Anirudh Sabnis

Angelo Rodio

Maximilien Dreveton

Andrei Bobu

Kishor Patil

Chuan Xu

Caelin Kaplan

Mikhail Kamalov

Olga Chuchuk

Sadaf Ke Sun

Ul Zuhra

Vinay Kumar

Jake Clarkson

Francescomaria Faticanti

Sara Alouf

Samir M Perlaza

Konstantin Avrachenkov

Eitan Altman

Alain Jean-Marie

Keywords: Allocation des ressources, Apprentissage Séquentiel, Réseau informatique. Online Learning for Network Resource Allocation Resource allocation, Online Learning, Computer Networks

Apprentissage Séquentiel pour l'Allocation de Ressources dans les Réseaux Résumé L'allocation de ressources dans les réseaux est un problème complexe et fondamental en informatique. Il s'agit d'un processus dans lequel les composants d'un système de réseau visent à fournir un service plus rapide aux demandes ou à réduire la charge de calcul ou de communication sur le système. Les principaux facteurs qui contribuent à la complexité de ce problème sont que les demandes arrivent au système de manière imprévisible et séquentielle et peuvent entrer en concurrence pour les différentes ressources du réseau. L'ubiquité des problèmes d'allocation de ressources dans les réseaux a motivé des recherches approfondies pour concevoir de nouveaux algorithmes avec des garanties prouvables. Cette thèse étudie plusieurs instances du problème d'allocation de ressources dans les réseaux et propose des algorithmes adaptatifs avec de fortes garanties de performances s'appuyant sur le cadre d'apprentissage séquentiel. Premièrement, nous étudions le problème de mise en cache séquentiel, dans lequel les demandes de fichiers peuvent être servies par un cache local pour éviter les coûts de récupération à partir d'un serveur distant. Nous étudions des algorithmes avec des garanties de performance basés sur des stratégies de descente miroir (DM). Nous montrons que la stratégie DM optimale dépend de la diversité présente dans un lot de demandes. Nous prouvons également que, lorsque le cache doit stocker le fichier entier, plutôt qu'une fraction, les stratégies DM peuvent être couplées à un schéma d'arrondi aléatoire qui préserve garanties de performance. Nous présentons de plus une extension aux réseaux de caches, et nous proposons un algorithme adaptatif distribué. Deuxièmement, nous étudions les caches de similarité qui peuvent répondre à une demande d'un objet avec des objets similaires stockés localement. Nous proposons un nouvel algorithme de mise en cache de similarité séquentiel qui utilise la descente de gradient pour naviguer dans l'espace de représentation continue des objets et trouver les objets appropriés à stocker dans le cache. Nous montrons que l'algorithme proposé réduit les coûts de service encourus par le système pour les systèmes de diffusion vidéo à 360 • et les systèmes de recommandation. Par la suite, nous montrons que le problème de mise en cache de similarité peut être formulé dans le cadre d'apprentissage séquentiel en utilisant un algorithme MD associée à un arrondi aléatoire. Troisièmement, nous présentons les réseaux de distribution d'inférence (RDI) émergents, des réseaux de noeuds informatiques qui se coordonnent pour satisfaire les demandes d'inférence d'apprentissage automatique (AA) en obtenant le meilleur compromis entre latence et précision. Nous proposons un algorithme adaptatif distribué pour l'allocation de modèles d'AA dans un RDI : chaque noeud met à jour dynamiquement son ensemble local de modèles d'inférence en fonction des demandes observées au cours du passé récent et d'un échange d'informations limité avec ses noeuds voisins. Finalement, nous étudions l'équité du problème d'allocation des ressources réseau sous le critère d'𝛼fairness. Nous reconnaissons deux objectifs d'équité différents qui surgissent naturellement dans ce problème : l'objectif d'équité de tranche bien compris qui vise à assurer l'équité à chaque tranche de temps, et l'objectif d'équité d'horizon moins exploré qui vise à assurer l'équité entre les utilités accumulées sur un horizon temporel. Nous étudions l'équité de l'horizon avec le regret comme métrique de performance et montrons que la disparition du regret ne peut être atteinte en présence d'un adversaire sans restriction. Nous proposons des restrictions sur les capacités de l'adversaire correspondant à des scénarios réalistes et un algorithme adaptatif qui garantit en effet la disparition du regret sous ces restrictions.

Table of Contents

Motivation

Connectivity and ubiquity of computing devices enabled a wide spectrum of network applications such as content delivery, interpersonal communication, and intervehicular communication. New use cases (e.g., autonomous driving [1], augmented reality [2], and tactile internet [3]) require satisfying user-generated and machine-generated demand with stringent low-latency and high-bandwidth guarantees.

Network resource allocation is utilized to provide a faster service to demands and to reduce the computation or communication load on a networked system. This is achieved through optimization and appropriate placement of resources at different locations in a network. However, this remains a challenging task in many practical scenarios where different network parameters, such as latency and operating costs may vary over time and the demands arrive to the system in an unpredictable and sequential fashion. For instance, in small-cell mobile networks the user churn is typically very high and unpredictable, hindering appropriate allocation of spectrum to cells [4]. Similarly, placing content files at edge caches to balance the latency gains across the served areas is non-trivial due to the non-stationary and fast-changing patterns of requests [5]. At the same time, the increasing virtualization of these systems introduces cost and performance volatility, as extensive measurement studies have revealed [6][7][8]. This uncertainty is exacerbated for services that process user-generated data (e.g., streaming data applications) where the performance (e.g., inference accuracy) depends also on a priori unknown input data and dynamically selected machine learning libraries [9][10][11].

Objective

This thesis investigates several instances of the network resource allocation problem and proposes online policies with strong performance guarantees. We leverage the online learning framework under minimal assumptions on the external environment's behavior. Performance guarantees in the online learning framework are established assuming the existence of an adversary; therefore, a policy designed for such adversarial setting is also robust under unpredictable environments exhibiting no statistical regularity. Introduction

Outline of the Thesis

This thesis is split into six chapters. The first chapter provides a brief introduction to the thesis. The second chapter revisits the problem of exact caching, in which demands for objects can be served by a local cache or a network of caches to avoid retrieval costs from a remote server. The third chapter deals with the similarity caching problem, in which demands for objects can be approximately served with similar objects; it considers both infinite (continuous) and finite catalogs. The fourth chapter introduces inference delivery networks, networks of computing nodes that coordinate to satisfy ML inference requests. The fifth chapter studies the fairness dimension of the network resource allocation problem. The final and sixth chapter provides brief concluding remarks and presents directions for possible future research. The structure of the thesis is provided in Figure 1.1. 1

Publications

CHAPTER 2

Exact Caching

Introduction

Caches are deployed at many different levels in computer systems: from CPU hardware caches to operating system memory caches, from application caches at clients to CDN caches deployed as physical servers in the network or as cloud services like Amazon's ElastiCache [14]. They aim to provide a faster service to the user and/or to reduce the computation/communication load on other system elements, like hard disks, file servers, etc. The ubiquity of caches has motivated extensive research on the performance of existing caching policies, as well as on the design of new policies with provable guarantees. To that end, most prior work has assumed that caches serve requests generated according to a stochastic process, ranging from the simple, memory-less independent reference model [START_REF] Coffman | Operating Systems Theory[END_REF] to more complex models trying to capture temporal locality effects and time-varying popularities (e.g., the shot-noise model [6]). An alternative modeling approach is to consider an adversarial setting. Assuming that the sequence of requests is generated by an adversary, an online caching policy can be compared to the optimal offline policy that views the sequence of requests in advance. Caching was indeed one of the first problems studied by Sleator and Tarjan in the context of the competitive analysis of online algorithms [16]. In competitive analysis, the metric of interest is the competitive ratio, i.e., the worst-case ratio between the costs incurred by the online algorithm and the optimal offline dynamic algorithm. This line of work led to the study of metrical task systems [17], a popular research area in the algorithms community [18]. Recently, Paschos et al. [19] proposed studying caching as an online convex optimization (OCO) problem [20]. OCO considers again an adversarial setting, but the metric of interest is the regret, i.e., the difference between the costs incurred over a time horizon 𝑇 by the algorithm and by the optimal offline static solution. Online algorithms whose regret grows sublinearly with 𝑇 are called no-regret algorithms, as their time-average regret becomes negligible for large 𝑇 .

Contributions

Single Cache. We make the following contributions in the context of the single cache problem:

• We show that caching policies based on OMD enjoy O √ 𝑇 regret in the fractional setting. Most importantly, we show that bounds for the regret crucially depend on the diversity of the request process. In particular, the regret depends on the diversity ratio 𝑅/ℎ, where 𝑅 is the size of the batch, and ℎ is the maximum multiplicity of a request in a given batch.

Chapter 2 -Exact Caching

• We characterize the optimality of OMD caching policies w.r.t. regret under different diversity regimes. We observe that, for a large region of possible values of the diversity ratio, the optimum is either OGD or OMD with a neg-entropy mirror map (OMD NE). In particular, OGD is optimal in the low diversity regime, while OMD NE is optimal in the high diversity regime.

• OMD algorithms include a gradient update followed by a projection to guarantee that the new solution is in the feasible set (e.g., it does not violate the cache capacity constraints). The projection is often the most computationally expensive step of the algorithm. We show that efficient polynomial algorithms exist both for OGD (slightly improving the algorithm in [19]) and for OMD NE .

• OMD algorithms work in a continuous space, and are therefore well-suited for the fractional setting originally studied by Paschos et al. Still, we show that, if coupled with opportune rounding techniques, they can also be used when the cache can only store a file in its entirety, while preserving their regret guarantees.

Caching Network. We make the following contributions in the context of the caching network problem:

• We revisit the general cache network setting of Ioannidis and Yeh [21] from an adversarial point of view.

• We propose DistributedTGOnline, a distributed, online algorithm that attains 𝑂 (√ 𝑇) regret with respect to an offline solution that is within a (1 -1/𝑒)-approximation from the optimal, when cache update costs are not taken into account.

• We also extend our algorithm to account for update costs. We show that an 𝑂 (√ 𝑇) regret is still attainable in this setting, replacing however independent caching decisions across rounds with coupled ones; we determine the latter by solving an optimal transport problem.

• Finally, we extensively evaluate the performance of our proposed algorithm against several competitors, using (both synthetic and trace-driven) experiments involving non-stationary demands.

Organization

This chapter is organized as follows. Section 2.2 studies the single cache problem, and Section 2.3 studies the caching network problem. In detail:

Single Cache. In Section 2.2.1, we review related work to the single cache problem, then we introduce our model assumptions in Section 2.2.2 and provide technical background on gradient algorithms in Section 2.2.3. Section 2.2.3.3 presents our main results on the regret of OMD caching policies and their computational complexity. A discussion about extending the model to include cache update costs, in Section 2.2.4, is required to introduce the integral setting in Section 2.2.5. Numerical results are presented in Section 2.2.6.

-Single Cache

Caching Network. In Section 2.3.1, we review related work to the caching network problem. Our model and distributed online algorithm are presented in Sections 2.3.2 and 2.3.3, respectively. We present our analysis of the regret under update costs in Section 2.3.4 and extend our results in Section 2.3.5. Numerical results are presented in Section 2.3.6.

Single Cache

Related Work

The caching problem has been extensively studied in the literature under different assumptions on the request process. When the requests occur according to a given stochastic process, the analysis usually leads to complex formulas even in simple settings. For example, even the hit ratio of a single cache managed by the LRU eviction policy under the independent reference model is hard to precisely characterize [22,23]. The characteristic time approximation (often referred to as Che's approximation) significantly simplifies this analysis by assuming that a file, in absence of additional requests for it, stays in the cache for a random time sampled independently from requests for other files. Proposed by Fagin [24] and rediscovered and popularized by Che et al. [25], the approximation has been justified formally by several works [26][27][28] and has allowed the study of a large number of existing [START_REF] Garetto | A Unified Approach to the Performance Analysis of Caching Systems[END_REF] and new [30,31] caching policies. It also applies to networked settings [START_REF] Choungmo Fofack | Performance Evaluation of Hierarchical TTL-based Cache Networks[END_REF][START_REF] Daniel | Exact Analysis of TTL Cache Networks[END_REF][START_REF] Alouf | Performance Models for Hierarchy of Caches: Application to Modern DNS Caches[END_REF][START_REF] Chu | Joint Cache Resource Allocation and Request Routing for In-network Caching Services[END_REF] and to more general utilities beyond the hit ratio [START_REF] Dehghan | A Utility Optimization Approach to Network Cache Design[END_REF][START_REF] Neglia | Cache Policies for Linear Utility Maximization[END_REF], all under stochastic requests. Online caching policies based on gradient methods have also been studied in the stochastic request setting, leading to Robbins-Monro/stochastic approximation algorithms (see, e.g., [21,[START_REF] Ioannidis | Distributed Caching over Heterogeneous Mobile Networks[END_REF]). Though related to OCO, guarantees are very different than the regret metric we study here. Many works have also explored the offline, network-wide static allocation of files, presuming demand is known [START_REF] Borst | Distributed Caching Algorithms for Content Distribution Networks[END_REF][START_REF] Shanmugam | FemtoCaching: Wireless Content Delivery Through Distributed Caching Helpers[END_REF][START_REF] Poularakis | Exploiting Caching and Multicast for 5G Wireless Networks[END_REF]. We differ from the work above, as we consider adversarial requests.

Caching under adversarial requests has been studied since Sleator and Tarjan's seminal paper [16] through the competitive ratio metric. An algorithm is said to be 𝛼-competitive when its competitive ratio is bounded by 𝛼 over all possible input sequences. The problem has been generalized by Manasse et al. [START_REF] Manasse | Competitive Algorithms for On-Line Problems[END_REF] under the name 𝑘-server problem, and further generalized by Borodin et al. under the name metrical task systems (MTS) [17]. The literature on both the 𝑘-server and MTS problems is vast. A recent trend is to apply continuous optimization techniques to solve these combinatorial problems. Bansal et al. [START_REF] Bansal | A Primal-Dual Randomized Algorithm for Weighted Paging[END_REF] study the 𝑘-server problem on a weighted star metric space. In the same spirit, Bubeck et al. [START_REF] Bubeck | 𝐾server via Multiscale Entropic Regularization[END_REF] use the framework of continuous online mirror descent to provide an 𝑜 (𝑘)-competitive algorithm for the 𝑘-server problem on hierarchically separated trees. In this chapter, we focus on regret rather than competitive ratio as the main performance metric. Andrew et al. [START_REF] Andrew | A Tale of Two Metrics: Simultaneous Bounds on Competitiveness and Regret[END_REF] give a formal comparison between competitive ratio and regret and prove that there is an intrinsic incompatibility between the two: no algorithm can have both sub-linear regret and a constant competitive ratio. At the same time, they propose an algorithm with sub-linear regret and slowly increasing competitive ratio.

Online convex optimization (OCO) was first proposed by Zinkevich [START_REF] Zinkevich | Online Convex Programming and Generalized Infinitesimal Gradient Ascent[END_REF], who showed that projected gradient descent attains sublinear regret bounds in the online setting. OCO generalizes previous online problems like the experts problem [START_REF] Littlestone | The Weighted Majority Algorithm[END_REF], and has become widely influential in the learning community [20,[START_REF] Shalev-Shwartz | Online Learning and Online Convex Optimization[END_REF]. To the best of our knowledge, Paschos et al. [19] were the first to apply the OCO framework to caching. Beside proposing OGD for the single cache, they extended it to a simple networked scenario, where users have access to a set of parallel caches that store pseudo-random linear combinations of the files. They proposed no-regret algorithms in both settings. Bhattacharjee et al. [START_REF] Bhattacharjee | Fundamental Limits on the Regret of Online Network-Caching[END_REF] extended this work proving tighter lower bounds for the regret and proposing new caching policies for the networked setting that do not require file coding; Mukhopadhyay and Sinha [START_REF] Mukhopadhyay | Online Caching with Optimal Switching Regret[END_REF] accounted for switching costs due to file retrievals. We depart from these works in considering OMD algorithms, a more general request process, and allowing for integral cache states obtained through randomized rounding.

System Description

The notation used across this section is provided in Table 2.1.

Remote Service and Local Cache. We consider a system in which requests for files are served either remotely or by an intermediate cache of finite capacity; a cache miss incurs a file-dependent remote retrieval cost. Formally, we consider a sequence of requests for files of equal size from a catalog N = {1, 2, . . . , 𝑁 }. These requests can be served by a remote server at cost 𝑤 𝑖 ∈ R + per request for file 𝑖 ∈ N . This cost could be, e.g., an actual monetary cost for using the network infrastructure, or a quality of service cost incurred due to fetching latency. Costs may vary across files, as each file may be stored at a different remote location. We denote by 𝑤 𝑤 𝑤 = [𝑤 𝑖] 𝑖∈N ∈ R 𝑁 + the vector of costs and assume that 𝑤 𝑤 𝑤 is known.

A local cache of finite capacity is placed in between the source of requests and the remote server(s). The local cache's role is to reduce the costs incurred by satisfying requests locally. We denote by 𝑘 ∈ {1, 2, . . . , 𝑁 } the capacity of the cache. The cache is allowed to store fractions of files (this assumption will be removed in Section 2.2.5). We assume that time is slotted, and denote by 𝑥 𝑡,𝑖 ∈ [0, 1] the fraction of file 𝑖 ∈ N stored in the cache at timeslot 𝑡 ∈ {1, 2, . . . ,𝑇 }. The cache state is then given by vector 𝑥 𝑥 𝑥 𝑡 = [𝑥 𝑡,𝑖] 𝑖∈N ∈ X, where X is the capped simplex determined by the (2.1)

Requests. We assume that a batch of multiple requests may arrive within a single timeslot. The number of requests (i.e., the batch size) at each timeslot is given by 𝑅 ∈ N. A file may be requested multiple times (e.g., by different users, whose aggregated requests form the stream reaching the cache) within a single timeslot. We denote by 𝑟 𝑡,𝑖 ∈ N the multiplicity of file 𝑖 ∈ N , i.e., the number of requests for 𝑖, at time 𝑡, and by 𝑟 𝑟 𝑟 𝑡 = [𝑟 𝑡,𝑖] 𝑖∈N ∈ N 𝑁 the vector of such requests, representing the entire batch. We also assume that the maximum multiplicity of a file in a batch is bounded by ℎ ∈ N.

As a result, 𝑟 𝑟 𝑟 𝑡 belongs to set R 𝑅,ℎ = 𝑟 𝑟 𝑟 ∈ {0, . . . , ℎ} 𝑁 :

𝑁 ∑︁ 𝑖=1 𝑟 𝑖 = 𝑅 . (2.2)
Intuitively, the ratio 𝑅 ℎ defines the diversity of request batches in a timeslot. For example, when 𝑅 ℎ = 1, all 𝑅 requests are concentrated on a single file. When 𝑅 ℎ = 𝑁 , requests are spread evenly across the catalog N . In general, 𝑅 ℎ is a lower bound for the number of distinct files requested in the batch. For that reason, we refer to 𝑅 ℎ as the diversity ratio. 1 We note that our request model generalizes the setting by Paschos et al. [19], which can be seen as the case 𝑅 = ℎ = 1, i.e., the batch contains only one request per timeslot. We make no additional assumptions on the request arrival process; put differently, we operate in the adversarial online setting, where a potential adversary may select an arbitrary request sequence {𝑟 𝑟 𝑟 𝑡 } 𝑇 𝑡=1 in R 𝑅,ℎ to increase system costs.

Service Cost Objective. When a request batch 𝑟 𝑟 𝑟 𝑡 arrives, the cache incurs the following cost:

𝑓 𝑟 𝑟 𝑟 𝑡 (𝑥 𝑥 𝑥 𝑡) = 𝑁 ∑︁ 𝑖=1 𝑤 𝑖 𝑟 𝑡,𝑖 (1 -𝑥 𝑡,𝑖). (2.3)
In other words, for each file 𝑖 ∈ N , the system pays a cost proportional to the file fraction (1 -𝑥 𝑡,𝑖) missing from the local cache, weighted by the file cost 𝑤 𝑖 and by the number of times 𝑟 𝑡,𝑖 file 𝑖 is requested in the current batch 𝑟 𝑟 𝑟 𝑡 . The cost objective (2.3) captures several possible real-life settings. First, it can be interpreted as a QoS cost paid by each user for the additional delay to retrieve part of the file from the server. Second, assuming that the 𝑅 requests arrive and are served individually (e.g., because they are spread-out within a timeslot), Eq. (2.3) can represent the load on the servers or on the network to provide the missing part of the requested files. Our model also applies when all requests for the same file are aggregated and served simultaneously by a single fetch operation. In this case, 𝑟 𝑡,𝑖 in Eq. (2.3) should be the interpreted as the indicator variable denoting if file 𝑖 was requested; correspondingly, 𝑅 then indicates the total number of distinct files requested, and ℎ = 1.

Chapter 2 -Exact Caching

Online Caching Algorithms and Regret. Cache files are determined online as follows. The cache has selected a state 𝑥 𝑥 𝑥 𝑡 ∈ X at the beginning of a timeslot. The request batch 𝑟 𝑟 𝑟 𝑡 arrives, and the linear cost 𝑓 𝑟 𝑟 𝑟 𝑡 (𝑥 𝑥 𝑥 𝑡) is incurred; the state is subsequently updated to 𝑥 𝑥 𝑥 𝑡+1 . Formally, the cache state is determined by an online policy A, i.e., a sequence of mappings {A 𝑡 } 𝑇 -1 𝑡=1 , where for every 𝑡 ≥ 1, A 𝑡 : (R 𝑅,ℎ × X) 𝑡 → X maps the sequence of past request batches and decisions {(𝑟 𝑟 𝑟 𝑠 , 𝑥 𝑥 𝑥 𝑠)} 𝑡 𝑠=1 to the next state 𝑥 𝑥 𝑥 𝑡+1 ∈ X. We assume that the policy starts from a feasible state 𝑥 𝑥 𝑥 1 ∈ X.

We measure the performance of an online algorithm A in terms of regret, i.e., the difference between the total cost experienced by a policy A over a time horizon 𝑇 and that of the best static state 𝑥 𝑥 𝑥 * in hindsight. Formally,

Regret 𝑇 (A) = sup {𝑟 𝑟 𝑟
where 𝑥 𝑥 𝑥 * = arg min 𝑥 𝑥 𝑥 ∈X 𝑇 𝑡=1 𝑓 𝑟 𝑟 𝑟 𝑡 (𝑥 𝑥 𝑥) is the optimal static cache state (in hindsight). Note that, by taking the supremum in Eq. (2.4), we indeed measure regret in the adversarial setting, i.e., against an adversary that potentially picks requests in R 𝑅,ℎ trying to jeopardize cache performance.

Update Costs. An online algorithm A updating the cache state at timeslot 𝑡 may require moving a portion of a file from a remote server to the cache to implement this update. The update cost of the online algorithm is not explicitly modeled in our cost and regret (Eqs. (2.3) and (2.4), respectively). We postpone the discussion of such cost in Section 2.2.4. For the moment we observe that updates come "for free" for files requested in the current timeslot. For example, increasing the fraction 𝑥 𝑡,𝑖 for some file 𝑖 such that 𝑟 𝑡,𝑖 > 0, can be performed by recovering the additional part out of the (1 -𝑥 𝑡,𝑖) missing fraction that needs to be retrieved to serve the file; updates can thus "free-ride" on regular traffic, at no additional cost. We prove in Proposition 2.2.10 that the main algorithms studied in this chapter (OGD and OMD NE) are in this regime, as they only increase current state coordinates corresponding to files requested in the previous timeslot; as such, their update costs can be considered to be zero.

Fractional Caching and Gradient-based Algorithms

Inspired by offline minimization, it is natural to design a policy that, upon seeing 𝑟 𝑟 𝑟 𝑡 , selects as 𝑥 𝑥 𝑥 𝑡+1 the state that would have minimized (on hindsight) the aggregate cost up to time 𝑡 (i.e., 𝑡 𝑡 ′ =1 𝑓 𝑟 𝑟 𝑟 𝑡 ′ (𝑥 𝑥 𝑥)). Unfortunately, such policy has poor regret: Proposition 2.2.1. The aggregate cost minimization policy is a policy A that selects for every timeslot 𝑡 ∈ [𝑇 -1] the state 𝑥 𝑥 𝑥 𝑡+1 = arg min

𝑥 𝑥 𝑥 ∈X 𝑡 ∑︁ 𝑡 ′ =1
𝑓 𝑟 𝑟 𝑟 𝑡 ′ (𝑥 𝑥 𝑥).

(2.5)

This policy has linear (worst-case) regret, i.e., Regret(A) = Ω (𝑇).

We provide a proof in Appendix 1.1. A more conservative approach, that indeed leads to sublinear regret, is to take gradual steps, moving in the direction of a better decision according to the latest cost; we present algorithms of this nature in this section. x 𝑥 𝑥 𝑡 ← ∇Φ(𝑥 𝑥 𝑥 𝑡) ⊲ Map primal point to dual point 3:

ŷ 𝑦 𝑦 𝑡 +1 ← x 𝑥 𝑥 𝑡 -𝜂∇𝑓 𝑟 𝑟 𝑟 𝑡 (𝑥 𝑥 𝑥 𝑡) ⊲ Take gradient step in the dual space 4:

𝑦 𝑦 𝑦 𝑡 +1 ← (∇Φ) -1 (ŷ 𝑦 𝑦 𝑡 +1) ⊲ Map dual point to a primal point 5:

𝑥 𝑥 𝑥 𝑡 +1 ← Π Φ X∩D (𝑦 𝑦 𝑦 𝑡 +1) ⊲ Project new point onto feasible region X 6: end for

Online Gradient Descent (OGD)

In OGD, introduced by Paschos et al. [19] for online caching, the cache is initialized with a feasible state 𝑥 𝑥 𝑥 1 ∈ X and updated as follows. Upon receiving a request batch 𝑟 𝑟 𝑟 𝑡 , the cost 𝑓 𝑟 𝑟 𝑟 𝑡 (𝑥 𝑥 𝑥 𝑡) is incurred and the next state becomes: 𝑥 𝑥 𝑥 𝑡+1 = Π X 𝑥 𝑥 𝑥 𝑡 -𝜂∇𝑓 𝑟 𝑟 𝑟 𝑡 (𝑥 𝑥 𝑥 𝑡) , for all 𝑡 ∈ [𝑇 -1], (2.6) where Π X (•) is the Euclidean projection onto X, that ensures feasibility, and 𝜂 ∈ R + is called the learning rate. Note that the state 𝑥 𝑥 𝑥 𝑡+1 obtained according Eq. (2.6) is indeed a function of {(𝑟 𝑟 𝑟 𝑡 , 𝑥 𝑥 𝑥 𝑡)} ⊂ {(𝑟 𝑟 𝑟 𝑠 , 𝑥 𝑥 𝑥 𝑠)} 𝑡 𝑠=1 for every 𝑡 ≥ 1; hence, OGD is indeed an online caching policy as defined in Section 2.2.2. Paschos et al. [19] show that OGD attains sub-linear regret when 𝑅 = ℎ = 1; more specifically: Theorem 2.2.2. ([19, Theorem 2]) When 𝑅 = ℎ = 1, the regret of OGD is bounded as follows:

Regret 𝑇 (OGD) ≤ ∥𝑤 𝑤 𝑤 ∥ ∞ √︁ min(2𝑘, 2(𝑁 -𝑘))𝑇 .

(2.7)

In other words, OGD attains an O √ 𝑇 regret when 𝑅 = ℎ = 1. In this chapter, we study a broader class of gradient descent algorithms that include OGD as a special case. As we will see below (see Theorem 2.2.7), the regret attained by OGD is not necessarily the tightest possible when 𝑅 ≠ 1 ≠ ℎ; broadening the class of algorithms we consider allows us to improve upon this bound.

Online Mirror Descent (OMD)

OMD [20,Section 5.3] is the online version of the mirror descent (MD) algorithm [START_REF] Beck | Mirror Descent and Nonlinear Projected Subgradient Methods for Convex Optimization[END_REF] for convex optimization of a fixed, known function. The main premise behind mirror descent is that variables and gradients live in two distinct spaces: the primal space, for variables, and the dual space, for gradients. The two are linked via a function known as a mirror map. Contrary to standard gradient descent, updates using the gradient occur on the dual space; the mirror map is used to invert this update to a change on the primal variables. For several constrained optimization problems of interest, mirror descent leads to faster convergence compared to gradient descent [START_REF] Bubeck | Convex Optimization: Algorithms and Complexity[END_REF]Section 4.3]. OMD arises by observing that MD is agnostic to whether the gradients are obtained from a fixed function, or a sequence revealed adversarially. OMD for Caching. Applied to our caching problem, OMD takes the form summarized in Algorithm 2.1. In our case, both the primal and dual spaces are R 𝑁 . To disambiguate between the two, Chapter 2 -Exact Caching we denote primal points by 𝑥 𝑥 𝑥,𝑦 𝑦 𝑦 ∈ R 𝑁 and dual points by x 𝑥 𝑥, ŷ 𝑦 𝑦 ∈ R 𝑁 , respectively. Formally, OMD is parameterized by (1) a fixed learning rate 𝜂 ∈ R + , and (2) a differentiable map Φ : D → R, strictly convex over D and 𝜌-strongly convex over X ∩ D, where X is included in the closure of D; that is X ⊆ closure(D).

(2.8)

Function Φ is called the mirror map, that links the primal to the dual space.

Given 𝜂 and Φ, an OMD iteration proceeds as follows. After observing the request batch 𝑟 𝑟 𝑟 𝑡 and incurring the cost 𝑓 𝑟 𝑟 𝑟 𝑡 (𝑥 𝑥 𝑥 𝑡), the current state 𝑥 𝑥 𝑥 𝑡 is first mapped from the primal to the dual space via:

x 𝑥 𝑥 𝑡 = ∇Φ(𝑥 𝑥 𝑥 𝑡).

(2.9)

Then, a regular gradient descent step is performed in the dual space to obtain an updated dual point: ŷ 𝑦 𝑦 𝑡+1 = x 𝑥 𝑥 𝑡 -𝜂∇𝑓 𝑟 𝑟 𝑟 𝑡 (𝑥 𝑥 𝑥 𝑡).

(2.10)

This updated dual point is then mapped back to the primal space using the inverse of mapping ∇Φ, i.e.:

𝑦 𝑦 𝑦 𝑡+1 = (∇Φ) -1 (ŷ 𝑦 𝑦 𝑡+1).

(2.11)

The resulting primal point𝑦 𝑦 𝑦 𝑡+1 may lie outside the constraint set X. To obtain the final feasible point 𝑥 𝑥 𝑥 𝑡+1 ∈ X, a projection is made using the Bregman divergence associated with the mirror map Φ; that is, instead of the orthogonal projection used in OGD, the final cache state becomes:

𝑥 𝑥 𝑥 𝑡+1 = Π Φ X∩D (𝑦 𝑦 𝑦 𝑡+1), (2.12)
where Π Φ X∩D (•) is the Bregman projection, which we define formally below, in Definition 2.2.1. Together, steps (2.9)-(2.12) define OMD. Note that, as it was the case for OGD, 𝑥 𝑥 𝑥 𝑡+1 is a function of {(𝑟 𝑟 𝑟 𝑡 , 𝑥 𝑥 𝑥 𝑡)} ⊂ {(𝑟 𝑟 𝑟 𝑠 , 𝑥 𝑥 𝑥 𝑠)} 𝑡 𝑠=1 , hence OMD is indeed an online algorithm. Two additional technical assumptions on Φ and D must hold for steps (2.11) and (2.12) to be well-defined. 2 First, the gradient of Φ must diverge at the boundary of D; this, along with strict convexity, ensures the existence and uniqueness of the Bregman projection in (2.12). Second, the image of D under the gradient of Φ should take all possible values, that is ∇Φ(D) = R 𝑁 ; this, along again with strict convexity, ensures that ∇Φ is one-to-one and onto, so its inverse exists and Eq. (2.11) is well-defined.

Setting Φ(𝑥 𝑥 𝑥) = 1 2 ∥𝑥 𝑥 𝑥 ∥ 2 2 and D = R 𝑁 yields the identity mapping ∇Φ(𝑥 𝑥 𝑥) = 𝑥 𝑥 𝑥, for all 𝑥 𝑥 𝑥 ∈ D. Furthermore, the Bregman divergence associated with this map is just the Euclidean distance 𝐷 Φ (𝑥 𝑥 𝑥,𝑦 𝑦 𝑦) = 1 2 ∥𝑥 𝑥 𝑥 -𝑦 𝑦 𝑦 ∥ 2 2 . Thus, this Euclidean version of OMD is equivalent to OGD, and OMD can be seen as a generalization of the OGD to other mirror maps.

To conclude our description of OMD, we define the Bregman projection [START_REF] Krzysztof | Proximal Minimization Methods with Generalized Bregman Functions[END_REF]. is the Bregman divergence associated with the mirror map Φ. 2 All hold for the algorithms we consider in Section 2.2.3.3.

Analysis of Online Mirror Descent Algorithms

We present our main results regarding the application of OMD under several different mirror maps to the online caching problems. We will be concerned with both (1) the regret attained, and (2) computational complexity issues, particularly pertaining to the associated Bregman projection. Our key observation is that the regret of different algorithms is significantly influenced by demand diversity, as captured by the diversity ratio 𝑅 ℎ . In particular, our analysis allows us to characterize regimes of the diversity ratio in which OGD outperforms other mirror maps, and vice versa.

𝑞-Norm Mirror Maps. A natural generalization of the OGD algorithm to a broader class of OMD algorithms is via 𝑞-norm mirror maps, whereby:

Φ(𝑥 𝑥 𝑥) = 1 2
∥𝑥 𝑥 𝑥 ∥ 2 𝑞 , where 𝑞 ∈ (1,2], and D = R 𝑁 .

(2.14)

It is easy to verify that Φ and D, defined as above, satisfy all technical requirements set in Section 2.2.3.2 on a mirror map and its domain. We define OMD 𝑞-norm to be the OMD Algorithm 2.1 with Φ and 𝑞 given by Eq. (2.14). Note that this map generalizes OGD, which corresponds to the special case 𝑞 = 2. In what follows, we denote by ∥ • ∥ 𝑝 the dual norm of ∥ • ∥ 𝑞 . Then, 𝑝 ∈ [2, ∞) is such that 1 𝑝 + 1 𝑞 = 1. Note that sometimes OMD 𝑞-norm is referred to as a 𝑝-norm algorithm [START_REF] Shalev-Shwartz | Online Learning and Online Convex Optimization[END_REF].

Regret Analysis. We begin by providing a regret bound for OMD 𝑞-norm algorithms:

Theorem 2.2.3.

For 𝜂 = (𝑞-1)𝑘 2 𝑘 -2 𝑝 -𝑁 -2 𝑝 ∥𝑤 𝑤 𝑤 ∥ 2 ∞ ℎ 2 (𝑅 ℎ) 2 𝑝 𝑇
, the regret of OMD 𝑞-norm over X satisfies:

Regret 𝑇 (OMD 𝑞-norm) ≤ ∥𝑤 𝑤 𝑤 ∥ ∞ ℎ𝑘 𝑅 ℎ 1 𝑝 √︄ 1 𝑞 -1 𝑘 -2 𝑝 -𝑁 -2 𝑝 𝑇 . (2.15)
The proof can be found in Appendix 1.3. We use an upper bound on the regret of general OMD from [START_REF] Bubeck | Convex Optimization: Algorithms and Complexity[END_REF]Theorem 4.2] and relate it to our setting; in doing so, we bound the diameter of X w.r.t. Bregman divergence under Φ as well as the dual-norm ∥ • ∥ 𝑝 of the gradients ∇𝑓 𝑟 𝑟 𝑟 𝑡 (𝑥 𝑥 𝑥 𝑡).

Comparing Theorem 2.2.3 to Theorem 2.2.2, we see that both attain an O √ 𝑇 regret. A natural question to ask when comparing the two bounds is whether there are cases where OMD 𝑞-norm with 𝑞 ≠ 2 outperforms OGD (i.e., OMD 2-norm). The constants in the r.h.s. of Eq. (2.15) depend on the diversity ratio 𝑅 ℎ ; this, in turn, affects which is the optimal 𝑞, i.e., the one that minimizes the bound in Eq. (2.15). Let 𝑞 * = arg inf 𝑞∈ (1,2] ub(𝑞) be the optimal 𝑞, where ub : (1, 2] → R + is the upper bound in Eq. (2.15). Note that 𝑞 * ∈ [1,2]. Figure 2.1 shows 𝑞 * as a function of the diversity ratio, for different values of cache capacity 𝑘. We observe that OGD (𝑞 = 2) is optimal for lower diversity regimes and larger caches; when diversity 𝑅 ℎ increases or cache capacity 𝑘 decreases, values 𝑞 < 2 become optimal. The transition from 𝑞 * = 2 to 𝑞 * = 1 is sharp, and becomes sharper as 𝑘 increases. [1,2] as a function of the diversity ratio 𝑅/ℎ, for different cache capacities 𝑘 expressed as fractions of the catalog size (𝑁 = 100). Given 𝑅/ℎ, the optimal 𝑞 * is determined as the value in [1,2] that minimizes the upper-bound in Eq. (2.15). Higher values of 𝑅/ℎ represent more diverse requests. Under small diversity, OGD is optimal; as diversity increases, mirror maps for which 𝑞 < 2 attain a more favorable upper bound than OGD.

Optimality Regimes. Motivated by these observations, we turn our attention to formally characterizing the two regimes under which optimality transitions from 𝑞 * = 2 to 𝑞 * = 1. We first determine the upper bound on the regret for these two regimes. Indeed, by setting 𝑞 = 2 in Theorem 2.2.3, we obtain the following bound, generalizing Theorem 2.2.2 to the case 𝑅/ℎ > 1:

Corollary 2.2. 4.

For 𝜂 = √︂ 𝑘 (1-𝑘 𝑁) ∥𝑤 𝑤 𝑤 ∥ 2
∞ ℎ𝑅𝑇 the regret of OGD, satisfies:

Regret 𝑇 (OGD) ≤ ∥𝑤 𝑤 𝑤 ∥ ∞ √︄ ℎ𝑅𝑘 1 - 𝑘 𝑁 𝑇 . (2.16)
This a direct consequence of Theorem 2.2.3 by replacing 𝑞 = 2 in Eq. (2.15). We note that, in this result, we tighten the bound of Paschos et al. [19]: for 𝑅 = ℎ = 1, the bound in Eq. (2.16) is smaller than the one in Theorem 2.2.2 by at least a √ 2 factor. We also characterize the limiting behavior of OMD 𝑞-norm as 𝑞 converges to 1.

Corollary 2.2.5. As 𝑞 converges to 1, the upper bound on OMD 𝑞-norm regret given by Eq. (2.15) converges to:

∥𝑤 𝑤 𝑤 ∥ ∞ ℎ𝑘 √︄ 2 log 𝑁 𝑘 𝑇 .
(2.17)

The proof can be found in Appendix 1.4. This limit is precisely the bound on the regret attained under the neg-entropy mirror map (see Theorem 2.2.8 below). Armed with Corollaries 2.2.4 and 2.2.5, we can formally characterize the regimes in which either of the two strategies become dominant: Theorem 2.2.6. The request bound for OMD 𝑞-norm in Eq. (2.15) is minimized for 𝑞 = 2, when 𝑅 ℎ ≤ 𝑘. In other words, when the diversity ratio is smaller than the cache size, it is preferable to update the cache via OGD. The proof, in Appendix 1.5, establishes that the upper bound in Eq. (2.15) is monotonically decreasing w.r.t 𝑞 in the specified interval 𝑅 ℎ ≤ 𝑘. Our next result characterizes then the neg-entropy (𝑞 converges to 1) mirror map outperforms OGD: Theorem 2.2.7. The limit, as 𝑞 converges to 1, of the OMD 𝑞-norm regret bound in Eq. (2.17) is smaller than the corresponding bound for OGD (OMD 𝑞-norm with 𝑞 = 2) when 𝑅 ℎ > 2 √ 𝑁𝑘.

The proof is provided in Appendix 1.6. We stress that Theorem 2.2.7 implies the sub-optimality of OGD in the regime 𝑅 ℎ > 2

√ 𝑁𝑘.
The experiments in Figure 2.1 suggest the bound in Theorem 2.2.7 is quite tight: for example for 𝑘 = 7 the bounds suggest 𝑞 = 1 should be optimal when 𝑅/ℎ exceeds 2 √ 100 × 7 ≈ 52.9, while experiments show that it is optimal when 𝑅/ℎ exceeds 45. On the contrary, we observe that the bound in Theorem 2.2.6 seems to be loose and the transitions we observe in Figure 2.1 are sharper than what one would predict from the bounds.

Dual-Primal Update and Bregman Projection. Having characterized the regret of OMD 𝑞-norm algorithms, we turn our attention to implementation issues. The map to the dual space and back in Eq. (2.9) and Eq. (2.11) (Lines 2 and 4 in Algorithm 2.1), have the following expression [START_REF] Gentile | The Robustness of the 𝑝-Norm Algorithms[END_REF], respectively: , for all 𝑖 ∈ N .

(2. 19) Finally, for all 𝑞 ∈ (1, 2] the Bregman projection in Eq. (2.12) (Line 5 in Algorithm 2.1) involves solving a convex optimization problem, in general. For the OGD Algorithm however (𝑞 = 2) the projection is the usual Euclidean projection, and can be performed in O 𝑁 2 steps, using the projection algorithm by Wang and Lu [START_REF] Wang | Projection onto the Capped Simplex[END_REF]. Specifically when 𝑅 ℎ = 1, only a single coefficient is updated through the gradient step (Lines 2-4 in Algorithm 2.1) per iteration, and Paschos et al. [19] provide an algorithm that performs the projection in O (𝑁) time. 3

Neg-Entropy Mirror Map

To conclude this section, we turn our attention to the neg-entropy mirror map that, as discussed earlier, attains the same regret performance as OMD 𝑞-norm as 𝑞 converges to 1. Beyond its improved performance in terms of regret in the high diversity ratio regime, the neg-entropy mirror map comes with an additional computational advantage: the Bregman projection admits a highly efficient implementation. (2.20)

Note that, as per the requirements in Section 2.2.3.2, X ⊆ closure(D). Also, ∇Φ indeed diverges at the boundary of D, and ∇Φ(D) = R 𝑁 , as 𝜕Φ(𝑥 𝑥 𝑥) 𝜕𝑥 𝑖 = 1 + log 𝑥 𝑖 , for all 𝑖 ∈ N .

(2.21)

We refer to the resulting algorithm as OMD NE .

Regret Analysis. We first characterize the regret of OMD NE :

Theorem 2.2.8. For 𝜂 = √︂ 2 log(𝑁 /𝑘) ∥𝑤 𝑤 𝑤 ∥ 2 ∞ ℎ 2 𝑇 , the regret of OMD NE satisfies:

Regret 𝑇 (OMD NE) ≤ ∥𝑤 𝑤 𝑤 ∥ ∞ ℎ𝑘 √︁ 2 log(𝑁 /𝑘). (2.22)
The proof, in Appendix 1.8, is similar to the proof of Theorem 2.2.3. Using again the general bound of the regret of OMD algorithms in Bubeck [START_REF] Bubeck | Convex Optimization: Algorithms and Complexity[END_REF]Theorem 4.2], we bound the diameter of X w.r.t. to the Bregman divergence as well as the dual norm ∥ • ∥ ∞ of gradients ∇𝑓 𝑟 𝑟 𝑟 𝑡 (𝑥 𝑥 𝑥 𝑡). Crucially, we observe that OMD NE indeed attains the same regret bound as the one in Corollary 2.2.5, namely, the bound on OMD 𝑞-norm when 𝑞 converges to 1. This immediately implies the advantage of OMD NE over OGD in high diversity ratio regimes, as described in Section 2.2.3.3 and Theorem 2.2.7.

Dual-Primal Update and Bregman Projection. As ∇Φ(𝑥 𝑥 𝑥) is given by Eq. (2.21), the inverse mapping is given by (∇Φ) -1 (ŷ 𝑦 𝑦 𝑡+1) 𝑖 = exp(ŷ𝑡,𝑖 -1). Hence, the map to the dual space and back in Eq. (2.9)-Eq. (2.11) (Lines 2-4 in Algorithm 2.1) can be concisely written for all 𝑖 ∈ N as: In other words, OMD under the neg-entropy mirror map adapts the cache state via a multiplicative rule (namely, the one implied by the above equation), as opposed to the additive rule of OGD (see Eq. (2.6)). In Theorem 1.2 we prove that OMD 𝑞-norm when 𝑞 converges to 1 also adapts the cache state via a multiplicative update rule; moreover, it is equivalent to OMD NE over the simplex. This justifies why the regret bounds for the two algorithms in Eq. (2.17) and Eq. (2.22) are identical. Finally, the projection algorithm onto the capped simplex can be implemented in O (𝑁 + 𝑘 log(𝑘)) time for arbitrary 𝑅 and ℎ values using a waterfilling-like algorithm. The full procedure is presented in Algorithm 2.2. The algorithm receives as input the top-𝑘 elements of 𝑦 𝑦 𝑦, sorted in a descending order. It then identifies via a linear search which elements exceed an appropriate threshold and set them to one. The other elements are scaled by a constant factor to satisfy the capacity constraint. The following theorem holds: 𝑚 𝑏 ← (𝑘 + 𝑏 -𝑁) / ∥𝑦 𝑦 𝑦 ∥ 1 -𝑁 𝑖=𝑏+1 𝑦 𝑖 𝑃 4:

if 𝑦 𝑏 𝑚 𝑏 𝑃 < 1 ≤ 𝑦 𝑏+1 𝑚 𝑏 𝑃 then ⊲ Appropriate 𝑏 is found 5:

for i ≥ b+1 do 6:

𝑦 𝑖 ← 1/(𝑚 𝑏 𝑃) 7:

end for 8:

𝑃 ← 𝑚 𝑏 𝑃 9:

return 𝑦 𝑦 𝑦𝑃 ⊲ 𝑦 𝑦 𝑦𝑃 is the result of the projection 10:

end if 11: end for Theorem 2.2.9. Algorithm 2.2 returns the projection Π Φ X∩D (𝑦 𝑦 𝑦) onto the capped simplex X under the neg-entropy Φ. It requires O (𝑁 + 𝑘 log(𝑘)) operations per OMD NE iteration, for general values of 𝑅 and ℎ, and only O (𝑘) operations, when 𝑅 ℎ = 1. The proof is given in Appendix 1.9. To prove this theorem, we characterize the KKT conditions of the minimization problem. Then we show that these conditions can be checked in O (𝑘) time. Finally, we show how maintaining 𝑦 𝑦 𝑦 in a partially sorted list across iterations leads to the reported complexity results. Theorem 2.2.9 implies that OMD NE has significant computational savings when compared to OGD (cf. Section 2.2.3.3), both when 𝑅 ℎ = 1 and for general values of 𝑅 and ℎ.

Update Costs

The model presented in Section 2.2.2 can be extended by adding the cost to update the cache state after the batch of 𝑅 requests has been served. This cost may quantify the additional load on the server or on the network. This update cost is often called movement cost [START_REF] Bubeck | Convex Optimization: Algorithms and Complexity[END_REF] or switching cost [START_REF] Andrew | A Tale of Two Metrics: Simultaneous Bounds on Competitiveness and Regret[END_REF].

As the state changes from 𝑥 𝑥 𝑥 𝑡 to 𝑥 𝑥 𝑥 𝑡+1 , the cache evicts part of the file 𝑖 if 𝑥 𝑡+1,𝑖 < 𝑥 𝑡,𝑖 and stores additional bytes of it if 𝑥 𝑡+1,𝑖 > 𝑥 𝑡,𝑖 . We make the following assumptions:

1. Evictions do not engender update costs, as the cache can perform them autonomously;

2. Insertions of (part of) files which have been requested do not engender update costs, as these files have already been retrieved by the cache in their entirety to satisfy the requests.

3. Insertions of (part of) files which have not been requested incur a cost proportional to the fraction of file retrieved.

We can then define the update cost at time slot 𝑡 as UC 𝑟 𝑟 𝑟 𝑡 (𝑥 𝑥 𝑥 𝑡 , 𝑥 𝑥 𝑥 𝑡+1) = ∑︁ 𝑖∉supp(𝑟 𝑟 𝑟 𝑡)

𝑤 ′ 𝑖 max 0, 𝑥 𝑡+1,𝑖 -𝑥 𝑡,𝑖 ,

where supp(𝑟 𝑟 𝑟 𝑡) = 𝑖 ∈ N : 𝑟 𝑡,𝑖 ≠ 0 denotes the support of 𝑟 𝑟 𝑟 𝑡 , i.e., the set of files that have been requested during the 𝑡-th timeslot, and 𝑤 ′ 𝑖 ∈ R + is the cost to retrieve the whole file 𝑖, and can in general be different from the cost 𝑤 𝑖 appearing in (2.3).

If the update cost is introduced in the model, the extended regret can be defined as follows: Equation (2.26) shows that the regret of an arbitrary online algorithm can be bounded by considering the regret we have derived so far (Eq. (2.4)), ignoring update costs, and subsequently accounting for an additional term corresponding to the update. Note that the optimal static allocation does not incur any update cost. Equation (2.26) implies that any policy with O √ 𝑇 regret and O √ 𝑇 update cost in expectation has also O √ 𝑇 extended regret. One of the reasons why we did not introduce directly the update cost is that, in the fractional setting, OMD update cost is zero both for the Euclidean (OGD) and the neg-entropy (OMD NE) mirror maps. Formally, we have: Proposition 2.2.10. For any request batch 𝑟 𝑟 𝑟 𝑡 received at time slot 𝑡 ∈ [𝑇], the update of fractional cache state from 𝑥 𝑥 𝑥 𝑡 ∈ X to 𝑥 𝑥 𝑥 𝑡+1 ∈ X obtained by OMD NE or OGD has no cost, i.e., UC 𝑟 𝑟 𝑟 𝑡 (𝑥 𝑥 𝑥 𝑡 , 𝑥 𝑥 𝑥 𝑡+1) = 0.

E-Regret 𝑇 (A) = sup {𝑟 𝑟 𝑟
The proof is provided in Appendix 1.10. In fact, the gradient step increases the fraction 𝑥 𝑡,𝑖 only for files 𝑖 that have been requested, and the projection step reduces the fraction for all other files in order to satisfy the capacity constraint. It follows that 𝑥 𝑡+1,𝑖 -𝑥 𝑡,𝑖 > 0 if and only if 𝑖 ∈ supp(𝑟 𝑟 𝑟 𝑡), and thus UC 𝑟 𝑟 𝑟 𝑡 (𝑥 𝑥 𝑥 𝑡 , 𝑥 𝑥 𝑥 𝑡+1) = 0. Hence, the O √ 𝑇 regret guarantees we proved in the previous sections for OGD and OMD NE extend to the more general definition in (2.25). In the next section, we show that update costs cannot be neglected when caches are forced to store files in their entirety.

Integral Caching

In the previous sections, we assumed that the cache can store arbitrarily scriptsize chunks of a file, and this allowed us to design no-regret policies that employ fractional caching. However, this assumption can be too strong in some applications. For example, when the catalog is composed of scriptsize-sized files, the discreteness of chunks sizes cannot be neglected; moreover, the metadata needed for each chunk can cause memory and computational overheads. These observations motivate us to study the case when the cache can only store the entire file. We refer to this setting as the integral caching. Formally, we restrict the cache states to belong to the set Z = 𝜁 𝜁 𝜁 ∈ {0, 1} 𝑁 : 𝑖∈N 𝜁 𝑖 = 𝑘 . Note that the set Z is a restriction of the set of fractional caching states X to its corners, i.e., Z = X ∩ {0, 1} 𝑁 ; thus, we maintain the same definition of the requests and the service cost objective in Section 2.2.2. In this setting, we allow policies to be randomized. This extension turns out to be necessary in order to have a sublinear regret policy; formally, we have: Proposition 2.2.11. Any deterministic policy restricted to select integral cache states in Z has the following lower bound on its regret:

Regret 𝑇 (A) ≥ 𝑘 (1 -𝑘/𝑁) 𝑇 .

(2.27)

To prove the proposition, we show that an adversary can exploit the deterministic nature of the policy by continuously requesting the files that are not stored in the cache. We provide the proof in Appendix 2.1.

We thus turn our attention to randomized policies. In particular, we focus on a special class of randomized policies, constructed by (1) a fractional online caching policy A, i.e., of the type we have studied so far (see Section 2.2.2), combined with (2) a randomized rounding scheme Ξ, that maps fractional caching states to integral ones. In particular, for every 𝑡 ≥ 1 the randomized rounding scheme Ξ : X 𝑡 × Z 𝑡-1 × [0, 1] → Z maps the previous fractional cache states {𝑥 𝑥 𝑥 𝑠 } 𝑡-1 𝑠=1 ∈ X 𝑡-1 , the current fractional cache state 𝑥 𝑥 𝑥 𝑡 ∈ X, the previous random cache states {𝑧 𝑧 𝑧 𝑠 } 𝑡-1 𝑠=1 ∈ Z 𝑡-1 , and a source of randomness 𝜉 𝑡 ∈ [0, 1] to a new random cache state 𝑧 𝑧 𝑧 𝑡 ∈ Z where E[𝑧 𝑧 𝑧 𝑡] = 𝑥 𝑥 𝑥 𝑡 .

(2.28)

Note that the rounding function takes into account not only the current fractional state 𝑥 𝑥 𝑥 𝑡 , which determines its expectation, but also the past fractional and integral states ({(𝑧 𝑧 𝑧 𝑠 , 𝑥 𝑥 𝑥 𝑠)} 𝑡-1 𝑠=1); this is in fact instrumental in attaining a sublinear extended regret (see Theorems 2.2.13 and 2.1 below).

We extend the definitions of the regret and the extended regret as follows:

Regret 𝑇 (A, Ξ) = sup

{𝑟
where the expectation is taken over the random choices of the rounding scheme Ξ, and

𝑧 𝑧 𝑧 * = arg min 𝑧 𝑧 𝑧∈Z 𝑇 ∑︁ 𝑡=1 𝑓 𝑟 𝑟 𝑟 𝑡 (𝑧 𝑧 𝑧) (2.31)
is the optimal static integral cache state (in hindsight). By restricting our focus to such randomized policies, we obtain a regret that is equal to the fractional caching policy's regret. Formally, we have:

Proposition 2.2.12. Any randomized caching policy constructed by an online policy A combined with a randomized rounding scheme Ξ has the same regret as A, i.e., Regret 𝑇 (A, Ξ) = Regret 𝑇 (A), given by (2.29) and (2.4), respectively.

The result follows from the linearity of the cost functions and the expectation operator; moreover, the static optimum can always be selected to be integral from the integrality of the capacity constraint and linearity of the objective function. The proof is provided in Appendix. 2.2.

Proposition 2.2.12 thus implies that regret guarantees for a fractional policy A readily transfer to the integral regime, when coupled with rounding Ξ. Unfortunately, when considering the extended regret (Eq. (2.30)) instead, naïve rounding policies can arbitrary evict and fetch objects to the cache causing large update costs (see Theorem 2.2.13). Thus, unless rounding is carefully designed, we may fail to have sublinear regret guarantees when accounting for update costs. In the next section, we show how a randomized rounding scheme Ξ can be selected to avoid incurring large update costs.

Rounding Schemes and Extended Regret

Online Independent Rounding. If we consider a fractional caching state 𝑥 𝑥 𝑥 𝑡 ∈ X, then a random integral caching state 𝑧 𝑧 𝑧 𝑡 ∈ Z with the marginal E[𝑧 𝑧 𝑧 𝑡] = 𝑥 𝑥 𝑥 𝑡 exists and can be sampled in polynomial time (see, e.g., [21,[START_REF] Blaszczyszyn | Optimal Geographic Caching In Cellular Networks[END_REF]). Thus, a rounding scheme Ξ can be constructed with such strategy that takes as input the current fractional cache state 𝑥 𝑥 𝑥 𝑡 ignoring previous fractional cache states {𝑥 𝑥 𝑥 𝑠 } 𝑡-1 𝑠=1 ∈ X 𝑡-1 , and previous random cache states {𝑧 𝑧 𝑧 𝑠 } 𝑡-1 𝑠=1 ∈ Z 𝑡-1 . linearWe provide pseudocode for this procedure in Algorithm 2.3. 4 Because at any time 𝑡 the random cache states are sampled independently from previous random cache states, we refer to this rounding as online independent rounding. Unfortunately, when considering the extended regret (2.30), any caching policy coupled with this rounding scheme loses its O √ 𝑇 regret guarantee. Formally, we have the following:

Theorem 2.2.13. Any randomized caching policy constructed by an online policy A combined with online independent rounding as a randomized rounding scheme Ξ has linear (worst-case) extended regret, i.e., E-Regret 𝑇 (A, Ξ) = Ω(𝑇).

The proof is provided in Appendix 2.3. Online independent rounding causes frequent cache updates, as it samples a new state from𝑧 𝑧 𝑧 𝑡 ignoring the previous state𝜁 𝜁 𝜁 𝑡-1 sampled from𝑧 𝑧 𝑧 𝑡-1 . Intuitively, imposing dependence (coupling) between the two consecutive random states may significantly reduce the expected update cost.

Online Coupled Rounding. To address this issue, our proposed online coupled rounding scheme is described also in Algorithm 2.3, using however the same randomization source across all timeslots. In particular, the coupling across states comes from the use of the same uniform random variable 𝜉. A consequence of this coupling is that the next integral state can be computed efficiently and leads to scriptsize movement costs. Note that Algorithm 2.3 does not necessarily find an optimal coupling, still it yields a sublinear update cost, and thus preserves the sublinearity of the regret. This is formally expressed in the following Theorem:

Algorithm 2.3 Online Rounding 1: procedure Online Rounding(𝑥 𝑥 𝑥 ∈ X, 𝜉 ∈ [0, 1]) 2: I 0 = ∅ 3:
for 𝑖 = 1, 2, . . . , 𝑁 do 4:

I 𝑖 ← I 𝑖 -1 ∪ {𝑖} if 𝑖 𝑗=1 𝑥 𝑗 ≥ 𝜉 + |I 𝑖 -1 |, I 𝑖 -1
otherwise.

E UC 𝑟 𝑟 𝑟 𝑡 (𝑧 𝑧 𝑧 𝑡 ,𝑧 𝑧 𝑧 𝑡+1) = O √ 𝑇 . Moreover, the extended regret is sublinear E-Regret 𝑇 (A, Ξ) = O √ 𝑇 .
We provide the proof in Appendix 2.5. In summary, any OMD policy combined with online coupled rounding yields O √ 𝑇 extended regret in the integral caching setting. The computational complexity of online coupled rounding is O (𝑁) (see also Figure 2.

2).

Online Optimally-Coupled Rounding. It is possible in general to reduce the update cost of online coupled rounding. In particular, minimizing the expected update cost over all joint distributions of the random variables 𝑧 𝑧 𝑧 𝑡 and 𝑧 𝑧 𝑧 𝑡+1 leads to an optimal transport problem [START_REF] Peyré | Computational Optimal Transport: With Applications to Data Science[END_REF]. For completeness, we describe this rounding scheme here, though (1) it does not reduce the extended regret guarantee attained by online coupled rounding (up to multiplicative constants), and (2) it has an increased computational cost.

Formally, at each time 𝑡 the random variables 𝑧 𝑧 𝑧 𝑡 with marginal 𝑥 𝑥 𝑥 𝑡 can be constructed by sampling from a distribution 𝑝 𝑝 𝑝 𝑡 with O (𝑁) support 𝜁 𝜁 𝜁 The corollary follows from Theorem 2.2.14, because online coupled rounding constructs a feasible transportation flow (see Figure 2.3 in Appendix 2.4 for an illustration) that gives sublinear update costs, and the optimal flow can only have lower update costs. The naïve implementation of the optimal transport problem has O 𝑁 3 time complexity, but several efficient approximations exist in the literature [START_REF] Peyré | Computational Optimal Transport: With Applications to Data Science[END_REF] at the expense of losing the established guarantee. In what follows, we distinguish the number of batches in the trace (𝐵) and the time horizon (𝑇).

Experiments

We generate the following synthetic datasets, summarized in Table 2.2. Fixed Popularity. Requests are i.i.d. and sampled from a catalog of 𝑁 = 200 files according to a Zipf distribution with exponent 𝛼 = 0.8. Each batch counts a single request (𝑅 = 1). We set set the time horizon as 𝑇 = 10 5 . The cache capacity is 𝑘 = 100. The total number of requests is the product of the requests in each batch (𝑅) and the number of batches (𝐵), both values are reported in Table 2.2. Batched Fixed Popularity. Request are generated as above from a Zipf distribution with exponent 𝛼, but are now grouped in batches of 𝑅 = 5×10 3 requests. We take different exponents 𝛼 ∈ {0.1, 0.2, 0.7} for traces Batched Fixed Popularity (1), (2), and (3), respectively, in Table 2.2. The parameter 𝛼 controls the diversity of the files in the request batches. If 𝛼 = 0, then each file is requested with equal probability, corresponding to 𝑅 ℎ → 𝑁 (high diversity). As we increase 𝛼, the requests become more concentrated; this corresponds to 𝑅 ℎ → 1 (low diversity). Table 2.2 shows the value of ℎ observed in each trace. In all cases, we select catalog size 𝑁 = 10 4 , cache size 𝑘 ∈ {25, 125, 250}, and time horizon 𝑇 = 10 4 . Transient Popularity. We also generate two non-stationary request traces. In these traces, we reset the popularity distribution periodically.

In the first scenario (Partial Popularity Change traces), we still have batches of 𝑅 = 5 × 10 3 requests sampled from a catalog of 𝑁 = 10 4 files according to a Zipf distribution with parameter 𝛼 ∈ {0.1, 0.3, 0.4} for traces (1), (2), and (3), respectively. But now the popularities of a subset of files is modified every 10 3 time slots. In particular the 5% most popular files become the 5% least popular ones and vice versa. We want to model a situation where the cache knows the timescale over which the request process changes and which files are affected (but not how their popularity changes). Correspondingly, the time horizon is also set to 𝑇 = 10 3 and, at the end of each time horizon, the cache redistributes uniformly the cache space currently allocated by those files. The cache size is

(A) = 1 𝑅𝑡 𝑡 𝑠=0 𝑓 𝑟 𝑟 𝑟 𝑠 (𝑥 𝑥 𝑥 𝑠) [0, 1] Normalized Moving Average Cost NMAC(A) = 1 𝑅 min(𝜏,𝑡) 𝑡 𝑠=𝑡 -min(𝜏,𝑡) 𝑓 𝑟 𝑟 𝑟 𝑠 (𝑥 𝑥 𝑥 𝑠) [0, 1] Time Average Regret TAR(A) = 1 𝑡 𝑡 𝑠=1 𝑓 𝑟 𝑟 𝑟 𝑠 (𝑥 𝑥 𝑥 𝑠) -𝑡 𝑠=1 𝑓 𝑟 𝑟 𝑟 𝑠 (𝑥 * 𝑥 * 𝑥 *) [0, 𝑅] Cumulative Update Cost CUC(A) = 𝑡 𝑠=1 UC 𝑟 𝑟 𝑟 𝑠 (𝑥 𝑥 𝑥 𝑠 , 𝑥 𝑥 𝑥 𝑠+1) [0, ∞)
𝑘 = 50.
In the second scenario (Global Popularity Change trace) each batch counts only a single request (𝑅 = 1) sampled from a catalog of 𝑁 = 10 4 files according to a Zipf distribution with exponent 𝛼 = 0.8. Every 5 × 10 4 time slots (or requests in this case) the popularity of each files change: file 𝑖 ∈ {1, . . . , 𝑁 } assumes the popularity of file 𝑗 = (1 + (𝑖 + 𝑁 /4) mod 𝑁). The cache size is 𝑘 = 200. We also generate the Downscaled Global Popularity Change trace as a downscaled version of Global Popularity Change trace, where the catalog size is reduced to 𝑁 = 25, the cache size to 𝑘 = 4, and the number of requests to 9 × 10 3 . The learning rate is set to 𝜂 = 0.01. Akamai Trace. We consider also a real file request trace collected from Akamai Content Delivery Network (CDN) [START_REF] Neglia | Access-Time-Aware Cache Algorithms[END_REF]. The trace spans 1 week, and we extract from it about 8.5 × 10 7 requests for the 𝑁 = 10 4 most popular files. We group requests in batches of size 𝑅 = 5 × 10 3 , and we consider a time horizon 𝑇 = 100 time slots corresponding roughly to 1 hour. The cache size is 𝑘 = 25.

Online Algorithms. Starting with the gradient based algorithms, we implemented OMD NE with the projection defined in Algorithm 2.2. We implemented two different projection algorithms for OGD: the one by Paschos et al. [19] for the setting 𝑅 ℎ = 1, and the one by Wang and Lu [START_REF] Wang | Projection onto the Capped Simplex[END_REF] for the general setting 𝑅 ℎ > 1. In addition, we implemented four caching eviction policies: LRU, LFU, W-LFU, and FTPL. LRU and LFU evict the least recently used and least frequently used file, respectively. While LFU estimates file popularities considering all requests seen in the past, W-LFU [START_REF] Karakostas | Exploitation of Different Types of Locality for Web Caches[END_REF] is an LFU variant that only considers requests during a recent time window 𝑊 , which we set equal to 𝑇 × 𝑅 in our experiments. The policies LRU, LFU, and W-LFU are allowed to process individual requests. FTPL is a no-regret policy proposed by Mukhopadhyay and Sinha [START_REF] Mukhopadhyay | Online Caching with Optimal Switching Regret[END_REF], which, roughly speaking, behaves as a LFU policy whose request counters are perturbed by some Gaussian noise. Finally, we define Best Static to be the optimal static allocation 𝑥 𝑥 𝑥 * , i.e., the configuration storing the 𝑘 most popular files as we consider 𝑤 𝑖 = 1, ∀𝑖 ∈ N . We also define Best Dynamic to be the caching policy that stores the 𝑘 most popular files at any time for the synthetic traces (for which the instantaneous popularity is well defined). The optimality of such policy is formally studied in [START_REF] Nitish | A New Upper Bound on Cache Hit Probability for Non-Anticipative Caching Policies[END_REF].

Online Rounding. We also implemented the three rounding schemes described in Section 2.2.5: (a) the online independent rounding in Algorithm 2.3, (b) the online coupled rounding in Algorithm 2.3, and (c) the online optimally-coupled rounding. The rounding schemes are combined with OGD configured with learning rate 𝜂 = 0.01 under the Downscaled Global Popularity Change trace.

Performance Metrics. We measure performance w.r.t. four metrics defined in Table 2.3. The Normalized Average Cost NAC(A) ∈ [0, 1] corresponds to the time-average cost over the first 𝑡 time slots, normalized by the batch size 𝑅. The Normalized Moving Average Cost NMAC(A) ∈ [0, 1] is computed similarly, using a moving average instead over a time window 𝜏 > 0; we use 𝜏 = 500 in our experiments. We also consider the Time Average Regret TAR(A) ∈ [0, 𝑅], which is precisely the time average regret over the first 𝑡 time slots. Finally, when studying rounding algorithms, we also measure and report the Cumulative Update Cost CUC(A) ∈ [0, ∞).

Results

Stationary Requests. Figures 2.2 (a) and 2.2 (b) show the performance w.r.t. NAC of OGD and OMD NE , respectively, under different learning rates 𝜂 on the Fixed Popularity trace. We observe that both algorithms converge slower under small learning rates, but reach a final lower cost, while larger learning rates lead to faster convergence, albeit to higher final cost. This may motivate the adoption of a diminishing learning rate, that combines the best of the two options, starting large to enable fast convergence, and enabling eventual fine-tuning. We show curves corresponding to a diminishing learning rate both for OGD and OMD NE , and indeed they achieve the smallest costs. The learning rate 𝜂 * gives the tightest worst-case regrets for OGD and OMD NE , as stated in Theorems 2.2.4 and 2.2.8. While this learning rate is selected to protect against any (adversarial) request sequence, it is not too pessimistic: We observe that OMD NE outperforms OGD in the more diverse regimes (𝛼 ∈ {0.1, 0.2}). This is more apparent for smaller cache sizes 𝑘. In contrast, OGD outperforms OMD NE when requests are less diverse (𝛼 = 0.7); again, this is more apparent for larger cache size 𝑘. These observations agree show the performance of OGD and OMD NE respectively under different learning rates. For small learning rates the algorithms both converge slower but more precisely, while for larger learning rates they converge faster, but to a higher cost. Subfigure (c) shows the time average regret of the two gradient algorithms. When the regret is sub-linear, the time average regret converges to 0 as

𝑇 → ∞.
with Theorems 2.2.7 and 2.2.6 in Section 2.2.3.3: high diversity and small cache sizes indeed favor OMD NE .

Robustness to Transient Requests. Dashed lines indicate the projected performance in the stationary setting (if request popularities stay fixed). Across the different diversity regimes, we find the OMD NE is more robust to popularity changes. In (a), (b) and (c) OMD NE outperforms OGD in the non-stationary popularity setting: we observe a wider performance gap as compared to the stationary setting. Figure 2.4 (d) and (e) show the normalized average cost over the Global Popularity Change trace for the policies OGD and OMD NE , respectively. We observe in Figure 2.4 (b) the NAC of OMD NE performance degrades after each popularity change. This is a limitation due to the multiplicative nature of OMD NE . When the algorithm learns that a file, say it 𝑖, is not important, it can set 𝑥 𝑡,𝑖 arbitrarily close to 0. If, suddenly, this content becomes popular, then OMD NE adapts slowly, due to its multiplicative nature-remember Eq. (2.23). This is shown in Figure 2.4 (e). We can overcome this limitation by requiring all state variables to be larger than some small 𝛿 > 0; OMD NE is then limited to X 𝛿 , the 𝛿 interior of the capped simplex X. More precisely, the 𝛿 interior of the capped simplex is defined as X 𝛿 ≜ X ∩ [𝛿, 1] 𝑁 . In Figure 2.4 (f), we use 𝛿 = 10 -4 . This parameter indeed prevents the algorithm from driving the fractional allocations arbitrary close to 0, improving its adaptability. In Figure 2.4, we show the performance of FTPL [START_REF] Bhattacharjee | Fundamental Limits on the Regret of Online Network-Caching[END_REF]; we observe that this policy fails to adapt to popularity changes. Both our mirror descent algorithms outperform competitors (Figure 2.4 (h)).). Finally, our mirror descent policies outperform competitors (h).

these algorithms consistently outperform LFU, W-LFU, LRU, and FTPL. Note that these caching policies process requests individually, while OMD NE and OGD adapt slower, freezing their state for the entire batch size (𝑅 = 5000). Nevertheless, OMD NE and OGD still perform better.

Randomized Rounding. Figure 2.6 shows the cumulative update cost for the online independent rounding, the online coupled rounding, and the online optimally-coupled rounding algorithms over the Downscaled Global Popularity Change trace. All the rounding algorithms exhibit the same service cost in expectation. The update cost of online coupled rounding and the online optimally-coupled rounding is small, in the order of the learning rate 𝜂; moreover, we observe that online optimallycoupled rounding yields lower update costs than the online coupled rounding. In contrast, online independent rounding incurs a significantly larger update cost.

Conclusion

We study no-regret caching algorithms based on OMD with 𝑞-norm and neg-entropy mirror maps. We find that batch diversity impacts regret performance; a key finding is that OGD is optimal in lowdiversity regimes, while OMD NE is optimal under high diversity. With an appropriately designed Chapter 2 -Exact Caching rounding scheme, our O √ 𝑇 bound on the regret for general OMD algorithms extends to integral caches as well, despite the need to account for update costs in this setting.

Our numerical experiments indicate that the gap between the regimes in which OGD and OMD NE are optimal, w.r.t. the diversity ratio, is narrow; this suggests that our characterization of the two regimes can be further improved. Also OMD 𝑞-norm algorithms for arbitrary values of 𝑞 ∈ (1, 2) deserve more investigation to (1) devise strongly polynomial, efficient algorithms for their Bregman projection, (2) characterize their update costs, and (3) compare their performance with OMD NE . Content allocation in networks of caches has been explored in the offline setting, presuming demand is known [START_REF] Borst | Distributed Caching Algorithms for Content Distribution Networks[END_REF][START_REF] Poularakis | Exploiting Caching and Multicast for 5G Wireless Networks[END_REF][START_REF] Shanmugam | Femtocaching: Wireless Content Delivery through Distributed Caching Helpers[END_REF]. In particular, Shanmugam et al. [START_REF] Shanmugam | Femtocaching: Wireless Content Delivery through Distributed Caching Helpers[END_REF] were the first to observe that caching can be formulated as a submodular maximization problem under matroid constraints and prove its NP-hardness. Dynamic caching policies have been mostly investigated under a stochastic request process. In particular, Ioannidis and Yeh [START_REF] Ioannidis | Jointly Optimal Routing and Caching for Arbitrary Network Topologies[END_REF] present (1) a projected gradient ascent (PGA) policy that attains (1 -1/𝑒)-approximation guarantee in expectation when requests are stationary and (2) a practical greedy path replication heuristic (GRD) that performs well in many cases, but comes without guarantee. Our work inherits all modeling assumptions on network operation and costs from [START_REF] Ioannidis | Jointly Optimal Routing and Caching for Arbitrary Network Topologies[END_REF], but differs from it (and all papers mentioned above) by considering requests that arrive adversarially. In our experiments, we compare our caching policy with PGA and GRD, that have no guarantees in the adversarial setting. We also prove that GRD in particular has linear regret (see Lemma 2.3.4).

Content placement at caches can be formulated as a submodular optimization problem [21,[START_REF] Shanmugam | Femtocaching: Wireless Content Delivery through Distributed Caching Helpers[END_REF]. The offline problem is already NP-hard, but the greedy algorithm achieves 1/2 approximation ratio [START_REF] Fisher | An Analysis of Approximations for Maximizing Submodular set Functions-II[END_REF]. Calinescu et al. [START_REF] Calinescu | Maximizing a Monotone Submodular Function subject to a Matroid Constraint[END_REF] develop a (1 -1/𝑒)-approximation through the so called continuous greedy algorithm. The algorithm finds a maximum of the multilinear extension of the submodular objective using a Frank-Wolfe like gradient method. The solution is fractional and needs then to be rounded via pipage [START_REF] Alexander | Pipage Rounding: a New Method of Constructing Algorithms with Proven Performance Guarantee[END_REF] or swap rounding [START_REF] Chekuri | Dependent Randomized Rounding via Exchange Properties of Combinatorial Structures[END_REF]. Filmus and Ward [START_REF] Filmus | Monotone Submodular Maximization over a Matroid via Non-Oblivious Local Search[END_REF] obtain the same approximation ratio without the need of a rounding procedure, by performing a non-oblivious local search starting from the solution of the usual greedy algorithm. These algorithms are suited for deterministic objective functions. Hassani et al. [START_REF] Hassani | Gradient Methods for Submodular Maximization[END_REF] study the problem of stochastic continuous submodular maximization and use stochastic gradient methods to reach a solution within a factor 1/2 from the optimum. Mokhtari et al. [START_REF] Mokhtari | Conditional Gradient Method for Stochastic Submodular Maximization: Closing the Gap[END_REF] propose then the stochastic continuous greedy algorithm, which reduces the noise of gradient approximation by leveraging averaging technique. This algorithm closes the gap between stochastic and deterministic submodular problems achieving a (1 -1/𝑒)-approximation ratio.

There are two kinds of online submodular optimization problems. In the first one, a.k.a. competitive online setting, the elements in the ground set arrive one after the other, a setting considerably different from ours. The algorithm needs to decide whether to include revealed elements in the solution without knowing future arrivals. Gupta et al. [START_REF] Gupta | Constrained Non-Monotone Submodular Maximization: Offline and Secretary Algorithms[END_REF] consider the case when this decision is irrevocable. They give a 𝑂 (log 𝑟)-competitive algorithm where 𝑟 is the rank of matroid. Instead, Hubert Chan et al. [START_REF] Th Hubert Chan | Online Submodular Maximization with Free Disposal: Randomization Beats 1 4 for Partition Matroids[END_REF] allow the algorithm also to remove elements from the current tentative solution. They propose a randomized 0.3178-competitive algorithm for partition matroids. In the second kind of online submodular optimization problems, objective functions are initially unknown and are progressively revealed over 𝑇 rounds. This setting indeed corresponds to our problem, as our caching policy needs to decide the content allocation before seeing the requests. Streeter et al. [START_REF] Streeter | An Online Algorithm for Maximizing Submodular Functions[END_REF] present an online greedy algorithm, combining the greedy algorithm with no-regret selection algorithm such as the hedge selector, operating under cardinality (rather than general matroid) constraints. Radlinski et al. [START_REF] Radlinski | Learning Diverse Rankings with Multi-Armed Bandits[END_REF] also propose an online algorithm by simulating the offline greedy algorithm, Chapter 2 -Exact Caching using a separate instance of the multi-armed bandit algorithm for each step of the greedy algorithm, also for cardinality constraints. Chen et al. [START_REF] Chen | Online Continuous Submodular Maximization[END_REF] convert the offline Frank-Wolfe variant/continuous greedy to a no-regret online algorithm, obtaining a sublinear (1 -1/𝑒)-regret. Chen et al. [START_REF] Chen | Projection-Free Online Optimization with Stochastic Gradient: From Convexity to Submodularity[END_REF] use Stochastic Continuous Greedy [START_REF] Mokhtari | Conditional Gradient Method for Stochastic Submodular Maximization: Closing the Gap[END_REF] to achieve sublinear (1 -1/𝑒)-regret bound without projection and exact gradient. These algorithms however operate in a continuous domain, producing fractional solutions that require subsequent rounding steps; these rounding steps do not readily generalize to our distributed setting. Moreover, rounding issues are further exacerbated when needing to handle update costs in the regret.

Our work is based on the (centralized) TGOnline algorithm by Streeter et al. [START_REF] Streeter | Online Learning of Assignments[END_REF], which solves the so-called online assignment problem. In this problem, a fixed number of 𝐾 slots is used to store items from distinct sets: that is, slot 𝑘 = 1, 2, . . . , 𝐾 can store items from a set 𝑃 𝑘 . The motivation comes, from, e.g., placing advertisements in 𝐾 distinct positions on a website. Submodular reward functions arrive in an online fashion, and the goal of the online assignment problem is to produce assignments of items to slots that attain low regret. TGOnline, the algorithm proposed by Streeter et al., achieves sublinear 1 -1/𝑒-regret in this setting. We depart from Streeter et al. by considering both objectives as well as constraints arising from the cache network design problem. We show that (1) when applied to this problem, TGOnline admits a distributed implementation, but also (2) we incorporate update costs, which are not considered by Streeter et al. A direct, naïve implementation of TGOnline to our setting would require communication between all caches at every request; in contrast, DistributedTGOnline restricts communication only among nodes on the request path. As an additional technical aside, we exploit the fact that an adaptation step within the TGOnline algorithm, namely, color shuffling, can in fact happen at a reduced frequency. The latter is imperative for bounding regret when cost updates are considered: without this adjustment, the TGOnline algorithm of Streeter et al. attains a linear regret when incorporating update costs.

System Description

Following the caching network model of Ioannidis and Yeh [21], we consider a network of caches that store items from a fixed catalog. Nodes in the network generate requests for these items, routed towards designated servers. However, intermediate nodes can cache items and, thereby, serve such requests early. We depart from Ioannidis and Yeh in assuming that request arrivals are adversarial, rather than stochastic. Notation used across the paper is summarized in Table 2.4.

Caching Network. We model a caching network as a directed graph 𝐺 (𝑉 , 𝐸) of 𝑛 nodes. For convenience, we set 𝑉 = [𝑛]. Each edge 𝑒 in the graph is represented by 𝑒 = (𝑢, 𝑣) ∈ 𝐸 ⊆ 𝑉 × 𝑉 . We assume 𝐺 is symmetric, i.e., if (𝑢, 𝑣) ∈ 𝐸, then (𝑣, 𝑢) ∈ 𝐸. A fixed set of nodes, called designated servers, permanently store items of equal size. Formally, each item 𝑖 ∈ C, where set C is the item catalog, is stored in designated servers D 𝑖 ⊆ 𝑉 .

Beyond designated servers, all other nodes in 𝑉 are also capable of storing items. For each 𝑣 ∈ 𝑉 , let 𝑐 𝑣 ∈ N denote its storage capacity, i.e., the maximum number of items it can store. Let also S 𝑣 = {(𝑣, 𝑗)} 𝑐 𝑣 𝑗=1 be 𝑣's set of storage slots; then, 𝑠 = (𝑣, 𝑗) ∈ 𝑉 × [𝑐 𝑣] is the 𝑗-th storage slot on node 𝑣. We denote the set of storage slots in the whole network by S, where S = 𝑣 ∈𝑉 S 𝑣 , and Figure 2.9: A general cache network, as proposed by Ioannidis and Yeh [21]. Designated servers store items in a catalog permanently. Requests arrive at arbitrary nodes in the network and follow predetermined paths towards these servers; responses incur costs indicated by weights on the edges. Intermediate nodes can serve as caches; the objective is to determine what items to store in each cache, to minimize the overall routing cost or, equivalently, maximize the caching gain.

D = {𝐴 ⊆ S × C : |𝐴 ∩ ({𝑠} × C)| ≤ 1, ∀𝑠 ∈ S} . (2.33)
This ensures that each slot is occupied by at most one item; note that the cache capacity constraint at each node 𝑣 ∈ 𝑉 is captured by the definition of S 𝑣 . 𝑘=1 of adjacent nodes 𝑝 𝑘 ∈ 𝑉 . As in Ioannidis and Yeh [21], we assume that paths are simple, i.e., they do not contain repeated nodes, and well-routed, i.e., they terminate at a node in D 𝑖 . A request (𝑖, 𝑝) is generated at node 𝑝 1 and follows the path 𝑝; when the request reaches a node storing item 𝑖, a response is generated. This response carries item 𝑖 to query node 𝑝 1 following the reverse path. We assume that time is slotted, and requests arrive over a total of 𝑇 ∈ N rounds. We denote by R the set of all possible requests in the system. At each round 𝑡 ∈ [!𝑡], a set of requests R 𝑡 ⊆ R arrive in the system. Requests in R 𝑡 can arrive in any order, and at any point in time within a round. 5 However, we assume that the total number of requests at each round is bounded by R, i.e., |R 𝑡 | ≤ R. Note that, when R = 1, at most one request arrives per round.

Requests and

Routing Costs. We assume request routing does not incur any cost, but response routing does. In particular let 𝑤 𝑢𝑣 ∈ R + denote the cost of routing the response along the edge (𝑢, 𝑣) ∈ 𝐸.

Then, given an allocation 𝐴 ∈ S × C, the cost of serving a request (𝑖, 𝑝) ∈ R is:

𝐶 (𝑖,𝑝) (𝐴) = |𝑝 |-1 ∑︁ 𝑘=1 𝑤 𝑝 𝑘+1 𝑝 𝑘 1 𝐴 ∩        𝑘 ′ ∈[𝑘] S 𝑝 𝑘 ′ × {𝑖}        = ∅ . (2
𝑓 (𝑖,𝑝) (𝐴) = 𝐶 (𝑖,𝑝) (∅) -𝐶 (𝑖,𝑝) (𝐴) = |𝑝 |-1 ∑︁ 𝑘=1 𝑤 𝑝 𝑘+1 𝑝 𝑘 1 𝐴 ∩        𝑘 ′ ∈[𝑘] S 𝑝 𝑘 ′ × {𝑖}        ≠ ∅ . (2.36)
where 𝐶 (𝑖,𝑝) (∅) is the routing cost in the network when all caches are empty. The caching gain captures the cost reduction in the network due to caching allocation 𝐴.

Offline Problem. In the offline version of the cache gain maximization problem [21,[START_REF] Shanmugam | Femtocaching: Wireless Content Delivery through Distributed Caching Helpers[END_REF], the request sequence {R 𝑡 } 𝑇 𝑡=1 is assumed to be known in advance; the goal is then to determine a feasible allocation 𝐴 ∈ D that maximizes the total caching gain. Formally, given an allocation 𝐴 ∈ S × C, let

𝑓 𝑡 (𝐴) = ∑︁ 𝑟 ∈R 𝑡 𝑓 𝑟 (𝐴), (2.37)
be the caching gain at round 𝑡. Then, the offline caching gain maximization problem amounts to:

maximize 𝐴 𝑓 (𝐴) = 𝑇 ∑︁ 𝑡=1 𝑓 𝑡 (𝐴) = 𝑇 ∑︁ 𝑡=1 ∑︁ 𝑟 ∈R 𝑡 𝑓 𝑟 (𝐴), (2.38a)
subject to 𝐴 ∈ D.

(2.38b)

The following lemma implies this problem is approximable in polynomial time: 21,[START_REF] Shanmugam | Femtocaching: Wireless Content Delivery through Distributed Caching Helpers[END_REF]). Function 𝑓 : S × C → R + is non-decreasing and submodular. Moreover, the feasible region D is a partition matroid.

Lemma 2.3.1 ([
Hence, Problem (2.38) is a submodular maximization problem under matroid constraints. It is known to be NP-hard [21,[START_REF] Shanmugam | Femtocaching: Wireless Content Delivery through Distributed Caching Helpers[END_REF], and several approximation algorithms with polynomial time complexity exist. The classic greedy algorithm [START_REF] Calinescu | Maximizing a Submodular Set Function subject to a Matroid Constraint[END_REF] produces a solution within 1 2 -approximation from the optimal. The so-called continuous greedy algorithm [START_REF] Calinescu | Maximizing a Monotone Submodular Function subject to a Matroid Constraint[END_REF] further improves this ratio to 1 -1 𝑒 . A different algorithm based on a convex relaxation of Problem (2.38) is presented in [21,[START_REF] Shanmugam | Femtocaching: Wireless Content Delivery through Distributed Caching Helpers[END_REF]. The Tabular Greedy algorithm [START_REF] Streeter | Online Learning of Assignments[END_REF] also constructs a 1 -1 𝑒 approximate solution in poly-time. We describe it in details in Appendix 3, as both TGOnline [START_REF] Streeter | Online Learning of Assignments[END_REF] and our DistributedTGOnline build on it.

Online Problem. In the online setting, requests are not known in advance, and we seek algorithms that make caching decisions in an online fashion. In particular, at the beginning of round 𝑡, an online algorithm selects the current allocation 𝐴 𝑡 ∈ D. Requests R 𝑡 ⊂ R subsequently arrive, and the cache gain 𝑓 𝑡 (𝐴 𝑡) is rewarded, where 𝑓 𝑡 : S × C → R + is given by Eq. (2.37).

As in standard online learning literature [19,20], while choosing 𝐴 𝑡 , the network has no knowledge of the upcoming requests R 𝑡 , but can rely on past history. Formally, we seek an online algorithm A that maps the history of past requests H 𝑡 = {R 1 , .., R 𝑡-1 } to a new allocation, i.e., 𝐴 𝑡 = A (H 𝑡).

In particular, we aim for an algorithm A with sublinear 𝛼-regret, given by

𝑅 𝑇 = E 𝛼 𝑇 ∑︁ 𝑡=1 𝑓 𝑡 (𝐴 *) - 𝑇 ∑︁ 𝑡=1 𝑓 𝑡 (𝐴 𝑡) = 𝛼 𝑇 ∑︁ 𝑡=1 𝑓 𝑡 (𝐴 *) -E 𝑇 ∑︁ 𝑡=1 𝑓 𝑡 (𝐴 𝑡) , (2.39)
where 𝛼 is an approximation factor, and 𝐴 * is the optimal solution to (the offline) Problem (2.38).

Note that the expectation is over the (possibly) randomized choices of the algorithm A; we make no probabilistic assumptions on request arrivals {R 𝑡 } 𝑇 𝑡=1 , and wish to minimize regret in the adversarial setting, i.e., w.r.t. to the worst-case sequence {R 𝑡 } 𝑇 𝑡=1 . Put differently, our regret bounds will be against an arbitrarily powerful adversary, that can pick any sequence {R 𝑡 } 𝑇 𝑡=1 , as long as the total number of requests at each round is bounded by R, i.e., |R 𝑡 | ≤ R for all 𝑡 = 1, . . . ,𝑇 .

Several remarks are in order regarding Eq. (2.39). First, the definition of the regret in Eq. (2.39), which compares to a static offline solution, is classic. Several bandit settings, e.g., simple multiarmed bandits [START_REF] Radlinski | Learning Diverse Rankings with Multi-Armed Bandits[END_REF][START_REF] Kleinberg | Multi-Armed Bandits in Metric Spaces[END_REF][START_REF] Audibert | Exploration-Exploitation Tradeoff Using Bariance Estimates in Multi-Armed Bandits[END_REF], contextual bandits [82][START_REF] Agarwal | Taming the Monster: a Fast and Simple Algorithm for Contextual Bandits[END_REF][START_REF] Dudik | Efficient Optimal Learning for Contextual Bandits[END_REF], submodular bandits [START_REF] Streeter | An Online Algorithm for Maximizing Submodular Functions[END_REF][START_REF] Chen | Online Continuous Submodular Maximization[END_REF][START_REF] Zhang | Online Continuous Submodular Maximization: From Full-Information to Bandit Feedback[END_REF] and, of course, their applications to caching problems [13,19,[START_REF] Bhattacharjee | Fundamental Limits on the Regret of Online Network-Caching[END_REF][START_REF] Mukhopadhyay | Online Caching with Optimal Switching Regret[END_REF], adopt this definition. In all these cases, the dynamic, adaptive algorithm is compared to a static policy that has full hindsight of the entire trace of actions. Nevertheless, as is customary in the context of online problems in which the offline problem is NP-hard [START_REF] Chen | Online Continuous Submodular Maximization[END_REF], the regret is not w.r.t. the optimal caching gain, but the gain obtained by an offline approximation algorithm. Second, from the point of view of bandits, we operate in the full-information feedback setting [20]: upon the arrival of requests R 𝑡 , the entire function 𝑓 𝑡 : S × C → R + is revealed, 6 as the latter is fully determined by request set R 𝑡 . Third, Eq. (2.39) captures the cost of serving requests, but not the cost of adaptation: changing an allocation from 𝐴 𝑡 to 𝐴 𝑡+1 changes cache content, which in turn may require the movement of items. Neglecting adaptation costs may be realistic if, e.g., adaptation happens in off-peak hours (e.g., the end of a round occurs at the end of a day), and does not come with the same latency requirements as serving requests in R 𝑡 . Nevertheless, we revisit this issue, incorporating update costs in the regret, in Section 2.3.4. Finally, we stress that we seek online algorithms A that have sublinear regret but are also distributed: each cache 𝑣 should be able to determine its own contents using past history it has observed, as well as some limited information it exchanges with other nodes.

Distributed Online Algorithm

We describe our distributed online algorithm, DistributedTGOnline, in this section. We first give an overview of the algorithm and its adversarial guarantees; we then fill out missing implementation details.

Hedge Selector

Our construction uses as a building block the classic Hedge algorithm 7 for the expert advice problem [20,[START_REF] Streeter | Online Learning of Assignments[END_REF][START_REF] Arora | The Multiplicative Weights Update Method: A Meta-Algorithm and Applications[END_REF]. This online algorithm selects an action from a finite set at the beginning of a round. At the conclusion of a round, the rewards of all actions are revealed; the algorithm accrues a reward based on the action initially selected, and adjusts its decision.

In our case the set of possible actions coincides with the catalog C, i.e., the algorithm selects an item 𝑖 𝑡 ∈ C per round 𝑡 ∈ N. The hedge selector maintains a weight vector 𝑊 𝑊 𝑊 𝑡 = [𝑊 for each 𝑟 = (𝑖, 𝑝) ∈ R 𝑡 do 10:

Send request upstream over 𝑝 until a hit occurs. 11:

Send response carrying 𝑖 downstream, and incur routing costs. 12:

Send control message upstream over 𝑝 to construct I and W, given by (2.43).

13:

Send control message carrying I and W downstream over 𝑝, and do the following: 14:

for each 𝑠 ∈ S 𝑝 do 15:

Use I and W to construct ℓ ℓ ℓ (𝑠, 𝑚 𝑠) ∈ R 𝑡 𝑠 ← 𝑡 𝑠 + 1 25: end for 26: end for ingests the reward vector ℓ ℓ ℓ 𝑡 = [ℓ 𝑡 𝑖] 𝑖∈C ∈ R |C| + , where ℓ 𝑡 𝑖 is the reward for choosing action 𝑖 ∈ C at round 𝑡, and adjusts action weights as described below. In each iteration 𝑡, the hedge selector alternates between (1) calling 𝑖 𝑡 = E.arm(), to produce action 𝑖 𝑡 , (2) receiving a reward vector ℓ ℓ ℓ 𝑡 , and using it via E.feedback(ℓ ℓ ℓ 𝑡) to adjust its internal weight vector. In particular, E.arm() selects action 𝑖 ∈ C with probability:

𝑝 𝑡 𝑖 = 𝑊 𝑡 𝑖 𝑗 ∈C 𝑊 𝑡 𝑗 , (2.40)
i.e., proportionally to weight 𝑊 𝑡 𝑖 . Moreover, when E.feedback(ℓ ℓ ℓ 𝑡) is called, weights are updated via:

𝑊 𝑡+1 𝑖 = 𝑊 𝑡 𝑖 𝑒 𝜖ℓ 𝑡 𝑖 , for all 𝑖 ∈ C, (2.41)
where 𝜖 > 0 is a constant. In a centralized setting where an adversary selects the vector of weights ℓ ℓ ℓ 𝑡 , the no-regret hedge selector attains an 𝑂 (√ 𝑇) regret for an appropriate choice of 𝜖 > 0 (see Lemma 4.1 in Appendix 4). We use this as a building block in our construction below.

DistributedTGOnline Overview

To present the DistributedTGOnline algorithm, we first need to introduce the notion of "colors". The algorithm associates each storage slot 𝑠 = (𝑣, 𝑗) ∈ S with a "color" 𝑚 𝑠 from set [𝑀] of 𝑀 Chapter 2 -Exact Caching distinct values (the "color palette"). The online algorithm makes selections in the extended action space S × C × [𝑀], choosing not only an item to place in a slot, but also how to color it.

This coloring is instrumental to attaining a 1 -1 𝑒 -regret. In offline tabular greedy algorithm of Streeter et al. [START_REF] Streeter | Online Learning of Assignments[END_REF], which we present in Appendix 3, when 𝑀 = 1, i.e., there is only one color, the algorithm reduces to simply the locally greedy algorithm (see Section 3.1 in [START_REF] Streeter | Online Learning of Assignments[END_REF]), achieving only a 1 2 approximation ratio. When 𝑀 → ∞, the algorithm can intuitively be viewed as solving a continuous extension of the problem followed by a rounding (via the selection of the color instance), in the same spirit as the so-called ContinuousGreedy algorithm [START_REF] Calinescu | Maximizing a Monotone Submodular Function subject to a Matroid Constraint[END_REF]. A finite size "color palette" represents a midpoint between these two extremes. We give more insight into this relationship between these two algorithms in Section 2.3.3.5.

In more detail, every storage slot 𝑠 ∈ S maintains (1) the item 𝑖 𝑠 ∈ C stored in it, (2) an active color 𝑚 𝑠 ∈ [𝑀] associated with this slot, and (3) 𝑀 different no-regret hedge selectors {E 𝑠,𝑚 } 𝑀 𝑚=1 , one for each color. All selectors {E 𝑠,𝑚 } 𝑀 𝑚=1 operate over action set C: that is, each such selector can have its arm "pulled" to select an item 𝑖 to place in a slot. Though every slot 𝑠 maintains 𝑀 different selectors, one for each color, it only uses one at a time. The active colors {𝑚 𝑠 } 𝑠∈S are initially selected u.a.r. from [𝑀], and remain active continuously for a total 𝐾 pull/feedback interactions, where 𝐾 ∈ N; at that point, 𝑚 𝑠 is refreshed, selected again u.a.r., bringing another selector into play. All in all, the algorithm proceeds as follows during round 𝑡.

1. When a request (𝑖, 𝑝) ∈ R 𝑡 is generated, it is propagated over the path 𝑝 until a hit occurs; a response is then backpropagated over the path 𝑝, carrying 𝑖, and incurring a routing cost.

2. At the same time, an additional control message is generated and propagated upstream over the entire path 𝑝. Moving upstream, it collects information from slots it traverses.

3. After reaching designated server at the end of the path, the control message is backpropagated over the path 𝑝 in the reverse direction. Every time it traverses a node 𝑣 ∈ 𝑝, storage slot 𝑠 ∈ S 𝑣 fetches information stored in the control message and computes a reward vector ℓ ℓ ℓ 𝑡 (𝑠, 𝑚 𝑠). This is then fed to the active hedge selector via E 𝑠,𝑚 𝑠 .feedback(ℓ ℓ ℓ 𝑡 (𝑠, 𝑚 𝑠)).

E 𝑇 ∑︁ 𝑡=1 𝑓 𝑡 (𝐴 𝑡) ≥ 𝛽 (|S|, 𝑀) • max 𝐴∈D 𝑇 ∑︁ 𝑡=1 𝑓 𝑡 (𝐴) -2 R L|S|𝑀 √︁ 𝑇 log |C|, (2.42)
where

𝛽 (|S|, 𝑀) = 1 -(1 -1 𝑀) 𝑀 -|S| 2 𝑀 -1 .
The main intuition behind the proof is to view DistributedTGOnline as a version of the offline TabularGreedy that, instead of greedily selecting a single item 𝑖 𝑠,𝑚 ∈ C per step, it greedily selects an entire item vector 𝑖 𝑖 𝑖 𝑠,𝑚 ∈ C 𝑇 across all rounds, where 𝑇 is the number of rounds. To cast the proof in this context, we define new objective functions 𝑓 and 𝐹 whose domain is over decisions across 𝑇 rounds, as opposed to the original per time-slot functions (whose domain is only over one round). Due to the properties of the no-regret hedge selector, and the formal guarantees of the offline case (c.f. Theorem 3.1), these new objectives attain 1 -1 𝑒 bound shown in Eq. (3.37), yielding the bound on the regret. The detailed proof of this theorem is provided in Appendix 5. Note that for 𝑀 large enough (at least Ω(|S| 2)), quantity 𝛽 (|S|, 𝑀) can be made arbitrarily close to 1 -1/𝑒. Hence, Theorem 2.3.2 has the following immediate corollary: Corollary 2.3.3. For any 𝛿 > 0, there exists an 𝑀 = Θ(|S| 2 𝛿) such that the expected

(1 -1 𝑒 -𝛿)-regret of DistributedTGOnline is 𝑅 𝑇 ≤ 2 R L|S| 3 𝛿 √︁ 𝑇 log |𝐶 |.
DistributedTGOnline is a distributed implementation of the (centralized) online tabular greedy algorithm of Streeter et al. [START_REF] Streeter | Online Learning of Assignments[END_REF], which is itself an online implementation of the so-called tabular greedy algorithm [START_REF] Streeter | Online Learning of Assignments[END_REF], which we present in Appendix 3. We depart however from [START_REF] Streeter | Online Learning of Assignments[END_REF] in several ways. First, the analysis by Streeter et al. requires that feedback is provided at every slot 𝑠 ∈ S . We amend this assumption, as only nodes along a path need to update their selectors/allocations in our setting. Second, we show that feedback provided to arms can be computed in a distributed fashion, using only messages along the path 𝑝, as described below in Section 2.3.3.3. These two facts together ensure that DistributedTGOnline is indeed distributed. Finally, the analysis of Streeter et al. assumes that colors are shuffled at every round, i.e., applies only to 𝐾 = 1. We extend this to arbitrary 𝐾 ≥ 1. As we discuss in Section 2.3.4, this is instrumental to bounding regret when accounting for update costs; the later becomes Θ(𝑇) when 𝐾 = 1.

Control Messages, Information Exchanged, and Rewards

The algorithm is summarized in Algorithm 2.5. We describe here the control messages, information exchanged, and reward vectors fed to hedge selectors during the generation of a request 𝑟 = (𝑖, 𝑝) ∈ R 𝑡 . Let S 𝑝 = 𝑣 ∈𝑝 S 𝑣 be the set of all slots in nodes in 𝑝. Let also S 𝑖,𝑝 = {𝑠 ∈ S 𝑝 : (𝑠, 𝑖) ∈ 𝐴 𝑡 } ⊆ S 𝑝 be the slots in path 𝑝 that store the requested item 𝑖 ∈ C. The control message propagated upstream towards the designated server collects both the (a) color of every slot in S 𝑖,𝑝 and (b) the upstream cost at each node 𝑣 ∈ 𝑝. Formally, the information collected by the upstream control message is which captures the marginal gain of adding an element to the allocation at time 𝑡, assuming that the latter is constructed adding one slot, item, and color selection at a time (following an ordering w.r.t. colors first and slots second). This is stated formally in Lemma 5.1 in Appendix 5. Note again that all these quantities can be computed at every 𝑠 ∈ S 𝑝 having access to I and W.9

I = {(𝑠, 𝑚 𝑠)} 𝑠∈S 𝑖,

A Negative Result

We conclude this section with a negative result, further highlighting the importance of Theorem 2.3.2. DistributedTGOnline comes with adversarial guarantees; our experiments in Section 2.3.6 indicate that also works well in practice. Nevertheless, for several topologies we explore, we observe that a heuristic proposed by Ioannidis and Yeh [21], termed GreedyPathReplication, performs as well or slightly better than DistributedTGOnline in terms of time-average caching gain. As we observed this in both stationary as well as non-stationary/transient request arrivals, this motivated us to investigate further whether this algorithm also comes with any adversarial guarantees.

Our conclusion is that, despite the good empirical performance in certain settings, Greedy-PathReplication does not enjoy such guarantees. In fact, the following negative result holds: Lemma 2.3.4. Consider the online policy GreedyPathReplication due to Ioannidis and Yeh [21], which is parametererized by 𝛽 > 0. Then, for all 𝛼 ∈ (0, 1] and all 𝛽 > 0, GreedyPathReplication has Ω(𝑇) 𝛼-regret.

We prove this lemma in Appendix 7. The adversarial counterexample we construct in the proof informed our design of experiments for which GreedyPathReplication (denoted by GRD in Section 2.3.6) performs poorly, attaining a zero caching gain throughout the entire algorithm's execution (see Figure 2.11-2.13). The same examples proved hard for several other greedy/myopic policies, even though DistributedTGOnline performed close to the offline solution in these settings. Both Lemma 2.3.4, as well as the experimental results we present in Section 2.3.6, indicate the importance of Theorem 2.3.2 and, in particular, obtaining a universal bound on the regret against any adversarially selected sequence of requests.

Color Palette

To provide further intuition behind the "color palette" induced by 𝑀 and the role it plays in our algorithm, we describe here in more detail how it relates to the ContinuousGreedy algorithm, the standard algorithm for maximizing submodular functions subject to a matroid constraint [START_REF] Calinescu | Maximizing a Monotone Submodular Function subject to a Matroid Constraint[END_REF].

