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ResumZ de la these en franeais

Les ordinateurs quantiques ont ZtZ conceptualisZs pour lar@miere fois par Richard Feynman, qui
dresse le constat suivant : un ordinateur classique ne peutgs simuler de maniere ¢ cace un systeme
quantique. La raison sous-jacente est que le nombre de bitsZwessaires pour dZcrire un systeme
quantique augmente de manisre exponentielle avec le nombrdOZtats quantiques du systeme, et ce *
cause du principe de superposition. DOapres Feynman, seul ordinateur quantique dont les ZIZments
de bases, les qubits, sont eux aussi quantiques, peut perntes de dZcrire de tels systemes.

Les ordinateurs quantiques peuvent, par leur nature quantijue, permettre de rZaliser certaines
taches au-dessus des capacitZs des ordinateurs classiguear exemple, il ~ ZtZ dZmontrZ que certains
problemes mathZmatiques, tels que la factorisation en nomies premiers ou le probleme du logarithme
discret, seraient solvables en un temps polynomial par IGtinateur quantique. Or, ces problemes
mathZmatiques servent de fondations " la cryptographie ~ cZ asymZtrique. Il est donc impossible de
garantir la sZcuritZ de nos communications dans un avenir olDordinateur quantique est omniprZsent.

Les ordinateurs quantiques renferment donc de grandes proesses dOavancZes technologiques, mais
ils reprZsentent aussi une menace pour la sZcuritZ de nos Bgses de communications actuels. Face
" ce probleme, une solution est dZveloppZe qui est appelZeyptographie post-quantique Ce domaine
cherche " construire des algorithmes de cHirements basZs sur des problemes mathZmatiques pour
lesquels IQordinateur quantique ne prZsente pas, ~ priorgOavantage signiPcatif sur un ordinateur
classique. Une deuxieme approche, plus originale, ~ Zgaleemt vu le jour pour pallier au probleme de
IOordinateur quantique. Cette dernisre sOappelle distribution quantique de clZ(QKD) et est IOobjet
principal de cette these.

Les protocoles de distribution de clZ quantique (QKD) permétent de construire des canaux de
communications sensibles ~ IOesplonage grace aux propAgtquantiques fondamentales de la lumisre.
Ces protocoles ont dZj” ZtZ validZs en laboratoire et meme sue terrain. Cependant IOun des principaux
dZbs " surpasser pour dZployer de tels protocoles ~ grandehétle est le coZt de dZploiement de la
technologie, liZ ~ IQinstallation de toute IQinfrastructte nZcessaire pour gZnZrer, transmettre et mesurer
les Ztats quantiques. Une solution attrayante en ce sens st dOexploiter IQinfrastructure de bbre
optique dZj” existante pour executer mettre en oeuvre de ted protocoles.

Cela implique cependant de faire coexister des signaux quaues avec des signaux tZlIZcoms
classiques, dZj" prZsents sur cette infrastructure. Cette @existence peut stre un dZp technique ~
cause de la sensibilitZ des Ztats quantiques aux perturbatins extZrieures. Dans cette these, nous nous
intZressons plus particulisrement aux protocoles de distibution de clZ quantique " variables continues
(CV-QKD), car leur proximitZ avec les communications cohZretes classiques indiquent quQils sont de
bons candidats pour coexister sur une meme bbre.

En partant du principe que les protocoles CV-QKD sont destinZ, " terme, ~ stre dZployZs de
maniere conjointe avec des protocoles de communication ctsique, la question qui se pose est la
suivante. Cette coexistence avec des signaux classiques-efie forcZment un dZsavantage pour la CV-
QKD ? Nous articulons notre rZponse en deux projets distinat et nous montrons qu®en construisant
de fason conjointe des protocoles de communication quantige et classique, la coexistence avec des
signaux classiques peut prZsenter des avantages exploitab pour la CV-QKD.

Notre premier travail est une dZmonstration expZrimentaledans laquelle nous montrons que le
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signal classique peut servir, dans certains cas, de signalqe au signal quantique. Cette construction
permet notamment de sOaanchir de signaux pilotes auxiliaires gZnZralement nZceaires en CV-QKD
et dOeectuer des communications classiques et quantiques de marg conjointe.

Dans un second travail, nous montrons que le bruit gZnZrZ pailes canaux classiques peut servir
" dissimuler le signal quantique. La communication quantique peut alors stre rZalisZe de fason in-
dZtectable, ou C covert E, ce qui, combinZ ~ une Zchange de gdr QKD permet dOenvisager des
garanties de sZcuritZ extrmement ZlevZes. Nous analysoles conditions nZcessaires, " la faisabilitZ
du dZploiement covert de la CV-QKD et proposons des modsles ptinents ~ I0Ztudes de tels pro-
tocoles. Les conclusions tirZes de ce travail de doctorat sbque, dans un contexte de coexistence
classique/quantique, la construction des protocoles de ecomunication de maniere conjointe peut-stre
bZnZbque " la fois aux communications quantiques et aux comumications quantiques.
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Introduction

From quantum mechanics to quantum technologies.

Our journey begins with the inception of quantum mechanics atthe beginning of the 20" century.
At the time classical physics used to describe macroscopig/stems were though to be absolute and
to apply to all physical systems. Then, German physicist Max Hanck introduced energy quanta and
showed that this enables a complete description of blackbod radiation at thermal equilibrium, a
challenge scientists were unable to tackle using classicahpsics. | personally bnd it amazing that he
introduced his quantibcation reluctantly because of how absurd this concept was at the time, and how
by doing so he initiated a series of pioneering works which letb the formalism of quantum mechanics
used today.

Towards the middle of the 20" century, two other major scientiPc belds were born which playa
central role today. On the one hand the peld of information treory, whose founding father is arguably
the American scientist Claude Shannon, formally debnes the ation of information and derives the
amount that can be shared over a channel. Information theory $ a cornerstone of modern digital
communications. On the other hand the Peld of computer sciete, which owes a great deal to British
scientist Alan Turing, revolutionized our society by providing mankind with one of the most powerful
tools weOve ever had : the computer.

Later, exciting interconnections started to develop betwesn these Pelds. Questions about the
guantity of classical information contained in quantum sysems led to the development of the quantum
counterpart of classical information theory: gquantum information theory. An interesting result here is
that when considering a communication protocol where the infomation is encoded in quantum states,
the amount of information leaked during the transmission can be bounded thanks to fundamental
guantum properties. Based on this idea, the Prst proposal oh quantum key distribution (QKD)
protocol was submitted by Charles Bennett and Gilles Brassad in 1984 [1]. The goal of QKD protocols
is to share a secret bBthe keyb between distant parties in an eetsarial setting, which has potential
applications in the peld of cryptography. The revolutionary aspect of QKD is that it constitutes a
challenge to the security of classical key distribution tetiniques because the security of QKD does
not involve any assumptions on the computing power of the adersary and hence permits to share a
secret key with so-calledinformation-theoretic security.

In the meantime, in 1981, Richard Feynman asked during a confence presentation[[2] the question
of how to simulate quantum systems and came to the conclusiomthat classical computers were not
adequate to the task, because there is no succinct way to dedige classically a quantum state of many
particles. He then proposed to use a quantum computer to do tfs. Instead of functioning with bits,
the quantum computer should perform operations onqubits which can beentangledwith other qubits
or in superposition of several states. Harnessing these properties, the amounff resources needed for
the quantum computer to simulate quantum systems scales linarly with the size of the system to
simulate, as opposed to exponentially for a classical comper. FeynmanOs talk undoubtedly played
an important role in launching the Peld of quantum computing since it naturally spurred interest in
the other tasks for which a quantum computer could outperforma classical computer.

In 1994, Peter Shor exhibited two problems for which a quantum emputer had a signibpcant ad-
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vantage over a classical computer|3]. These are the factorininto prime numbers problem and the
discrete-log problem. Since they are known to quickly becoméntractable for classical computers,
these are currently used as the foundation for secure key disbution protocols in modern communi-
cations. ShorOs results meant that current key distributia algorithms have an expiration date, and
led cryptographers to refer to the creation of a quantum computer as the quantum apocalypse.

What about now ?

Thirty years later, building a large scale quantum computer gill constitutes a remarkable challenge
[4]. The core of the problem is that qubits collapse to classial states as they interact with the
environment, hence quantum computers need to be strongly @ated from random interactions. At
the same time though, we need to be able to interact with the quiits from the outside, in order to
prepare the system in the desired state, apply quantum gates$o the qubits to perform the quantum

computation and then to read out the qubits so we can bnd the reult of our computation. Building

a quantum computer with all the desired features is avery di! cult task.

Nonetheless considerable progress has been seen in the balt today several large companies have
developed quantum processors [5,] 6, 7]. Even if these are Islimited to a number of qubits around
200, this is sU cient for cryptographers to ring the alarm [8]. They typically need cryptographic
algorithms to be safe for at least several years, sometimesgeral decades depending on the usage.
This cannot be the case if a quantum computer that can implemet ShorOs algorithm is created in
the next 10 or 20 years, because entities could potentiallytere encrypted communications today to
break them then. Hence increasing attention is given to shifng vulnerable cryptographic primitives
to quantum-safe primitives i.e. primitives for which a quantum computer should not in princip le
provide a considerable advantage over classical computers

In particular it is the key distribution algorithms which are v ulnerable to quantum computers and
as such they are the primitives which require quantum-safe dérnatives. Two are currently being
developed in research teams. The brst is to replace the vulnable key distribution protocols by new
protocols based on problems which remain di cult to solve even for quantum computers([9]. This beld
is called post-quantum cryptography and follows in the traditional way of considering cryptography
in which the security of the protocol assumes that the adversey has limited classical and quantum
resources. The second alternative is QKD, which regroups a wideange of protocols harnessing quan-
tum mechanics to provide information-theoretic security on the shared key. As opposed to classical
cryptographic algorithms, the security of QKD protocols is derived without any assumption on the
computing power of the adversaries and therefore constitue future-proof key distribution protocols.

Focus on quantum key distribution.

The brst conceptualisations of QKD, such as BB84, relied on sgle photons as the fundamental
communication units. A photon is an elementary particle that is a quantum of the electromagnetic
beld and as such exhibits fundamental quantum properties embling QKD. The information can be

typically encoded in the polarisation or time-of-arrival of the photon. The main component of the
detection apparatus in this case is the single-photon detdor (SPD), which produces a "click" when

one or several photons are successfully converted into a aent. These protocols are referred to as
"Discrete-Variable" (DV) QKD because of the discrete set of measurement results.

Later, it was also shown that QKD could be performed by encodig the information on the
quadratures of weak coherent states [10]. This is particuldy interesting because this is typically
how information is transmitted in the Peld of classical teleeommunications, therefore the hardware
necessary to control and measure the quadratures of the elgomagnetic Peld is well understood
and readily available. These protocols are called "Continuos-Variable" (CV) QKD because of the
continuous range of values that can be taken by the quadratues of the light.
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The strong security guarantees of QKD are very exciting theréore the technology has received
increasing sources of funding and has been experimentallyegloyed in many metropolitan Pber-
networks [11,[12, 1314/ 15]. However many challenges remaio be overcome before large scale
implementation of QKD is possible. The main challenges are tk point-to-point distance over which
a secret key can be shared Dsince quantum states cannot be diedDb and the overall deployment
costs of the technology.

Focusing on the latter, the by-far dominant cost of Pber-bagd communications is the deployment of
the bber-network infrastructure. Therefore if QKD could be deployed over the existing infrastructure
used for classical communications, this would drasticallycut the implementation costs and constitute
a considerable step towards large-scale deployment. For th to be possible, the coexistence of the
guantum states and the classical signal must be carefully @hestrated or else the bne measurement
process required to detect quantum states will stier from perturbations due to the classical signal,
which will in turn jeopardize the ability of the QKD protocol to yield a secret key. Between DV- and
CV-QKD, the latter is arguably better suited for this task bec ause the coherent detection process used
to measure the quadratures is spectrally selective, henceoberent receivers are less sensitive to Raman
noise photons than SPDs. This constitutes an important pracical advantage since Raman-induced
noise is the dominant source of noise for QKD in wavelength mitiplexed classical and quantum
communication schemes$[16].

Contributions and outline of the thesis.

In this thesis we investigated the question of the coexistene of CV-QKD with classical channels. Our
approach was to study in what ways the coexistence could be beitpcial for the CV-QKD protocol,
rather than only detrimental because of the additional noise induced by the classical channels. Our
work is divided in two projects.

Our brst project is an experimental demonstration of a CV-QKD implementation where the phase
and frequency recovery is performed on a classical channel vweh is multiplexed in polarisation and
digitally frequency shifted relative to the quantum states. While this problem is traditionally ad-
dressed using pilot tones[[17], our work shows that when desigmg hybrid quantum and classical
communication systems, we can relax the need for pilot tonesind perform the carrier recovery di-
rectly on a classical channel. We display positive key ratesith two discrete modulation formats,
one with 4 di" erent quantum states, and one with 64 quantum states and a Gausan-like probability
distribution. In the asymptotic regime, our results are compatible with positive secret key rate over
40 km with reliable classical communication for the classichchannel. Hence our work takes one step
forward in the direction of hybrid communication systems.

In our second project we investigate how the noise generatedybthe classical channels can be
harnessed to provide an interesting new kind of physical lagr security, called covertness to a CV-
QKD protocol. The goal of covert communications is for the transmission between the legitimate
parties to be indistinguishable from background noise for he adversary. This is achieved by reducing
the power of the state transmitted over the channel below sora threshold which scales as the inverse
of the square-root of the total number of quantum states sentover the channel, due to the so-called
"square-root law". We argue that covert CV-QKD is essentially impractical because of the square-root
law and we propose to make some additional assumptions, whiatan be veribed in a practical setting,
in order to relax the square-root law and enable practical cwert CV-QKD.

The rest of this manuscript is organised as follows.

Part | : From quantum theory to quantum key distribution

The objective of this brst part is to debne and understand CV-QKD, but also to position it with
respect to the more general context of quantum-safe cryptogphy.
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Chapter 1 : Quantum theory

In this chapter we give the formalism of quantum mechanics whib will be the main language used to
describe quantum systems in the rest of this work. We also g some important properties of quantum
systems such as the no-cloning theorem and the uncertainty ninciple which are the foundations of
guantum key distribution and therefore particularly relevant in this work. Then we will revisit the
guantibcation of the electromagnetic Peld in order to derie the ladder operators which will then
be used to debne the quadrature operators. We continue by deimg Gaussian states and Gaussian
transformations from their covariance matrix. These play a entral role in quantum information
theory analogously to the Gaussian distribution in classi@l information theory. Finally, we describe
the quantum mechanical € ect of homodyne and heterodyne measurement on the covariaaamatrix
of the quantum state

Chapter 2 : Classical and quantum information theory

We move on in the second chapter to study the most relevant quatity of communication systems:
information. We debne the notions of entropy and mutual infaomation and give their guantum mechan-
ical equivalent. Finally, we give HolevoOs bound on the acssible classical information in a quantum
system which will play a key role in the security proofs of CV-QKD.

Chapter 3 : Cryptography

This third chapter is meant to give some insight into the world of cryptography. We distinguish
the computational and information-theoretic security models and then give an overview of important
cryptographic primitives which are hashing functions, symnetric encryption throught AES and public-
key encryption through RSA. Then we discuss in more detail thequantum apocalypsediscussed above.
We Pnish the chapter by detailing the outline of a generic QKD protocol, which we illustrate with
BB84, and brieBy review the di' erent types of QKD protocols.

Chapter 4 : Quantum Key Distribution with Continuous-Variabl es

In the last chapter of the brst part of this work, we focus on CV-QKD. We begin by giving some

example of protocols, and give the expression of the secreel rate through the well-known Devetak-

Winter formula. Then we show how to compute the key rate in seveal cases : when Alice employs
a Gaussian modulation on the quadratures, when Alice emplay a discrete modulation, when the
receiver noise is considered "trusted" and in the Pnite-sig regime. We bnish this chapter with a
comparison of DV- and CV-QKD solutions in term of key rate, achievable distance and potential for

coexistence with classical channels.

Part 1l : Convergence of classical and quantum coherent comm unications.

In the second part of this manuscript we present the contribuions that have been achieved during
the course of this thesis.

Chapter 5 : Quantum and classical coherent communications

We begin with a general chapter on coherent communications wich is necessary to understand the
experimental implementations of coherent communications We successively address the signal gener-
ation at Alice, the signal distortions during transmission, and signal measurement at Bob in coherent
communications. Then we discuss how the sampled signal is pcessed to retrieve the information
encoded in the beld quadratures. Finally, we discuss some portant challenges of quantum coherent
communications and position the rest of our work.
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Chapter 6 : Joint Classical and quantum coherent communications

We present here our experimental demonstration of CV-QKD am classical communications performed
jointly where the quantum carrier recovery is performed on the classical channel. We begin by de-
scribing our experimental setup. Then we discuss the calibrigon in shot-noise units. We show our

receiver is operated in the linear regime, where the shot-nee scales linearly with the LO power, and
we discuss our precision in the shot-noise estimation. The flowing section focuses on the digital

signal processing routine we used. In the bnal section, we digss how we optimised our experimental
parameters and give our results before discussing improveanmt perspectives and concluding this part

of our work.

Chapter 7 : Covert quantum key distribution

Our second project is described in this chapter. We begin by iging a general introduction to covert
communications and formally debPne covertness. Then we movendo deriving a threshold power for
the quantum channel under which the quantum communication B covert. We show that without
additional assumptions this bound makes covert CV-QKD essetially impractical because a negligible
amount of covert and secret bits can be shared using the protol because of the square-root law
mentioned earlier. We move on to examining how a shared sedreesource between Alice and Bob
can be used to improve the performance on the protocol throulg a process we callblock-coherent
encoding but show that covert CV-QKD is still limited because of the square-root law. Then we
derive two practical models in which we can relax the square@ot scaling of the signal power which
enables practical covert CV-QKD. We conclude this chapter with a discussion on covert CV-QKD.

Perspectives

We conclude this work in this Pnal part. We attempt to give a general view of QKD in its current
state, the challenges facing the technology and the contribtions we made to the peld.
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Quantum theory
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Giving a precise description of quantum systems can be chahging at brst, since interesting
phenomena appear in this regime which seem counter-intuitig by classical physics standards, that is
based on what we cansee For example, the fact that the measurement result of a quantm particle
is described by some set of probabilities is particularly od compared to our macroscopic world where
objects are well debned. Also quantum systems can bentangled which means that by measuring
one particle we can modify the measurement outcome probabtles of another. This was puzzling
scientists at Prst since it goes against the principle of loality which states that an object is inBuenced
only by its immediate surroundings. Thankfully, we have devdoped a mathematical formalism which
permits describing such systems and exhibiting their uniqe properties. In this section we cover this
formalism which will be needed to describe the QKD quantum staées and their evolution during the
QKD protocol.

1.1 Formalism of quantum mechanics

Let us begin with the mathematical formalism of quantum mechanics which we give below. These
results constitute a brief overview and the interested reaér is referred to [18] for a more thorough
description.

17
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1.1.1 The postulates of quantum mechanics

Quantum mechanics are built on a set of 6 postulates which endb an € cient description of quantum
systems and their unique properties.

Postulate 1 (State space) The state of an isolated physical system at time is represented by a state
vector |#! belonging to a Hilbert spaceH called the state space.

Basically the brst postulate lets us write quantum states as omplex vectors Bsometimes inbnite
dimensional® which are calledkets in the Dirac formalism. It is convenient to normalise the state
vectors since we will see later that they are closely linkedd probability distributions. A consequence
of the brst postulate is that all vectors of the Hilbert spaceare quantum states. Therefore if|#! and
|$! are two possible states of the state spacél, then |94 = &|#! + ' |$!, with |&?+ |' |> = 1 for
normalisation, is also a possible state. This is known as theuperposition principle because|% is is
a superposition of states|#! and |$!. The superposition principle is the fundamental resource blkind
the quantum advantage in computation.

All states that can be written in ket notation, such as |%, |#! and |$!, are called pure states and
are part of the possible physical states of the system. Now fpose we need to describe a system that
is a statistical mix Bnot a superpositionb of several statesFor example suppose we create and send
guantum state |#! over a quantum channel with probability half, and state [$! the rest of the time.
The average state sent on the channel is not a superposition ¢#! and |$! and cannot be written as
|94. To descibe this statistical mix, we have to generalise the ation of state vector using the state
density matrix. Any pure quantum system debned onH can also be debned by a density matri6 as:

WU = |#1"#] . (1.1)

If we need to describe a statistical mix ofn states {| #«!};-, with the corresponding probabilities
{p«}r=; , the quantum state is called a mixed state and is described by

!n
gixed = g [ " H# (1.2)
k=1

The density matrix obeys the following properties :

Tr(®)=1, (1.3)
Tr(&%) # 1, (1.4)

with equality in the second line if and only if '6 is pure.
The next series of postulates debne the formalism of measugna quantum state.

Postulate 2 (Observable). Every measurable physical quantityA is described by a Hermitian operator
A acting in the state spaceH. The operator A is called an observable and its eigenvalues form a basis
for the state spaceH.

The second postulate provides the way to address the physicajuantities in a quantum system.
Valid quantities for A are for example the position, momentum or energy of a quantunstate.

Postulate 3 (Quantization) . The only possible outcomes of the measurement &f are the eigenvalues
of the operator A.

According to postulate [3 the outcomes of a measurement resulare necessary discrete, which
introduces the notion of quantization. This is for example the case for the energy of a quantum
system, for which only discrete energy levels are possible.
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Postulate 4 (Probability of a measurement outcome) When the physical quantityA is measured, the
probability P((;) of obtaining eigenvalue(; is given by the norm of the projection of the state vector
[#! onto the corresponding eigenvectoi( ;!

P((i) = I"(il#! % (1.5)

If the spectrum is degenerate, thenP((;) is given by the norm of the projection of[#! onto the
eigensubspacd’, . associated with(;

(OEN RGP (1.6)
tkrpy,
where the (X for an orthonormal basis of P,

Thanks to the formalism of postulate @ we can express the meawalue of the observable& which
is noted "A! and is given by

"R = | A1 (1.7)

Also the variance of & can be expressed as :

(1 A2 = | K21 s # R (1.8)

Similarly, the measurement outcome probabilities can be coputed from the density matrix rep-
resentation. Let '6 be the density matrix of the quantum state. Then we have :

P((i) = Tr ("Gl 1.9)

and the mean value of operatorA is given by :

"Rl = Tr (A). (1.10)

Postulate 5 (E"ect of measurement) If the measurement of A on state vector |#! gives result(;,
then the state of the system after the measurement is the normalized projem of |#! on eigensubspace
P, associated with eigenvalug ;

K H ! !
) SRR R . (1.11)

Postulate [§ explains that measurements &ect the quantum state by projecting the state on the
eigensubspace corresponding to the measurement result. Trefore measurements in quantum me-
chanics are projective, and modify the state.

Postulate 6 (Time evolution of a system). The time evolution of state vector [#(t)! obeys the
Schridinger equation

il %|#(t)! = H (1) J#(1)! (1.12)

where H(t) is the observable associated with the total energy of the systemdais called the Hamiltonian
of the system.
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1.1.2 Description of composed systems

Quantum systems can be more complex than just a quantum partile in a Hilbert space. Often, we
will need to describe quantum systems shared by several pads, with each party holding a quantum
state that is part of the full quantum system. Such system aredescribed using the tensor product
representation. Let{|#;!}.,; ben quantum states represented in their respective state spacgH i}, .
The state space describing the quantum state composed of the particles is given by the tensor product
of the individual state spacesH = &[.; H;.

Notice that the state space debned by Sep = {(J#1!,....|#s!) " H1( ...( Hn} is of dimension
dsep = dim(Hq)+ ...+ dim(H,) while the dimension of the tensor product spaceéd isd = " [L; dim(H;).
Therefore it is impossible to describe composed systems ugjronly quantum states in Seg, . Systems
that can be described as such are calledeparable On the other hands states inH\ Sep, cannot be
debned by describing the individual states of then particles but instead must be debPned as a whole.
Such systems are calleégntangled

Example of entanglement. A maximally entangled two mode state is called a Bell state anl
is given by [#% 1,5 = OA—'OB#% where states|0! and |1! represent for example the polarisation
state of a photon. Now consider the polarisation of subsysta A is measured. The result will give
either |0a! or [14! each with probability half. Suppose the result is|Oa!, then according to postulate

[§ the bipartite state is projected onto the subspace|Oa!"0a| and becomes :

n n +| n " +|
|#ag | = (OAlyo I%I# " 10a!]0g! + (0A|1/ I%I# " 10a! 15! (1.13)
|#AB I = |OA| |OB| (114)

Therefore particle B is projected onto polarisation state |0!; as a result of the polarisation mea-
surement of particle A. The particles A and B are entangled Entanglement is a fundamental quantum
resource which can be harnessed for quantum communicationgnd it is at the core of the security
proofs of quantum key distribution protocols which we will discuss further in this manuscript.

« Description of subsystems of a pure state. Consider a bipartite pure state |[#!,; =
ij Mij lai!|bl; described over the Hilbert spaceH & Hg. The density matrix of the composed
system is given by :
!
‘O = Mi,j “E,I laj!"ak| & |q I"b. (1.15)
ij.k,l
Then we can give a description of the subsystem A (or B) by traang out the other in the density
matrix expression above. The resulting state will be the mixedstate given by

Oy = Trg (8 1.16

A B% ?B ) % ( )

= Trg Wij M) la!"ac] & g !"h| (1.17)
ij,k,|

= Wij BE) lat"ax] if "hig! =1 (1.18)

k!

Puribcation.  An important result of the formalism of quantum mechanics states that any mixed
state can be expressed as a pure state in a larger Hilbert spac Let us formalise this result here.
Consider for example't, the density matrix of a pure state described in Hilbert spaceH. Let |#!
be a pure state in Hilbert spaceH & Hg.



1.1. FORMALISM OF QUANTUM MECHANICS 21

Debnition 1 (Puribcation). We say that [#! puribes'ty if

2 .
Gy =Trg |#!"#] . (1.19)

Theorem 1. For all mixed state described by density matrix, in some Hilbert spaceH,, there
exists some Hilbert spaceHg such thatdimHg * dimHa and such that there exists a pure state
[#!" Ha & Hg which puribes'ty

The notion of puribcation is particularly useful in QKD since we can express the bipartite mixed
states exchanged by Alice and Bob as a pure tripartite state. The third party in this case is the
eavesdropper, and puribcation results make it possible toampute the information leaked to the third
party. However this is the object of another chapter and we lave this for later.

1.1.3 Quantum no-cloning theorem

The mathematical Hilbert space formalism of quantum mechants comes with the crucial notion of
orthogonality. As opposed to classical states, quantum states can be nontbbgonal. When this is
the case it is impossible to perfectly discriminate the staes since they have some overlap. A direct
consequence is thao cloning theorem:

Theorem 2 (No cloning theorem). It is impossible to create an independant and identical copy of an
arbitrary unknown quantum state. LetH be a Hilbert space. The no cloning theorem translates as the
following. There is no unitary U acting on H & H such that for all |#!' H and for any ancilla state
o' H:

U J#! [0 = [#! |#! (1.20)

Proof. We reason by contradiction. Suppose such a unitary exists. Thn for any two states(|#!, [$!) '
H? we have :

U #1100 = [#! |#! (1.21)
Ul$! |0 = |$![$! (1.22)

Then we can write :
"0]"#IU UISHIO! = #|#][$ 8! (1.23)
thus "#|$! = "#|$!? (1.24)

Necessarily"#|$! = 0 or "#|$! = 1. Since the states are normalized, this means that eithef#!
and |$! are orthogonal, or we have some& ' [0,2)] such that |#! = €" |$!. In any case this is in
contradiction with the assumption that the states |#! and [$! are chosen arbitrarily, which concludes
the proof. O

The quantum no cloning theorem also play an important part in the security of quantum key
distribution systems. As long as the communication quantumstates are non-orthogonal, the adversary
is prevented from creating replicate states to perform his neasurement.

1.1.4 The Heisenberg uncertainty principle

Yet another principle of quantum mechanics is the Heisenbeag uncertainty principle. It states that it is
impossible to perfectly measurecomplementary physical quantities A and B of the same quantum state
such as the position and momentum of a particle. The complemearity of two physical quantities is
debned mathematically by the commutation relation of their respective observables.
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DePnition 2. Measurable physical quantitiesA and B are complementary if and only if their ob-
servables® and B do not commute, that is :

AR =ARS$ BA=0. (1.25)

Follows from debnition [ the mathematical formalism of HeisabergOs uncertainty principle ex-
pressed as :

| Ral B * %E"[/Q B! E (1.26)

The principle can be interpreted as follows. LetA and B be two observables such thatA, B] =
k = 0. Suppose state]#! is an eigenstate of® and B with eigenvaluesa and b. Then we would have
the two following equalities :

(A B]|#! = k|#!, (1.27)
and [A), B]#! = (ab$ ba) |#! =0, (1.28)

_Wwhich is impossible. Therefore no quantum state[#! can be an eigenstate of both observables
A and B. Necessarily|#! is a linear combination of eigenstates of either® or B which implies by
postulate [3 that it cannot be exactly determined.

1.2 Quantization of the electromagnetic peld

Now that we have given the formalism used to debne our quanturmsystems and given a few key
properties stemming from said formalism, we dive into the kg components of the quantum theory of
light which will be useful for CV-QKD. Here we begin by debning the ladder operators which are then
used to debne the quadrature operators of the quantum statesFor further reading, see for example
[19].

