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SYNTHÈSE DES TRAVAUX

Cette thèse de doctorat est constituée de quatre parties. Dans la première partie,
nous considérons les processus autorégressifs multivariés et nous montrons moyennant une
condition de contraction l’existence d’une unique solution stationnaire et ergodique pour
les équations. Dans le chapitre 2, un résultat similaire est présenté pour des dynamiques
non linéares avec covariables. Le chapitre 3 est consacré aux modèles multivariés avec
des composantes discrètes et/ou continues. Le chapitre 4 contient une application de nos
différentes méthodes en écologie forestière.

Le chapitre 1 est une version étendue de l’article [30] paru dans Statistics and Pro-
bability Letters. Nous y considérons les processus multivariés autorégressifs (Yt)t∈Z où
Yt = F (Yt−1, ϵt) avec (ϵt)t∈Z une suite de variables aléatoires i.i.d. Nous introduisons une
condition de contraction équation par équation sur F qui permet de conclure à l’existence
d’une unique distribution stationnaire à partir des résultats d’itération d’applications aléa-
toires de Wu and Shao [134]. Ce résultat est appliqué aux modèles multivariés de séries
temporelles de comptage introduis par [57]et ont permis d’améliorer les résultats des au-
teurs. Les résultats établis dans cette partie ont permis d’établir l’existence de moments
exponentiels de ces modèles.

Le chapitre 2 se base sur l’article [32] publié dans Econometric Theory. Dans cette par-
tie, nous considérons des modèles de séries temporelles non linéaires avec des covariables.
Le but de cette partie est de trouver des conditions suffisantes pour l’existence de solution
stationnaire de l’équation Yt = F (Yt−1, Xt−1, ϵt). Dans ce cas, nous faisons une hypothèse
d’exogénéité séquentielle sur la suite (Xt)t∈Z i.e que la variable ϵt est indépendante de
la filtration Ft−1 = σ(Xs, Ys, εs; s ≤ t − 1). L’existence de solution de cette équation est
établie à partir d’une condition de contraction en espérance conditionnelle uniformément
sur les valeurs des covariables. Nous étudions également le coefficient de dépendance fonc-
tionnelle de Wu (2005) de la solution à partir de la dépendance fonctionnelle de la suite
de covariables.

Le chapitre 3 est basé sur l’article [33] publié dans Bernoulli. Il présente une approche
générale pour construire des séries temporelles multivariées dont les coordonnées peuvent
être à la fois discrètes et/ou continues. Pour y arriver, nous tirons profit de la théorie des
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Synthèse des travaux

copules en appliquant des fonctions de répartitions inverses qui dépendent d’un unique
paramètre réel à une suite (Ut)t∈Z de variables aléatoires i.i.d dont la distribution est
donnée par une copule. Nous donnons un résultat pour l’existence d’une solution station-
naire de l’équation qui définit le modèle multivarié mixte. De plus, nous proposons un
estimateur de maximum de pseudo-vraisemblance pour les paramètres du modèle. Nous
montrons que les paramètres d’autorégression sont consistents et suivent asymptotique-
ment une distribution gaussienne. De même, nous établissons un résultat de consistence
sur la distribution conditionnelle qui correspond à la valeur estimée du paramètre de co-
pule puisque ce paramètre n’est en général pas identifiable. Cependant, nous présentons
un résultat d’identifiabilité pour la copule gaussienne.

Le chapitre 4 est une version étendue de l’article [34] paru dans Ecological Modelling.
Nous y présentons un modèle semi-paramétrique autorégressif pour des séries temporelles
à valeurs positives. Nous étudions dans ce chapitre les propriétés probabilistes de stabi-
lité comme la stationnarité et l’ergodicité de la solution du modèle proposé. Nous avons
également proposé un estimateur de quasi-maximum de vraisemblance exponentiel pour
estimer les paramètres du modèle. Nous montrons que cet estimateur est consistent et
asymptotiquement normal. Nous présentons également un test statistique pour l’adéqua-
tion du modèle.
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INTRODUCTION

Les modèles de séries temporelles non linéaires ont fait l’objet de beaucoup de re-
cherches ces dernières années [40, 131, 27] car ils trouvent des applications dans plusieurs
domaines scientifiques. En santé publique par exemple, le nombre de nouvaux cas d’une
épidémie est modélisé par des séries temporelles de comptage [79, 55]. Les modèles Garch
[44, 58] sont utilisés en finance pour modéliser la volatilité des actifs. En économie, les
modèles de séries temporelles binaires permettent d’expliquer les pics des prix de l’éner-
gie sur les places boursières [95, 107]. Cependant, la majorité des travaux sur les séries
temporelles non linéaires se sont concentrés sur les modèles univariés. Deux exceptions
concernent toutefois les modèles GARCH et VARMA [94, 60].

Une suite de variables aléatoires (Yt)t∈Z à valeurs dans Y ⊆ Rd (pour tout entier
naturel d > 1) est un processus VAR (vectoriel autorégressive) si (Yt)t∈Z est solution de
l’équation

Yt = AYt−1 + ϵt (1)

avec A une matrice carré de d lignes et (ϵt)t∈Z une suite de variables aléatoires de moyennes
nulles identiquement distribuées à valeurs dans E ⊆ Rd telle que la variable ϵt est indé-
pendante de Yt. La suite (ϵt)t∈Z est considérée comme le bruit du modèle. Lorsque (ϵt)t∈Z

est une suite de variables indépendantes, on dit que (1) est un modèle VAR(1) pour spé-
cifier que l’ordre maximal de retard dans (1) est 1. Dans le cas où la suite (ϵt)t∈Z est
une combinaison linéaire des termes d’une suite i.i.d, ie ϵt = Bηt−1 + ηt, B une matrice
carré de d lignes et (ηt)t∈Z une suite de variables aléatoires indépendantes, le modèle
(1) est désigné par le terme Vectorial Autoregressive Moving Average d’ordre (1, 1) noté
VARMA(1,1). Il est également possible de définir le modèle VARMA pour des ordres de
retards p et q quelconques. Cependant pour illustrer notre propos dans cette section, nous
allons seulement considérer le modèle VAR(1).

Intéressons nous maintenant à un exemple de modèle multivarié non linéaire : le modèle
MINGARCH [57]. Il est employé pour modéliser les vecteurs de comptage. En effet, les
données de comptage constituent une autre classe importante de series temporelles non
linéaires. Elles ont récemment fait l’objet de beaucoup de recherches [23, 24, 86, 57].
Plusieurs auteurs ont défini des modèles de comptage qui imitent la structure linéaire de
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Introduction

(1). Ainsi, [57] en se basant sur les résultats des processus de comptage multivarié [80]
définit le modèle MINGARCH comme suit.

Yt = N
(t)
λt

, λt = ω +
q∑

i=1
Aiλt−i +

q∑
i=1

BiYt−i, (2)

avec Ai et Bi des matrices d × d de termes positifs, ω est un vecteur de Rd
+. In (2),

(N (t)
· )t∈Z i.i.d de processus de comptage dans Rd. Pour t ∈ Z, N (t) =

(
N

(t)
1 , . . . , N

(t)
d

)
et pour i = 1, . . . , p, les processus de comptage marginaux N

(t)
i =

(
N

(t)
i,s

)
s≥0

sont des
processus de Poisson d’intensité 1.

Nous pouvons remarquer qu’il est possible de définir les modèles (1) et (2) de manière
générale par

Yt = F (λt, ϵt); λt = ω + Bλt−1 + AYt−1. (3)

Dans l’exemple (1), la matrice B et le vecteur ω sont nuls et dans (2), le bruit (ϵt)t∈Z

du modèle est représenté par la suite (N (t)
· )t∈Z. Selon la terminologie introduit par [9] et

repris par plusieurs auteurs [47, 57, 54], lorsque la matrice B est nulle, (3) est dit de type
ARCH et dans le cas contraire, on dit que (3) est de type GARCH. Mais il est tout a
fait envisageable de spécifier une expression récursive générale pour le processus (λt)t∈Z

de (3) ie : λt = g(λt−1, Yt−1), t ∈ Z.

L’inclusion de covariables est également une question importante pour les modèles
multivariés et surtout dans le cas des dynamiques non-linéaires. En effet, pour la grande
majorité des études, le processus d’intérêt (Yt)t∈Z est observé conjointement avec d’autres
processus (Xt)t∈Z qui sont susceptibles de l’impacter. Pour prendre en compte cette rela-
tion, on modifie la seconde équation dans (3) en y incluant Xt comme par exemple :

λt = ω + Bλt−1 + AYt−1 + ΓXt−1

ou plus généralement
λt = g(λt−1, Yt−1, Xt−1), t ∈ Z

[68, 69, 3, 54, 107]. La difficulté lorsqu’on est amené à considérer les dynamiques avec
des covariables réside dans le fait qu’il faut préciser la structure de dépendance entre
les suites (Xt)t∈Z et (ϵt)t∈Z. Ceci permet de définir différentes notions d’exogénéité. Par
exemple, lorsque les suites (Xt)t∈Z et (ϵt)t∈Z sont indépendantes, le processus (Xt)t∈Z est
dit strictement exogène [119, 19]. Une deuxième notion plus faible d’exogénéité consiste à
supposer que ϵt est indépendant de Xs, s < t ; on dit dans ce cas que les régresseurs sont
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Introduction

prédéterminés.

Objectifs de la thèse

Dans cette thèse, nous considérons des modèles de séries temporelles avec cova-
riables exogènes, en particulier des séries temporelles multivariées présentant
des composantes discrètes. Ils peuvent par exemple servir sur le marché financier à
modéliser conjointement la volatilité de prix sur un actif et le nombre de transactions
réalisées sur ce dernier. Dans ce cas, il s’agit d’un modèle bivarié dont une coordonnée
peut être un processus GARCH [44] et l’autre un processus de INGARCH [47]. Un autre
exemple en écologie consiste à modéliser simultanément la densité d’un ravageur de culture
(mesurée comme le nombre moyen de ravageurs par plant) et la perte de production enre-
gistrée. Nous pouvons alors envisager un modèle avec une marginale de loi Beta [115, 66]
et l’autre de loi de Poisson [47].

L’inclusion de covariables exogènes sera un point important de notre recherche.
En effet, si en pratique, les auteurs incluent systématiquement des covariables dans les
autoregressions [107, 115], il n’y a pas pour autant des travaux qui donnent des garanties
théoriques sur les propriétés de stabilités des modèles. A titre d’exception nous pouvons
citer Francq and Thieu [59] qui étudie les conditions de stationnarité des modèles GARCH
lorsque le processus de bruit et celui de covariables forment un processus stationnaire. Un
autre exemple porte sur les processus de Poisson autoregressif considéré par Agosto et al.
[2] quand les régresseurs exogènes sont une chaîne de Markov. Nous introduisons dans ce
travail un résultat général qui permet de fournir des garanties théoriques sur un grand
nombre de modèles autoregressifs avec des régresseurs exogènes. Nous abordons également
la question de l’estimation statistique. Nous proposons dans ce travail une procé-
dure d’estimation valide basée sur les estimateurs de minimum de contraste
[141, 88, 124] permettant à la fois d’estimer les paramètres de l’autoregression
et ceux de dépendance jointe.

Nos différentes contributions

Ce travail est divisé en quatre parties. Dans la première partie, nous étudions plus en
détail le cas particulier des modèles d’autoregression multivariés pour les séries tempo-
relles de comptage. La deuxième partie étend le cadre de la première aux modèles avec
covariables exogènes. Elle est consacrée à l’étude des propriétés de stabilité pour les pro-
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cessus autoregressifs de ceux-ci. La troisième partie présente un cadre unifié pour définir
des autoregressions dont les coordonnées sont de différentes types. On y aborde longue-
ment la question de l’inférence statistique. Dans la quatrième partie, nous abordons un
cas d’application en écologie des modèles de séries temporelles non linéraires. Ce travail a
été réalisé dans le cadre d’une collaboration avec deux chercheurs en sciences forestières
de l’université de Québec au Canada. Le modèle développé a été fortement motivé par le
cas d’application.

Première partie : Séries temporelles de comptage multivariées

Ce travail a été publié dans statistics and probability letters [30].

Nous donnons des garanties théoriques pour l’existence et l’unicité de solution pour
des équations récursives stochastiques. Il s’agit de suites de variables aléatoires (Yt)t∈Z

définies par des récursions de la forme

Yt = F (Yt−1, εt) , t ∈ Z, (4)

avec F : E × G → E une fonction mesurable, (ϵt)t∈Z une suite i.i.d a valeurs dans un
espace mesurable G et E un ensemble de Rk pour un entier naturel strictement positif k.

Nous avons appliqué nos résultats à plusieurs modèles multivariés de Poisson. Nos travaux
se basent sur ceux de Wu and Shao [135] combinant des techniques de contraction et des
résultats sur les chaînes de Markov. La nouveauté dans ce travail consiste en l’introduc-
tion d’une technique de pseudo-contraction basée sur l’ordre lexicographique. Cela revient
à introduire des hypothèses de contraction équation par équation sur les coordonnées du
modèle. Nous retrouvons dans ce travail les mêmes conditions d’existence et d’unicité de
solution pour les modèles GINAR(p) que celles de [86]. Mais nos résultats ont également
permis de déduire des conditions pour obtenir l’existence de certains moments de la so-
lution. Nous arrivons à trouver des conditions nécessaires et suffisantes d’existence de
solution intégrable pour les modèles INGARCH introduits par [57] ainsi que des résultats
sur les moments exponentiels. Nous complètons les résultats de [57] sur les modèles log-
INGARCH en trouvant de nouvelles conditions suffisantes pour l’existence et d’unicité de
solution stationnaire ainsi que l’existence de moments exponentiels.
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Deuxième partie : Modèles de séries temporelles non linéaires avec covariables
exogènes

Ce travail a été publié dans Econometric Theory [32].

Ce travail se focalise sur l’inclusion de covariables dans les dynamiques non linéaires.
Les équations récursives considérées ici sont de la forme :

Yt = F (Yt−1, Xt−1, εt) , t ∈ Z, (5)

avec (ϵt)t∈Z un processus de bruit et (Xt)t∈Z le processus de covariables. Dans cette par-
tie, nous discutons les différentes notions d’exogénéité en économétrie [94] et considérons
tout au long de nos travaux celle de la pré-détermination des régresseurs. L’objectif est
d’obtenir des conditions suffisantes d’existence d’une solution stationnaire pour (5). Avec
l’inclusion des régresseurs (Xt)t∈Z, la suite (Yt)t∈Z n’est plus une chaine de Markov. Notre
approche est basée sur l’étude des itérations d’applications aléatoires dans un cadre dé-
pendant. Nous donnons un résultat général d’existence d’une solution stationnaire à partir
d’une hypothèse de contraction en espérance conditionnelle. Avec un processus (Xt)t∈Z

stationnaire et moyennant quelques conditions de régularité sur F et de moment sur ε0,
on arrive à définir des solutions stationnaires pour (5) qui de plus présentent de bonnes
propriétés probabilistes utiles à l’estimation statistique. Nos résultats ont été appliqués
à plusieurs exemples dont les modèles INGARCH [2], CHARN [71] ou encore GARCH -
X [110] et ont permis d’améliorer et de déduire de nombreux nouveaux résultats. Nous
donnons également un résultat sur la manière dont les propriétés de dépendance [138] des
régresseurs se répercutent sur celles de la solution de (5).

Troisième partie : Modèles de séries temporelles multivariées pour des données
mixtes

Ce travail est à paraître dans Bernoulli [33].

Nous proposons ici une méthode générale pour construire des modèles multivariés dont
certaines coordonnées sont de nature discrète. Cette nouvelle construction exploite les pro-
priétés des copules [63] et généralise les travaux de [120] sur les données individuelles avec
les copules gaussiennes. En effet, toutes les suites (Yt)t∈Z dont les familles de distributions
marginales conditionnelles sont connues à l’avance F1,λ1,t , . . . , Fd,λd,t

et ne dépendent que
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des pamamètres λ1,t, . . . , λd,t, peuvent s’écrire sous la forme :

Yi,t = F −1
i,λi,t

(εi,t), 1 ≤ i ≤ d,

avec F −1
i,si

les fonctions de répartitions inverses des distributions marginales et (εi,t, 1 ≤
i ≤ d) une suite i.i.d dont la distribution est donnée par une copule CR qui dépend
d’un paramètre R. Les paramètres si représentent les moyennes de distributions ou des
fonctions connues de celles-ci. Dans le cadre de ce travail, nous avons supposé que le
vecteur λt = (λ1,t, . . . , λd,t) vérifie l’équation

λt = gθ(λt−1, Yt−1, Xt−1)

avec gθ une fonction mesurable qui dépend d’un paramètre θ et (Xt)t∈Z le processus de
covariables. Le paramètre R permet de modéliser la dépendance instantanée jointe de Yt

et θ est le paramètre d’autorégression. En appliquant les résultats des deux premières
parties, nous arrivons à trouver des conditions de stabilité des modèles ainsi définis. Nous
proposons une procédure d’estimation en deux étapes. Premièrement, nous construisons
une fonction de coût pour θ à partir d’une large classe de fonctions de coût sur les coor-
données de (Yt)t∈Z incluant les moindres carrées ou encore les fonctions log-vraisemblance.
Celle-ci se base sur le principe de la principe de la pseudo-vraisemblance en supposant que
conditionnellement au passé, les coordonnées de Yt sont indépendantes entre elles. Sous
certaines hypothèses de régularité, on montre que les paramètres ainsi estimés ont de
bonnes propriétés statistiques telles que la consistance et la normalité asymptotique. Le
paramètre R peut alors être estimé quand on remplace dans la vraisemblance du modèle
les valeurs estimées de θ. On montre que les paramètres estimés pour la copule gaussienne
ou de Clayton sont également consistants. Nous considérons pour illustrer nos résultats
les modèles bivariés GARCH/INGARCH et Logistic/Poisson.

Application des modèles de séries temporelles pour des données de croissance
de cernes d’arbres en périodes épidémiques

Ce travail a été publié dans Ecological modelling [34].
Ce travail a été réalisé dans le cadre d’une mobilité internationale avec des chercheurs

de l’institut de recherche sur les forêts du Canada. A partir des différents résultats obtenus
dans les parties précédentes, nous développons ici un nouveau modèle pour évaluer l’effet
combiné du climat et de l’épidémie de la tordeuse du bourgeon d’épinette sur la croissance
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de cernes de l’épinette noire au Canada. Ce modèle est fortement motivé par la nature
des données et la question scientifique formulée par les forestiers. En effet, les données
en notre disposition sont constituées à chaque instant de nt surfaces de croissance radiale
d’arbres i.e le nombre d’observations varie dans le temps. Nous avons admis ici que le
nombre de sites K observés est fixe. En plus de ces données de cerne de croissance, nous
disposons de données climatiques telles que les températures maximales au cours de l’été
et du printemps et des données d’éco-épidémiologie telles que le niveau de défoliation des
conifères dû à l’épidémie de la tordeuse de bourgeon d’épinette. Le modèle proposé s’écrit

Yk,t =
nk,t∑
l=1

ζl,k,t, 1 ≤ k ≤ K, (6)

où conditionnellement à nk,t, Xk,t, n−
k,t = (nk,t−s, s ≥ 1) et Y −

k,t = (Yk,t−s, s ≥ 1), les
variables ζl,k,t, 1 ≤ l ≤ nk,t, qui représente la croissance radiale des arbres échantillonnés,
sont et de même loi que ζk,t dont la moyenne est λk,t. Le processus de moyenne est donné
par

φδ(λk,t) =: ηk,t = ωk +
p∑

j=1
αj

Yk,t−j

nk,t−j

+ β⊤Xk,t, k = 1, . . . , K and t = 1, . . . , T, (7)

ωk ∈ R, αj ∈ R, β = (β1, . . . , βm) ∈ Rm et φδ est une fonction définie sur R+ qui peut
dépendre d’un paramètre δ. Nous établissons dans cette partie les propriétés de stabilité de
(6)-(7). Une procédure d’estimation statistique avec des bonnes propriétés asymptotiques
est également fournie. Le modèle appliqué aux données de cernes de croissance a permis
de tirer de nouvelles conclusions en écologie forestière utiles à l’aménagement territoriale.
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Chapitre 1

A NOTE ON THE STABILITY OF

MULTIVARIATE NON-LINEAR TIME SERIES

WITH AN APPLICATION TO TIME SERIES

OF COUNTS

Abstract. We introduce a simple criterion for studying stationarity and moments
properties of some multivariate Markovian autoregressive processes, under a contracting
mapping assumption. We apply our results to various multivariate models for count data
included the Poisson INGARCH model and to one of its multivariate extension recently
introduced in the literature. In particular, we obtain optimal stationarity conditions and
existence of some exponential moments.

Long version of [31]

1.1 Introduction

The aim of this note is to give a new criterion for the existence of stationary solutions
for q−order autoregressive processes of the form

Xt = F (Xt−1, . . . , Xt−q, εt) , t ∈ Z, (1.1)

where F : Eq × G → E is a measurable function, (ϵt)t∈Z is a sequence of i.i.d. random
variables taking values in a measurable space G and E is a subset of Rk for some positive
integer k. In particular, we provide a set of sufficient conditions for applying a result
given in Wu and Shao [135] for the convergence of iterated random maps. The originality
of our approach is to consider Lipschitz type conditions obtained equation by equation.
Our result, which has an independent interest, will be particularly useful for studying the
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classical Poisson INGARCH model and a multivariate extension of this model introduced
recently in Fokianos et al. [57]. In Section 1.2, we state and prove our general result. In
Section 1.3, we give an application to the aforementioned models and sharpen existing
results by providing optimal stationarity conditions and existence of some exponential mo-
ments. The proofs of our main results are postponed to Section 1.4. Finally, two technical
lemma are provided in an appendix section.

1.2 Main result

In what follows, for any positive integer n, we denote by | · |1 the ℓ1−norm on Rn,
i.e. |x|1 = ∑n

i=1 |xi| for x ∈ Rn. We also denote by Mn the set of square matrices with
real coefficients and n rows and if A ∈ Mn, ρ(A) the spectral radius of the matrix
A. An element x of Rn will be identified with the column vector of its coordinates in
the canonical basis and a cartesian product of type (Rp)n will be identified with Rpn.
Moreover, for x ∈ Rn and r ∈ R+, the vector (|x1|r, . . . , |xn|r) of Rn will be denoted by
|x|rvec. Finally, we introduce the usual partial ordering on Rn such that x ≼ x′ means
xi ≤ x′

i for i = 1, . . . , n.
To state our main result, the following assumptions will be needed.

A1 For any y ∈ Eq, E [|F (y, ε0)|1] < ∞.

A2 There exist some matrices A1, . . . , Aq ∈ Mk with nonnegative elements, satisfying
ρ (A1 + · · · + Aq) < 1 and such that for y, y′ ∈ Eq,

E [|F (y, ε1) − F (y′, ε1)|vec] ≼
q∑

i=1
Ai |yi − y′

i|vec .

A3 For an integer k > 1, there exists a vector ϕ := (ϕ1, . . . , ϕk) of continuous functions
from E → R+, a real number r ≥ 1 and some matrices D1, . . . , Dq ∈ Mk with
nonnegative elements such that ρ (D1 + · · · + Dq) < 1 and c ∈ Rk

+ such that for
y ∈ Eq,

∥ϕ (F (y, ε1))∥r,vec ≼ c +
q∑

i=1
Diϕ(yi),

where for a random vector Z = (Z1, . . . , Zk), ∥Z∥r,vec := (E1/r [|Z1|r] , . . . ,E1/r [|Zk|r]).

Theorem 1 Let Assumptions A1-A2 hold true.
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1. There then exists a unique stationary and non-anticipative process (Xt)t∈Z solution
of (1.1) such that E [|X0|1] < ∞.

2. If in addition, A3 holds true, then E [|ϕ(X0)|r1] < ∞.

By non-anticipative, we mean that Xt is measurable with respect to σ (εs : s ≤ t).

1.3 Multivariate count autoregressions

In what follows, we denote by | · |2 the Euclidean norm on Rn and by | · |∞ the infinity
norm. The corresponding operator norms (the matrix norms) will be denoted in the same
way.

1.3.1 Poisson Linear models

We consider the multivariate count autoregression introduced recently by Fokianos
et al. [57].

It is defined by

Yt = N
(t)
λt

, λt = d +
q∑

i=1
Aiλt−i +

q∑
i=1

BiYt−i, (1.2)

where the A′
is and the B′

is are p × p matrices of nonnegative elements, d is a vector of Rp
+.

In (1.2), (N (t)
· )t∈Z is a sequence of independent and identically distributed p−dimensional

count processes. In particular, for any t ∈ Z, we have N (t) =
(
N

(t)
1 , . . . , N (t)

p

)
and for

i = 1, . . . , p, we assume that the univariate count process N
(t)
i =

(
N

(t)
i,s

)
s≥0

is a Poisson
process with intensity 1. A general construction of point processes of this type is given
in Fokianos et al. [57]. Going back to (1.2) and setting Yt = (Y1,t, . . . , Yp,t), we then have
Yi,t = N

(t)
i,λi,t

.
Let us note that when p = 1, the process coincides with the INGARCH model develo-

ped by [47] and Fokianos et al. [52] and for which the conditional distribution of Yt given
past values is a Poisson distribution with random intensity λt. For p > 1, a particular case
of (1.2) is obtained when N (t) is a vector of independent Poisson processes. Fokianos et al.
[57] provided a more general approach using copula. While all the coordinates of N (t) are
still Poisson processes with intensity 1, they can have a quite general dependence struc-
ture. However, all the results given in Fokianos et al. [57] about existence of stationary
solutions and their marginal moments are independent from this dependence structure.
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This will be also the case for the results given in the present paper. Finally note that if
the orders of the lag values λt−i and Yt−i are different, for example ℓ and k, the order q

in (1.2) will be set to q = max(ℓ, k), setting Ai = 0 or Bj = 0 if i > ℓ or j > k.
The following result provides a necessary and sufficient condition for existence of a

stationary solution for (1.2).

Theorem 2 1. Assume that ρ(∑q
i=1(Ai + Bi)) < 1.

(a) There then exists a unique non-anticipative, stationary and integrable solution
(Yt)t∈Z for (1.2).

(b) For any r > 1, we have E [|Yt|r1] < ∞.

(c) In contrast, assume that ∑q
i=1 (|Ai|1 + |Bi|1) < 1 or |∑q

i=1(Ai + Bi)|∞ < 1.
There then exists δ > 0 such that E [exp (δ|Y0|1)] < ∞ and E [exp (δ|λ0|1)] < ∞.

2. Conversely, if (1.2) admits a stationary integrable solution and all the components
of d are positive, then ρ (∑q

i=1(Ai + Bi)) < 1.

Notes

1. When q = 1, Fokianos et al. [57] provided various sufficient conditions for exis-
tence of a stationary solution for (1.2). In contrast, Theorem 2 provides an op-
timal condition for stationarity. In particular, the condition on the spectral ra-
dius ρ (∑q

i=1(Ai + Bi)) < 1 is implied by any contraction condition of the form
|∑q

i=1(Ai + Bi)| < 1, where | · | is a matrix norm. We recall that for any operator
norm | · | and any matrix A of size p × p, we have |A| ≥ ρ(A). Contraction condi-
tions derived from the matrix norms | · |1 or | · |2 are used in Fokianos et al. [57].

To enlighten the difference, consider the case q = 1, A1 = 0 and B1 =
α β

0 α

.

Conditions |B1|1 < 1 or |B1|∞ < 1 means α + β < 1, while |B1|2 ≥
√

α2 + β2. In
contrast ρ(B1) = α and the condition α < 1 is a substantial improvement of the
restrictions obtained from contractions with respect to the previous norms.

2. The last point of Theorem 2 provides conditions for existence of some exponen-
tial moments. Assume that p = 1. In the univariate case, the various contraction
conditions are equivalent to ∑q

i=1(Ai + Bi) < 1 which is an optimal condition for
existence of a stationary and integrable solution. Under this assumption, existence
of polynomials moments have been widely discussed in the literature. See for ins-
tance Ferland et al. [47] or Fokianos et al. [52]. Theorem 2 provides a stronger
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result by showing that this stationarity condition is sufficient for existence of some
exponential moments.

3. It is also possible to show that Theorem 2 is still valid if we work with the alternative
autoregressive process

Yi,t = F −1
i,λi,t

(Ui,t), 1 ≤ i ≤ p; λt := (λ1,t, λ2,t)′ = ω + AYt−1 + Bλt−1 (1.3)

where F −1
i,λ stands for the inverse of the cumulative probability function of Poisson

distribution of mean λ and (Ut = (Ui,t)1≤i≤p)t∈Z is a sequence of independent random
vectors following an arbitrary copula distribution.

4. Other types of multivariate count autoregressive models can be found in the litera-
ture. See for instance Cui and Zhu [23] and [24]. In both papers, the authors consider
some specific versions of bivariate count distributions to construct their models. Ap-
plying our results in this case requires to find an autoregressive structure of the form
(1.2) or (1.3), that is a bivariate point process or a copula density in accordance with
these bivariate distributions. We did not find a satisfying answer for this. But note
that the two constructions are of different nature. While the bivariate point process
or the copula approach can be used to generate models with Poisson marginals and
general simultaneous dependence properties, there are no guarantees that the family
of conditional distributions obtained in this way contain some existing versions of
bivariate count distributions.

1.3.2 Poisson log-linear models

We now consider a second model called log-linear in the literature. See in particular
Fokianos and Tjøstheim [54] for the univariate case and Fokianos et al. [57] for the mul-
tivariate case. In the multivariate case, the model is defined similarly to (1.2) except that

λt = exp(µt), µt = d +
q∑

j=1
Ajµt−j +

q∑
j=1

Bj log(1 + Yt−j). (1.4)

Here, the functions exp and log are applied component-wise and the matrices Aj, Bj can
now have negative elements. As before, we adopt the convention of column vectors.

Theorem 3 Consider the log linear model (1.4).
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1. Assume that ρ (∑q
i=1(|Ai|vec + |Bi|vec)) < 1. Then there exists a unique non antici-

pative, stationary and integrable process (Yt)t∈Z with E(|Yt|1) < ∞.

2. Assume that |∑q
i=1 (|Ai|vec + |Bi|vec)|∞ < 1. There then exists δ > 0 such that

E (exp (δ|Y0|1)) < ∞ and E (exp (δ|λ0|1)) < ∞.

Notes

1. To compare our results with that of Fokianos et al. [57], we assume q = 1. Using
contraction properties of autoregressive processes, Fokianos et al. [57] used the condi-
tion |A1|1 + |B1|1 < 1 for studying existence of a stationary solution for (1.4). Our
condition in point 1 of Theorem 3 is weaker. On the other hand, using perturbation
methods, Fokianos et al. [57] showed that one can approximate the stationary solu-
tion from an ergodic Markov chain when |A1|2 + |B1|2 < 1. When p = 1, the latter
condition coincides with ours but when p > 1 they cannot be compared. Our condi-
tion is only guaranteed to be weaker when the matrices A1 and B1 have nonnegative
coefficients. We then provide a different result which complements the existing ones.

2. We obtain directly existence of exponential moments for the solution using a contrac-
tion condition for the norm | · |∞. We are not aware of such result even in the uni-
variate case. Fokianos et al. [57] only studied existence of polynomial moments but
once again their assumptions are based on the norm | · |1 and | · |2 and cannot be
compared directly with ours, even for nonnegative matrices. Nevertheless, for p = 1,
all the conditions are equivalent to |A1| + |B1| < 1, and we improve existing results
by showing existence of exponential moments.

1.3.3 Multivariate GINAR(q) process

This model has been studied by Latour [86] and using Theorem 1, we will recover
many results but also get additional moment properties. The model writes

Xt =
q∑

j=1
At,j ◦ Xt−j + Ut, t ∈ Z, (1.5)

where for x ∈ Np,

At,j ◦ x =
( p∑

ℓ=1
At,j(i, ℓ) ◦ xℓ

)
1≤i≤p
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and for y ∈ N,

At,j(i, ℓ) ◦ y =
y∑

s=1
Y t,j,i,ℓ

s .

The latter operator ◦ is called the thinning operator. We assume that (Ut)t∈Z is a sequence
of i.i.d. integrable random vectors in Np and independent from the family

{
Y t,j,i,ℓ

s : (s, t, j, i, ℓ) ∈ Z2 × {1, . . . , q} × {1, . . . , p}2
}

which is itself composed of independent integrable and integer-valued random variables
and such that for (s, t, s′, t′, j, i, ℓ) ∈ Z4 × {1, . . . , q} × {1, . . . , p}2, Y t,j,i,ℓ

s and Y t′,j,i,ℓ
s′

have the same distribution with mean Aj(i, ℓ). When q = 1, this process coincides with
a Galton-Watson process with immigration. Note that for a process (Xt)t∈Z defined by
(1.5), we have

E [Xt|Xt−1, . . . , Xt−q] =
q∑

j=1
AjXt−j + E[U0].

We will use the two following assumptions.

G1 The spectral radius of the matrix A1 + · · · + Aq is less than 1.

G2 There exists r > 1 such that for all (j, i, ℓ) ∈ {1, . . . , q} × {1, . . . , p}2, Y 0,j,i,ℓ
0 and U0

have a moment of order r.

Theorem 4 Assume that Assumption G1 holds true. There then exists a unique sta-
tionary, non-anticipative and integrable solution to the recursions (1.5). If in addition,
Assumption G2 is valid, we have E|X0|r1 < ∞.

Note. We obtain the same result as Latour [86] for the existence of a square integrable
stationary solution for the recursions (1.5). However, using our formalism, we avoid leng-
thy computations to check such results. We also provide conditions for existence of a
moment of arbitrary order r > 1, a problem not investigated in Latour [86].

1.4 Proof of the main results

1.4.1 Proof of Theorem 1

1. Define the following random map ft(u1, . . . , uq) = (F (u1, . . . , uq, εt) , u1, . . . , uq−1)
and the sigma fields Ft = σ (εs : s ≤ t), t ∈ Z. We first note that a process (Xt)t∈Z
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satisfies (1.1) if and only if the process (Ut)t∈Z defined by Ut = (Xt, . . . , Xt−q+1)
satisfies the recursions Ut = ft(Ut−1), t ∈ Z. It then only remains to study existence
of stationary solutions for the recursions defined by the random functions ft, t ∈ Z.
We set u = (x1, . . . , xq) ∈ Eq and for 1 ≤ t ≤ q, Xt(u) = xq−t+1. Next for t ≥ q + 1,
we define Xt(u) recursively by

Xt(u) = F (Xt−1(u), . . . , Xt−q(u), εt) .

We then have for t ≥ q + 1, (Xt(u), . . . , Xt−q+1(u)) = f t
q+1(u) := ft ◦ · · · ◦ fq+1(u).

Using our assumptions, we have for t ≥ q + 1,

E [|Xt(u) − Xt(u′)|vec|Ft−1] ≼
q∑

i=1
Ai |Xt−i(u) − Xt−i(u′)|vec .

Setting wt = E [|Xt(u) − Xt(u′)|vec] for t ≥ 1, we have wt ≼
∑q

i=1 Aiwt−i for t ≥ q+1.
From Lemma 1 given in the Appendix, there exist constants C > 0 and ρ ∈ (0, 1)
such that |wt|1 ≤ Cρt|u − u′|1. We then get

E
[∣∣∣f t

q+1(u) − f t
q+1(u′)

∣∣∣
1

]
=

q−1∑
j=0

|wt−j|1 ≤ qCρt−q+1|u − u′|1.

Using A1, we then deduce that the random maps satisfies the geometric moment
contraction condition of Theorem 2 in Wu and Shao [135] and the existence of an
integrable and stationary solution for the recursions Ut = ft (Ut−1), t ∈ Z, follows.
Note that we also have Ut = (Xt, Xt−1, . . . , Xt−q+1) = limn→∞ f t

t−n(u) a.s. and the
solution (Ut)t∈Z and then the solution (Xt)t∈Z of (1.1) writes as a Bernoulli shift,
i.e. Xt = limn→∞ H (εt, εt−1, . . .) so it is non-anticipative.

Next, let (Yt)t∈Z be a another integrable non-anticipative stationary solution of (1.1).
We have for any t ∈ Z,

E [|Xt − Yt|vec] ≼
q∑

j=1
AjE

[
|Xt−j − Yt−j|vec

]
.

Using Lemma 1, we deduce that E [|Xt − Yt|vec] = 0 and then Xt = Yt a.s. This
shows the uniqueness.
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2. Using the notations of the previous point, we have

∥ϕ (Xt(u)) ∥r,vec ≼ c +
q∑

i=1
Di∥ϕ (Xt−i(u)) ∥r,vec.

Using Lemma 1 (2.) and the triangular inequality, we get

E1/r [|ϕ (Xt(u)) |r1] ≤ Cρt
q∑

i=1
|ϕ(xi)|1 + D,

for some constants C, D > 0 and ρ ∈ (0, 1) and only depending on c, D1, . . . , Dq.
Remembering that f t

q+1(u) = (Xt(u), . . . , Xt−q+1(u)) := Ut(u) and setting V (u) =
(∑q

i=1 |ϕ(xi)|1)r, we have, using Fatou’s lemma and the fact that f t
q+1(u) and f 0

−t+q+1(u)
have the same probability distribution,

E (V (U0)) ≤ lim inf
t→∞

E (V (Ut(u))) ≤ (qD)r,

which leads to the result. □

1.4.2 Proof of Theorem 2

1. We set E = Np × Rp
+.

(a) We first note that any solution Xt = (Yt, λt) of the problem satisfies the recur-
sions

Xt = F (Xt−1, . . . , Xt−q, N (t)),

where ∀j = 1, . . . , q, xj = (yj, sj) ∈ E,

F
(
x1, . . . , xq, N (t)

)
=
(
N

(t)
f(x1,...,xq), f(x1, . . . , xq)

)
,

f(x1, . . . , xq) = d +
q∑

j=1
Ajsj +

q∑
j=1

Bjyj.

Going back to the definition of the model (1.1), we can consider that G equals
to Hp, where H is the subset of the cadlag functions D (R+,R+) that are
piecewise constant and take integer values. For x ∈ Eq, we have the equality

E
[∣∣∣F (

x, N (1)
)∣∣∣

1

]
= 21T

d +
q∑

j=1
Ajsj +

q∑
j=1

Bjyj

 < ∞,
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where 1T is the transpose of the column vector for which all the coordinates
are equal to 1. Moreover, for x, x′ ∈ Eq with x = (x1, . . . , xq), x′ = (x′

1, . . . , x′
q),

where xj = (yj, sj) and x′
j = (y′

j, s′
j) for 1 ≤ j ≤ q, we have

E
[∣∣∣F (x, N (1)) − F (x′, N (1))

∣∣∣
vec

]
≼

q∑
j=1

Bj Aj

Bj Aj

 ∣∣∣xj − x′
j

∣∣∣
vec

.

One can notice that the matrices Γ = ∑q
j=1

Bj Aj

Bj Aj

 and ∑q
j=1(Aj +Bj) have

the same spectral radius (see lemma 3). The result then follows from Theorem
1.

(b) Let δ > 0 such that (1+δ)∑q
j=1(Aj +Bj) has a spectral radius less than one. If

Γδ := (1+δ)∑q
j=1

Bj Aj

Bj Aj

, then we also have ρ (Γδ) < 1. Next, from Lemma

2 given in the Appendix, there exists b > 0 such that

∥N
(t)
f(x1,...,xq)∥r,vec ≼ (1 + δ)|f(x1, . . . , xq)|vec + b1,

where 1 denotes the vector of Rp for which all the coordinates are equal to 1.
Since

|f(x1, . . . , xq)|vec ≼ d +
q∑

j=1
Bj|yj|vec +

q∑
j=1

Aj|sj|vec ≼ d +
q∑

j=1
(Bj Aj)|xj|vec,

we then get

∥F (x1, . . . , xq, N (1))∥r,vec ≼

(1 + δ)d + b1

d

+
q∑

j=1

(1 + δ)Bj (1 + δ)Aj

Bj Aj

 |xj|vec

≼

(1 + δ)d + b1

d

+ (1 + δ)
q∑

j=1

Bj Aj

Bj Aj

 |xj|vec.

Since ρ (Γδ) < 1, Theorem 1 (3.) applied when ϕ is the identity leads to the
result.

(c) Assume first that γ := ∑q
i=1 (|Ai|1 + |Bi|1) < 1. Let δ > 0 to be chosen later
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and ϕ(y, s) = (exp (δ|y|1) , exp (δ|s|1)) for y, s ∈ Rp. From convexity of the
exponential function and matrix norm inequalities, we can write if t ≥ q + 1 :

E [exp(δ|f(x1, . . . , xq)|1)] ≤ exp
δ|d|1 +

q∑
j=1

[δ|Bj|1|yj|1 + δ|Aj|1|sj|1]


≤ c +
q∑

j=1
[|Bj|1 exp(δ|yj|1) + |Aj|1 exp(δ|sj|1)] ,

with c = (1 − γ) exp
(

δ|d|1
1−γ

)
. Furthermore, from Hölder inequality, we have

setting λ = f(x1, . . . , xq),

E
[
exp(δ|N (1)

λ
|1)
]

= E

 p∏
j=1

exp
(

δN
(1)
j,λj

) ≤
p∏

j=1
E1/p

[
exp

(
pδN

(1)
j,λj

)]
.

Note that
p∏

j=1
E1/p

[
exp

(
pδN

(1)
j,λj

)]
=

p∏
j=1

(
exp

(
λj[exppδ −1]

))1/p
= exp

(
|λ|1

exppδ −1
p

)
.

But expx −1
x

↓ 1 as x > 0 tends to 0. If ϵ > 0 is such that (1 + ϵ)γ < 1, let us
choose δ = δ(ϵ) such that exppδ −1 ≤ (1 + ϵ)δp. For the couple (ϵ, δ = δ(ϵ)),
one can write :

E
[
exp(δ|N (1)

λ
|1)
]

≤ exp
(
|λ|1(1 + ϵ)δ

)
≤ c′ +

q∑
j=1

[(1 + ϵ)|Aj|1 exp(δ|sj|1) + (1 + ϵ)|Bj|1 exp(δ|yj|1)] ,

with c′ = (1 − (1 + ϵ)γ) exp
(

δ(1+ϵ)|d|1
1−(1+ϵ)γ

)
. The second inequality follows from the

convexity of the exponential function, as previously. We then obtain

E
[
ϕ
(
F (x, N (1))

)]
≼

c′

c

+
q∑

j=1

(1 + ϵ)|Bj|1 (1 + ϵ)|Aj|1
|Bj|1 |Aj|1

ϕ(xj)

≼

c′

c

+ (1 + ϵ)
q∑

j=1

|Bj|1 |Aj|1
|Bj|1 |Aj|1

ϕ(xj).
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Since the eigenvalues of Γ := ∑q
j=1

|Bj|1 |Aj|1
|Bj|1 |Aj|1

 are γ and 0, the spectral

radius of (1 + ϵ)Γ is less than 1. The result then follows from Theorem 1 (2.).
Next, we assume that γ := |∑q

i=1 (Ai + Bi)|∞ < 1. Some arguments previously
used yield ∀k = 1, . . . , p,

E
[
exp(δλk)

]
≤ ek +

q∑
j=1

p∑
l=1

[Bj(k, l) exp(δyℓ,j) + Aj(k, l) exp(δsℓ,j)] ,

E
[
exp(δN

(1)
k,λk

)
]

≤ exp(δ(1+ϵ)λk,t) ≤ e′
k+(1+ϵ)

q∑
j=1

p∑
l=1

[Aj(k, l) exp(δsℓ,j) + Bj(k, l) exp(δyℓ,j)] ,

with ek = (1 − γk) exp
(

δdk

1−γk

)
, e′

k = (1 − (1 + ϵ)γk) exp
(

δ(1+ϵ)dk

1−(1+ϵ)γk

)
and

γk = ∑q
j=1

∑p
l=1 [Aj(k, l) + Bj(k, l)] where (ϵ, δ = δ(ϵ)) satisfy (1 + ϵ) supk γk =

(1 + ϵ)γ < 1 and expδ −1 ≤ (1 + ϵ)δ. Therefore,

E [exp(δN
(1)
λ

]
vec

E
[
exp(δλ)

]
vec

 ≼

e′
vec

evec

+ (1 + ϵ)
q∑

j=1

Bj Aj

Bj Aj

exp(δyj)vec

exp(δsj)vec



With M = ∑q
j=1(Aj + Bj), condition |M |∞ = max1≤j≤q

∑q
l=1 M(j, l) < 1

ensures that the spectral radius of the matrix ∑q
j=1

Bj Aj

Bj Aj

 is less than 1.

