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L'imagerie historique se caractérise par une haute résolution spatiale et des acquisitions stéréoscopiques. Elle constitue une ressource précieuse pour la détection des changements et la surveillance environnementale à long terme. Des millions d'images historiques ont été numérisées. Elles sont des témoins objectifs du temps et parfois la seule source visuelle restante de la forme historique du territoire. Cependant, l'énorme potentiel des images historiques diachroniques est supprimé en raison du goulot d'étranglement que constitue leur géoréférencement précis. Il s'agit d'un processus appelé ajustement de faisceau auto-calibré pour estimer les paramètres de calibrage de la caméra. Il faut un nombre susant de correspondances dans des paysages évolutifs, qui sont diciles à obtenir automatiquement, en raison des changements de scène et des conditions hétérogènes d'acquisition des images.

Dans cette recherche, nous présentons des pipelines entièrement automatiques pour trouver des correspondances entre des images historiques prises à diérents temps (c'est-à-dire, inter-époques), sans données auxiliaires nécessaires. En protant de la géométrie 3D et de la stratégie grossier-à-précis, nous (1) enregistrons grossièrement les diérentes époques en établissant un modèle de transformation globalement cohérent sur l'ensemble du bloc, et (2) nous apparions précisément les images inter-époques sous la direction du co-enregistrement grossier pour réduire l'ambiguïté. Six variantes de deux stratégies sont explorées pour l'étape de co-enregistrement grossier, et deux variantes pour l'étape d'appariement précis. Nos pipelines sont adaptés à diverses applications de surveillance environnementale. Cinq données représentatifs sont choisis pour les expériences, chacun représentant une application caractéristique. Avec les correspondances inter-époques récupérées, nous améliorons les orientations de l'image puis calculons les Digital Surface Models (DSMs) à chaque époque, et évaluons quantitativement les résultats avec les Dierence of DSMs (DoDs) et le déplacement du sol dû à un séisme. Nous démontrons que notre méthode (1) peut géoréférencer automatiquement des images historiques diachroniques ; (2) peut atténuer ecacement les erreurs systématiques induites par des paramètres de caméra mal estimés ; et (3) est robuste contre les changements drastiques de la scène. Les pipelines proposés sont mis en ÷uvre dans MicMac, un logiciel de photogrammétrie libre et gratuit.
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Last but not least, during my research at Lastig, I met many warm-hearted friends: Manchun Lei, Yilin Zhou, Imane Fikri, Mohamed Ali Chebbi, Christophe Meynard, Jean-Michael Muller, Jean-Philippe Souchon, Olivier Martin, Lanfa Liu, Nathan Piasco, Emile Blettery, Raphael Sulzer, Stephane Guinard, Oussama Ennai, Evelyn Paiz etc., who made my work environment full of friendliness and laughter. I am grateful to all the friends in my life who enriched me and I look forward to meeting them more often after the COVID subsides. Les images aériennes historiques (c'est-à-dire analogiques ou d'archives) jouent un rôle important en fournissant des informations uniques sur l'évolution de la couverture terrestre. Ce sont des atouts précieux pour un grand nombre d'applications telles que (1) l'analyse des catastrophes naturelles (par exemple, tremblement de terre, glissement de terrain, volcan, inondation, avalanche, etc.), ( 2) la surveillance éco-environnementale (par exemple, forêt, atmosphère, glacier, eau, littoral, etc.), (3) l'expansion urbaine et (4) la pollution et la protection de l'environnement, etc. Les images aériennes historiques ont été régulièrement acquises depuis les années 1920 par des agences cartographiques, militaires ou cadastrales du monde entier. Une quantité massive d'entre elles ont été numérisées et rendues accessibles par des services web [START_REF] Giordano | Archiving and geoprocessing of historical aerial images: current status in Europe[END_REF], USGS 2019[START_REF] Ign | [END_REF]. Par exemple, selon une enquête réalisée au début de 2017 en Europe [START_REF] Giordano | Archiving and geoprocessing of historical aerial images: current status in Europe[END_REF], il y a environ 50 millions d'images aériennes archivées en Europe, dont environ 37,8% sont numérisées. Les images sont de haute résolution spatiale, et sont acquises en conguration stéréoscopique, permettant la restitution 3D des territoires. Elles sont souvent accompagnées de métadonnées, comprenant dans la plupart des cas la focale de la caméra, la hauteur de vol, l'échelle et la taille physique du capteur, qui sont généralement enregistrées ou mentionnées sur les lms. D'autres métadonnées telles que les plans de vol, les certicats d'étalonnage de la caméra ou les orientations ne sont pas couramment disponibles.

Lorsque les paramètres d'étalonnage de la caméra sont inconnus, ils doivent être évalués au moyen d'une procédure appelée ajustement du faisceau d'autoétalonnage. Ground Control Point (GCP)s sont nécessaires, sinon des paramètres de caméra estimés de manière inexacte entraîneront des surfaces d'erreur systématiques appelées eet de dôme (c'est-à-dire eet de bol).

En général, les GCPs proviennent (1) de mesures sur le terrain [START_REF] Micheletti | [END_REF], Walstra et al. 2004, Cardenal et al. 2006], (2) d'orthophotos et de DSM récents [START_REF] Nurminen | [END_REF], Ellis et al. 2006, Fox & Cziferszky 2008] et (3) d'images satellites récentes [START_REF] Ellis | [END_REF][START_REF] Ford | Shoreline changes interpreted from multi-temporal aerial photographs and high resolution satellite images: Wotje Atoll, Marshall Islands[END_REF]. Le plus dicile est d'identier les GCPs sur les images historiques, ce qui n'est pas facile en raison des inévitables changements de scène. Les GCP sont généralement mesurés manuellement à l'aide de photos récentes, mais cela reste monotone et laborieux. Il est urgent d'identier automatiquement les points correspondants (c'est-à-dire les correspondances) sur des images historiques et récentes. Lorsque les utilisateurs sont uniquement intéressés par la comparaison de diérentes époques historiques, l'auto-calibrage peut être réalisé sans GCPs. Les correspondances entre diérentes époques serviraient d'observations dans l'ajustement du faisceau pour éliminer les erreurs systématiques des surfaces. En conclusion, le goulot d'étranglement de l'auto-calibration des images historiques est la récupération des correspondances sur des images prises à des époques diérentes (c'est-à-dire multi-époques).

1.1.2 Comment faire correspondre des images historiques multiépoques Cependant, la comparaison d'images historiques multi-époques reste dicile, malgré le fait qu'il existe un grand nombre d'algorithmes de comparaison d'images dont l'ecacité a été prouvée sur des images modernes. Les raisons en sont les suivantes:

1. Les images multi-époques sont souvent acquises à diérents moments de la journée et par diérents temps et saisons, ce qui entraîne inévitablement des diérences d'apparence.

2. La scène change au l du temps en raison de phénomènes anthropiques (par exemple, l'urbanisme) ou naturels (par exemple, un tremblement de terre), en particulier pour les grands écarts temporels.

3. Les images multi-époques présentent souvent des résolutions spatiales hétérogènes, accompagnées de conditions d'acquisition diérentes (capteurs, canaux spectraux, etc).

4. Les images historiques sont souvent confrontées à une faible qualité radiométrique, notamment un faible contraste, du bruit d'image, une détéri-oration causée par le vieillissement des lms, ou même des rayures sur les lms.

La simple application de méthodes d'appariement des caractéristiques (par exemple, SIFT [Lowe 2004] ou SuperGlue [Sarlin et al. 2020]) sur des paires d'images multi- Avantages de la géométrie 3D Les images RGB sont largement utilisées pour pour l'appariement des images. Cependant, elles présentent les inconvénients suivants:

(1) Leur apparence change avec le temps (voir la Figure 1.2), et avec des angles de vue variables sur des surfaces non-Lambertiennes (voir la Figure 1.3). ( 2) Les autosimilitudes (par exemple, les modèles répétitifs) favorisent les fausses correspondances (voir la Figure 1.3). Heureusement, la géométrie 3D telle que DSM compense parfaitement ces défauts.

Comme on peut le voir sur la Figure 1. Nos pipelines visent à libérer le potentiel des images historiques pour le suivi des conditions environnementales. Nous collaborons actuellement avec plusieurs instituts pour appliquer nos pipelines dans diérentes applications, notamment:

1. Institut de Physique du Globe de Paris (IPGP) et Korea Institute of Geoscience and Mineral Resources (KIGAM) pour analyser les déformations de la croûte terrestre an de comprendre les événements sismiques.

2. Conseil national de la recherche, Institut de recherche pour la protection hydrogéologique (CNR-IRPI) pour l'analyse de l'évolution des glissements de terrain en Italie.

3. Département des sciences de la terre et de l'environnement de l'université de Pavie pour l'analyse de l'évolution des badlands en Europe.

Nous avons également développé deux tutoriels complets accompagnés d'ensembles de données de test pour familiariser les utilisateurs avec nos pipelines implémentés dans MicMac [Zhang et al. Historical (i.e., analogue or archival) aerial images play an important role in providing unique information about evolution of land-covers. They are valuable assets for a wide range of applications such as (1) analyzing of natural disasters (e.g., earthquake, landslide, volcano, ood, avalanche, etc), ( 2) eco-environmental monitoring (e.g., forest, atmosphere, glacier, water, coastline, etc), (3) urban expansion and ( 4) environmental pollution and protection and so on. Historical aerial images have been regularly acquired since the 1920's by mapping, military or cadastral agencies all over the world. A mass amount of them have been digitized and made accessible through web services [START_REF] Giordano | Archiving and geoprocessing of historical aerial images: current status in Europe[END_REF], USGS 2019[START_REF] Ign | [END_REF]. For example, according to a survey taken place at the beginning of 2017 in Europe [START_REF] Giordano | Archiving and geoprocessing of historical aerial images: current status in Europe[END_REF], there are approximately 50 millions of aerial images archived in Europe, with around 37.8% of them digitized. The images are of high spatial resolution, and are acquired in stereoscopic conguration, allowing for 3D restitution of territories. They are often accompanied by metadata, in most cases including the camera focal length, ight height, scale and the physical sensor size, which are usually saved or mentioned on the lms. Other metadata such as ight plans, camera calibration certicates or orientations are not commonly available.

When the camera calibration parameters are unknown, they should be evaluated by a procedure called self-calibrating bundle adjustment. GCPs are required, otherwise inaccurately estimated camera parameters will lead to systematic error surfaces called dome eect (i.e., bowl eect). Generally, GCPs originate from (1) eld surveys [START_REF] Micheletti | [END_REF], Walstra et al. 2004, Cardenal et al. 2006], (2) recent orthophotos and DSM [START_REF] Nurminen | [END_REF], Ellis et al. 2006, Fox & Cziferszky 2008] and (3) recent satellite images [START_REF] Ellis | [END_REF][START_REF] Ford | Shoreline changes interpreted from multi-temporal aerial photographs and high resolution satellite images: Wotje Atoll, Marshall Islands[END_REF]]. The most challenging part is to identify the GCPs on the historical images, which is not easy due to inevitable scene changes. GCPs are usually manually measured with the help of recent photos, however, it is still monotonous and time-consuming. There is an urgent need to automatically identify corresponding points (i.e., matches) on historical and recent images. When users are only interested in comparing dierent historical epochs, the selfcalibration can be accomplished without GCPs. Matches between dierent epochs would serve as observations in bundle adjustment to eliminate the systematic errors in surfaces. In conclusion, the bottleneck of historical image self-calibration is recovering matches on images taken at dierent times (i.e., multi-epoch).

How to match multi-epoch historical images

However, matching multi-epoch historical images remains challenging, despite the fact that there exists a large number of image matching algorithms with their eectiveness proven on modern images. The reasons include:

1. Multi-epoch images are often acquired at dierent times of day and in various weathers and seasons, which unavoidably leading to appearance dierences.

2. The scene changes over time due to anthropogenic phenomena (e.g., urban planning) or natural ones (e.g., earthquake), especially for large time gaps.

3. Multi-epoch images often exhibit heterogeneous spatial resolutions, accompanied with dierent acquisition conditions (sensors, spectral channels, etc).

4. Historical images are often facing low radiometric quality, including low contrast, image noise, deterioration due to the aging of lms, or even scratches on the lms.

