
HAL Id: tel-03879252
https://theses.hal.science/tel-03879252v1

Submitted on 30 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Remote hardware attacks on connected devices
Joseph Gravellier

To cite this version:
Joseph Gravellier. Remote hardware attacks on connected devices. Other. Université de Lyon, 2021.
English. �NNT : 2021LYSEM034�. �tel-03879252�

https://theses.hal.science/tel-03879252v1
https://hal.archives-ouvertes.fr

THESE de DOCTORAT DE L'UNIVERSITE DE LYON

Remote Hardware Attacks on
Connected Devices

N° d'ordre NNT: 2021LYSEM034

opérée au sein du
Laboratoire Systèmes et Architectures Sécurisés et Thales

Devant le jury composé de:

Joseph Gravellier

Jean-Max DUTERTRE, Professeur, Mines St Etienne

Yannick TEGLIA, Ingénieur expert sécurité matérielle, Thales

Philippe LOUBET MOUNDI, Manager expert sécurité matérielle, Thales

Directeur de thèse

Encadrant

Encadrant

Régis LEVEUGLE, Professeur, Grenoble INP, Université Grenoble Alpes

Emmanuel PROUFF, Chef adjoint de la division Produits et Services Sécurisés, ANSSI

Jacques FOURNIER, Chef du laboratoire de sécurité, CEA-Leti

Lilian BOSSUET, Professeur, LaHC/Université Jean Monnet

Rapporteur

Examinateur

Examinateur

Examinateur

Ecole Doctorale N°488
Science, Ingéniérie, Santé

Microélectronique / Systèmes Embarqués Sécurisés

Soutenue publiquement le 03/12/2021 par:

Edith KUSSENER, Professeur, ISEN Présidente / Rapportrice

ABSI Nabil MR Génie industriel CMP

AUGUSTO Vincent MR Génie industriel CIS

AVRIL Stéphane PR Mécanique et ingénierie CIS

BADEL Pierre PR Mécanique et ingénierie CIS

BALBO Flavien PR Informatique FAYOL

BASSEREAU Jean-François PR Sciences et génie des matériaux SMS

BATTON-HUBERT Mireille PR Mathématiques appliquées FAYOL

BEIGBEDER Michel MA Informatique FAYOL

BILAL Blayac DR Sciences et génie de l'environnement SPIN

BLAYAC Sylvain PR Microélectronique CMP

BOISSIER Olivier PR Informatique FAYOL

BONNEFOY Olivier PR Génie des Procédés SPIN

BORBELY Andras DR Sciences et génie des matériaux SMS

BOUCHER Xavier PR Génie Industriel FAYOL

BRUCHON Julien PR Mécanique et ingénierie SMS

CAMEIRAO Ana PR Génie des Procédés SPIN

CHRISTIEN Frédéric PR Science et génie des matériaux SMS

DAUZERE-PERES Stéphane PR Génie Industriel CMP

DEBAYLE Johan MR Sciences des Images et des Formes SPIN

DEGEORGE Jean-Michel MA Génie industriel Fayol

DELAFOSSE David PR Sciences et génie des matériaux SMS

DELORME Xavier PR Génie industriel FAYOL

DESRAYAUD Christophe PR Mécanique et ingénierie SMS

DJENIZIAN Thierry PR Science et génie des matériaux CMP

BERGER-DOUCE Sandrine PR Sciences de gestion FAYOL

DRAPIER Sylvain PR Mécanique et ingénierie SMS

DUTERTRE Jean-Max PR Microélectronique CMP

EL MRABET Nadia MA Microélectronique CMP

FAUCHEU Jenny MA Sciences et génie des matériaux SMS

FAVERGEON Loïc MR Génie des Procédés SPIN

FEILLET Dominique PR Génie Industriel CMP

FOREST Valérie PR Génie des Procédés CIS

FRACZKIEWICZ Anna DR Sciences et génie des matériaux SMS

GAVET Yann MA Sciences des Images et des Formes SPIN

GERINGER Jean MA Sciences et génie des matériaux CIS

GONDRAN Natacha MA Sciences et génie de l'environnement FAYOL

GONZALEZ FELIU Jesus MA Sciences économiques FAYOL

GRAILLOT Didier DR Sciences et génie de l'environnement SPIN

GRIMAUD Frederic EC Génie mathématiques et industriel FAYOL

GROSSEAU Philippe DR Génie des Procédés SPIN

GRUY Frédéric PR Génie des Procédés SPIN

HAN Woo-Suck MR Mécanique et ingénierie SMS

HERRI Jean Michel PR Génie des Procédés SPIN

ISMAILOVA Esma MC Microélectronique CMP

KERMOUCHE Guillaume PR Mécanique et Ingénierie SMS

KLOCKER Helmut DR Sciences et génie des matériaux SMS

LAFOREST Valérie DR Sciences et génie de l'environnement FAYOL

LERICHE Rodolphe DR Mécanique et ingénierie FAYOL

LIOTIER Pierre-Jacques MA Mécanique et ingénierie SMS

MEDINI Khaled EC Sciences et génie de l'environnement FAYOL

MOLIMARD Jérôme PR Mécanique et ingénierie CIS

MOULIN Nicolas MA Mécanique et ingénierie SMS

MOUTTE Jacques MR Génie des Procédés SPIN

NAVARRO Laurent MR Mécanique et ingénierie CIS

NEUBERT Gilles PR Génie industriel FAYOL

NIKOLOVSKI Jean-Pierre Ingénieur de recherche Mécanique et ingénierie CMP

O CONNOR Rodney Philip PR Microélectronique CMP

PICARD Gauthier PR Informatique FAYOL

PINOLI Jean Charles PR Sciences des Images et des Formes SPIN

POURCHEZ Jérémy DR Génie des Procédés CIS

ROUSSY Agnès MA Microélectronique CMP

SANAUR Sébastien MA Microélectronique CMP

SERRIS Eric IRD Génie des Procédés FAYOL

STOLARZ Jacques CR Sciences et génie des matériaux SMS

VALDIVIESO François PR Sciences et génie des matériaux SMS

VIRICELLE Jean Paul DR Génie des Procédés SPIN

WOLSKI Krzystof DR Sciences et génie des matériaux SMS

XIE Xiaolan PR Génie industriel CIS

YUGMA Gallian MR Génie industriel CMP

EMSE : Enseignants-chercheurs et chercheurs autorisés à diriger des thèses de doctorat (titulaires d’un doctorat d’État ou d’une HDR)

Spécialités doctorales Responsables :

SCIENCES ET GENIE DES MATERIAUX K. Wolski Directeur de recherche

MECANIQUE ET INGENIERIE S. Drapier, professeur

GENIE DES PROCEDES F. Gruy, Maître de recherche

SCIENCES DE LA TERRE B. Guy, Directeur de recherche

SCIENCES ET GENIE DE L’ENVIRONNEMENT V.Laforest, Directeur de recherche

Spécialités doctorales Responsables

MATHEMATIQUES APPLIQUEES M. Batton-Hubert

INFORMATIQUE O. Boissier, Professeur

SCIENCES DES IMAGES ET DES FORMES JC. Pinoli, Professeur

GENIE INDUSTRIEL N. Absi, Maitre de recherche

MICROELECTRONIQUE Ph. Lalevée, Professeur

M
is

e
à

jo
u

r
:

0
4

/0
2

/2
0

2
1

ABSTRACT

To meet the ever-growing need for performance in silicon devices, integrated-circuit

providers have been increasingly relying on software-hardware cooperation. By control-

ling hardware resources such as power or clock management from the software, devel-

opers earn the possibility to build more flexible and power efficient applications. Despite

the benefits, these hardware components are now exposed to software code and can po-

tentially be misused as open-doors to new types of attacks.

In this thesis we aim at evaluating software-based hardware attacks, a novel attack

family that targets connected devices such as IoT products, smartphones or cloud data-

centers. These attacks take advantage of hardware resources that can be directly accessed

from software in complex integrated-circuits and use them to conduct fault injection and

side-channel analysis exploits. Because they are triggered by software code, they can be

launched remotely and on multiple victim devices regardless of their physical location.

Through the evaluation of software-based hardware attacks we aim at assessing the level

of threat they pose to connected devices security and at providing countermeasure guide-

lines for building resistant systems. The challenge is considerable since any connected

device is potentially endangered.

This manuscript gathers the research work conducted during this thesis to identify

attack vectors in FPGAs and complex SoC systems. Through our experiments we dis-

covered generic software-based hardware attack vectors widely implemented in recent

SoCs that could enable remote hardware attacks. We conducted FPGA-to-FPGA and

FPGA-to-CPU attacks and demonstrated that remote power side-channel analysis was

feasible. These new attack paths represent a serious threat for FPGA-based systems espe-

cially when applied to multi-user cloud FPGAs and heterogeneous SoCs. Then, we went

further by proving that delay-line components, widely implemented in high-end SoCs,

could be used for conducting fault injection and side-channel attacks. We built various

scenarios such as CPU-to-CPU and CPU-to-MCU attacks on Linux-based operating sys-

tems and demonstrated that software-based hardware attacks could successfully break the

logical isolation between processes and lead to the extraction of sensitive information.

Throughout the chapters, we precisely describe the methodology adopted to build

and conduct the attacks along with countermeasure proposals to mitigate their impact.

Finally, according to our experimentations results and to other works published recently,

it appears that any door left open for malwares to gain access to hardware resources could

lead to full disclosure of a target’s stored secrets. Therefore, there is an urgent need to

build on the lessons learned from this thesis and employ countermeasures to effectively

mitigate remote hardware attacks.

iii

TABLE OF CONTENTS

Abstract iii

Table of Contents x

List of Figures xi

List of Tables xv

Glossary xvii

Avant Propos xxi

Résumé xxiii

1 Introduction 1
1.1 Thesis Context . 2
1.2 Thesis Objectives . 3
1.3 Roadmap: From FPGA to CPU exploits 3
1.4 Contributions . 4

1.4.1 Software-based Power Analysis Attacks on FPGAs 4
1.4.2 Software-based Power Analysis Attacks on Complex SoCs 5
1.4.3 Software-based Fault Injection on SoC External Memory Transfers 5

1.5 Outline . 6

2 Background 7
2.1 Introduction to Hardware Attacks . 8

2.1.1 Origins . 8
2.1.2 Attack Classification . 8
2.1.3 Non-Invasive Attack Setup . 10
2.1.4 Non-Invasive Side-Channel Analysis Attacks 11

2.1.4.1 Power Analysis Attacks 11
2.1.4.2 Electromagnetic Analysis Attacks 12
2.1.4.3 Other Side-Channels 13

2.1.5 Non-Invasive Fault Injection Attacks 14
2.1.5.1 Clock and Power Glitch Attacks 14
2.1.5.2 Electromagnetic Glitch Attacks 15

2.2 The Advent of Connected Devices . 16

v

2.2.1 Overview . 16

2.2.2 Applications and Threats . 16

2.2.3 Hardware Attacks: No Future? 18

2.3 Remote Hardware Attacks . 18

2.3.1 The Origins of Remote Hardware Attacks 18

2.3.1.1 The Increasing Complexity of Modern Devices 19

2.3.1.2 The Adoption of Multi-User and Multi-Tasking Systems 20

2.3.1.3 The Emergence of Integrated Security 21

2.3.2 Remote Hardware Attack Families 24

2.3.2.1 TEMPEST Attacks 24

2.3.2.2 Timing and Microarchitectural Attacks 25

2.3.2.3 Software-based Hardware Attacks 28

2.3.3 Software-based Hardware Attack Taxonomy 29

2.3.4 Software-based Fault Injection Attacks 30

2.3.4.1 Overview & Categorization 30

2.3.4.2 Rowhammer-based Bit-flips Injection in DRAM Mem-
ories . 30

2.3.4.3 FPGA-based Power Glitch Injection 32

2.3.4.4 DVFS-based Power/Clock Glitch Injection 34

2.3.4.5 Delay-Line-based Glitch Injection on Memory Transfers 36

2.3.5 Software-based Side-Channel Analysis Attacks 37

2.3.5.1 Overview & Categorization 37

2.3.5.2 FPGAs-based Power Side-Channel Attacks 37

2.3.5.3 ADC-based Power Side-Channel Attacks 39

2.3.5.4 Delay-Line-based Power Side-Channel Attacks 41

2.3.5.5 Intel RAPL-based Power Side-Channel Attacks 41

2.3.6 Software-based Hardware Attack Privileges 42

2.4 Conclusion . 45

3 Software-based Power Analysis Attacks on FPGAs 47
3.1 Chapter Introduction . 48

3.2 Technical Background . 50

3.2.1 FPGAs Voltage Fluctuations . 50

3.2.1.1 Power Supply Fluctuations 50

3.2.1.2 Effect on Logic Propagation Delays 51

3.2.2 Delay Sensors . 51

3.2.2.1 Time-to-Digital Converter-based Sensor 52

3.2.2.2 Ring-Oscillator-based Sensor 53

3.2.3 Threat Model: FPGA-based Power SCA 53

3.2.4 Related Works: Existing Scenarios (2018) 54

3.3 FPGA-to-FPGA - Designing High-Speed RO-based Sensors for FPGA-
based SCA . 55

3.3.1 Introduction . 55

vi

3.3.2 Motivation . 56
3.3.3 A Novel RO-based Sensor Design 56

3.3.3.1 RO-based Sensors Downsides 56
3.3.3.2 Designing a high frequency RO-based Sensor 57
3.3.3.3 Number of RO-based sensors 58
3.3.3.4 Place and Route Influence 59

3.3.4 RO-sensor based Correlation Power analysis Attack 59
3.3.4.1 Experimental Setup 59
3.3.4.2 Correlation Power Analysis Model 60
3.3.4.3 JRO-based Sensor CPA Results 61

3.3.5 Further Results and Discussion 62
3.3.5.1 TDC & Electromagnetic Experimental Setup 62
3.3.5.2 Side-Channel Results 62
3.3.5.3 Discussion . 63

3.3.6 Conclusion . 64
3.4 FPGA-to-CPU - Remote Side-Channel Attacks on Heterogeneous SoC . . . 66

3.4.1 Introduction . 66
3.4.2 Presentation of the Side-Channel Setup 67

3.4.2.1 Side-Channel Targets 67
3.4.2.2 Xilinx Zynq Experimental Setup 67

3.4.3 FPGA-based attack on Hardware AES 68
3.4.4 FPGA-based attack on Software AES 70

3.4.4.1 Experiment 1 : 8-bit Tiny AES 70
3.4.4.2 Experiment 2 : 32-bit OpenSSL AES 71

3.4.5 EM Results & Discussion . 73
3.4.5.1 Electromagnetic Side-Channel Attack 73
3.4.5.2 Attack feasibility . 74
3.4.5.3 Countermeasures . 74

3.4.6 Conclusion . 75
3.4.7 Appendix . 76

3.5 SCAbox - A Framework for Evaluating the FPGA-based SCA Threat 77
3.5.1 Introduction . 77

3.5.1.1 Comparison with Usual Side-Channel Attacks 78
3.5.2 Framework Architecture . 79

3.5.2.1 Overview . 79
3.5.2.2 Hardware Architecture (FPGA) 79
3.5.2.3 Software Architecture (Processor) 80
3.5.2.4 SCA Automation Tool (Computer) 80

3.5.3 SCAbox User experience . 81
3.5.3.1 Use case: SCA Sensor & Setup 81
3.5.3.2 Use case: SCA Acquisition & Attack 82
3.5.3.3 Discussion . 82

3.5.4 Conclusion . 83

vii

3.6 Conclusion on FPGA-based Power Analysis 84

3.6.1 Results Reminder . 84

3.6.1.1 Main Contributions 84

3.6.1.2 Some Numbers . 84

3.6.2 SbHA Knowledge: Demystifying On-Chip Power SCA 85

3.6.2.1 On-Chip Power SCA can be conducted using digital logic 85

3.6.2.2 On-Chip Power SCA can be conducted with limited
sensors . 85

3.6.2.3 On-Chip Power SCA can be conducted across the SoC
boundaries . 85

3.6.3 SbHA Knowledge: Strengths and Challenges of On-Chip Power
SCA . 86

3.6.3.1 Challenge 1: Trace Synchronization 86

3.6.3.2 Challenge 2: Data Storage 86

3.6.3.3 Challenge 3: Data Export 87

3.6.3.4 Strength 1: Sensor Combination 87

3.6.3.5 Strength 2: Unlimited Attack Time 87

3.6.4 A Step Toward SoC Attacks . 88

4 Software-based Power Analysis Attacks on Complex SoCs 89
4.1 Chapter Introduction . 90

4.1.1 Identifying SbSCA Vectors . 90

4.1.2 Selecting an SbSCA Vector . 93

4.1.3 Chapter Outline . 94

4.2 Technical Background . 95

4.2.1 Memory Controller Basics . 95

4.2.2 Delay-Line Blocks in Low-Bandwidth Memory Controllers . . . 96

4.2.3 DLLs in High-Bandwidth Memory Controllers 97

4.3 SideLine: Delay-Line-based power SCA on complex SoCs 99

4.3.1 Introduction . 99

4.3.2 Experimental Setup . 99

4.3.2.1 Tested Devices . 99

4.3.2.2 OpenSSL AES Architecture 100

4.3.2.3 Threat Model . 100

4.3.3 DLL-based Power Side-Channel Attack 101

4.3.3.1 Validating DLL Effectiveness: Monitoring Temperature 102

4.3.3.2 Improving Sampling Rate and Synchronisation using
DMA . 102

4.3.3.3 Bare Metal OpenSSL AES Attack Setup 103

4.3.3.4 DLL-based SCA Attack on Zynq-7000 SoC 104

4.3.3.5 Conclusion on DLL-based SCA 106

4.3.4 Delay-Block-based Power Side-Channel Attack 106

4.3.4.1 From Delay-Block to TDC Sensor 106

viii

4.3.4.2 Validating Delay-Block Effectiveness: strcmp test . . 107

4.3.4.3 Linux-based OpenSSL AES Attack Setup 108

4.3.4.4 Delay-block-based SCA Attacks on STM32MP1 SoC . 109

4.3.5 Discussion . 111

4.3.5.1 Performance and Limitations of SideLine 111

4.3.5.2 Hardware & Software Mitigations 112

4.3.6 Conclusion . 113

4.4 Additional Results . 115

4.4.1 Covert Channels between processes 115

4.4.2 Simple Power Analysis on RSA 117

4.4.2.1 SPA on square and multiply RSA version 117

4.4.2.2 SPA on square and multiply always RSA version 118

4.4.2.3 SPA on Montgomery Powering Ladder RSA version . . 119

4.5 Conclusion on Delay-Line-based Power Analysis 120

4.5.1 Results Reminder . 120

4.5.1.1 Main Contributions 120

4.5.1.2 Some Numbers . 120

4.5.2 SbHA Knowledge: SbHA Attack Vector Detection Methods . . . 121

4.5.2.1 Listing OS user-exposed hardware controls 121

4.5.2.2 Searching registers in the target documentation 121

4.5.2.3 Reversing OS device drivers and boot code 122

4.5.3 From SideLine to FaultLine . 124

4.6 Appendix . 125

5 Software-based Fault Injection on SoC External Memory Transfers 129
5.1 Chapter Introduction . 130

5.2 Technical Background . 131

5.2.1 Monitoring Memory Transfers 131

5.2.2 Faulting Memory Transfers . 131

5.2.3 Threat Model . 132

5.2.4 Persistent Fault Analysis on AES 132

5.3 FaultLine: Software-based Fault Injection on Memory Transfers 136

5.3.1 Experimental Setup and Fault Parameters 136

5.3.1.1 Experimental Setup 136

5.3.1.2 Deeper View of the Fault Mechanism 137

5.3.1.3 Shaping the Glitch . 137

5.3.2 FaultLine on a Bare-Metal Device 138

5.3.2.1 Characterizing the Injected Faults 139

5.3.2.2 Differential Fault Analysis Attack on AES 140

5.3.2.3 Persistent Fault Analysis Attack on AES 141

5.3.2.4 Conclusion on Bare-Metal Results 143

5.3.3 FaultLine on a Device Running Linux 143

5.3.3.1 Attack Setup . 143

ix

5.3.3.2 Simple Data Byte Corruption 144
5.3.3.3 Persistent Fault Analysis Attack on AES 145
5.3.3.4 Bellcore Attack on OpenSSL Signatures 145
5.3.3.5 Conclusion on OS Results 146

5.3.4 Discussion . 146
5.3.4.1 Related Works . 146
5.3.4.2 Advantages and Limitations over Prior Methods 146
5.3.4.3 Countermeasures . 147

5.4 Conclusion on Delay-Line based Fault Injection 149
5.4.1 Results Reminder . 149

5.4.1.1 Main Contributions 149
5.4.1.2 Some Numbers . 149

5.4.2 SbHA Knowledge: Toward Large Scale SbHAs 150

6 Conclusion and Perspectives 153
6.1 Manuscript Summary . 154
6.2 Conclusion on SbHA . 155
6.3 Thesis Impact . 156
6.4 SbHA Perspectives . 157
Bibliography . 159

x

LIST OF FIGURES

1 Classification des attaques matérielles à distancexxvii

2 Étude des attaques SbSCAs à base de FPGA xxix

3 Les trois scénarios d’attaques de SideLinexxxiii

4 De SideLine à FaultLine .xxxv

1.1 Thesis Roadmap . 4

2.1 Proposed hardware attack classification 9

2.2 Local Non-Invasive Attack Setup . 10

2.3 Simple Power Analysis on RSA . 12

2.4 Evolution of SIM . 22

2.5 SGX and TZ-based Trusted Execution Environments 23

2.6 Artist’s representation of the TEMPEST attack threat 24

2.7 Famous exploit names in the microarchitectural attack field 26

2.8 Local hardware attack versus software-based hardware attack 28

2.9 Artist’s representation of the Rowhammer vulnerability 30

2.10 Cloud FPGA fabrics shared between multiple users 33

2.11 FPGA-based power side-channel attack threat 38

2.12 SbHA paths and privilege levels . 43

2.13 Proposed attack classification . 45

3.1 Chapter contributions . 48

3.2 RLC parasitic elements in the PDN . 50

3.3 Inverter gate propagation delay . 51

3.4 Functional schematic of a TDC-based sensor 52

3.5 Functional schematic of a RO-based sensor 53

3.6 Overview of FPGA-based Power Side-Channel Exploits 54

3.7 FPGA-to-FPGA attack . 55

3.8 Schematic of the proposed JRO-based sensor design 57

3.9 Effect of the number of JRO-based sensors on the overall resolution . . . 58

3.10 Xilinx Zynq Multi-User Experimental Setup. 60

3.11 CPA Attack Results on AES . 61

3.12 CPA attack results using various sensing mechanisms 63

xi

3.13 FPGA-to-CPU attack . 66

3.14 Xilinx Zynq experimental side-channel setup 67

3.15 Averaged AES power supply fluctuation 68

3.16 Logical distance between sensors and target algorithm. 69

3.17 Power supply fluctuation resulting from 100 Tiny AES encryptions 70

3.18 Power supply fluctuation resulting from 100 OpenSSL AES encryptions . 71

3.19 Correlation rate over the time . 72

3.20 XRAY picture and EM setup . 73

3.21 Logic schematic and implemented design of one TDC-based sensor instance 76

3.22 SCAbox Logo . 77

3.23 Reducing SCA setup complexity . 78

3.24 SCAbox hardware (VHDL) and software (C) architecture 80

3.25 SCAbox CPA Results . 81

3.26 From FPGA to SoC SbHA exploits . 88

4.1 Benchmarking the resources available for voltage sensing 91

4.2 STM32MP1 Delay Block Diagram taken from [93] 92

4.3 Typical SoC connectivity with external memories 95

4.4 An example of DLB used in low-bandwidth memory controllers. 96

4.5 An example of DLL used in DDR memory controllers. 97

4.6 Three core-vs-core attack variants . 101

4.7 DLL response to sudden temperature drops 102

4.8 DLL-based attack results . 105

4.9 Effect of on-chip voltage variations on the sampled delay values. 107

4.10 Sampled delay values displayed on screen. 107

4.11 strcmp test . 108

4.12 SideLine CPA demonstration . 109

4.13 AP-vs-MCU attack results . 110

4.14 MCU-vs-AP attack results . 111

4.15 Power fluctuation-based covert-channel captured using delay-lines 115

4.16 Square and multiply RSA delay-line-based SPA 117

4.17 Square and multiply always RSA delay-line-based SPA 118

4.18 Montgomery powering ladder RSA delay-line-based SPA 119

4.19 From SideLine SbSCA to FaultLine SbFIA Exploits 124

4.20 Zynq-7000 AP-vs-AP attack scenario . 125

4.21 STM32MP1 AP-vs-MCU attack scenario 126

4.22 STM32MP1 MCU-vs-AP attack scenario 127

4.23 STM32MP1 MCU-vs-AP attack . 128

xii

5.1 Memory transfer organization between a SoC and an external SDRAM . . 131

5.2 PFA ciphertext byte 0 distribution . 134

5.3 Method for extracting the right PFA key candidate 135

5.4 Nominal vs faulty strobe phase-shifts . 137

5.5 stress and width characterization 140

5.6 Progression of the PFA distribution over 17,053 faulty ciphertexts 142

xiii

LIST OF TABLES

2.1 The impact of 40 years of research in the semiconductor industry 19

2.2 Non-Exhaustive list of Rowhammer exploits 31

2.3 List of FPGA-based Power Glitch Injection exploits 34

2.4 List of DVFS-based power glitch injection exploits 35

2.5 List of delay-line-based glitch injection exploits 36

2.6 List of FPGA-based power SCA exploits 39

2.7 List of ADC-based Power SCA exploits 40

2.8 List of Delay-line-based Power SCA exploits 41

2.9 List of RAPL-based power SCA exploits 41

3.1 Resource utilization for 1 RO-based sensor instance. 57

3.2 TDC optimization impact . 69

3.3 Number of traces required to retrieve an AES key byte 73

4.1 On-chip SCA vector benchmark results. 93

4.2 Overall delay-line-based power SCA results. 112

5.1 Variations in faulty ciphertexts . 141

xv

GLOSSARY

ADC Analog-to-Digital Converter

AES Advanced Encryption Standard

AI Artificial Intelligence

AP Application Processor

API Application Programming Interface

ASIC Application Specific Integrated Circuit

AXI Advanced eXtensible Interface

CEMA Correlation ElectroMagnetic Analysis

CPA Correlation Power Analysis

CPU Computer Processing Unit

CRT Chinese Remainder Theorem

DDR Double Data Rate

DFA Differential Fault Analysis

DoS Denial-of-Service

DLB Delay-Line Block

DLL Delay-Locked-Loop

DMA Direct Memory Access

DPA Differential Power Analysis

DRAM Dynamic Random-Access Memory

DRM Digital Right Management

DUT Device Under Test

DVFS Dynamic Voltage and Frequency Scaling

ECC Error-Correction Code

EM ElectroMagnetic

eSIM embedded SIM

FIA Fault Injection Attack

FIFO First In First Out

FPGA Field-Programmable Gate Array

xvii

GPU Graphic Processing Unit

HPC Hardware Performance Counters

IC Integrated Circuit

IoT Internet of Things

IP Intellectual Property

iSIM integrated SIM

JRC Johnson Ring-Counter

JRO Johnson Ring-Oscillator

MCU Microcontroller Unit

MMU Memory Management Unit

NSA National Security Agency

NVM Non-Volatile Memory

OS Operating System

PCB Printed Circuit Board

PDN Power Delivery Network

PIN Personal Identification Number

PFA Persistent Fault Attack

PHY Physical Layer

PVT Process Voltage Temperature

RAM Random-Access-Memory

RAPL Running Average Power Limit

RHA Remote Hardware Attack

RNG Random Number Generator

RO Ring-Oscillator

RSA Rivest–Shamir–Adleman

SbHA Software-based Hardware Attack

SbSCA Software-based Side-Channel Analysis

SbFIA Software-based Fault Injection Attack

SCA Side-Channel Analysis

SDRAM Synchronous Dynamic Random-Access Memory

SEV Secure Encrypted Virtualization

SIM Subscriber Identity Module

SGX Software Guard Extensions

xviii

SoC System-on-Chip

SPA Simple Power Analysis

TDC Time-to-Digital Converter

TEE Trusted Execution Environment

TEMPEST Telecommunications Electronic Material Protected from Emanating

Spurious Transmissions

TZ TrustZone

VCO Voltage-Controlled Oscillator

VM Virtual Machine

VRM Voltage Regulator Module

xix

AVANT PROPOS

C’est à la fin de mon stage de fin d’étude dans l’entreprise Gemalto que Philippe Lou-

bet Moundi m’a proposé une place en tant que doctorant dans l’équipe Hardware Lab.

Pourtant, la période troublée que traversait Gemalto durant le rachat par Thales n’était

pas forcément propice à ce recrutement. Philippe m’a fait confiance et je lui en suis

reconnaissant.

Jean-Max Dutertre mon directeur de thèse à l’école des Mines de Saint-Étienne et

Yannick Teglia mon encadrant Thales ont su par leurs conseils avisés et leurs observations

habiles me mettre directement sur de bons rails. Une thèse c’est comme une maison, sans

fondations solides ça s’effondre. J’ai eu la chance d’avoir un encadrement en béton armé.

Je voudrais remercier chaleureusement toutes les personnes que j’ai pu rencontrer

durant de cette thèse. Ma pensée va à mes collègues du Centre Microélectronique de

Provence à Gardanne et à l’équipe Security Lab de Thales à La Ciotat. Merci pour votre

accueil et pour tous les échanges productifs (ainsi que non-productifs) que nous avons eu.

Je remercie ma famille Elina, Maman, Papa, Manon, Rémi, Adèle, Ugo, Lila et Robin

pour leur soutien sans faille malgré la distance qui nous sépare.

Finalement je remercie les examinateurs Jacques Fournier, Lilian Bossuet, Emmanuel

Prouff et les rapporteurs Edith Kussener et Régis Leveugle qui ont accepté de se livrer au

jeu de la relecture et de la soutenance. Leurs questions et leurs remarques constructives

ont contribué à l’aboutissement de ce manuscrit.

xxi

RÉSUMÉ

Introduction

Durant l’année 1958, Jack Kilby et son équipe élaboraient le premier circuit intégré

à transistor dans les laboratoires de Texas Instrument. À peine onze ans plus tard, les

premiers ordinateurs de bord composés de plusieurs milliers de transistors nous ame-

naient sur la Lune. Depuis lors, l’industrie du semi-conducteur a conquis l’intégralité

des aspects de la vie humaine : communication, travail, transports, etc. La loi de Moore

prévoyant un doublement annuel du nombre de transistors dans les circuits intégrés a été

satisfaite pendant 55 années consécutives et nos ordinateurs personnel sont maintenant

composés de milliards de transistors.

Si la découverte des circuits intégrés a été une révolution instantanée, leur besoin

en sécurité n’est devenu évident que 30 ans plus tard avec l’apparition de services aux

consommateurs tels que : les ordinateurs personnels, la téléphonie mobile et l’avènement

d’Internet. Pendant une longue période cependant, la structure interne des circuits inté-

grés a été considérée comme inviolable et la plupart des vulnérabilités ont été recherchées

au niveau logiciel.

Les travaux menés par Van Eck [36], Biham [13] et Kocher [77] durant les années 80-

90 ont prouvé que ce postulat était faux. Ces chercheurs ont participé à introduire de nou-

velles techniques d’attaques telles que l’étude des canaux cachés, ou Side-Channel Anal-

ysis (SCA) en anglais, et l’injection de faute, ou Fault Injection Attack (FIA) en anglais,

qui visent à exploiter des vulnérabilités physiques liées aux ressources matérielles qui

composent les circuits intégrés.

Depuis plus de 30 ans, l’étude de la sécurité matérielle des circuits intégrés s’est mon-

trée nécessaire afin d’implémenter des systèmes résistants aux attaques menées par des

groupes de pirates informatiques. Les attaques matérielles utilisent des équipements tels

que des lasers, des injecteurs électromagnétiques et des oscilloscopes pour injecter des

erreurs dans les calculs d’un circuit ou pour espionner son fonctionnement. L’objectif à

terme est d’en extraire les secrets comme par exemple le code source pour voler la pro-

priété intellectuelle, les clés cryptographiques ou les données utilisateurs afin de les ven-

dre au plus offrant. Les attaques matérielles visent une grande variété d’appareils comme

les cartes à puce (cartes SIM, cartes bancaires, passeports), les processeurs (téléphones,

ordinateurs, serveurs) et tous les autres objets pour lesquels l’extraction d’information

fait sens (microcontrôleurs pour l’IoT, automobiles, consoles de jeu, drones, etc.).

Les attaques matérielles sont globalement utilisées sur des systèmes légers qui peu-

vent être volés et placés sur un banc d’attaque. À la différence des attaques logicielles,

xxiii

elles nécessitent l’accès physique à la cible et ne permettent pas d’attaques à grande

échelle sur des milliers d’appareils en simultané. Cependant, elles constituent une men-

ace réelle et restent très étudiées car elles permettent, dans de nombreux cas, de révéler

des secrets qu’une attaque logicielle ne pourrait pas obtenir. L’extraction de données se-

crètes contenues dans un appareil électronique peut avoir de grandes répercussions sur la

crédibilité de gouvernements, sur la réputation et la rentabilité d’entreprises ainsi que sur

la vie privée des consommateurs.

Récemment, plusieurs études menées sur des processeurs complexes ont montré que

les attaques matérielles n’étaient plus nécessairement locales. Avec la multiplication et

la complexification des objets connectés, il est devenu possible de mener ces attaques à

distance.

Cette thèse propose d’étudier une nouvelle famille d’attaque communément nom-

mée “attaque matérielle à base de logiciel”, ou Software-based Hardware Attack (SbHA)

en anglais, qui à travers l’exécution d’un programme malicieux vise à utiliser des com-

posants intégrés dans un circuit cible afin de mener des attaques matérielles. Ces attaques

ne requièrent aucun équipement externe à l’appareil ciblé et peuvent donc être menées à

distance.

Le but de ce travail est tout d’abord d’étudier les risques découlant des attaques

matérielles à distance, notamment au regard de l’adoption massive de la sécurité inté-

grée. Mais aussi d’évaluer de nouvelles vulnérabilités afin de mieux cerner l’étendue de

la menace. Cette thèse contient des travaux variés allant d’attaques SCA embarquées sur

des circuits intégrés reprogrammables de type Field-Programmable Gate Array (FPGA) à

de l’attaque FIA sur des processeurs complexes de type System-on-Chip (SoC). Tous ces

travaux ont été menés de façon à être reproductibles et réalisables à distance. Ils visent

à préparer les différents acteurs de la sécurité intégrée à cette menace naissante et ainsi

à éviter sa mise en exécution future sur des milliers d’appareils connectés à travers le

monde.

Dans la suite de ce résumé, nous décrivons les grandes lignes de chaque chapitre

composant ce manuscrit. Le chapitre 2 présente le sujet et l’état de l’art des attaques

matérielles à distance. Les chapitres 3, 4 et 5 décrivent les expérimentations réalisées

durant cette thèse. Finalement, le dernier chapitre conclut sur les résultats obtenus et

revient sur l’impact des travaux menés et leurs perspectives futures.

Les attaques matérielles à distance

Le chapitre 2 de ce manuscrit est dédié à la description du sujet de cette thèse : “les

attaques matérielles à distance des objets connectés” et à la classification des travaux ex-

istants. Dans un premier temps, nous décrivons l’origine des attaques matérielles (Section

2.1.1) et procédons à leur répartition en 3 familles (Section 2.1.2) : les attaques invasives,

les attaques semi-invasives et les attaques non-invasives comme proposé dans [125]. Il

apparait que les attaques matérielles à distance ne s’intègrent dans aucune de ces familles

qui nécessitent toutes des équipements et un accès physique à la cible. Nous proposons

xxiv

donc d’en ajouter une appelée “attaque matérielle à base de logiciel” qui permettrait de

classer ce nouveau type d’attaque.

La suite du chapitre présente l’origine et les enjeux derrière la multiplication des

objets connectés. Dans la section 2.2, nous décrivons les mécanismes qui ont mené à

l’adoption d’objets connectés dans tous les aspects de l’activité humaine (industrie, ser-

vices publics, cloud, etc). Puis, nous décrivons les dangers qui découlent de l’utilisation

de ces systèmes et comment des pirates tirent parti de certaines avancées pour extorquer,

menacer et soudoyer des états, des entreprises ou des utilisateurs. Enfin, nous évoquons

le futur des attaques matérielles dans la sous-section 2.2.3 et imaginons comment la sécu-

rité matérielle évoluera face aux mutations des circuit intégrés et à la multiplication de

services de calcul distant comme le cloud qui ne permettent pas de lancer des attaques

matérielles locales classiques car inaccessibles. L’hypothèse de résistance aux attaques

matérielles qu’apportent ces services de calcul distant est cependant remise en cause par

l’introduction d’attaques matérielles à distance.

Dans la section 2.3, nous décrivons en quoi consiste une attaque matérielle à distance.

Nous identifions tout d’abord trois mécanismes qui favorisent la multiplication de ces

attaques. Le premier est lié à la complexification des circuits modernes. Les circuits de

type SoC sont composés d’un processeur et de multiples ressources matérielles (mémoire,

capteurs, régulateurs) sur la même puce de silicium. En rassemblant ces diverses fonc-

tionnalités sur un même système, les concepteurs améliorent grandement les capacités

de calcul et les performances énergétiques du circuit. Les ressources matérielles peuvent

maintenant être accédées et programmées directement par un logiciel pour adapter par ex-

emple la consommation du circuit à l’activité de l’utilisateur. La coopération matérielle-

logicielle est plus que jamais représentée et permet d’obtenir des performances inégalées.

Cependant, malgré les bénéfices, l’accès à des ressources matérielles par le logiciel pour-

rait être l’origine de nouvelles attaques. Notamment les attaques matérielles à distance.

Le second mécanisme qui favorise l’émergence des attaques matérielles à distance est

la démocratisation de systèmes comprenant plusieurs utilisateurs et/ou plusieurs niveaux

de privilèges. Le partage de ressources matérielles entre plusieurs utilisateurs est de-

venu la référence avec l’avènement du cloud. L’isolation entre les processus est assurée

par des mécanismes de protection mémoire et des niveaux de privilèges offerts par les

systèmes d’exploitation, ou Operating System (OS) en anglais. Le fait de rassembler

plusieurs utilisateurs avec différent niveaux de privilège sur un même système ouvre la

porte à de nouvelles attaques où un utilisateur tente d’outrepasser l’isolation en place

pour : espionner les autres utilisateurs, procéder à de l’escalade de privilège ou générer

un déni de service. Les OS sont devenus si complexes qu’il en devient difficile d’en

garantir la fiabilité sécuritaire. Pour cette raison, il est désormais commun d’intégrer

des entités de sécurité matérielle afin d’assurer un niveau de sécurité supérieur dans les

produits contenant des informations sensibles. L’intégration d’entités de sécurité préten-

dues résistantes aux attaques logicielles est le troisième mécanisme qui pourrait favoriser

l’émergence d’attaques matérielles à distance.

xxv

Depuis les années 80, des cartes à puce telles que les cartes SIM assurent la sécu-

rité des appareils connectés. Aujourd’hui des circuits intégrés effectuant les mêmes

opérations sécuritaires mais pouvant être directement soudés sur un carte mère (eSIM)

ou intégrés à l’intérieur d’un SoC (iSIM) remplacent peu-à-peu le format carte. Tant

que les circuits sécuritaires étaient localisés en dehors du SoC, ils pouvaient difficile-

ment être attaqués par un processus malicieux s’exécutant dans le processeur. Cependant,

l’intégration de ces entités sécuritaires sur la même puce de silicium que le processeur ap-

plicatif ouvre la voie à de nouvelles vulnérabilités internes provenant du matériel. Ainsi,

nous verrons que le risque de voir ces entités soumises à des attaques matérielles à dis-

tance augmente.

Un autre aspect de la sécurité intégrée est l’avènement des plateformes d’exécution

sécurisées, ou Trusted Execution Environment (TEE) en anglais, renforcées par des en-

tités matérielles conçues par des fabricants de processeurs majeurs tels que ARM, INTEL

et AMD. Ces plateformes appelées TrustZone (TZ), Software Guard Extensions (SGX)

et Secure Encrypted Virtualization (SEV) partent du principe que l’OS implémenté sur

le processeur applicatif n’est pas forcément fiable et qu’il faut déléguer les opérations

sécuritaire à une entité indépendante de l’OS. Ces entités assurent donc les opérations cri-

tiques telles que l’authentification ou le chiffrement à la place de l’OS et ajoutent une nou-

velle couche de sécurité au-delà des privilèges administrateurs. Les attaques matérielles

à distance pourrait préférentiellement s’attaquer à ces plateformes qui n’ajoutent que de

la sécurité du point de vue logiciel et qui restent donc le plus souvent vulnérables aux

attaques physiques.

Sur les facteurs favorisants les attaques matérielles à distance on retiendra : la

complexification des circuits intégrés, l’avènement des systèmes multi-tâches/multi-

utilisateurs à plusieurs niveaux de privilèges et l’intégration d’entités de sécurité dans

les SoCs modernes.

Dans la suite du chapitre 2, nous classons les attaques matérielles à distance en trois

familles distinctes dont l’une d’elle sera le sujet d’étude de cette thèse. Ces trois familles

ont pour point commun de rendre les attaques à distance possibles mais elles n’utilisent

pas les mêmes moyens. Ces attaques sont classées dans la figure 1, nous les identifions

dans la liste ci-dessous :

• Les attaques TEMPEST. L’étude des attaques TEMPEST remonte à la guerre

froide. C’est un nom de code de la National Security Agency (NSA) [101] faisant

référence à l’extraction d’informations contenues dans des appareils électroniques

à travers des émanations physiques pouvant être mesurées à longue portée. Ce

sont par exemple des émanations électromagnétiques générées par un appareil et

pouvant être capturées à plusieurs mètres en utilisant une antenne radio. Elles

avaient été introduites au grand public en 1985 dans un article de Wim van Eck

[36] présentant l’extraction de l’image affichée par un écran d’ordinateur situé à

l’intérieur d’un bâtiment à partir d’une antenne embarquée dans une camionette

postée à l’extérieur (à une distance de 10 mètres).

xxvi

Figure 1 Classification des attaques matérielles à distance comme proposé dans le
chapitre 2

Ces attaques ont récemment été remises au-devant de la scène par l’article Scream-

ing Channel [22, 21] publié en 2018 qui vise des processeurs hétérogènes com-

posés de logique analogique et digitale. Ces recherches ont prouvé que l’activité

digitale génératrice de fuites par canaux-cachés pouvait se retrouver amplifiée par

les modules intégrés analogiques de radio-fréquence (Wifi, Bluetooth) puis cap-

turée à distance en utilisant une radio logicielle (SDR). En plus de capter l’activité

électromagnétique induite par la cible, cet article va plus loin en démontrant la

possibilité d’extraire des informations sur les processus exécutés par l’appareil es-

pionné. Les chercheurs démontrent que l’empreinte side-channel d’un processus

cryptographique s’exécutant dans la cible est détectable dans le signal radio et mè-

nent une SCA permettant l’extraction de la clé secrète (à 15 mètres de la cible).

Avec la prolifération des objets connectés qui intègrent de plus en plus souvent

des modules radio, le champ d’application de ces attaques devrait s’élargir dans

le futur. L’avantage ici pour l’attaquant est qu’il n’y plus de besoin d’accéder di-

rectement à la cible pour effectuer la SCA. Pour cette raison, nous considérons ces

travaux comme des attaques matérielles à distance.

• Les attaques microarchitecturales et temporelles. Les attaques temporelles sur

les processus cryptographiques et les protocoles réseaux sont connues depuis les

travaux menés par Kocher [77] en 1996. Ces attaques peuvent être réalisées à dis-

tance puisqu’elles nécessitent seulement la mesure d’un temps d’exécution pour

l’extraction des secrets. Aujourd’hui la plupart des processus cryptographiques

sont protégés contre ce type d’attaque et utilisent des algorithmes à temps constant

pour éviter toute fuite d’information liée à une clé cryptographique ou à un mot de

passe.

Depuis le milieu des années 2000, de nouvelles attaques exploitant des vulnéra-

bilités temporelles ont fait leur apparition : les attaques microarchitecturales. Ces

menaces tirent parti du partage de certaines ressources matérielles entre plusieurs

processus et utilisateurs pour mettre à mal l’isolation mémoire implémentée dans

xxvii

ces systèmes. Par exemple, les attaques temporelles sur la mémoire cache ex-

ploitent le fait que des données provenant d’une application peuvent être stockées

de manière transitoire dans la mémoire cache. En mesurant les temps d’accès à

la mémoire, des processus espions peuvent déduire l’activité de programmes vic-

times et même établir des communications cachées entre processus [144, 58, 84].

Ces attaques sont considérées comme des attaques physiques car elles exploitent

des vulnérabilités provenant du matériel et non de l’implémentation logicielle des

programmes.

Plus récemment des attaques telles que Spectre [75] et Meltdown [86] ont visé des

optimisations matérielles des processeurs telles que la prédiction de branchement

ou l’exécution spéculative afin d’accéder à des données protégées.

Les attaques microarchitecturales sont à la frontière entre des attaques logicielles et

des attaques matérielles. Elles sont menées à travers un programme malicieux mais

exploitent des vulnérabilités matérielles. Elles s’inscrivent donc dans la liste des

attaques matérielles à distance mais n’utilisent pas les mêmes outils et n’exploitent

pas les mêmes vulnérabilités que les attaques matérielles locales.

• Les attaques matérielles à base de logiciel (SbHA). Ces attaques sont le cas d’étude

de cette thèse. Elles sont des reproductions pures des attaques matérielles clas-

siques menées dans des laboratoires, à l’exception du fait qu’elles peuvent être

réalisées à distance. C’est à dire qu’elles cherchent à induire des fautes ou à col-

lecter une fuite side-channel de la même façon qu’une attaque matérielle classique

mais sans utiliser d’équipement.

Les SbHA tirent parti de ressources matérielles directement implémentées dans

les circuits cibles afin de mener des attaques. Elles profitent de la complexité des

SoCs qui comportent des dizaines de composants matériels et dont l’accès et la

calibration peut permettre l’implémentation d’attaques physiques. Dans la section

2.3.4 et 2.3.5 nous dressons un état de l’art complet de ces attaques qu’elles soient

dédiées à la FIA ou à la SCA.

Du point de vue de la FIA, nous définissons les attaques réalisées sous le nom

d’injection de faute à base de logiciel, ou Software-based Fault Injection At-

tack (SbFIA) en anglais. Les familles d’attaques décrites comportent la SbFIA

sur mémoire DRAM ou Rowhammer introduite en 2014 par Kim et al [74], la FIA

à base de régulateur tension-fréquence avec ClkSCREW [128], VoltJockey [111] et

Plundervolt [100], les attaques sur FPGA telles que FPGAhammer [80] et enfin

l’attaque FaultLine [51] découverte lors de cette thèse et décrite dans le chapitre 5.

Du point de vue de la SCA nous appelons ces attaques analyse par canaux cachés

à base de logiciel, ou Software-based Side-Channel Analysis (SbSCA) en anglais.

Nous intégrons plusieurs types d’attaques à la classification : les attaques SCA à

base de capteurs FPGA [122] qui seront étudiées dans le chapitre 3 de ce manuscrit,

les attaques à base de convertisseurs analogiques-numériques telles que Leaky

xxviii

Figure 2 Étude des attaques SbSCAs à base de FPGA : Contributions du chapitre 3

Noise [46], les attaques à base de lignes à retard (delay-lines) menées dans cette

thèse qui seront décrites au chapitre 4 (SideLine [51]) et enfin les attaques SCA

menées sur des processeurs Intel dans l’article Platypus [85].

La section 2.4 conclut ce chapitre en proposant une vue globale des trois familles

d’attaques matérielles à distance identifiées et des différents groupes de vecteurs

d’attaques contenus dans chacune d’elles. La classification globale est illustrée dans la

figure 1 de ce résumé.

Attaques par analyse de consommation à base de FPGA

En 2018, au début de cette thèse, plusieurs types de mécanismes permettant les SbHA

tels que Rowhammer [74] ou les régulateurs tension/fréquence [128] avaient déjà été

identifiés. Ces travaux précédents étaient, en grande majorité, dédiés à des attaques

SbFIA. Seuls les travaux réalisés par Schellenberg et al. sur FPGA présentaient la men-

ace des attaques SbSCA [122].

Il apparut rapidement que l’étude de ces travaux sur FPGA pourraient être un

point de départ intéressant pour cette thèse. En étudiant des FPGAs qui permettent

l’implémentation de n’importe quel type de bloc numérique, un banc d’expérimentation

complet contenant un capteur de consommation intégré, la cible (un algorithme cryp-

tographique) et le stockage des données pour les courbes SCA peut être mis en place. De

plus avec l’adoption des FPGAs dans les SoC modernes [4] ainsi que dans les services

cloud [24], le risque d’attaque lié à ces entités devient critique [131] et suscite l’intérêt

de la recherche. L’implémentation de FPGA partagés entre plusieurs utilisateurs est déjà

possible [24] et elle pourrait faire son apparition dans le cloud. Il y a donc un véritable

enjeu sécuritaire à étudier ce type d’appareils au-delà de l’étude de faisabilité des attaques

SbSCA.

La figure 2 illustre trois travaux décrits dans le chapitre 3 de ce manuscrit. Tout

d’abord, dans la section 3.3 nous étudions des capteurs de délai à base de Ring-Oscillators

(ROs) permettant de capturer les variations de consommation électrique dans les FPGAs

et menons des attaques SCA entre blocs logiques. Cette première partie étudie donc les

attaques sur FPGA multi-utilisateurs où l’un des clients utilise sa logique reprogrammable

pour espionner l’activité d’autres blocs logiques appartenant à d’autres clients (attaques

xxix

FPGA-to-FPGA dans la figure 2.A). À partir de capteurs digitaux optimisés pour la SCA

nous lançons des attaques de type Correlation Power Analysis (CPA) [18] sur des cibles

cryptographiques telles qu’un module Advanced Encryption Standard (AES) matériel

[30]. Ainsi nous démontrons que la fuite de consommation liée à l’activité d’un module

AES (implémenté dans une partie du FPGA) peut être collecté par des capteurs digitaux

(implémentés dans une autre partie de FPGA). Cette étude confirme l’hypothèse que les

variations de consommation électrique liées à l’activité des transistors se propagent dans

toute la puce de silicium est peuvent être mesurées par une entité espacée physiquement

de l’origine de la fuite. Il est donc possible de mener des attaques SbSCA entre des blocs

matériels formant un FPGA ou un SoC (si tant est que l’attaquant trouve un moyen de

collecter la fuite de consommation).

Une deuxième conclusion de cette étude est que les limitations en terme de fréquence

des capteurs intégrés (ici 250 MHz) ne sont pas forcément rédhibitoires pour la mesure de

la fuite de consommation. En effet, à travers nos expérimentations, nous remarquons que

la fuite side-channel reste exploitable malgré l’augmentation de la vitesse d’exécution

du module victime. Nous réalisons plusieurs tests sur le module AES en modifiant sa

fréquence de fonctionnement de 10 MHz à 200 MHz et n’observons pas de réelle dif-

férence sur les corrélations relevées par la CPA. Ces résultats viennent confirmer que

la fuite side-channel est essentiellement liée à la structure d’alimentation du circuit à sa

finesse de gravure [31, 59] et non à la fréquence d’horloge du module ciblé [90]. Il sera

donc possible d’attaquer des systèmes très rapides tels que des processeurs complexes

cadencés au GHz avec des capteurs lents de l’ordre du MHz comme en témoignent les

résultats du chapitre 4. Il est cependant important de prendre en compte qu’une trop

grande limitation de la fréquence d’échantillonnage pourra s’avérer problématique pour

la détection des points d’intérêts et ainsi la resynchronisation des courbes collectées.

La section 3.4 du chapitre 3 étudie des systèmes hétérogènes composés à la fois d’un

FPGA et d’un processeur (Attaques FPGA-to-Computer Processing Unit (CPU) dans la

figure 2.B). L’objectif de cette section est de démontrer que des attaques SbSCA sont

possibles d’un composant du SoC vers un autre. Ici, un SoC Xilinx Zynq 7000 [141]

composé d’un processeur ARM Cortex-A et d’un FPGA est adopté pour mener des at-

taques du FPGA vers le CPU. C’est-à-dire, la collecte d’une fuite de consommation

électrique induite par un algorithme cryptographique logiciel s’exécutant sur le CPU par

des capteurs implémentés dans le FPGA. À travers l’implémentation de capteurs de type

Time-to-Digital Converter (TDC) [151] dans le FPGA et la mise en place de plusieurs

implémentations d’AES logiciels dans le CPU (OpenSSL AES [106] et Tiny AES [78]),

nous lançons des attaques CPA du FPGA vers le CPU. Les résultats obtenus montrent

que la fuite side-channel induite par le fonctionnement des AES s’exécutant dans le CPU

est suffisamment importante pour être capturée par les capteurs et permet l’extraction des

clés cryptographiques. Malgré la distance physique entre les capteurs (dans le FPGA) et

l’algorithme (dans le CPU), le fait que les deux entités sont implémentées sur la même

puce de silicium établit une canal d’information suffisant pour faire fonctionner l’attaque.

xxx

Les attaques du FPGA vers le CPU nécessitent la collecte d’un plus grand nombre de

courbes SCA (autour de 100,000 courbes) que les attaques FPGA vers FPGA (autour de

1,500 courbes) mais restent largement envisageables (moins de 15 minutes pour récupérer

la clé secrète de l’AES OpenSSL dans notre preuve de concept).

Afin de comparer l’efficacité des attaques intégrées avec les techniques tradition-

nelles, une SCA électromagnétique est réalisée sur les mêmes AES cibles dans la section

3.4.5. Les résultats obtenus montrent que les capteurs FPGAs sont aussi efficaces que

l’analyse électromagnétique malgré les performances limitées des capteurs en terme de

vitesse d’échantillonnage et de résolution. L’avantage des TDCs dans cette configura-

tion est leur proximité à la cible qui permet d’éviter toute perte d’information par effet

de dissipation de la fuite à travers le package et de limiter l’effet de filtrage induit par

les condensateurs de découplage externes. Il semble probable que dans certains SoC

complexes comportant des mémoires empilées, de multiples cœurs et de multiple mécan-

ismes de régulation de tension, l’analyse interne de la consommation pourrait être plus

performante à terme que l’analyse externe.

La section 3.5 conclut la partie expérimentation du chapitre 3 en présentant un outil

open-source permettant la mise en place d’attaques FPGA-vers-FPGA et FPGA-vers-

CPU présentées dans les sections précédentes. Ce projet appelé SCAbox est disponible

sur GitHub et vise à faciliter l’implémentation et l’évaluation de ces attaques [52]. Il

intègre plusieurs modules de capteurs FPGA et fournit une méthode simple pour ajouter

des algorithmes victimes et les évaluer. Cet outil est purement dédié à la recherche et se

veut être utilisé comme plateforme d’initiation aux attaques matérielles à distance afin de

mieux appréhender leur menace.

La conclusion du chapitre 3 revient sur les résultat des travaux menés sur FPGA qui

ont donné lieu à la publication de deux articles de conférence pour les travaux d’attaque

FPGA-vers-FPGA [50] et FPGA-vers-CPU [54] ainsi que la publication en ligne de

l’outil SCAbox [52].

Nous revenons aussi sur l’impact des résultats obtenus pour l’avancée de cette thèse.