Intuitively, given a submodular function 𝑓 : Ω → R + and a matroid constraint set D, the ContinuousGreedy algorithm maximizes the multilinear relaxation of objective, given by

f (𝑥 𝑥 𝑥) = E 𝑥 𝑥 𝑥 [𝑓 (𝐴)] = ∑︁ 𝐴⊆Ω 𝑓 (𝐴) 𝑖∈𝐴 𝑥 𝑖 𝑖∉𝐴 (1 -𝑥 𝑖). (2.47)
That is, the multilinear extension f : [0, 1] |Ω| → R + is the expected value of the objective assuming that each element in A is sampled independently, with probability given by 𝑥 𝑖 ∈ [0, 1], 𝑖 ∈ Ω. Con-tinuousGreedy first obtains a fractional solution in the matroid polytope of D. This is constructed by incrementally growing the probability distribution parameters 𝑥 𝑥 𝑥, starting from 𝑥 𝑥 𝑥 = 0 0 0, with a variant of the so-called Frank-Wolfe algorithm. Then, ContinuousGreedy rounds the resulting fractional solution via, e.g., pipage rounding [START_REF] Alexander | Pipage Rounding: a New Method of Constructing Algorithms with Proven Performance Guarantee[END_REF] or swap rounding [START_REF] Chekuri | Dependent Randomized Rounding via Exchange Properties of Combinatorial Structures[END_REF], mapping it to set solutions. We refer the reader to Calinescu et al. [START_REF] Calinescu | Maximizing a Monotone Submodular Function subject to a Matroid Constraint[END_REF] for a more detailed description of the algorithm. In comparison, the color palette also creates a distribution across item selections, as implied by the 𝑀 colors. When the number of colors 𝑀 approaches infinity, the selection process of Dis-tributedTGOnline also "grows" this probability distribution (starting, again, from an empty support) infinitesimally, by an increment inversely proportional to 𝑀 (see also the offline version Tabu-larGreedy in Appendix 3). As 𝑀 goes to infinity, this recovers the 1 -1/𝑒 approximation guarantee of continuous greedy [START_REF] Streeter | Online Learning of Assignments[END_REF][START_REF] George L Nemhauser | An analysis of approximations for maximizing submodular set functions[END_REF]. For any finite 𝑀, the guarantee provided by Theorem 2.3.2 lies in between this guarantee and 1 2 approximation of the locally greedy algorithm (𝑀 = 1).

Update Costs

We now turn our attention to incorporating update costs in our analysis. We denote by 𝑤 ′ 𝑠,𝑖 the cost of fetching item 𝑖 at storage slot 𝑠 at the end of a round. Then, the total update cost of changing an Note that, in this formulation, the optimal offline policy 𝐴 * has no update cost, as it is static. We refer to R𝑇 as the extended 𝛼-regret of an algorithm. This extension corresponds to adding the expected update cost incurred by a policy A to its 𝛼-regret.

Unfortunately, the update costs of DistributedTGOnline (and, hence, its extended regret) grow as Θ(𝑇) in expectation. In particular, the following lemma, proved in Appendix 6, holds: Lemma 2.3.5. When DistributedTGOnline is parametrized with the hedge selector in Algorithm 2.4, it incurs an expected update cost of Ω(𝑇) for any choice of 𝜖 ∈ R + .

Nevertheless, the extended regret can be reduced to 𝑂 (√ 𝑇) by appropriately modifying Algorithm 2.4, the no-regret-hedge selector used in slots E 𝑠,𝑚 . In particular, the linear growth in the regret is due to the independent sampling of cache contents within each round. Coupling this selection with the presently selected content can significantly reduce the update costs. More specifically, instead of selecting items independently across rounds, the new item can be selected from a probability distribution that depends on the current allocation in the cache. This conditional distribution can be design in a way that the (marginal) probability of the new item is the same as in Algorithm 1, thereby yielding the same expected caching gain. On the other hand, coupling can bias the selection towards items already existing in the cache. This reduces update costs, especially when marginal distributions change slowly.

The coupled hedge selector described in Algorithm 2.6 accomplishes exactly this. As seen in line 9 of Algorithm 2.6, pulling the arm of the hedge selector is dependent on (a) the previously taken action/selected item and (b) the change in the distribution implied by weights 𝑊 𝑖 , 𝑖 ∈ C. We give more intuition as to how this is accomplished in Appendix 6. In short, the coupled hedge selector solves a minimum-cost flow problem via an iterative algorithm. The minimum-cost flow problem models a so-called optimal transport or earth mover distance problem [START_REF] Peyré | Computational Optimal Transport: With Applications to Data Science[END_REF] from 𝑝 𝑝 𝑝 𝑡 to 𝑝 𝑝 𝑝 𝑡+1 , the distributions over catalog C at rounds 𝑡 and 𝑡 + 1, respectively, The resulting solution comprises conditional distributions for "jumps" among elements in C, which are used to determine the next item selection using the current choice: by being solutions of the minimum-cost flow problem, they incur small update cost, while ensuring that the posterior distribution after the "jump" is indeed 𝑝 𝑝 𝑝 𝑡+1 .

Our second main result establishes that using this hedge selector instead of Algorithm 2.4 in DistributedTGOnline ensures that the extended regret grows as 𝑂 (√ 𝑇).

E 𝑇 -1 ∑︁ 𝑡=1 UC(𝐴 𝑡 , 𝐴 𝑡+1) = 𝑂 (√ 𝑇), (2.50)
and, as a consequence, the extended regret is R𝑇 = 𝑂 (√ 𝑇).

The proof can be found in Appendix 8. We note that the theorem requires that 𝐾 = Ω(√ 𝑇), i.e., that colors are shuffled infrequently. Whenever a color changes, DistributedTGOnline, the corresponding change in the active hedge selector can lead to sampling vastly different allocations than the current ones. Consequently, such changes can give rise to large update costs whenever a color is changed. The requirement that 𝐾 = Ω(√ 𝑇) allows for some frequency in changes, but not, e.g., at a constant number of rounds (as, e.g., in Streeter et al. [START_REF] Streeter | An Online Algorithm for Maximizing Submodular Functions[END_REF], where 𝐾 = 1). Put differently, Theorem 2.3.6 allows for experiencing momentarily large update costs, as long as we do not surpass a budget of 𝑂 (√ 𝑇) color updates overall. We note that the couple hedge selector in Algorithm 2.6 has the same time complexity as the hedge selector given in Algorithm 2.4, which is 𝑂 (|C|) per iteration.

Extensions

Jointly Optimizing Caching and Routing. Our model can be extended to consider joint optimization of both cache and routing decisions, following an extended model by Ioannidis and Yeh [START_REF] Ioannidis | Jointly Optimal Routing and Caching for Arbitrary Network Topologies[END_REF]. Under appropriate variable transformations, the new objective is still submodular over the extended decision space. Moreover, the constraints over the routing decisions can similarly be cast as assignments to slots. Together, these allow us to directly apply DistributedTGOnline and attain the same 1 -1/𝑒 approximation guarantee. We describe this extension in detail in Appendix 10. Anytime Regret Guarantee. Our algorithm assumes prior knowledge of the time horizon 𝑇 ; this is necessary to set parameter 𝜖 in Theorem 2.3.2. Nevertheless, we can use the well-known doubling trick [START_REF] Cesa | Prediction, Learning, and Games[END_REF] to obtain anytime regret guarantees. In short, the algorithm starts from a short horizon; at the conclusion of the horizon, the algorithm restarts, this time doubling the horizon. We show in Appendix 11 that, by using this doubling trick, DistributedTGOnline indeed attains an 𝑂 (√ 𝑇) regret, without requiring prior knowledge of 𝑇 . This remains true when update costs are also considered in the regret.

Experiments

Experimental Setting

Networks. We use four synthetic graphs, namely, Erdős-Rényi (ER), balanced tree (BT), hypercube (HC), and a path (path), and three backbone network topologies: [START_REF] Rossi | Caching Performance of Content Centric Networks under Multi-Path Routing (and More)[END_REF] Deutsche Telekom (dtelekom), GEANT, Abilene. The parameters of different topologies are shown in Tab. 2.5. For the first five topologies (ER-GEANT), weights 𝑤 for each edge is uniformly distributed between 1-100. Each item 𝑖 ∈ C is permanently stored in a designated servers D 𝑖 which is designated uniformly at random (u.a.r.) from 𝑉 . All nodes in 𝑉 are also has 𝑐 𝑣 storage space, which is u.a.r. sampled between 1 to Chapter 2 -Exact Caching 5. Requests are generated from nodes Q u.a.r. selected from 𝑉 . Given the source 𝑝 1 ∈ Q and the destination 𝑝 |𝑝 | ∈ D 𝑖 of the request 𝑟 , path 𝑝 is the shortest path between them. For the remaining two topologies (abiline and path), we select parameters in a way that is described in Appendix 9.

Demand. We consider three different types of synthetic request generation processes, and one trace-driven. In the Stationary Requests scenario (see Figure 2.10(a), each 𝑟 = (𝑖, 𝑝) ∈ R is associated with an exogenous Poisson process with rate 1.0, and 𝑖 is chosen from C via a power law distribution with exponent 1.2. In the Sliding Popularity scenario, requests are again Poisson with a different exponent 0.6, and popularities of items are periodically reshuffled (see Figure 2.10(b)). In the Shot Noise scenario, each item is assigned a lifetime, during which it is requested according to a Poisson process; upon expiration, the item is retired (see Figure 2.10(c)). In the CDN scenario (see Figure 2.10(d)), we generate requests using a real-life trace from a CDN provider. The trace spans 1 week, and we extract from it about 10 × 10 5 requests for the 𝑁 = 10 3 most popular files.

For abiline and path, we replace the Poisson arrivals on the three synthetic traces (Stationary Requests, Sliding Popularity, Shot Noise) with requests generated in a round-robin manner, as described in Appendix 9.2. This is designed in an adversarial fashion, that leads to poor performance for greedy/myopic algorithms. Algorithms. We implement the following online algorithms:

• Path replication with least recently used (LRU), least frequently used (LFU), first-in-first-out (FIFO), and random-replacement (RR) eviction policies: In all these algorithms, when responses are backpropagated over the reverse path, all nodes they encounter store requested item, evicting items according to one of the aforementioned policies.

• Projected gradient ascent (PGA): This is the distributed, adaptive algorithm oringinally proposed by Ioannidis and Yeh [21]. This attains an (1-1/𝑒)-approximation guarantee in expectation when requests are stationary, but comes with no guarantee against adversarial requests. Similar to our setting, it also operated in rounds, at the end of which contents are shuffled.

• Greedy path replication (GRD): This is a heuristic, also proposed by Ioannidis and Yeh [21]. Though it performs well in many cases, we prove in Appendix 6 that its (1 -1/𝑒)-regret is Ω(𝑇) in the worst case.

• DistributedTGOnline (TBGRD): this is our proposed algorithm. We implement it with both independent hedge selector shown in Algorithm 2.4 and coupled hedge selector in Algorithm 2.6.

Unless indicated otherwise, we set 𝜖 = 0.005, number of colors 𝑀 = 100, R = 1, and 𝐾 = 𝑇 for TBGRD. For PGA and GRD, we explore parameters 𝛾 and 𝛽 range from 0.005-5 and 0.005-1 individually, and pick the optimal values. In experiments where we do not measure update costs, we implement TBGRD with the independent hedge selector (Algorithm 2.4), as it yields the same performance as the coupled hedge selector (Algorithm 2.6) in expectation (see also Figure 2.17(a) and 2.17(b)).

Finally, we also implement the offline algorithm (OFL) by Ioannidis and Yeh [21], and use the resulting (1 -1/𝑒)-approximate solution as baseline (see metrics below). Performance Metrics. We use normalized time-average cache gain (TACG) as the metric to measure the performance of different algorithms. More specifically, leveraging PASTA [START_REF] Wolff | Poisson Arrivals See Time Averages[END_REF], we measure 𝑓 𝑡 𝑠 (𝐴 𝑡 𝑠) at epochs 𝑡 𝑠 generated by a Poisson process with rate 1.0 for 5000 time slots, and average these measurements. To compare performance across different topologies, we normalize the average by 𝑓 OFL , the caching gain attained by OFL, yielding:

TACG = 1 𝑇 𝑠 𝑓 OFL 𝑇 𝑠 𝑡 𝑠 =1 𝑓 𝑡 𝑠 (𝐴 𝑡 𝑠).
(2.51)

The corresponding 𝑓 OFL values are reported in Table 2.5. We also measure the cumulative update cost (CUC) of TBGRD over time under the hedge and coupled hedge selectors, i.e.,

CUC = 𝑇 -1 𝑡=1 UC(𝐴 𝑡 , 𝐴 𝑡+1), (2.52)
where we measure the instantaneous update cost UC using (2.48) with weights set to 1. For GRD here, we explore parameters 𝜖 range from 0.0001-1, and pick the optimal values. We observe that TBGRD, GRD, and PGA have similar performance across topologies on all three traces for the first five topologies, with GRD being slightly higher performing than the other two; nevertheless, on the last two topologies, that have been designed to lead to poor performance for myopic/greedy strategies, both GRD and other myopic strategies (e.g., LFU, LRU, and FIFO) are stymied, attaining a zero caching gain throughout. This also verifies the suboptimality of GRD stated in Lemma 2.3.4. In contrast, TBGRD and PGA still attain a TACG close to the offline value; not surprisingly RR also has a suboptimal, but non-zero gain in these scenarios as well.

The more a trace departs from stationarity, the more the performance of OFL degrades: As seen in Tab. 2.5, the caching gain obtained by OFL consistently across the different topologies has the highest value in the Stationary trace, then decreases as we change to CDN, Sliding Popularity SN traces, in that order.

We also note that in the Shot Noise case several algorithms attain a normalized TACG that is higher than 1. This indicates that the dynamic algorithms beat the static offline policy in this setting. The above observations largely carry over to the CDN trace, shown in Figure 2.14, for which however we do not consider the two round-robin demand scenarios (abilene and path), as the demand is driven by the trace. For the latter, we select a round duration of 𝐵 time units, and group all requests within a duration together in to a single request set R 𝑡 ; note that, due to stochasticity, the number of requests varies at each round 𝑡. In general, the normalized TACG for stationary requests is slightly higher than for sliding popularity. This is expected, as stationary requests are easier to learn. The number of colors does not affect the performance of algorithm a lot, shown in Figure 2.15(b) and 2.16(b). From both Figure 2.15(a), we see that smaller request set size leads to better TACG, which again makes sense: that more frequent cache updates are, the faster they adapt to current requests. Besides this, we see that |R 𝑡 | has bigger impact under stationary requests, while the sliding window scenario is less affected by varying this parameter. We also observe in Figure 2.15(c) that greater 𝜖 values lead to worse performance in the stationary setting; however in the sliding popularity setting, shown in 2.16(c), the optimal 𝜖 is at about 0.01 for multiple topologies; this selection corresponds to a decay rate of the item selection probability that is most appropriate for the popularity refreshing period of these traces. Finally, even The average number of requests and number of colors do not affect performance significantly. The optimal 𝜖 is at about 0.01 for multiple topologies; this selection corresponds to a decay rate of the item selection probability that is most appropriate for the popularity refreshing period of these traces. As the color update period increases, TACG increases.

though higher 𝐾 is better on both Figure 2.15(d) and 2.16(d), we see more variability/bigger impact of this selection in the sliding popularity trace. Update Costs. Recall from Theorem 2.3.6 both the (independent) hedge selector and the coupled hedge selector lead to same caching gain in expectation. This also verified experimentally by results of Figure 2.17 (a) and (b): we observe that both hedge selectors lead to almost identical TACG on the sliding popularity trace. We also observe that the cumulative update cost (CUC), shown 2.17(c) and Figure 2.17(d), is vastly different across the two selectors: within the duration of the simulation, the CUC of the hedge selector is more than 15× the CUC of the coupled hedge selector.

Conclusion

We propose a distributed, online algorithm that achieves sublinear (1-1/𝑒)-regret for the adversarial caching gain maximization problem, even when accounting for update costs. An interesting future research direction is to provide regret guarantees for the class of path replication algorithms. These algorithms are appealing precisely because they do not involve updates that happen separately from the normal response traffic: whenever a response packet carrying an item traverses a cache, the latter makes a decision of whether to cache this content or not on the spot. This restricts the type of allocations that an online algorithm can construct at any point in time, but does not incur any additional cost beyond the one generated by response traffic. This property makes path replication algorithms quite popular in practice [START_REF] Cohen | Replication Strategies in Unstructured Peer-to-Peer Networks[END_REF][START_REF] Van Jacobson | Networking Named Content[END_REF][START_REF] Laoutaris | Meta Algorithms for Hierarchical Web Caches[END_REF]. Our proof that GreedyPathReplication has linear regret (see Lemma 2.3.4) is a negative result in this direction. Nevertheless, determining whether a path replication algorithm that has sublinear 𝛼-regret exists remains an interesting open problem, from both a theoretical and practical point of view. Another important future research direction is to consider dynamic regret [START_REF] Zinkevich | Online Convex Programming and Generalized Infinitesimal Gradient Ascent[END_REF], whereby the performance of a policy is compared to a dynamic optimum. Dynamic regret was studied under different settings of online convex optimization [START_REF] Zinkevich | Online Convex Programming and Generalized Infinitesimal Gradient Ascent[END_REF][START_REF] Hall | Dynamical Models and Tracking Regret in Online Convex Programming[END_REF][START_REF] Eric | Online Convex Optimization in Dynamic Environments[END_REF][START_REF] Besbes | Non-stationary stochastic optimization[END_REF], multi-armed bandits [START_REF] Zohar | Multi-armed bandits: Competing with optimal sequences[END_REF][START_REF] Bora | Chasing demand: Learning and earning in a changing environment[END_REF][START_REF] Luo | Efficient contextual bandits in non-stationary worlds[END_REF][START_REF] Besson | The generalized likelihood ratio test meets klucb: an improved algorithm for piece-wise non-stationary bandits[END_REF], and non-stationary reinforcement learning [START_REF] Jaksch | Near-optimal Regret Bounds for Reinforcement Learning[END_REF][START_REF] Fei | Dynamic Regret of Policy Optimization in Non-Stationary Environments[END_REF][START_REF] Mao | Near-Optimal Model-Free Reinforcement Learning in Non-Stationary Episodic MDPs[END_REF], and would be interesting to apply to our setting.

CHAPTER 3

Similarity Caching

Introduction

Similarity search [START_REF] Chávez | Searching in Metric Spaces[END_REF] is a key building block for a large variety of applications including multimedia retrieval [START_REF] Berchtold | Fast parallel similarity search in multimedia databases[END_REF][START_REF] Falchi | A Metric Cache for Similarity Search[END_REF][START_REF] Falchi | Similarity Caching in Large-scale Image Retrieval[END_REF], recommendation systems [START_REF] Pandey | Nearest-Neighbor Caching for Content-Match Applications[END_REF][START_REF] Asanov | Algorithms and methods in recommender systems[END_REF][START_REF] Sermpezis | Soft Cache Hits: Improving Performance Through Recommendation and Delivery of Related Content[END_REF], genome study [START_REF] Yan | Genome-wide similarity search for transcription factors and their binding sites in a metal-reducing prokaryote Geobacter sulfurreducens[END_REF][START_REF] Auch | Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs[END_REF], machine learning training [START_REF] Weston | Memory networks[END_REF][START_REF] Graves | Neural Turing Machines[END_REF][START_REF] Santoro | Meta-Learning with Memory-Augmented Neural Networks[END_REF], and serving [START_REF] Crankshaw | Scalable training and serving of personalized models[END_REF][START_REF] Crankshaw | Clipper: A Low-Latency Online Prediction Serving System[END_REF][START_REF] Drolia | Cachier: Edge-Caching for Recognition Applications[END_REF][START_REF] Drolia | Precog: Prefetching for Image Recognition Applications at the Edge[END_REF][START_REF] Guo | FoggyCache: Cross-Device Approximate Computation Reuse[END_REF][START_REF] Guo | Potluck: Cross-Application Approximate Deduplication for Computation-Intensive Mobile Applications[END_REF][START_REF] Venugopal | Shadow Puppets: Cloud-level Accurate AI Inference at the Speed and Economy of Edge[END_REF][START_REF] Kumar | Accelerating deep learning inference via freezing[END_REF][START_REF] Balasubramanian | Accelerating Deep Learning Inference via Learned Caches[END_REF][START_REF] Tareq | Towards Inference Delivery Networks: Distributing Machine Learning with Optimality Guarantees[END_REF]. Given a query for an object, the goal is to retrieve one or more similar objects from a repository. In the traditional setting, a cache is used to speed up object retrieval: once similarity search has identified the set of similar objects in the global catalog, the system checks if some of these objects are stored in the cache memory. In this setting, the cache performs a local exact lookup for the objects. Similarity search over the catalog can be itself a timeconsuming operation, equivalent to linearly scanning the whole catalog [START_REF] Weber | A Quantitative Analysis and Performance Study for Similarity-Search Methods in High-Dimensional Spaces[END_REF]. Moreover, if users generating the queries are located far from the repository, they may experience long delays.

In order to solve these problems, the seminal papers [START_REF] Falchi | A Metric Cache for Similarity Search[END_REF][START_REF] Pandey | Nearest-Neighbor Caching for Content-Match Applications[END_REF] proposed, almost at the same time, a different use of the cache: clients' requests are directly forwarded to the cache; then the cache performs a similarity search over the set of locally stored objects and possibly serves the requests without the need to forward the query to the (remote) repository. The cache thus reduces the overall serving time at the cost of providing objects less similar than those the repository would provide. This operation was named similarity caching, in contrast to the traditional exact caching. As recognized in [START_REF] Neglia | Similarity Caching: Theory and Algorithms[END_REF], the idea of similarity caching has been rediscovered a number of times under different names: recognition caches [START_REF] Drolia | Cachier: Edge-Caching for Recognition Applications[END_REF][START_REF] Drolia | Precog: Prefetching for Image Recognition Applications at the Edge[END_REF], approximate deduplication [START_REF] Guo | Potluck: Cross-Application Approximate Deduplication for Computation-Intensive Mobile Applications[END_REF], semantic caches [START_REF] Venugopal | Shadow Puppets: Cloud-level Accurate AI Inference at the Speed and Economy of Edge[END_REF], prediction caches [START_REF] Crankshaw | Clipper: A Low-Latency Online Prediction Serving System[END_REF], approximate caches [START_REF] Kumar | Accelerating deep learning inference via freezing[END_REF], and soft caches [START_REF] Sermpezis | Soft Cache Hits: Improving Performance Through Recommendation and Delivery of Related Content[END_REF][START_REF] Spyropoulos | Soft Cache Hits and the Impact of Alternative Content Recommendations on Mobile Edge Caching[END_REF].

In practice, objects and requests are mapped to vectors in R 𝑑 (called embeddings), so that the dissimilarity cost can be represented as (a function of) a selected distance between the corresponding embeddings. Examples of commonly employed distances are the 𝑝-norm, Mahalanobis or cosine similarity distances. For instance, in augmented reality applications we often require identifying similar objects: the image is coded into a query, i.e., an embedding in R 𝑑 (e.g., set of descriptors like SIFT [START_REF] Lowe | Object Recognition from Local Scale-Invariant Features[END_REF], or ORB [START_REF] Rublee | ORB: An efficient alternative to SIFT or SURF[END_REF], or the set of activation values at an intermediate layer of a neural network [START_REF] Hinton | Reducing the Dimensionality of Data with Neural Networks[END_REF][START_REF] Lin | Learning Compact Binary Descriptors With Unsupervised Deep Neural Networks[END_REF]), and the application logic finds similar images to be returned to the user [START_REF] Drolia | Cachier: Edge-Caching for Recognition Applications[END_REF][START_REF] Drolia | Precog: Prefetching for Image Recognition Applications at the Edge[END_REF][START_REF] Guo | FoggyCache: Cross-Device Approximate Computation Reuse[END_REF][START_REF] Venugopal | Shadow Puppets: Cloud-level Accurate AI Inference at the Speed and Economy of Edge[END_REF]; moreover, in recommendation systems, objects are also embedded in R 𝑑 with a distance metric to capture content dissimilarity. This also the case for other potential applications of similarity caching like 360 • videos, where tiles at the periphery of the user's field of view could be approximated by neighboring tiles that are stored at the cache and can then be served with low latency [START_REF] Zink | Scalable 360 video stream delivery: Challenges, solutions, and opportunities[END_REF]. Similarity caching may then be useful in this context, specially in the future when the number of tiles will increase and close tiles will become more similar.

Contributions

Continuous Catalog Similarity Caching. This work makes the following contributions in the context of continuous catalog similarity caching:

• We propose Grades, the first similarity caching policy designed to exploit object embeddings in R 𝑑 with a distance that captures dissimilarity costs. While previous policies update the cache state by replacing a cached object with (in general) a distant one-corresponding to "jumps" in the representation space-Grades incrementally updates the (embedding of) each object using a gradient descent step to progressively reduce the dissimilarity cost. Qualitatively, as shown in Figure 3.1, the objects in the cache smoothly move in the representation space to find their optimal position, i.e., where they can serve numerous requests with small dissimilarity cost.

• We prove that in a stationary setting, with an opportune choice of the gradient step sizes, Grades converges to a cache configuration that corresponds to a critical point of the service cost (likely a local minimum).

• Our experiments based on realistic traces (made available online [134]) show that Grades outperforms existing similarity caching policies both for 360 • videos and recommendation systems applications.

Finite Catalog Similarity Caching. We provide the following contributions in the context of finite catalog similarity caching:

• We formulate the problem of 𝑘NN optimal caching taking into account both dissimilarity costs and system costs.

55

• We propose a new similarity caching policy, AÇAI (Ascent Similarity Caching with Approximate Indexes), that (1) relies on fast, approximate similarity search indexes to decide which objects to serve from the local datastore and which ones from the remote repository and (2) uses an online mirror ascent algorithm to update the cache content in order to minimize the total service cost. AÇAI offers strong theoretical guarantees without any assumption on the traffic arrival pattern.

• We compare our solution with state-of-the-art algorithms for similarity caching and show that AÇAI consistently improves over all of them under realistic traces.

Organization

This chapter is organized as follows.

Continuous Catalog Similarity Caching

Related Work

Most existing policies for similarity caches generalize well-known exact caching policies, like LRU and LFU, to the new context, where besides the exact hits and misses, approximate hits are also possible. For example SIM-LRU [START_REF] Pandey | Nearest-Neighbor Caching for Content-Match Applications[END_REF][START_REF] Crankshaw | Scalable training and serving of personalized models[END_REF] maintains objects in an ordered queue and serves an object from the cache if its distance to the requested object is less than a given threshold (an approximate hit occurs). The object is then moved to the front of the queue. When no object in the cache is close enough to the request, there is a miss. The object is then retrieved from the server and inserted at the front of the queue, possibly evicting objects from the back. RND-LRU [START_REF] Pandey | Nearest-Neighbor Caching for Content-Match Applications[END_REF] is a variant of SIM-LRU where the threshold is replaced by a random variable that is a function of the dissimilarity cost, i.e., the cost associated to the distance between a cached object and the request. As with SIM-LRU and RND-LRU that are adaptations of LRU, 𝑞LRU-Δ𝐶 [START_REF] Neglia | Similarity Caching: Theory and Algorithms[END_REF] modifies 𝑞LRU [START_REF] Garetto | A Unified Approach to the Performance Analysis of Caching Systems[END_REF] by introducing a refresh probability that depends on the similarity. Finally, Duel [START_REF] Neglia | Similarity Caching: Theory and Algorithms[END_REF] is inspired by LFU, and decides which object to evict by tracking the dissimilarity cost, i.e., the cost associated to the distance between a cached object and the request accumulated over a given time-window. Grades was inspired by the work from Jorge Cortés et al. on coordination algorithms for mobile agents [START_REF] Cortes | Coverage control for mobile sensing networks[END_REF][START_REF] Cortés | Coordination and Geometric Optimization via Distributed Dynamical Systems[END_REF][START_REF] Cortés | Spatially-distributed coverage optimization and control with limited-range interactions[END_REF]). In their setting, mobile agents (e.g., drones) place themselves in the space to be able to detect the largest number of events in the environment. Similarly, the objects in the cache need to position themselves to optimally serve the requests appearing over the space. Despite Chapter 3 -Similarity Caching similarities at a high-level, their work focuses on a two-dimensional space and needs to take into account agents' movement and communication constraints that do not hold in our context.

From another point of view, Grades gradient update can be considered as a generalization of stochastic 𝑘-means algorithms, where the function we want to minimize is not necessarily the squared Euclidean distance (as it is the case for 𝑘-means). Our proofs rely on techniques for nonconvex optimization originally proposed in [START_REF] Bottou | On-line Learning and Stochastic Approximations[END_REF] also to study 𝑘-means.

Online caching policies based on gradient methods have been proposed in the stochastic request setting (see, e.g., [21,[START_REF] Ioannidis | Distributed Caching over Heterogeneous Mobile Networks[END_REF]), and, more recently, in the adversarial setting [19,[START_REF] Tareq | No-Regret Caching via Online Mirror Descent[END_REF]. These papers follow a similar methodology to ours in Sections 2.2.3 and 2.2.5 in Chapter 2, where the gradient step updates a vector of length equal to the catalog size, whose component 𝑖 (in [0, 1]) represents which fraction of object 𝑖 should be stored in the cache or alternatively the probability to store 𝑖 in the cache. Differently from this line of work, Grades uses the gradient step to modify the objects in the cache and maintains a vector of size equal to the cache-then much smaller than the catalog size.

A costly operation in any similarity search system is to find the closest object to the request. A simple solution is to index the collection, e.g., with a tree based data structure, to find the exact closest object. Unfortunately, when the number of dimensions 𝑑 of the representation space exceeds 10, such an approach has a computational cost comparable to a full scan of the collection [START_REF] Weber | A Quantitative Analysis and Performance Study for Similarity-Search Methods in High-Dimensional Spaces[END_REF]. For this reason a number of approximate search techniques have been developed, which trade accuracy for speed and provide one or more points close to the request, but not necessarily the closest. Prominent examples are the solutions based on locality sensitive hashing [START_REF] Andoni | Near-Optimal Hashing Algorithms for Approximate Nearest Neighbor in High Dimensions[END_REF], product quantization [START_REF] Johnson | Billion-Scale Similarity Search with GPUs[END_REF][START_REF] Babenko | The Inverted Multi-Index[END_REF], pivots [START_REF] Naidan | Permutation search methods are efficient, yet faster search is possible[END_REF], or graphs [START_REF] Malkov | Efficient and Robust Approximate Nearest Neighbor Search Using Hierarchical Navigable Small World Graphs[END_REF]. In the experiments in this chapter, we have performed an exact similarity search, but any of these approximated search techniques could be used in Grades.

The original envisaged applications of similarity caches were content-based image retrieval (CBIR) [START_REF] Falchi | A Metric Cache for Similarity Search[END_REF] and contextual advertising [START_REF] Pandey | Nearest-Neighbor Caching for Content-Match Applications[END_REF]. In a CBIR system, given an image (used as a query), users can query the CBIR system to obtain images that are most similar to the query by comparing their visual contents. Here, a cache can respond with the most similar images that are available locally. Similarly, in the case of contextual advertising, the cache can provide ads similar to those matching the user profile [START_REF] Pandey | Nearest-Neighbor Caching for Content-Match Applications[END_REF]. Likewise, recommender systems can leverage similarity caches [START_REF] Sermpezis | Soft Cache Hits: Improving Performance Through Recommendation and Delivery of Related Content[END_REF][START_REF] Spyropoulos | Soft Cache Hits and the Impact of Alternative Content Recommendations on Mobile Edge Caching[END_REF]: a recommender system can save operating costs and decrease its response time through recommendation of relevant contents from a cache to user-generated queries, i.e., in case of a cache miss, an application proxy (e.g., YouTube) running close to the helper node (e.g., at a multiaccess edge computing server) can recommend the most related files that are locally cached. More recently, similarity caches have been employed extensively for machine learning based inference systems to store queries and the respective inference results to serve future requests, for example, prediction serving systems [START_REF] Crankshaw | Clipper: A Low-Latency Online Prediction Serving System[END_REF], image recognition systems [START_REF] Drolia | Cachier: Edge-Caching for Recognition Applications[END_REF][START_REF] Drolia | Precog: Prefetching for Image Recognition Applications at the Edge[END_REF][START_REF] Guo | Potluck: Cross-Application Approximate Deduplication for Computation-Intensive Mobile Applications[END_REF], object classification on the cloud [START_REF] Venugopal | Shadow Puppets: Cloud-level Accurate AI Inference at the Speed and Economy of Edge[END_REF], caching hidden layer outputs of a neural network to accelerate computation [START_REF] Kumar | Accelerating deep learning inference via freezing[END_REF], network traffic classification tasks [START_REF] Finamore | Accelerating Deep Learning Classification with Error-controlled Approximate-key Caching[END_REF]. The cache can indeed respond with the results of a previous query that is very similar to the current one, thus reducing the computational burden and latency of running complex machine learning inference models.

System Description

We consider a similarity search system where a server answers users' queries with the most similar object from a locally stored catalog. In some applications, it is required to serve similar cached objects instead of a single object. Grades can be augmented to provide 𝑘 similar answers using the same techniques introduced in [START_REF] Falchi | A Metric Cache for Similarity Search[END_REF][START_REF] Pandey | Nearest-Neighbor Caching for Content-Match Applications[END_REF][START_REF] Salem | AÇAI: Ascent Similarity Caching with Approximate Indexes[END_REF]. For example, the cache may store key-value pairs, where the key is a past query and the value is the set of 𝑘 closest objects to the query. Upon a new query, the cache looks for the most similar key stored locally and returns the corresponding set of objects. However, such augmentation is of a heuristic nature; we provide a more careful treatment in Section 3.3. The notation used across this section is provided in Table 3.1.

Requests satisfied by the server incur a retrieval cost 𝑐 𝑓 , which quantifies the delay the user experiences to retrieve the object from the remote server, and/or the additional load for the server, and/or the additional load for the network. Alternatively, the request may be satisfied by a similarity cache which stores a subset of the catalog. The cache provides, in general, a less similar object than what the server could provide, but incurs a negligible retrieval cost, as, for example, it is located closer to the user, or uses a faster memory storage or can perform faster lookup operations on the smaller set of stored contents.

We assume that each request or object in the catalog can be represented as a point in the 𝑑dimensional Euclidean space R 𝑑 . In what follows we will refer to such representations as embeddings and, for the sake of simplicity, we will identify each object/request with its embedding (e.g., we will say that object 𝑟 belongs to R 𝑑). We assume all objects have the same size and the cache can store up to ℎ objects.

Our model of the system is similar to the one considered in previous papers on similarity caching in the continuous setting like [START_REF] Pandey | Nearest-Neighbor Caching for Content-Match Applications[END_REF][START_REF] Neglia | Similarity Caching: Theory and Algorithms[END_REF]. Let N and R denote the catalog and the set of possible requests, respectively. Both sets may be finite or infinite, but we require them to be compact (to be able to retrieve a closest object to a given request). The "quality" of a similarity search for 𝑟 depends on how similar the response object 𝑦 is to the request. We assume the dissimilarity cost is quantified by the function 𝑐 𝑑 (𝑟, 𝑦) = 𝑢 (∥𝑟 -𝑦 ∥), where 𝑢 : R → R + is a non-decreasing non-negative function and ∥ • ∥ is a norm in R 𝑑 (e.g., the Euclidean one). For example Faiss (Facebook AI Similarity Search) library [START_REF] Faiss | A library for efficient similarity search[END_REF] for multimedia retrieval supports all 𝑝-norms for 𝑝 ∈ [1, ∞].

The state of the cache at time 𝑡 is given by the set of objects S 𝑡 currently stored in it,

S 𝑡 = {𝑦 1 𝑡 , 𝑦 2 𝑡 , . . . , 𝑦 𝑘 𝑡 }, with 𝑦 𝑖 𝑡 ∈ R ⊂ R 𝑑 .
Requests arrive first at the cache. Given a request for object 𝑟 𝑡 at time 𝑡, let 𝑖 𝑡 denote the index of the most similar object to the request, i.e., 𝑖 𝑡 ∈ arg min 𝑖=1,...,𝑘 𝑐 𝑑 𝑟 𝑡 , 𝑦 (1) 𝑡 (if there are many equally similar ones we arbitrarily select one). If the cache satisfies the request 𝑟 𝑡 , it will use content 𝑦 (𝑖 𝑡) 𝑡 , and the user will incur the dissimilarity cost 𝑐 𝑑 (𝑟 𝑡 , S 𝑡) ≜ 𝑐 𝑑 𝑟 𝑡 , 𝑦 (𝑖 𝑡) 𝑡 = min 𝑦∈S 𝑡 𝑐 𝑑 (𝑟 𝑡 , 𝑦), but the retrieval cost is negligible. Alternatively, the cache can forward the request to the server, where it will be satisfied by the most similar object in the catalog. The request will generate the retrieval cost 𝑐 𝑓 , and the user will experience the dissimilarity cost 𝑐 𝑑 (𝑟 𝑡 , N) = min 𝑦∈N 𝑐 𝑑 (𝑟 𝑡 , 𝑦) ≤ 𝑐 𝑑 (𝑟 𝑡 , S 𝑡).

Ideally, the cache should compare the costs of serving request locally (𝑐 𝑑 (𝑟 𝑡 , S 𝑡)) and from the server (𝑐 𝑑 (𝑟 𝑡 , N) + 𝑐 𝑓) and select the most convenient action. But, in order to evaluate 𝑐 𝑑 (𝑟 𝑡 , N), the cache would need to store locally metadata for the whole set N and find the closest object in it. The memory and computation requirements could defeat the whole utility to have a cache. For this reason, we consider the cache does not know 𝑐 𝑑 (𝑟 𝑡 , N), but it is easy to adapt our algorithm when it is not the case and its theoretical guarantees still hold. We demonstrate how this assumption can be omitted in Section 3.3.

In the impossibility to compare 𝑐 𝑑 (𝑟 𝑡 , S 𝑡) with the request-dependent value 𝑐 𝑑 (𝑟 𝑡 , N) + 𝑐 𝑓 , the cache compares 𝑐 𝑑 (𝑟 𝑡 , S 𝑡) with a constant threshold value 𝑐 𝜃 . If 𝑐 𝑑 (𝑟 𝑡 , S 𝑡) ≤ 𝑐 𝜃 , the cache serves the request locally, otherwise it forwards it to the server. We assume 𝑐 𝜃 is set once and for all offline. Figure 3.2 illustrates how requests are served.

As 𝑐 𝑑 (𝑟 𝑡 , S 𝑡) = 𝑐 𝑑 𝑟 𝑡 , 𝑦 (𝑖 𝑡)

𝑡

, the final cost to serve request 𝑟 (denoted by 𝑐 (𝑟 𝑡 , S 𝑡)) depends only on 𝑦 (𝑖 𝑡) 𝑡 :

𝑐 (𝑟 𝑡 , S 𝑡) = 𝑐 𝑟 𝑡 , 𝑦 (𝑖 𝑡) 𝑡 = 𝑐 𝑑 𝑟 𝑡 , 𝑦 (𝑖 𝑡) 𝑡 , if 𝑐 𝑑 𝑟 𝑡 , 𝑦 (𝑖 𝑡) 𝑡 ≤ 𝑐 𝜃 , 𝑐 𝑓 + 𝑐 𝑑 (𝑟 𝑡 , N) , otherwise. (3.1)
After a request, the cache can update its state. As updates can themselves generate retrieval costs, we restrain to reactive policies that can only update their state by inserting the object retrieved from the server to satisfy a request.

In our setting, we assume that the two costs, 𝑐 𝑓 and 𝑐 𝑑 , can be expressed in the same unit. For instance, the two costs can quantify different aspects contributing to the overall user's quality of experience (QoE). The dissimilarity cost function 𝑐 𝑑 (𝑟, 𝑦) = 𝑢 (||𝑟 -𝑦||) can describe the QoE loss for the end user upon receiving a dissimilar object, while 𝑐 𝑓 can capture the QoE loss due to the experienced delay. As in our model, the ITU-T E-model combines additively different metrics, such as signal-to-noise-ratio, packet loss ratio, and delay, to obtain a single scalar QoE rating for voice communications [START_REF] Bergstra | The E-Model, a computational model for use in transmission planning[END_REF]. More in general, it is quite common in multi-objective resource allocation problems to express the cost as a weighted sum of the different objective functions [START_REF] Liu | A review on multi-objective optimization framework in wind energy forecasting techniques and applications[END_REF][START_REF] Poularakis | Video delivery over heterogeneous cellular networks: Optimizing cost and performance[END_REF][START_REF] Carra | Elastic Provisioning of Cloud Caches: A Cost-Aware TTL Approach[END_REF].

In our theoretical analysis in Section 3.2.2, we consider the case when requests arrive according to a Poisson process and are i.i.d. distributed. In the finite case (|R| < ∞), we recover the classic independent reference model [START_REF] Coffman | Operating Systems Theory[END_REF], where object 𝑟 is requested with rate 𝜆 𝑟 . In the continuous case, we need to consider a spatial density of requests and objects in a set A ⊂ R are requested with rate ∫ A 𝜆 𝑟 d𝑟 . If 𝑟 is closer to 𝑦 𝑖 than the critical radius 𝑅 𝜃 (such that 𝑢 (𝑅 𝜃) = 𝑐 𝜃), 𝑟 receives 𝑦 𝑖 as reply, otherwise (it falls in the gray shaded area) it generates a miss.

Under the above assumptions, for a given cache state S = {𝑦 1 , 𝑦 2 , . . . , 𝑦 𝑘 }, we can compute the corresponding expected cost to serve a request:

C(S) ≜ 𝑟 ∈R 𝜆 𝑟 𝑐 (𝑟, S), finite case ∫ R 𝜆 𝑟 𝑐 (𝑟, S) d𝑟, continuous case. (3.2)
Finding an optimal set of objects S * to store in the cache that minimizes the cost C(S) is NPhard as it is a generalization of the problem considered in [START_REF] Neglia | Similarity Caching: Theory and Algorithms[END_REF] (where 𝑐 𝑑 (𝑟, N) = 0 for each 𝑟 ∈ R). Nevertheless, for the continuous case, we propose a dynamic gradient descent based algorithm, that, under the stationary request process, can achieve a stationary point of C(S). The gradient descent based algorithm is a natural choice for the continuous setting; the algorithm takes a descent step to decrease C(S) at each time step. Further, in Section 3.2.3.3, we describe a heuristic adaptation of the proposed algorithm for the finite case.

A Gradient-based Algorithm

The key idea of our algorithm is to let the objects stored in the cache gradually "move" in the space R 𝑑 to reach a configuration where they can be used as approximate answers for a large number of requests (see Figure 3.1). Upon a request at time 𝑡 for 𝑟 𝑡 , the most similar object in the cache, 𝑦 (𝑖 𝑡) 𝑡 , is moved in the direction opposite to the gradient of the service cost (∇ 𝑦 𝑐 (𝑟 𝑡 , 𝑦 (𝑖 𝑡) 𝑡)) proportionally to a time-varying step-size (or learning rate) 𝜂 𝑡 :

𝑦 (𝑖 𝑡) 𝑡+1 = 𝑦 (𝑖 𝑡) 𝑡 -𝜂 𝑡 ∇ 𝑦 𝑐 𝑟 𝑡 , 𝑦 (𝑖 𝑡) 𝑡 . (3.3)
It is possible to prove that 𝑐 (𝑟, 𝑦) is differentiable everywhere and then the gradients in (3.3) exist with probability 1 when the request process is continuous. 1 When the request process is discrete, the probability that the gradient ∇ 𝑦 𝑐 (𝑟 𝑡 , 𝑦 𝑡) does not exist may be non-zero, but we can then perturb the request by a small random vector 𝜖 ∈ R 𝑑 and consider ∇ 𝑦 𝑐 (𝑟 𝑡 + 𝜖, 𝑦 𝑡).

Note that the algorithm is oblivious to the request rate (𝜆 𝑟 𝑡) of the object 𝑟 𝑡 . However, every time a request is made for object 𝑟 𝑡 , the most similar object in the cache (𝑦 (𝑖 𝑡) 𝑡) is moved in the direction of the requested object. Therefore, the algorithm dynamics are sensitive to 𝜆 𝑟 𝑡 .

An attentive reader may frown upon the simple algorithm (3.3). First, it potentially updates the cache upon every request, even when 𝑐 𝑑 (𝑟 𝑡 , 𝑦 (1) 𝑡) ≤ 𝑐 𝜃 and the cache would not need to retrieve any object. Second, even if 𝑦 (1) 𝑡 is the embedding of an object in the catalog, 𝑦 (1) 𝑡+1 may not correspond to any object in the catalog.

In the following sections we address all issues mentioned above. After having refined the update rule (3.3) (Section 3.2.3.1), we prove that this idealized algorithm indeed converges to a critical point of C(S) (Section 3.2.3.2). Then, in Section 3.2.3.3 we present a practical algorithm which (1) satisfies all our requirements, (2) keeps the state of the cache "close" to the state of the idealized algorithm, and () is more reactive and thus more suitable to non-stationary request processes.

Introducing a Projection

As requests are only for objects in the bounded set X, there exists a norm-2 ball with radius 𝑅-

B 2 (𝑅) = {𝑦 ∈ R 𝑑 , ∥𝑦 ∥ 2 ≤ 𝑅})-such that X ⊂ B 2 (𝑅) and 𝑐 (𝑟, 𝑦) = 𝑐 𝑓 for each 𝑦 ∉ B 2 (𝑅) and 𝑥 ∈ X.
There is no advantage to store in the cache objects that do not belong to B 2 (𝑅) as they do not contribute to approximate any request. We then modify (3.3) in order to make closer to B 2 (𝑅) any cached object 𝑦 (1) 𝑡 that the gradient update may have brought out of B 2 (𝑅). We write

𝑦 (1) 𝑡+1 = 𝑦 (1) 𝑡 -𝜂 𝑡 𝑔 (1) 𝑡 , (3.4
)

𝑔 (1) 𝑡 =              ∇ 𝑦 𝑐 𝑟 𝑡 , 𝑦 (1) 𝑡 , if (𝑖 = 𝑖 𝑡) ∧ 𝑦 (1) 𝑡 ∈ B 2 (𝑅) 𝑓 (∥𝑦 (1) 𝑡 ∥ 2 -𝑅) 𝑦 (1) 𝑡 ∥𝑦 (1) 𝑡 ∥ 2 , if 𝑦 (1) 𝑡 ∉ B 2 (𝑅), 0, otherwise,
where 𝑓 (•) is an increasing non-negative function (so that -𝑔 (1) 𝑡 points to the origin of the space). For technical reasons that will be required in the proof of Theorem 3.2.2, we want

𝑓 (0) = 𝑓 ′ (0) = 𝑓 ′′ (0) = 𝑓 ′′′ (0) = 0, and 𝑓 ′ (∞) ∈ Θ(1). For these reasons, we select 𝑓 (𝑥) = d d𝑥 𝑥 4 1+𝑥 2 = 2𝑥 3 2+𝑥 2 (1+𝑥 2)
2 for the proof. 1 As far as all the 𝑦 (1) 𝑡 are different, ∇ 𝑦 𝑐 (𝑟, 𝑦 (𝑖 𝑡) 𝑡) exists for all the points in 𝑥 ∈ X but at most for a measure zero set: the set of points for which ∇ 𝑦 𝑐 𝑑 (𝑟, 𝑦 (1) 𝑡) does not exist, the points for which ∥𝑥 -𝑦 (1) 𝑡 ∥ = ∥𝑥 -𝑦 (𝑗) 𝑡 ∥ for 𝑖 ≠ 𝑗, and finally the set of points in 𝜕{𝑥 ∈ R 𝑑 : 𝑐 𝑑 (𝑟, 𝑦 (1) 𝑡) > 𝑐 𝜃 }, where 𝜕𝐴 denotes the boundary of the set 𝐴.

Theoretical Guarantees

In this section we provide convergence results for the basic algorithm described in (3.4). We assume the cache update rule generates embeddings that always correspond to objects in the catalog. Moreover, we will ignore the cost of updates made after the request is served. These two simplifications will be removed in the next section.

It will be useful to denote the cache state as a vector 𝑦 𝑦 𝑦 𝑡 = (𝑦 𝑡,1 , . . . , 𝑦 𝑡,𝑘) ∈ R 𝑘×𝑑 , obtained by concatenating the embeddings of the different objects in the cache. Similarly, we define the different costs as function of 𝑦 𝑦 𝑦 𝑡 and then write 𝑐 𝑑 (𝑦 𝑦 𝑦 𝑡), 𝑐 (𝑦 𝑦 𝑦 𝑡), and C(𝑦 𝑦 𝑦 𝑡). We are now going to prove that algorithm (3.4) The proof of the lemma is in Appendix 12. The lemma is used in the proof of the following convergence result. Theorem 3.2.2. Let the learning rate 𝜂 𝑡 be selected so that

+∞ 𝑡=1 𝜂 𝑡 = +∞ and +∞ 𝑡=1 𝜂 2 𝑡 < +∞. If C(•) is continuously differentiable up to the second order then lim inf 𝑡→∞ ∥∇ 𝑦 𝑦 𝑦 C(𝑦 𝑦 𝑦 𝑡)∥ 2 = 0 a.s. If C(•) is continuously differentiable up to the third order then lim 𝑡→∞ ∇ 𝑦 𝑦 𝑦 𝑡 C(𝑦 𝑦 𝑦 𝑡) = 0 a.s.
The proof of Theorem 3.2.2 is in Appendix 13. Our proof relies on techniques for non-convex optimization originally proposed in [START_REF] Bottou | On-line Learning and Stochastic Approximations[END_REF]. We think it is possible to derive similar results, under different hypotheses, using the approach based on ordinary differential equations proposed in [START_REF] Borkar | Stochastic Approximation: A Dynamical Systems Viewpoint[END_REF].

Theorem 3.2.2 states that the sequence (𝑦 𝑦 𝑦 𝑡) converges to a critical point of C(•), i.e., a point where the gradient is zero. This may be a saddle point, a local maximum or a local minimum of C(•). The latter is more likely as it is the only one locally stable. The saddle points and local maxima of C(•) are not stable, as on reaching either of these two types of points, requests that appear in the neighborhood may perturb 𝑦 𝑦 𝑦 𝑡 and the gradient descent algorithm moves 𝑦 𝑦 𝑦 𝑡 away from these points. Given the stochastic nature of the request process this is highly likely to happen.

Implementation

In this section we present our complete caching policy Grades, whose pseudo-code is in Algorithm 3.1. Theorem 3.2.2 shows that the basic gradient update (3.4) attains a critical point of the expected cost C(•). Nevertheless, we have assumed that this update rule always generates embeddings in R 𝑑 that correspond to objects in the catalog. However, if the catalog has a finite number of objects, this is unlikely to happen, as the update (3.4) can potentially generate any real vector. Moreover, the update (3.4) may modify an object in the cache upon each request and then generate a high load on the server and the network to retrieve the new modified objects. Retrieve and Serve 𝜌 (𝑟) 33: end if In Section 3.2.3.3 we describe how our algorithm addresses these issues. We then move on in Section 3.2.3.3 to describe some additional features that provide a higher adaptivity of the algorithm to deal with highly non-stationary request processes, allowing for some random insertions with probability 𝑝.

Dealing with Finite Catalog and Reducing Server Load. We propose to maintain a virtual cache (VC) and a physical cache (PC). The VC only stores some metadata, but no actual object; its use is common to other policies like 2-LRU [START_REF] Garetto | A Unified Approach to the Performance Analysis of Caching Systems[END_REF] or AdaptSize [START_REF] Berger | AdaptSize: Orchestrating the Hot Object Memory Cache in a Content Delivery Network[END_REF]. The VC is sometimes called shadow cache.

In our case the VC stores ℎ vectors in R 𝑑 that are updated upon each request according to the basic algorithm in (3.4). These vectors are the embeddings of the objects we would like to store in the cache, but, as discussed above, such objects may not exist, or they may not have been retrieved yet from the server. The PC contains objects from the catalog together with their embeddings. At a high level, the main idea behind Grades is to maintain the PC as close as possible to the VC. We use then the current state of the VC to drive updates at the PC, i.e., object eviction and insertion. In particular each vector 𝑦 𝑉 in the VC is matched to an actual object 𝜇 (𝑦 𝑉) in the PC and Grades will opportunistically update 𝜇 (𝑦 𝑉) to make it as close as possible to 𝑦 𝑉 .

We now describe in details Algorithm 3.1 using the following additional notation:

• S 𝑉 ,𝑡 and S 𝑃,𝑡 denote the state of the VC and the PC, respectively.

• 𝜌 (𝑟) denotes the closest object in the catalogue to 𝑟 .

The shaded lines correspond to changes to increase algorithm adaptivity and will be discussed in Section 3.2.3.3. Upon a request for 𝑟 , if there is still space in the cache, we retrieve the most similar object in the catalogue 𝜌 (𝑟). Grades inserts 𝑟 and 𝜌 (𝑟) in the VC and in the PC, respectively, and matches them (𝜇 (𝑟) = 𝜌 (𝑟)). These operations are described in lines 2-5. The cache will finally serve 𝜌 (𝑟).

If the cache is already full, the closest object in VC 𝑦 𝑉 will be updated according to (3.4) (lines 6-7). Upon a virtual hit, if 𝑟 is closer to 𝑦 𝑉 than the currently matching object 𝜇 (𝑦 𝑉) in the PC, Grades takes advantage of this request to replace 𝜇 (𝑦 𝑉) with 𝜌 (𝑟) (lines 9-12). In a stationary setting, the state of VC converges to a critical point of the cost (Theorem 3.2.2) and the PC should become closer and closer to it. Finally, the most similar object in PC is served if it is close enough to 𝑟 , or if in any case 𝜌 (𝑟) has been retrieved (line 11).

Increasing Adaptivity.

According to what we described above, only the closest object in VC is updated upon a request (unless some projection back to B (𝑅) is needed). A potential problem is that if an object 𝑟 far from any other object has been accidentally inserted in VC (and the corresponding object 𝜌 (𝑟) in PC), it may never be updated and may uselessly occupy cache space. Moreover, if at some point the request process changes abruptly, some objects in the cache that were initially useful may find themselves too far from the new requests. Again, the gradient algorithm, by itself, would not update such objects. To overcome this problem, we can graft to Grades a more dynamic caching policy that occasionally (with probability 𝑝) updates the VC, hopefully evicting the least useful object in the VC.

The "grafting" is described by the green-shaded lines in Algorithm 3.1 and has been designed to support general cache eviction algorithms like LRU, LFU, and their variants. The grafted caching policy internally maintains its own data structure, e.g., an ordered queue for LRU. Upon an approximate hit, the hit update rule of the grafted policy is called (line 13). For example, LRU would move the requested object (if present in the cache) to the front of the queue. Also, with probability 𝑝, Grades invokes the miss update rule of the grafted policy, that may lead to select an element 𝜔 to be evicted. Grades then updates accordingly the VC and the PC (lines [19][20][21][22].

Algorithm Complexity. A straightforward implementation of GRADES has a time complexity of O(ℎ𝑑), where ℎ is the cache capacity and 𝑑 is the embedding dimension. This is because one has to iterate through the ℎ objects in the cache to find the most similar object to the requested object. However, one could use approximate nearest neighbor index, such as those based on hierarchical navigable small worlds (HNSW) graphs [START_REF] Malkov | Efficient and Robust Approximate Nearest Neighbor Search Using Hierarchical Navigable Small World Graphs[END_REF]. Numerically, HNSW is able to answer a 10NN query Table 3.2: Traces description over a dataset with 1 million objects in a 128-dimensional space in less than 0.5 ms with a recall greater than 97% [START_REF] Aumüller | ANN-Benchmarks: A Benchmarking Tool for Approximate Nearest Neighbor Algorithms[END_REF]. As for the memory footprint, a typical configuration of the HNSW index requires 𝑂 (𝑑) bytes per objects, where 𝑑 is the number of dimensions. For instance, in case of 𝑑 = 128 dimensional vectors, the memory required to index 10 million objects is approximately 5 GB.

Experiments

In this section, we empirically validate our algorithm through simulations. First we demonstrate the benefit of the algorithm by using synthetic traces. Next, to demonstrate real world applicability of our algorithm, we use Grades in the domain of caching for 360 • videos and recommendation systems. We assume that the catalog coincides with the set of possible requests (N = R) and then set 𝑐 𝜃 = 𝑐 𝑓 . The retrieval cost 𝑐 𝑓 is always equal to 1. Table 3.2 summarizes the main characteristics of the traces. Further details about the experimental setup and the properties of request traces will be described in the corresponding subsections. To the best of our knowledge, there are no public traces for similarity caching; we made our traces available online [134].

We compare Grades with the following algorithms. a) Greedy is an offline static algorithm that progressively fills the cache inserting the object that provides the largest cost saving given the set of objects already inserted. The algorithm provides a 1 2 approximation in terms of cost savings [START_REF] Fisher | An Analysis of Approximations for Maximizing Submodular set Functions-II[END_REF]. b) LRU+ updates the cache as the classic LRU evicting the least recently used content when needed, but it can provide approximate objects. c) SIM-LRU [START_REF] Pandey | Nearest-Neighbor Caching for Content-Match Applications[END_REF] maintains the content in an ordered queue as LRU. It moves objects to the front upon an approximate hit, and evicts objects from the back when needed.

d) 𝑞LRU-Δ𝐶 [START_REF] Neglia | Similarity Caching: Theory and Algorithms[END_REF] is a variant of 𝑞LRU [START_REF] Garetto | A Unified Approach to the Performance Analysis of Caching Systems[END_REF] that, upon an approximate hit, moves the object to the front with a probability which is proportional to the service cost reduction the object has guaranteed on the current request. e) Duel [START_REF] Neglia | Similarity Caching: Theory and Algorithms[END_REF], upon a request for object 𝑟 not in cache, 𝑟 is matched with an object 𝑦 in the cache in a tournament aimed at deciding if 𝑟 is a better candidate to be stored in the cache as compared to 𝑦. The decision is made by comparing the cost savings 𝑟 and 𝑦 provide over a fixed interval of time (𝑓). If the new object 𝑟 provides a larger cost saving, then 𝑟 replaces 𝑦 in the cache.

Synthetic Traces

We consider a setting similar to [START_REF] Neglia | Similarity Caching: Theory and Algorithms[END_REF]. The catalog is made by the points of a 𝐿 × 𝐿 bi-dimensional grid with 𝐿 = 313. The cache size ℎ = 313. 2For any two objects 𝑥 and 𝑦 on the grid we define the approximation cost to be proportional to the norm-1 distance between the two points 𝑥 and 𝑦, in particular 𝐶 𝑑 (𝑥, 𝑦) = 1 10 ||𝑥 -𝑦|| 1 . In our experiments, we observe that Grades converges to an expected cost that is slightly better than the approximate optimal cost as computed in [START_REF] Neglia | Similarity Caching: Theory and Algorithms[END_REF], suggesting that Grades converges very close to optimal.

The traffic is generated under the Independent Reference Model [START_REF] Coffman | Operating Systems Theory[END_REF]. There are two popular regions 𝐴 and 𝐵 centered around coordinates [START_REF] Fisher | An Analysis of Approximations for Maximizing Submodular set Functions-II[END_REF][START_REF] Fisher | An Analysis of Approximations for Maximizing Submodular set Functions-II[END_REF] and [START_REF] Araldo | Representation selection problem: Optimizing video delivery through caching[END_REF][START_REF] Araldo | Representation selection problem: Optimizing video delivery through caching[END_REF], respectively; they are produced by a mix of two Gaussian distributions. In particular, an object at (norm-1) distances 𝑑 1 from the center of 𝐴 and 𝑑 2 from the center of 𝐵 is requested with probability

Pr(𝑑 1 , 𝑑 2) ∝ 0.4 × 𝑒 -𝑑 2 1 2×15 2 √ 2𝜋 × 15 + 0.6 × 𝑒 -𝑑 2 2 2×25 2 √ 2𝜋 × 25
.

The popularity distribution of the objects in the grid is depicted in the heat-map in Figure 3. Figure 3.4 shows the performance of Grades without any graft and with different grafts (LRU+, SIM-LRU, 𝑞LRU-Δ𝐶) for a quite large value of the grafting parameter (𝑝 = 10 -2). Grades/X denotes Grades grafted with policy X. We observe that Grades achieves the smallest cost, and by grafting Grades with SIM-LRU we can make the initial transient faster. Figure 3.3 also shows the final cache configuration reached by Grades: as expected, the density of the objects in the cache is higher where the request density is higher.

The effect of the grafting parameter 𝑝 is shown in Figure 3.5 and depends on the specific grafted policy. We see that Grades/𝑞LRU-Δ𝐶3 is relatively insensitive to the grafting up to 𝑝 = 0.05, but for larger values of 𝑝 the cost increases, and approaches the cost of 𝑞LRU-Δ𝐶 alone (about 0.295 as it can bee seen in Figure 3.4). This happens because, for large 𝑝, more and more cache updates are due to 𝑞LRU-Δ𝐶, which, even upon an approximate hit, may introduce the requested object with probability proportional to 𝑞. For Grades/SIM-LRU, the cost again increases as 𝑝 increases, but it is always much smaller than the cost of SIM-LRU alone (about 0.32). The explanation is that SIM-LRU never introduces new objects on approximate hits. Hence, as far as the current cache allocation is providing approximate answers, the function Graft_Miss_Update in Algorithm 3.1 does not modify the current cache allocation. In Figure 3.6, we study the effect of the initialization on the the performance of Grades. We test three different initialization schemes: uniform box, uniform grid, and request-based depicted in Figure 3.6 (b), (c), (d), respectively. We sample the initial set of objects uniformly at random without replacement among those at the boundary (𝑥 ∈ {0, 312} or 𝑦 ∈ {0, 312}) and from the whole catalog (313 × 313 grid), respectively under the uniform box initialization and the uniform grid one. Instead, we take the first ℎ distinct requested objects to obtain the request-based initialization. Note how these three schemes lead to store initially in the cache progressively more popular objects. Figure 3.6 (a) shows the three initializations provide different initial costs, with the configuration with the least (resp. most) popular objects leading to the highest (resp. lowest) initial cost. The figure shows also that, independently of the initial cache configuration, Grades is able to move to configurations with smaller cost (similar to the one in Figure 3.3).

Until now, we have considered a stationary request scenario, where there is no evident advantage from grafting a more reactive policy to Grades. In Figure 3.7 we consider a highly non-stationary setting. At time 0, the cache is initialized as in Figure 3.3 , i.e., the cache configuration reached by Grades after a large number of requests (a million) made from a mix of the two gaussian distributions. Then, the request process changes abruptly and no more requests for objects in region 𝐴 are generated. The cache should reach a new configuration where all cached objects are located in region 𝐵, achieving a lower cost, as now the same number of objects should cover a smaller area. Figure 3.7 shows that a higher value of 𝑝 enables faster migration of objects from region A to region B in the cache. Figure 3.8 shows the synergy between Grades and the grafted policy. 𝑞LRU-Δ𝐶, Duel, and Grades, all have parameters (𝑞, 𝜂, and 𝑓) that can be tuned to find an optimal trade off between convergence speed and final cost. They can converge fast to configurations within a large neighborhood of a critical point (for high 𝑞, high 𝜂, and low 𝑓 , respectively), or slowly to configurations within a smaller neighborhood.

Experiments in [START_REF] Neglia | Similarity Caching: Theory and Algorithms[END_REF], in a setting similar to ours, show that 𝑞LRU-Δ𝐶 achieves a worse cost-vsspeed tradeoff than Duel. Figure 3.8 confirms that this is the case, but when 𝑞LRU-Δ𝐶 is grafted on Grades, the resulting policy improves on top of Duel. In fact Grades/𝑞LRU-Δ𝐶 achieves a better trade-off as it is able to converge to a cost comparable to Duel in a shorter time, or equivalently to a smaller cost in roughly the same time. Note also that Duel's expected cost at steady state is noisier than Grades/𝑞LRU-Δ𝐶's cost, showing the advantage of smoothly updating the state using gradients. We now study the impact of the approximability threshold (𝑐 𝜃) on the expected cost using the Synthetic trace. We vary the value of 𝑐 𝜃 from 0.5 to 1.4 in increments of 0.1. Figure 3.9 shows that, as 𝑐 𝜃 increases, the expected cost first decreases and then increases. In fact, for 𝑐 𝜃 ≪ 𝑐 𝑓 = 1, a larger 𝑐 𝜃 increases the number of approximate hits and then avoids the need to pay the cost 𝑐 𝑓 to retrieve the objects from the server. On the contrary, for 𝑐 𝜃 ≫ 𝑐 𝑓 = 1, a larger 𝑐 𝜃 is not beneficial, because misses are finally less costly than approximate hits. Figure 3.9 suggests that the optimal configuration is 𝑐 𝜃 ≈ 𝑐 𝑓 = 1 (in our experiments the server can always provide an exact hit). We observe that, while this choice minimizes the cost to serve a request given the current cache configuration, the choice of 𝑐 𝜃 also influences how the cache state evolves. This is because newer objects are only introduced into the cache on misses. Therefore, the optimal value for 𝑐 𝜃 could be, in principle, different.

360 • Videos

We test our algorithms on 360 • video traces. A 360 • video is an immersive, spherical video [START_REF] Xavier Corbillon | Viewport-adaptive navigable 360-degree video delivery[END_REF][START_REF] Qian | Optimizing 360 video delivery over cellular networks[END_REF]. The video is first projected on to a 2D plane to be encoded by classic 2D video encoders. The video is divided into time segments, and each segment is further spatially divided into tiles. The VR headset is optimized to fetch the required tiles based on the head position of the user. A system responsible for the delivery of 360 • videos can store the popular tiles in nearby caches [START_REF] Zink | Scalable 360 video stream delivery: Challenges, solutions, and opportunities[END_REF].

We generated a sequence of tiles' requests for 360 • videos using the approach proposed in [START_REF] Park | Navigation Graph for Tiled Media Streaming[END_REF]. We took real traces from 8 videos watched by 48 users each, and then built a navigation graph for each video, i.e., a Markov Chain that represents the spatial and temporal viewing correlations for the video. The videos we considered have on average 207 segments, each with 25 tiles. From each navigation graph we can generate an arbitrary number of possible views of the video. We generated then a trace with 10,000 users as follows. At time 𝑡 = 0, each user selects one of the videos at random and starts watching the video from a random segment of the video. The user then walks through the navigation graph to view the complete video. Once the user reaches the last segment in the video, it selects a new video uniformly at random (with replacement) and starts watching the selected video from the first segment. The process is repeated till 10 million requests are generated. We assume each tile can approximate at most 4 tiles (the adjacent ones), with a fixed dissimilarity cost 𝑐 𝑑 = 0.1. Figure 3.10 compares the performance of Grades/𝑞LRU-Δ𝐶 and 𝑞LRU-Δ𝐶. Note that in this setting, the representation space exhibits a very rough granularity, as the tiles of a segment cannot be used to approximate those of another segment and each segment is decomposed in a 5 × 5 grid of tiles. Nevertheless, Grades/𝑞LRU-Δ𝐶 shows significant improvement with respect to existing similarity caching policies and approaches the cost of Greedy.

Machine Learning Traces

We study the performance of similarity caching under the following traces in high-dimensional spaces.

Amazon trace. The paper [START_REF] Mcauley | Image-Based Recommendations on Styles and Substitutes[END_REF] proposes a technique to embed the images of Amazon products in a 100-dimensional space, where the Euclidean distance between two items captures the similarity of the sets of users who purchased or viewed both items. We have restricted ourselves to the products in the category "Baby" and we have assumed that a request for a given item was issued at time 𝑡, if a user left a review for the considered item at the same time.

CiteULike trace. The CiteULike dataset [START_REF] Wang | Collaborative Deep Learning for Recommender Systems[END_REF] contains a bipartite network of 22,715 users and 153,277 tags, where each edge represents a timestamped tag creation. The embeddings in a 100dimensional space are obtained using the collaborative metric learning model proposed in [START_REF] Hsieh | Collaborative Metric Learning[END_REF]. As for the Amazon trace, the Euclidean distance within this space encodes the similarity between users and items, where the items here are the tags. We generated the trace considering that an object (tag) is requested when one user adds the corresponding tag.

Movielens trace. We have trained the RecVAE collaborative filtering model from [START_REF] Shenbin | RecVAE: A New Variational Autoencoder for Top-N Recommendations with Implicit Feedback[END_REF] on the Movielens dataset [START_REF] Harper | The MovieLens Datasets: History and Context[END_REF] to embed users' rating histories in a 𝑑 = 200 dimensional space. Users with similar rating histories are mapped to vectors close according to the Euclidean distance. We have generated the trace by embedding every batch of 38 ratings from the same user (38 is the median number of ratings across all users) and assigning it the timestamp of the latest rating in the batch.

In all previous traces similarity is captured by the Euclidean distance. We then assume the dissimilarity cost to be proportional to the squared Euclidean distance, i.e., 𝑐 𝑑 (𝑟, 𝑦) = 𝑏 ∥𝑟 -𝑦 ∥ 2 2 . As the absolute value of such distance has not a clear meaning, we select the constant 𝑏 so that on average an object can approximate a given fraction 𝛼 of the catalogue. We say that 𝑟 can approximate 𝑦 if 𝑐 𝑑 (𝑟, 𝑦) ≤ 𝑐 𝑓 = 1, and we call 𝛼 the approximability value. We set the cache size to ℎ = 100.

The time-average cost of different caching policies is shown in Figure 3.12 for the Amazon trace and 10% approximability. Although an object is able to approximate only 10% of the catalog on average, similarity caching policies significantly reduce the cost in comparison to an exact caching policy like LRU, with 𝑞LRU-Δ𝐶 and Grades/𝑞LRU-Δ𝐶 achieving the lowest service cost.

The empirical distribution of pairwise distances in Amazon trace is shown in Figure 3.11. The figure shows that objects are quite scattered in this high-dimensional space with mean distance of around 85,000 between any two objects. The objects in the virtual cache are then in general far from any object in the catalog and we could expect gradient methods to perform poorly. Nevertheless, Figure 3.12 shows that Grades/𝑞LRU-Δ𝐶 outperforms existing similarity caching policies. Similar results hold for the other two traces.

Finally, Figure 3.13 reports the costs obtained for the three traces under different values of approximability. As expected, the service cost reduces as the approximability becomes larger. In the CiteULike trace, the service cost flattens rapidly (it is almost constant after 10% approximability): a close look at the dataset shows that popular objects are clustered in a small region of space. Once the approximability value guarantees that these objects can approximate each other, the marginal improvement from further increasing approximability becomes negligible. The other two traces show instead a similar behaviour, with the service cost that is still decreasing after 20% approximability. We also observe that the relative improvement of Grades/𝑞LRU-Δ𝐶 in comparison to 𝑞LRU-Δ𝐶 becomes larger as the approximability increases.

Conclusion

In this chapter, we propose Grades, a new caching policy for similarity caching systems that takes advantage from the fact that objects and requests can many times be embedded in a continuous metric space. Grades outperforms traditional caching policies in stationary scenarios, converging to provably optimal configurations under mild assumptions. Moreover, we show that Grades can be grafted to any traditional caching policy, obtaining flexible schemes that achieve arbitrary trade-offs between convergence speed and average costs at steady state. The performance of Grades and its extensions are evaluated in several synthetic and realistic scenarios. The server replies to each request 𝑟 with the 𝑘 most similar objects in the catalog N . As the dissimilarity is captured by the distance in the specific metric space, these objects are also the 𝑘 closest objects (neighbors) in the catalog to the request 𝑟 (𝑘NN(𝑟, N)). 4 The mapping translates the similarity search problem in a 𝑘NN problem [START_REF] Peter | Data Structures and Algorithms for Nearest Neighbor Search in General Metric Spaces[END_REF][START_REF] Navarro | Searching in Metric Spaces by Spatial Approximation[END_REF]. We can also associate a dissimilarity cost to the reply provided by server (e.g., by summing the dissimilarity costs for all objects in 𝑘NN(𝑟, N)). This cost depends on the catalog N and we do not have control on it. In addition, there is a fetching cost to retrieve those objects. The fetching cost captures, for instance, the extra load experienced by the server or the network to provide the objects to the user, the delay experienced by the user or a mixture of those costs.

A common assumption in the existing literature is that the cache can only store ℎ objects and the index needed to manage them has essentially negligible size. We also maintain this assumption that is justified in practice when objects have a size of a few tens of kilobytes (see the quantitative examples in Section 3.3.2). Caching policies. The performance of the cache depends heavily on which objects the cache stores. Several papers (e.g., [START_REF] Sermpezis | Soft Cache Hits: Improving Performance Through Recommendation and Delivery of Related Content[END_REF][START_REF] Costantini | Impact of Popular Content Relational Structure on Joint Caching and Recommendation Policies[END_REF]) consider the offline object placement problem: a set of objects is selected on the basis of historical information about object popularity and prefetched in the cache. But object popularity can be difficult to estimate and can change over time, specially at the level of small geographical areas (as in the case of areas served by an edge server) [START_REF] Paschos | Wireless Caching: Technical Misconceptions and Business Barriers[END_REF]. Other papers [START_REF] Drolia | Cachier: Edge-Caching for Recognition Applications[END_REF][START_REF] Drolia | Precog: Prefetching for Image Recognition Applications at the Edge[END_REF][START_REF] Guo | FoggyCache: Cross-Device Approximate Computation Reuse[END_REF][START_REF] Guo | Potluck: Cross-Application Approximate Deduplication for Computation-Intensive Mobile Applications[END_REF][START_REF] Venugopal | Shadow Puppets: Cloud-level Accurate AI Inference at the Speed and Economy of Edge[END_REF][START_REF] Crankshaw | Clipper: A Low-Latency Online Prediction Serving System[END_REF] present more a high-level view of the different components of the application system, without specific contributions in terms of cache management policies (e.g., they apply minor changes to exact caching policies like LRU or LFU). Some recent papers [START_REF] Neglia | Similarity Caching: Theory and Algorithms[END_REF][START_REF] Zhou | Adaptive Offline and Online Similarity-Based Caching[END_REF][START_REF] Sabnis | GRADES: Gradient Descent for Similarity Caching[END_REF] propose online caching policies that try to minimize the total cost of the system (the sum of the dissimilarity cost and the fetching cost), also in a networked context [START_REF] Zhou | Adaptive Offline and Online Similarity-Based Caching[END_REF][START_REF] Garetto | Content placement in networks of similarity caches[END_REF], but their schemes apply only to the case 𝑘 = 1, which is of limited practical interest.

To the best of our knowledge, the only dynamic caching policies conceived to manage the retrieval of 𝑘 > 1 similar objects are SIM-LRU, CLS-LRU, and RND-LRU proposed in [START_REF] Pandey | Nearest-Neighbor Caching for Content-Match Applications[END_REF] and QCache proposed in [START_REF] Falchi | Similarity Caching in Large-scale Image Retrieval[END_REF]. Next, we describe in detail these policies to highlight AÇAI's differences and novelty.

All these policies maintain an ordered list of key-value pairs where the key is a previous request and the value is the set of 𝑘 ′ closest objects to the request in the catalog (in general 𝑘 ′ ≥ 𝑘). The cache, whose size is ℎ, maintains a set of ℎ/𝑘 ′ past requests. This approach allows to decompose the potentially expensive search for close objects in the cache (see Section 3.3.2) in two separate less expensive searches on smaller sets. Upon the arrival of a request 𝑟 , the cache identifies the 𝑙 closest requests to 𝑟 among the ℎ/𝑘 ′ in the cache. Then, it merges their corresponding values and looks for the 𝑘 closest objects to 𝑟 in this set including at most 𝑙 × 𝑘 ′ objects. If this answer is evaluated to be good enough, then an approximate hit occurs and the answer is provided to the user, otherwise the request 𝑟 is forwarded to the server that needs to provide all 𝑘 closest objects. The cache state is updated following a LRU-like approach: upon an approximate hit, all key-value pairs that contributed to the answer are moved to the front of the list; upon a miss, the new key-value pair provided by the server is stored at the front of the list and the pair at the end of the list is evicted.

This operation is common to SIM-LRU, CLS-LRU, RND-LRU, and QCache. They differ in the choice of the parameters 𝑘 ′ and 𝑙 and in the way to decide between an approximate hit and a miss. As they assume no knowledge about the catalog at the server, they cannot compare the quality (i.e., the dissimilarity cost) of the answer the cache can provide with the quality of the answer the server can provide. They need then to rely on heuristics. We emphasize that the parameters 𝑘 ′ and 𝑙 are only required by the LRU-like policies and do not play a role in AÇAI's workflow. SIM-LRU (described in Section 3.2.1) considers 𝑘 ′ ≥ 𝑘 and 𝑙 = 1 and has the property that no two keys in the cache have a dissimilarity cost lower than 𝑐 𝜃 ∈ R ≥0 (a given threshold), but the corresponding hyperspheres may still intersect. CLS-LRU [START_REF] Pandey | Nearest-Neighbor Caching for Content-Match Applications[END_REF] is a variant of SIM-LRU, that can update the stored keys (the centers of the hyperspheres) and push away intersecting hyperspheres to cover the largest possible area of the request space. To this purpose, CLS-LRU maintains the history of requests served at each hypersphere and, upon an approximate hit, moves the center to the object that minimizes the distance to every object within the hypersphere's history. When two hyperspheres overlap, this mechanism drives their centers apart, which in turn reduces the overlapping region. Finally, QCache [START_REF] Falchi | Similarity Caching in Large-scale Image Retrieval[END_REF] considers 𝑘 ′ = 𝑘 and 𝑙 > 1. The policy decides if the 𝑘 objects selected from the cache are an approximate hit if (1) at least two of them would have been provided also by the server-a sufficient condition can be obtained from geometric considerationsor (2) the distribution of distances of the 𝑘 objects from the request looks similar to the distribution of objects around the corresponding request for other stored key-value pairs. These policies share potential inefficiencies: (1) the sets of closest objects to previous queries are not necessarily disjoint (but CLS-LRU tries to reduce their overlap) and then the cache may store less than ℎ distinct objects; (2) the two-level search may miss some objects in the cache that are close to 𝑟 , but are indexed by requests that are not among the 𝑙 closest requests to 𝑟 ; (3) the policy takes into account the dissimilarity costs at the caches but not at the server; (4) objects are served in bulk, all from the cache or all from the server, without the flexibility of a per-object choice. As we are going to see, AÇAI design prevents such inefficiencies by exploiting new advances in efficient approximate 𝑘NN search algorithms, which allows us to abandon the key-value pair indexing and to estimate the dissimilarity costs at the server. Also AÇAI departs from the LRU-like cache updates, considering gradient update schemes inspired by online learning algorithms [START_REF] Georgios S Paschos | Learning to Cache With No Regrets[END_REF].

Other Relevant Background

Indexes for approximate 𝑘NN search. Indexes are used to efficiently search objects in a large catalog. In case of 𝑘NN, one of the approaches is to use tree-based data structures. Unfortunately, in high dimensional spaces, e.g., R 𝑑 with 𝑑 > 10, the computational cost of such search is comparable 3.3 -3.3.2 Other Relevant Background 75 to a full scan of the collection [START_REF] Weber | A Quantitative Analysis and Performance Study for Similarity-Search Methods in High-Dimensional Spaces[END_REF]. Approximate Nearest Neighbor search techniques trade accuracy for speed and provide 𝑘 points close to the query, but not necessarily the closest, sometimes with a guaranteed bounded error. Prominent examples are the solutions based on locality sensitive hashing [START_REF] Andoni | Near-Optimal Hashing Algorithms for Approximate Nearest Neighbor in High Dimensions[END_REF], product quantization [START_REF] Johnson | Billion-Scale Similarity Search with GPUs[END_REF][START_REF] Babenko | The Inverted Multi-Index[END_REF], and graphs [START_REF] Malkov | Efficient and Robust Approximate Nearest Neighbor Search Using Hierarchical Navigable Small World Graphs[END_REF]. Despite being approximate, these indexes are in practice very accurate, as showed over different benchmarks in [START_REF] Aumüller | ANN-Benchmarks: A Benchmarking Tool for Approximate Nearest Neighbor Algorithms[END_REF].

As we are going to describe, AÇAI employs two approximate indexes (both stored at the edge server): one for the content stored in the cache, and one for the whole catalog N stored in the remote server. For the former, since cache content varies over time, we rely on a graph-based solution, such as HNSW [START_REF] Malkov | Efficient and Robust Approximate Nearest Neighbor Search Using Hierarchical Navigable Small World Graphs[END_REF], that supports dynamic (re-)indexing with no speed loss. On various benchmarks [START_REF] Aumüller | ANN-Benchmarks: A Benchmarking Tool for Approximate Nearest Neighbor Algorithms[END_REF], HNSW results the fastest index, and it is able to answer a 100NN query over a dataset with 1 million objects in a 128-dimensional space in less than 0.5 ms with a recall greater than 97%. As for the memory footprint, a typical configuration of the HNSW index requires 𝑂 (𝑑) bytes per objects, where 𝑑 is the number of dimensions. For instance, in case of 𝑑 = 128 dimensional vectors, the memory required to index 10 million objects is approximately 5 GB. As the server catalog changes less frequently (e.g., contextual advertising applications [START_REF] Pandey | Nearest-Neighbor Caching for Content-Match Applications[END_REF], and image retrieval applications [START_REF] Falchi | Similarity Caching in Large-scale Image Retrieval[END_REF]), AÇAI can index it using approaches with a more compact object representation like FAISS [START_REF] Johnson | Billion-Scale Similarity Search with GPUs[END_REF]. FAISS is slightly slower than HNSW and does not support fast re-indexing if the catalog changes, but it can manage a much larger set of objects. With a dataset of 1 billion objects, FAISS provides an answer in less than 0.7 ms per query, using a GPU [START_REF] Johnson | Billion-Scale Similarity Search with GPUs[END_REF]. Practically, the global catalog index can be fully reconstructed whenever a given predefined percentage of the catalog changes. This operation can be done in a parallel procedure to AÇAI without hindering its normal workflow. When a new global catalog index is reconstructed, the state of AÇAI is modified accordingly by redistributing the total mass on the contents that disappeared on the new introduced contents. Moreover, the states corresponding to the disappearing (resp., appearing) items are removed (resp., added). As for the memory footprint, for a typical configuration (IVFPQ), FAISS is able to represent an object with 30 bytes (independently from 𝑑): only 3 GB for a dataset with 100 million objects! Summing up our numerical example, if each object has size 20 KB, an edge server with AÇAI storing locally 10 million objects from a catalog with 100 million objects, needs 200 GB for the objects and only 8 GB for the two indexes. The larger the objects, the smaller the indexes' footprint: for example, when the server has a few Terabytes of disk space to store large multimedia objects, the indexes' size can be ignored. Gradient descent approaches. Online caching policies based on gradient methods have been studied in the stochastic request setting for exact caching, with provable performance guarantees [21,[START_REF] Ioannidis | Distributed Caching over Heterogeneous Mobile Networks[END_REF]. More recently, the authors of [START_REF] Sabnis | GRADES: Gradient Descent for Similarity Caching[END_REF] have proposed a gradient method to refine the allocation of objects stored by traditional similarity caching policies like SIM-LRU. Similarly, the reference [START_REF] Zhou | Adaptive Offline and Online Similarity-Based Caching[END_REF] considers a heuristic based on the gradient descent/ascent algorithm to allocate objects in a network of similarity caches. In both papers, the system provides a single similar content (𝑘 = 1). A closely related recent work [START_REF] Tareq | Towards Inference Delivery Networks: Distributing Machine Learning with Optimality Guarantees[END_REF] considers the problem of allocating different inference models that can satisfy users' queries at different quality levels. The authors propose a policy based on mirror descent, and provide guarantees under a general request process. But, their policy does not scale to a large catalog size.

We deviate from these works by considering 𝑘 > 1, large catalog size, and the more general family of online mirror ascent algorithms (of which the usual gradient ascent method is a particular instance). Also our policy provides strong performance guarantees under a general request process, where requests can even be selected by an adversary. Our analysis relies on results from online convex optimization [20] and is similar in spirit to what done for exact caching using the classic gradient method in [START_REF] Georgios S Paschos | Learning to Cache With No Regrets[END_REF] and mirror descent in [START_REF] Tareq | No-Regret Caching via Online Mirror Descent[END_REF]. Two recent papers [13,[START_REF] Mukhopadhyay | Online Caching with Optimal Switching Regret[END_REF] pursued this line of work taking into account update costs for a single exact cache.

System Description and AÇAI's Design

AÇAI's design is summarized in Figure 3.14, and the notation used across this section is provided in Table 3.3.

Cost Assumptions

Many of the similarity caching policies proposed in the literature (including SIM-LRU, CLS-LRU, RND-LRU, and QCache) have not been designed with a clear quantitative objective, but with the qualitative goal of significantly reducing the fetching cost without increasing too much the dissimilarity cost. Because of such vagueness, the corresponding papers do not make clear assumptions about the dissimilarity costs and the fetching costs. On the contrary, AÇAI has been designed to minimize the total cost of the similarity search system and we make explicit the corresponding hypotheses.

Our main assumption is that all costs are additive. The function 𝑐 𝑑 (𝑟, 𝑜) introduced in Section 3.3.1 quantifies the dissimilarity of the object 𝑜 and the request 𝑟 . Let A be the set of objects in the answer to request 𝑟 : it is natural to consider as dissimilarity cost of the answer 𝑜∈A 𝑐 𝑑 (𝑟, 𝑜). In addition, if fetching a single object from the server incurs a cost 𝑐 𝑓 ∈ R >0 , the fetching cost to retrieve 𝑚 objects is 𝑚 × 𝑐 𝑓 . This is an obvious choice when 𝑐 𝑓 captures server or network cost. When 𝑐 𝑓 captures the delay experienced by the user, then summing the costs is equivalent to consider the round trip time negligible in comparison to the transmission time, which is justified for large multimedia objects. It is easy to modify AÇAI to consider the alternative case when the fetching cost does not depend on how many objects are retrieved. Finally, as common in other works [START_REF] Neglia | Similarity Caching: Theory and Algorithms[END_REF][START_REF] Sabnis | GRADES: Gradient Descent for Similarity Caching[END_REF], we assume that both the dissimilarity cost and the fetching cost can be directly compared (e.g., they can both be converted in dollars). Under these assumptions, when, for example, the 𝑘 nearest neighbors in N to the query 𝑟 (𝑘NN(𝑟, N)) are retrieved from the remote server, the total cost experienced by the system is 𝑜∈𝑘NN(𝑟,N) 𝑐 𝑑 (𝑟, 𝑜) + 𝑘𝑐 𝑓 .

Cache Indexes

AÇAI departs from the key-value indexes of most the similarity caching policies. As discussed in Section 3.3.1, such an approach was essentially motivated by the need to simplify 𝑘NN searches by performing two searches on smaller datasets (the set of keys first, and then the union of the values for 𝑙 keys), and may lead to potential inefficiencies including sub-utilization of the available caching space.

The two-level search implemented by existing similarity caching policies can be seen as a naïve way to implement an approximate 𝑘NN search on the set of objects stored locally (the local catalog C). Thanks to the recent advances in approximate 𝑘NN searches (Section 3.3.2), we have now better approaches to search through large catalogs with limited memory and computation requirements. We assume then that the cache maintains two indexes supporting 𝑘NN searches: one for the local catalog (the objects stored locally) and one for the remote catalog (the objects stored at the server). A discussion about which approximate index is more appropriate for each catalog is in Section 3.3.2.

The local catalog index allows AÇAI to (1) fully exploit the available space (the cache stores at any time ℎ objects and can perform a 𝑘NN search on all of them), (2) potentially find closer objects in comparison to the non-optimized key-value search. Instead, the remote catalog index allows AÇAI to evaluate what objects the server would provide as answer to the request, and then to correctly evaluate which objects should be served locally and which one should be served from the server, as we are going to describe next.

Request Serving

Differently from existing policies, AÇAI has the possibility to compose the answer using both local objects and remote ones. Upon a request 𝑟 , AÇAI uses the two indexes to find the closest objects from the local catalog C and from the remote catalog N . We denote the set of objects identified by these indexes as 𝑘NN(𝑟, C) and 𝑘NN(𝑟, N) respectively. AÇAI composes the answer A by combining the objects with the smallest costs in the two sets. For an object 𝑜 stored locally (𝑜 ∈ C), the system only pays 𝑐 𝑑 (𝑟, 𝑜); for an object 𝑜 fetched from the remote server (𝑜 ∈ N \ C), the system pays 𝑐 𝑑 (𝑟, 𝑜) +𝑐 𝑓 . The total cost experienced is

𝐶 (𝑟, A) ≜ ∑︁ 𝑜∈A∩𝑘NN(𝑟,C) 𝑐 𝑑 (𝑟, 𝑜) + ∑︁ 𝑜∈A\𝑘NN(𝑟,C) 𝑐 𝑑 (𝑟, 𝑜) + 𝑐 𝑓 . (3.5)
The answer A is determined by selecting 𝑘 objects that minimize the total cost, that is

A = arg min B⊂(𝑘NN(𝑟,C)∪𝑘NN(𝑟,N)) |B|=𝑘 𝐶 (𝑟, B). (3.6)

Cache State and Service Cost/Gain

In order to succinctly present how AÇAI updates the local catalog and its theoretical guarantee, it is convenient to express the cost in (3.5) as a function of the current cache state and replace the set notation with a vectorial one. First, we define the augmented catalog U ≜ N ∪ {𝑁 + 1, 𝑁 + 2, . . . , 2𝑁 } and define the new costs

𝑐 (𝑟, 𝑖) = 𝑐 𝑑 (𝑟, 𝑖), if 𝑖 ∈ N, 𝑐 𝑑 (𝑟, 𝑖 -𝑁) + 𝑐 𝑓 , if 𝑖 ∈ U \ N . (3.7)
Essentially, 𝑖 and 𝑖 + 𝑁 (for 𝑖 ∈ {1, . . . , 𝑁 }) correspond to the same object, with 𝑖 capturing the cost when the object is stored at the cache and 𝑖 + 𝑁 capturing the cost when it is stored at the server. From now on, when we talk about the closest objects to a request, we are considering 𝑐 (•, •) as the distance.

Note that AÇAI can easily be modified to account for heterogeneous retrieval costs by modifying Eq. (3.7) and replacing 𝑐 𝑓 by an object dependent retrieval cost 𝑐 𝑓 ,𝑖 for every object 𝑖 ∈ N . Moreover, we assume that the fetching cost and dissimilarity cost are added together linearly in the objective, however our model can capture the scenario where the cost is not necessarily additive in 𝑐 𝑑 and 𝑐 𝑓 by a redefinition of the second line in Eq. (3.7). In particular, we can observe that the algorithm only requires the existence of a function 𝑐 (𝑟, 𝑖) and the particular form of this function can be arbitrary. To streamline the presentation we considered this simplified model and the theoretical guarantees will also hold under such modifications.

It is also convenient to represent the state of the cache (the set of objects stored locally) as a vector 𝑥 𝑥 𝑥 ∈ {0, 1} 2𝑁 , where, for 𝑖 ∈ N , 𝑥 𝑖 = 1 (resp., 𝑥 𝑖 = 0), if 𝑖 is stored (resp., is not stored) in the cache, and we set 𝑥 𝑖+𝑁 = 1 -𝑥 𝑖 . 5 The set of valid cache configurations is given by:

X ≜ 𝑥 𝑥 𝑥 ∈ {0, 1} 2𝑁 : ∑︁ 𝑖∈N 𝑥 𝑖 = ℎ, 𝑥 𝑗+𝑁 = 1 -𝑥 𝑗 , ∀𝑗 ∈ N . (3.8)
For every request 𝑟 ∈ R we define the sequence 𝜋 𝑟 as the permutation of the elements of U, where 𝜋 𝑟 𝑖 gives the 𝑖-th closest object to 𝑟 in U according to the costs 𝑐 (𝑟, 𝑜), ∀𝑜 ∈ U. The answer A provided by AÇAI (Eq. (3.6)) coincides with the first 𝑘 elements of 𝜋 𝑟 for which the corresponding index in 𝑥 𝑥 𝑥 is equal to 1. The total cost to serve 𝑟 can then be expressed directly as a function of the cache state 𝑥 𝑥 𝑥:

𝐶 (𝑟, 𝑥 𝑥 𝑥) = 2𝑁 ∑︁ 𝑖=1 𝑐 (𝑟, 𝜋 𝑟 𝑖)𝑥 𝜋 𝑟 𝑖 1 𝑖-1 ∑︁ 𝑗=1 𝑥 𝜋 𝑟 𝑗 < 𝑘 , ∀𝑥 𝑥 𝑥 ∈ X. (3.9)
where 1 (𝜒) = 1 when the condition 𝜒 is true, and 1 (𝜒) = 0 otherwise. Instead of working with the cost 𝐶 (𝑟, 𝑥 𝑥 𝑥), we can equivalently consider the caching gain defined as the cost reduction due to the presence of the cache (as in [21,[START_REF] Shanmugam | Femtocaching: Wireless Content Delivery through Distributed Caching Helpers[END_REF][START_REF] Neglia | A Swiss Army Knife for Online Caching in Small Cell Networks[END_REF]):

𝐺 (𝑟, 𝑥 𝑥 𝑥) ≜ 𝐶 (𝑟, (0, 0, . . . , 0 𝑁 , 1, 1, . . . , 1 𝑁)) -𝐶 (𝑟, 𝑥 𝑥 𝑥), (3.10)
where the first term corresponds to the cost when the cache is empty (and then requests are entirely satisfied by the server). The theoretical guarantees of AÇAI are simpler to express in terms of the caching gain (Section 3.3.3.8). Observe that the caching gain is zero for any cache state when the retrieval cost 𝑐 𝑓 = 0, and this corresponds to the setting where the remote server and the cache are co-located and this scenario overrides the need of a cache.

The caching gain has the following compact expression (Appendix 14.3):

𝐺 (𝑟, 𝑥 𝑥 𝑥) = 𝐾 𝑟 -1 ∑︁ 𝑖=1 𝛼 𝑟 𝑖 min 𝑘 -𝜎 𝑟 𝑖 , 𝑖 ∑︁ 𝑗=1 𝑥 𝜋 𝑟 𝑗 -𝜎 𝑟 𝑖 , (3.11)
where

𝜎 𝑟 𝑖 ≜ 𝑖 ∑︁ 𝑗=1 1 𝜋 𝑟 𝑗 ∈ U \ N , ∀(𝑖, 𝑟) ∈ U × R, (3.12)
𝐾 𝑟 is the value of the minimum index 𝑖 ∈ U such that 𝜎 𝑟 𝑖 = 𝑘, and 𝛼 𝑟 𝑖 ≜ 𝑐 (𝑟, 𝜋 𝑟 𝑖+1) -𝑐 (𝑟, 𝜋 𝑟 𝑖) ≥ 0. Let conv(X) denote the convex hull of the set of valid cache configurations X. We observe that 𝐺 (𝑟,𝑦 𝑦 𝑦) is a concave function of variable 𝑦 𝑦 𝑦 ∈ conv(X). Indeed, from Eq. (3.11), 𝐺 (𝑟,𝑦 𝑦 𝑦) is a linear combination, with positive coefficients, of concave functions (the minimum of affine functions in 𝑦 𝑦 𝑦). end for 16: end procedure

Cache Updates

We denote by 𝑟 𝑡 ∈ R the 𝑡-th request. The cache is allowed to change its state 𝑥 𝑥 𝑥 𝑡 ∈ X to 𝑥 𝑥 𝑥 𝑡+1 ∈ X in a reactive manner, after receiving the request 𝑟 𝑡 and incurring the gain 𝐺 (𝑟 𝑡 , 𝑥 𝑥 𝑥 𝑡). AÇAI updates its state 𝑥 𝑥 𝑥 𝑡 with the goal of greedily maximizing the gain. The update of the state 𝑥 𝑥 𝑥 𝑡 is driven from a continuous fractional state 𝑦 𝑦 𝑦 𝑡 ∈ conv(X), where 𝑦 𝑡,𝑖 can be interpreted as the probability to store object 𝑖 in the cache. At each request 𝑟 𝑡 , AÇAI increases the components of 𝑦 𝑦 𝑦 𝑡 corresponding to the objects that are used to answer to 𝑟 𝑡 , and decreases the other components. This could be achieved by a classic gradient method, e.g., 𝑦 𝑦 𝑦 𝑡+1 = 𝑦 𝑦 𝑦 𝑡 + 𝜂g 𝑡 , where g 𝑡 is a subgradient of 𝐺 (𝑟 𝑡 ,𝑦 𝑦 𝑦 𝑡) and 𝜂 ∈ R + is the learning rate (or stepsize), but in AÇAI we consider a more general online mirror ascent update OMA [START_REF] Bubeck | Convex Optimization: Algorithms and Complexity[END_REF]Ch. 4] that is described in Algorithm 3.2. 6 OMA is parameterized by the function Φ(•), that is called the mirror map (see Section 2.2.3.2). If the mirror map is the squared Euclidean norm, OMA coincides with the usual gradient ascent method, but other mirror maps can be selected. In particular, our experiments in Section 3.3.4 show that the negative entropy map Φ(𝑦 𝑦 𝑦) = 𝑖∈N 𝑦 𝑖 log 𝑦 𝑖 with domain D = R 𝑁 >0 achieves better performance.

Rounding the Cache Auxiliary State

At every time slot 𝑡 ∈ [𝑡], AÇAI can use the randomized rounding scheme DepRound [START_REF] Byrka | An Improved Approximation for k-median, and Positive Correlation in Budgeted Optimization[END_REF] to generate a cache allocation 𝑥 𝑥 𝑥 𝑡+1 ∈ X from 𝑦 𝑦 𝑦 𝑡+1 ∈ conv(X), while still satisfying the capacity constraint at any time slot 𝑡. The cache can fetch from the server the objects that are in 𝑥 𝑥 𝑥 𝑡+1 but not in 𝑥 𝑥 𝑥 𝑡 . As cache movements/updates introduce extra costs to the network operator, DepRound could potentially cause extra update costs that grow linearly in time. To mitigate incurring large update costs, we may avoid updating the cache state at every time slot 𝑡 ∈ [𝑡] by freezing the cache physical state for 𝑀 ∈ [𝑡] time steps. In particular, we assume the update cost of the system to be proportional to the number of fetched files, which can be upper bounded by the 𝑙 1 norm of the state update: 𝑖∈N max{0, 𝑥 𝑡+1,𝑖 -𝑥 𝑡,𝑖 } ≤ ∥𝑥 𝑥 𝑥 𝑡+1 -𝑥 𝑥 𝑥 𝑡 ∥ 1 . Hence, if we denote by C UC,𝑇 the total update cost of the system over the time horizon 𝑇 , then we have

C UC,𝑇 = O 𝑇 -1 ∑︁ 𝑡=1 ∥𝑥 𝑥 𝑥 𝑡+1 -𝑥 𝑥 𝑥 𝑡 ∥ 1 . (3.13)
When the cache state is refreshed after a call to the rounding scheme DepRound, the incurred update cost is in the order of O (2ℎ), and

C UC,𝑇 𝑇 = O 2ℎ 𝑀 . Moreover, when 𝑀 = Θ 𝑇 𝛽 for 𝛽 ∈ (0, 1) it holds C UC,𝑇 𝑇
= O 𝑇 -𝛽 , and for any 𝜖 > 0 and 𝑇 large enough

C UC,𝑇 𝑇 ≤ 𝜖. (3.14)
The average update cost of the system is then negligible for large 𝑇 . The parameter 𝑀 reduces cache updates at the expense of reducing the cache reactivity (see Theorem 3.3.3).

In some applications, it is possible to slightly violate the capacity constraint with small deviations, as long as this is satisfied on average [START_REF] Carra | Elastic Provisioning of Cloud Caches: A Cost-Aware TTL Approach[END_REF][START_REF] Lorido-Botran | A Review of Auto-scaling Techniques for Elastic Applications in Cloud Environments[END_REF][START_REF] Carlsson | Worst-Case Bounds and Optimized Cache on Mth Request Cache Insertion Policies under Elastic Conditions[END_REF]. For example, there could be a monetary value associated to the storage reserved by the cache, and a total budget available over a target time horizon 𝑇 . In this setting, the cache may violate momentarily the capacity constraint, as far as the total payment does not exceed the budget.

CoupledRounding (Algorithm 3.3) is a rounding approach which works under this relaxed capacity constraint and does not require state freezing with the parameter 𝑀. At time slot 𝑡 ∈ [𝑡], the cache decides which files to cache through 𝑁 coin tosses, where the file 𝑖 ∈ N is cached with probability 𝑦 𝑡,𝑖 , and the random state obtained is 𝑥 𝑥 𝑥 𝑡 . By definition, the expected value of the integral state is E[𝑥 𝑥 𝑥 𝑡] = 𝑦 𝑦 𝑦 𝑡 . The probability that the cache exceeds its storage capacity by 𝛿ℎ is given by the Chernoff bound [START_REF] Mitzenmacher | Probability and Computing: Randomized Algorithms and Probabilistic Analysis[END_REF] as:

P (∥𝑥 𝑥 𝑥 𝑡 ∥ 1 > (1 + 𝛿)ℎ) < 𝑒 -𝛿 2 ℎ 2 , 𝛿 ∈ (0, 1], (3.15)
where the 𝑙 1 norm is restricted to the first 𝑁 components of the vector, i.e., ∥𝑥 𝑥 𝑥 ∥

𝜂 = O 1 √ 𝑇
, selects fractional cache states satisfying

𝑇 -1 ∑︁ 𝑡=1 ∥𝑦 𝑦 𝑦 𝑡+1 -𝑦 𝑦 𝑦 𝑡 ∥ 1 = O (√ 𝑇). (3.16)
The proof is in Appendix 20.2. Combining the two theorems and (3.13), we also conclude that the expected average update cost of the system E C UC,𝑇 𝑇 is negligible for large 𝑇 .

Time Complexity

AÇAI uses OMA in Algorithm 3.2 coupled with a rounding procedure DepRound or CoupledRounding. The rounding step may take O (𝑁) operations (amortized every 𝑀 requests when DepRound is used). In practice, AÇAI quickly sets irrelevant objects in the fractional allocation vector 𝑦 𝑦 𝑦 𝑡 very close to 0. Therefore, we can keep track only of objects with a fractional value above a threshold 𝜖 > 0, and the size of this subset is practically of the order of ℎ.

Similarly, subgradient computation may require O (𝑁) operations per each component and then have O 𝑁 2 complexity, but in practice, as the vector 𝑦 𝑦 𝑦 𝑡 is sparse, calculations in Appendix 3.3.3.8 Eq. 18.151 require only a constant number of operations and complexity reduces to O (𝑁).

Finally, we use the negative entropy Bregman projection in [START_REF] Tareq | No-Regret Caching via Online Mirror Descent[END_REF] (line 6 of Algorithm 3.2) that has O (𝑁 + ℎ log(ℎ)) time complexity. The O (𝑁 + ℎ log(ℎ)) is due to a partial sorting operation while the actual projection takes O (ℎ). Again, most of the components of 𝑦 𝑦 𝑦 𝑡 are equal to 0, so that, in practice, we need to sort much less points.