Simply applying state-of-the-art feature matching methods (e.g., SIFT [Lowe 2004] or SuperGlue [Sarlin et al. 2020]) on multi-epoch image pair often leads to unsatisfactory results. An example is given in Figure 2.1. A pair of multi-epoch images are demonstrated with red rectangles indicating the overlapping area in Figure 2.1(a). The left and right images are taken at the same place in 1954 and 1970 individually. The scene changed signicantly, a lot of new buildings arose, the color tones were very dierent. In Figure 2.1(b-d), the matching result of SIFT, SuperGlue and Ours are displayed for comparison. As can be seen, SIFT failed to nd any matches. SuperGlue recovered 369 matches, most of which seem good, but at a closer look the details reveal poor localization precision. Our method found 1463 matches with high accuracy, thanks to the help of (1) 3D geometry and (2) the divide and conquer (i.e., rough-to-precise) strategy, which are elaborated in the following texts. Chapter 2. Introduction Advantages of 3D geometry RGB images are widely used for image matching.

However, they have the following shortcomings:

(1) Their appearances change over time (see Figure 2.2), and over varying view angles on non-Lambertian surfaces (see Figure 2.3).

(2) Self similarities (e.g., repetitive patterns) favor false matches (see Figure 2.3).

Fortunately, 3D geometry such as DSM makes up for these shortcomings perfectly.

As can be seen in Figure 2.2, the RGB images look very dierent because the scene changed a lot. However, the corresponding DSMs look similar, which is reasonable, as the 3D landscape is more stable over time. Besides, DSM is more distinctive than RGB image when it comes to non-Lambertian surfaces and repetitive patterns, as shown in Figure 2.3. Even though 3D geometry lacks textures and details compared to RGB image, it serves as an ideal supplement. Besides, it plays an important role in providing the 3D information for establishing 3D Helmert transformation model between epochs to (1) move dierent epochs into the same coordinate frame and ( 2) remove false matches in a RANSAC routine which is more reliable than 2D transformation models. Divide and Conquer Since the task of recovering robust and precise matches on multi-epoch image pairs is dicult, we divide the task into two sub-tasks and conquer them individually with the rough-to-precise strategy. It is illustrated in Figure 2.4. The two sub-tasks includes:

1. Rough co-registration, as illustrated in Figure 2.4(b). Its goal is to roughly align the multi-epoch image pairs by focusing on robustness and relaxing the requirement for accuracy.

2. Precise matching, as illustrated in Figure 2.4(c). It renes the matches predicted by the rough co-registration result by searching only the local neighborhood to reduce ambiguity.

Contributions

In this thesis we present rough-to-precise pipelines for matching multi-epoch images.

They are suitable for aerial, satellite and mixed images, which open the possibility of geo-referencing millions of historical images without requiring any GCPs. Six variants are provided for the rough co-registration stage and two variants for the precise matching stage. Each variant has its own characteristic:

1. For rough co-registration variants: (1) the ones based on the idea of matching DSMs generally lead to the most robust results; (2) the ones that match orthophotos could serve as alternates in rare scenarios of perfectly at terrain where DSMs fail to provide useful information; (3) the others that match original image pairs often lead to less satisfactory results, but they are the only options suitable for terrestrial images.

2. For precise matching variants: (1) P atch is based on learned matching methods, it generally results in more matches as it is more invariant over time. (2) Guided is based on hand-crafted methods, it is more ecient in terms of the use of memory and CPU resources as it doesn't involve resampling patches, which is necessary for P atch.

Our pipelines aim to unlock the potential of historical images for tracking environmental conditions. We are currently collaborating with several institutes to apply our pipelines in dierent applications, including:

1. Institut de Physique du Globe de Paris (IPGP) and Korea Institute of Geoscience and Mineral Resources (KIGAM) for analyzing deformations of the earth crust to understand the seismic events. We also provide video [Zhang et al. 2021f], slides [Zhang et al. 2021c] and project website [Zhang et al. 2021b] to improve the visibility of our work.

Organization of the thesis

This thesis presents fully automatic pipelines to match multi-epoch images. A brief presentation of the state-of-the-art is given in Chapter 3.

In Chapter 4, applications as well as 5 sets of representative datasets are introduced, which are latter used to test our pipelines.

In Chapter 5, six rough co-registration variants are elaborated to roughly align the whole block by building a globally consistent transformation model between dierent epochs.

In Chapter 6, two precise matching variants are introduced to get accurate matches under the guidance of roughly co-registered orientations and DSMs.

Finally, in Chapter 7 conclusion and perspective are given. According to dierent data storage types, descriptors can be divided into two categories: oating-point and binary descriptors. The former is recorded in oatingpoint format, which has the advantage of being informative. It is widely used in various matching scenarios. The latter is stored in binary type, which guarantees faster processing while demanding less memory. It is particularly suitable for realtime and/or smartphone applications. Since our goal is to match multi-epoch images for high accuracy cartography, we are interested in oating-point descriptors rather than binary ones.

According to whether machine learning techniques are applied, local features can be categorized as hand-crafted or learned. We subsequently elaborate on the two categories of approaches.

Hand-crafted methods

In the early stage, Moravec detects corner feature by measuring the sum-of-squareddierences (SSD) by applying a small shift in a number of directions to the patch around a candidate feature [START_REF] Moravec | Obstacle avoidance and navigation in the real world by a seeing robot rover[END_REF]]. Based on this, Harris computes an approximation to the second derivative of the SSD with respect to the shift [Harris & Stephens 1988]. Since both Moravec and Harris are sensitive to changes in image scale, algorithms invariant to scale and ane transformations based on Harris are presented [Mikolajczyk & Schmid 2004]. Other than corner feature, SIFT (Scale-invariant feature transform) [Lowe 2004] detects blob feature in scale-space, which is an entire pipeline including detection and description. It uses a dierenceof-Gaussian function to identify potential feature points that are invariant to scale and orientation. SIFT is a milestone among hand-crafted features, and is able to outperform machine learning alternatives when matching conditions are favorable. RootSIFT [START_REF] Arandjelovi¢ | [END_REF]] uses a square root (Hellinger) kernel instead of the standard Euclidean distance to measure the similarity between SIFT descriptors, which leads to a dramatic performance boost. Similar to SIFT, SURF [START_REF] Bay | [END_REF]] resorts to integral images and Haar lters to extract blob feature in a computationally ecient way. DAISY [START_REF] Tola | [END_REF]] is a local image descriptor, which uses convolutions of gradients in specic directions with several Gaussian lters to make it very ecient to extract dense descriptors. KAZE [START_REF] Alcantarilla | [END_REF]] is an algorithm that detects and describes multi-scale 2D feature in nonlinear scale spaces. AKAZE [START_REF] Alcantarilla | Fast Explicit Diusion for Accelerated Features in Nonlinear Scale Spaces[END_REF]] is an accelerated version based on KAZE.

Learned methods

With the rise of machine learning, learned features have shown their feasibility in the image matching problem when enough ground truth data is available. FAST [START_REF] Rosten | [END_REF] uses decision tree to speed up the process of nding corner feature. LIFT (Learned Invariant Feature Transform) [START_REF] Yi | [END_REF] is a deep network architecture that implements a full pipeline including detection, orientation estimation and feature description. It is based on the previous work TILDE [START_REF] Verdie | [END_REF], the method of [Moo Yi et al. 2016] [START_REF] Dusmanu | [END_REF]] is a single neural network that works as a dense feature descriptor and a feature detector simultaneously, but their keypoints are less accurate compared to classical features since they are extracted on feature maps which have a resolution of 1/4 of the input image. ASLFeat [START_REF] Luo | [END_REF] improves shape-awareness and localization accuracy by applying light-weight yet effective modications on improved D2-Net. R2D2 [Revaud et al. 2019] is a CNN architecture that learns dense local descriptors (one for each pixel) as well as two associated repeatability and reliability condence maps. Contextdesc [Luo et al. 2019] is a unied learning framework that leverages and aggregates the cross-modality contextual information. D2D [Wiles et al. 2020] allows dense features to be modied based on the dierences between the images by conditioning the feature maps on both images. Dierent than the aforementioned feature extraction methods, Super-Glue [Sarlin et al. 2020] presents a new way of thinking about the feature matching problem. It matches two sets of pre-existing local features by adopting a exible context aggregation mechanism based on attention to jointly nd matches and reject non-matchable points, leading to robust matching results even in challenging situations.

Early learned methods (LIFT [START_REF] Yi | [END_REF] (e.g., repeatability, matching score, mean matching accuracy, etc) to evaluate the matching performance. Even though they demonstrate better performance when compared to hand-crafted features on certain benchmarks, it does not necessarily imply a better performance in terms of subsequent processing steps. For example, in the context of Structure from Motion (SfM), nding additional matches for image pairs where SIFT already provides enough matches does not necessarily result in more accurate or complete reconstructions [START_REF] Schonberger | [END_REF]]. Jin et al. [Jin et al. 2020] introduce a comprehensive benchmark for local features and robust estimation algorithms, focusing on the accuracy of the reconstructed camera pose as the primary metric. Using the new metric, SIFT [Lowe 2004] and SuperGlue [Sarlin et al. 2020] take the lead [Trulls et al. 2020].

Robust matching

The goal of robust matching is to tell apart true matches (i.e., inliers) from false matches (i.e., outliers), and eliminate the latter from further processing. Typically, an iterative sampling strategy based on RANSAC (Random Sample Consensus) [Fischler & Bolles 1981] relying on some mathematical model, such as homography [START_REF] Sonka | [END_REF] or essential matrix [START_REF] Sonka | [END_REF]] is carried out to remove outliers. This is an important issue which was often not given sufcient attention. LMedS (Least Median of Squares) [START_REF] Leroy | [END_REF]] is a meaningful groundwork before RANSAC, which is also commonly used to replace RANSAC. MLESAC (Maximum Likelihood SAC) [Torr & Zisserman 2000] adopts the same sampling strategy as RANSAC but chooses the solution that maximizes the likelihood instead of the number of inliers. PROSAC (Progressive Sample Consensus ) [START_REF] Chum | Two-view geometry estimation unaected by a dominant plane[END_REF] chooses samples from progressively larger sets of top-ranked matches, which makes it signicantly faster than RANSAC. DEGENSAC [START_REF] Chum | Matching with PROSACprogressive sample consensus[END_REF]] is an algorithm for epipolar geometry estimation unaected by planar degeneracy. It is widely used in the 2020 image matching challenge [Trulls et al. 2020]. USAC (Universal RANSAC) [Raguram et al. 2012] framework is a synthesis of the various optimizations and improvements that have been proposed to RANSAC. GC-RANSAC (Graph-Cut RANSAC) [START_REF] Barath | [END_REF] runs graph-cut algorithm in the local optimization step. MAGSAC [START_REF] Barath | [END_REF] eliminates the need for a user-dened inlier-outlier threshold with marginalization.

Various deep learning methods have also been developed to handle the erroneous matches.

DSAC (the dierentiable counterpart of RANSAC) [Brachmann et al. 2017] SIFT used to train CNe, about 80% of the outliers were ltered out. Nearly all classical methods beneted from CNe, but not the learned ones. Jin et al. [Jin et al. 2020] also state that RANSAC should be tuned to particular feature detector and descriptor, and specic settings should be selected for a particular RANSAC variant.

In this research, we use RANSAC to estimate the 3D Helmert transformation between surfaces (i.e., DSMs) calculated in dierent epochs. Compared to the classical essential/fundamental matrix ltering, with less data we impose stricter rules on the sets of points. Lastly, we eliminate the remaining false matches by looking at their cross-correlation. Unlike in modern images where the image coordinate system overlaps with the camera coordinate system, in historical images the overlap is not maintained due to the scanning procedure. To account for this, an additional 2D transformation is estimated in the SfM procedure [McGlone 2013], which puts higher demands on the matches. [START_REF] Giordano | [END_REF] demonstrates the importance of good matches in estimating the camera calibration and its great impact on the planimetric and altimetric accuracies of the resulted DSM. Systematic errors expressed as dome effect (i.e., a vertical doming of the surface) could appear in the DSMs when camera models are poorly estimated (i.e., inaccurately estimated lens distortion parameters) [START_REF] Wackrow | [END_REF], [START_REF] James | [END_REF], which restricts the wider use of DSMs.

Historical image processing

Compared to modern digital images, historical images are accompanied with particular characteristics such as poor radiometric quality and deformation during scanning.