1.2.1 The ladder operators

Consider the position and momentum operators, which are linkd to the quantum harmonic oscillator
Hamiltonian by

% = % " % 242, (1.29)

where i, and % and the momentum and position operators. Since they are conjgate variables,
they obey the canonical commutation relation :

[% pn]=i!. (1.30)
Debnition of the ladder operators. In quantum mechanics, the dimensionless creatiod and

annihilation @ operators are conveniently used to express the HamiltonianThey are also referred to
as the ladder operators and they are debned as

a= )#(m*iw iBn), (1.32)
2m!*

B =)t (MBS ipy) (1.32)
2m! *
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such that the position and momentum operators are :

)
. ..
®= ) Zm—*(a + @), (1.33)
m!*
P = i 5 (@ % a. (1.34)
It follows from equations[1.31 and[1.3P that
éa = 2m1| — (Mm% 22 + @2, + im* (BB $ Bpn)), (1.35)
= li*(lii’ + %!*), (1.36)
da= li*(lim %!*). (1.37)
Therefore the Hamiltonian can be written as :
. Lo, 1
W=1*@a+ E)’ (1.38)

and the operatorsé and & obey the commutation relation
[a,a]=1. (1.39)

E! ect on energy eigenstates. Consider the energy eigenstates of the quantum system,
which form an orthonormal basis of the Hilbert space called tle Fock basis We denote by |n! the
energy eigenstate with eigenvalueE,,. By dePnition we havet9 [n! = Ep [n! and by multiplying both
expressions bya via the left hand side we obtain

ainl = E,a |n!. (1.40)
Using expressior] 1.38 and commutation relatiof 1.39 we pnchat [1.40 becomes

9a |n! = (E, + !*)a |n!. (1.41)
Proceeding similarly with the operator & we bnd that

9a|n! = (E, $ ! *)an!. (1.42)

Therefore & |n! and &|n! are also eigenstates of the Hamiltonian. The operatoré and & are
called the creation and annihilation operators because they can be seen as increasing or decragsi
the energy level of a quantum state by one energy increment*. Note they do not correspond to
measurable quantities since they are not Hermitian and theefore do not satisfy the condition to be
observables. We use the notation

En+t = Ep + 1% (1.43)
Enwi = En$ !, (1.44)
to designate then+1 and n$ 1 energy levels. If we now consider the ground state of the syste,

noted |0!, we have that &[0! is also an eigenstate of the Hamiltonian of energfo $ ! *. Since there
is by debnition no state with lower energy than the ground stak, necessarily we have
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a|0 = 0. (1.45)

Then we can bnd the energy of the ground state by computindg® |0! = % |0 = Eq |0 which gives
the energy levels of the system

Eg= -!* (1.46)

En=(n+ %)!*_ (1.47)

Sinceld [n! = E, |n! we can deduce that

8 é[n! = n|n!. (1.48)

We note b = @ a the number operator. The energy eigenstates are also eigenstates or tmeimber
operator. Let us denote by|n+1! and |n $ 1! the eigenstates corresponding to the energy levels+1
and n$ 1. We showed that the ladder operators applied tojn! are proportionalto [n+1! and|n $ 1!.
Thus there exists complex numbersA, and C, such that

8 |n!'=Cyn+1! (1.49)
ain! = A n$ 1. (1.50)

We prefer using normalised states therefore we bPnd the valgéA,, and C,, such that the states|n!
are of orthonormal. We have

ICn? (1.51)
|An 2. (1.52)

"n|ad |n! = |Cy|?"n+1|n +1!
"nja gn! = |As°'n$ 1n$ 1

Equation gives that A, = ) n and using the commutation relation we bnd thatC, =

n + 1 such that

é|n!:)n+1|n+1! (1.53)
ain'="nns 1. (1.54)

1.2.2 The quadrature operators

In particular for this work in which we focus on quantum key distribution protocols, the quantization
is considered at the level of the photon. Then the number oper®r 6 has for eigenvalues the mean
number of photons of the quantum state. Any optical quantum gate '6 can be represented in the~ock
basis, using the density matrix formalism :

6= Gym [N!"M]. (1.55)

n,m

The Fock basis is inPnite-dimensional which can make it di cult to represent states in this basis.
For example coherent states, which we will discuss in the nextection, are dil cult to represent in
the Fock basis because they are superpositions of all the numer states. Therefore it is convenient
to introduce the quadrature operators  and ¢ to represent the quantum states in phase space. We
debne them as
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o= %(a + @) (1.56)

6= ié(i&h $ &), (1.57)
such as the ladder operators are

&= S(p+ i0) (1.58)

a = %(ps{s i4) (1.59)

The quadrature operators are Hermitian sincep = @ and § = @therefore they satisfy the condition
for observable quantities of the quantum system. The commutéon relation can be computed as

. i
[p1 (il = 51 (160)
therefore we can deduce the Heisenberg uncertainty relatioon the quadrature operators

1

g g

i (1.61)

1.3 Gaussian states

An important category of quantum states is the group of Gausgan states. These have nice properties,

especially from an information theory point of view. In addition, they are easy to describe since they

are uniquely debned from their Prst and second moments. We e these states here and discuss
their properties.

1.3.1  WignerOs function

The Wigner function is typically used to represent the probabhility distribution of the quadratures of
a quantum state. It is debned in the general case from the dertgi matrix of the quantum state by

*
!

1 & i . T ' '
W=y e "p+ pltip$ p!dp. (1.62)

Since the quadratures are conjugate variables, the Heisemlg uncertainty principle prevents us
from precisely debning the joint probability distribution Pr(p,q. However it is possible to debne
the marginal distributions Pr(p) and Pr(qg). The Wigner function is a good probability distribution
approximation for quantum states since it gives the margind probability distributions as :

*
&

Pr(po) = - W (po, g)dq. (1.63)

The Wigner function is called a quasiprobability density function because it can take some negative
values in small regions for quantum states which have no clagsl representation.
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1.3.2 Gaussian states

Gaussian states are quantum states for which the Wigner fundbn is a Gaussian such that each
marginal probability distribution is also Gaussian. The probability distribution of the quadrature
operators of a Gaussian state can be written as

. N (kp.+5), (1.64)
9. N (g, +3). (1.65)

This debnition can be extended to ann mode Gaussian state which is entirely debned by its brst
and second moments. The brst moment of am mode quantum state is the displacement vectord
given by the mean values of the quadratures in each mode

d=("pe!, "G, .. "0 G D). (1.66)

The second moment is given by the covariance matrix$ with the matrix coe! cients

Sy = 5(1 6.1 g}, (1.67)

where6= (&4, pn, ..., ¥n, Bh) and {, } is the anti-commutator debned by{ %, o} = &p+ Pk . Therefore
the covariance matrix is in the form of

¢ B)® LB e . B B! G)
g=; Ul mr (e . 3t a! Gw}é , (1.68)
et (0 é ! ) . (P &)?

and is a real valued symmetric matrix. The covariance matrix wil later play a central role when
considering the informational quantities in joint quantum systems.

Coherent states. The most important class of Gaussian states for this work are alled coherent
states. They are the quantum representation of the light emited by a laser source such as those
employed in our continuous-variable quantum key distribution experiment. They are referred to by a
complex number & and are debned as the eigenstates of the annihilation operat such that coherent
state |&! obeys

al&l = &|&! . (1.69)

Coherent states can be decomposed over the Fock basis as a sygasition of all Fock states with
decreasing probability at higher energy levels. In particuar, the number of photons in a coherent
state follows a Poisson distribution as

ez 1% gn
|&! = e 2 )tl [n!. (1.70)
n!

n=0

We can easily check that the coherent states are unitary.e. "&|&! = 1 and are also non orthogonal
since for all (&' ) "' C?,

ngl' 1= gh3l" 2+ 1812 %2" #) =0. (1.71)

A consequence of this non-orthogonality is that is it impossble to perfectly discriminate between
coherent states, which is fundamental for the security of quatum key distribution. Moving on we give
some properties of coherent states. The mean value of the queature operators for coherent state|&!
is
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"ol = %"&h‘a‘ + @&,
= %("&lé |&! + "&|a|&!),
= 28+ &),
=Re(&), (1.72)
and similarly
"¢ =Im( &). (1.73)

The quadratures of the coherent state|&! are the real and imaginary part of the complex ampli-
tude, thus coherent states are sometimes debned with respett their quadratures as |p+ iq!. The
guadrature operators variances are computed as

(! 97 = eI s &lplal®,

1
= Z"&|é2+iin a+@a +a@’&l'$ Re(&)?,

= J(&)7+ 18]+ |8+ 1+ &) $ Re(®)”,

= %(4 Re(&) +1) $ Re(&),

1
=7 (1.74)
and proceeding similarly on the ¢ quadrature gives
(! 62 = %. (1.75)

Therefore the coherent states minimise the Heisenberg unceinty relation in equation L.61] Fi-
nally the number operator applied to |&! gives

"Bl = "&la &|&! (1.76)
= |&J? 1.77)

We say that coherent state|&! has mean photon number|&|?.

Two-mode squeezed Gaussian states.  Two-mode Gaussian states are of particular interest for
the security proofs of quantum key distribution. In this pict ure one mode is measured by Alice and
the other is sent through the quantum channel to Bob for him to measure. Among two mode Gaussian
states, an important class of states are thawo-mode squeezed statedfer which the quadratures in each
mode are perfectly correlated. The covariance matrix of twomode squeezed states is of the form

$ , %
_ cosh21, sinh2r+,

$rmsv = ginh 2+, cosh21l, '’ (1.78)

where we have

(1.79)
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A two-mode squeezed state is a pure state which is the continugs-variable counterpart to the
maximally entangled Bell state in the discrete-variable picture. Therefore these states are calledEPR
states. They are represented in the Fock basis as

1&
tanh" r |n,n!, (1.80)

1
[TMSV! =
coshr

1.3.3 Gaussian transformations

The set of Gaussian transformations is the set of unitary trarsformations which transform a Gaussian
state into another Gaussian state. They will often be the transformations that a" ect the quantum
states transitioning over the quantum channel during the QKD protocol.

Symplectic transformations. An important subset of Gaussian transformations called the
symplectic transformations group. It is the set of transformations that are linear in the creation and
annihilation operators and preserves their commutation rdations. For an n mode Gaussian state, the
symplectic transformations are debPned by &n ( 2n symplectic matrix S such that :

r ¥y 1"
usT = 0 0=
S%S 0% where % . $1 0 ° (1.81)
where the direct sum is debPned on matriceé\ and B by
1 $ %
AT B= A0 (1.82)
- O B . .

A symplectic transformation on a Gaussian state is entirelydebned by its & ect on the brst and
second moments as

dout = S (1.83)
$out = S$in S’ (1.84)

In particular for continuous-variable quantum key distribu tion we will consider Gaussian states
with zero mean. Then the brst moment is zero and the full descriffon of the state is given by its
covariance matrix.

Theorem 3 (WilliamsonOs theorem) Every positive-dePnite real matrix of even dimension can be
put in diagonal form by a symplectic transformation. In particular this can be applied to ann mode
Gaussian state covariance matrix$ where for some symplectic matrixS, the following holds

| | 1n $ %
! . ! _. 0
$ =S$ST, with$ = O' . (1.85)
i=1 R
The n coe cients -; are called the symplectic eigenvalues & and are the eigenvalues of the matrix
$ %$%$

WilliamsonQOs theorem is a powerful tool to analyse Gaussisstates and plays a central part in
guantum information theory on with these states.

Examples of symplectic transformations We give here some of the most common symplectic
transformations on optical modes which we will use in further analyses.

Phase rotation : a phase rotation by an angle. of a single mode state is described by the symplectic
matrix Re, given by
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Figure 1.1: Representation of the beamsplitter with two input spatial modes @ and 8 and two output
spatial modeso6 and @

$ %
cos.  sin.

Ro,= .
% $ sin. cos.

(1.86)

Beamsplitter : the beamsplitter with transmissivity / is described on the creation and annihilation
operators of two input modes(&,8) and two output modes 6, ® such that

) # N
6= Q‘H 1$ 78, (1.87)
d=$ 13/a+ ) 18, (1.88)

Then the relation between the four input quadratures and the four output quadratures is

et ) ) St
pc/ T )O 157 )O/ pa/
'@y _ )0 T 0 1$7) » Gy
0 ts) IST o 7 0 0% pd (1.89)
i o $ 1$7 o0 T i,

We refer to the matrix representation of the beamsplitter of transmittance / applied to modesA
and B asBag (/). The covariance matrix of a two mode Gaussian state after the bamsplitter is

$out = Bag (/)$in BXB (/) (1.90)

The beamsplitter is very convenient to model channel lossessaa unitary process in quantum key
distribution protocols. The Prst input mode é& is the signal mode at Alice while8 is taken as the
vacuum state of the environment. The output mode 6 is the signal mode at BobOs and modfis the
environment mode after transmission. We will discuss this mee in section[4.3 when computing the
Holevo information leaked to the environment during the quantum key distribution protocol.

1.4 Measurement of the quantum states

In a continuous-variable quantum key distribution protocol the information is encoded on the quadra-
tures of coherent states. The quadrature operators are obseables, meaning they correspond to a
physical quantity we can estimate. In particular for CV-QKD, w e will need to express the post-
measurement state shared between Alice and Bob. Hence we ddop here the formalism of the
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Figure 1.2: Homodyne detection scheme. The signal mode is mex with a strong laser called the Local
Oscillator on a 50/50 beamsplitter. The intensity on both outputs of the beamsplitter is measured
and subtracted to constitute the homodyne measurement.

guadrature measurement process. This is calledoherent detectionsince it involves mixing the signal
state with a strong reference signal calledocal oscillator (LO) on a balanced beamsplitter. The mea-
surement result then depends on the relative phase betweerhé signal and LO. Coherent detection
can be divided into homodyne detection and heterodyne detdimon depending on whether a single or
both quadratures are measured. Note that these terms used bthe QKD community have a di" erent
meaning for the telecom industry, so we make clear that the tems used here are taken in the sense of
the QKD community.

1.4.1 Homodyne detection

Homodyne detection permits the measurement of one quadrate of the light, as opposed to heterodyne
detection for which both quadratures are measured.

Quadrature measurement.  The homodyne detection scheme is represented in the bgyre [L.Zhe
signal mode, denoted byS, is mixed with the LO on a 50/50 beamsplitter. Two detectors placed at
the + and $ outputs of the beamsplitter produce photocurrents| * and | proportional to the mean
photon number in the corresponding mode. The quadrature measgement is given by subtracting the
I * and | % currents. According to the beamsplitter model we can write the photon number operators
in each mode as

D, =@, 8, = é(aS +@ o )(bs + @), (1.92)
By, = @y, 8o, = §($ g + @ o )($és + @o ). (1.92)

The operator for the di" erence in photocurrentsQ is proportional to

p - ﬁ+$ﬁ%

- éséLO + @Lo ég, (193)

where the proportionality factor depends on the characterisics of the photodectectors. Since the
local oscillator is a classical beld with energy levels muctatger than one quantum unit, hence we can
assume that applying the creation and annihilation operatas does not change the state. Therefore
we can use the classical beld assumption and replaégo and & , by the classical beld amplitude
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Figure 1.3: The homodyne detection amounts to computing the anplitude of the projection of the
guantum state |&s! on the vector debned by the local oscillator amplitude and plase.

ELo €% with . o the phase of the local oscillator. Then the mean value of opetar Q when the
signal state is coherent state|l&s! = ||&|€'% ! is

"F"? r-" &SléséLO + @LO 8s|&s!
- Eio (88€™0 + &5 )
- 2E.0 Re(&se” %0 )
- 2E0|&|cos(s$ .10), (1.94)

which is the quadrature of the coherent state|&s! in phase with the local oscillator. By shifting
the local oscillator phase by) / 2 we have that

2. 2E 0 |&lsin(.s$ .0) (1.95)

which is the quadrature of |&s! in quadrature with the local oscillator. Therefore by controlling
the phase of the local oscillator we can chose to measure anhdtrary quadrature of the signal.
Equivalently homodyne detection can be seen as a projectionf the signal on the quadrature of the
local oscillator as is depicted in bguré¢ 1]3

Shot-noise. Consider the variance of the quadrature measurement. It is gien by

(1 B)2="@ig Q17 (1.96)
where the brst term is
Pl Ef "&s|(Bg)’ePe +@de o + gl + Bisbg|&s! (1.97)
- Efo ((88)%€%%0 +(&s)2e20 12187 +1) (1.98)
- E% 2/&%(2cog(.s$ .10)$ 1 +2]&%+1), (1.99)
- 4EZ; (&P cog(.s$ . 10)+ El (1.100)

and we have
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Figure 1.4: For heterodyne detection, the signal is mixed wih vacuum when split on a 50/50 beam-
splitter

017 . 482 182 co2(.s $ . 10) (1.101)

We used the commutation relation of the ladder operators to @ from [1.97 to[1.98 and a trigono-
metric formula of the cosine to go from[1.98 td 1.9p. Since thgroportionality factors are the same

in the expressions 01"I0!Z I'and"Q ! we can write the variance of the observable as

(' Q)2=No- E. (1.102)

The variance of the homodyne measurement comes from the quamn commutation relation be-
tween the ladder observables and is proportional the local agllator intensity. This variance is called
the shot-noise and is noted Ng in this manuscript. It plays a signibcant role in quantum key distri-
bution protocol because it is a normalisation value which is sed to calibrate experiments. We will
discuss this further in the next chapter.

Heterodyne detection. Both p and ¢ quadratures of a coherent state]&s! can be measured by
splitting the signal on a 50/50 beamsplitter and performing a double homodyne measurement, one on
each branch. In that case it is called aheterodyne measurement. The splitting of the signal in mode
S in the two modes S, and S, induces an additional vacuum contribution because splittng the signal
on a beamsplitter mixes the state with vacuum. Thus we have

; 1 . ;
Bspq = )7?(68 t ),

where % is the annihilation operator of the vacuum. By substituting this expression toés in the
case of homodyne detection, we bnd that

. 1 .
"B et = 358 Lo - (1.103)

However the variance of the operator is given by

n ) 2 — n ) 2
PR e =2" Q1o (1.104)
because there is the additional commutation relation of thevacuum ladder operators in equation

L.97.
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1.4.2 E! ect of homodyne detection on the covariance matrix

Since Gaussian states are uniquely debPned by their brst anésond moments, it is st cient to know
how transformations a'ect these moments to debne the transformed state. In particar it will be

interesting to know the e" ect of a homodyne or heterodyne measurement of one mode on thevariance
matrix of the bipartite state. The interested reader can refer to reference [20] for more details.

Homodyne detection.  Consider the two-mode state debned by the covariance matrix
$ %

0n Oc

0l Os

where all matrices 0; are in R? and A, B denote the covariance matrices of the mode#& and

B while C is the correlations between modeA and B. A homodyne measurement on modeB will
destroy the mode and transform modeA depending on the quadrature that is measured. This is
described on the covariance matrixO, g of mode A after measurement by

$= (1.105)

Oale = 0a $ Oc (" pgOg" qp)”t0L, (1.106)
where" 4 is the projector on the p or g quadrature of modeB and is given by
$1 0% $0 O%
P= 0 o0 and" ¢ = 0 1 (1.107)

The matrix Oc (" pq08" q,p)**0L is not invertible, but it is diagonal. The notation ** denotes the
Moore-Penrose pseudoinverse, which is the corresponding itnix where all non-negative eigenvalues
are inverted. The expression iff 1.106 simplibes as

1 "
ORcl)gl = OA $ WOC p'qog (1108)
Heterodyne detection. In the case of heterodyne detection the mod® is Prst split on a balanced
beamsplitter which mixes the mode with a vacuum state and is desribed on the covariance matrix

by

* Oph Oc O
$=Bgy(1/2)-0 0g 00Bg, 127, (1.109)
0 0 1,
where
"1, o 0
Bey(1/2)=- 0 #1, #1,0 (1.110)

0 $#1, #1,

We compute the covariance matrix after a heterodyne measument which is a homodyne mea-
surement on the p quadrature of one mode andg measurement of the other. The result yields

05 = Oa $ 0c(0s + 15)""0C. (1.111)

This concludes our brst chapter. Here we introduced the Hilbert space foralism which permits
to describe quantum states and reviewed some important quantum mechaadi@roperties in the no-
cloning theorem and the uncertainty principle. We also debned the quadrateroperators and the class
of coherent states which will be used in the rest of this manuscript. Finallywe described the ‘eect
of heterodyne or homodyne detection on the quantum states which will be usefaldompute the post-
measurement information of the adversary during the QKD protocol. To do this, we kst need to
debne information and give some insights on how to compute it. We do this in theert chapter.
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Chapter 2

Classical and quantum information
theory
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In this chapter, we debPne and study the information that is cortained in classical variables and
in quantum states. We aim to give the tools to debne and quanfly the information shared between
Alice and Bob during a communication protocol Bsuch as QKDD awell as the information leaked to
Eve.

2.1 Classical information theory

The founding father of modern information theory is undoubtedly the American engineer Claude
Shannon with his article published in 1948 A Mathematical Theory of Communications. We will
review in this section the core principles of ShannonOs imfoation theory.

2.1.1 Introduction to information theory

Debnition 3. A random variable X is debPned by a set of possible outcomeX and a set of cor-
responding probabilities {px (X)[x ' X}. The outcomes X can be discrete or continuous and the
following relations hold :

- X ' X ! pX (X) '| [0! 1]! (21)
if X is discretg  px (x)=1, (2.2)
X X
if X is continuous px (x)dx =1. (2.3)
X

35
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When X is continuous, px is called the probability density function. In the rest of thi s section we
will consider X is discrete. Note the results hold in the continuous case byubstituting integrals to
the sums.

The mean value of the random variableX , noted "X !, and its variance noted var(X ), are given by

|
"X1= px (X)ax, (2.4)
x! X

var(X)= "X21$" X1, (2.5)

A fundamental question answered by Shannon ifow much information is contained in a realisation
of X. Conceptually, if the result of X is certain i.e. p(X = x) = 1, then the realisation of X does
not provide any information since we can predict with certainty the result. On the contrary a very
improbable realisation of X carries a lot of information, since the result was nearly unpedictable.
Thus the information provided by the realisation of a random variable depends on the probability of
the realisation. With this in mind a natural candidate to qua ntify information is the $ log function
since when the result is certain$ log(1) = 0 and this quantity increases as the result becomes less
probable.

Debnition 4. The information gained by the realisation x of a random variable X is given by :

I (x) = $ log, px (X), (2.6)

where the logarithm is taken in base 2 and therefore the informtion is expressed in bits. The
average information provided by the random variableX is called entropy and is dePned as follows.

Debnition 5. The entropy of a random variable X quantibes the average information provided by
X . Itis noted H(X) and equal to :
!
H(X)=$%$  px(x)log; px (). 2.7)
x! X

Notice the entropy does not consider the realisations of theandom variable but only their proba-
bilities. The joint entropy of two random variables X and Y quantibes the average information gained
by the joint realisations of X and Y. It is computed over the set of outcomesX and Y as :

|
HX,Y)=$ p(x,y)log, p(x,y). (2.8)
xIXylyYy

The joint entropy can be generalised to any number of random vaables by considering the joint
probability distribution of all variables. In general the jo int entropy of X and Y is not equal to the
sum of the entropies. This is because when they are considerediitly, X and Y can have some
information that is redundant. We characterise the remaining uncertainty on variable Y (X) when X
(Y) is known with the conditional entropy :

H(Y|X):H(X',Y)$ H(X), (2.9)
=$  p(xy)log, p(ylx), (2.10)

x! Xyly
and H(X|Y) = H(X,Y) $ H(Y), (2.11)
=$  p(xy)log, p(x]y). (2.12)

x! Xyly
(2.13)

The entropy obeys the following relations :
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¥ H(X)* 0: arandom variable X carries information greater or equal to 0, with equality if and
only if X is deterministic.

¥ H(X) # log, [X] : the maximum of the entropy of random variable X is log, |X| with equality
if and only if X is uniformly distributed over X i.e. . x"' X, px (X) = ﬁ

¥H(X,Y)# H(X)+ H(Y) with equality if and only if the random variables are independant
such that p(y|x) = p(y) and p(x]y) = px (x) thus H(Y|X)= H(Y) and H(X|Y) = H(X).

Finally an important measure in the beld of communications & the mutual information Ixy shared
between two random variablesX and Y.

Debnition 6. The mutual information |xy between random variablesX and Y is a measure of the
common information in both variables. It is given by :

H(X)+ H(Y)$ H(X,Y),
H(X)$ H(X]Y),
H(Y)$ H(Y|X). (2.14)

I'xy

The mutual information plays a central role in communications since it quantibes how many bits
X and Y have in common. Therefore if distant parties hold random varible X on one hand andY
on the other, such as whenX is a random variable corresponding to the state sent by Aliceand Y is
be Bob®Os measurement result, they can extratky shared bits.

2.1.2 Information theory with Gaussian variables

An important category of random variables for is Gaussian raadom variables, that is when X and
Y follow a Gaussian distribution. Such distributions hold a central role in classical communications
since they maximise the amount of information that can be shaed. We discuss the information theory
guantities in this case here.

A Gaussian random variableX , N (u, +2) is entirely debned on the set of real numbeR by its
prst two moments, that is its mean value p and variance +2. The density probability of the random
variable X is given by :

Bx () = ) e (2.15)
)+ 2

The entropy of a Gaussian random variableX , N (y, +2) is

*

HX)=$% . px (x)log, px (x)dx, (2.16)

= %élogz(Z) e+?). (2.17)

Note that for a given variance +2, the Gaussian distribution is the distribution which maximi ses
the entropy. We can further debne the joint probability distribution of Gaussian random variables
X, N(ux,+3)andY, N(uy,+%) as:

3 4
1 ; X%+ + y2+42 $ 2xy "XY !
Pry (X Y)= —2——dexp 1 Y X 4

S e 5 (2.18)
2) +>2<+$$"XY!2 2(+X+Y$ XY ! )

Similarly than for a single Gaussian variable, a joint distribution of Gaussian variablesX and Y
is entirely dePned by its Prst two moments"XY !, +2 and +2. Therefore for centered variables, the
covariance matrix Kxy debned by
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Figure 2.1: Channel representation

3, o4
_ 42 XY

KXY - "XY I +$ ’ (219)

is su cient to describe the joint distribution of the two Gaussian random variables X and Y.
In addition, the entropy and mutual information quantities ¢ an be computed from the covariance
matrix as we show below. The joint and conditional entropies ofX and Y are found by plugging the
appropriate density functions in equations[2.8 and 2.p:

& L}
H(X,Y)= %Iogz (2) e)%adetK xy (2.20)
%
H(Y|X) = }Iogz 2) eéw , (2.21)
2 +2
and the mutual information is given by :
0
I = 1o P gy ” 2.22)
Xy - 2 9% dethy ’ )

2.1.3 Communication over a noisy channel

The information theory quantities weOve discussed above ansed to describe communication protocols
over noisy channels. In such protocols the transmitter, Alce, sends a realisatiorx * X of X to the
receiver, Bob, who receives realisatiory ' Y of Y. The goal of the communication is for Alice and
Bob to share information -or bits- via the protocol, which is given by the mutual information |xy
between the random variablesX and Y. The channel model is represented in bgurg 2.1.

Note the channel is entirely debPned by the transition probalilities p(y|x) between random variables
X and Y. Then an important subcategory of channels is thememaorylesschannels, for which p(y|x)
does not depend on previous events. The maximal amount of bitshat can be shared by sending
one symbol for memoryless channels is called thehannel capacity and is given by ShannonOs second
theorem.

Theorem 4 (Channel coding theorem) Let a sender, Alice, send realisationx of random variable
X over a memoryless channel to the receiver, Bob, who measures realisatignof random variable Y .
The maximal amount of bits that can be shared by this scheme is called the channapacity and is
given by :

= max lX,Y . (2.23)
{px (x)}

Essentially ShannonOs channel coding theorem states thatdre is some distribution of X which
enables Alice to send an average df bits per symbol to Bob without errors. Reversely if Alice tries
to send more thanC bits per symbol the transmission will contain errors.
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The AWGN channel. The main channel model for classical communications and quaom key
distribution protocols with continuous variables is the additive white Gaussian noise (AWGN) channel.
It is debned by the following relation between variablesX and Y :

Y =X+ 2Z (2.24)

where Z , N(0,+2). Z is called noise because it is added to the signaX and contains no
information. It is obviously additive and we say it is white because it is assumed to be the same for
each frequency. The opposite of a white noise is a colored noisgich is not equal over all frequencies.
The transition probabilities of AWGN channels are Gaussian ensity probabilities given by

%L 02

p(ylx) = ae 'z . (2.25)

2)+2

Theorem 5 (Capacity of the AWGN channel). The capacity of the AWGN channel is given by :
$ %

-1 5

Cawen = §a|092 1+ el (2.26)

where +3 is the variance of the random variableX .

Proof. We have :
Ixy = H(Y)$ H(Y[X), (2.27)
= H(Y)$ H(X + Z[X), (2.28)
= H(Y)$ H(Z), (2.29)
1, &

=H{)$ éalog2 2) ets . (2.30)

For a bxed variance+Z , H (Y) is maximal ¥henY.is Gaussiani.e. wherX is Gaussian. In this case
we have+ = +% + +2 and H(Y) = ldog, 2) e+ . Substituting H(Y) in the mutual information
expression above gives the capacitfawen Which concludes the proof. O

The fraction % is called the signal-to-noise ratio, or SNR, and represents the signal power relative
z
to the noise power. The capacity of the AWGN channel is sometines notedCawen = %éilog2 1+SNR

2.2 Quantum information theory

The information-related quantities debned in the brst secton can be extended, thanks to the quantum
formalism, to the quantum domain. This is particularly inter esting since it becomes possible to bound
the information accessible to an eavesdropper during a quanm communication.

2.2.1 The Von Neumann Entropy
The extension of the notion of entropy to quantum states is caled the Von Neumann entropy.

Debnition 7 (Von Neumann Entropy). Any mixed or pure quantum state 6 can be written as
B = (il$i!"$i| where the |$;! are orthonormal vectors and ,|(i|[*> = 1. The Von Neumann
entropy of b is the generalisation of the notion of entropy to quantum stae 6. It is noted S(6) and is
debned by
]
S(=9% (ilog, (i (2.31)
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To not have to write the explicit eigenvalues of 6 the Von Neumann entropy is more conveniently
noted :

. S5, 6
S(8) = $Tr Blog,' . (2.32)

The Von Neumann entropy quantibes the average information tkat can be obtained by a measure-
ment of state '6. It has properties similar to the classical entropy :

¥ For all 6, S(6) * 0 with equality if and only if '6is a pure state, which would be the classical
equivalent of a deterministic state.

¥ If 'Bis a quantum state in a Hilbert space of dimensiond, S(%) is bounded by S() # log, d with
equality if and only if 6= 1/d.

¥ If ‘byg is the density matrix of a composed system that is a pure statethen the Von Neumann
entropy of each subsystem is equal i.eS(8s) = S(g ) where't, and 6 are the density matrices
obtained by tracing out subsystemB and A respectively.

¥ S(®) is constant under any unitary transformation i.e. for any unitary U, S(UBU ) = S(9) .
For a system composed of subsystem& and B we can also debne the following entropy values :
¥ The conditional entropy : S(A|B) = S(AB)$ S(B).

¥ The quantum mutual information : it is the quantum counterpart to the mutual information
and is given byl (A,B) = S(A)+ S(B)$ S(AB).

Von Neumann entropy of Gaussian states
When '6 is an n-mode Gaussian state, the Von Neumann entropy can be computefrom the
symplectic eigenvalues of the state covariance matrix as
%
' In $(| $ 1 0
S(%) = G 5 (2.33)
i=1
where the symplectic eigenvalues are debned in 1]85 and thenfttion G is given by G(x) =
(x +21)log,(x +1) $ xlog,(x).

2.2.2 Accessible information

Suppose a setting where Alice communicateslassical information with Bob using quantum states,
which is the case during our QKD experiment. Similarly to classical communications, Alice holds a
random variable X which can take for examplen values{O0, ..., n} with probabilities {p1,..,pn}. Based
on the realisation of X, Alice prepares quantum state tx chosen from a set{'t,,...,'6,} and gives
the state to Bob. By performing a measurementM on the state 6x , Bob obtains a classical random
variable Yy which depends onX and the measurement.

Debnition 8 (Accessible information). The accessible information is the maximal amount of classida
information that can be extracted from a quantum system when the information is encoded using a
particular ensemble of quantum states, and is given by

|)a<1?(€:) = m’alx lX,Y M- (234)

Therefore the accessible information computes the maximumfol x y,, optimized over the set of
all possible measurements performed by Bob. We do not have aexplicit formula to the accessible
information in this case, but it is possible to give an upperbound.
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Theorem 6 (HolevoOs bound)In the setting described above, the accessible information on variable
X from the quantum state'6 is

! n

156# S(0)$  pS(B), (2.35)
i=1

where'6 = i”:l pi'G is the mixed state sent to Bob. The right hand side of the inequality is cate
the Holevo information of state'6 and is noted 1 (6, X)

The Holevo bound is tight if '® = I/n, that is if the {'§} form an orthonormal basis of the n

dimensional Hilbert space and are equiprobable, i.ep; = 1/n .i. Then we can write the state ' in
the form :
! n
6= [it"if, (2.36)
n.
i=1
where"i|j! = !;; . Since the quantum states sent by Alice are orthogonal, Bob &n discriminate

between the n quantum states with probability 1 by applying the projective measurements{E; =
[i'"i]}L,; . Then we haveY = X and we can compute the mutual information betweenX and Y :

Ixy =log,n. (2.37)
which is also the Holevo information since the§ are pure statesS(%) =0 and S(8) = log , n.

This concludes this relatively short chapter where we covered the very basics ioformation theory.
We refer the interested reader to [[21] for further exploration of the Peld. Hee, we introduced the
notion of information for classical and quantum variables and gave some intesting behaviors of the
information gquantities. The important results for this work moving forward are how to compute the
Von Neumann entropy of Gaussian states from the symplectic eigenvalues as equation[2.33 and
HolevoOs bound. These will play a central role during the CV-QKD protocol, whichewwill discuss
further in chapter ] Before this however, we cast aside the quantum world Bjust forkatb in the next
chapter to discuss some basic notions of cryptography.
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In this thesis we focus on quantum key distribution (QKD), protocols which enable two distant
parties to share a secret key which is guaranteed secure by thaws of physics. But before we can
discuss these protocols and our contributions to the Peld,tiis crucial to understand the stakes of
key sharing between distant parties and why QKD is an interesing protocol to achieve this goal.
The answers to these questions require understanding of theryptographic world. We provide an
introduction to the Pbeld in this chapter and discuss the paraligm shift induced by a potential future
guantum computer.