Theoretical Guarantees

The best static cache allocation in hindsight is the cache state 𝑥 𝑥 𝑥 * that maximizes the time-averaged caching gain in Eq. (3.10) over the time horizon 𝑇 , i.e., 𝑥 𝑥 𝑥 * ∈ arg max

𝑥 𝑥 𝑥 ∈X 𝐺 𝑇 (𝑥 𝑥 𝑥) ≜ 1 𝑇 𝑇 ∑︁ 𝑡=1 𝐺 (𝑟 𝑡 , 𝑥 𝑥 𝑥) . (3.17)
We observe that solving (3.17) is NP-hard in general even for 𝑘 = 1 under a stationary request process [START_REF] Neglia | Similarity Caching: Theory and Algorithms[END_REF]. Nevertheless, AÇAI operates in the online setting and provides guarantees in terms of the 𝜓 -regret [START_REF] Krause | Submodular Function Maximization[END_REF]. In this scenario, the regret is defined as gain loss in comparison to the best static cache allocation 𝑥 𝑥 𝑥 * in (3.17). The 𝜓 -regret discounts the best static gain by a factor 𝜓 ∈ (0, 1]. Formally,

𝜓 -Regret 𝑇 ,X (OMA Φ) = sup {𝑟 1 ,𝑟 2 ,...,𝑟 𝑇 }∈R 𝑇 𝜓 𝑇 ∑︁ 𝑡=1 𝐺 (𝑟 𝑡 , 𝑥 𝑥 𝑥 *) -E 𝑇 ∑︁ 𝑡=1 𝐺 (𝑟 𝑡 , 𝑥 𝑥 𝑥 𝑡) , (3.18)
where the expectation is over the randomized choices of DepRound. Note that the supremum in (3.18) is over all possible request sequences. This definition corresponds to the so called adversarial analysis, imagining that an adversary selects requests in R to jeopardize cache performance. The definition of the regret in Eq. (3.18), which compares the gain of the policy to a static offline solution, is classic. Several bandit settings, e.g., simple multi-armed bandits [START_REF] Radlinski | Learning Diverse Rankings with Multi-Armed Bandits[END_REF][START_REF] Kleinberg | Multi-Armed Bandits in Metric Spaces[END_REF][START_REF] Audibert | Exploration-Exploitation Tradeoff Using Bariance Estimates in Multi-Armed Bandits[END_REF], contextual bandits [82][START_REF] Agarwal | Taming the Monster: a Fast and Simple Algorithm for Contextual Bandits[END_REF][START_REF] Dudik | Efficient Optimal Learning for Contextual Bandits[END_REF], and, of course, their applications to caching problems under the full-information setting [START_REF] Bhattacharjee | Fundamental Limits on the Regret of Online Network-Caching[END_REF][START_REF] Mukhopadhyay | Online Caching with Optimal Switching Regret[END_REF][START_REF] Tareq | No-Regret Caching via Online Mirror Descent[END_REF][START_REF] Georgios S Paschos | Learning to Cache With No Regrets[END_REF][START_REF] Li | Online Caching Networks with Adversarial Guarantees[END_REF], adopt this definition. In all these cases, the dynamic, adaptive algorithm is compared to a static policy that has full hindsight of the entire trace of actions. Moreover, as is customary in the context of online problems in which the offline problem is NP-hard [START_REF] Chen | Online Continuous Submodular Maximization[END_REF], the regret is not w.r.t. the optimal caching gain, but the gain obtained by an offline approximation algorithm. Obviously, regret bounds in the adversarial setting provide strong robustness guarantees in practical scenarios. AÇAI has the following regret guarantee: Theorem 3.3.3. Algorithm 3.2 configured with the negative entropy mirror map, learning rate 𝜂 =

1 (𝑐 𝑘 𝑑 +𝑐 𝑓) √︂ 2 log(𝑁 ℎ) 𝑇 +(𝑀-1) (𝑀+𝑇)
, and rounding scheme CoupledRounding or DepRound with freezing period 𝑀 = Θ 𝑇 𝛽 for 𝛽 ∈ [0, 1), has a sublinear (1 -1/𝑒)-regret in the number of requests, i.e.,

(1 -1/𝑒)-Regret 𝑇 ,X (OMA Φ) ≤ 1 - 1 𝑒 (𝑐 𝑘 𝑑 + 𝑐 𝑓)ℎ √︄ 2 log 𝑁 ℎ ((𝑀 -1)(𝑇 + 𝑀) + 𝑇),
where the constant 𝑐 𝑘 𝑑 is an upper bound on the dissimilarity cost of the k-th closest object for any request in R.

We first prove that the expected gain of the randomly sampled allocations 𝑥 𝑥 𝑥 𝑡 is a (1-1/𝑒)approximation of the fractional gain. Then, we use online learning results [START_REF] Bubeck | Convex Optimization: Algorithms and Complexity[END_REF] to bound the regret of OMA schemes operating on a convex decision space against concave gain functions picked by an adversary. The two results are combined to obtain an upper bound on the (1-1/𝑒)-regret. The full proof is available in Appendix 21.

The (1 -1/𝑒)-regret of AÇAI under CoupledRounding scheme with its corresponding freezing period 𝑀 = 1 has order-optimal regret O √ 𝑇 [20], whereas under the rounding scheme DepRound with a corresponding freezing period 𝑀 = Θ 𝑇 𝛽 the reduced reactivity of AÇAI is reflected by the additional 𝑇 𝛽 2 factor in the order of the regret. Nonetheless, the expected time-average (1 -1/𝑒)regret of AÇAI can get arbitrarily close to zero for large time horizon. Hence, AÇAI performs on average as well as a (1 -1/𝑒)-approximation of the optimal configuration 𝑥 𝑥 𝑥 * . This observation also suggests that our algorithm can be used as an iterative method to solve the NP-hard static allocation problem with the best approximation bound achievable for this kind of problems [START_REF] Nemhauser | Best Algorithms for Approximating the Maximum of a Submodular Set Function[END_REF].

Corollary
E [𝐺 𝑇 (x 𝑥 𝑥)] ≥ 1 - 1 𝑒 -𝜖 𝐺 𝑇 (𝑥 𝑥 𝑥 *).
where 𝑥 𝑥 𝑥 * = arg max

𝑥 𝑥 𝑥 ∈X 𝐺 𝑇 (x 𝑥 𝑥).
The proof can be found in Appendix 22.

Experiments

We start evaluating AÇAI in a simple scenario with a synthetic request process, for which we can compute the optimal fractional static cache allocation. We then consider real-world catalogs and traces and compare our solution with state of the art online policies proposed for 𝑘NN caching, i.e., SIM-LRU [START_REF] Pandey | Nearest-Neighbor Caching for Content-Match Applications[END_REF], CLS-LRU [START_REF] Pandey | Nearest-Neighbor Caching for Content-Match Applications[END_REF], and QCache [START_REF] Falchi | Similarity Caching in Large-scale Image Retrieval[END_REF] described in Section 3.3.1.

Simple Scenario

We consider a synthetic catalog as in [START_REF] Sabnis | GRADES: Gradient Descent for Similarity Caching[END_REF] of 𝑁 = 900 objects positioned on a 30 × 30 grid. The request process is generated according to the Independent Reference Model [START_REF] Coffman | Operating Systems Theory[END_REF]. The objects' popularity is represented by a Gaussian distribution. In particular, an object 𝑜 ∈ N with an 𝑙 1 (norm-1) distance 𝑑 𝑜 from the center of the grid [START_REF] Coffman | Operating Systems Theory[END_REF][START_REF] Coffman | Operating Systems Theory[END_REF] is requested at any time slot 𝑡 with probability

𝑝 𝑜 ∝ 𝑒 -𝑑 2 𝑜 2×6 2 .
The synthetic catalog is depicted in Figure 3.15. We consider the dissimilarity cost to be the 𝑙 1 distance. We take different values for the retrieval cost 𝑐 𝑓 ∈ {1, 2, 3, 4} and the number of neighbors 𝑘 ∈ {1, 2, 3, 4, 5}. We take the cache capacity to be ℎ = 15. We configure AÇAI with DepRound rounding scheme. We use CVXPY [START_REF] Diamond | CVXPY: A Python-Embedded Modeling Language for Convex Optimization[END_REF] to find the optimal fractional static cache allocation, and AÇAI to compute its approximation according to Corollary 3.3.4. In particular, AÇAI runs for 𝑇 = 10 000 iterations with a diminishing learning rate 𝜂 𝑡 = 2.0 𝑐 𝑓 (1 + cos(𝜋𝑡 𝑇)). Results. Figure 3.16 shows the optimal fractional static cache allocations and the AÇAI's fractional static approximated allocations (see Corollary 3.3.4) under different retrieval costs and the number of neighbors 𝑘. We observe that the optimal fractional static cache allocations in Figure 3. 16 Gain(AÇAI) Gain(AÇAI)

c f = 1, k = 1 c f = 1, k = 2 c f = 1, k = 3 c f = 1, k = 4 c f = 1, k = 5 10 20 c f = 2, k = 1 c f = 2, k = 2 c f = 2, k = 3 c f = 2, k = 4 c f = 2, k = 5 10 20 c f = 3, k = 1 c f = 3, k = 2 c f = 3, k = 3 c f = 3, k = 4 c f = 3, k = 5
c f = 1, k = 1 c f = 1, k = 2 c f = 1, k = 3 c f = 1, k = 4 c f = 1, k = 5 10 20 c f = 2, k = 1 c f = 2, k = 2 c f = 2, k = 3 c f = 2, k = 4 c f = 2, k = 5 10 20 c f = 3, k = 1 c f = 3, k = 2 c f = 3, k = 3 c f = 3, k = 4 c f = 3, k = 5
Figure 3.17: The gain of the optimal fractional static cache, its (1 -1 𝑒)-approximation, and the gain obtained by AÇAI's fractional static approximated allocations and static integral approximated allocations under different values of retrieval costs 𝑐 𝑓 ∈ {1, 2, 3, 4} and number of neighbors 𝑘 ∈ {1, 2, 3, 4, 5}. For AÇAI's static integral approximated allocations, we report 95% confidence intervals computed over 50 different runs. The gain of the fractional static approximated allocations obtained by AÇAI overlaps with gain of the optimal fractional static cache allocations. are symmetric, while AÇAI's fractional static approximated allocations in Figure 3.16 (b) partially lose this symmetry for values of 𝑘 ∈ {2, 3, 4} primarily due to the different ways a 𝑘NN query can be satisfied over the physical catalog for such values. In fact, there are multiple objects in the catalog with the same distance from a request 𝑟 , and AÇAI only selects a single permutation 𝜋 𝑟 for a request 𝑟 . We observe that, when the retrieval cost is higher, the allocations are more spread to cover a larger part of the popular region. Moreover, for larger values of the number 𝑘 of objects to be served, more mass is added to the neighborhood of cached objects, but when the number 𝑘 of objects to be served changes from 𝑘 = 1 to 𝑘 = 2 it is not clearly observed.

In Figure 3.17, we compare the gain obtained by the optimal fractional static cache, its (1 -1 𝑒)approximation, and the gain obtained by the fractional static approximated allocations and the static integral approximated allocations of AÇAI (obtained through DepRound). While Figure 3.16 shows that AÇAI's fractional static approximated allocations may differ from the optimal ones, their costs are practically indistinguishable (the two corresponding surfaces overlap in Figure 3.17). We also observe that rounding comes at a cost, as there is a clear gap between the gain of AÇAI's fractional allocations and of AÇAI's integral ones. Still, the average gain of the integral allocations remains close to the fractional optimum and well above the (1 -1 𝑒)-approximation. AÇAI then performs much better than what guaranteed by Corollary 3.3.4 (a potential gain reduction by a factor 1 -1 𝑒).

Real-World Datasets

SIFT1M trace. SIFT1M is a classic benchmark data-set to evaluate approximate 𝑘NN algorithms [START_REF] Jégou | Product Quantization for Nearest Neighbor Search[END_REF]. It contains 1 million objects embedded as points in a 128-dimensional space. SIFT1M does not provide a request trace so we generated a synthetic one according to the Independent Reference Model [START_REF] Coffman | Operating Systems Theory[END_REF] (similar to what done in other papers like [START_REF] Falchi | A Metric Cache for Similarity Search[END_REF][START_REF] Guo | Potluck: Cross-Application Approximate Deduplication for Computation-Intensive Mobile Applications[END_REF]). Request 𝑟 𝑡 is for object 𝑖 with a probability 𝜆 𝑖 independently from previous requests. We spatially correlated requests by letting 𝜆 𝑖 depend on the position of the embeddings in the space. In particular, we considered the barycenter of the whole dataset and set 𝜆 𝑖 proportional to 𝑑 -𝛽 𝑖 , where 𝑑 𝑖 is the distance of 𝑖 from the barycenter. The parameter 𝛽 was chosen such that the tail of the ranked objects popularity distribution is similar to a Zipf with parameter 0.9, as observed in some image retrieval systems [START_REF] Falchi | Similarity Caching in Large-scale Image Retrieval[END_REF]. We generated a trace with 10 5 requests. The number of distinct objects requested in the trace is approximately 2 × 10 4 . Amazon trace. We use the same trace described in Section 3.2.4.3. We truncate the trace to the interval [2 × 10 5 , 3 × 10 5]. 7 The number of distinct objects requested in this trace is approximately 2 × 10 4 .

Settings and Performance Metrics

For AÇAI, unless otherwise said, we choose the negative entropy Φ(𝑦 𝑦 𝑦) = 𝑖∈N 𝑦 𝑖 log(𝑦 𝑖) as mirror map (see Figure 3.23 and the corresponding discussion for other choices) and the rounding scheme DepRound with 𝑀 = 1. The learning rate is set to the best value found exploring the range [10 -6 , 10 -4].

As for the state-of-the-art caching policies, SIM-LRU and CLS-LRU have two parameters, 𝐶 𝜃 and 𝑘 ′ , that we set in each experiment to the best values we found exploring the ranges [𝑐 𝑓 , 2𝑐 𝑓] for 𝐶 𝜃 and [1, ℎ] for 𝑘 ′ . For QCache we consider 𝑙 = ℎ/𝑘: the cache can then perform the 𝑘NN search over all local objects. We also consider a simple similarity caching policy that stores previous requests and the corresponding set of 𝑘 closest objects as key-value pairs, and manages the set of keys according to LRU. The cache then serves locally the request if it coincides with one of the previous requests in its memory, it forwards it to the server, otherwise. The ordered list of keys is updated as in LRU. We refer to this policy simply as LRU.

We compare the policies in terms of their normalized average caching gain per-request, where the normalization factor corresponds to the caching gain of a cache with size equal to the whole catalog. In such case, the cache could store the entire catalog locally and would achieve the same dissimilarity cost of the server without paying any fetching cost. The maximum possible caching gain is then 𝑘𝑐 𝑓 . The normalized average gain of a policy P with cache states {𝑥 𝑥 𝑥 𝑡 } 𝑇 𝑡=1 over 𝑇 requests can then be defined as:

NAG(P) = 1 𝑘𝑐 𝑓 𝑇 𝑇 ∑︁ 𝑡=1 𝐺 (𝑟 𝑡 , 𝑥 𝑥 𝑥 𝑡). (3

Results

We consider a dissimilarity cost proportional to the squared Euclidean distance. This is the usual metric considered for SIFT1M benchmark and also the one considered to learn the embeddings for the Amazon trace in [START_REF] Mcauley | Image-Based Recommendations on Styles and Substitutes[END_REF].

The numerical value of the fetching cost depends on its interpretation (delay experienced by the user, load on the server or on the network) as well as on the application, because it needs to be converted into the same unit of the approximation cost. In our evaluation, we let it depend on the topological characteristics of the dataset in order to be able to compare the results for the two different traces. Unless otherwise said, we set 𝑐 𝑓 equal to the average distance of the 50-th closest neighbor in the catalog N .

Figure 3.18 shows how the normalized average gain changes as requests arrive and the different caching policies update the local set of objects (starting from an empty configuration). The cache size is ℎ = 1000 and the cache provides 𝑘 = 10 similar objects for each request. All policies reach an almost stationary gain after at most a few thousand requests. Unsurprisingly, the naïve LRU has the lowest gain (it can only satisfy locally requests that match exactly a previous request) and similarity caching policies perform better. AÇAI has a significant improvement in comparison to the second best policy (SIM-LRU for SIFT1M and CLS-LRU for Amazon).

This advantage of AÇAI is constantly confirmed for different cache sizes (Figure 3. 19), different values of the fetching cost 𝑐 𝑓 (Figure 3.20), and different values of 𝑘 (Figure 3.21). The relative improvement of AÇAI, in comparison to the second best policy, is larger for small values of the cache size (+30% for SIFT1M and +25% for Amazon when ℎ = 50), and small values of the fetching cost (+35% for SIFT1M and +100% for 𝑐 𝑓 equal to the average distance from the second closest object). Note how these are the settings where caching choices are more difficult (and indeed all policies have lower gains): when cache storage can accommodate only a few objects, it is critical to carefully select which ones to store; when the server is close, the costs of serving requests from the cache or from the server are similar and it is difficult to correctly decide how to satisfy the request. Caching policies performance are in general less dependent on the number 𝑘 of similar objects to retrieve and AÇAI achieves about 10% improvement for 𝑘 between 10 and 100 when ℎ = 1000 (Figure 3.21). Sensitivity analysis. We now evaluate the robustness of AÇAI to the configuration of its single parameter (the learning rate 𝜂). Figure 3.22 shows indeed that, for learning rates that are two orders of magnitude apart, we can achieve almost the same normalized average gain both for ℎ = 50 and for ℎ = 1000. 8In contrast, the performance of the second best policies (SIM-LRU and CLS-LRU) are more sensitive to the choice of their two configuration parameters 𝑘 ′ and 𝐶 𝜃 . For example, the optimal configuration of SIM-LRU is 𝑘 ′ = 10 and 𝐶 𝜃 = 1.5 ×𝑐 𝑓 for a small cache (ℎ = 50) but 𝑘 ′ = 200 and 𝐶 𝜃 = 2 ×𝑐 𝑓 for a large one (ℎ = 1000). Moreover, in both cases a misconfiguration of these parameters would lead to significant performance degradation. Choice of the mirror map. If the mirror map is selected equal to the squared Euclidean norm, the OMA update coincides with a standard gradient update. Figure 3.23 shows the superiority of the negative entropy map: it allows to achieve a higher gain than the Euclidean norm map or the same gain but in a shorter time. To the best of our knowledge, ours is the first paper that shows the advantage of using non-Euclidean mirror maps for similarity caching problems. It is possible to justify theoretically this result, considering the difference of subgradients norms for similarity caching and exact caching problems (Appendix 19.1). This result does not follow from the result in [START_REF] Tareq | No-Regret Caching via Online Mirror Descent[END_REF], where they predict for single-request batch one should always select the Euclidean mirror map for OMA (i.e., OGA), and this is a consequence of the gradient being sparse. In the case of similarity caching, even for 𝑘 = 1, multiple objects in the vicinity of a request can provide utility in serving the request, i.e., the subgradient of the gain function when request 𝑟 is received is no longer a sparse vector as in the classical caching setting. Dissecting AÇAI performance. In comparison to state-of-the-art similarity caching policies, AÇAI introduces two key ingredients: the cache state. It is useful to understand how much each ingredient contributes to AÇAI improvement with respect to the other policies.

To this aim, we integrated the same indexes in the other policies allowing them to serve requests as AÇAI does, combining both local objects and remote ones on the basis of their costs (see Section 3.3.3.3), while leaving their cache updating mechanism unchanged. We then compute, in the same setting of Figure 3.21, how much the gain of the second best policy (SIM-LRU for SIFT1M and CLS-LRU for Amazon) increases because of AÇAI request service mechanism. This is the part of AÇAI improvement attributed to the use of the two indexes, the rest is attributed to the cache update mechanism through OMA. We observe from Figure 3.24 that most of AÇAI gain improvement over the second best caching policy is due to the use of approximate indexes, but OMA updates are still responsible for 15-20% of AÇAI performance improvement under SIFT1M trace and for 20-35% for the Amazon trace. Update cost. In this part, we evaluate the update cost of the different rounding schemes. We set the cache size ℎ = 1000 and 𝑘 = 10. We run AÇAI over the Amazon trace with a learning rate 𝜂 = 10 -5 .

Figure 3.25 (a) gives the time-averaged number of files fetched and Figure 3.25 (b) gives the caching gain of the different rounding schemes. We observe by increasing the cache state freezing parameter 𝑀, the system fetches fewer files per iteration at the expense of reduced reactivity at the start. The coupled rounding scheme achieves the best performance as it fetches fewer files without a reduction in reactivity.

Figure 3.26 gives the instantaneous and time averaged cache occupancy of the cache using the CoupledRounding scheme with the relaxed capacity constraint. We observe that the time averaged cache occupancy rapidly converges to the cache capacity ℎ, while the instantaneous occupancy is kept within 5% of the cache capacity.

Conclusion

Edge computing provides computing and storage resources that may enable complex applications with tight delay guarantee like augmented-reality ones, but these strategically positioned resources need to be used efficiently. To this aim, we design AÇAI, a content cache management policy that determines dynamically the best content to store on the edge server. Our solution adapts to the user requests, without any assumption on the traffic arrival pattern. AÇAI leverages two key components: (1) new efficient content indexing methods to keep track of both local and remote content, and (2) mirror ascending techniques to optimally select the content to store. The results show that AÇAI is able to outperform the state-of-the-art policies and does not need careful parameter tuning.

As future work, we plan to evaluate AÇAI in the context of machine learning classification tasks [START_REF] Khandelwal | Generalization through Memorization: Nearest Neighbor Language Models[END_REF], in which the size of the objects in the catalog is comparable to their 𝑑-dimensional representation in the index, and, as a consequence, the index size cannot be neglected in comparison to the local catalog size. Another important future research direction is to consider dynamic regret, whereby the performance of a policy is compared to a dynamic optimum. Also, since the employed online algorithm OMA is greedy (i.e., does not keep track of the history of the requests), with careful selection of the mirror map, it may have an adaptive regret guarantee, e.g., such guarantee holds for OGD [START_REF] Zinkevich | Online Convex Programming and Generalized Infinitesimal Gradient Ascent[END_REF].

CHAPTER 4

Inference Delivery Networks

Introduction

Machine learning (ML) models are often trained to perform inference, that is to elaborate predictions based on input data. ML model training is a computationally and I/O intensive operation and its streamlining is the object of much research effort. Although inference does not involve complex iterative algorithms and is therefore generally assumed to be easy, it also presents fundamental challenges that are likely to become dominant as ML adoption increases [START_REF] Stoica | A Berkeley View of Systems Challenges for AI[END_REF]. In a future where AI systems are ubiquitously deployed and need to make timely and safe decisions in unpredictable environments, inference requests will have to be served in real-time and the aggregate rate of predictions needed to support a pervasive ecosystem of sensing devices will become overwhelming. Today, two deployment options for ML models are common: inferences can be served by the end devices (smartphones, IoT equipment, smart vehicles, etc.), where only simple models can run, or by a remote cloud infrastructure, where powerful "machine learning as a service" (MLaaS) solutions rely on sophisticated models and provide inferences at extremely high throughput.

However, there exist applications for which both options may be unsuitable: local models may have inadequate accuracy, while the cloud may fail to meet delay constraints. As an example, popular applications such as recommendation systems, voice assistants, and ad-targeting, need to serve predictions from ML models in less than 200 ms. Future wireless services, such as connected and autonomous cars, industrial robotics, mobile gaming, augmented/virtual reality, have even stricter latency requirements, often below 10 ms and in the order of 1 ms for what is known as the tactile Internet [3]. In enabling such strict latency requirements, the advent of Edge Computing plays a key role, as it deployes computational resources at the edge of the network (base stations, access points, ad-hoc servers). However, edge resources have limited capacity in comparison to the cloud and need to be wisely used. Therefore, integrating ML inference in the continuum between end devices and the cloud-passing through edge servers and regional micro data-centers-will require complex resource orchestration.

We believe that, to allocate resources properly, it will be crucial to study the trade-offs between accuracy, latency and resource-utilization, adapted to the requirements of the specific application. In fact, inference accuracy and, in general, resource efficiency increase toward the cloud, but so does communication latency. In this chapter, we present the novel idea of inference delivery networks (IDN): networks of computing nodes that coordinate to satisfy inference requests achieving the 96 Chapter 4 -Inference Delivery Networks best trade-off. An IDN may be deployed directly by the ML application provider, or by new IDN operators that offer their service to different ML applications, similarly to what happens for content delivery networks. The same inference task can be served by a set of heterogeneous models featuring diverse performance and resource requirements (e.g., different model architectures [START_REF] Howard | MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications[END_REF], multiple downsized versions of the same pre-trained model [START_REF] Deng | Model Compression and Hardware Acceleration for Neural Networks: A Comprehensive Survey[END_REF], different configurations and execution setups). Therefore, we study the novel problem of how to deploy the available ML models on the available IDN nodes, where a deployment strategy consists in two coupled decisions: (1) where to place models for serving a certain task and (2) how to select their size/complexity among the available alternatives.

Contributions

In this chapter, we first define a specific optimization problem for ML model allocation in IDNs. We characterize the complexity of such problem and then introduce INFIDA (INFerence Intelligent Distributed Allocation), a distributed dynamic allocation policy. Following this policy, each IDN node periodically updates its local allocation of inference models on the basis of the requests observed during the recent past and limited information exchange with its neighbors. The policy offers strong performance guarantees in an adversarial setting [START_REF] Goel | Beyond Online Balanced Descent: An Optimal Algorithm for Smoothed Online Optimization[END_REF], that is a worst case scenario where the environment evolves in the most unfavorable way. Numerical experiments in realistic settings show that our policy outperforms heuristics with similar complexity. Our contributions are as follows:

• We present the novel idea of inference delivery networks (IDNs).

• We frame the allocation of ML model in IDNs as an (NP-hard) optimization problem that captures the trade-off between latency and accuracy (Section 4.3).

• We propose INFIDA, a distributed and dynamic allocation algorithm for IDNs (Section 4.4), and we show it provides strong guarantees in the adversarial setting (Section 4.5).

• We evaluate INFIDA in a realistic simulation scenario and compare its performance both with an offline greedy heuristic and with its online variant under different topologies and trade-off settings (Section 4.6).

Organization

This chapter is organized as follows. In Section 4.2 we discuss related work and other relevant background with respect to IDNs. We formalize the problem of allocating ML model in IDNs in Section 4.3. We introduce our algorithm INFIDA in (Section 4.4) and discuss its theoretical guarantees in Section 4.5. We present our experimental results in Section 4.6.

Related Work

The problem of machine learning is often reduced to the training task, i.e., producing statistical models that can map input data to certain predictions. A considerable amount of existing works 4.2 -Related Work

97

addresses the problem of model training: production systems such as Hadoop [START_REF] Babu | Massively Parallel Databases and MapReduce Systems[END_REF] and Spark [START_REF] Zaharia | Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing[END_REF] provide scalable platforms for analyzing large amount of data on centralized systems, and even the problem of distributing the training task over the Internet has been largely addressed recently by many works on federated learning [START_REF] Peter Kairouz | Advances and Open Problems in Federated Learning[END_REF][START_REF] Li | Federated Learning: Challenges, Methods, and Future Directions[END_REF][START_REF] Konečnỳ | Federated Optimization: Distributed Machine Learning for On-Device Intelligence[END_REF][START_REF] Konečnỳ | Federated learning: Strategies for improving communication efficiency[END_REF][START_REF] Wu | Accelerating Federated Learning over Reliability-Agnostic Clients in Mobile Edge Computing Systems[END_REF][START_REF] Neglia | The Role of Network Topology for Distributed Machine Learning[END_REF]. However, there is surprisingly less research on how to manage the deployment of ML models once they have been trained (inference provisioning).

Most of the existing solutions on inference provisioning (e.g., Tensorflow Serving [START_REF] Olston | TensorFlow-Serving: Flexible, High-Performance ML Serving[END_REF], Azure ML [START_REF] Chappell | Introducing Azure Machine Learning. A guide for technical professionals[END_REF], and Cloud ML [197]) address the scenario where inference queries are served by a data center. Recent works [START_REF] Crankshaw | Clipper: A Low-Latency Online Prediction Serving System[END_REF][START_REF] Mao | Learning scheduling algorithms for data processing clusters[END_REF][START_REF] Romero | INFaaS: Managed and Model-less Inference Serving[END_REF][START_REF] Crankshaw | InferLine: latency-aware provisioning and scaling for prediction serving pipelines[END_REF] propose improvements on performance and usability of such cloud inference systems. Clipper [START_REF] Crankshaw | Clipper: A Low-Latency Online Prediction Serving System[END_REF] provides a generalization of TensorFlow Serving [START_REF] Olston | TensorFlow-Serving: Flexible, High-Performance ML Serving[END_REF] to enable the usage of different ML frameworks, such as Apache Spark MLLib [START_REF] Meng | MLlib: Machine Learning in Apache Spark[END_REF], Scikit-Learn [START_REF] Jia | Caffe: Convolutional Architecture for Fast Feature Embedding[END_REF], and Caffe [START_REF] Pedregosa | Scikitlearn: Machine Learning in Python[END_REF]. The auhtors of [START_REF] Mao | Learning scheduling algorithms for data processing clusters[END_REF] propose a reinforcement learning scheduler to improve the system throughput. INFaaS [START_REF] Romero | INFaaS: Managed and Model-less Inference Serving[END_REF] provides a real-time scheduling of incoming queries on available model variants, and scales deployed models based on load thresholds. Last, InferLine [START_REF] Crankshaw | InferLine: latency-aware provisioning and scaling for prediction serving pipelines[END_REF] extends Clipper to minimize the end-to-end latency of a processing pipeline, both periodically adjusting the models allocation and constantly monitoring and handling unexpected query spikes; the solution can be applied to any inference serving system that features a centralized queue of queries. All these solutions address the problem of inference provisioning in the scenario where the requests are served within a data center and are not suitable for a geographically distributed infrastructure where resources are grouped in small clusters and network latency is crucial (e.g., Edge Computing). For instance, none of the previous works consider the network delay between different compute nodes, it being negligible in a data center.

For what concerns inference provisioning in constrained environments, fewer works exist. Some solutions attempt to adapt inference to the capabilities of mobile hardware platforms through the principle of model splitting, a technique that distributes a ML model by partitioning its execution across multiple discrete computing units. Model splitting was applied to accommodate the hardware constraints in multi-processor mobile devices [START_REF] Lane | DeepX: A Software Accelerator for Low-Power Deep Learning Inference on Mobile Devices[END_REF], to share a workload among mobile devices attached at the same network edge [START_REF] Fernando | Computing with Nearby Mobile Devices: A Work Sharing Algorithm for Mobile Edge-Clouds[END_REF], and to partially offload inferences to a remote cloud infrastructure [START_REF] Kang | Neurosurgeon: Collaborative Intelligence Between the Cloud and Mobile Edge[END_REF], possibly coupled with early exit strategies [START_REF] Teerapittayanon | BranchyNet: Fast Inference via Early Exiting from Deep Neural Networks[END_REF] and conditional hierarchical distributed deployment [208]. Model splitting is orthogonal to our concerns and could be accounted for in an enhanced IDN scheme.

There has been some work on ML model placement at the edge in the framework of what is called "AI on Edge" [START_REF] Deng | Edge Intelligence: The Confluence of Edge Computing and Artificial Intelligence[END_REF], but it considers a single intermediate tier between the edge device and the cloud, while we study general networks with nodes in the entire cloud-to-the-edge continuum. Our dynamic placement INFIDA algorithm could be applied also in this more particular setting, for example in the MODI platform [210]. The work closest to ours is [START_REF] Jin | Provisioning Edge Inference as a Service via Online Learning[END_REF], which proposes an online learning policy, with the premise of load balancing over a pool of edge devices while maximizing the overall accuracy. INFIDA has more general applicability, as we do not make any assumption on the network topology and also employ a more flexible cost model that takes into account network delay. Another related work in this framework is VideoEdge [START_REF] Hung | VideoEdge: Processing Camera Streams using Hierarchical Clusters[END_REF], which studies how to split the analytics pipeline across different computational clusters to maximize the average inference accuracy. Beside the focus on the specific video application, the paper does not propose any dynamic allocation placement algorithm.

Even if the problem of inference provisioning is currently overlooked in the context of distributed systems, there exists a vast literature on the problem of content placement [START_REF] Qiu | Cost-Minimizing Dynamic Migration of Content Distribution Services into Hybrid Clouds[END_REF] where objects can be stored (cached) into different nodes in order to reduce the operational cost of content delivery. The similarities between this problem and inference provisioning inspired us in the design of Inference Delivery Networks. However, the two problems feature some crucial differences. For instance, content placement has been extended to the case of service caching (or placement), where an entire service can be offloaded onto nodes co-located with base-stations or mobile-micro clouds, engaging not only storage but also computational resources and energy [START_REF] Xu | Joint Service Caching and Task Offloading for Mobile Edge Computing in Dense Networks[END_REF][START_REF] Wang | Dynamic Service Placement for Mobile Micro-Clouds with Predicted Future Costs[END_REF]; nonetheless the problem considered in this chapter differs from the above, as inference services can run under different configurations that lead to variable resource consumption and inference accuracy. In some sense, traditional services provide a binary answer to any user request: the request can be satisfied if and only if the service is deployed at the node and any two nodes deploying the service are equivalent. In ML inference, however, several models can provide an answer but the accuracy of the answer can be different [START_REF] Ben Ameur | On the Deployability of Augmented Reality Using Embedded Edge Devices[END_REF].

A similar trade-off between resource usage and perceived quality typically emerges in the context of video caching [START_REF] Poularakis | Video delivery over heterogeneous cellular networks: Optimizing cost and performance[END_REF][START_REF] Choi | Wireless Video Caching and Dynamic Streming Under Differentiated Quality Requirements[END_REF][START_REF] Ye | Quality-Aware DASH Video Caching Schemes at Mobile Edge[END_REF][START_REF] Zhan | Content Cache Placement for Scalable Video in Heterogeneous Wireless Network[END_REF][START_REF] Araldo | Representation selection problem: Optimizing video delivery through caching[END_REF][START_REF] Qu | Cooperative Caching for Multiple Bitrate Videos in Small Cell Edges[END_REF][START_REF] Poularakis | Caching and Operator Cooperation Policies for Layered Video Content Delivery[END_REF], where the same video can be cached into multiple network nodes at different qualities (or resolutions): the operator optimizes the user experience by jointly deciding the placement of videos and their quality. These works either maximize the video quality perceived by the user [START_REF] Choi | Wireless Video Caching and Dynamic Streming Under Differentiated Quality Requirements[END_REF][START_REF] Araldo | Representation selection problem: Optimizing video delivery through caching[END_REF][START_REF] Qu | Cooperative Caching for Multiple Bitrate Videos in Small Cell Edges[END_REF], minimize the download time [START_REF] Zhan | Content Cache Placement for Scalable Video in Heterogeneous Wireless Network[END_REF][START_REF] Poularakis | Caching and Operator Cooperation Policies for Layered Video Content Delivery[END_REF] and the backhaul traffic [START_REF] Ye | Quality-Aware DASH Video Caching Schemes at Mobile Edge[END_REF], or minimize a combined cost [START_REF] Poularakis | Video delivery over heterogeneous cellular networks: Optimizing cost and performance[END_REF]. Although some of the models in these papers may be adapted to inference provisioning in IDNs, these works in general study static optimization problems under a known request process and consider simple network topologies: a single cache [START_REF] Ye | Quality-Aware DASH Video Caching Schemes at Mobile Edge[END_REF][START_REF] Zhan | Content Cache Placement for Scalable Video in Heterogeneous Wireless Network[END_REF], a pool of parallel caches [START_REF] Choi | Wireless Video Caching and Dynamic Streming Under Differentiated Quality Requirements[END_REF][START_REF] Poularakis | Caching and Operator Cooperation Policies for Layered Video Content Delivery[END_REF], bipartite networks [START_REF] Poularakis | Video delivery over heterogeneous cellular networks: Optimizing cost and performance[END_REF][START_REF] Qu | Cooperative Caching for Multiple Bitrate Videos in Small Cell Edges[END_REF]. The only exception is [START_REF] Araldo | Representation selection problem: Optimizing video delivery through caching[END_REF], which considers an arbitrary topology and provides some online heuristics, but ignores the service latency, which is of paramount importance when placing interactive ML models (e.g., for applications like augmented reality or autonomous driving). Instead, we propose a dynamic policy that jointly optimize inference quality and latency and provides strong performance guarantees without requiring any knowledge about the request process thanks to our adversarial setting (Section 4.5).

Finally, ML model allocation in an IDN is closely related to similarity caching considered in Chapter 3. To the best of our knowledge, the literature on similarity caching has restricted itself to (1) a single cache (except for [START_REF] Sermpezis | Soft Cache Hits: Improving Performance Through Recommendation and Delivery of Related Content[END_REF][START_REF] Zhou | Adaptive Offline and Online Similarity-Based Caching[END_REF][START_REF] Garetto | Content Placement in Networks of Similarity Caches[END_REF]), and (2) homogeneous items with identical resource requirements. A consequence is that in our setting similarity caching policies would only allocate models based on their accuracy, ignoring the trade-offs imposed by their resource requirements. Moreover, the literature on similarity caching ignores system throughput constraints, while we explicitly take into account that each model can only serve a bounded number of requests per second, according to its capacity.

Inference System Design

We consider a network of compute nodes, each capable of hosting some pre-trained ML models depending on its capabilities. Such ML models are used to serve inference requests for different classification or regression tasks. 1 As shown in Figure 4.1, requests are generated by end devices and routed over given serving paths (e.g., from edge to cloud nodes). The goal of the system is to optimize the allocation of ML models across the network so that the aggregate serving cost is minimized. Our system model is detailed below, and the notation used across the paper is summarized in Table 4.1.

Compute Nodes and Models

We represent the inference delivery network (IDN) as a weighted graph 𝐺 (V, E), where V is the set of compute nodes, and E represents their interconnections. Each node 𝑣 ∈ V is capable of serving inference tasks that are requested from anywhere in the network (e.g., from end-users, vehicles, IoT devices). We denote by N = {1, 2, . . . , |N |} the set of tasks the system can serve (e.g., object detection, speech recognition, classification), and assume that each task 𝑖 ∈ N can be served with different quality levels (e.g., different accuracy as illustrated in Figure 4.2) and different resources' requirements by a set of suitable models M 𝑖 . Each task is served by a separate set of models, i.e., M 𝑖 ∩M 𝑖 ′ =∅, ∀𝑖, 𝑖 ′ ∈ N, 𝑖 ≠ 𝑖 ′ . Catalog M 𝑖 may encompass, for instance, independently trained models or shrunk versions of a high quality model generated through distillation [START_REF] Hinton | Distilling the Knowledge in a Neural Network[END_REF][START_REF] Ravi | Custom On-Device ML Models with Learn2Compress[END_REF]. We denote by M= ∪ 𝑖∈N M 𝑖 = {1, 2, . . . , |M|} the catalog of all the available models. For each compute node 𝑣 ∈ V, we denote by

𝑥 𝑣 𝑚 ∈ {0, 1}, for 𝑚 ∈ M, (4.1)
the decision variable that indicates if model 𝑚 ∈ M is deployed on node 𝑣. 2 Therefore, 𝑥 𝑥 𝑥 𝑣 = [𝑥 𝑣 𝑚] 𝑚∈M is the allocation vector on node 𝑣, and 𝑥 𝑥 𝑥 = [𝑥 𝑥 𝑥 𝑣] 𝑣 ∈V denotes the global allocation decision.

We assume that the allocation of ML models at each node is constrained by a single resource dimension, potentially different at each node. A node could be, for instance, severely limited by the amount of available GPU memory, another by the maximum throughput in terms of instructions per second. The limiting resource determines the allocation budget 𝑏 𝑣 ∈ R + at node 𝑣 ∈ V. We also denote with 𝑠 𝑣 𝑚 ∈ R + the size of model 𝑚 ∈ M, i.e., the consumed amount of the limiting resource at node 𝑣. 3 Therefore, budget constraints are expressed as To every task 𝑖 ∈ N , we associate a fixed set of repository nodes that always run one model capable of serving all the requests for task 𝑖 (e.g., high-performance models deployed in large data centers). We call these models repository models and they are statically allocated. Repository models ensure requests are satisfied even when the rest of the network is not hosting any additional model.

∑︁ 𝑚∈M 𝑥 𝑣 𝑚 𝑠 𝑣 𝑚 ≤ 𝑏 𝑣 , ∀𝑣 ∈ 𝑉 . (4
We discern repository models through constants 𝜔 𝑣 𝑚 ∈ {0, 1}, each indicating if model 𝑚 is permanently deployed on node 𝑣. We assume that values 𝜔 𝑣 𝑚 are given as input. We call the vector 𝜔 𝜔 𝜔 = [𝜔 𝑣 𝑚] (𝑣,𝑚)∈V×M the minimal allocation. Note that the presence of repositories introduce the following constraints to the allocation vector:

𝑥 𝑣 𝑚 ≥ 𝜔 𝑣 𝑚 , ∀𝑣 ∈ V, ∀𝑚 ∈ M. (4.3)
The set of possible allocations at node 𝑣 ∈ V is determined by the integrality constraints (4.1), budget constraints (4.2), and repository constraints (4.3), i.e.,

X 𝑣 ≜ 𝑥 𝑥 𝑥 𝑣 ∈ {0, 1} M : 𝑥 𝑥 𝑥 𝑣 satisfies Eqs. (4.1)-(4.3) . (4.4)
The set of possible global allocations is given as X ≜ 𝑣 ∈V X 𝑣 .

Inference Requests

We assume that every node has a predefined routing path towards a suitable repository node for each task 𝑖 ∈ N . The routing is therefore predetermined, and our decisions only concern placement of models (i.e., variables 𝑥 𝑣 𝑚).) ∈ E for every 𝑗 ∈ {1, 2, . . . , 𝐽 -1}. As in [21], we assume that paths are simple, i.e., they do not contain repeated nodes. A request is therefore characterized by the pair (𝑖, 𝑝 𝑝 𝑝), where 𝑖 is the task requested and 𝑝 𝑝 𝑝 is the routing path to be traversed. We call the pair (𝑖, 𝑝 𝑝 𝑝) the request type. We denote by R the set of all possible request types, and by R 𝑖 all possible request types for tasks 𝑖. When a request for task 𝑖 is propagated from node 𝑝 1 toward the associated repository node 𝜈 (𝑝 𝑝 𝑝) ≜ 𝑝 𝐽 , any intermediate node along the path that hosts a suitable model 𝑚 ∈ M 𝑖 can serve it. The actual serving strategy is described in Section 4.3.5.

Cost Model

When serving a request of type 𝜌=(𝑖, 𝑝 𝑝 𝑝) ∈ R on node 𝑝 𝑗 using model 𝑚, the system experiences an inference cost that depends on the quality of the model (i.e., on inference inaccuracy) and the inference time. Additionally, the system experiences a network cost, due to using the path between 𝑝 1 and 𝑝 𝑗 . Similarly to previous work [START_REF] Fang | QoS-Aware Scheduling of Heterogeneous Servers for Inference in Deep Neural Networks[END_REF], we can write the total cost of serving a request as

𝐶 𝑝 𝑗 𝑝 𝑝 𝑝,𝑚 = 𝑓 ((𝑝 1 , . . . , 𝑝 𝑗), 𝑚). (4.5)
While our theoretical results hold under this very general cost model, in what follows-for the sake of concreteness-we refer to the following simpler model:

𝐶 𝑝 𝑗 𝑝 𝑝 𝑝,𝑚 = 𝑗-1 ∑︁ 𝑗 ′ =1 𝑤 𝑝 𝑗 ′ ,𝑝 𝑗 ′ +1 + 𝑑 𝑝 𝑗 𝑚 + 𝛼 (1-𝑎 𝑚), (4.6)
where 𝑎 𝑚 and 𝑑 𝑝 𝑗 𝑚 are respectively the prediction accuracy (in a scale from 0 to 1) and the average inference delay of model 𝑚 on node 𝑝 𝑗 . Indeed, the same model may provide different inference delays, depending on the hardware capabilities of the node on which it is deployed, e.g., the type of GPU or TPU [START_REF] Wang | Benchmarking TPU, GPU, and CPU platforms for deep learning[END_REF]. Parameter 𝑤 𝑣,𝑣 ′ ∈ R + is the (round-trip) latency of edge (𝑣, 𝑣 ′) ∈ E. Parameter 𝛼 weights the importance of accuracy w.r.t. the overall latency and can be set depending on the application.

Note that seeking cost minimization along a serving path usually leads to a trade-off: while the network cost always increases with 𝑗, in a typical network the service cost 𝑑 𝑝 𝑗 𝑚 + 𝛼 (1-𝑎 𝑚) tends to decrease, as farther nodes (e.g., data centers) are better equipped and can run more accurate models (Figure 4.2).

Request Load and Serving Capacity

Let us assume that time is split in slots of equal duration. We consider a time horizon equal to 𝑇 slots. At the beginning of a slot 𝑡, the system receives a batch of requests 𝑟 𝑟 𝑟 𝑡 = [𝑟 𝑡 𝜌] 𝜌∈R , where 𝑟 𝑡 𝜌 ∈ N ∪ {0} denotes the number of requests of type 𝜌 ∈ R.

Model 𝑚 ∈ M has maximum capacity 𝐿 𝑣 𝑚 ∈ N when deployed at node 𝑣 ∈ V, i.e., it can serve at most 𝐿 𝑣 𝑚 requests during one time slot 𝑡 ∈ [𝑇], in absence of other requests for other models. We do not make specific assumptions on the time required to serve a request.

       𝐿 𝑣 𝑚 - ∑︁ 𝜌 ′ ∈R\{𝜌 } load 𝑡,𝑣 𝑚 (𝜌 ′), 𝑟 𝑡 𝜌        . (4.7)
The potential available capacity depends on the request arrival order and the scheduling discipline at node 𝑣. For instance, suppose that in time slot 𝑡, requests of two types 𝜌 = (𝑖, 𝑝 𝑝 𝑝) and 𝜌 ′ = (𝑖, 𝑝 𝑝 𝑝 ′) arrive at node 𝑣. The arrival order and the node scheduling discipline may determine that many requests of type 𝜌 ′ be served, which would leave a small 𝑙 𝑡,𝑣 𝜌,𝑚 available for requests of type 𝜌. Or the opposite may happen. It is useful to define the potential available capacity also for models that are not currently deployed at the node, as 𝑙 𝑡,𝑣 𝜌,𝑚 ≜ min{𝐿 𝑣 𝑚 , 𝑟 𝑡 𝜌 }. The effective available capacity is then equal to 𝑙 𝑡,𝑣 𝜌,𝑚 𝑥 𝑣 𝑚 . Our analysis in Section 4.5 considers a "pessimistic" scenario where an adversary selects both requests and available capacities for all models but the repository ones. This approach relieves us from the need to model system detailed operations, while our proposed algorithm (Section 4.

A ≜ (𝑟 𝑟 𝑟,𝑙 𝑙 𝑙) ∈ (N ∪ {0}) R × (N ∪ {0}) 𝑖 ∈ N R 𝑖 ×M 𝑖 ×V : ∑︁ 𝜌∈R 𝑖 𝑟 𝑡 𝜌 ≤ ∑︁ 𝑚∈M 𝑖 𝜔 𝜈 (𝑝 𝑝 𝑝) 𝑚 𝐿 𝜈 (𝑝 𝑝 𝑝) 𝑚 , 𝑙 𝑣 𝜌,𝑚 ≤ min{𝐿 𝑣 𝑚 , 𝑟 𝜌 }, ∀𝑖 ∈ N, 𝑣 ∈ V, 𝑚 ∈ M, 𝜌 ∈ R . (4.10)
Note the constraint on potential available capacities is looser than the definition in (4.7) corresponding to a more powerful adversary.

Serving cost

Model quality 1 2

Topology

Models that node 1 needs to be informed of w 1,2 w 1,2

Serving Model

Given request 𝜌=(𝑖, 𝑝 𝑝 𝑝)∈R, let 𝐾 𝜌 = |𝑝 𝑝 𝑝 ||M 𝑖 | denote the maximum number of models that may encounter along its serving path 𝑝 𝑝 𝑝. We order the corresponding costs {𝐶 𝑝 𝑗 𝑝 𝑝 𝑝,𝑚 , ∀𝑚 ∈ M 𝑖 , ∀𝑝 𝑗 ∈ 𝑝 𝑝 𝑝} in increasing order and we denote by 𝜅 𝜌 (𝑣, 𝑚) the rank of model 𝑚 ∈ M 𝑖 allocated at node 𝑣 within the order defined above. 4 If 𝑣 ∉ 𝑝 𝑝 𝑝 we have 𝜅 𝜌 (𝑣, 𝑚) = ∞.

If 𝜅 𝜌 (𝑣, 𝑚) = 𝑘, then model 𝑚 at node 𝑣 has the 𝑘-th smallest cost to serve request 𝜌. We denote the model service cost, its potential available capacity, and its effective capacity as 𝛾 𝑘 𝜌 , 𝜆 𝑘 𝜌 (𝑙 𝑙 𝑙 𝑡), and 𝑧 𝑘 𝜌 (𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥), respectively:

𝛾 𝑘 𝜌 = 𝐶 𝑣 𝑝 𝑝 𝑝,𝑚 , 𝜆 𝑘 𝜌 (𝑙 𝑙 𝑙 𝑡) = 𝑙 𝑡,𝑣 𝜌,𝑚 , 𝑧 𝑘 𝜌 (𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥) = 𝑥 𝑣 𝑚 𝑙 𝑡,𝑣 𝜌,𝑚 . (4.11)
We assume the IDN serves requests as follows. Each request is forwarded along its serving path and served when it encounters a model with the smallest serving cost among those that are not yet saturated, i.e., that may still serve requests.

Since models do not necessarily provide increasing costs along the path, this serving strategy requires that a node that runs a model 𝑚 ∈ M 𝑖 and receives a request for task 𝑖, knows whether there are better alternatives for serving task 𝑖 upstream or not. In the first case, it will forward the request along the path, otherwise it will serve it locally. We argue that, in a real system, this partial knowledge can be achieved with a limited number of control messages. In fact, if node 𝑣 = 𝑝 ℎ hosts the model with the 𝑘-th cost for request (𝑖, 𝑝 𝑝 𝑝), it only needs information about those models that (1) are located upstream on the serving path (i.e., on nodes 𝑝 𝑙 ∈ 𝑝 𝑝 𝑝 with 𝑙 > ℎ), and (2) provide a cost smaller than 𝛾 𝑘 𝜌 . Since the cost increases with the network latency (as illustrated in Figure 4.3), the number of models satisfying these criteria is small in practice. 5 A node needs to propagate down-4.3 -4.3.6 Allocation Gain and Static Optimal Allocations 105 stream a control message with the information about the requests it can serve and the corresponding costs. Nodes forwarding the control message progressively remove the information about the tasks they can serve with a smaller cost, until the control message payload is empty and the message can be dropped. Every node 𝑣 ∈ V generates this control message whenever the available capacity of any of the local models in 𝑣 changes.

According to the presented serving strategy, the requests load is split among the currently available models giving priority to those that provide the smallest serving costs up to their saturation. In particular, model 𝑚 with the 𝑘-th smallest cost will serve some requests of type 𝜌 only if the less costly models have not been able to satisfy all of such requests (i.e., if

Allocation Gain and Static Optimal Allocations

We are interested in model allocations 𝑥 𝑥 𝑥 that minimize the aggregate cost (4.12), or, equivalently, that maximize the allocation gain defined as 𝐺 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥) = 𝐶 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝜔 𝜔 𝜔) -𝐶 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥). This is a submodular maximization problem under multiple knapsack constraints. In our context, this intuitively means that the problem is characterized by a diminishing return property: adding a model 𝑚 to any node 𝑣 gives us a marginal gain that depends on the current allocation: the more the models already deployed in the current allocation, the less the marginal gain we get by the new 𝑚. We prove submodularity in Lemma 24.2 in Appendix 24 . It is known that submodular maximization problems are NP-hard and cannot be approximated with a ratio better than (1 -1/𝑒) even under simpler cardinality constraints [START_REF] Nemhauser | Best Algorithms for Approximating the Maximum of a Submodular Set Function[END_REF]. Under the multi-knapsack constraint, it is possible to solve the offline problem achieving a (1 -1/𝑒 -𝜖)-approximation through a recent algorithm proposed in [START_REF] Fairstein | A (1-1/e-𝜀)-Approximation for the Monotone Submodular Multiple Knapsack Problem[END_REF].

Let us consider a model allocation 𝑥 𝑥 𝑥. Within time slot 𝑡, the 𝑘 smallest cost models along a path

𝑝
We prove this lemma in Appendix 25. This result tells us that the gain of a certain allocation 𝑥 𝑥 𝑥 can be expressed as a sum of several components. In particular, for each request type 𝜌, the 𝑘-th smallest cost model along the path contributes to the gain with a component (1) proportional to its cost saving 𝛾 𝑘+1 𝜌 -𝛾 𝑘 𝜌 with respect to the (𝑘 + 1)-th smallest cost model and (2) proportional to the amount of additional requests that the 𝑘-th smallest cost models in allocation 𝑥 𝑥 𝑥 can serve with respect to the minimal allocation 𝜔 𝜔 𝜔.

INFIDA Algorithm

In this section, we propose INFIDA, an online algorithm that can operate in a distributed fashion without requiring global knowledge of the allocation state and requests arrival. In Section 4.5, we show that INFIDA generates dynamically allocations experiencing average costs that converge to a (1 -1/𝑒 -𝜖)-approximation of the optimum, which matches the best approximation ratio achievable in polynomial time even in this online setting.

Algorithm Overview

On every node 𝑣 ∈ V, INFIDA updates the allocation 𝑥 𝑥 𝑥 𝑣 ∈ X 𝑣 ⊂{0, 1} |M | , by operating on a correspondent fractional state 𝑦 𝑦 𝑦 𝑣 ∈ Y 𝑣 ⊂[0, 1] |M | , and the fractional allocations satisfy the budget constraint in Eq. (4.2). Note that, if ∥𝑠 𝑠 𝑠 𝑣 ∥ 1 < 𝑏 𝑣 for a node 𝑣 ∈ V, we can always consider fractional Within a time slot 𝑡, node 𝑣 collects measurements from messages that have been routed through it (Section 4.4.2). At the end of every time slot, the node (1) computes its new fractional state 𝑦 𝑦 𝑦 𝑣 , and (2) updates its local allocation 𝑥 𝑥 𝑥 𝑣 via randomized rounding (Section 4.4.3). INFIDA is summarized in Algorithm 4.1 and detailed below. State computation. The fractional state 𝑦 𝑦 𝑦 𝑣 is updated through an iterative procedure aiming to maximize 𝐺 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦). This could be the standard gradient ascent method, which updates the fractional state at each node as 𝑦 𝑦 𝑦 𝑣 𝑡+1 = 𝑦 𝑦 𝑦 𝑣 𝑡 + 𝜂𝑔 𝑔 𝑔 𝑣 𝑡 , where 𝜂 𝑡 ∈ R + is the step size and 𝑔 𝑔 𝑔 𝑣 𝑡 is a subgradient of 𝐺 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦) with respect to 𝑦 𝑦 𝑦 𝑣 .

In our work, we use OMA algorithm described in Section 2.2.3 in Chapter 2. OMA uses a function Φ 𝑣 : D 𝑣 → R + (mirror map) to map 𝑦 𝑦 𝑦 to a dual space before applying the gradient ascent method; then the obtained state is mapped back to the primal space (lines 3-5 of Algorithm 4.1). OMA reduces to the classic gradient ascent method if Φ 𝑣 is the squared Euclidean norm (in this case the primal space coincides with the dual one). Instead, we use the weighted negative entropy map Φ 𝑣 (𝑦 𝑦 𝑦 𝑣) = 𝑚∈M 𝑠 𝑣 𝑚 𝑦 𝑣 𝑚 log(𝑦 𝑣 𝑚), which is known to achieve better convergence rate in high dimensional spaces when each subgradient component is bounded. 6 To compute a feasible fractional state 𝑦 𝑦 𝑦 𝑣 , we then perform a projection to the set Y 𝑣 on node 𝑣 (line 6 of Algorithm 4.1). We adapt the In the remainder of this section we detail how each node computes its contribution to the global subgradient, and the rounding strategy used to determine the discrete allocation.

Subgradient Computation

At the end of every time slot 𝑡, a subgradient 𝑔 𝑔 𝑔 𝑡 of the gain function in Eq. (4.16) at point 𝑦 𝑦 𝑦 𝑡 ∈ Y is computed in a distributed fashion: each node 𝑣 evaluates the (𝑣, 𝑚)-th component of the subgradient for any 𝑚 ∈ M as follows (see Appendix 27):

𝑔 𝑣 𝑡,𝑚 = ∑︁ 𝜌∈R 𝑙 𝑡,𝑣 𝜌,𝑚 • 𝛾 𝐾 * 𝜌 (𝑦 𝑦 𝑦 𝑡) 𝜌 -𝐶 𝑣 𝑝 𝑝 𝑝,𝑚 • 1 𝜅 𝜌 (𝑣, 𝑚) < 𝐾 * 𝜌 (𝑦 𝑦 𝑦 𝑡) , (4.18)
where 𝐾 * 𝜌 (𝑦 𝑦 𝑦 𝑡) is the order of the worst needed model, i.e., the model with the highest cost that is needed to serve all the 𝑟 𝑡 𝜌 requests in the batch given the fractional state 𝑦 𝑦 𝑦 𝑡 . Formally, 𝐾 * 𝜌 (𝑦 𝑦 𝑦 𝑡) ≜ min 𝑘 ∈ [𝐾 𝜌 -1] : 𝑘 𝑘 ′ =1 𝑧 𝑘 ′ 𝜌 (𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦 𝑡) ≥ 𝑟 𝑡 𝜌 . For the sake of clarity assume that the mirror map is Euclidean, and then the dual and primal spaces collapse and ŷ 𝑦 𝑦 𝑡 = 𝑦 𝑦 𝑦 𝑡 . At each iteration, each component 𝑦 𝑡,𝑣 𝑚 of the fractional allocation vector is updated by adding a mass equal to the product of 𝜂 > 0 and the corresponding component of the subgradient (Algorithm 4.1, line 5). Observe that 𝑔 𝑣 𝑚,𝑡 is the sum of different contributions, one per each request type 𝜌. Thanks to the indicator function, only the terms of the request types that are served by model 𝑚 on 𝑣 contribute to 𝑔 𝑣 𝑚,𝑡 . This contribution is proportional to the potential available capacity of model 𝑚 on node 𝑣 and to the relative gain 𝛾 𝐾 * 𝜌 (𝑦 𝑦 𝑦 𝑡) 𝜌 -𝐶 𝑣 𝑝 𝑝 𝑝,𝑚 , i.e., the cost reduction achieved when serving request type 𝜌 with model 𝑚 on 𝑣, rather than with the worst needed model. Then, gradient updates add more mass to the models that can contribute more to increase the gain. On the contrary, the projection step tends to remove the added mass from all components to satisfy the constraints. The overall effect is that fractional allocations of more (resp. less) useful models tend to increase (resp. decrease).

The subgradient in Eq. (4.18) can be computed at each node using only information from the control messages collected at the end of the time slot 𝑡. The steps needed to compute the subgradient are as follows.

1. At the end of the time slot, each node generates a control message for every received request type 𝜌 = (𝑖, 𝑝 𝑝 𝑝) that is propagated along 𝑝 𝑝 𝑝. The control message contains the quantity 𝑟 𝑡 𝜌 ≥ 1 (the multiplicity of the request), and a cumulative counter 𝑍 initialized to zero. Note that the cost in Eq. (4.6) does not necessarily increase along the path. Therefore, a traversed node is not able to update directly the variable 𝑍 when there exist upstream nodes with lower cost. In this case, the node simply appends the information (𝑧 𝑘 𝜌 (𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦 𝑡), 𝛾 𝑘 𝜌) to the message, and lets upstream nodes to apply any pending update in the correct order.

State Rounding

Once the new fractional state 𝑦 𝑦 𝑦 𝑡+1 is computed, each node 𝑣 independently draws a random set of models to store locally in such a way that E[𝑥 𝑥 𝑥 𝑣 𝑡+1] = 𝑦 𝑦 𝑦 𝑣 𝑡+1 . This sampling guarantees that the final allocation 𝑥 𝑥 𝑥 𝑣 𝑡+1 satisfies constraint (4.2) in expectation. A naive approach is to draw each variable 𝑥 𝑣,𝑡+1 𝑚 independently, but it leads to a large variance of the total size of the models selected, potentially exceeding by far the allocation budget at node 𝑣.

To construct a suitable allocation we adopt the DepRound procedure from [START_REF] Byrka | An Improved Approximation for k-median, and Positive Correlation in Budgeted Optimization[END_REF]. The procedure modifies the fractional state 𝑦 𝑦 𝑦 𝑣 𝑡+1 iteratively: at each iteration, DepRound operates on two fractional variables 𝑦 𝑣,𝑡+1 𝑚 , 𝑦 𝑣,𝑡+1 𝑚 ′ so that at least one of them becomes integral and the aggregate size of the corresponding models 𝑠 𝑣 𝑚 𝑦 𝑣,𝑡+1 𝑚 +𝑠 𝑣 𝑚 ′ 𝑦 𝑣,𝑡+1 𝑚 ′ does not change. This operation is iterated until all variables related to node 𝑣 are rounded except (at most) one, which we call residual fractional variable. This is done in O (|M|) steps.

Note that, to satisfy E[𝑥 𝑥 𝑥 𝑣 𝑡+1] = 𝑦 𝑦 𝑦 𝑣 𝑡+1 , the residual fractional variable, say it 𝑦 𝑣,𝑡+1 m , needs to be rounded. At this point 𝑥 𝑣,𝑡+1 m can be randomly drawn. Now the final allocation can exceed the budget bound 𝑏 𝑣 by at most 𝑠 m. These (slight) occasional violations of the constraint may not be a problem, e.g., at an edge server running multiple applications, where resources may be partially redistributed across different applications; they may be explicitly accounted for in the service level agreements. If the budget bound cannot be exceeded even temporarily, the node is not able to store the model m, but it may still exploits the residual free resources to deploy the model that provides the best marginal gain among those that fit the available budget. In practice, we expect the corresponding gain decrease to be negligible.

Theoretical Guarantees

We provide the optimality guarantees of our INFIDA algorithm in terms of the 𝜓 -regret [START_REF] Krause | Submodular Function Maximization[END_REF]. In our scenario, the 𝜓 -regret is defined as the gain loss in comparison to the best static allocation in hindsight, i.e., 𝑥 𝑥 𝑥 * ∈ arg max The adversarial analysis is a modeling technique to characterize system performance under highly volatile external parameters (e.g., the sequence of requests 𝑟 𝑟 𝑟 𝑡) or difficult to model system interactions (e.g., the available capacities 𝑙 𝑙 𝑙 𝑡). This technique has been recently successfully used to model caching problems (e.g., in [START_REF] Tareq | No-Regret Caching via Online Mirror Descent[END_REF][START_REF] Georgios S Paschos | Learning to Cache With No Regrets[END_REF]). Our main result is the following (the full proof is in Appendix 29): Theorem 4.5.1. INFIDA has a sublinear (1 -1/𝑒)-regret w.r.t. the time horizon 𝑇 , i.e., there exists a constant 𝐴 such that:

(1 -1/𝑒)-Regret 𝑇 ,X ≤ 𝐴 √ 𝑇 , (4.20)
where 𝐴 ∝ 𝑅𝐿 max Δ 𝐶 . 𝑅, 𝐿 max , and Δ 𝐶 are upper bounds, respectively, on the total number of request types at any time slot, on the model capacities, and on the largest serving cost difference between serving at a repository node and at any other node.

We first prove that the expected gain of the randomly sampled allocations 𝑥 𝑥 𝑥 𝑡 is a (1-1/𝑒)approximation of the fractional gain. Then, we use online learning results [START_REF] Bubeck | Convex Optimization: Algorithms and Complexity[END_REF] to bound the regret of Online Mirror Ascent schemes operating on a convex decision space and against concave gain functions picked by an adversary. The two results are combined to obtain an upper bound on the (1-1/𝑒)-regret. The full proof and the full characterization of 𝐴 are provided in Appendix 29. in Appendix 29.

We observe that the regret bound depends crucially on the maximum number of request types 𝑅, maximum model capacity 𝐿 max and maximum serving cost difference Δ 𝐶 . When considering the cost model in Eq. (4.6), we can consider for Δ 𝐶 the sum of the total latency of the heaviest path, the parameter 𝛼, and the largest inference delay. This result is intuitive: when these values are bigger, the adversary has a larger room to select values that can harm the performance of the system. As a direct consequence of Theorem 4.5.

E [𝐺 𝑇 (x 𝑥 𝑥)] ≥ 1 - 1 𝑒 -𝜖 𝐺 𝑇 (𝑥 𝑥 𝑥 *), (4.21)
where 𝑥 𝑥 𝑥 * = arg max 𝑥 𝑥 𝑥 ∈X 𝐺 𝑇 (𝑥 𝑥 𝑥).

The proof is given in Appendix. 30.

Experimental Results

We evaluate INFIDA by simulating a realistic scenario based on the typical structure of ISP networks. We compare our solution with a greedy heuristic and its online variant (described below), as the greedy heuristic is known to achieve good performance in practice for submodular optimization [START_REF] Krause | Submodular Function Maximization[END_REF].

Topology. We simulate a hierarchical topology similar to [START_REF] Ceselli | Mobile Edge Cloud Network Design Optimization[END_REF] that spans between edge and cloud, with different capacities at each tier. We consider 5 tiers: base stations (tier 4), central offices (tiers 3, 2), ISP data center (tier 1), a remote cloud (tier 0). We assume a hierarchical geographic distribution similar to LTE. We take the Round-Trip Time (RTT) across the different tiers as follows: tier 4 to tier 3 takes 6 ms, tier 3 to tier 2 takes 6 ms, tier 2 to tier 1 takes 15 ms, and tier 1 to tier 0 takes 40 ms. We execute our experiments at two different scales: Network Topology I counts 24 base stations and 36 nodes in total, while Network Topology II is a simpler 5-node scenario with 2 base stations. Processing Units. We take GPU memory of the computing nodes as the limiting budget. The node at tier 0 can store the entire models catalog. We simulate the performance of two different processing units: the computing nodes at tiers 0 and 1 are equipped with high-end GPUs (Titan RTX), and the remaining tiers 2-4 have mid-tier GPUs (GeForce GTX 980). The budget of each computing tier is given as follows: a tier-1 node has 16GB GPUs, a tier-2 node has 12GB GPUs, a tier-3 node has 8GB GPUs, and a tier-4 node has 4GB GPUs. Catalog and requests. We simulate performance based on state-of-the-art pre-trained models and their pruned versions [START_REF] Bochkovskiy | YOLOv4: Optimal Speed and Accuracy of Object Detection[END_REF][START_REF] Cai | YOLObile: Real-Time Object Detection on Mobile Devices via Compression-Compilation Co-Design[END_REF], profiled for each simulated processing unit, for a total of 10 models The time slot duration is set to 1 minute and requests arrive at a constant rate of 7,500 requests per second (rps), unless otherwise said. Each request type is assigned randomly to two base stations in tier 4. The corresponding task is selected according to two different popularity profiles: (1) in the Fixed Popularity Profile , a request is for task 𝑖 with constant probability 𝑝 (1) = (𝑖+1) -1.2 𝑖 ′ ∈ N (𝑖 ′ +1) -1.2 (a Zipf distribution with exponent 1.2), while (2) in the Sliding Popularity Profile, the 𝑙-th consecutive request is for task 𝑖 with probability p (𝑖, 𝑙) = 𝑝 ((𝑖 + 5⌊𝑙/𝑊 ⌋) mod 20), that is, the popularity of the tasks changes through a cyclic shift of 5 tasks every 1 hour for a request rate of 7,500 rps (𝑊 = 2.3 × 10 7). Static greedy. We adapt the static greedy (SG) heuristic from the cost-benefit greedy in [START_REF] Krause | Submodular Function Maximization[END_REF]. SG operates in hindsight seeking maximization of the time averaged allocation gain over the whole time horizon 𝑇 , as in Eq. (4.14). Starting from an empty allocation, this policy progressively allocates the model that provides the highest marginal gain normalized by size, among those that meet the budget constraints. This process is repeated until either the intermediate allocation is capable of serving all requests or none of the remaining valid allocations introduces a positive marginal gain. Online load-aware greedy heuristic. As INFIDA is the first online policy for ML models' allocation in IDNs, there is no clear baseline to compare it with. We then propose an online heuristic based on SG, which we call online load-aware greedy (OLAG). A node 𝑣 uses counters 𝜙 𝑣 𝑚,𝜌 to keep track of the number of times a request 𝜌 ∈ R is forwarded upstream but could have been served locally at a lower cost compared to the repository, i.e., using a model 𝑚 ∈ M with positive gain that we denote by 𝑞 𝑣 𝑚,𝜌 . For every model 𝑚, an importance weight is computed as

𝑤 𝑣 𝑚 = 1 𝑠 𝑣 𝑚

Trade-off between Latency and Accuracy

We first evaluate how INFIDA adapts to different trade-offs between end-to-end latency and inference accuracy by varying the trade-off parameter 𝛼. 7Figure 4.4 shows the fractional allocation decision at each tier of the network topology for different values of 𝛼 (remember that the smaller 𝛼 the more importance is given to the latency rather than to inaccuracy, see Eq. (4.6)). Models are ordered horizontally by increasing accuracy with 3 potential replicas for each model, and only the models able to serve the most popular request are shown. Note that the tier-0 node acts as a repository and its allocation is fixed; moreover, in Fig 4 .4 the repository node picks the second most accurate model because it provides the smallest combined cost in Eq. (4.6).

For 𝛼 = 3 (Figure 4.4a), INFIDA allocates a considerable amount of small models (which provide low accuracy) near the edge (tiers 1-3 and model IDs 0-18), as they can serve a larger number of requests compared to higher quality models with low inference delay. By giving more importance to the accuracy (𝛼 = 4) the system tends to deploy more accurate models and rarely allocates small models (Figure 4.4b). For 𝛼 = 5, the number of models deployed on lower tiers decreases, as the system allocates no small models in practice (model IDs 0-20) and selects instead multiple replicas of the most accurate models (Figure 4.4c). Since higher quality models feature, in general, a lower serving capacity (Table 4.2), Figure 4.4c suggests that a significant number of requests is served in the cloud (Tier 0) for this value of 𝛼. 4.5 shows the average experienced inaccuracy (inaccuracy is given by 100 -mAP and mAP is the mean average precision) and latency for different values of 𝛼 under Network Topology I and Fixed Popularity Profile. When accuracy is not important (i.e., 𝛼 ≈ 0), INFIDA effectively achieves very low end-to-end latency (few milliseconds) by prioritizing the deployment of small and inaccurate models near to the edge nodes. Noticeably, the trend in both curves (decreasing inaccuracy and increasing latency) suggests that, when higher accuracy is required, the system starts to prefer models deployed close to the cloud, leading to a sudden change in the trade-off and to a significant increase in latency.

In The plot shows that the gain decreases by increasing 𝛼. This is expected since the gain (4.13) is defined as the improvement w.r.t. the repository allocation (tier 0). Therefore, when the latency is not important, high accuracy models at tier 0 are preferred, and there is no much room for improvement (the optimal gain eventually tends to zero for 𝛼→+∞). Note that, in general, SG and INFIDA Offline policies perform worse than their offline counterparts, as they pick a single allocation that is the best w.r.t. the whole sequence of requests. However, in the Sliding Popularity Profile the best decision changes periodically, and only the online policies have the ability to adapt to such change. Moreover, we observe that consistently INFIDA Offline has better performance than SG: although both policies are offline, INFIDA Offline manages to provide a better allocation.

Trade-off between model updates and service cost.

In this set of experiments, we evaluate how the frequency at which INFIDA updates the model allocation affects the stability of the system. Indeed, frequent updates could lead to massive migrations with an overhead on network bandwidth. As an evaluation metric, we measure the total size of fetched models averaged over time (see the performance metric in Eq. (4.23)). We introduce 𝐵 that we call the refresh period, and we restrict INFIDA to only sample a physical allocation every 𝐵 ∈ {4, 8, 32} time slots (line 8 in Algorithm 4.1). Additionally, we experiment linear stretching of the refresh period 𝐵 with initial period 𝐵 init = 1 and target period 𝐵 target = 32 in a stretching duration of Δt = 1H. We run this experiment under Network Topology I and Sliding Popularity Profile. We set the trade-off parameter 𝛼 = 1.

In particular, Figure 4.7a shows the update cost (MU) for different refresh periods, while Figure 4.7b shows the NTAG. Both plots include the performance of the OLAG heuristic. We observe that, by increasing the refresh period 𝐵, the system fetches a smaller number of models, and therefore the update cost decreases, at the expense of reactivity. Nevertheless, even for large values of 𝐵 provided by its offline counterpart (Figure 4.8a), which is ≈10% better than the one provided by OLAG when the load is 7,083 rps. Additionally, OLAG's performance deteriorates when the requests load increases from 7,083 rps to 10,000 rps. It is also noteworthy that OLAG visibly suffers from perturbed performance when the popularity of the tasks changes over time (Figure 4.8b). On the other hand, results show the robustness of INFIDA against changing request loads and popularity: the algorithm preserves its performance in terms of normalized time-averaged gain for the analyzed request loads and under both Fixed Popularity Profile and Sliding Popularity Profile, always converging to the highest NTAG.

Last, in Figure 4.9 we evaluate separately the average latency and inaccuracy attained by the different policies using different values of 𝛼 ∈ {0.5, 1, 2, 3, 4, 5, 6} under Fixed Popularity Profile and Network Topology II. We observe that INFIDA and its offline counterpart INFIDA Offline consistently provide the lowest average inaccuracy and latency under both high request load (10,000 rps) and default request load (7,500 rps). INFIDA Offline is run with hindsight and serves as a lower bound on the achievable latency and inaccuracy under a fixed popularity request process (as in Figure 4.8a).

Conclusion

In this chapter, we introduce the idea of inference delivery networks (IDNs), networks of computing nodes that coordinate to satisfy inference requests in the continuum between Edge and Cloud. IDN nodes can serve inference requests with different levels of accuracy and end-to-end latency, based on their geographic location and processing capabilities. We formalize the NP-hard problem of allocating ML models on IDN nodes, capturing the trade-off between latency and accuracy. We propose INFIDA, a dynamic ML model allocation algorithm that operates in a distributed fashion and provides strong guarantees in an adversarial setting. We evaluate INFIDA simulating the realistic scenario of an ISP network, and compared its performance under two different topologies with both an offline greedy heuristic and its online variant. Our results show that INFIDA adapts to different latency/accuracy trade-offs and scales well with the number of requests, outperforming the greedy policies in all the analyzed settings.

CHAPTER 5

Long-term Fairness in Dynamic Resource Allocation

Introduction

Achieving fairness when allocating resources in communication and computing systems has been a subject of extensive research, and has been successfully applied in numerous practical problems.

Fairness is leveraged to perform congestion control in the Internet [START_REF] Kelly | Rate Control for Communication Networks: Shadow Prices, Proportional Fairness, and Stability[END_REF][START_REF] Mo | Fair End-to-End Window-Based Congestion Control[END_REF], to select transmission power in multi-user wireless networks [START_REF] Lin | A Tutorial on Cross-Layer Optimization in Wireless Networks[END_REF][START_REF] Georgiadis | Resource Allocation and Cross Layer Control in Wireless Networks[END_REF], and to allocate multidimensional resources in cloud computing platforms [START_REF] Joe-Wong | Multiresource Allocation: Fairness-Efficiency Tradeoffs in a Unifying Framework[END_REF][START_REF] Wang | Dominant Resource Fairness in Cloud Computing Systems with Heterogeneous Servers[END_REF][START_REF] Bonald | Multi-Resource Fairness: Objectives, Algorithms and Performance[END_REF]. Depending on the problem at hand, the criterion of fairness can be expressed in terms of how the service performance is distributed across the end-users, or in terms of how the costs are balanced across the servicing nodes. The latter case exemplifies the natural link between fairness and load balancing in resource-constrained systems [START_REF] Kumar | Issues and Challenges of Load Balancing Techniques in Cloud Computing: A Survey[END_REF][START_REF] Zhang | Load Balancing in Data Center Networks: A Survey[END_REF].

A prevalent fairness metric is 𝛼-fairness, which encompasses the utilitarian principle (Bentham-Edgeworth solution [START_REF] Ysidro | Mathematical Psychics. History of Economic Thought Books[END_REF]), proportional fairness (Nash bargaining solution [START_REF] Nash | The Bargaining Problem[END_REF]), max-min fairness (Kalai-Smorodinsky bargaining solution [START_REF] Kalai | Other Solutions to Nash's Bargaining Problem[END_REF]), and, under some conditions, Walrasian equilibrium [START_REF] Georgiadis | Exchange of services in networks: competition, cooperation, and fairness[END_REF]. All these fairness metrics have been used in different cases for the design of resource management mechanisms [START_REF] Radunovic | A Unified Framework for Max-Min and Min-Max Fairness With Applications[END_REF][START_REF] Nace | Max-min Fairness and its Applications to Routing and Loadbalancing in Communication Networks: a Tutorial[END_REF]. A common limitation of the above works is that they consider static environments. That is, the resources to be allocated and, importantly, the users' utility functions, are fixed and known to the decision maker. This assumption is very often unrealistic for today's communication and computing systems. For instance, in small-cell mobile networks the user churn is typically very high and unpredictable, thus hindering the fair allocation of spectrum to cells [4]. Similarly, placing content files at edge caches to balance the latency gains across the served areas is non-trivial due to the non-stationary and fast-changing patterns of requests [5]. At the same time, the increasing virtualization of these systems introduces cost and performance volatility, as extensive measurement studies have revealed [6][7][8]. This uncertainty is exacerbated for services that process user-generated data (e.g., streaming data applications) where the performance (e.g., inference accuracy) depends also on a priori unknown input data and dynamically selected machine learning libraries [9][10][11]. 120 Chapter 5 -Long-term Fairness in Dynamic Resource Allocation

Contributions

This paper makes the next step towards enabling long-term fairness in dynamic systems. We consider a system that serves a set of agents I, where a controller selects at each timeslot 𝑡 ∈ N a resource allocation profile 𝑥 𝑥 𝑥 𝑡 from a set of eligible allocations X based on past agents' utility functions 𝑢 𝑢 𝑢 𝑡 ′ : X → R I for 𝑡 ′ < 𝑡 and of 𝛼-fairness function 𝐹 𝛼 : R I ≥0 → R. The utilities might change due to unknown, unpredictable, and (possibly) non-stationary perturbations that are revealed to the controller only after it decides 𝑥 𝑥 𝑥 𝑡 . We employ the terms horizon-fairness (HF) and slot-fairness (SF) to distinguish the different ways fairness can be enforced in a such time-slotted dynamic system. Under horizon-fairness, the controller enforces fairness on the aggregate utilities for a given time horizon 𝑇 , whereas under slot-fairness, it enforces fairness on the utilities at each timeslot separately. Both metrics have been studied in previous work, e.g., see [START_REF] Gupta | Individual Fairness in Hindsight[END_REF][START_REF] Liao | Nonstationary Dual Averaging and Online Fair Allocation[END_REF][START_REF] Jalota | Online Learning in Fisher Markets with Unknown Agent Preferences[END_REF][START_REF] Sinclair | Sequential Fair Allocation: Achieving the Optimal Envy-Efficiency Tradeoff Curve[END_REF] and the discussion in Section 5.2. Our focus is on horizon-fairness, which raises novel technical challenges and subsumes slot-fairness as a special case.

We design the online horizon-fair (OHF) policy by leveraging online convex optimization (OCO) [20], to handle this reduced-information setting under a powerful adversarial perturbation model. Adversarial analysis is a modeling technique to characterize a system's performance under unknown and hard to characterize exogenous parameters and has been recently successfully used to model caching problems (e.g., in [START_REF] Tareq | No-Regret Caching via Online Mirror Descent[END_REF][START_REF] Georgios S Paschos | Learning to Cache With No Regrets[END_REF][START_REF] Mhaisen | Online Caching with no Regret: Optimistic Learning via Recommendations[END_REF][START_REF] Paria | LeadCache: Regret-Optimal Caching in Networks[END_REF][START_REF] Bura | Learning to Cache and Caching to Learn: Regret Analysis of Caching Algorithms[END_REF][START_REF] Li | Cache Networks of Counting Queues[END_REF][START_REF] Tareq | AÇAI: Ascent Similarity Caching with Approximate Indexes[END_REF]). In our context, the performance of a resource allocation policy A A A is evaluated by the fairness regret, which is defined as the difference between the 𝛼-fairness, over the time-averaged utilities, achieved by a static optimum-in-hindsight (benchmark) and the one achieved by the policy: If the fairness regret vanishes over time (i.e., lim 𝑇 →∞ ℜ 𝑇 (𝐹 𝛼 , A A A) = 0), policy A A A will attain the same fairness value as the static benchmark under any possible sequence of utility functions. A policy that achieves sublinear regret under these adversarial conditions, can also succeed in more benign conditions where the perturbations are not adversarial, or the utility functions are revealed at the beginning of each slot. The fairness regret metric (5.1) departs from the template of OCO. In particular, the scalarization of the vector-valued utilities, through the 𝛼-fairness function, is not applied at every timeslot to allow for the controller to easily adapt its allocations, instead is only applied at the end of the time horizon 𝑇 . Our first result characterizes the challenges in tackling this learning problem. Namely, Theorem 5.4.1 proves that, when utility perturbations are only subject to four mild technical conditions, such as in standard OCO, it is impossible to achieve vanishing fairness-regret. Similar negative results were obtained under different setups of primal-dual learning and online saddle point learning [START_REF] Mannor | Online Learning with Sample Path Constraints[END_REF][START_REF] Anderson | Lazy Lagrangians with Predictions for Online Learning[END_REF][START_REF] Rivera | The Online Saddle Point Problem and Online Convex Optimization with Knapsacks[END_REF], but they have been devised for specific problem structures (e.g., online matrix games) and thus do not apply to our setting.

ℜ 𝑇 (𝐹 𝛼 , A A A) ≜ sup {𝑢 𝑢 𝑢 𝑡 } 𝑇 𝑡 =1 ∈U 𝑇
In light of this negative result, we introduce additional necessary conditions on the adversary to obtain a vanishing regret guarantee. Namely, the adversary can only induce perturbations to the time-averaged utilities we call budgeted-severity or partitioned-severity constrained. These conditions capture several practical utility patterns, such as non-stationary corruptions, ergodic and 5.2 -5.1.2 Outline of Paper 121 periodic inputs [START_REF] Liao | Nonstationary Dual Averaging and Online Fair Allocation[END_REF][START_REF] Santiago R Balseiro | The Best of Many Worlds: Dual Mirror Descent for Online Allocation Problems[END_REF][START_REF] Zhou | Robust online matching with user arrival distribution drift[END_REF][START_REF] John C Duchi | Ergodic Mirror Descent[END_REF]. We proceed to propose the OHF policy which adapts dynamically the allocation decisions and provably achieves ℜ 𝑇 (𝐹 𝛼 , A A A) = 𝑜 (1) (see Theorem 5.4.2).

The OHF policy employs a novel learning approach that operates concurrently, and in a synchronized fashion, in a primal and a dual (conjugate) space. Intuitively, OHF learns the weighted time-varying utilities in a primal space, and learns the weights accounting for the global fairness metric in some dual space. To achieve this, we develop novel techniques through a convex conjugate approach (see Lemmas 31.1, 31.2, and 31.4 in the Appendix).

Finally, we apply our fairness framework to a representative resource management problem in virtualized caching systems where different caches cooperate by serving jointly the received content requests. We evaluate the performance of OHF with its slot-fairness counterpart policy through numerical examples. We evaluate the price of fairness of OHF, which quantifies the efficiency loss due to fairness, across different network topologies and participating agents. Lastly, we apply OHF to a Nash bargaining scenario, a concept that has been widely used in resource allocation to distribute to a set of agents the utility of their cooperation [START_REF] Boche | A Generalization of Nash Bargaining and Proportional Fairness to Log-Convex Utility Sets With Power Constraints[END_REF][START_REF] Iosifidis | Efficient and Fair Collaborative Mobile Internet Access[END_REF][START_REF] Jiang | Cooperative Content Distribution and Traffic Engineering in an ISP Network[END_REF][START_REF] Wang | Milking the Cache Cow With Fairness in Mind[END_REF].

Outline of Paper

The paper is organized as follows. The related literature is discussed in Section 5.2. The definitions and background are provided in Section 5.3. The adversarial model and the proposed algorithm are presented in Section 5.4. Extensions to the fairness framework are provided in Section 5.5. The resource management problem in virtualized caching systems application is provided in Section 5.6. Finally, we conclude the paper and provide directions for future work in Section 5.7.

Related Work

Fairness in Resource Allocation

Fairness has found many applications in wired and wireless networking [START_REF] Kelly | Rate Control for Communication Networks: Shadow Prices, Proportional Fairness, and Stability[END_REF][START_REF] Mo | Fair End-to-End Window-Based Congestion Control[END_REF][START_REF] Lin | A Tutorial on Cross-Layer Optimization in Wireless Networks[END_REF][START_REF] Georgiadis | Resource Allocation and Cross Layer Control in Wireless Networks[END_REF][START_REF] Altman | Generalized 𝛼-Fair Resource Allocation in Wireless Networks[END_REF], and cloud computing platforms [START_REF] Joe-Wong | Multiresource Allocation: Fairness-Efficiency Tradeoffs in a Unifying Framework[END_REF][START_REF] Wang | Dominant Resource Fairness in Cloud Computing Systems with Heterogeneous Servers[END_REF][START_REF] Bonald | Multi-Resource Fairness: Objectives, Algorithms and Performance[END_REF]. Prevalent fairness criteria are the max-min fairness and proportional fairness, which are rooted in axiomatic bargaining theory, namely the Kalai-Smorodinsky [START_REF] Kalai | Other Solutions to Nash's Bargaining Problem[END_REF] and Nash bargaining solution [START_REF] Nash | The Bargaining Problem[END_REF], respectively. On the other side of the spectrum, a controller might opt to ignore fairness and maximize the aggregate utility of users, i.e., to follow the utilitarian principle, also referred to as the Bentham-Edgeworth solution [START_REF] Ysidro | Mathematical Psychics. History of Economic Thought Books[END_REF]. The Price of Fairness (PoF) [START_REF] Bertsimas | The Price of Fairness[END_REF] is now an established metric for assessing how much the social welfare (i.e., the aggregate utility) is affected when enforcing some fairness metric. Ideally, we would like this price to be as small as possible, bridging in a way these two criteria. Atkinson [START_REF] Atkinson | On the Measurement of Inequality[END_REF] proposed the unifying 𝛼-fairness criterion which yields different fairness criteria based on the value of 𝛼, i.e., the utilitarian principle (𝛼 = 0), proportional fairness (𝛼 = 1), and max-min fairness (𝛼 → ∞). Due to the generality of the 𝛼-fairness criterion, we use it to develop our theory, which in turn renders our results transferrable to all above fairness and bargaining problems. In this work, the PoF, together with the metric of fairness-regret, are the two criteria we use to characterize our fairness solution.

Fairness in Dynamic Resource Allocation

Several works consider slot-fairness in dynamic systems [START_REF] Jalota | Online Learning in Fisher Markets with Unknown Agent Preferences[END_REF][START_REF] Sinclair | Sequential Fair Allocation: Achieving the Optimal Envy-Efficiency Tradeoff Curve[END_REF][START_REF] Sadegh | Learning Proportionally Fair Allocations with Low Regret[END_REF]. Jalota and Ye [START_REF] Jalota | Online Learning in Fisher Markets with Unknown Agent Preferences[END_REF] proposed a weighted proportional fairness algorithm for a system where new users arrive in each slot, having linear i.i.d. perturbed unknown utility functions at the time of selecting an allocation, and are allocated resources from an i.i.d. varying budget. Sinclair et al. [START_REF] Sinclair | Sequential Fair Allocation: Achieving the Optimal Envy-Efficiency Tradeoff Curve[END_REF] consider a similar setup, but assume the utilities are known at the time of selecting an allocation, and the utility parameters (number of agents and their type) are drawn from some fixed known distribution. They propose an adaptive threshold policy, which achieves a target efficiency (amount of consumed resources' budget) and fairness tradeoff, where the latter is defined w.r.t. to an offline weighted proportional fairness benchmark. Finally, Talebi and Proutiere [START_REF] Sadegh | Learning Proportionally Fair Allocations with Low Regret[END_REF] study dynamically arriving tasks that are assigned to a set of servers with unknown and stochastically-varying service rates. Using a stochastic multi-armed bandit model, the authors achieve proportional fairness across the service rates assigned to different tasks at each slot. All these important works, however, do not consider the more practical horizon-fairness metric where fairness is enforced throughout the entire operation of the system and not over each slot separately.

Horizon-fairness has been recently studied through the lens of competitive analysis [START_REF] Kawase | Online Max-min Fair Allocation[END_REF][START_REF] Banerjee | Online Nash Social Welfare Maximization with Predictions[END_REF][START_REF] Bateni | Fair Resource Allocation in A Volatile Marketplace[END_REF], where the goal is to design a policy that achieves online fairness within a constant factor from the fairness of a suitable benchmark. Kawase and Sumita [START_REF] Kawase | Online Max-min Fair Allocation[END_REF] consider the problem of allocating arriving items irrevocably to one agent who has additive utilities over the items. The arrival of the items is arbitrary and can even be selected by an adversary. The authors consider known utility at the time of allocation, and design policies under the max-min fairness criterion. Banerjee et al. [START_REF] Banerjee | Online Nash Social Welfare Maximization with Predictions[END_REF] consider a similar problem under the proportional fairness criterion, and they allow the policies to exploit available predictions. We observe that the competitive ratio guarantees, while theoretically interesting, may not be informative about the fairness of the actual approximate solution achieved by the algorithm for ratios different from one. For instance, when maximizing a Nash welfare function under the proportional fairness criterion, the solution achieves some axiomatic fairness properties [START_REF] Nash | The Bargaining Problem[END_REF] (e.g., Pareto efficiency, individual rationality, etc.), but this welfare function is meaningless for "non-optimal" allocations [START_REF] Sinclair | Sequential Fair Allocation: Achieving the Optimal Envy-Efficiency Tradeoff Curve[END_REF], i.e., a policy with a high competitive ratio is not necessary less fair than a policy with a lower competitive ratio. For this reason, our work considers regret as a performance metric: when regret vanishes asymptotically, the allocations of the policy indeed achieve the exact same objective as the adopted benchmark.

A different line of work [START_REF] Gupta | Individual Fairness in Hindsight[END_REF][START_REF] Liao | Nonstationary Dual Averaging and Online Fair Allocation[END_REF][START_REF] Cayci | Group-Fair Online Allocation in Continuous Time[END_REF][START_REF] Benade | How to Make Envy Vanish over Time[END_REF][START_REF] Zeng | Fairness-Efficiency Tradeoffs in Dynamic Fair Division[END_REF][START_REF] Sinclair | Sequential Fair Allocation of Limited Resources under Stochastic Demands[END_REF][START_REF] Baek | Fair Exploration via Axiomatic Bargaining[END_REF] considers horizon-fairness through regret analysis. Gupta and Kamble [START_REF] Gupta | Individual Fairness in Hindsight[END_REF] study individual fairness criteria that advocate similar individuals should be treated similarly. They extend the notion of individual fairness to online contextual decisionmaking, and introduce: (1) fairness-across-time and (2) fairness-in-hindsight. Fairness-across-time criterion requires the treatment of individuals to be individually fair relative to the past as well as future, while fairness-in-hindsight only requires individual fairness at the time of the decision. The utilities are known at the time of selecting an allocation and are i.i.d. and drawn from an unknown fixed distribution. In this work, we make a similar distinction on the fairness criterion in the online setting, where we define the horizon-fairness and slot-fairness. Liao et al. [START_REF] Liao | Nonstationary Dual Averaging and Online Fair Allocation[END_REF] consider a similar setup to ours, with a limited adversarial model and time-varying but known utilities, and focus on proportional fairness. They consider adversarial perturbation added on a fixed item distribution where the demand of items generally behaves predictably, but for some time steps, the demand behaves erratically. Our approach departs significantly from these interesting works in that we consider unknown utility functions, a broader adversarial model (in fact, as broad as possible while still achieving vanishing fairness regret), and by using the general 𝛼-fairness criterion that encompasses all the above criteria as special cases. This makes, we believe, our OHF algorithm applicable to a wider range of practical problems. Table 5.1 summarizes the differences between our contribution and the related works.

Online Learning

Achieving horizon-fairness in our setup requires technical extensions to the theory of OCO [20].

The basic template of OCO-learning (in terms of resource allocation) considers that a decision maker selects repeatedly a vector 𝑥 𝑥 𝑥 𝑡 from a convex set X, without having access to the 𝑡-th slot scalar utility function 𝑢 𝑡 (𝑥 𝑥 𝑥), with the goal to maximize the aggregate utility 𝑇 𝑡=1 𝑢 𝑡 (𝑥 𝑥 𝑥 𝑡). The decision maker aims to have vanishing time-averaged regret, i.e., the time-averaged distance of the aggregate utility 𝑇 𝑡=1 𝑢 𝑡 (𝑥 𝑥 𝑥 𝑡) from the aggregate utility of the optimal-in-hindsight allocation max 𝑥 𝑥 𝑥 ∈X 𝑇 𝑡=1 𝑢 𝑡 (𝑥 𝑥 𝑥) for some time horizon 𝑇 . OCO models are robust, expressive, and can be tackled with several wellstudied learning algorithms [20,[START_REF] Shalev-Shwartz | Online Learning and Online Convex Optimization[END_REF][START_REF] Mcmahan | A Survey of Algorithms and Analysis for Adaptive Online Learning[END_REF]. However, none of those is suitable for the fairness problem at hand, as we need to optimize a global function 𝐹 𝛼 (•) of the time-averaged vector-valued utilities. This subtle change creates additional technical complications. Indeed, optimizing functions of timeaveraged utility/cost functions in learning is an open and challenging problem. In particular, Even-Dar et al. [START_REF] Even-Dar | Online Learning with Global Cost Functions[END_REF] introduced the concept of global functions in online learning, and devised a policy with vanishing regret using the theory of approachability [START_REF] Blackwell | An Analog of the Minmax Theorem for Vector Payoffs[END_REF]. However, their approach can handle only norms as global functions, and this limitation is not easy to overcome: the authors themselves stress characterizing when a global function enables a vanishing regret is an open problem (see [START_REF] Even-Dar | Online Learning with Global Cost Functions[END_REF]Section 7]). Rakhlin et al. [START_REF] Rakhlin | Online Learning: Beyond Regret[END_REF] extend this work to non-additive global functions. However, the 𝛼-fairness function considered in our work is not supported by their framework. To generalize the results to 𝛼-fairness global functions, we employ a convex conjugate approach conceptually similar to the approach taken in the work of Agrawal and Evanur [START_REF] Agrawal | Bandits with Concave Rewards and Convex Knapsacks[END_REF] to obtain a regret guarantee with a concave global function under a stationary setting and linear utilities. In this work, we consider an adversarial setting (i.e., utilities are picked by an adversary after we select an allocation) that encompasses general concave utilities, and this requires learning over the primal space as well as the dual (conjugate) space.

Online Fairness: Definitions and Background

Static Fairness

Consider a system S that serves a set of agents I by selecting allocations from the set of eligible allocations X. 1 In the general case, this set is defined as the Cartesian product of agent-specific eligible allocations' set X 𝑖 , i.e., X ≜ 𝑖∈I X 𝑖 . We assume that each set X 𝑖 is convex. The utility of each agent 𝑖 ∈ I is a concave function 𝑢 𝑖 : X → R ≥0 , and depends, possibly, not only on 𝑥 𝑥 𝑥 𝑖 ∈ X 𝑖 , but on the entire vector 𝑥 𝑥 𝑥 ∈ X. 2 The vector 𝑢 𝑢 𝑢 (𝑥 𝑥 𝑥) ≜ (𝑢 𝑖 (𝑥 𝑥 𝑥)) 𝑖∈I ∈ U is the vectorized form of the agents' utilities, where U is the set of possible utility functions. The joint allocation 𝑥 𝑥 𝑥 ★ ∈ X is an 𝛼-fair allocation for some 𝛼 ∈ R ≥0 if it solves the following convex problem: max

𝑥 𝑥 𝑥 ∈X 𝐹 𝛼 (𝑢 𝑢 𝑢 (𝑥 𝑥 𝑥)) , (5.2)
where 𝐹 𝛼 is the 𝛼-fairness criterion the system employs (e.g., when 𝛼 = 1, problem (5.2) corresponds to an Eisenberg-Gale convex problem [START_REF] Eisenberg | Consensus of subjective probabilities: The pari-mutuel method[END_REF]). The 𝛼-fairness function is defined as follows [START_REF] Atkinson | On the Measurement of Inequality[END_REF]:

Definition 5.3.1. An 𝛼-fairness function 𝐹 𝛼 : U → R is parameterized by the inequality aversion parameter 𝛼 ∈ R ≥0 , and it is given by

𝐹 𝛼 (𝑢 𝑢 𝑢) ≜ ∑︁ 𝑖∈I 𝑓 𝛼 (𝑢 𝑖), where 𝑓 𝛼 (𝑢) ≜ 𝑢 1-𝛼 -1 1-𝛼 , for 𝛼 ∈ R ≥0 \ {1}, log(𝑢), for 𝛼 = 1, (5.3)
for every 𝑢 𝑢 𝑢 ∈ U. Note that U ⊂ R I ≥0 for 𝛼 < 1, and U ⊂ R I >0 for 𝛼 ≥ 1. Note that we use the most general version of utility-based fairness where the fairness rule is defined w.r.t. to accrued utilities (as opposed to allocated resource, only), i.e., in our system S, the utility vector 𝑢 𝑢 𝑢 ∈ U can be a function of the selected allocations in X. The 𝛼-fairness function is concave and component-wise increasing, and thus exhibits diminishing returns [START_REF] Bertsimas | On The Efficiency-Fairness Trade-Off[END_REF]. An increase in utility to a player with a low utility results in a higher 𝛼-fairness objective. Thus, such an increase is desirable to the system controller. Moreover, the rate at which the marginal increase diminishes is controlled by 𝛼, which is then called the inequality aversion parameter. An allocation which maximizes the 𝛼-fairness objective is always Pareto efficient [START_REF] Bertsimas | On The Efficiency-Fairness Trade-Off[END_REF].

-5.3.2 Online Fairness 125

Online Fairness

We consider the performance of the system S is tracked over a time horizon spanning 𝑇 ∈ N timeslots. At the beginning of each timeslot 𝑡 ∈ T ≜ {1, 2, . . . ,𝑇 }, a policy selects an allocation 𝑥 𝑥 𝑥 𝑡 ∈ X before 𝑢 𝑢 𝑢 𝑡 : X → R I is revealed to the policy. The goal is to approach the performance of a properly-selected fair allocation benchmark. We consider the following two cases: Slot-Fairness. An offline benchmark in hindsight, with access to the utilities revealed at every timeslot 𝑡 ∈ T , can ensure fairness at every timeslot satisfying a slot-fairness (SF) objective [START_REF] Jalota | Online Learning in Fisher Markets with Unknown Agent Preferences[END_REF][START_REF] Sinclair | Sequential Fair Allocation: Achieving the Optimal Envy-Efficiency Tradeoff Curve[END_REF][START_REF] Sadegh | Learning Proportionally Fair Allocations with Low Regret[END_REF]. Formally, the benchmark selects the joint allocation 𝑥 𝑥 𝑥 ★ ∈ X satisfying SF :

𝑥 𝑥 𝑥 ★ ∈ arg max

𝑥 𝑥 𝑥 ∈X 1 𝑇 ∑︁ 𝑡 ∈T
𝐹 𝛼 (𝑢 𝑢 𝑢 𝑡 (𝑥 𝑥 𝑥)) .

(5.4)

Horizon-Fairness. Enforcing fairness at every timeslot can be quite restrictive, and this is especially evident for large time horizons. An alternative formulation is to consider that the agents can accept a momentary violation of fairness at a given timeslot 𝑡 ∈ T as long as in the long run fairness over the total incurred utilities is achieved. Therefore, it is more natural (see Example 5. (5.5)

Price of fairness. Bertsimas et al. [START_REF] Bertsimas | On The Efficiency-Fairness Trade-Off[END_REF] defined the price of fairness (PoF) metric to quantify the efficiency loss due to fairness as the difference between the maximum system efficiency and the efficiency under the fair scheme. In the case of 𝛼-fairness, it is defined for some utility set U as PoF(U; 𝛼) ≜ max 𝑢 𝑢 𝑢∈U 𝐹 0 (𝑢 𝑢 𝑢) -𝐹 0 𝑢 𝑢 𝑢 max,𝛼 max 𝑢 𝑢 𝑢∈U 𝐹 0 (𝑢 𝑢 𝑢) ,

where 𝑢 𝑢 𝑢 max,𝛼 ∈ arg max 𝑢 𝑢 𝑢∈U 𝐹 𝛼 (𝑢 𝑢 𝑢) and 𝐹 0 (𝑢 𝑢 𝑢) = 𝑖∈I 𝑢 𝑖 measures the achieved social welfare. Note that by definition the utilitarian objective achieves maximum efficiency, i.e., PoF(U; 0) = 0. Naturally, in our online setting, the metric is extended as follows

PoF(X; T ; 𝛼) ≜ max 𝑥 𝑥 𝑥 ∈X 𝑡 ∈T 𝐹 0 (𝑢 𝑢 𝑢 𝑡 (𝑥 𝑥 𝑥)) -𝑡 ∈T 𝐹 0 (𝑢 𝑢 𝑢 𝑡 (𝑥 𝑥 𝑥 ★)) max 𝑥 𝑥 𝑥 ∈X 𝑡 ∈T 𝐹 0 (𝑢 𝑢 𝑢 𝑡 (𝑥 𝑥 𝑥)) , (5.7)
where 𝑥 𝑥 𝑥 ★ is obtained through either SF (5.4) or HF (5.5). We provide the following example to further motivate our choice of horizon-fairness as a performance objective. A similar argument is provided in [286, Example 7].

Example 5.3.1 -Consider a system with two agents I = {1, 2}, an allocation set X = [0, 𝑥 max] with 𝑥 max > 1, 𝛼-fairness criterion with 𝛼 = 1, even 𝑇 ∈ N, and the following sequence of utilities {𝑢 𝑢 𝑢 𝑡 (𝑥)} 𝑇 𝑡=1 = {(1 + 𝑥, 1 -𝑥) , (1 + 𝑥, 1 + 𝑥) , . . . }. It can easily be verified that PoF = 0 for HF objective (5.5) because the HF optimal allocation is 𝑥 max which matches the optimal allocation under the utilitarian objective. However, under the SF objective (5.4) we have PoF = 𝑥 max -0.5 𝑥 max +2 ≈ 1 when 𝑥 max is large. Remark that the two objectives have different domains of definitions; in particular, the allocations in the set [1, 𝑥 max] ⊂ X are unachievable by the SF objective because they would lead to 𝑢 𝑡,2 (𝑥) ≤ 0. The HF objective achieves lower PoF (hence, larger aggregate utility), and it allows a much larger set of eligible allocations (in particular all the allocations in the set X), as shown in Fig. 5.1. Indeed, when the controller has the freedom to achieve fairness over a time horizon, there is an opportunity for more efficient allocations during the system operation. This example provides intuition on the robustness and practical importance of the horizon-fairness objective.

In the following section, we provide the description of an online learning model and our performance metric of interest under the HF objective.

Online Policies and Performance Metric

The agents' allocations are determined by an online policy A A A = {A 1 , A 2 , . . . , A 𝑇 }, i.e., a sequence of mappings. For every timeslot 𝑡 ∈ T , A 𝑡 : X 𝑡 × U 𝑡 → X maps the sequence of past allocations {𝑥 𝑥 𝑥 𝑠 } 𝑡 𝑠=1 ∈ X 𝑡 and utility functions {𝑢 𝑢 𝑢 𝑠 } 𝑡 𝑠=1 ∈ U 𝑡 to the next allocation 𝑥 𝑥 𝑥 𝑡+1 ∈ X. We assume the initial decision 𝑥 𝑥 𝑥 1 is feasible (i.e., 𝑥 𝑥 𝑥 1 ∈ X). We measure the performance of policy A A A in terms of the fairness regret (5.8), i.e., the difference between the fairness objective experienced by A A A at the time horizon 𝑇 and that of the best static decision 𝑥 𝑥 𝑥 ★ ∈ X in hindsight. We restate the regret metric here to streamline the presentation:

ℜ 𝑇 (𝐹 𝛼 , A A A) ≜ sup {𝑢 𝑢 𝑢 𝑡 } 𝑇 𝑡 =1 ∈U 𝑇 𝐹 𝛼 1 𝑇 ∑︁ 𝑡 ∈T 𝑢 𝑢 𝑢 𝑡 (𝑥 𝑥 𝑥 ★) -𝐹 𝛼 1 𝑇 ∑︁ 𝑡 ∈T
𝑢 𝑢 𝑢 𝑡 (𝑥 𝑥 𝑥 𝑡) .

