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Chapter 1

Overview of the thesis

1.1 Short summary
This thesis, written for the qualification of Doctor of Philosophy in Computer Science, studies the question
of the individual importance of actions in sequential decision-making, through the lens of Reinforcement
Learning, and with diverse applications. An important finding of this work is that two seemingly different
open problems in Reinforcement Learning, namely the credit assignment problem and explainability, have
partial solutions that involve similar tools that can all be viewed as the estimation of particular forms of
action importance. Several algorithms that suit different forms of action importance are proposed and
studied from a theoretical point of view, empirically, or both.

1.2 Court résumé
Cette thèse, écrite pour la qualification de Docteur en Informatique, étudie la question de l’importance
individuelle des actions dans la prise de décision séquentielle, via le prisme de l’Apprentissage par
Renforcement, avec diverses applications. Une découverte importante de ce travail est que deux problèmes
ouverts en apparence distincts en Apprentissage par Renforcement, à savoir le problème d’assignation
de crédit et l’interprétabilité, ont des solutions partielles qui impliquent des outils communs qui peuvent
être vus comme des estimations de formes particulières d’importance des actions. Des algorithmes qui
correspondent à des formes distinctes d’importance des actions sont proposées et étudiées empiriquement,
d’un point de vue plus théorique, ou les deux.

1.3 Publications
Here is the complete list of research articles that were co-written during the course of this thesis’ work.

◦ Self-Attentional Credit Assignment for Transfer in Reinforcement Learning (Ferret et al.,
2020)
Ferret J., Marinier R., Geist M., Pietquin O.
IJCAI 2020
Covered in Chapter 6.

◦ Self-Imitation Advantage Learning (Ferret et al., 2021)
Ferret J., Pietquin O., Geist M.
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AAMAS 2021 (oral)
Covered in Chapter 5.

◦ Adversarially-Guided Actor-Critic (Flet-Berliac et al., 2021a)
Ferret J.∗, Flet-Berliac Y.∗, Preux Ph., Pietquin O., Geist M.
ICLR 2021
Covered in Appendix A.

◦ There is no Turning Back: A Self-Supervised Approach to Reversibility-Aware Rein-
forcement Learning (Grinsztajn et al., 2021)
Ferret J.∗, Grinsztajn N.∗, Preux Ph., Pietquin O., Geist M.
NeurIPS 2021
Covered in Chapter 8.

◦ Lazy-MDPs: Towards Interpretable Reinforcement Learning by Learning When to
Act (Jacq et al., 2022)
Ferret J.∗, Jacq A.∗, Pietquin O., Geist M.
AAMAS 2022 (oral)
Covered in Chapter 7.

◦ More Efficient Exploration with Symbolic Priors on Action Sequence Equivalences (John-
stone et al., 2021)
Johnstone T., Grinsztajn N., Ferret J., Preux Ph.
Preprint

1.4 Statements of authorship
Self-Attentional Credit Assignment for Transfer in Reinforcement Learning OP proposed
the research direction and initial steps. JF did initial experiments and proposed using a Transformer
model in place of the LSTM model. JF proposed the Triggers environment for principled study of credit
assignment. JF did the Triggers experiments and analysis. RM did the DMLab experiments and analysis.
JF produced the figures and videos for the paper. MG and OP provided helpful feedback on the supervised
learning procedure. JF and OP wrote the major part of the article. MG provided helpful feedback on
writing too.

Self-Imitation Advantage Learning MG proposed the research direction and initial steps. JF
performed the experiments, analyzed the results, produced the figures for the paper and wrote the major
part of the article. MG and OP supervised the progress, made decisive suggestions and helpful comments
on the draft. JF was responsible for open-sourcing the code to reproduce paper results.

Adversarially-Guided Actor-Critic YFB proposed the research direction and the collaboration.
YFB and JF led the research project with OP, PP and MG serving as advisors. YFB implemented the
method for PPO and came up with the positive initial experimental results. JF reimplemented the method
and conducted partial experiments with IMPALA, which were not fruitful, and PPO. JF proposed to
simplify the algorithm (removing the Transformer part), found better hyperparameter configurations and
provided the heatmap visualization. YFB found that reducing the learning rate for the adversary was
beneficial. MG provided the theoretical analysis of a simplified version of AGAC. YFB and JF equally
contributed to the writing of the article. MG, PP and OP also contributed to the writing. The final
results and experiments used in the paper were conducted by YFB.
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There is no Turning Back: A Self-Supervised Approach to Reversibility-Aware Reinforce-
ment Learning JF proposed the research direction and the collaboration. NG and JF led the research
project with OP, PP and MG serving as advisors. JF designed the method and performed early exper-
iments to validate the idea. NG came up with the formalism and wrote the theoretical analysis. MG
proof checked these. NG did the Turf and Cartpole experiments while JF did Sokoban experiments on a
toy instance of Sokoban. JF designed the final Sokoban experiments and analysis. NG and JF equally
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proposed the research direction and the collaboration. AJ and JF led the research project with OP and
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AJ came up with the formalism and wrote the theoretical analysis. MG proof checked these. AJ did the
tabular and KDT experiments. JF designed the final Atari experiments and analysis. AJ and JF equally
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supervised the project.
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Chapter 2

Introduction

2.1 Motivation
Artificial Intelligence (AI) was coined a term by John McCarthy, Claude Shannon and Nathan Rochester
in 1956. They defined it as an attempt to "find how to make machines use language, form abstractions
and concepts, solve kinds of problems now reserved for humans, and improve themselves". More than
75 years later, AI is a living subfield of Computer Science that studies computational intelligence, that
is programs that can acquire and leverage forms of knowledge autonomously, while relying or not on
expert knowledge and hand-crafted rules. It departs from regular programming, whose programs have
deterministic (or at least predictable) outputs given all their lines of code. Also, AI programs generally
learn (i.e. change their variables and overall behavior) from their inputs, while regular programs generally
do not. AI is a broad subfield, that encompasses expert systems, evolutionary computation, robotics and
many others. It notably takes inspiration from cognitive sciences, drawing many parallels with human
cognition in particular. At the heart of AI, and living at the crossroads of statistics, probabilistic theory,
linear algebra and theoretical computer science; Machine Learning (ML) aims at building useful models of
numerical phenomena that learn from data. ML models are used as tools in many fields such as Computer
Vision, Natural Language Processing and Signal Processing.

One of the hallmarks of AI, and an open problem still, is artificial general intelligence (AGI). AGI
will be considered reached when we build a single learning program that reaches human-level cognitive
abilities in many activities. A decades long debate exists between AI researchers, parting them among
the so-called "symbolists" and "connectionists": for symbolists, intelligence necessarily arises from the
manipulation of symbols and logic, while for connectionists, intelligence can emerge in models such as
artificial neural networks, that do not explicitly manipulate symbols and do not learn explicit rules. In
a sense, it is a debate about whether intelligence requires understanding in the form of acquisition of
explicit notions and rules.

Artificial neural networks are models that consist in successions of layers of neurons, each layer being
connected to the previous layer, and each neuron computing a weighted sum (followed by a nonlinear
function or not) of the output values of the neurons from the previous layer. We say that a neural network
is deep when it is composed of many layers of neurons. Artificial neural networks roughly mimic the
working of the biological neural networks that compose the brains of animals: the artificial inputs can be
assimilated to the signal received by the dendritic synapses in neurons, the weighted sum to the processing
by the soma, the result of the nonlinearity to the signal fired along the neuron axon and finally the outputs
to the signal transmitted via terminal synapses of the axon. In what is next, we simply refer to artificial
neural networks as neural networks.

An interesting property of neural networks is that, due to the combination of several layers of neurons
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and intermediary nonlinearities, they can self-organize and learn to compute arbitrary combinations of
their inputs. One can show that they are universal approximators (Hornik et al., 1989) with a much as
two layers of neurons (if not constrained on the number of neurons in the middle layer), that is they can
approximate any function under those assumptions. As a result, due to this property and the fact that
they can combine input features to produce new ones, neural networks are both powerful and flexible
estimators.

Starting from 2012, with the work of Krizhevsky et al. (2012) that won the ImageNet contest (Rus-
sakovsky et al., 2015) using a large neural network, AI and ML experienced a revolution due to the coming
of age of Deep Learning (DL), which is about the study of deep neural networks. Neural networks were not
new at all in the sense that they were invented before 1960 (Rosenblatt, 1958), (they were called multilayer
perceptrons at that point) and the canonical algorithm to train them (i.e. backpropagation) (Rumelhart
et al., 1986) around 1980. What was new was the unprecedented scale at which neural networks were
operating, being able to predict somehow accurately the class of natural pictures among a thousand
classes, outperforming other Computer Vision (CV) methods by a wide margin. The reasons for that
change of paradigm for neural networks are multiple: 1) hardware advances including the manufacturing
of ever more powerful Graphical Processing Units (GPUs), which are particular chips that can perform a
large number of operations in parallel, making them suitable for the matrix multiplications and tensor
operations and thus, neural networks; 2) algorithmic advances alleviating long-known issues of neural
networks such as overfitting (Srivastava et al., 2014) or vanishing/exploding gradients (Kingma and Ba,
2014; Ioffe and Szegedy, 2015); and 3) the democratization of larger, standard datasets available to the
academic world.

This progress on the ImageNet dataset (Deng et al., 2009) fueled the interest for neural networks,
which then found new successes on natural language processing, speech processing (and signal processing
in general), and many other applications. A very important consequence of the ImageNet success is the
democratization of the fine-tuning approach: large neural networks are trained on equally large datasets
for a long time (which is usually quite expensive and requires dedicated hardware and expertise), and
serve as the starting point of training for neural networks used in downstream tasks (i.e. more specialized
applications, with less data available). Successes of this kind first appeared in Computer Vision, fine-tuning
neural networks trained using ImageNet data on new image tasks such as other visual classification tasks,
image segmentation or image retrieval. The same phenomenon happened for natural language processing a
few years after, with large-scale pre-training on Wikipedia data using large, bi-directional sequence neural
networks (BERT, (Devlin et al., 2018)) and fine-tuning on tasks such as named entity recognition or
question answering. Those successes came with the widespread adoption of neural networks as off-the-shelf
tools to deal with images, text, as well as other modalities, and with connectionists quietly scoring points
against symbolists.

The aforementioned methods and challenges all supposed that labelled data (i.e. data annotated
with the ground truth regarding aspects to be modelled) was readily available, and additionally with
quality labelling. Providing labels to data is what is called supervision. A drawback of supervision is
that, generally, it involves manual labeling, which is costly, time consuming and not always reliable. As
a counterpoint to supervised learning, semi-supervised learning techniques (Chapelle et al., 2009) make
use of both labelled and unlabelled data, with the usual hypothesis that unlabelled data is available
in large quantities while labeled data is limited. Going even further, at the extreme of the spectrum
lies unsupervised learning (also called self-supervised learning in recent works), which only considers
unlabelled data. Impressively, recent advances bridge the gap between the performance of self-supervised
and supervised approaches (Chen et al., 2021), which is very promising progress for the many tasks where
mass supervision is unrealistic or impossible.

While supervised learning (and variants such as self-supervised, semi-supervised, active learning) are
an important part of AI, they are not straightforward to apply in the setting of interest of this work:
that of sequential decision-making. Roughly speaking, the goal of sequential decision-making is to find
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sequences of actions (or strategies) that are optimal according to an objective function. The widely
adopted objective function we will consider in this work is the discounted sum of rewards. Note that
this is the objective function used in most sequential decision-making works, and that there are others
possible. A reward is obtained after each action, and is a scalar such that optimal behaviors maximize
the said objective. Rewards generally cannot play the role of supervision because 1) they only hint at
the current desirability of the decision taken, instead of determining the exact action to be taken, 2)
they can be sparse and 3) the best course of action depends on future behavior as well. As an example
of a sparse reward function, there are many scenarios in which a reward is only obtained at the end
of the interaction (i.e. when reaching an absorbing state). Generally speaking, the field of sequential
decision-making views the aforementioned families of techniques as tools, but not as off-the-shelf solutions
to the specific issues that make sequential decision-making difficult. Still, neural networks are useful in
sequential decision-making, as we will discuss later on.

There are several ways to address sequential decision-making problems, most of which target specific
families of problems. Evolutionary algorithms (Deb, 2011; Mania et al., 2018) involve the perturbation
and recombination of a large number of intermediate candidate solutions based on approximate gradients
of an objective function. These kinds of approaches are useful but usually quite expensive, and do not
leverage the fact that we might be able to compute gradients of quantities of interest. Model predictive
control (Camacho and Alba, 2013), and optimal control (Sethi, 2019) in general, make use of a model
of the environment the agent operates in, and recursive planning to select actions. Planning consists
in simulating possible future scenarios in order to choose the best course of action. This is a powerful
approach but it requires having access to a model of the environment in the first place, which might be
costly or even unrealistic in complex scenarios. Another family of approaches is bandit algorithms (Auer,
2002; Lattimore and Szepesvári, 2020), which are thought in particular for multi-armed bandit problems.
The canonical multi-arm bandit problem can be stated as such: given n single-armed bandit machines with
payoffs distributed following distinct, unknown probability distributions; what strategy to adopt in order
to maximize profit? A particularity of that problem is that the past decisions do not affect the outcomes
of the next ones (e.g. like in a casino, where a new drawing of the roulette is not affected by previous
drawings). There exist many refinements to that problem (contextual bandits, combinatorial bandits,
etc). There lacks an important aspect to the multi-armed bandit problem, though. In many applications
of sequential decision-making, such as in games, past decisions do influence the next ones. For instance,
in chess, the state of the board is the result of the decisions of the two players, and it should greatly
influence the next move of any player. Accordingly, bandit algorithms (and more generally algorithms
that apply preferentially to bandit problems) cannot be the solution to general decision-making problems
(which is, of course, fine!).

Reinforcement Learning (RL) (Sutton and Barto, 2018) is a family of techniques that aim to tackle
sequential decision-making problems that are instances of a specific family of problems: Markov Decision
Problems (MDPs, see Chapter 3.2). MDPs work as follows (see Fig. 2.1): a learning agent observes the
current state st (or a partial view of the state ot) of the environment. It decides on an action at and
acts accordingly, in return the environment updates its state, the agent receives a reward rt and the new
environment state st+1 (or partial view ot+1). In standard MDPs, the reward function and transition kernel
are supposed to be Markov. The Markov property implies that the probability of the next reward (resp.
next state) given the current state and action is equal to the corresponding probability given all states and
actions up to the current point. Interestingly, most problems of interest can be viewed as MDPs, or relaxed
form of MDPs. A common relaxation is the partially observable MDP (POMDP, see Chapter 3.2), which is
a superset of the MDP. In a POMDP, the agent observes a partial state (we call observation) ot that does not
have to satisfy the Markov property. In many real-world scenarios, the Markov hypothesis is quite limiting.
As humans for instance, we only observe a tiny fraction of the overall state of the universe at a time, so
we cannot really say that we live in an MDP. Those scenarios can generally be represented as POMDPs.

When a model of the environment is known (that is, the reward function and transition kernel of the
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Figure 2.1: The interaction between agent and environment in RL.

environment), Dynamic Programming (Howard, 1960) is a set of techniques that leverage fixed point
convergence to obtain deterministic, optimal policies. A drawback is that having access to a model of the
environment is generally unrealistic.

Instead, the philosophy of RL is that the components of the objective function, i.e. the individual
rewards obtained, contain enough information to find an optimal course of action (Silver et al., 2021).
Everything should be learned from scratch, so there should be no need for models, expert knowledge,
symbolic logic, handcrafted priors or biases to reach optimal decision-making. RL algorithms gradually
learn to improve at the task at hand by reinforcing pertinent actions, which is achieved through trial-and-
error. A core problem of RL is the exploration/exploitation dilemma. It can be stated as the following
question: given the knowledge acquired about the task and the current situation, should an agent try to
gather more information (i.e. explore) or take advantage of what it already knows (i.e. exploit). Another
way to put it is that the agent can either act best according to its current estimation, or take a different,
maybe under-exploited mode of action. While there are provably optimal exploration algorithms (under
constraints) (Brafman and Tennenholtz, 2002), and while exploitation is trivial when how much each
action is worth is known, in general finding the right combination between exploration and exploitation is
hard and RL is far from solved yet. Open questions include stable learning (i.e. how to guarantee steady
progress in many tasks), generalization and transfer (i.e. how to learn in a way that transfers to new,
similar tasks), sample-efficiency (i.e. how to learn from the least amount of interaction) and many others.

One of the objects of study of this thesis is the importance of actions. The question we tackle in
this work can be stated as follows: given a sequential decision-making task, what are the decisions
and corresponding actions that really matter? Inversely, what are the decisions that do not really
matter? These questions are important because they are at the essence of RL: reinforcing actions
that matter. On a high-level, it appears that we should tend to try more actions (i.e. explore
more!) in decisions that matter, and that we should try to select actions that prove to be important
more often (i.e. exploit more!). Nevertheless, such claims should be thoroughly checked. Action
importance is a somewhat vague entity, though. Actions can serve distinct purposes: apart from
the exploration and exploitation aspects we already discussed, actions can prove crucial for more
specific purposes, such as reaching a given state, or reaching a given performance. Extrapolating a
bit, we could give importance to actions according to how much learning potential they have for
the agent. Also, forgetting about the specific agent at hand, one could ask for a universal notion
of importance, i.e. one that measures how important an action is in general. To the best of our
knowledge, the question of action importance is often ignored and remains largely unanswered.

There are two natural follow-up questions that are: 1) does knowing about such decisions and
appropriate course of action provide an edge (i.e. leads to performance improvements) in the context
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of RL? 2) Does knowing about such decisions provide us with elements that can help us get a better
grasp of the task at hand, and how autonomous agents choose to solve it? Those two questions, that we
conveniently separated and that appear to be seemingly independent, provide the two research directions
we study in this work, under the common angle of action importance. The first question is intimately
linked to that of credit assignment (Minsky, 1961) and the second one to that of explainability (Molnar,
2019). While the two questions seem to diverge in the studies and solutions that can be envisioned, we
will show in this work that there are common tools that we can use to shed more light on both of them.

We now dive deeper into the origin and consequences of the first of these two questions.

2.2 Credit assignment
In ML, credit assignment is a quite general notion. It refers to the problem of updating specific parameters
of the models being learned in light of the current subset of data being learned from. We call that structural
credit assignment, to signify that we change local parameters while keeping in mind the whole structure
(that is, the rest of the parameters) of the method. There are various, model-specific or model-agnostic
ways to address the structural credit assignment problem. For instance, for differentiable models, a widely
adopted solution is to compute the gradient of a loss function (which measures how far the model output is
from the ground truth) with respect to the model parameters and update the parameters in the direction
that is opposed to the gradient (so as to reduce the loss function).

In RL, there is a credit assignment problem of a different nature. It consists in quantifying the
impact of choices or decisions on observed outcomes (Minsky, 1961). We call that problem the temporal
credit assignment problem. Usually, structural credit assignment and temporal credit assignment are
distinguished and treated as different problems. Structural credit assignment, as in ML, aims at measuring
the influence of the parameters of the agent on a scalar measure that depends on the output of this
function. In that context, the individual values of the parameters are considered as decisions. Structural
credit assignment is thus a very general problem since it is involved each time the parameters of the agent
are tuned to maximize the objective function. In contrast, temporal credit assignment is entirely specific
to sequential decision-making. Indeed, the temporal credit assignment problem (Sutton, 1984), which
is also known as the distal reward problem in behavioral science (Hull, 1943), is that of evaluating the
effects of a subset of the sequence of decisions made on observed outcomes. In RL, we are particularly
interested in measuring the influence of individual decisions (or actions) over the cumulative reward, since
the main objective of RL agents is to maximize it. In what is next, and when not ambiguous, we will
often refer to the temporal credit assignment problem simply as the credit assignment problem.

In RL, there are several factors that make credit assignment difficult, most of which also contribute to
making RL distinct from the supervised learning paradigm. The delay between actions and consequences
is the most important factor. A direct implication of delay is that the attribution of observed outcomes is
ambiguous, since they are potentially explained by all preceding actions, by a subset of the actions, or
by a unique action. Stochasticity in the rewards and/or dynamics of the environment adds variance in
the outcomes, making action-outcome identification harder. Partial observability means that the Markov
assumption on rewards and dynamics does not hold anymore, and that unless the underlying state of the
environment can be recovered, outcomes cannot be accurately estimated without memorizing past data.
Finally, non-stationarity adds a dependence on time to rewards and dynamics, further complexifying
action-outcome identification.

The consequences of credit assignment being difficult when combinations of previous factors occur
is that standard RL methods are not efficient at learning useful policies, when they do manage to learn
those. This can be explained by taking a high-level look at RL algorithms. Most are based on Dynamic
Programming (DP) (Bellman, 1957; Howard, 1960). DP methods propagate the value of states (i.e. how
much discounted cumulative reward one can hope to collect from a given state) to previous states. The



20 CHAPTER 2. INTRODUCTION

value is then used to guide or dictate the action selection process. This mode of propagation (from a
state to the preceding states) is called Temporal Differences (TD). In practice, when the state space
becomes large enough, DP is traded for approximate (i.e. sampling-based) methods equipped with function
approximation. But the core workings of DP (i.e. the Bellman equation) are still at play, hence temporal
delays between actions and corresponding rewards can cause exponential slowdowns in the learning of
agents. This is a problem because in complex tasks, delays between actions and consequences can be
arbitrarily long. Additionally, Harutyunyan et al. (2019) mention fundamental issues of the value function
and the problem it embodies ("how does choosing an action a in state s affect future return?"), often
tackled using TD learning. A first problem is variance, for Monte-Carlo estimation of the value averages
the returns observed after taking a given action in a given state and is inefficient due to the compounding
variance of trajectories. Another is partial observability, which makes rewards dependent on the full
sequence of observation-action pairs and introduces bias to TD learning (Singh et al., 1994), which may
cause divergence. A third problem is the reliance of TD on time as a credit assignment mechanism, which
is not universal and could be improved by learning. Last but not least, values are typically updated for the
actions observed, while other actions could be updated at the same time. While there are modifications
to TD that alleviate these issues (such as TD(λ) (Sutton, 1988), which we introduce and discuss later on),
thee are generally not enough to solve the credit assignment issue efficiently.

Instead, credit assignment methods, by identifying the contribution of actions to potentially farsighted
outcomes, could alleviate the exponential slowdown problem by linking outcomes to actions that can then
be reinforced during the learning procedure.

2.3 Explainability
Broadly speaking, explainability assesses the quality of the justification of decisions. Ideally, both domain
experts and non-experts should be able to make sense of those justifications.

In ML, explainability has two complementary definitions (Molnar, 2019): the first one refers to the
degree to which a human can understand a model’s result (Miller, 2019), or the degree to which a human
can consistently predict a model’s result (Kim et al., 2016).

It is important, for what follows, to note that we equate explainability with interpretability, and that
we use both terms with equal meaning in this manuscript. It is equally important to understand the
distinction between explainability and explanations. It is indeed commonly accepted that explanations
focus on individual predictions, while explainability is more general and can look at several predictions at
once, or even at the overall workings of a model.

In the same vein, explainability does not necessarily come under the form of natural language answers
to user-formulated queries. Examples include the widely used saliency maps (Simonyan et al., 2013) that
represent the per-pixel gradient of the output of a model with respect to its image input. In natural
language processing, their equivalents are heatmaps representing the per-token attention weight. In
general, for differentiable models, the gradient is a very useful object for interpretability, because it
quantifies how much local perturbations affect the model decision. Usually, we deem the directions of
perturbation associated with the largest gradient values as important to the model decision.

A major difference that opposes RL to general ML is that, usually, the whole decision-making process
of RL agents is not differentiable, because the internal mechanisms of the environment (i.e. the dynamics
and reward functions) are not. Even if they were, we make the assumption that we do not have direct
access to those. As a result, it is generally possible to apply similar explainability techniques as in
supervised learning, which for the most part make use of gradients, at the scale of a single agent output
(i.e. an individual action); but these do not apply at the scale of a whole trajectory of interaction.

The finality is different too. The goal of explainable RL (XRL) (Puiutta and Veith, 2020) is to provide
intelligible insights about RL agents’ behavior, ranging from visualizations to proper explanations. This
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can be useful for plenty of reasons, the main ones being 1) to explain and summarize agent behavior, 2)
to better understand what and how agents learn, 3) to gain transparency and trust regarding individual
decisions or the agent as a whole. These are crucial features if we want to apply RL in the real world,
where decisions can directly or indirectly impact the actual lives of people. In any case, to make sense of
agents’ behaviors, one should take a look at sequences of actions instead of individual actions, which calls
for different techniques as in standard ML.

Another aspect that we take an interest on in this work is getting insights about the task at hand.
While we have an instinctive understanding of most tasks we benchmark RL agents in, we might want
to push our understanding of what is possible to do and achieve in those tasks. Conversely, we might
have applications where we have a poor understanding of what the objective is. Accordingly, behaviors
learned via RL can reveal precious information about the task and environment that might have escaped
human predictions. For instance, RL agents have discovered and exploited known and less known bugs in
Atari 2600 video games, reaching superhuman scores doing so. Also, in physical simulators, agents have
been shown to abuse the physics (for instance throwing a hammer towards a button instead of using the
hammer to hit said button) in order to complete the objective. Such cases are spectacular but not very
interesting from the perspective of explainability since they tend to show that the original reward functions
of the tasks considered were misspecified, allowing optimal behaviors that were not anticipated and should
not be. More interesting examples in that line of research include the work of Tomašev et al. (2020),
which uses an RL algorithm to explore novel, alternative sets of rules for the game of chess; deriving a
measure of game balance from the analysis of games played by the RL agent. Another interesting work is
that of McGrath et al. (2021), which looks at how RL agents acquire knowledge related to chess, which
provides a different look to skill acquisition in chess compared to the human player studies.

We refer readers eager to know more about interpretability in the context of ML to the work of Molnar
(2019).

2.4 Organization of the manuscript
The manuscript is organized as follows. Chapter 3 covers the background and related work that is
important to get the most of this manuscript. It starts by introducing foundational ML concepts that
our work largely builds upon. It then moves to a short background on RL, elements of which are also
part of the cement that made our work possible. It then briefly reviews the existing literature on credit
assignment for RL in Chapter 3.3, with further details in Chapter 4. It also briefly reviews the literature
on interpretability in RL in Chapter 3.4. The two next chapters (Chapter 5, 6) take distinct perspectives
on the question of action importance for the credit assignment problem in RL. Chapter 5 studies the
question of action importance regarding the overall performance of RL agents. It introduces a simple
modification to the learning loss of off-policy value-based RL methods that can be viewed as adding an
optimistic version of the advantage to the reward function. It establishes connections with several existing
methods from the literature (Self-Imitation Learning (Oh et al., 2018) and Advantage Learning (Baird,
1995) most notably). Empirically, it shows that this modified loss results in improved credit assignment in
various tasks including Atari 2600 games, and especially in hard exploration tasks. Chapter 6 studies the
question of action importance within episodes of interaction. It adopts a sequential view and proposes an
offline credit assignment algorithm powered by an attention mechanism over sequences of observations and
actions. It addresses the problem of explaining away by artificially reducing the amount of information
available in observations to the sequential estimator. It then studies the potential for transfer of the credit
assigned and shows successes in environments with both modified state spaces and modified dynamics.
The two chapters that follow (Chapter 7, 8) focus on the question of action importance for explainability
in RL. Chapter 7 studies the question of action importance in explaining performance improvements
between two policies, and develops the idea that explainability can come from how we cast our sequential
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decision-making tasks. More precisely, it proposes an abstraction over environments that requires a default
policy and a cost, and in turn allows agents to be lazy, that is defer their actions to the default policy.
It characterizes the equivalent of various standard quantities in this new type of environments. It then
shows how the abstraction can be used to get interpretability at the level of the task or at the level of
specific policy improvements. Finally, Chapter 8 studies how we can assess the general reversibility of
actions, which relates to the question of action importance for reversible behaviors. It proposes the notion
of precedence as a proxy quantity for how reversible specific actions are, and binds the two quantities
together from a theoretical perspective. It then studies a practical, self-supervised approach to learn to
establish precedence from interaction data, and proposes two distinct ways to incorporate the resulting
estimated reversibility into general RL procedures. In experiments, it shows the versatility of the approach
in various use cases ranging from safety to structured exploration in the game of Sokoban.



Chapter 3

Background and related work

In this section, we provide the mathematical definitions and tools that the reader will need to follow the
course of this thesis. We start by introducing general Machine Learning concepts (in Chapter 3.1) that
the experimented reader can choose to skip. In Chapter 3.2, we detail general Reinforcement Learning
concepts that the versed reader might, again, choose to skip. We then go on presenting more advanced,
specific concepts (in Chapter 3.3 and 3.4, notably related to credit assignment and interpretability) that
we advise the reader to get familiar with for their later comfort.

3.1 Machine Learning background
Here, we introduce important ML concepts that will be used in throughout the text. We do not go into
much detail for the sake of brevity, but the interested reader may refer to Murphy (2012) for a rigorous
introduction to ML, and to Goodfellow et al. (2016) for an exhaustive treatment of Deep Learning.

Estimation problems An estimator is a function f̂ : Rd → X where X is its output space. Its role is
to approximate an unknown function f based on a set D = (x, y) that we call dataset. For a given pair
(x, y) we call x a data point and y a label. An estimation problem is a problem of the form:

f̂ = min
f∈F

E(x,y)∼D

[
L(y, f(x))

]
,

where F is the set of functions considered, and L : (X ,X )→ R is a loss function that penalizes function
outputs proportionally to an error between f(x) and y. How the error is calculated is problem dependent,
as different types of errors suit different types of problems. Classical problems include the regression
problem, where X = R and the loss is the squared error:

L(y, f̂(x)) = 1
2

(
y − f̂(x)

)2
,

and the multi-class classification problem, where X = ∆J1,nK for n-class classification and the loss is the
negative log-likelihood:

L(y, f̂(x)) =
n∑
i=1

1{y = i} log f̂(x)i.

Here ∆X is the simplex over the set X, that is the set:

∆X =
{(
ρi ∈ [0, 1]

)
i∈J1,|X|K such that

|X|∑
i=1

ρi = 1
}
.

23
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In multi-class classification, the estimated class is defined as:

ŷ = arg max
i

f̂(x)i.

Both problems admit sequential forms. The sequential regression problem has an output space X = RT .
The sequential multi-class classification problem has an output space X = ∆T

n . Both sequential losses
(noted LT here) can be derived from their respective non-sequential losses:

LT (y, f(x)) = 1
T

T∑
i=1
L
(
yi, f̂(x≤i)

)
.

In some cases, including cases of interest, the length of the output can depend on the length of the input.
The output space is then X = RTmax , with Tmax being the maximum input length, and some outputs
being non-admissible (for instance any output such that |f(x)| 6= |x|). Losses are also adapted accordingly
by treating the length of the sequence as a variable quantity.

Training differentiable models Most ML models we consider are parametric, that is their output
depends on their input and on parameters that are learned using a training dataset. In what comes next,
we indicate the dependency on parameters θ by the notation f̂θ(x). Additionally, most of them are said
to be differentiable: their output is differentiable with respect to the input and to model parameters.
We note the gradient of the output with respect to parameters ∇θf̂θ(x). Following the direction that is
opposed to the one defined by the loss gradient in the space of parameters (locally) leads to loss decrease.
This is called gradient descent (Cauchy et al., 1847) and will be our method of choice to train such models.
We distinguish three variants of gradient descent. The first one is called batch gradient descent and follows
a gradient computed on the whole dataset:

θ ←α ∇θE(x,y)∼DL(y, f̂θ(x)),

with x←α y := x← x− αy. The second one is called stochastic gradient descent (Kiefer and Wolfowitz,
1952) and follows a gradient computed on a single example sampled uniformly from the dataset:

θ ←α ∇θL(Y, f̂θ(X)),

where (X,Y ) ∼ U(D). The third one, which is the one we will use in practice, is called minibatch gradient
descent and sits in the middle of both:

θ ←α ∇θ
1
|B|

|B|∑
i=1
L(Yi, f̂θ(Xi)),

where B = {(Xi, Yi) ∼ U(D)}|B|i=1. It is our method of choice because computationally speaking, batch
gradient descent requires to fit the whole dataset into memory (often not realistic), and stochastic gradient
descent suffers from too much variance. Minibatch gradient descent still has variance, albeit reduced
compared to the stochastic version, and it was showed that the residual variance helped with exploration
in the space of parameters, acting as a form of regularizer. In what follows, we use two distinct gradient
descent optimizers: RMSProp (Tieleman and Hinton, 2012) and Adam (Kingma and Ba, 2014). These
optimizers adapt the learning rate α based on approximations of the first and second moments of past
gradients. RMSProp divides the learning rate by an exponentially decaying estimate ĝ of the second
moment of past gradients:

ĝt = βĝt−1 + (1− β)g2
t ,

θt+1 = θt −
α√
ĝt + ε

gt,
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where gt is the gradient at step t of the optimization procedure. Adam is a slightly different optimizer:
it divides the learning rate by a quantity that is similar to that of RMSProp (up to a normalization
constant), but it also replaces the gradient by an exponentially decaying estimate ĝ1 of the first moment
of past gradients:

ĝ1,t = 1
1− βt1

(
β1ĝ1,t−1 + (1− β1)gt

)
,

ĝ2,t = 1
1− βt2

(
β2ĝ2,t−1 + (1− β2)g2

t

)
,

θt+1 = θt −
α√

ĝ2,t + ε
ĝ1,t,

We refer the reader that would like to have a broader overview of gradient descent optimization algorithms
to Ruder (2016).

Neural network estimators A neural network estimator is a function that is a succession of "layers",
each layer being associated to a specific parametric function. The most straightforward example is the
feed-forward neural network (also called multi-layer perceptron, MLP), which is a function

f(x; θ) = Wn

(
Wn−1

(
. . .W1x+ b1 . . .

)
+ bn−1

)
+ bn,

where θ = (W1, b1, . . . ,Wn, bn) is a set of weights Wi (matrices) and biases bi (vectors) for an n-layer
neural network and {gi}i∈J1,nK is the set of nonlinearities used. We call the functions that follow matrix
multiplications nonlinearities since they are the only source of nonlinearity of the neural network output
(with respect to its input). Common nonlinearities include the sigmoid g(x) = 1

1+exp(−x) , the hyperbolic
tangent g(x) = exp(2x)−1

exp(2x)+1 or the rectified linear unit (ReLU) g(x) = max(0, x). Layers do not necessarily
perform a simple matrix multiplication. A convolutional layer instead performs the convolution of a
learned kernel over its input. Networks that combine convolutional layers and feed-forward layers are
called convolutional networks. A nice property of 2D convolutions is that they are 1) locally invariant to
translations and 2) relate features that are spatially close. As a result, 2D convolutions are very useful for
image processing, where functions of interest are usually invariant to translations as well, and it makes
sense to rely on spatially close pixels instead of relying on all pixels at the same time. Recurrent neural
networks (RNNs) take as input sequences (e.g. videos) instead of single elements (e.g. images). For
instance, a standard RNN admits the following recurrence relation:

ht+1 = g(Wxxt+1 +Whht + b),

where ht is what we call the hidden state of the RNN at step t in the sequence. The hidden state captures
information in the sequence that the network needs for later predictions. Refinements over this standard
RNN include the LSTM (Hochreiter and Schmidhuber, 1997), which supports a second type of hidden
state that is updated less frequently and allows to retain information longer. Another improvement comes
from the use of attention mechanisms. They relate elements in the same layer or across layers (either all
elements or a local subset) by matrix multiplications. They allow representations learned to take elements
from the whole sequence as context, at the cost of additional computation. Attention mechanisms are
core to Transformer models (Vaswani et al., 2017). In contrast to RNNs and LSTMs, Transformer models
are non-autoregressive, i.e. they do not have any recurrence relation as in Equ. 3.1. Instead, they rely
only on attention mechanisms to use sequential information in their predictions.
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3.2 Reinforcement Learning background
We now present all the basic and advanced RL notions we use in further sections of the thesis. For
additional details on the notions presented, we refer the interested reader to Sutton and Barto (2018) for
a thorough introduction to RL, and to Puterman (1994) and Bertsekas and Tsitsiklis (1995) for a more
theoretical view on RL.

Markov Decision Problems We use the Markov Decision Problem (MDP) formalism (Puterman,
1994). An MDP is a tupleM = (S,A, γ, R, P, δ0) where S ⊂ RdS is a state space, A ⊂ RdA is an action
space, γ ∈ [0, 1) is the discount factor used in the objective function, R : S ×A× S → [rmin, rmax] is a
bounded reward function that maps a transition to the corresponding reward and δ0 ∈ ∆S is the initial
state distribution, ∆S denoting the simplex over S as before. Note that we choose a form that includes
the resulting state in the definition of the reward function over the typical R : S × A → R. This is for
consistency with some objects defined later on, but by abuse of notation we will sometimes note rewards
R(s, a) when the reward function does not depend on the transitioning state. Finally, P : S ×A → ∆S

is a Markov transition kernel that maps state-action pairs to a probability distribution over resulting
states. In what follows, we will consider discrete action spaces only, i.e. A =

q
0, |A| − 1

y
. We note that

the object we describe is usually called Markov Decision Process in the RL literature, but the discount
factor defines an objective function (a problem to solve), hence making it a problem and not a process.
This is just a remark since it does not change any of the further results.

Interaction, value functions and optimality An RL agent interacts with an MDP at a given time-
step t via its policy π, by choosing an action at ∼ π(·|st) and receiving a resulting state st+1 ∼ P (·|st, at)
and a reward rt = R(st, at, st+1) from the environment. In a partially observable MDP (POMDP), the
agent receives instead an observation ot ∼ O(·|st) that contains partial information about the underlying
state of the environment. In what follows, we note random variables with uppercase letters (e.g. S)
and their realization with lowercase letters (e.g. s). We define the history as the random variable that
summarizes all interaction data so far: Ht = {S0, A0, R0, . . . , St−1, At−1, Rt−1, St}. The performance of a
given policy is generally evaluated by its expected discounted cumulative reward:

Jγ(π) = Eπ

[ ∞∑
t=0

γtrt|S0 ∼ δ0

]
= Eπ

[
G0,γ

∣∣S0 ∼ δ0],

where G0,γ is the total return, and Gt,γ is the partial return from time-step t, that is Gt,γ =
∑∞
t′=t γ

t′−trt.
The value function of a policy π is the function:

Vπ(s) = Eπ

[ ∞∑
t=0

γtrt|S0 = s

]
.