3.1 Principle of cryptography

Cryptography is an ancient science -dating back to antiquity- which initially aims at securing the

contents of a message such that only the intended receiver naretrieve its original content. In our

digital era, insuring conbdential communications is paranount for user privacy and safeguarding of
sensitive data, but other security guarantees are also desible. We discuss in this section the di erent
security guarantees required for modern communications, r&d the security models available.

3.1.1 Secure communication

The context in which we analyse secure communications is one whe a transmitter wants to send a
messageM ' {0, 1}", also calledplaintext, to a receiver without revealing its contents if it were to fall

43
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Figure 3.1: The setting is the following. Alice needs to sendM to Bob over a communication channel,
but Eve can intercept the message and Alice must insure that lse does not learn the contents oM .

Figure 3.2: Depiction of the encryption of the plaintext and decryption of the ciphertext using the
keysKa and Kg.

in the hands of a malevolent adversary. It is customary in the eyptographic world to give names to
the di" erent roles played during the communication process. We wilfespect these conventions here
and denote the transmitter, the receiver and the adversary ly Alice, Bob and Eve respectively. We
depict the setting of the further analysis in the bgure[3.].

Conbdentiality.  The security service sought by Alice and Bob is callecconbdentiality. To insure
this, Alice performs a reversible transformation of M befoe sending it to Bob. The transformation
process is indexed by a secreK s held by Alice. It is called encryption and denotedEx,. The
encrypted plaintext is called the ciphertext and is denotedC = Ek,(M). Bob can retrieve the
plaintext from the ciphertext because he has a secreKg which provides the inverse transformation,
called decryption and noted Dk, such that Dk, (C) = M. The security of the encryption lies in the
fact that it is not possible to perform the decryption process without knowledge of Kg. The secrets
Ka and Kg are called thekeys The encryption and decryption process is depicted in the bgre[3.3.

We will discuss further in this chapter the two big families of cryptographic primitives which are
symmetric and asymmetric cryptography. In the brst, Ko = Kg = K and the keys must remain
unknown to all but Alice and Bob. In the latter K5 = Kg and only Kg must remain secret,K o can
be public which enables anyone to encrypt messages for Bob.

Security primitives beyond conbdentiality. If conbdentiality is crucial to insure secure com-
munication over public channels, it is not su cient in itself to guarantee secure communications.
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Three other security primitives are also necessary and play &entral part in modern communications

¥ Authentication.  Alice and to Bob must be given guarantees that they are commuitating with
each other and not with Eve, or else Eve could perform a so-catl Man-in-the-middle attack
where she impersonates Alice to Bob and Bob to Alice.

¥ Integrity. The message received by Bob must be guaranteed unaltered by Ev

¥ Non-repudiation. Individuals should not be able to deny actions such as signin@ contract
online.

In the next section we will see how modern cryptographic primiives insure the four security services
discussed above, but brst we discuss 'derent security models for cryptosystems.

3.1.2 Security model : information-theoretic vs computati onal

There are di' erent security models associated with encryption processesThese provide guarantees
with di " erent levels of strength, but also df erent levels of complexity.

Information-theoretic security. This type of security, also called perfect secrecy, is achied if
the a priori probability of the messagep(M ) and the a posteriori probability of the message conditioned
on the knowledge of the ciphertextp(M |C) coincide from EveOs perspective.

An example of perfect secrecy is théDne-time pad (OTP) scheme. It is a symmetric encryption
protocol for which the ciphertext is obtained by performing the XOR operation between the message
and the key of the same length than the message. Importantly, he key must be chosen at random
such that for all K we havep(K ) =2%". The encryption and decryption give

C=Ex(M)= M/ K, (3.1)
M = Dk (C)= C/ K. (3.2)

We can prove the OTP scheme has perfect secrecy using Bayes eulFor all M and K we have

p(M)p(CIM)
o(C) , (3.3)
and we have thatp(C|M) = p(K) and p(C) = p(K) which proves the point.

An important implication of perfect secrecy is that the key must be of the same length than the
message which can be dicult to implement in practice. Also the secret key cannot be e-used, or Eve
can guess information on the secret key and perfect secrecy liost. To see this, consider two messages
M1 and M, giving ciphertexts C; and C,. Then we have that

p(M|C) =

C_‘]_/ sz M1/ Mz, (34)

Eve can therefore obtain the bitwise parity of the messages. 8cause of the di culty of sharing a
unique key of the same length than the message for each commigation, usual cryptosystems do not
employ perfect secrecy but rely on a relaxed security assuntipn : computational security

Computational security. In this security model the key is generally of (much) smaller &e than
the message to be encrypted. Hence for a given ciphertext theumber of possible messages -which
matches the number of possible keys- is greatly reduced coraped to the perfect secrecy model. The
security in this view lies in the fact that the adversary has bounded computing capabilities, therefore
he cannot crack the encryption scheme in aeasonable amount of time This concept relates to how
long it takes a computer to perform a task and is quantibed in he average number of operations for
completing the task. Therefore the security in this view is dgpendant on :
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¥ The current relation between computing power and cost. The searity is debned against a
certain level of computing power which has to be estimated ba=d on current technology and
foreseeable advances. As technology progresses and cormipgtpower becomes more readily
available, encryption conventions can evolve by imposingdnger keys and more resilient encoding
algorithms.

¥ The best known attacks to crack the encryption. Although unlikely, it is always possible some-
one bnds a RBaw in an encryption algorithms which can be explo#d to reduce the number of
operations required to crack the code.

Obviously using cryptography in a computational security model is much easier than for an
information-theoretic security model since one key of bxedength can be used to encode arbitrary
messages and also be used more than once without decreasinge thecurity. This is why modern
cryptography is designed to provide security in this secuy model. In the next section we review
the relevant cryptographic protocols used today in order todiscuss in the following section how a
guantum computer can impose a paradigm shift on some currentryptosystems.

3.2 Modern cryptography

Modern cryptography is built on a set of cryptographic primitives, basic building blocks which are
used in more complex protocols to provide the desired secuyi service. Three important kind of
primitives are hashing functions, symmetric cryptography and asymmetric cryptography. Together
they can provide the set of security services discussed in baection[3.1.].

3.2.1 Hashing functions

A hashing function h is a function which maps dataM ' {{0,1}"}&_; of an arbitrary size n to
bxed-size valueh(M) ' {0, 1}* which are called hash values. Since the cardinality of inputss much
larger than the cardinality of outputs, there are necessatly collisions : two (or more) inputs M, and
M, can give the same output byh. A good hashing function is a function for which these collisbns
are very di! cult to bnd.

Interesting hash functions are key-based hash functions. Theare basically hash functions indexed
by a secret key which determines the behavior of the hash fun@n. Hash functions and key-based
hash functions play a central role in communications becaus the hash values are a bPngerprint of the
message which can be used to provide authentication and inteiy. We illustrate this in an example
below.

Application example.  Consider the previous context in which Alice encodes her mesgaM into
the ciphertext C before sending it to Bob. However this time she wants to guaratee that she sent the
message and that it was not altered, i.e. guarantee authentiation and the integrity of her message.
To do this she also computes the hash value dE using a key based hash function and output$g (C),
also called a keyed-hash message authentication code (HMAC¥he send<C and hk (C) to Bob who
computes the HMAC of the ciphertext he received. If his value oincides with hi (C), he is assured
of the authenticity and integrity of the message.

3.2.2 Symmetric cryptography

In symmetric cryptography the encryption and decryption key are the same and must be kept secret.
Until 2001 the standard encryption algorithm was DES -for Data Encryption Standard- functioning
with 58 bits keys. Labelled as too weak because of the short €zof the key, DES has been replaced
with AES -the Advanced Encryption Standard- with keys of length 128, 192 or 256 bits.
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AES. The AES encryption is a block cipher algorithm This means that the plaintext is divided
into block of equal length, 128 bits here, and each block is idependently encrypted by the algorithm
using the secret key. The principle is as follows. The 128 bits plintext is written in the shape of a 4( 4
byte matrix, then a series of transformations is iterated onthe matrix to provide encryption. Each
iteration requires a di" erent secret key to determine the specibc transformationsfathat iteration.
To do this, a set of subkeys are brst generated from the symmatr key using a deterministic key
expansion algorithm. We give the dI' erent steps of AES encryption below.

1. Generate subkeys from the symmetric keyK
2. XOR plaintext M and symmetric key K
3. Iterate N times operations below :

(a) SubBytes : permutation of the matrix bytes based on the Rijndael S-box (permutation
table).

(b) ShiftRows : circular shift of the rows of the 4 ( 4 matrix by respectively 0, 1, 2 and 3
increments to the right.

(c) MixColumns : each byte is transformed into a linear combinaton of the bytes in the same
column.

(d) AddRoundKey : XOR resulting matrix with the corresponding su bkey.

4. Final iteration, the MixColumns step is skipped : SubBytes, ShiftRows, AddRoundKey.

The number of iterations N depends on the length of the secret key. For keys of length 12892
and 256 bits we haveN equal to 9, 11 and 13 respectively. To this day, the best known tack on
AES encryption requires testing an average oR'?4° keys. It is estimated this would take longer than
the age of the universe for the most advanced supercomputeia the world.

Usage. Symmetric cryptography such as AES are used to provide conbahtiality. They are
particularly well suited to encode large volumes of data sike there is no limit to the length of the
input message. We can freely increase or decrease the lengththe message which will only result in
more or less blocks to be encoded for the block cipher algohm.

An important prerequisite for symmetric cryptography is for Alice and Bob to share a secret key
before starting the protocol. This is know as the key distribution problem and can be solved using
the other family of cryptographic protocols : asymmetric cryptography.

3.2.3 Asymmetric cryptography

Contrary to symmetric cryptography, in asymmetric cryptogr aphy the encryption and decryption keys

are di" erent. Such protocols are also referred to as public-key cptography because the encryption
key is public while the decryption key -or private key- is kept secret. Then each user in a network can
have their own set of public/private keys allowing all members of the network to encrypt messages
intended to them.

RSA. The RSA encryption scheme, named after its inventors Rivest,Shamir and Adleman, is
an asymmetric encryption scheme based on algebraic propees. Each user (e.g. Alice) of the RSA
encryption scheme has a public key composed of two integefg, n) and a private key d. These must
obey specibc rules in order for the encryption/decryption b function :

1. Alice chooses two large prime integerg and q to compute n = pq.

2. Alice computes EulerOs totient function ofi which is in this case$(n) = z=(p$ 1)(q$ 1).
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3. Alice chooses an integee smaller than n such that e is relatively prime with z.

4. Alice computesd = €”! mod(z) such that de=1 mod(z). The value e exists by construction of
z and d thanks to algebraic properties we do not develop further in his work.

Arithmetic theorems give that if 4. holds, then for all a' Z/nZ, a® = amod(n). Using this we
can construct asymmetric encryption and decryption schems usinge and d :

C
M

M € mod(n) (3.5)
C%mod(n) (3.6)

Since(e, n) is public, anyone can encrypt data to send to Alice. On the otter hand she is the only
person who knowsd therefore she is the only one who can decipher those messages.

The security of the RSA encryption scheme is based on the facthat it is very di! cult, given
(e, n), to compute the private key d. Actually the only way to do this is to Pnd p and g from n. This
is called thefactoring problem and no € cient way of achieving this has been found yet using classita
computing methods.

Usage. By nature RSA cannot be used on messages of arbitrary lengthirsce the space of possible
messages of cardinalityn. In addition since the encryption and decryption processes i@ slow due to
the operations on large numbers, it is not suited to encrypt brge volumes of data. However public-key
cryptography is particularly useful for other reasons :

¥ Sharing symmetric keys. A key interest in public key cryptography is that it can enable two
parties to share a secret key, which would later allow them to ge symmetric cryptography to
encode large quantities of data between them.

¥ Digital signature. An interesting feature of public-key cryptography is that one can also sign
messages. This is achieved by CencryptingE the message witletprivate key : the user is the only
one able to do this since he is the only one with knowledge of higrivate key. However anyone
can verify the signature using the public key. The digital sighature provides authentication,
integrity and non-repudiation.

3.3 Cryptography in a quantum world

For the last 40 years or so, starting from FeynmanOs 1981 cenénce talk [2], research 'orts were

directed towards harnessing quantum mechanical systems fa@omputing purposes. The holy grail of

the Peld is to build a universal quantum computer usingqubits as basic building blocks. As opposed
to classical bits, qubits must be described by quantum mechiaics and as such can be in superposition
of di" erent states. Harnessing this, quantum computers can perfon some tasks much faster than

classical computers, which is an exiting idea for many appliations but can pose security threats if

the hard problems at the core of cryptographic primitives become tractable. This forces us to review
our cryptographic landscape in this new context.

3.3.1 Threats to cryptography posed by the quantum computer

Quantum algorithms -running on a quantum computer- are interesting when they can solve a particular
task faster than a classical computer. Relevant examples cfuch algorithms are ShorOs and GroverOs
algorithms, named after their discoverers.

¥ ShorOs algorithm. Solves the factoring and discrete logarithm problem in polyomial time as
opposed to super polynomial time for the best classical algathm. Can be used to break RSA
encryption rendering this cryptographic primitive obsolete in a quantum world.
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Algorithm  Key length Security level Security level
for classical computer for quantum computer
RSA-1024 1024 80 bits , 0 bits
RSA-2048 2048 112 bits , 0 bits
AES-128 128 128 bits , 64 bits
AES-256 256 256 bits , 128 bits

Table 3.1: Comparison of the security levels provided by RSA ad AES against a classical and quantum
computer. Table taken from [22].

Figure 3.3: Encrypted data should be guaranteed safe durin@ reasonable period of timex. Until we
have completed the migration towards quantum-safe solutios, at time y, encryption will be performed
using quantum-vulnerable solutions. Thus if the collapse time z when a quantum computer becomes
available is smaller thanx + y, we cannot guarantee the security shelf-lifex.

¥ GroverOs algorith Searches an unstructured database witiN entries for a specibc entry
with complexity O(" N) compared to O(N) for the best classical algorithm. Can be used to
speedup the search for symmetric keys to break AES encryptig thus larger key sizes will be
necessary in a quantum world.

To illustrate the impact of these algorithms we represent in the table[3.] the € ective key lengths
of commonly used RSA and AES encryptions for a quantum compugr. The cryptographic primitives
harshly impacted by the future quantum computer are the public-key cryptography solutions such as
RSA, which are crucial to share symmetric keys.

Action must be taken now. A question that is raised by the possibility of a quantum computer
is the following : when do we adapt our cryptographic systems tothis new context ? Since the
guantum computer is still in early stages of development, tlis question is legitimate.

To answer this question, one must consider three quantitieslePned in [[8] which are the following :

¥ Security shelf-life. How long we need our encryptions to remain secure. Let us det® this
duration by Xx.

¥ Migration time. How long we need to transpose all cryptographic primitives 6 quantum-safe
solutions. Let us denote this duration by y.

¥ Collapse time. How long until we can expect a large-scale quantum computerapable of cracking
current encryption. Let us denote this duration by z.

A CtheoremE discussed i$[8] answers the question above : CxI# y > z, then worry ! E. The
idea is that until we have transitioned the full infrastruct ure towards quantum-safe solutions, soon-
to-be obsolete cryptographic primitives will continue to be used, hence an adversary could perform a
C store-now, decrypt later E attack and wait for the developnent of the quantum computer.

With the development of the quantum computer picking up the pace, it is absolutely necessary to
begin the transition as soon as possible. We discuss the stilons explored in the next subsection.
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3.3.2 Quantum-safe cryptography

Quantum-safe cryptography seeks to develop cryptographigrimitives which are safe even if an at-
tacker has access to a quantum computer. The Peld is divided ithe two complementary Pelds of
post-quantum cryptography (PQC) and quantum key distributi on (QKD).

Post-quantum cryptography. The Prst solution consists in developing cryptographic prinitives
based on problems for which a quantum computer does not proviel a sensible advantage over a
classical computer. Quantum-safe cryptography researctsimainly focused on public-key cryptography
because, as far as we know, these are the primitives which we kwowill become obsolete against an
adversary owning a quantum computer.

Let us provide some examples of PQC algorithms which are invéigiated to replace current public-
key algorithms. Some interesting candidates for post-quatum public key cryptography are for exam-
ple code-based cryptographyi[23], multivariate cryptograhy [24], lattice-based cryptography [25] and
supersingular elliptic curve isogenies’[26].

PQC is a solution applied to the software level, hence is edsiimplementable on current machines.
These solutions will follow in the approach of modern cryptogaphy in the sense that they will be
secure on the condition the attacker has limited computing pwer, and that no algorithm will be
found to crack the encryption with a considerable speedup. Moeover, PQC algorithms will need to
be adapted if the available computing power increases drastally, as was the case when we migrated
from DES to AES.

Quantum key distribution. QKD is a type of key distribution protocol. It is based on the
exchange of quantum states over a communication channel dirg a communication phase. Then, by
harnessing the no-cloning theorem and the 'eect of projective measurements, QKD enables Alice and
Bob to quantify the information leaked to Eve during a post-processing phase. Ultimately a QKD
protocol produces a secret key shared by Alice and Bob with theguarantee that any adversary has
no information on the key.

Compared to PQC, QKD requires an implementation on the physicd layer which supposes suit-
able communication channels and the necessary hardware. Theompensation for the experimental
challenges of QKD -which will be discussed in the rest of this mauscript- lies with the strong security
guarantee on the key. The fact that the adversary has no information on the secret key means that his
best strategy is a random guess, which is independant from fure developments of computing power
or of algorithm performance. We review QKD more specibcallyin the next section.

3.4 Quantum key distribution

In this section we discuss the principles of quantum key distibution and give an example of protocol.
Then we review the di' erent types of QKD existing today.

3.4.1 Principle

A generic QKD protocol is built on the assumption that two requirements are met. We begin by
discussing these requirements, then move on to giving the niia steps of the generic QKD protocol.

Prerequisites.  The setting for a generic QKD protocol is represented in the bgre [3.4. There
are two prerequisites for any QKD protocol which must be veriked.

The brst is the basic assumption that Alice and Bob are conne@d by an untrusted quantum
channel in order to exchange quantum states. The quantum chamel is said to be untrusted because
it is assumed to be Eve in the sense that she can intercept alhie quantum states output from AliceOs
lab and that all distortions taking place on the channel are her doing.
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Figure 3.4: Setup of a generic QKD protocol. The two prerequiges are that Alice and Bob are con-
nected via 1) an untrusted quantum channel which is assumed tde Eve and 2) a public authenticated
classical channel.

The second assumption is that Alice and Bob are also linked by gublic authenticated channel
to perform the post-processing. The authentication of the cassical channel is crucial to prevent any
man-in-the-middle attack which would result in the loss of ary security provided by the protocol. In
this attack Alice and Bob think they are performing a QKD prot ocol with each other while in fact
they are both talking to Eve, hence Eve generates a secret keghared between her and Alice and
between her and Bob, and can always decipher messages fromeoto the other before encrypting
them again with her second key to go unnoticed.

Contrarily to the Prst assumption the authentication between Alice and Bob is not trivial to realise
and it must be done carefully. Importantly, it cannot be achieved via public key algorithms since the
interest of QKD lies in the scenario where the adversary has aupntum computer and these algorithms
are not secure anymore. Therefore the authentication must beerformed using quantum resistant
algorithm such as key-based hash functions described in sebction[3.2.]. Since these require Alice
and Bob share a secret key, QKD is technically a keyxpansionprotocol rather than a key distribution
protocol, but the term QKD is well established and we will continue to use it in the rest of this work
for clarity.

Before moving on let us brieRBy discuss the impact of the authetication on the global security
of the protocol. The question is legitimate since we will use a @mputationally safe algorithm to
authenticate Alice and Bob, therefore what about the uncondtional security of QKD ? Well, consider
that it is irrelevant for Eve to break the authentication sch eme after the QKD protocol has taken place
since it will be too late to perform the man-in-the-middle att ack. Therefore she must do sauring the
protocol which will be very challenging. Ultimately this means that she cannot use future computing
power to jeopardize the security of the protocol, but that same limited computational assumption
must be made on her current computing power for the authenti@tion to be secure.

The phases of a generic QKD protocol. A QKD protocol is composed of diI' erent steps
followed by Alice and Bob which we review here.

1. Quantum communication. They exchange and measure quantum states sent over the quantu
channel. After this phase, the rest of the communication ocars on the public classical channel.

2. Sifting. They agree on a subset of measurements they keep, and discardet rest.

3. Parameter estimation. They reveal some of their measurement results to estimate relant
parameters to quantify the action of the eavesdropper. Theseare determined by the type of
QKD protocol employed.

4. Keymap. If their results during the parameter estimation phase are conpatible with sharing a
secret key, they map their measurement results to a bit strirg. At this stage, this bit string can
be di" erent for Alice and Bob.
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5. Error correction. They perform error correction so they agree on the same bit stng called the
raw key. Eve potentially has some information on the raw key.

6. Privacy amplibcation. They apply the same random hash function to the raw key. The stragth
of the hash function, quantiped by the reduction of length ofthe raw key, is determined by
the results of the parameter estimation phase. Informationtheory guarantees that Eve knows
nothing of the resulting key shared between them.

3.4.2 An example of protocol : BB34

In order to illustrate the QKD principles discussed above letus review the functioning of perhaps the
most famous QKD protocol, named BB84 after its inventors -Baett and Brassard- and the year of
the publication detailing said protocol -1984. This particular example will help understand how the
security of QKD protocols is captured.

Quantum communication. During a run of the BB84 protocol, Alice encodes a sequence of
classical bits on the polarisation of single-photons. For his she uses one of two bases, either the
vertical-horizontal (% and 0) basis or the diagonal-antidiagonal (L and 2 ) basis, mapping bits 0 and
1 to the states (%,1 ) and (0,2 ) respectively.

Bob measures the state of polarisation by splitting the incaning photons on a polarising beam
splitter (PBS) and placing a single photon detector (SPD) oneach path. The inclination of the PBS
determines BobOs measurement basis. Quantum measuremeheadry stipulates that if Bob chooses
the same basis as the one used by Alice, he will perfectly seme quantum states encoding bits 0
and bits 1. In the case where he chooses the other basis, the quam states will be routed to a
random SPD with probability half. The vertical-horizontal an d diagonal-antidiagonal bases are called
mutually unbiased basedecause measurement in one basis does not give any informati on a state
encoded in the other.

Sifting. After all the quantum states have been exchanged Alice and Bo publicly reveal their
measurement bases. They discard any measurement result forhich Alice and Bob did not use the
same basis, as the results in those bases would be random.

Parameter estimation. Alice reveals a subset of the bit string she sent to Bob and heaveals the
corresponding bit sequence he measured. They aim to quantiftnhe quantum binary error rate (QBER)
from their data, which is the number of quantum states which yidded an erroneous measurement result
at BobOs over the total number of transmitted quantum states The data shared by Alice and Bob at
this stage is is represented in the bgurg 3,5.

The QBER is a useful metric which quantibes the actions of Eve dring the communication of the
guantum states. To see this, consider the goal of Eve is to gaiknowledge of the secret key and the only
way she can do this is through the quantum states since she doe®t have access to Alice and BobOs
laboratories. Thanks to the no-cloning theorem[2 she cannoteplicate the non-orthogonal quantum
states and therefore can only measure the quantum states trasiting over the quantum channel to
gain knowledge. By doing so, she will necessarily introduce ssrs between Alice and Bob according
to the measurement postulatg 5. Consider for example a basioiercept-resend attack, depicted in the
pgure[3.6. The attack consists in Eve measuring each quantuntate exiting AliceOs lab and sending
to Bob a quantum state polarised according to her result. On aerage Eve will measure AliceOs states
in the wrong basis half of the time, and when she does she will inaduce a bit Rip half of the time.
Hence an intercept-resend attack will asymptotically geneate a QBER of 0.25.

Error correction and privacy amplibcation. Alice and Bob perform error correction to agree
on a raw key, then use the same random hash function to insure \& is completely uncorrelated from
their resulting key.
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Figure 3.5: Representation of the successive states sent lice and the measurement performed by
Bob during a BB84 protocol. For the columns in green Alice andBob used the same basis and conserve
their data for this state. For the columns in red, Alice and Bob used a dI' erent basis therefore they
discard that measurement. The color of the arrows representshe bit associated to that symbol, red
for 1 and blue for 0. Even when Bob chooses the correct basis, rers can occur. Alice and Bob
estimate the error rate during the parameter estimation phese.

Figure 3.6: Depiction of an explicit intercept-resend attack by Eve.
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3.4.3 Types of protocols

Since its inception by Charles Bennett and Gilles Brassard in1984, QKD has come a long way and
a multiplicity of di " erent protocols has been developed. Today QKD protocols cahe categorized by
the techniques used to encode and measure the quantum statesd by the assumptions made on the
devices during the protocol. We review these here.

Discrete-variables and continuous-variables. QKD protocols can be divided by the technique
used to detect the quantum states. The brst type of protocol réies on single photon detectors (SPDs)
to measure the phase or polarisation of quantum states. Sircthe measurement result produced is a
detector "click" the outcome can only take a discrete set of @alues, hence these protocols are referred
to as discrete-variable (DV)-QKD. The second type of protocd is called continuous-variable (CV)
QKD and uses coherent detection to detect the quadratures ofhe electromagnetic beld. This time
the measurement result can take a continuous set of values hee the name of the type of protocol.

Fundamental di" erences between CV- and DV-QKD will be discussed ir??.

Entanglement-Based and Prepare-and-Measure. In order to generate a secret key Alice
and Bob need to brst share correlations during the quantum cmmunication phase of the protocol.
In general, QKD protocols can be fundamentally dI' erentiated by whether Alice generates a bimodal
entangled state and measures her particle or if she simply @odes classical information on a quantum
state. In the brst case the protocol is callecentanglement-based EB) and prepare-and-measure(PM)
in the other. They are described in the following manner

¥ Entanglement based.Alice generates in her lab a two-mode entangled statg#!,,.. She keeps
the particle denoted by registerA and sends the other particle to Bob over the quantum channel,
which can be debPned by the mafNa:( g, such that the state shared by Alice and Bob is written

&
B = Nar( s [#!"#[pn0 - (3.7)

¥ Prepare and measure. Alice prepares a quantum state|#y! with a probability px, where the
indexesk can range over a discrete or.inbnite set of values. The state gerated by Alice is
represented by the density matrix 6y = | pc'&c where 't = [|#,!"#|. After transition on the
quantum channel, the state received by Bob is written

" &
Q3 = NA( B OA . (38)

Device independent QKD. The security proofs of QKD bounding the information leaked to
Eve rely on the implicit assumption that Alice and BobOs dedes function correctly and according to
a given model. This can create security loopholes known aside-channel attackswhen an attacker can
exploit some component which is not accounted for in the seciily proof in order to gain an advantage.

Multiple side-channel attacks have been detected and patabd for both DV- [27, [28,[29] and CV-
QKD [B0] 31, [32] systems, but it is not possible to claim new atcks will not be discovered in the
future. In an attempt to escape this hack-and-patch cycle, a mw type of protocol was developed which
does not make any assumptions on the type of devices used dog the experiment. These protocols
are known asdevice-independent(DI) QKD.

In order to understand DI-QKD we need to introduce the notion of Bell inequalities. These were
prst introduced in the paper by John Bell [33] answering the Enstein-Podolsky-Rosen (EPR) paradox
paper [3Z] claiming that quantum-mechanics were necessdyiincomplete since it is not possible to
predict with certainty the outcome of a quantum system. For Einstein, Podolsky and Rosen there
were necessarily some hidden variables which would make quiamm systems deterministic if accounted
for. In his paper, Bell shows that this is not the case by repeatig an experiment multiple times and
considering the statistics of the measurement outcomes. Hshows that if the hidden-variable theory
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were true, some inequality can be derived from the statistics Since this inequality can be violated for
entangled quantum states, the hidden variable theory is fade and some quantum systems are naturally
unpredictable.

DI-QKD harnesses this concept to generate a secret key. Alicgenerates an entangled pair of
photons and sends one pair to Bob. They measure their respeet photons either in a random basis
from a given set or in a predetermined basis. The measurements the random bases are used to verify
that their measurement statistics violate Bell inequalities and therefore that they share entanglement
and randomness. Since this is the case, their measurements the predetermined basis are perfectly
correlated and they use these to distill a secret key.

Measurement-device independant QKD. DI-QKD is particularly interesting from a theoret-
ical point of view because it requires no assumptions on theealices used during the experiment. The
downside is that is necessitates sharing entanglement oveaige distances in order to violate Bell in-
equalities, which is experimentally challenging and at the noment the reported key rates of DI-QKD
systems are very limited.

A more practical version of DI-QKD is measurement-device iné&pendant (MDI) QKD [35] 36]
which makes no assumption on the detection apparatus but assues Alice and Bob can generate their
desired quantum states perfectly. Typically during an MDI-QKD protocol Alice and Bob encode bits
on orthogonal quantum states in one of two bases. Then they sehtheir state to a central receiver,
possibly Eve, who performs a Bell measurement and outputs theesult. When they used the same
basis, they know based on the measurement announced if thest the same state or not, hence they
can deduce the bit encoded by the other party.

Beyond the increased security provided by MDI-QKD, it is interesting because the measurement
is performed outside of Alice and BobOs laboratory. In partigar this makes MDI-QKD a promising
candidate for QKD networks where all users can be connected ta central measurement node, while
no security assumptions must be made on said node.

Satellite QKD. Satellite QKD is particularly interesting because it can potentially achieve QKD
over larger distances that Pber-based protocols. The reasobehind this is that the losses in the
Pber are the main limitation for QKD protocols, and the losses in space are zero. Hence satellite
based quantum-communications can reach ground stations thusands of km apart and the only losses
a" ecting the quantum signal will be those of the, 10 km of atmosphere between the satellite and the
ground station. We refer the interested reader to referencd37] for a review of satellite-based QKD.

Fundamental limit to any QKD protocol. It is interesting to investigate if there is a funda-
mental limit to the secret key rate that can be shared using QKD. This quantity is the two-way secret
key capacity, noted C(T), and depends onT, the channel transmittance. This question was tackled
in reference [[38], where the authors derivedC(T) regardless of the type of QKD protocol considered.
The authors bnd that the following relation holds :

C(T)= $log,(1$ T), (3.9)

which is known as the PLOB bound, named after the authors.

We conclude this chapter here. We have given some insight to the functioningf current cryp-
tographic systems used for secure communications and have highlighted theed for quantum-safe
cryptography. One of these solutions, QKD, is based on the fundamental propés of quantum states
and produces a shared key with information-theoretic security. As we have stiussed above, many
di" erent kinds of QKD protocols exist, but in this work we will focus specikatly on CV-QKD. In the
next section we take a closer look to this particular type of QKD protocol.
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In the last chapter we discussed the role of QKD in the current cyptographic landscape and we
illustrated the outline of a generic QKD protocol through th e famous BB84 protocol. Then we gave
di" erent types of QKD protocols. In our work we focus on CV-QKD protocols, hence we provide a
more detailed analysis of these protocols in this chapter. W& begin in the Prst section by describing
relevant CV-QKD protocols and how some protocols can be showna be equivalent to each other for
anyone outside AliceOs lab. This will prove convenient to exiel the security analysis from theoretical
to implementation-friendly protocols. In the second sectim we discuss the dl erent attack models for
Eve and give the corresponding secret key rate. We will also mvide tools to adapt the key rate to the
practical setting. First we discuss how realistic assumptbns can reduce the power of the eavesdropper
and second we consider the impact of imperfect parameter eistation and privacy amplibcation due
to the Pnite-size ¢ ects. The third section is dedicated to the explicit derivations of the key rate based
on the protocol and protocol parameters. In the last sectionwe compare CV- and DV-QKD protocols
to understand the strengths and challenges for each technogy.
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4.1 CV-QKD protocols

4.1.1 Examples of protocols

We begin this chapter by giving a few examples of CV-QKD protools, 1 EB protocol and 2 PM
protocols. From an experimental point of view it is much easer to implement PM protocols since in
this case the quantum state generation closely resembles ¢hsymbol generation of classical telecom-
munications. In comparison, it is di! cult to generate entangled states since this involves takig other
steps which are not useful in telecom systems, hence are lessdely used.

