
HAL Id: tel-03865452
https://theses.hal.science/tel-03865452v1

Submitted on 22 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Robust reachability and model counting for software
security

Guillaume Girol

To cite this version:
Guillaume Girol. Robust reachability and model counting for software security. Cryptography and
Security [cs.CR]. Université Paris-Saclay, 2022. English. �NNT : 2022UPASG071�. �tel-03865452�

https://theses.hal.science/tel-03865452v1
https://hal.archives-ouvertes.fr

T
H

E
SE

D
E

D
O

C
T

O
R

A
T

N
N

T
:2

02
2U

PA
SG

07
1

Robust reachability and model counting
for software security

Atteignabilité robuste et comptage de modèles pour la sécurité
logicielle

Thèse de doctorat de l'université Paris-Saclay

École doctorale n◦ 580, Sciences et Technologies de l'Information et de la
Communication (STIC)

Spécialité de doctorat : Informatique
Graduate School : Informatique et sciences du numérique, Référent : Faculté des

sciences d’Orsay

Thèse préparée dans les unités de recherche Laboratoire Méthodes Formelles (Université
Paris-Saclay, CNRS, ENS Paris-Saclay) et Institut List (Université Paris-Saclay, CEA), sous la

direction de Sylvain CONCHON, professeur à l'Université Paris-Saclay, et le co-encadrement de
Sébastien BARDIN, chercheur à l'Institut CEA LIST.

Thèse soutenue à Paris-Saclay, le 17 octobre 2022, par

Guillaume GIROL

Composition du jury
Mihaela SIGHIREANU Présidente
Professeure, Université Paris-Saclay
Ahmed BOUAJJANI Rapporteur & Examinateur
Professeur, Université Paris Cité
Roberto GIACOBAZZI Rapporteur & Examinateur
Professeur, Université de Vérone
Thomas JENSEN Examinateur
Directeur de Recherche, INRIA – Université de Rennes 1
Caterina URBAN Examinatrice
Chargée de Recherche, INRIA – Université Paris Sciences Lettres
Sylvain CONCHON Directeur de thèse
Professeur, Université Paris-Saclay

Titre : Atteignabilité robuste et comptage de modèles pour la sécurité logicielle
Mots clés : robustesse, évaluation de vulnerabilité, sécurité, comptage de modèles, exécution sym-
bolique

Résumé : Les techniques modernes de re-
cherche de bugs sont devenues si efficaces que
le problème n'est plus de trouver des bugs mais
de trouver le temps de les corriger. Une façon
répandue d'éluder ce problème est de concen-
trer l'effort de correction de bug prioritairement
sur les bugs ayant un impact en termes de sé-
curité, aussi désignés sous le nom de vulnérabili-
tés. Cela conduit naturellement à la question de
l'évaluation de cet impact : un attaquant pourrait-
il tirer parti de tel ou tel bug? Cette thèse se
concentre sur une dimension particulière de ce
problème : un attaquant serait-il capable de dé-
clencher ce bug? Nous appelons cette propriété
la réplicabilité. Nous nous fixons pour objectif de
concevoir des méthodes de recherches de bugs
qui ne détectent que des bugs suffisamment ré-
plicables. Le point de départ est de considérer
des modèles de menace où l'on distingue les en-
trées du programme qui peuvent être choisies par
l'attaquant (comme les entrées réseau) de celle
qui ne peuvent ni être contrôlées ni connues de

lui (comme les sources d'entropie). Nous propo-
sons deux approches pour évaluer la réplicabilité.
D'abord, nous définissons l'atteignabilité robuste,
une propriété qualitative qui exprime qu'un bug
est non seulement atteignable mais que lors-
qu'il choisit les entrées qu'il peut correctement,
l'attaquant déclenche toujours le bug, indépen-
damment des valeurs des entrées qu'il ne peut
pas choisir. Dans un second temps, nous affi-
nons cette approche en une approche quantita-
tive où nous déterminons la proportion d'entrées
non contrôlées qui permettent à l'attaquant opti-
mal de déclencher le bug. Nous adaptons ensuite
l'exécution symbolique pour prouver l'atteignabi-
lité robuste ou bien calculer cette proportion. L'at-
teignabilité robuste est une analyse moins fine
que cette approche quantitative parce qu'elle est
“tout ou rien”, mais en contrepartie elle passe
mieux à l'échelle. Enfin nous illustrons dans des
études de cas les applications potentielles de ces
concepts, en particulier à l'évaluation de vulnéra-
bilité.

Title: Robust reachability and model counting for software security
Keywords: robustness, vulnerability assessment, security, model counting, symbolic execution

Abstract: Modern bug-finding techniques have
become effective enough that the bottleneck is
not finding bugs but finding the time to fix them.
A popular way to address this problem is to focus
first on bugs with a security impact, also known
as vulnerabilities. This leads to the question of
vulnerability assessment: could an attacker take
advantage of a bug? In this thesis we attempt to
assess one particular dimension contributing to
the security impact of a bug: whether an attacker
could trigger it reliably. We call this property repli-
cability. Our goal is to formalize replicability to
design bug-finding techniques which only report
bugs which are replicable enough. We do so by
considering a threat model where inputs to the
program which the attacker can choose (like net-
work inputs) are distinguished from inputs which
the attacker does not control nor know (like en-

tropy sources). We propose two approaches to
replicability. Firstly, we define robust reacha-
bility, a qualitative property that expresses that
a bug is not only reachable, but that when he
chooses the right inputs, the attacker triggers
the bug whatever the values of the program in-
puts he does not control. Secondly, we refine
robust reachability quantitatively as the propor-
tion of uncontrolled inputs that let the optimal at-
tacker trigger the bug. We adapt symbolic execu-
tion to prove robust reachability and compute this
proportion. Robust reachability is more coarse-
grained because it is “all-or-nothing” but scales
better than the quantitative approach. We illus-
trate in case studies the potential applications of
these techniques, notably in terms of vulnerabil-
ity assessment.

Order Number: 2022UPASG071

Université Paris-Saclay

Doctoral School STIC

University Department CEA List/LSL

Thesis defended by Guillaume Girol

Defended on October 17, 2022

In order to become Doctor from Université Paris-Saclay

Academic Field Computer Science

Robust reachability and model
counting for software security

Thesis supervised by Sylvain Conchon Supervisor
Sébastien Bardin Co-Monitor

Committee members

Referees Ahmed Bouajjani Professor at Université Paris Cité
Roberto Giacobazzi Professor at University of Verona

Examiners Thomas Jensen Senior Researcher at INRIA — Université de Rennes 1
Mihaela Sighireanu Professor at Université Paris-Saclay Committee President
Caterina Urban Research Scientist at INRIA — Université Paris

Sciences Lettres
Supervisor Sylvain Conchon Professor at Laboratoire Méthodes Formelles,

Université Paris-Saclay

Université Paris-Saclay

École doctorale STIC

Unité de recherche CEA List/LSL

Thèse présentée par Guillaume Girol

Soutenue le 17 octobre 2022

En vue de l’obtention du grade de docteur de l’Université Paris-Saclay

Discipline Informatique

Atteignabilité robuste et comptage
de modèles pour la sécurité

logicielle

Thèse dirigée par Sylvain Conchon directeur
Sébastien Bardin co-encadrant

Composition du jury

Rapporteurs Ahmed Bouajjani Professeur à l’Université Paris Cité
Roberto Giacobazzi Professeur à l’Université de Vérone

Examinateurs Thomas Jensen Directeur de Recherche à l’INRIA — Université
de Rennes 1

Mihaela Sighireanu Professeure à l’Université Paris-Saclay présidente du jury
Caterina Urban Chargée de Recherche à l’INRIA — Université

Paris Sciences Lettres
Directeur de thèse Sylvain Conchon Professeur au Laboratoire Méthodes Formelles,

Université Paris-Saclay

Abstract vii

Robust reachability and model counting for software security
Abstract

Modern bug-finding techniques have become effective enough that the bottleneck is not finding bugs but
finding the time to fix them. A popular way to address this problem is to focus first on bugs with a
security impact, also known as vulnerabilities. This leads to the question of vulnerability assessment:
could an attacker take advantage of a bug? In this thesis we attempt to assess one particular dimension
contributing to the security impact of a bug: whether an attacker could trigger it reliably. We call this
property replicability. Our goal is to formalize replicability to design bug-finding techniques which only
report bugs which are replicable enough. We do so by considering a threat model where inputs to the
program which the attacker can choose (like network inputs) are distinguished from inputs which the
attacker does not control nor know (like entropy sources). We propose two approaches to replicabil-
ity. Firstly, we define robust reachability, a qualitative property that expresses that a bug is not only
reachable, but that when he chooses the right inputs, the attacker triggers the bug whatever the values
of the program inputs he does not control. Secondly, we refine robust reachability quantitatively as
the proportion of uncontrolled inputs that let the optimal attacker trigger the bug. We adapt symbolic
execution to prove robust reachability and compute this proportion. Robust reachability is more coarse-
grained because it is “all-or-nothing” but scales better than the quantitative approach. We illustrate in
case studies the potential applications of these techniques, notably in terms of vulnerability assessment.

Keywords: robustness, vulnerability assessment, security, model counting, symbolic execution

Atteignabilité robuste et comptage de modèles pour la sécurité logicielle
Résumé

Les techniques modernes de recherche de bugs sont devenues si efficaces que le problème n’est plus de
trouver des bugs mais de trouver le temps de les corriger. Une façon répandue d’éluder ce problème
est de concentrer l’effort de correction de bug prioritairement sur les bugs ayant un impact en termes
de sécurité, aussi désignés sous le nom de vulnérabilités. Cela conduit naturellement à la question de
l’évaluation de cet impact : un attaquant pourrait-il tirer parti de tel ou tel bug ? Cette thèse se concentre
sur une dimension particulière de ce problème : un attaquant serait-il capable de déclencher ce bug ?
Nous appelons cette propriété la réplicabilité. Nous nous fixons pour objectif de concevoir des méthodes
de recherches de bugs qui ne détectent que des bugs suffisamment réplicables. Le point de départ est
de considérer des modèles de menace où l’on distingue les entrées du programme qui peuvent être
choisies par l’attaquant (comme les entrées réseau) de celle qui ne peuvent ni être contrôlées ni connues
de lui (comme les sources d’entropie). Nous proposons deux approches pour évaluer la réplicabilité.
D’abord, nous définissons l’atteignabilité robuste, une propriété qualitative qui exprime qu’un bug est
non seulement atteignable mais que lorsqu’il choisit les entrées qu’il peut correctement, l’attaquant
déclenche toujours le bug, indépendamment des valeurs des entrées qu’il ne peut pas choisir. Dans
un second temps, nous affinons cette approche en une approche quantitative où nous déterminons la
proportion d’entrées non contrôlées qui permettent à l’attaquant optimal de déclencher le bug. Nous
adaptons ensuite l’exécution symbolique pour prouver l’atteignabilité robuste ou bien calculer cette
proportion. L’atteignabilité robuste est une analyse moins fine que cette approche quantitative parce
qu’elle est “tout ou rien”, mais en contrepartie elle passe mieux à l’échelle. Enfin nous illustrons dans des
études de cas les applications potentielles de ces concepts, en particulier à l’évaluation de vulnérabilité.

Mots clés : robustesse, évaluation de vulnerabilité, sécurité, comptage de modèles, exécution sym-
bolique

CEA List/LSL
CEA SACLAY Nano-INNOV – Institut Carnot LIST – DILS/LSL, Point courrier n°174 –
91191 Gif-sur-Yvette CEDEX – France

viii Abstract

Je passe le plus rapidement possible sur
trois ans de recherches, qui n’intéressent
que les spécialistes, et sur l’élaboration
d’une méthode de délire qui
n’intéresserait que les insensés.

Marguerite Yourcenar

Remerciements

Je voudrais tout d’abord remercier mes encadrants Sébastien et Sylvain pour le temps qu’ils m’ont
consacré pendant trois ans. Merci à Sébastien notamment pour tous ces moments où je ne savais
plus trop dans quelle direction aller et tu m’as donné une direction claire, pour m’avoir montré la
valeur de certains résultats qui me paraissaient bien insignifiants, pour ces nombreuses relectures.
Merci à Sylvain pour m’avoir toujours prêté une oreille attentive, notamment à certains moments
décisifs.

Merci aux membres du jury d’avoir pris le temps d’évaluer mon travail et merci tout parti-
culièrement aux rapporteurs d’avoir relu ce manuscrit, malgré certains imprévus et délais dans
la procédure administrative.

Je voudrais aussi remercier les mainteneurs de certains logiciels que j’ai utilisés pour les
aspects expérimentaux de cette thèse, à qui j’ai adressé des questions, des rapports de bugs, et
parfois des correctifs, et qui ont toujours pris le temps d’y répondre, et même parfois de réécrire
le correctif dans son entier. Je pense notamment à Nikolaj Bjørner pour Z3, Armin Biere et
Mathias Preiner pour Boolector, Christian Muise pour Dsharp, Jean-Marie Lagniez pour D4,
Nian-Ze Lee pour SsatABC et Stephen Majercik pour DC-SSAT. Et, sur un autre plan, Frédéric
pour Binsec, bien sûr !

Merci aux merveilleux collègues du LSL. Vous me manquerez, ainsi que les discussions dédiées
à dire du mal du C, les excursions de Bühler Voyages et la brioche du monde d’avant.

Et enfin, merci à Léo de m’avoir supporté pendant le premier confinement.

xi

xii Remerciements

Contents

Abstract vii

Remerciements xi

Contents xiii

1 Introduction 1
1.1 Context . 1
1.2 Goal and challenges . 3

1.2.1 Challenges . 4
1.2.2 Proposal . 5

1.3 Contributions . 6
1.3.1 Primary contributions . 6
1.3.2 Secondary contributions . 6

1.4 Outline . 7

2 Motivation 9

3 Background 15
3.1 Program analysis . 15

3.1.1 The object: transition systems . 15
3.1.2 The proof goals: trace properties . 16
3.1.3 Reasoning by abstraction . 16
3.1.4 Beyond trace properties: hyperproperties 18

3.2 Satisfiability of formulas and related problems 19
3.2.1 Propositional formulas . 20
3.2.2 Satisfiability, model counting and related problems 20
3.2.3 Satisfiability modulo theory . 20
3.2.4 Bitvectors and arrays . 22

4 Robust reachability 25
4.1 Introduction . 25
4.2 Motivation . 26
4.3 Background . 28
4.4 Robust reachability . 30

4.4.1 Definition . 30
4.4.2 Relation with non-interference . 31
4.4.3 Interpretation in terms of hyperproperty 31

xiii

xiv Contents

4.4.4 Interpretation in terms of temporal logic 32
4.4.5 Robust reachability and automatic verification 33

4.5 Automatically proving robust reachability . 33
4.5.1 Robust Bounded Model Checking . 33
4.5.2 Robust Symbolic Execution . 34
4.5.3 Path merging . 35
4.5.4 Revisiting standard optimizations and constructs 35
4.5.5 About constraint solving . 38

4.6 Proof-of-concept of a robust symbolic execution engine 38
4.6.1 Implementation . 38
4.6.2 Case studies . 39
4.6.3 Experimental evaluation . 43
4.6.4 Additional considerations . 45

4.7 Related work . 47
4.8 Conclusion . 47

5 Quantitative robustness 49
5.1 Introduction . 49
5.2 Motivating example . 50
5.3 Background & Notations . 53

5.3.1 Normal forms for model counting . 53
5.3.2 Basic algorithms for model counting . 54
5.3.3 Beyond model counting . 55

5.4 Quantitative robustness . 56
5.4.1 Formal definition . 56
5.4.2 Interesting properties . 57
5.4.3 Comparison to other quantitative formalisms 58

5.5 Quantitative robust symbolic execution . 59
5.5.1 Going quantitative from RSE . 59
5.5.2 Path merging . 61
5.5.3 Path pruning . 62

5.6 Formalisms for f-E-MAJSAT . 62
5.6.1 Model counting . 62
5.6.2 Stochastic Boolean satisfiability . 64
5.6.3 Bayesian networks . 65
5.6.4 Probabilistic Planning . 66
5.6.5 Summary . 67

5.7 Algorithms for f-E-MAJSAT . 67
5.7.1 DC-SSAT . 67
5.7.2 Maxcount . 69
5.7.3 ssatABC . 69
5.7.4 deterministic Decomposable Negational Normal Form (d-DNNF)-based tech-

niques . 70
5.7.5 Summary . 72

5.8 Relaxation . 74
5.8.1 Upper bound . 74
5.8.2 Lower bounds . 75
5.8.3 Quality of the resulting interval . 77
5.8.4 Summary . 78

Contents xv

5.9 Implementation & experiments . 79
5.9.1 Popcon, a front-end for multiple f-E-MAJSAT algorithms 79
5.9.2 Experimental evaluation . 80
5.9.3 Case studies . 88

5.10 Related work & discussion . 93
5.11 Conclusion . 93

6 Conclusion and future work 95
6.1 Conclusion . 95
6.2 Perspectives . 96

A Résumé substantiel en français 99

Bibliography 101

xvi Contents

Chapter1
Introduction

1.1 Context
Software is now everywhere. Many activities are becoming increasingly reliant on computers and
the software they run: shops, banks, power grids and even hospitals would now have trouble
operating correctly if all this infrastructure were to cease functioning all of a sudden. A modern
plane can run programs comprising several millions of lines of code, and what if one of them is
wrong? What if there is a bug?

Correctness This anguishing question can be formulated as the issue of correctness: will the
software running on this computer behave as intended by the programmer? The entire field of
program verification is dedicated to this question, and decades of research have brought us nu-
merous distinct techniques to prove that a program effectively does what it is meant to. Program
verification can boast indisputable successes notably in aeronautics and public transportation [86,
2, 16, 13, 31]. Still, proving the correctness of a program is not for the faint of the heart: the
program must be designed with the proof in mind, and the amount of work needed is orders of
magnitudes higher than standard development, even for experts [2]. Industrially used provably
correct software is more the exception than the norm.

The vast majority of software is developed with lower expectations, using methods that we
regroup under the term of bug-finding. The main idea is to automatically search for bugs for some
amount of time, in what could be described as a good faith attempt at showcasing correctness.
Let us mention a few notable examples of such techniques. The most simple one is testing,
which runs the software on inputs written by hand by a programmer, and checks that the output
matches a programmer-provided ground truth. Exploration of program behaviors is limited to
the cases the programmer thought of. Fuzzing [93] alleviates this limitation by automatically
generating millions of random inputs. It then checks only that the software does not crash, so
the precise behavior of the program is not actually checked. The force of this technique is that
for most simple implementations it considers the program as a black box, and does not need
expensive static analysis. To the contrary, symbolic execution [64, 22] uses such static analysis to
automatically compute interesting inputs that lead to some classes of bugs, but at a far higher
computational cost.

Most of these techniques have a number of characteristics in common. The number of program
behaviors they can explore and check is usually finite, meaning that some bugs may be missed

1

2 CHAPTER 1. Introduction

“by design”. Fuzzing and symbolic execution can be rephrased in terms of reachability: they
attempt to answer the question to whether the program can reach a specific state (a crash for
fuzzing, anything for symbolic execution). Very often in fuzzing, one reduces more complex
properties like memory safety to the reachability of crashes using a monitor (like ASAN [110],
Valgrind [95] or E-ACSL [115]) that checks during execution that the property is satisfied and
“reaches a crash” if not.

These techniques may not replace a proper correction proof that bugs are not reachable, but
their restricted scope has been a recipe for success: innumerable bugs in widely used software
have been found by bug-finding techniques [111, 64, 23]. Notably, fuzzing is now becoming very
widespread in industrial settings, and despite its apparent lack of subtlety, this technique is
actually finding too many bugs [78]. As it is fully automatic, it can run unattended and report
its results as it find bugs. Surprisingly, the bottleneck is now not finding the bugs but making
something of the bug reports, a chore also known as bug triage.

Ideally, every time we find a bug, we should fix it: modify the program until for this specific
input, in this specific situation, it now works correctly. But software authors usually have finite
time or budget, and would rather employ it to do something else, like adding features—and
further bugs—to the code, rather than fixing bugs. One aspect of bug triage is thus selecting
what bugs we have the time to fix, and what others will be left for future work.

Security Let us step back for a moment. We are now dependent on software in many of our
activities, even the more critical ones. An important consequence is that computer systems are
also becoming increasingly valuable targets for attacks. To name only one example, even during
Covid, hospitals where hit by ransomware attacks [39]. In a very abstract way, we can define an
attack as the fact that an attacker attempts to use the program for his own purposes, rather than
the ones the developer had in mind. This very generic formulation does not specify the goals the
attacker is pursuing nor the means he uses to achieve them. This is specified in a threat model.
A simple lock provides security against theft when your threat model considers only curious,
opportunistic people, while a safe is more indicated against more powerful attackers.

In the case of computers programs, attacks can be performed by several vectors. The program
can behave as we intended, but what we intended was wrong. In some way, this is the case of
spam and phishing: the protocol of email is designed in such a way that anyone can send email
with any address email in the From: field. This design error is at the level of the specification
of the program and the program respects it. Protocol verification has seen a lot of research, and
has seen successes to the point that some ubiquitous protocols like TLS1.3 were written taking
into account the feedback of researchers in this field [37].

But sometimes the bug stems from a mismatch between what the programmer meant and
what the program actually does. Consider the case of the Web. The browser of the user makes
a request to a server. To answer this, the server is effectively running code at the request of the
client. In other words, this allows the attacker (who is also a client, after all) to run code on
the server. It is thus crucial that only restricted kinds of operations can be run on the server by
the attacker: for example “reading the content of the home page and sending it back” but not
“reading the password of another user and sending it back”. Heartbleed [38] is a well known bug
which affected a large part of web servers between 2012 and 2014. To check that his connection
to the server is still alive, the attacker is allowed to request a “heart beat”, by sending a piece of
text t along with its length n to the server. The server is supposed to send it back. The affected
software, called OpenSSL, copies n bytes of t to a temporary location in memory and then sends
that back. If t is “foo” but n is 30000, OpenSSL will copy and then send 30000 bytes of memory
back to the attacker. This memory will start with “foo”, but the rest of the 30000 bytes may
contain sensitive information, including keys or passwords. In other words, the attacker used a

1.2. Goal and challenges 3

bug in the program to leak secrets.
An attack can have various consequences: crash a service (Denial of Service, DoS), leak

information, or even let the attacker take total control of the program. Their impact is quite
context-dependent. For example, DoS is not always critical: your text processor occasionally
crashing is not much more than a mere annoyance, but it becomes much more concerning with a
power grid. Similarly, not all attackers can perform all attacks. Some of them can be performed
remotely—the attacker can exploit them from his sofa—while others require physical access to
the victim computer.

All this leads to the problem of vulnerability assessment: given a bug and a threat model,
can the bug be used by an attacker? Only a powerful one, or any script kiddie? Could it have
dire consequences if used maliciously, or only mild annoyances? This question—about security
more than correctness—is important in its own right. For example, the industry settled on
some commonly accepted good practices: security-relevant bugs (commonly called vulnerabilities)
must be reported privately, and kept secret until the software can be fixed. Software vendors
commonly provide security updates, which are updates which will not change the user-facing
behavior but only fix security-relevant bugs. And most importantly, vulnerabilities must but
be fixed quickly: vulnerabilities found by attackers before software vendors are called 0-days,
meaning that software vendors have 0 days to fix the issue.

But as software vendors increasingly focus on security vulnerabilities, a parallel phenomenon
can be observed: bugs without security impact are dismissed as not interesting and in some cases
not fixed at all. See for example the bug referred to as CVE-2019-16230 [21]: if the system runs
out of memory very early during boot, the Linux kernel might perform invalid memory accesses,
and crash. This is arguably an unrealistic situation, and while it is easy to fix, the issue is not
solved more than a year after the report. This illustrates what we call in this thesis a false
positive in practice: the bug is technically valid, albeit not practical nor security-relevant, and
thus not worth the time fixing.

1.2 Goal and challenges
As said before, it has become quite common to use bug-finding techniques to improve the quality
of the software we depend on, but they are so successful at finding bugs that they find more
than we can fix in a timely manner. Bug triage is the process of choosing which bugs we will fix
first. Given that some bugs are a security concern while others are unlikely to be exploited by
an attacker, it is quite natural to wish for a bug triage method which prioritizes vulnerabilities:
the more security impact the bug has, the higher its priority. Said otherwise, we want a form of
bug-finding without the false positives in practice.

This is an important shift, especially for the formal foundations of program analysis: a
reachable bug is not good enough per se anymore, and we must shift our focus from correctness
and safety to security.

There are many ways to define what constitutes a vulnerability; in some sense, there is one
per threat model. We propose in this thesis to focus on one specific criterion to give a hint about
how concerning a bug is: whether the bug happens in conditions that the attacker can produce.
For example, a bug that can only happen when an integer in uninitialized memory at address
0xdeadbeef has the only right value out of 232 is arguably less concerning than a bug that an
attacker can trigger by sending a carefully crafted packet through the network: in the former
case the attacker is not able to choose the content of uninitialized memory, whereas in the latter
case he can send any packet he wants and thus can trigger the bug 100% of the time. This
dimension, which we call replicability, is of course only one of the factors that contribute to the

4 CHAPTER 1. Introduction

overall security impact to be assessed, but as we will see in case studies it is already a valuable
asset. With this in mind, we will devise bug-finding techniques that only considers replicable
bugs and filter out those which an attacker could hardly trigger, to help defenders focus on the
most concerning bugs first.

Security is the original reason we are interested in replicability. However, we will see along
the way that it can be of interest in other cases, notably when dealing with test suites: will
this test always succeed or does its outcome depend on unexpected environmental details? Non-
deterministic test suites are the bane of countless developers, and our work on replicability can
be repurposed to fix them.

1.2.1 Challenges
Designing this kind of security-minded bug-finding is quite challenging, by several aspects.

Performance vs precision Any kind of semantic analysis of the behavior of programs is
undecidable: it cannot be both precise, automated, and terminate. Each technique establishes its
own trade-off in this regard. Fuzzing, arguably the most widespread today, insists on automation,
efficiency, parallelism, and satisfies itself with rather shallow analysis and incomplete results. As
we want not only bugs (crashes) but bugs which satisfy some specific property (replicability) we
will need some more static analysis than what text-book fuzzing uses, by resorting to symbolic
execution. This will trade efficiency for precision. As no trade-off is universally better, we will
actually present two techniques, one more precise and one cheaper.

This compromise is all the more important as we will rely on particularly expensive tools like
quantified SMT solvers [48, 11] or model counters [42, 94, 82], which have yet to reach the degree
of maturity of unquantified SAT [3, 15] and SMT solvers [97, 96] usually used in bug-finding.

Binary level analysis Whether a bug can be exploited often depends on implementation
details which are not described in the source code. The Heartbleed vulnerability mentioned
above happens in code in the C programming language. What the C specification says about the
actual behavior of Heartbleed is “anything can happen”. This does not help us with our analysis;
it is actually meant to allow compilers to optimize in more creative ways. To know what will
really happen when this code is run, we need to know what the compiler did, and thus analyze
compiled code, at the binary level. This is quite challenging, as binary code has lost much of the
structure that makes analyzing source code comparatively easier [7].

Hyperproperties As said above, bug-finding techniques can often be formulated in terms of
reachability of a bug. Even for more complex properties, one usually adds instrumentation like
sanitizers to reduce the problem to reachability. This is because reachability is a well-studied and
comfortable setting: it can be proved by observing a single execution of the program reaching the
desired location. Unfortunately, this is not the case of replicability: only observing one execution
of the bug only proves the existence of the bug, but it might be a very unusual situation, which
an attacker could not trigger. To give a formal underpinning to replicability, we will have to
resort to hyperproperties [32], i.e. properties which can only be proved after observing several
executions. Hyperproperties are studied since less long, and proof methods are considerably
more expensive. As we will see, the most prominent one, self-composition [12], cannot even be
applied to our case.

1.2. Goal and challenges 5

1.2.2 Proposal
We consider a deterministic program where all inputs are made explicit: to model a non-
deterministic program, it is enough to add a random input modeling all sources of entropy.
As with any security related work, we first need to state our threat model. Our approach con-
sist in splitting inputs into two parts: controlled inputs, which the attacker can choose, and
uncontrolled inputs, which may or may not prevent the attacker from achieving his goal. We
consider threat models where the attacker first submits the controlled inputs of his choice, then
the environment implicitly chooses the uncontrolled inputs. This is designed to mimic situations
where the attacker sends a malicious file or network packet to attempt privilege escalation for
example. We deliberately exclude interactive settings where the attacker can choose a third part
of inputs depending on uncontrolled input and/or program outputs. This limitation is there to
keep proof methods tractable.

We can then interpret replicability as the fact that when choosing the optimal controlled
inputs, the attacker will achieve his goal for all, or for many values of uncontrolled inputs. We
present two approaches derived from this foundation: one qualitative, and one quantitative.

Qualitative approach: robust reachability We refine the standard property of reachability
into robust reachability: a (buggy) program location is robustly reachable if the attacker can
choose a controlled input such that the bug is reached for all values of uncontrolled inputs.
Informally, a bug which is robustly reachable is 100% replicable for the attacker, which constitutes
a strong hint of its security impact.

The goal is then to design a method returning only robustly reachable bugs, but proving
robust reachability is harder than standard reachability. While existing formalisms can express
robust reachability, they are quite general and there are no efficient, automated proof techniques
at a low-enough abstraction level to handle binary analysis. Therefore, we adapt two techniques
originally designed with standard reachability in mind: symbolic execution and bounded model
checking. These are more expensive than some of the more widely spread bug-finding techniques
like fuzzing, but by not considering the program to be analyzed as a black box, they allow
the more fined-grained understanding of program behavior we need. More precisely, these two
techniques have in common that they convert the program as a symbolic set of constraints linking
inputs and outputs called a formula, and then attempt to solve the formula. Our technique is
based on solving a universally quantified version of this formula, and relies on the recent advances
of solvers in the handling of universal quantifiers. This will of course come at a price in terms of
performance and completeness.

Quantitative approach The previous method does indeed get rid of false positives in practice,
but it is a bit overzealous: it equally dismisses bugs which an attacker could reproduce only in
99% of cases and bugs which only happen in 0.001% of cases at best. Intuitively, the former is
more concerning than the latter. To give a formal meaning to this number of 99% or 0.001%,
which we call quantitative robustness, we resort to a problem in the family of model counting
called f-E-MAJSAT. Because of the asymmetry between controlled inputs and uncontrolled
inputs, it is distinct from standard model counting, which has benefited from more research
effort. The existing f-E-MAJSAT solving techniques come from other domains (probabilistic
planning and Bayesian network inference notably) and as we will see, some techniques introduced
to improve over more simple ones in these domains actually prove counter-productive for our
intended application domain. As exact f-E-MAJSAT solving appears hard, we introduce a
parametric solving algorithm to solve f-E-MAJSAT approximately: extreme values of the
parameter reduce to existing techniques, but intermediate values enable reaching interesting

6 CHAPTER 1. Introduction

trade-offs in terms of performance and precision. Overall, this can help sort bugs in order of
importance, even when all robust bugs have been fixed, for example. It pushes the trade-off
further in the direction of precision at the expense of performance compared to the qualitative
approach based on robust reachability.

1.3 Contributions

In this thesis we tackle the problem of designing a form of security-minded bug finding, which can
avoid reporting bugs with lesser security impact. We assess the threat of a bug by how easily an
attacker can trigger it, both qualitatively by introducing robust reachability, and quantitatively
with quantitative robustness.

1.3.1 Primary contributions
We claim the following contributions

• We formally introduce the concept of robust reachability and motivate its use, showing con-
crete situations where it can avoid false positives in practice. We characterize robust reach-
ability in terms of temporal logics and hyperproperties, and compare it to non-interference,
thus justifying the introduction of a new formalism,

• We revisit symbolic execution and bounded model checking and show how they can be
lifted to the robust case, and discuss how to adapt some standard optimizations of symbolic
execution along the way. We implement and evaluate these, and show how robust symbolic
execution can be used for criticality assessment of 5 existing vulnerabilities (CVEs), and
compare it to standard symbolic execution. Robust symbolic execution appears to be
tractable in practice, with reasonable overhead, yielding a false-positive-free reasoning,

• We introduce the notion of quantitative robustness as a quantitative extension of robust
reachability. We show how to modify robust symbolic execution to enumerate paths which
an attacker can trigger easily but not necessarily robustly. We illustrate in two case studies
how this can be used for vulnerability assessment,

• As quantitative robustness computation relies on solving f-E-MAJSAT problems, we
compare the effectiveness of various techniques originally developed for other kind of for-
mulas, obtaining counter-intuitive results. As exact techniques are not as effective as hoped,
we introduce a new parametric approximate algorithm yielding an interesting trade-off in
terms of precision and performance.

1.3.2 Secondary contributions
Tools The software used for the experimental evidence supporting the first technical chapter
of this thesis is already available as open-source. Namely, BINSEC/RSE, our robust symbolic
execution engine is available at https://github.com/binsec/cav2021-artifacts along with
the benchmark we used. As it is a work on replicability, great care has been taken for these
experiments to be reproducible, notably by relying on the Nix package manager [50].

1.4. Outline 7

Papers The work presented in Chapter 4 has been published in “Not All Bugs Are Created
Equal, But Robust Reachability Can Tell the Difference”. Guillaume Girol, Benjamin Farinier,
and Sébastien Bardin. In: Computer Aided Verification. Lecture Notes in Computer Science
(2021). Springer. It has been presented at the 33rd International Conference on Computer Aided
Verification and the 15th International Conference on Reachability Problems. This paper has
been selected for an extension in a special issue of the journal for Formal Methods in Systems
Design, which is still under review.

1.4 Outline
This thesis first features a motivational example in Chapter 2. It presents a program with bugs
with varying degrees of replicability. The analysis of these bugs with standard reachability,
robust reachability and quantitative robustness illustrates the potential of these techniques for
vulnerability analysis.

Chapter 3 then presents some background concepts. A very generic presentation of pro-
gram analysis is done, and some trade-offs about soundness, completeness and termination are
discussed. We define the central property of reachability. As many of the techniques we are
interested in are based on some kind of solver, we present the problem of satisfiability, especially
modulo theory, and the related problem of model counting.

The main contributions of this thesis are presented in the two following chapters.
Chapter 4 presents the concept of robust reachability, a new property, stronger than standard

reachability, designed to filter-out bugs that an attacker would have trouble reproducing in bug-
finding techniques. It exposes how to adapt symbolic execution and bounded model checking to
prove robust reachability. It features several case studies on real vulnerabilities showing practical
applications of robust reachability to vulnerability assessment.

Chapter 5 presents a quantitative extension of robust reachability called quantitative robust-
ness. As it reduces to a counting problem called f-E-MAJSAT, it proceeds with a presentation
of existing approaches to solve f-E-MAJSAT. It complements them with a new, parametric,
approximate algorithm based on relaxation. It presents an experimental comparison of these
algorithms showing that relaxation allows to improve the trade-off between performance and
precision. It finally comes back to the original problem of quantitative robustness by showing in
case studies that a quantitative approach can bring finer information for vulnerability analysis,
and that the better f-E-MAJSAT algorithms we compared can solve the instances generated
for real programs.

Finally, we conclude and give some perspectives for future work in Chapter 6.

8 CHAPTER 1. Introduction

Chapter2
Motivation

In this chapter we illustrate how it can be desirable to distinguish bugs which are replicable by
an attacker from bugs which are not, and how usual bug finding techniques based on reachability
come short in this respect.

A network server Figure 2.1 shows the code of a network server implementing a simplis-
tic protocol mimicking the Heartbleed vulnerability [38]. When the server receives a network
packet—potentially from the attacker—function handle_packet (l. 34) is called with a struc-
ture packet describing its length as reported by the network card, and its content. The protocol
specifies that packets should start with 2 bytes specifying the type 1, 2, or 3 of request (field type
of struct packet_header, l. 2). Function handle_packet computes a pointer to a function
knowing how to handle each type of request (l. 41), and calls it with the packet (l. 53). We are
interested in type 1 packets, heartbeat requests. Such a packet specifies a text that the server
should send back to the client, along with its length (see struct heartbeat_packet_header, l.
6). The handler function handle_heartbeat (l. 22) first allocates a buffer for the answer packet
with malloc and then copies the text of the heartbeat request into this buffer with memcpy.

Three more or less subtle bugs were inserted in this code:

Bug 1 when a packet has neither type 1, 2, nor 3, the function pointer handler is NULL when
called l. 53, leading to a crash;

Bug 2 line 28, memcpy copies an attacker-controlled numbers of bytes of memory from a possibly
short buffer, leaking memory to the network. This is our reimplementation of Heartbleed.

Bug 3 line 28, memcpy writes to a pointer allocated with malloc which may be NULL if the system
runs out of memory. This can lead to a crash.

Vulnerability assessment These three bugs do not have the same security impact. Let us first
compare Bug 1 and Bug 3, because they are more comparable. When they happen on a system
with memory protection, they should both result in a crash (because a null pointer is executed
or written to): this is a case of denial of service without possibility of further exploitation.
Vulnerability assessment thus somehow reduces to how easily an attacker can trigger these bugs.
To trigger Bug 1, it is enough to send a network packet with a type field set to a value other
than 1, 2, or 3. On the contrary Bug 3 only happens when the system runs out of memory, which
depends on other applications running on the system, and which an attacker does neither control

9

10 CHAPTER 2. Motivation

1 struct packet_header {
2 unsigned short type; // 1 for heartbeat requests, 2 or 3 for other things
3 char data[]; // actual content depends on the request type
4 };
5
6 struct heartbeat_packet_header {
7 unsigned short type; // always 1
8 unsigned short heartbeat_len; // the length of the string to send back
9 char hearbeat_request[]; // the string to send back

10 };
11
12 struct packet {
13 unsigned short len; // the length of the packet
14 struct packet_header *buffer; // the content of the packet
15 };
16
17 struct heartbeat_packet {
18 unsigned short len;
19 struct heartbeat_packet_header *buffer;
20 };
21
22 struct packet handle_heartbeat(struct heartbeat_packet packet) {
23 struct packet answer;
24 answer.len = packet.buffer->heartbeat_len;
25 answer.buffer = malloc(answer.len);
26 // does not check if malloc failed
27 // might copy more bytes than the incoming packet size
28 memcpy(answer.buffer, &packet.buffer->hearbeat_request, answer.len);
29 return answer;
30 }
31
32 typedef struct packet (*handler_t)(struct packet);
33
34 void handle_packet(struct packet packet) {
35 if (packet.len <= 4) {
36 // packet is too small for the headers we expect
37 return;
38 }
39 // the function that implements this type of request
40 handler_t handler = NULL;
41 switch (packet.buffer->type) {
42 case 1:
43 handler = (handler_t)&handle_heartbeat;
44 break;
45 case 2:
46 handler = &handle_something_else;
47 break;
48 case 3:
49 handler = &handle_irrelevant;
50 break;
51 // forgot the default case
52 }
53 struct packet answer = handler(packet);
54 send(answer);
55 }

Figure 2.1: A vulnerable network server

CHAPTER 2. Motivation 11

Input Bug 1 Bug 2 Bug 3
esp 0xb0000000 0xb0000000 0xb0000000
packet length 16 14 16
packet address 0x10000000 0x10000000 0x10000000
packet 0x0000000000000000 0x0000000000100001 0x0000000000000001
return value of
malloc

— 0x20000000 0

Table 2.1: Inputs reported by symbolic execution which trigger the bugs

nor even know about. The allocation of line 25 is limited to a short integer, thus less than 65 kB,
which is unlikely to exhaust memory on modern hardware. In other words, informal analysis
suggests Bug 3 only happens in conditions which are both unlikely and out of the control of the
attacker. We thus conclude that Bug 1 is more severe than Bug 3.