The action-value (or Q-value) function of a policy π is the function:

Qπ(s, a) = Eπ

[ ∞∑
t=0

γtrt|S0 = s,A0 = a

]
.

The advantage function of a policy is calculated as Aπ(s, a) = Qπ(s, a)− Vπ(s). An optimal policy π∗ is
defined as a policy that has maximal action-values in each state-action couple:

π∗ ∈ arg max
π∈Π

Qπ(s, a), ∀(s, a) ∈ S ×A,

where Π is the set of all admissible policies. There may be multiple optimal policies depending on the
task at hand.
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Dynamic Programming Dynamic Programming (DP) (Howard, 1960) uses a model of the environment
to learn an optimal policy in any MDP. It makes use of two equations, the first being the Bellman
equation (Bellman, 1957). This equation comes from the following identity:

Vπ(st) = Eat∼π(·|st),st+1∼P (·|st,at)[r(st, at) + γVπ(st+1)].

Viewing the values of all states as the vector Vπ ∈ R|S|, and introducing Rπ such that Rπ(st) =
Eat∼π(·|st)[r(st, at)] and Pπ such that Pπ(st+1|st) = Eat∼π(·|st),s′ [P (s′|st, at)}], we can write the previous
identity as:

Vπ = Rπ + γPπVπ,

which is the Bellman equation and admits the closed form solution, given that I − γPπ is invertible:

Vπ = (I − γPπ)−1Rπ.

Our second equation, the Bellman optimality equation, instead comes from the identity:

V ∗(st) = max
a∈A

r(st, a) + γEst+1∼P (·|st,a)[V ∗(st+1)],

where V ∗ is the optimal value. Similarly as before, we have the matrix equation:

V ∗ = max
π

Rπ + γPπV
∗,

which is the Bellman optimality equation. We do not know a general closed form solution.
A first component of DP methods is what we call policy evaluation. It is an algorithm that calculates

the value of a given policy. It allows us to measure how good the current policy is, which will in turns
allow us to improve it in a further step. Policy evaluation consists in recursively applying the Bellman
operator (starting with arbitrary initial values) until we converge to the fixed point, which is Vπ. Noting
the initial values V̂0 and the Bellman operator Tπ, we have the recurrence relation:

V̂k = TπV̂k−1 = Rπ + γPπV̂k−1,

and the stopping criterion can be that we find k such that ||V̂k − V̂k−1||∞ < ε, where ε is a small constant.
Given that we have access to the true Rπ and Pπ we then have convergence guarantees:

V̂k →k→∞ Vπ.

A second important component of DP methods is policy improvement. It consists in improving over a
policy whose values are known, and typically uses the result of policy evaluation as the policy values. A
way to obtain a better policy from Vk is by being greedy, i.e. πk+1 = G(Vk) meaning that ∀(s, a) ∈ S ×A
we have:

πk+1(a|s) = 1{a = arg max
a′

Qk(s, a′)},

using the identity:
Qk(s, a) = R(s, a) + γEs′∼P (·|s,a)[Vk(s′)].

Policy iteration simply alternates between policy evaluation and policy improvement steps until the
policy converges. We can show that policy iteration provably converges to an optimal policy.

Value iteration recursively applies the Bellman optimality operator (starting with arbitrary initial
action-values) until the action-values converge to the optimal action-values. Noting the initial values V̂0
and the Bellman optimality operator T ∗, we have the recurrence relation:

V̂k = T ∗V̂k−1 = max
π

Rπ + γPπV̂k−1,
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with a similar stopping criterion to that of policy evaluation. We can show that value iteration provably
converges to the optimal value function V ∗, from which we get an optimal policy π∗ = G(V ∗).

Though seemingly disconnected, policy iteration and value iteration can be seen as special instances of
modified policy iteration. Basically, an iteration of modified policy iteration looks like this:

πk = G(Vk),
Vk+1 = (Tπk)nVk,

with the parameter n controlling the ratio between evaluation and improvement. When n = 1, we recover
value iteration. When n→∞, we recover policy iteration.

Reward shaping Reward shaping (Skinner, 1951; Mataric, 1994) is a method used to make reward
functions more informative. It consists in defining a new MDPM′ = (S,A, γ, R′, P ) where R′(s, a, s′) =
R(s, a, s′) + F (s, a, s′), and F is a shaping function, that usually measures the desirability of a transition
based on expert knowledge. Ng et al. (1999) introduced potential-based reward shaping, i.e. using a
potential function φ : S → R and defining the potential-based shaping as F (s, a, s′) = γφ(s′)−φ(s). They
showed that it preserves the set of optimal policies of the original MDP. This property is called policy
invariance under reward shaping. Note that Wiewiora et al. (2003) extended this result to state-action
potential functions.

Theorem 1 (Policy invariance under reward shaping, Ng et al. (1999)). LetM = (S,A, γ, R, P ) be an
MDP, F : S ×A× S → R be a potential-based shaping function and φ : S → R its potential function such
that:

F (s, a, s′) = γφ(s′)− φ(s),

then every optimal policy inM′ = (S,A, γ, R+ F, P ) is also optimal inM and vice-versa.

TD-learning We present temporal differences (TD) (Sutton, 1988) here. For later convenience, we adopt
the backward perspective and place ourselves in a tabular setting, though general temporal differences
can be also used in a non-tabular setting by adopting the forward perspective. The one-step TD error is
the quantity:

δt = r(st, at) + γVπ(st+1)− Vπ(st),

which is a proxy for the current estimation error, and defines the direction and magnitude of value updates.
Eligibility traces (Singh and Sutton, 1996) are defined by the recurrent expression:

eλ,t(s) = γλeλ,t−1(s) + 1{s = st},

where λ controls the bias-variance trade-off. These quantify how much previous state-action couples are
responsible for an observed TD error. At a timestep t, TD(λ) (Sutton, 1988) updates the values of each
state to V ′π(s) = Vπ(s) + αδteλ,t(s).

Q-learning Q-learning (Watkins and Dayan, 1992) is an algorithm that is based on Value Iteration.
It initializes all action-values to a chosen starting value and updates them by recursively applying the
Bellman optimality equation. Here is the tabular version of the algorithm:

Q̂k+1(st, at) = r(st, at) + γmax
a′∈A

Q̂k(st+1, a
′)

This is the algorithm that inspired Deep Q-Networks (Mnih et al., 2013), which we give details about
in the next paragraph.
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Deep Q-Networks Deep Q-Networks (DQN) (Mnih et al., 2013) is a form of Q-learning using neural
networks for function approximation, that is, the action-values are calculated as the output of a neural
network that takes as input the current environment state. It proposes the use of two novel elements:
target networks and a replay buffer. Target networks are past versions of the action-value network that
are used to update the current action-value in a more stable way:

L(st, at, st+1; θ) = 1
2

(
Qθ(st, at)−

(
r(st, at) + γmax

a′∈A
Q̂θ−(st+1, a

′)
))2

θ ←α ∇θL(st, at, st+1; θ).

A replay buffer B (Lin, 1992) is a set of previous observed states, actions, rewards and next states that is
sampled uniformly from to update the action-value network and avoid "throwing away" past experiences. If
we take the previous equation, we can derive the actual loss used in DQN, where transitions are randomly
sampled from the replay buffer:

LDQN (D; θ) = Est,at,st+1∼B

[
L(st, at, st+1; θ)

]
with the caveat that in practice, this loss is replaced by its empirical counterpart (i.e. with actual samples
and averaging over a minibatch of samples) and the Huber error replaces the classical squared error.

Advantage Learning and Gap-Increase An interesting modification to Q-learning we refer to later
on is Advantage Learning (AL) (Baird, 1995; Bellemare et al., 2016b). The advantage of a state-action
couple is the quantity A(st, at) = Q(st, at)− V (st), and measures how much value improvement one gains
by taking the action at in st over following the current policy. As an example, if π is deterministic and
π(at|st) = 1 we have A(st, at) = 0. What AL does is that it implicitly uses the current estimation of the
advantage as an auxiliary reward in a classic Q-learning scheme (here with function approximation):

LAL(st, at, st+1; θ) = 1
2

(
Qθ(st, at)−

(
rAL,θ−(st, at) + γmax

a′∈A
Q̂θ−(st+1, a

′)
))2

θ ←α ∇θL(st, at, st+1; θ),

where rAL,θ−(st, at) = r(st, at) +Qθ−(st, at)−maxa∈AQθ−(st, a) and the quantity maxa∈AQθ−(st, a) is
the estimated value of the policy that selects actions greedily with respect to the target action-value. An
interesting property of AL is that it is gap-increasing, i.e. it provably increases the action-gaps over the
standard Q-learning update. The action-gap (Farahmand, 2011; Bellemare et al., 2016b; Vieillard et al.,
2020b) measures the difference in action-value between best and second-best actions in a given state:

∆Q(st) = max
a1∈A

Q(st, a1)−Q(st, a2),

where a2 = arg maxa′∈A\{a1}Q(st, a′) is the second-best action. It is an important quantity that we will
come back to often in this work.

Actor-critics Actor-critic methods are different to those that descend from Q-learning. They usually
consist of two components: a policy network (which chooses the action based on the current state) and a
value network (which estimates the value of the current state). The policy network is updated via policy
gradients (Williams, 1992), using the value from the critic as a baseline, i.e. to reduce the variance of
the updates. The value network is updated via standard TD updates, bootstrapping itself. Standard
actor-critics are on-policy, that is they learn from interaction data generated by the exact current policy
only, in contrast to DQN that learns from data from its replay buffer for instance.
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Proximal policy optimization for actor-critics A specific instance of actor-critic we will use in
further sections is the Proximal Policy Optimization agent (PPO) (Schulman et al., 2017). It introduces
minimal but key modifications to the standard actor-critic presented in the previous paragraph. A first
modification is the use of Generalized Advantage Estimation (GAE) (Schulman et al., 2016) to control
the bias-variance trade-off in advantage estimation. GAE replaces standard advantage estimators, like
the Monte-Carlo estimator ÂMC(st, at) = Gt − V̂ (st) or the one-step TD estimator ÂTD(st, at, st+1) =
r(st, at) + γV̂ (st+1)− V̂ (st), by the following estimator:

ÂGAE,λ(st, at, . . . , sT−1, aT−1, sT ) =
T−1∑
i=t

(γλ)iÂTD(si, ai, si+1),

where λ controls the bias-variance trade-off. Notably, ÂGAE,0 = ÂTD (high bias, low variance) and
ÂGAE,1 = ÂMC (no bias, high variance). A second modification is the use of a clipped policy gradient
loss based on importance sampling. With the ratio rt,θ = πθ(at,st)

πθ,old
, we have:

LPG,λ,ε(st, at, . . . , sT−1, aT−1, sT ) = ∇θ min
(
rt,θÂGAE,λ,t, clip

(
rθ,t, 1− ε, 1 + ε

)
ÂGAE,λ,t

)
,

where ÂGAE,λ,t = ÂGAE,λ(st, at, . . . , sT−1, aT−1, sT ) and clip(x, a, b) = min(max(x, a), b). Using an
importance ratio in place of the usual log-policy encourages departing from the previous policy, and was
first proposed by Kakade and Langford (2002). To avoid going too far off in a single update, it is necessary
to constrain these, which is obtained here by clipping the objective.

Importance weighted actor-learner Another variant of actor-critic we use later on is the Importance
Weighted actor-critic (IMPALA) (Espeholt et al., 2018). It introduces a major difference with previous
agents: instead of using a single actor or several actors in parallel synchronized with the learning, the
experiences generated by the actors are stored in a queue (following the FIFO order, i.e. first in first out),
which means that the speed at which actors are able to generate interaction data is greatly increased
due to not having to wait for the learning procedure to catch up. Compared to the single-actor setting
used in many RL approaches, it allows to increase the speed of the training procedure up to a certain
point (i.e. the maximal speed at which the learning procedure consumes interaction data). This is called
the actor-learner framework. A consequence is that it introduces off-policyness: the learning procedure
consumes data generated by an older version of its current policy, whose age depends on the speed at
which data from the queue is consumed. Another important difference with e.g. PPO is the use of V-trace
targets in policy gradients and value updates. V-trace defines n-step value targets as:

Vtarget,t = V̂ (st) +
t+n∑
t′=t

γt
′−t(Πt′−1

j=t cj
)
ρt′δt′ ,

where ct = min(c̄, π(at|st)
πθ− (at|st) ) (noting the previous version of the policy πθ−) and ρt = min(ρ̄, π(at|st)

πθ− (at|st) )
are truncated importance sampling weights, whose role is to add a correction for the off-policyness. We
also recall that δt is the one-step TD error at timestep t. V-trace targets act as drop-in replacements
for Monte-Carlo or TD targets. They are particularly useful to handle the variance of off-policy updates
in an adaptive way: when π and πθ− are identical, we recover n-step TD updates, when π and πθ− are
different, importance ratios reduce the influence of the farthest steps.

Environments In this work, and depending on what we want to study experimentally, we use distinct
environments from the literature. When called for it, we also use our own synthetic tasks, that we will
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introduce in the corresponding sections in further text. A standard problem is the Cartpole problem (Sutton
and Barto, 2018), in which one has to balance a pole by moving a cart among two directions available.
This environment emulates the standard single pendulum problem in robotics, where a robot arm with a
rotational actuator has to balance the pole rotated by the actuator. It is a simple problem that is useful as
a sanity check for discrete control RL algorithms. We use the open-source implementation from OpenAI
Gym (Brockman et al., 2016a), in which episodes are capped at 200 timesteps. As a more complex suite
of RL environments, we often consider the Arcade Learning Environment (Bellemare et al., 2013), which
consists of 60 Atari 2600 video games. In each game, the goal of the agent is to maximize the in-game
score, with controls that are identical to those of a human player. Atari games are quite diverse and
have proven to be a good benchmark for the versatility and stability of RL agents. We use the official
implementation from Bellemare et al. (2013) and settings from Machado et al. (2018), including the use of
sticky actions (i.e. each action from the agent is repeated the next step with a probability of 0.25).

We now discuss specific related work for the two subjects we deal with in this thesis: credit assignment
and explainability.

3.3 Related work in credit assignment for RL
In this section, we give a broad overview of existing methods to tackle the credit assignment problem in
RL. We warn the reader that we present some of the algorithms in a longer format in Chapter 4, and
indicate so in the concerned paragraphs.

Redistributing rewards to the past A major family of credit assignment approaches can be viewed
as redistributing rewards to past actions, either bypassing or complementing TD updates. We review
many algorithms of this type in details in Chapter 4.

Policies/values conditioned on the future Another important family of credit assignment ap-
proaches conditions policy or value functions on a desired outcome.

Upside-Down RL (Srivastava et al., 2019; Schmidhuber, 2019) is a paradigm in which an estimator is
trained to predict the action to be performed so that a given return is reached under a given number
of time-steps, and can be used to infer an optimal policy. The estimator (called a behavior function)
is trained via maximum likelihood estimation, using observed trajectories as training data. The action
probability assigned for an outcome z = (Gγ,0, H) is simply πθ(·|s,Gγ,0, H), where πθ is the behavior
function learned, conditioned on both a return Gγ,0 and a time horizon H. Though not a direct measure
of the influence of an action over the defined outcome, we argue that policies that are conditioned on a
future outcome are a form of credit assignment, since actions that are crucial to reach the outcome should
be assigned high probabilities by near-optimal policies.

Similarly, Kumar et al. (2019) condition a policy network on a future return to be reached and learn
the policy by maximizing the likelihood of observed data. They also allow advantage conditioning, which
consists in conditioning on the difference between the future return and an estimated value of the initial
state. Trajectories are generated by sampling a target outcome from a target distribution for the whole
episode. In contrast to the previous method, they do not condition the policy on a specific horizon. The
action probability assigned for an outcome z (be it a return or an advantage) is simply πθ(·|s, z), where
πθ is the reward-conditioned policy learned.

Dosovitskiy and Koltun (2016) propose a fully supervised approach to control tasks, based on the
related idea that reliable predictions of the future are sufficient to learn how to act. In their setting, the
predictor is given an observation, a goal and current measurements as input. It has to predict the future
measurements. Measurements are continuous or categorical state variables, and are generally high-level
indicators of the agent situation; goals specify which linear combination the agent should optimize. The
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predicted measurements are calculated as the sum of the predicted future measurement for the policy
and an action-conditional residual. The credit assigned can thus conveniently be expressed as the scalar
product of the goal and residual, which roughly measures the advantage of taking action a given the goal
g as outcome. A drawback of this approach is that it requires privileged information about the task (i.e.
measurements).

We review other algorithms of this type in details in Chapter 4.

Generating trajectories Another approach for implicit credit assignment is data augmentation through
backward generative modelling. Given a reliable inverse model (Jordan and Rumelhart, 1992) and an
outcome (say a state) to start the generative process from, one can produce imaginary trajectories reaching
the outcome.

The advantage of such algorithms is that they have the potential to reduce the sample-complexity of
RL algorithms, by producing additional curated data. Generated rollouts can either be used as interaction
data in the RL learning loop, or regarded as expert supervision and used for imitation learning. The
drawback of generative algorithms is that inverse modelling is a hard and ongoing research topic: errors
inevitably compound as the generative process unrolls (Talvitie, 2014; Jiang et al., 2015). As a result, the
trajectories produced by the generator can come far-off the manifold of possible trajectories and provide
misleading information to RL algorithms consuming the synthetic data (Abbeel et al., 2006). These
algorithms are implicit in the sense that they do not measure the influence of actions, only their presence
in imagined trajectories.

Goyal et al. (2019) propose an inverse model that estimates the probability distribution of the immediate
previous state and action given a resulting state. To reduce the variance, they model the density of state
residuals instead of actual states. The estimated probability distribution can then be used to generate
new plausible trajectories (that they call recall traces) from experienced high-value or high-reward states.
The inverse model is trained online via maximum likelihood.

Edwards et al. (2018) also propose an inverse dynamics model that learns to predict the previous
state st based on a state-action pair (st+1, at): s̃t = st+1 − ∆s̃t, with ∆s̃t ∼ q∆(·|st+1, at). Similarly
to Goyal et al. (2019), the inverse model operates on state residuals and is learned via maximum likelihood
estimation. Within the data generation process, a starting state is sampled from a goal state distribution,
previous actions are either sampled at random or using a directed scheme; and state residuals are sampled
from the inverse model to construct new transitions backward.

Relabeling transitions Relabeling algorithms are pseudo-generative algorithms: they modify attributes
of existing trajectories to create alternate transitions or trajectories to be consumed by RL algorithms.
Relabeling usually happens in hindsight, that is after an often imperfect outcome is reached, and turns
suboptimal data into optimal data for that suboptimal outcome. While most algorithms we present
were designed for multi-goal RL (Schaul et al., 2015a), we think relabeling has applications outside this
particular setting, which is in fact corroborated by the work of Buesing et al. (2018).

In a goal-conditional setting, Hindsight Experience Replay (HER) (Andrychowicz et al., 2017) modifies
experienced trajectories in the replay buffer, changing the original goal for the goal that was achieved
instead, and attributing a reward in the end-of-trajectory transition. Doing so, the agent benefits from
"free" supervision about actions to be performed to reach suboptimal outcomes, which in turn make its
policy more generalizable to new goals.

In the goal-conditional setting still, Hindsight Policy Gradients (HPG) (Rauber et al., 2017) use
relabeling to modify the policy gradient update, providing additional learning signal for goals that were
encountered in trajectories, also using importance corrections to account for the difference in behavior
when conditioning on other goals.

Buesing et al. (2018) propose a model-based algorithm that generalizes Guided Policy Search (Levine
and Koltun, 2013) but explicitly considers alternative outcomes from counterfactual actions, that is other
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actions performed in place of the actions observed, in experienced trajectories. Their method requires
knowledge of the structural causal model of the environment (Pearl, 2009), which then allows to sample
under the counterfactual distribution induced by the interventions (performing alternative actions).

Graph-based methods Proto-value functions (Mahadevan, 2005; Mahadevan and Maggioni, 2007)
collectively span the space of all possible value functions in a given state space:

V π = α1V
G
1 + . . .+ αnV

G
n

They are learned in a coordinate-free approach: assume the state space is represented as a known undirected
graph G = (S,E). The graph Laplacian L is D −A where A is the adjacency matrix of the graph and
D is a diagonal matrix whose diagonal values are row sums of A. An eigenfunction f of the Laplacian
verifies Lf = λf . If the graph G is known, the Laplacian can be calculated, and the eigenfunctions as well
via spectral analysis. We note φG = {V G1 , . . . , V Gk } these eigenfunctions (V Gi = (V Gi (1), . . . , V Gi (|S|))),
which can express any function f : S → R represented as a vector of its evaluations on the graph
vertices. The idea of proto-value functions can be leveraged to learn an approximate optimal value through
Representation Policy Iteration (RPI) (Mahadevan, 2005), which repeats the following steps: it uses the
eigenfunctions of the Laplacian as basis functions in LSTDQ (Lagoudakis and Parr, 2003) to estimate the
Q-values (policy evaluation), computes the greedy function (policy improvement) and updates the graph
representation from new interactions sampled. A drawback of this approach is that it is costly and cannot
realistically scale to high-dimensional problems. Indeed, the graph Laplacian L lies in R|S|×|S|, and is
unsuitable to large state spaces.

Klissarov and Precup (2018) propose a more practical approach to using Proto-Value functions: they
approximate the graph Laplacian of the MDP with a Graph Convolutional Network (Kipf and Welling,
2016; Defferrard et al., 2016) and leverage it to compute an approximate value function that allows for
efficient credit assignment.

Prioritizing important data Prioritization schemes propose alternatives to the often-used uniform
sampling in the replay buffer for off-policy learning. While not technically credit assignment algorithms,
these algorithms assign a priority to actions, since they propose sampling distributions that weigh
transitions according to the current prediction error, which could correlate with the actual importance
of actions. Prioritized sweeping (Moore and Atkeson, 1993) was the first of this kind, defining a state
priority based on the magnitude of the TD error and only sampling the highest priority state instead
of uniformly, with application for Dynamic Programming. Prioritized experience replay (PER) (Schaul
et al., 2015b) uses the same priority measure but a different sampling strategy: each transition is sampled
from the replay buffer with a probability that is proportional to the latest TD error observed for that
transition. Then, Horgan et al. (2018) and Kapturowski et al. (2018) respectively introduced a distributed
and a recurrent version of PER. Self-imitation learning (Oh et al., 2018), in contrast to PER, prioritizes
transitions proportionally to the difference between the return from the starting state (as observed in the
trajectory the transition is a part of) and its estimated value. Lee et al. (2018) take a different approach
and propose to update value functions starting from end-of-trajectory states to propagate the experienced
rewards to earlier actions faster, mimicking the propagation mechanism of Dynamic Programming.

By revisiting important transitions or trajectories more often (or in the right order), the propagation of
the reward signal from the future is facilitated, which alleviates the temporal credit assignment problem.

Meta-learning rewards Zou et al. (2019) propose to learn rewards based on meta-learning algorithms,
for their fast adaptation properties. They use MAML (Finn et al., 2017a) to learn a meta Q-function over
a distribution of environments, and then use the associate value function as a prior potential function
in novel environments. They show that their method allows for fast adaptation to previously unseen
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continuous control tasks. Here, the use case is quite different because they optimize credit assignment for
generalization and transfer. Note that a requirement for their method is that all environments have the
same state space.

Hierarchical RL Hierarchical RL (HRL) (Sutton et al., 1999; Dietterich, 2000; Kulkarni et al., 2016;
Kipf et al., 2018; Nachum et al., 2018) makes use of a hierarchy of components to exploit the natural
decomposability of tasks. They present promising aspects for credit assignment: segmenting the task into
sub-tasks reduces the delay between actions and feedback. Additionally, some algorithms decentralizes
the credit assignment problem thanks to a manager-worker decomposition (Dayan and Hinton, 1993;
Vezhnevets et al., 2017). Indeed, the local manager encourages pertinent behavior from its worker(s) by
rewarding them when getting closer to its own goal. In practice though, to the best of our knowledge,
HRL is ongoing research and hard to scale beyond two or three levels of hierarchy (Levy et al., 2019).

Model-based planning Planning methods (Kocsis and Szepesvári, 2006; Coulom, 2006), either from a
given model (Silver et al., 2016, 2017a) or a model learned from experience (Tamar et al., 2016; Vezhnevets
et al., 2016; Silver et al., 2017b; Oh et al., 2017; Hansen et al., 2018; Savinov et al., 2018; Guez et al.,
2018, 2019; Eysenbach et al., 2019; Schrittwieser et al., 2019) have an interesting connection to credit
assignment. As the best immediate action is evaluated by the sampling value, obtained by sampling
trajectories from the model and propagating the value of descendent nodes to the current node in the
search tree; search evaluates the influence of the first action towards an outcome that is not known at
the start of the procedure and corresponds to the best achievable expected return (as estimated through
search). As for some algorithms that condition on the future, the search procedure only decides the first
action on the basis that it makes reaching the evaluated best outcome possible, and likewise it is an
implicit form of credit assignment.

Specifically, Bakker (2007) proposes a model-based approach to credit assignment. First, a model
of the environment and a value function are learned from episodes sampled by acting randomly. In a
second time, a policy is learned from imagined episodes. The learning signal for the policy is obtained by
backpropagation through the critic: an arbitrary high value is used as a reference value, and the gradient
of a mean squared error loss between the value estimated by the critic and the fixed reference value flows
back to the policy, whose parameters are updated by gradient ascent. A drawback of this approach is that
the model is learned and fixed once and for all, while it could benefit from interactions sampled from
improved versions of the starting policy. It also appears likely that it requires a very accurate model to
function properly.

Multi-agent credit assignment There is a whole literature on multi-agent credit assignment, which
applies to a specific credit assignment problem in multi-agent RL: when rewards are shared among all
agents, how to properly attribute credit to the specific actions of specific agents? We refer the interested
reader to the related work sections of Son et al. (2019) and other works.

3.4 Related work in explainable RL
There are several, distinct subareas of research in explainable RL. We briefly review the main ones here.

Distilling into interpretable policies Due to the interpretability/expressivity trade-off, fully inter-
pretable models are usually not powerful enough to do well on complex RL tasks. To circumvent that
limitation, a natural idea is to train a non-interpretable model (say, a neural network) and then distill
it into its interpretable counterpart. Among such interpretable models to be explored, decision trees
are popular for their complete interpretability and decent expressivity (Bastani et al., 2018; Liu et al.,
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2018b; Coppens et al., 2019; Vasic et al., 2019). Finally, programs (as a series of instructions) are also
used (Verma et al., 2019b,a). Since programs are not differentiable, projections are employed instead of
distillation to go back-and-forth between the non-interpretable model and the inferred programs, obtained
via program synthesis.

Looking at policy gradients Gradient-based methods are ubiquitous analysis tools in supervised
learning, be it for tabular, visual or textual inputs. Are gradient-based methods useful in the RL context?
Saliency maps were used in different flavors in several works (Wang et al., 2015; Zahavy et al., 2016;
Greydanus et al., 2018; Puri et al., 2019). Some works (Wang et al., 2015; Zahavy et al., 2016) used
policy gradients directly to compute saliency maps, but the results were noisy and not very informative.
This is partly due to backpropagated gradients, whose components measure sensitivity to single pixel
variations. Instead, more recent methods (Greydanus et al., 2018; Puri et al., 2019) use finite-differences
approaches to approximate policy gradients. As a result, they have more control on the perturbation
applied to inputs. For instance, they choose to apply localized Gaussian blurs in Atari games, and to
remove pieces in Chess or Go games.

Assessing learned representations Instead of looking at the decisions of the agent, one can look at
the state representations formed by the agent to make sense of its understanding of the task. Zahavy et al.
(2016) use t-SNE on the state representations learned by the last layer of a DQN agent to form clusters
of states based on embedding similarity. An issue with embedding clusters is that manual reviewing is
generally necessary to get information out of the resulting organization. Topin and Veloso (2019) propose
a different state aggregation method based on the agent policy. Their method clusters states based on
similar action preferences and a sensitivity to similar state features, which is not scalable to visual inputs.

Inspecting attention/memory mechanisms Attention mechanisms hold value for interpretability,
as originally studied in the NLP literature, and are used to derive interpretations (Hung et al., 2019; Ferret
et al., 2020; Mott et al., 2019; Tang et al., 2020). The rationale is that the attention weight distribution
should tend to peak on embeddings that hold predictive value for the model, which we correlate to
importance. Memory retrieval can be analysed similarly to attention mechanisms (Wayne et al., 2018).

Recovering agent preferences Another option to gain interpretability is to study the preferences
of RL agents. By preferences, we mean two types of things: 1) either a reward function that fits best
the agent behavior (Huang et al., 2019a; Arora and Doshi, 2021), 2) a set of coefficients in the case of
decomposed rewards (Juozapaitis et al., 2019; Bica et al., 2021). Inverse RL (IRL) (Ziebart et al., 2008),
to some extent, is also relevant to mention here. IRL methods construct a reward function for which
expert demonstrations (without the rewards) are optimal, in a sense explaining how agents reward their
own behavior.

Leveraging natural language Several works have been building towards human-understandable,
natural language explanations of agent policies and tasks. Such works make use of language templates,
that is pre-established sentences that have parts that vary depending on the passed inputs (that are
themselves the outputs of the algorithms we briefly present). Khan et al. (2009) propose contrastive
templated explanations that compare the expected return between the optimal action and other actions.
Wang et al. (2016b) propose natural language templated summaries of agent behavior in POMDPs, without
justifying actions though. A drawback of these works is that they generally rely on domain knowledge to
build language templates and explanations that are not always universally and easily understandable to
every human user.
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Extracting representative behavior Another focus of interpretability in RL is the extraction of
representative examples of agent behavior. A first approach consists in extracting important states and
assessing agent behavior in such states, using the action-gap for instance (Huang et al., 2018). Note that
similar approaches were discovered for other purposes, such as having agents advising other agents (Torrey
and Taylor, 2013). Another approach consists in selecting trajectories (or portions of trajectories) that
are representative of the overall behavior of RL agents. One way of selecting trajectories is by using
action-value differences (akin to the action-gap) to find important states (Amir and Amir, 2018), another
is by using a measure of disagreement between distinct policies (Amitai and Amir, 2021), another is to
rank sequences by likelihood according to policy (Sequeira and Gervasio, 2020). Such approaches can
be useful to summarize agent behavior to a human user, and potentially establishing trust in the agent
policy.
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Action Importance and Credit
Assignment

37





Chapter 4

A Unifying Perspective on Explicit
Credit Assignment

We recall that in RL, credit assignment refers to the ability of mapping specific actions to specific outcomes
under delay, distractors, noisy feedback and from incomplete data. While crucial to make RL efficient in
complex and long-horizon tasks, explicit credit assignment lacks a unified perspective to build upon. In
this chapter, we provide a general framework and show that it brings the existing literature together under
a common abstraction. More specifically, we separate existing works based on three main aspects: how
the actions are associated to outcomes, the nature of the outcomes considered (e.g. returns? individual
rewards? future states?) and whether grounded on actual trajectories or not. Notably, the separation of
these aspects makes it easier to see that credit assignment can be viewed as a form of action importance
with respect to the outcomes considered. We leverage this framework and propose a taxonomy of explicit
credit assignment methods, including existing methods and others that are yet to be studied theoretically
and empirically.

4.1 Introduction

Figure 4.1: A depiction of the credit assignment
problem in RL: agents have to map observed
outcomes (treasure) to actions (triangles) under
delay, noisy feedback and from incomplete data.

In sequential decision-making, credit assignment
(CA) (Minsky, 1961; Sutton, 1984) is broadly viewed as
the answer to the following question: given an observed
outcome, how much did previous actions contribute to
its realization? Outcomes are observed results of the
interaction process. A useful outcome gives information
about the performance of the agent’s behavior; which in-
cludes returns, future states, individual rewards, among
others. In general, this is a complex question for several
reasons, among which: 1) the contribution of an action
depends on subsequent behavior, which makes credit
assignment policy-dependent, and 2) mapping actions
to outcomes is generally hard due to a combination of
delay, partial observability, and stochasticity from both
the environment and the decision-making process. In
general, Reinforcement Learning (RL) evades the ques-
tion by focusing on learning accurate enough value functions, which perform an implicit form of credit
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assignment, by evaluating the total contribution of the current and future actions. Indeed, value functions
seek the answer to a different question: given a state (resp. a state-action pair), what is the expected
return? Values are then used to guide policy learning or action selection. Instead, explicit credit assignment
methods map actions to outcomes in an explicit way: they determine a quantitative notion of the influence
of actions over a specific future outcome, and use it to reinforce actions accordingly.

(a) Key-to-Door task. (b) Umbrella task.

(c) Atari Skiing task. (d) The game of Go.

Figure 4.2: Examples of tasks where accurate
credit assignment is crucial.

While there is evidence that using values as the only
source of credit assignment is enough to solve some com-
plex tasks on its own (Paine et al., 2019; Vinyals et al.,
2019; Badia et al., 2020b), recent RL algorithms featur-
ing explicit credit assignment were shown to dramatically
improve the sample-efficiency of agents in partially ob-
servable, delayed and/or stochastic environments (Hung
et al., 2019; Raposo et al., 2021). Among these, hard
credit assignment tasks stand out: they feature a small
subset of actions or states that determine to a large
extent the optimality of behaviors, and generally cause
trouble to standard RL algorithms. This is mostly be-
cause RL algorithms use various flavors of temporal
differences (TD) (Sutton, 1988), which assign credit im-
plicitly based on temporal proximity. In such tasks,
acquiring and exploiting knowledge about the relations
between actions and desired outcomes can turn difficult
RL problems into simple ones (Ferret et al., 2020). We
exemplify this in a synthetic task where an agent must
open a door with a key picked up along the way (Hung
et al., 2019) (see Fig. 4.2a). Eliminating the delay be-
tween the action (i.e. picking up the key) and the
outcome (i.e. opening the door) by rewarding the action
directly makes the learning problem a lot easier. Aside
from the efficiency gains, explicit credit assignment is
useful for interpretability: it can help making sense of
the behaviors of RL agents. Indeed, complex tasks can require thousands of decisions, hence analysis of
the learned behaviors should inspect critical decisions in priority. Accordingly, explicit credit assignment
gives us a notion of the importance of each action with respect to an observed outcome, and can be used
to identify such decisions.

Nonetheless, despite the apparent promises, the role of credit assignment in RL is undermined by
the lack of common ground to build upon. In this work, we aim to propose a general framework that
encompasses most existing explicit credit assignment methods. Our motivation is to help reveal key
similarities and differences among the existing work, uncover yet-to-be-studied algorithms, and make first
steps towards a theory of credit assignment. In the direction of the latter, there is a missing entity in the
current state of the credit assignment literature in RL: an oracle method, i.e. a quantity that supposes
perfect knowledge about the environment and that can act as a point of reference when assessing the
relevance of credit assignments. Since we want to identify actions that cause outcomes instead of actions
that only correlate with outcomes, we advocate for a causally correct oracle.

Our contributions are the following: 1) we provide a general framework for implicit and explicit credit
assignment in RL, 2) we propose a causal credit assignment oracle based on counterfactual simulation,
3) we identify and characterize several important axes of variation among practical credit assignment
methods; and we use these to establish a taxonomy of the existing credit assignment works. We hope that
our work can serve as an entry point for general RL practitioners into credit assignment.
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The chapter is organized as such. In Chapter 4.2 we introduce the notations and concepts that we will
build upon, including a short overview of existing explicit credit assignment methods (see Chapter 4.2.1).
In Chapter 4.3 we present the proposed framework for implicit and explicit credit assignment, which
includes a common formalism, criteria for success and an oracle method to establish ground truth credit
assignment. In Chapter 4.3.3, we leverage the framework to distinguish several admissible types of
approximate credit assignment methods, discuss their relative merits and characteristics, and provide a
taxonomy of the existing work.

4.2 Additional background and notations
Here we introduce the concepts and notations that will be of use in further sections. We place ourselves
in a finite horizon, discrete control setting, with potentially stochastic rewards.

Reinforcement Learning. A trajectory T is the random variable T = HT , where T is the fixed
horizon of the task. In the following sections, τ refers to realizations of T , being sampled from the behavior
policy (T ∼ πP) unless mentioned otherwise. An outcome Z is a random variable that corresponds to
an arbitrary function of a trajectory: Z = f(T ). Among notable types of outcomes, the return is the
discounted sum of rewards to go: Gt,γ =

∑T
t′=t γ

t′−tR(St′ , At′). We note pπ(X = x) the probability of X
being equal to x under the behavior policy π (X being a discrete random variable) and dπ(X) the density
of X under π (X being a continuous random variable).

4.2.1 Explicit credit assignment methods
Existing explicit credit assignment methods determine the credit of actions in various ways. We now
dive into the details of some of these methods, starting with general characteristics. We provide with
accompanying figures to summarize the main workings of each method in Fig. 4.3. We give expressions
for the credit assignments of a larger set of methods under the proposed framework in Table 4.3, p. 52.

Common aspects. An aspect shared by most explicit credit assignment methods is that interaction
data is observed, usually full episodes so that outcomes are available. Then, a predictor is trained to solve
a predictive, supervised task; either at the level of the full trajectory or at the level of individual transitions.
Intermediate outputs of the predictor (e.g. predicted probabilities, attention, memory reads. . . ) are used
to assign approximate credit for observed outcomes to actions. Such credit is then incorporated into the
RL learning procedure, either by modifying the reward function, modifying the RL updates or guiding
action selection. The principal effect of explicit credit assignment is the mitigation of delays between
actions and outcomes. A consequence is improved sample-efficiency: by crediting early actions for their
share of the future directly, the propagation of the reward signal is accelerated. Another important effect is
variance reduction: by incorporating information about the future, the variance of the various estimations
an RL agent can perform (e.g. estimating the value of its policy) might decrease.