(5.8)

where 𝑥 𝑥 𝑥 ★ is the HF (5.5) allocation. If the fairness regret becomes negligible for large 𝑇 , then A A A attains the same fairness objective as the optimal static decision with hindsight. Note that under the utilitarian objective (𝛼 = 0), this fairness regret coincides with the classic time-averaged regret in OCO [20]. However, for general values of 𝛼 ≠ 0, the metric is completely different, as we aim to compare 𝛼-fair functions evaluated at time-averaged vector-valued utilities.

5.4 -Online Horizon-Fair (OHF) Policy 127

Online Horizon-Fair (OHF) Policy

We first present in Section 5.4.1, the adversarial model considered in this work and provide a result on the impossibility of guaranteeing vanishing fairness regret (5.8) under general adversarial perturbations. We also provide a powerful family of adversarial perturbations for which a vanishing fairness regret guarantee is attainable. Secondly, we present the OHF policy in Section 5.4.2 and provide its performance guarantee. Finally, we provide in Section 5.4.3 a set of adversarial examples captured by our fairness framework.

Adversarial Model and Impossibility Result

We begin by introducing formally the adversarial model that characterizes the utility perturbations.

In particular, we consider 𝛿 𝛿 𝛿 𝑡 (𝑥 𝑥 𝑥) ≜ 1

𝑇

𝑠∈T 𝑢 𝑢 𝑢 𝑠 (𝑥 𝑥 𝑥) -𝑢 𝑢 𝑢 𝑡 (𝑥 𝑥 𝑥) to quantify how much the adversary perturbs the average utility by selecting a utility function 𝑢 𝑢 𝑢 𝑡 at timeslot 𝑡 ∈ T . Recall that 𝑥 𝑥 𝑥 ★ ∈ X denotes the optimal allocation under HF objective (5.5). We denote by Ξ(T) the set of all possible decompositions of T into sets of contiguous timeslots, i.e., for every {T 1 , T 2 , . . . , T 𝐾 } ∈ Ξ(T) it holds T = 𝑘∈{1,2,...,𝐾 } T 𝑘 and max T 𝑘 < min T 𝑘+1 for 𝑘 ∈ {1, 2, . . . , 𝐾 -1}. We define two types of adversarial perturbations: Budgeted-severity:

V T ≜ sup {𝑢 𝑢 𝑢 𝑡 } 𝑇 𝑡 =1 ∈U 𝑇 ∑︁ 𝑡 ∈T ∑︁ 𝑖∈I 𝛿 𝑡,𝑖 (𝑥 𝑥 𝑥 ★) , (5.9)
Partitioned-severity:

W T ≜ sup {𝑢 𝑢 𝑢 𝑡 } 𝑇 𝑡 =1 ∈U 𝑇        inf {T 1 ,T 2 ,...,T 𝐾 } ∈ Ξ(T) 𝐾 ∑︁ 𝑘=1 ∑︁ 𝑖∈I ∑︁ 𝑡 ∈T 𝑘 𝛿 𝑡,𝑖 (𝑥 𝑥 𝑥 ★) + 𝐾 ∑︁ 𝑘=1 |T 𝑘 | 2 𝑘 ′ <𝑘 |T 𝑘 | + 1        . (5.10)
Our result in Theorem 5.4.2 implies that when either V T or W T grows sublinearly in the time horizon (i.e., the perturbations satisfy at least one of these two conditions), the regret of OHF policy in Algorithm 5.1 vanishes over time. We provide a detailed description of conditions (5.9) and (5.10) below.

The budgeted-severity V T in Eq. (5.9) bounds the total amount of perturbations of the timeaveraged utility. When V T = 0 the adversary is only able to select a fixed function, otherwise the adversary is able to select time-varying utilities, while keeping the total deviation no more than V T . Moreover, the adversary is allowed to pick opportunely the timeslots to maximize performance degradation for the controller. This model is similar to the adversarial corruption setting considered in [START_REF] Liao | Nonstationary Dual Averaging and Online Fair Allocation[END_REF][START_REF] Santiago R Balseiro | The Best of Many Worlds: Dual Mirror Descent for Online Allocation Problems[END_REF], and it captures realistic scenarios where the utilities incurred at different timeslots are predictable, but can be perturbed for some fraction of the timeslots. For instance, Internet traffic may experience spikes due to breaking news or other unpredictable events [START_REF] Esfandiari | Online Allocation with Traffic Spikes: Mixing Adversarial and Stochastic Models[END_REF].

The partitioned-severity W T in Eq. (5.10) may at first be less easy to understand than budgetedseverity condition (5.9), but is equally important from a practical point of view. For simplicity, consider a uniform decomposition of the timeslots, i.e., T 𝑘 = 𝑀 for every 𝑘 ∈ {1, 2, . . . ,𝑇 /𝑀 } assuming w.l.g. 𝑀 divides 𝑇 . Then the r.h.s. term in Eq. (5.10) can be bounded as follows: (5.10). This term is related to the perturbations selected by the adversary, however the absolute value is only evaluated at the end of each contiguous subperiod T 𝑘 , i.e., the positive and negative deviations from the average utilities can cancel out. For example, a periodic selection of utilities from some set with cardinality 𝑀 would have zero deviation for this term. This type of adversary is similar to the periodic adversary considered in [START_REF] Santiago R Balseiro | The Best of Many Worlds: Dual Mirror Descent for Online Allocation Problems[END_REF][START_REF] John C Duchi | Ergodic Mirror Descent[END_REF], but also includes adversarial selection of utilities from some finite set (see Example 5.4.2 in Section 5.4.3). The partitioned-severity adversary can model real-life applications that exhibit seasonal properties, e.g., the traffic may be completely different throughout the day, but daily traffic is self-similar [START_REF] Zhou | Robust online matching with user arrival distribution drift[END_REF]. This condition also unlocks the possibility to obtain high probability guarantees under stochastic utilities (see Corollary 5.4.4).

𝑇 /𝑀 ∑︁ 𝑘=1 |T 𝑘 | 2 𝑘 ′ <𝑘 |T 𝑘 | + 1 = 𝑇 /𝑀 ∑︁ 𝑘=1 𝑀 2 𝑀 (𝑘 -1) + 1 = O 𝑀 2 + 𝑀 log(𝑇 /𝑀) . (5
We formally make the following assumptions:

(A1) The allocation set X is convex with diameter diam (X) < ∞. (5.12)

We first show that an adversary solely satisfying the mild assumptions (A1)-(A4) can arbitrarily degrade the performance of any policy A A A. Formally, we have the following negative result: The proof can be found in Appendix 32. We design an adversary with a choice over two sequences of utilities against two agents. We show that no policy can have vanishing fairness regret w.r.t. the time horizon under both sequences.

OHF Policy

Our policy employs a convex-concave function, composed of a convex conjugate term that tracks the global fairness metric in a dual (conjugate) space, and a weighted sum of utilities term that tracks the appropriate allocations in the primal space. This function is used by the policy to compute a gradient and a supergradient to adapt its internal state. In detail, we define the function Ψ 𝛼 : Θ × X → R given by Ψ 𝑡,𝛼 (𝜃 𝜃 𝜃, 𝑥 𝑥 𝑥) ≜ (-𝐹 𝛼) ★ (𝜃 𝜃 𝜃) -𝜃 𝜃 𝜃 • 𝑢 𝑢 𝑢 𝑡 (𝑥 𝑥 𝑥), (5.13) where Θ = -1/𝑢 𝛼 ★,min , -1/𝑢 𝛼 ★,max I ⊂ R I <0 is a subspace of the dual (conjugate) space, and (-𝐹 𝛼) ★ is the convex conjugate (see Definition 31.1 in Appendix) of -𝐹 𝛼 given by for any 𝜃 𝜃 𝜃 ∈ Θ

(-𝐹 𝛼) ★ (𝜃 𝜃 𝜃) = 𝑖∈I 𝛼 (-𝜃 𝑖) 1-1/𝛼 -1 1-𝛼 for 𝛼 ∈ R ≥0 \ {1}, 𝑖∈I -log(-𝜃 𝑖) -1 for 𝛼 = 1.
(5.14

)
The policy is summarized in Algorithm 5.1. The algorithm only requires as input: the set of eligible allocations X, the 𝛼-fairness parameter in R I ≥0 , and the range 𝑢 ★,min , 𝑢 ★,max of values of the average utility obtained by the optimal allocation (5.5), i.e., 1

𝑇 𝑡 ∈T 𝑢 𝑢 𝑢 𝑡 (𝑥 𝑥 𝑥 ★) ∈ 𝑢 ★,min , 𝑢 ★,max I ⊂ R I >0
. We stress that the target time horizon 𝑇 is not an input to the policy. The utility bounds 𝑢 𝛼 ★,min and 𝑢 𝛼 ★,max depend on the specific application. For example, for the virtualized caching system considered in Section 5.6, one could simply pick a small enough 𝜖 > 0 as 𝑢 𝛼 ★,min , and the maximum batch size weighted by the largest retrieval cost in the network as 𝑢 𝛼 ★,max (see Eq. (5.27)). However, if prior information is available to tighten this range, the performance of the algorithm is ameliorated, as reflected in the regret bound in Eq. (5.15).

The policy uses its input to initialize the dual (conjugate) subspace Θ = -1/𝑢 𝛼 ★,min , -1/𝑢 𝛼 ★,max I , an allocation 𝑥 𝑥 𝑥 1 ∈ X, and a dual decision 𝜃 𝜃 𝜃 1 ∈ Θ (lines 1-2 in Algorithm 5.1). At a given timeslot 𝑡 ∈ T , the allocation𝑥 𝑥 𝑥 𝑡 is selected; then a vector-valued utility𝑢 𝑢 𝑢 𝑡 (•) is revealed and in turn Ψ 𝑡,𝛼 (• , •) is revealed to the policy (line 4 in Algorithm 5.1). The supergradient 𝑔 𝑔 𝑔 X,𝑡 of Ψ 𝑡,𝛼 (𝜃 𝜃 𝜃 𝑡 , •) at point 𝑥 𝑥 𝑥 𝑡 ∈ X, and the gradient 𝑔 𝑔 𝑔 Θ,𝑡 of Ψ 𝑡,𝛼 (• , 𝑥 𝑥 𝑥 𝑡) at point 𝜃 𝜃 𝜃 𝑡 ∈ Θ are computed (lines 5-6 in Algorithm 5.1). The policy then finally performs an adaptation of its state variables (𝑥 𝑥 𝑥 𝑡 ,𝜃 𝜃 𝜃 𝑡) through a descent step in the dual space and an ascent step in the primal space through online gradient descent (OGD) and online gradient ascent (OGA) policies, 3 respectively (line 8 in Algorithm 5.1). The learning rates (step size) used are "self-confident" [START_REF] Auer | Adaptive and Self-Confident On-Line Learning Algorithms[END_REF] as they depend on the experienced gradients. Such a learning rate schedule is compelling because it can adapt to the adversary and provides tighter regret guarantees for "easy" utility sequences; moreover, it allows attaining an anytime regret guarantee, i.e., a guarantee holding for any time horizon 𝑇 . In particular, OHF policy in Algorithm 5.1 enjoys the following fairness regret guarantee.

Theorem 5.4.2. Under assumptions (A1)-(A5), OHF policy in Algorithm 5.1 attains the following fairness regret guarantee:

ℜ 𝑇 (𝐹 𝛼 , A A A) ≤ sup {𝑢 𝑢 𝑢 𝑡 } 𝑇 𝑡 =1 ∈U 𝑇        1.5 diam (X) 𝑇 √︄ ∑︁ 𝑡 ∈T 𝑔 𝑔 𝑔 X,𝑡 2 2 + 𝑇 ∑︁ 𝑡=1 𝛼 𝑔 𝑔 𝑔 Θ,𝑡 2 2 2𝑢 1+ 1 𝛼 ★,min 𝑇 𝑡        + O min {V T , W T } 𝑇 (5.15) ≤ 1.5 diam (X) 𝐿 X 𝑢 𝛼 ★,min √ 𝑇 + 𝛼𝐿 2 Θ (log(𝑇) + 1) 𝑢 1+ 1 𝛼 ★,min 𝑇 + O min {V T , W T } 𝑇 (5.16) = O 1 √ 𝑇 + min {V T , W T } 𝑇 = 𝑜 (1).
(5.17

)
The proof is provided in Appendix 33. We prove that the fairness regret can be upper bounded with the time-averaged regrets of the primal policy operating over the set X and the dual policy operating over the set Θ, combined with an extra term that is upper bounded with min {V T , W T }. Note that the fairness regret upper bound in Eq. (5.15) can be much tighter than the one in Eq. (5.16), because the gradients' norms can be smaller than their upper bound at a given timeslot 𝑡 ∈ T . Thanks to its "self-confident" learning schedule [START_REF] Auer | Adaptive and Self-Confident On-Line Learning Algorithms[END_REF], which dynamically adapts to the observed utilities, our Algorithm 5.1 enjoys an any-time regret guarantee, i.e., it does not require the knowledge of the target time horizon 𝑇 .

The result in Theorem 5.4.2 is tight, in the sense that no policy can have a fairness regret (5.8) with better dependency on the time horizon 𝑇 . Formally, Theorem 5. 4

.3. Any policy

A A A incurs ℜ 𝑇 (𝐹 𝛼 , A A A) = Ω 1 √ 𝑇 fairness regret (5.8) for 𝛼 ≥ 0.
The proof can be found in Appendix 34. We show that the lower bound on regret in online convex optimization [20] can be transferred to the fairness regret.

We discuss in Appendix 38, the time-complexity of Algorithm 5.1 in the context of virtualized caching system application, presented in Section 5.6.

Adversarial Examples

In this section, we provide examples of adversaries satisfying Assumptions (A1)-(A5), with either V T = 𝑜 (𝑇) or W T = 𝑜 (𝑇), and of stochastic adversaries.

where 𝑢 𝑢 𝑢 : X → R I is a fixed utility, the time-dependent function 𝑝 𝑝 𝑝 𝑡 : X → R I is an adversarially selected perturbation with 𝑝 𝑝 𝑝 𝑡 ∞ < ∞, 𝛾 𝛾 𝛾 𝑡 ∈ R I quantifies the severity of the perturbations, and 𝛾 𝛾 𝛾 𝑡 ⊙ 𝑝 𝑝 𝑝 𝑡 (𝑥 𝑥 𝑥) = 𝛾 𝑡,𝑖 𝑝 𝑡,𝑖 (𝑥 𝑥 𝑥) 𝑖∈I is the Hadamard product. The severity of the perturbations grows sublinearly in time 𝑇 , i.e., 𝑇 𝑡=1 𝛾 𝑡,𝑖 = 𝑜 (𝑇) for every 𝑖 ∈ I. It is easy to check that, in this setting, it holds V T = 𝑜 (𝑇).

We provide a simple-yet-illustrative example of such an adversary. We take X = [0, 1] ⊂ R, two agents I = {1, 2}, fixed utilities 𝑢 𝑢 𝑢 (𝑥) = 1 -𝑥 2 , 1 + 𝑥 , adversarial perturbations 𝑝 𝑝 𝑝 𝑡 (𝑥) = 𝑎 𝑖,𝑡 • 𝑥 𝑖∈I where 𝑎 𝑎 𝑎 𝑡 is selected uniformly at random from [-1, 1] I for every 𝑡 ∈ T . The perturbations' severity is selected as 𝛾 𝜉 𝑡,𝑖 ,𝑖 = 𝑡 -𝑠 where 𝜉 𝜉 𝜉 𝑖 : T → T is a random permutation of the elements of T for 𝑖 ∈ I. The performance of Algorithm 5.1 is provided in Fig. 5.2. We observe that for larger values of 𝑠, corresponding to lower perturbation's severity, the policy provides faster the same utilities as the HF benchmark (5.5).

Example 5.4.2 -(Adversaries satisfying W T = 𝑜 (𝑇)) Consider a multiset M 𝑡 of utilities and an adversary that selects a utility𝑢 𝑢 𝑢 𝑡 : X → R I from it. The multiset is updated as follows: if

M 𝑡 \{𝑢 𝑢 𝑢 𝑡 } ≠ ∅, M 𝑡+1 = M 𝑡 \ {𝑢 𝑢 𝑢 𝑡 }, otherwise, M 𝑡 = M 1 .
In words, the adversary selects irrevocably elements (utilities) from the set M 1 , and, when all the elements are selected, the replenished M 1 is offered again to the adversary. Consider, without loss of generality, a time horizon 𝑇 divisible by |M 1 | and the following decomposition for the period T : {1, 2, . . . ,

|M 1 |} ∪ {|M 1 | + 1, |M 1 | + 2, . . . , 2 |M 1 |} ∪
• • • = T 1 ∪ T 2 ∪ • • • ∪ T 𝑇 /|M 1 |
. By construction, it holds for every 𝑥 𝑥 𝑥 ∈ X

∑︁ 𝑖∈I ∑︁ 𝑡 ∈T 𝑘 𝛿 𝑡,𝑖 (𝑥 𝑥 𝑥) = 0, ∀𝑘 ∈ {1, 2, . . . ,𝑇 /|M 1 |} , (5.19)
because when the multiset is fully consumed by the adversary, the average experienced utility is a fixed function.

When |M 1 | = Θ (𝑇 𝜖) for 𝜖 ∈ [0, 1/2) it holds 𝑇 /|M 1 | 𝑘=1 |T 𝑘 | 2 𝑘 ′ <𝑘 |T 𝑘 |+1
= O 𝑇 2𝜖 (see Eq. (5.11)); thus, combined with Eq. (5.19) it holds W T = 𝑜 (𝑇). We provide a simple example of such an adversary. Consider X = [-1, 1], two agents I = {1, 2}, and the initial multiset (5.20)

M 1 = {(1-𝑥, 1-(1-𝑥) 2) repeated 10 times , (1-(1-𝑥) 2 , 1-4𝑥)
We have |M 1 | = 40 and hence W T = 𝑜 (𝑇). The performance of Algorithm 5.1 is provided in Fig. 5.3 under different choice patterns over M 1 . We observe that the cyclic choice of utilities is more harmful than the u.a.r. one as it leads to slower convergence. Nonetheless, under both settings, the policy asymptotically yields the same utilities as the HF benchmark (5.5).

R𝑇 (𝐹 𝛼 , A A A) ≜ sup D 𝑖 , 𝑖∈I        E 𝑢 𝑡,𝑖 ∼D 𝑖 𝑖∈I, 𝑡 ∈T max 𝑥 𝑥 𝑥 ∈X 𝐹 𝛼 1 𝑇 ∑︁ 𝑡 ∈T 𝑢 𝑢 𝑢 𝑡 (𝑥 𝑥 𝑥 𝑡) -𝐹 𝛼 1 𝑇 ∑︁ 𝑡 ∈T 𝑢 𝑢 𝑢 𝑡 (𝑥 𝑥 𝑥 𝑡)        = O 1 √ 𝑇 . (5.21)
Moreover, it holds with probability one: ℜ 𝑇 (𝐹 𝛼 , A A A) ≤ 0 for 𝑇 → ∞.

-Extensions 133

The proof is in Appendix 35. The expected fairness regret guarantee follows from Theorem 5.4.2 and observing that E [𝛿 𝛿 𝛿 𝑡 (𝑥 𝑥 𝑥)] = 0 0 0 for any 𝑡 ∈ T and 𝑥 𝑥 𝑥 ∈ X. The high probability fairness regret guarantee for large 𝑇 is obtained through Hoeffding's inequality paired with Eq. (5.10).

Note that we provide additional examples of adversaries, in the context of the application of our policy to a virtualized caching system, in Section 5.6.

Extensions

In this section, we first show that our algorithmic framework extends to cooperative bargaining settings, in particular Nash bargaining [START_REF] Nash | The Bargaining Problem[END_REF]. Secondly, we show that our framework also extends to the weighted 𝛼-fairness criterion.

Nash Bargaining

Nash bargaining solution (NBS), proposed in the seminal paper [START_REF] Nash | The Bargaining Problem[END_REF], is a fairness criterion for dispersing to a set of agents the utility of their cooperation. The solution guarantees that, whenever the agents cooperate, each agent achieves an individual performance that exceeds its performance when operating independently. This latter is also known as the disagreement point. NBS comes from the area of cooperative game theory, and it is self enforcing, i.e., the agents will agree to apply this solution without the need for an external authority to enforce compliance. NBS has been extensively applied in communication networks, e.g., to transmission power control [START_REF] Boche | A Generalization of Nash Bargaining and Proportional Fairness to Log-Convex Utility Sets With Power Constraints[END_REF], mobile Internet sharing among wireless users [START_REF] Iosifidis | Efficient and Fair Collaborative Mobile Internet Access[END_REF], content delivery in ISP-CDN partnerships [START_REF] Jiang | Cooperative Content Distribution and Traffic Engineering in an ISP Network[END_REF], and cooperative caching in information-centric networks [START_REF] Wang | Milking the Cache Cow With Fairness in Mind[END_REF].

Nash bargaining can be incorporated through our fairness framework when 𝛼 = 1, and utilities as redefined for every 𝑡 ∈ T as follows 𝑢 𝑢 𝑢 ′ 𝑡 (𝑥 𝑥 𝑥) = 𝑢 𝑢 𝑢 𝑡 (𝑥 𝑥 𝑥) -𝑢 𝑢 𝑢 𝑑 𝑡 where 𝑢 𝑑 𝑖 is the disagreement point of agent 𝑖 ∈ I. In particular, OHF provides the same guarantees. We also note that the dynamic model generalizes the NBS solution by allowing both the utilities and the disagreement points to change over time, while the benchmark is defined using (5.5) and 𝛼 = 1. Hence, the proposed OHF allows the agents to collaborate without knowing in advance the benefits of their cooperation nor their disagreement points, in a way that guarantees they will achieve the commonly agreed NBS at the end of the horizon T (asymptotically).

The (𝑤 𝑤 𝑤, 𝛼)-Fairness

The weighted 𝛼-fairness or simply (𝑤 𝑤 𝑤, 𝛼)-fairness with 𝛼 ≥ 0 and 𝑤 𝑤 𝑤 ∈ Δ I ⊂ R ≥0 , where Δ I is the probability simplex with support I, is defined as [START_REF] Mo | Fair End-to-End Window-Based Congestion Control[END_REF]: It is easy to check that our 𝛼-fairness framework captures the (𝑤 𝑤 𝑤, 𝛼)-fairness by simply redefining the utilities incurred at time 𝑡 ∈ I for agent 𝑖 ∈ I as follows:

𝑢 ′ 𝑡,𝑖 (𝑥 𝑥 𝑥) = 𝑤 1 1-𝛼 𝑖 𝑢 𝑡,𝑖 (𝑥 𝑥 𝑥) for 𝛼 ∈ R ≥0 \ {1}, otherwise 𝑢 ′
𝑡,𝑖 (𝑥 𝑥 𝑥) = 𝑢 𝑡,𝑖 (𝑥 𝑥 𝑥) 𝑤 𝑖 . Note that for 𝛼 = 1 and uniform weights, we recover the Nash bargaining setting discussed previously; otherwise, we recover asymmetric Nash bargaining in which the different weights correspond to the bargaining powers of players [START_REF] John | A generalized Nash solution for two-person bargaining games with incomplete information[END_REF].

Application

In order to demonstrate the applicability of the proposed fairness framework, we target a representative resource management problem in virtualized caching systems where different caches cooperate by serving jointly the received content requests. This problem has been studied extensively in its static version, where the request rates for each content file are a priori known and the goal is to decide which files to store at each cache to maximize a fairness metric of cache hits across different caches, see for instance [START_REF] Wang | Milking the Cache Cow With Fairness in Mind[END_REF][START_REF] Liu | Fair Caching Networks[END_REF]. We study the more realistic version of the problem where the request patterns are unknown. This online caching model has been recently studied as a learning problem in a series of papers [START_REF] Tareq | No-Regret Caching via Online Mirror Descent[END_REF][START_REF] Georgios S Paschos | Learning to Cache With No Regrets[END_REF][START_REF] Mhaisen | Online Caching with no Regret: Optimistic Learning via Recommendations[END_REF][START_REF] Paria | LeadCache: Regret-Optimal Caching in Networks[END_REF][START_REF] Bura | Learning to Cache and Caching to Learn: Regret Analysis of Caching Algorithms[END_REF][START_REF] Li | Cache Networks of Counting Queues[END_REF], yet none of them handles fairness metrics.

Multi-Agent Cache Networks

Cache network. We assume that time is slotted and the set of timeslots is denoted by T ≜ {1, 2, . . . ,𝑇 }. We consider a catalog of equally-sized files F ≜ {1, 2, . . . , 𝐹 }. 4 We model a cache network at timeslot 𝑡 ∈ T as an undirected weighted graph 𝐺 𝑡 (C, E), where C ≜ {1, 2, . . . , 𝐶} is the set of caches, and (𝑐, 𝑐 ′) ∈ E denotes the link connecting cache 𝑐 to 𝑐 ′ with associated weight 𝑤 𝑡,(𝑐 𝑘 ,𝑐 𝑘+1) . We assume for each file 𝑓 ∈ F is permanently stored at a set Λ 𝑓 (C) ⊂ C of designated repository servers. Moreover, each cache can store fractions of the file and fractions of the same file at different caches can be additively combined. 5 We denote by 𝑥 𝑡,𝑐,𝑓 ∈ [0, 1] the fraction of file 𝑓 ∈ F stored at cache 𝑐 ∈ C at timeslot 𝑡 ∈ T . The state of cache 𝑐 ∈ C is given by 𝑥 𝑥 𝑥 𝑡,𝑐 drawn from the set

X 𝑐 ≜        𝑥 𝑥 𝑥 ∈ [0, 1] F : ∑︁ 𝑓 ∈F 𝑥 𝑓 ≤ 𝑘 𝑐 , 𝑥 𝑓 ≥ 1 𝑐 ∈ Λ 𝑓 (C) , ∀𝑓 ∈ F        , (5.22)
where 𝑘 𝑐 ∈ N is the capacity of cache 𝑐 ∈ C, and 1(𝜒) ∈ {0, 1} is the indicator function set to 1 when condition 𝜒 is true. Thus, the state of the cache network belongs to X ≜ 𝑐∈C X 𝑐 . The system model is summarized in Fig. 5.4, and it is aligned with many recent papers focusing on learning for caching [13,21,[START_REF] Georgios S Paschos | Learning to Cache With No Regrets[END_REF][START_REF] Paria | LeadCache: Regret-Optimal Caching in Networks[END_REF].

Requests. We denote by 𝑟 𝑡,𝑐,𝑓 ∈ N ∪ {0} the number of requests for file 𝑓 ∈ F submitted by users associated to cache 𝑐 ∈ C, during slot 𝑡 ∈ T . The request batch arriving at timeslot 𝑡 ∈ T is denoted by 𝑟 𝑟 𝑟 𝑡 = 𝑟 𝑡,𝑐,𝑓 (𝑐,𝑓)∈C×F and belongs to the set

R 𝑡 ≜        𝑟 𝑟 𝑟 ∈ (N ∪ {0}) C×F : ∑︁ 𝑐∈C ∑︁ 𝑓 ∈F 𝑟 𝑐,𝑓 ≤ 𝑅 𝑡       
, where 𝑅 𝑡 ∈ N is the total number of requests (potentially) arriving at the system at timeslot 𝑡 ∈ T .

Caching gain. We consider an agent 𝑖 ∈ I holds a set of caches Γ 𝑖 (C) ⊂ C, and 𝑖∈I Γ 𝑖 (C) = C. Hence, the allocation set of agent 𝑖 is given by X 𝑖 = 𝑐∈Γ 𝑖 (C) X 𝑐 . Requests arriving at cache 𝑐 ∈ C can be partially served locally, and if needed, forwarded along the shortest path to a nearby cache 𝑐 ′ ∈ C storing the file, incurring a retrieval cost 𝑤 This can be interpreted as a QoS cost paid by a user for the additional delay to retrieve part of the file from another cache, or it can represent the load on the network to provide the missing file. Note that by construction, the maximum cost is achieved for a network state, where all the caches are empty except for the repository allocations; formally, such state is given by We can define the caching utility at timeslot 𝑡 ∈ T as the cost reduction due to caching as:

𝑥 𝑥 𝑥 0 ≜ 1 𝑐 ∈ Λ 𝑓 (C) (𝑐,𝑓)∈C×F ∈ X,
𝑢 𝑡,𝑖 (𝑥 𝑥 𝑥) ≜ cost 𝑡,𝑖 (𝑥 𝑥 𝑥 0) -cost 𝑡,𝑖 (𝑥 𝑥 𝑥) (5.26) = ∑︁ 𝑐∈Γ 𝑖 (C) ∑︁ 𝑓 ∈F 𝑟 𝑡,𝑐,𝑓 𝜙 𝑡,𝑖,𝑐 -1 ∑︁ 𝑘=1 𝑤 sp 𝑡,(𝑐,Φ 𝑡,𝑖,𝑐 (𝑘+1)) -𝑤 sp 𝑡,(𝑐,Φ 𝑡,𝑖,𝑐 (𝑘)) min 1, 𝑘 ∑︁ 𝑘 ′ =1
𝑥 Φ 𝑡,𝑖,𝑐 (𝑘 ′),𝑓 .

(5.27)

The caching utility is a weighted sum of concave functions with positive weights, and thus concave in 𝑥 𝑥 𝑥 ∈ X. It is straightforward to check that this problem always satisfies Assumptions (A1)-(A4). The request batches and the time-varying retrieval costs determine whether Assumption (A5) holds. For example, this is the case when request batches are drawn i.i.d. from a fixed unknown distribution (see Example 5.4.3).

Results

Below we describe the experimental setup 6 of the multi-agent cache networks problem, the request traces, and competing policies. Our results are summarized as follows:

1. Under stationary requests and small batch sizes (leading to large utility deviations from one timeslot to another), OHF achieves the same time-averaged utilities as the offline benchmark, whereas OSF, a counterpart policy to OHF targeting slot-fairness (5.4), diverges and is unable to reach the Pareto front.

2. In the Nash bargaining scenario, OHF achieves the NBS in all cases, while OSF fails when the disagreement points are exigent, i.e., an agent can guarantee itself a high utility.

3. Widely used LFU and LRU might perform arbitrarily bad w.r.t. fairness, and not even achieve any point in the Pareto front (hence, they are not only unfair, but also inefficient).

4. Fairness comes at a higher price when 𝛼 is increased or the number of agents is increased. This observation on the price of fairness provides experimental evidence for previous work [START_REF] Bertsimas | On The Efficiency-Fairness Trade-Off[END_REF]. 5. OHF is robust to different network topologies and is able to obtain time-averaged utilities that match the offline benchmark.

6. Under non-stationary requests, OHF policy achieves the same time-averaged utilities as the offline benchmark, whereas OSF can perform arbitrarily bad providing allocations that are both unfair and inefficient General Setup. We consider three synthetic network topologies (Cycle, Tree, and Grid), and two real network topologies (Abilene and GEANT). A visualization of the network topologies is provided in Figure 5.5. The specifications of the network topologies used across the experiments are provided in Table 1 Policies. We implement the following policies and use them as comparison benchmarks for OHF.

• The classic LRU and LFU policies. A request is routed to the cache with minimal retrieval cost among those that store the requested file and this cache provides the content and updates its state corresponding to a hit. Moreover, all caches with a lower retrieval cost update their state as if a miss occurred locally. This corresponds to the popular path replication algorithm [21,[START_REF] Cohen | Replication Strategies in Unstructured Peer-to-Peer Networks[END_REF], equipped with LRU or LFU, adapted to our setting.

• Online slot-fairness (OSF) policy. This policy is the slot-fairness (5.4) counterpart of OHF. It is obtained by configuring Algorithm 5.1 with dual (conjugate) subspace Θ = {(-1) 𝑖∈I } (i.e., taking 𝛼 → 0), which makes ineffective the dual policy in Algorithm 5.1. The revealed utilities at timeslot 𝑡 ∈ T are the 𝛼-fairness transformed utilities 𝑢 𝑢 𝑢 ′ 𝑡 (•) = (𝑓 𝛼 𝑢 𝑡,𝑖 (•)) 𝑖∈I . The primal allocations are still determined by the same self-confident learning rates' schedule as OHF for a fair comparison. The resulting policy is a no-regret policy (see Lemma 31.3 in Appendix) w.r.t. the slot-fairness benchmark (5.4) for some 𝛼 ∈ R ≥0 .

Static analysis of symmetry-breaking parameters. We start with a numerical investigation of the potential caching gains, and how these are affected by the fairness parameter 𝛼. In Figure 5.6, we consider the Cycle topology and different values of 𝛼 ∈ [0, 2]. We show the impact on the fairness benchmark of varying the request patterns (𝜎 ∈ {0.6, 0.8, 1.0, 1.2}) for agent 2 under the Stationary trace in Fig. 5.6 (a), and of varying the retrieval costs between agent 1's cache and the repository (𝑤 (1,3) ∈ [2.5, 4]). In Figure 5.6 (a), we observe decreasing the skewness of the popularity distribution decreases the utility of agent 2 as reflected by the downward shift of the Pareto front. We note that, as far as the file popularity distribution at agent 2 is close to the one at agent 1 (𝜎 = 1.2), different values of alpha still provide similar utilities. However, in highly asymmetric scenarios, different values of 𝛼 lead to clearly distinct utilities for each agent. We also note that higher values of 𝛼 guarantees higher fairness by that increasing the utility of agent 2. Similarly, in Figure 5.6 (b), we observe increasing the retrieval cost for agent 1 decreases the utility achieved by the same agent, as reflected by the leftward shift of the Pareto front; moreover, increasing the retrieval costs (higher asymmetry) highlights the difference between different values of 𝛼.

Online analysis of symmetry-breaking parameters. In and slot-fairness objectives become closer yielding similar allocations. Note that this observation implies that OSF is only capable to converge for utilities with low variability, which is far from realistic scenarios. LFU policy outperforms LRU and both policies do not approach the Pareto front; thus, the allocations selected by such policies are inefficient and unfair.

Nash bargaining. In Figure 5.8, we consider the Cycle topology and 𝛼 = 1. We select different disagreement utilities for agent 2 in {0.0, 0.5, 0.7, 0.75}, i.e., different utility values agent 2 expects to guarantee itself even in the absence of cooperation. Note how higher values of disagreement utilities lead to higher utilities for agent 2 at the fairness benchmark. We select 𝑢 ★,min = 0.01. For a small batch size (𝑅 = 1), OHF approaches the same utilities achieved by the fairness benchmark for different disagreement points, whereas OSF fails to approach the Pareto front. Similarly, for a larger batch size 𝑅 = 50, OHF approaches the fairness benchmark for different disagreement points, but the Pareto front is reached faster than with a batch size 𝑅 = 1. OSF diverges for non-zero disagreement points when 𝑅 = 50, because the allocation selected for some agent 𝑖 ∈ I can be smaller than its disagreement utility (i.e., 𝑢 𝑡,𝑖 (𝑥 𝑥 𝑥 𝑡) -𝑢 𝑡,𝑖 < 0), while the 𝛼-fairness function is only defined for positive arguments.

Impact of agents on the price of fairness. In Figures 5.9 In Figures 5.9 (a)-(c), we observe for increasing the number of agents, the division of utilities differs between the fairness benchmark and utilitarian benchmark; moreover, this difference is more evident for larger values of 𝛼. Figure 5.9 (d) provides the price of fairness, and we observe the price of fairness increases with the number of agents and 𝛼. Nonetheless, under the different settings the price of fairness remains below 4%, i.e., we experience at most a 4% drop in the social welfare to provide fair utility distribution across the different agents. utilities obtained by running OHF for 𝛼 = 2. We observe the utilities obtained by OHF quickly converge to the same utilities obtained by the fairness benchmark. In this figure, we also highlight the difference between the utilities achieved by the fairness benchmark and utilitarian benchmark, is reflected by the increasing utility gap for a higher number of participating agents.

Different network topologies. In Figure 5.11 (a), we consider the network topologies Tree, Grid, Abilene, GEANT under Stationary trace (𝜎 ∈ {0.6, 1.0, 1.2}) and 𝛼 = 3. OHF achieves the same utilities as the fairness benchmark across the different topologies. Note that for larger network topologies agents achieve a higher utility because there are more resources available.

Impact of non-stationarity. In preserving the overall popularity of the requests. Therefore, on average the agents are symmetric and experience the same utilities. We observe in Figure 5.11 (b) that indeed this is the case for OHF policy; however, because OSF aims to insure fairness across the different timeslots the agents are not considered symmetric and the average utilities deviate from the Pareto front (not efficient). OSF favors agent 1 by increasing its utility by 20% compared to the utility of agent 1.

Conclusion and Future Work

In this work, we proposed a novel OHF policy that achieves horizon-fairness in dynamic resource allocation problems. We demonstrated the applicability of this policy in virtualized caching systems where different agents can cooperate to increase their caching gain. Our work paves the road for several interesting next steps. A future research direction is to consider decentralized versions of the policy under which each agent selects an allocation with limited information exchange across agents.

For the application to virtualized caching systems, the message exchange techniques in [21,[START_REF] Li | Cache Networks of Counting Queues[END_REF] to estimate subgradients can be exploited. Another important future research direction is to bridge the horizon-fairness and slot-fairness criteria to target applications where the agents are interested in ensuring fairness within a target time window. We observed that OHF can encapsulate the two criteria, however, it remains an open question whether a policy can smoothly transition between them. A final interesting research direction is to consider a limited feedback scenario where only part of the utility is revealed to the agents (e.g., bandit feedback). Our policy could be extended to this setting through gradient estimation techniques [20].

CHAPTER 6 Conclusion

We conclude this thesis with some brief concluding remarks and present directions for possible future research arising from the problems considered thus far.

Summary

In this thesis, we study no-regret algorithms applied to several instances of the network resource allocation problem: exact caching in Chapter 2, similarity caching in Chapter 3, and IDNs in Chapter 4. We demonstrate the versatility of gradient algorithms, that normally operate on continuous spaces, on inherently combinatorial problems (e.g., the NP-Hard problems of similarity caching and IDNs) when paired with an opportune randomized rounding scheme. We show in all these instances that regret performance guarantees extend to integral (combinatorial) settings, despite the need to account for update costs. Our extensive experimental findings support the thesis that these algorithms are robust and can adapt to changing external system's parameters (e.g., requests' popularity and retrieval costs). Chapter 5 provides a novel long-term online fairness framework for settings where the agents' utilities are subject to unknown, time-varying, and potentially adversarial perturbations. We characterize the necessary conditions that a policy needs to satisfy in order to achieve vanishing fairness-regret and prove that our proposal, OHF policy, attains this desirable objective for any 𝛼-fairness criterion. This, in turn, renders our framework suitable for enforcing also other important metrics, such as max-min fairness and (weighted) proportional fairness, and for tackling cooperative game problems under the symmetric and asymmetric Nash bargaining solutions.

Future Work

The following are a number of possible future directions that follow from this thesis:

Exact Caching. The characterization of the optimality regimes of OGD and OMD NE , w.r.t. the diversity ratio, can be further improved. Also OMD 𝑞-norm algorithms for arbitrary values of 𝑞 ∈ (1, 2) deserve more investigation to (1) devise strongly polynomial, efficient algorithms for their Bregman projection, (2) characterize their update costs, and (3) compare their performance with OMD NE .

Similarity Caching. The applicability of similarity caches to machine learning classification tasks [START_REF] Khandelwal | Generalization through Memorization: Nearest Neighbor Language Models[END_REF] remains an open question, when the size of the objects in the catalog is comparable 146 Chapter 6 -Conclusion to their 𝑑-dimensional representation in the index, and, as a consequence, the index size cannot be neglected in comparison to the local catalog size. Another important future research direction is to consider dynamic regret, whereby the performance of a policy is compared to a dynamic optimum. However, since the employed OMD algorithms are greedy (i.e., the algorithms do not keep track of the history of the requests), with careful selection of the mirror map and learning rate, adaptive regret guarantee are attainable, e.g., such guarantee holds for OGD [START_REF] Zinkevich | Online Convex Programming and Generalized Infinitesimal Gradient Ascent[END_REF].

Inference Delivery Networks. The system model considered in Chapter 4 models potential available capacities of allocated ML models to be fully adversarial and exogenously determined.

An interesting future direction is to consider that the adversary only selects (or perturbs) the request process, then the system evolves according to a queuing model (e.g., networked counting queues [START_REF] Li | Cache Networks of Counting Queues[END_REF]) to model more realistic scenarios.

Long-term Fairness in Dynamic Resource Allocation. A future research direction is to consider decentralized versions of the policy under which each agent selects an allocation with limited information exchange across agents. For the application to virtualized caching systems, the message exchange techniques in Section 2.3 in Chapter 2 can be exploited to estimate subgradients in a distributed fashion. Another important future research direction is to bridge the horizon-fairness and slot-fairness criteria to target applications where the agents are interested in ensuring fairness within a target time window. We observed that our policy OHF can encapsulate the two criteria, however, it remains an open question whether a policy can smoothly transition between them. A final interesting research direction is to consider a limited feedback scenario where only part of the utility is revealed to the agents. Our policy could be extended to this setting through gradient estimation techniques [20].

Proof of Theorem 2.2.3

The map Lemma 17], and the dual norm of ∥ • ∥ 𝑞 is ∥ • ∥ 𝑝 (Hölder's inequality).Take S = X. The minimum value of Φ(𝑥) over X is achieved when we spread the capacity mass 𝑘 over the decision variable, i.e., 𝑥 𝑖 = 𝑘 𝑁 , 𝑖 ∈ N . If we select 𝑥 𝑥 𝑥 1 to be the minimizer of Φ(𝑥 𝑥 𝑥), then we have ∇Φ 𝑇 (𝑥 𝑥 𝑥 1)(𝑥 𝑥 𝑥 -𝑥 𝑥 𝑥 1) ≥ 0, ∀𝑥 𝑥 𝑥 ∈ X [20, Theorem 2.2], so we obtain 𝐷 Φ (𝑥 𝑥 𝑥, 𝑥 𝑥 𝑥 1) = Φ(𝑥 𝑥 𝑥) -Φ(𝑥 𝑥 𝑥 1) -∇Φ(𝑥 𝑥 𝑥 1) 𝑇 (𝑥 𝑥 𝑥 -𝑥 𝑥 𝑥 1) ≤ Φ(𝑥 𝑥 𝑥) -Φ(𝑥 𝑥 𝑥 1). Moreover, it is easy to check that Φ is maximized at a sparse point 𝑥 𝑥 𝑥 * ∈ X ∩ {0, 1} 𝑁 ; thus, we have 𝐷 Φ (𝑥 𝑥 𝑥, 𝑥 𝑥 𝑥 1) ≤ Φ(𝑥 𝑥 𝑥 *) -Φ(𝑥 𝑥 𝑥 1). By replacing 𝑥 𝑥 𝑥 1 and 𝑥 𝑥 𝑥 * with their values in the previous

Φ(𝑥) = 1 2 ∥𝑥 ∥ 2 𝑞 , 𝑞 ∈ (1, 2] is 𝜌 = 𝑞 -1 strongly convex w.r.t ∥ • ∥ 𝑞 over D = R 𝑁 a direct result from [292,
equation we get Φ(𝑥 𝑥 𝑥 1) = 1 2 𝑘 𝑁 𝑞 𝑁 2 𝑞 = 1 2 𝑘 2 𝑁 -2 𝑝 , and Φ(𝑥 𝑥 𝑥 *) = 1 2 𝑘 2 𝑞 = 1 2 𝑘 2 𝑘 -2 𝑝
. Thus, we have

𝐷 Φ (𝑥 𝑥 𝑥, 𝑥 𝑥 𝑥 1) ≤ 1 2 𝑘 2 𝑘 -2 𝑝 -𝑁 -2 𝑝 = 𝐷 2 . (1.3)
Note that the maximum of ∥𝑟 𝑟 𝑟 ∥ 𝑝 is achieved when 𝑅 ℎ components are set to ℎ, then the following bound holds on the gradients max

𝑟 ∈R ∥∇𝑓 𝑟 𝑟 𝑟 (𝑥 𝑥 𝑥) ∥ 𝑝 ≤ max 𝑟 𝑟 𝑟 ∈R ∥𝑤 𝑤 𝑤 ∥ ∞ ∥𝑟 𝑟 𝑟 ∥ 𝑝 = ∥𝑤 𝑤 𝑤 ∥ ∞ ℎ 𝑅 ℎ 1 𝑝 = 𝐿. (1
) ≤ ∥𝑤 𝑤 𝑤 ∥ ∞ 𝑅𝛽 1 𝑞 √︃ 𝛼 2/𝑞 -𝛼 2
𝑞-1 𝑇 . We take the limit 𝑞 → 1, to obtain the upper bound

Regret 𝑇 (OMD 1-norm) ≤ lim 𝑞→1 ∥𝑤 𝑤 𝑤 ∥ ∞ 𝑅𝛽 1 𝑞 √︄ 𝛼 2/𝑞 -𝛼 2 𝑞 -1 𝑇 = ∥𝑤 𝑤 𝑤 ∥ ∞ 𝑅𝛽 √︃ 𝛼 2/𝑞 ′ 𝑞=1 𝑇 = ∥𝑤 𝑤 𝑤 ∥ ∞ 𝑅𝛽 √︃ -2𝑞 -2 𝛼 2/𝑞 log(𝛼) 𝑞=1 𝑇 = ∥𝑤 𝑤 𝑤 ∥ ∞ 𝑅𝛼𝛽 √︁ 2 log(𝛼 -1)𝑇 = ∥𝑤 𝑤 𝑤 ∥ ∞ ℎ𝑘 √︄ 2 log 𝑁 𝑘 𝑇 .

Proof of Theorem 2.2.6

We take the simplified version of the regret of the general class of 𝑞-norm mirror maps in Eq. (2 𝑞-1 . The tightest regret bound is achieved with 𝑞 * that minimizes 𝜙 (𝑞). We have

𝜙 ′ (𝑞) = -𝛼 2 𝛽 1 𝑞 𝑞 2 𝛼 2/𝑞-2 -1 + 2(𝑞 -1) 𝛼 2/𝑞-2 log(𝛼) + 𝛼 2/𝑞-2 -1 log(𝛽) 2𝑞 2 (𝑞 -1) 2 √︃ 𝛼 2/𝑞 -𝛼 2 𝑞-1
.

(1.5)

We study the sign (-𝐽 (𝑞)) of the derivative of the minimizer in Eq (1.5)

𝐽 (𝑞) = 𝑞 2 𝛼 2/𝑞-2 -1 + 2(𝑞 -1) 𝛼 2/𝑞-2 log(𝛼) + 𝛼 2/𝑞-2 -1 log(𝛽) (1.6) ≥ 2𝑞(1 -𝑞) log(𝛼) + 2(𝑞 -1) 2 1 -𝑞 𝑞 log(𝛼) log(𝛼𝛽) + log(𝛼) (1.7) ≥ 2𝑞(𝑞 -1) (1 -𝑞) log(𝛼) + 2 1 -𝑞 𝑞 log(𝛼) log(𝛼𝛽) . (1.8)
Note that (1 -𝑞) log(𝛼) ≥ 0 and 1-𝑞 𝑞 log(𝛼) ≥ 0. We take 𝑅 ℎ ≤ 𝑘, this gives 𝛼𝛽 ≥ 1 and 𝐽 (𝑞) ≥ 0 implying sign(𝜙 ′ (𝑞)) = -sign(𝐽 (𝑞)) = -1. We conclude that 𝜙 (𝑞) is a decreasing function of 𝑞 ∈ (1, 2] when 𝑅 ℎ ≤ 𝑘; therefore, the minimum is obtained at 𝑞 = 2 for 𝑅 ℎ ≤ 𝑘.

Proof of Theorem 2.2.7

We have the following regret upper bound for the 𝑞-norm mirror map, as 𝑞 → 1 from Corollary 2.2.5:

Regret 𝑇 (OMD 1-norm) ≤ ∥𝑤 𝑤 𝑤 ∥ ∞ ℎ𝑘 √︃ 2 log 𝑁 𝑘 𝑇 .
In [START_REF] Chesneau | New Sharp Bounds for the Logarithmic Function[END_REF], it is proved that the log function satisfies log(𝑢 + 1) ≤ 𝑢 √ 𝑢+1

, 𝑢 ≥ 0. We take 𝑢 = 𝑁 𝑘 -1, and note that 𝑁 ≥ 𝑘 > 0, so we get 𝑢 ≥ 0. We have the following log 𝑁 𝑘 ≤ 𝑁 -𝑘 √ 𝑁 𝑘

= √︃

𝑁 𝑘 1 -𝑘 𝑁 . Thus, the upper bound in Corollary 2.2.5 Eq. (2.17) can be loosened to obtain

Regret 𝑇 (OMD 1-norm) ≤ ∥𝑤 𝑤 𝑤 ∥ ∞ 𝑘ℎ √︄ 2log 𝑁 𝑘 𝑇 ≤ ∥𝑤 𝑤 𝑤 ∥ ∞ √︄ 2 √ 𝑁𝑘ℎ 2 𝑘 1 - 𝑘 𝑁
.

(1.9)

If we take 𝑅 ℎ ≥ 2 √ 𝑁𝑘, then this upper bound is tighter than the upper bound on the regret of OGD in Corollary 2.2.4. 𝑡 for 𝑡 ≥ 1 is equivalent to OMD NE configured with learning rate 𝜂 ∈ R + over the simplex (capped simplex X with 𝑘 = 1), when both policies are initialized with same state in R 𝑁 >0 ∩ X. Moreover, OMD 1-norm has a multiplicative update rule over the capped simplex.

Link between Neg-entropy OMD and q-norm OMD

Proof.

Let 𝑔 𝑔 𝑔 𝑡 = ∇𝑓 𝑟 𝑟 𝑟 𝑡 (𝑥 𝑥 𝑥 𝑡) be the gradient of the cost function at time slot 𝑡. From lines 2-3 in Algorithm 2.1 and Eq. (2

(𝑥 𝑡,𝑖) 𝑞-1 ∥𝑥 𝑥 𝑥 𝑡 ∥ 𝑞-2 𝑞 -𝜂 𝑞 𝑔 𝑡,𝑖 𝑝-1 𝑖∈N (𝑥 𝑡,𝑖) 𝑞-1 ∥𝑥 𝑥 𝑥 𝑡 ∥ 𝑞-2 𝑞 -𝜂 𝑞 𝑔 𝑡,𝑖 𝑝 𝑝 -2 𝑝 = (𝑥 𝑡,𝑖) 𝑞-1 ∥𝑥 𝑥 𝑥 𝑡 ∥ 𝑞-2 𝑞 -𝜂 (𝑞 -1)𝑘𝑔 𝑡,𝑖 𝑝-1 𝑖∈N (𝑥 𝑡,𝑖) 𝑞-1 ∥𝑥 𝑥 𝑥 𝑡 ∥ 𝑞-2 𝑞 -𝜂 (𝑞 -1)𝑘𝑔 𝑡,𝑖 𝑝 𝑝 -2 𝑝 (1.10) = 𝑥 𝑡,𝑖 ∥𝑥 𝑥 𝑥 𝑡 ∥ (2-𝑞) 𝑞 1 -𝜂 (𝑞 -1)𝑘𝑔 𝑡,𝑖 ∥𝑥 𝑥 𝑥 𝑡 ∥ 𝑞-2 𝑞 (𝑥 𝑡,𝑖) 𝑞-1 𝑝-1 𝑖∈N (𝑥 𝑡,𝑖) (𝑞-1)𝑝 1 -𝜂 (𝑞 -1)𝑘𝑔 𝑡,𝑖 ∥𝑥 𝑥 𝑥 𝑡 ∥ 𝑞-2 𝑞 (𝑥 𝑡,𝑖) 𝑞-1 𝑝 𝑝 -2 𝑝 . (1.11)
We rewrite the above expression solely in terms of 𝑝 to obtain

𝑦 𝑝 𝑝 -1 𝑡+1,𝑖 = 𝑥 𝑡,𝑖 ∥𝑥 𝑥 𝑥 𝑡 ∥ (2- 𝑝 𝑝 -1) 𝑝 𝑝 -1 1 -𝜂𝑔 𝑡,𝑖 𝑘/ (𝑥 𝑡,𝑖) 1 𝑝 -1 ∥𝑥 𝑥 𝑥 𝑡 ∥ (2- 𝑝 𝑝 -1) 𝑝 𝑝 -1 𝑝-1 𝑖∈N (𝑝 -1)(𝑥 𝑡,𝑖) (𝑝 𝑝 -1) 1 -𝜂𝑔 𝑡,𝑖 𝑘/ (𝑝 -1)(𝑥 𝑡,𝑖) 1 𝑝 -1 ∥𝑥 𝑥 𝑥 𝑡 ∥ (2- 𝑝 𝑝 -1) 𝑝 𝑝 -1 𝑝 𝑝 -2 𝑝
.

(1.12)

Taking the limit for 𝑞 converges to 1 is equivalent to let 𝑝 diverges to +∞, so we have

𝑦 𝑡+1,𝑖 ≜ lim 𝑝→+∞ 𝑦 𝑝 𝑝 -1 𝑡+1,𝑖 = 𝑥 𝑡,𝑖 𝑘 lim 𝑝→+∞ 1 - 𝜂𝑔 𝑡,𝑖 𝑝-1 𝑝-1 𝑖∈N 𝑥 𝑡,𝑖 1 - 𝜂𝑔 𝑡,𝑖 𝑝-1 𝑝 𝑝 -2 𝑝 (1.13) = 𝑥 𝑡,𝑖 𝑘 lim 𝑝→+∞ 1 - 𝜂𝑔 𝑡,𝑖 𝑝-1 𝑝-1 𝑖∈N 𝑥 𝑡,𝑖 1 - 𝜂𝑔 𝑡,𝑖 𝑝-1 𝑝 (1.14) = 𝑥 𝑡,𝑖 𝑘 exp -𝜂𝑔 𝑡,𝑖 𝑖∈N 𝑥 𝑡,𝑖 exp -𝜂𝑔 𝑡,𝑖 , ∀𝑖 ∈ N . (1.15)
• The intermediate state of OMD 𝑥 𝑡,𝑖 𝑒 -𝜂𝑔 𝑡,𝑖 𝑖 ∈ N 𝑥 𝑡,𝑖 exp(-𝜂𝑔 𝑡,𝑖)

for 𝑖 ∈ N). Thus, the states obtained by the two algorithms coincide.

□

1.8 Proof of Theorem 2.2.8

The neg-entropy mirror map is 1.4) we can consider as bound for the gradient in Eq. (1.2)

𝜌 = 1 𝑘 -strongly convex w.r.t the norm ∥ • ∥ 1 over X ∩ D [48, Exam- ple 2.5]. The dual norm of ∥ • ∥ 1 is ∥ • ∥ ∞ . By taking 𝑝 → ∞ in Eq. (
𝐿 = ∥𝑤 𝑤 𝑤 ∥ ∞ ℎ.
(

The initial state 𝑥 𝑥 𝑥 1 with 𝑥 1,𝑖 = 𝑘/𝑁 , ∀𝑖 ∈ N is the minimizer of Φ, and we have Φ(𝑥) ≤ 0, ∀𝑥 𝑥 𝑥 ∈ 𝑋 . Thus

𝐷 Φ (𝑥 𝑥 𝑥, 𝑥 𝑥 𝑥 1) ≤ Φ(𝑥 𝑥 𝑥) -Φ(𝑥 𝑥 𝑥 1) ≤ -Φ(𝑥 𝑥 𝑥 1) = - 𝑁 ∑︁ 𝑖=1 𝑘 𝑁 log 𝑘 𝑁 = 𝑘 log 𝑁 𝑘 = 𝐷 2 . (1.17)
The bound follows by Theorem 1.

, and selecting the learning rate that gives the tightest upper bound, that is 𝜂 =

√︂ 2 log(𝑁 𝑘) ∥𝑤 ∥ 2 ∞ ℎ 2 𝑇 .
1.9 Proof of Theorem 2.2.9

We adapt the Euclidean projection algorithm in [START_REF] Wang | Projection onto the Capped Simplex[END_REF]. Finding the projection x = Π Φ X∩D (y) corresponds to solving a convex problem as 𝐷 Φ (x, y) is convex in x and X ∩ D is a convex set. Without loss of generality, we assume the components of x = Π Φ X∩D (y) to be in non-decreasing order. Let 𝑏 ∈ N be the index of the largest component of x smaller than 1. The KKT conditions lead to conclude that if the components of y are ordered in ascending order, so are the components of x. In particular, the smallest 𝑏 components of x can be obtained as 𝑥 𝑖 = 𝑦 𝑖 𝑒 𝛾 and 𝑦 𝑏 𝑒 𝛾 < 1 ≤ 𝑦 𝑏+1 𝑒 𝛾 , where 𝛾 is the Lagrangian multiplier associated with the capacity constraint. If 𝑏 is known, then it follows from the capacity constraint that

𝑚 𝑏 ≜ 𝑒 𝛾 = 𝑘+𝑏-𝑁 𝑏 𝑖=1 𝑦 𝑖 = 𝑘+𝑏-𝑁 ∥y∥ 1 -𝑁 𝑖=𝑏+1 𝑦 𝑖
. We observe that necessarily 𝑏 ∈ {𝑁 -𝑘 + 1, . . . , 𝑁 }. In fact, we cannot have 𝑏 ≤ 𝑁 -𝑘. If 𝑏 ≤ 𝑁 -𝑘, we get 𝑁 𝑖=𝑁 -𝑘+1 𝑥 𝑖 ≥ 𝑘 and the capacity constraint implies that 𝑥 𝑖 = 0, ∀𝑖 ≤ 𝑏, but we must have 𝑥 𝑖 > 0 since x ∈ X ∩ D and D = 𝑅 𝑁 >0 . We can then find the value of 𝑏, but checking which number in {𝑁 -𝑘 + 1, . . . , 𝑁 } satisfies 𝑦 𝑏 𝑒 𝛾 < 1 ≤ 𝑦 𝑏+1 𝑒 𝛾 . Note that this operation only requires the largest 𝑘 components of y. The projection corresponds to setting the components 𝑦 𝑏+1 , . . . , 𝑦 𝑁 to 1 and multiply the other 𝑁 -𝑏 components by 𝑚 𝑏 . In order to avoid updating all components at each step, we can simply set the components 𝑥 𝑖 for 𝑖 > 𝑏 (those that should be set equal to 1) to 1 𝑚 𝑏 . Then, at any time 𝑡, we can recover the value of 𝑥 𝑡,𝑖 , multiplying the 𝑖-th component of the vector x by 𝑃 = 𝑡 𝑠=1 𝑚 𝑏,𝑠 , where 𝑚 𝑏,𝑠 is the returned 𝑚 𝑏 from the Bregman projection at time step 𝑠. For general values of 𝑅 and ℎ, the projection step takes O (𝑘) steps per iteration and a partial sort is required to maintain top-𝑘 components of y 𝑡 sorted; this can be done using partial sorting in O (𝑁 + 𝑘 log(𝑘)) [START_REF] Paredes | Optimal Incremental Sorting[END_REF]. When 𝑅 = ℎ = 1, Algorithm 1 leads to only a single state coordinate update, and requires O (log(𝑘)) steps to maintain top-𝑘 components of x 𝑡 sorted online. , where 𝑎 is the number of components set to zero and 𝑏 is the number of components strictly less than one, and Δ ≥ 𝑦 𝑡+1,𝑎 (a KKT condition in [START_REF] Wang | Projection onto the Capped Simplex[END_REF]) and in turn Δ ≥ 0 because 𝑦 𝑡+1,𝑖 ≥ 0 for any 𝑖 ∈ N . Therefore, all the components 𝑖 ∉ supp(𝑟 𝑟 𝑟 𝑡) of the resulting state are decreased or at most kept unchanged. Similarly, the neg-entropy Bregman projection onto the capped simplex sets some components to one if they exceed it, and the remaining components are scaled by a constant 𝑚 𝑏 . In our caching setting we have 𝑦 𝑡+1,𝑖 ≥ 𝑥 𝑡,𝑖 for 𝑖 ∈ N in turn ∥𝑦 𝑦 𝑦 𝑡+1 ∥ 1 ≥ 𝑘, thus the equality constraint ∥𝑥 𝑥 𝑥 ∥ 1 = 𝑘 in the projection can be replaced by ∥𝑥 𝑥 𝑥 ∥ 1 ≤ 𝑘. From the KKT dual feasibility condition we obtain -𝛾 ≥ 0 and 𝑚 𝑏 = 𝑒 𝛾 ≤ 1. Thus, we have 𝑥 𝑡+1,𝑖 ≤ 𝑥 𝑡,𝑖 for every 𝑖 ∉ supp(𝑟 𝑟 𝑟 𝑡). We conclude that the update cost is zero for both policies, i.e., UC 𝑟 𝑟 𝑟 𝑡 (𝑥 𝑥 𝑥 𝑡 , 𝑥 𝑥 𝑥 𝑡+1) = 𝑖∉supp(𝑟 𝑟 𝑟 𝑡) 𝑤 ′ 𝑖 max(0, 𝑥 𝑡+1,𝑖 -𝑥 𝑡,𝑖) = 0.

2 Integral Caching 19) We conclude that the regret of any deterministic policy A is Ω(𝑇) compared to a static optimum selecting the best state in Z; therefore, it also has Ω(𝑇) regret compared to a static optimum selecting the best fractional state in X, which includes Z.

(A) = 𝑇 𝑡=1 𝑓 𝑟 𝑟 𝑟 𝑡 (𝑥 𝑥 𝑥 𝑡) -𝑇 𝑡=1 𝑓 𝑟 𝑟 𝑟 𝑡 (𝑥 𝑥 𝑥 *) ≥ 𝑇 (𝑁 -𝑘) -𝑇 (𝑁 -2𝑘) -𝑇 𝑘 2 𝑁 = 𝑘 1 -𝑘 𝑁 𝑇 . (2.

Proof of Proposition 2.2.12

The expected service cost incurred when sampling the integral caching states 𝑧 𝑧 𝑧 𝑡 from 𝑥 𝑥 𝑥 𝑡 at each time 𝑡, by the linearity of

𝑓 𝑟 𝑟 𝑟 𝑡 is E 𝑇 𝑡=1 𝑓 𝑟 𝑟 𝑟 𝑡 (𝑧 𝑧 𝑧 𝑡) = 𝑇 𝑡=1 E 𝑓 𝑟 𝑟 𝑟 𝑡 (𝑧 𝑧 𝑧 𝑡) = 𝑇 𝑡=1 𝑓 𝑟 𝑟 𝑟 𝑡 (E [𝑧 𝑧 𝑧 𝑡]) = 𝑇 𝑡=1 𝑓 𝑟 𝑟 𝑟 𝑡 (𝑥 𝑥 𝑥 𝑡).
The best static configuration 𝑥 𝑥 𝑥 * in the fractional setting can always be selected to be integral; this is because the objective and constraints are linear, so integrality follows from the fundamental theorem of linear programming. Hence, the expected regret for the service cost coincides with the regret of the fractional caching policy.

Proof of Theorem 2.2.13

We consider the catalog N = {1, 2}, cache capacity 𝑘 = 1, and equal service and update costs (2.20)

𝑤 𝑖 = 𝑤 ′ 𝑖 = 1 for 𝑖 ∈ N . A policy A selects the states {𝑥 𝑥 𝑥 𝑡 } 𝑇 𝑡=1 ∈ X 𝑇
The expected service cost at time 𝑡 is E 𝑓 𝑟 𝑟 𝑟 𝑡 (𝑧 𝑧 𝑧 𝑡) = 1 -𝑥 𝑡,𝑖 𝑡 , and the expected update cost is

E UC 𝑟 𝑟 𝑟 𝑡 (𝑧 𝑧 𝑧 𝑡 ,𝑧 𝑧 𝑧 𝑡+1) = P 𝑧 𝑡,𝑖 𝑡 = 1, 𝑧 𝑡+1,𝑖 𝑡 = 0 = P 𝑧 𝑡,𝑖 𝑡 = 1 P 𝑧 𝑡+1,𝑖 𝑡 = 0 = 𝑥 𝑡,𝑖 𝑡 (1 -𝑥 𝑡+1,𝑖 𝑡).
(2.21) An update cost is incurred when 𝑖 𝑡 is requested and the state changes from 𝑧 𝑡,𝑖 𝑡 = 1 to 𝑧 𝑡+1,𝑖 𝑡 = 0; we pay a unitary cost due to fetching a single file that is not requested with probability P 𝑧 𝑡,𝑖 𝑡 = 1, 𝑧 𝑡+1,𝑖 𝑡 = 0 , and this gives the first equality. We use independence of the random variables 𝑧 𝑧 𝑧 𝑡 and 𝑧 𝑧 𝑧 𝑡+1 to obtain the second equality. A fixed state 𝑥 𝑥 𝑥 = 1 2 , 1 2 incurs a cost of 1 2 for every timeslot 𝑡 ∈ [𝑇]. We define the instantaneous extended regret w.r.t. the fixed state 𝑥 𝑥 𝑥 for every times-

lot 𝑡 ∈ [𝑇] as 𝑎 𝑡 = E 𝑓 𝑟 𝑟 𝑟 𝑡 (𝑥 𝑥 𝑥 𝑡) + UC 𝑟 𝑟 𝑟 𝑡 (𝑧 𝑧 𝑧 𝑡 ,𝑧 𝑧 𝑧 𝑡+1) -𝑓 𝑟 𝑟 𝑟 𝑡 (𝑥 𝑥 𝑥) = E 𝑓 𝑟 𝑟 𝑟 𝑡 (𝑥 𝑥 𝑥 𝑡) + UC 𝑟 𝑟 𝑟 𝑡 (𝑧 𝑧 𝑧 𝑡 ,𝑧 𝑧 𝑧 𝑡+1) -1 2 .
Observe here that looking for a minimizer over X or over Z is equivalent. Because 𝑥 𝑥 𝑥 is not necessarily the minimizer of the aggregate service cost 𝑇 𝑡=1 𝑓 𝑟 𝑟 𝑟 𝑡 (𝑥 𝑥 𝑥), we can lower bound the extended regret (2.30) as

E-Regret 𝑇 (A, Ξ) ≥ 𝑇 𝑡=1 𝑎 𝑡 . (2.22)
Without loss of generality assume that 𝑇 is even so 𝑇 𝑡=1 𝑎 𝑡 = 𝑇 /2 𝑘=1 (𝑎 2𝑘 + 𝑎 2𝑘-1), and we have

𝑇 𝑡=1 𝑎 𝑡 = 𝑇 /2 ∑︁ 𝑘=1 1 -𝑥 2𝑘-1,𝑖 2𝑘 -1 -𝑥 2𝑘,𝑖 2𝑘 + 𝑥 2𝑘-1,𝑖 2𝑘 -1 (1 -𝑥 2𝑘,𝑖 2𝑘 -1) + 𝑥 2𝑘,𝑖 2𝑘 (1 -𝑥 2𝑘+1,𝑖 2𝑘) ≥ 𝑇 /2 𝑘=1 1 -𝑥 2𝑘-1,𝑖 2𝑘 -1 -𝑥 2𝑘,𝑖 2𝑘 + 𝑥 2𝑘-1,𝑖 2𝑘 -1 (1 -𝑥 2𝑘,𝑖 2𝑘 -1) . 154

Chapter -Conclusion

From the definition of 𝑖 2𝑘 in Eq. (2.20) we have 𝑥 2𝑘,𝑖 2𝑘 ≤ (1 -𝑥 2𝑘,𝑖 2𝑘 -1) for any 𝑘 ∈ [𝑇 /2]. Thus,

𝑇 𝑡 =1 𝑎 𝑡 ≥ 𝑇 /2 𝑘=1 1 -𝑥 2𝑘 -1,𝑖 2𝑘 -1 -𝑥 2𝑘,𝑖 2𝑘 + 𝑥 2𝑘 -1,𝑖 2𝑘 -1 𝑥 2𝑘,𝑖 2𝑘 = 𝑇 /2 𝑘=1 1 -𝑥 2𝑘 -1,𝑖 2𝑘 -1 -𝑥 2𝑘,𝑖 2𝑘 1 -𝑥 2𝑘 -1,𝑖 2𝑘 -1 ≥ 𝑇 /2 𝑘=1 1 -𝑥 2𝑘 -1,𝑖 2𝑘 -1 -1 2 1 -𝑥 2𝑘 -1,𝑖 2𝑘 -1 = 𝑇 /2 𝑘=1 1 2 -1 2 𝑥 2𝑘 -1,𝑖 2𝑘 -1 ≥ 𝑇 8 .
The second and third inequalities are obtained using 𝑥 𝑡,𝑖 𝑡 ≤ 1 2 for every timeslot 𝑡 ∈ [𝑇]; a direct result from the definition of 𝑖 𝑡 in Eq. (2.20). We combine the above lower bound with Eq. (2.22) to obtain E-Regret 𝑇 (A, Ξ) ≥ 𝑇 8 .

Family of Coupling Schemes with Sublinear Update Cost

The following theorem provides a sufficient condition for the sublinearity of the expected total update cost of the random cache states {𝑧 𝑧 𝑧 𝑡 } 𝑇 𝑡=1 obtained through a rounding scheme Ξ from the input fractional states {𝑥 𝑥 𝑥 𝑡 } 𝑇 𝑡=1 . Theorem 2.1. Consider an OMD Algorithm and a joint distribution of (𝑧 𝑧 𝑧 𝑡 ,𝑧 𝑧 𝑧 𝑡+1) that satisfy Proof.

Consider that the sequence {𝑥 𝑥 𝑥 𝑡 } 𝑇 𝑡=1 is generated by an OMD algorithm, configured with a 𝜌strongly convex mirror map Φ w.r.t a norm ∥ • ∥. Assume that we can find a joint distribution of (𝑧 𝑧 𝑧 𝑡 ,𝑧 𝑧 𝑧 𝑡+1) satisfying E UC 𝑟 𝑟 𝑟 𝑡 (𝑧 𝑧 𝑧 𝑡 ,𝑧 𝑧 𝑧 𝑡+1) = O (∥𝑥 𝑥 𝑥 𝑡+1 -𝑥 𝑥 𝑥 𝑡 ∥ 1), where E[𝑧 𝑧 𝑧 𝑡] = 𝑥 𝑥 𝑥 𝑡 and E[𝑧 𝑧 𝑧 𝑡+1] = 𝑥 𝑥 𝑥 𝑡+1 . Then there exists a constant 𝛾 1 > 0, such that E UC 𝑟 𝑟 𝑟 𝑡 (𝑧 𝑧 𝑧 𝑡 ,𝑧 𝑧 𝑧 𝑡+1) ≤ 𝛾 1 ∥𝑥 𝑥 𝑥 𝑡+1 -𝑥 𝑥 𝑥 𝑡 ∥ 1 . Moreover, there exists 𝛾 2 > 0, such that 𝛾 ∥𝑥 𝑥 𝑥 𝑡+1 -𝑥 𝑥 𝑥 𝑡 ∥ 1 ≤ 𝛾 1 𝛾 2 ∥𝑥 𝑥 𝑥 𝑡+1 -𝑥 𝑥 𝑥 𝑡 ∥, and this gives

E UC 𝑟 𝑟 𝑟 𝑡 (𝑧 𝑧 𝑧 𝑡 ,𝑧 𝑧 𝑧 𝑡+1) ≤ 𝛾 1 𝛾 2 ∥𝑥 𝑥 𝑥 𝑡+1 -𝑥 𝑥 𝑥 𝑡 ∥ . (2.23) As Φ is 𝜌-strongly convex w.r.t. the norm ∥ • ∥ 𝐷 Φ (𝑥 𝑥 𝑥 𝑡 ,𝑦 𝑦 𝑦 𝑡+1) = Φ(𝑥 𝑥 𝑥 𝑡) -Φ(𝑦 𝑦 𝑦 𝑡+1) -∇Φ(𝑦 𝑦 𝑦 𝑡+1) 𝑇 (𝑥 𝑥 𝑥 𝑡 -𝑦 𝑦 𝑦 𝑡+1) = Φ(𝑥 𝑥 𝑥 𝑡) -Φ(𝑦 𝑦 𝑦 𝑡+1) + ∇Φ(𝑥 𝑥 𝑥 𝑡) 𝑇 (𝑦 𝑦 𝑦 𝑡+1 -𝑥 𝑥 𝑥 𝑡) + (∇Φ(𝑥 𝑥 𝑥 𝑡) -∇Φ(𝑦 𝑦 𝑦 𝑡+1)) 𝑇 (𝑥 𝑥 𝑥 𝑡 -𝑦 𝑦 𝑦 𝑡+1) ≤ - 𝜌 2 ∥𝑥 𝑥 𝑥 𝑡 -𝑦 𝑦 𝑦 𝑡+1 ∥ 2 + 𝜂𝑔 𝑇 𝑡 (𝑥 𝑥 𝑥 𝑡 -𝑦 𝑦 𝑦 𝑡+1) ≤ - 𝜌 2 ∥𝑥 𝑥 𝑥 𝑡 -𝑦 𝑦 𝑦 𝑡+1 ∥ 2 + 𝜂 ∥𝑥 𝑥 𝑥 𝑡 -𝑦 𝑦 𝑦 𝑡+1 ∥ 𝐿 ≤ 𝜂 2 𝐿 2 2𝜌 (2.24)
The above inequalities are obtained using the strong convexity of Φ and the update rule, Cauchy-Schwarz inequality, and the inequality 𝑎𝑥 -𝑏𝑥 2 ≤ max 𝑥 𝑎𝑥 -𝑏𝑥 2 = 𝑎 2 /4𝑏 as in the last step in the proof of [START_REF] Bubeck | Convex Optimization: Algorithms and Complexity[END_REF]Theorem 4.2], respectively. We have

∥𝑥 𝑥 𝑥 𝑡+1 -𝑥 𝑥 𝑥 𝑡 ∥ ≤ √︃ 2 𝜌 𝐷 Φ (𝑥 𝑥 𝑥 𝑡 , 𝑥 𝑥 𝑥 𝑡+1) ≤ √︃ 2 𝜌 𝐷 Φ (𝑥 𝑥 𝑥 𝑡 ,𝑦 𝑦 𝑦 𝑡+1) (2.24) ≤ √︃ 2𝜂 2 𝐿 2 2𝜌 2 ≤ 𝐿𝜂 𝜌 . (2.25)
The first inequality is obtained using the strong convexity of Φ, and the second using the generalized Pythagorean inequality [START_REF] Cesa | Prediction, Learning, and Games[END_REF]Lemma 11.3]. We combine Eq. (2.25) and (2.23) to obtain

E UC 𝑟 𝑟 𝑟 𝑡 (𝑧 𝑧 𝑧 𝑡 ,𝑧 𝑧 𝑧 𝑡+1) ≤ 𝛾 1 𝛾 2 ∥𝑥 𝑥 𝑥 𝑡+1 -𝑥 𝑥 𝑥 𝑡 ∥ ≤ 𝛾 1 𝛾 2 𝐿𝜂 𝜌 . The total update cost is 𝑇 -1 𝑡=1 E UC 𝑟 𝑟 𝑟 𝑡 (𝑧 𝑧 𝑧 𝑡 ,𝑧 𝑧 𝑧 𝑡+1) ≤ 𝛾 1 𝛾 2 𝐿𝜂 𝜌 𝑇 . When OMD has a fixed learning rate 𝜂 = Θ 1 √ 𝑇 , we obtain 𝑇 -1 𝑡=1 E UC 𝑟 𝑟 𝑟 𝑡 (𝑧 𝑧 𝑧 𝑡 ,𝑧 𝑧 𝑧 𝑡+1) = O √ 𝑇 . The expected service cost is E 𝑇 𝑡=1 𝑓 𝑡 (𝑧 𝑧 𝑧 𝑡) = 𝑇 𝑡=1 𝑓 𝑡 (𝑥 𝑥 𝑥 𝑡) = O (𝑇)
; the first equality is obtained from the linearity of the expectation operator and the function 𝑓 𝑟 𝑟 𝑟 𝑡 , and the second equality is obtained using the bound in Eq. (Proof.

We employ the shorthand notation 𝑚 𝑖 = 𝑖 𝑗=1 𝑥 𝑗 and 𝑚 - 𝑖 = ⌊𝑚 𝑖 ⌋. The choice of 𝜉 (see Figure 2.2) defines 𝑘 different thresholds 𝜉, 𝜉 + 1, . . . , 𝜉 + 𝑘 -1. For each threshold, we select the first item, whose accumulated mass exceeds the threshold. As 𝑚 𝑁 = 𝑘, we are guaranteed to exceeds all 𝑘 thresholds, and as 𝑥 𝑖 ≤ 1, we are guaranteed to select one item for each threshold. Therefore 𝑧 𝑧 𝑧 belongs to Z. From Algorithm 2.3 for any 𝑖 ∈ N we have P(𝑧 𝑖 = 1) = P(

I 𝑖 \ I 𝑖-1 = {𝑖}) = P (𝑚 𝑖 ≥ 𝜉 + |I 𝑖-1 |).
See Figure 2.1 (left). If 𝑚 𝑖-1 ≥ 𝑚 - 𝑖 , then |I 𝑖-1 | ∈ {𝑚 - 𝑖 , 𝑚 - 𝑖 + 1} and P (𝑚 𝑖 ≥ 𝜉 + |I 𝑖-1 |) = P 𝑚 𝑖 ≥ 𝜉 + |I 𝑖-1 | |I 𝑖-1 | = 𝑚 - 𝑖 P(|I 𝑖-1 | = 𝑚 - 𝑖) + P 𝑚 𝑖 ≥ 𝜉 + |I 𝑖-1 | |I 𝑖-1 | = 𝑚 - 𝑖 + 1 P(|I 𝑖-1 | = 𝑚 - 𝑖 + 1) (2.26)
= 𝑚 𝑖 -𝑚 𝑖-1 (𝑚 - 𝑖 + 1 -𝑚 𝑖-1) • (𝑚 - 𝑖 + 1 -𝑚 𝑖-1) + 0 • (𝑚 𝑖-1 -𝑚 - 𝑖) = 𝑥 𝑖 . (2.27)
See Figure 2.1 (right). If 𝑚 𝑖-1 < 𝑚 - 𝑖 , then |I 𝑖-1 | ∈ {𝑚 - 𝑖 -1, 𝑚 - 𝑖 } and P (𝑚 𝑖 ≥ 𝜉 + |I 𝑖-1 |) = P 𝑚 𝑖 ≥ 𝜉 + |I 𝑖-1 | |I 𝑖-1 | = 𝑚 - 𝑖 -1 P(|I 𝑖-1 | = 𝑚 - 𝑖 -1) + P 𝑚 𝑖 ≥ 𝜉 + |I 𝑖-1 | |I 𝑖-1 | = 𝑚 - 𝑖 P(|I 𝑖-1 | = 𝑚 - 𝑖) (2.28) = 1 • (𝑚 - 𝑖 -𝑚 𝑖-1) + 𝑚 𝑖 -𝑚 - 𝑖 𝑚 𝑖-1 -𝑚 - 𝑖 + 1 • (𝑚 𝑖-1 -𝑚 - 𝑖 + 1) = 𝑚 𝑖 -𝑚 𝑖-1 = 𝑥 𝑖 . (2.29)
□ Lemma 2.3. Consider a fractional cache configuration 𝑥 𝑥 𝑥 ′ obtained by an elementary mass movement of 𝛿 from 𝑢 ∈ N to 𝑣 ∈ N for configuration𝑥 𝑥 𝑥 ∈ X, i.e., 𝑥 𝑥 𝑥 ′ = 𝑥 𝑥 𝑥 -𝛿𝒆 𝑢 +𝛿𝒆 𝑣 . Algorithm 2.3 outputs the random integral cache configurations 𝑧 𝑧 𝑧, and 𝑧 𝑧 𝑧 ′ , given the input fractional cache states 𝑥 𝑥 𝑥 and 𝑥 𝑥 𝑥 ′ , respectively. The random integral configurations satisfy

E 𝜉 ∥𝑧 𝑧 𝑧 ′ -𝑧 𝑧 𝑧 ∥ 1,𝑤 𝑤 𝑤 ′ ≤ 2𝑘𝑁 ∥𝑤 𝑤 𝑤 ′ ∥ ∞ 𝛿, where ∥𝑥 𝑥 𝑥 ∥ 1,𝑤 𝑤 𝑤 ′ ≜ 𝑖∈N |𝑥 𝑖 | 𝑤 ′ 𝑖 , and note that UC 𝑟 𝑟 𝑟 𝑡 (𝑧 𝑧 𝑧 𝑡 ,𝑧 𝑧 𝑧 𝑡+1) ≤ ∥𝑧 𝑧 𝑧 𝑡 -𝑧 𝑧 𝑧 𝑡+1 ∥ 1,𝑤 𝑤 𝑤 ′ . Proof.
The probability that a random integral cache state 𝑧 𝑧 𝑧 ′ is changed w.r.t 𝑧 𝑧 𝑧 can be upper bounded as P(𝑧 𝑧 𝑧 ≠ 𝑧 𝑧 𝑧 ′) ≤ 𝑖∈N P(𝑧 𝑖 ≠ 𝑧 ′ 𝑖). Consider w.l.g that 𝑢 < 𝑣, then P(𝑧 𝑖 ≠ 𝑧 ′ 𝑖) = 0 for 𝑖 ∈ N \ {𝑢, 𝑢 + 1, . . . , 𝑣 }, and P(𝑧 𝑖 ≠ 𝑧 ′ 𝑖) = 𝛿 for 𝑖 ∈ {𝑢, 𝑢 + 1, . . . , 𝑣 }. We obtain P(𝑧 𝑧 𝑧 ≠ 𝑧 𝑧 𝑧 ′) ≤ 𝛿 (𝑣 -𝑢 + 1) (e.g., see Figure 2.2). More generally, for 𝑢 ≠ 𝑣 we have P(𝑧 𝑧 𝑧 ≠ 𝑧 𝑧 𝑧 ′) ≤ 𝛿 (|𝑣 -𝑢 | + 1). We conclude that

E ∥𝑧 𝑧 𝑧 ′ -𝑧 𝑧 𝑧 ∥ 1,𝑤 𝑤 𝑤 ′ ≤ max (𝑧 𝑧 𝑧,𝑧 𝑧 𝑧 ′)∈Z 2 ∥𝑧 𝑧 𝑧 ′ -𝑧 𝑧 𝑧 ∥ 1,𝑤 𝑤 𝑤 ′ • P(𝑧 𝑧 𝑧 ≠ 𝑧 𝑧 𝑧 ′) ≤ 2𝑘 ∥𝑤 𝑤 𝑤 ′ ∥ ∞ (|𝑣 -𝑢 | + 1)𝛿 ≤ 2𝑘𝑁 ∥𝑤 𝑤 𝑤 ′ ∥ ∞ 𝛿.ℎ𝑒𝑟𝑒

Proof.

The general fractional movement caused by a policy A changes the cache state from fractional state 𝑥 𝑥 𝑥 𝑡 ∈ X to 𝑥 𝑥 𝑥 𝑡+1 ∈ X, and we denote by J = 𝑖 ∈ N : 𝑥 𝑡+1,𝑖 -𝑥 𝑡,𝑖 > 0 the set of components that have a fractional increase. We have 𝑥 𝑥 𝑥 𝑡+1 = 𝑥 𝑥 𝑥 𝑡 + 𝑗 ∈J 𝜙 𝑗 𝑒 𝑗 -𝑖∈N \J 𝜙 𝑖 𝑒 𝑖 . where 𝜙 𝑖 , 𝑖 ∈ N is the absolute fractional change in component 𝑖 of the cache. Remark that we have ∥𝑥 𝑥 𝑥 𝑡+1 -𝑥 𝑥 𝑥 𝑡 ∥ 1,𝒘 ′ = 𝑖∈N 𝑤 ′ 𝑖 𝜙 𝑖 . From the capacity constraint we know that 𝑖∈N \J 𝜙 𝑖 = 𝑗 ∈J 𝜙 𝑗 . If we want to decompose this general fractional change to elementary operations, then we need to find a flow 𝛿 𝑖,𝑗 (𝑖,𝑗)∈(N \J)×J that moves 𝑗 ∈J 𝜙 𝑗 mass from the components in N \ J to to those in J . This requires at most 𝑁 -1 elementary operations. We define the map 𝜈 : N 2 → N that provides an order on the sequence of elementary operations. Let 𝑧 𝑧 𝑧 𝜈 (𝑖,𝑗) be the random cache state that could have been sampled after the 𝜈 (𝑖, 𝑗)-th elementary operation where E 𝑧 𝑧 𝑧 𝜈 (𝑖,𝑗) = 𝑥 𝑥 𝑥 𝜈 (𝑖,𝑗) , and the total number of operations is denoted by |𝜈 | ≤ 𝑁 -1. Note that by definition 𝑧 𝑧 𝑧 |𝜈 | = 𝑧 𝑧 𝑧 𝑡+1 , and we take 𝑧 𝑧 𝑧 0 = 𝑧 𝑧 𝑧 𝑡 . For each of these operations we pay in expectation at most 2𝑘𝑁 ∥𝑤 𝑤 𝑤 ′ ∥ ∞ 𝛿 𝑖,𝑗 update cost Chapter -Conclusion from Lemma 2.3. Then the total expected movement cost is:

E 𝜉 UC 𝑟 𝑟 𝑟 𝑡 (𝑧 𝑧 𝑧 𝑡 ,𝑧 𝑧 𝑧 𝑡+1) ≤ E 𝜉 [∥𝑧 𝑧 𝑧 𝑡+1 -𝑧 𝑧 𝑧 𝑡 ∥ 1,𝑤 𝑤 𝑤 ′] = E 𝜉 |𝜈 |-1 𝑙=0 𝑧 𝑧 𝑧 𝑙+1 -𝑧 𝑧 𝑧 𝑙 1,𝑤 𝑤 𝑤 ′ (2.30) ≤ |𝜈 |-1 ∑︁ 𝑙=0 E 𝜉 𝑧 𝑧 𝑧 𝑙+1 -𝑧 𝑧 𝑧 𝑙 1,𝑤 𝑤 𝑤 ′ ≤ 𝑖∈N \J 𝑗 ∈J 2𝑘 ∥𝑤 𝑤 𝑤 ′ ∥ ∞ 𝑁 𝛿 𝑖,𝑗 (2.31)
= 2𝑘𝑁 ∥𝑤 𝑤 𝑤 ′ ∥ ∞ ∑︁ 𝑖∈N \J 𝜙 𝑖 ≤ 𝑘𝑁 ∥𝑤 𝑤 𝑤 ′ ∥ ∞ ∥𝑥 𝑥 𝑥 𝑡+1 -𝑥 𝑥 𝑥 𝑡 ∥ 1 . (2.32)
The update cost is thus O (∥𝑥 𝑥 𝑥 𝑡+1 -𝑥 𝑥 𝑥 𝑡 ∥ 1) in expectation.

□ 3 Tabular Greedy Algorithm

We present here TabularGreedy [START_REF] Streeter | Online Learning of Assignments[END_REF], a polynomial time algorithm for solving Problem (2.38) within a (1 -1/𝑒)-approximation. This differs from the (more common) continuous greedy algorithm [START_REF] Calinescu | Maximizing a Monotone Submodular Function subject to a Matroid Constraint[END_REF] in that it operates in the discrete rather than continuous domain, even though both algorithms involve randomization. It serves as the basis for the online algorithm by Streeter et al. [START_REF] Streeter | Online Learning of Assignments[END_REF]. A key departure from continuous greedy is the use of randomization via colors assigned to each slot, which also manifest in the online version of the algorithm. Intuitively, the colored allocation à ⊆ S × C × [𝑀] is an allocation of items to slots, additionally parameterized by colors. Given the color vector𝑚 𝑚 𝑚, assigning colors to slots, sample 𝑚 𝑚 𝑚 acts as a selector, producing an (uncolored) allocation 𝐴 ⊆ S × C. Let 𝐹 (Ã) be the expected value of 𝑓 (sample 𝑚 𝑚 𝑚 (Ã)) when each color 𝑚 𝑠 is selected independently and u.a.r. from [𝑀]; formally,

𝐹 (Ã) = E 𝑓 (sample 𝑚 𝑚 𝑚 (Ã)) = 1 𝑀 |S| ∑︁ 𝑚 𝑚 𝑚 ′ ∈[𝑀] |𝑆 | 𝑓 (sample 𝑚 𝑚 𝑚 ′ (Ã)). (3.34)
The procedure is summarized in Algorithm .1. TabularGreedy constructs a set of triplets à ⊆ S × C × [𝑀] greedily; that is, starting from an empty set, it iterates over all colors and storage slots in an arbitrary order, and places items to (colored) slots by greedily maximizing the extended function 𝐹 . Formally, in the iteration over color 𝑚 ∈ [𝑀] and slot 𝑠 ∈ 𝑆, the algorithm extends à via: Note that the same node would not cache the same content multiple times. Indeed, as shown in Eq. (3.35), the algorithm extends the set of triplets Ã, in the iteration over color 𝑚 and slot 𝑠, by the maximizer (𝑠, 𝑖, 𝑚) of 𝐹 (à + (𝑠, 𝑖, 𝑚)). To be more specific, in the same node, if it is possible that an item 𝑖 is repeatedly cached, then one of the triplets (𝑠, 𝑖, 𝑚) could not be the maximizer in some iteration, since a different item 𝑖 ′ could achieve greater or equal cache gain than 𝑖. This internally avoids duplicate cache in one nodes.

𝑖 𝑠,𝑚 = arg max 𝑖∈C {𝐹 (Ã + (𝑠, 𝑖, 𝑚))} (3.35a) Ã ← Ã + (𝑠, 𝑖 𝑠,𝑚 , 𝑚), (3.35b
The following theorem characterizes the approximation guarantee of the solution produced by TabularGreedy; the theorem allows for the case where the greedy item selection 𝑖 𝑠,𝑚 by (3.35a) is inexact, and the selected item is suboptimal by an offest 𝜖 𝑠,𝑚 . Let Ã-𝑠,𝑚 equal à just before (𝑠, 𝑖 𝑠,𝑚 , 𝑚) is added at iteration 𝑚, 𝑠, i.e., Ã-𝑠,𝑚 = {(𝑠 ′ , 𝑖 𝑠 ′ ,𝑚 ′ , 𝑚 ′) : 𝑠 ′ ∈ S, 𝑚 ′ < 𝑚} ∪ {(𝑠 ′ , 𝑖 𝑠 ′ ,𝑚 , 𝑚) : 𝑠 ′ ≺ 𝑠}: Theorem 3.1. (Theorem 13 in [START_REF] Daniel Golovin | Online submodular maximization under a matroid constraint with application to learning assignments[END_REF]) Suppose 𝑓 is monotone submodular. Consider an arbitrary ordering of colors 𝑚 ∈ [𝑀] and slots 𝑠 ∈ S, and consider the sequence of sets constructed by TabularGreedy when 𝑖 𝑠,𝑚 ∈ C in Eq. (3.35a) is such that:

𝐹 (Ã + (𝑠, 𝑖 𝑠,𝑚 , 𝑚)) ≥ max 𝑖∈C 𝐹 (Ã- 𝑠,𝑚 + (𝑠, 𝑖, 𝑚)) -𝜖 𝑠,𝑚 , (3.36)
for some 𝜖 𝑠,𝑚 ≥ 0. Then, the final set in the sequence à ⊆ S × C × [𝑀] satisfies:

𝐹 (Ã) ≥ 𝛽 (|S|, 𝑀) • max 𝐴∈D 𝑓 (𝐴) - ∑︁ 𝑠∈S 𝑀 ∑︁ 𝑚=1 𝜖 𝑠,𝑚 , (3.37)
where

𝛽 (|S|, 𝑀) = 1 -(1 -1 𝑀) 𝑀 -|S| 2 𝑀 -1 .
The importance of accounting for inexact greedy selection lies in the fact that expectation 𝐹 is hard to compute exactly, and is typically approximated by sampling, i.e., via F (Ã) = 1 𝐿 𝐿 𝑙=1 𝑓 (sample 𝑚 𝑚 𝑚 𝑙 (S)), were 𝑚 𝑚 𝑚 𝑙 are sampled u.a.r. The theorem implies that by selecting a large enough 𝑀 (in particular, larger than Θ(|S| 2), and 𝐿, the approximation guarantee can get arbitrarily close to 1 -1/𝑒.

Formal Guarantees of Hedge Selector Algorithm 2.4

Recall that, at each time 𝑡, the hedge selector E defined by Algorithm 2.4 picks an action 𝑖 𝑡 from finite set C and subsequently observes an adversarially selected vector of rewards ℓ ℓ ℓ 𝑡 = [ℓ 𝑡 𝑖] 𝑖∈C ∈ R |C| + , where ℓ 𝑡 𝑖 is the reward for choosing action 𝑖 ∈ C at round 𝑡. The selector then accrues reward ℓ 𝑡 𝑖 𝑡 , i.e., the reward associated with the action 𝑖 𝑡 it selected previously. We note that the hedge selector operates in the full-information (rather than the classic bandit) setting: all action rewards in C are observed. The regret 𝑅 𝑇 of hedge selector E is:

𝑅 𝑇 = 𝑇 ∑︁ 𝑡=1 ℓ 𝑡 𝑖 * -E[𝑇 ∑︁ 𝑡=1 ℓ 𝑡 𝑖 𝑡], (4.38)
where 𝑖 * is the best selection in hindsight, i.e., 𝑖 * = arg max 𝑖∈C 𝑇 𝑡=1 ℓ 𝑡 𝑖 . The following lemma is classic; we note that it follows immediately from Theorem 1.5 in Hazan [20]. We reprove it here for completeness. Lemma 4.1 ([20,[START_REF] Arora | The Multiplicative Weights Update Method: A Meta-Algorithm and Applications[END_REF]). Assume that every action's reward is bounded by

L ∈ R + . Let 𝜖 = 1 L √︃ log |C| 𝑇 .
Then, for all 𝑇 ≥ log |C|, the regret of hedge selector E defined by (2.40) and (2.41) is s.t.:

𝑅 𝑇 ≤ 2 L√︁ 𝑇 log |C|. (4.39)
Proof.

Observe that for 𝑇 ≥ log |C|, we have that

𝜖 = 1 L √︂ log |𝐶 | 𝑇 ∈ [0, 1 L]. (4.40)
Let

Φ 𝑡 = 𝑖∈C 𝑊 𝑡 𝑖 , 𝑝 𝑝 𝑝 𝑡 = [𝑝 𝑡 𝑖] 𝑖∈C ∈ R |C| . Φ 𝑡+1 = ∑︁ 𝑖∈C 𝑊 𝑡+1 𝑖 (2.41) = ∑︁ 𝑖∈C 𝑊 𝑡 𝑖 𝑒 𝜖ℓ 𝑡 𝑖 , (4.40)
≤ ∑︁ 𝑖∈C 𝑊 𝑡 𝑖 (1 + 𝜖ℓ 𝑡 𝑖 + 𝜖 2 ℓ 𝑡 𝑖) 2), 𝑒 𝑥 ≤ 1 + 𝑥 + 𝑥 2 , ∀𝑥 ∈ [0, 1] = Φ 𝑡 ∑︁ 𝑖∈C 𝑝 𝑡 𝑖 (1 + 𝜖ℓ 𝑡 𝑖 + 𝜖 2 (ℓ 𝑡 𝑖) 2), 𝑝 𝑡 𝑖 = 𝑊 𝑡 𝑖 𝑗 ∈C 𝑊 𝑡 𝑗 = 𝑊 𝑡 𝑖 Φ 𝑡 = Φ 𝑡 (1 + 𝜖 ⟨𝑝 𝑝 𝑝 𝑡 , ℓ ℓ ℓ 𝑡 ⟩ + 𝜖 2 ⟨𝑝 𝑝 𝑝 𝑡 , (ℓ ℓ ℓ 𝑡) 2 ⟩), (ℓ ℓ ℓ 𝑡) 2 = [(ℓ 𝑡 𝑖) 2] 𝑖∈C ≤ Φ 𝑡 𝑒 𝜖 ⟨𝑝 𝑝 𝑝 𝑡 ,ℓ ℓ ℓ 𝑡 ⟩+𝜖 2 ⟨𝑝 𝑝 𝑝 𝑡 ,(ℓ ℓ ℓ 𝑡) 2 ⟩ , 1 + 𝑥 ≤ 𝑒 𝑥 . (4.41) 5 -Proof of Theorem 2.3.2 161
So, at round 𝑇 ,

𝑒 𝜖 𝑇 𝑡 =1 ℓ 𝑡 𝑖 * = 𝑊 𝑇 𝑖 * ≤ Φ 𝑇 ≤ Φ 0 𝑒 𝜖 𝑇 𝑡 =1 ⟨𝑝 𝑝 𝑝 𝑡 ,ℓ ℓ ℓ 𝑡 ⟩+𝜖 2 𝑇 𝑡 =1 ⟨𝑝 𝑝 𝑝 𝑡 ,(ℓ ℓ ℓ 𝑡) 2 ⟩ , 𝜖 𝑇 ∑︁ 𝑡=1 ℓ 𝑡 𝑖 * ≤ ln |C| + 𝜖 𝑇 ∑︁ 𝑡=1 ⟨𝑝 𝑝 𝑝 𝑡 , ℓ ℓ ℓ 𝑡 ⟩ + 𝜖 2 𝑇 ∑︁ 𝑡=1 ⟨𝑝 𝑝 𝑝 𝑡 , (ℓ ℓ ℓ 𝑡) 2 ⟩, take logarithm 𝑇 ∑︁ 𝑡=1 ℓ 𝑡 𝑖 * - 𝑇 ∑︁ 𝑡=1 ⟨𝑝 𝑝 𝑝 𝑡 , ℓ ℓ ℓ 𝑡 ⟩ ≤ ln |C| 𝜖 + 𝜖 𝑇 ∑︁ 𝑡=1 ⟨𝑝 𝑝 𝑝 𝑡 , (ℓ ℓ ℓ 𝑡) 2 ⟩,
divided by 𝜖 and rearrange.

(4.42)

Thus,

𝑅 𝑇 = 𝑇 ∑︁ 𝑡=1 ℓ 𝑡 𝑖 * -E[𝑇 ∑︁ 𝑡=1 ℓ 𝑡 𝑖 𝑡] = 𝑇 ∑︁ 𝑡=1 ℓ 𝑡 𝑖 * - 𝑇 ∑︁ 𝑡=1 ⟨𝑝 𝑝 𝑝 𝑡 , ℓ ℓ ℓ 𝑡 ⟩ (4.42) ≤ ln |C| 𝜖 + 𝜖 𝑇 ∑︁ 𝑡=1 ⟨𝑝 𝑝 𝑝 𝑡 , (ℓ ℓ ℓ 𝑡) 2 ⟩ ≤ ln |C| 𝜖 + 𝜖 L2 𝑇 , 𝑝 𝑝 𝑝 𝑡 is probability, and ℓ 𝑡 𝑖 ∈ [0, L]. (4.43)
The latter inequality yields

𝑅 𝑇 ≤ 2 L√︁ 𝑇 log |C| as 𝜖 = 1 L √︃ ln |C| 𝑇 . □ 5 Proof of Theorem 2.3.2
We first introduce some auxiliary lemmas to describe the properties of reward vectors. For any set à ⊆ S × C × [𝑀] and given color 𝑚 𝑚 𝑚 = [𝑚 𝑠] 𝑠∈S at round 𝑡, let 𝐹 𝑡 (Ã,𝑚 𝑚 𝑚) = 𝑓 𝑡 (sample 𝑚 𝑚 𝑚 (Ã)). Let 𝑚 𝑚 𝑚 𝑡 be the vector of colors at the beginning of round 𝑡. Let also

𝑖 𝑡 𝑠,𝑚 =
the item returned by E 𝑠,𝑚 .arm() the last time it was called (including 𝑡), or an arbitrary item if the selector has never been called. (

Note that, at time 𝑡, the selector E 𝑠,𝑚 .arm() is indeed called for all slots 𝑠 on a path of a request 𝑟 ∈ R 𝑡 when 𝑚 = 𝑚 𝑡 𝑠 . Let Ã𝑡 ⊆ S × C × [𝑀] be the triplet set constructed by Algorithm 2.5 at round 𝑡, i.e., the set comprising triplets (𝑠, 𝑖 𝑡 𝑠,𝑚 , 𝑚) for all 𝑠 ∈ S and 𝑚 ∈ [𝑀]. Note that such triplets are updated at all slots in paths of requests in timeslot 𝑡; all other triplets remain unaltered. We impose an ordering over all such triplets, defined by an ordering over colors first and slots second (the latter given by Eq. (2.32)). Under this ordering, similar to Ã-𝑠,𝑚 defined before Theorem 3.1, let Ã𝑡-𝑠,𝑚 equal Ã𝑡 just "before" (𝑠, 𝑖 𝑡 𝑠,𝑚 , 𝑚) is added at round 𝑡; this addition is conceptual, presuming these triplets are "added" one-by-one under the aforementioned ordering to construct Ã𝑡 . Under this convention,

Ã𝑡-

𝑠,𝑚 = {(𝑠 ′ , 𝑖 𝑡 𝑠 ′ ,𝑚 , 𝑚) : 𝑠 ′ ∈ S, 𝑚 ′ < 𝑚} ∪ {(𝑠 ′ , 𝑖 𝑡 (𝑠 ′ ,𝑚) , 𝑚) : 𝑠 ′ ≺ 𝑠}.

Chapter -Conclusion

Lemma 5.1. At round 𝑡, for all storage slot 𝑠 ∈ (𝑖,𝑝)∈R 𝑡 S 𝑝 , the reward vector computed by Eq. (2.46), i.e., the vector ℓ ℓ ℓ 𝑟 (𝑠, 𝑚 𝑡 𝑠) ∈ R |C| + with coordinates:

ℓ 𝑟 𝑖 ′ (𝑠, 𝑚 𝑡 𝑠) = max (𝑣 ′ ,𝑗 ′)∈S ⪯𝑠 +𝑠 𝑤 𝑝 𝑣 ′ , 𝑖 ′ = 𝑖 max (𝑣 ′ ,𝑗 ′)∈S ⪯𝑠 𝑤 𝑝 𝑣 ′ , 𝑜.𝑤
where 𝑟 = (𝑖, 𝑝) ∈ R 𝑡 and S ⪯𝑠 = {𝑠 ′ ∈ S 𝑖,𝑝 : 𝑚 𝑠 ′ < 𝑚 𝑠 or 𝑚 𝑠 ′ = 𝑚 𝑠 , 𝑠 ′ ≺ 𝑠}, satisfies the following property:

∑︁ 𝑟 =(𝑖,𝑝)∈R 𝑡 :𝑠∈S 𝑝 ℓ 𝑟 𝑖 ′ (𝑠, 𝑚 𝑡 𝑠) = 𝐹 𝑡 (Ã𝑡- 𝑠,𝑚 𝑡 𝑠 + (𝑠, 𝑖 ′ , 𝑚 𝑡 𝑠),𝑚 𝑚 𝑚 𝑡), for all 𝑖 ′ ∈ C. (5.45)
Proof.