Without loss of generality, we may assume that ϵ also provides that

Γ′
ϵ = (1 + ϵ)

q∑
j=1

Bj Aj

Bj Aj


is less than 1. The result then follows from Theorem 1 (2.), setting r = 1 and
for y, s ∈ Rp, ϕ((y, s)) = (exp(δ|y1|), . . . , exp(δ|yp|), exp(δ|s1|), . . . , exp(δ|sp|)).

2. If (Yt)t∈Z is a stationary and integrable solution of (1.2), we have

E(Yt) = E(λt) = d +
q∑

j=1
BjE(Yt−j) +

q∑
j=1

AjE(λt−j).

Setting m = E(Yt), we have m = d + Em with E = ∑q
j=1(Aj + Bj). We then obtain

m = d + Ed + · · · + En−1d + Enm for any integer n ≥ 1. Since all the quantities
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are non negative, the series ∑∞
i=0 Eid is convergent line by line. This implies that

limn→∞ End = 0. If d− = min1≤i≤p di > 0, we deduce that En → 0, element-wise.
This entails ρ(E) < 1. □

1.4.3 Proof of Theorem 3

1. For any solution, setting Xt = (log(1+Yt)′, log(λt)′)′. We can write : Xt = F (Xt−1, . . . , Xt−q, N (t))

with
F
(
x1, . . . , xq, N (t)

)
=
(
log(1 + N

(t)
f(x1,...,xq))

′, log(f(x1, . . . , xq))′
)′

,

where ∀j = 1, . . . , q, xj = (uj, vj) ∈ (Rp
+ × Rp) and

log(f(x1, . . . , xq)) = b0 +
q∑

j=1
Bjuj +

q∑
j=1

Ajvj.

For x ∈ (Rp
+ × Rp)q, Jensen’s inequality leads to the bound

E
[∣∣∣F (

x1, . . . , xq, N (1)
)∣∣∣

1

]
≼ 1′

(
|log(f(x1, . . . , xq))|vec + log(1 + f(x1, . . . , xq))

)
< ∞.

Using Jensen’s inequality to the function x 7→ log(1 + x) and Poisson process pro-
perties, we obtain that, for a given Poisson process N (for more details, see Fokianos
and Tjøstheim [54], proof of Lemma 2.1),

E
(

log
(1 + Nt

1 + Ns

))
≤ log(t) − log(s).

For x = (x1, . . . , xq), x′ = (x′
1, . . . , x′

q) ∈ Eq,

E
[∣∣∣F (x, N (1)) − F (x′, N (1))

∣∣∣
vec

]
=

 E
(∣∣∣∣∣log

(
1+N

(1)
f(x)

1+N
(1)
f(x′)

)∣∣∣∣∣
vec

)
|log(f(x)) − log(f(x′))|vec


≼

|log(f(x)) − log(f(x′))|vec

|log(f(x)) − log(f(x′))|vec


≼

q∑
j=1

|Bj|vec |Aj|vec

|Bj|vec |Aj|vec

 ∣∣∣xj − x′
j

∣∣∣
vec

,

where for x ∈ Rd and y ∈ Rd
∗, x

y
= (x1

y1
, . . . , xd

yd
)′. Note that the matrices Γ =
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∑q
j=1

|Bj|vec |Aj|vec

|Bj|vec |Aj|vec

 and ∑q
j=1 (|Aj|vec + |Bj|vec) have the same spectral radius.

The result then follows from theorem 1 (1.).

2. We will use Theorem 1 (3.) with r = 1 and for (u, v) ∈ Rp
+ × Rp,

ϕ(u, v) = (exp (δ| exp(u1) − 1|) , . . . , exp (δ| exp(up) − 1|) , exp (δ exp(|v1|)) , . . . , exp (δ exp(|vp|))) ,

with δ > 0 to be specified latter. Setting for xi = (ui, vi) ∈ Rp
+ × Rp for 1 ≤ i ≤ p,

λ = f (x1, . . . , xq) and µ = log
(
λ
)
. We have for 1 ≤ k ≤ p,

exp(|µk|) ≤ ek +
q∑

j=1

p∑
l=1

|Bj(k, l)| [exp (uℓ,j) − 1] + |Aj(k, l)| exp(|vℓ,j|),

and

E [exp (δ exp(|µk|))] ≤ e′
k+

q∑
j=1

p∑
l=1

|Bj(k, l)| exp (δ [exp(uℓ,j) − 1])+|Aj(k, l)| exp (δ exp(|vℓ,j|)) ,

with

ek = (1 − γk) exp
(

dk

1 − γk

)
+

q∑
j=1

p∑
l=1

|Bj(k, l)|, e′
k = (1 − γk) exp

(
δek

1 − γk

)

and γk = ∑q
j=1

∑p
l=1 |Aj(k, l)| + |Bj(k, l)|. We also have

E
[
exp

(
δN

(1)
k,λk

)]
≤ exp(δ(1 + ϵ)λk)

≤ ẽk + (1 + ϵ)
q∑

j=1

p∑
l=1

|Bj(k, l)| exp (δ [exp(uℓ,j) − 1]) + |Aj(k, l)| exp (δ exp(|vℓ,j|)) ,

with ẽk = (1 − (1 + ϵ)γk) exp
(

δ(1+ϵ)ek

1−(1+ϵ)γk

)
where (ϵ, δ = δ(ϵ)) satisfy (1 + ϵ) supk γk ≤

1 and expδ −1 ≤ (1 + ϵ)δ. Therefore,

E
[
ϕ
(
F (x, N (1))

)]
≼

ẽvec

e′
vec

+ (1 + ϵ)
q∑

j=1

|Bj|vec |Aj|vec

|Bj|vec |Aj|vec

exp (δ (exp(uj) − 1))
exp (δ exp (|vj|vec))



With M = ∑q
j=1(|Bj|vec + |Aj|vec), condition |M |∞ < 1 ensures that the spectral
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radius of the matrix ∑q
j=1

|Bj|vec |Aj|vec

|Bj|vec |Aj|vec

 is less than 1. Then, one can find ϵ

such that the spectral radius of

Γϵ = (1 + ϵ)
q∑

j=1

|Bj|vec |Aj|vec

|Bj|vec |Aj|vec


is less than 1. Theorem 1 (3.) then leads to the result. □

1.4.4 Proof of Theorem 4

The noise at time t, denoted by ϵt, is a vector with components Ut and random se-
quences Y t,j,i,ℓ

· for 1 ≤ j ≤ q, 1 ≤ i, ℓ ≤ p. Define F (x1, . . . , xq, ϵt) = ∑q
j=1 Aj ◦ xj + ϵt.

Due to the properties of the thinning operator, we have for x1, . . . , xq, y1, . . . , yq ∈ Np,

E |F (x1, . . . , xq, ϵ0) − F (y1, . . . , yq, ϵ0)|vec ≼
q∑

j=1
Aj|xj − yj|vec.

This shows Assumption A2. Assumption A1 is automatically satisfied. The first part of
the theorem follows from Theorem 1 (1.)

Finally, we check A3 when ϕ is the identity function. We decompose

F (x1, . . . , xq, ϵ0) =
q∑

j=1
Ajxj + S(x1, . . . , xq) + U0,

where S(x1, . . . , xq) = ∑q
j=1 Aj ◦xj −∑q

j=1 Ajxj is a vector of sums of independent random
variables. Using Burkhölder’s inequality we have for y ∈ N, ∥A0,j,i,ℓ

0 ◦ y − Aj(i, ℓ)y∥r ≤
Cy1/ max(r,2) where C > 0 depends on r and Lr−norm of the counting sequences. One
can then take the same constant C for all the counting sequences. We denote by H the
matrix p × p with all components equal to 1. For any ε > 0, there exists bε,r > 0 only
depending on ε, r and such that for y ∈ N, y1/ max(r,2) ≤ εy + bε,r. We choose ε > 0 such
that ρ (A1 + · · · + Aq + CεqH) < 1. We then obtain

∥F (x1, . . . , xq, ϵ0)∥r,vec ≼
q∑

j=1
Ajxj + ∥S(x1, . . . , xq)∥r,vec + ∥U0∥r,vec

≼
q∑

j=1
(Aj + CεqH) xj + qpCbε,r1 + ∥U0∥r,vec.
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Setting Dj = Aj + CεqH for j = 1, . . . , q, the result follows from Theorem 1 (2.)□

1.5 Appendix

Lemma 1 Let E1, . . . , Eq be square matrices of size e×e, with nonnegative elements and
such that ρ (E1 + · · · + Eq) < 1.

1. We have ρ(F ) < 1 where F denotes the companion matrix associated to E1, . . . , Eq,
i.e.

F =
E1 E2 · · · Eq

I(q−1)e 0(q−1)e,e

 .

2. Let also (vn)n≥1 be a sequence of vectors of Re
+ and b ∈ Re

+ such that

vn ≼
q∑

i=1
Eivn−i + b, n ≥ q + 1.

Let | · |1 be the ℓ1−norm on Re. There exists C > 0 and ρ ∈ (0, 1), not depending
on (vn)n≥1, such that |vn|1 ≤ Cρn∑q

i=1 |vi|1 + C|b|1
1−ρ

.

Proof of Lemma 1

1. Let E = E1 + · · · + Eq. Since ρ(E) < 1, we have En → 0. Suppose that λ is an
eigenvalue of F of modulus greater than 1. If v = (v1, . . . , vq) ∈ Rqe \ {0} is such
that Fv = λv, we have λv1 = ∑q

i=1 Eivi = ∑q
i=1 λ1−iEiv1. This yields

|v1|vec ≼
q∑

i=1
|λ|−iEi|v1|vec ≼ E|v1|vec ≼ En|v1|vec.

Letting n → ∞, we get v1 = 0 and then v2, . . . , vq = 0. This contradicts v ̸= 0.
Hence |λ| < 1 and then ρ(F ) < 1.

2. For n ≥ q, set un = (vn, . . . , vn−q+1) and B =
(
b, 01,(q−1)e

)
. For n ≥ q + 1, we have

un ≼ Fun−1 + B ≼ F n−quq +
n−q−1∑

i=0
F iB,

with F being the companion matrix associated to the matrices E1, . . . , Eq and which
is defined in the previous point. We still denote by | · |1 the ℓ1−norm on Req. From
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the previous point, we have ρ(F ) < 1 and then if ε > 0 is such that ρ = ρ(F )+ε < 1,
we have |F n|1 ≤ Cρn for C > 0 only depending on the matrix F . Then if n ≥ q + 1,

|vn|1 ≤ |un|1 ≤ Cρn−q|uq|1 + C
n−q−1∑

i=0
ρi|B|1.

Since |B|1 = |b|1 and |uq|1 ≤ ∑q
i=1 |vi|1, this leads to the result.□

Lemma 2 Let λ > 0 and Xλ be a Poisson variable with parameter λ. Then, ∀r ≥ 1 and
any δ ∈ (0, 1), there exists br,δ, not depending on λ and such that ∥Xλ∥r ≤ (1 + δ)λ + br,δ.

Proof of Lemma 2 We have the equality E(Xr
λ) = ∑r

i=1 λi

 r

i

 with

 r

i

 are the

Sterling’s numbers of second kind. See for instance Johnson et al. [76].
Then

E(Xr
λ) = λr +

r−1∑
i=1

λi

 r

i

 ≤ λr + Cr(λ + λr−1),

where Cr > 0 only depends on r. But, we can notice that, for any δ > 0, there exists
b̃δ,r > 0 such that for all x ≥ 0 : x + xr−1 ≤ δ′xr + b̃δ,r with δ′ = (1+δ)r−1

Cr
. Then

E(Xr
λ) ≤ (1 + Crδ

′)λr + Crb̃δ,r. Therefore ∥Xλ∥r ≤ (1 + Crδ
′)1/rλ + C1/r

r b̃
1/r
δ,r . Setting

bδ,r = C1/r
r b̃

1/r
δ,r , we get the result.□

Lemma 3 Let E1, E2 be square matrices of size e×e. The matrices
E1 E2

E1 E2

 and E1+E2

have the same nonzero eigenvalues.

Prof of lemma 3 Let us denote x = (x1, x2) ∈ R2e with x1, x2 ∈ Re an eigenvector of the

matrix E =
E1 E2

E1 E2

 and λ a nonzero eigenvalue of E. Straightforwardly, E1x1 +E2x2 =

λx1 and E1x1+E2x2 = λx2. These equations entail (E1+E2)x1 = λx1 since λ is nonzero.□
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Chapitre 2

ITERATIONS OF DEPENDENT RANDOM

MAPS AND EXOGENEITY IN NONLINEAR

DYNAMICS

Abstract. We discuss the existence and uniqueness of stationary and ergodic nonlinear
autoregressive processes when exogenous regressors are incorporated into the dynamic. To
this end, we consider the convergence of the backward iterations of dependent random
maps. In particular, we give a new result when the classical condition of contraction on
average is replaced with a contraction in conditional expectation. Under some conditions,
we also discuss the dependence properties of these processes using the functional depen-
dence measure of Wu (2005) that delivers a central limit theorem giving a wide range of
applications. Our results are illustrated with CHARN models, GARCH processes, count
time series, binary choice models and categorical time series for which we provide many
extensions of existing results.

Based on[32]

2.1 Introduction

Among the various contributions devoted to time series analysis, theoretical results
justifying stationarity and ergodicity properties of some standard stochastic processes
when exogenous covariates are incorporated in the dynamic are rather scarce. A notable
exception concerns linear models, such as VARMA processes, for which such properties are
a consequence of the linearity. See for instance [93], a standard reference for multivariate
time series models. Moreover, linear models represent a very simple setup for discussing
various exogeneity notions found in the literature. See for instance [46]. For nonlinear
dynamics, a few contributions consider the problem of exogenous regressors. For general
GARCH type processes, [59] recently studied stationarity conditions when the noise and
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the covariate process form a stationary process. [2] considered a Poisson autoregressive
process with exogenous regressors (PARX models), under a Markov chain assumption
for the covariate process. [28] consider the case of dynamic binary choice models and
provide results about stationarity and mixing properties of a 0/1−valued time series which
is autoregressive and defined conditionally on some exogenous regressors. [51] studied
stationarity and ergodicity of general categorical time series defined conditionally on a
strictly exogenous covariate process.

In this paper, we give general results for getting stationarity, ergodicity and stochastic
dependence properties for general nonlinear dynamics defined in terms of iterations of
random maps. For simplicity, we explain our setup with the following example which
represents the basis for studying other processes. Let us consider the following model

Xt = F (Xt−1, Zt−1, εt) , t ∈ Z, (2.1)

where (Zt)t∈Z is a covariate process and (εt)t∈Z a noise process. One can note that Xt =
ft(Xt−1) for the random function defined by ft(x) = F (x, Zt−1, εt). The sequence (ft)t∈Z

is a sequence of dependent random maps even if the ε′
ts are i.i.d. because typically the Z ′

ts
exhibit temporal dependence. A key point for getting existence of a stationary solution in
(2.1) is to control the behavior of the backward iterations {ft ◦ ft−1 ◦ · · · ◦ ft−n(x) : n ≥ 1}.
The convergence of such iterations of random maps has been extensively studied in the
independent case. In this case, the process (Xt)t∈Z is a Markov chain. We defer the reader
to [89] and [36] for seminal papers on iterated independent random maps and to [135]
for additional results useful in a time series context. The last contribution is particularly
interesting for getting existence of some moments for the marginal Xt and also some
dependence properties for the process (Xt)t∈Z that are often needed for statistical ap-
plications. All these contributions use average contraction conditions and the interested
reader is referred to the interesting survey of [123] for an overview of the available results.
There also exist some contributions studying the more general case of iterated stationary
random maps (ft)t∈Z. For instance, [10] gives many results for studying what he calls sto-
chastically recursive sequences, when the independence assumption is removed. See also
[74] for a survey of some available results. The results obtained in the dependent case
are based on Lyapunov type exponents and the convergence of the backward iterations is
only studied almost surely. We recall the following result which can be found in [43] (see
also [74], Theorem 6.2) and which generalizes a widely known result given in [14] or [11]
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for iterations of affine random maps.
To do so, we introduce some notations and conditions. We assume that ft : E → E

are random Lipschitz functions where E denotes a locally compact Polish space endowed
with a metric d. We define the Lipschitz constant of a measurable function g : E → E by

c(g) := sup
x ̸=y∈E

d (g(x), g(y))
d(x, y) .

Moreover, for any integers s < t, we set f t
s = ft ◦ · · · ◦ fs. For a positive real number x,

we set log+(x) = log(x) if x ≥ 1 and 0 otherwise.

Theorem 5 Assume that the process ((Zt, εt))t∈Z in (2.1) is stationary and ergodic. As-
sume further that E

[
log+ c(f0)

]
< ∞ and E

[
log+ d(x0, f0(x0))

]
< ∞ for some point

x0 ∈ E.

1. There exists a constant χ ∈ R ∪ {−∞} called Lyapunov exponent and such that

lim
n→∞

1
n

log c (fn
1 ) = χ a.s.

Moreover
χ = lim

n→∞

1
n
E [log c (fn

1 )] = inf
n≥1

1
n
E [log c (fn

1 )] .

2. If the constant χ is negative, then the almost sure limit f t
−∞ = limk→∞ f t

t−k(x) exists
for any x ∈ E and does not depend on x. Setting Xt = f t

−∞, the process (Xt)t∈Z is
stationary and ergodic and satisfies the recursions (2.1). Moreover, (Xt)t∈Z is the
unique stationary process satisfying (2.1).

The affine random maps version of this result has been applied recently by [59] for stu-
dying stationarity of asymmetric power GARCH processes. For nonlinear random maps,
Theorem 5 is less known in the time series literature. In this paper, we will make use of
Theorem 5 for defining a general class of categorical time series with exogenous covariates.
In particular, we will see in Section 2.4.4 how Theorem 5 can be applied to binary time
series and lead to an improvement of a result of [28].

However, the result presented above has several limitations.

1. First, it requires the random maps ft to be almost surely Lipschitz. Such a property
is not always valid, for instance for the Poissonian autoregressions discussed in Section
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2.4.3. When there are no exogenous covariates, [26] studied integer-valued time series by
using a different contraction result, developed by [135].

2. Existence of some moments for the marginal distributions that are sometimes neces-
sary for statistical applications cannot be obtained directly from this result.

3. For autoregressions with several lags, it is not straightforward to get an explicit
condition on the parameters of the model to ensure that χ < 0.

To overcome these drawbacks, we will adapt the approach used by [135] for independent
random maps to the case of dependent random maps. Our main result, see Theorem 6
and its extension Theorem 8, is obtained by replacing the usual contraction on average
condition by a contraction in conditional expectation. The assumptions that we use are
very simple to check and the proof of our main result is straightforward but its merit is
to provide an elegant way for presenting a general approach which encompasses most of
the previous attempts to include exogenous regressors in nonlinear dynamics. For strictly
exogenous regressors, i.e. the processes (Zt)t∈Z and (εt)t∈Z are independent, we also provide
an additional result, see Theorem 7, with weaker assumptions. In the context of Theorem
6 and Theorem 8, we will then discuss how to control the functional dependence measure
of (Xt)t∈Z introduced by [134], a dependence notion which is an alternative to the standard
strong mixing condition and which can be more easily checked for iterations of contracting
random maps. Let us mention that even in the independent case, mixing properties of the
process (Xt)t∈Z require restrictive assumptions on the noise distribution, otherwise such
properties may fail. We refer the reader to the standard textbook of [41], section 2.4 for
mixing properties of iterations of independent random functions and to [5] for a famous
counterexample of a non strongly mixing sequence defined via iterations of random maps.
In the dependent case, as in (2.1), getting usual strong mixing properties seems to be
harder because the process (Xt)t∈Z does not have a Markov structure in general and the
criteria for getting mixing properties of Markov chains are useless.

This paper is mainly motivated by dynamics of type (2.1) with covariates that are not
necessarily strictly exogenous, assuming that at any time t, the noise εt is independent
from the past information σ ((Zs, εs) : s ≤ t − 1). The term predetermindness is sometimes
used in the literature. This independence assumption is substantially weaker than the
independence between the two processes (εt)t∈Z and (Zt)t∈Z. The latter independence
condition implies strict exogeneity, a notion initially defined by [119] and extended to
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general models by [19]. Strict exogeneity is useful for deriving the conditional likelihood of
the X ′

ts conditionally on the Z ′
ts. However, strict exogeneity is a rather strong assumption.

Under additional regularity conditions on the model, [19] has shown that this assumption
is equivalent to the non Granger-causality, i.e. Zt is independent of (Xs)s≤t conditionally
on (Zs)s≤t−1. It roughly means that the covariate process (Zt)t∈Z evolves in a totally
autonomous way. In contrast, our exogeneity condition allows general covariates of the
form Zt = H (ηt, ηt−1, . . .) with H a measurable function and a sequence ((ηt, εt))t∈Z of
i.i.d. random vectors, εt being possibly correlated with ηt. The error εt can then still
have an influence on future values of the covariates. For linear models, the two technical
independence conditions discussed above between the noise and the covariate processes
are often used as a distinction between weak and strict exogeneity. See for instance [93],
Section 10.2. Let us mention that there exist additional concepts of exogeneity that are
introduced and discussed in [46], in particular a notion of weak exogeneity. However, this
notion is related to the estimation of a specific parameter of the conditional distribution
for the bivariate process (Xt, Zt) and it is necessary to specify the joint dynamic of the
process. Since we do not want to consider specific dynamics for the covariate process, we
will not use it in this paper. Inclusion of exogenous regressors motivates our approach
which is based on conditional average contraction conditions. But our results can be also
applied without referring to these concepts of exogeneity, i.e. when ((Zt−1, εt))t∈Z is a
general stationary and ergodic process in (2.1). However, in the latter case, a closed form
expression for the conditional distribution of Xt given Ft−1 cannot be obtained directly
from the recursions (2.1). Our contribution is then the first one presenting a general
framework for inclusion of covariates in nonlinear dynamics. Our results can be applied to
any statistical procedure which require either ergodic properties or the use of some limit
theorems developed from the notion of functional dependence introduced by [134]. Since
the existing literature already contains many asymptotic results of this type, we do not
discuss specific applications.

The rest of this paper is organized as follows. In Section 2.2, we give our main results
for defining stationary and ergodic solutions for recursions of type (2.1). In Section 2.3, we
study weak dependence properties of the process using the functional dependence measure
of [134]. Many examples of nonlinear time series models satisfying our assumptions are
given in Section 2.4 and we revisit some nonlinear dynamics discussed recently in the
literature but we also consider new ones. A conclusion is given in Section 2.5. The proofs
of our results are postponed to the last section of the paper.

40



Iterations of dependent random maps and exogeneity in nonlinear dynamics

2.2 General results

In this section, we state several results for controlling the convergence of the backward
iterations in some Lp spaces. We recall that for a random variable X and a real number
p ≥ 1, the quantity ∥X∥p = E1/p (|X|p) is called the Lp−norm of X. Now let (ft)t∈Z be a
sequence of random maps defined on a Polish space (E, d) and taking values in the same
space. We assume for convenience that ft = F (·, ζt) where (ζt)t∈Z is a stochastic process
taking values in another Polish space E ′ and F : E × E ′ → E is a measurable map. In
connection with our initial example (2.1), we have ζt = (Zt−1, εt). In the latter case, we
will assume throughout the paper that E ′ = E ′

1 × E ′
2 where E ′

1 is a Borel subset of Re

and E ′
2 is another Polish space.

For s < t, we set f t
s = ft ◦f t−1

s with the convention f t
t = ft and f t−1

t (x) = x. Moreover,
we consider a filtration (Ft)t∈Z for which (ζt)t∈Z is adapted.

2.2.1 Conditional contraction on average

We first give a general and useful result for getting a convergence in some Lp spaces.
For some real numbers p ≥ 1, L > 0, κ ∈ (0, 1) and an integer m ≥ 1, we consider the
two following assumptions.

A1 There exists x0 ∈ E such that supt∈Z E [dp (ft(x0), x0)] < ∞.

A2 For every t ∈ Z, almost surely, the following inequalities hold for every (x, y) ∈ E2.

E [dp (ft(x), ft(y)) |Ft−1] ≤ Lpdp(x, y) and E
[
dp
(
f t+m−1

t (x), f t+m−1
t (y)

)
|Ft−1

]
≤ κpdp(x, y).

Theorem 6 Suppose that Assumptions A1-A2 hold.

1. For every (x, t) ∈ E × Z, there exists a E−valued random variable Xt(x) such that

sup
t∈Z

∥d (Xt(x), x0) ∥p < ∞, sup
t∈Z

∥d
(
f t

t−s(x), Xt(x)
)

∥p = O
(
κs/m

)
.

Moreover the sequence
(
f t

t−s(x)
)

s≥0
converges almost surely to Xt(x).

2. For x ̸= y, we have P (Xt(x) ̸= Xt(y)) = 0. We then set Xt = Xt(x).

3. The process ((Xt, ζt))t∈Z is stationary and also ergodic if the process (ζt)t∈Z is itself
stationary and ergodic.
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4. If (Yt)t∈Z is a non-anticipative process (i.e. Yt ∈ Ft) such that Yt = ft (Yt−1) for
t ∈ Z and supj∈Z E [dp (Yj, x0)] < ∞, then Yt = Xt a.s.

Notes

1. The bounds given in Assumption A2 are required to hold for all (x, y) ∈ E2 at the
same time. Since a conditional expectation is only unique up to a set with measure 0
for the probability measure P, the bound given in Assumption A2 has to be unders-
tood in term of regular conditional distribution, i.e. there exists a regular version
of the conditional distribution of (ζt, . . . , ζt+m−1) given Ft−1. On Polish spaces, a
regular version always exists. See [77], Chapter 5.

2. When ζt = (Zt−1, εt) forms a stationary process and Ft = σ ((Zj, εj) : j ≤ t), Theo-
rem 6 guarantees existence and uniqueness of a stationary process possessing a mo-
ment of order p and solution of (2.1). However, stationarity of the covariate/error
process is not required for applying this result. In particular, when (ζt)t∈Z is non
stationary, one can still define solutions of (2.1) provided that A1-A2 are satisfied.
In general, these solutions will be non stationary and the classical law of large num-
bers is not valid. In this case, studying the asymptotic properties of some classical
inferential procedures such as conditional likelihood estimation requires a specific
analysis.

3. Setting p = 1 and d(x, y) = |x − y|o for x, y ∈ E = R and some o ∈ (0, 1), one can
consider stochastic recursions (2.1) with heavy-tailed covariate processes.

4. When the process (ζt)t∈Z is stationary and the recursions are initialized at time
t = 0 with a given state x ∈ E, the probability distribution of the forward iterations
f t

1(x) coincides with the probability distribution of the backward iterations f 0
−t+1(x).

Since limt→∞ f 0
−t+1(x) = X0 a.s., f t

1(x) converges in distribution to X0. The same
property holds true when the iterations are initialized with a random variable X0

independent from (ζt)t≥1. The main interest of the convergence of the backward
iterations is to define the good random initialization X0 = f 0

−∞(x) in order to get a
stationary process (Xt)t≥0.

5. Assumption A2 is a conditional contraction property in Lp which is crucial for
getting the convergence of the backward iterations in Lp norms. Relaxing this as-
sumption by introducing a random coefficient κt−1 instead of κ can be problematic
for getting a similar result. We discuss this point below.
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2.2.2 Comments on Assumption A2

Let us consider the dynamic (2.1), set ft(x) = F (x, Zt−1, εt), with E = R, p = 1
and assume that for every t, εt is independent from Ft−1 = σ ((Zj, εj) : j ≤ t − 1). Then
Assumption A2 is satisfied for m = 1 if and only if there exists κ ∈ (0, 1) such that

sup
z∈E′

1

E |F (x, z, ε0) − F (y, z, ε0)| ≤ κ|x − y|.

At a first sight, the latter condition is quite strong and it is natural to wonder if the
following weaker assumption can be used, i.e. there exists a measurable function κ : G →
(0, ∞) such that for every z ∈ G,

E |F (x, z, ε0) − F (y, z, ε0)| ≤ κ(z)|x − y|.

Of course, the challenging question concerns the convergence of the backward iterations
when the function κ may take values larger than 1. However, a problem occurs for applying
the successive contraction properties to the iterated random maps. Consider the iterations
ft ◦ ft−1. We have for (x, y) ∈ E2,

E |ft ◦ ft−1(x) − ft ◦ ft−1(y)| = E [E [|ft ◦ ft−1(x) − ft ◦ ft−1(y)| Ft−1]]

≤ E [κ(Zt−1) |ft−1(x) − ft−1(y)|] .

If the random variable κ(Zt−1) depends on past values of the error εt−j, j ≥ 1, it is
stochastically dependent on the random map ft−1 and also on Ft−2. It is then not possible
to use the contraction property of ft−1 unless the function κ can be bounded by a constant.
To show that the successive iterations lose the memory with respect to initialization, this
constant has to be smaller than 1. Of course, this does not prove that the convergence of
the iterations in L1 is not possible.

To show that the convergence of the backward iterations in L1 is problematic, we now
consider a map ft linear in x, a case for which an explicit solution is available. Accordingly,
we assume that

ft(x) = κ(Zt−1)x + εt,

where the function κ is bounded but not necessarily by 1 and an integrable noise ε0. The
dynamic is then given by an AR process with a random lag coefficient and it is widely
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known that the unique solution can be written as

Xt =
∑
j≥1

j∏
i=1

κ (Zt−i) εt−j + εt, (2.2)

provided that E log κ (Z0) < 0. The series (2.2) converges almost surely. The L1−convergence
is guaranteed from Theorem 6, as soon as κ := ∥κ(Z0)∥∞ < 1, where for a random va-
riable X, ∥X∥∞ denotes its suppremum norm. If κ ≥ 1, convergence in L1 of the series
2.2 is much more difficult to get because of the possible stochastic dependence between
the coordinates of the process (Zt)t∈Z. Let us first note that such a problem occurs in the
non ergodic case, when Zt = Z0 a.s. In this case, we have

E

 j∏
i=1

κ (Zt−i) |εt−j|

 = E (|ε0|) · E
(
κ(Z0)j

)

and since E (κ(Z0)j) ≥ P (κ(Z0) ≥ 1), one cannot get convergence of the series (2.2) if
P (κ(Z0) ≥ 1) > 0. In what follows, we also stress that a similar problem of convergence
also occurs in the ergodic case. To this end, set ϕ(p) = ∥κ(Z0)∥p for p ≥ 1. The func-
tion ϕ is non decreasing and ϕ(∞) = ∥κ(Z0)∥∞. Assumption A2 is satisfied as soon as
∥κ(Z0)∥∞ < 1. It is then tempting to study the convergence of the solution only assuming
that ∥κ(Z0)∥p < 1 but ∥κ(Z0)∥q ≥ 1 for some 1 ≤ p < q. However for any value of the pair
(p, q), there always exists an example of a process (κ(Zt))t∈Z such that the series (2.2) is
not converging in L1. To this end, assuming without loss of generality that q is an integer,
we define κ(z) = z and Zt−1 = at−1 · · · at−q where (at)t∈Z is a process of i.i.d. nonnegative
random variables, independent of (εt)t∈Z, and such that ∥a0∥p < 1 and ∥a0∥q ≥ 1. Since
for j ≥ q,

j∏
i=1

κ (Zt−i) =
q−1∏
i=1

ai
t−i ·

j+1∏
i=q

aq
t−i

q−2∏
i=0

ai+1
t−j−k+i,

we find

E

 j∏
i=1

κ (Zt−i)
 =

q−1∏
i=1

E2
(
ai

0

)
· Ej−q+2 (aq

0) .

Hence the previous expectation does not converge to 0 when j → ∞ and the series (2.2)
cannot converge in L1. The analysis of this linear case enlightens that a tail condition on
κ(Zt) is not sufficient for getting this kind of convergence. In particular, the dependence
structure of the process (κ(Zt))t∈Z is also of major importance. This contrasts with AR
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processes with i.i.d. random coefficients, since in this case the condition Eκ(Z0) < 1 is
necessary and sufficient for the convergence of the series (2.2) in L1. However, imposing
an independence assumption on the covariate process is not reasonable.

In the next section, we show that one can investigate a different mode of convergence
for the iterations in model (2.1) and which allow to relax Assumption A2. However, it is
necessary to impose a strict exogeneity assumption on the covariate process.

2.2.3 An additional result for strictly exogenous regressors

In this subsection, we consider specifically equation (2.1) when the covariate process
is independent of the error process. In this case, conditionally on Z, the process is a time-
inhomogeneous Markov chain. The terminology Markov chain in random environments is
often used in the literature. See for instance [122]. The following result will not be central
in the rest of the paper because substantial efforts could be needed to derive moment and
weak dependence properties for the corresponding solution and it could be also difficult
to obtain explicit conditions for dealing with higher-order autoregressive processes. This
is why we only provide a result when the ft’s satisfied a one-step contraction (i.e. m = 1
in A2). We assume that there exist a real number p ≥ 1 and a state x0 ∈ E such that
the three following conditions are fulfilled.

A0 The process Z := (Zt)t∈Z is stationary and ergodic, (εt)t∈Z is a process of i.i.d.
random variables taking values in E ′

2 and is independent of Z.

A1’ For every z ∈ E ′
1, we have E [dp (F (x0, z, ε1), x0)] < ∞.

A2’ There exists a measurable function κ : E ′ → (0, ∞) satisfying E
(
log+ κ(Z0)

)
< ∞,

E log κ(Z0) < 0 and such that for every (x, y) ∈ E2,

E [dp (F (x, z, ε0), F (y, z, ε0))] ≤ κp(z)dp(x, y).

Moreover,
E
[
log+

∫
dp (x0, F (x0, Z0, u)) dPϵ1(u)

]
< ∞.

We remind the notation ft(x) = F (x, Zt−1, εt). Here, we set Ft = σ ((Zj, εj) : j ≤ t)
and E [X|Z] will denote the expectation of a random variable X conditionally on the
covariate process (Zt)t∈Z.
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Theorem 7 Suppose that Assumptions A0,A1’-A2’ hold.

1. For every (x, t) ∈ E×Z, there exists a random variable Xt(x) such that E [dp (Xt(x), x0) |Z] <

∞ a.s. and lims→∞ E
[
dp
(
f t

t−s(x), Xt(x)
)

|Z
]

= 0 a.s. The sequence
(
f t

t−s(x)
)

s≥0
also converges almost surely to Xt(x).

2. For x ̸= y, we have P (Xt(x) ̸= Xt(y)) = 0. We then set Xt = Xt(x).

3. The process ((Xt, Zt))t∈Z is stationary and ergodic.

4. If (Yt)t∈Z is a non-anticipative process (i.e. Yt ∈ Ft) such that ((Yt, Zt))t∈Z is statio-
nary, for every t ∈ Z, Yt = ft (Yt−1) and E [dp (Y0, x0) |Z0, Z−1, . . .] < ∞ a.s., then
Yt = Xt a.s.

Notes

1. The contraction inequality in Assumption A2’ can be restated as

E [dp (ft(x), ft(y)) |Z] ≤ κp(Zt−1)dp(x, y) a.s.

It is then another example of contraction in conditional average.

2. In our context, our result can be seen as an improvement of Theorem 1 given in
[122] for Markov chains in random environments. In particular, we do not assume a
uniform contraction with respect to the environment which is given by the exogenous
process Z in our random maps ft.

2.2.4 Example

We compare the contraction conditions necessary to apply Theorem 5, Theorem 6 or
Theorem 7 on a specific example. Let ((εt, Zt))t∈Z be a stationary sequence of pair of
random variables and for t ∈ Z, set Ft = σ ((Zj, εj) : j ≤ t). Assume that E (ε2

1|F0) = 1
and E (ε1|F0) = 0. For i = 1, 2, let ai : E ′

1 → R and bi : E ′
1 → R+ be some measurable

maps such that E log+ ai(Z0) < ∞ and E log+ bi(Z0) < ∞. We consider the following
AR-ARCH model with functional coefficients

Xt = a0(Zt−1) + a1(Zt−1)Xt−1 + εt

√
b0(Zt−1) + b1(Zt−1)X2

t−1.

Here we set E = R and d(x, y) = |x − y| and p = 2. Setting σ(z, x) =
√

b0(z) + b1(z)x2,
one can note that |σ(z, x) − σ(z, y)| ≤

√
b1(z)|x − y|.
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1. To apply Theorem 5, we compute the Lipschitz constant c(f1) of the random map
f1. We have

c(f1) = sup
v∈R

|f ′
1(v)| = sup

v∈R

∣∣∣∣∣∣a1(Z0) + ε1b1(Z0)v√
b0(Z0) + b1(Z0)v2

∣∣∣∣∣∣ .
Making the change of variable v = sign(ε1)sign (a1(Z0)) v, we have

c(f1) = sup
v∈R

|a1(Z0)| + |ε1| b1(Z0)v√
b0(Z0) + b1(Z0)v2

∣∣∣∣∣∣ .
We then obtain c(f1) = |a1(Z0)| +

√
b1(Z0)|ε1| and Theorem 5 applies as soon as

E log c(f1) < 0. (2.3)

2. To apply Theorem 6, note that

E
[
|ft(x) − ft(y)|2 |Ft−1

]
= a1(Zt−1)2(x − y)2 + (σ (Zt−1, x) − σ (Zt−1, x))2

≤
(
a1(Zt−1)2 + b1(Zt−1)

)
· |x − y|2.

One can then show that Theorem 6 applies as soon as

κ2 := sup
z

(
a1(z)2 + b1(z)

)
< 1. (2.4)

3. If the two processes (εt)t∈Z and (Zt)t∈Z are independent and the ε′
ts are i.i.d., Theo-

rem 7 applies as soon as

E log
(
a1(Z0)2 + b1(Z0)

)
< 0. (2.5)

Under the strict exogeneity assumption, we note that (2.5) is weaker than (2.4). However,
(2.4) ensures the existence of a second order moment for the solution whereas (2.5) only
guarantees that E (X2

t |Z) < ∞ a.s. On the other hand, (2.3), which only ensures existence
of a stationary solution, is not necessarily weaker than (2.4) or (2.5). For instance, if the
noise process has a Rademacher distribution, P(ε1 = 1) = P(ε1 = −1) = 1/2 and the
functional coefficients are constant, (2.3) writes |a1| +

√
b1 < 1 which is more restrictive

than (2.4) or (2.5). But if a1 is identically equal to 0, (2.3) writes as 1
2E log b1(Z0) +
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E log |ε0| < 0 which is weaker than (2.5), since from Jensen’s inequality, we have

E log |ε0| ≤ logE|ε0| ≤ logE1/2
(
ε2

0

)
= 0.

2.2.5 A result for higher-order autoregressions

In this subsection, we extend Theorem 6 to higher-order autoregressive processes. We
only consider stationary processes in this part. The main result, Theorem 8, is particularly
interesting for multivariate autoregressions for which Lipschitz type properties can be
obtained equation by equation. See Section 2.4 for an application of Theorem 8 to various
examples.

For a given real number 0 < o ≤ 1, we define the distance ∆ on R, by ∆(u, v) = |u−v|o

for u, v ∈ R. Let E be a subset of Rk and ∥ · ∥ an arbitrary norm on Rk. Our aim is to
study existence of solutions for the following recursive equations :

Xt = F (Xt−1, . . . , Xt−q, ζt) , t ∈ Z, (2.6)

where F : Eq × E ′ → E is a measurable function. Note that one can always associate a
random map ft on Eq to the dynamic (2.6). To this end, for t ∈ Z and x1, . . . , xq ∈ E, we
set

ft(x1, . . . , xq) = (F (x1, . . . , xq, ζt) , x1, . . . , xq−1) .

We first introduce additional notations. We denote by Mk the set of square matrices
with real coefficients and k rows and if A ∈ Mk, ρ(A) the spectral radius of the matrix A.
Moreover, for x, y ∈ Rk and p ≥ 1, the vector (∆p(x1, y1), . . . , ∆p(xk, yk))′ will be denoted
by ∆p

vec(x, y). Finally, we introduce a partial order relation ⪯ on Rk and such that x ⪯ y

means xi ≤ yi for i = 1, . . . , k.
The following assumptions will be needed.

B1 The process (ζt)t∈Z is stationary and ergodic adapted to a filtration (Ft)t∈Z.

B2 For any y ∈ Eq, E [∥F (y, ζ1) ∥op] < ∞.

B3 There exist some matrices A1, . . . , Aq ∈ Mk with nonnegative elements, satisfying
ρ (A1 + · + Aq) < 1 and such that for y, y′ ∈ Eq,

E [∆p
vec (F (y, ζt), F (y′, ζt)) |Ft−1] ⪯

q∑
i=1

Ai∆p
vec(yi, y′

i).
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Though the following result is stated for an arbitrary pair o ∈ (0, 1), p ≥ 1, the two
interesting cases are o ∈ (0, 1), p = 1 and o = 1, p > 1.

Theorem 8 Suppose that Assumptions B1-B3 hold. There then exists a unique statio-
nary and non-anticipative process (Xt)t∈Z solution of (2.6) and such that E [∥Xt∥op] < ∞.
Moreover, this process is ergodic.

Notes

1. If ζt = (Zt−1, εt) with εt independent of Ft−1 = σ ((Zj, εj) : j ≤ t) and k = o = 1,
Assumption B3 writes

sup
z

E
[∣∣∣F (y1, . . . , yq, z, ε1) − F (y′

1, . . . , y′
q, z, ε1)

∣∣∣p] ≤
q∑

i=1
Ai|yi − y′

i|p,

with ρ (∑q
i=1 Ai) = ∑q

i=1 Ai < 1. This provides a quite simple criterion for applica-
tion to autoregressive processes.

2. In the spirit of Section 2.2.4, the previous criterion can be checked for models with
varying parameters, directly constructed from smooth parametric autoregressive
processes. Consider the model

Yt = F θ (Yt−1, . . . , Yt−q, εt) , t ∈ Z, θ ∈ Θ ⊂ Re.

If
E
[∣∣∣F θ(y1, . . . , yq, ε1) − F θ(y′

1, . . . , y′
q, ε1)

∣∣∣p] ≤
q∑

i=1
Ai(θ)|yi − y′

i|p,

the model
Yt = F θ(Zt−1) (Yt−1, . . . , Yt−q, εt)

satisfies B3 as soon as ∑q
i=1 ∥Ai∥∞ < 1. We then obtain a model with exogenous

covariates by replacing parameter θ with a varying parameter θ (Zt−1) where θ :
Re → Θ is a measurable map. See also the note after Proposition 3 for a discussion.

2.3 Functional dependence measure

The functional dependence measure has been introduced by [134] and is particularly
interesting for autoregressive processes which are not necessarily strong mixing or for
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which getting strong mixing conditions requires additional regularity conditions on the
noise distribution. The single requirement is to get a Bernoulli shift representation of
the stochastic process of interest, i.e. Xt = H (ξt, ξt−1, . . .) where (ξt)t∈Z is a sequence
of i.i.d. random variables taking values in a measurable space (G, G). The functional
dependence measure is expressed in terms of some coefficients which evaluate for t ≥ 0
the Lp−distance between Xt and a copy X t, obtained by replacing ξ0 with ξ′

0, ξ′
0 following

the same distribution as ξ0 and being independent from the sequence (ξt)t∈Z. See below for
the definition of these coefficients. Most of the limit theorems and deviation inequalities
have been derived under such dependence measures. See for instance [138] and [137]. Such
asymptotic results have been applied to various statistical problems. See for instance [136]
for kernel estimation for time series, [139] for covariance estimation or [90] for spectral
density estimation. The notion of functional dependence is then an attractive alternative
to the usual strong mixing when the process is defined by stochastic recursions. Our aim
in this section is to show that under the assumptions of Theorem 6 or Theorem 8, when
the process (ζt)t∈Z or more specifically the covariate process (Zt)t∈Z satisfies this kind of
dependence, the functional dependence measure of the solution (Xt)t∈Z can be controlled.
We will then provide a new wide class of examples for which the aforementioned references
provide an important number of statistical applications. In this section, we assume that
the state space E is a subspace of Rk and the distance d is given by d(x, y) = |x − y|o

where | · | is an arbitrary norm on Rk and 0 < o ≤ 1.

2.3.1 Dependence coefficients for general iterated random func-
tions

Assume that the process ζ has a Bernoulli shift representation, i.e. ζt = H (ξt, ξt−1, . . .)
for some measurable map H : GN → E ′ and (ξt)t∈Z is a sequence of i.i.d., G−valued
random variables. We then have for every (x, t) ∈ E × Z,

ft(x) = F (x, H (ξt, ξt−1, . . .))

and the map ft has itself a Bernoulli shift representation. To define the functional measure
coefficients, we then define a new sequence

(
ξt

)
t∈Z

such that ξ0 = ξ′
0 and ξt = ξt for t ̸= 0.