Therefore, aligning multi-epoch historical images by directly applying state-of-theart feature matching methods often leads to unsatisfactory results. In Figure 2.1

we showed an example where SIFT and SuperGlue failed to recover good matches on an inter-epoch image pair with drastic scene changes. It is understandable as (1) SIFT is not suciently invariant over time, while (2) SuperGlue is not invariant to rotations larger than 45 Chapter 4

Applications and Datasets

Our pipelines open the possibility for millions of historical images to come into play in diverse applications of geoscience, including but not limited to disaster analysis, eco-environmental monitoring, urban expansion and so on. In order to reveal the potential of our pipelines, we choose ve representative datasets for experiments:

1 The datasets contain both aerial and satellite images, details of the former are listed in Table 4.1 and 4.2, while that of the latter are displayed in Table 4.3. All the historical aerial images are scanned from lms followed by resampling to the geometry of the ducial marks. The resampling procedure is illustrated in Fréjus. The dataset Fréjus is mainly covered with buildings along with scattered farmlands, except a half-moon-shaped bay located in south. It is a 15 km 2 rectangular area located in Fréjus, a commune in southeastern France. We have four sets of aerial images acquired in 1954, 1966, 1970 and 2014 reference frame and precise. Therefore it is treated as Ground Truth (GT) during our processing (in other words, their parameters will be xed during the Block Bundle Adjustment (BBA)). The area exhibits drastic scene changes in the 60year period, as can be seen in Figure 4.3, where evolution of a subregion is displayed.

Pezenas. Kobe. The dataset Kobe witnessed the well-known Kobe earthquake in January 1995. It is a 90 km 2 area of irregular shape located in the north of Awaji Island, Japan. We have two sets of aerial images: pre-event acquired in 1991 and post-event acquired in 1995. It is mainly covered with mountain area and narrow urban zones along the sea. There are neither GT epochs nor GCPs, therefore we measured 2 points on Google map to scale the result to metric units. In this dataset we are interested in localizing the earthquake fault.

Alberona. The dataset Alberona is characterized by the diuse presence of clay rich lithologies, with the wide presence of slow moving landslides. It is a 90 km 2 rectangular area located in southern Italy, near the village of Alberona (Puglia region). It is a rural, poorly inhabited, mainly agricultural and wooded area. A slow moving slide-earthow has been detected there since the 1950s. We have two sets of aerial images: pre-event acquired in 1954 and post-event acquired in 2003.

Images were scanned with non photogrammetric scanner with 800 dpi. The lms were poorly preserved before scanning, which present some scratches and dust, a typical feature for images that were not preserved for photogrammetric purposes.

There are no GT epochs but 7 GCPs which could be used to move the results from relative coordinate system to absolute one. In this dataset we are interested in localizing the landslide.

Hofsjökull. Chapter 5

Rough co-registration 

Motivation and objective

The goal of rough co-registration is to perform rough alignment between image pairs, so that they can be later used to guide the precise matching by narrowing down the search space in 2D image geometry. It plays a fundamental role as wrongly aligned results would lead to deviation from the right search space. Therefore robustness is the most critical target in rough co-registration. In the meantime, it doesn't need to be very accurate as the precision would be improved in the precise matching part via searching local neighborhood. Therefore, we can reasonably sacrice precision when necessary to trade for robustness.

The task of rough alignment could be accomplished by matching every possible inter-epoch image pair, followed by a RANSAC routine to recover the best transformation model between each image pair. However, inter-epoch image pairs often demonstrate dierent appearances due to scene changes and heterogeneous acquisition conditions, which often leads to limited inlier ratio, in other words, failure of the later RANSAC procedure. Therefore, instead of aligning a group of inter-epoch image pairs separately, we come up with an idea to improve robustness by aligning the whole block integrally to build a globally consistent transformation model. Afterwards, we can move dierent epochs to the same coordinate frame, providing orientations and DSMs in the same geographic system for later processing (i.e., precise matching and BBA). Besides, we take advantage of 3D geometry which could be easily obtained within each epoch to boost the inter-epoch matching performance. As a consequence, we come up with 2 strategies for multi-epoch rough coregistration: (1) ImgPairs (i.e., matching image pairs) and ( 2) Ortho or DSM (i.e., matching orthophotos or DSMs). The former strategy comes up rst, but its performance is less satisfactory. This motivated us to conceive and explore the latter strategy. Even though ImgPairs is generally outperformed by Ortho or DSM, it still has its own strengths in certain cases such as viability for terrestrial images.

Contributions

Our main contribution is complete and fully automated pipelines for rough coregistration between inter-epoch image pairs. The pipelines are composed of the following key ingredients:

1. improving matching robustness by building globally consistent transformation model;

2. introducing the idea of matching DSMs to obtain robust matches even under drastic scene changes, as the 3D landscape often stays globally stable over time;

3. introducing RANSAC in 3D for ImgPairs: each three matches projected to DSM serve to compute a 3D Helmert transformation model between epochs, and most importantly provide a 2D constraint on all image pairs; 4. introducing 4 rotation hypotheses to make SuperGlue suitable for matching images with rotation larger than 45 • ;

5. introducing one-to-many tiling scheme to scale-up the deep learning methods for feature matching;

6. improving the performance of matching inter-epoch images with SIFT by (1) using downsampled images and (2) skipping ratio test.

Methodology

To roughly co-register dierent epochs to the same frame, we propose 2 strategies:

1. ImgPairs: ini , perform semi-global dense matching [Pierrot-Deseilligny & Paparoditis 2006] between images I e i to get DSM (D e i ini ) in their arbitrary coordinate frames.

4. Orthorectify the images to get orthophotos (Op e i ini ) if strategy Ortho is applied.

Strategy 1: Matching image pairs (ImgPairs)

The strategy ImgPairs is the rst attempt we made for rough co-registration. The workow is displayed in Figure 5.1(a). For the sake of simplicity, only 2 epochs are present in our processing ows, however, it can be easily extended to more epochs. The matching procedure (i.e., the magenta rectangle in Figure 5.1(a)) with SIFT or SuperGlue is slightly dierent, so we elaborate both in Figure 5.1(b) and (c)

individually for better understanding. We introduce 4 rotation hypotheses when feature matching method that is not invariant to rotations lager than 45 1. Match P×Q inter-epoch image pairs respectively, giving rise to P×Q sets of matches M (K e 1 , K e 2 ) (K e i represents keypoints in image I e i ).

2. Sample matches M (K e 1 , K e 2 ) iteratively to compute the 2D similarity transformation RANSAC model:

K e 2 x K e 2 y = λ • cosθ sinθ -sinθ cosθ • K e 1 x K e 1 y + ∆ x ∆ y . (5.1)
where λ is the scale factor, θ is the in-plane rotation angle and ∆ x , ∆ y T is the translation vector. Matches within T r of its predicted position (i.e.,

|K e 2 -(λ • cosθ sinθ -sinθ cosθ • K e 1 + ∆)| < T r )
are considered as inliers. The resulted inliers are referred to as M ( K e 1 , K e 2 ) ( K e i represents keypoints in image I e i ). This step aims to reduce matches into a reasonable number when SIFT is applied, otherwise the subsequent global ltering would become prohibitive. It is not necessary if SuperGlue is applied as it simultaneously performs ltering during the matching procedure.

3.

Project K e i from SIFT or K e i from SuperGlue onto DSM D e i ini with the help of orientations O e i ini , resulting in 3D points KG e i .

4. Sample matches M (KG e 1 , KG e 2 ) iteratively to compute the 3D Helmert transformation RANSAC model:

  KG e 2 x KG e 2 y KG e 2 z   = λ • R •   KG e 1 x KG e 1 y KG e 1 z   +   ∆ x ∆ y ∆ z   . (5.2)
where λ is the scale factor, R is the rotation matrix and ∆ x , ∆ y , ∆ z T is the translation vector. Matches within T r of its predicted position (i.e.,

|KG e 2 -(λ • R • KG e 1 + ∆)| < T r ) are considered as inliers.
This strategy is adapted from our early attempt to match dierent epochs by matching P×Q inter-epoch image pairs separately without the later step of building a globally consistent transformation model. In [START_REF] Zhang | [END_REF] we accomplished it by estimating a 2D similarity model for each image pair and using it to guide precise matching. Obviously it is less robust as the P×Q 2D similarity models might not be consistent. However, the idea of using 2D similarity model to guide matching is more generic as it doesn't require initial orientations O e i ini and DSMs D e i ini . It is a viable and maybe even the only possible approach when it is impossible to acquire orientations O e i ini and DSMs D e i ini . An example is demonstrated in section 5.3.4. Additionally, we propose a one-to-many tiling scheme to maximize the performance of feature matching with learned methods. Matching DSMs/orthophotos has the following merits: (1) redundancy caused by the forward and side overlapping areas is removed; (2) it enables a follow-up search for globally consistent inliers directly without the need to project matches onto ground; (3) it decreases the combinatorial complexity caused by rotation ambiguity of P×Q images; (4) when matching DSMs, robust matches can be expected even under extreme scene changes, as 3D landscape generally provide stable information over time.

Converting DSM to grayscale image. DSMs are 2.5D rasters recorded in oating-point format. It is complicated to apply feature matching methods on them directly, as most of the methods are implemented for RGB images. Therefore, we convert DSM beforehand to [0255] range grayscale images as follows:

1. Calculate the standard deviation of the DSM elevation; 2. Pixels with elevations larger than double the standard deviation are considered outliers and therefore ignored; combined with one-to-many tiling scheme. We rotate the secondary orthophoto by 90 • four times to match with master orthophoto and keep the best one with the largest number of RANSAC inliers (red rectangle). One-to-many tiling scheme is applied during each hypothesis, with both orthophotos croped into tiles followed by matching all the tile pairs and merging the matches. 4. Apply Wallis lter on the grayscale image to get rid of uneven illumination, resulting in more informative image.

One-to-many tiling scheme. DSMs/orthophotos are usually large images as they have larger extent than original images. Learned matching methods often underperform on large images as they are either trained on small images in order to run real-time or with limited spatial resolution of CNN feature maps. To make up for the deciency, we propose an one-to-many tiling scheme, which is performed as follows (Figure 5.2(a) and Figure 5.3(a)):

1. Crop master and secondary images into M and N tiles of size SZ one-to-many ;

2. Apply matching on M×N tile pairs respectively;

3. Merge the matches and perform RANSAC based on 2D similarity transformation to remove outliers.

The one-to-many tiling scheme can be combined with 4 rotation hypotheses, as shown in Figure 5. Workow of Ortho and DSM. The matching DSMs/orthophotos strategy works as follows:

1. Transform DSMs to grayscale images if the strategy DSM is applied.

2. Match DSMs/orthophotos, giving rise to one set of matches M (K e 1 , K e 2 ) (K e i represents keypoints in DSM D e i or orthophoto Op e i ).

3. Sample matches M (K e 1 , K e 2 ) iteratively to compute the 2D similarity transformation RANSAC model:

K e 2 x K e 2 y = λ • cosθ sinθ -sinθ cosθ • K e 1 x K e 1 y + ∆ x ∆ y . (5.3)
where λ is the scale factor, θ is the in-plane rotation angle and ∆ x , ∆ y T is the translation vector. Matches within T r of its predicted position (i.e.,

|K e 2 -(λ • cosθ sinθ -sinθ cosθ • K e 1 + ∆)| < T r ) are considered as inliers.
4. Project the inlier matches onto DSM D e i ini to t the best 3D Helmert transformation parameters.

Experiments

As described in the previous section, we provide 3 pipelines out of 2 strategies to perform rough co-registration:

1. ImgPairs: match image pairs;

2. Ortho: match orthophotos;

3. DSM : match DSMs.

For each pipeline, we employ either SIFT or SuperGlue as the feature matching method, giving rise to 6 variants:

1. SIF T ImgP airs ;

2. SuperGlue ImgP airs ;

3. SIF T Ortho ; 4. SuperGlue Ortho ;

5. SIF T DSM ; 6. SuperGlue DSM ;

We test the 6 variants on all the multi-epoch datasets which are elaborated in Chapter 4: Fréjus, Pezenas, Kobe and Alberona, except that we skip the variants SIF T ImgP airs and SuperGlue ImgP airs for satellite images in Pezenas as there are only 2 images with the same extent.

Additionally, we provide experiments where we test the inuence of the SIFT parameters (image downsampling factor, ratio test, RANSAC, etc.) in Section 5. 3.2 and the eectiveness of one-to-many tiling scheme in Section 5.3.3. In Section 5.3.4 we demonstrate a real case study where the basic 2D similarity model outperforms the more sophisticated 3D Helmert transformation model. Finally, the 6 variants are compared in Section 5.3.5.

Implementation details

To improve eciency, all input images are downsampled by a factor of 3 beforehand, except for dataset Alberona as it consists of very few images. To calculate the DSMs and orthophotos, we further downsample the images by a factor of 8, which amounts to a total downsampling factor of 24 with respect to the input images (total downsampling factor of 8 for Alberona). For example, the images in Fréjus 1970 are downsampled from [8766,8763] to [365,365] for calculating DSMs and orthophotos.

