 289–300. doi: 10.1109/34.990132.

[101] R. Vilalta and Youssef Drissi. “A Characterization of Difficult Problems in
Classification”. In: ICMLA (2002). url: https://www.semanticscholar.
org / paper / A - Characterization - of - Difficult - Problems - in -

Vilalta-Drissi/6fed0d3a06b9d4f38812824c6f77757b1dff44ab.

152 Bibliography

[102] Yang Zhongguo et al. “Choosing Classification Algorithms and Its
Optimum Parameters Based on Data Set Characteristics”. In: Journal
of Computers (Taiwan) 28 (Oct. 1, 2017), pp. 26–38. doi: 10 . 3966 /
199115992017102805003.

[103] Rattan Priya et al. “Using Genetic Algorithms to Improve Prediction of
Execution Times of ML Tasks”. In: Hybrid Artificial Intelligent Systems.
Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2012,
pp. 196–207. doi: 10.1007/978-3-642-28942-2_18.

[104] Fábio Pinto et al. “autoBagging: Learning to Rank Bagging Workflows
with Metalearning”. June 28, 2017. arXiv: 1706.09367.

[105] María De Mar Molina et al. “Meta-Learning Approach for Automatic
Parameter Tuning: A Case of Study with Educational Datasets”. In: EDM.
2012.

[106] Parker Ridd and Christophe G. Giraud-Carrier. “Using Metalearning to
Predict When Parameter Optimization Is Likely to Improve Classification
Accuracy”. In: Proceedings of the International Workshop on Meta-learning
and Algorithm Selection. Vol. 1201. CEUR Workshop Proceedings. 2014,
pp. 18–23.

[107] Alex Lazinica. Particle Swarm Optimization. 2009. 490 pp.

[108] Matthias Reif, Faisal Shafait, and Andreas Dengel. “Meta-Learning for
Evolutionary Parameter Optimization of Classifiers”. In: Machine Learn-
ing 87.3 (June 1, 2012), pp. 357–380. doi: 10.1007/s10994-012-5286-7.

[109] Chengrun Yang et al. “OBOE: Collaborative Filtering for AutoML Model
Selection”. In: Proceedings of the 25th ACM SIGKDD International Con-
ference on Knowledge Discovery & Data Mining (July 25, 2019), pp. 1173–
1183. doi: 10.1145/3292500.3330909.

[110] Max Bramer. “Estimating the Predictive Accuracy of a Classifier”. In:
Principles of Data Mining. Undergraduate Topics in Computer Science.
London: Springer, 2013, pp. 79–92. doi: 10.1007/978-1-4471-4884-
5_7.

[111] Christian Kopf Charles, Charles Taylor, and Jorg Keller. “Meta-Analysis:
From Data Characterisation for Meta-Learning to Meta-Regression”.
In: Proceedings of the PKDD-00 Workshop on Data Mining, Decision
Support,Meta-Learning and ILP. 2000.

Bibliography 153

[112] Silvio B. Guerra, Ricardo B. C. Prudêncio, and Teresa B. Ludermir. “Pre-
dicting the Performance of Learning Algorithms Using Support Vector
Machines as Meta-regressors”. In: Artificial Neural Networks - ICANN
2008. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer,
2008, pp. 523–532. doi: 10.1007/978-3-540-87536-9_54.

[113] Martin Wistuba, Nicolas Schilling, and Lars Schmidt-Thieme. “Sequen-
tial Model-Free Hyperparameter Tuning”. In: 2015 IEEE International
Conference on Data Mining. 2015 IEEE International Conference on Data
Mining. Nov. 2015, pp. 1033–1038. doi: 10.1109/ICDM.2015.20.

[114] Péricles B. C. de Miranda et al. “An Experimental Study of the Com-
bination of Meta-Learning with Particle Swarm Algorithms for SVM
Parameter Selection”. In: Computational Science and Its Applications –
ICCSA 2012. Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer, 2012, pp. 562–575. doi: 10.1007/978-3-642-31137-6_43.

[115] Matthias Reif, Faisal Shafait, and Andreas Dengel. “Prediction of Clas-
sifier Training Time Including Parameter Optimization”. In: KI 2011:
Advances in Artificial Intelligence. Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer, 2011, pp. 260–271. doi: 10.1007/978-3-
642-24455-1_25.

[116] Guangtao Wang et al. “A Feature Subset Selection Algorithm Automatic
Recommendation Method”. In: Journal of Artificial Intelligence Research 47
(May 15, 2013), pp. 1–34. doi: 10.1613/jair.3831. arXiv: 1402.0570.

[117] Enrique Leyva et al. “On the Use of Meta-Learning for Instance Selection:
An Architecture and an Experimental Study”. In: Information Sciences: an
International Journal 266 (May 1, 2014), pp. 16–30. doi: 10.1016/j.ins.
2014.01.007.

[118] Guangtao Wang, Qinbao Song, and Xiaoyan Zhu. “An Improved Data
Characterization Method and Its Application in Classification Algorithm
Recommendation”. In: Applied Intelligence 43.4 (Dec. 1, 2015), pp. 892–
912. doi: 10.1007/s10489-015-0689-3.

[119] Xiaoyan Zhu et al. “A New Classification Algorithm Recommendation
Method Based on Link Prediction”. In: Knowledge-Based Systems 159
(Nov. 1, 2018), pp. 171–185. doi: 10.1016/j.knosys.2018.07.015.

[120] Mario A. Muñoz et al. “Instance Spaces for Machine Learning Classi-
fication”. In: Machine Learning 107.1 (Jan. 1, 2018), pp. 109–147. doi:
10.1007/s10994-017-5629-5.

[121] A. Bernstein, Shawndra Hill, and F. Provost. “Intelligent Assistance for
the Data Mining Process: An Ontology-Based Approach”. In: (2002).

154 Bibliography

[122] Mustafa V Nural. “Ontology-Based Semantics vs Meta-Learning for Pre-
dictive Big Data Analytics”. University of Georgia, Athens, GA, USA,
2017.

[123] Mustafa V. Nural, Hao Peng, and John A. Miller. “Using Meta-Learning
for Model Type Selection in Predictive Big Data Analytics”. In: 2017 IEEE
International Conference on Big Data (Big Data). 2017, pp. 2027–2036. doi:
10.1109/BigData.2017.8258149.

[124] Mustafa V. Nural, Michael E. Cotterell, and John A. Miller. “Using Se-
mantics in Predictive Big Data Analytics”. In: 2015 IEEE International
Congress on Big Data. 2015 IEEE International Congress on Big Data. June
2015, pp. 254–261. doi: 10.1109/BigDataCongress.2015.43.

[125] Witten Ian H., Frank Eibe, and Hall Mark A. Data Mining: Practical
Machine Learning Tools and Techniques. Fourth. Morgan Kaufmann, 2017.
doi: 10.1016/C2015-0-02071-8.

[126] AutoML Tables. Google Cloud. url: https : / / cloud . google . com /
automl-tables/docs.

[127] Haifeng Jin, Qingquan Song, and Xia Hu. “Auto-Keras: An Efficient
Neural Architecture Search System”. Mar. 26, 2019. arXiv: 1806.10282
[cs, stat]. url: http://arxiv.org/abs/1806.10282.

[128] Thomas Swearingen et al. “ATM: A distributed, collaborative, scalable
system for automated machine learning”. In: 2017 IEEE International
Conference on Big Data (Big Data). 2017, pp. 151–162. doi: 10.1109/
BigData.2017.8257923.

[129] Juan S. Angarita-Zapata, Gina Maestre-Gongora, and Jenny Fajardo
Calderín. “A Case Study of AutoML for Supervised Crash Severity Pre-
diction”. In: 19th World Congress of the International Fuzzy Systems
Association (IFSA). Atlantis Press, Aug. 30, 2021, pp. 187–194. doi: 10.
2991/asum.k.210827.026.

[130] Akram Mustafa and Mostafa Rahimi Azghadi. “Automated Machine
Learning for Healthcare and Clinical Notes Analysis”. In: Computers 10.2
(2 Feb. 2021), p. 24. doi: 10.3390/computers10020024.