Bug 2 is less comparable to the other two as it does not result in denial of service, but in an
information leak. In some sense which outcome is worse depends on the threat model. However,
note that how replicable the bug is is still an information of paramount importance: if, like Bug
3, Bug 2 only happens in unlikely cases which are out of the control of the attacker, it seems
more legitimate to defer fixing it than if it is 100% replicable by an attacker like Bug 1. Bug
2 happens whenever the attacker sends a packet of type 1 with a large field heartbeat_len and
hearbeat_request empty, for example, and when the allocation of line 25 succeeds. In other
words, when the attacker acts optimally, he has a high, but not 100%, chance of triggering Bug
2.

The problem with standard reachability Assume for example, that we only have the time
budget to fix two bugs. We would like to design a bug-finding technique that detects Bug 1 and
Bug 2 but overlooks Bug 3, as it only happens in corner cases. Let us analyze what happens
with a standard technique, symbolic execution. All three bugs are reported as reachable by the
symbolic execution engine of Binsec: this technique is not able to distinguish between high- and
low-replicability bugs.

This technique additionally reports one input triggering each bug (presented in Table 2.1):
could we reason on them to reproduce the vulnerability assessment of the previous paragraph? As
expected, one can see that Bug 3 is triggered when malloc returns 0, however nothing excludes
that it would work with another value. This report is compatible with the bug happening all the
time instead of only in corner cases. Conversely, Bug 1 is reported to work when the starting
address of the stack esp is 0xb0000000, and while we expect it to also work with many other
addresses (due to Address Space Layout Randomization (ASLR) for example), nothing in this
report guarantees it. This bug could only work for this specific value of the starting address of
the stack esp, and since the attacker cannot choose this starting address, it would make it hard
for him to trigger the bug.

This lack of information on the behavior of the program for other inputs is not a problem for
all inputs. If all inputs were attacker-chosen, a report like the ones of Table 2.1 would be enough
to conclude to the possibility of an attack, as the attacker could choose the right inputs. The
problem actually arises when considering inputs that the attacker cannot control, like esp and
the return value of malloc, which we mentioned above.

The fact that these reports are not so useful to distinguish high- and low-replicability bugs
and more generally for vulnerability assessment is not specific to symbolic execution or its im-

12 CHAPTER 2. Motivation

plementation in Binsec: it affects all techniques based on reachability. Reachability only tells
us that there is one input leading to the bug, leaving the possibility that it is the single one, and
that the attacker needs to be lucky enough for the inputs he cannot set exactly to the values in
the report to spontaneously take the right value. For this reason we will propose new, stronger
concepts, that express that bugs are not only reachable, but replicable for an attacker.

First proposal: robust reachability We explicitly partition the inputs of the program into
two parts: controlled inputs, that are chosen by the attacker, and uncontrolled inputs which the
attacker cannot influence and cannot predict. In our case, controlled inputs are the packet content
and length, while the initial state of the memory and registers is uncontrolled. In particular,
the starting address of the stack esp and the return value of malloc is uncontrolled. A bug is
said to be robustly reachable if the attacker can choose controlled inputs such that the bug is
guaranteed to be triggered for all values of uncontrolled inputs.

Bug 1 is robustly reachable because when the attacker chooses a packet of length 16 and
containing only zeroes the bug is actually guaranteed to happen, for all values of esp and the
packet addresses. This proves that this bug is replicable for an attacker. This analysis, which
we obtain mechanically with symbolic execution in 0.1s, is much more precise than what we
obtained with standard reachability as it enables us to conclude that this bug has the potential
to turn into a high-profile denial of service attack.

Limitations The definition of robust reachability embeds two main intentional limitations.
Firstly, when we partition inputs into controlled inputs which are attacker chosen and uncon-

trolled inputs which are unknown to the attacker and cannot be influenced by him, we implicitly
forbid interactive systems where the environment first chooses some uncontrolled input x1, then
the attacker, given the knowledge of x1, chooses a first controlled input a1, then in reaction the
environment chooses another uncontrolled input x2 which may prevent the attacker from achiev-
ing his goal, then the attacker may be allowed one second input a2 to the system, etc. The reason
of this design choice is that we want to take advantage of the abilities of Satisfiability Modulo
Theory (SMT) solvers to solve quantified formulas. Such interactivity would require numerous
quantifier alternations: ∀x1.∃a1.∀x2.∃a2. bug where models for existential parameters are actu-
ally functions, which is very badly supported by state-of-the art solvers (see also Section 4.6.4.3).
Our non-interactive definition of robust reachability only requires one quantifier alternation:
∃controlled.∀uncontrolled. bug which appears reasonably tractable in our experiments.

The second limitation is visible when we try to apply the definition of robust reachability
to the two other bugs. Bug 3 is not robustly reachable because it only happens for some
values of uncontrolled inputs (when malloc returns 0). We can thus conclude that this bug
is not replicable all the time by an attacker, but not that it only happens rarely. Bug 2,
which we manually analyzed to happen all the time except in the unlikely case where memory
allocation fails, is not robustly reachable because even for the right controlled inputs, the bug is
not triggered successfully for all values of uncontrolled inputs: it fails to happen when malloc
returns 0. Said informally, robust reachability only detects bugs which are 100% replicable and
dismisses bugs which are replicable only 99% of the time. As a result, Bug 2 and Bug 3 are
indistinguishable in terms of robust reachability, whereas we expect Bug 2 to be much more
replicable. Robust reachability has been designed to be “all-or-nothing” to be able to rely on the
theory of universal quantification in SMT solvers, but we would like something more quantitative
that can accommodates bugs which are, like Bug 2, replicable “often, but not always”. This
leads us to a second proposal relying not on universal quantification but on model counting,
which is expected to be more expensive but more precise.

CHAPTER 2. Motivation 13

Second proposal: a more quantitative approach We now try to assess quantitatively
how replicable a bug is in the following sense: for the optimal controlled input, we compute
the proportion of uncontrolled inputs that trigger the bug. We call this maximal proportion
quantitative robustness. To do such model counting, we need to specify the domain of all inputs.
Notably, we model the return value of malloc as an integer which is either 0 or in a heap located
at [0x20000000, 0x40000000]. In these conditions, one can compute mechanically in 2 seconds
that Bug 3 only happens for 1

229+2 of uncontrolled inputs at best (when malloc returns 0) even
when the attacker chooses controlled input optimally. On the other hand, one can compute in
about 2 seconds that Bug 2 happens with quantitative robustness above 0.999999998137 (exact
solving times out). This value is compatible with the expected one: 1 − 1

229+2 . This illustrates
how quantitative robustness allows distinguishing automatically these two bugs: Bug 2 is more
replicable than Bug 3.

Quantitative robustness also has the advantage that it is compatible with the previous notions:
a bug is unreachable when it has quantitative robustness 0 and robustly reachable when it has
quantitative robustness 1. With this methodology, we compute that Bug 1 has quantitative
robustness 1 and can compare its replicability successfully to those of Bug 3 and Bug 2.

Scope Note that we compute a proportion of inputs triggering a bug, not a probability. If
a probability is desired, our method can be interpreted as allowing only a uniform probability
distribution for uncontrolled inputs. One could want to specify an arbitrary probability distribu-
tion, but as we will see effective techniques to compute quantitative robustness are restricted to
some kind of distributions only. But beyond the capabilities of the technique it is good to think
about the capabilities of the end user. Does the user actually know the probability distribution
of the return value of malloc? In practice, it is not the case, so it would hardly be a gain
to extend our tool to allow specifying such a custom distribution. Besides, our goal here is to
distinguish between a bug that only happens when the system is out of memory and one that
always works except when the system is out of memory. In this case the uniform distribution
is enough to highlight this very strong asymmetry. This technique is thus designed to give a
hint of the replicability of bugs, not necessarily to obtain an assessment of the vulnerability as a
10-digit-precise score.

It is also the right place to reiterate that we only consider replicability here: many other
dimensions also matter. In our case Bug 2 is an information leak while Bug 1 and Bug 3
are denial of service bugs, and therefore have a very different impact. Our techniques should be
considered as tools helping the (presumably manual) process of vulnerability assessment but not
replacing it.

14 CHAPTER 2. Motivation

Chapter3
Background

In this chapter we present some basic concepts which are good to have in mind for the develop-
ments to come. Firstly, we will present ways to express the properties that a program satisfies
(trace properties, hyperproperties) and how to qualify the corresponding proof methods (correct-
ness, completeness). Secondly we will define what a solver tries to prove: satisfiability of boolean
formulas, satisfiability modulo theory, and model counting.

3.1 Program analysis
Program analysis designates the task of determining whether the actual behavior of a program
satisfies a property. In full generality, there are several ways to give a formal meaning of what
“program behavior” and “property” means, hence the abstract phrasing. For example, one
property we could like to prove is “the program never crashes”. A number of techniques have
been developed to solve this kind of problem, usually regrouped under the name of formal
methods [31, 106, 35, 17, 68].

We will present the simple formalism of trace properties in transition systems, and use it to
introduce useful characteristics of such methods. The formalism of trace properties is slightly
too restricted for the discussions to come, so we will also introduce hyperproperties [32].

3.1.1 The object: transition systems
To describe a program P we consider the set S of all possible states of the machine executing

it. A state can be the pair of the memory and register content of an idealized computer, or
something more abstract, like the number of the next line of code to be executed and the current
value of all variables. Consider the example of Figure 3.1: the initial state of the program can be

1 int s = 0; int i = 0;
2 for (i=1; i<70000; i++) {
3 s += i;
4 }

Figure 3.1: Example program

15

16 CHAPTER 3. Background

expressed as {line 7→ 2, s 7→ 0, i 7→ 0}, where line denotes the next line of code to be executed,
and s and i refer to the variables of the program. This example is very simple, but in general
the initial state depends on a program input y ∈ Y: we denote the initial state as s1(y).

The program P is represented by a (one-step) successor relation →∈ S ×S expressing in what
states the program can go on next instruction. For example the s += i instruction corresponds
to the transitions {line 7→ 3, s 7→ 0, i 7→ 1} → {line 7→ 2, s 7→ 1, i 7→ 1}, {line 7→ 3, s 7→
3, i 7→ 6} → {line 7→ 2, s 7→ 9, i 7→ 6} and more generally {line 7→ 3, s 7→ n, i 7→ m} →
{line 7→ 2, s 7→ n+m, i 7→ m} for all integers n, m. We denote as →+ the transitive closure of
→.

A trace t is a sequence of states respecting →: for i an integer, ti → ti+1 where ti denotes
the i-th state of t. An example of trace is ({line 7→ 2, s 7→ 0, i 7→ 0}, {line 7→ 3, s 7→ 0, i 7→
1}, {line 7→ 2, s 7→ 1, i 7→ 1}). If a program does not terminate, then traces can be infinite. We
denote as S+ all finite sequences of states, as Sω all infinite such sequences, and as S∞ ≜ S+ ∪Sω

the set of all state sequences. The program P is accurately depicted as the set of traces it admits,
denoted as T (P) ⊆ S∞. Note that we consider partial traces here: if P admits a trace t, it also
admits all its prefixes.

Later, we will define properties of the form “line 3 of the program is reachable”. To model
this, each state s ∈ S has a corresponding location λ(s), for example a line nuber in the source
code. We distinguish traces from paths: a path is a sequence of locations (a synctactic feature),
while a trace is a sequence of states (related to the semantics of the program). A path can
correspond to many traces.

3.1.2 The proof goals: trace properties
A trace property Π is the set of traces it allows: Π ⊆ S∞. A program P satisfies the property
Π, denoted as P ⊢ Π, if all its traces are allowed: T (P) ⊆ Π.

A well known class of trace properties is safety properties, informally presented as “something
bad must not happen”, for example “crashes must not happen”, or “division by 0 must not
happen”. In our example program Figure 3.1, one could want to prove that the variable s is never
negative. The corresponding property is Π = {∀s ∈ t. s[s] ≥ 0 | t ∈ S∞}. It happens that for
32-bit-wide integers, P does not satisfy Π because s overflows: at the 65637-th iteration the trace
ends with {line 7→ 3, s 7→ 2154009430, i 7→ 65637}, {line 7→ 2, s 7→ −2140892230, i 7→ 65637}.
This trace does not belong to Π and thus P 6⊢ Π.

Another kind of property expressible as trace property is termination. Termination is the
property Π = S+. Our example program does terminate: T (P) ⊆ S+.

3.1.3 Reasoning by abstraction
The field of verification could be summarized as follows: for a given property Π, we consider the
decision problem of determining for any program P if P ⊢ Π. Rice’s theorem [105] implies that
if Π is not the always false property ∅ nor the always true property S∞, this decision problem
is undecidable. As a consequence, verification cannot be both precise, automatic, terminating
and generic (working on all programs). Various techniques for program verification forgo one
or several of these qualifiers. Deductive verification [68] is not fully automatic as it relies on a
human operator to provide annotations like pre-, post-conditions and invariants, or even write
full proofs. Model checking [17] models the program to be verified as abstracted finite system,
and verifies the finite system. Finiteness allows to eschew undecidability. Symbolic execution [22]
needs to enumerate all paths in the program, which may be infinitely many, and will therefore

3.1. Program analysis 17

(a) Proving a property with
over-approximation

Program behaviors T (P)

Over-approximating abstraction A

Property Π: acceptable behaviors
False alarms

(b) Failure to prove a true property because of false alarms

Figure 3.2: Over-approximating proof method

often not terminate. Abstract interpretation [35, 106] may return a wrong result in some cases,
in that it raises alarms for bugs which actually do not exist.

One way to eschew undecidability is to first approximate the behavior of the program into a
so-called abstraction A and then decide whether the abstraction satisfies Π. There are two main
ways to perform this.

Over-approximation The abstraction contains all the behaviors of P , plus some extra ones.
In terms of trace properties: T (P) ⊆ A and we compute whether A ⊆ Π.

Under-approximation The approximation only admits behaviors in P , but misses some of
them. In terms of trace properties: A ⊆ T (P), and we compute whether A ⊆ Π. This is
the case of most bug-finding techniques.

The textbook example of over-approximation is abstract interpretation [35]: instead of storing
the set of all possible values of a variable (and their relations), it will approximate them into
a superset of a specific form which is both concise and easy to reason about. For example,
in Figure 3.1 one can compute the set of possible values of for variables s and i line 3 as an
interval. For i, one finds [1, 70000], which is perfectly precise. However, for s it would be
[−2140892230, 2154009430], a set orders of magnitude larger than the 70000 expected values.

An example of under-approximation is symbolic execution [22]. Symbolic execution works
by first enumerating all paths in the program, unrolling loops. Then it computes a set of
constraints (under a form described in Section 3.2) on the variables of the program expressing
that the path is taken, and attempts to determine whether these constraints are satisfiable. If
the path syntactically leads to a bug and the constraints leading to it are satisfiable, then we
found a bug. This technique is an under-approximation because the set of paths of a program is
most often infinite, and in practice one bounds exploration. Some behaviors (and possibly bugs)
are thus missed.

An over-approximation can consider fictitious behaviors (traces) which violate Π whereas
P satisfies it. This leads to false positives, or false alarms: a bug is found where there
was none. (See Figure 3.2) Over-approximating techniques cannot have false-negatives: they
cannot conclude to the absence of bugs if there are bugs, since all behaviors are included in the
abstraction.

Conversely, under-approximations miss some behaviors, and thus may miss bugs: this would
lead to a false negative. See Figure 3.3. For example, conventional testing misses all the bugs
in code not exercised by the test suite. On the other hand, under-approximating techniques do
not have false positives as all behaviors in A actually belong to the program P .

18 CHAPTER 3. Background

Missed bugs

(a) False negative: Failure to
disprove a false property by
under-approximation

Program behaviors T (P)

Under-approximating abstraction A

Unacceptable behaviors Π̄

Detected bugs

(b) Disproving a property with under-approximation

Figure 3.3: Under-approximating bug-finding

This opposition is often described in terms of correctness and completeness. Techniques which
terminate can be modeled as an algorithm V which takes a program P as input and returns 1
as an imprecise indication that P ⊢ Π, or 0 otherwise. Such verifiers can be classified into two
categories:

Completeness V is complete with respect to Π if ∀P. V (P) = 0 =⇒ P 6⊢ Π. The adjec-
tive complete is to be understood as “will find all violations of Π”. Over-approximating
techniques are normally complete, but not correct.

Correctness V is correct (or sound) if ∀P. V (P) = 1 =⇒ P ⊢ Π. V can prove the
property, but not its negation. Under-approximating techniques are normally correct, but
not complete.

This can be usefully extended to non-terminating techniques. For example, symbolic ex-
ecution [22] and bounded model checking [29] are under-approximations where the abstrac-
tion quality is parametrized by a bound k. They only consider traces of length at most k:
A = {t ∈ P | |t| ≤ k}, where |t| denotes the length of trace t. These techniques are incomplete,
but informally they would become complete with infinite time. One can make this more formal
as follows:

k-Completeness V is k-complete with respect to property Π if for all bounds k and all
programs P where traces are at most length k, V (P, k) = 0 implies that P 6⊢ Π.

In other words, the finite restriction of the verifier to bounded programs is complete for all
bounds k.

3.1.4 Beyond trace properties: hyperproperties
Reachability A property central to our later discussions is reachability. It expresses whether
there is an initial state of the program can lead to an event. Many practical bug-finding targets
can be reduced to reachability of bugs. Elementary examples are “reachability of division by 0”
or “reachability of null pointer dereference” for example, but more complex instances also do.
For example, consider memory safety. It is a complex property especially if one tries to define it
formally. The most frequent way to dealing with it in fuzzing is to use a monitor like ASAN [110],
Valgrind [95] or E-ACSL [115]: a program which runs the program P and computes whether the
current execution trace satisfies memory safety. If a violation is detected, the monitor crashes
with a helpful diagnostic. Fuzzing then only has to determine whether a crash of the monitor is
reachable.

3.2. Satisfiability of formulas and related problems 19

Formally, let us attempt to define reachability of line ℓ of the program. Reachability of a
program location ℓ means that there is an input to the program such that execution leads to line
ℓ:

∃y ∈ Y.∃s ∈ S. s1(y) →+ s ∧ λ(s) = ℓ

The framework of trace properties we described above can easily express the negation of
reachability: it is the property Π = {t ∈ S∞ | ∀i. λ(ti) 6= ℓ}. The program must only admit
traces avoiding the location ℓ. However it cannot express reachability directly. For this reason
we introduce a more complex framework called hyperproperties.

Hyperproperties A hyperproperty [32] is a set of sets of traces Π ∈ 22S
∞

. A program P
satisfies a hyperproperty Π if T (P) ∈ Π. Hyperproperties are considerably more expressive than
trace properties (it is easy to see that a trace property can be converted into a hyperproperty).
Notably they can express properties relating several traces, like “this program terminates on
average in less than 1s”. Hyperproperties are generally thought to be harder to prove than trace
properties. For example some categories of hyperproperties relating two traces (2-hypersafety)
can reduced to trace properties with self-composition [12] but this comes at the cost of squaring
the size of the program if implemented naively.

Reachability of program location ℓ can be expressed as a hyperproperty:

R(ℓ) = {P ∈ 2S∞ | ∃t ∈ P. ∃i. λ(ti) = ℓ}

but it is not among the hardest ones, as its negation is a trace property, and a well-studied one
at that.

While reachability of a program location ℓ is a simple mental model, it is a bit restricted.
We can generalize it to reachability of any event given under the form of a set of finite traces
O ⊆ S+.

Definition 1 (Reachability). A set of finite traces O ⊆ S+ is reachable in program P if P ∩O 6=
∅. We write P ⊢ R(O).

As a special case one gets the usual property of reachability of a location:

Definition 2 (Reachability of a location). A location is reachable, denoted as P ⊢ R(ℓ), if
P ⊢ R(O) with O = {t ∈ S+ | λ(t|t|) = ℓ}.

Link to the thesis In this thesis, we argue that while bug-finding techniques like symbolic
execution are sound, i.e. that they have no false positives, in a security-oriented context they
can report bugs which are wasting everyone’s time because they could only happen in conditions
which an attacker could not reproduce. We call them false positives in practice. This issue is
intrinsic to reachability and not specific to a particular technique. We attempt to design new
techniques which avoid false positives in practice, starting by refining reachability into a stronger
property.

3.2 Satisfiability of formulas and related problems
Some techniques like symbolic execution [22] and bounded model checking [29] work by converting
a path into a set of constraints over the program input. Such a set of constraint is often called
a formula. If the program input satisfies the constraint represented by the formula, then the
program will follow the original path in the program. In this section, we present some variants
of formulas and problems that apply on such formulas.

20 CHAPTER 3. Background

3.2.1 Propositional formulas
We consider the theory of propositional formulas over a finite set of boolean variables v ∈ V. The
set F of propositional formulas is defined starting from variables v ∈ V, and for f, g ∈ F adding
negation ¬f , conjunction f ∧ g and disjunction f ∨ g. We denote as V (f) the set of variables
appearing effectively in a formula f . Propositional formulas are usually given in Conjunctive
Normal Form (CNF). A literal is v or ¬v where v is a variable. A clause is a set of literals,
interpreted as their disjunction, and a formula in CNF is a set of clauses, interpreted as their
conjunction.

A partial valuation is a partial mapping from a subset of V to the set B ≜ {⊤,⊥}. One
can apply a partial valuation m to a full formula f : f |m is the formula identical to f where
variables v in the domain of m are replaced by m(v). For example, for f = v1 ∧ (¬v1 ∨ v2) and
m = {v1 7→ ⊤}, the formula obtained by applying m on f is f |m = v2.

A valuation is complete for f when its domain contains V (f), i.e. it associates all variables
to a boolean value. Such a valuation maps a propositional formula to B as well.

A complete valuation m is said to be a model of a formula f if f |m = ⊤ We denote as
M (f) ≜ {m ∈ BV(f) | f |m = ⊤} the set of models of a formula f , and as ♯ (f) ≜ |M (f)| its
cardinal. For example, the models of v1∧(v2∨¬v2) are {v1 7→ ⊤, v2 7→ ⊥} and {v1 7→ ⊤, v2 7→ ⊤}.

Note that the definition of models depends on the number of variables of a formula. Therefore,
♯ (v1) = 1 whereas ♯ (v1 ∧ (v2 ∨ ¬v2)) = 2. This will be discussed when we introduce smoothness
(Definition 18). Then we can define two propositional formulas f, g as equivalent when M (f) =
M (g).

3.2.2 Satisfiability, model counting and related problems
We now introduce several standard problems related to boolean formulas.

Definition 3 (satisfiability). SAT is the following decision problem: given propositional formula
f in CNF, output whether M (f) 6= ∅.

A formula with an empty set of models is said to be unsatisfiable, and is said to be satisfiable
otherwise.

Definition 4 (model counting). ♯SAT is the following function problem: given a propositional
formula f in CNF, output ♯ (f)

It is well-known that SAT is NP-complete while ♯SAT is ♯P-complete [119]. Actually, ♯SAT
straightforwardly generalizes SAT as a formula is satisfiable if and only if its model count is
non-zero, but it is also at least as hard as the polynomial hierarchy PH, i.e. the satisfiability of
propositional formulas with any constant number of universal and existential quantifiers [118].

3.2.3 Satisfiability modulo theory
Boolean formulas fit the need of e.g. hardware verification but they turned out not to be very
handy for program analysis. For example, to analyze the program of Figure 3.1, we would like
to be able to write constraints over integers and to use + for the addition. In the context of
formulas, + will be a new symbol, integers will be a new sort and the set of these new symbols
and sorts with their governing axioms is called a theory. Depending on the application, one
can need several distinct theories: we could use natural integers, or bounded machine integers
with modulo arithmetic for example. With the latter we write s0 = 0 ∧ i0 = 0 ∧ i1 = 1 ∧ s1 =
s1 + i1 ∧ i2 = 2 ∧ s2 = s1 + i2 ∧ s2 ≤s 0 to express that an overflow happens after two iterations

3.2. Satisfiability of formulas and related problems 21

of the for loop. ≤s is a symbol for signed comparison. One can extend the notion of satisfiability
to such formulas with theories, and conclude that since this formula is not satisfiable, there can
be no overflow after 2 iterations of the loop in the program of Figure 3.1.

Definition 5 (Signature). A signature is a triple Σ = (SΣ, FΣ, PΣ) where

• SΣ is a set of sort symbols;

• FΣ is a set of function symbols f : s1 ×· · ·×sn → s where n is the arity of f , (s1, . . . , sn) ∈
Sn

Σ are the input sorts of f and s ∈ SΣ is the output sort of f ;

• PΣ is a set of predicate symbols p : s1 ×· · ·×sn where n is the arity of p, and (s1, . . . , sn) ∈
Sn

Σ are the input sorts of p.

One builds a formula in several steps: first terms from signature symbols, then a formula
from predicates on terms and logical connectives.

Definition 6 (Term). For Σ a signature and a set V of sorted variables, the set of Σ-terms is
recursively defined as

• variables;

• f(t1, . . . , tn) for f ∈ FΣ a function symbol and t1, …, tn terms of the correct sorts.

Definition 7 (Formula). The set of formulas is defined as

• ⊤, ⊥;

• usual logical connectives over formulas f, g: f ∨ g, f ∧ g, ¬f ;

• p(t1, . . . , tn) where p ∈ PΣ is a predicate and t1, . . . , tn are terms of matching sorts;

• quantifiers ∀v. f , ∃v. f .

A formula without quantifiers is said to be quantifier free. A variable never bound by a quantifier
is said to be free, and a formula without free variables is said to be closed.

For example, a formula in Presburger arithmetic Σ = ({Int}, {0, 1,+}, {=}) is ∀x.∀y. (x+1 =
1 + y) =⇒ x = y.

Now we attempt to assign a truth value to a formula to define its satisfiability. We first need
to give semantics to variables with an assignment, and to the symbols of the signature with an
interpretation.

Definition 8 (Interpretation). A Σ-interpretation I is a mapping from

• each sort symbol s to a set JsK;

• each function symbol f : s1 × · · · × sn → s to a function JfK : Js1K × · · · × JsnK → JsK;

• each predicate symbol p : s1 × · · · × sn to a function JfK : Js1K × · · · × JsnK → B.

Definition 9 (Assignment). An assignment is a mapping from each free variable v of sort s in
V to an element JvK of the set JsK. This definition depends on the interpretation of sorts.

Then we can lift the pair of the interpretation and assignment J·K to terms and formulas:

Definition 10 (Value of a term). The value JtK of a term t is defined as follows:

22 CHAPTER 3. Background

• for a variable v, the value assigned JvK to it by the assignment.

• for a function symbol f(t1, . . . , tn), the value JfK (Jt1K , . . . , JtnK).

Definition 11 (Truth value of a formula). Under an interpretation and assignment J·K, the truth
value of a formula is defined as follows:

• For a predicate p(t1, . . . , tn), JpK (Jt1K , . . . , JtnK);

• usual logical connectives keep their usual truth table

• for v a variable of sort s, ∀v. f is true if and only if f is true with the same interpretation,
and in all assignments that coincide with J·K but also assign all elements of JsK to v.

For example, again in Presburger arithmetic, x+1 = y is true under the interpretation which
maps Int to the usual set of natural integers N, +, 0, 1, = to their usual meaning, and the
assignment mapping x to 2 and y to 3.

It is usually not enough that a formula is true in isolation. We also want it to satisfy a set of
axioms, otherwise x = y ∧ y = z ∧ x 6= z could be made true.

Definition 12 (Theory). A theory is a signature along with a set of formulas over this signature
called axioms.

For example, Presburger arithmetic contains axioms like commutativity of the addition:
∀x.∀y. x+ y = y + x.

Definition 13 (Satisfiability modulo theory). A formula f is satisfiable if there is an interpre-
tation and assignment that make it true along with all axioms of the theory.

In general, this problem, called SMT, is undecidable. For some specific theories, like Pres-
burger arithmetic, satisfiability is decidable [20]. This is also the case of a number of quantifier-
free theories. We are presenting one example next.

3.2.4 Bitvectors and arrays
The theory we use in the tools developed in this thesis is the theory of bitvectors and arrays.

Bitvectors Bitvectors model the finite-width integers used-by computers with 2n modulo arith-
metic. The signature of the theory contains a sort symbol BitVec(n) for all integers n > 0 corre-
sponding to integers over n bits, from 0 to 2n − 1. Function symbols include modular arithmetic
for each bitwidth: +n, −n, ×n, euclidean division and remainder, as well as bitwise operations:
negation, logical AND, OR, XOR, bitshifts. For example, in size 8, 254 +8 3 =8 1. Some more
bitvector-specific operations like concatenation and extraction are also provided. For example,
the concatenation of 0100 and 100 (given in base 2) is 0100100. Predicates are usual comparison
and equality, with the added subtlety that comparisons like <n come in signed <n,s and unsigned
<n,u variety: over 8 bits, 254 can be interpreted as −2 in two-complement signed integers so
254 >8,u 10 but 254 <8,s 10.

Bitblasting Bitvector sorts have a finite domain and bitvector theory is therefore decidable.
This can be seen by a technique called bitblasting which reduces a bitvector formula to a an
equisatisfiable propositional formula. The idea is that for each bitvector b of size n, n proposi-
tional variables B1, . . . Bn are introduced representing the bits of b. When bitvector terms are
constructed, constraints over the bits of the result must be appended to the formula. For bitwise

3.2. Satisfiability of formulas and related problems 23

operations like c = a&nb, the bits of the result verify cn ⇔ an ∧ bn, but for arithmetic operations
like addition and multiplication, the involved constraints are considerably larger and require the
introduction of auxiliary variables.

In the end, from a bitvector formula ϕ(b1, . . . , bn) with free variables b1, . . . , bn, one ob-
tains a propositional formula ψ(b1

1, . . . , b
m1

1 , . . . , b1
n, . . . b

mn
n , a1, . . . , ap) where bj

i are the bits of
the b1, . . . , bn bitvectors, and the ai are auxiliary variables. The transformation satisfies two
important constraints:

equisatisfiability ϕ is satisfiable if and only if ψ is.
deterministic auxiliary variables For all partial valuations m of the bj

i , the formula in-
duced by this valuation ψ|m (which has the ai as free variables) has either 0 or 1 models.

This implies that any satisfying interpretation and assignment of ϕ corresponds to exactly one
model of ψ even in the presence of auxiliary variables, and vice versa. This allows us to define
the model count of a bitvector formula ϕ as the model count of the corresponding bitblasted
formula ψ, even though in the general case of SMT this would be problematic.

Arrays The theory of arrays is one way of implementing a map from an address to a bitvector
modeling the memory of the program. For each pair of sorts (s, t) the theory adds a sort
Array(s, t) representing a mapping from s elements to t elements. The theory adds two function
symbols

• store : Array(s, t) × s × t → Array(s, t): store(a, i, e) represents the array identical to a,
but where the element at index i is replaced by e;

• select : Array(s, t) × s → t: select(a, i) is the element stored at index i in a.

It also provides an equality predicate between arrays, but we do not focus on this as we only
manipulate one array for memory. The main axiom of the theory of arrays is the read over write
axiom:

select(store(a, i, e), j) = ite(i = j, e, select(a, i, e))

where ite(c, a, b) denotes “If c Then a Else b”. Applying this axiom eagerly allows to remove the
theory of arrays from any formula, even though this is usually not the most efficient way to solve
it.

Adding the theory of arrays to another theory can make it undecidable, and there has been
works to determine fragments of the theory of arrays which remain decidable [19]. In our specific
case however, the domain of arrays of bitvectors is finite, and the theory is therefore decidable.

In the end, to determine the satisfiability of a formula in the theory of arrays and bitvectors,
we can either use dedicated SMT solver like Z3 [48] or Boolector [97], or obtain a propositional
formula by read-over-write and bitblasting. For model counting, there are only few solvers which
can handle these theories [25], and experimentally bitblasting has proven more practical [18]
despite the lack of sophistication of this approach.

24 CHAPTER 3. Background

Chapter4
Robust reachability

In this chapter we present a first attempt at refining reachability to remove false positives in
practice. It takes the form of robust reachability, a stronger property expressing that when the
attacker chooses the optimal controlled input, he reaches his goal 100% of the time. We discuss
this property both formally and in terms of proof methods, with a number of case studies.

4.1 Introduction

Context Many problems in software verification are encoded as reachability queries of some
undesired condition—a bug, the exploitation of a vulnerability, etc. When a verification engine
establishes that a certain buggy location in the program is reachable, an input triggering the
bug is reported to the developer so that it can be fixed. In the case of techniques based on
an under-approximation of program behaviors, like Symbolic Execution (SE) [22] or Bounded
Model Checking (BMC) [29], we even have in principle the guarantee that the reported issue is
real (correctness): there are no false positives.

Problem Yet, things are more subtle in practice, as some bugs can be triggered reliably whereas
others only happen in very specific and highly improbable initial conditions. While standard
reachability cannot tell the difference, this distinction is crucial in many real-life scenarios related
to security (bug triage, bug prioritization, criticality assessment) or software engineering (test
suite replicability and the problem of flaky tests [91]). For example, fuzzers are able to detect so
many bugs [74] that they can lead to “bug triage issues” [64]. If each replicable (reliably-triggered)
bug is hidden by dozens of more fragile ones in the reports of a verification engine, it is hard to
focus development effort efficiently. Also, if one is only interested in vulnerability reports, bugs
which cannot be reliably triggered may even be dismissed as “not exploitable” altogether.

Goal & challenges Our goal is to develop a formal framework able to distinguish replicable
bugs from fragile bugs, and amenable to automatic software verification — precisely, we want to
be able in practice to find such replicable bugs. This leads us to avoid any quantitative [73] or
probabilistic reasoning [70, 5], insofar as their computational cost would hinder automation on
real examples. We will revisit this trade-off in Chapter 5.

25

26 CHAPTER 4. Robust reachability

Proposal Our approach consists in partitioning inputs of the program into controlled inputs
and uncontrolled inputs. This lets us refine the concept of reachability into robust reachability:
a (buggy) location of a program is robustly reachable if there exist controlled inputs, such that
for all uncontrolled inputs, this location is reached. In other words, with adequate input we do
not need luck.

We typically focus on security scenarios where an attacker provides controlled input in one go,
without knowledge of uncontrolled input — typically sending a malicious crafted file to obtain
remote code execution or privilege escalation. We deliberately exclude interactive attack scenarios
and weaker interpretations like “bugs replicable most of the time” in order to keep proof methods
tractable.

Proving robust reachability is harder than standard reachability. While we show that robust
reachability is expressible in formalisms like branching temporal logics [30], hyperproperties [32]
or hyper temporal logic [33], there exist no efficient automated analysis methods for these for-
malisms at the software level (for Turing-complete languages). Therefore, we investigate dedi-
cated verification techniques, revisiting standard methods (SE, BMC) for standard reachability
as well as some of their standard companion optimizations.

Our prototype of Robust Symbolic Execution (RSE) relies on the ability of state of the art
SMT solvers [9] to generate models for universally quantified formulas [58, 56, 104], which comes
with a performance and completeness cost — yet we report promising results.

Contributions We claim the following contributions.
• We formally introduce the concept of robust reachability (Section 4.4) along with the more

general robust safety and guarantee property, and motivate its use (Section 4.2), giving
practical examples where standard reachability leads to false positives in practice (whatever
the underlying verification technology). We also characterize robust reachability in terms
of temporal logic and hyperproperties, and compare it with non-interference (Section 4.4);

• We revisit Symbolic Execution (SE) [22] and Bounded Model Checking (BMC) [29] and
show how they can be lifted to the robust case (Section 4.5). While they both have the
same deductive power in the standard case, they do not anymore in the robust setting —
yet, path merging allows Robust SE to pace up with Robust BMC. Finally, we show how
to adapt standard optimizations for Symbolic Execution and Bounded Model Checking;

• We implement and evaluate1 (Section 4.6) the first symbolic execution engine dedicated to
robust reachability, namely Binsec/RSE. We show how to use it for criticality assessment
of 5 existing vulnerabilities (CVEs), and compare it with standard symbolic execution.
RSE appears to be tractable with reasonable overhead, yielding false-positive-free symbolic
reasoning.

We believe robust reachability is an important sweet spot in terms of expressiveness and tractabil-
ity, allowing to highlight serious bugs in practical situations. We hope this first step will pave
the way to more refinements and applications of robust reachability.

4.2 Motivation
In this section we show why standard reachability is not always a good fit for bug finding, as it
cannot distinguish between replicable bugs and fragile bugs.

1The tool, benchmark and data are available at https://github.com/binsec/cav2021-artifacts and https:
//zenodo.org/record/4721753.

4.2. Motivation 27

void fill(unsigned n, char* ptr) {
for (unsigned i = 0; i < n; i++) {

ptr[i] = 0x61;
}

}
void victim() {
unsigned n = controlled_input;
char buffer[8];
fill(n, buffer);

}
void main() {
victim();

}

(a) C-like code, for simplicity

1 void victim() {
2 /* stack variables , top to bottom */
3 // return address goes here
4 int canary = global_random_value;
5 char buffer[8];
6 /* end stack variables */
7
8 register unsigned n = controlled_input;
9 fill(n, buffer);

10 if (canary != global_random_value)
11 fail_and_dont_return_at_all();
12 /* everything is ok */
13 }

(b) Explanation of compiler instrumentation with
Stack Smashing Protection (SSP)

Figure 4.1: Simple stack buffer overflow

Stack canaries Consider the program presented in Figure 4.1. It suffers from a stack buffer
overflow: if variable n is greater than 8 (the size of buffer), then 0x61 will be written to stack
memory above buffer. For high enough n, this will overwrite the return address (Figure 4.1b,
line 3) of function victim and make the program jump to an unexpected program location when
victim returns.