As the goal of rough co-registration is to get robust rather than precise matches, a low resolution DSM/orthophoto is good enough and keeps the computational cost low. However, the downsampling factor of Fréjus 2014 is set to be 12 instead of 24, as Fréjus is mainly covered with buildings and the GSD of Fréjus 2014 is too limited to tell details from DSM with low resolution. For each dataset, one epoch (generally the most recent epoch) is chosen as the reference epoch E r , the others would be treated as free epoch E f . The rough coregistration is applied between each free epoch E f and the reference epoch E r . As a result, all free epochs E f would be moved to the frame of epoch E r .

For the procedure of RANSAC to build (1) 3D Helmert transformation, we empirically set the number of iteration to 2000, and T r to 50m; (2) 2D similarity transformation, we set the number of iteration to 1000, and T r to 15 pixels. For the one-to-many tiling scheme, the tile size SZ one-to-many is set to be 1280×960 pixels to balance performance and eciency. All the image/tile pairs entering SuperGlue are downsampled to 640×480 pixels, as it is the default parameter provided by the author and guarantees the best performance.

Comparison between SIF T Adapted and SIF T Def ault

In this section, two dierent sets of SIFT parameters are compared, which are referred to as SIF T Def ault and SIF T Adapted :

1. SIF T Def ault : Extract SIFT keypoints on the original images, followed by mutual nearest neighbor matching combined with ratio test.

2. SIF T Adapted : Downsample the input images with a factor of 3 and extract SIFT keypoints, match them by mutual nearest neighbor without ratio test, followed by applying RANSAC based on 2D similarity transformation model to remove outliers.

Results on matching image pairs. For pipeline ImgP airs, we choose a pair of images from dataset Pezenas consists of images taken at 1971 and 2015 individually.

The results are displayed in Figure 5.4. As can be seen, SIF T Adapted recovers 101 good matches out of 2592 total matches, however, SIF T Def ault nds only 3 matches in total, even though 2 of them are correct matches, it is impossible for the RANSAC procedure to screen the correct ones.

Results on matching orthophotos. In general, SIF T Adapted recovers enough good matches in all the 3 variants (SIF T ImgP airs , SIF T Ortho and SIF T DSM ), while SIF T Def ault fails. It is reasonable as inter-epoch images often look very dierent, SIF T Def ault generally recover very few matches. By downsampling the images, we are able to focus on the global outline of the scene to improve robustness. By relaxing the matching restriction of ratio test, right matches would be preserved while wrong matches would be removed in the subsequent RANSAC.

Comparison between SuperGlue tiling and SuperGlue orig

In order to explore whether the one-to-many tiling scheme improves the performance of SuperGlue, we compare 2 sets of the results on matching multi-epoch orthophotos and DSMs with SuperGlue tiling and SuperGlue orig . The former and latter stands for SuperGlue combined with and without our one-to-many tiling scheme. We chose the orthophotos and DSMs from Fréjus 1970 and 2014 individually for testing.

The sizes of the orthophotos and DSMs are listed in Table 5.1. As mentioned in Section 5.3.1, the tile size SZ one-to-many is set to be 1280×960 pixels, and the image/tile pairs in both SuperGlue tiling and SuperGlue orig are downsampled to 640×480 pixels before entering SuperGlue. The comparison of downsampling ratio between SuperGlue tiling and SuperGlue orig for orthophotos and DSMs from Fréjus 1970 and 2014 is demonstrated in Table 5.2.

Results on matching orthophotos. Figure 5.7 displays the results of matching orthophotos with SuperGlue tiling and SuperGlue orig . As can be seen, the former recovers 58 good matches with an inlier ratio reached 33%, while the latter fails to nd any correct matches.

Results on matching DSMs. Figure 5.8 displays the results of matching DSMs with SuperGlue tiling and SuperGlue orig . As can be seen, the former recovers 190 good matches with an inlier ratio reached 46.5%, while the latter fails to nd any correct matches.

In general, SuperGlue tiling is able to recover enough good matches with high inlier ratio to guarantee stability in RANSAC, while SuperGlue orig fails to nd any correct matches. In other words, our one-to-many tiling scheme improves the performance of SuperGlue signicantly. 

Use case of matching guided by 2D similarity transformation

In this section we show an example where using 2D similarity model to guide matching is the only possible approach. The image pair to be matched is taken at the same time in Hofsjökull (c.f., Figure 5.9(a)). The overlapping zone is indicated with red rectangles. As can be seen, the area is fully covered with snow. It is extremely challenging to be matched as the whole image is weakly textured. However, the details revealed in the purple squares demonstrated that there are still some helpful information available. We compare the performance of state-of-the-art matching methods: (1) SIFT and ( 2) SuperGlue, as well as our matching strategy: (3) SIFT under the guidance of 2D similarity transformation model followed by RANSAC to remove outliers. No less than two matches are required to estimate the 2D similarity transformation parameters. In this particular case we need to measure 2 matching points manually. In less challenging scenarios one can use automated feature extractors for that purpose.

For each keypoint in the master image, our strategy uses 2D similarity transformation model to predict a location in the secondary image and search only its neighborhood of a circle with a radius S (in our experiment, S is set to be 45, 30 and 15 pixels respectively) to reduce ambiguity. Figure 5.9(b-f) demonstrates the matching results of SIFT, SuperGlue and our matching strategy. As can be seen, SIFT and SuperGlue fail to nd any correct matches, while our strategy obtains a large number of good matches with negligible manual labor. The number of matches increases as the search radius S changes from 45 to 15, which is reasonable due to decrease of ambiguity. However, false matches are introduced when the radius is too small (c.f., Figure 5.9(f)). The best balance is achieved with S set to be 30 pixels (c.f., Figure 5.9(e)).

Comparison of 6 variants

In order to evaluate the results of the 6 variants qualitatively and quantitatively, the following criteria are applied:

1. Matches visualization. The numbers of (1) total matches (i.e., matches before RANSAC) as well as (2) RANSAC inliers (matches that survived RANSAC) are displayed together in bar charts; in the meantime, the RANSAC inliers are visualized and demonstrated, from which we can tell whether the variants succeeded or failed.

2. DoD. For the variants that succeeded, we use the resulted orientations in the same frame to calculate DSMs in order to generate DoD. The visualization of DoD as well as the statistical information are displayed.

As the results reveal similar pattern on dierent datasets, for the sake of Discussion. As can be seen, SIF T ImgP airs and SIF T Ortho fail to recover correct matches for most of the cases. It is reasonable as the appearance of inter-epoch RGB images often looks dierent and SIFT is not suciently invariant over time by its very nature. SIF T DSM and SuperGlue DSM recover enough good matches for all the datasets, even the most challenging case of Fréjus with extreme scene changes, thanks to stable information on DSMs. However, the inlier ratio of SIF T DSM on Fréjus is dangerously low (around 1%), which makes the RANSAC procedure unstable and the rough co-registration result inferior. SuperGlue ImgP airs and SuperGlue Ortho succeeded for almost all the testing cases, except for SuperGlue Ortho on matching Pezenas 1971 and 2014, as the overlapping zone is too limited to provide enough clues in context to ensure the matching performance.

For the DoDs, dome eect is present in all the datasets. This is caused by inaccurately estimated lens distortion parameters. It is acceptable for rough coregistration as our goal is only to provide guidance for precise matching.

It is worth noting that the DoDs between Fréjus 1954 and 2014 based on variant SIF T DSM (i.e., Figure 5.14 (f)) is accompanied with specically obvious dome effect, with its absolute average value |µ| reached 8.04 meters as shown in Table 5.4. This is because the inlier ratio of matches in the RANSAC procedure is too low to guarantee reliable rough co-registration. According to the absolute average value |µ| displayed in Table 5.4, variant SuperGlue DSM performs the best for matching Fréjus 1954 and 1966 to 2014, where drastic scene changes are presented. In the meantime, variants SuperGlue Ortho and SIF T DSM perform the best for less challenging cases (i.e., matching Fréjus 1970to 2014, and Alberona 1954to 2003).

Conclusion

We provide 2 strategies for multi-epoch rough co-registration: (1) match image pairs (i.e., ImgPairs) and ( 2) match orthophotos/DSMs (i.e., Ortho and DSM ). For each pipeline, we test 2 feature matching methods (SIFT and SuperGlue), which leads to 6 variants (i.e., x SIF T ImgP airs , y SuperGlue ImgP airs , z SIF T Ortho , { SuperGlue Ortho , | SIF T DSM and } SuperGlue DSM ). We test the variants on 4 datasets (Fréjus, Pezenas, Kobe and Alberona), including the cases of (1) matching aerial epochs only and ( 2) matching aerial and satellite epochs mixed. Experiments show that:

1. SIF T DSM and SuperGlue DSM lead to more robust results than other variants, since landcover provides more reliable information as scene evolves.

6.1 Introduction

Motivation and objective

The rough co-registration stage elaborated in Section 5 laid a solid foundation for matching inter-epoch images, as it roughly aligned images from dierent epochs in a globally consistent way. However, the alignment is not accurate enough for high precision cartography. Therefore, we propose a precise matching stage to get matches with higher accuracy, which benets from the guidance of rough co-registration to guarantee both robustness and precision. For each inter-epoch image pair I e 1 and I e 2 to be matched, our goal is to nd precise matches M (K e 1 , K e 2 ) (K e i represents keypoints extracted in image I e i ). Based on the roughly co-registered orientations and DSMs resulted from Chapter 5, we can readily predict a potential matching point K e 2 in I e 2 for keypoint K e 1 . As rough co-registration provides robust yet imprecise alignment, the precise matching point for keypoint K e 1 should not be far away from the predicted point K e 2 . Therefore, we can narrow down the search space in precise matching stage by only considering the local neighborhood of the predicted point K e 2 to reduce ambiguity tremendously. For hand-crafted methods like SIFT, the strategy of predicting keypoints followed by narrowing down the search space can be readily applied. Besides, as SIFT provides explicitly the scale and rotation angle of the keypoints, we can take advantage of that and introduce an idea of SclRotCheck, which is to check if the scale and rotation of the keypoints coincide with the scale and rotation predicted by rough co-registration.

For learned methods like SuperGlue, it is not easy to modify the algorithm, as it inevitably involves retraining the model, which is not easy due to lack of training data. Therefore we propose an one-to-one tiling scheme (not to confuse with the one-to-many tiling scheme presented in Section 5) to feed roughly aligned patches into the model to reduce ambiguity. Its merits are twofold: (1) up-scaling the learning based feature matching algorithms to high resolution imagery, as directly feeding the original images often lead to inaccurate results; (2) narrowing down the searching space in an elegant way without modifying the model.

Contributions

Our contribution is to combine rough co-registration results, one-to-one tiling scheme, SclRotCheck and 3D-RANSAC into a reliable pipeline to recover both robust and precise matches, more specically, we:

1. reduce the diculty in precise matching under the guidance of co-registered orientations and DSMs by narrowing down the search space.

2. introduce one-to-one tiling scheme to (1) scale-up the deep learning methods and (2) reduce matching ambiguity without retraining the model.
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. introduce SclRotCheck to remove potential matches whose scale ratio and rotation dierence are not consistent with the prediction of rough co-registration.

4. perform RANSAC to estimate the 3D Helmert transformation between surfaces (i.e., DSMs) calculated in dierent epochs. Compared to the classical essential/fundamental matrix ltering, with less data (3 versus 5 points) we impose stricter rules (1D versus 2D constraint).

Methodology

To compute precise inter-epoch matches, we perform matching on original RGB images under the guidance of co-registered orientations and DSMs. It consists of extracting tentative inter-epoch matches, followed by a 3D-RANSAC lter and a cross correlation stage to remove outliers. The workow is displayed in Figure 6.1(a). We choose matching RGB images for precise matching instead of DSMs, as DSMs are (1) noisy due to errors inevitably introduced during calculating DSMs and ( 2) monotonous in at terrain due to lack of textures. In Section 6.3.2 we displayed the matching results on both RGB images and DSMs over the same area. It demonstrates that more matches are found in DSMs but the accuracy is inferior. As our goal is to recover accurate matches, the RGB images are more suitable than DSMs. Besides, it is more ecient as calculating high resolution DSMs is computationally demanding. exceeds the original tile size (dark green area) and is therefore abandoned.

Get tentative matches with patch/guided matching

We oer two alternatives to recover tentative matches: patch or guided matching. The former uses learned features, while the latter uses hand-crafted features. Patch matching often gives larger number of matches, while guided matching is in general more ecient.