[131] Andrew A. Borkowski et al. “Google Auto ML versus Apple Create ML
for Histopathologic Cancer Diagnosis; Which Algorithms Are Better?”
Mar. 19, 2019. arXiv: 1903.08057.

[132] K. T. Y. Mahima, T.N.D.S.Ginige, and Kasun De Zoysa. “Evaluation of Sen-
timent Analysis Based on AutoML and Traditional Approaches”. In: Inter-
national Journal of Advanced Computer Science and Applications (IJACSA)
12.2 (2 2021/58/01). doi: 10.14569/IJACSA.2021.0120277.

Bibliography 155

[133] Maria Tsiakmaki et al. “Implementing AutoML in Educational Data
Mining for Prediction Tasks”. In: Applied Sciences 10.1 (1 Jan. 2020), p. 90.
doi: 10.3390/app10010090.

[134] Loukides Mike. 2021 Data/AI Salary Survey. Oct. 2021. url: https://
www.oreilly.com/radar/2021-data-ai-salary-survey/.

[135] Pieter Gijsbers et al. An Open Source AutoML Benchmark. 2019. arXiv:
1907.00909 [cs.LG].

[136] Ram K. Mazumder, Abdullahi M. Salman, and Yue Li. “Failure Risk
Analysis of Pipelines Using Data-Driven Machine Learning Algorithms”.
In: Structural Safety 89 (2021), p. 102047. doi: 10.1016/j.strusafe.
2020.102047.

[137] S. Saravanamurugan et al. “Chatter Prediction in Boring Process Using
Machine Learning Technique”. en. In: Int. J. Manuf. Res. (2017). doi:
10.1504/IJMR.2017.10007082.

[138] T. Benkedjouh et al. “Health Assessment and Life Prediction of Cutting
Tools Based on Support Vector Regression”. en. In: Journal of Intelligent
Manufacturing 26.2 (Apr. 2015), pp. 213–223. doi: 10.1007/s10845-013-
0774-6.

[139] Simon D. Duque Anton, Sapna Sinha, and Hans Dieter Schotten.
“Anomaly-based Intrusion Detection in Industrial Data with SVM and
Random Forests”. In: 2019 International Conference on Software, Telecom-
munications and Computer Networks (SoftCOM). 2019, pp. 1–6. doi: 10.
23919/SOFTCOM.2019.8903672.

[140] Huaxia Deng et al. “A high-speed D-CART online fault diagnosis algo-
rithm for rotor systems”. In: Applied Intelligence 50.1 (June 2019), pp. 29–
41. doi: 10.1007/s10489-019-01516-2. url: https://doi.org/10.
1007/s10489-019-01516-2.

[141] Jae Kwon Kim, Young Shin Han, and Jong Sik Lee. “Particle swarm
optimization–deep belief network–based rare class prediction model
for highly class imbalance problem”. In: Concurrency and Computation:
Practice and Experience 29.11 (Apr. 2017). doi: 10.1002/cpe.4128. url:
https://doi.org/10.1002/cpe.4128.

[142] Kazunori Imoto et al. “A CNN-Based Transfer Learning Method for
Defect Classification in Semiconductor Manufacturing”. In: IEEE Trans-
actions on Semiconductor Manufacturing 32.4 (Nov. 2019), pp. 455–459.
doi: 10.1109/tsm.2019.2941752. url: https://doi.org/10.1109/
tsm.2019.2941752.

156 Bibliography

[143] Jae Kwon Kim et al. “Feature Selection Techniques for Improving Rare
Class Classification in Semiconductor Manufacturing Process”. In: Lec-
ture Notes of the Institute for Computer Sciences, Social Informatics and
Telecommunications Engineering. Springer International Publishing, 2017,
pp. 40–47. doi: 10.1007/978-3-319-58967-1_5. url: https://doi.
org/10.1007/978-3-319-58967-1%5C_5.

[144] Moncef Garouani et al. “AMLBID: An Auto-Explained Automated Ma-
chine Learning Tool for Big Industrial Data”. In: SoftwareX 17 (Jan. 1,
2022), p. 100919. doi: 10.1016/j.softx.2021.100919.

[145] Moncef Garouani et al. “Towards an Automatic Assistance Framework
for the Selection and Configuration of Machine-Learning-Based Data
Analytics Solutions in Industry 4.0”. In: The Fifth International Conference
on Big Data and Internet of Things (BDIoT’21). Rabat, Morocco, Mar. 2021.
url: https://hal.archives-ouvertes.fr/hal-03159685.

[146] Wojciech Samek and Klaus-Robert Müller. “Towards Explainable Artifi-
cial Intelligence”. In: Explainable AI: Interpreting, Explaining and Visualiz-
ing Deep Learning. Lecture Notes in Computer Science. Cham: Springer
International Publishing, 2019, pp. 5–22. doi: 10.1007/978-3-030-
28954-6.

[147] Alejandro Gabriel Villanueva Zacarias, Peter Reimann, and Bernhard
Mitschang. “A Framework to Guide the Selection and Configuration of
Machine-Learning-Based Data Analytics Solutions in Manufacturing”.
In: Procedia CIRP. 51st CIRP Conference on Manufacturing Systems 72
(2018), pp. 153–158. doi: 10.1016/j.procir.2018.03.215.

[148] Hergen Wolf et al. “Bringing Advanced Analytics to Manufacturing: A
Systematic Mapping”. In: Advances in Production Management Systems.
Production Management for the Factory of the Future. 2019, pp. 333–340.
doi: 10.1007/978-3-030-30000-5_42.

[149] Adler Perotte et al. “Diagnosis Code Assignment: Models and Evaluation
Metrics”. In: Journal of the American Medical Informatics Association 21.2
(Mar. 1, 2014), pp. 231–237. doi: 10.1136/amiajnl-2013-002159.

[150] Erik Lindholm et al. “NVIDIA Tesla: A Unified Graphics and Computing
Architecture”. In: IEEE Micro 28.2 (Mar. 2008), pp. 39–55. doi: 10.1109/
MM.2008.31.

[151] Chong Chen et al. “Predictive maintenance using cox proportional
hazard deep learning”. In: Advanced Engineering Informatics 44 (2020),
p. 101054. doi: 10.1016/j.aei.2020.101054.

Bibliography 157

[152] Yaqiong Lv et al. “A predictive maintenance system for multi-granularity
faults based on AdaBelief-BP neural network and fuzzy decision making”.
In: Advanced Engineering Informatics 49 (2021), p. 101318. doi: 10.1016/
j.aei.2021.101318.

[153] Rezvaneh Sahba et al. “Development of Industry 4.0 predictive main-
tenance architecture for broadcasting chain”. In: Advanced Engineering
Informatics 49 (2021), p. 101324. doi: 10.1016/j.aei.2021.101324.

[154] Pavel Brazdil et al. Metalearning: Applications to Data Mining. Springer
Berlin Heidelberg, 2009. doi: 10.1007/978-3-540-73263-1.

[155] Joaquin Vanschoren et al. “OpenML: Networked Science in Machine
Learning”. In: ACM SIGKDD Explorations Newsletter 15.2 (June 16, 2014),
pp. 49–60. doi: 10.1145/2641190.2641198.

[156] Edesio Alcobaça et al. “MFE: Towards Reproducible Meta-Feature Ex-
traction”. In: Journal of Machine Learning Research 21.111 (2020), pp. 1–5.
url: http://jmlr.org/papers/v21/19-348.html.

[157] Randal S. Olson and Jason H. Moore. “TPOT: A Tree-Based Pipeline
Optimization Tool for Automating Machine Learning”. In: Automated
Machine Learning: Methods, Systems, Challenges. 2019, pp. 151–160. doi:
10.1007/978-3-030-05318-5_8.

[158] Moncef Garouani et al. “Towards the Automation of Industrial Data
Science: A Meta-Learning Based Approach”. In: 23rd International Con-
ference on Enterprise Information Systems. 2021, pp. 709–716. doi:
10.5220/0010457107090716.

[159] Hadi S. Jomaa, Lars Schmidt-Thieme, and Josif Grabocka. “Dataset2Vec:
Learning Dataset Meta-Features”. In: Data Mining and Knowledge Discov-
ery 35.3 (May 1, 2021), pp. 964–985. doi: 10.1007/s10618-021-00737-
9.