TVT. Temporal Value Transport (TVT) (Hung et al., 2019) relies on an RL agent with an external
memory. Memory vectors are learned representations of the successive states of the environment, which
are learned via the autoencoding task of reconstructing the action, immediate reward and next state.
When creating a new memory vector, each past memory is assigned a weight that serves a dual purpose:
summarizing the past as a weighted average of past memories, and proportionally crediting previous
state-action couples. The credit is used in a modified TD scheme, where state-action couples that are
retrieved from memory with large weights get an additional term in the bootstrapping target: given the
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fixed coefficient η, for a future timestep t′ and a previous timestep t with a large weight, the one-step TD
loss at timestep t becomes: LTD,TV T (θ) = (r(st, at) + γVθ(st+1) + ηVθ(st′)− Vθ(st))2.

SECRET. Self-Attentional Credit Assignment (SECRET) (Ferret et al., 2020) uses a Transformer
network (Vaswani et al., 2017) to predict the value of individual rewards from previous observations and
actions, and view self-attention weights as the explicit credit of previous actions for these rewards. The
credit assigned for positive rewards is then used to design auxiliary rewards, using potential-based reward
shaping (Ng et al., 1999): rθ(st, at, st+1) = r(st, at) + γφθ(st+1) − φθ(st), where φθ(s) is the quantity
(1/|D|)

∑
τ∈D

∑T
t=0 1{st = s}

∑T
t′=t αθ(rt′ → t)rt′ and αθ is the learned attention function. This is an

offline method, i.e. the auxiliary reward function is computed ahead of the RL procedure from a dataset
of interaction data D, such that the RL agent then experiences rewards from a fixed reward function.

HCA. Hindsight Credit Assignment (HCA) (Harutyunyan et al., 2019) makes use of a neural network to
predict observed actions given a state and the value of a future outcome (either a future state or a future
return). When the chosen outcome is a future state s′, the outcome-conditioned classifier hθ,β(a|s, s′)
approximates (1/T )

∑T−1
t=0

∑T−t
k=0 β

k−1(1−β)pπ(At = a |St = s, St+k = s′), the second summation coming
from viewing k as a random variable with a geometric distribution. hθ,β is learned online, from episodes
sampled from the behavior policy. The explicit credit for a given action is formulated as the ratio
cπ(s, a | s′) = hθ,β(a|s, s′)/π(a|s), in accordance with the intuition that actions that are much more
probable given a future outcome are direct contributors. The credit is used in a modified policy gradient
method, which updates all actions at once: gθ,HCA =

∑
a∈A

∑T
t=0∇θ log πθ(a|st)ψHCA(st, a), where

ψHCA = rθ(st, a) +
∑T
t′=t γ

t′−t(hθ,β(a|st, st′)/πθ(a|st)
)
r(st′ , at′).

CCA. Counterfactual Credit Assignment (CCA) (Mesnard et al., 2021) leverages a backward recurrent
neural network to compute a representation that summarizes future observations and rewards φθ,t, for each
timestep of the episode. It is optimized to make the estimated value Vθ(st, φθ,t) (with hindsight knowledge)
most accurate, while maximizing the independence between the action distribution from the behavior
policy and that from an outcome-conditioned classifier hθ (i.e. minimizing the Kullback-Leibler divergence
KL(πθ(·|st) ||hθ(·|st, φθ,t)). hθ is the same estimator as in HCA. The independence maximization objective
serves the purpose of reducing the information available in φ about the actual action taken by the agent.
As a consequence, φ has incentive to only keep information about the future that is not a consequence of
the action. The estimated advantage used in the policy gradient features the hindsight value function:
Aθ(st, at) = Gγ,t−Vθ(st, φθ,t). By subtracting what is not a direct consequence of the action, it estimates
the part of the observed return that the action individually contributed to.

RUDDER. Return Decomposition for Delayed Rewards (RUDDER) (Arjona-Medina et al., 2019)
employs a recurrent neural network as a return predictor. A discounted return gθ(ht) is predicted at each
timestep of the episode from the observed history ht, and the difference between consecutive predictions
is viewed as the assigned credit cθ(ht) = gθ(ht)− gθ(ht−1), with the rationale that a sharp increase in the
expected return correlates with important actions. The credit is used to compute a modified advantage
Âθ(ht, at) = (1− β)Aθ(st, at) + βcθ(ht), which replaces the standard advantage estimator in the policy
gradient updates.

SR. Synthetic Returns (SR) (Raposo et al., 2021) associate future states to past states by a gated
linear regression of the future individual rewards from the observed history ht: rθ(ht+1) = bθ(st+1) +
gθ(st+1)

∑t
t′=0 cθ(st′ , at′). The coefficients bθ, gθ and cθ are actually the outputs of standalone neural

networks, and the latter is used as assigned credit in a modified reward function r̂θ(st, at) = αr(st, at) +
βcθ(st, at).
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Figure 4.3: High-level depiction of existing credit assignment methods. a) SECRET. b) HCA. c) CCA.
d) TVT. e) RUDDER. f) SR.

4.3 A unifying framework for credit assignment in RL
In this section, we propose a unifying formalism for explicit credit assignment in RL. For clarity, we focus
on credit assignments to state-action pairs, though definitions can be adapted to states only or to sets of
state-action pairs instead. Also, we view credit as a positive quantity, but definitions could be extended
to signed quantities.

4.3.1 General credit assignment functions
First, we introduce a very general mathematical object for explicit credit assignment: the credit assignment
function. Credit assignment can take different forms, but a common aspect is that credit assignment
functions quantify the contribution of actions with respect to a chosen type of outcome, that is either
observed from an actual trajectory, predicted, or given as input. We formalize these elements with the
next definitions.

Definition 1. Let z be an outcome value. We define a context-free credit assignment function as a
function cπ(s, a | z) ∈ R.

Context-free credit assignment functions give the assigned credit for a specific state-action pair and a
specific outcome. In their most generic form, such functions do not condition their output on an observed
trajectory. As a result, they are defined over the whole state-action space and over the whole outcome
space.

Definition 2. Let τ be a trajectory, and t ∈ [0, T ] a specific timestep. We define a grounded credit
assignment function as a function cπ(t | τ) ∈ R.
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Figure 4.4: Left: single outcome to single action credit assignment (single-to-single). Right: single
outcome to many actions credit assignment (single-to-many).

Grounded credit assignment functions take as input a trajectory. They give the assigned credit for
the state-action pair at the selected timestep in the trajectory and a specific outcome z = f(τ). Such
functions still depend on a behavior policy, since the same trajectory can be observed under much different
policies, and distinct credit be assigned.

Definition 3. We define explicit credit assignment functions as the union of context-free and grounded
credit assignment functions.

Both context-free and grounded credit assignment functions are explicit, in the sense that they
quantitatively tie an outcome to a state-action pair. A crucial difference is that grounded functions benefit
from the context of the trajectory, which makes it possible to credit actions of the trajectory in a relative
way.

Definition 4. We define an implicit credit assignment function as a function cπ(s, a) ∈ R.

In contrast to explicit functions, implicit functions do not condition their output on the value of an
outcome. Action-value functions are notable implicit functions. This is in line with the fact that value
functions might hold information about the contribution of actions to future returns (i.e., important actions
might have a large action-value compared to other actions), but are not conditioned on any observed
outcome and do not take into account any context other than the current state (i.e., a trajectory).

Definition 5. We define a proper credit assignment function as a grounded credit assignment function
that verifies the following properties:

◦ cπ(t | τ) ∈ [0, 1] for all t ∈ [0, T ] and all τ ,

◦
∑
t∈[0,T ] cπ(t | τ) = 1 for all τ .

Proper functions have an additive property: the credit assigned to individual actions along a trajectory
always adds up to 1, meaning that it can be viewed as the fraction of the outcome the action is responsible
for.

We now define assignments. An assignment is a set containing the credit assigned individually to the
consecutive state-action pairs of a single trajectory, by the specified credit assignment function.

Definition 6. Given a proper credit assignment function cπ and a trajectory τ , we define an assignment
as the set Cπ(τ) = {cπ(t | τ)}t∈[0,T ]. By definition we have

∑
c∈Cπ(τ) c = 1.

Definition 7. Given an assignment Cπ(τ), we consider the following set Cπ,+(τ) = {c ∈ Cπ(τ) such that c >
0}. We call single-to-single assignment an assignment such that |Cπ,+(τ)| = 1. We call single-to-
many assignment an assignment such that |Cπ,+(τ)| > 1.

We represent the two types of assignment in Fig. 4.4.
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4.3.2 Criteria for principled credit assignment functions
Having defined general forms for credit assignment functions, we now list desiderata for principled credit
assignment functions, which stem from the following assertion: the credit for a given outcome should
be attributed to actions that matter most to its realization. Informally, influence is akin to causation:
i.e. maximally influential actions are those that, when not performed, prevent from reaching the chosen
outcome. We give several candidate notions of influence along those lines in Appendix B.5. We mention
several similarity functions in what comes next, without giving precise expressions. This is for the sake
of generality: we think that different similarity functions will suit different contexts. Still, we provide
examples for such similarity functions in Appendix B.2.1. Ideally, the following principles should hold in
tasks where credit assignment is difficult, either due to increased delay, partial observability, or sources of
stochasticity (i.e. the policy or the environment dynamics). We qualitatively assess existing methods
against the proposed criteria in Table 4.2, p. 52.

1) Sensitivity

◦ (a) Actions that have a large influence on the specified outcome should be assigned high credit.

◦ (b) Actions that have a small influence on the specified outcome should be assigned limited credit.

◦ (c) Actions that have no influence on the specified outcome should be assigned a credit of 0.

A corollary of these is that credit assignment should generally not only be determined by the temporal
proximity between actions and outcomes. A corollary of c) is that actions that happen after the outcome
is observed should be assigned a credit of 0.

2) Relativity Given two actions, the credit assigned for any action should be larger if the action has
more influence on the outcome than the other one. A corollary is that assignment values should have a
ranking that matches the ranking of actions in terms of ground truth influence on the selected outcome.

3) Separability Actions that have distinct influence on the specified outcome should have a difference
in assigned credit that is as large as possible while satisfying other desiderata.

4) Invariance Actions that lead to similar immediate state distributions under the behavior policy
should be assigned similar credit. The rationale is that such actions have similar long term effects due to
the Markov property.

5) Stability

◦ (a) Given identical outcomes, the assignments for similar trajectories should be close.

◦ (b) Given identical trajectories, the assignments for similar outcomes should be close.

6) Generalizability Given identical trajectories and outcomes, the assignments for similar policies
should be close.

7) Expressivity There are several possible cases for credit assignment in RL tasks: tasks with a single
outcome of interest either leads to single-to-single or single-to-many assignments; but there might be
several outcomes of interest, either many outcomes to single action (many-to-single), or many outcomes
to many actions (many-to-many). We illustrate these cases in Fig. 4.5. In a nutshell, we would like to
have credit assignment functions that can deal with any of these tasks.
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(a) (b) (c) (d)

Figure 4.5: The types of outcome-action relations that can be featured in RL tasks. a) Single-to-single.
b) Single-to-many. c) Many-to-single. d) Many-to-many.

8) Scalability We want credit assignment functions to have the potential to extend to multi-step
assignments. Multi-step assignments, similarly to options (Sutton et al., 1999), operate on sequences
of actions instead of single actions, and might be needed in order to infer useful credit assignment in
finer-grained, longer horizon tasks. We elaborate on this aspect in Appendix B.1.

4.3.3 Approximate mappings of outcomes to actions
The credit assignment oracle we introduced in the previous section is often not realistic to compute for
practical purposes: it requires a simulator, the ability to reset it to arbitrary states, and access to the
stochastic factors of both the environment and the current policy. For a practical use of explicit credit
assignment, we are interested in quantities that can be estimated from interactions in the environment,
and provide approximate credit assignment that can be leveraged to increase the sample-efficiency of RL
agents. All in all, they should identify actions that tend to contribute to observed outcomes, with or
without the additional context of a trajectory. In the light of the proposed framework and criteria, we
thus provide several classes of approximate credit assignment functions cπ that can be used in practice,
including quantities with obvious limitations and previously studied quantities. We discuss the pros and
cons of each, and give pointers to corresponding existing works.

Temporal proximity. In RL, most algorithms can be viewed as an implicit form of credit assignment:
actions are credited according to their temporal proximity to outcomes. We explain this assertion
using temporal differences. Recall the backward TD(λ) value update given the TD error at timestep t:
V ′π(s) = Vπ(s) + αδteλ,t(s), with eλ,t = γλeλ,t−1(s) + 1{st = s} the current eligibility trace and α the
learning rate. By recursion we get eλ,t(s) =

∑t
t′=0(γλ)t−t′1{st′ = s}. The eligibility trace quantifies how

much the value of past states is updated by the TD loss, based on how recently they occurred. We can thus
view the eligibility trace as the following implicit credit assignment function: cπ(s, a) = Es′∼P(·|s,a)[eλ,t(s′)],
eligibility traces being defined for states, so we naturally transfer the value to the state-action couple
that precedes. Hence, temporal differences amount to implicitly crediting past state-action couples, and
updating their associated value accordingly. With λ = 1, we get Monte-Carlo behavior, that is all previous
state-action couples are credited for a given TD error, with a weight that decays at the rate of γ. When
additionally γ = 1, which corresponds to the undiscounted case, all previous state-action couples are
uniformly credited for each future TD error. Standard RL updates fall into two major categories: value
updates and policy gradient updates. Both are based on various flavors of temporal differences, which
makes temporal proximity the implicit credit assignment scheme adopted.

Action-gap. A natural candidate to map decisions to desirable outcomes is the action-gap (Farahmand,
2011), which quantifies the difference in action-values between the best and the second-best actions:



4.3. A UNIFYING FRAMEWORK FOR CREDIT ASSIGNMENT IN RL 47

gQ(st) = maxaQ(st, a)−maxa′ 6=arg maxaQ(st,a)Q(st, a′). It was used in previous works to identify impor-
tant states in the environment (Huang et al., 2019a). Still, the action-gap does not take into account the
actual action chosen, which makes it hardly suitable for credit assignment. We propose an alternative
expression. Formally, we introduce a modified action-gap, which is an implicit credit assignment function:
cπ(s, a) = Qπ(s, a) − Eā∼π̄[Qπ(s, ā)]. The second term corresponds to the value of the non-stationary
policy that acts according to π̄ and then π, in the state s. This is an interesting quantity because it
compares the returns of a given action to those of other, counterfactual actions. Though, an important
shortcoming is that this quantity is not grounded in any trajectory and no outcome other than the
return can be specified as the outcome to credit actions for. Additionally, such a gap necessitates precise
action-values and can still be dominated by temporal proximity, since action-values are learned by temporal
differences. An advantage is that most off-policy RL methods make use of action-values, so calculating
this gap incurs a small computational cost. Note that gap-increasing RL methods (Baird, 1995; Bellemare
et al., 2016b; Van Seijen et al., 2019; Ferret et al., 2020; Vieillard et al., 2020b) make action-gaps wider,
thus potentially more informative.

Outcome sensitivity to action. The notion of action-gap presented above essentially measures
the sensitivity of the return to an individual action change. We now discuss a generalization, which
measures the sensitivity of (arbitrary) outcomes to actions. This idea is conceptually close to attribution
methods (Lundberg and Lee, 2017; Sundararajan et al., 2017) for supervised learning, which quantify
feature importance f for an input x as the sensitivity of the prediction F (x) to changes in the value of
the features (xi)|x|i=1. For instance, the most straightforward attribution method for differentiable models
is plain gradients (Baehrens et al., 2010), i.e. for an input x, the feature importance of the feature xi is
fi = ∂F

∂xi
(x). Supposing we are using a continuous outcome, we have the context-free credit assignment

function: cπ(s, a | z) = dist(z,Eā∼π̄,π[Z |St = s,At = ā]). Note that this matches the expression we gave
for the metric counterfactual influence (see Chapter B.5). In practice, due to the lack of a simulator,
the expectation would be intractable and would have to be approximated. With a similar argument,
attribution methods generally cannot work out-of-the-box in model-free RL. Indeed, though a differentiable
model of the outcome is not required (we are in the discrete control setting), a model of the outcome
is still needed. This dependence on a partial model of the environment places such methods at the
frontier between model-based and model-free. An example of such a hybrid method is RUDDER, which
leverages a model of the returns and uses the immediate difference in return predictions as a form of
credit assignment. The oracle we introduced in the previous section is another example of such mapping,
given that it simulates how much the outcome changes under counterfactual actions. Its model is the
perfect model given by the simulator.

Action-to-outcome specificity. Another way to map actions to a specific outcome is to compare the
likelihood of actions when conditioned on this outcome to their likelihood when not. The former can
be learned in a supervised way, using a replay buffer of trajectories from the learning agent, while the
latter is simply the behavior policy, that is learned via policy gradients. Intuitively, an action that is
more likely than usual when conditioned on an outcome might be of special importance to the outcome.
We call this type of mapping action-to-outcome specificity. This is the idea that is exploited in HCA
(see Chapter 4.2.1) and follow-ups (Young, 2019; Alipov et al., 2021). HCA assigns credit as the ratio
between the policy and a hindsight distribution over actions, which is equivalent to a policy that is
conditioned on the outcome value. For instance, the return-conditioned version of HCA makes use of the
following context-free credit assignment function: cπ(s, a | g0,γ) = 1− π(a | s)

h(a | s,g0,γ) , where h is by definition
the empirical action probability distribution conditioned on the state and outcome and g0,γ is the observed
discounted return. A drawback of this kind of approaches is that the assigned credit depends on the
action distribution induced by the policy, which can have undesirable effects. As an example, suppose
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there is an action a in a state s that is sufficient and necessary for success (i.e. getting a return of g∗0,γ). If
π(a|s) ' 1, and h(a|s, g∗0,γ) ' 1, then cπ(s, a | g∗0,γ) = 0. It goes against the Sensitivity criterion from 4.3.2,
which calls for cπ(s, a | g∗0,γ) ' 1 instead.

Predictiveness of outcome. In some scenarios, outcomes can be predicted from a small subset of
the state-action couples of a trajectory. In the same way, such a subset can be crucial to the ability of
predicting outcomes. In those cases, it is natural to associate outcomes to the corresponding actions. This
is the idea behind many of the existing works (Hung et al., 2019; Seo et al., 2019; Ferret et al., 2020; Raposo
et al., 2021). We call this type of mapping predictiveness of outcome. Predictiveness usually involves a
parametric estimator of the outcome, and an attribution mechanism. The attribution mechanism is a
by-product of the prediction of the outcome, and quantifies how much individual state-action couples
contribute to the overall prediction. For a trajectory τ and a general attribution mechanism αθ we
have the following grounded credit assignment function: cπ(t | τ) = αθ(f(τ) → (st, at)). Attribution
mechanisms usually depend on the type of estimator used to predict the outcome. Existing attribution
mechanisms include retrieval mechanisms: attention mechanisms (Ferret et al., 2020) (which require a
sequence model) or memory accesses (Hung et al., 2019) (which require a memory-augmented model).
Both assign credit to sequence elements whose content is retrieved to predict the outcome. Alternatives
include linear regressions (Raposo et al., 2021), which attribute credit proportionally to the coefficients
of the regression of the outcome. By construction, regressions only work for scalar outcomes. A crucial
difference between predictiveness and other types of mappings is that it relies on a parametric component
(i.e. the outcome estimator) while other methods can be non-parametric (e.g. using counts, when in the
tabular setting).

Generativeness of outcome. Mapping actions to outcomes can be viewed as the following generative
problem: producing the next action or the sequence of actions leading to a given outcome. This is achieved
by maximizing the likelihood of generated actions in states sampled from a dataset of trajectories, while
being conditioned on the value of the outcome. This idea was studied in several works (Kumar et al., 2019;
Srivastava et al., 2019; Schmidhuber, 2019). As such, this is an implicit form of credit assignment, since it
does not quantify the individual contributions of the generated actions. Nevertheless, such generative
models provide estimates of the probability of the next action given the previous states, actions and
rewards; as well as the outcome of the trajectory (Edwards et al., 2018; Goyal et al., 2019; Chen et al.,
2021; Janner et al., 2021). Credit assignments can be derived from these learned action probabilities,
since actions that are highly probable given a desirable outcome should be reinforced. We call this type of
mapping generativeness of outcome. Two distinct classes of generators can be used: stepwise models and
sequence models. Stepwise models estimate the probability of the next action given the current state and
desired outcome, while sequence models access the history up to the current point. In POMDPs, sequence
models are preferable since the hidden environment state is a function of the history. We thus have the
context-free, explicit credit assignment function for generative methods: cπ(s, a | z) ∝ pπ(a|s, z), where π
is either a behavior policy (on-policy setting) or the generative mixture of policies corresponding to a
replay buffer (off-policy setting).

Informativeness about outcome. Another form of mapping consists in measuring the information
individual actions hold about future outcomes, which we call informativeness about outcome. A useful
tool for that is the mutual information between actions A and an outcome Z, which is the quantity:
Iπ(A;Z |S) = DKL

(
dπ(Z |S,A) || dπ(Z |S)

)
. In the proposed framework, we obtain an implicit credit

assignment function by considering the following modification (Arumugam et al., 2021): cπ(s, a) =
DKL

(
dπ(Z |S = s,A = a) || dπ(Z |S = s)

)
. Though this quantity is not conditioned on an outcome value,

it does depend on the outcome whose distribution is modeled. Here, we assume that the outcome variable
Z is a continuous random variable (e.g. the return). A drawback of this mapping is its applicability:
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Figure 4.6: The proposed major characteristics of credit assignment methods. Items in italic correspond
to future directions, see Chapter 4.3.5.

it requires to explicitly model the probability distribution of Z. While there are tools available in the
context of RL, notably distributional RL (Bellemare et al., 2017; Dabney et al., 2018), it might limit the
practical applications of such a mapping. To the best of our knowledge, no existing method makes use of
this type of mapping at the time of writing. We refer the interested reader to Arumugam et al. (2021) for
additional elements.

4.3.4 Other practical design choices for credit assignment methods
In the previous section we distinguished several ways of mapping outcomes to actions, and practical
implications. We now discuss several important design choices and characteristics of practical credit
assignment methods, some of which being constrained by the type of mapping used, others being
independent. We suppose neural networks are used for function approximation. Importantly, we provide
a taxonomy of existing credit assignment methods by distinguishing several major axes of variation. The
taxonomy can be found in Table 4.1. We hypothetically assess these methods against the proposed criteria
in Table 4.2. We provide partial expressions for the associated credit assignment functions in Table 4.3.

Forward and backward view. We call forward methods those that assign credit to actions when they
are performed, and are either implicit or context-free. They can take advantage of hindsight information,
i.e. information about the observed future, but only during training. Backward methods assign credit
when an outcome is observed, and are grounded functions if they make use of the extended context
provided by the trajectory. Both views hold advantages and drawbacks that will suit different scenarios,
similarly to the forward and backward view in planning (Chelu et al., 2020). A notable difference is
that backward methods have knowledge about the future, which can facilitate estimation by reducing
variance at the cost of increased bias. Backward, grounded methods rely naturally on sequence models,
which build representations that contain information about the whole trajectory. Sequence models usually
incur an increased computational cost (with respect to stepwise models) and might require more data to
train, but they also might help with credit assignment via attention mechanisms or return decomposition.
Forward and backward explicit methods often rely on forms of conditioning, since they assign credit on the
basis of an outcome value. This is an important practical aspect: conditioning was shown to improve the
predictive capabilities of various neural networks in the presence of additional, informative inputs (Perez
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et al., 2018). In the online RL setting, backward methods can be ill-adapted since they usually require
that the outcome is observed before updating estimates.

Type of mapping. See Chapter 4.3.3.

Type of outcome. While any function of the trajectory is an admissible outcome, we describe existing
outcomes that are used for explicit credit assignment as well as natural extensions:

◦ return: a common RL objective consists in maximizing returns, so return-specific credit assignment
can help reinforcing actions that cause high returns. There is a distinction to make between truncated
returns and full returns. While truncated returns only account for a portion of the future, they suffer
from reduced variance and have a smaller number of actions to credit. In practice, most existing
methods use full trajectory returns, i.e. g0,γ . Since the return is a continuous outcome whose utility
increases with its value, meaningful distance functions are easy to find (e.g. the squared distance).

◦ future state: an alternative is to use specific future states as the outcome to credit for. Using
future states as outcomes instead of the whole return allows to selectively credit different actions
along the same trajectory, since distinct actions can be credited for distinct future states. While
this is naturally useful for goal-oriented RL (Andrychowicz et al., 2017), it might also be useful
when the return is ambiguous, e.g. if two future states are associated to equal returns under a given
behavior policy. Note that using the future state as an outcome requires a suitable representation
for the state, which might be the corresponding observation or a learned representation.

◦ reward: another alternative is to use individual rewards, when experienced in the context of their
state, as outcomes. This is different from using future states as outcomes, since rewards might not be
a deterministic function of the state-action couple preceding a given state: one might want to assign
credit proportionally to the value of the reward. Note that rewards are equivalent to discounted
returns when γ = 0.

Combination with RL. There are several ways to incorporate the credit assignments into RL algo-
rithms.

◦ action selection: actions that get credit for desirable outcomes are sampled more often. In practice,
existing methods condition their behavior policy on the value of an outcome, value which is either
sampled from a distribution shaped by previous interactions in the environment (Kumar et al., 2019)
or from privileged information about the task at hand (e.g. knowing the value of the best return
achievable) (Chen et al., 2021).

◦ auxiliary rewards: the reward is augmented proportionally to a function of the assigned credit. If
the function is the identity, this is a regular reward bonus. Alternatively, one might use other bonuses,
such as potential-based reward shaping (Ng et al., 1999), look-ahead/look-back advice (Wiewiora
et al., 2003) or reward redistribution (Arjona-Medina et al., 2019).

◦ modified policy gradient: the assigned credit is directly integrated in the policy gradient updates.
Existing modifications either substitute the advantage function (Mesnard et al., 2021) or weight
individual rewards (Harutyunyan et al., 2019).

◦ modified TD: the assigned credit is directly integrated in the temporal differences updates. Existing
modifications either add long-term connections in the bootstrapping target (Hung et al., 2019) or
weight bootstrapping terms according to state importance (Sutton et al., 2016).
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Method \Aspect View Mapping Outcome Combination w/ RL Agnostic Dealing with EA
SECRET (Ferret et al., 2020) Backward Predictiveness Reward Auxiliary rewards Yes Info. removal

HCA-Return (Harutyunyan et al., 2019) Backward Specificity Return Modified PG No
HCA-State (Harutyunyan et al., 2019) Backward Specificity State Modified PG No

CCA (Mesnard et al., 2021) Backward Action-gap Return Modified PG No Info. bottleneck
TVT (Hung et al., 2019) Backward Predictiveness Return Modified TD No Dim. reduction

IRCR (Gangwani et al., 2020) Backward Uniform Return Auxiliary rewards Yes
SMTCA (Liu et al., 2019) Backward Predictiveness Return Auxiliary rewards Yes
SR (Raposo et al., 2021) Forward Predictiveness Reward Auxiliary rewards Yes
RCP (Kumar et al., 2019) Forward Generativeness Return Action selection No

UDRL (Srivastava et al., 2019) Forward Generativeness Return Action selection No
DT (Chen et al., 2021) Forward Generativeness Return Action selection No

RPBCA (Seo et al., 2019) Backward Sensitivity Return Auxiliary rewards Yes
RUDDER (Arjona-Medina et al., 2019) Backward Sensitivity Return Modified PG Yes Info. removal
PWTD / PWR (Zheng et al., 2021) Backward State Modified PG Yes

Table 4.1: Taxonomy of credit assignment methods. EA stands for Explaining Away.

Agnosticism to the type of agent. While ad-hoc methods necessitate a specific RL agent or agent
architecture, agnostic methods impose no such constraints. Agnostic methods tend to feature a credit
assignment module that is either fully independent from the RL agent networks or only shares some
representations. Agnostic methods have the advantage that they can be combined to arbitrary RL agents.

Explaining away. A common challenge for explicit credit assignment methods is explaining away (Kakade,
2001): subsequent states and actions give information about past actions, and credit can be falsely at-
tributed to the subsequent actions, when past actions are potentially the ones that contribute the most.
Existing methods address this issue by reducing information about the past in representations of the
future, or conversely by reducing information about the future in representations of the past. We detail
some of these approaches here:

◦ information removal: information is removed from the observations that are used to compute
the credit assignments. For instance, Ferret et al. (2020) apply an ad-hoc transformation to the
observations of the trajectory (e.g. only keeping the agent surroundings), while Arjona-Medina
et al. (2019) use the difference between consecutive observations instead of observations as inputs
for predictions.

◦ dimensionality reduction: observations (or more generally, the agent’s representation of its
current state) are mapped to lower dimensional representations, with potential auxiliary losses to
control which kind of information they retain (Hung et al., 2019).

◦ information bottleneck: during training, the agent receives aggregated information about the
future (Guez et al., 2020; Lee et al., 2020b; Mesnard et al., 2021; Venuto et al., 2021). The amount
of information is regularized so that the agent does not rely too much on privileged information
about the future (which is only available as an approximation at inference time), and instead focuses
on the current observation.

4.3.5 Future directions
We briefly review future directions of interest and how they can be integrated in the described framework.
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Method \Criterion Sensitivity Relativity Separability Invariance Stability Generalizability
SECRET (Ferret et al., 2020) 3 3 3 3

HCA (Harutyunyan et al., 2019) 3 3
CCA (Mesnard et al., 2021) 3 3 3 3
TVT (Hung et al., 2019) 3 3 3 3

IRCR (Gangwani et al., 2020) 3 3
SMTCA (Liu et al., 2019) 3 3 3
SR (Raposo et al., 2021) 3 3 3 3
RCP (Kumar et al., 2019) 3 3

UDRL (Srivastava et al., 2019) 3 3
DT (Chen et al., 2021) 3 3

RPBCA (Seo et al., 2019) 3 3
RUDDER (Arjona-Medina et al., 2019) 3 3 3 3
PWTD / PWR (Zheng et al., 2021) 3 3 3

Table 4.2: Criteria fulfilled by credit assignment methods. When relying on estimators, we suppose that the
estimator is able to provide the exact quantity desired, so this is a hypothetical assessment. We give more details
in Appendix B.2.

Method Credit function Additional details

SECRET (Ferret et al., 2020) cπ(t | τ, t′) = αθ,τ (rt′ → (st, at))
αθ,τ is the self-attention weight

when predicting individual rewards.

HCA-Return (Harutyunyan et al., 2019) cπ(s, a | g0,γ) = 1− πθ(a|s)
hθ(a | s,g0,γ)

hθ is an action distribution
conditioned on the outcome.

HCA-State (Harutyunyan et al., 2019) cπ(s, a | s′) = hθ(a | s,s′)
πθ(a|s) − 1

CCA (Mesnard et al., 2021) cπ(t | τ) = Gγ,t − Vθ(s, φθ,t(τ)) φθ,t is an embedding of
the remainder of the trajectory.

TVT (Hung et al., 2019) cπ(t | τ, t′) = αθ,τ (st′ → (st, at))
αθ,τ is the memory retrieval weight
when reconstructing current items.

IRCR (Gangwani et al., 2020) cπ(t | τ) = 1
T

SMTCA (Liu et al., 2019) cπ(t | τ) = αθ,τ (g0,γ → (st, at))
αθ,τ is the stepwise predicted reward
when predicting the trajectory return.

SR (Raposo et al., 2021) cπ(s, a) = cθ(s, a) cθ is the coefficient
in the linear regression of the reward.

RCP (Kumar et al., 2019) cπ(s, a | g0,γ) = πθ(a | s, g0,γ)
UDRL (Srivastava et al., 2019) cπ(s, a | g0,γ) = πθ(a | s, g0,γ)

DT (Chen et al., 2021) cπ(s, a | g0,γ) = πθ(a | s, g0,γ)

RPBCA (Seo et al., 2019) cπ(s, a | g0,γ) = αθ,τ (g0,γ → (s, a)) αθ,τ is the argmax of the
sum of predicted reward differences.

RUDDER (Arjona-Medina et al., 2019) cπ(s, a | g0,γ) = αθ,τ (g0,γ → (s, a)) αθ,τ is the redistributed reward
when predicting the trajectory return.

PWTD / PWR (Zheng et al., 2021) cπ(st, at | st′) = fθ(st, at, st′ , t′ − t)
fθ is meta-learned to

accelerate objective maximization.

Table 4.3: Functions used in credit assignment methods. Quantities subscripted by θ are learned quantities. αθ,τ
are grounded mappings of observed outcomes to actions. Their nature vary from one method to the other, see the
rightmost column for details. We recall that g0,γ is the value of the total discounted return.
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Discriminativeness of outcome as mapping. A way of mapping actions to outcomes is to learn a
conditional discriminator: it is given an observed outcome and has to distinguish the actual data (i.e.
that was observed and led to the outcome) from negative data (i.e. generated or sampled data). Then, a
function of the confidence of the discriminator is used as a source of credit. This is an idea that is similar
to Adversarial Imitation Learning (Ho and Ermon, 2016; Orsini et al., 2021), where a discriminator has to
distinguish between trajectories from the behavior policy and expert trajectories. Given a discriminator
Dθ(s, a; z), we then have the context-free, explicit credit assignment function cπ(s, a|z) = f(Dθ(s, a; z)),
where f is a continuous and increasing function over (0, 1). Functions used in the Imitation Learning
literature include f(x) = log(x) (Ho and Ermon, 2016), f(x) = − log(1− x) (Ghasemipour et al., 2020),
and f(x) = 1{x > 1

2} (Bahdanau et al., 2019). To the best of our knowledge, discriminativeness is yet to
be studied in the context of credit assignment for RL.

Other directions. There are other future directions of interest that we review hereafter.

◦ using future state occupancies as outcome: an unexplored, alternative outcome is the future state oc-
cupancy. The discounted state occupancy measure induced by a policy π from a state st is νπ(s | st) =
((1− γ)/(1− γT−t+1))

∑T
t′=t γ

t′−tpπ(St′ = s |St = st). Equivalently, we have the action-conditioned
discounted state occupancy measure µπ(s | st, at) = ((1 − γ)/(1 − γT−t+1))

∑T
t′=t γ

t′−tpπ(St′ =
s |St = st, At = at). This might notably help with continuous or near-continuous state spaces. Note
that to the best of our knowledge, this was not used in existing explicit credit assignment methods.

◦ using prioritization to combine credit with RL: transitions in the replay buffer could be sampled
according to a priority distribution (Schaul et al., 2015b), where priorities are proportional to the
credit assigned. A parallel can be made with self-imitation (Oh et al., 2018), which prioritizes
sampled transitions according to the positive part of an estimated advantage. Note that to the best
of our knowledge, this was not used in existing explicit credit assignment methods.

4.4 Conclusion
In this chapter, we provided a general framework for credit assignment in RL, which unifies existing works
under a common abstraction. This framework makes apparent that different types of credit assignment
methods (either implicit, context-free or grounded methods) can have their assigned credit viewed as
action importances with respect to distinct quantities (expected returns or more specific outcomes; and
within or outside the context of a trajectory). By providing separate design choices that describe and
distinguish credit assignment methods, we revealed that there was room for novel credit assignment
methods that are yet to be studied from both theoretical and empirical point of views. We hope that the
proposed framework will benefit the research community and spark interest for explicit credit assignment,
which we argue is a much-needed RL component, especially when dealing with hard credit assignment
problems.
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Chapter 5

Implicit Credit Assignment via
Self-Imitation

Having presented our unifying framework for credit assignment, we now take an interest in credit
assignment methods, starting with implicit credit assignment, which is best understood as a form of
action importance with respect to the outcome measuring the global performance of the agent (that is,
the expected cumulative discounted reward). In this chapter, hence, we study an implicit form of credit
assignment for off-policy RL that incorporates returns in the RL updates. This chapter was presented as
a full conference paper at AAMAS 2021 (Ferret et al., 2021).

5.1 Introduction
Self-imitation learning is a Reinforcement Learning (RL) method that encourages actions whose returns
were higher than expected, which helps in hard exploration and sparse reward problems. It was shown to
improve the performance of on-policy actor-critic methods in several discrete control tasks. Nevertheless,
applying self-imitation to the mostly action-value based off-policy RL methods is not straightforward.
Hence, we propose SAIL, a novel generalization of self-imitation learning for off-policy RL, based on a
modification of the Bellman optimality operator that we connect to Advantage Learning (AL). Crucially,
our method mitigates the problem of stale returns by choosing the most optimistic return estimate
between the observed return and the current action-value for self-imitation. We demonstrate the empirical
effectiveness of SAIL on the Arcade Learning Environment, with a focus on hard exploration games.

Some approaches combine Reinforcement Learning (RL) and learning from (expert) demonstrations Piot
et al. (2014); Hester et al. (2018). It is efficient, but having access to expert demonstrations might not
be possible in many situations. An interesting and more practical alternative is to learn from oneself,
by focusing on one’s own instructive experiences. In the context of RL (Sutton and Barto, 2018), self-
imitation learning (SIL) is a technique that takes advantage of this idea and proposes to learn from positive
experiences, using actions whose payoff was superior to what had been predicted. It was introduced by Oh
et al. (2018) for on-policy learning, where interaction data is obtained via a behaviour policy and is used
to improve this policy, never to be reused again. SIL was shown to improve the performance of on-policy
actor-critic methods in several discrete control tasks. In that context, it provides a practical way to revisit
and reinforce interesting actions.

In the off-policy setting, agents learn instead from the behaviour of different policies than their own,
while they are still periodically allowed to interact in the environment to generate new interaction data.
Off-policy learning is attractive because it would make RL useful in situations where interacting in the
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environment is costly or impractical, which is the case in many real-world scenarios (Dulac-Arnold et al.,
2019). In the most extreme case, offline RL (Levine et al., 2020), no interaction at all is possible and
one must learn a policy just by looking at a dataset of past experiences generated by potentially many
different policies. Sadly, the canonical form of SIL relies on a modified policy gradient (Sutton, 1984),
which requires the ability to modify the current policy in a given direction. This requirement makes it
incompatible with most off-policy methods (Mnih et al., 2013; Hessel et al., 2018a; Kapturowski et al.,
2018), whose policy is obtained by applying an exploration method on top of the current estimate of the
optimal action-value. Since the policy is implicit, gradient ascent in the policy space is impractical. As
an example, a straightforward adaptation of SIL for a standard off-policy RL algorithm such as Deep
Q-Networks (DQN, Mnih et al., 2013) seems out-of-reach. Indeed, the action-value network that is central
to DQN encapsulates the two aspects SIL targets separately in the actor-critic: value estimation and
decision-making.