L’objectif de celle-ci étant à terme de mener des attaques sur n’importe quel type de

SoC implémentant ou non un FPGA. Au moment de clore ce chapitre, il semble désor-

mais acquis que les attaques SbSCA peuvent être menées à partir de capteurs digitaux

directement implémentés dans un SoC. Que les attaques SbSCA sont faisables même

avec des capteurs moins performants que ceux utilisés pour les attaques matérielles lo-

cales. Enfin, que les attaque SbSCA brisent les frontières logicielles qui séparent nor-

malement les différents blocs matériels formant un SoC (c’est à dire toutes les entités

matérielles implémentées sur une même puce de silicium). Ceci ouvre la voie à des at-

taques FPGA-vers-CPU mais aussi à des attaques provenant de n’importe quel capteur

(FPGA, Analog-to-Digital Converter (ADC), delay-line) vers n’importe quelle entité du

SoC (CPU, Microcontroller Unit (MCU), élément sécurisé, iSIM, etc).

xxxi

Attaques par analyse de consommation dans les SoC complexes

Le chapitre 4 de ce manuscrit se base sur les enseignements et les conclusions tirés

du chapitre 3 pour étendre les attaques SbSCA à des SoC complexes. À la différence

des attaques menées précédemment, les travaux réalisés dans ce nouveau chapitre ne

nécessitent pas l’utilisation d’un FPGA. En effet, une très faible partie des SoCs em-

barque un FPGA et il est donc nécessaire d’identifier une entité plus globale pour dé-

montrer la généricité des SbHA. Pour ce faire, nous cherchons dans la section 4.1 les

ressources matérielles à disposition dans une vaste majorité de SoCs pour lancer des at-

taques SbSCA.

La section 4.1.1 présente la méthode mise en place pour identifier de tels vecteurs

d’attaque. Plusieurs fiches techniques de SoCs provenant de divers fabricants sont

analysées et nous identifions plusieurs modules tels que des ADCs ou des capteurs in-

tégrés qui pourraient être utilisés pour collecter l’activité électrique du circuit ciblé. À

travers cette recherche, des modules décris sous le nom de Delay-Line Block (DLB) et

Delay-Locked-Loop (DLL) ont été identifiés dans chacun des systèmes testés. Ces com-

posants largement implémentés dans les contrôleurs dédiés à de la mémoire externe sont

là pour assurer un déphasage constant entre les signaux d’horloges et de données lors

d’accès mémoires réalisés par le SoC. Les DLBs et DLLs sont conçus pour contrebal-

ancer les variations de tension et de température qui ont un impact non-négligeable sur

la vitesse de propagation des signaux logiques et qui pourraient induire des erreurs de

transfert mémoire. Il y a donc une forte relation entre ces modules DLBs et DLLs et

la consommation électrique du système. Étant donné leur structure basée sur des delay-

lines, ces blocs sont très proches des capteurs TDCs utilisés pour collecter la fuite de

consommation dans les FPGAs. Nous avons donc rapidement soupçonné que ces com-

posants pourraient s’avérer efficaces pour la capture de l’activité électrique d’un système

cible et devenir des vecteurs d’attaques SbSCA.

Pour des raisons de vitesse d’échantillonnage, de facilité d’accès et de généricité, il

a été décidé dans la section 4.1.2 d’étudier les DLBs et les DLLs plutôt que le reste des

composants disponibles dans les SoCs étudiés. La section 4.3 présente l’attaque SideLine

et les expérimentations menées dans deux SoCs : le STM32MP1 de ST Microelectronic

[93] et le Zynq 7000 de Xilinx [141]. Chacun de ces SoCs est équipé d’un processeur

double cœur de type ARM Cortex-A et peut accueillir un OS complexe (Linux dans notre

cas). Le STM32MP1 a la particularité d’inclure un microcontrôleur de type ARM Cortex-

M en plus du processeur applicatif, ou Application Processor (AP) en anglais, afin d’y

déléguer les opérations de temps-réel, de communication externe ou d’entrées-sorties.

À partir de ces deux SoCs, nous décrivons trois scénarios attaquant-victime illus-

trés dans la figure 3 : une attaque SbSCA d’un cœur applicatif AP vers un autre sur

le Zynq (figure 3.a). Puis des attaques du cœur applicatif AP vers le microcontrôleur

MCU (figure 3.b) et du MCU vers le AP sur le STM32MP1 (figure 3.c). Ces attaques

sont menées sur divers algorithmes de chiffrements tels que l’AES OpenSSL [106] et

xxxii

delay-locked loop

Power
leakage

DLL
command

ZYNQ-7000 SoC STM32MP1 SoC

M
C

U

Victim Process

delay block

a) AP-vs-AP Attack b) MCU-vs-AP Attack c) AP-vs-MCU Attack

Power
leakage

Power
leakage

Attack Process Victim Process

AP#0 AP#1

Attack Process

delay block

AP#0 AP#1 AP#0 AP#1
Attack Process

Victim Process

M
C

UDelay Line
 state

Delay Line
 state

STM32MP1 SoC

Figure 3 Les trois scénarios d’attaque SbSCA utilisant des delay-lines menées dans le
chapitre 4

diverses implémentations de Rivest–Shamir–Adleman (RSA). De plus, les DLBs et les

DLLs sont également utilisés pour mettre en place des canaux de communication cachés

(covert-channels) entre processus dans la section 4.4.1.

À travers les expérimentations menées à l’aide des DLLs et les DLBs, il apparait

que la consommation électrique du processus cryptographique victime peut être collec-

tée dans chacun des trois scénarios. Avec une fréquence d’échantillonnage des capteurs

d’environ 16 MHz, il est possible de visualiser la consommation électrique des AES

testés et l’exponentiation modulaire du déchiffrement RSA. De plus, nous démontrons

pour chaque scénario, que des attaques CPA peuvent être menées et accomplies sur des

implémentations cryptographiques non-protégées contre la SCA.

Ces attaques réalisées en utilisant uniquement les ressources matérielles contenues

dans les circuits ciblés sont les premières à viser des systèmes aussi complexes (aupar-

avant des microcontrôleurs avaient été visés [46], [104]). La présence d’un OS com-

plique l’attaque car celui-ci génère un bruit de consommation et de la désynchronisation

temporelle. Cependant, elle ne l’empêche pas. Au final, les résultats obtenus sont les

suivants:

• Attaque AP-vs-AP : la clé d’un AES OpenSSL est récupérée en 20 millions de

courbes en utilisant les DLLs dans un SoC Zynq 7000. (12 heures)

• Attaque MCU-vs-AP : la clé d’un AES OpenSSL s’exécutant sur un OS Linux est

récupérée en 40 millions de courbes en utilisant les DLBs du STM32MP1. (24

heures)

• Attaque AP-vs-MCU : la clé d’un AES OpenSSL s’exécutant sur le micro-

contrôleur est retrouvée en 10 millions de courbes en utilisant les DLBs du

STM32MP1. (9 heures)

Ces travaux menés sur deux SoCs modernes participent à démontrer l’ampleur poten-

tielle de la menace des SbHA et ont été publiés dans SideLine [53]. Il semble désormais

acquis qu’une grande majorité des SoCs peuvent être soumis à ce type d’attaque. Dans la

conclusion du chapitre 4 nous décrivons les méthodes qui peuvent permettre à un pirate

xxxiii

de détecter les ressources matérielles des SoCs nécessaires aux attaques SbSCA. Nous

identifions trois méthodes de détection principales :

• Les commandes OS exposées à l’utilisateur : La plupart des systèmes complexes

comportant un OS exposent des commandes utilisateurs dont certaines sont dédiées

au contrôle de ressources matérielles (comme les paramètres Dynamic Voltage and

Frequency Scaling (DVFS) dans [128]) ou à l’accès à des mesures de température

ou de tension provenant de capteurs intégrés (comme la commande non privilégiée

powercap dans [85]). Ces commandes offrent un accès direct aux ressources

matérielles et ne nécessitent pas de réelle connaissance interne du système. Une

attaque exploitant ces interfaces est donc relativement simple à mettre en place.

Cependant, ces interfaces sont souvent loin d’être optimales en terme de flexibil-

ité ou de vitesse d’accès (l’interface powercap ne peut être accédée qu’à une

fréquence de 20 KHz dans [85]). Une autre méthode plus efficace consiste à ac-

céder directement les modules impliqués dans l’attaque en utilisant leurs adresses

physiques. Elle est décrite ci-dessous.

• La documentation matérielle : Dans le chapitre 4, les DLBs et les DLLs ont pu

être identifiés grâce à l’existence d’une documentation détaillée décrivant chaque

module matériel des SoC étudiés. Cette méthode qui se base sur la présence d’une

documentation précise permet d’accéder directement aux registres permettant de

réaliser l’attaque. Même si le travail de documentation est plus conséquent, ceci

permet d’obtenir de bien meilleures performance pour les vecteurs attaques (l’accès

aux delay-lines dans le chapitre 4 se fait à une fréquence de 16 MHz).

• L’ingénierie inverse de code : Dans le cas où la partie matérielle du SoC est

peu ou pas documentée, il est possible d’étudier les modules noyau de l’OS qui

sont chargés de l’accès aux ressources matérielles du SoC afin de retrouver leurs

adresses physiques. L’utilisation d’outils d’ingénierie inverse tels que Ghidra [101]

ou Radare [108] sur des modules noyau peut permettre l’extraction de ces adresses

et le montage d’attaques SbHA plus performantes.

Afin de détecter et corriger des failles potentielles dans les SoCs, il semble important

d’étudier ces trois méthodes d’accès aux vecteurs d’attaque. On remarquera que la mise

en place des SbHA demande, au-delà des compétences en sécurité matérielle, une con-

naissance accrue des OS, des logiciels et du reverse-engineering. Ainsi, il semble que la

conception de contre-mesures face à ces attaques nécessitera aussi l’expertise combinée

d’experts en sécurité logicielle et matérielle.

xxxiv

Figure 4 De SideLine à FaultLine

Attaques par injection de faute dans les transferts mémoire des SoC complexes

La figure 4.a illustre le fonctionnement de l’attaque SideLine menée dans le chapitre

4 où une application malicieuse accède les DLLs pour collecter la fuite de consommation

induite par un processus victime s’exécutant en parallèle. Dans le chapitre 4, le but

principal des DLLs et des DLBs qui est d’assurer une bonne communication entre le SoC

et des mémoires externes n’est pas pris en compte. Les attaques réalisées se concentrent

uniquement sur la relation entre l’état de la delay-line et la consommation électrique du

circuit. Néanmoins, la modification du calibrage des DLLs et des DLBs pourrait avoir

des effets désastreux sur les opérations de chargement et de stockage mémoire opérées

par le CPU.

Dans le chapitre 5, nous décrivons une autre attaque utilisant les delay-lines comme

vecteur principal. La différence avec le chapitre 4 est que la delay-line est maintenant

utilisée comme un moyen d’attaque par fautes SbFIA. Cette variante modifie donc le

vecteur d’attaque SbSCA en un moyen d’attaque SbFIA sur les transferts mémoires.

Comme illustré dans la figure 4.b, cette attaque utilise une application malveillante

pour modifier la calibration de la DLL afin d’injecter des erreurs d’accès mémoire dans

des applications s’exécutant en parallèle. Ce travail introduit une méthode de SbFIA

inédite qui s’attaque uniquement aux transferts mémoire et qui pourrait être menée dans

une grande partie des processeurs utilisant des mémoires externes.

Les travaux menés dans ce chapitre ont été évalués expérimentalement sur un SoC

Xilinx Zynq 7000 déjà utilisé dans les chapitres précédents. Nous montrons tout d’abord

que les DLL peuvent en effet être recalibrées pendant un cours instant et induire des

erreurs d’accès mémoire dans un processus. Nous réalisons ensuite plusieurs attaques

d’un processus vers un autre. La première est décrite dans la section 5.3.2. Elle consiste

à fauter le chargement de données de la mémoire DRAM vers un processus victime.

Pour certaines valeurs de calibration de la DLL des fautes exploitables apparaissent. Les

valeurs de faute optimales sont décrites dans la section 5.3.1.1.

À la suite de travaux préliminaires menés sans OS (en “bare metal”) des scénarios

d’attaques sont montés d’une application vers une autre (sur un OS Linux). Ces travaux

menés dans la section 5.3.3 comportent l’extraction de la clé secrète de plusieurs types

xxxv

d’algorithmes de chiffrement. Une attaque par faute persistante, ou Persistent Fault At-

tack (PFA) en anglais, [145] est menée à bien pour récupérer la clé d’une application de

chiffrement basée sur le TinyAES [78] ainsi qu’une attaque Bellcore [15] sur une version

non-sécurisée du RSA OpenSSL.

Ces travaux ajoutent la dimension SbFIA à cette thèse et confirment une fois de

plus les dangers liés à l’accès malicieux aux ressources matérielles partagées des SoCs.

L’attaque FaultLine relatant ces expérimentations a été publié dans [51].

Dans la conclusion de ce chapitre nous traitons l’apparition possible des attaques

SbHA à grande échelle. Nous rappelons que la mise en place d’attaques SbHA est sou-

vent plus complexe que la mise en place d’attaques logicielles classiques puisque les

premières dépendent du matériel implémenté sur la cible. Ces attaques privilégient donc

les vecteurs matériels génériques telles que les mémoires DRAM pour Rowhammer ou

les delay-lines pour SideLine et FaultLine. Une fois qu’un malware exploitant ces vul-

nérabilités aura été mis en place, il pourra être propagé de la même façon que les attaques

logicielles sur des milliers de plateformes.

Conclusion et Perspectives

Le chapitre 6 conclut ce manuscrit. Il revient sur l’impact académique et industriel de

la thèse et la question de recherche abordée dans ce manuscrit. Dans la liste ci-dessous

nous rappelons les contributions de cette thèse :

• Le chapitre 3 contient 3 travaux étudiant la menace des attaques SbSCA menée sur

des FPGAs. Ces expérimentations ont donné lieu à la publication de deux articles

de conférence présentant de nouveaux capteurs digitaux pour les attaques SCA sur

FPGA [50], les premières attaques SCA statistiques d’un FPGA vers un CPU [54]

et la mise en place d’un outil open-source d’évaluation de ces attaques [52].

• Les expérimentations menées dans le chapitre 4 ont donné lieu à la soumission

de deux brevets et à la publication de l’article SideLine présentant les premières

attaques SbSCA menées sur des SoC complexes [53].

• Les expérimentations menées dans le chapitre 5 ont donné lieu à la publication

de FaultLine présentant des attaques SbFIA menées sur les transferts mémoires de

SoC complexes [53].

À travers l’étude de faisabilité des SbHA, l’identification de nouveaux vecteurs

d’attaques et l’exploration de nouveaux scénarios de SbHA, nous avons cherché à répon-

dre à la question principale derrière ce sujet thèse : Faut-il considérer les SbHA comme

une menace sérieuse pour la sécurité des circuit intégrés ?

Les expérimentations menées tout au long de ce manuscrit ont permis d’évaluer les

SbHA sur divers appareils (CPU, MCU, FPGA), nous avons découvert de nouveaux

vecteurs d’attaque SbFIA et SbSCA à travers l’identification des delay-lines, et enfin,

xxxvi

nous avons utilisé ces vecteurs pour construire de nouveaux scénarios d’attaques SbHA.

La somme des résultats démontre que les attaques SbFIA et SbSCA sont effectivement

capables d’extraire des secrets d’un appareil mais également pertinentes dans une grande

variété de systèmes connectés. Il apparait que tout accès matériel laissé ouvert à un

logiciel malveillant peut conduire à une divulgation complète du contenu d’une cible.

Il est donc urgent de capitaliser sur les enseignements tirés de cette thèse et d’adopter

les contre-mesures proposées dans chaque chapitre d’expérimentation pour éliminer effi-

cacement et durablement la menace des SbHA.

D’un point de vue industriel, nos découvertes ont été présentées au JIL Hardware-

related Attacks Subgroup (JHAS) un conglomérat de laboratoires d’évaluation sécuri-

taire, de fabricants de circuits intégrés et d’autorités de certification nationales. Les ac-

teurs du JHAS ont largement reconnu la menace SbHA et cette communication a con-

tribué à l’adoption des SbHA dans les évaluations Critères Communs. Par conséquent,

elles seront automatiquement incluses dans le nouveau catalogue d’attaques qui sera pris

en compte pour les évaluations dans le cadre du futur schéma de certification sécuritaire

européen.

Sur le plan académique, la nouveauté de l’expérimentation menée a conduit à la pub-

lication de plusieurs communications scientifiques. Un total de quatre articles a été pub-

lié et présenté dans des conférences internationales (CARDIS 2019, ReConFig 2019,

COSADE 2021, HOST 2021). Ces travaux ont également été présentés dans divers sémi-

naires à travers la France et l’Europe comme l’Asset meeting 2019 à Munich, le séminaire

iMath 2020 à Toulon et le séminaire DGA INRIA 2021 à Rennes.

Finalement, la multiplication et la complexification des circuits intégrés associés à

l’intégration d’entités de sécurité dans les SoC devrait conforter la multiplication des

SbHA dans le futur. Pour contrer efficacement ces nouvelles attaques de plus grands

efforts devront être mis en place par les fabricants de circuits intégrés et les développeurs

d’OS afin de construire des systèmes résistants. Fort heureusement, les contre-mesures

déjà implémentées dans les cartes à puce pourraient suffire à court terme à défendre les

systèmes connectés contre de telles attaques. Pour ce faire, une véritable prise en compte

de cette menace doit être opérée rapidement par l’ensemble des acteurs de la filière des

circuits intégrés.

xxxvii

Chapter 1. Introduction

Abstract

This chapter lays out the objectives, scope, and structure of this the-

sis, and describes the methodology adopted to identify and build remote

hardware attacks. After a brief historical overview of the computer se-

curity origins, it presents the new challenges that have arisen in recent

years with the increasing connectivity and complexity of integrated cir-

cuits. It also describes the adopted work plan and the outline of this

manuscript.

Chapter Contents

1 Introduction 1
1.1 Thesis Context . 2

1.2 Thesis Objectives . 3

1.3 Roadmap: From FPGA to CPU exploits 3

1.4 Contributions . 4

1.4.1 Software-based Power Analysis Attacks on FPGAs 4

1.4.2 Software-based Power Analysis Attacks on Complex SoCs 5

1.4.3 Software-based Fault Injection on SoC External Memory Transfers 5

1.5 Outline . 6

1

2 Introduction

1.1 Thesis Context

In 1958, the first Integrated Circuit (IC) was created by Jack Kilby from Texas Instru-

ments. Barely eleven years later, digital computers made out of thousands of transistors

brought the humans to the moon. Since then, the semi-conductor industry conquered

almost every aspects of human interactions: communication, work, transport, etc. The

1965 Moore’s law projection predicting a transistor’s doubling every year in silicon chips

has been fulfilled for 55 years in a row and today’s customer grades processors contain

tens of billions of transistors.

If the discovery of ICs was an instant revolution, their need for security became obvi-

ous thirty years later with the apparition of customers services based on this technology

such as internet, personal computers or mobile phones. For a long period however, the

IC itself was considered as inviolable and most of the security research focused on crypt-

analysis, software and network vulnerabilities. The works conducted by Van Eck [36],

Biham [13] and Kocher [77] during the eighties and nineties proved that assumption to be

wrong. These researchers along with others, introduced various techniques such as Fault

Injection Attack (FIA) and Side-Channel Analysis (SCA) to retrieve secrets from ICs by

taking advantage of hardware vulnerabilities. These discoveries led to the creation of a

new research field: hardware security.

Hardware attacks generally require the targeted IC (e.g smart-card, microcontroller

or system-on-chip) to be directly interfaced with hardware attack tools (e.g laser, elec-

tromagnetic probe, or power glitch injector). For this reason they are often considered

as local attacks. Because the equipment required for building such attacks is somewhat

expensive, hardware attacks are often conducted by specialized academical or private

laboratories and remain quite obscure for the general public. Yet, hardware attacks are

powerful attacks able to extract secrets from the most secure devices. For this reason

they are systematically employed to assess the security of critical products such as smart

cards, passports or crypto-wallets.

Hardware attacks have often been opposed to software attacks that can be launched

remotely, are scalable and cheap. Because software attacks do not require specialized

equipment, they are also better known to the hacker community, and most systems have

been compromised by flaws in their software implementation. However, in the recent

years this frontier between hardware and software security worlds have been rapidly

eroding. The IC complexification and their widespread connection to the internet has

led to the apparition of software-hardware combined attacks that exploit hardware vul-

nerabilities through software code. This became possible as modern high-end ICs enable

hardware reconfiguration and monitoring from software. This software-hardware coop-

eration is now maliciously exploited to conduct remote hardware attacks.

In this PhD thesis, we sought to assess the threat that remote hardware attacks could

pose and the additional challenges that integrated security solutions will face in the near

future. Our main goal was to evaluate products that could potentially be targeted by this

Introduction 3

new type of attack such as Internet of Things (IoT) devices, smartphones products and

cloud datacenters. We assessed the feasibility of various remote hardware attack threat

models and discovered new scenarios that could be exploited remotely by attackers and

launched on a large number of devices simultaneously.

1.2 Thesis Objectives

The main contribution of this PhD thesis is to demonstrate that traditional hardware at-

tacks do not necessarily require direct physical access to a device and that they can be

carried out on remote targets. We achieve this through the use of a Software-based Hard-

ware Attack (SbHA), namely a malware that controls embedded hardware components to

implement SCA or FIA attacks. The main objectives of this thesis are listed and described

below:

1) Assessing SbHA Feasibility: At the end of 2018, the start date of this thesis,

SbHA was in its infancy. Rowhammer attacks was the only topic that had been exten-

sively studied, ClkSCREW had been published one year before and Field-Programmable

Gate Array (FPGA)-based power SCA attacks were just emerging. At first, the hardware

security community struggled in apprehending and evaluating the extents of the remote

hardware attack threat. Several questions arose: is it feasible under realistic attack condi-

tions? Is it more or less powerful than local attacks? Can it be mitigated using traditional

countermeasures? Which systems are potentially targeted? This thesis aims at answering

these questions and at assessing the remote hardware attack threat in general.

2) Identifying Generic SbHA Vectors: In 2018, a large majority of today’s SbHA

vectors hadn’t been discovered. While Software-based Fault Injection Attack (SbFIA)

was already carried out on various processors, Software-based Side-Channel Analysis

(SbSCA) attacks were still bounded to FPGA devices and it looked like a lot of discovery

could be made on this field. The research conducted in this thesis led to the discovery

of novel SbHA vectors that we used both for SbSCA (SideLine in chapter 4) and SbFIA

(FaultLine in chapter 5).

3) Exploring New SbHA Scenarios: Additionally to introducing new SbHA vec-

tors, we used them to build novel attack scenarios. Among the wide variety of poten-

tial SbHA scenarios, we evaluated various possibilities such as FPGA-to-FPGA attacks,

FPGA-to-Computer Processing Unit (CPU) attacks, CPU-vs-CPU attacks or CPU-vs-

Microcontroller Unit (MCU) attacks. By covering this large spectrum we aimed at fur-

ther demonstrating the extents of the remote hardware attack threat and at proving that

any multi-user or multi-security domain system could be a potential target.

1.3 Roadmap: From FPGA to CPU exploits

As a starting point for this thesis, it was chosen to orient the research toward SbSCA as it

was less represented and studied in the literature. We adopted an iterative work plan that

4 Introduction

Figure 1.1 Thesis Roadmap

started from the reproduction and the enhancement of existing SbHAs to the creation of

new attacks and mitigation methods.

Figure 1.1 illustrates the main steps of the thesis roadmap as it was described in 2018.

We based our research works on the FPGA-based SCA attacks [122, 121] that were pub-

lished a few months before by Schellenberg et al. This first step consisted in reproducing

the few existing FPGA-to-FPGA attack works and bringing innovations to this topic.

Then, we wanted the thesis to evolve from FPGA to Application Specific Integrated Cir-

cuit (ASIC) exploits in order to create more generic and reproducible attacks. Therefore,

the second step naturally consisted in attacking heterogeneous platforms embedding both

an FPGA and an ASIC within the same silicon die (FPGA-to-CPU attack). Finally, the

last step had to occur on devices that didn’t embed any reconfigurable logic. Therefore, it

implied the discovery of novel hardware components (SbHA vectors in Figure 1.1) suit-

able for SbSCA or SbFIA in ASIC devices. These three steps led to various contributions

that we describe in the following section.

1.4 Contributions

The steps identified in the 2018 roadmap led to three major contributions that will be

described as chapters of this manuscript. The first contribution is linked to the implemen-

tation of FPGA-to-FPGA and FPGA-to-CPU attacks (step 1 and 2). This work includes

the design of FPGA-based-delay sensors and their use for conducting SbSCA. The sec-

ond and third contributions are applied to ASICs and disclose novel SbSCA and SbFIA

methods that leverage delay-lines as SbHA vectors. We further detail these three contri-

butions in the following sections.

1.4.1 Software-based Power Analysis Attacks on FPGAs

The first step of this thesis was to reproduce the few existing FPGA-based power SCA

attacks. Through our experiments conducted using several algorithms and sensors, we

observed that some sensor designs could be highly improved. This led us to the creation

of new FPGA-based delay sensors designed to be very efficient for on-chip power SCA.

Introduction 5

This contribution was published in the ReConFig 2019 conference proceedings [50].

The second step of this thesis was to move from FPGA-to-FPGA attacks to FPGA-to-

CPU attacks. To that end, we evaluated heterogeneous ICs (embedding both a CPU and a

FPGA) and captured the CPU leakage using FPGA-based sensors. This work was the first

to implement FPGA-to-CPU attacks on symmetric cryptography. Many challenges were

addressed such as the sensor limited sampling rate and resolution problem, the desyn-

chronisation brought by the CPU and the noisy System-on-Chip (SoC) environment. In

the end, we demonstrated that despite the challenges, such complex SCA attacks were

feasible on these platforms and represented a major threat for the privacy of their users.

Moreover, the SbHA knowledge gained during these experiments was decisive to later

mount ASIC attacks. This contribution was published in the CARDIS 2019 conference

proceedings [54] and its implementation was later released in an open-source framework

paper [52]. We present this work in chapter 3.

1.4.2 Software-based Power Analysis Attacks on Complex SoCs

To fulfill our work plan and implement SbHA on complex ASICs, we had to find an

alternative to FPGA-based sensors that could be directly accessible from the CPU. During

our researches, we found out that delay-lines (which were already used in FPGAs to

build voltage sensors) were also widely implemented in recent SoCs to handle external

memory transfers. We studied these components and discovered that we could exploit

their relationship with the chip’s voltage fluctuations to conduct SbSCA. We called this

SCA vector SideLine and used it to build the first SbSCA attacks on complex SoCs, that is,

devices that can embed rich operating systems like Linux or Android. Several scenarios

were implemented such as CPU-vs-CPU, CPU-vs-MCU and MCU-vs-CPU attacks. This

contribution was published in the COSADE 2021 conference proceedings [53] and led to

the application of two patents. We describe this work in chapter 4.

1.4.3 Software-based Fault Injection on SoC External Memory
Transfers

Our discovery of delay-lines for building SbSCA led us to another variant. We observed

that because delay-line settings can be accessed and modified during run-time and that

they may be maliciously used to corrupt memory transfers. We then turned the passive

SbSCA vector into an active SbFIA medium and built the FaultLine attack. By leveraging

the granted access to delay-lines in various SoCs, we were able to induce glitches in

external memory accesses and more significantly to corrupt data transfers, signatures and

even to retrieve keys from cryptographic applications. This contribution was published

in the HOST 2021 conference proceedings [51]. We describe FaultLine in chapter 5.

6 Introduction

1.5 Outline

The remainder of this thesis is organized as follows:

• Chapter 2 describes the background on hardware attacks and provides a remote

hardware attack classification.

• Chapter 3 analyses remote side-channel vulnerabilities in FPGAs and heteroge-

neous SoCs.

• Chapter 4 demonstrates that the logical isolation between physical cores in modern

SoC systems can be defeated through SbSCA. It introduces SideLine an attack that

uses delay-lines to collect on-chip power side-channel leakage.

• Chapter 5 introduces the concept of SbFIA on SoC external memory transfers. It

describes FaultLine an attack that uses delay-lines to corrupt data read or write

from/to external memories.

• Chapter 6 concludes the thesis and provides perspectives on future research direc-

tions.

Chapter 2. Background

Abstract

The title of this thesis “Remote Hardware Attacks on Connected Devices” in-

troduces three main terms: remote, hardware attacks and connected devices

that this chapter endeavors to define. After describing the major concepts be-

hind hardware attacks and presenting connected devices and their vulnerabil-

ities, we outline their recent status of potential victims of remote attacks. We

establish a classification of remote hardware attack types and provide an in-

depth state-of-the-art of the recent exploits and countermeasures published in

the literature.

Chapter Contents

2 Background 7
2.1 Introduction to Hardware Attacks . 8

2.1.1 Origins . 8

2.1.2 Attack Classification . 8

2.1.3 Non-Invasive Attack Setup . 10

2.1.4 Non-Invasive Side-Channel Analysis Attacks 11

2.1.5 Non-Invasive Fault Injection Attacks 14

2.2 The Advent of Connected Devices . 16

2.2.1 Overview . 16

2.2.2 Applications and Threats . 16

2.2.3 Hardware Attacks: No Future? 18

2.3 Remote Hardware Attacks . 18

2.3.1 The Origins of Remote Hardware Attacks 18

2.3.2 Remote Hardware Attack Families 24

2.3.3 Software-based Hardware Attack Taxonomy 29

2.3.4 Software-based Fault Injection Attacks 30

2.3.5 Software-based Side-Channel Analysis Attacks 37

2.3.6 Software-based Hardware Attack Privileges 42

2.4 Conclusion . 45

7

8 Background

2.1 Introduction to Hardware Attacks

Hardware attacks encompass all the attacks that use physical means to retrieve secrets

from a device. They exploit physical properties intrinsic to Integrated Circuit (IC) com-

ponents such as transistor’s power consumption or ElectroMagnetic (EM) emanations to

modify a device’s behavior or eavesdrop its activity.

2.1.1 Origins

By the end of the twentieth century, the invention of smart cards offered a convenient

method to integrate security and secrets within ICs. This plastic card’s major objective

was to provide to companies a way to identify customers and to decide whether they could

access to a service or not. They were massively used in public telephone boxes, public

transports and pay-TVs applications and are still prevalent today for banking (payment

cards) and telecommunications (Subscriber Identity Module (SIM) cards).

Because smart cards were used to enable paid services, they were rapidly targeted

by criminal organizations. For instance, the first individual smart cards used to decrypt

TV channels were easily defeated because they were badly or poorly protected [82, 29].

Through simple software attacks using the smart card communication interface, the at-

tackers were able to reverse-engineer the system access mechanism, conduct firmware

updates and duplicate the exploit on blank cards. These counterfeits cards were then sold

to clients for a much lesser price than the actual subscription to the TV channels 1. A

business was born.

A race between security updates and security exploits followed these events with a

clear advantage for the attackers at the beginning. After a while, it became clear that

"Every security microcontroller and ASIC will be reverse engineered within weeks if pi-

rates see a chance to make a million dollars profit from doing it" [82]. Pirates tampering

techniques evolved with the level of security implemented in smart cards. Once software

attacks became more difficult to achieve because protocols had been secured, they started

to disassemble the cards to extract secrets stored in the hardware. This was the starting

point for hardware attacks.

2.1.2 Attack Classification

Hardware attack techniques have come a long way since the first experiments conducted

in the nineties by Biham [13] on Fault Injection Attack (FIA) and Kocher [77] on Side-

Channel Analysis (SCA). Since then, various attacks tools and methods have been de-

signed to extract secrets from an IC. Nowadays, the hardware attack field is usually split

into three main attack groups. From the least to the most intrusive: non-invasive attacks,

semi-invasive attacks and invasive attacks [125]. Figure 2.1 depicts some differences

1
https://www.wired.com/2008/05/tarnovsky/

https://www.wired.com/2008/05/tarnovsky/

Background 9

Figure 2.1 Proposed hardware attack classification

between each attack category.

- A non-invasive attack (fig 2.1.a) uses external equipment such as power and EM probes

to collect the physical leakage induced by the transistor’s activity of an IC (SCA) or to

inject errors leading to faulty IC computational results (FIA). A non-invasive attack aims

at retrieving the secrets securely stored within an IC without modifying or destroying it.

- A semi-invasive attack (fig 2.1.b) requires a partial depackaging of the targeted IC to

expose the silicon die. This method is typically used in laser fault injection attacks [126]

and in photo-emission microscopy [125] to establish a direct visual contact between the

spot and the die. It is called “semi” invasive attack as it neither requires any physical

contact with the internal wires nor chip destruction.

- An invasive attack (fig 2.1.c) requires the depackaging of the targeted device but also a

direct physical access to the internal silicon chip. It uses micro-probes to tap the internal

wires and collect information about the chip operations [63] (reverse engineering) and fo-

cused ion beams to cut the metal interconnections and build new ones [79] (modification

attacks).

For several reasons, the attacks conducted in this thesis cannot be classified in any

of the existing categories. Indeed, they differ from usual hardware attacks since they

don’t involve any equipment beyond the target itself. In that way, they enable hardware

attacks on remote devices. However, despite the differences, our attacks exploit the same

vulnerabilities linked to the physical properties of semiconductors. For this reason, we

believe that the attacks presented in this thesis should take part in this classification but

as a fourth category.

The name software-based hardware attack was proposed in [85] to identify this new

kind of remote hardware attack and it seems to have been widely accepted by the com-

munity.

- A software-based hardware attack (fig 2.1.d) is triggered by a malicious pro-

gram running within the target chip that aims at accessing software-exposed hardware

mechanisms (sensors, actuators) in order to conduct hardware attacks such as FIA or

SCA. Because a Software-based Hardware Attack (SbHA) exploits the target’s physical

properties, it may break the security barriers that normally prevent an application from

accessing the information belonging to another application. By breaking this isolation,

10 Background

Figure 2.2 Local Non-Invasive Attack Setup

an adversary may steal any data stored within a device regardless from its privilege level.

Even if they don’t share the same tools, non-invasive and SbHA leverage similar

hardware vulnerabilities. In particular, they both use techniques known as FIA and SCA

attacks. The following sections describe how non-invasive hardware attacks use these

methods to extract secrets from electronic devices. It also describes how they can be

translated into SbHA in some cases.

2.1.3 Non-Invasive Attack Setup

Figure 2.2 illustrates a typical non-invasive setup employed by laboratories to conduct

local hardware attacks. This setup contains five major components which are mandatory

for building an SCA or an FIA attack.

The first element is the target. It can be a smart card, a microcontroller or a System-

on-Chip (SoC) and it is usually identified as the Device Under Test (DUT). The attackers

place probes on the DUT package or power pads to conduct either SCA or FIA attacks.

When used for SCA, the probes are designed to eavesdrop the IC physical emanations

(power, EM, temperature). When used for FIA, they are specifically built for injecting

glitches (EM, voltage) or pulses (laser) that may induce errors in the computations per-

formed by the DUT. An oscilloscope is required for collecting, storing and visualizing

the SCA traces. The acquired activity testifies of the computation in progress within the

DUT and can be used in SCA for retrieving secrets or in FIA for synchronizing the at-

tack with the target operations. The oscilloscope is the centerpiece of the attack bench.

It has to precisely and quickly collect the probe state before sending the acquired traces

to a remote computer/server for data storage and post-attack analysis. High-end oscil-

loscopes used for complex SCA attacks can achieve tens of GS/s sampling rates and an

Analog-to-Digital Converter (ADC) resolution of 16 bits. This technology can cost tens

of thousands of dollars. Finally, a control logic unit is required to enable interactions

between the DUT and the computer. This entity (usually a microcontroller or an FPGA)

translates the commands launched by the computer into a communication protocol under-

stood by the DUT. It can transfer plaintexts, passwords and commands to interact with

Background 11

the DUT and reset it on request.

Altogether, the DUT, the probe, the oscilloscope, the computer and the control logic

constitute a minimal non-invasive attack setup. Several additional elements such as glitch

injectors are sometimes added to the setup but are not required in every attack scenarios.

In the following two sections we describe how this non-invasive setup is employed in

laboratories to extract secrets from secure ICs.

2.1.4 Non-Invasive Side-Channel Analysis Attacks

As we have seen above, an IC is made out of transistors. These transistors have their

output signal switching depending on the input voltage applied. They only take two states,

high or low, 1 or 0, this is the so-called binary signal. Programs and applications running

on top of the processors use millions of these transistors along with memory to handle

complex computations, user interaction, graphic rendering, etc. Depending on the data

computed, the transistor activity may highly fluctuate. The art of SCA attacks consists

in eavesdropping this activity by collecting its side-effects on physical emanations such

as power consumption, electromagnetic field, temperature, etc. Because they fluctuate

with the calculations done by the processor, these side-channels may leak information on

what is currently computed and lead to the extraction of sensitive data when a secret is

computed.

2.1.4.1 Power Analysis Attacks

A power SCA makes use of the transistors switching activity leakage through power con-

sumption variations to collect information about the processes running inside a target

device. Thanks to the relationship between the transistor power consumption leakage and

the data processed, a SCA attack can be performed to retrieve cryptographic keys from

a target. Power side-channel setups rely on voltage probes and oscilloscopes to monitor

the DUT side-channel leakage through a resistor attached to its power pads as depicted

in Figure 2.2. By analyzing the collected traces, an attacker can visually speculate on

the different operations performed by the device using Simple Power Analysis (SPA)

[77]. Statistical side-channel methods such as Differential Power Analysis (DPA) [76] or

Correlation Power Analysis (CPA) [18] allow an attacker to infer the secret keys of cryp-

tographic processes by correlating guessed leakage hypotheses with a set of experimental

traces.

Figure 2.3 represents the power leakage induced by a software

Rivest–Shamir–Adleman (RSA) cryptosystem [116] implementation running within an

IC. The captured RSA power trace delivers an information about the computations that

were conducted by the processor. An attacker knowing the implementation details of

the RSA will recognize this operation as a modular exponentiation. In this case of an

unprotected RSA implementation, he would also be able to deduce if the key bits used

12 Background

Figure 2.3 Simple Power Analysis on RSA

for the exponentiation were ones or zeros. Indeed, a key bit to ’1’ would induce more

processor operations than a key bit to ’0’. This can be directly observed by measuring

the space between the black power spikes in Figure 2.3. With such a trace, the attacker

would then retrieve the entire RSA private key in a short amount of time and thus

compromise the device security. This attack is an example of SPA.

To tackle the SCA threat, security hackers work along with security architects to

build efficient countermeasures. They are dedicated to complicate the key retrieval by

making the signal less stable, less readable but also immune to statistical SCA methods.

Countermeasures such as masking, jitter or shuffling [147, 149] are usually implemented

in secure devices to prevent SPA, DPA and CPA but are often defeated by more complex

SCA techniques such as higher-order statistical attacks [91].

Applications in Remote Hardware Attack (RHA): Power analysis attacks can be

mounted remotely thanks to the presence of voltage sensors within modern processors.

In 2013, Fujimoto et al. demonstrated on a custom Application Specific Integrated Cir-

cuit (ASIC) device that an on-chip measurement unit could collect the side-channel leak-

age of a cryptographic accelerator [38]. This leakage was then used to mount SPA and

CPA attacks on Advanced Encryption Standard (AES) [30]. Since then, these attacks

have been reproduced on various platforms and with different sensors. We address this

topic in Section 2.3.5.

2.1.4.2 Electromagnetic Analysis Attacks

Electromagnetic emanations are another example of leakage that can be eavesdropped in

ICs. When a device performs computations, the current running through the transistors

generates a magnetic field and electromagnetic waves are emitted [40]. These can be

captured using a coil connected to an oscilloscope and used to conduct equivalent attacks

to those presented in the previous section. However, this time SPA becomes Simple Elec-

troMagnetic Analysis (SEMA) and CPA becomes Correlation ElectroMagnetic Analysis

(CEMA) [113].

Electromagnetic analysis presents several advantages compared to power analysis.

First of all, it doesn’t require to find a power line, the probe coil is directly placed on top

Background 13

of the DUT and the electromagnetic emanations can be collected through the package.

Secondly, in power analysis, the presence of decoupling capacitors and voltage regulators

in the DUT may filter leakage frequencies containing the footprint of the signal and alter

the attack results. Because the EM probe is directly collecting transistor’s EM emana-

tions, the signal is less damaged by surrounding components and better reflects the actual

leakage. Finally, this electromagnetic signal is often more convenient for side-channel

traces resynchronization as it is less filtered and thus more sharp.

Despite the advantages of EM analysis, power analysis is still widely used as they are

some applications where EM is hardly applicable. For instance, the emergence of 3D ICs

with RAM and Computer Processing Unit (CPU) cores stacked on each other (package-

on-package2) can thwart the EM analysis as the useful signal gets mixed up and hidden by

the surrounding noise and as the probe is more distant from the silicon die. Moreover, in

these complex ICs, distinct power lines exist for each hardware blocks (e.g., CPU, ADC,

memory) and can then be separately analyzed through power analysis. This sometimes

allows the attacker to probe the pad powering a specific block and may highly facilitate

the analysis. To conclude, EM is often chosen for SCA as it is convenient and powerful

but other methods such as power analysis continue to be used to replace EM when it can’t

be applied or to enrich the analysis with an additional leakage information.

Applications in RHA: EM radiations have been studied by the National Security

Agency (NSA) since the cold war through the Telecommunications Electronic Mate-

rial Protected from Emanating Spurious Transmissions (TEMPEST) specification as they

could leak information at a quite distant range and therefore be captured remotely us-

ing an antenna [102]. In 2018, the subject has resurfaced in a paper demonstrating how

mixed-signal ICs may leak EM side-channel information at a longer distance than usual

[22]. We address this topic in Section 2.3.2.1.

2.1.4.3 Other Side-Channels

Other passive side-channels are also found in the literature such as optical, acoustic and

temperature side-channels. These exotic side-channels are not usually employed in to-

day’s attack scenarios because they are less efficient than power and electromagnetic

vectors. However, they have been demonstrated useful in some specific scenarios.

In [64] the thermal side-channel was practically evaluated and one of the conclusion

was that “the temperature leakage is linearly correlated with the power leakage model but

is limited by the physical properties of thermal conductivity and capacitance”. Indeed, the

temperature side-channel has a very low bandwidth which thus thwarts practical attacks.

However, this paper also proved that thermal side-channel is sufficient to evaluate the

power usage of a device. Several years later, thermal side-channel have found various

applications. For instance, in [69], the researchers proposed to measure the temperature

in multi-user tenants datacenters in order to detect opportunities for conducting Denial-

2
https://en.wikipedia.org/wiki/Package_on_a_package

https://en.wikipedia.org/wiki/Package_on_a_package

14 Background

of-Service (DoS) attacks.

For their part, acoustic side-channels were used to exploit sounds emitted by elec-

tronic devices and related mechanical objects. Multiple acoustic works were published

from the recovery of a text file using the sound made by a printer [10], to the extraction

of RSA private keys through the sound generated by a computer during an encryption

[42]. In practice, acoustic side-channels are more efficient for spying objects or peo-

ples than for extracting cryptographic keys. Indeed, microphone bandwidth limitations

to hundreds of KHz are usually too limiting to eavesdrop cryptographic activity on GHz

frequency computers.

Despite their limitations, these other side-channels need to be taken into account by

the security community as they will inevitably be feasible on certain systems. In this

section we did not mention timing SCA, but it will be treated in Section 2.3.2.2.

2.1.5 Non-Invasive Fault Injection Attacks

In the semiconductor safety research field, it has been known for a long period that cosmic

rays particles may induce soft errors in ICs [105]. These could for instance modify a value

stored in memory and induce errors in critical computations. This ionization caused by

cosmic rays could make a system erroneous, dangerous or even inoperative. For this

reason, it was first considered as a significant safety issue for spatial and automotive

applications.

In the nineties, researchers started to evaluate the semiconductor’s physical inter-

actions for security purposes. Smart cards were the first targets and they were rapidly

defeated using fault injection techniques [13, 6]. In this section, we will discuss three

types of non-invasive fault injection methods used to reveal IC secrets: clock, power and

electromagnetic glitch fault injection.

2.1.5.1 Clock and Power Glitch Attacks

Clock and power glitch attacks have been used since the mid-nineties to induce errors

within IC’s computations. The idea is to inject a clock glitch (e.g., shorter clock pulse

than normal) or a power glitch (e.g., transient in supply voltage) during a program’s

execution. If the glitch parameters are correctly set, this will result in inducing an error

inside a program such as the execution of wrong instructions or the modification of a

variable.

When applied to an unprotected device, this injection method may bypass security

features such as Personal Identification Number (PIN) code verification or even lead to

secret key extraction in cryptographic systems. Like SCA, FIA may use statistical analy-

sis to extract keys from a device given a known algorithm and an injected fault. Famous

techniques are known as Differential Fault Analysis (DFA) [13] or safe-error [127] at-

tacks. They allow an attacker to retrieve the key of cryptographic algorithms through

Background 15

fault analysis (e.g., Piret attack [110]). Other DFA methods such as Bellcore attack [15]

can be used against public key algorithms (e.g., RSA).

Regarding the origin of the fault, it is widely accepted that it essentially comes from

timing constraint violations in the internal circuit’s logic paths [153]. In the case of a

power glitch, a sudden decrease of the power supply (voltage drop) reduces the digi-

tal signal propagation speed through combinational gates. Because the system is syn-

chronous, the signal must be ready before the clock edge (setup time). The lag induced

by the voltage drop may result in an error if the logic signal does not have the time to

reach the end of the combinational logic path before the flip-flop sampling. If the signal

arrives too late, an unknown value will be fetched instead and will potentially induce an

error. The clock glitch scenario is quite close but this time the data sampling is triggered

too early in a way that the signal does not have the time to propagate through the logic

gate before the data is sampled [2, 39].

Several countermeasures have been designed to thwart these injection mediums. For

instance external clock sources such as quartz were rapidly abandoned for secure ICs to

prevent the attacker from replacing it with clock glitch injectors. Clock signals are now

generated internally using Voltage-Controlled Oscillators (VCOs) and inaccessible from

the external pads. Moreover, various designs of internal glitch detection circuits have

been proposed to detect power supply and clock anomalies [142, 143] and are imple-

mented in smart cards to reset or even kill the card if multiple faults are detected.

Applications in RHA: Power and clock glitch injection attacks can be mounted remotely

thanks to the presence of programmable voltage and frequency regulators within modern

processors. In 2017, Tang et al. demonstrated that remote power and clock glitch attacks

could be conducted on smartphones by exploiting software-exposed hardware regulators

[128]. Since then, these attacks have been reproduced on various platforms and with

different glitch vectors. We address this topic in Section 2.3.4.

2.1.5.2 Electromagnetic Glitch Attacks

EM fault injection was introduced in 2003 [119], but started to be intensively used ten

years later thanks to significant improvements achieved in probe and injector designs [33,

98, 32]. Using a coil placed on top of a DUT package, one can inject an EM glitch to

disturb the target’s internal activity. The EM glitch injection can generate errors in run-

ning processes and lead to faults suitable for analysis and secret extraction. Again, the

EM advantage over clock and power glitch injection is that it doesn’t require access to

the power or clock DUT pads. Moreover, the EM glitch is not directly affected by volt-

age regulators and decoupling capacitors that could partly absorb a power glitch. While

power glitch would often require capacitors removal, the EM glitch can be conducted

without any modification of the Printed Circuit Board (PCB). For these reasons, EM

injection is the preferred method to inject glitches even though its configuration is a bit

more expensive.

EM injection suffers the same limitations as EM side-channel. For instance, 3D pack-

16 Background

ages or stacked RAM may protect the inner silicon against the EM glitch as it would need

to get through all the layers to inject a fault. This results in the need for more powerful in-

jectors on these targets and makes it difficult to understand the origin of the fault. Because

complex and stacked semiconductor architectures will become more prevalent, expertise

in both power and EM injection will remain mandatory in the future.

2.2 The Advent of Connected Devices

Following the description of the concept behind physical security and non-invasive at-

tacks, the second part of this chapter focuses on the second major term of this thesis

topic: “connected devices”. Here, we aim at better specifying the type of targets that this

thesis would consider.

2.2.1 Overview

The emergence of the Internet at the end of the nineties has enabled a low-cost universal

connection around the world. Personal computers were the first devices equipped with

Ethernet ports, WiFi connection and also the first to be subjected to cyberattacks. Despite

its benefits, the use of Internet introduced millions of malware inside computers. The rea-

son was the poor security knowledge of the end-users and the lack of integrated security

such as firewalls to tackle the attacks. Software security architects have been working

together for thirty years to strengthen computer security but as for hardware attacks, it

seems that nothing can prevent a motivated attacker from obtaining what he wants.

Recently, with the IC miniaturization and the improvements done in Internet band-

width, connected devices have been invading almost all the human activities and ser-

vices. While providing remarkable advances for industrial or medical systems, this break-

through still suffers from its lack of security. In the next section, we introduce a sample of

connected device applications that are currently targeted by cyberattacks and in the RHA

scope.

2.2.2 Applications and Threats

Recently, industries, companies and public services have been widely adopting connected

devices in order to improve their flexibility and efficiency. For instance, the fourth indus-

trial revolution “Industry 4.0” promotes the digitization of manufacturing. To improve the

productivity, machines should be constantly connected and monitored to create resilient

and adaptable systems. In industries, one could improve the overall power efficiency by

remotely controlling each engine and device. In hospitals one could better schedule the

medical operations by anticipating the specialized machine usage.

This massive adoption of connected devices in countless sectors opened the door to a

new business for software hackers. By designing malwares that can propagate throughout

Background 17

internal networks, the adversaries are able to shut down entire websites or services. To

access internal networks, hackers essentially rely on phishing email campaigns and soft-

ware vulnerabilities [68]. Once inside, they can delete or encrypt the entire company data

and ask for a ransom to get it back. According to the Cybercrime magazine, a ransomware

is expected to attack a company every 11 seconds in 20213. Their cost for businesses and

states should reach 20 billion dollars in 2021. Considering the fact that a large part of to-

day’s systems are connected, this may result in interrupting company services for hours,

days or months. In case of a hospital attack, the implications are serious.

Despite these threats, connected devices are more and more widespread. The Internet

of Things (IoT) has been enabling Internet connections on smaller and smaller systems.

Consumers applications have been soaring. The example of smart homes is striking with

connected ventilation, lighting control, leak detection, home robots, smart kitchens, etc.

All these objects were often left totally unprotected against cyberattacks and their critical

applications raise some questions about our indoor security. A striking example was

how an attack [118] could take control on smart light bulbs and trigger a chain reaction

on thousands of devices located nearby. Here the hackers demonstrated the threat on a

harmless bulb device, but the fact that it could be reproduced on leak detection systems

or connected healthcare systems is alarming.

Simultaneously, society is also facing the dematerialization of various devices re-

placed with services. Cloud datacenters are emerging with the acceleration of the global

Internet network and provide services to consumers and companies that want to store data

or perform complex computations without having to deal with internal servers. Cloud

services offer state-of-the-art equipment and maintenance that are really interesting for

companies which cannot afford servers and technicians. The datacenters consist in big

computers shared between multiple users: companies, people, governments. The most

famous ones belong to huge companies such as Amazon4, Google5 or Microsoft6. As

more and more end-user services are offered and private data stored, the security ques-

tion becomes inevitable. Is the user data safe? Could we be spied by cloud providers?

Could we be spied by other users?

During this thesis, we evaluated several scenarios of hardware attacks on connected

devices. From IoT device attacks to cloud scenario attacks we imagined how attackers

could try to steal data in these connected environments. The connectivity revolution is

far from being free from security mistakes, that’s why we strongly need to evaluate these

systems against various and new types of attacks.

3
https://cybersecurityventures.com/global-ransomware-damage-costs-predicted-to-reach-20-billion-usd-by-
2021/

4
https://aws.amazon.com/

5
https://cloud.google.com/

6
https://azure.microsoft.com/

https://cybersecurityventures.com/global-ransomware-damage-costs-predicted-to-reach-20-billion-usd-by-2021/
https://cybersecurityventures.com/global-ransomware-damage-costs-predicted-to-reach-20-billion-usd-by-2021/
https://aws.amazon.com/
https://cloud.google.com/
https://azure.microsoft.com/

18 Background

2.2.3 Hardware Attacks: No Future?

Hardware attacks are often considered as local attacks because they require direct phys-

ical access to the target. Indeed, as described in Section 2.1.3, hardware attacks require

physical material such as oscilloscopes, lasers or glitch injectors and are thus local by de-

sign. This characteristic limits the variety of devices that can be evaluated. Smart cards,

microcontrollers and SoCs are the usual targets because they are small, they can be stolen

and they are easy to place on a test bench. However, less accessible systems such as

servers, datacenters or even buried and hidden devices cannot be evaluated.

With the advent of IoT, cloud services and decentralized computing we could ques-

tion the future of hardware attacks. Indeed, if in a hypothetical future, all the crypto-

graphic calculations for all the devices were done remotely in closed data centers, the

field of possibilities for hardware hacking would eventually shrink.

This idea is biased as we consider these systems immune against hardware attacks.

As we seen in the previous section, the security of connected devices is an issue of general

order in all the human activities and services. These security concerns are not only related

to the software embedded but also to the hardware that could be maliciously used to

conduct attacks. This security by distance mirage could rapidly decay with the emergence

of RHAs.

Since 2014, RHAs have been invading the academic conferences and journals. Novel

attack vectors are disclosed every months and threaten the security of various systems.

This new threat is a revolution in the hardware security world. It involves new skills,

new methods, new analysis tools and also new countermeasures. The following section

introduce their origins and the main families of RHAs.

2.3 Remote Hardware Attacks

Various types of attacks may be classified as RHAs. However they must match at least

two conditions. First of all, they have to interact with the device hardware. Secondly, they

need to be more distant than local techniques and do not involve stealing the target. An

attack that is usually conducted at several millimeters from a device will be considered as

remote if it is conducted at several meters. The difference doesn’t seem that significant

but can be a game-changer in terms of attack scenarios. By finding a method that works

at a distance of 10 meters, the attacker would no longer need to steal the target to extract

its secrets.

2.3.1 The Origins of Remote Hardware Attacks

The idea of launching hardware attacks remotely has been around for decades. During

the cold war, the NSA already warned of the potential dangers of eavesdropping attacks

in the TEMPEST specification [102]. The concerns here were that compromising EM

Background 19

emanations could be collected remotely by an attacker using an antenna. The first public

work exploiting TEMPEST vulnerabilities was published in 1985 by Van Eck [36] and

described a method to extract the image displayed by a computer monitor from hundred

meters away and using low-cost equipment. More recently air-gapped systems have been

heavily targeted by RHAs exploiting various types of emanations such as optical, acoustic

or electromagnetic ones [60, 62, 61].

In parallel, the complexification, the increasing connectivity and the integration of

security features within modern ICs brought new hardware vulnerabilities directly ex-

ploitable from software. SbHA and microarchitectural hardware attacks use software

to exploit hardware vulnerabilities. Because they only rely on software code, they can

simultaneously infect many devices that are built on the same hardware architecture.

These attacks exploit three phenomena that we will describe in the following sections:

the increasing complexity of modern devices, the adoption of multi-user systems and the

emergence of integrated security solutions.