Unfortunately the security proofs for quantum key distribu tion are built on the EB picture of
protocols, as we will see in the next section. It is however pogsle to transition from one picture to
the other to extend the security proofs in the EB picture to PM protocols, as is shown for example in
[39]. Although this is not always trivial, it works particul arly well for the GG02 protocol described in
the following. In that case we can show that from Bob and EveQs ppective, the PM version of the
protocol is indistinguishable from an EB protocol in which Alice generates two-mode squeezed states
and measures one mode before sending the other over the chaain

That being said lets describe 3 relevant CV-QKD protocols for tis rest of this work.

EPR states. The brst propositions for CV-QKD [40, [41] were EB protocols usng the continuous
variable equivalent of EPR states. They consisted in Alice gaerating the two-mode squeezed vacuum
states described by

1 ¢
TMSV!,,, = —— tanh"r|n!, |n!,,. 4.1
! AAT T coshr o Infanta (4.1)
Note that considering only particle A" by tracing out subsystem A we obtain a thermal state such
that

$ %
Tra [TMSVI"TMSV |, |,

Ba:
1&

1 2n "
mnzo tanh<" (r) In!"n|. (4.2)

The mean photon number of this thermal state is given by = sinh?(r).

GG02. The GGO02 protocol [10], named after its founders Grosshans ahGrangier, was the brst
protocol to make use of weak coherent states. For the state geration, in this protocol Alice generates
coherent state |&! according to a complex Gaussian distribution where each quasture has variance
V. The probability of sending each state in this case dependsrdy on the state amplitude and is given

w2
by p- = ﬁe%%. On the detection side, Bob randomly chooses to measure thg or g quadrature
using homodyne detection. Later this protocol was improvedinto a so-called no-switching protocol
[42,[43] where Bob performs a heterodyne detection of both quatures.

At brst the GG02 protocol su" ered from a 3-dB limit for the channel losses. This was becaes
beyond this limit Eve would systematically have more information than Bob on the quantum state.
This problem was later solved by introducing reverse-recoritiation [44] where Alice would map her
raw key to BobOs.

What is particularly interesting in the GGO02 protocol is tha t the average state sent by Alice is

described by the mixture of coherent states

*

Bp = p |&" & d&, (4.3)
"1C
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Figure 4.1: Schematic representation in phase space of theugntum states sent by Alice during a
CV-QKD protocol. On the left we represent the Gaussian moduldion, where each quadrature has a
centered Gaussian probability distribution. On the right w e represent the discrete Quadrature Phase-
Shift Keying (QPSK) modulation. Each point has a thickness due to the shot-noise.

which can be shown to be the thermal state with mean photon numberg = VTA Hence the
statistical description of the state exiting AliceOs lab ighe same in the GG02 protocol than for the
EPR states protocol. Therefore it is impossible for anyone btiAlice to distinguish between the two
protocols, and we can implement the PM version while analysig the security of the EB protocol.

Discrete modulated coherent states. Generating a Gaussian modulation for Alice can be
experimentally challenging because she needs a true randomumber generator to determine the
guadrature value to be encoded on the light. In addition, the keymap can be quite involved for
Gaussian variables compared to DV-QKD or classical teleconusing a Pnite set of states to encode
bits. For this reason it is desirable to perform QKD using sone Pnite set of states, as in classical
telecommunications. In this work we have used both the four sate protocol as well as a normalized
random walk distribution with 64 states. The state preparation in each case is described below.

(2k+1) $
CLARS

¥ Four state protocol. Here Alice chooses at random coherent statd&! = ||&|€ I for
k' {1,2,3,4}. Itis the quantum equivalent of the Quadrature Phase-Shift Keying (QPSK)
modulation used in classical telecommunications.

¥ Normalized random walk distribution. The coherent states|& ! of the normalized random walk
distribution with m? states are debned by the amplitude

) - $ % ) - $ %
& 2 m$ 1 L& 2 m$ 1
&y = k +i) 2 , 4.4
97 ms1 2 TUas 2 @
and the set of probabilities
% %
1 P st s

P = Zmwy K 2 (4.5)
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4.2 Security of CV-QKD

The security proofs for QKD protocols in general aim to bound the amount of information that has
potentially been leaked to Eve during the protocol. For this, we must make some assumptions which
will condition the security of the protocol on their veracity . We discuss this below.

4.2.1 Security assumption

Any kind of security is based on some basic assumptions. A tvial example is that we must assume
Eve is not in AliceOs or BobOs laboratory during the QKD protml, or she could simply read out the
secret key on their devices. Here we are interested in the as:iptions which allow us to bound the
information leaked to Eve during the protocol.

Attacks. The brst relevant assumption relates to the power of the attaker. We consider three
types of attacks Eve can perform to obtain information on the quantum states transiting on the
guantum channel.

1. Individual attacks. Individual attacks are the less powerful type of attack a quarium adversary
can perform. Here Eve is permitted to probe the quantum state transmitted on the channel
one by one and store them in an individual quantum memory. Shes restricted to measurements
on the individual states, but she can chose to perform her mesurement after learning of the full
information communicated on the public channel.

2. Collective attacks. Collective attacks are similar to individual attacks except for the measure-
ment performed by Eve. Here she is allowed to perform a colléee measurement on all the
quantum states stored in her memory. The measurement operatois therefore described on the
Hilbert spanned by the tensor product of all the quantum states.

3. Coherent attacks. Coherent attacks are the most general type of attack performd by Eve. Here
she can probe the entirety of the quantum communication usiig an ancilla state in a large Hilbert
space. She can then perform a measurement on the full state. Ehstate cannot in general be
written as n copies of the same state.

Ideally we would like to bound EveOs information in the genetacase of coherent attacks. However
this is a particularly di! cult problem and we only know how to derive a bound in the regine of
collective attacks. However in some cases we can extend thecaurity in this regime to the case of
general attacks. We discuss this further in the following.

Asymptotic regime or bnite-size regime. In order to compute the secure key rate, it is conve-
nient to suppose we are in theasymptotic regimewhere Alice and Bob communicate an inPnite number
of quantum states. This allows us to a) neglect the states disarded during parameter estimation and
also b) suppose we can compute perfect estimators becausetbé inbnite amount of samples.

Of course this is not the case in reality where necessarily theumber of states sent over the channel
are bnite. We will see how to derive the impact of the Pnite-sig € ects on the asymptotic key rate in
the dedicated subsectiorf 4.314.

Trusted versus untrusted receiver model. The transformation of the state between Alice
and BobOs laboratory are used to quantify the action of Eve. éivever some &ects occur in BobOs
laboratory and as such cannot contribute to the information gained by Eve since she is assumed to
only operate on the channel. This assumption is called thdrusted receiver modeland is particularly
interesting since it considerably increases the performases of CV-QKD protocols. This model will
be discussed further in the dedicated subsection 4.3.3.

This work. In this work we will focus on protocols using a discrete modulaibn because of their
experimental simplicity. We will derive the security of our protocol against collective attacks in the
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asymptotic regime. Also, we will focus on protocols using hetrodyne detection, and consider we are
in the trusted receiver model.

Unfortunately, security proofs do not yet permit to derive t he security against coherent attacks
or in the Pnite-size regime. For other protocols however, sth as BB84 and GGO02, we have been
able to derive security in the general case by using a similaapproach. In both cases, the security
was brst derived against collective attacks, following whicha de Finetti reduction [45], [46] shows that
this implies security against general attacks with a reasonble loss and that this is compatible with
Pnite-size & ects. We will discuss this further in subsectiol 4.3.4. It reméns to be shown that this is
also possible for protocols with discrete modulation, but ths issue is outside the scope of this thesis.
Hence we will limit ourselves to collective attacks and deal wth the Pnite-size € ects with a simple
approach by computing the worst-case estimator for the excgs noise.

4.2.2 Secret key rate

The secret key rate is given by the formula

K=f(r, (4.6)

wheref is the symbol rate andr is the secret fractioni.e. the number of secret bits per symbol.
The secret fraction in the case of collective attacks is gively a modibed version of the Devetak-Winter
formula [47] given by

r="1X,Y)$ sup 1(E,Y), 4.7)
Naty s
where | (X,Y ) is the mutual information between the classical variablesX and Y resulting from
Alice and BobOs measurementd.(E, Y) is the Holevo information between EveOs subsystem and BobOs
result and the supremum is taken over all possible channelsdm Alice to Bob compatible with the
data observed by Alice and Bob. The prefactor' represents the imperfect reconciliation between
Alice and Bob and is typically taken equal to 0.95 [48].

Mutual information. The mutual information term depends on the distributions of X and Y.
In the GGO02 no-switching protocol these both follow a complex Gussian distributions such that the
mutual information is given by

[ (X,Y)=log,(1+ SNR). (4.8)
Here the term SNR is the signal-to-noise ratio given by SNR= 2,(11\’7'?‘) where V, is the modu-
lation variance used by Alice on her quadratures,T is the channel transmittance and 3, is the total
noise above the shot-noise. Note this expression is normaéd by the value of the shot-noise, which
explains the presence of the unity contribution in the denoninator.
For protocols using a discrete set of states, the mutual infamation is di" erent. However in the
low SNR regime, which is the case for quantum communicationsthe Gaussian mutual information is

a good approximation. Hence we will use this expression forhie mutual information in our protocol.

Holevo information.  To compute the Holevo information term, it is convenient to assume that
Eve holds a puribcation of the state'tyg shared by Alice and Bob. EveOs register is introduced by the
isometric representation of the quantum channelUa:( ge in the EB scenario such that we can write
the tripartite state ‘6age shared between Alice Bob and Eve as

o & & oy
Opage = IdA&UA!( BE |&| &lAA! . (49)

Then we use a very useful tool known as theextremality property of Gaussian states[49] which
states that the supremum in equation[4.T is upper bounded by lhe Holevo information computed for
the Gaussian state'bE‘BE with the same covariance matrix then the state t,ge . We note 1¢(E,Y)
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this value. Since Eve holds an arbitrary puribcation of'6,g , this means that Holevo information we
want to compute is bounded by a function of the covariance matix of the bipartite state 'Oag .

We compute the Holevo information using a universal puribcéion analysis which stems from the
fact that since Eve holds a puribcation of'tsg , the Von Neumann entropy of her subsystem matches
the Von Neumann entropy of Alice and BobOs subsystem (see prrties of the Von Neumann entropy
in chapter @) Hence we can write that

S(%e) = S(6as ), (4.10)
S(Bgjv) = S(Bajy)-

In the next section, we derive the Holevo information for the GG02 protocol and for discrete
modulations using this second technique. The brst techniquevill come in use later when we will
discuss the trusted noise model.

4.3 Derivation of the Holevo information

The Holevo information only depends on the covariance matrixof the state ‘6,5 in the EB version
of the protocol. Since we implement the PM version experimetally, we need to bnd the covariance
matrix $5§ from the measured covariance matrix$3y . We know how to do this easily in the case
of the GGO02 protocol, since it is indistinguishable from the EB protocol using two-mode squeezed
vacuum states. However, we will see that this problem is morenvolved for discrete modulations.

4.3.1 The GGO02 protocol

A nice property of the GG02 protocol is that Gaussian attacksare optimal for Eve [50]. This implies
that the channel Na:( g can be taken as the Gaussian channel, here with transmittanc& and noise
3ot - This allows us to explicitly compute the covariance matrix of Alice and Bob which is given in
the PM scenario with heterodyne detection by

+ 2

=
JVals g TValy % |

$PM —
=Val =V, 1 Dot 1
7 VA L2 2 VA 2 2

= (4.11)

On the other hand the covariance matrix of the equivalent EB protocol where Alice prepares a
two-mode squeezed vacuum state is
+ ) ) .
2 $ %
o :_)7)V12 $ TV$l+z%0: al, c+, 4.12)
AB T V2$ 1+, T(V$1+1+ 3y 1 c+, bl '

whereV = Vi +1. The components of$k}! are computed during the parameter estimation phase

of the GG02 protocol following what the covariance matrix $5E is inferred. Then S(8a ) can be
computed from equation[2.33 and the symplectic eigenvalue$5E given by

#____
(12= %[ (a+ b)2$ 4c2+ (b$ a)). (4.13)

The second term of the Holevo inforfnationS(BA|Y) is computed from the covariance matrix of the
state held by Alice conditioned by BobOs measurement. We netthis matrix $,y which we compute
using equation[1.17] in the case of heterodyne detection. Irhis case the post-measurement covariance
matrix is given by
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_ 2
$ay = al2$ mlz- (4.14)

The symplectic eigenvalue of this matrix is

CZ
= ) 4.1
(2=a$ & (4.15)
Finally the Holevo information can be computed as
$ % $ % 9% %
16(E,Y)= G (15 ERS (zf ' sc (35 ! (4.16)

4.3.2 Discrete modulations

Discussion. The GGO02 protocol is very convenient because it is easy to linkhe prepare-and-measure
version of the protocol to an equivalent entanglement-base version used to derive the security of the
protocol. In addition the optimality of Gaussian attacks all ows us to suppose thatNa:( g is the
Gaussian channel allowing us to explicit the covariance maix $5§ . Unfortunately transitioning
from the PM to the EB picture for protocols using a discrete modulation is more di! cult, and since
Gaussian attacks are not known to be optimal we cannot in gene write the covariance matrix $58
and bound the key rate.

New security proofs have solved this issue by formulating tk problem as a semidebnite program
(SDP) [57], [52], where some convex function is minimized overhie set of all possible quantum states
compatible with the observations made in the PM protocol. Sué numerical methods can provide
reliable bounds on the key rate at the cost of intensive comptations which scale with the number of
discrete states used in AliceOs modulation. Hence computirkey rates when using 64 states in the
random walk distribution seems complicated.

Recently, the work in [48] has developed an analysis of theisemidepnite program to provide an
analytical bound to the numerical optimisation problem, circumventing the need for the numerical
optimisation and therefore providing bounds to the keyrate for any modulation format.

A question remains in the case of the four state protocol of whythe explicit rate derived in [48]
is much more pessimistic than the numerical results of[[52].Surely the di" erences in the objective
functions used in the respective SDPs plays a role, and perlps the explicit bound in reference[[48] is
not tight in this case. Nonetheless the authors argue that the explicit bound converges towards the
Gaussian key rate as the number of states in the random walk diribution increases, and provides
the Gaussian key rate when Alice employs a Gaussian modulatip hence their explicit formula is
necessarily tight for higher order modulations.

Our approach. In this work we will present two protocols implementing respedively the four
state protocol and the protocol with 64 states in the random wdk distribution. We began with the
four-state protocol based on the results of([52] which yieldé positive key rates in our case. Following
this the work of [48] showed the advantage on the key rate of lisg higher order modulations and gave
an explicit bound to compute it. Unfortunately their pessimistic results for the four-state protocol
meant the key rate in our protocol collapsed to 0 using their poof.

Since we have two ways of deriving the key rate in the case of thfour state protocol, we will be
picky and use the results of [[52] which is advantageous compead to [48]. However we will use the
explicit key rate formula of [48] when scaling up to the randomwalk distribution. In the following, we
will transpose the results of reference[48] to derive the exjgit key rate, and we will brieBy compare
the results of both references for the four state protocol.

Explicit key rate for discrete modulation formats. The approach of [48] is to consider the
covariance matrix of the bipartite state after transmission over the channel as
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$ %
V1, Z+,

Z+, [T(V$ 1)+1+ 3oL (4.17)

$ag =
where the covariance termZ is not known in general. Since the Holevo information is invesely
proportional to Z, we can bound the Holevo information by minimizing Z. Before we give the result
derived in [48], a few quantities need to be debned, which we da the following.
We begin by writing the density matrix of the state generated by Alice, rebranded to 4 from '6a
to stick with the notations of [48]. Hence we have

IM
4= Pl & (4.18)
k=1
where M = m? is the number of states in the modulation, equal to 64 for us. Tken a puribcation
of the state 4 is given by

[#pn: = ) P 1#k! |&! (4.19)
k=1
where the states|#y! are debned by
[#! = ) B oY % & ! . (4.20)

Here 47V 2 denotes the square-root of the Moore-Penrose pseudo-inga of#. One can check that
the [#! form an orthonormal basis and that tracing out Alice subsystem in [#!,, . collapses the state
to 4. Finally we debne an operatora. which will be useful in the following and is given by

a, = 4Y2a4"V2 (4.21)

Lower bound on Z.We now state the main result of [48]. A lower bound toZ, denotedZ®, is given
by
e g
z%=2¢%$2 w ng$ 2 (4.22)

i

where the two termsw and "n! are debned by modulation used by Alice andc;, ¢, and ng are
determined by BobOs measurement results. These parametere alePned by

M9 %

W= ope "&la.at|&!$ | "&lar]&! I, (4.23)
k=1
M

= &l (4.24)
k=1

ng = Tr[d s B 8], (4.25)
1 % e 4

= ST the Gl [&! ! #] & B+ he. (4.26)

k=1

1 % ; -’

C = E Tr '6ag & |#k!"#k & gl +hc. (427)

k=1
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Figure 4.2: Secret key rates versus the distance for the foustate protocol. (left) Results taken
from [52] where the authors solve the SDP they debPne numeridgl (right) Key rates obtained using
the explicit lower bound to the covariance term debned in[[4R For both plots the value of & was
optimized.

where the term h.c. in the last two expressions denotes the haritian conjugate. Let us discuss
these values. Firstw only depends on the state prepared by Alice in the PM version bthe protocol.
The mean value"n! is the mean photon number sent by Alice. The third term ng is the variance of
BobOs state. Finally, the terms; and ¢, are linked to the Prst moment of the state measured by Bob.
The valuesng, ¢; and c; can be determined experimentally in the following way.

During the protocol, for each state |&! sent by Alice, Bob measuresN complex values' i; for
i' {1,..,N}. Let us note"' \ the bPrst moment of BobOs state debned by

Y= Tr8 8, (4.28)
where 6 = Na:( g (|&!"&|). Bob builds the estimators for'  and ng as
0 — 1 !N ' o 1| ' 2
4 = N Ki be = 3 Pl ki 28 1. (4.29)

In the limit of large N, we have that 0, % '« and bg ﬁmg) ng . Finally the values ¢; and

C, are given by
8 M 9
¢t =Re P& |ar] &'k, (4.30)
k=1
8 M 9
Cc; = Re pk&kl kK - (4.31)
k=1

and can be computed using the estimatotd, instead of' . Once the 5 values have been computed
and Z® determined, we bound the Holevo information by computing1€(E, Y) in the same way than
for the GGO2 protocol.

Comparison of the key rates in references [52] and [48]. In the Dgure, we show on the
left plot the key rates obtained numerically via the SDP debred in reference[[52]. On the right we
plot the key rates obtained using the method of [48] describ@& above and with the same parameters.

Note that the excess noise parameteB is debned at the channel input rather than at the channel
output, hence the value 3t we used in our analysis is related to the parameteB as 3,: = T3 where
T is the channel transmittance.
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Figure 4.3: Trus~ted receiver model. The detection losses andoise are modelled by mixing an EPR
states with BobOs mode in his laboratory.

It is clear from the comparison that the key rates obtained in 52] are more advantageous : a
positive key rate over 50 km is possible with3 = 0.04 while using the explicit bound method the
maximal distance is about 7 km when3 = 0.015 Hence we will use their results for our four state
protocol implementation.

4.3.3 Trusted receiver model

The Holevo information leaked to Eve increases as the exces®sise increases and as the transmittance
of the channel decreases. This can be intuitively understoods the fact that the excess noise quantibes
the interaction of the eavesdropper on the quantum states, ad that all the losses are given to Eve so
that she can gain information.

In a real experiment however, there are some constant noise ses and losses that occur in BobOs
lab and therefore cannot be caused by Eve. This is the case fohe losses in BobOs detection apparatus
and the electronic noise in BobOs detectors. In addition thelectronic noise is the dominant excess
noise contribution and greatly deprecates the key rate when ssumed to be caused by the actions of
Eve.

Therefore it is interesting to dePne a model taking into accout the fact that Eve cannot have
induced the receiver losses and noise. In this scenario we wato rewrite the excess noise and the
transmittance as :

T = Ten/, (4.32)
3ot = /3ch + -el, (4.33)

where T¢, and 3, are the transmittance and excess noise of the channele. caused by Eve, and
| and - ¢ are the the transmittance and noise of the receiver. We call his the trusted receiver model
and explain how to compute the Holevo information in this new setting.

Universal puribcation analysis In the trusted receiver scenario the receiver noise and losse
are not due to Eve, hence do not contribute to the Von Neumann atropy S(®e) of EveOs subsystem
in the pure tripartite state after the channel transmission 6xg ,e. They will however impact BobOs
measurement result and therefore EveOs Von Neumann entro@(%g |y ) conditioned on BobOs resuilt.
We model this by attributing the receiver noise and losses tadhe mixing of one mode of an EPR state
of variance W, with the mode B; incoming to BobOs laboratory on a beamsplitter of transmisegity /.
This is depicted in Pgure[4.B. We denote byt-: the EPR state in BobOs lab modelling receiver noise
and '6g , the state shared by Alice and Bob after transmission and befte BobOs detection apparatus.
The total state at this point can be written as a tensor product of two states

Ong ,Fict = Oag, & GG, (4.34)



4.3. DERIVATION OF THE HOLEVO INFORMATION 67

Figure 4.4: We compare the key rates obtained in the trusted eceiver scenario compared to the
"paranoid" model for the GG02 protocol. (left) key rate versus distance with 3, = 0.01 (right) key
rate versus3y at 5 km. Other parameters were taken equal to :Va =5, -¢ =0.1,/ =0.9.

and the total covariance matrix is given by the direct sum $it = $a8, / $r:c. Since Eve hold a
puribcation of Ong , WE have that S(8e) = S(8as, which is computed from the covariance matrix of
Alice and BobOs subsystem given by

8 9
Vi, e+,

- , 4.35
$807 Lk, [Ta(VS )41+ Bl (435

where the symplectic eigenvalues are computed following eation f-13. In BobOs detection appa-
ratus his mode B; is mixed on a beamsplitter Bg,r: (/) of transmissivity / with the mode F' of the
EPR state modelling the receiver noise. The covariance matk of the resulting state ‘tagrc IS given
by

& ' &
$asrc = ida/ Be,r(/)/ ide $as.ric ida/ BE pi(/)/ ids . (4.36)

We will omit writing explicitly the covariance matrix since it is rather bulky. Looking at the
variance Vg of BobOs mode we bnd the value ¥, compatible with the receiver losses and noise
- el given by

Wiee = —2— +1. (4.37)

In order to derive the post-measurement covariance matrix, ® rearrange$asre S0 that BobOs
mode is on the bottom right which gives a matrix of the form

$ 3 $ %
$arce = {%FEG V; . (4.38)

Then the post heterodyne measurement covariance matrix is gen by equation[1.11] as

1

T oest. (4.39)

Sarc |y = $arc $

The term S(%g |y ) is given by the symplectic eigenvalues of this covariance ntex following equa-
tion .33, In bPgure[4.4 we compare the key rates obtained in thearanoid model where the receiver
is not trusted and in the case where the receiver is trusted. Thee plots illustrate how the trusted
receiver model can greatly increase the performances of thgrotocols, and is almost systematically
considered valid in CV-QKD experiments.
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4.3.4 Finite-size e ! ects

To discuss the Pnite-size regime, we must brst debne the notiaf composable security.

Composable security.  The notion of composable-securitywas introduced in the beld of QKD by
Renner [53] based on the framework developed by Canetli [54df classical cryptography. The idea is
view the protocol as completely-positive trace-preservig map taking as input state an arbitrary input
state tan gn composed ofN quantum systems and outputting a state s, s, e composed of Alice and
BobOs bnal key and of EveOs subsystem. Then the security of phhetocol is derived by quantifying
the security of the protocol by the distance of the real protccol to the ideal protocol. This term is
denoted 5 and in the context of QKD is taken as the trace distance betwea the two protocols. Then
the protocol is said to have 5-security. Note the security in this framework is said to be composable
because if two protocols with security parameters5, and 5, are used together, the resulting protocol
will have security 5# 5 + 5. "

In our case, the ideal protocol can be seen as the stai& 6 where4 = % (0.13%[S,5!"S, S|ag
describes a uniformly chosen secret key of lengtl shared by Alice and Bob and the tensor product
shows that Eve is completely decorrelated from Alice and Botx(system. Then the security parameter
of the protocol is given by bounding the trace distance

1
EII‘%A ssE P &s &= 5 (4.40)

for any input state ‘6,n gn . Composable security is particularly relevant when considgng Pnite-
size € ects because the security debnition takes into account theumber N of states exchanged by
Alice and Bob. The approach to prove the Pbnite-size security bQKD is to compare three key rates
which are

¥ r.(N) : the secret key rate of the protocol with 5-security against general attacks,i.e. for an
arbitrary input state 'Ganpgn .

¥ r®'(N) : the secret key rate of the protocol with 5-security against collective attacks,i.e. for
an input states of the form 6, .

¥ r : the secret key rate computed with the Devetak-Winter formula, which we used for the GG02
protocol and the discrete modulation format protocol. This amounts to computing the key rate
for collective attacks in the asymptotic regime.

The idea behind the security proofs of CV-QKD in the Pnite-sizesetting is to brst compute r,
then show that we haver..(N) 3 r¢ (N) 3 r for some reasonable value oN and some security
parameters5and 5. This has been done for the GG02 protocol in referencé [46].

Simple approach to bnite-size e ! ects. Here we will adopt the approach derived in reference
[55] to deal with the Pnite-size & ects in the case of the GG02 protocol. We begin by debning the
security parameter

5= 5 + 5¢c + 5n + 5, (4.41)
which is the sum of the security parameters of the di erent steps of the protocol. Here PE refers
to the parameter estimation, EC to the error correction, and 55 + & are virtual parameters linked to
the privacy amplibcation. The key rate in the Pnite-size regine is given by
n& G '
N lag $17_(E,Y)$! (n). (4.42)
The terms in this expression are the following.N is the total number of states exchanged during
the protocol and n is number of states used to derive the key1®_(E,Y) is the maximum of the
Holevo information compatible with the data except for probability 5 and! (n) is the penalty from
the privacy amplibcation step. These two last terms are compted as follows.

rE:OII (N) —
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¥ 1_GPE (E,Y) is computed by using the worst case estimator for the excessoise 3;. To derive
this term we must consider how the excess noise is estimatedudng the protocol. Consider
Var(Pg, Qg) is the variance of BobOB or Q quadrature which can be written as

T
Var(Pg,Qg) = EVA +1+ 3. (4.43)

Taking the conditional variance of BobOs data given the statsent by Alice we obtain

Var(Pg,Qg [(Pa,Qa)) =1+ 3o = +2. (4.44)

During the protocol we build an estimator > for +2 the precision of which depends on the
number of statesm = N $ n used in the parameter estimation phase. We can compute the
worst case estimator for+2, except with probability 5S¢, from the estimator 2 as

) _
..2 2
max 3 632 tz PE/Z%’ (4'45)

& K
where z. obeys the relation1$ erf Z-PE/z/) 2 |2 = 5/ 2 and the erf function is given by

PE/2

*

X
erf(x) = )% e’ dt. (4.46)
0

The worst case estlmatorior the excess noise &Dt max IS computed as+2, « $ 1, and is increased
by a factor ! 3=z 9#— compared to the excess noise estimata8y .

PE/ 2

¥ The penalty term ! (n) is given by

|092(2/ B,

I (n)=7 Iog2 (1/54), (4.47)

where Band 5, should be optimized but still satisfy equations {4.41) and [.47). In the limit
of large n we see that the penalty is dominated by the square-root term, hus

)
'n37 w. (4.48)

4.4 Comparison with DV-QKD

In this section we discussed in depth CV-QKD protocols. We dened their secret key rate in the
asymptotic limit against collective attacks, and gave someinsight as to how the security in a realistic
setting again general attacks could be derived. A questionhat remains is to know how does this
technology compare to DV-QKD. We discuss the relevant compeson points in this section in order
to shed light on the respective strengths of DV- and CV-QKD.
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4.4.1 Security proof

In comparison with CV-QKD, DV-QKD protocol have more mature security proofs. For CV-QKD,
we can only prove the full security in the general setting of he GG02 no-switching protocol. Other
PM protocols, such as those using discrete modulation fornta, do not yet have a security proof in
the full setting and this remains an open question in the Peld On the other hand full security proofs
for DV-QKD protocols have been found for a while now [56[45].

Moreover, even when considering the GGO02 protocol, the coration term giving the key rate r_(N)
from r is lower for DV-QKD protocols. Therefore they occur less penlty than CV-QKD protocols in
the Pnite-size regime. This is because the correction term igreatly correlated to the security proof
used to extend the security to the general setting, and a morenature security proof is available for
DV-QKD. Note however that we can observe similar trends in bah CV- and DV-QKD as is explained
in reference [48]. In DV-QKD the brst security proofs for the gneral setting were brst based on a de
Finetti theorem [b6], then on a de Finetti reduction [45], then on the entropic uncertainty principle [57]
and bnally on the entropy accumulation theorem [58]. The sectity proofs of the GG02 no-switching
protocols have followed a similar trend where Prst a de Finefttheorem was found [59] then a de Finetti
reduction [486]. It is therefore tempting to believe that the CV-QKD security proofs will continue to
improve and that they will apply to discrete modulation form ats.

4.4.2 Rate versus distance

DV-QKD protocols champion the point-to-point communicati on distance, where secure key rates have
been obtained over the incredible distance of 421 kni[60] usy ultralow-loss Pber, and other works

have consistently demonstrated positive key rates beyond 0km [61,(62,[63] using regular Pber. On
the other hand CV-QKD protocols have been shown to provide sea@t keys up to a record distance of

202 km [64] using ultralow-loss bber, doubling the previousecord of 100 km [[65].

This is partly explained because the key rate expression for B-QKD protocols depends only on
the QBER. Mostly errors in DV protocols are caused by the comlination of a photon loss and a
dark count in the SPDs, but these are typically reduced by coting the detectors to low temperatures
ranging from -30;C for avalanche photodiode (APD) SPDs [[61] to 4 K for supercoducting nanowire
(SN) SPDs[66,62], which enables long distance key distill&n. On the other hand the losses in CV-
QKD protocols directly contribute to EveOs information as @n be intuitively seen from the entangling
cloner attack, for which higher channel losses amount to a ma aggressive probing of the quantum
states by Eve.

Concerning the secret key rate, the main limitations for DV-QKD is detector dead time, the time
after detection of a photon during which the detector cannot detect another. State of the art dead
time is found in SNSPDs cooled to cryogenic temperatures whit can achieve a, 10 ns dead time
corresponding to a maximal detection rate of 100 MHz. On the ther hand the electronics of CV-
QKD systems closely resembles the technology used for clasal telecommunications for which symbol
rates of over 50 Gbaud can be detected. The main challenge foeceivers designed for CV-QKD is to
allow for high rates while having enough gain to detect the wek coherent states and sii ciently small
receiver noise. At the moment, CV-QKD experiments have alredy been demonstrated with symbol
rates of 1 Gbaud [67] and recently shot-noise limited balanced receers with 20 GHz bandwidth have
been built [68]. Therefore it is certain that over short-distances CV-QKD protocols will outperform
DV-QKD protocols.