Here ξ′
0 is a copy of ξ0 which is assumed to be independent from (ξt)t∈Z. Moreover, for

t > 0, let
f t(x) = F (x, H

(
ξt, ξt−1, . . .)

)
.
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we define for t ≥ 0 and p ≥ 1,

θp,t = E1/p
[
d
(
f t

−∞, f
t

−∞

)p]
.

Moreover, for h ∈ N, let Θp,h = ∑
t≥h θp,t. Two cases of interest are p = 1 and o = 1, p > 1.

Our aim is to get an upper bound for the functional dependence coefficients Θp,h. To
this end, we add other assumptions. Here we set for t ∈ Z, Ft = σ (ξt−j : j ≥ 0).

A3 There exists a measurable function S : E → R+ and r, s ≥ p such that r−1 + s−1 =
p−1 and E

[
S(f 0

−∞)s
]

< ∞ and for all x ∈ E and t ≥ 1,

E1/p
[
dp
(
f t(x), ft(x)

)p
|σ(ξ′

0) ∨ Ft−1
]

≤ S(x)Ht−1,

where Ht−1 is a random variable measurable with respect to σ(ξ′
0) ∨ Ft−1 and such that

E|Ht−1|r < ∞.
An immediate consequence of Assumption A3 is that for any random variable Vt−1,

measurable with respect to σ(ξ′
0)∨Ft−1, we have E

[
dp
(
f t(Vt−1), ft(Vt−1)

)]
≤ E [S(Vt−1)pHp

t−1]
and from Hölder’s inequality, we get

∥d
(
f t(Vt−1), ft(Vt−1)

)
∥p ≤ ∥S(Vt−1)∥s∥Ht−1∥r.

When ζt = (Zt−1, εt), with Zt taking values in a Borel subset E ′
1 of Re and εt taking

values in a Polish space E ′
2, we will still denote by | · | an arbitrary norm on Re and we

also set d(z, z′) = |z − z′|o for z, z′ ∈ Re to avoid additional notations. We will use two
specific assumptions.

A3’ There exists a measurable function S : E → R+ and r, s ≥ p such that r−1 + s−1 =
p−1 and E

[
S(f 0

−∞)s
]

< ∞, E|Z0|ro < ∞ and for all x ∈ E and t ≥ 1,

E1/p [dp (F (x, z, ε0) , F (x, z′, ε0))] ≤ S(x)d(z, z′),

A4 Let (ηt)t∈Z be a sequence of random variables taking values in a measurable space
(G1, G1) and such that Zt = H ′ (ηt, ηt−1, . . .) for a measurable function H ′. Moreover,
setting ξt = (εt, ηt), we assume that (ξt)t∈Z is a sequence of i.i.d. of random variables
taking values in G = E ′

2 × G1.

51



Iterations of dependent random maps and exogeneity in nonlinear dynamics

From A4, we have the specific representation

ζt = H (ξt, ξt−1, . . .) := (H ′(ηt−1, ηt−2, . . .), εt) , t ∈ Z.

The map H takes values in E ′ = E ′
1 × E ′

2. Note that our formulation allows the covariate
process to have a general form, including a VARMA or GARCH process among others.

Proposition 1 1. Suppose that Assumptions A1-A4 hold. For any h ≥ 2, there then
exists C1 > 0 not depending on h such that

Θp,h ≤ C1

κh/m +
h−1∑
i=0

κi/mηr,h−i +
∑
i≥h

κi/mηr,1

 , (2.7)

with
ηr,j =

∑
t≥j

∥Ht−1∥r, j ≥ 1.

In particular, if ηr,1 < ∞, there exists C > 0, not depending on h, such that

Θp,h ≤ C

[
κh/m +

h−1∑
i=0

κi/mηr,h−i

]
. (2.8)

2. Suppose that Assumptions A1-A2-A4 and A3’ hold. Then we get the bound (2.8)
with ηr,j = Θr,j−1(Z).

Notes

1. Let us comment on Assumption A4. Under this assumption, the η′
ts are i.i.d. as

well as the ε′
ts and for any t ∈ Z, εt is independent from Ft−1 = σ (ξs : s ≤ t − 1}.

Note that we allow simultaneous dependence between εt and ηt. For instance, we
can set ηt = K(εt, Ut) where K is a measurable function and U is a sequence of i.i.d.
random variables, independent from the sequence ε. This assumption is then more
flexible than the complete independence between the two error processes ε and η,
which implies strict exogeneity.

2. It can happen that our assumptions are satisfied with some p, leading to an upper
bound for the functional dependence coefficients θp,t, while it is required a condition
on θq,t or Θq,h for q > p for applying some limit theorems or statistical results. This
is still possible if one can prove finiteness of higher-order moments for the solution,
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e.g. if E
[
|f 0

−∞|q′o
]

< ∞ for some q′ > q. Indeed, from Hölder’s inequality, we have

θq,t ≤ θ
p(q′−q)
q(q′−p)
p,t θ

q′(q−p)
q(q′−p)
q′,t .

Moreover, θq′,t ≤ 2∥
∣∣∣f 0

−∞

∣∣∣o ∥q′ .

2.3.2 Dependence coefficients for higher-order autoregressions
with exogenous covariates

Here, we revert to higher-order autoregressions considered in Section 2.2.5. We consider
directly the case ζt = (Zt−1, εt) with Assumption A4 being satisfied. Additionally to
Assumptions B1-B2-B3 and A4, the following assumption, which is the analogue of
A3’, will be needed.

B4 If r > 0 and s ∈ R+ ∪ {∞} are such that r−1 + s−1 = p−1, there exists a measurable
function S : Eq → R such that E [S(Xq, . . . , X1)s] < ∞, E|Z0|or < ∞ and for all
z, z′ ∈ E ′

1 and x1, . . . , xq ∈ Eq,

E1/p [dp (F (x1, . . . , xq, z, ε0), F (x1, . . . , xq, z′, ε0))] ≤ S(x1, . . . , xq)d(z, z′).

The result is the following.

Proposition 2 Suppose that Assumptions B2 − B4 and A4 hold. There then exists C >

0 and ρ ∈ (0, 1), such that for all h ≥ 1, Θp,h(X) ≤ C
[
ρh +∑h

i=1 ρiΘr,h−i(Z)
]
.

Note. From the upper bound given in Proposition 2, we note that the decay of Θp,h(X)
is polynomial (respectively geometric) in h if the decay of Θr,h is polynomial (respectively
geometric) in h.

2.3.3 A central limit theorem

To illustrate the usefulness of our results, we give below a central limit theorem for
partial sums

Sn =
n∑

i=1
f (Xt, Xt−1, . . . , Xt−k) ,

where f is some real-valued measurable function and (Xt)t∈Z is a stochastic process so-
lution of Xt = F (Xt−1, . . . , Xt−q, ζt) and the assumptions of either Proposition 1 or
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Proposition 2 are satisfied. The following result, which is a straightforward corollary of
the invariance principle given in [134], is not the most general as possible. In particular,
when a moment of order greater than p is available for the stationary solution, different
assumptions on the function f could be used.

Theorem 9 Suppose that either Assumptions A1-A4 or Assumptions B2-B3-B4-A4
hold true for some p > 2 and Θp,0(X) < ∞. If there exists C > 0 and 0 ≤ ℓ ≤ p−2

2 such
that for xi, x′

i ∈ E, 0 ≤ i ≤ k,

|f (x0, . . . , xk) − f (x′
0, . . . , x′

k)| ≤ C

[
1 +

k∑
i=0

(
|xi|oℓ + |x′

i|oℓ
)]

·
k∑

i=0
d(xi, x′

i).

Then we have the weak convergence

1√
n

(Sn − ESn) ⇒ N
(
0, σ2

)
,

with σ2 = ∑
j∈Z Cov (Yj, Y0), Yt = f (Xt, . . . , Xt−k).

2.4 Examples

2.4.1 CHARN models

In this section, we consider conditional heteroscedastic autoregressive nonlinear (CHARN)
models such as in [71] or [72] but that can encompass exogenous regressors. More precisely,
we consider the dynamic

Yt = f1 (Yt−1, . . . , Yt−q, Zt−1) + εtf2 (Yt−1, . . . , Yt−q, Zt−1) , (2.9)

where q is a positive integer and f1, f2 : Rq × E ′
1 → R are measurable functions. In order

to study stationary solutions of the recursions (2.9), the following assumptions will be
needed.

CH1 The process ((Zt, εt))t∈Z is stationary and ergodic.

CH2 For j = 1, 2, there exist measurable functions ai,j : Rd × R+, 1 ≤ i ≤ q such that

∣∣∣fj(y1, . . . , yq, z) − fj(y′
1, . . . , y′

q, z)
∣∣∣ ≤

q∑
i=1

ai,j(z) |yi − y′
i| .
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CH3 There exist a real number p ≥ 1 such that ∥ε1∥p < ∞ and r, s ≥ p such that
r−1 + s−1 = p−1, s can be infinite, E|Z0|r < ∞ and two functions L1, L2 defined on
Rq and such that for j = 1, 2, y1, . . . , yq ∈ R and z, z′ ∈ E ′

1,

|fj(y1, . . . , yq, z) − fj(y1, . . . , yq, z′)| ≤ Lj(y1, . . . , yq)|z − z′|.

For t ∈ Z and i = 1, . . . , q, we set ci,t = ai,1 (Zt−1) + ai,2 (Zt−1) |εt|, We then define a
sequence of random matrices A = (At)t∈Z by

At =


c1,t c2,t · · · cq,t

0
Iq−1

...
0

 .

Finally, we denote by χ(A) the Lyapunov exponent of the sequence A, i.e.

χ(A) = lim
n→∞

E [log ∥An · · · A1∥]
n

,

where ∥ · ∥ is an arbitrary norm on the space of square matrices of size q × q.

Proposition 3 Suppose that Assumptions CH1-CH2 hold.

1. Suppose that χ(A) < 0. There then exists a unique stationary process (Yt)t∈Z solution
of (2.9) which is also ergodic.

2. Assume additionally that for every t ∈ Z, εt is independent from Ft−1. If there exist
x ∈ Rq, p ≥ 1 such that f1(x, Z0) + ε1f2(x, Z0) ∈ Lp and

q∑
i=1

sup
z

∥ai,1(z) + ai,2(z)|ε1|∥p < 1, (2.10)

there then exists a unique stationary and non-anticipative process solution of (2.9)
which is also ergodic and such that E|Y1|p < ∞.

3. Assume furthermore that Assumptions (CH3) and (A4) hold true with ELs
j(Yq, . . . , Y1) <

∞ for j = 1, 2. There then exists C > 0 and ρ ∈ (0, 1), such that for all h ≥ 1,
Θp,h(X) ≤ C

[
ρh +∑h

i=1 ρiΘr,h−i(Z)
]
.

Notes
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1. Our results can be useful for dealing with models with functional coefficients in the
spirit of the example given in Section 2.2.4. See also the notes after the statement
of Theorem 8. For j = 1, 2, let m

(j)
θ : Rq → R be some functions depending on some

parameters θ ∈ Re and such that

∣∣∣m(j)
θ (y1, . . . , yq) − m

(j)
θ (y′

1, . . . , y′
q)
∣∣∣ ≤

q∑
i=1

di,j(θ) |yi − y′
i| ,

for some nonnegative real numbers di,j(θ), 1 ≤ i ≤ q. If θ is replaced by a func-
tion θ(·) : Rd → Re and fj(y1, . . . , yq, z) = m

(j)
θ(z)(y1, . . . , yq) for j = 1, 2, one can

then consider some standard autoregressive processes and obtain a version with
functional parameters depending on exogenous covariates. For instance, threshold
autoregressions or power-ARCH volatility,

m
(1)
θ (y1, . . . , yq) = θ0+

q∑
i=1

(
θiy

+
i + θi+qy

−
i

)
, m

(2)
θ (y1, . . . , yq) =

(
θ0 +

q∑
i=1

θi|yi|δ
)1/δ

,

where x+ and x− denotes respectively the positive part and the negative part of a
real number x and δ ≥ 1.

2. When εt is not necessarily independent from Ft−1, (2.10) can be replaced with the
following more abstract condition. There exists η ∈ (0, 1) such that

q∑
i=1

E1/p [(ai,1(Z0) + ai,2(Z0)|ε1|)p |F0] ≤ 1 − η a.s. (2.11)

For q = 1, let us compare (2.11) with the condition χ(A) < 0, which reduces to

E [log (a1,1(Z0) + a1,2(Z0)|ε1|)] < 0.

This latter condition is much weaker than (2.11). Indeed, (2.11) entails that

E [a1,1(Z0) + a1,2(Z0)|ε1|] ≤ ∥a1,1(Z0) + a1,2(Z0)|ε1|∥p < 1

and from Jensen’s inequality, logE [a1,1(Z0) + a1,2(Z0)|ε1|] ≤ χ(A).
For q ≥ 2, it is more difficult to obtain explicit conditions which guaranty that
χ(A) < 0.

3. Using the results of [91], a nonparametric kernel estimation of the functions f and
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g is possible. Proposition 3 gives precise assumptions under which it is possible
to control the functional dependence measure of some CHARN models when the
regressors include lag values of the response as well as exogenous covariates. We then
obtain additional examples of time series models for which standard nonparametric
estimators of the regression function are still consistent.

2.4.2 GARCH processes

GARCH processes with exogenous regressors have been considered recently by [110]
or [59]. We consider here the asymmetric power GARCH studied by [59]. The model is
defined as follows.

Yt = εth
1/δ
t , ht = π′Zt−1 +

q∑
i=1

{
βiht−i + αi+(Y +

t−i)δ + αi−(Y −
t−i)δ

}
, (2.12)

where (εt)t∈Z and (Zt)t∈Z are two sequences of random variables taking values in R and
Rd

+ respectively, δ > 0, π ∈ Rd
+ and the β′

is, α′
i+s and α′

i−s are nonnegative real numbers.
Optimal stationarity properties of time series models defined by (2.12) have been obtained
by [59], using a version of Theorem 5 for affine random maps. In contrast, we use our results
to get existence of a moment of order δ for the unique stationary solution. The following
assumptions will be needed.

G1 The process ((Zt, εt))t∈Z is stationary and ergodic and E|Z0| < ∞.

G2 There exist s−, s+ such that E
[
(ε+

t )δ|Ft−1
]

≤ s+ and E
[
(ε−

t )δ|Ft−1
]

≤ s− a.s. and
γ := ∑p

i=1 (βi + s+αi+ + s−αi−) < 1.

Proposition 4 Suppose that Assumptions G1-G2 hold.

1. There then exists a unique stationary and non-anticipative solution (Yt)t∈Z of (2.12).
This solution is ergodic and satisfies E|Y0|δ < ∞.

2. Additionally, assume that Assumption A4 holds true. Let Ht =
(
(Y +

t )δ, (Y +
t )δ, ht

)
.

There then exists C > 0 and ρ ∈ (0, 1), such that for all h ≥ 1, Θ1,h(H) ≤
C
[
ρh +∑h

i=1 ρiΘ1,h−i(Z)
]
. Moreover, if δ ≥ 1, we have the bound

θδ,t(Y ) ≤ θ
1/δ
1,t

(
Y +

)
+ θ

1/δ
1,t

(
Y −

)
, t ∈ N.

Note. Let us consider the example of a GARCH process. We then set δ = 2, αj+ =
αj− = αj and we assume that (εt)t∈Z is a martingale difference, adapted to the filtration
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(Ft)t∈Z with Ft = σ ((εs, Zs) : s ≤ t). Set vt−1 = E [ε2
t |Ft−1]. If there exists a positive

real number v+ such that vt−1 ≤ v+ a.s., the contraction condition in G2 reduces to
v+
∑q

j=1 (αj + βj) < 1. For GARCH processes with i.i.d. innovations εt, we recover a
standard condition ensuring the existence of a solution with a finite second moment.

2.4.3 Poisson autoregressions

We consider the PARX model introduced in [2]. The idea is to model the conditio-
nal distribution of Yt given Ft−1 by a Poisson distribution with a random intensity λt

depending on past values and a covariate process. More precisely, we assume that

Yt = N
(t)
λt

, λt = β0 +
q∑

j=1
βjλt−j +

q∑
j=1

αjYt−j + π′Zt−1, (2.13)

where
(
N (t)

)
t∈Z

is a sequence of i.i.d. Poisson processes with intensity 1, β0, . . . , βq,
α1, . . . , αq are nonnegative real numbers and π is a vector of Rd with nonnegative co-
ordinates.

PA1 We have γ := ∑q
j=1 αj +∑q

j=1 βj < 1.

PA2 The process
(
(Zt, N (t))

)
t∈Z

is stationary, ergodic and adapted to a filtration (Ft)t∈Z

such that for all t ∈ Z, N (t) is independent from Ft−1. Moreover, E|Z1| < ∞.

Proposition 5 1. Suppose that Assumptions PA1-PA2 hold. There then exists a
unique non-anticipative, stationary and ergodic process (Yt)t∈Z solution of (2.13).

2. Additionally, if Assumption A4 is also satisfied with εt = N (t), there then exists C >

0 and ρ ∈ (0, 1), such that for all h ≥ 1, Θ1,h ((Yt, λt)t) ≤ C
[
ρh +∑h

i=1 ρiΘ1,h−i(Z)
]
.

Note. Our result extends substantially that of [2]. First, we prove ergodicity properties
in PARX models without assuming that the covariate process (Zt)t∈Z is a Markov chain
defined by a random map contracting in average. Secondly, for the stochastic dependence
properties, we control the coefficient of functional dependence measure only assuming a
general Bernoulli shift representation for (Zt)t∈Z. For instance, (Zt)t∈Z can be defined by
an infinite moving average process and is not necessarily Markovian.
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2.4.4 Dynamic binary choice model

We consider the dynamic

Yt = 1g(Yt−1,...,Yt−q ,ζt)>0, (2.14)

where (ζt)t∈Z is a stationary process taking values in a measurable space E ′ and g :
{0, 1}q × E ′ → R is a measurable function. This kind of binary model is popular in
econometrics for studying the dynamics of recessions. See [28] who studied the case g

linear and [78] for a study of US recessions.

Proposition 6 1. Assume that (ζt)t∈Z is a stationary and ergodic process such that

P
(

min
y∈{0,1}q ,1≤t≤q

g(y, ζt) > 0
)

+ P
(

max
y∈{0,1}q ,1≤t≤q

g(y, ζt) ≤ 0
)

> 0. (2.15)

There then exists a unique stationary and ergodic solution (Yt)t∈Z for the recursions
(2.14).

2. Assume that for some real numbers a1, . . . , aq and π ∈ Re, g(y, ζt) = ∑q
i=1 aiyi +

π′Zt−1 + εt, with ζt = (Zt−1, εt) satisfying A4 and the c.d.f. Fε of εt being Lipschitz
and taking values in (0, 1). Moreover, setting υt = π′Zt−1 + εt, we assume that there
exists δ > 0 and a positive integer K such that

P
(

ϕ− + min
1≤t≤q

υt > 0|F−K

)
+ P

(
ϕ+ + max

1≤t≤q
υt ≤ 0|F−K

)
≥ δ a.s., (2.16)

where

ϕ+ = max
{ q∑

i=1
aiyi : (y1, . . . , yn) ∈ {0, 1}n

}
, ϕ− = min

{ q∑
i=1

aiyi : (y1, . . . , yn) ∈ {0, 1}n

}
.

There then exists C > 0 and ρ ∈ (0, 1), such that for all h ≥ 1,

Θ1,h(Y ) ≤ C

[
ρh +

h∑
i=1

ρiΘ1,h−i(Z)
]

.

Notes

1. Consider the case of g linear as in the second point of Proposition 6. In this case, [28]
derived existence of a unique stationary and ergodic solution for when Condition
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(2.16) holds true. As shown in [28], Condition (2.16) holds in particular when the
process (υt)t∈Z is m−dependent or for some infinite moving averages. Condition
(2.15) is much weaker since it holds as soon as

P
(

ϕ+ + max
1≤t≤q

υt ≤ 0
)

+ P
(

ϕ− + min
1≤t≤q

υt > 0
)

> 0. (2.17)

Condition (2.17) holds true as soon as the random vector (υ1, . . . , υq) has full sup-
port. Another sufficient condition for (2.17) is the following. If (υt)t∈Z is adapted to
a filtration (Ft)t∈Z, we assume that for any x ∈ R and t ∈ Z, P (υt ≤ x|Ft−1) > 0 a.s.
or for any t ∈ Z and x ∈ R, P (υt > x|Ft−1) > 0 a.s. Recall that υt = π′Zt−1+εt. The
latter condition is valid in particular when εt has full support and is independent
from Ft−1 = σ ((εs, Zs) : s ≤ t − 1).

2. As the proof of Proposition 6 will show, the condition (2.16) implies Assumption
A2. Condition (2.15) is only used for applying Theorem 5. However, (2.15) does
not entail mixing properties. In contrast, Condition (2.16) does. See [28], Theorem
2. Our results (see point 2. of Proposition 6) give a complement when the covariate
process is not necessarily strongly mixing and has a Bernoulli shift representation.

3. When ζt = (Zt−1, εt) ∈ Rd+1 in (2.14), one can allow interactions between lag values
of the response and the covariates. For example,

g(y, ζt) =
d∑

i=1
ciyi +

q∑
i=1

d∑
j=1

[ai,jyi + bi,j(1 − yi)] Zj,t−i + εt.

When εt is independent of Ft−1 = σ ((εt−j, Zt−j) : j ≥ 1), one can show, using the
same arguments as in the previous point, that condition (2.15) is satisfied as soon
as the distribution of εt has support equal to the whole real line. We will not give
a control of the functional dependence measure for this model because we were not
able to check A2 when the covariate process (Zt)t∈Z is not bounded. However when
the cdf of εt is known (e.g. for the logistic or the probit model), it is widely known
that ergodicity of the process is sufficient for showing consistency and asymptotic
normality of conditional pseudo likelihood estimators of the parameters.
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2.4.5 Categorical time series with covariates

We consider a finite set E = {1, 2, . . . , N}, an integer q ≥ 1, a process (Zt)t∈Z taking
values in Z ⊂ Rd and a family {Kz (·|·) : z ∈ Z} of probability kernels from Eq to E. Our
aim is to construct a process (Yt)t∈Z, taking values in E and such that

P
(
Yt = i|Y −

t−1, Z−
t−1

)
= KZt−1 (i|Yt−1, . . . , Yt−q) .

A particular example is given by the multinomial autoregression, i.e.

Kz(i, y1, . . . , yq) =
exp

(∑q
j=1 ai,jyj + γ′

iz
)

∑N
k=1 exp

(∑q
j=1 ak,jyj + γ′

kz
)

and is a classical model for categorical time series. See [53]. In econometrics, [116] studied
the dynamic of price changes using this kind of model but with a more general observation-
driven form such as in GARCH models and that will not fall into our framework.

For applying our results, we now define some random maps. For t ∈ Z, let εt be a
random variable uniformly distributed over [0, 1]. For u ∈ [0, 1], z ∈ E ′

1, y ∈ Eq and
u ∈ [0, 1], we set

K−
z (u|y) = inf

i = 1, . . . , N :
i∑

j=1
Kz(j|y) ≥ u


and

ft(y1, . . . , yq) =
(
K−

Zt−1 (εt|y1, . . . , yq) , y1, . . . , yq−1
)′

.

We introduce the following assumptions.

C1 The probability kernels Kz are lower bounded by a positive constant, i.e. for any
z ∈ E ′, η(z) := min(i,y)∈Eq+1 Kz (i|y) > 0.

C2 The process ((Zt, εt))t∈Z is stationary and ergodic. Moreover, for t ∈ Z, εt is inde-
pendent from Ft−1 = σ ((Zs, εs) : s ≤ t − 1).

C3 There exists a constant C > 0 such that for all y1, . . . , yq ∈ E,

N∑
i=1

|Kz(i|y1, . . . , yq) − Kz(i|y1, . . . , yq)| ≤ C|z − z|.

Proposition 7 Suppose that Assumptions C1-C2 hold.
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1. There exists a unique stationary process satisfying the recursions

Yt = K−
Zt−1 (εt|Yt−1, . . . , Yt−q) , t ∈ Z. (2.18)

Moreover, the process ((Yt, Zt))t∈Z is ergodic.

2. Additionally, assume that Assumption A4 and C3 hold true and that η− = infz∈E′
1
η(z) >

0 in C1. There then exist C > 0 and ρ ∈ (0, 1), such that for all h ≥ 1, Θ1,h(Y ) ≤
C
[
ρh +∑h

i=1 ρiΘ1,h−i(Z)
]
.

Note. A proof of the first point of Proposition 7 is based on Theorem 5 and provides a
general result for existence of stationary categorical time series with covariates. In particu-
lar, probit, logistic and multinomial autoregressions can be considered without restriction
for the covariate process (Zt)t∈Z. However, the derivation of the dependence properties
in the second point imposes a more restrictive assumption on the transition kernel K

because it is necessary to check Assumption A2. Recently, [51] studied categorical time
series under the strict exogeneity assumption for the covariate process. For the recursions
(2.18), strict exogeneity holds true as soon as the two processes (Zt)t∈Z and (εt)t∈Z are
independent. Assumption C2 is weaker than strict exogeneity in general.

2.4.6 Categorical time series and coalescence of the paths

In this section, we give another interpretation of the convergence of the backward
iterations for categorical time series. This interpretation has a link with some perfect
simulation schemes that are widely known for Markov chains. See [111]. Since the state
space is discrete, the iterations should be automatically constant after some steps. Figure
2.1 illustrates the convergence when q = 1 and N = 3. In this case, ft(j) = K−

Zt−1(εt|j)
for j = 1, 2, 3. Setting

T = inf
{

k ≥ 1 : εt−k ≤ min
i,j

KZt−k−1(i|j)
}

,

we know that from the ergodicity assumption C2 and the positivity assumption C1, T is
finite almost surely. In this case, ft−T (j) = 1 a.s., f t

−∞ := limn→∞ f t
t−n(j) = f t

t−T (j) a.s.
and the limit does not depend on the state j. All the paths corresponding to f t

t−n(j) for
n ≥ T coalesce through State 1.

When q ≥ 2, our assumptions guarantee that it is possible to get q times successively
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State 1

State 2

State 3

Time t − 3 t − 2 t − 1 t

Figure 2.1 – Illustration of the convergence for N = 3 modalities and q = 1 lag

the value 1 for the time series whatever the previous values. A coalescence property for
the paths will then also occur in this case.

This interpretation is also relevant for getting an interpretation of Condition (2.15)
for binary choice models. When (2.15) is satisfied, it is possible to get, starting at any
time t, either q times the value 1 or q−times the value 0 whatever the previous values of
the binary time series. Running the backward iterations, we have coalescence of the paths
at the first (random) time t − T such that such an event occurs.

2.5 Conclusion

A general theoretical analysis of nonlinear autoregressive time series models with exo-
genous covariates is absent from the present time series literature and only a few references
consider such a problem, mainly for specific examples. The aim of this paper was to pro-
vide some results for a reasonable class of nonlinear time series models for which the
required assumptions can be checked. In particular, we provide two results, Theorem 6
and Theorem 8, which justify existence and uniqueness of stationary and ergodic solutions
possessing some moments. The crucial assumption to check, A2 or B3, involves a uniform
conditional contraction condition. Assumption B3 is the main assumption to check for
autoregressive models with several lags. For some nonlinear models already considered
in the literature, such as GARCH or autoregressive Poisson processes, this contraction
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condition is easily checked because the exogenous covariates have an additive contribution
in the expression of the latent process and play the role of a random intercept which does
not modify the usual stability conditions. However, our results can also be applied to
autoregressive processes for which lag parameters depend on the covariates (see Section
2.2.4, the notes after Theorem 8, Proposition 3 and Proposition 6 for some examples).
In this case, a uniform control of the random lag parameters is necessary to check our
assumptions which shows the limit of our approach.

It may be possible to weaken our uniform contraction condition, as shown in Theo-
rem 7, at least under a strict exogeneity assumption. However, getting additional general
results to ensure existence of some unconditional moments, to control dependence coef-
ficients and to consider higher-order autoregressive processes would require substantial
effort. The proposed framework is also useful for deriving weak dependence properties of
the solution, leading to the possibility to apply many existing statistical inference pro-
cedures, the central limit theorem of Section 2.3.3 providing an illustration. To this end,
the functional dependence measure discussed in Section 2.3 is of primary importance.
Note that a general result for getting weak dependence properties of autoregressive pro-
cesses with exogenous covariates is also new and it is another contribution of this paper.
Finally, we also derived results for categorical time series in Sections 2.4.4-2.4.5. Apart
from the weak dependence properties which can be derived from our general results, we
also obtained stationarity conditions with weaker assumptions, applying Theorem 5. Note
that whatever the results used in the paper (Theorems 5, 6 or 7), the convergence of the
backward iterations of random maps appears to be a central point of view for considering
many different types of autoregressive systems with exogenous regressors.

2.6 Proofs of the results

2.6.1 Proof of Theorem 6

We use the convention f t−1
t (x) = x for (x, t) ∈ E × Z. From Assumption A2, if

(t, s, s′) ∈ Z3 are such that s′ ≤ s ≤ t and x, y ∈ E,

E
[
dp
(
f t

s(x), f t
s′(y)

)
|Ft−1

]
≤ Lpdp

(
f t−1

s (x), f t−1
s′ (y)

)
,

and then
∥d
(
f t

s(x), f t
s′(y)

)
∥p ≤ L∥d

(
f t−1

s (x), f t−1
s′ (y)

)
∥p. (2.19)
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Applying (2.19) with y = x0, s = s′ = t, we get supt∈Z ∥d (ft(x), ft(x0)) ∥p < ∞. Next,
using A1 and the triangular inequality, we get

sup
t∈Z

∥d (ft(x), y) ∥p < ∞ for every (x, y) ∈ E2. (2.20)

With the same kind of arguments, we get for s ≤ t − m,

∥d
(
f t

s(x), f t
s′(y)

)
∥p ≤ κ∥d

(
f t−m

s (x), f t−m
s′ (y)

)
∥p. (2.21)

1. We denote by [z] the integer part of a real number z. To apply recursively the
previous bounds, we note that for any integer i, i+1 = r1m+r2 with r1 = [(i+1)/m]
and r2 = i + 1 − r1m. We then get from (2.19) and (2.21),

∑
i≥0

∥d
(
f t

t−i(x), f t
t−i−1(x)

)
∥p ≤

∑
i≥0

κ[(i+1)/m]Li+1−m[(i+1)/m]∥d (x, ft−i−1(x)) ∥p

≤ (L + 1)mκ(1−m)/m

1 − κ1/m
sup
j∈Z

∥d (x, fj(x)) ∥p.

This latter bound entails that the series ∑i≥0 d
(
f t

t−i(x), f t
t−i−1(x)

)
is almost surely

finite. By the Cauchy criterion, there exists a random variable Xt(x) such that
limi→∞ d

(
f t

t−i(x), Xt(x)
)

= 0 a.s. Moreover, from the previous bound, (2.20) and
the triangular inequality, we deduce that

∑
s,t∈Z,s≤t

∥d
(
y, f t

s(x)
)

∥p < ∞ for every (x, y) ∈ E2. (2.22)

Next we note that the convergence also holds in Lp, since from Fatou’s lemma,

∥d
(
Xt(x), f t

t−s(x)
)

∥p ≤ lim inf
j→∞

∥d
(
f t

t−j(x), f t
t−s(x)

)
∥p

≤
∑
i≥s

∥d
(
f t

t−i(x), f t
t−i−1(x)

)
∥p

≤ κs/m (L + 1)mκ(1−m)/m

1 − κ1/m
sup
j∈Z

∥d (fj(x), x) ∥p → 0 as s → ∞.

Finally, using (2.22) and the triangular inequality, we get the last assertion
supt∈Z ∥d (Xt(x), x0) ∥p < ∞.
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2. If x ̸= y, we have from the almost sure convergence and Fatou’s lemma

∥d (Xt(x), Xt(y)) ∥p ≤ lim inf
s→∞

∥d
(
f t

t−s(x), f t
t−s(y)

)
∥p

≤ lim inf
s→∞

κ[(s+1)/m]Ls+1−[(s+1)/m]md(x, y) = 0.

This shows the second point.

3. For the third point, we observe that for any j ≥ 1, there exists a measurable function H
(x)
j :

E′j+1 → E such that f t
t−j(x) = H

(x)
j (ζt, . . . , ζt−j). Since limj→∞ H

(x)
j exists P(ζt−j)j≥0 a.s., it is

then possible to define a measurable function H : (E′)N → E such that Xt = H ((ζt−j)j≥0) a.s.
The process (Xt)t∈Z has a Bernoulli shift structure with dependent entries and is then stationary
and ergodic provided that the process (ζt)t∈Z satisfies the same properties.

4. The last property follows from the following bounds which hold for any j ≥ 1 :

∥d(Xt, Yt)∥p = ∥d
(
f t

t−mj+1(Xt−mj), f t
t−mj+1(Yt−mj

)
∥p

≤ κj

[
sup
j∈Z

∥d(x0, Xj)∥p + sup
j∈Z

∥d(x0, Yj)∥p

]
. □

2.6.2 Proof of Theorem 7

1. From Assumption A0, f t
t−s(x) is, conditionally on Z, an iteration of s + 1 inde-

pendent random maps. Using Assumption A2’, we get

∑
s≥0

E1/p
[
dp
(
f t

t−s(x), f t
t−s−1(x)

)
|Z
]

≤
∑
s≥0

s+1∏
i=1

κ(Zt−i)bt−s−2(x),

with
bp

t (x) =
∫

dp (x, F (x, Zt, u)) dPε0(u).

From Assumption A2’ and the triangular inequality, we have E log+ bt(x) < ∞ for
any x ∈ E. We are going to show that

∑
s≥0

E1/p
[
dp
(
f t

t−s(x), f t
t−s−1(x)

)
|Z
]

< ∞ a.s. (2.23)

This follows from the assumptions on the logarithmic moments. Indeed, ((κ(Zt), bt(x)))t∈Z

is a stationary process and it is widely known that the stochastic recursions

Yt = κ(Zt−1)Yt−1 + bt−1(x)
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have a unique stationary solution given by

Yt = bt−1(x) +
∑
s≥0

s+1∏
i=1

κ(Zt−i)bt−s−2(x),

the latter series being convergent almost surely. See for instance [14], Theorem 1.
This shows (2.23). Using Minkowski’s inequality and Fatou’s lemma for conditional
expectations, see for instance [77], Chapter 5, we then deduce that

E1/p [S(x)p|Z] < ∞ a.s. S(x) :=
∑
s≥0

d
(
f t

t−s(x), f t
t−s−1(x)

)
.

As a consequence, we have P (S(x) < ∞|Z) = 1 a.s. and then P (S(x) < ∞) = 1.
From the Cauchy criterion, we then conclude the existence of a random variable
Xt(x) such that lims→∞ f t

t−s(x) = Xt(x) a.s. Note that from Assumption A1’ and
(2.23), we have E

[
dp
(
f t

t−s(x), x0
)

|Z
]

< ∞ a.s. for every positive integer s. The
convergence lims→∞ E

[
dp
(
f t

t−s(x), Xt(x)
)

|Z
]

= 0 a.s. and E [dp (Xt(x), x0) |Z] <

∞ a.s. follow as in the proof of Theorem 6, using Fatou’s lemma for conditional
expectation.

2. For a positive integer s, we have from A2,

E1/p
[
dp
(
f t

t−s(x), f t
t−s(y)

)
|Z
]

≤
s∏

i=1
κ(Zt−i)d(x, y) → 0 a.s.

Letting s → ∞, we have E [dp(Xt(x), Xt(y))|Z] = 0 a.s. and then P (Xt(x) ̸= Xt(y)|Z) =
0 a.s. Taking the expectation, we conclude that P (Xt(x) ̸= Xt(y)) = 0.

3. From the almost sure convergence of the sequence
(
f t

t−s(x)
)

s≥0
, stationarity and

ergodicity of the process ((Xt, Zt))t∈Z follows exactly as in the proof of point 3 of
Theorem 6.

4. Let (Yt)t∈Z be a stochastic process satisfying the proposed conditions. If the process
is non-anticipative, we have from A2’,

E [dp(Xt, Yt)|Z] = E
[
dp
(
f t

t−s(Xt−s−1), f t
t−s(Yt−s−1)

)
|Z
]

≤
s∏

i=0
κp(Zt−i−1) · E [dp (Xt−s−1, Yt−s−1) |Z] .
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Note that, from A2’, ∏s
i=0 κp(Zt−i−1) = oP(1). Moreover

E1/p [dp (Xt−s−1, Yt−s−1) |Z] ≤ E1/p [dp (Xt−s−1, x0) |Z] + E1/p [dp (x0, Yt−s−1) |Z] .

Note that

E1/p [dp (x0, Yt−s−1) |Z] = E1/p [dp (x0, Yt−s−1) |Zt−s−1, Zt−s−2, . . .]

and if the process ((Zt, Yt))t∈Z is stationary, then the process (Vt)t∈Z defined by

Vt = E1/p [dp (x0, Yt) |Zt, Zt−1, . . .]

is also stationary and takes finite values from our assumptions. Then Vt−s−1 = OP(1)
where s is the index of the sequence. The same property holds if Yt is replaced with
Xt. As a consequence

E [dp (Xt−s−1, Yt−s−1) |Z] = OP(1).

We then conclude that E [dp(Xt, Yt)|Z] = 0 a.s. Then P [Xt ̸= Yt|Z] = 0 a.s. and by
integration, we get the conclusion.

2.6.3 Proof of Proposition 1

1. We use the decomposition

f
t

−∞ − f t
−∞ =

t−1∑
i=0

[
f t

t−i ◦ f
t−i−1
−∞ − f t

t−i−1 ◦ f
t−i−2
−∞

]
+ f t ◦ f

t−1
−∞ − ft ◦ f

t−1
−∞.

From Assumption A2 and Assumption A4, we have, for i = 0, . . . , t − 2,

∥d
(
f t

t−i ◦ f
t−i−1
−∞ , f t

t−i−1 ◦ f
t−i−2
−∞

)
∥p ≤ κ

i+1
m

−1Lm∥d
(
f t−i−1 ◦ f

t−i−2
−∞ , ft−i−1 ◦ f

t−i−2
−∞

)
∥p

≤ κ
i+1
m

−1Lm∥S(f t−i−2
−∞ )Ht−i−2∥p

≤ κ
i+1
m

−1Lm∥S(f 0
−∞)∥s∥Ht−i−2∥r.
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If i = t − 1, we have ∥d
(
f t

t−i ◦ f
t−i−1
−∞ , f t

t−i−1 ◦ f
t−i−2
−∞

)
∥p ≤ 2∥d

(
0, f 0

−∞

)
∥pκt/m−1.

Using the triangular inequality, we get for t ≥ 2,

θp,t ≤ κ−1Lm∥S(f 0
−∞)∥s

t−2∑
i=0

κ(i+1)/m∥Ht−i−2∥r+∥S(f 0
−∞)∥s∥Ht−1∥r+2κt/m−1∥d

(
0, f 0

−∞

)
∥p.

The bound (2.7) is obtained by summation and entails the simpler bound (2.8).

2. From A4’, we have A4 with Ht−1 = d
(
Zt−1, Zt−1

)
with

Zt = H ′ (ηt, . . . , η1, η′
0, η−1, . . .) .

We then deduce the result from the previous point, noticing that ηr,j = Θr,j−1(Z).

2.6.4 Proof of Theorem 8

Define the following random map

ft(u1, . . . , uq) =
(
F (u1, . . . , uq, ζt)′ , u′

1, . . . , u′
q−1

)′
.

We set x = (u1, . . . , uq) ∈ Eq and for 1 ≤ t ≤ q, Ut(x) = uq−t+1. Next for t ≥ q + 1, we
define Ut(x) recursively by

Ut(x) = F (Ut−1(x), . . . , Ut−q(x), εt) .

We then have for t ≥ q + 1,

(Ut(x), . . . , Ut−q+1(x)) = f t
q+1(x).

Using our assumptions, we have for t ≥ q + 1,

E [∆p
vec (Ut(x), Ut(x′)) |Ft−1] ⪯

q∑
i=1

Ai∆p
vec (Ut−i(x), Ut−i(x′)) .

We introduce the matrix

B =
A1 · · · Aq−1 Aq

Ik(q−1) 0k(q−1),1

 .
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The condition ρ(A1+· · ·+Aq) < 1 entails that ρ(B) < 1. Indeed, if v = (v′
1, . . . , v′

q)′ ∈ Rkq\
{0} is such that Bv = λv for |λ| ≥ 1, we get the equality v1 = [λ−1A1 + · · · + λ−qAq] v1.
Since the coefficients of the A′

is are nonnegative, we get

|v1|vec ⪯
q∑

i=1
|λ|−iAi|v1|vec ⪯

q∑
i=1

Ai|v1|vec,

where |v1|vec denotes the vector of the absolute values of the coordinates of v1. We then get
|v1|vec ⪯

(∑q
j=1 Aj

)k
|v1|vec for any positive integer k. Letting k → ∞, we obtain v1 = 0.

Since vi = λvi+1 for i = 1, . . . , q − 1, we get v = 0 which is a contradiction. Then |λ| < 1
and ρ(B) < 1. Next, we set

Vt(x) = (Ut(x)′, . . . , Ut−q+1(x)′) , t ≥ q + 1.

Note that Vt(x) = f t
q+1(x). We then have

E [∆p
vec (Vt(x), Vt(x′)) |Ft−1] ⪯ B∆p

vec (Vt−1(x), Vt−1(x′)) ⪯ · · · ⪯ Bt−q∆p (x, x′) .

Setting for v, v′ ∈ Rkq, d(v, v′) =
(∑kq

i=1 ∆p(vi, v′
i)
)1/p

, we get

E
[
d

p
(
f t

q+1(x), f t
q+1(x′)

)
|Fq

]
≤
∣∣∣1′Bt−q

∣∣∣
∞

d
p(x, x′),

where 1 denotes the vector of Rkq having all its components equal to 1, and | · |∞ the
infinite norm in Rkq. Since ρ(B) < 1, if t is large enough, we have |1′Bt−q|∞ < 1. We
then conclude that A2 is satisfied with d = d, m = inf{j ≥ 1 : |1′Bj|∞ < 1} and
κp = |1′Bm|∞. Moreover, A1 is a direct consequence of B2. The result then follows from
Theorem 6.□

2.6.5 Proof of Proposition 2

Defining
ft (x1, . . . , xq) = (F (x1, . . . , xq, Zt−1, εt) , x1, . . . , xq−1) ,

we set for t ≥ 0, Zt = H (ηt, . . . , η1, η′
0, η−1, . . .). Using Assumptions A5-B5, we have, for

t ≥ 1,

E1/p
[
dp
(
ft(x1, . . . , xq), f t(x1, . . . , xq)

)
|Ft−1 ∨ σ(ξ′

0)
]

≤ S(x1, . . . , xq)d
(
Zt−1, Zt−1

)
.
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We then check Assumption A4, setting Ht−1 = d
(
Zt−1, Zt−1

)
. One can then apply

Proposition 1 using for instance the ℓ1−distance on Eq defined by d(u, v) = ∑q
i=1 d(ui, vi)

which is equivalent to the distance d used in the proof of Theorem 8. Since E1/r
[
dr
(
Zt−1, Zt−1

)]
=

θr,t−1(Z), the proof of the proposition is now complete.

2.6.6 Proof of Theorem 9

The proof is a consequence of Theorem 3 in [134]. It is simply necessary to prove that

Γ(Y ) =
∞∑

t=0
∥Yt − Y t∥2 < ∞.

To this end, for t ≥ 0, let X t be the random variables obtained by replacing ξ0 by an inde-
pendent copy ξ′

0 in its Bernoulli shift representation. We then have Y t = f
(
X t, . . . , X t−k

)
for t ≥ k. From the assumption on the function f , stationarity and Hölder’s inequality,
we have, setting ℓ1 = 2p/(p − 2),

θ2,t(Y ) ≤ C
(
1 + 2k∥|X0|oℓ∥ℓ1

)
·

k∑
i=0

θp,t−i(X).

The required condition easily follows by summation.