The focus of this work is on providing a self-imitation method that is applicable across the full spectrum
of off-policy methods. A common denominator to all off-policy algorithms is the use of the action-value to
inform decision-making, be it with an implicit policy (Mnih et al., 2013), or an explicit one (Haarnoja
et al., 2018). Hence, a way to control which actions are reinforced in off-policy learning is to artificially
increase the reward of such actions. Staying in the line of reasoning of SIL, a natural idea is to use the
difference between the observed return and the estimated value as the reward bonus. It turns out that
doing so creates a problem because the observed return becomes stale over time, biasing action-value
towards pessimism instead of optimism, and eventually reducing the self-imitation contribution to none.
To circumvent this issue, we opt for the simple strategy of using the most optimistic between the return
and the estimated action-value, with which we extend the benefits of self-imitation. We show a connection
to Advantage Learning (AL, Baird, 1999; Bellemare et al., 2016b), an action-gap increasing off-policy
algorithm.

Hence, we propose SAIL, a novel generalization of self-imitation learning for off-policy RL, based
on a modification of the Bellman optimality operator that we connect to Advantage Learning (AL).
Crucially, our method mitigates the problem of stale returns by choosing the most optimistic return
estimate between the observed return and the current action-value for self-imitation. We demonstrate the
empirical effectiveness of SAIL on the Arcade Learning Environment, with a focus on hard exploration
games.

Our contributions are the following: 1) we propose SAIL, a generalization of self-imitation learning
for off-policy methods, 2) we show how it connects to Advantage Learning and complements it, 3) we
demonstrate the practicality of our method in terms of simplicity, efficiency and performance on the
Arcade Learning Environment (ALE, Bellemare et al., 2013) benchmark, under several base off-policy RL
methods. Notably, we report considerable performance gains on hard exploration games.

5.2 Additional background
Actor-critic We recall that actor-critic methods use a policy and a value function. In the standard
formulation, the value (from the critic) guides the policy via the policy gradient,

LPG = − log πθ(at|st)
(
Gγ,t − Vθ(st)

)
,

while the value itself is updated via temporal difference on data generated by the actor:

LV = 1
2

(
rt + γVθ(st+1)− Vθ(st)

)2
.

Off-policy RL We already presented DQN in Chapter 3.2, which we refer the reader to. Rainbow (Hessel
et al., 2018a) extends DQN by combining several independently proposed algorithmic innovations (Schaul
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et al., 2015b; Van Hasselt et al., 2015; Wang et al., 2015; Bellemare et al., 2017; Fortunato et al., 2018),
and showed to be a strong baseline on the Atari Learning Environment benchmark. IQN (Dabney et al.,
2018) is a distributional RL approach that estimates the whole distribution of the returns, instead of the
mean as in standard Q-learning. More precisely, it approximates the continuous quantile function of the
return distribution by sampling input probabilities uniformly. In terms of performance, it (almost) bridges
the gap with Rainbow while not having any prioritized replay and using single-step bootstrapping.

Self-Imitation Learning Self-imitation learning (SIL, Oh et al., 2018) provides a set of additional loss
functions that complement the existing actor-critic losses, and encourage the agent to mimic rewarding
past behavior. It relies on a replay buffer that stores past transitions {st, at, Gγ,t}, where the observed
return Gγ,t =

∑+∞
i=0 γ

irt+i is obtained once the episode is over. SIL operates off-policy, since its losses are
calculated using past transitions from the replay buffer, implying that on-policy actor-critic methods that
benefit from SIL become part on-policy, part off-policy. For a given transition (st, at, Gγ,t), the additional
policy and value losses are:

Lsil
PG = − log πθ(at|st)

(
Gγ,t − Vθ(st)

)
+ and Lsil

V = 1
2

(
Gγ,t − Vθ(st)

)2

+
,

where the notation (x)+ = max(0, x) stands for the ReLU operator. The shared term (Gγ,t − Vθ(st))+ is
positive if the observed return outweighs the estimated value, in which case both the action probabilities
and the value are increased.

SIL also relies on prioritization (Schaul et al., 2015b), as transitions are sampled from the replay buffer
with probability P (τ) ∝ (Gγ,t−Vθ−(st))+. As a result, transitions in which actions led to an unexpectedly
high return get revisited more often, ensuring faster propagation of important reward signals.

A drawback of this formulation is that an explicit policy is required. Also, while it provides good
empirical results, self-imitation in general might suffer from stochasticity, both in the environment dynamics
and in the variance of the rewards. Indeed, the optimistic updates of SIL can lead to overestimating the
value of actions that bring high rewards once in a while. See Chapter 5.4.5 for a more in-depth discussion
about the role of stochasticity.

Advantage Learning We refer the reader to our presentation of AL in Chapter 3.2. We add here that
AL uses the following modified Bellman operator:

TALQ(s, a) = T ∗Q(s, a) + α(Q(s, a)−max
a′

Q(s, a′)),

which translates to the following reward modification:

r̃AL(s, a) = r(s, a) + α(Q(s, a)−max
a′

Q(s, a′)).

It can be seen as adding the advantage Q(s, a)− V (s) to the reward, with V (s) = maxaQ(s, a) (hence
the name). Generally speaking, increasing the action-gap makes the RL problem easier, as it facilitates
the distinction from experience between the optimal action and the others. In practice, AL was shown
to bring consistent performance improvement across the whole support of Atari games for off-policy
agents (Bellemare et al., 2016b).

5.3 SAIL: Self-Imitation Advantage Learning
In essence, self-imitation drives the policy towards actions whose returns are unexpectedly good. Off-policy
methods usually optimize an action-value function, which only implicitly defines the policy through a
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given exploration method. Nevertheless, there is a sensible proxy for increasing the probability of picking
an action: increasing its action-value (which is nothing more than a reward increase). Hence, we propose
to adapt self-imitation for off-policy using the following modified reward:

r̃SAIL(st, at) = r(st, at) + α(max(Gγ,t, Qθ−(st, at))−max
a

Qθ−(st, a)),

The corresponding loss function is:

LSAIL = 1
2

(
r̃SAIL(st, at) + γmax

a
Qθ−(st+1, a)−Q(st, at)

)2
.

We now motivate this expression in more details.
First, note that if we replace max(Gγ,t, Q(s, a)) by Gγ,t and apply the ReLU operator to the additional

term we get the modified reward:

r̃(st, at) = r(st, at) + α(Gγ,t −max
a

Qθ−(st, a))+,

which would be a more straightforward adaptation of SIL, since it increases the action-value by the same
term used in SIL for both policy and value updates. Empirically, this formulation compares unfavorably
to ours (see Chapter 5.4.6). We posit it could be due to a limitation of self-imitation: the problem of stale
returns. This problem is the following: when off-policy, the return used for self-imitation corresponds
to the observed return of a policy that becomes increasingly different from the current one, under the
hypothesis that the agent is still learning. Inevitably, returns become outdated. More precisely, these
returns drift towards pessimism, since the agent mostly improves over time. As a result, the self-imitation
bonus disappears for most transitions. In addition to making self-imitation ineffective, it could lead
to emphasizing wrong signals and biasing the updates. We illustrate this phenomenon in Fig. 5.1. By
exchanging the return for the maximum between the return and the current action-value estimate, our
method forms a more optimistic return estimate, which promotes optimism and alleviates staleness.
Additionally, by replacing the ReLU operator with the identity, we update our action-value estimate using
information from both positive and negative experiences. Finally, compared to SIL, we do not make use of
prioritization, as we think it emphasizes the impact of stochasticity on the algorithm. In our experiments,
we measure the benefits of our method under increasing stochasticity in Chapter 5.4.5, and show that the
gains over the baseline remain even when stochasticity is high. Second, the proposed modified reward can
be decomposed as:

r̃SAIL(st, at) = r̃AL(st, at) + α(Gγ,t −Qθ−(st, at))+,

Thus, our approach actually combines AL, an action-gap increasing method, with SIL, which helps
reproducing interesting trajectories from the past. We show next that it outperforms AL.

We name the resulting algorithm Self-Imitation Advantage Learning (SAIL1). It is: 1) general, i.e.
compatible across a large spectrum of off-policy methods,2) easy to use, as it arranges existing quantities
to form a reward bonus, and 3) lightweight, in the sense that it does not add much to the computational
budget of the algorithm (other than computing discounted returns, which is neglectible). The pseudo-code
is in Alg. 1.

5.4 Experiments
In this section, we aim to answer the following questions: 1) How does SAIL perform on various tasks,
including hard exploration, using various off-policy algorithms as baselines? (see Chapter 5.4.2 & 5.4.3);

1We take the liberty of inverting the middle letters to form a nice acronym.
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Figure 5.1: Illustration of the stale returns problem, in the Key-Door-Treasure environment (Oh et al.,
2018). In past experiences (in faded red), the agent ("A") got the key ("K") but failed to reach the goal
("T"). The corresponding transitions still get sampled from the replay buffer, so actions leading to the key
are paired with zero returns. This is inconsistent with the current policy (in red), which gets the key,
opens the door and reaches the goal. SAIL avoids undervaluing the role of the key by using the most
optimistic return estimate between the observed return and the current action-value.

Algorithm 1: SAIL: Self-Imitation Advantage Learning
Initialize the agent weights θ;
Initialize the replay buffer B;
Initialize the return placeholder G∅;
for each iteration do

/* Collect and store interaction data. */
for each interaction step do

In st, sample at ∼ πθ, act, observe rt and st+1;
Gγ,t ← G∅;
Store st, at, rt, st+1, Gγ,t in B;
if the episode is over then

Gγ,t ←
∑T
t′=t γ

t′−trt′ for t ∈ [0, T ];
end

end
/* Update the agent weights (off-policy). */
for each training step do

Sample a minibatch Dbatch from B;
/* Loss expression in Equation 5.3. */
θ ← θ − η∇θLSAIL(Dbatch);

end
end
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Figure 5.2: Human-normalized median performance of several off-policy methods. SAIL-IQN outperforms
every other method, including Rainbow, which uses prioritized experience replay and n-step bootstrapping.
SAIL-DQN, though based on DQN, outperforms C51, a distributional RL algorithm that uses a more
advanced optimizer (Adam).

2) Does SAIL compare favorably to exploration bonuses? (see Chapter 5.4.4); 3) What is the impact of
stochasticity on SAIL? (see Chapter 5.4.5); and 4) How does SAIL compare to a more straightforward
self-imitation algorithm? (see Chapter 5.4.6).

5.4.1 Experimental setting
We benchmark our method and baselines on the Arcade Learning Environment (Bellemare et al., 2013),
with sticky actions and no episode termination on life losses, following (Machado et al., 2018). Sticky
actions make the Atari games stochastic by repeating the agent’s previous action with a fixed probability
(0.25 by default). Hard exploration games are games where local exploration methods fail to achieve
high scores. We use the list of hard exploration games from (Bellemare et al., 2016a), and set them
apart with a bold font in bar plots. We use the Dopamine framework (Castro et al., 2018) to get
reference implementations for the agents and setup our experiments. Whether using the base off-policy
algorithms as is or in combination with SAIL, we use Dopamine reference hyperparameters for all methods,
unless explicitly mentioned. The only SAIL-specific hyperparameter is α, that we set to α = 0.9 in all
experiments. The bonus term is also clipped in [−1, 1] (as are the rewards in ALE). We use 6 random
seeds for comparative studies on subsets of games, and 3 random seeds for experiments on the 592 Atari
games, due to the computational demand of such experiments.

For bar plots (e.g. Fig. 5.3), the mean relative improvement metric for a method X compared to the
baseline Xbase is, for one game:

1
N

∑200
t=1 sX,t − sXbase,t

| 1
N

∑200
t=1 sXbase,t|+ ε

,

where {sX,t}t=1,...,200 are the game scores for method X, collected every million steps in the environment,
and averaged across all random seeds. This metric roughly measures by how much the performance of the
proposed method increased or decreased compared to the baseline. For aggregated plots (e.g. Fig. 5.2),
we report the human-normalized median score, a common metric to evaluate RL methods based on their

2We didn’t report results for ElevatorAction, whose ROM failed to load in our setup.
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Table 5.1: Final scores of several off-policy algorithms based on DQN, in hard exploration games.

DQN AL-DQN SAIL-DQN
Alien 2586 3514 4769

Amidar 1167 1380 879
BankHeist 594 909 915
Freeway 25 22 23
Frostbite 392 2833 7912
Gravitar 299 540 1292
Hero 17056 7672 30382

Montezuma’s Revenge 0 0 0
MsPacman 3405 3973 3879
Pitfall! -84 -100 -27

PrivateEye -114 153 10068
Qbert 10178 13426 9310
Solaris 1437 2216 855
Venture 35 371 989

WizardOfWor 2020 5930 6906
Zaxxon 4713 6221 10364

performance across all games:
s̄X,t − srandom)
|shuman − srandom|

,

where {s̄X,t}t=1,...,200 are the median scores across all games for method X, collected every million steps
in the environment, and averaged across all random seeds. srandom is the end score of a random policy,
and shuman that of the average human player, as reported in Mnih et al. (2013), and completed for missing
games as in Vieillard et al. (2020b).

5.4.2 SAIL-DQN experiments
We report the performance of SAIL combined to DQN (abbreviated SAIL-DQN) against DQN on all
Atari games in Fig. 5.3. We use the Dopamine DQN hyperparameters.

We also report the same graph with AL-DQN as the baseline on Fig. 5.3. AL-DQN corresponds to
the limit case of SAIL where the action-value estimate is always greater than the observed return, and
makes for a stronger baseline than vanilla DQN. With the simple modification provided by SAIL, we get
a nice average and median performance increase across all games (+101.4% average and +6.7% median),
the gap being more apparent on hard exploration games where self-imitation shines the most (+361.6%
average and +24.9% median relative improvement over AL-DQN).

We also zoom in on the performances of the three methods (DQN, AL-DQN and SAIL-DQN) on
individual games. We choose four hard exploration games: Frostbite, Venture, Gravitar and PrivateEye.
The scores are displayed on Fig. 5.4. On Frostbite and PrivateEye, SAIL-DQN outperforms C513 (Bellemare
et al., 2017), a distributional RL agent that uses Adam (Kingma and Ba, 2014), a more advanced optimizer
than DQN’s RMSProp (Tieleman and Hinton, 2012). On PrivateEye, that has particularly sparse rewards,
SAIL-DQN also outperforms IQN. Finally, we report the final performances on hard exploration games
for all three methods in Table 5.1, and individual curves on all 59 games can be found in Fig. 5.12.

3C51 scores 4250 on Frostbite and 4000 on PrivateEye. Scores are available here.

https://google.github.io/dopamine/baselines/plots.html
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Figure 5.3: SAIL-DQN outperforms both DQN (top) and AL-DQN (bottom), as shown on a relative scale
on all Atari games. On hard exploration games (in bold), SAIL-DQN provides a +654.3% average and
+71.8% median relative improvement over DQN, and a +361.6% average and +24.9% median relative
improvement over AL-DQN.
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Figure 5.4: Performances of DQN, AL-DQN and SAIL-DQN on four hard exploration Atari games. On
PrivateEye, despite sparse rewards, SAIL-DQN outperforms both C51 and IQN.

5.4.3 SAIL-IQN experiments
Since SAIL is a general self-imitation method for off-policy learning, it is straightforward to apply it to
other off-policy agents. Hence, having demonstrated strong performance using DQN as a base agent in
the previous subsection, we now turn towards a more advanced off-policy algorithm. We choose IQN, a
strong distributional RL agent, and use the same IQN hyperparameters as Dabney et al. (2018), which
in contrast to those of Dopamine do not use n-step bootstrapping. We report the performance of SAIL
combined to IQN (abbreviated SAIL-IQN) against IQN on all Atari games in Fig. 5.5, using the same
metric as in previous graphs. We also compare SAIL-IQN to AL-IQN and to Rainbow across all games in
the same figure. Despite the fact that Rainbow uses prioritized experience replay and n-step bootstrapping
(with n = 3), we report +80.3% average and +4% median relative performance increase for SAIL-IQN
over Rainbow.

Additionally, we display individual game performances of IQN, AL-IQN and SAIL-IQN in Fig. 5.6. We
choose two hard exploration games: Montezuma’s Revenge and Venture; and also on an easy exploration
game: Seaquest, illustrating the versatility of SAIL. We report the final performances on hard exploration
games of all three methods in Table 5.2, and individual curves on all 59 games in Fig. 5.13.

Finally, we compare several of the algorithms mentioned using the human-normalized median scores in
Fig. 5.2, aggregating scores from all games. SAIL-IQN outperforms Rainbow (itself outperforming IQN),
without using prioritization or n-step bootstrapping. SAIL-DQN outperforms C51 (itself outperforming
DQN).

5.4.4 Comparison to intrinsic motivation
We compare SAIL-IQN to IQN with RND (Burda et al., 2019), a popular intrinsic motivation method for
exploration. While the two methods have different motivations, both modify the reward function and
were shown to help in hard exploration tasks. RND uses two identical neural networks, the first of which
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Figure 5.5: SAIL-IQN outperforms both IQN (top), AL-IQN (middle) and Rainbow (bottom), as shown
on a relative scale on all Atari games. SAIL is responsible for important gains over IQN and AL-IQN on
sparse reward hard exploration games such as Montezuma’s Revenge, PrivateEye, or Gravitar.
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Figure 5.6: Performances of IQN, AL-IQN and SAIL-IQN on three hard exploration Atari games and one
easy exploration game (Seaquest), illustrating the versatility of SAIL.

is frozen after initialization. The second network has to predict the output of this random network. The
prediction error is then used as a proxy of actual state-visitation counts to reward the agent. For RND,
we use code and hyperparameters from Taïga et al. (2019). RND hyperparameters were calibrated for
Rainbow, thus to be fair we use the same RND hyperparameters to study the combination of SAIL and
RND (see below), and keep equal SAIL hyperparameters across agents. SAIL-IQN shows positive average
and median relative improvement scores compared to RND-IQN (+72.2% average and +28.2% median
relative improvement over RND-IQN, see Fig. 5.7).

On Montezuma’s Revenge, which is an infamously hard exploration game, SAIL-IQN reaches a final
score of 833 (for an average score of 513), while RND-IQN reaches a final score of 161 (for an average score of
45), and IQN scores 0 (final and average). SAIL can be combined to RND for further improvements: using
RND (as is) and n-step bootstrapping (n = 3), SAIL-IQN reaches a final score of 5180 on Montezuma’s
Revenge. This ties SAIL-IQN with RND-Rainbow, which has the strongest score reported in Taïga et al.
(2019). We display the evolution of that score in Fig. 5.8.

While we established the merits of SAIL compared to RND in terms of in-game Atari performance,
SAIL has several other advantages over RND. 1) Consistency: while RND provides with better performance
gains on specific games such as Montezuma’s Revenge, we find that the gains are not consistent across
all hard exploration games, matching the findings of Taïga et al. (2019). More precisely (not shown),
using RND with IQN brought a great performance boost on two games (Montezuma’s Revenge and
Venture), but did not increase the median performance of IQN (-0.2% median relative improvement score).
2) Integration: SAIL requires two simple modifications to off-policy algorithms, saving returns to the
replay buffer and modifying the action-value update (1 hyperparameter). In comparison, RND requires
two additional networks, separate optimizers and a reward modification (many hyperparameters). We
acknowledge that this comparative benefit might be framework-dependent. 3) Compute: on the same
hardware, we find that standard IQN processes an average of 100 frames per second, against 95 for
SAIL-IQN and 45 for RND-IQN, so completing experiments is more than twice faster when choosing
SAIL over RND.
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Figure 5.7: SAIL-IQN outperforms RND-IQN, as shown on a relative scale on all Atari games, including
on Montezuma’s Revenge, an infamously hard exploration game.

Figure 5.8: Combining SAIL and RND elevates the performance of IQN and matches that of RND-Rainbow,
the best reported in Taïga et al. (2019) on Montezuma’s Revenge.



5.5. ADDITIONAL RELATED WORK 67

Table 5.2: Final scores of several off-policy algorithms based on IQN, in hard exploration games.

IQN AL-IQN SAIL-IQN
Alien 4262 5318 6245

Amidar 1131 1311 1752
BankHeist 1081 1105 1037
Freeway 34 34 34
Frostbite 5231 10058 10345
Gravitar 766 1213 1375
Hero 28636 16804 30083

Montezuma’s Revenge 0 0 833
MsPacman 4656 5340 4669
Pitfall! -19 -280 -42

PrivateEye 357 49 4956
Qbert 10802 11440 15189
Solaris 2165 1461 992
Venture 74 19 1525

WizardOfWor 5700 10222 8933
Zaxxon 12024 11843 15296

5.4.5 Impact of stochasticity
To quantify the impact of stochasticity on self-imitation, we perform an ablation and deactivate the sticky
actions. Sticky actions (Bellemare et al., 2013) introduce stochasticity in otherwise near-deterministic
Atari games, by repeating the previous action of the agent with a fixed repeat probability. As in the
standard settings of ALE, by default we use a repeat probability of 0.25, that is here set to 0. We report
results on all Atari games in Fig. 5.9, similarly to the precedent section.

As expected, SAIL brings a larger performance increase when we fall back to a near-deterministic
setting but, interestingly, the results do not diverge much from the ones reported with the sticky actions
(+231.6% versus +101.4% average, +12.7% versus +6.7% median).

We extend this experiment and instead increase the repeat probability, making environments more
stochastic. We restrict ourselves to hard exploration games to limit the computational cost of the study.
As Fig. 5.10 shows, the human-normalized median performance of SAIL-DQN decreases under higher
action repeat probabilities. This phenomenon warrants further investigation, as we would have to tell
apart the impact of stochasticity on SAIL from the general performance loss due to making the RL
problem more difficult, which we leave for future work. Note that the performance of SAIL stays superior
to that of DQN in the standard setting.

5.4.6 Comparison to straightforward SIL
We compare SAIL to the more straightforward self-imitation algorithm depicted equ. 5.3, the alternate
version of SAIL where we use the standard return alone, and a ReLU operator instead of the identity. We
display average and median relative improvement scores with both DQN and IQN in Fig. 5.11.

5.5 Additional related work
Extending self-imitation learning Guo et al. (2018) revisit GAIL (Ho and Ermon, 2016), an adver-
sarial imitation method that encourages the agent to trick a discriminator into taking its behavior for
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Figure 5.9: Improvement of SAIL-DQN over AL-DQN on all Atari games, without sticky actions. Result
do not diverge from those in the standard ALE setting (+222.6% versus +101.4% average, +11.7% versus
+6.7% median).

Figure 5.10: Even under increased stochasticity, SAIL-DQN outperforms DQN in the standard setting
(p = 0.25).
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Figure 5.11: Relative improvement of SAIL over self-imitation (strSIL), based on both DQN (top) and
IQN (bottom). On hard exploration games (in bold), SAIL-DQN provides a +72.2% average and +45.2%
median relative improvement over strSIL-DQN, and SAIL-IQN a +16.0% average and +22.3% median
relative improvement over strSIL-IQN.
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expert behavior. Their method uses the agent’s past behavior as expert behavior, identifying promising
behavior in a similar way to standard self-imitation. Guo et al. (2019) use self-imitation over a diverse
set of trajectories from the agent’s past experience, showing that it helps on games where there are local
minima that hinder learning. Tang (2020) studies the impact of importance sampling corrections and
using n-step bootstrapping to replace the observed return in a generalized form of self-imitation, which is
studied under the operator view. None of these methods explicitly target off-policy learning algorithms,
and as such none have straightforward extensions to that setting.

RL for hard exploration tasks Being able to solve hard exploration problems is an important target
for RL. So far, quite different strategies have been developed to tackle these problems. Intrinsic motivation
methods provide an additional source of reward to the agent, either for going to seldom visited areas of
the state space (Bellemare et al., 2016a; Tang et al., 2017), or for experiencing novel things, that challenge
its own predictions (Pathak et al., 2017; Burda et al., 2019; Savinov et al., 2019). Aytar et al. (2018) use
expert demonstrations from human player-made videos as imitation data and incentivize close-to-expert
progression. Ecoffet et al. (2019) propose an exhaustive exploration method that encourages the agent
to visit promising areas of the state space while jointly learning how to get back to those areas. Badia
et al. (2020b) combine intrinsic motivation with an episodic motivation based on episodic memory. Paine
et al. (2019) uses expert demonstrations combined with a recurrent learner to solve partially observable
hard exploration tasks. Badia et al. (2020a) uses a neural network to encapsulate multiple policies with
different degrees of exploration and switches between policies using a multi-arm bandit algorithm. While
SAIL proves to be useful for hard exploration, its main motivation is to learn properly from the agent’s
own instructive experiences. It is not an exploration method per se, but could generally be combined to
said exploration methods for further improvements, as we illustrated with RND.

Sparse reward RL There is a lot of ongoing effort regarding RL for sparse rewards as well, which is
related to hard exploration and overlaps on many environments. In the goal-oriented setting, Andrychowicz
et al. (2017) propose to modify the replay buffer in hindsight and change the desired goal state by a
state the agent actually visited, providing it with free reward signal. Lee et al. (2018) accelerate the
propagation of sparse reward signals by sampling whole episodes from the replay buffer and performing
updates starting from the end of the sampled episode. In a related way, Hansen et al. (2018) combine
standard off-policy with episodic control, estimating the action-value as the convex combination of the
action-value learned off-policy and another estimate from episodic memory. Trott et al. (2019) use reward
shaping to explore while avoiding local minima. Since the additions of SAIL to off-policy agents are purely
restricted to the action-value updates, SAIL and sparse reward RL techniques could synergize well, which
we leave for future experiments.

Misc He et al. (2016) show that there are tractable bounds to the optimal action-value function and
use them to increase the Q-function when it is inferior to the lower bound (resp. decrease when superior
to the upper bound).

5.6 Conclusion
In this chapter, we presented SAIL, a novel self-imitation method for off-policy learning, which leverages
an implicit form of credit assignment that directly incorporates outcomes (returns) in RL updates. In
comparison with standard self-imitation, SAIL revolves around the action-value function, which makes
it compatible with many off-policy algorithms. SAIL is a simple, general and lightweight method that
can be equivalently viewed as a modified Bellman optimality operator (that is related to Advantage
Learning) or as a modified reward function. Notably, it combines the advantages of self-imitation, that
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is better reinforcement in sparse reward scenarios, and those of Advantage Learning, that is increasing
the action-gap. We studied its performance in the Arcade Learning Environment and demonstrated that
SAIL brought consistent gains, especially on hard exploration games, at virtually no cost.
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Figure 5.12: Curves on all games for DQN-based methods.
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Figure 5.13: Curves on all games for IQN-based methods.
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Chapter 6

Grounded Credit Assignment as a
Proxy for Transfer

We now depart from implicit credit assignment and take an interest in explicit credit assignment. Explicit
credit assignment methods are conditioned on actual outcomes (either observed or generated) and
correspond to more targeted forms of action importance. In this chapter, we study a grounded form of
credit assignment that is learned offline and transfers well across environments from similar distributions.
The ability to transfer knowledge to novel environments and tasks is a sensible desiderata for general
learning agents. Despite the apparent promises, transfer in RL is still an open and little exploited research
area. Here, we take a brand-new perspective about transfer: we suggest that the ability to assign credit
unveils structural invariants in the tasks that can be transferred to make RL more sample efficient. Our
main contribution is Secret, a novel approach to transfer learning for RL that uses a backward-view
credit assignment mechanism based on a self-attentive architecture. Two aspects are key to its generality:
it learns to assign credit as a separate offline supervised process and exclusively modifies the reward
function. Consequently, it can be supplemented by transfer methods that do not modify the reward
function and it can be plugged on top of any RL algorithm. This chapter was presented as a full conference
paper at IJCAI 2020 (Ferret et al., 2020) and as an oral to the Learning Transferable Skills workshop at
NeurIPS 2019.

6.1 Introduction
To some, intelligence is measured as the capability of transferring knowledge to unprecedented situations.
While the notion of intellect itself is hard to define, the ability to reuse learned information is a desirable
trait for learning agents. The coffee test (Goertzel et al., 2012), presented as a way to assess general
intelligence, suggests the task of making coffee in a completely unfamiliar kitchen. It requires a combination
of advanced features (planning, control and exploration) that would make the task very difficult if not
out of scope for the current state-of-the-art Reinforcement Learning (RL) agents to learn. On the other
hand, it is solved trivially by humans, who exploit the universally invariant structure of coffee-making:
one needs to fetch a mug, find coffee, power the coffee machine, add water and launch the brewing process
by pushing the adequate buttons. Thus, to solve the coffee test, transfer learning appears necessary. Were
we to possess a random kitchen simulator and a lot of compute, current transfer methods would still fall
short of consistently reusing structural information about the task, hence also falling short of efficient
adaptation.

Credit assignment, which in RL refers to measuring the individual contribution of actions to future
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rewards, is by definition about understanding the structure of the task. By structure, we mean the relations
between elements of the states, actions and environment rewards. In this work, we investigate what credit
assignment can bring to transfer. Encouraged by recent successes in transfer based on supervised methods,
we propose to learn to assign credit through a separate supervised problem and transfer credit assignment
capabilities to new environments. By doing so, we aim at recycling structural information about the
underlying task.

To this end, we introduce Secret (Self-attentional credit assignment for Transfer), a transferable
credit assignment mechanism consisting of a self-attentive sequence-to-sequence model whose role is to
reconstruct the sequence of rewards from a trajectory of agent-environment interactions. It assigns credit
for future reward proportionally to the magnitude of attention paid to past state-action pairs. Secret can
be used to incorporate structural knowledge in the reward function without modifying optimal behavior,
as we show in various generalization and transfer scenarios that preserve the structure of the task.

Existing backward-view credit assignment methods (Arjona-Medina et al., 2019; Hung et al., 2019)
require to add auxiliary terms to the loss function used to train agents, which can have detrimental effects
to the learning process (de Bruin et al., 2018), and rely on an external memory, which hinder the generality
of their approach. Secret does neither. Also, as we show in Chapter 6.3.1, the architecture we consider
for Secret has interesting properties for credit assignment. We elaborate about our novelty with respect
to prior work in Chapter 6.4. We insist on the fact that the focus of our work is on transfer and that it is
not our point to compete on credit assignment capabilities.

We would like to emphasize several aspects about the generality of Secret: 1) our method does not
require any modification to the RL algorithm used to solve the tasks considered, 2) it does not require any
modification to the agent architecture either and 3) it does not alter the set of optimal policies we wish to
attain. Moreover, our method for credit assignment is offline, and as a result, it can use interaction data
collected by any mean (expert demonstrations, replay memories (Lin, 1992), backup agent trajectories. . . ).
We believe that this feature is of importance for real-world use cases where a high number of online
interactions is unrealistic but datasets of interactions exist as a byproduct of experimentation.

Additional background We refer the reader to the overall background in Chapter 3.2. A trajectory
τ = (si, ai, ri)i=1,...,T is a set of state-action pairs and resulting rewards accumulated in an episode. A
subtrajectory is a portion of trajectory that starts at the beginning of the episode. The performance of
an agent is evaluated by its expected discounted cumulative reward E

[∑∞
t=0 γ

trt
]
. We recall that in a

partially observable MDP (POMDP), the agent receives at each timestep t an observation ot ∼ O(·|st)
that contains partial information about the underlying state of the environment.

6.2 SECRET: self-attentional credit assignment for transfer
Secret uses previously collected trajectories from environments in a source distribution. A self-attentive
sequence model is trained to predict the final reward in subtrajectories from the sequence of observation-
action pairs. The distribution of attention weights from correctly predicted nonzero rewards is viewed as
credit assignment. In target environments, the model gets applied to a small set of trajectories. We use
the credit assigned to build a denser and more informative reward function that reflects the structure of
the (PO)MDP. The case where the target distribution is identical to the source distribution (in which we
use held-out environments to assess transfer) will be referred to as generalization or in-domain transfer,
as opposed to out-of-domain transfer where the source and the target distributions differ.

6.2.1 Self-attentional credit assignment
Credit assignment as offline reward prediction We learn to assign credit through an offline reward
prediction task, based on saved trajectories of agent-environment interactions. We create a sequence-to-
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sequence (seq2seq) model (Sutskever et al., 2014) that takes as input the sequence of observation-action
pairs and has to reconstruct the corresponding sequence of environment rewards. Being offline, the reward
prediction task is learned separately from the RL task, and the reward prediction model does not share
representations with the agent. This way, the representations learned for credit assignment do not affect
or get mixed with the representations learned for control. Operating offline brings several advantages: one
can directly interact with the replay memory of agents and even use expert demonstrations or arbitrary
saved transitions as a source of supervision, which could be useful in settings where on-policy interactions
are costly, such as robotics. We equip our seq2seq model with an attention mechanism (Bahdanau et al.,
2015) and view the attention weights of the reward reconstruction task as our primary source of assigned
credit. The motivation to do so is that the seq2seq model looks into the past to find predictive signal in
order to reconstruct the reward, so observation-action pairs it attends to should be those which reduce its
uncertainty about the future, in other words those that explain future reward and should be credited.

On the use of observations In MDPs, environment states follow the Markov property: they summarize
the history of previous interactions and are sufficient to predict the future. As such, predictive models are
highly biased towards focusing on the current sequence element, which hinders credit assignment. Under
that consideration, when dealing with MDPs, we turn states into observations by applying transformations
that hide a certain amount of information from states and break the Markov assumption. For instance, in
gridworlds with visual states, we crop the image and get a player centered image with a given window
size. Doing so encourages the model to look into the past to find predictive signal, and allow us to track
the relative importance given to each element to reconstruct the credit assigned. In POMDPs, this might
be unnecessary depending on the amount of information shared between observations and true states.

Self-attention for credit assignment Unlike other seq2seq architectures, self-attentive models like
Transformers (Vaswani et al., 2017) have direct computational paths between pairs of sequence elements,
due to their representations that depend on projections of all sequence elements. This feature is key
to long-term credit assignment. As an illustration, consider an RL task where the terminal reward
depends only on the first observation, which is drawn randomly. Predicting the reward correctly requires
to remember the first observation, which would be very challenging for a recurrent architecture whose
memory goes through O(n) transformations, n being the size of the sequence. On the other hand, a
self-attentive model directly accesses the value of the initial observation, which makes credit assignment
easier.

Reward prediction architecture We use a Transformer decoder with a single self-attention layer (Lin
et al., 2017) and a single attention head. The model input is a sequence of observation-action couples
(ot, at)t=0,...,T . Each observation goes through a series of convolutional layers (for visual inputs) followed
by a series of feed-forward layers. Each action representation, a one-hot vector in the discrete action
case, is concatenated to the learned observation embedding. Those representations of dimensionality di
are combined with positional encoding (PE), fed to a self-attention layer and then to a position-wise
feedforward layer that outputs logits for reward prediction classes. PE encodes the relative positions of
sequence elements, see Appendix A for details.

Self-attention is an attention mechanism with parameterization (Wk,Wq,Wv), each matrix belonging
to Rdi×dk , that puts sequence elements in relation by computing non-linear similarity scores for all pairs
of elements in the sequence. To do so, each sequence element is mapped to a query vector that is matched
against keys and values obtained from the previous elements. To be consistent with the goal of assigning
credit, the model should not be able to peek into the future. Thus, we restrict the computational window
of each sequence element to the information stored in representations of the previous elements in the
sequence and its own by applying a causal mask Mc to the result of the pairwise similarity computations,
assigning a value of 0 to masked elements after the softmax.
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Let X = (xt)t=0,...,T ∈ RT×di denote the input sequence in a matrix form, xt being the result of
internal computations of the model on its tth input. In the same fashion, we note Z = (zt)t=0,...,T ∈ RT×dk
the sequence resulting from the application of self-attention. We then have

Z = softmax
(
Mc � (QKT )− C(1−Mc)√

dk

)
V,

where Q = XWq ∈ RT×dk stores queries, K = XWk ∈ RT×dk keys, and V = XWv ∈ RT×dk values as
linear projections of the input; dk stands for the dimension of the key vectors, Mc ∈ {0, 1}T×T is a binary
matrix that acts as a causal mask (a lower triangular matrix), � is the Hadamard product and C is a
large constant (109 in practice).

Notably, the resulting observation-action representation can be viewed as a linear combination of
the values of previous elements: zt =

∑t
i=0 αi←tvi where α·←t = (αi←t)i=1,...,t ∝ exp(〈qt, ki〉/

√
dk). The

vector αt contains the normalized attention weights for the prediction at timestep t and sums to 1. Since
observations contain only a portion of their initial information, the fact that the model succeeds in the
prediction task indicates that it reconstructed the missing information from its past. Therefore, attention
weights themselves can be viewed as a form of credit assignment, and will be used as such in what follows.

While performing regression on the rewards could also be an option, our experiments found that
regression tends to converge to poor local optima. Consequently, we predict the sign of the experienced
rewards: q(r) = sign(r) with sign(0) = 0. We chose the sign as the classification target for its invariance
to the scale of the rewards. We use a weighted sequential cross-entropy as the loss function over the
class-wise model predictions fθ,c, writing τ(o, a) the subtrajectory of τ ending with the observation-action
couple (o, a) to translate the effect of the binary mask:

Lθ(τ) = −
∑

c∈{−1,0,1}

w(c)
|τ |

∑
(o,a,r)∈τ

1{q(r) = c} log
(
fθ,c(τ(o, a))

)
.

We have found class weighting to be very important to keep the variance of prediction metrics across
a variety of datasets of sampled trajectories low.

Generating trajectories To train Secret, we generate a dataset of trajectories which contains a
certain proportion of successful trajectories. If source environments are simple enough so that the task
has sufficient chance to be solved by acting randomly, we use a random policy to generate trajectories.
For more complex distributions of environments, we use a RL agent (either trained or in the learning
phase) to generate trajectories. We think purely exploratory methods like Ecoffet et al. (2019) could have
advantages over using an RL agent and leave the study of their use for future work.

6.2.2 Leveraging credit via reward shaping
In this subsection, we explain how we use credit assignment to make learning more sample-efficient.