Mitigations for such programming errors exist, like Stack Smashing Protection (SSP) [36].
This technique consists in pushing a randomly-chosen constant value called a canary at the top of
the stack in the prologue of each function, and checking that this value is intact before returning.
If the canary has been tampered with, the program exits to prevent exploitation (Figure 4.1b,
line 11). Here, SSP prevents the attacker from overwriting the return address of victim, as doing
so also overwrites the canary with 0x61616161. This will be detected at line 10 of Figure 4.1b
with probability 1 − 2−32 on a 32-bit architecture: the only way to pass through it is to have the
canary value equal to 0x61616161. Hence, the buffer overflow in this program is not exploitable
anymore.

Table 4.1: Standard reachability is not a good criterion to measure the protection of SSP on the
program of Figure 4.1.

Prog. Ground Standard Binsec [49] Angr [114] Robust Binsec/RSE
Fig. 4.1 truth reachability reachability

No SSP vulnerable vulnerable ✓ vulnerable ✓ vulnerable ✓ vulnerable ✓ vulnerable ✓

SSP protected vulnerable ✗ vulnerable ✗ vulnerable ✗ protected ✓ protected ✓

The problem with standard reachability Can the attacker hijack the control flow without
triggering SSP? We can model this security question as a standard reachability query over inputs
controlled_input and global_random_value. The attacker succeeds if line 12 is reachable with
the additional condition that the return address of victim is overwritten with an unexpected
address.

This standard reachability query is satisfiable with the canary global_random_value equal
to 0x61616161 and controlled_input equal to e.g., 42. And indeed, binary-level SE tools
Angr [114] or Binsec [49] do report the bug as reachable (cf. Table 4.1). However, this answer
is unsatisfying as this only happens with a very low probability: it may not be considered a
plausible attack.

28 CHAPTER 4. Robust reachability

Hence, it turns out that SE can yield false positives in practice — especially in a security context.

Proposal: robust reachability We attempt to take the capabilities of the attacker into
account as follows: We label controlled_input as a controlled input and global_random_value
as an uncontrolled input. There exists no value of controlled_input such that victim returns
to an address tampered with independently of the value of global_random_value. We thus say
that our exploitation condition (line 12) is not robustly reachable. We can automatically verify
this intuition. We adapted the SE engine of Binsec to robust reachability: our tool finds the
vulnerability when we disable the protection (by labelling the canary as controlled input) and
does not find it anymore when the protection is present. This shows that robust reachability can
model the protection provided by SSP, while standard reachability cannot.

This phenomenon is not restricted to stack protectors. We identify in Table 4.2 several
situations where standard reachability may lead to false positives, unlike robust reachability.
Note that some cases (randomization based protections, uninitialized reads) concern binary-level
issues, and cannot be observed from a source-level analysis.

Discussion Consider the slightly different problem of reaching line 11 in Figure 4.1b. It is
reachable for all values of the canary except 0x61616161, hence it is not considered robustly
reachable — all values of uncontrolled input should lead to line 11. This restriction is deliberate.
We will attempt to lift it in Chapter 5, where we show that it makes solver queries 7 times
slower on average, with more timeouts. For similar reasons, we limit ourselves to non-interactive
scenarios, where the attacker input is chosen before uncontrolled input are known. We will
further motivate this choice in Sections 4.4.1 and 4.6.4.3.

Despite these deliberate restrictions, our case studies (Section 4.6.2) show the versatility of
robust reachability. In the example above, we distinguish inputs controlled by an attacker (a
bad guy) from inputs which he cannot influence (see also e.g. libvncserver in Section 4.6.2). But
with doas (Section 4.6.2), we distinguish inputs controlled by the system administrator (the
good guy) from those which vary on each execution. Other situations are possible, for instance
deterministic inputs versus non-deterministic ones like in the case of flaky tests [91] — where
there are neither good nor bad guys. Robust reachability can help in all these situations either
assessing the “quality” of a given trigger or test suite (criticality, replicability), generating “good”
triggers or test suites, or proving their absence.

4.3 Background
We recall some notations and definitions of Section 3.1: We consider a program P and S the set
of its possible states. The initial state s1(y) is determined by the program input y ∈ Y. The
program P is represented as the set of the traces, i.e. sequence of states, that it can generate:
T (P) ⊆ S∞, where S∞ denotes the set of all possible traces, finite or infinite. Finite traces
are denoted as S+. We denote t ≺ t′ the fact that trace t is a prefix of trace t′. Reachability
is usually understood as control flow going through a location ℓ in the program, for example
“line 13 in file.c”. The location corresponding to a state s ∈ S is λ(s) ∈ L. We use trace
for successions of states and path for successions of locations. By abuse of notation, the path
corresponding to a trace t ∈ S+ is λ(t) ∈ L+.

One often needs to consider more complex events than mere reachability of a location like
reaching a location of the program with some additional condition on the past of the program,
as is the case in our motivating example. For this reason we take a more general definition.

4.3. Background 29

Table 4.2: Program constructs for which standard reachability yields fragile input

Randomization
based
protections

Standard reachability models randomized or arbitrary values like canaries
or ASLR as attacker-chosen values. This voids such protections. See also
Figure 4.1 and libvncserver in Section 4.6.2.

Uninitialized
reads

With standard reachability, the attacker can choose the initial content of
uninitialized memory. For example, he can choose it to contain a password
or a secret. See also doas in Section 4.6.2.

Underspecified
initial state

A bug which is unreachable in normal operating conditions can become
reachable if, e.g., one leaves the stack location completely free. Then the
bug only happens with pathological initial state.

Undefined
behavior

A bug in a branch depending on undefined behavior is still technically reach-
able, but not robustly reachable. Note that even machine code has some
undefined behaviors.

Interactions
with the
environment

Contrary to robust reachability, standard reachability lets the attacker use
system calls and interactions by e.g. letting him choose the date to nanosec-
ond precision, as if the environment helped him.

Opaque
functions

One can abstract complex functions (crypto functions, malloc) as black
boxes returning a fresh, symbolic value. Standard reachability allows the
attacker to choose these values, yielding fragile triggers.

Definition 1 (Reachability). A set of finite traces O ⊆ S+ is reachable in program P if P ∩O 6=
∅. We write P ⊢ R(O).

As a special case one gets the usual property of reachability of a location:

Definition 2 (Reachability of a location). A location is reachable, denoted as P ⊢ R(ℓ), if
P ⊢ R(O) with O = {t ∈ S+ | λ(t|t|) = ℓ}.

Finally, for a program P ⊆ S∞, the restriction P |y of this program to input y is defined
by T

(

P |y
)

≜ {t ∈ T (P) | t1 = s1(y)}, the restriction P |π of P to path π by T (P |π) ≜

{t ∈ T (P) | ∃t′ ∈ S+. t′ ≺ t ∧ λ(t) = π}, and the restriction P |≤k of P to bound k ∈ N by
T
(

P |≤k
)

≜ {t ∈ T (P) | |t| ≤ k}.

Symbolic Execution (SE) and Bounded Model checking (BMC) Consider the problem
of proving or disproving reachability of O ⊆ S+. In general, this problem is undecidable, so
verifiers cannot be both correct and complete (see Section 3.1.3). Correct verifiers can still be
k-complete as k-completeness can be thought of as completeness for finite-path systems. Let
us describe two such methods, which consist in encoding the possible witnesses in O as a SMT
formula.

SE [22] incrementally explores all paths in the program (up to, say, a bound k). Each path π
is converted into a SMT formula pcO

π , called path constraint. It has input y as sole free variable
and expresses that when executed with input y, the program does indeed follow the path π and
starts with a prefix in O. SE looks for a witness in O by iteratively checking satisfiability of pcO

π

for all enumerated π. Conversely, BMC [29] considers the program as a whole (unrolled up to a
bound k) and builds a SMT formula expressing that it contains a trace prefix in O. This formula
is actually equivalent to the disjunction of the path constraints of these paths. These algorithms

30 CHAPTER 4. Robust reachability

Data : bound k, target O
for path π in GetPaths (k) do

ϕ := GetPredicate(π,O)
if ∃y. ϕ is satisfiable then

return true
end
return false

(a) SE

Data : bound k, target O
ϕ := ⊥
for path π in GetPaths (k) do

ϕ := ϕ ∨ GetPredicate(π,O)
end
if ∃y. ϕ is satisfiable then

return true
else

return false
end

(b) BMC

Figure 4.2: Bounded proof attempt of R(O) with SE and BMC

are given in Figure 4.2, where GetPredicate(π,O) turns a path into its path constraint pcO
π and

GetPaths(k) yields all paths below size bound k.

Proposition 1. SE and BMC have the same expressive power: both are correct and k-complete
with respect to reachability properties.

Interestingly, we show in Section 4.5 that this is not true anymore with robust reachability.

Solvers SE and BMC commonly discharge their satisfiability queries to SMT solvers [9] which
take formulas as input, and output whether they are satisfiable (along with a model) or not.
Typical queries are expressed in the quantifier-free fragments of well known theories (linear
integer arithmetic, bitvectors, arrays, etc.) where SMT solvers perform well in practice. In case
of an undecidable theory, we can use incomplete solvers (possibly answering unknown), at the
price of k-completeness.

4.4 Robust reachability
In this section we provide a formal definition of robust reachability, and argue why it deserves
being singled out as a new problem rather than being viewed as a special case of a more generic
framework like some of the more expressive temporal logics.

4.4.1 Definition
We introduce the new notion of robust reachability. We partition the input y into the controlled
input a and the uncontrolled input x — we denote y ≜ (a, x). Let A and X be the sets of
possible controlled and uncontrolled inputs respectively. A location is robustly reachable when
the attacker can choose controlled input a ∈ A without having to rely on specific values of the
uncontrolled input x ∈ X to reach his target. Input a is then called a robust trigger — otherwise
it is a fragile trigger.

Definition 14 (Robust reachability). A set of finite traces O ∈ S+ is robustly reachable in
program P , denoted as P ⊢ R(O), if

∃a ∈ A.∀x ∈ X . P |(a,x) ⊢ R(O)

4.4. Robust reachability 31

Proposition 2. Robust reachability implies standard reachability. The converse implication does
not hold.

Discussion As already mentioned at the end of Section 4.2, our definition of robust reachability
specifically targets a threat model where the attacker speaks first, unaware of uncontrolled inputs.
It deliberately excludes interactive systems where the attacker can choose some input, then
receive some program output possibly leaking uncontrolled input, and then choose some more
input depending on what was received. Modeling such situations requires additional quantifier
alternations, which deeply impact the performance of proof methods and cripple automation, as
shown in Section 4.6.4.3.

Likewise, a bug triggered for all uncontrolled inputs but one is not robustly reachable accord-
ing to Definition 14. A quantitative definition of robust reachability could take into account the
proportion of uncontrolled inputs triggering a bug. This will be developed in Chapter 5 as an
alternative that trades some performance for additional precision.

In other words, Definition 14 is a trade-off to keep robust reachability amenable to automated
verification. This does not prevent it from meeting its main goal: drawing the attention on more
serious bugs. Some may of course be missed, but, as our case studies will show (Section 4.6), a
good number will be found.

In the rest of this section, we review a few related properties and see how much they overlap
with, but do not remove the need of, robust reachability.

4.4.2 Relation with non-interference
We partition inputs and outputs of a system into either high (highly classified) or low (public,
e.g. observable). A system satisfies non-interference [65] when low outputs do not depend on
high inputs, implying that secrets cannot leak. Robust reachability can be reformulated in a
very non-interference-sounding phrasing: uncontrolled inputs (call them high) must not interfere
with the attacker reaching his goal (the low output). Let us clarify this link, focusing on robust
reachability of a location ℓ for simplicity.

Formally, let high input be uncontrolled input x, and low input be controlled input a. Let
low output be whether control flow reached location ℓ. Non-interference of the resulting system
means that

∀a, x, x′.
(

P |(a,x) ⊢ R(ℓ) ⇐⇒ P |(a,x′) ⊢ R(ℓ)
)

Proposition 3. If ℓ is (standardly) reachable and the system satisfies non-interference with the
high/low partition described above, then ℓ is robustly reachable. The converse is false.

Robust reachability requires a single value of the controlled input a for which reachability of
ℓ is guaranteed but says nothing for other values of a, where observable behavior may depend on
uncontrolled input x. On the other hand, non-interference constrains the system to behave much
more independently of uncontrolled input, even for “uninteresting” values of a. Additionally,
non-interference says nothing of reachability.

4.4.3 Interpretation in terms of hyperproperty
Robust reachability and its negation are not trace properties: the observation of a single trace
is never enough to prove or disprove them. For example, observing a single trace reaching
target ℓ with input (a, x) is both compatible with ℓ being robustly reachable (if all other inputs
(a, x′), x′ ∈ X also reach ℓ), and with ℓ not being robustly reachable (if some other x′ is such

32 CHAPTER 4. Robust reachability

that (a, x′) does not reach ℓ). In such case one often resorts to the formalism of hyperproperties
introduced by Clarkson and Schneider [32]. A hyperproperty Π is represented as the set of
programs P that satisfy it in the form of their set of traces: {T (P) | P ⊢ Π}. Clarkson and
Schneider [32] also show that any hyperproperty is the intersection of a hypersafety hyperproperty
(i.e. something bad cannot happen) and a hyperliveness hyperproperty (something good will
eventually happen). Hypersafety is generally thought as easier to prove, notably with self-
composition [12]. Unfortunately, robust reachability and its negation are pure hyperliveness in
the general case: no finite set of finite traces can falsify them. However, in some conditions, they
degenerate partly into hypersafety:

Proposition 4. If the domain X of uncontrolled inputs is finite, then the negation of robust
reachability is not pure hyperliveness (i.e., it has a non-trivial hypersafety component).

Proof. Robust reachability of O ⊆ S+ can be proved by finding controlled input a ∈ A such that
for all uncontrolled input x ∈ X one observes a trace starting with input (a, x) and belonging to
O. When X is finite, this means that a finite observation can disprove non-(robust reachability).
This is the definition of hypersafety.

This idea—trying to observe a hopefully small set of traces which together prove robust
reachability—is crucial for algorithms and leads to our use of path merging in Section 4.5.3.

4.4.4 Interpretation in terms of temporal logic
We now show how robust reachability can be expressed by some sufficiently expressive temporal
logics. We consider robust reachability of a location ℓ instead of an arbitrary set of traces O in
order to focus the discussion on robustness itself.

Computational Tree Logic (CTL) CTL [30] is a temporal logic over the tree of possible
traces. Let L be a labeling which maps states to the set of (atomic) predicates they satisfy. If ℓ is
a predicate, the CTL formula ℓ is satisfied by all systems whose initial state s0 verifies ℓ ∈ L(s0).
If ϕ is a CTL formula and s a state, then EXϕ expresses that ϕ holds in at least one (direct)
successor of s, and AFϕ that all traces arising from s eventually reach a state from which ϕ
holds. CTL introduces other operators, not needed here.

Proposition 5. CTL can express robust reachability of location ℓ.

Proof. Let S ′ ≜ S ∪A∪{si} where si is a new state, let →′≜→ ∪{(si, a) | a ∈ A}∪{(a, s1(a, x)) |
a ∈ A, x ∈ X }, and let L′(s) be equal to L(s) if s ∈ S and ∅ otherwise. Then ℓ is robustly
reachable if, and only if EXAFℓ is true in the new extended system (S ′,→′, L′) with si as initial
state.

Alternating-Time Temporal Logic (ATL) ATL [1] is a temporal logic designed to model
systems with multiple actors with distinct objectives. As usual the system is modeled by its set
of states and its transition function, but each transition is decided by a set Σ of players: each
player simultaneously makes a decision, and the actual transition is selected depending on these
decisions. ATL formulas are the same as CTL, but operators A and E are generalized by a new
operator 〈〈·〉〉. For a set of player Λ ⊆ Σ, 〈〈Λ〉〉φ means that there exists a strategy for players in
Λ to make the system satisfy φ. At the limit, 〈〈∅〉〉φ is Aφ and 〈〈Σ〉〉 means Eφ.

ATL contains CTL so Proposition 5 applies. However, ATL makes it much more natural to
express robust reachability since players can oppose each other. Consider Σ = {ϵ, α} where ϵ is
the environment, and α the attacker. Reachability of ℓ is EFℓ, or written otherwise: 〈〈Σ〉〉Fℓ,

4.5. Automatically proving robust reachability 33

which means that both the environment and attacker can cooperate to reach ℓ. Robust reach-
ability on the other hand is 〈〈{α}〉〉Fℓ, meaning that the attacker alone can make it so ℓ is
reached.

Similarly, one can express the negation of robust reachability: 〈〈{ϵ}〉〉G¬ℓ, which is a particular
case of “collaborative invariance” [1].

HyperLTL It is also possible to express robust reachability in the temporal logic Hyper-
LTL[33], which allows to reason over sets of traces π, assuming we have an atomic predicate ≡v

stating that the first states of two traces have the same value for variable v. Robust reachability
of ℓ can then be expressed as ∃π. ∀π′.Fℓπ ∧ (π ≡a π

′ → Fℓπ′), where Fℓπ denotes that trace π
goes through ℓ. In other words, there exists a trace π reaching ℓ such that all traces sharing the
same controlled input also reach ℓ.

4.4.5 Robust reachability and automatic verification
The previous classification does not help us find an efficient software verification method for
robust reachability. Indeed, while efficient CTL model checkers exists for the finite case [28]
or very specific formalisms such as push-down systems [116], most efforts in (general) software
verification have been directed towards the verification of safety temporal formulas or simple
termination [34] (formulas of the form AFφ). HyperLTL [33] suffers the same limitations. As for
ATL, it is so expressive (there can be arbitrarily many players, and arbitrarily many interactions
between them and the system) that state-of-the-art tools like STV [79] are limited to small
models of a few dozens of states at best.

Moreover, checking for both reachability and non-interference as a correct, but incomplete
proof method for robust reachability is probably too incomplete in practice. Finally, one can
prove the absence of robust reachability by proving the absence of standard reachability. It is
thus possible to use existing algorithms for unreachability, based e.g. on invariant computation,
at the price of even larger over-approximation than when they are used for their original purpose.
This kind of approach is not our focus. In this chapter we look for correct verifiers able to prove
robust reachability (and report robust triggers) rather than to disprove it.

4.5 Automatically proving robust reachability
We now discuss how to extend SE and BMC to the robust case.

4.5.1 Robust Bounded Model Checking
As mentioned in Section 4.3, BMC determines the reachability of O ⊆ S+ by building a family
of SMT formulas φk(a, x) equivalent to P |≤k ⊢ R(O). In the case of reachability of a location
ℓ, φk expresses that ℓ is reachable in less that k steps. Then one proves that R(O) holds if and
only if ∃k.∃a.∃x. φk(a, x). This extends to robust reachability:

Proposition 6. If the domain of uncontrolled input X is finite or P has finitely many paths,
then P ⊢ R(O) if and only if ∃k.∃a.∀x. φk(a, x).

Proof. (⇐=) comes directly from the definition of φk. (=⇒). If ℓ is robustly reachable, let a0 be
a robust trigger. The set of paths W arising from inputs in {a0}×X is finite (bounded either by X
or the number of paths in the system), and ∀x.

∨

π∈W pcO
π (a0, x) holds. Let k = 1+maxπ∈W |π|.

All paths in P are unrolled in φk so
∨

π∈W pcO
π (a0, x) =⇒ φk(a0, x) and thus ∀x. φk(a0, x).

34 CHAPTER 4. Robust reachability

Data : bound k, target O
for path π in GetPaths (k) do

ϕ := GetPredicate(π,O)
if ∃a.∀x. ϕ is satisfiable then

return true
end
return false

(a) RSE

Data : bound k, target O
ϕ := ⊥
for path π in GetPaths (k) do

ϕ := ϕ ∨ GetPredicate(π,O)
end
if ∃a.∀x. ϕ is satisfiable then

return true
else

return false
end

(b) RBMC

Figure 4.3: Lifting SE and BMC to robust reachability

As a result, it is enough to replace the condition “∃y. ϕ is satisfiable” by “∃a.∀x. ϕ is satisfi-
able” in Figure 4.2b. The resulting algorithm, called Robust BMC is presented in Figure 4.3b.

Corollary 1. Robust BMC is correct w.r.t. robust reachability. If the domain of uncontrolled
input X is finite or the system has finitely many paths, then robust BMC is also k-complete.

The finiteness hypothesis is required: if a program reaches a location after having executed a
loop an unbounded, uncontrolled number of times, then robust BMC has to unroll an unbounded
number of paths to prove robust reachability.

4.5.2 Robust Symbolic Execution
Similarly to BMC, we check that a path π robustly reaches the target by checking the satisfiability
of ∃a.∀x. pcO

π (a, x), instead of ∃a.∃x. pcO
π (a, x). This means replacing “∃y. ϕ is satisfiable”

by “∃a.∀x. ϕ is satisfiable” in Figure 4.2a. Unfortunately the resulting algorithm, robust SE
(Figure 4.3a), is not exactly what we want, as it proves a stronger property.

Definition 15 (Single-path robust reachability). A set O is single-path robustly reachable if
∃π ∈ L+.∃a.∀x. P |π|(a,x) ⊢ R(O). In other words, the path used to reach O is the same regard-
less of the uncontrolled input.

Proposition 7. Single-path robust reachability implies robust reachability. The converse impli-
cation does not hold.

Proposition 8. Robust SE is correct and k-complete w.r.t. single-path robust reachability.

Proof. By construction, pcO
π (a, x) is equivalent to P |π|(a,x) ⊢ R(ℓ). ∃π. ∃a.∀x. pcO

π (a, x) is
therefore equivalent to single-path robust reachability of the last location of π.

Corollary 2. Robust SE is correct but incomplete for robust reachability.

Interestingly, the expressive powers of SE and BMC, which are the same for standard reachability,
diverge when extended to robust reachability.

4.5. Automatically proving robust reachability 35

4.5.3 Path merging
Path merging [69] (a.k.a. state joining) consists in identifying “close” paths leading to the same
location and replacing them by a merged path (summary). With original path constraints pcO

π1

and pcO
π2

, the merged path constraint is pcO
π1

∨ pcO
π2

. This is only an optimization in the standard
setting, with no impact on k-completeness. The situation is different in the robust setting.

Data : bound k, target O
1 ϕ := ⊥
2 for path π in GetPaths (k) do
3 ϕ := ϕ ∨ GetPredicate(π,O)
4 if ∃a.∀x. ϕ is satisfiable then
5 return true
6 end
7 return false

Algorithm 1 : RSE+: Robust SE with
systematic path merging

1 void main(a, x) {
2 if (x) x++; // π1

3 else x--; // π2

4
5 if (!a) bug();
6 }

Figure 4.4: An example where path
merging is required

Consider the program in Figure 4.4: the bug is robustly reachable with controlled input a = 0,
but the control flow takes one of two paths π1 and π2 depending on the value x of uncontrolled
input. This bug will not be found by robust SE as defined previously, as neither π1 nor π2 fulfills
the satisfiability criterion ∃a.∀x. pcO

πi
(a, x). However, if π1 and π2 are merged, then the bug

is found because ∃a.∀x. pcO
π1

(a, x) ∨ pcO
π2

(a, x) is satisfiable. This leads us to robust SE with
systematic path merging (RSE+, Algorithm 1), better fit to robust reachability.

Proposition 9. Robust SE with systematic path merging (RSE+) is correct for all robust reach-
ability properties. If the domain of uncontrolled input X is finite or the system has finitely many
paths, then it is also k-complete.

Proof. For k-completeness: If R(O) holds, let a0 be a robust trigger. The set of paths P arising
from inputs in {a0}×X is finite (bounded either by X or the number of paths in the system). Let
k = 1 + maxπ∈P |π|. For bound k, when GetPaths has output all paths in P ,

∨

π∈P pcO
π =⇒ ϕ

so ∃a.∀x. ϕ is satisfiable.

In conclusion, path merging improves the completeness of robust SE. This is surprising because
path merging is merely optional in standard SE.

4.5.4 Revisiting standard optimizations and constructs
Some optimizations commonly used in SE are not correct nor complete anymore in a robust
setting. We show here how to adapt them.

Incremental path pruning [121, 8] S+ is the always reached objective. Therefore, pcS+

π ex-
presses that a path π is executable. We can use this to perform an optimization called incremental
path pruning. When a path has an unsatisfiable path constraint pcS+

π , all its descendant paths
are also infeasible. For example, the path acd in Figure 4.5 has path constraint x < 10 ∧x > 20,
which is unsatisfiable. One can prune this path, i.e. stop exploring it and its children acde and
acdf.

36 CHAPTER 4. Robust reachability

Data : program entry point ℓ0, bound k
1 P := {ℓ0}
2 while P 6= ∅ do
3 Take a path π out of P

/* If too long, discard π */
4 if |π| > k then continue

/* pcS+

π expresses that the path is
executable */

5 if ∃a, x. pcS+

π unsat then continue
6 yield π // return π to caller
7 P := P ∪ {children paths of π}
8 end

Algorithm 2 : Implementation of GetPaths
with path pruning

uncontrolled int x;
if (x<10) { /* a */ }
else { /* b */ }
/* c */
if (x>20) {

/* d */
if (x>30) { /* e */ }
else { /* f */ }

}

Figure 4.5: Failure case for universal
path pruning

Data : entrypoint ℓ0, bound k
P := {ℓ0}
while P 6= ∅ do

Take a path π out of P
if |π| > k then continue
if ∃a.∀x. pcS+

π unsat then
/* Skip MaybeMerge to

disable path merging */
P := MaybeMerge(π, P)
continue

end
yield π
P := P ∪ {children paths of π}

end

Algorithm 3 : GetPaths with univer-
sal path pruning

1 Function MaybeMerge(π, P)
2 Choose u a transitive child of the last

location of π (ideally, a strict
postdominator of the second to last
location of π)

3 Let π′ the longest strict prefix of π.
4 Let U the set of paths from π′ to u
5 if ∃a.∀x. ∨π′′∈U π

′′ is SAT then
6 Merge paths in U and add the

result to P
7 end
8 return P

Algorithm 4 : Incomplete path merging
for universal path pruning

4.5. Automatically proving robust reachability 37

In Figure 4.2a this would be an optimization of GetPaths: as shown in Algorithm 2, one checks
that the path constraint of currently explored paths are satisfiable, and if not, the paths at fault
are pruned, and their children paths are not explored. As a result, we now issue satisfiability
queries in two occasions: during GetPaths to prune paths (Algorithm 2, line 5), and when
validating a candidate reaching path (Figure 4.2a, line 4). Pruning queries and validation queries
must be treated differently.

Robust SE is obtained from SE by adding a universal quantifier to validation queries but not
pruning queries. The path constraint for path a in Figure 4.5 is pcS+

a = x < 10 but ∃a.∀x. pcS+

a
is false. Same applies for b. If we added a universal quantifier to pruning queries—which we call
universal path pruning, see Algorithm 3—we would prune a and b, and incorrectly conclude that
c is not robustly reachable. In other words, Symbolic Execution with universal path pruning
(denoted RSE∀) is correct but not complete.

Universal path pruning, however, conveys an interesting intuition: the full if branch below
acd in Figure 4.5 is not robustly reachable, because ∀x. x > 20 is false. With normal path
pruning and RSE+, we would needlessly explore these paths. To take advantage of this, we keep
RSE∀ but improve its completeness with path merging, as depicted in Algorithm 4.

The main idea is that when a set of paths are to be pruned, they may pass the universal
pruning test ∃a.∀x. pcS+ when merged together. One way to find such sets of paths is to use
the Control Flow Graph (CFG) of the program. For example when trying to prune π = a in
Figure 4.5, we know by invariant of the set P of paths to be explored that the empty path π′ = ϵ
passes the universal test. We compute the strict postdominator u = c of π′: when the paths
from π′ to c join again, they pass the pruning test again. We then replace π by this merged path
in the set P of paths to be explored.

Note that computing a postdominator is not required for correction. In our implementation,
we cannot compute the exact CFG at the binary level so the chosen u may be wrong. In line 5
of Algorithm 4 we check that we picked correctly, and otherwise, merging failed, and we prune
π. Despite the heuristic approach, the technique proves useful, as we will see in Section 4.6.

We denote Robust SE with universal path pruning and path merging as RSE∀+. It is correct
and “less incomplete” than RSE∀.

controlled unsigned int a;
uncontrolled unsigned int x;
assume(x < a);
if (false) bug();

Figure 4.6: Unsound assumption, in
pseudo-C.

Assumptions It is common to model complex
parts of the system by introducing their result as a
symbolic input z and then assume that z satisfies
the required properties. For example, ASLR for
the stack pointer could be modeled by adding an
assumption that esp ∈ [m,M] where m and M
are in-lined constant values. In standard SE this
would be translated to an assertion esp0 ∈ [m,M]
conjoined to the path constraint pc, where esp0 is
the initial value of esp. Actually, in standard SE and BMC, assertions and assumptions are dealt
with identically.

In a robust setting, to the contrary, adding an assumption ψ to a path constraint yields
ψ =⇒ pc, while adding an assertion ϕ yields pc ∧ϕ. Additionally, assumptions which mix
controlled and uncontrolled inputs can make the algorithms above unsound without adaptation:
in Figure 4.6, reachability of bug maps to the SMT query ∃a.∀x. x < a =⇒ ⊥. It is satisfiable,
with a = 0, which makes the premise false. However, this does not correspond to an executable
path. Actually, formalizing robust reachability assuming ψ(a, x) naively by ∃a.∀x. (ψ(a, x) =⇒
P |(a,x) ⊢ R(ℓ)) does not imply standard reachability anymore. A slight adaptation is needed:

38 CHAPTER 4. Robust reachability

Definition 16 (Robust reachability under assumption). O is robustly reachable under the as-
sumption of ψ if

∃a. ((∃x. ψ(a, x)) ∧ (∀x. (ψ(a, x) =⇒ P |a,x ⊢ R(O))))

This definition preserves the implication from robust to standard reachability. The algorithms
we presented are easily adapted to take it into account.

Interestingly, in the robust case, SE and BMC cannot handle assertions and assumptions in
the same way anymore.

Concretization and other optimizations When path constraints along a path become too
complex, some variables can be concretized: their symbolic value can be replaced by a concrete
one [63, 109, 45]. Formally, concretizing a variable u to value 42 corresponds to adding an
assertion u = 42. This sacrifices k-completeness for tractability. Actually, any additional con-
straint can be added, and several common optimizations (e.g., domain shrinking, path filtering)
can be seen through this lens. These optimizations must be taken with care in the robust set-
ting. First, considering them as assumptions instead of assertions would be incorrect. Second,
if the value of the concretized variable ultimately depends semantically on uncontrolled input,
the path does not pass universal validation anymore: for example, when concretizing x to 42,
∃a.∀x. pc(a, x) ∧x = 42 is unsatisfiable because ∀x. x = 42 is false. As a result, locations visited
further on this path become robustly unreachable. In other words, concretization only works on
controlled or constant values.

4.5.5 About constraint solving
Adaptations to robust reachability require solvers to deal with one alternation of quantifiers.
Most theories become undecidable with quantifiers. Dedicated algorithms exist for a few de-
cidable quantified theories, e.g. the array property fragment [19] or Presburger arithmetic [20].
For other theories, generic methods like E-matching [47] and MBQI [58] have proven rather ef-
ficient, although not complete. Sound approximations [56] also have been proposed to reduce
quantified formulas to quantifier-free ones. In our experiments, the newly introduced quantifier
associates to an increase in the frequency of time-outs and memory-outs, as seen in Section 4.6.3
and specifically Table 4.4.

4.6 Proof-of-concept of a robust symbolic execution engine

4.6.1 Implementation
We propose Binsec/RSE, the first symbolic execution engine dedicated to robust reachability.
We base our proof-of-concept on Binsec [49], a binary executable formal analysis engine written
in OCaml and already used in several significant case studies [44, 40, 103]. For the sake of ex-
perimental evaluation (section 4.6.3) we actually implement five variants of robust reachability:
RSE (basic approach in section 4.5.2 with existential path pruning Section 4.5.4), RSE+ (the
same plus systematic path merging, Section 4.5.3), RSE∀ (RSE with universal path pruning, Al-
gorithm 3), RSE∀+ (same, with path merging during path pruning, Algorithm 4), and RBMC
(Section 4.5.1).

The source code of Binsec/RSE, the test suite and the case studies of this section are
available for reproduction at https://github.com/binsec/cav2021-artifacts and https:
//zenodo.org/record/4721753.

4.6. Proof-of-concept of a robust symbolic execution engine 39

Solving universally quantified SMT formulas Binsec/RSE emits quantified formulas in
the theory of bitvectors and arrays (arrays are used to model memory) which are then solved
by the solver Z3 [48]. Z3 supports universally quantified formulas quite well, but has trouble
handling cases where arrays are quantified. This is a problem as initial memory is an array, and
in most threat models, should be labeled as uncontrolled. As an example, Z3 is actually not able
to prove the unsatisfiability of a formula as simple as

∃a.∀mem.mem[42] = a (4.1)

First we reuse the recent ROW simplification [55] to reduces the number of array indexations.
In favorable cases, this simplification alone can even simplify all arrays out.

To deal with cases like (4.1) that remain after ROW simplification, we implemented one
further simplification that moves the memory out of the universal quantifier. As the ROW
simplification is quite powerful, it is only needed infrequently, and when it does, it is hard to
reason about the root causes of the failure due to the complexity of the resulting formulas, but
for the sake of illustration, let us modify one simpler test case to exhibit this behavior. Consider
our function inversion test relating to musl’s implementation of strtol. It looks for a controlled
string s such that strtol(s) = 42. If we do not initialize the memory of an internal lookup table,
then RSE∀ fails on a formula corresponding to

∃s.∀mem.mem[s[3] + table] ≥ 10

where table is the offset of a table in the executable. Z3 returns UNKNOWN on this formula.
Let us now explain the transformation informally. In the case of eq. (4.1), we would like

to rewrite it into ∃a,mem.∀v. (store(mem, 42, v))[42] = a. This corresponds to initializing all
memory locations that are later read with an uncontrolled, fresh value. As we are sure the original
memory mem is never read, we can move it out of the universal quantifier. In our experience, Z3
deals easily with formulas where only bitvectors, as opposed to arrays, are universally quantified.
The general case can be more involved, as the locations where memory is read can be symbolic,
and even depend on memory. We therefore introduce one more layer of indirection:

∃a.∀mem.mem[mem[12] + 1] = a

would be transformed to

∃a, mem. ∀v, i. let mem
′ = store(mem, i, v) in i = mem

′[12] + 1 =⇒ mem
′[42] = a

When dealing with n reads inside the original formula, we need to introduce n symbolic indices,
and deal with all possible equalities between them, so the transformation actually yields a formula
of size O(n2). This can be problematic, but as already said, this is mostly a fallback when ROW
does not simplify arrays out already. We thus expect very few memory reads to remain.

4.6.2 Case studies

4.6.2.1 Exploitability assessment for vulnerabilities

We show here how Binsec/RSE (unless otherwise specified, the RSE+ variant) can help in
vulnerability assessment. Especially, we demonstrate that robust reachability allows deeper
insights into a bug than standard reachability, by replaying 5 existing vulnerabilities.

40 CHAPTER 4. Robust reachability

static int parseuid(const char *s, uid_t *uid) {
const char *errstr;
sscanf(s, "%d", uid);
if (errstr) return -1;
return 0;

}
This code is used to parse user IDs allowed to execute commands. If this function erroneously
returns the attacker’s user ID in the parameter uid, then privileged escalation is possible. When
s is not the text representation of an integer, uid remains uninitialized memory. The branch
if (errstr) was optimized out when we compiled. The exact same flaw is present in the function
parsing group IDs.

Figure 4.7: Code responsible for CVE-2019-15900.

CVE-2019-15900 in doas doas is a utility granting higher privileges to users specified in a
configuration file. User IDs are sometimes parsed incorrectly and left uninitialized. We look for a
vulnerable configuration file denying root access to the attacker such that the (flawed) executable
reliably grants root access to the attacker. For simplicity, we assume that the system has no
named user and group, the configuration file has two lines and the attacker has uid 4 and gid 7.

Binsec/RSE with standard reachability reports that root access is granted memory address
0xffefffff contains the group ID of the attacker and the stack starts at 0xfff0001f. This is
a typical “false positive in practice”: these conditions may vary unpredictably across executions,
so we cannot conclude regarding the exploitability of the flaw.

With robust reachability where the configuration file is controlled but the initial state of
memory is not, Binsec/RSE reports in less than 10s that root access is granted reliably to the
attacker when the configuration file contains deny :4 and permit b%@)@@(. When parsing the
first rule, parseuid correctly initializes the uid variable of Figure 4.7 to the uid of the attacker,
4.

The next rule allows root access to any non-existing username, parseuid leaves this variable
untouched and privileged escalation is possible.

This result is considerably more useful, but b%@)@@(is not a valid username. We test therefore
if any other given username is also affected by running the analysis with this username concretized
in the initial state. By this method, we proved that the flaw is also robustly reachable for wwww,
a possible typo of a usual username, as well as all two-letter lowercase usernames.

In other words, if the system administrator grants privileges to a non-existing user by mistake,
he may unknowingly grant them to the attacker instead.

Additionally, Binsec/RSE shows in about 4 minutes that the bug is not robustly reachable
with only one line of configuration file. This proves that the model found by standard SE is
not robust and that the model and attack trace found by RSE are significantly different. It is
not the case that RSE found the same trace as SE and proved that it did in fact satisfy robust
reachability; RSE had to search further for a qualitatively better report.

Here, robust reachability provides us with invaluable insight about the severity of a bug where
standard reachability fails.

CVE-2019-20839 in libvncserver An attacker-chosen null-terminated string is copied by an
unbounded strcpy into a 108-bytes buffer, leading to a stack buffer overflow. Exploitability is
not guaranteed: null bytes cannot be copied, the executable is protected by SSP, etc. Starting
from the vulnerable function, we ask whether it is possible to return to the address 0xdeadbeef,
chosen arbitrarily.

Binsec reports that for standard reachability, the bug can be reached when: (1) the stack

4.6. Proof-of-concept of a robust symbolic execution engine 41

starts at 0xfff00000; (2) the initial value of the return address of the function is 0; (3) the gs
segment starts at 0xf7f00000; (4) the stack canary is 0x01010180; (5) neither system call in the
function fails; (6) file descriptor 0 is free; (7) the input path has a specific value. The attacker
cannot prepare such a state, so this is another false positive in practice.