From the definition Eq. (2.36) of 𝑓 𝑟 , we have that for 𝑟 = (𝑖, 𝑝) ∈ R 𝑡 :

𝑓 𝑟 (𝐴) = |𝑝 |-1 ∑︁ 𝑘=1 𝑤 𝑝 𝑘+1 𝑝 𝑘 1 𝐴 ∩        𝑘 ′ ∈[𝑘] S 𝑝 𝑘 ′ × {𝑖}        ≠ ∅ = |𝑝 |-1 ∑︁ 𝑘=min{𝑘 ′ : ∃𝑗 ∈S 𝑝 𝑘 ′ s.t. ((𝑝 𝑘 ′ ,𝑗),𝑖)∈𝐴} 𝑤 𝑝 𝑘+1 𝑝 𝑘 = max 𝑣 ∈𝑝:∃𝑗 s.t. ((𝑣,𝑗),𝑖)∈𝐴 𝑤 𝑝 𝑣 , (5.46)
where 𝑤 𝑝 𝑣 is the cumulative upstream cost defined in Eq. (2.44). Then, 𝐹 𝑡 (Ã,𝑚 𝑚 𝑚) = 𝑓 𝑡 (sample 𝑚 𝑚 𝑚 (Ã)) (

Then, for Ã′ = Ã𝑡-

𝑠,𝑚 𝑡 𝑠 + (𝑠, 𝑖 ′ , 𝑚 𝑡 𝑠), we have 𝐹 𝑡 (Ã𝑡- 𝑠,𝑚 𝑡 𝑠 + (𝑠, 𝑖 ′ , 𝑚 𝑡 𝑠),𝑚 𝑚 𝑚 𝑡) (5.47) = ∑︁ (𝑖,𝑝)∈R 𝑡 :𝑠∈S 𝑝 max ((𝑣 ′ ,𝑗 ′),𝑖,𝑚 𝑠 ′)∈ Ã′ 𝑤 𝑝 𝑣 ′ = (𝑖,𝑝)∈R 𝑡 :𝑠∈S 𝑝 max (𝑣 ′ ,𝑗 ′)∈S ⪯𝑠 +𝑠 𝑤 𝑝 𝑣 ′ , 𝑖 ′ = 𝑖 (𝑖,𝑝)∈R 𝑡 :𝑠∈S 𝑝 max (𝑣 ′ ,𝑗 ′)∈S ⪯𝑠 𝑤 𝑝 𝑣 ′ , 𝑜.𝑤 = ∑︁ 𝑟 =(𝑖,𝑝)∈R 𝑡 :𝑠∈S 𝑝 ℓ 𝑟 𝑖 ′ (𝑠, 𝑚 𝑡 𝑠).
(5.48)

The second equality holds because of the definition of accumulate weights by Eq. (2.44) and the fact that 𝑣 = arg min 𝑣 𝑘 𝑝 (𝑣) = arg max 𝑣 𝑤 𝑝 𝑣 . The Third equality holds by the definitions of Ã′ and S ⪯𝑠 .

□

If the requests in R 𝑡 do not cross, it behaves same as the one request scenario. If requests do cross each other, the reward vector calculated by storage slot (𝑣, 𝑗) is the summation of separate reward vectors deriving from each request 𝑟 𝑡 ∈ R 𝑡 . Actually, it is equivalent to calculating the reward vector and calling operation feedback(ℓ ℓ ℓ 𝑡 (𝑠, 𝑚 𝑠)) separately when each request arrives. We prove the above statement by the following lemma: Lemma 5.2. Calling feedback() with reward vector 𝑘 𝑖=1 ℓ ℓ ℓ 𝑖 is equivalent to a sequence of 𝑘 feedback calls, with reward vectors ℓ ℓ ℓ 𝑖 .

Proof.

If we feedback a reward: 𝑖 ℓ ℓ ℓ 𝑖 , the weight vector in it is: ∀𝑖 ∈ C, 𝑊 𝑡+1 𝑖 = 𝑊 𝑡 𝑖 𝑒 𝜖 𝑖 ℓ 𝑖 . If we feedback rewards ℓ ℓ ℓ 𝑖 for all 𝑖 separately, in the end, the weight vector in it is: ∀𝑖 ∈ C, 𝑊 𝑡+1 𝑖 = 𝑊 𝑡 𝑖 𝑖 𝑒 𝜖ℓ 𝑖 . These two feedback scenario lead to same state in hedge selector.

□ Lemma 5.3. At round 𝑡, given selected color 𝑚 𝑚 𝑚, for 𝑠 ∉ (𝑖,𝑝)∈R 𝑡 S 𝑝 or 𝑚 ≠ 𝑚 𝑠 , all 𝑖 ′ , 𝑗 ′ ∈ C, 𝐹 𝑡 (Ã𝑡- 𝑠,𝑚 + (𝑠, 𝑖 ′ , 𝑚),𝑚 𝑚 𝑚) = 𝐹 𝑡 (Ã𝑡- 𝑠,𝑚 + (𝑠, 𝑗 ′ , 𝑚),𝑚 𝑚 𝑚). Proof.
When 𝑠 ∉ (𝑖,𝑝)∈R 𝑡 S 𝑝 or 𝑚 ≠ 𝑚 𝑠 , according to Eq. (5.48)

Taking the expectation of both sides over 𝑚, and over 𝑖 𝑡 𝑠,𝑚 and choosing 𝑖 to maximize the right hand side, we get

𝑇 ∑︁ 𝑡=1 𝐹 𝑡 (Ã𝑡- 𝑠,𝑚 + (𝑠, 𝑖 𝑡 𝑠,𝑚 , 𝑚)}) ≥ max 𝑖∈C 𝑇 ∑︁ 𝑡=1 𝐹 𝑡 (Ã𝑡- 𝑠,𝑚 + (𝑠, 𝑖 ′ , 𝑚)) -𝜖 𝑠,𝑚 , (5.54)
where we define

𝐹 𝑡 (Ã) = E 𝑚 𝑚 𝑚 [E 𝑖 𝑡 𝑠,𝑚 [𝑓 𝑡 (sample 𝑚 𝑚 𝑚 (Ã))]] and 𝜖 𝑠,𝑚 = E[𝑅 𝑇 𝑠,𝑚
]. We now define some additional notation. For any set 𝐴 𝐴 𝐴 of vector in S × C 𝑇 , define (5.56)

𝑓 (𝐴 𝐴 𝐴) = 𝑇 ∑︁ 𝑡=1 𝑓 𝑡 ({(𝑠, 𝑖 𝑡) : (𝑠,𝑖 𝑖 𝑖) ∈ 𝐴 𝐴 𝐴}), (5.55)
Analogously to Ã𝑡- 𝑠,𝑚 , define à à Ã- 𝑠,𝑚 = {(𝑠 ′ ,𝑖 𝑖 𝑖 𝑠 ′ ,𝑚 ′ , 𝑚 ′) : 𝑠 ′ ∈ S, 𝑚 ′ < 𝑚} ∪ {(𝑠 ′ ,𝑖 𝑖 𝑖 𝑠 ′ ,𝑚 , 𝑚) : 𝑠 ′ ≺ 𝑠}. Thus, for any (𝑠,𝑖 𝑖 𝑖, 𝑚) ∈ S × C 𝑇 × [𝑀], we have 𝐹 (à à Ã- 𝑠,𝑚 + (𝑠,𝑖 𝑖 𝑖, 𝑚)) = 𝑇 𝑡=1 𝐹 𝑡 (Ã𝑡- 𝑠,𝑚 + (𝑠, 𝑖 𝑡 , 𝑚))
. Combining this with (5.54) , we get:

𝐹 (Ã Ã Ã- 𝑠,𝑚 + (𝑠,𝑖 𝑖 𝑖 𝑠,𝑚 , 𝑚)) ≥ max 𝑖 ′ ∈C 𝐹 (Ã Ã Ã- 𝑠,𝑚 + (𝑠, [𝑖 ′] 𝑇 , 𝑚)) -𝜖 𝑠,𝑚 . (5.57
According to Lemma 4.1,

𝜖 𝑠,𝑚 = E[𝑅 𝑇 𝑠,𝑚] ≤ 2 R L√︁ |T 𝑠,𝑚 | log |C| ≤ 2 R L√︁ 𝑇 log |C|, then E 𝑇 ∑︁ 𝑡=1 𝑓 𝑡 (𝐴 𝑡) ≥ 𝛽 (|S|, 𝑀) • max 𝐴∈D 𝑇 ∑︁ 𝑡=1 𝑓 𝑡 (𝐴) -2 R L|S|𝑀 √︁ 𝑇 log |C|. (5.60) □ 6 Proof of Lemma 2.3.5
Consider a cache network of two nodes 𝑢 and 𝑣 and a catalog of two files represented by the set {1, 2}. The cache node 𝑢 has capacity 1 and the node 𝑣 is a repository node containing the files 1 and 2.

The hedge selector is initialized with a distribution of the possible states 𝑝 𝑝 𝑝 1 = (1/2, 1/2). According to Algorithm 2.4, the hedge selector adds 𝜖 = Θ 1 √ 𝑇 fraction to the component corresponding to the requested file, and reduces the same quantity from the other component. When the requested files sequence is {1, 2, 1, 2, . . . }, this gives the following distributions:

{𝑝 𝑝 𝑝 1 , 𝑝 𝑝 𝑝 2 , 𝑝 𝑝 𝑝 3 , 𝑝 𝑝 𝑝 4 , . . . } = {(1/2, 1/2), (1/2 + 𝜖, 1/2 -𝜖), (1/2, 1/2), (1/2 + 𝜖, 1/2 -𝜖), . . . }.
The distribution 𝑝 𝑝 𝑝 1 , gives two integral states (1, 0) w.p. 1/2 and (0, 1) w.p. 1/2, and 𝑝 𝑝 𝑝 2 can give two integral states (1, 0) w.p 1/2 + 𝜖 and (0, 1) w.p. 1/2 -𝜖. The expected update cost experienced in expectation from 𝑡 = 1 to 𝑡 = 2 is:

E UC(𝐴 1 , 𝐴 2) = 1/2 (1/2 -𝜖) + 1/2 (1/2 + 𝜖) = 1/2.
The decomposition of 𝑝 𝑝 𝑝 3 is the same as 𝑝 𝑝 𝑝 1 . The update cost experienced in expectation from 𝑡 = 2 to 𝑡 = 3 is:

E UC(𝐴 2 , 𝐴 3) = (1/2 -𝜖) 1/2 + (1/2 + 𝜖) 1/2 = 1/2.
The sequence repeats and the same costs are obtained. The total update cost is:

E 𝑇 ∑︁ 𝑡=1 UC(𝐴 𝑡 , 𝐴 𝑡+1) = 𝑇 ∑︁ 𝑡=1 E UC(𝐴 𝑡 , 𝐴 𝑡+1) = 𝑇 2 (6.61)
This is an update cost of Ω(𝑇) paid in expectation.

Figure 7.4: A simplified instance of GRD with linear regret. The cache can only store a single file, and at any given moment the adversary requests the file that is not stored in the cache. GRD updates its state greedily to store the requested file and oscillates between the two possible states. The optimal static strategy stores one of the files permanently incurring a total cost of 𝑇 /2, while GRD incurs a total cost 𝑇 .

7 Proof of Lemma 2.3.4

Assume a cache network formed of a designated server 𝑣 and a cache with storage capacity 𝑐 𝑢 ∈ N.

The catalog C contains 2𝑐 𝑢 items and, without lack of generality we assume that cache 𝑢 initially contains the set of items {𝑐 𝑢 + 1, . . . , 2𝑐 𝑢 }. Requests arrive only at node 𝑢, and we can identify a request with the requested item because there is only one possible path ({𝑢, 𝑣 }). The forwarding cost between 𝑢 and 𝑣 is 𝑤 ∈ R + . We consider request sequences with one request every Δ time units and one request per round (R = 1) and we denote by 𝑖 𝑡 he item requested at time 𝑡. Moreover, for simplicity, we assume the time horizon 𝑇 to be proportional to 2𝑐 𝑢 (𝑇 = 𝑚 × 2𝑐 𝑢). The service cost without caching is 𝑤𝑇 .

The policy GRD maintains a vector 𝑧 𝑧 𝑧 𝑡 and updates it after every request as follows [21, Eq. (22)]:

𝑧 𝑧 𝑧 𝑡+1 = 𝑧 𝑧 𝑧 𝑡 𝑒 -Δ𝛽 + 𝑤 𝛽𝑒 𝑒 𝑒 𝑖 𝑡 , (7.62)
where 𝑒 𝑒 𝑒 𝑖 𝑡 = 1 {𝑖=𝑖 𝑡 } 𝑖∈C and 𝑧 𝑧 𝑧 0 = 0 0 0.

(𝑧 𝑧 𝑧 𝑡+1) 𝑗 = 𝑒 -𝛽Δ((𝑖-𝑗) mod 2𝑐 𝑢) × ∑︁ ℎ∈{0,1,...,𝑚-1}, ℎ𝑇 +𝑗 ≤𝑘𝑇 +𝑖 𝑒 -𝛽Δℎ .
The maximum value is achieved for 𝑗 = 𝑖. The component becomes progressively smaller as 𝑗 decreases from 𝑖 to 1, because the first term in the product becomes smaller while the second terms does not change. It keeps decreasing as 𝑗 decreases from 2𝑐 𝑢 to 𝑖 + 1, not only because the first term decreases, but also because the second term decreases as less addends are considered in the sum.

As GRD behaves as LRU, when a new request 𝑖 𝑡 arrives at node 𝑢, it is never found in the cache. GRD incurs then a total service cost 𝑤𝑇 and null caching gain. At the same time, the caching gain of any cache allocation 𝐴 (with 𝑐 𝑢 different items stored at 𝑢) is 𝑤 2 𝑇 , because it is able to serve half of the requests. Then, the 𝛼-regret of GRD is at least equal to 𝛼 𝑤𝑇 2 . A simplified instance of GRD is shown in Figure 7.4 to provide some intuition of our proof.

Proof of Theorem 2.3.6

We begin by giving some intuition behind our approach. The hedge selector in Algorithm 2.4 effectively maintains a distribution 𝑝 𝑝 𝑝 𝑡 =

𝑊 𝑡 𝑖 𝑗 ∈ C 𝑊 𝑡 𝑗 𝑖∈C
for every round 𝑡. The randomized action 𝑖 𝑡 taken at time 𝑡 by the selector always satisfies E[𝑒 𝑒 𝑒 𝑖 𝑡] = 𝑝 𝑝 𝑝 𝑡 by definition, where 𝑒 𝑒 𝑒 𝑖 is the 𝑖-th basis vector. Consider for instance, that the rewards given to the hedge selector are always uniform. Since each action is equally important, then the distribution 𝑝 𝑝 𝑝 𝑡 is fixed and it is the uniform distribution. Thus, the hedge selector controlling item placements, will evict and fetch a new content with probability 1 -1 |𝐶 | 2 at each time step. Clearly, since the distribution is fixed for every time step, then these movements are unnecessary. An optimal strategy in this scenario is to pick an action u.a.r at the start and stick with it.

We generalize this concept by taking minimal probabilistic jumps to a new state, only when it is necessary to maintain a change of distribution from 𝑝 𝑝 𝑝 𝑡 to 𝑝 𝑝 𝑝 𝑡+1 . This concept is known in the literature as optimal transport or the earth mover distance [START_REF] Peyré | Computational Optimal Transport: With Applications to Data Science[END_REF]. The objective is to transport probability mass from a distribution to another, while minimizing the associated metric. In this scenario, it corresponds to a minimum-cost flow problem. We propose an iterative algorithm that builds the optimal flow (joint distribution). By building a feasible flow at time 𝑡 from 𝑝 𝑝 𝑝 𝑡 to 𝑝 𝑝 𝑝 𝑡+1 . Then, the algorithm takes elementary steps that generates a sequence of random variables whose marginal distribution is progressively closer to 𝑝 𝑝 𝑝 𝑡+1 The proof is split in multiple parts. We first introduce Lemma 8.1 that links the hedge selector update rule to online mirror descent [START_REF] Bubeck | Convex Optimization: Algorithms and Complexity[END_REF]. This allows us to use convex optimization techniques to provide the proof of Lemma 8.2, that gives a family of coupling schemes with sublinear update cost.

In section 8.3, we dissect the hedge selector and bound the update cost of its two components, the coupled_movement and elementary_𝛿movement subroutines.

In some parts of the proof we switch to vector notation rather than the set notation for allocations. For any allocation 𝐴 ∈ S × C the corresponding allocation vector is denoted by

𝑥 𝑥 𝑥 = [1 {(𝑠,

Auxiliary Lemma

We start by introducing an auxiliary lemma.

Lemma 8.1. E.feedback(ℓ ℓ ℓ) for the hedge selector in Algorithm 2.4 updates its internal weights 𝑊 𝑡 to 𝑊 𝑡+1 equivalently as ∇Φ(𝑊 𝑊 𝑊 𝑡+1) = ∇Φ(𝑊 𝑊 𝑊 𝑡) + 𝜖ℓ ℓ ℓ 𝑡 where Φ(𝑊 𝑊 𝑊) = 𝑖∈C 𝑊 𝑖 log(𝑊 𝑖) and 𝜖 ∈ R + is the step size.

Proof.

We know that 𝜕Φ(𝑊 𝑊 𝑊)

𝜕𝑊 𝑖 = 1 + log(𝑊 𝑖) (8.67)
From ∇Φ(𝑊 𝑊 𝑊 𝑡+1) = ∇Φ(𝑊 𝑊 𝑊 𝑡) + 𝜖ℓ ℓ ℓ 𝑡 we have:

= ||𝑝 𝑝 𝑝 𝑡 -𝑝 𝑝 𝑝 𝑡+1 || 1,𝑤 𝑤 𝑤 ′ .

□ 9 Adversarial Instances

In this section, we provide additional details about the topologies path and abilene. These are motivated by the proof of Lemma 2.3.4, using round-robin schemes for which greedy/myopic online algorithms would perform poorly.

Chapter -Conclusion

Topology Configuration

The abilene and path topologies are shown in Figure 9.5 (a) and (b) respectively. Adversarial setup of abilene. We set the weight of each edge to be 𝑤 = 100. The query nodes are {0, 5}. We put a cache at each node with a capacity selected u.a.r from the set {0, 1}, except for nodes {0, 5} that have capacity 5. For every item in the catalog we select its source node u.a.r to be 7 or 8. Adversarial setup of path. We set the weight of each edge to be 𝑤 = 100. The query node is 0. We put two caches at nodes 0 and 1 with capacity 5. The whole catalog is stored at node 1.

Adversarial Traces

The adversarial traces patterns are shown in We generate requests from 𝑠 1 and 𝑠 2 starting at the same time, except that we generate requests from 𝑠 1 twice as fast as 𝑠 2 . When we finish generating requests from a sequence we alternate the speed. This is done once, then at the final stage we generate requests with at the same speed. The SN Adversarial trace is generated using the same cyclic pattern as in the Sliding Popularity Adversarial trace, with the difference that a group of 5 items arrive according to according to a homogeneous Poisson process of rate 𝛾 = 1.

Jointly Optimizing Caching and Routing

In the extended model by Ioannidis and Yeh [START_REF] Ioannidis | Jointly Optimal Routing and Caching for Arbitrary Network Topologies[END_REF], a request 𝑟 = (𝑖, 𝑏) ∈ R is determined by (a) the item 𝑖 ∈ C requested, (b) the source node 𝑏 ∈ 𝑉 of the request. For each request 𝑟 = (𝑖, 𝑏), there exists a set of paths P (𝑖,𝑏) , which the request can follow towards a designated server in D 𝑖 . The goal is to jointly determine the content allocation as well as the paths that requests follow.

In particular, the path assignment is represented by 𝑃 = {𝑝 𝑟 } 𝑟 ∈R ∈ 𝑟 ∈R P 𝑟 , where 𝑝 𝑟 ∈ P 𝑟 indicates that request 𝑟 = (𝑖, 𝑏) ∈ R follows path 𝑝 𝑟 to fetch item 𝑖. It is easy, and natural, to write the cost objective in terms of the content allocation 𝐴 and the routing assignment 𝑃. However, to show that it is a submodular assignment problem, with constrains similar to the ones we encounter in caching, we deviate from [START_REF] Ioannidis | Jointly Optimal Routing and Caching for Arbitrary Network Topologies[END_REF] and express the objective in terms of the complementary path assignment 𝑃. Intuitively, given a path assignment 𝑃, the complementary path assignment 𝑃 consists of all the paths not taken. We can see the routing optimization constraints as a slotted assignment problem akin to the caching problem we have studied so far in the following way. Each request 𝑟 ∈ R is associated with exactly |P 𝑟 | -1 slots. These slots are to be occupied by paths not taken. That is, each such slot is to be occupied by a path 𝑝 in P 𝑟 ; whenever such a path 𝑝 is stored in a slot, it is added in the complementary path assignment 𝑃. We denote by D ′ the set of feasible complementary path assignments under this setting, that is:2

D ′ = 𝑃 ⊂ 𝑟 ∈R P 𝑟 : |𝑃 ∩ P 𝑟 | ≤ |P 𝑟 | -1 . (10.89)

Chapter -Conclusion

Then, given a content allocation 𝐴 and complementary path assignment 𝑃, the cost of serving a request 𝑟 = (𝑖, 𝑏) is:

𝐶 𝑟 (𝐴, 𝑃) = ∑︁ 𝑝∈P 𝑟 \𝑃 |𝑝 |-1 ∑︁ 𝑘=1 𝑤 𝑝 𝑘+1 𝑝 𝑘 1 𝐴 ∩        𝑘 ′ ∈[𝑘] S 𝑝 𝑘 ′ × {𝑖}        = ∅ . (10.90)
Similarly, the caching gain of a request 𝑟 = (𝑖, 𝑏) due to caching at intermediate nodes and path assignment is: Proof.

𝑓 𝑟 (𝐴, 𝑃) = 𝐶 𝑟 (∅, ∅) -𝐶 𝑟 (𝐴, 𝑃) = ∑︁ 𝑝∈P 𝑟 |𝑝 |-1 ∑︁ 𝑘=1 𝑤 𝑝 𝑘+1 𝑝 𝑘 1 𝑝 ∈ 𝑃 ∨ 𝐴 ∩        𝑘 ′ ∈[𝑘] S 𝑝 𝑘 ′ × {𝑖}        ≠ ∅ . (10
In this proof, we switch to vector notation rather than the set notation. For any content allocation 𝐴 ∈ S × C, the corresponding allocation vector is denoted by 𝑥 𝑥 𝑥 = [1 {(𝑠,𝑖)∈𝐴}] (𝑠,𝑖)∈S×C = [𝑥 (𝑠,𝑖)] (𝑠,𝑖)∈S×C . For any complementary path assignment 𝑃 ∈ 𝑟 ∈R P 𝑟 , the corresponding complementary path assignment P is represented by vector h

ℎ ℎ = [1 {(𝑟,𝑝)∉𝑃 }] (𝑟,𝑝)∈ 𝑟 ∈ R P 𝑟 = [h𝑟,𝑝] (𝑟,𝑝)∈ 𝑟 ∈ R P 𝑟 .
The caching gain of a request (𝑖, 𝑏) is:

𝑓 (𝑖,𝑏) (h ℎ ℎ, 𝑥 𝑥 𝑥) = ∑︁ 𝑝∈P (𝑖,𝑏) |𝑝 |-1 ∑︁ 𝑘=1 𝑤 𝑝 𝑘+1 𝑝 𝑘 1 -(1 -h(𝑖,𝑏),𝑝) 𝑘 𝑘 ′ =1 (1 -𝑥 𝑝 𝑘 ′ 𝑖) , (10.93)
which has the same form as Eq. (2.36). By Lemma 2.3.1, 𝑓 is also monotone (non-decreasing) and submodular w.r.t. both 𝑥 𝑥 𝑥 and h ℎ ℎ. The feasible set for h ℎ ℎ is:

∑︁ 𝑝∈P 𝑟 h𝑟,𝑝 = |P 𝑟 | -1, ∀𝑟 ∈ R, (10.94)
which is also a partition matroid.

□ The monotonicity of the objective implies that an optimal solution exists in which all routing slots of the complementary path assignment are taken, so that indeed only one path is truly selected. 3This submodular maximization assignment problem can be tackled by the modified Distribut-edTGOnline with 1 -1/𝑒 guarantee through Cor. 2.3.3 as follows. Following [START_REF] Ioannidis | Jointly Optimal Routing and Caching for Arbitrary Network Topologies[END_REF], for each request (𝑖, 𝑏), source node 𝑏 maintains an extra slot 𝑠 = (𝑏, 0) determining its path assignment. Correspondingly, the information needed to compute the reward is from all possible paths due to Eq. (10.91), besides its own path. The second step in the online algorithm is, thus, modified as:

• When a request (𝑖, 𝑏) is generated, (rather than one additional control message is generated to collect and transmit information,) |P 𝑖,𝑏 | additional control messages are generated, one over one path 𝑝 ∈ P 𝑖,𝑏 to collect and transmit information.

Note that the communication cost increases linearly with |P 𝑖,𝑏 |. Nevertheless, it is possible that randomization approaches akin to the ones used in [START_REF] Ioannidis | Jointly Optimal Routing and Caching for Arbitrary Network Topologies[END_REF], can lower this dependency with a corresponding increase in regret; exploring this is beyond our scope.

Anytime Regret Guarantee

Under the doubling trick [START_REF] Cesa | Prediction, Learning, and Games[END_REF], the algorithm proceeds in phases. In the first phase, it sets its (shortterm) horizon to a time-window 𝑊 0 = 1. Whenever a phase ends (i.e., the short-term horizon expires), the algorithm resets its state, and doubles the time window, so that the short term horizon at phase 𝑛 + 1 satisfies:

𝑊 𝑛+1 = 2𝑊 𝑛 , for all 𝑛 ∈ {0, 1, . . . , 𝑘 }. For the sake of notational simplicity, assume that 𝑇 = 2 𝑘+1 -1 for some 𝑘 ∈ N. By Theorem 2.3.2, DistributedTGOnline has bounded regret 𝑐 √ 𝑊 𝑛 at the end of each short-term horizon 𝑊 𝑛 , where 𝑐 is a constant independent of 𝑊 𝑛 . Thus,

𝑘 ∑︁ 𝑛=0 𝑐 √︁ 𝑊 𝑛 = 𝑐 𝑘 ∑︁ 𝑛=0 2 0.5𝑛 = 𝑐 2 0.5(𝑘+1) -1 √ 2 -1 = 𝑐 2 0.5 log 2 (𝑇 +1) √ 2 -1 = 𝑐 √ 𝑇 + 1 √ 2 -1 ≤ √ 2 √ 2 -1 𝑐 √ 𝑇 . (11.95)
In other words, using this doubling trick, we can obtain an anytime regret bound for any algorithm designed for a fixed time horizon, while worsening the bound by a constant factor (namely,

√ 2 √ 2-1
). The same argument can be used to show that the update cost is sublinear when taking update costs in to account. In particular, the modified policy resets its state at most 𝑘 -1 times and 𝑘 is logarithmic in 𝑇 , thereby contributing at most an 𝑂 (log𝑇) term to the overall update cost.

12 Proof of Lemma 3.2.1

We observe that for 𝑦 (1) 𝑡 ∈ B 2 (𝑅), ∥𝑔 (1) 𝑡 ∥ 2 is bounded and for 𝑦 (1) 𝑡 ∉ B 2 (𝑅), ∥𝑔 (1) 𝑡 ∥ 2 ≤ 2+2∥𝑦 (1) 𝑡 ∥ 2 , then there exists positive constants 𝐴 𝑙 and 𝐵 𝑙 for 𝑙 = 1, 2, 3, 4, such that for ∥𝑔 (1) 𝑡 (𝑟, 𝑦 (1) 𝑡)∥ 𝑙 2 ≤ 𝐴 𝑙 +𝐵 𝑙 ∥𝑦 (1) 𝑡 ∥ 𝑙 2 . We also observe that inf {𝑦 (1) 𝑡 • 𝑔 (1) 𝑡 , ∀𝑦 (1) 𝑡 ∉ B 2 (𝑅 + 1)} > 0, ∀𝑖 = 1, . . . , 𝑘. We will prove boundedness using the function

𝑓 𝑡 = 𝑘 ∑︁ 𝑖=1 𝜙 (∥𝑦 (1) 𝑡 ∥ 2 2)
where 𝜙 (𝑥) = 1 𝑥 ≥ (𝑅 + 1) 2 (𝑥 -(𝑅 + 1) 2) 2 . There exist positive constants 𝐴 and 𝐵 such that

𝐴 0 + 𝐵 0 ∥𝑦 (1) 𝑡 ∥ 4 2 ≤ 𝐴/𝑘 + 𝐵𝜙 (∥𝑦 (1) 𝑡 ∥ 2 2
). Taking advantage of the inequality 𝜙 (𝑥 ′) -𝜙 (𝑥) ≤ (𝑥 ′ -𝑥)𝜙 ′ (𝑥 ′) + (𝑥 ′ -𝑥) 2 applied for 𝑥 = ∥𝑦 (1) 𝑡 ∥ 2 2 and 𝑥 ′ = ∥𝑦 (1) 𝑡+1 ∥ 2 2 , we can derive the following inequality

𝑓 𝑡+1 -𝑓 𝑡 ≤ 𝑘 ∑︁ 𝑖=1 -2𝜂 𝑡 𝑦 (1) 𝑡 • 𝑔 (1) 𝑡 + 𝜂 2 𝑡 ∥𝑦 (1) 𝑡 ∥ 2 2 𝜙 ′ (∥𝑦 (1) 𝑡 ∥ 2 2) + -2𝜂 𝑡 𝑦 (1) 𝑡 • 𝑔 (1) 𝑡 + 𝜂 2 𝑡 ∥𝑦 (1) 𝑡 ∥ 2 2 2 . (12.96)
Using the inequalities above, we obtain

𝑓 𝑡+1 -𝑓 𝑡 ≤ 𝑘 ∑︁ 𝑖=1
-2𝜂 𝑡 𝑦 (1) 𝑡 • 𝑔 (1) 𝑡 𝜙 ′ (∥𝑦 (1) 𝑡 ∥ 2 2) + 𝜂 2 𝑡 𝐴 0 + 𝐵 0 ∥𝑦 (1) 𝑡 ∥ 4 2 (12.97)

≤ 𝑘 ∑︁ 𝑖=1 -2𝜂 𝑡 𝑦 (1) 𝑡 • 𝑔 (1) 𝑡 𝜙 ′ (∥𝑦 ∥ 2 2) + 𝜂 2 𝑡 (𝐴 + 𝐵𝑓 𝑡) . (12.98)
We take now the conditional expectation given 𝐻 𝑡 = (𝑦 𝑦 𝑦 1 ,𝑦 𝑦 𝑦 2 , . . . ,𝑦 𝑦 𝑦 𝑡):

E 𝑥 [𝑓 𝑡+1 -𝑓 𝑡 |𝐻 𝑡] ≤ 𝑘 ∑︁ 𝑖=1 -2𝜂 𝑡 𝑦 (1) 𝑡 • E 𝑥 𝑔 (1) 𝑡 𝜙 ′ (∥𝑦 (1) 𝑡 ∥ 2 2) + 𝜂 2 𝑡 (𝐴 + 𝐵𝑓 𝑡) (12.99) ≤ 𝜂 2 𝑡 (𝐴 + 𝐵𝑓 𝑡)., (12.100)
where the last inequality follows from 𝜙 ′ (∥𝑦 (1) 𝑡 ∥ 2 2) = 0 for 𝑦 (1) 𝑡 ∈ B 2 (𝑅 + 1) and 𝑦 (1) 𝑡 • 𝑔 (1) 𝑡 > 0 for 𝑦 (1) 𝑡 ∈ B 2 (𝑅 + 1). The proof until now follows logically the same steps as in [138, Section 5.2], but 1) we did not need to suppose that 𝑔 (1) 𝑡 have 𝑙-th moments bounded by ∥𝑦 (1) 𝑡 ∥ 𝑙 2 , as their norm is bounded from our definition of the algorithm, 2) we had to redefine the function 𝑓 𝑡 to take into account separately each subvector 𝑦 (1) 𝑡 of 𝑦 𝑦 𝑦 𝑡 . From (12.100) we can reason as in [START_REF] Bottou | On-line Learning and Stochastic Approximations[END_REF]Section 5.2] because 𝑡 𝜂 2 𝑡 < ∞ and 𝑓 𝑡 converges to 𝑓 ∞ < ∞. Let H be the set of sequences such that 𝑓 ∞ > 0. For each sequence in H , 𝑓 𝑡 > 𝑓 ∞ /2 for large 𝑡, and then there exists at least a value 𝑖 𝑡 and an opportune 𝜖 > 0 such that ∥𝑦 (𝑖 𝑡) 𝑡 ∥ 2 > (𝑅 + 1) + 𝜖. Then both 𝑦 (1) 𝑡 • 𝑔 (1) 𝑡 and 𝜙 ′ (∥𝑦 ∥ 2 2) are bounded below by positive quantities and the series in the LHS of (12.101) diverges as 𝑡 𝜂 𝑡 = +∞. But we have concluded that this series converges a.s., then P (H) = 0 and 𝑓 ∞ = 0 a.s.. Each sequence (𝑦 𝑦 𝑦 1 ,𝑦 𝑦 𝑦 2 , . . .) is then bounded a.s.

13 Proof of Theorem 3.2.2

We denote by 𝑦 𝑡,𝑖 the 𝑖-th component of the vector 𝑦 𝑦 𝑦 𝑡 ∈ R 𝑘×𝑑 , and by 𝑦 𝑖 the 𝑖-th component of a generic vector 𝑦 𝑦 𝑦 ∈ R 𝑘×𝑑 .

We define (1) 𝑡 ∥ 2 -𝑅 , c (𝑟,𝑦 𝑦 𝑦) = 𝑐 (𝑟,𝑦 𝑦 𝑦) + 𝐿(𝑦 𝑦 𝑦). (13.102) We observe that ∇ 𝑦 𝑦 𝑦 c (𝑟,𝑦 𝑦 𝑦 𝑡) = (𝑔 (1) 𝑡 , . . . , 𝑔 (𝑘) 𝑡), i.e., the dynamic in (3.4) is evolving according to the gradient of c (𝑟,𝑦 𝑦 𝑦 𝑡). Similary we define C(𝑦 𝑦 𝑦) = E 𝑟 [c (𝑟,𝑦 𝑦 𝑦)] = C(𝑦 𝑦 𝑦) + 𝐿(𝑦 𝑦 𝑦). The function 𝐿(𝑦 𝑦 𝑦) is continuously differentiable up to the third order, then C(𝑦 𝑦 𝑦) is continuously differentiable up to the second/third order when C(𝑦 𝑦 𝑦) is so. Moreover, we observe that ∥∇ 𝑦 𝑦 𝑦 C(𝑦 𝑦 𝑦)∥ 2 > 0 for 𝑦 (1) ∉ B 2 (𝑅) for some 𝑖. Then, lim inf 𝑡→∞ ∥∇ 𝑦 𝑦 𝑦 C(𝑦 𝑦 𝑦 𝑡)∥ 2 = 0, implies that lim inf 𝑡→∞ ∥∇ 𝑦 𝑦 𝑦 C(𝑦 𝑦 𝑦 𝑡)∥ 2 = 0. Lemma 3.2.1 shows that the sequence 𝐻 = (𝑦 𝑦 𝑦 1 ,𝑦 𝑦 𝑦 2 , . . .) is bounded a.s. Consider a bounded sequence 𝐻 , such that 𝑦 𝑦 𝑦 𝑡 ∈ B 2 (𝑅 ′) for some 𝑅 ′ > 0. ∇ c (𝑟,𝑦 𝑦 𝑦 𝑡) exists a.s. and it is bounded for any 𝑥 ∈ X. By the dominated convergence theorem, it follows that we can invert the expectation and the gradient:

𝐹 (𝑥) = 𝑥 4 1 + 𝑥 2 , 𝐿(𝑦 𝑦 𝑦) = 𝑘 ∑︁ 𝑖=1 1 𝑦 𝑖 𝑡 ∉ B 2 (𝑅) 𝐹 ∥𝑦
E 𝑥 ∇ 𝑦 𝑦 𝑦 c (𝑟,𝑦 𝑦 𝑦 𝑡) = ∇ 𝑦 𝑦 𝑦 E 𝑥 c (𝑟,𝑦 𝑦 𝑦 𝑡) = ∇ 𝑦 𝑦 𝑦 C(𝑦 𝑦 𝑦 𝑡).
As C(•) is continously differentiable up to the second order upon B 2 (𝑅 ′), the partial derivatives are bounded, in particular, there exist two constants 𝑐 Proof.

We distinguish two cases:

(i) When

and this concludes the proof.

□ 16 Bounds on the Auxiliary Function

We define Λ : R × conv(X) → R + , an auxiliary function, that will be utilized in bounding the value of the gain function

Λ(𝑟,𝑦 𝑦 𝑦) ≜ 𝐾 𝑟 -1 ∑︁ 𝑖=1 𝛼 𝑟 𝑖 (𝑘 -𝜎 𝑟 𝑖) 1 - 𝑗 ∈𝐼 𝑟 𝑖 1 - 𝑦 𝜋 𝑟 𝑗 𝑘 -𝜎 𝑟 𝑖 , ∀𝑟 ∈ R,𝑦 𝑦 𝑦 ∈ conv(X). (16.140)
The DepRound [START_REF] Byrka | An Improved Approximation for k-median, and Positive Correlation in Budgeted Optimization[END_REF] subroutine outputs a rounded variable 𝑥 𝑥 𝑥 ∈ X from a fractional input 𝑦 𝑦 𝑦 ∈ conv(X), by iteratively modifying the fractional input 𝑦 𝑦 𝑦. At each iteration the subroutine Simplify that is part of DepRound is executed on two yet unrounded variables 𝑦 𝑖 , 𝑦 𝑗 ∈ (0, 1) with

= E       𝐾 𝑟 -1 ∑︁ 𝑖=1 𝛼 𝑟 𝑖 (𝑘 -𝜎 𝑟 𝑖) 1 - 𝑗 ∈𝐼 𝑟 𝑖 1 - 𝑥 𝜋 𝑟 𝑗 𝑘 -𝜎 𝑟 𝑖       = 𝐾 𝑟 -1 ∑︁ 𝑖=1 𝛼 𝑟 𝑖 (𝑘 -𝜎 𝑟 𝑖) 1 -E       𝑗 ∈𝐼 𝑟 𝑖 1 - 𝑥 𝜋 𝑟 𝑗 𝑘 -𝜎 𝑟 𝑖       (16.142) ≤ 𝐾 𝑟 -1 ∑︁ 𝑖=1 𝛼 𝑟 𝑖 (𝑘 -𝜎 𝑟 𝑖) 1 - 𝑗 ∈𝐼 𝑟 𝑖 1 - 𝑦 𝜋 𝑟 𝑗 𝑘 -𝜎 𝑟 𝑖 = Λ(𝑟,𝑦 𝑦 𝑦). (16.143)
The second equality is obtained using the linearity of the expectation operator. The inequality is obtained using [12,Lemma E.10] with 𝑆 = 𝐼 𝑟 𝑖 , 𝑐 𝑚 = 1 𝑘-𝜎 𝑟 𝑖 , as 𝜎 𝑟 𝑖 < 𝑘 for 𝑖 < 𝐾 𝑟 in the case when 𝑥 𝑥 𝑥 is the output of DepRound, and in the case when 𝑥 𝑥 𝑥 is an output of CoupledRounding, the inequality holds with equality since every 𝑥 𝑖 for 𝑖 ∈ N is an independent random variable. Proof.

We have the following

𝐺 (𝑟,𝑦 𝑦 𝑦) = 𝐾 𝑟 -1 ∑︁ 𝑖=1 𝛼 𝑟 𝑖 min        𝑘 -𝜎 𝑟 𝑖 , ∑︁ 𝑗 ∈[𝑖] 𝑦 𝜋 𝑟 𝑗 -𝜎 𝑟 𝑖        (15.135) = 𝐾 𝑟 -1 ∑︁ 𝑖=1 𝛼 𝑟 𝑖 min        𝑘 -

Proof.

For any request 𝑟 ∈ R, the function 𝑓 (𝑟,𝑖) (𝑦 𝑦 𝑦) ≜ min 𝑘 -𝜎 𝑟 𝑖 , 𝑖 𝑗=1 𝑦 𝜋 𝑟 𝑗 -𝜎 𝑟 𝑖 is a concave function, i.e., a minimum of two concave functions (a constant and an affine function). The subdifferential of the function at point 𝑦 𝑦 𝑦, using Theorem [296, Theorem 8.2] is given as

𝜕𝑓 (𝑟,𝑖) (𝑦 𝑦 𝑦) =            0 0 0 if 𝑖 𝑗=1 𝑦 𝜋 𝑟 𝑗 > 𝑘, conv 0 0 0, ∇ 𝑖 𝑗=1 𝑦 𝜋 𝑟 𝑗 if 𝑖 𝑗=1 𝑦 𝜋 𝑟 𝑗 = 𝑘, ∇ 𝑖 𝑗=1 𝑦 𝜋 𝑟 𝑗 otherwise, (18.152)
where conv (•) is the convex hull of a set. Thus, a valid subgradient 𝑔 𝑔 𝑔 (𝑟,𝑖) (𝑦 𝑦 𝑦) of 𝑓

√
𝑁 𝐿 and 𝑁 can be very large; moreover, the regret upper bound is proportional to 𝐿 2 instead of 𝐿 when the Euclidean map is used as a mirror map (see [START_REF] Bubeck | Convex Optimization: Algorithms and Complexity[END_REF]Theorem 4.2]). This justifies why it is preferable to work with the negative entropy instantiation of OMA rather than the classical Euclidean setting. (20.173)

Bregman Divergence Bound

Second part. For any 𝑖 ∈ N , we can have two types of movements: If 𝛿 𝑖 < 0, then given that 𝑥 𝑡,𝑖 = 1, we evict with probability -𝛿 𝑖 𝑦 𝑡,𝑖 . If 𝛿 𝑖 > 0, then given that 𝑥 𝑡,𝑖 = 0, we retrieve a file with probability 𝛿 𝑖 1-𝑦 𝑡,𝑖 . Thus the expected movement is given by: To prove the 𝜓 -regret guarantee: (1) we first establish an upper bound on the regret of the AÇAI policy over its fractional cache states domain conv(X) against a fractional optimum, then (2) the guarantee is transformed in a 𝜓 -regret guarantee over the integral cache states domain X in expectation.

E [∥𝑥 𝑥 𝑥 𝑡+1 -𝑥 𝑥 𝑥 𝑡 ∥ 1] = ∑︁ 𝑖∈N E[|𝑥
Fractional domain guarantee. We establish first the regret of running Algorithm 3.2 with decisions taken over the fractional domain conv(X). The following properties are satisfied:

(i) The caching gain function 𝐺 (𝑟,𝑦 𝑦 𝑦) is concave over its fractional domain conv(X) for any 𝑟 ∈ R (see Section 3.3.3.4).

(ii) The negative entropy mirror map Φ : D → R is 23 Additional Experiments

Redundancy

We quantify the redundancy present in the caches in Figure 23.7 (a), as the percentage of added objects to fill the physical cache. We also show the contribution of the dangling objects to the gain in Figure 23.7 (b), that does not exceed 2.0% under both traces.

Approximate Index Augmentation

We repeat the sensitivity analysis and show the caching gain when the different policies are augmented with an approximate index, and are allowed to mix the best object that can be served locally and from the server.

Compute Time

We provide a comparison of the compute time of the different algorithms in

Submodularity of the Gain Function

As submodularity is defined for set functions, let us associate to the gain function 𝐺 (•) an opportune set function as follows. Given a set 𝑆 ⊆ V × M of pairs (𝑣, 𝑚) ∈ V × M (nodes and models), we define the corresponding associated vector 𝑥 𝑥 𝑥 (𝑆) with 𝑥 𝑣 𝑚 (𝑆) = 1 if ((𝑣, 𝑚) ∈ 𝑆 ∨ 𝜔 𝑣 𝑚 = 1), 𝑥 𝑣 𝑚 (𝑆) = 0 otherwise. Now we can define the set function 𝑓 𝑡 : 2 V×M → R: 𝑓 𝑡 (𝑆) ≜ 𝐺 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥 (𝑆)).

(

Submodularity. A function 𝑓

𝑡 : 2 V×M → R is submodular [177] if for every 𝑆 ′ ⊂ 𝑆 ′′ ⊂ V × M and (v, m) ∈ (V × M) \ 𝑆 ′′ it holds that 𝑓 𝑡 (𝑆 ′′ ∪ {(v, m)}) -𝑓 𝑡 (𝑆 ′′) ≤ 𝑓 𝑡 (𝑆 ′ ∪ {(v, m)}) -𝑓 𝑡 (𝑆 ′).
Let us consider (v, m) ∈ (V × M) \ 𝑆 ′′ . We take 𝑥 𝑥 𝑥 ′ , 𝑥 𝑥 𝑥 ′′ , x 𝑥 𝑥 ′ , and x 𝑥 𝑥 ′′ as short hand notation for 𝑥 𝑥 𝑥 (𝑆 ′), 𝑥 𝑥 𝑥 (𝑆 ′′), 𝑥 𝑥 𝑥 (𝑆 ′ ∪ {(v, m)}), and 𝑥 𝑥 𝑥 (𝑆 ′′ ∪ {(v, m)}), respectively. Since 𝑆 ′ ⊂ 𝑆 ′′ , we have that if Observe that

𝑥 ′𝑣 𝑚 = 1 =⇒ 𝑥 ′′𝑣 𝑚 = 1,
𝑧 𝑘 𝜌 (𝑙 𝑙 𝑙 𝑡 , x 𝑥 𝑥 ′′) =            𝑧 𝑘 𝜌 (𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥 ′′) if 𝑘 ≠ k𝜌 , 𝑧 𝑘 𝜌 (𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥 ′′) + 𝑥 vm =1 • 𝑙 𝑡,v 𝜌, m (4.11
𝑓 𝑡 (𝑆 ′′ ∪ {(v, m)}) -𝑓 𝑡 (𝑆 ′′) ≤ 𝑓 𝑡 (𝑆 ′ ∪ {(v, m)}) -𝑓 𝑡 (𝑆 ′).

Chapter -Conclusion

We conclude that 𝑓 𝑡 is a submodular set function.

Monotonicity. The function 𝑓 𝑡 : 2 V×M → R is monotone [START_REF] Krause | Submodular Function Maximization[END_REF]

∑︁ 𝑘 ′ =1 𝑧 𝑘 ′ 𝜌 -min 𝑐, 𝑘-1 ∑︁ 𝑘 ′ =1 𝑧 𝑘 ′ 𝜌 = min 𝑐 - 𝑘-1 ∑︁ 𝑘 ′ =1 𝑧 𝑘 ′ 𝜌 , 𝑧 𝑘 𝜌 • 1 𝑘-1 ∑︁ 𝑘 ′ =1 𝑧 𝑘 ′ 𝜌 < 𝑐 . (25.213)
Proof.

We distinguish two cases:

1. When the 𝑘 -1 less costly models have at least 𝑐 effective capacity, i.e., 𝑘-1 𝑘 ′ =1 𝑧 𝑘 ′ 𝜌 ≥ 𝑐, we obtain:

𝑘 ∑︁ 𝑘 ′ =1 𝑧 𝑘 ′ 𝜌 = 𝑘-1 ∑︁ 𝑘 ′ =1 𝑧 𝑘 ′ 𝜌 + 𝑧 𝑘 𝜌 ≥ 𝑐 + 𝑧 𝑘 𝜌 ≥ 𝑐. (25.214)

-Equivalent Expression of the Gain Function 199

The last inequality is obtained using 𝑧 𝑘 𝜌 ≥ 0. Therefore, the left term of Eq. (25.213) becomes 𝑐 -𝑐 = 0, and the indicator function of the right term becomes zero. Hence, Eq. (25.213) is verified in this case. We extend the proof of the strong convexity of the negative entropy w.r.t. to the 𝑙 1 norm over the simplex given in [298, Lemma 16]. The map Φ(𝑦 𝑦 𝑦) is differentiable over Y ∩ D, so a sufficient (and also necessary) condition for Φ(𝑦 𝑦 𝑦) to be 𝜃 -strongly convex w.r.t. ∥ • ∥ 𝑙 1 (𝑠 𝑠 𝑠) is:

When

𝑘-1 𝑘 ′ =1 𝑧 𝑘 ′ 𝜌 < 𝑐, we obtain: min 𝑐, 𝑘 ∑︁ 𝑘 ′ =1 𝑧 𝑘 ′ 𝜌 -min 𝑐, 𝑘-1 ∑︁ 𝑘 ′ =1 𝑧 𝑘 ′ 𝜌 = min 𝑐, 𝑘 ∑︁ 𝑘 ′ =1 𝑧 𝑘 ′ 𝜌 - 𝑘-1 ∑︁ 𝑘 ′ =1 𝑧 𝑘 ′ 𝜌 = min 𝑐 - 𝑘-1 ∑︁ 𝑘 ′ =1 𝑧 𝑘 ′ 𝜌 , 𝑧 𝑘 𝜌 . (25
(∇Φ(𝑦 ′ 𝑦 ′ 𝑦 ′) -∇Φ(𝑦 𝑦 𝑦)) 𝑇 (𝑦 ′ 𝑦 ′ 𝑦 ′ -𝑦 𝑦 𝑦) ≥ 𝜃 𝑦 ′ 𝑦 ′ 𝑦 ′ -𝑦 𝑦 𝑦 2 𝑙 1 (𝑠 𝑠 𝑠) , ∀𝑦 ′ 𝑦 ′ 𝑦 ′ ,𝑦 𝑦 𝑦 ∈ Y ∩ D. (28
= (∇Φ(𝑦 ′ 𝑦 ′ 𝑦 ′) -∇Φ(𝑦 𝑦 𝑦)) 𝑇 (𝑦 ′ 𝑦 ′ 𝑦 ′ -𝑦 𝑦 𝑦). (28.267)
The strong convexity constant 𝜃 is

∥𝑦 𝑦 𝑦 ∥ 𝑙 ∞ (1 𝑠 𝑠 𝑠) ≜ max |𝑦 𝑣 𝑚 | 𝑠 𝑣 𝑚 : (𝑣, 𝑚) ∈ V × M . (28.268)
Proof.

Chapter -Conclusion

We have for any 𝑡 ∈ The dual norm ∥ • ∥ * of ∥ • ∥ 𝑙 1 (𝑠 𝑠 𝑠) is defined as (e.g., [START_REF] Bubeck | Convex Optimization: Algorithms and Complexity[END_REF])

[𝑇] ∥𝑔 𝑔 𝑔 𝑡 ∥ 𝑙 ∞ (1 𝑠 𝑠 𝑠) = max |𝑔 𝑣 𝑡,𝑚 | 𝑠 𝑣 𝑚 , ∀(𝑣, 𝑚) ∈ V × M ≤ max |𝑔 𝑣 𝑡,𝑚 | 𝑠 min , ∀(𝑣, 𝑚) ∈ V × M (28
∥𝑧 𝑧 𝑧 ∥ * ≜ sup 𝑦 𝑦 𝑦∈R V × M 𝑧 𝑧 𝑧 𝑇 𝑦 𝑦 𝑦 : ∥𝑦 𝑦 𝑦 ∥ 𝑙 1 (𝑠 𝑠 𝑠) ≤ 1 , ∀𝑧 𝑧 𝑧 ∈ R V×M . (28
: (𝑣, 𝑚) ∈ V × M = ∥𝑦 𝑦 𝑦 ∥ 𝑙 1 (𝑠 𝑠 𝑠) ∥𝑧 𝑧 𝑧 ∥ 𝑙 ∞ (1 𝑠 𝑠 𝑠) . (28.274)
Observe that We confirmed that 𝑦 𝑦 𝑦 𝑣 1 is a minimizer of Φ 𝑣 over Y 𝑣 . We have Φ 𝑣 (𝑦 𝑦 𝑦 𝑣) ≤ 0, ∀𝑦 𝑦 𝑦 𝑣 ∈ Y 𝑣 , and using the first order optimality condition we obtain (1 -𝑦 𝑖 𝑞 𝑖 /𝑐). (28.296) Proof.

𝑦 𝑦 𝑦 𝑇 𝑧 𝑧 𝑧 ≤ ∥𝑧 𝑧 𝑧 ∥ 𝑙 ∞ (1 𝑠 𝑠 𝑠) , ∀𝑦 𝑦 𝑦 : ∥𝑦 𝑦 𝑦 ∥ 𝑙 1 (𝑠 𝑠 𝑠) ≤ 1. (28
𝐷 Φ 𝑣 (𝑦 𝑦 𝑦 𝑣 ,𝑦 𝑦 𝑦 𝑣 1) (26.230) = Φ 𝑣 (𝑦 𝑦 𝑦 𝑣) -Φ 𝑣 (𝑦 𝑦 𝑦 𝑣 1) + ∇Φ 𝑣 (𝑦 𝑦 𝑦 𝑣 1) 𝑇 (𝑦 𝑦 𝑦 𝑣 1 -𝑦 𝑦 𝑦 𝑣) ≤ Φ 𝑣 (𝑦 𝑦 𝑦 𝑣) -Φ 𝑣 (𝑦 𝑦 𝑦 𝑣 1) ≤ -Φ 𝑣 (𝑦 𝑦 𝑦 𝑣 1) (28.282) = min{𝑏 𝑣 , ∥𝑠 𝑠 𝑠 𝑣 ∥ 1 } log ∥𝑠 𝑠 𝑠 𝑣 ∥ 1 min{𝑏 𝑣 , ∥𝑠 𝑠 𝑠 𝑣 ∥ 1 } . (28
We define 𝑎 𝑛 ≜ 𝑐 -𝑐 𝑖∈[𝑛] (1 -𝑦 𝑖 𝑞 𝑖 /𝑐) and 𝑏 𝑛 ≜ min 𝑐, 𝑖∈[𝑛] 𝑦 𝑖 𝑞 𝑖 .

We first show by induction that, if 𝑎 𝑛 ≤ 𝑏 𝑛 , then this inequality holds also for 𝑛 + 1.

Base case (𝑛 = 1). (1 -𝑦 𝑖 𝑞 𝑖 /𝑐) The equality is obtained using the linearity of the expectation, and the inequality is obtained by applying directly Lemma 28.10.

𝑎 1 = 𝑐 -𝑐 + 𝑦 1 𝑞 1 = 𝑦 1 𝑞 1 = min{𝑐, 𝑞 1 𝑦 1 } = 𝑏 1 . (28
(

□

29 Proof of Theorem 4.5.1

To prove the 𝜓 -regret guarantee: (1) we first establish an upper bound on the regret of the INFIDA policy over its fractional allocations domain Y against a fractional optimum, then (2) we use it to derive a corresponding 𝜓 -regret guarantee over the integral allocations domain X.

Fractional domain regret guarantee. To establish the regret guarantee of running Algorithm 4.1 at the level of each computing node 𝑣 ∈ V, we showed that the following properties hold:

1. The function 𝐺 is concave over its domain Y (Lemma 28.1). where 𝜃 𝜃 𝜃 ∈ Θ.

Proof.

The convex conjugate of -𝑓 𝛼 (𝑢) ≜ -𝑢

Use concavity of 𝐹 𝛼

The equality is achieved when 𝑢 𝑢 𝑢 = 𝑢 𝑢 𝑢 ′ and the maximum value in (31.352) is attained for this value. We conclude the proof. This proof follows the same lines of the proof of [20]. We do not assume a bound on the gradients is known beforehand and the time horizon 𝑇 . Take a fixed 𝑥 𝑥 𝑥 ∈ X. Applying the definition of 𝜎-strong convexity to the pair of points 𝑥 𝑥 𝑥 𝑡 and 𝑥 𝑥 𝑥, we have • The function Ψ 𝛼 : Θ × X → R is concave over X. In other words, the fairness regret guarantee is not attainable 4 for values of 𝛾 𝑇 ≤ 1 -𝜖 for any 𝑇 and 𝜖 > 0. We can also verify that (A5) is violated when 𝛾 𝑇 ≤ 1 -𝜖 for any 𝑇 and 𝜖 > 0. Note that 𝛾 𝑇 is defined to be in the set 𝑡 ∈T 𝑘 𝛿 𝑡,𝑖 (𝑥 𝑥 𝑥 ★) = 𝑜 (𝑇). To conclude, when 𝛾 𝑇 = 1 -𝑜 (1), we have min{V T , W T } ≤ V T = 𝑜 (𝑇); thus, Assumption (A5) only holds when 𝛾 𝑇 = 1 -𝑜 (1) for which the vanishing fairness regret guarantee is attainable. Figure 32.12 provides a summary of the connection between the fairness regret under scenarios 1 and 2 and Assumption (A5). Note that Ψ 𝛼,𝑡 : Θ × X → R is the function given by Ψ 𝛼,𝑡 (𝜃 𝜃 𝜃, 𝑥 𝑥 𝑥) = (-𝐹 𝛼) ★ (𝜃 𝜃 𝜃) -𝜃 𝜃 𝜃 • 𝑢 𝑢 𝑢 𝑡 (𝑥 𝑥 𝑥), (33.388) where 𝐹 𝛼 : U → R is an 𝛼-fairness function (5.3) 𝑇 1/3 -2𝑇 -1/3

𝐼𝑇 2/3 ≥ 1 -2𝐼𝑇 2/3 exp -2𝑇 1/3+2𝛽 𝑇 1/3 -𝑇 -1/3
Bernoulli's inequality

≥ 1 -2𝐼𝑇 2/3 exp -2𝑇 1/3+2𝛽
𝑇 1/3 ≥ 1 -2𝐼𝑇 2/3 exp(-2𝑇 2𝛽).

It follows from the above equation paired with Eq. (5.9) W T = O 𝑇 5/6+𝛽 + 𝑇 2/3 = O 𝑇 5/6+𝛽 , w.p. 𝑝 ≥ 1 -2𝐼𝑇 38 Time-Complexity of Algorithm 5.1

Algorithm 1 applied to the virtualized caching system application has a time complexity O 𝐶𝐹 2 , where 𝐶 is number of caches and 𝐹 is the number of files in the catalog; the most expensive operation in Algorithm 1 is the projection step in line 8 that corresponds to the Euclidean projection onto a capped simplex, and this can be performed in O 𝐹 2 steps [START_REF] Wang | Projection onto the Capped Simplex[END_REF] for each cache state. Despite the high time complexity (𝐹 is typically large), in practice solvers (e.g., CVXPY [START_REF] Diamond | CVXPY: A Python-Embedded Modeling Language for Convex Optimization[END_REF]) support warm-start that speeds up the projection when the warm-start parameters are close to the ones of obtained by the solution, and since Algorithm 1 is iterative and the cache states do not severely change, typically a lower computational cost is achieved. Moreover, the proposed caching model in Section 5.6 supports request batching, where a batch includes the requests arriving between two consecutive cache updates. Batching amortizes the computational cost of the different policies, reducing the cost per request by the batch size (𝑅 𝑡 at time slot 𝑡).

Introduction 1 1 . 1 1 . 3

 1113 Motivation . 1 1.2 Objective . 1 Outline of the Thesis . 2 1.4 Publications .

Chapter 5

 5 Long-term Fairness in Dynamic Resource Allocation Thesis Online Learning for Network Resource Allocation Chapter 6 Conclusion

Figure 1 . 1 :

 11 Figure 1.1: Structure of the thesis

1. 4 . 1

 41 Published • T. Si Salem, G. Iosifidis, G. Neglia. Enabling Long-term Fairness in Dynamic Resource Allocation. Proceedings of the ACM on Measurement and Analysis of Computing Systems (ACM SIGMETRICS), 2023.

2. 2 - 2 . 2 . 2

 2222 System Description 9 capacity constraint, i.e., X = 𝑥 𝑥 𝑥 ∈ [0, 1] 𝑁 : 𝑁 ∑︁ 𝑖=1 𝑥 𝑖 = 𝑘 .

Algorithm 2 . 1

 21 Online mirror descentRequire: 𝑥 𝑥 𝑥 1 = arg min𝑥 𝑥 𝑥 ∈ X∩D Φ(𝑥 𝑥 𝑥) , 𝜂 ∈ R + 1: for 𝑡 ← 1,2, . . . ,𝑇 do ⊲ Incur a cost 𝑓 𝑟 𝑟 𝑟 𝑡 (𝑥 𝑥 𝑥 𝑡), and receive a gradient ∇𝑓 𝑟 𝑟 𝑟 𝑡 (𝑥 𝑥 𝑥) 2:

Definition 2 . 2 . 1 .

 221 The Bregman projection denoted by Π Φ X∩D : R 𝑁 → X ∩ D, is defined asΠ Φ X∩D (𝑦 𝑦 𝑦) =arg min 𝑥 𝑥 𝑥 ∈X∩D 𝐷 Φ (𝑥 𝑥 𝑥,𝑦 𝑦 𝑦), where 𝐷 Φ (𝑥 𝑥 𝑥,𝑦 𝑦 𝑦) = Φ(𝑥 𝑥 𝑥) -Φ(𝑦 𝑦 𝑦) -∇Φ(𝑦 𝑦 𝑦) 𝑇 (𝑥 𝑥 𝑥 -𝑦 𝑦 𝑦) (2.13)

Figure 2 . 1 :

 21 Figure 2.1: Numerical characterization of 𝑞 * ∈[1, 2] as a function of the diversity ratio 𝑅/ℎ, for different cache capacities 𝑘 expressed as fractions of the catalog size (𝑁 = 100). Given 𝑅/ℎ, the optimal 𝑞 * is determined as the value in[1, 2] that minimizes the upper-bound in Eq.(2.15). Higher values of 𝑅/ℎ represent more diverse requests. Under small diversity, OGD is optimal; as diversity increases, mirror maps for which 𝑞 < 2 attain a more favorable upper bound than OGD.

1 ∥𝑥 1 ŷ

 11 x𝑡,𝑖 = (∇Φ(𝑥 𝑥 𝑥 𝑡)) 𝑖 = sign(𝑥 𝑡,𝑖) |𝑥 𝑡,𝑖 | 𝑞-𝑥 𝑥 𝑡 ∥ 𝑞-2 𝑞 , for all 𝑖 ∈ N, (2.18) 𝑦 𝑡+1,𝑖 = (∇Φ) -1 (ŷ 𝑦 𝑦 𝑡+1) 𝑖 = sign(ŷ𝑡+1,𝑖) | ŷ𝑡+1,𝑖 | 𝑝-

Chapter 2 -

 2 Exact Caching Formally, OMD under the neg-entropy mirror map uses: Φ(𝑥 𝑥 𝑥) = 𝑁 ∑︁ 𝑖=1 𝑥 𝑖 log (𝑥 𝑖) , and D = R 𝑁 >0 .

 𝑦 𝑡+1,𝑖 = exp x𝑡,𝑖 -𝜂 𝜕𝑓 𝑟 𝑟 𝑟 𝑡 (𝑥 𝑥 𝑥 𝑡) 𝜕𝑥 𝑖 -1 = exp log(𝑥 𝑡,𝑖) -𝜂 𝜕𝑓 𝑟 𝑟 𝑟 𝑡 (𝑥 𝑥 𝑥 𝑡) 𝜕𝑥 𝑖 = 𝑥 𝑡,𝑖 𝑒 -𝜂 𝜕𝑓𝑟 𝑟 𝑟 𝑡 (𝑥 𝑥 𝑥 𝑡) 𝜕𝑥 𝑖 . (2.23)

Algorithm 2 . 2

 22 Neg-Entropy Bregman projection onto the capped simplex Require: 𝑁 ; 𝑘; ∥𝑦 𝑦 𝑦 ∥ 1 ; 𝑃; Partially sorted 𝑦 𝑁 ≥ • • • ≥ 𝑦 𝑁 -𝑘+1 ≥ 𝑦 𝑖 , ∀𝑖 ≤ 𝑁 -𝑘 ⊲ 𝑦 𝑦 𝑦 is the intermediate cache state, and 𝑃 is a scaling factor initialized to 1 1: 𝑦 𝑁 +1 ← +∞ 2: for b ∈ {𝑁 , . . . , 𝑁 -𝑘 + 1} do 3:

 Figures 2.2 (a) and 2.2 (b) show it performs well when compared to other learning rates.

Figure 2 .

 2 2 (c) shows the time-average regret TAR of OGD and OMD NE over the Fixed Popularity trace. As both algorithms have sub-linear regret, their time average regret goes to 0 for 𝑇 → ∞. Note how instead LRU exhibits a constant time average regret.Effect of Diversity.

Figure 2 .

 2 3 shows the NAC performance of OMD NE and OGD on the traces Batched Fixed Popularity (1), (2), and (3) under different cache capacities 𝑘 and exponent values 𝛼.

 Figure 2.2: NAC of the different caching policies over the Fixed Popularity trace. Subfigures (a) and (b)show the performance of OGD and OMD NE respectively under different learning rates. For small learning rates the algorithms both converge slower but more precisely, while for larger learning rates they converge faster, but to a higher cost. Subfigure (c) shows the time average regret of the two gradient algorithms. When the regret is sub-linear, the time average regret converges to 0 as

Figure 2 .

 2 4 shows the normalized average cost of OMD NE and OGD over the Partial Popularity Change traces, evaluated under different diversity regimes.

7 Figure 2 . 3 :

 723 Figure 2.3: NAC of OMD NE and OGD evaluated under different cache sizes and diversity regimes. We use traces Batched Fixed Popularity (1), (2), and (3) corresponding to different diversity regimes. Figures from left to right correspond to different cache sizes 𝑘 ∈ {25, 125, 250}, while figures from top to bottom correspond to different exponent values 𝛼 ∈ {0.1, 0.2, 0.7}. OMD NE outperforms OGD in the more diverse regimes and for small cache sizes, while OGD outperforms for large cache sizes and concentrated requests.

Figure 2 . 4 :

 24 Figure 2.4: Subfigures (a)-(c) show NAC of OGD and OMD NE evaluated under different diversity regimes when 10% of the files change popularity over time. We use traces Partial Popularity Change (1), (2), and (3) corresponding to the different diversity regimes. The diversity regimes are selected, such that, in the stationary setting (dashed line): (a) OMD NE outperforms OGD, (b) OMD NE has similar performance to OGD and (c) OMD NE performs slightly worse than OGD. OMD NE is consistently more robust to partial popularity changes than OGD. Subfigures (d)-(h) show the NAC of the different caching policies evaluated on the Global Popularity Change trace, where file popularity changes every 5 × 10 4 iterations. While OGD adapts seamlessly to popularity changes (d), multiplicative updates can make OMD NE less reactive (e), unless OMD NE is forced to operate over the 𝛿-interior of X (f) (𝛿 = 10 -4). Finally, our mirror descent policies outperform competitors (h).

Figure 2 . 5 :Figure 2 . 6 :

 2526 Figure 2.5: NMAC of the different caching policies evaluated on the Akamai Trace. OMD NE and OGD provide consistently the best performance compared to W-LFU, LFU, LRU, and FTPL. OGD performs slightly better than OMD in some parts of the trace.

Figure 2 .

 2 Figure2.7 shows the fractional and (rounded) integral cache states under Downsampled Global Popularity Change trace. Online independent rounding indeed leads to more frequent updates than online coupled rounding, while the latter maintains a more stable cache configuration by coupling the consecutive states and avoiding unnecessary updates.

Figure 2 . 7 :

 27 Figure 2.7: Online rounding of fractional caching states. Visually, we see that the online independent rounding has more frequent updates than the online coupled rounding. This leads to large update costs. The online coupled rounding and the online optimally-coupled rounding prevents the cache to perform unnecessary updates.

1 Figure 2 . 8 :

 128 Figure 2.8: Runtime per iteration of OMD NE and OGD. Subfigure (a) shows the runtime per 500 iterations over the Fixed Popularity trace. Subfigure (b) shows the runtime per 50 iterations over the Batched Fixed Popularity (2) trace.

 Responses. A request 𝑟 = (𝑖, 𝑝) is determined by (a) the item 𝑖 ∈ C requested, (b) the path 𝑝 along which the request is forwarded. A path 𝑝 is a sequence {𝑝 𝑘 } |𝑝 |

Figure 2 . 10 :

 210 Figure 2.10: Request traces for different scenarios. Each dot indicates an access to an item in the catalog; items are ordered in an overall increasing popularity from top to bottom. In Sliding Popularity, popularity changes at fixed time intervals, through a cyclic shift (most popular items become least popular). In Shot Noise, each item remains active for a limited lifetime.

Figure 2 . 11 :

 211 Figure 2.11: TACG of different algorithms over different topologies with Stationary Requests. The total simulation time is 1000 time units. TBGRD, GRD, and PGA perform well in comparison to path replication policies. However, GRD and other myopic strategies attain zero TACG over abilene and path, the round-robin scenarios. In comparison, TBGRD and PGA still perform well.

Figure 2 . 12 :

 212 Figure 2.12: TACG of different algorithms over different topologies with Sliding Popularity. The total simulation time is 1000 time units. TBGRD, GRD, and PGA again outperform path replication algorithms; GRD sometimes even outperforms the (static) OFL solution, attaining a normalized TACG larger than one. However, GRD and several path replication algorithms again fail catastrophically over the abilene and path scenarios, while TBGRD and PGA again attain a normalized TACG close to one.

Figure 2 . 13 :

 213 Figure 2.13: TACG of different algorithms over different topologies with Shot Noise. We again observe TBGRD, GRD, and PGA perform well in this non-stationary request arrival setting. Moreover, several algorithms outperform the (static) offline solution OFL in this setting. Again, GRD and other myopic path replication policies fail over abilene and path, while TBGRD and PGA still attain a nonzero TACG.

Figure 2 . 14 :

 214 Figure 2.14: TACG of different algorithms over different topologies with CDN trace. The total simulation time is 2000 time units. We again observe that TBGRD, GRD, and PGA outperform path replication policies.

 (a) Average number of requests |R 𝑡 | (b) Number of colors 𝑀 (c) Parameter 𝜖 (d) Color update period 𝐾

Figure 2 . 15 :

 215 Figure 2.15: TACG vs. different parameters under Stationary Request. As the average number of requests increases, TACG decreases. Number of colors does not affect a lot. As 𝜖 increases, TACG decreases. As color update period increases, TACG increases.

 and 2.16, respectively, for five different topologies. We plot the normalized TACG with different values of colors 𝑀, parameter 𝜖, color update period 𝐾, and average number of requests per round |R 𝑡 |.

 (a) Average number of requests |R 𝑡 | (b) Number of colors 𝑀 (c) Parameter 𝜖 (d) Color update period 𝐾

Figure 2 . 16 :

 216 Figure 2.16: TACG v.s. different parameter with Sliding Popularity scenario.The average number of requests and number of colors do not affect performance significantly. The optimal 𝜖 is at about 0.01 for multiple topologies; this selection corresponds to a decay rate of the item selection probability that is most appropriate for the popularity refreshing period of these traces. As the color update period increases, TACG increases.

6 Figure 2 . 17 :

 6217 Figure 2.17: TACG and CUC of DistributedTGOnline over Sliding Popularity trace/dtelekom. The learning rate is 𝜖 = 5 × 10 4 . Values reported are averaged over 30 experiments with different random seeds.

Figure 3 . 1 :

 31 Figure 3.1: Cached objects' movements in the representation space (R 2) during [0,𝑇] when the cache is managed by Grades. The catalog is made by the points in a 100 × 100 grid, dark shaded areas correspond to more popular objects. Dissimilarity cost 𝐶 𝑑 (𝑥, 𝑦) = 1/10 ∥𝑥 -𝑦 ∥ 1 , retrieval cost 𝐶 𝑟 = 1, cache size 𝑘 = 50. See the description in Section 3.2.4.

3. 2 - 3 . 2 . 3 A 59 Figure 3 . 2 :

 23235932 Figure 3.2: Coverage of the request space (⊂ R 2) by 4 objects in the cache with norm-2 as dissimilarity cost. Crosses represent the objects. Each object is the closest point to requests in the corresponding Voronoi cell delimited by the red lines. Consider a request 𝑟 falling in the Voronoi cell of an object 𝑦 𝑖 .If 𝑟 is closer to 𝑦 𝑖 than the critical radius 𝑅 𝜃 (such that 𝑢 (𝑅 𝜃) = 𝑐 𝜃), 𝑟 receives 𝑦 𝑖 as reply, otherwise (it falls in the gray shaded area) it generates a miss.

Figure 3 . 3 :

 33 Figure 3.3: The heatmap depicts the popularity distribution of objects in the grid. The darker regions A and B contain the most popular content. The circles represent the final configuration produced by the Grades policy (𝜂 = 0.64) under the trace Synthetic.

 3. Figure 3.1 corresponds to a rescaled version of the same process.

Figure 3 . 4 :Figure 3 . 5 :

 3435 Figure 3.4: Expected cost C(•) incurred by different policies under the trace Synthetic. LRU+, SIM-LRU, 𝑞LRU-Δ𝐶 (𝑞 = 10 -2), Greedy, and Grades (𝜂 = 0.64, plain and grafted with 𝑝 = 10 -1). Cache size ℎ = 313.

Figure 3 . 6 :

 36 Figure 3.6: Subfigure (a) shows the expected cost C(•) incurred by Grades/𝑞LRU-Δ𝐶 (𝜂 = 0.64 grafted with 𝑝 = 1 and 𝑞 = 10 -3) for different initialization (uniform box, uniform grid, and requestbased depicted in (b), (c), and (d), respectively) under the trace Synthetic. Cache size is ℎ = 313. The heatmap depicts the popularity distribution of objects in the grid.

Figure 3 . 7 :

 37 Figure 3.7: Effect of grafting parameter 𝑝 on the expected cost C(•) in a dynamic setting for Grades/𝑞LRU-Δ𝐶 (𝜂 = 0.64). The cache is initialized to a stationary configuration as in Figure 3.3. Now, only requests corresponding to region B from the trace Synthetic are made. Cache size ℎ = 313.

Figure 3 . 8 :

 38 Figure 3.8: Expected cost C(•) incurred by the different policies under the trace Synthetic: 𝑞LRU-Δ𝐶 (𝑞 = 10 -3 , 10 -2), Duel , Greedy, and Grades (𝜂 = 1.28, 0.64 grafted with 𝑝 = 1 and 𝑞 = 10 -3). Cache size ℎ = 313.

128 Figure 3 . 9 :

 12839 Figure 3.9: Expected cost C(•) incurred by the Grades/SIM-LRU under the trace Synthetic for different values of the approximation threshold 𝑐 𝜃 . Cache size ℎ = 313, 𝑐 𝑓 = 1, 𝜂 = 0.64, 1.28 and 𝑝 = 0.001.

Figure 3 . 10 :

 310 Figure 3.10: Expected cost C(•) incurred by the different caching policies under the trace 360 • videos. Grades/𝑞LRU-Δ𝐶 (𝑞 = 0.01, 0.05) with 𝜂 = 1.0 and 𝑞LRU-Δ𝐶 (𝑞 = 0.01, 0.05). Cache size ℎ = 4000.

Figure 3 . 11 :

 311 Figure 3.11: The empirical distribution of pairwise distances under the trace Amazon. The distribution is computed on a random subset of the catalog containing 1000 products.

Figure 3 . 12 :

 312 Figure 3.12: The time averaged cost incurred by different policies under the trace Amazon: LRU, LRU+, SIM-LRU, 𝑞LRU-Δ𝐶 (𝑞 = 10 -3) and Grades/𝑞LRU-Δ𝐶 (𝜂 = 6.9 × 10 2 , grafted with p = 1). The level of approximability is 10%. Cache size ℎ = 100.

Figure 3 . 13 :

 313 Figure 3.13: The average cost incurred by 𝑞LRU-Δ𝐶 (𝑞 = 10 -3) and Grades/𝑞LRU-Δ𝐶 (grafted with 𝑝 = 1) under the machine learning traces. The learning rates picked for different approximability levels are: (a) (𝜂 = 5.4 × 10 2 , 6.3 × 10 2 , 6.9 × 10 2 , 7.7 × 10 2), (b) (𝜂 = 2.4 × 10 -2 , 2.6 × 10 -2 , 3.0 × 10 -2 , 3.2 × 10 -2) and (c) (𝜂 = 1.6 × 10 -1 , 2.7 × 10 -1 , 3.2 × 10 -1 , 3.8 × 10 -1). Cache size ℎ = 100.

Figure 3 . 15 :

 315 Figure 3.15: Synthetic catalog of objects located on a 30×30 grid. The heatmap depicts the popularity distribution of objects in the grid.

 Optimal fractional static cache allocations10 20

Figure 3 . 16 :

 316 Figure 3.16: The optimal fractional static cache allocations, and AÇAI's fractional static approximated allocations under different values of retrieval costs 𝑐 𝑓 ∈ {1, 2, 3, 4} and number of neighbors 𝑘 ∈ {1, 2, 3, 4, 5}.

 (a) R e tr ie v a l c o s t (c f) 1 1.5 2 2.5 3 3.5 4 N u m b e r o f n e i g h b o r s (k

Figure 3 . 18 :

 318 Figure 3.18: Caching gain for the different policies. The cache size is ℎ = 1000 and 𝑘 = 10.

Figure 3 . 19 :Figure 3 . 20 :

 319320 Figure 3.19: Caching gain for the different policies, for different cache sizes ℎ ∈ {50, 100, 200, 500, 1000, 2000} and 𝑘 = 10.

Figure 3 . 21 :

 321 Figure 3.21: Caching gain for the different policies. The cache size is ℎ = 1000, and 𝑘 ∈ {10, 20, 30, 50, 100}.

3 Figure 3 . 22 :

 3322 Figure 3.22: Caching gain for AÇAI for different values of 𝜂 (top). Caching gain for SIM-LRU(middle) and CLS-LRU (bottom) for different values of the parameters (𝑘 ′ , 𝐶 𝜃). SIFT1M trace.

 : η = 10 -5 Neg-entropy: η = 10 -4 Euclidean: η = 5 × 10 -7Euclidean: η = 10 -6

Figure 3 . 23 :Figure 3 .

 3233 Figure 3.23: Caching gain for AÇAI configured with negative entropy and Euclidean maps (SIFT1M trace). The cache size is ℎ = 100 and 𝑘 = 10.

Figure 3 . 25 :

 325 Figure 3.25: Number of fetched files (time average) and caching gain of AÇAI under different rounding schemes. AÇAI is run with the learning rate 𝜂 = 10 -5 over the Amazon trace. The cache size is ℎ = 1000 and 𝑘 = 10.

Figure 3 . 26 :

 326 Figure 3.26: Time averaged and instantaneous cache occupancy under CoupledRounding. AÇAI is run with the learning rate 𝜂 = 10 -5 over the Amazon trace. The cache size is ℎ = 1000 and 𝑘 = 10.

Figure 4 . 1 :

 41 Figure 4.1: System overview: a network of compute nodes serves inference requests along predefined routing paths. A repository node at the end of each path ensures that requests are satisfied even when there are no suitable models on intermediate nodes.

Figure 4 . 2 :

 42 Figure 4.2: Example of pre-trained model catalog for the image classification task. Data from [224].

Figure 4 . 3 :

 43 Figure 4.3: Necessity of partial synchronization in IDN among close-by computing nodes under the cost model in Eq. (4.6).

(4. 13)

 13 The first term 𝐶 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝜔 𝜔 𝜔) on the right hand side is the service cost when only repository models are present in the network. Since intermediate nodes can help serving the requests at a reduced cost, 𝐶 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝜔 𝜔 𝜔) is an upper bound on the aggregate serving cost, and the allocation gain captures the cost reduction achieved by model allocation 𝑥 𝑥 𝑥.The static model allocation problem can then be formulated as finding the model allocation 𝑥 𝑥 𝑥 * that maximizes the time-averaged allocation gain over the time horizon 𝑇 , i.e., 𝑥 𝑥 𝑥 * = arg max 𝑥 𝑥 𝑥 ∈X 𝐺 𝑇 (𝑥 𝑥 𝑥) 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥) .(4.14)

Chapter 4 -

 4 Inference Delivery Networks projection algorithm in Algorithm 2.2 in Chapter 2 to obtain a weighted negative entropy projection P Φ 𝑣 Y 𝑣 ∩D 𝑣 (•). Our adaptation is described in Appendix 26. Allocation update. Once the fractional state 𝑦 𝑦 𝑦 𝑣 has been updated, the final step of INFIDA is to determine a new random discrete allocation 𝑥 𝑥 𝑥 𝑣 and update the local models accordingly. The sampled allocation 𝑥 𝑥 𝑥 𝑣 should (1) comply with the budget constraint (4.2) on node 𝑣 and (2) be consistent with the fractional state, i.e., E[𝑥 𝑣 𝑚] = 𝑦 𝑣 𝑚 ∀𝑚 ∈ M. To this purpose, we use the DepRound [173] subroutine (line 7 of Algorithm 4.1).

Figure 4 . 4 :

 44 Figure 4.4: Fractional allocation decisions 𝑦 𝑣 𝑚 of INFIDA on the various tiers of Network Topology I under Fixed Popularity Profile. We only show the allocations corresponding to the models capable to serve the most popular request. The model IDs are sorted by increasing accuracy.

Figure

 Figure 4.5 shows the average experienced inaccuracy (inaccuracy is given by 100 -mAP and mAP is the mean average precision) and latency for different values of 𝛼 under Network Topology I and Fixed Popularity Profile. When accuracy is not important (i.e., 𝛼 ≈ 0), INFIDA effectively achieves very low end-to-end latency (few milliseconds) by prioritizing the deployment of small and inaccurate models near to the edge nodes. Noticeably, the trend in both curves (decreasing inaccuracy and increasing latency) suggests that, when higher accuracy is required, the system starts to prefer models deployed close to the cloud, leading to a sudden change in the trade-off and to a significant increase in latency.In Figure 4.6 we show the normalized time-averaged gain of INFIDA compared to OLAG, SG, and INFIDA Offline for different values of 𝛼 under the Sliding Popularity Profile. Results are shown both for Network Topology I (Figure 4.6a) and for Network Topology II (Figure 4.6b).The plot shows that the gain decreases by increasing 𝛼. This is expected since the gain (4.13) is defined as the improvement w.r.t. the repository allocation (tier 0). Therefore, when the latency is not important, high accuracy models at tier 0 are preferred, and there is no much room for improvement (the optimal gain eventually tends to zero for 𝛼→+∞). Note that, in general, SG and INFIDA Offline policies perform worse than their offline counterparts, as they pick a single allocation that is the best w.r.t. the whole sequence of requests. However, in the Sliding Popularity Profile the best decision changes periodically, and only the online policies have the ability to adapt to such change. Moreover, we observe that consistently INFIDA Offline has better performance than SG: although both policies are offline, INFIDA Offline manages to provide a better allocation.

Figure 4 .

 4 Figure 4.5 shows the average experienced inaccuracy (inaccuracy is given by 100 -mAP and mAP is the mean average precision) and latency for different values of 𝛼 under Network Topology I and Fixed Popularity Profile. When accuracy is not important (i.e., 𝛼 ≈ 0), INFIDA effectively achieves very low end-to-end latency (few milliseconds) by prioritizing the deployment of small and inaccurate models near to the edge nodes. Noticeably, the trend in both curves (decreasing inaccuracy and increasing latency) suggests that, when higher accuracy is required, the system starts to prefer models deployed close to the cloud, leading to a sudden change in the trade-off and to a significant increase in latency.In Figure 4.6 we show the normalized time-averaged gain of INFIDA compared to OLAG, SG, and INFIDA Offline for different values of 𝛼 under the Sliding Popularity Profile. Results are shown both for Network Topology I (Figure 4.6a) and for Network Topology II (Figure 4.6b).The plot shows that the gain decreases by increasing 𝛼. This is expected since the gain (4.13) is defined as the improvement w.r.t. the repository allocation (tier 0). Therefore, when the latency is not important, high accuracy models at tier 0 are preferred, and there is no much room for improvement (the optimal gain eventually tends to zero for 𝛼→+∞). Note that, in general, SG and INFIDA Offline policies perform worse than their offline counterparts, as they pick a single allocation that is the best w.r.t. the whole sequence of requests. However, in the Sliding Popularity Profile the best decision changes periodically, and only the online policies have the ability to adapt to such change. Moreover, we observe that consistently INFIDA Offline has better performance than SG: although both policies are offline, INFIDA Offline manages to provide a better allocation.

4. 6 - 4 . 6 . 2

 6462 Trade-off between model updates and service cost.

115

 115

Figure 4 . 5 :Figure 4 . 6 :

 4546 Figure 4.5: Average latency (dashed line) and inaccuracy (solid line) costs experienced with INFIDA for different values of 𝛼 under Network Topology I and Fixed Popularity Profile.

 INFIDA : 7500 rps INFIDA : 10000 rps OLAG : 7083 rps OLAG : 7500 rps OLAG : 10000 rps INFIDA Offline : 7083 rps INFIDA Offline : 7500 rps INFIDA Offline : 10000 rps SG : 7083 rps SG : 7500 rps SG :

Figure 4 . 8 :

 48 Figure 4.8: NTAG of the different policies for different request rates under Network Topology I.

 INFIDA : 10000 rps OLAG : 7500 rps OLAG : 10000 rps INFIDA Offline : 7500 rps INFIDA Offline : 10000 rps SG : 7500 rps SG : 10000 rps

Figure 4 . 9 :

 49 Figure 4.9: Average Latency vs. Average Inaccuracy obtained for different values of 𝛼 ∈ {0.5, 1, 2, 3, 4, 5, 6} under Fixed Popularity Profile and Network Topology II.

 𝑡 (𝑥 𝑥 𝑥) -𝐹 𝛼 1 𝑇 ∑︁ 𝑡 ∈T 𝑢 𝑢 𝑢 𝑡 (𝑥 𝑥 𝑥 𝑡) .(5.1)

3 . 1)

 31 to ensure a horizon-fairness criterion over the entire period T . Formally, the benchmark selects the allocation 𝑥 𝑥 𝑥 ★ ∈ X satisfying HF :𝑥 𝑥 𝑥 ★ ∈ arg max𝑥 𝑥 𝑥 ∈X 𝐹 𝛼 1 𝑇 ∑︁ 𝑡 ∈T𝑢 𝑢 𝑢 𝑡 (𝑥 𝑥 𝑥) .

Figure 5 . 1 :

 51 Figure 5.1: Price of Fairness under HF and SF objectives for Example 5.3.1 for 𝑥 max = 3. The green shaded area provides the set of allocation unachievable by the SF objective but achievable by the HF objective.

(

 A2) The utilities are bounded, i.e., 𝑢 𝑢 𝑢 𝑡 (𝑥 𝑥 𝑥) ∈ [𝑢 min , 𝑢 max] I ⊂ R I for every 𝑡 ∈ T . (A3) The supergradients of the utilities are bounded over X, i.e., it holds ∥𝑔 𝑔 𝑔∥ 2 ≤ 𝐿 X < ∞ for any 𝑔 𝑔 𝑔 ∈ 𝜕 𝑥 𝑥 𝑥 𝑢 𝑡,𝑖 (𝑥 𝑥 𝑥) and 𝑥 𝑥 𝑥 ∈ X. (A4) The average utility of the optimal allocation (5.5) is bounded such that 1 𝑇 𝑡 ∈T 𝑢 𝑢 𝑢 𝑡 (𝑥 𝑥 𝑥 ★) ∈ 𝑢 ★,min , 𝑢 ★,max I ⊂ R I >0 . (A5) The adversary is restricted to select utilities such that min {V T , W T } = 𝑜 (𝑇).

Theorem 5 . 4 . 1 .

 541 When Assumptions (A1)-(A4) are satisfied, there is no online policy A A A attaining ℜ 𝑇 (𝐹 𝛼 , A A A) = o (1) for |I| > 1 and 𝛼 > 0. Moreover, there exists an adversary where Assumption (A5) is necessary for ℜ 𝑇 (𝐹 𝛼 , A A A) = 𝑜 (1).

Figure 5 . 2 :

 52 Figure 5.2: Subfigures (a)-(c) provide the utilities of agent 2 for different values of perturbations' severity parameter 𝑠 ∈ 1 100 , 1 10 , 1 2 under the benchmark's allocation 𝑥 ★ . Subfigure (d) provides the time-averaged utility of two agents. The dark dashed lines represent the utilities obtained by HF objective (5.5).

Example 5 . 4 . 1 -

 541 (Adversaries satisfying V T = 𝑜 (𝑇)) Consider an adversary selecting utilities such that 𝑢 𝑢 𝑢 𝑡 (𝑥 𝑥 𝑥) = 𝑢 𝑢 𝑢 (𝑥 𝑥 𝑥) + 𝛾 𝛾 𝛾 𝑡 ⊙ 𝑝 𝑝 𝑝 𝑡 (𝑥 𝑥 𝑥),

Figure 5 . 3 :

 53 Figure 5.3: Subfigures (a)-(b) provide the allocations of different agents of cyclic and u.a.r. choice of utilities over the set M 1 , respectively. Subfigures (c)-(d) provide the time-averaged utility of cyclic and u.a.r. choice of utilities over the set M 1 , respectively.

Example 5 . 4 . 3 - 2 . 5 . 4 . 4 .

 5432544 (Stochastic Adversary) Consider a scenario where 𝑢 𝑡,𝑖 : X → R are drawn i.i.d. from an unknown distribution D 𝑖 . Formally, the following corollary is obtained from Theorem 5.4.Corollary When the utilities 𝑢 𝑡,𝑖 : X → R are drawn i.i.d. from an unknown distribution D 𝑖 satisfying Assumptions (A1)-(A4), the policy OHF in Algorithm 5.1 attains the following expected fairness regret guarantee:

Definition 5 . 5 . 1 .

 551 A (𝑤 𝑤 𝑤, 𝛼)-fairness function 𝐹 𝑤 𝑤 𝑤,𝛼 : U → R is parameterized by the inequality aversion parameter 𝛼 ∈ R ≥0 , weights 𝑤 𝑤 𝑤 ∈ Δ I and it is given by 𝐹 𝑤 𝑤 𝑤,𝛼 (𝑢 𝑢 𝑢) ≜ 𝑖∈I 𝑤 𝑖 𝑓 𝛼 (𝑢 𝑖) for every 𝑢 𝑢 𝑢 ∈ U. Note that U ⊂ R I ≥0 for 𝛼 < 1, and U ⊂ R I >0 for 𝛼 ≥ 1.

 𝑤 𝑡,(𝑐,𝑐 ′) ∈ R >0 . Let P 𝑡,(𝑐,𝑐 ′) = 𝑐 1 , 𝑐 2 , . . . , 𝑐 |P𝑡,(𝑐,𝑐′) | ∈ C |P𝑡,(𝑐,𝑐′) | be the shortest path at timeslot 𝑡 ∈ T from cache 𝑐 to cache 𝑐 ′ with associated weight 𝑤 sp 𝑡,(𝑐,𝑐 ′) ≜ |P𝑡,(𝑐,𝑐′) |-1 𝑘=1

 sp 𝑡,(𝑐,𝑐 ′) . Let 𝜙 𝑡,𝑖,𝑐 ≜ arg min 𝑐 ′ ∈Λ 𝑖 (C) 𝑤 sp 𝑡,(𝑐,𝑐 ′) and Φ 𝑡,𝑖,𝑐 : 1, 2, . . . , 𝜙 𝑡,𝑖,𝑐 ⊂ C → C be a map providing a retrieval cost ordering for every 𝑐 ∈ 1, 2, . . . , 𝜙 𝑡,𝑖,𝑐 , 𝑡 ∈ T , and 𝑖 ∈ I, i.e., 𝑤 sp 𝑡,(𝑐,Φ 𝑡,𝑖,𝑐 (𝜙 𝑡,𝑖,𝑐)) = min 𝑤 sp 𝑡,(𝑐,𝑐 ′) : 𝑐 ′ ∈ Λ 𝑓 (C) ≥ • • • ≥ 𝑤 sp 𝑡,(𝑐,Φ 𝑡,𝑖,𝑐 (2))) ≥ 𝑤 sp 𝑡,(𝑐,Φ 𝑡,𝑖,𝑐 (1))) = 0. (5.23) When a request batch 𝑟 𝑟 𝑟 𝑡 ∈ R 𝑡 arrives at timeslot 𝑡 ∈ T , agent 𝑖 ∈ I incurs the following cost: cost 𝑡,𝑖 (𝑥 𝑥 𝑥) ≜ ∑︁ 𝑐∈Γ 𝑖 (C) ∑︁ 𝑓 ∈F 𝑟 𝑡,𝑐,𝑓 𝜙 𝑡,𝑖,𝑐 -1 ∑︁ 𝑘=1 𝑤 sp 𝑡,(𝑐,Φ 𝑡,𝑖,𝑐 (𝑘+1)) -𝑤 sp 𝑡,(𝑐,Φ 𝑡,𝑖,𝑐 (𝑘)) 1 -min 1, 𝑘 ∑︁ 𝑘 ′ =1𝑥 Φ 𝑡,𝑖,𝑐 (𝑘 ′),𝑓 .

 and the cost of the agent at this state is given by cost 𝑡,𝑖 (𝑥 𝑥 𝑥 0) = ∑︁ 𝑐∈Γ 𝑖 (C) ∑︁ 𝑓 ∈F 𝑟 𝑡,𝑐,𝑓 min 𝑤 sp 𝑡,(𝑐,𝑐 ′) : 𝑐 ′ ∈ Λ 𝑓 (C) 𝑐,Φ 𝑡,𝑖,𝑐 (𝑘+1)) -𝑤 sp 𝑡,(𝑐,Φ 𝑡,𝑖,𝑐 (𝑘)) , (5.25)

Figure 5 . 5 :

 55 Figure 5.5: Network topologies used in experiments.

•

 in the Appendix. A repository node permanently stores the entire catalog of files. The retrieval costs along the edges are sampled u.a.r. from {1, 2, . . . , 5}, except for edges directly connected to a repository node which are sampled u.a.r. from {6, 7, . . . , 10}. All the retrieval costs remain fixed for every 𝑡 ∈ T . The capacity of each cache is sampled u.a.r. from {1, 2, . . . , 5}, but for the Cycle topology in which each cache has capacity 5. An agent 𝑖 ∈ I has a set of query nodes denoted by Q 𝑖 ⊂ Γ 𝑖 (C), and a query node can generate a batch of requests from a catalog with |F | = 20 files. Unless otherwise said, we consider 𝑢 ★,min = 0.1 and 𝑢 ★,max = 1.0. The fairness benchmark refers to the maximizer of the HF objective (5.5), and the utilitarian benchmark refers to the maximizer of HF objective (5.5) for 𝛼 = 0. Traces. Each query node generates requests according to the following: Stationary trace (parameters: 𝜎, 𝑅,𝑇 , 𝐹). Requests are sampled i.i.d. from a Zipf distribution with exponent 𝜎 ∈ R ≥0 from a catalog of files of size 𝐹 . The requests are grouped into batches of size |R 𝑡 | = 𝑅, ∀𝑡 ∈ T . • Non-Stationary trace (parameters: 𝜎, 𝑅,𝑇 , 𝐹, 𝐷). Similarly, requests are sampled i.i.d. from a catalog of 𝐹 files according to a Zipf distribution with exponent 𝜎 ∈ R ≥0 . Every 𝐷 requests, the popularity distribution is modified in the following fashion: file 𝑓 ∈ F = {1, 2, . . . , 𝐹 } assumes the popularity of file 𝑓 ′ = (𝑓 + 𝐹 /2) mod 𝐹 (𝐹 is even). The requests are grouped into batches of size |R 𝑡 | = 𝑅, ∀𝑡 ∈ T . The stationary trace corresponds to the stochastic adversary in Example 5.4.3, and the nonstationary trace corresponds to a stochastic adversary with perturbations satisfying the partitionedseverity condition in Eq. (5.10). Two sampled traces are depicted in Figure 36.13 in the Appendix. Unless otherwise said, query nodes generate Stationary traces and 𝜎 = 1.2, 𝑇 = 10 4 , 𝑅 = 50, and 𝐷 = 50.

Figure 5 . 7 ,

 57 we consider the Cycle topology, and different values of 𝛼 ∈ {0, 1, 2}. In Figure 5.7 (a)-(b) we consider the retrieval cost 𝑤 (1,3) = 3.5 between agent 1's cache node and the repository node. In Figure 5.7 (c)-(d) query node of agent 1 generates Stationary trace (𝜎 = 1.2) and query node of agent 2 generates Stationary trace (𝜎 = 0.6). We consider two fixed request batch sizes 𝑅 ∈ {1, 50}. In Figures 5.7

Figure 5 . 6 :

 56 Figure 5.6: Pareto front and fairness benchmark's utilities for different values of 𝛼 ∈ [0, 2] under different request patterns (a) (𝜎 ∈ {0.6, 0.8, 1.0, 1.2}) for agent 2, and different retrieval costs (b) between agent 1's cache and the repository (𝑤 (1,3) ∈ [2.5, 4.0]).

 and 5.10, we consider the Tree 1-3 topology, 𝛼 ∈ {1, 2, 3}, and |I| ∈ {2, 3, 4}. Agents' query nodes generate Stationary trace (𝜎 ∈ {1.2, 0.8, 0.6}).

Figure 5 .

 5 10 gives the time-averaged

50 Figure 5 . 7 :

 5057 Figure 5.7: Time-averaged utilities of policies OHF, OSF, LRU, and LFU under Cycle topology. Subfigures (a)-(b) are obtained under retrieval cost 𝑤 (1,3) = 3.5 for agent 1's query node. Subfigures (c)-(d) are obtained when agent 2's query node generates Stationary trace (𝜎 = 0.6). Markers correspond to iterations in 100, 200, . . . , 10 4 .

Figure 5 . 50 Figure 5 . 8 :

 55058 Figure 5.8: Time-averaged utilities obtained for policies OHF, OSF, LRU, and LFU for batch sizes (a) 𝑅 = 1 and (b) 𝑅 = 100, under Cycle network topology. Markers correspond to iterations in 100, 200, . . . , 10 4 .

3 (Figure 5 . 9 :

 359 Figure 5.9: Subfigures (a)-(c) provide the average utility for different agents obtained by OHF, fairness benchmark (OPT for 𝛼 ≠ 0), and utilitarian benchmark (OPT for 𝛼 = 0); and Subfigure (d) provides the PoF for 𝛼 ∈ {0, 1, 2, 3} under an increasing number of agents in {2, 3, 4} and Tree 1-3 network topology.

Figure 5 . 10 :Figure 5 . 11 :

 510511 Figure 5.10: Subfigures (a)-(c) provide the time-averaged utility across different agents obtained by OHF policy and OPT for 𝛼 = 2 under an increasing number of agents in {2, 3, 4} and Tree 1-3 network topology.

Theorem 1 . 2 .

 12 The algorithm OMD 1-norm defined as the limitting algorithm obtain by taking 𝑞 converges to 1 of OMD 𝑞-norm with learning rate 𝜂 𝑞 = 𝜂 (𝑞 -1)𝑘, intermediate states 𝑦 𝑦 𝑦 (𝑞) 𝑡 , and fractional states 𝑥 𝑥 𝑥 (𝑞)

.

 The randomized states obtained by Ξ are {𝑧 𝑧 𝑧 𝑡 } 𝑇 𝑡=1 ; thus, we have 𝑧 𝑧 𝑧 𝑡 = [1, 0] w.p. 𝑥 𝑡,1 , and 𝑧 𝑧 𝑧 𝑡 = [0, 1] w.p. 𝑥 𝑡,2 . An adversary selects the request batch as 𝑟 𝑟 𝑟 𝑡 = [1 {𝑖=𝑖 𝑡 }] 𝑖∈N aiming to greedily maximize the cost of the cache, where 𝑖 𝑡 = arg min 𝑖∈N {𝑥 𝑡,𝑖 }.

 (a) E[𝑧 𝑧 𝑧 𝑡] = 𝑥 𝑥 𝑥 𝑡 and E[𝑧 𝑧 𝑧 𝑡+1] = 𝑥 𝑥 𝑥 𝑡+1 , and (b) E UC 𝑟 𝑟 𝑟 𝑡 (𝑧 𝑧 𝑧 𝑡 ,𝑧 𝑧 𝑧 𝑡+1) = O (∥𝑥 𝑥 𝑥 𝑡+1 -𝑥 𝑥 𝑥 𝑡 ∥ 1). This algorithm incurs an expected service cost equal to the service cost of the fractional sequence. Moreover, if 𝜂 = Θ 1 √ 𝑇 , the algorithm has also O √ 𝑇 expected update cost and then O √ 𝑇 extended regret.

Figure 2 . 1 :

 21 Figure 2.1: The support and distribution of the random variable |I 𝑖-1 | for 𝑚 𝑖-1 ≥ 𝑚 - 𝑖 (left) and 𝑚 𝑖-1 < 𝑚 - 𝑖 (right). The blue shaded area represents the probability that |I 𝑖-1 | takes the value indicated below the corresponding image. This figure can be viewed as a subset of the rows in Figure 2.2.

Figure 2 . 2 :

 22 Figure 2.2: The random integral cache configuration obtained by calling Online Rounding given the fractional cache state 𝑥 𝑥 𝑥 and 𝜉 (left). When 𝜉 is kept fixed, the probability over the initial choice of 𝜉 the random integral cache configuration rounded from a new fractional state 𝑥 𝑥 𝑥 ′ = 𝑥 𝑥 𝑥 -𝛿𝑒 𝑒 𝑒 3 + 𝛿𝑒 𝑒 𝑒 7 is different is illustrated by the dashed areas (right).

2 - 2 . 5 157 Figure 2 . 3 :Lemma 2 . 4 .

 251572324 Figure 2.3: Coupling induced by Online Rounding Algorithm 2.3 when 𝜉 is fixed. The flow 𝑓 𝑖,𝑗 is the joint probability P(𝑧 𝑧 𝑧 𝑡+1 = 𝜁 𝑡+1,𝑗 ,𝑧 𝑧 𝑧 𝑡 = 𝜁 𝑡,𝑖), so that the next state is 𝜁 𝑡+1,𝑗 and the previously selected state is 𝜁 𝑡,𝑖 .

 For any set à ⊆ S × C × [𝑀] and vector 𝑚 𝑚 𝑚 = [𝑚 𝑠] 𝑠∈S ∈ [𝑀] |S| , let: sample 𝑚 𝑚 𝑚 (Ã) = (𝑠, 𝑖) ∈ S × C : (𝑠, 𝑖, 𝑚 𝑠) ∈ à . (3.33)

) 4 -Tabular Greedy Algorithm 159 Algorithm . 1 1 : 2 : 3 : 4 :Find 8 :

 4159112348 TabularGreedy Require: Integer 𝑀, set C, function 𝑓 . set à ← ∅. for 𝑚 ← 1, 2, . . . , 𝑀 do for each 𝑠 ∈ S do 𝑖 𝑠,𝑚 s.t. 𝐹 (à + (𝑠, 𝑖 𝑠,𝑚 , 𝑚)) ≥ max 𝑖∈C 𝐹 (à + (𝑠, 𝑖, 𝑚)) -𝜖 𝑠,𝑚 5: à ← à + (𝑠, 𝑖 𝑠,𝑚 , 𝑚) for each 𝑠 ∈ S do independently choose 𝑚 𝑠 uniformly at random from 𝑀 9: end for 10: return sample 𝑚 𝑚 𝑚 (Ã) where, for legibility, we use à + 𝑜 to indicate à ∪ {𝑜}. Finally, the algorithm returns allocation 𝑆 = sample 𝑚 𝑚 𝑚 (Ã), where colors in vector 𝑚 𝑚 𝑚 are selected u.a.r. from [𝑀].

 𝑓 𝑟 ((𝑠, 𝑖) ∈ S × C : (𝑠, 𝑖, 𝑚 𝑠) ∈ Ã) (5.46) = ∑︁ (𝑖,𝑝)∈R 𝑡 |𝑝 |-1 ∑︁ 𝑘=min{𝑘 ′ : ∃𝑗 ∈S 𝑝 𝑘 ′ s.t. ((𝑝 𝑘 ′ ,𝑗),𝑖,𝑚 𝑠)∈ Ã} 𝑤 𝑝 𝑘+1 𝑝 𝑘 = ∑︁ (𝑖,𝑝)∈R 𝑡 max 𝑣 ∈𝑝:∃𝑗 s.t. ((𝑣,𝑗),𝑖,𝑚 (𝑣,𝑗))∈ Ã 𝑤 𝑝 𝑣 .

where𝑖

 𝑖 𝑖 = [𝑖 𝑡] 𝑇 𝑡=1 . Next, for any set à à à ⊆ S×C 𝑇 ×[𝑀], and given𝑚 𝑚 𝑚 = [𝑚 𝑠] 𝑠∈S , define sample 𝑚 𝑚 𝑚 (à à Ã) = {(𝑠,𝑖 𝑖 𝑖) ∈ {𝑠} × C 𝑇 : (𝑠,𝑖 𝑖 𝑖, 𝑚 𝑠) ∈ à à Ã}. Define 𝐹 (à à Ã) = E 𝑚 𝑚 𝑚 [E 𝑖 𝑖 𝑖 𝑠,𝑚 [𝑓 (sample 𝑚 𝑚 𝑚 (à à Ã))]], where 𝑖 𝑖 𝑖 𝑠,𝑚 = [𝑖 𝑡 𝑠,𝑚] 𝑇 𝑡=1 ∈ C 𝑇 . By linearity of expectation, 𝐹 (à à Ã) = 𝑇 ∑︁ 𝑡=1 𝐹 𝑡 ({(𝑠, 𝑖 𝑡 , 𝑚) : (𝑠,𝑖 𝑖 𝑖, 𝑚) ∈ à à Ã}).