Reward shaping In RL, agents often deal with sparse rewards that make the learning process slow.
Reward shaping Ng et al. (1999) is a technique that aims at densifying the reward so as to improve sample
efficiency. It defines a class of reward functions that can be added to the original environment rewards
without modifying the set of optimal policies. For a given MDP M = (S,A, γ,R, P ), we define a new
MDP M ′ = (S,A, γ,R′, P ) where R′ = R + F is the shaped reward and F the shaping. The reward
shaping theorem states that if there exists a function φ such that F : (s, a, s′)→ γφ(s′)− φ(s), then M
and M ′ admit the same set of optimal policies. φ is called a potential function. With domain knowledge,
one can use reward shaping to design more informative reward functions without encouraging unwanted
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behavior. Nevertheless, shaping rewards requires good priors for the task and the potential function must
often be engineered manually.

Since Secret weighs the contribution of observation-action pairs to future reward, we use it to derive a
shaped reward that corresponds to the sum of future reward reachable from the underlying state, weighted
by the attention calculated by the model. We explain the process in the following.

Computing the potential function We define the redistributed return R←τ of a trajectory τ as:

R←τ (s, a) =
T∑
t=1

I{st = s, at = a}
T∑
i=t

αt←ir(si, ai),

where αi←j is the attention weight on (oi, ai) when predicting the reward rj and si are environment
states. Indeed, Secret uses observations but we keep the states they are constructed from to compute
the potential. In POMDPs, we recover an approximate state from the observation, either manually or
through inference. In this work, we use a state constructed manually, see Appendix A for details.

To compute the potential function, we generate a set D of trajectories like described in Chapter 6.2.1.
Since we operate on trajectories, the same state-action pair can appear twice in a sequence and benefit
from a different amount of attention, which is why we must include the first summation. In the reward
shaping formalism, the potential function φ depends only on the state. To stay within its bounds, we
define φ as the forwarded redistributed return. It is computed as the following estimate:

φ̂(s) = 1
|D|

∑
τ∈D

T∑
t=1

I{s(τ)
t = s}R←τ (s(τ)

t−1, a
(τ)
t−1).

Note that in practice we only redistribute individual rewards that were successfully predicted. Also,
some states are generally missing from the data distribution induced by the set of trajectories used. For
those states, we set to potential to 0, which results in a −φ̂(s) additional reward when transitioning to
those from the state s. As a result, it gives agents incentive to stay on the support of the data distribution
unless they encounter high-reward states.

Because it relies on reward shaping, Secret conserves optimal policies. We empirically find that
agents learn faster with the resulting augmented reward function. A way to look at it is that we densify
the learning signal and bias the agent towards behaviors that encourage future rewards.

6.2.3 Transferring credit assignment
We start by conveying intuition as to why Secret should transfer to new environments. In fields other
than RL, seq2seq models similar to that of Secret have shown outstanding transfer capabilities (Devlin
et al., 2018; Peters et al., 2018; Howard and Ruder, 2018), even in low-resource settings (Zoph et al., 2016).
In transfer scenarios that preserve the structure of the MDP, the optimal fine-grained control sequence
can vary drastically from one environment to another. This is why credit assignment is an interesting
alternative to the transfer of weights: given an underlying environment state and a specific action, their
contribution to future rewards is not fundamentally altered. Such scenarios include specific changes in
the state (or observation) distribution and changes to the reward function that preserve the optimal
policies. These also include changes in the dynamics of the environment, and though it affects credit
assignment, we show later on that Secret adapts surprisingly well to such scenarios. Another point that
motivates the use of our method for transfer is the fact that we keep the representations learned for credit
assignment separate from the control representations learned by agents. Indeed, de Bruin et al. (2018)
showed that RL representations were not optimal for transfer.



80 CHAPTER 6. GROUNDED CREDIT ASSIGNMENT AS A PROXY FOR TRANSFER

Transfer setting We argue that transfer should be considered effective when agents learn to solve
target tasks efficiently because efficiency gains in the target domain compound while the cost of training
in the source is fixed. Hence, we use the Total Target Time Scenario metric (Taylor and Stone, 2009) to
assess transfer. Nevertheless, collecting trajectories in the source domain can be costly. We report the
number of trajectories used to train Secret in each scenario.

As before, Secret is trained on episodes of interaction sampled from the source distribution. In each
target environment, we sample multiple trajectories (see the following section for details about the policies
used to generate the trajectories). We then compute the attentional potential function by calculating an
estimate of the expected redistributed reward, as described in Chapter 6.2.2.

6.3 Experiments
In this section, we aim to answer the following questions: can Secret improve the sample efficiency of
learning for RL agents? Does it generalize and/or transfer? How does it compare to transfer baselines? Is
the credit assigned by Secret interpretable? The results of complementary experiments are presented in
Appendix C.

Figure 6.1: Example of a Triggers envi-
ronment.

The Triggers environment We introduce Triggers, an in-
terpretable and customizable environment that we use to assess
the quality of the credit inferred with our method. In Triggers,
the agent is located in a two-dimensional bounded grid. Its
actions consist solely of moving of one cell in one of the cardinal
directions. Any action that would lead the agent outside the
boundaries of the environment (as indicated by the walls in the
figure) is ignored but still counted as an action taken by the
agent. The goal of the agent (represented as a yellow square) is
to activate all the switches (red squares) and then collect all the
prizes (pink squares). Prizes are the only source of reward and
give a −1 penalty unless all switches are activated, in which case
they give a +1 bonus. Both prizes and switches disappear once
collected. The main feature of Triggers is that every positive
reward is conditional to the presence of a known subset of states
in the agent history, and thus credit assignment can be assessed in a rigorous way. Some instances of
Triggers can prove challenging to solve optimally for traditional RL methods since agents have to activate
every Triggers before experiencing rewards. Triggers environments being MDPs, we turn their states
into observations by cropping the view around the agent. We use 3x3 windows in all our experiments.
Trajectories are generated with random policies.

Figure 6.2: Observations from DMLab
are first person views.

DMLab keys doors We use the keys_doors_puzzle 3D
environment from DMLab (Beattie et al. (2016)) in which the
agent must locate keys whose colors indicate the doors they open.
It can only possess one key, therefore picking the wrong key
prevents it from reaching further rewards. The agent receives as
input what would correspond to a first person view of what is in
its line of sight. It can move forward, backward and rotate. Each
key picked up grants a +1 bonus, equally to each door opened.
Independently, a cake rewards the agent by a +50 increase in
score when collected. We do not apply any transformation to the
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Figure 6.3: On the left, the distribution of attention weights around triggers for correct positive reward
predictions in a 8x8 Triggers maze with 3 triggers and one reward. The x-axis denotes the signed number
of steps between the state-action couple receiving attention and the closest actual moment the agent
activated a switch. On the right, the distribution of attention weights around keys for correct reward
predictions for door traversals in DMLab.

agent inputs. In that setup, agents benefit from understanding
the link between keys and doors. We hypothesized that our
credit assignment mechanism might identify this relation and
reward the agent for picking up keys. To assert this, we modified the setting so that picking up keys does
not provide rewards. Additionally, the visual input is richer than the one from Triggers environments and
the average number of steps per episode is extended. Finally, agents move and rotate across the room.
Since picking up a key does not require to actually see the key, it can be hard to know whether a key was
taken and predict further door opening rewards. Trajectories are generated with a trained agent.

Agents used We use tabular Q-learning (Watkins and Dayan, 1992) for in-domain and out-of-domain
experiments in Triggers except for the transfer to environments with modified dynamics where we use
Deep Q-Networks (DQN) (Mnih et al., 2013). We use Proximal Policy Optimization (PPO) (Schulman
et al., 2017) agents for in-domain experiments in DMLab.

6.3.1 Credit assignment
We provide an analysis of the credit inferred by Secret. The analysis is qualitative and quantitative,
since we rely on both visual assessment and binary detection metrics.

The process of evaluating credit assignment in Triggers goes as follows: we first generate trajectories
and train the model. We then compare the credit assigned by Secret on trajectories sampled from
held-out environments to a ground truth credit assignment. We build that ground truth by exploiting the
exact knowledge of where triggers are. It is a vector that is 0 almost everywhere and 1 on state-action
couples that precede the activation of a Triggers. By doing so, we explicitly target the state-action couples
whose resulting state is causally linked to the reward experienced later.

We find the redistribution to be near optimal in simple instances of Triggers (see Fig. 6.3-left): attention
concentrates quasi exclusively on state-action pairs that enable the collection of future reward. This is
confirmed by precision-recall analysis: over the distribution of scenarios considered, a simple binarization
heuristic over attention values yields an average precision of 0.96 for an average recall of 0.94. More
information on the heuristic is in Appendix A.

In keys_doors_puzzle, we adopt the same set of experiments. Since the agent can move backward
and spin, in some scenarios it takes a key that is not in is line of sight. In addition, the granularity of the
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Figure 6.4: Left: in-domain transfer results on a 8x8 Triggers with 3 triggers and 1 reward. Right:
results in DMLab.

state space is such that off-by-one prediction errors are common but do not hinder the credit mechanism:
attributing credit to the state-action couple preceding the collection of a key or the previous one leads to
imperceptible changes in the resulting shaped rewards. Fig. 6.3-right shows similar results as for Triggers.
Appendix A also provides a heatmap for this task that shows that attention concentrates around the keys.

6.3.2 Transfer
We then study how we can leverage the inferred credit and transfer representations that are helpful in
new scenarios. We show that agents train faster when using shaped rewards from Secret. As before, the
reward model is trained on episodes of interaction in environments sampled from the source distribution.
In transfer environments, we sample multiple trajectories, each using the same maze configuration. We
then compute the attentional potential function by calculating an estimate of the expected redistributed
reward, as described in Chapter 6.2.2. To evaluate its effect, we compare agents trained from environment
rewards to agents that use the resulting shaped reward.

In-domain transfer For in-domain transfer, we transfer the representations for credit assignment to
held-out instances of the same distribution over MDPs. For the Triggers environment, the RL agents
are tabular Q-learners. For the DMLab environment, we use PPO agents (Schulman et al., 2017) and
modify the original task: we do not reward the agent for collecting keys but only to open doors so that
the attention can focus on the key positions. Note that this makes the task harder.

As we display in Fig. 6.4 agents learn visibly faster to solve tasks when benefitting from Secret in
both environments.

Out-of-domain transfer For out-of-domain transfer we use the Triggers environment and consider
two scenarios that are hard for standard agents: transfer to bigger environments (see Fig. 6.5) and transfer
to environments with inverted dynamics (see Fig. 6.6). In the bigger setting, direct weight transfer cannot
be used since the visual input has bigger spatial dimensions. On the other hand, Secret can be used
since the transformation we apply to turn states into observations conserves the visual input dimensions.
In the inverted dynamics setting, the effect of the agent’s actions are inverted, which makes the task hard
for transfer methods. In that setting, we compare the transferability of our mechanism to that of the
representations learned by an agent equipped with deep function approximation. To this end we use DQN
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agents and either train them from scratch in the target environments or start from the set of weights
learned in the source environments (WT in Fig. 6.6).

Figure 6.5: Bigger environments we consider are
bigger mazes where the structure of the original
task is conserved (number of triggers, number
of prizes). Environments drawn are 12x12 grids
with 1 trigger and 1 prize (top figure) versus 2
prizes (bottom figure). Environments from the
training distribution are 8x8 grids.

Figure 6.6: The controls of the out-of-domain
distribution are inverted (up becomes down,
right becomes left). Environments are 8x8 grids
with 1 trigger and 1 prize (top figure) or 2 prizes
(bottom figure). The effect of the shaping is
exclusively beneficial, while transferring weights
from the source task can be detrimental to the
learning process.

In both settings, shaping the rewards assists the agent in learning to solve the task. We display some
results in Fig. 6.5 and Fig. 6.6. When transferring to bigger environments, the agent benefits very early on
from the shaped reward, while also reaching better asymptotical performance. We posit that the positive
transfer when inverting the dynamics (which should impact a lot credit assignment methods) is due to
SECRET putting more emphasis on observations than actions.

6.4 Additional related work
Transfer in RL While a lot of approaches exist in the transfer literature, to the best of our knowledge
none explicitly transfer credit assignment capabilities. Previous works aimed at making the training
of an agent in the same task more sample-efficient by using a pretrained model as a teacher (Rusu
et al., 2016a; Schmitt et al., 2018). We learn to assign credit as a parallel task that does not modify
the representations of the RL agent. Others learn auxiliary reward functions in the hope that they
will enable transfer by imposing consistency in the reward (Houthooft et al., 2018; Hessel et al., 2018b;
Agarwal et al., 2019). Although we also learn additional reward signal, it is based on a redistribution
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of rewards from the environment, which ensures consistency with the original reward function. Transfer
is also viewed as learning tasks in a sequential way (Rusu et al., 2016b; Kirkpatrick et al., 2017) and
this suggests to introduce inductive bias to the neural architectures of agents to reduce catastrophic
forgetting. Our method does not require to alter the agent’s architecture. Other explicitly address the
problem of transfer through the lens of multitask learning (Parisotto et al., 2016; Teh et al., 2017) while
we stick to learning from an initial distribution of environments. Meta-learning approaches aim to train
agents on a distribution of tasks or environments so that their learned skills and representations work
across the underlying continuum, and allow for fast adaptation of the agents (Duan et al., 2016; Wang
et al., 2016a; Finn et al., 2017b; Mishra et al., 2018; Co-Reyes et al., 2019; Zou et al., 2019). In contrast
to meta-learning methods, we do not modify the RL algorithm used to train the agent and Secret is
compatible with any core algorithm for RL.

Credit assignment Previous works investigated the role of attention mechanisms for credit assignment.
Ke et al. (2018) propose SAB, a sparse attention mechanism used to derive a modified backpropagation
algorithm. We draw inspiration from SAB but operate in the RL context without sparsity assumptions
about the attention weights. RUDDER (Arjona-Medina et al., 2019) proposes to equip RL agents with
an online method for credit assignment based on return decomposition. Our method operates offline
and decomposes individual rewards. RUDDER requires a specific exploration scheme, an additional
episodic replay buffer, a compute-heavy contribution analysis method and the addition of several auxiliary
losses to the objective the RL agent optimizes. In comparison, Secret is a lightweight method that
does not deal with exploration. Crucially, the focus of Arjona-Medina et al. (2019) is on online credit
assignment while ours is on transfer. Hung et al. (2019) provide an agent with an external memory and
the unsupervised task of reconstructing its inputs (both states and rewards). The agent uses memory
reads as a way to identify related elements in sequences, and uses those to transfer the value of states
providing delayed rewards to the bootstrapping target of contributing elements. In contrast, Secret
makes use of a non-autoregressive architecture, does not reconstruct states, makes use of reward shaping
instead of modifying the update function and most importantly does not rely on an external memory.
Recall Traces (Goyal et al., 2019) use a generative model that goes backward from high-reward states
and samples state-action pairs that could have led to that state. Secret also works backward from
high-reward states but creates links to previous states from existing trajectories instead of sampling them.

6.5 Conclusion
In this chapter, we investigated the role explicit credit assignment could play in transfer learning and
came up with Secret, a novel transfer learning method that takes advantage of the relational properties
of self-attention and transfers credit assignment instead of policy weights. We showed that Secret led to
improved sample efficiency in generalization and transfer scenarios in non-trivial gridworlds and a more
complex 3D navigational task. We also showed that it led to identifying important actions, and thus to
interpretable auxiliary reward functions. To the best of our knowledge, this is the first line of work in the
exciting direction of credit assignment for transfer. We think it would be worth exploring how Secret
could be incorporated into online reinforcement learning methods and leave this for future work.
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Chapter 7

Towards Interpretability by Learning
When to Act

We now take an interest in action importance estimation for interpretability. Traditionally, Reinforcement
Learning (RL) aims at deciding how to act optimally for an artificial agent. In this chapter, we argue that
deciding when to act is equally important. As humans, we drift from default, instinctive or memorized
behaviors to focused, thought-out behaviors when required by the situation. To enhance RL agents with
this aptitude, we propose to augment the standard Markov Decision Process and make a new mode of
action available: being lazy, which defers decision-making to a default policy. In addition, we penalize
non-lazy actions in order to encourage minimal effort and have agents focus on critical decisions only. We
name the resulting formalism lazy-MDPs. We study the theoretical properties of lazy-MDPs, expressing
value functions and characterizing optimal solutions. Then we empirically demonstrate that policies
learned in lazy-MDPs generally come with a form of interpretability: by construction, they show us the
states where the agent takes control over the default policy. We deem those states and corresponding
actions important since they explain the difference in performance between the default and the new,
lazy policy. In a sense, we quantify the action importance with respect to the performance improvement
between these two policies. With suboptimal policies as default (pretrained or random), we observe that
agents are able to get competitive performance in Atari games while only taking control in a limited
subset of states. The contents of this chapter were submitted and accepted as a full conference paper at
AAMAS 2022 (Jacq et al., 2022).

7.1 Introduction
Decision-making is about providing answers to a standard question: "how to act?". While Markov Decision
Processes (MDPs) (Puterman, 1994) provide the canonical formalism to ask this question, Reinforcement
Learning (RL) provides algorithms to answer it. In this work, we study a different question: "when and
how to act?". There are several motivations for this particular question. First, in many tasks there is
only a handful of states that are critical and require complex decision-making, while in other states the
action has less impact than the own dynamic of the MDP (for example, the orientation of a falling piece
in Tetris has no importance until it reaches the floor). Another motivation is that of learning on top
of an existing policy: one might be able to learn a better policy by learning when to take control over
this default policy (this is the case in many human-robot interactions (Meresht et al., 2020), for example
self-driving cars that would let the human drive except in critical situations, robots assisting surgery, etc).
Default policies can take arbitrary forms: controllers, handcrafted policies, programs, and many others.
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Figure 7.1: High-level overview of a lazy-MDP.

To study this alternative question, we need an
alternative formalism. Instead of starting from
scratch, we propose to augment the existing MDP
framework (see Fig. 7.1): we extend the action
space with a novel action, the lazy action; and
we modify the reward function to penalize agents
when they take control (i.e. pick an action from the
original action space). Choosing the lazy action
defers the decision-making process to a default
policy. Augmenting the MDP framework means
that we can take any decision-making problem that
can be expressed as an MDP and turn it into a lazy-
MDP. Since defaulting is a discrete action, we chose
to focus on discrete actions setting for simplicity,
but everything could be adapted to continuous
control (for instance using two actors, a default
one and a learned one; and one critic for each).

Lazy-MDPs have interesting properties for interpretability: states where the policy diverges from
the default hold information. In more details, we leverage the statewise differences between the default
policy and the new, lazy-policy to make sense of what is needed to get performance improvement with
respect to the default policy (under arbitrary default policies) or to make sense of the overall task (under
specific default policies). An important point we want to highlight is that the type of interpretability we
consider here is different from explanations (Molnar, 2019). Explanations, in the context of RL, would
bring answers to "why" questions (either about agent behavior or the importance of actions), which is not
what we tackle here.

Our contributions are the following: 1) we propose a novel formalism called lazy-MDP that provides
modified decision-making problems where agents have to learn when and how to act, 2) we study lazy-
MDPs from a theoretical point of view and prove that we can characterize optimality, which depends
on the third-party policy and the value of the penalty for taking control, and 3) we study lazy-MDPs
empirically, showing that they lead to learning an interpretable partition of the states. We also study how
making control less frequent (by increasing the penalty) impacts the score of agents. In hard exploration
tasks, reducing the frequency of controls can even lead to improved performance.

7.2 Additional related work
While the idea of constraining policies to adopt a default behavior as often as possible in MDPs is to
the best of our knowledge novel, it lives at the crossroads of several subfields of RL reviewed here.

Residual RL. Residual approaches (Silver et al., 2018; Johannink et al., 2019) consist in learning a
residual policy, whose action is added to that of a base policy to get the resulting action. By its nature,
residual RL is restricted to continuous control problems, where the sum of two actions is still a valid
action. In contrast, the lazy-MDP abstraction is applicable to discrete control problems.

Exploration-conscious RL. Here we discuss related augmented MDPs. Shani et al. (2019) show
that exploration-conscious RL (Van Seijen et al., 2009) can be solved via a surrogate MDP, where the
dynamics are obtained by a linear interpolation of the dynamics induced by the current policy and those
induced by a fixed policy; same for rewards. This amounts to learning a policy that is optimal given that
the actual behavior is a fixed mixture of that policy and a base one. In comparison, the policies learned in
lazy-MDPs are more controllable in the sense that they can switch between the base policy and a learned
policy on the basis of states, and serve the subtly different purpose of learning when and how to act.
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Interpretable RL. There are several types of interpretability studied in the literature. Many works
try to quantify the influence of parts of the inputs on the decisions of the agents. This can be done
via post-hoc gradient methods, using actual policy gradients (Wang et al., 2015; Zahavy et al., 2016)
or finite-difference estimates (Greydanus et al., 2018; Puri et al., 2019), coupled with saliency maps as
visualizations. Another way to do so is by training ad-hoc interpretable models (Liu et al., 2018a; Coppens
et al., 2019) or programs (Verma et al., 2019b,a) to mimic the non-interpretable models used as policy
networks. Others try to make sense of the representations learned by agents, using dimensionality reduction
techniques (Zahavy et al., 2016) or state aggregation methods (Topin and Veloso, 2019). Another focus is
to select trajectories that are representative of the overall behavior of the RL agent (Amir and Amir, 2018;
Amitai and Amir, 2021). Finally, some works try to recover the approximate preferences of the agent,
under the form of a reward function, or coefficients for a known reward decomposition (Juozapaitis et al.,
2019; Bica et al., 2021). While interesting on their own, none of the mentioned works explicitly tackle the
question of identifying states that are crucial to the decision-making process. The action-gap (Bellemare
et al., 2016b) and importance advising (Torrey and Taylor, 2013) are quantities that hint at this aspect.
As we show in Chapter 7.7.2, both suffer from several shortcomings compared to the proposed method.

Credit assignment in RL. Temporal credit assignment consists in associating specific actions to
specific results (i.e. task success or high returns). Existing approaches complement or modify RL
algorithms by either decomposing observed returns as the sum of redistributed rewards along observed
trajectories (Arjona-Medina et al., 2019; Ferret et al., 2020; Hung et al., 2019; Raposo et al., 2021) or
incorporating hindsight information into the RL process (Harutyunyan et al., 2019; Ferret et al., 2021;
Mesnard et al., 2021). Our approach is related but differs in several points: it is tied to (and aims at
making sense of) performance improvements instead of outcomes, and it comes from an abstraction over
MDPs (which is non-parametric).

Temporal abstractions in RL. Options are common temporal abstractions in RL (Sutton et al., 1999;
Precup, 2000; Bacon et al., 2017; Barreto et al., 2019). They consist in triples (I, π, β) where I is a set of
states the option can be initiated into, π is the policy that selects actions when the option is active, and β is
a random variable that gives the per-state probability of terminating the option. In general, learning options
from scratch is hard, prone to collapse to single-action options, and less efficient than standard RL. Huang
et al. (2019b) introduce Markov Jump Processes (MJPs), in which the agent both takes action and controls
the frequency at which observations are received. Higher frequencies induce an increasing auxiliary cost to
model scenarios where observations are limited. In essence, they propose to learn when to observe, while we
propose to learn when to take control. In a related way, Biedenkapp et al. (2021) propose skip-MDPs, which
decompose policies in the combination of a behavior policy (i.e. which selects the action) and skip policy
(i.e. which selects the number of timesteps the action will be repeated for). Skip-MDPs does not exactly
learn when to act as it permanently plays a decided action. This work rather shows that in most of situations
an action need to be repeated in consecutive states, but as there are no states where the agent is deferring
the control to an independent policy, they do not highlight the states where the agent decisions has a strong
impact on the resulting behaviour and reward. Note that dynamic action repetition (Lakshminarayanan
et al., 2017; Sharma et al., 2017) is conceptually similar, but is not formalised as an abstraction over MDPs.

Regularized RL. Regularization in RL (Geist et al., 2019) is a well-studied topic. In particular,
entropic regularization (Neu et al., 2017) encourages learned policies to be as random as possible in all states.
In contrast, when the default policy is uniform random, policies learned in lazy-MDPs are encouraged to
be entirely random in a subset of all states only. Also, Kullback-Leibler regularization (Vieillard et al.,
2020a) encourages policies to stay close to their previous iterate during learning. In contrast, policies
learned in lazy-MDPs act identically to the default policy in a subset of all states, and can act in arbitrary
ways in the others. Another way to ensure that the behavior of an agent does not diverge from a baseline
behavior is to apply regularization on the state visitation distribution, instead of the action distribution
induced by the policy (Lee et al., 2019; Geist et al., 2021).
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7.3 Lazy-MDPs
MDP We refer the reader to the overall background in Chapter 3.2. An alternative to the value function
that we will use in section 7.5 is Zπ(s, a) = Eπ[

∑∞
t=0 γ

tI{st /∈ Sabs}|s0 = s, a0 = a
]
, which is the expected

discounted sum of steps before the agent meets a terminating state.

Lazy-MDP We now introduce the Lazy Markov Decision Process (lazy-MDP). A lazy-MDP is
a tuple M+ = (M, ā, π̄, η), where M = (S,A, γ, r,P, δ0) is the base MDP, ā the lazy action that defers
decision making to the default policy π̄ ∈ ∆SA and η ∈ R is a penalty. The reward function is that of the
base MDP, except that all actions but the lazy one incur an additional reward of −η. Hence, a lazy-MDP
is also an MDP. It can be written as M+ = (S,A+, γ, r+,P+, δ0). While S, γ, δ0 are conserved from the
base MDP, A+, r+ and P+ depend on their equivalents in the base MDP, and on π̄ and η:

A+ = A ∪ {ā},

r+(s, a) =
{
r(s, a)− η, if a ∈ A,∑
a∈A π̄(a|s)r(s, a), if a = ā,

P+(s′|s, a) =
{
P(s′|s, a), if a ∈ A,∑
a∈A π̄(a|s)P(s′|s, a), if a = ā.

In what follows, we will use the notation X+ to distinguish functions or distributions over the augmented
action space A+.

7.4 Optimality in lazy-MDPs
In this section, we provide a characterization of the optimality in lazy-MDPs, similarly to what is done
for regular MDPs. The derived results have two main implications. First (in Chapter 7.4.2 and 7.4.3), we
identify what we call the lazy-gap, which quantifies the importance of taking control or not in a given
state. Second (in Chapter 7.4.4), we show that taking control or not depending on the sole value of this
lazy-gap leads to optimal behavior in the lazy-MDP. All statements are proven in the Appendix.

7.4.1 Value functions
Let π+(a ∈ A+|s) be a policy in the lazy-MDP. If the agent chooses the lazy action ā, the performed
action a ∈ A is sampled according to the default policy π̄. We formalize the resulting lazy policy (in the
base MDP) as follows:

π(a ∈ A|s) = P
[
(a ∼ π+) ∪ (ā ∼ π+ ∩ a ∼ π̄)

]
,

= π+(a|s) + π+(ā|s)π̄(a|s),

satisfying
∑
a∈A π(a|s) = 1. A crucial point is that π has the same dynamics in the base MDP as π+ in

the corresponding lazy-MDP. We are interested in the value function V π+
+ (s), which is the value of π+

in the lazy-MDP, and takes the penalties into account. We would like to decompose V π+
+ (s) as a function

of V π(s) (i.e. the value function associated with π in the base MDP) and a cost function Cπ+(s):

V
π+
+ (s) = V π(s) + Cπ+(s).

Theorem 2. Cπ+(s) satisfies the following Bellman equation:

Cπ+(s) = −η(1− π+(ā|s)) + γEa∼π,s′∼P(·|s,a)C
π+(s′).
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While V π is the expected discounted sum of rewards obtained by following π in the base MDP, the
cost Cπ+ can be interpreted as the expected discounted sum of the incurred penalties. For instance, a
policy that never picks the lazy action (i.e. ∀s, π+(ā|s) = 0) gets a maximal cost:

V
π+
+ = V π − η

1− γ .

7.4.2 Q-functions
Let Qπ+

\ā (s, a ∈ A) be the value (in the lazy-MDP) of taking another action than the default one:

Q
π+
\ā (s, a) = r(s, a)− η + γEs′

[
V
π+
+ (s′)

]
= r(s, a)− η + γEs′

[
V π(s′) + Cπ+(s′)

]
= Qπ(s, a)− η + γEs′

[
Cπ+(s′)

]
,

and π\ā(a ∈ A|s) be the policy obtained by excluding the lazy action from π+, i.e. assuming π+(ā|s) < 1:

∀a ∈ A, π\ā(a|s) = π+(a|s)∑
a′ 6=ā

π+(a′|s) = π+(a|s)
1− π+(ā|s) .

We can express the value function V π+
+ as a function of Qπ+

\ā :

Property 1.

V
π+
+ (s) =(1− π+(ā|s))Ea∼π\ā

[
Q
π+
\ā (s, a)

]
+ π+(ā|s)

(
Ea∼π̄

[
Q
π+
\ā (s, a)

]
+ η

)
.

We then have the expression for Qπ+
+ (s, a ∈ A+), the Q-function of π+ in the lazy-MDP:

Property 2.

Q
π+
+ (s, a) =

{
Q
π+
\ā (s, a) if a 6= ā,

Ea∼π̄
[
Q
π+
\ā (s, a)

]
+ η if a = ā.

7.4.3 Greediness
A policy π+ is greedy wrt Q+ (noted π+ ∈ G(Q+)) if and only if:

∀s ∈ S, π+(·|s) ∈ arg max
π+(·|s)

Ea∼π+

[
Q+(s, a)

]
.

Given a Q-function Q, a useful quantity to construct a greedy policy is what we call the lazy-gap, noted
GQ(s):

GQ(s) = max
A

Q(s, ·)− Eπ̄
[
Q(s, a)

]
,

which is the gap between the value of the best action (in A) and the expected action-value when the
immediate next action is picked by the default policy (as defined by Q) in the lazy-MDP (i.e., with costs
taken into account). In order to be greedy with respect to a policy Q+, one needs to choose the lazy
action if GQ+\ā(s) ≤ η, and to take the argmax of Q+\ā otherwise (over A).
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Property 3. The following policy π+ is greedy with respect to Q+:

π+(·|s) =


I
{
a∈arg maxAQ+\ā(s,a)

}∣∣ arg maxAQ+\ā(s,a)
∣∣ if GQ+\ā(s) > η,

I
{
a = ā

}
otherwise.

Since the greediness as constructed above does not depend on the value of the lazy action Q+(s, ā),
we can define a greedy policy in the lazy-MDP with respect to a Q-function of the base MDP:

G(Q)(·|s) :=


I
{
a∈arg maxAQ(s,a)

}∣∣ arg maxAQ(s,a)
∣∣ if GQ(s) > η,

I
{
a = ā

}
otherwise.

7.4.4 Optimality
We define the greedy operator T , that maps a Q-function to the immediate reward plus the average value
of the next state according to the greedy policy:

T Q(s, a ∈ A) := r(s, a)− η + γEs′∼P(·|s,a),a′∼G(Q)(·|s′)

[
Q(s′, a′)

]
.

Theorem 3. T is a γ-contraction, and converges to Q∗ := Q
π∗+
\ā where π∗+ is the optimal policy in the

lazy-MDP.

This allows us to identify the optimal policy to take decisions in the augmented action space A+.

Corollary 1. π∗+ is a deterministic policy that verifies π∗+(ā|s) > 0 if and only if G∗(s) > η, with
G∗ = GQ∗ is the lazy-gap under the optimal action-value in the lazy-MDP.

7.5 Setting the cost of taking control
Given a known base MDP, we may want to find the minimal cost ηmin such that an optimal policy takes
the lazy action in at least one state, as well as the maximal cost ηmax such that an optimal policy does
not take the lazy action in all states. From Prop. 1:

ηmin = inf
{
η > 0 s.t. ∃s, G∗(s) < η

}
,

ηmax = sup
{
η > 0 s.t. ∃s, G∗(s) > η

}
,

where G∗ is the lazy-gap associated with the optimal value function Qπ
∗
+
\ā . Taking η between these two

values allows to train agents that decide when to act in a non-trivial way. One can then equate states
where the agent takes control as important states, under the right η.

7.5.1 ηmax

When η is equal or larger than the lazy-gap in all states, the optimal policy consists in deferring all actions
to the default policy, which induces no cost. Thus, ηmax is simply equal to the maximal lazy-gap under
the default policy.

Theorem 4. Let Qπ̄(s, a ∈ A) be the Q-function of the default policy in the base MDP. Then: ηmax =
maxsGQπ̄ (s).
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7.5.2 ηmin

One cannot apply a similar treatment to ηmin, due to most actions being non-default and corresponding
costs having to be taken into account. However, if η is smaller or equal to the lazy-gap in all states, an
optimal agent will follow the optimal policy of the base MDP π∗, and the incurred cost will be equal to
−η multiplied by the fictitious Q-value associated with π∗ for a reward function that is 0 in absorbing
states and 1 otherwise:

Zπ
∗
(s, a) = I{s /∈ Sabs}+ γEs′

[
Eπ∗

[
Zπ
∗
(s′, ·)

]]
By construction Cπ∗(s) = −ηEπ∗ [Zπ

∗(s, ·)], where Cπ∗(s) is the cost for always following π∗ from s. If no
absorbing state is ever reached, we have Zπ∗(s, a) = 1

1−γ for all state s and action a. However, in practice
the MDPs we consider have terminal states and eventually end. Zπ∗ can thus have different values under
different state-action couples, impacting the value of ηmin. Its value is given by the following theorem:

Theorem 5. Let π∗ be the optimal policy in the base MDP, and Q∗(s, a ∈ A) the associated Q-function.
Then:

ηmin = min
s

max
a

Q∗(s, a)− Eπ̄
[
Q∗(s, ·)

]
1 +

(
Eπ∗

[
Zπ∗(s, ·)

]
− Eπ̄

[
Zπ∗(s, ·)

]) ,
with ηmin ≥ 0.

We empirically validate these boundaries over different lazy-MDPs and report the results in Ap-
pendix D.8. As expected, when η < ηmin no lazy actions are ever selected, and when η > ηmax, the agent
always chooses the lazy action. We discuss how to approximate ηmin and ηmax in the next section.

7.6 Learning when and how to act in Lazy-MDPs
Since lazy-MDPs can be described as augmented MDPs, standard RL algorithms can still be used to
provide policies that maximize the cumulative sum of rewards (which include a cost when taking control).
As a result, by converting an MDP into a lazy-MDP, RL agents learn when and how to act without any
change to their workings. We now discuss design choices for the two parameters of lazy-MDPs: the cost η
and the default policy π̄.

Value of cost. Regarding η, the explicit expressions for the bounds we provided guarantee meaningful
behavior from optimal policies (i.e. not always defaulting and not always taking control). Estimating ηmax
is feasible since the default policy π̄ is supposed available. It requires to estimate its action-values (for
instance, using SARSA (Rummery and Niranjan, 1994)) so that the maximal lazy-gap can be approximated
(either by taking the maximum gap across the known set of states, or using rollouts to get approximate
coverage). To estimate ηmin, usually one does not have access to the optimal Q-function Q∗ of the base
MDP nor to Zπ∗ . In that case, a solution is to use value iteration or Q-learning (Watkins and Dayan,
1992) to get approximations Qθ and Zθ, where Zθ is obtained by replacing all the rewards by ones in the
loss used to learn Qθ.

Choice of the default policy. Regarding the choice of π̄, we argue that taking a random policy
(with, say, uniform action probabilities) is the simplest option available: it does not require any knowledge
about the task, and is on par with the idea that the agent should take control only when actions actually
matter (i.e., a specific action is noticeably better than uniform sampling). Doing so results in a type of
regularization that is conceptually close to entropic regularization, except that the agent has incentive
to be as random as possible in a subset of the states only. In some cases, including complex scenarios,
alternative options might be preferable: having to take control too often could lead to a high cumulative
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cost and discourage exploration, unless η is properly tuned. Similarly to residual learning, an interesting
substitute is a known, suboptimal policy. In that case, the agent has incentive to take control in states
where the base policy is noticeably suboptimal.

Interpretability of lazy policies. Due to the cost of taking control, the lazy policies that are learned
should only take control in a handful of states. We hope that this leads to increased interpretability
for several reasons: the subset of states (and the corresponding controls) can be assessed against expert
knowledge, and the performance of the learned policy can be compared to that of the base policy to
ensure that the gains are sufficient and justify the overhead. Specifically, we argue that there are two
special cases where lazy actions indeed give information about the overall importance (and unimportance)
of states:

1. with a uniform random policy as default (and the right penalty), an optimal agent should only pick
its actions when selecting among optimal actions brings a substantial advantage over picking the
action at random. Therefore, we argue that states where the agent defers its actions are likely to be
unimportant in the sense that the agent is content with acting randomly.

2. with a mixture between optimal and uniform random policy as default (and the right penalty), an
optimal agent should only pick its actions when selecting among optimal actions brings a substantial
advantage over often selecting among optimal actions. Therefore, we argue that states where the
agent picks its actions are likely to be important in the sense that the agent is not content with
acting almost optimally.

More broadly speaking, lazy actions give information about the specific importance of states so as to
improve on the performance of the default policy.

We study the interpretability of solutions empirically in the next section.

7.7 Experiments
In this section, we empirically address the following questions: 1) Do policies from lazy-MDPs learn
to take control when it matters? 2) Are the partitions of states where the agent decides or not to act
interpretable? 3) How does reducing the frequency of agent controls (by increasing the cost η) affect its
returns? Details about implementations and the choice of hyperparameters can be found in Appendix D.9.

7.7.1 Taking control when it matters
We first study the behavior of lazy policies on small discrete problems, where the exact solutions can be
approached as well as values for ηmin and ηmax.