[160] Tin Kam Ho and M. Basu. “Complexity Measures of Supervised Classifi-
cation Problems”. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 24.3 (Mar. 2002), pp. 289–300. doi: 10.1109/34.990132.

[161] Ricardo Vilalta. “Understanding Accuracy Performance Through Con-
cept Characterization and Algorithm Analysis”. In: Workshop on Recent
Advances in Meta-Learning and Future Work, 16th International Conference
on Machine Learning. 1999, pp. 3–9.

[162] Joaquin Vanschoren. “Meta-Learning: A Survey”. Oct. 8, 2018. arXiv:
1810.03548.

158 Bibliography

[163] Justin Matejka and George Fitzmaurice. “Same Stats, Different Graphs:
Generating Datasets with Varied Appearance and Identical Statistics
through Simulated Annealing”. In: Proceedings of the 2017 CHI Conference
on Human Factors in Computing Systems. New York, NY, USA: Association
for Computing Machinery, May 2, 2017, pp. 1290–1294. url: https:
//doi.org/10.1145/3025453.3025912.

[164] Alexandros Kalousis and Melanie Hilario. “Feature Selection for Meta-
learning”. In: Advances in Knowledge Discovery and Data Mining. Lecture
Notes in Computer Science. Berlin, Heidelberg: Springer, 2001, pp. 222–
233. doi: 10.1007/3-540-45357-1_26.

[165] Yonghong Peng et al. “Decision Tree-Based Data Characterization for
Meta-Learning”. In: (2002). url: https://www.semanticscholar.org/
paper/Decision-Tree-Based-Data-Characterization-for-Peng-

Flach/80e5ef1ac4f08b5064775e90ef698dee246d76d9.

[166] Laith Alzubaidi et al. “Review of Deep Learning: Concepts, CNN Archi-
tectures, Challenges, Applications, Future Directions”. In: Journal of Big
Data 8.1 (Mar. 31, 2021), p. 53. doi: 10.1186/s40537-021-00444-8.

[167] Li Deng and Dong Yu. “Deep Learning: Methods and Applications”. In:
Foundations and Trends in Signal Processing 7.3–4 (June 30, 2014), pp. 197–
387. doi: 10.1561/2000000039.

[168] Gábor Gosztolya et al. “DNN-Based Feature Extraction and Classifier
Combination for Child-Directed Speech, Cold and Snoring Identifi-
cation”. In: Interspeech 2017. Interspeech 2017. ISCA, Aug. 20, 2017,
pp. 3522–3526. doi: 10.21437/Interspeech.2017-905.

[169] Wei Wang et al. “Generalized Autoencoder: A Neural Network Frame-
work for Dimensionality Reduction”. In: 2014 IEEE Conference on Com-
puter Vision and Pattern Recognition Workshops. June 2014, pp. 496–503.
doi: 10.1109/CVPRW.2014.79.

[170] Vandana Bhatia and Rinkle Rani. “DFuzzy: A Deep Learning-Based
Fuzzy Clustering Model for Large Graphs”. In: Knowledge and Information
Systems 57.1 (Oct. 1, 2018), pp. 159–181. doi: 10.1007/s10115-018-
1156-3.

[171] Pascal Vincent et al. “Extracting and Composing Robust Features with
Denoising Autoencoders”. In: Proceedings of the 25th International Con-
ference on Machine Learning. ICML ’08. New York, NY, USA: Association
for Computing Machinery, July 5, 2008, pp. 1096–1103. doi: 10.1145/
1390156.1390294.

Bibliography 159

[172] Francisco J. Pulgar et al. “AEkNN: An AutoEncoder kNN-Based Classifier
With Built-in Dimensionality Reduction”. In: International Journal of
Computational Intelligence Systems 12.1 (Feb. 2019), pp. 436–452. doi:
10.2991/ijcis.2018.125905686.

[173] Timothy Hospedales et al. “Meta-Learning in Neural Networks: A Sur-
vey”. Nov. 7, 2020. arXiv: 2004.05439.

[174] Larry Rendell, Raj Seshu, and David Tcheng. “Layered Concept-Learning
and Dynamically-Variable Bias Management”. In: In Proceedings of IJCAI-
87. Morgan Kaufmann, 1987, pp. 308–314.

[175] “Machine Learning, Neural and Statistical Classification”. USA: Ellis
Horwood, 1995. 267 pp.

[176] Doron Laadan et al. “RankML: a Meta Learning-Based Approach
for Pre-Ranking Machine Learning Pipelines”. In: arXiv preprint
arXiv:1911.00108 (2019).

[177] Bruno Feres de Souza. “Meta-aprendizagem aplicada à classificação de
dados de expressão gênica”. text. Universidade de São Paulo, Oct. 26,
2010. doi: 10.11606/T.55.2010.tde-04012011-142551.

[178] Daniel Gomes Ferrari and Leandro Nunes de Castro. “Clustering Al-
gorithm Selection by Meta-Learning Systems: A New Distance-Based
Problem Characterization and Ranking Combination Methods”. In: Infor-
mation Sciences 301 (Apr. 20, 2015), pp. 181–194. doi: 10.1016/j.ins.
2014.12.044.

[179] Ömer Nebil Yaveroğlu et al. “Revealing the Hidden Language of Complex
Networks”. In: Scientific Reports 4.1 (1 Apr. 1, 2014), p. 4547. doi: 10.
1038/srep04547.

[180] Besim Bilalli, Alberto Abelló, and Tomàs Aluja-Banet. “On the Predictive
Power of Meta-Features in OpenML”. In: International Journal of Applied
Mathematics and Computer Science 27.4 (Aug. 8, 2017), pp. 697–712. doi:
10.1515/amcs-2017-0048.

[181] H. Hotelling. “Analysis of a Complex of Statistical Variables into Prin-
cipal Components.” In: Journal of Educational Psychology 24.6 (1933),
pp. 417–441. doi: 10.1037/h0071325.

[182] Sebastian Raschka and Vahid Mirjalili. Python Machine Learning: Machine
Learning and Deep Learning with Python, scikit-learn, and TensorFlow 2,
3rd Edition. 3e édition. Birmingham Mumbai: Packt Publishing, 2019.
770 pp.

160 Bibliography

[183] Kevin Beyer et al. “When Is “Nearest Neighbor” Meaningful?” In:
Database Theory — ICDT’99. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer, 1999, pp. 217–235. doi: 10.1007/3-540-49257-
7_15.

[184] John T. Hancock and Taghi M. Khoshgoftaar. “Survey on Categorical
Data for Neural Networks”. In: Journal of Big Data 7.1 (Apr. 10, 2020),
p. 28. doi: 10.1186/s40537-020-00305-w.

[185] Guijuan Zhang, Yang Liu, and Xiaoning Jin. “A Survey of Autoencoder-
Based Recommender Systems”. In: Frontiers of Computer Science 14.2
(Apr. 1, 2020), pp. 430–450. doi: 10.1007/s11704-018-8052-6.

[186] Geoffrey E Hinton and Sam Roweis. “Stochastic Neighbor Embedding”.
In: Advances in Neural Information Processing Systems. Vol. 15. MIT Press,
2003. url: https://proceedings.neurips.cc/paper/2002/hash/
6150ccc6069bea6b5716254057a194ef-Abstract.html.

[187] Don Johnson and Sinan Sinanovic. “Symmetrizing the Kullback-Leibler
Distance”. In: IEEE Transactions on Information Theory (Mar. 20, 2001).
url: https://scholarship.rice.edu/handle/1911/19969.

[188] Noy Cohen-Shapira and Lior Rokach. “Automatic Selection of Clustering
Algorithms Using Supervised Graph Embedding”. June 7, 2021. arXiv:
2011.08225.

[189] Feiyu Xu et al. “Explainable AI: A Brief Survey on History, Research
Areas, Approaches and Challenges”. In: Natural Language Processing and
Chinese Computing. Lecture Notes in Computer Science. Cham: Springer
International Publishing, 2019, pp. 563–574. doi: 10.1007/978-3-030-
32236-6_51.

[190] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “"Why Should I
Trust You?": Explaining the Predictions of Any Classifier”. In: Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. KDD ’16. New York, NY, USA: Association for Com-
puting Machinery, Aug. 2016, pp. 1135–1144. doi: 10.1145/2939672.
2939778.