Patch matching for learned features. For patch matching, we propose a one-to-one tiling scheme to improve matching performance of learned features and reduce ambiguity at the same time. It is illustrated in Figure 6.1(b), and elaborated below:

1. Crop the master RGB image I e 1 into M original tiles of size SZ Orig one-to-one , and expand them with a buer zone of size SZ buf f er (as shown in Figure 6.1(c)), giving rise to M buered tiles (T e 1 ) of size SZ one-to-one ; 2. Project each buered tile T e 1 onto the DSM D e 1 co and backproject to secondary RGB image I e 2 to nd the corresponding tile T e 2 ;

3. Resample T e 2 to T e 2 , so that the tile pair P (T e 1 , T e 2 ) is free from dierences of rotation, scale and extent;

We apply SuperGlue on each tile pair P (T e 1 , T e 2 ) to nd matches M (K e 1 , K e 2 ) (K e i represents keypoints in image I e i ), and merge the matches together by removing the ones with K e 1 located in the buer zone. As the orientations and DSMs are only roughly co-registered, we take into account the margin of error when projecting tiles to overlapping images. This is why we add a buer zone in the tile T e 1 . For better understanding, in Figure 6.2 we display an example of an inter-epoch image pair, as well as the tile pairs resulted from the one-to-one tiling scheme.

Our patch matching experiments are performed based on SuperGlue, however, other learned methods can be adopted readily.

Guided matching for hand-crafted features. The patch matching substitute orientated towards hand-crafted features is the guided matching, as shown in Figure 6.1(d). It leverages the positions of predicted keypoints, the known scale ratio and rotation dierences to narrow down the list of the matching candidates.

In our experiments, we use the SIFT points, but the pipeline is suitable to any hand-crafted extractor. It consists of the following steps:

1. Compute the scale ratio R scl and the rotation D rot between two images by sequentially projecting the I e 1 image corners to the co-registered DSM D e 1 co and to image I e 2 ;

2. Extract keypoints K e 1 in image I e 1 and K e 2 in image I e 2 ;

3. Intersect the keypoints K e 1 with the co-registered DSM D e 1 co ;

4. Back-project them to image I e 2 , giving rise to predicted keypoints K e 2 ;

5. Search for a subset of points in K e 2 located within a radius S centered at the predicted positions K e 7. Find the best matches with mutual nearest neighbor combined with the rst to second nearest neighbor ratio test [Lowe 2004].

For better understanding, in Figure 6.3 we display an example of an inter-epoch image pair, with keypoint prediction (cross symbols) accompanied with search space (circles) superposed on them.

Get enhanced matches with 3D-RANSAC

To compute enhanced matches, we apply a 3D-RANSAC lter on the previously obtained tentative matches. More precisely, we do the following: (1) for each match M (K e 1 , K e 2 ), the keypoints K e 1 and K e 2 are projected onto DSM D e 1 co and D e 2 ini individually to get 3D matching points M (KG e 1 , KG e 2 ); and ( 2) the matches M (KG e 1 , KG e 2 ) are iteratively sampled to compute the 3D Helmert transformation RANSAC model:

  KG e 2 x KG e 2 y KG e 2 z   = λ • R •   KG e 1 x KG e 1 y KG e 1 z   +   ∆ x ∆ y ∆ z   . (6.1)
where λ is the scale factor, R is the rotation matrix and ∆ x , ∆ y , ∆ z T is the translation vector. Matches within T r of its predicted position (i.e., |KG e 2 -(λ • R • KG e 1 + ∆)| < T r ) are considered as inliers.

Get nal matches with cross correlation

In the preceding step we got rid of a substantial number of outliers, however, we believe that not all outliers could be identied. Besides, our goal is to get a moderate number of reliable matches instead of many unreliable ones. Therefore we introduce a dierent ltering method (i.e., cross correlation) to further remove false matches.

Even though cross correlation itself is not discriminative and ecient enough when used alone, it ts well in our pipeline as we already recovered many discriminative and well-distributed matches before applying it. Matches with their correlation scores below a predened threshold T c are discarded. The correlation window size was set to be large enough to take into account the context around a point (32×32 pixels in our experiment). 

Rene orientations

Based on the intra-epoch and inter-epoch matches, a free network BBA is performed to rene all the image orientations and camera calibrations. If the results need to be analyzed in a metric scale, a 3D Helmert transformation will be performed to move the rened acquisitions in an arbitrary reference frame to a metric one. If the precise orientations for one of the epochs were known, their parameters will be xed during the BBA and the subsequent 3D Helmert transformation will be skipped. We adopted the Fraser model [Fraser 1997] to calibrate the cameras and allowed image-dependent ane parameters, the remaining parameters were shared among all images. Fraser is a radial model, with decentric and ane parameters, there are 12 degrees of freedom: 1 for focal length , 2 for principal point, 2 for distortion center , 3 for coecients of radial distorsion, 2 for decentric parameters and 2 for ane parameters. We choose this model because we want to test the versatility of our pipeline, instead of trying dierent model to achieve the best performance.

Experiments

As described in the previous section, our precise matching stage relies on RGB images and consists of 3 main steps to get the tentative, enhanced and nal matches. In Section 6.3.2 we compare the matching results on RGB images and DSMs to explain why we choose the former over the latter to perform precise matching.

For obtaining tentative matches, there are 2 alternatives (i.e., patch or guided matching), leading to 2 precise matching variants:

1. Patch: recover tentative matches with patch matching, followed by 3D-RANSAC and cross correlation to remove outliers;

2. Guided: same as Patch, except replacing patch matching with guided matching.

For each dataset, we choose the rough co-registration results calculated with SIF T DSM and SuperGlue DSM individually (as they are the most robust variants for rough co-registration) to guide the precise matching Patch or Guided, leading to 4 sets of variants, which are referred to as:

1. P atch SpGDSM 2. Guided SpGDSM 3. P atch SIF T DSM

Guided SIF T DSM

We test our precise matching variants on all the multi-epoch datasets which are elaborated in Chapter 4: Fréjus, Pezenas, Kobe and Alberona. The results are demonstrated in Section 6.3.3. For Fréjus, Kobe and Alberona, we keep all the epochs for experiments, as Fréjus displayed drastic scene changes, while Kobe and Alberona witnessed earthquake and landslide individually. In Pezenas, less changes are observed. Therefore we maximize the matching diculty by choosing both aerial and satellite epoch accompanied with the largest time gap (i.e., aerial epoch 1971 and satellite epoch 2014). The orientations of GT epochs (i.e., Pezenas 2014 and Fréjus 2014) were treated as xed during the combined BBA since they were accurately known a-priori, while all the remaining orientations were considered as free parameters. At rst, interior orientation parameters were shared among all images. Once stable initial values were known, interior parameters were further rened with image-dependent ane parameters. The ane component of the camera calibration is expected to model the shear of the analog lms, at least partially.

Implementation details

Same as Section 5.3.1, all input images are downsampled by a factor of 3 beforehand to improve eciency except for dataset Alberona. To calculate the DSMs, we further downsample the images by a factor of 4 (dierent from 8 in Section 5.3.1), which amounts to a total downsampling factor of 12 with respect to the input images (total factor of 4 for Alberona). For example, the images in Fréjus 1970 are downsampled from [8766,8763] to [730,730] for calculating DSMs. Note that the DSMs serve 2 purposes in precise matching: (1) narrowing down the search space in nding tentative matches, and (2) providing 3D coordinates for 3D-RANSAC lter. A low resolution surface is good enough for these tasks and improves the eciency. For patch matching, the buered tile size SZ one-to-one is set to be 640×480 pixels, the buer size SZ buf f er is 10%×SZ one-to-one (i.e., widening 64 pixels on both left and right sides, 48 pixels on both upper and lower sides). Therefore, the original tile size SZ Orig one-to-one is left to be 512×384 pixels. The tile pairs entering SuperGlue are not downsampled. For guided matching, the search radius S is set to be 100 pixels; the thresholds for checking scale and rotation (i.e. T h scl and T h rot ) are set to be 0.2 and 30 • individually. For the 3D-RANSAC procedure, we set the number of iteration to 1000, and T r to 10×GSD where GSD is the mean ground sampling distance in the coordinate frame of reference epoch E r . This distance is computed as the ground distance between two adjacent image pixels. The threshold T c in cross correlation is set to be 0.6. To balance the number of the intra-and inter-epoch matches, we perform intra-epoch matches reduction available as command Rataa in MicMac [Pierrot-Deseilligny et al. 2015]. If the intra-epoch matches after reduction are still obviously more than the inter-epoch ones, we further set the relative observation weight in the BBA. The matches reduction algorithm maximizes good spatial distribution, points' multiplicity and low reprojection error, it also helps to speed up the BBA. Inter-epoch matches are extracted for every possible combination of 2 epochs and nally merged. 

Comparison of 4 variants

In order to evaluate the results qualitatively and quantitatively, the following criteria would be applied:

1. Matches visualization. The number of tentative, enhanced and nal matches are displayed together in bar charts; in the meantime, the nal matches are visualized and demonstrated.

2. DoD. For each variant, the rened orientations would be used to calculate DSMs in order to generate DoD. The visualization of DoD as well as the statistical information are displayed. Since the orientations are rened with precise matches, DoDs with dome eect mitigated or even eliminated are expected.

For Pezenas and Fréjus datasets, DoDs are calculated between historical epochs and the available GT epochs. For Kobe and Alberona datasets, there is no GT. Therefore we calculate the DoDs between every epochs instead.

3. Ground displacement. For the dataset that witnessed an earthquake (i.e., Kobe), we: (1) calculate the DSMs; (2) orthorectify the images; and (3) perform 2D correlation of the respective orthophotos [START_REF] Rosu | Measurement of ground displacement from optical satellite image correlation using the free open-source software MicMac[END_REF]] to see whether we can observe the slip of the tectonic plate.

For matches visualization and DoD, as the results show similar pattern on dierent datasets, we only display the results of Fréjus and Alberona in the current section for the sake of simplicity, and move the results of Kobe as well as Pezenas to Appendix B.

Matches visualization. For each dataset, we match every possible combination of 2 epochs with 4 variants (i.e., x P atch SpGDSM , y Guided SpGDSM , z P atch SIF T DSM and { Guided SIF T DSM ).

For Fréjus, there exist 4 epochs, leading to 6 sets of epoch combination. The visualizations of resulted matches are displayed in Figure 6.6, 6.7, 6.8, 6.9, 6.10 and 6.11. For Alberona, there exist 2 epochs, leading to 1 set of epoch combination, the matches visualization is displayed in Figure 6.12. DoD. The DoDs for Fréjus and Alberona are demonstrated in Figure 6.13 and 6.14. In each gure, the roughly co-registered DoDs resulted from rough co-registration variants SuperGlue DSM and SIF T DSM (elaborated in Chapter 5, hereinafter referred to as DoD SpGDSM and DoD SIF T DSM ) are displayed as references, and the rened DoDs resulted from variants P atch SpGDSM , Guided SpGDSM , result of SIF T DSM for epoch 1954 is unsatisfactory, as was mentioned in Section 5.3.5. Besides, 3D-RANSAC lter and cross correlation removed a considerable number of matches, at the same time enough matches survived, which guaranteed robustness of our method.

For the DoDs, the dome eect appears in all the DoD SpGDSM and DoD SIF T DSM (i.e., the rst column of the subgraphs in Figure 6.13 and 6.14), as the camera parameters are poorly estimated without the precise matches.

For most rened DoDs in Fréjus (i.e., the second and third columns of subgraphs in Figure 6.13 except for (e) and (f)), the dome eect is eectively mitigated, thanks to our numerous and precise matches. In the meantime, the real scene changes are preserved, such as the new buildings and seaports. For Figure 6.13 (e) DoD P atch SIF T DSM F rejus1954

and (f) DoD Guided SIF T DSM F rejus1954

, the dome eect is even worse than the roughly co-registered one (i.e., Figure 6.13 (d) DoD SIF T DSM F rejus1954 ) due to low quality of matches shown in Figure 6.6 (e, f), 6.9 (e, f) and 6.11 (e, f).

For the rened DoDs in Alberona, the dome eect is mitigated for the variant P atch, but not for Guided, as the images from dierent epochs showed various tone, which is challenging for Guided. Besides, the images are poorly preserved and scanned with non photogrammetric scanner, and limited number of images leads to a lack of redundant observation. Therefore, only the DoD P atch SIF T DSM Alberona (i.e., Figure 6.14 (e)) showed both useful signs in the landslide zone and limited systematic errors in the whole block, as it is based on good matches recovered with P atch variant under the good rough co-registration resulted from SIF T DSM .

For the Gds, we displayed the GT in Figure 6.15 (a), and ours in Figure 6.15 (b-g). The GT is produced with a lot of manual work, which is very laborious. However, ours are completely automatic. According to the GT, there is a nojima fault caused by the earthquake (i.e. indicated as black line), and the displacement is indicated as small arrows. On the upper side of the fault, the arrows are generally rightward, while on the lower side they are leftward. In ours, the displacement is indicated as colors: blue represents rightward and red leftward. As can be seen, ours after renement with precise matching (i.e. Figure 6.15 (d-g)) recovered the same signal as ground truth, which is rightward on the upper side of the fault (i.e. indicated as dashed line) and leftward on the lower side.