Rivers and Bridges. A simple environment that illustrates how lazy-MDPs work is a gridworld
involving some dangerous pathways – where the agent needs to provide precise controls, while other states
are safe – the agent can rely on the default policy. We implemented a basic scenario in which the agent
has to cross three rivers by taking slippery bridges. We call this environment Rivers and Bridges (R&B),
which is illustrated in Fig 7.2. Falling in the water is penalized by a strong negative reward (R = −100),
while reaching the goal point beyond the rivers results in a small positive reward (R = 1). To simulate
the slipperiness of the bridges, we take as default policy the policy that is optimal everywhere but on the
bridges where it is uniformly random. That way, the agent should trust the default policy everywhere but
on the bridges where it should take the control despite the cost. As there is at least one state where the
policy is optimal, applying Theorem 5, we get ηmin = 0. As shown in Fig. 7.2 right, we verify that for any
η such that 0 < η ≤ ηmax, the lazy-gap G∗(s) is only positive on the bridges, which means an optimal
agent only takes control in those states, and justifies the application of lazy-MDPs to evaluate where and
when to trust a default behavior.
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Figure 7.2: Left: Rivers and Bridges environment. The agent starts up left (S) and has to cross the
rivers through the bridges to reach the goal point (G). Falling in the water is punished by R = −100
and reaching the goal is rewarded by R = 1. The default policy is the optimal π∗ everywhere but on the
bridges where it is uniformly random. Right: Heatmap of the resulting lazy-gap using η = ηmin = 0. As
expected the lazy-gap is zero everywhere but on the bridges where optimal agents learn to take control.
This result is valid for any value of η < ηmax.
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Figure 7.3: (a): Key-Door-Treasure environment. (b-d): Policies learned in the lazy-MDP by value
iteration, with a uniform random default policy, and increasing η. Centered points in gray cells identify
lazy actions, color indicates learned action-values (blue=lowest, red=highest). With η increasing, the
policy learns to reduce its controls to states that allow it to progress from one room to another as well as
those in the vicinity of the goal state.

Key-Door-Treasure (Oh et al., 2018) (KDT) is a variant of the classic Four Rooms task (Sutton
and Barto, 2018) with a harder exploration problem: the agent needs to grab a key, open the door and get
to the location of the treasure (in that order) to solve the task. The agent is only rewarded when reaching
the treasure. We study the nature of the solutions learned in the lazy-MDP version of KDT under several
values of η, with a uniform random default policy. The results are shown in Fig. 7.3. They match our
intuition: the higher the value of η, the fewer the states in which the agent takes control; until the agent
only acts in the most crucial states (i.e. to pass from one room to another or to get to the treasure).

7.7.2 Interpretability
To study interpretability, we use more complex environments where the behaviour of an RL agents is
not trivially interpretable. We make the hypothesis that lazy-MDPs can help at explaining which states
and what actions are important in order to get high returns. In this study, we opt for a qualitative
measure of importance and show (via corresponding frames) the states of importance as the ones where
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Figure 7.4: Illustration of the policy learned in the lazy-MDP version of Breakout (η = 0.1, with a uniform
random default policy): the agent learns to take control (colored frames) only moments before the ball
has to be hit in order not to lose.

the agent decides to take control over the uniform random, default policy. We look at lazy policies learned
in the lazy-MDP version of Atari 2600 games from the Arcade Learning Environment (Bellemare et al.,
2013). We focus on games where timing plays a central role, such as Pong, Breakout and Ms Pacman.
We use a standard DQN agent (Mnih et al., 2015), whose implementation we take from the Dopamine
framework (Castro et al., 2018). We display a representative portion of a lazy agent trajectory in Breakout
in Fig. 7.4, which is well aligned with our intuition of the timing of this task: critical controls happen
when the ball gets back to the paddle, while the remaining controls have limited impact on subsequent
success. We also display key moments of a lazy agent trajectory in Ms Pacman in Fig. 7.5. The agent
alternates between defaulting (most of the time) and taking control (sparsely, either for a single frame
or a sequence of frames) in order to escape ghosts, to obtain power-ups and defeat ghosts, or to collect
multiple bonuses in a row. Finally, we display a representative portion of episode in Bowling in Fig. 7.6.
The agent takes control when aiming with the ball, and defers control to the default policy when the ball
is moving towards the pins, during which actions have no effects on the outcome of the throw. All in all,
the timing of the agent controls matches our intuitions.

We also compared the importance as quantified by the lazy-gap with usual measures, such as the
action-gap (Bellemare et al., 2016b), which measures the difference between the best and the second
best action values at a given state (maxAQ(s, ·)−maxA\a∗ Q(s, ·)), and importance advice (Torrey and
Taylor, 2013), which measures the difference between the best and the worst action values at a given state
(maxAQ(s, ·)−minAQ(s, ·)). Fig. D.2 in Appendix D.9.1 displays the state importance according to these
measures on the KDT environment. As visible, the lazy-gap only attributes importance to states with
key actions (picking up the key, passing through doors, reaching the treasure). On the other hand, the
action-gap uniformly emphasizes all states along the trajectory of the optimal policy, while the importance
advice is dominated by the proximity to the reward and does not discriminate key actions.

7.7.3 Lazy exploration
A side effect of lazy-MDPs with a uniform random default policy is that they push agents to maintain
randomness in states where acting randomly is affordable (i.e. does not impact future performance too
much). This is helpful in hard exploration tasks, where local minima make the exploration more difficult.
Actually, encouraging randomness in the policy via lazy-MDPs has two benefits: it regularizes behaviors
and avoids determinism, and it rewards smart exploration where the random actions are only taken when
it is safe to explore. To study the role of lazy-MDPs for exploration, we add a distractor state (i.e. an
absorbing state with a small reward) in the upper-left room in KDT so as to introduce a local minimum.
Q-learning agents, even when explicitly increasing exploration (e.g. with linearly decayed epsilon-greedy
action selection), mostly fail and always go for the distractor. In that situation, augmenting the MDP as
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Figure 7.5: Illustration of the policy learned in the lazy-MDP version of Ms Pacman (η = 0.5, with a
uniform random default policy). Frames are ordered from left to right, top to bottom, and correspond to
non-consecutive frames from a single episode of interaction. At the beginning of the episode, the agent is
immobile for a few frames, during which it defaults its actions to avoid penalties (frame 1). Once free to
move, it keeps defaulting its actions and collecting nearby bonuses (frames 2-4) until ghosts become
close enough. The agent then sparsely takes control (colored frames), be it to obtain power-ups (frames 5
& 7), and later on eat the ghosts (frames 6 & 12), or collect several bonuses in a row (frames 10-11).

Figure 7.6: Illustration of the policy learned in the lazy-MDP version of Bowling (η = 0.04, with a uniform
random default policy). The agent learns to only take control (colored frame) when preparing to throw
the ball. This is the only time it can control the orientation of the throw, which is key to knock pins down.
In subsequent timesteps, its actions have no effects on the ball, and accordingly the lazy action is picked
instead.

a lazy-MDP with a uniform random default policy encourages random behaviors over consecutive steps,
which helps exploring and going past the local minimum. We illustrate this effect on Fig. 7.7. For that
experiment, we used tabular Q-learning with learning rate α = 0.5, epsilon-greedy exploration starting at
ε0 = 0.1 and linearly decayed until ε∞ = 0, γ = 0.99, and a reward r = 0.1 for the apple. Episodes that
did not end in an absorbing state (i.e. treasure or apple) were ended after 1000 steps. Under the right
cost (η = 0.03) lazy policies keep exploring after finding the small reward, and eventually find the key and
the treasure, leading to a reward that justifies the cost for taking control. With a cost too high (η = 0.05),
lazy policies never take control.

This motivates investigating if such an effect of taking less control while achieving higher returns
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Figure 7.7: We add an apple which grants a small reward to KDT. It acts as a distractor for exploration.
(a-c): Asymptotic state occupancy measure of Q-learning for different values of the cost η, before the
agent has the key. We can see that Q-learning in the original MDP (η = 0) is attracted to the local
optimum, while Q-learning in the lazy-MDP avoids the local optimum and eventually learns the optimal
behavior (when η = 0.03). (d): Scores (excluding the cost) of Q-learning with different values of η. Only
the agent solving the lazy-MDP with η = 0.03 converges to the optimal behavior. Both state occupancy
measures and performance curves are averaged over 100 seeds.

can be observed in more complex games, requiring function approximation. Hence we converted hard
exploration tasks in Atari to lazy-MDPs, including dense reward tasks (BankHeist, Frostbite, MsPacman,
Zaxxon) and sparse reward tasks (Gravitar, PrivateEye), as classified in Bellemare et al. (2016a). As
previously, we used uniform random default policies and several values for the cost η (0.005, 0.01, 0.02,
0.05, 0.1, 0.2) and reported the percentage of the score (with respect to a standard DQN agent (Mnih
et al., 2015)) as a function of the resulting frequency of control taking (when the lazy policy does not
choose the lazy action) in figure 7.8. Reported values are averaged over 3 seeds. We observe that in most
cases, reducing the frequency of control taking does not decrease the score too much (up to almost 100%
of the score in Gravitar with less than 10% of control, 80% of the score with less than 30% of control in
Zaxxon and more than 100% of the score with 20% of control on PrivateEye). Moreover, we even observed
in Frostbite that the lazy policy learned with low penalties achieved 200% of the score, confirming that
lazy-MDP can also be used for improved exploration.

7.7.4 Learning on top of pretrained agents
The lazy-MDP framework can be viewed as an extension of residual learning to discrete action spaces.
Indeed, in lazy-MDPs, agents learn to sparsely take control over the default policy, in a subset of the
states. A natural question is: can they be used to reliably improve over the default policy? To verify
so, we measure the performance of DQN agents trained in the lazy-MDP version of Atari games, with
a suboptimal DQN agent as default policy. To ensure controlled suboptimality of the default policies,
we use DQN agents at 50% of their asymptotical performance. Since learning in the lazy-MDPs benefits
from the default policy (and the previous interaction it learned from), we compare it to warm-restarted
DQN agents. Warm restart consists in starting from pretrained weights instead of randomly initialized
ones, and also benefits from past interactions. Here, we use the weights of the agents taken as default
policies in lazy-MDPs.

We measure the human-normalized median score (Mnih et al., 2015), which aggregates performance
across the 60 Atari 2600 games. Results are reported in Fig. 7.9. We notice that warm restarting is
not very efficient: while performance increases faster than agents trained from scratch, it is also less
stable and eventually decreases. Using lazy-MDPs with a good penalty (η = 0.05), performance increases
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Figure 7.8: Percentage of the score of a standard DQN agent achieved by lazy-policies learned with
different values of η and uniformly random default policy on hard exploration tasks of Atari. The x-axis
represents the fraction of controls taken and the y-axis the percentage of the DQN baseline score reached.
Each value is averaged over 3 seeds. Score 0% correspond to getting no reward and score 100% correspond
to getting as much reward as a standard DQN.

faster than DQN from scratch as well, with more stable improvements. There is no asymptotic gain on
performance, which is not surprising given that we use the same agent. We observe the same phenomenon
as in Chapter 7.7.3: lazy-MDPs lead to better policies in hard exploration games (Frostbite, Zaxxon,
Qbert, WizardOfWor, see Fig. D.3). A promising observation is that when selecting the best value of η for
each game, we observe a significant performance gain over from scratch DQN. Also, lazy-MDPs can work
with any type of policy as default policy (a program or a controller for instance), while warm restarting
requires compatible weights. We leave the study of automated η selection to future work. We display the
performance curves in all 60 games in Fig. D.3.

7.8 Conclusion
In this chapter, we studied a novel paradigm for decision-making: learning when and how to act. We
proposed lazy-MDPs, natural abstractions over MDPs that are well-suited for this learning problem,
and showed that RL could still be used to provide solutions in that setting. We studied the theoretical
properties of lazy-MDPs, including value functions and optimality. In experiments, we showed that
lazy-MDPs present an interesting edge: when converted back to the original MDPs, the policies learned in
lazy-MDPs tend to be more interpretable, as they highlight states where taking control is crucial to achieve
increased returns, and allow to quantify the action importance with respect to the policy improvement
between new and default policies. With uniform random default policies, we show that policies learned in
lazy-MDPs via DQN perform close to policies learned in standard MDPs, while only taking control in a
fraction of the states; and can even reach higher scores in hard exploration tasks. With pretrained agents
as default policies, policies learned in lazy-MDPs tend to outperform policies learned using warm restarts.
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Figure 7.9: Human-normalized median scores in Atari (aggregated over the 60 games).



Chapter 8

Towards Interpretability via
Reversibility-Aware RL

Having discussed a form of action importance regarding specific policy improvements, we now wonder
how specific actions make behaviors more or less easy to reverse, that is taking a sequence of actions to
come back to a chosen starting state. In this chapter, we propose to learn to distinguish reversible from
irreversible actions for better informed decision-making in Reinforcement Learning (RL). From theoretical
considerations, we show that approximate reversibility can be learned through a simple surrogate task:
ranking randomly sampled trajectory events in chronological order. Intuitively, pairs of events that
are always observed in the same order are likely to be separated by an irreversible sequence of actions.
Conveniently, learning the temporal order of events can be done in a fully self-supervised way, which we
use to estimate the reversibility of actions from experience, without any priors. Notably, this allows us
to derive a notion of action importance for interpretability, one that quantifies how important an action
is to conserve reversible behaviors. We propose two different strategies that incorporate reversibility in
RL agents, one strategy for exploration (RAE) and one strategy for control (RAC). We demonstrate
the potential of reversibility-aware agents in several environments, including the challenging Sokoban
game. In synthetic tasks, we show that we can learn control policies that never fail and reduce to zero the
side-effects of interactions, even without access to the reward function. This chapter was published as a
full conference paper at NeurIPS 2021 (Grinsztajn et al., 2021).

8.1 Introduction
We address the problem of estimating if and how easily actions can be reversed in the Reinforcement
Learning (RL) context. Irreversible outcomes are often not to be taken lightly when making decisions.
As humans, we spend more time evaluating the outcomes of our actions when we know they are irre-
versible (McAllister et al., 1979). As such, irreversibility can be positive (i.e. takes risk away for good)
or negative (i.e. leads to later regret). Also, decision-makers are more likely to anticipate regret for
hard-to-reverse decisions (Zeelenberg, 1999). All in all, irreversibility seems to be a good prior to exploit
for more principled decision-making. In this work, we explore the option of using irreversibility to guide
decision-making and confirm the following assertion: by estimating and factoring reversibility in the action
selection process, safer behaviors emerge in environments with intrinsic risk factors. In addition to this,
we show that exploiting reversibility leads to more efficient exploration in environments with undesirable
irreversible behaviors, including the famously difficult Sokoban puzzle game.

However, estimating the reversibility of actions is no easy feat. It seemingly requires a combination of
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planning and causal reasoning in large dimensional spaces. We instead opt for another, simpler approach
(see Fig. 8.1): we propose to learn in which direction time flows between two observations, directly
from the agents’ experience, and then consider irreversible the transitions that are assigned a temporal
direction with high confidence. In fine, we reduce reversibility to a simple classification task that consists
in predicting the temporal order of events.

Our contributions are the following: 1) we formalize the link between reversibility and precedence
estimation, and show that reversibility can be approximated via temporal order, 2) we propose a practical
algorithm to learn temporal order in a self-supervised way, through simple binary classification using
sampled pairs of observations from trajectories, 3) we propose two novel exploration and control strategies
that incorporate reversibility, and study their practical use for directed exploration and safe RL, illustrating
their relative merits in synthetic as well as more involved tasks such as Sokoban puzzles.

8.2 Additional related work

Is A → B reversible?

Yes, because 
B → A does not 

contradict the laws of 
physics!

Is A → B reversible?

Easy, since 
B → A is as likely 

as A → B!

Figure 8.1: High-level illustration of how reversibility
can be estimated. Left: from an understanding of
physics. Right: ours, from experience.

To the best of our knowledge, this work is the first
to explicitly model the reversibility of transitions
and actions in the context of RL, using temporal or-
dering to learn from trajectories in a self-supervised
way, in order to guide exploration and control. Yet,
several aspects of the problem we tackle were stud-
ied in different contexts, with other motivations;
we review these here.

Leveraging reversibility in RL. Kruusmaa
et al. (2007) estimate the reversibility of state-
action couples so that robots avoid performing
irreversible actions, since they are more likely to
damage the robot itself or its environment. A
shortcoming of their approach is that they need to
collect explicit state-action pairs and their reversal
actions, which makes it hard to scale to large environments. Several works (Savinov et al., 2019; Badia et al.,
2020b,a) use reachability as a curiosity bonus for exploration: if the current state has a large estimated
distance to previous states, it means that it is novel and the agent should be rewarded. Reachability and
reversibility are related, in the sense that irreversible actions lead to states from which previous states
are unreachable. Nevertheless, their motivations and ours diverge, and we learn reversibility through a
less involved task than that of learning reachability. Nair et al. (2020) learn to reverse trajectories that
start from a goal state so as to generate realistic trajectories that reach similar goals. In contrast, we
use reversibility to direct exploration and/or control, not for generating learning data. Closest to our
work, Rahaman et al. (2020) propose to learn a potential function of the states that increases with time,
which can detect irreversibility to some extent. A drawback of the approach is that the potential function
is learned using trajectories sampled from a random policy, which is a problem for many tasks where a
random agent might fail to cover interesting parts of the state space. In comparison, our method does not
use a potential function and learns jointly with the RL agent, which makes it a viable candidate for more
complex tasks.

Safe exploration. Safe exploration aims at making sure that the actions of RL agents do not lead to
negative or unrecoverable effects that would outweigh the long-term value of exploration (Amodei et al.,
2016). Notably, previous works developed distinct approaches to avoid irreversible behavior: by incremental
updates to safe policies (Hans et al., 2008; García and Fernández, 2012), which requires knowing such a
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policy in advance; by restricting policy search to ergodic policies (Moldovan and Abbeel, 2012) (i.e. that
can always come back to any state visited), which is costly; and by active exploration (Maillard et al.,
2019), where the learner can ask for rollouts instead of exploring potentially unsafe areas of the state
space itself.

Self-supervision from the arrow of time. Self-supervision has become a central component of
modern machine learning algorithms, be it for computer vision, natural language or signal processing. In
particular, using temporal consistency as a source of self-supervision is now ubiquitous, be it to learn
representations for downstream tasks (Goroshin et al., 2015; Ramanathan et al., 2015; Dadashi et al.,
2020), or to learn to detect temporal inconsistencies (Wei et al., 2018). The closest analogies to our work
are methods that specifically estimate some aspects of the arrow of time as self-supervision. Most are to
be found in the video processing literature, and self-supervised tasks include predicting which way the
time flows (Pickup et al., 2014; Wei et al., 2018), verifying the temporal order of a subset of frames (Misra
et al., 2016), predicting which video clip has the wrong temporal order among a subset (Fernando et al.,
2017) as well as reordering shuffled frames or clips from the video (Fernando et al., 2015; El-Nouby et al.,
2019; Xu et al., 2019). Bai et al. (2020) notably propose to combine several of these pretext tasks along
with data augmentation for video classification. Using time as a means of supervision was also explored for
image sequencing (Basha et al., 2012), audio (Carr et al., 2021) or EEG processing (Saeed et al., 2020). In
RL, self-supervision also gained momentum in recent years (Guo et al., 2020; Srinivas et al., 2020; Yarats
et al., 2021), with temporal information being featured (Amiranashvili et al., 2018). Notably, several
works (Aytar et al., 2018; Dwibedi et al., 2018; Guo et al., 2018; Sermanet et al., 2018) leverage temporal
consistency to learn useful representations, effectively learning to discriminate between observations that
are temporally close and observations that are temporally distant. In comparison to all these works, we
estimate the arrow of time through temporal order prediction with the explicit goal of finding irreversible
transitions or actions.

8.3 Reversibility
Degree of reversibility. We start by introducing formally the notion of reversibility. Intuitively, an
action is reversible if it can be undone, meaning that there is a sequence of actions that can bring us back
to the original state.

Definition 8. Given a state s, we call degree of reversibility within K steps of an action a

φK(s, a) := sup
π
pπ(s ∈ τt+1:t+K+1 | st = s, at = a),

and the degree of reversibility of an action is defined as

φ(s, a) := sup
π
pπ(s ∈ τt+1:∞ | st = s, at = a),

with τ = {si}i=1 ... T ∼ π corresponding to a trajectory, and τt:t′ the subset of the trajectory between the
timesteps t and t′ (excluded). We omit their dependency on π for the sake of conciseness. Given s ∈ S,
the action a is reversible if and only if φ(s, a) = 1, and said irreversible if and only if φ(s, a) = 0.

In deterministic environments, an action is either reversible or irreversible: given a state-action couple
(s, a) and the unique resulting state s′, φK(s, a) is equal to 1 if there is a sequence of less than K actions
which brings the agent from s′ to s, and is otherwise equal to zero. In stochastic environments, a given
sequence of actions can only reverse a transition up to some probability, hence the need for the notion of
degree of reversibility.
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Policy-dependent reversibility. In practice, it is useful to quantify the degree of reversibility of an
action as the agent acts according to a fixed policy π, for which we extend the notions introduced above.
We simply write :

φπ,K(s, a) := pπ(s ∈ τt+1:t+K+1 | st = s, at = a) and φπ(s, a) := pπ(s ∈ τt+1:∞ | st = s, at = a).

It immediately follows that φK(s, a) = supπ φπ,K(s, a) and φ(s, a) = supπ φπ(s, a).

8.4 Reversibility estimation via classification
Quantifying the exact degree of reversibility of actions is generally hard. In this section, we show that
reversibility can be approximated efficiently using simple binary classification.

8.4.1 Precedence estimation
Supposing that a trajectory contains the states s and s′, we want to be able to establish precedence, that
is predicting whether s or s′ comes first on average. It is a binary classification problem, which consists in
estimating the quantity Est=s,st′=s′

[
1t′>t

]
. Accordingly, we introduce the precedence estimator which,

using a set of trajectories, learns to predict which state of an arbitrary pair is most likely to come first.

Definition 9. Given a fixed policy π, we define the finite-horizon precedence estimator between two states
as follows:

ψπ,T (s, s′) = Eτ∼π Est=s,st′=s′
t,t′<T

[
1t′>t

]
.

Conceptually, given two states s and s′, the precedence estimator gives an approximate probability of
s′ being visited after s, given that both s and s′ are observed in a trajectory. The indices are sampled
uniformly within the specified horizon T ∈ N, so that this quantity is well-defined even for infinite
trajectories. Additional properties of ψ, regarding transitivity for instance, can be found in Appx. E.1.2.

Remark 1. The quantity ψπ,T (s, s′) is only defined for pairs of states which can be found in the same
trajectory, and is otherwise irrelevant. In what follows, we implicitly impose this condition when considering
state pairs.

Theorem 6. For every policy π and s, s′ ∈ S, ψπ,T (s, s′) converges when T goes to infinity. We refer to
the limit as the precedence estimator, written ψπ(s, s′).

The proof of this theorem is developed in Appendix E.1.3. This result is key to ground theoretically
the notion of empirical reversibility φ̄, which we introduce in the next definition. It simply consists in
extending the notion of precedence to a state-action pair.

Definition 10. We finally define the empirical reversibility using the precedence estimator:

φ̄π(s, a) = Es′∼P (s,a)
[
ψπ(s′, s)

]
.

In a nutshell, given that we start in s and take the action a, the empirical reversibility φ̄π(s, a) measures
the probability that we go back to s, starting from a state s′ that follows (s, a). We now show that our
empirical reversibility is linked with the notion of reversibility defined in the previous section, and can
behave as a useful proxy.
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8.4.2 Estimating reversibility from precedence
We present here our main theoretical result which relates reversibility and empirical reversibility:

Theorem 7. Given a policy π, a state s and an action a, we have: φ̄π(s, a) ≥ φπ(s,a)
2 .

The full proof of the theorem is given in Appendix E.1.3.
This result theoretically justifies the name of empirical reversibility. From a practical perspective, it

provides a way of using φ̄ to detect actions which are irreversible or hardly reversible: φ̄π(s, a)� 1 implies
φπ(s, a)� 1 and thus provides a sufficient condition to detect actions with low degrees of reversibility.
This result gives a way to detect actions that are irreversible given a specific policy followed by the agent.
Nevertheless, we are generally interested in knowing if these actions are irreversible for any policy, meaning
φ(s, a)� 1 with the definition of Section 8.3. The next proposition makes an explicit connection between
φ̄π and φ, under the assumption that the policy π is stochastic.

Proposition 1. We suppose that we are given a state s, an action a such that a is reversible in K steps,
and a policy π. Under the assumption that π is stochastic enough, meaning that there exists ρ > 0 such
that for every state and action s, a, π(a | s) > ρ, we have: φ̄π(s, a) ≥ ρK

2 . Moreover, we have for all
K ∈ N: φ̄π(s, a) ≥ ρK

2 φK(s, a).

The proof is given in Appendix E.1.4. As before, this proposition gives a practical way of detecting
irreversible moves. If for example φ̄π(s, a) < ρk/2 for some k ∈ N, we can be sure that action a is not
reversible in k steps. The quantity ρ can be understood as a minimal probability of taking any action in
any state. This condition is not very restrictive: ε-greedy strategies for example satisfy this hypothesis
with ρ = ε

|A| .
In practice, it can also be useful to limit the maximum number of time steps between two sampled

states. That is why we also define the windowed precedence estimator as follows:

Definition 11. Given a fixed policy π, we define the windowed precedence estimator between two states
as follows:

ψπ,T,w(s, s′) = Eτ∼πEst=s,st′=s′
t,t′<T
|t−t′|≤w

[
1t′>t

]
.

Intuitively, compared to previous precedence estimators, ψπ,T,w is restricted to short-term dynamics,
which is a desirable property in tasks where distinguishing the far future from the present is either trivial
or impossible.

8.5 Reversibility-Aware Reinforcement Learning
Leveraging the theoretically-grounded bridge between precedence and reversibility established in the
previous section, we now explain how reversibility can be learned from the agent’s experience and used in
a practical setting.

Learning to rank events chronologically. Learning which observation comes first in a trajectory is
achieved by binary supervised classification, from pairs of observations sampled uniformly in a sliding
window on observed trajectories. This can be done fully offline, i.e. using a previously collected dataset of
trajectories for instance, or fully online, i.e. jointly with the learning of the RL agent; but also anywhere
on the spectrum by leveraging variable amounts of offline and online data.

This procedure is not without caveats. In particular, we want to avoid overfitting to the particularities
of the behavior of the agent, so that we can learn meaningful, generalizable statistics about the order
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Figure 8.2: The proposed self-supervised procedure for precedence estimation.

of events in the task at hand. Indeed, if an agent always visits the state sa before sb, the classifier will
probably assign a close-to-one probability that sa precedes sb. This might not be accurate with other
agents equipped with different policies, unless transitioning from sb to sa is hard due to the dynamics of
the environment, which is in fact exactly the cases we want to uncover. We make several assumptions
about the agents we apply our method to: 1) agents are learning and thus, have a policy that changes
through interactions in the environment, 2) agents have an incentive not to be too deterministic. For
this second assumption, we typically use an entropic regularization in the chosen RL loss, which is a
common design choice in modern RL methods. These assumptions, when put together, alleviate the risk
of overfitting to the idiosyncrasies of a single, non-representative policy.

We illustrate the precedence classification procedure in Fig. 8.2. A temporally-ordered pair of
observations, distant of no more than w timesteps, is sampled from a trajectory and uniformly shuffled.
The result of the shuffling operation is memorized and used as a target for the binary classification task.
A Siamese network creates separate embeddings for the pair of observations, which are concatenated and
fed to a separate feed-forward network, whose output is passed through a sigmoid to obtain a probability
of precedence. This probability is updated via negative log-likelihood against the result of the shuffle, so
that it matches the actual temporal order.

Then, a transition (and its implicit sequence of actions) represented by a starting observation x and a
resulting observation x′ is deemed irreversible if the estimated precedence probability ψ(x, x′) is superior
to a chosen threshold β. Note that we do not have to take into account the temporal proximity of these two
observations here, which is a by-product of sampling observations uniformly in a window in trajectories.
Also, depending on the threshold β, we cover a wide range of scenarios, from pure irreversibility (β close
to 1) to soft irreversibility (β > 0.5, the bigger β, the harder the transition is to reverse). This is useful
because different tasks call for different levels of tolerance for irreversible behavior: while a robot getting
stuck and leading to an early experiment failure is to be avoided when possible, tasks involving human
safety might call for absolute zero tolerance for irreversible decision-making. We elaborate on these aspects
in Chapter 8.6.

Reversibility-Aware Exploration and Control. We propose two different algorithms based on
reversibility estimation: Reversibility-Aware Exploration (RAE) and Reversibility-Aware Control (RAC).
We give a high-level representation of how the two methods operate in Fig. 8.3.

In a nutshell, RAE consists in using the estimated reversibility of a pair of consecutive observations to
create an auxiliary reward function. In our experiments, the reward function is a piecewise linear function
of the estimated reversibility and a fixed threshold, as in Fig. 8.3: it grants the agent a negative reward if
the transition is deemed too hard to reverse. The agent optimizes the sum of the extrinsic and auxiliary
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Figure 8.3: Our proposed methods for reversibility-aware RL. (a): RAE encourages reversible behavior via
auxiliary rewards. (b): RAC avoids irreversible behavior by rejecting actions whose estimated reversibility
is inferior to a threshold.

rewards. Note that the specific function we use penalizes irreversible transitions but could encourage such
transitions instead, if the task calls for it.

RAC can be seen as the action-conditioned counterpart of RAE. From a single observation, RAC
estimates the degree of reversibility of all available actions, and “takes control” if the action sampled from
the policy is not reversible enough (i.e. has a reversibility inferior to a threshold β). “Taking control” can
have many forms. In practice, we opt for rejection sampling: we sample from the policy until an action
that is reversible enough is sampled. This strategy has the advantage of avoiding irreversible actions
entirely, while trading-off pure reversibility for performance when possible. RAC is more involved than
RAE, since the action-conditioned reversibility is learned from the supervision of a standard, also learned
precedence estimator. Nevertheless, our experiments show that it is possible to learn both estimators
jointly, at the cost of little overhead.

We now discuss the relative merits of the two methods. In terms of applications, we argue that RAE is
more suitable for directed exploration, as it only encourages reversible behavior. As a result, irreversible
behavior is permitted if the benefits (i.e. rewards) outweigh the costs (i.e. irreversibility penalties). In
contrast, RAC shines in safety-first, real-world scenarios, where irreversible behavior is to be banned
entirely. With an optimal precedence estimator and task-dependent threshold, RAC will indeed hijack
all irreversible sampled actions. RAC can be especially effective when pre-trained on offline trajectories:
it is then possible to generate fully-reversible, safe behavior from the very first online interaction in the
environment. We explore these possibilities experimentally in Chapter 8.6.2.

Both algorithms can be used online or offline with small modifications to their overall logic. The
pseudo-code for the online version of RAE and RAC can be found in Appendix E.2.2.

The self-supervised precedence classification task could have applications beyond estimating the
reversibility of actions: it could be used as a means of getting additional learning signal or representational
priors for the RL algorithm. Nevertheless, we opt for a clear separation between the reversibility and the
RL components so that we can precisely attribute improvements to the former, and leave aforementioned
studies for future work.
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Figure 8.4: (a): Training curves of a PPO+RAE agent in reward-free Cartpole. Blue: episode length.
Red: intrinsic reward. A 95% confidence interval over 10 random seeds is shown. (b): The x and y axes
are the coordinates of the end of the pole relatively to the cart position. The color denotes the online
reversibility estimation between two consecutive states (logit scale). (c): The representation of three
random trajectories according to θ (angle of the pole) and dθ

dt . Arrows are colored according to the learned
reversibility of the transitions they correspond to.

8.6 Experiments

The following experiments aim at demonstrating that the estimated precedence ψ is a good proxy for
reversibility, and at illustrating how beneficial reversibility can be in various practical cases. We benchmark
RAE and RAC on a diverse set of environments, with various types of observations (tabular, pixel-based),
using neural networks for function approximation. See Appendix E.3 for details.

8.6.1 Reward-free Reinforcement Learning

We illustrate the ability of RAE to learn sensible policies without access to rewards. We use the classic
pole balancing task Cartpole (Barto et al., 1983), using the OpenAI Gym (Brockman et al., 2016b)
implementation. In the usual setting, the agent gets a reward of 1 at every time step, such that the total
undiscounted episode reward is equal to the episode length, and incentivizes the agent to learn a policy
that stabilizes the pole. Here, instead, we remove this reward signal and give a PPO agent (Schulman
et al., 2017) an intrinsic reward based on the estimated reversibility, which is learned online from agent
trajectories. The reward function penalizes irreversibility, as shown in Fig. 8.3. Note that creating insightful
rewards is quite difficult: too frequent negative rewards could lead the agent to try and terminate the
episode as soon as possible.

We display our results in Fig. 8.4. Fig. 8.4a confirms the claim that RAE can be used to learn
meaningful rewards. Looking at the intrinsic reward, we discern three phases. Initially, both the policy and
the reversibility classifier are untrained (and intrinsic rewards are 0). In the second phase, the classifier is
fully trained but the agent still explores randomly (intrinsic rewards become negative). Finally, the agent
adapts its behavior to avoid penalties (intrinsic rewards go to 0, and the length of trajectories increases).
Our reward-free agent reaches the score of 200, which is the highest possible score.

To further assess the quality of the learned reversibility, we freeze the classifier after 300k timesteps and
display its predicted probabilities according to the relative coordinates of the end of the pole (Fig. 8.4b)
and the dynamics of the angle of the pole θ (Fig. 8.4c). In both cases, the empirical reversibility matches
our intuition: the reversibility should decrease as the angle or angular momentum increase, since these
coincide with an increasing difficulty to go back to the equilibrium.
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(a) Initial state (b) A trajectory (c) PPO (500k) (d) PPO+RAE (500k)

Figure 8.5: (a): The Turf environment. The agent can walk on grass, but the grass then turns brown.
(b): An illustrative trajectory where the agent stepped on grass pixels. (c): State visitation heatmap for
PPO. (d): State visitation heatmap for PPO+RAE. It coincides with the stone path (red).

8.6.2 Learning reversible policies

In this section, we investigate how RAE can be used to learn reversible policies. When we train an agent to
achieve a goal, we usually want it to achieve that goal following implicit safety constraints. Handcrafting
such safety constraints would be time-consuming, difficult to scale for complex problems, and might lead
to reward hacking; so a reasonable proxy consists in limiting irreversible side-effects in the environment
(Leike et al., 2017).

To quantify side-effects, we propose Turf, a new synthetic environment. As depicted in Fig. 8.5a,8.5b,
the agent (blue) is rewarded when reaching the goal (pink). Stepping on grass (green) will spoil it, causing
it to turn brown. Stepping on the stone path (grey) does not induce any side-effect.

In Fig. 8.5c,8.5d, we compare the behaviors of a trained PPO agent with and without RAE. The
baseline agent is indifferent to the path to the goal, while the agent benefitting from RAE learns to follow
the road, avoiding irreversible consequences.

8.6.3 Sokoban

Sokoban is a popular puzzle game where a warehouse keeper (controlled by the player) must move boxes
around and place them in dedicated places. Each level is unique and involves planning, since there are
many ways to get stuck. For instance, pushing a box against a wall is often un-undoable, and prevents
the completion of the level unless actually required to place the box on a specific target. Sokoban is a
challenge to current model-free RL algorithms, as advanced agents require millions of interactions to
reliably solve a fraction of levels (Weber et al., 2017; Guez et al., 2019). One of the reasons for this is tied
to exploration: since agents learn from scratch, there is a long preliminary phase where they act randomly
in order to explore the different levels. During this phase, the agent will lock itself in unrecoverable states
many times, and further exploration is wasted. It is worth recalling that contrary to human players, the
agent does not have the option to reset the game when stuck. In these regards, Sokoban is a great testbed
for reversibility-aware approaches, as we expect them to make the exploration phase more efficient, by
incorporating the prior that irreversible transitions are to be avoided if possible, and by providing tools to
identify such transitions.

We benchmark performance on a set of 1k levels. Results are displayed in Fig. 8.6. Equipping an
IMPALA agent (Espeholt et al., 2018) with RAE leads to a visible performance increase, and the resulting
agent consistently solves all levels from the set. We take a closer look at the reversibility estimates and
show that they match the ground truth with high accuracy, despite the high imbalance of the distribution
(i.e. few irreversible transitions, see Fig. 8.6c) and complex reversibility estim ation (see Fig. 8.6a).
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Figure 8.6: (a): Non-trivial reversibility: pushing the box against the wall can be reversed by pushing it
to the left, going around, pushing it down and going back to start. A minimum of 17 moves is required to
go back to the starting state. (b): Performances of IMPALA and IMPALA+RAE on 1k levels of Sokoban
(5 seeds average). (c): Evolution of the estimated reversibility along one episode.

8.6.4 Safe control
In this section, we put an emphasis on RAC, which is particularly suited for safety related tasks.

Cartpole+. We use the standard Cartpole environment, except that we change the maximum number
of steps from 200 to 50k to study long-term policy stability. We name this new environment Cartpole+.
It is substantially more difficult than the initial setting. We learn reversibility offline, using trajectories
collected from a random policy. Fig. 8.7a shows that a random policy augmented with RAC achieves
seemingly infinite scores. For the sake of comparison, we indicate that a DQN (Mnih et al., 2015) and the
state-of-the-art M-DQN (Vieillard et al., 2020b) achieve a maximum score of respectively 1152 and 2801
under a standard training procedure, described in Appendix E.3.5. This can be surprising, since RAC
was only trained on random thus short trajectories (mean length of 20). We illustrate the predictions of
our learned estimator in Fig. 8.7b,8.7c. When the pole leans to the left (x < 0), we can see that moving
the cart to the left is perceived as more reversible than moving it to the right. This is key to the good
performance of RAC and perfectly on par with our understanding of physics: when the pole is leaning in
a direction, agents must move the cart in the same direction to stabilize it.
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Figure 8.8: PPO and RAC (solid
lines) vs PPO (dashed lines). At the
cost of slower learning (brown), our
approach prevents the agent from pro-
ducing a single irreversible side-effect
(green) during the learning phase.
Curves are averaged over 10 runs.

Turf. We now illustrate how RAC can be used for safe online
learning: the implicitly safe constraints provided by RAC prevent
policies from deviating from safe trajectories. This ensures for
example that agents stay in recoverable zones during exploration.

We learn the reversibility estimator offline, using the trajectories
of a random policy. We reject actions whose reversibility is deemed
inferior to β = 0.2, and train a PPO agent with RAC. As displayed
in Fig. 8.8, PPO with RAC learns to reach the goal without causing
any irreversible side-effect (i.e. stepping on grass) during the whole
training process.

The threshold β is a very important parameter of the algorithm.
Too low a threshold could lead to overlooking some irreversible ac-
tions, while a high threshold could prevent the agent from learning
the new task at hand. We discuss this performance/safety trade-off
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Figure 8.7: (a): Mean score of a random policy augmented with RAC on Cartpole+ for several threshold
values, with 95% confidence intervals over 10 random seeds (log scale). (b) and (c): The x and y axes
are the coordinates of the end of the pole relatively to the cart position. The color indicates the estimated
reversibility values.

in more details in Appendix. E.3.7.

