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Titre : Odométrie Visio-Inertielle Basée sur Le Flot Optique pour Les Capteurs Neuromorphiques de Vision 

Mots clés : Caméra non-traditionnelle, Odométrie visiuelle, Flot optique, détection des lignes 

Résumé : Plutôt que de générer des images de 
manière constante et synchrone, les capteurs 
neuromorphiques de vision -également connus sous 
le nom de caméras événementielles, permettent à 
chaque pixel de fournir des informations de manière 
indépendante et asynchrone chaque fois qu’un 
changement de luminosité est détecté. Par 
conséquent, les capteurs de vision neuromorphiques 
n’ont pas les problèmes des caméras 
conventionnelles telles que les artefacts d’image et le 
Flou cinétique. De plus, ils peuvent fournir une 
compression sans perte de donné avec une 
résolution temporelle et une plage dynamique plus 
élevée. Par conséquent, les caméras événmentielles 
remplacent commodément les caméras 
conventionelles dans les applications robotiques 
nécessitant une grande maniabilité et des conditions 
environnementales variables. Dans cette thèse, nous 
abordons le problème de l’odométrie visio-inertielle 
à l’aide de caméras événementielles et d’une centrale 
inertielle.  

En exploitant la cohérence des caméras 
événementielles avec les conditions de constance 
de la luminosité, nous discutons de la possibilité de 
construire un système d’odométrie visuelle basé 
sur l’estimation du flot optique. Nous développons 
notre approche basée sur l’hypothèse que ces 
caméras fournissent des informations des contours 
des objets de la scène et appliquons un algorithme 
de détection de ligne pour la réduction des 
données. Le suivi de ligne nous permet de gagner 
plus de temps pour les calculs et fournit une 
meilleure représentation de l’environnement que 
les points d’intérêt. Dans cette thèse, nous ne 
montrons pas seulement une approche pour 
l’odométrie visio-inertielle basée sur les 
événements, mais également des algorithmes qui 
peuvent être utilisés comme algorithmes des 
caméras événementielles autonomes ou intégrés 
dans d’autres approches si nécessaire. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Title : Flow-Based Visual-Inertial Odometry for Neuromorphic Vision Sensors. 

Keywords : Non-traditional cameras, Visual odometry, Optical flow estimation, Line detection. 

Abstract : Rather than generating images constantly 
and synchronously, neuromorphic vision sensors -
also known as event-based cameras- permit each 
pixel to provide information independently and 
asynchronously whenever brightness change is 
detected. Consequently, neuromorphic vision 
sensors do not encounter the problems of 
conventional frame-based cameras like image 
artifacts and motion blur. Furthermore, they can 
provide lossless data compression, higher temporal 
resolution and higher dynamic range. Hence, event-
based cameras conveniently replace frame-based 
cameras in robotic applications requiring high 
maneuverability and varying environmental 
conditions.  In this thesis, we address the problem of 
visual-inertial odometry using event-based cameras 
and an inertial measurement unit. 

Exploiting the consistency of event-based cameras 
with the brightness constancy conditions, we 
discuss the availability of building a visual 
odometry system based on optical flow estimation. 
We develop our approach based on the 
assumption that event-based cameras provide 
edge-like information about the objects in the 
scene and apply a line detection algorithm for data 
reduction. Line tracking allows us to gain more time 
for computations and provides a better 
representation of the environment than feature 
points. In this thesis, we do not only show an 
approach for event-based visual-inertial odometry 
but also event-based algorithms th at can be used 
as stand-alone algorithms or integrated into other 
approaches if needed. 
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0.1 Synthèse En Français

LŠassimilation des robots à lŠindustrie pour réaliser des missions nécessitant une intervention

humaine persistante a toujours été un des enjeux majeurs qui a retenu lŠattention des

chercheurs. les propositions à cet enjeu varient selon de nombreux aspects, cŠest-à-

dire, la nature de la tâche et son contexte (intérieur, extérieur, recherche et sauvetage,

conditions sévères, etc.), la configuration du robot, le niveau dŠautonomie, la précision

et les précautions de sécurité. Avoir un système robotique capable de répondre à ces

exigences tout en respectant les aspects mentionnés est une tâche méticuleuse qui nécessite

des considérations réfléchies. Le premier défi qui entrave lŠassimilation du robot dans les

environnements industriels, en particulier sŠil sŠagit dŠun robot mobile, est sa capacité à

percevoir lŠenvironnement et à le reconnaître correctement. La perception robotique en

tant que tâche implique la capacité du robot à naviguer tout en connaissant sa localisation,

en évitant les obstacles et en planifiant un chemin optimal pour accomplir une mission

particulière.

De nombreuses techniques de perception robotique ont été introduites dans lŠétat-de-lŠart

depuis lŠessor des robots industriels pour la perception robotique. Certaines techniques util-

isaient des informations acquises à partir des actionneurs du robot, cŠest-à-dire lŠodomètre

et le compteur de vitesse ; ces techniques proprioceptives souffriraient dŠune forte dérive.

Après lŠémergence de la technologie "Micro Electronic Mechanical Systems (MEMS)",

dŠautres techniques dépendaient des états proprioceptifs du robot acquis à lŠaide dŠune

centrale inertielle (IMU) assistée dŠun système de positionnement global (GPS). Ces

techniques fourniraient une meilleure précision mais échouent toujours dans de nombreux

scénarios. Récemment, les caméras sont exploitées en perception robotique pour leur

légèreté et leur consommation dŠénergie relativement faible. les caméras sont utilisées

pour la perception robotique car elles fournissent des données moins bruyantes et ne

souffrent pas de glissement, ce qui offre un haut niveau de précision. Dan le cadre de cet

thèse, nous sommes motivés pour étudier la perception robotique basée sur la vision afin
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dŠaméliorer la localisation et la navigation. Bien que les caméras conventionnelles offrent

une précision beaucoup plus élevée que les autres capteurs, elles présentent néanmoins

certains inconvénients qui limitent les capacités du robot. De plus, ils peuvent échouer

dans certains cas extrêmes en raison de leur mode de fonctionnement restrictif. Nous

investigueons la substitution des caméras conventionnelles par des capteurs de vision

neuromorphiques qui ressemblent à la fonctionnalité de lŠœil biologique. Nous étudions les

avantages et les contraintes des capteurs de vision neuromorphiques et montrons comment

ils peuvent être exploités en perception robotique.

Plutôt que de générer des images de manière constante et synchrone, les capteurs neuromor-

phiques de vision -également connus sous le nom de caméras événementielles, permettent

à chaque pixel de fournir des informations de manière indépendante et asynchrone chaque

fois quŠun changement de luminosité est détecté. Par conséquent, les capteurs de vision

neuromorphiques nŠont pas les problèmes des caméras conventionnelles telles que les

artefacts dŠimage et le Flou cinétique. De plus, ils peuvent fournir une compression

sans perte de donné avec une résolution temporelle et une plage dynamique plus élevée.

Par conséquent, les caméras événmentielles remplacent commodément les caméras con-

ventionelles dans les applications robotiques nécessitant une grande maniabilité et des

conditions environnementales variables. Dans cette thèse, nous abordons le problème de

lŠodométrie visio-inertielle à lŠaide de caméras événementielles et dŠune centrale inertielle.

En exploitant la cohérence des caméras événementielles avec les conditions de constance

de la luminosité, nous discutons de la possibilité de construire un système dŠodométrie

visuelle basé sur lŠestimation du flot optique. Nous développons notre approche basée sur

lŠhypothèse que ces caméras fournissent des informations des contours des objets de la

scène et appliquons un algorithme de détection de ligne pour la réduction des données.

Le suivi de ligne nous permet de gagner plus de temps pour les calculs et fournit une

meilleure représentation de lŠenvironnement que les points dŠintérêt. Dans cette thèse,

nous ne montrons pas seulement une approche pour lŠodométrie visio-inertielle basée

sur les événements, mais également des algorithmes qui peuvent être utilisés comme
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algorithmes des caméras événementielles autonomes ou intégrés dans dŠautres approches

si nécessaire.

nous commençons par une étude sur lŠétat de lŠart des caméras événementielles en montrant

les capacités et les contraintes de ces caméras. Puis nous introduisons les compatibilités

de leur mode de fonctionnement avec le modèle mathématique qui régit la création du flux

optique. Par conséquent, nous proposons le premier schéma dŠodométrie visuo-inertielle

basé sur le flux optique. Nous fournissons un algorithme de flot optique capable de fournir

une précision compétente par rapport à la famille dŠalgorithmes de flot optique avec un

temps du calcul comarable. De plus, nous continuons à améliorer la qualité du flot optique

estimé chaque fois que possible après avoir obtenu lŠestimation initiale du flux optique.

Néanmoins, en gardant la même notion de réduction de la complexité des solutions que

nous proposons, notre algorithme de détection et de segmentation de lignes offre des

résultats très précis basés sur des conditions simples. Notre algorithme est libéré de la

triangulation ou de la sélection dŠimages clés, ce qui permet de gagner plus de temps pour

le processus dŠoptimisation. En outre, il peut être réglé pour optimiser différentes tailles

de fenêtres glissantes pour une optimisation basée sur la dynamique de lŠapplication et

peut supprimer les événements inutiles pour maintenir lŠapplicabilité en temps réel.
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1 Introduction

1.1 Motivation

The assimilation of robots into the industry to achieve missions that require persistent

human intervention has always been an open question that captured researchersŠ at-

tention. Answers to this question vary depending on many aspects, i.e., task nature

and its context (indoor, outdoor, search and rescue, severe conditions, etc), robotŠs

configuration, level of autonomy, accuracy and safety precautions. Having a robotic

system capable of meeting the requirements while respecting the mentioned aspects is

a meticulous task that necessitates thoughtful considerations. The first challenge that

hinders robot assimilation in industrial environments, particularly if it is a mobile robot,

is its capability to perceive the environment and recognize the surroundings correctly.

Robotic perception as a task involves the robotŠs ability to navigate while knowing its lo-

calization, avoiding obstacles and planning an optimal path to achieve a particular mission.

Many robotic perception techniques have been introduced in the state-of-the-art since the

rise of industrial robots for robotic perception. Some techniques used information acquired

from the robotŠs actuators, i.e., wheel odometer and speedometer; these proprioceptive

techniques would suffer from high drift. After the emergence of Micro Electronic Me-

chanical Systems (MEMS) technology, other techniques depended on the proprioceptive
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states of the robot acquired using an Inertial Measurement Unit (IMU) aided by a Global

Positioning System (GPS). These techniques would provide better accuracy but still fails

in many scenarios. Recently, CMOS1 vision sensors are exploited in robotic perception

for their light weight and relatively low power consumption. CMOS cameras are used for

robotics perception because they provide less noisy data and do not suffer from slipping

which offers high level of accuracy. Using our level of expertise in computer vision, we are

motivated to investigate vision-based robotic perception in order to improve localization

and navigation.

Although conventional CMOS cameras provide much higher accuracy than other sensors,

still, they have some drawbacks which constrain the robotŠs motion. Moreover, they may

fail in some edge cases due to their restraining mode of operation. In the context of

this thesis, we investigate the substitution of conventional frame-based cameras with

neuromorphic vision sensors that resemble the functionality of the biological eye. We

study the advantages and restrictions of neuromorphic vision sensors and show how they

can be exploited in robotics perception.

1.2 Philosophy

We believe that the outcomes of any scientific research would vary profoundly based on the

philosophy adopted to approach research, even if the same procedure has been followed.

For which reason, we prefer to point out to the reader the philosophy we endorse in this

thesis for a comprehensive understanding.

Throughout the work carried out in this thesis, our mindset is always oriented towards

finding a solution using minimal resources possible (information, sensors, power consump-

tion and computational power) to achieve the best possible outcome and make sure they

1complementary metal-oxide semiconductor
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have been fully exploited. We kept this philosophy in mind while constantly asking if the

found solution provides satisfying accuracy, runs fast enough and, most importantly, if

this solution is the simplest it can be or not. Furthermore, we iteratively asked these

questions to improve the outcomes attained. Also, we visit scrutinizingly all the details

needed to provide a complete solution while keeping equilibrium without disrupting the

big picture. Understanding this philosophy would help knowing why each chapter in this

thesis is put in its place the way it is.

1.3 Thesis Outline

In the second chapter, we start by introducing a brief history of robotics and the advance-

ments achieved in the robotics field. We then discuss the meaning of robotic perception

and the different types of sensors used in it. Hence, we show why conventional cameras are

restraining and what is the proposed frame-based alternatives. We argue why a paradigm

shift is needed and present the neuromorphic vision sensors and the current challenges

of employing them in robotics. Finally, we present the state-of-the-art of vision-based

perception and introduce our proposed solution.

The third chapter discusses the first challenge we approached: How to benchmark new

algorithms for novel sensors. We present the different trials to benchmark different types

of neuromorphic algorithms. Henceforth, we show how we approached the problem to

generate ground-truth that fits for our application.

The following chapters separately show how each required chunk to construct our scheme

is studied and improved. The fourth chapter presents why optical flow is consistent with

the mode of operation of neuromorphic vision sensors and why we believe optical flow

makes an excellent candidate to be used for neuromorphic motion state estimation. Finally,

we show how we improve the quality of optical flow for our application.
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The fifth chapter presents how we can exploit geometric information in the environment

to augment the data provided by neuromorphic vision sensors and exploit lines for better

data association. We offer a more straightforward method for neuromorphic line detection

and segmentation without disturbing the detection quality or the computational time.

The complete scheme of our neuromorphic visual-inertial odometry system is presented in

the sixth chapter. We assemble all the blocks introduced in this thesis in an optimisation

scheme, which we believe to be the first to exploit optical flow information for neuromor-

phic visual odometry. Finally, we conclude the outcomes of our thesis and discuss the

possible future work for improvements in the seventh chapter.

Each chapter in this thesis represents a work published in different conferences. In our

work published in VISSAP 2021, we proposed an evaluation dataset for event-based

optical flow and tested different state-of-the-art optical flow algorithms. Consequently,

we discussed the restrictions of each algorithm and how they can be improved. After

evaluating and understanding the capacity of the tested algorithms, we introduced a faster

and more accurate event-based optical flow algorithm that uses Principal Component

Analysis (PCA) and applied different regularization techniques to improve the estimated

optical flow, which was published in ICIP 2022 conference. In order to use optical flow

for 6-DoF pose estimation, we need to increase the information we know about the

environment such as depth and geometry. For this reason, we developed an event-based

line detection and tracking algorithm capable of detecting lines in varying situations in

real-time. We presented this work in ICPR 2022 conference. In ACCV 2022, we introduce

an optimization scheme using optical flow. Based on the proposed optical flow tracking

method, we introduce an optimization scheme set up with a twist graph instead of a

pose graph. Upon validation on high-quality simulated and real-world sequences, we show

that our algorithm does not require any triangulation or key-frame selection and can be

fine-tuned to meet real- time requirements according to the eventsŠ frequency.
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2 Vision-Based Perception

The ability to perceive for any robot is essential in order to achieve any assigned

task properly. In this chapter, we present a brief history of robotics and how a

robot is able to see. Then, we demonstrate the limitations of conventional vision

sensors and their possible alternatives. Finally, as a solution, we present why

neuromorphic vision sensors are suitable for robotic perception and what are the

challenges we need to tackle to provide robust robotic self-motion perception

solutions.

Chapter abstract

2.1 Introduction

ŞEmo, please donŠt interrupt me! I am trying to workŤ. A sentence that may be said

frequently by a person who owns the AI1 desktop pet EMO produced by the Living.ai

company. A cognitive robot that understands its surroundings and develops a personality

accordingly. It acts as a tiny flatmate who has a taste for music and may seek your

attention many times a day. Such a technology, which combines rigid logical thinking,

artistic facial expressions and responsive emotions, is the fruit of a journey of hundreds

of years of research. Although it is difficult to trace back the whole timeline of robotics,

1Artificial intelligence
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some events are significantly remarkable to play the role of game-changer in the history

of robotics. More than eight hundred years ago, Ismail al-Jazari, an Islamic polymath,

inventor and mechanical engineer who served as the chief engineer of Artuklu Palace

(currently in Turkey), published his book [al Jazar2̄, 1973] presenting many of his robotic

inventions (with illustration). Amongst these inventions, we can find the crank mechanism,

connecting rod, reciprocating piston engine, suction pipe, suction pump, double-acting

pump, cam, camshaft, segmental gear, the first mechanical clocks driven by water and

weights. Most importantly, Al-Jazari demonstrates, in simple "Do It Yourself" language,

many humanoid programmable robots that can provide water for ablution or serve wine to

the king (see Figure 2.1a).

Roaming from the east to the west about three hundred years later, during the period

of renaissance, Leonardo Da Vinci presented his humanoid knight robot amongst his

notebooks and drawings in Codex Atlanticus [Rosheim, 2006]. Da Vinci drew accurately

different human body joints and depicted them in his robot model (see Figure 2.1c).

Although no final design of this robot was found, according to Da Vinci, this robot had

sufficient degrees of freedom to imitate human motion. Scientists tried to replicate this

robot based on the understanding of his sketches.

Amidst the past century, Joseph Engelberger - father of modern robotics - founded his

company which provided the first real industrial robot: The Unimate [Engelberger, 2012].

His robot was electrically powered and used hydraulic arms to perform repetitively dan-

gerous tasks without human interference, e.g., metalworking and welding in car factories

(see Figure 2.1b). According to the frequent definitions of modern robots, this robot can

be considered the first to be closely defined as a robot (see Definition 2.1).
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(a) Illustration of one of Al-
JazariŠs Robots

(b) EngelbergerŠs Unimate

(c) Da VinciŠs sketches for knight robot

Figure 2.1: Left: illustration of Al-JazariŠs robot that resembles a girl
serving water and soap to wash hands [al Jazar2̄, 1973]. Middle: sketches

of joints and mechanisms used in Da VinciŠs knight [Rosheim, 2006].
Right: Engelberger with his partner G. Dovel next to their Unimate

[Engelberger, 2012].

Definition 1 Industrial Robot

A programmable device that can repetitively perceive, analyze and act to substitute

humans and does not necessarily resemble human beings a

amany definitions vary in the state-of-the-art, here we try to provide a concise and informative
definition.

According to the industrial robots definition (see Definition 2.1), in this thesis, we shed

light on the navigation task of agile robots and how to provide new possible solutions in this

domain. Agile robots are the kind of robots able to achieve high manoeuvrability, modify
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their configuration and consequently take rapid decisions in order to accomplish relatively

tricky tasks. Robotic navigation encompasses many tasks, including obstacle avoidance

[Zohaib et al., 2013], environment segmentation [Minaee et al., 2021], and mission and

path planning [Souissi et al., 2013], all of which depend on how the robot perceives the

world.

2.2 Robotic perception

Robotic perception is the robotŠs ability to interpret changes, which happen either to

the robot itself or its surrounding environment, using built-in sensors the same way

human beings use their senses. For example, if a robot moves one step forward, it should

consequently perceive that the whole environment is shifted one step closer (assuming a

static environment). Also, if an object is moved from its initial position, the robot should

recognise this modification. Sensors used in robotics vary in their nature, capabilities and

applications. These sensors can be classified into two groups [Rubio et al., 2019]:

• Proprioceptive/Exteroceptive:

Proprioceptive sensors are able to measure quantities belonging to the robot itself,

e.g. battery voltage, joint angles, acceleration and velocities. Inertial measurement

unit (IMU), wheel encoder and potentiometers belong to these sensors. Extero-

ceptive sensors capture information from the surroundings. This information can

be light intensity, travelled distances, sound amplitude or electromagnetic waves.

Some of these sensors are Charge-Coupled Device/Complementary Metal-Oxide-

Semiconductor (CCD/CMOS) cameras, Ultrasonic sensors or a Global Positioning

System (GPS).

• Active/Passive: Active sensors diffuse energy in the environment and evaluate

its response, then concludes a representation about the environment. For instance,

Laser rangefinders, reflectivity sensors and magnetic encoders. On the other hand,
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sensors that only absorb energy emitted by the environment are called passive sensors

like temperature sensors, compasses and CCD/CMOS cameras.

According to this classification, each group is considered effective in specific applications

and environmental setup. Consequently, based on our area of expertise, we focus on

vision-based perception in scenarios that require agility and manoeuvrability. Vision-based

perception systems can use conventional stereo cameras, RGB-D cameras or monocular

cameras aided with sensors fusion to improve estimation quality and tackle monocular-

camera-based issues such as absolute scale ambiguity. In order to attain a power-efficient,

lightweight and low-cost system, this thesis is focuses on monocular vision-based sensor

fusion systems. Monocular conventional vision systems would provide acceptable solution

to many robotic applications, however, they may undergo serious issues when used

in challenging scenarios. In the following section we demonstrate the strengths and

weaknesses of CMOS/CCD vision sensor.

2.3 Conventional Vision Sensors

To provide more comprehensive awareness to a machine of its surroundings, conventional

cameras [Wanlass and Sah, 1991] were introduced in robotics [Myers, 1980] as a reason-

able candidate for their relatively low power consumption and low data transmission latency.

Since the eighties and until today, standard frame-based cameras have proven acceptable

performance in many fields from surgery [Gumbs et al., 2021], food processing industry

[Zhu et al., 2021], product assembly and quality control [Silva et al., 2018], agriculture

[Paul et al., 2020] to self-driving cars [Yaqoob et al., 2019] and many other fields (see

Figure 2.2). Standard camerasŠ mode of operation provides synchronously acquired images

at relatively low frequency (from 20 to 120 Frames per second). Although these cameras

function well in many applications, their mode of operation can be undermined in scenarios

where abrupt changes or high manoeuvrability are present such as handheld systems and

drones.
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(a) FanucŠs vision-aided robotic
arm in carŠs production line

[Fanuc, 2022]

(b) First google self-driving
car[waymo, 2022]

(c) Virtual Incision surgical vision-
aided robot[Incisio, 2022]

Figure 2.2: Examples of well-known vision-aided robots in different
fields of industry

2.3.1 Advantages

Being a subject of consistent development for the last fifty years, standard camerasŠ

chips have reached a size where a high definition camera can be embedded in a less

than one-centimetre thick mobile phone. These chips have a sufficiently large amount

of photoreceptors where the signal provided by each one can help create crisp and sharp

images. The voltage created by each pixel is quantized with sufficient resolution to

maintain distinctive colours. Hence, sharp images with relatively accurate photometric

information can be acquired. The richness of photometric information provided by stan-

dard cameras can play a vital role for a machine to distinguish the surrounding environment.