2.6.7 Proof of Proposition 3

1. Let d be the distance induced by the ℓ1−norm on Rq, i.e. d(x, y) = ∑q
i=1 |xi − yi|.

We use the notation |x − y| instead of d(x, y). For a square matrix A of size q × q,
we denote by ∥A∥ the corresponding operator norm of A. We define the sequence
of random maps as follows :

gt(x) = (f1(x1, . . . , xq, Zt−1) + εtf2(x1, . . . , xq, Zt−1), x1, . . . , xq−1)′ .

We then have

|gt(x) − gt(y)|vec ⪯
( q∑

i=1
ci,t|xi − yi|, |x1 − y1|, . . . , |xq−1 − yq−1|

)′

= At · |x − y|vec.
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Iterating the previous bound, we get for any positive integer t,
∣∣∣gt

1(x) − gt
1(y)

∣∣∣
vec

⪯ At · · · A1 · |x − y|vec.

We then deduce that c(gt
1) ≤ ∥At · · · A1∥. The result is then a consequence of Theo-

rem 5, using the condition χ(A) < 0.

2. We check the assumptions of Theorem 8. First note that from Assumption CH1,
the process ζt = (Zt−1, εt) is ergodic. This entails B1. Next we set

F (x1, . . . , xq, ζt) = f1(x1, . . . , xq, Zt−1) + εtf2(x1, . . . , xq, Zt−1).

Our assumptions guarantee that F (x, ζ1) ∈ Lp and, using CH2, we deduce that
F (x, ζ1) ∈ Lp for any x ∈ Rq. This shows B2. Finally, we check B3. To this end,
for i = 1, . . . , q, we set δi = supz ∥ai,1(z) + ai,2(z)|ε1|∥p.

Using Minkowski’s inequality for conditional expectations (see for instance [38],
Chapter XI, Section 3), we have

E1/p [|F (x1, . . . , xq, ζt) − F (y1, . . . , yq, ζt)|p |Ft−1] ≤ E1/p

[( q∑
i=1

ci,t|xi − yi|
)p

|Ft−1

]

≤
q∑

i=1
E1/p

[
cp

i,t|Ft−1
]

· |xi − yi|

≤
q∑

i=1
δi|xi − yi|.

Next using convexity, we get

E [|F (x1, . . . , xq, ζt) − F (y1, . . . , yq, ζt)|p |Ft−1] ≤
( q∑

i=1
δi

)p−1 q∑
i=1

δi|xi − yi|.

B3 is then a consequence of CH3.

3. We apply Proposition 2. From the previous points, it is only required to check B4
which is a consequence of Assumption CH3.
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2.6.8 Proof of Proposition 4

For the first part, we apply Theorem 8. To this end, we set E = R3
+, F = (F1, F2, F3),

F2(y1, . . . , yq, ζt) = (ε+
t )δy1,1, F3(y1, . . . , yq, ζt) = (ε−

t )δy1,1 and

F1 (y1, . . . , yq, ζt) = π′Zt−1+
q∑

j=1
βjy1,j+

(
α1+(ε+

t )δ + α1−(ε−
t )δ

)
y1,1+

q∑
j=2

(αj+y2,j + αj−y3,j) .

We then deduce that Assumption B3 holds true with

A1 =


β1 + α1+s+ + α1−s− 0 0

s+ 0 0
s− 0 0

 , Aj =


βj αj+ αj−

0 0 0
0 0 0

 , j ≥ 2.

It is straightforward to show that the matrix Γ := ∑q
j=1 Aj has eigenvalues 0 and a±

√
a2+4(bd+ce)

2

with a = ∑q
j=1 βj + α1+s+ + α1−s−, b = ∑q

j=2 αj+, c = ∑q
j=2 αj−, d = s+ and e = s−.

Condition ρ(Γ) < 1 is equivalent to γ < 1. It is then clear that B1-B3 follow from
G1-G2.

For the second part, it is easily seen that B4 is satisfied for a constant function S,
p = 1 and s = ∞. This gives the bound for Θ1,h(H). If δ ≥ 1, the last bound for θδ,t(Y )
can be obtained from the inequalities

|x − y|δ ≤
∣∣∣xδ − yδ

∣∣∣ , x, y ≥ 0.

2.6.9 Proof of Proposition 5

1. To show the first point, we check the assumptions of Theorem 8. We set ζt =(
N (t), Zt−1

)
, E = N × R+ and the state space E is endowed with the ℓ1−norm. We

first note that (Yt)t∈Z is a stationary solution of (2.13) if and only if Xt = (Yt, λt)′

is the solution of Xt = F (Xt−1, . . . , Xt−q, ζt) with

F (x1, . . . , xq, ζt) =
(
N

(t)
f(x1,...,xq ,Zt−1), f(x1, . . . , xq, Zt−1)

)′
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and f(x1, . . . , xq, Zt−1) = β0+∑q
j=1 βjsj +∑q

j=1 αjyj +π′Zt−1, xi = (yi, si), 1 ≤ i ≤ q.
For x ∈ (N × R+)q,

E [|F (x, ζ1)|] = 2
β0 +

q∑
j=1

βjsj +
q∑

j=1
αjyj + π′E(Z1)

 < ∞

since E(|Z1|) < ∞.

We then have, for (x, x′) ∈ ((N × R+)q)2 with x = (x1, . . . , xq), x′ = (x′
1, . . . , x′

q) ∀j =
1, . . . , q, xj = (yj, sj), xj = (y′

j, s′
j),

E [|F (x, ζt) − F (x′, ζt)|vec |Ft−1] ⪯
q∑

j=1

αj βj

αj βj

 ∣∣∣xj − x′
j

∣∣∣
vec

.

In the previous bounds, we have used the identity E
[
|N (t)

ht−1 − N (t)
gt−1|

∣∣∣Ft−1
]

= |ht−1 −
gt−1| which is valid for two nonnegative random variables ht−1, gt−1 measurable with
respect to Ft−1. The previous equality follows from the properties of the Poisson
process. Letting

Γ =
q∑

j=1

αj βj

αj βj

 ,

the matrix Γ has two eigenvalues : 0 and γ. Assumption PA1 then guarantees that
ρ(Γ) < 1. Assumptions B1-B3 of Theorem 8 are satisfied. Hence, according to
Theorem 8, there exists a unique stationary and non-anticipative process (Xt)t∈Z

solution of (2.13) and such that E [|Xt|] < ∞. This process is ergodic. This completes
the proof of the first point.

2. For the second point, we use Proposition 2. To this end, it is only necessary to check
B4 for p = r = 1 and s = ∞. This is straightforward since we have the equality

E
[
|F (x1, . . . , xq, z, N (t)) − F (x1, . . . , xq, z, N (t))|

]
= 2|π′(z − z)|.

The proof of the second point is now complete.
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2.6.10 Proof of Proposition 6

1. We apply Theorem 5. To this end, we define the random map from E = {0, 1}q to
E by

ft(x) =
(
1g(x,ζt)>0, x1, . . . , xq−1

)′
.

We set

δt := max
y,y′∈{0,1}q

∣∣∣1g(y,ζt)>0 − 1g(y′,ζt)>0

∣∣∣ ≤ 1maxy∈{0,1}q g(y,ζt)>0 − 1miny∈{0,1}q g(y,ζt)>0.

Setting (yt(x), . . . , yt−q+1(x))′ = f t
1(x) for t ≥ q, we have

yt(x) = 1 if and only if g (yt−1(x), . . . , yt−q(x), ζt) > 0.

We have, setting ct = |yt(x) − yt(x′)|,

ct ≤ δt max
1≤j≤q

ct−j.

Using the fact that δt ≤ 1, a straightforward induction on i = 0, . . . , q − 1 shows
that

ct+i ≤ δt+i max
1≤j≤q

ct−j.

Setting d(y, y′) = max1≤i≤q |yi − y′
i|,

d
(
f t+q−1

1 (x), f t+q−1
1 (x′)

)
≤ max

0≤i≤q−1
δt+id

(
f t−1

1 (x), f t−1
1 (x′)

)
.

Setting t = 1, this shows in particular that

c (f q
1 ) ≤ max

1≤i≤q
δi ≤ 1maxy,i g(y,ζi)>0 − 1miny,i g(y,ζi)>0. (2.24)

From our assumptions, the last upper bound can vanish with positive probability,
and then E [log c(f q

1 )] = −∞ = χ. Theorem 5 leads to the result.

2. The result will follow from Proposition 1. To this end, we check Assumptions A1-
A3. A1 is automatic. We use the metric d on {0, 1}q which is bounded. We set
ht = maxt−q+1≤i≤t δi. Note that in the linear case, we have

ht ≤ 1ϕ++maxt−q+1≤i≤t υi>0 − 1ϕ−+mint−q+1≤i≤t υi>0.
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To check A2, we use the bound (2.24) and the inequality hs ≤ 1 for all s ∈ Z to get

c
(
f t

t−Jq+1

)
≤

J−1∏
j=0

ht−jq ≤ ht.

Moreover using (2.16), we have

E (ht|Ft−Jq) ≤ 1 − P
(

ϕ+ + max
t−q+1≤i≤t

υi ≤ 0|Ft−Jq

)
− P

(
ϕ− + min

t−q+1≤i≤t
υi > 0|Ft−Jq

)
≤ 1 − δ,

provided that Jq ≥ q + K. This guarantees A2, with κ = 1 − δ and m = Jq.

Finally, let us check A3. Setting Zt = H (ηt, . . . , η1, η′
0, η−1, . . .). We have

E
[
d
(
ft(y), f t(y)

) ∣∣∣Ft−1 ∨ σ(ξ′
0)
]

≤
∣∣∣∣∣Fε

(
−

q∑
i=1

aiyi − π′Zt−1

)
− Fε

(
−

q∑
i=1

aiyi − π′Zt−1

)∣∣∣∣∣
≤ Lε · dmax

j=1
|πj| ·

d∑
j=1

∣∣∣Zj,t−1 − Zj,t−1

∣∣∣ ,
where Lε denotes the Lipschitz constant of Fε.

2.6.11 Proof of Proposition 7

1. For the first point, we will apply Theorem 5 for the discrete metric d(x, y) = 1x ̸=y.
Setting for x ∈ Eq and t ∈ Z, f t

t−q+1(x) = ft ◦ · · · ◦ ft−q+1(x), we have for x, y ∈ Eq,

{
f t

t−q+1(x) = f t
t−q+1(y)

}
⊃

{
f t

t−q+1(x) = f t
t−q+1(y) = (1, . . . , 1)

}
= {εj ∈ [0, η(Zj−1)] : j = t − q + 1, . . . t} .

We then obtain

d
(
f t

t−q+1(x), f t
t−q+1(y)

)
≤

1 −
t∏

j=t−q+1
1εj∈[0,η(Zj−1)]

 d(x, y).

Let us show that

p := P (εj ∈ [0, η(Zj−1)] : j = t − q + 1, . . . t) > 0. (2.25)
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Note that by stationarity, p does not depend on t. Assume that p = 0. From As-
sumption C2 and the properties of the conditional expectations, we have

p = E

η(Zt−1)
t−1∏

j=t−q+1
1{εj≤η(Zj−1)}

 = 0.

Since η is positive, we get P (εj ∈ [0, η(Zj−1)] : j = t − q + 1, . . . t − 1) = 0. By finite
induction, we deduce that P (εt−q+1 ≤ η(Zt−q)) = 0. Since this latter probability
equals to E (η(Zt−q)) > 0, we obtain a contradiction. The property (2.25) is then
valid and Theorem 5 applies, which leads to the conclusion.

2. For the second point, we will use Theorem 6 and Proposition 1. Since d is a bounded
metric, A1 is automatically satisfied. Next, observe that

P
(
f t

t−q+1(x) = f t
t−q+1(y)|Ft−q

)
≥ P

(
f t

t−q+1(x) = f t
t−q+1(y) = (1, . . . , 1)|Ft−q

)
≥ P (εt, . . . , εt−q+1 ∈ [0, η−]Ft−q)

= P (εt, . . . , εt−q+1 ∈ [0, η−])

≥ ηq
−.

This yields to the bound E
[
d
(
f t

t−q+1(x), f t
t−q+1(y)|Ft−q

)]
≤ 1 − ηq

−, which shows
the second part of A2. The first part is automatic.
It remains to check A3’. Note that for i, j ∈ E, we have (N − 1)−1|i − j| ≤ 1i ̸=j ≤
|i − j|. Using the ℓ1−metric on Eq which is equivalent to the discrete metric, we
have

E
[
|K−

z (ε1|y1, . . . , yq) − K−
z′ (ε1|y1, . . . , yq)|

]
≤

∫ 1

0

∣∣∣K−
z (u|y1, . . . , yq) − K−

z′ (u|y1, . . . , yq)
∣∣∣ du

≤
N∑

j=1

∣∣∣∣∣∣
j∑

i=1
Kz(i|y1, . . . , yq) −

j∑
i=1

Kz′(i|y1, . . . , yq)

∣∣∣∣∣∣
≤ NC |z − z′| .

Assumption A3’ then follows with s = ∞ and r = p = 1. The bound for the
functional dependence coefficients is then a direct consequence of Proposition 1.□
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Chapitre 3

MULTIVARIATE TIME SERIES MODELS

FOR MIXED DATA

Abstract. We introduce a general approach which unifies some previous attempts
for modeling the dynamic of multivariate time series or for regression analysis when the
data are of mixed type (binary/count/continuous). Our approach is quite flexible since
conditionally on past values, each coordinate at time t can have a distribution compatible
with a standard univariate time series model such as GARCH, ARMA, INGARCH or
logistic models whereas past values of the other coordinates play the role of exogenous
covariates in the dynamic. The simultaneous dependence in the multivariate time series
can be modeled with a copula. Additional exogenous covariates are also allowed in the
dynamic. We first study some usual stability properties of these models and then show
that autoregressive parameters can be consistently estimated equation-by-equation using
a pseudo-maximum likelihood method, leading to a fast implementation even when the
number of time series is large. Moreover, we prove consistency results when a parametric
copula model is fitted to the time series and in the case of Gaussian copulas, we show
that the likelihood estimator of the correlation matrix is strongly consistent. We carefully
check all our assumptions for two prototypical examples : a GARCH/INGARCH mo-
del and logistic/log-linear INGARCH model. Our results are illustrated with numerical
experiments as well as two real data sets.

Based on [33]

3.1 Introduction

Analyzing multivariate time series is now a common task in many fields. Many ap-
plications of multivariate time series historically come from econometrics or finance and
many textbooks such as [94] or [129] now provide an overview of some interesting models
in this context. But the development of multivariate time series analysis has been also
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connected more recently to others important domains such as in biology [73], ecology [109]
or industrial production [92] among others.

However, the literature of multivariate time series analysis is much less developed
than in the univariate case. For univariate time series, there already exist many interes-
ting autoregressive models for various types of data. Most of the existing works focus on
continuous data with the development of ARMA models [15, 94] or GARCH models in
financial econometrics (see [60] for an overview). But many time series are also related
to count data [52] or categorical data [106]. Count time series data are systematically en-
countered when analyzing the dynamic of transaction numbers in finance or the number
of disease cases in epidemiology [48] whereas categorical time series have to be analyzed
when studying the dynamic of growth/recession period in economics [78], the dynamic of
price changes in finance [116] or DNA sequence analysis [114], among others applications.
In contrast, multivariate time series are mainly analyzed with continuous models such as
vector ARMA models [94] or multivariate GARCH models [60]. It is then difficult to find a
flexible approach for studying some multivariate time series when the corresponding uni-
variate times series are of different nature (discrete or continuous). For instance, analyzing
the number of transactions in finance of modeling the log-returns of the corresponding
asset can only be done separately, though it is quite clear that a bivariate modeling could
help to get a better understanding of the mutual interactions between these two quanti-
ties across the time. A few references are dedicated to multivariate time series for discrete
data. For instance, [95] considered a multivariate binary time series models for analyzing
the dynamic of electricity price spikes whereas [57] considered recently multivariate time
series models for count data such as the numbers of transactions of several assets occur-
ring across the time. Both contributions are based on some specific univariate dynamics
(e.g. logistic or Poisson conditional distributions) and a copula model. In this paper, we
will define a much more general framework, also providing additional results for inference
in such discrete multivariate time series models.

Modeling mixed multivariate response is a challenging problem already occurring in
the i.i.d. setting and finding suitable multivariate generalized linear models that extend the
univariate ones is a non-trivial task, even in this context. One of the important difficulty
is the lack of natural multivariate probability distributions for such data. For i.i.d. data,
several approaches have been developed and [29] gives an interesting survey of some of
them. However, the treatment of mixed data seems to be devoted to specific cases such
as in [140] for the joint analysis of continuous/count data. A notable exception concerns
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the general regression models considered in [120] with Gaussian copulas and our approach
can be seen as a time series analogue of this modeling. Since our consistency results can
be also applied to i.i.d. data, we then provide theoretical guarantees for inference in such
regression models.

In the time series context, our approach consists in using (marginally) some standard
univariate time series models called observation-driven. These univariate models are wi-
dely popular in the time series literature and provide a sufficiently rich class of dynamics
from the GARCH models to Poisson autoregressive INGARCH models [47, 52] or logistic
autoregressive processes [22, 106]. Let us also mention that our multivariate modeling is
similar to [98], where a Gaussian copula is used to model panel data of mixed type with
specified univariate dynamics. In contrast, our results apply to a larger class of dynamical
models.

In what follows, we first recall the definition of univariate observation-driven models
and we next discuss the multivariate extension we will consider throughout the paper.

3.1.1 Univariate observation-driven models

Let P (·|s) be a (non-degenerated) probability distribution on E (typically, E = {0, 1},
N or R) and depending on a real-valued parameter s ∈ G (throughout the paper, G = R
or G = R+), one can define a discrete-time stochastic process (Yt)t∈Z with one-point
conditional distribution P in the following way. For a function g : G×E ×Rm, we assume
that for A ∈ B(E),

P (Yt ∈ A|Ft−1) = P (A|λt), λt = g (λt−1, Yt−1, Xt−1) , (3.1)

where (Xt)t∈Z is a covariate process taking values in Rm and for t ∈ Z, Ft = σ ((Ys, Xs) : s ≤ t).
Standard examples of popular time series models of this type are listed below.

— If P (A|s) =
∫

A f (y − s) dy with f a probability density on the real line and
g(s, y, x) = a + bs + cy + d′x, we obtain the dynamic of the following ARMA(1, 1)
process with exogenous regressors

Yt = a + (b + c)Yt−1 + d′Xt−1 + εt − bεt−1, (3.2)

where (εt)t∈Z is a sequence of i.i.d. random variables with probability density f .

— If P (A|λ) =
∫

A
1
λ
f
(

y
λ

)
dy, we obtain a GARCH type model with volatility process
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(λt)t∈Z and noise density f . Such dynamic is generally represented in more compact
form in the literature, Yt = εtλt where (εt)t∈Z is a sequence of i.i.d. random variables
with probability density f .

— For count time series, a standard choice for p(·|λ) is the Poisson distribution with
parameter λ. We obtain the well-known INGARCH processes.

— For binary time series, a classical approach consists in choosing a cdf F on the real
line and to set P (1|λ) = F (λ). When F is the cdf of the logistic distribution (resp.
Gaussian distribution), we obtain respectively the logistic or probit autoregressive
process.

Some parametric or semiparametric time series models satisfying (3.1) are obtained when
g = gθ depends on a finite-dimensional unknown vector of parameters θ. Most of the
observation-driven models given above have been studied without exogenous covariates.
But some recent theoretical guarantees for inclusion of exogenous covariates in non-linear
time series models including those mentioned above have been obtained recently [50, 128,
42, 32]).

3.1.2 Extension to multivariate mixed time series models

Our aim is to consider multivariate time series models of type (3.1). Since there is
no natural multivariate distribution P for considering mixed data, a possible approach is
to consider multivariate distributions on some Cartesian products E1 × · · · × Ek, k ≥ 1,
denoted by P (·|s), with parameter s = (s1, . . . , sk) ∈ G1 × · · · × Gk and with speci-
fic univariate marginal distributions Pi (·|si) for 1 ≤ i ≤ k. A natural construction of
this type can be obtained from a copula C, i.e. a probability distribution on [0, 1]k with
uniform marginals. If for 1 ≤ i ≤ k, Fi,si

denotes the cdf of the probability distribu-
tion Pi (·|si) and U = (U1, . . . , Uk) follows the distribution C, then the random vector(
F −1

1,s1(U1), . . . , F −1
k,sk

(Uk)
)

has marginal distributions P1 (·|s1) , . . . , Pk (·|sk). Here, for a
cdf F , we denote by F −1 its quantile function, i.e. F −1(u) = inf {x ∈ R : F (x) ≥ u} for
u ∈ (0, 1). Since the distribution C can have a general form, we then hope that the mul-
tivariate distributions P (·|λ) obtained in this way to be quite general. As pointed out
in [63], copula for discrete data are not unique and lead to interpretation problems and
identification issues. However, copula modeling is still a general and valid approach for
modeling many stochastic dependence properties between the coordinates, even if some
components are allowed to be discrete.
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We now define multivariate time series models with a conditional distribution P (·|·).
To this end, we consider a sequence of i.i.d. random vectors (Ut)t∈Z such that U1 =
(U1,1, . . . , Uk,1) has a probability distribution denoted by C. We then set

Yt = (Y1,t, . . . , Yk,t) =
(
F −1

1,λ1,t
(U1,t) , . . . , F −1

k,λk,t
(Uk,t)

)
and impose a recursive dynamic on the latent process (λt)t∈Z as in (3.1).

Finally, we define a semiparametric model

Yi,t = F −1
i,λi,t

(Ui,t) , 1 ≤ i ≤ k, λt = gθ0 (λt−1, Yt−1, Xt−1) , (3.3)

with θ0 ∈ Θ ⊂ RQ. For conciseness, (3.3) will be written Yt = F −1
λt

(Ut).

Let us comment the structure of model (3.3). From the standard properties of quantile
functions, the distribution of Yi,t conditionally on past observations is given by Pi (·|λi,t)
while the joint cdf of Yt is given by

y 7→ C
(
F1,λ1,t(y1), . . . , Fk,λk,t

(yk)
)

.

Conditionally on past values, the copula is used to model the mutual dependence between
the coordinates and the specified marginal distributions are then compatible with the
univariate observation-driven models defined in (3.1). Let us give an example for k = 2.
If P1,s1 is a Bernoulli distribution with parmameter (1 + exp(−s1))−1 and P2,s2 is the
Poisson distribution with parameter exp(s2), we obtain a bivariate dynamic for which,
setting Pt−1 = ((Yt−j, Xt−j)j≥1,

P (Y1,t = 1|Pt−1) = (1 + exp(−λ1,t))−1 , P (Y2,t = j|Pt−1) = exp (− exp(λ2,t))
exp(jλ2,t)

j! ,

for any non-negative integer j. In the regression case (i.e. gθ0 only depends on Xt−1), we
get a logistic regression for the first coordinate and a Poisson regression for the second
one. This specific example will be studied in details throughout the paper.

The paper is organized as follows. In Section 8, we study stationarity properties of
model (3.3) but we will mainly focus on linear type mappings g in the rest of the paper.
In Section 3.3, we first study inference of the autoregressive parameter θ0. Here, we will
use pseudo-maximum likelihood estimators and no specific assumptions will be required
for the copula C. Moreover, some of the marginal cdf will be not necessarily specified,
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as in the case of ARMA or GARCH components. We next consider a parametric model,
with a copula C depending on a finite number of parameters. Here, all the marginal cdf
will be specified. In this setting we assume that

C(du1, . . . , duk) = CR0(du1, . . . , duk) := cR0(u1, . . . , uk)du1 · · · duk, R0 ∈ Γ ⊂ RS.

(3.4)
For the model defined by (3.3) and (3.4), the parameter of interest is the pair (θ′

0, R′
0)

′.
Numerically, a joint estimation of this pair is a non trivial task. This is why we will
plug a pseudo-likelihood estimator of parameter θ0 in the expression of the true likelihood
function and we then optimize it with respect to R0. We show that this two-step approach
leads to a consistent estimation of the conditional distribution P (·|s) = PR0(·|s), even if
parameter R0 is not identifiable. From this result, confidence regions for the prediction can
be obtain from a Monte-Carlo procedure. For a Gaussian copula model, a sharper result
is obtained. Since identification of the correlation matrix R0 is automatic, the likelihood
estimator of R0 is shown to be strongly consistent. Throughout the paper, we illustrate our
results with a bivariate GARCH/INGARCH model for continuous/count time series data
and a bivariate logistic/INGARCH model for binary/count time series data. Numerical
experiments and an application of our results to two real data sets are given in Section
3.4. A conclusion and some perspectives for our work are given in Section 3.5. Finally a
supplementary material section 3.6 is provided at the end.

3.2 Stability properties

3.2.1 Existence of stationary solutions

We provide below a set of sufficient conditions ensuring existence and uniqueness of
a stationary and ergodic solution for the recursions (3.3). In time series analysis, finding
such conditions is often a first important step needed for studying consistency of inference
procedures. Although the result given below can be applied to some non-linear functions g

in (3.3), we will only consider linear type dynamics in the rest of the paper. See Subsection
3.2.2 below for a more specific result. In what follows, for any positive integer j, we denote
by ≼ the classical ordering relation on Rj, i.e. x ≼ x′ if and only if xi ≤ x′

i for i = 1, . . . , j.
Moreover | · |1 denotes the ℓ1 norm on Rj, i.e. |x|1 = ∑j

i=1 |xi| for x ∈ Rj. For any matrix
C, we also denote by |C|vec the matrix of the same size, obtained by replacing the entries
of C by their absolute values. Finally, for t ∈ Z, let Ft be the sigma-field generated by
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the random vectors (Us, Xs), s ≤ t.

A1. The process ((Ut, Xt))t∈Z is stationary, ergodic and for any t ∈ Z, Ut is independent
from Ft−1.

A2. There exists s ∈ G := G1 × · · · × Gk such that :

E[|g(s, F −1
s (U0), X0)|1] < ∞

A3. There exists a square matrix H of size k, with nonnegative elements and such that
ρ(H) < 1 and a.s.

∀(s1, s2) ∈ G2, E[|g
(
s1, F −1

s1 (U0), X0
)

−g
(
s2, F −1

s2 (U0), X0
)

|vec|F−1] ≼ H|s1 −s2|vec

Theorem 10 Let Assumptions A1-A3 hold true. There then exists a unique stochastic
process ((Yt, λt))t∈Z solution of (3.3) with gθ0 = g and which is stationary, (Ft)t∈Z −adapted
and such that E (|λ0|1) < ∞. Moreover the process ((Yt, λt, Xt))t∈Z is stationary and er-
godic.

Notes

1. The previous result only guarantees existence of an integrable solution. For sta-
tistical inference, higher-order moment conditions for this solution are sometimes
required. In 3.6, Lemma 11 gives a useful criterion to check existence of such mo-
ments for this unique solution.

2. Assumption A3 can be seen as a conditional contraction property obtained equation
by equation. The use of conditional expectation is necessary if we include exogenous
covariates in the dynamic. This approach has been used recently by [32] who pro-
vided many sufficient conditions for existence of stationary solutions for stochastic
recursions of this type. Let us emphasize that our vectorial approach avoids the
delicate choice of the norm for getting contraction properties, as in [57] for studying
multivariate count models. Indeed for multivariate time series, the choice of such a
norm depends on the model and cannot be universal. On the other hand, contrac-
tion properties are often known for univariate dynamics. Our approach is suitable
for exploiting these equation-by-equation contraction properties. Interestingly, one
can obtain optimal results for studying some models with positive coefficients, such
as for the GARCH-INGARCH model developed in the next sections.
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3.2.2 Specific results for linear type dynamics

In this section, we consider that for 1 ≤ i ≤ k, Gi = G where G is either equal to R+

or to R. We specify the previous results when the latent process follows the dynamic

λt = d + Bλt−1 + AY t−1 + ΓXt−1, t ∈ Z, (3.5)

with d ∈ Gk, A and B are square matrices of size k and with coefficients in G, Γ is a
matrix of size k × m and with coefficients in G and Y i,t = gi (Yi,t) where for 1 ≤ i ≤ k,
gi : Ei 7→ G is a measurable mapping. The case of linear type dynamics is already
interesting as many interesting univariate observation-driven models are based on some
similar linear properties. Though the practical implementation of our models with the
dynamic (3.5) will be only considered when the matrix B is diagonal, we give below a set
of sufficient conditions ensuring A2-A3 for general matrices B. For a vector c ∈ Rk, we
denote by diag(c) the diagonal matrix of size k with diagonal elements c1, . . . , ck.

L1. For s ∈ Gk and 1 ≤ i ≤ k, the application gi ◦ F −1
i,si

is integrable with respect to the
Lebesgue measure on [0, 1] and X1 is integrable.

L2. For any 1 ≤ i ≤ k, there exists ci > 0 such that for every (si, s′
i) ∈ G2,

∫ 1

0

∣∣∣gi ◦ F −1
i,si

(u) − gi ◦ F −1
i,s′

i
(u)

∣∣∣ du ≤ ci |si − s′
i| .

L3. The spectral radius ρ (|A|vecdiag(c) + |B|vec) is less than one.

The following result is a straightforward corollary of Theorem 10. In particular the matrix
H in A3 is given by |A|vecdiag(c) + |B|vec.

Corollary 1 Let Assumptions L1-L3 and Assumption A1 hold true. The conclusions of
Theorem 10 are then valid.

3.2.3 Examples of linear dynamics

For defining multivariate stationary time series models of type (3.5), the most constrai-
ning assumption to check is Assumption L2 which imposes, coordinatewise, a Lipschitz
type property on the autoregressive function. In the literature, there exist many univa-
riate dynamics satisfying such a property. A general class of univariate positive time series
models for which such a property holds true has been considered in [26], using stochastic
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ordering properties. In this latter case, gi is simply the identity function and the distribu-
tion Pi (·|si), defined from an exponential family, has mean si. However, there also exist
additional dynamics for which L2 is satisfied and we provide a discussion below. In what
follows, we denote by (U1, . . . , Uk) an arbitrary random vector with uniform marginals.

1. For count data, a natural univariate dynamic is obtained from the Poisson distribu-
tion. A popular one is the linear dynamic, i.e. gi(y) = y and Fi,si

is the cdf of the
Poisson distribution with parameter si > 0. In this case, Assumption L2 is satisfied
with ci = 1 from the stochastic ordering property, i.e. F −1

i,si
≤ F −1

i,s′
i

if si ≤ s′
i and

the fact that EF −1
i,si

(Ui) = si. See in particular [26], Proposition 4 and its proof. To
accommodate with negative correlations, one can define a log-linear model as in [54].
In this case, we set gi(y) = log(1 + y) and Fi,λi

denotes the Poisson distribution of
parameter exp (si). In this case, L2 is satisfied. A proof can be found in [54], see the
proof of their Lemma 2.1. For the reader convenience, we give a different proof here.
From stochastic ordering and the monotone property of the logarithm function, if
si ≤ s′

i, we have

E
∣∣∣log

(
1 + F −1

i,si
(Ui)

)
− log

(
1 + F −1

i,s′
i
(Ui)

)∣∣∣ (3.6)

= E log
(
1 + F −1

i,s′
i
(Ui)

)
− E log

(
1 + F −1

i,si
(Ui)

)
≤ s′

i − si.

The last inequality can be obtained from the mean value theorem, by noticing that
if Xµ follows a Poisson distribution of parameter exp(µ), then f : µ → E log(1+Xµ)
has a derivative given by

f ′(µ) =
∑
k≥0

log
(

1 + 1
k + 1

)
e−eµ eµ(k+1)

k! < e−eµ

1 +
∑
k≥0

eµk

k!

 = 1,

if we use the inequality log(1 + x) ≤ x for x ≥ 0. It is also possible to include
others models such as the count time series model based on the negative binomial
distribution, as in [26]. In this case parameter si is the mean r(1−p)/p of the binomial
distribution with parameters r and p and L2 is always satisfied with ci = 1.

2. Let us next discuss the case of binary time series by assuming that F −1
i,si

(Ui) =
1Ui>1−F (si) meaning that Pi(·|si) is the Bernoulli distribution on parameter F (si)
where F is a given cdf. See [106] for the stability property of such univariate dyna-
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mics. We have here

E
∣∣∣F −1

i,s′
i
(Ui) − F −1

i,si
(Ui)

∣∣∣ ≤ |F (s′
i) − F (si)| ≤ ci |si − s′

i| .

Here ci denotes the Lipschitz constant of F . Two well-known cdf F are widely used
in practice, the logistic F (µ) = (1 + e−µ)−1, µ ∈ R, for which ci = 1/4 and the cdf
of the standard Gaussian distribution and for which ci = 1/

√
2π (probit model).

3. Finally, let us discuss the case of continuous components. For a GARCH component,
Pi (·|si) is the probability distribution of √

siϵ where ϵ is a centered random variable
with unit variance. We then have F −1

i,si
(Ui) = √

siF
−1
ϵ (Ui) where Fϵ is the cdf of

ϵ. If gi(y) = y2, it is easily seen that L2 is satisfied with ci = 1. One can also
consider the log-GARCH model which does not impose any positivity condition on
lag parameters. Log-GARCH models are discussed in [60] and are the analogs of
log-linear Poisson autoregressions for count data. With our formulation, Pi (·|si) is
now the probability distribution of exp (si/2) ϵ (a linear dynamic is specified on the
logarithm of the conditional variance). Setting gi(y) = log(y2) and assuming that
E| log(ϵ)|2 < ∞, L2 is satisfied with ci = 1.
Another interesting dynamic concerns the linear ARMA(1, 1) dynamic. As explained
in the introduction, this dynamic is equivalent, up to a reparametrization, to the
case where Pi (·|si) is the probability distribution of the sum si +ϵ, with ϵ a centered
random variable. It is then possible to check L2 with gi(y) = y and ci = 1.

Notes

1. From the previous discussion, it is possible to combine many univariate dynamics
to define multivariate models for mixed data and for which the dynamic of the la-
tent process is given by (3.5). However, we have to take care that some of these
univariate models impose a sign restriction on the parameters. For instance, for the
GARCH model and the linear INGARCH model, the autoregressive parameters have
to be nonnegative and the latent processes λi,t are required to take positive values
as they represent the conditional standard deviation and the intensity respectively.
On the other hand some univariate models such as log-linear Poisson autoregres-
sions, log-GARCH, ARMA and binary time series do not impose a sign restriction
for the autoregressive parameters. It is then not natural to combine models with
and without sign restriction, though one can always impose an artificial positivity

87



Multivariate time series models for mixed data

condition for models without sign restriction. Technically, the more general model
(3.1) can be used for combining any dynamics of the previous type (whatever the
signs of the univariate latent processes). However in this case, specifying a function
g preserving the sign constraints could appear to be quite arbitrary. It will be then
implicit that a continuous/count bivariate time series model can be constructed by
combining standard GARCH, INGARCH or negative binomial dynamics while a
continuous/count/binary time series model is obtained by combining log-GARCH,
ARMA, log-linear INGARCH and logistic/probit dynamics.

2. As explained above, a linear type equation (3.5) is already interesting for generalizing
well-known univariate dynamics and Corollary 1 provides a result for stability for
the model. Such a result will be applied to two examples studied in details in the
rest of the paper. Its main interest is pedagogical as it illustrates that many classical
univariate models can be combined together for defining a multivariate times series
model. But we point out that Corollary 1 is not necessarily sharp with respect to
Theorem 10. For instance, assume (3.5) with L1-L2 satisfied and with a component,
say i, defined from the log-GARCH model. In this case, we have

log
(
F −1

i,si
(Ui)2

)
= si + log

(
F −1

ϵ (Ui)2
)

and one can directly check Assumption A3 with a matrix H such that H(ℓ, i) =
|A(ℓ, i) + B(ℓ, i)| and H(ℓ, j) = |A(ℓ, j)|cj + |B(ℓ, i)| if j ̸= i. Condition ρ(H) < 1 is
less restrictive than L3 in this case because of the inequalities

H(ℓ, i) ≤ (|A|vecdiag(c) + |B|vec) (ℓ, i).

The same improvement can be obtained if we consider an ARMA component.

3. Our framework also includes some multivariate time series models for discrete data
found in the literature. [95] considered a multivariate binary time series models
with applications to electricity price spikes. The conditional distribution of each
marginal can be logistic, Gaussian or of a more general form and the dynamic on
the latent process is similar to (3.5). A copula structure is also used for modeling
the simultaneous dependence for the multivariate time series. In [57], multivariate
count autoregressions have been introduced. In these models, the conditional dis-
tribution of each marginal is Poisson and both the linear and the log-linear case
are studied. The simultaneous dependence is also based on a copula. A main dif-
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ference with our approach concerns the generations of univariate Poisson marginal
distributions. While we use directly the inverse of the Poisson cdf to construct our
model, [57] simulates several independent copies of the copula to generate exponen-
tial inter-arrival times of a Poisson process. However, both models have very similar
properties.

3.2.4 Two specific examples

The model GAIN

The GARCH-INGARCH (abbreviated as GAIN) mixed model combines the dynamic
of the univariate GARCH model of [9] and the Poisson autoregressive model called IN-
GARCH in [47]. Here, E1 = R, E2 = N, G1 = G1 = R+ and we define the model as
follows.

Yt =


Y1,t = λ

1/2
1,t F −1

ϵ (U1,t)
Y2,t = inf

{
y ∈ N : ∑y

j=0 e−λ2,t
λj

2,t

j! ≥ U2,t

} (3.7)

λt = d + Bλt−1 + AY t−1 + ΓXt−1

where Y t = (Y 2
1,t, Y2,t)′ and F −1

ϵ stands for the inverse of the cumulative probability
function of a centered random variable ϵ with unit variance. The elements of d, A and
B are assumed to be nonnegative. The following result gives a necessary and sufficient
condition for the existence of some solutions.

Proposition 8 Consider the model (3.7) and let Assumption A1 holds true with X1

integrable.

1. If ρ(A+B) < 1, there exists a unique solution (Yt)t∈Z to (3.7) such that ((Yt, λt))t∈Z

is a stationary, (Ft)t∈Z −adapted and integrable process. Moreover, the process ((Yt, λt, Xt))t∈Z

is stationary and ergodic.

2. Conversely, assume that d has positive coordinates and suppose that ((Yt, λt))t∈Z is
a stationary, (Ft)t∈Z −adapted and integrable process solution of (3.7). Then ρ(A +
B) < 1.

We next give a result for existence of higher-order moments.
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Proposition 9 Consider the model (3.7) under the assumptions of Proposition 8 and
assume that for some integer r ≥ 1, E(|X0|r1) < ∞. If in addition E1/r[ϵ2r] < ∞ and
ρ
(
B + Adiag(E1/r[ϵ2r], 1)

)
< 1, then

E(|Y 0|r1) < ∞ and E(|λ0|r1) < ∞.

Notes

1. Under the stationarity condition ρ(A + B) < 1 and if there exists r′ > 1 such that
Eϵ2r′

< ∞ and E|X0|r
′

1 < ∞, one can always find r > 1 such that
ρ
(
B + Adiag(E1/r[ϵ2r], 1)

)
< 1. Existence of a moment of order larger than 1 is

then obtained without any restriction on the lag parameters A and B. This property
will be particularly important for proving consistency and asymptotic normality of
pseudo-likelihood estimators.

2. For this model, one can compute some auto-covariances. For simplicity, assume
that Γ = 0 (no exogenous covariates are included in the model) and set Γ(h) =
Cov

(
Y t, Y t−h

)
for h ≥ 1, which is meaningful when r = 2 in Proposition 9. Setting

εt = Y t −λt, note that we have the weak VARMA(1, 1) representation Y t = d+(A+
B)Y t−1 + εt −Bεt−1. Hence Γ(h) is proportional to (A+B)h and all the covariances
are positive. Note also that from the GARCH structure for the first component, all
the covariances between Y1,t and Y2,t−h, h ≥ 1 are automatically equal to 0. For
other models, such as the BIP model discussed below, it is quite difficult to get
similar recursive formula for the autocovariances, since in general, both E [Yi,t|Ft−1]
or E

[
Y i,t|Ft−1

]
will be given by a nonlinear function of λi,t.

The model BIP

In what follows, we consider a bivariate time series model compatible with sequences
of binary/count data. This model, called Binary-Poisson (abbreviated as BIP) mixed
model, combines an autoregressive logistic model with a log-linear Poisson autoregressive
model. For the sake of simplicity, we consider a model with two coordinates but extensions
including several binary/count time series is straightforward. Here E1 = {0, 1}, E2 = N
and G1 = G2 = R. The model writes as follows.

Yt =

 Y1,t = 1{U1,t≥1−F (λ1,t)}, F : s 7→ 1
1+exp(−s)

Y2,t = inf
{
y ∈ N : ∑y

j=0 e−eλ2,t ejλ2,t

j! ≥ U2,t

} (3.8)
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λt = d + Bλt−1 + AY t−1 + ΓXt−1

where Y t = (Y1,t, log(1+Y2,t))′. Here the coefficients in d, A, B, Γ and the covariate process
(Xt)t∈Z can take arbitrary signs.

Proposition 10 Consider the model (3.8) and suppose that Assumption A1 holds true
with X0 integrable. Assume furthermore that ρ(|B|vec + |A|vecdiag(1/4, 1)) < 1. Then the
conclusions of Corollary 1 are valid and we also have E(|Y 0|1) < ∞.

Note Contrarily to the model GAIN, our conditions for stationarity are not optimal.
This is already the case for the univariate log-linear Poisson autoregressive model for
which our stability condition is equivalent to |A2,2| + |B2,2| < 1. See [39], Proposition
17 for a sharper result. For univariate logistic autoregressions, our condition writes as
|A1,1|/4 + |B1,1| < 1. This condition is similar to that of [106] but much more restrictive
than the condition |B1,1| < 1 given in [56] or in [128], Proposition 2. Our results seems
to give optimal conditions for some dynamics with positive latent processes, such as for
the model GAIN or for multivariate linear Poisson autoregressions. In the latter case, see
[30], Theorem 4. On the other hand, we point out that our approach can be applied to
many nonlinear multivariate dynamics and allows exogenous covariates not necessarily
strictly exogenous (i.e. the noise process (Ut)t∈Z and the covariate process (Xt)t∈Z are not
necessarily independent).

We now investigate existence of some higher-order moments that will be necessary for
statistical inference. To this end, we denote by A the matrix obtained by replacing the
first column of A by the null vector 0. We recall that for a matrix C of size k × k, its
infinite norm, denoted by |C|∞, is defined by |C|∞ = max1≤i≤k

∑k
j=1 |C(i, j)|.

Proposition 11 Consider the model (3.8) and assume that the assumptions of Proposi-
tion 10 are valid. Suppose furthermore that ||A|vec + |B|vec|∞ < 1 and that for any r > 0,
E (exp (r|X0|1)) < ∞. Then, for any r > 0, we have

E (exp (r|λ0|1)) < ∞, E (|Y0|r1) < ∞.

3.3 Statistical inference

In this section, we detail our estimation procedures for the dynamic parameters as
well as for the copula parameters. We first explain the main idea of these methods and
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introduce our estimators in the two first subsections. Next, we provide some asymptotic
results in the two last subsections.

3.3.1 Estimation of dynamic parameters

Going back to the dynamic (3.3), we now assume that the function g depends on a
vector of parameters θ ∈ Θ ⊂ RQ and we denote by θ0 the vector of parameters associated
to a given sample Y1, . . . , Yn generated by (3.3). Under the linear assumption (3.5), one
can set θ = (d′, vec(Γ)′, vec(A)′, vec(B)′)′ where for a matrix C of any size, vec(C) denotes
the usual vectorization of the matrix C.

Inference of parameter θ can be done by minimizing a suitable contrast. We construct
such contrasts from univariate ones (e.g. log conditional densities). We then adopt a
(conditional) pseudo-maximum likelihood approach by writing the likelihood function as
if the coordinates of the Y ′

t s were independent conditionally on their past values. However,
the univariate contrasts are not necessarily defined from the conditional log-densities and
we provide a more flexible approach by allowing more general univariate contrasts such
as least squares or Gaussian quasi-maximum likelihood. We recall that E1, . . . , Ek denote
the state spaces of the different univariate time series, typically one of the sets {0, 1}, N
and R. Notations G1, . . . , Gk are used for the state spaces of the latent processes (typically
Gi = R or Gi = R+). Finally, for 1 ≤ i ≤ k, µi will denote either the Lebesgue measure
on the real line or the counting measure on {0, 1} or on N.

To this end, for 1 ≤ i ≤ k, let (y, si) 7→ hi,y(si) be a measurable mapping defined on
Ei × Gi and taking real values such that

E (hi,Y (si)) ≥ E (hi,Y (si)) and E (hi,Y (si)) = E (hi,Y (si)) ⇒ si = si (3.9)

whenever Y ∼ Pi (·|si). Here are two important examples of such mappings.