Conclusion

In this section we elaborate two variants for precise matching: P atch and Guided. We test each variant based on two sets of rough co-registration results: SIF T DSM and SuperGlue DSM , which leads to 4 variants (i.e., x P atch SpGDSM , y Guided SpGDSM , z P atch SIF T DSM and { Guided SIF T DSM . Experiments are performed on 4 sets of datasets (Fréjus, Pezenas, Kobe and Alberona), including the cases of (1) matching aerial epochs only and ( 2) matching aerial and satellite epochs mixed. Experiments show that:

1. Both precise matching variants (i.e., P atch and Guided) are capable of recovering numerous and accurate matches, as long as the rough co-registration result is reliable.

2. By adopting the precise matches in a BBA routine, the systematic errors in the surfaces can be eectively mitigated while the real scene changes stay. 

Conclusion

During the past decades, a large number of historical images were digitized, which signied huge potential for long-term environmental monitoring studies. Unfortunately, their value is overlooked as they are accompanied with special characteristics: analog lms were probably inappropriately conserved, leading to poor radiometric quality; deformation caused by scanning; dierent resolutions and acquisition conditions, etc. The principal diculty in processing multi-epoch historical images is feature matching. Often, no a priori about the camera geometry is available and a dense distribution of matches is required to model it a posteriori.

Even though we have seen an emergence of software solutions capable of processing modern digital images in a 100% automated manner, the performance of these solutions degenerates when applied to multi-epoch historical images.

The thesis aims at matching historical images as well as modern digital images taken at dierent times. The goal is accomplished with the divide and conquer strategy, which is to decompose the task of recovering robust and precise matches on inter-epoch image pairs into 2 sub-tasks: (1) rough co-registration focusing on robustness, and (2) precise matching on accuracy.

Five representative sets of datasets for dierent applications are introduced in order to validate the suitability of our pipelines for various domains. They consist of mixed images (i.e., historical and modern, aerial and satellite images) with heterogeneous acquisition conditions. Dierent strategies for rough co-registration are studied. The rst attempt we made is matching each inter-epoch image pair separately followed by building a globally consistent transformation model over the whole block. It is not ecient and robust enough, leading us to another strategy: combining images from the same epoch into entirety (i.e., orthophoto or DSM) and applying matching directly on the whole block. All the strategies are tested on four sets of multi-epoch datasets, based on which we come to a conclusion that the strategy of matching DSM provides the most robust results. Besides, dierent congurations of matching methods (i.e., SIFT and SuperGlue) are compared, and a use case of matching guided by 2D similarity transformation is presented.

Then, we propose and evaluate precise matching under the guidance of rough coregistration. Two variants are explored for obtaining tentative matches: (1) patch matching orientated towards learned features and ( 2) guided matching focused on hand-crafted features, followed by 3D-RANSAC and cross correlation to remove false matches. The most robust variants for rough co-registration (i.e., matching DSMs with SIFT and SuperGlue respectively) are chosen to guide the precise matching in the experiments, based on which we conclude that both patch and guided matching are capable of recovering a large number of accurate and robust matches as long as the rough co-registration result is reliable. Besides, comparison of precise matching on DSMs and original RGB images is performed to explain why we choose RGB images over DSMs for precise matching.

Perspective

Historical dataset benchmark There are a lot of benchmark datasets for fea- Train a network with RGB images combined with DSMs Another direction of our future work is to use both RGB images and DSMs to train a neural network architecture in extracting robust features over time. As training data made from historical images is limited, it might be better to ne-tune existing models (e.g., SuperGlue). In order to validate if it improves matching performance to use RGB images and DSMs at the same time, we did a comparison of using o-the-shelf SuperGlue model to match (1) RGB images only, (2) corresponding full resolution DSMs only and (3) RGB images combined with DSMs by concatenating keypoints.

We choose a pair of roughly aligned images and feed them directly into SuperGlue without applying any tiling scheme to keep the performance independent from irrelevant factors. The results are displayed in Figure 7.2(c), (d) and (e) respectively, with their accuracy compared in Figure 7.2(f). As can be seen, it provides more matches with better accuracy when simply feeding concatenated keypoints to the ready-made model, it is reasonable to expect better performance after we ne-tune the model. As can be seen, dierent epochs are roughly aligned with dome eect present in all the DoDs due to poorly estimated camera parameters, same pattern as the results of Fréjus and Alberona (c.f., Section 5.3.5). 

  Figure 1.1: (a) Une paire d'images multi-époques avec des rectangles rouges indiquant la zone de chevauchement. (b-d) Résultat de la correspondance de SIFT, SuperGlue et le nôtre.

Figure 1 . 2 :Figure 1 . 3 :

 1213 Figure 1.2: La même zone observée à diérents moments. Les images RGB ont beaucoup changé alors que les DSMs sont restés stables au l du temps.

  2021a] (plus de détails sont présentés dans l'annexe C): 1. Tutoriel d'appariement des images aériennes [Zhang et al. 2021e] 2. Tutoriel d'appariement d'images mixtes (c'est-à-dire d'images aériennes et satellitaires) [Zhang et al. 2021d] Publications de l'auteur: 1. M Santangelo, L Zhang, E Rupnik, M Pierrot-Deseilligny, M Cardinali. Schéma d'évolution des glissements de terrain révélé par des MNS multitemporels obtenus à partir d'images aériennes historiques. ISPRS Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2022.

Figure 2

 2 Figure 2.1: (a) A pair of multi-epoch images with red rectangles indicating the overlapping area. (b-d) Matching result of SIFT, SuperGlue and Ours.

Figure 2 . 2 :Figure 2 . 3 :

 2223 Figure 2.2: The same zone observed in dierent times. The RGB images changed a lot while the DSMs stayed stable over time.

2 .

 2 National Research Council, Research Institute for Hydrogeological Protection (CNR-IRPI) for analyzing landslide evolution in Italy.

  Figure 2.4: Rough-to-precise strategy. (a) An example of an inter-epoch image pair to be matched. I e 1 and I e 2 represents images take at epoch 1 and epoch 2 individually. (b) Illustration of rough co-registration between I e 1 and I e 2 . As a result, I e 1 is roughly aligned with I e 2 . (c) Illustration of precise matching. For keypoints in I e 1 (green cross), a location is predicted in I e 2 (purple cross) based on rough coregistration, whose local neighborhood will be searched to nd the precise match (yellow cross).

  and DeepDesc [Simo-Serra et al. 2015]. Tian et al. introduce L2-Net [Tian et al. 2017] to learn high performance descriptor in Euclidean space via the Convolutional Neural Network (CNN). Afterwards Mishchuk et al. [Mishchuk et al. 2017] introduce a compact descriptor named HardNet, by applying a novel loss to L2Net [Tian et al. 2017]. DELF [Noh et al. 2017] is an attentive local feature descriptor based on CNN, which works particularly well for illumination changes. SuperPoint [DeTone et al. 2018] is a self-supervised, fully-convolutional model that operates on full-sized images and jointly computes pixel-level feature point locations and associated descriptors in one forward pass. LF-Net [Ono et al. 2018] is a deep architecture that embeds the entire feature extraction pipeline, and can be trained end-to-end with just a collection of images. D2-Net

  replaces the deterministic hypothesis selection by a probabilistic selection. CNe (Context Networks) [Moo Yi et al. 2018] trains deep networks in an end-to-end fashion to label the matches as inliers or outliers, known intrinsics are required as input, and a post-processing with RANSAC is often tasked. CNe was embedded into the framework of [Jin et al. 2020] to remove outliers, paired with DEGENSAC, PyRANSAC (a variant of DEGENSAC by disabling the degeneracy check, introduced in [Jin et al. 2020]) and MAGSAC. The results showed that with

  the intrinsic and extrinsic parameters of an image and is classically solved with the SfM algorithms[START_REF] Snavely | [END_REF], Pierrot-Deseilligny & Cléry 2012[START_REF] Schonberger | [END_REF] based on local feature matches. The accuracy of matches plays an important role throughout the SfM process, since small inaccuracies in their locations can result in large errors in the estimated poses. Good matches will lead to better results on image orientation, camera calibration and 3D reconstruction[START_REF] Lindenberger | [END_REF]], [Sarlin et al. 2021], [Truong Giang et al. 2018].

  Figure 4.1.The images of each dataset are demonstrated inFigure 4.2, 4.4, 4.5, 4.6 and 4.7 individually.

  . The epoch 2014 was acquired with the Institut national de l'information géographique et forestière (IGN)'s digital metric camera [Souchon et al. 2010], its orientations are both in global (a) Original image and the ducial mark (b) Resampled image

Figure 4 .

 4 Figure 4.1: Illustration of resampling historical image to the geometry of the ducial marks. (a) Original image with enlarged detail of the ducial mark on the bottom right corner displayed. (b) Image resampled based on the 4 ducial marks in the corner.
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 42434445 Figure 4.2: Images demonstration of 4 aerial epochs inFréjus (i.e., 1954Fréjus (i.e., , 1966Fréjus (i.e., , 1970Fréjus (i.e., and 2014)), image number of each epoch is displayed in the parenthesis of each sub headline. The overlapping zone between all the epochs is indicated with red rectangles. Graphic scale is demonstrated on epoch 2014 in (d).

  Figure 4.6: Images demonstration of 2 aerial epochs (i.e., 1954 and 2003) in Alberona, image number of each epoch is displayed in the parenthesis of each sub headline. The overlapping zone between dierent epochs is indicated with red rectangles. Graphic scale is demonstrated on epoch 2003 in (b).

Figure 4

 4 Figure 4.7: Images demonstration of epoch 1960 in Hofsjökull. The overlapping zone of the most challenging image pair (i.e., image 5 and 6) is labeled with red rectangles.

5. 2 . 2

 22 Strategy 2: Matching Orthophotos/DSMs (Ortho or DSM ) Another strategy is to match orthophotos or DSMs. The detailed workows are displayed in Figure 5.2(a) and Figure 5.3(a) individually. Dierent than matching P×Q image pairs in strategy ImgPairs, we only need to match one pair of DSMs/orthophotos. The DSMs are typically oating-point images, in order to apply feature matching methods directly on them without adjusting the implementation of SIFT or SuperGlue, we further describe the conversion of DSM to a gray-scale raster.

3 .

 3 Figure 5.1: Rough co-registration by matching image pairs (i.e., ImgPairs). (a) Whole workow. Each inter-epoch image pair is matched individually, followed by projecting the matches onto ground to nd globally consistent inliers. (b) Match image pairs with SIFT, which involves matching followed by 2D similarity RANSAC to nd inliers. (c) Match image pairs with SuperGlue, which involves matching combined with four rotation hypotheses. (d) Four rotation hypotheses. We rotate the secondary image by 90 • four times to match with master image and keep the best one with the largest number of matches (red rectangle).
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 52 Figure 5.2: Rough co-registration by matching orthophotos (i.e., Ortho). (a) Whole workow. Orthophotos are matched, followed by projecting the inlier matches onto ground to build 3D Helmert transformation model. (b) Four rotation hypotheses

Figure 5 . 3 :

 53 Figure 5.3: Rough co-registration by matching DSMs (i.e., DSM ). (a) Whole workow. DSMs are matched, followed by projecting the inlier matches onto ground to build 3D Helmert transformation model. (b) Four rotation hypotheses combined with tiling scheme. We rotate the secondary DSM by 90 • four times to match with master DSM and keep the best one with the largest number of RANSAC inliers (red rectangle). Tiling scheme is applied during each hypothesis, with both DSMs cropped into tiles followed by matching all the tile pairs and merging the matches.

  2(b) and Figure 5.3(b).
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 545556 Figure 5.4: Comparison between SIF T Adapted and SIF T Def ault on a pair of images from Pezenas 1971 and Pezenas 2015 individually. (a) Image pair to be matched, with red rectangles indicating the overlapping zone. (b) Numbers of total matches and RANSAC inliers of SIF T Adapted and SIF T Def ault . (c) Visualization of RANSAC inliers based on SIF T Adapted . (d)Visualization of total matches based on SIF T Def ault .
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 57 Figure 5.7: Comparison between SuperGlue tiling and SuperGlue orig on orthophotos from Fréjus 1970 and 2014 individually. (a) Orthophotos to be matched, with red rectangles indicating the overlapping zone. (b) Numbers of total matches and RANSAC inliers of SuperGlue tiling and SuperGlue orig . (c) Visualization of RANSAC inliers based on SuperGlue tiling . (d)Visualization of total matches based on SuperGlue orig .
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 595 Figure 5.9: Matching results of an intra-epoch image pair from dataset Hofsjökull. (a) Image pairs to be matched, with red rectangles indicating the overlapping zone. Details are revealed in purple squares. (b) and (c) are matches recovered by SIFT and SuperGlue individually. (d-f) displays matches found by our matching strategy with search radius set to be 45, 30 and 15 pixels individually, with purple squares indicating the details.