) 7 - 5 165

 75 Having proved (5.57), we can now use Theorem 3.1 to complete the proof. Define a new partition matroid over ground set {S × C 𝑇 } with feasible solution D D D := {𝐴 𝐴 𝐴 ⊂ S × C 𝑇 : |𝐴 𝐴 𝐴 ∩ ({𝑠} × C 𝑇)| = 1, ∀𝑠 ∈ S}. Let à à à = {(𝑠,𝑖 𝑖 𝑖 𝑠,𝑚 , 𝑚) : 𝑠 ∈ S, 𝑚 ∈ [𝑀]}. It is easy to verify that 𝐹 𝑡 is monotone submodular, and 𝐹 is also monotone submodular by linearity. Thus, by Theorem 3.1, 𝐹 (à à Ã) ≥ 𝛽 (𝑀, |S|) • max 𝐴 𝐴 𝐴∈D D D {𝑓 (𝐴 𝐴 𝐴)} -∑︁ 𝑠∈S 𝑀 ∑︁ 𝑚=1 𝜖 𝑠,𝑚 . (5.58) Proof of Lemma 2.3.By definition, 𝐹 (à à Ã) = E[𝑇 𝑡=1 𝑓 𝑡 (𝐴 𝑡)], and max 𝐴 𝐴 𝐴∈D D D {𝑓 (𝐴 𝐴 𝐴)} ≥ max 𝐴∈D { 𝑇 𝑡=1 𝑓 𝑡 (𝐴)}, we get E 𝑇 ∑︁ 𝑡=1 𝑓 𝑡 (𝐴 𝑡) ≥ 𝛽 (|S|, 𝑀) • max

(a)Figure 9 . 5 :

 95 Figure 9.5: Topologies used for adversarial requests.

(a)Figure 9 . 6 :

 a96 Figure 9.6: Adversarial Request models for abilene and path. Each dot indicates an access to an item/ a request.

Figure 9 . 6 . 173 The𝑠 2 =

 961732 The Stationary Adversarial trace is generated using the sequence {0, 25, 1, 26, . . . , 24, 49, 0, 25, . . . }. Sliding Popularity Adversarial trace is generated by mixing the two sequences 𝑠 1 = {𝑖 mod 5 + 5𝑘 : 𝑖 ∈ [100], 𝑘 ∈ [5]}, (9.86) {𝑖 mod 5 + 5𝑘 + 25 : 𝑖 ∈ [100], 𝑘 ∈ [5]}. (9.87)

 \ {𝑝 𝑟 }) ⊂ 𝑟 ∈R P 𝑟 .(10.88)

. 91)

 91 The caching gain maximization problem amounts to: maximize𝑓 𝑟 (𝐴, 𝑃),(10.92a)subject to 𝐴 ∈ D, 𝑃 ∈ D ′ .(10.92b)which is a submodular maximization over an (assignment) partition matroid w.r.t. both 𝐴 and 𝑃 (complementary set of 𝑃). The assingment nature of the matroid follows from the representation of complementary paths as slots "taken"; we prove submodularity below:Lemma 10.1. Function 𝑓 : S × C × 𝑟 ∈R P 𝑟 → R + is monotone and submodular w.r.t. both 𝐴 and 𝑃.

□ 17 1 𝑒 - 1 Λ

 1711 Bounds on the Gain function Proposition 17.1. The caching gain function 𝐺 (𝑟, 𝑥 𝑥 𝑥) defined in Eq. (3.10) has the following lower and upper bound for any request 𝑟 ∈ R and fractional cache state 𝑦 𝑦 𝑦 ∈ conv(X): Λ(𝑟,𝑦 𝑦 𝑦) ≤ 𝐺 (𝑟,𝑦 𝑦 𝑦) ≤ 1 -(𝑟,𝑦 𝑦 𝑦).(17.144)

Lemma 19 . 2 . 1 First

 1921 Let 𝑦 𝑦 𝑦 * = arg max 𝑦 𝑦 𝑦∈conv(X) 𝑇 𝑡=1 𝐺 (𝑟,𝑦 𝑦 𝑦) and 𝑦 𝑦 𝑦 1 = arg min 𝑦 𝑦 𝑦∈conv(X)∩D Φ(𝑦 𝑦 𝑦), the value of the Bregman divergence 𝐷 Φ (𝑦 𝑦 𝑦 * ,𝑦 𝑦 𝑦 1) associated with the negative entropy mirror map Φ is upper bounded by the constant 𝐷 ≜ ℎ log It is easy to check that 𝑦 1,𝑖 = ℎ 𝑁 , ∀𝑖 ∈ N (𝑦 𝑦 𝑦 1 has maximum entropy); moreover, we have Φ(𝑦 𝑦 𝑦) ≤ 0, ∀𝑦 𝑦 𝑦 ∈ conv(X). The first order optimality condition [53, Proposition 1.3] gives -∇Φ(𝑦 𝑦 𝑦 1) 𝑇 (𝑦 𝑦 𝑦 -𝑦 𝑦 𝑦 1) ≤ 0, ∀𝑦 𝑦 𝑦 ∈ conv(X). We have 𝐷 Φ (𝑦 𝑦 𝑦 * ,𝑦 𝑦 𝑦 1) = Φ(𝑦 𝑦 𝑦 *) -Φ(𝑦 𝑦 𝑦 1) -∇Φ(𝑦 𝑦 𝑦 1) 𝑇 (𝑦 𝑦 𝑦 * -𝑦 𝑦 𝑦 1) ≤ Φ(𝑦 𝑦 𝑦 *) -Φ(𝑦 𝑦 𝑦 1) ≤ -Φ(𝑦 𝑦 𝑦 1) = ℎ log part. We show that E [𝑥 𝑥 𝑥 𝑡+1] = 𝑦 𝑦 𝑦 𝑡+1 . Take 𝛿 𝛿 𝛿 ≜ 𝑦 𝑦 𝑦 𝑡+1 -𝑦 𝑦 𝑦 𝑡 . If 𝛿 𝑖 > 0 for 𝑖 ∈ N , then: E 𝑥 𝑡+1,𝑖 = E 𝑥 𝑡+1,𝑖 |𝑥 𝑡,𝑖 = 1 P(𝑥 𝑡,𝑖 = 1) + E 𝑥 𝑡+1,𝑖 |𝑥 𝑡,𝑖 = 0 P(𝑥 𝑡,𝑖 = 0) (20.169) = 𝑦 𝑡,𝑖 + 𝛿 𝑖 1 -𝑦 𝑡,𝑖 + 0 (1 -𝑦 𝑡,𝑖) = 𝑦 𝑡,𝑖 + 𝛿 𝑖 . (20.170) If 𝛿 𝑖 < 0 for 𝑖 ∈ N , then: E 𝑥 𝑡+1,𝑖 = E 𝑥 𝑡+1,𝑖 |𝑥 𝑡,𝑖 = 1 P(𝑥 𝑡,𝑖 = 1) + E 𝑥 𝑡+1,𝑖 |𝑥 𝑡,𝑖 = 0 P(𝑥 𝑡,𝑖 = 0) (20.171) = 𝑦 𝑡,𝑖 + 𝛿 𝑖 𝑦 𝑡,𝑖 𝑦 𝑡,𝑖 + 0 = 𝑦 𝑡,𝑖 + 𝛿 𝑖 . (20.172) Otherwise, when 𝛿 𝑖 = 0 for 𝑖 ∈ N we have E[𝑥 𝑡+1,𝑖] = E[𝑥 𝑡,𝑖] = 𝑦 𝑡,𝑖 = 𝑦 𝑡,𝑖 + 𝛿 𝑖 . Therefore we have for any 𝑖 ∈ N E[𝑥 𝑥 𝑥 𝑡+1] = 𝑦 𝑦 𝑦 𝑡 + 𝛿 𝛿 𝛿 = 𝑦 𝑦 𝑦 𝑡+1 .

 Storage redundancy of the LRU-based policies under SIFT1M trace.

 Storage redundancy of the LRU-based policies under Amazon trace.

 The average gain contribution of the dangling objects under SIFT1M trace.

 The average gain contribution of the dangling objects under Amazon trace.

Figure 23 . 7 :

 237 Figure 23.7: Storage redundancy percentage and gain contribution for the different policies. The cache size ℎ = 1000, and 𝑘 ∈ {10, 20, 30, 50, 100}.

Figure 23 .

 23 8 shows the caching gain for the different caching policies and different values of the cache size ℎ ∈ {50, 100, 200, 500, 1000} and 𝑘 = 10. Figure23.9 shows the caching gain for the different caching policies and different values of the retrieval cost 𝑐 𝑓 , that is taken as the average distance to the 𝑖-th neighbor, 𝑖 ∈ {2, 50, 100, 500, 1000}. The cache size is ℎ = 1000 and 𝑘 = 10. Figure23.10 shows the caching gain for the different caching policies and different values of 𝑘 ∈ {10, 20, 30, 50, 100} and ℎ = 1000.

Figure 23 .

 23 11. When the different LRU-like policies are not augmented with a global catalog index in Figure 23.11 (a), AÇAI experiences a higher compute time per iteration. When the different LRU-like policices are augmented with a global catalog index in Figure 23.11 (b), AÇAI has similar compute time to the different policies except for the simple vanilla lru policy. Nonetheless, in both settings AÇAI compute time remains comparable and approximately within factor 4 w.r.t the compute time of the different policies. Due to space limitation we cannot add this figure to the main text.

Figure 23 . 8 :

 238 Figure 23.8: Caching gain of the different policies when augmented with the approximate index, for different cache sizes ℎ ∈ {50, 100, 200, 500, 1000} and 𝑘 = 10.

Figure 23 . 9 :

 239 Figure 23.9: Caching gain for the different policies and different retrieval cost when augmented with the approximate index. The retrieval cost 𝑐 𝑓 is taken as the average distance to the 𝑖-th neighbor, 𝑖 ∈ {2, 10, 50, 100, 500, 1000}. The cache size is ℎ = 1000 and 𝑘 = 10.

Figure 23 . 10 :

 2310 Figure 23.10: Caching gain for the different policies when augmented with the approximate index. The cache size is ℎ = 1000, and 𝑘 ∈ {10, 20, 30, 50, 100}.

Figure 23 . 11 :

 2311 Figure 23.11: Time-averaged compute time of AÇAI and the different policies LRU, SIM-LRU, CLS-LRU, and QCache(a) w/o an approximate global catalog index, and (b) w/ an approximate global catalog index. Experiment run over the Amazon trace, cache size ℎ = 1000, parameter 𝑘 = 10, 𝜂 = 10 -4 , retrieval cost 𝑐 𝑓 is set to be the distance to the 50-th closest neighbor in N .

(1 -

 1 𝑦 𝑖 𝑞 𝑖 /𝑐) ≥ (1 -1/𝑒) min Our proof follows the same lines of the proof of [299, Lemma 3.1]. We use the arithmetic/geometric mean inequality [300] on the non-negative variables 1 -𝑦 𝑖 𝑞 𝑖 /𝑐, 𝑖 ∈ [𝑛] to obtain: 1 𝑛 ∑︁ 𝑖∈[𝑛]

(1 -

 1 𝑦 𝑖 𝑞 𝑖 /𝑐) ≥ 𝑖∈[𝑛]

(1 -(1 -(1 - 1 -

 1111 𝑦 𝑖 𝑞 𝑖 /𝑐) 𝑦 𝑖 𝑞 𝑖 /𝑐) ≥ 1 -𝑦 𝑖 𝑞 𝑖 /𝑐) last inequality, consider that, for any number 𝑧, we have 𝑧 ≥ min{1, 𝑧}, and thus𝑖∈[𝑛] 𝑦 𝑖 𝑞 𝑖 /𝑐 ≥ min 1, 𝑖∈[𝑛] 𝑦 𝑖 𝑞 𝑖 /𝑐 . The function 𝑓 (𝑧) = 1 -(1 -𝑧/𝑛) 𝑛 is concave for 𝑧 ∈ [0, 1], then, for 𝑧 ∈ [0, 1], 𝑓 (𝑧) ≥ 𝑓 (0) + 𝑧 𝑓 (1)-𝑓 (0) 1-0 = 𝑧𝑓 (1), as 𝑓 (0) = 0. Setting 𝑧 = min 1, 𝑖∈[𝑛] 𝑦 𝑖 𝑞 𝑖 /𝑐 , we obtain the following:𝑖∈[𝑛]

31. 1 221 31. 2

 12212 Convex Conjugate Definition 31.1. Let 𝐹 : U ⊂ R I → R ∪ {-∞, +∞} be a function. Define 𝐹 ★ : R I → R ∪ {-∞, +∞} by 𝐹 ★ (𝜃 𝜃 𝜃) = sup 𝑢 𝑢 𝑢∈U {𝑢 𝑢 𝑢 • 𝜃 𝜃 𝜃 -𝐹 (𝑢 𝑢 𝑢)} , (31.343) for 𝜃 𝜃 𝜃 ∈ R I . This is the convex conjugate of 𝐹 . 31 -31.2 Convex Conjugate of 𝛼-Fairness Function Convex Conjugate of 𝛼-Fairness Function Lemma 31.1. Let U = 𝑢 ★,min , 𝑢 ★,max I ⊂ R I >0 , Θ = -1/𝑢 𝛼 ★,min , -1/𝑢 𝛼 ★,max I ⊂ R I <0 , and 𝐹 𝛼 : U → R be an 𝛼-fairness function (5.3). The convex conjugate of -𝐹 𝛼 is given by(-𝐹 𝛼) ★ (𝜃 𝜃 𝜃) = 𝜃 𝑖) 1-1/𝛼 -1 1 -𝛼 for 𝛼 ∈ R ≥0 \ {1},∑︁ 𝑖∈I -log(-𝜃 𝑖) -1 for 𝛼 = 1, (31.344)

Lemma 31 . 2 .

 312 Let U = 𝑢 ★,min , 𝑢 ★,max I ⊂ R I >0 , Θ = -1/𝑢 𝛼 ★,min , -1/𝑢 𝛼 ★,max I ⊂ R I <0 , and 𝐹 𝛼 : U → R be an 𝛼-fairness function (5.3). The function 𝐹 𝛼 can be always be recovered from the convex conjugate (-𝐹 𝛼) ★ , i.e., 𝐹 𝛼 (𝑢 𝑢 𝑢) = min 𝜃 𝜃 𝜃 ∈Θ (-𝐹 𝛼) ★ (𝜃 𝜃 𝜃) -𝜃 𝜃 𝜃 • 𝑢 𝑢 𝑢 , (31.350) for 𝑢 𝑢 𝑢 ∈ U. Proof. This proof follows the same lines of the proof of [283, Lemma 2.2]. Since 𝑢 𝑢 𝑢 ∈ U, therefore the gradient of 𝐹 𝛼 at point 𝑢 𝑢 𝑢 is given as ∇ 𝑢 𝑢 𝑢 𝐹 𝛼 (𝑢 𝑢 𝑢) = 1/𝑢 𝛼 𝑖 𝑖∈I ∈ -Θ = 1/𝑢 𝛼 ★,min , 1/𝑢 𝛼 𝛼) ★ (𝜃 𝜃 𝜃) -𝜃 𝜃 𝜃 • 𝑢 𝑢 𝑢 = min 𝜃 𝜃 𝜃 ∈Θ max 𝑢 𝑢 𝑢 ′ ∈U {𝜃 𝜃 𝜃 • 𝑢 𝑢 𝑢 ′ + 𝐹 𝛼 (𝑢 𝑢 𝑢)} -𝜃 𝜃 𝜃 • 𝑢 𝑢 𝑢 (31.351) = max 𝑢 𝑢 𝑢 ′ ∈U min 𝜃 𝜃 𝜃 ∈Θ {𝜃 𝜃 𝜃 • 𝑢 𝑢 𝑢 ′ + 𝐹 𝛼 (𝑢 𝑢 𝑢 ′) -𝜃 𝜃 𝜃 • 𝑢 𝑢 𝑢} . Minmax theorem (31.352) We take min 𝜃 𝜃 𝜃 ∈Θ {𝜃 𝜃 𝜃 • 𝑢 𝑢 𝑢 ′ + 𝐹 𝛼 (𝑢 𝑢 𝑢 ′) -𝜃 𝜃 𝜃 • 𝑢 𝑢 𝑢} = min 𝜃 𝜃 𝜃 ∈Θ {𝐹 𝛼 (𝑢 𝑢 𝑢 ′) + 𝜃 𝜃 𝜃 • (𝑢 𝑢 𝑢 ′ -𝑢 𝑢 𝑢)} ≤ 𝐹 𝛼 (𝑢 𝑢 𝑢 ′) -∇𝐹 𝛼 (𝑢 𝑢 𝑢) • (𝑢 𝑢 𝑢 ′ -𝑢 𝑢 𝑢) Because -∇𝐹 𝛼 (𝑢 𝑢 𝑢) ∈ Θ ≤ 𝐹 𝛼 (𝑢 𝑢 𝑢).

□ 31 . 4

 314 Online Gradient Descent (OGD) with Self-Confident Learning Rates Lemma 31.3 provides the regret guarantee of OGD oblivious to the time horizon 𝑇 and bound on subgradients' norm for any 𝑡 ∈ T . This adopts the idea of[START_REF] Auer | Adaptive and Self-Confident On-Line Learning Algorithms[END_REF] which denominate such learning schemes as self-confident.Lemma 31.3. Consider a convex set X, a sequence of 𝜎-strongly convex functions 𝑓 𝑡 : X → R with subgradient 𝑔 𝑔 𝑔 𝑡 ∈ 𝜕𝑓 𝑡 (𝑥 𝑥 𝑥 𝑡) at 𝑥 𝑥 𝑥 𝑡 , and OGD update rule 𝑥 𝑥 𝑥 𝑡+1 = Π X 𝑥 𝑥 𝑥 𝑡 -𝜂 𝑡 𝑔 𝑔 𝑔 𝑡 = arg min 𝑥 𝑥 𝑥 ∈X 𝑥 𝑥 𝑥 -𝑥 𝑥 𝑥 𝑡 -𝜂 𝑡 𝑔 𝑔 𝑔 𝑡 2 initialized at 𝑥 𝑥 𝑥 1 ∈ X. Let diam (X) ≜ max {∥𝑥 𝑥 𝑥 -𝑥 𝑥 𝑥 ′ ∥ 2 : 𝑥 𝑥 𝑥, 𝑥 𝑥 𝑥 ′ ∈ X}.

31 - 31 . 4 ••

 314 Online Gradient Descent (OGD) with Self-Confident Learning Rates 223 Selecting the learning rates as 𝜂 𝜂 𝜂 : T → R such that 𝜂 𝑡 ≤ 𝜂 𝑡-1 for all 𝑡 > 1 gives the following regret guarantee against a fixed decision 𝑥 𝑥 𝑥 ∈ X:∑︁ 𝑡 ∈T 𝑓 𝑡 (𝑥 𝑥 𝑥 𝑡) -𝑓 𝑡 (𝑥 𝑥 𝑥) ≤ diam 2 (X) When 𝜎 > 0,selecting the learning rate schedule 𝜂 𝑡 = 1 𝜎𝑡 for 𝑡 ∈ T gives ∑︁ 𝑡 ∈T 𝑓 𝑡 (𝑥 𝑥 𝑥 𝑡) -𝑓 𝑡 (𝑥 𝑥 𝑥) ≤ When 𝜎 = 0, selecting the learning rate schedule 𝜂 𝑡 = diam(X) √︃ 𝑡 𝑠=1 ∥𝑔 𝑔 𝑔 𝑠 ∥ 2 2 for 𝑡 ∈ T gives ∑︁ 𝑡 ∈T 𝑓 𝑡 (𝑥 𝑥 𝑥 𝑡) -𝑓 𝑡 (𝑥 𝑥 𝑥) ≤ 1.5 diam (X)

•

 obtained using [289, Lemma 3.5], i.e., 𝑇 𝑡=1 |𝑎 𝑡 | 𝑡 𝑠=1 |𝑎 𝑠 | ≤ 2 √︃ 𝑇 𝑡=1 |𝑎 𝑡 |. This concludes the proof. □ 31.5 Saddle-Point Problem Formulation of 𝛼-Fairness Lemma 31.4. Let X be a convex set, U = 𝑢 ★,min , 𝑢 ★,max I ⊂ R I >0 , 𝑢 𝑖 : X → U be a concave function for every 𝑖 ∈ I, Θ = -1/𝑢 𝛼 ★,min , -1/𝑢 𝛼 ★,max I ⊂ R I <0 , and Ψ 𝛼 : Θ × X → R be a function given by Ψ 𝛼 (𝜃 𝜃 𝜃, 𝑥 𝑥 𝑥) ≜ (-𝐹 𝛼) ★ (𝜃 𝜃 𝜃) -𝜃 𝜃 𝜃 • 𝑢 𝑢 𝑢 (𝑥 𝑥 𝑥). (31.363) The following holds: The solution of the saddle-point problem formed by Ψ 𝛼 is a maximizer of the 𝛼-fairness function max 𝑥 𝑥 𝑥 ∈X min 𝜃 𝜃 𝜃 ∈Θ Ψ 𝛼 (𝜃 𝜃 𝜃, 𝑥 𝑥 𝑥) = max 𝑥 𝑥 𝑥 ∈X 𝐹 𝛼 (𝑢 𝑢 𝑢 (𝑥 𝑥 𝑥)). (31.364)

Figure 32 . 12 :

 3212 Figure 32.12: Assumption (A5) and fairness regret (5.8) under scenarios 1 and 2.

V T ≥ 2 (1 -

 21 𝑡 (𝑥 ★) = (1 + 0.5𝛾 𝑇 , 1 + 0.5𝛾 𝑇), and 𝑢 𝑢 𝑢 𝑡 (𝑥 ★) = (1.5, 1.5) if 𝑡 ≤ 𝛾 𝑇 𝑇 , 𝛾 𝑡)𝛾 𝑇 𝑇 ≥ 2𝜖𝛾 𝑇 𝑇 ≥ 0.8𝜖𝑇 = Ω(𝑇). (32.387) Moreover, it can easily be checked that W T = Ω(𝑇) because there is no decomposition {1, 2, . . . ,𝑇 } = T 1 ∪ T 2 ∪ • • • ∪ T 𝐾 where max {T 𝑘 : 𝑘 ∈ [𝐾]} = 𝑜 𝑇

.ℜℜ

 Thus, the regret bound in Eq.(33.402) can be upper bounded asℜ 𝑇 (𝐹 𝛼 , A A A) = 1 𝑇 sup {𝑢 𝑢 𝑢 𝑡 } 𝑇 𝑡 =1 ∈U 𝑇Consider a scenario with a single player I = {1}, X = {𝑥 ∈ R, |𝑥 | ≤ 1}, and the utility selected by an adversary at time slot 𝑡 ∈ T is given by 𝑢 𝑡 (𝑥) = 𝑤 𝑡 𝑥 + 1, where 𝑤 𝑡 ∈ {-1, +1} . (34.403) The weight 𝑤 𝑡 is selected in {-1, +1} uniformly at random for 𝑡 ∈ T . A policy A selects the sequence of decisions {𝑥 𝑡 } 𝑇 𝑡=1 and has the following fairness regret is obtained considering 𝑓 𝛼 (𝑥 +1) is concave in 𝑥, 𝑓 𝛼 (0+1) = 0, and 𝑓 𝛼 (𝑥 +1) ≥ 𝑓 𝛼 (2)𝑥 for 𝑥 ∈ [0, 1]. Inequality (b) is obtained through Khintchine inequality. A lower bound on the fairness regret (5.8) can be established: ℜ 𝑇 (𝐹 𝛼 , A A A) ≥ E max Expected regret. When the utilities are i.i.d., we have the following E [𝑢 𝑢 𝑢 𝑡 (𝑥 𝑥 𝑥)] = 𝑢 𝑢 𝑢, ∀𝑡 ∈ T , (35.405)for some fixed utility 𝑢 𝑢 𝑢 ∈ U. In the proof Theorem 33, in particular, in Eq.(33.394) it holds 𝐹 𝛼 1 𝑇 𝑇 ∑︁ 𝑡=1 𝑢 𝑢 𝑢 𝑡 (𝑥 𝑥 𝑥 ★) -𝐹 𝛼 1 𝑇 𝑇 ∑︁ 𝑡=1 𝑢 𝑢 𝑢 𝑡 (𝑥 𝑥 𝑥 𝑡) ≤ 𝜃 𝑡 -θ 𝜃 𝜃 • 𝑢 𝑢 𝑢 𝑡 (𝑥 𝑥 𝑥 ★). (35.406) Taking the expectation of both sides gives 𝑡 (𝑥 𝑥 𝑥 ★) -𝐹 𝛼 1 𝑇 𝑇 ∑︁ 𝑡=1 𝑢 𝑢 𝑢 𝑡 (𝑥 𝑥 𝑥 𝑡) ≤ E 𝑡 -θ 𝜃 𝜃 • 𝑢 𝑢 𝑢 𝑡 (𝑥 𝑥 𝑥 ★) .

(35. 407)𝑇 1 / 3 -

 40713 The variables 𝜃 𝜃 𝜃 𝑡 and 𝑢 𝑢 𝑢 𝑡 are independent for 𝑡 ∈ T , thus we have𝑡 -θ 𝜃 𝜃 • 𝑢 𝑢 𝑢 𝑡 (𝑥 𝑥 𝑥 ★) = E θ 𝜃 𝜃 -θ 𝜃 𝜃 • 𝑢 𝑢 𝑢 (𝑥 𝑥 𝑥 ★) = 0. (35.408) Through Eq. (34.403), it holds E 𝐹 𝛼 1 𝑇 𝑇 ∑︁ 𝑡=1 𝑢 𝑢 𝑢 𝑡 (𝑥 𝑥 𝑥 ★) -𝐹 𝛼 1 𝑇 𝑇 ∑︁ 𝑡=1 𝑢 𝑢 𝑢 𝑡 (𝑥 𝑥 𝑥 𝑡) = O 1 √ 𝑇 . (35.409)This concludes the first part of the proof.Almost-sure zero-regret.Let Δ = (𝑢 max -𝑢 min), T = T 1 ∪ T 2 ∪ • • • ∪ T 𝐾 where 𝐾 = 𝑇 2/3 and |T 𝑘 | = 𝜅 = 𝑇 1/3for 𝑘 ∈ {1, 2, . . . , 𝐾 }, and let 𝛽 ∈ (0, 1/6). Employing Hoeffding's inequality we can bound the l.h.s. term in Eq. (5.9) for 𝑖 ∈ I asP ∑︁ 𝑡 ∈T 𝑘 𝛿 𝑡,𝑖 (𝑥 𝑥 𝑥) ≤ Δ𝑇 1/6+𝛽 ≥ 1 -2 exp -2𝑇 1/3+2𝛽 ((𝑇 -𝜅)𝜅 2 /𝑇 2 + 𝜅 (𝜅/𝑇 -1) 2) = 1 -2 exp -2𝑇 1/3+2𝛽 (𝜅 -𝜅 2 /𝑇) 𝑇 -1/3 .𝛿 𝑡,𝑖 (𝑥 𝑥 𝑥) ≤ Δ𝑇 5/6+𝛽 ≥ 1 -2 exp-2𝑇 1/3+2𝛽

TopologiesFigure 36 . 13 :

 3613 Figure 36.13: Request traces stationary (a) and non-stationary (b) configured with 𝜎 = 1.2, 𝑇 = 5000, 𝐹 = 20, 𝐷 = 100. Each dot indicates a requested file.

260 LIST OF FIGURES 2 . 6

 26026 Costs associated with the rounded integral caching over the Downscaled Global Popularity Change trace. The normalized average costs shown in (a) are the same for the online independent rounding, the online coupled rounding and the online optimallycoupled rounding. The cumulative update cost of the online coupled rounding and online optimally-coupled rounding in (b) is of the same order as in the fractional setting, while the online independent rounding in (b) gives a much higher update cost. The reported values are averaged over 20 experiments, and the blue shaded area represents 10% scaling of the standard deviation.

Table 2 .

 2 1: Notation Summary for Section 2.2

	Chapter 2 -Exact Caching

 1 ,𝑟 𝑟 𝑟 2 ,...,𝑟 𝑟 𝑟 𝑡 }∈R 𝑇

		𝑇
		∑︁	𝑓 𝑟 𝑟 𝑟 𝑡 (𝑥 𝑥 𝑥 𝑡) -
	𝑅,ℎ	𝑡=1

𝑇

∑︁

𝑡=1

𝑓 𝑟 𝑟 𝑟 𝑡 (𝑥 𝑥 𝑥 *) ,

 1 ,𝑟 𝑟 𝑟 2 ,...,𝑟 𝑟 𝑟 𝑡 }∈R 𝑇 𝑡 (𝑥 𝑥 𝑥 𝑡) + UC 𝑟 𝑟 𝑟 𝑡 (𝑥 𝑥 𝑥 𝑡 , 𝑥 𝑥 𝑥 𝑡+1) -{𝑟 𝑟 𝑟 1 ,𝑟 𝑟 𝑟 2 ,...,𝑟 𝑟 𝑟 𝑡 }∈R 𝑇 𝑡 (𝑥 𝑥 𝑥 *) + sup {𝑟 𝑟 𝑟 1 ,𝑟 𝑟 𝑟 2 ,...,𝑟 𝑟 𝑟 𝑡 }∈R 𝑇

						𝑇 ∑︁	𝑓 𝑟 𝑟 𝑟 𝑇 ∑︁	𝑓 𝑟 𝑟 𝑟 𝑡 (𝑥 * 𝑥 * 𝑥 *)	(2.25)
					𝑅,ℎ	𝑡=1		𝑡=1
				𝑇		𝑇			𝑇	
	≤	sup	𝑅,ℎ	∑︁ 𝑡=1	𝑓 𝑟 𝑟 𝑟 𝑡 (𝑥 𝑥 𝑥 𝑡) -	∑︁ 𝑡=1	𝑓 𝑟 𝑟 𝑟 𝑅,ℎ	𝑡=1 ∑︁	UC 𝑟 𝑟 𝑟 𝑡 (𝑥 𝑥 𝑥 𝑡 , 𝑥 𝑥 𝑥 𝑡+1) .	(2.26)

 𝑖 ∈𝐼 𝑁 𝑒 𝑒 𝑒 𝑖 7: end procedure ⊲ In online independent rounding, Online Rounding is called with arguments (𝑥 𝑥 𝑥 𝑡 , 𝜉 𝑡), where 𝑥 𝑥 𝑥 𝑡 are provided by algorithm A and {𝜉 𝑡 } 𝑇 -1 𝑡 =1 are i.i.d., sampled u.a.r. from [0, 1]. ⊲ In online coupled rounding, a 𝜉 is sampled once u.a.r. from [0, 1]; then, Online Rounding is called with arguments (𝑥 𝑥 𝑥 𝑡 , 𝜉), i.e., using the same 𝜉 for all 𝑥 𝑥 𝑥 𝑡 provided by algorithm A. ⊲ Both return an integral r.v. 𝑧 𝑧 𝑧 𝑡 s.t. E[𝑧 𝑧 𝑧 𝑡] = 𝑥 𝑥 𝑥 𝑡 , with the expectation being over {𝜉 𝑡 } 𝑇 -1 𝑡 =1 and 𝜉, respectively. in Algorithm 2.3 (fixed 𝜉 𝑡 = 𝜉 for 𝑡 ∈ [𝑇]). The expected movement cost of the random integral cache states is

	5:	end for
	6:	return 𝑧 𝑧 𝑧 𝑧 𝑧 𝑧 𝑧 𝑧 𝑧 ←

Theorem 2.2.14. Consider a randomized caching policy constructed by an OMD policy A with sublinear regret (i.e., configured with learning rate 𝜂 = Θ 1/ √ 𝑇) combined with online coupled rounding Ξ

 The decomposition can be performed in O (𝑘𝑁 log(𝑁)) steps[21]. We denote the joint probabilityP 𝑧 𝑧 𝑧 𝑡+1 = 𝜁 𝜁 𝜁 𝑗 𝑡+1 ,𝑧 𝑧 𝑧 𝑡 = 𝜁 𝜁 𝜁 𝑖 𝑡 by the flow 𝑓 𝑖,𝑗 for all (𝑖, 𝑗) ∈ [|𝑝 𝑝 𝑝 𝑡 |] × [|𝑝 𝑝 𝑝 𝑡+1 |]. The optimal transport problem can be described by the following linear program: 𝑧 𝑧 𝑧 𝑡+1 = 𝜁 𝜁 𝜁 𝑗 𝑡+1 | 𝑧 𝑧 𝑧 𝑡 = 𝜁 𝜁 𝜁 𝑖 𝑡 = Corollary 2.2.15. Consider an OMD policy A configured with learning rate 𝜂 = Θ 1

			𝑓 * 𝑖,𝑗 𝑖 𝑝 𝑡	. Such coupling ensures that the expected update cost is minimized.
	When we combine this rounding scheme with a no-regret fractional policy we obtain sublinear
	extended regret (2.30):			
						√ 𝑇	combined with
	online optimally-coupled rounding Ξ. The obtained randomized integral caching policy has sublinear extended regret, i.e., E-Regret(A, Ξ) = O √ 𝑇 .
					|𝑝 𝑝 𝑝 𝑡 |	|𝑝 𝑝 𝑝 𝑡 +1 |
	𝑓 𝑓 𝑓 =	arg min		∑︁	∑︁	UC 𝑟 𝑟 𝑟 𝑡 𝜁 𝜁 𝜁 𝑖 𝑡 , 𝜁 𝜁 𝜁 𝑗 𝑡+1 𝑓 𝑖,𝑗
					𝑖=1	𝑗=1
		|𝑝 𝑝 𝑝 𝑡 +1 |			|𝑝 𝑝 𝑝 𝑡 |
	s.t.	∑︁	𝑓 𝑖,𝑗 = 𝑝 𝑡,𝑖 ,	∑︁
		𝑗=1			

1 𝑡 , 𝜁 𝜁 𝜁 2 𝑡 , . . . , 𝜁 𝜁 𝜁 |𝑝 𝑝 𝑝 𝑡 | 𝑡 , where 𝑝 𝑡,𝑖 = P(𝑧 𝑧 𝑧 𝑡 = 𝜁 𝜁 𝜁 𝑖 𝑡) for 𝑖 ∈ [|𝑝 𝑝 𝑝 𝑡 |]. [𝑓 𝑖,𝑗] (𝑖,𝑗) ∈ [|𝑝 𝑝 𝑝 𝑡 |] × [|𝑝 𝑝 𝑝 𝑡 +1 |] E [UC (𝑧 𝑧 𝑧 𝑡 ,𝑧 𝑧 𝑧 𝑡+1)] = 𝑖=1 𝑓 𝑖,𝑗 = 𝑝 𝑡+1,𝑗 , 𝑓 𝑖,𝑗 ∈ [0, 1], ∀(𝑖, 𝑗) ∈ [|𝑝 𝑝 𝑝 𝑡 |] × [|𝑝 𝑝 𝑝 𝑡+1 |]. We solve the above linear program to obtain a minimum-cost flow 𝑓 𝑓 𝑓 . If the random state at time 𝑡 is 𝜁 𝜁 𝜁 𝑖 𝑡 , then we select the new random state to be 𝜁 𝜁 𝜁 𝑗 𝑡+1 with (conditional) probability P

 Throughout all experiments, we assume equal costs per file, i.e., 𝑤 𝑖 = 𝑤 ′ 𝑖 = 1, ∀𝑖 ∈ N . The learning rate 𝜂 * denotes the learning rate value specified in Corollary 2.2.4 and in Theorem 2.2.8 for OGD and OMD NE , respectively. The learning rate is selected to be 𝜂 * unless otherwise mentioned.

2.2.6.1 Experimental setup

Datasets.

Table 2 .

 2

		2: Trace Summary	
	Performance metric	Definition	Range
	Normalized Average Cost	NAC	

Table 2 .

 2

3: Performance Metrics. All are better if lower.

Table 2 .

 2

4: Notation Summary for Section 2.3 |S| = 𝑣 ∈𝑉 𝑐 𝑣 . We assume the slots in S are ordered lexicographically, i.e., (𝑣, 𝑗) ≺ (𝑣 ′ , 𝑗 ′) if and only if 𝑣 < 𝑣 ′ or 𝑣 = 𝑣 ′ and 𝑗 < 𝑗 ′ .

(2.32)

We can describe content allocation as a set 𝐴 ⊂ S × C, where 𝑎 = (𝑠, 𝑖) ∈ 𝐴 indicates that item 𝑖 ∈ C is stored in slot 𝑠 ∈ S. The set of feasible allocations is

 Parameter 𝜖 ∈ R + , action set C, horizon 𝑇 ∈ N. 𝑊 𝑖 𝑒 𝜖ℓ 𝑖 for all 𝑖 ∈ C 9: end procedure

		Chapter 2 -Exact Caching
	Algorithm 2.4 Hedge Selector E
	1: procedure E.initialize()
	2:	Set 𝑊 𝑖 ← 1 for all 𝑖 ∈ C
	3: end procedure
	4: procedure E.arm()
	5:	return 𝑖 ∈ C with probability 𝑝 𝑖 = 𝑊 𝑖 𝑗 ∈C 𝑊 𝑗
	6: end procedure
	7: procedure E.feedback(ℓ ℓ ℓ)
	8:	Set 𝑊 𝑖 ←

Require:

 𝑡 𝑖] 𝑖∈C ∈ R |C| , where weight 𝑊 𝑡 𝑖 corresponds to action 𝑖 ∈ C. The hedge selector supports two operations (see Algorithm 2.4. The first, E.arm(), selects an action from action set C. The second, E.feedback(ℓ ℓ ℓ 𝑡),

	2.3 -2.3.3 Distributed Online Algorithm	37
	Algorithm 2.5 DistributedTGOnline	
	1: for each 𝑠 ∈ S do	
	2:	for each 𝑚 ∈ [𝑀] do	
	3:	E 𝑠,𝑚 .initialize().	
	4:	end for	
	5:	set 𝑡 𝑠 = 1, choose 𝑚 𝑠 uniformly at random from [𝑀]	
	6:	𝑖 𝑠 ← E 𝑠,𝑚 𝑠 .arm()	⊲ Sets 𝐴 ← {(𝑠, 𝑖 𝑠)} 𝑠 ∈ S
	7: end for	
	8: for 𝑡 = 1, 2, ...,𝑇 do	⊲ During round 𝑡:
	9:		

 4. At the end of the round, we check if the arm of E 𝑠,𝑚 𝑠 has been pulled for a total of 𝐾 times under active color 𝑚 𝑠 ; if so, a new color 𝑚 𝑠 is selected u.a.r. from [𝑀]. 5. Irrespective of whether 𝑚 𝑠 changes or not, at the end of the round, each slot updates its contents via the current active hedge selector E 𝑠,𝑚 𝑠 , by calling operation E 𝑠,𝑚 𝑠 .arm() to choose a new item 𝑖 𝑠 to place in 𝑠.

	Our first main result is that DistributedTGOnline has a (1 -1/𝑒)-regret that grows as 𝑂 (√ 𝑇):
	Theorem 2.3.2. Consider the sequence of allocations {𝐴 𝑡 } 𝑇 𝑡=1 produced by the DistributedTGOnline
	algorithm using hedge selectors determined by Algorithm 2.4, with 𝜖 = 1 L √︃	log |C| 𝑇 . Then, for all 𝑇 ≥
	log |C| and all 𝐾 ≥ 1:	
	We define the control messages exchanged, the information they carry, and the reward vectors fed to
	hedge selectors in Section 2.3.3.3. Only slots in a request's path need to exchange messages, provide
	feedback to their selectors, and (possibly) update their contents at the end of a round. Moreover,
	messages exchanged are of size 𝑂 (|𝑝 |). We allow 𝐾 ≥ 𝑇 ; in this case, colors are selected u.a.r. only
	once, at the beginning of the execution of the algorithm, and remain constant across all rounds. 8
	Finally, note that updating cache contents at the end of a round does not affect the incurred cost;
	we remove this assumption in Section 2.3.4.	

 𝑝 , and W = {𝑤 {1, 2, ..., |𝑝 |} is position of 𝑣 in 𝑝, i.e., 𝑘 𝑝 (𝑣) = 𝑘 if 𝑝 𝑘 = 𝑣. Note that both |I| and |W| are 𝑂 (|𝑝 |).Upon reaching the end of the path, a message carrying this collected information (I,W) is sent downstream to every node in the path. For each slot 𝑠 ∈ S 𝑝 , let:S ⪯𝑠 = {𝑠 ′ ∈ S 𝑖,𝑝 : 𝑚 𝑠 ′ < 𝑚 𝑠 or 𝑚 𝑠 ′ = 𝑚 𝑠 , 𝑠 ′ ≺ 𝑠} (2.45)be the slots in the path 𝑝 that store 𝑖 and either (a) are colored with a color smaller than 𝑚 𝑠 , or (b) are colored with 𝑚 𝑠 , and precede 𝑠 in the ordering given by Eq. (2.32). Note that S ⪯𝑠 can be computed having access to I. Then, the reward vector ℓ ℓ ℓ 𝑟 (𝑠, 𝑚 𝑠) ∈ R |C| + fed to hedge selector E 𝑠,𝑚 𝑠 at slot 𝑠 ∈ S 𝑝 comprises the following coordinates:

					𝑝 𝑣 } 𝑣 ∈𝑝 ,	(2.43)
	where 𝑤	𝑝 𝑣 is the cumulative cost of edges upstream of 𝑣 on path 𝑝, i.e.,
			𝑤	𝑝 𝑣 =	|𝑝 |-1 𝑘=𝑘 𝑝 (𝑣) 𝑤 𝑝 𝑘+1 𝑝 𝑘 ,	(2.44)
	where 𝑘 𝑝 (𝑣) = ℓ 𝑟 𝑖 ′ (𝑠, 𝑚 𝑠) =	max (𝑣 ′ ,𝑗 ′)∈S ⪯𝑠 +𝑠 𝑤 𝑣 ′ , 𝑝 𝑣 ′ , if 𝑖 ′ = 𝑖 𝑜.𝑤 . max (𝑣 ′ ,𝑗 ′)∈S ⪯𝑠 𝑤 𝑝	for all 𝑖 ′ ∈ C,	(2.46)

 𝛿 𝑖,𝑗] (𝑖,𝑗) ∈ C 2 , where 𝑗 ∈𝐼 𝛿 𝑖,𝑗 = 𝑚 𝑖 for 𝑖 ∈ C \ 𝐼 , and 𝑖 ∈ C\𝐼 𝛿 𝑖,𝑗 = 𝑚 𝑗 for 𝑗 ∈ 𝐼 , to transport 𝑖 ∈ C\𝐼 𝑚 𝑖 mass from the 𝛿 (𝑒 𝑒 𝑒 𝑗 -𝑒 𝑒 𝑒 𝑖) w.p. 𝑖 temp , 𝑝 𝑝 𝑝 ← 𝑖 temp , 𝑝 𝑝 𝑝 + 𝛿 (𝑒 𝑒 𝑒 𝑗 -𝑒 𝑒 𝑒 𝑖)

										Chapter 2 -Exact Caching
	Algorithm 2.6 Coupled Hedge Selector When such update costs exist, we need to account for them when adapting cache allocations. We
	Require: Parameter 𝜖 ∈ R + , action set C, horizon 𝑇 ∈ N. thus incorporate them in the 𝛼-regret as follows:
	1: procedure E.initialize()					
	2: 3:	𝑇 Set 𝑊 𝑖 ← 1 and 𝑝 old 𝑖 ← 1 | C | for all 𝑖 ∈ C R𝑇 = 𝛼 ∑︁ 𝑓 𝑡 (𝐴 *) -E	𝑇 ∑︁	𝑓 𝑡 (𝐴 𝑡) -	𝑇 -1 ∑︁	UC(𝐴 𝑡 , 𝐴 𝑡+1) = 𝑅 𝑇 + E	𝑇 -1 ∑︁	UC(𝐴 𝑡 , 𝐴 𝑡+1) .	(2.49)
	4:	Pick 𝑖 old u.a.r. from C 𝑡=1	𝑡=1			𝑡=1		𝑡=1
	5: end procedure						
	6: procedure E.feedback(ℓ ℓ ℓ)					
	7:	Set 𝑊 𝑖 ← 𝑊 𝑖 𝑒 𝜖ℓ 𝑖 for all 𝑖 ∈ C				
	8: end procedure						
	9: procedure E.correlated_arm()				
	10:	Set 𝑝 new 𝑖	← 𝑊 𝑖 𝑗 ∈C 𝑊 𝑗 for all 𝑖 ∈ 𝐶			
	11:	Pick 𝑖 new ← coupled_movement (𝑝 𝑝 𝑝 old ,𝑝 𝑝 𝑝 new ,𝑖 old)	⊲ Marginal is 𝑝 𝑝 𝑝 new
	12:	𝑝 𝑝 𝑝 old ← 𝑝 𝑝 𝑝 new						
	13:	𝑖 old ← 𝑖 new						
	14:	return 𝑖 new						
	15: end procedure						
	16: procedure coupled_movement(𝑝 𝑝 𝑝 old ,𝑝 𝑝 𝑝 new ,𝑖 old)	
	17:	Compute 𝐼 = {𝑖 ∈ C : 𝑝 new 𝑖	-𝑝 old 𝑖	> 0}.		
	18:	Set 𝑚 𝑖 ← |𝑝 new 𝑖	-𝑝 old 𝑖 |, for all 𝑖 ∈ C		
	19: Compute a feasible flow [20: components in 𝐼 to the components in C \ 𝐼 .	
	21:	𝑝 𝑝 𝑝 ← 𝑝 𝑝 𝑝 old .						
	22:	𝑖 temp ← 𝑖 old						
	23:	for 𝑖 ∈ C \ 𝐼 do					
	24:	for 𝑗 ∈ 𝐼 do					
	25:	𝑝 𝑝 𝑝, 𝑖 temp ← elementary_𝛿movement(𝑝 𝑝 𝑝, 𝑖 temp , 𝛿 𝑖,𝑗 , 𝑖, 𝑗)
	26:	end for						
	27:	end for							
	28:	return 𝑖 temp						
	29: end procedure						
	30: procedure elementary_𝛿movement(𝑝 𝑝 𝑝, 𝑖 temp , 𝛿, 𝑖, 𝑗)
	31: 32:	if 𝑖 temp = 𝑖 then 𝑖, 𝑝 𝑝 𝑝 + 𝑝 𝑖 -𝛿 𝑝 𝑖 𝑖 temp , 𝑝 𝑝 𝑝 ← 𝑗, 𝑝 𝑝 𝑝 + 𝛿 (𝑒 𝑒 𝑒 𝑗 -𝑒 𝑒 𝑒 𝑖) w.p. 𝛿 𝑝 𝑖	
	33:	else							
	34:								
	35:	end if							
	36:	return 𝑝 𝑝 𝑝, 𝑖 temp						
	37: end procedure						
	allocation 𝐴 𝑡 to 𝐴 𝑡+1 at the end of round 𝑡 is given by:
							UC(𝐴 𝑡 , 𝐴 𝑡+1) =	∑︁	𝑤 ′ 𝑠,𝑖 .	(2.48)
										(𝑠,𝑖)∈𝐴 𝑡 +1 \𝐴 𝑡

Table 2 .

 2 5: Graph Topologies and Experiment Parameters. We indicate the number of nodes in each graph (|𝑉 |), the number of edges (|𝐸|), the number of query nodes (|Q|), and the ranges of cache capacities 𝑐 𝑣 and edge weights 𝑤. In the last four columns we also report 𝑓 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 , 𝑓 𝑠𝑙𝑖𝑑𝑖𝑛𝑔 , 𝑓 𝑆𝑁 , and 𝑓 𝐶𝐷𝑁 : which are the caching gain attained by OFL with Stationary Request, Sliding Popularity, Shot Noise, and CDN trace, respectively.

	topologies |𝑉 |	|𝐸|	|Q| 𝑐 𝑣	𝑤	𝑓 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟 𝑦	𝑓 𝑠𝑙𝑖𝑑𝑖𝑛𝑔	𝑓 𝑆𝑁	𝑓 𝐶𝐷𝑁
	ER	100 1042	5	1-5 1-100	1569.93	1123.76 72.03	976.65
	BT	341 680	5	1-5 1-100	5547.89	3211.63 220.58 3504.58
	HC	128 896	5	1-5 1-100	2453.66	2045.69 152.38 1895.41
	dtelekom	68	546	5	1-5 1-100	969.55	772.53	49.55 1005.24
	GEANT	22	66	5	1-5 1-100	1564.02	981.60	66.50 1185.56
	abilene	9	26	2	0-5	100	81.21	81.21	41.39	-
	path	4	6	1	0-5	100	20.00	20.00	10.00	-

 converges almost surely to a stationary point of C(𝑦 𝑦 𝑦) and the trajectory of 𝑦 𝑦 𝑦 𝑡 is bounded almost surely. Lemma 3.2.1. Let the learning rate 𝜂 𝑡 be selected so that +∞ 𝑡=1 𝜂 𝑡 = +∞ and +∞ 𝑡=1 𝜂 2 𝑡 < +∞. The sequence (𝑦 𝑦 𝑦 𝑡) is bounded almost surely.

 Grades 1: Let ℎ be the cache size and 𝑟 the object requested 2: if (|S 𝑉 ,𝑡 | < ℎ) ∧ (𝑟 ∉ S 𝑉 ,𝑡) then 𝑦 𝑉 = arg min 𝑦 ∈ S 𝑉 ,𝑡 𝑐 𝑑 (𝑟, 𝑦) 8: Update 𝑆 𝑉 ,𝑡 according to (3.4) 9: if 𝑐 𝑑 (𝑟, 𝑦 𝑉) ≤ 𝑐 𝜃 then ⊲ virtual hit 10: if ∥𝑟 -𝑦 𝑉 ∥ < ∥𝜇 (𝑦 𝑉) -𝑦 𝑉 ∥ then ⊲ 𝑟 approximates 𝑦 𝑉 better than 𝜇 (𝑦 𝑉)

		Chapter 3 -Similarity Caching
	Algorithm 3.1 ⊲ still space in cache
	3:	Insert 𝑟 in VC
	4:	Retrieve and insert 𝜌 (𝑟) in PC
	5:	𝜇 (𝑟) = 𝜌 (𝑟)
	6: end if
	7: 11:	Evict 𝜇 (𝑦 𝑉)
	12:	Retrieve and Insert 𝜌 (𝑟) in PC
	13:	𝜇 (𝑦

𝑉) = 𝜌 (𝑟) 14: end if 15: Graft_Hit_Update(𝑟, 𝑆 𝑉 ,𝑡) 16: end if 17: 𝑦 𝑃 = arg min 𝑦 ∈ S 𝑃,𝑡 𝑐 𝑑 (𝑟, 𝑦) 18: 𝜉 ∼ Uniform(0, 1) 19: if 𝜉 < 𝑝 then 20: (update, 𝜔) =Graft_Miss_Update(𝑆 𝑉 ,𝑡 , 𝑟, 𝜌 (𝑟)) 21: if update then 22: Evict 𝜔 and 𝜇 (𝜔) 23: Retrieve and Insert 𝜌 (𝑟) in VC and PC 24: 𝜇 (𝜌 (𝑟)) = 𝜌 (𝑟) 25: 𝑦 𝑃 = 𝜌 (𝑟) 26: end if 27: end if 28: end if 29: if (𝑐 𝑑 (𝑟, 𝑦 𝑃) ≤ 𝑐 𝜃) ∨ (𝜌 (𝑟) inserted in PC) then 30: Serve 𝑦 𝑃 31: else 32:

 Consider a remote server that stores a catalog of objects N ≜ {1, 2, . . . , 𝑁 }. A similarity search request 𝑟 aims at finding the 𝑘 objects 𝑜 1 , 𝑜 2 , . . . , 𝑜 𝑘 ∈ N that are most similar to 𝑟 given an application-specific definition of similarity. To this purpose, similarity search systems rely on a function 𝑐 𝑑 (𝑟, 𝑜) ∈ R ≥0 , that quantifies the dissimilarity of a request 𝑟 and an object 𝑜. We call such function the dissimilarity cost; as was done in Section 3.2.2.

	3.3 -Finite Catalog Similarity Caching	73
	3.3 Finite Catalog Similarity Caching	
	3.3.1 Related Work	

 Dissimilarity cost of serving object 𝑜 to request 𝑟 𝑔 𝑔 𝑔 𝑡 Subgradient of 𝐺 (𝑟 𝑡 , 𝑦 𝑦 𝑦) at point 𝑦 𝑦 𝑦 𝑡 𝑐 (𝑟, 𝑜) Overall cost of serving object 𝑜 to request 𝑟

	3.3 -3.3.3 System Description and AÇAI's Design		77
		Notational Conventions	𝑥 𝑥 𝑥 / X	Cache state / Set of valid cache states
	1 (𝜒)	Indicator function set to 1 when condition 𝜒 is true	𝑡 /𝑇	Time slot / Time horizon
	[𝑛]	Set of integers {1, 2, . . . , 𝑛}	𝐶 (𝑟, 𝑥 𝑥 𝑥) Total cost to serve request 𝑟 under 𝑥 𝑥 𝑥
	conv(𝑆)	Convex hull of a set 𝑆	𝐺 (𝑟, 𝑥 𝑥 𝑥) Total gain to serve request 𝑟 under 𝑥 𝑥 𝑥
		System Model	C UC,𝑇	Systems's update cost over 𝑇 requests
	N	Catalog of 𝑁 objects	𝐺 𝑇 (𝑥 𝑥 𝑥) Time-averaged caching gain
	U	Augmented catalog of 2𝑁 objects		AÇAI
	𝑥 𝑖	Set to 1 when 𝑖 ∈ N is cached	Φ	Mirror map
	ℎ	Cache capacity	D	Domain of the mirror map
	𝑟 / R	Request / Request set	𝑦 𝑦 𝑦	Fractional cache state
	𝑐 𝑓	Retrieval cost	𝜂	Learning rate
	𝑐 𝑑 (𝑟, 𝑜)			
			Φ 𝑆 (•) Bregman projection onto 𝑆
	𝜋 𝑟	𝜋 𝑟 𝑖 gives the 𝑖-th closest object to 𝑟	𝑀	Freezing period
	𝛼 𝑟 𝑖	Cost difference between the (𝑖 + 1)-th smallest cost and the 𝑖-th smallest	𝑐 𝑘 𝑑	Upper bound on the dissimilarity cost of the 𝑘-th
		cost of serving request 𝑟		closest object
	𝐾 𝑟	The order of the largest possible cost when 𝑟 is requested.	𝜓	Static optimum discount factor

𝑘NN(𝑟, 𝑆)

Set of 𝑘 closest objects to 𝑟 in 𝑆 ⊂ N according to 𝑐 (𝑟, •)

Table 3 .

 3

3: Notation Summary for Subsection 3.2.3.3

 . . . ,𝑇 do⊲ Incur a gain 𝐺 (𝑟 𝑡 ,𝑦 𝑦 𝑦 𝑡), and compute a subgradient 𝑔 𝑔 𝑔 𝑡 of 𝐺 (𝑟 𝑡 ,𝑦 𝑦 𝑦) at point 𝑦 𝑦 𝑦 𝑡 (Appendix 18) 𝑥 𝑥 𝑥 𝑡 +1 ← CoupledRounding(𝑥 𝑥 𝑥 𝑡 ,𝑦 𝑦 𝑦 𝑡 ,𝑦 𝑦 𝑦 𝑡 +1)

	80			Chapter 3 -Similarity Caching
	Algorithm 3.2 Online Mirror Ascent (OMA)
		Input: 𝜂 ∈ R + , RoundingScheme
	1: procedure OnlineMirrorAscent
	2:	𝑦 𝑦 𝑦 1 ← arg min	Φ(𝑦 𝑦 𝑦);𝑥 𝑥 𝑥 1 ← DepRound(𝑦 𝑦 𝑦 1)
		𝑦 𝑦 𝑦 ∈conv(X)∩D	
	3: for 𝑡 ← 1, 2, 4: ŷ 𝑦 𝑦 𝑡 ← ∇Φ(𝑦 𝑦 𝑦 𝑡)		⊲ Map primal point to dual point
	5: 6: 7:	ẑ 𝑧 𝑧 𝑡 +1 ← ŷ 𝑦 𝑦 𝑡 + 𝜂𝑔 𝑔 𝑔 𝑡 𝑧 𝑧 𝑧 𝑡 +1 ← (∇Φ) -1 (ẑ 𝑧 𝑧 𝑡 +1) 𝑦 𝑦 𝑦 𝑡 +1 ← Φ conv(X)∩D (𝑧 𝑧 𝑧 𝑡 +1)	⊲ Take gradient step in the dual ⊲ Map dual point to a primal point ⊲ Proj. new point onto feasible region ⊲ Select a rounding scheme
	8:	if RoundingScheme = DepRound then
	9:	if 𝑀 | 𝑡 then	⊲ Round the fractional state every 𝑀 requests
	10:	𝑥 𝑥 𝑥 𝑡 +1 ← DepRound(𝑦 𝑦 𝑦 𝑡 +1)
	11:	end if	
	12:	else if RoundingScheme = CoupledRounding then
	13:		
	14:	end if	
	15:		

 1 ≜ 𝑖∈N |𝑥 𝑖 |. In the regime of large cache sizes ℎ ≫ 1, we observe from the Chernoff bound that the cache stores less than (1 + 𝛿) of its capacity ℎ with high probability.Theorem 3.3.1 (proof in Appendix 20.1) shows that the expected movement of CoupledRounding is equal to the movement of the fractional auxiliary states {𝑦 𝑦 𝑦 𝑡 } 𝑇 𝑡=1 . Theorem 3.3.1. If the input to Algorithm 3.3 is sampled from a random variable 𝑥 𝑥 𝑥 𝑡 ∈ {0, 1} 𝑁 with E[𝑥 𝑥 𝑥 𝑡] = 𝑦 𝑦 𝑦 𝑡 , then we obtain as output an integral cache configuration 𝑥 𝑥 𝑥 𝑡+1 ∈ {0, 1} 𝑁 satisfying E[𝑥 𝑥 𝑥 𝑡+1] = 𝑦 𝑦 𝑦 𝑡+1 and E [∥𝑥 𝑥 𝑥 𝑡+1 -𝑥 𝑥 𝑥 𝑡 ∥ 1] = ∥𝑦 𝑦 𝑦 𝑡+1 -𝑦 𝑦 𝑦 𝑡 ∥ 1 . Moreover, the movement of the fractional states is negligible for large 𝑇 : 𝑥 𝑥 𝑥 𝑡 ,𝑦 𝑦 𝑦 𝑡 ,𝑦 𝑦 𝑦 𝑡 +1 ⊲ 𝑥 𝑥 𝑥 𝑡 satisfies E[𝑥 𝑥 𝑥 𝑡] = 𝑦 𝑦 𝑦 𝑡 𝑥 𝑡 +1,𝑖 ← 0 w.p. -𝛿 𝑖 𝑦 𝑡,𝑖 , and 𝑥 𝑡 +1,𝑖 ← 1 w.p. -𝑦 𝑡,𝑖 -𝛿 𝑖 1-𝑦 𝑡,𝑖 , and 𝑥 𝑡 +1,𝑖 ← 1 w.p. 𝛿 𝑖 Return the next physical state satisfying E[𝑥 𝑥 𝑥 𝑡 +1] = 𝑦 𝑦 𝑦 𝑡 +1 14: end procedure Theorem 3.3.2. Algorithm 3.2, configured with the negative entropy mirror map and learning rate

			Chapter 3 -Similarity Caching
	Algorithm 3.3 Coupled Rounding	
	1: procedure CoupledRounding	
	2:	𝛿 ← 𝑦 𝑦 𝑦 𝑡 +1 -𝑦 𝑦 𝑦 𝑡	⊲ Compute the change in distribution
	3:	for 𝑖 ∈ N do	
	4:	if 𝑥 𝑡,𝑖 = 1 ∧ (𝛿 𝑖 < 0) then	
	5:		𝑦 𝑡,𝑖 +𝛿 𝑖 𝑦 𝑡,𝑖
	6:	else if 𝑥 𝑡,𝑖 = 0 ∧ (𝛿 𝑖 > 0) then	
	7:	𝑥 𝑡 +1,𝑖 ← 0 w.p.	1-𝑦 𝑡,𝑖
	8:	else	
	9:	𝑥 𝑡 +1,𝑖 ← 𝑥 𝑡,𝑖	⊲ Keep the same state
	10:	end if	
	11:	𝑥 𝑡 +1,𝑖+𝑁 ← 1 -𝑥 𝑡 +1,𝑖	⊲ Update the augmented states
	12:	end for	
	13:	return 𝑥 𝑥 𝑥 𝑡 +1	⊲

Input:

1

 If Algorithm 3.2 is configured with the negative entropy mirror map, and, at each iteration 𝑡 ∈ [T], operates with subgradients of the time-averaged caching gain (3.17), then ∀𝜖 > 0 and over a sufficiently large number of iterations T , x 𝑥 𝑥 satisfies

3.3.4. (offline solution) Let ȳ 𝑦 𝑦 be the average fractional allocation ȳ 𝑦 𝑦 = 1 T T 𝑖=1 𝑦 𝑦 𝑦 𝑖 of AÇAI, and x 𝑥 𝑥 the random state sampled from ȳ 𝑦 𝑦 through CoupledRounding or DepRound.

 Inference Delivery Networks 𝑟 𝑟 𝑟 𝑡 / 𝑙 𝑙 𝑙 𝑡 Request batch / potential available capacities 𝐺 (V, E) Weighted graph with nodes V and edges E 𝜆 𝑘 𝜌 (𝑙 𝑙 𝑙 𝑡) / 𝑧 𝑘 𝜌 (𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥) Potential / effective available capacity of the model serving 𝜌 with cost 𝛾 𝑘 𝜌 𝑤 𝑢,𝑣 Weight of edge (𝑢, 𝑣) ∈ E 𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥) Number of requests of type 𝜌 that can be served by the 𝑘-th smallest cost models found along path 𝑝 𝑝 𝑝 under allocation 𝑥 𝑥 𝑥 at time slot 𝑡 𝑥 𝑥 𝑥 Minimal allocation vector/ allocation vector 𝑦 𝑦 𝑦 𝑣 / 𝑦 𝑦 𝑦 Fractional allocation vector at 𝑣 / at V 𝑥 𝑥 𝑥 𝑣 / 𝑥 𝑥 𝑥 Allocation vector at node 𝑣 / global allocation vector Y 𝑣 / Y Set of fractional allocations at 𝑣 / at V 𝑠 𝑠 𝑠 𝑣 Vector of model sizes at node 𝑣 𝑔 𝑔 𝑔 𝑡 Subgradient vector of 𝐺 over Y at point 𝑦 𝑦 𝑦 𝑡

	N / M	Tasks / models catalog	𝜅 𝜌 (𝑣, 𝑚)	Rank of model 𝑚 allocated to node 𝑣
	M	Models catalog	𝐾 𝜌	Maximum number of models can serve 𝜌
	𝑠 𝑣 𝑚	Size of model 𝑚 ∈ M on node 𝑣 ∈ V	X 𝑣 / X	Set of integral allocations at 𝑣 / at V
	𝑎 𝑚	Prediction accuracy of model 𝑚	𝐶 / 𝐺	The overall system cost/ allocation gain
	𝑑 𝑣 𝑚	Average inference delay of model 𝑚 at node 𝑣		INFIDA
	𝑏 𝑣	Allocation budget constraint at node 𝑣	Φ 𝑣	Weighted negative entropy map
	𝑥 𝑣 𝑚	Set to 1 if model 𝑚 at node 𝑣 is allocated	Φ	Global mirror map
	𝜔 𝑣 𝑚	Set to 1 if model 𝑚 at node 𝑣 is permanently stored	𝑦 𝑣 𝑚	Fractional allocation of model 𝑚 at 𝑣
	𝜔 𝜔 𝜔 / 𝐵	Refresh period
	R	Set of all the possible request types	𝑇	Time horizon
	𝑅	Total number of request types	𝑡	Time slot 𝑡 ∈ [𝑇]
	𝑟 𝑡 𝜌	Number of times 𝜌 is requested during time slot 𝑡	𝐴	Regret constant
	load 𝑡,𝑣			

𝑝 𝑝 𝑝 Routing path {𝑝 1 , . . . , 𝑝 𝐽 } 𝑔 𝑣 𝑡,𝑚 Component (𝑣, 𝑚) of 𝑔 𝑔 𝑔 𝑡 𝜈 (𝑝 𝑝 𝑝) Repository node associated to the path 𝑝 𝑝 𝑝 P Φ 𝑣 Y 𝑣 ∩D 𝑣 Projection operator onto Y 𝑣 ∩ D 𝑣 𝐶 𝑝 𝑗 𝑝 𝑝 𝑝,𝑚 Cost of serving on 𝑝 𝑗 along path 𝑝 𝑝 𝑝 using model 𝑚 𝜂 learning rate 𝜌 Request type 𝜌 = (𝑖, 𝑝 𝑝 𝑝) (task 𝑖 routed through 𝑝 𝑝 𝑝) 𝑚 (𝜌) Number of type-𝜌 requests served by model 𝑚 at node 𝑣 during the 𝑡 -slot 𝐿 max Upper bound on model capacities 𝐿 𝑣 𝑚 Maximum capacity of model 𝑚 on node 𝑣 Δ 𝐶 Upper bound on maximum serving cost difference 𝑙 𝑡,𝑣 𝜌,𝑚 Potential available capacity of 𝑚 on node 𝑣 for request type 𝜌 at time 𝑡 𝜓 Regret discount factor equal to 1 -1 𝑒 𝛾 𝑘 𝜌 𝑘-th smallest cost for request type 𝜌 along its path

Table 4 .

 4

1: Notation Summary for Chapter 4

102

 Chapter 4 -Inference Delivery NetworksA routing path 𝑝 𝑝 𝑝 of length |𝑝 𝑝 𝑝 | = 𝐽 is a sequence {𝑝 1 , 𝑝 2 , . . . , 𝑝 𝐽 } of nodes 𝑝 𝑗 ∈ V such that edge (𝑝 𝑗 , 𝑝 𝑗+1

 4.3 -4.3.5 Serving Model 103 We denote by 𝑙 𝑡,𝑣 𝜌,𝑚 ∈ N ∪ {0} the potential available capacity, defined as the maximum number of type-𝜌 requests node 𝑣 can serve at time 𝑡 through model 𝑚, under the current request load 𝑟 𝑟 𝑟 𝑡 and allocation vector 𝑥 𝑥 𝑥 𝑣 𝑡 . Formally, let load 𝑡,𝑣 𝑚 (𝜌) denote the number of type-𝜌 requests served by model 𝑚 at node 𝑣 during the 𝑡-slot, then

	𝑙 𝑡,𝑣 𝜌,𝑚 ≜ min

 4) benefits from strong guarantees in the adversarial setting. In what follows, we can then consider that values 𝑙 𝑡,𝑣 𝜌,𝑚 are exogeneously determined. The vector of potential available capacities at time 𝑡 ∈ [𝑇] is denoted by 𝑙 𝑙 𝑙 𝑡 = [𝑙 𝑡,𝑣 𝜌,𝑚] (𝜌,𝑚,𝑣)∈ 𝑖 ∈ N R 𝑖 ×M 𝑖 ×V . (4.8) As we mentioned in Section 4.3.1, any request of type 𝜌 = (𝑖, 𝑝 𝑝 𝑝) ∈ R can always be served by the associated repository model at node 𝜈 (𝑝 𝑝 𝑝). This requirement can be expressed as follows: Thus, at any time 𝑡 ∈ [𝑇] the adversary can select a request batch 𝑟 𝑟 𝑟 𝑡 and potential available capacity 𝑙 𝑙 𝑙 𝑡 from the set

	∑︁	𝑟 𝑡 𝜌 ≤	∑︁	𝜔	𝜈 (𝑝 𝑝 𝑝) 𝑚 𝐿 𝑚 , ∀𝑖 ∈ N . 𝜈 (𝑝 𝑝 𝑝)	(4.9)
	𝜌∈R 𝑖		𝑚∈M 𝑖			

 𝑘-1 𝑘 ′ =1 𝑧 𝑘 ′ 𝜌 (𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥) < 𝑟 𝑡 𝜌). If this is the case, model 𝑚 will serve with cost 𝛾 𝑘 𝜌 at most 𝑧 𝑘 𝜌 (𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥) requests (its effective available capacity) out of the 𝑟 𝑡 𝜌 -𝑘-1 𝑘 ′ =1 𝑧 𝑘 ′ 𝜌 (𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥) requests still to be satisfied. The aggregate cost incurred by the system at time slot 𝑡 is then given by 𝐶 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥) = ∑︁ 𝜌 (𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥), 𝑧 𝑘 𝜌 (𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥) • 1 We add the indicator function 1 (•) to indicate that the 𝑘-th best model does not serve any requests, in case better models (ranked from 1 to 𝑘 -1) are able to satisfy all of them.

		𝐾 𝜌		𝑘-1		𝑘-1
		∑︁	𝛾 𝑘 𝜌 • min 𝑟 𝑡 𝜌 -	∑︁	𝑧 𝑘 ′	∑︁	𝑧 𝑘 ′
	𝜌∈R	𝑘=1		𝑘 ′ =1		𝑘 ′ =1

𝜌 (𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥) < 𝑟 𝑡 𝜌 .

(4.12)

Note that we introduce the min{ • , • } operator, since the number of requests served by the 𝑘-th best model cannot exceed its effective capacity 𝑧 𝑘 𝜌 (𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥).

 𝑝 𝑝 that are suitable for request type 𝜌 = (𝑖, 𝑝 𝑝 𝑝) can serve up to 𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥) requests, where 𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥) is defined as 𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥) ≜ min 𝑟 𝑡 𝜌 , The min{ • , • } operator denotes that we can never serve more than the number of requests 𝑟 𝑡 𝜌 issued by users. Observe that, being the minimal allocation 𝜔 𝜔 𝜔 an input parameter not dependent on our decisions, 𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝜔 𝜔 𝜔) is a constant. Additionally, since the models allocated in 𝑥 𝑥 𝑥 always include those allocated in 𝜔 𝜔 𝜔, we have 𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥) ≥ 𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝜔 𝜔 𝜔). Using (4.15), we provide the following alternative formulation of the allocation gain. Lemma 4.3.1. The allocation gain (4.13) has the following equivalent expression: 𝐺 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥) = ∑︁

					𝑘
					∑︁	𝑧 𝑘 ′ 𝜌 (𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥) .	(4.15)
					𝑘 ′ =1
		𝐾 𝜌 -1		
		∑︁	𝛾 𝑘+1 𝜌	-𝛾 𝑘 𝜌	𝑍 𝑘
	𝜌∈R	𝑘=1		
			cost saving

𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥) -𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝜔 𝜔 𝜔) .

additional requests

 4.4 -4.4.1 Algorithm Overview 107 Algorithm 4.1 INFIDA distributed allocation on node 𝑣 1: procedure INFIDA(𝑦 𝑦 𝑦 𝑣 1 = arg min 𝑦 𝑦 𝑦 𝑣 ∈ Y 𝑣 ∩D 𝑣 Φ 𝑣 (𝑦 𝑦 𝑦 𝑣), 𝑥 𝑥 𝑥 𝑣 1 =DepRound(𝑦 𝑦 𝑦 𝑣 1), 𝜂∈R +) 2: for 𝑡 = 1, 2, . . . ,𝑇 do 3: Compute 𝑔 𝑔 𝑔 𝑣 𝑡 ∈ 𝜕 𝑦 𝑦 𝑦 𝑣 𝐺 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦 𝑡) through (4.18). allocations that consume entirely the allowed budget; otherwise, all the allocations are set to 1 (node 𝑣 can store the whole catalog of models). Formally, if ∥𝑠 𝑠 𝑠 𝑣 ∥ 1 ≥ 𝑏 𝑣 then Y 𝑣 ≜ 𝑦 𝑦 𝑦 𝑣 ∈ [0, 1] We define 𝐺 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦) as in (4.13), replacing 𝑥 𝑥 𝑥 with 𝑦 𝑦 𝑦. Note that 𝐺 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦) is a concave function of variable 𝑦 𝑦 𝑦 ∈ Y = 𝑣 ∈V Y 𝑣 (see Lemma 28.1 in Appendix 28).

	4:	ŷ 𝑦 𝑦 𝑣 𝑡 ← ∇Φ 𝑣 (𝑦 𝑦 𝑦 𝑣 𝑡)	⊲ Map state to the dual space
	5: 6: 7: 8:	ĥ ℎ ℎ ℎ ℎ ℎ 𝑣 𝑣 𝑡 +1 ← ŷ 𝑦 𝑦 𝑣 𝑡 + 𝜂𝑔 𝑔 𝑔 𝑣 𝑡 𝑡 +1 ← (∇Φ 𝑣) -1 (ĥ ℎ ℎ 𝑦 𝑦 𝑦 𝑣 𝑡 +1 ← P Φ 𝑣 𝑡 +1) 𝑣 𝑡 +1) Y 𝑣 ∩D 𝑣 (ℎ ℎ ℎ 𝑣 𝑥 𝑥 𝑥 𝑣 𝑡 +1 ← DepRound(𝑦 𝑦 𝑦 𝑣 𝑡 +1)	⊲ Take gradient step in the dual space ⊲ Map dual state back to the primal space ⊲ Project new state onto the feasible region using Algorithm .2 ⊲ Sample a discrete allocation
	9:	end for	
	10: end procedure	

M : ∑︁ 𝑚∈M 𝑦 𝑣 𝑚 𝑠 𝑣 𝑚 = 𝑏 𝑣 , ∀𝑣 ∈ 𝑉 ; (4.17) otherwise, for the corner case ∥𝑠 𝑠 𝑠 𝑣 ∥ 1 < 𝑏 𝑣 , we have Y 𝑣 ≜ [1] M . Each variable 𝑦 𝑣 𝑚 can be interpreted as the probability of hosting model 𝑚 on node 𝑣, i.e., 𝑦 𝑣 𝑚 = P[𝑥 𝑣 𝑚 = 1] = E[𝑥 𝑣 𝑚].

 4.5 -4.4.3 State Rounding 109 2. As the control message travels upstream, intermediate nodes add to 𝑍 the local values 𝑧 𝑘 𝜌 (𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦 𝑡) (fractional effective capacity in Eq. (4.11)). These values are added following increasing values of cost. This message is propagated until 𝑍 ≥ 𝑟 𝑡 𝜌 , that is until the message reaches the 𝐾 * 𝜌 (𝑦 𝑦 𝑦 𝑡)th model. 3. Once the 𝐾 * 𝜌 (𝑦 𝑦 𝑦 𝑡)-th model is detected, a control message is sent down in the opposite direction, containing the cost 𝛾 𝐾 * 𝜌 (𝑦 𝑦 𝑦 𝑡) 𝜌 of the last checked model. Every node 𝑣 in the reverse direction reads the cost value from the control message and, for each model 𝑚 ∈ M 𝑖 , computes the quantity

	ℎ 𝑣 𝑚 = 𝑙 𝑡,𝑣 𝜌,𝑚 • 𝛾	𝐾 * 𝜌 (𝑦 𝑦 𝑦 𝑡) 𝜌	-𝐶 𝑣 𝑝 𝑝 𝑝,𝑚 .	(4.19)
	4. Node 𝑣 can then compute 𝑔 𝑣 𝑡,𝑚 in Eq. (4.18) as follows
	𝑔 𝑣 𝑡,𝑚 =	∑︁	ℎ 𝑣 𝑚 .
	𝑚∈M 𝑖		

 𝑥 𝑥 𝑥 ∈X 𝑇 𝑡=1 𝐺 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥), discounted by a factor 𝜓 ∈ (0, 1]. Formally, 𝜓 -Regret 𝑇 ,X ≜ sup {𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 } 𝑇 𝑡 =1 ∈A 𝑇 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥 𝑡) , where allocations 𝑥 𝑥 𝑥 𝑡 are computed using INFIDA and the expectation is over the randomized choices of DepRound. Note that, by taking the supremum over all request sequences and potential available capacities, we measure regret in an adversarial setting, i.e., against an adversary that selects, for every 𝑡 ∈ [𝑇], vectors 𝑟 𝑟 𝑟 𝑡 and 𝑙 𝑙 𝑙 𝑡 to jeopardize the performance of our algorithm. Obviously, we do not expect such an adversary would exist in reality, but the adversarial analysis provides bounds on the behavior of INFIDA in the worst case.

		𝑇		𝑇	
	𝜓	∑︁	𝐺 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥 *)-E	∑︁	𝐺 (𝑟
		𝑡=1		𝑡=1	

 (1 -1/𝑒 -𝜖)-approximation of the optimal time averaged static gain, for arbitrarily small 𝜖.Observe that INFIDA computes a different 𝑥 𝑥 𝑥 𝑡 at every time slot. Intuitively, this allows it to "run after" the exogenous variation of the adversarial input {𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 } 𝑇 𝑡=1 ∈ A 𝑇 . An alternative goal that can be achieved by INFIDA is to find a static allocation ȳ 𝑦 𝑦. In order to do so, we need to(1) run INFIDA for T time-slots, (2) based on the {𝑦 𝑦 𝑦 𝑡 } T 𝑡=1 computed by INFIDA, calculate x 𝑥 𝑥 (the exact calculation is in Proposition 4.5.2), (3) deploy in the IDN the allocation x 𝑥 𝑥 and keep it static, in order to avoid switches. Obviously, we would like the quality of x 𝑥 𝑥 to be close to the best 𝑥 𝑥 𝑥 * , defined in (4.14). The following proposition shows that the gain achieved with our x 𝑥 𝑥 is boundedly close to the optimum. Moreover, since (4.14) is NP-hard, there cannot exist better bounds than the one we achieve, assuming P ≠ NP [179]. Proposition 4.5.2. (offline solution) Replace in INFIDA the allocation gain 𝐺 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦) by 𝐺 𝑇 (𝑦 𝑦 𝑦) (defined in (4.14)). After T iterations, let ȳ 𝑦 𝑦 be the average fractional allocation ȳ

	4.6 -Experimental Results	111
	expected gain that is a 𝑦 𝑦 = 1 T	T t=1 𝑦 𝑦 𝑦 𝑡 , and x 𝑥 𝑥 the
	random state sampled from ȳ	

1, the expected time averaged (1-1/𝑒)-regret of INFIDA can get arbitrarily close to zero for large time horizon. Hence, INFIDA achieves a time averaged 𝑦 𝑦 using DepRound. ∀𝜖 > 0, for T large enough, x 𝑥 𝑥 satisfies

Table 4 .

 4 2: Catalog for variants of YOLOv4[START_REF] Bochkovskiy | YOLOv4: Optimal Speed and Accuracy of Object Detection[END_REF] profiled on two different Processing Units. Accuracy is for the MS COCO dataset. Values for the pruned variants are adapted from[START_REF] Cai | YOLObile: Real-Time Object Detection on Mobile Devices via Compression-Compilation Co-Design[END_REF].

	Chapter 4 -Inference Delivery Networks

(Table

4

.2). We consider a task catalog with |N | = 20 different object detection tasks. We allow 3 duplicates per model; this gives |M 𝑖 | = 30 alternative models per task 𝑖 ∈ N . Note how, as model complexity decreases, the number of frames a GPU can process per second increases, and consequently the average inference delay decreases.

 At the end of a time slot, the node selects the model 𝑚 * with the highest importance while respecting the resource budget constraint, then subtracts the quantity min{𝜙 𝑣 𝑚,𝜌 , 𝐿 𝑣 𝑚 } from 𝜙 𝑣 𝑚 . This procedure is repeated until the resource budget of the node is consumed. Offline INFIDA. Motivated by Proposition 4.5.2, we implemented also an offline version of INFIDA that we call INFIDA Offline , which maximizes the time-averaged gain (4.14) over the whole time horizon 𝑇 . The potential available capacities are determined at runtime from the current allocations and request batches (rather than by an adversary). Performance Metrics. The performance of a policy P with the associated sequence of allocation decisions {𝑥 𝑥 𝑥 𝑡 } 𝑇 𝑡=1 is evaluated in terms of the time-averaged gain normalized to the number of requests per time slot (NTAG): 𝐺 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥 𝑡). (4.22) Moreover, we evaluate the update cost of a policy P with the associated sequence of allocation decisions {𝑥 𝑥 𝑥 𝑡 } 𝑇 𝑡=1 by quantifying the total size of fetched models over 𝑇 time slots. The update cost is reflected by the Time-Averaged Model Updates (MU) metric defined as:

	1 |R| ber of requests that could have been improved by 𝑚. NTAG(P) = 𝜌∈R 𝑞 𝑣 𝑚,𝜌 min{𝜙 𝑣 𝑚,𝜌 , 𝐿 𝑣 𝑚 }, where 𝑠 𝑣 𝑚 is the size of model 𝑚 and min{𝜙 𝑣 𝑚,𝜌 , 𝐿 𝑣 𝑚 } is the num-𝑇 ∑︁ 𝑡=1 1 𝑇 ∥𝑟 𝑟 𝑟 𝑡 ∥ 1 MU(P) ≜ 𝑇 1 𝑡=2 (𝑣,𝑚)∈V×M 𝑇 ∑︁ ∑︁ 𝑠 𝑣 𝑚 max{0, 𝑥 𝑣 𝑡,𝑚 -𝑥 𝑣 𝑡-1,𝑚 }. (4.23)

* ,𝜌 and from all the 𝜙 𝑣 𝑚 ′ ,𝜌 : 𝑞 𝑣 𝑚 ′ ,𝜌 < 𝑞 𝑣 𝑚 * ,𝜌 , i.e., models that 4.6 -4.6.1 Trade-off between Latency and Accuracy 113 provide a gain lower than 𝑚 *

Table 5 .

 5 1: Summary of related work under online fairness in resource allocation.

	5.2 -5.2.3 Online Learning

 𝑘 ′ <𝑘 |T 𝑘 |+1 = 𝑜 (𝑇). Since this term grows sublinearly in time, it remains to characterize the growth of the l.h.s. term 𝐾 𝑘=1 𝑖∈I 𝑡 ∈T 𝑘 𝛿 𝑡,𝑖 (𝑥 𝑥 𝑥 ★) in Eq.

			.11)
	Hence, when 𝑀 = 𝑜 (√ 𝑇) it holds 𝑇 /𝑀 𝑘=1	|T 𝑘 | 2

 Require: X, 𝛼 ∈ R ≥0 , 𝑢 ★,min , 𝑢 ★,max 𝑥 𝑥 𝑥 1 ∈ X; 𝜃 𝜃 𝜃 1 ∈ Θ;⊲ Initialize allocation 𝑥 𝑥 𝑥 1 and dual decision 𝜃 𝜃 𝜃 1 3: for 𝑡 ∈ T do 4: Reveal Ψ 𝑡,𝛼 (𝜃 𝜃 𝜃 𝑡 , 𝑥 𝑥 𝑥 𝑡) = (-𝐹 𝛼) ★ (𝜃 𝜃 𝜃 𝑡) -𝜃 𝜃 𝜃 𝑡 • 𝑢 𝑢 𝑢 𝑡 (𝑥 𝑥 𝑥 𝑡) ⊲ Incur reward Ψ 𝑡,𝛼 (𝜃 𝜃 𝜃 𝑡 , 𝑥 𝑥 𝑥 𝑡) and loss Ψ 𝑡,𝛼 (𝜃 𝜃 𝜃 𝑡 , 𝑥 𝑥 𝑥 𝑡) 5: 𝑔 𝑔 𝑔 X,𝑡 ∈ 𝜕 𝑥 𝑥 𝑥 Ψ 𝑡,𝛼 (𝜃 𝜃 𝜃 𝑡 , 𝑥 𝑥 𝑥 𝑡) = 𝑖 ∈ I 𝜃 𝑡,𝑖 𝜕 𝑥 𝑥 𝑥 𝑢 𝑡,𝑖 ⊲ Compute supergradient 𝑔 𝑔 𝑔 X,𝑡 at 𝑥 𝑥 𝑥 𝑡 of reward Ψ 𝑡,𝛼 (𝜃 𝜃 𝜃 𝑡 , •) 6: 𝑔 𝑔 𝑔 Θ,𝑡 = ∇ 𝜃 𝜃 𝜃 Ψ 𝑡,𝛼 (𝜃 𝜃 𝜃 𝑡 , 𝑥 𝑥 𝑥 𝑡) = -𝜃 𝑡,𝑖 -1/𝛼 -𝑢 𝑢 𝑢 𝑡 (𝑥 𝑥 𝑥 𝑡) Compute gradient 𝑔 𝑔 𝑔 Θ,𝑡 at 𝜃 𝜃 𝜃 𝑡 of loss Ψ 𝑡,𝛼 (• , 𝑥 𝑥 𝑥 𝑡) 𝑥 𝑥 𝑥 𝑡 +1 = Π X 𝑥 𝑥 𝑥 𝑡 + 𝜂 X,𝑡 𝑔 𝑔 𝑔 X,𝑡 ; 𝜃 𝜃 𝜃 𝑡 +1 = Π Θ 𝜃 𝜃 𝜃 𝑡 -𝜂 Θ,𝑡 𝑔 𝑔 𝑔 Θ,𝑡 ⊲ Compute a new allocation and dual decision 9: end for

	5.4 -5.4.2 OHF Policy	129
	Algorithm 5.1 OHF policy	
	I	
	1: Θ ← -1/𝑢 𝛼 ★,min , -1/𝑢 𝛼 ★,max	⊲ Initialize the dual (conjugate) subspace
	2: 𝑖 ∈ I ⊲ 7: 𝜂 X,𝑡 = diam (X)/ √︃ 𝑡 𝑠=1 𝑔 𝑔 𝑔 X,𝑠 2 2 ; 𝜂 Θ,𝑡 = 𝛼𝑢 -1-1/𝛼 min /𝑡	⊲ Compute adaptive learning rates
	8:	

 System model: a network comprised of a set of caching nodes C. A request arrives at a cache node 𝑐 ∈ C, it can be partially served locally, and if needed, forwarded along the shortest retrieval path to another node to retrieve the remaining part of the file; a utility is incurred by the cache owner 𝑖 ∈ I. A set of permanently allocated files are spread across the network guaranteeing requests can always be served.

	5.6 -5.6.1 Multi-Agent Cache Networks	135
	?	?
	?	
	Figure 5.4:	

 .18) we obtain the following ŷ(𝑞) 𝑡,𝑖 = (∇Φ(𝑥 𝑥 𝑥 𝑡)) 𝑖 + 𝜂 𝑞 𝑔 𝑡,𝑖 = sign(𝑥 𝑡,𝑖) |𝑥 𝑡,𝑖 | 𝑞-1 ∥𝑥 𝑥 𝑥 𝑡 ∥ 𝜂 𝑞 𝑔 𝑡,𝑖 , ∀𝑖 ∈ N . Note that -𝜂𝑔 𝑡,𝑖 is non-negative. The numbers 𝑝 and 𝑞 are conjugate numbers (see Section 2.2.3.3) and satisfy 𝑞 -1 = 1 𝑝-1 . We use Eq. (2.19) to get the expression of 𝑦

		𝑞-2	-𝜂 𝑞 𝑔 𝑡,𝑖 for a
		𝑞
	given 𝑞 ∈ (1, 2]. The algorithm guarantees that 𝑥 𝑥 𝑥 𝑡 ∈ X ∩ R 𝑁 >0 , then 𝑥 𝑖 > 0, ∀𝑖 ∈ N . So, we get
	ŷ(𝑞) 𝑡,𝑖 =	(𝑥 𝑡,𝑖) 𝑞-1 𝑞-2 ∥𝑥 𝑥 𝑥 𝑡 ∥ 𝑞
	(𝑞) 𝑡+1,𝑖 as

-

 For 𝑘 = 1, the intermediate state of OMD 1-norm in Eq. (1.15) is feasible (i.e., 𝑥 𝑥 𝑥 𝑡+1 = 𝑦 𝑦 𝑦 𝑡+1 and the projection has no effect). On the other hand, the neg-entropy projection in the case of 𝑘 = 1 is just a normalization of the intermediate states (i.e., 𝑥 𝑡+1,𝑖 =

	1 -1.8 Proof of Theorem 2.2.8	151
	•	
	.	

1-norm in Eq.

(1.15

) is a multiplicative update rule identical to the update rule of OMD NE (𝑦 𝑡+1,𝑖 = 𝑥 𝑡,𝑖 𝑒 -𝜂𝑔 𝑡,𝑖 in Eq. (2.23)) with an additional multiplicative factor 𝑘 𝑖 ∈ N 𝑥 𝑡,𝑖 exp(-𝜂𝑔 𝑡,𝑖)

 1.10 Proof of Proposition 2.2.10 Every time slot 𝑡 ∈ [𝑇], we obtain an intermediate cache state𝑦 𝑦 𝑦 𝑡+1 through lines 2-4 in Algorithm 2.1 as 𝑦 𝑦 𝑦 𝑡+1 = (∇Φ -1)(∇Φ(𝑥 𝑥 𝑥 𝑡) -𝜂∇𝑓 𝑟 𝑟 𝑟 𝑡 (𝑥 𝑥 𝑥 𝑡)). Let {𝑥 𝑥 𝑥 𝑡 } 𝑇 𝑡=1 and {𝑥 𝑥 𝑥 ′ 𝑡 } 𝑇 𝑡=1 be fractional cache states obtained by OGD and OMD NE , respectively, and {𝑦 𝑦 𝑦 𝑡 } 𝑇 𝑡=1 and {𝑦 𝑦 𝑦 ′ 𝑡 } 𝑇 𝑡=1 be their intermediate fractional cache states. In the case of OGD, or equivalently OMD configured with mirror map Φ(𝑥 𝑥 𝑥) = 1 2 ∥𝑥 𝑥 𝑥 ∥ 2 2 , the intermediate fractional states have the same components as the previous cache state for files are not requested 𝑦 𝑦 𝑦 𝑡,𝑖 = 𝑥 𝑥 𝑥 𝑡,𝑖 for every 𝑖 ∉ supp(𝑟 𝑟 𝑟 𝑡). Similarly, we also have 𝑦 𝑦 𝑦 ′ 𝑡,𝑖 = 𝑥 𝑥 𝑥 ′ 𝑡,𝑖 for OMD NE for every 𝑖 ∉ supp(𝑟 𝑟 𝑟 𝑡). The Euclidean projection algorithm onto the capped simplex [56] can only set a component of the intermediate fractional cache state to one if it exceeds it, and the remaining components are either set to zero or reduced by a constant amount Δ =

	𝑁 -𝑏-𝑘+ 𝑏 𝑗=𝑎+1 𝑦 𝑡 +1,𝑗
	𝑏-𝑎

 Consider equal service costs 𝑤 𝑖 = 1 for any 𝑖 in N . A deterministic policy denoted by A selects an integral cache state 𝑥 𝑥 𝑥 𝑡 from Z for every time slot 𝑡, and the adversary can select a request batch 𝑟 𝑟 𝑟 𝑡 based on the selected state. Let 𝑟 𝑟 𝑟 𝑡 = [1 {𝑥 𝑡,𝑖 ≠1}] 𝑖∈N be the request batch selected by the adversary at time 𝑡, so the cost incurred at any time slot 𝑡 is 𝑓 𝑟 𝑟 𝑟 𝑡 (𝑥 𝑥 𝑥 𝑡) = 𝑁 -𝑘, and the total cost incurred by A for the time horizon 𝑇 is 𝑇 𝑡=1 𝑓 𝑟 𝑟 𝑟 𝑡 (𝑥 𝑥 𝑥 𝑡) = (𝑁 -𝑘)𝑇 . For a fixed integral cache state 𝑥 𝑥 𝑥 ∈ Z, The best static cache state 𝑥 𝑥 𝑥 * is given by 𝑥 𝑥 𝑥 * = arg min 𝑥 𝑥 𝑥 ∈Z 𝑇 𝑡=1 𝑓 𝑟 𝑟 𝑟 𝑡 (𝑥 𝑥 𝑥) = arg min 𝑥 𝑥 𝑥 ∈Z 𝑖 is achieved when 𝑇 𝑡=1 𝑥 𝑡,𝑖 = 𝑇 𝑡=1 𝑥 𝑡,𝑗 = 𝑇𝑘/𝑁 for every 𝑖, 𝑗 ∈ N , and in this case 𝑥 𝑥 𝑥 * can be arbitrary in Z. Thus, the cost incurred by the static optimum is upper bounded by 𝑇 𝑡=1 𝑓 𝑟 𝑟 𝑟 𝑡 (𝑥 𝑥 𝑥

	𝑇 𝑡=1 𝑓 𝑟 𝑟 𝑟 𝑡 (𝑥 𝑥 𝑥) = 𝑇 𝑡=1	𝑁 𝑖=1 (1 -𝑥 𝑖)(1 -𝑥 𝑡,𝑖) = 𝑇 (𝑁 -2𝑘) + 𝑁 𝑖=1 𝑥 𝑖	𝑇 𝑡=1 𝑥 𝑡,𝑖 .	(2.18)
			𝑁 𝑖=1 𝑥 𝑖	𝑇 𝑖=1 𝑥 𝑡,𝑖 .
	The maximum value of 𝑁 𝑖=1 𝑥 * ,𝑖	𝑇 𝑡=1 𝑥 𝑡,		

2.1 Proof of Proposition 2.2.11 *) = 𝑇 (𝑁 -2𝑘) + 𝑁 𝑖=1 𝑥 * ,𝑖 𝑇 𝑡=1 𝑥 𝑡,𝑖 ≤ 𝑇 (𝑁 -2𝑘) + 𝑇 𝑘 2 𝑁 . The regret of A over time horizon 𝑇 is lower bounded by Regret 𝑇

 1.2) with 𝜂 = Θ 1 Lemma 2.2 and Lemma 2.4 guarantee that Algorithm 2.3 used with an OMD algorithm satisfies the hypothesis of Theorem 2.1 and, hence, provides sublinear extended regret. Lemma 2.2. The random integral cache state 𝑧 𝑧 𝑧 obtained by calling Algorithm 2.3 with fractional cache configuration input 𝑥 𝑥 𝑥 ∈ X satisfies 𝑧 𝑧 𝑧 ∈ Z and E 𝜉 [𝑧 𝑧 𝑧] = 𝑥 𝑥 𝑥.

	√ 𝑇	.
	□	
	2.5 Proof of Theorem 2.2.14	

 , for all 𝑖 ′ ∈ C, 𝑠,𝑚 be the set of rounds where hedge selector E 𝑠,𝑚 receives reward vector in our algorithm in 𝑇 rounds, i.e., T 𝑠,𝑚 = {𝑡 ∈ [𝑇] : 𝑣 ∈ 𝑝 𝑡 , 𝑚 = 𝑚 𝑡 𝑠 }. For any 𝑠 ∈ S, 𝑚 ∈ [𝑀], and 𝑖 ′ ∈ C, since hedge selectors are no-regret algorithms, let 𝑅 𝑇 𝑠,𝑚 be the regret of E 𝑠,𝑚 during rounds T 𝑠,𝑚 . We denote 𝑙 𝑡 𝑖 (𝑠, 𝑚) the 𝑖-th coordinate of total reward vector for hedge selector E 𝑠,𝑚 at round 𝑡, i.e., 𝑙 𝑡 𝑖 (𝑠, 𝑚) = 𝑟 =(𝑖,𝑝)∈R 𝑡 :𝑠∈S 𝑝 ℓ 𝑟 𝑖 (𝑠, 𝑚). According to the definition of regret in Eq. (4.38), we have is the best selection in hindsight, i.e., 𝑖 * = arg max 𝑖∈C 𝑡 ∈T 𝑠,𝑚 ℓ 𝑡 𝑖 . Then, by Lemma 5.1, 𝑠,𝑚 , all 𝑠 ∈ S, 𝑚 ∈ [𝑀], 𝑖 ′ ∈ C, by Lemma 5.3,

													Chapter -Conclusion
	For 𝑡 ∈ [𝑇] \ T 𝐹	𝑡 (Ã𝑡-𝑠,𝑚 + (𝑠, 𝑖 𝑡 𝑠,𝑚 , 𝑚),𝑚 𝑚 𝑚) = 𝐹	𝑡 (Ã𝑡-𝑠,𝑚 + (𝑠, 𝑖 ′ , 𝑚),𝑚 𝑚 𝑚).	(5.52)
	Thus, for all 𝑠 ∈ S, 𝑚 ∈ [𝑀], 𝑖 ′ ∈ C,						
		𝑇									𝑇	
		∑︁	𝐹	𝑡 (Ã𝑡-𝑠,𝑚 + (𝑠, 𝑖 𝑡 𝑠,𝑚 , 𝑚),𝑚 𝑚 𝑚) ≥	∑︁	𝐹	𝑡 (Ã𝑡-𝑠,𝑚 + (𝑠, 𝑖 ′ , 𝑚),𝑚 𝑚 𝑚) -𝑅 𝑇 𝑠,𝑚 .
		𝑡=1									𝑡=1	
	𝐹	𝑡 (Ã𝑡-𝑠,𝑚 + (𝑠, 𝑖 ′ , 𝑚),𝑚 𝑚 𝑚) =	∑︁ (𝑖,𝑣)∈R 𝑡	max ((𝑣 ′ ,𝑗 ′),𝑖,𝑚 𝑠 ′)∈ Ã′	𝑤	𝑝 𝑣 ′ =	∑︁ (𝑖,𝑣)∈R 𝑡	max (𝑣 ′ ,𝑗 ′)∈S ⪯𝑠	𝑤	𝑝 𝑣 ′ .	(5.49)
	𝑅 𝑇 𝑠,𝑚 =		∑︁	ℓ 𝑡 𝑖 * (𝑠, 𝑚) -	∑︁	ℓ 𝑡 𝑖 𝑡 𝑠,𝑚	(𝑠, 𝑚) ≥	∑︁	ℓ 𝑡 𝑖 ′ (𝑠, 𝑚) -	∑︁	ℓ 𝑡 𝑠,𝑚 𝑖 𝑡	(𝑠, 𝑚),	(5.50)
			𝑡 ∈T 𝑠,𝑚			𝑡 ∈T 𝑠,𝑚					𝑡 ∈T 𝑠,𝑚	𝑡 ∈T 𝑠,𝑚
	where 𝑖 (5.51)

□ Finally, we can prove Theorem 2.3.2. Proof. For all 𝑠 ∈ S, 𝑚 ∈ [𝑀], we denote by T * ∑︁ 𝑡 ∈T 𝑠,𝑚 𝐹 𝑡 (Ã𝑡-𝑠,𝑚 + (𝑠, 𝑖 𝑡 𝑠,𝑚 , 𝑚),𝑚 𝑚 𝑚) ≥ ∑︁ 𝑡 ∈T 𝑠,𝑚 𝐹 𝑡 (Ã𝑡-𝑠,𝑚 + (𝑠, 𝑖 ′ , 𝑚),𝑚 𝑚 𝑚) -𝑅 𝑇 𝑠,𝑚 .