With robust reachability, when only the input buffer is controlled and not the stack canary,
Binsec/RSE fails to prove or disprove robust reachability in 24h. However, if we mark the
canary as controlled, Binsec/RSE finds an exploit in about 15 min. This suggests the canary
brings a real protection against exploitation.

CVE-2019-14192 in U-boot U-boot is an open-source bootloader, popular for embedded
boards. When booting over Network File System (NFS), U-boot does not validate the length
field of some network packets. This length is subtracted 16 and used as a size to be copied. If a
malicious packet declares a length of less than 16, computation underflows and leads to a buffer
overflow.

We encode the situation as follows: the input network packet is controlled, the IP address of
the victim is constant, the NFS state machine is initialized to expect the appropriate packet type
and all other values are uncontrolled. Binsec/RSE with the RSE∀+ variant (RSE+ times out
here) proves in about 2 minutes that a memory copy of more than 4 GB is robustly reachable,
which is a strong indication of the criticality of this denial-of-service vulnerability.

CVE-2019-19307 in Mongoose Mongoose is an embedded networking library. When re-
ceiving large MQTT packets, the length of the parsed packet can be computed as 0. The parsing
loop does not advance and is thus infinite. We look for network packets whose length is parsed
as 0 but are accepted as valid. Binsec/RSE proves in less than a second that such situations
are robustly reachable when only the network packet is controlled, confirming exploitability.

CVE-2015-8370 in Grub (aka back to 28) Grub is a bootloader used in most Linux
systems. The original vulnerability is an integer underflow leading to buffer underflow when the
user types 28 times on backspace on the password prompt of grub. We extracted the vulnerable
function, ported it to Linux and simplified it so that it overwrites a local variable instead of the
Interrupt Vector Table which is not easily modelled with Binsec. Binsec/RSE proves in 17s
that the vulnerability is robustly reachable.

4.6.2.2 Flaky tests

Consider the test suite of a program. Ideally, it should fail when the program is incorrect,
and succeed when no buggy code path has been exercised. A test is flaky when its outcome is
non-deterministic. This is undesirable and line of work [91, 120, 98, 83] with a recent surge in
popularity looks into detecting, classifying and reasoning about such tests.

Robust reachability can be used not only to detect flaky tests, but also to choose the inputs
to pass to the function to be tested to make the test non-flaky.

Detection. Flakiness can be seen as a special case of non-robustness when labeling non-
deterministic inputs as uncontrolled: a test is flaky when the “success” outcome is not robustly
reachable.

Actually, the full expressiveness of robust reachability is not necessary to characterize flaky
tests, as a test normally has no explicit input, only implicit, uncontrolled inputs. Therefore, the
property of interest for a whole test is “for all implicit inputs, success is reached”.

Sturdy input generation. Consider Figure 4.8 where we test the functionality of function foo.
This test is flaky, as line 14 is not robustly reachable. We want to fix the flakiness of this test

42 CHAPTER 4. Robust reachability

Table 4.3: The 46 reachability problems selected for our evaluation

Type Description Controlled variable

R
ea

l

Vulnerability

CVE-2019-14192 (U-boot) Network packet
CVE-2019-20839 (libvncserver) Socket path
CVE-2019-19307 (mongoose) Network packet
CVE-2019-15900 (doas) Configuration file
CVE-2015-8370 (grub, simplified) Password entry

CTF
Flare-on 2015 1 & 2 Text entry
Nintendo Coding Game Input to hash function to invert
Manticore Text entry

Function
inversion

musl (strptime, strverscmp, atoi, strtol)
Preimagebusybox (chmod mode and ip parsing)

µclibc (fnmatch)
openssl (base64 decoding)

Sy
nt

he
ti

c

Motivating example of [56] and variants Coefficients to affine function
Motivating example of [54, Figure 2.2] Text entry
SSP bypass See Section 4.2 Overflowing buffer
ASLR bypass 2 examples Various
Undefined behavior Overflow flag after 3-bit shl in x86 None
Other Various Various

1 void foo (int x) {
2 if (x % 2 == 0) {
3 return;
4 } else if (!nondet) {
5 # error();
6 }
7 # return;
8 }
9 int main() {

10 int x = 3;
11 foo(x);
12 x += 2;
13 if (x!=4) { error(); }
14 return 0;
15 }

In function foo, robustly reachable nodes when x is symbolic are marked as and non robustly
reachable as #.

Figure 4.8: Example of flaky test adapted from [98]

4.6. Proof-of-concept of a robust symbolic execution engine 43

by finding a value for input x of function foo that makes the test deterministic. We mark x as
a controlled, symbolic input and leave nondet as uncontrolled input. Success becomes robustly
reachable, and Binsec/RSE even reports that x = 2 guarantees deterministic test execution.
This allows us to fix our test, and this time, we really used the full power of robust reachability.

Additionally, consider the CFG of function foo: line 4 is robustly reachable but not its
children lines 5 and 7. This is the sign that it is actually a source of flakiness. And indeed, one
can modify the conditional line 5 so that all lines in foo become robustly reachable.

4.6.3 Experimental evaluation
Research Questions We now seek to investigate in a more systematic way the following
research questions:

1. Precision: What is the best algorithm for robust reachability in terms of correctness and
completeness?

2. Gain associated to robustness: Is standard SE subject to false positives and does robust
reachability avoid them in practice?

3. Path pruning: Does universal path pruning (Section 4.5.4) help explore fewer paths than
normal path pruning?

4. Performance: What is the overhead of robust reachability?

Protocol We base our analysis on a set of 46 reachability problems on binary executables from
various architectures (i686-windows, i686-linux and armv7-linux) presented in Table 4.3. The
average trace length for reachable problem instances is 809 instruction-long, with a maximum
of 18k instructions. The problems fall into two categories: real code and synthetic examples
(e.g. code designed to be analyzed). For each executable, Binsec/RSE determines if a certain
location is robustly reachable from a certain initial state. If this is the case a model is output by
Binsec/RSE, and compared to a ground truth obtained by manual analysis. Tests were run on
Intel Xeon E-2176M(12)@4.4GHz and we use Z3 4.8.7. Results are classified as follows:

Correct Binsec/RSE proves the expected result, i.e. it either reports a robust trigger or
rightfully proves the absence of such a trigger;

False positive a fragile trigger is reported;
Inconclusive Binsec/RSE reports no trigger but search was incomplete or the solver re-

turned unknown at some point;
Resource exhaustion timeout is an hour and memory usage is capped to 7 GB.

Precision (RQ1) As expected, robust variants do not report any false positives, and path
merging increases completeness. RSE variants with universal path pruning (RSE∀, RSE∀+) are
less complete than those with existential path pruning, but they are less prone to timeouts,
see for example CVE-2019-14192 in U-boot (Section 4.6.2). RBMC suffers from path explosion
(time out) much more often than RSE variants. Overall, Robust SE with path merging and
existential path pruning is the most promising method among those presented here, with 44/46
correct answers. RSE∀+ is less complete but terminates more often.

Note that two interesting test cases in the “real” category of Table 4.3 need path merging to
prove robust reachability: one where a pointer with uncontrolled alignment is passed to memcpy,
and one where a branch depends on the result of IO. These situations are common programming
idioms, demonstrating the importance of path merging.

44 CHAPTER 4. Robust reachability

Table 4.4: Comparison of standard and robust algorithms over our 46 test cases

SE BMC RSE∀ RSE∀+ RSE RSE+ RBMC
Correct 30 22 30 34 37 44 32
False positive 16 14
Inconclusive 16 11 7 1
Resource
exhaustion 10 1 2 2 13

Total time (s) 2725 36911 3947 4374 13590 11534 47784
…w/o resource
exhaustion

2725 911 3947 3589 6390 4334 984

RSE: Robust Symbolic Execution. RBMC: Robust Bounded Model Checking. + in acronyms denotes
path merging, and ∀ universal path pruning.

Gain associated to robustness (RQ2) We compare standard SE with RSE+, the most
precise algorithm of RQ1. Standard reachability has about 30% false positives while robust
reachability has none, at the cost of slightly more timeouts.

There are no false positives in code in the “real” category, except in CVE replays. Our
interpretation is that well-functioning programs are designed to behave the same regardless of
the uncontrolled environment: concrete memory layout, stack canaries, etc. Robust reachability
becomes decisive on buggy code, notably with undefined behavior. This is also illustrated by
case studies (Section 4.6.2).

Path pruning (RQ3) We compare RSE∀, which features universal path pruning, to RSE,
which features usual path pruning. Comparison is limited to test runs of more than a second
which succeed with both methods. This is to prevent comparing a run where Binsec/RSE
proves that the target is reachable and stops, to a run where Binsec/RSE does not find the
target and explores the whole program. RSE∀ explores 17% less paths and interprets 21% less
instructions than RSE. This comes at the price of more universally quantified SMT queries: the
average time per SMT query goes up by 25%. Overall the run time of both methods is very
close.

With path merging, the difference in paths explored disappears: RSE∀+ explores 1% less
paths and instructions than RSE+. This is due to the fact that for some tests, path merging
“unlocks” some new paths. Overall, RSE∀+ is 6% slower than RSE+ on successful, terminating
tests.

Performance (RQ4) In this question, we compare the run time of robust algorithms to SE.
Comparison is done on the same basis as before, except that we count timeouts. RSE+ is 74%
slower than standard SE on geometric average. This is mostly due to newly introduced time-outs
(up to 260× slower) since median slowdown is only 15%. RSE∀ is more consistently slower with
about 30% slowdown in both geomean and median. This is mainly explained by increased solver
time (universal path pruning queries). RSE∀+ is close in median slowdown, but path merging
introduces new timeouts and drives the average slowdown up to 62%. RSE+ has a low overhead
compared to standard SE, except for a few time-outs (2/46).

4.6. Proof-of-concept of a robust symbolic execution engine 45

4.6.4 Additional considerations
4.6.4.1 Going beyond reachability

The formal framework we provide in Section 4.4.1 allows to lift any reachability property to its
robust equivalent. Could we do the same for other classes or properties and hyperproperties?
Formally, yes, but we may need to give up part of the results of this chapter, and in the case of
hyperproperties, the lifted property might even be nonsensical, so some care must be taken.

Robust trace properties A trace property is a set of traces Π ⊆ S∞. A program P satisfies
Π if T (P) ⊆ Π. One can apply the same construction as in Definition 14 to obtain a lifted
“robust” property R(Π): P satisfies R(Π) if ∃a.∀x. P |(a,x) ⊢ Π.

For example, consider non-termination. Robust non-termination expresses that for some
controlled input, the program is guaranteed not to terminate. In a security context, this encodes
a form of “guaranteed denial-of-service”.

A well studied class of trace properties is the class of safety properties. They are the negations
of the reachability properties as defined in Definition 1, or described more intuitively, they are
trace properties that can be falsified by observing a bad finite trace prefix. As an example of
safety property, consider the absence of null pointer dereference. Lifting it like before, “robust
absence of null pointer dereference” expresses that for some controlled input, the program is
guaranteed to be free of null pointer dereference. This property is weaker that the original one,
and makes little sense with the threat model we used until now: why would we rely on the
attacker to establish safety of our program? We actually need to reverse this threat model:
consider the controlled input as controlled by the system administrator trying to harden the
system. Then the property consists in looking for a system configuration which is impervious to
attacks.

While the construction we introduced still works for trace properties, the proof methods of
Section 4.5 do not. Developing algorithms to prove robust trace properties is left to future work.

Robust hyperproperties Informally, robustness lifts a trace property Π by adding quantifi-
cation over the inputs of the system, therefore a quantification over traces: there must be a
controlled input, such that all traces starting with this input satisfy Π. But since hyperprop-
erties (introduced in Section 4.4.3) are also allowed to quantify over traces, the quantifications
might collide. Consider the hyperproperty Π “the program terminates on average in less than
100 steps”. Lifting Π to robustness would yield “there exists a controlled input, such that for all
uncontrolled inputs, the only trace starting with those inputs terminates in average in less than
100 steps.” Obviously, “average” here lost its meaning.

We can solve this issue by generalizing the construction of Definition 14. We now split inputs
to the program into three parts: controlled inputs a, uncontrolled input x, and remaining input
y. The lifted hyperproperty only quantifies on y. In the example above, Q becomes “there exists
a such that for all x, the system terminates in less than 100 steps on average on y”.

Formally, we need to adapt the restriction of a program P to only partial inputs: P |(a,x,·) =

{t ∈ P | ∃y. t1 = s1(a, x, y)}. Then, lifting the hyperproperty Π yields:

{P ⊆ S∞ | ∃a.∀x. P |(a,x,·) ⊢ Π}

Whether this construct has a useful meaning is very context-dependent. But let us give an
example for non-interference, or rather its negation. Consider the case where the attacker is only
one of many unprivileged users, and has the goal of breaking non-interference, i.e. observing low
outputs that leak information on the inputs of privileged users. We label as controlled the inputs

46 CHAPTER 4. Robust reachability

a of the attacker, and denote as x and y the inputs of other unprivileged and privileged users
respectively. If (a, x, y) ∼ (a′, x′, y′) denote that traces starting with inputs (a, x, y) and (a′, x′, y′)
are observationally equivalent (be it termination-sensitive or not, for the sake of simplicity), then
one would write non-interference as:

∀a, x, y,′ y. (a, x, y) ∼ (a, x, y′)

Robust violation of non-interference is then

∃a.∀x.∃y, y′. (a, x, y) 6∼ (a, x, y′)

which means that the attacker can choose wisely a controlled input a such that, whatever other
unprivileged users do, a leak of information on high input y will happen. Here we only let
non-interference quantify over y.

4.6.4.2 Negation of robust reachability

We focus in this chapter on (positively) proving robust reachability and discussing the potential
applications for security assessment. Let us briefly discuss now the case of proving the negation
of robust reachability. This property, which falls in the category of collaborative invariance [1],
expresses that for all controlled inputs a, there exists an uncontrolled input x that prevents
some event O. In other words, it is always possible (for the system, for the defender, etc.) to
preserve the invariant ¬O. While this is weaker than ¬O, it is still relevant for security as it
characterizes those systems that may not be fully secure (the invariant does not hold) but which
can still always be defended. From a broader perspective, this can be an interesting step toward
a principled definition of soundiness [90]: instead of discarding a system because it does not
uphold the expected invariant, we can still show that it can be made to work, and thus see more
finely the value we can attach to it.

4.6.4.3 Scope of the definition

We excluded interactive systems and quantitative approaches from our definition of robustness
(Definition 14, Section 4.4.1) to keep automated proof methods tractable. A quantitative ap-
proach will be discussed at length in Chapter 5. We notably show in Section 5.9.2 (RQ4) that
a quantitative counterpart to satisfiability of universally quantified formulas would be about 7
times slower with additional time-outs.

Remains the question of interactive systems. In this section we argue experimentally that
handling them would yield significant overhead.

Assume we want to model a leak in ASLR in libvncserver (Section 4.6.2): the attacker knows
about an address z and wants to use the bug to jump to z. The corresponding property is: for all
values2 of z, there exists an attacker input a such that for all other uncontrolled inputs x, control
flow is diverted to z. This uses another universal quantifier, which we exclude in our definition of
robust reachability (Section 4.4.1) to keep satisfiability queries tractable. Similarly, in our case
study on doas, we would like to check that the exploit works for any typoed username and, and
for any user ID and group ID. These are two example situations with only one half additional
round-trip of interaction between the system and the attacker, which we use as a lower-bound
of the cost of supporting fully interactive systems.

We implemented a naive encoding of this into SMT formulas with one additional quantifier,
and in both cases, RSE+ does not terminate within 24h.

2Without a null byte, but we ignore this detail for the sake of simplicity.

4.7. Related work 47

This is not a scaling issue but a more fundamental one with additional quantifier alter-
nations: none of Z3 [48], Boolector [97] and CVC4 [11] are able to prove in less than 1h that
∀z. ∃a. a XOR 1 = z holds, with 32-bit bitvectors (where the quantification of x is even omitted).
On such formulas, the model that the solver attempts to compute to instantiate the existential
quantifier is actually a function of z, significantly increasing the size of the search space.

4.7 Related work
Broadly speaking, we are interested in defining a subclass of comparatively more interesting bugs
amenable to automation. We review related prior attempts.

Automatic exploit generation (AEG) These approaches seek to demonstrate the impact
of a bug by automatically generating an exploit from it [4, 24, 72]. This is complementary to
robustness, which focuses on replicability. Actually, both techniques could be advantageously
combined, as a replicable exploit is clearly more threatening than a fragile one. Current AEG
methods being based on symbolic methods, adapting them for robustness looks feasible.

Quantitative reasoning & model counting Several approaches rely on probabilities or
counting to distinguish important issues from minor ones — for example (quantitative) proba-
bilistic model checking [70, 5] or quantitative information flow analysis [73]. Robust reachability
could be refined in such a way. Yet, current quantitative approaches do not scale on software,
as they often rely either on the finite-state hypothesis, or on model counting solvers [67], which
are only at their beginning (see Sections 4.4.1 and 4.6.4.3).

Fairness Fairness assumptions in model checking [71] aim at discarding traces considered as
unrealistic and avoiding false alarms from the user point of view. While the goal is rather similar
to ours, the two techniques are very different: fairness assumptions typically require certain sets
of states to be visited infinitely often along a trace, while robust reachability requires that a
trace cannot be influenced by uncontrolled input w.r.t. a given reachability property.

Symbolic Execution and quantifiers Finally, while symbolic execution is commonly per-
formed with quantifier-free constraints, a notable exception is higher-order test generation [62],
where Godefroid proposes to rely on universally quantified uninterpreted functions (∀∃ queries)
in order to soundly approximate opaque code constructs. Higher-order test generation and robust
reachability are complementary as they serve two different purposes: robust reachability can only
be used in a modest way for opaque code constructs (finding controlled inputs for which their
value does not matter), while higher-order test generation is inadequate for robust reachability,
as it would be as if the attacker could choose the controlled inputs knowing the uncontrolled
ones.

4.8 Conclusion
We introduce the novel concept of robust reachability, that we argue is better suited than stan-
dard reachability in several important scenarios for both security (e.g., criticality assessment,
bug prioritization) and software engineering (e.g., replicable test suites). We formally define and
study robust reachability, discuss how standard symbolic methods to prove reachability can be
revisited to deal with the robust case, design and implement the first robust symbolic execution

48 CHAPTER 4. Robust reachability

engine and demonstrate its abilities in criticality assessment over 5 CVEs. We believe robust
reachability is an important sweet spot in terms of expressiveness and tractability. We hope this
first step will pave the way to more refinements and applications of robust reachability.

Chapter5
Quantitative robustness

In this chapter, we acknowledge how frustrating it is that robust reachability dismisses bugs which
an attacker can trigger 99% of the time. We will thus resort to model-counting-like approaches
to compute this actual number of 99%. We define this quantity formally, and investigate possible
proof methods. An extensive comparison of algorithms from various fields leads us to introduce
a new, approximate one, leading to encouraging results in vulnerability assessment case studies.

5.1 Introduction
Context & Problem In the previous chapter, we developed robust reachability to determine
whether an attacker can reproduce a bug reliably: a bug is robustly reachable if an attacker
can choose the part of input he controls so that for all values of the rest of inputs, the bug
is triggered. This is meant to be a sign of the security relevance of the bug. However, while
standard reachability is too weak and may lead to practical false positives, robust reachability
may be too strict a notion in many cases. Robust reachability requires that when the attacker
plays optimally, the bug is triggered 100% of the time. Naturally, we would also want to detect
bugs which only happen 99% of the time, while still dismissing those which happen for one input
out of 1030 at best. Both are reachable but not robustly reachable. What we need is a sort of
quantitative counterpart to robust reachability.

Goal and challenges We want to design a formal definition of 99% in the kind of statements
we made above. This sounds like model counting in the sense that we count inputs that trigger
the bug, but we additionally want to take the presence of the attacker into account like robust
reachability does: attacker input is chosen as worst case, and other input is counted. A value
of 0 should correspond to unreachable bugs, and the maximal value of 100% should correspond
to robustly reachable bugs. With such properties, a quantitative approach would give us access
to all the intermediate, fractional situations that standard reachability and robust reachability
would fail to characterize.

Proposal Like with robust reachability we split the program input into attacker-controlled
input a and uncontrolled input x. We define quantitative robustness as the proportion of uncon-
trolled inputs x which trigger the bug when the attacker chooses controlled input a optimally.
This problem looks very similar to model counting, however the two notions are distinct. If f is a

49

50 CHAPTER 5. Quantitative robustness

function of (a, x) expressing that the bug is hit, model counting yields |{(a, x) | f(a, x)}| while we
want maxa |{x | f(a, x)}|, normalized between 0 and 1. It turns out that the problem of comput-
ing maxa |{x | f(a, x)}| for f a propositional formula is known as functional E-MAJSAT1 [87]
(f-E-MAJSAT for short) and has been studied under varying names for Bayesian networks
inference and probabilistic planning notably. It is a hard problem where solvers [75, 101, 85,
92, 57] are often tuned for specific kinds of instances. As we will see, improvements of f-E-
MAJSAT solvers for probabilistic planning are not always beneficial for our instances coming
from program analysis, and we will end up modifying two existing techniques to better fit this
new domain of application.

Contributions We claim the following contributions:

• We define a quantitative pendant of robust reachability called quantitative robustness (Sec-
tion 5.4), and we propose Quantitative Robust Symbolic Execution (QRSE), a variant of
symbolic execution to determine the quantitative robustness of the target, provided that
one can solve f-E-MAJSAT problem instances (Section 5.5);

• We present a number of existing works about f-E-MAJSAT and the many variants that
have been studied in various fields like Bayesian networks and probabilistic planning, but
which are not well known in the domain of program analysis (Sections 5.6 and 5.7);

• We introduce a novel parametric algorithm to solve f-E-MAJSAT where one can tune the
trade-off precision vs. performance by a technique we call relaxation (Section 5.8). Extreme
values of the parameter degenerate into already known techniques;

• We evaluate the ability of these techniques to solve the f-E-MAJSAT problems stemming
from quantitative robustness computation, which reveals that techniques that fare well for
probabilistic planning for example become detrimental for our purposes, and justifies the
need for relaxation (Section 5.9.2). We also illustrate the usage of quantitative robust-
ness through Quantitative Robust Symbolic Execution (QRSE) on realistic case studies of
vulnerability assessment (Section 5.9.3).

Quantitative robustness is a new compromise to assess the replicability of a bug: it is more
precise, but more expensive than standard reachability and robust reachability.

5.2 Motivating example
Loosely inspired by CVE-2019-15900, consider in Figure 5.1 the case of two programs incor-
rectly using initial memory to determine the privileges of the attacker. Specifically we consider
a network server performing a command with an argument on behalf of the attacker. Whether
the attacker can perform sensitive commands depends on a privilege_level which is accessed
through a getter get_privilege_level and a setter set_privilege_level. We want to con-
sider the consequences of a bug where get_privilege_level incorrectly returns uninitialized
memory modeled as random garbage.

We want to compare two versions of the server: prog1, which accepts two commands GET_VERSION
which does not do anything useful here, and SUDO which allows a user with privilege OPERATOR_LEVEL
to escalate to the higher ADMIN_LEVEL; and prog2, which accepts GET_VERSION again and

1This complex name comes from: MAJSAT is when a MAJority of x satisfy the formula, E-MAJSAT when there
Exists a a such that MAJSAT. E-MAJSAT is a decision problem, and functional E-MAJSAT is the corresponding
functional problem where one wants to compute the value instead of comparing it to 1/2.

5.2. Motivating example 51

/* main privilege levels */
#define DEFAULT_PRIVILEGE_LEVEL 1
#define OPERATOR_LEVEL 100
#define ADMIN_LEVEL 9000
/* commands */
#define DROP_PRIVILEGE 0
#define DROP_PRIVILEGE_LEGACY 1
#define GET_VERSION 2
#define SUDO 3

uint32_t uninitialized; // random garbage
uint32_t privilege_level = DEFAULT_LEVEL;

void set_privilege_level(uint32_t new) {
privilege_level = new;

}

uint32_t get_privilege_level() {
// bug: return uninitialized memory
return uninitialized;

}

void prog1(uint32_t command, uint32_t argument) {
if (command == GET_VERSION) {

/* harmless */
} else {

/* command is sudo */
if (get_privilege_level() == OPERATOR_LEVEL) {

set_privilege_level(ADMIN_LEVEL);
}

}
}

void prog2(uint32_t command, uint32_t argument) {
switch (command) {

case GET_VERSION: /*harmless*/ break;
case DROP_PRIVILEGE: case DROP_PRIVILEGE_LEGACY:

if (argument<get_privilege_level()) {
set_privilege_level(argument);

}
}

}

Figure 5.1: prog1 and prog2 are both vulnerable, but one is more than the other

DROP_PRIVILEGE (which has two distinct codes, for example for backward compatibility) which
allows a user to reduce its privilege level to a chosen lower value.

Is it possible that the attacker obtains privilege level greater or equal to ADMIN_LEVEL by
submitting a carefully chosen command and argument to these functions? For prog1, the attacker
obtains admin privilege when command is not 2 and get_privilege_level returns 100. For
prog2, the attacker obtains admin privilege when command is 0 or 1, the asked privilege level
argument is both over 9000 (ADMIN_LEVEL) and below get_privilege_level(). Formally, this
corresponds to the following respective exploitation conditions:

f1 ≜ command 6= 2 ∧ uninitialized = 100

and
f2 ≜ command ∈ {0, 1} ∧ 9000 ≤ argument < uninitialized

In prog1, when the attacker plays perfectly by choosing command = 1, he needs to have a
lot of luck: only one value of uninitialized (100) out of 232 lets him win. To the contrary,
in prog2, for command = 1 and argument = 9000, a large majority of values of uninitialized
will let the attacker achieve his goal. We want to develop an automated machinery to back this
intuition.

Qualitative methods Traditional bug finding techniques are of little use here: they prove
that the attack is reachable, i.e. that formulas f1 and f2 admit both at least one solution. We
can refine: robust reachability (Chapter 4) states that the attack always works when the attacker
plays perfectly: ∃command, argument.∀uninitialized. fx, but this is too strict here and neither
program satisfies it.

Model counting Where these qualitative techniques fail to distinguish our two programs,
maybe a more quantitative one will bear fruit. For example, we could compare the number of
solutions of f1 and f2, or rather their density in a search space of size 296. This is reminiscent
of probabilistic symbolic execution [59]. For f1, this density is (232−1)×232×1

296 ≃ 2.3 · 10−10. For
f2 the computation is slightly more cumbersome. Valid pairs (command, uninitialized) are

52 CHAPTER 5. Quantitative robustness

counted as follows:

232−1
∑

u=9000

u− 9000 =

232−9001
∑

v=0

v =
1

2
(232 − 9001)(232 − 9000)

and the density of solutions of f2 is thus 2(232−9001)(232−9000)
2×296 ≃ 2.3 · 10−10. The density of f1

and f2 are in fact extremely close, and worse, they compare in order opposite to what we expect:
f1 > f2.

Our approach The missing ingredient is taking into account the threat model: the attacker
will choose the best possible input he can, i.e. command = 1 and argument = 9000, but he cannot
influence the value of uninitialized. What we want to compute is the amount of solutions for
the value of command and argument most favorable to the attacker:

max
command,argument

|{uninitialized | f1}| = |{100}| = 1 (5.1)

max
command,argument

|{uninitialized | f2}| = |[9001; 232 − 1]| = 232 − 9001 (5.2)

These numbers can be fairly compared as the search space has the same size (232) but in the
general case we will consider a proportion of inputs instead, which we call quantitative robustness.
Quantitative robustness does align to the intuition we had: it is low (2.3 · 10−10) for prog1 but
close to 1 for prog2: approximately 0.9999979043.

The problem of doing computations like eqs. (5.1) and (5.2) on a boolean formula is known
as functional E-MAJSAT [87], or f-E-MAJSAT for short. Solvers exist for this problem or
rather close variants because most of the literature is targeted to other domains like Bayesian
network inference [76, 122] or probabilistic planning [75, 101]. f1 is small and two algorithms of
the literature are able to obtain eq. (5.1) (dc-ssat [92] and an unnamed algorithm mentioned
in Huang [75, Algorithm 1, p. 257] which we call Constrained) in less than 2 seconds. On the
other hand, we know of no existing f-E-MAJSAT solver able to obtain eq. (5.2) in a reasonable
time (we tested Constrained, ssatABC [85], dc-ssat, and Complan+ [101] with a timeout of
20 minutes). If we turn to approximate solutions, Maxcount [57] also times out, and an upper
bound taken from Complan+ terminates quickly but without a useful result: it proves that
the quantitative robustness is upper-bounded by 1, which is a tautology. In other words, even
for this simplistic example, existing techniques come short, presumably because they are tuned
for instances of their respective original domain. Taking inspiration from existing knowledge-
compilation based algorithms, we propose a technique called relaxation that offers an interesting
trade-off between performance and precision. For prog2 we obtain2 in about 1 second that the
quantitative robustness of privilege escalation is comprised between 0.999997904291 and 1. This
is enough to conclude that there are many more initial states that let the attacker exploit the
vulnerability in prog2 than in prog1. We interpret this as a sign that this bug is presumably
more severe in prog2 than in prog1.

Discussion We are counting models without assigning a weight, or rather a probability, to
each of them. In effect, this is equivalent to arbitrarily assigning a uniform distribution to
uncontrolled inputs. It would feel more natural to be able to assign any probability distribution
to uncontrolled inputs, to get an even more precise result. We do not do so in our experiments
for two reasons.

2With parameters BFS(40) and precise lower bound.

5.3. Background & Notations 53

Firstly, assigning a meaningful probability distribution to uncontrolled inputs is often quite
hard. Uncontrolled inputs quite often represent implicit inputs to the program, like the initial
content of memory, registers, etc. In the threat model of robust reachability, the attacker does
not know the value of uncontrolled inputs; they should thus be values that he cannot predict or
describe. It is not uncommon that it is also the case for the defenders: for example, how would
you describe the distribution of the pointer returned by malloc? Besides, when we can describe
the actual distribution, it is often that randomness was intentionally introduced: stack canaries
are uniformly distributed, ASLR adds well known entropy to pointers, and hash function return
values indistinguishable from random. In these cases, the uniform distribution on intervals is
actually enough. The case of uninitialized memory is interesting in this regard. On non-embedded
systems, initial memory given by the OS is zeroed, so deterministic. Memory reused from the
stack or the heap is however not zeroed, and its content could in theory be predicted by further
program analysis. In practice, one can thus either analyze the full program including code before
main starting from zeroed memory, which is most probably intractable, or do an underconstrained
(in the sense of Ramos and Engler [102]) analysis by abstracting initial memory as “anything,
really” to eschew the cost, in which case we purposefully ignore the complexity of the actual
distribution of inputs, and we might as well choose the uniform one.

Secondly, on a practical note, none of the techniques and tools we will consider in Section 5.7
support assigning arbitrary probability distributions to inputs. Most of them support assigning
independent Bernoulli distributions to individual input bits, but cannot handle dependent bits.
We focus on a common denominator in terms of expressiveness.

Finally, let us reiterate that the goal is not to give a definitive rational value of vulnerability,
but rather to give a hint to defenders. We want to be able to distinguish between highly improba-
ble situations and quite probable ones. The uniform distribution is a good enough approximation
of moderately skewed ones for this purpose.

5.3 Background & Notations
We reuse the notations of Section 3.2. Notably for a formula f , the set of its models is M (f),
its model count is ♯ (f), the set of variables effectively appearing in f is V (f), and for a partial
valuation a ∈ BA, f |a is the formula identical to f but where variables in A are replaced by their
image by a. We recall that model counting is then the following problem:

Definition 4 (model counting). ♯SAT is the following function problem: given a propositional
formula f in CNF, output ♯ (f)

f-E-MAJSAT can be seen as a generalization of model counting, and some techniques to
solve it are close to model counting algorithms. In this background section we will detail a
specific one which will come useful later.

5.3.1 Normal forms for model counting
To solve model counting one can use formulas in a specific normal form: deterministic Decom-
posable Negational Normal Form (d-DNNF) [41]. We will in fact use, w.l.o.g., a slightly stricter
normal form: decision Decomposable Negational Normal Form (decision-DNNF) [53].

Definition 17 (decision-DNNF). A formula in decision Decomposable Negational Normal Form
(decision-DNNF) is a Directed Acyclic Graph (DAG) of the following nodes:

True and False nodes ⊤ and ⊥;

54 CHAPTER 5. Quantitative robustness

decomposable And node
∧n

i=1 fi, where ∀1 ≤ i, j ≤ n. V (fi)∩V (fj) = ∅, and the children
(fi)1≤i≤n are in decision-DNNF;

Decision (or Ite) node ite(v, f, g), where f and g denote formulas in decision-DNNF, v a
variable, and v 6∈ V (f), v 6∈ V (g).

An example is given in Figure 5.2. By convention, V (⊤) = V (⊥) = ∅, ♯ (⊤) = 1, ♯ (⊥) = 0.
This definition is slightly non-standard: literals are normally included, but we replace v by
ite(v,⊤,⊥) and ¬v by ite(v,⊥,⊤).

The process of converting a CNF formula to an equivalent decision-DNNF formula is called
decision-DNNF-compilation. D4 [82] is a decision-DNNF compiler. d-DNNF-compilers are more
common, but interestingly, while d-DNNF compilers like C2D [42] and Dsharp [94] officially
output d-DNNF, they actually produce the stricter decision-DNNF. This is because they use
algorithms inspired by DPLL search where decisions naturally lead to the ite nodes of decision-
DNNF.

In other words, a large part of the literature handles formulas in d-DNNF, but actual im-
plementations produce the stricter decision-DNNF. The model counting algorithm presented in
this background (Theorem 1) is originally given for d-DNNF, but we present it lifted to decision-
DNNF.

About smoothness One cannot compare the model count of formulas with different sets of
variables, which becomes cumbersome when trying to compute the model count of a formula
from the model counts of several subformulas. To simplify formalism, one usually resorts to the
notion of smooth formula.

Definition 18 (Smoothness [43]). A formula in decision-DNNF is said to be smooth if all ite
nodes ite(v, f, g) verify V (f) = V (g).

Crucially, for smooth formulas ♯ (ite(v, f, g)) = ♯ (f) + ♯ (g). Without it, one must reason
about pairs (♯ (f) , V (f)) instead of just ♯ (f) which makes the formal treatment considerably
heavier. As usual in the literature, we present the formalism on smooth formulas only, which
can be done without loss of generality [43] as a formula can be made smooth in polynomial time.

5.3.2 Basic algorithms for model counting
One can count the number of models of a smooth decision-DNNF formula in linear time:

Theorem 1 (model counting of decision-DNNF [53]). The model count of a formula in smooth
decision-DNNF can be computed as follows:

♯ (⊥) = 0

♯ (⊤) = 1

♯ (ite(v, f, g)) = ♯ (f) + ♯ (g)

♯

(

n
∧

i=1

fi

)

=
n
∏

i=1

♯ (fi)

In other words, And nodes correspond to multiplication of model counts, and Ite nodes to
addition, as illustrated in Figure 5.2.

5.3. Background & Notations 55

ite(a1): +

itex1: +

ite(x2): +

⊥: 0⊤: 1

∧: ×

ite(x2): +

⊤: 1⊥: 0

ite(x1): +

⊥: 0⊤: 1

For f = ite(a1, x1 ∧ ¬x2, ite(x1,¬x2, x2)), Theorem 1 yields ♯ (f) = (1 + 0) × (0 + 1) + (0 + 1) +
(1 + 0) = 3.

Figure 5.2: A formula in decision-DNNF (black), and model counting for it (red).

Compilation This algorithm reduces the problem of model counting to compiling the original
CNF formula to an equivalent decision-DNNF one.

The complexity of compilers like c2d [42] which rely on a DPLL-like search composed of
decisions and then propagations is given as exponential in the treewidth of the formula. Let
us briefly define this notion. One considers the connectivity graph of the formula: the graph
where every variable is a node, and there is an edge from v to w when there is a clause where
both v and w appear. We consider the process of removing nodes one by one in some variable
order x. The maximal degree of a node at removal time during this process is called width
of the variable order x. The minimal width of all possible orders is called the treewidth of
the formula [107]. The link with DPLL-like algorithms is that the number of neighbor nodes
at removal time corresponds to the number of variables that must be decided before the node
can be eliminated by unit propagation. This traduces the fact that choosing the right variable
order for decisions in compilers is of paramount importance for performance. We will later talk
about restricting possible orders: this increases the treewidth of the formula, and thus impacts
performance of the compilation.

As compilation can increase the size of the formula exponentially, the linear time complexity
of Theorem 1 does not mean that model counting on CNF formulas is efficient. In practice the
complexity of model counting resides in decision-DNNF-compilation. Model counting on the
decision-DNNF accounts for a comparatively low amount of work (less than 4% on the corpus
of our experiments of Section 5.9.2).

Conditioning For a partial valuation a ∈ BA and a formula f in decision-DNNF it is possible
to compute a formula equivalent to f |a also in decision-DNNF as follows: replace ite(v, g, h) by
g if v ∈ A and a(v) = ⊤, h if v ∈ A and a(v) = ⊥ and otherwise leave it as is. Thus, we can
compute ♯ (f |a) in linear time as well.

5.3.3 Beyond model counting
As mentioned earlier, to characterize how reliably an attacker can trigger a bug, we do not
precisely want to solve model counting but an extension of it called functional E-MAJSAT. We
will make a more complete panorama of such extensions of model counting later in Section 5.6
and of the corresponding solving algorithms in Section 5.7, but let us define f-E-MAJSAT
now.

Definition 19 (f-E-MAJSAT [87]). f-E-MAJSAT is the following function problem:

56 CHAPTER 5. Quantitative robustness

Input a formula f in CNF with a partition of variables in A and X: V (f) = A ⊎X.
Output max

a1,...,an∈BA
♯
(

f |a1,...,an

)

As usual with functional problems, there is a companion decision problem called E-MAJSAT
which tests whether f-E-MAJSAT is above 2|X|−1 (or another threshold).

Variables in A are called choice variables and variables in X are called chance variables. The
distinction between chance and choice variables the key to encode the presence of the attacker
and the partition of inputs into controlled and uncontrolled inputs.

f-E-MAJSAT reduces to SAT when X = ∅ and to ♯SAT when A = ∅, so it is at least as
hard as these problems.

5.4 Quantitative robustness
In this section, we define quantitative robustness and consider the nature of the corresponding
computational problem.