In modern digital cameras, each pixel is a whole electrical circuit containing the photore-

ceptor, signal amplifier, analog to digital converter, and other components. The ratio

between the surface area of the photoreceptor to the whole pixel area is called the pixelŠs

fill factor, where standard cameras are endowed with sufficiently large fill factor (can

reach 70%). Consequently, the provided photometric information would have acceptable

Signal to Noise Ratio (SNR) in good lighting conditions because larger photoreceptor area

allows better acquisition of light intensity.
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Finally, one advantage that is indispensable, especially for standard cameras, is that they

have been integrated into the industry for more than fifty years. We find many fast-growing

companies such as Aquifi which employs machine vision and deep learning to provide

low-cost solutions for logistics in industrial environments and LMI Technologies which

exploits machine vision to automate factory lines inspection. For the future, according

to the market research conducted by Mordor Intelligence, the Compound Annual Growth

Rate (CAGR) of robotic vision market is expected to gain 9.86% by 2027 in spite of the

impact of COVID-19 pandemic. Based on the current state, the amount of investment put

in machine vision and future expectations, vision-aided systems gained a level of maturity

and reliability, and as a result, most of state-of-the-art vision algorithms are developed for

these sensors.

2.3.2 Limitations

Although standard cameras are efficient enough in most cases, some scenarios would

exceed the capabilities of these cameras to some edge cases where their performance may

deteriorate. Standard cameras are designed to function in a synchronous manner with

a predetermined frame rate where each frame should wait for information from all the

pixels to be acquired. This intrinsic feature to standard cameras implies a build-up latency

for data acquisition and latency to be able to transmit such an amount of data. Data

acquisition and transmission latencies restrict standard cameras from providing a high

frame rate. Consequently, in scenarios where camera motion or environment changes fast

enough, the acquired frames may suffer from blurry patches (see Figure 2.3a). Blurry

images impair the quality and performance of machine vision systems.

In most cases, capturing full-frame data does not add up to provide any additional

knowledge other than the previous frames. Such operating mode results in a lot of data
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(a) A camera moving fast to
focus on the car causing the

surrounding highly
blurry[Photography, 2022].

(b) A captured sunset where
spots of the image look black to

tolerate the low dynamic
range[Mob, 2022].

(c) A grainy noisy image due to
low lighting conditions[Qin, 2022].

Figure 2.3: Cases where standard cameras may fail to deliver acceptable
performance.

redundancy2 which means that the efficiency of the lossless compression of the obtained

data is not optimal. Nevertheless, the data redundancy -other than being useless- may

not only require more power consumption but also cost more computational power to

process all the acquired data. The power consumption and computational power hinder

the reliability of standard cameras where lightweight is a critical requirement.

Abiding to standard frame-based nature, the collected signal should be quantized and

normalized in a way that allows encoding most of the data to be visible according to the

dynamic range. Consequently, based on the lighting conditions, some parts of the image

may appear much brighter or darker according to the camera dynamic range. By definition,

the dynamic range is the ratio between the maximum possible signal voltage and the noise

floor under dark conditions, which is described by the equation [Posch et al., 2010a]:

DR = 10 log

(

V 2
sat

V 2
dark + V 2

reset + V 2
out

)

(2.1)

Where Vsat is the maximum allowed voltage at the integration node and Vdark is the dark-

current voltage, Vout is the readout noise voltage and Vreset is the reset voltage. Since in

most standard cameras the exposure time and integration capacitance are held constant,

then most of standard cameras provide a saturation linear dynamic range limited to 60-70

2data redundancy varies depending on the dynamics of the scene
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dB whilst the dynamic range of natural scenes would exceed 140 dB [Xiao et al., 2002]

(see Figure 2.3b).

Finally, to ensure that the signal is transmitted without being corrupted due to noise can

be guaranteed whenever the ratio between the signal and noise is sufficiently large and

can be modeled as [Posch et al., 2010a]:

SNR = 10 log

(

V 2
sig

V 2
dark + V 2

photo + V 2
reset + V 2

out

)

(2.2)

Where Vphoto is the photo-current shot noise which is the dominant noise source. According

to the definition and since the SNR is proportional to Vsig and the dominant term in the

denominator is Vphoto, it is seen that for standard cameras, SNR is strongly dependent on

the scene illumination (see Figure 2.3c), which is not a stable measure for SNR. In order

to be able to find a more stable measure of SNR, either modifying of the model itself or a

whole paradigm shift is required so that the dependence of scene illumination would be

eliminated.

2.3.3 Frame-Based Alternatives

As a trial to tackle some of the problems that arose from standard frame-based cameras,

researchers developed high-speed cameras [Honour, 2009]. Unlike most standard frame-

based cameras that are limited to ∽ 30 fps, high-speed cameras can reach more than

thousands of frames per second. As a result, these cameras can help in many applica-

tions requiring abilities that surpass the human eye (see Figure 2.4a), like transitional

motion that happen within a fraction of a second. Although these cameras come up with

a solution for the problem of high maneuvers and abrupt changes in the environment,

they provide approximately the same dynamic range and redundant data as standard

cameras. Also, other issues emerge if we adopt a frame-based mode of operation for

high-speed cameras. Recording around thousand fps of high definition uncompressed
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(a) Image of a bullet passing through an
apple captured at high frame

rate[School, 2017].

(b) A high dynamic range image where a light
bulb is on while other details are sufficiently

visible[Vargas-Sierra et al., 2014].

Figure 2.4: Alternatives provided in the state-of-the-art to encounter the
limitations of standard frame-based cameras.

color images implies registering (1000 × 3 × 1280 × 720) bytes∽ 2.6Gb for only a single

second. Generating a large amount of data in a small interval of time demands high data

transmission capabilities in order to guarantee real-time communication. Even though

lossless image compression would reduce the size of an image to a few megabytes, the

capability to transfer the compressed data using the current technology is still questionable.

Furthermore, processing such an amount of data in real-time is far beyond the affordable

computational power already existing of currently available processing devices in the

industry.

In environments where luminosity bandwidth is large enough, researchers proposed a high

dynamic range CMOS camera [Vargas-Sierra et al., 2014] to expand the captured signal

quality (see Figure 2.4b). The expanded dynamic range brings the black (or white) areas

less indistinguishable. Consequently, the quality of algorithms using these sensors would

provide better results. Still, the proposed solution suffers from low frame rate data and a

very small array size (180 × 148) providing very pixelated images.
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Therefore, with the proposed solutions, we are able to conquer the frame-based restriction

in robotics applications once at a time if we are going to adopt the same mode of

operation. However, adopting only a frame-based mode of operation seems unable to

reach an equilibrium point to attain a comprehensive solution that does not suffer from

low frame rate and dynamic range. From this point of view where solving an issue leads

to another, a paradigm shift from the standard frame-based world is sought. Therefore,

scientists proposed bio-inspired sensors mimicking biological processes to achieve optimal

results in the past decade, including sensors that can replace standard frame-based cameras.

These sensors imitate the human retina and are called neuromorphic vision sensors.

2.4 Neuromorphic Vision Sensors

Besides the issues present in frame-based chips (see Section 2.3.2), another issue in

most of todayŠs chips is that they depend on Von-Neumann architecture. Von-Neumann

architecture isolates the memory and Central Processing Units (CPU) which entails the data

to go back and forth between them. Although the advantages Von-Neumann architecture

has, data transfer results in a significant waste of time and loss of optimality. A proposed

non-Von-Neumann architecture is neuromorphic computing. The term Neuromorphic

refers to processes that mimic the human brain and the functioning of the nervous

system where, unlike computers, brains use massively parallel interconnected neural

computing. The neuromorphic concept was first introduced in the 1980s as neuromorphic

computing [Schuman et al., 2017]. In 1991, Mahowald and Mead published the first silicon

neuromorphic chip called the silicon retina [Mahowald and Mead, 1991]. The electronic

circuit of neuromorphic vision sensors (also called event-based cameras) simulates the

maturely understood physiological parts of the human retina, namely, rods and cones

cells, bipolar cells, and ganglion cells. Many versions of event-based cameras have been

developed since 1989 that adopt different features. Mainly, each pixel in event-based

cameras operates, unlike frame-based cameras, asynchronously and independently. Instead
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Figure 2.5: Address-event representation between a transmitter and a re-
ceiver chip where spikes are treated serially by the encoder and then decoded
into their original form by the decoder for the receiver chip [Boahen, 2000].

of transmitting fixed frequency frames of photometric data, each pixel triggers a binary

spike (an event) according to specific condition.

2.4.1 Address-Event Representation

In order to simulate the human brain nature where neurons communicate densely in parallel,

neuromorphic systems use an address-event communication protocol. In address-event

representation (AER), a cell creates a spike (event) independently whenever its internal

state exceeds a certain threshold so that sparse spikes are communicated over a narrow

channel [Boahen, 2000]. Figure 2.5 shows a schematic where an arbiter encodes each

cell creating a spike (an event) with a unique address, then the decoder on the side

of the receiver chip decodes the received signal into its appropriate original form. The

transmitted data contains the spike address, and its polarity where the frequency of the

received signal represents its intensity. Many neuromorphic vision systems have been devel-

oped based on the address-event representation [Cottini et al., 2013, Brandli et al., 2014,

Serrano-Gotarredona and Linares-Barranco, 2013]. In the context of this thesis, we focus

on two types of neuromorphic devices, namely, the Dynamic Vision Sensors (DVS) and

Asynchronous Time-based Imaging Sensor (ATIS).
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(a) A schematic of DVS circuit showing the
photoreceptor, differencing circuit and comparator

(b) a graph showing the input voltage created by
the light exposed to the photoreceptor and the

output of the circuitry.

Figure 2.6: The DVS system proposed in [Lichtsteiner et al., 2008]

2.4.2 Dynamic Vision Sensors

One of the mature milestones counted in neuromorphic vision history was proposed by

[Lichtsteiner et al., 2008] as dynamic vision sensors. Dynamic vision sensors (DVS) oper-

ate as change detection devices where each pixel fires, independently and asynchronously,

an event whenever its exposed light intensity exceeds a certain threshold. The DVS

retina simulates the human eye differential functionality capable of detecting change by

incorporating a circuit containing a photoreceptor, a differencing circuit and two-resistor

comparators. The photoreceptor transmits a logarithmic response according to the amount

of received light. The differencing circuit receives the signal transmitted by the photore-

ceptor and amplifies it. Whenever the differencing voltage exceeds a certain threshold, its

signal is reset. The two-resistor comparators send either a positive or a negative signal

based on the signal received from the differencing circuit (see Figure 2.6). The output of

DVS is a stream of events as a tuple ⟨x, y, p, t⟩ where x and y are the pixel position on

the retina where the event is triggered, p is the polarity of the event (a positive event

represent an increase in luminosity and a negative one represents the opposite). DVS
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devices are mathematically described as:

∆L(xi, yi, ti) = L(xi, yi, ti) − L(xi, yi, ti − ∆t) = piδl (2.3)

Where ∆L(xi, yi, ti) is the logarithmic luminosity change exposed to a specific pixel

position (xi, yi) at time ti responsible for firing an event with the polarity pi if the

luminosity exceeds the limit δl. The asynchronous and independent nature of each pixel

where no redundant data is being transmitted allows a faster data transmission with

microsecond latency.

2.4.3 Asynchronous Time-based Imaging Sensors

DVS devices can only provide binary events indicating if a change occurred in the environ-

ment or not. In order to tackle the lack of any photometric information in the environment,

another milestone was proposed by [Posch et al., 2010a] as Asynchronous Time-based

Imaging Sensors (ATIS). ATIS devices incorporate the same circuitry as DVS devices with

an additional exposure measurement circuitry responsible for photometric information.

The usage of the time-domain (or Pulse Width Modulation PWM) method, where light

intensity is measured by the time it takes photocurrent to produce a certain voltage, is

useful for the improvement of DR and SNR.

The exposure measurement circuit is realized as a time-based PWM circuit based on

two global integration thresholds (Vref H / Vref L) (see Figure 2.7). With the increment

in photo-voltage an event is fired and pulse is created, this pulse initiates an exposure

measurement cycle. Photometric information is interpreted as an inversely proportional

value to time needed for reference voltage integration.

The Pulses created by the change detection circuit closes the switch that connects the

exposure measurement circuit where the logic control ensures that Vref H is connected as
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Figure 2.7: the scheme to the left shows the ATIS pixel two circuits
and the graph to the right explains (from top to bottom) the photo-
voltage, the events fired due to change detection, pulses that trigger the
exposure measurement, the output of C comparator and the integration

time measurements

reference voltage. Then integration starts, thus the voltage Vint decreases proportionally

to the photo-voltage (illumination). At the point where the comparator C toggles (reaches

Vref H voltage), it activates the Req_B[H ] signal whilst the logic control changes the

reference voltage to Vref L. The voltage will continue to decrease and when the voltage

reaches the reference voltage Vref L it activates another request Req_B[L]. At this point,

the illumination exposed to the photo-diode is encoded as the time between the two

requests Req_B[H ] and Req_B[L] which is inversely proportional to the illumination

intensity.

Whilst thereŠs a possibility that the illumination in the scene is high enough that the change

detection circuit would detect another event before the end of the exposure measurement

cycle is terminated (which is interpreted by the reception of Req_B[H ] signal). In this

case, the first request is discarded and the illumination is incremented by the amount of

voltage threshold predefined for event detection.
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2.4.4 Challenges

The rise of event-based vision sensors at the beginning of the last decade captured

the attention of many researchers to augment the performance of standard cameras.

In [Gallego et al., 2022] a survey is provided to show the different applications where

Event-Based cameras were introduced. From the primary elements needed like Feature de-

tection and tracking [Drazen et al., 2011], [Gallego et al., 2022], optical flow estimation

[Benosman et al., 2013], [Delbrück, 2008] and depth estimation [Rebecq et al., 2018],

[Rebecq et al., 2017] to algorithms like tracking and mapping [Weikersdorfer et al., 2014],

[Kim et al., 2016] and visual-inertial odometry algorithms [Mourikis and Roumeliotis, 2007],

[Forster et al., 2016]. The paradigm shift proposed by Event-Based cameras in the nature

of acquired data, latency and camera characteristics like the dynamic range and signal to

noise ratio has introduced some challenging opportunities that can be summarized as:

• Algorithms reinvention: It is evident that adaptations or maybe total changes

in computer vision algorithms are required due to the different natures of cameras.

Frame-based algorithms take a sequence of synchronous images, and event-based

cameras output a stream of independent asynchronous events that depend only on

scene brightness and motion change. Such a difference demands total changes in

the algorithmic level and the hardware used to process event-based data.

• Noise handling: All sensors provide the desired signal with added noise due to

non-idealities in electronics. For imagery Sensors, transistors noise also participate

broadly. Thus, noise modelling and suppression is vital as they would slow down the

deployment of Event-based cameras in the industry and real-life scenarios.

• Data association: An event contains only information about the change of lighting

of the scene. The question is how to provide concrete mathematical models able

to exploit such a low amount of information to gain more information about the

environment.



2.5. Vision-based motion estimation and recognition 35

• Benchmarking: Event-based cameras are still considered an evolving research topic

where improvements and changes are being made every day. Consequently, there is

a lack of datasets able to cover all possible day-to-day scenarios where event-based

cameras would be deployed. Moreover, event-based cameras, being under constant

evolution, most of the algorithms present nowadays still did not unlock the full

potential of event-based cameras to have an objective judgement of event-based

camera capabilities.

• Real-time applicability: Event-based camera offers a great reduction of data to be

transmitted or processed, however, they can provide up to several millions of events

per second which would raise many questions about the ability of state-of-the-art

algorithms to process this amount of data in real-time.

With these challenging opportunities, we focus, in this thesis, on how can they be

approached to propose proper solution in the field of vision-based navigation based on

neuromorphic vision.

2.5 Vision-based motion estimation and recognition

Robotic autonomous navigation is a sophisticated process that includes many tasks that

vary in complexity and importance. These tasks can be summarized as robotŠs state

estimation, path planning, trajectory generation, obstacle avoidance and mapping of the

surroundings. Furthermore, being one of the sensors providing rich information about

the surroundings, cameras (and vision sensors) are highly included in robotic autonomous

navigation, especially in state estimation, obstacle avoidance and mapping.

Using vision sensors to estimate ego-motion was discussed in [Longuet-Higgins, 1981]

where motion is estimated based on the correspondence of repeatable visual informa-

tion to find the 3D back projection of 2D image points and hence recover a 6-DOF
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motion using stereo image pairs or an up-to-scale 6-DOF estimation using monocu-

lar image pairs. Since then, this problem has been known as Structure From Motion

(SFM), or less commonly, Structure and Motion (SaM) because it reconstructs the 3D

points from the cameraŠs motion and then the camera motion based on triangulation of

the reconstructed 3D points. Many attempts have been proposed [Bolles et al., 1987],

[Koenderink and Van Doorn, 1991], [Kanade and Morris, 1998], [Jacobs, 2001] to pro-

vide a higher estimation quality and faster calculations. A robust solution to SFM

problem with real-time capabilities3 was introduced in [Nister, 2003] where a faster fac-

torization method is proposed side by side with RanSaC [Fischler and Bolles, 1981] for

better outlier rejection. SFM is capable of reconstructing ordered or non-ordered sets of

images to estimate motion and reconstruct the environment accurately. Another group

of machine vision algorithms that shares most of the characteristics of SFM algorithms

is visual odometry(see Figure 2.8), where only ordered images can be used to estimate

consecutive relative poses with a higher level of optimization and less computational time.

The term odometry first appeared in [Nistér et al., 2004] inspired from wheel odometry,

which is responsible for incremental motion estimation using data encoded from a vehicleŠs

wheels rotation. On the contrary to wheel odometry, visual odometry does not suffer

from slipping leading to high drift over time. Visual odometry refines the estimated

poses and structure using local optimization of pose graph [Mur-Artal et al., 2015a] or

bundle adjustment [Qin et al., 2018]. Bundle adjustment optimizes the projection error of

matched features between only existing images in the sliding window to reduce the com-

putational time, which results in local optimization. Locally optimizing a certain number

of recent features leads to incremental drift due to the accumulation of estimation errors.

Correcting the accumulated drift may be done with the aid of GPS [Parra et al., 2011],

IMU [Weiss and Siegwart, 2011] or LiDaR systems [Graeter et al., 2018]. Simultaneous

Localization And mapping (SLAM) algorithms obtain global drift correction that would

3the time required to process the data is less than the time at which they are acquired
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Figure 2.8: different machine vision motion estimation groups

require a global bundle adjustment which is implemented whenever loop closure is de-

tected if a place is revisited using place recognition algorithms like the bag of visual

words [Gálvez-López and Tardos, 2012]. SLAM can be considered a visual odometry that

applies global bundle adjustment and place recognition, which leads to higher estimation

accuracy and requires more computational time. In the context of this thesis, we are

interested in understanding and improving event-based visual odometry.

In the realm of frame-based visual odometry, algorithms can be categorized as Sparse,

semi-dense or dense methods. The sparse method optimizes the pose over distinctive

matched points like corners or features in the scene. The semi-dense method uses only high

gradient pixels for optimization. The dense method applies optimization directly to every

pixel of the image. The inability to estimate accurate depth using only a single image with

no prior information about the size of objects captured in the scene favored the usage of

stereo cameras for visual odometry if no sensor fusion is used. Stereo Vision visual odom-

etry first appeared to tackle the problem of planetary roverŠs navigation [Moravec, 1980]

featuring a complete pipeline that still inspires many of todayŠs works. In one of the first
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attempts for sparse stereo motion estimation, [Matthies and Shafer, 1987] detected and

matched corners to find the pose between successive stereo pairs, and the covariance

matrix of this transformation is used in a Kalman filter scheme to estimate a local model.

[Lacroix et al., 1999] improved the motion estimation by choosing correspondence points

differently, and they are selected using the cross-correlation of disparity map between each

stereo pair. Many other attempts have been carried out between 1980 and 2004 to improve

vision-based motion estimation until the work of [Nistér et al., 2004] that explicitly coined

the name visual odometry. In [Nistér et al., 2004], vision-based motion estimation for

both stereo and monocular schemes was discussed on long-range real-time scenarios.

Instead of using 3D to 2D projection, [Comport et al., 2007] used the quadrifocal tensor

for direct 2D to 2D projection and no need for triangulation. [Kitt et al., 2010] used the

trifocal tensor of related features of three images of the same scene augmented with an

iterated sigma point Kalman filter to correct for non-linearity.

Parallel to research carried out to improve visual odometry based on sparse correspondence

points, the dense method (also called direct methods) applies optimization on every pixel.

[Horn and Negahdaripour, 1987] predicts image derivatives and finds the motion that

minimizes the error between predicted and measured values on a brightness function (the

image) of a monocular camera which was later improved with a better mathematical model

in [Horn and Weldon, 1988]. [Stein and Shashua, 1996] extended HornŠs work based on

the work present in [Shashua and Hanna, 1995] to estimate a dense depth map of the

scene by adding a third view to the optimization process. To boost the accuracy of visual

odometry algorithms and with the rise of smartphones and augmented vision sensors, vision

algorithms were aided mainly using either depth sensors or inertial measurement units. For

example, [Tykkälä et al., 2011] used an RGB-D sensor to optimize a bi-objective function

that combines the depth and photometric information but achieved a low frame rate due

to the heavy optimization process. The same year, [Steinbrücker et al., 2011] proposed a

faster RGB-D visual odometry algorithm that minimizes the back-projection error based
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on lie algebra representation. In [Weiss et al., 2012], vision systems for aerial vehicles

scenarios are augmented also using inertial measurement unit in a Kalman filter scheme

to correct for more accurate pose and absolute scale factor.

A novel approach is introduced in 2013 to compromise between the trade-offs of either

sparse or dense methods: The semi-dense approach. Semi-dense approach was first

introduced by [Engel et al., 2013] that provides the accuracy of dense tracking while

running in real-time since it does not use feature extraction or matching algorithms and

depends solely on high gradient pixels. [Forster et al., 2014] proposed a probabilistic

mapping to reject outliers and estimate better accuracy with a sufficiently high frame rate.