8.7 Conclusion
In this chapter, we formalized the link between the reversibility of transitions and their temporal order,
which inspired a self-supervised procedure to learn how important actions are to stay reversible, from
experience. In combination with two novel reversibility-aware exploration strategies, RAE for directed
exploration and RAC for directed control, we showed the empirical benefits of our approach in various
scenarios, ranging from safe RL to risk-averse exploration. Notably, we demonstrated increased performance
in procedurally-generated Sokoban puzzles, which we tied to more efficient exploration. This is a promising
avenue for interpretability since knowing about the reversibility of actions gives information about the
task and which of the agent decisions might matter.
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Chapter 9

Conclusion

In this work, we studied how explicit and implicit forms of action importance could serve the distinct
purposes of credit assignment and interpretability in RL. An interesting finding is that these apparently
disconnected, open problems in RL share ideas, methods and algorithms: at the same time, important
actions should get more credit, and important actions give information about the structure of the task,
the soundness of learned decision-making strategies and why agents improve at the task. Regarding
credit assignment, which is a major object of study of this thesis, we showed that it is generally useful to
distinguish between implicit and explicit forms of credit assignment, and that the distinction leads to a
useful framework we can express most of existing methods in. Implicit forms of credit assignment are
everywhere in the RL literature, value and action-value estimation being prominent examples that answer
(at least partially for action-values) the question of action importance with respect to the performance of
policies. We showed that careful modifications of these implicit forms could lead to significant improvement
in terms of asymptotical performance and sample-efficiency, notably in hard exploration problems, and
to better action importance estimation by increasing the action-gap. Explicit forms (either context-free
or grounded) are less represented despite apparent promises regarding the collection of desiderata we
proposed for principled credit assignment. In that spirit, we proposed an explicit algorithm for offline
credit assignment that can be leveraged to derive augmented reward functions that identify crucial
actions and do not change optimal policies, and also generalize and transfer well to tasks unseen during
offline training. Compared to the previously mentioned, explicit algorithm, it estimates a different form
of action importance that is contextualized with the reward accumulated within the input trajectory.
Interpretability is another object of study of this thesis. We focused on two aspects: gaining understanding
at the task level, and gaining understanding of specific policy improvements. At the task level, we proposed
a self-supervised mechanism to approximate the reversibility of actions. This is useful in order to explore
more efficiently, for instance by avoiding deadlocks, and this can also be useful to gain understanding of
which states and corresponding decisions cannot be reversed. We also proposed an alternative formalism
based on MDPs which encourages laziness in decision-making, essentially amounting to learning when
to take control over a default policy. Under the right default policy, analyzing in which states the agent
takes control (i.e. is not lazy) gives us information about which decisions are crucial to get right in order
to succeed at the task. More generally, under an arbitrary default policy, a similar approach can be
taken in order to make sense of the performance improvement (or decrease) between the current policy
and the default policy. All in all, the problem of action importance estimation has many facets. This is
not surprising since the notion of importance calls for a goal for this importance to be specified against.
Accordingly, we managed to propose different algorithms, some sharing ideas, that tackle specific forms of
importance, either for credit assignment or interpretability. We find that in most cases, actions that are
important (to reach high performance, to obtain specific policy improvements, or to keep a reversible
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behavior) can be rewarded for improved sample-efficiency of RL agents learning, which go in the direction
of the assertion that one should exploit in states with important actions. To a certain extent, we even
show that such actions can be rewarded for improved exploration (in a sense, exploiting to explore).

9.1 Perspectives
There are many exciting perspectives in the research directions we investigated during the course of this
thesis. We review the most interesting ones in the next paragraphs.

Credit assignment There is still much to be done regarding the temporal credit assignment problem in
RL. To being with, we think that we desperately need to formalize better what credit assignment is about
if we want to really understand how to address it. One promising way to start would be to characterize,
both empirically and theoretically, what the limitations of existing agents are and why. Current RL
algorithms struggle in tasks with temporal delay, high stochasticity, partial observability and misspecified
rewards, but we only partly why. For that, a benchmark with an established evaluation protocol and
standardized environments should prove necessary. A good benchmark would provide tasks featuring
challenging credit assignment problems, tools to evaluate the quality of the credit assignment assigned,
and an empirical comparison of existing methods to address the credit assignment issue. Being ultimately
interested in finding actions that are the root causes of later effects, we are sure that as causality tools
progress they will prove useful to mitigate credit assignment problems. All in all, we think that credit
assignment is key to obtain RL algorithms that will learn robustly and efficiently in complex tasks, and
that a lot of future research will tackle this difficult question.

Interpretability There are many directions of interest for interpretable RL. Given the recent successes
in zero-shot and few-shot learning with large language models (LLMs), we think that exploring how
pretrained LLMs can learn to summarize or explain agent behavior (and transfer this ability) is a promising
research avenue. Another success of LLMs is in code generation. Code generating LLMs could be leveraged
to produce programmatic policies that are interpretable by construction, which would be a nice follow-up
to the works on programmatic learning (Verma et al., 2019b,a). Another direction that emerges from the
work presented in this thesis is interpretable Dynamic Programming, using the formalism of Lazy-MDPs.
Indeed, lazy-MDPs encourage laziness on the basis of individual states, so the subsets of states where
agents take control can be taken a look at to make sense of the policy improvement between the default
and newly learned policy. We think that studying the evolution of these subsets as part of the Dynamic
Programming scheme could make it more interpretable.

Explicit and interpretable credit assignment Explicit credit assignment methods would bridge
the gap between credit assignment and interpretability, by quantifying precisely how much each outcome
depends on each past action. Notably, there would be much merit in finding a simple, general method
that satisfies all the explicit credit assignment criteria we listed, which would have applications to both
credit assignment and interpretability.

Learnable sequential priors In our work on reversibility-aware RL, we found a simple yet powerful
way to estimate the reversibility of actions in a self-supervised way. One could argue that most truly
important decisions are irreversible, so that could be used as a prior for credit assignment, which is yet to
be explored. Also, similar techniques could be used to estimate other sequential quantities of interest
(i.e. not only the reversibility but the commutativity of actions for instance) which could then be used as
general, learnable sequential priors.
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Agents that learn their own rewards As humans, we possess an internal drive that defines the
biological rewards to seek and influences our decision-making process. There exist similar ideas in the
RL space, notably inverse RL algorithms (Ng et al., 2000), which construct a reward function for which
observed behavior is optimal. Such algorithms have the drawback that they involve solving a problem that
is as hard as solving the original task via RL. Learning the reward function also happens in a separate
process to the RL learning. We think it would be worthwhile to have agents learn rewards and control
end-to-end. Having agents infer their own reward function as they learn might be useful when rewards
are particularly sparse, misspecified or simply absent like in the case of unsupervised RL. For that, it
is possible that explicit credit assignment tools prove useful, including those proposed in this thesis, by
inferring how much actions contribute to delayed effects.

General action importance In this work, we presented several forms of action importance and
methods to estimate them. An interesting idea to pursue would be to parameterize families of forms
of action importance (an example could be the importance of actions to reach specific goal states, and
parameters could be those of a goal generator) and derive a method that can estimate action importance
over the whole parameter space. Such a method could be of empirical utility in many scenarios.
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Appendix A

Adversarially-Guided Actor-Critic

We now present an algorithmic-driven mechanism for improved exploration in RL. We think that this
complements nicely the contributions of this thesis on the exploration side (in Chapters 5 and 8). This
annex was submitted as a conference paper to ICLR 2021 (Flet-Berliac et al., 2021a).

Despite definite success in deep reinforcement learning problems, actor-critic algorithms are still con-
fronted with sample inefficiency in complex environments, particularly in tasks where efficient exploration is
a bottleneck. These methods consider a policy (the actor) and a value function (the critic) whose respective
losses are built using different motivations and approaches. This section introduces a third protagonist:
the adversary. While the adversary mimics the actor by minimizing the KL-divergence between their
respective action distributions, the actor, in addition to learning to solve the task, tries to differentiate
itself from the adversary predictions. This novel objective stimulates the actor to follow strategies that
could not have been correctly predicted from previous trajectories, making its behavior innovative in tasks
where the reward is extremely rare. Our experimental analysis shows that the resulting Adversarially
Guided Actor-Critic (AGAC) algorithm leads to more exhaustive exploration. Notably, AGAC outperforms
current state-of-the-art methods on a set of various hard-exploration and procedurally-generated tasks.

A.1 Introduction
Research in deep reinforcement learning (RL) has proven to be successful across a wide range of prob-
lems (Silver et al., 2014; Schulman et al., 2016; Lillicrap et al., 2016; Mnih et al., 2015). Nevertheless,
generalization and exploration in RL still represent key challenges that leave most current methods
ineffective. First, a battery of recent studies (Farebrother et al., 2018; Zhang et al., 2018; Song et al., 2020;
Cobbe et al., 2020) indicates that current RL methods fail to generalize correctly even when agents have
been trained in a diverse set of environments. Second, exploration has been extensively studied in RL;
however, most hard-exploration problems use the same environment for training and evaluation. Hence,
since a well-designed exploration strategy should maximize the information received from a trajectory
about an environment, the exploration capabilities may not be appropriately assessed if that information
is memorized. In this line of research, we choose to study the exploration capabilities of our method and
its ability to generalize to new scenarios. Our evaluation domains will, therefore, be tasks with sparse
reward in procedurally-generated environments.

In this work, we propose Adversarially Guided Actor-Critic (AGAC), which reconsiders the actor-critic
framework by introducing a third protagonist: the adversary. Its role is to predict the actor’s actions
correctly. Meanwhile, the actor must not only find the optimal actions to maximize the sum of expected
returns, but also counteract the predictions of the adversary. This formulation is lightly inspired by
adversarial methods, specifically generative adversarial networks (GANs) (Goodfellow et al., 2014). Such

139



140 APPENDIX A. ADVERSARIALLY-GUIDED ACTOR-CRITIC

a link between GANs and actor-critic methods has been formalized by Pfau and Vinyals (2016); however,
in the context of a third protagonist, we draw a different analogy. The adversary can be interpreted
as playing the role of a discriminator that must predict the actions of the actor, and the actor can be
considered as playing the role of a generator that behaves to deceive the predictions of the adversary.
This approach has the advantage, as with GANs, that the optimization procedure generates a diversity of
meaningful data, corresponding to sequences of actions in AGAC.

This paper analyses and explores how AGAC explicitly drives diversity in the behaviors of the agent
while remaining reward-focused, and to which extent this approach allows to adapt to the evolving state
space of procedurally-generated environments where the map is constructed differently with each new
episode. Moreover, because stability is a legitimate concern since specific instances of adversarial networks
were shown to be prone to hyperparameter sensitivity issues (Arjovsky and Bottou, 2017), we also examine
this aspect in our experiments.

The contributions of this work are as follow: (i) we propose a novel actor-critic formulation inspired
from adversarial learning (AGAC), (ii) we analyse empirically AGAC on key reinforcement learning aspects
such as diversity, exploration and stability, (iii) we demonstrate significant gains in performance on several
sparse-reward hard-exploration tasks including procedurally-generated tasks.

A.2 Additional related work
Actor-critic methods (Barto et al., 1983; Sutton, 1984) have been extended to the deep learning setting
by Mnih et al. (2015), who combined deep neural networks and multiple distributed actors with an
actor-critic setting, with strong results on Atari. Since then, many additions have been proposed, be
it architectural improvements (Vinyals et al., 2019), better advantage or value estimation (Schulman
et al., 2016; Flet-Berliac et al., 2021b), or the incorporation of off-policy elements (Wang et al., 2016a; Oh
et al., 2018; Flet-Berliac and Preux, 2020). Regularization was shown to improve actor-critic methods,
either by enforcing trust regions (Schulman et al., 2016, 2017; Wu et al., 2017), or by correcting for
off-policiness (Munos et al., 2016; Gruslys et al., 2017); and recent works analyzed its impact from a
theoretical standpoint (Geist et al., 2019; Ahmed et al., 2019; Vieillard et al., 2020b,a). Related to our
work, Han and Sung (2020) use the entropy of the mixture between the policy induced from a replay buffer
and the current policy as a regularizer. To the best of our knowledge, none of these methods explored the
use of an adversarial objective to drive exploration.

While introduced in supervised learning, adversarial learning (Goodfellow et al., 2015; Miyato et al.,
2016; Kurakin et al., 2017) was leveraged in several RL works. Ho and Ermon (2016) propose an imitation
learning method that uses a discriminator whose task is to distinguish between expert trajectories and
those of the agent while the agent tries to match expert behavior to fool the discriminator. Bahdanau et al.
(2019) use a discriminator to distinguish goal states from non-goal states based on a textual instruction,
and use the resulting model as a reward function. Florensa et al. (2018) use a GAN to produce sub-goals
at the right level of difficulty for the current agent, inducing a form of curriculum. Additionally, Pfau and
Vinyals (2016) provide a parallel between GANs and the actor-critic framework.

While exploration is driven in part by the core RL algorithms (Fortunato et al., 2018; Han and Sung,
2020; Ferret et al., 2021), it is often necessary to resort to exploration-specific techniques. For instance,
intrinsic motivation encourages exploratory behavior from the agent. Some works use state-visitation
counts or pseudo-counts to promote exhaustive exploration (Bellemare et al., 2016a), while others use
curiosity rewards, expressed in the magnitude of prediction error from the agent, to push it towards
unfamiliar areas of the state space (Burda et al., 2019). Ecoffet et al. (2019) propose a technique akin to
tree traversal to explore while learning to come back to promising areas. Eysenbach et al. (2018) show
that encouraging diversity helps with exploration, even in the absence of reward.

Last but not least, generalization is a key challenge in RL. Zhang et al. (2018) showed that, even when
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the environment is not deterministic, agents can overfit to their training distribution and that it is difficult
to distinguish agents likely to generalize to new environments from those that will not. In the same vein,
recent work has advocated using procedurally-generated environments, in which a new instance of the
environment is sampled when a new episode starts, to assess generalization capabilities better (Justesen
et al., 2018; Cobbe et al., 2020). Finally, methods based on network randomization (Igl et al., 2019), noise
injection (Lee et al., 2020a), and credit assignment (Ferret et al., 2020) have been proposed to reduce the
generalization gap for RL agents.

A.3 Additional background and notations
We place ourselves in the infinite-horizon setting, i.e., we seek a policy that optimizes J(π) = Eπ[

∑∞
t=0 γ

tr (st, at)].
The entropy Hπ of a policy is calculated as: Hπ(s) = Eπ(·|s) [− log π(·|s)] .

Actor-critic and deep policy gradients. We recall that an actor-critic algorithm is composed of two
main components: a policy and a value predictor. In deep RL, both the policy and the value function are
obtained via parametric estimators; we denote θ and φ their respective parameters. The policy is updated
via policy gradient, while the value is usually updated via temporal difference or Monte Carlo rollouts.
In practice, for a sequence of transitions {st, at, rt, st+1}t∈[0,N ], we use the following policy gradient loss
(including the commonly used entropic penalty):

LPG = − 1
N

t+N∑
t′=t

(At′ log π (at′ |st′ , θ) + αHπ(st′ , θ)),

where α is the entropy coefficient and At is the generalized advantage estimator (Schulman et al., 2016)
defined as: At =

∑t+N
t′=t (γλ)t′−t(rt′ + γVφold(st′+1)− Vφold(st′)), with λ a fixed hyperparameter and Vφold

the value function estimator at the previous optimization iteration. To estimate the value function, we
solve the non-linear regression problem minimizeφ

∑t+N
t′=t (Vφ(st′)− V̂t′)2 where V̂t = At + Vφold(st′).

A.4 Adversarially Guided Actor-Critic
To foster diversified behavior in its trajectories, AGAC introduces a third protagonist to the actor-critic
framework: the adversary. The role of the adversary is to accurately predict the actor’s actions, by
minimizing the discrepancy between its action distribution πadv and the distribution induced by the policy
π. Meanwhile, in addition to finding the optimal actions to maximize the sum of expected returns, the
actor must also counteract the adversary’s predictions by maximizing the discrepancy between π and πadv
(see Appendix A.9 for an illustration). This discrepancy, used as a form of exploration bonus, is defined
as the difference of action log-probabilities (see Equ. A.4), whose expectation is the Kullback–Leibler
divergence:

DKL(π(·|s)‖πadv(·|s)) = Eπ(·|s) [log π(·|s)− log πadv(·|s)] .

Formally, for each state-action pair (st, at) in a trajectory, an action-dependent bonus log π(at|st)−
log πadv(at|st) is added to the advantage. In addition, the value target of the critic is modified to include
the action-independent equivalent, which is the KL-divergence DKL(π(·|st)‖πadv(·|st)). We discuss the role
of these mirrored terms below, and the implications of AGAC’s modified objective from a more theoretical
standpoint in the next section. In addition to the parameters θ (resp. θold the parameter of the policy at
the previous iteration) and φ defined above (resp. φold that of the critic), we denote ψ (resp. ψold) that
of the adversary.



142 APPENDIX A. ADVERSARIALLY-GUIDED ACTOR-CRITIC

AGAC minimizes the following loss:

LAGAC = LPG + βV LV +βadvLadv.

In the new objective LPG = − 1
N

∑N
t=0(AAGAC

t log π (at|st, θ) + αHπ(st, θ)), AGAC modifies At as:

AAGAC
t = At + c

(
log π(at|st, θold)− log πadv(at|st, ψold)

)
,

with c a varying hyperparameter that controls the dependence on the action log-probability difference. To
encourage exploration without preventing asymptotic stability, c is linearly annealed during the course of
training. LV is the objective function of the critic defined as:

LV = 1
N

N∑
t=0

(
Vφ(st)−

(
V̂t + cDKL(π(·|st, θold)‖πadv(·|st, ψold))

))2

.

Finally, Ladv is the objective function of the adversary:

Ladv = 1
N

N∑
t=0

DKL(π(·|st, θold)‖πadv(·|st, ψ)).

Equ. A.4, Equ. A.4 and Equ. A.4 are the three equations that our method modifies (we color in blue the
specific parts) in the traditional actor-critic framework. The terms βV and βadv are fixed hyperparameters.

Under the proposed actor-critic formulation, the probability of sampling an action is increased if
the modified advantage is positive, i.e. (i) the corresponding return is larger than the predicted value
and/or (ii) the action log-probability difference is large. More precisely, our method favors transitions
whose actions were less accurately predicted than the average action, i.e. log π(a|s) − log πadv(a|s) ≥
DKL(π(·|s)‖πadv(·|s)). This is particularly visible for λ→ 1, in which case the generalized advantage is
At = Gt − Vφold(st), resulting in the appearance of both aforementioned mirrored terms in the modified
advantage:

AAGAC
t = Gt − V̂ φold

t + c
(

log π(at|st)− log πadv(at|st)− D̂φold
KL (π(·|st)‖πadv(·|st))

)
,

with Gt the observed return, V̂ φold
t the estimated return and D̂φold

KL (π(·|st)‖πadv(·|st)) the estimated
KL-divergence (estimated components of Vφold(st) from Eq. A.4).

To avoid instability, in practice the adversary is a separate estimator, updated with a smaller learning
rate than the actor. This way, it represents a delayed and more steady version of the actor’s policy, which
prevents the agent from having to constantly adapt or focus solely on fooling the adversary.

A.4.1 Building motivation
In the following, we provide an interpretation of AGAC by studying the dynamics of attraction and repulsion
between the actor and the adversary. To simplify, we study the equivalent of AGAC in a policy iteration
(PI) scheme. PI being the dynamic programming scheme underlying the standard actor-critic, we have
reasons to think that some of our findings translate to the original AGAC algorithm. In PI, the quantity of
interest is the action-value, which AGAC would modify as:

QAGAC
πk

= Qπk + c (log πk − log πadv),

with πk the policy at iteration k. Incorporating the entropic penalty, the new policy πk+1 verifies:

πk+1 = arg max
π

JPI(π) = arg max
π

EsEa∼π(·|s)[QAGAC
πk

(s, a)− α log π(a|s)].
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We can rewrite this objective:

JPI(π) = EsEa∼π(·|s)[QAGAC
πk

(s, a)− α log π(a|s)]
= EsEa∼π(·|s)[Qπk(s, a) + c (log πk(a|s)− log πadv(a|s))− α log π(a|s)]
= EsEa∼π(·|s)[Qπk(s, a) + c (log πk(a|s)− log π(a|s) + log π(a|s)− log πadv(a|s))− α log π(a|s)]

= Es
[
Ea∼π(·|s)[Qπk(s, a)]− cDKL(π(·|s)||πk(·|s))︸ ︷︷ ︸

πk is attractive

+ cDKL(π(·|s)||πadv(·|s))︸ ︷︷ ︸
πadv is repulsive

+αH(π(·|s))︸ ︷︷ ︸
enforces stochastic policies

]
.

Thus, in the PI scheme, AGAC finds a policy that maximizes Q-values, while at the same time remaining
close to the current policy and far from a mixture of the previous policies (i.e., πk−1, πk−2, πk−3, . . . ).
Note that we experimentally observe (see Section A.5.2) that our method performs better with a smaller
learning rate for the adversarial network than that of the other networks, which could imply that a stable
repulsive term is beneficial.

This optimization problem is strongly concave in π (thanks to the entropy term), and is state-wise a
Legendre-Fenchel transform. Its solution is given by (see Appendix A.12 for the full derivation):

πk+1 ∝
(
πk
πadv

) c
α

exp Qπk
α

.

This result gives us some insight into the behavior of the objective function. Notably, in our example,
if πadv is fixed and c = α, we recover a KL-regularized PI scheme (Geist et al., 2019) with the modified
reward r − c log πadv.

A.4.2 Implementation

In all of the experiments, we use PPO (Schulman et al., 2017) as the base algorithm and build on it to
incorporate our method. Hence,

LPG = − 1
N

t+N∑
t′=t

min
(

π(at′ |st′ , θ)
π(at′ |st′ , θold)A

AGAC
t′ , clip

( π(at′ |st′ , θ)
π(at′ |st′ , θold) , 1− ε, 1 + ε

)
AAGAC
t′

)
,

with AAGAC
t′ given in Equ. A.4, N the temporal length considered for one update of parameters and ε the

clipping parameter. Similar to RIDE (Raileanu and Rocktäschel, 2019), we also discount PPO by episodic
state visitation counts, except for VizDoom (cf. Section A.5.1). The actor, critic and adversary use the
convolutional architecture of the Nature paper of DQN (Mnih et al., 2015) with different hidden sizes (see
Appendix A.11 for architecture details). The three neural networks are optimized using Adam (Kingma
and Ba, 2014). Our method does not use RNNs in its architecture; instead, in all our experiments, we use
frame stacking. Indeed, Hausknecht and Stone (2015) interestingly demonstrate that although recurrence
is a reliable method for processing state observation, it does not confer any systematic advantage over
stacking observations in the input layer of a CNN. Note that the parameters are not shared between the
policy, the critic and the adversary and that we did not observe any noticeable difference in computational
complexity when using AGAC compared to PPO. We direct the reader to Appendix A.10 for a list of
hyperparameters. In particular, the c coefficient of the adversarial bonus is linearly annealed.

At each training step, we perform a stochastic optimization step to minimize LAGAC using stop-gradient:

θ ← Adam (θ,∇θLPG, η1) , φ← Adam (φ,∇φLV , η1) , ψ ← Adam (ψ,∇ψLadv, η2) .
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A.5 Experiments
In this section, we describe our experimental study in which we investigate: (i) whether the adversarial
bonus alone (e.g. without episodic state visitation count) is sufficient to outperform other methods
in VizDoom, a sparse-reward task with high-dimensional observations, (ii) whether AGAC succeeds in
partially-observable and procedurally-generated environments with high sparsity in the rewards, com-
pared to other methods, (iii) how well AGAC is capable of exploring in environments without extrinsic
reward, (iv) the training stability of our method. In all of the experiments, lines are average per-
formances and shaded areas represent one standard deviation. The code for our method is released
at github.com/yfletberliac/adversarially-guided-actor-critic.

(a) (b) (c) (d)

Figure A.1: (a,b) Frames from the 3-D navigation task VizdoomMyWayHome. (c) MiniGrid-
KeyCorridorS6R3. (d) MiniGrid-ObstructedMazeFull.

Environments. To carefully evaluate the performance of our method, its ability to develop robust
exploration strategies and its generalization to unseen states, we choose tasks that have been used
in prior work, which are tasks with high-dimensional observations, sparse reward and procedurally-
generated environments. In VizDoom (Kempka et al., 2016), the agent must learn to move along
corridors and through rooms without any reward feedback from the 3-D environment. The MiniGrid
environments (Chevalier-Boisvert et al., 2018) are a set of challenging partially-observable and sparse-
reward gridworlds. In this type of procedurally-generated environments, memorization is impossible due
to the huge size of the state space, so the agent must learn to generalize across the different layouts of the
environment. Each gridworld has different characteristics: in the MultiRoom tasks, the agent is placed
in the first room and should reach a goal placed in the most distant room. In the KeyCorridor tasks,
the agent must navigate to pick up an object placed in a room locked by a door whose key is in another
room. Finally, in the ObstructedMaze tasks, the agent must pick up a box that is placed in a corner
of a 3x3 maze in which the doors are also locked, the keys are hidden in boxes and balls obstruct the
doors. All considered environments (see Fig. A.1 for some examples) are available as part of OpenAI
Gym (Brockman et al., 2016a).

Baselines. For a fair assessment of our method, we compare to some of the most prominent methods
specialized in hard-exploration tasks: RIDE (Raileanu and Rocktäschel, 2019), based on an intrinsic
reward associated with the magnitude of change between two consecutive state representations and
state visitation, Count as Count-Based Exploration (Bellemare et al., 2016a), which we couple with
IMPALA (Espeholt et al., 2018), RND (Burda et al., 2019) in which an exploration bonus is positively
correlated to the error of predicting features from the observations and ICM (Pathak et al., 2017),
where a module only predicts the changes in the environment that are produced by the actions of the
agent. Finally, we compare to most the recent and best performing method at the time of writing in
procedurally-generated environments: AMIGo (Campero et al., 2021) in which a goal-generating teacher
provides count-based intrinsic goals.

https://github.com/yfletberliac/adversarially-guided-actor-critic
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A.5.1 Adversarially-based exploration (no episodic count)

Table A.1: Average return in VizDoom at different timesteps.

Nb. of Timesteps 2M 4M 6M 8M 10M
AGAC 0.74 ± 0.05 0.96 ± 0.001 0.96 ± 0.001 0.97 ± 0.001 0.97 ± 0.001
RIDE 0. 0. 0.95 ± 0.001 0.97 ± 0.001 0.97 ± 0.001
ICM 0. 0. 0.95 ± 0.001 0.97 ± 0.001 0.97 ± 0.001
AMIGo 0. 0. 0. 0. 0.
RND 0. 0. 0. 0. 0.
Count 0. 0. 0. 0. 0.

In this section, we assess the benefits of using an adversarially-based exploration bonus and examine
how AGAC performs without the help of count-based exploration. In order to provide a comparison to
state-of-the-art methods, we choose VizDoom, a hard-exploration problem used in prior work. In this game,
the map consists of 9 rooms connected by corridors where 270 steps separate the initial position of the
agent and the goal under an optimal policy. Episodes are terminated either when the agent finds the goal
or if the episode exceeds 2100 timesteps. Importantly, while other algorithms (Raileanu and Rocktäschel,
2019; Campero et al., 2021) benefit from count-based exploration, this study has been conducted with our
method not benefiting from episodic count whatsoever. Results in Table A.1 indicate that AGAC clearly
outperforms other methods in sample-efficiency. Only the methods ICM and RIDE succeed in matching the
score of AGAC, and with about twice as much transitions (∼ 3M vs. 6M). Interestingly, AMIGo performs
similarly to Count and RND. We find this result surprising because AMIGo has proven to perform
well in the MiniGrid environments. Nevertheless, it appears that concurrent works to ours experienced
similar issues with the accompanying implementation1. The results of AGAC support the capabilities of the
adversarial bonus and show that it can, on its own, achieve significant gains in performance. However,
the VizDoom task is not procedurally-generated; hence we have not evaluated the generalization to new
states yet. In the following section, we use MiniGrid to investigate this.

A.5.2 Hard-exploration tasks with partially-observable environments
We now evaluate our method on multiple hard-exploration procedurally-generated tasks from MiniGrid.
Details about MiniGrid can be found in Appendix A.10.1. Fig. A.2 indicates that AGAC significantly
outperforms other methods on these tasks in sample-efficiency and performance. AGAC also outperforms
the current state-of-the-art method, AMIGo, despite the fact that it uses the fully-observable version of
MiniGrid. Note that we find the same poor performance results when training AMIGo in MiniGrid, similar
to Vizdoom results. For completeness, we also report in Table A.2 of Appendix A.7.1 the performance
results with the scores reported in the original papers Raileanu and Rocktäschel (2019) and Campero
et al. (2021). We draw similar conclusions: AGAC clearly outperforms the state-of-the-art RIDE, AMIGo,
Count, RND and ICM.

In all the considered tasks, the agent must learn to generalize across a very large state space because
the layouts are generated procedurally. We consider three main arguments to explain why our method is
successful: (i) our method makes use of partial observations: in this context, the adversary has a harder
time predicting the actor’s actions; nevertheless, the mistakes of the former benefit the latter in the form
of an exploration bonus, which pushes the agent to explore further in order to deceive the adversary,
(ii) the exploration bonus (i.e. intrinsic reward) does not dissipate compared to most other methods, as
observed in Fig. A.9 in Appendix A.8, (iii) our method does not make assumptions about the environment
dynamics (e.g., changes in the environment produced by an action as in Raileanu and Rocktäschel (2019))

1AMIGo implementation GitHub Issue.

https://github.com/facebookresearch/adversarially-motivated-intrinsic-goals/issues/1#issue-658852183
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Figure A.2: Performance evaluation of AGAC.

since this can hinder learning when the space of state changes induced by an action is too large (such as
the action of moving a block in ObstructedMaze).

In Appendix A.7.3, we also include experiments in two environments with extremely sparse reward
signals: KeyCorridorS8R3 and ObstructedMazeFull. Despite the challenge, AGAC still manages to find
rewards and can perform well by taking advantage of the diversified behaviour induced by our method.
To the best of our knowledge, no other method ever succeeded to perform well (> 0 average return) in
those tasks. We think that given more computing time, AGAC’s score could go higher.
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Figure A.3: Sensitivity analysis of AGAC in KeyCorridorS4R3.

Here we want to analyse the stability of the method when changing hyperparameters. The most
important parameters in AGAC are c, the coefficient for the adversarial bonus, and the learning rates ratio
ν = η2

η1
. We choose KeyCorridorS4R3 as the evaluation task because among all the tasks considered, its

difficulty is at a medium level. Fig. A.3 shows the learning curves. For readability, we plot the average
return only; the standard deviation is sensibly the same for all curves. We observe that deviating from the
hyperparameter values found using grid search results in a slower training. Moreover, although reasonable,
c appears to have more sensitivity than ν.
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Random AGACCount RIDERND

Figure A.5: State visitation heatmaps for RND, Count, a random uniform policy, RIDE, and AGAC trained
in a singleton environment (top row) and procedurally-generated environments (bottom row) without
extrinsic reward for 10M timesteps in the MultiRoomN10S6 task.

A.5.3 Exploration in reward-free environments
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Figure A.4: Average return on N10S6 with and
without extrinsic reward.

To better understand the effectiveness of our method and
inspect how the agent collects rewards that would not
otherwise be achievable by simple exploration heuristics
or other methods, we analyze the performance of AGAC
in another (procedurally-generated) challenging environ-
ment, MultiRoomN10S6, when there is no reward signal,
i.e. no extrinsic reward. Beyond the good performance
of our method when extrinsic rewards are given to the
agent, Fig. A.4 indicates that the exploration induced
by our method makes the agent succeed in a significant
proportion of the episodes: in the configuration “NoEx-
trinsicReward” the reward signal is not given (the goal
is invisible to the agent) and the performance of AGAC
stabilizes around an average return of ∼ 0.15. Since the
return of an episode is either 0 or 1 (depending on whether the agent reached the goal state or not), and
because this value is aggregated across several episodes, the results indicate that reward-free AGAC succeeds
in ∼ 15% of the tasks. Comparatively, random agents have a zero average return. This poor performance
is in accordance with the results in Raileanu and Rocktäschel (2019) and reflects the complexity of the
task: in order to go from one room to another, an agent must perform a specific action to open a door
and cross it within the time limit of 200 timesteps. In the following, we visually investigate how different
methods explore the environments.
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Figure A.6: State visitation heatmaps of the last ten episodes of an agent trained in procedurally-generated
environments without extrinsic reward for 10M timesteps in the MultiRoomN10S6 task. The agent is
continuously engaging in new strategies.

A.5.4 Visualizing coverage and diversity
In this section, we first investigate how different methods explore environments without being guided by
extrinsic rewards (the green goal is invisible to the agent) on both procedurally-generated and singleton
environments. In singleton environments, an agent has to solve the same task in the same environment/maze
in every episode. Fig. A.5 shows the state visitation heatmaps (darker areas correspond to more visits)
after a training of 10M timesteps. We observe that most of the methods explore inefficiently in a singleton
environment and that only RIDE succeeds in reaching the fifth room while AGAC reaches the last (tenth)
room. After training the agents in procedurally-generated environments, the methods explore even less
efficiently while AGAC succeeds in exploring all rooms.

We now qualitatively study the diversity of an agent’s behavior when trained with AGAC. Fig. A.6
presents the state visitation heatmaps of the last ten episodes for an agent trained in procedurally-generated
environments in the MultiRoomN10S6 task without extrinsic reward. The heatmaps correspond to the
behavior of the resulting policy, which is still learning from the AGAC objective. Looking at the figure,
we can see that the strategies vary at each update with, for example, back-and-forth and back-to-start
behaviors. Although there are no extrinsic reward, the strategies seem to diversify from one update
to the next. Finally, Fig. A.7 in Appendix A.7.2 shows the state visitation heatmaps in a different
configuration: when the agent has been trained on a singleton environment in the MultiRoomN10S6 task
without extrinsic reward. Same as previously, the agent is updated between each episode. Looking at the
figure, we can make essentially the same observations as previously, with a noteworthy behavior in the
fourth heatmap of the bottom row where it appears the agent went to the fourth room to remain inside it.
Those episodes indicate that, although the agent sees the same environment repeatedly, the successive
adversarial updates force it to continuously adapt its behavior and try new strategies.

A.6 Discussion
This paper introduced AGAC, a modification to the traditional actor-critic framework: an adversary network
is added as a third protagonist. The mechanics of AGAC have been discussed from a policy iteration
point of view, and we provided theoretical insight into the inner workings of the proposed algorithm: the
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adversary forces the agent to remain close to the current policy while moving away from the previous
ones. In a nutshell, the influence of the adversary makes the actor conservatively diversified.

In the experimental study, we have evaluated the adversarially-based bonus in VizDoom and empirically
demonstrated its effectiveness and superiority compared to other relevant methods (some benefiting from
count-based exploration). Then, we have conducted several performance experiments using AGAC and
have shown a significant performance improvement over some of the most popular exploration methods
(RIDE, AMIGo, Count, RND and ICM) on a set of various challenging tasks from MiniGrid. These
procedurally-generated environments have served another purpose which is to validate the capacity of our
method to generalize to unseen scenarios. In addition, the training stability of our method has been studied,
showing a greater but acceptable sensitivity for c, the adversarial bonus coefficient. Finally, we have
investigated the exploration capabilities of AGAC in a reward-free setting where the agent demonstrated
exhaustive exploration through various strategic choices, confirming that the adversary successfully drives
diversity in the behavior of the actor.

A.7 Additional experiments
A.7.1 Performance on MiniGrid
In this section, we report the final performance of all methods considered in the MiniGrid experiments of
Fig. A.2 with the scores reported in Raileanu and Rocktäschel (2019) and Campero et al. (2021). All
methods have a budget of 200M frames.

Table A.2: Final average performance of all methods on several MiniGrid environments.

Task KC-S4R3 KC-S5R3 MR-N10S10 OM-2Dlhb OM-1Q OM-2Q
AGAC 0.95 0.93 0.52 0.64 0.78 0.63
RIDE 0.19 0. 0.40 0. 0. 0.
AMIGo 0.54 0. 0. 0.20 0. 0.
RND 0. 0. 0. 0.03 0. 0.
Count 0. 0. 0. 0. 0. 0.
ICM 0. 0. 0. 0. 0. 0.

A.7.2 State visitation heatmaps in singleton environments with no extrinsic
reward

In this section, we provide additional state visitation heatmaps. The agent has been trained on a singleton
environment from the MultiRoomN10S6 task without extrinsic reward. The last ten episodes of the
training suggest that although the agent experiences the same maze over and over again, the updates
force it to change behavior and try new strategies.

A.7.3 (Extremely) Hard-Exploration Tasks with Partially-Observable Envi-
ronments

In this section, we include additional experiments on one of the hardest tasks available in MiniGrid. The
first is KeyCorridorS8R3, where the size of the rooms has been increased. In it, the agent has to pick up
an object which is behind a locked door: the key is hidden in another room and the agent has to explore
the environment to find it. The second, ObstructedMazeFull, is similar to ObstructedMaze4Q, where
the agent has to pick up a box which is placed in one of the four corners of a 3x3 maze: the doors are
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Figure A.7: State visitation heatmaps of the last ten episodes of an agent trained in a singleton environment
with no extrinsic reward 10M timesteps in the MultiRoomN10S6 task. The agent is continuously engaging
into new strategies.

locked, the keys are hidden in boxes and the doors are obstructed by balls. In those difficult tasks, only
our method succeeds in exploring well enough to find rewards.
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Figure A.8: Performance evaluation of AGAC compared to RIDE, AMIGo, Count, RND and ICM on
extremely hard-exploration problems.

A.8 Distribution of intrinsic rewards
In this section, we report the mean intrinsic reward computed for an agent trained in MultiRoomN12S10
to conveniently compare our results with that of Raileanu and Rocktäschel (2019). We observe in Fig. A.9
that the intrinsic reward is consistently larger for our method and that, contrary to other methods,
does not converge to low values. Please note that, in all considered experiments, the adversarial bonus
coefficient c in Eq. A.4 and A.4 is linearly annealed throughout the training since it is mainly useful at
the beginning of learning when the rewards have not yet been met. In the long run, this coefficient may
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prevent the agent from solving the task by forcing it to always favour exploration over exploitation.
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Figure A.9: Average intrinsic reward for different methods trained in MultiRoomN12S10.