5.4.1 Formal definition
We consider the same threat model as for robust reachability (Chapter 4) where an attacker can
choose controlled inputs a ∈ A and other inputs to the program are unknown to the attacker
and called uncontrolled inputs x ∈ X . We also reuse the same notations: the program P to be
analyzed is represented a transition system with transition relation → over the set of states S.
A trace is a succession of states respecting →; the set of traces of a program P is T (P). P |(a,x)

is the program identical to P but executed on input (a, x). We say that a program P can reach
a set of traces O when T (P) ∩ O 6= ∅, meaning that P admits a trace reaching the goal, and
we say that P reaches O robustly when ∃a ∈ A.∀x ∈ X . T

(

P |(a,x)

)

∩O 6= ∅, meaning that for
some controlled input a, for all uncontrolled inputs x, the target is reached.

Definition 20 (Quantitative robustness). We consider the reachability problem associated to
program P and target set of paths O. The associated quantitative robustness is

q (P,O) ≜
1

|X | max
a∈A

∣

∣

∣

{

x ∈ X | T
(

P |(a,x)

)

∩O 6= ∅

}
∣

∣

∣

It is a rational number between 0 and 1 and corresponds to the maximal proportion of uncon-
trolled inputs that reaches the target, for the best controlled input.

One can envision at least two ways to use quantitative robustness. First one can make
quantitative robustness a decision problem by comparing it to a threshold. For example, this is
enough to filter detected bugs, by removing bugs below a low threshold, or by prioritizing bugs
above a high threshold. Second we can use the value on its own, as an indication for further
manual analysis, or to actually sort bugs by descending robustness. We focus on the latter
approach, which is more general than the former.

Scope & limitations This definition inherits some of the limitations of robust reachability.
Notably, the attacker can only submit one input to the system, in one go, and without knowledge
of uncontrolled inputs. This effectively forbids interactive systems. It would be possible to tailor
a formal definition to more interactivity, but this would complicate computing it.

5.4. Quantitative robustness 57

It also has some additional limitations related to the fact that we use model counting: inputs
are assumed to be in finite number and uniformly distributed. It would be possible to use another
definition: the maximal (over controlled input) probability of uncontrolled input to reaching the
target. This can accommodate infinite input with an appropriate probability measure over X ,
and non-uniform probability distributions. We avoid this solution:

• Finiteness of input is not very problematic: formally, the state of a computer is finite due
to finite registers and memory, and in practice even more so.

• On the other hand, one can believe non-uniform distribution of inputs would be handy.
In practice, it would be hard to use because determining the probability distribution of
uncontrolled inputs is far from trivial, as we argued in the introduction. Uncontrolled
inputs are usually implicit inputs, and they are often unknown not only by the attacker, as
the threat model requires, but also to us. Besides, none of the algorithms we will consider to
compute quantitative robustness (Section 5.7) support arbitrary distributions. Some, but
not all, support more than merely the uniform distribution (notably independent Bernoulli
bits), so we chose a sort of common denominator. This ensures maximal tractability at the
expense of expressiveness.

5.4.2 Interesting properties
Extrema Extreme values of quantitative robustness correspond to the properties we are al-
ready familiar with:

Proposition 10. Quantitative robustness is 0 if and only if the target is not reachable. Quan-
titative robustness is 1 if and only if the target is robustly reachable.

The promise of quantitative robustness is that we now have a criterion to single out bugs
which are nearly robust, but not exactly because for few uncontrolled inputs the target is missed:
they should have a quantitative robustness close to 1.

Paths Robust reachability can be lost when there is a branch depending on uncontrolled input
and recovered later when paths meet again. This forces us to merge paths together. On the other
hand, quantitative robustness is not fully lost when paths separate. We denote the restriction of
P to paths π1, . . . , πn as P |π1,...,πn , and we start with some properties of quantitative robustness
of such a restriction.

Proposition 11 (Monotonicity of quantitative robustness of paths). Let π be a path in a program
P . q (P |π, O) ≤ q (P,O).

Proof. This comes from the fact that for all a ∈ A
{

x ∈ X | T
(

P |π|(a,x)

)

∩O 6= ∅

}

≤
{

x ∈ X | T
(

P |(a,x)

)

∩O 6= ∅

}

Proposition 12 (Quantitative robustness of merged paths). Let π, π′ be two paths in a program
P . Then

q
(

P |π,π′

, O
)

≤ q (P |π, O) + q
(

P |π
′

, O
)

58 CHAPTER 5. Quantitative robustness

Proof. Let a reaching the max in the definition of q
(

P |π,π′

, O
)

.

{

x ∈ X | T
(

P |π,π′
∣

∣

∣

(a,x)

)

∩O 6= ∅

}

=
{

x ∈ X | T
(

P |π|(a,x)

)

∩O 6= ∅

}

∪
{

x ∈ X | T
(

P |π
′
∣

∣

∣

(a,x)

)

∩O 6= ∅

}

In terms of cardinal:

|X |q
(

P |π,π′

, O
)

≤
∣

∣

∣

{

x ∈ X | T
(

P |π|(a,x)

)

∩O 6= ∅

}
∣

∣

∣

+

∣

∣

∣

∣

{

x ∈ X | T
(

P |π
′
∣

∣

∣

(a,x)

)

∩O 6= ∅

}
∣

∣

∣

∣

By definition of quantitative robustness,
∣

∣

∣

{

x ∈ X | T
(

P |π|(a,x)

)

∩O 6= ∅

}∣

∣

∣
≤ |X |q (P |π, O)

hence the result.

As a result, we can prove that quantitative robustness cannot vanish at a branch:

Proposition 13 (Quantitative robustness pseudo-conservation). Let π1, . . . , πn be paths in a
program P . There exists 1 ≤ i ≤ n such that q (P |πi , O) ≥ 1

n
q (P |π1,...,πn , O).

Proof. By contradiction, if ∀1 ≤ i ≤ n. q (P |πi , O) < 1
n
q (P |π1,...,πn , O) then by Proposition 12,

we get q (P |π1,...,πn , O) < n× 1
n
q (P |π1,...,πn , O) which is absurd.

To illustrate why this is good news, consider the case that justified the necessity of path
merging in RSE: Figure 4.4, page 35. The program P has two paths π and π′ starting at
location s, selected depending on an uncontrolled boolean input x, and which join again in
location ℓ. Neither π1 nor π2 satisfies single path robust reachability, but ℓ is robustly reachable.
Robust reachability can “reappear” from non-robust paths quite unpredictably, so we are forced
to merge all paths to keep completeness. This is not the case with quantitative reachability as
Proposition 13 guarantee that one of π1 or π2 has quantitative reachability at least 1

2 :

q (P |πi , ℓ) ≥ 1

2
q (P |π1,π2 , ℓ) =

1

2
q (P, ℓ) =

1

2

In this situation one can thus still detect ℓ without path merging by lowering our detection
threshold by one half.

5.4.3 Comparison to other quantitative formalisms
Several domains have attempted to reason more precisely about systems by adopting a quanti-
tative approach.

Probabilistic reachability Program verification is usually encoded as the reachability of an
undesirable condition, so it is natural to consider the probability of reaching it. For example
probabilistic symbolic execution [59] attempts to compute the probability3 of each path, and

3Actually, they compute model counts and therefore assume uniformly distributed inputs, like we do.

5.5. Quantitative robust symbolic execution 59

shows experimentally that one can find bugs by focusing human analysis on improbable paths,
presumably because those paths are badly tested by conventional techniques. The main difference
with quantitative robustness is that such techniques do not consider the presence of an attacker.
They compute the probability of a bug happening in a neutral environment, whereas we attempt
to determine how often a bug can be triggered by the optimal attacker.

For the same reason, it does not look like probabilistic logics developed for model checking
like pCTL [70] can be used for our purpose: the semantics of a pCTL formula is determined
by the probability of the possible state transitions of the system, therefore one would have to
encode the optimal attacker inside this transition system to obtain a meaningful result.

Quantitative information flow Quantitative information flow attempts to quantify the
amount of information that an attacker can deduce from the observable (public) behavior, state
or output of a system, interpreted as leakage of information. The threat model is as follows: the
attacker chooses public input to a system, the defenders chose secret inputs, and the attacker
attempts to deduce the secret from the public output. A central notion to achieve that is the
capacity of the leakage channel: the logarithm of the number of public outputs which are pos-
sible. More formally, we count the public outputs z such that there exists a pair of (public,
private) inputs leading to z. This is a distinct problem from ours, and leads to different counting
problems: projected model counting [6] instead of f-E-MAJSAT.

5.5 Quantitative robust symbolic execution
Our goal here is to design a method to enumerate all locations with quantitative robustness
above a threshold Q, and to know their quantitative robustness, for example to sort them from
most robustly reachable to least robustly reachable.

5.5.1 Going quantitative from RSE
It is possible to adapt RSE (Section 4.5.2) for this purpose. RSE works by enumerating paths
π of the program, converting them to a path constraint pcO

π (a, x) expressing what input (a, x)
make the program go along path π and reach the goal O, and check whether this formula
passes the universal satisfiability test: ∃a.∀x. pcO

π (a, x). To obtain completeness, one can merge
several paths π1, . . . , πn together by disjoining the corresponding path constraints in a universal
satisfiability test: ∃a.∀x. ∨n

i=1 pcO
πn

(a, x).
One can make this algorithm quantitative by replacing the universal satisfiability test by a

new test expressing that many inputs x make pc true for the best value of a. For simplicity,
we consider a bitblasted version of the path constraint (see Section 3.2.4): pc is now a boolean
formula in CNF, and inputs are now represented as boolean variables: a ≜ (a1, . . . , an) and
x ≜ (x1, . . . , xm). As the original domains for inputs are not necessarily a power of 2 in size,
we add two boolean formulas ha(a) and hx(x) which express which combinations of boolean
variables correspond to valid inputs: ♯ (ha) = |A| and ♯ (hx) = |X |. ha and hx can also be used
to express the effect of assume statements in the analyzed program.

Then we have:

q (P |π, O) =
1

♯ (hx)
max

a
♯
((

ha(a) ∧ hx(x) ∧ pcO
π (a, x)

)∣

∣

a

)

(5.3)

where P |π is the restriction of the program to execution path π. Note that formulas are assumed
to have all their variables present, see our note about smoothness above.

60 CHAPTER 5. Quantitative robustness

By replacing universal satisfiability tests by tests that q (P |π, O) is greater than the threshold
Q, we can enumerate paths which reach the goal with quantitative robustness above Q, and print
q (P |π, O) for the user. We call this technique Quantitative Robust Symbolic Execution (QRSE).
More specifically, operating this substitution on RSE yields QRSE (Algorithm 5) and on RSE+
(RSE plus path merging) it yields QRSE+ (QRSE plus path merging, Algorithm 6).

This allows reducing our quantitative verification problem to f-E-MAJSAT (Definition 19).
Equation (5.3) also features a model counting term (♯ (hx)) in addition to the f-E-MAJSAT
instance, but f-E-MAJSAT is harder than model counting and hx is a smaller formula so in
practice this part of the formula is negligible in terms of computation time.

Data : bound k, target O, threshold
Q

1 ϕ := ⊥
2 for path π in GetPaths (k) do
3 ϕ := GetPredicate(π,O)

4 χ := 1
♯(hx) maxa ♯ ((ha ∧ hx ∧ ϕ)|a)

5 if χ ≥ Q then
/* O has quantitative

robustness ≥ χ */
6 return (true, χ)
7 end
8 return false

Algorithm 5 : QRSE: Quantitative
Robust SE

Data : bound k, target O, threshold
Q

1 ϕ := ⊥
2 for path π in GetPaths (k) do
3 ϕ := ϕ ∨ GetPredicate(π,O)

4 χ := 1
♯(hx) maxa ♯ ((ha ∧ hx ∧ ϕ)|a)

5 if χ ≥ Q then
/* O has quantitative

robustness ≥ χ */
6 return (true, χ)
7 end
8 return false

Algorithm 6 : QRSE+: Quantitative
Robust SE with systematic path merg-
ing

Proposition 14 (Correctness of QRSE). If QRSE reports a target O with quantitative robustness
χ, then q (P,O) ≥ χ.

Proof. QRSE reaching O proves that there is a path π such that q (P |π, O) = χ. By Proposi-
tion 11, q (P,O) ≥ χ.

Proposition 15 (k-completeness of QRSE+). We remind the reader that we suppose that the
domain of inputs is finite. P |≤k denotes the restriction of program P to traces of length at most
k. Let Q be a threshold. Assuming solver termination, if a target O has quantitative robustness
q
(

P |≤k
, O
)

≥ Q, then it is reported by QRSE+ with a quantitative robustness between Q and

q
(

P |≤k
, O
)

.

Proof. In P |≤k, for each possible input, there is at most one maximal path of length at most
k (and all its prefixes). When QRSE+ has explored all paths, the path constraint will be
equivalent to reaching O. f-E-MAJSAT on this path constraint will therefore have the desired
value q

(

P |≤k
, O
)

. If some subset of these paths has quantitative robustness between Q and

q
(

P |≤k
, O
)

, QRSE+ may return early.

Note that we present QRSE as relying on functional E-MAJSAT and then comparing the
result to the threshold Q. This could be reformulated as the original decision problem called

5.5. Quantitative robust symbolic execution 61

E-MAJSAT. We leave this approach unexplored. Obtaining the actual value instead of only the
truth value of the comparison is interesting for further inspection by a human or to sort the bugs
found by descending quantitative robustness, and it makes formalism slightly more intuitive.
In practice, the most effective f-E-MAJSAT solving technique we will use is not able to take
advantage of knowing the comparison threshold Q beforehand, so this will make little difference.

5.5.2 Path merging
Recall that in the qualitative case, we lose k-completeness if we do not perform path merging
in robust symbolic execution. We want to avoid path merging for two main reasons: firstly,
some paths can be hard to execute symbolically (e.g. because they contain exotic system calls,
or dynamic jumps, etc.), and secondly, merged path constraints are more complex and harder to
solve (see Section 4.6.3).

In the quantitative case, we can show that QRSE without path merging is actually as complete
as QRSE with path merging under reasonable assumptions. We will use the property that if the
target has high quantitative robustness and is reached by not too many paths, then one of the
reaching paths must also have high quantitative robustness. We proved this form of conservation
of quantitative robustness as Proposition 13. It is specific to this quantitative approach: because
it is a boolean, robust reachability can vanish at a branch, and reappear later if paths rejoin.

The hypothesis “and is reached by not too many paths” may look strange at first, but it can
be derived from a quite reasonable assumption:

Definition 21 (Badly scaling path merging assumption). We assume that merged paths con-
straints are more difficult to solve than their constituents, and that there is an integer κ such
that, when merging the paths constraints of more than κ paths together, the resulting path
constraint is so large and/or complex that our solver will return UNKNOWN.

Under the badly scaling path merging assumption, we can prove that QRSE can be made as
complete as QRSE+:

Proposition 16 (QRSE vs QRSE+). Under the badly scaling path merging assumption, all
locations reported by QRSE+ as having quantitative robustness above the threshold Q are also
reported by quantitative robustness above the threshold Q/κ.

Proof. Let O be a target reported by QRSE+ with threshold Q. By the badly scaling path
merging assumption, there are paths π1, . . . , πn with n ≤ κ such that our f-E-MAJSAT solver
can compute χ ≜ q (P |π1,...,πn , O) with χ ≥ Q. By Proposition 13, there is a path πi such that
q (P |πi , O) ≥ Q/n ≥ Q/κ. As we assume that merged path constraints are harder to solve than
the original ones, our solver can compute the f-E-MAJSAT problem associated to q (P |πi , O)
and QRSE will thus detect O by path πi with the threshold Q/κ.

In practice, this means that if path merging turns out to be a problem for QRSE+ with
threshold Q, then one can run QRSE with threshold Q/κ and have the guarantee of finding

• all targets with quantitative robustness above Q;

• no targets with quantitative robustness below Q/κ.

The second point ensures we keep a good signal-to-noise ratio. This principle will be illustrated
in our second case study about libvncserver (Section 5.9.3.3).

62 CHAPTER 5. Quantitative robustness

5.5.3 Path pruning
We now turn to path pruning. For robust symbolic execution, we observed that we could drop
paths which do not satisfy the universal satisfiability test ∃a.∀x. pcπ, i.e. paths which are not
robust. This form of symbolic execution was dubbed RSE∀. However, this costs some amount of
completeness because such paths can sometimes be merged together to become robust again, and
thus interesting. For this reason we went great length in Section 4.5.4 to recover some amount of
completeness by an arguably complex form of path merging dubbed RSE∀+. We can do better
and simpler with QRSE.

Definition 22 (QRSE with path pruning). Path pruning for QRSE is defined as follows: if
during QRSE a path π is such that q (P |π, O) ≤ ε, then this path can be optionally discarded.

ε should be small, for example of the order of 10−9. We expect this is feasible: remember
that prog1 in our motivating example meets this requirement.

Proposition 17 (Path pruning can remain complete). Let O be a target reachable with quan-
titative robustness Q. We consider QRSE+ with path pruning where path pruning is allowed to
prune at most N paths. Then O is also detected with quantitative robustness at least Q − Nε
(assuming solver termination).

Proof. There exists a set of M paths such that q (P |π1,...,πM , O) = Q. From those paths, at
most N have been pruned: πi, i ∈ S. They verify q (P |πi , O) ≤ ε. At some point QRSE+ will
consider the merger of paths πj , j ∈ [1,M] \ S. The corresponding quantitative robustness is
χ ≜ q

(

P |πj ,j∈[1,M]\S
, O
)

. By proposition 12,

q (P |π1,...,πM , O) ≤ χ+
∑

i∈S

q (P |πi , O)

which yields
Q ≤ χ+Nε

For ε of the order of 10−9 it means that we can easily prune millions of paths before having
to lower the detection threshold too much.

In practice, this trick has not proved useful for performance for the test suite of the previous
chapter (Section 4.6.3), because the number of pruned paths is low.

5.6 Formalisms for f-E-MAJSAT
We now focus on the problem of solving f-E-MAJSAT. f-E-MAJSAT has been approached
independently under many forms and many names by different communities. We will present
formalisms for Bayesian networks, stochastic satisfiability and model counting, and attempt to
hint at the links between them.

5.6.1 Model counting
We already presented SAT (NP-complete) and ♯SAT (♯P-complete) in Chapter 3. Complexity
results for function problems like ♯SAT are usually also given as the complexity of the corre-
sponding decision problem: the problem where the value to be computed is above a threshold.
In the case of ♯SAT, the corresponding decision problem is MAJSAT:

5.6. Formalisms for f-E-MAJSAT 63

Definition 23. MAJSAT is the following decision problem:

Input a CNF formula f
Output whether a majority of complete assignments satisfy f , or said differently, whether

♯ (f) ≥ 2|V(f)|−1.

MAJSAT is a classic PP-complete problem. The intuitive reason is that verifying that
an assignment satisfies f is in P. PP is the class of problems such that a polynomial non-
deterministic Turing machine answers “true” in a majority of its non-deterministic executions.
A non-deterministic machine can thus non-deterministically decide the value of each variable,
then verify that the non-deterministic assignment is a model: the majority of answers is the
truth value of the MAJSAT problem.

♯SAT has been extended in several directions.

5.6.1.1 Maximization

Littman, Goldsmith, and Mundhenk [87] extend MAJSAT into a harder one: E-MAJSAT
(“exists” MAJSAT).

Definition 24. E-MAJSAT [87] is the following decision problem:

Inputs A CNF formula f and a partition of its variables: V (f) = A ⊎X.
Output Whether there exists an assignment a ∈ BA of variables in A such that a majority of

assignment of variables of X satisfy f |a.

Variables in A are sometimes called choice variables, while variables in X are called chance
variables. By reference to our intended use case, we also sometimes refer to variables in A as
controlled variables and variables in X as uncontrolled variables.

E-MAJSAT is NPPP-complete [87], meaning that it would become NP with a PP oracle.
This is interpreted as the fact that it combines a constraint solving part (NP) with a MAJSAT
counting part (PP).

The problem f-E-MAJSAT that we presented earlier (Definition 19) is the corresponding
functional problem, where we remove the threshold and instead ask for the exact value formerly
compared to the threshold.

5.6.1.2 Projection

E-MAJSAT extends ♯SAT by adding a maximum operator, another direction of extension is
projecting the problem on a subset of variables.

Definition 25 (projected model counting [6]). ♯∃SAT is the following function problem: given
a propositional formula f in CNF, a subset A ⊆ V (f), output

∣

∣{a ∈ BA | M (a(f)) 6= ∅}
∣

∣.

In other words, models that differ only on variables not in A are not distinguished. This
problem arises naturally when one introduces auxiliary variables when modelling a system, which
could influence the model count. One then uses projected model counting on the variables which
were originally in the system. This happens in quantitative information flow problems, where
one counts the number of possible messages of a public channel whatever the value of the secret
part of state. Projected model counting is ♯NP-complete [51].

We mention projected model counting not because it can be used to encode f-E-MAJSAT,
but because some projected model counters use similar techniques to those we will present later.

64 CHAPTER 5. Quantitative robustness

5.6.1.3 Weights

Counting models of a formula is related to the probability of satisfying it with a uniformly
sampled assignment. To go beyond uniform distributions one can do weighted model counting:
each variable v is assigned a rational weight ω(v) ∈ [0, 1], which gets mapped to a weight on
literals: ω(¬v) = 1−ω(v) and to complete assignments seen as a set of non-contradicting literals:
ω(m) =

∏

l∈m ω(l).

Definition 26. The weighted model counting problem WMC is the following function problem

Inputs a CNF formula f , and a weight distribution ω ∈ (Q ∩ [0, 1])V(f).
Output

∑

m∈M(f) ω(m)

This problem is also ♯P-complete (it is at least as hard as ♯SAT and PR that we will introduce
later reduces to it) but it represents sampling models where variables follow independent Bernoulli
distributions of parameter ω(v). On an operative note, an algorithm to reduce a weighted model
counting problem with dyadic weights to a standard model counting problem is described in
Lee and Jiang [84]. The problem size increases linearly in the maximal 2-adic valuation of the
weights. As this algorithm is meant for approximate model counting, this means that the cost
is linear in the approximation quality of the original weights.

5.6.2 Stochastic Boolean satisfiability
A Stochastic boolean Satisfiability (SSAT) formula is a formula of the form

f = Q1x1 . . . Qnxnφ(x1, . . . , xn)

where φ is a boolean formula in CNF and the Qi are quantifiers: either the usual existential
quantifier ∃ or the randomized quantifier with rational probability pi, denoted as Rpi .

The probability of satisfying a SSAT formula is defined by:

• Pr (⊤) = 1;

• Pr (⊥) = 0;

• Pr (∃x. f) = max(Pr (f |x) ,Pr (f |¬x));

• Pr (

Rpx. f) = pPr (f |x) + (1 − p) Pr (f |¬x).

Definition 27 ([99]). SSAT is the following decision problem:

Input a SSAT formula f ;
Output Pr (f) > 1

2 .

This problem is PSPACE-complete, just like QBF (satisfiability of boolean formulas with
arbitrary universal and existential quantifiers). One can define the corresponding functional
problem as computing Pr (f).

This formalism is closely related to model counting. Model counting problems can reduce
to SSAT problems: ♯ (f(x1, . . . , xx)) = 2n Pr

(R1
2x1. . . .

R1
2xn. f

)

. f-E-MAJSAT can be ex-

pressed as 2|X| Pr
(

∃a. R1
2x. f

)

. The most notable difference is that SSAT allows specifying
variables with any independent Bernoulli distributions, whereas unweighted model counting is
limited to equiprobable independent bits, i.e. the uniform distribution.

5.6. Formalisms for f-E-MAJSAT 65

5.6.3 Bayesian networks
A Bayesian network is a set of discrete random variables over a finite domain such that:

• For each random variable Xi, there is a subset of the rest of the variables Xki,1
, . . . , Xki,ji

such that the conditional probability distribution of Xi given any observation of the Xki,l

is given;

• The graph where nodes are variables and there is an edge from Xki,l
to Xi is acyclic.

(For the purpose of complexity theory results, which are taken from Park and Darwiche [100],
probabilities must be given as rational numbers.)

The probability of an assignment x = (x1, . . . , xn) of variables is then defined from the
conditional probability of each node:

Pr (X = x) =

n
∏

i=1

Pr
(

Xi = xi | (Xki,1
, . . . , Xki,ji

) = (xki,1
, . . . , xki,ji

)
)

A Bayesian network is a way to express the probability distributions of a set of dependent
random variables by a set of constraints. It can thus express some (but not all) distributions not
expressible with SSAT or model counting. In the case of n boolean variables, a Bayesian network
can be much more concise than enumerating the probabilities of the 2n possible outcomes in a
naive probability table.

The cost to pay for this concision is that the probability distribution is implicit, and the
problem of making parts of it explicit, known as inference, has a cost.

Definition 28. PR is the following function problem:

Input A Bayesian network over variables X1, . . . , Xn and an evidence x1, . . . , xn (possible
value) for variables X1, . . . , Xn.

Output Pr ((X1, . . . , Xn) = (x1, . . . , xn))

PR is ♯P-complete [108]. This is the same complexity as (weighted) model counting, because
the problem can be thought as counting the satisfying outcomes with their probability as weights.
This analogy is more than a mere likelihood: it is possible to encode a Bayesian network as a
CNF formula [27] and then defer to an existing weighted model counting algorithm [26], close to
the d-DNNF-based algorithm model counting we presented earlier (Theorem 1).

The corresponding decision problem uses a threshold:

Definition 29. D-PR is the following function problem:

Input A threshold p, a Bayesian network over variables X1, . . . , Xn and an evidence x1, . . . , xn

(possible value) for variables X1, . . . , Xn.
Output Pr ((X1, . . . , Xn) = (x1, . . . , xn)) > p

D-PR is PP-complete [89], as is expected coming from a ♯P functional problem.
More central is the problem of the most probable explanation. One has collected partial

evidence e, i.e. measured the value of some variables, and one wants to deduce the most probable
state x of the full network.

Definition 30 (Most probable explanation). MPE is the following function problem:

Inputs A Bayesian network on variables X, and an evidence e on a subset of variables E.

66 CHAPTER 5. Quantitative robustness

Output An assignment x for all variables in X such that Pr (X = x | E = e) is maximal.

The corresponding decision problem D-MPE where one looks for an assignment with prob-
ability above a threshold is NP-complete [113].

Finally, let us mention the even more general problem called maximum a posteriori hypothesis,
where one desires to find the most probable assignment to only a subset A of variables. Other
variables are marginalized, i.e. their probabilities must be summed together.

Definition 31 (Maximum a posteriori hypothesis). MAP is the following function problem:

Inputs A Bayesian network on variables X, an evidence e on a subset of variables E and a
set of “MAP variables” A.

Output An assignment a of variables in A such that Pr (A = a | E = e) is maximal.

This is very close to f-E-MAJSAT: computing a probability is comparable to computing
a (weighted) model count, and thus finding an assignment to some variables that maximizes a
probability is close to finding an assignment to some variables that maximizes a model count.
The corresponding decision problem D-MAP (does there exist a such that the probability
Pr (A = a | E = e) is greater than a threshold p) is NPPP-complete, by reduction of E-MAJSAT
to D-MAP [100].

Note that the terminology around Bayesian networks features some diversity: Bayesian net-
works are sometimes called belief propagation networks [113]; MPE is also known as MEU
(maximum expected utility) or, confusingly, MAP (maximum a posteriori hypothesis) [113], in
which case what we called MAP above is denoted as MMAP (marginal MAP) [122].

5.6.4 Probabilistic Planning
Finally, let us present a family of problems called probabilistic planning. They elicited some of
the developments and algorithms we will present in the next section.

A probabilistic planning problem (or domain) is a combination of a finite set S of possible
world states, a distribution I describing the (uncertainty) of the initial state, a finite set of
possible actions A, a set of goal states G ⊆ S, and a horizon n ∈ N. An actor must plan n
actions in the following sense: n times, it must measure some (but not all) of the variables of the
state, possibly with added uncertainty, and take an action in A, which may have a probabilistic
effect on the state of the system. The goal of the actor is to plan its actions to maximize the
probability of reaching a state in G after n actions.

A standard example of domain is the Slippery-Gripper domain. A robot must paint a block
by holding it in its gripper. The robot has three possible actions: pick the block up, dry its
gripper, and paint the block. Each action has a probability of failing, i.e. not have the intended
effect. If the gripper is wet, the probability of failing to pick the block up is increased, so there is
an interest in using the “dry the gripper” action. The action “paint” may dirty the gripper, and
must not be performed blindly as block must not be painted twice, etc. The horizon n expresses
how many actions the robot can use to attempt to paint the block. It can use sensors to obtain
(uncertain) information on the state of the system: whether the gripper is clean, wet, etc.

The existence of a plan with probability above a threshold is EXPTIME-complete in the
general case, but when the horizon n grows polynomially it becomes PSPACE-complete because
of a strong likeness to SSAT[88].

Informally, it is possible to describe the k-th action as a set of boolean variables ak, the
state after k actions as a set of boolean variables sk and the added uncertainty on measures
and actions as some boolean random variables rk. There is a formula ϕ expressing the relation

5.7. Algorithms for f-E-MAJSAT 67

between the former state and the measurements, and between the action and the next state such
that reaching the goal can be expressed as a SSAT problem:

R

r0s0.∃a1.

R

r1s1.∃a2. . . .

R

rn−1sn−1.∃an.

R

rnsn. I(r0, s0) ∧
n
∧

i=1

ϕ(si−1, ai, ri, si) ∧ g(sn)

where I is for the initial state and g expresses that the final state is a goal state [75].
In the case of conformant probabilistic planning, i.e. the special case where the actor has no

sensors, then all actions must be predetermined and the corresponding SSAT problem looks like
∃actions.

R

chance. goal reached which is the SSAT pendant to E-MAJSAT.

5.6.5 Summary
We presented 3 types of problems (summarized in Table 5.1): problems generalizing model count-
ing where all models originally have the same weight, problems generalizing boolean satisfiability
with independent Bernoulli distributions on individual bits and arbitrary quantification (SSAT),
and problems where the distribution of variables is given implicitly as a Bayesian network. Model
counting problems can be seen as special cases of SSAT with few quantifiers and uniform weights;
conversely the need for non-uniform weights or probabilities led the model counting community
to consider weighted model counting, which can encode more of SSAT than mere model count-
ing; Bayesian network inference problems can encode distributions that SSAT cannot but there
are techniques to encode Bayesian networks into SSAT more indirectly. In the end, most of
these problems can be encoded as model counting, weighted model counting, or a variant, which
explains why research on Bayesian network ended up benefitting model counting research.

These problems fall into several categories: computing a model count or probability, to
describe a system; inference, where one want to compute the most likely state of a system from
partial observation; and planning where one wants to compute the best course of events to obtain
a desirable outcome. Bayesian networks, being an implicit statistical description of a complex
system, focus mostly on inference, while communities handling fully describable systems tend to
use the SSAT probabilistic planning formulation, but it turns out that in the case where only
one action is to be performed, they are similar problems: a weighted form or f-E-MAJSAT.

Our problem of computing quantitative robustness can be seen as a dumbed-down conformant
probabilistic planning problem, hence the long digression of this section. It has one notable
difference, which will come into play when we talk about tools: we will consider many instances
where no plan has a high success probability (non-vulnerable paths), whereas both in the case
of inference and planning, existing research focused on finding good plans.

5.7 Algorithms for f-E-MAJSAT
In this section we describe how to solve f-E-MAJSAT, or close problems like MAP and
two-quantifiers SSAT. There are a number of such solvers in the literature, and given that f-E-
MAJSAT is a hard problem, each of them is possibly tailored to the kind of problems that first
elicited its development. We thus consider various algorithms, and will compare many of them
experimentally in Section 5.9.2.

5.7.1 DC-SSAT
dc-ssat [92] is a solver for SSAT problems coming from Completely Observable Probabilistic
Planning. These SSAT problems have arbitrarily many quantifier alternations starting with an

68
C

H
A

PT
ER

5.
Q

uantitative
robustness

Table 5.1: Summary of the functional problems and corresponding decision problems we presented, along with some well-known ones
for context

Formulation Function Complexity Expression Decision Complexity Ex. domains
problem in SSAT Problem of application

∃y. f(y) ∃y. f(y) SAT NP-complete Constraint solv-
ing, model check-
ing

M
od

el
co

un
tin

g ♯ (f) ♯SAT ♯P-complete R1
2 y. f(y) MAJSAT PP-complete Statistical de-

scription of
systems

maxa ♯ (f |a) f-E-MAJSAT ∃a. R1
2x. f(a, x) E-MAJSAT NPPP-complete Probabilistic

inference, proba-
bilistic planning

|{a|♯ (f |a) 6= 0}| ∃♯SAT ♯NP-complete R1
2 a.∃x. f(a, x) Quantitative

information flow
∑

y:f(y)

∏

i ω(yi) WMC ♯P-complete Rpiyi. f(y)

probability of satisfac-
tion, independent bits

SSAT Qpi

i yi. f(y),
Qi ∈ {∃, R}

SSAT PSPACE-
complete

Probabilistic plan-
ning

Qiyi.f(y), Qi ∈ {∃,∀} QBF PSPACE-
complete

Planning, model
checking

Ba
ye

sia
n

ne
t. probability in Bayesian

networks
PR ♯P-complete D-PR PP-complete Statistics

argmaxX Pr (X|e), X
complete

MPE D-MPE NP-complete Fault diagnosis,
explanation

argmaxA Pr (A|e),
A partial

MAP D-MAP NPPP-complete Fault diagnosis,
explanation

5.7. Algorithms for f-E-MAJSAT 69

existential one ∃x1. ϕ1 ∧(

R

x2. ϕ2 · · ·∧(

R

xn. ϕn) . . .) and ϕk can only contain variables in adjacent
quantifiers: xk−1, xk and xk+1.

DC stands for divide and conquer: dc-ssat first enumerates solutions (called viable partial
assignments, VPA) for the ϕk individually, taking into account that solutions generated for
adjacent quantifier blocks must agree on existentially quantified variables. Dividing the original
problem into such smaller sub-problems allows the use of aggressive caching (or memoization),
especially because the natural encoding of Probabilistic Planning problems into SSAT leads to
the ϕk having a very similar structure. dc-ssat then explores the tree of VPAs in the search of
a leaf (complete assignment) with maximal probability.

As a summary, dc-ssat is designed for SSAT problems with specific structure and arbitrary
quantifier alternations in mind, and later benchmarks [85] suggest even after the years it still
shows a significant performance advantage for this kind of problems.

5.7.2 Maxcount
Maxcount [57] attempts to solve the model counting equivalent of computing the probability
of ∃a. R1

2 b.∃c. φ: finding the assignment to a such that ∃c. φ|a is true for a maximum number of
values of b. This problem is dubbed Max♯SAT, and f-E-MAJSAT can obviously be expressed
in terms of this Max♯SAT.

Maxcount relies on the following observation: when ∃c1, . . . , ck.
∧k

i=1 φ(a, bi, ci) has n mod-
els for a and b1, . . . , bk, the solution to Max♯SAT should be close to k

√
n. For k chosen of the

order of the number of boolean variables in a, Fremont, Rabe, and Seshia provide explicit bounds
on the quality of the result: the actual solution is ε-close to the computed answer with 1 − δ
probability, for ε and δ arbitrary small parameters.

In practice, the formula on which model counting is performed is of size linear in k, which
makes model counting orders of magnitude harder than on the original φ, so k is experimentally
chosen small (1 to 13), yielding correct probabilistic bounds but which may be less precise than
for k chosen as said above.

Experimental evaluation of Maxcount was mostly directed towards quantitative information
flow and program synthesis.

5.7.3 ssatABC
ssatABC [85] attempts to solve SSAT problems of the form ∃a. R

x. φ, called ER-SSAT for
exists-random SSAT, and to which f-E-MAJSAT maps easily. It imports the technique called
clause selection from Quantified Boolean Formula (QBF) solvers. For a given a, one observes
the set of clauses S(a) in φ|a that are left unsatisfied by a. Such clauses are said to be selected.
For any a′ that selects more clauses than a (S(a) ⊆ S(a′)), we have Pr (

R

x. φ|a′) ≤ Pr (

R

x. φ|a)
because, informally, a′ constrains φ more than a and leaves fewer models. We can deduce that
no such a′ can be a solution to the problem, and we want to retain this information. The idea
of clause selection is to add variables that are equivalent to “clause k is satisfied”, which allows
learning from a a clause expressing “at least one of the clauses in φ|a must be deselected, i.e.
satisfied”.

ssatABC works by incrementally sampling assignments to a that satisfy φ conjoined to the
clauses learned as explained above with a SAT solver until said formula is unsatisfiable. It defers
to a weighted model counter to obtain the probability of the best assignment. In practice, the
model counter is also used during the refinement loop for some more advanced optimizations.

ssatABC has been experimented on many kinds of formulas: probabilistic planning en-
coded into SSAT, QBF instances where universal quantifiers were replaced by Rquantifiers, the

70 CHAPTER 5. Quantitative robustness

test suite of Maxcount [57] were extra quantifiers were similarly replaced, and formulas from
maximum probabilistic equivalence checking.

5.7.4 d-DNNF-based techniques

Several techniques based on d-DNNF-compilation have been proposed. They all have in common
that while they often claim relying on d-DNNF-compilation, they in fact use the stronger decision-
DNNF form, which can be obtained without loss of generality.

In the following discussion, we denote the result of f-E-MAJSAT on f with choice variables
in A and chance variables in X as:

emajsatA (f) ≜ max
a∈BA

♯ (f |a)

As said in Theorem 1 once a CNF formula is converted to decision-DNNF, one can obtain its
model count by considering And nodes as multiplication and Ite nodes as addition.

One can extend this result to f-E-MAJSAT, by adding a further constraint on the form of
the decision-DNNF:

Definition 32. A formula in decision-DNNF is said to be (A1, . . . , An)-layered if V (f) ⊆
⊎n

i=1 Ai

(where ⊎ denotes disjoint union) and for any ite node ite(v, f, g), we have v ∈ Ai =⇒ V (f) ∪
V (g) ⊆ ⋃n

j=i Aj .

This corresponds to Ite nodes on variables in A1 on top, then those on A2 below and so on.
Some decision-DNNF compilers like Dsharp [94] can produce layered decision-DNNF because it
can be used for projected model counting [81]: it is enough to put projection variables in the
upper layer and to modify Theorem 1 to consider that all subtrees in the lower layer variables
have model count 1.