With the advantages of semi-dense visual odometry, [Forster et al., 2016] augmented

[Forster et al., 2014] with IMU measurements where the IMU measurements are presented

on manifolds for better IMU error representation.

The change in the nature of vision sensors proposed by the event-based cameras re-

quired a paradigm shift on how the visual odometry problem is modeled and how it can

be solved. During the past decade, many attempts were introduced where some have

adapted the acquired data from event-based cameras to suit frame-based algorithms,

while others reformulated the problem to fully exploit event-based capabilities. A novel

method was presented in [Weikersdorfer and Conradt, 2012] using a particle filter for

motion tracking to estimate the cameraŠs rotation by creating mosaic images of the

scene, while an extended Kalman filter is used to refine the gradient intensity results.

In [Weikersdorfer et al., 2013], a particle filter is used to estimate the 2D motion of

the used rig based on the work presented in [Weikersdorfer and Conradt, 2012] and a

2D map was simultaneously reconstructed. [Mueggler et al., 2014] developed a 6-DOF

motion estimation for simple, uncluttered and structured environments that contain lines

where the pose is estimated by minimizing the reprojection error of each detected line in

the environment. [Rebecq et al., 2016b] proposed an event-based tracking and mapping
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method to estimate the pose based on image alignment by warping event images using

Lucas-Kanade method [Baker and Matthews, 2004] and constructed the map based on

the event-based space-sweep present in [Rebecq et al., 2016a] to provide depth and 3D

map. [Kim et al., 2016] pursued their work in [Kim et al., 2008] using also extended

Kalman filter to estimate pose, gradient intensity and mapping implemented using a GPU.

[Chamorro Hernández et al., 2020] Presented a Lie-Based Kalman filtering method fir

tracking based on lines estimation for high speed applications.

Enhancing the robustness and accuracy of event-based cameras can be done, similar to

standard cameras, by augmenting the camera with either other sensors, frame-based RGB-

D cameras or another event-based camera for stereo-vision. [Censi and Scaramuzza, 2014]

provided 6-DOF visual odometry by fusing the event-based camera with a CMOS camera

where only rotation was accurately estimated and translation suffered deteriorated accu-

racy. [Kueng et al., 2016] tracked the feature detected in a CMOS image frame using the

event-based camera and used a Bayesian depth filter to estimate the depth of 2D tracked

features and obtain 3D points, which are used to minimize the reprojection error between

2D features and 3D points to estimate 6-DOF pose. [Weikersdorfer et al., 2014] used an

extrinsically calibrated RGB-D sensor with an event-based camera to have an accurate

transformation of each depth value in the eventsŠ frame and applied a Bayesian particle

filter to estimate 6-DOF pose and a map. In a stereo setting, [Zuo et al., 2022] proposed

a semi-dense depth map using An event camera assisted with a depth sensor.

Using an Inertial Measurement Unit (IMU) helps improve estimates provided by monocu-

lar camera and obtain accurate absolute scale. [Zihao Zhu et al., 2017] tracks features

using optical-flow-based expectation minimization and then uses the tracked features

with IMU measurements in a structure-less Kalman filter scheme for pose estimation.

[Mueggler et al., 2018] used splines on the manifold for better representation of IMU
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Algorithm Sensors DOF Method
[Kim et al., 2008] DVS 3-DOF Kalman filtering

[Weikersdorfer et al., 2013] DVS 3-DOF Particle filtering
[Weikersdorfer and Conradt, 2012] DVS 3-DOF Particle filtering

[Mueggler et al., 2014] DVS 6-DOF reprojection error minimization
[Rebecq et al., 2016b] DVS 6-DOF Keyframe optimisation

[Kim et al., 2016] DVS 6-DOF Kalman filtering
[Chamorro Hernández et al., 2020] DVS 6-DOF Lie-Based Kalman Filtering

[Censi and Scaramuzza, 2014] DVS/CMOS 3-DOF Bayesian filtering
[Kueng et al., 2016] DVS/CMOS 6-DOF reprojection error minimization

[Weikersdorfer et al., 2014] DVS/RGB-D 6-DOF Particle filtering
[Rebecq et al., 2017] DVS/CMOS 6-DOF Keyframe optimisation

[Zihao Zhu et al., 2017] DVS/IMU 6-DOF Kalman filtering
[Mueggler et al., 2018] DVS/IMU 6-DOF reprojection error minimization

[Vidal et al., 2018] DVS/CMOS/IMU 6-DOF Keyframe optimisation
[Zuo et al., 2022] DVS/Depth 6-DOF reprojection error minimization

[Le Gentil et al., 2020] DVS/IMU 6-DOF reprojection error minimization

Table 2.1: Visual Odometry algorithms and the sensors used for each one,
the degrees of freedom of the estimated states and the their estimation

method

readings and minimized the geometric reprojection and IMU error for 6-DOF pose estima-

tion. [Vidal et al., 2018] proposed a SLAM system that combines an event-based camera,

CMOS camera and an IMU to estimate an accurate scheme where they depend mainly

on their work [Rebecq et al., 2017] based on feature tracking and non-linear keyframe

optimization. Instead of depending on point features, [Le Gentil et al., 2020] exploited

the geometric characteristics of the environments and used lines to estimate ego-motion

of the camera (see Table 2.1).

The algorithms presented in the state-of-the-art of event-based cameras (see Table 2.1)

vary in their approach, estimated states, used sensors and performance. Although they

provided varying estimation accuracy, these algorithms prove that event-based cameras

can afford reliability for motion estimation (with certain limits) and that they can tackle

the problems faced using frame-based vision sensors such as varying lighting conditions

[Rebecq et al., 2016b], [Vidal et al., 2018] and aggressive maneuvers [Mueggler et al., 2014],

[Kim et al., 2016], [Rebecq et al., 2016b], [Rebecq et al., 2017]. Additionally, most of
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these methods can run in real-time if eventsŠ frequency does not exceed a certain thresh-

old4. Despite the fact that event-based cameras adopt an operation mode that differs from

frame-based cameras, the introduced algorithms depend largely on concepts embraced for

frame-based techniques such as feature extraction and keyframe optimization.

Event-based cameras trigger events whenever a change is detected. This operation

mode is coherent with the brightness constancy condition (as will show in the following

chapters), which explains how optical flow is estimated. Although many advancements

have been introduced in event-based optical flow estimation [Benosman et al., 2013],

[Low et al., 2020], [Almatrafi et al., 2020], we notice that no work introduced in the-

state-of-the-art to exploit the consistency of even-based cameras operation mode and

optical flow estimation for 6-DoF state estimation and only [Zihao Zhu et al., 2017] used

optical flow as a method to feature tracking.

In the context of this thesis, we explore the reliability of event-based optical flow and

how to fully exploit it for 6-DoF motion estimation. Additionally, we discuss the ability

to liberate event-based cameras from keyframes or triangulation. Furthermore, since

any perfect 6-DoF motion estimation algorithm will not be reliable unless it runs in

real-time, we also discuss how depending on optical flow can provide the ability to control

computational time based on events frequency.

2.6 Flow-Based Visual-Inertial Odometry

The problem of visual odometry, as explained, is the problem of trying to estimate motion

states using a vision sensor. The output of a vision sensor ( sequence of images for

frame-based cameras ¶Ii♢N or event packets for event-based cameras ¶Ei♢N ) are used

to estimate a 6-DOF pose. The camera pose can be represented by a 4 × 4 rigid body

4The usage of GPU may be needed
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transformation matrix on Tij ∈ SE(3) between each time step i and j where:

Tij =









Rij tij

0 1









(2.4)

Where Rij ∈ SO(3) is the rotation matrix and tij ∈ R
3 is the translation vector.

The output of a visual odometry algorithm is a set of absolute transformation C0:N =

¶C0,C1, . . . ,CN♢ describing the pose of the camera at each time step where each absolute

pose can be calculated by concatenating the previous absolute pose with the current

relative pose:

Cj = CiTij (2.5)

Many schemes were introduced in the state-of-the-art (see Section 2.5 "Page" 35) to

provide a better way to estimate event-based visual odometry either as a stand-alone

sensor or with the aid of other necessary sensors. Although an event is triggered according

to change in the environment (see Equation 2.3 "Page" 32) which is mathematically

and intuitively consistent with the brightness constancy constraint5, we could not find

an algorithm that basically depends on the optimization of the optical flow field for

motion estimation. In the context of this thesis, we explore the opportunity to provide a

visual-inertial odometry system that basically depends on the optical flow. We find the

depth and pose by minimizing the errors between estimated and measured optical flow

with the aid of an IMU described by the cost function:
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∑
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∆jζ (2.6)

where N is the number of estimated optical flow during optimisation span and M is the

number of IMU measurements used. ∆iu, ∆jimu are the error ∆jζ terms corresponding to

optical flow estimation, the IMU measurements respectively. ∆jba and ∆jbw are the error

5Light does not change dynamically in our day-to-day experience and, if existing, it happens as an
infinitesimal transition.
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Figure 2.9: Blocks used in our proposed scheme

terms corresponding to the accelerometer and gyroscope bias. The error in the twist ζ is

added to enhance the quality of the estimated states. Using optical flow for 6-DoF motion

estimation at the absence of depth information is a computationally expensive process.

For which reason, we exploit the geometric information available in indoor environments

and use a Line detection and tracking algorithm to augment the known information of the

environment and reduce the required computational time. Consequently, the obtained in-

formation are exploited in a tightly coupled optimisation scheme to estimate 6-DoF motion.

To make sure our scheme runs in real-time without loss of estimation quality, we improve

the estimation of event-based optical flow using Principal Component analysis which

improves event-based optical flow estimation and reduced the computational time. Our
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scheme also provides a solution to alleviate the weight of heavy calculation needed for

events optimization by implementing data reduction and applying line segments detection

in structured environments. The used line detection and tracking scheme does not re-

quire search algorithms to cluster events into lines which does not affect the real time

capabilities. The estimated optical flow, detected lines, and IMU measurements are used

together to calculate the error terms of Equation 2.6 and estimate the 6-DoF pose and

depth (see Figure 2.9).

Each of the following chapters demonstrates how we provide a solution to the assigned

problem. For the necessity to have ground truth to validate the accuracy of our proposed

algorithm, chapter 3 shows how we created our dataset. Chapter 4 presents the state-of-

the-art for event-based optical flow and the novelty proposed in our method. Chapter 5

shows the improvement we made to provide an accurate line detection algorithm. Chapter

6 demonstrates how we exploit the IMU side-by-side with the optical flow to obtain 6-DOF

poses. Finally, chapter 7 contains the conclusion to our work and perspectives for future

work.
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3 Benchmarking for Neuromorphic
Vision Sensors

In the context of this thesis, at the moment when we started the development

phase, there was a lack of convenient benchmarking datasets capable of meeting

the requirement to test our developed algorithms. In this chapter we show the

different types of benchmarking datasets for event-based algorithms that were

introduced in the state of the art ( before and after the creation of ours ). We

present the methodology we followed to create a benchmarking dataset capable

of testing the quality of event-based optical flow as well as pose estimation

algorithms. Finally, we show a validation step to make sure of the accuracy of

our dataset.

Chapter abstract

3.1 Introduction

Many computer vision algorithms have been developed since the rise of vision sensors and

computers capabilities. In each computer vision field, many variants of algorithms are

provided to improve the quality of the expected outcomes. However, legitimate questions

emerge concurrently with these technological leaps. For example, how can we trust the

outcomes of each algorithm and what are the means we use to measure their quality.

Also, is there an algorithm (or algorithms) that can serve as a baseline against which
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we can compare our outcomes to evaluate the achieved improvements. A baseline in

computer vision can be thought of as an algorithm that accomplishes a particular task

and can attain acceptable performance, considered the zero line from which we measure

the reached progress.

In some cases, a baseline may be a simple algorithm achieving the task with sufficiently

acceptable performance in all aspects, or in other cases, it would be an algorithm providing

the best-expected quality but suffering from some shortcomings hindering its usage. In

order to measure the accuracy of an algorithm, researchers provide specific metrics to

assess the algorithms using the "ground-truth". Ground-truth is predefined scenarios

where highly accurate sensors are used to acquire the actual outcome to be estimated by

an algorithm. Hence, the algorithmŠs quality can be deduced using the provided metrics

and the ground truth.

Many benchmarking datasets are provided in computer vision. The deep neural network

ImageNet [Russakovsky et al., 2015] uses millions of images of thousands of classes for

image classification algorithms. Cityscapes dataset [Cordts et al., 2016] contains more

than five thousand semantically segmented frames collected from about fifty different

cities for the security of self-driving cars. KITTI project [Geiger et al., 2013] provides

many sequences of car cruises to assess autonomous vehicles navigation algorithms. Mid-

dlebury dataset [Baker et al., 2011] covers many test cases for optical flow estimation

like occlusion and non-normal flow.

The introduced perception benchmarking tools work fine for the traditional frame-based

algorithms. However, with the condition that neuromorphic vision provides a new paradigm

in robotic perception, the necessity of new benchmarking techniques arises. During the

last ten years, many event-based benchmarking datasets have been developed to provide
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the relevant tests for neuromorphic vision capabilities.

3.2 Neuromorphic Benchmarking

The process of creating benchmarking datasets capable of quantifying algorithmsŠ perfor-

mance is composed of three steps. The first step is a comprehensive understanding of the

operation mode, limitations and capabilities of any sensor incorporated in the experiment.

This step is required in order to conduct proper exploitation of each sensor and correct

calibration. Secondly, the purpose for which the dataset is designed should be correctly

described in order to choose the best conditions for the recorded sequence. Finally, the

metrics against which performance will be tested need to be well defined in order to

the quality of the tested algorithms to be accurately judged. Many datasets have been

generated for neuromorphic vision sensors to evaluate many algorithms covering different

scenarios. The following section presents some of the datasets created to serve as ground

truth for different applications of event-based machine vision such as motion estimation,

object classification and optical flow.

3.2.1 SLAM systems Benchmarking

There exists a number of neuromorphic datasets in the state-of-the-art to reinforce assess-

ment of event-based SLAM related1 algorithm. For this purpose, [Weikersdorfer et al., 2014]

provided one of the first reliable datasets. A 128×128 event-based camera augmented with

an RGB-D sensor was used to record this dataset (see Figure 3.1a). Five different indoor-

only scenarios were recorded to obtain trusted depth information. The main challenge in

these sequences was to correctly estimate the map and localisation simultaneously based

on depth. However, no illumination variation or extreme velocities were tested. In addition,

1SLAM, Visual/Visual-Inertial odometry, pose and depth estimation.
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this dataset evaluates the quality of depth-augmented event-based cameras, which bi-

ases the judgement of event-based sensors because it depends mainly on depth information.

Therefore, to obtain an objective evaluation of event-based sensors, [Mueggler et al., 2017]

focused on providing sequences where the main aspects for which these sensors were

invented in the first place is challenged. A dynamic and Active-pixel Vision sensor (DAVIS)

(see Figure 3.1b), capable of providing events and grayscale intensity frames at high frame-

rate is incorporated with OptiTrack motion capture system. Indoor and outdoor scenarios

are registered where different sequences of one, three or six degrees of freedom motion

were dominant. Furthermore, varying illumination conditions are stressed to emphasize

dynamic range capabilities. Although many conditions and scenarios are covered in this

dataset, the dependence on motion capture system for ground-truth creation hindered

obtaining outdoor ground truth. Nevertheless, only monocular hand-held motion datasets

are provided.

Zhu et al. [Zhu et al., 2018] addressed the problem of stereo event-based SLAM where

fine precision sensors are required in order to provide accurate measurements. A stereo

rig composed of two 346 × 260 DAVIS sensors is used with a high precision Velodyne

LiDar and Skybotix VI depth stereo camera (see Figure 3.1c). This dataset covers mainly

scenarios for autonomous vehicles (drones, motorcycles or cars) but handheld motion

scenarios are also covered. Indoor and outdoor sequences with varying lighting conditions

are provided for drones and handheld scenarios.

In one of the latest datasets, the issue of providing low spatial resolution is tackled

by [Klenk et al., 2021]. A megapixel spatial resolution Prophesee camera is used. This

dataset addresses scenarios suitable for virtual reality where all the sensors used are

prepared to be either handhled or head mounted. High resolution stereo datasets are
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(a) The system used in
[Weikersdorfer et al., 2014]
where an eDVS camera
is attached to an Asus
Xtion RGB-D sensor.

(b) The DVS camera
used in

[Mueggler et al., 2017]
where the passive motion
capture markers should

be attached but not
visible.

(c) CAD drawing of
setting used in

[Zhu et al., 2018]; a
Velodyne LiDar, stereo

Davis camera and stereo
VI sensor with IMU

(d) The helmet used in
[Klenk et al., 2021] with

the recording kit
attached; stereo ATIS

camera, IDS stereo
camera, an IMU and the
motion capture markers.

Figure 3.1: different systems used to record datasets for SLAM related
algorithms benchmarking.

recorded for sports activities with different motion conditions (biking, running, sliding

and skateboarding). Ground truth is obtained using OptiTrack motion capture system

(see Figure 3.1). The existing datasets in the state-of-the-art cover a wide range of

event-based SLAM related scenarios and conditions, however there are still too many

scenarios to be covered.

3.2.2 Object classification Benchmarking

The maturity gained in the field of neuromorphic vision and artificial intelligence pushed

forward the exploitation of event-based cameras for object classification and seman-

tic segmentation. However, being one of the most complex vision techniques, object

classification and semantic segmentation require great attention to estimate correctly

yet greater attention to create high quality benchmarking datasets. For event-based

classification algorithm, [Li et al., 2017] created an event-based classification dataset

based on CIFAR10 frame-based classification dataset [Krizhevsky et al., 2009]. CIFAR10

dataset consists in tens of thousands of labelled groups of images. CIFAR10 is adapted to

event-based nature by recording the labelled images moving in order to capture events

using an event-based camera. Many other datasets were created similarly by moving
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images in front of an event-based camera. [Orchard et al., 2015] adapted MNIST and

Caltech-101 datasets using a pan-tilt rig to move the camera in front of static images,

[Hu et al., 2016] adapted Caltech-256 and other sequences by varying the light intensity of

dataset images, [Lin et al., 2021] adapted the well-known ILSVRC2012 dataset. Although

these datasets are relatively easy to record and provide a wide range of classification

labels, the nature of the recorded datasets is limited to planer display or screen refresh

rate, resulting in unnatural data.

Another important category of classification is pedestrians and human pose detection.

Consequently, to circumvent the unnatural artifacts that may occur due to the adapta-

tion of frame-based sequences, [Bi et al., 2019] recorded a real motion dataset. They

present a large dataset of hand gestures of American sign language for the alphabet.

The ASL-DVS dataset has low environmental noise present with constant illumination.

[Amir et al., 2017] created a DvsGesture dataset including thousands of instances of

hand and arm gestures. DvsGesture was recorded under different lighting conditions and

collected from 29 different subjects. [Calabrese et al., 2019] presented the DHP19 human

pose dataset to help evaluate event-based human pose algorithms. DHP19 was recorded

using four cameras and a Vicon motion capture system providing the 3D position of human

joints. Moreover, to improve the quality of self-driving cars and autonomous navigation,

[Miao et al., 2019] designed a pedestrian dataset for human pose detection in different en-

vironments including corridors, streets and squares also an indoor dataset for fall detection.

Furthermore, to alleviate the challenge of employing event-based cameras in self-driving

cars, [Binas et al., 2017] introduced the Davis Driving Dataset DDD17. This dataset

does not only provide annotated recordings in different cities at different day times

but also records the vehicle control and diagnostic data. An ATIS sensor was used in

[Sironi et al., 2018] to record large real-world datasets. The grayscale images acquired

from the sensor are used to extract bounding boxes around cars and street objects using
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state-of-the-art object detector. This dataset provided a cars and non-cars classes. The

same sensor was used in [de Tournemire et al., 2020] to provide more labeled objects in

varying lighting and weather conditions.

3.2.3 Optical Flow Benchmarking

Optical flow estimation is one of the essential well-established vision algorithms. It

acquired due attention for neuromorphic vision in the last decade. Similarly to SLAM

related benchmarking datasets, optical flow estimation datasets require high precision

sensors and accurate calibration. One of the earliest benchmarking optical flow datasets

is provided by Rueckauer and Delbruck [Rueckauer and Delbruck, 2016]. They provided

a synthetic sequence of moving lines and squares. Additionally, real sequences were

recorded to evaluate rotational, translational and sinusoidally varying motion. The motion

provided in this data set was constrained to only in-plane motion and used an IMU to

obtain the ground truth optical flow. Accordingly, to counteract the effect of favoring

only normal flow in [Rueckauer and Delbruck, 2016], [Almatrafi and Hirakawa, 2019] pro-

posed another dataset where texture was not perpendicular to motion direction.

Using only an IMU to acquire the ground truth limits the motion type and is unable to

capture moving objectsŠ optical flow. [Barranco et al., 2016] used an IMU to acquire

ground truth by using a robot mounted pan-tilt system where neuromorphic events are

fused with depth maps from an RGB-D sensor to obtain high precision ground truth.

The provided dataset does not only provide optical flow but also image frames, depth

frames and 3D camera motion. [Mitrokhin et al., 2019] used a Vicon system to capture

the camera and objectsŠ motion. As a result, a relatively long dataset of fast-moving

objects is recorded where, besides optical flow ground truth, depth and 3D motion is alo

provided.
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In the context of this PhD thesis, our area of interest is visual-inertial odometry, based

on which we were motivated to develop our own dataset that can provide us with 6-DOF

pose and optical flow ground truth. In the following section, we present our benchmarking

dataset creation procedure.

3.3 Dataset Creation

As mentioned in the previous section, the main purpose of the dataset we present here

is to provide an approach to assess event-based visual-odometry algorithms based on

optical flow. Therefore, we used an ATIS sensor to record the data assisted with a VICON

motion capture system for high precision ground truth acquisition. Our dataset presents

different recorded sequences of scenarios featuring handheld camera in-plane rotation,

translation and free motion with varying velocities (see Figure 3.2). The camera tracks

a checkerboard for optical flow estimation of the scene (see Figure 3.4). The VICON

system provides a 3D pose of the camera and the board with 200 Hz frequency. In order

to maintain high-quality events, we start by conditioning the events recorded, and then we

calibrate the used sensors. Hence, The ground truth is created using the VICON system.

Finally, we validate the accuracy of the created ground truth. In the following sections,

we show how each step is done.