2.3.1.1 The Increasing Complexity of Modern Devices

To better comprehend the mutations that occurred in the semiconductor industry lets com-

pare two ICs. The first one is the Motorola 68000 [99] shipped in 1979 and the second

one is the Apple M1 processor7 shipped in the end of 2020. The Motorola 68000 was

used in the first Apple Macintosh computer. The Apple M1 processor in used in the most

recent Apple laptops.

Table 2.1 highlights the major evolutions that have been made 40 years after the

Motorola’s 68000 release. First of all, the transistor’s process has shrank from 3500 to

5 nm leading here to a transistor count increase from 68 thousand to 16 billions. The

clock speed also rose with a impressive 320 factor (10 to 3200 MHz). Recent systems

use multi-cores architectures to support multi-tasking (here 8 cores for the Apple M1)

and their data-width (bus size) is now reaching 64-bits. Considering these numbers, one

could fit as much as 230,000 Motorola 68000 processors in the Apple M1 and it would

still get lower performances.

Motorola 68000 Apple M1

Process 3500 nm 5 nm
Transistor Count 68,000 16,000,000,000

Frequency 10 MHz 3.2 GHz
Data width 16/32 bit 64 bit

Number of cores 1 8

Table 2.1 The impact of 40 years of research in the semiconductor industry

The real difference between these two devices is that the M1 is way more than a
7
https://en.wikipedia.org/wiki/Apple_M1

https://en.wikipedia.org/wiki/Apple_M1

20 Background

processor as it centralizes all the components required to build a computer. It indeed

embeds a CPU but also a Graphic Processing Unit (GPU), an image processing unit, a

digital signal processor, a neural processing unit, cache memories, integrated-security, a

power management unit, etc. This type of device that implements various components

on the same silicon die is usually called a SoC. It is way faster than older systems that

used one chip per function as it reduces the travel times for communication between

the components. The SoC architecture is becoming a standard in today’s computer and

microcontroller systems. Indeed, the performance gains obtained and cost saving realized

are really attractive for semiconductor companies. This way of designing chips follows

the "More-than-Moore" concept [138] that describes how modern devices do not only

count on the "Moore’s law" to increase their performances. Instead of relying only on

the number of transistors, new ICs incorporate independent building blocks optimized

for specific tasks on the same silicon die (power management, neural units, hardware

acceleration, etc).

The emergence of these heterogeneous SoC systems also impacted the way software

interacts with the underlying hardware. To meet the ever-growing need for performance

in silicon devices, SoC providers have been increasingly relying on software-hardware

cooperation. By controlling hardware resources such as power or clock management

from the Operating System (OS), developers earn the possibility to build more flexible

and power efficient applications. Despite the benefits, these hardware components are

now exposed to software code and can potentially be misused as open-doors to new kinds

of attacks.

2.3.1.2 The Adoption of Multi-User and Multi-Tasking Systems

The increasing complexity of ICs gradually enabled multi-tasking and multi-user plat-

forms. That is, systems where different programs and users simultaneously share the

same hardware resources. Today’s processors can run hundred of applications simultane-

ously and handle several users with different OS privileges.

From a security point of view, running applications simultaneously is not an easy

task. Strong memory isolation should be implemented to prevent one application from

tampering with the others and a certain privilege level must be assigned to each appli-

cation to make sure that an untrusted process doesn’t access and modify critical IC/OS

components. In multi-user systems such as cloud services, a Virtual Machine (VM) must

be properly handled to prevent users from spying or disturbing each other. To that end,

hypervisors are used to isolate guest VM from each other. The hypervisor is a piece of

software in charge of controlling the underlying hardware that maps memory spaces, e.g.,

the Memory Management Unit (MMU). It has the highest privilege level as it can apply

modifications on the underlying hardware to maintain the isolation between VMs. If the

hypervisor is defeated, then the entire isolation is compromised and attacks can happen

between users.

These security principles are widely implemented in personal computers, smart-

Background 21

phones and IoT devices. The famous Linux8, Android9, Windows10 and Apple11 OS

implement several security domains. For instance Linux splits the memory between a

user space and a kernel space. The kernel space is where the core of the OS executes and

provides its services. The kernel represents the highest privilege level, it enables direct

access to the underlying hardware such as memory, I/Os and power management. The

user space is where the user programs runs. It may have distinct permissions levels such

as unprivileged user and super-user in Linux. User programs are handled by the MMU so

they can’t access each other. If a user program needs to access a physical resource (e.g.,

read I/O, memory or access a peripheral), it has to perform a system call to the kernel.

Then, depending on the process permissions, the kernel will grant or discard the access

to the specified resource.

Hundreds of different kernel versions are available for each OS distribution, some

are designed for servers, some are designed for low-power devices, some are designed

for security, etc. Depending on the OS implemented, an unprivileged user may gain

access to critical physical components or may perform privilege escalation by exploiting

kernel vulnerabilities. Because they are such complex environments, OS are continuously

subject to attacks which need to be patched by the developers. Because the attackers still

remain one step ahead in this security war, it becomes clear that rich OS are way too

complex to be used as trusted platforms. This observation gradually led to the emergence

of integrated security in modern ICs.

2.3.1.3 The Emergence of Integrated Security

Because rich OS attack surface is too large, they cannot be easily certified or trusted.

For this reason, several solutions have been proposed by IC providers to discharge the

hypervisors from several critical security operations. The idea here is to create secure

areas that can thwart threats from the rest of the device (malicious OS, malwares, etc).

From SIM cards to Integrated SIM

Delegating secure operations to a specialized device is not new. It has been done

for many years on mobile phones using SIM cards. A SIM card consists in a simple

processor containing a specialized OS dedicated to securely connect a mobile phone to

external cellular networks (3G, 4G, 5G) and Internet services. The SIM card stores phone

numbers, contact information and SMS. Malicious data extraction from a SIM card can

be challenging because these devices are designed by specialized companies to resist

to state-of-the-art hardware and software attacks. Moreover, it is a standalone element

separated from the mobile phone application processor. This physical separation highly

limits the attack surface for the attackers and thus the potential threats.
8
https://www.linux.org/

9
https://www.android.com/

10
https://www.microsoft.com/windows

11
https://www.apple.com/macos/

12
https://kigen.com/resources/blog/securing-iot-in-a-5g-world/

https://www.linux.org/
https://www.android.com/
https://www.microsoft.com/windows
https://www.apple.com/macos/
https://kigen.com/resources/blog/securing-iot-in-a-5g-world/

22 Background

Figure 2.4 Evolution of SIM12

As we mentioned earlier, today’s trend is to integrate various functionalities within a

single device. This statement also affects the security elements and the SIM cards. Figure

2.4 illustrates the gradual SIM card miniaturization observed between 1996 with the Mini

SIM and 2012 with the Nano SIM. Then, the emergence of the embedded SIM (eSIM) in

2016 which consists in a component directly integrated on the device’s PCB. And, more

recently, the apparition of the integrated SIM (iSIM) implemented as a block of the SoC

system. In the future, the card format should gradually disappear and leave room for the

eSIM and iSIM formats to dominate13.

Integrating security components within untrusted devices has recently been subjected

to controversies. Indeed, even if the secure components are still protected from malicious

software accesses, they now share the same silicon die with other potentially malicious

entities. Therefore, the risks of being subjected to RHAs is rising .

Securing the Insecure: Hardware-based Trusted Execution Environment

A lot of companies such as cloud providers, IoT device manufacturers or automotive

constructors need more secure systems and for this reason integrated security as never

been such a major selling point. A Trusted Execution Environment (TEE) is a secure

zone in the processor. It runs in parallel with the main OS, in an isolated environment. It

aims at defending sensitive programs and data against unprivileged and privileged soft-

ware attacks from a potentially compromised native OS. In the recent years, processor

manufacturers have been designing several hardware methods to strengthen TEE security.

The Intel Software Guard Extensions (SGX) [67], the AMD Secure Encrypted Virtual-

ization (SEV) [5] and the ARM TrustZone (TZ) [7] are some examples of the hardware

solutions designed to bring security in computers and microcontrollers at a higher level.

Despite some differences in their architectures, these three security mechanisms share

their main functionality which is to isolate some programs from the insecure application

OS. These solutions are heavily used in today’s systems to protect VMs in the cloud and

secure applications in smartphones. They act as adding an additional privilege level on

top of the existing kernel and user spaces.

13
https://iotbusinessnews.com/2021/03/20/69747-esim-technology-is-predicted-to-be-the-next-step-in-the-
evolution-of-iot-devices/

 https://iotbusinessnews.com/2021/03/20/69747-esim-technology-is-predicted-to-be-the-next-step-in-the-evolution-of-iot-devices/
 https://iotbusinessnews.com/2021/03/20/69747-esim-technology-is-predicted-to-be-the-next-step-in-the-evolution-of-iot-devices/

Background 23

Figure 2.5 SGX and TZ-based Trusted Execution Environments

Figure 2.5 illustrates two types of TEEs. On the left, a typical Intel SGX-based TEE

is represented. In red, the user applications and the OS are considered as untrusted.

To enable the execution of a secure application the SGX hardware mechanism allows

any user or kernel program to create enclaves (app in green). These are defined private

regions of memory, whose content is protected and unable to be either read or saved by

any process outside of the enclave itself. Moreover, the enclave content is encrypted

and decrypted on the fly by the SGX hardware to prevent any attempt from dumping the

enclave memory. SGX has been designed to strengthen security in various use cases. It is

for instance used in secure cloud computing14, secure web browsing15, and Digital Right

Management (DRM) [12].

On the right, a typical TZ-based TEE is represented where the processor and its hard-

ware resources are shared between a secure world (green) and a normal world (red).

When operating in the secure mode the CPU can access all of the device’s hardware and

memory (protected HW in green). When operating in normal mode, it can only access to

a subset of peripherals and unprotected addresses in memory. The normal world contains

the rich OS (Linux, Android) and the user applications. These entities cannot access the

protected hardware area regardless of their privileges. The secure world contains trusted

applications that provide critical services such as key storage, cryptographic operations

or trusted authentication. They run on top of the secure OS whose behavior may differ

depending on the TEE provider. At hardware level, a processor register bit defines if

the system is running in normal or secure mode. Only the secure monitor component

can modify this bit and change the mode of operation through a Secure Monitor Call

(SMC). TZ-based TEEs are widely used on mobile, automotive and IoT platforms to se-

cure critical operations such as fingerprint authentication, encryption services and mobile

payments.

Despite the design differences, TZ and SGX share the same goal which is to protect

secure operations from unprivileged and privileged malwares. These two security mech-

14
https://www.ibm.com/cloud/blog/data-use-protection-ibm-cloud-using-intel-sgx

15
https://software.intel.com/content/www/us/en/develop/articles/hardening-authentication-tokens-in-
browsers-using-intel-software-guard-extensions.html

https://www.ibm.com/cloud/blog/data-use-protection-ibm-cloud-using-intel-sgx
https://software.intel.com/content/www/us/en/develop/articles/hardening-authentication-tokens-in-browsers-using-intel-software-guard-extensions.html
https://software.intel.com/content/www/us/en/develop/articles/hardening-authentication-tokens-in-browsers-using-intel-software-guard-extensions.html

24 Background

anisms even assume that the rich OS could be compromised. TZ and SGX-based TEEs

efficiently tackle various software attack scenarios and their contribution in building more

secure computer systems cannot be contested. However, by introducing new privilege

layers on top of the kernel they also led to the apparition of novel attacks. SbHA which

require access to internal hardware resources have found an additional use case in target-

ing these TEEs implementations. Even if hardware attacks are out of the scope of TZ and

SGX, the fact that SbHA can be conducted remotely and on multiple targets make them

as detrimental as software attacks and thus worrying for hardware TEE security.

2.3.2 Remote Hardware Attack Families

The increasing complexity of modern devices, the adoption of multi-user systems and the

emergence of integrated security led to the apparition of RHAs. In this section we will

briefly introduce three attack families that can be defined as RHAs: TEMPEST attacks,

microarchitectural attacks and SbHAs.

2.3.2.1 TEMPEST Attacks

Figure 2.6 Artist’s representation 16of the TEMPEST attack threat

In Section 2.3.1, we mentioned the existence of the NSA TEMPEST specification that

considered device emanations as a potential source of information leakage. The work on

computer monitors started by Wim van Eck in 1985 was the first academic paper [36] to

publicly evoke this danger and it paved the way to a new family of attack dedicated to the

data extraction from remote devices. Since then, several works have been published and

demonstrated that the compromising emanation sources are not only electromagnetic,

they can also be optical, thermal and acoustic. From these emanations two families of

attacks arose: remote covert channels and remote SCAs.

Several works leveraged remote covert-channels as a method to extract data from

air-gapped computers. That is, devices that are kept isolated and disconnected from any

external network to avoid information leak. These air-gapped computers are often used in

16
https://hackaday.com/2015/10/19/tempest-a-tin-foil-hat-for-your-electronics-and-their-secrets/

https://hackaday.com/2015/10/19/tempest-a-tin-foil-hat-for-your-electronics-and-their-secrets/

Background 25

critical infrastructures such as military networks or nuclear facilities. In the recent years,

several software attacks targeting these systems were disclosed such as Stuxnet attack on

Iranian nuclear facilities [72] or the Agent.btz attack on USA military networks [71].

An air-gapped covert-channel RHA relies on a malware that was initially introduced

within an air-gapped network (through social engineering or an infected USB stick). This

malware is specifically dedicated to the extraction of the internal computer/network data,

it does so through the establishment of a covert-channel with the outside world. The

Ben-Gurion University has been studying a wide variety of covert-channels suitable for

leaking data from such a device. They used optical emanations from a hard-drive LED in

[62], Fan sound in [61] and electromagnetic radiations induced by memory accesses in

[60]. These covert-channels were captured at a distance of several meters by an attacker

located in another room or outside of the building (using a camera, a radio or an antenna).

More recently, TEMPEST attacks have been shown suitable for remote SCA attacks.

In contrary to covert-channels which consider that the attacker has the control of the

emitting (infected) device, remote SCA can steal secrets from a target without necessitat-

ing any control nor physical access. The Screaming Channels attack published in 2018

[22, 21] demonstrated how mixed-signal ICs may leak EM side-channel information at a

longer distance than usual. Mixed-signal chips are widely used in IoT and mobile indus-

try. To reduce cost and time-to-market, IC providers implement both analog and digital

circuitry on the same silicon die. The digital circuitry usually implements a processor

while the analog circuitry implements radio transmitters for Bluetooth and Wifi wireless

communication.

In Screaming Channels, the researchers observed that the side-channel leakage gen-

erated by the digital logic was propagating through the silicon die and interacting with

the poorly isolated analog logic. They showed how the digital noise was amplified and

transmitted into the air by the chip’s analog radio transceivers. The side-channel leakage

getting modulated onto the output radio signal could then be retrieved from a distance

of 60 meters using a radio receiver. By capturing the EM leakage of an AES algorithm

running within an IoT microcontroller at a distance of 15 meters, the researchers were

able to conduct a CPA attack and to successfully extract the secret key. The Screaming

Channels discovery received a great interest from the security community as it relaxed

the attack requirements for an SCA (no more direct physical access required). Moreover,

with the proliferation of IoT systems these types of mixed-signal chips should prevail in

the future. Screaming Channels enables far-field EM SCA attacks: from a room to an-

other, from outside a building and could be dangerous even in scenarios where the device

is not accessible to the attacker.

2.3.2.2 Timing and Microarchitectural Attacks

The Origins of Timing Attacks
When it comes to security, the time taken to conduct cryptographic operations or verify

a password is critical. Indeed, by precisely measuring the duration of a critical operation

26 Background

Figure 2.7 Famous exploit names in the microarchitectural attack field

one may get information on the data processed. In 1996, Paul Kocher introduced the con-

cept of timing attack on public key algorithms [77]. This attack directly exposed millions

of devices to data theft and a quick reaction to build countermeasures was necessary to

secure smart cards but also networks and protocols against this new threat. Several coun-

termeasures arose such as constant-time cryptography that could defeat timing attacks by

making the operation duration independent from the secret key value.

Remote timing attacks have been introduced in 2003 by Brumley and Boneh [19].

Their work introduced network-based timing attacks by exploiting a vulnerability in the

Chinese Remainder Theorem (CRT) RSA algorithm optimization [112]. Thereafter, vari-

ous implementations of authentication programs and cryptographic functions were shown

vulnerable to timing attacks. These exploits usually leveraged precise timing measure-

ment entities available from software such as CPU’s cycle counters that can reach the

nanosecond precision.

Every hardware or software asset that exposes a timing asymmetry is potentially vul-

nerable to timing attacks. Nowadays, these problems are gaining renewed attention, es-

pecially with the advent of Microarchitectural attacks that exploit timing information

leakage in hardware buffers and cache memories.

The Advent of Microarchitectural Attacks

Processor manufacturers are in a constant pursuit of performance improvements. For

this reason, modern processors rely on complex hardware mechanisms designed to en-

hance program execution speed by making data accessible in the least amount of time.

A common software performance bottleneck in processors is the memory access latency.

In computers running at gigahertz frequencies, this latency can heavily damage perfor-

mances as it costs several hundred CPU cycles to load or store data. For this reason,

processor manufacturers have been designing and integrating fast memories (cache) di-

rectly within the ICs. These memory caches can store data physically close to the CPU

and thus drastically improve the access latency. In modern systems, two or three levels of

cache are usually found: L1, L2 and L3. The cache L1 is present in each CPU core. It is

the fastest, it has a latency of 1 cycle and it is usually very small (e.g., 128KB L1 cache in

Apple M117). The cache L2 and L3 are slower but bigger (e.g., 12 MB L2 cache in Apple

M1) and are often shared between all the processor cores. The optimization brought by

cache memory is substantial for ensuring decent performances. However, sharing cache
17
https://en.wikipedia.org/wiki/Apple_M1

https://en.wikipedia.org/wiki/Apple_M1

Background 27

memory has also introduced a major security threat in modern systems: cache timing

SCA.

Because several processes may store data and instruction in the shared memory

caches, they may interact with other processes by overwriting data belonging to other

applications, or having their own data evicted from the cache. Cache memories oper-

ate on a first-come-first-served basis. If the data has been evicted from cache, the data

would have to be loaded from an outer memory (cache miss) and the loading process

will take more time. This information can be used as a side-channel vector to extract

information from a process or as a covert-channel vector to exchange information be-

tween processes. Flush+Reload [144], Flush+Flush [58] and ARMageddon [84] attacks

provide methods to extracts secret keys from cryptographic process using cache SCA at-

tacks. These attacks are particularly concerning for cloud infrastructures as they could

bypass the sandbox isolation between VMs which are sharing the same cache memories.

Moreover, these attacks have recently been shown feasible in real-world scenarios such

as in the Amazon cloud instances [66]. Mitigating these attacks seems hardly feasible

since it would require abandoning shared caches and thus redesigning new processors

from scratch. However, several software countermeasures have been proposed to thwart

these attacks such as flushing the cache before every critical operations or preventing the

adversary from accessing timing accurate counters [41]. Even if these countermeasures

do not completely mitigate the cache attack threat, they make it more difficult for the

attacker to collect accurate time-stamps and thus to extract secrets.

The microarchitectural attacks have also been targeting other CPU performance fea-

tures such as out-of-order execution, branch prediction and speculative execution. These

hardware mechanisms improve program execution speed by predicting the result of con-

ditional statements and pre-loading instructions and data into cache in advance. Branch

prediction can be really time saving as conditional statements often lead to the same re-

sults. With branch prediction the processor will learn and try to guess what will be the

next branch taken by the program and thus compute in advance some instructions (using

speculative execution). If the CPU was right, the pre-loaded instruction and data will

be kept, if not, they will be discarded. In some programs, the prediction accuracy can

reach high rates and lead to significant timing optimizations. However, even if the pre-

loaded results are discarded, they may still remain stored in the memory cache for a short

period of time. Spectre, Meltdown and Foreshadow attacks [86, 75, 133] exploit these

optimization mechanisms along with cache attacks to extract secrets from processes. In

Spectre and Meltdown, the researchers were able to abuse speculative execution mecha-

nisms in order to read and extract secret data from restricted memory areas. These attacks

entirely compromised the hardware isolation between processes and once again exposed

multi-user systems to data theft.

Spectre and Meltdown paved the way to multiple exploits such as microarchitectural

data sampling (MDS) attacks that exploit CPU-internal buffers (Line Fill Buffers, Load

Ports, Store Buffers) without having to deal with cache memory. RIDL [120] and Fall-

28 Background

out [23] used MDS vulnerabilities to leak private data using buffer side-channels. The

LVI attack [134] even turned the microarchitectural attack concept into a fault-injection

mechanism by modifying the data read by victim enclaves in Intel SGX.

We consider microarchitectural attacks as RHAs as they abuse hardware optimization

mechanisms to extract secrets. Moreover, the understanding of microarchitectural mech-

anisms is essential to comprehend how a complex processor works and must be taken

into account when conducting local hardware attacks. It seems that the frontier between

the hardware and software security worlds is blurring. With the emergence of complex

OS systems, hardware security more than ever needs software expertise to build secure

systems and the opposite is also true.

2.3.2.3 Software-based Hardware Attacks

Figure 2.8 Local hardware attack versus software-based hardware attack

This thesis places itself right between the TEMPEST and the microarchitectural at-

tack scenarios. In contrary to microarchitectural attacks that use novel SCA and FIA tech-

niques, we aim to use traditional side-channel and fault injection methods such as power

glitch injection and power side-channel to extract data from a device (as in TEMPEST

attacks). In contrary to TEMPEST attacks, we want our attacks to be remotely trig-

gered from software (as in microarchitectural attacks). Indeed, we want it to be induced

through software so that the attack can be launched on any connected device regardless

of the physical distance from the attacker. The widely adopted name for this specific type

of attacks is SbHA. We define it as the third type of RHA.

A SbHA can be seen as a traditional hardware attack triggered through software code.

In contrary to local hardware attacks, a SbHA does not require any equipment nor phys-

ical access to the targeted device (illustrated in Figure 2.8). To conduct a SbHA, the

attacker needs to interact with the target’s hardware and use this interaction as a fault

injection or as a side-channel medium. Before presenting the current SbHA state-of-the-

art we introduce the taxonomy employed to better identify and distinguish their modus

operandi.

Background 29

2.3.3 Software-based Hardware Attack Taxonomy

Because SbHAs cover a large spectrum of attack vectors and targeted devices, it seems

appropriate to classify them according to different parameters. We identified four major

attributes that will help the reader in understanding the major differences between each

attack: the vulnerability name, the DUT, the targeted assets and the exploits realized. We

describe each parameters in the following paragraphs.

1) Vulnerability Name: As its name suggests, this attribute is usually the name given by

the authors to the vulnerability published. SbHA exploits usually come with a short name

to facilitate the memorization and maximize the communication around the discovery. We

use it to classify the attacks.

2) DUT: The presented exploits have often been tested on at least one target device.

Knowing the type of device attacked can be substantial to enable the attack reproduction.

In the following classification, we identify the DUT by informing the name of the targeted

IC manufacturer or the reference of the DUT.

3) Targeted Assets: This attribute describes the assets that were targeted by the exploit.

It may be a victim application running within a processor core, a crypto-accelerator, an

enclave, a trusted application, etc.

4) Exploit: The exploit describes which type of attack was conducted on the victim asset.

It can be a SCA or a FIA attack depending on the hardware vector used by the attackers.

Additionally to these four parameters that will be displayed in the tables describing

each attack, we also discuss three other points in the attack description:

Attack Vector: The attack vector attribute describes the hardware component that was

used to induce the hardware attack. In complex ICs, various components surrounding

the processor may be used as attack vectors. Despite their differences these components

share the characteristic to be accessible from a program running on the processor.

Privileges Required: The amount of privileges required to conduct the attack should be

mentioned as it may change depending on the employed attack vector. This attribute is

directly linked to the DUT. It may evolve depending on the evaluated target and on the

implemented OS.

Reproducibility: Finally, this attribute aims at providing insights to the reader about the

reproducibility of the attack. It identifies all the systems that could potentially be endan-

gered by the vulnerability.

In the remainder of this chapter, we provide an up-to-date classification of the pub-

lished SbHA attacks. The attacks are classified according to the hardware vectors em-

ployed for extracting data.

30 Background

2.3.4 Software-based Fault Injection Attacks

As for local hardware attacks, SbHA can be split into two attack families: Software-based

Side-Channel Analysis (SbSCA) and Software-based Fault Injection Attack (SbFIA) at-

tacks. This section describes the use of SbFIA for extracting secrets from remote devices.

2.3.4.1 Overview & Categorization

In 2014, Yoongu Kim et al. discovered a method to induce electrical errors in Dynamic

Random-Access Memory (DRAM) memories using only software code [74]. This attack

latter called Rowhammer, drastically changed the hardware security field by enabling

hardware attack with no equipment and from a remote place.

The significant impact of Rowhammer led to the apparition of various works on

SbFIA vectors. At the time of this writing, we identified four different SbFIA methods:

Rowhammer, Field-Programmable Gate Array (FPGA)-based SbFIA, Dynamic Voltage

and Frequency Scaling (DVFS)-based SbFIA and delay-line-based SbFIA. Each one of

them will be categorized in this section with respect to the taxonomy attributes described

above.

2.3.4.2 Rowhammer-based Bit-flips Injection in DRAM Memories

Figure 2.9 Artist’s representation of the Rowhammer vulnerability18

Background: Rowhammer is a famous vulnerability that arose from the increasing

complexity of modern chips. Because DRAM cells density drastically increased in the

recent years, it became harder to prevent DRAM cells from interacting electrically with

each other. As a result, it was observed that accessing a DRAM location repeatedly

(hammering) could disturb surrounding locations and lead to data corruption.

Even if this bug has been known and evaluated by DRAM manufacturers since 2012,

its security impact was first demonstrated in 2014 [74]. Kim et al. described a software

program that could trigger the Rowhammer bug. The idea is to repeatedly activate two

consecutive DRAM rows in order to induce voltage fluctuations and potentially bit flips

in a third unaccessed row. This can be achieved using a simple code which continuously
18
https://fr.techtribune.net/securite/un-nouvel-exploit-javascript-peut-desormais-mener-des-attaques-ddr4-
rowhammer/116220/

https://fr.techtribune.net/securite/un-nouvel-exploit-javascript-peut-desormais-mener-des-attaques-ddr4-rowhammer/116220/
https://fr.techtribune.net/securite/un-nouvel-exploit-javascript-peut-desormais-mener-des-attaques-ddr4-rowhammer/116220/

Background 31

access data from the two specific DRAM addresses. To make sure that a read/write

operation always accesses the DRAM, data caching must be avoided and the memory

caches should be evicted for each access. Several instructions such as clFlush in Intel

processors are used to evict a specific address from the memory cache and enable the

attack.

The real challenges behind Rowhammer are to find the appropriate rows suitable for

bit flips and a way to exploit the flips for hijacking the system. Methods for finding

rows and improving the fault injection rate were proposed in several works [123, 139,

56]. For instance, the introduction of double-sided hammering in [123] yielded to major

improvements in bit flip rate and provided additional control on vulnerable DRAM pages.

These improvements of the Rowhammer injection mechanism paved the way to various

exploits. Table 2.2 compiles a non-exhaustive list of existing Rowhammer attacks.

Table 2.2 Non-Exhaustive list of Rowhammer exploits

Name Author Year DUT Targets Exploit

Flipping Bits in
Memory [74]

Kim et al. 2014
Intel,
AMD

Linux Process Random bit flips

Exploiting
Rowhammer to
Gain Kernel Privi-
leges [123]

Seaborn et al. 2015 / Linux process Privilege escalation

Rowhammer.js [57] Gruss et al. 2015 Intel
Web browsers,
Firefox

Privilege escalation

One Bit Flips, One
cloud Flops [139]

Xiao et al. 2016 Intel
Xen cloud Plat-
form VMs

Private key extraction,
authentication bypass

Flip Feng Shui
[115]

Ravazi et al. 2016 Intel
Co-hosted
cloud VM

Bit-flip in RSA public
keys

Drammer [136]
Van der Veen et
al.

2016 ARM Android Apps Privilege escalation

Nethammer [87] Lipp et al. 2020
Intel,
ARM

Device in a net-
work

Random bit flips

RAMbleed [83]
Kwong et al. 2020 Intel Linux Process

Side-channel on
OpenSSH RSA

Attacks: With seven years of existence, the Rowhammer vulnerability has been

widely exploited and a large variety of targets have been evaluated. We can distinguish

the attacks according to the target and the exploits that were undertaken. Rowhammer

is such a powerful threat since it can be launched from a program with limited privi-

leges. For this reason, it was heavily used for privilege escalation. In [123, 57, 136]

Rowhammer was conducted from an unprivileged application and employed to gain root

privileges. With such rights, an attacker may then be able to access the target hardware,

dump the memory and modify the target’s functionalities. These privilege escalation

attacks were demonstrated feasible on various processors and OS such as ARM and An-

droid in Drammer [136] and Linux and Intel in [123, 57]. Even more detrimental, these

attacks were demonstrated on DRAM chips using different Double Data Rate (DDR)

technologies (DDR3 and DDR4). Because almost all devices embedding a complex OS

32 Background

use external DRAM memories, the Rowhammer attack could be simultaneously launched

on billions of devices. This property is essential for SbHA and particularly fulfilled by

the Rowhammer attack.

Other scenarios targeting cloud services have been demonstrated in [115, 139]. They

compromised the memory protection in cloud services by enabling unauthorized access

to co-hosted VMs. These attacks are particularly frightening for people and companies

using cloud services as cloud providers could not be able to ensure proper isolation be-

tween users.

More recently, Nethammer [87] proposed a method to induce bit flips in a device

without requiring local code execution. In this work, the researchers were able to inject

bit flips through network requests only and thus drastically reduced the prerequisite for

the attacker. In RAMbleed [83], the researchers turned the Rowhammer concept into an

SCA vector by exploiting the data dependence between Rowhammer-induced bit flips

and the bits in nearby rows. This read side-channel was leveraged to extract RSA private

keys from victim processes.

Countermeasures: Because definitively thwarting the Rowhammer bug would re-

quire the replacement of every DRAM chips deployed on the field, the Rowhammer bug

had to be mitigated using resources already available in the targeted systems. For in-

stance, [74] pointed out that increasing the DRAM refresh rate could limit the Rowham-

mer success rate. Moreover, error correcting codes were often mentioned as suitable

countermeasures to detect and correct bit flips. Despite making Rowhammer more diffi-

cult, both these countermeasures were defeated few years later [27]. Software counter-

measures were also proposed such as Can’t Touch This [17] which provided a method

to separate kernel and user DRAM pages to prevent privilege escalation. However, this

countermeasure was defined as unpractical by other Rowhammer-related papers [137,

56]. To conclude, the Rowhammer threat is probably too recent to be properly miti-

gated and as for the smart cards in the nineties, the race between attackers and security

researchers will probably persist over the years.

2.3.4.3 FPGA-based Power Glitch Injection

Background: An FPGA is a digital circuit that can be customized after manufacturing.

Historically, FPGAs have been widely used for ASIC prototyping and hardware acceler-

ation applications. They are commonly used along with processors to accelerate certain

parts of algorithms in real-time, cryptographic and Artificial Intelligence (AI) applica-

tions. The main advantage of an FPGA is it flexibility that makes it possible to build any

digital hardware design. They are usually chosen in applications where the production

volume is small as the design of a dedicated ASIC would be too expensive. FPGAs are

often used in critical applications such as aerospace, defence or security. For this reason,

their resistance to local hardware attacks has been widely studied over the years. Notably,

the bitstream encryption mechanisms that protects the intellectual property of the design

implemented within the FPGA [96, 97, 88, 37].

Background 33

Figure 2.10 Cloud FPGA fabrics shared between multiple users

Because FPGAs can be reprogrammed they became a desirable solution for the in-

dustry as AI and security algorithms are evolving quite fast. Moreover, they are now

widely adopted in cloud datacenters for acceleration means but also as a service for the

end-users. Cloud providers recently deployed FPGA instances in large scale datacenters

such as Amazon EC2 [109] and Alibaba F319 instances. These services allow users to

rent logic resources for big data analytics, AI, security and video processing. Remote

access to FPGAs in the cloud raises concerns about associated security threats. The pos-

sibility to virtualize and share FPGAs between multiple users was discussed in several

design articles and could prevail in the near future [24, 131] (depicted in Figure 2.10).

Although logical isolation has been suggested to protect each logic block from the others,

recent papers warn the community about the multi-tenant threat. A malicious user could

try to take advantage of his configurable resources to eavesdrop or disturb calculations

conducted by other users located in the same fabric.

Attacks: Multi-tenant FPGAs can be compared to multi-tenant cloud computers.

Instead of having VMs isolating users from each other, the multi-tenant FPGA imple-

ments shells to prevent a user from accessing the hardware of another user (Figure 2.10).

We’ve seen in the previous sections on Microarchitural and Rowhammer attacks that the

VM isolation in computers could be defeated through RHAs. Several research works

have been demonstrating that the FPGA can be equivalently affected by the RHA threat.

FPGA-based power glitch injection is a type of SbFIA that may affect cloud FPGAs if a

malicious user is in capacity of implementing glitch injection logic. Table 2.3 lists all the

FIA methods that have been discovered on FPGAs.

In 2017, Gnad et al. [48] were the first to demonstrate that certain hardware designs

could induce voltage drops in FPGAs and lead to faults in computations. Even if, the

attack concept is the same as local glitch injection (timing violations in critical paths),

the injection mean is now located within the FPGA and is a part of the design. In [48, 80,

16], the injection mean was built using Ring-Oscillator (RO). ROs can be implemented

within an FPGA without violating any design rule, they generate oscillations that are

latter used to feed either a VCO or a Random Number Generator (RNG). However, it

appears that RO oscillations also have a strong influence on the FPGA voltage activity

and, by implementing multiple ROs and enabling them at the same time this could lead

to voltage glitches.
19
https://www.alibabacloud.com/blog/deep-dive-into-alibaba-cloud-f3-fpga-as-a-service-instances_594057

https://www.alibabacloud.com/blog/deep-dive-into-alibaba-cloud-f3-fpga-as-a-service-instances_594057

34 Background

Table 2.3 List of FPGA-based Power Glitch Injection exploits

Name Author Year DUT Targets Exploit

Voltage drop-based
fault attacks [48]

Gnad et al. 2017
Xilinx
FPGAs and
Zynq

cloud
FPGA

DoS

FPGAhammer [80] Krautter et al. 2018
Xilinx, In-
tel, Lattice

Multi ten-
ant cloud
FPGA

DoS and DFA on
AES

RAM-jam [3] Alam et al. 2019
Xilinx
FPGA

Multi ten-
ant cloud
FPGA

Bit flips

Neighbors From
Hell [16]

Boutros et al. 2020 Intel FPGA
Multi ten-
ant cloud
FPGA

Deep learning pre-
diction accuracy
degradation

The fact that a valid FPGA design may lead to fault injection or DoS attacks is fright-

ening for the global FPGA security as a malicious Intellectual Property (IP) could embed

such a trojan to alter the functionalities of a device. Especially these days where a lot of

FPGA IPs are made available by companies or open-source repositories and potentially

re-used by designers without performing a security sanity check.

In FPGAhammer, an RO-based glitch attack was conducted against a hardware AES

implementation. By collecting faulty ciphertexts, the hackers were able to retrieve the

AES secret key without accessing the protected shell. In [16], an equivalent attack was

conducted on a deep learning hardware algorithm and succeeded in affecting the predic-

tion accuracy.

Countermeasures: Because FPGA-based power glitch injection uses valid bit-

streams, it isn’t trivial to detect it. A straight-forward mitigation would be to forbid

the implementation of ROs in cloud applications. However, this would also prevent users

from implementing a large variety of designs that use ROs for valid reasons. Moreover,

[3] demonstrated that voltage glitches can be injected through other means such as mem-

ory collisions. In [49], it was proposed to build an FPGA antivirus to detect electrical-

level attacks. For now we have no information if this idea has been adopted in cloud

services or defeated by another attack. As for Rowhammer, the race is far from over.

2.3.4.4 DVFS-based Power/Clock Glitch Injection

Three years after the first Rowhammer exploit in 2014, FPGA-based power glitch injec-

tion attack was introduced. The same year, a remote glitch attack was demonstrated on a

smartphone platform. Because mobile phones and computers rarely rely on FPGAs, the

hackers had to find another method to induce glitches. Here, they used a common power

management tool implemented in SoC devices and known as DVFS.

Background: Clock and power management is critical for each electronic device

that aims at being power efficient. Smartphones and laptops battery life can be drasti-

cally improved by modifying the frequency and voltage of the processor according to the

computing demand. The DVFS usually undertakes this task in modern processors. To

Background 35

that end, it relies on a complex software-hardware cooperation. On the hardware side, the

DVFS uses programmable regulators to adjust the processor cores voltage and frequency.

On the software side, the DVFS is handled by OS kernel services which continuously

update the hardware regulator values with respect to the current processor usage.

In ClkSCREW [128], Tang et al. were the first to raise concerns about the poten-

tial security risks exposed by this software-hardware cooperation. First of all, the au-

thors noticed that a privileged untrusted code could access and modify the DVFS calibra-

tion. Then, they observed that the available voltage/frequency values were not necessarily

bounded to operating limits of the IC and that it could be programmed to inject glitches.

The DVFS-based fault injection was then achieved through overclocking or undervolting

the processor cores. As for local FIA, various parameters such as glitch strength or glitch

width could be precisely calibrated to obtain usable faults. However, the fact that the

malware injecting glitches ran within the target involved numerous difficulties linked to

noisy OS environment, timing precision, timing resolution, crashes, etc.

Attacks: In contrary to common belief, having root or kernel privileges does not

necessarily mean having full control of a device’s hardware and memory. As we men-

tioned in 2.3.1.3, rich OS cannot be trusted and for this reason hardware-based TEEs have

been made available by processor manufacturers to build secure applications on top of an

insecure system.

Because it accesses hardware registers to inject the fault, DVFS-based fault injection

may require root privileges depending on the implemented OS. Therefore, it may be

essentially employed to attack higher privilege entities such as HW-TEE (SGX, SEV, TZ)

or assets that cannot be directly accessed from the main processor (e.g., secure elements,

cryptographic accelerators). Table 2.4 lists all the current publications related to DVFS-

based glitch attacks.

Table 2.4 List of DVFS-based power glitch injection exploits

Name Author Year DUT Targets Exploit

ClkSCREW [128] Tang et al. 2017 ARM TrustZone
self-signed code
loading, AES key
extraction (DFA)

V0LTpwn [73] Kenjar et al. 2019 Intel SGX OpenSSL SHA
Voltjockey [111]

Qiu et al. 2019 ARM TrustZone
DFA on TZ authenti-
cation RSA

Plundervolt [100]
Murdock et al. 2020 Intel SGX

DFA on AES, Bell-
core on RSA

In ClkSCREW [128] and VoltJockey [111] attacks, ARM processors implementing

TZ were targeted (Google Nexus smartphones). In these papers, the attackers abused the

fact that DVFS wasn’t TZ protected. Thus, a normal world malware was used to inject

faults on a secure world AES trusted application by leveraging a granted access to DVFS

36 Background

tools. By collecting the faulty ciphertexts, the attackers were able to retrieve the AES key

and thus demonstrated that the TZ isolation could be compromised using SbHA [128].

Even more detrimental, the hackers were able to breach the TZ authentication system that

normally prevents a user from loading custom applications within the TEE [128, 111].

The DVFS-based glitch mechanism was also evaluated on Intel platforms to break

SGX enclave isolation. V0LTpwn [73] and Plundervolt [100] attacks leveraged

hardware-level rights to access Model-Specific-Registers and control the processor cores

voltage. Similarly to previous ARM exploits on TZ, they were able to defeat the isolation

provided by SGX. In V0LTpwn, OpenSSL hashes computed in an enclave were success-

fully faulted. Plundervolt went further by retrieving enclave secret keys through a DFA

attack on AES and a Bellcore attack RSA-CRT signature.

Countermeasures: In paragraph 2.1.5.1, we mentioned that glitch attacks could be

mitigated using detection logic instantiated within the hardware. Because DVFS-based

FIA leverages the same injection vector, it should also be affected by such a counter-

measure. However, few systems implement these solutions since they are expensive and

potentially counterproductive in case of false positive.

Because each processor core may have its own hardware regulator, an alternative

solution would be to place the TEE on a dedicated core and prevent the OS kernel from

modifying its DVFS calibration [111]. Finally, when a TEE is in use, it seems appropriate

to delegate the monitoring of the CPU voltage and frequency to a TEE application. This

app could also trigger a warning or a voltage/frequency recovery if the DVFS command

gets modified by another process.

2.3.4.5 Delay-Line-based Glitch Injection on Memory Transfers

Today’s integrated memory controllers use complex hardware such as delay-lines to mon-

itor and control signal timings during data transfers with an external memory. Because

memory chips with different timing specifications may be used, delay-line tuning regis-

ters often remain accessible and programmable from the application processor.

During our thesis work, we discovered the concept of delay-line-based fault injection

that we used to induce faults in memory transfers and to jeopardize the security of con-

currently running assets. This work was named FaultLine and as shown in Table 2.5, it

is the first of its kind. Chapter 5 of this manuscript is dedicated to the description of this

novel SbFIA medium.

Table 2.5 List of delay-line-based glitch injection exploits

Name Author Year DUT Targets Exploit

FaultLine [51]
Gravellier et
al. 2020 ARM

Linux Pro-
cesses

AES key extraction
(DFA and Persistent
Fault Attack (PFA)),
Bellcore on RSA

Background 37

2.3.5 Software-based Side-Channel Analysis Attacks

This second part of the SbHA classification addresses the use of SbSCA to conduct on-

chip remote power analysis attacks.

2.3.5.1 Overview & Categorization

The main challenge behind SbSCA is to find a hardware component located within the

target that can act as a sensor to collect power fluctuations. Once found, the sensor has

to meet several requirements to be suitable for SCA. First of all, it has to be sensitive

enough to collect small voltage variations induced by a victim asset. Secondly, it should

provide a fast sampling frequency to facilitate the identification of the target process and

maximize the chances of capturing leakage samples linked to the secret. Finally, because

the sensor is integrated within the target, the attacker will face additional challenges such

as timing desynchronisation brought by the noisy complex OS environment or privilege

right limitations.

Despite these challenges, the attackers are helped by the increasing complexity of

modern devices. A wide variety of components implemented in these SoC devices can

be used to capture the power leakage. They were placed here for performance, integrity

or security reasons but could be subverted into SCA vectors. Since 2018 and the first

SbSCA demonstrated on FPGAs, four SbSCA families have been emerging. The FPGA-

based power SCA, the ADC-based power SCA, the delay-line-based power SCA and the

Running Average Power Limit (RAPL)-based power SCA. The main difference between

these works rely in the vector used for capturing the power leakage. As we did for SbFIA,

we will extensively describe each attack in the following sections.

2.3.5.2 FPGAs-based Power Side-Channel Attacks

FPGAs were described in Section 2.3.4.3, they consist in flexible platforms that can be

reprogrammed to implement any digital hardware designs. Recently they were massively

adopted in the cloud for custom user applications such as AI, video processing or security.

Background: We’ve seen from an FIA point of view that the apparatus of cloud

FPGAs was a bargain for cyber-attackers. In FPGA-based SCA, the objective remain the

same: breaking isolation between assets or tenants without accessing them. This time

with the help of a propagation delay sensor instead of a glitch injector.

The propagation delay is the time required for a signal to propagate through a logic

gate. Power supply, temperature and capacitive effects play a part in the propagation delay

equation [35]. While the capacitive load is fixed and temperature can be held relatively

stable over the time, voltage fluctuations induce runtime propagation delay variations. At

runtime, a sudden under-powering caused by transistors switching activity will induce an

increase of the propagation delay throughout the chip. An over-powering will produce

the exact opposite. Hence, measuring propagation delays provides an accurate estimation

38 Background

Figure 2.11 FPGA-based power side-channel attack threat

of the chip’s internal power supply voltage variations. Two major propagation delay

sensors are commonly used for FPGA-based power monitoring: the RO-based sensor

[150] and the Time-to-Digital Converter (TDC)-based sensor [151]. We describe their

principle in chapter 3. Using these sensors, an attacker can eavesdrop the side-channel

leakage induced by the overall FPGA computations. By attaching the sensor to a storing

mechanism such as a First In First Out (FIFO), he can recreate an oscilloscope, and, if

the sensor is accurate enough, conduct SCA attacks throughout the FPGA. Table 2.6 lists

some of the existing FPGA-based power SCA exploits.

Attacks: In 2018, Schellenberg et al. demonstrated that FPGA-based sensors were

precise enough to be used for SCAs on public and secret key cryptographic algorithms

[122]. To enable this attack, the adversary (a TDC-based delay sensor and its control logic

for power supply measurement) and the victim (an AES hardware encryption block) had

to be located within the same FPGA. This scenario is depicted in Figure 2.11.a. The

associated threat model targets multi-user FPGA cloud services that may appear over

the next few years. The same year, Zhao et al. disclosed that power SCAs could be

conducted on heterogeneous platforms that include both an application processor (CPU)

and an FPGA fabric on the same silicon die. This is illustrated in Figure 2.11.b. As a

proof of concept, they were able to successfully retrieve the secret key of a custom RSA

implementation running within a CPU core [148]. To do so, they carried out an SPA

attack using RO-based voltage sensors implemented in the FPGA fabric.

In two works that we conducted in 2019, we introduced new FPGA-based sensors

[50] and new attack vectors on heterogeneous SoC, notably CPA on software AES im-

plementations [54]. These findings are described in chapter 3 of this manuscript.

Other works have been evaluating the existence of covert channel mediums in FPGAs

[43, 44]. More recently, machine learning accelerators [94] and security assets [45] have

been attacked on real-world cloud platforms.

Countermeasures: Because FPGA-based power SCA uses valid bitstreams, it isn’t

easy to detect. A straight-forward solution to mitigate the threat would be to forbid the

implementation of long wires, TDCs and ROs in cloud applications. However, it would

also prevent users from implementing a large variety of designs that use these assets for

valid reasons. Another way to mitigate FPGA-based SCA in the cloud would be to place

Background 39

Table 2.6 List of FPGA-based power SCA exploits

Name Author Year DUT Sensor Targets Exploit

An inside job [122]
Schellenberg
et al.

2018
Xilinx
FPGA

TDC
Multi-tenant
cloud FPGA

CPA on AES

FPGA-Based Remote
power SCA [148]

Zhao et al. 2018
Xilinx
Zynq

RO
Heterogeneous
systems

SPA on RSA

Leaky Wires [43]
Giechaskiel
et al.

2018
Xilinx
FPGA

Long
wires

Multi-tenant
cloud FPGA

Covert chan-
nels

Remote SCA on Hetero-
geneous SoC [54]

Gravellier
et al. 2019

Xilinx
Zynq

TDC
Multi-tenant
cloud FPGA

CPA on SW
and HW AES

High-Speed RO-based
Sensors for Remote
SCA on FPGAs [50]

Gravellier
et al. 2019

Xilinx
Zynq

RO
Multi-tenant
cloud FPGA

CPA on HW
AES

C3APSULe [44]
Giechaskiel
et al.

2020
Xilinx
FPGA

RO
Board con-
taining a
FPGA

Covert chan-
nels

Are cloud FPGAs
Really Vulnerable to
Power Analysis At-
tacks? [45]

Glamocanin
et al.

2020
AWS
EC2
F1

TDC
Multi-tenant
cloud FPGA

CPA on AES

Power SCA on BNN Ac-
celerators [94]

Moini et al. 2021
AWS
EC2
F1

TDC
Multi-tenant
cloud FPGA

Extract image
from a BNN
accelerator

active fences between FPGA users. In [81], RO fences were used to hide the side-channel

leakage of an FPGA AES module. This protection made the SCA more difficult as the

attacker had to collect more traces before retrieving the secret key.

To conclude, because there is no easy way to prevent a user from implementing a sen-

sor, the best solution remains in the implementation of side-channel resistant algorithms.

This can be achieved by adding masking schemes or clock randomization to temporally

spread the side-channel information [147, 149].

2.3.5.3 ADC-based Power Side-Channel Attacks

In 2018, the first SbSCAs were conducted on FPGA. One year later, these attacks were

evaluated on microcontrollers. The major difference between FPGA and microcontrollers

is that the latter is an ASIC. This means that the hardware cannot be reprogrammed

and that the implementation of a TDC or RO-based sensor is not anymore possible. To

enable SbSCA in microcontrollers, researchers had to find and use voltage sensing vectors

already available within the targeted ICs.

Background: Microcontrollers are small computers convenient for simple tasks that

require to be timing reliable and power efficient. These devices are widely used in indus-

try to monitor, control and interconnect facilities but also integrated in various objects to

build an interface between the user that can be either physical (e.g., buttons and screen) or

dematerialized (e.g., Bluetooth application). Because microcontrollers aim at being used

in a large range of applications, they feature a wide variety of hardware peripherals sur-

rounding the main processor (SoC). For instance, a large part of modern microcontrollers

embed analog logic for signal sensing, signal generation and connectivity reasons. These

40 Background

mixed-signal chips (analog & digital) were evaluated as potential target for SbSCA in

two 2019 papers as their ADC could be used as a power sensor for SCA. We list these

works in Table 2.7.

Table 2.7 List of ADC-based Power SCA exploits

Name Author Year DUT Targets Exploit

Leaky Noise [46] Gnad et al. 2019
STM32,
ESP32

IoT devices CPA on AES

On-Device Power Anal-
ysis [104]

O’Flynn et al. 2019
Microchip
SAML11

IoT de-
vices,
TZ-M

CPA on AES
accelerator

Attacks: In Leaky Noise [46], it was demonstrated that an attacker with ADC ac-

cess could monitor on-chip voltage and conduct SbSCA attacks in microcontrollers. By

configuring the ADC to probe power pins, researchers were able to collect on-chip volt-

age fluctuations and store them in memory. Moreover, they introduced a Direct Memory

Access (DMA) sampling method to achieve stable and fast ADC-sampling.

In contrary to FPGA in which the signal timings can be exactly calibrated, microcon-

trollers and computers are subject to timing desynchronization brought by OS and exter-

nal interruptions. This jitter can be problematic for statistical SCA as multiple traces must

be collected to retrieve the key. If the collected traces are not aligned (synchronized), the

analysis will fail. The DMA sampling method proposed in [46] solves this problem, by

delegating ADC sampling to the DMA which has high priority access to the memory and

is not subjected to OS or external interruptions. In the end, the SCA samples are correctly

aligned and the sampling rate is improved.

Months later, O’Flynn et al. [104] used ADCs and DMA-sampling to deploy attacks

on microcontrollers implementing the recent TZ-M [9]. The TZ-M aims at answering

to the growing demand for security in low-cost IoT products by introducing the concept

of secure and non-secure world in microcontrollers. TZ-M makes it possible to perform

secure operations such as secure boot and secure firmware update by isolating the critical

assets and private information from the rest of the application. In their paper, O’Flynn

et al. were able to conduct a CPA attack on a microcontroller hardware AES peripheral

protected by the TZ-M. This exploit was realistic as the user code could not directly

access the AES key. Here, the AES accelerator secret key was betrayed by its power

leakage (not taken into account by the TZ-M). The CPA attack required 160 millions

traces to extract the entire key from the accelerator. This number is huge compared to the

thousand traces required to extract a hardware AES key using TDC-based sensors in an

FPGA [50]. This demonstrates the difficulty of achieving SbSCA attacks using only the

logic available within a microcontroller. However, these results were promising and led

to the discovery of other power SCA mediums that will be presented in the next sections.

Countermeasures: Traditional SCA countermeasures such as masking, shuffling and

clock randomization are good candidate to mitigate the ADC-based SCA threat [147,

149]. However, in case of an unprotected algorithm some alternatives are available. In

Background 41

case of a TZ enabled microcontroller, a simple workaround would be to place the ADC in

the secure world and make its use by non-secure world processes impossible [104]. The

same could be applied to the DMA mechanism if the ADC had to be kept usable from

unprotected processes. Another thwarting method would be to limit the ADC sampling

rate or filter its output [46] to prevent it from leaking usable SCA information. Finally, an

interesting possibility would be to disable ADC access during secure-world operations.

2.3.5.4 Delay-Line-based Power Side-Channel Attacks

Table 2.8 List of Delay-line-based Power SCA exploits

Name Author Year DUT Targets Exploit
SideLine [53] Gravellier et

al. 2020 ARM
Multi-core
devices

CPA on AES
SPA on RSA
covert-channel

During our thesis work, we introduced SideLine, a novel power side-channel vec-

tor based on delay-line components widely implemented in high-end SoCs. We demon-

strated that these entities could be used to conduct remote power SCA and detailed several

attack scenarios in which an adversary process located within one processor core aimed

at eavesdropping the activity of a victim process located in another core. This work was

named SideLine and as depicted in Table 2.8, it is the first of its kind. The description of

this novel SbSCA medium is done in Chapter 4.

2.3.5.5 Intel RAPL-based Power Side-Channel Attacks

Background: Until the end of 2020, SbSCA remained bounded to ARM devices. The

main reason behind this choice was the hegemony of ARM in microcontroller and middle-

range SoC systems which were the typical targets evaluated in ADC-based and delay-line-

based attacks. However, ARM devices are not the only devices equipped with voltage

sensors. They are found in almost all ICs ranging from simple microcontrollers to com-

plex CPUs and GPUs. It was just a matter of time before researchers started evaluating

these systems.

Table 2.9 List of RAPL-based power SCA exploits

Name Author Year DUT Targets Exploit
Platypus [85]

Lipp et al 2020 Intel SGX
CPA on AES, SPA on
RSA, Covert-channel

Attack: In the Platypus attack [85], Lipp et al. studied Intel processors (Table 2.9).

Their research exposed the RAPL interface that can be used to monitor the processor

core voltage. It can be used by unprivileged processes to measure the processor power

42 Background

consumption. Even if, its sampling frequency is extremely limited (max 20 KHz) the

researchers were able to use it as a side-channel medium. To that end, they combined

various techniques to better control the target execution and its leakage capture. They

leveraged cache-based SCA attacks for trace synchronisation, trace aggregation to im-

prove the sensor accuracy and SGX debug tools (SGX-Step) to control the victim execu-

tion [135].

Then, this combination of hardware and software expertise was used to conduct power

SbSCA on RSA and AES algorithms running within an enclave and a Linux kernel ap-

plication. Moreover, they introduced novel SbSCA attack paths such as Linux kernel

address space derandomization and instruction identification.

Platypus uses a very limited hardware voltage sensing medium but is able to re-

trieve cryptographic secrets by compensating these restrictions with sophisticated soft-

ware techniques. SbHAs in general can be perfected by the use of information media

directly accessible from the software (e.g., performance counters, cache side-channels,

etc). This compensate the SbHA vectors limitations and enable the implementation of

combined attacks such as Platypus. For this reason, SbHA are and will remain cross-

domain attacks, just right in between software and hardware worlds.

Countermeasures: Platypus authors proposed several countermeasures to mitigate

RAPL-based power SCA. A straightforward method consists in disabling the RAPL via

a microcode update. This would prevent both unprivileged and privileged processes from

accessing it. Another method would be to make the RAPL interface less precise. For

now, the µJ RAPL precision is critical as it is enough to conduct complex SCA attacks.

If it was more limited (e.g., mJ), it could remain usable for benchmarking but not for

SCA. Practically speaking, the Platypus work led to a firmware update on the Linux

driver (powercap) to prevent unprivileged processes from accessing the RAPL inter-

face. It also led to an Intel microcode update to mitigate instruction identification. These

protections will probably be evaluated in a near future.