We can now solve f-E-MAJSAT on layered decision-DNNF (example in Figure 5.3):

Proposition 18 (Constrained algorithm). f-E-MAJSAT over A ⊆ V of a formula f in
(A,V \A)-layered smooth decision-DNNF can be computed by:

emajsatA (⊤) = 1 (5.4)
emajsatA (⊥) = 0 (5.5)

emajsatA (ite(v, g, h))) = emajsatA (g) + emajsatA (h) when v 6∈ A (5.6)
emajsatA (ite(v, g, h))) = max(emajsatA (g) , emajsatA (h)) when v ∈ A (5.7)

emajsatA

(

n
∧

i=1

gi

)

=
n
∏

i=1

emajsatA (gi) (5.8)

Said otherwise, And nodes map to multiplication, chance Ite nodes to addition and choice
Ite nodes to maximum.

It is also possible to construct a witness partial model, i.e. a partial model a ∈ BA with
(maximal) model count emajsatA (f).

Proposition 19. For f a formula in (A,V \A)-layered decision-DNNF one defines wA (f) ∈ BA

5.7. Algorithms for f-E-MAJSAT 71

ite(a1): max

itex1: +

ite(x2): +

⊥: 0⊤: 1

∧: ×

ite(x2): +

⊤: 1⊥: 0

ite(x1): +

⊥: 0⊤: 1

For f = ite(a1, x1 ∧ ¬x2, ite(x1,¬x2, x2)), Proposition 18 yields emajsat{a1} (f) = max((1 + 0) ×
(0 + 1), (0 + 1) + (1 + 0)) = 2.

Figure 5.3: A formula in decision-DNNF (black), with f-E-MAJSAT solving for it (red).

inductively as follows:

wA (g) = a⊥ if V (g) ⊆ V \ A

wA (ite(v, g, h)) =

{

wA (h) [v := ⊥] if emajsat
A

(f) = emajsat
A

(h)

wA (g) [v := ⊤] otherwise
for v ∈ A

wA

(

n
∧

i=1

gi

)

= g1|| . . . ||gn

where a⊥ denotes the partial valuation where all variables in A are mapped to ⊥, and a[v := x]
denotes the valuation that maps v′ to x if v = v′ else to a(v′).

Then one has: ♯
(

f |wA(f)

)

= emajsatA (f).

Note that the 3 cases cover all possibilities by layering hypothesis. For and nodes in the lower
layer, both the first rule and the last one match, but they yield the same result.

To our knowledge this algorithm has no name in the literature, it is mentioned in Huang
[75] and Pipatsrisawat and Darwiche [101] as a straightforward technique that is not practical
in terms of performance and upon which they intend to improve. We will call this algorithm
Constrained. The lack of performance of Constrained comes from the fact that obtaining
a constrained (layered) decision-DNNF is significantly more expensive than an unconstrained
one. Compilation is exponential in the minimum width of all compatible variable orders, and we
constrain the compiler to only use variables orders where variables in A come before variables in
X.

Finally, let us mention that Constrained can be extended to handle weights (by adding them
on Ite nodes in eq. (5.6)) and Max♯SAT (by adding one layer: to compute Pr (∃a. R

x.∃z. f) one
needs a (A,X,Z)-layered decision-DNNF formula where one considers the value of Z subtrees
as 1 if they are consistent or 0 if they are not). As we focus on f-E-MAJSAT here, we leave
these details aside for the sake of simplicity.

Unconstrained decision-DNNF One can circumvent the increased cost of a constrained
decision-DNNF by satisfying one-self with an upper bound. If one applies Proposition 18 on an
unconstrained (without layering constraint) formula, one obtains an upper bound:

Definition 33 (Unconstrained algorithm). Let f be a decision-DNNF formula, not necessarily
layered. One defines N inductively as follows:

72 CHAPTER 5. Quantitative robustness

N(⊤) = 1 (5.9)
N(⊥) = 0 (5.10)

N(ite(v, g, h))) = N(g) +N(h) when v 6∈ A (5.11)
N(ite(v, g, h))) = max(N(g), N(h)) when v ∈ A (5.12)

N

(

n
∧

i=1

gi

)

=

n
∏

i=1

N(gi) (5.13)

Proposition 20. N(f) ≥ emajsatA (f).

This algorithm, which we call Unconstrained, is still linear in the size of the decision-
DNNF, and has the advantage of requiring a cheaper compilation step. It follows exactly the
same principle as Constrained: multiplication for And nodes, addition for chance Ite nodes,
and maximum for choice Ite nodes.

Complan Complan [75] was designed with Conformant Probabilistic Planning problem in-
stances translated to SSAT in mind: these correspond to SSAT formulas with one quantifier
alternation ∃a. R

x. f .
Unconstrained is at the core of Complan, but Complan complements it with a branch

and bound algorithm to obtain an exact result for the f-E-MAJSAT problem at hand. Observe
that from a decision-DNNF f and a partial assignment of choice variables a it is possible to obtain
a decision-DNNF for f |a, and therefore N(f |a) an upper bound for maxa′ ♯

(

f |a||a′

)

. Now
consider a loop starting from a partial assignment a and a lower bound m = 0 of emajsatA (f).
We attempt to explore the exhaustive search space of possible assignments to incrementally
improve m until the maximal value. If for some added literal l N(f |a||l) is lower than m, then
no assignments containing a and l can lead to a high enough model count: one can learn ¬l by
appending it to a. Otherwise, one explores assignments corresponding to l and ¬l separately.

In other words, Complan explores the full search space of assignments to choice variables,
pruning parts of it that are provably below the current lower bound with Unconstrained. It
uses decision-DNNF compilation as a pre-computation to get fast bounds on f-E-MAJSAT on
partial assignments of choice variables.

Complan+ Complan+ [101] uses the same structure as Complan to solve f-E-MAJSAT:
an upper bound algorithm plus branch and bound to turn the upper bound into an exact result.
Complan+ replaces the upper bound with a more precise one, which we will designate as Oval.
Its principle is quite technical; for our purpose it suffices to say that it is always more precise than
Unconstrained, and that it executes in O(|f ||A|) where |f | is the size of the decision-DNNF
and |A| denotes the number choice variables.

Complan+ was tested on probabilistic planning problems where it significantly improves
over Complan, as well as on MAP problems. The MAP counterpart to Complan+ is called
Acemap+, introduced in the same article [101]. It follows the same idea, but we do not present
it here in more details.

5.7.5 Summary
We presented a number of algorithms that can solve f-E-MAJSAT, as summarized in Table 5.2.
Some of them were repurposed: Maxcount was designed to solve a form of f-E-MAJSAT

5.7. Algorithms for f-E-MAJSAT 73

Table 5.2: Summary of tools and algorithms usable to solve f-E-MAJSAT problems

Algorithm Target problem SSAT
encoding

Solution Principle Originally tested
on

dc-ssat Completely
Observable
Probabilistic
Planning en-
coded in SSAT

(∃

R

)kf exact Divide and con-
quer on quantifier
blocks

Probabilistic plan-
ning

Maxcount Max♯SAT ∃a.

R1
2 x. ∃z.

f(a, x, z)
probabi-
listic
interval

Self-composition Quantitative infor-
mation flow, pro-
gram synthesis

ssatABC ER-SSAT ∃a.

R

x. f(a, x) exact Incremental im-
provement of a
witness by clause
selection

Probabilistic plan-
ning, quantitative
information flow,
translated QBF, …

Constrained f-E-MAJSAT ∃a.

R1
2 x. f(a, x) exact ⋄ Constrained

decision-DNNF
compilation

(mentioned but
untested in [75])

Unconstrainedf-E-MAJSAT ∃a.

R1
2 x. f(a, x) upper-

bound
⋄ Unconstrained
decision-DNNF
compilation

(component of
Complan)

Complan f-E-MAJSAT ∃a.

R1
2 x. f(a, x) exact ⋄ Incremental

improvement
of a witness
by branch-and-
bound + Uncon-
strained

Probabilistic plan-
ning

Oval f-E-MAJSAT ∃a.

R1
2 x. f(a, x) upper-

bound
⋄ Unconstrained
decision-DNNF
compilation

(component of
Complan+)

Complan+ f-E-MAJSAT ∃a.

R1
2 x. f(a, x) exact ⋄ Incremental

improvement
of a witness
by branch-and-
bound + Oval

MAP and proba-
bilistic planning

Arrows denote algorithms which claim to improve over another algorithm.
⋄ marks techniques based on compilation to decision-DNNF.

In the next section we propose a new algorithm:

Relax f-E-MAJSAT ∃a.

R1
2 x. f(a, x) interval ⋄ Partially

constrained
decision-DNNF
compilation

QRSE

74 CHAPTER 5. Quantitative robustness

with projection (one more existential quantifier); dc-ssat was designed for more quantifier al-
ternations. Some methods are approximate, but in the case of Unconstrained and Oval they
were only meant to be part of an exact algorithm via a standard branch-and-bound construct,
Complan and Complan+ respectively.

It is interesting to note that some of these tools are clearly geared toward instances with
high model count: Maxcount, dc-ssat and ssatABC report the proportion of satisfying
chance models as a float with fixed precision, which can underflow if this proportion is too
low. For example, the median value of emajsatA (f) computed in the experimental evaluation
of ssatABC [85] is above 0.1. For comparison, in our motivating example (Section 5.2), prog1
leads to a value of emajsatA (f) of 4.36202·10−47 because of the auxiliary variables of bitblasting.
ssatABC represents this as 0, because it uses 32-bit floats.

As we will see in our experimental evaluation of Section 5.9.2, while these algorithms can
perform well on the formulas they were designed for, they underperform when applied on formulas
obtained from QRSE. For this reason we would like to propose a new technique that handles
this new kind of formulas better. As ssatABC, Complan+ and Constrained tend to blow
up exponentially as the number of variables increases on a family bit-vector SMTLib2 formulas,
while techniques based on unconstrained decision-DNNF scale significantly better, we will direct
our efforts to designing an algorithm which uses a decision-DNNF that remains unconstrained
to the greatest possible extent. Oval already fits this description, but it turns out to return a
coarse upper-bound. In the next section, we propose an algorithm which strikes a compromise
between the precision of Constrained and the speed of Oval.

5.8 A method to bridge the gap between constrained and
unconstrained decision-DNNF based on relaxation

In this section we seek to relax the layering constraint on decision-DNNF compilation in Con-
strained so as to obtain a compromise between the precision of the result and the efficiency of
compilation. Specifically, we ask for (A ⊎ R,X \ R)-layered decision-DNNF instead of (A,X)-
layered previously, with R meant to be small. This allows the compiler to do decisions on A∪R
instead of just A, and reduces the treewidth of the problem.

5.8.1 Upper bound
We adapt Unconstrained (Definition 33) to obtain an upper bound on the f-E-MAJSAT
problem.

Definition 34 (Relaxed upper bound). Let f a formula in (A⊎R,X)-layered smooth decision-
DNNF. We define U(f) ∈ N inductively as follows:

U(⊤) = 1 (5.14)
U(⊥) = 0 (5.15)

U(ite(v, g, h))) = U(g) + U(h) for v ∈ X (5.16)
U(ite(v, g, h)) = max(U(g), U(h)) for v ∈ A (5.17)
U(ite(v, g, h)) = U(g) + U(h) for v ∈ R (5.18)

U

(

n
∧

i=1

gi

)

=

n
∏

i=1

U(gi) (5.19)

5.8. Relaxation 75

Proposition 21. U(f) ≥ emajsatA (f).

Proof. We prove the result by induction on the structure of f .
When we compute U(g) for g in the lower layer of f , only eqs. (5.14) to (5.16) are used.

These coincide with computation of emajsatA∪R (g) in Proposition 18, but since V (g) ∩R = ∅,
U(g) = emajsatA∪R (g) = emajsatA (g).

In the case of U(fA), where fA = ite(v, g, h), v ∈ A, observe that

emajsatA (fA) = max(emajsatA (g) , emajsatA (h))

By induction hypothesis, emajsatA (g) ≤ U(g) and emajsatA (h) ≤ U(h). As max is non-
decreasing in both its arguments, we prove the desired result emajsatA (fA) ≤ max(U(g), U(h)).

Same reasoning works for the product on decomposable And nodes.
The interesting case is the case of a relaxed Ite node: fR = ite(v, g, h), where v ∈ R

(eq. (5.18)). As v ∧ g and ¬v ∧ h have no common model, M (fR) = M (v ∧ g) ⊎ M (¬v ∧ h).
Therefore, for a partial model a ∈ BA, we have ♯ (fR|a) = ♯ ((v ∧ g)|a)+♯ ((¬v ∧ h)|a) = ♯ (g|a)+
♯ (h|a) ≤ emajsatA (g) + emajsatA (h). Hence, emajsatA (fR) ≤ emajsatA (g) + emajsatA (h). By
induction hypothesis emajsatA (g) ≤ U(g) and emajsatA (h) ≤ U(h), and thus emajsatA (fR) ≤
U(h) + U(g).

The principle is the same as before; what is new is that relaxed Ite nodes map to addition like
chance Ite nodes, whereas during compilation they are in the upper layer like choice variables.

5.8.2 Lower bounds
The literature is mostly interested in upper bounds for f-E-MAJSAT, as they use it for branch-
and-bound algorithms. We plan to use the upper bound as a final result, so we need a lower bound
as well. We propose several of them, which we will compare experimentally in Section 5.9.2.

The first one is symmetrical to Proposition 21: for relaxed Ite nodes, we conservatively
take the maximum. Then operations are the same as for Constrained (Proposition 18) when
computing emajsatA∪R (f):

Definition 35 (Bad lower bound). Let f a formula in (A⊎R,X)-layered smooth decision-DNNF.
We define L1(f) ≜ emajsatA∪R (f). We call L1(f) “bad” lower bound.

Proposition 22. L1(f) ≤ emajsatA (f).

Proof. Let a′ ∈ BA∪R be a partial assignment. Let us write it as a′ = a||r with a ∈ BA and
r ∈ BR. If we consider assignments as set of literals, a partial assignment m is compatible with
a complete one m′ when m ⊆ m′.

♯ (f |a′) = |{m \ (a ∪ r) | m ∈ M (f) , a ⊆ m ∧ r ⊆ m′}|
≤ |{m \ a | m ∈ M (f) , a ⊆ m ∧ r ⊆ m′}|
≤ |{m \ a | m ∈ M (f) , a ⊆ m}|
= ♯ (f |a)

Therefore maxa′∈BA∪R ♯ (f |a′) ≤ maxa∈BA ♯ (f |a) which is another way to write emajsatA∪R (f) ≤
emajsatA (f).

76 CHAPTER 5. Quantitative robustness

Since we compute emajsatf (A ∪R) we might as well also compute a witness wA∪R (f) for it
(Proposition 19 shows it is also computable in linear time): its model count is maximal for A∪R
in the sense that ♯

(

f |wA∪R(f)

)

= emajsatf (A ∪R); we can expect it to have good model count
when restricted to A.

Definition 36 (Fast lower bound). Let f a formula in (A⊎R,X)-layered smooth decision-DNNF.
Let w ∈ BA be the partial assignment coinciding with wA∪R (f) on A. We define L2(f) = ♯ (f |w)
and call this lower bound “fast”.

L2(f) is a lower bound by definition of emajsatA (f).
Computing L2(f) corresponds to instrumenting the computation of L1(f) by computing w as

follows: on controlled Ite nodes, assign the decision variable to the boolean value of the branch
that has greater L1 value; on And notes, concatenate all w values corresponding to children. At
the end compute ♯ (f |w), in linear time.

Proposition 23 (Bad lower bound is worse than fast lower bound). L1(f) ≤ L2(f)

Proof. In the proof of Proposition 22 we proved that when a′ = a||r, we have ♯ (f |a′) ≤ ♯ (f |a).
For a′ = wA∪R (f) and thus a = w we obtain the desired result.

Finally, we present a third lower bound which is more precise but in quadratic time. We start
from the same basis: we simultaneously compute a lower bound and a witness of the lower bound.
Except for relaxed Ite nodes, we keep the same principle as in Constrained (Proposition 18):
multiplication of lower bound and concatenation of witness on And nodes, addition of lower
bound on chance non-relaxed Ite nodes, and maximum of model count selecting the branch
reaching the maximum in the witness on controlled Ite nodes. The difference is in handling
relaxed Ite nodes: taking the maximum of model counts like before is only a conservative lower
bound; instead of guessing we can compute the model count associated to each witnesses in linear
time and select the best one.

Definition 37 (Precise lower bound). Let f a formula in (A ⊎ R,X)-layered smooth decision-
DNNF. We define W (f) ∈ BA and L3(f) ∈ N inductively as follows:

(W (⊤), L3(⊤)) = (a⊥, 1) (5.20)
(W (⊥), L3(⊥)) = (a⊥, 0) (5.21)

(W (fX), L3(fX)) = (a⊥, L3(g) + L3(h)) for fX = ite(v, g, h), v ∈ X (5.22)

(W (fA)), L3(fA)) =

{

(W (h), L3(h)) if L3(g) ≤ L3(h)

(W (g), L3(g)) otherwise
for fA = ite(v, g, h),

v ∈ A
(5.23)

(W (fR)), L3(fR)) =

(W (h), L3(g) + L3(h))

if ♯
(

fR|W (g)

)

≤ ♯
(

fR|W (h)

)

(W (g), L3(g) + L3(h))

otherwise

for fR = ite(v, g, h),
v ∈ R

(5.24)

(W (f∧) , L3 (f∧)) =

(

W (g1)|| . . . ||W (gn),

n
∏

i=1

L3(gi)

)

for f∧ =

n
∧

i=1

gi (5.25)

Proposition 24. ♯
(

f |W (f)

)

= L3(f) ≤ emajsatA (f).

5.8. Relaxation 77

Proof. We prove ♯
(

f |W (f)

)

= L3(f) by induction. The fact that L3(f) is a lower bound of
emajsatA (f) then derives from the definition of emajsat.

L3(f) is the exact model count of f when f is a chance subtree (eqs. (5.20) to (5.22)) because
these rules are identical to Proposition 18.

eqs. (5.23) and (5.24) report a lower bound equal to the witness by design.
Finally, because And nodes are decomposable the model count corresponding to a concate-

nation is really the product in eq. (5.25).

This bound is computed in quadratic time instead of linear time for fast lower bound, but it
can be more precise:

Proposition 25 (Precise lower bound improves over fast lower bound). L2(f) ≤ L3(f)

Proof. We prove this result by induction on f . As said before, rules to compute L2 and L3 are
the same except for relaxed Ite nodes. It is therefore enough to prove that this inequality is
preserved across a relaxed Ite node. In this case L2 computes a maximum on children, while L3

computes the actual model count of the witnesses of the children to select the better children.
As the actual computation yields a higher result than the bound (Proposition 23) L3 yields a
higher result than L2.

5.8.3 Quality of the resulting interval
The algorithm we propose, which we call Relax, is as follows:

Definition 38 (Relax). Given a formula f in CNF, a partition of its variables in A ⊎ X, and
R ⊆ X, first compile f to a (A ⊎ R,X \ R)-layered decision-DNNF, then compute an interval
[L2(f), U(f)] for emajsatA (f) with Definitions 34 and 36.

The second step is done in linear time in the size of the decision-DNNF. We will investigate
the advantages of replacing fast lower bound L2 by bad (L1) or precise (L3) in Section 5.9.2.
Unless otherwise specified, Relax is using fast lower bound.

The main parameter of Relax is R the set of relaxed variables. R is meant to be small
enough to give good approximation, but large enough to allow tractable compilation. We now
turn to the influence of the size of R on size of the resulting interval.

In the limit case where R is empty (no relaxation), the algorithm becomes identical to Con-
strained, and the resulting interval becomes a singleton.

Proposition 26 (Relax degenerates to Constrained). If R = ∅, then U(f), L1(f), L2(f)
and L3(f) are all equal to emajsatA (f).

Proof. In this case, eq. (5.18) is not used to compute U , and observe that the other rules com-
puting U are identical to those of Proposition 18.

By definition, L1(f) = emajsatA∪R (f) but R is empty so L1(f) = emajsatA (f).
We then deduce from Propositions 23 and 25 that L2 and L3 are also equal to emajsatA (f).

Conversely, when R contains all of X, the algorithm becomes identical to Unconstrained:

Proposition 27 (Relax degenerates to Unconstrained). If R = X, then U(f) = N(f) where
N was defined in Definition 33.

Proof. In this case, eq. (5.16) is not used to compute U , and observe that the other rules comput-
ing U are identical to those for N in Definition 33, with eq. (5.18) corresponding to eq. (5.11).

78 CHAPTER 5. Quantitative robustness

Theorem 2 (Quality of bad bounds). U(f) ≤ 2|R∩V(f)|L1(f)

Proof. We show the result by induction.
For base cases ⊤ and ⊥, U(f) = L1(f).
For an Ite node with variable in X, U(f) = L1(f) = ♯ (f) and R ∩ V (f) = ∅, by layering

hypothesis.
For an And node f =

∧n
i=1 gi:

U(f) =

n
∏

i=1

U(gi)

≤
n
∏

i=1

2|R∩V(gi)|L1(gi)

=
n
∏

i=1

2|R∩V(gi)| ×
n
∏

i=1

L1(gi)

= 2
∑

n

i=1
|R∩V(gi)|L1(f)

and observing that V (f) =
⊎n

i=1 V (gi):

= 2|R∩V(f)|L1(f)

For an Ite node with variable in A, i.e. f = ite(v, g, h), v ∈ A: U(f) = max(U(g), U(h)) ≤
max(L1(g), L1(h)) = L1(f).

For a relaxed Ite node: f = ite(v, g, h) with v ∈ R. U(f) = U(g) + U(h). By induction
hypothesis, U(g) ≤ 2|R∩V(g)|L1(g) = 2|R∩V(f)\{v}|L1(g) and similarly for h. By summing:

U(f) ≤ 2|R∩V(f)\{v}| (L1(g) + L1(h))

≤ 2|R∩V(f)\{v}| × 2 × (max (L1(g), L1(h)))

= 2|R∩V(f)| (max (L1(g), L1(h)))

≤ 2|R∩V(f)|L1(f)

Given that fast and precise lower bounds improve over bad lower bound (Propositions 23
and 25), we obtain the same result for fast and precise bounds.

5.8.4 Summary

Relax (Definition 38) is therefore a parametric algorithm that behaves as Constrained (expen-
sive compilation, exact result) without relaxed variables, as Unconstrained (relatively cheap
compilation, loose approximation) when all chance variables are relaxed, but can also provide a
trade-off between the two: the less relaxed variables there are, the more precise the answer, but
the steeper the computational price.

5.9. Implementation & experiments 79

5.9 Implementation & experiments
In this section we attempt to assess experimentally the tractability of f-E-MAJSAT on the kind
of formulas required for quantitative robustness computation (Section 5.9.2), so as to illustrate
the applications of quantitative robustness to vulnerability assessment (Section 5.9.3).

5.9.1 Popcon, a front-end for multiple f-E-MAJSAT algorithms
As the algorithms we presented are not always available as tools, and that those which are do
not accept the same input format, we implemented our own front-end tool called Popcon. It
accepts DIMACS or SMTLib2(QF_BV) input, converts this input to the appropriate format,
including bitblasting (see Section 3.2.4) if necessary, and defers to an existing f-E-MAJSAT
solver or a reimplementation when not available. We also added model counting and projected
model counting abilities (based on D4 [82]) for comparison purposes. Popcon consists in about
8k lines of Rust. Bitblasting of SMTLib2 [10] input is performed by Boolector [97] down to
AIGER format [14] and then by Tseytin transformation down to CNF. f-E-MAJSAT on the
resulting CNF can be solved exactly with ssatABC (Section 5.7.3), dc-ssat (Section 5.7.1),
Complan+ (Section 5.7.4), and Constrained (Proposition 18); or solved approximately with
Maxcount (presented in Section 5.7.2), Oval (Section 5.7.4), and Relax (Definition 38).

Technical details All decision-DNNF-based algorithms are our own reimplementation, as nei-
ther Complan nor Complan+ are available as tools. decision-DNNF compilation is performed
by the D4 [82] compiler. We also considered C2D [42] and Dsharp [94], but C2D cannot gen-
erate layered formulas and is thus only usable for model counting, and we hit bugs in Dsharp.
We use a slightly patched version of D4 to disable some optimizations to the projected model
counting of D4 that make its original layered decision-DNNF output not equivalent to the input
formula. As Oval only provides an upper bound, we complement it by one of the lower bounds
of Section 5.8.2, fast bound unless otherwise specified.

For Maxcount, ssatABC and dc-ssat, Popcon defers to the original tools, which return a
floating point satisfiability probability. As our formulas are obtained through Tseytin transfor-
mation, they contain many variables determined by the value of other variables, and have thus a
very low satisfiability probability, and the answer frequently underflows. We therefore patched
ssatABC to compute an exact answer with GMP rational implementation. Other algorithms
did not appear competitive enough in their inexact form to warrant similar porting effort. We
use a patched version of dc-ssat that inputs a SSAT formula instead of a probabilistic planning
domain kindly provided by N.-Z. Lee and used in the performance evaluation of ssatABC [85].
In the case of Maxcount, we set the number k of clones of the formula to 1, which lowers
precision to obtain better performance.

Relaxation Popcon provides an implementation of Relax (Section 5.8) by asking D4 for a
(A ⊎ R,X)-layered decision-DNNF formula instead of a (A,R ⊎ X)-layered one. Let us briefly
discuss the choice of R. Popcon offers two ways to choose R under the constraint that |R| ≤ r,
where r is a user-controlled parameter:

DFS(r) In this mode, we rely on the decision heuristics of D4 during compilation. Compilation
starts with R = ∅. We patch D4 to add variables it would have decided if not constrained
to R until |R| = r. In other words, R contains the first r variables the compiler wants to
decide. D4 operates in depth-first search order, hence the name;

80 CHAPTER 5. Quantitative robustness

BFS(r) In this mode we try to mimic the of decisions of model counting by running D4
for model counting, and collecting the r top-most decided variables in breadth-first-search
order in the resulting decision tree.

Once Popcon obtains the required normal form, it can compute bad, fast or precise bounds
(Section 5.8.2).

Correctness (sanity check) As part of the test suite of Popcon, we compare the results of the
decision-DNNF-based algorithms we reimplemented to brute force enumeration of random 3-SAT
formulas with 19 variables and 76 clauses (small enough to make brute force tractable). We also
compared the result of f-E-MAJSAT on larger instances with different underlying decision-
DNNF compilers (D4 and Dsharp). This testing has been intensive enough that it surfaced bugs
in these compilers. Overall, this makes us confident that these algorithms are reasonably correct.

The port of ssatABC to GMP passes ssatABC’s own test suite. It was profiled and does
not spend significant time in GMP code, which indicates that performance assessments should
not be skewed by the cost of rational computations.

5.9.2 Experimental evaluation
We conducted experiments to answer the following research questions:

RQ1 Can f-E-MAJSAT on the formulas generated during QRSE be solved exactly in practice,
and how do the various algorithms we described compare?

RQ2 Do the approximate algorithms we described allow to solve more instances, and at what
cost in terms of precision?

RQ3 Focusing on Relax, how do the various parameters influence performance and precision?

RQ4 We argued in Chapter 4 that quantitative approaches would be significantly more expen-
sive than the qualitative approach of robust reachability. How do f-E-MAJSAT and
universally quantified SMT solving compare?

RQ5 Can we venture explanations for the relative poor performance of some techniques as shown
in RQ1 and RQ2?

To answer these questions, we prepared a benchmark composed of 117 samples:

RSE 92 SMTLib2 formulas obtained by RSE on the case studies of Section 4.6.2.1;
VerifyPIN The 25 distinct SMTLib2 f-E-MAJSAT problems generated during our case

study about VerifyPIN (Section 5.9.3.2).

The size distribution of these formulas is described in Table 5.3. It is comparable to what is
found in Lee, Wang, and Jiang [85] (331 variables and 3761 clauses in median). Problems are
run on an Intel Xeon E-2176M CPU (2.70GHz) with a timeout of 20 minutes and memory-out
of 2 GB.

RQ1 As can be seen in Figure 5.4, only two exact methods can solve a significant number
of instances. dc-ssat solves about half the instances (60/117) and Constrained 108/117.
This is surprising because Complan+, which only solves 1 instance, was designed to improve
over Constrained, relying on the fact that compilation to decision-DNNF is significantly more
expensive when constrained than when unconstrained. This assumption is true: Oval, which

5.9. Implementation & experiments 81

0 20 40 60 80 100 120
number of problems solved with approximation < 3200 %

0

100

200

300

400

500

600

cu
m

ul
at

iv
e

tim
e

(s
)

oval (15)
constrained (108)

complan+ (1)

dcssat (60)

maxcount (0)

ssatabc (0)

relax_dfs(8) (115)
relax_bfs(8) (115)

relax_dfs(32) (109)

relax_bfs(32) (36)
relax_dfs(128) (17)

relax_bfs(128) (15)

exact
approximate

(a) Full cactus plot

0 20 40 60 80 100 120
number of problems solved with approximation < 3200 %

0

50

100

150

200

cu
m

ul
at

iv
e

tim
e

(s
)

oval (15)

constrained (108)

complan+ (1)

dcssat (60)

maxcount (0)

ssatabc (0)

relax_dfs(8) (115)

relax_bfs(8) (115)

relax_dfs(32) (109)

relax_bfs(32) (36)

relax_dfs(128) (17)

relax_bfs(128) (15)

exact
approximate

(b) Detail

Figure 5.4: Cactus plot of various f-E-MAJSAT solving algorithms on 117 instances coming
from QRSE. Dashed lines correspond to methods returning an interval rather than an exact
answer. Number of solved problem instances is given in parentheses. Only instances where
imprecision is below 32× (i.e. the reported interval [l, h] satisfies h ≤ 32l) are counted as solved.

82 CHAPTER 5. Quantitative robustness

Table 5.3: Size distribution of the formulas used for this benchmark

Minimum Median Maximum
Clause count 508 998 58307

Variable count 247 554 19901
Problem variable count 80 226 570

Problem variables are variables which were not introduced by Tseytin transformation as part of bit-
blasting. Variables introduced by Tseytin transformation are fully determined by the value of problem
variables, and thus contribute less the complexity of compilation.

102 105 108 1011 1014 1017

imprecision threshold

0

20

40

60

80

100

120

so
lv

ed
 in

st
an

ce
s

oval
maxcount
relax_dfs(8)
relax_bfs(8)
relax_dfs(32)
relax_bfs(32)
relax_dfs(128)
relax_bfs(128)

Figure 5.5: Evolution of the number of instances solved under a threshold of precision. Only
approximate methods are represented.

5.9. Implementation & experiments 83

df
s(

4)
_b

ad
df

s(
4)

_f
as

t
df

s(
4)

_p
re

cis
e

bf
s(

4)
_b

ad
bf

s(
4)

_f
as

t
bf

s(
4)

_p
re

cis
e

df
s(

8)
_b

ad
df

s(
8)

_f
as

t
df

s(
8)

_p
re

cis
e

bf
s(

8)
_b

ad
bf

s(
8)

_f
as

t
bf

s(
8)

_p
re

cis
e

df
s(

16
)_

ba
d

df
s(

16
)_

fa
st

df
s(

16
)_

pr
ec

ise
bf

s(
16

)_
ba

d
bf

s(
16

)_
fa

st
bf

s(
16

)_
pr

ec
ise

df
s(

32
)_

ba
d

df
s(

32
)_

fa
st

df
s(

32
)_

pr
ec

ise
bf

s(
32

)_
ba

d
bf

s(
32

)_
fa

st
bf

s(
32

)_
pr

ec
ise

df
s(

64
)_

ba
d

df
s(

64
)_

fa
st

df
s(

64
)_

pr
ec

ise
bf

s(
64

)_
ba

d
bf

s(
64

)_
fa

st
bf

s(
64

)_
pr

ec
ise

df
s(

12
8)

_b
ad

df
s(

12
8)

_f
as

t
df

s(
12

8)
_p

re
cis

e
bf

s(
12

8)
_b

ad
bf

s(
12

8)
_f

as
t

bf
s(

12
8)

_p
re

cis
e

ov
al

_b
ad

ov
al

_f
as

t
ov

al
_p

re
cis

e

options

102

105

108

1011

1014

1017

im
pr

ec
isi

on
 (h

i/l
o)

theoretical upper bound

Theoretical upper bound (Theorem 2) 2r omitted for r ≥ 64.
Figure 5.6: Imprecision of approximate f-E-MAJSAT solving algorithms, computed as upper
bound divided by lower bound of the interval.

can operate on an unconstrained decision-DNNF solves 8 more instances than Constrained
when one does not care about the precision of the result (see Figure 5.5). This implies that the
relative poor performance of Complan+ comes not from decision-DNNF compilation but from
the branch and bound step, which repeatedly performs a counting procedure on the decision-
DNNF. Similarly, ssatABC solves no instance.

Constrained is the only exact algorithm which performs well on formulas generated by RSE
(even better than Complan+, which was designed to improve on it), and it still leaves 7% of
instances unsolved.

RQ2 To solve more than 108/117 instances one needs to resort to approximate techniques,
which return an interval [l, h] for the result. Oval can solve all instances but one, and Relax
can solve from 114 to 116 instances depending on parameters. But these results are quite
misleading as they do not take into account the quality of the answer. We call the imprecision of
the technique the ratio h/l. The cactus plot of Figure 5.4 shows the number of solved instances
under an arbitrary threshold of 32×, but Figure 5.5 summarizes results for other imprecision
thresholds. One sees that Oval provides quite bad approximation, while Relax can solve 115
instances with imprecision under 4× with 8 relaxed variables. Finally, Maxcount always times
out.

Approximate f-E-MAJSAT algorithms allow solving more instances, and Relax can do
so while preserving good precision: 115/117 instances solved instead of 108/117 exactly while
keeping under a factor 4 of approximation.

RQ3 As can be seen Figure 5.7, the number of instances solved by Relax within timeout
indeed increases with the number r of relaxed variables. Up to 8 more instances can be solved
with relaxation. The imprecision also increases with r, as shown in Figure 5.6, but it is orders of

84 CHAPTER 5. Quantitative robustness

0 20 40 60 80 100 120 140
number r or relaxed variables

108

109

110

111

112

113

114

115

116

so
lv

ed
 p

ro
bl

em
s relax_dfs(r)_bad

relax_dfs(r)_fast
relax_dfs(r)_precise
relax_bfs(r)_bad
relax_bfs(r)_fast
relax_bfs(r)_precise
Constrained (exact)
Oval bad
Oval fast
Oval precise

Figure 5.7: Efficiency for various relaxation parameters: number r of relaxation variables, and
algorithm for the lower bound.

0 5 10 15 20 25 30 35
log of imprecision ratio over precise bounds

100

101

102

103

oc
cu

re
nc

es

bad
fast

Figure 5.8: Ratio of imprecision for fast and bad bounds over imprecision for precise bounds.

5.9. Implementation & experiments 85

90 95 100 105 110 115 120
number of problem solved

10

20

30

40

50

60
cu

m
ul

at
iv

e
tim

e
(s

)

oval (116)

#SAT (116)

constrained (108)

SAT (108)

SMT (117)

Figure 5.9: Comparison of the cost of solving f-E-MAJSAT to universally quantified SMT,
model counting and projected model counting.

magnitude smaller than the theoretical bound 2r (Theorem 2). DFS variable order usually yields
more precise results, but for high r values (128) the tendency inverts in median. As expected
(Proposition 27), when r becomes large, one obtains similar behavior as techniques based on
fully unconstrained decision-DNNF, like Oval. As visible in Figures 5.6 and 5.8, bad lower
bound is significantly lower than fast and precise bounds, which are very close to one another.
Precise lower bound is more precise than fast lower bound in only two instances, but it does cost
one more timeout in some cases because it has quadratic complexity instead of linear. One can
legitimately conclude that fast lower bound has a better cost/effectiveness ratio.

Relaxation allows to find a sweet spot in terms of precision and efficiency which solves more
instances than exact f-E-MAJSAT with significantly better approximation than (worst-case)
theoretical bounds.

RQ4 For this research question, we consider our test suite as a set of SMT formulas com-
prising a partition of controlled variables a and uncontrolled variables x, a set of assertions
interpreted as their conjunction pc(a, x), assumptions about controlled variables ha(a), and as-
sumptions about uncontrolled variables hx(x). We previously focused on solving f-E-MAJSAT
on ha(a) ∧ hx(x) ∧ pc(a, x) as per the definition of quantitative robustness (Equation (5.3)). We
now compare to what we would have had to solve with robust reachability: we denote as ∀SMT
the problem of determining the satisfiability of the corresponding formula generated by RSE:
∃a. ha(a)∧(∃x. hx(x) ∧ ∀x. hx(x) =⇒ pc(a, x)). For informational comparison purposes, we also
include model counting ♯SAT: ♯ (ha(a) ∧ hx(x) ∧ pc(a, x)) and projected model counting ♯∃SAT:
∣

∣

{

a | ha(a) ∧ ∃x. hx(x) ∧ pca,x

}∣

∣. Model counting and projected model counting are solved by
D4 [82], and ∀SMT by Z3 [48]. f-E-MAJSAT solving is represented by Constrained (exact)
and Oval (faster, but imprecise).

Results are shown in the cactus plot of Figure 5.9. One can see that solving ∀SMT is 7
times faster for 108 instances than exact f-E-MAJSAT, and does not suffer from timeouts.
Constrained times out 9 times, in comparison. Even when completely overlooking the quality

86 CHAPTER 5. Quantitative robustness

of the result, the inexact algorithm Oval is still about 4 times slower, and has one time-out.
Overall, quantitative treatment of path constraints generated during RSE is indeed significantly
more expensive than the corresponding qualitative treatment.

As an aside, let us observe that Constrained is close to D4’s implementation of projected
model counting. This is not a coincidence as they are both based on constrained decision-DNNF.
Similarly, Oval and D4’s implementation of ♯SAT are both based on unconstrained decision-
DNNF, and have similar performance profiles.

RQ5 In this research question, we seek to give more details to understand why the majority of
existing algorithms to solve f-E-MAJSAT we compared in the previous experiments performed
quite bad.

First, let us mention that dc-ssat and Maxcount were designed for more general problems
than f-E-MAJSAT: we use them on a very specific corner case of their input space. Specifically,
dc-ssat is designed for formulas with many quantifier alternations, and performs divide-and-
conquer on quantifier blocks: on our instances with only two quantifiers, there is not much to
divide and conquer. Maxcount is designed for additional projection: ∃a. R1

2x.∃z. f(a, x, z). On
a sample of size 1, it seems that Maxcount relies on projection for performance: consider the
one formula f provided with the source of Maxcount to check that the installation is correct.
Maxcount solves ∃a. R1

2x.∃z. f(a, x, z) with k = 2 in about 18 seconds, but when mapping it
to proper f-E-MAJSAT (∃a. R1

2x, z. f(a, x, z)) it is still running after 20 minutes, even with
the more performance-friendly setting of k = 1.