3.3.1 Events Conditioning

Due to the noisy nature and sensitivity of DVS cameras, it is essential to get rid of

uncorrelated events created by background activity or any other source like transistor

switch leakage [Lichtsteiner et al., 2008]. Delbruck [Delbruck, 2008] employs an activity

filter to reject incorrectly created events. The activity filter takes only one parameter (T

the Şsupport timeŤ), which is the maximum time difference allowed between the current

event and events created previously in the same neighbourhood. The activity filter uses
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Figure 3.2: The magnitude of the velocities of the recorded sequences.
The linear velocity is measured in [m/s] and the angular velocity in [deg/s]

the active events surface, which is a buffer saving the timestamp of the last existing

event at a specific pixel position. The support time T decides whether an event can be

passed as a true event or as noise. First, the event timestamp is stored for the pixel

8-neighbourhood. Second, a check between the timestamp stored in the eventŠs location

and the eventŠs timestamp is performed: if an event occurred nearby the current event

(within the support time T ), the new event is passed or discarded otherwise.

Constant support time T implies the rejection or inclusion of events within a specific

interval of environmental motion dynamics. We modified this filter to make it more robust

to noise and adaptive to the dynamics of the environments (see Figure 3.3). Instead

of having a constant time support T , we introduced an adaptive parameter Tf that

depends on the frequency of created events since they are related to the dynamics of

the environment. Tf is estimated using linear interpolation between the minimum and

maximum possible support time Tmin and Tmax. The interpolation is done to find Tf

based on the inverse of eventsŠ frequency. Event-based cameras can provide a wide range

of frequencies depending on changes in the environment. Hence we use the inverse-log
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Figure 3.3: Left: a 3D neighborhood of positive and negative events
created by a rod moving at varying velocity. Right: the created events

filtered using the adaptive activity filter.

function for its decaying property, and we calculate Tf based on the following equations:

α =
k

log fe

(3.1)

Tf =
Tmax − Tmin

αmax − αmin

(α − αmin) + Tmin (3.2)

where we tune k to get a better logarithmic curve that would give the best value of Tf for

different frequencies. αmin and αmax are the values of α which correspond to the lowest

and highest values of events frequency fe Where the frequency is calculated using the

amount of acquired events previously in a sliding window. The recorded events are passed

through this filter to maintain a higher quality of events acquisition (see Figure 3.3).
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3.3.2 System Calibration

On one hand, the VICON system can be intrinsically calibrated using the provided software,

and it provides 3D poses of the point of origin of the board along with the camera pose

with 200 Hz frequency. On the other hand, it can provide the camera pose in its own

coordinates system. Accordingly, we need to find the transformation between the camera

and the VICON system. We do not use any SLAM or pose estimation algorithms to get

the camera/VICON transformation. We exploit the gyroscope readings of the camera

embedded IMU of the camera as a medium to find the transformation. This process

requires accurate intrinsic and extrinsic calibration. The camera/VICON and camera/board

transformations are found by the following equation:

T c
vic = T c

IMU × T
IMU
vic (3.3)

T c
B = T c

IMU × T
IMU
vic × T vic

B (3.4)

where T b
a represents the rigid transformation from frame of reference a to b. The

super/subscripts c, vic, IMU and B represent the camera, VICON system, IMU and

board frames of reference respectively. The rigid transformation T vic
B can be calculated

easily using the data acquired from the VICON system. The following subsections show

how the other rigid transformations are obtained.

Intrinsic Calibration

The intrinsic calibration is needed for the used camera and its embedded IMU. Intrin-

sic calibration means finding the intrinsic parameters of each sensors that satisfy the

mathematical model of each sensor.

• IMU Intrinsic Calibration:

The IMU parameters to be estimated are divided into two categories, deterministic

and random. Deterministic parameters are scale factor, misalignment error and bias
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Figure 3.4: The coordinates system used in our setting

offsets. Random errors are the bias residuals and white noise added to the signal so

that the IMU can be modeled as follows:

ωIMU = [I + Mg ]ω + bg + δbg + ϵg (3.5)

aIMU = [I + Ma]a + ba + δba + ϵa (3.6)

where ωIMU and aIMU are 3D vectors of the rotational velocity and linear accelera-

tion obtained by the IMU, Mg and Ma are the matrices containing misalignment

errors of the gyroscope and accelerometer respectively. bg and ba are the offset

biases of the gyroscope and accelerometer. δbg and δba are the bias residual of the

gyroscope and accelerometer that changes with very low frequency, and ϵg and ϵa

are white noises of the gyroscope and accelerometer.

Using the six-position calibration [El-Diasty and Pagiatakis, 2010], we obtain the

deterministic parameters of the IMU except for the matrix Mg because of the

inability to have an accurate known excitation source for the gyroscope, which

still can be suppressed in a fusion scheme. We used Allan variance modelling
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[El-Sheimy et al., 2007] in order to estimate the parameters controlling the random

IMU parameters.

• Camera Intrinsic Calibration:

The event-based camera adopts a pinhole model; consequently, intrinsic calibration

is nothing different from frame-based cameras except for how data is acquired to

obtain intrinsic parameters. Flashing patterns are used to adjust the sharpness and

focus of the lens. Consequently, a varying lighting intensity flashing checkerboard

on a screen is used to record events. Events are stacked and integrated to create

frames to be used for calibration. The resulting images are used as input for the

embedded MATLAB camera calibrator toolbox to estimate the cameraŠs intrinsic

parameters. The estimated parameters are the camera focal lengths (fu, fv), the

camera principal point (cu, cv) and the radial and tangential distortion coefficients

(k1, k2, k3, p1, p2).

Extrinsic Calibration

No extrinsic calibration is required between the camera and the checkerboard since the

VICON system measures their 3D pose expressed in its own coordinates system. Therefore,

only calibration between the camera 3D pose and the motion capture system is needed.

The extrinsic calibration process is divided into temporal synchronization and spatial

alignment between the signals to be calibrated to ensure the outputs from different

systems are perfectly adjusted.

• VICON/IMU Calibration:

The problem of two different frames of reference correspondence that observe the

same states are widely known as WahbaŠs problem [Wahba, 1965], where it is defined,

for given two 3D sets of measurements ¶Xi♢
N−1
i=0 and ¶Yi♢

N−1
i=0 , as the least square
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minimization problem and described in the following equation:

argmin
¶s,R,t♢

N−1
∑

i=0

♣Yi − s(RXi + t)♣2 (3.7)

where s, R and t are scale, rotation and translation between the two frames

respectively. Solving this minimization problem is based on two assumptions: noise

is suppressed in both measurements, and they are temporally synchronized. Since

the IMU measurements suffer from high noise due to double integration, we chose

to use the angles to be injected in the minimization problem. The choice is made

for two reasons; only single integration is required for angles estimation. Also, the

VICON system markers are placed near the cameraŠs body frame, which suggests

that the difference in t can be neglected compared to the distance between the

camera and the board. We used an error state Kalman filter [Sola, 2017] to obtain

accurate IMU angular estimation. The VICON system and the IMU are neither

spatially aligned nor temporally synchronized. Therefore, we adopt an iterative

scheme to find both the spatial transformation and temporal shift. We solve for an

initial transformation between the two frames using HornŠs reformulation of WahbaŠs

problem [Horn, 1987]:

argmin
q

N−1
∑

i=0

(q ×ΘIM U × q
∗)Θvic (3.8)

where ΘIM U and Θvic are the angles measured in IMU and VICON frames, and

sequence ϕ[◦] θ[◦] ψ[◦]

rotate_low 0.7893 0.5988 1.5579

rotate_high 1.2885 0.9427 0.4945

translate_low 1.2347 1.5135 0.4813

translate_high 1.4031 1.6943 0.4838

free_motion 0.3923 0.5544 0.3923

Table 3.1: VICON / IMU mean angles differnce
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Algorithm 1 IMU-VICON Calibration

Input: ¶ΘIMU ♢
N−1
i=0 , ¶Θvic♢

N−1
i=0

Output: q , ∆t

1: Initialize: check = true , itr = 1 , ϵ = small value

2: while check = true do

3: µIMU = 1
N

N−1
∑

i=0
ΘIMUi

4: µvic = 1
N

N−1
∑

i=0
Θvici

5: ΘIMU = ΘIMU − µIMU

6: Θvic = Θvic − µvic

7: Calculate: Smn =
N−1
∑

i=0
ΘIMUm Θvicn ▷ 9 values

8: Construct: N4×4 matrix ▷ see [Horn, 1987]
9: Solve: ¶λ, V ♢ = eig(N )

10: qitr = Vλ1 ▷ q is the vector corresponds to maximum λ

11: project: ΘMU = RqΘIMU

12: Solve: ∆titr = xcorr(ΘIMU , Θvic) ▷ xcorr is cross correlation matlab function
13: Shift: ΘIMU = ΘIMU (∆t : end)
14: itr + +

15: if 1
N

N−1
∑

0
♣ΘIMUi

−Θvici
♣ < ϵ then

16: check = false
17: end if
18: end while

19: q =
itr
∏

n=1
qn

20: ∆t =
itr
∑

n=1
∆tn

q is a unit quaternion that represents a rigid body transformation. We project

the IMU readings in the VICON frame to apply cross-correlation between the two

signals to find ∆t that represents the temporal shift between the two signals. This

process is repeated iteratively until the difference between the estimated calibration

parameters reaches convergence (see Algorithm 1). It is noted that after two

iterations, convergence is fulfilled. To make sure that every sequence is correctly

correlated, we calculated the mean absolute difference between the VICON angles

and IMU angles after being transformed in the VICON frame, results are shown in

Figure 3.5. The paths of the different recorded sequences are shown in Figure 3.6

where there are two different sequences with varying dominant translational and

rotational motion and another sequence of random motion. Table 3.1 shows that
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(a) (b)

(c) (d)

Figure 3.5: Results of the calibration between the IMU frame and the
camera frame. Figures (A) and (C) represent the orientation of the camera
and the IMU before the transformation and figures (B) and (D) show
the alignment between them after transformation of two sequences of our

recorded dataset.

the mean error between the angles of the IMU and the VICON system is acceptable

and that the two signals are aligned.

• IMU/Camera calibration:

After getting the spatio-temporal calibration between the VICON and IMU we

need to do the same between the IMU and the Camera. We used Kalibr toolbox

[Furgale et al., 2014] to get the spatial transformation between the camera and

IMU. Since Kalibr provides a temporal difference only of the provided data-set

used for calibration (which was totally different that the data-set used for our

comparison), we use the concept of cross correlation between the IMU absolute
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rotational velocity and the events frequency in order to find the best time shift.

The choice of events frequency to be correlated with absolute rotational velocity

is similar to the temporal synchronization used in [Censi and Scaramuzza, 2014]

since with a higher velocity more events would be triggered per second, so the best

synchronization will correspond to matching these two signals together.

(a) Low velocity translation scenario. (b) High velocity translation scenario.

(c) Low velocity translation scenario. (d) high velocity translation scenario.

(e) Free motion scenario

Figure 3.6: The different recorded paths in our dataset with different
velocities



64 Chapter 3. Benchmarking for Neuromorphic Vision Sensors

3.3.3 Ground Truth Creation

Based on the scenario explained in Section 3.3, the ground truth of the camera and

checkerboard 3D poses is obtained using output of the VICON system and expressed in

the camera frame of reference using Equations 3.3 and 3.4. Optical flow ground truth is

obtained using the relative pose between the checkerboard and the camera and the 3D/2D

projection model. Using the initial pose of the checkerboard (being planar), we create

points at the edges of the checkerboard to replicate the initial position of the checkerboard.

The created points are projected to the camera frame to validate initially if they coincide

with the events triggered by the camera. The optical flow will be approximated as 2D

motion projected from the checkerboard pose expressed in the camera as proposed in

[Heeger and Jepson, 1992]. Having V and W as the relative rotational and translational

velocity between the checkerboard and the camera, the optical flow can be obtained from

the equation:

U(x, y) =
1

Z
A(x, y)V + B(x, y)W (3.9)

where x and y are the pixel coordinates and A and B are

A(x, y) =









−f 0 x

0 −f y









(3.10)

B(x, y) =









(xy)/f −(f + x2/f ) y

(f + x2/f ) −(xy)/f −x









(3.11)

The created optical flow ground truth is generated at the frequency of the VICON system

(200 Hz) and is used to find the optical flow of all the events. Interpolation between each

two consecutive optical flow frames is used to find each eventŠs optical flow according to

the equation:

OF(x, y, t) =
(t − ti−1)U(xi−1, yi−1) + (ti − t)U(xi, yi)

ti − ti−1

(3.12)
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Figure 3.7: A sample of the events created between two consecutive
synthetically created checkerboards (grey) with positive events in red and

negative events in blue.

where OF(x, y, t) is the ground truth optical flow of an event created at (x, y, t) between

frames i − 1 and i, U(xi−1, yi−1) and U(xi, yi) are the ground truth optical flow of the

nearest pixels to the event position at time ti−1 and ti respectively. Only events contained

in the Region Of Interest ROI of the checkerboard are cropped and assigned an optical

flow to ensure correct optical flow estimation (see Figure 3.7).

3.3.4 Ground Truth Validation

The process of calibration used to align the VICON system with the camera depended

only on the gyroscope readings to estimate the transformation based on the assumption

that distances between the camera, the IMU and the VICON system markers are negligible

compared to the distance of objects in the scene. This assumption requires a validation

of the resulting ground truth to make sure that no biases or deviations affect it. We

randomly selected samples of two consecutive frames f1 and f2 and used the obtained

optical flow to warp the events created between these frames. The eventsŠ final position
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Figure 3.8: (left) the events and the synthetic created checkerboard
before projecting the events using the optical flow ground truth, (right)
the projected on and off events in the camera frame are sufficiently aligned

with the created checkerboard.

warped in the frame f2 will be:









xf

yf









=









xi

yi









+ (tf − ti)OF(xi, yi, ti) (3.13)

where (xi, yi) and (xf , yf ) are the eventŠs position before and after warping, tf is the

f2 frame timestamp and ti is the eventŠs timestamp. After warping, we check the error

between the new eventŠs position and the position of the nearest pixel of the synthetically

created checkerboard. The warped events were aligned with the checkerboard and the

error did not exceed 2 pixels. (see Figure 3.8).

3.4 Conclusion

Developing an infallible algorithm would never be acknowledged without being validated

against credible dataset with ground truth. We presented a clear and straightforward
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method to obtain optical flow ground truth for event-based cameras using a VICON

system. This benchmarking dataset represents the first step in the development of our

system to tackle the problem of visual-inertial odometry and allows for comparison with

other stat-of-the-art algorithms. This dataset will be used in the following chapters side

by side with some other datasets created afterwards to fulfil a wider and more diverse set

of scenarios to assess our proposed algorithms.
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4 Neuromorphic Optical Flow

Based on the coherence between the neuromorphic vision sensors operation mode

and the brightness constancy condition of optical flow, we chose optical flow as

the core algorithm for our visual-inertial pdometry algorithm. In this chapter we

show the advancement achieved concerning event-based optical flow and present

a novel method to estimate optical flow in a more straightforward and faster way.

The introduced method uses Principal Component Analysis (PCA) to estimate

the optical flow for its accuracy and low computational time. A comprehensive

evaluation of our algorithm is conducted to show the improvements achieved

with respect to the state-of-the art.

Chapter abstract

4.1 Introduction

The photoreceptor cells in the human eye, namely rods and cones, are responsible for

converting light photons into an electrical signal to be processed by the brain whenever

a change is detected. Rods detect the black and white gradients while cones distin-

guish colors and fine details with a rods/cones ratio up to 60:1, for which reason we

can identify motion and blobs of moving figures in low light conditions [Gibson, 1950].

In computer vision, optical flow estimation follows the same methodology based on
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detecting change, where camera frames are fed to algorithms governed by the bright-

ness constancy change [Horn and Schunck, 1981]. Whenever a change in brightness is

detected between frames, the optical flow can be estimated. Optical flow estimation

generally requires pixel-wise operations for an accurate estimate, which causes heavy

computations and resources. Although, flow plays a vital role in estimating ego-motion

[Longuet-Higgins and Prazdny, 1980], depth [Lepisk, 2005] and foreground-background

segmentation [Chen et al., 2014]. For faster computation, [Lucas and Kanade, 1981] pro-

posed an iterative sparse method that works on image portions where motion is of high

interest.

As discussed earlier, standard frame-based cameras do not adopt the best model to imitate

the biological vision performance and are not optimal for machine vision algorithms involv-

ing motion. Standard cameras provide full-frame images at a fixed frequency resulting in

data redundancy, low dynamic range, transmission latency and motion blur. Neuromorphic

vision sensors [Lichtsteiner et al., 2008, Brandli et al., 2014, Posch et al., 2010a], as the

name suggests, mimic the biological processes between the retina and the brain. The na-

ture of neuromorphic sensors allows temporal resolution increase to microseconds scale and

expands the dynamic range. Consequently, motion blur in standard frame-based cameras

is omitted while consuming low power. In addition, the way event-based cameras operate,

being consistent with optical flow, encouraged many researchers to find new solutions

adapted to their neuromorphic nature [Rueckauer and Delbruck, 2016, Low et al., 2020,

Gallego et al., 2018].

In this regard, neuromorphic vision sensors offer a better alternative to standard cameras

in computer vision [Gallego et al., 2022]. Instead of transmitting a sequence of full-frame

images at a fixed frequency, the pixels of these neuromorphic chips operate indepen-

dently and asynchronously. The events generated by neuromorphic vision sensors carry,

intrinsically, optical flow information because they respond only to luminosity changes.
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Since the time intervals between events at the same location can reach microsecond scale,

neuromorphic sensors provide a sufficiently large amount of data to be processed in short

time intervals. Consequently, the large amount of sparse data provided requires algorithms

that run fast while being robust to noise. In this chapter, we employ Principal Component

Analysis (PCA) [Pearson, 1901], an extensively used technique as a linear dimensionality

reduction algorithm, to estimate optical flow. PCA estimates the principal axes, which are

rapidly calculated for lower dimensions data (three-dimensional in our case). Moreover,

we apply different regularization techniques to ensure a robust estimate to refine the

estimated optical flow.

4.2 Optical flow Event-Based Approaches

Many algorithms using event-based optical flow have been developed as a solution for many

applications during the past decade. These algorithms can be classified into three groups.

The first group does not involve heavy optimization and either uses data correlation

methods or adapts frame-based methods for optical flow estimation. The second group

depends on minimizing Ű or maximizing Ű an optimization function optical flow estimation

or scene reconstruction based on optical flow. The third group uses neural networks to

predict event-based optical flow.

4.2.1 Non-Optimization-Based Methods

In one of the first attempts to tackle the challenge of event-driven optical flow estimation,

[Delbrück, 2008] considers it as a problem of data association where events are correlated

using their relative timestamps in a spatio-temporal neighborhood. This method can

effectively augment the amount of information induced by each event and provides a

highly discretized orientation and magnitude of optical flow but can not be considered a

suitable or accurate optical flow estimation.



72 Chapter 4. Neuromorphic Optical Flow

Since each event embeds in itself brightness intensity information, [Benosman et al., 2012]

proposed a method where events in a spatio-temporal neighborhood are counted and

considered as intensity-equivalent values. The eventsŠ count is inserted in an adapted

Lucas-Kanade event-based scheme [Lucas and Kanade, 1981] to estimate the optical flow

using the least-square method. This method can be considered the first event-based optical

flow algorithm to achieve acceptable accuracy. However, the intensity-equivalent values

are not the actual intensity values which means that the optical flow is not accurately

represented.

Benefiting from the time being represented as a monotonically increasing function, gener-

ated events in a slight temporal shift will form approximately planar surfaces (see Figure

4.3). Based on this time property, [Benosman et al., 2013] proposes a local plane fitting

method where an event is mapped as a time function t in the spatial 2D domain (x, y)

and clustered events in a spatio-temporal neighborhood can be used to fit a plane. The x

and y components of the estimated plane normal vector represent the optical flow estimate.

Instead of estimating the optical flow in the time-domain, [Barranco et al., 2015] estimate

the optical flow using a Gabor filter on spatio-temporal neighboring events to obtain the

optical flow at high contrast contours accurately. Although this method shows promising

results, the use of frequency-domain filters can not provide real-time applicability for

event-based cameras.

[Almatrafi et al., 2020] proposed a novel concept named the "distance surface" refor-

mulating optical flow in a way more suited to event-based cameras. In addition, they

provided a new formulation that satisfies the brightness constancy condition. Although

sufficient improvements in accuracy were attained compared to non-optimization methods,

no discussion about computational time or real-time applicability was disclosed in their
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work.

Most of the non-optimisation based can perform in real-time up to a certain eventsŠ

frequency. Although, the accuracy of the estimated optical flow is not sufficient to be

used for 6-DoF motion estimation with acceptable quality.

4.2.2 Optimisation-Based Methods

Instead of using least square estimation or other straightforward approaches, complex

optimization schemes are employed to obtain event-based optical flow. In order to refine

the optical flow, [Mueggler et al., 2015] proposed to estimate the lifetime of events by

employing a RANSAC scheme to refine the plane fitting output. RANSAC output is fed to

an optimization scheme that minimizes estimated lifetime error and consequently improves

optical flow estimation.

A contrast maximization optimization scheme is presented in [Stoffregen and Kleeman, 2019]

where the optical flow is the motion vector that maximizes the variance of events in a

spatio-temporal neighborhood. This method finds the optical flow of blocks of neighboring

spatio-temporal events, which reduces the accuracy of each event individually because it

finds the optimal optical flow vector for all the events contained in the block .

[Bardow et al., 2016] introduce a joint estimation optimization scheme to simultaneously

obtain the optical flow field and the photometric grayscale intensity of all pixels to tackle

the sparsity of event-based data. Although a GPU is used, the optimization method leads

to a dense estimate of the optical flow at the price of high computational time.

With the help of grayscale blurred images provided by neuromorphic vision sensors,
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[Pan et al., 2020] introduce another dense optical flow estimation using variational opti-

mization. They prove that embedding the photometric information (even if blurred) in

the optimization scheme improves the quality of optical flow estimation. This method

requires strong texture in order to estimate an accurate optical flow.