1. If the distribution Pi (·|si) is absolutely continuous with respect to µi, i.e. Pi (dy|si) =
pi (y|si) µi(dy), one can use the opposite of logarithm of the density hi,y(si) =
− log pi (y|si). This case is particularly important when Pi (·|si) is specified (e.g.
Poisson distribution with parameter si).

2. Other standard objective functions such as hi,y(si) = (y − si)2 (least-squares esti-
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mation) which is adapted to ARMA processes or

hi,y(si) = y2

ℓ(si)
+ log (ℓ(si))

which corresponds in the context of GARCH type models to Gaussian Quasi-
Maximum Likelihood Estimation. Here, the choice ℓ(si) = si corresponds to the
standard GARCH model whereas ℓ(si) = exp(si) corresponds to the log-GARCH
model. Note that the Gaussian QMLE can be also used for ARMA type models,
setting hi,y(s1,i, s2,i) = (y − s1,i)2/s2,i + log(s2,i), where the additional parameter s2,i

corresponds to the variance of the noise ε, see (3.2). Note that parameter s2,i is an
additional parameter with respect to the autoregressive parameters involved in the
dynamic of the latent process but it will be straightforward to adapt our results to
cover this case as well as others two-parameters distributions such as the negative
binomial distribution for count components.

If (λt(θ))t∈Z denotes the process defined recursively by

λt(θ) = gθ (λt−1(θ), Yt−1, Xt−1) , θ ∈ Θ, t ∈ Z,

we define an estimator of θ0 by minimizing the criterion

θ 7→ ℓn(θ) := n−1
n∑

t=1

k∑
i=1

hi,Yi,t
(λi,t(θ)) , (3.10)

where for t = 1, . . . , n,
λt(θ) = gθ (λt−1(θ), Yt−1, Xt−1) .

However, as usual with observation-driven models, the previous estimator can not be
computed using the available data. To get a feasible estimator, the dynamic of the
latent process has to be initialized and we consider a process

(
λt(θ)

)
t≥0

defined by
λ0(θ) = λ0 for every θ in Θ, where λ0 is a deterministic, and then recursively by λt(θ) =
gθ

(
λt−1(θ), Yt−1, Xt−1

)
for t ≥ 1. We then define the computable estimator

θ̂ = arg min
θ∈Θ

n−1
n∑

t=1

k∑
i=1

hi,Yi,t

(
λi,t(θ)

)
, (3.11)

Note that θ̂n can be obtained equation by equation for model (3.5) with a diagonal matrix
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B. Indeed, in this case, parameter θ is composed of k sub-vectors θ(1), . . . , θ(k) and we have
θ̂ =

(
θ̂(1), . . . , θ̂(k)

)
with

θ̂(i) = arg min
θ(i)

n−1
n∑

t=1
hi,Yi,t

(
λi,t

(
θ(i)
))

, 1 ≤ i ≤ k.

In particular, for 1 ≤ i ≤ k, θ(i) = (di, Γ(i, 1), . . . , Γ(i, m), A(i, 1), . . . , A(i, k), B(i, i)).

Note. Let us provide some guidelines for the choice of the univariate contrasts. From the
equation-by-equation optimization property, fitting the multivariate model is equivalent
to fitting k univariate models with exogenous regressors to the individual times series.
For count or binary models, the opposite of the log conditional density is then a standard
choice. For GARCH models, the Gaussian QML is the most popular and corresponds
to the opposite of the log conditional density when the noise is Gaussian. For ARMA
models, the least-square objective function is also natural and corresponds to the opposite
of the log conditional density in the Gaussian case. For these two last examples, these
choices are robust to the noise density misspecification (i.e. in the univariate case, they
lead to consistent estimators even if the noise density is not Gaussian). Additionally,
from this strategy, the estimation procedure (3.11) corresponds to conditional likelihood
estimation when the U ′

i,ts are independent (independence copula) and the noise densities
are Gaussian for the continuous components. We then adopt the aforementioned choices
for investigating theoretical properties of the estimators and for practical implementation.

3.3.2 Estimation of copula parameters

Our aim here is to define an estimator of parameter R0 obtained from an estima-
tor of the dynamic parameters. Note that all the marginal conditional probability dis-
tribution Pi (·|si), si ∈ Gi are known. We assume here that hi,si

= − log pi (·|si) for
1 ≤ i ≤ k. We recall that pi(·|si) denotes the probability density of Pi(·|si) with respect
to the measure µi. An estimator of parameter θ0 can be obtained as explained in the
previous section. The model being parametric, likelihood inference is adapted for estima-
ting R0. For simplicity, we assume that F1,s1 , . . . , Fℓ,sℓ

are diffeomorphims (the continuous
components) and Fℓ+1,sℓ+1 , . . . , Fk,sk

are cdf corresponding to discrete distributions with
a support included in {0, 1} or N (binary or count). Setting for 1 ≤ t ≤ n and 1 ≤ i ≤ k,
Zi,t(θ) = Fi,λi,t(θ) (Yi,t) and Z−

i,t(θ) = Fi,λi,t(θ)

(
Y −

i,t

)
, the approximated conditional log-
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likelihood function for the model is defined by

ℓn (θ, R) =
n∑

t=1
log PR

(
Yt|λt(θ)

)

=
n∑

t=1

ℓ∑
i=1

log pi

(
Yi,t|λi,t(θ)

)
+

n∑
t=1

log
{∫ Zℓ+1,t(θ)

Z−
ℓ+1,t

(θ)
· · ·

∫ Zk,t(θ)

Z−
k,t

(θ)
cR (Z1,t(θ), . . . , Zℓ,t(θ), uℓ+1, . . . , uk) duℓ+1 · duk

}
.(3.12)

Here, pR(y|s) denotes the conditional density of Yt given λt(θ) = s when the copula
parameter is R and the autoregressive parameters are given by θ.

We adopt a plug-in approach by first estimating θ0 and then optimize the partial
log-likelihood function. A possible estimator of R0 can be then obtained by minimizing

R 7→ −n−1ℓn

(
θ̂, R

)
,

where θ̂ is the estimator obtained as explained in the previous section.

3.3.3 Asymptotic results for inference of autoregressive para-
meters

In this section, we give a simple set of sufficient conditions ensuring consistency and
asymptotic normality of pseudo-likelihood estimators.

A4 For 1 ≤ i ≤ k and any s∗
i ∈ Gi, the mapping

µ 7→
∫

hi,y(si)Pi (dy|s∗
i )

is uniquely minimized at point si = s∗
i .

A5 For 1 ≤ i ≤ k, we have

E
∫

sup
θ∈Θ

|hi,y (λi,0(θ))| Pi (dy|λi,0(θ)) < ∞.

A6 For 1 ≤ i ≤ k,

1
n

n∑
t=1

∫
sup
θ∈Θ

∣∣∣hi,y (λi,t(θ)) − hi,y

(
λi,t(θ)

)∣∣∣Pi (dy|λi,0(θ0)) = oP(1).
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A7 We have
λ0(θ) = λ0(θ0) a.s. ⇒ θ = θ0.

The proof of the following result is straightforward and follows from standard arguments.
See for instance [125], Theorem 5.3.1., for the Gaussian QMLE but the arguments used
can be extended to this more general setup.

Theorem 11 Let Assumptions A1-A7 hold true with Θ a compact subset of RQ. We
then have limn→∞ θ̂n = θ0 a.s.

We now turn on the asymptotic normality of our estimator. In what follows, for a function
f : Θ → R, we denote by ∇f(θ) the gradient vector (column vector of the partial deri-
vatives) and ∇(2)f(θ) the Hessian matrix of f , evaluated at point θ ∈ Θ. If f : Θ → Rk,
we denote by Jf (θ) the Jacobian matrix of f at point θ ∈ Θ (we recall that in term of
partial derivatives, we have Jf (θ)i,j = ∂fi

∂θj
(θ)). For a function f defined on a subset of the

real line, we simply denote by ḟ and f̈ its first and second derivatives.

A8 For 1 ≤ i ≤ k and y ∈ Ei, the mapping hi,y is two-times continuously differentiable.
Moreover, for any si ∈ Gi, we have

∫
ḧi,y(si)Pi(dy|si) > 0 and

∫
ḣi,y(si)Pi(dy|si) = 0.

A9 For 1 ≤ i ≤ k, the random mapping θ 7→ λi,0(θ) is almost surely two-times conti-
nuously differentiable and the following uniform integrability condition holds true :

E
∫

sup
θ∈Θ

[∣∣∣ḧi,y (λi,0(θ))
∣∣∣ · ∥∇λi,0(θ)∥2 + ∥ḣi,y (λi,0(θ)) ∇(2)λi,0(θ)∥

]
Pi (dy|λi,0(θ0)) < ∞.

A10 For 1 ≤ i ≤ k, we have

E
∫

∥ḣi,y (λi,0(θ0)) ∇λi,0 (θ0) ∥2Pi (dy|λi,0(θ0)) < ∞.

A11 For 1 ≤ i ≤ k,

1√
n

n∑
t=1

∫
sup
θ∈Θ

∥∇ (hi,y ◦ λi,t) (θ) − ∇
(
hi,y ◦ λi,t

)
(θ)∥Pi (dy|λi,t(θ0)) = oP(1).

A12 If there exists x ∈ RQ such that Jλ0(θ0)x = 0 a.s. then x = 0.

As for consistency, we will not prove the following result. See for instance [125], Theorem
5.6.1., the same arguments can be used for proving Theorem 12 below.
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Theorem 12 Let Assumptions A1-A12 hold true with θ0 being located in the interior of
the compact parameter space Θ. We then have

√
n
(
θ̂ − θ0

)
⇒ NQ

(
0, J−1IJ−1

)
,

with
I =

k∑
i=1

k∑
j=1

E
[
ḣi,Yi,0 (λi,0(θ0)) ḣj,Yj,0 (λj,0(θ0)) ∇λi,0(θ0)∇λj,0(θ0)′

]
,

J =
k∑

i=1
E
[
ḧi,Yi,0 (λi,0(θ0)) ∇λi,0(θ0)∇λi,0(θ0)′

]
.

Let us note that Assumptions A8 and A10 ensure that the process (Mt)t∈Z defined
by Mt = ∑k

i=1 ∇hi,Yi,t
(λi,t(θ0)) is a square-integrable martingale difference. Moreover, As-

sumptions A8-A9-A12 entail that the Hessian matrix H(θ) = ∑k
i=1 ∇(2)hi,Yi,0 (λi,0(θ)) is

well defined, uniformly integrable with respect to θ ∈ Θ and with an invertible expecta-
tion at point θ0. Assumption A11 guarantees that initializing the latent process has no
effect on the asymptotic distribution of the estimator.

3.3.4 Sufficient conditions for A7 and A12

Here we exhibit a set of simple conditions ensuring both identification of autoregressive
parameters and non-degeneracy of the derivative of the latent process. We will provide
such conditions for the linear dynamic (3.5). Note that the two conditions A7 and A12
only involve the autoregressive latent process and not the contrast functions hi,µ. This is
why we give a separate study of these two conditions making as few as possible assump-
tions on the conditional distribution of the multivariate time series model.

In the rest of this section, we assume that the trivariate process ((Yt, Xt, Ut))t∈Z is
stationary and then that Assumptions L1-L3 are satisfied. We recall that
θ0 = (d′

0, vec(Γ0)′, vec(A0)′, vec(B0)′)′ denotes the true value of the parameter. For any
t ∈ Z, we also denote by Ft the sigma-field generated by (Uj, Xj), j ≤ t. We will need the
following set of assumptions :

I0 For any θ ∈ Θ, ρ(B) < 1,

I1 For any v ∈ Rm, we have

v′X1 ∈ F0 ∨ σ(U1) ⇒ v = 0.
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I2 For 1 ≤ i ≤ k, the function gi is non-degenerate on the support of Pi and the density
cR0 of the copula is positive everywhere.

I3 If v is equal either to a column vector of A0 or to a column vector of Γ0, the equalities
Bjv = Bj

0v, j ≥ 1, entail B = B0.

Lemma 4 Let Assumptions I0-I3 hold true for model (3.5). Condition A7 is then satis-
fied.

Notes

1. For our main setup, the matrices B and B0 are assumed to be diagonal. In this
case, Assumption I3 is satisfied as soon as all the rows of the concatenated matrix
C := [A0, Γ0] are non-null.

2. Assumption I1 is more difficult to interpret. It means that any (non degenerate)
linear combination of the covariate process at time t cannot be explained only by
past information and the disturbance term Ut. For instance, assume that Xt writes
as a square integrable infinite moving average expansion ∑j≥0 cjεt−j where (cj)j≥0 is
a sequence of matrices and the random vectors (Ut, εt), t ∈ Z, are i.i.d. In this case,
one can take Ft = σ ((Uj, εj) : j ≤ t) for t ∈ Z. If v′X1 is measurable with respect to
F0 ∨ σ(U1) then so is v′c0ε1 which has conditional variance v′c0Var (ε1|U1) c′

0v = 0.
When c0 is invertible and Var (ε1|U1) is invertible with positive probability, we
automatically get v = 0 and Assumption I1 is satisfied.
Under an additional condition on the covariates, called strict exogeneity, we give
below an alternative condition to I1.

I1’ The two processes (Ut)t∈Z and (Xt)t∈Z are independent and if ∑j≥1 ΦjX−j + c = 0
a.s. then all the matrices Φj of size p × m and the vector c of length p are equal to
zero.

The latter condition is satisfied for instance if a linear combination of the coordinates of
X0 cannot be equal to an element of σ (X−j : j ≥ 1), except if the weights are vanishing.
This condition is then the analogue of I1, when the noise process and the covariate process
are independent. The latter independence condition is often called strict exogeneity in the
time series literature.

Lemma 5 Let Assumptions I0-I1’-I2-I3 hold true for model (3.5). Condition A7 is then
satisfied.
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The validity of A12 can be obtained under an additional condition.

I4 The rank of all the column vectors included in the matrices Bj
0[A0, Γ0], j ≥ 0, is equal

to k.

Lemma 6 Suppose that either Assumptions I0-I4 or Assumptions I0,I1’,I2-I4 hold true.
Condition A12 is then satisfied.

Note. Assumptions I3-I4 are checked for instance when the block matrix [A0, Γ0] is of
full rank k. However, the latter condition is sufficient but not necessary. For instance if B

is diagonal with distinct diagonal elements and the rows of the matrix C = [A0, Γ0] are all
non null, Assumptions I3-I4 are also satisfied. Indeed in this case, if v1, . . . , vk+m denote
the column vectors of C, the rank of the vectors Bjvi, 0 ≤ j ≤ k, 1 ≤ i ≤ k +m, equals to
the rank of the matrix [diag(v1), . . . , diag(vk)]×Ik ⊗V , where for w ∈ Rk, diag(w) denotes
the square diagonal matrix with diagonal elements w1, . . . , wk, V denotes the (invertible)
Vandermonde matrix associated to B0(i, i), 1 ≤ i ≤ k, Ik is the diagonal matrix of size k

and ⊗ denotes the Kronecker product.

3.3.5 Examples

In this section, we go back to our two examples of bivariate time series models.

Asymptotic results for the GAIN model

We recall that θ = (d′, vec(Γ)′, vec(A)′, vec(B)′)′ denotes the vector of parameters we
have to estimate in the model (3.7). When B is assumed to be diagonal, we simply replace
vec(B) by diag(B). Here we assume that

Θ ⊂
{
θ ∈ RQ

+ : θi < 1, Q − 1 ≤ i ≤ Q, min(θ1, θ2) ≥ d−
}

,

with Q = 2(m + 4) and d− being a positive constant. We combine the Gaussian quasi-
likelihood and the Poisson likelihood to estimate the autoregressive parameters, that is
h1,y(µ1) = y2

µ1
+ log(µ1) and h2,y(µ2) = µ2 − y log(µ2).

Proposition 12 Consider model (3.7) with Θ ∋ θ0 compact. Suppose that Assump-
tion A1 and Assumptions I0, I1 or I1’, I2-I3 hold true. Suppose furthermore that
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ρ (A0 + B0) < 1 and that there exists δ > 0 such that E|X0|1+δ
1 < ∞ and Eε2(1+δ) < ∞.

The pseudo-maximum likelihood estimator is then strongly consistent, i.e.

lim
n→∞

θ̂n = θ0 a.s.

For asymptotic normality, our result writes as follows.

Proposition 13 Suppose that all the assumptions of Proposition 12 hold true as well
as Assumption I4. Suppose furthermore that θ0 belongs to the interior of Θ and that
Eε4 < ∞. We then have the convergence in distribution,

lim
n→∞

n1/2(θ̂n − θ0) = NQ(0, J−1IJ−1′),

where I and J are given in the statement of Theorem 12.

Asymptotic results for the BIP model

Here, setting Q = 2(m + 4), we assume that

Θ ⊂
{
θ ∈ RQ : |θi| < 1, Q − 1 ≤ i ≤ Q

}
.

We use the pseudo-maximum approach with h1,y(s1) = log (1 + es1) − ys1 and h2,y(s2) =
es2 − ys2.

Proposition 14 Consider model (3.8) with Θ ∋ θ0 compact. Suppose that Assumption
A1 and Assumptions I0, I1 or I1’, I2-I3 hold true. Suppose furthermore that ρ(|B0|vec +
|A0|vecdiag(1/4, 1)) < 1, ||A0|vec + |B0|vec|∞ < 1 and that for any r > 0, E (exp (r|X0|1)) <

∞. The pseudo-maximum likelihood estimator is then strongly consistent, i.e.

lim
n→∞

θ̂n = θ0 a.s.

Additionally, if θ0 is located in the interior of Θ and if Assumption I4 holds true, we have
asymptotic normality

lim
n→∞

√
n
(
θ̂n − θ0

)
= NQ

(
0, J−1IJ−1′)

,

where I and J are given in the statement of Theorem 12.
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3.3.6 Guidelines for more general models

In this part, we provide some guidelines for checking our conditions on more general
models of the form (3.5) when the parameter θ is in a compact set Θ such that ρ(B) < 1
for all matrix B in the parameter space. We restrict the study to some univariate models
without sign restriction as they appear to be the most flexible for practical applications,
though the standard GARCH or INGARCH models are widely used in the literature.
Assumptions A5-A6 and A9-A10-A11, which are specific to each univariate dynamic,
generally involve some moment conditions on the coordinates of the latent process and
then on the model. Lemmas 12, 13 and 14 given in section 3.6 give useful moment condi-
tions and approximation results for the corresponding latent process λt(·) for models of
the form (3.5). One can then give specific moment conditions that are required for each
univariate dynamic. Some of them are listed below. First, let us notice that Assumptions
A6 and A11 are satisfied as soon as for 1 ≤ i ≤ k,

∑
t≥1

∫
sup
θ∈Θ

∣∣∣hi,y (λi,t(θ)) − hi,y

(
λi,t(θ)

)∣∣∣Pi (dy|λi,0(θ0)) < ∞ a.s. (3.13)

∑
t≥1

∫
sup
θ∈Θ

∥∇ (hi,y ◦ λi,t) (θ) − ∇
(
hi,y ◦ λi,t

)
(θ)∥Pi (dy|λi,t(θ0)) < ∞ a.s.

For simplicity of notations, for any function f defined on Θ and taking values in Rd or in
a space of real matrices, we denote by |f |∞ its suppremum norm.

1. For the binary logistic model, we have hi,y(s) = y log(1+e−s)−(1−y) log(1+exp(s)).
A close inspection of the proof of Proposition 14 in 3.6 shows that the needed
assumptions are satisfied as soon as

E
[
|λi,0|∞ + |∇λi,0|2∞ +

∣∣∣∇(2)λi,0

∣∣∣
∞

]
< ∞. (3.14)

See in particular the equations in the proof of Proposition 14 combined with Lemma
13 in section 3.6.

2. For the log-linear Poisson, we have hi,y(s) = es −sy. Similarly to the previous point,
one can see that the required condition is

E
[
exp

(
|λi,0|∞

) (
1 + |λi,0|∞ + |∇λi,0|2∞ +

∣∣∣∇(2)λi,0

∣∣∣
∞

)]
< ∞. (3.15)

3. For an ARMA(1, 1) part, we have hi,y(s) = (y−s)2. When the ARMA noise is square
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integrable, it is not difficult to check that the required conditions are satisfied as
soon as the analogue of (3.14) holds true.

4. For a log-GARCH component, with a noise ϵ satisfying E(ϵ) = 0, Eϵ2 = 1 and
E| log ϵ2| < ∞, we have hi,y(s) = y2e−s + s. A careful inspection of conditions A5-
A6-A9-A10 and (3.13) combined with Lemma 12 shows that a sufficient condition
is given by

E
[
exp (2|λi,0|∞)

(
1 + |∇λi,0|2∞ +

∣∣∣∇(2)λi,0

∣∣∣
∞

)]
< ∞. (3.16)

Let us point out that for univariate log-GARCH models, (3.16) is not sharp. Using
more tedious arguments, [61] give much less restrictive conditions for studying the
Gaussian QMLE. Using the same kind of conditions in our context would require
to make more technical assumptions than that of Theorem 11 and Theorem 12. We
prefer to avoid such additional technicalities in our general context.

Typically, the most restrictive moment conditions among the different coordinates will
impose the moment condition for the multivariate model. Let us give an example of
a multivariate mixed time series of the form (3.5) with ℓ1 binary logistic components,
ℓ2 log-linear Poisson component and ℓ3 log-GARCH components with ℓ1 + ℓ2 + ℓ3 =
k. Remembering the discussion of Section 3.2.3, one can apply Corollary 1 if L3 holds
true with ci = 1/4 if 1 ≤ i ≤ ℓ1 and ci = 1 otherwise. This gives existence of an
integrable stationary solution. To check conditions (3.14), (3.15) and (3.16), a simple
sufficient condition is the existence of all exponential moments for |λi,0|∞ and all the
polynomial moments for Y 0. From Lemma 14 given in section 3.6, the latter condition
implies the existence of all the polynomial moments for |∇λi,0|∞ and

∣∣∣∇(2)λi,0

∣∣∣
∞

. If we
assume that the log-GARCH noise component has a finite moment of any order and the
covariates have an exponential moment of any order, one can proceed as in the proof of
Proposition 11 or Proposition 14 and a sufficient condition for the three required moment
conditions is then ∣∣∣|A0|vec + |B0|vec

∣∣∣
∞

< 1,

where A0 has the same columns as A0 except the ℓ1 first columns which are equal to
the null vector. In 3.6, Section 3.6.17, we give a more rigorous statement. Finally, note
that existence of exponential moments for λt is not always necessary. For instance, if we
combine an ARMA(1, 1) dynamic with a square integrable noise with a logistic autore-
gression, condition L3 is sufficient for checking the integrability conditions detailed above.
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See Section 3.6.18 in 3.6.

3.3.7 Asymptotic results for inference of copula parameters

In this subsection, we consider a general parametric model for the copula density. For
simplicity, we will only derive consistency results when the initialization of the latent
process is ignored, i.e. we identify λt(θ) and λt(θ). If we assume that the function g in
(3.3) does not depend on its first component (in this case, we use the terminology "pure
autoregressive processes"), both processes coincide and our consistency results apply. For
non-pure autoregressive processes, deriving a result when the computable version of the
latent process is used probably requires more tedious arguments. Note however that such
a consistency result seems to be new even in the regression case (i.e. the function g only
depends on the exogenous covariates) and it also gives positive results for fitting some
existing models to multivariate binary or count times series ([95], [57]).

As pointed out in [63], it is hopeless to get a systematic identification of the copula
parameters when the data are discrete. This is why, we will first state a result showing
that one can always estimate consistently the conditional distribution PR0 (·|s) even if
identification of the parameter R is not possible. For Gaussian copulas, we next show
that such identification is automatic, leading to the consistency of the MLE for the copula
parameters.

For t ∈ Z, we set
ft (θ, R) = log pR (Yt|λt(θ)) ,

where pR (·|s), see (3.12) for an expression, denotes the density of the conditional dis-
tribution Yt|λt(θ) = s for a copula parameter R and autoregressive parameters given by
θ. Note that the conditional distribution of Yt given λt(θ0) = s, denoted by PR0 (·|s), is
defined here by

PR0 (A|s) =
∫

A
pR0(y|s)µ(dy),

with µ being a product of measures with factors equal to either the Lebesgue measure or
the counting measure over N or {0, 1}. We make the following assumptions.

A13 The two parameters θ, R are contained in some compact sets denoted respectively
by Θ, Γ.

103



Multivariate time series models for mixed data

A14 The mapping (θ, R) 7→ f1 (θ, R) is continuous over Θ × Γ and we have

E
(

sup
(θ,R)∈Θ×Γ

|f1 (θ, R)|
)

< ∞

A15 For any λ, the mapping R 7→
∫

log (pR(y|λ)) pR0(y|λ)µ(dy) is continuous over Γ.

Finally let
I0 =

{
R ∈ Γ : f(θ0, R) = f(θ0, R0)

}
,

θ̂ a strongly consistent estimator of θ0 and

R̂ = arg max
R∈Γ

1
n

n∑
t=1

ft

(
θ̂, R

)
.

In what follows, we denote by dT V the total variation distance, i.e. for two probability mea-
sures ν and ν ′ defined on the same measurable space (F, F), dT V (ν, ν ′) = supA∈F |ν(A) − ν(A′)|.
Note that, in the case of existence of a density with respect to the same reference measure
µ, i.e. ν = f · µ and ν ′ = f ′ · µ, we have the alternative expression

dT V (ν, ν ′) = 1
2

∫
|f − f ′| dµ.

Proposition 15 Suppose that Assumptions A13-A16 hold true with θ̂ a strongly consistent
estimator of θ0. We then have limn→∞ d

(
R̂, I0

)
= 0. Moreover, there exists a Borel set Λ

such that P (λ0(θ0) ∈ Λ) = 1 and for any s ∈ Λ,

dT V (PR̂ (·|s) , PR0 (·|s)) → 0 a.s.

Notes

1. Existence of a strongly consistent estimator of θ0 is of course guaranteed from As-
sumptions A1-A7.

2. For discrete components, identifiability of the parameter is not guaranteed and the
copula is not unique in general. This problem is already known in the literature of
copula for multivariate discrete distributions. See [63]. However, as explained in [63],
Section 5, modeling discrete or mixed data with copula is still interesting because
for many models, R can still be interpreted as a dependence parameter. Indeed, the
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cdf of the conditional distribution of Yt|Ft−1 is given by

P (Yt ≤ y|Ft−1) = CR0

(
F1,λ1,t(θ0)(y), . . . , Fk,λk,t(θ0)(y)

)
.

When R0 is one-dimensional, we often have R0 ≤ R ⇒ CR0(u) ≤ CR(u) which
leads to a lower quadrant stochastic ordering for the multivariate conditional dis-
tribution. Moreover, remembering Hoeffding’s covariance equality Cov(W, Z) =∫ ∫

[FW,Z(w, z) − FW (w)FZ(z)] dwdz where FW,Z , FW , FZ denote the cdf of (W, Z), W, Z

and W, Z are some random variables, the stochastic ordering property entails that
the conditional covariances will increase with R. For the Gaussian copula discussed
below, we have CR = ΦR, where ΦR is the cdf of the Gaussian distribution with
correlation matrix R and Slepian’s lemma ensures that the multivariate cdf is in-
creasing with respect to the entries of the correlation matrix. As a consequence,
conditional covariances are increasing with respect to the copula parameters. Mo-
reover, using again Hoeffding’s formula, one can note that the sign of Ri,j equals to
the sign of the Cov (Yi,t, Yj,t|Ft−1). Additionally, in a dynamic setting, Proposition
(15) shows that one can consistently estimate the conditional distribution of the
model, which is unique. For instance, one can get an estimation of the conditional
covariances using a Monte-Carlo approach. To this end, one can sample using the
representation (3.3), replacing the unknown parameters by their estimators.

3. As for standard conditional likelihood estimators, Assumptions A14-A15 have to be
checked model by model. In our setup, those conditions will crucially depend on the
behavior of the univariate marginal cdf Fi,si

near their left/right endpoints and of the
shape of the copula density. It seems then difficult to exhibit more explicit sufficient
conditions. In what follows, we carefully check these conditions for Gaussian copula.
However in 3.6, Section 3.6.16, we show that these properties are also valid for some
Archimedean copulas such as Clayton copula. We also think that our proofs, which
consists in deriving lower and upper bounds for the multiple integrals involved in
the likelihood expression, already gives some clues to check these assumptions for
other parametric models.

We next study the case of Gaussian copula, an important parametric class which is often
popular for modeling the joint dependence of continuous or discrete data. See for instance
[96, 98, 57]. In this case, the parameters of the copula can be always identified, even if all
the coordinates of the multivariate times series are binary. However, it is difficult to find
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in the literature a mathematical study of consistency properties for the estimator of the
correlation matrix associated to a Gaussian copula. We will provide directly such a result
for the multivariate time series models considered in the present paper. Gaussian copula
are defined by

cR(u1, . . . , uk) = 1√
det(R)

exp
(

−1
2Φ−1(u)′(R−1 − I)Φ−1(u)

)
,

where R is a correlation matrix and Φ−1(u) = (Φ−1(u1), . . . , Φ−1(uk)) with Φ−1 being the
quantile function of the standard Gaussian distribution.

We will need the following assumptions.

G1 The discrete components of the multivariate time series are either binary {0, 1} or
fully supported on N. In the latter case, we assume that for any si ∈ Fi, pi(·|si) > 0
and

∑
y∈N

log (1 − Fi,si
(y)) pi (y|si) > −∞,

∑
y∈N

log (pi(y|si)) pi(y|si) > −∞.

G2 When 1 ≤ i ≤ ℓ (continuous components), we assume that

E
[
sup
θ∈Θ

{
− log Fi,λi,0(θ)(Yi,0)

}
+ sup

θ∈Θ

{
− log

(
1 − Fi,λi,0(θ)(Yi,0)

)}]
< ∞.

G3 When ℓ + 1 ≤ i ≤ k (discrete components), we have

E
[
sup
θ∈Θ

{− log pi (0|λi,0(θ))} + sup
θ∈Θ

{− log (1 − pi (0|λi,0(θ)))}
]

< ∞, (3.17)

E
[
sup
θ∈Θ

{− log pi (Yi,0|λi,0(θ))}
]

< ∞ (3.18)

and for count marginal time series,

E
[
sup
θ∈Θ

{
− log

(
1 − Fi,λi,0(θ)(Yi,0)

)}]
< ∞. (3.19)

Theorem 13 Suppose that Assumptions G1-G3 hold true with Θ × Γ compact and that
θ̂ is a strongly consistent estimator of θ0. Assume furthermore that A5 holds true with
hi,y(si) = − log pi(y|si) for 1 ≤ i ≤ ℓ. We then have strong consistency of the two-step
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estimator, i.e. limn→∞ R̂ = R0 a.s.

Note. The additional assumptions G1-G3 are not so restrictive. For instance, Poisson
or logistic autoregressive models and GARCH or ARMA models will satisfy these condi-
tions in general (up to some additional regularity conditions on the noise density). Below,
we carefully check these assumptions for the GAIN and BIN model.

Consistency for the GAIN model

Here, the correlation matrix writes as R0 =
 1 r0

r0 1

 and r0 is the single parameter

to estimate. For simplicity, we give below a consistency result when the noise density fϵ

of the GARCH component is such that one can find positive constants c1, c2, c3 such that

fϵ(z) ≥ c1 exp
(
−c2z

2
)

, |z| ≥ c3. (3.20)

Note that condition (3.20) is satisfied for the Gaussian distribution as well as Student
distributions.

Corollary 2 Suppose that all the assumptions of Proposition 12 are valid and that the
noise density of the GARCH component satisfies (3.20). We then have

lim
n→∞

r̂ = r0 a.s.

Consistency for the BIP model

Consistency also holds for the BIP models when the assumptions ensuring consistency
of the pseudo-maximum likelihood estimator are satisfied.

Corollary 3 Suppose that all the assumptions of Proposition 14 are satisfied. We then
have

lim
n→∞

r̂ = r0 a.s.

3.4 Numerical experiments and real data applications

In this section, we discuss the implementation of our inference procedure for the GAIN
and the BIP model. We only implement these models for a Gaussian copula. There also
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exist many other interesting families of copula (Clayton, Gumbell...) and we defer the
reader to [13] for an interesting survey about copulas properties and their use in finance.
Throughout this section, the density of the GARCH noise is always assumed to be a
standard Gaussian.

The main difficulty for fitting our models is the approximation of the likelihood func-
tion for estimating the correlation matrix R0. Pseudo-likelihood estimation of autoregres-
sive parameters is straightforward. Note that the equation-by-equation estimation can be
obtained from the standard software packages since it is equivalent to fit a standard time
series model to one coordinate with past values of the other coordinates as covariates.
Note that when k ≥ 3, several iterated integrals have to be computed for approximating
(3.12). This leads to an important computational problem. To solve this issue, one can
use the importance sampling strategy considered in [98] which has been already applied
to likelihood inference for Gaussian copula when the data are of mixed type. It is also
possible to use pairwise composite likelihood methods as discussed in [98], which avoids
the numerical computations of these integrals. However, in this case, the estimator of
R0 differs from the conditional likelihood estimator obtained from (3.12). In the present
paper, we will not investigate such computational issues and their corresponding conver-
gence properties. For our numerical experiments, we only consider the GAIN and the BIP
model and the number of coordinates k is equal to 2. In this case, there is no gain in
applying the aforementioned methods. When k = 2, let us first give a simpler formula
for the likelihood function (3.12). The correlation matrix R0 only involves one coefficient
r0 ∈ (−1, 1) and using the properties of conditional distributions for Gaussian vectors,
one can show that an estimation of parameter r0 can be obtained by minimizing

r 7→
n∑

t=1
log

({
Φ
(

Φ−1(Zi,t) − rΦ−1(Zj,t)√
1 − r2

)
− Φ

(
Φ−1(Z−

i,t) − rΦ−1(Zj,t)√
1 − r2

)})

for the GAIN model and

r 7→
n∑

t=1
log

(∫ 1

0

{
Φ
(

Φ−1(Zi,t) − rϵj,t(u)√
1 − r2

)
− Φ

(
Φ−1(Z−

i,t) − rϵj,t(u)√
1 − r2

)}
du

)

for the BIP model. Here,

Zi,t = Fi,λ̂i,t
(Yi,t), Z−

i,t = Fi,λ̂i,t
(Yi,t − 1) and ϵi,t(ui) = Φ−1

(
Zi,t − ui(Zi,t − Z−

i,t)
)

,
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where λ̂t = λt

(
θ̂
)
.

Note that for the GAIN model, the formula is explicit in term of the Gaussian cdf Φ
whereas the formula for the BIP model involves the computation of one integral. Approxi-
mation for this integral can be obtained from Monte Carlo methods. In our simulations,
we simply simulate a sample of size N = 104 of uniformly distributed random variables
and approximate this integral by an empirical counterpart.

One can also compute standard errors for our estimators. For the autoregressive pa-
rameters, the asymptotic distribution of pseudo-likelihood estimators can be used. For
the copula parameter, we did not investigate the asymptotic distribution of the likelihood
estimator. However, one can simply use a parametric bootstrap : we simulate B paths of
size n of the model using the estimated parameters θ̂ and r̂ and we compute the standard
error from the sample r̂∗,b for b = 1, . . . , B. A theoretical justification of such a procedure
is beyond the scope of this paper.

3.4.1 Numerical experiments

We fitted the GAIN and BIP models to simulated data. For the BIP model, we used
an additional covariate process with m = 1 and defined by an AR(1) process, Xt =
−0.15×Xt−1 +ξt where (ξt)t∈Z is a sequence of i.i.d. standard Gaussian random variables.
This sequence is assumed to be independent of the sequence (Ut)t∈Z used for the copula.
For both models, Tables 3 to 6 in 3.6 give averages and standard deviations of M = 500
estimators and for two sample sizes, n = 500 and n = 1000. One can note that both
estimation of autoregressive parameters and of the copula parameter work reasonably
well whatever the values of r0 which is allowed to vary from −0.9 to 0.9. We found that
n = 500 is a reasonable sample size to get an accurate estimation of all the parameters.

3.4.2 An application to sleep data

We use the data set already studied in [53], with sleep state measurements of a newborn
infant together with his heart rate Y2,t (taking integer values) and temperature Xt sampled
every 30 seconds. The sample size is n = 1024 and the sleep states are classified as : (1)
quiet sleep, (2) indeterminate sleep, (3) active sleep, (4) awake. To define a binary time
series, we aggregate States (1), (2) and (3) and we then set Y1,t = 1 when the infant is
awake and 0 if it is not. A BIP model is fitted to the time series (Yt)1≤t≤n. It is quite
intuitive to suspect a dependence between the heart rate and the sleep state and our aim
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Log-Poisson (I) Log-Poisson (II)
d1 A(1, 1) A(1, 2) B(1, 1) Γ(1, 1) d1 A(1, 1) A(1, 2) B(1, 1) Γ(1, 1)

-10.8984 0.6929 0.0068 0.0289 3.3907 1.0859 0.7437 0.0108 0.0331
(33.4872) (0.0428) (0.8275) (0.0907) (9.3608) (0.1611) (0.1380) (1.1646) (0.1328)

Logit-Binary (I) Logit-Binary (II)
d2 A(2, 1) A(2, 2) B(2, 2) Γ(2, 1) d2 A(2, 1) A(2, 2) B(2, 2) Γ(2, 1)

582.3259 -1.5590 13.9541 -0.5054 -161.0862 7.1203 -2.9145 13.0971 -0.4675
(503.0512) (3.0956) (1.4844) (0.1090) (138.3401) (16.4880) (3.3355) (1.3732) (0.1171)

r (I) r (II)
estimate : 0.3337 sd : 0.1040 estimate : 0.2749 sd : 0.1058
(I) : AIC = -535318.3 (II) : AIC = -535309.7

Table 3.1 – Estimation of the parameters of the BIP model for sleep data. Standard
errors are given in parenthesis.

is to analyze such a joint dynamic.
Results are displayed in Table 3.1. We consider two BIP models. Model (I) is unres-

tricted while in Model (II), we do not use the temperature as an exogenous variable.
Using t−tests, one can note that the lag value of the temperature seems not to have a
significant contribution to the dynamic, though the AIC is smaller when this covariate is
incorporated in the model. Both lag values of the heart rate (the sleep state respectively)
seem to have a negligible influence to the present value of the sleep state (the heart rate
respectively). On the other hand, we get a positive coefficient r̂ for the copula and we
then observe a positive association between the two time series at time t. Being awake is
more likely associated with larger heart rates at the same time which seems to be quite
logical. Note that such findings are compatible with that of the univariate modeling of
[53] (see p. 372 of that paper) with a sleep state at time t which seems to depend on the
current heart rate but less on its lag value.

3.4.3 An application to high-frequency transactions in finance

The data are downloaded from http://www.nasdaqomxnordic.com and represent the
real-time transactions on Boliden, a metal exploring, extracting and processing firm. The
count component, denoted by Y2,t, is the number of transactions of this stock occurring in a
time interval of two successive minutes. The continuous coordinate is the log-return Y1,t =
log (Pt) − log (Pt−1) of the transaction average price Pt. The transaction average price Pt

is simply given by ∑m
j=1 Wj,tPj,t/

∑m
j=1 Wj,t where Wj,t is the number of transactions at

price Pj,t occurring during this two minutes time interval. See also [54] who used a similar
weighted average price. We model the dynamic of (Yt)1≤t≤467 with a GAIN process. The
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GARCH
d1 A(1, 1) A(1, 2) B(1, 1)

0.0012 0.7569 0.00005 0.1226
(0.0353) (0.3829) (0.0005) (0.0017)

INGARCH
d2 A(2, 1) A(2, 2) B(2, 2)

3.1988 34.6621 0.1236 0.7719
(1.2767) (7.3539) (0.0406) (0.0702)

r

estimate : -0.011 sd : 0.0049
(I) : AIC = -40449.32

Table 3.2 – Estimation of the parameters of the GAIN model for financial data. Standard
errors are given in parenthesis.

data are collected for a two days time period between March 29th and March 30th , 2021.
The result are given Table 3.2. For the autoregressive parameters, one can suspect that the
lag value of the number of transactions has no effect on the volatility and then on the next
log-return. We then test the hypothesis H0 : A(1, 2) = 0 versus H1 : A(1, 2) > 0. Since the
parameter is on the boundary of the parameter set under the null hypothesis, the QMLE
has not an asymptotic Gaussian distribution. We then used the corrected test given in [59]
which consists in rejecting H0 at level α if Â(1, 2)2/v̂ is larger than the quantile of order
1 − 2α (instead of 1 − α when the parameter is not on the boundary) of a χ2 distribution
with 1 degree of freedom. Here v̂ is simply an estimation of the asymptotic variance of
Â(1, 2) given in Proposition 13. We do not reject H0 at level α = 5%. Moreover, r̂ is quite
small and negative. Unfortunately, we did not derive the asymptotic distribution of this
estimator to get a standard significance test. If the asymptotic distribution was Gaussian
at the usual

√
n convergence rate, we would reject the hypothesis H0 : r = 0, but further

investigation is needed to make a rigorous conclusion. One can then conclude that past
values of the log-returns seem to have an influence on the number of transactions at time
t but not the inverse. Moreover a negative but very small association between the two
time series at time t is possible.

3.5 Conclusion and perspectives

In this paper, we discussed a general modeling for multivariate time series with mixed
data. Our approach is quite flexible since many popular univariate time series models

111



Multivariate time series models for mixed data

can be used to construct our multivariate models. Our contribution is also the first one
dedicated to such a problem in the case of time series and we provided many asymptotic
results for statistical inference in our models. Estimation of dynamic parameters is quite
simple, using a pseudo-likelihood estimation method as if the coordinates at time t were
independent conditionally on Ft−1. A finer analysis of the simulateneous interactions
between the components of the time series can be obtained from a fitting of a copula model
and we also derived some asymptotic results, in particular for estimating the correlation
matrix of Gaussian copulas. The latter result seems to be new, even in the regression case
for i.i.d. observations and it also gives a basis for some existing models for multivariate
count or binary time series.

Let us mention that our approach allows to include exogenous regressors, at least if
the corresponding times series are stationary. This restriction is mostly interesting for
technical reasons, as stationarity allows to use a battery of limit theorems. In practice,
covariates might exhibit a non-stationary behavior. In this sense, extension of our results
to covariates exhibiting a seasonal behavior could be possible, as stationary properties can
be recovered blockwise. Including locally stationary covariates, as well as time-varying
coefficients, could be also an interesting extension. Since we use contraction techniques to
define our models, we believe that recent contributions such as [6, 25, 127] can be adapted
to our framework. Finally, including covariates with a unit root, as in [70] for GARCH
models, could be also interesting, though the asymptotic results will be quite different
and more difficult to get.

A possible extension of our work concerns categorical time series with d ≥ 3 modalities.
Though the inverse of the cdf for a discrete distribution can also be used, the contraction
condition needed for getting existence of a stationary solution could depend on the coding
of the modalities. [106] used a coding with vectors of the canonical basis of Rd−1 for getting
stability conditions but this coding already leads to a multivariate latent process and it
cannot be covered by our results. However, adapting our results to cover such an extension
could be possible. Extension of our results to autoregressive latent processes depending
on p ≥ 2 lag values could be also possible with appropriate technical modifications. Note
also that some of our results such as Theorems 10, 15, 12 and 13 are valid for non-
linear function g in (3.3). Checking the required assumptions for non-linear models such
as some smooth threshold models available in the literature could be also interesting.
Another important problem concerns model fitting. In particular, one could conduct a
residual analysis and study Hausman specification tests as discussed in [98]. This needs
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further investigation.

3.6 Supplementary material

3.6.1 Proof of Theorem 10

Define the mapping
ft : s 7→ g

(
s, F −1

s (Ut−1), Xt−1
)

.