 After the request time 𝑡 GRD stores in the cache the 𝑐 𝑢 items in C that correspond to the largest 𝑐 𝑢 components of 𝑧 𝑧 𝑧 𝑡+1 at time 𝑡. Consider the request sequence {1, 2, . . . , 2𝑐 𝑢 , 1, 2, . . . , 2𝑐 𝑢 , . . . , 1, 2, . . . , 2𝑐 𝑢 }. (7.63) Under this request sequence, GRD behaves as LRU and simply stores at any time the 𝑐 𝑢 most recently requested items. In fact, item 𝑗 is requested at time instants ℎ𝑇 + 𝑗 for ℎ ∈ {0, 1, . . . , 𝑚 -1}. At time 𝑡 = 𝑘𝑇 + 𝑖, item 𝑗 has been requested for the last time (𝑖 -𝑗) mod 2𝑐 𝑢 time instants earlier. The corresponding component of the vector 𝑧 𝑧 𝑧 𝑡+1 has the value

 𝑖)∈𝐴}] (𝑠,𝑖)∈S×C , and 𝑥 𝑥 𝑥 𝑠 = [1 {(𝑠,𝑖)∈𝐴}] (𝑠,𝑖):𝑖∈C . The weighted 𝑙 1 norm is defined as: ||𝑥 𝑥 𝑥 𝑠 || 1,𝑤 𝑤 𝑤 ′ := ∑︁

	With slight abuse of notation, we consider that for any 𝑠 ∈ S:	
	UC(𝑥 𝑥 𝑥 𝑡 𝑠 , 𝑥 𝑥 𝑥 𝑡+1 𝑠) :=	∑︁	𝑤 ′ 𝑖 max(0, 𝑥 𝑡+1 𝑖	-𝑥 𝑡 𝑖)	(8.65)
		𝑖∈C			
	= UC(𝐴 𝑡 ∩ {(𝑠, 𝑖) : 𝑖 ∈ C}, 𝐴 𝑡+1 ∩ {(𝑠, 𝑖) : 𝑖 ∈ C}).	(8.66)
	Also, note that UC(𝑥 𝑥 𝑥 𝑡 𝑠 , 𝑥 𝑥 𝑥 𝑡+1 𝑠) ≤ ||𝑥 𝑥 𝑥 𝑡+1 𝑠 -𝑥 𝑥 𝑥 𝑡 𝑠 || 1,𝑤 𝑤 𝑤 ′ .		
				𝑤 ′ 𝑠,𝑖 |𝑥 𝑠,𝑖 |.	(8.64)
			𝑖∈C		

 Family of Coupling Schemes with Sublinear Update CostThe following Lemma provides a sufficient condition on the joint distribution of (𝑥 𝑥 𝑥𝑡 𝑠 , 𝑥 𝑥 𝑥 𝑡+1 𝑠) (the family of coupling schemes), that leads to sublinear update cost for DistributedTGOnline. 𝑥 𝑥 𝑥𝑡 𝑠 || 1,𝑤 𝑤 𝑤 ′] = 𝑂 (||𝑝 𝑝 𝑝 𝑡+1 -𝑝 𝑝 𝑝 𝑡 || 1,𝑤 𝑤 𝑤 ′). This algorithm incurs an expected update cost of the same order of the update cost of probabilities. Selecting 𝜖 = Θ(1We know Φ(𝑊 𝑊 𝑊) = 𝑖∈C 𝑊 𝑖 log(𝑊 𝑖) is 1-strong convex w.r.t. || • || 1 on the simplex △ |C| = {𝑝 𝑝 𝑝 ∈ will prove the Lemma 8.2. Recall that, as shown in Algorithm 2.5, at every 𝐾 times, each storage slot will choose a color 𝑚 𝑡 𝑠 uniformly at random from [𝑀]. At every rounds, the corresponding hedge selector E 𝑠,𝑚 𝑡 𝑠 will be fed a reward vector ℓ ℓ ℓ 𝑡 (𝑠, 𝑚 𝑡 𝑠), and call E.feedback(ℓ ℓ ℓ) to update its weight vector. In the following proof, we assume that at round 𝑡 and 𝑡 + 1, color 𝑚 𝑡 The weight vector 𝑊 𝑊 𝑊 𝑡 is the weight vector maintained by hedge selector E 𝑠,𝑚 𝑡 𝑠 . The probability 𝑝 𝑝 𝑝 𝑡 is the normalized 𝑊 𝑊 𝑊 𝑡 . With the assumptions in Lemma. 8.2, there exist constants 𝛼, 𝛽, 𝛾 > 0, such that:E[UC(𝑥 𝑥 𝑥 𝑡 𝑠 , 𝑥 𝑥 𝑥 𝑡+1 𝑠)] ≤ E[||𝑥 𝑥 𝑥 𝑡+1 𝑠 -𝑥 𝑥 𝑥 𝑡 𝑠 || 1,𝑤 𝑤 𝑤 ′] ≤ 𝛼 ||𝑝 𝑝 𝑝 𝑡+1 -𝑝 𝑝 𝑝 𝑡 || 1,𝑤 𝑤 𝑤 ′ ≤ 𝛽 ||𝑝 𝑝 𝑝 𝑡+1 -𝑝 𝑝 𝑝 𝑡 || ≤ 𝛾 ||𝑊 𝑊 𝑊 𝑡+1 -𝑊 𝑊 𝑊 𝑡 ||, (8.70)where || • || here is 𝑙1 norm, the second to last inequality holds because norms can bound each other, and the last inequality holds because the inexpensive property of projection. For round 𝑡 without color update:E[||𝑥 𝑥 𝑥 𝑡+1 𝑠 -𝑥 𝑥 𝑥 𝑡 𝑠 || 1,𝑤 𝑤 𝑤 ′] ≤ 𝛾 ||𝑊 𝑊 𝑊 𝑡+1 -𝑊 𝑊 𝑊 𝑡 || ≤𝛾 √︁ 2(Φ(𝑊 𝑊 𝑊 𝑡) -Φ(𝑊 𝑊 𝑊 𝑡+1) + ∇Φ(𝑊 𝑊 𝑊 𝑡+1) ⊤ (𝑊 𝑊 𝑊 𝑡+1 -𝑊 𝑊 𝑊 𝑡)), 𝑊 𝑊 𝑡) -Φ(𝑊 𝑊 𝑊 𝑡+1) -∇Φ(𝑊 𝑊 𝑊 𝑡) ⊤ (𝑊 𝑊 𝑊 𝑡 -𝑊 𝑊 𝑊 𝑡+1) + (∇Φ(𝑊 𝑊 𝑊 𝑡+1) -∇Φ(𝑊 𝑊 𝑊 𝑡)) ⊤ (𝑊 𝑊 𝑊 𝑡+1 -𝑊 𝑊 𝑊 𝑡),||𝑊 𝑊 𝑊 𝑡 -𝑊 𝑊 𝑊 𝑡+1 || 2 + (∇Φ(𝑊 𝑊 𝑊 𝑡+1) -∇Φ(𝑊 𝑊 𝑊 𝑡)) ⊤ (𝑊 𝑊 𝑊 𝑡+1 -𝑊 𝑊 𝑊 𝑡), 1-strong convexity ||𝑊 𝑊 𝑊 𝑡 -𝑊 𝑊 𝑊 𝑡+1 || 2 + 𝜖 R(ℓ ℓ ℓ 𝑡) ⊤ (𝑊 𝑊 𝑊 𝑡+1 -𝑊 𝑊 𝑊 𝑡), ||𝑊 𝑊 𝑊 𝑡 -𝑊 𝑊 𝑊 𝑡+1 || 2 + 𝜖 R||ℓ ℓ ℓ 𝑡 || ∞ • ||𝑊 𝑊 𝑊 𝑡+1 -𝑊 𝑊 𝑊 𝑡 ||, =𝛾𝜖 R||ℓ ℓ ℓ 𝑡 || ∞ . 𝑘=1 𝑤 𝑝 𝑘+1 𝑝 𝑘 } ≥ max 𝑡 ≤𝑇 {||ℓ ℓ ℓ 𝑡 || ∞ }. Assume that 𝐾 = Ω(Dissection of the Coupled Hedge Selector Assume at round 𝑡, storage slot 𝑠, item allocation 𝑥 𝑥 𝑥 𝑡 𝑠 with E[𝑥 𝑥 𝑥 𝑡 𝑠] = 𝑝 𝑝 𝑝 𝑡 has a particular allocation 𝑥 𝑥 𝑥 𝑡 𝑠 . We introduce the coupling scheme modification to the hedge selector in Algorithm2.4 given in Algorithm 2.6, which could produce 𝑥 𝑥 𝑥 𝑡+1 𝑠 satisfying conditions in Lemma. 8.2. We first provide expected update cost of an elementary_𝛿movement subroutine call. Lemma 8.3. The elementary_𝛿movement subroutine outputs a random integral cache configuration 𝑋 ′ with E[𝑒 𝑒 𝑒 𝑋 ′] = 𝑝 𝑝 𝑝 -𝛿𝑒 𝑒 𝑒 𝑖 + 𝛿𝑒 𝑒 𝑒 𝑗 . If its input is sampled from a random variable 𝑋 with E[𝑒 𝑒 𝑒 𝑋] = 𝑝 𝑝 𝑝, then:E ||𝑒 𝑒 𝑒 𝑋 -𝑒 𝑒 𝑒 𝑋 ′ || 1,𝑤 𝑤 𝑤 ′ = 𝛿 (𝑤 ′ 𝑠,𝑗 + 𝑤 ′ 𝑠,𝑖). Showing that E [𝑒 𝑒 𝑒 𝑋 ′] = 𝑝 𝑝 𝑝 -𝛿𝑒 𝑒 𝑒 𝑖 + 𝛿𝑒 𝑒 𝑒 𝑗 . [𝑒 𝑒 𝑒 𝑋 ′ |𝑋 = 𝑙] + 𝑝 𝑖 E [𝑒 𝑒 𝑒 𝑋 ′ |𝑋 = 𝑖] 𝑝 𝑙 𝑒 𝑒 𝑒 𝑙 + 𝑝 𝑖 E [𝑒 𝑒 𝑒 𝑋 ′ |𝑋 = 𝑖] , 𝑝 𝑙 𝑒 𝑒 𝑒 𝑙 -𝛿𝑒 𝑒 𝑒 𝑖 + 𝛿𝑒 𝑒 𝑒 𝑗 = 𝑝 𝑝 𝑝 -𝛿𝑒 𝑒 𝑒 𝑖 + 𝛿𝑒 𝑒 𝑒 𝑗 .Second part. The only movement that can be caused by running the subroutine is at line 23, given that 𝑋 = 𝑖 with probability 𝑝 𝑖 , we replace this value by 𝑗 with probability 𝛿 𝑝 𝑖 . Hence, the expected update cost is given by:E[||𝑒 𝑒 𝑒 𝑋 -𝑒 𝑒 𝑒 𝑋 ′ ||1,𝑤 𝑤 𝑤 ′] = If the input to coupled_movement subroutine in Algorithm2.6 is 𝑖 𝑡 𝑠 with E[𝑒 𝑒 𝑒 𝑖 𝑡 𝑠] = 𝑝 𝑝 𝑝 𝑡 , then it outputs an item 𝑖 𝑡+1 𝑠 , where E[𝑒 𝑒 𝑒 𝑖 𝑡 +1 𝑠] = 𝑝 𝑝 𝑝 𝑡+1 , and E 𝑖 𝑡 𝑠 [E 𝑖 𝑡 +1 𝑠 |𝑖 𝑡 𝑠 [||𝑒 𝑒 𝑒 𝑖 𝑡 𝑠 -𝑒 𝑒 𝑒 𝑖 𝑡 +1 𝑠 || 1,𝑤 𝑤 𝑤 ′]] = ||𝑝 𝑝 𝑝 𝑡 -𝑝 𝑝 𝑝 𝑡+1 || 1,𝑤 𝑤 𝑤 ′ . Proof. The distribution over the catalog changes from a fractional state 𝑝 𝑝 𝑝 𝑡 ∈ Δ |C| to 𝑝 𝑝 𝑝 𝑡+1 ∈ Δ |C| . The set 𝐼 = 𝑖 ∈ C : 𝑥 𝑡+1,𝑖 -𝑥 𝑡,𝑖 > 0 in line 1 of Algorithm 2.6 is the set of components that have a fractional increase, then we get: 𝑝 𝑝 𝑝 𝑡+1 = 𝑝 𝑝 𝑝 𝑡 + ∑︁ 𝑚 𝑖 , 𝑖 ∈ C is the absolute fractional change in component 𝑖 of the cache. The fractional update cost is the following: ||𝑝 𝑝 𝑝 𝑡 -𝑝 𝑝 𝑝 𝑡+1 || 1,𝑤 𝑤 𝑤 ′ = ∑︁ 𝛿 𝑖,𝑗] (𝑖,𝑗)∈C 2 is constructed to transport 𝑖∈C\𝐼 𝑚 𝑖 mass from the components in 𝐼 to the components in C \ 𝐼 in line 15. The expected value of the allocation generated by output variable

	9 -Adversarial Instances	Chapter -Conclusion 171
	1 + log(𝑊 𝑡+1 𝑖) = 1 + log(𝑊 𝑡 𝑖) + 𝜖ℓ 𝑡 𝑖 , 𝑊 𝑡+1 𝑖 = 𝑊 𝑡 𝑖 𝑒 𝜖ℓ 𝑡 𝑖 , + : 𝑖∈C 𝑝 𝑖 = 1} [53]. Thus, Φ(𝑥) -Φ(𝑦) ≤ ∇Φ(𝑥) ⊤ (𝑥 -𝑦) -1 then, Proof. R |C| 2 ||𝑥 -𝑦|| 2 1 . Then, we 𝑠 (8.68) and 𝑚 𝑡+1 𝑠 are chosen. 1-strong convexity ≤𝛾 √ 2 √︁ In order to keep the hedge selectors regret sublinear 𝑂 (√ 𝑇) with 𝜖 = Θ(1 √ 𝑇). The update cost for all the slots: 𝑇 -1 ∑︁ 𝑡=1 ∑︁ 𝑠∈S E[UC(𝑥 𝑥 𝑥 𝑡 𝑠 , 𝑥 𝑥 𝑥 𝑡+1 𝑠)] ≤ |S|𝛾𝑅 L√ 𝑇 + |S| ||𝑤 𝑤 𝑤 || ′ ∞ 𝑐 ′ √ 𝑇 . (8.74) □ Lemma 8.4. 𝑗 ∈𝐼 𝑚 𝑗 𝑒 𝑗 -∑︁ 𝑖∈C\𝐼 𝑚 𝑖 𝑒 𝑖 , (8.81) where 𝑗 ∈𝐼 𝑚 𝑗 𝑤 ′ 𝑠,𝑗 + ∑︁ 𝑗 ∈C\𝐼 𝑚 𝑖 𝑤 ′ 𝑠,𝑖 . (8.82) 8.3 (8.75) Proof. A flow [𝑖 𝑡+1 𝑠 is given by: Φ(𝑊 ≤𝛾 √ 2 √︂ -1 E[𝑒 𝑒 𝑒 𝑖 𝑡 +1 𝑠] (8.79) = E[𝑒 𝑒 𝑒 𝑖 𝑡 𝑠] + ∑︁ ∑︁ 𝛿 𝑖,𝑗 (𝑒 𝑒 𝑒 𝑗 -𝑒 𝑒 𝑒 𝑖) (8.83) 2 ≤𝛾 √ 2 √︂ -1 2 Lemma 8.1 𝑖∈C\𝐼 𝑗 ∈𝐼 First part. E [𝑒 𝑒 𝑒 𝑋 ′] = ∑︁ = 𝑝 𝑝 𝑝 𝑡 -∑︁ 𝑚 𝑖 𝑒 𝑒 𝑒 𝑖 + ∑︁ 𝑚 𝑗 𝑒 𝑒 𝑒 𝑗 = 𝑝 𝑝 𝑝 𝑡+1 . (8.84) 𝑝 𝑙 E (8.76) 𝑖∈C\𝐼 𝑗 ∈𝐼 (8.69) which is exactly E.feedback(ℓ ℓ ℓ) ≤𝛾 √ 2 √︂ -𝑙 ∈C\{𝑖} 1 2 Cauchy-Schwarz inequality = ∑︁ Line 26, Algorithm 2.6 (8.77) The expected movements incurred when Algorithm 2.6 is executed is the following:
	□	≤𝛾	√	2 √︂	(𝜖 R||ℓ ℓ ℓ 𝑡 || ∞) 2 2 𝑙 ∈C\{𝑖} = ∑︁ 𝑙 ∈C\{𝑖} 𝑝 𝑙 𝑒 𝑒 𝑒 𝑙 + 𝑝 𝑖 , 𝑎𝑧 -𝑏𝑧 2 ≤ 𝑝 𝑖 -𝛿 𝑝 𝑖 𝑒 𝑒 𝑒 𝑖 + 𝑎 2 4𝑏 𝑝 𝑖 , 𝑎, 𝑏 > 0 𝑒 𝑒 𝑒 𝑗 , 𝑖∈C\𝐼 𝑗 ∈𝐼 𝛿 E[||𝑒 𝑒 𝑒 𝑖 𝑡 𝑠 -𝑒 𝑒 𝑒 𝑖 𝑡 +1 𝑠 || 1,𝑤 𝑤 𝑤 ′] (8.80) = ∑︁ ∑︁ 𝛿 𝑖,𝑗 (𝑤 ′ 𝑠,𝑗 + 𝑤 ′ 𝑠,𝑖) =	Line 23, Algorithm 2.6 𝑗 ∈𝐼 𝑗 ∈C\𝐼 ∑︁ 𝑚 𝑗 𝑤 ′ 𝑠,𝑗 + ∑︁ 𝑚 𝑖 𝑤 ′ 𝑠,𝑖	(8.78)
	For round 𝑡 with color update, the cache update cost is bounded by the most expensive cache update, i.e.,: E[||𝑥 𝑥 𝑥 𝑡+1 𝑠 -𝑥 𝑥 𝑥 𝑡 𝑠 || 1,𝑤 𝑤 𝑤 ′] ≤ ||𝑤 𝑤 𝑤 ′ || ∞ . (8.71) = ∑︁ 𝑙 ∈C (8.79) 8.2 Lemma 8.2. Consider a hedge selector, shown in Algorithm 2.4, and a joint distribution of (𝑥 𝑥 𝑥 𝑡 𝑠 , 𝑥 𝑥 𝑥 𝑡+1 The total update cost experienced for the hedge selector associated with slot 𝑠: 𝑠) that satisfies for all 𝑡 ∈ [𝑇 -1]: 1. E[𝑥 𝑥 𝑥 𝑡 𝑠] = 𝑝 𝑝 𝑝 𝑡 and E[𝑥 𝑥 𝑥 𝑡+1 𝑠] = 𝑝 𝑝 𝑝 𝑡+1 . 2. E[||𝑥 𝑥 𝑥 𝑡+1 𝑇 -1 ∑︁ 𝑡=1 E[UC(𝑥 𝑥 𝑥 𝑡 𝑠 , 𝑥 𝑥 𝑥 𝑡+1 𝑠)] ≤ 𝑇 -1 ∑︁ 𝑡=1 𝛾 𝜖 R||ℓ ℓ ℓ 𝑡 || ∞ 𝜌 + ∑︁ 𝑡=𝐾,2𝐾,... ||𝑤 𝑤 𝑤 ′ || ∞ ≤ 𝛾𝜖 R L𝑇 + 𝑇 ||𝑤 ′ || ∞ , (8.72) 𝐾 where L = max (𝑖,𝑝)∈R { |𝑝 |-1 √ 𝑝 𝑖 𝛿 (𝑤 ′ 𝑠,𝑗 + 𝑤 ′ 𝑠,𝑖) = 𝛿 (𝑤 ′ 𝑠,𝑗 + 𝑤 ′ 𝑠,𝑖). (8.80) 𝑝 𝑖 𝑇), then ∃𝑐 ′ > 0, 𝑠 -√ 𝑇), 𝐾 = Ω(𝑇), gives a 𝑂 (R L√ 𝑇) expected update cost. 𝑇 -1 ∑︁ 𝑡=1 E[UC(𝑥 𝑥 𝑥 𝑡 𝑠 , 𝑥 𝑥 𝑥 𝑡+1 𝑠)] ≤ 𝛾𝜖𝑅 L𝑇 + ||𝑤 𝑤 𝑤 || ′ ∞ □ √ 𝑇 . (8.73) We now introduce lemma 8.4 providing the expected update cost of a coupled_movement sub-𝑐 ′ routine call.

 to show that {𝑓 𝑡 } 𝑡 ∈N is a quasi-martingale and apply convergence results for quasi-martingales[START_REF] Bottou | On-line Learning and Stochastic Approximations[END_REF] Section 4.4] to conclude that 𝑓 𝑡 converges almost surely to a random variable 𝑓 ∞ ≥ 0 with E[𝑓 ∞] < ∞. We want to conclude that 𝑓 ∞ = 0 with probability one, and then 𝑦 𝑦 𝑦 𝑡 is bounded almost surely.The rest of the proof differs from[START_REF] Bottou | On-line Learning and Stochastic Approximations[END_REF] Section 5.2]. Moving around the terms in (12.98) and summing over 𝑡, we obtain

	∞	𝑘		∞		
	∑︁	∑︁	2𝜂 𝑡 𝑦 (1) 𝑡 • 𝑔 (1) 𝑡 𝜙 ′ (∥𝑦 ∥ 2 2) ≤ 𝑓 1 -𝑓 ∞ +	∑︁	𝜂 2 𝑡 (𝐴 + 𝐵𝑓 𝑡) < +∞ a.s.	(12.101)
	𝑡=1	𝑖=1		𝑡=1		

 1 and 𝑐 2 such that |𝜕 C(𝑦 𝑦 𝑦)/𝜕𝑦 𝑖 | ≤ 𝑐 1 and |𝜕 2 C(𝑦 𝑦 𝑦)/𝜕𝑦 𝑖 𝜕𝑦 𝑗 | ≤ 𝑐 2 for each 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑘𝑝}. 𝑦 𝑦 𝑦 𝑡+1 = 𝑦 𝑦 𝑦 𝑡 -𝜂 𝑡 ∇ c (𝑟 𝑡 ,𝑦 𝑦 𝑦 𝑡). Using Taylor formula we can arrive toC(𝑦 𝑦 𝑦 𝑡+1) -C(𝑦 𝑦 𝑦 𝑡) = ≤ -𝜂 𝑡 ∇ 𝑦 𝑦 𝑦 C(𝑦 𝑦 𝑦 𝑡) • ∇ 𝑦 𝑦 𝑦 c (𝑟 𝑡 ,𝑦 𝑦 𝑦 𝑡) + 𝜂 2 ≤ -𝜂 𝑡 ∇ 𝑦 𝑦 𝑦 C(𝑦 𝑦 𝑦 𝑡) • ∇ 𝑦 𝑦 𝑦 c (𝑟 𝑡 ,𝑦 𝑦 𝑦 𝑡) + 𝜂 2 Denoting the constant 𝑐 2 𝑐 21 𝑘𝑝/2 by b and summing for 𝑡 = 1, . . . ,𝑇 , we obtain𝑦 𝑦 𝑦 C(𝑦 𝑦 𝑦 𝑡) • ∇ 𝑦 𝑦 𝑦 c (𝑟 𝑡 ,𝑦 𝑦 𝑦 𝑡) ≤ C(𝑦 𝑦 𝑦 1) -C(𝑦 𝑦 𝑦 𝑇) + ∥∇ 𝑦 𝑦 𝑦 C(𝑦 𝑦 𝑦 𝑡)∥ 2 2 ≤ E C(𝑦 𝑦 𝑦 1) + 𝑦 𝑦 𝑦 C(𝑦 𝑦 𝑦 𝑡)∥ 2 = 0 a.s.Consider now that C(•) is continuously differentiable up to the third order and then its third order partial derivatives are bounded over B 2 (𝑅 ′), i.e.,|𝜕 3 C(𝑦 𝑦 𝑦 𝑡)/𝜕𝑦 𝑖 𝜕𝑦 𝑗 𝜕𝑦 𝑙 | ≤ 𝑐 3 . Let 𝑎(𝑦 𝑦 𝑦) = ∥∇ 𝑦 𝑦 𝑦 C(𝑦 𝑦 𝑦)∥ 22 . This is continuously differentiable up to the second order and we can then use the Taylor formula as above, considering that 𝑎(𝑦 𝑦 𝑦)/𝜕𝑦 𝑦 𝑦 𝑖 𝜕𝑦 𝑦 𝑦 𝑙 | ≤ 𝑐 ′ 2 = 2𝑘𝑝 (𝑐 2 2 + 𝑐 1 𝑐 3). We obtain:If we now compute the conditional expectation given the history up to 𝑡, 𝐻 𝑡 = (𝑦 𝑦 𝑦 1 ,𝑦 𝑦 𝑦 2 , . . . ,𝑦 𝑦 𝑦 𝑡), we obtainE 𝑎(𝑦 𝑦 𝑦 𝑡+1) -𝑎(𝑦 𝑦 𝑦 𝑡)|𝐻 𝑡 ≤ -2𝜂 𝑡 𝑘𝑝𝜂 𝑡 ∥∇ 𝑦 𝑦 𝑦 C(𝑦 𝑦 𝑦 𝑡)∥ 2 2 + 𝜂 2Because of (13.109) and 𝑡 𝜂 2 𝑡 < ∞, 𝑡 E 𝑎(𝑦 𝑦 𝑦 𝑡+1) -𝑎(𝑦 𝑦 𝑦 𝑡)|𝐻 𝑡 < +∞ almost surely and a convergence result for quasi-martingales [138, Section 4.4] implies that 𝑎(𝑦 𝑦 𝑦 𝑡) converges almost surely to a random variable 𝑎 ∞ with finite expected value. As 𝑎 ∞ > 0 if and only if ∥∇ 𝑦 𝑦 𝑦 C(𝑦 𝑦 𝑦 𝑡)∥ 2 2 > 0 for large 𝑡, it is possible to reason as at the end of the proof of Lemma 3.2.1 and use (13.109) to conclude that 𝑎 ∞ = 0 almost surely. It follows that lim Let us fix the threshold 𝑐 ∈ N ∪ {0}, 𝑟 ∈ R and 𝑖 ∈ U. The following equality holds

	14 -Equivalent Expression of the Cost Function	Chapter -Conclusion 179
	Consider 𝑘𝑝 ∑︁ 𝑖=1 Then |𝜕 2 𝑎(𝑦 𝑦 𝑦 𝑡+1) -𝑎(𝑦 𝑦 𝑦 𝑡) ≤ -2𝜂 𝑡 𝜕 C(𝑦 𝑦 𝑦 𝑡) 𝜕𝑦 𝑦 𝑦 𝑖 (𝑦 𝑦 𝑦 𝑡+1,𝑖 -𝑦 𝑦 𝑦 𝑡,𝑖) + 𝑘𝑝 ∑︁ 𝑖,𝑗=1 𝜕 C(𝑦 𝑦 𝑦) 𝑘𝑝 ∑︁ 𝑖,𝑗=1 𝜕 2 C(𝑦 𝑦 𝑦 𝑡 + 𝑠𝑦 𝑦 𝑦 𝑡+1) 𝜕𝑦 𝑦 𝑦 𝑖 𝜕𝑦 𝑦 𝑦 𝑗 𝜕𝑦 𝑗 𝜕 2 C(𝑦 𝑦 𝑦) 𝜕𝑦 𝑖 𝜕𝑦 𝑗 𝜕 c (𝑟 𝑡 ,𝑦 𝑦 𝑦 𝑡) (𝑦 𝑦 𝑦 𝑡+1,𝑖 -𝑦 𝑦 𝑦 𝑡,𝑖)(𝑦 𝑦 𝑦 𝑡+1,𝑗 -𝑦 𝑦 𝑦 𝑡,𝑗) 2 𝜕𝑦 𝑖 + 𝜂 2 𝑡 𝑐 ′ 2 𝑐 2 1 (𝑘𝑝) 2 2 .	(13.103) (13.112)
							𝑘𝑝 ∑︁ 𝑖,𝑗=1	𝑡 𝑡 𝜕 C(𝑦 𝑦 𝑦) 𝑐 2 𝑘𝑝 2 𝑐 2 𝑐 2 1 (𝑘𝑝) 2 ∥∇𝑐 (𝑟 𝑡 ,𝑦 𝑦 𝑦 𝑡)∥ 2 2 2 . 𝜕𝑦 𝑗 𝜕 2 C(𝑦 𝑦 𝑦) 𝜕𝑦 𝑖 𝜕𝑦 𝑗 𝜕 C(𝑦 𝑦 𝑦 𝑡) 𝜕𝑦 𝑖	+ 𝜂 2 𝑡	𝑐 ′ 2 𝑐 2 1 (𝑘𝑝) 2 2	(13.104) (13.105) (13.113)
	where 𝑠 ∈ [0, 1]. 𝑇 ∑︁	∑︁ 𝜂 𝑡 ∇ 𝑇 ≤ 2𝑐 2 𝑡 𝑐 ′ 2 𝑐 2 1 (𝑘𝑝) 2 2 .	𝜂 2 𝑡 𝑏	(13.106) (13.114)
	𝑡=1										𝑡=1
											𝑇
										≤ C(𝑦 𝑦 𝑦 1) +	∑︁	𝜂 2 𝑡 𝑏	(13.107)
											𝑡=1
	𝑡→∞ Finally, taking the expected value, and letting 𝑇 diverges, we obtain ∇ C(𝑦 𝑦 𝑦 𝑡) = 0 a.s.
	∞ ∑︁ and this concludes the proof. 𝜂 𝑡 E ∞ ∑︁	𝜂 2 𝑡 𝑏 < +∞.	(13.108)
	𝑡=1									𝑡=1
	The series on the LHS is then summable. It follows that 14 Equivalent Expression of the Cost Function
	Lemma 14.1. min 𝑐,	𝑖 ∑︁	𝑥 𝜋 𝑟 𝑗	∞ ∑︁ 𝑡=1 -min 𝑐, 𝜂 𝑡 ∥∇ 𝑦 𝑦 𝑦 C(𝑦 𝑦 𝑦 𝑡)∥ 2 2 < +∞ a.s. 𝑖-1 ∑︁ 𝑥 𝜋 𝑟 𝑗 = 𝑥 𝜋 𝑟 𝑖 1	𝑖-1 ∑︁	𝑥 𝜋 𝑟 𝑗 < 𝑐 .	(13.109) (14.115)
	and then we can complete the proof of the first thesis: 𝑗=1 𝑗=1	𝑗=1
						lim inf			
	𝜕𝑎(𝑦 𝑦 𝑦) 𝜕𝑦 𝑦 𝑦 𝑖	= 2	𝑘𝑝 ∑︁ 𝑗=1	𝜕 C(𝑦 𝑦 𝑦) 𝜕𝑦 𝑦 𝑦 𝑗	𝜕 2 C(𝑦 𝑦 𝑦) 𝜕𝑦 𝑦 𝑦 𝑖 𝜕𝑦 𝑦 𝑦 𝑗	,	(13.110)
	𝜕 2 𝑎(𝑦 𝑦 𝑦) 𝜕𝑦 𝑦 𝑦 𝑖 𝜕𝑦 𝑦 𝑦 𝑙	= 2	𝑘𝑝 ∑︁ 𝑗=1	𝜕 2 C(𝑦 𝑦 𝑦) 𝜕𝑦 𝑦 𝑦 𝑗 𝜕𝑦 𝑦 𝑦 𝑙	𝜕 2 C(𝑦 𝑦 𝑦) 𝜕𝑦 𝑦 𝑦 𝑖 𝜕𝑦 𝑦 𝑦 𝑗	+	𝜕 C(𝑦 𝑦 𝑦) 𝜕𝑦 𝑦 𝑦 𝑗	𝜕 3 C(𝑦 𝑦 𝑦) 𝜕𝑦 𝑦 𝑦 𝑖 𝜕𝑦 𝑦 𝑦 𝑗 𝜕𝑦 𝑦 𝑦 𝑙	.	(13.111)

𝑡→∞

∥∇

 𝑐 (𝑟, 𝜋 𝑟 𝑖) and 𝐾 𝑟 = min{𝑖 ∈ U : 𝜎 𝑟 𝑖 = 𝑘 } for every (𝑟, 𝑖) ∈ R × U. Let c (𝑟, 𝑜), ∀(𝑟, 𝑜) ∈ R × U be a cost defined as c (𝑟, 𝜋 𝑟 𝑖) = 𝑐 (𝑟, 𝜋 𝑟 𝑖), ∀𝑖 ∈ [𝐾 𝑟] and 0 otherwise, and we also define α𝑟 𝑖 as α𝑟 𝑖 ≜ c (𝑟, 𝜋 𝑟 𝑖+1) -c (𝑟, 𝜋 𝑟 𝑖). When 𝑖 = 1 and for any 𝑟 ∈ R, we have c (𝑟, 𝜋 𝑟 𝑖) min 𝑘, For any request 𝑟 ∈ R the caching gain function 𝐺 (𝑟, 𝑥 𝑥 𝑥) in Eq. (3.10) has the following expression 𝐺 (𝑟, 𝑥 𝑥 𝑥) = From Lemma 14.2, the cost function 𝐶 (𝑟, 𝑥 𝑥 𝑥) can be equivalently expressed as:𝐶 (𝑟, 𝑥 𝑥 𝑥) = -Without caching the system incurs the cost 𝑘𝑐 𝑓 + 𝑘 𝑜∈𝑘NN(𝑟) 𝑐 (𝑟, 𝑜) when 𝑟 ∈ R is requested. This is the retrieval cost of fetching 𝑘 objects and the sum of the approximation costs of the 𝑘 closest objects in N . From the definition of 𝜋 𝑟 , this cost can equivalently be expressed as 𝑙 ∈ [𝑖] and 𝜋 𝑟 𝑙 ∈ U \ N , then the object 𝜋 𝑟 𝑙 -𝑁 has a strictly smaller cost and it appears earlier in the permutation 𝜋 𝑟 , that is there exists 𝑗 < 𝑙 such that 𝜋 𝑟 𝑗 = 𝜋 𝑟 𝑙 -𝑁 . In this case, the variable 𝑦 (𝜋 𝑟 𝑙 -𝑁) cancels out 𝑦 𝜋 𝑟 𝑗 in the RHS of(15.136). Then, we have ∑︁

	14 -Equivalent Expression of the Cost Function 16 -Bounds on the Auxiliary Function	Chapter -Conclusion 181 183
	Combining Eqs. (14.116) and (14.117) yields Eq. (14.115). Lemma 14.2. The cost function 𝐶 (𝑟, 𝑥 𝑥 𝑥) given by the expression in Eq. (3.9), can be equivalently ex-□ pressed as: 𝐶 (𝑟, 𝑥 𝑥 𝑥) = -𝐾 𝑟 -1 ∑︁ 𝑖=1 𝛼 𝑟 𝑖 min 𝑘 -𝜎 𝑟 𝑖 , 𝑖 ∑︁ 𝑗=1 𝑥 𝜋 𝑟 𝑗 -𝜎 𝑟 𝑖 + 𝐾 𝑟 ∑︁ 𝑖=1 𝑐 (𝑟, 𝜋 𝑟 𝑖)1 𝜋 𝑟 𝑖 ∈ U \ N , (14.118) where 𝜎 𝑟 𝑖 = 𝑖 𝑗=1 1 𝜋 𝑟 𝑗 ∈ U \ N , 𝛼 𝑟 𝑖 = 𝑐 (𝑟, 𝜋 𝑟 𝐶 (𝑟, 𝑥 𝑥 𝑥) as follows: 𝐶 (𝑟, 𝑥 𝑥 𝑥) = 𝐾 𝑟 ∑︁ 𝑖=1 𝑐 (𝑟, 𝜋 𝑟 𝑖)𝑥 𝜋 𝑟 𝑖 1 𝑖 -1 𝑗=1 𝑥 𝜋 𝑟 𝑗 <𝑘 = 𝐾 𝑟 ∑︁ 𝑖=1 c (𝑟, 𝜋 𝑟 𝑖)𝑥 𝜋 𝑟 𝑖 1 𝑖-1 ∑︁ 𝑗=1 𝑥 𝜋 𝑟 𝑗 < 𝑘 (14.122) (14.115) = 𝐾 𝑟 ∑︁ 𝑖=1 c (𝑟, 𝜋 𝑟 𝑖) min 𝑘, 𝑖 ∑︁ 𝑗=1 𝑥 𝜋 𝑟 𝑗 -min 𝑘, 𝑖-1 ∑︁ 𝑗=1 𝑥 𝜋 𝑟 𝑗 𝐾 𝑟 𝑖=1 𝑐 (𝑟, 𝜋 𝑟 𝑖)1 𝜋 𝑟 𝑖 ∈ U \ N . Therefore, we recover the gain expression in Eq. (14.3) as the cost reduction due to having a similarity cache. Thus, we have 𝑦 𝜋 𝑟 𝑗 -∑︁ 𝑦 (𝜋 𝑟 𝑙 -𝑁) = ∑︁ 𝑦 𝜋 𝑟 𝑗 . (15.137) Remark that if 𝑗 ∈[𝑖] 𝑙 ∈[𝑖] 𝑗 ∈[𝑖] (14.123) (14.119) = 𝐾 𝑟 ∑︁ 𝑖=1 c (𝑟, 𝜋 𝑟 𝑖) min 𝑘, 𝑖 ∑︁ 𝑗=1 𝑥 𝜋 𝑟 𝑗 -𝐺 (𝑟, 𝑥 𝑥 𝑥) = 𝑘𝑐 𝑓 + 𝑘 ∑︁ 𝑐 (𝑟, 𝑜) -𝐶 (𝑟, 𝑥 𝑥 𝑥) 𝜋 𝑟 𝑗 ∈N 𝜋 𝑟 𝑙 ∈U\N 𝜋 𝑟 𝑗 ∈N (14.131) 𝜋 𝑟 𝑗 +𝑁 ∉{𝜋 𝑟 𝑙 :(𝑙 ∈[𝑖])∧(𝜋 𝑟 𝑙 ∈U\N)} 𝐾 𝑟 -1 ∑︁ 𝑖=1 c (𝑟, 𝜋 𝑟 𝑖+1) min 𝑘, 𝑖 𝑜∈𝑘NN(𝑟) ∑︁ 𝑗=1 𝑥 𝜋 𝑟 𝑗 (14.124) = 𝐾 𝑟 ∑︁ c (𝑟, 𝜋 𝑟 𝑖) min 𝑘, 𝑖 ∑︁ 𝑥 𝜋 𝑟 𝑗 -𝐾 𝑟 ∑︁ c (𝑟, 𝜋 𝑟 𝑖+1) min 𝑘, 𝑖 ∑︁ 𝑥 𝜋 𝑟 𝑗 (14.125) = 𝐾 𝑟 ∑︁ 𝑖=1 𝑐 (𝑟, 𝜋 𝑟 𝑖)1 𝜋 𝑟 𝑖 ∈ U \ N -𝐾 𝑟 ∑︁ 𝑖=1 𝑐 (𝑟, 𝜋 𝑟 𝑖)1 𝜋 𝑟 𝑖 ∈ U \ N + 𝐾 𝑟 -1 ∑︁ 𝑖=1 𝛼 𝑟 𝑖 min 𝑘 -𝜎 𝑟 𝑖 , 𝑖 Note that if 𝜋 𝑟 𝑙 ∉ U \ N (i.e., 𝜋 𝑟 𝑙 ∈ N), then 𝜋 𝑟 𝑗 + 𝑁 ≠ 𝜋 𝑟 𝑙 . Then the sets ∑︁ 𝑗=1 𝑥 𝜋 𝑟 𝑗 -𝜎 𝑟 𝑖 (14.132) 𝜋 𝑟 𝑙 : (𝑙 ∈ [𝑖]) ∧ 𝜋 𝑟 𝑙 ∈ U \ N and 𝜋 𝑟 𝑙 : 𝑙 ∈ [𝑖] coincide. Therefore, the above equality can be simplified as follows 𝑖+1) -Proof. 𝑖=1 𝑗=1 𝑖=1 𝑗=1 = -𝐾 𝑟 ∑︁ 𝑖=1 α𝑟 𝑖 min 𝑘, 𝑖 ∑︁ 𝑗=1 𝑥 𝜋 𝑟 𝑗 = -𝐾 𝑟 ∑︁ 𝑖=1 α𝑟 𝑖 min 𝑘 -𝜎 𝑟 𝑖 , 𝑖 ∑︁ 𝑗=1 𝑥 𝜋 𝑟 𝑗 -𝜎 𝑟 𝑖 -𝐾 𝑟 ∑︁ 𝑖=1 α𝑟 𝑖 𝜎 𝑟 𝑖 (14.126) = 𝐾 𝑟 -1 ∑︁ 𝑖=1 𝛼 𝑟 𝑖 min 𝑘 -𝜎 𝑟 𝑖 , 𝑖 ∑︁ 𝜋 𝑟 𝑗 ∈N 𝜋 𝑟 𝑙 ∈U\N 𝜋 𝑟 𝑗 ∈N 𝑗=1 𝑥 𝜋 𝑟 𝑗 -𝜎 𝑟 𝑖 . 𝑗 ∈[𝑖] 𝑙 ∈[𝑖] 𝑗 ∈[𝑖] 𝑖 𝑗 ∈𝐼 𝑟 (14.133) ∑︁ 𝑦 𝜋 𝑟 𝑗 -∑︁ 𝑦 (𝜋 𝑟 𝑙 -𝑁) = ∑︁ 𝑦 𝜋 𝑟 𝑗 = ∑︁ 𝑦 𝜋 𝑟 𝑗 . (15.138)
	□	(14.121) = -This concludes the proof. 𝐾 𝑟 ∑︁ 𝑖=1 α𝑟 𝑖 min 𝑘 -𝜎 𝑟 𝑖 , Eq. (15.136) and Eq. (15.138) are combined to get 𝑖 ∑︁ 𝑗=1 𝑥 𝜋 𝑟 𝑗 -𝜎 𝑟 𝑖 + 𝜋 𝑟 𝑗 +𝑁 ∉{𝜋 𝑟 𝐾 𝑟 𝑙 :𝑙 ∈[𝑖]} ∑︁ 𝑖=1 𝑐 (𝑟, 𝜋 𝑟 𝑖)1 {𝜋 𝑟 𝑖 ∈U\N }	(14.127)
	𝑖-1 ∑︁ 𝑗=1 𝐾 𝑟 ∑︁ 𝑖=1 𝑐 (𝑟, 𝜋 𝑟 𝑥 𝜋 𝑟 𝑗 𝑖)1 {𝜋 𝑟 = 0. 𝑖 ∈U\N } 15 Supporting Lemmas for Proof of Proposition 17.1 = -𝐾 𝑟 -1 ∑︁ 𝑖=1 𝛼 𝑟 𝑖 min 𝑘 -𝜎 𝑟 𝑖 , 𝑖 ∑︁ 𝑗=1 𝑥 𝜋 𝑟 𝑗 -𝜎 𝑟 𝑖 + (since 𝑘 -𝜎 𝑟 𝑗 ∈[𝑖] 𝑖 𝑗 ∈𝐼 𝑟 𝐾 𝑟 = 0). (14.119) ∑︁ 𝑦 𝜋 𝑟 𝑗 -𝜎 𝑟 𝑖 = ∑︁ 𝑦 𝜋 𝑟 𝑗 ,
	Note that 𝜎 𝑟 1 = 0 by definition, since 𝜋 𝑟 1 ∈ N for any 𝑟 ∈ R. We have 𝐾 𝑟 𝐾 𝑟 𝐾 𝑟 𝐾 𝑟 𝐾 𝑟 Lemma 15.1. For every request 𝑟 ∈ R, index 𝑖 ∈ U, and fractional cache state 𝑦 𝑦 𝑦 ∈ conv(X) the index (14.128) This gives the cost function expression in Eq. (14.118). set defined as
	□	-	∑︁ 𝑖=1	α𝑟 𝑖 𝜎 𝑟 𝑖 =	∑︁ 𝑖=1	c (𝑟, 𝜋 𝑟 𝑖)𝜎 𝑟 𝑖 -𝐼 𝑟 𝑖 ≜ 𝑗 ∈ [𝑖] : 𝜋 𝑟 ∑︁ 𝑖=1 c (𝑟, 𝜋 𝑟 𝑖+1)𝜎 𝑟 𝑖 = 𝑗 ∈ N ∧ 𝜋 𝑟 ∑︁ 𝑖=1 c (𝑟, 𝜋 𝑟 𝑖)𝜎 𝑟 𝑖 -𝑗 + 𝑁 ∉ {𝜋 𝑟 𝑙 : 𝑙 ∈ [𝑖]} ∑︁ 𝑖=2 c (𝑟, 𝜋 𝑟 𝑖)𝜎 𝑟 𝑖-1	(14.120) (15.134)
	𝑖-1 𝑗=1 𝑥 𝜋 𝑟 𝑗 ≥ 𝑐 this implies that 𝑖 𝑗=1 𝑥 𝜋 𝑟 𝑗 = 𝑥 𝜋 𝑟 𝑗 + 𝑖-1 𝑗=1 𝑥 𝜋 𝑟 𝑗 ≥ 𝑐 + 𝑥 𝜋 𝑟 𝑖 ≥ 𝑐 since 𝑥 𝜋 𝑟 𝑖 ≥ 0. 𝐾 𝑟 ∑︁ 𝑖=1 c (𝑟, 𝜋 𝑟 𝑖)𝜎 𝑟 𝑖 -𝐾 𝑟 ∑︁ 𝑖=1 c (𝑟, 𝜋 𝑟 𝑖)𝜎 𝑟 𝑖-1 = 𝐾 𝑟 ∑︁ 𝑖=1 c (𝑟, 𝜋 𝑟 𝑖)1 {𝜋 𝑟 𝑖 ∈U\N } = 𝐾 𝑟 ∑︁ 𝑖=1 𝑐 (𝑟, 𝜋 𝑟 𝑖)1 𝜋 𝑟 𝑖 ∈ U \ N . (14.121) satisfies the following = Lemma 14.3. 𝐾 𝑟 -1 ∑︁ 𝛼 𝑟 𝑖 min 𝑘 -𝜎 𝑟 𝑖 , 𝑖 𝑥 𝜋 𝑟 𝑗 -𝜎 𝑟 𝑖 , (14.129) 𝑗 ∈[𝑖] 𝑖 𝑗 ∈𝐼 𝑟 ∑︁ ∑︁ 𝑦 𝜋 𝑟 𝑗 -𝜎 𝑟 𝑖 = ∑︁ 𝑦 𝜋 𝑟 𝑗 , (15.135)
	Therefore, 𝑖-1 𝑗=1 𝑥 𝜋 𝑟 𝑗 ≥ 𝑐 implies that min 𝑐, 𝑖-1 𝑗=1 𝑥 𝜋 𝑟 𝑗 min 𝑐, 𝑖 ∑︁ 𝑥 𝜋 𝑟 𝑗 -min 𝑐, Observe that the indicator function 1 𝑖=1 𝑗=1 𝑖-1 = min 𝑐, 𝑖 𝑗=1 𝑥 𝜋 𝑟 𝑗 is 0 for every 𝑖 ≥ 𝐾 𝑟 +1; therefore, the summation = 𝑐, and we have: 𝑖 -1 𝑗=1 𝑥 𝜋 𝑟 𝑗 <𝑘 where 𝜎 𝑟 𝑖 = 𝑖 𝑗=1 1 𝜋 𝑟 𝑗 ∈ U \ N (defined in Eq. (3.12)). in Eq. (3.9) can be limited to 𝐾 𝑟 instead of 2𝑁 . Using Lemma 14.1 we expand the expression of where 𝜎 𝑟 𝑖 = 𝑖 𝑗=1 1 𝜋 𝑟 𝑗 ∈ U \ N , 𝛼 𝑟 𝑖 = 𝑐 (𝑟, 𝜋 𝑟 𝑖+1) -𝑐 (𝑟, 𝜋 𝑟 𝑖) and 𝐾 𝑟 = min{𝑖 ∈ U : 𝜎 𝑟 𝑖 = 𝑘 } for every ∑︁ 𝑥 𝜋 𝑟 𝑗 = 0. (14.116) (𝑟, 𝑖) ∈ R × U. Proof.
						𝑗=1	𝑗=1
	(ii) When 𝑖-1 𝑗=1 𝑥 𝜋 𝑟 𝑗 < 𝑐, we have 𝑖 𝑗=1 𝑥 𝜋 𝑟 𝑗 = 𝑥 𝜋 𝑟 𝑗 + 𝑖-1 𝑗=1 𝑥 𝜋 𝑟 𝑗 < 𝑐 + 𝑥 𝜋 𝑟 𝑖 ≤ 𝑐 since 𝑥 𝜋 𝑟 Proof. 𝑖 ≤ 1, this implies that min 𝑐, 𝑖 𝑗=1 𝑥 𝜋 𝑟 𝑗 = 𝑖 𝑗=1 𝑥 𝜋 𝑟 𝑗 and min 𝑐, 𝑖-1 𝑗=1 𝑥 𝜋 𝑟 𝑗 = 𝑖-1 𝑗=1 𝑥 𝜋 𝑟 ∑︁ 𝑦 𝜋 𝑟 𝑗 -𝜎 𝑟 𝑖 (3.12) = ∑︁ 𝑦 𝜋 𝑟 𝑗 -∑︁ 1 {𝜋 𝑟 𝑗 ∈U\N } = ∑︁ 𝑦 𝜋 𝑟 𝑗 + ∑︁ 𝑦 𝜋 𝑟 𝑗 -1 = ∑︁ 𝑦 𝜋 𝑟 𝑗 -∑︁ 𝑦 (𝜋 𝑟 𝑙 -𝑁) 𝑗 , and we have min 𝑐, 𝑖 ∑︁ 𝑥 𝜋 𝑟 𝑗 -min 𝑐, 𝑖-1 ∑︁ 𝑥 𝜋 𝑟 𝑗 = 𝑥 𝜋 𝑟 𝑖=1 𝑗=1 𝑖=1 𝑖 . (14.117) 𝐾 𝑟 -1 ∑︁ 𝛼 𝑟 𝑖 min 𝑘 -𝜎 𝑟 𝑖 , 𝑖 ∑︁ 𝑥 𝜋 𝑟 𝑗 -𝜎 𝑟 𝑖 + 𝑗 ∈[𝑖] 𝑗 ∈[𝑖] 𝑗 ∈[𝑖] 𝑗 ∈[𝑖] 𝑗 ∈[𝑖] 𝑗 ∈[𝑖] 𝑙 ∈[𝑖] 𝐾 𝑟 𝜋 𝑟 𝑗 ∈N 𝜋 𝑟 𝑗 ∈U\N 𝜋 𝑟 𝑗 ∈N 𝜋 𝑟 𝑙 ∈U\N ∑︁ 𝑐 (𝑟, 𝜋 𝑟 𝑖)1 𝜋 𝑟 𝑖 ∈ U \ N . (14.130) (15.136)
						𝑗=1	𝑗=1

 𝑖, 𝑗 ∈ N , until all the variables are rounded in O (𝑁) steps. Note that only 𝑦 𝑖 , ∀𝑖 ∈ N is rounded, since 𝑥 𝑖 ∈ U \ N is determined directly from 𝑥 𝑖-𝑁 . The random output of DepRound[START_REF] Byrka | An Improved Approximation for k-median, and Positive Correlation in Budgeted Optimization[END_REF] subroutine 𝑥 𝑥 𝑥 ∈ X given the input 𝑦 𝑦 𝑦 ∈ conv(X) has the following properties:P1 E[𝑥 𝑖] = 𝑦 𝑖 , ∀𝑖 ∈ N . 𝑖∈𝑆 (1 -𝑥 𝑖)] ≤ 𝑖∈𝑆 (1 -𝑦 𝑖). The random output 𝑥 𝑥 𝑥 ∈ X of DepRound given the fractional cache state input 𝑦 𝑦 𝑦 ∈ conv(X), or the random output 𝑥 𝑥 𝑥 ∈ {0, 1} U of CoupledRounding given an integral cache state 𝑥 𝑥 𝑥 ′ , and fractional cache states 𝑦 𝑦 𝑦,𝑦 𝑦 𝑦 ′ ∈ conv(X) with E[𝑥 𝑥 𝑥 ′] = 𝑦 𝑦 𝑦 ′ , satisfy the following for any request 𝑟 ∈ R

			Chapter -Conclusion
	P2 𝑖∈N 𝑥 𝑖 = 𝑘.
	P3 ∀𝑆 ⊂ N, E [Lemma 16.1. E [Λ(𝑟, 𝑥 𝑥 𝑥)] ≥ Λ(𝑟,𝑦 𝑦 𝑦).	(16.141)
	Proof.	
	E [Λ(𝑟, 𝑥 𝑥 𝑥)]	(16.140)

 The inequalities in Eq.(17.146) and Eq.(17.149) are obtained through [12, Lemma E.7], and [12, Lemma E.8], respectively, by setting 𝑐 = 𝑘 -𝜎 𝑟 𝑖 , and 𝑞 𝑖 = 1 for every 𝑖 ∈ [𝐾 𝑟 -1]. For any time slot 𝑡 ∈ [𝑇], the vectors 𝑔 𝑔 𝑔 𝑡 given by Eq. (18.151) are subgradients of the caching gain function 𝐺 (𝑟,𝑦 𝑦 𝑦) for request 𝑟 𝑡 ∈ R at fractional cache state 𝑦 𝑦 𝑦 𝑡 ∈ conv(X). 𝑘 ∧ 𝑙 + 𝑁 ∉ {𝜋 𝑟 𝑡 𝑣 : 𝑣 ∈ [𝑖]} , 𝑙 𝑟 𝑡 * ≜ (𝜋 𝑟 𝑡) -1 (𝑙), ∀𝑙 ∈ N , and (𝜋 𝑟 𝑡) -1 is the inverse permutation of 𝜋 𝑟 𝑡 .

	18 -Subgradients Computation						185
	and								
			𝐺 (𝑟,𝑦 𝑦 𝑦) =	𝐾 𝑟 -1 ∑︁	𝛼 𝑟 𝑖 min	    𝑘 -𝜎 𝑟 𝑖 ,	∑︁	𝑦 𝜋 𝑟 𝑗	   	(17.148)
			𝑖=1 ≤ 1 -	1 𝑒	   -1 𝐾 𝑟 -1 ∑︁ 𝑖=1	𝑗 ∈𝐼 𝑟 𝑖 𝑖 (𝑘 -𝜎 𝑟 𝛼 𝑟 𝑖) 1 -  	𝑖 𝑗 ∈𝐼 𝑟	1 -	𝑦 𝜋 𝑟 𝑗 𝑘 -𝜎 𝑟 𝑖	(17.149)
			= Λ(𝑟,𝑦 𝑦 𝑦).			(17.150)
	□								
	18 Subgradients Computation
	Theorem 18.1. 𝑔 𝑔 𝑔 𝑡 = 𝑐 𝑟 𝑡 , 𝜋 𝑟 𝑡 𝑖 𝑟 𝑡 * +1 -𝑐 (𝑟 𝑡 , 𝑙) 1 𝑙 𝑟 𝑡 * ≤ 𝑖 𝑟 𝑡 *	𝑙 ∈N	,	(18.151)
	where 𝑖 𝑟 𝑡 𝑖 𝑗=1 𝑦 𝑡,𝜋 𝑟 𝑗 ≤
										𝜎 𝑟 𝑖 ,	𝑖 ∑︁	𝑦 𝜋 𝑟 𝑗	   	(17.145)
	≥	𝐾 𝑟 -1 ∑︁ 𝑖=1	𝛼 𝑟 𝑖 (𝑘 -𝜎 𝑟 𝑖) 1 -	𝑖 𝑗 ∈𝐼 𝑟	1 -	𝑦 𝜋 𝑟 𝑗 𝑘 -𝜎 𝑟 𝑖	𝑗 ∈𝐼 𝑟 𝑖	  	(17.146)
	= Λ(𝑟,𝑦 𝑦 𝑦),							(17.147)

* ≜ max 𝑖 ∈ [𝐾 𝑟 𝑡 -1] :

 For any non-negative factor 𝛼 𝑟 𝑖 , we have 𝜕 𝛼 𝑟 𝑖 𝑓 (𝑟,𝑖) (𝑦 𝑦 𝑦) = 𝛼 𝑟 𝑖 𝜕 𝑓 (𝑟,𝑖) (𝑦 𝑦 𝑦) (multiply both sides of the subgradient inequality by a non-negative constant[START_REF] Bubeck | Convex Optimization: Algorithms and Complexity[END_REF], Definition 1.2]), and using [297, Theorem 23.6] we get 𝑘 ∧ 𝑙 + 𝑁 ∉ {𝜋 𝑟 𝑣 : 𝑣 ∈ [𝑖] }}. Now we can define a subgradient 𝑔 𝑔 𝑔 𝑡 of the function 𝐺 (𝑟,𝑦 𝑦 𝑦) at point 𝑦 𝑦 𝑦 𝑡 ∈ conv(X) and request 𝑟 𝑡 ∈ R for any 𝑡 ∈ [𝑇], where every component 𝑙 ∈ N of 𝑔 𝑔 𝑔 𝑡 is given by 𝑔 𝑡,𝑙 = For any time slot 𝑡 ∈ [𝑇], fractional cache state 𝑦 𝑦 𝑦 𝑡 ∈ conv(X), and request 𝑟 𝑡 ∈ R the subgradients 𝑔 𝑔 𝑔 𝑡 of the gain function in Eq. (3.11) are bounded w.r.t the norm ∥ • ∥ ∞ by the constant The constant 𝑐 𝑘 𝑑 is an upper bound on the dissimilarity cost of the k-th closest object for any request in R, and 𝑐 𝑓 is the retrieval cost. For any time slot 𝑡 ∈ [𝑇] we have ∥𝑔 𝑔 𝑔 𝑡 ∥ ∞ = max 𝑔 𝑡,𝑙 : 𝑙 ∈ N = max 𝑐 (𝑟 𝑡 , 𝜋 𝑟 𝑡 𝑖 𝑟 𝑡 * +1) -𝑐 (𝑟 𝑡 , 𝑙) : 𝑙 ∈ N (19.164) ≤ 𝑐 (𝑟 𝑡 , 𝜋 𝑟 𝑡 𝐾 𝑟 𝑡) -𝑐 (𝑟 𝑡 , 𝜋 𝑟 𝑡 1) ≤ 𝑐 (𝑟 𝑡 , 𝜋 𝑟 𝑡 𝐾 𝑟 𝑡) (19.165) = 𝑐 𝑓 + 𝑐 (𝑟 𝑡 , 𝜋 𝑟 𝑡 𝐾 𝑟 𝑡 -𝑁) ≤ 𝑐 𝑓 + 𝑐 (𝑟 𝑡 , 𝜋 𝑟 𝑡 𝐾 𝑟 𝑡 -𝑁) ≤ 𝑐 𝑓 + 𝑐 𝑘 𝑑 . (19.166) □ Note that 𝐿 2 ≜ 𝜕 𝑦 𝑦 𝑦 𝐺 (𝑟,𝑦 𝑦 𝑦) 2 can be as high as

	20 -Supporting Lemmas for Proof of Theorem 3.3.3	Chapter -Conclusion 187
	Note that 19 Supporting Lemmas for Proof of Theorem 3.3.3
							𝑖		
	𝜕 𝜕𝑦 𝑙 19.1 Subgradient Bound 𝑗=1 ∑︁ 𝑦 𝜋 𝑟 𝑗 = 1 (𝑦 𝑙 appears in the sum and 𝑦 𝑙+𝑁 = 1 -𝑦 𝑙 does not)	(18.154)
	= 1 𝑙 ∈ {𝜋 𝑟 𝑣 : 𝑣 ∈ [𝑖]} ∧ 𝑙 + 𝑁 ∉ {𝜋 𝑟 𝑣 : 𝑣 ∈ [𝑖]} = 1 𝑙 𝑟 * ≤ 𝑖 ∧ 𝑙 + 𝑁 ∉ {𝜋 𝑟 𝑣 : 𝑣 ∈ [𝑖]} . Lemma 19.1. 𝐿 ≜ 𝑐 𝑘 𝑑 + 𝑐 𝑓 .	(18.155) (18.156) (19.163)
		The 𝑙-th component of the subgradient 𝑔 𝑔 𝑔 (𝑟,𝑖) (𝑦 𝑦 𝑦) is given by
	Proof.			𝑔 (𝑟,𝑖) 𝑙	(𝑦 𝑦 𝑦) =	0, 𝜕 𝜕𝑦 𝑙	𝑖 𝑗=1 𝑦 𝜋 𝑟 𝑗	if 𝑖 𝑗=1 𝑦 𝜋 𝑟 𝑗 ≥ 𝑘, otherwise.	(18.157)
									𝑖	
							= 1	∑︁	𝑦 𝜋 𝑟 𝑗 < 𝑘 ∧ 𝑙 𝑟 * ≤ 𝑖 ∧ 𝑙 + 𝑁 ∉ {𝜋 𝑟 𝑣 : 𝑣 ∈ [𝑛]} . (18.151)	(18.158)
									𝑗=1	
											𝐾 𝑟 -1	𝐾 𝑟 -1
								𝜕𝐺 (𝑟,𝑦 𝑦 𝑦) = 𝜕	∑︁	𝛼 𝑟 𝑡 𝑖 𝑓 (𝑟,𝑖) (𝑦 𝑦 𝑦) =	∑︁	𝛼 𝑟 𝑡 𝑖 𝜕𝑓 (𝑟,𝑖) (𝑦 𝑦 𝑦).	(18.159)
											𝑖=1	𝑖=1
		Let 𝑖 𝑟 * ≜ max{𝑖 ∈ [𝐾 𝑟 -1] : 𝑗 ≤ 𝐾 𝑟 𝑡 -1 𝑖 𝑗=1 𝑦 𝜋 𝑟 𝐾 𝑟 𝑡 -1 𝑖
			∑︁	𝛼 𝑟 𝑡 𝑖 𝑔 (𝑟 𝑡 ,𝑖) 𝑙	(𝑦 𝑦 𝑦 𝑡) =	∑︁	𝛼 𝑟 𝑡 𝑖 1	∑︁	𝑦 𝜋 𝑟 𝑡 𝑗	< 𝑘 ∧ 𝑙 𝑟 𝑡 * ≤ 𝑖 ∧ 𝑙 + 𝑁 ∉ {𝜋 𝑟 𝑡 𝑣 : 𝑣 ∈ [𝑛]}
			𝑖=1					𝑖=1		𝑗=1
											(18.160)
		=	𝐾 𝑟 𝑡 -1 ∑︁	𝛼 𝑟 𝑡 𝑖 1	𝑖 ∑︁	𝑦 𝜋 𝑟 𝑡 𝑗	< 𝑘 ∧ 𝑙 + 𝑁 ∉ {𝜋 𝑟 𝑡 𝑣 : 𝑣 ∈ [𝑛]} =	𝑖 ∑︁ 𝑟 𝑡 *	𝛼 𝑟 𝑡 𝑖 =	𝑟 𝑡 * ∑︁ 𝑖	𝑐 (𝑟 𝑡 , 𝜋 𝑟 𝑡 𝑖+1) -𝑐 (𝑟 𝑡 , 𝜋 𝑟 𝑡 𝑖)
			𝑖=𝑙	𝑟 𝑡 *		𝑗=1				𝑖=𝑙	𝑟 𝑡 *	𝑖=𝑙	𝑟 𝑡 *
											(18.161)
		= 𝑐 (𝑟 𝑡 , 𝜋 𝑟 𝑡 𝑖 𝑟 𝑡 * +1) -𝑐 (𝑟 𝑡 , 𝑙) 1 𝑙 𝑟 𝑡 * ≤ 𝑖 𝑟 𝑡 * , ∀𝑙 ∈ N .	(𝑟,𝑖) at point 𝑦 𝑦 𝑦 (18.162)
	□	can be picked as Note that in the last equality we used the definition of 𝑙 𝑟 𝑡 𝑔 𝑔 𝑔 (𝑟,𝑖) (𝑦 𝑦 𝑦) = 0 0 0 if 𝑖 𝑗=1 𝑦 𝜋 𝑟 𝑗 ≥ 𝑘, ∇ 𝑖 𝑗=1 𝑦 𝜋 𝑟 𝑗 * to obtain 𝑐 (𝑟 𝑡 , 𝑙) = 𝑐 (𝑟 𝑡 , 𝜋 𝑟 𝑙 𝑟 𝑡 * concludes the proof. otherwise.). This (18.153)

 |𝑥 𝑡+1,𝑖 -𝑥 𝑡,𝑖 | 𝑥 𝑡,𝑖 = 0 P(𝑥 𝑡,𝑖 = 0) + E |𝑥 𝑡+1,𝑖 -𝑥 𝑡,𝑖 | 𝑥 𝑡,𝑖 = 1 P(𝑥 𝑡,𝑖 = 1) 𝑦 𝑡,𝑖 | = ∥𝑦 𝑦 𝑦 𝑡+1 -𝑦 𝑦 𝑦 𝑡 ∥ 1 . The negative entropy mirror map Φ is 𝜌 = 1 ℎ strongly convex w.r.t the norm ∥ • ∥ 1 over D ∩ conv(X) (see [48, Ex. 2.5]), and the subgradients are bounded under the dual norm ∥ • ∥ ∞ by 𝐿, i.e., for any 𝑟 𝑡 ∈ R, 𝑦 𝑦 𝑦 𝑡 ∈ conv(X), and 𝑡 ∈ [𝑇] we have ∥𝑔 𝑔 𝑔 𝑡 ∥ ∞ ≤ 𝐿 (Lemma 19.1). For any time slot 𝑡 ∈ [𝑇 -1], 𝐷 Φ (𝑦 𝑦 𝑦 𝑡 ,𝑧 𝑧 𝑧 𝑡+1) = Φ(𝑦 𝑦 𝑦 𝑡) -Φ(𝑧 𝑧 𝑧 𝑡+1) -∇Φ(𝑧 𝑧 𝑧 𝑡+1) 𝑇 (𝑦 𝑦 𝑦 𝑡 -𝑧 𝑧 𝑧 𝑡+1) = Φ(𝑦 𝑦 𝑦 𝑡) -Φ(𝑧 𝑧 𝑧 𝑡+1) + ∇Φ(𝑦 𝑦 𝑦 𝑡) 𝑇 (𝑧 𝑧 𝑧 𝑡+1 -𝑦 𝑦 𝑦 𝑡) + (∇Φ(𝑦 𝑦 𝑦 𝑡) -∇Φ(𝑧 𝑧 𝑧 𝑡+1)) 𝑇 (𝑦 𝑦 𝑦 𝑡 -𝑧 𝑧 𝑧 𝑡+1) 𝑧 𝑧 𝑧 𝑡+1 ∥ 2 + 𝜂𝐿 ∥𝑦 𝑦 𝑦 𝑡 -𝑧 𝑧 𝑧 𝑡+1 ∥ 2 Eqs. (20.178)-(20.180) are obtained using the strong convexity of Φ and the update rule, Cauchy-Schwarz inequality, and the inequality 𝑎𝑥 -𝑏𝑥 2 ≤ max 𝑥 𝑎𝑥 -𝑏𝑥 2 = 𝑎 2 /4𝑏 as in the last step in the proof of [53, Theorem 4.2], respectively. Moreover, for any 𝑡 ∈ [𝑇 -1] it holds ∥𝑦 𝑦 𝑦 𝑡+1 -𝑦 𝑦 𝑦 𝑡 ∥ 1 ≤

	21 -Proof of Theorem 3.3.3					189
	it holds:										
		≤ -	𝜌 2	∥𝑦 𝑦 𝑦 𝑡 -𝑧 𝑧 𝑧 𝑡+1 ∥ 2 1 + 𝜂𝑔 𝑔 𝑔 𝑇 𝑡 (𝑦 𝑦 𝑦 𝑡 -𝑧 𝑧 𝑧 𝑡+1)	(20.178)
		≤ -≤ 𝜂 2 𝐿 2 𝜌 ∥𝑦 𝑦 𝑦 𝑡 -1 2 2𝜌 .	(20.179) (20.180)
		√︄	2 𝜌	𝐷 Φ (𝑦 𝑦 𝑦 𝑡 ,𝑦 𝑦 𝑦 𝑡+1) ≤	√︄	2 𝜌	𝐷 Φ (𝑦 𝑦 𝑦 𝑡 ,𝑧 𝑧 𝑧 𝑡+1) -	2 𝜌	𝐷 Φ (𝑦 𝑦 𝑦 𝑡+1 ,𝑧 𝑧 𝑧 𝑡+1) ≤	√︄	2 𝜌	𝐷 Φ (𝑦 𝑦 𝑦 𝑡 ,𝑧 𝑧 𝑧 𝑡+1) (20.181)
	≤	√︄	2𝜂 2 𝐿 2 2𝜌 2 ≤	𝐿𝜂 𝜌	.		(20.182)
	The above chain of inequalities is obtained through: the strong convexity of Φ, the generalized
	Pythagorean inequality [53, Lemma 4.1], non-negativity of the Bregman divergence of a convex
	function, and Eq. (20.180), in respective order. The learning rate is 𝜂 = O 1 √ 𝑇	; therefore, we finally
	get										
								𝑡+1,𝑖 -𝑥 𝑡+1,𝑖 |] 𝑇 -1 ∑︁ ∥𝑦 𝑦 𝑦 𝑡+1 -𝑦 𝑦 𝑦 𝑡 ∥ 1	(20.182) ≤	𝐿𝜂𝑇 𝜌	= O (√ 𝑇).	(20.174) (20.183)
			=	∑︁		𝑡=1	
	21 Proof of Theorem 3.3.3	(20.175)
			=	∑︁ 𝑖∈N	𝛿 𝑖 1 -𝑦 𝑡,𝑖	1 (𝛿 𝑖 > 0) • (1 -𝑦 𝑡,𝑖) +	-𝛿 𝑖 𝑦 𝑡,𝑖	1 (𝛿 𝑖 < 0) • 𝑦 𝑡,𝑖	(20.176)
			=	∑︁	|𝛿 𝑖 | =	∑︁	|𝑦 𝑡+1,𝑖 -(20.177)
				𝑖∈N			𝑖∈N
	20.2 Proof of Theorem 3.3.2

𝑖∈N

E

 1 ℎ strongly convex w.r.t the norm ∥ • ∥ 1 over D ∩ conv(X) (see[START_REF] Shalev-Shwartz | Online Learning and Online Convex Optimization[END_REF] Ex. 2.5]). The subgradients are bounded under the dual norm ∥ • ∥ ∞ by 𝐿, i.e., for any 𝑟 𝑡 ∈ R, 𝑦 𝑦 𝑦 𝑡 ∈ conv(X), and 𝑡 ∈ [𝑇] we have ∥𝑔 𝑔 𝑔 𝑡 ∥ ∞ ≤ 𝐿 (Lemma 19.1).(iv) The Bregman divergence 𝐷 Φ (𝑦 𝑦 𝑦 * ,𝑦 𝑦 𝑦 1) is bounded by a constant 𝐷 where𝑦 𝑦 𝑦 * = arg max 𝑦 𝑦 𝑦∈conv(X) 𝑦 𝑦) is the initial fractional cache state (Lemma 19.2).With the above properties satisfied, the regret of Algorithm 3.2 with the gains evaluated over the fractional cache states{𝑦 𝑦 𝑦 𝑡 } 𝑇 𝑡=1 ∈ conv(X) 𝑇 is [53, Theorem 4.2] Regret 𝑇 ,conv(X) (OMA Φ) = supIntegral domain guarantee. Let 𝑥 𝑥 𝑥 𝑟 𝑡 ,𝑦 𝑦 𝑦). The fractional cache state 𝑦 𝑦 𝑦 * ∈ conv(X) is obtained by maximizing 𝑇 𝑡=1 𝐺 (𝑟 𝑡 ,𝑦 𝑦 𝑦) over the domain 𝑦 𝑦 𝑦 ∈ conv(X). We can only obtain a lower gain by restricting the maximization to a subset of the domain X ⊂ conv(X). Therefore, we obtain:The first equality is obtained through a decomposition of the time slots to T 𝑖 for 𝑖 ∈ {1, 2, . . . , ⌊𝑇 /𝑀⌋+ 1}. It remains to bound the r.h.s of Eq.(21.188), i.e., 𝜕 𝑦 𝑦 𝑦 𝐺 (𝑟 𝑡 ,𝑦 𝑦 𝑦 min(T 𝑖)) • 𝑦 𝑦 𝑦 𝑡 -𝑦 𝑦 𝑦 min(T 𝑖) concavity of 𝐺 (𝑟 𝑡 , •) 𝜕 𝑦 𝑦 𝑦 𝐺 (𝑟 𝑡 ,𝑦 𝑦 𝑦 min(T 𝑖)) ∞ 𝑦 𝑦 𝑦 𝑡 -𝑦 𝑦 𝑦 min(T 𝑖) 1 It is easy to verify that 𝐺 𝑇 (3.17) is concave, and has bounded subgradients under the 𝑙 ∞ norm over the fractional caching domain conv(X); moreover, the remaining properties are satisfied for the same mirror map and decision set. The regret of Algorithm 3.2 with the gains evaluated over the fractional cache states {𝑦 𝑦 𝑦 𝑖 } T 𝑖=1 ∈ conv(X) 𝑇 is [53, Theorem 4.2] is given by

	22 -Proof of Corollary 3.3.4								Chapter -Conclusion 191
	We apply Jensen's inequality to obtain (iii) 𝑇 𝑡=1 𝐺 (𝑟,𝑦 𝑦 𝑦) and 𝑦 𝑦 𝑦 1 = arg min 𝑦 𝑦 𝑦∈conv(X)∩D 𝑇 ∑︁ 𝐺 (𝑟 𝑡 ,𝑦 𝑦 𝑦 *) -𝑇 ∑︁ 𝐺 (𝑟 𝑡 ,𝑦 𝑦 𝑦 𝑡) (21.184) 𝑇 ∑︁ 𝑡=1 𝐺 (𝑟 𝑡 ,𝑦 𝑦 𝑦 𝑡) -⌊𝑇 /𝑀⌋+1 ∑︁ 𝑖=1 ∑︁ 𝑡 ∈T 𝑖 𝐺 (𝑟 𝑡 ,𝑦 𝑦 𝑦 min(T 𝑖)) = ⌊𝑇 /𝑀⌋+1 ∑︁ 𝑖=1 ∑︁ 𝑡 ∈T 𝑖 𝐺 (𝑟 𝑡 ,𝑦 𝑦 𝑦 𝑡) -𝐺 (𝑟 𝑡 ,𝑦 𝑦 𝑦 min(T 𝑖)) (21.189) ≤ ⌊𝑇 /𝑀⌋+1 ∑︁ 𝑖=1 ∑︁ 𝑡 ∈T 𝑖 ≤ ⌊𝑇 /𝑀⌋+1 ∑︁ ∑︁ Hölder's inequality 𝐺 𝑇 (ȳ) ≥ 1 ∑︁ 𝐺 𝑇 (𝑦 𝑦 𝑦 𝑖). (22.195) T T 𝑖=1 Φ(𝑦 {𝑟 𝑟 𝑟 𝑡 } 𝑇 𝑡 =1 ∈R 𝑇 𝑡=1 𝑡=1 ≤ 𝐷 Φ (𝑦 𝑦 𝑦 * ,𝑦 𝑦 𝑦 1) 𝜂 + 𝜂ℎ 2 𝑇 ∑︁ 𝑡=1 ∥𝑔 𝑔 𝑔 𝑡 ∥ 2 ∞ ≤ 𝐷 𝜂 + 𝜂𝐿 2 ℎ𝑇 . (21.185) 𝑖=1 𝑡 ∈T 𝑖 ≤ 𝐿 ⌊𝑇 /𝑀⌋+1 ∑︁ ∑︁ 𝑡-1 ∑︁ ∥𝑦 𝑦 𝑦 𝑡+1 -𝑦 𝑦 𝑦 𝑡 ∥ 1 √︄ (21.185) ≤ (𝑐 𝑘 𝑑 + 𝑐 𝑓)ℎ 2 log 𝑁 T . (22.196) ℎ triangle inequality and definition of 𝐿 2 𝑦 𝑦 𝑦∈conv(X) 𝑇 𝑖=1 𝑡 ∈T 𝑖 𝑡 ′ =min(T 𝑖) ≤ 𝐿 2 𝜌 ⌊𝑇 /𝑀⌋+1 ∑︁ 𝑖=1 ∑︁ 𝑡 ∈T 𝑖 𝑡-1 ∑︁ 𝑡 ′ =min(T 𝑖) 𝜂 ≤ 𝐿 2 𝜂 𝜌 • 𝑇 𝑀 + 1 • 𝑀 (𝑀 -1) 2 update cost upper bound in Eq. (20.182) = 𝐿 2 𝜂 2𝜌 (𝑀 -1) (𝑇 + 𝑀) = ℎ𝐿 2 𝜂 2 (𝑀 -1) (𝑇 + 𝑀) we have 𝜌 = 1/ℎ. (21.190) Thus, by bounding r.h.s of Eq. (21.188) in Eq. (21.190) we get 𝜓 𝑇 ∑︁ 𝑡=1 𝐺 (𝑟 𝑡 , 𝑥 𝑥 𝑥 *) -𝑇 ∑︁ 𝑡=1 E [𝐺 (𝑟 𝑡 , 𝑥 𝑥 𝑥 𝑡)] ≤ 𝜓 𝐷 𝜂 + 𝜂𝐿 2 ℎ 2 𝑇 + 𝜂𝐿 2 ℎ 2 (𝑀 -1) (𝑇 + 𝑀) (21.191) By selecting the learning rate 𝜂 = 1 𝐿 √︃ 2𝐷 ℎ(𝑇 +(𝑀-1) (𝑀+𝑇)) = 1 (𝑐 𝑘 𝑑 +𝑐 𝑓) √︂ 2 log(𝑁 ℎ) (𝑇 +(𝑀-1) (𝑀+𝑇)) giving the tightest upper bound we obtain 𝜓 𝑇 ∑︁ 𝑡=1 𝐺 (𝑟 𝑡 , 𝑥 𝑥 𝑥 *) -𝑇 ∑︁ 𝑡=1 E [𝐺 (𝑟 𝑡 , 𝑥 𝑥 𝑥 𝑡)] ≤ 𝜓𝐿 √︁ 2𝐷ℎ(𝑇 + (𝑀 -1)(𝑇 + 𝑀)) (21.192) Divide both sides of the equality by T , and move the gain attained by AÇAI to the l.h.s to get 1 T T ∑︁ √︄ 2 log 𝑁 ℎ T , (22.197) where 𝑦 𝑦 𝑦 √︄ 2 log 𝑁 ℎ T , (22.198) √︄ 2 log 𝑁 ℎ T . (22.199) 𝑡=1 𝐺 ((21.186) ≤ 𝜓 𝑇 ∑︁ 𝑡=1 𝐺 (𝑟 𝑡 ,𝑦 𝑦 𝑦 *) -𝑇 ∑︁ 𝑡=1 (19.163),(19.167) = 1 -1 𝑒 (𝑐 𝑘 𝑑 + 𝑐 𝑓)ℎ √︄ 2 log 𝑁 We conclude ∀𝜖 > 0 for a sufficiently large number of iterations T , x 𝑥 𝑥 satisfies (𝑇 + (𝑀 -1)(𝑇 + 𝑀)). ℎ E [𝐺 (𝑟 𝑡 , 𝑥 𝑥 𝑥 𝑡)] = 𝜓 𝑇 ∑︁ 𝐺 (𝑟 𝑡 ,𝑦 𝑦 𝑦 *) -⌊𝑇 /𝑀⌋+1 ∑︁ ∑︁ E [𝐺 (𝑟 𝑡 , 𝑥 𝑥 𝑥 𝑡)] (21.187) ≤ 𝜓 𝑇 ∑︁ 𝐺 (𝑟 𝑡 ,𝑦 𝑦 𝑦 *) -𝜓 ⌊𝑇 /𝑀⌋+1 ∑︁ 𝐺 (𝑟 𝑡 ,𝑦 𝑦 𝑦 min(T 𝑖)) ∑︁ (21.193) This concludes the proof. E [𝐺 𝑇 (x 𝑥 𝑥)] ≥ 1 -1 𝑒 -𝜖 𝐺 𝑇 (𝑥 𝑥 𝑥 *). (22.200)
	𝑡=1		𝑖=1	𝑡 ∈T 𝑖				𝑡=1	𝑖=1	𝑡 ∈T 𝑖
	= 𝜓 22 Proof of Corollary 3.3.4 𝑇 ∑︁ 𝐺 (𝑟 𝑡 ,𝑦 𝑦 𝑦 *) -𝜓 𝑇 ∑︁ 𝐺 (𝑟 𝑡 ,𝑦 𝑦 𝑦 𝑡) + 𝜓 𝑇 ∑︁ 𝐺 (𝑟 𝑡 ,𝑦 𝑦 𝑦 𝑡) -𝜓	⌊𝑇 /𝑀⌋+1 ∑︁	∑︁	𝐺 (𝑟 𝑡 ,𝑦 𝑦 𝑦 min(T 𝑖))
	𝑡=1 We have the following	𝑡=1			𝑡=1				𝑖=1	𝑡 ∈T 𝑖
	(21.185)	E [𝐺 𝑇 (x 𝑥 𝑥)]	(17.144) ≥ E	1 𝑇	𝑇 ∑︁	Λ(𝑟 𝑡 , 𝑥 𝑥 𝑥 𝑡)	(16.141) ≥	1 𝑇	⌊𝑇 /𝑀⌋+1 ∑︁ ∑︁ 𝑇 Λ(𝑟 𝑡 , 𝑥 𝑥 𝑥 𝑡)	(17.144) ≥ 𝜓𝐺 𝑇 (ȳ).	(21.188) (22.194)
						𝑡=1				𝑡=1

* = arg max 𝑥 𝑥 𝑥 ∈X 𝑇 𝑡=1 𝐺 (𝑟 𝑡 , 𝑥 𝑥 𝑥) and 𝑦 𝑦 𝑦 * = arg max 𝑇 ∑︁ 𝑡=1 𝐺 (𝑟 𝑡 ,𝑦 𝑦 𝑦 *) ≥ 𝑇 ∑︁ 𝑡=1 𝐺 (𝑟 𝑡 , 𝑥 𝑥 𝑥 *). (21.186) Note that the components for 𝑥 𝑥 𝑥 and 𝑦 𝑦 𝑦 in U \ N are completely determined by the components in N . Take 𝜓 = 1 -1/𝑒. For every 𝑡 ∈ {1, 𝑀, 2𝑀, . . . , 𝑀 ⌊𝑇 /𝑀⌋} and 𝑟 ∈ R it holds E [𝐺 (𝑟, 𝑥 𝑥 𝑥 𝑡)] (17.144) ≥ E [Λ(𝑟, 𝑥 𝑥 𝑥 𝑡)] (16.141) ≥ Λ(𝑟,𝑦 𝑦 𝑦 𝑡) (17.144) ≥ 𝜓𝐺 (𝑟,𝑦 𝑦 𝑦 𝑡). (21.187) Moreover, consider the following decomposition of the time slots {1, 2, . . . ,𝑇 } = T 1 ∪ T 2 ∪ • • • ∪ T ⌊𝑇 /𝑀⌋+1 , where each T 𝑖 represents the 𝑖-th freezing period, i.e., 𝑥 𝑥 𝑥 𝑡 = 𝑥 𝑥 𝑥 min(T 𝑖) for 𝑡 ∈ T 𝑖 . Note that |T 𝑖 | ≤ 𝑀 for 𝑖 ∈ {1, 2, . . . , ⌊𝑇 /𝑀⌋ + 1}. Now we can decompose the total expected gain of the policy as 𝜓 𝑇 ∑︁ 𝑡=1 𝐺 (𝑟 𝑡 , 𝑥 𝑥 𝑥 *) -𝑇 ∑︁ 𝑡=1 E [𝐺 (𝑟 𝑡 , 𝑥 𝑥 𝑥 𝑡)] ≤ 𝜓 • Regret 𝑇 ,conv(X) (OMA Φ) + 𝜓 𝑇 ∑︁ 𝑡=1 𝐺 (𝑟 𝑡 ,𝑦 𝑦 𝑦 𝑡) -𝑖=1 ∑︁ 𝑡 ∈T 𝑖 𝐺 (𝑟 𝑡 ,𝑦 𝑦 𝑦 min(T 𝑖)) . T ∑︁ 𝑖=1 𝐺 𝑇 (𝑦 𝑦 𝑦 *) -T ∑︁ 𝑖=1 𝐺 𝑇 (𝑦 𝑦 𝑦 𝑖) = T𝐺 𝑇 (𝑦 𝑦 𝑦 *) -T ∑︁ 𝑖=1 𝐺 𝑇 (𝑦 𝑦 𝑦 𝑖) 𝑖=1 𝐺 𝑇 (𝑦 𝑦 𝑦 𝑖) ≥ 𝐺 𝑇 (𝑦 𝑦 𝑦 *) -(𝑐 𝑘 𝑑 + 𝑐 𝑓)ℎ * = arg max 𝑦 𝑦 𝑦∈conv(X) 𝐺 𝑇 (𝑦 𝑦 𝑦). We combine Eq. (22.194), Eq. (22.195), and Eq. (22.197) to obtain E [𝐺 𝑇 (x 𝑥 𝑥)] ≥ 𝐺 𝑇 (𝑦 𝑦 𝑦 *) -(𝑐 𝑘 𝑑 + 𝑐 𝑓)ℎ and 𝐺 𝑇 (𝑦 𝑦 𝑦 *) can only be larger than 𝐺 𝑇 (𝑥 𝑥 𝑥 *); thus, we also obtain E [𝐺 𝑇 (x 𝑥 𝑥)] ≥ 𝐺 𝑇 (𝑥 𝑥 𝑥 *) -(𝑐 𝑘 𝑑 + 𝑐 𝑓)ℎ

 .201) We can also define the set function 𝐹 𝑇 : 2 V×𝑉 → R associated to the time-averaged gain in Eq. (4.14) asWe first start proving that 𝑓 𝑡 is submodular in the following lemma.

	24 -Submodularity of the Gain Function		195
			LRU		CLS-LRU		AC ¸AI	LRU	CLS-LRU	AC ¸AI
			SIM-LRU	QCache			SIM-LRU	QCache
		0.95							0.95
		0.90							0.90
	NAG	0.85							NAG	0.85
		0.80							0.80
		0.75	0.6	0.8 Retrieval cost 1.0		1.2 ×10 5	0.75	4	5 Retrieval cost 6	×10 4 7
			(a) SIFT1M trace				(b) Amazon trace
					𝐹 𝑇 (𝑆) ≜	1 𝑇	𝑇 ∑︁	𝑓 𝑡 (𝑆) =	1 𝑇	𝑇 ∑︁	𝐺 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥 (𝑆)).	(24.202)
							𝑡=1		𝑡=1
	Lemma 24.1. The set function 𝑓 𝑡 : 2 V×M → R in Eq. (24.201) is normalized (i.e., 𝑓 𝑡 (∅) = 0), submod-
	ular, and monotone.					
	Proof.							
									(24.203)

Normalization. The constructed set function is normalized (as in 𝑓 𝑡 (∅) = 0), we have 𝑓 𝑡 (∅) = 𝐺 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥 (∅)) = 𝐺 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝜔 𝜔 𝜔) = 𝐶 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝜔 𝜔 𝜔) -𝐶 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝜔 𝜔 𝜔) = 0.

 and thus 𝑧 𝑘 𝜌 (𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥 ′) ≤ 𝑧 𝑘 𝜌 (𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥 ′′), for any 𝑘 (see Eq. (4.11)). Therefore 𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥 ′) ≤ 𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥 ′′), ∀𝑘 ∈ [𝐾 𝜌 -1], ∀𝜌 ∈ R. (24.204) Let us denote k𝜌 ≜ 𝜅 𝜌 (v, m). Due to Eq. (24.204), ∀𝑘 ∈ [𝐾 𝜌 -1], ∀𝜌 ∈ R the following inequality holds: min{𝑟 𝑡 𝜌 -𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥 ′′), 𝜆 k𝜌 𝜌 (𝑙 𝑙 𝑙 𝑡)} ≤ min{𝑟 𝑡 𝜌 -𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥 ′), 𝜆 k𝜌 𝜌 (𝑙 𝑙 𝑙 𝑡)}, 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥 ′′) + 𝜆 k𝜌 𝜌 (𝑙 𝑙 𝑙 𝑡)} -𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥 ′′) ≤ min{𝑟 𝑡 𝜌 , 𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥 ′) + 𝜆 k𝜌 𝜌 (𝑙 𝑙 𝑙 𝑡)} -𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥 ′).

	196	Chapter -Conclusion
		(24.205)
	or equivalently:	
	min{𝑟 𝑡 𝜌 , 𝑍 𝑘 𝜌 (𝑟 (24.206)

 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥 ′′) if 𝑘 < k𝜌 min 𝑟 𝑡 𝜌 , 𝑘 𝑘 ′ =1 𝑧 𝑘 ′ 𝜌 (𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥 ′′) + 𝜆 k𝜌 𝜌 (𝑙 𝑙 𝑙 𝑡) = min{𝑟 𝑡 𝜌 , 𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥 ′′) + 𝜆 k𝜌 𝜌 (𝑙 𝑙 𝑙 𝑡)} if 𝑘 ≥ k𝜌 . (24.207)Note that the same equality holds between x 𝑥 𝑥 ′ and 𝑥 𝑥 𝑥 ′ since (v, m) ∉ 𝑆 ′ . The marginal gain of adding pair (v, m) ∈ V × M to the allocation set 𝑆 ′′ is

	and thus 𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , x 𝑥 𝑥 ′′) = 0 0.01 0.02 0.03 0.04 0.05 Compute Time 𝜌 (𝑟 24 -Submodularity of the Gain Function 𝑍 𝑘 20000 40000 Requests SIM-LRU QCache LRU CLS-LRU AC ¸AI	197

) = 𝑧 𝑘 𝜌 (𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥 ′′) + 𝜆 k𝜌 𝜌 (𝑙 𝑙 𝑙 𝑡) if 𝑘 = k𝜌 ,

 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥 ′′) -𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝜔 𝜔 𝜔) 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥 ′′) + 𝜆 k𝜌 𝜌 (𝑙 𝑙 𝑙 𝑡) -𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝜔 𝜔 𝜔) 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥 ′′) -𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝜔 𝜔 𝜔) 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥 ′′) + 𝜆 k𝜌 𝜌 (𝑙 𝑙 𝑙 𝑡) -𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝜔 𝜔 𝜔) -𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥 ′′) -𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝜔 𝜔 𝜔) 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥 ′′) + 𝜆 k𝜌 𝜌 (𝑙 𝑙 𝑙 𝑡) -𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥 ′′) .

	∑︁ 𝑘=1 𝐾 𝜌 -1 𝛾 𝑘+1 𝜌 𝜌 (𝑟 + -𝛾 𝑘 𝜌 𝑍 𝑘 ∑︁ 𝑘= k𝜌 𝛾 𝑘+1 𝜌 -𝛾 𝑘 𝜌 min 𝑟 𝑡 𝜌 , 𝑍 𝑘 𝐾 𝜌 -1 𝜌 (𝑟 -∑︁ 𝑘=1 𝛾 𝑘+1 𝜌 -𝛾 𝑘 𝜌 𝑍 𝑘 𝐾 𝜌 -1 𝜌 (𝑟 = ∑︁ 𝜌∈R ∑︁ 𝑘= k𝜌 𝛾 𝑘+1 𝜌 -𝛾 𝑘 𝜌 min 𝑟 𝑡 𝜌 , 𝑍 𝑘 𝐾 𝜌 -1 𝜌 (𝑟 = ∑︁ ∑︁ 𝛾 𝑘+1 𝜌 -𝛾 𝑘 𝜌 min 𝑟 𝑡 𝜌 , 𝑍 𝑘 𝜌 (𝑟 (24.208)
	𝜌∈R	𝑘= k𝜌

By bounding up each term of the marginal gain (24.208) as in

(24.206)

we get the following:

 if for every 𝑆 ′ ⊂ 𝑆 ′′ ⊂ V × M it holds that𝑓 𝑡 (𝑆 ′′) ≥ 𝑓 𝑡 (𝑆 ′). 𝑓 𝑡 (𝑆 ′) = 𝐺 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥 ′′) -𝐺 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥 ′) 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥 ′′) -𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥 ′)The last inequality is obtained using Eq.(24.204). We conclude that 𝑓 𝑡 is monotone.The set function 𝐹 𝑇 is a nonnegative linear combination of submodular and monotone functions 𝑓 𝑡 (see Lemma 24.1), then 𝐹 𝑇 is also submodular and monotone[START_REF] Krause | Submodular Function Maximization[END_REF]. Moreover, each 𝑓 𝑡 is normalized, then it follows that 𝐹 𝑇 is normalized. For brevity, let us denote 𝑧 𝑘 ′ 𝜌 = 𝑧 𝑘 ′ 𝜌 (𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥).

						(24.209)
	We have					
	𝑓 𝑡 (𝑆 ′′) -(24.210)
			𝐾 𝜌 -1			
	=	∑︁	∑︁	𝛾 𝑘+1 𝜌	-𝛾 𝑘 𝜌	𝑍 𝑘 𝜌 (𝑟 (24.211)
		𝜌∈R	𝑘=1			
	≥ 0.				(24.212)
						The following formula
	holds:					
	𝑘					
	min 𝑐,					

□ Lemma 24.2. The set function 𝐹 𝑇 : 2 V×M → R in Eq. (24.202) is normalized (i.e., 𝑓 𝑇 (∅) = 0), submodular, and monotone. Proof. □ 25 Equivalent Expression of the Gain Function Lemma 25.1. Let us fix the threshold 𝑐 ∈ N ∪ {0}, request type 𝜌 ∈ R, model rank 𝑘 ∈ [𝐾 𝜌], time slot 𝑡, load vector 𝑙 𝑙 𝑙 𝑡 and allocation vector 𝑥 𝑥 𝑥.