Choosing DV- or CV-QKD solutions should be done as to maximise e secret key rate for the
desired application which greatly depends on the distance ofommunication. A rule of thumb consid-
ering the current state of the art is that CV-QKD protocols will be preferred over shorter distances
(<25 km) while DV-QKD protocol will perform over longer dista nces where CV protocols cannot.
However the Peld of QKD is constantly improving and it will be interesting to monitor how CV- and
DV-QKD overcome their respective limitations.
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44,3 Cost

For QKD technology to be deployed in real world applicationsit is necessary to design cost-eective
systems. In this scope CV-QKD hardware is typically cheaper beause it can be operated at room
temperature.

Other €" orts in this direction have led to investigating the coexistence of QKD systems with
classical channels. The reason behind this is because dark é&bthat can be dedicated to QKD is
scarce and very expensive. On the other hand, the classicaékecom network composed of lit Pbers is
readily available as most metropolitan homes enjoy internéaccess via optical Pbers and data centers
a typically linked by optical bbers.

An review of experimental QKD systems deployed over classad wavelength division multiplexing
(WDM) channels is given in [16]. By nature, CV-QKD protocols are more resilient to adjacent
classical channels because of the coherent detection prase which is spectrally selective[][69]. Hence
CV-QKD has been shown to tolerate more noise than DV-QKD systens [70] and to coexist with
up to 100 classical channels carrying data a rate 18.3 Thit/s[IT] although only over 10 km. In
comparison DV-QKD systems are more sensitive to classicalhannels because the SPDs can produce
random clicks -and generate errors- because of the noise phas from the classical channels. DV-QKD
systems therefore require strong bltering techniques in der to coexist with WDM channels and for
the moment this has, to the best of our knowledge, only been domwith a launch power below the
nominal launch power of 0 dBm for classical systems[72].

It remains an interesting engineering challenge to enable QR systems over a distance equivalent
to the typical optical Pber span, i.e. 80 km, alongside classical channels at nominal launch power
Positive results would greatly contribute to large scale defoyment of QKD.

This marks the end of this chapter and also of the brst part of this manuscript. Herwe gave here
an in-depth view of CV-QKD protocols. We covered the security proofs of the G02 protocol as well
as the more recent results for discrete modulation formats, which will be esl later for our CV-QKD
protocol implementation. We also discussed the ierent security assumptions when the receiver noise
is trusted and when only a Pnite number of quantum states are exchangedviseen Alice and Bob. In
the second part of this work we will begin with a general chapter on coherent commications before
diving into the core of the work accomplished during this thesis.
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communications
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We begin the second part of this manuscript with a general chaper on the topic of coherent
communications in practice. We will covert the experimental aspects of signal generation, propagation
and detection. Then we will discuss the digital signal procesag routine which translates the sampled
signal into the set of measured symbols. In general the notian developed in this chapter apply
to both classical and quantum coherent communications. In tle last section, we will discuss some
implementation challenges facing specibcally quantum catrent communications and position our work
relative to the issues raised here.

5.1 Symbol generation

The brst part of any coherent communication protocol is to be dle to generate the desired signal at
the transmitter. We describe how this is done here.

75
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Figure 5.1: Temporal representation of the OOK modulation. The bits 0 and 1 are encoded by the
absence or the presence of light. The duration of a symbol is nied 4

5.1.1 Mapping bits to symbols

The principle of a communication protocol is to transfer a segience of bitsB = {b}i’\':*i‘s from an

transmitter, Alice, to a receiver, Bob. For this the sequene B is mapped to a sequence of symbols
S = {&k}::'jyl””" that will be transmitted over the channel. The symbols in S are drawn from an
ensembleC whose cardinality determines the number of bits that are encded in one symbol. This
number is given by log, |C|, therefore we haveNsymy, = Nuis / 109, |C|. The symbols are encoded on
a carrier, a sine wave, which is the light emitted by a laser in the contex of optical communications.
The process of encoding the symbols on the carrier is called émodulation.

Example : On-O ! Keying. The most basic form of modulation is On-O' Keying (OOK),
where the bit 1 and 0 are encoded by the presence or absence of light respectivehA temporal
representation of an OOK modulation is represented in the pgre [5.1. The OlightO and Ono lightO
events are respectively mapped to the bits 1 and 0.

Using the phase to encode more bits per symbol. We can increase the number of bits per
symbol, and thus the data rate, by using more complex modulaibn formats where the information is
encoded on the amplitude and the phase, or equivalently on kb quadratures, of the electromagnetic
Peld. Such modulation formats are called Quadrature Ampliude Modulation (QAM). Compared to
the OOK modulation format where a simple photodetector is enaigh to detect the signal, a coherent
receiver is needed in the case of QAM modulation in order to reover both quadratures.

Typically the QAM modulations refer to the number of unique symbols in the ensembleC, such
as 4-QAM (also called Quadrature Phase-Shift Keying or QPSK, 16-QAM or 64-QAM. For these
modulation formats, the ensembleC is called the constellation. We represent dI' erent QAM constel-
lations in the Pgure[5.2. We adopt in this section the notatims of classical communications where the
guadratures are notedl and Q for the in-phase and quadrature components respectively.

Probability constellation shaping. We discussed in chaptef 4 the specibc modulation for-
mat referred to as the random walk distribution. This type of format is inspired from probability
constellation shaping QAM modulation formats (PCS-QAM) used in classical communications. The
bit-to-symbol mapping in this case is not trivial since we want to be able to communicate any bit
sequence using this format and it seems like the probabilitydistribution of each symbol will a" ect the
probability of given bit sequences associated to that symbb Actually PCS-QAM modulations use a
so-calleddistribution matcher which maps a long sequence of bits into a sequence of QAM symisol
with the desired probability distribution. However this is o utside the scope of this thesis and we will
simply generate a QAM constellation with the desired probablity distribution when we use these
formats. We provide a representation of the probability distribution of the symbols in a PCS 64-QAM
format with the random walk distribution in bgure $.3]

Choice of modulation format for classical and quantum coherent commu nications. In
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Figure 5.2: Di" erent QAM constellations with the corresponding bit encoding for QPSK and 16-QAM

Figure 5.3: Representation of the probability of occurenceof the symbols in a PCS 64-QAM format
with a random walk distribution

classical coherent communications the choice of modulatio format depends on the power that can
be transmitted from Alice to Bob. Since higher order QAM modulation formats require more power
to distinguish the symbols, QPSK modulation will be preferred for long-haul transmissions in the
undersea cables while 64-QAM will be used over shorter distames such as WiFi applications. The
OOK modulation is used for its simplicity on the optical Pber available to the public for internet
connection.

For CV-QKD, the objective is to maximize the secret key rate ard therefore to chose the modulation
format which yields the highest key rate. This is then put in perspective with the implementation
challenges of each format, and based on recent results the PEG3AM format seems like a promising
candidate for high key rates and simple processing.

5.1.2 The I/Q modulator

Once the mapping of bits to symbol is determined the next stefs to physically modify the quadratures
of the electromagnetic beld to generate the desired symbokguence. This is achieved by converting
electrical signals generated on a device called an arbitrgrwaveform generator (AWG) into a modibca-
tion of the light Peld using devices exploiting the Pockels &ect. This €" ect appears in crystals lacking
inversion symmetry such as lithium niobate (LiNbO3) and gallium arsenide (GaAs) and consists in
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Figure 5.4: (a) The Pockels & ect permits to modify the phase of the light by a factor. y, proportionally
to the voltage Vi applied to the medium. (b) The Mach-Zehnder modulator is an inteferometer for
which the amplitude of the output signal can be piloted by applying a voltage to the device.

the modibcation of the refractive index of a medium proportional to the electric beld applied to the
medium, therefore the phase of the output signal can be pilatd by the voltage applied. We illustrate
in Pgure[5.4.a how the Pockels 'eect modibPes the phase of the signal by a phase,, proportional to
the voltage V; applied to the medium.

Based on this the Mach-Zehnder modulator (MZM), depicted in Paire .b, enables amplitude
modulation of the input signal. In the MZM, the input signal is s plit on a 3-dB coupler and voltage
+V; is applied to each branch. The signals in each branch interfess when they are recombined such
that the output bPeld Eq is related to the input Peld Ei, by Eqy = Ein cos(v,). It is common to
denote by Vg the voltage di" erence between the two branches of the MZM for which the signah each
branch is dephased by a factor) . Then the input-output relation of the MZM is

$ %
Eout = Ein COS )*ﬁ (5.1)
2Vg ' '
where we clearly see how tuning/; will modify the amplitude of the output signal.

Controlling the | and Q components of the light is done in the IQ modulator (IQM) depicted in
Pgure[5.5.a. The input signal is split in two branches fed intotwo MZM with applied voltages V; and
V,. The signal on the second branch is shifted by a phase 9f/ 2 such that the output of the IQM is
given by

$ . . %
Ein &) \} . &) Vo
Eout = — - + < 2
out 5 cos Ve i cos Ve (5.2)

Generally, we can write that Vi, = Ve + Vinod 119 Where Vy. is a voltage bias applied to the 1Q
modulator and Vieq 10 IS the voltage generated by the AWG on thel and Q optical paths. The
voltage bias is set toVg such that we have

$ . %

Ein . &) Vinod | L &) Vimod Q
= — " + < . .
Eout 5 sin 7 Vg i sin 3 Ve (5.3)

For small Vinoq .11 COmpared to Vg, we have that

E; .
Eout - %(Vmod,l + |Vmod,Q)a (5-4)
such that the quadratures of the output Peld are proportionral to the applied voltage on their
corresponding optical path.

Finally, dual-polarisation 1Q modulator (DP-IQM) depicted i n pgure[5.5.b allows to pilot the |
and Q components of theX and Y polarisation of the input light.
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Figure 5.5: (a) The 1Q modulator controls the amplitude of the real and imaginary parts of the light.
The signal is split in two branches each fed to a MZM controllingthe amplitude of the corresponding
guadrature. The phase in the second path is shifted by% to constitute the Q component. (b) A
dual polarisation IQM brst splits the incoming signal on a polrising beam splitter (PBS), then each
polarisation is fed to an IQM.

5.1.3 Pulse shaping

Pulse shaping refers to the modibcation of the temporal and gectral distribution of the generated
symbols in order to optimise the transmission over the changel. To see how this can be useful, let us
consider the temporal signal corresponding the sequencg which can be written as

1& $ %
: th $ kT
s(tn) = &" ——— 3 KT : (5.5)
Ts
k=1
where Ts is the duration of one symbol and" is the door function debPned by
<0, i Jta] > 3
"(t)= 3, ifftal= 3. (5.6)
1, i ftal< 3

The spectral representation of the signal is given by the Fouer transform of s(tn) and is given by
the function S(f ) = sing(fTs) = %. The spectrum is represented in bgure 5|6.
Notice the signal in this case spans over an inbnite bandwidthwhich presents a couple drawbacks

¥ The signal is not bandwidth el cient, and signals propagating at dI' erent frequencies will overlap.
This can generate additional noise when signals are multipleed in frequency.

¥ The detectors have a bnite bandwidth therefore part of the sigal will not be retrieved. Ad-
ditionally the detection process will apply a spectral blter to the signal which can introduce
inter-symbol interference (ISI).

Therefore it is desirable to apply some blter to the signal to educe its bandwidth. By doing so, we will
modify the time-domain representation of the signal thus ore must verify that we do not introduce
ISI. I1SI occurs when several symbols overlap in the time domain ath introduces noise. The criteria
for mitigating 1Sl is the Nyquist criterion.

Debnition 9 (Nyquist ISI criterion) . If the channel impulse response of the channel if(t,), then
the condition for mitigating ISl is :
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Figure 5.6: Power spectral density of QAM signals. The power gectral density is hormalised by its
maximum value in this plot.

>

h(nTe) = 1, ifn=0,

. 5.7
0 ifn=x0 ®.7)

wheren is an integer andTs is the symbol period. In the frequency domain the Nyquist criterion
is equivalent to the condition

pore B %

T H f$_|_— =1 .f, (5.8)
S k= %& s

where H (f ) is the Fourier transform of h(ty).

When designing spectral Plters for the signal, we should kgein mind the Nyquist ISI criterion.

Raised cosine Plter. The raised cosine Plter is described in the frequency domainytthe transfer
function

: 19%$
kb @ 2 ABa T1# 27,

H(f)= 1 1+cos & |f|$ 322 | DS < i &2, (5.9)
=0, otherwise

where' is the roll-o" factor, a parameter ranging from 0 to 1 controlling the shape of the ker.
The time-domain response of the raised cosine Plter is
& @8 T
< & sinc L t, = +1s
4T, 2%, n 2%
h(tn) = . @ B cos( ¥1n) : (5.10)

1 o In i
f-sinc + 195 0 ) otherwise

One can check that the raised cosine Plter satispes the NyatilSI criterion. We represent the
time and frequency response of the Plter in the Pgure 5.7

Root raised cosine Plter.  In practical communications the optimal pPlter which maximises the
SNR in presence of stochastic noise is the matched Pblter, wherthe same blter is applied at the
transmitter and the receiver. Therefore, while the raised come Plter is a suitable spectral blter, we
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Figure 5.7: Time (left) and frequency (right) response of theraised cosine blter for di erent roll-o"
factors.

will prefer the root raised cosine blter (RRC) applied at Alice and at BobOs. The frequency response
of the RRC blter is

#_
Hrre (f) = H(f) (5.11)

5.2 Signal distortions on the bber

During propagation over the optical bber, both classical a quantum signals undergo similar distor-
tions which we review in this section. In the next section we will discuss how to compensate these
using digital signal processing.

5.2.1 Structure of the bber and losses

The bber on which the light travels is depicted in Pgurd 5.B. It isconstituted of a core and a cladding,
two waveguides built in silica, with the cladding having a refractive index slightly higher than the core.
Around the cladding is a protective layer to protect the waveguides. Fibers can be categorized in two
categories namely multi-mode Pbers (MMF) and single-mode frers (SMF). Based on the diameter
of the core, the Pber can allow either several modes to propatg or only one, thus debning the bber
type as MMF or SMF. MMF bbers have a core that is typically , 50$ 62.5um while SMF have a
core diameter of9um. In this work we use SMF bbers.

Losses. The losses& in the bber are often described in terms of dB/km and depends o the
wavelength of the carrier wave. The output power is then written as

Pout = Pin ( 1077, (5.12)

where Py, is the input power and L is the length of the Pber in km. In silica-based bbers,
the minimal losses are reached when the laser wavelength is@amd 1550 nm and are of about 0.2
dB/km. In fact, wavelengths are categorised in dI'erent bands with the Conventionnal Band, or
C-band, ranging from 1530-1565 nm. The C-band corresponds to thminimal absorption by the silica
Pber but also the maximal gain from erbium doped Pber amplibes, making the C-band the perfect
wavelength for optical Pber communications.
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Figure 5.8: Representation of the optical Pber with the corethe cladding and the surrounding pro-
tection.

5.2.2 Polarisation rotation

Optical Pbers are materials with an optical property called birefringence. This means that the refrac-
tive index of the material depends on the polarisation (and popagation direction) of light. The causes
for this birefringence can be explained due to the slight assnmetry in the Pber core cross-section along
the length. In addition, stress on the bPber -such as bending- Wialso create birefringence. In general
the stress related birefringence dominates the geometri¢ane.

The €" ect of the birefringence is that the polarisation state at a gven point in the Pber can be
decomposed in a slow and a fast axis based on the local refriv@ index. As the light propagates
over the bber, the random rotation of the slow and fast axes wilcause the polarisation of the light
to rotate. For coherent communications, two independent sgnals are often multiplexed on orthogonal
polarisation axes. Therefore polarisation rotation is a ph@omenon that must be dealt with before
retrieving the signals. Usually this can be done digitally wising an adaptive equalizer, which we will
discuss further in section[5.4. Note there also are physicaiomponents which allow us to control the
polarisation state of the light.

¥ Polarisation controller. The polarisation controller permits manual tuning of the state of po-
larisation of light. It is constituted of a succession of three rotable waveplates in cascade: a
quarterwave plate, a halfwave plate, a second quarterwavelpte. We control the polarisation by
rotating the waveplates.

¥ Polarisation maintaining bber. The optical Pber can be built to intentionally generate stres
along a specibc axis of the bber core, such that the fast and ¢hslow axes are constant over the
length of the bber. Even under mild bends the axes should renia stable and therefore maintain
the polarisation state. Several designs exist to build polasation maintaining Pber which are
represented in Pguré 59.

5.2.3 Perturbations from other channels

Several channels are oftermultiplexed in classical coherent communication links. This means that
they co-propagate without interfering with each other "too much”. This way several communication
channels can coexist on a single Pber, increasing the totatfiormation throughput. Typically the mul-

tiplexing consists in attributing di " erent central wavelengths to each channel and the communiden

link is called a wavelength division multiplexed (WDM) link . Unfortunately there is never a per-
fect isolation between multiplexed channels, therefore uavoidable perturbations from other channels
occur in multiplexed communication channels. We review th@e which are relevant to this work here.
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Figure 5.9: Cross-section of 3 dierent designs of polarisation maintaining Pber. Rods of a dierent
material are built in the Pber cladding such that the stress gplied on the core maintains the orientation
of the slow and fast axis in the Pber. The rods are representechidarker tones of grey. The Pber core
is in purple.

Cross-talk. The cross-talk is induced by channels in adjacent frequencylasts which are never
perfectly demultiplexed. Therefore there is always a fracton of the power in the adjacent channels
which is transmitted.

Non linear e ! ects. When the optical power in the Pber becomes to high, the respae of the
Pber becomes nonlinear. Such nonlinearities can be inducdyy the Kerr e" ect, causing the refractive
index in the Pber to RBuctuate as the square of the electric bdl These result in several distortions
such as self-phase modulation, cross-phase modulation arfdur-wave mixing. Other nonlinearities
are induced by Raman scattering, where photons exchange erggr with matter. The result is that the
signal is scattered over several wavelengths. The nonlinea&" ects are the main limitation to the data
rates achievable over long distance communications sincéey limit the optical input power.

5.2.4 Other e ! ects

We discuss here other transformations light undergoes dung propagation on the bber. Specibcally
for our experiment over short distances, these do not play aale. However we mention them for the
sake of completeness.

Chromatic dispersion. In the Pber, di"erent wavelengths travel at di' erent speeds. This
phenomenon, referred to as chromatic dispersion, leads toytse broadening and can create inter-
symbol interference. Chromatic dispersion is quantibed bythe dispersion parameter expressed in
ps/nm/km :

24
D=$2)—Cd _ 2)cdy

(2 gx2 ~ Vé(sz (5.13)

where c is the speed of light in vacuum,' is the propagation constant, ( the wavelength andvy is
the group velocity of the pulse. Compensation of chromatic dépersion in Pber communications can
be achieved by propagating the signal in a dispersion compesating bber or to pre-compensate the
signal to account for chromatic dispersion.

Polarisation dependent loss and polarisation mode dispersion. The slow and fast axes of
the Pber can undergo di erent losses resulting in polarisation dependent loss (PDL PDL is debned by
transmitting linearly polarised light and taking the ratio of the maximum transmitted power over the
minimum transmitted power. Also, the birefringence in the bPber causes dispersion called polarisation
mode dispersion (PMD).
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Figure 5.10: Schematic representation of the phase diveltyi hybrid. The detectors are not part of the
hybrid but are represented here nonetheless.

5.3 Receiver architecture

After the generation and propagation of the symbols over thebber, let us examine the receiver
architecture allowing for coherent detection of the quadraures of the electromagnetic peld.

5.3.1 Optical hybrids

The coherent detection process requires mixing the incomingignal with the local oscillator. This is
done using a component called aroptical hybrid.

Phase diversity hybrid. The phase diversity hybrid, or 90; hybrid, is the component which
allows to measure both | and Q quadratures of the electromagrte beld. It takes the signal beam and
the local oscillator as input and splits both beams in half. Then, one half of the signal is mixed with
half of the local oscillator to detect the | quadrature and the other signal half is mixed with a) /2
dephased half of the local oscillator to detect the Q quadratire. The setup is represented in bgure
510

Polarisation 90 j diversity hybrid. The polarisation 90; hybrid allows the detection of the |
and Q components of both polarisations. The signal is split ona polarising beamsplitter and each
output is fed into a phase diversity hybrid. The LO is split in h alf and one half is transferred to each
phase diversity hybrids. The Polarisation 9G optical hybrid is depicted in bgure[5.17.

5.3.2 Detectors

Each quadrature is measured by a balanced receiver which is gieted in Pgure[5.12. It is constituted

of two photodiodes generating a current based on the incomig optical power. The current generated
by both photodiodes is substracted and then converted to a vitage on a transimpendence ampliber
(TIA). Let us discuss the relevant characteristics which debPnd a balanced receiver.

Bandwidth.  The bandwidth of the detector must be chosen according to the dsired use. Typ-
ically detectors used for classical communications have aaftger bandwidth than the detectors used
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Figure 5.11: Schematic representation of the polarisatiordiversity hybrid.

Figure 5.12: The balanced receiver subtracts the photocurn& generated by the photodectectors to
retrieve the | or Q quadrature. TIA is the transimpedence ampliber which converts the current output
by the photodiodes into a voltage.
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for quantum communications. This is because high bandwidth étectors display a higher NEP (see
below), a measure of the thermal noise of the receiver, which nat be as low as possible for quantum
communications.

Noise equivalent power (NEP). The NEP is a measure of the minimal input power to obtain
an output SNR of 1. It is a measure of the noise Roor of a detectaas well as its sensibility. For QKD,
it is crucial to choose detectors with low NEP to reduce the eletronic noise.

Wavelength range.  The photodiodes convert optical power into a current. Dependhg on the
materials used in the construction of the photodiodes, theyare sensitive to dI' erent optical wave-
lengths. For bber based communications, one usually prefemphotodiodes operating around the 1550
nm wavelengths.

Responsivity. The photodiode responsivity R, at wavelength ( measures the ratio of electrical
current generated over the optical power on the photodiodes|t is expressed in A/W and quantibes
the e ciency of the detection. The quantum e ciency Q, is a value used to quantify the number of
electrons converted from photons in a photodiode. It is link& to the responsivity by

R hc . R
Q = T (53 T ( (1240W.nm/A ), (5.14)
where h is PlanckOs constant; is the speed of light in vacuum ande is the elementary charge. In
particular for QKD detectors, it is desirable to have a quantum e! ciency as close as possible to 1 in
order to limit as much as possible the losses in the receiver.

Common mode rejection ratio (CMMR): In a perfect balanced receiver, we want the output
voltage to be a function of the voltages output by each photodode such that

Vout = G(Vi $ Vap). (5.15)

In practice, imperfections lead to a small amplibcation of the sum of the output voltages as well such
that
Vout = G(Vi $ Vi) + Gem (Vi + V). (5.16)

The common mode rejection ration is dePned as the ratio of botlyains and is a measure of how well
the detector performs a balanced detection. It is usually expessed in dB as
$ %
CMRR = 20log;q & . (5.17)
Gcm

5.4 Digital signal processing

In order to retrieve the information encoded on the electromanetic Peld, the electrical signal generated
by the detectors is sampled. Then, the samples are processed tecreate the symbols originally sent.

This process is calledligital signal processingand is a cornerstone of modern coherent communications.
Let us describe some of the powerful tools at our disposal toranslate our set of samples into the

correct set of symbols.

5.4.1 Equalizer

In classical coherent communications, the adaptive equaler is one of the most powerful tools of digital
signal processing. It can compensate most channel impairmés) blter noise, and can bPnd the optimal
sampling instant. It is based on Pnite-impulse-response (FIR blters and algorithms for plter-tap
adaptation. We discuss these below.
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Figure 5.13: A FIR blter with k taps performs a linear combination of samples<, t0 Xnuk+1 USING
COd cients ¢y t0 Gk to output the symbol y(n)

FIR blter. The FIR Plter is determined by a number of taps k and by tap cod cients%& =
[Co, ... &os1]. The nt™ run of the FIR Plter has input a sequence of sample® (n) = [ Xn, Xno1, --» Xnoek+1 ]
and output the n™ symbol given by

y(n) = B & (n) (5.18)
!(%l

y(n) = G Xny (5.19)
j=0

The schematic representation of the FIR Plter is depicted in bgre[5.13. In fact, when the signal
power is su ciently low such that the channel response is linear, the frguency response of the received
complex amplitude of a dual polarisation signal can be written in the form [[73] :

% . 9

EX (* ) E n (* )
= H(* X 5.20
e () =) Eh) (5.20)

Therefore the transfer function of the equalizer should be aslose as possible to

Heq(*) = H"? (5.21)

3h (*) h (*)4
— XX Xy
(%) hyy (%) (5-22)

With a su! cient number of taps and by choosing carefully the tap cok cients in the time domain,
one can pilot the frequency response of the FIR Plter to realiz each element of the matrixH ¢q. Then
the equalizer response can be realized using( 2 butterRy-structured FIR blters as is depicted in
bgure[5.14. The consequence is that the FIR Plter can separatdé X and Y components of a signal
with an arbitrarily varying polarisation, as well as compensate channel impairments such as GVD,
PMD and PDL.

Filter-tap adaptation algorithm At the beginning of the equalisation the blter-tap coé cients
are initialised to a given value, for instance all tap coé cients are set to 0 except the central one set
to 1. Then the blter-tap cod cients are updated after each run based on some error functiowhich
depends on the modulation. For QPSK modulation we exploit the fact that the signal has constant
amplitude. This is used as our criteria for the error function. When the signal amplitude is normalised
to 1, the error function we use is :
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Figure 5.14: The2( 2 butterRRy structured FIR Plters. The (% j are the FIR blters Hgq(*).

e(n)= (1 $ [EQU (n))E (), (5.23)
e/(n)=(1 $ |[E"(n)H)EM (). (5.24)

Then the Plter-tap cod cients are updated from one run to the other as

b j(n+1):= % i (n)+ pei(nN)EX, (5.25)

where (i,j ) ' {x,y}? and p determines the speed of convergence of the Plter. |f is too large the
blter might has too little resolution to perform correctly and if p is too small it will take too long to
converge. This Plter-tap adaptation algorithm is named Constant Modulus Algorithm (CMA).

Clock timing recovery. Another unique function of adaptive FIR blters is to implement a
variable time delay on the waveform with a much higher resoluton than the sampling time interval.
Therefore, as long as there is a ducient number of taps, the adaptive FIR blter can retrieve the
optimal sampling instant as is illustrated in the Dguretaken from reference([/3].

5.4.2 Carrier recovery

The phase of the signal laser is crucial to determine which symtil has been sent. For instance for
the QPSK modulation format, the four symbols of the constelltion have the same amplitude and are
uniquely described by their phase. The homodyne and heterodye detection discussed in chaptef |1,
together with the result of the measurement derived in equaton ), show that the measurement
result provides a complex signal with a phase equal tos $ . o the di" erence between the phase of
signal and LO. In order to determine . s, we must Prst estimate. o .

In chapter [I, we omitted for simplicity the fact that the signal and LO are time varying light
waves, and as such have angular frequenciég and * | o . As a result the measured current is actually
proportional to

P'1(th) - 2EsElo cosCipth+.5$ .10), (5.26)

wheret, is the sampling time and* | = *¢$ * o is the beating angular frequency between signal
and LO. Therefore in our quest to retrieve. s we must also compensate the time dependant phase shift
induced by * ¢ t,. The estimation and compensation of* | and . is called carrier recovery. We
discuss how to do this here in the case where the signal is modukd according to a QPSK modulation
since we will use these techniques in our experiment.
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Figure 5.15: Figure taken from [73]. (a) The waveform is sampd at 2 samples per symbol. (b) After
the adaptive FIR Plter, the algorithm outputs the samples taken at the optimal instant for symbol
decision.

Figure 5.16: Raising the QPSK signal to the4™ power cuts the Ructuations due to the modulation
and concentrates the psd at a single frequency : the frequegm" set.
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Particularities of the QPSK modulation. A key component of carrier recovery in the case of
QPSK modulation is the knowledge that.s ' {%,3& 3% &} The complex signal reconstituted from

the measured sampleRy = | + jQ can be written as :

Rx(th) = Aexp(i[*irta + .s$ . 10]), (5.27)

where A is the signal amplitude. Raising Ry to the power 4 cuts the phase changes due to the
modulation since for all . s we have4. 4 = ) [2) ]. Thus we have

Ry(tn)* = $A%exp(i[4* \r th +4..0]) (5.28)

Frequency recovery. OThe beating frequency is determined from thd™ power signal very easily
by shifting to the frequency domain and considering the maxmum of the signal psd. Indeed most of
the psd will be concentrated in a single peak located at frequecy f max 3 4* ¢ /2) as is represented
in the Dgure@. We obtain the estimator for the beating frejuency ; = Z&f%. Then the signal
is corrected by compensating the rotation due to the beatingfrequency :

Rx(tn) = Rx(tn) ( exp($idir tn). (5.29)

In most cases the estimator® will not be exactly equal to * | and therefore the time-dependant
rotation of the constellation not entirely corrected at thi s stage. However this residual beating fre-
guency after correction can be treated as additional LO phas and be compensated in the phase
recovery stage. Therefore we suppose here th&ir = * ¢

Phase recovery. We proceed in a similar fashion to retrieve the LO phase. Firswe raise the
frequency compensated signal to thei™ power and obtain :

Ry(tn)* = $A*exp(i4. 0). (5.30)

Then the LO phase can be estimated as

4

Note that the LO phase actually varies with time according to a Wiener process characterized
by the laser linewidth ! - El However phase Ructuations are very small over a symbol perd, such
that a better way to estimate . o is to average the phase over multiple symbols such that the phse
estimator of the n" symbol is given by

). (5.31)

) 1 K
Qo(m= Zarg( R (1)), (5.32)
i=n%k
The length of the averaging window is here2k + 1 and must be carefully chosen based on the
system considered.

5.5 Challenges for coherent quantum communications.

Compared to classical coherent communications, quantum carent communications are operated with
a signal comprising only a few photons per symbol. In this regne of low SNR the DSP algorithms
discussed above perform poorly and cannot be executed as $ucNew solutions are therefore nec-
essary to downsample the signal and perform carrier recoveryln addition to this, quantum signals

1The Wiener process characterizes the quantity ! ! o (t)= ! o (t+ "t)! ! o (t) as a zero mean Gaussian random
variable with variance V =2#! $"t
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Figure 5.17: Example of a CV-QKD protocol with the TLO design. In this example the TLO is
multiplexed with the signal using the polarisation degree offreedom. PBS : polarising beam splitter.
AM : amplitude modulator. PM : phase modulator.

are naturally more sensitive to cross-talk from other chanmels since even one stray photon can gener-
ate considerable perturbations on the data, hence systemswolving the coexistence of classical and
guantum channels must be carefully designed. These issues silbe correctly addressed if we hope to

design é cient systems. The object of this section is to discuss thesehallenges in order to derive a

relevant approach to our work.

5.5.1 Carrier recovery at low SNR

In the quantum regime the carrier recovery algorithms, such & the Viterbi & Viterbi algorithms for a
QPSK modulation format, perform poorly. CV-QKD systems have evolved over the years to address
this issue.

Transmitted local oscillator. First iterations of CV-QKD protocols solved this problem by
deriving the local oscillator from the signal laser at AliceDs side. The LO was then sent alongside the
signal over the untrusted quantum channel to Bob and used to étect the quantum states. Examples
of protocols using this design can be found in references [785,[75,[76]. In this case the signal and
LO have the same frequency and their phase Ructuations are mimal, which reduces the excess noise
induced by imperfect carrier recovery compared to the case wére the LO is a free-running laser with
no bxed relation to the quantum states. This technique is soméimes referred to as the "Transmitted
Local Oscillator" or TLO.