From A1-A3, the assumptions of Theorem 4 in [32] are satisfied with o = p = 1
and ζt = (Xt−1, Ut−1). In particular, there exists a unique stationary, integrable and
(Ft−1)t∈Z − adapted process (λt)t∈Z such that λt = ft (λt−1). Moreover, Theorem 2 in [32]
guarantees the representation λt = H

(
(Ut−j, Xt−j)j≥1

)
for a suitable measurable function

H defined on an infinite Cartesian product (Bernoulli shift representation with respect
to the process ((Xt, Ut))t∈Z). Setting Yt = F −1

λt
(Ut), we then get a stationary and ergodic

process ((Yt, λt, Xt))t∈Z, as this process also has a Bernoulli representation with respect to
the stationary and ergodic process ((Xt, Ut))t∈Z. The uniqueness property easily follows.□

3.6.2 Proof of Proposition 9

For a positive real s and an integer r ≥ 1,

1. E1/r
[
F −1

1,s (U1,t)2r
]

= E1/r [ϵ2r] s

2. E1/r
[
F −1

2,s (U2,t)r
]

≤ (1 + δ)s + br,δ

for δ > 0 arbitrarily small and br,δ a positive constant which depends on r and δ (see
Lemma 9 below). We will apply Lemma 11. Since

∥g(s, F −1
s (Ut), Xt)∥r,t−1,vec ≼ (AH + B)s + Γ∥Xt∥r,t−1,vec + br,δ

where br,δ = (0, br,δ) and H = diag(E1/r[ϵ2r], 1 + δ), the result follows from Lemma 11.
Indeed, if δ is small enough, we have ρ (AH + B) < 1. □

3.6.3 Proof of Proposition 8

1. The first point is a consequence of Corollary 1 with g1(y) = y2 and g2(y) = y. As-
sumption L1 is easy to check and from the discussion given in Section 2.3, Assump-
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tion L2 is also satisfied for both coordinates with c1 = c2 = 1. Straightforwardly,
E(|Y 0|1) < ∞ since E(|Y 0|1) = E(|λ0|1).

2. Under the proposed assumptions, we have

Eλt = d + BEλt−1 + AEY t−1 + ΓEXt−1 = d + ΓEXt−1 + (A + B)Eλt−1.

By stationarity, we get m := Eλ0 = c+(A+B)m where c = d+ΓEX0. Iterating the
previous equality, we get m = ∑K

i=0(A + B)ic. By positivity of the components of c

and non negativity of the matrices A and B, we deduce that the series ∑K
i=0(A+B)i

is converging term by term and then that limi→∞(A + B)i = 0. This automatically
imply that ρ(A + B) < 1.□

3.6.4 Proof of Proposition 10

Setting g1(y) = y and g2(y) = log(1+y), the discussion given in Section 2.3 shows that
L2 is satisfied with c1 = 1/4 and c2 = 1. Assumption L1 is straightforward to show. The
result then follows from an application of Corollary 1. The integrability condition follows
from the fact that (Y1,t)t∈Z is bounded and the inequality E log(1 + Y2,t) ≤ E|λ2,t| < ∞
which follows from the discussion of Section 2.3.□

3.6.5 Proof of Proposition 11

We will apply the result of Lemma 11 with the r = 1 and the function ϕ(s) =
exp(κ|s|vec) where the exponential function is applied componentwise. Setting
µi = ∑2

j=1

(
|A(i, j)| + |B(i, j)|

)
< 1, Ci = |A(i, 1)| for i = 1, 2 and denoting by ⊙ the

Hadamard product, we have

|g(s, F −1
s (Ut), Xt)|vec ≼ (1−µ)⊙ |d + ΓXt|vec + C

1 − µ
+ |A|vec

 0
g2 ◦ F −1

2,s2(U2,t)

+ |B|vec|s|vec.

Using convexity of the exponential function, we deduce that

ϕ
(
g(s, F −1

s (Ut), Xt)
)
≼ (1−µ)⊙ϕ

(
d + ΓXt + C

1 − µ

)
+|A|vec

 1
exp(κg2 ◦ F −1

2,s2(U2,t))

+|B|vecϕ(s).

(3.21)
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Note that for any δ > 0, there exists dκ,δ > 0 such that

E exp(κg2 ◦ F −1
2,s2(U2,t)) = E

(
1 + F −1

2,s2(U2,t)
)κ

≤ (1 + δ) exp(κs2) + dκ,δ.

The previous bound can be obtained from Lemma 9, using the convexity of power func-

tions. In what follows, we denote by ct−1 the sum between the vector |A|vec

 0
dκ,δ

 and

conditional expectation of (1 − µ) ⊙ ϕ
(

d+ΓXt+C
1−µ

)
with respect to Ft−1. Taking the condi-

tional expectation with respect to Ft−1 in (3.21), we deduce that

∥ϕ
(
g(s, F −1

s (Ut), Xt)
)

∥t−1,1,vec ≼ ct−1 +
(
|A|vecdiag(1, 1 + δ) + |B|vec

)
ϕ(s).

Taking δ small enough, our assumptions guarantee that the spectral radius of |A|vecdiag(1, 1+
δ)+ |B|vec is less than 1 and Lemma 11 leads to E|ϕ(λ0)|1 < ∞. Finally, we use the bound

Eϕ (g2 ◦ Y2,0) = E (1 + Y2,0)κ ≤ (1 + δ)Eϕ(λ2,0) + dκ,δ < ∞.□

3.6.6 Proof of Lemma 4

Suppose that λt(θ) = λt(θ0) a.s. Since ∀B ∈ Θ, ρ(B) < 1, we get

∞∑
j=1

[
Bj−1A − Bj−1

0 A0
]

Y t−j =
∞∑

j=1

[
Bj−1Γ − Bj−1

0 Γ0
]

Xt−j

+
∞∑

j=1

[
Bj−1d − Bj−1

0 d0
]

. (3.22)

and consequently there exist a set of matrices Ψj, Φj, j ≥ 1 and a vector c of Rp such that

∑
j≥1

ΨjY t−j = c +
∑
j≥1

ΦjXt−j a.s. (3.23)

From I1, Φ1 = 0. Indeed, under our assumptions, if the previous equality is valid, the
random vector Φ1Xt−1 is measurable with respect to the sigma-field Ft−2 ∨ σ(Ut−1).

Next, suppose that Ψ1 ̸= 0. There then exists a vector v ∈ Rp \{0} such that v′Y t−1 =
Gt−2, where Gt−2 is a random variable Ft−2−measurable. For 1 ≤ i ≤ p, set Hi =
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gi ◦ F −1
i,λi,t−1(θ0). Note that

1 = P
(
v′Y t−1 = Gt−2|Ft−2

)
=
∫

[0,1]p
cR0(u1, . . . , up)1∑p

i=1 viHi(ui)=Gt−2du1 · · · dup.

Since cR0 is positive, we deduce that λp ({∑p
i=1 viHi(·) = Gt−2}) = 1 a.s. where λp denotes

the Lebesgue measure on [0, 1]p. From I2, we automatically have v = 0 because otherwise,
the value of one of the H ′

is is determined by the values of the others functions Hj. We
then get Ψ1 = 0. Recursively, we obtain Φj = Ψj = 0, ∀j ≥ 2 and finally c = 0.

Then, the equation (3.22) yields BjA = Bj
0A0 for any j ∈ N and then A = A0.

Moreover, BjΓ = Bj
0Γ0 for all j ∈ N entails Γ = Γ0. From I3, we get B = B0 and then

d = d0. □

3.6.7 Proof of Lemma 5

The proof is similar to the proof of Lemma 1. The single difference concerns the
treatment of equality (3.23). If the noise process and the covariate process are independent,
then the conditional distribution of Yt given Ft−1 is also the conditional distribution of Yt

given σ (Xj : j ∈ Z)∨σ (Ut−i : i ≥ 1). Assume an equality of the form (3.23). From I2, we
obtain recursively Ψj = 0 for j ≥ 1, using the same arguments as in the proof of Lemma
1. Hence, we get ∑j≥1 ΦjXt−j + c = 0 a.s. From I1’, we get Φj = 0 for j ≥ 1 and then
c = 0. The rest of the proof is identical to that of Lemma 1.□

3.6.8 Proof of Lemma 6

For 1 ≤ i, j ≤ k, 1 ≤ i′ ≤ k and ≤ j′ ≤ m, let us denote by Ei,j and Gi′,j′ the matrices
of size k × k and k × m respectively and with elements equal to 1 for the couple of indices
(i, j) or (i′, j′) and 0 elsewhere. We also denote by Jλt(θ0) the Jacobian matrix of λt at
point θ0. Assume that there exists a vector x such that Jλt(θ0)x = 0 a.s. We have

Jλt(θ0) = [1|Y t−1|Xt−1|λt−1(θ0)] + B0Jλt−1(θ0),

where [1|Y t−1|Xt−1|λt−1(θ0)] is a concatenated matrix with block elements

Ik, E(1, 1)Y t−1, . . . , E(k, k)Y t−1, G(1, 1)Xt−1, . . . , G(k, m)Xt−1, E(1, 1)λt−1(θ0), . . . , E(k, k)λt−1(θ0),
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with Ik the identity matrix of size k. By stationarity, we also have Jλt−1(θ0)x = 0 a.s. and
we then obtain [1|Y t−1|Xt−1|λt−1(θ0)]x = 0. We then deduce the existence of a vector ν

in Rk, two square matrices α and β of size k and a matrix γ of size k × m such that

ν + αY t−1 + βλt−1(θ0) + γXt−1 = 0 a.s.

Using the same kind of arguments as in the proof of Lemma 1 (see the implication of
equality (3.23)), we get the equalities ν + β(I − B0)−1d0 = 0, α = 0, γ = 0 and
βBj

0[A0, Γ0] = 0 for any j ≥ 0. From I4, we get β = 0 and then ν = 0. Since x =
(ν ′, vec(α)′, vec(γ)′, vec(β)′)′, we get x = 0 which means that A12 is satisfied.□

3.6.9 Proof of Proposition 14

We check the assumptions of Theorem 2 and Theorem 3. Let us denote h1,Y1,t(λt(θ)) =
log(1 + eλ1,t(θ)) − Y1,tλ1,t(θ), h2,Y2,t(λt(θ)) = eλ2,t(θ) − Y2,tλ2,t(θ). A4 and A8 are straight-
forward to show or result from the Kullback-Leibler divergence properties. Moreover A7
and A12 follows from the results given in Subsection 3.4 of the paper. We next check A5.
We have

E
(

sup
θ∈Θ

∣∣∣h1,Y1,t (λ1,t(θ))
∣∣∣) ≤ log(2) + 2E

(
sup
θ∈Θ

|λ1,t(θ)|
)

, (3.24)

E
(

sup
θ∈Θ

∣∣∣h2,Y2,t (λ1,t(θ))
∣∣∣) ≤ exp

(
sup
θ∈Θ

|λ2,t(θ)|
)

+ exp (λ2,t(θ0)) sup
θ∈Θ

|λ2,t(θ)|.

By recursion, note that

λt(θ) = (I − B)−1(d + ΓXt−1) +
∑
j≥0

BjAY t−j−1

and then

sup
θ

|λt(θ)|1 ≤ sup
θ

|(I − B)−1d|1 + sup
θ

|(I − B)−1ΓXt−1|1 + sup
θ

|A|1
∑
j≥0

|Bj|1|Y t−j−1|1.

From lemma 10, there exists τ ∈ (0, 1) and κ > 0 such that :

E(esupθ |λt(θ)|1) ≤ K(1 − τ)
∑
j≥0

τ jE
(

e
κ supθ |A|1

1−τ
|Y t−j−1|1

)
= KE

(
e

κ supθ |A|1
1−τ

|Y 0|1
)

(3.25)
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with K = esupθ |(I−B)−1d|1E
(
esupθ |(I−B)−1ΓX0|1

)
. From Proposition 4,

E
(

e
κ supθ |A|1

1−τ
|Y 0|1

)
≤
(

1 + e
κ supθ |A|1

1−τ

)
E
[
(1 + Y2,0)

κ supθ |A|1
1−τ

]
< ∞. (3.26)

Altogether, supθ∈Θ |λt(θ)|1 admits a finite exponential moment of any order and Y2,0 has all
polynomial moments. On other hand, supθ eλ2,t(θ) ≤ esupθ λ2,t(θ) since exponential function
is increasing. Then A5 follows.

We next check A6. Using the Lipschitz property of the function h1,t, h2,t and Lemma
13, we only have to show that

∑
t≥1

(
sup
θ∈Θ

|λ1,t(θ) − λ1,t(θ)| + exp
(

sup
θ∈Θ

|λ2,t(θ)|
)

sup
θ∈Θ

|λ2,t(θ) − λ2,t(θ)|
)

< ∞. (3.27)

Then A6 follows from the existence of exponential moments and Lemma 13.

Next, we check A9-A10. To this end, it is sufficient to show integrability of the random
variables

sup
θ∈Θ

∥∇λ1,0(θ)∥2, sup
θ∈Θ

∥∇(2)λ1,0(θ)∥, exp
(

sup
θ∈Θ

|λ2,0(θ)|
)

× sup
θ∈Θ

∥∇λ2,0(θ)∥2 (3.28)

and
exp

(
sup
θ∈Θ

|λ2,0(θ)|
)

× sup
θ∈Θ

∥∇(2)λ2,0(θ)∥. (3.29)

These integrability conditions follows from the existence of exponential moments and
Lemma 12.

Finally, we check A11. This condition will be satisfied as soon as

∑
t≥1

dt < ∞ a.s. with dt being equal to one of the following quantities : (3.30)

sup
θ∈Θ

∥∇λ1,t(θ) − ∇λ1,t(θ)∥, sup
θ∈Θ

|λ1,t(θ) − λ1,t(θ)| × sup
θ∈Θ

∥∇λ1,t(θ)∥,

exp
(

sup
θ∈Θ

|λ2,t(θ)|
)

× sup
θ∈Θ

∥∇λ2,t(θ) − ∇λ2,t(θ)∥,

sup
θ∈Θ

∥∇λ2,t(θ)∥ × exp
(

sup
θ∈Θ

|λ2,t(θ)|
)

× sup
θ∈Θ

|λ2,t(θ) − λ2,t(θ)|.

Using Lemma 13 and the integrability conditions of Lemma 12 as well as the existence of
all the exponential moments for supθ∈Θ |λ2,t(θ)| already justified above, we easily get the

118



Multivariate time series models for mixed data

result.□

3.6.10 Proof of Proposition 12

We check the assumptions of Theorem 2. First, note that Assumption A7 follows
directly form our assumptions and Lemma 1. Moreover, checking Assumption A4 is
straightforward and follows form standard arguments. We then check A5 and define
ht(s) = h1,Y1,t(s1) + h1,Y2,t(s2). We have

sup
θ

|ht(λt(θ))| ≤ d−1
−

(
Y 2

1,t + sup
θ

|λ1,t(θ)| + 1
)

+ d−1
− Y2,t

+ sup
θ

|λ2,t(θ)| + Y2,t

(
log(d−) + log

(
1 + sup

θ
|λ2,t(θ)|

))

Since ρ(B0 + A0) < 1 and E(ϵ2) = 1, one can found r < δ small enough such that
ρ(B0 + A0diag(E1/(1+r)[ϵ2(1+r)], 1) < 1. Then, from Proposition 2, we have for δ small
enough, E[|Y 0|1+δ] < ∞ and Lemma 12 yields to E[(supθ|λ0(θ)|1)1+δ] < ∞. Hence
E
[
log1+1/δ (1 + supθ |λ2,t(θ)|)

]
< ∞ and consequently E [Y2,t log (1 + supθ |λ2,t(θ)|)] < ∞.

It follows that E[supθ |ht(λt(θ))|] < ∞. We then conclude that E(supθ∈Θ |ht(λt(θ))|) < ∞
and A5 follows. Finally, we check A6. Using the Lipschitz property of the function ht

and Lemma 13, we have

|ht(λt(θ)) − ht(λt(θ))| ≤ 2
(
d−2

− Y 2
1,t + Y2,t + d−1

− + 1
)

|λt(θ) − λt(θ)|1
≤ C(sup

θ∈Θ
|λ0(θ)|1 + |λ0|1)

(
d−2

− Y 2
1,t + Y2,t + d−1

− + 1
)

τ t

for some constants C > 0, τ ∈ (0, 1). Since the logarithmic moment of

(sup
θ∈Θ

|λ0(θ)|1 + |λ0|1)
(
d−2

− Y 2
1,t + Y2,t + d−1

− + 1
)

is finite, then ∑t≥1 supθ∈Θ |ht(λt(θ)) − ht(λt(θ))| < ∞ and consequently, almost surely, as
n tends to infinity,

n−1
n∑

t=1
sup
θ∈Θ

|ht(λt(θ)) − ht(λt(θ))| → 0.□
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3.6.11 Proof of Proposition 13

We check the assumptions of Theorem 3, in particular A8-A12. Note that A12 follows
directly from Lemma 3. Moreover, checking A8 is straightforward and then omitted. We
next check A9 and A10. Due to the specific from of h1,y and h2,y, we only have to check
the integrability of the following random variables.

λ1,0(θ0) sup
θ∈Θ

∥∇(2)λ1,0(θ)∥
λ1,0(θ)2 , sup

θ∈Θ

∥∇(2)λ1,0(θ)∥
λ1,0(θ) , λ1,0(θ0) sup

θ∈Θ

∥∇λ1,0(θ)∥2

λ1,0(θ)3 , sup
θ∈Θ

∥∇λ1,0(θ)∥2

λ1,0(θ)2 ,

as well as

sup
θ∈Θ

∥∇(2)λ2,0(θ)∥, λ2,0(θ0)
(

sup
θ∈Θ

∥∇λ2,0(θ)∥2

λ2,0(θ)2 + sup
θ∈Θ

∥∇(2)λ2,0(θ)∥
λ2,0(θ)

)
.

All these integrability conditions follows from Lemma 14, Lemma 12 and Proposition 2
with r = 1 + δ.

Finally, we check A11. To this end, it is sufficient to show that ∑∞
t=1 supθ∈Θ ζt(θ) < ∞,

when ζt(θ) is one of the following quantities.

∥∇λ1,t(θ)−∇λ1,t(θ)∥×λ1,t(θ0),
∣∣∣λ1,t(θ) − λ1,t(θ0)

∣∣∣×∥∇λ1,t(θ)∥,
∥∇λ1,t(θ)∥

λ1,t(θ) ×|λ1,t(θ)−λ1,t(θ)|×λ1,t(θ0),

∥∇λ2,t(θ) − ∇λ2,t(θ)∥ × λ2,t(θ0),
∥∇λ2,t(θ)∥

λ2,t(θ) × |λ2,t(θ) − λ2,t(θ)| × λ2,t(θ0).

The result follows from the approximation results given in Lemma 13 and the integrability
conditions given by Lemmas 14, 12 and Proposition 9.□

3.6.12 Proof of Proposition 15

From A13-A14 and the continuity assumption on f1, we have a uniform law of large
numbers. In particular,

sup
R∈Γ

∣∣∣∣∣ 1n
n∑

t=1
ft

(
θ̂, R

)
− f (θ0, R)

∣∣∣∣∣ → 0 a.s.

Next,
1
n

n∑
t=1

ft

(
θ̂, R̂

)
≥ 1

n

n∑
t=1

ft

(
θ̂, R0

)
.
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Assume that R̃ is a cluster point of the sequence
(
R̂(ω)

)
n

for an ω such that the previous
uniform convergence holds true. Taking the limit in the previous equality, we get

f
(
θ0, R̃

)
≥ f (θ0, R0) .

Then R̃ ∈ I0. Hence, d
(
R̂, I0

)
→ 0 a.s.

We next study the convergence in total variation distance. To this end, we give another
description of the set I0. Denoting by

KLλ (R0, R) =
∫

log
(

pR(y|λ)
pR0(y|λ)

)
pR0(y|λ)µ(dy)

the Kullback-Leibler divergence between PR (·|λ) and PR0 (·|λ) which is a non-negative
quantity, we have

f (R, θ0) − f (R0, θ0) = E [KLλ0 (R0, R)] .

Hence, if R ∈ I0, we have KLλ (R0, R) = 0 for every λ in an event of Pλ0−probability one.
From A15, R 7→ KLλ (R0, R) is continuous for every λ. We then deduce the existence of a
measurable set Λ such that Pλ0 (Λ) = 1 and for every λ ∈ Λ and R ∈ I0, KLλ (R0, R) = 0.
Now let us show that almost surely,

KLλ

(
R0, R̂

)
→ 0, λ ∈ Λ. (3.31)

Let λ ∈ Λ. Since any cluster point R̃ of a sequence R̂(ω) is in I0, we have KLλ

(
R0, R̃

)
= 0

and then (3.31) follows. Using Pinsker’s inequality (the total variation distance is boun-
ded by the square root of one half of the Kullback-Leibler divergence), we also get the
convergence in total variation distance.□

3.6.13 Proof of Theorem 13

If R is in a compact set Γ, there exist some positive real numbers α0, β0, α1, β1 such
that for any R ∈ Γ,

α0 exp
(

−1
2 (β0 − 1) Φ−1(u)′Φ−1(u)

)
≤ cR(u) ≤ α1 exp

(
−1

2 (β1 − 1) Φ−1(u)′Φ−1(u)
)

.

(3.32)
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In what follows, we will derive a lower and an upper bound for the integral

I =
∫ eℓ+1

dℓ+1
· · ·

∫ ek

dk

cR (u1, . . . , uk) duℓ+1 · · · duk,

where 0 ≤ di < ei ≤ 1 for ℓ + 1 ≤ i ≤ k.

Upper bound for I Getting an upper bound for I is straightforward. From (3.32), we
have

I ≤ I ′α1

k∏
i=ℓ+1

∫ 1

0
exp

(
−1

2(β1 − 1)Φ−1(ui)2
)

dui = α1J
k−ℓ
1 ,

where I ′ = ∏ℓ
i=1 exp

(
−1

2(β1 − 1)Φ−1(ui)2
)

and (after a change of variable x = Φ−1(ui)),

J1 =
∫ ∞

−∞
exp

(
−1

2β1x
2
)

dx =
√

2πβ−1
1 .

Lower bound for I Setting

I
′′ =

ℓ∏
i=1

exp
(

−1
2(β0 − 1)Φ−1(ui)

)2

and using again (3.32), we have

I ≥ I
′′
α0

k∏
i=ℓ+1

∫ ei

di

exp
(

−1
2(β0 − 1)Φ−1(ui)2

)
dui.

It is then necessary to get a lower bound for

J =
∫ e

d
exp

(
−1

2(β0 − 1)Φ−1(u)2
)

du,

for some real numbers 0 ≤ d < e ≤ 1. We consider several cases.

1. Suppose first that 0 < d < e < 1. In this case, we have

J ≥ (e − d) exp
(

−1
2(β0 − 1)Φ−1(e)2

)
exp

(
−1

2(β0 − 1)Φ−1(d)2
)

.

2. Assume now that d = 0 and e < 1. In this case

J =
∫ Φ−1(e)

−∞
exp

(
−1

2β0x
2
)

dx =
√

2πβ−1
0 Φ

(√
β0Φ−1(e)

)
.
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Using the inequality Φ(x) + Φ(−x) = 1 and the inequality

1 − Φ(x) ≥
exp

(
−x2

2

)
2
√

2πx
, x ≥ 1, (3.33)

we get for x ≥ 1, 1 − Φ(x) ≥ f exp(−x2) for a suitable constant 1 ≥ f > 0 such
that f ≤ Φ(−1) and f ≤

√
2πβ−1

0 . Then

Φ(x) ≥ Φ(−1)1x≥−1 + (1 − Φ(−x))1x<−1 ≥ f exp(−x2).

We then get
J ≥ f 2 exp

(
−β0Φ−1(e)2

)
.

3. Assume next that e = 1 and d > 0. We also get
√

2πβ−1
0

(
1 − Φ

(√
β0Φ−1(d)

))
≥ f 2 exp

(
−β0Φ−1(d)2

)
.

4. Finally if e = 1 and d = 0, then J ≥
√

2πβ−1
0 ≥ f ≥ f 2.

We then showed the following result.

Lemma 7 1. There exist some real numbers f1 and f2, not depending on the d′
is and

the e′
is such that

log I ≤ f1 + f2

ℓ∑
i=1

Φ−1(ui)2.

2. There exist some real numbers f ′
1, f ′

2 and f ′
3, not depending on the d′

is and the e′
is

such that

log I ≥ f ′
1+f ′

2

ℓ∑
i=1

Φ−1(ui)2+
k∑

i=ℓ+1

[
log(ei − di)10<di<ei<1 + f ′

3Φ−1(ei)21ei<1 + f ′
3Φ−1(di)21di>0

]
.

The next lemma will be also needed.

Lemma 8 1. There exist δ1 > 0 such that for any u ∈ (0, 1),

Φ−1(u)2 ≤ δ1 (1 − log(u) − log(1 − u)) .

2. Let X be a random variable supported on the integers and such that p0 = P(X =
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0) ∈ (0, 1). If F denotes the cdf of X, we have the bound

E
[
Φ−1

(
F (X−)

)2
1X≥1

]
≤ δ2 (1 − log(p0) − log(1 − p0)) ,

where δ2 does not depend on F .

3. Let X be a random variable supported on the integers and such that pk = P(X =
k) ∈ (0, 1) for any k ∈ N. If F denotes the cdf of X, we have the bound

EΦ−1 (F (X))2 ≤ δ1 (1 − log(p0) + E log(1 − F (X))) ,

where δ3 > 0 does not depend on F .

Proof of Lemma 8

1. Since Φ−1(u) ∼
√

−2 log(u) when u ∼ 0 and Φ−1(u) ∼
√

−2 log(1 − u) when u ∼ 1,
the result is straightforward.

2. We represent X as F −1(U). On the event {X ≥ 1}, we have F (X−) ≥ p0 and

F (X−) =
∞∑

k=1
F (k − 1)1F (k−1)<U≤F (k) ≤ U.

Since EΦ−1(U)2 = 1, the result follows from the bound given in the previous point.

3. Using the first point of the lemma, it is only necessary to bound −E log(F (X)) ≤
− log(p0).□

We now go back to the proof of Theorem 4. It is only necessary to check A14 and
A15.

1. We first check A15. We use the fact that R 7→ cR is continuous and we apply the
dominated convergence theorem. To this end, we use the upper/lower bound on I

given in Lemma 7 and it is necessary to check the following integrability conditions.

∫
Φ−1 (Fi,λi

(y))2 pi,λi
(y)dy < ∞, 1 ≤ i ≤ ℓ, (3.34)

∫
Φ−1 (Fi,λi

(y))2
1Fi,λi

(y)<1pi,λi
(y)dµi(y) < ∞, ℓ + 1 ≤ i ≤ k, (3.35)

∫
Φ−1

(
Fi,λi

(y−)
)2
1Fi,λi

(y−)>0pi,λi
(y)dµi(y) < ∞, ℓ + 1 ≤ i ≤ k, (3.36)
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∫
− log (pi,λi

(y)) pi,λi
(y)dµi(y) < ∞, ℓ + 1 ≤ i ≤ k. (3.37)

Checking (3.34) is automatic by continuity of Fi,λi
, since any integral of this form

writes as EΦ−1(U)2 = 1 where U is a uniformly distributed over [0, 1]. (3.35) and
(3.37) follow from Assumption G1. Moreover, it is easy to check that (3.36) is valid
either for the Bernoulli distribution or for any distribution with full support N.

2. We next check A14. From Lemma 7 and Lemma 8, we only have to check the
following integrability conditions. When 1 ≤ i ≤ ℓ, we have to show that

E
[
sup
θ∈Θ

{
− log Fi,λi,0(θ)(Yi,0)

}
+ sup

θ∈Θ

{
− log

(
1 − Fi,λi,0(θ)(Yi,0)

)}]
< ∞. (3.38)

When ℓ + 1 ≤ i ≤ k, we have to show that

E
[
sup
θ∈Θ

{− log pi (0|λi,0(θ))} + sup
θ∈Θ

{− log (1 − pi (0|λi,0(θ)))}
]

< ∞, (3.39)

E
[
sup
θ∈Θ

{− log pi (Yi,0|λi,0(θ))}
]

< ∞ (3.40)

and for count marginal time series,

E
[
sup
θ∈Θ

{
− log

(
1 − Fi,λi,0(θ)(Yi,0)

)}]
< ∞. (3.41)

These conditions are precisely ensured by Assumptions G2-G3.

To end the proof of Theorem 4, it is necessary to check that parameter R can be
identified, i.e. that I0 = {R0} where I0 is defined before the statement of Proposition
8. From the properties of Kullback-Leibler divergence, it is sufficient to show that if
pR(·|s) = pR0(·|s), µ−almost everywhere for some s ∈ F1 × · · · × Fk, than R = R0. Such
identification property is already known in the literature. See for instance [96], appendix
A. For simplicity, we summarize the required arguments, using our notations. To show
this, we first give an expression of the density pR(·|s) which will be simply denoted pR(·)
here. Moreover, we simply denote by pi the density pi(·|si) and Fi = Fi,si

. In what follows,
for any value of k, we denote by ΦR the Gaussian density with mean 0 and covariance
matrix R and simply by ϕ the density of the standard Gaussian distribution on the real
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line. We have

pR(y)∏ℓ
i=1 pi(yi)

=
∫ Fℓ+1(yℓ+1)

Fℓ+1(y−
ℓ+1)

·
∫ Fk(yk)

Fk(y−
k

)

ϕR (Φ−1(F1(y1)), ·, Φ−1(Fℓ(yℓ)), Φ−1(uℓ+1), ·, Φ−1(uk))
ϕIk

(Φ−1(F1(y1)), ·, Φ−1(Fℓ(yℓ)), Φ−1(uℓ+1), ·, Φ−1(uk))duℓ+1 · duk.

Suppose that ΦR = ΦR0 , µ−a.e. For 1 ≤ i < j ≤ k, let R(i, j) =
 1 rij

rij 1

, which is

simply the (sub-)correlation matrix for components i and j. Finally, we denote by pR(i,j)

the bivariate density corresponding to these components. We consider three cases.

1. Assume first that 1 ≤ i ≤ ℓ and ℓ + 1 ≤ j ≤ k. In this case, we have

pR(i,j)(yi, yj)

= pi(yi)
∫ Φ−1(Fj(yj))

Φ−1(Fj(y−
j ))

ϕRij
(Φ−1(Fi(yi)), xj)

ϕI1 (Φ−1(Fi(yi)))
dxj

= pi(yi)

Φ
Φ−1(Fj(yj)) − rijΦ−1(Fi(yi))√

1 − r2
ij

− Φ
Φ−1(Fj(y−

j )) − rijΦ−1(Fi(yi))√
1 − r2

ij

 .

Then if pR(i,j) = pR0(i,j) almost everywhere, there exists w ∈ R such that

Φ
w − rijΦ−1(Fi(yi))√

1 − r2
ij

 = Φ
w − r0ijΦ−1(Fi(yi))√

1 − r0ij
2

 ,

for almost every value of yi (with respect to the Lebesgue measure). Since Φ is one-
to-one and Fi(yi) can take arbitrary values between 0 and 1, it is easily seen that
rij = r0ij.

2. Assume now that ℓ + 1 ≤ i < j ≤ k. In this case, we have

pR(i,j)(yi, yj) =
∫ Φ−1(Fi(yi))

Φ−1(Fi(y−
i ))

∫ Φ−1(Fj(yj))

Φ−1(Fj(y−
j ))

ϕR(i,j)dxidxj.

We use the expression,

ϕR(i,j)(xi, xj) = ϕ(xi)
(
2π(1 − r2

ij)
)−1/2

exp
(

−(xj − rijxi)2

2(1 − r2
ij)

)
.

Whatever the cases (binary or count variables), if pR(i,j) = pR0(i,j) almost everywhere,
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there exists two real numbers wi and wj such that we have the equality f(rij) =
f(r0ij) with

f(r) =
∫ wi

−∞
Φ
(

wj − rxi√
1 − r2

)
ϕ(xi)dxi.

However, since after some computations, the derivative of f can be written as

ḟ(r) = −(1 + d2)−1ϕ(c − dwi)ϕ(wi),

with c = (1 − r2)−1/2wj and d = (1 − r2)−1/2r, we see that f is decreasing. Hence,
rij = r0ij.

3. Finally, if 1 ≤ i < j ≤ ℓ, we recover the identification problem for continuous
margins with

pRij
(yi, yj) = pi(yi)pj(yj)

ϕRij
(Φ−1(Fi(yi)), Φ−1(Fj(yj)))

ϕ (Φ−1(Fi(yi))) ϕ (Φ−1(Fj(yj)))
.

Identification of rij is straightforward in this case.

We then deduce that the set I0 only contains R0 and the consistency result now follows
from Proposition 8.□

3.6.14 Proof of Corollary 2

We check the assumptions of Theorem 4. When pi,si
is the Poisson distribution with

parameter ϕ(si), with ϕ(si) = si or ϕ(si) = exp(si), it is straightforward to check the first
and the third conditions G1. It remains to check the second one. If X follows a Poisson
distribution with parameter µ and denoting by F its cdf, we have

1 − F (k) ≥ exp(−µ) µk+1

(k + 1)! . (3.42)

The previous lower bound follows from a Taylor-Lagrange expansion. We then get

− log(1 − F (k)) ≤ log(µ) − (k + 1) log(µ) +
k+1∑
i=1

log(i) ≤ −k log(µ) + k(k + 1)
2 .

In the last bound, we have simply used the bound log(i) ≤ i − 1 for i ≥ 1. We then get

−E log(1 − F (X)) ≤ C1(1 + µ2),
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where C1 > 0 does not depend on F .
Next we check G3. It is easily seen that if pi,si

is the Poisson distribution with para-
meter si, then the three conditions in G3 are satisfied as soon as E supθ∈Θ λi,0(θ)1+δ < ∞,
which is guaranteed from the assumptions of Proposition 5.

Finally, G2 is satisfied for the GARCH component as soon as E supθ∈Θ λi,0(θ) < ∞,
which is also automatic under the assumptions of Proposition 5. Indeed, let us denote by
s− the smallest values taken by

√
λi,t(θ). If (20) holds true, we have on the even {εt < 0}

where ϵt denotes the noise component,

Fi,λi,t(θ) (Yi,t) ≥ Fϵ (Yi,t/s−) ≥ Fϵ(−c3)1Yi,t≥−c3s− + c4 exp
(
−c5Y

2
i,t

)
1Yi,t<−c3s−

for some positive constant c4, c5. For the last inequality, we used the lower bound (20)
on fϵ combined with an inequality similar to (3.33). Hence supθ∈Θ − log

(
Fi,λi,t(θ)(Yi,t)

)
is

integrable as soon as E(Y 2
i,t) = Eλi,t(θ0) < ∞. The second integrability condition required

in G2 is similar. The result then follows from Theorem 4.□

3.6.15 Proof of Corollary 3

The proof is similar to that of Corollary 2. One can show that G2 is satisfied for
the Poissonian component as soon as E exp ((1 + δ) supθ∈Θ |λi,0(θ)|) < ∞ for some δ > 0,
which is covered by our assumptions. Note that (19) is satisfied under the same type of
conditions by using the lower bound (3.42) for the survival function of a Poisson distri-
bution.

For the binary coordinate with pi(1|λi) = F (λi) where F is the logistic cdf. In
this case, it is only necessary to check (17). The required conditions are satisfied if
E supθ∈Θ |λi,0(θ)| < ∞ which is the case under our assumptions. The other conditions
in G1 are trivial to show or has been discussed in the proof of Corollary 2. The result
then follows from Theorem 4.□

3.6.16 Checking Assumptions A14-A15 for Clayton copula

Here we assume k = 2 and for some R in a compact subset Γ of (0, ∞),

cR(u1, u2) = (R + 1)2u−R−1
1 u−R−1

2

(
u−R

1 + u−R
2 − 1

)− 2R+1
R .
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We assume furthermore that the first component is continuous (such as ARMA or GARCH)
and the second one discrete (non-degenerate binary or count distribution) and we will
prove a result analogue to that of Theorem 4 of the paper. A similar result can be obtai-
ned when both components are discrete. More precisely, we prove the following result.

Proposition 16 Let θ̂ be a consistent estimator of θ0. Assume that condition (18) in G3
holds true as well as A5 with h1,y(s1) = − log p1(y|s1),

E
[
sup
θ∈Θ

{
− log F1,λ1,0(θ)(Y1,0)

}]
< ∞

and if the discrete component follows a count distribution,

∑
y∈N

log (pi(y|si)) pi(y|si) > −∞.

We then have limn→∞ R̂ = R0 a.s.

Proof of Proposition 16 Let us first check A14 and set

I = IR =
∫ e2

d1
cR(u1, u2)du2, with d2 = Z−

2,0(θ), e2 = Z2,0(θ), u1 = Z1,0(θ).

We have

I = R + 1
uR+1

1

[(
e−R

2 + u−R
1 − 1

)−1−R−1

−
(
d−R

2 + u−R
1 − 1

)−1−R−1]
. (3.43)

1. For the upper bound, we have

log(I) ≤ log(R + 1) − (R + 1) log(u1) + (R + 1) log(e2).

2. We also derive a lower bound. If d2 ̸= 0, setting h = u−R
1 − 1, and β = (R + 1)/R

and using the mean value theorem, we have

log(I)

≥ 2 log(R + 1) − (R + 1) log(u1) − (R + 1) log(z) + log(e2 − d2) − (β + 1) log
(
z−R + h

)
,
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for some z ∈ [d2, e2]. Note also that

log
(
z−R + h

)
≤ log(2) − R log(z) − R log(u1) ≤ log(2) − R log(d2) − R log(u1).

Now, if d2 = 0, we have

log(I) ≥ log(R + 1) − (R + 1) log(u1) − β log(2) + (R + 1) log(e2) + (R + 1) log(u1).

From these bounds, we deduce that A14 is valid under our assumptions. Checking A15
follows as for A14, using the lower and upper bounds for log(I) as well as Lebesgue’s
theorem. Finally, we check that I0 = {R0}. Note first that from the Kullback-Leibler
divergence properties, the equality f(θ0, R0) = f(θ0, R) entails that

pR (Y0|λt(θ0)) = pR0 (Y0|λt(θ0)) a.s.

In particular, we get IR = IR0 a.s. By taking summations for possible values for Y2,0, we
deduce that almost surely

R + 1
uR+1

1

(
e−R

2 + u−R
1 − 1

)−1−R−1

= R0 + 1
uR0+1

1

(
e−R0

2 + u−R0
1 − 1

)−1−R−1
0

and taking e2 = 1 in the previous equality, we deduce that R = R0. □

3.6.17 A multivariate binary/logINGARCH/logGARCH model

In this section, our aim is to check the integrability conditions needed for the model
discussed in Section 3.6 of the paper. We assume that the ℓ1−first components are binary-
logistic, the ℓ2 next components are Poisson log-linear and the remaining ℓ3 components
are given by a log-GARCH. We assume that the noise of the log-GARCH component has
finite polynomial moments, X0 has exponential moments of any order,

∣∣∣|A0|vec + |B0|vec

∣∣∣
∞

< 1

and L3 holds true with ci = 1/4 if 1 ≤ i ≤ ℓ1 and ci = 1 otherwise. We first prove
the analogue of Proposition 4. We will still apply the result of Lemma 11 with r = 1
and the function ϕ(s) = exp(κ|s|vec) where the exponential function is applied compo-
nentwise. Here, note that F −1

i,si
(Ui,t) = esi/2F −1

ϵ (Ui,t) for ℓ1 + ℓ2 + 1 ≤ i ≤ k. Setting

130



Multivariate time series models for mixed data

µi = ∑2
j=1

(
|A(i, j)| + |B(i, j)|

)
< 1,

Ci =
ℓ1∑

j=1
|A(i, j)| +

k∑
j=ℓ2+1

|A(i, j)| log F −1
ϵ (Ui,t)2

for i = 1, . . . , k and denoting by ⊙ the Hadamard product, we now have

|g(s, F −1
s (Ut), Xt)|vec ≼ (1 − µ) ⊙ |d + ΓXt|vec + C

1 − µ
+ |A|vecVt + |B|vec|s|vec,

where Vi,t = 0 if 1 ≤ i ≤ ℓ1, Vi,t = F −1
i,si

(Ui,t) for ℓ1 + 1 ≤ i ≤ ℓ1 + ℓ2 and Vi,t = si for
ℓ1 + ℓ2 + 1 ≤ i ≤ k. Using convexity of the exponential function, we deduce that

ϕ
(
g(s, F −1

s (Ut), Xt)
)
≼ (1 − µ) ⊙ ϕ

(
d + ΓXt + C

1 − µ

)
+ |A|vecϕ(Vt) + |B|vecϕ(s). (3.44)

Note that for any δ > 0, there exists dκ,δ > 0 such that for ℓ1 + 1 ≤ i ≤ ℓ1 + ℓ2,

E exp(κgi ◦ F −1
i,si

(Ui,t)) = E
(
1 + F −1

2,si
(Ui,t)

)κ
≤ (1 + δ) exp(κsi) + dκ,δ.

The previous bound can be obtained from Lemma 9, using the convexity of power func-
tions. Now let v the vector given by vi = dκ,δ if ℓ1 +1 ≤ i ≤ ℓ1 +ℓ2 and vi = 0 otherwise. In
what follows, we denote by ct−1 the sum between the vector |A|vecv and conditional expec-
tation of (1 − µ) ⊙ ϕ

(
d+ΓXt+C

1−µ

)
with respect to Ft−1. Taking the conditional expectation

with respect to Ft−1 in (3.44), we deduce that

∥ϕ
(
g(s, F −1

s (Ut), Xt)
)

∥t−1,1,vec ≼ ct−1 +
(
|A|vecD̃ + |B|vec

)
ϕ(s),

where D̃ is a diagonal matrix of size k with D̃i,i = 1 + δ is ℓ1 + 1 ≤ i ≤ ℓ1 + ℓ2 and
D̃i,i = 1 otherwise. Note first that the existence of all exponential moments for X0 and all
polynomial moments for ϵ entail that Ec0 < ∞. Taking δ small enough, our assumptions
guarantee that the spectral radius of |A|vecD̃ + |B|vec is less than 1 and Lemma 11 leads
to E|ϕ(λ0)|1 < ∞. Finally, we use the bound

Eϕ (gi ◦ Yi,0) = E (1 + Yi,0)κ ≤ (1 + δ)Eϕ(λi,0) + dκ,δ < ∞

131



Multivariate time series models for mixed data

for ℓ1 + 1 ≤ i ≤ ℓ1 + ℓ2 and

Eϕ (gi ◦ Yi,0) ≤ E(ϵ2κ)Eϕ(λi,0)

for ℓ1 + ℓ2 + 1 ≤ i ≤ k to conclude.

3.6.18 Combining a binary-logistic and an ARMA(1, 1) dynamic

We check the main condition given in the paper for getting consistency and asymptotic
normality of the pseudo-likelihood estimators of the autoregressive parameters, when one
component is given by a binary-logistic dynamic and the second one by an ARMA type
dynamic. Here we assume that F1,s1 is the cdf of a Bernoulli distribution with parameter
(1 + e−s1)−1 and F2,s2 is the cdf of s2 + ϵ where ϵ is a centered random variable with finite
variance. We also assume that X0 has a finite second moment. Here the link functions
g1, g2 are both the identity function. To check conditions (14) of the main document for
both coordinates, we assume that

ρ (|A0|vecdiag(1/4, 1) + |B|vec) < 1. (3.45)

From Corollary 1, this condition ensures the existence of a stationary solution with a
finite first moment. We show that this solution has a finite second moment. To this end,
we apply Lemma 11. Form Minkowski’s inequality for conditional expectations, we have

E1/2
[
|g(s, F −1

s (Ut), Xt)|2vec|Ft−1
]

⪯ E
[
|d + ΓXt|2vec|Ft−1

]
+|B|vec·|s|vec+|A|vecE1/2

[
|F −1

s (Ut)|2vec

]
.

Since
E1/2

[
F −1

1,s1(U1,t)2
]

≤ 1, E1/2
[
F −1

2,s2(U2,t)2
]

≤ s2 + Var(ϵ),

it is not difficult to see that Lemma 11 can be applied as soon as ρ
(
|A|vec + |B|vec

)
< 1.

The latter condition is implied by (3.45). Indeed if C and D are square matrices with non-
negative entries and C ≤ D componentwise, we have ρ(C) ≤ ρ(D). One then conclude to
the existence of a second moment and applying Lemma 12, we get the result.
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Appendix

3.6.19 Two useful lemmas

Lemma 9 Let λ > 0 and Xλ Poisson variable with parameter λ. Then, ∀r ≥ 1 and any
δ ∈ (0, 1), there exists br,δ, not depending on λ and such that

∥Xλ∥r ≤ (1 + δ)λ + br,δ.