Using a cost function for optimisation-based algorithms, improved the quality of the

estimated optical flow to be used in motion estimation. Although, these methods require

high computational power which is critical for event-based cameras since they provide a

large amount of data with a varying frequencies. The asynchronous nature of event-based

cameras suggests that an algorithm can perform in real-time in some scenarios and fails

in other ones. For which reason, computational time should be kept as low as possible to

guarantee real-time applicability in all cases.

4.2.3 Neural-Based methods

One of the first attempts to accommodate neural networks for event-based vision is

presented in [Orchard et al., 2013]. For event-based sensors, it is found to be benefi-

cial to use Spiking Neural Networks (SNN) instead of Convolutional Neural Networks.

[Ghosh-Dastidar and Adeli, 2009] adopted an SNN to estimate a discretized optical flow

orientation and amplitude. Although poor optical flow is estimated, this method can be

considered a widely acceptable introduction of SNN to event-based vision.

Instead of obtaining a simple discretized flow field, a better adaptation of SNN is intro-

duced in [Zhu et al., 2019] where three-channel images of positive and negative event

count, as well as timestamps, are used to estimate dense optical flow, depth and ego-

motion. They pass the images created by stacking the eventsŠ information to a neural

network to predict the optical flow. The predicted optical flow is used to aid another
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network in estimating the depth and ego-motion.

Spike-FlowNet [Lee et al., 2020] estimates the optical flow using events provided between

two image frames. Although sufficiently accurate optical flow is estimated, this method

estimates optical flow at the frequency of acquired image frames. No absolute computa-

tional power requirements are disclosed regarding their work.

Although, the usage of Neural networks provides, as expected, the best performance for

optical flow estimation, neural networks require a meticulous training datasets so that it

can cover all the possible scenarios without being overfit to the training set itself. The

uncertainty about the outcome of neural networks, since it is not model-based, makes

it difficult to rely on neural-based algorithms in large-scale scenarios. Moreover, neural

networks require, in almost all cases, heavy computations and maybe GPUŠs, which hinders

real-time applicability.

The work present in the state-of-the-art is always a trade-off between better accuracy and

faster computation. In the context of our thesis, we are concerned with the possibility of

providing acceptable accuracy in different scenarios while maintaining low computational

power so that it can be integrated into other schemes without hindering real-time applica-

bility. In the following section, we introduce how optical flow is modeled for event-based

cameras then we present our PCA optical flow.

4.3 Event-Based Optical Flow

The brightness constancy condition[Horn and Schunck, 1981] indicates that under con-

stant brightness, no change will be observed in the spatio-temporal domain (x, y, t) even
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if it undergoes changes so that:

I(x + ∆x, y + ∆y, t + ∆t) = I(x, y, t) (4.1)

where I(x, y, t) is the brightness intensity in the 2D spatio-temporal domain (x, y, t) and

∆x, ∆y and ∆t are the perturbations in x, y and t respectively. Approximating the

right-hand side using the famous Taylor expansion [Taylor, 1717] leads to:

I(x, y, t) +
∂

∂x
I(x, y, t)

∆x

∆t
+

∂

∂y
I(x, y, t)

∆y

∆t
+

∂

∂t
I(x, y, t) + O(∆t2) = I(x, y, t)

(4.2)

∇I(x, y, t)V(x, y, t) + It(x, y, t) ≈ 0 (4.3)

where ∇I(x, y, t) is the spatial first order partial derivative of the intensity function

known as the image gradient, It(x, y, t) is the temporal first order partial derivative and

V(x, y, t) is the optical flow field of each pixel. For event-based cameras, pixels responds

independently and asynchronously to the change in the log of brightness intensity. The

triggered events are encoded as a tuple of ⟨x, y, t, p⟩ created whenever the change exceeds

a certain threshold δt [Gallego et al., 2015]:

log(I(xi, yi, ti)) − log(I(xi, yi, ti − ∆t)) = pδt (4.4)

where the polarity p is the sign of the change δt that belongs to ¶1,−1♢ and ∆t is the time

difference since the last event triggered by the same pixel. Applying TaylorŠs expansion to

the log difference leads to the integration of the brightness constancy condition:

∆L(xi, yi, ti) =
∂L

∂t
(xi, yi, ti)∆t + O(∆t2) (4.5)

∆L(xi, yi, ti) ≈

(

∂

∂x
L(xi, yi, ti)

∆x

∆t
+

∂

∂y
L(xi, yi, ti)

∆y

∆t
+

∂

∂t
L(xi, yi, ti)

)

∆t (4.6)
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Equation 4.6 shows that triggering an event encompasses in itself optical flow information

integrated over time. Unlike frame-based cameras, the high temporal resolution ( reaching

microsecond level ) of event-based cameras provides a more accurate and stable repre-

sentation of TaylorŠs expansion. Based on this hypothesis, using optical flow estimation

with event-based cameras for visual odometry is a good opportunity for its adaptation

to eventŠs creation model. The main challenges with event-based optical flow are: First,

finding the best way for data association to solve for optical flow since only one event can

not be used to find optical flow. Second, making sure that the chosen method operates

as fast as possible to cope with the amount of data created and to achieve real-time

applicability.

4.4 PCA Optical Flow

The Principal Component Analysis (PCA) [Pearson, 1901] was first introduced to the

scientific community by Karl Pearson as a linear dimensionality reduction method. The

concept is to map higher dimensional spaces R
n data to lower ones represented by the

principal axes hence providing a hierarchical orthogonal coordinates system. PCA is

done by changing the basis that spans data dimensions1 (see Figure 4.2). Dimensionality

reduction is made using PCA by maximizing the variance of the data around the prin-

cipal axes. Variance maximization follows the same concept of contrast maximization

[Gallego et al., 2018] where we try to find the axes around which the data (the events)

provide the maximum spread. Consequently, the least principal axis ( with the lowest

variance around it ) represents the velocity vector we are looking for. Since variance is

maximized around the singular vectors representing the data, eigenvalue decomposition

can be used to find the principal components of the data.

1PCA provides hierarchical principal axes where each axis is scaled to span a principal dimension of
the data.
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Figure 4.1: set of R3 scattered points with their original axes represented
in the basis drawn in black and their normalized principal axes represented

in the basis drawn in red.

Based on the hypothesis that triggered events from edges create a plane in a small

neighborhood (see Figure 4.2), PCA can be employed to find the two orthogonal vectors

spanning the created plane and the third will be the planeŠs normal2 corresponding to

the optical flow. PCA is found to be able to estimate the planeŠs normal and provide

better accuracy than least-square plane fitting algorithms provided in the state-of-the-

art [Benosman et al., 2013, Mueggler et al., 2015, Rueckauer and Delbruck, 2016] (see

Figure 4.3). To estimate optical flow, our algorithm is implemented in three steps:

1. Events provided by the camera are conditioned to put aside redundant events or

events created by noise or strong luminosity changes.

2. The optical flow is estimated using the PCA method on conditioned events.

3. Finally, the optical flow is regularized to ensure the robustness of the estimated

optical flow.

These steps are detailed extensively in the following subsections.

2Plane normal corresponds to 0 variances for a perfect plane (no thickness for flat surfaces).
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Figure 4.2: Positive and negative events created in spatio-temporal
neighborhood form a Plane-like shape due to bar motion ( planes correspond

to different edges of the bar )

4.4.1 Events Conditioning

The independent nature of event-based pixels circuitry that provides signals due to changes

in the environment makes event-based cameras highly prone to different noise sources.

The events filtering step is required before applying any algorithm to ensure that triggered

events correspond to actual changes in the environment. First, positive and negative

events are separated and processed independently. A refractory filter marginalizes out

events that may be fired as a result of the refractory effect due to sharp changes in

intensity [Padala et al., 2018] where consecutive events may be triggered at the same

pixel within an infinitesimal time interval. Based on the various scenarios of the used

dataset, the limit is chosen to be 20 ms for events triggered with the same polarity and

1 ms for opposite polarity based on practical experiments where the refractory created

events were within the chosen values. Next, an adaptive activity filter (see Section 3.3.1

"Page 54") is applied to make sure that all events belong to actual motion. At the end of

this step, we obtain only the correctly created events which are then fed to PCA algorithm

to estimate the optical flow.
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Figure 4.3: In red: points spanning the Actual plane. In green: noisy
points representing a plane consensus. A closer look at all the coordinates
systems shows up to the right, where PCA and the actual plane coordinates
look almost identical. In black: the actual plane coordinates system. In
blue, the estimated coordinates system estimated using PCA. In red: the

coordinates system estimated using least square plane fitting.

4.4.2 PCA Optical Flow Estimation

PCA was first adapted to event-based nature in a line detection and tracking scheme

[Everding and Conradt, 2018]. Here, PCA is adapted for optical flow estimation. We

estimate the best plane fit of triggered events to obtain spatial components where the

plane is expressed as:
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where (a b c d) are the plane parameters to be estimated. The principal components

of a set of data points can be computed by finding the eigenvectors of the covariance

matrix Σ on this set of centralized points. Points can be centralized by subtracting their
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mean. The first principal component (vector) will be the one corresponding to the largest

eigenvalue, and the next ones correspond to lower eigenvalues. A set of n polarized events

¶xi, yi, ti♢n created in a spatio-temporal neighborhood N in R
3 around the event under

test is centralized by subtracting the mean of each dimension such that:

N =

















x1 − µx y1 − µy t1 − µt

...
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...

xn − µx yn − µy tn − µt

















(4.8)

The matrix N is used to construct the covariance matrix as:

Σ =

















σxx σxy σxt
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σtx σty σtt

















(4.9)

where σij =
∑n

k=0 ikjk . The eigenvectors of Σ represent the principal components spanning

the neighborhood. Two orthogonal vectors span the plane, and the third one corresponding

to the smallest eigenvalue is perpendicular to the plane. Vector Vp corresponding to the

smallest eigenvalue is considered the plane normal. This vector can be used directly to

estimate the optical flow. However, an extra step is required to validate the accuracy of

estimated parameters. First, we estimate the plane parameters as follows:

a = Vpx , b = Vpy , c = Vpt (4.10)

d = −(Vpxx + Vpyy + Vptt) (4.11)

(Vpx, Vpy , Vpt) are the components of the vector Vp, (x, y, t) are the coordinates of the

event under test. The plane parameters are used to evaluate test value for each pixel used

to fit the plane where only the event spatial coordinates are used.

test = −
ax + by + d

c
(4.12)
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If the absolute difference between test and the actual triggering time of the event t exceeds

a threshold δ, the event is considered an outlier. A consensus value for inliers should be

more than (1− ϵ)N 2/2 where ϵ is the accepted ratio of outliers. Otherwise, the estimated

plane will be rejected. The estimation of optical flow is obtained as follows:
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(4.13)

where (−Vpt)/(V 2
px + V 2

py) represents the optical flow magnitude and (Vpx, Vpy) represents

the normalised vector of optical flow orientation. Hence the duration of the appearance

of each event, namely eventŠs lifetime [Mueggler et al., 2015], is obtained:

tlif etime =
V 2

px + V 2
py

Vpt

(4.14)

Algorithm 2 demonstrates a step-by-step pseudo-algorithm of our method.

4.5 Spatio-Temporal Optical Flow Regularization

Due to the sparse and noisy nature of events in neuromorphic sensors, it is required to go

further and refine the estimated optical flow to ensure it depicts the actual optical flow.

We tried two different spatio-temporal regularization techniques to see which would work

best with regard to estimation quality and computation time.

Whilst methods in the state-of-the-art require solving a system of equations that depend

on the chosen neighbourhood size, PCA-only3 technique benefits from the fact that the

neighbourhoodŠs size will have little effect on computation time. Consequently, our first

technique for regularization, PCA with levels regularization, uses different neighbourhood

size levels to estimate the optical flow and take the mean as the best estimate to ensure

3we always compute eigenvectors of a 3 × 3 matrix, which would take most of computation time.
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that extremes are filtered out ( see Figure 4.4 ).

Algorithm 2 PCA Optical Flow Estimation

Input: e¶x, y, t, p♢N−1
i=0 , ϵ, N ts = 20 ms , to = 1 ms

Output: e¶x, y, t, p, vx, vy♢
N−1
i=0

1: ev ← zeros(col, row, 2)
2: f low ← zeros(col, row, 2, 3)
3: for i ← 0 : N − 1 do ▷ Events acquisition loop
4: f lag ← 0
5: x, y, t, p ← ei

6: po ← opposite polarity
7: if (ti − ev(xi, yi, pi) < ts) & (ti − ev(xi, yi, po) < to) then ▷ Events filtering

condition
8: Tf ← adaptive time eqn(3.2)
9: if in neigh (ti − tneigh) < Tf then

10: f lag ← 1
11: ev(xi, yi, pi) = ti
12: end if
13: end if
14: if f lag = 1 then ▷ Optical flow estimation
15: neigh ← ¶e♢n2

1 in ev in n × n neighborhood
16: if size(neigh) > 3 then
17: µx ← mean(neighx)
18: µy ← mean(neighy)
19: µt ← mean(neight)
20: N ← Equation(4.8)
21: Σ ← eqn(4.9)
22: [V, E ] ← eig(Σ)
23: if E(0, 0) < ϵ then
24: ¶test♢n2 ← eqn(4.12)
25: if

∑n2

1 ♣test − ti♣ ≤ δ then
26: [vxi, vyi] ← Equation(4.13)
27: else
28: [vxi, vyi] ← 0
29: end if
30: else
31: [vxi, vyi] ← 0
32: end if
33: else
34: [vxi, vyi] ← 0
35: end if
36: end if
37: end for
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Figure 4.4: ]

Three levels of neighborhood are shown, 5× 5 neighborhood (in blue), 7× 7 neighborhood
(in red), 9 × 9 neighborhood (in green) and the extreme points (outliers, in yellow). PCA
estimations on the three levels are shown where a larger neighborhood ensures better
estimation of plane normal.

The second technique we experimented, PCA with weights regularization, consists in

storing the optical flow in a buffer called "active optical flow", then weightings are applied

to the previously estimated optical flow in a specific neighbourhood of the event under

test. Weights θi are chosen to be inversely proportional to the timestamp differences

between the event under test and events triggered in the neighbourhood so that the final

optical flow estimation will be:
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(4.15)

Choosing the inverse of exponential would be a reasonable weighting function choice for its

vanishing values for higher time differences. This function is found to significantly suppress

the effect of older optical flow in the neighbourhood (see Figure 4.5). However, among all

possible weighting functions, we chose to use the inverse of the difference because it gives

relatively correctly distributed weightings while being the fastest to compute. It has been
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Figure 4.5: Top: Variation of weighting functions plotted according
to actual collected data. The inverse of square (in green) gives extreme
weights change, inverse logarithmic gives averaging-like effect (in blue) and
the inverse gives weightings to be distributed in between (in red). Down:
the average computation time of each weighting method where the inverse

gives the lowest computational time.

found that choosing a smaller neighbourhood for weightings4 than the neighbourhood

chosen to estimate the optical flow provides better results. The regularization process is

shown in Algorithm 3.

4.6 Experimental Setup for Validation

To validate the reliability and accuracy of the proposed algorithm in different cases where

no specific kind of motion is favored, we used different datasets with various condi-

tions. Other event-based optical flow datasets were introduced in the state-of-the-art

by the time we finished the development phase of our algorithm and were available

4 i.e. 5 × 5 for a 7 × 7 neighbourhood to estimate optical flow.
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Algorithm 3 PCA Optical Flow Regularization
Input: [vx, vy , t], f low

1: reg, nl

Output: regularized [vx, vy ]
2: if reg = weighting then
3: tn ← times in n × n neighborhood in f low
4: v ← [vx, vy ] in n × n neighborhood in f low
5: W = 1

t−tn

6: W = W
norm(W )

7: [vx, vy ]reg calculated using Equation(4.15)
8: else
9: v ← [vx, vy ]

10: for i ← 1 : nl do
11: Recall: Algorithm(2) with n = n − 1
12: v ← v + [vx, vy ]
13: [vx, vy ]reg = v

nl

14: end for
15: end if

for the validation phase. Besides our dataset ( see Chapter 3 ), we used DVSMO-

TION20 dataset [Almatrafi et al., 2020] and the dataset of moving lines introduced in

[Mueggler et al., 2015]. In our own dataset, the usage of VICON motion capture system

constricted us to only obtaining optical flow for planar surfaces, hence the usage of

checkerboards. Therefore, the choice of other datasets allowed us to yield a comprehensive

assessment of our algorithm.

4.6.1 DVSMOTION20 Dataset

DVSMOTION20 [Almatrafi et al., 2020] recorded long sequences using DAViS346 346 ×

260 camera and provided ground truth at camera framerate. They recorded four different

sequences named Checkerboard, Classroom, Conference Room and Conference Room

Translation from which we chose the second and third sequences. Moreover, the recorded

sequences feature random motion in different environments where occlusions may occur.

As a result, these sequences provide a better assessment of the actual flow and not only

the normal flow.
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(a) Lucas Kanade for translation
sequence

(b) Local plane for translation
sequence

(c) Only PCA for translation
sequence

(d) Weight regularization PCA
for translation sequence

(e) Levels regularization PCA for
translation sequence

(f) Ground truth for translation
sequence

Figure 4.6: Results for the checkerboard translation sequence. Only
small parts of each sequence is presented for better visualization of results.

4.6.2 Moving Line pattern Dataset

Some neuromorphic vision algorithms construct event frames to use them in frame-based

schemes. The event frames require accurate event lifetime estimation to avoid blurry

image construction. To test the ability to estimate correct event lifetime, we used the line

pattern sequence introduced in [Mueggler et al., 2015]. This sequence is recorded using

a 128 × 128 DVS camera [Lichtsteiner et al., 2008] mounted on a slider that moves in

front of lines drawings featuring different depths so that the borders of lines move with

different speeds due to the parallax effect.
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(a) Lucas Kanade for rotation
sequence

(b) Local plane for rotation
sequence

(c) Only PCA for rotation
sequence

(d) Weights regularization PCA
for rotation sequence

(e) Levels regularization PCA for
rotation sequence

(f) Ground truth for rotation
sequence

Figure 4.7: Results for the checkerboard rotation sequence. Only small
parts of each sequence is presented for better visualization of results.

4.7 Results

Four metrics are used to provide a quantitative and comprehensive comparison. The

Average End Point Error (AEPE) measures differences in optical flow magnitude. The

Average Angular Error (AAE) measures differences in optical flow orientation. Lifetime

error is defined as the difference between the estimated and the actual lifetime of each

event. Finally, the computational time is used to assess the opportunity to use these

algorithms in real-time applications.

To provide a fair and comprehensive assessment of our algorithmŠs quality, we compared

our algorithmŠs performance with algorithms that do not require a lot of computational

resources or implementation complexity. In the context of our thesis, this choice is

made since optical flow is used as a core algorithm of a bigger scheme which implies low
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(a) Lucas Kanade for classroom
sequence

(b) Local plane for classroom
sequence

(c) Only PCA for classroom
sequence

(d) Weights regularization PCA
for classroom sequence

(e) Levels regularization PCA for
classroom sequence

(f) ground truth for classroom
sequence

Figure 4.8: Results for the classroom sequence. Only small parts of each
sequence is presented for better visualization of results.

computational time and acceptable accuracy to spare resources for the whole system.

Amongst the event-based optical flow estimation methods in the state-of-the-art (see

section 4.2), we chose event-based Lucas-Kanade algorithm [Benosman et al., 2012]

and local plane fit algorithm [Benosman et al., 2013] for their low computational power.

Figures 4.6, 4.7, 4.8 and 4.9 show a visualization of the obtained results, Table 4.4

summarizes the computation time required to estimate optical flow for each algorithm.

Tables 4.1 and 4.2 shows AEPE and AAE performance metrics evaluated using our recorded

sequences.

4.7.1 Average End-Point Error

The average end-point error measuring magnitude errors between estimated and ground-

truth flow is defined as:

AEPE =
1

N

N
∑

i=1

♣♣ui − ûi♣♣ (4.16)



90 Chapter 4. Neuromorphic Optical Flow

(a) Lucas Kanade for conference
sequence

(b) Local plane for conference
sequence

(c) Only PCA for conference
sequence

(d) Weights regularization PCA
for conference sequence

(e) levels regularization PCA for
conference sequence

(f) Ground truth for conference
sequence

Figure 4.9: Results for the conference sequence. Only small parts of
each sequence is presented for better visualization of results.

where ui and ûi are the estimated and the ground truth optical flow respectively.

Translation scenario: Considered the easiest sequence, the best results were attained.

The usage of PCA, in general, shows better accuracy in magnitude estimation (see Figure

4.6). Applying PCA-only achieved a relative error of 6.9%. Applying PCA with levels

regularization provides the best magnitude estimation and reduces the overall estimation

error to 4.6% (see Table 4.1). PCA with weights regularization shows a slight improvement

in magnitude estimation compared to PCA only.

Rotation scenario: Estimating optical flow in rotation motion is considered more

critical because magnitude would vary in a small neighbourhood. For this reason, AEPE

is shown to be slightly higher than in the translation scenario (see Table 4.1). PCA with

levels regularization gives the best results (see Figure 4.7).
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Conference scenario: A real life scenario but less cluttered compared to the conference

sequence, PCA-only attained 20.7% error while PCA with levels regularization improved

the quality to only 18% error (see Figure 4.9).

Classroom sequence: Densely cluttered environment providing the most challenging

scenario amongst all sequences. PCA-only achieved 22.1% error and PCA with levels

regularization attained 18.7% with a performance similar to the conference sequence (see

Figure 4.8).

In all of the cases, PCA with levels regularization provided 1.2 times less AEPE than the

next best non-PCA algorithm provided in the comparison (see Table 4.1).