Y

 .215) Hence Eq. (25.213) is verified, being the indicator function equal to 1 in this case.By combining Eq.(25.214) and Eq. (25.215) we obtain Eq.(25.213). =1 𝑧 𝑘 ′ 𝜌 (𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥) for 𝑘 = 𝐾 𝜌 surely includes a repository model as it sums all the models along the path of request type 𝜌; thus, we have 𝑘 𝑘 ′ =1 𝑧 𝑘 ′ 𝜌 (𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥) ≥ 𝑟 𝑡 𝜌 (see Eq. (4.9)) andIn order to project a fractional allocation 𝑦 𝑦 𝑦 ′ lying outside the constraint set Y to a feasible allocation 𝑦 𝑦 𝑦, we perform a Bregman projection associated to the global mirror map Φ : D → R, where the Bregman divergence associated to the mirror map Φ : D → R is given by𝐷 Φ (𝑦 𝑦 𝑦,𝑦 𝑦 𝑦 ′) = Φ(𝑦 𝑦 𝑦) -Φ(𝑦 𝑦 𝑦 ′) -∇Φ(𝑦 𝑦 𝑦 ′) 𝑇 (𝑦 𝑦 𝑦 -𝑦 𝑦 𝑦 ′),(26.229)and the Bregman divergences associated to the mirror maps Φ 𝑣 : D 𝑣 → R are also given by𝐷 Φ 𝑣 (𝑦 𝑦 𝑦 𝑣 ,𝑦 𝑦 𝑦 ′𝑣) = Φ 𝑣 (𝑦 𝑦 𝑦 𝑣) -Φ 𝑣 (𝑦 𝑦 𝑦 ′𝑣) -∇Φ 𝑣 (𝑦 𝑦 𝑦 ′𝑣) 𝑇 (𝑦 𝑦 𝑦 𝑣 -𝑦 𝑦 𝑦 ′𝑣).The global mirror map Φ : D → R is defined as the sum of the weighted negative entropy mapsΦ 𝑣 : D 𝑣 → R, where D = R V×M +is the domain of Φ, and the setD 𝑣 = R V + is the domain of Φ 𝑣 for all 𝑣 ∈ V .Thus, it follows that the global Bregman divergence is the sum of the Bregman divergences local to each node 𝑣 ∈ V, i.e., 𝐷 Φ (𝑦 𝑦 𝑦,𝑦 𝑦 𝑦 ′) = ∑︁ 𝑣 , and 𝑦 𝑦 𝑦 𝑣 ∈ Y 𝑣 , ∀𝑣 ∈ V. In order to minimize the value 𝐷 Φ (𝑦 𝑦 𝑦,𝑦 𝑦 𝑦 ′) for 𝑦 𝑦 𝑦 ∈ Y ∩ D, we can independently minimize the values 𝐷 Φ 𝑣 (𝑦 𝑣 , 𝑦 ′𝑣) for 𝑦 𝑦 𝑦 𝑣 ∈ Y 𝑣 ∩ D 𝑣 giving |V | subproblems; for every 𝑣 ∈ V we perform the following projection 𝑦 𝑦 𝑦 𝑣 = Φ 𝑣 Y 𝑣 ∩D 𝑣 (𝑦 𝑦 𝑦 ′𝑣) = argmin 𝑦 𝑦 𝑦 𝑣 ∈Y 𝑣 ∩D 𝑣 𝐷 Φ 𝑣 (𝑦 𝑦 𝑦 𝑣 ,𝑦 𝑦 𝑦 ′𝑣). Theorem 26.1. Algorithm .2 when executed at node 𝑣 ∈ V returns Π Φ 𝑣 Y 𝑣 ∩D 𝑣 (𝑦 𝑦 𝑦 ′𝑣), i.e., the projection of the vector 𝑦 𝑦 𝑦 ′𝑣 onto the weighted capped simplex Y 𝑣 ∩ D 𝑣 under the weighted negative entropy Φ 𝑣 (𝑦 𝑦 𝑦 𝑣) = 𝑣 ∩D 𝑣 (𝑦 𝑦 𝑦 ′𝑣) = argmin 𝑦 𝑦 𝑦 𝑣 ∈Y 𝑣 ∩D 𝑣 𝐷 Φ 𝑣 (𝑦 𝑦 𝑦 𝑣 ,𝑦 𝑦 𝑦 ′𝑣) Weighted negative entropy Bregman projection onto the weighted capped simplex Require: |M |; 𝑏 𝑣 ; 𝑠 𝑠 𝑠 𝑣 ; Sorted 𝑦 𝑦 𝑦 ′𝑣 where 𝑦 ′𝑣 |M | ≥ • • • ≥ 𝑦 ′𝑣We adapt the negative entropy projection algorithm in[START_REF] Tareq | No-Regret Caching via Online Mirror Descent[END_REF]. The constraints 𝑦 𝑣 𝑚 > 0, ∀𝑚 ∈ M are implicitly enforced by the negentropy mirror map Φ 𝑣 and 𝐷 Φ 𝑣 (𝑦 𝑦 𝑦 𝑣 ,𝑦 𝑦 𝑦 ′𝑣) is convex in 𝑦 𝑦 𝑦 𝑣 . The Lagrangian function of the above problem: For 𝑚 𝐿 = 1, ..., 𝑘, we have from (26.237e) that 𝛽 𝑚 𝐿 = 0, and then from(26.237a), 𝑠 𝑣 𝑚 𝐿 log(𝑦 ′𝑣 𝑚 𝐿) + 𝑠 𝑣 𝑚 𝐿 𝜏 = 𝑠 𝑣 𝑚 𝐿 log(ŷ𝑣 𝑚 𝐿) < 𝑠 𝑣 𝑚 𝐿 log(1) = 0, and can be simplified to 𝑦 ′𝑣 𝑚 𝐿 𝑒 𝜏 < 1, ∀𝑚 𝐿 ∈ {1, . . . , 𝑘 }. (26.240) • For 𝑚 𝑈 = 𝑘 + 1, ..., |M|: as 𝛽 𝑚 𝑈 ≥ 0 from (26.237c), we get 0 = 𝑠 𝑣 𝑚 𝑈 log(ŷ𝑣 𝑚 𝑈) = 𝑠 𝑣 𝑚 𝑈 log(𝑦 ′𝑣 𝑚 𝑈) -𝛽 𝑚 𝑈 + 𝑠 𝑣 𝑚 𝑈 𝜏 ≤ 𝑠 𝑣 𝑚 𝑈 log(𝑦 ′𝑣 𝑚 𝑈) + 𝑠 𝑣 𝑚 𝑈 𝜏, and can be simplified to 𝑦 ′𝑣 𝑚 𝑈 𝑒 𝜏 ≥ 1, ∀𝑚 𝑈 ∈ {𝑘 + 1, • • • , |M|}. (26.241) Consider Eqs. (26.238) and (26.239), and since for 𝑚 𝐿 ∈ {1, . . . , 𝑘 } we have 𝑦 ′𝑣 𝑚 𝐿 𝑒 𝜏 = ŷ𝑣 𝑚 𝐿 (the order is preserved), then the conditions in Eq. (26.240) are 𝑦 ′𝑣 1 𝑒 𝜏 ≤ ... ≤ 𝑦 ′𝑣 𝑘 𝑒 𝜏 < 1. (26.242) If the components of 𝑦 𝑦 𝑦 ′𝑣 are ordered in ascending order, then it is enough to check if 𝑦 ′𝑣 𝑘 𝑒 𝜏 < 1 holds for Eq. (26.242) to be true. Moreover, for 𝑚 𝑈 ∈ {𝑘 + 1, . . . , |M|}, we have ŷ𝑣 𝑚 𝑈 = 1 and 𝑦 ′𝑣 𝑚 𝑈 𝑒 𝜏 ≥ 1. Then, by taking 𝑦 ′𝑣 |M |+1 ≜ +∞ (𝑘 can be equal to |M| as in Eq. (26.239)) it is enough to check with the smallest 𝑦 ′𝑣 𝑚 𝑈 to summarize all the conditions in Eq. (26.241). Thus, all the needed conditions can be further simplified to: 𝑦 ′𝑣 𝑘 𝑒 𝜏 < 1 ≤ 𝑦 ′𝑣 𝑘+1 𝑒 𝜏 . Note that the r.h.s inequality is ignored when 𝑘 = |M| by construction (𝑦 ′𝑣 |M |+1 = +∞). Now we established how to verify if a given 𝑘 ∈ M is valid, what remains is to give the expression of 𝜏 using the knapsack constraint in Eq. (26.237d):The appropriate 𝑘 satisfying the KKT conditions is contained in M, and due to the sorting operation this gives total time complexity of O (|M| log(|M|)) per iteration. In practice, the online mirror ascent method quickly sets irrelevant items in the fractional allocation vector𝑦 𝑦 𝑦 ′𝑣 very close to 0. Therefore, we can keep track only of items with a fractional value above a threshold 𝜖 > 0 , and the size of this subset is practically ≪ |M|. Therefore, the projection can be very efficient in practice. The gain function in Eq. (4.16) has a subgradient 𝑔 𝑔 𝑔 𝑡 at point 𝑦 𝑦 𝑦 𝑡 ∈ Y given by 𝜌 (𝑦 𝑦 𝑦 𝑡) = min 𝑘 ∈ [𝐾 𝜌 -1] : 𝑘 𝑘 ′ =1 𝑧 𝑘 ′ 𝜌 (𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦 𝑡) ≥ 𝑟 𝑡 𝜌 . Proof. The function given by 𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦 𝑡) = min 𝑟 𝑡 𝜌 , 𝑘 𝑘 ′ =1 𝑧 𝑘 ′ 𝜌 (𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦 𝑡) is a minimum of two concave differentiable functions (a constant, and a linear function). We can characterize its subdifferential (set of all possible subgradients), using [296, Theorem 8.2], at point 𝑦 𝑦 𝑦 𝑡 ∈ Y as 𝜕𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦 𝑡) = =1 𝑧 𝑘 ′ 𝜌 (𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦 𝑡)) if 𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦 𝑡) < 𝑟 𝑡 𝜌 , conv 0 0 0, ∇(𝑘 𝑘 ′ =1 𝑧 𝑘 ′ 𝜌 (𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦 𝑡)) if 𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦 𝑡) = 𝑟 𝑡 =1 𝑧 𝑘 ′ 𝜌 (𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦 𝑡)) if 𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦 𝑡) < 𝑟 𝑡 𝜌 (𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦 𝑡) = 𝜅 𝜌 (𝑣, 𝑚) ≤ 𝑘 . The indicator variable 1 𝜅 𝜌 (𝑣, 𝑚) ≤ 𝑘 is introduced since the partial derivative of 𝑘 𝑘 ′ =1 𝑧 𝑘 ′ 𝜌 (𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦 𝑡) w.r.t. 𝑦 𝑣 𝑚 is non-zero only if model 𝑚 at node 𝑣 is among the 𝑘 best models to serve requests of type 𝜌 (in this case, the variable 𝑦 𝑣 𝑚 appears once in the summation). 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦) -𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝜔 𝜔 𝜔) . 𝛾 𝑘 𝜌 are non-negative, so we can multiply both sides of the subgradient inequality by a non-negative constant [297, Section 23]; furthermore, the subgradient of the constants 𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝜔 𝜔 𝜔) is 0 0 0. We get 𝜕𝐺 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦 𝑡) = ∑︁ 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦) -𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝜔 𝜔 𝜔) (27.252) 𝑔 𝑔 𝑔 𝑡 ∈ 𝜕𝐺 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦 𝑡) at point 𝑦 𝑦 𝑦 𝑡 ∈ Y is given by 𝑚)-th component of the subgradient 𝑔 𝑔 𝑔 𝑡 is 𝜅 𝜌 (𝑣, 𝑚) ≤ 𝑘 ∧ 𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦 𝑡) < 𝑟 𝑡 𝑘 𝑘 ′ =1 𝑧 𝑘 ′ 𝜌 (𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦 𝑡) ≥ 𝑟 𝑡 𝜌 . The gain function given by Eq. (4.16) is concave over its domain Y of possible fractional allocations. 𝑚 , where 𝑣, 𝑚 are such that 𝜅 𝜌 (𝑣, 𝑚) = 𝑘. Therefore, 𝑍 𝑘 𝜌 (𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦) is the minimum between a constant 𝑟 𝑡 𝜌 and a sum 𝑘 𝑘 ′ =1 𝑧 𝑘 ′ 𝜌 (𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥) of linear functions of 𝑦 𝑦 𝑦. Such minimum is thus a concave function of 𝑦 𝑦 𝑦. Therefore, the gain in Eq. (4.16) is a weighted sum with positive weights of concave functions in 𝑦 𝑦 𝑦, which is concave. Strong convexity of the Mirror Map Lemma 28.2. The global mirror map Φ(𝑦 𝑦 𝑦) = 𝑣 ∈V Φ(𝑦 𝑦 𝑦 𝑣) = 𝑣 ∈V 𝑚∈M 𝑠 𝑣 𝑚 𝑦 𝑣 𝑚 log(𝑦 𝑣 𝑚) defined over the domain D = R |M |×|V | >0 is 𝜃 -strongly convex w.r.t. the norm ∥ • ∥ 𝑙 1 (𝑠 𝑠 𝑠) over Y ∩ D, where and 𝑠 max ≜ 𝑠 𝑣 𝑚 : (𝑣, 𝑚) ∈ V × M is the maximum model size. In words, this means that the mirror map Φ's growth is lower bounded by a quadratic with curvature

	200 25 -Equivalent Expression of the Gain Function 26 -Projection Algorithm 27 -Subgradient Expression 206 28 -Supporting Lemmas for the Proof of Theorem 4.5.1 208	Chapter -Conclusion 201 203 205 Chapter -Conclusion 207 Chapter -Conclusion
	𝜌∈R 𝑘 ′ 𝛾 The sum 𝑘 Proof. Now we use Lemma 25.1 to express the cost function in Eq. (4.12) as a sum of the difference of 𝐾 𝜌 -1 ∑︁ 𝑘=1 𝛾 𝑘 𝜌 -𝛾 𝑘+1 𝜌 min 𝑟 𝑡 𝜌 , 𝑘 ∑︁ 𝑘 ′ =1 𝑧 𝑘 ′ 𝐾 𝜌 𝜌 𝑟 𝑡 𝜌 . (25.216) 𝐾 𝜌 𝜌 min        𝑟 𝑡 𝜌 , 𝐾 𝜌 ∑︁ 𝑘 ′ =1 𝑧 𝑘 ′ 𝜌 (𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥)        = 𝛾 𝐾 𝜌 𝜌 𝑟 𝑡 𝜌 . (25.217) min functions. 𝐶 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥) = ∑︁ 𝜌∈R 𝐾 𝜌 ∑︁ 𝑘=1 𝛾 𝑘 𝜌 • min 𝑟 𝑡 𝜌 -𝑘-1 ∑︁ 𝑘 ′ =1 𝑧 𝑘 ′ 𝜌 (𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥), 𝑧 𝑘 𝜌 (𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥) • 1 𝑘-1 ∑︁ 𝑘 ′ =1 𝑧 𝑘 ′ 𝜌 (𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥) < 𝑟 𝑡 𝜌 (25.218) = ∑︁ 𝜌∈R 𝐾 𝜌 ∑︁ 𝑘=1 𝛾 𝑘 𝜌 min 𝑟 𝑡 𝜌 , 𝑘 ∑︁ 𝑘 ′ =1 𝑧 𝑘 ′ 𝜌 (𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥) -min 𝑟 𝑡 𝜌 , 𝑘-1 ∑︁ 𝑘 ′ =1 𝑧 𝑘 ′ 𝜌 (𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥) (25.219) (25.217) = ∑︁ 𝜌∈R 𝐾 𝜌 -1 ∑︁ 𝑘=1 𝛾 𝑘 𝜌 min 𝑟 𝑡 𝜌 , 𝑘 ∑︁ 𝑘 ′ =1 𝑧 𝑘 ′ 𝜌 (𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥) -∑︁ 𝜌∈R 𝐾 𝜌 ∑︁ 𝑘=1 𝛾 𝑘 𝜌 min 𝑟 𝑡 𝜌 , 𝑘-1 ∑︁ 𝑘 ′ =1 𝑧 𝑘 ′ 𝜌 (𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥) + 𝛾 𝐾 𝜌 𝜌 𝑟 𝑡 𝜌 (25.220) = ∑︁ 𝜌∈R 𝐾 𝜌 -1 ∑︁ 𝑘=1 𝛾 𝑘 𝜌 min 𝑟 𝑡 𝜌 , 𝑘 ∑︁ 𝑘 ′ =1 𝑧 𝑘 ′ 𝜌 (𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥) -∑︁ 𝜌∈R 𝐾 𝜌 ∑︁ 𝑘=2 𝛾 𝑘 𝜌 min 𝑟 𝑡 𝜌 , 𝑘-1 ∑︁ 𝑘 ′ =1 𝑧 𝑘 ′ 𝜌 (𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥) + 𝛾 𝐾 𝜌 𝜌 𝑟 𝑡 𝜌 (25.221) = ∑︁ 𝜌∈R 𝐾 𝜌 -1 ∑︁ 𝑘=1 𝛾 𝑘 𝜌 min 𝑟 𝑡 𝜌 , 𝑘 ∑︁ 𝑘 ′ =1 𝑧 𝑘 ′ ∑︁ 𝜌∈R 𝐾 𝜌 -1 ∑︁ 𝑘=1 𝛾 𝑘+1 𝜌 min 𝑟 𝑡 𝜌 , 𝑘 ∑︁ 𝑘 ′ =1 𝑧 𝑘 ′ 𝐾 𝜌 𝜌 𝑟 𝑡 𝜌 (25.222) = ∑︁ 𝜌∈R 𝐾 𝜌 -1 ∑︁ 𝑘=1 𝛾 𝑘 𝜌 -𝛾 𝑘+1 𝜌 min 𝑟 𝑡 𝜌 , 𝑘 ∑︁ 𝑘 ′ =1 𝑧 𝑘 ′ 𝜌 (𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥) + 𝛾 𝐾 𝜌 𝜌 𝑟 𝑡 𝜌 . (25.223) □ Proof of Lemma 4.3.1. Proof. (25.224) = ∑︁ 𝜌∈R 𝐾 𝜌 -1 ∑︁ 𝑘=1 𝛾 𝑘 𝜌 -𝛾 𝑘+1 𝜌 min 𝑟 𝑡 𝜌 , 𝑘 ∑︁ 𝑘 ′ =1 𝑧 𝑘 ′ 𝜌 (𝑙 𝑙 𝑙 𝑡 , 𝜔 𝜔 𝜔) -∑︁ 𝜌∈R 𝐾 𝜌 -1 ∑︁ 𝑘=1 𝛾 𝑘 𝜌 -𝛾 𝑘+1 𝜌 min 𝑟 𝑡 𝜌 , 𝑘 ∑︁ 𝑘 ′ =1 𝑧 𝑘 ′ 𝜌 (𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥) (25.225) = ∑︁ 𝜌∈R 𝐾 𝜌 -1 ∑︁ 𝑘=1 𝛾 𝑘 𝜌 -𝛾 𝑘+1 𝜌 • min 𝑟 𝑡 𝜌 , 𝑘 ∑︁ 𝑘 ′ =1 𝑧 𝑘 ′ 𝜌 (𝑙 𝑙 𝑙 𝑡 , 𝜔 𝜔 𝜔) -min 𝑟 𝑡 𝜌 , 𝑘 ∑︁ 𝑘 ′ =1 𝑧 𝑘 ′ 𝜌 (𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥) (25.226) = ∑︁ 𝜌∈R 𝐾 𝜌 -1 ∑︁ 𝑘=1 𝛾 𝑘+1 𝜌 -𝛾 𝑘 𝜌 • min 𝑟 𝑡 𝜌 , 𝑘 ∑︁ 𝑘 ′ =1 𝑧 𝑘 ′ 𝜌 (𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥) -min 𝑟 𝑡 𝜌 , 𝑘 ∑︁ 𝑘 ′ =1 𝑧 𝑘 ′ 𝜌 (𝑙 𝑙 𝑙 𝑡 , 𝜔 𝜔 𝜔) (25.227) = ∑︁ 𝐾 𝜌 -1 ∑︁ 𝛾 𝑘+1 𝜌 -𝛾 𝑘 𝜌 𝑍 𝑘 (25.228) □ Algorithm .2 1 1: 𝑦 ′𝑣 |M |+1 ← +∞ 2: for 𝑘 ∈ {|M|, |M| -1, . . . , 1} do 3: 𝑚 𝑘 ← 𝑏 𝑣 -| M | 𝑚=𝑘+1 𝑠 𝑣 𝑚 𝑘 𝑚=1 𝑠 𝑣 𝑚 𝑦 ′𝑣 𝑚 4: if 𝑦 ′𝑣 𝑘 𝑚 𝑘 < 1 ≤ 𝑦 ′𝑣 𝑘+1 𝑚 𝑘 then ⊲ Appropriate 𝑘 is found 5: for 𝑘 ′ ∈ {1, 2, . . . , 𝑘 } do 6: 𝑦 𝑣 𝑘 ′ ← 𝑚 𝑘 𝑦 ′𝑣 𝑘 ′ ⊲ Scale the variable's components 7: end for 27 Subgradient Expression Lemma 27.1. 𝑔 𝑔 𝑔 𝑡 =       ∑︁ 𝜌∈R 𝑙 𝑡,𝑣 𝜌,𝑚 𝛾 𝐾 * 𝜌 (𝑦 𝑦 𝑦 𝑡) 𝜌 -𝐶 𝑣 𝑝 𝑝 𝑝,𝑚 1 𝜅 𝜌 (𝑣, 𝑚) < 𝐾 * 𝜌 (𝑦 𝑦 𝑦 𝑡)      , (27.245) By considering the subdifferential 𝜕𝐺 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦 𝑡) = 𝜕 ∑︁ 𝜌∈R 𝐾 𝜌 -1 ∑︁ 𝑘=1 𝛾 𝑘+1 𝜌 -𝛾 𝑘 𝜌 𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦) -𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝜔 𝜔 𝜔) , (27.250) and using [297, Theorem 23.6], we get The (𝑣, 𝑔 𝑣 𝑡,𝑚 = ∑︁ 𝜌∈R 𝐾 𝜌 -1 ∑︁ 𝑘=1 𝛾 𝑘+1 𝜌 -𝛾 𝑘 𝜌 • g𝑘,𝑣 𝜌,𝑡,𝑚 (27.255) = ∑︁ 𝐾 𝜌 -1 ∑︁ 𝑙 𝑡,𝑣 𝜌,𝑚 𝛾 𝑘+1 𝜌 -𝛾 𝑘 𝜌 • 1 𝜌 (27.256) 28.2 𝜃 ≜ 1 , (28.262) 𝑠 max |V ||M|  (𝑣,𝑚)∈V×M where 𝐾 * 𝜕𝐺 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦 𝑡) = ∑︁ 𝜌∈R 𝐾 𝜌 -1 ∑︁ 𝜕 𝛾 𝑘+1 𝜌 -𝛾 𝑘 𝜌 𝑍 𝑘 𝜌 (𝑟 (27.251) 𝜌∈R 𝑘=1 = ∑︁ ∑︁ 𝑠 𝑣 𝑚 |𝑦 𝑣 𝑚 | (weighted 𝑙 1 norm), (28.263) ∥𝑦 𝑦 𝑦 ∥ 𝑙 1 (𝑠 𝑠 𝑠) ≜ 𝐾 𝜌 -1 ∑︁ 𝑙 𝑡,𝑣 𝜌,𝑚 𝛾 𝑘+1 𝜌 -𝛾 𝑘 𝜌 • 1 𝑘 ∑︁ (𝑣,𝑚)∈V×M 𝑧 𝑘 ′ 𝜌 (𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦 𝑡) < 𝑟 𝑡 𝜌 (27.257) 𝑘=1 (26.230) The projection operation yields a constrained minimization problem, i.e., 𝑦 𝑦 𝑦 = Φ Y∩D (𝑦 𝑦 𝑦 ′) = argmin 𝑦 𝑦 𝑦∈Y∩D 𝐷 Φ (𝑦 𝑦 𝑦,𝑦 𝑦 𝑦 ′). (26.231) 𝑣 ∈V 𝐷 Φ 𝑣 (𝑦 𝑣 , 𝑦 ′𝑣) (26.232) where 𝑦 𝑦 𝑦 ∈ Y = 𝑚∈M 𝑠 𝑣 𝑚 𝑦 𝑣 𝑚 log(𝑦 𝑣 𝑚). The time complexity of the projection is O (|M| log(|M|)). Proof. Φ 𝑣 (26.234) = argmin 𝑦 𝑦 𝑦 𝑣 ∈Y 𝑣 ∩D 𝑣 ∑︁ 𝑚∈M 𝑠 𝑣 𝑚 𝑦 𝑣 𝑚 log 𝑦 𝑣 𝑚 𝑦 ′𝑣 𝑚 -𝑦 𝑣 𝑚 + 𝑦 ′𝑣 𝑚 . (26.235) ŷ𝑣 𝑚 ≤ 1, (26.237b) 𝛽 𝑚 ≥ 0, (26.237c) ∑︁ 𝑚∈M 𝑠 𝑣 𝑚 ŷ𝑣 𝑚 = 𝑏 𝑣 , (26.237d) 𝛽 𝑚 (1 -ŷ𝑣 𝑚) = 0. (26.237e) Without loss of generality, assume the components of ŷ ŷ ŷ𝑣 are in non-decreasing order. Let 𝑘 be the index of the largest component of ŷ ŷ ŷ𝑣 strictly smaller than , i.e., ŷ𝑣 1 ≤ ... ≤ ŷ𝑣 𝑘 < ŷ𝑣 𝑘+1 = ... = ŷ𝑣 |M | = 1 if 𝑘 < |M|, (26.238) ŷ𝑣 1 ≤ ŷ𝑣 2 ≤ ... ≤ ŷ𝑣 |M | < 1 if 𝑘 = |M|. (26.239) For a given 𝑘 ∈ M, we define 𝑚 𝑘 ≜ 𝑒 𝜏 = 𝑏 𝑣 -|M | 𝑚 𝑘 𝑚=1 𝑠 𝑣 𝑚 𝑦 ′𝑣 𝑚 . (26.243) Thus, a valid 𝑘 is the value satisfying the following inequalities (line 7 of Algorithm .2): 𝑦 ′𝑣 𝑘 𝑚 𝑘 < 1 ≤ 𝑦 ′𝑣 𝑘+1 𝑚 𝑘 . (26.244) □ 𝜕 𝜕𝑦 𝑣 𝑚 𝑘 ∑︁ 𝑘 ′ =1 𝑧 𝑘 ′ 𝑘 ∑︁ 𝑘 ′ =1 𝜕 𝜕𝑦 𝑣 𝑚 𝑧 𝑘 ′ 𝜌 (𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦 𝑡) = 𝑙 𝑡,𝑣 g𝑘,𝑣 𝜌,𝑡,𝑚 = 𝑙 𝑡,𝑣 𝜌,𝑚 • 1 𝜅 𝜌 (𝑣, 𝑚) ≤ 𝑘 if 𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦 𝑡) < 𝑟 𝑡 𝜌 , 0 otherwise. (27.248) (27.249) Lemma 28.1. Proof. Since 𝜆 𝑘 𝜌 is defined to be the 𝑘-th smallest cost for any 𝑘 ∈ [𝐾 𝜌] (see Eq. (4.11)), then the factors 𝛾 𝑘+1 𝜌 -𝛾 𝑘 𝜌 are always non-negative. Moreover 𝑧 𝑘 𝜌 (𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦) = 𝑦 𝑣 𝑚 𝑙 𝑡,𝑣 𝜌,□ 𝜌,𝑚 • 1 We obtain from Eq. (27.247) (4.11) 28.1 Concavity of the Gain Function 𝑚=𝑘+1 𝑠 𝑣 Note that for every (𝑣, 𝑚) ∈ V × M we have 28 Supporting Lemmas for the Proof of Theorem 4.5.1 𝑣 ∈V Y (26.233) 8: for 𝑘 ′ ∈ {𝑘 + 1, 𝑘 + 2, . . . , |M|} do 9: 𝑦 𝑣 𝑘 ′ ← 1 ⊲ Cap the variable's components to 1 10: end for 11: return 𝑦 𝑦 𝑦 𝑣 ⊲ 𝑦 𝑦 𝑦 𝑣 is the result of the projection 12: end if 13: end for J (𝑦 𝑦 𝑦 𝑣 , 𝛽, 𝜏) = ∑︁ 𝑚∈M 𝑠 𝑣 𝑚 𝑦 𝑣 𝑚 log 𝑦 𝑣 𝑚 𝑦 ′𝑣 𝑚 -𝑦 𝑣 𝑚 + 𝑦 ′𝑣 𝑚 -∑︁ 𝑚∈M 𝛽 𝑚 1 -𝑦 𝑣 𝑚 -𝜏 ∑︁ 𝑚∈M 𝑠 𝑣 𝑚 𝑦 𝑣 𝑚 -𝑏 𝑣 . (26.236) At optimal point ŷ ŷ ŷ𝑣 the following KKT conditions hold: 𝑠 𝑣 𝑚 log(ŷ𝑣 𝑚) -𝑠 𝑣 𝑚 log(𝑦 ′𝑣 𝑚) + 𝛽 𝑚 -𝑠 𝑣 𝑚 𝜏 = 0, (26.237a) 𝑏 𝑣 = |M | ∑︁ 𝑚=1 𝑠 𝑣 𝑚 ŷ𝑣 𝑚 = |M | ∑︁ 𝑚=𝑘+1 𝑠 𝑣 𝑚 + 𝑒 𝜏 𝑘 ∑︁ 𝑚=1 𝑠 𝑣 𝑚 𝑦 ′𝑣 𝑚 .            ∇(𝑘 𝑘 ′ 𝜌 , {0 0 0} otherwise , (27.246) 𝜕 𝜕𝑦 𝑣 𝑚 (•)] (𝑣,𝑚)∈V×M . The operator 𝜕 𝜕𝑦 𝑣 𝑚 (•) is the partial derivative w.r.t 𝑦 𝑣 𝑚 (not to be confused with the subdifferential notation). We restrict ourselves to the valid subgradient g 𝑔 𝑔 𝑘 𝜌,𝑡 ∈ 𝜕𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦 𝑡) given by g 𝑔 𝑔 𝑘 𝜌,𝑡 = 𝑘 ′ 𝜌 , 0 0 0, otherwise. (27.247) 𝜌∈R 𝑘=1 ∇(𝑘 The constant factors 𝛾 𝑘+1 𝜌 𝐾 𝜌 -1 ∑︁ 𝑘=1 𝛾 𝑘+1 𝜌 -𝛾 𝑘 𝜌 𝜕 𝑍 𝑘 ∑︁ 𝜌∈R ∑︁ 𝑘=1 𝛾 𝑘+1 𝜌 -𝛾 𝑘 𝜌 𝜕𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦). (27.253) Then, a subgradient 𝑔 𝑔 𝑔 𝑡 = ∑︁ 𝐾 𝜌 -1 ∑︁ 𝛾 𝑘+1 𝜌 -𝛾 𝑘 𝜌 g 𝑔 𝑔 𝑘 𝜌,𝑡 . (27.254) 𝜌∈R (4.11) = ∑︁ 𝜌∈R 𝑙 𝑡,𝑣 𝜌,𝑚 𝛾 𝐾 □ 𝜌 (𝑟 = 𝐾 𝜌 -1 𝜌∈R 𝑘=𝜅 𝜌 (𝑣,𝑚) 𝑘 ′ =1 𝜌∈R 𝐾 * 𝜌 (𝑦 𝑦 𝑦 𝑡)-1 𝑘=𝜅 𝜌 (𝑣,𝑚) = ∑︁ 𝜌∈R 𝑙 𝑡,𝑣 𝜌,𝑚 • 𝐾 * 𝜌 (𝑦 𝑦 𝑦 𝑡)-1 ∑︁ 𝑘=𝜅 𝜌 (𝑣,𝑚) 𝛾 𝑘+1 𝜌 -𝛾 𝑘 𝜌 (27.259) = ∑︁ 𝑙 𝑡,𝑣 𝜌,𝑚 𝛾 𝐾 * 𝜌 (𝑦 𝑦 𝑦 𝑡) 𝜌 -𝛾 𝜅 𝜌 (𝑣,𝑚) 𝜌 • 1 𝜅 𝜌 (𝑣, 𝑚) < 𝐾 * 𝜌 (𝑦 𝑦 𝑦 𝑡) (27.260) 1 𝑠 max |V ||M | . -𝜌∈R = ∑︁ ∑︁ 𝑙 𝑡,𝑣 𝜌,𝑚 𝛾 𝑘+1 𝜌 -𝛾 𝑘 𝜌 (27.258) Proof.
	𝜌∈R	𝑘=1

□

Lemma 25.2. The cost function given by Eq. (4.12) can be expressed as:

𝐶 (𝑟

𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥) = ∑︁ 𝜌 (𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥) + 𝛾 𝜌 (𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥) -𝜌 (𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥) + 𝛾 By using the expression Eq. (25.216) for a generic allocation vector 𝑥 𝑥 𝑥 and for 𝜔 𝜔 𝜔, we obtain: 𝐺 (𝑟 𝑟 𝑟,𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥) = 𝐶 (𝑟 𝑟 𝑟,𝑙 𝑙 𝑙 𝑡 , 𝜔 𝜔 𝜔) -𝐶 (𝑟 𝑟 𝑟,𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥) 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥) -𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝜔 𝜔 𝜔) .

The goal here is to identify a valid value for 𝑘 (number of components of ŷ ŷ ŷ𝑣 different from 1) and 𝜏. For now assume that 𝜏 is known, so a valid 𝑘 ∈ M should satisfy the following:

• where conv (•) is the convex hull of a set, and the gradient ∇ is given by ∇

(•) = [= 𝑙 𝑡,

𝑣 𝜌,𝑚 • 1 𝜅 𝜌 (𝑣, 𝑚) ≤ 𝑘 ∧ 𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦 𝑡) < 𝑟 𝑡 𝜌 , ∀(𝑣, 𝑚) ∈ V × M. * 𝜌 (𝑦 𝑦 𝑦 𝑡) 𝜌 -𝐶 𝑣 𝑝 𝑝 𝑝,𝑚 • 1 𝜅 𝜌 (𝑣, 𝑚) < 𝐾 * 𝜌 (𝑦 𝑦 𝑦 𝑡) , ∀(𝑣, 𝑚) ∈ V × M, (27.261) where 𝐾 * 𝜌 (𝑦 𝑦 𝑦 𝑡) = min 𝑘 ∈ [𝐾 𝜌 -1] :

 For any (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡) ∈ A, the subgradients 𝑔 𝑔 𝑔 𝑡 of the gain function in Eq. (4.16) at point 𝑦 𝑦 𝑦 𝑡 ∈ Y are bounded under the norm ∥ • ∥ 𝑙 ∞ (1 𝑠 𝑠 𝑠) by 𝜎 = 𝑅𝐿 max Δ 𝐶 𝑠 min , where 𝑠 min ≜ min{𝑠 𝑣 𝑚 : ∀(𝑣, 𝑚) ∈ V × M}, 𝐿 max ≜ max{𝐿 𝑣 𝑝 𝑝 𝑝 × M is the maximum serving cost difference between serving at a repository node 𝜈 (𝑝 𝑝 𝑝) and at any other node 𝑣 ∈ 𝑝 𝑝 𝑝. The norm ∥ • ∥ 𝑙 ∞ (1 𝑠 𝑠 𝑠) is defined as

	□	
	28.3 Subgradient Bound
	Lemma 28.3. max 𝑚∈M 𝜔	𝜈 (𝑝 𝑝 𝑝) 𝑚 ′ 𝐶

1 𝑠 max |V ||M | . 𝑚 : ∀(𝑣, 𝑚) ∈ V × M}, 𝑅 = |R|, and Δ 𝐶 ≜ 𝜈 (𝑝 𝑝 𝑝) 𝑝 𝑝 𝑝,𝑚 ′ -𝐶 𝑣 𝑝 𝑝 𝑝,𝑚 : ∀(𝑖, 𝑝 𝑝 𝑝) ∈ R, (𝑣, 𝑚) ∈

 𝑙 ∞ (1 𝑠 𝑠 𝑠) is the dual norm of ∥ • ∥ 𝑙 1 (𝑠 𝑠 𝑠) defined in(28.268) and (28.263), respectively. Proof.

									.269)
	(4.18) ≤	𝐿 max 𝑠 min	max	      	∑︁ 𝜌∈R	𝛾	𝐾 * 𝜌 (𝑦 𝑦 𝑦 𝑡) 𝜌	-𝐶 𝑣 𝑝 𝑝 𝑝,𝑚 • 1 𝜅 𝜌 (𝑣, 𝑚) < 𝐾 * 𝜌 (𝑦 𝑦 𝑦 𝑡) , ∀(𝑣, 𝑚) ∈ V × M (28.270)       
	(4.11) ≤	𝐿 max 𝑅 𝑠 min	max{𝛾	𝐾 𝜌 𝜌 -𝛾 1 𝜌 , ∀𝜌 ∈ R} ≤	𝐿 max 𝑅Δ 𝐶 𝑠 min	= 𝜎.	(28.271)
	□							
	28.4 Dual Norm						
	Lemma 28.4. ∥ • ∥							

 Consider any two vectors 𝑦 𝑦 𝑦 and 𝑧 𝑧 𝑧 in R V×M . We have 𝑧 𝑧 𝑧 𝑇 𝑦 𝑦 𝑦 = ∑︁

		(𝑣,𝑚)∈V×M	𝑦 𝑣 𝑚 𝑧 𝑣 𝑚 =	∑︁ (𝑣,𝑚)∈V×M	(𝑠 𝑣 𝑚 𝑦 𝑣 𝑚)	𝑧 𝑣 𝑚 𝑠 𝑣 𝑚	≤	∑︁ (𝑣,𝑚)∈V×M	(𝑠 𝑣 𝑚 • |𝑦 𝑣 𝑚 |)	|𝑧 𝑣 𝑚 | 𝑚 𝑠 𝑣	(28.273)
	≤	(𝑣,𝑚)∈V×M 𝑠 𝑣 𝑚 |𝑦 𝑣 𝑚 | max	|𝑧 𝑣 𝑚 | 𝑠 𝑣 𝑚				

.272)

We thus need to show that ∥𝑧 𝑧 𝑧

∥ 𝑙 ∞ (1 𝑠 𝑠 𝑠) = sup 𝑦 𝑦 𝑦∈R V × M 𝑧 𝑧 𝑧 𝑇 𝑦 𝑦 𝑦 : ∥𝑦 𝑦 𝑦 ∥ 𝑙 1 (𝑠 𝑠 𝑠) ≤ 1 , ∀𝑧 𝑧 𝑧 ∈ R V×M .

 ∥𝑦 𝑦 𝑦 * ∥ 𝑙 1 (𝑠 𝑠 𝑠) = 1 ≤ 1, then the supremum in(28.272) is attained for 𝑦 𝑦 𝑦 = 𝑦 𝑦 𝑦 * and has value∥𝑧 𝑧 𝑧 ∥ 𝑙 ∞ (1 𝑠 𝑠 𝑠) ; therefore, ∥ • ∥ 𝑙 ∞ (1 𝑠 𝑠 𝑠)is the dual norm of ∥ • ∥ 𝑙 1 (𝑠 𝑠 𝑠) . The value of the Bregman divergence 𝐷 Φ (𝑦 𝑦 𝑦,𝑦 𝑦 𝑦 1) in Eq. (26.229) associated with the mirror map Φ(𝑦 𝑦 𝑦)= 𝑣 ∈V Φ 𝑣 (𝑦 𝑦 𝑦 𝑣) = 𝑣 ∈V 𝑚∈M 𝑠 𝑣 ∥𝑠 𝑠 𝑠 𝑣 ∥ 1 } log ∥𝑠 𝑠 𝑠 𝑣 ∥ 1 min{𝑏 𝑣 , ∥𝑠 𝑠 𝑠 𝑣 ∥ 1 } ≥ 𝐷 Φ (𝑦 𝑦 𝑦,𝑦 𝑦 𝑦 1). 𝑣 ,∥𝑠 𝑠 𝑠 𝑣 ∥ 1 } ∥𝑠 𝑠 𝑠 𝑣 ∥ 1 , ∀(𝑣, 𝑚) ∈ V × Mand 𝑠 𝑠 𝑠 𝑣 = [𝑠 𝑣 𝑚] 𝑚∈M for every 𝑣 ∈ V. Proof. We prove that 𝑦 𝑦 𝑦 𝑣 1 is the minimizer of Φ 𝑣 over Y 𝑣 . As Φ 𝑣 is convex over Y 𝑣 and differentiable in 𝑦 𝑦 𝑦 𝑣 1 , 𝑦 𝑦 𝑦 𝑣 1 is a minimizer if and only if ∇Φ 𝑣 (𝑦 𝑦 𝑦 𝑣 1) 𝑇 (𝑦 𝑦 𝑦 𝑣 1 -𝑦 𝑦 𝑦) ≤ 0, ∀𝑦 𝑦 𝑦 𝑣 ∈ Y 𝑣 [53, Proposition 1.3] (first order optimality condition). Note that from the definition of Y 𝑣 (see Section 4.4) we have for any 𝑦 𝑦 𝑦 𝑣 ∈ Y 𝑣

	28 -28.5 Bregman Divergence Bound	211
	28.5 Bregman Divergence Bound
	Lemma 28.5. 𝑚 𝑦 𝑣 𝑚 log(𝑦 𝑣 𝑚) is upper bounded by a constant
	𝐷 max ≜	∑︁	min{𝑏 𝑣 , (28.276)
		𝑣 ∈V		
	where 𝑦 𝑣 1,𝑚 =			
				∑︁	𝑠 𝑣 𝑚 𝑦 𝑣
				𝑚∈M
					∑︁	𝑠 𝑣 𝑚 𝑦 𝑣 𝑚) (28.278)
					𝑚∈M
	(28.277)			𝑠 𝑣 𝑚 𝑦 𝑣 𝑚	(28.279)
					𝑚∈M
					(28.280)
	= 0.				(28.281)
					.275)
	Let (𝑣 * , 𝑚 *) = arg max	|𝑧 𝑣 𝑚 | 𝑠 𝑣 𝑚	.	The equality is achieved in (28.275) when 𝑦 𝑦 𝑦 * =
	(𝑣,𝑚) ∈ V × M		
	sign(𝑧 𝑣 𝑚) 𝑠 𝑣 𝑚 . Note that □ 1 ((𝑣, 𝑚) = (𝑣 * , 𝑚 *)) (𝑣,𝑚)∈V×M

min{𝑏 𝑚 = min{𝑏 𝑣 , ∥𝑠 𝑠 𝑠 𝑣 ∥ 1 }.

(28.277)

Let 𝑐 = min{𝑏 𝑣 ,∥𝑠 𝑠 𝑠 𝑣 ∥ 1 } ∥𝑠 𝑠 𝑠 𝑣 ∥ 1

, we get

∇Φ 𝑣 (𝑦 𝑦 𝑦 𝑣 1) 𝑇 (𝑦 𝑦 𝑦 𝑣 1 -𝑦 𝑦 𝑦) = ∑︁ 𝑚∈M 𝑠 𝑣 𝑚 (log(𝑐) + 1)(𝑐 -𝑦 𝑣 𝑚) = (log(𝑐) + 1)(𝑐 ∥𝑠 𝑠 𝑠 𝑣 ∥ 1 -= (log(𝑐) + 1) 𝑐 ∥𝑠 𝑠 𝑠 𝑣 ∥ 1 -∑︁ = (log(𝑐) + 1) (min{𝑏 𝑣 , ∥𝑠 𝑠 𝑠 𝑣 ∥ 1 } -min{𝑏 𝑣 , ∥𝑠 𝑠 𝑠 𝑣 ∥ 1 })

 of request types for which there is a non-zero number of requests in the request batch 𝑟 𝑟 𝑟 𝑡 . Lemma 28.6. The gain function in Eq. (4.16) can be equivalently expressed as 𝐺 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦) = ∑︁ Remember from the definition in Eq. (4.15) that 𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦) = min 𝑟 𝑡 𝜌 , 𝑘 𝑘 ′ =1 𝑧 𝑘 ′ 𝜌 (𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦) . We observe that 𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝜔 𝜔 𝜔) is not a function of 𝑦 𝑦 𝑦 and it is equal to 0, when there is no repository with model's rank smaller or equal to 𝑘, and to 𝑟 𝑡 𝜌 , otherwise; therefore, 𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝜔 𝜔 𝜔) ∈ {0, 𝑟 𝑡 𝜌 }. When 𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝜔 𝜔 𝜔) ≠ 0, and thus 𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝜔 𝜔 𝜔) = 𝑟 𝑡 𝜌 , the following holds 𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦) -𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝜔 𝜔 𝜔) = min 𝑟 𝑡 𝜌 , 𝜌 (𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦) -𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝜔 𝜔 𝜔) = 0. (28.289) The last equality holds because 𝑘 𝑘 ′ =1 𝑧 𝑘 ′ 𝜌 (𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦) -𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝜔 𝜔 𝜔) ≥ 0, ∀𝑦 𝑦 𝑦 ∈ X ∪ Y from Eq. (4.3). Otherwise, when 𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝜔 𝜔 𝜔) = 0, we have 𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦) -𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝜔 𝜔 𝜔) = 𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦) =1 𝑧 𝑘 ′ 𝜌 (𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦) . Hence, we can succinctly write, for any value of 𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝜔 𝜔 𝜔), that 𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦) -𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝜔 𝜔 𝜔) = min 𝑟 𝑡 𝜌 , 𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝜔 𝜔 𝜔) = 0 . (28.290) Since 𝑘 𝑘 ′ =1 𝑧 𝑘 ′ 𝜌 (𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦) is non negative, the previous formula implies that 𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦) -𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝜔 𝜔 𝜔) = 0, if 𝑟 𝑡 𝜌 = 0. (28.291) By combining Eq. (28.290) and (28.291) that 𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦) -𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝜔 𝜔 𝜔) = min 𝑟 𝑡 𝜌 , 𝜌 (𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦) 1 𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝜔 𝜔 𝜔) = 0 ∧ 𝑟 𝑡 𝜌 ≠ 0 . (28.292) Hence, applying the above equalities on the gain expression we get 𝐺 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦) 𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦) -𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝜔 𝜔 𝜔) (28.293) 𝜌 (𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦) 1 𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝜔 𝜔 𝜔) = 0 ∧ 𝑟 𝑡 𝜌 ≠ 0 𝜌 (𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦) 1 𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝜔 𝜔 𝜔) = 0 . (28.295) □ Lemma 28.7. Consider 𝑛 ∈ N, 𝑦 𝑦 𝑦 ∈ [0, 1] 𝑛 , 𝑞 𝑞 𝑞 ∈ N 𝑛 , and 𝑐 ∈ N. We assume that 𝑞 𝑖 ≤ 𝑐, ∀𝑖 ∈ [𝑛].

	28.6 Bounds on the Gain Function				
	Upper and lower bounds on the gain function in Eq. (4.16) will be established using the following
	bounding function						
		𝐾 𝜌 -1		𝑘				
	.283) 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝜔 𝜔 𝜔) = 0 , ∀𝑦 𝑦 𝑦 ∈ X ∪ Y, 1 𝑍 𝑘 (28.285) (28.286) (28.287) 𝜌 (𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦) -𝑍 𝑘 1 -𝑧 𝑘 ′ 𝜌 (𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦)/𝑟 𝑡 𝜌 supp𝑟 𝑟 𝑟 𝑡 ≜ 𝜌 ∈ R : 𝑟 𝑡 𝜌 𝑟 𝑡 -𝛾 𝑘 𝜌 1 -𝑘 ′ =1 𝜌 ≠ 0 𝛾 𝑘+1 𝛾 𝑘+1 𝜌 𝐾 𝜌 -1 ∑︁ 𝑘=1 is the set 𝜌∈supp𝑟 𝑟 𝑟 𝑡 Thus, we obtain Λ(𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦) ≜ ∑︁ 𝜌∈supp𝑟 𝑟 𝑟 𝑡 where ∑︁ 𝑘=1 𝜌 -𝛾 𝑘 𝜌 min 𝑟 𝑡 𝜌 , 𝑘 ∑︁ 𝑘 ′ =1 𝑧 𝑘 ′ Proof. 𝑘 ∑︁ 𝑘 ′ =1 𝑧 𝑘 ′ 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝜔 𝜔 𝜔) (28.288) = min 0, 𝑘 ∑︁ 𝑘 ′ =1 𝑧 𝑘 ′ (4.15) = min 𝑟 𝑡 𝜌 , 𝑘 ∑︁ 𝑘 ′ =1 𝑧 𝑘 ′ (4.16) = ∑︁ 𝜌∈R 𝐾 𝜌 -1 ∑︁ 𝑘=1 𝛾 𝑘+1 𝜌 -𝛾 𝑘 𝜌 𝑍 𝑘 𝜌 ((28.292) = ∑︁ 𝜌∈R 𝐾 𝜌 -1 ∑︁ 𝑘=1 𝛾 𝑘+1 𝜌 -𝛾 𝑘 𝜌 min 𝑟 𝑡 𝜌 , 𝑘 ∑︁ 𝑘 ′ =1 𝑧 𝑘 ′ (28.294) (28.286) = ∑︁ 𝜌∈supp𝑟 𝑟 𝑟 𝑡 𝐾 𝜌 -1 ∑︁ 𝑘=1 𝛾 𝑘+1 𝜌 -𝛾 𝑘 𝜌 min 𝑟 𝑡 𝜌 , 𝑘 ∑︁ 𝑘 ′ =1 𝑧 𝑘 ′ The following holds min     𝑐, ∑︁ 𝑦 𝑖 𝑞 𝑖     ≥ 𝑐 -𝑐 𝑘 ′ 𝑘    𝑖∈[𝑛]    𝑖∈[𝑛]
	∑︁ 𝑣 ∈V	𝐷 Φ 𝑣 (𝑦 𝑦 𝑦 𝑣 ,𝑦 𝑦 𝑦 𝑣 1)	(26.232) = 𝐷 Φ (𝑦 𝑦 𝑦,𝑦 𝑦 𝑦 1) ≤	∑︁ 𝑣 ∈V	min{𝑏 𝑣 , ∥𝑠 𝑠 𝑠 𝑣 ∥ 1 } log	∥𝑠 𝑠 𝑠 𝑣 ∥ 1 min{𝑏 𝑣 , ∥𝑠 𝑠 𝑠 𝑣 ∥ 1 }	.	(28.284)
	□							

𝜌 (𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦) 1 𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝜔 𝜔 𝜔) = 0 , ∀𝑦 𝑦 𝑦 ∈ X ∪ Y. 𝑘 ∑︁ 𝑘 ′ =1

𝑧 𝑘 ′ 𝜌 (𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦) 1

 .297) 𝑦 𝑖 𝑞 𝑖 /𝑐) + (𝑐𝑦 𝑛+1 𝑞 𝑛+1 /𝑐) 𝑦 𝑖 𝑞 𝑖 /𝑐) (28.301) ≤ 𝑎 𝑛 + 𝑦 𝑛+1 𝑞 𝑛+1 . (28.302) The last inequality holds since by construction 𝑞 𝑖 ≤ 𝑐 and thus 0 ≤ 𝑦 𝑖 𝑞 𝑖 /𝑐 ≤ 1, and 0 ≤ 𝑖∈[𝑛] (1 -𝑦 𝑖 𝑞 𝑖 /𝑐) ≤ 1. For the same reason, 0 ≤ 𝑖∈[𝑛+1] (1 -𝑦 𝑖 𝑞 𝑖 /𝑐) ≤ 1 and thus, by (28.298), we have 𝑎 𝑛+1 ≤ 𝑐. Moreover, note that if 𝑏 𝑛 = 𝑐 then 𝑏 𝑛+1 = 𝑐. Therefore: 𝑎 𝑛+1 ≤ min {𝑐, 𝑎 𝑛 + 𝑦 𝑛+1 𝑞 𝑛+1 } ≤ min {𝑐, 𝑏 𝑛 + 𝑦 𝑛+1 𝑞 𝑛+1 } (28.303) = min 𝑐, 𝑛+1 𝑖=1 𝑦 𝑖 𝑞 𝑖 = 𝑏 𝑛+1 , if 𝑏 𝑛 ≤ 𝑐, min {𝑐, 𝑐 + 𝑦 𝑛+1 𝑞 𝑛+1 } = 𝑐 = 𝑏 𝑛+1 , if 𝑏 𝑛 = 𝑐, (28.304) and the proof by induction is completed. Consider 𝑦 𝑦 𝑦 ∈ [0, 1] 𝑛 , 𝑞 𝑞 𝑞 ∈ N 𝑛 , 𝑐 ∈ N and 𝑛 ∈ N. We assume that 𝑞 𝑖 ≤ 𝑐, ∀𝑖 ∈ [𝑛].

						Chapter -Conclusion
	𝑎 𝑛+1 = 𝑐 -𝑐		(1 -𝑦 𝑖 𝑞 𝑖 /𝑐)	(28.298)
		𝑖∈[𝑛+1]		
	= 𝑐 -𝑐		(1 -𝑦 𝑖 𝑞 𝑖 /𝑐)(1 -𝑦 𝑛+1 𝑞 𝑛+1 /𝑐)	(28.299)
		𝑖∈[𝑛]			
	= 𝑐 -𝑐	𝑖∈[𝑛]	(1 -𝑖∈[𝑛]	(1 -𝑦 𝑖 𝑞 𝑖 /𝑐)	(28.300)
	= 𝑎 𝑛 + 𝑦 𝑛+1 𝑞 𝑛+1	𝑖∈[𝑛]	(1 -The
	following holds				
	𝑐 -𝑐				
	𝑖∈[𝑛]				
	Induction step.				

□

Lemma 28.8.

 28.308) 𝑛) 𝑧 ≥ (1 -1/𝑒)𝑧.(28.309) The last inequality is obtained since 1 -(1 -1/𝑛) 𝑛 decreases in 𝑛, and it is lower bounded by 1 -1/𝑒. By multiplying both sides of the above inequality by 𝑐 ∈ N, and replacing 𝑧 with its value we conclude the proof. Lemma 28.9. for any request batch 𝑟 𝑟 𝑟 𝑡 and potential available capacity 𝑙 𝑙 𝑙 𝑡 such that (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡) ∈ A, the allocation gain 𝐺 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦) has the following lower and upper bounds Λ(𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦) ≥ 𝐺 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦) ≥ Λ(𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦), ∀𝑦 𝑦 𝑦 ∈ X ∪ Y.We have the following 𝐺 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦) 𝜌 (𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦) 1 𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝜔 𝜔 𝜔) = 0 (28.311) 𝑧 𝜌,𝑘 ′ (𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦)/𝑟 𝑡 𝜌 1 𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝜔 𝜔 𝜔) = 0 = Λ(𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦), ∀𝑦 𝑦 𝑦 ∈ X ∪ Y, (28.313) and (1 -1/𝑒)𝐺 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦) 𝜌 (𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦) 1 𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝜔 𝜔 𝜔) = 0 𝑧 𝜌,𝑘 ′ (𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦)/𝑟 𝑡 𝜌 1 𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝜔 𝜔 𝜔) = 0 = Λ(𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦), ∀𝑦 𝑦 𝑦 ∈ X ∪ Y. (28.316) Inequalities in Eq. (28.312) and Eq. (28.315) follow from Eq. (28.296) and Eq. (28.305), respectively, by replacing 𝑐 = 𝑟 𝑡 𝜌 , 𝑞 𝑘 ′ = 𝜆 𝑘 ′ 𝜌 (𝑙 𝑙 𝑙 𝑡), 𝑥 𝑘 ′ = 𝑧 𝜌,𝑘 ′ (𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦)/𝜆 𝑘 ′ 𝜌 (𝑙 𝑙 𝑙 𝑡), and 𝑛 = 𝑘. Let the allocation 𝑥 𝑥 𝑥 𝑣 be the random output of DepRound on node 𝑣 ∈ V given the fractional allocation 𝑦 𝑦 𝑦 𝑣 ∈ Y 𝑣 . For any subset of the model catalog 𝑆 ⊂ M and any number 𝑐 𝑚 ∈ [0, 1], ∀𝑚 ∈ 𝑆, DepRound satisfies the following:DepRound uses a subroutine Simplify, which, given input variables 𝑦 𝑚 , 𝑦 𝑚 ′ ∈ (0, 1), outputs 𝑥 𝑚 , 𝑥 𝑚 ′ ∈ [0, 1] with at least one of them being integral (0 or 1). Note that the input to Simplify is never integral since it is only called on fractional and yet unrounded variables. The property (B3) in[START_REF] Byrka | An Improved Approximation for k-median, and Positive Correlation in Budgeted Optimization[END_REF] Lemma 2.1] implies that the output variables 𝑥 𝑚 and 𝑥 𝑚 ′ satisfy the following inequality:E[𝑥 𝑚 𝑥 𝑚 ′] ≤ 𝑦 𝑚 𝑦 𝑚 ′ .(28.318)We have for any 𝑐 𝑚 , 𝑐 𝑚 ′ ∈ [0, 1]:E[(1 -𝑥 𝑚 𝑐 𝑚)(1 -𝑥 𝑚 ′𝑐 𝑚 ′)] = E[1 -𝑥 𝑚 𝑐 𝑚 -𝑥 𝑚 ′𝑐 𝑚 ′ + 𝑥 𝑚 𝑥 𝑚 ′𝑐 𝑚 𝑐 𝑚 ′] (28.319) = 1 -𝑦 𝑚 𝑐 𝑚 -𝑦 𝑚 ′𝑐 𝑚 ′ + E[𝑥 𝑚 𝑥 𝑚 ′]𝑐 𝑚 𝑐 𝑚 ′ (28.320) ≤ 1 -𝑦 𝑚 𝑐 𝑚 -𝑦 𝑚 ′𝑐 𝑚 ′ + 𝑦 𝑚 𝑦 𝑚 ′𝑐 𝑚 𝑐 𝑚 ′ = (1 -𝑦 𝑚 𝑐 𝑚)(1 -𝑦 𝑚 ′𝑐 𝑚 ′). (28.321) where the second equality is obtained recalling that, by construction, E[𝑥 𝑣 𝑚] = 𝑦 𝑚 , ∀𝑚 ∈ M (Section 4.4.3). 29 -28.6 Bounds on the Gain Function 217 Thus, the two fractional inputs 𝑦 𝑚 and 𝑦 𝑚 ′ to the Simplify subroutine, return 𝑥 𝑚 and 𝑥 𝑚 ′ satisfying the property (28.321). By induction as in the proof in [173, Lemma 2.2], we obtain for any 𝑆 ⊂ M: 𝑦 𝑚 𝑐 𝑚). (28.322) Note that the above property is satisfied with equality if the components of 𝑥 𝑥 𝑥 ∈ {0, 1} |M | are sampled independently with E[𝑥 𝑚] = 𝑦 𝑚 . □ Lemma 28.11. Let the allocation 𝑥 𝑥 𝑥 𝑣 be the random output of DepRound on node 𝑣 ∈ V given the fractional allocation 𝑦 𝑦 𝑦 𝑣 ∈ Y 𝑣 . The following holds E [Λ(𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥 𝑡)] ≥ Λ(𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦 𝑡). For any 𝑘 ′ , assume 𝑚 ∈ M and 𝑣 ∈ V are such that 𝜅 𝜌 (𝑣, 𝑚) = 𝑘 ′ (Section 4.3.5). Since 𝑧 𝑘 ′ 𝜌 (𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦) = 𝑦 𝑣 𝑚 𝑙 𝑡,𝑣 𝜌,𝑚 for a given (𝑚, 𝑣) ∈ M × V, then 𝑧 𝜌,𝑘 ′ (𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦)/𝑟 𝑡 𝜌 can be written as: 𝑧 𝜌,𝑘 ′ (𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦)/𝑟 𝑡 𝜌 = 𝑡,𝑣 𝜌,𝑚 ≤ min{𝑟 𝑡 𝜌 , 𝐿 𝑣 𝑚 } -see Section 4.3.4) that scales variable 𝑦 𝑣 𝑚 ;therefore, by applying Lemma 28.10, we obtain the following upper bound on the bounding function. Consider for all 𝑣 ∈ V and 𝑡 ∈ [𝑇] that 𝑥 𝑥 𝑥 𝑣 𝑡 is the random allocation obtained by running DepRound on the fractional allocation 𝑦 𝑦 𝑦 𝑣 𝑡 , then E [Λ(𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥 𝑡)] 𝑧 𝜌,𝑘 ′ (𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥 𝑡)/𝑟 𝑡 𝜌 1 𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝜔 𝜔 𝜔) = 0 𝑧 𝜌,𝑘 ′ (𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥 𝑡)/𝑟 𝑡 𝜌 1 𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝜔 𝜔 𝜔) = 0 𝑧 𝜌,𝑘 ′ (𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦 𝑡)/𝑟 𝑡 𝜌 1 𝑍 𝑘 𝜌 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝜔 𝜔 𝜔) = 0 (28.327) = Λ(𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦 𝑡).

							𝐾 𝜌 -1	𝑘
			(28.287) = (1 -1/𝑒) E	∑︁ 𝜌∈supp𝑟 𝑟 𝑟 𝑡 (1 -𝑥 𝑚 𝑐 𝑚) ≤ ∑︁ 𝑘=1 𝛾 𝑘+1 𝜌	-𝛾 𝑘 𝜌 min 𝑟 𝑡 𝜌 ,	∑︁ 𝑘 ′ =1	𝑧 𝑘 ′
					𝑚∈𝑆		(28.314)
			(28.305) ≤	∑︁ 𝜌∈supp𝑟 𝑟 𝑟 𝑡	𝐾 𝜌 -1 ∑︁ 𝑘=1	𝛾 𝑘+1 𝜌	-𝛾 𝑘 𝜌 𝑟 𝑡 𝜌 1 -	𝑘 𝑘 ′ =1	1 -(28.315)
			(28.285)				
								(28.323)
	Proof.						
								𝑙 𝑡,𝑣 𝜌,𝑚 𝜌 𝑟 𝑡	𝑦 𝑣 𝑚 .	(28.324)
	where	𝑙 𝑡,𝑣 𝜌,𝑚 𝑟 𝑡					
	□						
				E		(1 -𝑥 𝑣 𝑚 𝑐 𝑚) ≤	(1 -𝑦 𝑣 𝑚 𝑐 𝑚).	(28.317)
				𝑚∈𝑆			𝑚∈𝑆
	Proof.						
	Proof.	1 -1 𝑒	-1 (28.310) (28.285) = E       ∑︁ 𝜌∈supp𝑟 𝑟 𝑟 𝑡 𝐾 𝜌 -1 ∑︁ 𝑘=1 𝛾 𝑘+1 𝜌 -𝛾 𝑘 𝜌 𝑟 𝑡 𝜌 1 -(28.325)	     
			𝐾 𝜌 -1				𝑘
		(28.287) = = 𝜌∈supp𝑟 𝑟 𝑟 𝑡 ∑︁ 𝜌∈supp𝑟 𝑟 𝑟 𝑡 ∑︁ ∑︁ 𝐾 𝜌 -1 ∑︁ 𝑘=1 𝑘=1 𝛾 𝑘+1 𝛾 𝑘+1 𝜌 𝜌 -𝛾 𝑘 -𝛾 𝑘 𝜌 min 𝑟 𝑡 𝜌 , 𝜌 𝑟 𝑡 𝜌 1 -E	𝑘 ∑︁ 𝑘 ′ =1 𝑘 ′ =1	𝑧 𝑘 ′ 1 -(28.326)
		(28.296) ≥ (28.285) ≥ 𝜌∈supp𝑟 𝑟 𝑟 𝑡 ∑︁ 𝜌∈supp𝑟 𝑟 𝑟 𝑡 𝐾 𝜌 -1 𝐾 𝜌 -1 ∑︁ 𝑘=1 ∑︁ ∑︁ 𝑘=1 𝛾 𝑘+1 𝛾 𝑘+1 𝜌 𝜌 -𝛾 𝑘 -𝛾 𝑘 𝜌 𝑟 𝑡 𝜌 1 -𝜌 𝑟 𝑡 𝜌 1 -𝑘 ′ =1 𝑘 𝑘 𝑘 ′ =1 1 -(28.328) 1 -(28.312)

≥ 1 -1 -1 𝑛 𝑧 𝑛 ≥ (1 -(1 -1/𝑛) □ Lemma 28.10. 𝑚∈𝑆 (1 -𝜌 is a constant in [0, 1] (𝑙 𝑘 𝑘 ′ =1

1 -

 2. The mirror map Φ : D → R is 𝜃 -strongly convex w.r.t. the norm ∥ • ∥ 𝑙 1 (𝑠 𝑠 𝑠) over Y ∩ D, where 𝜃 is equal to Eq. (28.262) (Lemma 28.2). 3. The gain function 𝐺 : Y → R is 𝜎-Lipchitz w.r.t ∥ • ∥ 𝑙 1 (𝑠 𝑠 𝑠) : the subgradients are bounded under the norm ∥•∥ 𝑙 ∞ (1 𝑠 𝑠 𝑠) by 𝜎, i.e., the subgradient of 𝐺 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦) at point 𝑦 𝑦 𝑦 𝑡 ∈ Y is upper bounded (∥𝑔 𝑔 𝑔 𝑡 ∥ 𝑙 ∞ (1 𝑠 𝑠 𝑠) ≤ 𝜎) for any (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡) ∈ A (Lemma 28.3). 4. ∥ • ∥ 𝑙 ∞ (1 𝑠 𝑠 𝑠) is the dual norm of ∥ • ∥ 𝑙 1 (𝑠 𝑠 𝑠) (Lemma 28.4). 5. The Bregman divergence 𝐷 Φ (𝑦 𝑦 𝑦 * ,𝑦 𝑦 𝑦 1) in Eq. (26.229) is upper bounded by a constant 𝐷 max where 𝑦 𝑦 𝑦 * = arg max 𝑦 𝑦 𝑦∈Y 𝑇 𝑡=1 𝐺 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦) and 𝑦 𝑦 𝑦 1 = arg min 𝑦 𝑦 𝑦∈Y∩D Φ(𝑦 𝑦 𝑦) is the initial allocation (Lemma 28.5). Because of properties 1-5 above, the following bound holds for the regret of INFIDA over its fractional domain Y (vector field point of view of Mirror Descent in [53, Section 4.2] combined with [53, Theorem 4.2]): Regret 𝑇 ,Y = sup {(𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡)} 𝑇 𝑡 =1 ∈A 𝑇 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦 𝑡) (29.329) ≤ 𝐷 Φ (𝑦 𝑦 𝑦 * ,𝑦 𝑦 𝑦 1) 𝜂 𝜂 is the learning rate of INFIDA (Algorithm 4.1, line 6). By selecting the learning rate 𝜂 = Integral domain regret guarantee. Note that, by restricting the maximization to the subset of integral allocations 𝑥 𝑥 𝑥 ∈ X, the optimal allocation 𝑥 𝑥 𝑥 * = arg max 𝑥 𝑥 𝑥 ∈X 𝑇 𝑡=1 𝐺 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥) can only lead to a lower gain, i.e., 𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥 *) ≤ 𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦 *). (29.332) 30 -Proof of Proposition 4.5.2 219 By taking 𝜓 = 1 -1 𝑒 , and using the bounding function Λ defined in Eq. (28.285), with the expectation taken over the random choices of the policy (DepRound at line 8 in Algorithm 4.1) we obtain 𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥 𝑡) 𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥 𝑡) 𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦 𝑡) 𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦 𝑡) 𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦 *) -𝜓𝜎 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥 *) -𝜓𝜎 𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥 𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥 𝑡) ≤ 𝜓𝜎The above inequality holds for any sequence {(𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡)} 𝑇 𝑡=1 ∈ A 𝑇 . Thus, the 𝜓 -regret is given by𝜓 -Regret 𝑇 ,X(4.20)= sup{𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 } 𝑇 𝑡 =1 ∈A 𝑇 𝜓 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥 𝑡) ≤ 𝐴 ∥𝑠 𝑠 𝑠 𝑣 ∥ 1 } log ∥𝑠 𝑠 𝑠 𝑣 ∥ 1 min{𝑏 𝑣 , ∥𝑠 𝑠 𝑠 𝑣 ∥ 1 },usingthe upper bounds on 𝜃 , 𝜎, and 𝐷 max determined in Lemmas 28.2, 28.3, and 28.5, respectively. This proves Theorem 4.5.1. 30 Proof of Proposition 4.5.2 𝑡=1 𝑦 𝑦 𝑦 𝑡 of INFIDA, and x 𝑥 𝑥 the random state sampled from ȳ 𝑦 𝑦 using DepRound. We take 𝐺 𝑇 (𝑦 𝑦 𝑦) = 1 𝑇 𝑇 𝑡=1 𝐺 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦), ∀𝑦 𝑦 𝑦 ∈ Y. We have It straightforward to check that 𝐺 𝑇 satisfies the same properties 1 (concavity) and 3 (subgradient boundedness) as 𝐺 and the remaining properties are preserved under the same mirror map and convex decision set. With properties 1-5 satisfied, we can apply [53, Theorem 4.2] to obtain (𝑦 𝑦 𝑦 𝑡) = T𝐺 𝑇 (𝑦 𝑦 𝑦 *) -𝑦 𝑦 𝑦 𝑡) ≥ 𝐺 𝑇 (𝑦 𝑦 𝑦 *) -𝜎 Using the same argument to obtain Eq. (29.332), i.e., restricting the maximization to the integral domain gives a lower value, we get

	E Dividing both sides of the above inequality by T gives 𝑇 ∑︁ 𝑡=1 𝐺 ((28.310) ≥ E 𝑇 ∑︁ 𝑡=1 Λ((28.323) ≥ 𝑇 ∑︁ 𝑡=1 𝐺 ((29.331) Λ((28.310) ≥ 𝜓 𝑇 ∑︁ 𝑡=1 T ∑︁ 𝑡=1 𝐺 𝑇 (𝑦 𝑦 𝑦 𝑡) ≤ 𝜎 √︂ 2𝐷 max 𝜃 T . ≥ 𝜓 𝑇 ∑︁ 𝐺 (√︂ 2𝐷 max 𝜃 𝑇 (29.332) ≥ 𝜓 𝑇 ∑︁ 𝐺 (𝑟 √︂	(30.338) 2𝐷 max 𝜃 𝑇 .
				𝑡=1			𝑡=1
	Thus, we have				1 T T ∑︁ 𝑡=1	𝐺 𝑇 (√︂	2𝐷 max 𝜃 T .	(29.333) (30.339)
		𝜓	𝑇 ∑︁	𝐺 (√︂	2𝐷 max 𝜃	𝑇 .	(29.334)
			𝑡=1				
					1 T T ∑︁		√︂	2𝐷 max 𝜃 T .	(30.340)
								√ 𝑇 ,	(29.335)
	where							√︂	2𝐷 𝜃 T .	(30.341)
	+ giving the tightest upper bound we obtain 𝜂 2𝜃 𝑇 ∑︁ 𝑡=1 𝐴 = 𝜓𝜎 where 1 𝜎 √︃ 2𝜃𝐷 max 𝑇 √︂ 2𝐷 max 𝜃 = 𝜓 𝑅𝐿 max Δ 𝐶 𝑠 min √︁ 𝑠 max |V ||M| √︄ 2 𝑦 𝑦 be the average fractional allocation ȳ 𝑦 𝑦 = 1 T T min{𝑏 𝑣 , Let ȳ ∥𝑔 𝑔 𝑔 𝑡 ∥ 2 𝑙 ∞ (1 𝑠 𝑠 𝑠) ≤ ∑︁ 𝑣 ∈V 31 Technical Lemmas and Definitions	𝐷 max 𝜂	+	𝜂𝜎 2 𝑇 2𝜃	.	(29.330) (30.342)
	E [𝐺 𝑇 (x 𝑥 𝑥)]	(28.310) ≥ E	1 𝑇	𝑇 ∑︁	Regret 𝑇 ,Y ≤ 𝜎 Λ(𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , x 𝑥 𝑥) (28.323) √︂ ≥ 1 2𝐷 max 𝜃 𝑇 𝑇 ∑︁ Λ(𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , ȳ 𝑇 . 𝑦 𝑦)	(28.310) ≥ 𝜓𝐺 𝑇 (ȳ 𝑦 𝑦).	(29.331) (30.336)
					𝑡=1			𝑡=1
	Using Jensen's inequality we get		
						𝜓𝐺 𝑇 (ȳ 𝑦 𝑦) ≥ 𝜓	1 T T ∑︁

𝑇 ∑︁ 𝑡=1 𝐺 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 ,𝑦 𝑦 𝑦 *)-𝑇 ∑︁ 𝑡=1 𝐺 (𝑟 𝑇 ∑︁ 𝑡=1 𝐺 (𝑇 ∑︁ 𝑡=1 𝐺 (*) -E 𝑇 ∑︁ 𝑡=1 𝐺 (𝑇 ∑︁ 𝑡=1 𝐺 (𝑟 𝑟 𝑟 𝑡 ,𝑙 𝑙 𝑙 𝑡 , 𝑥 𝑥 𝑥 *) -E 𝑇 ∑︁ 𝑡=1 𝐺 (𝑟 𝑡=1 𝐺 𝑇 (𝑦 𝑦 𝑦 𝑡). (30.337) T ∑︁ 𝑡=1 𝐺 𝑇 (𝑦 𝑦 𝑦 *) -T ∑︁ 𝑡=1 𝐺 𝑇 𝑡=1 𝐺 𝑇 (𝑦 𝑦 𝑦 𝑡) ≥ 𝐺 𝑇 (𝑥 𝑥 𝑥 *) -𝜎 Using Eq. (30.336), and Eq. (30.340) we obtain E [𝐺 𝑇 (x 𝑥 𝑥)] ≥ 𝜓𝐺 𝑇 (𝑥 𝑥 𝑥 *) -𝜓𝜎 Thus, ∀𝜖 > 0 and over a sufficiently large running time T for INFIDA, x 𝑥 𝑥 satisfies E [𝐺 𝑇 (x 𝑥 𝑥)] ≥ 1 -1 𝑒 -𝜖 𝐺 𝑇 (𝑥 𝑥 𝑥 *).

 1-𝛼 -1 1-𝛼 for 𝑢 ∈ 𝑢 ★,min , 𝑢 ★,max and 𝛼 ∈ R ≥0 \ {1} is given by(-𝑓 𝛼) ★ (𝜃) = max 𝑢∈ [𝑢★,min,𝑢★,max]We evaluate the derivative to characterize the maxima of r.h.s. term in the above equation 𝑢 𝛼 is a decreasing function in 𝑢; thus 𝜃 + 1 𝑢 𝛼 ≥ 0 when 𝑢 ≤ -1 𝜃 1 𝛼 , and 𝜃 + 1 𝑢 𝛼 < 0 otherwise. The maximum is achieved at 𝑢 = -1 Moreover, it is easy to check that the same argument holds for 𝑓 1 (𝑢) = log(𝑢) and we have(-𝑓 1) ★ (𝜃) = -1 -log(-𝜃) for 𝜃 ∈ -1/𝑢 ★,min , -1/𝑢 ★,max .(31.348)The convex conjugate of -𝐹 𝛼 (𝑢 𝑢 𝑢) = 𝑖∈I 𝑓 𝛼 (𝑢 𝑖) for 𝑢 𝑢 𝑢 ∈ U, using Eq. (31.347) and Eq. (31.348), is given by(-𝐹 𝛼) ★ (𝜃 𝜃 𝜃) = ∑︁ 𝑖∈I (-𝑓 𝛼) ★ (𝜃 𝑖) = Convex Biconjugate of 𝛼-Fairness FunctionsThe following Lemma provides a stronger condition on 𝜃 𝜃 𝜃 compared to[283, Lemma 2.2], i.e., we restrict 𝜃 𝜃 𝜃 ∈ Θ instead of ∥𝜃 𝜃 𝜃 ∥ ★ ≤ 𝐿 where 𝐿 ≥ ∥∇ 𝑢 𝑢 𝑢 𝐹 𝛼 (𝑢 𝑢 𝑢) ∥ ★ for all 𝑢 𝑢 𝑢 ∈ U and ∥ • ∥ ★ is the dual norm of ∥ • ∥.

							𝑢𝜃 +	𝑢 1-𝛼 -1 1 -𝛼	.	(31.345)
		𝜕 𝜕𝑢	𝑢𝜃 +	𝑢 1-𝛼 -1 1 -𝛼	= 𝜃 +	1 𝑢 𝛼 .	(31.346)
	The function 𝜃 + 1					
						𝜃	1 𝛼 . It holds through Eq. (31.345)
	(-𝑓 𝛼) ★ (𝜃) =	𝛼 (-𝜃) 1-1/𝛼 -1 1 -𝛼				for	𝜃 ∈ -1/𝑢 𝛼 ★,min , -1/𝑢 𝛼 ★,max .	(31.347)
			          	𝑖∈I ∑︁ 𝑖∈I ∑︁	𝛼 (-𝜃 𝑖) 1-1/𝛼 -1 1 -𝛼 -log(-𝜃 𝑖) -1	for 𝛼 ∈ R ≥0 \ {1}, for 𝛼 = 1,	(31.349)

for 𝜃 𝜃 𝜃 ∈ Θ, because 𝐹 𝛼 (𝑢 𝑢 𝑢) is separable in 𝑢 𝑢 𝑢 ∈ U. □ 31.3

2

 (𝑓 𝑡 (𝑥 𝑥 𝑥 𝑡) -𝑓 𝑡 (𝑥 𝑥 𝑥)) ≤ 2𝑔 𝑔 𝑔 𝑡 • (𝑥 𝑥 𝑥 𝑡 -𝑥 𝑥 𝑥) -𝜎 ∥𝑥 𝑥 𝑥 𝑡 -𝑥 𝑥 𝑥 ∥ 2 2 . ∥𝑥 𝑥 𝑥 𝑡+1 -𝑥 𝑥 𝑥 ∥ 2 2 = Π X 𝑥 𝑥 𝑥 𝑡 -𝜂 𝑡 𝑔 𝑔 𝑔 𝑡 -𝑥 𝑥 𝑥 2 2 ≤ ∥𝑥 𝑥 𝑥 𝑡 -𝜂 𝑡 -𝑥 𝑥 𝑥 ∥ 2 2 , (31.357) Expanding the r.h.s. term gives ∥𝑥 𝑥 𝑥 𝑡+1 -𝑥 𝑥 𝑥 ∥ 2 2 ≤ ∥𝑥 𝑥 𝑥 𝑡 -𝑥 𝑥 𝑥 ∥ 2 2 + 𝜂 2 𝑡 𝑔 𝑔 𝑔 𝑡 2 2 -2𝜂 𝑡 𝑔 𝑔 𝑔 𝑡 • (𝑥 𝑥 𝑥 𝑡 -𝑥 𝑥 𝑥) , (31.358) 2𝑔 𝑔 𝑔 𝑡 • (𝑥 𝑥 𝑥 𝑡 -𝑥 𝑥 𝑥) ≤ ∥𝑥 𝑥 𝑥 𝑡 -𝑥 𝑥 𝑥 ∥ 2 2 -∥𝑥 𝑥 𝑥 𝑡+1 -𝑥 𝑥 𝑥 ∥ 2 Combine Eq. (31.356) and Eq. (31.359) and for 𝑡 = 1 to 𝑡 = 𝑇 : 𝑥 𝑥 𝑥 𝑡) -𝑓 𝑡 (𝑥 𝑥 𝑥) ≤ 𝜎𝜂 𝑡) -∥𝑥 𝑥 𝑥 𝑡+1 -𝑥 𝑥 𝑥 ∥ 2When 𝜎 > 0 and 𝜂 𝑡 = 1 𝜎𝑡 , from Eq. (31.360) we have (𝑥 𝑥 𝑥 𝑡) -𝑓 𝑡 (𝑥 𝑥 𝑥) ≤ 0 + 𝑇 is the 𝑇 -th harmonic number.When 𝜎 = 0 and 𝜂 𝑡 = diam(X)

	224												Chapter -Conclusion
				𝑇 ∑︁ 𝑡=1	𝑔 𝑔 𝑔 𝑡 2𝜎𝑡	2 2	≤ max 𝑡 ∈T		𝑔 𝑔 𝑔 𝑡	2 2	𝑇 ∑︁ 𝑡=1	1 2𝜎	≤	max 𝑡 ∈T 𝑔 𝑔 𝑔 𝑡 2𝜎	2 2	H 𝑇 = O (log(𝑇)) ,
													(31.360)
	where H √︃	𝑡 𝑠=1 ∥𝑔 𝑔 𝑔 𝑠 ∥ 2 2	, from Eq. (31.360) we have
											𝑇 ∑︁ 𝑡=1	𝑔 𝑔 𝑔 𝑠	2 2 +	diam (X) 2	𝑇 ∑︁ 𝑡=1	√︃	2 2 𝑠=1 𝑔 𝑔 𝑔 𝑠 𝑔 𝑔 𝑔 𝑡 𝑡	2 2	(31.361)
					≤ 1.5 diam (X)	
													(31.356)
	Pythagorean theorem implies							
													𝜂 𝑡	2	+ 𝜂 𝑡 𝑔 𝑔 𝑔 𝑡	2 2 .	(31.359)
	2	𝑇 ∑︁ 𝑡=1	𝑓 𝑡 (𝑇 ∑︁ 𝑡=1	∥𝑥 𝑥 𝑥 𝑡 -𝑥 𝑥 𝑥 ∥ 2 2 (1 -2 𝜂 𝑡	+	𝑇 𝑡=1 ∑︁	𝜂 𝑡 𝑔 𝑔 𝑔 𝑡	2 2
			≤	𝑇 ∑︁ 𝑡=1	∥𝑥 𝑥 𝑥 𝑡 -𝑥 𝑥 𝑥 ∥ 2 2	1 𝜂 𝑡	-	1 𝜂 𝑡-1	-𝜎 +	𝑇 ∑︁ 𝑡=1	𝜂 𝑡 𝑔 𝑔 𝑔 𝑡	2 2	1 𝜂 0	≜ 0
			≤ diam 2 (X)		1 𝜂 𝑇	-𝜎𝑇 +	𝑇 𝑡=1 ∑︁	𝜂 𝑡 𝑔 𝑔 𝑔 𝑡	2 2 .	Telescoping series

𝑇 ∑︁ 𝑡=1 𝑓 𝑡 𝑇 ∑︁ 𝑡=1 𝑓 𝑡 (𝑥 𝑥 𝑥 𝑡) -𝑓 𝑡 (𝑥 𝑥 𝑥) ≤ diam (X) 2 𝑇 ∑︁ 𝑡=1 𝑔 𝑔 𝑔 𝑠

•

 The function Ψ 𝛼 : Θ × X → R is -strongly convex over Θ w.r.t. ∥ • ∥ 2 for 𝛼 > 0. Proof.Equation(31.364) is a direct result of Lemma 31.2. The function Ψ 𝛼 is concave over X because -𝜃 𝜃 𝜃 •𝑢 𝑢 𝑢 (𝑥 𝑥 𝑥) is a weighted sum of concave functions with non-negative weights. To prove the strong convexity of Ψ 𝛼 w.r.t. ∥ • ∥ 2 , a sufficient condition [292, Lemma 14] is given by𝜃 𝜃 𝜃 ′𝑇 ∇ 2 𝜃 𝜃 𝜃 Ψ 𝛼 (𝜃 𝜃 𝜃, 𝑥 𝑥 𝑥) 𝜃 𝜃 𝜃 ′ ≥ 𝜎 𝜃 𝜃 𝜃 ′ 2 2 for all 𝜃 𝜃 𝜃,𝜃 𝜃 𝜃 ′ ∈ Θ, and it holds 𝜃 𝜃 𝜃 ′𝑇 ∇ 2 𝜃 𝜃 𝜃 Ψ 𝛼 (𝜃 𝜃 𝜃, 𝑥 𝑥 𝑥) 𝜃 𝜃 𝜃 ′ = 𝛾 𝑇 𝑇 is a natural number. We consider two strategies selected by the adversary: Strategy 1. The adversary reveals the following utilities:𝑢 𝑢 𝑢 𝑡 (𝑥) = (1 + 𝑥, 2 -𝑥) if 𝑡 ≤ 𝛾 𝑇 𝑇 , 𝛾 𝑇 𝑥) + 𝑓 𝛼 (1 + 𝛾 𝑇 -𝛾 𝑇 𝑥).(32.368)The above objective is concave in 𝑥. We can perform a derivative test to characterize its maximum𝜕𝑓 𝛼 (1 + 𝛾 𝑇 𝑥) + 𝐹 𝛼 (1 + 𝛾 𝑇 -𝛾 𝑇 𝑥) 𝜕𝑥The fairness regret denoted by ℜ S1 𝑇 (𝐹 𝛼 , 𝐴 𝐴 𝐴) under this strategy of a policy A is given byℜ S1 𝑇 (𝐹 𝛼 , 𝐴 𝐴 𝐴) = OPT S1 -𝑓 𝛼Strategy 2. The adversary reveals the following utilities: 𝑢 𝑢 𝑢 𝑡 (𝑥) = (1 + 𝑥, 2 -𝑥) if 𝑡 ≤ 𝛾 𝑇 𝑇 , Under the selected utilities, the static optimum attains the following objective OPT S2 = max 𝑥 ∈X 𝑓 𝛼 ((1 + 𝑥)𝛾 𝑇 + (1 -𝛾 𝑇)2) + 𝑓 𝛼 ((2 -𝑥)𝛾 𝑇) (32.374) 𝛾 𝑇 + 𝛾 𝑇 𝑥) + 𝑓 𝛼 (2𝛾 𝑇 -𝛾 𝑇 𝑥). (32.375) Similar to the previous strategy, we can perform a derivative test to characterize the maximum of the the above objective 𝜕𝑓 𝛼 (2 -𝛾 𝑇 + 𝛾 𝑇 𝑥) + 𝑓 𝛼 (2𝛾 𝑇 -𝛾 𝑇 𝑥) 𝜕𝑥 𝛾 𝑇 + 𝛾 𝑇 𝑥) 𝛼 -𝛾 𝑇 (2𝛾 𝑇 -𝛾 𝑇 𝑥) 𝛼 = 0, for 𝑥 = 1.5 -1 2𝑓 𝛼 (1 + 0.5𝛾 𝑇). (32.376) and the fairness regret ℜ S2 𝑇 (𝐹 𝛼 , 𝐴 𝐴 𝐴) under this strategy is ℜ S2 𝑇 (𝐹 𝛼 , 𝐴 𝐴 𝐴) = OPT S2 -𝑓 𝛼 = 2𝑓 𝛼 (1 + 0.5𝛾 𝑇) -𝑓 𝛼 (2 -𝛾 𝑇 + 𝜓 𝑇) -𝑓 𝛼 (2𝛾 𝑇 -𝜓 𝑇). (32.378) We take the average fairness regret 1 2 ℜ S1 𝑇 (𝐹 𝛼 , 𝐴 𝐴 𝐴) + ℜ S2 𝑇 (𝐹 𝛼 , 𝐴 𝐴 𝐴) across the two strategies 1 2 ℜ S1 𝑇 (𝐹 𝛼 , 𝐴 𝐴 𝐴) + ℜ S2 𝑇 (𝐹 𝛼 , 𝐴 𝐴 𝐴) (32.379) = 2𝑓 𝛼 (1 + 0.5𝛾 𝑇) -1 2 (𝑓 𝛼 (2 -𝛾 𝑇 + 𝜓 𝑇) + 𝑓 𝛼 (2𝛾 𝑇 -𝜓 𝑇) + 𝑓 𝛼 (1 + 𝜓 𝑇) + 𝑓 𝛼 (1 + 𝛾 𝑇 -𝜓 𝑇)) . (32.380) The r.h.s. of the above equation is convex in 𝜓 𝑇 , so its minimizer can be characterized through the derivative as follows 𝜕𝑓 𝛼 (2 -𝛾 𝑇 + 𝜓) + 𝑓 𝛼 (2𝛾 𝑇 -𝜓) + 𝑓 𝛼 (1 + 𝜓) + 𝑓 𝛼 (1 + 𝛾 𝑇 -𝜓) 𝛾 𝑇 -𝜓) 𝛼 = 0, for 𝜓 = 𝛾 𝑇 -0.5. (32.382) We replace 𝜓 𝑇 = 𝛾 𝑇 -0.5 in Eq. (32.380) to get

							(2, 0)		otherwise.	(32.373)
			∑︁ 𝑖∈I	𝜃 ′ 𝑖	2 𝜕 2 𝜕𝜃 𝑖	(-𝐹 𝛼) ★ (𝜃 𝜃 𝜃) =	∑︁ 𝑖∈I	𝜃 ′ 𝑖 𝛼 (-𝜃 𝑖) 1+1/𝛼 ≥ 2	𝑢 1+1/𝛼 ★,min 𝛼	𝜃 𝜃 𝜃 ′ 2 2 .	(31.365)
	This concludes the proof.	= max 𝑥 ∈X	𝛾 𝑇 (2 -𝛾 𝑇 𝑓 𝛼 (2 -=	.
	Therefore, it holds							
					(1, 1) 𝑡=1 OPT S2 = 1 𝑇 𝛾 𝑇 𝑇 ∑︁ 1 + 𝑥 𝑡 + 2 -2𝛾 𝑇 -𝑓 𝛼 otherwise. 1 𝑇	𝑡=1 𝛾 𝑇 𝑇 ∑︁	2 -𝑥 𝑡	(32.366) (32.377)
	Under the selected utilities, the static optimum attains the following objective
		OPT S1 = max						
						=	𝛾 𝑇 (1 + 𝛾 𝑇 𝑥) 𝛼 -	𝛾 𝑇 (1 + 𝛾 𝑇 -𝛾 𝑇 𝑥) 𝛼 = 0,	for 𝑥 =	1 2	. (32.369)
	Thus, it holds							
			𝜕𝜓		OPT S1 = 2𝑓 𝛼 (1 + 0.5𝛾 𝑇).	(32.370) (32.381)
	=	𝑢 (2𝛾 𝑇 -𝜓) 𝛼 + 1+1/𝛼 ★,min 1 𝑇 𝛾 𝑇 𝑇 ∑︁ 1 (1 + 𝜓) 𝛼 -1 (1 + 1 1 (2 -𝛾 𝑇 + 𝜓) 𝛼 -2 ℜ S1	1	

𝛼 □ 32 Proof of Theorem 5.4.1 Proof.

Consider two players

I = {1, 2}, allocation set X = [-1, 1] for all 𝑡 ∈ T . We define 𝛾 𝑇 ∈ [0.4, 1], 𝜓 𝑇 ≜ 1 𝑇 𝛾 𝑇 𝑇 𝑡=1 𝑥 𝑡 . We assume w.l.g. 𝑥 ∈X 𝑓 𝛼 ((1 + 𝑥)𝛾 𝑇 + (1 -𝛾 𝑇)) + 𝑓 𝛼 ((2 -𝑥)𝛾 𝑇 + (1 -𝛾 𝑇)) (32.367) = max 𝑥 ∈X 𝑓 𝛼 (1 + 𝑡=1 1 + 𝑥 𝑡 + 1 -𝛾 𝑇 -𝑓 𝛼 1 𝑇 𝛾 𝑇 𝑇 ∑︁ 𝑡=1 2 -𝑥 𝑡 + 1 -𝛾 𝑇 (32.371) = 2𝑓 𝛼 (1 + 0.5𝛾 𝑇) -𝑓 𝛼 (1 + 𝜓 𝑇) -𝑓 𝛼 (1 + 𝛾 𝑇 -𝜓 𝑇). (

32

.372) 𝑇 (𝐹 𝛼 , 𝐴 𝐴 𝐴) + ℜ S2 𝑇 (𝐹 𝛼 , 𝐴 𝐴 𝐴) ≥ 2𝑓 𝛼 (1 + 0.5𝛾 𝑇) -(𝑓 𝛼 (1.5) + 𝑓 𝛼 (0.5 + 𝛾 𝑇)) . (32.383)

Ψ

 . From Lemma 31.3, OGD operating over the set Θ under the -strongly convex (Lemma 31.4) cost functions Ψ 𝛼,𝑡 (𝜃 𝜃 𝜃 𝑡 , 𝑥 𝑥 𝑥 𝑡) has the following regret guarantee against any fixed 𝜃 𝜃 𝜃 ∈ Θ 𝛼,𝑡 (𝜃 𝜃 𝜃 𝑡 , 𝑥 𝑥 𝑥 𝑡) -1 𝛼,𝑡 (𝜃 𝜃 𝜃 𝑡 , 𝑥 𝑥 𝑥 𝑡). (33.391) From Lemma 31.3, OGD operating over the set X under the reward functions Ψ 𝛼,𝑡 (𝜃 𝜃 𝜃 𝑡 , 𝑥 𝑥 𝑥) has the following regret guarantee for any fixed 𝑥 𝑥 𝑥 ★ ∈ X: 𝛼,𝑡 (𝜃 𝜃 𝜃 𝑡 , 𝑥 𝑥 𝑥 ★) -1 𝛼,𝑡 (𝜃 𝜃 𝜃 𝑡 , 𝑥 𝑥 𝑥 𝑡) ≤ 1 𝛼,𝑡 (𝜃 𝜃 𝜃 𝑡 , 𝑥 𝑥 𝑥 ★) 𝑢 𝑢 𝑢 𝑡 (𝑥 𝑥 𝑥 ★) Replace Ψ 𝛼,𝑡 (𝜃 𝜃 𝜃 𝑡 , 𝑥 𝑥 𝑥 ★) using Eq. (33.388) 𝑢 𝑢 𝑢 𝑡 (𝑥 𝑥 𝑥 ★) Jensen's inequality & convexity of 𝐹 ★ 𝜃 𝜃 𝑡 -θ 𝜃 𝜃) • 𝑢 𝑢 𝑢 𝑡 (𝑥 𝑥 𝑥 ★) 𝜃 𝜃) • 𝑢 𝑢 𝑢 𝑡 (𝑥 𝑥 𝑥 ★) 𝜃 𝜃 • 𝑢 𝑢 𝑢 𝑡 (𝑥 𝑥 𝑥 ★). (33.393) We combine the above equation and Eq. (33.391) to obtain 𝜃 𝜃 • 𝑢 𝑢 𝑢 𝑡 (𝑥 𝑥 𝑥 ★) 𝜃 𝜃 𝜃 𝑡 • 𝛿 𝛿 𝛿 𝑡 (𝑥 𝑥 𝑥 ★) We provide two approaches to bound the r.h.s. term Σ in Eq. (33.396), and this gives the two conditions in Assumption (A5): Bound 1. We can bound the r.h.s. term Σ in the above equation as follows 𝛿 𝛿 𝛿 𝑡 (𝑥 𝑥 𝑥 ★) (33.395) 𝑖 (𝑥 𝑥 𝑥 ★)1 {𝛿𝑡,𝑖 (𝑥 𝑥 𝑥 ★)≥0} = O (V T) . 𝜃 𝜃 𝜃 𝑡 • 𝛿 𝛿 𝛿 𝑡 (𝑥 𝑥 𝑥 ★) = 𝜃 𝜃 𝜃 min(T 𝑘) • 𝛿 𝛿 𝛿 𝑡 (𝑥 𝑥 𝑥 ★) + 𝜃 𝜃 𝜃 min(T 𝑘) -𝜃 𝜃 𝜃 𝑡 • 𝛿 𝛿 𝛿 𝑡 (𝑥 𝑥 𝑥 ★) 𝛼 = max 𝜃 𝜃 𝜃 -𝜃 𝜃 𝜃 ′ ∞ : 𝜃 𝜃 𝜃,𝜃 𝜃 𝜃 ′ ∈ Θ . We bound the term 𝐾 𝑘=1 𝑡 ∈T 𝑘 𝜃 𝜃 𝜃 min(T 𝑘) -𝜃 𝜃 𝜃 𝑡 1 in the above equation as 𝜃 𝜃 𝜃 min(T 𝑘) -𝜃 𝜃 𝜃 𝑡 1 ≤ 𝐿 Θ 𝑘) |T 𝑘 | 2 (33.398) 𝛿 𝛿 𝛿 𝑡 (𝑥 𝑥 𝑥 ★) 𝑘 ′ <𝑘 |T 𝑘 |+1 = O (W T) . (33.400) We combine Eq. (33.396), Eq. (33.400), and Eq. (33.394) to obtain ℜ 𝑇 (𝐹 𝛼 , A A A) ≤ sup {𝑢 𝑢 𝑢 𝑡 } 𝑇 𝑡 =1 ∈U 𝑇 -𝜃 𝑡,𝑖 1/𝛼 -(𝑢 𝑢 𝑢 𝑡 (𝑥 𝑥 𝑥 𝑡)) 𝑔 𝑔 𝑔 X,𝑡 2 = ∥𝜃 𝜃 𝜃 𝑡 • 𝜕 𝑥 𝑥 𝑥 𝑢 𝑢 𝑢 𝑡 (𝑥 𝑥 𝑥 𝑡)∥ 2 ≤ 1 ∥𝜕 𝑥 𝑥 𝑥 𝑢 𝑢 𝑢 𝑡 (𝑥 𝑥 𝑥 𝑡)∥ 2 ≤

	33 -Proof of Theorem 5.4.2				229
	Hence, we have the following		
	𝑢 1 1+1/𝛼 ★,min 𝑇 𝑇 ∑︁ 𝑡=1 From Lemma 31.2, it holds 1 𝑇 𝑇 ∑︁ 𝑡=1 Ψ 𝛼,𝑡 (𝜃 𝜃 𝜃 𝑡 , 𝑥 𝑥 𝑥 𝑡) + ℜ 𝑇 ,X 𝑇 ≥ 𝐾 Ψ = 𝑇 1 𝑇 ∑︁ 𝑡=1 𝐾 1 𝑇 𝑇 ∑︁ 𝑡=1 𝐹 ★ (𝜃 𝜃 𝜃 𝑡) -1 𝑇 𝑇 ∑︁ 𝑡=1 𝜃 𝜃 𝜃 𝑡 • ≥ 𝐹 ★ 1 𝑇 𝑇 ∑︁ 𝑡=1 𝜃 𝜃 𝜃 𝑡 -1 𝑇 𝑇 ∑︁ 𝑡=1 ∑︁ 𝑘=1 ∑︁ 𝑡 ∈T 𝑘 ∑︁ 𝑘=1 𝜂 Θ, min(T 𝑘) 𝑇 𝑇 ∑︁ 𝑡=1 Ψ 𝛼,𝑡 (𝜃 𝜃 𝜃, 𝑥 𝑥 𝑥 𝑡) ≤ ∑︁ 𝑡 ∈T 𝑘 (𝑡 -min (T 𝑘)) ≤ 𝐿 Θ 1 𝑇 • 1 2 𝑇 ∑︁ 𝑡=1 𝑢 1+1/𝛼 𝛼 ★,min 𝑡 ℜ 𝑇 ,Θ 𝐾 ∑︁ 𝑘=1 𝜂 Θ, min(T = 𝐿 Θ 𝑔 𝑔 𝑔 Θ,𝑡 2 2 , 𝑢 1+ 1 𝛼 ★,min 𝛼 𝐾 ∑︁ 𝑘=1 |T 𝑘 | 2 , min (T 𝑘) and replacing this upper-bound in Eq. (33.397) gives 𝜃 𝜃 𝜃 𝑡 • ≥ 𝐹 ★ θ 𝜃 𝜃 -θ 𝜃 𝜃 • 1 𝑇 𝑇 ∑︁ 𝑡=1 𝑢 𝑢 𝑢 𝑡 (𝑥 𝑥 𝑥 ★) -𝑇 1 𝑇 ∑︁ 𝑡=1 Σ ≤ Δ 𝛼 𝐾 ∑︁ 𝑘=1 ∑︁ 𝑡 ∈T 𝑘 1 + 𝑢 max 𝐿 Θ 𝛼 𝑢 1+ 1 𝛼 ★,min 𝐾 ∑︁ 𝑘=1 |T 𝑘 | 2 min (T 𝑘) (𝜃 ≥ min 𝜃 𝜃 𝜃 ∈Θ 1 𝑇 ∑︁ 𝐹 = 𝐹 𝛼 𝑇 𝑇	(33.389) (33.399) (33.401)
	min 𝜃 𝜃 𝜃 ∈Θ 𝑢 𝑢 𝑢 𝑡 (𝑥 𝑥 𝑥 ★) -𝐹 𝛼 1 𝑇 ≤ sup 𝑇 ∑︁ 𝑡=1 {𝑢 𝑢 𝑢 𝑡 } 𝑇 𝑡 =1 ∈U 𝑇        1 𝑇 1.5 diam (X) 1 𝑇 𝑇 ∑︁ 𝑇 ∑︁ 𝑡=1 𝑢 𝑢 𝑢 𝑡 (𝑥 𝑥 𝑥 𝑡) ≤ √︄ ∑︁ ℜ 𝑇 ,X 𝑇 𝑡 ∈T 𝑔 𝑔 𝑔 X,𝑡 Combine Eq. (33.389) and Eq. (33.390) to obtain the lower bound 𝐹 𝛼 1 𝑇 + ℜ 𝑇 ,Θ 𝑇 + 1 𝑇 ∑︁ 𝑇 𝑡=1 2 2 + 𝛼 𝑢 𝑇 ∑︁ 1+ 1 𝛼 ★,min 𝑡=1 𝐹 𝛼 1 𝑇 𝑇 ∑︁ 𝑡=1 𝑢 𝑢 𝑢 𝑡 (𝑥 𝑥 𝑥 𝑡) + ℜ 𝑇 ,Θ 𝑇 ≥ 1 𝑇 𝑇 ∑︁ 𝑡=1 Ψ 1 𝑇 𝑇 ∑︁ 𝑡=1 Ψ 𝑇 𝑇 ∑︁ 𝑡=1 Ψ 𝑇 • 1.5 diam (X) √︄ 𝜃 𝜃 𝜃 𝑡 -θ 𝑔 𝑔 𝑔 Θ,𝑡 2 2 𝑡 ∑︁ 𝑡 ∈T 𝑔 𝑔 𝑔 X,𝑡        = ℜ 𝑇 ,X 𝑇 + ℜ 𝑇 ,Θ 𝑇 + 𝑇 1 𝑇 ∑︁ 𝑡=1 θ 𝜃 𝜃 • The following upper bounds hold 𝑔 𝑔 𝑔 Θ,𝑡 2 = 1 𝑖∈I 2 ≤ √ 𝐼 max 1 𝑢 1/𝛼 ★,min -𝑢 min , 𝑢 max -𝑢 𝛼 𝐿 X 𝑢 𝛼 𝜃 𝜃 -Σ = θ ★,min ★,min	(33.390) min {V T , W T } 𝑇 (33.402) (33.392) ★,max + O 2 2 , 1 𝑢 1/𝛼 = 𝐿 Θ ,	.
				≤	1 𝑢 ★,min	𝑖∈I ∑︁	𝑇 𝑡=1 ∑︁	ℜ 𝑇 ,X 𝛿 𝑡,(33.396)
	Bound 2. We alternatively bound Σ as follows
	Σ =	𝐾 ∑︁	∑︁	θ 𝜃 𝜃 -𝐾 ∑︁	∑︁	θ 𝜃 𝜃 -𝐾 ∑︁	∑︁
		𝑘=1	𝑡 ∈T 𝑘			𝑘=1	𝑡 ∈T 𝑘	𝑘=1	𝑡 ∈T 𝑘
			𝐾				
	≤ Δ 𝛼	∑︁				

𝛼 𝑡=1

Ψ 𝛼,𝑡 (𝜃 𝜃 𝜃, 𝑥 𝑥 𝑥 𝑡) = 𝐹

𝛼

1

𝑇 𝑇 ∑︁ 𝑡=1 𝑢 𝑢 𝑢 𝑡 (𝑥 𝑥 𝑥 𝑡) . ★ (𝜃 𝜃 𝜃) -𝜃 𝜃 𝜃 • 1 𝑇 𝑇 ∑︁ 𝑡=1 𝑢 𝑢 𝑢 𝑡 (𝑥 𝑥 𝑥 ★) -1 𝑇 𝑇 ∑︁ 𝑡=1 (𝜃 𝜃 𝜃 𝑡 -θ 𝑡=1 𝑢 𝑢 𝑢 𝑡 (𝑥 𝑥 𝑥 ★) -1 𝑇 𝑇 ∑︁ 𝑡=1 𝜃 𝜃 𝜃 𝑡 -θ Σ (

33

.394) 𝑇 ∑︁ 𝑡=1 𝛿 𝛿 𝛿 𝑡 (𝑥 𝑥 𝑥 ★) -𝑇 ∑︁ 𝑡=1 𝜃 𝜃 𝜃 𝑡 • 𝛿 𝛿 𝛿 𝑡 (𝑥 𝑥 𝑥 ★) = -𝑇 ∑︁ 𝑡=1 𝜃 𝜃 𝜃 𝑡 • 𝑘=1 ∑︁ 𝑡 ∈T 𝑘 𝛿 𝛿 𝛿 𝑡 (𝑥 𝑥 𝑥 ★) 1 + 𝑢 max 𝐾 ∑︁ 𝑘=1 ∑︁ 𝑡 ∈T 𝑘 𝜃 𝜃 𝜃 min(T 𝑘) -𝜃 𝜃 𝜃 𝑡 1 , (33.397) where Δ 1 𝑇 ℜ 𝑇 ,X + ℜ 𝑇 ,Θ + O min {V T , W T }

Table 1 :

 1 2/3 exp(-2𝑇2𝛽).Note that given that W T ≥ 0 in Eq. (5.10), it holds lim 𝑇 →∞ W T = 0 w.p. 𝑝 = 1. Therefore, it follows from Theorem 33 for 𝑇 → ∞ ℜ 𝑇 (𝐹 𝛼 , A A A) = O Specification of the network topologies used in experiments.

	(35.412)

 28 2.7 Online rounding of fractional caching states. Visually, we see that the online independent rounding has more frequent updates than the online coupled rounding. This leads to large update costs. The online coupled rounding and the online optimallycoupled rounding prevents the cache to perform unnecessary updates. 29 2.8 Runtime per iteration of OMD NE and OGD. Subfigure (a) shows the runtime per 500 iterations over the Fixed Popularity trace. Subfigure (b) shows the runtime per 50 iterations over the Batched Fixed Popularity (2) trace. 29 2.9 A general cache network, as proposed by Ioannidis and Yeh [21]. Designated servers store items in a catalog permanently. Requests arrive at arbitrary nodes in the network and follow predetermined paths towards these servers; responses incur costs indicated by weights on the edges. Intermediate nodes can serve as caches; the objective is to determine what items to store in each cache, to minimize the overall routing cost or, equivalently, maximize the caching gain. 33 2.10 Request traces for different scenarios. Each dot indicates an access to an item in the catalog; items are ordered in an overall increasing popularity from top to bottom. In Sliding Popularity, popularity changes at fixed time intervals, through a cyclic shift (most popular items become least popular). In Shot Noise, each item remains active for a limited lifetime. 45 2.11 TACG of different algorithms over different topologies with Stationary Requests. The total simulation time is 1000 time units. TBGRD, GRD, and PGA perform well in comparison to path replication policies. However, GRD and other myopic strategies attain zero TACG over abilene and path, the round-robin scenarios. In comparison, TBGRD and PGA still perform well. 47 2.12 TACG of different algorithms over different topologies with Sliding Popularity. The total simulation time is 1000 time units. TBGRD, GRD, and PGA again outperform path replication algorithms; GRD sometimes even outperforms the (static) OFL solution, attaining a normalized TACG larger than one. However, GRD and several path replication algorithms again fail catastrophically over the abilene and path scenarios, while TBGRD and PGA again attain a normalized TACG close to one. 47 2.13 TACG of different algorithms over different topologies with Shot Noise. We again observe TBGRD, GRD, and PGA perform well in this non-stationary request arrival setting. Moreover, several algorithms outperform the (static) offline solution OFL in this setting. Again, GRD and other myopic path replication policies fail over abilene and path, while TBGRD and PGA still attain a non-zero TACG. 47

This definition of diversity is consistent with other notions of diversity, such as, e.g., the entropy; indeed the diversity ratio provides a lower bound on the entropy of the normalized batch vector 𝑟 𝑟 𝑟 𝑡 𝑅 , as 𝐸 𝑟 𝑟 𝑟 𝑡 𝑅 ≥ log 𝑅 ℎ [51,Lemma 3], where 𝐸 (𝑝 𝑝 𝑝) = -𝑖 𝑝 𝑖 log(𝑝 𝑖) is the entropy function.

To be precise, the projection algorithm as presented in[19] requires at each iteration a preliminary step with complexity O (𝑁 log(𝑁)) to sort a vector of size 𝑁 , followed by O (𝑁) steps. However, it is possible to replace sorting by O (log(𝑁)) binary search and insertion operations reducing the complexity to O (𝑁) per iteration.

Algorithm 2.3 provides a linear-time variant of the algorithms proposed in[21,

[START_REF] Blaszczyszyn | Optimal Geographic Caching In Cellular Networks[END_REF][START_REF] William | On the Theory of Systematic Sampling[END_REF]. The algorithm samples an integral caching state without constructing a distribution and its support.

Our analysis readily extends to a multiset R 𝑡 , whereby the same request is submitted multiple times within the same round. We restrict the exposition to sets for notational simplicity.

In contrast to the classic bandit feedback model, where only the reward 𝑓 𝑡 (𝐴 𝑡) is revealed in each round 𝑡.

This is also known as the multiplicative weight algorithm.

In such a case, selectors corresponding to inactive colors need not be maintained, and can be discarded.

In practice, trading communication for space, the full W can also be just computed once, at the first time request (𝑖, 𝑝) is generated, Each 𝑣 can store their own 𝑤 𝑝 𝑣 for paths that traverse them, and only weights of nodes storing 𝑖 need to be included in W in subsequent requests.

As noted in[START_REF] Neglia | Similarity Caching: Theory and Algorithms[END_REF], when object requests fall uniformly over the points of a 𝐿 ×𝐿 grid (with wrap-around conditions), with ℎ = 𝐿 = 1 + 2𝑙 (𝑙 + 1), for some positive integer 𝑙, an optimal cache configuration can be computed. The value ℎ = 𝐿 =

results from the particular choice of 𝑙 = 12. For a non-homogeneous request process an approximate optimal cost can be computed as well (see Appendix F in[START_REF] Neglia | Similarity Caching: Theory and Algorithms[END_REF]).

Note that Grades grafted with 𝑝 = 𝑝 ′ to a 𝑞LRU-Δ𝐶 with 𝑞 = 𝑞 ′ is equivalent to Grades grafted with 𝑝 = 1 to a 𝑞LRU-Δ𝐶 with parameter 𝑞 = 𝑝 ′ × 𝑞 ′ .

More precisely, these are the 𝑘 objects whose embeddings are closer to the embedding of 𝑟 . From now on we identify objects and their embeddings.

The vector 𝑥 𝑥 𝑥 has clearly redundant components, but such redundancy leads to more compact expressions in what follows.

Properly speaking OMA, only refers to the update of 𝑦 𝑦 𝑦 𝑡 and does not include the randomized rounding schemes in lines 8-14.

We discard the initial part of the trace because it contains requests only for a small set of objects (likely the set of products to crawl was progressively extended during the measurement campaign in[START_REF] Mcauley | Image-Based Recommendations on Styles and Substitutes[END_REF]).

Under a stationary request process, a smaller learning rate would lead to converge slower but to a solution closer to the optimal one. Under a non-stationary process, a higher learning rate may allow faster adaptivity. In this trace, the two effects almost compensate, but see alsoFigure 3.23.

We are using the term task according to its meaning in the ML community, e.g., a task could be to detect objects in an image, to predict its future position, to recognize vocal commands.

Our formulation allows each node to host multiple copies of the same model to satisfy a larger number of request. For example, two copies of the same model can be represented as two distinct models with identical performance and requirements.

Note that, even when the limiting resource is the same, say computing, the budget consumed by a model may be different across nodes, as they may have different hardware (e.g., GPUs, CPUs, or TPUs).

Note that we do not consider only the models deployed in the network, but all the possible node-model pairs.

In realistic settings (Section 4.6), we experienced that each deployed model has at most

better alternatives on upstream nodes (worst case with 𝛼=1).

Technically, the advantage in this setting derives from the infinite norm of the subgradient being independent from the space dimension, while the Euclidean norm grows proportionally to the squared root of the space dimension[START_REF] Bubeck | Convex Optimization: Algorithms and Complexity[END_REF] Section 4.3].

The inaccuracy cost is taken in 0-100, then 𝛼 picked here corresponds to 100× scaling of the parameter defined in Eq. (4.6).

Appendix 37 discusses the setting in which the set of agents I is unknown and agents can depart and arrive to the system.

For example, in TCP congestion control, the performance of each end-node depends not only on the rate that is directly allocated to that node, but also, through the induced congestion in shared links, by the rate allocated to other nodes[START_REF] Kelly | Rate Control for Communication Networks: Shadow Prices, Proportional Fairness, and Stability[END_REF]. Similar couplings arise in wireless transmissions over shared channels[START_REF] Georgiadis | Resource Allocation and Cross Layer Control in Wireless Networks[END_REF].

Note that a different OCO policy can be used as long as it has a no-regret guarantee, e.g., online mirror descent (OMD), follow the regularized leader (FTRL), or follow the perturbed leader (FTPL)[20,[START_REF] Mcmahan | A Survey of Algorithms and Analysis for Adaptive Online Learning[END_REF]; moreover, one could even incorporate optimistic versions of such policies[START_REF] Rakhlin | Online Learning with Predictable Sequences[END_REF], to improve the regret rates when the controller has access to accurate predictions.

Note that we assume equally-sized files to streamline the presentation. Our model supports unequally-sized files by replacing the cardinality constraint in Eq. (5.22) with a knapsack constraint and the set X 𝑐 (defined in (5.22)) remains convex.

This is a common assumption[START_REF] Shanmugam | Femtocaching: Wireless Content Delivery through Distributed Caching Helpers[END_REF][START_REF] Georgios S Paschos | Learning to Cache With No Regrets[END_REF], which models situations where each file can be split in a large number of small chunks and each cache can store random linear combinations of such chunks. Guarantees for this fractional setting can be readily transferred to an integral setting through randomized rounding techniques[13, 21,[START_REF] Blaszczyszyn | Optimal Geographic Caching In Cellular Networks[END_REF][START_REF] Paria | LeadCache: Regret-Optimal Caching in Networks[END_REF].

Our code is publicly available at https://github.com/tareq-si-salem/Online-Multi-Agent-Cache-Networks

Note that the fixed point 𝑥 𝑥 𝑥 can be selected as the minimizer of the aggregate cost (i.e., 𝑥 𝑥 𝑥 * ∈ arg min 𝑥 𝑥 𝑥 ∈ S 𝑇 𝑡 =1 𝑓 𝑡 (𝑥 𝑥 𝑥)).

To better cast this as an assignment problem, we would need to introduce notation for slots per request, but this is equivalent to Eq. (10.89).

Note that if an optimal solution contains fewer occupied slots, one with higher caching gain can be constructucted by adding more paths.

Note that the fairness regret must vanish for any adversarial choice of sequence of utilities.

INFIDA eventually exceeds OLAG in performance: this result is expected since the algorithm continues to learn on the fractional (virtual) states and only the physical allocations are delayed and eventually catch-up for a large time horizon. On the other hand, we observe that OLAG is relatively conservative in updating its allocation, as it quickly picks a sub-optimal allocation and rarely updates it.

The previous observation motivates the use of a dynamic refresh period. By refreshing more frequently at the start we allow the physical allocation generated by INFIDA to catch up quickly with the fractional states as shown in Figure 4.7b: a dynamic refresh period that stretches from 𝐵 init = 1 to 𝐵 target = 32 attains much faster and more precise convergence. This is achieved at the expense of a high update cost at the start, which is, however, quickly dampened until it matches the same update cost of fixing the refresh period to 𝐵 target .

Scalability on Requests Load

We show how the system performs under different requests loads. For this set of experiments, we set 𝛼 = 1. Figure 4.8 compares the results for the different allocation policies.

We notice that, being INFIDA Offline and SG offline policies, they perform well when the popularity profile is static (Figure 4.8a), but deteriorate under Sliding Popularity Profile. Notably, the performance degradation of INFIDA Offline (≈8%) is considerably limited compared to SG (≈30%), which even gets worse when increasing the requests load.

Figure 4.8 shows that, in general, INFIDA provides a higher gain compared to the OLAG heuristic. In particular, under Fixed Popularity Profile INFIDA manages to converge to the same NTAG . Consider a different policy that permanently selects 𝑒 𝑒 𝑒 1 , such policy incurs the total cost given by 𝑇 𝑡=1 𝑓 𝑟 𝑟 𝑟 𝑡 (𝑒 𝑒 𝑒 1) = 0+2+0+2+0+ • • • ≤ 𝑇 . Then the optimal static allocation 𝑥 𝑥 𝑥 * has cost at most 𝑇 ; therefore, we obtain a lower bound on the regret of A as Regret 𝑇 (A) ≥ 𝑓 𝑟 𝑟 𝑟 𝑡 (𝑥 𝑥 𝑥 1) + 2(𝑇 -1) -𝑇 ≥ 𝑇 -2. We conclude that the aggregate cost minimization policy has linear regret.

Online Mirror Descent

where 𝑥 𝑥 𝑥 is a fixed point in S. 1 We remark that Theorem 1.1 is expressed differently in [START_REF] Bubeck | Convex Optimization: Algorithms and Complexity[END_REF], where 𝑓 𝑡 = 𝑓 , ∀𝑡 ∈ [𝑇] (fixed cost function). Nonetheless, as observed in [START_REF] Bubeck | Convex Optimization: Algorithms and Complexity[END_REF]Section 4.6] the bound obtained in Eq. (1.2) holds as long as the dual norms of the gradients are bounded by 𝐿. file, and at any given moment the adversary requests the file that is not stored in the cache. GRD updates its state greedily to store the requested file and oscillates between the two possible states. The optimal static strategy stores one of the files permanently incurring a total cost of 𝑇 /2, while GRD incurs a total cost 𝑇

List of Figures