2.3.6 Software-based Hardware Attack Privileges

When it comes to software-based attacks, the notion of OS privilege rights is substantial

to assess the adversary possibilities. In this study, we assume that the SbHA targets are

complex SoCs implementing rich OS with multiple privileges levels. To simplify the

security architecture of the targeted devices, we split it into three privilege layers: the

user mode, the hypervisor mode and the secure mode.

• User mode: applications are usually executed in that privilege level. This is the

most restricted. In this mode, an application cannot directly access hardware re-

sources. It can only be achieved through userland OS kernel drivers if there are

any.

• Hypervisor mode (or supervisor mode if there is no hypervisor): it is the highest

Background 43

Figure 2.12 SbHA paths and privilege levels

OS privilege level. it allows complete access to privileged instructions and to all

the hardware resources that are not protected by the secure mode.

• Secure mode: We define the secure mode as the privilege level of all the applica-

tions running within secure entities that cannot be directly accessed from the OS.

It can be in a hardware-based TEE such as SGX, TZ and SEV or in an integrated

secure element (iSIM, key storage unit, secure MCU). The content of these appli-

cations is protected from the OS processes regardless of their privilege level.

In this thesis, we distinguish two SbHA paths: The privileged path and the unprivi-

leged path.

The unprivileged attack path illustrated by the arrows in green in Figure 2.12 is di-

rectly exploitable through an userland SbHA vector. In this scenario, the malware can

target an other unprivileged application, a process running in supervisor mode or any en-

tity executing a program in secure mode. Few SbHAs enable this type of attack because

hardware access is often forbidden from in user mode. Therefore, only Rowhammer,

Platypus and FPGA-based attacks do not require any privileges and can thus target any

type of process running within a device. Unprivileged attacks are more likely to spread

on remote devices but are also often limited in performances. The lack of tools to syn-

chronize the attack (e.g., hardware performance counters) and the limited interface with

the SbHA vector makes it difficult to exploit. For instance, in Platypus, the sampling fre-

quency of the RAPL interface was limited to 20 KHz due to the user-space driver latency

[85].

An adversary willing to retrieve secrets stored in secure integrated assets would re-

quire high SbSCA and SbFIA performances. To that end, he may adopt the privileged

attack path depicted with the blue arrows in Figure 2.12. A lot of recent attacks such as

ClkSCREW, Plundervolt, VoltJockey and SideLine fall into this category. They leverage

supervisor rights to access powerful SbHA vectors and mount secure mode attacks. TZ

44 Background

and SGX attacks demonstrating that hardware-based TEEs can be defeated by SbHAs

have been conducted in various attack papers [128, 111, 100].

In the remainder of this thesis, both attack paths will be evaluated. The attacks re-

ported in Chapter 3 on FPGAs do not require any privileges. The attacks described in

Chapter 4 and 5 on SoC devices are likely to require supervisor privileges.

Even if we essentially focused on the identification of SbHA vectors during this the-

sis, we also tried to build realistic attack scenarios. The attacks reported in Chapter 4

and 5 are usually conducted from an OS application to another. Since the adversary

require privileges to access delay-lines the credibility of this scenario is questionable.

These attacks could have been reproduced on hardware-based TEEs to improve the re-

alism. However, these entities are not designed to thwart hardware attacks so it is quite

likely that our app-to-app attacks are replicable on these platforms. Instead of targeting

TEEs, we evaluated secure entities attacks such as CPU-to-Microcontroller Unit (MCU)

attacks conducted in Chapter 4. These exploits typically meet real-life scenarios where

an application processor delegate security operation to a secure MCU/element that is not

accessible from the OS.

Background 45

Figure 2.13 Proposed attack classification

2.4 Conclusion

In this chapter, we described the scientific background related to this thesis. More specif-

ically, we characterized the hardware attacks threats and vectors, we described the con-

nected device advent and associated security risks and we classified the RHA types and

their applications.

After introducing three types of RHAs (TEMPEST attacks, microarchitectural at-

tacks and SbHA), we exhaustively classified SbHA exploits and provided an up-to-date

nomenclature of the threat. Figure 2.13 summarizes the classification work undertaken

in this chapter. Each of the three RHA families proposed takes advantage of a hardware

vulnerability and its implementation does not require direct physical access to the target.

However, these three RHA families also highly differ in the attack vectors used and in the

potential threat models.

SbHA is placed in between microarchitectural and TEMPEST attacks. As software

attacks, SbHAs can be simultaneously conducted on multiple remote devices connected

to a network. However, they essentially exploit hardware vulnerabilities and usually tend

to remotely reproduce attacks that are normally conducted locally in hardware security

laboratories.

The remaining of this manuscript is entirely dedicated to the study of SbHAs and

at the evaluation of their advantages and limitations. The following three chapters de-

scribe the SbHA experimentation works conducted during this thesis on FPGA and SoC

systems.

Chapter 3. Software-based Power Analysis
Attacks on FPGAs

Abstract

In the recent years, Field-Programmable Gate Arrays (FPGAs) have been

widely adopted for hardware acceleration purposes in modern systems such

as connected devices and cloud datacenters. For flexibility and efficiency rea-

sons, FPGA fabrics are likely to be shared between multiple users in the cloud

or implemented along with processors in heterogeneous systems. Despite the

logical isolation suggested to protect FPGA tenants or surrounding assets, the

generalization of multi-user FPGA environments and heterogeneous systems

may lead to novel security threats. Recently, a series of papers demonstrated

that a malicious user could use its rented logic in the cloud to conduct remote

side-channel and fault attacks on other user assets located inside the fabric or

in the surrounding chips. In this chapter, we evaluate this threat and describe

various Side-Channel Analysis (SCA) works experimented on FPGAs during

this thesis.

Chapter Contents

3 Software-based Power Analysis Attacks on FPGAs 47
3.1 Chapter Introduction . 48

3.2 Technical Background . 50

3.3 FPGA-to-FPGA - Designing High-Speed RO-based Sensors for FPGA-

based SCA . 55

3.4 FPGA-to-CPU - Remote Side-Channel Attacks on Heterogeneous SoC . . . 66

3.5 SCAbox - A Framework for Evaluating the FPGA-based SCA Threat 77

3.6 Conclusion on FPGA-based Power Analysis 84

47

48 Software-based Power Analysis Attacks on FPGAs

Figure 3.1 Chapter contributions

3.1 Chapter Introduction

In 2018, various types of Software-based Fault Injection Attack (SbFIA) mechanisms had

been discovered such as Rowhammer, Dynamic Voltage and Frequency Scaling (DVFS)-

based SbFIA and FPGA-based SbFIA. On the Software-based Side-Channel Analysis

(SbSCA) side however, the researches were just emerging with the work of Schellenberg

et al. In their paper [122], they introduced the concept of FPGA-based power side-channel

and its potential risk to multi-user FPGA instances in the cloud. It was rapidly decided

that the study of FPGAs would stand as an excellent starting point for this thesis. The

main reasons for this choice are described below.

First of all, FPGAs are the most flexible devices available on the market as they allow

to build custom digital hardware designs. By working on this type of device, a complete

hardware attack setup can be built from the sensor to the target including storage for the

SCA traces. Secondly, hardware attacks conducted on FPGAs are not only used as proof

of concepts. FPGAs are now widely used as end-products in many application fields and a

significant part of them could be threaten by Software-based Hardware Attacks (SbHAs).

In particular, datacenters using FPGAs, heterogeneous System-on-Chip (SoC) products

and any circuit boards involving FPGAs. The adoption of FPGAs in complex devices for

speeding up complex operations related to networks, cryptographic implementations and

neural networks seems to get the chip manufacturers interest. Intel, one of the world’s

largest semiconductor chip manufacturer bought the FPGA provider Altera in 2015 and

AMD is said to be in the verge to do the same with the giant Xilinx in 20211. This could

rapidly lead to the adoption of FPGAs in Intel/AMD processors and thus in consumer

grade computers2. Finally, this work on FPGA-based SbHA would act as a transition

between local and remote attacks. Indeed, with FPGA-based power SCA we would still

have the control on the sensor used and could perform modifications to facilitate the at-

tack. Moreover, the flexibility of the FPGA would be leveraged to evaluate the feasibility

of SbSCA applied to different attack scenarios (by varying victim clock speed, noise,

attacker sampling frequency, etc).

Our work on FPGA-based power SCA led to the publication of two conference papers

1
https://www.thestreet.com/investing/amd-acquisition-of-xilinx-approved-by-shareholders

2
https://www.tomshardware.com/news/amd-patent-shows-CPU-FPGA-integration

https://www.thestreet.com/investing/amd-acquisition-of-xilinx-approved-by-shareholders
https://www.tomshardware.com/news/amd-patent-shows-CPU-FPGA-integration

Software-based Power Analysis Attacks on FPGAs 49

and the online release of an open-source framework for facilitating FPGA-based power

SCA. These contributions are presented as sections of this chapter.

• Section 3.2 is dedicated to the description of the physical phenomena enabling

on-chip voltage monitoring and the presentation of FPGA-based delay sensor im-

plementations.

• Section 3.3 exemplified in Figure 3.1.A describes a new FPGA-based sensor that

enables high-speed SCA leakage capture and statistical SCA attacks. This sensor

was used to build FPGA-to-FPGA power SCA attacks and thus targets multi-tenant

cloud systems.

• Section 3.4 represented in Figure 3.1.B introduces FPGA-based power SCA attacks

conducted on heterogeneous SoC systems, that is FPGA-to-Computer Processing

Unit (CPU) power SCA attacks.

• Finally, Section 3.5 illustrated in Figure 3.1.C describes a framework dedicated

to facilitate the reproduction of the current FPGA-based power SCA works. This

open-source toolkit is available on GitHub.

50 Software-based Power Analysis Attacks on FPGAs

3.2 Technical Background

In this first section, we describe the mechanisms that enable power monitoring in FPGAs

using reconfigurable digital logic. We also mention the adopted threat model and describe

the existing works already published at the time we began studying FPGA-based power

SCA attacks.

3.2.1 FPGAs Voltage Fluctuations

Here, we address the mechanisms that enable FPGA voltage variations monitoring from

the origin of power supply fluctuations to their measurement using reconfigurable logic.

3.2.1.1 Power Supply Fluctuations

Power supply fluctuations inside a chip are induced by its transistors switching activity.

The quantity of current drawn depends on the resources required for the computation.

In complex systems, the voltage is controlled by various components such as Voltage

Regulator Module (VRM) that takes part in the Power Delivery Network (PDN).

The PDN has to provide a stable voltage capable to handle power fluctuations. De-

spite the optimization of the PDNs, transient voltage ripples induced by the interaction

between the current drawn and the RLC parasitic component forming the PDN cannot be

fully controlled [59, 31]. The parasitic RLC components are depicted in Figure 3.2, they

come from the Printed Circuit Board (PCB) tracks, the package bondings and the power

grid. These can affect performance and cause timing glitch errors on critical logic paths.

Power supply fluctuation leakage through the PDN carries the footprint of the running

computation and can be used for side-channel purpose. It can be measured using an os-

cilloscope connected to the power pads of the target (leading for instance to the waveform

illustrated in Figure 3.2) or internally monitored by on-chip sensors that take advantage

of its effect on logic propagation delays.

Figure 3.2 RLC parasitic elements in the PDN (left), power supply noise measured on a
circuit’s power pads (right)

Software-based Power Analysis Attacks on FPGAs 51

3.2.1.2 Effect on Logic Propagation Delays

The propagation delay is the time required for a signal to propagate through a logic gate.

Power supply, temperature and capacitive effects have a significant impact on a logic

gate’s propagation delay. Equation 3.1 described in [114, 35] defines the propagation

time required for a low to high transition tpLH in the case of an inverter logic gate. VDD

is the power supply voltage, CL represents the load capacitance at the output of the gate

and Vth is the transistor threshold voltage which has a strong relationship with the silicon

die temperature.

tpLH =
CL

[
2|Vth|

VDD−|Vth| + ln(3− 4 |Vth|
VDD

)
]

µpCox
Wp

Lp
(VDD − |Vth|)

(3.1)

While capacitive load is fixed and temperature can be held relatively stable over the

time, voltage fluctuations induce runtime propagation delay variations. At runtime, a

sudden under-powering (VDD decrease) caused by the switching activity of a target’s

transistors will induce an increase of the propagation delay throughout the chip. An over-

powering (VDD increase) will produce the exact opposite. Hence, measuring propagation

delays provides an accurate estimation of the chip’s internal power supply voltage.

Figure 3.3 illustrates a waveform view of the propagation delay. When the Vin signal

controlling the gate switches, it takes tpHL (high to low) or tpLH (low to high) time for

the gate to apply changes on the output Vout. In the next subsection, we describe how this

propagation time tp can be precisely measured using delay sensors.

Figure 3.3 Inverter gate propagation delay

3.2.2 Delay Sensors

Two major propagation delay sensors are commonly used for power monitoring in digital

circuits: the Ring-Oscillator (RO)-based sensor [150] and the Time-to-Digital Converter

(TDC)-based sensor [151]. We describe their principles in the following paragraphs.

52 Software-based Power Analysis Attacks on FPGAs

3.2.2.1 Time-to-Digital Converter-based Sensor

Figure 3.4 Functional schematic of a TDC-based sensor. The Hamming Weight of the
delay-line provides an image of the actual on-chip voltage level.

A TDC-based sensor converts propagation delay variations induced by power supply fluc-

tuations into digital information. Thanks to a low-cost design and a fine-grained reso-

lution it is commonly adopted as on-chip temperature or voltage sensor: for operating

control of a chip [132] as well as glitch attack detection [151]. More recently, with the

emergence of FPGA cloud services, some researchers started to use it to perform power

SCA attacks [122, 121]. As it offers a good trade-off between achievable resolution,

accuracy and sampling frequency [47, 151], TDC was commonly adopted for SCA ex-

periments. As illustrated in Figure 3.4, a TDC-based sensor contains three main logic

blocks:

− An init delay block whose propagation delay depends of the chip’s internal voltage.

− A delay-line made of n elementary delay elements (with an individual propagation

delay t) that allows a fine measurement of propagation delay fluctuations.

− A register that captures and stores the delay-line state.

A clock signal, denoted clk, is connected to the TDC init delay block input and delayed

to form a δclk signal. The phase shift between clk and δclk signals fluctuates with the

voltage variations. The init delay is calibrated in order to have the δclk edge inside the

delay-line when its state is captured by the TDC register. Then, the Hamming Weight

of the stored value is computed and delivers an image of the actual voltage level inside

the chip (as a thermometer code). Figure 3.4 illustrates the impact of voltage fluctuations

on the sampled value. A voltage rise reduces the propagation delay of the init block.

Therefore, the δclk rising edge travels faster and manages to pass more elements in the

delay-line. Therefore, more “1” are sampled and the Hamming Weight of the TDC regis-

ter increases. A voltage drop induces the opposite behavior by increasing the propagation

delay and thus, the number of “0”. To enable fine-grained voltage sensing, the propaga-

tion delay t of the logic primitives constituting the chain needs to be as small as possible.

However, a small propagation delay involves a long delay-line to avoid saturation of the

Software-based Power Analysis Attacks on FPGAs 53

TDC. Therefore, there is a trade-off between quantum resolution, voltage range and area

overhead.

3.2.2.2 Ring-Oscillator-based Sensor

Figure 3.5 Functional schematic of a RO-based sensor

The RO-based delay sensor illustrated in Figure 3.5 monitors propagation delay fluctu-

ations through the measurement of its RO oscillation frequency fRO. A RO is a device

composed of an odd number of cascaded inverters (the RO represented in Figure 3.5 has

only one inverter gate). The output of the last inverter is fed back to the first creating an

infinite oscillation between two voltage levels. The oscillation frequency fRO is defined

by the number n of inverters in the ring, each inverter slows down the oscillation because

of its internal propagation delay tp. This results in the following RO frequency equa-

tion: fRO = 1
2tpn

. Therefore, measuring the frequency variations of the RO indicates

the propagation time fluctuations of its inverters. Hence, it provides an image of the chip

power supply consumption. To enable the measurement of the RO oscillation frequency,

designers commonly adopt digital counters [148, 89]. A counter CRO is connected to the

RO output: it is incremented by the RO oscillations and it is read out by a register at a

fixed sampling frequency fs. ∆CRO represents the number of RO oscillations counted

during a period. The equation that converts the counter value into the RO frequency fRO

is:

fRO(t) = [CRO(t)− CRO(t− 1) + ϵ︸ ︷︷ ︸
∆CRO

] ∗ fs (3.2)

3.2.3 Threat Model: FPGA-based Power SCA

Our threat model addresses all the connected devices that incorporate hardware accelera-

tion based on FPGA logic: from reconfigurable resources in cloud data centers to FPGAs

deployed for industrial and commercial purposes. In this context, we consider the poten-

tial implementation of malicious FPGA-based delay sensors through cloud FPGA rental,

malicious Intellectual Property (IP) insertion or access to the bitstream reconfiguration of

unsecured chips. Using these sensors, an attacker could eavesdrop the side-channel leak-

age induced by surrounding computations. In a cloud scenario, a malicious user could

capture the side-channel leakage of cryptographic computations conducted by other users.

54 Software-based Power Analysis Attacks on FPGAs

Figure 3.6 Overview of FPGA-based Power Side-Channel Exploits

In SoC context, these sensors can be implemented to eavesdrop the side-channel leakage

induced by the SoC surrounding logic blocks such as CPU cores [148]. The follow-

ing sections evaluate FPGAs and heterogeneous SoCs that provide both CPU and FPGA

logic blocks within the same die. Our goal in this chapter is to assess the feasibility of

FPGA-based SCA attacks on hardware and software crypto-algorithms.

3.2.4 Related Works: Existing Scenarios (2018)

Several works studying these threats were conducted before we started evaluating FPGA-

based power SCA. Although being all based on FPGA sensors they introduce three dif-

ferent scenarios as illustrated in Figure 3.6.

1) Intra-FPGA Attack: Remote SCA attacks on FPGAs were introduced in 2018

[122]. The adversary model consists in an FPGA fabric shared among multiple users.

Each user is protected from the others by logical isolation. Despite this protection, a ma-

licious user can implement voltage sensors in his rented logic to monitor voltage fluctua-

tions induced by surrounding computations. Assuming this model, the adversary is able

to perform a Correlation Power Analysis (CPA) attack against a victim Advanced Encryp-

tion Standard (AES) hardware module. In [148], the researchers used RO-based sensors

to perform intra-chip Simple Power Analysis (SPA) against an Rivest–Shamir–Adleman

(RSA) cryptographic hardware module.

2) Inter-Chip Attack: The inter-chip SCA Attack illustrated in Figure 3.6.b went

a step further by proving that an untrusted chip soldered on a PCB could sense voltage

variations induced by other chips through the PDN of the PCB. In this exploit, an adver-

sary FPGA was able to perform a CPA attack against an AES module and an SPA attack

against a RSA module running on another FPGA fabric [121].

3) Heterogeneous Chip Attack: Heterogeneous FPGA technology integrates both

processors and FPGA fabrics within the same SoC. In [148], malicious ROs were imple-

mented in the FPGA fabric to perform an SPA against a naive square and multiply RSA

algorithm running on a Linux OS in the CPU core as shown in Figure 3.6.c.

Software-based Power Analysis Attacks on FPGAs 55

Figure 3.7 FPGA-to-FPGA attack

3.3 FPGA-to-FPGA - Designing High-Speed RO-based
Sensors for FPGA-based SCA

The work described in this section was published in [50] with co-authors Jean-Max

Dutertre, Yannick Teglia and Philippe Loubet Moundi.

3.3.1 Introduction

The research work conducted in this section aims at improving the existing sensor designs

deployed to monitor power supply fluctuations within FPGAs and to push forward the

state-of-the-art on FPGA-based SCA attacks. The major contributions of this section are

detailed below:

− We propose a new design approach for RO-based sensors that enables nanosecond

scale measurement of FPGA internal voltage: the Johnson Ring-Oscillator (JRO)-

based sensor.

− We evaluate the usage of the JRO sensor in a multi-user FPGA scenario and exper-

imentally demonstrates its ability to conduct CPA attacks against an AES hardware

module.

− We compare different FPGA-based sensor designs (JRO-based sensors and TDC-

based sensors) with traditional side-channel methods (ElectroMagnetic (EM) side-

channel).

− We demonstrate that, despite the modest quantification level and sampling fre-

quency achievable using FPGA-based sensors, proximity, flexibility and advanced

configuration allow them to provide similar SCA results to traditional measurement

setups.

In Subsection 3.3.3 we introduce the proposed JRO-based sensor. The experimental setup

and the obtained CPA results are described in Subsection 3.3.4. Then, Subsection 3.3.5

establishes a comparison between FPGA-based sensors and traditional EM side-channel.

Subsection 3.3.6 concludes this work.

56 Software-based Power Analysis Attacks on FPGAs

3.3.2 Motivation

Because of limitations in their achievable resolution and sampling frequency, RO-based

sensors were at first only used to carry out SPA attacks [148]. This section provides a

new design method for RO-based sensors that improves their performances and enable

their use for statistical SCA attacks on symmetric encryption algorithms. The adopted

approach is to perform an intra-FPGA CPA attack as previously achieved with TDC-

based sensors in [122]. The victim shell contains an AES module which continually

encrypts data. The power consumption leakage resulting from each AES encryption is

acquired by the adversary shell and later used for external CPA computations and AES

key retrieval.

3.3.3 A Novel RO-based Sensor Design

This subsection introduces the proposed JRO-based sensor. To begin with, we address

the limitations that attackers encountered when using traditional RO-based sensors.

3.3.3.1 RO-based Sensors Downsides

Several RO-based sensors downsides recently pushed researchers to adopt TDC-based

sensors for side-channel purposes instead [151, 47]. This mainly comes from the fact

that the RO-based sensors struggle to provide reliable measurements when they reach the

MHz sampling rate [89, 148, 151]. This limitation comes from three major factors:

1) Frequency Dependant Resolution: The resolution of the RO-based sensor relies

on the number of oscillations counted during a sampling period. When a long-sampling

period is adopted, a large number of oscillations is counted and a fine-grained image of

the voltage level can be retrieved through the capture of the counter value. A decrease

of the sampling period reduces the number of RO oscillations counted and limits the

relationship between the counter value and the actual voltage level. Therefore, decreasing

the sampling period gradually deteriorates the sensor resolution.

2) Quantization Error: The quantization error ϵ (see Eq. 3.2) is a distortion of the RO-

counter value by 1 that sometimes occurs because of the absence of a phase relationship

between fRO and fs [148]. At high sampling frequencies the quantization error becomes

significant over the total number of RO counter increments. Thus, its occurrence can

skew the overall measurement.

3) Counter Timing Error: To enable high sampling frequency measurements, the RO

should oscillate as fast as possible. However, at GHz frequency range, timing errors occur

if the counter fed by the RO is not optimized for high frequency transitions. This results

in the sampling of inconsistent counter values that further alter the RO-based sensor re-

liability. This counter limitation is discussed in [151, 47] but neither improvements nor

new designs were suggested.

Software-based Power Analysis Attacks on FPGAs 57

Figure 3.8 Schematic of the proposed JRO-based sensor design. The RO consists in
a looped NAND which cadences the JRC. A register reads out the JRC at a fixed rate
defined by clk.

Resource Number Usage

LUT 2 RO (nand) & JRC (not)

DFF (FDCE) 8 Johnson Counter

DFF (FDCE) 8 Sampling Register

Slices 2

Table 3.1 Resource utilization for 1 RO-based sensor instance.

3.3.3.2 Designing a high frequency RO-based Sensor

The JRO-based sensor design presented in this section is depicted in Figure 3.8. It still

consists in three blocks: a RO, a counter and a sampling register. By introducing this

sensor, we aim at mitigating the impact of the three main RO-based sensor limitations

detailed above.

1) A Faster RO: Because we are working with two clock sources fRO and fs, our

design will suffer from phase shift quantization error. To mitigate this effect and to in-

crease the resolution of the JRO sensor, we implement the fastest RO achievable with the

available logic. It consists in only one LUT configured to perform a NAND operation

whose output is fed back to its input (see Figure 3.8). The resulting oscillation frequency

approximately reaches 1.2 GHz.

2) An Optimized Counter: To preserve the JRO from timing errors caused by the RO

speed, we choose a non-binary counter known as Johnson Ring-Counter (JRC)3 which

only consists in cascaded D flip-flops (DFF) associated to an inverter gate. By adopting

a design that almost doesn’t require combinational logic to be inserted between DFFs,

we mitigate timing errors that binary counters would encounter when cadenced by GHz

range signals. Our sensor structure is depicted in Figure 3.8. The clock input of each

flip-flop is connected to the output of the RO. The data path consists in a ring in which

the complementary output of the last flip-flop Q (inverter gate) is fed back to the data

input D of the first one. Using 8 flip-flops the JRC provides 16 distinct states which is

enough when the RO register sampling period is smaller than 16 times the RO period.

3
https://www.electronics-tutorials.ws/sequential/seq_6.html

https://www.electronics-tutorials.ws/sequential/seq_6.html

58 Software-based Power Analysis Attacks on FPGAs

The JRO is implemented using Xilinx low-level primitive templates. This ensures

that the number of logic gates instantiated in our VHDL source file meets the number

of logic gates used in the fabric [140]. Therefore, we make sure that no additional logic

can alter the timing margins of our sensor. Contrariwise, hidden combinational gates

can be found in various RO-based sensor designs. For example in [148], the counter is

made of toggle flip-flops and appears free from combinational gates. However, toggle

flip-flop does not exist as a primitive in the fabric [140] and should be constructed using

combinational and sequential logic (e.g., DFF + XOR). Hence, in this previous RO-based

sensors implementation, the combinational delay problem persists.

3) A Lighter Design: A JRO-based sensor instance consumes only 2 slices as detailed

in table 3.1. Such a small design can be spread throughout the fabric without area conges-

tion. Thus, the area coverage and more importantly the overall resolution of the voltage

sensor can be improved. This statement is discussed in the following part.

3.3.3.3 Number of RO-based sensors

Figure 3.9 Effect of the number of JRO-based sensors on the overall resolution. The
depicted signal is a single trace of an AES encryption running at 10 MHz.

Equation (3.3) expresses the counter value, ∆CRO, as a function of the sampling

frequency fs and the RO frequency fRO. The RO frequency fRO is split in two terms: a

constant one fRO(natural) that represents the steady state natural oscillating frequency of

the RO and a dynamic one fRO(dynamic) which depends on the activity of the surrounding

logic.

∆CRO =
fRO(natural) + fRO(dynamic)

fs
(3.3)

When several sensors are instantiated within the fabric, their contribution ∆CRO is

summed and averaged over the number of JRO-based sensors used. Multiplying the num-

ber of JRO-based sensors throughout the chip has several benefits. Firstly, because of

process and routing paths variations, each JRO has a specific phase and frequency. For

Software-based Power Analysis Attacks on FPGAs 59

this reason, the quantization error ϵ only affects a portion of the sensors simultaneously.

When the number of JRO-based sensor used increases, the quantization error progres-

sively loses significance over the global voltage fluctuation measurement. Therefore,

it has less impact regarding the accuracy of the overall sensor. Secondly, the natural

frequency deviation between each JRO instance enhances the granularity of our sensor.

Depending on the value of fRO(natural), the dynamic frequency fluctuation fRO(dynamic)

required to modify the counter value fluctuates. Therefore, each JRO-based sensor in-

stance provides a specific contribution that further enriches the overall resolution.

Figure 3.9 illustrates the effect of the number of JRO-instances on the sensor res-

olution (our experimental setup will be described in Subsection 3.3.4.1). A single 10

MHz AES encryption was captured using 1, 16 and 64 JRO-based sensors cadenced at

a 250 MHz sampling rate. This is 125 times faster than previous RO-based sensors

used in [148]. When only 1 JRO is used, the quantization error effect is maximal and the

fRO(dynamic) fluctuation only provides 3 distinct quantization levels (Figure 3.9 - 1 RO).

Thereby, the AES encryption is not visible in the obtained waveform. However, increas-

ing the number of JROs gradually leads to the appearance of the AES activity over the

residual and quantification noises. Using 64 JROs the 10 AES rounds are clearly visible.

3.3.3.4 Place and Route Influence

Manual place and route is not required to enable JRO-based voltage fluctuation measure-

ment. However, when it is possible, designers can set the placement and routing paths

using relative placement macro (RPM) to improve JRO-based sensor performances and

get a better control of their distribution throughout the fabric.

3.3.4 RO-sensor based Correlation Power analysis Attack

The following subsection provides results of a CPA attack conducted using the JRO-based

sensors on an hardware AES module implemented within the FPGA fabric.

3.3.4.1 Experimental Setup

A Xilinx Zynq SoC that provides both CPU and FPGA on the same die was adopted

for our experiments (note that the CPU was not targeted in this section, we exclusively

focused on an intra-FPGA exploit).

Our experimental setup is depicted in Figure 3.10. From the victim point of view, the

CPU was dedicated to the management of the AES plain and ciphertexts while the at-

tacker program was developed for sensor calibration and measurement exportation. The

FPGA fabric was separated in two logically isolated blocks with distinct clock regions.

Because in a multi-user scenario the victim shell may not be necessarily placed next to the

adversary, we instantiated the victim AES as far as possible from our sensor instances.

Hence, we aimed at demonstrating the resilience of our sensors to their distance from

60 Software-based Power Analysis Attacks on FPGAs

Figure 3.10 Xilinx Zynq Multi-User Experimental Setup.

the target and to the noise caused by the surrounding logic. The adversary shell con-

tained 64 JRO-based sensors (128 slices) and 8 TDC-based sensors (208 slices). The

remaining logic was dedicated to Advanced eXtensible Interface (AXI) bus interconnect,

First In First Out (FIFO) and clock management. Please note that a big part of the logic

was implemented for experiment purposes and could have been removed to get a lighter

implementation.

The hardware AES module instantiated in the victim shell (in green) was dedicated

to the encryption of sensitive data. It loaded 128-bit packets of plaintexts from the CPU

using shared AXI registers, encrypted them and returned the computed ciphertexts. It

relied on a 128-bit secret key and each round was executed in one clock cycle at 50 MHz.

With 1,500 LUTs and 400 FFs, this AES module consumed around 10% of the total

fabric.

3.3.4.2 Correlation Power Analysis Model

A power SCA attack relies on the fact that CMOS power consumption leakage depends

on the handled data. By writing down a model of the expected AES power consump-

tion and combining it to the sensor voltage measurement, a CPA attack as described in

[18] should allow us to retrieve the AES secret key. The attack conducted in this sec-

tion targets a state register that temporarily stores data resulting from each AES round

transformation from the plaintext importation to the ciphertext generation. This 128-bit

register is synchronously refreshed at the end of each round generating a strong switching

leakage that significantly affects the power supply level. The leakage level resulting from

the register update fluctuates according to the Hamming Distance between the previous

and the current AES state. Targeting this register requires the knowledge of two con-

secutive states. In our case, we assumed that the adversary had access to the ciphertext

Software-based Power Analysis Attacks on FPGAs 61

Figure 3.11 Averaged AES power consumption (a) and CPA results (b)(c) by means of
100,000 traces acquired using 16, 32 and 64 JRO-based sensors. The right key hypothesis
candidate is represented in red in (b) and (c).

which is also the last value stored by the AES state register. We adopted the last round

attack model described in [92] and computed the correlation rate between the model and

the experimental curves. If the adopted model is relevant, the correlation rate of one of

the key hypotheses “right candidate" should be distinguishable from the others “wrong

candidates".

3.3.4.3 JRO-based Sensor CPA Results

The power consumption resulting from the AES encryption was acquired 100,000 times

using the 64 JRO-based sensors. The measured average power consumption is repre-

sented in Figure 3.11.a (two successive encryptions are depicted but it has no effect on

the side-channel results). Several experiments were conducted to evaluate the CPA results

provided by the JRO-based sensors.

1) Number of sensors: Figure 3.11.c shows the CPA results obtained using different

numbers of JRO-based sensors. Using 16 JROs, it took around 79,000 traces for the

right candidate to emerge from the wrong key hypotheses. With 32 and 64 JRO-based

sensors the number of required traces dropped to 27,000 and 8,000 respectively. This

attack was also conducted using only 1 JRO-based sensor but required almost 1 million

encryptions. In conclusion, the number of required traces to infer the secret key appeared

to be inversely proportional to the number of JRO-based sensors used.

2) Target frequency: In order to study the impact of the target speed on the CPA

results, we conducted the same experiment for different AES frequencies from 10 to

200 MHz. However, increasing it did not significantly changed the CPA results. To

explain this phenomenon, we investigated the Zynq response to transient voltage fluctu-

ations. Based on the results obtained, it appears that when a sudden voltage drop occurs

within the chip (e.g., update of the AES state register), the parasitic capacitive and in-

ductive elements forming the PDN resonate and the voltage level temporarily oscillates

62 Software-based Power Analysis Attacks on FPGAs

until finally reaching its steady-state value [132, 31]. The damped oscillation induced

by the 10th round update of the AES state register can be seen in temporal correlation

results depicted in Figure 3.11.b (faes = 50 MHz). As the voltage transient response is

fixed by the parasitic components forming the PDN, the amount of time during which

the side-channel leakage can be leveraged is not bounded to the AES frequency but to

the device itself [129]. Actually, we observed the exact same oscillation effect for each

AES frequency. This experiment demonstrates that, for side-channel purposes, the sen-

sor sampling frequency can be lower than the victim operating frequency. However, it

has to be high enough to ensure that the victim’s valuable side-channel leakage is prop-

erly sampled. Through the Zynq transient response oscillation frequency measurement

(≈ 50 MHz), we get an idea of the sampling frequency required to successfully perform

the attack (Nyquist-Shannon sampling theorem: fs > 2fleak). Thanks to the 250 MHz

sampling rate offered by the JRO-based sensors we were able to accurately retrieve the

side-channel information.

3.3.5 Further Results and Discussion

For comparison purpose, this subsection goes further by adding side-channel results ac-

quired using TDC-based sensors and a traditional EM side-channel setup. We evaluate

the performance of each configuration and discuss about use cases and countermeasures

for on-chip sensors.

3.3.5.1 TDC & Electromagnetic Experimental Setup

The adopted TDC-based sensors provided 32 quantization levels and a sampling rate of

250 MHz. Each instance consumed 26 slices and 8 of them were implemented within the

fabric (illustrated in Figure 3.10). The calibration of the TDC delay-line had to be done

manually by modifying the number of logic elements forming the init block. Each TDC

was initialized independently before the measurements.

The EM setup consisted in a near field microprobe connected to an oscilloscope with

a 5GS/s sampling rate and a 12-bit resolution. The probe position was controlled using

a X, Y, Z table. The signal was first amplified by a low noise amplifier before being fed

into the oscilloscope. The electromagnetic leakage of the first AES round was used to

trigger the oscilloscope. The captured samples were then extracted and used to perform

a Correlation ElectroMagnetic Analysis (CEMA) [40].

3.3.5.2 Side-Channel Results

A single campaign of encryption in which the three measurement setups simultaneously

acquired the side-channel leakage was conducted. Figure 3.12 presents a bar chart show-

ing the number of traces needed for the right guess to emerge depending on the measure-

ment setup. Results are given for the first 8 bytes of the AES encryption key. TDC-based

Software-based Power Analysis Attacks on FPGAs 63

Figure 3.12 Number of traces required for the right candidate to emerge from the wrong
key hypotheses. Results are given for 8 bytes of the encryption key using 3 measurement
setups: EM, 8 TDC-based sensors and 64 JRO-based sensors

sensors provided results comparable to that of the EM setup while JRO-based sensor re-

mained 3 or 4 times less efficient than the other setups. Despite a significant difference of

sampling frequency and resolution between integrated sensors and oscilloscope, the ob-

tained results are quite similar. Naturally, these results must be interpreted with caution

as TDCs and JROs were previously calibrated and optimized for this specific device and

attack scenario. Our JRO-based sensors do not reach the level of accuracy of TDC-based

sensors but are still precise enough to successfully perform a CPA. Moreover, they ben-

efit from significant implementation advantages that will be addressed in the following

subsection.

3.3.5.3 Discussion

1) On-chip sensors comparison: When designing on-chip voltage sensors a trade-off

needs to be made between achievable resolution, sampling frequency and area coverage.

Depending on the use case, a sensor will be more relevant than the others. Regarding the

results of CPA conducted in this section, our novel JRO-based sensor remains slightly

less efficient than TDC-based sensors for side-channel purposes. However, this sensor

offers a better flexibility and scalability than TDC-based sensors. Thanks to their light

implementation JRO-based sensors can be spread through all the chip without congestion.

Thus, they provide a better coverage of the power supply voltage fluctuations throughout

the fabric with a lower area cost. Moreover, they don’t need any calibration or specific

logic cells contrarily to the TDC-based sensor which requires an init delay configuration

to control the position of the clock edge inside the delay-line as well as specific CARRY4

logic to provide reliable measurements4. This suggests that JRO-based sensors would be

easier to transpose on devices integrating different manufacturing processes.

Finally it is important to remember that previous RO-based sensor designs were never

used for conducting such statistical CPA attacks as their sampling frequencies were lim-

4The CARRY4 logic gates can be interconnected without requiring access to the FPGA switch matrix. This
ensures a stable propagation time of between cascaded CARRY4 logic gates and improve the TDC delay-
line stability.

64 Software-based Power Analysis Attacks on FPGAs

ited to KHz [150] and 2 MHz in [148] against 250 MHz for our JRO setup. The RO-based

sensor SCA characteristics can be highly improved by adopting the proposed JRO design.

2) Potential use-cases: RO-based sensors have been widely adopted for voltage and

temperature monitoring [150], attack detection [89] and more recently SCA attacks [148].

The JRO-based sensor described in this section was shown suitable for statistical SCAs

and could be used to improve the RO applications mentioned above. A further side-

channel use case for on-chip sensors was discussed in [43] and consists in their imple-

mentation as hardware Trojans. FPGA end-products often include third-party IP blocks

because of the high-cost of design and development. Considering the critical application

in which FPGAs are deployed, the potential integration of FPGA-based trojans through

untrusted IPs could lead to disastrous consequences. (e.g., industrial espionage, denial-

of-service, etc).

3) Side-channel countermeasures: Multi-user FPGAs haven’t been launched yet but

several technical papers already shown the multi-user feasibility and the benefits that a

highly scalable and flexible multi-user service could provide to tenants and more specifi-

cally to cloud providers. Despite the fact that logical isolation between logic blocks is in-

effective against power SCA attacks [152], side-channel threats could be easily mitigated

by restricting manual place and route and forbidding combinational loops that enable the

RO implementation. The problem lies in the fact that these features are essential for a lot

of FPGA applications and their suppression would significantly alter the service. Trojan

detection routines could also be developed to prevent designers from implementing on-

chip sensors but would require a lot of developments and would be soon challenged by

novel adversary designs bypassing the security. At the moment, there is no easy way to

mitigate FPGA hardware attacks other than preventing multi-user FPGA systems.

3.3.6 Conclusion

This section introduced a novel design for on-chip voltage sensors based on ROs: the

JRO-based sensor. By enhancing sampling frequency and resolution of this family of

sensors, we enabled their use for runtime voltage fluctuation measurements. To illus-

trate the performances provided by the JRO sensor, we adopted them to conduct power

SCA attacks within an FPGA fabric. An adversary sensor shell was used to perform an

FPGA-to-FPGA attack on a victim AES module located within a logically isolated shell.

Thanks to the performance improvement brought by the JRO sensor we were able to per-

form the first CPA attack conducted using RO-based sensor within an FPGA. Successful

results obtained in retrieving the secret key of the AES running at 50 MHz demonstrate

the strong overall performances provided by the JRO sensor when used for side-channel

purpose. To further evaluate the JRO, we compared it to different kinds of side-channel

setups. A CPA attack was conducted using TDC-based sensors and an EM traditional

side-channel setup. We showed that thanks to their proximity to the target, on-chip sen-

sors may provide results similar to near field EM even with a much smaller sampling rate

Software-based Power Analysis Attacks on FPGAs 65

and resolution. Regarding the integrated voltage sensors, the JRO-based sensor almost

reaches the accuracy of TDC-based sensors and benefits from a lighter area overhead.

Moreover, it has a better spatial coverage and an easier implementation as it relies on ba-

sic logic gates. Finally the JRO stands as an ideal alternative for monitoring fine-grained

high-speed voltage fluctuations in FPGAs.

66 Software-based Power Analysis Attacks on FPGAs

Figure 3.13 FPGA-to-CPU attack

3.4 FPGA-to-CPU - Remote Side-Channel Attacks on
Heterogeneous SoC

The work described in this section was published in [50] with co-authors Jean-Max

Dutertre, Yannick Teglia, Philippe Loubet Moundi and Francis Olivier.

The works conducted in the first section of this chapter contributed in exposing the

multi-user FPGA threat. The FPGA-to-FPGA attacks conducted fulfilled the first step

of this thesis roadmap that was introduced in chapter 1. In this second section, we aim

at assessing the dangers that FPGA-based voltage sensing could represent in SoC sys-

tems. This second thesis step consists in building FPGA-to-CPU attacks on heteroge-

neous SoCs.

3.4.1 Introduction

This second work focuses on a specific application of FPGA-based SCA attacks. Using a

heterogeneous SoC that consists in an FPGA and a CPU implemented on the same die, we

carry on the work started by [148] which consisted in eavesdropping CPU computation

using FPGA-based voltage sensors. The contributions of this section are detailed below:

− We provide an in-depth study and improvements of FPGA-based voltage sensors

performances for side-channel purpose.

− We conduct the first FPGA-based SCA on symmetric crypto-algorithms running

on the CPU core of a SoC: Tiny AES + OpenSSL AES.

− We evaluate and compare the performance of FPGA-based sensors with a tradi-

tional electromagnetic side-channel setup.

An iterative work was conducted from the reproduction of the actual state-of-the-art

through the attack of a hardware AES module to the first successful attack of a soft-

ware AES program. Subsection 3.4.2 describes the global side-channel setup. Subsec-

tion 3.4.3 and 3.4.4 are dedicated to the side-channel experiments conducted both on

hardware and software AES implementations. Then, Subsection 3.4.5 provides EM SCA

Software-based Power Analysis Attacks on FPGAs 67

Figure 3.14 Xilinx Zynq experimental side-channel setup

results conducted on the same targets for comparison purpose and discuss the feasibility

and countermeasures of FPGA-based SCA attacks. Finally, Subsection 3.4.6 concludes

this work.

3.4.2 Presentation of the Side-Channel Setup

3.4.2.1 Side-Channel Targets

Previous works related to FPGA-to-CPU attacks on software targeted simple, self-written

public key algorithms [148]. We propose to go a step further, by proving that freely-

available (and actually deployed) symmetric crypto-algorithms are also vulnerable to

FPGA-based SCA attacks. By taking advantage of the high accuracy and performances

provided by TDC-based sensors, we aim to conduct CPA attacks against AES software

implementations. Please note that JRO-based sensors won’t be used in this section as

they were still in development at the time of these experimentations.

The work conducted in this section targets one hardware AES and two software AES

implementations. Each one of them implements distinct characteristics and enriches the

global study. The first experiment targets a hardware AES module implemented within

the FPGA fabric. The goal of this attack is the evaluation of the intrinsic device leakage

and the optimization and calibration of the TDC-based sensors (note that this attack was

already conducted by [122]). The second and third experiments are conducted on Tiny

AES [78] and OpenSSL AES [106]. Experiments 2 and 3 represent the novelty of this

work.

3.4.2.2 Xilinx Zynq Experimental Setup

The entire side-channel setup is based on a Xilinx Zynq 7000 heterogeneous SoC that

implements both FPGA (Xilinx Artix-7) and CPU (ARM Cortex-A9) on the same die

[141]. Figure 3.14 represents our experimental setup which is organized as follows: the

Artix-7 FPGA fabric embeds 8 TDC-based sensors set to provide a sampling rate of 200

MS/s per sensor and all the logic required to store the acquired data (FIFOs). The use

of several TDCs increases the voltage fluctuation coverage area and the granularity of

68 Software-based Power Analysis Attacks on FPGAs

the overall side-channel setup. However, TDCs multiplication is limited by the voltage

noise resulting from their own activity. 8 TDCs is the best trade-off found during our

experiments.

The fabric also integrates a custom hardware AES-128 module implemented for ex-

periment purposes. The dual-core Cortex-A9 CPU is cadenced at 667 MHz and runs a

bare-metal C program that implements both Tiny and OpenSSL AES. From the attacker

point of view, the side-channel traces are exported through UART for upcoming CPA

computations. (Note that in a practical scenario, CPA computation could be launched

directly inside the target to reduce the amount of exported data).

3.4.3 FPGA-based attack on Hardware AES

Figure 3.15 Averaged power supply fluctuation resulting from 100 hardware AES en-
cryptions. AES frequency: 10 MHz - TDCs sampling rate: 200 MS/s.

We already conducted FPGA-to-FPGA attacks on hardware AES in the previous

section using JRO-based sensors. In this work we reuse the AES module that was

previously implemented however this time we study its power consumption using TDCs.

Figure 3.15 illustrates the hardware AES power consumption measured using the 8

TDCs of our test setup (their output values are added and averaged).

Side-Channel Attack: As in Section 3.3, the CPA selection function was taken as

the Hamming Distance between the 9th and 10th round register values and a 8-bit

assumption was made on the last round key (last round attack [92]). We acquired 10,000

AES leakage traces using TDCs and conducted a CPA attack. The use of large set of

traces progressively led to the extraction of the leakage out of the noise variance. And,

after 4,483 traces on average, the right key was found. Despite the attack success, the

SCA results are not optimal. Through the calibration of the TDCs, we believe that the

number of traces required to retrieve the AES secret key can be significantly reduced.

Two SCA setup optimizations are presented in the following paragraphs, their effect on

CPA results is illustrated in table 3.2.

Placement optimization: The impact of the sensor distance from the target was

already discussed in [122]. Here, we implemented it as a preliminary side-channel

Software-based Power Analysis Attacks on FPGAs 69

TDC Calibration Average number of Traces Optimization Factor
No 4,483 /

Placement 3,440 1,30
Init + Placement 1,381 3,25

Table 3.2 TDC optimizations and their impact on the number of traces required to infer
an AES key byte (averaged on its 16 bytes).

Figure 3.16 Logical distance between sensors and target algorithm.

optimization. Close and far setups were instantiated as depicted in Figure 3.16. In the

far setup (used for the previous attack), the TDCs were 80 slices distant from the AES,

while in the close setup, the logical distance between them was 6 slices.

As illustrated in table 3.2, by adopting the close setup, the number of traces required

to perform the attack dropped from 4,483 to 3,440. It appears that the noise induced

by the logic placed between the AES and the sensors alters the SCA signal quality.

Moreover, the physical distance between the AES and the sensors leads to a natural

attenuation of the SCA leakage amplitude. Therefore the distance between the sensors

has a significant impact on the CPA results (here thirty percent less traces were required).

Init delay optimization: Init delay of the TDC represented in Figure 3.4 (and more

specifically in Figure 3.21 in appendix) can be dynamically configured using coarse and

fine tuning. In our experimentations, we programmed the dedicated logic (MUX) to mod-

ify the number of logic elements forming the path, and consequently the delay duration.

The δclk edge propagation speed gets impacted by all the voltage fluctuation that occurs

as it travels through the init delay, yielding thereby an averaging effect. This effect natu-

rally smooths the sampled values and thus acts as a high-frequency noise filter. However,

depending on its duration, it can deteriorate the accuracy of the sensor.

Through the implementation of 4 delay paths having different lengths, we were look-

ing forward to finding the best averaging trade-off for our device. The init delay was

increased of a half clk period per path. In practical terms, the init path size (logic ele-

ments) was progressively increased until the propagation of the δclk edge filled a half of

the delay-line with “1”. When it was the case, a half clk period of delay had been added.

This operation was repeated 1, 2 or 3 times depending on the chosen delay duration.

70 Software-based Power Analysis Attacks on FPGAs

Experimentally, the SCA attack results were progressively enhanced with the init

delay path size, until it reached 1.5 times the clk period. Then, it finally decreased for

the last setup. As highlighted in table 3.2, CPA results were significantly improved by

the init calibration, the number of traces required to infer the secret key dropped from

3,440 to 1,381 traces. Altogether, placement and init delay calibration divided by 3,25

the number of traces required to infer the AES secret key. This optimization is substantial

for the following attacks that require a significantly larger number of side-channel traces.

3.4.4 FPGA-based attack on Software AES

In this subsection, SCA attacks are conducted against freely available AES software im-

plementations. The optimal setup for the attacks relies on 8 TDCs placed vertically along

the left border of the fabric. According to the Zynq implemented design, this placement

makes sense as it bring TDCs closer to the processing system (i.e CPU). While this work

focuses on the FPGA-to-CPU SCA attack feasibility, the identification of the best TDC

positions and shapes need to be further investigated in future works.

3.4.4.1 Experiment 1 : 8-bit Tiny AES

The first target adopted for CPU experiments was the Tiny AES implementation available

on GitHub [78]. This small 8-bit data path AES computes each AES transformation se-

quentially and processes data from the less to the most significant byte. Our experiment

focused on the AES-128 encryption, plaintexts were randomly generated and collected

through UART. To make sure that the AES ran at the CPU max frequency (667 MHz), we

measured the number of clock cycles elapsed during the encryption using ARM perfor-

mance counters: around 26,000 clock cycles were required for a full encryption (39 µs).

Figure 3.17 illustrates a full Tiny AES encryption acquired using TDCs at a sampling rate

of 200 MS/s. The first 9 rounds of the AES can be easily distinguished thanks to the vari-

ation of power consumption between 8-bit AES transformations SubBytes, ShiftRows and

AddRoundKey and the 32-bit MixColumns transformation. The last AES round differs

Figure 3.17 Averaged power supply fluctuation resulting from 100 Tiny AES encryp-
tions. TDC sampling rate is 200 MS/s per sensor.

Software-based Power Analysis Attacks on FPGAs 71

from the others as it doesn’t use the MixColumns subfunction.

Side-Channel Attack: The side-channel leakage resulting from 8-bit AES computations

has a low impact on the overall chip voltage fluctuations. The encryption measurement

only covers 5 TDC quantization levels among the 32 possible and is thus more vulnerable

to the low-frequency noise induced by the surrounding peripherals (e.g., voltage regulator

module 500 KHz) and physical effects (e.g., temperature variations). To enhance the

signal-to-noise ratio and reduce the number of traces required for the attack, we needed

to apply a high-pass filtering on each side-channel trace. After preliminary filtering, the

CPA could be conducted. The selection function chosen for the CPA was the standard

Hamming Weight model of the first round SubBytes output: HW [Sbox[k ⊕ m]]. The

attack was a success, an average of 111,000 traces were required to infer a secret AES

key byte. Despite a significant increase of the number of traces required for the attack

(compared to the hardware AES attack), TDCs were still accurate enough to perform

CPA against software algorithms running on our target. The side-channel performance

deterioration can be explained by the greater logical distance between the FPGA-based

sensors and the CPU logic and the lower sensitivity of the TDC-based sensors.

3.4.4.2 Experiment 2 : 32-bit OpenSSL AES

The OpenSSL library [106] implements a wide range of cryptographic algorithms mas-

sively used for secure channels over computer networks. In this work, we focused on the

OpenSSL AES-128 that implements a 32-bit tabulated version of the AES [30]. This vari-

ant merges the MixColumns and SubBytes transformations into 4 look-ups tables known

as T-tables (256 x 32-bit). The round transformation of each input byte is directly loaded

from the T-tables and thus speeds up the computations. OpenSSL cadenced at 667 MHz

encrypts 128-bit of data in 2,9 µs - 13.5 faster than the Tiny AES. Figure 3.18 illustrates

the power consumption induced by 1,000 OpenSSL AES encryptions. In this experimen-

tation, the OpenSSL encryptions were placed in between two empty for loops to facilitate

their visualization. This time the 10 AES rounds cannot be easily spotted because of the

Figure 3.18 Averaged power supply fluctuation resulting from 100 OpenSSL AES en-
cryptions. TDC sampling rate is 200 MS/s per sensor.

72 Software-based Power Analysis Attacks on FPGAs

Figure 3.19 Correlation rate over the time obtained for the good guess of each OpenSSL
key byte. The 32-bit implementation can be recognized by observing the byte order.
(Each color represent a 32-bit word)

T-table OpenSSL implementation that only consists in 32-bit operations.

OPENSSL1: 8-bit selection function. The first round model HW [Sbox[k ⊕ m]] pre-

viously used for the Tiny AES attack works fairly well even against OpenSSL tabulated

AES. According to the definition of the 4 T-tables described in [30], each table output

consists in a 32-bit word T [ki ⊕mi] in which the natural Sbox value relative to the input

byte ki ⊕mi was multiplied by the MixColumns coefficients. For each table the natural

8-bit value of the Sbox appears twice in the word because two of the MixColumns co-

efficients equal one. Therefore, 16-bit of the 32-bit output word will leak according to

the Sbox model. Using such a selection function, 130,000 traces were necessary for the

attack to succeed.

OPENSSL2: 32-bit selection function. The first round model can be used to perform

reverse engineering. Contrary to classic 8-bit AES which computes each AES byte

from the less significant byte to the most significant, tabulated 32-bit AES computes

each key byte according to the ShiftRow order. This order can be perceived in temporal

CPA results. Figure 3.19 illustrates the timing correlation obtained for each right guess

of the 16 AES key bytes. The byte order follows the ShiftRow order and betrays the

presence of a tabulated AES. Thanks to this information, an attacker can slightly

improve the CPA model by making a full 32-bit prediction. Instead of targeting the

Hamming Weight of the Sbox output, the attacker adds the T-table in his selection

function: HW [Tt(k ⊕ m)]. The expected benefit is a slightly better correlation and

a quicker hypotheses distinguishing. Experimentally, the average number of traces re-

quired to perform the attack dropped to 87,000 which is 1.5 time less than the Sbox model.

This subsection experimentally demonstrated that FPGA-based sensors are suitable

for SCA attacks against software symmetrical algorithms. According to the selection

function adopted for the experiments the number of traces required to infer the secret key

fluctuated from 87,000 to 127,000. No significant distinction exists between the 8-bit

Tiny AES and 32-bit OpenSSL AES attacks as they both leaks accordingly to the Sbox

model. The attack of side-channel resistant crypto-algorithms could be considered in

future works to further evaluate the potential and limitations of FPGA-based sensors.

Software-based Power Analysis Attacks on FPGAs 73

Figure 3.20 On the left, an XRAY picture of the Zynq BGA package, the die is contained
within the rectangle. On the right, the side-channel setup based on a langer EM probe.

3.4.5 EM Results & Discussion

To evaluate the pertinence of SCA that can be performed remotely using TDC-based sen-

sors, we challenged these results regarding classical local SCA attacks. As done for JROs

in Section 3.3, this subsection presents a performance comparison with a traditional EM

side-channel setup and discusses about FPGA-based attacks feasibility and associated

countermeasures.

3.4.5.1 Electromagnetic Side-Channel Attack

Figure 3.20.b illustrates the adopted EM setup that consisted in a Langer near field micro-

probe connected to an oscilloscope with a 5 GS/s sampling rate and a 12-bit resolution.

A XRAY picture of the ZYNQ7000 depicted in Figure 3.20.a was taken to check the die

structure. Two hot-spots are represented, the first one offered the best contrast and visu-

alization of the hardware AES side-channel leakage, while the second one gave the best

results for software AES algorithms. The EM leakage of the first round of each attacked

AES was leveraged to trigger the oscilloscope. The captured samples were then extracted

and used to perform a CEMA.