Figure 5 .

 5 Figure 5.11: Result of ImgPairs (a-d), Ortho (e-h) and DSM (i-l) on matching Fréjus 1966 and 2014. (a, e, i) Image pairs/orthophotos/DSMs to be matched, with red rectangles indicating the overlapping zone. (b, f, j) Numbers of total matches and RANSAC inliers of both SIFT and SuperGlue on variants ImgPairs, Ortho and DSM individually. (c, g, k) Visualization of RANSAC inliers based on SIF T ImgP airs , SIF T Ortho and SIF T DSM . (d, h, l) Visualization of RANSAC inliers based on SuperGlue ImgP airs , SuperGlue Ortho and SuperGlue DSM .

Figure 5 .

 5 Figure 5.12: Result of ImgPairs (a-d), Ortho (e-h) and DSM (i-l) on matching Fréjus 1970 and 2014. (a, e, i) Image pairs/orthophotos/DSMs to be matched, with red rectangles indicating the overlapping zone. (b, f, j) Numbers of total matches and RANSAC inliers of both SIFT and SuperGlue on variants ImgPairs, Ortho and DSM individually. (c, g, k) Visualization of RANSAC inliers based on SIF T ImgP airs , SIF T Ortho and SIF T DSM . (d, h, l) Visualization of RANSAC inliers based on SuperGlue ImgP airs , SuperGlue Ortho and SuperGlue DSM .

Figure 5 .

 5 Figure 5.13: Result of ImgPairs (a-d), Ortho (e-h) and DSM (i-l) on matching Alberona 1954 and 2003. (a, e, i) Image pairs/orthophotos/DSMs to be matched, with red rectangles indicating the overlapping zone. (b, f, j) Numbers of total matches and RANSAC inliers of both SIFT and SuperGlue on variants ImgPairs, Ortho and DSM individually. (c, g, k) Visualization of RANSAC inliers based on SIF T ImgP airs , SIF T Ortho and SIF T DSM . (d, h, l) Visualization of RANSAC inliers based on SuperGlue ImgP airs , SuperGlue Ortho and SuperGlue DSM .

Figure 5 .

 5 Figure 5.14: DoDs between free epochFréjus 1954Fréjus , 1966Fréjus , 1970 and reference epoch 2014 with variants SuperGlue ImgP airs (a, g, m), SuperGlue Ortho (b, h, n), SuperGlue DSM (c, i, o), SIF T ImgP airs (d, j, p), SIF T Ortho (e, k, q) and SIF T DSM (f, l, r). The prohibition sign means the corresponding variant failed.

  Figure 6.1: (a) Workow of precise matching. It is carried out by performing patch or guided matching to obtain tentative matches, followed by 3D-RANSAC lter and cross correlation, giving rise to nal matches. (b) and (d) illustrate toy-examples of the patch and guided matching, respectively. (c) displays the match where K e 1 exceeds the original tile size (dark green area) and is therefore abandoned.

2 ; 6 .

 26 Figure 6.2: Illustration of patch matching applied on an inter-epoch image pair. (a) The master image (I e 1 ) and secondary image (I e 2 ) are taken at Fréjus in 1954 and 2014 individually. (b) Tile pairs resulted from one-to-one tiling scheme, the tile zones before and after buering are marked as red and green rectangles.

Figure 6 . 3 :

 63 Figure 6.3: Illustration of keypoint prediction (cross symbols) accompanied with search space (circles), the master image (I e 1 ) and secondary image (I e 2 ) are taken at Fréjus in 1954 and 2014 individually.

  Figure 6.4 shows an example of a false match (red) eliminated by cross correlation, while the true match (blue) is kept.

Figure 6 . 4 :

 64 Figure 6.4: Demonstration of the validation with cross-correlation. Considering poor quality of historical images, the window size (blue and red rectangles) was set to 32×32 pixels. False match (red) is eliminated by cross correlation, while true match (blue) is kept.
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 32 Figure 6.5: Comparison of precise matching on original RGB images and DSMs.

  Figure 6.6: Precise matching visualization of Fréjus 1954 and 2014. (a) Image pairs to be matched, with red rectangles indicating the overlapping zone. (b) Numbers of tentative, enhanced and nal matches recovered with P atch SpGDSM , Guided SpGDSM , P atch SIF T DSM and Guided SIF T DSM individually. (c-f) Visualization of nal matches recovered with P atch SpGDSM , Guided SpGDSM , P atch SIF T DSM and Guided SIF T DSM individually.

  ture matching, but none of them are multi-epoch historical images. In order to push forward the state-of-the-art in multi-epoch historical image processing, in the future we are interested in publishing the datasets used in this thesis, as well as collaborating with other scholars who are interested in processing historical images to build an open-access historical dataset benchmark (i.e., MultiHist). It should contain dierent scenes accompanied with ground truth orientations and DSMs, or even GCPs if possible. Dierent scenes consist of several epochs, probably organized as Figure 7.1.

Figure 7 . 1 :

 71 Figure 7.1: Organization of our benchmark.

Figure 7 . 2 :

 72 Figure 7.2: Comparison of SuperGlue applied on RGB images (c), DSMs (d) and combined input by concatenating the keypoints (e).

  Figure A.1: Result of ImgPairs (a-d), Ortho (e-h) and DSM (i-l) on matching Pezenas 1971 and 2015. (a, e, i) Image pairs/orthophotos/DSMs to be matched, with red rectangles indicating the overlapping zone. (b, f, j) Numbers of total matches and RANSAC inliers of both SIFT and SuperGlue on variants ImgPairs, Ortho and DSM individually. (c, g, k) Visualization of RANSAC inliers based on SIF T ImgP airs , SIF T Ortho and SIF T DSM . (d, h, l) Visualization of RANSAC inliers based on SuperGlue ImgP airs , SuperGlue Ortho and SuperGlue DSM .

Figure A. 2 :

 2 Figure A.2: Result of ImgPairs (a-d), Ortho (e-h) and DSM (i-l) on matching Pezenas 1981 and 2015. (a, e, i) Image pairs/orthophotos/DSMs to be matched, with red rectangles indicating the overlapping zone. (b, f, j) Numbers of total matches and RANSAC inliers of both SIFT and SuperGlue on variants ImgPairs, Ortho and DSM individually. (c, g, k) Visualization of RANSAC inliers based on SIF T ImgP airs , SIF T Ortho and SIF T DSM . (d, h, l) Visualization of RANSAC inliers based on SuperGlue ImgP airs , SuperGlue Ortho and SuperGlue DSM .

Figure A. 3 :

 3 Figure A.3: Result of ImgPairs (a-d), Ortho (e-h) and DSM (i-l) on matching Pezenas 1971 and 2014 (Satellite). (a, e, i) Image pairs/orthophotos/DSMs to be matched, with red rectangles indicating the overlapping zone. (b, f, j) Numbers of total matches and RANSAC inliers of both SIFT and SuperGlue on variants Img-Pairs, Ortho and DSM individually. (c, g, k) Visualization of RANSAC inliers based on SIF T ImgP airs , SIF T Ortho and SIF T DSM . (d, h, l) Visualization of RANSAC inliers based on SuperGlue ImgP airs , SuperGlue Ortho and SuperGlue DSM .

Figure A. 4 :

 4 Figure A.4: Result of ImgPairs (a-d), Ortho (e-h) and DSM (i-l) on matching Pezenas 1981 and 2014 (Satellite). (a, e, i) Image pairs/orthophotos/DSMs to be matched, with red rectangles indicating the overlapping zone. (b, f, j) Numbers of total matches and RANSAC inliers of both SIFT and SuperGlue on variants Img-Pairs, Ortho and DSM individually. (c, g, k) Visualization of RANSAC inliers based on SIF T ImgP airs , SIF T Ortho and SIF T DSM . (d, h, l) Visualization of RANSAC inliers based on SuperGlue ImgP airs , SuperGlue Ortho and SuperGlue DSM .

Figure A. 5 :

 5 Figure A.5: Result of ImgPairs (a-d), Ortho (e-h) and DSM (i-l) on matching Kobe 1991 and 1995. (a, e, i) Image pairs/orthophotos/DSMs to be matched, with red rectangles indicating the overlapping zone. (b, f, j) Numbers of total matches and RANSAC inliers of both SIFT and SuperGlue on variants ImgPairs, Ortho and DSM individually. (c, g, k) Visualization of RANSAC inliers based on SIF T ImgP airs , SIF T Ortho and SIF T DSM . (d, h, l) Visualization of RANSAC inliers based on SuperGlue ImgP airs , SuperGlue Ortho and SuperGlue DSM .

  Figure B.2: Precise matching visualization of Kobe 1991 and 1995. (a) Image pairs to be matched, with red rectangles indicating the overlapping zone. (b) Numbers of tentative, enhanced and nal matches recovered with P atch SpGDSM , Guided SpGDSM , P atch SIF T DSM and Guided SIF T DSM individually. (c-f) Visualization of nal matches recovered with P atch SpGDSM , Guided SpGDSM , P atch SIF T DSM and Guided SIF T DSM individually.
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  2, les images RGB sont très diérentes car la scène a beaucoup changé. Cependant, les DSM correspondants sont similaires, ce qui est raisonnable, car le paysage 3D est plus stable dans le temps. De plus, les DSM sont plus distinctifs que les images RGB lorsqu'il s'agit de surfaces non-

	1.2	Contributions
	Dans cette thèse, nous présentons des pipelines grossiers-à-précis pour l'appariement
	d'images multi-époques. Ils sont adaptés aux images aériennes, satellitaires et
	mixtes, ce qui ouvre la possibilité de géoréférencer des millions d'images his-
	toriques sans nécessiter de GCPs. Six variantes sont proposées pour l'étape de
	co-enregistrement grossier et deux variantes pour l'étape d'appariement précis.
	Chaque variante a sa propre caractéristique:

Lambertiennes et de motifs répétitifs, comme indiqué dans la Figure

1

.3. Même si la géométrie 3D manque de textures et de détails par rapport à l'image RGB, elle sert de complément idéal. En outre, elle joue un rôle important en fournissant des informations 3D pour établir un modèle de transformation de Helmert 3D entre les époques an (1) de déplacer diérentes époques dans le même cadre de coordonnées et (

2

) de supprimer les fausses correspondances dans une routine RANSAC qui est plus able que les modèles de transformation 2D. Diviser et conquérir Puisque la récupération de correspondances robustes et précises sur des paires d'images multi-époques est une tâche dicile, nous divisons la tâche en deux sous-tâches et les conquérons individuellement avec la stratégie grossier-à-précis. Cette stratégie est illustrée dans la Figure 1.4. Les deux sous-tâches sont les suivantes: 1. Co-enregistrement grossier, comme illustré sur la Figure 1.4(b). Son objectif est d'aligner grossièrement les paires d'images multi-époques en se concentrant sur la robustesse et en relâchant l'exigence de précision. 2. Appariement précis, comme illustré sur la Figure 1.4(c). Elle améliore les correspondances prédites par le résultat grossier du co-enregistrement en recherchant uniquement le voisinage local pour réduire l'ambiguïté.

  P atch est basé sur des méthodes d'appariement par apprentissage, il donne généralement plus de correspondances car il est plus invariant dans le temps. (2) Guided est basé sur des méthodes artisanales, il est plus ecace en termes d'utilisation de la mémoire et des ressources CPU car il n'implique pas de rééchantillonnage des patchs, ce qui est nécessaire pour P atch.

	1. Pour les variantes de co-enregistrement grossier: (1) celles basées sur l'idée
	d'appariement des DSMs conduisent généralement aux résultats les plus ro-
	bustes ; (2) celles qui apparient les orthophotos pourraient servir d'alternatives
	dans les rares scénarios de terrain parfaitement plat où les DSMs ne fournissent
	pas d'informations utiles ; (3) les autres qui apparient les paires d'images orig-
	inales conduisent souvent à des résultats moins satisfaisants, mais ce sont les
	seules options adaptées aux images terrestres.
	2. Pour les variantes d'appariement précis: (1)

  2. L Zhang, E Rupnik, M Pierrot-Deseilligny. Appariement des caractéristiques pour des images aériennes historiques multi-époques, 182, 176-189, 2021. 3. L Zhang, E Rupnik, M Pierrot-Deseilligny. Appariement des caractéristiques guidé pour l'estimation de la pose de blocs d'images historiques multi-époques. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2020. Nous fournissons également une vidéo [Zhang et al. 2021f], des diapositives [Zhang et al. 2021c] et le site web du projet [Zhang et al. 2021b] pour améliorer la visibilité de notre travail. Why are historical images interesting . . . . . . . . . . . . . . 11
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	1.3	Organisation de la thèse

Cette thèse présente des pipelines entièrement automatiques pour l'appariement d'images multi-époques. Une brève présentation de l'état de l'art est donnée dans le Chapitre 3.