Proof of lemma 9 We have the equality E(Xr
λ) = ∑r

i=1 λi

 r

i

 with

 r

i

 are the

Sterling’s numbers of second kind. See for instance [76].
Then

E(Xr
λ) = λr +

r−1∑
i=1

λi

 r

i

 ≤ λr + Cr(λ + λr−1),

where Cr > 0 only depends on r. But, we can notice that, for any δ > 0, there exists
∃bδ,r > 0 such that for all x ≥ 0 : x + xr−1 ≤ δ′xr + bδ,r with δ′ = (1+δ)r−1

Cr
. Then

E(Xr) ≤ (1 + Crδ
′)λr + Crbδ,r. Therefore ∥X∥r ≤ (1 + Crδ

′)1/rλ + C1/r
r b

1/r

δ,r . Setting
bδ,r = C1/r

r b
1/r

δ,r , we get the result.□

Lemma 10 Let B(θ) be a matrix with entries depending continuously on a parameter
θ ∈ Θ and Θ is a compact set of Rd, d ∈ N∗. Suppose that ρ (B(θ)) < 1 for any θ ∈ Θ.
There then exist C > 0 and τ ∈ (0, 1) such that for all integer j ≥ 1, supθ∈Θ |B(θ)j|1 ≤
Cτ j.

Proof of Lemma 10 Let ∥ · ∥ be an arbitrary norm on Rd. For any θ ∈ Θ, from
Gelfand’s formula limn→∞ |B(θ)n|1/n

1 = ρ(B(θ)). Therefore there exists ρθ ∈ (0, 1) and
nθ ∈ N such that |B(θ)nθ |1 < ρθ. By continuity of the function θ 7→ B(θ), we can found
ϵθ such that ∀θ ∈ B(θ, ϵθ) = {η ∈ Θ : ∥η − θ∥ < ϵθ} , |Bn0(θ)|1 < ρθ. By compactness
of Θ and Borel-Lebesgue property, Θ ⊂ ⋃N

i=1 B(θi, ϵθi
) for θ1, . . . , θN ∈ Θ. Let us set

ρ = max1≤i≤N ρθi
∈ (0, 1) and n0 = nθ1 × · · · × nθN

, it follows that

sup
θ∈Θ

|B(θ)n0|1 ≤ ρ.
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If n ≥ n0, n = kn0 + r, k ≥ 1, r ∈ {0, . . . , n0 − 1}, we will set C = maxθ∈Θ (|B(θ)|1 + 1)n0 ,

and we obtain

sup
θ∈Θ

|B(θ)n|1 ≤ Cρk = Cρ
⌊ n

n0
⌋ ≤ Cρ−1

(
ρ

1
n0

)n

:= Cρn.□

Sufficient conditions for finiteness of moments

The following result gives some sufficient conditions for existence of some moments for
the stationary solution of the general model. For a random vector Z = (Z1, . . . , Zd) , d ∈
N∗, we define ∥Z∥t−1,r,vec := (E1/r [|Z1|r|Ft−1] , . . . ,E1/r [|Zd|r|Ft−1])′. In the following re-
sult, we consider a measurable mapping ϕ : R → R+ and a real number r ≥ 1. Typically,
either ϕ(x) = |x| and r > 1 or ϕ(x) = exp (κ|x|) for some κ > 0 and r = 1. If x ∈ Rd,
ϕ(x) is simply the vector (ϕ(xi))1≤i≤d.

Lemma 11 Assume that Assumptions A1-A3 hold true. Assume that there exist a mea-
surable mapping ϕ : R → R+, a real number r ≥ 1, a matrix D ∈ Mk with nonnegative
elements such that ρ (D) < 1 and a (Ft)t∈Z −adapted and stationary process (ct)t∈Z, taking
values in Rk

+ such that for s ∈ Rk and t ∈ Z,

∥∥∥ϕ (g(s, F −1
s (Ut), Xt)

)∥∥∥
t−1,r,vec

≼ ct−1 + Dϕ(s).

Then E [|ϕ(λ0)|r1] < ∞ provided that E1/r(|c0|r1) < ∞,

Proof of Lemma 11 Setting ft(s) = g (s, F −1
s (Ut−1), Xt−1), as in the proof of Theorem

1, we have λt = ft (λt−1) and Theorem 2 in [32] ensures that λt = limm→∞ f t
t−m(s) a.s. for

any value of s. Here f t
t−m = ft ◦ ft−1 ◦ · · · ◦ ft−m+1. Since f t−1

t−m is measurable with respect
to Ft−2, we have from our assumption,

∥∥∥ϕ (f t
t−m(s)

)∥∥∥
t−2,r,vec

=
∥∥∥∥ϕ(g(f t−1

t−m(s), F −1
f t−1

t−m(s)(Ut−1), Xt−1)
)∥∥∥∥

t−2,r,vec

≼ ct−2 + Dϕ
(
f t−1

t−m

)
.

From the triangular inequality, we get ∥ϕ
(
f t

t−m(s)
)

∥r,vec ≼ ∥ct−2∥r,vec+D∥ϕ
(
f t−1

t−m(s)
)

∥r,vec.
Setting f = ∥c0∥r,vec, hm(s) = ∥ϕ

(
f 0

−m(s)
)

∥r,vec and using stationarity, we get

hm(s) ≼ f + Dhm−1(s) ≼
m−1∑
i=0

Dif + Dmϕ(s).
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Letting m → ∞, the condition ρ(D) < 1 and Fatou’s lemma leads to the result.□

3.6.20 Approximation results for linear latent processes

In this section, we suppose that :

λt(θ) = d + Bλt−1(θ) + AY t−1 + ΓXt−1, t ∈ Z and θ ∈ Θ, (3.46)

The approximate latent process is then define as :

λ0(θ) = λ0 ; λt(θ) = d + Bλt−1(θ) + AY t−1 + ΓXt−1, t > 0 and θ ∈ Θ. (3.47)

The approximate latent process is initialized by a given deterministic vector λ0. We in-
troduce the following partial derivatives operators :

∂i = ∂

∂θi

and ∂ij = ∂2

∂θi∂θj

where θi stands for the i-th component of the parameters vector θ. In the whole sub-
section, we assume that the process

(
(Y t, Xt)

)
t∈Z

is stationary, Θ is a compact
set and for any θ ∈ Θ, ρ(B) < 1.

Lemma 12 (Moments of latent process) Suppose that there exists r ≥ 1 such that
E(|Y 0|r1) < ∞ and E(|X0|r1) < ∞. Then the mapping θ 7→ λ0(θ) is almost surely two times
continuously differentiable. Moreover,

1. for l = 1, . . . , k, E[(supθ |λl,0(θ)|)r] < ∞

2. for l = 1, . . . , k, i = 1, . . . , Q, E[(supθ |∂iλl,0(θ)|)r] < ∞

3. for l = 1, . . . , k, i, j = 1, . . . , Q, E[(supθ |∂ijλl,0(θ)|)r] < ∞

Proof of Lemma 12 First note that ∀θ, λt(θ) = ∑
j≥0 Bj

(
d + AY t−j−1 + ΓXt−j−1

)
is

well defined and infinitely differentiable since supθ∈Θ ρ(B) < 1. Moreover, from Lemma
10, there exists C > 0 and τ ∈ (0, 1) such that for any θ ∈ Θ and any integer j ≥ 1,
|Bj|1 ≤ Cτ j. Setting D = supθ∈Θ (|d|1 + |A|1 + |Γ|1), we get

E1/r[(sup
θ

|λt(θ)|1)r] ≤ CD
∑
j≥0

τ j
(
E1/r

(
|Y t−j−1|r1

)
+ E1/r (|Xt−j−1|r1)

)
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which is finite by stationarity and existence of the moment of order r. Next, for all possible
indices, i and j, the partial derivatives of the latent process are given by :

∂λt(θ)
∂di

= ιi + B
∂λt−1(θ)

∂di

=
∑
j≥0

Bjιi = (I − B)−1ιi, i = 1, . . . , k;

∂λt(θ)
∂A(i, j) = E(i, j)Y t−1 + B

∂λt−1(θ)
∂A(i, j) =

∑
l≥0

BlE(i, j)Y t−l−1, i, j = 1, . . . , k; (3.48)

∂λt(θ)
∂Γ(i, j) =

∑
l≥0

BlG(i, j)Xt−l−1, i = 1, . . . , k, j = 1, . . . , m;

∂λt(θ)
∂B(i, j) = E(i, j)λt−1(θ) + B

∂λt−1(θ)
∂B(i, j) =

∑
l≥0

BlE(i, j)λt−l−1(θ), i, j = 1, . . . , k

where ιi, i = 1, . . . , k is the vector of {0, 1}k with 1 at the position i and 0 elsewhere,
E(i, j), i, j = 1, . . . , k is the k × k matrix with 1 at the position (i, j) and 0 elsewhere,
G(i, j), i = 1, . . . , k, j = 1, . . . , m is the k × m matrix with 1 at the position (i, j) and 0
elsewhere and di is the i−th element of vector d.

For all possible indices i, j, l, v, the second-order partial derivatives of latent process
are given by :

∂2λt(θ)
∂di∂dj

= ∂2λt(θ)
∂dj∂di

= 0

∂2λt(θ)
∂A(i, j)∂A(u, l) = ∂2λt(θ)

∂Γ(i, j)∂Γ(u, l) = 0

∂2λt(θ)
∂di∂A(j, u) = ∂2λt(θ)

∂A(j, u)∂di
= ∂2λt(θ)

∂A(i, j)∂Γ(u, l) = ∂2λt(θ)
∂Γ(u, l)∂A(i, j) = ∂2λt(θ)

∂Γ(j, u)∂di
= ∂2λt(θ)

∂di∂Γ(j, u) = 0

∂2λt(θ)
∂dl∂B(i, j) = ∂2λt(θ)

∂B(i, j)∂dl
= E(i, j)∂λt−1(θ)

∂dl
+ B

∂2λt−1(θ)
∂B(i, j)∂dl

=
∑
u≥0

BuE(i, j)∂λt−u−1(θ)
∂dl

(3.49)

∂2λt(θ)
∂A(l, v)∂B(i, j) = ∂2λt(θ)

∂B(i, j)∂A(l, v) = E(i, j)∂λt−1(θ)
∂A(l, v) + B

∂2λt−1(θ)
∂B(i, j)∂A(l, v) =

∑
u≥0

BuE(i, j)∂λt−u−1(θ)
∂A(l, v)

∂2λt(θ)
∂Γ(l, v)∂B(i, j) = ∂2λt(θ)

∂B(i, j)∂Γ(l, v) = E(i, j)∂λt−1(θ)
∂Γ(l, v) + B

∂2λt−1(θ)
∂B(i, j)∂Γ(l, v) =

∑
u≥0

BuE(i, j)∂λt−u−1(θ)
∂Γ(l, v)

∂2λt(θ)
∂B(l, v)∂B(i, j) = ∂2λt(θ)

∂B(i, j)∂B(l, v) =
∑
u≥0

Bu
(

E(i, j)∂λt−u−1(θ)
∂B(l, v) + E(l, v)∂λt−u−1(θ)

∂B(i, j)

)

Straightforwardly, from Lemma 10, the compactness of Θ and Minkowski’s inequality, all
these partial derivatives have the same polynomial moments than Y 0 and X0.□

Lemma 13 (Approximation of the derivatives of the latent process) There exist
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τ ∈ (0, 1) and C > 0 such that

1. supθ |λt(θ) − λt(θ)|1 < Cτ t(supθ∈Θ |λ0(θ)|1 + |λ0|1)

2. for i = 1, . . . , Q, supθ |∂iλt(θ)−∂iλt(θ)|1 < C2tτ t−1(supθ∈Θ |λ0(θ)|1+|λ0|1)+Cτ t supθ∈Θ

∣∣∣ ∂λ0
∂Bi,j

(θ)
∣∣∣ .

Proof of Lemma 13 One can notice that

|λt(θ) − λt(θ)|vec ≼ |Bt|vec|λ0(θ) − λ0|vec

and the first result follows from Lemma 10, 1. For i, j = 1, . . . , k, we can write ∂λt(θ)
∂B(i,j) as

∂λt(θ)
∂B(i, j) =

t−1∑
l=1

BlE(i, j)λt−l−1(θ)+Bt ∂λ0(θ)
∂B(i, j) and ∂λt(θ)

∂B(i, j) =
t−1∑
l=1

BlE(i, j)λt−l−1(θ)+Bt ∂λ0

∂B(i, j) .

And then

sup
θ

∣∣∣∣∣ ∂λt(θ)
∂B(i, j) − ∂λt(θ)

∂B(i, j)

∣∣∣∣∣
1

≤
t−1∑
l=1

sup
θ

|Bl|1|E(i, j)|1|λt−l−1(θ) − λt−l−1(θ)|1 + |Bt|1 sup
θ∈Θ

∣∣∣∣∣ ∂λ0(θ)
∂B(i, j)

∣∣∣∣∣
≤ tC2τ t−1

(
|λ0|1 + |λ0|1

)
+ Cτ t sup

θ∈Θ

∣∣∣∣∣∂λ0(θ)
∂Bi,j

∣∣∣∣∣ .

The control of the difference between the other partial derivatives is similar.□

Lemma 14 Suppose that all the parameters in (3.46) are positives and that the processes
(Xt)t∈Z and (Y t)t∈Z take nonnegative values. Suppose furthermore that there exists some
δ ∈ (0, 1) such that E

(∣∣∣Y 0

∣∣∣δ
1

)
< ∞ and E

(
|X0|δ1

)
< ∞. Then for any r ≥ 1,

E
(

sup
θ

∣∣∣∣∣ 1
λ0(θ)

∂λ0(θ)
∂θi

∣∣∣∣∣
r

1

)
< ∞ and E

(
sup

θ

∣∣∣∣∣ 1
λ0(θ)

∂2λ0(θ)
∂θi∂θj

∣∣∣∣∣
r

1

)
< ∞, i, j = 1, . . . , Q.

Proof of Lemma 14 Note that there exists d− > 0 such that for any θ ∈ Θ, we
have di ≥ d−. Here again, we will denote by ιℓ, ℓ = 1, . . . , k the vector of {0, 1}k with
1 at ℓ − th position and 0 elsewhere. We also set a = minθ∈Θ min1≤i,j≤k A(i, j), γ =
minθ∈Θ min1≤i,j≤k Γ(i, j) and b = minθ∈Θ min1≤i,j≤k B(i, j) which are positive constant
from the positivity assumption and the compactness of Θ. Note that by positivity, all the
entries of a matrix of type BlA are greater than the entries of aBlE(i, j). From equations
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(3.48), we have the bounds

1
λℓ,t(θ)

∂λℓ,t(θ)
∂di

≤ ι′
ℓ(I − B)−1ιi

d−
; ℓ, i = 1, . . . , k,

1
λℓ,t(θ)

∂λℓ,t(θ)
∂A(i, j) ≤

ι′
ℓ

∑
l≥0 BlE(i, j)Y t−l−1

aι′
ℓ

∑
l≥0 BlE(i, j)Y t−l−1

≤ 1
a

; ℓ, i, j = 1, . . . , k,

1
λℓ,t(θ)

∂λℓ,t(θ)
∂Γ(i, j) ≤

ι′
ℓ

∑
l≥0 BlE(i, j)Xt−l−1

γι′
ℓ

∑
l≥0 BlE(i, j)Xt−l−1

≤ 1
γ

; ℓ, i = 1, . . . , k, j = 1, . . . , m.

For t ∈ Z, set dt = d+AY t−1+ΓXt−1. Note that ∂λt(θ)
∂B(i,j) = ∑

h≥1
∑h

u=1 Bu−1E(i, j)Bh−udt−h

and that the entries of bBu−1E(i, j)Bh−u are smaller than that of Bh. We then obtain

1
λℓ,t(θ)

∂λℓ,t(θ)
∂B(i, j) ≤

∑
h≥1

h
ι′
ℓB

hdt−h

bι′
ℓd + bι′

ℓB
hdt−h

(3.50)

≤
∑
h≥1

h

(
ι′
ℓB

hdt−h

bd−

)s

; ℓ, i, j = 1, . . . , k,

for any s ∈ (0, 1). From Lemma 10, there exist C > 0 and τ ∈ (0, 1) such that |Bh|1 ≤ Cτh

for any positive integer h. We then obtain the bound

E1/r

[
sup
θ∈Θ

∣∣∣∣∣ 1
λℓ,t(θ)

∂λℓ,t(θ)
∂B(i, j)

∣∣∣∣∣
r]

≤
∑
h≥1

h
Csτhs

(b2d−)s
E1/r

(
sup
θ∈Θ

|dt−h|rs
1

)
.

Taking s = δ/r and using the bound E
[
(supθ |d1|)δ

]
≤ supθ |d|δ1 + supθ |A|δ1E

[
|Y0|δ

]
+

supθ |Γ|δ1E
[
|X0|δ

]
, we get the integrability conditions for the first-order partial derivatives.

For the second-order partial derivatives, one can use the expressions (3.49) and replace
the partial derivatives in the series by the expressions given in (3.48). With more tedious
computations, one can use similar arguments as above to get the required integrability
conditions. Details are omitted. □

3.6.21 Numerical experiments
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Table 3.3 – Average and Mean Square Errors for the estimators of the BIP model
(n = 1000)

Log INGARCH Logit Binary
n = 1000 d1 A(1, 1) A(1, 2) B(1, 1) Γ(1, 1) d2 A(2, 1) A(2, 2) B(2, 2) Γ(2, 1)

r 1 0.3 0.3 0.15 -0.1 -1 0.4 -0.6 0.2 0.1
-0.9 -0.8995 1.0748 0.3091 0.3047 0.1571 -0.1001 -1.0251 0.4092 -0.6038 0.1958 0.1001

(0.0001) 0.0252 0.0020 0.0008 0.0065 0.0001 0.3877 0.0603 0.0278 0.0331 0.0045
-0.75 -0.7463 1.0649 0.3074 0.3036 0.1634 -0.1001 -1.0175 0.4058 -0.6060 0.1952 0.0995

(0.0004) 0.0223 0.0016 0.0007 0.0057 0.0001 0.2818 0.0451 0.0229 0.0350 0.0046
-0.6 -0.6006 1.0578 0.3063 0.3032 0.1678 -0.1001 -1.0101 0.4023 -0.6062 0.1909 0.0986

(0.0008) 0.0192 0.0014 0.0006 0.0050 0.0001 0.2407 0.0392 0.0220 0.0387 0.0047
-0.45 -0.4560 1.0521 0.3056 0.3027 0.1711 -0.1002 -1.0084 0.4014 -0.6062 0.1899 0.0994

(0.0010) 0.0168 0.0013 0.0005 0.0044 0.0001 0.2130 0.0358 0.0206 0.0401 0.0047
-0.3 -0.3037 1.0455 0.3051 0.3025 0.1745 -0.1002 -0.9983 0.3966 -0.6053 0.1860 0.0988

(0.0014) 0.0147 0.0012 0.0005 0.0039 0.0001 0.1991 0.0348 0.0203 0.0443 0.0047
-0.15 -0.1607 1.0404 0.3049 0.3026 0.1769 -0.1002 -1.0016 0.3973 -0.6014 0.1862 0.0991

(0.0017) 0.0132 0.0012 0.0005 0.0036 0.0001 0.1775 0.0318 0.0199 0.0485 0.0048
0 0.0093 1.0356 0.3050 0.3024 0.1790 -0.1002 -0.9926 0.3925 -0.6007 0.1811 0.0985

(0.0022) 0.0111 0.0011 0.0005 0.0032 0.0001 0.1654 0.0312 0.0201 0.0557 0.0048
0.15 0.1534 1.0324 0.3053 0.3017 0.1802 -0.1002 -0.9931 0.3924 -0.6001 0.1792 0.0984

(0.0013) 0.0099 0.0012 0.0005 0.0030 0.0001 0.1592 0.0308 0.0205 0.0596 0.0047
0.3 0.2985 1.0290 0.3054 0.3013 0.1816 -0.1002 -0.9876 0.3900 -0.6004 0.1789 0.0984

(0.0013) 0.0089 0.0012 0.0005 0.0028 0.0001 0.1576 0.0315 0.0215 0.0650 0.0046
0.45 0.4492 1.0271 0.3067 0.3004 0.1813 -0.1004 -0.9834 0.3875 -0.5990 0.1771 0.0978

(0.0011) 0.0080 0.0014 0.0005 0.0028 0.0001 0.1521 0.0317 0.0226 0.0720 0.0046
0.6 0.5991 1.0251 0.3076 0.2994 0.1814 -0.1003 -0.9770 0.3839 -0.5947 0.1745 0.0979

(0.0008) 0.0073 0.0015 0.0006 0.0028 0.0001 0.1489 0.0333 0.0255 0.0806 0.0046
0.75 0.7493 1.0236 0.3100 0.2977 0.1800 -0.1003 -0.9759 0.3825 -0.5921 0.1718 0.0984

(0.0004) 0.0070 0.0018 0.0007 0.0032 0.0001 0.1528 0.0351 0.0273 0.0898 0.0046
0.9 0.9012 1.0237 0.3135 0.2955 0.1767 -0.1002 -0.9708 0.3798 -0.5872 0.1746 0.0991

(0.0001) 0.0066 0.0022 0.0008 0.0038 0.0001 0.1557 0.0370 0.0295 0.0999 0.0047
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Table 3.4 – Average and MSE for the estimators of the BIP model (n = 500)

Log INGARCH Logit Binary
n = 500 d1 A(1, 1) A(1, 2) B(1, 1) Γ(1, 1) d2 A(2, 1) A(2, 2) B(2, 2) Γ(2, 1)

r 1 0.3 0.3 0.15 -0.1 -1 0.4 -0.6 0.2 0.1
-0.9 -0.9001 1.1030 0.3193 0.3103 0.1329 -0.1002 -0.9645 0.3868 -0.6315 0.1896 0.1057

(0.0002) 0.0479 0.0042 0.0017 0.0090 0.0002 0.7927 0.1230 0.0670 0.0707 0.0096
-0.75 -0.7494 1.0940 0.3157 0.3080 0.1410 -0.1002 -0.9683 0.3888 -0.6251 0.1980 0.1061

((0.0008)) 0.0410 0.0032 0.0013 0.0076 0.0002 0.5873 0.0923 0.0546 0.0720 0.0095
-0.6 -0.5955 1.0880 0.3134 0.3064 0.1465 -0.1003 -0.9697 0.3886 -0.6260 0.1932 0.1051

(0.0017) 0.0368 0.0027 0.0011 0.0068 0.0002 0.4670 0.0769 0.0469 0.0753 0.0096
-0.45 -0.4482 1.0810 0.3125 0.3052 0.1507 -0.1001 -0.9730 0.3902 -0.6239 0.1958 0.1042

(0.0026) 0.0322 0.0024 0.0009 0.0060 0.0002 0.3910 0.0655 0.0438 0.0789 0.0097
-0.3 -0.3059 1.0751 0.3121 0.3044 0.1538 -0.1000 -0.9747 0.3913 -0.6244 0.1958 0.1045

(0.0025) 0.0286 0.0022 0.0009 0.0055 0.0002 0.3532 0.0611 0.0413 0.0830 0.0097
-0.15 -0.1513 1.06798 0.3125 0.3031 0.1568 -0.1001 -0.9826 0.3949 -0.6205 0.1992 0.1042

(0.0034) 0.0253 0.0022 0.0008 0.0052 0.0002 0.3325 0.0583 0.0400 0.0876 0.0098
0 0.0001 1.0644 0.3127 0.3020 0.1584 -0.1001 -0.9851 0.3956 -0.6201 0.1979 0.1037

(0.0032) 0.0225 0.0023 0.0008 0.0050 0.0002 0.3084 0.0567 0.0400 0.0935 0.0099
0.15 0.1519 1.0607 0.3140 0.3004 0.1590 -0.1000 -0.9833 0.3947 -0.6153 0.2024 0.1038

(0.0039) 0.0204 0.0024 0.0008 0.0048 0.0002 0.3007 0.0560 0.0413 0.1059 0.0097
0.3 0.2978 1.0553 0.3154 0.2989 0.1602 -0.1000 -0.9928 0.3998 -0.6165 0.2045 0.1033

(0.0027) 0.0186 0.0026 0.0009 0.0048 0.0002 0.2912 0.0557 0.0419 0.1109 0.0095
0.45 0.4550 1.0533 0.3179 0.2971 0.1589 -0.0998 -0.9873 0.3969 -0.6182 0.2024 0.1020

(0.0025) 0.0173 0.0029 0.0010 0.0049 0.0002 0.2945 0.0584 0.0445 0.1205 0.0096
0.6 0.6021 1.0524 0.3218 0.2944 0.1559 -0.0999 -0.9883 0.3979 -0.6207 0.2031 0.1018

(0.0015) 0.0161 0.0033 0.0012 0.0050 0.0002 0.3080 0.0622 0.04675 0.1220 0.0095
0.75 0.7476 1.0503 0.3263 0.2905 0.1528 -0.0997 -0.9706 0.3866 -0.6141 0.1863 0.1009

(0.0009) 0.0153 0.0039 0.0014 0.0053 0.0002 0.3362 0.0726 0.0525 0.1386 0.0097
0.9 0.9008 1.048 0.3318 0.2856 0.1491 -0.0996 -0.9544 0.3819 -0.6128 0.1956 0.1004

(0.0002) 0.0148 0.0049 0.0017 0.0058 0.0002 0.3423 0.0772 0.0595 0.1504 0.0095
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Table 3.5 – Average and MSE for the estimators of the GAIN model (n = 1000)
GARCH INGARCH

n = 1000 d1 A(1, 1) A(1, 2) B(1, 1) d2 A(2, 1) A(2, 2) B(2, 2)
r 0.03 0.05 0.05 0.7 0.3 0.3 0.1 0.5

-0.9 -0.8995 0.0395 0.0514 0.0534 0.6593 0.3270 0.3088 0.0992 0.4703
(0.0001) 0.0005 0.0008 0.0002 0.0101 0.0094 0.0058 0.0009 0.0133

-0.75 -0.7463 0.0405 0.0498 0.0540 0.6543 0.3291 0.3067 0.1008 0.4670
(0.0004) 0.0006 0.0008 0.0002 0.01067 0.0098 0.0058 0.0009 0.0142

-0.6 -0.6006 0.0407 0.0504 0.0542 0.6539 0.3304 0.3123 0.0991 0.4669
(0.0008) 0.0006 0.0008 0.0002 0.0105 0.0096 0.0058 0.0009 0.0137

-0.45 -0.4560 0.0415 0.0493 0.0537 0.6538 0.3275 0.3094 0.1016 0.4685
(0.0010) 0.0006 0.0008 0.0002 0.0102 0.0099 0.0061 0.0009 0.0145

-0.3 -0.3037 0.0428 0.0514 0.0536 0.6462 0.3252 0.3107 0.1026 0.4693
(0.0014) 0.0009 0.0008 0.0002 0.0151 0.0101 0.0063 0.0009 0.0147

-0.15 -0.1607 0.0416 0.0526 0.0525 0.6532 0.3340 0.3081 0.0988 0.4646
(0.0017) 0.0007 0.0008 0.0002 0.0122 0.0118 0.0057 0.0009 0.0162

0 0.0093 0.0407 0.0523 0.0536 0.6532 0.3357 0.3096 0.1029 0.4578
(0.0022) 0.0006 0.0008 0.0002 0.0112 0.0100 0.0058 0.0009 0.0146

0.15 0.1534 0.0411 0.0515 0.0527 0.6542 0.3295 0.3135 0.0982 0.4692
(0.0013) 0.0006 0.0008 0.0002 0.0117 0.0109 0.0052 0.0009 0.0147

0.3 0.2985 0.04308 0.0518 0.0534 0.6475 0.3266 0.3121 0.0963 0.4729
(0.0013) 0.0007 0.0008 0.0002 0.0119 0.0107 0.0057 0.0009 0.0154

0.45 0.4492 0.0404 0.0511 0.0531 0.6571 0.3371 0.3101 0.1008 0.4591
(0.0011) 0.0007 0.0008 0.0002 0.0115 0.0110 0.0059 0.0010 0.0156

0.6 0.5991 0.0409 0.0526 0.0537 0.6511 0.3247 0.3092 0.1004 0.4712
(0.0008) 0.0006 0.0008 0.0002 0.0116 0.0088 0.0053 0.0010 0.0120

0.75 0.7493 0.0413 0.0514 0.0532 0.6525 0.3378 0.3097 0.1009 0.4574
(0.0004) 0.0007 0.0008 0.0002 0.0121 0.0110 0.0052 0.0010 0.0157

0.9 0.9012 0.0410 0.0530 0.0539 0.6510 0.3214 0.3016 0.1001 0.4777
(0.0001) 0.0005 0.0008 0.0002 0.0098 0.0080 0.0057 0.0010 0.0115
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Table 3.6 – Average and MSE for the estimators of the GAIN model (n = 500)
GARCH INGARCH

n = 500 d1 A(1, 1) A(1, 2) B(1, 1) d2 A(2, 1) A(2, 2) B(2, 2)
r 0.03 0.05 0.05 0.7 0.3 0.3 0.1 0.5

-0.9 -0.8841 0.0497 0.0530 0.0558 0.6173 0.3512 0.3090 0.0974 0.4472
(0.0004) 0.0019 0.0016 0.0004 0.0297 0.0214 0.0125 0.0022 0.0291

-0.75 -0.7213 0.0517 0.0539 0.0575 0.6022 0.3658 0.3204 0.1029 0.4223
(0.0013) 0.0019 0.0018 0.0004 0.0346 0.0247 0.0113 0.0021 0.0348

-0.6 -0.5731 0.0539 0.0511 0.0563 0.6045 0.3627 0.3135 0.0980 0.4342
( 0.0015) 0.0022 0.0017 0.0004 0.0333 0.0260 0.0118 0.0021 0.0333

-0.45 -0.4238 0.0514 0.0541 0.0585 0.6040 0.3654 0.3139 0.1026 0.4261
(0.0019) 0.0021 0.0017 0.0004 0.0349 0.0260 0.0118 0.0019 0.0335

-0.3 -0.2828 0.0532 0.0508 0.0564 0.6077 0.3589 0.3139 0.1003 0.4373
(0.0020) 0.0022 0.0015 0.0003 0.0321 0.0263 0.0110 0.0020 0.0337

-0.15 -0.1544 0.0529 0.0535 0.0559 0.6058 0.35308 0.3188 0.1003 0.4391
(0.0017) 0.0022 0.0018 0.0004 0.0328 0.0231 0.0110 0.0021 0.0323

0 -0.0030 0.0540 0.0571 0.0555 0.6010 0.3611 0.3129 0.1005 0.4351
(0.0020) 0.0024 0.0019 0.0004 0.0364 0.0260 0.0126 0.0019 0.0330

0.15 0.1469 0.0528 0.0508 0.0555 0.6110 0.3733 0.3106 0.0969 0.4263
(0.0016) 0.0024 0.0015 0.0003 0.0325 0.0309 0.0105 0.0019 0.0393

0.3 0.2866 0.0531 0.0486 0.0543 0.6135 0.3479 0.3148 0.0964 0.4477
(0.0017) 0.0023 0.0016 0.0003 0.0331 0.0237 0.0117 0.0018 0.0308

0.45 0.4233 0.0533 0.0548 0.0559 0.6032 0.3641 0.3186 0.0985 0.4288
(0.0019) 0.0025 0.0018 0.0004 0.0366 0.0261 0.0117 0.0019 0.0353

0.6 0.5699 0.0489 0.0548 0.0567 0.6149 0.3537 0.3099 0.0988 0.4442
(0.0017) 0.0017 0.0017 0.0004 0.0285 0.0222 0.0113 0.0019 0.0296

0.75 0.7210 0.0520 0.0551 0.0557 0.6075 0.3692 0.3188 0.1014 0.4226
(0.0012) 0.0022 0.0018 0.0004 0.0341 0.0257 0.0115 0.0023 0.0344

0.9 0.8835 0.0509 0.0568 0.0554 0.6099 0.3489 0.3168 0.0997 0.4444
(0.0004) 0.0018 0.0020 0.0004 0.0301 0.0205 0.0136 0.0019 0.0294
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Chapitre 4

AUTOREGRESSIVE MODELS FOR TIME

SERIES OF RANDOM SUMS OF POSITIVE

VARIABLES : APPLICATION TO TREE

GROWTH AS A FUNCTION OF CLIMATE

AND INSECT OUTBREAKS

Abstract. We present a broad class of semi-parametric models for time series of ran-
dom sums of positive variables. Our methodology allows the number of terms inside the
sum to be time-varying and is therefore well suited to many examples encountered in
the natural sciences. We study the stability properties of the models and provide a valid
statistical inference procedure to estimate the model parameters. It is shown that the
proposed quasi-maximum likelihood estimator is consistent and asymptotically gaussian
distributed. This work is complemented by simulation results and applied to time series
representing growth rates of white spruce (Picea glauca) trees from a few dozen sites in
Quebec spanning 41 years, including one major spruce budworm (Choristoneura fumife-
rana) outbreak between 1968 and 1991. We found significant growth reductions due to
budworm-induced defoliation up to two years in the past. Our results also revealed posi-
tive effects of maximum temperature, precipitation and the climate moisture index in the
summer. Negative effects of the climate moisture index in the spring and the maximum
temperature in the previous summer are also revealed. However, considering the interac-
tion between climate and defoliation on growth did not improve the model’s performance
on this dataset. This study represent a major advance and our result represent useful tool
in understanding the combined effects of climate and insect defoliation on tree growth
in the face of climate change, where the frequency and the severity of outbreaks coupled
with an increase of temperature is expected.
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Long version of [34], Submitted for publication in Ecological Modelling

4.1 Introduction

In many studies in ecology, we measure positive dependent variables of random num-
bers of statistical individuals sampled over time [104]. There are two main reasons for
this : first, researchers cannot observe the whole population ; second, the individuals that
researchers can observe depends on their time-varying resources. Examples range from
species behaviour to ecological services. For instance, in forestry, one can be interested
in time series representing the mass or size of certain species, taking a random sample
of trees each year and observing the corresponding quantity (see Vourlitis et al. [130] for
instance). Another example consists in the occupied land area of colonies in relationship
with the available resources across time [85]. In fisheries, scientists often investigate the
temporal changes in the weight of fish caught, see Chan et al. [20] for more details.

In this paper, we contribute to the ongoing ecological study of the impact of climate
change and insect outbreaks on tree growth measured by growth rings. Spruce budworm
(Choristoneura fumiferana ; SBW) outbreak is the most important defoliator of conifer
trees in the North American boreal forest [103]. Only in the province of Quebec (Canada),
the forest surface affected by this species of Lepidoptera over the last century is twice
the size of Ukrania [108]. At the epidemic stage, massive populations of larvae cause
widespread damage to tree foliage [87]. SBW affect the main conifer boreal species in
Canada, balsam fir (Abies balsamea), white spruce (Picea glauca) and black spruce (Picea
Mariana). For this reason, SBW has a major impact in the regeneration and dynamics
of boreal forest [97]. However, SBW outbreaks periods not only have major ecological
impact but in addition produce important economic consequences due to the loss of forest
productivity.

Previous works in this field have studied the changes of forest composition following
insect outbreaks (see for instance Morin et al. [105]), the response of SBW outbreaks to
climate change (Fleming and Volney [49] and Berguet et al. [8]) and the demography i.e
the rate of mortality of spruce during outbreaks [62]. However, even with the major impli-
cation stemming from climate change, there is limited knowledge regarding the combined
effects of outbreaks and climate on tree growth. Given that temperature variation and
precipitation affect organisms’ survival, reproduction cycles and spatial dispersion [1], it
is critical to understand the links between past SBW outbreaks, the climate and tree
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growth to understand how future climate change scenarios would impact forest produc-
tivity during outbreaks [81]. This is a major concern due to the increase in the severity
and the frequency excepted in the future for SBW outbreaks [108, 117].

In this paper, we contribute to filling this gap by proposing a broad class of semi-
parametric models for positive-valued time series. Indeed, even though this type of data
is common in forestry, the statistical approaches commonly used suffer from several draw-
backs. These approaches range from descriptive exploratory techniques to linear mixed-
effect models with time-varying variables on transformed data (see Montoro Girona et al.
[101] and Boulanger and Arseneault [12] for example) and correlated error terms [64].
Whereas the former (exploratory techniques) do not allow us to draw inferences from
the data, we can note at least two limits for the latter approach. First, as pointed out
by several papers (see for example Chou et al. [21]) specifying a linear model on trans-
formed data often leads to bad performance in term of prediction. Indeed, even though
applying the log transformation for instance makes the positive-valued data more normal,
the predicted value obtained this way underestimates the expected value due to Jensen’s
inequality. Second, models with autocorrelated error terms do not take into account the
complex dependent structure of tree-ring growth. The class of semi-parametric autore-
gressive models we present here will be applied to investigate the relationship between
climate, insect outbreaks and growth of white spruce. It also presents the advantage of
accommodating the repeated measures design.

Many previous works have focused on modelling non-Gaussian time series, such as
positive-valued processes. Indeed, Gaussian processes can be represented as linear models,
whereas time series of count or binary data are modelled by non-linear dynamics, see for
example Sim [118], Weiß [132] or Davis et al. [27] and references therein. For positive-
valued time series data, the range volatility model was proposed by Engle and Russell
[45] as an alternative for garch models in finance and its use has been rapidly expanding
due to its various applications. We refer the interested reader to the review by Chou et al.
[21]. Recently, Aknouche and Francq [3] have considered a positive-valued time series
whose conditional distribution has a time-varying mean that can depend on exogenous
variables. Our approach here is slightly different from theirs, since the positive process
under consideration is itself the sum of a random number of other positive variables. It is
strongly driven by the data we have to deal with. Indeed, these data consist of multiple
time series collected over several ecological sites, where the number of individuals sampled
changes over time as well as across sites. Hence, considering an aggregate value like the sum
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or the mean of growth rings lead to the loss of variability linked to the sampling scheme.
Moreover, one can note that in different fields like finance, some modelling strategies
consisting in considering empirical quantities such as the realized volatility are employed.
Historical returns of investment products within a defined time period are then analysed
(see for example Allen et al. [4]). However, unlike our framework which is typical in
ecological studies, all transactions on investment products are recorded (i.e the whole
statistical population is observed).

The rest of this paper is organised as follows. In Section 4.2, we define the model
used throughout this paper and discuss our modelling choice. Time-series properties of
the models are also studied in that section. Maximum-likelihood based inference and its
asymptotic properties are presented in Section 4.3. Section 4.4 contains a small simulation
study and an application to empirical data on the growth of white spruce. All auxiliary
lemmas and mathematical proofs are contained in Appendix.

4.2 Models and stability results

We introduce here a generalized linear dynamic model for time series of random sums
of positive variables, motivated by our empirical application where we analyze the annual
growth of spruce trees subject to climate variation and outbreaks of SBW. In this case,
growth is measured by taking cores at 1.30 m height from the trunk of a sample of
trees in a forest [102]. The samples were prepared, measured and analyzed conforming to
standard dendroecological protocol [83]. Cores were air-dried, mounted on wood boards
and sanded before tree rings were measured with a WinDendro system [67] or a manual
Henson micrometer with an accuracy of 0.01 mm. The tree-ring series measurements
covered the last 41 years, and were cross-dated using TSAP-Wi (Rinntech, Heidelberg,
Germany).

We denote by Yk,t, t ∈ Z, k = 1, . . . , K the time series of the total basal area increment
related to the k−th observational site, i.e. the sum of increases in the trunk cross-sectional
area for the nk,t trees sampled for site k on year t. We aim to model the dynamics of this
process both in terms of its own past and in presence of m additional covariates Xk,t ∈ Rm.
In the empirical application presented in section 4.4, the covariate process encompasses
climate variables such as temperature and precipitation, as well as the level of defoliation
due to SBW in previous years. Our model is given by :
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Yk,t =
nk,t∑
l=1

ζl,k,t (4.1)

where conditionally on nk,t, Xk,t, n−
k,t = (nk,t−s, s ≥ 1) and Y −

k,t = (Yk,t−s, s ≥ 1), the
variables ζl,k,t, 1 ≤ l ≤ nk,t, representing the basal area increments of individual sampled
trees, are identically distributed as a random variable ζk,t of mean λk,t. Moreover, (nk,t)t∈Z

is a sequence of i.i.d random variables where conditionally on n−
k,t, the variable nk,t is

independent from Xk,t and Y −
k,t. The mean process is given by

φδ(λk,t) =: ηk,t = ωk +
p∑

j=1
αj

Yk,t−j

nk,t−j

+ β⊤Xk,t, k = 1, . . . , K and t = 1, . . . , T, (4.2)

such that ωk ∈ R, αj ∈ R, β = (β1, . . . , βm) ∈ Rm and φδ is a real-valued function defined
on R+ that can depend on a parameter δ. It is worth mentioning, without loss of generality,
that the covariate process considered at time t is included in the specification of λk,t since
multiple lags of a given set of variables can be included by simply stacking them into a
vector. An example is the case of defoliation levels as in our application, since growth can
be affected by defoliation up to 5 years prior (from t − 5 to t − 1).

The variables ζk,t will be referred to as the unity random variables. We do not make
any assumption about the distribution of the variables ζk,t. Any distribution on (0, +∞)
can be chosen. Some examples includes Exponential distribution with parameter 1/λk,t,
log-Normal distribution with parameters log λk,t − σ2/2 and σ or a Gamma distribution
with parameters αλk,t and α, to name a few. Whatever the distributions of unity random
variables are, the conditional expectation of Yk,t is nk,tλk,t. However, under the assumption
of the independence of ζl,k,t, 1 ≤ l ≤ nk,t, if they are exponentially distributed, the
conditional variance is nk,tλ

2
k,t i.e a quadratic function of λk,t. In our example of Gamma-

distributed unity random variables, the conditional variance is nk,tλk,t/α, i.e. a linear
function of λk,t. But in the case of the log-Normal distribution, the conditional variance
is nk,tλ

4
k,t(exp σ2 − 1). With our semi-parametric framework, we will only focus on the

estimation of regression parameters θ = (δ, ω1, . . . , ωK , α1, . . . , αp, β⊤)⊤ without the need
to perform any distributional goodness of fit test.

Copies of unity variables. In our general set up, the copies ζl,k,t, 1 ≤ l ≤ nk,t of the
unity random variables ζk,t are not required to be independent. In pratical applications
where ζl,k,t represents the measure of annual growth for a sampled tree for example, the
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general assumption of being identical distributed can be thought as a local stationary
condition inside the site k at time t.

Marginal stationary distributions. Note from equations (4.1)-(4.2),
Yk,t = fθk

(Xk,t−s, nk,t−s, ζℓ,k,t−s, s ≥ 0, ℓ ≥ 1) for θk = (δ, ωk, α1, . . . , αp, β⊤)⊤. Then for 1 ≤
k1 ̸= k2 ≤ K, the distributions of (Yk1,0, nk1,0, Xk1,0) and (Yk2,0, nk1,0, Xk2,0) are not equal
unless ωk1 = ωk2 and (Xk1,0, ζℓ,k1,0, ℓ ≥ 1) is equal in distribution to (Xk2,0, ζℓ,k2,0, ℓ ≥ 1).
We will investigate in section 4.4 the consequences of the latter conditions on the proposed
estimation procedure.

Regression function (4.2). Note that ηk,t in (4.2) does not depend linearly on Yk,t−i, i =
1, . . . , p, but on Yk,t−i/nk,t−i, i = 1, . . . , p. In fact, through (4.2), we make a link bet-
ween the underlying mean process and the empirical estimate of the past mean process.
Even for a constant size process, i.e. nk,t = nk, ∀t, since the regression parameter αi, i =
1, . . . , p is free of k, we still cannot yet express ηk,t as a linear combination of Yk,t−i, i =
1, . . . , p. Moreover, one can expect Yk,t−i/nk,t−i − λk,t−i, i = 1, . . . , p or more generally
h(Yk,t−i/nk,t−i, λk,t−i), i = 1, . . . , p for some mapping h such that Eh(Yk,t−i/nk,t−i, λk,t−i) =
0 in (4.2) at the place of Yk,t−i/nk,t−i, i = 1, . . . , p. Indeed, with the latter two mentioned
specifications, (4.1)-(4.2) define the so-called GLARMA model (see for example, [132] for
more details). In the present form, (4.1)-(4.2) has some similarities with the well known
ARCH model [9] and INARCH models [132] . We leave the topic of GLARMA specifica-
tion for furthers work.