CEMA was conducted against each AES implementation studied in this section. Ta-

ble 3.3 gathers all the results obtained with both TDCs and EM setups. According to table

3.3, the hardware AES and OpenSSL AES attacks based on TDCs required roughly as

Setup HAES Tiny AES OpenSSL 1 OpenSSL 2
EM 1,021 52,438 106,225 88,412
TDC 1,381 111,758 127,558 87,422

Table 3.3 Averaged number of traces required to retrieve a key byte on various AES
implementations for EM and TDC side-channel setups

74 Software-based Power Analysis Attacks on FPGAs

many side-channel traces than EM. This means that with only 32 quantization levels and

a 200 MS/s sampling rate, TDCs provided similar results to a high performance oscillo-

scope. Naturally and as concluded for JRO in Section 3.3.5, this must be interpreted with

caution as TDCs were previously calibrated and optimized for this specific device and

attack scenario. Moreover, a significant difference between EM and TDCs still appears

when it comes to the Tiny AES attack. As mentioned before, this probably has to do with

the sensitivity limitation of the TDCs.

This experiment demonstrated that through the calibration and optimization of our

sensors, we are able to obtain similar results to traditional side-channel setups. Therefore,

this further proves the extents of the SbSCA attack threat in FPGAs.

3.4.5.2 Attack feasibility

The feasibility of FPGA-based attacks on a practical scenario substantially relies on the

security level provided by the target. Three major requirements need to be met to make it

possible:

1) Information Leakage Medium: The SCA attacks conducted in this section re-

quired the implementation of voltage sensors within a victim FPGA fabric. This can

be done in cloud datacenters through the rental of reconfigurable logic, by the insertion

of malicious trojan within untrusted FPGA IPs or through the direct reconfiguration of

unsecured FPGA chips.

2) Data knowledge: SCA attacks conducted against secret key algorithms such as

AES require the knowledge of victim plaintexts or ciphertexts. Depending on the use

case, accessing this information can be challenging for the attacker especially because

each trace acquired using TDCs must match with the exact plain/cipher text used for the

encryption. The feasibility is related to the opportunity for the attacker to trigger victim

encryption and to retrieve plain or cipher texts.

3) Synchronisation: Victim side-channel leakage needs to be dynamically detected

by the sensor logic to facilitate the attack. A trigger mechanism can be implemented

within the TDC to start the data storage when a large voltage undershoot occurs. How-

ever, this trigger mechanism cannot be fully reliable and sometimes gets disturbed by

surrounding noise induced by temperature variations or peripherals computations. De-

pending on the overall noise level, the attack complexity can soar. To facilitate the attack,

a local clone of the targeted device can be used to adjust and calibrate the side-channel

setup towards the actual remote exploit.

3.4.5.3 Countermeasures

The threat behind FPGA-based hardware attack has already been taken into account by

cloud providers who assure that, for the sake of security and integrity, their FPGA re-

sources are not shared between multiple users. However, although this protection miti-

gates intra-FPGA attacks, FPGA sensors can still eavesdrop computations that occur in

Software-based Power Analysis Attacks on FPGAs 75

other chips connected to the same power supply even in presence of decoupling capaci-

tors [121]. To mitigate the threat once for all, an independent power supply should then

be provided for each FPGA chip. Protecting SoCs that implement both FPGA and CPU

within the same die should be more complex. The dissociation of the power sources

would require the creation of two independent power distribution networks and thus in-

crease the overall design cost. Designers should be aware of the side-channel threat and

should consider it even when the device is not physically accessible by the attacker. An

efficient way to prevent a crypto-algorithm from being remotely attacked is the usage of

the usual side-channel countermeasures as for instance shuffling, masking, random delays

or jitter [147, 149].

3.4.6 Conclusion

With the massive adoption of FPGA hardware acceleration in connected systems such

as SoC and cloud data centers, the eventuality of remote FPGA-based hardware attacks

become more and more realistic. In this section, we demonstrated that FPGA logic in-

stantiated within a complex SoC can be leveraged to monitor voltage fluctuations of the

surrounding logic blocks and in particular that of a CPU. We conducted three experiments

from the SCA attack of a hardware AES instantiated within the FPGA logic to the attack

of two software AES running on the CPU core (FPGA-to-CPU attack). The first exper-

iment was carried out on the hardware AES module. It allowed us to calibrate several

parameters to improve side-channel results (init delay, position, filtering, etc.). Then we

performed the first FPGA-based SCA attacks on software AES (Tiny AES and OpenSSL

AES). The side-channel leakage induced by the CPU core being much weaker, the at-

tack required a substantial increase of the number of side-channel to infer the encryption

key. To evaluate the performances of our sensors, we conducted the same attack using a

EM traditional setup and obtained comparable results to those achieved with TDC-based

sensors. This attests the extend of the threat that unsecured FPGA SoC constitute. Fi-

nally, care must be taken when designing SoC to ensure that hardware resources cannot

be maliciously used as hardware attack means.

76 Software-based Power Analysis Attacks on FPGAs

3.4.7 Appendix

Figure 3.21 Logic schematic and implemented design of one TDC-based sensor instance.
Each dotted rectangle in the logic schematic represents 1 slice (26 in total). The delay-
line provides 32 quantization levels and a sampling rate of 200 MS/s per sensor.

Software-based Power Analysis Attacks on FPGAs 77

Figure 3.22 SCAbox Logo

3.5 SCAbox - A Framework for Evaluating the FPGA-
based SCA Threat

The work reported in the FPGA-to-FPGA and FPGA-to-CPU attack sections led to two

major contributions. The creation of a novel RO-based sensor (JRO) optimized for

FPGA-based SCA and the implementation of statistical attacks on software symmetric

crypto-algorithms. Before entering the third step of this thesis dedicated to the imple-

mentation of SbHA without the use of an FPGA, we present a framework dedicated to

facilitate the implementation of FPGA-based SCA attacks for research purposes.

This section introduces SCAbox: an FPGA-based SCA framework dedicated to re-

search and educational purposes. SCAbox bases itself on recent academic works that

use FPGA-based sensors as side-channel vectors to eavesdrop the power activity of hard-

ware and software cryptographic algorithms. The reproduction of this new side-channel

method is facilitated by SCAbox as it gathers sensors implementations, cryptographic

targets and an architecture to collect the side-channel leakage. The entire framework is

open-source and maintained in a public GitHub repository. It has a modular architec-

ture that makes it possible to carry out various side-channel experiments using different

sensors and crypto-algorithms.

In this section we focus on describing the architecture of SCAbox and demonstrate a

typical use case based on a TDC converter sensor and an AES hardware module. To ease

the user experience, this work also links to a website with demonstrations and extended

tutorials: https://emse-sas-lab.github.io/SCAbox/.

3.5.1 Introduction

SCAbox has been designed for the Xilinx Zynq SoC family that embed both processors

and FPGAs within the same silicon die. The Zynq architecture makes it possible to build

digital voltage sensors using the FPGA logic and use them to perform SCA attacks on

assets located either in the FPGA (hardware IPs) or in the processor (software applica-

https://emse-sas.github.io/sca_framework/

78 Software-based Power Analysis Attacks on FPGAs

Figure 3.23 Reducing SCA setup complexity: comparison between usual and SCAbox
configurations

tions). SCAbox aims at popularizing hardware security by enabling SCA experiments at

low-cost using SbHA. By using the SCAbox framework you will be able to:

• Familiarize with SCA and co-design development.

• Reproduce attacks conducted in recent academic papers.

• Build your own FPGA-based side-channel sensors.

• Characterize the SCA leakage of your hardware and software algorithm implementa-

tions.

The SCAbox framework is described in Subsection 3.5.2 and a proof on concept is

demonstrated in Subsection 3.5.3. Subsection 3.5.4 concludes this section.

3.5.1.1 Comparison with Usual Side-Channel Attacks

Figure 3.23.a illustrates a typical side-channel setup that uses an oscilloscope and a probe

to collect the target power activity. This setup requires control logic to communicate

with the target and a computer to collect the oscilloscope traces and perform the analysis.

With this kind of setup, the SCA attack can be fully automatized but its construction is

complex and makes it rather difficult to take in hand for beginners. Light platforms such

as ChipWhisperer [103] reduce the complexity by merging the oscilloscope, the probe

and the control logic into a single device reducing then the element number from five to

three.

As depicted in Figure 3.23.b, FPGA-based SCA further reduces this number by em-

bedding all elements except the computer within a Zynq processor. Although this limits

the hardware skills required to conduct SCA, it also supposes that the user is familiar

with programming in VHDL and C languages. To limit this assumption, SCAbox aims

at offering an easy-to-use platform to help researchers in creating various FPGA-based

SCA applications.

Software-based Power Analysis Attacks on FPGAs 79

3.5.2 Framework Architecture

3.5.2.1 Overview

The SCAbox structure is illustrated in Figure 3.23.b and can be divided into three main

blocks. The first one in yellow is implemented within the Zynq FPGA. It contains the

sensors, the storage mechanism and the victim hardware algorithm. The second one in

blue is located in the Zynq CPU. It implements a C program dedicated to communicate

with the FPGA and to extract the SCA data collected through a serial port. The pro-

gram also implements optional victim software algorithms that can be subjected to SCA

attacks. The last block in red is launched from the acquisition computer. It consists in

a Python-based application capable of connecting through serial communication to the

Zynq board, collecting SCA acquisitions and conducting SCA attacks on the targeted

algorithms.

The first release of SCAbox contains the IP cores and applications depicted in the

table below. The user can choose between two sensor IPs (TDC or RO-based sensors) to

monitor the activity of various targets. Three hardware targets (AES, Present and Klein

block ciphers) are provided along with three different software implementations of the

AES algorithm. The internal SCAbox software and hardware architecture is described in

the following paragraphs.

Setup Hardware IP cores Software Programs

Sensors
TDC [54]
RO [50]

/

Targets
AES

PRESENT
KLEIN

Tiny AES
Dhuertas AES
OpenSSL AES

3.5.2.2 Hardware Architecture (FPGA)

As depicted in Figure 3.24 (left), the hardware architecture of SCAbox uses four major

IP cores.

• The Zynq IP is used to interface the FPGA logic with the processor. It maps the IP

core memory addresses to enable communication with the software program.

• The Storage IP is controlled using software drivers from the processor. According to

a start signal launched from software, it triggers the storage of sensor data into a

FIFO. When the acquisition is running, the FIFO collects a new sensor value at every

clock cycle. Once the acquisition stops, the data is extracted from the FIFO to the

processor in order to proceed with parsing and serial export.

80 Software-based Power Analysis Attacks on FPGAs

Figure 3.24 SCAbox hardware (VHDL) and software (C) architecture

• The Sensor IP is designed to collect an image of the actual on-chip voltage. It can

be made out of different logic blocks such as ROs or TDCs. Sensors are programmed

through software drivers from the processor and have their output connected to the

storage IP.

• The Target IP is deployed to be analyzed through SCA. The initial release of SCAbox

comes with several cryptographic IPs that can be used to evaluate custom sensors

and to perform SCA attacks. Any SCAbox IP can be replaced. It is also possible

to implement multiple targets within the same block design. However, every design

change will imply software architecture modifications.

3.5.2.3 Software Architecture (Processor)

Figure 3.24 (right) illustrates the Zynq processor program organisation. The bare-metal

Main Project uses IP cores Software Drivers to control the underlying hardware and

provides an interface with the outside world through a serial communication. Using a

serial prompt the user can navigate through the available Application Programming In-

terfaces (APIs) that enable communication with the FPGA IP cores. The available com-

mands are sensor and target specifics. They allow the user to test and collect the sensor

outputs, to run the implemented algorithms and to perform SCA acquisitions. Addition-

ally to these features, the main program embeds software algorithms that can be used

as targets for the FPGA-based sensors. The installation of the Xilinx Vitis software de-

velopment kit (SDK) is required to modify the commands and algorithms implemented.

Tutorials on how to adapt the software application according to the underlying hardware

are described in the SCAbox website.

3.5.2.4 SCA Automation Tool (Computer)

To facilitate the data acquisition and visualisation, SCAbox comes with a simple appli-

cation built with Python. This application connects directly to the Zynq board through a

serial communication and can exchange data and commands with the device. The user

interface facilitates serial command construction and automatically displays the collected

Software-based Power Analysis Attacks on FPGAs 81

Figure 3.25 Use case FPGA implemented view and CPA results obtained using the
SCAbox automation tool.

SCA traces. Moreover, the initial application release also features the well known CPA

attack on AES [18]. This means that the user can conduct a full AES key retrieval using

FPGA-based sensor acquisitions.

The SCA automation tool is not required to build the SCAbox project. It has been

designed for demonstration means and can be replaced by any other SCA tool able to

parse the data received from the serial port.

3.5.3 SCAbox User experience

The SCAbox framework aims at being user friendly. Even if co-design can be facili-

tated with predefined IPs, it still relies on complex development environments and on

the knowledge of multiple programming languages. For this reason, we propose several

tutorials with gradual difficulty levels from the getting started demonstration that avoid

any programming to the most advanced that consists in building custom target and sensor

IP cores. In the following paragraphs we depict an SCAbox use case that focuses on

reproducing the works presented in the previous sections on FPGA-to-FPGA and FPGA-

to-CPU attacks.

3.5.3.1 Use case: SCA Sensor & Setup

This demonstration uses TDCs as sensors and a hardware AES algorithm as a target (as

described in Section 3.4). The idea is first to measure the AES power consumption and

then conduct a SCA attack to infer its secret key. The left part of Figure 3.25 represents

the implementation view for this SCA setup. In purple, eight TDCs have been placed. The

remaining logic implements the Zynq processing system, the AES running at 10 MHz and

the FIFO controller. Each TDC provides 32 quantization levels (n) and is cadenced at 200

MHz. A boot image containing the SCA setup bitstream and the application dedicated to

this use case can be directly downloaded from the GitHub repository and loaded into a

micro SD card.

82 Software-based Power Analysis Attacks on FPGAs

3.5.3.2 Use case: SCA Acquisition & Attack

The automation Python tool described in Subsection 3.5.2.4 is employed to collect the

TDC acquisitions and conduct a CPA attack. A configuration window helps the user in

building serial commands to communicate with the Zynq platform. The user can select

the targeted algorithm, the number of acquisitions, the sample range, etc. The right part

of Figure 3.25 represents the AES acquisition results captured and displayed using the

automation tool. The average power consumption collected appears progressively on the

plot window located in the top left hand corner. The AES power consumption can be eas-

ily recognized thanks to its ten characteristic rounds that create high power consumption

spikes. The magnitude spectrum plotted in the bottom left hand corner indicates the leak-

age amplitude at each frequency. Here, we can observe multiple of 6.66 MHz harmonics

that are probably linked to the processor activity (CPU frequency: 666 MHz).

As in Section 3.4.3, the CPA attack is conducted on the last AES round. Two plots

illustrate the CPA attack results for a specific key byte (here byte 3). On the top right hand

corner, we can see the correct key candidate (in red) emerging from the other candidates

(in gray) after less than 500 acquisitions. On the bottom right the temporal represen-

tation indicates that the key leaks around the time sample 300. Finally, the entire key

can be retrieved with less than five thousand AES encryptions. This simple SCAbox

demonstration successfully reproduces the results obtained in Section 3.4 and illustrates

the capabilities of FPGA-based SCA attacks.

3.5.3.3 Discussion

This paragraph addresses the SCAbox strengths and limitations and more importantly its

purposes.

What does SCAbox offer that is new?

• A software-based platform to perform power SCA attacks. No need for strong hard-

ware skills.

• A direct view of the internal chip voltage fluctuations. Not filtered, that is, not dam-

aged.

• The possibility to evaluate various algorithms on equal footing for fair comparison

between implementations.

What’s SCAbox suitable for?

• Reproduce existing FPGA-based SCA attacks.

• Familiarize with SCA and improve co-design skills.

• Evaluate the SCA leakage of VHDL hardware designs.

• Evaluate the SCA leakage of C software libraries.

What’s SCAbox not suitable for?

• Conduct high sampling rate SCA. The actual maximal FPGA-based sensors frequency

is limited to 250 MS/s.

Software-based Power Analysis Attacks on FPGAs 83

• Evaluate the SCA leakage of an external device. SCAbox only operates on internal

algorithms.

3.5.4 Conclusion

SCAbox aims at facilitating FPGA-based SCA by providing an open-source framework

that gathers sensor implementations, cryptographic targets and an architecture to collect

SCA leakage. This section introduced the SCAbox framework architecture and demon-

strated a simple use-case. The SCAbox framework is dedicated to hardware security

enthusiasts which want to familiarize with SCA attacks and to researchers that aim to

evaluate the leakage of hardware and software designs. More information on SCAbox

can be found on GitHub: https://emse-sas-lab.github.io/SCAbox/.

https://emse-sas-lab.github.io/SCAbox/

84 Software-based Power Analysis Attacks on FPGAs

3.6 Conclusion on FPGA-based Power Analysis

In this chapter, we described three works dedicated to the study of FPGA-based power

SCA attacks. Each work brought a different kind of novelty either on the sensor designs,

the attack scenarios or the method for helping researchers in reproducing these attacks.

Beyond the results themselves, this study helped us in demystifying on-chip power anal-

ysis, understanding its limitations and making a step toward SoC attacks.

3.6.1 Results Reminder

In this subsection we establish a quick reminder on the contributions brought by the 3

works described in this chapter.

3.6.1.1 Main Contributions

These three works conducted on FPGA led to:

• The creation of an optimized RO-based sensor design named JRO. This is the first

RO-based sensor suitable for statistical FPGA-based power analysis.

• The first statistical SCA attacks ever conducted from an FPGA to a CPU.

• The implementation of an open-source framework available on GitHub to facilitate

the reproduction of FPGA-based power analysis works.

3.6.1.2 Some Numbers

Here we lay out some numbers to remind FPGA-based sensor performances.

Sensor Characteristics:

• TDC and JRO sensors can operate at 250 MHz frequency in Artix-7 devices.

• A single JRO sensor consists in 2 FPGA slices.

• A single TDC sensor consists in 26 FPGA slices.

• A single TDC sensor has 32 quantization levels.

• A single JRO sensor has 3 quantization levels.

Attack Results:

• 64 JROs can retrieve a hardware AES key in 7,685 SCA traces (@50MHz).

• 8 TDCs can retrieve a hardware AES key in 1,381 SCA traces (@50MHz).

• 8 TDCs can retrieve a software TinyAES key in 110,000 SCA traces (@666MHz).

• 8 TDCs can retrieve a software SSL AES key in 87,000 SCA traces (@666MHz).

These results are equivalent to those obtained using a local near field electromagnetic
setup.

Software-based Power Analysis Attacks on FPGAs 85

3.6.2 SbHA Knowledge: Demystifying On-Chip Power SCA

The major SbHA properties and observations that were identified through the works con-

ducted during this thesis are described within each chapter conclusions and denoted with

the mention “SbHA knowledge”.

The works conducted in this chapter aimed at evaluating SbSCA feasibility. De-

spite the challenges faced to mount FPGA-based power analysis attacks, we were able to

confirm their potential threat for connected devices. Here we look back on three major

SbSCA properties learned from our works conducted on FPGAs:

3.6.2.1 On-Chip Power SCA can be conducted using digital logic

An interesting point linked to this FPGA study is that the sensors built for conducting

power SCA attacks were based on digital logic. This demonstrates that not only mixed-

signal chips embedding analog entities are susceptible to this type of attacks. Each device

containing a digital or an analog circuit that has a relationship with on-chip voltage is a

potential victim. The conversion from voltage to delay is particularly interesting since

modern SoCs embed delay elements for various purposes. Chapter 4 describes how some

of these elements can be used as voltage sensing vectors in SoCs.

3.6.2.2 On-Chip Power SCA can be conducted with limited sensors

Since the apparition of SCA attacks, the oscilloscope and probe capabilities have been

increasing along with the speed of Integrated Circuits (ICs). Gigahertz cadenced IC leak-

age is now often captured using gigahertz sampling frequency oscilloscopes in order to

capture every clock cycle of the target. For this reason it is sometimes assumed that an

SCA attack could only work if the sensing sampling rate was higher than the IC clock

frequency (i.e. Nyquist-Shannon sampling theorem5).

The works described in Subsection 3.3.4.3 demonstrated that this statement is not

necessarily true. Indeed, the leakage induced by transistor’s switching activity lasts over

several clock periods and can be acquired at a slower sampling rate. This enables SCA

attacks against high-speed targets such as in the FPGA-to-CPU scenario where the CPU

is cadenced @666MHz and the FPGA-based sensor @200MHz. In Chapter 4 we show

that SCA attacks remain feasible with even more limited sensing capabilities.

3.6.2.3 On-Chip Power SCA can be conducted across the SoC bound-
aries

As its name suggests, a SoC consists in several hardware components implemented on

the same silicon die. Through our experimentations, we were able to observe that the

side-channel leakage induced by a component leaked throughout the entirety of the SoC
5
https://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem

https://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem

86 Software-based Power Analysis Attacks on FPGAs

die. The closer the sensor, the higher the captured leakage intensity. However, even in

the FPGA-to-CPU attack scenario, with the addition of CPU noise and physical distance,

we were still able to successfully retrieve the AES leakage. These results are promising

to mount attack scenarios on SoC devices and will be confirmed in Chapter 4.

3.6.3 SbHA Knowledge: Strengths and Challenges of On-Chip
Power SCA

Through this work on FPGAs we recorded several on-chip power SCA strengths that

can be leveraged to facilitate the attack but also challenges that must be overcome to

efficiently build SbSCA attacks. They are related to the resources used for collecting the

SCA leakage and the differences with local attacks in terms of feasibility.

3.6.3.1 Challenge 1: Trace Synchronization

As demonstrated in 3.3.5 and 3.4.5, FPGA-based sensors can compete with traditional

EM SCA setup. However, they are not necessarily as precise as Analog-to-Digital Con-

verters (ADCs) in oscilloscopes. Thus, the captured signal can be difficult to interpret

since the sensor granularity is non-optimal. For instance, a single TinyAES trace in the

FPGA-to-CPU attack scenario undetectable through the noise and thus difficult to resyn-

chronize. To conduct statistical attacks in our experiments, we synchronized the AES

execution with the sensor capture by launching them simultaneously. This method al-

lowed us to get rid of the synchronization issues but could be a limiting factor if the

attacker doesn’t control the victim execution. Several other methods could be used to de-

tect victim execution such as sensor trigger detection if the victim leakage is consequent

(used in FPGA-to-FPGA scenarios) or cache side-channel for detecting victim execution

(FPGA-to-CPU scenario).

3.6.3.2 Challenge 2: Data Storage

Statistical SCA attacks can be memory-consuming when a large number of leakage traces

should be captured. In the FPGA-to-CPU scenario, we captured 200 TinyAES samples

multiplied by 200,000 traces. With a sample size of 8-bit this represents 320MB of data

stored in DRAM. For longer traces it would become impossible to collect and store all

the traces in memory. To minimize this storage issue, we used accumulators and in-

stead of storing 200 hundred thousands traces we only stored 256 average traces for each

plaintext class. In addition to being super efficient, this CPA optimization is particularly

useful in such memory limited systems. However, it is only usable if the collected traces

are perfectly aligned and could be harder to conduct in desynchronized scenarios. For

this reason, it is even more mandatory to find a reliable synchronization medium before

launching a statistical SbSCA.

Software-based Power Analysis Attacks on FPGAs 87

3.6.3.3 Challenge 3: Data Export

Considering the attack itself, the adversary can choose between extracting and exporting

the traces in order to perform the SCA on a remote server or conduct the analysis directly

within the target. In our experiments, we decided to extract the data through UART but

they could also be extracted using a remote SSH session.

In a real-world attack scenario, an adversary could choose to export every collected

traces but this could be easily detected by the target and slow down the overall attack.

While the FPGA works presented necessitated the extraction of all the curves, we now

prefer the more elegant integrated SCA version. With it, the attacker computes the CPA

directly inside the target and only has to extract the key. Therefore, he reduces the data

transfer from gigabits to some bits. If the analysis cannot be conducted internally or

requires more computing resources, the first solution remains feasible.

3.6.3.4 Strength 1: Sensor Combination

Sensing capabilities in SbSCA can be improved by increasing the number of sensors used.

If several sensing units are available, their contributions can be summed to improve the

granularity of the overall leakage capture. We especially leveraged this effect when using

JRO sensors by placing 64 of them in the fabric. Each sensor added brought a different

kind of information that enhanced the overall signal reconstruction. This addition of

different sensing sources will be also used in SoCs in Chapter 4.

In SbSCA, it can be interesting to use different sensing sources and leverage them for

distinct purposes. For instance, a temperature sensor would be too limited in frequency

to conduct a statistical SCA but it could be used as a way to detect the beginning of an

encryption and then trigger a voltage sensing mechanism. The adversary should compose

its experimental setup with the existing resources and take advantage of the distinct types

of information brought by each SoC entity.

3.6.3.5 Strength 2: Unlimited Attack Time

A major difference between the SbSCA presented and traditional local SCA is that the

attacker is not necessarily limited by time. During the attack, the victim remains in pos-

session of its resources and therefore, the attack can last for days or months. While a

local attacker should be fast enough to collect target secrets before the victim finds out

that it disappeared, a remote attacker can launch attacks for long periods without being

detected. Therefore, even if an SbSCA requires more time for prototyping, synchronizing

and collecting data, this is not necessarily an issue since the attacker is not detected. This

change of paradigm should be taken into account to evaluate and rate the SbHA attacks

in general.

88 Software-based Power Analysis Attacks on FPGAs

Figure 3.26 From FPGA to SoC SbHA exploits

3.6.4 A Step Toward SoC Attacks

As depicted in Figure 3.26, the conclusion drawn from these FPGA-based power SCA

exploits paved the way to the apparition of SoC attacks. By introducing this new kind of

attack, researchers broke the assumption that hardware attacks could be only conducted

locally. Just a year after the first FPGA-based power SCA exploit, various novel SbSCA

attack were disclosed. The next chapter will be dedicated to one of them, SideLine, a new

kind of SbSCA that can be launched on any processor without the need of an FPGA.

Chapter 4. Software-based Power Analysis
Attacks on Complex SoCs

Abstract

In this chapter, we describe SideLine, a novel side-channel vector based on

generic delay-line components widely implemented in high-end System-on-

Chips (SoCs). We demonstrate that these entities can be used to perform

remote power SCA attacks on high-end devices and we detail several attack

scenarios in which an adversary process located in one processor core aims at

eavesdropping the activity of a victim process located in another core. In con-

trary to the FPGA-based attacks conducted in the previous chapter, SideLine

does not require any reconfigurable logic. It is built on unsuspected sensors

concealed in the hardware.

Chapter Contents

4 Software-based Power Analysis Attacks on Complex SoCs 89
4.1 Chapter Introduction . 90

4.2 Technical Background . 95

4.3 SideLine: Delay-Line-based power SCA on complex SoCs 99

4.4 Additional Results . 115

4.5 Conclusion on Delay-Line-based Power Analysis 120

4.6 Appendix . 125

89

90 Software-based Power Analysis Attacks on Complex SoCs

4.1 Chapter Introduction

The works conducted in Chapter 3 confirmed the extent of the Software-based Side-

Channel Analysis (SbSCA) threat but were limited to Field-Programmable Gate Ar-

rays (FPGAs) and heterogeneous devices embedding FPGAs. In this chapter, we aim

at generalizing SbSCA attacks to any SoC devices. Because most SoCs don’t provide

reconfigurable logic to implement custom hardware designs, it is necessary to identify

components suitable for voltage sensing that are already implemented within the targeted

devices.

In this introduction, we detail the modus operandi that led to the discovery of SoC

delay-line voltage sensing capabilities. The strategy adopted to identify internal sensors

included several steps. First, a set of targeted devices was chosen. Then, their technical

documentations were studied to spot voltage sensing components. Finally, the selected

sensors were compared, tested and used to mount SbSCA attacks. The set of target chosen

for these experiments was composed of complex devices made out of multi-core proces-

sors and powerful enough to run a complex OS such as Linux or Android. The challenge

was of consequence as at the time we began these researches, no power SbSCA had ever

been conducted against complex SoCs.

4.1.1 Identifying SbSCA Vectors

The method employed to identify and select the best SbSCA vector among various po-

tential targets was built on 4 main steps:

1. Identify potential sensing components in the target’s data-sheet.

2. Check if the sensors found are generic (by locating them in other devices).

3. Compare the sensors specifications (sampling rate, resolution, accessibility).

4. Select the best one.

To identify sensing components suitable for SbSCA, a set of devices having comparable

specifications was evaluated. The chosen devices and their references are listed below:

• NXP i.MX 6

• NXP i.MX 8

• ST Microelectronic STM32MP1

• Xilinx Zynq-7000

• Xilinx Zynq UltraScale

• Intel Arria 10

These 6 devices were chosen because they are designed by various vendors (Xilinx,

ST Microelectronics, NXP or Intel) and built for IoT, automotive and other connected

applications which typically meet the type of usage potentially targeted by SbHA. More-

over, these devices implement equivalent architectures (all based on ARM Cortex-A pro-

cessors) and their documentation is easily accessible. After conducting a deep analysis of

Software-based Power Analysis Attacks on Complex SoCs 91

Figure 4.1 Benchmarking the resources available for voltage sensing

their underlying hardware, we were able to identify various internal components exposing

a relationship with on-chip voltage fluctuations.

Six hardware components potentially suitable for power Side-Channel Analysis

(SCA) were found in the six device’s data-sheets. Figure 4.1 shows which device imple-

ments which vector and thus gauges if the latter is generic. For instance, an FPGA fabric

is only available on Intel and Xilinx devices while Delay-Locked-Loops (DLLs), temper-

ature, voltage and Analog-to-Digital Converter (ADC)-based sensors are implemented in

every considered SoCs. The list below details the sensor specifications retrieved from the

data-sheet.

1. Internal Voltage Sensor - Internal voltage sensors are generic and usually found in the

power management unit. They are typically used by software applications to inform

the user about the actual Computer Processing Unit (CPU) power consumption. In

the evaluated devices, the chip’s voltage is captured using an ADC with a maximum

sampling rate ranging from 500 KB/s (for the i.MX8 board) to 1 MB/s (for the Zynq-

7000 and Ultra Scale processors). Its resolution is located around 6 (i.MX8) to 12 bits

(Zynq-7000). Depending on its implementation it can either be accessed through a

simple register read or require the ADC configuration to probe the power lines (Zynq-

7000 XADC).

2. Internal Temperature Sensor - Temperature sensors are generic and usually found

in the thermal management unit. They are typically used to protect the device from

overheating. The temperature is captured using either an analog sensor (e.g., thermal

diode in the i.MX8) or a digital sensor (digital temperature sensor in the STM32MP1).

The maximum temperature sampling rate found in these devices ranges from 200 S/s

(for Arria 10) to 666 KS/s (for the digital STM32MP1 sensor). From an accessibility

and resolution point of view, temperature sensors provide specifications similar to

those of internal voltage sensors.

3. User ADC: All the devices presented except the Intel Arria 10 implement at least

one user-programmable ADC. It can be configured to capture external inputs or in-

92 Software-based Power Analysis Attacks on Complex SoCs

Figure 4.2 STM32MP1 Delay Block Diagram taken from [93]

ternal power lines for voltage sensing (e.g., Zynq-7000 XADC). The maximum sam-

pling rate indicated ranges from 1 MS/s (for the Zynq-7000 SoC) to 7.2 MS/s (for the

STM32MP1 SoC). ADC resolutions range from 12 bits (e.g., Zynq-7000) to 16 bits

(e.g., i.MX8) and their access necessarily requires a complex calibration to set channel,

input and various ADC parameters.

4. FPGA - Reconfigurable logic is not generic and is even over-represented in our device

list. However, as we’ve seen in the previous chapter, it offers a maximal sampling rate

of 250 MS/s and a resolution of 6 bit for the Time-to-Digital Converter (TDC)-based

sensor. For this reason, it is by far the most efficient method for sensing SoC leakage

internally.

5. Delay-Locked-Loop - Subsequent researches highlighted the systematic presence of

DLL components within the evaluated devices. Located in the Double Data Rate

(DDR) memory controllers, DLLs are used for synchronizing clock and data lines dur-

ing external memory transfers. They are dynamically configured according to Process

Voltage Temperature (PVT) variations to ensure proper communication.

These elements are quite close to the TDC sensors used in Chapter 3 since they are

mainly made out of delay-lines. Even if DLLs are not directly sensors, we believe that

these entities could be diverted from their main purpose to obtain information about

the actual on-chip voltage.

DLLs can be easily tested since they are memory mapped and readable through a

simple register access. Based on three initial tests conducted on the Zynq-7000, the

STM32MP1 and the i.MX6 boards, a DLL access rate of 16 MS/s was obtained. Their

resolution can be approximated by taking the number of distinct delay values that can

be applied to the DLL. For instance, in the Zynq-7000 SoC, 256 delay values can

be programmed. This gives an overall DLL sensing resolution of 8-bits. Section 4.2

describes how DLL works and how a voltage information can be extracted from the

delay value.

6. Delay-Line Block - Additionally to the DLLs, we also observed the adoption of

Software-based Power Analysis Attacks on Complex SoCs 93

Delay-Line Blocks (DLBs) in mass storage memory controllers (especially in the

most recent devices benchmarked). While the use of DLLs was first reserved to high-

bandwidth DDR memories, the continuous increase of Non-Volatile Memory (NVM)

speed is forcing designers to adopt delay-lines for compensating PVT variations. The

DLBs observed in the tested devices are dedicated to external SD, MMC cards (e.g.,

i.MX8 and STM32MP1) and Quad SPI Flash interfaces (STM32MP1 and Zynq Ultra

Scale). These DLBs are basically TDCs implemented within ASIC devices. The DLB

diagram taken from the STM32MP1 documentation [93] and illustrated in Figure 4.2

is a perfect example. It contains a complete delay-line plus a sampler deployed to cal-

ibrate the delay-line. This sampler is exactly equivalent to the flip-flop registers that

were used in Chapter 3 to capture the TDC-based sensor delay-line state in an FPGA.

Based on a test conducted on the STM32MP1 DLB we obtained a sampling rate of

around 15,2 MS/s for the DLB. Its resolution can be taken as the number of distinct

delay values implemented. For instance, in the STM32MP1 SoC, 128 delay values can

be programmed. This gives a total resolution of 7-bits. Section 4.2 further describes

how DLBs work and how a voltage information can be extracted from the sampler.

4.1.2 Selecting an SbSCA Vector

Sensor Generic Sampling Rate Resolution Circuit
Voltage sensor Yes 0.5-1 MB/s 6-12 bits Analog
Temperature sensor Yes 0.2-666 KB/s 6-12 bits Analog
User ADC Yes 1-7.2 MB/s 12-16 bits Analog
FPGA-based sensor No 250 MB/s 6 bits (TDC) Digital
DLL Yes 16 MB/s 8 bits Digital
DLB Yes/No 15.2 MB/s 7 bits Digital

Table 4.1 On-chip SCA vector benchmark results.

Table 4.1 provides an overview of the different SCA vectors found and their charac-

teristics. To make the attack reproducible from a target to another we need the vector to be

generic, that is, implemented in a large variety of devices. For this reason, FPGA-based

power analysis cannot be selected since reconfigurable logic is generally not implemented

in today’s SoCs.

All the other sensing mediums found fulfill the genericity requirement. However, they

provide heterogeneous performances. For instance, the temperature sensors are limited

in sampling frequency and as mentioned in Chapter 2, they are not suitable for advanced

SCA attacks. The remaining vectors can be classified as analog-based and digital-based

sensing mediums. Analog sensors based on ADCs suffer from a limited sampling rate

related to conversion time. The best solution for maximizing sampling rate is thus the

digital option based on delay-lines. For its part, the resolution cannot be evaluated as

94 Software-based Power Analysis Attacks on Complex SoCs

a reliable parameter since the voltage resolution is not mentioned (not found for delay-

lines). As a reminder, the voltage resolution defines the sensor’s granularity. If the power

supply voltage fluctuation is smaller than the sensor’s voltage resolution, the variation

cannot be captured. Because the power supply fluctuations are tiny, a large part of the

overall resolution won’t be used. For instance, our experimentation on delay-lines showed

that voltage drops only affected 10 to 15 delay levels over the 128 available (STM32MP1).

Considering the benchmark conclusions and the fact that delay-lines had never been

studied as SbSCA sensors in any research work, we decided to direct our work toward

these unsuspected sensing components. Our suspicions on their capability to collect SCA

leakage were rapidly validated and led to the assembly of various SbSCA scenarios. With

the identification of delay-lines in SoCs, a digital, fast and generic sensor was added to

the SbSCA vector list. The various studies conducted using delay-lines are described in

the remainder of this chapter.

4.1.3 Chapter Outline

The remainder of this chapter is organized as follows

• Section 4.2 is dedicated to the technical description of delay-lines-based compo-

nents implemented in complex devices.

• Section 4.3 describes inter-core power SbSCA attacks conducted on complex SoCs

using delay-lines.

• Section 4.4 is dedicated to additional delay-line applications such as covert-

channels and public key SCA attacks.

• Finally, Section 4.5 discusses the results obtained and concludes this chapter.

Software-based Power Analysis Attacks on Complex SoCs 95

4.2 Technical Background

Delay-line-based sensors were previously used in FPGA devices as a way to monitor chip

power consumption (TDC sensor). Despite offering great performance, these sensors

were limited to configurable logic which is rarely integrated in SoC devices. In this

section, we disclose that digital and analog delay-lines are widely implemented in SoC

memory controllers. We present them and discuss their potential use as voltage sensors

(delay sensors).

4.2.1 Memory Controller Basics

Because high-end SoCs are designed to run complex Operating Systems (OSs) (Linux,

Android, etc.), they require a large amount of NVM to store the OS and Random-Access-

Memory (RAM) to efficiently load it. Due to technological constraints, these SoCs do

not embed a significant amount of RAM nor NVM memory but are rather interconnected

with external memories (memory cards, Flash memory, Synchronous Dynamic Random-

Access Memory (SDRAM), etc). Thus, depending on the form-factor, speed and memory

size requirements, designers can choose between a wide range of external memory de-

vices. A typical scenario of a SoC using external memories is depicted in Figure 4.3.

Several memory controllers are required to interface the SoC with its external mem-

ories. Each memory controller acts as a request arbiter, a transaction scheduler and as a

physical interface to manage data flowing from the SoC to the memory, and vice-versa. In

embedded systems, for cost and efficiency reasons, the memory controller is more likely

to be directly integrated as a part of the SoC. At the edge of the memory controller, a

physical controller (dotted lines in Figure 4.3) outputs and captures the signals that will

flow between the SoC I/Os and the memory chip I/Os (clock, data, configuration signals,

etc.). The physical controller also ensures that these signals arrive on time regardless of

the interconnection tracks length on the Printed Circuit Board (PCB) and the PVT varia-

tions. To better understand the extent of memory signal propagation timings, we draw a

Figure 4.3 Typical SoC connectivity with external memories. Delay-lines are imple-
mented to synchronize clock and data signals arrival in the memory controllers.

96 Software-based Power Analysis Attacks on Complex SoCs

Figure 4.4 An example of DLB used in low-bandwidth memory controllers.

simple example of SDRAM association.

When a read operation is initiated by the SoC, the external SDRAM memory outputs

the requested data edge-aligned with a clock signal (strobe) later dedicated to data sam-

pling. Depending on the PCB tracks length, the clock signal is likely to shift ahead of

the data signals, leading then to a sampling error. To mitigate this effect, the SoC phys-

ical controller implements delay-line-based components (DLL and DLB in Figure 4.3)

to calibrate the phase alignment between the sampling clock and the data signals. This

calibration can be manual and made once and for all after testing at manufacturing or

performed at each chip power-up. It can also be adjusted dynamically to counterbalance

any misalignment due to power supply or temperature fluctuations.

The relationship between the delay applied and the SoC voltage fluctuations drew our

interest. In the following paragraphs, we present two different delay-line-based mech-

anisms that can be used to generate these delays for low and high-bandwidth external

memory applications.

4.2.2 Delay-Line Blocks in Low-Bandwidth Memory Con-
trollers

In relatively low-bandwidth external memories such as Flash memories, SD cards and

multimedia cards, the impact of voltage and temperature fluctuations is considered not

significant enough to jeopardize the communication integrity: dynamic calibration is not

required. Delay-lines are nonetheless used to mitigate the impact of the PCB track length

on the data and clock signals propagation timings (these delays are not predictable by

SoC designers, they are set only at board design time). As track lengths are fixed, a

static delay is sufficient to ensure good operation. For a read transaction, the delay-line

is typically calibrated in order to add a phase shift of 90◦ to the clock signal. Thus, it

ensures that data signals are in place when sampling occurs. The delay-line calibration

is carried out through a series of training steps. These training steps modify the delay of

the elements forming the chain and, for each configuration, verify if the external memory

has been properly read. If the training is successful, the delay-line configuration is saved

in a dedicated register and remains unchanged until the next test.

Several SoC vendors provide user programmable DLBs as a way for developers to

Software-based Power Analysis Attacks on Complex SoCs 97

Figure 4.5 An example of DLL used in DDR memory controllers.

be able to use a wide range of memory chips or cards with different bus speeds. Unlike

traditional static delay-lines, these DLBs come with both a complete calibration toolkit

and a detailed documentation. Figure 4.4 illustrates the DLB structure that was observed

in one of the SoC we benchmarked. Its purpose is to delay the clock signal with respect

to the data signals when a read operation is conducted. The DLB consists in a simple

delay-line associated with a set of control and status registers. A Command Register

controls the delay t of all the delay-line elements and thus the phase shift added to the

clk signal. To ensure that the phase shift obtained is conform to the applied command,

a state register captures the output of each element forming the delay-line every time a

clkin rising edge event occurs. Then, a specific training is performed to verify whether

the captured pattern matches the command or not.

Despite some missing parts, this structure is reminiscent of that of a TDC as the

delay-line state is continuously captured and stored in an accessible register. In Section

4.3.4, we demonstrate that this DLB can be turned into a voltage sensor and hijacked to

perform a power SCA.

4.2.3 DLLs in High-Bandwidth Memory Controllers

Because of the continuous increase of memory bus speeds, the available slack time for

data sampling is gradually shrinking. DDR memories such as SDRAM memory perform

one data transfer per clock edge (both rising and falling) while reaching gigahertz fre-

quencies [117]. On these devices, the data sampling is very likely to get corrupted by

temperature and voltage variations. This time, a static delay source is not suitable to en-

sure correct operations. To effectively cancel voltage and temperature noise side-effects,

a dynamic way to adapt the clock delay has to be considered.

DLLs are generally used in recent DDR memory controllers to dynamically track and

control the phase shift applied between the sampling clock and the external memory (e.g.,

SDRAM) data signals [7, 25]. As illustrated in Figure 4.5, a DLL has two main blocks: a

delay-line, and a feedback circuit. The delay-line is calibrated to provide a phase shift to

a clk signal using both coarse and fine delay elements. However, the propagation delay

jitter associated with on-chip voltage and temperature fluctuations is likely to skew the

applied phase. This is why a DLL includes a feedback circuit to tune the delay-line in

98 Software-based Power Analysis Attacks on Complex SoCs

order to provide a dynamic control of the phase shift and thus, counterbalance voltage and

temperature variations. The feedback circuit comes with a phase detector that compares

the phase shift between the clock signal at the input of the delay-line, clkin, and its phase-

shifted clock output, clkout. Then, according to the measured error, a delay controller

applies a correction in order to "deskew" the result, that is, to get back to the initial delay.

The applied correction modifies the delay of the elements forming the delay-line and can

be either analog or digital-controlled depending on the delay-line type [1].

A command register stores the delay settings, it is memory-mapped and hence can

be read from the SoC Application Processor (AP) or Microcontroller Unit (MCU) cores.

The DLL operates autonomously, this means that through a simple access to this register,

a process can retrieve the state of the DLL, which shall be correlated to on-chip volt-

age and temperature variations. As a result, tracking the command register content shall

provide an image of the SoC power consumption that may be used to carry out SCAs.

Note that this measurement methodology (tracking the command of a feedback dynami-

cally controlled system) differs from that described in Section 4.2.2 for DLBs (sampling a

clock signal propagating inside a fixed delay-line). If this unusual measurement medium

provides enough resolution and sampling rate to eavesdrop power consumption of se-

cure applications running on a processor, this could represent an important backdoor for

computer security. This hypothetical vulnerability is strengthened by the fact voltage

sampling only requires a read access to the command register, no configuration steps are

required. A DLL-based power SCA attack scenario is developed in Section 4.3.3.

Software-based Power Analysis Attacks on Complex SoCs 99

4.3 SideLine: Delay-Line-based power SCA on complex
SoCs

4.3.1 Introduction

In this section we describe SideLine, a novel SbSCA vector based on the intentional mis-

use of hardware resources available in high-end SoC devices. SideLine leverages delay-

lines components embedded in SoCs that use external memory; it neither requires em-

bedded reconfigurable logic (FPGA) nor analog circuitry (ADC). Two delay-line-based

blocks namely DLL and DLB are hijacked to perform voltage measurements and mali-

ciously used to conduct power SCAs on AP and MCU. SideLine makes it possible for an

attacker to perform SbSCA without direct physical access to the target. Our contributions

are listed below:

• We describe three attacker-victim (core-vs-core) delay-line-based SCA scenarios

over two SoC devices: AP-vs-AP attack (on a Xilinx Zynq-7000 SoC), AP-vs-
MCU attack and MCU-vs-AP attack (on a STMicroelectronics STM32MP1 SoC)

where AP and MCU respectively denote the application processor and the micro-

controller cores.

• For each scenario a correlation power analysis attack is conducted against the pub-

licly available OpenSSL Advanced Encryption Standard (AES) encryption algo-

rithm [30] and the full secret key is successfully recovered. The attack feasibility

is demonstrated on bare metal and Linux OS-based applications.

Outline: The remainder of this work is organized as follows. In Subsection 4.3.2, we

present the tested products and the associated threat model. Subsections 4.3.3 and 4.3.4

are dedicated to the deployment of the three attack scenarios. Finally, we discuss per-

formance, limitations, countermeasures in Subsection 4.3.5 and conclude in Subsection

4.3.6.

4.3.2 Experimental Setup

4.3.2.1 Tested Devices

Two devices from two different SoC providers have been studied in our experiments.

The first target considered in this work is a Xilinx Zynq-7000 SoC [141] that comes

with a dual-core Cortex-A9 AP. It is a typical multi-purpose SoC providing many ad-

ditional resources: FPGA, I/O, ADCs, bus controllers, etc. It supports DDR2-DDR3,

Flash and SD/MMC external memories and provides several DLL blocks to interface

properly with DDR external memories. The experiments made on this target have been

conducted without using an OS: we denote it as a bare metal attack. This configura-

tion makes SCA easier as there are fewer interruptions (with respect to the case in which

100 Software-based Power Analysis Attacks on Complex SoCs

an OS is used) that may disturb the attack and victim processes and cause synchroniza-

tion issues. The entire Zynq-based SideLine attack code can be cloned from GitHub:

https://github.com/Remote-HWA/SideLine_Zynq.

The second target is a STMicroelectronics STM32MP157C-DK2 development board

[93] that embeds a dual-core Cortex-A7 AP associated with a Cortex-M processor

(MCU). It also supports DDR2-DDR3, Flash and SD/MMC external memories and em-

beds several DLL blocks. Additionally, it provides user programmable DLBs (DLYB in

[93]) that can be employed for interfacing low bandwidth memory (e.g., an SD card).

These programmable DLBs are the second case we studied. The experiments done on

this SoC have been carried out with a Linux OS running on its AP (i.e. the Cortex-A7

processor). The results are those of a Linux OS attack. The entire STM32MP1-based

SideLine attack code can be cloned from GitHub: https://github.com/Remote-

HWA/SideLine_STM32MP1.

4.3.2.2 OpenSSL AES Architecture

The OpenSSL library [106] provides several cryptographic algorithms used for securing

channels over computer networks. In this work, we focus on the OpenSSL AES-128

(version 1.1.1) that implements a 32-bit tabulated version of the textbook AES encryption

algorithm [30]. This variant merges the Mixcolumn and SubBytes transformations

into 4 pre-computed look-up tables known as T-tables (256 x 32-bit) as a way to optimize

the computations on 32-bit processors.

4.3.2.3 Threat Model

In this section, we introduce three core-vs-core attack scenarios in order to assess the

SCA capabilities of the delay-line-based sensors. For each scenario depicted in Figure

4.6, we first deploy a cryptographic application (in green) within a processor core. This

application located either in the AP or in the MCU allows the end-user to launch AES

encryptions/decryptions, with the plaintexts/ciphertexts that he provides. Secondly, we

introduce a malicious user (in red) that has the privilege level necessary to access the

DLBs presented in Section 4.2.2 and that uses them to retrieve the leakage induced by the

AES application.

Although not used in this research work, Trusted Execution Environments (TEEs)

based on the TrustZone (TZ) [7] architecture stand as potential realistic targets for the

delay-lines. TZ attacks from the normal-world to the secure-world have been widely

covered in recent remote attack works [128, 111, 20, 104]. However, from a side-channel

point of view, the current TZ does not provide any countermeasures. Thus, the ability

of an attacker to turn our feasibility attack into an end-to-end TZ attack is reasonably

expected.

In the remainder of the section, the three scenarios presented are referred to as:

1. A DLL-based attack (Figure 4.6.a), or AP-vs-AP attack, that demonstrates the

https://github.com/Remote-HWA/SideLine_Zynq
https://github.com/Remote-HWA/SideLine_STM32MP1
https://github.com/Remote-HWA/SideLine_STM32MP1

Software-based Power Analysis Attacks on Complex SoCs 101

delay-locked loop

Power
leakage

DLL
command

ZYNQ-7000 SoC STM32MP1 SoC

M
C

U

Victim Process

delay block

a) AP-vs-AP Attack b) MCU-vs-AP Attack c) AP-vs-MCU Attack

Power
leakage

Power
leakage

Attack Process Victim Process

AP#0 AP#1

Attack Process

delay block

AP#0 AP#1 AP#0 AP#1
Attack Process

Victim Process

M
C

UDelay Line
 state

Delay Line
 state

STM32MP1 SoC

Figure 4.6 Basic principle of the three core-vs-core attack variants proposed in this work.
It shows the leakage path from the victim process to the delay sensor and the sensor data
flow retrieved by the attack process.

ability of a DLL to serve as a power supply sensor suitable for a Correlation Power

Analysis (CPA) attack against the AES algorithm. In this scenario, one core of

the Zynq-7000 processor runs the AES victim application, while the second core

executes the attack process (both victim and aggressor processes are C programs,

in bare metal mode). The attacker code is in charge of collecting the leakage data

of the AES. It does so by configuring the access to the DLL command register

that makes it possible to sample its values during AES encryptions performed by

the first core. The attacker core is also in charge of providing the plaintext to be

ciphered by the victim process and to trigger both the encryption and readback of

DLL states. This AP-vs-AP attack scenario is described in details in Subsection

4.3.3.

2. A first DLB-based attack (Figure 4.6.b), or MCU-vs-AP attack, where the victim

process is ran on the STM32MP1 AP (a C code AES running on top of a Linux OS)

and the attack process is executed by the Cortex-M MCU (a C program, in bare

metal mode). In this scenario the MCU is in charge of calibrating and using a DLB

to eavesdrop the activity of the AP. This MCU-vs-AP attack scenario is addressed

in Subsection 4.3.4.

3. A second DLB-based attack (Figure 4.6.c), or AP-vs-MCU attack, that matches

a typical state-of-the-art industrial case where the cryptographic and security oper-

ations of a SoC embedding AP cores are delegated to a less complex MCU core.

In this scenario the AP core (Cortex-A7) runs the attack process while the MCU

core (Cortex-M) runs the AES victim process. This AP-vs-MCU attack scenario is

reported in Subsection 4.3.4.

4.3.3 DLL-based Power Side-Channel Attack

This subsection presents a novel way to monitor on-chip voltage fluctuations and conduct

power SCAs using the DLLs embedded in SoC memory controllers.

102 Software-based Power Analysis Attacks on Complex SoCs

Figure 4.7 DLL response to sudden temperature drops induced by three successive ex-
position of the SoC to a cooling spray.

4.3.3.1 Validating DLL Effectiveness: Monitoring Temperature

As a proof of concept, a simple experiment was carried-out on the Zynq-7000 SoC to con-

firm that the DLL command is actually tracking the SoC package temperature variations.

The test uses a C program designed to continuously read and store the DLL command

register content into an acquisition array for a period of 30 seconds. Simultaneously, a

cooling spray was used at specific moments to cool down the SoC package. To limit the

acquisition size, each array index contains the average of 1,000 successive DLL readings.

Figure 4.7 reports the evolution of the measured DLL command (y-axis) as a function

of time (x-axis). Each spray shot induces a temperature drop (translated into a DLL

command drop in Figure 4.7) that progressively recovers until the next one. This simple

experiment confirms that a DLL is suitable to dynamically track the SoC temperature

variations. As the temperature decreases, the propagation speed of the clk signal through

the delay-line increases [35]. Thus, the phase-shift between clkin and clkout progres-

sively drifts. To counterbalance this effect, the DLL dynamically adapts its command in

order to maintain a constant phase shift. Because package temperature evolves relatively

slowly, the sampling frequency for this experiment was limited to 300 kHz. However,

as this chapter focuses on power side-channel, which itself depends on transient voltage

drops measurements, a higher sampling rate needs to be achieved: it is the subject of the

next Subsection 4.3.3.2.

4.3.3.2 Improving Sampling Rate and Synchronisation using DMA

As mentioned before, the DLL command value can be directly accessed through its mem-

ory address. Then, a loop associated with an array can be added to collect more samples.

This CPU-based sampling method works in principle but has several drawbacks:

First, it requires a constant time between each acquisition. If this constant time is not

achieved, the samples of different encryptions won’t be correctly aligned. Consequently,

statistical attacks will be less accurate as the averaging of several acquisitions will suffer

from de-synchronisation. Achieving constant time is feasible in bare metal applications

Software-based Power Analysis Attacks on Complex SoCs 103

because they rarely suffer from interruptions. However, if the application runs over an

OS, interrupts will dramatically affect the timing of acquisitions and make their averaging

impossible. The second limitation is related to the achievable sampling rate. Indeed, the

delay induced by CPU memory access plus the storage of the acquired data into an array

is not optimal. Using this method on the Zynq-7000 SoC, the sampling frequency was

limited to 2.2 MHz.

To solve these issues, we choose to use Direct Memory Access (DMA) in order to

improve the sampling rate as well as the synchronization of our samples (as proposed in

[46]). A DMA is a hardware module able to transfer data from a peripheral to another

without processor intervention. For this reason, it is faster in transmitting data, but also

not affected by OS interrupts. The source address (address from which the DMA should

sample the data) is the register containing the DLL command. The destination address

(destination of the DMA transfer) is the base address of an array whose size depends on

the number of samples required. At the end of the DMA transfer, an interrupt flag is

set and ends the sampling process. With DMA up and running, we improved the DLL

sampling frequency from 2.2 MHz to 16 MHz.

4.3.3.3 Bare Metal OpenSSL AES Attack Setup

According to the threat model we consider (see subsection 4.3.2.3), the attack process

shall be able (1) to trigger the start of an AES encryption by the victim process, and

(2) to control the gathering of the leakage from the AES through a DLL-based voltage

sensor. Our test bench includes two processes (their pseudo code is given in Algorithm 1)

executed by the two application cores of our target in bare metal mode: the attack process

on AP#0 and the victim process on AP#1.