4.7.2 Average Angular Error

The metric to measure the differences in orientation between estimated and ground truth

flow is the average angular error, defined as:

AAE =
1

N

N
∑

i=1

cos−1

(

ûT
i ui

♣♣ûi♣♣♣♣ui♣♣

)

(4.17)

Translation scenario: The choice of neighbourhood size deeply affects the accuracy

of orientation estimation, which is why PCA with weights regularization always provides

better results. PCA with weights regularization uses a smaller neighbourhood level

for regularization along with a neighbourhood optical flow consensus, which creates

Algorithm translation rotation conference classroom

AEPE (%) AEPE (%) AEPE (%) AEPE (%)
Lucas Kanade 13.1 ± 4.6 17.1 ± 7.3 27.1 ± 10.2 28.7 ± 14.3

Local Plane Fit 10.3 ± 3.2 13.8 ± 7.4 22.9 ± 10.4 25.6 ± 11.7
PCA-only 6.9 ± 2.4 8.1 ± 3.2 20.7 ± 5.7 22.1 ± 3.2

PCA with weights 6.1 ± 2.3 7.5 ± 4.0 18.2 ± 6.9 19.6 ± 4.1
PCA with levels 4.6 ± 1.5 7.1 ± 4.8 18.0 ± 5.8 18.7 ± 3.7

Table 4.1: Relative average end point error.
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Figure 4.10: Probability Density Function (PDF) of the estimated lifetime
for only PCA (Blue), weights regularization PCA (Red) and levels regulariza-
tion PCA (Yellow) of the "moving lines" sequence in [Mueggler et al., 2015].

a smoothing effect. On the other hand, PCA with levels regularization improved the

orientation estimation and boosted the accuracy but did not maintain maximum accuracy

(see Table 4.2).

Rotational scenario: As expected, rotational scenarios are harder to estimate and

accuracy may be reduced. Results provided by the three PCA approaches did not show

much variation from each other. However, PCA with weights regularization attained the

best results (see Figure 4.7).

Algorithm translation rotation conference classroom

AAE (°) AAE (°) AAE (°) AAE (°)
Lucas Kanade 15.6 ± 3.8 19.6 ± 7.1 23.6 ± 11.1 26.0 ± 9.3

Local Plane Fit 12.5 ± 5.1 15.3 ± 6.1 19.7 ± 10.7 22.8 ± 10.2
PCA-only 7.8 ± 4.6 12.8 ± 4.5 16.4 ± 5.8 14.2 ± 6.8

PCA with weights 5.7 ± 4.6 11.2 ± 3.3 13.7 ± 6.2 12.9 ± 5.2
PCA with levels 6.6 ± 5.1 11.6 ± 4.9 14.1 ± 5.4 13.0 ± 5.2

Table 4.2: Average angular error for rotational and translational se-
quences.
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Conference scenario: The motion of this sequence (as well as the classroom sequence)

is considered a good test to validate the ability to estimate correct orientation. PCA-Only

achieved an error of 16.4° and PCA with weights regularization provided Ű as expected Ű

the smallest estimation error with only 13.7°.

Classroom sequence: PCA-only achieved 14.2° error and PCA with weights regulariza-

tion attained 12.9° with a better performance than on the conference sequence which may

be due to the existence of many edges perpendicular to motion direction (see Figure 4.8).

While the differences between levels and weights regularization is not significant, weights

regularization provided at least 1.3 better AAE than the next non-PCA algorithm in the

comparison (see Table 4.2).

4.7.3 Lifetime Estimation Error

Lifetime is considered one of the most important feature assigned to event-based cameras.

It helps sharpen frames created from stacked events used in event-based visual odometry

and SLAM algorithms [Mueggler et al., 2015]. All PCA algorithms provided reliable life-

time estimation compared to the state-of-the-art [Mueggler et al., 2015, Low et al., 2020].

We used the "moving lines" sequence where two sets of lines move at different constant

speeds, resulting in a constant lifetime for each event generated by these lines (6ms for fast

lines and 12ms for slow lines). Figure 4.10 shows the probability density function (PDF)

of the estimated lifetime. Using PCA only, 52.19% of events were assigned a 5.35 ms

Algorithm
fast_stripes slow_stripes

max bin
% error

max bin
% error

(ms) % (ms) %
PCA Only 5.3 52.2 10.8 10.7 17.9 11.3

Weighted PCA 5.5 57.7 7.5 11.1 19.44 7.91
Levelled PCA 5.7 38.6 5.8 11.5 15.1 4.6

Table 4.3: The maximum bin value for the life time estimation of the
dataset provided in [Mueggler et al., 2015] and the percentage of each bin

with the error percentage.
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(a) accumulation of
events for 20 ms

(b) Lifetime for PCA
only

(c) Lifetime for weights
regularized PCA

(d) Lifetime for levels
regularized PCA

Figure 4.11: From left to right, Events stacked during 20ms for the
moving lines sequence, only active events are shown according to PCA only
algorithm, PCA with weights regularization algorithm and PCA with levels
regularization algorithm all at 136ms. Events color represent their life time

as a gradient from dark blue to white

lifetime with an error of 10.83% on the fast stripes and 17.95% were assigned 10.65 ms

lifetime with an error of 11.25% on the slow lines. PCA with weights regularization gave

the thinnest distribution around the maximum bin value (least variance). The nearest

large bin to fast stripes has the value of 5.55 ms with 57.72% of all events and 7.5% error.

For slow stripes, the largest binŠs lifetime is 11.05 ms with 19.44% of all events, which

translates to an error of 7.91% of the actual lifetime. PCA with levels regularization gives

the best results but with the largest variance around actual lifetime with a percentage

of 38.58% and 15.11% around the fastest and slowest stripes respectively and errors of

5.83% and 4.58% (see Table 4.3). The high variance of PCA with levels regularization

creates many falsely estimated lifetimes (see Figure 4.11).

Algorithm
Computational Time

per Event (µs)
Lucas Kanade 3.32 ± 1.05
Local Plane 1.18 ± 0.76
PCA only 0.29 ± 0.05

PCA with weights 0.51 ± 0.06
PCA with Levels 0.78 ± 0.07

Table 4.4: Computation times required per event.
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4.7.4 Computational Time

The PCA method is based on computing the eigenvectors of a 3 × 3 matrix constructed

incrementally by the chosen neighborhood. Consequently, a much lower computation time

is required compared to other techniques in teh state-of-the-art. For the same reason,

the change in the neighborhood size, contrary to other methods, does not affect the

computation time much. As a result, the PCA-only method is shown to be able to process

around 3.5 Mevent/sec. PCA with levels regularization increased the computation time

as expected. However, it is still able to process about 1.3 Mevent/sec which remains

acceptable for the provided events frequency. Although these algorithms are implemented

on a Linux machine with a Core i5 3.10 GHz processor, the provided computation time of

PCA variants is shown to be competitive to be selected for real-time applications.

4.8 Conclusion

We presented a novel method for event-based optical flow estimation based on PCA. We

have shown that the proposed method is more adapted to the sparse nature of event-based

cameras and produces significantly less noise than other methods. Although performance

improvements always come at the cost of computational power, our proposed method spares

the processor resources and drastically reduces computation time (about 2 times faster

than the next fastest non-PCA compared algorithm) while keeping acceptable performance.

The straightforward and non-complex procedure of the PCA event-optical flow approach

is the methodŠs strength besides providing accurate and fast computed estimation. The

improvements made using PCA for event-based optical flow allow us to involve it as

the base algorithm for event-based visual odometry. Despite the gain we attained in

computational time, incorporating a few millions of eventsŠ optical flow information per

second in an optimization scheme would undermine the real-time capabilities. For this

reason, it would be beneficial to find a better representation of events that would provide

robust data reduction without loss of information. Since the provided events are mainly
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the contours where the change occurs ans since these contours can represent lines in a

structured environments, we chose to encode events as lines (whenever possible) and feed

them to the optimization scheme instead.



97

5 Neuromorphic Line Detection and
Tracking

One of the challenges in computer vision, such as line-based SLAM (Simultaneous

Localization and Mapping) and visual odometry schemes, is line detection and

segmentation. In this chapter, we address this problem and provide a fast

method to compute line detection by avoiding time-consuming search algorithms

and limiting the use of any complex implementation. Our algorithm exploits

the geometrical features of the scene and applies simple heuristics to ensure

correct line detection and segmentation. As a result, the inherent line detection

problems that lead to heavy computation or false estimation, like the use of search

algorithms or wrong line connection, are addressed and tackled. Furthermore,

the results are accurate in different motion scenarios (pure rotational, pure

translational and free motion) and robust against false line segmentation.

Chapter abstract

5.1 Introduction

A reconstructed 3D point, despite being straightforward and sufficiently represented

as a tuple (x, y, z), using feature points for SLAM systems is costly and requires at-

tentive consideration for errors and outliers. Moreover, besides the fact that SLAM

optimization requires, in many cases, several point features for robust estimation, a point
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feature can be falsely described. Instead of depending on feature points, many works

([Lemaire and Lacroix, 2007], [Ruifang et al., 2017] and [Hirose and Saito, 2012] for ex-

ample) shifted their point of view toward line features for their data reduction capability and

for being less prone to the reprojection and matching errors, which leads to easier tracking.

In the context of our thesis, for event-based visual-inertial odometry, since a single

event contributes very little information about the environment, we adopt the same

methodology of depending on line features instead of point features. Representing

structured environments (indoor environments) using line features helps solve the problem

of data association for event-based cameras and provides data reduction for the massive

stream of events supplied. Moreover, lines help speed up the optimization process for visual

odometry and can construct a better and more intuitive map of structured environments. In

this chapter we introduce a fast method to detect and track line segments for neuromorphic

vision sensors based on optical flow.

5.2 Neuromorphic Line Detection and Tracking

Detecting and tracking objects (lines included) in the scene is one of the most studied

fields in computer vision since it may provide information about the geometric structure

of the scene. Lines are considered one of the distinct and repetitive geometric structures

that exist in the world around us, for which reason, extracting lines is convenient to recon-

struct the scene using either image frames or events. Consequently, after the emergence

of neuromorphic vision sensors, many attempts have been conducted to adapt existing

conventional frame-based Line detection and tracking algorithms, while others contributed

with novel ideas that appropriately fit the event-based model for better representation.

In an attempt to produce an event-based line segment detector, [Brändli et al., 2016]

adapted a frame-based algorithm to neuromorphic vision sensors and presented ELiSeD
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(an Event-based adapted version of LSD algorithm [Von Gioi et al., 2008]). The proposed

ELiSeD can be considered the first event-based algorithm to accurately detect lines in the

scene. The algorithm starts by separately storing the negative and positive events in an

activity map1. A Sobel filter is applied to the activity maps to detect the orientation of

each event. Adjacent events with the same orientation (the output of the Sobel filter)

within specific time intervals are clustered together to produce line segments. This method

provides lines with discretized orientation according to sobel filter output. It would require

heavy computations to apply a Sobel filter accompanied by a trigonometric function to

track lines in an event-based scheme.

Hough transform, one of the most robust computer vision algorithms, is used to transform

shapes Ű lines included [Duda and Hart, 1972] Ű in image space into a unique point in some

parameter space. [Seifozzakerini et al., 2018] discussed the challenges and opportunities

of applying Hough transform on event-based cameras. They employed a spiking neural

network (SNN) to overcome the computational power needed for Hough transform. As a

result, their event-based Hough transform implementation can provide accurate line seg-

ments Ű or shapes. However, the use of SNN requires good training and meticulous tuning.

A novel method that does not rely on frame-based reproduction of algorithms for neuro-

morphic vision sensors has been introduced in [Everding and Conradt, 2018]. In this work,

they exploited the spatio-temporal planes constructed by events triggered from moving

lines in (x, y, t) domain where any moving object creates extrusion of its contours in the

time direction (see Figure 4.2 "Page 79"). They adapted PCA method [Pearson, 1901] to

represent the principal 3D bases and estimate line parameters (length, vector and center)

afterward. Using PCA notably enhanced the computational time to achieve real-time

performance if the frequency of events was not extremely large. Nonetheless, it did not

cope with rotating lines where triggered events do not create planes but spirals in (x, y, t)

1A map where only the timestamp of the last triggered event is stored in each pixel
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space. Moreover, distinctive lines in the scene may also be falsely connected if their ends

were detected adjacently at a certain moment and it would be difficult to separate them

later.

Similar to the method we introduce in this chapter, [Valeiras et al., 2018] rely on the

presence of optical flow for events and apply least-square weighted fitting on events

clusters to detect line segments. Using optical flow to estimate line segment clusters

improved line detection and estimation for both translating and rotating lines. However,

the complexity of the optimization scheme and the tuning required for the decaying

functions fed to the optimization scheme make this scheme difficult to master. Moreover,

the computational time required for line detection, besides the time required for optical

flow estimation, constrains the usage in real time.

5.3 Flow-Based Line detection and tracking

The methods discussed in the previous section propose novelties to tackle event-based line

detection and tracking problem. Moreover, they suffer from drawbacks in either providing

accurate estimation or requiring computational resources. This section presents a method

to solve event-based line detection and tracking problem aided by optical flow to help

yield data reduction and better representation of the environment. We tackle the problem

of event-based line detection and segmentation while avoiding the issues encountered with

the methods mentioned above. Henceforth, we approach the problems of event-based

output refinement, algorithm complexity, real-time applicability and accuracy of tracked

line segments. The improvements we present in this chapter can be summarized according

to the following items:

• We use geometric properties inherent to lines and points where no trigonomet-

ric or complex functions are used to maintain a low complexity scheme and fast

computational time.
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• Search algorithms are not employed to associate adjacent events to line clusters2.

• Optical flow consensus is used to ensure no lines are falsely stitched, which improves

tracking quality and the reusability of this scheme.

• We can detect all kinds of line motion (translations and rotations) and also use line

clusters to refine the optical flow.

Neuromorphic vision sensors operate in consistency with the brightness constancy condition

and provide a tuple of asynchronous data (see Section 4.3 "Page 75"). Following this

model, packets of events created during a specific time interval are used to cluster

events corresponding to a line segment or a portion of it. Our approach starts with

events preprocessing and ensuring that accurate optical flow is assigned to each event

(see Chapter 4). The preprocessed events are then used to create kernels (candidate

events that may be promoted to a line) where certain checks (discussed in the following

subsections) should be verified, and if a kernel exceeds a predefined threshold, it would be

considered a line kernel. A kernel that gets upgraded to a line is characterized by specific

parameters that help highlight the line and decide whether or not to include any upcoming

event. Nearby lines with the same parameters can then get stitched together. Finally,

global reset and cleaning are carried out to remove old and outlier events recorded in the

activity map, buffer, kernels and lines to ensure the algorithmŠs robustness. Each step is

explained thoroughly in the following subsections and summarized in Figure 5.1.

5.3.1 Preprocessing and Flow Stamping

The goal of our algorithm is to detect lines knowing that each event is stamped with

its own optical flow. To achieve this goal, we use a method of PCA event-based optical

flow (see Chapter 4) which also ensures that falsely created events are suppressed by

using the adaptive activity filter. This method ensures that the estimation is performed

2Even the binary search algorithm where ordered lists are searched would be a burden in most cases
where either the number of lines or the frequency of the events is high, and this process needs to be
repeated many times.
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(a) Denoised events (b) Optical flow (c) Small line segments (d) Stitched lines

Figure 5.1: The steps of our proposed algorithm, from left to right,
(5.1a) a packet of events is denoised to use only truly triggered events,
(5.1b) the optical flow is estimated and kernels are created (kernels are not
drawn), (5.1c) small lines appears in the scene (shown here for visualisation

purpose only), (5.1d) stitched lines represent actual lines in the scene.

efficiently while keeping the processing time low. For lines detection, we used the method

of PCA only to maintain low computational power3. At the end, each event is altered

from ⟨x, y, t, p⟩ to ⟨x, y, t, p, νx, νy , tl⟩ (see Algorithm 4 Line 5) where νx, νy are the

optical flow in x and y directions respectively and tl is the lifetime of each event as

defined in [Mueggler et al., 2015]. Aside from suppressing false positives, this method

also provides a sharper image by suppressing the noise generated by the events. After all

events have been altered, they are then grouped into packets and sent to the line detector

scheme. The line detector scheme first creates kernels for possible line segments then

these kernels gets upgraded to line segments whenever certain conditions are met.

5.3.2 Kernel Creation

A kernel is used to cluster adjacent events in the scene to later serve as a possible line

candidate. At this step, no consensus is taken into account, and the only condition applied

is that the events are sufficiently near each other along a line. Given the high number

of events that are produced by event-based sensors (which would reach 1 Mevents/S

of preprocessed events in our case), we use these checks to avoid costly search engines.

Geometrically, if three points on a line segment are not perfectly aligned, then a triangle

3In this chapter, we already correct optical flow with a consensus of events that belong to the same
rigid body
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Figure 5.2: Events created by a line with some of the saved line tips o1, o2

(orange, the innermost tips, red, the outermost tips) with three possible
candidates c1, c2, c3 to be joined in green (either between the existing line

tips, or replacing one of them) and the estimated line in blue.

can be constructed. For event-based cameras, if two events happen to define a line

segmentŠs tips, then a kernel will be created if the third new event occurs to define the

triangleŠs third tip. The first two tips of the triangle represent the base and the event

under test undergoes a height that should be less than a predefined threshold σl. To

determine if the event is less than the threshold, we check the equality of the triangleŠs

area using the base l, the height h and the lengths of its sides. The triangle perimeter is

defined by pt = d1 + d2 + l where d1 and d2 are the distances between the event under

test and the line kernel tips and l is the length of the line kernel. Using the lengths of the

triangle sides we can calculate its area accordingly:

at =
√

pt(pt − d1)(pt − d2)(pt − l) (5.1)
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If we reformulate equation (5.1) and equate it with the base-height area, we deduce its

height (normal distance between the event and the line kernel):

h2 =
4a2

t

l2
(5.2)

If h2 < σ2
l then the event can be further examined to determine if it will create a new line

tip or remain between the existing line tips (see Figure 5.2). An event candidate c3 can

remain between existing line tips o1 and o2 if d1&d2 < l, c2 can be an new tip outside and

near the first tip o1 if d2 > l and d1 < σl or c1 an new tip outside and near the second

tip o2 if d1 > l and d2 < σl. The new tip is added on top of its nearest tip as a stack

data structure where the oldest ones can be deleted to shrink the line if any of its events

disappear from the scene (see Algorithm 4 Lines 15:22). If an event exceeds its lifetime tl,

it will also be deleted. Unmatched events are then added to the buffer for future kernels.

A newly created kernels would keep growing in size (or length) until it meets the criteria

to be upgraded as a line segment. Unless, it would be deleted after a certain time if not

upgraded.

5.3.3 Kernel Upgrade and Line Segmentation

A kernel can collect events that are not part of line, such as a blob or an undefined shape.

For a kernel to gain a "line status" and be upgraded, the number of events that can

be collected should be greater than the predefined size nk . Furthermore, the distance

between the kernelŠs outermost tips should be larger than the predefined length lk . If

those conditions are met, a kernel gains the "line status" upgraded to a line segment and

gets assigned the following parameters (see Algorithm 4 Lines 12 and 17):

• The mean µs = (µνx
, µνy

) and variance σs = (σνx
, σνy

) of all events optical flow as

the principal optical flow parameters of the line.
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• The line equation y = ax + b using line regression [Edwards, 1984] where a and b

are computed using the mean of x and y events coordinates: µx and µy as follows:

a =

∑n
i=1(xi − µx)(yi − µy)
∑n

i=1(xi − µx)2
(5.3)

b = µy − aµx (5.4)

then a and b are used to transform the slope-intercept equation to a vector equation

for better representation of the line segment.

• The center of the line as the mean of all the collected events

(x̄, ȳ, t̄) =
1

n

(

n
∑

i=1

xi,
n
∑

i=1

yi,
n
∑

i=1

ti

)

(5.5)

where t̄ and the principal optical flow of the line can be used to change the 2D

position of the line as follows;

(x̄, ȳ) = (tp − t̄)(x̄, ȳ)(νx, νy) (5.6)

where tp is the present time when the center position is being updated.

• The line length, defined the distance between the two outermost tips of the line.

• A unique ID to the kernel to help tracking lines.

Each of the uniquely identified line segments are then submitted at each time step to line

tracking scheme to monitor their motion.

5.3.4 Line Tracking

Line segments are created to maintain the detected lines until they disappear from the

scene. Doing so will prevent unnecessary computation to re-cluster triggered events

ensure that the line does not get falsely deleted. Also, event-based cameras are designed

(benefiting from their quasi-continuous nature) to address the issue of tracking triggered
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events which are created as a flow of sufficiently close events and facilitates clustering

and rejecting old events. When a kernel is upgraded to a line, the triangle area test is

performed to ensure that the event-to-line-adjacency is maintained (see Equation 5.2). A

rigid body can create events that move with varying optical flow when rotating or roughly

constant optical flow when translating. Hence, the incorporation of eventŠs optical flow

into the admission criteria for lines. New events optical flow should be bounded within the

mean and variance of the existing lineŠs principal optical flow µν − 2σν < ν < µν + 2σν .

This condition prevents new events from joining the line and causing the false line stitching.

To minimize the effects of events sparsity on the optical flow estimation, optical flow

denoising is performed. We apply a simple first-order filter [Ellis, 2012] using the event

optical flow and the line principal optical flow:

(νxnew
, νynew

) = δµν(x,y)
+ (1 − δ)(νxold

, νyold
) (5.7)

where δ is adaptively chosen as a function of the mean and variance of lines optical flow4:

δ = δ1 +
σ2

ν

µν

(δ2 − δ1) (5.8)

Here we have δ1 and δ2 as the minimum and maximum bounds of δ respectively. Instead

of recalculating the optical flow mean and variance of all events of the line segment we

use the recursive mean rule to avoid high computational time as:

µn =
n − 1

n
µn−1 +

1

n
xn (5.9)

σ2
n =

n − 1

n
σn−1 +

1

n − 1
(x2

n − µ
2
n) (5.10)

µn and σ2
n are then used to re-estimate lines principal optical flow, slope and center. As

part of lines update process, the number of events that each line can have is set to a

maximum number nmax. This ensures that the most recent events are kept in the line

4The ratio between the mean and variance for translational motion would be relatively smaller than
the ratio for rotational motion
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Figure 5.3: Two lines created of the same physical line are stitched, the
area contained by their four vertices O1,O2,O3 and O4 (in red) and the

resulting stitched line (in blue)

segment. This approach also ensures that the buffer containing the lineŠs events does not

overflow. It helps in enhancing the estimation of the line parameters: if a tip is removed

from the list of updated events, its length can shrink or expand during the process. The

previous event saved in the tips buffer will be considered the new tip. Lines may be

upgraded early before they reach their actual length which may lead to many small broken

lines. Hence the final step of our line detector is to ensure correct stitching of adjacent

detected lines that belong to the same actual line.