[191] Riccardo Miotto et al. “Deep Learning for Healthcare: Review, Opportu-
nities and Challenges”. In: Briefings in Bioinformatics 19.6 (Nov. 27, 2018),
pp. 1236–1246. doi: 10.1093/bib/bbx044.

[192] Milad Moradi and Matthias Samwald. “Post-Hoc Explanation of Black-
Box Classifiers Using Confident Itemsets”. In: Expert Systems with Applica-
tions 165 (Mar. 1, 2021), p. 113941. doi: 10.1016/j.eswa.2020.113941.

Bibliography 161

[193] Robert L. Heath and Jennings Bryant. Human Communication Theory
and Research: Concepts, Contexts, and Challenges. English. 2nd edition.
Mahwah, N.J: Routledge, June 2000.

[194] David Gunning et al. “XAI—Explainable Artificial Intelligence”. In: Sci-
ence Robotics 4.37 (Dec. 2019). doi: 10.1126/scirobotics.aay7120.

[195] Donghee Shin and Yong Jin Park. “Role of Fairness, Accountability, and
Transparency in Algorithmic Affordance”. en. In: Computers in Human
Behavior 98 (Sept. 2019), pp. 277–284. doi: 10.1016/j.chb.2019.04.
019.

[196] Davide Castelvecchi. “Can We Open the Black Box of AI?” In: Nature
News 538.7623 (Oct. 2016), p. 20. doi: 10.1038/538020a.

[197] Moncef Garouani. et al. “Towards the Automation of Industrial Data
Science: A Meta-learning based Approach”. In: Proceedings of the 23rd
International Conference on Enterprise Information Systems - Volume
1: ICEIS, INSTICC. SciTePress, 2021, pp. 709–716. doi: 10 . 5220 /
0010457107090716.

[198] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “Anchors: High-
Precision Model-Agnostic Explanations”. en. In: Proceedings of the AAAI
Conference on Artificial Intelligence (2018).

[199] Adam W. Harley. “An Interactive Node-Link Visualization of Convo-
lutional Neural Networks”. In: Advances in Visual Computing. Lecture
Notes in Computer Science. Cham: Springer International Publishing,
2015, pp. 867–877. doi: 10.1007/978-3-319-27857-5_77.

[200] Scott M. Lundberg et al. “From Local Explanations to Global Understand-
ing with Explainable AI for Trees”. In: Nature Machine Intelligence 2.1
(Jan. 2020), pp. 56–67. doi: 10.1038/s42256-019-0138-9.

[201] Grégoire Montavon et al. “Explaining Nonlinear Classification Decisions
with Deep Taylor Decomposition”. en. In: Pattern Recognition 65 (May
2017), pp. 211–222. doi: 10.1016/j.patcog.2016.11.008.

[202] Matthew D. Zeiler and Rob Fergus. “Visualizing and Understanding
Convolutional Networks”. In: Computer Vision – ECCV 2014. Lecture
Notes in Computer Science. Cham: Springer International Publishing,
2014, pp. 818–833. doi: 10.1007/978-3-319-10590-1_53.

[203] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. “Deep Inside
Convolutional Networks: Visualising Image Classification Models and
Saliency Maps”. Apr. 19, 2014. arXiv: 1312.6034 [cs]. url: http://
arxiv.org/abs/1312.6034.

162 Bibliography

[204] Adam W. Harley. “An Interactive Node-Link Visualization of Convo-
lutional Neural Networks”. In: Advances in Visual Computing. Lecture
Notes in Computer Science. 2015, pp. 867–877. doi: 10.1007/978-3-
319-27857-5_77.

[205] Kanit Wongsuphasawat et al. “Visualizing Dataflow Graphs of Deep
Learning Models in TensorFlow”. In: IEEE Transactions on Visualization
and Computer Graphics 24.1 (Jan. 2018), pp. 1–12. doi: 10.1109/TVCG.
2017.2744878.

[206] Juliane Müller et al. “A Visual Approach to Explainable Computerized
Clinical Decision Support”. en. In: Computers & Graphics 91 (Oct. 2020),
pp. 1–11. doi: 10.1016/j.cag.2020.06.004.

[207] Dominik Sacha et al. “VIS4ML: An Ontology for Visual Analytics As-
sisted Machine Learning”. In: IEEE Transactions on Visualization and
Computer Graphics 25.1 (Jan. 2019), pp. 385–395. doi: 10.1109/TVCG.
2018.2864838.

[208] Daniel Smilkov et al. “Direct-Manipulation Visualization of Deep Net-
works”. Aug. 12, 2017. arXiv: 1708.03788.

[209] Paulo E. Rauber et al. “Visualizing the Hidden Activity of Artificial Neu-
ral Networks”. In: IEEE Transactions on Visualization and Computer Graph-
ics 23.1 (Jan. 2017), pp. 101–110. doi: 10.1109/TVCG.2016.2598838.

[210] Alsallakh Bilal et al. “Do Convolutional Neural Networks Learn Class
Hierarchy?” In: IEEE Transactions on Visualization and Computer Graphics
24.1 (Jan. 2018), pp. 152–162. doi: 10.1109/TVCG.2017.2744683.

[211] Josua Krause, Adam Perer, and Kenney Ng. “Interacting with Predictions:
Visual Inspection of Black-boxMachine LearningModels”. In: Proceedings
of the 2016 CHI Conference on Human Factors in Computing Systems. CHI
’16. New York, NY, USA: Association for Computing Machinery, May 7,
2016, pp. 5686–5697. doi: 10.1145/2858036.2858529.

[212] Mengchen Liu et al. “Analyzing the Noise Robustness of Deep Neural
Networks”. Oct. 9, 2018. arXiv: 1810.03913.

[213] Jiawei Zhang et al. “Manifold: A Model-Agnostic Framework for Interpre-
tation and Diagnosis of Machine Learning Models”. In: IEEE Transactions
on Visualization and Computer Graphics 25.1 (Jan. 2019), pp. 364–373. doi:
10.1109/TVCG.2018.2864499.

[214] Minsuk Kahng et al. “ActiVis: Visual Exploration of Industry-Scale Deep
Neural Network Models”. Aug. 8, 2017. arXiv: 1704.01942.

Bibliography 163

[215] Yao Ming et al. “Understanding Hidden Memories of Recurrent Neural
Networks”. In: 2017 IEEE Conference on Visual Analytics Science and
Technology (VAST) (2017). doi: 10.1109/VAST.2017.8585721.

[216] Thilo Spinner et al. “explAIner: A Visual Analytics Framework for In-
teractive and Explainable Machine Learning”. In: IEEE Transactions on
Visualization and Computer Graphics 26.1 (Jan. 2020), pp. 1064–1074. doi:
10.1109/TVCG.2019.2934629.

[217] Rossi Francesca. AI Ethics for Enterprise AI. 2019. url: https : / /

economics . harvard . edu / files / economics / files / rossi -

francesca _ 4 - 22 - 19 _ ai - ethics - for - enterprise - ai _ ec3118 -

hbs.pdf.

[218] Bum Chul Kwon et al. “RetainVis: Visual Analytics with Interpretable
and Interactive Recurrent Neural Networks on Electronic Medical
Records”. In: IEEE Transactions on Visualization and Computer Graph-
ics 25.1 (Jan. 2019), pp. 299–309. doi: 10.1109/TVCG.2018.2865027.
arXiv: 1805.10724.

[219] Nicola Pezzotti et al. “DeepEyes: Progressive Visual Analytics for De-
signing Deep Neural Networks”. In: IEEE Transactions on Visualization
and Computer Graphics 24.1 (Jan. 2018), pp. 98–108. doi: 10.1109/TVCG.
2017.2744358.

[220] Sugeerth Murugesan et al. “DeepCompare: Visual and Interactive Com-
parison of Deep Learning Model Performance”. In: IEEE Computer Graph-
ics and Applications 39.5 (Sept. 2019), pp. 47–59. doi: 10.1109/MCG.2019.
2919033.