In reality, the TLO design presents security loopholes and peiormance Raws that are hard to
overcome in practice. These lead to potential side-channelttacks which are detrimental to protocol
security. The security Baws stem from the fact that the shot-nadse calibration plays a crucial role in the
estimation of the information leaked to Eve. The TLO design gives extra power to the eavesdropper
since she can also manipulate the LO and therefore inBuencéné shot-noise calibration procedure.
Several attacks have been investigated in the case of a TLO ptocol, such as a wavelength attack
[32], a calibration attack [30] or a Ructuation attack [31]. While it is maybe possible to monitor
the TLO design to insure that a given attack is not occurring, this would drastically increase the
complexity of CV-QKD protocols and only provide security against known side-channel attacks.

In addition to the security loopholes, the TLO design also limits the system performance. First, the
LO can generate crosstalk on the quantum channel during propgation. Second, CV-QKD protocols
require the detection be made in the shot-noise limited regne, where the electronic noise is at least one
order of magnitude below the shot-noise. To this end the LO atBobOs is required to have $ucient
power, with typically , 10° photons per pulse. However as the distance between Alice anBob
increases, the LO power at Alice must also increase to satigfthe shot-noise limited detection criteria.
This becomes harder to achieve in practical experiments sircbPber nonlinearities arise when too much
power is injected in the single mode Pber and cross-talk bet®en the signal and LO will also deprecate
the key rate.
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Figure 5.18: Example of the "LLO" design. The LO is generated 4 BobOs and does not propagate
over the channel, thus Eve does not have access to it. The sighs multiplexed with pilot signals to
provide phase and frequency information. In this example, tke pilot and signal pulses are multiplexed
in time. AM : amplitude modulator. PM : phase modulator. LO : | ocal oscillator

"Local" local oscillator. Since the TLO design cannot be used, this means quantum cohere
communication systems have to perform carrier recovery witha "local" LO (LLO) as in typical
coherent communication. The common solution in this case isd rely on pilot signals multiplexed
with the quantum states. The idea is to derive the pilot signalsfrom the same laser used to generate
the quantum states, such that pilot and quantum signals havea bxed phase and frequency relation.
Then the carrier recovery algorithms can be applied to the pibt signal and the quantum states can
be corrected during the DSP step based on the phase and frequey estimators computed on the pilot
signals.

The pilot signals are multiplexed with the quantum states using the time [78, [79], frequency [[17]
and/or polarisation [/7] 17] degrees of freedom in order toeduce the pilot cross-talk on the quantum
measurement.

5.5.2 Coexistence with classical channels

Our conclusion in subsection[ 4.4.3 was that the ability to cexist with classical channels was one
advantage of CV-QKD compared to other solutions, but this does not mean it is trivial. The holy
grail for guantum coherent communications would be for theg protocols to be compatible with optical
backbone links, covering a distance of about 80 km together wh 100 classical channels at nominal
input power. This would give them access to a large infrastruture and provide many opportunities
for commercial applications.

This objective remains however out of our reach for the moment The main challenge in this
setting is the Raman noise generated by the classical chantseat the quantum signal wavelength,
which becomes the dominant noise source. Ideas for system dgss involve choosing the quantum
channel wavelength at a lower wavelength than the classical chrnels since Raman noise is less probable
[7Q,[80] or to operate the system with reduced power of the clascal channels[[711]. Another hope for
guantum coherent communications resides in the developmérof new DSP techniques which would
enable equalizing the signal in the low SNR regime, therefa Pbltering the Raman noise &ecting
the channel. New DSP methods based on machine learning teclques have already been proven to
perform better carrier recovery [81,82], hence this is cedinly an interesting direction to pursue.

5.5.3 Positioning of our work

A cost-based approach for CV-QKD involves deploying system®ver the current Pber infrastructure,

but based on the current state of the art this is di! cult without modifying classical systems to

reduce their impact on the quantum channel. In order to extrad the best out of joint classical and

guantum communications over the same bber, we should look tdesign systems working on the current
infrastructure but that are optimized for both the quantum a nd the classical channels.
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An interesting question when we think of joint systems is whetter the classical channels will only
be detrimental to the CV-QKD performance or if they can be usedto gain some sort of advantage
compared to QKD operated on a dark Pber. This question is at thecore of the research conducted
during this PhD thesis and we chose to address it in two ways d&cribed below.

¥ Symbiotic operation of quantum and classical communications. Our brst proposal is
an experimental demonstration of a CV-QKD experiment multiplexed with a classical channel
in which we demonstrate that carrier recovery can be performd from a classical channel. Our
objective is to show that when designing joint systems, we camelax the need for pilot tones
which add to the overall complexity and do not carry classicalinformation.

In addition, when the quantum channel is used for CV-QKD, the key retrieved can also be used
to encode part of the classical data transmitted. Hence the gantum and classical channels are
mutually benebcial and are operated in a symbiotic fashion.

Our work constitutes a proof-of-concept and paves the way twards € cient designs of joint
systems which look to exploit the most out of their coexistene. We show a comparison of
our results with the current state of the art in CV-QKD in the bgu re and discuss our
implementation further in chapter f]

¥ Covert QKD. Our second proposal is a theoretical research project in whit we investigate
how to harness channel noise -for example due to classical atnels- to provide a new security
primitive, called covertness, to the QKD protocol. The idea behind covert communications is
that the signal transmitted over the channel is indistinguishable from background noise for any
quantum adversary. This can be a desirable security featuredr QKD since even if the distilled
key is provably secure, Eve still has knowledge that Alice andBob performed the protocol and
can use this to her advantage. We discuss this further in chager [/]and provide our results.
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| Reference|| Modulation | Phase reference| Local Oscillator |  Security proof [ Symbol ||
[74] Gaussian TLO Transmitted LO Pnite-size
[65] Gaussian TLO Transmitted LO | asymptotic regime
[75] Gaussian TLO Transmitted LO | asymptotic regime
[77] PCS-256QAM pilot signals Local LO asymptotic regime
[78] PCS-64QAM pilot signals Local LO Pnite-size
[78] Gaussian TLO Transmitted LO Pnite-size
[79] Gaussian pilot signals Local LO Pnite-size
OFC2022 QPSK classical channel Local LO asymptotic regime
SPIE2022 || PCS-64QAM | classical channel Local LO Pnite-size

Figure 5.19: Plot of the key rate versus distance for dierent CV-QKD protocols in the literature.
The di" erent protocols are represented by dierent symbols according to their implementation choices.
Modulation : Gaussian = circle, PCS = diamond, QPSK = pentagram. LO : TLO = crossed symbol,
LLO = not crossed symbol. Security proof : Pnite-size = full symbol, asymptotic regime = hollow
symbol. The table shows all references ploted in the graph as Weas their characteristics and their

symbol representation.
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In this chapter we detail our experimental implementation of joint classical communications with
CV-QKD without the use of pilot tones.
6.1 Experimental setup

The experimental setup is displayed in the Pgur¢ 6]1 and the it of components used are summarized
in the table

6.1.1 Transmitter : signal generation

The transmitter side corresponds to AliceOs lab in the QKD prmcol. The light is generated by a
low-linewidth laser which is fed into the dual polarisation I/Q m odulator. Two AWGSs control the X-

95
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Figure 6.1: Experimental setup. AWG : arbitrary waveform generator. OSA : optical spectrum
analyser. LO : local oscillator.

I Device \ Reference |
Laser and LO NKT Koheras Adjustik
Dual-Pol IQ modulator Fujitsu FTM7977HQA
AWG1 Keysight M8195A
AWG?2 Tektronix AWG7122B
PBS/PBC General photonics PB-15-P1-FC/APC
Powermeter Ando AQ2140
Attenuator 1 HP 8156A
Attenuator 2 Oz optics BB-100-11-1550-8/125-P60-3A3A-3-1
Dual-pol 90; hybrid Kylia COH28-X
Balanced receiverd / Qy Finisar BPDV21x0R
Balanced receiversl y/ Qy Exalos EBR370005-02
Oscilloscope DS0OZ504A

Table 6.1: This table gives the references of the componentssad in the experiment for the interested
reader.
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and Y-polarisation of the peld corresponding to the classial (AWG1) and quantum (AWGZ2) signal.
At the exit of the modulator, a 10% fraction of the signal is directed towards an optical spectrum
analyser to monitor the output of the modulator and to verify the voltage biases are set correctly.

Classical signal generation. The sequence of samples fed to the AWGL1 is generated from a
pseudo-random bit sequence which is then mapped to a correspding sequence of QPSK symbols. The
samples are then generated from the symbols thanks to a buiin interpolation function in MATLAB.

The spectral shaping of the classical signal is operated diotly at the sample level. We limit its
spectral width using a RRC blter, described in chapter %, with asharp roll-0" factor of 0.1. Then
the signal is frequency shifted byfshi ¢ = 4 GHz by multiplying the samples by a time dependant
complex exponential. The representation of the classical ghal spectrum before the RRC, after the
RRC and after the frequency shift can be found in bgur¢ 6]2.

Quantum signal generation. The QPSK modulation for the quantum channel was generated
similarly to the classical signal by adapting the symbol rate and the RRC roll-0" factor to 0.4.
Generating the PCS-64QAM constellation was less direct sine we do not have a distribution matcher
to map bits to symbols. Therefore we proceeded dierently, brst generating the symbols according
to the desired probability distribution and then mapping th em to the corresponding bits in a typical
64QAM constellation.

The quantum signal spectrum was shifted byfsnit ¢ = 1 GHz in order to reduce noise generated
by the residual carrier. The spectrum the joint classical andquantum signal before attenuation of the
quantum channel is represented in Pgurg 6]3.

Power leveling of quantum and classical signals. The desired number of photons per symbol
on the quantum channel is obtained by attenuating the quantum signal relative to the classical signal.
A brst leveling can be achieved in the modulator by controllng the amplitude of the electrical signal
generated by the AWGs. Electrical amplibers placed at the otput of the AWG1 increase the output
power of the classical channel relative to the quantum chanal.

However this leveling is not su cient, hence we also use a series of components to attenuate
the quantum channel specibcally using the polarisation dege of freedom. To do this we begin by
separating classical and quantum signals on a polarising lzen splitter (PBS). A polarisation controller
(PC) before the PBS is used to align the polarisations in the Pler with the axes of the PBS. The path
corresponding to the classical signal is untouched and fechio the Prst input of a polarising beam
combiner (PBC). The quantum signal is attenuated and fed into the second input of the PBC. Before
it is recombined, part of the quantum signal is split on a 50/50 beamsplitter and directed towards
an optical power meter to monitor the power on the quantum channel. The power meter is useful to
manually set the PC. Since the quantum signal is less powerfuhan the classical signal at the exit of
the 1/Q modulator, we set the PC to minimize the power on the power meter. All the components
and Pber used between the two PBS are polarisation maintaimig.

Synchronisation of both channels. Since Alice and Bob need to compare their data during
the QKD protocol, we need to share a reference frame for the lggnning and the end of the data
sequence. In a real system, Alice will send a Pnite sequence gfntbols which Bob will measure,
process and store. Then Alice decides to reveal a subset of tlguantum states she sent which are
easily identipable at BobOs by their position in the detectk sequence. In our experiment however,
the sequence of quantum states is repeated continuously atlse and the acquisition begins during a
random symbol in the sequence. Therefore we need some method generate the sequence at Alice
based on BobOs measurement window.

This is achieved via synchronisation of classical and quantm data streams such that we can
identify the beginning of the repeating quantum sequence fom the classical data. To synchronise
both channels we begin by providing AWG1 and AWG2 with a common clock reference. Then a
arbitrary function generator (AFG) with the same clock reference generates a trigger signal so that
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Figure 6.2: Classical signal spectrum (left) before the RRC, ihiddle) after the RRC, (right) after the
RRC and frequency shift.

Figure 6.3: Spectrum of the signal at the exit of the 1/Q modulator.

both AWG1 and AWG2 start emitting at the same time.

6.1.2 Receiver : signal detection

The receiver side plays the role of Bob in the QKD protocol. The oherent detection process is based
on mixing the signal with the LO in the polarisation and phase dversity hybrid. Before the hybrid we
use a PC to manually align the polarisation of the incoming sgnal with the axes of the PBS located
in hybrid, such that the classical and quantum signals are ofically routed towards the classical and
guantum detectors respectively. The data is acquired by the ecilloscope piloted from the MATLAB
session on the laboratory computer. Finally, the samples aguired are processed during the digital
signal processing step.

Losses. It is crucial to quantify the losses at BobOs to apply the truséd receiver security proofs.
Here we have 2 dB of losses due to the polarisation controlleand the 9G hybrid.

Sensitivity to polarisation drifts. The PC is set manually during the CV-QKD experiment.
However over time the state of polarisation (SOP) of the incaning Peld rotates and the setting of the
PC must be adapted. Even a slight misalignment of the polariation can lead to a signibcant increase
in the excess noise measured during the experiment as is reggented in the bguré 6)6. Therefore the
protocol performance is closely related to our ability to track the SOP over time and to correctly set
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Figure 6.4: With only 2000 symbols, the PCS-64QAM constellaton can only approach the theoretical
occurrence probabilities for each symbol. We generate theanstellation by generating the brst 64
uniqgue QAM symbols, and draw the rest randomly according to he desired probability distribution.

the PC.

Classical detectors. The balanced detectors used for the classical signal have a 43Hz band-
width in order to correctly detect the full classical signal. We placed electrical amplibers after the
detectors so that the noise Roor of the oscilloscope was wdiklow the noise Roor of the detectors.

Quantum detectors. The quantum balanced detectors have a tunable bandwidth betwen 80
and 350 MHz. We chose to set the bandwidth at its maximum in orde to have some margin in the
signal-LO frequency ¢ set for the detection of the 250 MBd quantum signal. These redgers have
built-in low-noise electrical amplibers, thus we do not needto add any amplifying device and we
connect them directly to the oscilloscope.

Local oscillator. The LO is tuned such that the LO central frequency is close to tke quantum
signal central frequency. Actually, the combination of the LO central frequencyf o and the bandwidth
of the detectors B¢ determine a "spectral window", represented in bgurg 6J5, of te optical signals
that can be measured. Typically we want to set the LO central fequency such that the quantum
and classical signals are in the spectral windows debned by thguantum and classical detectorOs
bandwidths respectively. Looking to the spectrum in Pgure[ 63, we also want the strong classical
signal as far as possible from the quantum detectors spectravindow in order to mitigate the excess
noise induced by the classical channel. Therefore it is bestotchoose a LO central frequency below
the quantum signal central frequency.

Oscilloscope. The oscilloscope sampling rate must be carefully chosen bag@n the symbol rate
of the detected signals. We discussed above the LO centraldguency would be chosen below the
guantum signal central frequency. Therefore the frequency 'tset between the higher frequencies of
the classical spectrum and the LO will be around 6 GHz. In orde to satisfy the 2 times oversampling
criterion [B3], we need to sample the classical signal at lesa at a sample rate of 12 Gsa/s. Since the
oscilloscope only 6ers the possibility to sample the signal at 10 Gsa/s or 20 Gsa& (or more), we
chose to operate the oscilloscope at sampling rate 20 Gsal/s.



100 CHAPTER 6. JOINT CLASSICAL AND QUANTUM COHERENT COMMUNICATION

Figure 6.5: The LO central frequency as well as the detector badwidth debne a spectral window
of the signals that can be detected. In this schematic represgation, f o is chosen such that the
guantum signal spectrum is in the spectral window and the clasical signal is not.

Figure 6.6: In this graph we show the sensitivity to polarisaion of the excess noise measurement
during the protocol. We acquire data from the oscilloscope eer 1 hour with an interruption every 10
minutes. During the pause we set the PC in the best way possikel by hand. The results of the hour
of measurement are then plotted and divided into 6 measurens denoted by "Mes 1-6". We clearly
see the excess noise over time increases until the polarigan is realigned. We can also observe the
mean noise level increases in measurements 5 and 6 which is digethe drifts in the settings of the
IQ modulator. We discuss these drifts in more detail in the sulsection[6.4.4.
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Figure 6.7: Shot-noise plus electronic noise variance as ariction of the LO power. The blue circles
are measurements and the dashed red line is a linear interpation of the linear regime. We observe
a linear dependence until the LO power is above 110 mW, at whictpoint the detectors respond in a
non-linear fashion.

6.2 Calibration

The precise calibration of the shot-noise is central to the CVQKD experiment. Since the action of the
eavesdropper is quantibed by the excess noise -the noise &bdhe shot-noise threshold- it is crucial
that the shot-noise is well known. Underestimating the shotnoise would lead to an overestimation
the excess noise and would therefore cause the protocol to texct less secret key than what it could.
Even worse, overestimating the shot-noise would lead to an nderestimation of the excess noise and
potential security Baws in the protocol. The object of this setion is to discuss and describe our
shot-noise calibration.

6.2.1 Receiver linearity

The electronic noise- ¢ is expressed in SNU as

-SNU - “el (6.1)

where the superscripts SNU anadv? refer to the unit and N is the shot-noise variance. The value
-,\E’lz is stable and only depends on the noise Roor of the low-noiseaeivers and of the oscilloscope.
Hence- SNV is inversely proportional to the shot-noise valueN, which is itself proportional to the LO
power. Therefore it is interesting to operate the experimentwith high LO power in order to minimise
-SNU_ The ratio -¥”/N o is called the clearance and is usually expressed in dB. It gigethe value of
the electronic noise in SNU.

However we cannot simply set the LO to the strongest output paver (200 mW or 23 dBm) because
above a certain threshold the receivers do not respond linely to their input, which induces noise.
Therefore we must make sure we set the LO power such that the bahced receivers are operated in
the linear regime. We show in Dgur? a plot of the shot-noes value in V2 versus the LO launch
power. We clearly observe a linear dependency of the shot-ise to the LO power until the LO reaches
approximately 110 mw, after which the receiver response is agide of the linear regime. We chose
the LO launch power to be 100 mW and display the clearance in te Pgurd 6.8
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Figure 6.8: Power spectral density output of the balanced reeivers with and without the LO turned
on.

6.2.2 Shot-noise estimation

We describe our shot-noise estimation procedure here.

Building the shot-noise estimator. We estimate the shot-noise experimentally by the following
procedure. First, when the signal and LO are turned 8, the data observed on the oscilloscope
corresponds to the RBuctuations induced by the electronic nise of the detectors. We record from
the oscilloscope a set of samplegX },}I.; which are centered before we compute the electronic noise
estimator expressed inV? as :

w2 1'M&
&= | 6.2)
i=

1

Then the LO is turned on, generating shot-noise on the samplesead by the oscilloscope. We
perform a second measurement to obtain a set of samplgs<y }L; . These samples are centered and
we compute the shot-noise estimator as :

; 1'"& .,
i=1
Electronic noise variations. In theory for every shot-noise estimation we should also esthate

—,\e’lz. In practice however this value of the electronic noise can beonsidered constant at the scale of a
day of experimental work. We show this in Dgur by computig successive estimators f0¥g’|2 over
more than 7 hours. In the plot we normalised our values by a typtal value of Ny to put the electronic
noise variations in perspective compared to the shot-noiseWe Pnd that the standard deviation of the
electronic noise measurement is of the order o6 ( 10”* SNU. Since this value is much smaller than
other RBuctuating terms we can consider it is constant duringthe experiment.

Shot-noise variations.  The shot-noise value Buctuates over time, for example becaasof RBuc-
tuations in the LO power or vibrations in the lab. We found that a particular cause of instability
was temperature variations in the lab. We illustrate this in the bPgure[6.10 where we can observe the
correlations between temperature and shot-noise variatios.
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Figure 6.9: Electronic noise, in SNU, evolution over time. W\ observe the electronic noise variations
are of the order of 10"* SNU, which is negligible compared to other system Ructuatios.

Figure 6.10: Evolution of N)y(t) over time, plotted in blue. We also plot the temperature Ructuations
in the lab in orange.

Because of this the shot-noise Buctuations must be trackeduting the experiment, which we achieve
by performing a shot-noise estimation before each data acdsition. Since there is a delay!t between
the shot-noise acquisition and the data acquisition, it is nteresting to investigate how the shot-noise
behaves during this time interval in particular because these Ructuations will also & ect our excess
noise estimation. For this we take a high estimation of! t = 7.5s and study the quantity

r@o(t + |t) $ l@o(t)
No(t +1t)
The standard deviation of this estimator quantibes the averge Ructuation of the shot-noise be-

tween a shot-noise estimation block iat timet) and a data acquisition block (at time t + !t). The

results are displayed in the bgurl and show that the staterd deviation of | N(t) is approxi-
mately 2( 10”3 SNU, which is also the minimal precision on the excess noise vaan hope to achieve.

I No(t) =

(6.4)

Data acquisition procedure. According to our results we debne the following acquisition po-
cedure to estimate successive blocks of quantum and clasaldata. We begin by estimating once and
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Figure 6.11: We plot ! N(t) over time and estimate, in SNU, how much the shot-noise Buctates
between the shot-noise estimation and the data measurement

Figure 6.12: The acquisition loop for our CV-QKD protocol. We estimate the electronic noise once
and for all. Then we alternate shot-noise estimation blocks wih data blocks in order to track the
shot-noise Ructuations.
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for all the electronic noise and do not track its Buctuationsfor the rest of the experiment. Then, we
alternate between one measurement dedicated to the shot-iige estimation with the signal @' and one
measurement dedicated to the key distillation with the signd on. This is represented in the bgure
b.14.

6.2.3 Improving the statistical precision of the shot-nois e

The standard deviation of ! N(t) derived in the previous subsection should be minimized to improve
the precision of the excess noise estimation. This can be aehied by di' erent ways, for example by
reducing the delay!t or by stabilizing the temperature in the laboratory. Unfort unately at our level
we do not have much control over these :!'t is bxed by the wait time due to the synchronisation of
the AWGs and the temperature regulation system is not under air control. Hence we attempt to
leverage a third solution which we can control : the statistial precision of our estimators. This will
be the focus of this subsection, but note the concepts deveb@d here will also be useful to predict the
precision on the excess noise estimator.

Statistical precision and number of points. Statistical e" ects are directly related to the
number of points used to compute the estimators as a consequee of the central limit theorem. To
see this let us consider the shot-noise estimatd®, is computed from the set ofi.i.d. random variables
{X,i\,o}i”:l where for all i, X,i\ID , N(O,Ng + -¢). We can compute the mean and variance of the
random variable (X}, )? as

E[(XN,)?1= No+ -el, (6.5)
Var[(Xy,)% = 2(No + -e1)?. (6.6)

Note the second equality is obtained by looking at the momentof Xy,. The central limit theorem
states that in the limit of large numbers, the sum of i.i.d. random variables converges towards a
Gaussian random variable with mean and variance the sum of theneans and the sum of the variances
of the i.i.d. random variables. Therefore we have that

11" & i 2 2 2
o B XNo ne N (No + 'el,ﬁ(N0+ -e1)) (6.7)
Let us put aside the estimation of - for the moment and let us consider that é, = -¢. In the
limit of a large number of samples, we can write that
. 2 )
rq)0 , N (NO' H(NO + 'el) ) (6-8)
Hence the estimatorN, follows a Gaussian probability distribution and has standard deviation
)
2 .56
o= o(Not-a) 3 T2, (6.9)

where we obtained the value in SNU by replacing ¢ by our experimental value of0.1 SNU. Looking
at equation we obtain a rule of thumb for the statistical precision of g which scales as#%.

Importance of the iid. hypothesis. A key hypothesis in the central limit theorem is that
the shot-noise sample points{ X} }{L; are alli.i.d. Therefore it is not su! cient to consider only the

number of sample points used to computeM, but one must consider the number ofi.i.d. ‘sample
points retrieved from the oscilloscope. This can be seen in # bgur where we plot Ny(t) in
the two cases where the oscilloscope samples the points &tGHz and at 20 GHz. In both cases the
same number of points are used to computd®y, however they are spread over a longer time window
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Figure 6.13: We plot! Ny(t) for two di" erent oscilloscope sampling rates and show the importance
of the i.i.d. hypothesis in the central limit theorem.

when the oscilloscope runs atl GHz compared to the case where it runs a0 GHz. From the bgure,
we observe the measurement all GHz is much more stable than the measurement a0 GHz. This
is explained by the fact that there are morei.i.d. samples in this case, therefore it is interesting to
understand how manyi.i.d. samples we have in our acquisition.

Considering that the detectors have a bandwidth Beiec, the minimal time between two samples
X,‘\lo and X,'jol for them to be independant is given by

iid 1
Tsamp - @-
Hence for the target valuen of i.i.d. sample points, the acquisition{x,‘“0 L, must span at least a
time Tacq = N( Ts"gmp . In practice the oscilloscope samples at raté ,.q faster than 350MHz, therefore
we will obtain a total number of samplesny: > n which are noti.i.d., as we illustrated in bgure[6.18.
The number of sample pointsny; required to haven i.i.d. points is given by

(6.10)

Ntot = Tacq ( facys (6.112)
=n( fe (6.12)
Belec

Equivalently, we can Pnd the number ofi.i.d. samples from the the total number of samples and
the sampling rate :

B
n= N (o (6.13)
acq
Statistical precision in our experiment. Based on what was said above, the best option to

precisely estimate the shot-noise is to use a slower sampgrrate to cover a larger time window. Given
that the maximum number of points that can be retrieved from the oscilloscope is around0 Mpts,
we can compare the theoretical statistical precision of the stimation at facq =1 GHz and f 5¢q = 20
GHz. We begin by computing the number ofi.i.d samples in both cases :

nicHz =17 5( 1¢P,
n?0GHz =0 875( 10°, (6.14)
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which then provides the standard deviations due to statistial €' ects

oo r =3.7( 10,
+200M = 1.7 ( 107, (6.15)

0
For a Gaussian random variable, we can bound the probabilitythat the shot-noise value No is
contained in an interval 1. of length 2k+N»j0 centered onNy by 68.27%, 95.45% and 99.73%for k = 1,

2 and 3 respectively. Hence we will debne the conbdence in oustienator N, by considering the
length of the conbdence intervalpy: = |l |. Lets examine the statistical precision of our estimation
for k=2 and k =3. We have

Ptz =1.5( 10",  pi®Hz =2.2( 10”3,
p3oCHz =g g( 108,  p2CHz =1 ( 1072 (6.16)

The results displayed above conbrm that we must estimate the lwot-noise at sampling frequency
1 GHz if we hope to precisely estimate excess noise values dfetorder of 0.01 SNU and additionally
provide the statistical precision of about 0.002 SNU in our estimation while doing so.

Naturally these results only concern the statistical precsion and do not account for the temporal
variations of the shot-noise. The standard deviations disphyed in the Pgure[6.IB account for both
€" ects and can be used to estimate the global precision of the shnoise estimator. We bnd that at
sampling rate 1 GHz we obtain a precision of

pacHz =7 ( 10"3
p3eHz =1 ( 1072, (6.17)

Di! erence in electrical gain based on the oscilloscope sampling frequency. We high-
lighted the necessity to estimate the shot-noise with the osiloscope running at 1 GHz. However we
noticed that the sampling rate also & ects the electrical gain of the oscilloscope, therefore thehot-
noise estimation performed at 1 GHz is not centered on the samvalue than the shot-noise estimation
performed at 20 GHz. We illustrate this in the left plot in Pgure [6.14 where we can clearly see the
di" erence in not only the RBuctuations, but also for the mean vale of the estimation between 1 GHz
and 20 GHz sampling rate.

To solve this issue we performed several shot-noise measurents by alternating the sampling
frequency of the oscilloscope. Then we computed the ratio bateen the estimation at 20 GHz and the
estimation at 1 GHz and obtained the value

_ I\@gOGHZ ()
Rao/1 = 7@&%2 0 (6.18)
Then the shot-noise estimator at 20 GHz is computed from the dimator at 1 GHz as
M5O = Roo/1 (N1 (1). (6.19)

The value of R,q, 1 is di" erent for both quadratures and is stable as long as the eledtr cables
linking the detectors to the oscilloscope do not move. Everyone or two weeks we re-estimate this
parameter to verify the value has not shifted.
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Figure 6.14: (left) We perform shot-noise estimations ovemight by alternating the oscilloscope sam-

pling frequency between 1 GHz and 20 GHz. We observe that the gan values of the shot-noise
estimation in both cases is not the same because the electatgain of the oscilloscope depends on the
sampling frequency. (right) In this plot we show the ratio of the shot-noise estimator at 20 GHz and

at 1 GHz. This ratio is relatively stable, but can change if we touch the electrical cables linked to the

oscilloscope.

6.3 Digital signal processing

During the DSP stage our aim is to reconstruct the sequence aflassical and quantum symbols. The
classical symbols will then be demodulated into a bit sequerewhile we will use the quantum symbols
to estimate the excess noise of our transmission. In a realf$ implementation the quantum data
should also be mapped to a bit sequence to form the raw key, buthis is outside the scope of this
work where we focus on a proof of concept of joint classical andquantum communications.

We begin the DSP stage after the acquisition of the data retreved from the oscilloscope, which
provides a list of complex sampleq c(n)}ﬂflq for the classical data and{q(n)}ﬂff for the quantum
data. We process the classical data prst in order to extracttie synchronisation information as well
as the phase and frequency estimators used to correct the qotum data.

6.3.1 Classical channel

The DSP applied to the classical channel is for the most part commposed of the DSP algorithms
discussed in chaptef b. We give the recap of the tierent transformations here.

Backshifting the classical signal. The brst step is to spectrally shift the classical data in orde
to correct the frequency shift between classical and quantin channels we induced at emission. The
frequency shift is given by! fshr = fsnit ¢ $ fsnit g =3 GHz, hence multiply the classical samples as

$ %

c(n) := c(n) ( exp $j2)n! ffs*“ﬁ (6.20)
acq

RRC blter. We then apply the matched RRC blter directly on the samples sgh that
$ . %
%1 & Nacq
cn):= F™ F {cm}pd ( Hrre () (6.21)

where F stands for the Fourier transform and Hgrc is the RRC Plter described in chapterb.



6.3. DIGITAL SIGNAL PROCESSING 109

CMA. The CMA corrects many channel impairments and also bnds the optmal sampling time
for the symbol. As opposed to the 2x2 butter3y FIR Plter descrbed in[5.4.3, we do not use the CMA
to compensate the polarisation rotations in the bber since & perform the polarisation separation
manually. Here the CMA is operated in "single-input single-autput” (SISO) mode and only considers
one polarisation.

The number of samples per symbohs, for the classical data is given by the rationsy = facq/f ¢
and is equal to 5 in our case. The CMA makes the transition from tte set of samplegc(n)} < to

n=1
the set of symbols{e(k)} 2™ using the Plter-tap coé cients {h(i)}\¥;** as

W%]_ $ W %
e(k) = h(@i) ( c nsak$475+ i (6.22)
i=0
Recall the CMA is an adaptive equalizer, meaning that the blte-tap coe! cients are updated with
an error function feedback. As the algorithm runs over the sé of samples, the Plter-tap coé cients
converge towards a constant value and the algorithm is statbnary. We use 10 000 symbols to train
the algorithm until the Plter converges, therefore we simpy drop the 10 000 prst symbols and only
work with remaining ones. For simplicity we conserve the samenotation for the number of classical
Symbols Ngymp

Carrier recovery.  The next step is the carrier recovery. We brst perform the fregency d' set
estimation and correction using the 4" -power Viterbi and Viterbi algorithm described in This
produces the frequency dset estimator fQ which is then used to correct the data :

$ o %
(k) = o(K) ( exp $j2K) - (6.23)

Following this, we perform the phase estimation using the4™ -power Viterbi and Viterbi algorithm
averaged over a large window of 91 symbols. We made the choicéthe large window to improve the
phase estimation precision because we have ultra-low linedih lasers, therefore the phase is relatively
constant over the averaging window. The algorithm produces a sguence of phases$$k}ﬂiyl'“b which
are then used to correct the data :

e(k) 1= €(k) ( exp($jS«) (6.24)

BER estimation and sequence beginning. Finally the sequence of symbols is mapped to
a sequence of measured bits following the QPSK symbol-to-tst map. With our knowledge of the
sequence of bits sent by Alice, we search for correlations tveeen that sequence and the sequence at
BobOs. The correlation is maximal when AliceOs sequence magiBobOs sequence, thus we Pnd the
index Ksiat and the symbol e(ksart ) in BobOs data corresponding to the beginning of the sequence
sent by Alice. From the index ks and the number of symbols at BobOs, we can generate the full
bit string that was sent by Alice. We compare this bit string wi th the one at BobOs and measure the
BER as the ratio of errors over the total number of bits. After this step, we begin the quantum data
DSP.