5.3.5 Line Stitching and Global Restoration

After assigning an events packet to a line segment, it is possible that one physical line

may create multiple smaller adjacent or duplicated lines in the environment. We then

validate the results of the process by merging the duplicated lines and ensuring that the

ones that are discontinued are correctly stitched and identified. The lines segments that

are created by the same physical boundaries share the same characteristics, such as the

slope and the principal optical flow, while being close enough to each other. Therefore, in

order to merge these lines, we first need to check if they have the same characteristics. If
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the cross-product of lines vector components is less than δs and the ratios between optical

flow direction and magnitude are less than θν and rν respectively, we consider these two

lines mergeable and pass them to a final adjacency check: similar to the eventŠs adjacency

check, we avoid expensive search algorithms by considering that the tips of any two lines

construct (in the general case) an irregular quadrilateral (see Figure 5.3). The area of an

irregular quadrilateral that has sufficiently close sides will be proportional to its longest

side. Hence, we check if the quadrilateral area constructed by any two detected lines does

not exceed a threshold proportional to the longest lineŠs length. We compute the area

using the coordinates of the quadrilateral edges (namely the two lines tips) as follows:

A = x1y2 + x2y3 + x3y4 + x4y1 (5.11)

B = x2y1 + x3y2 + x4y3 + x1y4 (5.12)

□area =
A + B

2
(5.13)

where
{

(xi, yi) : i ∈ ¶1, 2, 3, 4♢
}

are the lines tips coordinates arranged in order to create

a sequence and □area is the area of the quadrilateral. If two lines have an area less than

a ratio ϕ of the longest line, then these two lines are stitched and considered one line.

The four chains of lines tips are connected to create only two with the two outermost

chains to the two innermost ones and then recompute the line parameters after deleting

duplicate events. The newly stitched line takes the ID of the longest line to maintain

better tracking quality (see Algorithm 4 Lines 37:43).

Finally, to avoid false data association or memory saturation, a check is performed to

ensure the recency of all saved data after each time interval δs. If the lines and kernels in

the scene contain too old events (the sum of its timestamp and lifetime is less than the

present time), they are considered obsolete and get deleted from the memory. Events in

the nuclei buffer which contains unclustered events that have been created δb milliseconds

earlier are also considered obsolete and are deleted from the buffer.
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Algorithm 4 Line Detection and Segmentation
Input: e¶x, y, t, p♢N

i=1

Output: e¶x, y, t, p, νx, νy , tl♢
N
i=1, Lines¶l, c, vl, νl♢

M
i=1

1: Initialize: Lines, Kernels, Buffer, position
2: tp = δp , ts = δs

3: for i ← 1 : N do ▷ Events acquisition loop
4: e¶x, y, t, p, νx, νy , tl♢i =PCAFlow(e¶x, y, t, p♢i) ▷ see Algorithm 2
5: position=updatePosition(ei)
6: if t > tm then
7: e_packet=active events in position
8: for j ← 1 : #events in e_packet do
9: (f ,line)=verifyConnection(ej ,Lines)

10: if f then
11: line=updateParametersL(line, ej)
12: Lines.update(line)
13: else
14: (f ,kernel)=verifyConnection(ej ,Kernels)
15: if f then
16: kernel=updateParametersK(kernel)
17: if n > nk & l > lk then
18: Lines.insert(kernel)
19: else
20: Kernels.update(kernel)
21: end if
22: else
23: for k ← 1 : #events in Buffer do
24: dist=distance(ej ,ek)
25: if dist < σl then
26: Kernels.insert(¶ej , ek♢)
27: else
28: Buffer.insert(ej)
29: end if
30: end for
31: end if
32: end if
33: end for
34: tp=tp+δp

35: end if
36: end for
37: if t > ts then
38: Lines=stitchLines(Lines)
39: deleteOldLines(Lines)
40: deleteOldKernels(Kernels)
41: deleteOldEvents(Buffer)
42: tS=ts+δs

43: end if
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(a) The synthetic sequence used
to create the translation bars.

(b) The synthetic sequence used
to create the rotation rectangle.

(c) Image reconstructed from
events to create ground truth

(d) Events created by the
translating bars

(e) Events created by the
rotating rectangle

(f) Events created by the moving
checkerboard

Figure 5.4: Lines detection and tracking test sequences

5.4 Experimental Setup

To test the performance of our event-based line detection and tracking system, we needed

to build a set of sequences providing the ground truth for the lines in the environment.

The event-based benchmarking sequence we created (see chapter 3) only provides the

estimation of optical flow and 6-DOF pose. Therefore, to make sure our algorithm performs

robustly in various cases, we created the ground truth with several synthetic and natural

scenarios. The synthetic scenarios feature two sequences where patterns are created using

Matlab: One illustrating pure rotational and the other pure translational motion displayed

on a screen recorded using a 480 × 360 neuromorphic sensor [Posch et al., 2010a]. The

first sequence of synthetic data consists of a black rectangle that continuously changes

its rotational speed. The second synthetic sequence set contains two rows of vertical bars

moving horizontally in opposite directions while touching each other. For the natural

scenario, we used the checkerboard sequence of handheld random camera motion from the
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DVSMOTION20 dataset [Almatrafi et al., 2020] featuring a large number of lines. For

the checkerboard sequence, in order build a ground truth, we need to detect lines using

well-known state-of-the-art algorithms such as the standard pair of Canny edge detector

[Canny, 1986] / Hough transform [Duda and Hart, 1972] which requires full frame images.

To create frames, the ground truth frames are generated by passing the recorded sequences

to the E2VID neural network [Rebecq et al., 2019]. To have maximum distinction between

edges, the sequence images are then thresholded to maximally distinguish edges and lines

in the environment5. Next, the standard pair of Canny edge detector/Hough transform is

applied to the thresholded images to detect lines. To ensure no duplicated line is detected,

the events generated between images are then used to consume the events around the

lines, which eliminates the duplicated lines that did not consume any event. A ground

truth optical flow (provided with the sequence) is used in order to interpolate detected

lines between images. The timestamps of detected lines can then match the corresponding

time steps in the algorithms. Tracking lines consists in matching each line with a line in

the upcoming timestamp based on their midpoint (with a 2 pixels tolerance), length and

angle. The ground truth of the first two scenarios does not require any previous steps.

Since no lines have changed in length nor have been occluded, the tracking line does not

need to be reconstructed.

5.5 Results

To verify the reliability and correctness of our algorithm, we performed a comparison

between the various parameters (Length, tracking and computational time) of our algorithm

and the ELiSeD [Brändli et al., 2016] algorithm. We tested our algorithm on a QuadCore

i7 1.9 GHz machine where most of the executed code consists in C++ (computations

including optical flow estimation, kernel update, line parameters estimation and stitching)

with some parts written with MATLAB (data handling, buffers restoration and results

display).

5Benefiting from the high contrast of the checkerboard
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.5: Top row: results of three instances of two groups of eight
lines touching each other and moving in opposite directions with no false
stitching. Middle row: three instances of a rectangle rotating clock-wise
with a varying optical flow around each line. Bottom row: (from left to
right) Ground truth obtained using the standard Canny / Hough algorithm
on the checkerboard sequence, results of the ELiSeD algorithm and results

of our algorithm.

No optimization or explicit parallelization has been applied. Besides the comparison of

linesŠ length, lifetime and computational time to assess our algorithm, estimated lines

position is shown also in Figure 5.5.
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(a) Translation and rotation scenarios length
distribution

(b) Translation and rotation scenarios lifetime
distribution

Figure 5.6: Synthetic scenarios distributions.

5.5.1 Length of Detected Lines

Correctly estimating the detected line length is essential to ensure the correct line is

detected and tracked with no false stitching. All lines have the same length for the

synthetic translation scenario, and the synthetic rotation scenario has two distinctive line

lengths. At the beginning, small portion of lines are being detected before being correctly

stitched. This approach results in the distribution of linesŠ small parts being visible. Aside

from having these short lines, our algorithm can also correctly estimate the length of the

lines where the peak of the distribution matches the actual length ( see Figures 5.6a and

5.7a ).

Because lines are tracked in event-based nature by registering newly triggered events to

already detected lines, falsely stitched lines may cause critical problems. The challenge in

the translation scenario was to ensure that the lines were properly stitched since neither

the slope nor the optical flow of the lines changed much. Based on optical flow magnitude

and direction to distinguish each line, most of the detected lines had the length normally

distributed with µ = 148.61 pixel and σ = 7.08 pixel with no false stitching (see Figure

5.6a)
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(a) Estimated lines length distribution (b) Estimated lines lifetime distribution

Figure 5.7: Distribution of the percentage of estimated lines length and
lifetime matched to ground truth of our algorithm (in blue) and ELiSeD

algorithm (in red) of the Checkerboard sequence.

For a rotational scenario, the quality of lines detection is expected to be less satisfying

because the slope and optical flow vary at each point of the line. In such case, an event

may not be correctly assigned to the right cluster. However, the length distribution of

the detected lines features a distribution with two distinctive peaks, each of which can

be approximated to normal distribution with µ = 139.704, σ = 6.756 and µ = 173.004,

σ = 6.369 where the expected lengths were 141 and 174 pixels respectively (see Figure

5.6a).

The checkerboard sequence being a real life motion scenario, lines lengths and orientations

may vary if occluded or left the scene gradually. We calculated the distribution of correctly

estimated length as the ratio detected line length

matched ground−truth line length
where a detected line is matched

to a line in the ground-truth if the midpoint distance and line orientation do not exceed

an acceptable threshold. The distribution of our method is a skewed distribution of low

variance peaked between 80 and 105% of the ground-truth length. ELiSeD distribution

has a more flattened distribution with a small peak around 60% due to the existence of

many broken lines (see Figure 5.7a)
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5.5.2 Amount of Detected Lines

In order to properly track the lines in a scene, it is important that the number of detected

lines matches the actual amount of lines and that no duplicate lines are created. When a

kernel collects several events that exceed the threshold, it will be upgraded to a short

line in the scene, and these will then be stitched to the correct line. This process ensures

that the number of detected lines will increase slightly, but then decrease again once the

stability of tracking has reached its limit (see Figure 5.8c). The number of lines for the

checkerboard sequence saturates slightly above the number of lines detected in the ground

truth. Unlikely, ELiSeD algorithm shows a higher number of detected lines since not all

detected lines are stitched correctly(see Figure 5.8d).

5.5.3 Lines Tracking

Line segments detection in a scene is very helpful for robotic applications but only if we

can keep track of the detected lines. To assess the ability of our algorithm to track lines,

we compare the lifetime of the detected line with the lifetime of its matched line in the

ground truth. In the rotation and translation sequences, all lines were clearly visible at all

time. This suggests that the lines lifetime is equal to the sequence time. Most of the lines

detected by our algorithm were apparent in the scene during runtime (see Figure 5.6b).

Some lines have a shorter lifetime due to the appearance of small line segments after the

upgrade process before being stitched. For the checkerboard sequence, our algorithm kept

accurate tracking where the lifetime of most of the detected lines exceeded 90% of the

ground truth lines lifetime, while EliSeD algorithm features a lifetime distribution around

75% (see Figure 5.7b) with much more line disappearing at lower lifetime.

5.5.4 Computational Power

Since event-based cameras work asynchronously, the computational power required to

achieve real-time processing will always depend on the number of events emitted per
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(a) Translation and rotation sequences optical
flow(dotted), lines estimation (dashed) and total

computational time (continuous) of our flow-based
algorithm

(b) checkerboard sequences optical flow (dotted),
lines estimation (dashed) and total computational
time (continuous) and ELiSeD computational time

(continuous black)

(c) Number of estimated lines of the rotation (red)
and translation (blue) sequences of our flow-based

algorithm

(d) Number of estimated lines of the checkerboard
sequence of our flow-based algorithm (yellow),

ELiSeD algorithm (black) and the lines found in
the ground truth (grey)

Figure 5.8: Results for computational time parameters. (a) Computa-
tional time and events frequency, (c) number of lines in the scene for the
rotational and translational sequences. (b) Computational time and events
frequency, (d) number of lines in the scene for the checkerboard sequences

of our algorithm, ELiSeD and the ground truth.

time step. To make a reasonable judgment on how fast our algorithm can work, Figures

5.8a and 5.8b show the frequency of events provided by the camera in all scenarios, and

Figures 5.8c and 5.8d show how many lines are found in each scene, as these are the

two main parameters that directly affect computation time. The computational time in

translation and rotation scenarios remained below acquisition time with a peak value of

around 0.9ms for each 1ms events packet for the translation and rotation sequences (see

Figure 5.8a). The event frequency of the translational scenario is about 900 events/ms

which is lower than the frequency in most ordinary scenes. For the checkerboard sequence,

although the events frequency and the number of lines are much higher than in the other
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sequences, our algorithm attained real-time computation except in minimal time intervals

(around 80 milliseconds) by a slightly extra amount of time (about 50 microseconds for

each millisecond) (see Figure 5.8b). The number of lines in the scene and the frequency

of events can each be set to a maximum that cannot be exceeded to ensure real-time

applicability.

5.6 Conclusion

In this chapter, we introduced a comprehensive scheme for line detection and segmentation

that takes into account the various characteristics of a scene. We used simple heuristics

to avoid costly implementations and complex designs. As a result, we managed to acquire

adequately competitive results that provide accurate line detection and segmentation.

Our algorithm performed correctly in different cases like rotating lines or lines coinciding

with each other while moving in opposite directions, and no false line detection was

reported. The computational capabilities of our algorithm can allow it to perform well

in various scenarios. One of the main advantages of our algorithm is that it can detect

lines and enhance optical flow quality by rejecting extreme values. It can also improve the

accuracy of optical flow by providing a consensus flow for each line. The ability to perform

segmentation and line detection in event-based systems can be beneficial for various tasks,

such as data association and visual-inertial odometry. In data association, for instance,

the segmentation and line detection can help improve the system efficiency by identifying

and grouping events that are related to the data. Having all the elements put together, we

show, in the next chapter, how we employ them to introduce our Visual-inertial scheme.
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6 Flow-Based Neuromorphic visual
Inertial Odometry

In this chapter, we present our flow-based visual-inertial odometry scheme and

validate it using different scenarios. To our knowledge, the algorithm introduced

in this chapter is the first event-based visual inertial algorithm which uses optical

flow error for optimisation. We present a novel method for initialization exploiting

geometric information about the environment obtained by lines detection. Our

algorithm works without being restricted by key-frame initialisation or maximum

events frequency.

Chapter abstract

6.1 Introduction

By providing frame-free asynchronous data, event-based cameras are designed to trigger

events and react to changes in brightness in the scene whenever detected. These sensors

are designed to mimic the activities of the biological retina and do not depend on any

artificial clock signals. The asynchronous nature of event-based cameras enables them

to suppress redundant data and provide high temporal resolution, high dynamic range

with low power consumption. With the advantages of event-based cameras, these sensors

provide a convenient replacement for frame-based vision sensors in scenarios where high
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maneuverability occurs leading to high dynamic visual environment.

For the past decade, many solutions have been introduced to integrate event-based

cameras in robotic applications: for instance, [Kim et al., 2008], [Mueggler et al., 2014],

[Rebecq et al., 2016b] and [Mueggler et al., 2018] provide accurate motion estimation.

Amongst the approaches adopted to solve this problem, probabilistic filtering methods have

been introduced in [Kim et al., 2008], [Kim et al., 2016], [Weikersdorfer and Conradt, 2012]

and [Weikersdorfer et al., 2013]. Other methods presented in [Mueggler et al., 2014],

[Kueng et al., 2016] and [Weikersdorfer et al., 2014] used different optimisation schemes

to benefit from their higher accuracy to provide motion estimation ( see Section 2.5 "Page

35" ).

Event-based camerasŠ ability to provide asynchronous data with significantly low temporal

resolution leads to better continuous representation compared to frame-based cameras,

besides eliminating other problems such as motion blur and low dynamic range. Fur-

thermore, this ability provides a more stable mathematical modeling of the brightness

constancy condition, which describes the apparent pixels motion known as the optical

flow. In this chapter, we introduce, to the extent of our knowledge, the first visual-inertial

odometry algorithm that jointly optimizes the optical flow with the inertial measurements

for neuromorphic vision sensors.

6.2 Related Work

In order to have accurate 6-DoF motion estimation, researchers adopt two main approaches.

The first approach is using filtering based on Bayes theorem [Konrad and Dubois, 1992]

which is used for standard cameras ([Weiss and Siegwart, 2011] and [Mourikis et al., 2007]
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for example). This approach is adopted also for event-based cameras to provide ac-

curate motion estimation. In one of the first trials to assess filtering approaches,

[Weikersdorfer and Conradt, 2012] used a particle filter to estimate the rotation vector

by stitching mosaic images of events. [Weikersdorfer et al., 2013] estimated 2D motion

of event-camera using also a particle filter. To reduce the required computational time of

particle filters, [Kim et al., 2016] adopted an extended Kalman filter to estimate 6-DoF

motion and the scene gradient intensity. [Zihao Zhu et al., 2017] aided an event-based

camera with an IMU to have accurate scale factor estimation. The IMU measurements is

fused with the camera output in an extended Kalman filter scheme to have 6-DoF motion

estimation.

To alleviate the constraints of filtering approach such that the condition of linearity should

not be violated, the approach of non-linear unconstrained optimization is introduced.

[Mueggler et al., 2014] used non-linear optimisation to estimate 6-DoF pose of a quad-

copter that undergoes aggressive maneuvers which would be difficult to estimate using a

linear estimator like the Kalman filter. Using keyframes, [Rebecq et al., 2016b] estimate

a 3D map to augment the accuracy of the estimated 6-DoF pose. [Vidal et al., 2018]

augmented the event-based camera with a CMOS and depth sensors and jointly optimized

the measurments of each sensor to provide highly accurate 6-DoF pose estimation (see

Section 2.5 "Page 35").

The filtering-based approaches have leverages the computational constraint and runs faster

than optimization-based ones whilst the optimization-based approaches achieve excellent

localization accuracy and require less memory [Chen et al., 2018]. In our approach, we

adopt non-linear unconstrained optimization scheme for motion estimation for its higher

accuracy and propose solutions to reduce the computational requirements.
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6.3 Flow-Based Visual-Inertial Odometry

6.3.1 Preliminaries

6-DoF Pose

In this section, we show how we exploit optical flow information and inertial measurements

to incrementally estimate a 6-DOF pose T ∈ SE(3) defined as:

T ij =









Rij tij

0 1









(6.1)

Where Rij ∈ SO(3) is the rotation matrix and tij ∈ R
3 is the translation vector. A rigid

body transformation T ij expressed as a Lie group L differentiable on manifold with the

Lie algebra A as its tangent space at the identity called twist ζ ij :

ζ ij =









⌊Ωij⌋× V ij

0 1









(6.2)

where ⌊Ωij⌋× ∈ so(3) is the skew symmetric matrix of the angular velocity vector and

V ij ∈ R
3 is the linear velocity vector. The logarithmic map Log(.) : L → A is used to

obtain the twist ζ ij of T ij at the identity space and its inverse can be found using the

exponential map Exp(.) : A → L [Chirikjian, 2011]. The vector space representing the

rigid body transformation (group and algebra) is represented by the vee sign .∨ and is

reversed by the hat sign .∧ as:

.∨ : L,A → R
d , .∧ : Rd → L,A (6.3)

T ∨
ij = Pij , P

∧
ij = T ij (6.4)

ζ∨
ij = Vij , V

∧
ij = ζ ij (6.5)
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where Pij = [∆xij ,∆yij ,∆zij ,∆ϕij ,∆θij ,∆ψij ] is the incremental pose vector and Vij =

[vxij , vyij , vzij , ωxij , ωyij , ωzij ] is the incremental velocity vector between the time steps i

and j respectively.

Pinhole Model

Event-based cameras uses the pinhole model [Cyganek and Siebert, 2011] (or any projec-

tion model according to the used lens) to describe the 3D/2D projection π : R3 → R
2 of any

3D point X c = [Xc, Yc, Zc]
T ∈ R

3 in the camera frame to a 2D point xc = [xc, yc]
T ∈ R

2

on the image plane as:

π
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(6.6)

where (fu, fv) are the lens focal length values and (cu, cv) are the the principal point

coordinates in x and y directions respectively. The pinhole model is a planar model which

requires each pixel (event in our case) to be undistorted for accurate 3D/2D reprojection.

Optical Flow Representation

Optical flow describes the pixels apparent motion [Longuet-Higgins and Prazdny, 1980]

which can be approximated as the perspective projection of a 3D point Xc moving freely

with linear velocity V c = [vxc, vyc, vzc]
T and angular velocity Ωc = [ωxc, ωyc, ωzc]

T so that

the pointŠs 3D velocity is described as:

Ẋ c = −(Ωc ×X c + V c) =
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Żc
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(6.7)
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2D point velocities ( optical flow approximation ) corresponding to the optical flow can

be obtained by the derivative of equation (6.6) incorporating (6.7):

ẋc =









u

v









=
Ẋ c

Zc

−
Żc

Zc

xc =
1

Zc

A(xc, yc)Vc + B(xc, yc)Ωc (6.8)

where the matrices A and B are:

A =









−f 0 (xc − cu)

0 −f (yc − cv)









(6.9)

B =









(xc−cu)(yc−cv)
f

−
(

f + (xc−cu)2

f

)

(yc − cv)
(

f + (yc−cv)2

f

)

− (xc−cu)(yc−cv)
f

−(xc − cu)









(6.10)

Hence, estimating the optical flow, if the velocity vector ζ∨
c = [vxc, vyc, vzc, ωxc, ωyc, ωzc]

is known, would also require knowledge about the depth Zc of each point.