The victim program starts by an initialization step (the AES round keys are derived

from the secret key), denoted AESinit(), and then enters an infinite loop waiting for the

inputs of the attack program (Wait for StartAES flag()). The initialization step

of the attack process consists in setting the configuration of the DMA access to the DLL

command register (in order to retrieve dynamically the values it contains which are cor-

related to the AES calculations), denoted DMAinit(), and in setting the serial communi-

cation with a control PC UARTinit() to retrieve these values and the plaintext (used for

conducting a first round CPA attack). The CPA attack we carried out requires to en-

crypt Nbacq plaintexts and to gather the associated leakage. The attack program then

enters a while loop with Nbacq iterations. Each loop consists in: (1) sending the plain-

text to the victim process (Send AES plaintext to AP#1), (2) starting the au-

tomated DMA access to the DLL command register (Launch DMA transfer) to

retrieve Nbsample times its content, (3) trigger the AES encryption (Send StartAES

flag() to AP#1), (4) wait for the current encryption and DMA access to be com-

pleted (Wait for EndAES flag() and Wait for EndDMA flag()), and (5) to

send the obtained leakage data and the plaintext to the control PC (Export samples

through UART). Data transfer (plaintexts, ciphertexts, flags) between both processes

104 Software-based Power Analysis Attacks on Complex SoCs

Algorithm 1 Dual core Cortex-A9 attack, pseudo-algorithm

/* AP#0: attack program */
Input: Nbacq, Nbsample

DMAinit();
UARTinit();
while Nbacq has not been reached do

Send AES plaintext to AP#1;
Launch DMA transfer(Nbsample);
Send StartAES to AP#1;
Wait for EndAES flag();
Wait for EndDMA flag();
Export samples through UART;

end while

/* AP#1: victim program */
Input: AESkey, AESplaintext

AESinit();
while infinity do

Wait for StartAES flag();
Get AP#0 plaintext;
OpenSSL AES encrypt();
Send EndAES flag to AP#0;
Send AES ciphertext to AP#0;

end while

are done through a shared memory space in RAM. On the victim side, the while loop

synchronizes the AES encryptions (denoted OpenSSL AES encrypt()) with the re-

quest of a novel encryption and the delivery of a novel plaintext (Wait for StartAES

flag() and Get AP#0 plaintext) by the attack process. It also signals the end of

the encryption (Send EndAES flag to AP#0) and provides the obtained ciphertext

(Send AES ciphertext to AP#0) to the attack program.

In addition to this attack setup, we used embedded Hardware Performance Coun-

terss (HPCs) to precisely measure the duration of an AES encryption. In average, an

encryption took 837 AP clock cycles or 1,25 µs at a frequency of 667 MHz (both attack

and victim programs were compiled with the optimization parameter set to -O2). The

DMA transfer method we used provides a constant 62.5 ns sampling period (i.e. a 16

MHz sampling frequency). As a result, 21 samples of the DLL command are gathered

per AES encryption.

4.3.3.4 DLL-based SCA Attack on Zynq-7000 SoC

The bottom part of Figure 4.8 illustrates the results of two experiments conducted to

assess the AES encryption impact on the DLL command value and precisely detect its

encryption time window. The two traces depicted in black (1st case) and red (2nd case)

represent the averaged DLL command value (y-axis) obtained for 1,000 acquisitions as

a function of time (expressed in DMA samples). For the first experiment (in black), the

victim program was kept idle during the entirety of the DMA sampling operations. The

DLL command drop visible between sample 0 and 1,000 was induced by the extra power

consumption linked to the DMA module activation. The DLL applied a strong correction

to maintain a constant phase shift, that was finally relaxed as the power consumption

returned to normal (from sample 2,000 to the end of sampling). The second case (in red)

reports an actual iteration of the attack and victim processes when an AES encryption

is done. The red trace experienced the same DLL command undershoot due to DMA

Software-based Power Analysis Attacks on Complex SoCs 105

Figure 4.8 DLL-based attack results: the bottom part represents the impact of an AES
encryption on the DLL command value. The top part zooms on the AES encryption
windows and provides the temporal correlation rate for two key bytes.

module activation (sample 0 to 1,000) but also a second undershoot corresponding to

the AES encryption (starting at sample 4,500). It is finally restored to a steady value

lower than the initial one (sample 6,000 to the end of sampling). The AES encryption

window was deduced from the position of the second DLL command drop. Based on this

information the CPA attack could be conducted on a smaller amount of samples.

We launched a total number of 20 million AES encryptions and acquired 200 DLL

command samples per encryption. Samples and plaintexts extraction through UART took

around 8 hours at 921,600 bauds. Then, an external computer was used to apply post-

processing to the traces and conduct the CPA attack. The top part of Figure 4.8 depicts

a filtered and averaged trace of the DLL command (in red). High-pass filtering was

used as a way to reduce the impact of low frequency variations (induced for instance by

temperature fluctuations) on the acquired traces and thus to reduce the number of traces

required for the attack. Then, we performed a plaintext-based CPA attack on the first

round of the AES. As we mentioned earlier the OpenSSL AES uses T-tables to upgrade

its performances on 32-bit processors. This allows us to leverage a 32-bit T-tables output

prediction: HW [Ttable(key ⊕ plaintext)]. The obtained correlation results versus the

time are represented above the averaged trace in Figure 4.8 (for two key bytes). The

correct key hypotheses are depicted in red and emerge from the incorrect hypotheses

(in grey) at sample 120. Based on 20 million encryptions, we achieved a full AES key

recovery. 3 bytes were retrieved in the range 0-5M traces, 2 between 5-10M million, 5

between 10-15M an 4 between 15-20M. The key bytes number 7 and 9 never completely

emerged from the incorrect candidates, but we assume that a simple brute force can be

conducted to retrieve their values. The progressive correlation of the first 8 key bytes plus

the failed byte #9 are depicted in Figure 4.20 in the appendix.

106 Software-based Power Analysis Attacks on Complex SoCs

4.3.3.5 Conclusion on DLL-based SCA

In this subsection, we demonstrated that a DLL can be used to monitor on-chip temper-

ature and power supply fluctuations. This unconventional voltage sensor was then used

to conduct a power SCA on an OpenSSL AES algorithm implemented in the Zynq-7000

application processor and a full AES key recovery was achieved (with the help of brute

force for the two remaining bytes). Performance, limitations and potential countermea-

sures regarding this attack are discussed in Subsection 4.3.5.

4.3.4 Delay-Block-based Power Side-Channel Attack

The DLL-based attack presented in Subsection 4.3.3 was associated with the use of DDR

external memories such as SDRAM in AP-based SoC. This Subsection discloses a second

attack path that allows the hijacking of a programmable DLB and its malicious use to

perform core-vs-core power SCAs. These experiments are conducted on the STM32MP1

SoC.

4.3.4.1 From Delay-Block to TDC Sensor

The STM32MP1 SoC comes with three programmable DLB Intellectual Propertys (IPs)

[93] able to work with different types of external memories (QSPI, SD, MMC). Their

settings can be adjusted depending on the bus speeds of the external memories used.

Their initial purpose is to adjust the phase of the clock signal in order to ensure a reliable

exchange of data by tuning the clock delay.

Figure 4.9 depicts the 12 elements delay-line provided by the STM32MP1 DLB and

the capture register designed to monitor the state of the output nodes of every delay

element. When a clkin rising edge occurs, the capture register takes a snapshot of the

delay-line. This snapshot contains an image (represented as a waveform in Figure 4.9) of

the clock propagation through the delay-line. The propagation delay t of the elementary

delay elements can be set using a dedicated register. If this delay is set to its minimum

the delay-line width (acquisition window) is small. Thus, only a part of the clock signal

can be captured. By gradually increasing t, the clock signal observation can be extended,

possibly to several periods.

We leveraged this t parameter to make the DLB sensitive to on-chip voltage fluctua-

tions. To that end, we took a significant number of delay-line snapshots for each of the

128 possible t delay values. A vast majority of them gave stable results; which means that

the captured image remained stable over successive register readings. For a few, however,

delay variations arose between subsequent captures. This interesting behavior can be ex-

plained by (1) on-chip voltage fluctuations that affect the clock propagation time through

the delay elements, and (2) by the fact that several delay values t naturally position the

clock edges in unstable places within the delay line (i.e. in between two delay elements).

Figure 4.9 displays three waveforms (delay-line snapshots) obtained with such a t set-

Software-based Power Analysis Attacks on Complex SoCs 107

Figure 4.9 Effect of on-chip voltage variations on the sampled delay values.

Figure 4.10 Sampled delay values displayed on screen.

ting. In this configuration, three clock periods stand in the entire delay line. From top to

bottom we have: (1) the steady state register waveform which stands as our reference (it

outputs a 0x666 reference value), (2) a slowed down waveform that can be obtained due

to a supply voltage decrease (it outputs a 0x64c), and (3) an accelerated waveform that

can be obtained due to a supply voltage increase (it outputs a 0x262). In our experiments,

the three obtained hexadecimal digits are weighted and added to translate into an image

of the voltage supply.

In Figure 4.10, a program displays the actual delay-line state as a function of time (as

an oscilloscope) on the STM32MP1 touchscreen. This way, the actual power consump-

tion fluctuations affecting the DLB state can be directly observed. To make it possible,

the implemented program automatically calibrates the DLB by testing various delay pa-

rameters. For each delay value, it collects multiple delay-line state samples, computes

their variance and adopts the calibration that provided the highest variance. Indeed, a

higher variance indicates an important delay instability and thus a stronger relationship

with voltage fluctuations.

4.3.4.2 Validating Delay-Block Effectiveness: strcmp test

To validate the DLB effectiveness as a voltage measurement unit, we ran a simple pro-

gram in the SoC Cortex-M core that induces a programmable level of core activity, thus

creating different levels of power consumption. It successively alternates between low-

power demanding empty for loops and high-power demanding string comparison func-

tions: strcmp. The number of characters for the string comparison and the number of

108 Software-based Power Analysis Attacks on Complex SoCs

Figure 4.11 DLB response to sudden processor activity increases induced by strcmp
computations.

increments in the loop were chosen so that they roughly take the same amount of time.

At the same time, the program uses the SoC integrated DMA in burst mode to sample

the DLB capture register. On this device we identified that a single 32-bit DMA memory

transfer from the DLB to the SDRAM takes around 65.8 ns, thus we obtained a 15.2 MHz

sampling rate. Figure 4.11 displays the averaged delay value (y-axis) obtained for 5,000

acquisitions as a function of time (expressed in DMA samples). When the program moves

from empty for loops to strcmp functions (and vice-versa), a clear delay shift appears.

The strcmp operation generates a voltage drop, that is translated into a delay increase.

It goes back to a lower level during the for loops. The modulation between two delay

values has been induced by two different power consumption levels. This proves the

relationship between the captured delay value and the on-chip activity. This validates the

ability of the DLB to monitor the SoC power consumption variations (note that we could

also have used the temperature monitoring technique introduced in Subsection 4.3.3.1).

The following subsections describe how it can be used to conduct a CPA attack.

4.3.4.3 Linux-based OpenSSL AES Attack Setup

Similarly to the attack setup described in Subsection 4.3.3, we used the OpenSSL AES

implementation to evaluate the threat posed by DLB-based SCAs. The STM32MP1 em-

beds both a dual core AP and a MCU that makes it possible to test the MCU-vs-AP and

AP-vs-MCU attack scenarios introduced in Subsection 4.3.2.3. Depending on the sce-

nario, the attack and victim processes were ran either on the AP core or on the MCU

core. Here, we consider the MCU-vs-AP attack to describe our attack setup.

We use an adapted version of the Zynq-based attack. On the adversary’s side (here the

MCU), DLB calibration and use of HPCs were added to the initial algorithm. HPCs are

used to accurately time the successive encryptions and to mitigate the desynchronization

brought by the Linux OS. For each acquisition, the number of cycles elapsed during the

encryption is compared to a maximal limit Nbcycle set by the adversary above which the

entire acquisition is discarded. Prior to the attack, a preliminary test was conducted in

order to identify the optimal value for Nbcycle (assuming that a lower number of clock

cycles corresponds to a lower number of interrupts). Hence, by launching thousands of

Software-based Power Analysis Attacks on Complex SoCs 109

Figure 4.12 AES traces acquisition, CPA computation and GTK display (imple-
mented for demonstration) are all embedded in the same application running within the
STM32MP157-DK2 board.

AES encryptions, we were able to find a reference number of clock cycles for almost

interrupt-free encryptions. Then, based on this reference, we set a maximal limit Nbcycle

beyond which we decided to discard the acquisitions. By doing so, at least half of the

total acquisitions were retained and used for the subsequent CPA calculations.

Regarding the CPA, we embedded it directly within the STM32MP1. This way, we

drastically limited the amount of data exported. Moreover, this allowed us to directly plot

the results on screen as illustrated in Figure 4.12.

4.3.4.4 Delay-block-based SCA Attacks on STM32MP1 SoC

In the AP-vs-MCU attack scenario, the OpenSSL AES program runs within the

STM32MP1 Cortex-M MCU. Using compiler optimization set to -O0, 1,460 clock cycles

are required to perform a single AES encryption, that is 7.3µs at the MCU operating

frequency (200 MHz). Figure 4.13 displays in its bottom part the averaged delay

values obtained for a time window of 250 DMA samples (or 16.4 µs) over 10 million

acquisitions. The AES encryption, which approximately covers 110 DMA samples,

is surrounded by two empty for loops added for visualisation ease. The top part of

Figure 4.13 provides the CPA correlation rates of four key bytes (of index #1, #13,

#9, and #5) as a function of time. The correct key hypotheses are depicted in red and

emerge from the incorrect hypotheses (in grey) between samples 70 and 80. We chose to

represent these key bytes because they are equally distant regarding the OpenSSL byte

computation order: 0 5 10 15 - 4 9 14 3 - 8 13 2 7 - 12 1 6 11. This explains the regular

temporal offset observed between them. Based on 10 million encryptions, we achieved a

full AES key recovery. 6 bytes were retrieved in the range 0-2M traces, 4 between 2-6M

and 6 between 6-10M. The progressive correlation of the eight last AES key bytes (#8 to

#15) are depicted in Figure 4.21 in the appendix.

110 Software-based Power Analysis Attacks on Complex SoCs

Figure 4.13 AP-vs-MCU attack results: the bottom part represents the averaged AES
power consumption, the top part provides the correlation rates as a function of time for
four AES key bytes.

In the MCU-vs-AP attack scenario, the OpenSSL AES program runs in the STM32MP1

Cortex-A7 AP. Using compiler optimization set to -O2, 865 clock cycles are required to

perform a single AES encryption, that is 1.33µs at the AP operating frequency (650

MHz). Figure 4.14 displays in its bottom part the averaged delay value obtained for a

time window of 100 DMA samples (or 6,6 µs) over 40 million acquisitions. The AES

encryption, which approximately covers 20 DMA samples, is surrounded by two empty

for loops added for visualisation ease. The top part of Figure 4.14 provides the tempo-

ral correlation rate of four key bytes as a function of time . The correct key hypotheses

are depicted in red and emerge from the incorrect hypotheses (in grey) between sam-

ples 30 and 40. Again, we chose to represent these specific key bytes because they are

equally distant in the OpenSSL byte computation order. However, the AES encryption

in the AP is faster than that of the MCU (1.33 µs vs. 7.3 µs) and the DMA sampling

frequency that remained fixed between the two experiments is no longer sufficient to let

the temporal offsets appear. This limited sampling frequency partly explains the higher

number of acquisitions required to retrieve some key bytes. For instance, byte #12 in

Figure 4.14, seems to suffer from the under sampling and gave poorer correlation results

(0,07%) than byte #4 (0,32%) or byte #0 (0,29%). We were able to confirm this assump-

tion through a second experiment where the AES encryption temporal window had been

slightly shifted regarding the DMA: the AES leakage was thus sampled at different tim-

ings. This experiment gave better results on several key bytes that struggled to emerge

in the previous attack. Based on 40 million encryptions, we achieved a full AES key re-

covery. 3 bytes were retrieved in the range 0-10M traces, 6 between 10-20M, 2 between

40-30M, 4 between 30-40M. The 13th key byte never completely emerged from the in-

correct candidates, but we assume that a simple brute force can be conducted to retrieve

Software-based Power Analysis Attacks on Complex SoCs 111

Figure 4.14 MCU-vs-AP attack results: the bottom part represents the averaged AES
power consumption. The top part provides the correlation over the time results over four
AES key bytes.

its value. The progressive correlation of the first key bytes (0 to 7) are depicted in Figure

4.22 in the appendix.

4.3.5 Discussion

Two delay-line-based power measurement techniques, using a DLL or a DLB were intro-

duced and studied in this section. Because such delay-line-based components are embed-

ded in almost every high-end digital SoC that uses external memories, the threat model

we introduced is serious and shall be considered feasible for a large number of com-

plex SoCs. In this subsection, we discuss performance, additional attack scenarios and

potential countermeasures regarding the SideLine attack.

4.3.5.1 Performance and Limitations of SideLine

Table 4.2 summarizes the results obtained for the three attack scenarios considered in

this chapter. First, an AP-vs-AP attack was performed on a Zynq-7000 SoC using DLL-

based sensors. As DLLs provide a limited resolution, a large amount of acquisitions

were required to integrate enough information for the CPA to succeed (20 million traces

required for full AES key recovery). It took around 12 hours to extract the traces, ap-

ply post-processing (filtering) and conduct the CPA attack. The lack of resolution also

made post-synchronization nearly impossible and thus implied the collection of leakage

traces with a constant synchronization. Apart from performances, the DLL was by far

the simplest sensor to implement in our experiments, as it only required the read access

to a memory-mapped register. However, care must be taken as in certain cases, DLLs

112 Software-based Power Analysis Attacks on Complex SoCs

Scenario Sensor NbAcq freqDMA freqTarget Duration
Zynq-7000 AP-vs-AP DLL 20M 16 MHz 667 MHz ∼ 12 h

STM32MP1 AP-vs-MCU DLB 10M 15.2 MHz 200 MHz ∼ 9 h
STM32MP1 MCU-vs-AP DLB 40M 15.2 MHz 650 MHz ∼ 24 h

Table 4.2 Overall delay-line-based power SCA results.

may require additional calibration. For instance, some DLLs can either perform delay

calibration continuously or at a set of intervals [7]. Such parameters should be taken into

account and calibrated if needed.

The second attack proposed in this chapter required a preliminary work to properly

turn the DLB into a custom TDC. Then, two DLB-based power SCAs were conducted

on a STM32MP1 SoC. The AP-vs-MCU AES attack took around 10 million traces for

a full key recovery (trace acquisition and CPA took approximately 9 hours) while the

MCU-vs-AP AES attack required 40 million traces (24 hours). We can compare these

results to the attack reported in Chapter 3 against an OpenSSL AES implementation in

an FPGA-based heterogeneous SoC. Using TDC-based sensors we were able to perform

a similar attack in only 90,000 traces (FPGA-to-CPU attack). FPGAs indeed offer the

possibility to design high resolution and high sampling rate sensors which explain the

higher efficiency of their attack. Such a flexibility is obviously not available in ASICs.

For instance, even using DMA in our experiments, the maximum sampling rate achieved

(16 MHz) was still significantly under the FPGA-based TDC sampling rate (200 MHz).

Additionally DLBs also suffer from a poor resolution as evidenced in Figure 4.23 in the

appendix. Despite these limitations, we demonstrated that such an attack is still feasible

without using FPGAs and within a reasonable time and number of traces.

The presence of DLLs and programmable DLBs is already mandatory in high-end

SoC devices and should become even more prevalent in the future with the constant in-

crease of memory bus speeds. At the same time, their voltage sensing capability will

be progressively enhanced as they will need to meet higher performances requirements.

This should make SideLine even easier to conduct and detrimental for hardware security

in the future.

4.3.5.2 Hardware & Software Mitigations

This section provides some countermeasure guidelines thwarting SideLine:

Adding SCA Countermeasures: A simple way to make the victim process more re-

silient to power SCAs is the addition of software or hardware SCA countermeasures [149,

147]. As mentioned above, one of the main limitations of SideLine comes from the low

resolution provided by DLL and DLBs. This forces the attacker to acquire a huge number

of traces (several million in our case) and makes it nearly impossible to re-synchronize

SCA traces. On the victim side, software randomization could be a good candidate to

efficiently de-synchronize computations and hence to increase significantly the attack

Software-based Power Analysis Attacks on Complex SoCs 113

difficulty (e.g., adding random delays in T-Table computations for OpenSSL AES). On

the monitoring side (delay-line), a straightforward way to mitigate the attack could rely

on the addition of phase and frequency jitter to the clock signal used for accessing the

delay-line registers.

Preventing Delay-Line Access: Another countermeasure would act at system level by

preventing the access to the delay-line registers by unauthorized software entities. Hence,

only the OS for instance would have access to this resource. TZ could also be used to

place DLLs and DLBs in the secure world and make their use by non-secure world impos-

sible in practice. Locking the access to the DMA module or the hardware performance

counters would also represent a significant limitation for the attack setup.

Reducing Delay-Line Sampling Rate: Preventing delay-line access through privilege

rights seems insufficient as a malicious attacker or a compromised OS could overpass

it (privileges escalation). A hardware way to mitigate the threat would be to limit the

DLB access to a lower sampling rate (e.g., 10KHz). This could be simply achieved by

limiting the access rate to the register that stores delay-line information. This way, even

if the power consumption monitoring would remain feasible, it will highly affect the

delay sensor performances. With such a limited sampling rate it would be probably very

challenging for an attacker to conduct SCAs on fast encryption algorithms such as AES.

Abandoning Delay-Lines in SoCs: As SideLine revealed their potential misuse as power

consumption sensors, the delay-line-based components could be removed from SoC de-

vices and instead, be placed directly within the external memory devices. This drastic

choice would require the addition of configuration I/Os in external memories to effi-

ciently calibrate the delay-lines but will almost entirely remove the delay-line threat from

the SoC die. However, even outside the SoC, the delay-line threat may remain problem-

atic as inter-chip power SCAs have already been shown feasible [121].

4.3.6 Conclusion

Previous works demonstrated that remote power SCAs were feasible using FPGA-based

delay sensors and microcontroller ADC-based sensors. In SideLine we went further by

proving that unsuspected hardware components available in a broad range of high-end

SoC devices, can be turned into power consumption measurement units. In this section,

we studied two common SoC resources known as DLLs and DLBs and proved their ca-

pability to eavesdrop the voltage activity of cryptographic programs running in different

processors. Several core-vs-core attack scenarios on application processors and micro-

controller units were conducted. For each scenario, we achieved a full key recovery

side-channel attack on the publicly available OpenSSL AES implementation. We believe

that these findings open a new era for remote power side-channel attacks. SideLine has

the advantage of being portable on a wide range of devices as it does not requires the

presence of specific circuitry (e.g., FPGA). Because SideLine feeds upon SoC complex-

ity, we also believe that it represents a major threat for actual high-end SoC security.

114 Software-based Power Analysis Attacks on Complex SoCs

More importantly this threat is likely to scale up in line with the constant performance

improvements in SoCs and memory devices.

Software-based Power Analysis Attacks on Complex SoCs 115

4.4 Additional Results

This section further demonstrates that the delay-line-based attack scenarios are various

and can be used for different purpose such as covert channels and Simple Power Analysis

(SPA).

4.4.1 Covert Channels between processes

0 1.2 2.4 3.6 4.8 6
Time (ms)

A transmitted "1"

D
L

L
 le

ve
l

A transmitted "0"strcmp
fast

loop fast

strcmp
slow

loop
fast

loop
fast

loop
fast

strcmp
slow

strcmp
slow

strcmp
slow

loop slowloop slowloop slowloop slow

strcmp
fast

strcmp
fast

37.5

38.0

38.5

39.5

39.0

strcmp
fast

ZOOM

ZOOM

COVERT-CHANNEL

Figure 4.15 Power fluctuation-based covert-channel captured using delay-lines

This paragraph demonstrates how delay-lines could be maliciously used to establish

covert channels between applications and SoC components. Covert channels are em-

ployed to establish hidden communications between two entities that are not supposed

to exchange data. They can be used to extract the information leaked by a software or

hardware Trojan or to break the isolation between sandboxed applications.

Here, we aim at monitoring the voltage fluctuations induced by a program using the

delay-lines to create a covert-channel between two applications. To that end, we reemploy

the strcmp proof of concept described in Subsection 4.3.4.2.

Two applications are deployed: a sender and a receiver. The sender runs a simple

algorithm that converts a text to be sent into binary data. Then, it modulates its power

consumption depending on the data bit to send by alternating between power consum-

ing and idle operations. This creates an amplitude oscillation that can be controlled in

frequency. The sender modulates this frequency to transfer the data (frequency modula-

tion transmission). Figure 4.15 illustrates the voltage variations measured by reading the

delay-line state on the receiver side. On the red trace, the frequency variations between

the transmission of a “0” and “1” are clearly visible. Here, the frequency of a “0” is the

double of a “1”. This behavior can be obtained through a simple algorithm implemented

on the sender side.

The sender code described in listing 2 implements a for loop that iterates over every

bit of the Message to be sent. For each data bit, it tests its state and enters either a

116 Software-based Power Analysis Attacks on Complex SoCs

Algorithm 2 Covert-channel pseudo-algorithm (sender code)

Input: Message
for bit in Message do
i = 0
if bit == 1 then

while i < 4 do
strcmp(“aaaaaaaaaaaa”,“aaaaaaaaaaab”)
for(j=0 ; j < 10000 ; j++){}
i++

end while
else

while i < 8 do
strcmp(“aaaaaa”,“aaaaab”)
for(j=0 ; j < 5000 ; j++){}
i++

end while
end if

end for

while loop with 8 iterations (the bit state was “0”) or a while loop with 4 iterations (the

bit state was “1”). To create the amplitude difference, the loop content is made out of

an strcmp operation that induce voltage drops and empty for loop operations that relax

the power consumption (represented in the zoom window in Figure 4.15). The frequency

modulation is obtained by modifying the number of increments in the loop and the size

of the strings compared within the strcmp operation (slow and fast operations in Figure

4.15).

On the receiver side, the application continuously reads the delay-line state and obtain

a waveform that can be demodulated to retrieve the data bits. We did not implemented the

demodulation algorithm since the signals plotted already testified that the covert channel

was working properly. However, we tested various covert-channel bandwidths by de-

creasing the size of the loops and comparisons used for the modulation. The maximum

bandwidth achieved reached 6 Kb/s. This internal covert channel could find an applica-

tion in the future to leak data from a process to another and even from a SoC to another

if the power supply are shared between PCB components [121]. Again, to mitigate this

threat, the access to voltage sensing vectors such as delay-lines should remain limited to

trusted entities.

Software-based Power Analysis Attacks on Complex SoCs 117

4.4.2 Simple Power Analysis on RSA

In this subsection, we evaluate delay-line-based SCA on public key algorithms. Three

custom Rivest–Shamir–Adleman (RSA)-2048 decryption algorithm versions were de-

ployed on the bare metal Xilinx Zynq-7000 target. Based on the WolfSSL RSA crypto-

library, we designed a naive square and multiply RSA, a square and multiply always RSA

[28] and a Montgomery powering ladder [95, 70] RSA. The main difference between

each version lies in the implementation of the modular exponentiation:

• The square and multiply naive version uses the basic modular exponentiation algo-

rithm which isn’t constant time. A key bit equal to “1” will perform two operations

(square + multiply) while a key bit equal to “0” will only perform the square oper-

ation. This asymmetry should be visible in the power consumption.

• The square and multiply always version uses a modular exponentiation algorithm

similar to the “naive” version but adds a dummy multiply operation when the key

bit is “0” in order to make it constant-time. This slows down the RSA overall

computation but balances the number of instruction computed for each key bit.

This should make the SPA more difficult since the RSA will behave more regularly.

• The Montgomery powering ladder version is optimized for speed but also constant

time since it always requires multiply and squaring independently from the key

bit value. In contrary to the square and multiply always version, every operation

conducted in the Montgomery version is necessary.

Two applications were implemented within the Xilinx Zynq-7000 CPU cores. The

first core contained the attacker app which captured the delay-line state using DMA. The

second core contained the victim app which implemented the three RSA versions.

4.4.2.1 SPA on square and multiply RSA version

Figure 4.16 Square and multiply RSA delay-line-based SPA

Figure 4.16 illustrates the square and multiply RSA power consumption captured

using the Zynq-7000 DLLs. The represented waveform only shows the first 17 modular

118 Software-based Power Analysis Attacks on Complex SoCs

exponentiation loop iterations over the total 2,048. To collect the entire exponentiation at

a 16MS/s sampling rate, 3 million samples need to be captured and stored into DRAM.

In Figure 4.16, the square and multiply operation shape can be distinguished. More

importantly, a voltage spike arise between each loop increment. The duration for each bit

can be precisely measured by taking the distance between each spike. Here, the timing

difference between “0” and “1” are clearly visible. The numbers in red in Figure 4.16

represent the private key bits retrieved from the spike distance information. By replicating

this method on the entire modular exponentiation function it is possible to obtain the full

RSA private key in less than 1,000 traces. The reason why we cannot conduct this attack

using a single trace is linked to the DLL precision (illustrated in appendix 4.23 for the

AES case). However, by averaging multiple traces, we can progressively reconstruct a

detailed signal and obtain a sufficient precision for deducing the key bits.

4.4.2.2 SPA on square and multiply always RSA version

Figure 4.17 Square and multiply always RSA delay-line-based SPA

The second RSA version studied is illustrated in Figure 4.17. This time, each key

bit was processed with both square and multiply operations independently from its value.

In Figure 4.17, the voltage spikes are now equally distant from each other and thus pre-

vent a coarse timing attack from obtaining the key bits. However, the introduction of

an else-branch to place the dummy multiplication (in case of a key bit value equal to

“0”) also has an impact on the amplitude of spikes. It appears that if the key bit value

is “0”, the spike will be each time bigger than if the bit value is “1”. This interest-

ing behavior obtained only by adding the dummy else branch leaks the key by look-

ing at the spikes amplitude instead of the timings. The dotted line in blue helps the

reader in differentiating the ones from the zeros. The precision required for this at-

tack demanded more traces. We were able to retrieve the RSA key using delay-lines

in around 2,000 trace. In the Zynq-7000 device and using the wolfssl sp_arm32 li-

brary, the introduction on a dummy else-branch caused the apparition of this ampli-

tude leakage. We did not evaluated this RSA implementation on other devices and

thus cannot conclude if this issue is device specific or global. An interested reader

Software-based Power Analysis Attacks on Complex SoCs 119

could reproduce the RSA attacks by checking the GitHub repository available here:

https://github.com/Remote-HWA/SideLine_Zynq.

4.4.2.3 SPA on Montgomery Powering Ladder RSA version

Figure 4.18 Montgomery powering ladder RSA delay-line-based SPA

The third RSA version evaluated was based on the Montgomery powering ladder [95,

70] which is intrinsically constant time. Figure 4.18 illustrates the average power con-

sumption observed for this RSA version. Here, the voltage spikes do not appear and

cannot be anymore used for amplitude or timing measurements. Even if the shapes ob-

served seem asymmetric, we weren’t able to distinguish differences linked to keys bit

values using SPA. To go further, we conducted statistical analysis tests to identify key

bit classes, but weren’t able to obtain enough information since statistical tests require a

lot of traces and the lack of precision of the DLL slowed down the process. In this sec-

tion, we thus restricted our analysis to SPA but more advanced attacks such as horizontal

and vertical CPA attacks [26, 11] could be conducted to extract secrets from this RSA

implementation. For reasons of time, we let future research works evaluate this aspect of

delay-line-based power SCA.

https://github.com/Remote-HWA/SideLine_Zynq

120 Software-based Power Analysis Attacks on Complex SoCs

4.5 Conclusion on Delay-Line-based Power Analysis

This chapter was dedicated to the study of delay-line-based power SCA attacks in com-

plex SoC. It demonstrated how an internal component can be identified and turned into a

voltage sensor. Then, it explained how these mechanisms can be used along with novel

software SCA techniques (DMA sampling, hardware performance counter-based syn-

chronization) to eavesdrop the power leakage of a victim application and steal its secrets.

4.5.1 Results Reminder

The experimental results described in this chapter were published in [53] with co-authors

Jean-Max Dutertre, Yannick Teglia and Philippe Loubet Moundi under the name "Side-

Line: How Delay-Line (May) Leak Secrets from your SoC".

Responsible Disclosure: We responsibly disclosed our findings to Xilinx on Septem-

ber 22th, 2020 and STMicroelectronics on November 2nd, 2020. Both acknowledged and

agreed on the publication of these results. Moreover, this disclosure led to a close collab-

oration with these companies to find and build efficient countermeasures against SideLine

and similar attacks. Please keep in mind that SideLine has been performed on these two

processors for demonstration purposes but that the concept is generic and that any devices

embedding delay-lines can be affected.

4.5.1.1 Main Contributions

The works conducted in this chapter led to:

• The discovery of a novel SbSCA attack vector based on delay-lines widely imple-

mented in modern SoC devices.

• A method for efficiently collecting the delay-line state, reducing the effect of OS

desynchronization and converting delay values into voltage levels.

• The first SbSCA CPA and SPA attacks conducted on complex SoC systems using

internal sensors.

4.5.1.2 Some Numbers

Here we lay out some numbers to remind delay-line-based sensing performances.

Sensor Characteristics:

• Delay-line block based sensors operate at 15.2 MHz frequency in STM32MP1 de-

vices.

• DLL-based sensors operate at 16 MHz frequency in Zynq-7000 devices.

Attack Results:

• A delay-locked-loop can retrieve a software AES key in around 20 million SCA

traces (Xilinx Zynq-7000 SoC @666MHz).

Software-based Power Analysis Attacks on Complex SoCs 121

• A delay-locked-loop can retrieve a software naive RSA private key in around 1,000
SCA traces (Xilinx Zynq-7000 SoC @666MHz).

• A delay-locked-loop can be used to establish a covert-channel between two appli-

cations. No averaging is required and a 6 KB/s bandwidth can be reached (Xilinx

Zynq-7000 SoC @666MHz).

• A delay-line block can retrieve the key of an AES running within the CPU in

around 40 million SCA traces (STM32MP1 SoC @650MHz).

• A delay-line block can retrieve the key of an AES running within the MCU in

around 10 million SCA traces (STM32MP1 SoC @650MHz).

4.5.2 SbHA Knowledge: SbHA Attack Vector Detection Methods

In this section we propose additional methods to identify SbHA vectors within a targeted

system. While in this chapter we only relied on data-sheet research, various other tech-

niques can be deployed to detect and use these vectors. By providing these information

to the reader, we aim at helping SoC designers and OS developers in identifying these

elements and preventing their access to future attackers. Three distinct methods are pro-

posed for detecting SbHA vectors: listing OS user-exposed hardware controls, searching

registers in the target documentation and reversing OS device drivers and boot code.

4.5.2.1 Listing OS user-exposed hardware controls

When an OS is implemented within a target, the most straight-forward way to detect a

SbHA vector is to study the list of OS command available to the user. Various attacks

have been exploiting user-exposed kernel modules that can either provide access to CPU

cores power consumption (e.g., powercap command in [85]) or enable DVFS regula-

tor parameters modifications (e.g., CPUfreq command in [128] and wrmsr in [100]).

User-exposed kernel modules controlling sensors and actuators are available in almost

every OS. However, they provide non-optimal interfaces (slow because using system

calls, not optimized for fine-grained attacks) that tend to reduce the attack precision/ef-

ficiency (e.g., only a 20 KHz sampling frequency for the powercap interface in [85]).

A more efficient approach consists in accessing directly the SbHA vector registers using

their physical addresses. This can greatly improve the SbSCA sampling rate or the SbFIA

glitch precision but also requires a stronger knowledge of the target’s hardware. The two

detection methods described below use this approach.

4.5.2.2 Searching registers in the target documentation

In SideLine, delay-lines were identified by reading reference manuals, data-sheets and

application notes from various SoC vendors. This method made it possible to obtain

hardware register addresses dedicated to the delay-line configuration and later directly

access them from a malicious process. There are tens of processor vendors on the mar-

122 Software-based Power Analysis Attacks on Complex SoCs

ket. Among them, a significant part provides public development boards and hardware

documentation. These can be directly read by the adversary to identify potential SbHA

vectors. The remaining processor vendors only bring portions of the documentation to

the public and only share precise details with clients through Non-Disclosure Agreement

(NDA) contracts.

Security by obscurity is not a viable solution against SbHA. Mainly because other

methods for accessing these hidden vectors were identified. For instance, we observed

that a large part of the device studied in SideLine embedded IPs brought by specialized

vendor. This led us to the conclusion that devices having close properties (same per-

formances, same CPU architecture) often embed equivalent IPs. In the Zynq-7000 and

STM32MP1 reference manuals it is for instance clearly stated that the memory controllers

are IPs brought by Synopsis. If the Zynq-7000 was an undocumented SoC, we could have

found the DLL thanks to our previous works built on the documented STM32MP1 and

vice-versa. Even if the DLL addresses could change, several similarities such as identi-

fication registers could have been used to detect the delay-lines within the memory map.

Similarities between distinct devices betray their hardware architecture and can be used

to retrieve SbHA vectors.

To conclude on data-sheet research, the crucial issue is the adversary ability to iden-

tify SbHA vectors within the target’s documentation and more importantly their physical

addresses. If data-sheets are unavailable the adversary will need to use a software ap-

proach to detect known components within the target. The next subsection explains how

the attacker could try to reverse kernel drivers to obtain more information on SbHA vec-

tors location and facilitate their access.

4.5.2.3 Reversing OS device drivers and boot code

If the chosen SbHA vector is not software-exposed or cannot be found within the target

documentation, an additional identification method based on reverse-engineering can be

employed to gain its access. The idea is to study the OS kernel modules source code or

binaries to retrieve the SbHA vector physical addresses.

Again, we describe this method using the delay-line example. Because every

device using external memories must configure its memory controller to ensure proper

communication, there is necessarily an OS kernel module or a function in the OS boot

code dedicated to the delay-line calibration. A malicious user could try to access their

contents to retrieve the delay-line addresses. For instance several memory controller

drivers can be found in the Linux kernel documentation [130] and could be used to

locate the delay-lines. If the targeted driver isn’t proprietary, this method can be directly

applied on the source code. If the driver source code isn’t accessible, reverse engineering

tools such as Ghidra [101] or Radare2 [108] can be used to retrieve valuable information

from the kernel module binaries.

Reading hardware documentation, listing OS commands and reversing OS device

Software-based Power Analysis Attacks on Complex SoCs 123

drivers are three powerful methods that could be employed by attackers to gain access

to SbHA vectors. Depending on the studied target, the adversary can choose the most

convenient one. These three methods involve various computing and electronic skills and

further demonstrate that SbHA necessitate both software (for binary reverse-engineering)

and hardware (for SbHA vectors identification) expertise.

124 Software-based Power Analysis Attacks on Complex SoCs

Figure 4.19 From SideLine SbSCA to FaultLine SbFIA Exploits

4.5.3 From SideLine to FaultLine

Figure 4.19.a illustrates the SideLine threat model. A malicious application accesses a

delay-line to collect the SCA leakage induced by a concurrently running victim process.

The main purpose of the delay-line: delay the clock signal to ensure proper communi-

cation with external memories, is not taken into account in SideLine. The attack only

focuses on the relationship between the delay-line state and the chip’s internal voltage.

Nonetheless, modifying the delay-line calibration could have disastrous effects on the

memory load and store operations launched by the CPU.

In Chapter 5, we will describe how we turned the delay-lines SbSCA attack vector

into a SbFIA attack vector and how it led to the FaultLine attacks. As illustrated in Figure

4.19.b, FaultLine demonstrates that a malicious application may modify the delay-line

state to inject memory access errors in concurrently running applications. This work

differs from the previous chapters as it focuses on fault injection. It introduces a novel

method for injecting errors from software and, to our knowledge, it is the first of its kind

that operates using delay glitches and that targets memory transfers.

Software-based Power Analysis Attacks on Complex SoCs 125

4.6 Appendix

Figure 4.20 Zynq-7000 AP-vs-AP attack scenario - The CPA progression (y-axis) over
the number of traces (x-axis) is represented for the first 8 AES key bytes. Bytes 7th and
9th which never emerged from the incorrect key candidates are also represented. These
CPA results were obtained over 20 million AES encryptions, the correlation rates are
provided in the summary table.

126 Software-based Power Analysis Attacks on Complex SoCs

Figure 4.21 STM32MP1 AP-vs-MCU attack scenario - The CPA progression (y-axis)
over the number of traces (x-axis) is represented for the last 8 AES key bytes. The 1st
AES key byte is also represented as it provided the best correlation rate. These CPA
results were obtained over 10 million AES encryptions, the correlation rates are provided
in the summary table.

Software-based Power Analysis Attacks on Complex SoCs 127

Figure 4.22 STM32MP1 MCU-vs-AP attack scenario - The CPA progression (y-axis)
over the number of traces (x-axis) is represented for the first 8 AES key bytes. Bytes 13th
which never emerged from the incorrect key candidates is also represented. These CPA
results were obtained over 40 million AES encryptions, the correlation rates are provided
in the summary table.

128 Software-based Power Analysis Attacks on Complex SoCs

Figure 4.23 STM32MP1 MCU-vs-AP attack scenario: This figure illustrates the DLB
resolution limitation when a single AES encryption is acquired (a). This resolution can
be virtually increased by averaging a higher number of traces: 5 (b), 10 (c) and 100 (d)
traces.

Chapter 5. Software-based Fault Injection
on SoC External Memory Transfers

Abstract

In this chapter, we introduce the concept of delay-line-based fault injection.

Unlike the previous chapters, this work studies Software-based Fault Injection

Attack (SbFIA) instead of Software-based Side-Channel Analysis (SbSCA)

and thus describes another scope of application for Software-based Hardware

Attacks (SbHAs).

First, we demonstrate that by modifying the delay-line calibration value

through a simple register access, a malware may induce faults in memory

transfers and jeopardize the security of concurrently running assets. Then,

we experimentally evaluate the fault injection on an Operating System (OS)-

capable system-on-chip by exposing cryptographic applications to corrupted

data and retrieving their secret keys. We finally discuss why delay-line-based

fault injection should be systematically considered as a potential threat in mod-

ern systems where entities with different privileges share external memories.

Chapter Contents

5 Software-based Fault Injection on SoC External Memory Transfers 129
5.1 Chapter Introduction . 130

5.2 Technical Background . 131

5.3 FaultLine: Software-based Fault Injection on Memory Transfers 136

5.4 Conclusion on Delay-Line based Fault Injection 149

129

130 Software-based Fault Injection on SoC External Memory Transfers

5.1 Chapter Introduction

In chapter 4, delay-line components implemented in device memory controllers were

studied as potential SbHA vectors. We exploited the delay-line relationship with voltage

fluctuations in order to perform power Side-Channel Analysis (SCA) attacks. By reading

the delay-line state and turning it into leakage information, SideLine demonstrated that

unsuspected hardware components may be misused by a malware in order to conduct

SbSCA attacks.

In this chapter, we introduce a novel fault injection mechanism suitable for SbHA.

Similarly to SideLine, we focus on programmable delay-lines components widely avail-

able in modern systems that use external memories. However, instead of monitoring the

delay-line state, we force it to a faulty value. Therefore, we turn the passive side-channel

attack vector into an active fault injection medium. Our contributions are described be-

low:

• We reveal that delay-lines components available in a wide range of memory con-

trollers can be turned into memory transfer fault vectors.

• We carry out an extensive characterization of the fault vector. We provide guide-

lines to control the fault and statistics on the gathered errors.

• On a Xilinx Zynq development board, we evaluate the attack vector in bare-metal

mode. We deploy two programs, victim and attacker, and inject faults on the

Synchronous Dynamic Random-Access Memory (SDRAM) accesses launched by

the victim.

• We then evaluate the fault injection vector while running a Linux-based OS

and deploy attacks on Advanced Encryption Standard (AES) encryption and

Rivest–Shamir–Adleman (RSA) signature applications.

The remainder of this chapter is organized as follows. In Section 5.2, we provide

background information on fault injection attacks and describe the threat model. Then,

we present the experimental setup and deploy the attack scenarios in Section 5.3. Section

5.4 concludes the chapter.

Software-based Fault Injection on SoC External Memory Transfers 131

Figure 5.1 Memory transfer organization between a SoC and an external SDRAM mem-
ory chip.

5.2 Technical Background

This section covers the technical background related to delay-line-based Fault Injection

Attack (FIA). It also describes the persistent fault attack concept later used in this chapter.

5.2.1 Monitoring Memory Transfers

Here we recall the memory transfer principles described in Chapter 4 before introducing

the fault concept. Figure 5.1, illustrates the typical components involved in a memory

transfer operation between a System-on-Chip (SoC) and an external SDRAM memory.

The keystone of this structure is the integrated memory controller. Its main role is to

collect and schedule memory access requests. Moreover, it ensures proper timings for the

data signals flowing from the SoC to the memory, and vice-versa.

A Double Data Rate (DDR) memory fetches data on both rising and falling-edges

of a strobe signal (the strobe is the clock signal for the data lines, each data byte has its

own strobe). The high throughput achieved by DDR3+ memories increases the risks of

timing errors during a data fetch especially if the data lags behind the strobe signal. The

signal lag depends on the length of the PCB tracks which connect the SoC to the external

memory. Moreover, it also changes dynamically with voltage and temperature varia-

tions. To preserve memory operations from timing errors induced by these lags, recent

memory controllers use a dedicated hardware block usually called Physical Layer (PHY)

controller. The PHY implements, among others, hardware synchronization mechanisms

such as delay-lines (depicted in Figure 5.1) to preserve memory operations from timing

errors. The idea is to delay the strobe signal with respect to the data in order to make sure

that fetching only occurs when the data is ready.

5.2.2 Faulting Memory Transfers

Because delay-line settings can be accessed and modified during run-time, it may be ma-

liciously used to corrupt memory transfers. Figure 5.1 illustrates a simple scenario in

132 Software-based Fault Injection on SoC External Memory Transfers

which a malware (in red) and a victim application (in green) run concurrently on a SoC

processor cores. Both apps occasionally generate memory accesses that are handled by

the integrated memory controller. In this particular example, the malware aims at corrupt-

ing the data loaded by the victim app. To that end, it modifies the delay-line calibration

value for a short period of time (red arrow). The calibration chosen is a critical value that

is known to induce faults during reads. With any luck, the victim app is simultaneously

performing a load operation which therefore results in a corrupted data read. The fault is

then loaded into the cache memory (green arrow) and remains persistent until the faulted

data is evicted. Depending on the loaded data, the fault injection may jeopardize the

victim app and its security. Several attack scenarios presented in Section 5.3.2 and 5.3.3

arise from this fault model.

5.2.3 Threat Model

Modern systems are more and more heterogeneous. They embed, processors, micro-

controllers, Field-Programmable Gate Arrays (FPGAs), secure elements, etc. All these

assets may use common external memories and thus share the memory controller in order

to access data. While logical isolation theoretically prevent processes from accessing the

others, they cannot detect tampered data transfers induced by a malware.

Here, we further specify the threat model by illustrating it with the example of a

SoC embedding both a user and a secure processor. The 1st one or “user processor”

implements a rich OS and contains the user data. The 2nd one or “secure processor” per-

forms security related computations: OS verification, login, encryption/decryption. The

sensitive data belonging to the secure processor such as cryptographic keys and secure

applications are protected by a Trusted Execution Environment (TEE) based for instance

on TrustZone (TZ) [8] and/or a hardware security module. Let’s suppose that the user

processor is compromised by a hardware level malware or a malicious OS which aims at

extracting a protected key. In an attempt to bypass the security isolation, the user proces-

sor leverages its access to delay-lines to corrupt memory transfers handled by the secure

processor. A fault injected inside a crypto-algorithm can then be exploited to expose its

cryptographic key. To that end, the malicious processor leverages traditional fault analysis

methods such as Differential Fault Analysis (DFA) [110] or Persistent Fault Attack (PFA)

[146].

5.2.4 Persistent Fault Analysis on AES

In this Subsection, we aim at describing the concept behind PFA as this attack will be

used in this chapter to extract AES keys from victim processes. In contrary to the DFA

techniques used in this chapter that were introduced by Piret & Quisquatter in 2003 [110],

the PFA attack technique published in TCHES 2018 by Zhang et al. [145] is recent and

thus lesser known. Therefore, it seems interesting to describe its concept.

Software-based Fault Injection on SoC External Memory Transfers 133

As its name suggests, PFA takes advantage of a fault that persists over successive

encryptions. Such kind of fault is easy to obtain in practice using hardware injection

tools such as lasers, ElectroMagnetic (EM) and power glitch injectors. For instance a

laser may permanently modify the value of a memory register. By faulting a memory

transfer, an EM or power glitch may generate a corrupted read operation that will be

stored persistently within the cache memory until the next eviction or in SDRAM until

reset. In complex systems using cache memories, persistent faults are more likely to

occur as every data or instruction may be stored temporarily in cache. For this reason,

PFA stands as a good candidate for extracting secrets from modern SoC devices. The PFA

attack on AES can be split into 5 main steps. Here we describe each step chronologically:

1. Inject a fault

The PFA model presented in [145] requires a fault injected within one element

of the AES Sbox table. Consider the example given in equation 5.1, it depicts a

suitable fault injected within the first Sbox element. Here, its value was modified

from 0x63 to 0x41.

Sbox[0] → Sbox′[0] = 0x63 → 0x41 (5.1)

The PFA attack only works if a single Sbox element is modified. Additionally to

this requirement, the fault must persists over successive encryptions in order to

generate enough faulty ciphertexts for the statistical analysis (step 3).

2. Collect thousands of faulted ciphertexts

According to [146], the collected batch must contain at least 1,641 faulted cipher-

texts for enabling key retrieval. The access to plaintexts is not required.

3. Compute the faulty ciphertext distribution

Once all the ciphertexts have been extracted (at least 1,641), the attacker still

doesn’t now if the fault was successfully injected within a single Sbox element.

However, and this is the core concept behind PFA, he can get this information by

evaluating the distribution of ciphertexts.

Since one Sbox element disappeared, the Sbox table is not anymore bijective. One

Sbox element does not anymore exist in the table (0x63 in example 5.1) and another

one now appears twice in the table (0x41 in example 5.1). Equation 5.2 illustrates

how this Sbox table modification impacts the probability distribution Pr of the

ciphertext values obtained.

134 Software-based Fault Injection on SoC External Memory Transfers

0 4000 6000 8000 100002000

0.000

0.005

0.010

0.015

Number of ciphertexts

C0max = 0x92

C0min = 0xB0
D

is
tr

ib
ut

io
n

of
 C

ip
he

rt
ex

ts
 (

B
yt

e
0)

2/256

1/256

0/256

Figure 5.2 Exemplary AES ciphertext byte 0 distribution with a fault injected on one
Sbox element

Pr = 0/256 cmax
j = Sbox′[i]⊕Kj

Pr = 2/256 cmin
j = Sbox[i]⊕Kj (5.2)

Pr = 1/256 otherwise

j represents the jth byte of the ciphertext (16 bytes per ciphertext). i represents the

unknown index of the modified Sbox element. Since the last AES round does not

involve a MixColumn operation, the collected ciphertexts values are only defined

by the output of the Sbox table XORed with the last round key (as depicted in

equation 5.2). Thus, in case of a successful injection, one ciphertext byte value

will never occur cmin
j (0/256) and one ciphertext byte value will appear twice as

much than the others cmax
j (2/256). Therefore the ciphertext distribution won’t be

anymore uniform. This is exemplified for a ciphertext byte in Figure 5.2. For each

ciphertext byte j, cmin
j and cmax

j take a different value.

By computing the ciphertext byte distribution, the attacker immediately knows if a

single Sbox element was faulted. If it is not the case, the attacker returns to step 1

to retry the injection. At the end of step 3, the attacker knows the 16 cmin
j and cmax

j

values corresponding to each ciphertext byte.

4. Retrieve the Sbox index

Once step 3 has been fulfilled, the attack has succeeded. However, the adversary

needs to conduct a statistical analysis to extract the key. Indeed, cmax
j and cmin

j are

known but Sbox[i] or Sbox′[i] should be defined to obtain key.

In order to retrieve the last round AES key K10, the attacker must find the Sbox

value missing in the table Sbox[i]. That is: kj = cmin
j ⊕ Sbox[i]. To that end, he

computes 256 candidates for K10 according to the 256 possible values for the miss-

ing Sbox value Sbox[i]. The adversary then obtains 256 last round key candidates

K10 but only one is the correct key.

Software-based Fault Injection on SoC External Memory Transfers 135

300
SB9 K1

300
SB9 K2

300
SB9 K3

256 distinct
byte values

256 distinct
byte values

255 distinct
byte values

256 distinct
byte values

256 distinct
byte values

300
SB9 K256

hyp_k1

hyp_k2

hyp_k3

hyp_k256

300
faulty ciphers

Byte distribution
analysis

reverse AES (to SB9)256
key candidates

hyp_k

reverse AES (to SB9)

reverse AES (to SB9)

reverse AES (to SB9)

Figure 5.3 Method for extracting the right PFA key candidate (without the use of a refer-
ence plaintext/ciphertext pair)

5. Deduce the key

If the attacker has access to a reference plaintext/ciphertext pair (non-faulted), he

can proceed with the encryption of the plaintext with each key candidate until a

ciphertext that matches the reference is found. This brute-force method works but

the adversary hasn’t necessarily the possibility to access such a reference pair in

practice.

Another method that does not require this pair is proposed in [146] and is illus-

trated in figure 5.3. Using the 256 key candidates computed in step 4, the faulted

ciphertext batch (a minimum of 300 ciphertexts is required this time [146]) can be

decrypted to the output of the SubBytes operation in the penultimate AES round

(SB9). All the SB9 batches generated with a wrong key candidate will produce

256 different SB9 output values. And, because the persistent fault can cross mul-

tiple rounds, only the right key candidate will provide 255 SB9 output values for

the entire batch. Based on this missing value the right key candidate is found.

PFA is a powerful attack technique that applies on block cipher cryptosystems. It was

extended to the PRESENT [14] algorithm in [146] and to masked AES implementations

in [107]. In Section 5.3, we use this method to extract keys from software AES processes.

136 Software-based Fault Injection on SoC External Memory Transfers

5.3 FaultLine: Software-based Fault Injection on Mem-
ory Transfers

In this section, we implement the FaultLine attack concept. On a Xilinx Zynq devel-

opment board, we evaluate the delay-line-based SbFIA vector by injecting faults on

SDRAM accesses.

5.3.1 Experimental Setup and Fault Parameters

As SideLine, FaultLine is generic as delay-lines are implemented in a wide-range of mod-

ern devices. As other fault injection vectors it is configurable and should be characterized

to maximize the fault rate/success.

5.3.1.1 Experimental Setup

The target adopted to demonstrate our fault mechanism is the ZYBO development board

from Digilent PB200-351 REV B [65]. This board embeds a Xilinx Zynq SoC XC7-

Z010-1CLG400C [141] and two 16-bit DDR3 memory chips of 512 MB each.

The Zynq processor contains two ARM Cortex-A9 cores cadenced at 666 MHz and

an Artix-7 FPGA (not used in this work). Figure 5.1 illustrates the simplified view of the

Zynq memory organization and interfaces. Each processor core contains independent 32

KB level 1 instruction and data caches. It also integrates a 512 KB level 2 cache which is

shared between the two processors.