6.3.2 Down sampling

The brst step in the quantum data processing is transposing auset of samples{ q(n)}ﬂ‘";“lq in a set of
symbols. Since we want to use the phase and frequency estintat derived on the classical channel to
correct the quantum data, we must make sure to preserve an equalence between the two channels.
Recall we discarded 10 000 symbols -initially 50 000 samplesnce we have 5 samples per symbol- on
the classical channel corresponding to the CMA training seqance. In order to preserve the equivalence
between the data streams, we must also discard 50 000 samples the quantum channel. However
we conserve the notationnaeq for simplicity here.
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Figure 6.15: Schematic representation of the guided down sapling method. From the beginning of
the classical sequence, we bPnd the sample corresponding teet beginning of the quantum sequence.
The optimal sample choice for the brst quantum symbol is locatd at constant distance! samp Of this
sample. We can then sample the full quantum sequence starton from the prst symbol.
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We down sample the signal fromf 5cq/f ¢ = Nsaq = 80 samples per symbol to 1 sample per symbol.
Since we clearly oversample the quantum channel, our appraa is to select the one sample closest to
the optimal sampling instant. For this we have di" erent methods discussed below.

Guided down sampling.  Assuming the synchronisation between both channel holds,hte begin-
ning of the quantum sequence matches the beginning of the cdaical sequence. Hence the position of
the optimal sample for the brst quantum symbol should be the ame relative to the prst classical symbol
over multiple acquisitions. We illustrate this idea in Pgure[6.1% and describe the process here. First we
know the index Kkstart  CcOrresponding to the beginning of the classical data sequeer. Therefore we know
that the brst sample of the quantum sequence is|(nsa ( Kstart ). Since the channels are synchronised,
the optimal sample for the beginning of the quantum sequencés &(Sstart ) = d(Nsa ( Kstart + !samp )
where the optimal shift !s;mp is constant over multiple acquisitions. We can then create he set of
quantum symbols by taking everyns, o sample forward and backwards to generate the set of quantum
symbols{g(s)} o™ .

The question remains on how to gain knowledge ofsamp . To do this we run the protocol once
operating the quantum signal in the classical regime. When he classical DSP is Pnished, we try all
possible values fofl samp ' {0, Nsa,q $ 1} and select the value which minimizes our error function. Said
error function is inspired from the CMA in classical coherentcommunications as we look to minimize
the intra-symbol variance of the signal modulus. When Aliceemploys a QPSK modulation this is easy
: since all the symbols of the constellation have the same madus, we simply select the sample which
minimizes the variance of the signal modulus. When the PCS-83AM constellation is employed, we
must Prst group the sequence of symbols at BobOs depending which symbol was sent by Alice.
Then we take the value of!samp Which minimizes the average variance of the modulus of all sybols
in the sequence corresponding to the same 64-QAM symbol seby Alice.

Pulses. The second way to down sample the signal is to carve pulses on thguantum signal
instead of operating the channel with continuous-wave light This way, we can simply select the one
out of ngaq possible samplings which maximize the detected power.

Exhaustive search. The Pnal downsampling approach is simply to test all downsamphg pos-
sibilities (among nsaq = 80) and select the one which provides the best excess noise messments.
While computationally intensive, this method is useful to verify whether the system behaves as we
expect.

During the course of this work we Prst modulated the quantum $ates according to a QPSK modu-
lation, and then scaled up the constellation to a PCS-64QAM. Inthe case of the QPSK modulation we
used exclusively the guided down sampling method. This methodunctions regardless of the quantum
signal power thus it can € ectively down sample a very low-intensity signal, as is requied for the secu-
rity of QKD using a QPSK modulation. When we shifted to the PCS-64QAM, we continued using the
guided down sampling but also veribed our results with the exhastive search. The implementation
of pulses is ongoing at the time this is written.

6.3.3 Frequency and phase correction
Following downsampling, we use the frequency and phase estirtars computed on the classical channel
to correct the quantum data. First the frequency 0" set is corrected as
$ Q %
g(s) =g(s)( exp $]j29) ﬂ . (6.25)
Then we proceed to the phase correction. Given the set of clagal symbol phases{$k}E§yl"‘b , we

average the$ over groups of lengthf ./f 4 = 16 in order to produce the set of quantum symbol phases
{-s 231"’“"‘ . We then correct the quantum data phases :
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Figure 6.16: (left) Phase evolution of the classical and quatum signals over time after compensation
of the frequency d setfQ . We observe there remains a frequency"set between both channels which
induces a rotation of the constellation points showed in inst. (right) We show the same graph after
using our residual frequency 6 set compensation algorithm. It € ciently compensates the residual
0" set therefore correcting the constellation rotation such hat we can clearly observe the 4 QPSK
symbols.

&(s) := &(s) ( exp($j.s). (6.26)

Ideally the carrier recovery for the quantum signal would endhere. However we observe that there
remains a residual frequency bset in the quantum data which causes a rotation of the constelition
and considerably increases the excess noise estimation. Bee this consider the left graph of bgure
[6.18. Here we operate both channels in the classical regimen@ we perform the full DSP of the
classical channel. Then we down sample the quantum signal ancbarect the frequency d' set with the
estimator computed on the classical channel. Since both chraels are operated in the classical regime,
we can use the Viterbi & Viterbi phase estimation algorithm on both channels to compare their phase
evolution over time. We see that there is a time-dependant lnear d'set between the phases on the
guantum channel and on the classical channel, which corresmals to the residual frequency 8 set we
mentioned. The inset shows the QPSK constellation we obtain dér the DSP step of equation[6.26,
illustrating the rotation of the constellation points.

Cause behind the residual frequency o ! set. We can understand this phenomenon by return-
ing to the beginning of the classical DSP. We start by backsHhiting the classical channel by 3 GHz
such that the central frequency of classical and quantum deat matches, this way the frequency tset
estimator computed on the classical channel will also be theréquency d set for the quantum signal.
However this assumes that the di erence in the central frequency of the quantum and classicalpectra
is exactly 3 GHz. In reality the AWGs do not have a common clock reference vth the oscilloscope
used for the measurement, therefore what is 3 GHz for the clockeference at Alice can appear to be
di" erent with the clock reference at BobOs.

Besides the reference clock dierence, another cause to the residual frequency'set is caused by
the clock jitter in AliceOs system. The stability of clocks inelectronic devices, which is never perfect,
is usually expressed inparts per million or ppm. This quantibes the average dierence of the number
of samples the device outputs compared to the ideal case ovarmillion samples. Our reference clock
at Alice has a precision of 1 ppm, which means that our output sjnal has a frequency precision of
10”8, Therefore we achieve our target frequency shift of 3 GHz with grecision of 3 kHz.
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Figure 6.17: The residual frequency bset compensation algorithm exploits the parameter estimaibn
phase of the QKD protocol. Bob performs a +5 Hz and a -5 Hz increnental rotation of his data
until he reaches a local minimum for the excess noise estimat. When he does, the total frequency
correction performed on his data is the residual frequency 'bset.

Correcting the residual frequency o I set. This problem is unavoidable in all architectures
for which the quantum carrier frequency is estimated from a fequency multiplexed signal. To solve
this, we found in the literature [B4] a method consisting in €£nding two pilot tones instead of one.
By estimating the frequency d' set between both pilots the authors track the clock RBuctuatons and
correct the frequency d set term. However we propose a new approach to this problem whiout the
need to engineer additional reference signals. We exploitie parameter estimation phase of the QKD
protocol. Instead of revealing his symbols at the same time thn Alice, Bob uses the information
disclosed by Alice to correct the frequency bset in his data. He does this by implementing at !¢
incremental frequency shifts to his constellation, lookirg to minimize the excess noise estimator. While
the excess noise estimator decreases he continues rotatihgs data until he reaches a local minimum.
For our work we chose!y =5 Hz since we did not notice any particular advantage when incrasing
the granularity of the search. This algorithm is representedin bgure[6.1]. The right graph in bgure
[6.18 shows the phase evolution of classical and quantum sigiseafter correction by our algorithm. We
observe it matches for both channels, and e ciently corrects the distortion of the constellation, which
is showed in inset.

Residual phase o ! set. After all impairments have been corrected, there remains a pase ¢ set
on the quantum constellation. This is easily corrected usinga method similar to the residual frequency
0" set compensation algorithm. We rotate all quantum symbols ly an incremental phase shift until
the excess noise estimator is minimal.

6.3.4 Parameter estimation

The goal of the parameter estimation is to compute an estimato for the excess noise over the trans-
mission.

Excess noise estimator. Let us denote the sequence of symbols sent by Alice b:ya(s)}gij“ n saq
where each symbol is the realization of a random variablé with variance V4 in SNU. The theoretical
variance of BobOs data is given from the Herent experimental parameters as

T 3
= —Va+14 - + =. .
Ve 2VA 1 ot 5 (6.27)

By taking the conditional variance of BobOs data, we bnd theoflowing relation to express the
excess noise

3=2( (Ve1a$ 1% -a). (6.28)
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Figure 6.18: Evolution of +4 as a function of the number of blocks averaged to build®. We can
increase precision of the excess noise estimation by coneaiating several blocks.

We build the excess noise estimator by replacing the theorétal values above by the corresponding
estimators. We compute ¥ |5 by taking the intra-symbol variance of BobOs data. This amouts to
grouping the quantum symbols based on the symbol sent by Alie to generate the group of symbols
Qa = {&(s)/ &(s) = a}. There are therefore 4 groups when we use the QPSK modulation &64 groups
for the PCS-64QAM modulation. Then we can compute the conditional variance of the quadratures
given symbol a was sent¥s|a-, = Var(RgQa]) = Var(Im[Q]). Finally we obtain the conditional
variance estimator given by

I
Vs = P(@)Vs|a=a: (6.29)
a

where the p(a) are the experimental probabilities for each symbol equal tol/ 4 for the QPSK

modulation format and displayed in bgure[6.4 for the PCS-64QM modulation format.

Precision of the excess noise estimator. The overall precision of our excess noise estimation
depends on the one hand of the statistical tects in the estimation of VB|A and on the other hand on
the precision on the shot-noise calibration. We discuss thee here.

¥ Statistical precision of W |a. Similarly to the methodology we detailed for the shot-noiseestima-
tion, the estimator of Y5 |a can be approached by a Gaussian random variable with mean vagl
Vg|a and variance %VleA where nq is the number of quantum symbols used for the estimation.
Considering the excess noise is orders of magnitude below tisdot-noise, and using our previous
approximation of -¢ = 0.1 SNU, let us approximate the variance due to statistical & ects of
Y5, expressed in SNU, as :

.. 2
Var(¥sa)stat = —(121 (6.30)
q

¥ Precision on the shot-noise calibration. Since we are in shot-noise units, subtracting the con-
tribution of the shot-noise to the total noise is achieved by subtracting 1 SNU. This can be
misleading because it looks as if we can always subtract theoatribution of the shot-noise when
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in reality the variance in the shot-noise calibration is transferred to the excess noise measure-
ment. This term dominates the precision on the electronic nase measurement such that the
variance of the excess noise estimator due to imperfect céliation is expressed as :

Var(8)caip =4 ( Var(! Ny), (6.31)

In total, the variance of the excess noise estimation is the su of the variances induced by the
statistical e" ect and by the calibration, such that

Var(9) =4 ( &Var(@BM)Stat + Var( ! I@o)l (6.32)

Let us now investigate the precision we can achieve over onecquisition and by averaging multiple
acquisitions. In one acquisition with 10 Mpts we haveny = 124 375 symbols, which yields, according

to and to the variance of! N, determined experimentally in Dgur, the standard dewition
for the excess noise estimator :

+s, =0.0095 (6.33)

This value can be improved upon by averaging excess noise asttors over multiple blocks, which
will result in dividing the standard deviation of 8 by the square root of the number of blocks. We give
the evolution of +4 as a function of the number of blocks in the bgur@&

6.4 Parameter optimisation and results

Now that we have described how to operate the joint quantum aml classical coherent communication
experiment, let us discuss how we chose our experimental pameters for both experiments and the
results obtained

6.4.1 Quantum channel power

The modulation variance V5 used on the quantum channel should be chosen as to maximise ¢h
key rate. This value greatly depends on the modulation formatemployed, but also on the targeted
distance and on the expected excess noise. In Pglire §.19 wetple theoretical key rates for both the
QPSK and PCS-64QAM formats for di" erent distances. The plot for the QPSK modulation, which is
obtained via solving the SDP debned in referencé [52], wassal taken from this reference. We plotted
the data corresponding to the PCS-64QAM format using code preided by the authors of [48].

QPSK. Using the QPSK modulation the optimal coherent state amplitude is of about& = 0.5
at 20 km corresponding toVa = 2&? = 0.5. We will operate our experiment over 15 km, hence the
optimal value of V, is possibly higher. However we observe it does not vary very och which the
distance when looking at the plots for the larger distances 060, 80 and 100 km. We will assumé.5
is the optimal modulation variance in our case.

PCS-64QAM. Compared to QPSK, the PCS-64QAM format tolerates larger moduhtion vari-
ances. It seems the optimal, in this case is aroundVa =5 and does not depends very much on the
distance and on the excess noise in the range of parametersvestigated.

6.4.2 Classical channel power

After optimising the quantum channel modulation variance, we investigate the € ect of the classical
channel on the performance of the protocol. The power of the @ssical channel,P;, has a threefold
impact we discuss below.
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Figure 6.19: (top) Key rate per symbol using the QPSK modulaion versus the coherent state am-
plitude. Plot taken from reference [52]. The excess noise at lice was set at3y, = 0.01 SNU, hence
the excess noise at BobOs is debned 3y = 10%0-02" d3, where d is the distance. (bottom) Key rate
per symbol using the PCS-64QAM modulation versus the modulaibn variance for 3 values of excess
noise, debned at Alice.

Leakage on the quantum channel. The classical channel is multiplexed in frequency and
polarisation with the quantum channel. However the componets used to polarisation multiplex both
signals, for example the PBS and the dual-polarisation I/Q madulator, have a Pnite polarisation
extinction ratio (PER). This means there is necessarily some power from the ctaical channel which
will leak on the quantum channel and generate excess noise. Inddition to the Pnite PER, the
components set manually always ster from slight misalignment from their optimal position whic h
generates more leakage from one channel to the other. The fragncy d' set between both channels
generates additional extinction by shifting the classicaldata outside of the bandwidth of the quantum
receivers, but unfortunately the classical channel will stil generate excess noise on the quantum signal.
We can write the excess noise due to the leakage of the clasdichannel, noted ¢4« , in @ general way
as

3eak = €cqPc (6.34)

whereeg is a parameter representing the total extinction between tre channels, which is in general
not constant during the course of the experiment due to shifs in polarisation and the free-running
signal and LO which modibes the frequency 'bset and hence the extinction obtained via the frequency
degree of freedom.

In the Pgure[6.20, we plot the value of3cq« for di" erent values ofP. by regularly calibrating the
LO frequency d' set and the polarisation controllers. This plot highlights the linear relation between
P. and 3e¢ak and gives some insight as to what value 08¢« We should expect.

Precision of phase recovery.  The phase recovery procedure is performed on the classical @a
for both the classical and quantum channels. Its goal is to preide an estimator ® for the relative
phase between signal and LG5. The precision of phi depends on the noise on the classical channel
during the Viterbi & Viterbi phase recovery algorithm, +2, and on P;. It can be written as [20]
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Figure 6.20: Excess noise due to the leakage of the classicafinal on the quantum data. To plot this
graph we cut the modulation on the quantum channel and compaed the noise levels -in SNU- with
and without the classical signal.

I $= —C (6.35)

where ! $ = Var($ $ $) is the variance of the residual phase after correction and isnversely
proportional to Pc. In the case of small! $ this can be translated into a quadrature variance on the
guantum channel as

\?)phase = -I—VA| $. (6.36)

Therefore the excess noise due to imperfect phase recoveryiisersely proportional to P.. From
the results obtained in bgure[6.2D, we can determine an appxamately optimal value of P; based on
the measured excess noise. If the leakage noise is dominang. the measured3 is approximately
equal to the expected leakage noise, then it means we shouldduce theP.. On the other hand if we
bnd excess noise values much larger than the expected leakagoise, then we should increas®. to
reduce the imperfect phase recovery noise.

Classical BER. The BER on the classical channel is directly correlated toP.. Since we are
designing a joint classical and quantum communication sys¢tm we must insure that we provide reliable
classical communications. A particularly useful tool for this is forward error correction (FEC) which
consists in introducing some redundancy bits in the communrgation to correct any errors below a
certain threshold. To be conservative, we assume a raw BER af(0%? can be corrected with a 20%
overhead on the data. Hence we will assume that if we achieve aexperimental BER below this
threshold we have achieved reliable classical communicatns.

6.4.3 Results

We operated our hybrid classical and quantum communicationsystem during one hour and measured
the classical BER and the excess noise on the quantum channelhe set of parameters, measurement
results and expected key rates are displayed in the tablg 6/2The excess noise for each modulation is
taken as the average over all measurements, which are plotteth the bgure[6.2].

Discussion. We performed two experimental demonstrations of a joint quaatum and classical
transmission over one bPber, using either a PCS-64QAM or a QPSkhodulation format on the quantum
channel. We exploited the bxed phase and frequency relatiobetween classical and quantum channels,
due to them originating from the same laser, to perform the D on both channels using the estimators
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QPSK | PCS-64QAM
Va (SNU) 0.5 5
P¢ (dBm) -30 -22
distance (km) 15 10
3 (SNU) 0.009 0.0212
-el (SNU) 0.09 0.09
BER 1.10%4 # 1.10%7
Key rate (Mbps) 14 18.5
Security proof 52] [48]
Finite-size &' ects No Yes

Table 6.2: Comparison of the parameters used and experimentaesults for both experiments with
di" erent modulation formats on the quantum channel.

Figure 6.21: Excess noise measurement performed during oheur with the PCS-64QAM format (left)
and the QPSK modulation format (right) on the quantum data. E ach point is the average excess noise
taken over 3 blocks of 124375 symbols. The statistical error &rs at 3 + are displayed.
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computed on the classical channel. Hence, we did not need teegerate dedicated pilot tones to solve
the carrier recovery problem on the quantum channel.

With the QPSK modulation, we had to set the quantum channel power to an extremely weak
value of Vo = 0.5 in order to stick to the optimal values of the security proof used. In this regime the
phase noise is not as dominant as for higher values &y therefore it was advantageous to operate the
experiment with a low value of P, to minimise 3¢, Which we expected would play a signibcant role
in our total excess noise measurement. With the chosen clasal channel launch power ofP. = $ 30
dBm, the BER is below the FEC threshold therefore reliable chssical communication is achievable at
rate 3.2 Gbps assuming a 20% FEC overhead. Our low average excess rod 0.009 SNU allowed us
to infer our secret key rate of 14 Mbps from the data provided in reference[[52], which we transpsed
in this manuscript in the bgure (left). This brst experiment yielded encouraging results of a joint
classical and quantum communication system over the same el and importantly of the benebts
the classical channel could provide upon the quantum data. Byond the carrier recovery, important
synchronisation information was also retrieved from the chssical data which enabled the sampling of
the very weak quantum signal.

However a few frustrations remained as to the regime of paraeters used for the experiment. First,
the very weak value ofV, insures that at larger distances the SNR will essentially go ® 0 and no
secret key will be obtainable. Also the very high sensitivity of the key rate to the excess noise value
causes the secret key rate to vanish when we take into considsion the worst-case estimator in the
Pnite-size regime. Finally, the classical channel was opated at a very low power, far from typical
values observed in coherent communication systems. Duringhe course of this thesis, new security
proofs [48] provided tools to easily compute key rates for ditrary modulations and showed that key
rates approaching the Gaussian modulation could be achiewkusing the PCS-QAM format with a
limited number of states, starting from 64. Hence we set outmprove the range of parameters used
in the experiment with this modulation format.

With the PCS-64QAM format, the optimal value of V4 =5 is 10 times what is was previously. This
means, according to our mode] 6.36, that the phase noise willlay a signibcant larger role compared
to before. We increaseP. by a factor , 6 to mitigate the increase in 3nase but induce additional
3eak by doing so. Therefore we naturally obtain a larger value of3 = 0.0212SNU in this regime, but
this is tolerated by the security proof. Our experimental data is compatible with a secret key rate of
18.5 Mbps with the worst-case estimator and the privacy amplbcation penalty due to the bnite-size
€" ects. Although we had to reduce our communication link to 10 kn to maintain a positive key rate
in the Pnite-size regime, our results are compatible with a ke rate of 44 Mbps at 15 km and enable
key distillation up to approximately 40 km in the asymptotic regime. These results prove that hybrid
guantum and classical systems can coexist and be designedcbuthat they are benebcial to the QKD
channel. Future designs of joint systems could even use theeeret key obtained during the QKD
protocol to encode some of the classical symbols leading tgmbiotic operation of joint quantum and
classical communications.

6.4.4 Improvement perspectives

The results presented here constitute an encouraging proaff-concept of the designs of hybrid com-
munication systems. For future work, we strongly believe thee results can be improved on, perhaps
drastically, by exploring a few direction we would like to discuss here.

Polarisation control. A brst step towards improving the experiment would involve deploying au-
tomatic polarisation controllers at Alice and BobOs in ordeto maintain the SOP at the optimal setting
over the course of the transmission. This is crucial not only ér performance, but also for consistent
repeatability of the experiment and € cient optimization of the other experimental parameters.

Synchronisation.  We believe the synchronisation of the two AWGs generates irnsbility and
perhaps additional noise. First, the fact that AWG2 emits periodically makes it rather di! cult to
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Figure 6.22: To plot this graph we ran several iterations of he acquisition loop. When it came to
down sampling the quantum data, we computed the excess noiserf every sample before and after the
optimal sampling instant determined during the guided down sampling. Then we plotted the results

as a function of the sample used for the rest of the DSP. Here eh color corresponds to one acquisition.
We centered the optimal sampling instant at 40 samples. We oberve that the true optimal sampling

instant -for which the excess noise is minimal- is not consigintly at 40 samples, but rather Ructuates
around this value.

adapt the voltage biases to the drifts in the 1Q modulator. This is because we tune the biases based
on what is observed on the optical spectrum analyser, therefe if the signal alternates between on and
0" it is impossible to achieve a bne tuning. Hence we often penfm the experiment with a stronger
residual carrier than what is possible with our modulator, which undoubtedly generates noise on
the quantum channel, especially when it is the Y-polarisation setting that drifts since that is the
polarisation allocated to the quantum data. The €' ect of the drifts in the optimal voltage biases for
the IQ modulator can be seen in the Pguré¢ 66.

Another e" ect of the periodic emission of the AWG?2 is that this adds a dehy between a shot-noise
estimation and a data block estimation, since we must wait fo the AWG2 to emit after the shot-
noise block was acquired. This time-delay increases the varnce of the shot-noise estimatot Ny and
therefore increases the RBuctuations in the total experimen Continuous emission and synchronisation
would solve both these problems as we could set the voltage tdas during the experiment because
the spectrum would be constant and we could perform the data equisition, following the shot-noise
estimation, as soon as the oscilloscope is ready to acquireather block.

The second detrimental € ect stemming from the synchronisation is that it seems like he optimal
sampling instant for the quantum data relative to the classical channel is not constant over time like
we thought. This is illustrated in the bgure [6.23. If perfect synchronisation was achieved at Alice,
it is possible some Ructuation of the optimal sampling instat would remain of the order of a couple
samples, perhaps up to 5 samples corresponding to a clasdieymbol duration. However we observe
that the optimal sampling instant can vary over more than 3 or 4 classical symbols over successive
acquisitions. We believe this is due to a synchronisation psblem and that the it would disappear if
we could operate one AWG with 4 outputs for the | and Q componens of both polarisations.

Filtering Also from Pgure[6.22 we can observe the strong coherence be&n two successive
samples, since the sampling time (20 GHz) is much higher thathe system variations (350 MHz).
Therefore it should be possible to build a Plter, in the spirit of a FIR Plter discussed i 5.4.]L, to build
our quantum symbol from several samples. We believe this cad mitigate some noise but the question
of how to design the Plter remains open.

DSP. A pbnal point of improvement for this work would be the deployment of DSP routines which
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perform better than the ones employed here. In particular f@ carrier recovery, machine learning has
been shown to perform better than other methods[[85] and has atady been applied to improve the
performance of CV-QKD protocols [82].

6.4.5 Conclusion

The experimental work proposed here demonstrates that the dgign of hybrid communications systems
can be benebpcial to the quantum communication since!ecient carrier recovery can be performed on
the classical channel. As a bonus, the classical channel algprovides all the information needed to

downsample and synchronise the transmitted and received segnce. We strongly believe the results
displayed here can be improved upon signibcantly by implemding the leads discussed above, which
promises even better results in the future. In general, perfaming QKD on classical communication

links is challenging, hence building classical and quantunrcommunication systems together can give
more tools to optimize the secret key rate and the classicalammunication rate.
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In the previous section we demonstrated a proof-of-principg experiment for joint quantum and
classical communications based on exploiting the coexistee to benebt both channels. In particular
we showed that the classical channel can provide good estimatts for the quantum phase and frequency
recovery and we also suggested that the secret key obtainedavthe QKD protocol could be used to
encrypt a fraction, if not all, of the classical symbols.

In this chapter we discuss another way to benebcially harnesthe coexistence between channels.
In layman terms, we investigate how to "hide" the quantum signals in the noise generated by classical
channels such that it is indistinguishable from backgroundnoise for an eavesdropper. This provide an
interesting new security primitive to the quantum communication system : covertness.

7.1 Introduction to covert communications

Covert communications consist in making the communication hdistinguishable from background noise
for anyone except the legitimate receiver. The motivation béaind this security primitive can stem from
the metadata leaked during a communication protocol that can be security sensitive. Actually there
exists communication scenarios (e.g. in a dictatorship) whee the mere fact of communicating between
two parties must be concealed, for security reasons. In partiular the realisation of a QKD protocol,
aimed at providing ultra-secure keys for extremely sensitte communications, may attract even more
the attention of the "dictator" than classical communicati ons. In this case the dictator, Eve, could
potentially correlate the realisation of the QKD protocol t o the intentions of Alice and Bob. It is
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Figure 7.1: Covert communication setup : Alice either commuricates or not with equal probability.
The communication is comprised ofn states. In both scenarios, thermal channel noise is presentna
is outside of EveOs control. For this reason we represent thieermal noise inside AliceOs lab. Also,
Alice and Bob share a secreK before starting the protocol.

therefore interesting to investigate how we can prevent Evefrom knowing that Alice and Bob are
running a QKD protocol, i.e. whether QKD can be run in a covert manner.

Setting for covert communications. A covert communication protocol can be described as
follows. Alice and Bob are linked by a quantum channel over whib the average state transiting from
Alice to BobOs is denotedy. This state is called the idle state and corresponds to the baaground
noise on the channel. During the communication phase Alice vli send a total of n symbols to Bob.
The average state on the channel during the communication is witen dl ". We assume that from
Eve perspective it is equally likely for Alice to communicate or not during a given time interval, hence
for her the states '(%“ and dl " are equally likely. The communication is said to be!-covert, where
I > 0, if we can bound the probability that Eve can distinguish between these two states by

Pe* 128 !. (7.1)

The factor ! is called the detection bias. We give a depiction of the settig of a covert communi-
cation protocol in the pgure[7.].

Important results of covert communications. The main result in the beld is the so-c)alled
"square-root law" which states that the number of covert bits that can be transmitted scales aO(" n)
[86]. The intuition behind the square-root law is the mathematics of statistical testing an$i the central
limit theorem insuring that EveOs observations will have unertainty of magnitude 1/° n. Covert
communications have been investigated against a classic{#/,[88,/89] and even a quantum adversary
[90, [91]. In both cases the square-root law holds. In addition hese works have put into light two
prerequisites to any covert communication scheme :

1. There must be some noise outside of adversarial control.

2. Alice and Bob must share some secreK of sul cient length before the protocol.

These two conditions can be well understood intuitively. The kst stems from the fact that if all
the noise is due to Eve, then she could suppress the noise antierefore detect the communication
with a basic power test using perfect detectors. This contrass with the golden standard of QKD
where all noise is attributed to the eavesdropper and we will dicuss further how we envision covert
QKD in this context. The second point is necessary for Alice anl Bob to retrieve information from
the noise-like signal and we will give an example below of howhie shared secret is used.
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Covert QKD. A crucial question for covert QKD protocols is whether a covet QKD protocol
can generate more secret key than the one used by Alice and Botturing the protocol. Previous
works [92,93] have worked towards designing covert key expaion protocols with ! -covertness and
5-security such that this is the case, but only achieve a limied range of channel parameters which are
not useful in practice.

Another approach was investigated in [94], where the authorsmodify a discrete-variable BB84
protocol so that the communication is also covert. They acheve this by spreading the communication
states over a large transmission interval and attribute to each time-bin a qubit transmission probability
q << 1. In this case the communication state from EveOs perspective the mixed state (q6; + (1 $
) 8) " which can be be made arbitrarily close to the idle state by deceasing q. The secret shared
by Alice and Bob designates the time bins containing the sigal so Bob can perform his regular QKD
measurement. However the shared secret length necessary itentify the signal time-bins dominates
the amount of covert secret bits that can be produced. The autlors therefore rely on a computational
solution to distribute the shared secret, in the form of Psewlo-Random Number Generators (PRNGS).
This leads to a hybrid protocol where the distilled key has the same information-theoretical security
(ITS) than a regular QKD protocol -because the keyrate analyss supposes Eve knows the time-bins
containing QKD states- while its covertness is insured undeithe two conditions that the shared key
generated via the PRNG is unknown to Eve and that the noise usedor covertness is in fact outside
of her control.

We believe this hybrid computational/ITS approach to covert Q KD is the most practical approach
towards designing such systems, but has not been investigat in the case of CV-QKD. As we discussed
in section [4.4.3, these protocols are promising candidatefor QKD in a WDM environment where
unavoidable Raman noise will hinder the keyrate but could be sed to achieve covertnesd [95]. If
successful our results would provide another way to harnesthe coexistence between quantum and
classical data and pave the way towards new designs of jointanmunication systems.

In the next section we begin by deriving a condition on the moduation variance of the quantum
data so that the communication is! -covert. We show that covert CV-QKD without using some shared
secret to give an advantage to Alice and Bob does not allow totsare a covert secret key. Hence we
move on in the next sections to derive a way to harness the shad secret resource for CV-QKD
systems, but show that the square-root law still limits the amount of covert and secret bits that can
be transmitted. Then, we propose practical models where the agpre-root law can be relaxed and
therefore in which covert QKD is easily achievable.

7.2 Covert analysis of CV-QKD

Let us investigate the conditions under which the PM states sat by Alice obey the !-covertness
condition of equation[7.].

7.2.1 From QKD parameters to idle and communication states

In this work we will focus on the case Alice and Bob use the GG02 tocol, described in[4.1.1, where
Alice uses modulation varianceV, and Bob measures excess noise3,. Compared to our previous
convention to debne the excess noise at the channel output,ehe we will see it is more practical to
debne it at the channel input to perform the covert analysis.

We make the additional assumption that the channel noise is de to a thermal state with mean
photon number By, . This is convenient for the rest of the analysis since the averge state in the GG02
protocol can also be written as a thermal state with mean photm number B, . The relation between
QKD parameters and mean photon number is given by[[20]
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Vp =244, (72)
3= Zﬂth .