IMU preintegration measurements

An inertial measurement unit provides proprioceptive information as the linear acceleration

ãb(t) and angular velocity Ω̃b(t) expressed in the body frame and influenced by different

noise sources described as:

Ω̃b(t) = Ωb(t) + bg(t) + ηg(t) (6.11)

ãb(t) = ab(t)) + RT
wbg + ba(t) + ηa(t) (6.12)

where ηg(t) and ηg(t) are the Gaussian white noise characterised as N(0, σg) and N(0, σa)

respectively. Ωb(t) and ab(t) are the actual angular velocity and linear acceleration of the

IMU, Rwb is the transformation matrix between the body frame and the world frame and

g is the gravity vector. bg(t) and ba(t) are the slowly varying random walk noise of the

sensors:

ḃg(t) = ηbg , ḃa(t) = ηba (6.13)
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Estimating the states of motion from an instant i to the instant j is done by integrating

the linear acceleration and angular velocity:

Rwb(tj) = Rwb(ti)Exp

(∫ tj

ti

(Ω̃(τ ) − bg(τ ) − ηg(τ ))dτ

)

(6.14)

V b(tj) = V b(ti) +

∫ tj

ti

(Rwb(ã(τ ) − ba(τ ) − ηa(τ )) − g) dτ (6.15)

P b(tj) = P b(ti) + V b(tij)∆t +

∫ ∫ tj

ti

(Rwb(ã(τ ) − ba(τ ) − ηa(τ )) − g) dτ 2 (6.16)

In this chapter, we choose to work with preintegration representation of IMU measurements

introduced in [Lupton and Sukkarieh, 2011] and modified for representation on manifolds

in [Forster et al., 2016] to avoid recomputation of parameters that may increase errors

propagation. The increments of motion states in discrete time assuming that the bias is

constant between two time steps are derived as:

∆Rwb(tij) ≃
j−1
∏

k=i

(

Exp((Ω̃(tk) − bgi)∆tkk+1)Exp(−Jrkηgk∆tik
)

= ∆R̃wb(tij)
j−1
∏

k=i

Exp(−R̃T
wb(tk+1j)Jrkηgk∆tik)

= ∆R̃wb(tij)Exp(−δϕij)

(6.17)

∆V b(tij) ≃
j−1
∑

k=i

(R̃T
wb(tik)(I − ⌊δϕik⌋×)(ãb(tk) − bai) − R̃wb(tij)ηak)∆tkk+1

= ∆Ṽ b(tij) +
j−1
∑

k=i

(R̃wb(tik)⌊ãb(tk) − bai⌋× − R̃wb(tik)ηak)∆tkk+1

= ∆Ṽ b(tij) − δV b(tij)

(6.18)
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∆P b(tij) ≃
j−1
∑

k=i

(∆Ṽ b(tik) − δV b(tik))∆tkk+1

+
1

2

(

R̃wb(tik)(I − ⌊δϕik⌋×)(ãb(tk) − bai) − R̃wb(tik)ηak

)

∆t2kk+1

= ∆P̃b(tij) +
j−1
∑

k=i

−δVb(tik∆tkk+1

+
1

2

(

R̃wb(tik)⌊ãb(tk) − bai⌋× − R̃wb(tik)ηak

)

∆t2kk+1

= ∆P̃b(tij) − δPb(tij)

(6.19)

Where each state vector is defined as its mean value ∆(̃.) to be estimated initially

plus a perturbation value δ(.). Jrk is the right Jacobian of angular velocity defined as

Jr(Ω̃(tk)) − bgi)∆t. To avoid recomputing the state estimates during the optimisation

process, bias is not considered constant and is accounted for (see supplementary material

of [Forster et al., 2016]).

6.3.2 Optimisation Scheme

Using the optical flow for accurate motion estimation is a complex problems which requires

decoupling the translational and rotational motion and have a prior knowledge of depth

in some cases ([Zucchelli, 2002], [Liu et al., 2017]). In a different way, our approach

exploits the geometric characteristics of the environment besides augmenting the optical

flow with IMU measurements to obtain accurate ego-motion and depth estimation (see

Figure 6.1). We show in red the blocks representing the raw data used in our scheme, in

blue, the blocks providing the processed data required for optimisation and in green the

optimisation scheme and the initialization conditioning outputting 6DoF, twist and depth.

Event-Based Cameras provide signals due to change in the environment which would

occur at contours of objects. This makes Event-Based sensors suitable for semi-dense

SLAM and visual odometry algorithms. The high temporal resolution of Event-Based

cameras puts into question the availability to use a flow-based visual-inertial optimisation

scheme. In our scheme, we follow a probabilistic approach [Furgale et al., 2012] where
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Figure 6.1: Our flow-based visual-inertial odometry scheme where each
block shows its expected output and.

we try to get optimal state estimates X(t) within a time interval [t0, tf ]. Using a set of

measurements Z(t) where the environment has the structure S in a joint posterior estimate

p(X(t)♣Z(t)) where no map or prior belief are provided. The set of measurements consist

of the measured optical flow given the position of each event Um(t), the accelerometer

measurements A(t) and gyroscope measurements W(t). With no prior belief, we try to

find a maximum likelihood of measurements using the estimated states as:

p(Um(t),A(t),W(t)♣X(t)) = p(Um(t)♣X(t))p(A(t)♣X(t))p(W(t)♣X(t)) (6.20)

where the conditional probability of Equation 6.20 consists of the multiplication of condi-

tional probabilities of measurements given that each set of measurements is independent

of the other. We assume that each conditional probability is described as a Gaussian

probability distribution with zero mean and variance σ. Obtaining the maximum likelihood

is equivalent to estimating the minimum of the log function which translates to minimizing

the following cost function:

F =
1

N

N
∑

i=1

∆iu +
1

M

M
∑

i=1

∆jimu +
1

M

M
∑

i=1

∆jba +
1

M

M
∑

i=1

∆jbw (6.21)

where N is the number of events providing optical flow during optimisation span and M
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is the number of IMU measurements used. ∆iu, ∆jimu are the error terms corresponding

to optical flow estimation and the IMU measurements respectively. ∆jba and ∆jbw are the

error terms corresponding to the accelerometer and gyroscope bias. In order to enhance

the optimisation process we added a twist error term responsible for refining the twist

used for optical flow estimation. The new enhanced cost function is defined as follows:

F =
1

N

N
∑

i=1

∆iu +
1

M

M
∑

i=1

∆jimu +
1

M

M
∑

i=1

∆jba +
1

M

M
∑

i=1

∆jbw +
1

M

M
∑

i=1

∆jζ (6.22)

The optical flow error ∆iu is defined as:

∆u = ρ
(

(ue(t) − um(d(t)))T Σu(ue(t) − um(d(t)))
)

(6.23)

where Σuis the covariance matrix associated with the optical flow. ue(t) is the estimated

optical flow that we obtained using PCA (see Chapter 4), um(d(t)) is the measured optical

flow using the IMU readings to obtain the twist vector ζ∨
c (see Equation 6.8) where the

initial estimate of depth d is shown in the Optimization Conditioning step. To alleviate

the problem of estimating the depth of each event independently Ű which would require

heavier computations Ű and since the provided events are created due to the motion of

contours of objects, we assumed that the environment contains a sufficient amount of

contour lines that can be used to estimate the depth of the used events. ρ is the Huber

loss function defined as:

L(∆) =



















∆2 if ♣∆♣ ≤ δ

δ(♣∆♣ − 1
2
δ) otherwise

(6.24)

where δ is a predefined threshold designed to reject extreme outliers.
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The IMU measurements error term ∆imu is defined as:

∆imu = ρ
(

[∆T
Rij ,∆

T
vij ,∆

T
pij ]

T Σimu([∆T
Rij ,∆

T
vij ,∆

T
pij ]

)

(6.25)

where Σimu is the IMU covariance matrix and the preintegration error terms are:

∆Rij = Log





(

∆R̃wb(tij)Exp

(

∂R̃wb

∂bg

∂bg

))T

Rwb(ti)
TRwb(tj)



 (6.26)

∆vij = Rwb(ti) (V b(tj) − V b(ti) − g∆tij)

−

(

∆Ṽ b(tij) +
∂Ṽ b

∂ba

∂ba +
∂Ṽ b

∂bg

∂bg

) (6.27)

∆pij = Rwb(ti)
(

P b(tj) − P b(ti) − V (ti)∆tij −
1

2
g∆t2ij

)

−

(

∆P̃ b(tij) +
∂P̃ b

∂ba

∂ba +
∂P̃ b

∂bg

∂bg

) (6.28)

where the partial derivatives [ ∂R̃wb

∂bg
, ∂Ṽb

∂ba
, ∂Ṽb

∂bg
, ∂P̃b

∂ba
, ∂P̃b

∂ba
] are to be calculated using the

supplementary materials of [Forster et al., 2016].

Finally the error terms for the biases ∆ba and ∆bw are defined as:

∆ba = ρ
(

(baj − bai)
T Σba(baj − bai)

)

(6.29)

∆bw = ρ
(

(bwj − bwi)
T Σbw(bwj − bwi)

)

(6.30)

The twist error term:

∆ζij = ρ

(

((

1

∆t
T̂

−1

i T̂ j

)

⊖ ζ ij

)T

Σζ

((

1

∆t
T̂

−1

i T̂ j

)

⊖ ζ ij

)

)

. (6.31)

Frame-based optimisation schemes using features such as [Rebecq et al., 2017] choose

certain key-frames to achieve triangulation with low uncertainty. Conversely, using op-

tical flow allows to ignore key-frames and freely choose the time steps for optimisation
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(a) (b)

Figure 6.2: A) Factor graph with no dropped events between two optimi-
sation time steps, B) Factor graph where some events are dropped

depending on either the number of events N or the number of IMU readings M . More-

over, having rich events optical flow and lines ensure that we can drop events whenever

events frequency exceeds a threshold in order to attain real-time proceseeing. Figure

6.2 depicts a factor graph showing how factors are connected to construct the cost function.

The state vector we optimise contains the position, rotation quaternion, velocity, IMU

bias vectors and the camera intrinsic parameter (fu, fv , cu, cv) ¶P ,Q,V , ba, bg , Kc♢.

Our cost function is solved as a non-linear unconstrained leas square problem using

Levenberg-Marquadrt method.

6.3.3 Optimization Conditioning

Being a nonlinear unconstrained optimisation problem, our scheme requires initial values

that are close enough to the optimal values to ensure convergence(see Figure 6.1). Event-

based cameras provide information about contours and since the lines are one of the

repetitive geometric patterns in the indoor environments, we exploit the line detection
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Figure 6.3: Scheme of different detected lines of different time steps
with their assigned events with a small radius around the center point.

algorithm presented in Chapter 5 to augment the prior information we know about the

environment. We assume that the IMU and the camera are calibrated and the extrinsic

transformation Tic between the IMU and the camera is known (illustrated in Figure 6.4).

To find 6-DoF initial pose using optical flow, we need to know the depth of events and to

estimate depth we need the 6-DoF pose. We iteratively estimate an initial depth then use

it to correct for accurate pose and twist estimation.

Initial Depth Estimation

The line detection algorithm provides the line parameters (center point, line vector and

Principal optical flow) and the events assigned to each line. A 2D projected line on

the image plane may have varying depth in 3D. However, the depth of events around

the lineŠs center point would have too little variations (see Figure 6.3). We choose

only events around the center with their optical flow to participate in the initial depth

estimation assuming small depth variation. Using the estimated optical flow and the IMU
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measurements to estimate the depth according to Equation 6.8. Since the linear velocity

is computed using a single integration of the IMU readings and the angular velocity is

directly provided from it, we use a moving average window to alleviate the effect of the

accelerometer white noise without removing the gravity vector offset. For the gyroscope

we use a band pass filter to alleviate the bias offset and the white noise. This conditioning

step improves the quality of the estimated linear and angular velocity. For each set of

events around a line, we use Equation 6.8 where the only unknown is the inverse depth so

each optical flow vector for an event gives two values of depth and the equation becomes:









1
Zcx

1
Zcy









= (ẋ −B(xc, yc)Ω) /(A(xc, yc)Vc) (6.32)

where the division here is element-wise division. The depth ratio
(

1
Zcx

/ 1
Zcy

)

should be

identity because they belong to the same event. If the depth ratio is not in a bounded

interval [th1, th2], this implies that the estimated optical flow is highly corrupted and

will be rejected. The initial depth assigned to all the events of the line is the mean of

the estimated depth around the center after rejecting outliers.This initialization method

is only effective if the depth does not vary much along each line, i.e. downward facing

cameras of drones, cameras moving indoor in front of walls.
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Figure 6.4: The coordinates frames of the IMU i, event-based camera c

and the world w
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(a) (b)

Figure 6.5: Grayscale images of the sequences used to test our algorithm
with the triggered events (red for positive polarity and blue for negative
polarity). The estimated optical flow arrows in black and the detected lines

in yellows

Initial Pose and Twist Estimation

Using estimated depth of all events around center point of detected lines and after rejecting

outlier optical flow, we re-inject the depth values into equation 6.8 after modifying it so

that it becomes (for a single event):
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(6.33)

In Equation 6.33, the twist vector ζ∨ is the only unknown. We can stack the optical flow

information for all events as:

















C1(xc, yc, Zc)

...

Cn(xc, yc, Zc)

















ζ∨ =
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(6.34)

This equation can be solved for ζ∨ using least square method for Ax = b where the

solution would be (AT A)−1AT b. Estimating the depth and twist is repeated iteratively
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until convergence to make sure initialized depth and twist are correctly estimated. The

initial pose is estimated by integrating the twist vector (Equations 6.14, 6.15 and 6.16).

6.4 Experimental Setup

Our proposed visual-inertial odometry scheme performs in structured environments con-

taining lines with low depth variations. For this purpose, we choose sequences fulfilling

these criteria in order to provide a fair assessment. We used one of IBISCape sequences

provided in [Soliman et al., 2022] of a car moving in an environment augmented with

white walls and black rectangles at different depths. Additionally, we used the sequence of

shapes_6dof provided in [Mueggler et al., 2017] of a handheld camera moving randomly

in front of different geometric shapes depicted on a wall. These sequence were, first,

passed through the optical flow estimator then the lines detector to have all the required

information for optimization (see Figure 6.5).

shapes_6dof

Method
ARMS [m] ARMS [◦]
µ σ µ σ

EVO [Rebecq et al., 2016b] 0.09103 0.0051 5.0217 0.9851
Flow − Based (All events) 0.0802 0.0043 2.5791 1.9732

Flow − Based (25% dropped) 0.0841 0.0094 2.8041 1.8541
Flow − Based (50% dropped) 0.0971 0.0158 2.8460 1.9471
Flow − Based (75% dropped) Ű Ű Ű Ű

IBISCape

Method
ARMS [m] ARMS [◦]
µ σ µ σ

EVO [Rebecq et al., 2016b] 0.1369 0.0082 1.7840 0.6214
Flow − Based (All events) 0.1204 0.0079 1.5602 0.7683

Flow − Based (25% dropped) 0.1231 0.0117 1.5874 0.8024
Flow − Based (50% dropped) 0.1217 0.0172 1.4272 0.8401
Flow − Based (75% dropped) Ű Ű Ű Ű

Table 6.1: Average Root Mean Square Error of shapes_6dof and IBIS-

Cape sequence.

We use Ceres solver [Agarwal et al., 2022] as an optimizer for its automatic differentiation



6.5. Results 135

(a) shapes_6dof sequence estimated pose

(b) shapes_6dof position in each axis (c) shapes_6dof angles in each axis

Figure 6.6: The estimated pose, position and angles of shapes_6dof

Flow-Based method in blue, the ground truth in red and EVO in yellow

capability. Our algorithm run on a 3GHz Core i7 16 core Linux machine. We have set

our time step to 0.025 s where 5 IMU measurements are preintegrated for IBISCapeŠs

sequence and 25 measurements are preintegrated for the shapes_6dof sequence. Being

recorded with a handheld camera, shapes_6dof sequence undergoes high rotational

speed and relatively low translational speed while IBISCapeŠs sequence have the opposite

characteristics since it is recorded as a carŠs onboard camera.
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(a) IBISCape sequence estimated pose

(b) IBISCape position in each axis (c) IBISCape angles in each axis

Figure 6.7: The estimated pose, position and angles of IBISCape Flow-
Based method in blue, the ground truth in red and EVO in yellow

6.5 Results

We compare the results of our flow-based approach with the EVO method [Rebecq et al., 2016b].

We use the Average Root Mean Square error (ARMS) to show the accuracy of our algorithm

( see Tables 6.1 and Figures 6.6 and 6.7 ). IBISCapeŠs sequence had a higher ARMS

for translation because of its high translational speed. Unlikely, shapes_6dof sequence

attained a lower ARMS for translation for the same reason. The rotational ARMS error is

maintained relatively small because of the accuracy of the IMU measurements (see Figure

6.8).



6.5. Results 137

(a) Position and angle errors of IBISCape se-
quence

(b) Position and angle errors of shapes_6dof se-
quence.

Figure 6.8: Errors of flow-based visual-inertial odometry method.

We ran many experiments to check for the accuracy of our system with and without

dropping events to alleviate for real-time computation. The assumption that our scheme

will still work in case of events being dropped is made since it only depends on optical

flow (and not tracked features) and that the number of optimization residuals is always

much lower than the amount of events at each time step. We found that our system

can hold accurate results until we reach around 50% of dropped events for shapes_6dof

sequence and about 60% (see Table 6.1) of dropped events for IBISCapeŠs sequence1.

The amount of events that can be dropped depends on events frequency. IBISCapeŠs

sequence maintained good results while more events were dropped. The accuracy did

not vary much before failure occurred which validates the assumption that events can be

dropped with a threshold depending on events frequency and camera resolution. Dropping

the events can also be improved to maintain accuracy by choosing the dropped events

being assigned to lines where each line should have a minimum amount of events to avoid

failure.

To measure the computational time of our scheme, measurements to be optimized are

placed in a sliding window where previously optimized poses are considered constant

and only the sliding window is optimized. Table 6.2 shows the computational time of

different windows with different percentages of dropped events where no events. The

1Table 6.2 shows results for 25, 50, and 75 percent of dropped events as milestones for brevity
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drop packet packet residual and linear solver [s] Total time [s]
[%] size [−] time [s] jacobian time [s]
Ű 50 0.25 0.420759 0.304085 0.724844
Ű 100 0.5 0.624733 0.496576 1.121309
Ű 150 0.75 0.956266 0.912470 1.868736
Ű 200 1 1.059416 0.998935 2.058351
25 50 0.25 0.262560 0.091245 0.353805
25 100 0.5 0.545977 0.215199 0.761176
25 150 0.75 0.729159 0.275548 1.004707
25 200 1 0.845035 0.317980 1.163015
50 50 0.25 0.235112 0.082975 0.318087
50 100 0.5 0.345446 0.104557 0.450003
50 150 0.75 0.465738 0.133461 0.599199
50 200 1 0.627081 0.188407 0.815488
75 50 0.25 0.691566 0.113761 0.805327
75 100 0.5 0.997071 0.208451 1.205522
75 150 0.75 1.285245 0.418131 1.703376
75 200 1 1.375911 0.537240 1.913151

Table 6.2: Average Root Mean Square Error of shapes_6dof sequence.

high computational time for IBISCapeŠs simulator sequence is due to the very high

events frequency (data were generated for a 1024 × 1024 camera resolution). Although,

shapes_6dof sequence attained real-time for all the sliding windows with no dropped

events.

The number of IMU measurements and the amount of events to be dropped defines

the compromise to achieve real-time applicability (see Figure 6.9). We should keep the

smallest possible sliding window with the maximum amount of events to be dropped which

leads to a trade-off between computational time and accuracy (sliding windows allowing

real-time performance are shown in bold within Table 6.2).

6.6 Conclusion

We introduce a flow-based visual-inertial odometry algorithm for neuromorphic vision

sensors. The algorithm corrects optical flow information using IMU measurements in

environments where lines can be detected. We run our algorithm without the need of

triangulation or key-frame estimation which provides a liberty to choose the size of our
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Figure 6.9: The computational time of our algorithm

sliding window for optimization.

Instead of running for only scenarios where the depth of lines does not vary much, the

introduced algorithm can run freely if backed with a depth sensor. Integrating a depth

sensor can also be used to estimate more accurate optical flow. Other improvement to

our system would be place recognition in order to have the ability to close the loop in a

complete SLAM system.
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7 Conclusion

We started this thesis to study the capabilities of neuromorphic vision sensors and to

provide a better understanding of their capabilities and restrictions. Keeping in mind our

philosophy when we first started this research topic, we tried to maintain equilibrium be-

tween delving into details and keeping the big picture in mind. Therefore, we approached

and improved different algorithms that can be used independently to solve problems

related to neuromorphic vision while introducing a comprehensive scheme that encapsu-

lates all the developed algorithms to serve as a solution for the main challenge of this thesis.

We provided an optical flow algorithm capable of delivering competent accuracy compared

to the family of optical flow algorithms corresponding to it. Moreover, we kept improving

the quality of estimated optical flow whenever possible after having the initial estimate

of optical flow. Nevertheless, keeping the same notion of alleviating the complexity of

solutions we provide, our line detection and segmentation algorithm offers highly accurate

results based on straightforward conditions.

We introduce the first neuromorphic visual-inertial odometry algorithm that exploits opti-

cal flow information as a parameter for optimization, which provides sufficient accuracy.

Our algorithm is liberated from triangulation or keyframe selection which spares more

time for the optimization process. Furthermore, it can be tuned to optimize different
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sizes of sliding windows for optimization based on the dynamics of the application and

can drop unnecessary events to maintain real-time applicability.

At each phase of this thesis, we would discover that improvements can be achieved if

either more sensors were added to our system or more complex techniques were adopted.

Although, we preferred to follow the same philosophy we embraced from the beginning to

evaluate the capabilities of event-based cameras in a minimal system. In the last phase of

this thesis, where we stand on solid ground and understand the advantages and constraints

of event-based cameras, we come to the conclusion that to use event-based cameras in

versatile scenarios with varying conditions, other sensors should reinforce event-based

cameras. Although we provide accurate outcomes, our scheme is restrained to certain

scenarios where the environment should be rich in lines with depth that does vary much.

Therefore, we believe that reinforcing our system with a depth sensor would much improve

the quality of odometry estimation. Integrating depth information would be the most

convenient in the optimization scheme to tackle the problem of optimization conditioning.

However, this would contradict the way we adopted to deliver this research. In the future,

we aspire, with the integration of a depth sensor, to revisit the optical flow estimation

and determine how depth information can improve the optical flow estimation and provide

3D visual flow information instead of 2D optical flow. Additionally, integrating a depth

sensor would liberate us from the necessity of detecting or tracking lines which would save

computational resources. Even if depth information would be used to improve optical

flow estimation, we aim to embed the depth information in the optimization cost function

and evaluate how it would enhance the optimization output. Furthermore, we target

completing our scheme to provide a full SLAM system which requires place recognition

techniques to help close the loop and correct for drift for long-range scenarios. Developing

a place recognition algorithm for event-based cameras would require algorithms capable

of classifying repetitive patterns in hierarchies such as the bag of visual words, which is
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still an unexplored area for event-based cameras.
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