[221] Mennatallah El-Assady et al. “Progressive Learning of Topic Modeling
Parameters: A Visual Analytics Framework”. In: IEEE Transactions on
Visualization and Computer Graphics 24.1 (Jan. 2018), pp. 382–391. doi:
10.1109/TVCG.2017.2745080.

[222] Carrie J. Cai et al. “Human-Centered Tools for Coping with Imperfect
Algorithms during Medical Decision-Making”. Feb. 8, 2019. arXiv: 1902.
02960 [cs]. url: http://arxiv.org/abs/1902.02960.

[223] Jeffrey N. Rouder et al. “Model Comparison in ANOVA”. In: Psychonomic
Bulletin & Review 23.6 (Dec. 2016), pp. 1779–1786. doi: 10.3758/s13423-
016-1026-5.

164 Bibliography

[224] Lars Kotthoff et al. “Auto-WEKA: Automatic Model Selection and Hyper-
parameter Optimization in WEKA”. en. In: Automated Machine Learning:
Methods, Systems, Challenges. The Springer Series on Challenges in Ma-
chine Learning. Cham, 2019, pp. 81–95. doi: 10.1007/978- 3- 030-
05318-5.

[225] Matthias Reif et al. “Automatic Classifier Selection for Non-Experts”.
en. In: Pattern Analysis and Applications 17.1 (Feb. 2014), pp. 83–96. doi:
10.1007/s10044-012-0280-z.

[226] Scott M. Lundberg and Su-In Lee. “A Unified Approach to Interpreting
Model Predictions”. In: Proceedings of the 31st International Conference on
Neural Information Processing Systems. NIPS’17. Red Hook, NY, USA, Dec.
2017, pp. 4768–4777.

[227] Moncef Garouani et al. “Towards an Automatic Assistance Framework
for the Selection and Configuration of Machine-Learning-Based Data
Analytics Solutions in Industry 4.0”. In: The Fifth International Conference
on Big Data and Internet of Things (BDIoT’21). Rabat, Morocco, Mar. 2021.

[228] Jeff Sauro and James R. Lewis. “Standardized Usability Questionnaires”.
In: Quantifying the User Experience (Second Edition). Boston: Morgan
Kaufmann, Jan. 1, 2016, pp. 185–248. doi: 10.1016/B978-0-12-802308-
2.00008-4.

[229] Tova Milo and Amit Somech. “Automating Exploratory Data Analysis
via Machine Learning: An Overview”. In: Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data. SIGMOD ’20.
New York, NY, USA: Association for Computing Machinery, June 11,
2020, pp. 2617–2622. doi: 10.1145/3318464.3383126.

[230] Matei Zaharia et al. “Apache Spark: A Unified Engine for Big Data Pro-
cessing”. In: Communications of the ACM 59.11 (Oct. 28, 2016), pp. 56–65.
doi: 10.1145/2934664.

[231] William Raynaut. “Perspectives de Méta-Analyse Pour Un Environ-
nement d’aide à La Simulation et Prédiction”. PhD thesis. Université
de Toulouse, Université Toulouse III - Paul Sabatier, Jan. 12, 2018.

[232] Michel Lutz and Eric Biernat. Data science : fondamentaux et études de
cas: Machine Learning avec Python et R. 1er édition. Paris: Eyrolles, Oct. 1,
2015. 296 pp.

[233] Moncef Garouani et al. Autoencoder-kNN Meta-Model Based Data Char-
acterization Approach for an Automated Selection of AI Algorithms.
Manuscript submitted for publication, 2022.

AppendixA
META-LEARNERS’ HP SPACE

This appendix presents thejfull tables ofjthe meta-learners HPs explored injthe
experiments performed in this thesis. For each algorithm used as meta-learner,
thejtable shows : the selected HPs, theirjrange of valuesjand description.

Hyperparameter Values Description

complexity (or: ‘C’) [1e−10, 500] (log-scale) Soft-margin constant, controlling the trade-off
between model simplicity and model fit.

Kernel {’poly’, ’rbf’} The function of kernel is to take data as input
and transform it into the required form (lin-
ear, nonlinear, polynomial, radial basis function
(RBF), and sigmoid).

coef0 [0., 10] Additional coefficient used by the kernel (sig-
moid kernel only).

gamma [1e−3, 1.01] (log-scale) Length-scale of the kernel function, determining
its locality.

Degree [2, 3] Degree for the ‘poly’ kernel.

Table A.1: SVM hyperparameters tuned in the experiments.

Hyperparameter Values Description

algorithm {SAMME, SAMME.R} Determines which boosting algorithm to use.
N_estimators [50, 501] Number of estimators to build.
learning rate [0.01, 2.0] (log-scale) Learning rate shrinks the contribution of each

classifier.
Max_depth [1, 11] The maximal depth of the decision trees.

Table A.2: Adaboost Hyperparameters tuned in the experiments.

165

166 APPENDIX A. META-LEARNERS’ HP SPACE

Hyperparameter Values Description

bootstrap {true, false} Whether to train on bootstrap samples or on the
full train set.

Max_features [0.1, 0.9] Fraction of random features sampled per node.
Min_samples_leaf [1, 20] The minimal number of data points required in

order to create a leaf.
Min_samples_split [2, 20] The minimal number of data points required to

split an internal node.
imputation mean, median, mode Strategy for imputing missing numeric vari-

ables.
split criterion {entropy, gini} Function to determine the quality of a possible

split.

Table A.3: Random Forest & Extra Trees Hyperparameters tuned in the experi-
ments.

Hyperparameter Values Description

max features [0.1, 0.9] Number of features to consider when computing
the best node split.

min_samples_leaf [1, 21] The minimum number of samples required to
be at a leaf node.

Min_samples_split [2, 21] The minimum number of samples required to
split an internal node.

criterion {’entropy’, ’gini’ } Function used to measure the quality of a split.

Table A.4: Decision Trees Hyperparameters tuned in the experiments.

Hyperparameter Values Description

Learning_rate [0.01, 1] Shrinks the contribution of each successive deci-
sion tree in the ensemble.

criterion {’friedman_mse’, ’mse’ } The function to measure the quality of a split.
N_estimators [50, 501] Number of decision trees in the ensemble.
max depth [1, 11] Maximum depth of the decision trees. Controls

the complexity of the decision trees
Min_samples_split [2, 21] The minimum number of samples required to

split an internal node.
Min_samples_leaf [1, 21] The minimum number of samples required to

be at a leaf node.

Table A.5: Gradient Boosting Hyperparameters tuned in the experiments.

APPENDIX A. META-LEARNERS’ HP SPACE 167

Hyperparameter Values Description

C [1e−10, 10.] (log-scale) Regularization strength.
penalty {’l2’, ’l1’ } Whether to use Lasso or Ridge regularization.
Fit_intercept True, False Whether or not the intercept of the linear classi-

fier should be computed.

Table A.6: Logistic Regression Hyperparameters tuned in the experiments.

Hyperparameter Values Description

loss {’hinge’,’perceptron’,’log’,
’squared_hinge’}

Loss function to be optimized.

penalty {’l2’, ’l1’, ’elasticnet’ } Whether to use Lasso, Ridge, or ElasticNet regu-
larization.

learning rate {’constant’, ’optimal’, ’invs-
caling’ }

Shrinks the contribution of each successive train-
ing update.

fit intercept {True, False} Whether or not the intercept of the linear classi-
fier should be computed.

l1 ratio [0., 1.] Ratio of Lasso vs. Ridge regularization to use.
Only used when the ‘penalty’ is ElasticNet.

eta0 [0., 5.] Initial learning rate.
Power_t [0., 5.] Exponent for inverse scaling of the learning rate.

Table A.7: SGD Classifier Hyperparameters tuned in the experiments.

AppendixB
SETS OF META-FEATURES

This appendix presents thejfull table of meta-features usedjin experiments per-
formed injthis thesis. Forjeach meta-feature itjis shown : the category it belongs
to, its acronym and description, adapted fromjthe PyMFE [156] documentation.

Table B.1: Meta-features used in the experiments.