We now turn to ssatABC and Complan+. As they solve 0 to 1 instances in our previous
experiment, we will use simpler formulas: fn(a, x) ≜ x <u,n a where <u,n represents the unsigned
lower than operator on n-bits bitvectors. To investigate the scalability of these techniques, we
want to determine the amount of work they perform depending on n from 2 to 24. ssatABC
and Complan+ have in common that they try a number of values of a until they can prove (by
clause selection or branch-and-bound) that they found the optimal one. The number of values
of a tested is a good proxy for the amount of work they perform as ssatABC performs two SAT
solvings and a few model countings per value of a, and Complan+ performs one computation
of Oval per value of a. We compare this to techniques that count once on decision-DNNF:
Constrained, Relax with BFS(20) and fast bounds, and model counting. All these compile
to decision-DNNF and perform a linear algorithm on it, so the size (in nodes) of the decision-
DNNF is a reasonably good proxy for the amount of work the algorithm needs. To compare fairly,
we normalize this amount of work to 1 for size 8. As can be seen in Figure 5.10, ssatABC,
Complan+ and Constrained take an exponential amount of work. Each individual “work
step” can cost a different amount of time for these three algorithms, which explains the results
of RQ1, but in the end they do not scale very well. On the other hand, model counting (relying
on unconstrained decision-DNNF) and Relax (relying on relaxed decision-DNNF) scale almost
linearly. Note that in these experiments, Relax always has imprecision below 2.2× and returns
in less than a second.

Finally, we argued that these tools were possibly tuned to different kinds of formulas. We
can replay the same experiment that we did before for RQ1 and RQ2 on formulas coming from
the test suite of ssatABC instead of QRSE. It is composed of 1654 CNF formulas coming from
various domains like probabilistic planning, quantitative information flow, etc. We will not go
into as much detail as previously but results are summarized in the cactus plot of Figure 5.11.
One can see that on the kind of formulas ssatABC was designed for it is much more efficient,
solving 147/165 instances, whereas decision-DNNF-based techniques do not solve more than

4We excluded randomly generated formulas.

5.9. Implementation & experiments 87

5 10 15 20 25
size

10 2

10 1

100

101

102

103

am
ou

nt
 o

f w
or

k,
 b

as
is

1
fo

r s
ize

=8
#SAT
constrained
complan+
ssatabc
relax_bfs(20)_fast

Figure 5.10: Comparison of the scalability of various algorithms for f-E-MAJSAT on x < a
with x, a bitvectors of size n. The amount of work needed by each algorithm is measured as
number of iterations for ssatABC and Complan+, and number of nodes of the decision-DNNF
for other algorithms, normalized to 1 for size 8.

100/165 instances. Relax (less than 77/165) is even worse than Constrained (100/165) in
terms of number of instances solved, because we only count instances solved sufficiently precisely
(imprecision below 32×) as successfully solved. However, we keep the surprising result that
Complan+ (43/165) performs worse than Constrained (100/165) which it was supposed to
improve upon. It is good to remind the reader here that the formulas generated by QRSE have
a significantly different shape than, for example, those generated from probabilistic planning:
they are bitblasted from SMTLib2 input, have very low f-E-MAJSAT and variables represent
bits or logical gates, whereas in probabilistic planning bits represent the actual state of the
system without indirection through low-level bit representation in the compiled program and
then bitblasting.

Unconstrained and relaxed decision-DNNF distinguish themselves from ssatABC, Com-
plan+ and Constrained by avoiding exponential blow-up on bitblasted formulas from the
bit-vector theory of SMTLib2. This advantage seems to disappear on formulas coming from
other domains, where other algorithms perform better.

Summary We showed that on a set of f-E-MAJSAT instances stemming from QRSE, Con-
strained is the only exact algorithm which performs well (even better than Complan+, which
was designed to improve on it), and it still leaves 7% of instances unsolved. Approximate f-E-
MAJSAT algorithms allow solving more instances, and Relax can do so while preserving good
precision: 115/117 instances solved instead of 108/117 exactly while keeping under a factor 4 of
approximation. Relaxation allows to find a sweet spot in terms of precision and efficiency which
solves more instances than exact f-E-MAJSAT with significantly better approximation than
(worst-case) theoretical bounds.

Unconstrained and relaxed decision-DNNF distinguish themselves from ssatABC, Com-
plan+ and Constrained by avoiding exponential blow-up on bitblasted formulas from the

88 CHAPTER 5. Quantitative robustness

0 20 40 60 80 100 120 140
number of problems solved with approximation < 3200 %

0

2000

4000

6000

8000

cu
m

ul
at

iv
e

tim
e

(s
)

oval (80)

constrained (100)

complan+ (43)

dcssat (28)

maxcount (26)

ssatabc (147)

relax_bfs(8) (77)

relax_bfs(32) (74)
relax_bfs(128) (74)

exact
approximate

Figure 5.11: Cactus plot of various f-E-MAJSAT solving techniques on the test suite of ssa-
tABC [85]. Again only instances solved with imprecision below 32× are counted as solved.

bit-vector theory of SMTLib2. This advantage seems to disappear on formulas coming from
other domains, where other algorithms perform better.

Coming back to the original issue that made us investigate f-E-MAJSAT, we show that
quantitative treatment of path constraints generated during QRSE is indeed significantly more
expensive than the corresponding qualitative treatment in RSE.

5.9.3 Case studies
We now turn to illustrating the usage of QRSE in vulnerability assessment.

5.9.3.1 Quantitative robust symbolic execution implementation

We modified the binary-level symbolic execution tool BINSEC/RSE (Section 4.6.1) to perform
QRSE. For each candidate path, first a satisfiability test is performed, with Z3 [48]. Unsatisfiable
paths are discarded. A universal satisfiability test is also performed with Z3 again; if the path is
robust then quantitative robustness is 1. If the path is neither robust nor unsatisfiable, then the
path constraint is simplified [55]. If controlled variables are simplified out, the f-E-MAJSAT
problem behind quantitative robustness reduces to standard model counting, which we solve
with d4 [82]. Otherwise, the f-E-MAJSAT instance is solved with our tool Popcon, with the
Constrained algorithm unless explicitly said otherwise. As BINSEC generates formulas in the
theory QF_ABV, we blast arrays before handing them to Popcon.

Our tool does not support arbitrary probabilistic distributions for uncontrolled inputs, only
uniform distributions, but it is possible to specify their domain as intervals, or even with free-form
assumptions. For example, it allows specifying ASLR for the initial value of the stack register esp
as esp ∈ [0xaaaa, 0xbbbb] (where the interval is platform-dependent) and assume esp%16 = 0
(alignment).

5.9. Implementation & experiments 89

5.9.3.2 Triaging fault injection attacks in VerifyPIN

As an illustration of the potential usage of quantitative robustness in security analysis, let us
consider the case of physical fault injection [60], where an attacker tries to subvert a high-
security component (e.g., a smart card) through physically-induced runtime errors. We consider
the program VerifyPIN (specifically, VerifyPIN_2) from FISSC [52], a standard benchmark in
the fault injection community. VerifyPIN is a procedure mimicking the code checking the PIN
entered for example on an ATM, including security-related countermeasures. It has two explicit
inputs: the 4-byte entered PIN code (userPIN) and the PIN code stored on the card (cardPIN),
and returns whether they are equal or not. For the sake of illustration, we adopt a threat model
where an attacker controls the userPIN only5, and can prevent the processor from executing one
single instruction, effectively replacing it by nop (skip). The security question is “Can such an
attacker enter a PIN distinct from the cardPIN and still be granted access?”. We applied the 126
possible 1-byte and 2-byte wide nop faults on VerifyPIN, obtaining 126 mutants (i.e., variants
of the initial program emulating the considered hardware faults), and use variants of symbolic
execution to find potential attacks.

Unfortunately all attacks are not equally threatening: for some of them, there is one single
unduly accepted PIN, whereas for other ones, one of the four bytes of the cardPIN is not taken
into account. We want to detect the more concerning attacks while sorting out the less replicable
ones. We compare the 4 following approaches experimentally:

SE the SE implementation of BINSEC [49].
RSE the RSE implementation of BINSEC (Section 4.6.1).
exact QRSE A modified version of BINSEC/RSE using exact quantitative robustness. It is

based on Constrained as it is the most effective exact algorithm in Section 5.9.2.
relaxed QRSE same as above but where we accept an approximate answer. Given the results

of our benchmark of Section 5.9.2, we use Relax, and to get the best possible answer, we
first try with BFS(8) for half the timeout (because it provides tight bounds), and if this
fails, with BFS(128) with half the timeout (because it times out least often).

To compare qualitative and quantitative approaches fairly, we use a threshold: we attempt
to identify traces which are above 20% (highly concerning) or below 10−6 (noise). For relaxed
QRSE, we report traces provably in one of the category above – based on the reported lower and
upper bounds. BINSEC and the SMT solver have no timeout, but Popcon is limited to 3 min.

Normal fault-based vulnerability analysis is normally performed in two steps: first an auto-
mated analysis like SE finds mutants admitting attack traces, i.e. one input leading to unexpected
behavior, and then these traces are handed to experts for manual analysis. We are interested in
reducing the amount of manual work needed by limiting the number of interesting traces. The
thresholds mentioned above, while somewhat arbitrary, are chosen to illustrate two approaches:
a conservative analysis where only traces with a provably low quantitative robustness are dis-
missed, and a more opportunistic one where one only analyzes provably concerning traces with
high quantitative robustness.

As shown in Table 5.4, SE finds 39 attack traces, RSE finds none, and quantitative approaches
find an intermediate number of them depending on the threshold. Exact QRSE has 13 timeouts,
but still proves that out of the 39 attacks found by SE, at least 23 are not interesting (< 10−6).
Relaxed QRSE improves significantly in this regard, as there is no timeout when using the
hybrid BFS(8) then BFS(128) approach6. It classifies 27 traces as not interesting, and finds

5Other inputs are uncontrolled: the userPIN, but also implicit input, e.g. uninitialized values accessed due to
faults.

6Only BFS(8) has one timeout, and BFS(128) has no timeout but fails to classify many traces. Doing the

90 CHAPTER 5. Quantitative robustness

Table 5.4: Comparison of various methods to look for exploitable faults

Method Quantitative Reported Time (s) Paths abandoned because of
robustness attack traces Z3 UNKNOWN Popcon timeout

SE >0% 39 66 0 –
RSE = 100% 0 67 25 –

exact QRSE

> 20% 0

2435 0 13< 10−6 23
∈ [10−6, 20%] 3
unclassified 0

relaxed QRSE > 20% 2

250 0 0BFS(8) then < 10−6 27
BFS(128) ∈ [10−6, 20%] 10

unclassified 0
relaxed QRSE > 20% 2

333 0 1BFS(8) < 10−6 27
∈ [10−6, 20%] 9
unclassified 0

relaxed QRSE > 20% 2

67 0 0BFS(128) < 10−6 21
∈ [10−6, 20%] 6
unclassified 10

5.9. Implementation & experiments 91

10 15 10 12 10 9 10 6 10 3 100

quantitative robustness

robust 1 digit 2 digits 3 digits 4 digits

Figure 5.12: Distribution of quantitative robustness of attacks by nop faults on VerifyPIN ob-
tained by relaxed QRSE. Error bars represent the interval computed by relaxation.

two concerning traces with quantitative robustness in [0.992202, 0.992204]. Figure 5.12 gives
the distribution of quantitative robustness. Most traces are exploitable for about 1 case out of
224 which corresponds to faults where only 3 bytes (24 bits) of the PIN out of 4 are correctly
compared. The exact mechanism varies depending on faults, but usually looks like “the program
does not load the next digit from memory and thus compares the i-th digit of the userPIN to
the i− 1-th digit of the cardPIN”. Therefore, the attacker does not have to guess the i-th digit of
the cardPIN. Some instances have very low quantitative robustness: 2 attack traces only happen
for about 1 initial condition out of 256. Manual analysis shows that the attacker must guess 3
bytes of the cardPIN, the low byte of a register and hope for the top 3 bytes to be zero. Overall
this amounts to 7 bytes, or 56 bits, of luck. Interestingly, the 6 top faults detected are outside
the protected code of VerifyPIN. They affect the logic checking the result of VerifyPIN to accept
or reject attacker input: indeed if one nops out the test “if VerifyPIN rejects userPIN then goto
fail”, the attacker wins for a large proportion of initial conditions. Therefore, regarding the
actual protected part of VerifyPIN, relaxed QRSE proves that none of the 80 mutants on the
protected part of VerifyPIN suffer from any attack with quantitative robustness above 10−4.

In the end, this analysis allows to reduce the number of cases to analyze manually from 29
with standard SE to 12 in the conservative scenario described above, and to 2 in the optimistic
one. It is also interesting to note that for the analysis we just made, the approximate f-E-
MAJSAT algorithm we used ended up quite precise, as illustrated by Figure 5.12. Overall,
QRSE proves useful here to help focus the attention of the security expert on possibly critical
attack traces, and remove noisy ones.

inverse composition (BFS(128) and if it is not precise enough for Table 5.4 then BFS(8)) obtains the same
classification as BFS(8) then BFS(128) faster (97 seconds) and with no timeout/unknown but yields larger error
bars in Figure 5.12.

92 CHAPTER 5. Quantitative robustness

Table 5.5: Detecting CVE-2019-20839

Method SE exact QRSE RSE no RSE with
>20% path merging path merging

Detected ✓ ✓ ✗ ✓

Guarantee on quanti-
tative robustness

> 0 % 25 % – 100 %

Total time (s) 997 1029 – 1254
Simplification time (s) 260 282 – 514
Z3 time (s) 718 723 – 711
Popcon time (s) – 1 – –

5.9.3.3 CVE-2019-20839 in libvncserver

We consider a stack buffer overflow in libvncserver. The security question is: Can an attacker
controlling the address of the server use this stack buffer overflow to divert control flow to
0xdeadbeef? Standard SE tells us it is possible for example when the top of the stack is at
0xfff02000 and various other initial conditions are met. But all of those, except the arguments,
are beyond the control of the attacker, making this information of little use for vulnerability
assessment. RSE can prove the stronger robust reachability: by choosing the right server address,
the attacker can trigger the buffer overflow for all initial conditions. However, this requires
systematic path merging, which is documented to be useful when used carefully but detrimental
to performance when used indiscriminately [69, 80]. The necessity of path merging in this
instance comes from the fact that the optimal attacker reaches the target with one of 3 paths in
an uncontrolled way. No single path satisfies robust reachability, but still one of them at least
must have a large quantitative robustness: at least 1

3 (see Section 5.5.2 where we treated this
formally). In other words, instead of using path merging, we can attempt to detect single paths
with high quantitative robustness. This indicates that an optimal attacker can trigger the bug
for a high proportion of uncontrolled inputs, which is weaker than robust reachability but still a
good hint of security relevance.

Table 5.5 is a summary of our results. We see that here our quantitative robustness-based
solution makes path merging unneeded and is faster than (qualitative) RSE+. Solving f-E-
MAJSAT only takes 1 second, and allows manipulating simpler path constraints which take
significantly less time to simplify. This is a counter-intuitive case where our original quest for
more precision at the expense of efficiency ends up with a faster technique with comparable
results.

This case study illustrates that to some extent, our quantitative approach can reduce the
need for path merging in robust symbolic execution, and more generally allows us to miss some
behaviors (for example because of the lack of stubs for I/O, system calls, etc.) while still obtaining
valuable information on the replicability of the bug. We even get the good surprise of improved
performance.

5.9.3.4 Summary

In a case study about VerifyPIN, we illustrated the usage of QRSE as a form of bug-finding
capable of bug triage according to quantitative robustness. QRSE gives much more insight on
the security impact of bugs found in this case because in the domain of fault injection it is rare
to find flaws that give a 100% chance of winning to the attacker. One wants to detect faults

5.10. Related work & discussion 93

which give even a comparatively smaller edge to the attacker, and those are invisible to robust
reachability.

We presented a second use case in libvncserver: quantitative robustness is better behaved than
robust reachability in the sense that it cannot vanish entirely at branches; as a result one does
not need path merging so much. Surprisingly, omitting path merging even improves performance
compared to robust symbolic execution even though we resort to comparatively expensive model
counters.

5.10 Related work & discussion
We attempt at designing a quantitative counterpart to robust reachability, viewed as too strict.
Such a quantitative relaxation has already been seen in other domains and is part of a general
effort to make formal verification less “all-or-nothing”: from non-interference [65] to quantitative
information flow [73], from traditional model checking to probabilistic model checking [5, 70] or
from symbolic execution to probabilistic symbolic execution [59].

These different applications give rise to different counting problems. Quantitative robustness
relies on f-E-MAJSAT to distinguish between attacker-controlled inputs and uncontrolled in-
puts, while probabilistic verification builds on standard model counting [67] and quantitative
information flow on projected model counting [6].

Model counting as a whole has seen a lot of recent research in different directions: be-
yond compilation-based approaches [82, 94, 42], we can cite DPLL-based model counters [117],
probabilistic caching [112], approximate approaches based on XOR-constraints [66]. As formula
compilation is a clear bottleneck of our technique, it is worth exploring how such alternatives
could be adapted for f-E-MAJSAT. Notably XOR-constraints, which have been very successful
in model counting, have an adaptation for Bayesian networks [122], which would deserve to be
adapted for f-E-MAJSAT.

Regarding approximated solutions to f-E-MAJSAT, many combinations and extensions
are possible. The branch-and-bound algorithms behind Complan and Complan+ can be in-
terrupted at any time to obtain a refined, but not perfect interval. Our algorithm Relax could
be refined by using bounds inspired from Oval instead of Unconstrained, at the price of
significant added complexity. Finally, the choice of the set of relaxed variables has only been
partially explored, and is certainly a direction for future work.

Interestingly, some works target model counting problems beyond propositional formulas
(e.g., for bit-vectors [77] or integer polyhedra [46]). That could be a source of inspiration for
further developments.

Finally, while we discuss here security applications, robustness has other possible area of
interest, such as flakiness analysis, as said in the previous chapter. Quantitative robustness has
certainly a role to play there as well.

5.11 Conclusion
We introduce quantitative robustness, a quantitative counterpart to robust reachability, which
expresses how easily an attacker can trigger a bug in a program, taking into account that he can
only influence part of the program input. The asymmetry between attacker-controlled variables
and variables out of his reach makes it an instance of a problem called f-E-MAJSAT [87],
a distinct problem from the standard model counting arising when we are only interested in
verification, without an attacker [59].

94 CHAPTER 5. Quantitative robustness

We assessed various existing solving techniques for the f-E-MAJSAT problems generated
when computing quantitative robustness. Like for many hard problems, efficient solvers are
usually directed towards some specific kinds of problem instances. As we used f-E-MAJSAT
solving algorithms on a new kind of formulas arising from a new domain of application, we saw
unexpected behavior: Complan+ [101] performs significantly worse than the basic algorithm
it was designed to improve upon, Unconstrained. Overall, the best algorithms, based on
knowledge compilation, can solve many, but not all, f-E-MAJSAT instances coming from
QRSE.

To solve harder instances, we introduce a new approximate algorithm inspired from two
existing decision-DNNF-compilation based approaches which enables to strike a compromise
between precision and performance in a flexible and parametric way. We show experimentally
that it allows going beyond existing algorithms in this regard, and that it obtains a much better
precision than the theoretical bounds.

We finally illustrate on two case studies how the quantitative extension of robust reachability
can be helpful for vulnerability assessment, quantifying how often the attack will succeed for
optimal attacker input and thus giving valuable insight on its exploitability.

While our technique is already powerful enough to enable small realistic case studies, solving
f-E-MAJSAT is currently a bottleneck toward scalability to larger applications. This is a clear
direction for future work.

Chapter6
Conclusion and future work

6.1 Conclusion
Bug-finding techniques inspired by works in the domain of verification, where all bugs are equally
important and must be fixed, deserve to be revisited when we repurpose them for security-related
goals. In this work we revisit reachability to account for the threat model, i.e. the capabilities
of the attackers.

Specifically, we attempt at assessing how replicable bugs are. We observe that proving that a
bug is reachable only tells us that there is an input which triggers it, but part of this input might
be random or to the least out of the control of the attacker. In this case, this information is not
enough to determine if an attacker could trigger the bug without relying on luck, somehow. As
triggering the bug is the first step towards its exploitation, finding a reachable bug with classical
bug-finding techniques leaves us clueless when it comes to its vulnerability assessment.

Therefore, we propose two refinements of reachability to assess how replicable the discovered
bugs are. This allows to prioritize the bug-fixing effort on more easily replicable bugs first,
which becomes all the more crucial as modern bug-finding are now so effective that in some
case they can “drown” [78] the developers with innumerable reports. These refinements have in
common that they take the threat model into account: some inputs to the program are labeled
as “controlled” by the attacker and some others as “uncontrolled”.

The first refinement is robust reachability, a property stronger than reachability, that ex-
presses that there is a value of attacker-controlled input such that the bug is triggered for all
values of uncontrolled inputs. A bug which satisfies this criterion can be triggered by the attacker
without relying on luck, which is a strong hint of security impact. We propose practical proof
methods that rely on the ability of state-of-the-art SMT solvers to handle universally quantified
formulas. This helps avoid reports from e.g. symbolic execution about bugs which an attacker
could hardly replicate. In this sense, this can be a great tool to help defenders focus the bug-fixing
efforts on more valuable bugs first. Further, for bugs which an attacker can indeed reproduce but
for which standard symbolic execution reports a non-robust trace, this allows obtaining a better
bug report which should not mislead humans into underestimating the severity of the bug.

The drawback of the reliance on universal quantifiers of robust reachability is that it is
“all-or-nothing”. Bugs which an attacker could only trigger for 99% of uncontrolled inputs are
ignored. Therefore, we refine our approach into a concept we call “quantitative robustness”
and which corresponds to this value of 99%. This increase in precision comes at the price

95

96 CHAPTER 6. Conclusion and future work

of more computationally intensive proof methods, and we spend some time discussing solving
algorithms and present our own. This somehow “unlocks” applications like vulnerabilities related
to hardware faults where a fault is expected to give an edge to the attacker but certainly not be
powerful enough to work 100% of the time. This kind of vulnerabilities is quite advanced and
normally analyzed manually by experts, so once again, this technique can be viewed as a filter
to reduce the amount of vulnerability reports.

6.2 Perspectives
We now present some directions to extend or improve the work we have presented.

First, robust reachability and quantitative robustness as we defined were designed with some
intentional limitations, which we could attempt to lift.

Interactive systems The threat model we consider does not really fit interactive systems,
because the attacker can only submit controlled input in one go without knowing anything of
the system. This is to have only one quantifier alternation: ∃controlled.∀uncontrolled. bug. Each
new round of interactivity adds a quantifier alternation.

The most simple extension of this is thus a form of parametric robust reachability where there
is an additional parameter of the system, chosen by the environment but known to the attacker:
∀parameter.∃controlled.∀uncontrolled. bug. In the example of CVE-2019-20839 in libvncserver
(Section 4.6.2.1), one would want to prove that for all possible return addresses not containing a
null byte, the attacker can provide a controlled input which diverts control flow to this address.
Superficial experiments suggest that while a naive encoding to the SMT solver would perform
quite bad (Section 4.6.4.3), we could solve the case of libvncserver with a slightly smarter encoding
based on the observation that the return address is directly encoded into the controlled input
without transformation, making the outermost quantifier reasonably easy to eliminate. While
this is a promising result, this technique not only limited to cases where the attacker only copies
the parameter as-is, but also to cases where memory is fully simplified out by RoW [55]. Further
work is needed to see whether these limitations can be lifted, or turn out to not be so much of a
problem in practice.

Probabilities The tools we develop to compute quantitative robustness are designed with
proportion of inputs in mind, not probabilities. If we insist in interpreting their output as
probabilities, it means they are limited to the uniform distribution for uncontrolled inputs.
What if we allowed more distributions?

The d-DNNF-based algorithms we took in the literature do support independent Bernoulli
distribution for individual bits of input. The algorithm we contribute (Relax) probably extends
easily to this case. On the other hand, supporting dependent bits looks like a much harder
problem.

But one must not neglect the other half of the problem: we need to determine the probability
distribution of the many architecture-dependent implicit inputs. It is known in cases like ASLR
where randomness is intentionally introduced, but what about the initial content of registers,
addresses returned by malloc, address of various low-level constructs like thread stacks, and so
on? There is certainly some work in this regard.

Vulnerability assessment beyond replicability We assess the replicability of bugs, because
the first step to exploit a bug is to trigger it. However, it is only one of the many dimensions

6.2. Perspectives 97

of vulnerability assessment, and some other directions deserve to be explored. To mention one
which is related to what we presented, it would be interesting to quantify the amount of control
that an attacker gains after the attack: in the case of a stack buffer overflow like CVE-2019-
20839 in libvncserver (Section 4.6.2.1), one could want to know whether the overwritten return
address only has 2 possible values or if it can take billions of distinct values. In the most naive
formulation it is a form of projected model counting, and Binsec can prove that in the case
of libvncserver there are more than 4 billions distinct possible return addresses. However, this
does not account for the threat model (what inputs are controlled by the attacker and to what
extent) and doing so would probably make the problem significantly more complex, just like with
robustness we go from mere model counting to f-E-MAJSAT.

There are also some limitations to the techniques we presented that were not intentional but
also deserve some exploration.

Brute force attacks A bug which is not replicable is not necessarily harmless. DirtyCow
(CVE-2016-5195) is a vulnerability in the Linux kernel that allows privilege escalation via a
race condition. The race condition is inherently flaky and thus not robust, but one can try it
thousands of times. In practice, it takes seconds to exploit the bug on vulnerable systems.

This flaw in the concept of robust reachability can be addressed in two ways. On a formal
level, the system that the attacker exploits is somehow not the vulnerable program, but the
program repeated several times: the star of the program. Some of the formal discussions about
robust reachability probably still hold if we consider the star of the program as the program to
be analyzed. However, this is certainly impractical for proof methods.

The second possible direction is incorporating timing information to traces: if a bug has low
quantitative robustness and that all traces reaching it take long execution time, then is becomes
reasonable again to de-prioritize fixing it.

Model counting f-E-MAJSAT solving is the main bottleneck of QRSE, to the point that
even for our motivating example (Chapter 2) we cannot get an exact value for all bugs. Many
directions have been left unexplored.

Some of the most effective techniques in model counting are based on XOR-constraints, and
it would be interesting to test a XOR-based f-E-MAJSAT solving algorithm (possibly adapted
from Xue et al. [122]).

SMT solvers focusing on the theory of bit-vectors are much more efficient than first bitblasting
then using a SAT solver. We could expect the same speedup by reasoning at this level for f-E-
MAJSAT. Previous work has shown experimentally that a similar observation does not hold
yet for model counting [18].

In our comparison of some existing solving algorithms we included exact and approximate
algorithms. However, to some extent branch-and-bound-like algorithms (notably Complan+
and SsatABC) belong to both categories: they are exact but if you interrupt them before
completion they yield an interval. We have not benchmarked the latter option.

Regarding our algorithm Relax, we show that two heuristics (BFS and DFS) used to select
relaxed variables behave differently. It is possible that better heuristics, notably integrating
within the decision-DNNF-compiler, would be even more effective.

Path merging in robust symbolic execution Similarly, we show that systematic path
merging in robust symbolic execution can fail to prove some instances while merging only some
paths according to a heuristic can succeed. There is some literature about wise heuristics for path

98 CHAPTER 6. Conclusion and future work

merging applied to standard symbolic execution; reevaluating it for robust symbolic execution
may yield interesting results.

Robustness beyond security Finally, while we focused on the applications of robustness to
security, we realized during this work that it also applied in other domain. Notably, it fits quite
well the concept of flaky tests, a software engineering topic. A test is flaky when its outcome is
non-deterministic because of an unexpected reliance on non-deterministic implicit inputs—alike
to uncontrolled inputs. Flaky tests make continuous integration untrustworthy, as a test failure
might just be a false negative, and one thus has to relaunch it to exclude this possibility. This
increases time to feedback to the developer.

For example the path merging heuristic powering RSE∀+ relies on detecting branches with
incoming robust path but outgoing non-robust paths. It seems that these are precisely branches
where flakiness is introduced, suggesting it could be used to locate the sources of flakiness. This
correspondence has been left unexplored. As illustrated in Section 4.6.2.2 one can also repurpose
our tool to find tests parameters that fix the flakiness. More work in this direction might reshape
this concept into a useful tool to improve the quality of test suites.

AnnexeA
Résumé substantiel en français

Les méthodes modernes de recherche de bugs sont devenues si efficaces qu’elles détectent plus
de bugs que les mainteneurs des logiciels affectés n’ont de temps à consacrer à les corriger.
Notamment, des techniques telles que le fuzzing, dont l’efficacité repose sur le fait de ne pas
analyser le programme sémantiquement, sont capables de détecter des centaines de défauts en
peu de temps sans fournir ni analyse ni idée de correction. Les développeurs même les plus
chevronnés peuvent alors se sentir « noyés » [78] par des rapports de bugs si nombreux qu’ils ne
savent plus où donner de la tête.

Une posture communément adoptée pour faire face à cette problématique consiste à accorder
aux bugs ayant un impact de sécurité, c’est-à-dire ceux dont un attaquant pourrait tirer parti, une
sorte de priorité : les éditeurs de logiciels demandent à ce qu’ils soient rapportés différemment des
autres, et s’engagent souvent à une réponse dans un délai déterminé, parfois explicitement plus
court que pour les bugs de droit commun. Pour résumer de manière simpliste, les bugs n’ayant
pas d’impact de sécurité ne méritent d’être corrigés que s’il reste du temps à leur consacrer.

Se pose alors la question de déterminer, parmi tous les bugs détectés par une méthode auto-
matique, lesquels sont des vulnérabilités, c’est-à-dire ont un impact de sécurité. Cette question
est vaste et difficile à formaliser ; au sens strict il y a une définition de vulnérabilité par modèle
de menace. Nous nous intéressons dans cette thèse à une dimension qui contribue à l’impact de
sécurité d’un bug : un attaquant pourrait-il déclencher ce bug ? Nous appelons cette propriété
réplicabilité. Un bug que l’attaquant ne peut déclencher que lorsqu’il a de la chance est vraisem-
blablement moins grave qu’un bug qu’il peut déclencher avec certitude. Pour ne donner qu’un
exemple, certaines classes de bugs comme les dépassements de tampon sur la pile (qui peuvent
souvent donner à l’attaquant le contrôle total du programme) sont aujourd’hui protégées par
randomisation : l’attaquant peut toujours les déclencher, mais uniquement s’il devine une va-
leur aléatoire de 32 ou 64 bits appelée canari [36]. Les méthodes de recherches de bugs telles que
l’exécution symbolique sont toujours susceptibles de détecter de tels bugs, parce qu’effectivement
sur le papier ils peuvent toujours arriver, mais dans la pratique nous en sommes protégés, et le
rapporter est assimilable à un faux positif de fait.

L’enjeu de cette thèse est de concevoir des méthodes de recherche de bugs qui évitent ces faux
positifs de fait, c’est-à-dire ne rapportent que des bugs qui sont suffisamment réplicables. Nous
proposons deux approches allant dans cette direction : l’une qualitative et l’autre quantitative.
Les deux reposent sur le même principe : on considère un modèle de menace où l’on distingue deux
sortes d’entrées du programme : des entrées dites contrôlées (par l’attaquant), et des entrées dites
non contrôlées (déterminées par l’environnement ou d’autres utilisateurs, ou même aléatoires).

99

100 ANNEXE A. Résumé substantiel en français

L’approche qualitative consiste à définir une propriété appelée atteignabilité robuste qui ex-
prime qu’il existe une valeur pour les entrées contrôlées telle que pour toutes les valeurs possibles
des entrées non contrôlées le bug est déclenché. Autrement dit, lorsqu’un bug est atteignable
de manière robuste, l’attaquant peut gagner sans se reposer sur la chance. Nous montrons qu’il
est possible d’adapter l’exécution symbolique (et le bounded model checking) pour ne retourner
que des bugs atteignables de manière robuste. Si l’on note les entrées contrôlées a et les entrées
non contrôlées x, l’exécution symbolique traditionnelle détecte des bugs avec des requêtes de
satisfiabilité modulo théories (SMT) de la forme ∃a, x. bug(a, x). Pour l’atteignabilité robuste on
utilise des requêtes de la forme ∃a.∀x. bug(a, x). Avec un quantificateur supplémentaire, elles
sont plus difficiles à résoudre pour les solveurs SMT, mais nous montrons dans des études de
cas portant notamment sur des rejeux de vulnérabilités réelles que cela ne nous empêche pas de
remplir notre objectif initial : se débarrasser des faux positifs de fait.

Si le principe de base de l’exécution symbolique adaptée à l’atteignabilité robuste est simple
(ajouter un quantificateur universel), d’autres adaptations s’avèrent nécessaires. Notamment, si
l’exécution symbolique standard est presque complète pour l’atteignabilité standard au sens où
elle est complète si l’on borne la longueur des chemins, cette propriété est perdue lorsqu’il s’agit
de prouver l’atteignabilité robuste. Pour la retrouver, on peut recourir à la fusion de chemins,
une technique connue en exécution symbolique standard comme une optimisation purement
optionnelle, et qui devient ici obligatoire. Il est aussi nécessaire d’adapter d’autres choses telles
que l’encodage des hypothèses, etc.

La limitation principale de l’atteignabilité robuste est son caractère tout-ou-rien : un bug
tel que l’attaquant optimal ne peut le déclencher que dans 99% des cas ne sera pas considéré
atteignable de manière robuste et par conséquent ignoré. Si notre propos est que c’est plutôt
légitime lorsqu’il s’agit d’un cas sur 232, nous voudrions malgré tout détecter les bugs « à 99% ».
Cela nous conduit à proposer une seconde approche quantitative.

On définit la robustesse quantitative comme la proportion d’entrées non contrôlées qui per-
mettent à l’attaquant de déclencher le bug pour l’entrée contrôlée optimale. Cette valeur vaut 0
lorsque le bug n’est pas atteignable et 1 lorsque le bug est atteignable de manière robuste. La
calculer nous donne accès à tous les cas intermédiaires « plus ou moins robustes », et l’utilisateur
final peut placer le seuil de détection là où il le désire. L’extension de l’exécution symbolique à
l’atteignabilité robuste s’adapte bien à la robustesse quantitative pourvu que l’on sait déterminer
la proportion maximale de x telle qu’une formule f(a, x) est satisfaite pour la valeur de a opti-
male. Ce problème, apparenté au comptage de modèle, s’appelle functional E-MAJSAT. Il est
loin d’avoir atteint le niveau de maturité des solveurs SMT que nous utilisions pour l’atteigna-
bilité robuste. Les méthodes de résolution existantes ont été développées pour d’autres types de
problèmes comme l’inférence de réseaux bayésiens et nous montrons expérimentalement que des
méthodes avancées censées améliorer d’autres plus naïves se révèlent contre-productives sur nos
formules. Cela nous conduit en définitive à proposer notre propre algorithme de résolution ap-
proximée, largement inspiré de deux techniques existantes mais permettant un compromis entre
leurs points forts respectifs : de rapide et imprécis à lent mais précis. Nous comparons expéri-
mentalement ces diverses techniques et montrons dans des études de cas le genre d’application
que cette approche quantitative nous ouvre, en particulier les fautes matérielles, où un attaquant
n’a presque jamais d’opportunité exploitable 100% du temps.

L’atteignabilité robuste et la robustesse quantitative donnent une idée raisonnablement pré-
cise de la réplicabilité d’un bug, c’est-à-dire de la capacité d’un attaquant de le déclencher. Si ce
n’est ni une condition nécessaire ni suffisante pour que le bug en question soit une vulnérabilité,
il s’agit malgré tout d’une information cruciale pour l’évaluation de son impact en termes de
sécurité.

Bibliography

[1] Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. “Alternating-Time Temporal
Logic”. In: Journal of the ACM 49.5 (Sept. 2002), pp. 672–713. issn: 0004-5411, 1557-
735X. doi: 10/cgwb3h.

[2] June Andronick et al. “Large-Scale Formal Verification in Practice: A Process Perspec-
tive”. In: 2012 34th International Conference on Software Engineering (ICSE). 2012 34th
International Conference on Software Engineering (ICSE). June 2012, pp. 1002–1011. doi:
10/gphnkb.

[3] Gilles Audemard and Laurent Simon. “On the Glucose SAT Solver”. In: International
Journal on Artificial Intelligence Tools 27.01 (Feb. 2018), p. 1840001. issn: 0218-2130.
doi: 10.1142/S0218213018400018.

[4] Thanassis Avgerinos et al. “Automatic Exploit Generation”. In: Communications of the
ACM 57.2 (Feb. 1, 2014), pp. 74–84. issn: 0001-0782. doi: 10.1145/2560217.2560219.

[5] Adnan Aziz et al. “Verifying Continuous Time Markov Chains”. In: Computer Aided Ver-
ification. Ed. by Rajeev Alur and Thomas A. Henzinger. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer, 1996, pp. 269–276. isbn: 978-3-540-68599-9. doi:
10.1007/3-540-61474-5_75.

[6] Rehan Abdul Aziz et al. “#SAT: Projected Model Counting”. In: Theory and Applications
of Satisfiability Testing – SAT 2015. Ed. by Marijn Heule and Sean Weaver. Lecture Notes
in Computer Science. Cham: Springer International Publishing, 2015, pp. 121–137. isbn:
978-3-319-24318-4. doi: 10/gh6pzs.

[7] Gogul Balakrishnan and Thomas Reps. “WYSINWYX: What You See Is Not What You
eXecute”. In: ACM Transactions on Programming Languages and Systems 32.6 (Aug.
2010), pp. 1–84. issn: 0164-0925, 1558-4593. doi: 10.1145/1749608.1749612.

[8] Roberto Baldoni et al. “A Survey of Symbolic Execution Techniques”. In: ACM Comput-
ing Surveys 51.3 (July 16, 2018), pp. 1–39. issn: 0360-0300, 1557-7341. doi: 10.1145/
3182657.

[9] Clark W. Barret et al. “Satisfiability Modulo Theories”. In: Handbook of Satisfiability. IOS
Press. 2009, pp. 825–885. isbn: 978-1-58603-929-5.

[10] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability modulo Theories
Library (SMT-LIB). www.SMT-LIB.org. 2016.