Two software setups were considered in this work:

a) bare-metal setup: These experiments were built using Xilinx Vitis version 2020.2. We

leveraged the possibility to load one executable per Computer Processing Unit (CPU) core

to build dual-core attacks. The bare-metal configuration requires a hardware platform

specification file for the ZYBO and the board support package project generated in Vitis.

Note that the used Vitis and Vivado versions should not impact the attack results. The

algorithm attacked in this scenario is the TinyAES available on GitHub [78]. Bare-metal

attacks are described in Subsection 5.3.2.

b) Linux-based setup: We implemented the Linaro Debian Linux OS version linaro-

jessie-developer-20161117-32 on the Zybo board. Our Linux-based attacks were not

constrained, we did not perform any kernel modification. We did not limit the execution

of background processes or kernel processes. In this scenario we targeted two algorithms:

the TinyAES and the OpenSSL crypto-library [106]. Linux-based attacks are described

in Subsection 5.3.3.

All the documentation about delay-lines was found in the Xilinx Zynq 7000 technical

reference manual [141] chapter DDR memory controller, Subsection PHY controller. We

provide all the bare-metal and linux-based attack codes in the following GitHub reposi-

tory: https://github.com/LAbbbs/FaultLine.

https://github.com/LAbbbs/FaultLine

Software-based Fault Injection on SoC External Memory Transfers 137

Figure 5.4 Nominal vs faulty strobe phase-shifts

5.3.1.2 Deeper View of the Fault Mechanism

When a read operation is initiated by the memory controller, the SDRAM first collects

the data in the proper bank and then outputs the data signals and the strobe signals edge-

aligned. These signals then travel through the PCB tracks and reach the SoC and its

memory controller. Inside the SoC, delay-lines are used to delay the strobe signal with

respect to the data.

The top part of Figure 5.4 illustrates the correct sampling of consecutive reads. Here,

the black signal represents the data line 0 out of the 32 total data lines. The strobe signal

depicted in red is used as a reference clock to fetch the data. In nominal operation, a

90° phase shift is added to delay the strobe signal propagation. This ensures that the data

bit is ready and stable before its capture by the strobe edge. The bottom part of Figure

5.4 illustrates a different delay-line calibration for the same read sequence. This time

the strobe phase-shift was increased to 190° while the data phase remained stable. This

resulted in read errors in the fetching operation as the strobe delay was too high.

The delay-line calibration is controlled from software and the fault duration can be

finely tuned to affect a limited number of read or write operations.

5.3.1.3 Shaping the Glitch

The typical faults obtained using this method are bit flips. Their apparition rate, the num-

ber of bits flipped and the number of faulted read and write accesses can be precisely

controlled using software parameters. As for power or electromagnetic glitches, delay-

line-based fault injection can be finely calibrated to maximize the fault success and limit

the number of mutes (processor crashes caused by invalid instructions and segmentation

faults). In addition to usual parameters such as glitch strength and width, delay-line-based

fault injection bring additional controls on fault direction and faulted-byte. The follow-

ing list introduces five parameters that need to be tuned using software to inject precise

faults in memory transfers. The pseudo-code given in Listing 5.1 illustrates how these

parameters are controlled from the malware. We comment them in order of appearance:

138 Software-based Fault Injection on SoC External Memory Transfers

Listing 5.1: Fault Injection Pseudo-Code (bare-metal)

1 / / r e g i s t e r add r depends on d i r e c t i o n and b y t e

2 add r = g e t _ d e l a y l i n e _ a d d r (d i r e c t i o n , b y t e) ;

3 f o r (i = 0 ; i < i n i t _ d e l a y ; i ++) {} / / d e l a y

4 w r i t e r e g (addr , s t r e s s) ; / / s t a r t g l i t c h

5 f o r (i = 0 ; i < wid th ; i ++) {} / / g l i t c h wid th

6 w r i t e r e g (addr , nomina l) ; / / s t o p g l i t c h

1. direction: Because there is necessarily a separate delay-line for read and for

write operations, the attacker can choose the direction of the fault. This can be controlled

by changing the accessed delay-line register (line 2 in script 5.1). On the Zynq proces-

sor, we induce a write fault by modifying the phy_wr_dqs_cfg0-3 registers and we

induce a read fault by modifying the phy_rd_dqs_cfg0-3 registers.

2. byte: The fault can be even more targeted as there is a distinct strobe per memory

data byte. That is, 4 strobes for 4 bytes. On the Zynq processor, 4 separate registers can

be modified to inject a fault on the 4 distinct data bytes. The byte choice parameter added

to the fault direction parameter provide a fine and powerful control to the attacker as he

can focus on a specific read or write data byte over the 4 existing ones.

3. init_delay: This parameter (line 3) acts as a temporization medium prior to

the glitch injection. It can be programmed to perform temporal fault injection mappings.

In bare-metal mode, we finely tune it using for loops. These are easily programmable

and are quite accurate (~1 increment per clock cycle).

4. stress: This parameter defines the delay-line calibration value, that is, the phase-

shift applied on the strobe signal. To generate read or write faults, the malware modifies

the stress in order to induce a faulty phase-shift (line 4). This unstable phase-shift can be

reached by increasing or decreasing the stress until a first faulted memory transfer occurs.

If the stress is too distant from the nominal operation the risk of obtaining mutes soars.

Please note that the optimal delay-line calibration value may slightly change from a board

to another due to process variations.

5. width: The width parameter determines the glitch duration, that is, the time

during which the stress will be applied on the delay-line. It is controlled by inserting

a programmable delay between the glitch injection (line 4) and the glitch relaxation (line

6). In bare-metal this delay is also controlled using for loops (line 5). We evaluate its

impact in Subsection 5.3.2.

5.3.2 FaultLine on a Bare-Metal Device

This section describes fault evaluation and attacks conducted using two parallel programs

running within the Zynq processor cores.

Software-based Fault Injection on SoC External Memory Transfers 139

5.3.2.1 Characterizing the Injected Faults

The delay-line calibration registers can be set and forced to values ranging from 0 (the

shortest delay) to 512 (the longest delay). Within this range, we aim at distinguishing the

proper delay calibrations from the faulty ones. To that end, we deployed two C programs

running on separate CPU cores. The memory caches L1 and L2 were disabled using

the Xilinx API Xil_DCacheDisable() to ensure that each load or store operation

would result in an SDRAM memory access. The injection program runs in CPU#0,

It implements a looped version of Listing 5.1. The victim program runs in CPU#1, it

implements the pseudo-code given in Listing 5.2.

Listing 5.2: Victim memory transfers pseudo-code

1 i n t r e f _ a r r a y [n A t t a c k] ; / / n A t t a c k = 1 ,000 ,000

2 i n t s t o r e _ a r r a y [n A t t a c k] ;

3 DisableCacheL1_L2 () ; / / f o r c e SDRAM a c c e s s

4 F i l l A r r a y (r e f _ a r r a y , 0 x00000000 , 0 xFFFFFFFF) ;

5 / / The f a u l t i s i n j e c t e d w i t h i n t h i s l oop

6 f o r (i n t i = 0 ; i < n A t t a c k ; i ++)

7 s t o r e _ a r r a y [i] = r e f _ a r r a y [i] ;

A one million elements test_array (line 1) is filled with two successive values:

0x00000000 on even indexes and 0xFFFFFFFF on odd indexes (line 4). Then a loop

copies the test_array content within the store_array (line 6-7). Thanks to the

adopted repetitive pattern, a continuous sequence of zeros and ones will travel through

each data line when the array is stored or load. We chose this pattern as a higher number

of data line state transitions should maximize the fault rate.

Fault injections occur during the array copy operation. If the fault direction is read,

it will affect the test_array loading from SDRAM. If the fault direction is write, it

will affect the export of the store_array inside the SDRAM. Based on this setup we

deployed several tests:

Glitch stress sweep test: For each delay-line calibration values available we per-

formed one million writes to SDRAM. Figure 5.5.a highlights the obtained results from

the smallest to the greatest phase-shift applied. Three different colors corresponding to

three different behaviors can be distinguished. The yellow one at the center represents

delay-line calibration values which gave correct writes (the write-eye) store_array

= ref_array. On the edges, the red one represents the delay values which induced

mutes (communication with the SoC is lost until reset). In this OS-free configuration,

mutes are essentially caused by exceptions related to corrupted instructions or invalid

memory accesses. Finally, the values displayed in orange are the one that generated

usable faults: store_array != ref_array. Only few values are suitable for fault

injection. These values correspond to the boundary between proper and faulty operations.

That is, a maximum negative phase-shift (orange left) or a maximum positive phase-shift

(orange right) between the strobe and the data. At the operating boundary, the error rate

highly depends on PVT variations that make the strobe signal phase unstable. This insta-

140 Software-based Fault Injection on SoC External Memory Transfers

Figure 5.5 stress and width characterization

bility generates both proper and faulty fetches. To avoid mutes, we try to limit the fault

rate to less than 1% by finely tuning the glitch parameters. Under this rate, the attack is

almost mute free.

Glitch width sweep test: A linear increase of the glitch width does not necessarily

imply a linear increase of the fault number. Figure 5.5.b depicts this behavior obtained

on read tests. The fault rate remains quite stable (around 100 over a million) until the

glitch width reaches 150 ns. Then it increases much faster between 150 ns and 337.5

ns. Higher width values generated mutes during our experiments. From these results, we

can deduce that there is a minimal glitch width inherent to the hardware. This explains

why the fault rate does not depends on the glitch width applied when it is smaller than

150 ns. Once reached and after 225 ns, the fault rate increase becomes roughly linear. In

our following experiments, we tuned the glitch width according to the glitch stress

applied. Proper stress and width pairs were established using sweep tests.

5.3.2.2 Differential Fault Analysis Attack on AES

The first attack application proposed in this chapter consists in conducting a core-vs-

core Piret & Quisquater (P&Q) DFA attack [110]. The attacker and victim programs

run in separate CPUs. The victim CPU#1 computes Tiny AES encryptions on attacker

CPU#0 request. The programs are loaded through JTAG inside the SDRAM at addresses

0x5000000 for the attacker and 0x6000000 for the victim. To facilitate the DFA Attack,

we disabled the data caches L1 and L2. This relaxes the need to perform a cache flush

before each fault injection as the Sbox table would have been automatically loaded into

cache memory.

Software-based Fault Injection on SoC External Memory Transfers 141

[victim] pt: 8620914039f68c7c5a33509aecda185a
[victim] ct: 00000000000000000000000000000000
[attacker] byte 0, stress: 1, delay: 1620
[victim] ct: 0000A800008E00003300000000000090
[victim] ct: 00004900003A00008200000000000066
[attacker] byte 1, stress: 2, delay: 1640
[victim] ct: 2A000000000000D10000450000940000
[victim] ct: A40000000000008200005100009F0000
[attacker] byte 2, stress: 56, delay: 1640
[victim] ct: B40000000000007200003900005A0000
[attacker] byte 3, stress: 52, delay: 1620
[victim] ct: 000000890000560000450000AA000000
[victim] ct: 000000100000FD00004500001C000000

Table 5.1 Variations in faulty ciphertexts obtained depending on the delay-line byte
choice (read direction)

Here is how the attacker proceeds: first, an encryption from CPU#1 is requested.

Shortly after, it generates a delay-line glitch according to the mechanism given in Listing

5.1. We chose to conduct a simple DFA attack in AES round 9 as described in [110]. To

that end, the glitch must be injected between the penultimate and ultimate MixColumns

transformations. A fault success can be easily detected as exactly 4 bytes of the faulted

ciphertext will differ from those of the correct one.

To find the proper injection timings, our malware gradually increased the

init_delay with steps of 150 ns. As expected, the first faults injected within the AES

computation modified all the ciphertext bytes. Once the injection timing reached the

penultimate MixColumns we started obtaining 4-byte ciphertext faults. Table 5.1 shows

several faulty ciphertexts collected with faults injected during the 9th AES round. For vi-

sualization ease, we chose a constant plaintext pt which generates an all-zero ciphertext

ct for a nominal AES encryption. We also used the byte parameter as an advantage to

inject faults in different AES columns. Indeed, the P&Q attack requires at least 2 faults

in each AES column to succeed. The control of the targeted delay-line byte allowed

us to choose the column under attack (faulty positions in red). This additional control

maximizes the chances to obtain new groups of faulty ciphertexts and thus increases the

attack speed. Based on our experimental results, it took 100,000 injections (2.4 minutes)

and around 500 AES faults in average to retrieve the full AES secret key. Among these

500 faults, 8 only were required for DFA the others were duplicates or faults injected

within the same column.

5.3.2.3 Persistent Fault Analysis Attack on AES

The P&Q attack presented previously requires memory caches disabling and thus makes

the attack hardly feasible in practice. This is why we introduce a second proof-of-concept

of delay-line-based fault injection which relaxes the attacker prerequisites: the PFA [146].

As described in Subsection 5.2.4, the PFA attack leverages the processor capability to

temporarily store data and instructions into memory caches instead of performing time-

consuming SDRAM memory accesses every time a data is read. If a fault is injected

during a memory access from the SDRAM, it will remain persistent in the cache until the

data is evicted. It has been experimentally demonstrated in [146] that this effect can be

142 Software-based Fault Injection on SoC External Memory Transfers

Figure 5.6 Progression of the PFA distribution over 17,053 faulty ciphertexts. The Cmin
distribution (in red) results from the missing Sbox. The Cmax distribution (in green)
results from the duplicated Sbox value.

maliciously employed to break symmetric crypto-algorithms.

We deployed PFA on our experimental setup. Again, the CPU#1 computes Tiny AES

encryptions on CPU#0 requests. However, this time, both L1 and L2 memory caches are

enabled. Because the data loaded into the cache memory remains cached, a fault injected

during the first Sbox loading from SDRAM will persist over time. Therefore, on AES, by

faulting a single Sbox element, we can expect to continuously obtain faulty ciphertexts.

This requires a single fault injection, success can be detected through PFA distribution

analysis described in section 5.2.4 and more importantly the attack doesn’t require fine

synchronization. Here is how the attacker may proceed:

1. Flushing: The attacker flushes the cache memory to remove all the Sbox in-

dexes potentially stored during previous encryptions. The Zynq board support package

comes with several APIs to flush the data and instruction caches. Here we used the

Xil_DCacheFlushRange() function to flush the AES variables.

2. Collecting: The attacker then asks for 20,000 AES encryptions to the victim

process (without cache flush). If a fault is detected, the attacker saves the encryptions for

post-treatment, else he returns to the first step.

3. Analyzing: Using the collected ciphertexts, the attacker computes the Sbox can-

didates according to the method described in [146]. If a single Sbox fault was injected he

can retrieve the full AES key using less than 2,000 faulty ciphertexts.

In practice, it took less than 10 seconds and around 1,000 glitches to obtain a suitable

fault. Based on this faulted Sbox, we computed and collected 17,053 faulty ciphertexts.

An illustration of the faulty ciphertext distribution obtained for the first four AES key

bytes is provided in Figure 5.6. The cmin
j apparition rate (in red) remains zero because its

associated Sbox output was removed by the fault. cmin
j emerges from the global distri-

bution after around 1,200 ciphertexts. With this information, we can retrieve the missing

Sbox index and value. Then we use the following equation cmin
j = Sbox[i] ⊕ Kj to

retrieve the AES key bytes Kj .

Software-based Fault Injection on SoC External Memory Transfers 143

Listing 5.3: Linux OS Attack Script
sync ; echo 3 > / p roc / s y s / vm / d r o p _ c a c h e s
. / malware − d l y − v a l − wid th − d i r − b y t e &
. / e n c r y p t −nEnc &

5.3.2.4 Conclusion on Bare-Metal Results

In this section, we demonstrated that a simple SoC register modification can lead to a

complete disclosure of cryptographic secrets. We demonstrated that DFA and PFA attacks

are feasible on a Zynq device using delay-line-based fault injection. The fact that memory

caches are enabled doesn’t mitigate the attack as long as the attacker finds a method to

flush them. Delay-line-based fault injection also provides additional fault parameters

such as direction and byte choice. These were used to facilitate both the DFA and PFA

attacks.

5.3.3 FaultLine on a Device Running Linux

The bare-metal setup presented in Subsection 5.3.2 is convenient for fault characteriza-

tion as it relaxes the attack complexity. With a Linux Debian OS now deployed on the

Cortex-A9 processors, we aim at generalizing, comparing and demonstrating that our

attack medium remains functional in real-life complex OS scenarios.

5.3.3.1 Attack Setup

Each attack scenario presented in this section involves two Linux applications: a

malware and a victim encrypt app. The following paragraphs describe the attack

scenario.

Attack script: Listing 5.3 illustrates the three commands required to inject a fault.

First, the adversary flushes the entire memory cache to make sure that the victim data

will be loaded from SDRAM. We used the system call drop_caches to flush the

data stored in memory caches. Dropping all the memory caches is time-consuming and

drastically reduces the fault injection rate. However, to our knowledge, this is the only

flushing method available on this platform that do not involve any kernel modification.

Then, the two following script lines successively launch the malware and the victim

encrypt apps. The presence of the & symbol at the end of each system call enables

concurrent application running. This ensures that the malware and the encryption apps

will run simultaneously.

Malware App: In Listing 5.3 line 2, the malware app takes the glitch parameters

as arguments. When launched, it first maps the delay-line physical addresses using the

mmap() privileged system call. Then, it injects the glitch with respect to the pseudo-code

given in Listing 5.1 and exits. The init_delay mechanism previously implemented

using for loops was improved with the use of clock_gettime(). This system call

144 Software-based Fault Injection on SoC External Memory Transfers

directly accesses the hardware performance counters and is therefore less affected by

temporal jitter caused by OS interruptions. We leveraged this stable delay medium to

perform fine temporal mappings. That is, we gradually delayed the fault injection with

respect to the encryption app execution until a fault occurred.

External Computer: An external computer (not required but used for experimenta-

tion ease) automates the attack and resets the Zybo board on mutes. The Python Paramiko

package is used to script the SSH communication between the computer and the Zybo.

The bash script 5.3 is continuously relaunched with new arguments. Once the injection

campaign is completed, a post-attack analysis is conducted on the computer side to re-

trieve the successful errors.

5.3.3.2 Simple Data Byte Corruption

We first aimed to assess whether the delay-line-based fault injection was still feasible

with the presence of an OS. The adopted method is equivalent to the one described in the

bare-metal experiments 5.3.2.1, that is, a victim application loads an array from SDRAM

while the attacker injects a delay glitch.

This time, memory caches L1 and L2 were enabled and the default OS ker-

nel applications were running simultaneously to the experimental applications. To

avoid array caching, the victim application directly instantiates the array within the

SDRAM by mapping memory addresses using mmap. By doing so, the victim ap-

plication is forced to load data from the SDRAM: array_value = *(volatile

int)(virt_SDRAM_addr).

The results below illustrate the array values loaded from SDRAM without and with

the presence of a delay glitch (these array values were randomly initialized by the victim

app). In this experiment, the attacker app used the delay-line controlling the strobe for the

data byte #0. By XORing the results, we can indeed observe that the faults only impact

the array byte #0. This observation was experimentally tested and confirmed on the 3

other data bytes and for both read and write attack directions.

[attacker] Byte 0, stress: 1, delay: 1620
[attacker] fault: 683dede1 -> 683dede3 - XOR: 00000002
[attacker] fault: 08bbb4a7 -> 08bbb4ef - XOR: 00000048
[attacker] fault: 61bef407 -> 61bef405 - XOR: 00000002
[attacker] fault: 34a787be -> 34a787b4 - XOR: 0000000a

The OS kernel is a potential collateral victim of our experiments. We observed that

the kernel was sometimes subjected to memory errors such as page faults or NULL

pointer dereference. These errors usually induce mutes and necessitate a board reset

to restart the fault campaign. Despite this new constraint, it usually took less than 10 sec-

onds to obtain a successful fault as long as the glitch and timing parameters were properly

calibrated. To conclude, the fault model remains consistent with or without the presence

of an OS although the latter is more likely to be subjected to mutes.

Software-based Fault Injection on SoC External Memory Transfers 145

5.3.3.3 Persistent Fault Analysis Attack on AES

PFA fits particularly well with the adopted Linux setup as it relaxes the need for time-

synchronization which cannot easily be controlled on Linux because of the timing jitter

constantly induced by kernel interruptions. The evaluated AES executable implements

the Tiny AES source code and takes the number of encryption requested as argument. We

chose a number of 6,000 encryptions to conduct the PFA. For each launch, the application

computed 6,000 AES encryptions using a predefined plaintext sequence and stored the

associated ciphertexts in a text file. The presumably faulted output file was each time

compared with a correct file in order to detect a divergence. If so, we saved it. Based on

this setup, we conducted 10,000 injections (∼ 2 hours) and obtained 26 files containing

faulty ciphertexts.

All the 26 files contained results suitable for PFA. However, 25 of them were sub-

jected to an additional difficulty brought by the OS which causes the faulty Sbox to get

evicted from cache before the end of the encryption process. In these cases the faulty

Sbox didn’t remained cached during enough encryptions and the PFA attack couldn’t be

completed (PFA requires at least 1,641 faulty ciphertexts [146]). In this campaign, a

unique file met the PFA requirements and the AES key was successfully retrieved using

4,375 faulty ciphertexts. Later on, we were able to reproduce this attack with different

data and key.

5.3.3.4 Bellcore Attack on OpenSSL Signatures

Using the OpenSSL v1.1.0a version available on GitHub, we deployed a signature ap-

plication written in C. This simple application reads an input text file, signs it using the

OpenSSL RSA_private_encrypt() function [106] and stores the computed sig-

nature within an output file. The rsa_ossl_mod_exp() function used for modular

exponentiation implements the Chinese Remainder Theorem (CRT) optimization [112].

CRT speeds up the RSA computation by splitting the signature calculation into two sim-

pler partial signature computations which are combined afterward.

The Bellcore attack [15] demonstrates that a fault injection corrupting the calculation

of a partial signature leaks the RSA private key. If the attacker is able to collect a correct

signature S and a faulty signature S′, he may retrieve the entire RSA private key by

computing gcd(S′ − S,N). According to Listing 5.3, we conducted 1,500 injections on

our RSA signature application and collected 45 faulty signatures. However, as in [100],

none of them led to a successful Bellcore attack.

The rsa_ossl_mod_exp() function includes a protection against Bellcore at-

tacks. Before outputting the computed signature, it verifies that Se−M = 0. Where S is

the computed signature, e the public exponent and M the file to sign. To check whether

this verification was the cause of our failure, we removed it and recompiled OpenSSL. By

injecting 100,000 glitches (∼ 20 hours) on the unprotected version, we obtained 5,713

various errors including 14 faulty signatures . All of them led to RSA full private key

146 Software-based Fault Injection on SoC External Memory Transfers

recovery. This result demonstrates that delay-line-based fault injection is not restricted

to DFA and PFA but can also be used to conduct Bellcore attacks on unprotected RSA

implementations.

On the protected OpenSSL version, we tried to inject double faults in order to gener-

ate a faulty signature and then bypass the protection. However, considering the fact that

the success rate for a single fault was 0.00014%, a double fault event was very unlikely

to occur. This limitation is discussed in Subsection 5.3.4.

5.3.3.5 Conclusion on OS Results

With an OS implemented, additional difficulties arise such as synchronization control

or cache eviction constraints. Despite these restrictions, we demonstrated that data byte

corruption, PFA and Bellcore fault attacks were feasible. The following section addresses

the overall performance and limitations of our attack vector and compares it with existing

works.

5.3.4 Discussion

5.3.4.1 Related Works

In 2014, Rowhammer [74, 57] was the first hardware vulnerability to be exploited using

software programming only. Due to an undesirable side effect in DRAM memories,

a malware could induce bit flips in DRAM without accessing it. This threat directly

exposed millions of devices to hardware attacks. Inspired by the Rowhammer potential,

the research works related to SbHA soared. In 2017, a new family of SbHA arose with

ClkSCREW [128]. This work demonstrated that by manipulating power and frequency

regulators using OS-kernel drivers, an attacker could inject power and frequency glitches

inside processes. Again, this hardware attack vector bypassed software isolation and was

used to break state-of-the-art security features such as TZ on ARM devices. This attack

was also demonstrated against Software Guard Extensions (SGX) [67] on Intel processors

with Voltjockey, Plundervolt and V0ltpwn [111, 100, 73]. In addition to SoCs, several

temperature and voltage glitch attacks were conducted on FPGA and demonstrated the

dangers of multi-tenants FPGA cloud datacenters [80]. The SbHA topic is growing fast

and represents a frightening threat for connected device security. The increasing number

of ethical disclosures, CVEs and security patches deployed by industrial underlines the

extent of the threat.

5.3.4.2 Advantages and Limitations over Prior Methods

In the following paragraph, we list the strengths and weaknesses of delay-line-based fault

injection by comparing it to other existing attack vectors.

Fault Privilege: Because it accesses hardware registers to inject the fault, FaultLine

Software-based Fault Injection on SoC External Memory Transfers 147

may require root privileges depending on the implemented OS. Although being not as

reproducible as the Rowhammer attack which can be launched from user-space, multiple

real-world scenarios fit with its prerequisites. All modern systems where entities with

different privileges share external memories are potential targets.

Fault Surface: 1) FaultLine affects all the memory accesses regardless of their ori-

gin. This phenomenon enables the fault injection on other processes and thus the attack.

However, this could sometimes induce errors on untargeted processes. These collateral

damages may cause mutes when applied to kernel processes.

2) Even if our experiments used the delay-lines located in the DDR memory con-

troller, FaultLine should not be regarded as SDRAM specific and could be conducted on

other components embedding delay-lines in the future (e.g Flash, SD and MMC memory

controllers).

Fault Synchronization: As for typical glitch injection, FaultLine success depends

on timing synchronization. This differs from Rowhammer whose success is more related

to the bit flip location in DRAM. In FaultLine, the right timings were found through try-

and-error using delay routines (for loops, hardware performance counters). This could

be improved by the use of cache side-channel or SbSCA [53] to finely time the victim

operations.

Fault Rate: The delay-line glitch success rate on memory transfers can be rounded

to 0.1%. To improve it, one could inject wider glitches but would be submitted to more

mutes. Even if V0LTpwn achieves an impressive 99% success rate on OpenSSL hash

computations [73], this limited success ratio is recurrent in SoC attacks and exists in

Rowhammer and Plundervolt (it takes around 500,000 iterations for Plundervolt to inject

a multiplication error [100]).

Fault Precision: Delay-line registers can be finely tuned. They provide full control

on the byte and the direction (read/write) chosen by the attacker. These parameters en-

able precise injection and facilitate attacks such as DFA. They are inherent to FaultLine

and offer an improved fault control in comparison to voltage/frequency glitch injection

methods.

5.3.4.3 Countermeasures

In the following, we describe three potential approaches to mitigate FaultLine.

Disabling access to delay-lines: As stated previously, synchronization components such

as delay-lines cannot be removed and have to remain programmable. However, they

should only be accessible during the DRAM training sequence at boot time. A simple

mitigation could act at system level by preventing the access to the delay-line registers

by unauthorized software entities. Hence, only the OS for instance would have access to

this resource. Another method would be to use a TZ aware device that can prevent the

delay-line access from the normal world users.

Fault-Resistant Software: As described in the OpenSSL RSA attack experiments, tra-

ditional software fault injection countermeasures such as signature verification may ef-

148 Software-based Fault Injection on SoC External Memory Transfers

fectively mitigate FaultLine. Indeed, the limited FaultLine success rate prevents it from

injecting double faults in a reasonable amount of time and thus from defeating this type

of protections. However, this might not be true for all the existing countermeasures. For

instance, detection based countermeasures such as duplicate encryption [124] may fail

due to the persistent behavior of the fault injected (e.g PFA on AES). To remain effec-

tive, these mitigation methods would require to flush the cache between each encryption

leading thus to significant time overheads.

Error-Correction Code (ECC): The use of software or hardware ECC stands as an effi-

cient method to detect and correct some of the errors induced by FaultLine. By computing

a function which depends on the data stored (e.g Hamming Code), the ECC mechanism is

able to detect corrupted memory transfers. However, it was proven in [27] that ECC can

be defeated with the injection of precise faults on both the data and the computed ECC

function. Because our attack vector provide a fine control on the fault applied it could be

employed as Rowhammer to defeat this kind of memory protection.

Software-based Fault Injection on SoC External Memory Transfers 149

5.4 Conclusion on Delay-Line based Fault Injection

In this chapter, we evaluated the use of delay-lines-based components as a potential fault

injection mechanism suitable for SbHA. By leveraging the open access to delay-lines in

a Zynq processor, we were able to induce glitches in external memory accesses and more

significantly to corrupt data transfers, RSA signatures and even to retrieve keys from

cryptographic applications. Delay-line-based fault injection is unprecedented, it provides

new controls and parameters that can be used to finely shape the applied glitch. It thus

stands as a powerful novel alternative to the existing SbFIA mechanisms. Delay-lines

are implemented in a wide range of electronic devices from microcontrollers to complex

processors. Because malware exploitation of this threat could emerge in a near future,

delay-lines should now be considered as a potential threat and systematically protected

against malicious modifications.

5.4.1 Results Reminder

The experimental results described in this chapter were published in [51] with co-authors

Jean-Max Dutertre, Yannick Teglia and Philippe Loubet Moundi under the name "Fault-

Line: Software-based Fault Injection on Memory Transfers".

Responsible Disclosure: We responsibly disclosed our findings to Xilinx on March

4th, 2021 which acknowledged and agreed on the publication of these results. Please keep

in mind that FaultLine was performed on the Zynq 7000 processor for demonstration

purposes. The concept is generic and any devices that embed delay-lines for external

memory access management can be affected.

5.4.1.1 Main Contributions

The works conducted in this chapter led to:

• The discovery of a novel SbFIA attack vector based on delay-lines widely imple-

mented in modern SoC devices. In contrary to previous SbFIA attack vectors based

on power glitch injection, FaultLine uses delay-glitch injection and cannot be de-

tected by power glitch detectors.

• The implementation of traditional and novel fault injection techniques such as DFA

and PFA on complex SoC systems running rich OS.

5.4.1.2 Some Numbers

Here we lay out some numbers to remind delay-line-based glitching performances.

Attack Results:

• A DFA attack on AES can succeed in less than 100,000 injections in a baremetal

setup. This attack takes 2.4 minutes in practice.

150 Software-based Fault Injection on SoC External Memory Transfers

• A PFA attack on AES can succeed in less than 1,000 injections in a baremetal

setup. This attack takes 10 seconds in practice.

• A PFA attack on AES can succeed in less than 10,000 injections in a rich OS setup.

This attack takes 2 hours in practice.

• A Bellcore attack on RSA can succeed in less than 7,100 injections in a rich OS

setup. This attack takes 1,4 hours in practice.

5.4.2 SbHA Knowledge: Toward Large Scale SbHAs

Through the study of SbHAs, we aim at warning the community that even remote sys-

tems, that by nature were not supposed to be the target of hardware attacks, are now at

risk. Every modern processor is potentially vulnerable. While our contribution focused

on ARM devices, x86 exploits have already been studied and shown feasible in other

publications [85].

Even if SbHAs make remote hardware attacks possible, they don’t make them sim-

pler. Mounting a SbHA usually requires more dedication than conducting a classical soft-

ware attack. For this reason, it will probably be essentially targeting assets that cannot be

easily attacked from software in the first place. When considering the massive adoption

of smart-card-level security and HW-based TEE in recent SoC devices, this projection

makes sense.

The installation of the SbHA malware can come from various remote and local vec-

tors. On the remote side, an over-the-air installation is possible. In the technical doc-

umentation of the 2021 Pegasus spyware [55] it is mentioned that “A push message is

remotely and covertly sent to the mobile device. This message triggers the device to

download and install the malware agent on the device". The Pegasus spyware download

that has been infecting thousands of phones does not require any consent from the victim

and “cannot be prevented by the target". Other remote methods such as virus contained

in e-mail attachments1 or scripts hidden in malicious installation files can be adopted to

propagate the malware. On the local side, the malware can be physically injected within

the target devices before they are shipped to the consumers (man-in-the-middle attack).

Another possibility is the malware injection through a removable media such as an in-

fected USB flash drive [72] or a network card [34].

The experimentation conducted in FaultLine were launched from a remote computer

connected through SSH to a victim board. With an SSH communication channel opened,

we were able to load malicious scripts and test the attack feasibility. In practice, large

scale SbHA will be facilitated by the wide variety of existing methods that can lead to

the execution of a malicious code on a remote device. To increase attack scalability, the

malware scripts will need to scan the architecture under attack (OS in use, attack vector

available, register addresses, etc) and adjust their parameters to enable the exploit.

Through our works on SbHA, we participated in demonstrating that modern devices

1
https://en.wikipedia.org/wiki/ILOVEYOU

https://en.wikipedia.org/wiki/ILOVEYOU

Software-based Fault Injection on SoC External Memory Transfers 151

are highly susceptible to SbSCA and SbFIA attacks. This study led to the recognition of

the SbHA threat on both academic and industrial worlds. To prevent their proliferation

in the future, we believe that IC manufacturers and OS developers must rapidly allocate

additional resources on detecting flaws within the software-hardware cooperation. This

topic is discussed in the chapter 6.

Chapter 6. Conclusion and Perspectives

This thesis aimed at assessing emerging remote hardware attack tech-

niques and at forecasting the extent of the Software-based Hardware

Attack (SbHA) threat. Throughout this manuscript, we classified SbHA

families and pointed out their similarities and differences with tradi-

tional local hardware attacks. Moreover, we contributed in discover-

ing novel attack vectors that could be remotely controlled to conduct

Software-based Side-Channel Analysis (SbSCA) and Software-based

Fault Injection Attack (SbFIA) on connected devices. By building com-

plex SbHAs, we aimed at promoting their recognition. This acknowl-

edgment is essential to trigger the security community interest and pre-

pare the future of hardware defenses. Indeed, if nothing is done in a

near future to prevent attackers from accessing devices hardware re-

sources, SbHAs could become a major threat for cyber-security. Even

more detrimental, the multiplication of connected devices and their in-

creasing complexity will probably facilitate their proliferation. In this

chapter, we summarize the findings that emerged from our research on

SbHAs and discuss their impact for the present and the future of hard-

ware security.

Chapter Contents

6 Conclusion and Perspectives 153
6.1 Manuscript Summary . 154

6.2 Conclusion on SbHA . 155

6.3 Thesis Impact . 156

6.4 SbHA Perspectives . 157

153

154 Conclusion and Perspectives

6.1 Manuscript Summary

This thesis evaluated SbHA as a new security threat for connected systems. In this sec-

tion, we summarize the contributions of this manuscript.

In Chapter 2, we studied and defined new remote hardware threats. We classified

these attacks in three distinct groups: TEMPEST attacks, Microarchitectural attacks and

SbHA and highlighted major differences between those. As this thesis focused on SbHA,

we provided an up-to-date classification containing many conference proceedings, jour-

nal articles and blog posts that can be attributed to this attack family. Moreover, we added

SbHA to the traditional hardware attack classification (non-invasive, semi-invasive, inva-

sive attacks) since it uses the same attack mechanisms but does not fit in any existing

group. Finally, we demonstrated how a SbHA differs from a local hardware attack as it

does not require a physical access to the target device. This major difference completely

changes the attack paradigm since an SbHA can be launched remotely and simultane-

ously on thousands of connected devices without the victims knowing they are under

attack. Therefore, a SbHA could last for days, months or years until the adversary ob-

tains enough information to retrieve the victim’s secrets. Moreover, the systems that were

thought to be immune to hardware attacks (because physically inaccessible) are now po-

tentially at risk with the advent of SbHAs.

In Chapter 3, we conducted our first SbHA experimentations on Field-Programmable

Gate Array (FPGA). By leveraging the reconfigurable logic, we were able to deploy

delay-based sensors suitable for collecting on-chip voltage. The emergence of FPGA in

heterogeneous devices and their adoption in multi-user cloud systems introduced vari-

ous threat models where a sensor located in the fabric aims at eavesdropping the activity

of other users or assets. We deployed these attack scenarios from an FPGA block to

another (FPGA-to-FPGA attack) and also from an FPGA block to a Computer Process-

ing Unit (CPU) located on the same silicon die (FPGA-to-CPU attack). These research

works eventually led to the creation of a high-speed FPGA-based delay-sensor dedicated

to power Side-Channel Analysis (SCA) applications, to the first statistical SCA attacks

conducted from an FPGA to a CPU and to the conception of an open-source framework

aiming at facilitating FPGA-based SCA analysis.

In Chapter 4, we leveraged the knowledge drawn from the previous FPGA-based

works to mount SbSCA attacks on System-on-Chip (SoC) devices. We discovered that

delay-line components widely implemented in modern device memory controllers were

suitable for voltage sensing. Based on these elements, we conducted the first Application

Processor (AP)-vs-AP and AP-vs-MCU SbSCA attacks ever done on complex devices

and called the exploit SideLine. Additionally to these SCA results obtained with these

unconventional sensors, this work also described a detailed method for identifying SbHA

vectors and conducting the attacks from a software program running within the target.

Finally, Chapter 5 introduced FaultLine a new SbFIA vector that affects a wide range

of SoC devices using external memories. This attack medium also built on delay-line

Conclusion and Perspectives 155

has the particularity to target external memory transfers. Based on a malicious program,

the delay-line can be programmed to inject glitches on external memory read and write

operations. Using this unconventional attack vector we were able to mount advanced

fault injection attacks such as DFA and PFA and break the isolation between adversary

and victim applications running on rich Operating System (OS) environments.

6.2 Conclusion on SbHA

In the introduction of this manuscript we identified three major thesis objectives: the

study of SbHA feasibility, the identification of new SbHA vectors and the exploration of

new SbHA scenarios. These objectives aimed at answering our main research question:

should we consider SbHA as a serious threat for Integrated Circuit (IC) security?

The research works described throughout this manuscript attempted to fulfill these

three objectives. We evaluated the feasibility of SbHA on various devices (CPU, MCU,

FPGA), we discovered new SbFIA and SbSCA vectors through the identification of

delay-lines, and finally, we used these vectors to conduct new SbHA scenarios as de-

scribed in the previous section. Through these experiments we partly answered the re-

search question by demonstrating that SbFIA and SbSCA attacks were indeed capable of

extracting secrets from a device but also relevant in a wide variety of connected systems.

Additionally to the obtained experimental results, we complemented our research

work with various descriptions of the SbHA properties that were discovered throughout

the experiments. These observations and attack techniques were described at the end

of each experimentation chapter. In the reminder list below, we recall the main SbHA

properties discussed in this manuscript.

• SbHA Concept (Chapter 2): A SbHA attempts to inject and run a malicious pro-

gram within a target device to access software-exposed hardware mechanisms (sen-

sors, actuators) and conduct physical attacks such as Fault Injection Attack (FIA)

or SCA.

• SbHA versus Local Attacks (Chapter 2): A SbHA differs from an usual hardware

attack since it does not involve any equipment beyond the target itself. In that way,

it enables remote hardware attacks on connected devices.

• SbHA Origins (Chapter 2): SbHAs are facilitated by the increasing complexity

and connectivity of modern ICs. Various SoC hardware components are left acces-

sible from software and are now efficient and flexible enough to be used for SbSCA

and SbFIA attacks. Moreover, the massive adoption of multi-user systems, multi-

security domains and integrated security features acts as a catalyst for the SbHA

proliferation.

• SbHA Vectors (Chapter 2, 3, 4, 5): SbHAs leverage hardware components imple-

mented in complex ICs that can alter the behavior of an asset (SbFIA) or eavesdrop

156 Conclusion and Perspectives

its activity (SbSCA). Various SoC components can be maliciously used to in-

ject errors (regulators, delay-lines, FPGA-based viruses) as well as collecting side-

channels (voltage sensors, ADCs, delay-lines, FPGA-based sensors). SbHA vector

identification is conducted through the analysis of user exposed OS commands, the

analysis of target’s hardware documentation or the reversing of OS device drivers.

• SbHA Targets and Privileges (Chapter 2, 5): Depending on the adversary mal-

ware privilege level, different targets may be evaluated. An unprivileged adversary

may try to bypass the logical isolation between processes or perform OS privilege

escalation. However, he may be limited to the SbHA vectors that are accessible

with unprivileged access rights (e.g. Rowhammer). A privileged adversary may

access any SbHA vector (ADC, delay-line, regulators) but will be limited to the

evaluation of higher privilege levels targets. That is, integrated security features

such as hypervisors, hardware-based Trusted Execution Environments (TEEs) or

secure elements.

• SbHA Feasibility (Chapter 3, 4, 5): All the attack methodologies and techniques

that enable SbHA exploits such as vector access, SCA samples alignment, data stor-

age, data export, traces and processes synchronization are described throughout the

chapters of this thesis. By analyzing and identifying the adversary tools enabling

SbHAs, we aimed at facilitating the implementation of appropriate software and

hardware countermeasures.

Finally, according to our experimental results and to the other SbHA works published

recently, it appears that any door left open allowing a malware to gain access to hardware

resources (unprivileged or privileged) may lead to a complete disclosure of a target’s

content. Therefore, there is an urgent need to build on the lessons learned from this thesis

and employ countermeasures to effectively mitigate SbHAs.

6.3 Thesis Impact

This thesis conducted under a partnership between academic and industrial actors pro-

duced significant results on both sides.

On the academic side, the novelty of the experimentation conducted led to the pub-

lication of several scientific communications. A total of four conference papers; two on

FPGA-based SCA [50, 54], one on delay-line-based SbSCA (SideLine) [53] and one on

delay-line-based SbFIA (FaultLine) [51] were published in hardware security and FPGA

conferences around the world (CARDIS 2019, ReConFig 2019, COSADE 2021, HOST

2021). These works were also presented in various workshops throughout France and

Europe such as the 2019 Asset meeting in Munich, the 2020 iMath seminar in Toulon

and the 2021 DGA INRIA seminar in Rennes.

On the industrial side, our discoveries led to the application of two patents (still in

review at this point). Moreover, our works on SbHA were repeatedly presented in internal

Conclusion and Perspectives 157

workshops and led to the collaboration with various Thales business lines to evaluate the

remote hardware attack threat on several products. Finally, our research works were pre-

sented at the JIL Hardware-related Attacks Subgroup (JHAS), a conglomerate of security

evaluation laboratories, smart-card/IC manufacturers and national certification authori-

ties. JHAS actors recognized the SbHA threat and this communication contributed to

the adoption of SbHA in Common Criteria evaluation methodology for smart cards and

similar devices. By consequence it will be automatically included in the new catalog of

attacks that will be considered for evaluations under the future European Union Certifi-

cation scheme.

6.4 SbHA Perspectives

In the recent years, the influx of connected devices has been modifying every aspects of

our lives. Even if this revolution improves our standards of livings, the interconnection

between objects should not question the data privacy. While cyber-attacks have often

been taking advantage of software vulnerabilities, we’ve seen in this thesis that software-

accessible hardware flaws stand as major threats for today’s connected systems.

Various perspectives could arise from this thesis work. The FPGA evaluation con-

ducted in 3 demonstrated the eventuality of SbSCA attacks on multi-tenant FPGA plat-

forms. Additionally to cryptographic secrets retrieval, these attacks could be applied on

other targets such as machine learning accelerators and used to clone neural models. The

SideLine and FaultLine vulnerabilities presented in chapter 4 and 5 could be evaluated on

other platforms such as Intel or RISC V devices. This would pave the way to new attack

scenarios targeting security features such as RISC V MultiZone1 and Intel SGX. More-

over, while our experimentations focused on delay-lines blocks and delay-locked-loops,

other integrated components such as phase-locked-loops, voltage sensors and temperature

sensors could be evaluated. Finally, we believe that the current SbHA vectors discovered

are only the tip of the iceberg. With the integration of new hardware resources such as

neural units, analog logic and reconfigurable logic in complex SoCs, various sensing and

faulting mechanisms could be discovered and maliciously employed in a near future.

Remote hardware attack is a wide topic that covers timing, micro-architectural, TEM-

PEST and software-based families. In this thesis, we narrowed our research to the SbHA

field that is the most similar to local hardware attacks conducted in laboratories. At this

point, this recent attack family initiated by Rowhammer in 2014 has certainly not demon-

strated all its potential. While our researches described its ability to bypass logical isola-

tion in complex devices and using novel attack mediums; multiple unexplored scenarios

remain open. We believe that integrated security components such as integrated-SIM,

cryptographic accelerators and secure elements in general will be the next SbHA targets.

For this reason, we urge secure IC manufacturers to strengthen their products against

SbHA since successful exploits could affect millions of devices and provoke major secu-

1https://hex-five.com/multizone-security-sdk/

158 Conclusion and Perspectives

rity crises.

Thankfully, the fast JHAS SbHA recognition and the starting of threat assessment

by security evaluation laboratories could prevent the worst from happening. Moreover,

the works conducted during this thesis demonstrated that SbHA could be mitigated in

various ways. For instance, we observed that traditional SCA and FIA countermeasures

already implemented in smart-cards and secure ICs remained efficient against SbHAs.

Their implementation should be generalized to any connected device potentially affected

by SbHAs (e.g multi-user systems, devices with different security privileges). Moreover,

each contribution done on SbHAs came with countermeasure guidelines that need to be

implemented by IC manufacturers and OS developers to prevent attackers from accessing

the hardware vectors.

The SbHA study is a growing topic that will persist over time. As it requires both

skills in programming and hardware hacking, it will create a stronger junction between

the hardware and software security communities. And this is for the best. Indeed, the

historic lack of communication between these two entities participated in the implemen-

tation of security oblivious software-accessible hardware mechanisms which are partly

responsible for the emergence of SbHAs. From now on, software and hardware design-

ers will need to work hand in hand to effectively and persistently mitigate the SbHA

threat. Successful or not, future will tell.

Bibliography

[1] Bilal I Abdulrazzaq, Izhal Abdul Halin, Shoji Kawahito, et al. “A review on high-

resolution CMOS delay lines: towards sub-picosecond jitter performance”. In:

SpringerPlus 5.1 (Dec. 2016), p. 434. DOI: 10.1186/s40064-016-2090-z.

[2] Michel Agoyan, Jean-Max Dutertre, David Naccache, et al. “When Clocks Fail:

On Critical Paths and Clock Faults”. In: Lecture Notes in Computer Science (in-

cluding subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics). Vol. 6035 LNCS. 2010, pp. 182–193. DOI: 10.1007/978-3-

642-12510-2_13.

[3] Md Mahbub Alam, Shahin Tajik, Fatemeh Ganji, et al. “RAM-Jam: Remote Tem-

perature and Voltage Fault Attack on FPGAs using Memory Collisions”. In: 2019

Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC). IEEE,

Aug. 2019, pp. 48–55. DOI: 10.1109/FDTC.2019.00015.

[4] Altera Corporation. “What is an SoC FPGA?” In: Altera Support Resources

(2014), pp. 1–4. URL: https : / / www . intel . com / content / dam / www /

programmable/us/en/pdfs/literature/ab/ab1%7B%5C_%7Dsoc%7B%5C_

%7Dfpga.pdf.

[5] AMD. AMD SEV-SNP: Strengthening VM Isolation with Integrity Protection and

More. Tech. rep. 2020, pp. 1–20. URL: https://www.amd.com/system/files/

TechDocs / SEV - SNP - strengthening - vm - isolation - with - integrity -

protection-and-more.pdf.

[6] Ross Anderson and Markus Kuhn. “Low cost attacks on tamper resistant de-

vices”. In: Lecture Notes in Computer Science (including subseries Lecture Notes

in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 1361. 1998,

pp. 125–136. DOI: 10.1007/BFb0028165.

[7] Limited ARM. ARM PrimeCell MultiPort Memory Controller (PL176) Techni-

cal Reference Manual. Tech. rep. 2003. URL: https://developer.arm.com/

documentation/ddi0269/a/dynamic-memory-controller.

[8] Limited ARM. Building a Secure System using TrustZone Technology. Tech. rep.

2008. URL: https://developer.arm.com/documentation/genc009492/c.

[9] Limited ARM. TrustZone technology for Armv8-M Architecture. Tech. rep. 2016,

pp. 1–28. URL: https://developer.arm.com/documentation/100690/0201/

Preface/About-this-book.

159

https://doi.org/10.1186/s40064-016-2090-z
https://doi.org/10.1007/978-3-642-12510-2_13
https://doi.org/10.1007/978-3-642-12510-2_13
https://doi.org/10.1109/FDTC.2019.00015
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ab/ab1%7B%5C_%7Dsoc%7B%5C_%7Dfpga.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ab/ab1%7B%5C_%7Dsoc%7B%5C_%7Dfpga.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ab/ab1%7B%5C_%7Dsoc%7B%5C_%7Dfpga.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://doi.org/10.1007/BFb0028165
https://developer.arm.com/documentation/ddi0269/a/dynamic-memory-controller
https://developer.arm.com/documentation/ddi0269/a/dynamic-memory-controller
https://developer.arm.com/documentation/genc009492/c
https://developer.arm.com/documentation/100690/0201/Preface/About-this-book
https://developer.arm.com/documentation/100690/0201/Preface/About-this-book

[10] Michael Backes, Markus Dürmuth, Sebastian Gerling, et al. “Acoustic side-

channel attacks on printers”. In: Proceedings of the 19th USENIX Security Sym-

posium. 2010, pp. 307–322. DOI: 10.5555/1929820.1929847.

[11] Aurélie Bauer, Eliane Jaulmes, Emmanuel Prouff, and Justine Wild. “Horizon-

tal and Vertical Side-Channel Attacks against Secure RSA Implementations”. In:

Lecture Notes in Computer Science (including subseries Lecture Notes in Artifi-

cial Intelligence and Lecture Notes in Bioinformatics). Vol. 7779 LNCS. 2013,

pp. 1–17. DOI: 10.1007/978-3-642-36095-4_1.

[12] Erick Bauman and Zhiqiang Lin. “A Case for Protecting Computer Games With

SGX”. In: Proceedings of the 1st Workshop on System Software for Trusted Exe-

cution. New York, NY, USA: ACM, Dec. 2016, pp. 1–6. DOI: 10.1145/3007788.

3007792.

[13] Eli Biham and Adi Shamir. “Differential fault analysis of secret key cryptosys-

tems”. In: Advances in Cryptology — CRYPTO ’97. Ed. by Burton S Kaliski.

Berlin, Heidelberg: Springer Berlin Heidelberg, 1997, pp. 513–525. DOI: 10.

1007/BFb0052259.

[14] A Bogdanov, L R Knudsen, G Leander, et al. “PRESENT: An Ultra-Lightweight

Block Cipher”. In: Cryptographic Hardware and Embedded Systems - CHES

2007. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 450–466. DOI:

10.1007/978-3-540-74735-2_31.

[15] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. “On the Importance of

Checking Cryptographic Protocols for Faults”. In: Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics). Vol. 1233. 1997, pp. 37–51. DOI: 10.1007/3-540-

69053-0_4.

[16] Andrew Boutros, Mathew Hall, Nicolas Papernot, and Vaughn Betz. “Neighbors

From Hell: Voltage Attacks Against Deep Learning Accelerators on Multi-Tenant

FPGAs”. In: 2020 International Conference on Field-Programmable Technology

(ICFPT) abs/2012.0 (Dec. 2020), pp. 103–111. DOI: 10.1109/ICFPT51103.

2020.00023.

[17] Ferdinand Brasser, Lucas Davi, David Gens, et al. “Can’t Touch This: Software-

only Mitigation against Rowhammer Attacks targeting Kernel Memory”. In:

Proceedings of the 26th USENIX Conference on Security Symposium. Vancou-

ver, BC: USENIX Association, 2017, pp. 117–130. DOI: 10.5555/3241189.

3241200.

[18] Eric Brier, Christophe Clavier, and Francis Olivier. “Correlation Power Analysis

with a Leakage Model”. In: Cryptographic Hardware and Embedded Systems.

2004, pp. 16–29. DOI: 10.1007/978-3-540-28632-5_2.

160

https://doi.org/10.5555/1929820.1929847
https://doi.org/10.1007/978-3-642-36095-4_1
https://doi.org/10.1145/3007788.3007792
https://doi.org/10.1145/3007788.3007792
https://doi.org/10.1007/BFb0052259
https://doi.org/10.1007/BFb0052259
https://doi.org/10.1007/978-3-540-74735-2_31
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1109/ICFPT51103.2020.00023
https://doi.org/10.1109/ICFPT51103.2020.00023
https://doi.org/10.5555/3241189.3241200
https://doi.org/10.5555/3241189.3241200
https://doi.org/10.1007/978-3-540-28632-5_2

[19] David Brumley and Dan Boneh. “Remote timing attacks are practical”. In: Com-

puter Networks 48.5 (Aug. 2005), pp. 701–716. DOI: 10.1016/j.comnet.2005.

01.010.

[20] Sebanjila Kevin Bukasa, Ronan Lashermes, Hélène Le Bouder, et al. “How Trust-

Zone Could Be Bypassed: Side-Channel Attacks on a Modern System-on-Chip”.

In: Lecture Notes in Computer Science. 2018, pp. 93–109. DOI: 10.1007/978-

3-319-93524-9_6.

[21] Giovanni Camurati, Aurélien Francillon, and François-Xavier Standaert. “Un-

derstanding Screaming Channels: From a Detailed Analysis to Improved At-

tacks”. In: IACR Transactions on Cryptographic Hardware and Embedded Sys-

tems 2020.3 (June 2020), pp. 358–401. DOI: 10.46586/tches.v2020.i3.358-

401.

[22] Giovanni Camurati, Sebastian Poeplau, Marius Muench, et al. “Screaming Chan-

nels”. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and

Communications Security. CCS ’18. New York, NY, USA: ACM, Oct. 2018,

pp. 163–177. DOI: 10.1145/3243734.3243802.

[23] Claudio Canella, Daniel Genkin, Lukas Giner, et al. “Fallout”. In: Proceedings of

the 2019 ACM SIGSAC Conference on Computer and Communications Security.

New York, NY, USA: ACM, Nov. 2019, pp. 769–784. DOI: 10.1145/3319535.

3363219.

[24] Fei Chen, Yi Shan, Yu Zhang, et al. “Enabling FPGAs in the cloud”. In: Proceed-

ings of the 11th ACM Conference on Computing Frontiers. New York, NY, USA:

ACM, May 2014, pp. 1–10. DOI: 10.1145/2597917.2597929.

[25] Ching-che Chung, Pao-lung Chen, and Chen-yi Lee. “An All-Digital Delay-

Locked Loop for DDR SDRAM Controller Applications”. In: 2006 International

Symposium on VLSI Design, Automation and Test. IEEE, Apr. 2006, pp. 1–4. DOI:

10.1109/VDAT.2006.258159.

[26] Christophe Clavier, Benoit Feix, Georges Gagnerot, et al. “Horizontal Correlation

Analysis on Exponentiation”. In: Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-

matics). Vol. 6476 LNCS. 2010, pp. 46–61. DOI: 10.1007/978-3-642-17650-

0_5.

[27] Lucian Cojocar, Kaveh Razavi, Cristiano Giuffrida, and Herbert Bos. “Exploiting

Correcting Codes: On the Effectiveness of ECC Memory Against Rowhammer

Attacks”. In: 2019 IEEE Symposium on Security and Privacy (SP). IEEE, May

2019, pp. 55–71. DOI: 10.1109/SP.2019.00089.