Type Acronym Description

Simple

classes Number of classes
attributes Number of attributes
numeric Number of numerical attributes
nominal Number of nominal attributes
samples Number of examples
dimension samples/attributes
numRate numeric/attributes
nomRate nominal/attributes

Statistical

sks Skewness
kts Kurtosis
ktsp Kurtosis for normalized datasets
absc Correlation between attributes
canc Canonical correlation between matrices

Landmarking

nb Naive Bayes accuracy
1nn 1-Nearest Neighbor accuracy
dt Decision Trees accuracy

Continued on next page

168

APPENDIX B. SETS OF META-FEATURES 169

Table B.1 – continued from previous page

Type Acronym Description

Information
theoretic

clEnt Class entropy
nCIEnt Class entropy for normalized dataset
atrEnt Mean entropy of attributes
jEnt Joint entropy
mutInf Mutual information
noiSig (atrEnt - mutInfyMutInf)/mutInf

Model-based
(Tree)

nodes Number of nodes
leaves Number of leaves
nodeAtr Number of nodes per attribute
nodelns Number of nodes per instance
lev (min, max, sd) Distributions of levels of depth
bran (min, max, sd) Distributions of levels of branches
att (min, max, sd) Distributions of attributes used

Data
Complexity

f1 Maximum Fisher’s discriminant ratio
f2 Overlap of the per-class bounding boxes
f3 Maximum feature efficiency
f4 Collective feature efficiency
n1 Fraction of points on the class boundary
n2 Ratio of average intra/inter-class NN dist
n3 leave-one-out error rate of the 1-NN
t1 Fraction of maximum covering spheres
t2 Average number of points per dimension
l1 Training error of a linear classifier
l2 Nonlinearity of a linear classifier
l3 Minimized sum of the error distance of a

linear classifier

AppendixC
LIST OF DATASETS

This appendix presents the full table of datasets used in experiments performed
in this thesis. For each dataset it is shown : the dataset id, the number of
instances, attributes, and classes. FiguresC.1 andC.2 shows the distribution of
the number of classes and attributes in all datasets.

283

35 17 18 9 11 2 1 17 4 1 2 4

2 3 4 5 6 7 8 9 10 11 13 15 18

N
u

m
b

e
r
 o

f
d

a
ta

s
e

ts

Number of classes

Figure C.1: Histogram of the number of classes in our datasets.

Figure C.2: Histogram of the number of attributes in our datasets.

170

APPENDIX C. LIST OF DATASETS 171

Table C.1: Datasets used in the experiments.

Dataset
Number of

Intances Attributes Classes

D1 2000 16 10
D2 1340 11 2
D3 2310 17 7
D4 5000 40 3
D5 8192 32 2
D6 45312 5 2
D7 5100 37 2
D8 1832 11 2
D9 2800 26 5
D10 9465 39 2
D11 57999 9 7
D12 1837 11 2
D13 4999 21 3
D14 43825 11 2
D15 1000 11 2
D16 39948 12 2
D17 43824 10 2
D18 22784 8 2
D19 19020 10 2
D20 5000 19 2
D21 1831 10 2
D22 43825 11 2
D23 959 42 2
D24 1834 11 2
D25 841 66 4
D26 2000 40 10
D27 43825 11 2
D28 5404 5 2
D29 7400 20 2
D30 3200 24 10
D31 1212 17 2
D32 1941 27 7
D33 3196 36 2
D34 2800 26 5

Continued on next page

172 APPENDIX C. LIST OF DATASETS

Table C.1 – continued from previous page

Dataset
Number of

Intances Attributes Classes

D35 360 9 15
D36 1833 10 2
D37 3107 6 2
D38 43825 11 2
D39 43824 11 2
D40 98049 29 2
D41 1832 11 2
D42 43825 11 2
D43 98527 23 2
D44 1941 28 7
D45 43825 11 2
D46 1836 11 2
D47 3772 26 2
D48 2000 64 10
D49 1831 10 2
D50 1832 10 2
D51 2310 18 7
D52 11183 6 2
D53 22784 16 2
D54 3772 23 3
D55 16599 17 2
D56 1000 11 2
D57 43825 11 2
D58 1837 11 2
D59 20000 16 2
D60 2800 26 5
D61 3188 60 3
D62 1832 11 2
D63 9517 5 2
D64 350 33 2
D65 2000 16 10
D66 43825 11 2
D67 5473 10 2
D68 14980 15 2
D69 3196 35 2

Continued on next page

APPENDIX C. LIST OF DATASETS 173

Table C.1 – continued from previous page

Dataset
Number of

Intances Attributes Classes

D70 1832 11 2
D71 8124 21 2
D72 7200 17 3
D73 4839 5 2
D74 1000 6 2
D75 43825 11 2
D76 10000 12 2
D77 1000 26 2
D78 43825 11 2
D79 43824 11 2
D80 1830 11 2
D81 1832 11 2
D82 43824 11 2
D83 1000 26 2
D84 1835 11 2
D85 1832 11 2
D86 1600 20 2
D87 6598 17 2
D88 1000 11 2
D89 1835 11 2
D90 4052 3 2
D91 43825 11 2
D92 1834 11 2
D93 3772 27 2
D94 8192 28 2
D95 11055 30 2
D96 5000 21 3
D97 4177 8 3
D98 1833 11 2
D99 17897 8 2
D100 40768 10 2
D101 8192 8 2
D102 1600 10 2
D103 1833 11 2
D104 1000 26 2

Continued on next page

174 APPENDIX C. LIST OF DATASETS

Table C.1 – continued from previous page

Dataset
Number of

Intances Attributes Classes

D105 4601 57 2
D106 1728 20 4
D107 990 13 11
D108 2310 18 7
D109 43825 11 2
D110 40768 11 2
D111 2000 6 2
D112 1832 11 2
D113 1837 11 2
D114 9822 14 2
D115 8145 17 2
D116 43825 11 2
D117 28056 6 18
D118 1834 11 2
D119 20000 16 2
D120 20000 19 5
D121 43825 11 2
D122 12958 8 4
D123 5456 4 4
D124 32769 9 2
D125 43825 11 2
D126 1828 11 2
D127 5455 24 4
D128 43825 11 2
D129 4177 3 2
D130 3163 25 2
D131 2310 18 2
D132 1000 26 2
D133 6434 37 6
D134 43825 11 2
D135 39365 10 2
D136 14240 30 2
D137 5620 63 10
D138 1835 11 2
D139 12958 8 4

Continued on next page

APPENDIX C. LIST OF DATASETS 175

Table C.1 – continued from previous page

Dataset
Number of

Intances Attributes Classes

D140 5100 36 2
D141 3848 5 2
D142 5124 20 2
D143 2126 35 3
D144 3771 23 4
D145 8192 8 2
D146 2000 47 10
D147 1000 6 2
D148 88588 6 2
D149 67557 41 3
D150 44819 6 3
D151 5588 36 2
D152 1832 11 2
D153 3772 21 3
D154 43825 11 2
D155 5456 24 4
D156 1834 11 2
D157 1599 11 6
D158 9961 14 2
D159 7129 4 2
D160 19019 10 2
D161 1832 11 2
D162 4898 11 7
D163 99358 7 7
D164 6574 11 2
D165 2108 21 2
D166 20640 8 2
D167 1000 11 2
D168 8641 4 2
D169 7400 20 2
D170 5500 40 11
D171 8192 4 2
D172 43824 10 2
D173 1000 26 2
D174 14980 14 2

Continued on next page

176 APPENDIX C. LIST OF DATASETS

Table C.1 – continued from previous page

Dataset
Number of

Intances Attributes Classes

D175 105908 13 5
D176 1000 6 2
D177 8192 11 2
D178 3186 19 3
D179 1832 11 2
D180 43825 11 2
D181 1600 20 2
D182 1834 11 2
D183 43825 11 2
D184 2800 26 5
D185 1941 33 2
D186 1832 10 2
D187 10935 27 3
D188 30000 22 2
D189 8192 20 2
D190 1000 6 2
D191 1212 10 2
D192 846 19 2
D193 5473 9 5
D194 40768 6 2
D195 15544 5 2
D196 100968 29 8
D197 48842 10 2
D198 2800 26 5
D199 7400 20 2
D200 402 17 2
D201 548 22 2
D202 350 18 2
D203 782 17 2
D204 7478 28 2
D205 19144 17 2
D206 3271 46 2
D207 494051 46 18
D208 1137 13 2
D209 230 47 2