[11] Clark Barrett et al. “CVC4”. In: Computer Aided Verification. Ed. by Ganesh Gopalakrish-
nan and Shaz Qadeer. Vol. 6806. Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011, pp. 171–177. isbn: 978-3-642-22109-5 978-3-642-22110-1.
doi: 10.1007/978-3-642-22110-1_14.

101

102 Bibliography

[12] G. Barthe, P.R. D’Argenio, and T. Rezk. “Secure Information Flow by Self-Composition”.
In: Proceedings. 17th IEEE Computer Security Foundations Workshop, 2004. Proceedings.
17th IEEE Computer Security Foundations Workshop, 2004. June 2004, pp. 100–114. doi:
10.1109/CSFW.2004.1310735.

[13] Patrick Behm et al. “MéTéor: A Successful Application of B in a Large Project”. In:
Proceedings of the Wold Congress on Formal Methods in the Development of Computing
Systems-Volume I - Volume I. FM ’99. Berlin, Heidelberg: Springer-Verlag, 1999, pp. 369–
387. isbn: 3-540-66587-0.

[14] Armin Biere, Keijo Heljanko, and Siert Wieringa. AIGER 1.9 and Beyond. 11/2. Al-
tenbergerstr. 69, 4040 Linz, Austria: Institute for Formal Models and Verification, Jo-
hannes Kepler University, July 2011, 2011.

[15] Armin Biere et al. “CaDiCaL, Kissat, Paracooba, Plingeling and Treengeling Entering
the SAT Competition 2020”. In: Proc. of SAT Competition 2020 – Solver and Benchmark
Descriptions. Ed. by Tomas Balyo et al. Vol. B-2020-1. Department of Computer Science
Report Series B. University of Helsinki, 2020, pp. 51–53.

[16] Bruno Blanchet et al. “Design and Implementation of a Special-Purpose Static Program
Analyzer for Safety-Critical Real-Time Embedded Software”. In: The Essence of Com-
putation: Complexity, Analysis, Transformation. Ed. by Torben Æ. Mogensen, David A.
Schmidt, and I. Hal Sudborough. Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer, 2002, pp. 85–108. isbn: 978-3-540-36377-4. doi: 10.1007/3-540-36377-7_5.

[17] Roderick Bloem et al., eds. Handbook of Model Checking. 1st ed. 2018. Cham: Springer
International Publishing : Imprint: Springer, 2018. 1 p. isbn: 978-3-319-10575-8. doi:
10.1007/978-3-319-10575-8.

[18] Mateus Borges et al. “Model-Counting Approaches for Nonlinear Numerical Constraints”.
In: NASA Formal Methods. Ed. by Clark Barrett, Misty Davies, and Temesghen Kah-
sai. Lecture Notes in Computer Science. Cham: Springer International Publishing, 2017,
pp. 131–138. isbn: 978-3-319-57288-8. doi: 10/ghtsvm.

[19] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. “What’s Decidable About Ar-
rays?” In: Verification, Model Checking, and Abstract Interpretation. Ed. by E. Allen
Emerson and Kedar S. Namjoshi. Red. by David Hutchison et al. Vol. 3855. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2005, pp. 427–442. isbn: 978-3-540-31139-3 978-3-
540-31622-0. doi: 10.1007/11609773_28.

[20] Angelo Brillout et al. “Beyond Quantifier-Free Interpolation in Extensions of Presburger
Arithmetic”. In: Verification, Model Checking, and Abstract Interpretation. Ed. by Ran-
jit Jhala and David Schmidt. Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer, 2011, pp. 88–102. isbn: 978-3-642-18275-4. doi: 10.1007/978-3-642-18275-
4_8.

[21] Bug 1150468 – VUL-1: DISPUTED: CVE-2019-16230: Kernel-Source: NULL Pointer
Dereference in Alloc_workqueue in Drivers/Gpu/Drm/Radeon/Radeon_display.c. url:
https://bugzilla.suse.com/show_bug.cgi?id=1150468.

[22] Cristian Cadar and Koushik Sen. “Symbolic Execution for Software Testing: Three Decades
Later”. In: Communications of the ACM 56.2 (Feb. 1, 2013), pp. 82–90. issn: 0001-0782.
doi: 10.1145/2408776.2408795.

Bibliography 103

[23] Cristiano Calcagno et al. “Moving Fast with Software Verification”. In: NASA Formal
Methods. Ed. by Klaus Havelund, Gerard Holzmann, and Rajeev Joshi. Lecture Notes
in Computer Science. Cham: Springer International Publishing, 2015, pp. 3–11. isbn:
978-3-319-17524-9. doi: 10.1007/978-3-319-17524-9_1.

[24] Sang Kil Cha et al. “Unleashing Mayhem on Binary Code”. In: 2012 IEEE Symposium
on Security and Privacy. 2012 IEEE Symposium on Security and Privacy. May 2012,
pp. 380–394. doi: 10.1109/SP.2012.31.

[25] Supratik Chakraborty et al. “Approximate Probabilistic Inference via Word-Level Count-
ing”. In: Proceedings of the AAAI Conference on Artificial Intelligence 30.1 (1 Mar. 5,
2016). issn: 2374-3468. url: https://ojs.aaai.org/index.php/AAAI/article/view/
10416.

[26] Mark Chavira and Adnan Darwiche. “On Probabilistic Inference by Weighted Model
Counting”. In: Artificial Intelligence 172.6-7 (Apr. 1, 2008), pp. 772–799. issn: 0004-3702.
doi: 10.1016/j.artint.2007.11.002.

[27] Mark Chavira, Adnan Darwiche, and Manfred Jaeger. “Compiling Relational Bayesian
Networks for Exact Inference”. In: International Journal of Approximate Reasoning. 2004,
pp. 49–56. doi: 10.1016/j.ijar.2005.10.001.

[28] A. Cimatti et al. “NuSMV: A New Symbolic Model Verifier”. In: Proceedings Eleventh
Conference on Computer-Aided Verification (CAV’99). Ed. by N. Halbwachs and D. Peled.
Lecture Notes in Computer Science. Trento, Italy: Springer, July 1999, pp. 495–499.

[29] Edmund Clarke, Daniel Kroening, and Flavio Lerda. “A Tool for Checking ANSI-C Pro-
grams”. In: Tools and Algorithms for the Construction and Analysis of Systems. Ed. by
Kurt Jensen and Andreas Podelski. Red. by Gerhard Goos, Juris Hartmanis, and Jan van
Leeuwen. Vol. 2988. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 168–176.
isbn: 978-3-540-21299-7 978-3-540-24730-2. doi: 10.1007/978-3-540-24730-2_15.

[30] Edmund M. Clarke and E. Allen Emerson. “Design and Synthesis of Synchronization
Skeletons Using Branching Time Temporal Logic”. In: Logics of Programs. Ed. by Dexter
Kozen. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 1982, pp. 52–71.
isbn: 978-3-540-39047-3. doi: 10.1007/BFb0025774.

[31] Edmund M. Clarke and Jeannette M. Wing. “Formal Methods: State of the Art and
Future Directions”. In: ACM Computing Surveys 28.4 (Dec. 1996), pp. 626–643. issn:
0360-0300, 1557-7341. doi: 10.1145/242223.242257.

[32] Michael R. Clarkson and Fred B. Schneider. “Hyperproperties”. In: Journal of Computer
Security 18.6 (Sept. 20, 2010). Ed. by Andrei Sabelfeld, pp. 1157–1210. issn: 18758924,
0926227X. doi: 10.3233/JCS-2009-0393.

[33] Michael R. Clarkson et al. “Temporal Logics for Hyperproperties”. In: Principles of Se-
curity and Trust. Ed. by Martín Abadi and Steve Kremer. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer, 2014, pp. 265–284. isbn: 978-3-642-54792-8. doi:
10.1007/978-3-642-54792-8_15.

[34] Byron Cook, Andreas Podelski, and Andrey Rybalchenko. “Terminator: Beyond Safety”.
In: Computer Aided Verification. Ed. by Thomas Ball and Robert B. Jones. Lecture Notes
in Computer Science. Berlin, Heidelberg: Springer, 2006, pp. 415–418. isbn: 978-3-540-
37411-4. doi: 10.1007/11817963_37.

[35] Patrick Cousot. Principles of Abstract Interpretation. Cambridge, MA, USA: MIT Press,
Sept. 21, 2021. 832 pp. isbn: 978-0-262-04490-5.

104 Bibliography

[36] Crispin Cowan et al. “StackGuard: Automatic Adaptive Detection and Prevention of
Buffer-Overflow Attacks”. In: 7th {USENIX} Security Symposium ({USENIX} Security
98). 1998. url: https : / / www . usenix . org / conference / 7th - usenix - security -
symposium/stackguard-automatic-adaptive-detection-and-prevention.

[37] Cas Cremers et al. “A Comprehensive Symbolic Analysis of TLS 1.3”. In: Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security. CCS
’17. New York, NY, USA: Association for Computing Machinery, Oct. 30, 2017, pp. 1773–
1788. isbn: 978-1-4503-4946-8. doi: 10/gf83z9.

[38] CVE-2014-0160. url: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2014-0160.

[39] Cyber Attacks Hit Two French Hospitals in One Week. France 24. Feb. 16, 2021. url:
https://www.france24.com/en/europe/20210216-cyber-attacks-hit-two-french-
hospitals-in-one-week.

[40] Lesly-Ann Daniel, Sebastien Bardin, and Tamara Rezk. “Binsec/Rel: Efficient Relational
Symbolic Execution for Constant-Time at Binary-Level”. In: 2020 IEEE Symposium on
Security and Privacy (SP). 2020 IEEE Symposium on Security and Privacy (SP). San
Francisco, CA, USA: IEEE, May 2020, pp. 1021–1038. isbn: 978-1-72813-497-0. doi: 10.
1109/SP40000.2020.00074.

[41] Adnan Darwiche. “Decomposable Negation Normal Form”. In: Journal of the ACM 48.4
(July 1, 2001), pp. 608–647. issn: 0004-5411. doi: 10/czk9nk.

[42] Adnan Darwiche. “New Advances in Compiling CNF to Decomposable Negation Normal
Form”. In: Proceedings of the 16th European Conference on Artificial Intelligence. ECAI’04.
NLD: IOS Press, Aug. 22, 2004, pp. 318–322. isbn: 978-1-58603-452-8.

[43] Adnan Darwiche. “On the Tractable Counting of Theory Models and Its Application to
Truth Maintenance and Belief Revision”. In: Journal of Applied Non-Classical Logics 11
(2000), pp. 1–2.

[44] Robin David et al. “BINSEC/SE: A Dynamic Symbolic Execution Toolkit for Binary-
Level Analysis”. In: 2016 IEEE 23rd International Conference on Software Analysis, Evo-
lution, and Reengineering (SANER). 2016 IEEE 23rd International Conference on Soft-
ware Analysis, Evolution and Reengineering (SANER). Suita: IEEE, Mar. 2016, pp. 653–
656. isbn: 978-1-5090-1855-0. doi: 10.1109/SANER.2016.43.

[45] Robin David et al. “Specification of Concretization and Symbolization Policies in Symbolic
Execution”. In: Proceedings of the 25th International Symposium on Software Testing
and Analysis. ISSTA 2016. New York, NY, USA: Association for Computing Machinery,
July 18, 2016, pp. 36–46. isbn: 978-1-4503-4390-9. doi: 10.1145/2931037.2931048.

[46] Jesús A. De Loera et al. “Effective Lattice Point Counting in Rational Convex Polytopes”.
In: Journal of Symbolic Computation. Symbolic Computation in Algebra and Geometry
38.4 (Oct. 1, 2004), pp. 1273–1302. issn: 0747-7171. doi: 10/cf2mq7.

[47] Leonardo de Moura and Nikolaj Bjørner. “Efficient E-Matching for SMT Solvers”. In:
Automated Deduction – CADE-21. Ed. by Frank Pfenning. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer, 2007, pp. 183–198. isbn: 978-3-540-73595-3. doi:
10.1007/978-3-540-73595-3_13.

[48] Leonardo de Moura and Nikolaj Bjørner. “Z3: An Efficient SMT Solver”. In: Tools and
Algorithms for the Construction and Analysis of Systems. Ed. by C. R. Ramakrishnan
and Jakob Rehof. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2008,
pp. 337–340. isbn: 978-3-540-78800-3. doi: 10.1007/978-3-540-78800-3_24.

Bibliography 105

[49] Adel Djoudi and Sébastien Bardin. “BINSEC: Binary Code Analysis with Low-Level Re-
gions”. In: Tools and Algorithms for the Construction and Analysis of Systems. Ed. by
Christel Baier and Cesare Tinelli. Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer, 2015, pp. 212–217. isbn: 978-3-662-46681-0. doi: 10.1007/978-3-662-46681-
0_17.

[50] Eelco Dolstra. “The Purely Functional Software Deployment Model”. University of Utrecht,
2006. isbn: 9789039341308.

[51] Arnaud Durand, Miki Hermann, and Phokion G. Kolaitis. “Subtractive Reductions and
Complete Problems for Counting Complexity Classes”. In: Mathematical Foundations of
Computer Science 2000. International Symposium on Mathematical Foundations of Com-
puter Science. Springer, Berlin, Heidelberg, Aug. 28, 2000, pp. 323–332. doi: 10/b5hzzb.

[52] Louis Dureuil et al. “FISSC: A Fault Injection and Simulation Secure Collection”. In:
Computer Safety, Reliability, and Security. Ed. by Amund Skavhaug, Jérémie Guiochet,
and Friedemann Bitsch. Lecture Notes in Computer Science. Cham: Springer International
Publishing, 2016, pp. 3–11. isbn: 978-3-319-45477-1. doi: 10/ggskcw.

[53] Hélène Fargier and Pierre Marquis. “On the Use of Partially Ordered Decision Graphs in
Knowledge Compilation and Quantified Boolean Formulae”. In: Proceedings, the Twenty-
First National Conference on Artificial Intelligence and the Eighteenth Innovative Applica-
tions of Artificial Intelligence Conference, July 16-20, 2006, Boston, Massachusetts, USA.
AAAI Press, 2006, pp. 42–47. url: http://www.aaai.org/Library/AAAI/2006/aaai06-
007.php.

[54] Benjamin Farinier. “Decision Procedures for Vulnerability Analysis”. Université Grenoble-
Alpes, 2020.

[55] Benjamin Farinier et al. “Arrays Made Simpler: An Efficient, Scalable and Thorough
Preprocessing”. In: LPAR-22. 22nd International Conference on Logic for Programming,
Artificial Intelligence and Reasoning. Oct. 2018, pp. 363–344. doi: 10.29007/dc9b.

[56] Benjamin Farinier et al. “Model Generation for Quantified Formulas: A Taint-Based
Approach”. In: Computer Aided Verification. Ed. by Hana Chockler and Georg Weis-
senbacher. Lecture Notes in Computer Science. Cham: Springer International Publishing,
2018, pp. 294–313. isbn: 978-3-319-96142-2. doi: 10.1007/978-3-319-96142-2_19.

[57] Daniel Fremont, Markus Rabe, and Sanjit Seshia. “Maximum Model Counting”. In: Pro-
ceedings of the AAAI Conference on Artificial Intelligence 31.1 (1 Feb. 12, 2017). issn:
2374-3468. url: https://ojs.aaai.org/index.php/AAAI/article/view/11138.

[58] Yeting Ge and Leonardo de Moura. “Complete Instantiation for Quantified Formulas in
Satisfiabiliby Modulo Theories”. In: Computer Aided Verification. Ed. by Ahmed Bouaj-
jani and Oded Maler. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer,
2009, pp. 306–320. isbn: 978-3-642-02658-4. doi: 10.1007/978-3-642-02658-4_25.

[59] Jaco Geldenhuys, Matthew B. Dwyer, and Willem Visser. “Probabilistic Symbolic Execu-
tion”. In: Proceedings of the 2012 International Symposium on Software Testing and Anal-
ysis. ISSTA 2012. New York, NY, USA: Association for Computing Machinery, July 15,
2012, pp. 166–176. isbn: 978-1-4503-1454-1. doi: 10/ggbn25.

[60] Christophe Giraud and Hugues Thiebeauld. “A Survey on Fault Attacks”. In: Smart Card
Research and Advanced Applications VI. Ed. by Jean-Jacques Quisquater et al. IFIP
International Federation for Information Processing. Boston, MA: Springer US, 2004,
pp. 159–176. isbn: 978-1-4020-8147-7. doi: 10/b5jk83.

106 Bibliography

[61] Guillaume Girol, Benjamin Farinier, and Sébastien Bardin. “Not All Bugs Are Created
Equal, But Robust Reachability Can Tell the Difference”. In: Computer Aided Verification.
Ed. by Alexandra Silva and K. Rustan M. Leino. Lecture Notes in Computer Science.
Cham: Springer, 2021, pp. 669–693. isbn: 978-3-030-81685-8. doi: 10/gmn5z6.

[62] Patrice Godefroid. “Higher-Order Test Generation”. In: Proceedings of the 32nd ACM
SIGPLAN Conference on Programming Language Design and Implementation. PLDI ’11.
New York, NY, USA: Association for Computing Machinery, June 4, 2011, pp. 258–269.
isbn: 978-1-4503-0663-8. doi: 10/dc3cxv.

[63] Patrice Godefroid, Nils Klarlund, and Koushik Sen. “DART: Directed Automated Ran-
dom Testing”. In: Proceedings of the 2005 ACM SIGPLAN Conference on Programming
Language Design and Implementation. PLDI ’05. Chicago, IL, USA: Association for Com-
puting Machinery, June 12, 2005, pp. 213–223. isbn: 978-1-59593-056-9. doi: 10.1145/
1065010.1065036.

[64] Patrice Godefroid, Michael Y. Levin, and David Molnar. “SAGE: Whitebox Fuzzing for
Security Testing: SAGE Has Had a Remarkable Impact at Microsoft.” In: Queue 10.1
(Jan. 11, 2012), pp. 20–27. issn: 1542-7730. doi: 10.1145/2090147.2094081.

[65] J. A. Goguen and J. Meseguer. “Security Policies and Security Models”. In: 1982 IEEE
Symposium on Security and Privacy. 1982 IEEE Symposium on Security and Privacy.
Oakland, CA, USA: IEEE, Apr. 1982, pp. 11–11. isbn: 978-0-8186-0410-2. doi: 10.1109/
SP.1982.10014.

[66] Carla Gomes and Meinolf Sellmann. “Streamlined Constraint Reasoning”. In: Principles
and Practice of Constraint Programming – CP 2004. Ed. by Mark Wallace. Lecture Notes
in Computer Science. Berlin, Heidelberg: Springer, 2004, pp. 274–289. isbn: 978-3-540-
30201-8. doi: 10/ft6grr.

[67] Carla P. Gomes, Ashish Sabharwal, and Bart Selman. “Model Counting”. In: Handbook
of Satisfiability. IOS Press, 2008.

[68] Reiner Hähnle and Marieke Huisman. “Deductive Software Verification: From Pen-and-
Paper Proofs to Industrial Tools”. In: Computing and Software Science: State of the Art
and Perspectives. Ed. by Bernhard Steffen and Gerhard Woeginger. Lecture Notes in
Computer Science. Cham: Springer International Publishing, 2019, pp. 345–373. isbn:
978-3-319-91908-9. doi: 10.1007/978-3-319-91908-9_18.

[69] Trevor Hansen, Peter Schachte, and Harald Søndergaard. “State Joining and Splitting for
the Symbolic Execution of Binaries”. In: Runtime Verification. Ed. by Saddek Bensalem
and Doron A. Peled. Vol. 5779. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009,
pp. 76–92. isbn: 978-3-642-04693-3 978-3-642-04694-0. doi: 10.1007/978-3-642-04694-
0_6.

[70] Hans Hansson and Bengt Jonsson. “A Logic for Reasoning about Time and Reliability”. In:
Formal Aspects of Computing 6.5 (Sept. 1994), pp. 512–535. issn: 0934-5043, 1433-299X.
doi: 10.1007/BF01211866.

[71] Sergiu Hart, Micha Sharir, and Amir Pnueli. “Termination of Probabilistic Concurrent
Program”. In: ACM Transactions on Programming Languages and Systems 5.3 (July 1,
1983), pp. 356–380. issn: 0164-0925. doi: 10.1145/2166.357214.

[72] Sean Heelan. “Automatic Generation of Control Flow Hijacking Exploits for Software
Vulnerabilities”. MA thesis. University of Oxford, 2009.

Bibliography 107

[73] Jonathan Heusser and Pasquale Malacaria. “Quantifying Information Leaks in Software”.
In: Proceedings of the 26th Annual Computer Security Applications Conference on - AC-
SAC ’10. The 26th Annual Computer Security Applications Conference. Austin, Texas:
ACM Press, 2010, p. 261. isbn: 978-1-4503-0133-6. doi: 10.1145/1920261.1920300.

[74] Christian Holler, Kim Herzig, and Andreas Zeller. “Fuzzing with Code Fragments”. In:
21st USENIX Security Symposium (USENIX Security 12). Bellevue, WA: USENIX Asso-
ciation, Aug. 2012, pp. 445–458. isbn: 978-931971-95-9. url: https://www.usenix.org/
conference/usenixsecurity12/technical-sessions/presentation/holler.

[75] Jinbo Huang. “Combining Knowledge Compilation and Search for Conformant Probabilis-
tic Planning”. In: Proceedings of the Sixteenth International Conference on International
Conference on Automated Planning and Scheduling. ICAPS’06. Cumbria, UK: AAAI
Press, June 6, 2006, pp. 253–262. isbn: 978-1-57735-270-9.

[76] Jinbo Huang, M. Chavira, and Adnan Darwiche. “Solving MAP Exactly by Searching on
Compiled Arithmetic Circuits”. In: AAAI. 2006.

[77] Seonmo Kim and Stephen McCamant. “Bit-Vector Model Counting Using Statistical Es-
timation”. In: Tools and Algorithms for the Construction and Analysis of Systems. Ed. by
Dirk Beyer and Marieke Huisman. Lecture Notes in Computer Science. Cham: Springer
International Publishing, 2018, pp. 133–151. isbn: 978-3-319-89960-2. doi: 10/ghtr84.

[78] Greg Kroah-Hartman. Re: Memory Leak in U_audio_start_playback [LWN.Net]. url:
https://lwn.net/ml/linux-kernel/20201027164343.GA1523116@kroah.com/.

[79] Damian Kurpiewski, Michał Knapik, and Wojciech Jamroga. “On Domination and Control
in Strategic Ability”. In: AAMAS (2019), p. 9.

[80] Volodymyr Kuznetsov et al. “Efficient State Merging in Symbolic Execution”. In: ACM
SIGPLAN Notices 47.6 (June 11, 2012), pp. 193–204. issn: 0362-1340. doi: 10.1145/
2345156.2254088.

[81] Jean-Marie Lagniez and Pierre Marquis. “A Recursive Algorithm for Projected Model
Counting”. In: Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17,
2019), pp. 1536–1543. issn: 2374-3468, 2159-5399. doi: 10/ghkjdq.

[82] Jean-Marie Lagniez and Pierre Marquis. “An Improved Decision-DNNF Compiler”. In:
Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence.
Twenty-Sixth International Joint Conference on Artificial Intelligence. Melbourne, Aus-
tralia: International Joint Conferences on Artificial Intelligence Organization, Aug. 2017,
pp. 667–673. isbn: 978-0-9992411-0-3. doi: 10/gh6rkj.

[83] Johannes Lampel et al. “When Life Gives You Oranges: Detecting and Diagnosing Inter-
mittent Job Failures at Mozilla”. In: Proceedings of the 29th ACM Joint Meeting on Euro-
pean Software Engineering Conference and Symposium on the Foundations of Software En-
gineering. ESEC/FSE 2021. New York, NY, USA: Association for Computing Machinery,
Aug. 20, 2021, pp. 1381–1392. isbn: 978-1-4503-8562-6. doi: 10.1145/3468264.3473931.

[84] Nian-Ze Lee and Jie-Hong R. Jiang. “Towards Formal Evaluation and Verification of
Probabilistic Design”. In: Proceedings of the 2014 IEEE/ACM International Conference
on Computer-Aided Design. ICCAD ’14. San Jose, California: IEEE Press, Nov. 3, 2014,
pp. 340–347. isbn: 978-1-4799-6277-8.

108 Bibliography

[85] Nian-Ze Lee, Yen-Shi Wang, and Jie-Hong R. Jiang. “Solving Exist-Random Quantified
Stochastic Boolean Satisfiability via Clause Selection”. In: Proceedings of the Twenty-
Seventh International Joint Conference on Artificial Intelligence. Twenty-Seventh Inter-
national Joint Conference on Artificial Intelligence {IJCAI-18}. Stockholm, Sweden: In-
ternational Joint Conferences on Artificial Intelligence Organization, July 2018, pp. 1339–
1345. isbn: 978-0-9992411-2-7. doi: 10.24963/ijcai.2018/186.

[86] Xavier Leroy et al. “CompCert - A Formally Verified Optimizing Compiler”. In: ERTS
2016: Embedded Real Time Software and Systems, 8th European Congress. Jan. 27, 2016.
url: https://hal.inria.fr/hal-01238879.

[87] M. L. Littman, J. Goldsmith, and M. Mundhenk. “The Computational Complexity of
Probabilistic Planning”. In: Journal of Artificial Intelligence Research 9 (Aug. 1, 1998),
pp. 1–36. issn: 1076-9757. doi: 10.1613/jair.505.

[88] Michael L. Littman. “Probabilistic Propositional Planning: Representations and Complex-
ity”. In: In Proceedings of the Fourteenth National Conference on Artificial Intelligence.
MIT Press, 1997, pp. 748–754.

[89] Michael L. Littman, Stephen M. Majercik, and Toniann Pitassi. “Stochastic Boolean
Satisfiability”. In: Journal of Automated Reasoning 27.3 (3 Oct. 1, 2001), pp. 251–296.
issn: 1573-0670. doi: 10.1023/A:1017584715408.

[90] Benjamin Livshits et al. “In Defense of Soundiness: A Manifesto”. In: Communications of
the ACM 58.2 (Jan. 28, 2015), pp. 44–46. issn: 0001-0782. doi: 10/gpbgzs.

[91] Qingzhou Luo et al. “An Empirical Analysis of Flaky Tests”. In: Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software Engineering. FSE
2014. New York, NY, USA: Association for Computing Machinery, Nov. 11, 2014, pp. 643–
653. isbn: 978-1-4503-3056-5. doi: 10.1145/2635868.2635920.

[92] Stephen M. Majercik and Byron Boots. “DC-SSAT: A Divide-and-Conquer Approach to
Solving Stochastic Satisfiability Problems Efficiently”. In: Proceedings of the 20th National
Conference on Artificial Intelligence - Volume 1. AAAI’05. Pittsburgh, Pennsylvania:
AAAI Press, July 9, 2005, pp. 416–422. isbn: 978-1-57735-236-5.

[93] Barton P. Miller et al. Fuzz Revisited: A Re-Examination of the Reliability of UNIX Util-
ities and Services. University of Wisconsin-Madison Department of Computer Sciences,
1995.

[94] Christian Muise et al. “Dsharp: Fast d-DNNF Compilation with sharpSAT”. In: Advances
in Artificial Intelligence. Ed. by Leila Kosseim and Diana Inkpen. Lecture Notes in Com-
puter Science. Berlin, Heidelberg: Springer, 2012, pp. 356–361. isbn: 978-3-642-30353-1.
doi: 10/gjjsfh.

[95] Nicholas Nethercote and Julian Seward. “Valgrind: A Framework for Heavyweight Dy-
namic Binary Instrumentation”. In: ACM Sigplan notices 42.6 (2007), pp. 89–100. doi:
10/dw6n36.

[96] Aina Niemetz and Mathias Preiner. Bitwuzla at the SMT-COMP 2020. May 29, 2020.
arXiv: 2006.01621 [cs]. url: http://arxiv.org/abs/2006.01621.

[97] Aina Niemetz, Mathias Preiner, and Armin Biere. “Boolector 2.0: System Description”. In:
Journal on Satisfiability, Boolean Modeling and Computation 9.1 (June 1, 2015), pp. 53–
58. issn: 15740617. doi: 10/ghv4cd.

[98] Peter W. O’Hearn. “Incorrectness Logic”. In: Proceedings of the ACM on Programming
Languages 4 (POPL Jan. 2020), pp. 1–32. issn: 2475-1421, 2475-1421. doi: 10.1145/
3371078.

Bibliography 109

[99] Christos H. Papadimitriou. “Games against Nature”. In: Journal of Computer and System
Sciences 31.2 (Oct. 1, 1985), pp. 288–301. issn: 0022-0000. doi: 10.1016/0022-0000(85)
90045-5.

[100] J. D. Park and A. Darwiche. “Complexity Results and Approximation Strategies for MAP
Explanations”. In: Journal of Artificial Intelligence Research 21 (2004), pp. 101–133. issn:
1076-9757. doi: 10.1613/jair.1236.

[101] Knot Pipatsrisawat and Adnan Darwiche. “A New D-DNNF-Based Bound Computation
Algorithm for Functional E-MAJSAT”. In: IJCAI. 2009.

[102] David A. Ramos and Dawson Engler. “Under-Constrained Symbolic Execution: Correct-
ness Checking for Real Code”. In: Proceedings of the 24th USENIX Conference on Security
Symposium. SEC’15. USA: USENIX Association, Aug. 12, 2015, pp. 49–64. isbn: 978-1-
931971-23-2.

[103] Frederic Recoules et al. “Get Rid of Inline Assembly through Verification-Oriented Lift-
ing”. In: 2019 34th IEEE/ACM International Conference on Automated Software Engi-
neering (ASE). 2019 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE). San Diego, CA, USA: IEEE, Nov. 2019, pp. 577–589. isbn: 978-1-
72812-508-4. doi: 10.1109/ASE.2019.00060.

[104] Andrew Reynolds et al. “Finite Model Finding in SMT”. In: Computer Aided Verification.
Ed. by Natasha Sharygina and Helmut Veith. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer, 2013, pp. 640–655. isbn: 978-3-642-39799-8. doi: 10.1007/978-3-
642-39799-8_42.

[105] H. G. Rice. “Classes of Recursively Enumerable Sets and Their Decision Problems”. In:
Transactions of the American Mathematical Society 74.2 (1953), pp. 358–366. issn: 0002-
9947, 1088-6850. doi: 10.1090/S0002-9947-1953-0053041-6.

[106] Xavier Rival and Kwangkeun Yi. Introduction to Static Analysis: An Abstract Inter-
pretation Perspective. Cambridge, MA, USA: MIT Press, Feb. 11, 2020. 320 pp. isbn:
978-0-262-04341-0.

[107] Neil Robertson and P. D Seymour. “Graph Minors. II. Algorithmic Aspects of Tree-
Width”. In: Journal of Algorithms 7.3 (Sept. 1, 1986), pp. 309–322. issn: 0196-6774. doi:
10.1016/0196-6774(86)90023-4.

[108] Dan Roth. “On the Hardness of Approximate Reasoning”. In: Artificial Intelligence 82.1
(Apr. 1, 1996), pp. 273–302. issn: 0004-3702. doi: 10.1016/0004-3702(94)00092-1.

[109] Koushik Sen, Darko Marinov, and Gul Agha. “CUTE: A Concolic Unit Testing Engine for
C”. In: Proceedings of the 10th European Software Engineering Conference Held Jointly
with 13th ACM SIGSOFT International Symposium on Foundations of Software Engineer-
ing. ESEC/FSE-13. New York, NY, USA: Association for Computing Machinery, Sept. 1,
2005, pp. 263–272. isbn: 978-1-59593-014-9. doi: 10.1145/1081706.1081750.

[110] Konstantin Serebryany et al. “AddressSanitizer: A Fast Address Sanity Checker”. In:
2012 USENIX Annual Technical Conference (USENIX ATC 12). 2012, pp. 309–318. url:
https://www.usenix.org/conference/atc12/technical-sessions/presentation/
serebryany.

[111] Kostya Serebryany. “OSS-Fuzz - Google’s Continuous Fuzzing Service for Open Source
Software”. In: (2017). url: https://www.usenix.org/conference/usenixsecurity17/
technical-sessions/presentation/serebryany.

110 Bibliography

[112] Shubham Sharma et al. “GANAK: A Scalable Probabilistic Exact Model Counter”. In:
Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence,
IJCAI-19. International Joint Conferences on Artificial Intelligence Organization, July
2019, pp. 1169–1176. doi: 10/gh5qx7.

[113] Solomon Eyal Shimony. “Finding MAPs for Belief Networks Is NP-hard”. In: Artificial
Intelligence 68.2 (Aug. 1, 1994), pp. 399–410. issn: 0004-3702. doi: 10.1016/0004-
3702(94)90072-8.

[114] Yan Shoshitaishvili et al. “SOK: (State of) The Art of War: Offensive Techniques in
Binary Analysis”. In: 2016 IEEE Symposium on Security and Privacy (SP). 2016 IEEE
Symposium on Security and Privacy (SP). May 2016, pp. 138–157. doi: 10.1109/SP.
2016.17.

[115] Julien Signoles, Nikolai Kosmatov, and Kostyantyn Vorobyov. “E-ACSL, a Runtime Ver-
ification Tool for Safety and Security of C Programs (Tool Paper).” In: RV-CuBES. 2017,
pp. 164–173.

[116] Fu Song and Tayssir Touili. “Efficient CTL Model-Checking for Pushdown Systems”. In:
Theoretical Computer Science 549 (Sept. 11, 2014), pp. 127–145. issn: 0304-3975. doi:
10.1016/j.tcs.2014.07.001.

[117] Marc Thurley. “sharpSAT – Counting Models with Advanced Component Caching and
Implicit BCP”. In: Theory and Applications of Satisfiability Testing - SAT 2006. Ed. by
Armin Biere and Carla P. Gomes. Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer, 2006, pp. 424–429. isbn: 978-3-540-37207-3. doi: 10/dxdj4v.

[118] S. Toda. “On the Computational Power of PP and (+)P”. In: Proceedings of the 30th
Annual Symposium on Foundations of Computer Science. SFCS ’89. USA: IEEE Computer
Society, Oct. 30, 1989, pp. 514–519. isbn: 978-0-8186-1982-3. doi: 10/frvmnp.

[119] L. G. Valiant. “The Complexity of Computing the Permanent”. In: Theoretical Computer
Science 8.2 (Jan. 1, 1979), pp. 189–201. issn: 0304-3975. doi: 10/c6rvdw.

[120] Anjiang Wei et al. “Preempting Flaky Tests via Non-Idempotent-Outcome Tests”. In:
Proceedings of the 44th International Conference on Software Engineering. ICSE ’22.
New York, NY, USA: Association for Computing Machinery, May 21, 2022, pp. 1730–
1742. isbn: 978-1-4503-9221-1. doi: 10.1145/3510003.3510170.

[121] Nicky Williams et al. “PathCrawler: Automatic Generation of Path Tests by Combining
Static and Dynamic Analysis”. In: Dependable Computing - EDCC 5. Ed. by Mario Dal
Cin, Mohamed Kaâniche, and András Pataricza. Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer, 2005, pp. 281–292. isbn: 978-3-540-32019-7. doi: 10.1007/
11408901_21.

[122] Yexiang Xue et al. “Solving Marginal MAP Problems with NP Oracles and Parity Con-
straints”. In: Advances in Neural Information Processing Systems. Vol. 29. Curran As-
sociates, Inc., 2016. url: https://proceedings.neurips.cc/paper/2016/hash/
a532400ed62e772b9dc0b86f46e583ff-Abstract.html.

	Abstract
	Remerciements
	Contents
	1 Introduction
	1.1 Context
	1.2 Goal and challenges
	1.2.1 Challenges
	1.2.2 Proposal

	1.3 Contributions
	1.3.1 Primary contributions
	1.3.2 Secondary contributions

	1.4 Outline

	2 Motivation
	3 Background
	3.1 Program analysis
	3.1.1 The object: transition systems
	3.1.2 The proof goals: trace properties
	3.1.3 Reasoning by abstraction
	3.1.4 Beyond trace properties: hyperproperties

	3.2 Satisfiability of formulas and related problems
	3.2.1 Propositional formulas
	3.2.2 Satisfiability, model counting and related problems
	3.2.3 Satisfiability modulo theory
	3.2.4 Bitvectors and arrays

	4 Robust reachability
	4.1 Introduction
	4.2 Motivation
	4.3 Background
	4.4 Robust reachability
	4.4.1 Definition
	4.4.2 Relation with non-interference
	4.4.3 Interpretation in terms of hyperproperty
	4.4.4 Interpretation in terms of temporal logic
	4.4.5 Robust reachability and automatic verification

	4.5 Automatically proving robust reachability
	4.5.1 Robust Bounded Model Checking
	4.5.2 Robust Symbolic Execution
	4.5.3 Path merging
	4.5.4 Revisiting standard optimizations and constructs
	4.5.5 About constraint solving

	4.6 Proof-of-concept of a robust symbolic execution engine
	4.6.1 Implementation
	4.6.2 Case studies
	4.6.3 Experimental evaluation
	4.6.4 Additional considerations

	4.7 Related work
	4.8 Conclusion

	5 Quantitative robustness
	5.1 Introduction
	5.2 Motivating example
	5.3 Background & Notations
	5.3.1 Normal forms for model counting
	5.3.2 Basic algorithms for model counting
	5.3.3 Beyond model counting

	5.4 Quantitative robustness
	5.4.1 Formal definition
	5.4.2 Interesting properties
	5.4.3 Comparison to other quantitative formalisms

	5.5 Quantitative robust symbolic execution
	5.5.1 Going quantitative from RSE
	5.5.2 Path merging
	5.5.3 Path pruning

	5.6 Formalisms for f-E-MAJSAT
	5.6.1 Model counting
	5.6.2 Stochastic Boolean satisfiability
	5.6.3 Bayesian networks
	5.6.4 Probabilistic Planning
	5.6.5 Summary

	5.7 Algorithms for f-E-MAJSAT
	5.7.1 DC-SSAT
	5.7.2 Maxcount
	5.7.3 ssatABC
	5.7.4 ddnnf-based techniques
	5.7.5 Summary

	5.8 Relaxation
	5.8.1 Upper bound
	5.8.2 Lower bounds
	5.8.3 Quality of the resulting interval
	5.8.4 Summary

	5.9 Implementation & experiments
	5.9.1 Popcon, a front-end for multiple f-E-MAJSAT algorithms
	5.9.2 Experimental evaluation
	5.9.3 Case studies

	5.10 Related work & discussion
	5.11 Conclusion

	6 Conclusion and future work
	6.1 Conclusion
	6.2 Perspectives

	A Résumé substantiel en français
	Bibliography