Contrast with the non-linear mixed model . The model (4.1)-(4.2) has some simi-
larities with the well-known mixed models. Indeed, as for mixed models, ωk stands for the
site fixed effect where the random effect is embedded in the distribution of unity variables.
The simple example of ζl,k,t = λk,tϵl,k,t, where (ϵl,k,t)l≥1 is a sequence of identically distri-
buted random variables of mean 1, fit with the so-called class of multiplicative random
effect models [18]. But more complex random effects can be handled. However, the model
(4.1)-(4.2) is more general since it allows the individuals sampled over time to change.
Indeed, as we will see in section 4.3, the individual measurements are no longer needed
when the sequence (Yk,t, nk,t) is available. Also, in terms of the application to resource
management, it is often of interest to model and predict a population quantity like the
sum of basal area growth in a forest.
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Choice of the link function φ

The logarithmic link function is often applied and coincides with the well known log-
linear model, see for example Cameron and Trivedi [18] for models for count data. This
link function assumes a linear relationship between the logarithm of the mean process
and the covariates. However, there exist some other link functions that preserve the linear
correlation at least on the positive part of R. Consider for example, the threshold mapping
x 7→ max(x, 0). This mapping is not smooth and most of the time, one makes some
restrictions on model parameters to directly obtain the positiveness of the mean. Here,
we will apply the inverse of the so-called softplus function as a link function. Indeed,
the softplus function (see Glorot et al. [65]) is interesting for two reasons. The first one
related to modelling is that it preserves the linearity on the positive part of real line. As
shown by Weiß et al. [133] for count time series modeling, the models defined with the
softplus link function are quite close to the truly linear model. This is also pertinent for our
biological application, as we expect a linear effect of covariates on growth above a certain
threshold representing the minimal favorable conditions for growth. The minimum growth
expected may not be exactly zero, which is why we will later consider a slightly different
version of softplus that we will refer to as softplusδ for δ > 0 defined as softplusδ(x) =
log(1+δ +exp(x)). The second one and technical advantage is that the mapping softplusδ

is infinitely differentiable. Figure 4.1 in the Appendix shows the difference between the
softplusδ link function and max(x, 0) where softplus stands for softplus0. One can note
that softplusδ is lower bounded by log(1+δ). It is also worth noting that our generalization
of softplus function differs from that of Mei and Eisner [99] and Weiß et al. [133] (eq. 3.2).
As noted by the latter, it is possible to mimic the behavior of the Tobit model with the
softplus generalization of Mei and Eisner [99]. In contrast, we aim here to lower bound
the softplus link function by a non-zero constant since we request a minimum basal area
increment at any time.

Model Interpretation. Obviously, with the softplusδ link function, the mean process
increases with the j−th covariate process if βj > 0 and decreases with this one when
βj < 0. Since softplusδ(x) ∼∞ x, the mean process can be approximated by the identity
mapping. Therefore all other things remaining equal, the regression function is similar
to βjXj,t for large values of Xj,t and βj > 0 and then increases by βjα for increasing
values α of Xj,t. Let us denote by RG(x, y), the relative rate of growth of the mean
process between x and y i.e RGδ(x, y) = γδ(x)/γδ(y) where γδ is the derivative function of
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softplusδ. For β < 0, limx→∞RGδ(β(x+α), βx) = eβα. Therefore, the rate toward log(1+δ)
driven by Xj,t is given by eβjα when βj < 0. Moreover, When δ ∼ 0, by l’Hôpital’s rule
limx→∞RG0(x, y) = limx→∞softplus0(β(x + α))/softplus0(βx) = eβα. Therefore, all other
things remaining equal, the mean process will be divided by e−βα when Xj,t increases by
α for large values of Xj,t and βj < 0.

Theorem 14 gives some stability conditions of model (4.1)-(4.2) with the inverse of
the softplus function as the link whereas Lemma 15 in the Appendix stands for a general
result for φ.

Theorem 14 Under the assumptions (ST.1)-(ST.2) in Appendix and ∑p
j=1 |αj| < 1, there

exists a unique set of K stationary, ergodic sequences (Yk,t, nk,t, Xk,t), k = 1, . . . , K that
are the solution of equations (4.1)-(4.2) with E|ηk,0| < ∞, k = 1, . . . , K.

4.3 Estimation and asymptotics properties

This section is devoted to the estimation of the conditional mean parameters by the
Quasi-Maximum Likelihood Estimator (QMLE) based on a member of the exponential
family. We consider the Exponential QMLE (EQMLE) because this estimator coincides
with the Maximum Likelihood Estimator (MLE) when the unity random variables follow
the Exponential Γ(1, λ−1

k,t) distribution and the copies ζl,k,t, 1 ≤ l ≤ nk,t are independent.
For our application, the K time series are observed between the time points 1 and T.

We provide an asymptotic theory for the estimated parameters and present the results
of a small simulation study investigating the finite-sample properties of the estimator. In
the following, we will make λk,t depend on the parameter θ(∈ Θ a compact set) ; that is

log(exp ◦λk,t(θ)−1−δ) = ωk+
p∑

j=1
αj

Yk,t−j

nk,t−j

+β⊤Xk,t =: ηk,t(θ), k = 1, . . . , K and t = 1, . . . , T,

where δ ≥ δ_ > 0. Let us denote the true, data-generating parameter value by θ0.
The loss function from the Exponential quasi-maximum likelihood is given by :

rT (θ) =
K∑

k=1
T −1

T∑
t=1

(
Yk,t

λk,t(θ) + nk,t log ◦λk,t(θ)
)

=:
K∑

k=1
T −1

T∑
t=1

ℓk,t(θ) =:
K∑

k=1
ℓk(θ) (4.3)

and
θ̂T = argmin

θ∈Θ
rT (θ). (4.4)
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The derivative of λk,t(θ) with respect to θ is given by :

∂λk,t(θ)
∂θ

=: λ̇k,t(θ)

=
(

1
1 + δ + eηk,t(θ) ,

eηk,t(θ)

1 + δ + eηk,t(θ)

(
ιk,

Yk,t−1

nk,t−1
. . .

Yk,t−p

nk,t−p

, X⊤
k,t

))⊤

.

where ιk is a vector of size K with 1 at the k−th position and 0 elsewhere. We will denote
by λ̇k,t (resp. λk,t) the vector λ̇k,t(θ) (resp. λk,t(θ)) evaluated at the point θ = θ0.

We will study the asymptotic properties of the QMLE estimator (4.4). To do so,
we employ Taniguchi and Kakizawa [126] (Thm 3.2.23), which was extended in Klimko
and Nelson [82]. The lemmas in our Appendix give the general result for the asymptotic
properties of QMLE (4.4). The following theorem stands for the consistency and the
asymptotic normality of (4.4) for softplusδ link function. Let us set

Vk = E

 1
λ2

k,0

(
nk,0 − Yk,0

λk,0

)2

λ̇k,0λ̇
⊤
k,0

 and Jk = E
[
nk,0

1
λ2

k,0
λ̇k,0λ̇

⊤
k,0

]
.

Theorem 15 Suppose that the assumptions (C.1)-(C.4) in Appendix are met. Then, al-
most surely,

lim
T →∞

θ̂T = θ0.

If in addition (AN.1)-(AN.3) hold true and θ0 is located in the interior of Θ,

lim
T →∞

√
T (θ̂T − θ0) = N (0, J−1V J−⊤)

where J = ∑K
k=1 Jk and V = ∑K

k=1 Vk.

Portmanteau-type tests for diagnostic checking

In this section, we will test the adequacy of the model (4.1) and (4.2) and the set of
assumptions of the theorem 15. To do so, one will look at the residual autocovariances

ρ̂k,h = 1
T

T∑
t=h+1

ŝk,tŝk,t−h, ŝk,t = Yk,t

λk,t(θ̂T )
− nk,t

where h < T.
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For a fixed integer q, 1 ≤ q < T, consider the statistic ρ̂1:q = (ρ̂1,1:q, . . . , ρ̂K,1:q) and
for k = 1, . . . , K, ρ̂k,1:q = (ρ̂k,1, . . . , ρ̂k,q). Let V̂ and Ĵ the empirical counterparts of the V

and J . We also define

η̂k = T −1
T∑

t=1
nk,t, µ̂k = T −1

T∑
t=1

(
Yk,t

λk,t(θ̂T )
− nk,t

)2

ĉk,h = −
T∑

t=1

 n̂k,t

λk,t(θ̂T )
∂λk,t(θ̂T )

∂θ
ŝk,t−h


Ĉk,1:q = (ĉk,1, . . . , ĉk,q), Ĉ1:q = (Ĉ1,1:q, . . . , ĈK,1:q), Σ̂θ̂T ,ρk,1:q

= − 1
η̂k

µ̂2
kĴ−1Ĉk,1:q,

Σ̂θ̂T ,ρ1:q
=


Σθ̂T ,ρ1,1:q

· · · Σθ̂T ,ρK,1:q

µ̂2
1Iq · · · 0
... . . .
0 · · · µ̂2

KIq

 , Σ̂ρ1:q =


µ̂2

1Iq · · · 0
... . . .
0 · · · µ̂2

KIq



and B̂ = Ĉ⊤
1:qĴ

−1V̂ Ĵ−⊤Ĉ1:q + Σ̂ρ1:q + Ĉ⊤
1:qΣ̂θ̂T ,ρ1:q

+ Σ̂⊤
θ̂T ,ρ1:q

Ĉ1:q.

Theorem 16 Consider the model (4.1)-(4.2) and assume the additional conditions (PM.1)-
(PM.3) in Appendix. Under the assumptions of theorem 15 that yield the asymptotic nor-
mality of QMLE, as T tends to ∞,

T ρ̂⊤
1:qB̂

−1ρ̂1:q → χ2
Kq.

The adequacy of the model (4.1)-(4.2) is then rejected at the asymptotic level α if

T ρ̂⊤
1:qB̂

−1ρ̂1:q > χ2
Kq(1 − α).

4.4 Application

4.4.1 Simulation

We examined the finite-sample performance of the QMLE presented in the previous
section through a small simulation study. We present the result for QMLE under two
different data generating processes referred to as scenario 1 and scenario 2 with m = 10
covariates. For the first one, Xk,t does not depend on k and is a sequence of i.i.d random
variables distributed as exponential random variables with means λ1, . . . , λm. For the se-
cond one, for a fixed k, Xk,t is independently sampled from exponential distributions of
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mean 0.4kλ1, . . . , 0.4kλm. For the two data generating processes, for a fixed k, the process
(nk,t)t≥1 is independently sampled from a Poisson distribution of mean τk as follows : for
a fixed K, τ1, . . . , τK are independent and distributed as an exponantial random variable of
mean K. Moreover, we take p = 1 and δ = 0.5, β = (0, 1, −1, 0.5, −0.5, −1.5, 1.5, −2, 2, 0), α1 =
0.6 and ω1, . . . , ωK independently uniformly sampling in the range (−0.5K, 0.5K) for a
fixed K. We sequentially choose K = 5, 10, 15, 20 and T = 50, 100. The samples are
nested, i.e the sample for the first scenario and K = 5, T = 50 is a subset of that of
K = 5, T = 100. Indeed, our aim here is to evaluate the consequences of increasing K

and T on the performance of our estimator. For each sample, we compute the estimator
(4.4) and the corresponding theoretical standard errors (TSE) given by Gaussian limit
distribution. We replicate B = 100 times the experiment. Table 4.1 presents the simula-
tion results. The line EQML refers to the average value of estimation of parameters and
TSE refers to the average value of the estimation of the theoretical standard errors :

EQML = B−1
B∑

b=1
θ̂

(b)
T and TSE = B−1

B∑
b=1

diag
{
Ĵ−1(b)V̂ (b)Ĵ−⊤(b)

}1/2

where the superscript b stands for the index of replication and diagM for a matrix M

is the diagonal elements of M . It appears that the model parameters are well estimated
except for the ωk, k = 1, . . . , K when K is very small compared to T , which coincides here
with K = 5, T = 50, 100. We leave deep simulation studies for further works.

4.4.2 Application to the white spruce growth series

Dendrochronology, i.e. the studies of the time series of tree growth rings, is a powerful
tool to reconstruct past natural and anthropic disturbances (Montoro Girona et al. [101],
Boulanger and Arseneault [12] and Labrecque-Foy et al. [85]). Tree-rings are hard disks
of information, able to record each environmental change, thus having a strong potential
to understand complex phenomena such as disturbance ecology. Many previous studies
used dendrochronological data to better understand insect outbreak dynamics (Navarro
et al. [108], Camarero et al. [17] and Speer and Kulakowski [121]).

In this research, we used the dendroecological series from the study by Jardon et al.
[75], which includes annual tree-ring width measurements for 631 white spruce (Picea
glauca) trees distributed across 45 sites in southwestern Quebec, Canada, with 1 to 23
trees per site. These time series comprise between 63 and 247 rings according to the tree’s
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age. We converted the ring width increments to basal area increments (BAI) using the
full series, but due to covariate availability, we limit our analysis to the 1955-1995 time
period (41 years) to study only one insect outbreak period (see fig 4.2 in Appendix).

We interpolated climate variables at the study sites for the 41-year period using Bio-
SIM [113], a software package that interpolates daily climate station data based on lati-
tudinal and elevational climate gradients, as well the spatial correlations estimated from
30-year climate normals. We computed the following climate summaries from daily data
for the spring (April to June) and summer (July to September) seasons separately :
mean of daily maximum temperatures, total precipitation, and the climate moisture in-
dex (CMI) equal to the difference between precipitation and potential evapotranspiration
(PET). Daily PET values were estimated by the Penman-Monteith equation as implemen-
ted in the SPEI package [7] in R, based on BioSIM-interpolated values of the minimum
and maximum temperature, wind speed at 2 m, solar radiation, dew point temperature
and atmospheric pressure, using the "tall" crop model in SPEI.

One major SBW outbreak occurred in Quebec during the study period, which ranges
from 1967 to 1991. We obtained annual estimates of the severity of SBW outbreaks at
the location of each study site from defoliation maps produced by the Quebec Ministry of
Forests, Wildlife and Parks [100]. These maps are digitized versions of hand-drawn outlines
of defoliated areas produced by aerial surveys of the affected regions. The defoliation level
for each area is classified on a scale of 1 to 3 corresponding to a low (approx. 1 – 35%),
moderate (36 – 70%) or high (71 – 100%) fraction of the year’s foliage defoliated by the
SBW. We note that these defoliation levels mainly reflect the status of balsam fir (Abies
balsamea) trees, which is the main SBW host and is generally more severely affected than
white spruce. Therefore, these defoliation levels are a proxy for the outbreak severity, i.e.
the potential herbivory pressure exerted by the budworm on spruce trees at the site.

Since tree growth and its vulnerability to both climate and defoliation depends on
the tree-age, we split the dataset and separately fit our models for the following five age
classes : ≤ 75, 75 – 100, 100 – 125, 125 – 150 and ≥ 150 years. We include as covariates the
mean daily maximum of temperature, the total precipitation and the mean CMI for the
current and previous spring and summer. Only one of precipitation and CMI appears in
a given model version due to the correlation between those two variables. We also include
as covariates the defoliation levels for the five previous years, a delay which estimates
the time needed to fully regrow the lost foliage after an outbreak. Note that we do not
expect defoliation to have a marked effect on the same year’s growth ring [84]. Finally, we
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consider models with interaction effects of the previous year’s defoliation level and climate
variables, representing the possibility that climate conditions can increase or decrease the
tree’s sensitivity to SBW outbreaks.

Data processing and analyses were performed in R Core Team [112] with the package
dplR [16] used to process tree-ring data. We minimize the criterion (4.3) with the R
command nlm (Dennis and Schnabel [35]). All the developed software are made available
under the Creative Commons (CC) license (see data availability statements). The model
selection was carried out through the the QAIC criterion. The primary analysis based on
partial autocorrelation plots leads us to select p = 1.

According to the QAIC, the best models were those without an interaction between
climate and defoliation. Our model results (Figures 4.3 and 4.4) reveal that higher defo-
liation levels leads to reduced tree-ring growth, but this effect vanishes after two years ;
however, note that while the direct effect vanishes, expected growth will remain lower in
successive years due to the large estimated first-order autocorrelation coefficient (0.8 to
0.9, depending on age class). Moreover, there is no significant effect of defoliation on the
next year’s growth for the youngest and oldest trees, even though it produces an effect two
years following the defoliation. The result are quite different for middle aged trees, which
are significantly affected one year following the defoliation but not in the second year.
For the climate variables, high maximum temperatures in the summer produce increased
growth, with up to 5.6 square centimetre increase in basal area from a 10 degree Celsius
increase in summer maximum temperature. However, the previous summer’s temperature
has a negative effect on growth. Finally, the spring CMI is negatively correlated with
tree-ring growth whereas the summer CMI has a positive effect. However, both the CMI
and precipitation in the previous spring increase tree-ring growth of the current year :
an increase of 100 millimetres in precipitation leads to at least a 6.8 square centimetre
increase in basal area growth.

4.5 Proofs for the main results

Throughout this section, we will denote by ζ∞
k,t = (ζk,t,l)l≥1, the sequence of copies of

the unity random variables ζk,t. Moreover ζk,t can be decomposed into two components :
its mean λk,t function of Xk,t and a free random variable ζt. For example, ζk,t = λk,tζt

for a positive random variable ζt of mean 1. We will write ζk,t := ζk,t(λk,t, ζt) to denote
the relationship between ζk,t and λk,t and ζt. Accordingly, ζk,t,l = λk,tζt,l with ζt,l, l ≥ 1
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i.i.d with mean 1 or in general ζk,t,l := ζk,t,l(λk,t, ζt,l) with Eζk,t,l = λk,t. Let Fk,t denote
the σ-algebra generated by ζs, Xk,s+1, s ≤ t and Fk,t,n generated by nk,s, ζs, Xk,s+1, s ≤ t.

Finally, we will denote by ϕδ the inverse of φδ : ϕδ(x) = φ−1
δ (x). For stability, we will

consider the following set of assumptions :

(A.1) The function ϕδ is υ−Lipschitz and υ
∑p

i=1 |αi| < 1.

(ST.1) For k = 1, . . . , K, (nk,t−1, ζ∞
k,t−1, Xk,t)t∈Z is stationary, ergodic, (nk,t, ζ∞

k,t) is inde-
pendent from Fk,t−1,n and E|Xk,0|1 < ∞.

(ST.2) For k = 1, . . . , K,

E(|ζk,t(λk,t, ζt) − ζk,t(λk,t, ζt)||Fk,t−1,n) ≤ |λk,t − λk,t|.

It is worth noting that the example ζk,t = λk,tζt for a positive random variable ζk of
mean 1 verifies the condition (ST.2).

Lemma 15 Under the assumptions (A.1)-(ST.1), there exists a unique set of K sta-
tionary, ergodic sequences (Yk,t, nk,t, Xk,t), k = 1, . . . , K that are a solution of equations
(4.1)-(4.2) with E|ηk,0| < ∞, k = 1, . . . , K.

The proof of lemma 15 uses the techniques of iterated random maps. We refer the inter-
ested readers to [32] theorem 2 and 4 which investigated the problem of the solution of
recursive stochastic equations with covariates or [31] in the case where no covariates are
included in the dynamic.

Proof of lemma 15 From (4.2),

ηk,t = ωk +
p∑

j=1
αj

1
nk,t−j

nk,t−j∑
ℓ=1

ζk,t−j,ℓ(ϕδ(ηk,t−j), ζt−j,ℓ) + β⊤Xk,t.

Then under the condition (ST.1), the processes (ηk,t = φδ(λk,t)t∈Z, k = 1, . . . , K obey
some recursive stochastic equations

ηk,t = f(ηk,t−1, . . . , ηk,t−p; nk,t−1, . . . , nk,t−p, ζ∞
k,t−1, . . . , ζ∞

k,t−p, Xk,t).

and with (A.1), for k = 1, . . . , K, (x, y) ∈ R2p,

E(|f(x; nk,t−1, . . . , nk,t−p, ζ∞
k,t−1, . . . , ζ∞

k,t−p, Xk,t)−f(y; nk,t−1, . . . , nk,t−p, ζ∞
k,t−1, . . . , ζ∞

k,t−p, Xk,t)||Fk,t−1,n) ≤ υα⊤|x−y|
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with α = (α1, . . . , αp). Moreover E|f(x; nk,−1, . . . , nk,−p, ζ∞
k,−1, . . . , ζ∞

k,−p, Xk,0)| < ∞.
Then, from [32] theorem 4, we get the stationary and ergodic solution with E|ηk,0| <

∞, k = 1, . . . , K.□
The theorem 14 is a straight consequence of lemma 15 and follows the Lipschitz pro-

perty of x 7→ log(exp(x) + 1 + δ) for any δ > 0. For the asymptotic results for θ̂T , the
following assumptions will be needed.

(A.2) The conditons (A.1) and (ST.1) are met and θ0 verifies : υ
∑p

i=1 |αi,0| < 1.

(A.3) For k = 1, . . . , K,Enk,0 < ∞ and

E sup
θ

(
ϕδ(ηk,0(θ0))
ϕδ(ηk,0(θ)) + | log ◦ϕδ(ηk,0(θ))|

)
< ∞.

(A.4) For (δ, δ) ∈ [δ−, ∞)2, (η, η) ∈ R2,

ϕδ(η) = ϕδ(η) ⇒ (δ = δ, η = η).

(C.1) The conditons (ST.1) and (ST.2) are met and θ0 verifies : ∑p
i=1 |αi,0| < 1.

(C.2) For k = 1, . . . , K,Enk,0 < ∞.

(C.3) For k = 1, . . . , K, conditionally on Xk,0, the distribution of
(

Yk,−1
nk−1

, · · · ,
Yk,−p

nk−p

)
is not

supported by an hyperplan of Rp.

(C.4) For k = 1, . . . , K, the distribution of Xk,0 is not degenerate.

Lemma 16 Suppose that the assumptions (A.2)-(A.4) and (C.3)-(C.4) are met. Then,
almost surely,

lim
T →∞

θ̂T = θ0.

We do not prove the lemma 16. Similar results for time-series models can be found in
[37], [3] or [33] among others.

Proof of consistency part of theorem 15 We will check (A.2) to (A.4).

— (A.2) comes from (C.1).

— One can note that here ϕδ(x) = log(1 + δ + exp(x)) and ϕδ(x) ≥ log(1 + δ), ϕδ(x) ≤
κ1(θ)(1 + |x|) and | log ◦ϕδ(x)| ≤ κ2(θ)(1 + |x|) + κ3(θ), where κi, i = 1, 2, 3 are
continuous functions of θ. Then (A.3) holds since E supθ |ηk,0(θ)| < ∞. Indeed
EYk,0/nk,0 = ϕδ(ηk,0) < ∞ since E|ηk,0| < ∞.
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— For (A.4), we note that

ϕδ(η) = ϕδ(η) ⇒ δ − δ = exp η − exp η

and 0 = limη→−∞,η→−∞ exp η − exp η = δ − δ. Then δ = δ and η = η.□

Let us set σ2
k,0 = Var

(
Yk,0
λk,0

| Fk,−1,n ∨ nk,0
)
, ∂δϕδ the derivative of ϕδ with respect to

δ, θ−δ the vector of parameters without δ. We will consider the following assumptions for
the asymptotic distribution of θ̂T .

(A.5) The function ϕδ is twice continuously differentiable and for k = 1, . . . , K,

E
σ2

k,0
ϕ2

δ(ηk,0)

[
∂δϕδ(ηk,0(θ0))2 + ϕ′

δ(ηk,0(θ0))2∥∇θ−δ
ηk,0(θ0)∥2

2

]
< ∞ and

E
1

ϕ2
δ(ηk,0)

[
∂δϕδ(ηk,0(θ0))2 + ϕ′

δ(ηk,0(θ0))2∥∇θ−δ
ηk,0(θ0)∥2

2

]
< ∞.

(A.6) For k = 1, . . . , K, the distribution of (∂δϕδ(ηk,0(θ0)), ϕ′
δ(ηk,0(θ0))∇θ−δ

ηk,0(θ0)) is not
degenarate.

(A.7) For k = 1, . . . , K,E supθ |W i,j
k,0(θ)| < ∞, where W i,j

k,0(θ) is one of the following quan-
tities for all pairs i, j

1
ϕ2

δ(ηk,0(θ))

(
ϕδ(ηk,0(θ0))
ϕδ(ηk,0(θ)) + 1

)
∂ϕδ(ηk,0(θ))

∂θi

∂ϕδ(ηk,0(θ))
∂θj

1
ϕ2

δ(ηk,0(θ))
ϕδ(ηk,0(θ0))
ϕδ(ηk,0(θ))

∂ϕδ(ηk,0(θ))
∂θi

∂ϕδ(ηk,0(θ))
∂θj

1
ϕδ(ηk,0(θ))

(
ϕδ(ηk,0(θ0))
ϕδ(ηk,0(θ)) + 1

)
∂2ϕδ(ηk,0(θ))

∂θi∂θj
.

(AN.1) The K stationary sequences solution of (4.1)-(4.2) are independent of each other.

(AN.2) For k = 1, . . . , K, En2
k,0 < ∞

Eσ4
k,0 < ∞

(AN.3) For k = 1, . . . , K,

E|Xk,0|41 < ∞ and EY 4
k,0 < ∞.

Lemma 17 Under the assumptions of lemma 15 and if (A.5)-(A.7) and (AN.1) hold,
then

lim
T →∞

√
T (θ̂T − θ0) = N (0, J−1V J−⊤)
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where J = ∑K
k=1 Jk and V = ∑K

k=1 Vk,

Vk = E

 1
λ2

k,0

(
nk,0 − Yk,0

λk,0

)2

λ̇k,0λ̇
⊤
k,0

 , Jk = E
[
nk,0

1
λ2

k,0
λ̇k,0λ̇

⊤
k,0

]
and

λ̇k,0 = (∂δϕδ(ηk,0(θ0)), ϕ′
δ(ηk,0(θ0))∇θ−δ

ηk,0(θ0))⊤.

As for lemma 16, we do not prove the lemma 17. We refer the interested reader to
[37], [3] or [33] among others.

Proof of asymptotic normality part of theorem 15 For the proof of asymptotic
normality part of theorem 15, one can note that in the single framework (k = 1), as-
sumptions (AN.2) yield the asymptotic normality of

√
T∇ℓk(θ0) using the central limit

theorem for difference martingale. Next,

∂2ℓk,t(θ)
∂θi∂θj

= 1
λ2

k,t(θ)

(
Yk,t

λk,t(θ) − nk,t

)
∂λk,t(θ)

∂θi

∂λk,t(θ)
∂θj

+ 1
λ2

k,t(θ)
Yk,t

λk,t(θ)
∂λk,t(θ)

∂θi

∂λk,t(θ)
∂θj

− 1
λk,t(θ)

(
Yk,t

λk,t(θ) − nk,t

)
∂2λk,t(θ)
∂θi∂θj

=: Ik,t(θ) + IIk,t(θ) + IIIk,t(θ).

For the first term,

sup
θ

|Ik,t(θ)| ≤ ni,t

(
λi,t

log(1 + δ_) + 1
)

sup
θ

1
λ2

k,t(θ)
∂λk,t(θ)

∂θi

∂λk,t(θ)
∂θj

and
1

λk,t(θ) λ̇k,t(θ) ≼ κδ_

(
1, ιk,

Yk,t−1

nk,t−1
. . .

Yk,t−p

nk,t−p

, X⊤
k,t

)⊤

where for x = (x1, . . . , xd), y = (y1, . . . , yd), x ≼ y means xi ≤ yi, i = 1, . . . , d and κδ_ a
function of δ_. Then, E supθ |Ik,t(θ)| < ∞ under the assumption (AN.3). It can be shown
similarly that E supθ |IIk,t(θ)| < ∞ and E supθ |IIIk,t(θ)| < ∞. By the Taylor expansion
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of rT (·) between θ̂T and θ,

0 =
√

T∇rT (θ̂T ) =
K∑

k=1

√
T∇ℓk(θ̂T )

=
(

K∑
k=1

√
T∇ℓk(θ0)

)
+
(

K∑
k=1

∇2ℓk(θ0)
)√

T (θ̂T − θ0) + oP(1)

The independence condition on paths (AN.1), assumption (AN.2) and central limit
theorem for difference martingale allow us to conclude ∑K

k=1
√

T∇ℓk(θ0) converges in dis-
tribution to central Gaussian vector of variance V as T tends to infinity. The assumption
(AN.3) and ergodic theorem entails that ∑K

k=1 ∇2ℓk(θ0) converges to J . Moreover, condi-
tion (AN.1), (C.3) and (C.4) ensure that the matrix J is invertible.□

For the Portmanteau test, we will need the following additional conditions

(PM.1) For k = 1, . . . , K,

E|Xk,0|51 < ∞ and EY 5
k,0 < ∞.

(PM.2) For k = 1, . . . , K, the sequence
(

sk,t = Yk,t

λk,t

− nk,t

)
t∈Z

is a strong white noise.

(PM.3) For any k, the random variables

(1 + δ + eηk,0) log(1 + δ + eηk,0)sk,−i, i = 1, . . . , q, eηk,0
Yk,−j

nk,−j

, j = 1, . . . , p, eηk,0Xk,0

are linearly independent.

One can note that in the case of ζl,k,t = λk,tϵl,k,t with (ϵl,k,t)t∈Z is a sequence of inde-
pendent identically distributed random variables of mean 1, Yk,t/λk,t − nk,t = ∑nk,t

l=1 ϵl,k,t −
nk,t verifies (PM.2) when (ST.1) is met. The same kind of assumption is usually made
for standard GARCH model. The last assumption is needed to show the invertibility of
matrix B.
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Proof of theorem 16 Let us set ρ1:q(θ) = (ρ1,1:q(θ), . . . , ρK,1:q(θ)), ρk,1:q(θ) = (ρk,1(θ), . . . , ρk,q(θ)),
with

ρk,h(θ) = 1
T

T∑
t=h+1

sk,t(θ)sk,t−h(θ), sk,t(θ) = Yk,t

λk,t(θ) − nk,t

where we drop the dependence on θ of these quantities when there are evaluated at θ0

and when these one are evaluated on θ̂T , we put a hat over them. For example, ŝk,t stands
for sk,t(θ̂T ) Straighforwardly,

∂sk,t(θ)
∂θi

= − Yk,t

λ2
k,t(θ)

∂λk,t(θ)
∂θi

∂2sk,t(θ)
∂θi∂θj

= − Yk,t

λ2
k,t(θ)

∂2λk,t(θ)
∂θi∂θj

+ Yk,t

λ3
k,t(θ)

∂λk,t(θ)
∂θi

∂λk,t(θ)
∂θj

∂ρk,h(θ)
∂θi

= 1
T

T∑
t=h+1

∂sk,t(θ)
∂θi

sk,t−h(θ) + sk,t(θ)∂sk,t−h(θ)
∂θi

∂2ρk,t(θ)
∂θi∂θj

= 1
T

T∑
t=h+1

(
∂2sk,t(θ)
∂θi∂θj

sk,t−h(θ) + ∂sk,t(θ)
∂θj

∂sk,t−h(θ)
∂θi

+ sk,t(θ)∂2sk,t−h(θ)
∂θi∂θj

+ ∂sk,t(θ)
∂θi

∂sk,t−h(θ)
∂θj

)
.

It follows that, limT −→∞ E supθ |∂2ρk,t(θ)
∂θi∂θj

| < ∞ if

E
Y 5

k,0

n5
k,0

< ∞,E|Xk,0|51 < ∞ and EY 5
k,0 < ∞.

Then, by a Taylor expansion of ρ1:q(·) around θ0 and θ̂T

√
T ρ̂1:q =

√
Tρ1:q + ∂ρ1:q(θ0)

∂θ⊤

√
T (θ̂T − θ0) + oP(1).

Setting ck,h = −E
(

nk,t

λk,t

∂λk,t(θ0)
∂θ

sk,t−h

)
, Ck,1:q = (ck,1 · · · ck,q) and C1:q = (C1,1:q · · · CK,1:q),

one can note that, as T −→ ∞,

∂ρ1:q(θ0)
∂θ⊤ −→ C⊤

1:q.
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We will now investigate the distribution of
√

T (θ̂T − θ0, ρ1:q). First note that :

√
T (θ̂T − θ0) = − 1√

T

T∑
t=1

(
K∑

k=1
J−1 1

λk,t

sk,t
∂λk,t(θ0)

∂θ

)
+ oP(1).

Let us denote by Sd
k,t the squared matrix of d rows with sk,t as diagonal elements and 0

elsewhere. Straigtforwardly,

√
T

θ0 − θ̂T

ρ1:m

 = 1√
T

T∑
t=1



SQ
1,t . . . SQ

K,t 0 0 0 · · · 0
0 . . . 0 Sq

1,t 0 0 · · · 0
0 . . . 0 0 Sq

2,t 0 · · · 0
... . . .

... ... 0 ...
0 . . .

... ... 0 0 · · · Sq
K,t





J−1 1
λ1,t

∂λ1,t(θ0)
∂θ

...
J−1 1

λK,t

∂λK,t(θ0)
∂θ

s1,t−1:t−q

...
sK,t−1:t−q


+oP(1)

where Q = 1+K+p+m is the total number of parameters and sk,t−1:t−q = (sk,t−1, . . . , sk,t−q)⊤.
Let us set µk = Es2

k,0. From central limit theorem for martingale difference,

√
T

θ0 − θ̂T

ρ1:m

 ⇒ N

0,



J−1V J−⊤ Σθ̂T ,ρ1,1:q
· · · Σθ̂T ,ρK,1:q

Σ⊤
θ̂T ,ρ1,1:q

µ2
1Iq · · · 0

...
Σ⊤

θ̂T ,ρK,1:q
0 . . . µ2

KIq




where

Σθ̂T ,ρk,1:q
= − 1

ηk

µ2
kJ−1Ck,1:q

with ηk = Enk,0. Let us set B = C⊤
1:qJ

−1V J−⊤C1:q + Σρ1:q + C⊤
1:qΣθ̂T ,ρ1:q

+ Σ⊤
θ̂T ,ρ1:q

C1:q.

We now prove that B in invertible. Indeed, B = EMM⊤ with

M =



Sq
1,t 0 · · · 0
0 Sq

2,t 0 ...
... 0 . . . 0
... 0 0 Sq

K,t




s1,t−1:t−q

...
sK,t−1:t−q

+ C⊤
1:q

(
SQ

1,t . . . SQ
K,t

)
J−1 1

λ1,t

∂λ1,t(θ0)
∂θ

...
J−1 1

λK,t

∂λK,t(θ0)
∂θ



From independency assumptions (AN.1), B is invertible if for any k = 1, . . . , K, ∀f =
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(f1, . . . , fq),

f⊤sk,−1:−q + f⊤C⊤
k,1:qJ

−1 1
λk,0

∂λk,0(θ0)
∂θ

= 0 (4.5)

entails f = 0. But f⊤C⊤
k,1:qJ

−1 ̸= 0 otherwise f⊤sk,−1:−q = 0 and the assumption (PM.2)
will be violated. Hence, (4.5) becomes

λk,0f
⊤sk,−1:−q + g⊤

k

∂λk,0(θ0)
∂θ

= 0

where gk⊤ = f⊤C⊤
k,1:qJ

−1. The assumption (PM.3) entails f = 0. It follows that Tρ⊤
1:qB

−1ρ1:q

is distributed as Chi-square random variable of Kq degree of freedom. Almost B̂ converges
almost surely to B. The result then follows.□
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Table 4.1 – Estimation results for the quasi maximum likelihood estimation
α1 β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

K T Scenario 0.6 0 1 -1 0.5 -0.5 -1.5 1.5 -2 2 0

5 50 1 EQMLE 0.567 -0.018 0.985 -1.051 0.631 -0.247 -1.565 1.445 -2.165 1.673 0.011
TSE 0.060 0.086 0.185 0.286 0.178 0.309 0.332 0.219 0.298 0.211 0.104

2 EQMLE 0.517 0.019 0.862 -0.772 0.580 -0.493 -1.345 1.138 -1.709 1.908 -0.015
TSE 0.053 0.097 0.176 0.217 0.193 0.252 0.313 0.214 0.280 0.211 0.104

100 1 EQMLE 0.362 0.035 0.743 -0.632 0.457 -0.324 -1.219 1.099 -1.655 1.521 -0.080
TSE 0.065 0.101 0.169 0.303 0.218 0.379 0.401 0.219 0.333 0.232 0.093

2 EQMLE 0.361 -0.027 0.656 -0.678 0.294 -0.411 -0.956 1.148 -1.237 1.397 0.097
TSE 0.085 0.114 0.215 0.362 0.232 0.388 0.450 0.268 0.376 0.271 0.121

10 50 1 EQMLE 0.304 -0.048 0.600 -0.487 0.476 -0.460 -0.844 1.012 -1.048 1.311 0.023
TSE 0.043 0.063 0.122 0.177 0.134 0.199 0.229 0.148 0.146 0.147 0.069

2 EQMLE 0.311 0.098 0.550 -0.547 0.243 -0.486 -0.762 1.015 -1.233 1.061 0.061
TSE 0.046 0.084 0.153 0.220 0.175 0.258 0.256 0.183 0.235 0.174 0.079

100 1 EQMLE 0.328 0.001 0.686 -0.507 0.222 -0.293 -0.838 0.903 -1.091 1.173 0.050
TSE 0.035 0.056 0.112 0.153 0.107 0.184 0.164 0.108 0.133 0.119 0.059

2 EQMLE 0.285 0.033 0.676 -0.651 0.258 -0.072 -0.603 0.826 -1.199 1.101 0.042
TSE 0.039 0.063 0.142 0.175 0.119 0.249 0.205 0.158 0.160 0.160 0.076

15 50 1 EQMLE 0.546 -0.004 0.865 -0.734 0.462 -0.467 -1.418 1.280 -1.854 1.874 0.010
TSE 0.041 0.069 0.124 0.186 0.125 0.220 0.219 0.140 0.222 0.156 0.062

2 EQMLE 0.531 0.002 0.894 -0.985 0.405 -0.614 -1.342 1.228 -1.845 1.692 0.0163
TSE 0.039 0.060 0.119 0.165 0.120 0.190 0.195 0.138 0.180 0.144 0.057

100 1 EQMLE 0.384 -0.014 0.816 -0.549 0.160 -0.546 -1.226 0.987 -1.314 1.447 0.044
TSE 0.028 0.040 0.075 0.105 0.080 0.147 0.134 0.096 0.115 0.088 0.042

2 EQMLE 0.387 0.003 0.740 -0.675 0.471 -0.356 -0.751 1.104 -1.540 1.394 0.058
TSE 0.053 0.077 0.160 0.230 0.151 0.242 0.273 0.166 0.241 0.168 0.078

20 50 1 EQMLE 0.370 0.018 0.613 -0.612 0.316 -0.337 -0.787 0.915 -1.223 1.277 0.003
TSE 0.031 0.048 0.092 0.118 0.094 0.151 0.145 0.102 0.115 0.097 0.046

2 EQMLE 0.369 -0.004 0.616 -0.745 0.350 -0.265 -1.022 0.949 -1.266 1.282 -0.010
TSE 0.033 0.063 0.116 0.174 0.137 0.228 0.205 0.147 0.186 0.142 0.052

100 1 EQMLE 0.339 0.002 0.534 -0.491 0.282 -0.393 -0.802 0.862 -1.183 1.199 0.021
TSE 0.024 0.042 0.076 0.116 0.085 0.138 0.130 0.083 0.098 0.085 0.044

2 EQMLE 0.311 -0.017 0.636 -0.524 0.294 -0.173 -0.996 1.016 -1.144 1.192 0.039
TSE 0.025 0.052 0.104 0.128 0.109 0.190 0.151 0.131 0.130 0.122 0.055
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Figure 4.1 – Comparaison between softplus and max(x,0)



Figure 4.2 – Location of study sites from Jardon Project (2003) in Canadian boreal
ecoregions.



(a)

(b)

(c)

Figure 4.3 – Model with Temperature + CMI + Defoliation. classes of age 1 : < 75, 2 : 75
– 100, 3 : 100 – 125, 4 : 125 – 150 and 5 : > 150 years (a) effects of maximum temperature
in spring and summer in current and previous year ; (b) effects of cmi index in spring and
summer in current and previous year and (c) delayed effect of level of defoliation. The
dashed horizontal line corresponds to zero.



(a)

(b)

(c)

Figure 4.4 – Model with Temperature + Precipitation + Defoliation. classes of age
1 : < 75, 2 : 75 – 100, 3 : 100 – 125, 4 : 125 – 150 and 5 : > 150 years (a) effects of
maximum temperature in spring and summer in current and previous year ; (b) effects of
precipitation index in spring and summer in current and previous year and (c) delayed
effect of level of defoliation. The dashed horizontal line corresponds to zero.
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Titre : Modèles de séries temporelles multivariées non-linéaires avec régresseurs exogènes

Mot clés : Contraction d’applications aléatoires, copule, épidémies forestières, pseudo-vraisemblance,

stationnarité et ergodicité, variables exogènes

Résumé : Dans cette thèse, on s’intéresse
aux propriétés probabilistes et statistiques de
modèles de séries temporelles non-linéaires
qui prennent en compte des covariables exo-
gènes. Les séries temporelles de comptage
ou catégorielles sont en particulier considé-
rées ainsi que la modélisation de données
mixtes en multivarié. Des propriétés de sta-

tionnarité sont établies pour ces modèles à
partir de techniques d’itérations d’application
aléatoires dépendantes Dans le cas multiva-
rié, des approches par pseudo-vraisemblance
et/ou utilisation de copules sont utilisées pour
l’inférence statistique. Enfin, une application
de certaines de ces méthodes dans le cadre
de l’écologie est présentée.

Title: Non-linear multivariate time series models with exogenous regressors

Keywords: contraction random mapping, copula, exogenous covariates, forest epidemic, pseudo-

likelihood, stationarity and ergodicity.

Abstract: In this dissertation, we are inter-
ested in the probabilistic and statistical proper-
ties of non-linear time series models with ex-
ogenous covariates. In particular, count and
categorical time series data are considered
as well as the multivariate models for mixed
data. Stationarity properties are established

for these models using the techniques of itera-
tions of dependent random maps. In the multi-
variate case, pseudo-likelihood and/or copula
approaches are used for statistical inference.
Finally, an application of some of these meth-
ods in the context of ecology is presented.


	Synthèse des travaux
	Introduction
	A note on the stability of multivariate non-linear time series with an application to time series of counts
	Introduction
	Main result
	Multivariate count autoregressions
	Poisson Linear models
	Poisson log-linear models
	Multivariate GINAR process

	Proof of the main results
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4

	Appendix

	Iterations of dependent random maps and exogeneity in nonlinear dynamics
	Introduction
	General results
	Conditional contraction on average
	Comments on Assumption A2
	An additional result for strictly exogenous regressors
	Example
	A result for higher-order autoregressions

	Functional dependence measure
	Dependence coefficients for general iterated random functions
	Dependence coefficients for higher-order autoregressions with exogenous covariates
	A central limit theorem

	Examples
	CHARN models
	GARCH processes
	Poisson autoregressions
	Dynamic binary choice model
	Categorical time series with covariates
	Categorical time series and coalescence of the paths

	Conclusion
	Proofs of the results
	Proof of Theorem 6
	Proof of Theorem 7
	Proof of Proposition 1
	Proof of Theorem 8
	Proof of Proposition 2
	Proof of Theorem 9
	Proof of Proposition 3
	Proof of Proposition 4
	Proof of Proposition 5
	Proof of Proposition 6
	Proof of Proposition 7


	Multivariate time series models for mixed data
	Introduction
	Univariate observation-driven models
	Extension to multivariate mixed time series models

	Stability properties
	Existence of stationary solutions
	Specific results for linear type dynamics
	Examples of linear dynamics
	Two specific examples

	Statistical inference
	Estimation of dynamic parameters
	Estimation of copula parameters
	Asymptotic results for inference of autoregressive parameters
	Sufficient conditions for A7 and A12
	Examples
	Guidelines for more general models
	Asymptotic results for inference of copula parameters

	Numerical experiments and real data applications
	Numerical experiments
	An application to sleep data
	An application to high-frequency transactions in finance

	Conclusion and perspectives
	Supplementary material
	Proof of Theorem 10
	Proof of Proposition 9
	Proof of Proposition 8
	Proof of Proposition 10
	Proof of Proposition 11
	Proof of Lemma 4
	Proof of Lemma 5
	Proof of Lemma 6
	Proof of Proposition 14
	Proof of Proposition 12
	Proof of Proposition 13
	Proof of Proposition 15
	Proof of Theorem 13
	Proof of Corollary 2
	Proof of Corollary 3
	Checking Assumptions A14-A15 for Clayton copula
	A multivariate binary/logINGARCH/logGARCH model
	Combining a binary-logistic and an ARMA(1,1) dynamic
	Two useful lemmas
	Approximation results for linear latent processes
	Numerical experiments


	Autoregressive models for time series of random sums of positive variables
	Introduction
	Models and stability results
	Estimation and asymptotics properties
	Application
	Simulation
	Application to the white spruce growth series

	Proofs for the main results

	Bibliography