Continued on next page

APPENDIX C. LIST OF DATASETS 177

Table C.1 – continued from previous page

Dataset
Number of

Intances Attributes Classes

D210 1288 16 2
D211 351 17 5
D212 1040 46 2
D213 396 17 15
D214 552 12 2
D215 3229 31 2
D216 1630 30 2
D217 2329 24 7
D218 281 33 5
D219 1640 29 2
D220 9923 12 2
D221 2067 14 10
D222 378 17 2
D223 5005 15 7
D224 1221 20 2
D225 325 14 5
D226 8182 30 2
D227 332 18 2
D228 3320 69 3
D229 1507 15 3
D230 438 18 2
D231 105984 23 5
D232 619 13 2
D233 422 18 2
D234 3889 36 4
D235 1237 10 3
D236 708 61 2
D237 1796 9 2
D238 1704 7 2
D239 1323 11 3
D240 2564 10 2
D241 3139 14 2
D242 7531 27 2
D243 8207 30 2
D244 407 31 2

Continued on next page

178 APPENDIX C. LIST OF DATASETS

Table C.1 – continued from previous page

Dataset
Number of

Intances Attributes Classes

D245 1698 19 6
D246 517 15 2
D247 783 11 4
D248 612 11 2
D249 5092 27 2
D250 1818 12 4
D251 1524 15 2
D252 3213 14 10
D253 1040 27 2
D254 49182 24 2
D255 2043 26 10
D256 707 12 3
D257 939 18 4
D258 689 15 2
D259 803 21 2
D260 6519 46 6
D261 937 19 2
D262 258 16 5
D263 4655 61 2
D264 3899 32 4
D265 2105 22 10
D266 256 13 2
D267 499 32 13
D268 20022 25 6
D269 550 16 2
D270 426 10 4
D271 3899 34 3
D272 494 41 6
D273 3830 36 3
D274 882 10 2
D275 302 13 3
D276 813 15 2
D277 2087 13 10
D278 11088 23 10
D279 475 53 2

Continued on next page

APPENDIX C. LIST OF DATASETS 179

Table C.1 – continued from previous page

Dataset
Number of

Intances Attributes Classes

D280 997 14 2
D281 5512 16 5
D282 1624 24 2
D283 317 21 5
D284 1075 16 2
D285 426 9 2
D286 1781 29 2
D287 410 11 3
D288 212 10 3
D289 5033 46 3
D290 1688 11 2
D291 3249 40 2
D292 420 30 2
D293 100983 37 8
D294 908 10 6
D295 646 10 2
D296 983 10 2
D297 852 16 2
D298 2276 11 2
D299 1519 17 9
D300 5433 15 2
D301 5060 31 3
D302 1055 13 2
D303 783 19 2
D304 407 21 5
D305 661 15 2
D306 5663 71 10
D307 1239 15 2
D308 871 12 2
D309 331 17 2
D310 419 10 5
D311 472 15 2
D312 185 19 2
D313 1364 20 2
D314 362 9 2

Continued on next page

180 APPENDIX C. LIST OF DATASETS

Table C.1 – continued from previous page

Dataset
Number of

Intances Attributes Classes

D315 484 24 2
D316 3278 30 10
D317 3262 18 3
D318 1584 13 3
D319 1805 15 2
D320 1259 12 6
D321 370 21 2
D322 767 19 2
D323 58024 16 7
D324 658 35 2
D325 883 25 4
D326 756 19 2
D327 804 16 2
D328 1112 20 11
D329 450 40 5
D330 510 17 3
D331 284 29 2
D332 5323 9 2
D333 1644 24 2
D334 7290 27 3
D335 5605 47 11
D336 28081 16 18
D337 1150 17 2
D338 466 42 2
D339 570 15 3
D340 1178 17 6
D341 241 15 2
D342 276 38 2
D343 264 19 2
D344 2099 27 10
D345 1033 24 2
D346 786 42 18
D347 13081 18 4
D348 542 14 2
D349 1047 10 2

Continued on next page

APPENDIX C. LIST OF DATASETS 181

Table C.1 – continued from previous page

Dataset
Number of

Intances Attributes Classes

D350 2118 54 10
D351 212 27 2
D352 67664 47 3
D353 381 21 2
D354 1725 27 2
D355 3834 32 2
D356 1085 23 2
D357 779 24 4
D358 6734 17 2
D359 1306 65 2
D360 1910 15 2
D361 43998 9 2
D362 1935 12 2
D363 1964 17 2
D364 44000 15 2
D365 1896 11 2
D366 43907 18 2
D367 1955 18 2
D368 43918 11 2
D369 1879 13 2
D370 43947 12 2
D371 1939 15 2
D372 1980 9 2
D373 43871 16 2
D374 1927 17 2
D375 43882 14 2
D376 2009 8 2
D377 43951 9 2
D378 1990 10 2
D379 43992 14 2
D380 1934 13 2
D381 1935 17 2
D382 44002 16 2
D383 1934 9 2
D384 43927 9 2

Continued on next page

182 APPENDIX C. LIST OF DATASETS

Table C.1 – continued from previous page

Dataset
Number of

Intances Attributes Classes

D385 1868 17 2
D386 1997 8 2
D387 43891 15 2
D388 2020 16 2
D389 43990 12 2
D390 1981 15 2
D391 2002 8 2
D392 43993 15 2
D393 40934 11 2
D394 1052 12 2
D395 1135 33 2
D396 1090 6 2
D397 1104 8 2
D398 1143 24 2
D399 1170 13 2
D400 1123 18 2

AppendixD
AeKNN COMPLETE EVALUATION
RESULTS

This appendix presents thejfull table of datasets usedjin the emperical evalu-
ationjof AeKNN meta-model. FigureD.1 shows resultsjof RF, XGB,jKNN and
AeKNN meta-models for recommending optimal pipelines forjtest data.

Figure D.1: Performance of baseline meta-models relative to AeKNN on the
benchmark datasets.

183

184 APPENDIX D. AeKNN COMPLETE EVALUATION RESULTS

Dataset
Number of

Instances Attributes Classes

APSFailure 60000 171 2
CustSat 76020 14 2
car 1728 7 4
kr-vs-kp 3196 37 2
airlines 5473 8 2
vehicle 8463 19 4
MiniBooNE 52147 51 2
Higgs 110000 9 2
jannis 8641 55 4
nomao 31772 119 2
Credi-g 30000 21 3
Kc1 2108 15 4
Cnae-9 63260 33 2
albert 43824 13 3
Numerai28.6 6574 9 4
segment 2310 24 4
Covertype 25524 9 5
KDDCup 49402 25 4
shuttle 57999 37 2
Gas_Sens-uci 4148 21 2

Table D.1: List of benchmark datasets used in the evaluation.

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Application to Industry 4.0 Data

Abstract

Machine learning (ML) has penetrated all aspects of the modern life, and brought more
convenience and satisfaction for variables of interest. However, building such solutions
is a time consuming and challenging process that requires highly technical expertise.
This certainly engages many more people, not necessarily experts, to perform analyt-
ics tasks. While the selection and the parametrization of ML models require tedious
episodes of trial and error. Additionally, domain experts often lack the expertise to
apply advanced analytics. Consequently, they intend frequent consultations with data
scientists. However, these collaborations often result in increased costs in terms of unde-
sired delays. It thus can lead risks such as human-resource bottlenecks. Subsequently, as
the tasks become more complex, similarly the more support solutions are needed for the
increased ML usability for the non-ML masters. To that end, Automated ML (AutoML) is
a data-mining formalism with the aim of reducing human effort and readily improving
the development cycle through automation.