161

https://doi.org/10.1016/j.comnet.2005.01.010
https://doi.org/10.1016/j.comnet.2005.01.010
https://doi.org/10.1007/978-3-319-93524-9_6
https://doi.org/10.1007/978-3-319-93524-9_6
https://doi.org/10.46586/tches.v2020.i3.358-401
https://doi.org/10.46586/tches.v2020.i3.358-401
https://doi.org/10.1145/3243734.3243802
https://doi.org/10.1145/3319535.3363219
https://doi.org/10.1145/3319535.3363219
https://doi.org/10.1145/2597917.2597929
https://doi.org/10.1109/VDAT.2006.258159
https://doi.org/10.1007/978-3-642-17650-0_5
https://doi.org/10.1007/978-3-642-17650-0_5
https://doi.org/10.1109/SP.2019.00089

[28] Jean-Sébastien Coron. “Resistance Against Differential Power Analysis For El-

liptic Curve Cryptosystems”. In: Cryptographic Hardware and Embedded Sys-

tems. Ed. by Çetin K Koç and Christof Paar. Berlin, Heidelberg: Springer Berlin

Heidelberg, 1999, pp. 292–302.

[29] Nicolas T. Courtois. Hacking Pay-TV. 2008. URL: http : / / www .

nicolascourtois.com/papers/sc/PayTv.pdf.

[30] Joan Daemen and Vincent Rijmen. “The Block Cipher Rijndael”. In: Smart Card

Research and Applications. 2000, pp. 277–284. DOI: 10.1007/10721064_26.

[31] Shidhartha Das, Paul Whatmough, and David Bull. “Modeling and characteriza-

tion of the system-level Power Delivery Network for a dual-core ARM Cortex-

A57 cluster in 28nm CMOS”. In: 2015 IEEE/ACM International Symposium on

Low Power Electronics and Design (ISLPED). IEEE, July 2015, pp. 146–151.

DOI: 10.1109/ISLPED.2015.7273505.

[32] Amine Dehbaoui, Jean-Max Dutertre, Bruno Robisson, and Assia Tria. “Electro-

magnetic Transient Faults Injection on a Hardware and a Software Implementa-

tions of AES”. In: 2012 Workshop on Fault Diagnosis and Tolerance in Cryptog-

raphy. IEEE, Sept. 2012, pp. 7–15. DOI: 10.1109/FDTC.2012.15.

[33] Amine Dehbaoui, Jean-Max Dutertre, Bruno Robisson, et al. “Injection of tran-

sient faults using electromagnetic pulses Practical results on a cryptographic sys-

tem”. In: Cryptology ePrint Archive (2012). URL: https://hal.archives-

ouvertes.fr/emse-00742850/en.

[34] Loïc Duflot, Yves-Alexis Perez, and Benjamin Morin. “What If You Can’t Trust

Your Network Card?” In: Lecture Notes in Computer Science (including sub-

series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformat-

ics). Vol. 6961 LNCS. 2011, pp. 378–397. DOI: 10.1007/978-3-642-23644-

0_20.

[35] Jean-Max Dutertre, Bruno Robisson, Assia Tria, and Loic Zussa. “Investigation

of timing constraints violation as a fault injection means”. In: Design of Circuits

and Integrated Systems (2012). URL: https://hal.archives-ouvertes.fr/

emse-00742652.

[36] Wim van Eck. “Electromagnetic radiation from video display units: An eaves-

dropping risk?” In: Computers & Security 4.4 (Dec. 1985), pp. 269–286. DOI:

10.1016/0167-4048(85)90046-X.

[37] Maik Ender, Amir Moradi, and Christof Paar. “The unpatchable silicon: A full

break of the bitstream encryption of Xilinx 7-series FPGAS”. In: Proceedings

of the 29th USENIX Security Symposium (2020), pp. 1803–1819. URL: https:

//www.usenix.org/system/files/sec20-ender.pdf.

162

http://www.nicolascourtois.com/papers/sc/PayTv.pdf
http://www.nicolascourtois.com/papers/sc/PayTv.pdf
https://doi.org/10.1007/10721064_26
https://doi.org/10.1109/ISLPED.2015.7273505
https://doi.org/10.1109/FDTC.2012.15
https://hal.archives-ouvertes.fr/emse-00742850/en
https://hal.archives-ouvertes.fr/emse-00742850/en
https://doi.org/10.1007/978-3-642-23644-0_20
https://doi.org/10.1007/978-3-642-23644-0_20
https://hal.archives-ouvertes.fr/emse-00742652
https://hal.archives-ouvertes.fr/emse-00742652
https://doi.org/10.1016/0167-4048(85)90046-X
https://www.usenix.org/system/files/sec20-ender.pdf
https://www.usenix.org/system/files/sec20-ender.pdf

[38] Daisuke Fujimoto, Noriyuki Miura, Makoto Nagata, et al. “On-Chip Power

Noise Measurements of Cryptographic VLSI Circuits and Interpretation for Side-

Channel Analysis”. In: International Symposium on Electromagnetic Compati-

bility (EMC Europe). Brugge, Belgium: IEEE, 2013, pp. 405–410. URL: https:

//ieeexplore.ieee.org/document/6653337.

[39] Toshinori Fukunaga and Junko Takahashi. “Practical Fault Attack on a Crypto-

graphic LSI with ISO/IEC 18033-3 Block Ciphers”. In: 2009 Workshop on Fault

Diagnosis and Tolerance in Cryptography (FDTC). IEEE, Sept. 2009, pp. 84–92.

DOI: 10.1109/FDTC.2009.34.

[40] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. “Electromagnetic

Analysis: Concrete Results”. In: Cryptographic Hardware and Embedded Sys-

tems. 2001, pp. 251–261. DOI: 10.1007/3-540-44709-1_21.

[41] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. “A survey of microar-

chitectural timing attacks and countermeasures on contemporary hardware”. In:

Journal of Cryptographic Engineering 8.1 (Apr. 2018), pp. 1–27. DOI: 10.1007/

s13389-016-0141-6.

[42] Daniel Genkin, Adi Shamir, and Eran Tromer. “RSA Key Extraction via Low-

Bandwidth Acoustic Cryptanalysis”. In: International Journal of Knowledge-

Based Intelligent Engineering Systems vol. Vol. 3, no.3, J. 2014, pp. 444–461.

DOI: 10.1007/978-3-662-44371-2_25.

[43] Ilias Giechaskiel, Kasper B. Rasmussen, and Ken Eguro. “Leaky Wires”. In: Asia

Conference on Computer and Communications Security. 2018. DOI: 10.1145/

3196494.3196518.

[44] Ilias Giechaskiel, Kasper Bonne Rasmussen, and Jakub Szefer. “C3APSULe:

Cross-FPGA Covert-Channel Attacks through Power Supply Unit Leakage”. In:

2020 IEEE Symposium on Security and Privacy (SP) (May 2020), pp. 1728–1741.

DOI: 10.1109/SP40000.2020.00070.

[45] Ognjen Glamocanin, Louis Coulon, Francesco Regazzoni, and Mirjana Sto-

jilovic. “Are Cloud FPGAs Really Vulnerable to Power Analysis Attacks?” In:

2020 Design, Automation & Test in Europe Conference & Exhibition (DATE).

IEEE, Mar. 2020, pp. 1007–1010. DOI: 10.23919/DATE48585.2020.9116481.

[46] Dennis R. E. Gnad, Jonas Krautter, and Mehdi B. Tahoori. “Leaky Noise : New

Side-Channel Attack Vectors in Mixed-Signal IoT Devices”. In: IACR Trans-

actions on Cryptographic Hardware and Embedded Systems (2019). DOI: 10.

13154/tches.v2019.i3.305-339.

[47] Dennis R. E. Gnad, Fabian Oboril, Saman Kiamehr, and Mehdi B. Tahoori. “An

Experimental Evaluation and Analysis of Transient Voltage Fluctuations in FP-

GAs”. In: IEEE Transactions on Very Large Scale Integration (VLSI) Systems

26.10 (Oct. 2018), pp. 1817–1830. DOI: 10.1109/TVLSI.2018.2848460.

163

https://ieeexplore.ieee.org/document/6653337
https://ieeexplore.ieee.org/document/6653337
https://doi.org/10.1109/FDTC.2009.34
https://doi.org/10.1007/3-540-44709-1_21
https://doi.org/10.1007/s13389-016-0141-6
https://doi.org/10.1007/s13389-016-0141-6
https://doi.org/10.1007/978-3-662-44371-2_25
https://doi.org/10.1145/3196494.3196518
https://doi.org/10.1145/3196494.3196518
https://doi.org/10.1109/SP40000.2020.00070
https://doi.org/10.23919/DATE48585.2020.9116481
https://doi.org/10.13154/tches.v2019.i3.305-339
https://doi.org/10.13154/tches.v2019.i3.305-339
https://doi.org/10.1109/TVLSI.2018.2848460

[48] Dennis R. E. Gnad, Fabian Oboril, and Mehdi B. Tahoori. “Voltage drop-based

fault attacks on FPGAs using valid bitstreams”. In: 2017 27th International Con-

ference on Field Programmable Logic and Applications (FPL). IEEE, Sept. 2017,

pp. 1–7. DOI: 10.23919/FPL.2017.8056840.

[49] Dennis R. E. Gnad, Sascha Rapp, Jonas Krautter, and Mehdi B. Tahoori. “Check-

ing for Electrical Level Security Threats in Bitstreams for Multi-tenant FPGAs”.

In: 2018 International Conference on Field-Programmable Technology (FPT).

IEEE, Dec. 2018, pp. 286–289. DOI: 10.1109/FPT.2018.00055.

[50] Joseph Gravellier, Jean-max Dutertre, Yannick Teglia, and Philippe Loubet-

Moundi. “High-Speed Ring Oscillator based Sensors for Remote Side-Channel

Attacks on FPGAs”. In: 2019 International Conference on ReConFigurable Com-

puting and FPGAs (ReConFig). IEEE, Dec. 2019, pp. 1–8. DOI: 10 . 1109 /

ReConFig48160.2019.8994789.

[51] Joseph Gravellier, Jean-Max Dutertre, Yannick Teglia, and Philippe Loubet

Moundi. “FaultLine : Software-based Fault Injection on Memory Transfers”. In:

2021 IEEE International Symposium on Hardware Oriented Security and Trust

(HOST). 2021.

[52] Joseph Gravellier, Jean-Max Dutertre, Yannick Teglia, and Philippe Loubet

Moundi. “SCAbox : A Framework for Facilitating FPGA-based Side-Channel

Analysis”. In: (2021). URL: https://emse-sas-lab.github.io/SCAbox/.

[53] Joseph Gravellier, Jean-Max Dutertre, Yannick Teglia, and Philippe Loubet

Moundi. “SideLine: How Delay-Lines (May) Leak Secrets from your SoC”. In:

Constructive Side-Channel Analysis and Secure Design. 2021. URL: http://

arxiv.org/abs/2009.07773.

[54] Joseph Gravellier, Jean-max Dutertre, Yannick Teglia, et al. “Remote Side-

Channel Attacks on Heterogeneous SoC”. In: 18th Smart Card Research and

Advanced Application Conference. 2020, pp. 109–125. DOI: 10.1007/978-3-

030-42068-0_7.

[55] NSO Group. Pegasus – Product Description. Tech. rep. URL: https : / / s3 .

documentcloud.org/documents/4599753/NSO-Pegasus.pdf.

[56] Daniel Gruss, Moritz Lipp, Michael Schwarz, et al. “Another Flip in the Wall

of Rowhammer Defenses”. In: 2018 IEEE Symposium on Security and Privacy

(SP). IEEE, May 2018, pp. 245–261. DOI: 10.1109/SP.2018.00031.

[57] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. “Rowhammer.js: A Re-

mote Software-Induced Fault Attack in JavaScript”. In: DIMVA 2016, 13th Con-

ference on Detection of Intrusions and Malware & Vulnerability Assessment.

2016, pp. 300–321. DOI: 10.1007/978-3-319-40667-1_15.

164

https://doi.org/10.23919/FPL.2017.8056840
https://doi.org/10.1109/FPT.2018.00055
https://doi.org/10.1109/ReConFig48160.2019.8994789
https://doi.org/10.1109/ReConFig48160.2019.8994789
https://emse-sas-lab.github.io/SCAbox/
http://arxiv.org/abs/2009.07773
http://arxiv.org/abs/2009.07773
https://doi.org/10.1007/978-3-030-42068-0_7
https://doi.org/10.1007/978-3-030-42068-0_7
https://s3.documentcloud.org/documents/4599753/NSO-Pegasus.pdf
https://s3.documentcloud.org/documents/4599753/NSO-Pegasus.pdf
https://doi.org/10.1109/SP.2018.00031
https://doi.org/10.1007/978-3-319-40667-1_15

[58] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard.

“Flush+Flush: A Fast and Stealthy Cache Attack”. In: Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics). Vol. 9721. 2016, pp. 279–299. DOI: 10.1007/978-3-

319-40667-1_14.

[59] Meeta S. Gupta, Jarod L. Oatley, Russ Joseph, et al. “Understanding Voltage Vari-

ations in Chip Multiprocessors using a Distributed Power-Delivery Network”. In:

2007 Design, Automation & Test in Europe Conference & Exhibition. IEEE, Apr.

2007, pp. 1–6. DOI: 10.1109/DATE.2007.364663.

[60] Mordechai Guri, Assaf Kachlon, Ofer Hasson, et al. “GSMem : Data Exfiltra-

tion from Air-Gapped Computers over GSM Frequencies”. In: Proceedings of the

24th USENIX Security Symposium (2015), pp. 849–864. DOI: 10.5555/2831143.

2831197.

[61] Mordechai Guri, Yosef Solewicz, Andrey Daidakulov, and Yuval Elovici. “Fans-

mitter: Acoustic Data Exfiltration from (Speakerless) Air-Gapped Computers”.

In: arXiv (2016). URL: https://arxiv.org/abs/1606.05915.

[62] Mordechai Guri, Boris Zadov, and Yuval Elovici. “LED-it-GO: Leaking (A Lot

of) Data from Air-Gapped Computers via the (Small) Hard Drive LED”. In:

Lecture Notes in Computer Science (including subseries Lecture Notes in Arti-

ficial Intelligence and Lecture Notes in Bioinformatics). Vol. 10327 LNCS. 2017,

pp. 161–184. DOI: 10.1007/978-3-319-60876-1_8.

[63] Helena Handschuh, Pascal Paillier, and Jacques Stern. “Probing Attacks On

Tamper-Resistant Devices”. In: Cryptographic Hardware and Embedded Systems

- CHES 1999. Vol. 1717. Lecture Notes in Computer Science. Springer, 1999,

pp. 303–315. DOI: 10.1007/3-540-48059-5_26.

[64] Michael Hutter and Jörn-Marc Schmidt. “The Temperature Side Channel and

Heating Fault Attacks”. In: Lecture Notes in Computer Science (including sub-

series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformat-

ics). Vol. 8419 LNCS. 2014, pp. 219–235. DOI: 10.1007/978-3-319-08302-

5_15.

[65] Diligent Inc. Zybo FPGA Board Reference Manual. 2016. URL: https : / /

reference.digilentinc.com/%7B%5C_%7Dmedia/zybo:zybo%7B%5C_%7Drm.

pdf.

[66] Mehmet Sinan İnci, Berk Gulmezoglu, Gorka Irazoqui, et al. “Cache Attacks

Enable Bulk Key Recovery on the Cloud”. In: Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics). Vol. 9813 LNCS. 2016, pp. 368–388. DOI: 10.1007/978-3-

662-53140-2_18.

165

https://doi.org/10.1007/978-3-319-40667-1_14
https://doi.org/10.1007/978-3-319-40667-1_14
https://doi.org/10.1109/DATE.2007.364663
https://doi.org/10.5555/2831143.2831197
https://doi.org/10.5555/2831143.2831197
https://arxiv.org/abs/1606.05915
https://doi.org/10.1007/978-3-319-60876-1_8
https://doi.org/10.1007/3-540-48059-5_26
https://doi.org/10.1007/978-3-319-08302-5_15
https://doi.org/10.1007/978-3-319-08302-5_15
https://reference.digilentinc.com/%7B%5C_%7Dmedia/zybo:zybo%7B%5C_%7Drm.pdf
https://reference.digilentinc.com/%7B%5C_%7Dmedia/zybo:zybo%7B%5C_%7Drm.pdf
https://reference.digilentinc.com/%7B%5C_%7Dmedia/zybo:zybo%7B%5C_%7Drm.pdf
https://doi.org/10.1007/978-3-662-53140-2_18
https://doi.org/10.1007/978-3-662-53140-2_18

[67] Intel. Software Guard Extensions Programming Reference. Tech. rep. 2014,

p. 156. URL: https://software.intel.com/sites/default/files/managed/

48/88/329298-002.pdf.

[68] MS-ISAC. Ransomware Guide. Tech. rep. September. 2020, pp. 1–16. URL:

https://www.cisa.gov/sites/default/files/publications/CISA%7B%

5C_%7DMS-ISAC%7B%5C_%7DRansomware%20Guide%7B%5C_%7DS508C.pdf.

[69] Mohammad A. Islam, Shaolei Ren, and Adam Wierman. “Exploiting a Thermal

Side Channel for Power Attacks in Multi-Tenant Data Centers”. In: Proceedings

of the 2017 ACM SIGSAC Conference on Computer and Communications Se-

curity. New York, NY, USA: ACM, Oct. 2017, pp. 1079–1094. DOI: 10.1145/

3133956.3133994.

[70] Marc Joye and Sung Ming Yen. “The Montgomery Powering Ladder”. In: Lec-

ture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics) 2523 (2003), pp. 291–302. DOI:

10.1007/3-540-36400-5_22.

[71] Julian E. Barnes. Pentagon computer networks attacked. 2008. URL: https://

www.latimes.com/archives/la-xpm-2008-nov-28-na-cyberattack28-

story.html.

[72] Stamatis Karnouskos. “Stuxnet worm impact on industrial cyber-physical system

security”. In: IECON 2011 - 37th Annual Conference of the IEEE Industrial Elec-

tronics Society. IEEE, Nov. 2011, pp. 4490–4494. DOI: 10.1109/IECON.2011.

6120048.

[73] Zijo Kenjar, Tommaso Frassetto, David Gens, et al. “V0LTpwn: Attacking

x86 Processor Integrity from Software”. In: 29th USENIX Security Symposium

(USENIX Security 20) (2020), pp. 1445–1461. URL: https://www.usenix.org/

conference/usenixsecurity20/presentation/kenjar.

[74] Yoongu Kim, Ross Daly, Jeremie Kim, et al. “Flipping bits in memory without

accessing them: An experimental study of DRAM disturbance errors”. In: 2014

ACM/IEEE 41st International Symposium on Computer Architecture (ISCA).

IEEE, June 2014, pp. 361–372. DOI: 10.1109/ISCA.2014.6853210.

[75] Paul Kocher, Jann Horn, Anders Fogh, et al. “Spectre Attacks: Exploiting Specu-

lative Execution”. In: 2019 IEEE Symposium on Security and Privacy (SP). May

2019. DOI: 10.1109/SP.2019.00002.

[76] Paul Kocher, Joshua Jaffe, and Benjamin Jun. “Differential Power Analysis”. In:

Lecture Notes in Computer Science (including subseries Lecture Notes in Artifi-

cial Intelligence and Lecture Notes in Bioinformatics). Vol. 1666. 1999, pp. 388–

397. DOI: 10.1007/3-540-48405-1_25.

166

https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://www.cisa.gov/sites/default/files/publications/CISA%7B%5C_%7DMS-ISAC%7B%5C_%7DRansomware%20Guide%7B%5C_%7DS508C.pdf
https://www.cisa.gov/sites/default/files/publications/CISA%7B%5C_%7DMS-ISAC%7B%5C_%7DRansomware%20Guide%7B%5C_%7DS508C.pdf
https://doi.org/10.1145/3133956.3133994
https://doi.org/10.1145/3133956.3133994
https://doi.org/10.1007/3-540-36400-5_22
https://www.latimes.com/archives/la-xpm-2008-nov-28-na-cyberattack28-story.html
https://www.latimes.com/archives/la-xpm-2008-nov-28-na-cyberattack28-story.html
https://www.latimes.com/archives/la-xpm-2008-nov-28-na-cyberattack28-story.html
https://doi.org/10.1109/IECON.2011.6120048
https://doi.org/10.1109/IECON.2011.6120048
https://www.usenix.org/conference/usenixsecurity20/presentation/kenjar
https://www.usenix.org/conference/usenixsecurity20/presentation/kenjar
https://doi.org/10.1109/ISCA.2014.6853210
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1007/3-540-48405-1_25

[77] Paul C Kocher. “Timing Attacks on Implementations of Diffie-Hellman, RSA,

DSS, and Other Systems”. In: CRYPTO ’96. 1996, pp. 104–113. DOI: 10.1007/

3-540-68697-5_9.

[78] Kokke. Tiny-AES-c. 2018. URL: https://github.com/kokke/tiny-AES-c.

[79] Oliver Kömmerling and Markus G Kuhn. “Design Principles for Tamper-

Resistant Smartcard Processors”. In: Proceedings of the USENIX workshop on

smartcard technology. 1999. DOI: 10.5555/1267115.1267117.

[80] Jonas Krautter, Dennis R. E. Gnad, and Mehdi B. Tahoori. “FPGAhammer : Re-

mote Voltage Fault Attacks on Shared FPGAs, suitable for DFA on AES”. In:

IACR Transactions on Cryptographic Hardware and Embedded Systems 3 (2018),

pp. 44–68. DOI: 10.13154/tches.v2018.i3.44-68.

[81] Jonas Krautter, Dennis R.E. Gnad, Falk Schellenberg, et al. “Active Fences

against Voltage-based Side Channels in Multi-Tenant FPGAs”. In: 2019

IEEE/ACM International Conference on Computer-Aided Design (ICCAD).

IEEE, Nov. 2019, pp. 1–8. DOI: 10.1109/ICCAD45719.2019.8942094.

[82] Markus G Kuhn. “Attacks on Pay-TV access control systems”. In: Security Sem-

inar, Computer Laboratory, Cambridge (1997). URL: http://128.232.0.20/

%7B~%7Dmgk25/vc-slides.pdf.

[83] Andrew Kwong, Daniel Genkin, Daniel Gruss, and Yuval Yarom. “RAMBleed:

Reading Bits in Memory Without Accessing Them”. In: 2020 IEEE Symposium

on Security and Privacy (SP). May. IEEE, May 2020, pp. 695–711. DOI: 10.

1109/SP40000.2020.00020.

[84] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, et al. “Armageddon: Cache attacks

on mobile devices”. In: Proceedings of the 25th USENIX Security Symposium

(2016), pp. 549–564. DOI: 10.5281/zenodo.59889.

[85] Moritz Lipp, Andreas Kogler, David Oswald, et al. “PLATYPUS: Software-based

Power Side-Channel Attacks on x86”. In: IEEE Symposium on Security and Pri-

vacy (SP). 2021. DOI: 10.1109/SP40001.2021.00063.

[86] Moritz Lipp, Michael Schwarz, Daniel Gruss, et al. “Meltdown: Reading Kernel

Memory from User Space”. In: Proceedings of the 27th USENIX Conference on

Security Symposium. USENIX Association, Jan. 2018, pp. 973–990. DOI: 10.

5555/3277203.3277276.

[87] Moritz Lipp, Michael Schwarz, Lukas Raab, et al. “Nethammer: Inducing

Rowhammer Faults through Network Requests”. In: 2020 IEEE European Sym-

posium on Security and Privacy Workshops (EuroS PW). 2020, pp. 710–719. DOI:

10.1109/EuroSPW51379.2020.00102.

167

https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-68697-5_9
https://github.com/kokke/tiny-AES-c
https://doi.org/10.5555/1267115.1267117
https://doi.org/10.13154/tches.v2018.i3.44-68
https://doi.org/10.1109/ICCAD45719.2019.8942094
http://128.232.0.20/%7B~%7Dmgk25/vc-slides.pdf
http://128.232.0.20/%7B~%7Dmgk25/vc-slides.pdf
https://doi.org/10.1109/SP40000.2020.00020
https://doi.org/10.1109/SP40000.2020.00020
https://doi.org/10.5281/zenodo.59889
https://doi.org/10.1109/SP40001.2021.00063
https://doi.org/10.5555/3277203.3277276
https://doi.org/10.5555/3277203.3277276
https://doi.org/10.1109/EuroSPW51379.2020.00102

[88] Heiko Lohrke, Shahin Tajik, Thilo Krachenfels, et al. “Key Extraction Using

Thermal Laser Stimulation A Case Study on Xilinx Ultrascale FPGAs”. In: IACR

Trans. Cryptogr. Hardw. Embed. Syst. 2018, Issu.3 (2018), pp. 573–595. DOI:

10.13154/tches.v2018.i3.573-595.

[89] Adrien Le Masle and Wayne Luk. “Detecting power attacks on reconfigurable

hardware”. In: 22nd International Conference on Field Programmable Logic and

Applications (FPL). IEEE, Aug. 2012, pp. 14–19. DOI: 10.1109/FPL.2012.

6339235.

[90] Philippe Maurine, Karim Tobich, Thomas Ordas, and Pierre-Yvan Liardet. “Yet

Another Fault Injection Technique : by Forward Body Biasing Injection”. In:

YACC’2012: Yet Another Conference on Cryptography (2012). URL: https://

hal-lirmm.ccsd.cnrs.fr/lirmm-00762035.

[91] Thomas S Messerges. “Using Second-Order Power Analysis to Attack DPA

Resistant Software”. In: Proceedings of the Second International Workshop on

Cryptographic Hardware and Embedded Systems. CHES ’00. Berlin, Heidelberg:

Springer-Verlag, 2000, pp. 238–251. DOI: 10.1007/3-540-44499-8_19.

[92] Hassen Mestiri, Noura Benhadjyoussef, Mohsen Machhout, and Rached Tourki.

“A Comparative Study of Power Consumption Models for CPA Attack”. In: Inter-

national Journal of Computer Network and Information Security 5.3 (Mar. 2012),

pp. 25–31. DOI: 10.5815/ijcnis.2013.03.03.

[93] ST Microelectronics. STM32MP1 Reference manual. Tech. rep. 2019. URL:

https://www.st.com/en/microcontrollers-microprocessors/stm32mp1-

series.html.

[94] Shayan Moini, Shanquan Tian, Daniel Holcomb, et al. “Power Side-Channel At-

tacks on BNN Accelerators in Remote FPGAs”. In: IEEE Journal on Emerging

and Selected Topics in Circuits and Systems 11.2 (June 2021), pp. 357–370. DOI:

10.1109/JETCAS.2021.3074608.

[95] Peter L. Montgomery. “Speeding the Pollard and Elliptic Curve Methods of Fac-

torization”. In: Mathematics of Computation 48.177 (1987), p. 243. DOI: 10.

2307/2007888.

[96] Amir Moradi, Alessandro Barenghi, Timo Kasper, and Christof Paar. “On the

vulnerability of FPGA bitstream encryption against power analysis attacks”. In:

Proceedings of the 18th ACM conference on Computer and communications se-

curity - CCS ’11. New York, New York, USA: ACM Press, 2011, p. 111. DOI:

10.1145/2046707.2046722.

[97] Amir Moradi, David Oswald, Christof Paar, and Pawel Swierczynski. “Side-

channel attacks on the bitstream encryption mechanism of Altera Stratix II”.

In: Proceedings of the ACM/SIGDA international symposium on Field pro-

168

https://doi.org/10.13154/tches.v2018.i3.573-595
https://doi.org/10.1109/FPL.2012.6339235
https://doi.org/10.1109/FPL.2012.6339235
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00762035
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00762035
https://doi.org/10.1007/3-540-44499-8_19
https://doi.org/10.5815/ijcnis.2013.03.03
https://www.st.com/en/microcontrollers-microprocessors/stm32mp1-series.html
https://www.st.com/en/microcontrollers-microprocessors/stm32mp1-series.html
https://doi.org/10.1109/JETCAS.2021.3074608
https://doi.org/10.2307/2007888
https://doi.org/10.2307/2007888
https://doi.org/10.1145/2046707.2046722

grammable gate arrays - FPGA ’13. New York, New York, USA: ACM Press,

2013, p. 91. DOI: 10.1145/2435264.2435282.

[98] Nicolas Moro, Amine Dehbaoui, Karine Heydemann, et al. “Electromagnetic

Fault Injection: Towards a Fault Model on a 32-bit Microcontroller”. In: 2013

Workshop on Fault Diagnosis and Tolerance in Cryptography. IEEE, Aug. 2013,

pp. 77–88. DOI: 10.1109/FDTC.2013.9.

[99] Motorola Inc. “M68000 8-/16-32-Bit Microprocessors User’s Manual”. In:

(1991), p. 224. URL: https://www.nxp.com/docs/en/reference-manual/

MC68000UM.pdf.

[100] Kit Murdock, David Oswald, Flavio D Garcia, et al. “Plundervolt: Software-based

Fault Injection Attacks against Intel SGX”. In: 2020 IEEE Symposium on Security

and Privacy (SP). IEEE, May 2020, pp. 1466–1482. DOI: 10.1109/SP40000.

2020.00057.

[101] National Security Agency (NSA). Ghidra. 2019. URL: https://ghidra-sre.

org/.

[102] National Security Agency (NSA). “Tempest: A signal problem”. In: 2.3 (1972).

URL: https://cryptome.org/nsa-tempest.pdf.

[103] Colin O’Flynn and Zhizhang Chen. “ChipWhisperer: An Open-Source Platform

for Hardware Embedded Security Research”. In: International Workshop on Con-

structive Side-Channel Analysis and Secure Design. Vol. 8622 LNCS. 2014,

pp. 243–260. DOI: 10.1007/978-3-319-10175-0_17.

[104] Colin O’Flynn and Alex Dewar. “On-Device Power Analysis Across Hardware

Security Domains.: Stop Hitting Yourself.” In: IACR Transactions on Crypto-

graphic Hardware and Embedded Systems (2019). DOI: 10 . 13154 / tches .

v2019.i4.126-153.

[105] T.J. O’Gorman. “The effect of cosmic rays on the soft error rate of a DRAM

at ground level”. In: IEEE Transactions on Electron Devices 41.4 (Apr. 1994),

pp. 553–557. DOI: 10.1109/16.278509.

[106] OpenSSL Foundation. OpenSSL. 2002. URL: https://www.openssl.org/.

[107] Jingyu Pan, Fan Zhang, Kui Ren, and Shivam Bhasin. “One Fault is All it Needs:

Breaking Higher-Order Masking with Persistent Fault Analysis”. In: 2019 De-

sign, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, Mar.

2019, pp. 1–6. DOI: 10.23919/DATE.2019.8715260.

[108] Pancake. Radare2. 2006. URL: https://github.com/radareorg/radare2.

[109] David Pellerin. FPGA Accelerated Computing Using AWS F1 Instances. 2017.

URL: https : / / old . hotchips . org / wp - content / uploads / hc % 7B % 5C _

%7Darchives/hc29/HC29.22-Tuesday-Pub/HC29.22.50-FPGA-Pub/HC29.22.

544-AWS-F1-Pellerin-Amazon%20v4.pdf.

169

https://doi.org/10.1145/2435264.2435282
https://doi.org/10.1109/FDTC.2013.9
https://www.nxp.com/docs/en/reference-manual/MC68000UM.pdf
https://www.nxp.com/docs/en/reference-manual/MC68000UM.pdf
https://doi.org/10.1109/SP40000.2020.00057
https://doi.org/10.1109/SP40000.2020.00057
https://ghidra-sre.org/
https://ghidra-sre.org/
https://cryptome.org/nsa-tempest.pdf
https://doi.org/10.1007/978-3-319-10175-0_17
https://doi.org/10.13154/tches.v2019.i4.126-153
https://doi.org/10.13154/tches.v2019.i4.126-153
https://doi.org/10.1109/16.278509
https://www.openssl.org/
https://doi.org/10.23919/DATE.2019.8715260
https://github.com/radareorg/radare2
https://old.hotchips.org/wp-content/uploads/hc%7B%5C_%7Darchives/hc29/HC29.22-Tuesday-Pub/HC29.22.50-FPGA-Pub/HC29.22.544-AWS-F1-Pellerin-Amazon%20v4.pdf
https://old.hotchips.org/wp-content/uploads/hc%7B%5C_%7Darchives/hc29/HC29.22-Tuesday-Pub/HC29.22.50-FPGA-Pub/HC29.22.544-AWS-F1-Pellerin-Amazon%20v4.pdf
https://old.hotchips.org/wp-content/uploads/hc%7B%5C_%7Darchives/hc29/HC29.22-Tuesday-Pub/HC29.22.50-FPGA-Pub/HC29.22.544-AWS-F1-Pellerin-Amazon%20v4.pdf

[110] Gilles Piret and Jean-Jacques Quisquater. “A Differential Fault Attack Technique

against SPN Structures, with Application to the AES and Khazad”. In: Workshop

on Crypto-graphic Hardware and Embedded Systems (CHES 2003). Vol. 2779.

Sept. 2003, pp. 77–88. DOI: 10.1007/978-3-540-45238-6_7.

[111] Pengfei Qiu, Dongsheng Wang, Yongqiang Lyu, and Gang Qu. “VoltJockey”. In:

Proceedings of the 2019 ACM SIGSAC Conference on Computer and Commu-

nications Security. New York, NY, USA: ACM, Nov. 2019, pp. 195–209. DOI:

10.1145/3319535.3354201.

[112] J.-J. Quisquater and C Couvreur. “Fast decipherment algorithm for RSA public-

key cryptosystem”. In: Electronics Letters 18.21 (1982), p. 905. DOI: 10.1049/

el:19820617.

[113] Jean-Jacques Quisquater and David Samyde. “ElectroMagnetic Analysis (EMA):

Measures and Counter-measures for Smart Cards”. In: E-smart. Vol. 2140. 2001,

pp. 200–210. DOI: 10.1007/3-540-45418-7_17.

[114] Behzad Razavi. Fundamentals of Microelectronics. Ed. by NJ: Wiley Hoboken.

2008.

[115] Kaveh Razavi, Ben Gras, Erik Bosman, et al. “Flip Feng Shui: Hammering a

Needle in the Software Stack”. In: Proceedings of the 25th USENIX Conference

on Security Symposium. Austin, TX: USENIX Association, 2016, pp. 1–18. DOI:

10.5555/3241094.3241096.

[116] R. L. Rivest, A. Shamir, and L. Adleman. “A method for obtaining digital signa-

tures and public-key cryptosystems”. In: Communications of the ACM 21.2 (Feb.

1978), pp. 120–126. DOI: 10.1145/359340.359342.

[117] Joaquin Romo. DDR Memories Comparison and overview. Tech. rep. URL:

https : / / www . nxp . com / docs / en / supporting - information /

BeyondBits2article17.pdf.

[118] Eyal Ronen, Adi Shamir, Achi-Or Weingarten, and Colin O’Flynn. “IoT Goes

Nuclear: Creating a Zigbee Chain Reaction”. In: IEEE Security & Privacy 16.1

(Jan. 2018), pp. 54–62. DOI: 10.1109/MSP.2018.1331033.

[119] D. Sanlyde, S. Skorobogatov, R. Anderson, and J.-J. Quisquater. “On a new

way to read data from memory”. In: First International IEEE Security in Stor-

age Workshop, 2002. Proceedings. IEEE Comput. Soc, 2003, pp. 65–69. DOI:

10.1109/SISW.2002.1183512.

[120] Stephan van Schaik, Alyssa Milburn, Sebastian Osterlund, et al. “RIDL: Rogue

In-Flight Data Load”. In: 2019 IEEE Symposium on Security and Privacy (SP).

IEEE, May 2019, pp. 88–105. DOI: 10.1109/SP.2019.00087.

170

https://doi.org/10.1007/978-3-540-45238-6_7
https://doi.org/10.1145/3319535.3354201
https://doi.org/10.1049/el:19820617
https://doi.org/10.1049/el:19820617
https://doi.org/10.1007/3-540-45418-7_17
https://doi.org/10.5555/3241094.3241096
https://doi.org/10.1145/359340.359342
https://www.nxp.com/docs/en/supporting-information/BeyondBits2article17.pdf
https://www.nxp.com/docs/en/supporting-information/BeyondBits2article17.pdf
https://doi.org/10.1109/MSP.2018.1331033
https://doi.org/10.1109/SISW.2002.1183512
https://doi.org/10.1109/SP.2019.00087

[121] Falk Schellenberg, Dennis R. E. Gnad, Amir Moradi, and Mehdi B. Tahoori. “Re-

mote inter-chip power analysis side-channel attacks at board-level”. In: Proceed-

ings of the International Conference on Computer-Aided Design. New York, NY,

USA: ACM, Nov. 2018, pp. 1–7. DOI: 10.1145/3240765.3240841.

[122] Falk Schellenberg, Dennis R.E. Gnad, Amir Moradi, and Mehdi B. Tahoori. “An

inside job: Remote power analysis attacks on FPGAs”. In: 2018 Design, Au-

tomation & Test in Europe Conference & Exhibition (DATE). IEEE, Mar. 2018,

pp. 1111–1116. DOI: 10.23919/DATE.2018.8342177.

[123] Mark Seaborn and Thomas Dullien. “Exploiting the DRAM rowhammer bug

to gain kernel privileges”. In: BlackHat 2015 March (2015). URL: https://

googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-

bug-to-gain.html.

[124] Hwajeong Seo, Taehwan Park, Janghyun Ji, and Howon Kim. “Lightweight Fault

Attack Resistance in Software Using Intra-instruction Redundancy, Revisited”.

In: Lecture Notes in Computer Science. 2018, pp. 3–15. DOI: 10.1007/978-3-

319-93563-8_1.

[125] Sergei P. Skorobogatov. “Semi-invasive attacks-a new approach to hardware se-

curity analysis”. PhD thesis. 2005, p. 144. URL: https://www.cl.cam.ac.uk/

techreports/UCAM-CL-TR-630.pdf.

[126] Sergei P. Skorobogatov and Ross J. Anderson. “Optical Fault Induction Attacks”.

In: Lecture Notes in Computer Science (including subseries Lecture Notes in Ar-

tificial Intelligence and Lecture Notes in Bioinformatics). Vol. 2523. 2003, pp. 2–

12. DOI: 10.1007/3-540-36400-5_2.

[127] Sung-Ming Yen and Marc Joye. “Checking before output may not be enough

against fault-based cryptanalysis”. In: IEEE Transactions on Computers 49.9

(2000), pp. 967–970. DOI: 10.1109/12.869328.

[128] Adrian Tang, Simha Sethumadhavan, and Salvatore Stolfo. “CLKSCREW: Ex-

posing the Perils of Security-Oblivious Energy Management”. In: 26th USENIX

Security Symposium (USENIX Security 17). 2017. DOI: 10 . 5555 / 3241189 .

3241272.

[129] Sébastien Tiran, Sébastien Ordas, Yannick Teglia, et al. “A model of the leak-

age in the frequency domain and its application to CPA and DPA”. In: Journal

of Cryptographic Engineering 4.3 (Sept. 2014), pp. 197–212. DOI: 10.1007/

s13389-014-0074-x.

[130] Linus Torvalds. Linux Kernel. 1991. URL: https://github.com/torvalds/

linux.

[131] Steve Trimberger and Steve McNeil. “Security of FPGAs in data centers”. In:

2017 IEEE 2nd International Verification and Security Workshop (IVSW). IEEE,

July 2017, pp. 117–122. DOI: 10.1109/IVSW.2017.8031556.

171

https://doi.org/10.1145/3240765.3240841
https://doi.org/10.23919/DATE.2018.8342177
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://doi.org/10.1007/978-3-319-93563-8_1
https://doi.org/10.1007/978-3-319-93563-8_1
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-630.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-630.pdf
https://doi.org/10.1007/3-540-36400-5_2
https://doi.org/10.1109/12.869328
https://doi.org/10.5555/3241189.3241272
https://doi.org/10.5555/3241189.3241272
https://doi.org/10.1007/s13389-014-0074-x
https://doi.org/10.1007/s13389-014-0074-x
https://github.com/torvalds/linux
https://github.com/torvalds/linux
https://doi.org/10.1109/IVSW.2017.8031556

[132] Miho Ueno, Masanori Hashimoto, and Takao Onoye. “Real-time on-chip supply

voltage sensor and its application to trace-based timing error localization”. In:

2015 IEEE 21st International On-Line Testing Symposium (IOLTS). IEEE, July

2015, pp. 188–193. DOI: 10.1109/IOLTS.2015.7229857.

[133] Jo Van Bulck, Marina Minkin, Ofir Weisse, et al. “Foreshadow: Extracting the

Keys to the Intel SGX Kingdom with Transient out-of-Order Execution”. In: Pro-

ceedings of the 27th USENIX Conference on Security Symposium. SEC’18. USA:

USENIX Association, 2018. DOI: 10.5555/3277203.3277277.

[134] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, et al. “LVI: Hijacking Tran-

sient Execution through Microarchitectural Load Value Injection”. In: 2020 IEEE

Symposium on Security and Privacy (SP). Vol. 2020-May. IEEE, May 2020,

pp. 54–72. DOI: 10.1109/SP40000.2020.00089.

[135] Jo Van Bulck, Frank Piessens, and Raoul Strackx. “SGX-Step”. In: Proceedings

of the 2nd Workshop on System Software for Trusted Execution. SysTEX’17. New

York, NY, USA: ACM, Oct. 2017, pp. 1–6. DOI: 10.1145/3152701.3152706.

[136] Victor van der Veen, Yanick Fratantonio, Martina Lindorfer, et al. “Drammer”. In:

Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communi-

cations Security. CCS ’16. New York, NY, USA: ACM, Oct. 2016, pp. 1675–

1689. DOI: 10.1145/2976749.2978406.

[137] Victor van der Veen, Martina Lindorfer, Yanick Fratantonio, et al. “GuardION:

Practical Mitigation of DMA-Based Rowhammer Attacks on ARM”. In: Lecture

Notes in Computer Science (including subseries Lecture Notes in Artificial Intel-

ligence and Lecture Notes in Bioinformatics). Vol. 10885 LNCS. 2018, pp. 92–

113. DOI: 10.1007/978-3-319-93411-2_5.

[138] S. J. Wind, J. Appenzeller, R. Martel, et al. More than Moore. Ed. by Guo

Qi Zhang and Alfred Roosmalen. Vol. 3. 2. Boston, MA: Springer US, 2009,

pp. 758–62. DOI: 10.1007/978-0-387-75593-9.

[139] Yuan Xiao, Xiaokuan Zhang, Yinqian Zhang, and Radu Teodorescu. “One Bit

Flips, One Cloud Flops: Cross-VM Row Hammer Attacks and Privilege Escala-

tion”. In: Proceedings of the 25th USENIX Conference on Security Symposium.

Austin, TX: USENIX Association, 2016, pp. 19–35. DOI: 10.5555/3241094.

3241097.

[140] Xilinx Inc. [UG474] 7 Series FPGAs Configurable Logic Block. Tech. rep. 2016,

pp. 1–72. URL: https://www.xilinx.com/support/documentation/user%

7B%5C_%7Dguides/ug474%7B%5C_%7D7Series%7B%5C_%7DCLB.pdf.

[141] Xilinx Inc. [UG585] Zynq-7000 AP SoC Technical Reference Manual. Tech. rep.

2012, pp. 1–1825. URL: https://www.xilinx.com/support/documentation/

user%7B%5C_%7Dguides/ug585-Zynq-7000-TRM.pdf.

172

https://doi.org/10.1109/IOLTS.2015.7229857
https://doi.org/10.5555/3277203.3277277
https://doi.org/10.1109/SP40000.2020.00089
https://doi.org/10.1145/3152701.3152706
https://doi.org/10.1145/2976749.2978406
https://doi.org/10.1007/978-3-319-93411-2_5
https://doi.org/10.1007/978-0-387-75593-9
https://doi.org/10.5555/3241094.3241097
https://doi.org/10.5555/3241094.3241097
https://www.xilinx.com/support/documentation/user%7B%5C_%7Dguides/ug474%7B%5C_%7D7Series%7B%5C_%7DCLB.pdf
https://www.xilinx.com/support/documentation/user%7B%5C_%7Dguides/ug474%7B%5C_%7D7Series%7B%5C_%7DCLB.pdf
https://www.xilinx.com/support/documentation/user%7B%5C_%7Dguides/ug585-Zynq-7000-TRM.pdf
https://www.xilinx.com/support/documentation/user%7B%5C_%7Dguides/ug585-Zynq-7000-TRM.pdf

[142] Asier Goikoetxea Yanci, Stephen Pickles, and Tughrul Arslan. “Characterization

of a Voltage Glitch Attack Detector for Secure Devices”. In: 2009 Symposium

on Bio-inspired Learning and Intelligent Systems for Security. IEEE, Aug. 2009,

pp. 91–96. DOI: 10.1109/BLISS.2009.18.

[143] Asier Goikoetxea Yanci, Stephen Pickles, and Tughrul Arslan. “Detecting Volt-

age Glitch Attacks on Secure Devices”. In: 2008 Bio-inspired, Learning and

Intelligent Systems for Security. IEEE, Aug. 2008, pp. 75–80. DOI: 10.1109/

BLISS.2008.26.

[144] Yuval Yarom and Katrina Falkner. “FLUSH+RELOAD: A High Resolution, Low

Noise, L3 Cache Side-Channel Attack”. In: Proceedings of the 23rd USENIX

Conference on Security Symposium. San Diego, CA: USENIX Association, 2014,

pp. 719–732. DOI: 10.5555/2671225.2671271.

[145] Fan Zhang, Xiaoxuan Lou, Xinjie Zhao, et al. “Persistent Fault Analysis on Block

Ciphers”. In: IACR Transactions on Cryptographic Hardware and Embedded Sys-

tems 2018.3 (2018), pp. 150–172. DOI: 10.13154/tches.v2018.i3.150-172.

[146] Fan Zhang, Yiran Zhang, Huilong Jiang, et al. “Persistent Fault Attack in Prac-

tice”. In: IACR Transactions on Cryptographic Hardware and Embedded Systems

2020.2 (2020), pp. 172–195. DOI: 10.13154/tches.v2020.i2.172-195.

[147] Lu Zhang, Luis Vega Gutierrez, and Michael Bedford Taylor. “Power Side Chan-

nels in Security ICs: Hardware Countermeasures”. In: arXiv (2016). URL: http:

//arxiv.org/abs/1605.00681.

[148] Mark Zhao and G. Edward Suh. “FPGA-Based Remote Power Side-Channel At-

tacks”. In: 2018 IEEE Symposium on Security and Privacy (SP). IEEE, May

2018, pp. 229–244. DOI: 10.1109/SP.2018.00049.

[149] Yongbin Zhou and DengGuo Feng. “Side-Channel Attacks: Ten Years After Its

Publication and the Impacts on Cryptographic Module Security Testing.” In:

IACR Cryptology ePrint Archive 2005 (2005), p. 388. URL: https://www.iacr.

org/cryptodb/data/paper.php?pubkey=12722.

[150] Kenneth M. Zick and John P. Hayes. “Low-cost sensing with ring oscillator arrays

for healthier reconfigurable systems”. In: ACM Transactions on Reconfigurable

Technology and Systems 5.1 (Mar. 2012), pp. 1–26. DOI: 10.1145/2133352.

2133353.

[151] Kenneth M. Zick, Meeta Srivastav, Wei Zhang, and Matthew French. “Sensing

nanosecond-scale voltage attacks and natural transients in FPGAs”. In: Proceed-

ings of the ACM/SIGDA international symposium on Field programmable gate

arrays - FPGA ’13. New York, New York, USA: ACM Press, 2013, p. 101. DOI:

10.1145/2435264.2435283.

173

https://doi.org/10.1109/BLISS.2009.18
https://doi.org/10.1109/BLISS.2008.26
https://doi.org/10.1109/BLISS.2008.26
https://doi.org/10.5555/2671225.2671271
https://doi.org/10.13154/tches.v2018.i3.150-172
https://doi.org/10.13154/tches.v2020.i2.172-195
http://arxiv.org/abs/1605.00681
http://arxiv.org/abs/1605.00681
https://doi.org/10.1109/SP.2018.00049
https://www.iacr.org/cryptodb/data/paper.php?pubkey=12722
https://www.iacr.org/cryptodb/data/paper.php?pubkey=12722
https://doi.org/10.1145/2133352.2133353
https://doi.org/10.1145/2133352.2133353
https://doi.org/10.1145/2435264.2435283

[152] Loic Zussa, Jean-Max Dutertre, Jessy Clediere, and Bruno Robisson. “Analysis

of the fault injection mechanism related to negative and positive power supply

glitches using an on-chip voltmeter”. In: 2014 IEEE International Symposium on

Hardware-Oriented Security and Trust (HOST). IEEE, May 2014, pp. 130–135.

DOI: 10.1109/HST.2014.6855583.

[153] Loic Zussa, Jean-Max Dutertre, Jessy Clediere, and Assia Tria. “Power supply

glitch induced faults on FPGA: An in-depth analysis of the injection mechanism”.

In: 2013 IEEE 19th International On-Line Testing Symposium (IOLTS). IEEE,

July 2013, pp. 110–115. DOI: 10.1109/IOLTS.2013.6604060.

174

https://doi.org/10.1109/HST.2014.6855583
https://doi.org/10.1109/IOLTS.2013.6604060

École Nationale Supérieure des Mines

de Saint-Étienne

NNT : 2021LYSEM034

Joseph GRAVELLIER

Remote Hardware Attacks on Connected Devices

Speciality : Microelectronic

Keywords : hardware attacks, remote attacks, on-chip sensing, SoC, FPGA, power side-

channel, fault injection, delay-lines, SideLine, FaultLine.

Abstract : In this thesis we evaluate software-based hardware attacks, a novel attack family

that targets connected devices such as IoT products, smartphones or cloud datacenters. These

attacks take advantage of hardware resources that can be directly accessed from software in

complex integrated circuits and use them to conduct fault injection and side-channel analysis

exploits. Because they are triggered by software code, they can be launched remotely and on

multiple victim devices regardless of their physical location. Through the evaluation of

software-based hardware attacks we aim at assessing the level of threat they pose to

connected devices security. The challenge is considerable since any connected device is

potentially endangered.

Through our experiments, we discovered generic attack vectors widely implemented in recent

SoCs that could enable remote hardware attacks. We conducted FPGA-to-FPGA and FPGA-

to-CPU attacks and demonstrated that remote power analysis was feasible. These new attack

paths represent a serious threat for FPGA-based systems especially when applied to cloud

FPGAs and heterogeneous SoCs. Then, we went further by proving that delay-line

components, widely implemented in high-end SoCs, could be used for conducting fault

injection and side-channel attacks. We built various scenarios such as CPU-to-MCU attacks

on complex operating systems and demonstrated that software-based hardware attacks could

successfully break the logical isolation between processes and lead to the extraction of

sensitive information. Our research works describe the methodology adopted to build and

conduct the attacks along with countermeasure proposals to mitigate their impact.

École Nationale Supérieure des Mines

de Saint-Étienne

NNT : 2021LYSEM034

Joseph GRAVELLIER

Attaques Matérielles à Distance des Objets Connectés

Spécialité: Microélectronique

Mots clefs : attaques matérielles, attaques à distance, capteurs intégrés, SoC, FPGA, analyse

de courant, injection de faute, SideLine, FaultLine.

Résumé : Depuis les années 90 et la découverte de vulnérabilités physiques dans les circuits

intégrés, l’étude de la résistance aux attaques matérielles est devenue un maillon

indispensable du développement de produits sécurisés (cartes à puces, modules de

chiffrement, microcontrôleurs). Une attaque matérielle vise à extraire les données secrètes

contenues dans un circuit intégré. Les techniques généralement employées à cet usage

analysent les émanations physiques (attaques par canaux-cachés) ou perturbent le

fonctionnement (attaques par injection de faute) d’un appareil ciblé. À la différence des

attaques logicielles qui peuvent être menées à distance à travers un réseau, il est

communément admis que les attaques matérielles sont locales car elles nécessitent

l’utilisation d’équipements de laboratoire. Cependant, une multitude de travaux de recherche

récents démontrent que ce postulat n’est plus valable. En effet, avec l’adoption massive des

objets connectés, la complexification des circuits intégrés et l’apparition de systèmes multi-

utilisateurs, il devient possible de mener des attaques matérielles à distance. C’est-à-dire, sans

accès direct au circuit ciblé.

Cette thèse propose d’étudier ces nouveaux chemins d’attaque qui exploitent des

vulnérabilités physiques à distance. Plus précisément elle s’intéresse à celles qui utilisent du

logiciel comme vecteur d’attaque matérielle. Il peut s’agir par exemple d’un programme

malveillant envoyé à des dizaines, voire des milliers d’appareils connectés. Une fois actif, il

identifie des ressources matérielles présentes dans les systèmes ciblés (capteurs, régulateurs)

et les détourne de leur rôle initial afin de mener des attaques matérielles. À l’instar

d’attaques reconnues telles que Rowhammer, CLKSCREW ou Platypus, les travaux réalisés

durant ces trois années de recherche contribuent à mettre en avant le danger potentiel des

attaques matérielles à distance. Cette thèse contient des résultats variés allant de l’analyse de

consommation sur FPGA à de l’injection de faute sur processeurs complexes. Elle décrit la

menace potentielle des attaques matérielles à distance, notamment au regard de l’adoption

d’entités de sécurité intégrées dans les processeurs complexes et de l’accroissement des

services connectés en général (IoT, Cloud). Toutes ces études ont été menées de façon à être

reproductibles et réalisables à distance. Elles visent à préparer les différents acteurs de la

sécurisation des objets connectés à cette menace naissante et ainsi éviter sa mise en exécution

future sur des milliers d’appareils à travers le monde.

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Glossary
	Avant Propos
	Résumé
	Introduction
	Thesis Context
	Thesis Objectives
	Roadmap: From FPGA to CPU exploits
	Contributions
	Software-based Power Analysis Attacks on FPGAs
	Software-based Power Analysis Attacks on Complex SoCs
	Software-based Fault Injection on SoC External Memory Transfers

	Outline

	Background
	Introduction to Hardware Attacks
	Origins
	Attack Classification
	Non-Invasive Attack Setup
	Non-Invasive Side-Channel Analysis Attacks
	Non-Invasive Fault Injection Attacks

	The Advent of Connected Devices
	Overview
	Applications and Threats
	Hardware Attacks: No Future?

	Remote Hardware Attacks
	The Origins of Remote Hardware Attacks
	Remote Hardware Attack Families
	Software-based Hardware Attack Taxonomy
	Software-based Fault Injection Attacks
	Software-based Side-Channel Analysis Attacks
	Software-based Hardware Attack Privileges

	Conclusion

	Software-based Power Analysis Attacks on FPGAs
	Chapter Introduction
	Technical Background
	FPGA-to-FPGA - Designing High-Speed RO-based Sensors for FPGA-based SCA
	FPGA-to-CPU - Remote Side-Channel Attacks on Heterogeneous SoC
	SCAbox - A Framework for Evaluating the FPGA-based SCA Threat
	Conclusion on FPGA-based Power Analysis

	Software-based Power Analysis Attacks on Complex SoCs
	Chapter Introduction
	Technical Background
	SideLine: Delay-Line-based power SCA on complex SoCs
	Additional Results
	Conclusion on Delay-Line-based Power Analysis
	Appendix

	Software-based Fault Injection on SoC External Memory Transfers
	Chapter Introduction
	Technical Background
	FaultLine: Software-based Fault Injection on Memory Transfers
	Conclusion on Delay-Line based Fault Injection

	Conclusion and Perspectives
	Manuscript Summary
	Conclusion on SbHA
	Thesis Impact
	SbHA Perspectives
	Bibliography