The innocent and communication states are therefore written & :

$!& B’ith (y(a n
) n - R
% o (L+ @)t Il (7.3)
1& i % n
,d[ n_ (ﬂth + ﬂA) || 1" | . (74)

o L+ (@ + @)t

7.2.2 Condition on V, for !-covertness

To Pnd the desired condition onV, we look to bound the probability of Eve discriminating between the
innocent and communication states. Her best strategy is to hild a binary POVM ( Og, ;) to perform
her discrimination. She can make two types of errors while daig this. The brst is when she raises a
false alarm, also called a type | error in statistical testing. The second is when she misses detection of
the communication state, or type Il error. Let Pea and Pyp be the respective probabilities of these
events. We can express these quantities as

5. 6
Pra =Tr Ol'C%HG. (7.5)
Pup =Tr 9o " . (7.6)

Since we assumed communication and idle states were equallikely from EveOs perspective, we
can write the total error probability we are looking to bound as

1
Pe = E(PFA + PMD)- (77)
Combining (7.5) and (7.6) into (7.7) and substituting 0, = P$ 9, gives
5. 6
Pe = %$%Tr Op(B)," $ 6, ") . (7.8)

The term on the far right can be successively bounded by the trae distance and the quantum
relative entropy H [986] which Pnally gives :

)
1 1
Pe* 28 -D(8,"II8") (7.9)
2 8
A nice property of the quantum relative entropy is that it is a dditive for tensor product states [98].
Hence given the equation above we bnd that the condition

< s 812
D (Bollt) < — - (7.10)
Is sul cient to insure the !-covertness condition of equatior] 7.Jl. The quantum relativeentropy
between these states can be shown to be upper bounded by (for iation see annex@) :

B3

2@ (1 + By ) (71D

D (Bol|6r) #
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Figure 7.2: Total number of covert and secret bits f( r) obtained via the covert GG02 protocol with
the constraint in equation [7.13. We run the simulation over both parameters 3 and n to show that
there is no good regime allowing a signibcant amount of bits tde obtained. This plot constitutes
an upper-bound to what can be achieved in practical scenariosince the transmittance was taken
asT = 0.99 and performance decreases witlT. Also, the detection bias was set to a high value of
I =0.1

Finally, combining (f.10) with (.11} and replacing the mean photon numbers by the QKD pa-
rameters given by gives the threshold value/ " under which the communication is ! -covert

2
8 L1+ 3)
Va # Aﬁi = ygovert (7.12)

It is interesting to understand how the constraint above impacts the performance of the QKD
protocol. Since the number of QKD states plays a role in equdbn [7.13, instead of the secret key rate
r given in[4.7, we use the total number of covert secret bits trasmitted given by

Npis = r( N (7.13)

as the metric of performance of the protocol.

In the following, we investigate the performance of the protool by simulating the value of npjs
over a range of parameters. We begin by settingl and ! to optimistic values, such that our results
will constitute an upper bound to what is achievable with realistic parameters. Since the secret key
rate decreases withT, we setT = 0.99, a high value corresponding to a transmission distance of
, 200 meters. For the covert parameter!, we chose a high value of = 0.1 in order to tolerate more
photons on the quantum channel according td 7.12. This detedbn bias represents an advantage of
20% for Eve compared to a random guess when she is trying to deteche communication. Therefore
this value is arguably high to claim covertness.

With these values of T and !, we plot in bgure[7.2 the value ofnyis by varying 3 and n. Above
a certain value for 3 the key rate falls to zero because the excess noise is too hig8imilarly, above a
threshold value for n the key rate falls to zero because there are not enough photamer QKD symbol.
Hence the results obtained in the numerical simulation of bPgre[7.2 constitute an upper bound to the
performances of the covert QKD protocol over all realistic prameters.

1The quantum relative entropy, noted D here, is the quantum equivalent to the KullbackBLeibler dive rgence, which
is a measure of the distance betyeen two statistical distributions. T he quantum relative entropy of state %relative to
state & is given by D (%|&) =Tr %log %! log &)
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We bnd a maximal value ofnpis 3 6.10%3. Therefore we conclude that the constraint 7.12 onVa
is too strong to achieve any kind of useful covert secret key idtribution, and that covert CV-QKD is
essentially impractical without some additional resource br Alice and Bob. This was to be expected
since a well-known prerequisite for covert communicationsd the use of a shared secret between Alice
and Bob, and we did not exploit this resource here. In the next sction we discuss how the shared
secret can be used to improve these performances.

7.3 A shared secret as a resource for covert CV-QKD

To the best of our knowledge, all existing studies on covert caimunications utilize some sort of
secret shared between Alice and Bob. Based on the results gigyed in bgure[7.2 such a resource is
mandatory for covert CV-QKD. It is therefore crucial to understand how one could use the shared
secret to provide Alice and Bob with an advantage.

In reference [94] the authors spread the signal over a large ansmission interval. This should
always provide some way to increase the system performancesnce the communication state can
be made arbitrarily close to the idle state by decreasingg, the probability to send a QKD state in
each time-bin. What is particularly interesting in this app roach is that the shared secret used to
encode the communication time-bins has computational seaity, yet the QKD security can be fully
guaranteed even if Eve perfectly knows the time-bins contaimg the quantum states. Hence their
covert QKD protocol is a hybrid protocol from a security perspective, where the covertness is insured
with computational security while the key is guaranteed secue regardless of the covertness.

Another interesting usage of a shared secret resource is asamdebook, as is described in the
supplementary material of referencel[90]. In this cas& bits are encoded in2¢ codewords of lengthn
symbols, where the set of codewords can be written g$&j, ..., &/ },—221 . The codebook is constructed
by generating the codewords such that eacl&; is generated along the complex Gaussian distribution
as in the GG02 QKD protocol. From EveOs perspective the codewds are equivalent to a tensor
product thermal state over the n modes since she does not have access to the codebook. Howatrer
is not clear if in this case we can perform covert CV-QKD in the tybrid security model where the
codebook has computational security. For this we must guaratee that revealing the codebook will
not lead to security loopholes in the QKD protocol, and further investigation over this question is
necessary. However we leave this for future work.

For covert CV-QKD applications, we require a shared secret uage that is compatible with CV-
QKD implementation and does not hinder the security of the underlying key distribution protocol.
We propose a way to do this in the next section.

7.3.1 Block-coherent encoding

Our proposal stems from the observation that the limiting factor in the the covert setting is the SNR.
Therefore, one way to enable covert QKD would be to increase th SNR while maintaining the covert
condition of [7.12. Notis:e that the square-root law imposes hat the number of photons per mode, over
m modes, scales ad/” m. However when we coherently combine photons scattered oven modes
into a unique mode, the power in the resulting mode ism times the average power in each mode.
This suggests that a coherent gain of m on the signal power received by Bob can be obtained by
combining the power ofm modes at BobOs while maintaining covert communications. Werecise this
idea below.

Let Alice sends her QKD states overn ( m modes with mean number of signal photons per mode
of ma/m . We denote & the average state in each mode in this case which is the thermaitate with
mean photon numberm, + @5/M . Now suppose Bob has a unitaryU acting on ', "™ such that

u(e,"™) = 8" & "My, (7.14)
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where ', and ‘6, are the idle and communication states dePned if 7]3 ar[d 7.4. Tén Bob can useU
to transform the state ‘& received and perform his QKD measurement on the brsh modes't?l " with
an average ofm@a signal photons per mode. In this case the covert analysis mudte conducted with
the state transiting on the quantum channel ', "™ , hence we bnd the covert condition by substituting
Va/m to Va4 and nm to n in equation|7.12 which gives
2

\V/ 85 i(:|_+ i) \/ covert
MY S N (7.15)
m nm m

Thus, assuming Alice uses the highest modulation variance msible, when Bob performs his QKD

measurement on', " he measures QKD states with modulation variance
Vp = ) mvover (7.16)

This permits a ) m increase in the power of the state measured by Bob compared tthe case
where the states are directly sent and measured. We refer to #h method used by Alice to encode
her QKD states in a way such that U exists asblock-coherent encodingof length m. Let us examine
in the next subsection how we could implement block-coheranencoding in a CV-QKD setting and
investigate the impact on the distilled key.

7.3.2 Implementation for covert CV-QKD

One way to generatet, "™ and to perform the transformation U is to borrow techniques from spread
spectrum communications [97]. These have been developed @eles ago for purposes similar to covert
communications. The objective is to spread the signal over adrger bandwidth such that it is harder
to intercept and to jam by malevolent parties. In this case thelegitimate receiver reverts the spreading
before measuring the intended signal.

In particular for this work we focus on direct-sequence spred spectrum. In this case the spreading
is achieved by digitally multiplying the data by a so-called spreading sequencen the time domain
before generating the signal. The spreading sequence is ctitged of binary {$1,1} symbols, called
chips, inducing phase shifts encoded at raté chjps much larger than the symbol rate f . The €" ect of
this is to increase the signal bandwidth by a spreading ratio @Pned by the quantity

T= fC'ijS, (7.17)
See bgurg 713 for a representation of the multiplication of he data by the spreading sequence
and the €' ect on the signal bandwidth. The number of modes transmitted duing a communication
protocol is debned by the time-bandwidth product

n=4( B, (7.18)

where 4 is the communication duration and B is the signal bandwidth. Therefore, controlling the
spreading ratio such that R = m will increase the signal bandwidth by a factorm while maintaining
the same communication duration, which amounts to transmitting the signal over nm modes. To
revert the spreading and reshape the original signal, Bob aplies the spreading sequence once more
which cancels the phase shifts induced by the modulation of th spreading sequence.

Let us describe the general lines of the covert CV-QKD protocbusing this technique to perform
block coherent encoding.

1. Alice generates the complex random variable§ &}, Whe)re the real and imaginary parts of
each&; follows a Gaussian distribution with variance Va !~ mv fovert

2. Alice uses a spreading sequenc® ' {$1,1}" to generate the sequence of quantum states
Q= &L &L |Sm+ (iw1+j&! sent over the quantum channel at ratef ( m.
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Figure 7.3: Direct Sequence Spread-spectrum consists in rtiplying the data by a faster spreading
sequence. The spread-spectrum signalOs bandwidth is incredsy the ratio of the spreading sequence
rate and the data rate. The inverse spreading operation consts in the multiplying the spread-
spectrum data by the spreading sequence again.

Figure 7.4. Depiction of the QKD protocol using block coherat encoding. The security of the
distilled key is guaranteed since the keyrate analysis is m@e on the equivalent channelExsn( gsn,
which contains the block coherent encoding process.

3. With the noise photons present on the channel, the average ate transiting from Alice to Bob is
8, "™ . Since the modulation variance of the QKD states obeys equabn the communication
is covert.

4. Upon reception, Bob reverts the phase shifts induced by the greading sequence and generates
the sequence of state§&f.; &j”‘:1 |&!} received at symbol ratef ( m which amounts to the
sequence of state® = &', |&! at rate f. He then performs his measurement of the QKD
states{| &'}

5. Alice & Bob distill their secret covert key via classical pog-processing.

Importantly, without knowledge of the spreading sequence it isnot possible to revert the spreading.
Hence S should be kept secret from Eve, and is the shared secret resae we will assume Alice and
Bob share before the covert QKD protocol.

Before moving on, let us brielRy show that the block-coherenencoding we propose can be used with-
out impacting QKD security. This is true because the QKD parameter estimation analysis compares
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the QKD states before block-coherent encoding at Alice with he measured states after block-coherent
decoding at BobOs. Hence the spreading and de-spreading @ess are considered to be part of the
channel,i.e under the control of Eve. This is illustrated in the bgure[7.4 wtere the channel from Alice

to Bob, noted Exsm ( gsom is completely controlled by Eve. However, the QKD analysis onsiders a

larger channelEys n ( s containing the block-coherent encoding and decoding.

7.3.3 Enabling covert CV-QKD

Now that we have derived a way to give some advantage to Alice rad Bob through block-coherent
encoding, let us investigate the performances of covert CV-&D with this new method. To do this,
we use a similar approach to the one used ih 7.2.2. However let Ueegin by giving an upper bound to
the spreading ratio that can be experimentally achieved, whth amounts to providing an upper bound
for m when using block-coherent encoding.

The number of modes over which then QKD states can be spread depends on the speed of the
electronics in the arbitrary waveform generators (AWGSs) usd by Alice and Bob, which will ultimately
limit the chip rate fchips and therefore the spreading ratioR based on equatior{ 7.77. Here we will
assume a maximal chip rate of 50 GBaud, which is a conservativealue considering the achievable
rates by modern AWGs. Then the maximal spreading ratio is entrely debned by the symbol rate,
which is typically of the order of , 100 MBaud for CV-QKD protocols. However we will consider
lower symbol rates off = 1 MBaud here to allow for larger block-coherent encoding lenths up to
Mmax = 50 000.

We examine in bgurg 7. the increase in the number of covert seet bits that can be distilled by
using block-coherent encoding. Our approach is similar to or previous analysis of bguré 7]2 without
the block-coherent encoding. This time we chose to investiga the performances over a distance of
10 km (T = 0.631) and used the same detection biag = 0.1. Then we varied the values ofn and 3,
and plotted in each case the valueps -

Our results show that, thanks to block-coherent encoding, he maximal amount of covert and
secret bits which can be distilled over10 km is non negligible and could be potentially useful. When
m =4 ( 10* we bnd a maximal valuenys = 142 bits. The optimisation over 35 shows that the
optimal channel noise over a 10 km link is approximately of3, = 0.01 SNU, which would yield an
excess noise measurement @& = 0.0063 SNU at the channel output. This value is certainly a low
value from an experimental point of view but by no means unackevable, see for instance referencg[98].
Therefore the set of parameters enabling covert CV-QKD with bbck-coherent encoding are realistic
parameters for a CV-QKD experiment. Note here that we implicitly assumed that the channel noise
dominated QKD system noise sources.

Interestingly, we also observe a linear relation betweemys and m : doubling the block-coherent
encoding length also doubles,s . By curiosity we also investigated how the detection bias wa related
to npiis and found that the relation was quadratic. We plot these resuts in the bgure[7.8. A reason
for the linear and quadratic relations of m and ! with nyis can be found from the respective roles of
m and ! in the expression 7.1b.

7.4 Towards practical covert QKD schemes

Our previous results show that covert CV-QKD is possible tharks to block-coherent encoding, but a
frustration remains because of the limited amount of secrebits that can be distilled covertly. Indeed
as long as the square-root law pilots the power of the quantunstates transiting on the channel, there
is necessarily a bnite amount of covert and secret bits that an be exchanged because the keyrate
becomes zero above a certain threshold fan. Although some applications can be satisbed with this,
it is interesting to investigate how we can relax this constiaint through additional assumptions.

In the following we develop two models which achieve this. In the Bst we give Alice some control
over the noise. Then she can reduce the noise power when she senter QKD states to avoid



132 CHAPTER 7. COVERT QUANTUM KEY DISTRIBUTION

Figure 7.5: We plot nyis over a range of values for3, and n for 4 di" erent values of block-coherent
encoding lengthm. Other parameters were taken asT = 0.631, which corresponds to the losses of a
10 km Pber link with loss 0.2 dB/km, and ! =0.1.

Figure 7.6: Scaling of the maximal value ofnyis with respect to m (left) and ! (right). In the left
plot ! was set to 0.1 and in the right plot m was set to4 ( 10*.
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Figure 7.7: Alternate covert QKD model in which Alice can chocse whether to transmit the full noise
state '6,, (casex = 0) or to Plter out the noise around the quantum channel wavelegth (o and
substitute her QKD signal instead (casex = 1). In any case an additional constant noise sourcé,,
is injected in the channel after AliceOs lab. The resulting ste is denoted's, and is & when x = 0
and ' whenx =1.

detection. The second model inspired from[]99] supposes thelis some source of Buctuating noise on
the channel, generating an uncertainty on the total noise paver for Eve and making her discrimination
more di! cult.

7.4.1 Model 1 : Alice controls some of the noise

Let us assume Alice has some control over the channel noise. Bhis represented by writing the noise
photons By as a sum of a variablew, and a constant@. amount of noise photons such that

B = @ + 0By, (7.19)

where 0 ' [0, 1] is controlled by Alice. Assume Alice setsO = 0p when she is idle and0 = 0,
during the communication phase. Then we can write the idle and ommunication states as

1&

. (Bc + Oomv)' . .

= - - 7 < 7.20

OO i=1 (:L"'lmc"'ﬂv)Hl |I> ! | ( )
& i

'bl - (BC + Oluv + ﬂA) II >< | (721)

i=1 (l+ﬂc+ ’nA)H-1

Both states are equal forms = (0p $ 01)m,. Logically the best strategy for Alice is to set0p = 1
and 0, = 0, which amounts to substituting her signal photons to the variable amount of noise photons.

In this case Eve cannot discriminate betweert), ™ and 6, ", thus for her the best strategy is limited
to a random guess regardless of the number of QKD states tramsitted on the channel. In this model
the square-root law is circumvented and an asymptotic numbe of QKD states can be transmitted.
Hence as long as the keyrate is positive, which can be determéd by the values ofw,, B, and T, then
an arbitrary number of covert and secret bits can be distilled.

The question of whether this scenario is realistic in practiceis legitimate. For this reason let us
imagine a setting where it could be veribed. Consider the case wehe AliceOs laboratory located inside
a WDM backbone link. Classical channels generate Raman noideefore and after AliceOs lab who can
act on the noise generated before her lab using spectral bl A schematic representation of this
setting is given in the bgure[7.7.
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Figure 7.8: We plot the covert secret key rates in our model whee Alice can control part of the noise.
We simulated some realistic values of variable and constantxcess noise based on a quantum/classical
WDM setting described in referencel[80]. (left) Without block-coherent encoding. (right) With block-
coherent encoding of lengthm = 500. The distance between Alice and Bob is given by ag =80$ La .
The keyrate is given in bits/symbol

In the rest of this subsection we will attempt to roughly simulate the covert secret key rate in
the setting described above. Given a bxed wavelengths for hquantum and classical channels, the
Raman noise is entirely debned by three parameters :

1. The total input power of the classical channelsPq
2. The distance between the channel Input and AliceL 5

3. The distance between Alice and BobL s

And the relation between these parameters and the Raman no& debned at the WDM link input,
is given by [80] :

3Ram,input = 6Po(Lag + Lia), (7.22)

where 6 is a parameter which depends on the wavelengths of the classicchannels and of the
guantum channel. Note here we have neglected the contributin of the stimulated Raman scattering
since it is expected to be orders of magnitude below the spoaheous Raman scattering[I80]. From
3ram,input W€ can express the Raman noise at AliceOs lab by multiplying ihvalue by the attenuation
on the input-Alice link which is given by exp($ &L) where & is the attenuation coe cient equal to 0.2
dB/km. Hence we have

6PoLia exp($ &Lia) + 6Poexp($&Lia )L ag ,
3kim + 3Ram (7.23)

which is the sum of the Raman noise generated on the input-Alie and Alice-Bob links.

In our model where Alice can control part of the noise, 3%, plays the role of the variable noise
term while 382 is the constant noise term. The only parameter missing to simiate these for di' erent
values ofPg, L|a and L ag is the parameter6. Since6 depends on the "layout" of the quantum/classical
WDM channels, we infer this value from an experimental implenentation of QKD in a WDM setting.

Here we use referencB(], where the quantum channel is located in theS$ band and the classical

3Ram,AIice
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Figure 7.9: In this model the noise is generated by a time-depwlant ASE noise source outside of
EveOs control. The noise has constant power over time intevg but varies between intervals. The
new mean noise photon number is drawn according to a uniform dtribution over [g"™" , g"™" ].

channels are located towards the longer wavelengths of thé$ band corresponding to the "Red WDM"
setting of the paper.

We can now run our covert secret key rate simulation in this séting. For this we will consider
the WDM link is of length Lag + Lja = 80 km and we plot our results for di" erent values of Py
in the bgure[7.8. We compared the two cases with and without usig block-coherent encoding with
a conservative value ofm = 500. Without surprise block-coherent encoding greatly improwes the
performances. Note that sinces the square-root law does notpply in this case, the signal power at
BobOs scales witm instead of © m.

Our results indicate that a covert secret key can be distribued over large distances, up to, 70km,
by allowing Alice to control the noise generated before her Ia and combining this with block-coherent
encoding. Contrarily to usual quantum and classical coexigtnce in WDM links, here it is advantageous
to use a higher launch power for the classical channels. The ason behind this is that higher Raman
noise generated before Alice allows for higher modulation w@ancesV, while not contributing to the
excess noise measured at Bob. Hence we have presented a jajitantum and classical architecture
which probts from the coexistence to provide covertness, amieresting and original security primitive.

7.4.2 Model 2 : Ructuating total noise power inducing uncert ainty at EveOs

We investigate here a second model to circumvent the squareot law. Here we use previous works
in wireless covert communications[[99("100] as inspirationd derive our model. In these works, the
authors have considered the case where a jammer randomly mdeiés the noise distribution and have
shown that we are not limited by the square-root law in this cas.

We derive a similar model for Pber-based communications andonsider using random ampliped
spontaneous emission (ASE) noise source as the jammer. ASEise is for example generated by
amplibers in bPber-based optical communications. The modekias follows.

Consider several time intervalst; of length n4y,ts corresponding to the duration of the communica-
tion required for Alice to send n quantum states to Bob. The ASE noise source, or jammer, genetes
noise with mean photon numbermg; (t;) that depends on the currentt; and drawn at random from
[ujm‘” , 8" | according to the uniform distribution. See Dgure for a rpresentation. The covert
QKD protocol always begins when a new time interval begins. Duang t;, the number of noise photons
on the channel is@a + @ (t;) if Alice sends QKD states and isw; (t;) if she does nothing. The idle
and communication states overt; are written as n copies of the same thermal staté(k) with mean
photon number k and drawn from a uniform density probability distribution. Hence we have
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Figure 7.10: Set of parameterg! o, ujm‘“ ) for which the keyrate is positive (colored area) at a distance
of 10km with Pber loss cok cient of 0.2 dB/km. Block coherent encoding of minimal length 3 200
is necessary to obtain a positive key rate. Increasing the bick coherent encoding length expands the
set of positive keyrate parameters. The dashed green line regsents! 1 = ujm‘” and the solid purple
line is the maximal number of noise photons that can toleratel for the GG02 protocol.
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where! B = mjmax $ n,m‘“ . Separating both states into overlapping and non-overlapfing mean
photon numbers gives:
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The discrimination process between both states, similarly o equation[7.8, requires Eve to build
optimal POVMs (9, 0,) acting on the mixed states®, and '6,. Then EveOs error probability becomes

1 o 5. . 6
Pe: §$ 2' u] Tr Oo(b[uj!“'” ;Bjmm +mA]$ qu”ax +mA;]) (724)

Coarsely bounding the trace by 1 gives a lower-bound o :
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" 1 Ba
Pe 5 $ o B (7.25)
Thus whenma 52!! B the protocol is covert with detection bias !. Notice the condition on @
does not scale inl/” n, and it stems from the fact Eve can discriminate between comranication and
no-communication events only if the resulting states cannbbe generated from the conjugate event.
When n % 6 an arbitrary number of QKD states can be sent. Therefore as log as the keyrate is
positive any desired amount of covert and secret bits can beransmitted. We plot in bPgure [7.1Q the
set of parameters(! w;, ujm"‘ ) allowing for positive covert key rates over metropolitan digances up
to 10km with di" erent block-coherent encoding lengths. Our results show tht for reasonable block-
coherent encoding length it is possible to achieve positiveovert key rates generally in the regime
where there is more uncertainty on the noise level than bxed rise levels. By increasing the block-
coherent encoding length and the detection bias we can extehto the regime where there is a larger
part of bxed noise.

7.5 Discussion

We presented in this chapter our research on covert QKD, whereour motivation is to harness the
coexistence between quantum and classical channels in ond® turn a detrimental e " ect Bsuch as the
Raman noiseb into a new security primitive : covertness.

An interrogation we have not yet answered is whether QKD is redly necessary when we have
the ability to reliably send covert signals. Indeed, what abait sending a secret key directly via the
covert communication channel ? WouldnOt this circumvent tie need for the whole post-processing
phase of the QKD protocol ? In fact for DV-QKD, previous work has shown that 5-covertness implied
25-security in the QKD protocol [LOT].

We need to keep in mind however that the covert protocol consmes a secret key and more
than it can generate, hence it relies on computational methds to share the key before the covert
protocol begins. Ultimately the covertness holds as long ashe shared secret is safe, hence with
computational security. In this picture, covert communications can never replace QKD protocols for
ITS key distribution, and covertness can not be a substitute to QKD but only an addition to the
protocol.

Another way to consider covert-QKD is to look at QKD as a protocol where Alice sends an
unbreakable safe containing a secret key to Bob. Providing @vertness to the QKD protocol amounts
to making the safe invisible, in addition of being unbreakatie. However, the invisibility only holds if
Eve has some limited amount of computing resourcege. with computational security.

Circling back to our work, here we have investigated how to usea shared secret bin the form of a
spreading sequence used in spread spectrum communicatids$o enable covert CV-QKD. We showed
that a limited number of covert secret bits can be obtained een with a very large spreading ratio
because of the square-root law. Our approach was then to studynder which conditions covert QKD
would be possible with an asymptotic number of covert secret lis shared between Alice and Bob.

We showed that in two practical models the requirements for overt signaling do not follow the
square-root law and therefore enable any amount of covert seet bits to be transmitted as long as
the assumptions made in the model hold. In the brst model we sypse Alice can control some noise,
thus she can substitute her GG02 QKD states to some on the no& In the second model we allow a
time-dependant noise source on the channel which generates aincertainty on the total noise power
at EveOs. We showed that in both cases covert signalling care achieved with an unlimited number
of signal states, therefore paving the way towards practichcovert QKD.

More generally this work shows that careful design of joint quantum and classical systems can be
benebpcial for the QKD channel by providing covertness to thequantum communication, which is a
desirable security primitive for ultra-secure applications.
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Perspectives

The quantum computing revolution.

A promising research Peld today concerns the development d¢iie quantum computer, with the objec-
tive of harnessing the unique physical properties of quantm systems to perform certain calculations
which would be intractable for classical computers. This has he potential to lead to major break-
throughs in many other scientibc domains where the tractabity of classical simulations is a limiting
factor. Such Pbelds are for example weather forecasting [ID2molecular simulation [103], artibcial
intelligence [104], particle physics[[105] and more.

Another foreseen consequence of quantum computing is alsbé tractability of currently intractable
mathematical problems such as the factoring problem and thediscrete logarithm. These constitute
the cornerstones on which are built public-key cryptographt primitives, vital to the modern crypto-
graphic infrastructure since they are used to distribute the symmetric keys necessary to encrypt data.
Therefore new solutions need to be found to solve the key distoution problem, and fast (see our
discussion in subsectiof 3.3]1).

Quantum key distribution : a quantum-safe key distribution protocol.

In their seminal paper [1] published in 1984, Charles Bennett ad Gilles Brassard proposed a new
method to perform key distribution based on the laws of quantum mechanics : QKD. Contrarily to
current cryptographic primitives QKD provides ITS security o n the distributed key, hence QKD is a
future-proof key distribution protocol since no future developments in technology or algorithms can
help an attacker obtain the secret key, not even a quantum coruter.

The strong security guarantees of QKD Band perhaps the beatdftil theoretical foundations provid-
ing themb have spurred increasing interest of the quantum iformation community for this technology.
However to this day, several important challenges remain inthe peld.

Theoretical vs practical security. The strong security guarantees QKD provides on the bnal
key are only valid in the model used to derive the security pref, which is often an idealized represen-
tation of the real experiment. Unfortunately, there can exist some side-channel attacks which exploit
some factors which are not considered in the security proofsWe discussed in subsectiofi 5.5/1 one
such attack exploiting the TLO design for CV-QKD, but many mor e examples exist[[106].

Note however that security proofs have been consistently riening their model to account for device
imperfections. For example the security proof we used for th PCS-64QAM format [48] showed that
discrete modulation formats could yield positive key rates This closes a loophole where many CV-
QKD experiments considered Alice employed a Gaussian modation while in reality we can only
approximate a Gaussian distribution in practice due to the Inite resolution of the digital-to-analog
converters. More recently, new security proofs have also @ounted for the fact that the detection
process can also only yield a bnite nhumber of discrete valug&04]. In time and as the technology
develops, more device imperfections will Pnd a way into the fonalism of the security proofs.

Reach. QKD protocols su" er from fundamental limitations in terms of point-to-point achievable
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distance. We plotted in subsectior{ 5.5.B the reach and keyta of di" erent CV-QKD implementations,
where we observe that the longest reach of a CV-QKD experimentn the LLO regime, to the best
of our knowledge, is of 50 km. Recently a new study has managed positive key rate at 60 km
[10€] with machine learning aided carrier recovery. The recat for DV-QKD, which is better suited
than its CV counterpart for long distances, is currently of 421 km [60]. While this constitutes a
considerable technological feat, it is also not su cient to enable a global QKD without using trusted
relays. Note that a true breakthrough in this area would be the successful demonstration of a quantum
repeater. These (at the moment) theoretical devices act as mdes on a network and are connected via
entanglement swapping [[109] which achieves the required Igarange entanglement enabling QKD.

Cost. The fact that QKD operates on the physical layer implies that the deployment costs of
the technology is also considerably higher than for classa cryptographic primitives operating at the
software level. Making QKD a more & ordable technology is a central concern for the developmernbf
the peld.

One approach to solving this problem is to pursue the coexignce of quantum and classical signals.
Since most of the costs of Pber-based communications lie itn¢ optical Pber network itself, integrating
QKD on the current optical bPber infrastructure would drasti cally cut expenses. For this particular
problem CV-QKD is arguably better suited, and this is a strong argument of the community to
push their technology forwards compared to other QKD solutbons. Here the holy grail would be
to demonstrate QKD over a dense WDM backbone link [[16], where he typical length of the link
is about 80 km and the classical channels have nominal input @ver around 0 dBm each. For the
moment coexistence of QKD with classical channels has only le& achieved over short distances and
for sub-nominal classical channel power [41,-80].

Work achieved during the course of the thesis.

This thesis was conducted in the context of the European projet CiViQ, which aimed at developing
CV-QKD technology and pursuing its integration on emerging gptical telecommunication networks
in order to develop cost-é ective QKD systems. To this end it regrouped 21 partners invdving
major telecoms, integrators and developers of QKD. In the scoe of this project, our contributions
were directed towards CV-QKD system design and developmentand our approach was to consider
how classical and quantum communication links can be desigd jointly in order to enable secret
key distribution and classical communications over the sare bber. Our work can be divided into one
main project where we demonstrated joint classical and quanim communications over the same Pbber,
leveraging the classical DSP to correct phase and frequendypairements on the quantum channel,
and a side project where we investigated how to harness chanhaoise to provide covertness to the
QKD states.

Experimental implementation of a joint quantum and classical commun ication system.
The large part of our €' orts were directed towards the experimental realisation ofour joint quantum
and classical communication system described in chaptdr| 6This proved to be quite the adventure
since it was the brst time that quantum communications were rformed on the modern high-rate
optical communication platform of Telecom Paris (GTO). We started from an existing single polarisa-
tion classical coherent communication system and added theomponents we needed to perform QKD
on the other polarisation. The brst step was carefully choosig the low-noise detectors for the quan-
tum channel, and characterising their behavior and performance. From there, the roadmap towards
implementing the target system was clear on paper : deploy aecond AWG on the Y-polarisation
to generate the quantum data, achieve the desired attenuatin on the quantum channel, and use the
phase and frequency estimators of the classical data to pexfm the quantum channel DSP. | naively
thought this would be solved rather quickly, which highlights how little | knew about experimental
work. In reality, every step forward required long series of toubleshooting, but these became easier
over time as my understanding of the manifestation of df erent experimental problems developed.
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