The field of AutoML aims to make these decisions in a data-driven, objective, and
automated way. Thereby, AutoML makes ML techniques accessible to domain scientists
who are interested in applying advanced analytics but lack the required expertise. This
can be seen as a democratization of ML. AutoML is usually treated as an algorithms
selection and parametrization problem. In this regard, existing approaches include
Bayesian optimization, evolutionary algorithms as well as reinforcement learning. These
approaches have focused on providing user assistance by automating parts or the entire
data analysis process, but without being concerned on its impact on the analysis. The
goal has generally been focused on the performance factors, thus leaving aside other
important and even crucial aspects such as computational complexity, confidence and
transparency. In contrast, this thesis aims at developing alternative methods that
provide assistance in building appropriate modeling techniques while providing the
rationale for the selected models. In particular, we consider this important demand
in intelligent assistance as a meta-analysis process, and we make progress towards
addressing two challenges in AutoML research. First, to overcome the computational
complexity problem, we studied a formulation of AutoML as a recommendation problem,
and proposed a new conceptualization of a Meta-Learning (MtL)-based expert system
capable of recommending optimal ML pipelines for a given task; Second, we investigated
the automatic explainability aspect of the AutoML process to address the problem of
the acceptance of, and the trust in such black-boxes support systems.

To this end, we have designed and implemented a framework architecture that leverages
ideas from MtL to learn the relationship between a new set of datasets meta-data and
mining algorithms. This eventually enables recommending ML pipelines according to
their potential impact on the analysis. To guide the development of our work, we chose
to focus on the Industry 4.0 as a main field of application for all the constraints it offers.
Finally, in this doctoral thesis, we focus on the user assistance in the algorithms selection
and tuning step. We devise an architecture and build a tool, AMLBID, that provides users
support with the aim of improving the analysis and decreasing the amount of time spent
in algorithms selection and parametrization. It is a tool that for the first time does not
aim at providing data analysis support only, but instead, it is oriented towards positively
contributing to the trust-in such powerful support systems by automatically providing
a set of explanation levels to inspect the provided results.

Keywords: data analysis, machine learning, automl, explainable ai

Vers une automatisation efficace et explicable des processus d’apprentissage auto-

matique

Application à l’Industrie 4.0

Résumé

L’industrie du futur introduit de nouveaux concepts, processus et pratiques conduisant
à des mutations profondes dans le pilotage des systèmes d’information associés. Une
des problématiques cruciales est l’utilisation de la quantité importante de données,
notamment celles produites par les différents dispositifs d’acquisition de données (Cyber
Physical Systems, etc.), pour en extraire de la connaissance destinée à la maîtrise des
processus de l’entreprise à travers un système d’information évolutif, réactif et adapté
aux spécificités de l’industrie 4.0.

L’intelligence artificielle et plus particulièrement l’apprentissage automatique fournit les
algorithmes, méthodes et outils permettant l’extraction de connaissances et de modèles
à partir des données représentant l’activité d’une entreprise et son environnement, et
l’apport de plus d’automatisation des processus sous-jacents. Cependant, de nombreuses
entreprises ne disposent pas de moyens humains leur permettant de déployer efficace-
ment des solutions d’apprentissage automatique. Cela s’explique notamment par le fait
que la construction de telles solutions est un processus long et difficile qui nécessite une
expertise hautement technique et intersectorielle et qui est une ressource limitée. Nous
nous intéressons donc à ce besoin d’assistance à l’analyse de données, qui commence à
recevoir une certaine attention des communautés scientifiques, donnant naissance au
domaine dit d’apprentissage automatique automatisé.

L’apprentissage automatique automatisé est devenu un domaine en plein essor qui
vise à rendre l’application des méthodes d’apprentissage automatique aussi dépourvue
d’intervention humaine que possible. A cet égard, les approches existantes se révèlent
souvent similaires et peu abouties. Ces approches sont concentrées sur l’assistance de
l’utilisateur en automatisant une partie ou l’ensemble du processus d’analyse de données,
mais sans se soucier de son impact sur l’analyse. L’objectif a généralement été axé sur
les facteurs de performance, laissant ainsi de côté d’autres aspects importants, voire
cruciaux, tels que la complexité du calcul, la confiance et la transparence.

Cette observation nous a amenés à orienter nos recherches vers le domaine du Meta-
Apprentissage (MtL) et à développer des méthodes alternatives qui apportent une aide
à la construction des techniques de modélisation appropriées tout en fournissant le
rationnel des modèles ML sélectionnés. En particulier, nous considérons cette demande
importante d’assistance intelligente comme un processus de méta-analyse, et nous
progressons vers la résolution de deux défis de la recherche en AutoML. Dans un premier
temps, pour palier au problème de la complexité du calcul, nous avons étudié une
formulation de l’AutoML en tant que problème de recommandation, puis proposé une
nouvelle conceptualisation d’un système expert basé sur le MtL capable de recommander
des pipelines ML optimaux pour une tâche donnée. Dans un second temps, nous avons
traité l’explicabilité du processus d’aide à la décision de l’AutoML pour prendre en
compte la problématique de l’acceptation et la confiance en ces systèmes généralement
vus comme des boîtes noires.

Mots clés : analyse de données, apprentissage automatique, automl, explicabilité de l’ia

	Abstract
	Remerciements
	Table of Contents
	List of Tables
	List of Figures
	Acronyms
	Symbols
	Introduction
	Background and motivation
	Research focus and values
	Main contributions to the research area
	Publications
	Thesis structure

	I State of the art
	1 ML algorithms selection and hyperparameters tunning
	1.1 The algorithms selection problem
	1.2 Hyperparameters tuning
	1.2.1 Definitions
	1.2.2 Hyperparameters tuning techniques

	1.3 Machine learning for industrial big data analysis
	1.3.1 Application areas of ML in manufacturing
	1.3.2 Challenges in building ML with industrial big data
	1.3.3 Common practices to apply advanced analytics for manufacturing related problems

	1.4 Conclusion

	2 Automated machine learning
	2.1 Automated machine learning
	2.1.1 Meta-learning based approach
	2.1.2 Summary of literature overview
	2.1.3 Ontology based approach
	2.1.4 Background on AutoML sSystems

	2.2 AutoML in the manufacturing industry
	2.2.1 Using existing AutoML tools for manufacturing datasets
	2.2.2 Building AutoML for manufacturing datasets

	2.3 Towards AutoML for industrial big data
	2.4 Conclusion

	II Contributions
	3 Towards the automation of industrial data science
	3.1 Introduction
	3.2 Meta-learning for automatic algorithms selection
	3.3 Conceptual description
	3.3.1 Learning phase
	3.3.2 Recommendation phase

	3.4 Prototypical implementation
	3.4.1 Datasets
	3.4.2 Meta-features
	3.4.3 Meta-knowledge base
	3.4.4 The Meta-model

	3.5 Empirical study
	3.5.1 The experimental configuration
	3.5.2 Experimental results

	3.6 Conclusion

	4 Learning Abstract Tasks Representation
	4.1 Introduction
	4.2 Theoretical background and related works
	4.2.1 The problem statement
	4.2.2 Data characterization

	4.3 The AekNN data characterization approach
	4.3.1 AekNN foundations
	4.3.2 The AeKNN meta-model

	4.4 Experimental study
	4.4.1 AeKNN architectures analysis
	4.4.2 Results of latent meta-features extraction
	4.4.3 Results of the algorithms selection process

	4.5 Conclusion

	5 Towards Interactive Explainable Automated machine learning
	5.1 Introduction
	5.2 The need for transparency to trust in AI and in AutoML
	5.3 Explainable Artificial Intelligence
	5.4 Visual Analytics for AutoML
	5.5 The Conceptual framework
	5.5.1 The AutoML Overview
	5.5.2 The recommendation-level View
	5.5.3 The What-if analysis-level View
	5.5.4 The refinement-level View

	5.6 Conclusion

	6 AMLBID: A self-explained AutoML software package
	6.1 Motivation and significance
	6.2 Software description
	6.2.1 Software architecture
	6.2.2 The software Functionalities

	6.3 Illustrative Example
	6.3.1 Recommender module
	6.3.2 Explainer module

	6.4 Impact
	6.5 Utility and usability study
	6.5.1 Demonstration test case
	6.5.2 User interview

	6.6 Conclusion

	III Conclusion
	7 Conclusion
	7.1 Conclusion
	7.2 Publications
	7.3 Challenges and future directions

	8 Résumé étendu en Français
	8.1 Introduction
	8.2 Contributions
	8.3 Perspectives

	Bibliography
	A META-LEARNERS’ HP SPACE
	B SETS OF META-FEATURES
	C LIST OF DATASETS
	D AeKNN COMPLETE EVALUATION RESULTS