Dans le Chapitre 4, les applications ainsi que 5 données représentatifs sont présentés, qui sont ensuite utilisés pour tester nos pipelines.

Dans le Chapitre 5, six variantes de co-enregistrement grossier sont élaborées pour aligner grossièrement le bloc entier en construisant un modèle de transformation globalement cohérent entre les époques diérentes. 2.1.2 How to match multi-epoch historical images . . . . . . . . . . 12 2.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3 Organization of the thesis . . . . . . . . . . . . . . . . . . . . 18 2.1 Motivation and objectives 2.1.1 Why are historical images interesting

  3. Department of Earth and Environmental Sciences in University of Pavia foranalyzing badland evolution in Europe.

	We also developed two thorough tutorials accompanied with test datasets to fa-
	miliarize users with our pipelines implemented in MicMac[Zhang et al. 2021a] (more
	details are introduced in Appendix C):
	1. Tutorial of matching aerial images [Zhang et al. 2021e]
	2. Tutorial of matching mixed images (i.e., aerial and satellite images)
	[Zhang et al. 2021d]
	Publications of the author:
	1. M Santangelo, L Zhang, E Rupnik, M Pierrot-Deseilligny, M Cardinali. Land-
	slide evolution pattern revealed by multi-temporal DSMs obtained from histor-
	ical aerial images. ISPRS Archives of the Photogrammetry, Remote Sensing
	and Spatial Information Sciences, 2022.
	2. L Zhang, E Rupnik, M Pierrot-Deseilligny. Feature matching for multi-epoch
	historical aerial images. ISPRS Journal of Photogrammetry and Remote Sens-
	ing, 182, 176-189, 2021.
	3. L Zhang, E Rupnik, M Pierrot-Deseilligny. Guided feature matching for
	multi-epoch historical image blocks pose estimation. ISPRS Annals of the
	Photogrammetry, Remote Sensing and Spatial Information Sciences, 2020.

  ], L2-Net [Tian et al. 2017], HardNet [Mishchuk et al. 2017], DELF [Noh et al. 2017], SuperPoint [DeTone et al. 2018], LF-Net [Ono et al. 2018]) use only intermediate metrics

Table 4

 4 

	Epoch	Image type	PixSz [µm]	Focal length [pix] [mm]	Physical ImgSz Digital ImgSz [mm] [pix]
		Historical 21.17 23350	502	300 × 300	13932 × 13902
	Fréjus	Historical 21.17 10230 Historical 21.17 10230	210 210	180 × 180 180 × 180	8758 × 8759 8766 × 8763
		Modern	6.8	18281	124.3	99.28 × 72.42 14600 × 10650
		Historical 21.17	7600	160	230 × 230	10600 × 10600
	Pezenas	Historical 21.17 6.8 Modern 6.8	7600 9967.5 9204.5	160 67.8 62.6	230 × 230 47 × 35 50 × 36	10600 × 10600 6950 × 5175 7325 × 5350
	Kobe	Historical Historical	20 20	7662 7662	152.66 152.66	230 × 230 230 × 230	10600 × 10600 10600 × 10600
	Alberona	Historical 31.75 Historical 31.75	4760 4650	153.0 152.8	230 × 230 230 × 230	7113 × 7109 6689 × 7065
	Hofsjökull	Historical	16	9656	154.49	230 × 230	14014 × 14009
	Epoch	GSD [m]	H [m]	Scale	Forward overlap overlap number Side Image	Flightline
		0.11 2530 1:5000	60%	20%	19	West-Est
	Fréjus	0.17 1780 1:8000 0.17 1770 1:8000	60% 60%	30% 30%	15 19	West-Est West-Est
		0.35 6500 1:5000	60%	30%	33	West-Est
		0.32 2400 1:1500	60%	20%	57	West-Est
	Pezenas	0.59 4500 1:3000 0.46 4600 1:7000	60% 60%	20% 50%	27 308	West-Est West-Est
		0.5	4600 1:7000	60%	50%	74	West-Est
	Kobe	0.5 0.18 1100 1:7000 3800 1:25000	65% 65%	35% 65%	15 83	Northeast-Southwest Northeast-Southwest
	Alberona	1.0 0.85 4850 1:3000 6000 1:4000	65% 65%	/ 30%	3 7	North-South West-Est
	Hofsjökull	0.57 5480 1:3500	60%	/	6	North-South
	Table 4.2: Continuation of Table 4.1. GSD is the ground sampling distance, H is
	the ying height.						

The dataset Hofsjökull is a snow-covered area located in Hofsjökull in central Iceland. Unlike other datasets described previously, Hofsjökull consists of only one epoch, as in this dataset we are only interested in matching challenging intra-epoch image pairs. It contains several archival aerial images acquired in the year 1960, provided by the National Survey of Iceland. They were scanned with a photogrammetric scanner Wehrli RM-6, in 16micron/px and 12 bit, in order to digitize as much information as possible appearing in the lms. In Figure

4

.7 we displayed 6 consecutive images in the same ight strip, with snow-covered area gradually expanding. We are interested in matching the most challenging image pair (i.e., image 5 and 6, as they are fully snow-covered with very limited context), whose overlapping zone is labeled with red rectangles. .1: Aerial dataset details of Fréjus, Pezenas, Kobe, Alberona and Hofsjökull. The 2015 acquisition of Pezenas is obtained with two sets of camera. PixSz means pixel size, ImgSz stands for image size. Digital image size of historical epoch is based on images resampled to the geometry of the ducial marks.

Table 4 .

 4 3: Satellite dataset details of Pezenas. It consists of 2 images, which is indicated as master and secondary image individually. GSD means the ground sampling distance.
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  matching each inter-epoch image pairs followed by global ltering over the whole block; 2. Ortho or DSM : generating global image for each epoch (i.e., orthophotos or DSMs) and performing matching only once.Please notice our pipelines are generic, dierent feature matching methods can be readily applied. At present we adopt either SIFT or SuperGlue in our pipeline as they are currently the state-of-the-art, but they can be replaced when better matching methods arise in the future. Our pipelines are able to match both aerial and satellite images. For aerial images, they are supposed to be accompanied with focal lengths and physical sensor sizes, which are usually available, as mentioned in Section 2.We adopt the following naming conventions: (1) I e 1 and I e 2 : images acquired in epoch 1 and epoch 2 ; (2) O e 1 and O e 2 : orientations of epoch 1 and epoch 2 ; (3) Op e 1 and Op e 2 : orthophotos of epoch 1 and epoch 2 ; (4) D e 1 and D e 2 : DSMs of epoch 1 and epoch 2 .

Prior to inter-epoch rough co-registration, we process each epoch individually to recover the relative orientations and DSM within the same epoch. It is a standard photogrammetry or SfM pipeline and can be accomplished with lots of solutions (e.g., MicMac [Pierrot-Deseilligny & Cléry 2012], COLMAP [Schonberger & Frahm 2016], OpenMVG [Moulon et al. 2016], Theia [Sweeney 2015], etc.). The one used in our experiment is MicMac. It is performed within each epoch i individually as follows: 1. Extract intra-epoch matches between images I e i with SIFT [Lowe 2004]; 2. Based on the sequential SfM to compute interior and relative orientations (O e i ini ) for aerial images, or to rene the Rational Polynomial Coecient (RPC) for satellite images; 3. Based on image orientations O e i

  Keep the rotation hypothesis with the largest number of matches. Workow of ImgPairs. Assuming the numbers of images in epoch 1 and epoch 2 are P and Q individually, the strategy ImgPairs works as follows:

	Chapter 5. Rough co-registration
	SuperGlue) is applied.
	Four rotation hypotheses. It normalizes rotation to achieve invariance, which is
	similar to ASIFT [Morel & Yu 2009] by exploring the space of possible deformation,
	but adapted as it only explores 2D rotation.
	The 4 rotation hypotheses works as follows (cf. Figure 5.1(d)):
	1. Rotate the secondary image by 90 • four times;
	2. Match each rotated image with the master image;
	3.

• (e.g.,

Table 5 .

 5 2: Comparison of downsampling ratio between SuperGlue tiling and SuperGlue orig for both orthophotos and DSMs from Fréjus 1970 and 2014.

		orthophoto		DSM	
		Width [pix] Height [pix] Width [pix] Height [pix]
	E1970	899	618	3323	2394
	E2014	1124	773	4154	2992
	Table 5.1: Size of orthophotos and DSMs from Fréjus 1970 and 2014.
			orthophoto	DSM	
			Width Height Width Height
	E1970	SuperGlue orig SuperGlue tiling	1.4 2	1.3 2	1.8 2	1.6 2
	E2014	SuperGlue orig SuperGlue tiling	5.2 2	5.0 2	6.5 2	6.2 2

  Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
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SuperGlue is generally more reliable than SIFT, as the former is more invariant over time.

Matches visualization. For each dataset, each free epoch E f is matched with reference epoch E r with 6 variants (i.e., x SIF T ImgP airs , y SuperGlue ImgP airs , z SIF T Ortho , { SuperGlue Ortho , | SIF T DSM and } SuperGlue DSM ), the matches are visualized and displayed together for comparison. In Table 5 For Fréjus, the reference epoch E r is 2014, the matches visualizations between free epochs E f (i.e., epoch 1954, 1966 and 1970) and E r are displayed in Figure 5.10,5.11 and 5.12 individually. For Alberona, the reference epoch E r is 2003, the matches visualizations between free epoch E f (i.e., epoch 1954) and E r are displayed in Figure 5.13. DoD. According to Table 5.3, by applying 6 variants (or 4 variants for satellite images) on each free epoch and the reference epoch, we got 50 testing cases. Among all the cases, there are 37 of them succeeded, which leads to 37 sets of co-registered orientations. For each set of resulted orientations, we use them to calculate DSMs in free epoch and reference epoch individually in order to generate DoD. 16 sets of DoDs belong to Fréjus and Alberona therefore are displayed in the current section (Figure 5.14 and 5.15). Their corresponding statistical information is displayed in 6.13 and 6.14.

P atch SIF T DSM and Guided SIF T DSM (hereinafter termed as DoD P atch SpGDSM , DoD Guided SpGDSM , DoD P atch SIF T DSM and DoD Guided SIF T DSM ) are given for comparison. For the DoDs of Alberona, the extent of the landslide area is indicated with black lines based on the landslide inventory map, which is plotted by expert geomorphologists with visual interpretation of aerial photographs. The corresponding statistical information is displayed in Table 6.1.

Ground displacement (i.e., Gd). The northeastward Gd maps of Kobe dataset as well as the ground truth Gd provided by the Geospatial Information Authority of Japan are presented in Figure 6.15. The roughly co-registered Gds resulted from variants SuperGlue DSM and SIF T DSM (i.e., Figure 6.15 (b) and (e), elaborated in Chapter 5) are displayed as references, and the rened Gds resulted from variants P atch SpGDSM , Guided SpGDSM , P atch SIF T DSM and Guided SIF T DSM (i.e., Figure 6.15 (c, d) and (f, g)) are given for comparison.

Discussion. As can be seen, both P atch and Guided recover a lot of matches, except for the ones involving epoch 1954 based on rough co-registration of SIF T DSM (Figure 6.6 (e, f), 6.9 (e, f) and 6.11 (e, f)). It is because the rough co-registration -Intra-epoch processing:

1. Feature matching. Apply feature matching based on SIFT on images within the same epoch. -Inter-epoch processing:

1. Automated pipeline. The automated pipeline will launch the whole inter-epoch processing pipeline by calling several subcommands.

2. Deep-dive in submodules. We also provide deep-dive to explain all the submodules used in the automated pipeline. It consists of: (1) rough co-registration, which roughly co-register the DSMs and image orientations from dierent epochs; (2) precise matching, which obtains precise matches under the guidance of rough co-registration.

-Evaluation:

1. Roughly co-registered DoD.

2. Rened DoD based on SuperGlue.

3. Rened DoD based on SIFT.

Take one tutorial (i.e., [Zhang et al. 2021e]) as example, in the following we display the commands used in the tutorial. The dataset used in the tutorial consists of 2 epochs (i.e., 1971 and 1981).

C.1 Intra-epoch processing

In this section, both epochs 1971 and 1981 go through the same commands individually. For the sake of simplicity, we take only epoch 1981 as an example to demonstrate the commands.