A.9 Illustration of AGAC
We illustrate how AGAC works from a high-level perspective in Fig. A.9.

Figure A.10: A simple schematic illustration of AGAC. Left: the adversary minimizes the KL-divergence
with respect to the action probability distribution of the actor. Right: the actor receives a bonus when
counteracting the predictions of the adversary.

A.10 Experimental details and hyperparameters
A.10.1 MiniGrid setup
Here, we describe in more details the experimental setup we used in our MiniGrid experiments.

There are several different MiniGrid scenarios that we consider in this paper. MultiRoom corresponds
to a set of navigation tasks, where the goal is to go from a starting state to a goal state. The notation
MultiRoom-N2S4 means that there are 2 rooms in total, and that each room has a maximal side of 4. In
order to go from one room to another, the agent must perform a specific action to open a door. Episodes
are terminated with zero reward after a maximum of 20 × N steps with N the number of rooms. In
KeyCorridor, the agent also has to pick up a key, since the goal state is behind a door that only lets
it in with the key. The notation KeyCorridor-S3R4 means that there are 4 side corridors, leading to
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rooms that have a maximal side of 3. The maximum number of steps is 270. In ObstructedMaze, keys
are hidden in boxes, and doors are obstructed by balls the agent has to get out of its way. The notation
ObstructedMaze-1Dl means that there are two connected rooms of maximal side 6 and 1 door (versus a
3x3 matrix and 2 doors if the leading characters are 2D), adding h as a suffix places keys in boxes, and
adding b as a suffix adds balls in front of doors. Using Q as a suffix is equivalent to using lhb (that is, both
hiding keys and placing balls to be moved). The maximum number of steps is 576. ObstructedMazeFull is
the hardest configuration for this scenario, since it has the maximal number of keys, balls to move, and
doors possible.

In each scenario, the agent has access to a partial view of the environment, a 7x7 square that includes
itself and points in the direction of its previous movement.

A.10.2 Hyperparameters
In all experiments, we train six different instances of our algorithm with different random seeds. In
Table A.3, we report the list of hyperparameters.

Table A.3: Hyperparameters used in AGAC.

Parameter Value
Horizon T 2048
Nb. epochs 4
Nb. minibatches 8
Nb. frames stacked 4
Nonlinearity ELU (Clevert et al., 2016)
Discount γ 0.99
GAE parameter λ 0.95
PPO clipping parameter ε 0.2
βV 0.5
c 4 · 10−4 (4 · 10−5 in VizDoom)
c anneal schedule linear
βadv 4 · 10−5

Adam stepsize η1 3 · 10−4

Adam stepsize η2 9 · 10−5 = 0.3 · η1
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A.11 Implementation details
In Fig. A.11 is depicted the architecture of our method.

Figure A.11: Artificial neural architecture of the critic, the actor and the adversary.

A.12 Proof of Section A.4.1 results
In this section, we provide a short proof for the result of the optimization problem in Section A.4.1. We
recall the result here:

πk+1 = arg max
π

JPI(π) ∝
(
πk
πadv

) c
α

exp Qπk
α

,

with the objective function:

JPI(π) = EsEa∼π(·|s)[Qπk(s, a) + c (log πk(a|s)− log πadv(a|s))− α log π(a|s)].

Proof. We first consider a simpler optimization problem: arg maxπ〈π,Qπk〉+ αH(π), whose solution is
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known (Vieillard et al., 2020b, Appendix A). The expression for the maximizer is the α-scaled softmax:

π∗ =
exp(Qπkα )
〈1, exp(Qπkα )〉

.

We now turn towards the optimization problem of interest, which we can rewrite as:

arg max
π
〈π,Qπk + c (log πk − log πadv)〉+ αH(π).

By the simple change of variable Q̃πk = Qπk + c (log πk − log πadv), we can reuse the previous solution
(replacing Qπk by Q̃πk). With the simplification:

exp Qπk + c (log πk − log πadv)
α

=
(
πk
πadv

) c
α

exp Qπk
α

,

we obtain the result and conclude the proof.



Appendix B

Annex of Chapter 4

In this annex we provide additional elements about the framework presented in Chapter 4.

B.1 Multi-step credit assignment
We illustrate a case of multi-step credit assignment in Fig. B.1.

B.2 On the assessment of existing methods against the proposed
criteria

B.2.1 Examples of similarity functions
We give examples of similarity functions for the objects discussed in 4.3.2. These examples have the
purpose of showing that such similarity functions exist, even if these might not be ideal in all cases. We
start with standard types of outcomes:

◦ return: a natural similarity function is the negative squared distance between returns.

◦ individual rewards: a natural similarity function is the negative squared distance between rewards.

◦ future state: a candidate similarity function between future states is the negative squared distance
between the respective backward values of the states. The backward value of a state Bπ(s)
quantifies the expected discounted cumulative sum of rewards when reaching such a state: Bπ(s) =
Eπ
[∑T

t=0 1{St = s}
∑t
t′=0 γ

t′r(St′ , At′)
]
.

jointly 
influence

jointly 
credit

...

Figure B.1: Multi-step credit assignment. We suppose that the granularity of the actions of the task
makes it uninformative to credit actions individually (e.g. muscular contractions for a tennis game) so
actions are credited in sequences instead (e.g. swings).

155
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We now give similarity functions for other elements:

◦ state distribution: a natural similarity function is the negative Kullback-Leibler divergence between
the state distributions. This requires either an MDP with a finite state space, or approximate state
distributions.

◦ policies: a candidate similarity function for policies is the negative Kullback-Leibler divergence
between the respective state occupancy measures induced by the policies.

◦ trajectories: a candidate similarity function is the Wasserstein metric, using a state distance as the
cost function and the normalized number of visits as the mass for each state.

◦ assignments: a candidate similarity function is the Wasserstein metric, using a state distance as the
cost function and the cumulative assigned credit as the mass for each state.

B.3 Hard credit assignment tasks
We characterize more precisely the notion of hard credit assignment task we introduced in the main text.
Hard credit assignment tasks are RL tasks where a subset of all possible actions have great influence
over outcomes that characterize optimality, and such actions are hard to map to these outcomes. Hard
credit assignment differs from hard exploration and sparse reward RL. Hard exploration (Bellemare
et al., 2016a) groups together tasks which require precise decision-making to experience rewards. Sparse
reward RL (Riedmiller et al., 2018) groups tasks where the reward function is sparse. Instead, hard
credit assignment groups tasks where important actions are hard to reinforce, and is compatible with
easy exploration and dense rewards: an example that features both aspects is the Key-to-Door task
from Mesnard et al. (2021). Other examples include the Triggers environment from Ferret et al. (2021),
or the delayed Catch from Raposo et al. (2021).

B.4 Supplement on causality
B.4.1 Causality elements.
We introduce elements related to causality (Pearl, 2009) here. A Structural Causal Model (SCM) (Peters
et al., 2017) is a directed acyclic graph where nodes correspond to random variables, some of which
are observed, some of which are not. Edges indicate parenthood. Each node X is computed via a
deterministic function of its parents: X = f(pa(X), ξf ), where ξf is an independent random variable
we call stochastic factor. In particular, any MDP (or POMDP) can be represented as an SCM: we
provide an illustration of the SCM that corresponds to a standard POMDP in Fig. B.2a. We note ξδ0 ,
ξπ, ξP , ξO and ξR the respective stochastic factors of the initial state distribution, the behavior policy,
the transition kernel, the observation kernel and the reward function; these are the random variables
such that we have the following deterministic functions: δ0(ξδ0) ∈ S, π(st, ξπ) ∈ A, P(st, at, ξP) ∈ S,
PO(st, ξO) ∈ O and R(st, at, ξR) ∈ [rmin, rmax]. Given a policy π and the set of stochastic factors
ξ = {ξδ0} ∪ {ξO,i, ξπ,i, ξR,i, ξP,i}T−1

i=0 the unique corresponding trajectory is expressed as the result of a
deterministic function: τ = f(π, ξ).

An intervention I modifies a subset of the functions of the SCM, whose typical node becomes:
XI = fI(pa(XI), ξf ). Stochastic factors are left unchanged. Other nodes whose functions are unchanged
can have different distributions due to the updated distributions of their parent nodes. We note an atomic
intervention as I(f → f̄ , t) to signify that we intervene on the random variable at timestep t, replacing its
function f by f̄ . We illustrate an atomic intervention in Fig. B.2b.
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(a) (b)

Figure B.2: a) The SCM for a generic POMDP. Yellow nodes correspond to unobserved variables. We
do not represent rewards for clarity. b) An atomic intervention in a SCM. The scalpel indicates which
random variable is intervened on. The purple nodes are the nodes affected by the intervention (whether
directly or indirectly affected).

In what follows, we take a special interest in interventions on action variables, as they allow to
simulate counterfactual futures (i.e. what would have happened under a different action) and ultimately
credit actions. Given a trajectory τ , the corresponding stochastic factors ξ, a behavior policy π and an
intervention policy π̄, we note the trajectory resulting from the intervention on the action at timestep t:
τ̄ = fI(π→π̄,t)(π, ξ). Note that this is, on average, equivalent to taking as behavior policy the non-stationary
policy that acts according to π̄ at timestep t and otherwise according to π. Still, when modifying a single
existing trajectory, we will express it under the SCM formalism: it handles well stochastic factors, which
will be kept identical between the original and the modified trajectory. On the other hand, when dealing
with probabilities (resp. expectations), we will opt for the notation pā∼π̄,π (resp. Eā∼π̄,π) for simplicity,
which means that an immediate action is sampled according to π̄ and the remaining actions according to
π.

B.4.2 The do operator
We do not make use of the do operator (Pearl, 2009) in the main text. The do operator is a central
component in the causality literature so we explicit how it connects to our work here. The do operator is
used to distinguish interventional distributions (distributions of random variables given the intervention,
i.e. p(Y |do(X = x))) from standard, observational distributions (i.e. p(Y |X = x)). Interventions lead to
different distributions when Y shares parents with X in the corresponding SCM. The interventions we
discuss only target action choices, i.e. we only locally modify the policy. In that regard, we intervene on
an action, conditionally to a state, and due to the Markov property there is no shared parents between
the action and the outcome, so we can show that for any policy π and any outcome Z = f(T ), we have
dπ(Z |St = s,At = do(at)) = dπ(Z |St = s,At = at). Evaluating an outcome under an action intervention
is thus equivalent to evaluating the outcome under the distribution induced by either a non-stationary
policy (if the intervention is atomic) or a different policy (if the intervention is persistent).

B.4.3 Nature of stochastic factors
From the main text, one could get the wrong impression that stochastic factors are the distinct noises that
are used to sample actions, rewards and transitions based on corresponding distributions. In other words,
one might get that stochastic factors equate random number generation. In the partially observable setting,
stochastic factors can also include other sources of stochasticity. Those are covered by the stochastic
factor of the state-to-observation kernel, but can correspond to latent variables that are not necessarily
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intuitive. For instance, in the Umbrella problem (Osband et al., 2020) (see Fig. 4.2b), the weather is a
random variable that conditions the optimal policy (i.e. take an umbrella or not) and could have to be
deduced from observations.

B.4.4 Persistent interventions
In contrast, we note a persistent intervention I(f → f̄ ,≥ t), which means that we do a similar atomic
intervention on all random variables that are computed via f at any timestep t′ ≥ t.

B.5 Oracle credit assignment via counterfactual simulation
To the best of our knowledge, there is no known method for ground truth credit assignment in the existing
literature. Given the informal definition of credit assignment from the introduction, optimality is difficult
to specify. Instead, we argue in favor of a quantity that satisfies the desiderata listed in the previous
section. In what follows, we provide an oracle method to establish ground truth credit assignment for
an observed outcome and the corresponding trajectory, based on counterfactual simulation. It consists
in modifying a single action at a time from the original trajectory, and in simulating the corresponding
counterfactual outcome to assess the impact of the action change.

Simulation-based influence of actions over outcomes. The criteria 1,2,3 from the previous section
all depend on a notion of influence over the observed outcome (in the context of a given trajectory).
We thus present candidate notions of influence that can be computed via simulation, given a trajectory,
the corresponding outcome, and the timestep of the specific action to assess (noted at). Note that the
trajectory implicitly defines the value of the outcome: z = f(τ) (with the corresponding random variables
Z for the outcome and T for the trajectory). We start by introducing a probabilistic notion of influence.

◦ Forward probabilistic influence quantifies how much more likely the outcome is given the action:
cπ(st, at | z) = pπ(Z = z |St = st, At = at)− pπ(Z = z |St = st) (which requires a discrete outcome).

◦ Backward probabilistic influence quantifies how much more likely the action is given the outcome:
cπ(st, at | z) = pπ(At = at |St = st, Z = z)− π(at | st).

Note that pπ(At = at |St = st, Z = z) is the probability that the action taken at timestep t in st is
at, given that the outcome is z. An alternative formulation for the backward probabilistic influence is
explored in Harutyunyan et al. (2019), using a ratio instead of a difference.

Importantly, we might want to establish influence in a relative way, by comparing the results of
distinct actions taken in the same state. We thus define counterfactual influence, which takes two forms:
probabilistic counterfactual influence (forward and backward) and metric counterfactual influence.

◦ Forward probabilistic counterfactual influence quantifies how much more likely the outcome is than
under the action change: cπ(st, at | z) = pπ(Z = z |St = st, At = at)− pā∼π̄,π(Z = z |St = st, At =
ā).

◦ Backward probabilistic counterfactual influence quantifies how much more likely the action is than
counterfactual actions, given the outcome: cπ(st, at | z) = pπ(At = at |St = st, Z = z)− pā∼π̄,π(At =
ā |St = st, Z = z).

◦ Metric counterfactual influence quantifies how far from the outcome the counterfactual outcome is:
cπ(st, at) = dist(Eπ[Z |St = st, At = at],Eā∼π̄,π[Z |St = st, At = ā]).
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In practice, such influence functions can be approximated empirically via simulation, by averaging over a
set of sampled trajectories T . In more details, given the ability to reset the simulator to an arbitrary state,
approximations of above quantities are obtained by replacing probabilities by empirical probabilities, and
expectations by empirical averages. Depending on the term to be approximated, trajectories are either
sampled from the behavior policy or from the non-stationary policy that takes a counterfactual action
and samples actions according to the behavior policy afterwards. Given the influence cπ(. . . ), we note its
empirical counterpart ĉπ(. . . , T ).

Note that the metric counterfactual influence is an implicit function according to our definitions, but
still depends on an outcome Z, which we calculate the expectation of. Also, an estimate of it is obtained
as cπ(st, at | z) = dist(z,Eā∼π̄,π[Z |St = st, At = ā]), which is less costly to compute via simulations, since
it does not require to simulate outcomes under the behavior policy.

Counterfactual actions. In what comes next, we take an interest in the counterfactual notion of
influence, which requires to take counterfactual actions. We call the policy π̄ from which such actions are
sampled the counterfactual policy. The observed action that is modified is noted at (with t arbitrary in
[0, T ]). While counterfactual policies can take many forms, two stand out naturally (see Fig. B.5):

◦ deterministically modifying the behavior policy, i.e. choosing ā 6= at such that π̄(ā|st) = 1.

◦ pruning the observed action from the behavior policy, i.e. having π̄(at|st) = 0 and π̄(ā|st) =
π(ā|st)/(1− π(at|st)) for all ā 6= at.

Counterfactual consistency. Action interventions generate counterfactual scenarios, that give quanti-
tative answers to "what if I had acted differently?" questions. For consistency, except from the action that
is modified, every element of the trajectory should be left unchanged. Nevertheless, the agent should not
conserve its exact behavior after the action modification: for proper consistency, the simulation should keep
the stochastic factors of the original trajectory, which means that all actions after the intervention have the
potential to differ in the modified trajectory. We illustrate the difference it makes in Fig. B.4. Consistency
is key to isolating the contribution of the modified action, and to assigning accurate credit. We provide a
visual justification for that assertion in Fig. B.3 right. Another argument in favor of consistency is the
Invariance criterion (criterion 4), which implies that actions that lead to identical immediate states should
be assigned identical credit. If we do not enforce consistency (i.e. we sample new stochastic factors to get
transitions and actions), taking a counterfactual action that leads to the same immediate state can give
different outcomes because the rest of the trajectory can diverge (due to randomness).

Grounded credit assignment oracle. We thus propose a novel way to determine ground truth credit
assignment, given a behavior policy. It consists in evaluating the influence of counterfactually modifying
the selected action via simulation. It is a grounded, explicit credit assignment function, and is compatible
with any type of counterfactual influence. We provide the pseudo-code for the counterfactually consistent
version of the credit assignment oracle in Algorithm 3. Note that we use a simple form of counterfactual
inference here, namely Monte-Carlo simulation, though more advanced methods could be used (Buesing
et al., 2019). We qualitatively assess the oracle against the proposed criteria in Appendix B.6.1 and we
give additional details about implementation in Appendix B.6.2.

B.6 Additional details about the credit assignment oracle
In this section, we complete our presentation of the credit assignment oracle (see Algorithm 3).
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Figure B.3: Left: Standard counterfactual inference in the Key-to-Door task (see Fig. 4.2). Due to
randomness, the agent collects more apples in the counterfactual trajectory where it does not take the
key, which can lead to bias, i.e. mapping the action of taking the key to a lesser outcome. Right:
Counterfactually consistent inference in the Key-to-Door task. Consistency enforces equal dynamics after
intervention in the counterfactual scenario, so the resulting difference in outcome precisely measures the
contribution of taking the key.

➊

➋

Figure B.4: Modifying one action and keeping others identical (1) leads to poor counterfactual inference:
the modified action seems to impact a lot performance, while the expected resulting trajectory when
resampling subsequent actions (2) leads to an unchanged outcome.

Figure B.5: Left: original policy. Middle: deterministic counterfactual policy. Right: pruned counter-
factual policy.
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Algorithm 2: Consistent simulation of a counterfactual trajectory.
Input: An MDPM, an outcome z, a trajectory τ , stochastic factors

ξ = {ξδ0} ∪ {ξπ,i, ξR,i, ξP,i}T−1
i=0 , a timestep t, a counterfactual policy π̄.

Output: The counterfactual trajectory τ̄ .
ResetM to st;
Set s̄← st;
Sample ξ̄π,t;
Set ā← π̄(s̄, ξ̄π,t);
Initialize the counterfactual trajectory τ̄ ← τ1:t−1 ∪ {s̄, ā, R(s̄, ā, ξR,t)};
/* Sample the rest of the counterfactual trajectory. */
j ← t;
while j < T do

Compute the state s̄← P(s̄, ā, ξP,j);
Compute the action ā← π(s̄, ξπ,j+1);
Update the trajectory τ̄ ← τ̄ ∪ {s̄, ā, R(s̄, ā, ξR,j+1)};
j ← j + 1;

end

Algorithm 3: Counterfactually consistent credit assignment oracle.
Input: An MDPM, an outcome z, a trajectory τ , stochastic factors

ξ = {ξδ0} ∪ {ξπ,i, ξR,i, ξP,i}T−1
i=0 , a timestep t, a counterfactual policy π̄, a number of

trajectories to sample k.
Output: The oracle credit assignment cπ(t | τ).
Initialize the counterfactual trajectory buffer T̄ ← [];
for i in [1, k] do

Simulate a counterfactual trajectory τ̄ = fI(π→π̄,t)(τ, ξ) (Algorithm 2);
Save to buffer T̄ ← T̄ ∪ τ̄ ;

end
Compute the credit cπ(t | τ) = ĉπ(t | τ, T̄ );
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B.6.1 Criteria satisfied by the counterfactual oracle
We now show that the proposed oracle satisfies all the desiderata expressed in the previous section, which
we back by informal arguments when obvious, and through experimentation when not. Choosing the
counterfactual metric influence as the desired notion of influence, criteria 1-3 are satisfied since the oracle
makes use of this very notion of influence. Invariance (criterion 4) is the by-product of counterfactual
consistency: a counterfactual action that leads to the same immediate state will reproduce the exact same
trajectory as the original in the counterfactual simulation. Stability (criterion 5) and Generalizability
(criterion 6) depend on the similarity functions used, so we provide experiments to assess if these criteria
are satisfied in a simple task. Expressivity (criterion 7) comes from the fact that the proposed oracle
is quite general, and can be adapted to many outcomes and tasks. We provide additional elements on
Scalability (criterion 8) in Appendix B.1.

B.6.2 Implementing the counterfactual oracle
To make the computation of the oracle feasible, one should have control over both 1) the randomness
of the action selection (i.e. to reproduce actions from the original trajectory when states match at
identical timesteps), and 2) the randomness of the environment (i.e. both the transition kernel and reward
function, to reproduce transitions and rewards from the original trajectory when states match at identical
timesteps). To achieve 1) and 2), a solution consists in storing the sequences of states of the random
number generators (RNGs) controlling randomness. We call the corresponding data structure a keychain.
The keychain keeps lists of RNG states for the different stochastic elements (i.e. the policy, transition
kernel, state-to-observation kernel, reward function).

We now describe how to implement the proposed counterfactual oracle. The oracle is simulation-based,
so one needs to have access to a simulator of the MDP at hand, which we will call the environment. We
describe how to sample a counterfactual trajectory in a consistent way, the rest of the process being
described in Algorithm 3. We use a Python-like syntax overall and a Jax-like (Bradbury et al., 2018)
syntax for the RNG. The implementation is based on two main objects: a keychain and a wrapper. The
keychain is implemented as a key-value store that keeps track of the current key of the RNG in each state
seen so far in the current episode:

class Keychain :

def __init__ (self , keychain =None):
if keychain is None:

self. keychain = collections . defaultdict ( lambda : None)
else :

self. keychain = keychain

def get_key (self , state ):
if self. keychain [ state ] is None:

self. keychain [ state ] = jax. random . PRNGKey ( hash ( state ))
return self. keychain [ state ]

def set_key (self , state , key):
self. keychain [ state ] = key

def gen_key (self , state ):
new_key , subkey = jax. random . split (self. get_key ( state ))
self. set_key (state , new_key )
return subkey

def deepcopy (self):
return Keychain (copy. deepcopy (self. keychain ))
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The wrapper adds a keychain as an attribute of the environment (resp. policy) and uses it as the
source of RNG when sampling. Here is an example of such a wrapper for the environment:

class StatewiseRNGEnvWrapper :

def __init__ (self , env):
self.env = env
self. reset ()

@property
def state (self):

return self.env. state

def reset (self):
self. keychain = Keychain ()
return self.env. reset ()

def step(self , action , return_keychain = False ):
subkey = self. keychain . gen_key (self. state )
if return_keychain :

return self.env.step(action , subkey ), self. keychain . deepcopy ()
return self.env.step(action , subkey )

def set_state (self , state , keychain ):
self.env. state = state
self. keychain = keychain . deepcopy ()

Here is an example of a policy wrapper:

class StatewiseRNGPolicyWrapper :

def __init__ (self , policy ):
self. policy = policy
self. reset ()

def reset (self):
self. keychain = Keychain ()

def sample (self , state , return_keychain = False ):
subkey = self. keychain . gen_key ( state )
if return_keychain :

return self. policy . sample (state , subkey ), self. keychain . deepcopy ()
return self. policy . sample (state , subkey )

def set_rng (self , keychain ):
self. keychain = keychain . deepcopy ()

B.7 A discussion on lucky outcomes
A criticism that might be addressed to explicit credit assignment methods is that they might encourage
lucky outcomes by crediting the responsible actions. We illustrate that aspect on a variant of the Key-
to-Door problem that we call the Gambler’s Key-to-Door. It is identical to the standard Key-to-Door
task (see Fig. 4.2a) except that the reward for opening the door is drawn from a given distribution that
is independent from the actions of the agent. In particular, we suppose that the expected reward for
opening the door is negative, which means optimal policies never do so. In that scenario, and for a policy
that will always go for the door, accurate credit assignment will map lucky outcomes to the action of
taking the key, which in turns might lead to mistakenly reinforcing the action of taking the key. We argue
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that this can and should be mitigated by a good incorporation strategy. A clever incorporation strategy
could leverage optimism to kickstart learning but should asymptotically take into account the likelihood
of the outcome to decide what to reinforce. Another way to view this is to say that credit assignment
pinpoints actions that are responsible for the observed outcomes, but it is the role of the RL algorithm to
provide with reinforcements that do not suffer from to much variance.



Appendix C

Annex of Chapter 6

In this annex we provide additional details about our experimental setup and the hyperparameters we use
in Chapter 6.

C.1 Time limits
In Triggers, episodes stop after 50 timesteps in 8x8 grids and 100 timesteps in 12x12 grids. Those values
were chosen large enough such that the policies used to train the reward predictor have a chance to gather
informative rewards. In DMLab, episodes stop after 900 timesteps, as defined by the standard settings.

C.2 Reward prediction model
We use the same set of hyperparameters in all our experiments with few variation. In Triggers experiments,
we use 128 units per dense layer, 32 convolutional filters and a single convolutional layer to process
partial states and actions. We apply dropout (Srivastava et al., 2014) at several places in the model as a
regularizer. We use a dropout rate of 0.1 after dense layers, a dropout rate of 0.2 in the self-attention
mechanism, and a dropout rate of 0.2 in the normalization blocks of the Transformer architecture. Since
Transformers create representations via pooling, they need additional information so as to take into
account the relative positions of sequence elements. Hence, we use the same positional encoding scheme
as in Vaswani et al. (2017), that is we add sine and cosine signals of varying frequencies to the sequence of
input embeddings Xemb before the self-attention layer:

PEt,2i = sin
( t

ν2i/di

)
,

PEt,2i+1 = cos
( t

ν2i/di

)
,

X = Xemb + PE.

In these equations, t refers to the timestep in the sequence, i to the dimension of the embedding
considered, and ν has a constant value of 10000.

In DMLab experiments, we use two convolutional layers, 16 filters for each, and otherwise identical
hyperparameters.

Typically, we set the class weights in the loss function to w(1) = w(−1) = 0.499, w(0) = 0.02. Fig. C.1
gives an overview of the whole architecture.
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Figure C.1: The architecture used for Secret. α·←t is the vector containing the attention weights of the
model for its prediction at step t.
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C.3 Heuristic for precision-recall analysis
In Chapter 6.3.1, we compare the attention vectors we get as outputs from the reward prediction model
to ideal credit assignment with binary metrics. The ground truth we use is a binary vector of the size of
the attention vector. Its values are 0 everywhere and 1 for timesteps that correspond to the activation of
a Triggers. To do so, we introduce a simple heuristic to binarize the attention scalars: we consider all
values above a threshold α to correspond to events to be credited. Then, we can measure precision and
recall as in a binary classification paradigm. The precision and recall reported are the average precision
and recall over 4 scenarios : Triggers with a 8x8 grid, 1 trigger and 1 reward; Triggers with a 8x8 grid, 1
trigger and 2 rewards; Triggers with a 8x8 grid, 2 triggers and 2 rewards; and Triggers with a 8x8 grid,
3 triggers and 1 reward. In each scenario, we train the model over a set of 40000 trajectories, each of
which is drawn from a randomly sampled maze. Then, we apply it on 5000 trajectories from held-out
environments and collect the attention weights corresponding to predictions on timesteps where the agent
experiences positive reward. We use a fixed α of 0.2.

C.4 Transfer in Triggers
We collect 40000 trajectories sampled from random policies to train the prediction reward model in all
distributions of environments.

In experiments involving tabular Q-learning we use online Q-learning with a learning rate of 0.1 and a
constant greediness factor ε also equal to 0.1.

For the out-of-domain transfer experiment with modified dynamics, we use a smaller version of the
DQN architecture in Mnih et al. (2013). The first convolutional layer has 8 filters, a 3x3 kernel size and a
stride of 2. The second and the third convolutional layers have both 16 filters, a 3x3 kernel size and a
stride of 1. Those are completed by a feed-forward layer with 64 units followed by another feedforward
layer with as many units as the number of available actions. The greediness factor ε is decayed linearly
from 1 to 0.01 over 250000 steps in the environment at train time and has a constant value of 0.001 at test
time. We use RMSProp (Tieleman and Hinton, 2012) as an optimizer with a base learning rate of 0.00025.
We update the target network every 2000 steps and initially fill the replay buffer with 5000 transitions
sampled following a random policy. The replay buffer has a maximum size of 1000000.

C.5 In-domain transfer in DMLab
We provide additional details about this setup: we train Secret using 10000 trajectories sampled from
a distribution of mazes that are generated randomly. These trajectories are sampled using an agent
trained over the same distribution. We do so to increase the proportion of trajectories where rewards are
experienced. Indeed, we found that using random policies yielded very few of these. Once the model is
trained, we use it to compute the attentional potential function over a fixed maze. 1000 trajectories are
sampled on the fixed maze using the same policy as the one that generated the trajectories used to train
the reward prediction model. Since consecutive frames can be very similar, we consider a positive reward
prediction to be correct (and thus use the corresponding attention weights when estimating the potential)
if it happens within 5 frames of a reward actually experienced in the environment. We then compare the
performance of agents trained with the original reward function to those trained with the shaped reward.

An important point is that we use the knowledge of the position and the keys the agent possesses to
build the state used to compute the potential function. This information is not given to the agent. We
create an approximate state as such: it is the concatenation of the discretized position and the identifier
of the key possessed. The discretized position is the result of the euclidean division by a cell size integer
cs and is necessary since the DMLab position is continuous. cs is fixed and has the value of 50 in our
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Figure C.2: Attention heatmap in DMLab. Attention concentrates around the key which is necessary to
unlock reward.

experiments. We acknowledge that relying on a manually constructed state limits the generality of our
approach, but we are confident that this limitation can be addressed in future work by using an estimate
of the true state.

All agents mentioned in that section are PPO learners with a learning rate of 0.00019, an entropy
coefficient of 0.0011, 12 actors, a discount factor γ = 0.99. They use generalized advantage estima-
tion (Schulman et al., 2016) with λ = 0.95. All those hyperparameter values are taken as is from the
experiment section in Savinov et al. (2019), whose code is open-source.

C.6 Attention heatmap in DMLab
In Fig. C.2, we display the per-position average attention weight along trajectories starting in the middle-
left room that led to opening the blue doors. Attention (shown in shades of red) concentrates around the
key position in the lower-left corner.

C.7 Additional experiments
In this section we provide the results of additional experiments that are useful to understand several
aspects of Secret.

C.7.1 Influence of the state transformation in Triggers
We study the influence of the size of the window in the transformation used to turn states into observations
in Triggers. The goal of this experiment is notably to study the effect of the degree of partial observability
to the assigned credit, and also the effect of transferring a possibly badly assigned credit to an agent,
through reward shaping.

We consider the following window types: 3x3, 5x5 and 7x7 (odd numbers because the window is
centered on the agent), as well as the full state. We place ourselves in the in-domain setting and evaluate
Secret on held-out environments from the same distribution as the source. Environments are 8x8 mazes
with 3 triggers and 1 prize. We display reward prediction and credit assignment metrics for each window
size in Table C.1, and the average discounted return of tabular Q-learning agents for each window size in
Fig C.3a. Notice that the considered reward prediction accuracy (Table C.1) is weighted, such that all
classes have the same importance.
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Window size Reward prediction accuracy Credit precision Credit recall
3x3 0.67± 0.06 1.0± 0. 1.0± 0.
5x5 0.92± 0.02 0.57± 0.04 0.38± 0.03
7x7 0.75± 0.12 0.07± 0.04 0.03± 0.02
Full state 0.76± 0.14 0.10± 0.05 0.02± 0.02

Table C.1: Influence of the window size on the reward prediction and credit assignment quality.

w(0) Reward prediction accuracy Credit precision Credit recall
1.0 0.72± 0.15 0.83± 0.34 0.59± 0.27
0.1 0.72± 0.09 1.0± 0. 0.89± 0.05
0.01 0.68± 0.09 1.0± 0. 0.93± 0.05
0.001 0.65± 0.04 1.0± 0. 0.95± 0.03

Table C.2: Influence of the class weighting on the reward prediction and credit assignment quality.

In this setting, we can observe that bigger window sizes are detrimental to the quality of the credit
assigned, even if it helps to predict reward (Table C.1). This was to be expected: the more “observable”
is the sequence of observations used to train the reward predictor, the easier is the reward prediction (in
the full state case, it can be predicted solely from the current state-action couple), but also the less likely
the assigned credit will be centered on the trigger. However, even with a low credit precision, the shaped
reward still accelerates the learning process (Fig. C.3a).

C.7.2 Influence of the class weights in the reward prediction loss
We stated that class weighting was important to keep the variance of prediction metrics across a variety
of datasets of sampled trajectories low, the classes (sign of the reward) being quite imbalanced. Here, we
study the influence of the class weights considered in the loss of the reward prediction model in Triggers.

We consider the following class weights for the class corresponding to zero rewards: w(0) = 1,
w(0) = 0.1, w(0) = 0.01 and w(0) = 0.001. The other class weights are fixed and have the value
w(1) = w(−1) = 1. We place ourselves in the in-domain setting and evaluate Secret on held-out
environments from the same distribution as the source. Environments are 8x8 mazes with 3 triggers and 1
prize.

We display reward prediction and credit assignment metrics for each window size in Table C.2, and the
average discounted return of tabular Q-learning agents for each window size in Fig C.3b. In that setting,
putting heavier misclassification penalties for under-represented classes (−1 and 1) results in improved
credit and RL performance.

C.7.3 Influence of the amount of available data
We study the influence of the amount of data used by Secret in a Triggers task. The objective is to assess
how data-demanding is the proposed approach, and the effect of a lack of data on the transfer. There are
two types of data: the data from the source domain (used to train its reward prediction component), and
the data from the target domain (used to build the potential function).

Source distribution We consider the following number of trajectories to train the self-attentive reward
predictor: 500, 1000, 5000, 10000, 25000 and 50000. We place ourselves in the in-domain setting and
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Number of source episodes Reward prediction accuracy Credit precision Credit recall
500 0.53± 0.11 0.23± 0.37 0.09± 0.2
1000 0.65± 0.07 0.49± 0.33 0.52± 0.42
5000 0.79± 0.08 0.9± 0.30 0.9± 0.30
10000 0.84± 0.07 0.9± 0.30 0.9± 0.30
25000 0.88± 0.09 0.9± 0.30 0.9± 0.30
50000 0.83± 0.11 0.8± 0.4 0.8± 0.4

Table C.3: Influence of the number of episodes in the source domain on the reward prediction and credit
assignment quality.

evaluate Secret on held-out environments from the same distribution as the source. Environments are
8x8 mazes with 3 triggers and 1 prize.

We display reward prediction and credit assignment metrics for each window size in Table C.3, and
the average discounted return of tabular Q-learning agents for each number of trajectories in Fig. C.3c.
We observe that increasing the size of the dataset improves the results, both for the efficiency of the
reward predictor (Table C.3) and for the transfer (Fig. C.3c). Having too few data can slow down learning
compared to a vanilla agent (Fig. C.3c), but it does not prevent from learning to solve the task.

Target distribution We consider the following number of trajectories sampled from the target envi-
ronment to build the potential function: 100, 500, 1000, 2000, 5000, 10000. We place ourselves in the
in-domain setting and evaluate Secret on held-out environments from the same distribution as the source.
Environments are 8x8 mazes with 3 triggers and 1 prize.

We display the average discounted return of tabular Q-learning agents for each number of trajectories
in the source domain in Fig.C.3d. Here again, we observe that the number of episodes in the target
distribution is an important parameter for Secret, but it has less impact than the number of episodes in
the source domain.

C.7.4 Attention distributions in out-of-domain scenarios
In the main paper, we have only shown the distribution of attention for an in-domain scenario. Here,
following the same protocol as in Chapter 6.3.1, we measure the distribution of attention weights in the
two out-of-domain scenarios considered in our experiments: bigger mazes and inverted dynamics. The
results are reported in Fig. C.4. We observe a similar distribution of attention, peaked on the triggers.
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(a) Effect of the window size on Secret. (b) Effect of the class weighting on Secret.

(c) Effect of source data on Secret. (d) Effect of target data on Secret.

Figure C.3: Effect of various parameters on Secret.
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Figure C.4: On the left, the distribution of attention weights around triggers for correct positive reward
predictions in a Triggers maze from an out-of-domain distribution (bigger mazes). The x-axis denotes the
signed number of steps between the state-action couple receiving attention and the closest actual moment
the agent activated a switch. On the right, same figure for another out-of-domain distribution (inverted
dynamics).
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Annex of Chapter 7

In this annex we provide additional proofs and details about our experimental setup and the hyperparam-
eters we use in Chapter 7.

D.1 Proof of Thm. 2
Theorem. The cost function satisfies the following Bellman equation:

Cπ+(s) = −η(1− π+(ā|s)) + γEa∼π,s′∼P(·|s,a)C
π+(s′).

Proof.
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⇔
Cπ+(s) = −η(1− π+(ā|s)) + γEa∼π,s′∼s,a

[
Cπ+(s′)

]
,

as

V π(s) = Ea∼π,s′∼s,a
(
r(s, a) + γEs′

[
V π(s′)

])
.

D.2 Proof of Prop. 1
Property 4.

V
π+
+ (s) =(1− π+(ā|s))Ea∼π\ā

[
Q
π+
\ā (s, a)

]
+ π+(ā|s)

(
Ea∼π̄

[
Q
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\ā (s, a)

]
+ η

)
.

Proof. We separately compute V π and Cπ+ , the two components of V π+
+ . First we have:
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Second, we have:
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]
= −(1− π+(ā|s))η

+ γ
∑
a∈A

(
π+(a|s) + π+(ā|s)π̄(a|s)

)
Es′
[
Cπ+(s′)

]
= (1− π+(ā|s))

(
− η + γEa∼π\ā

[
Cπ+(s′)

])
+ π+(ā|s)γEa∼π̄

[
Cπ+(s′)

]
.

Consequently,

V
π+
+ (s) = V π(s) + Cπ+(s) (from Theorem 2)

= (1− π+(ā|s))Ea∼π\ā
[
Q
π+
\ā (s, a)

]
+ π+(ā|s)

(
Ea∼π̄

[
Q
π+
\ā (s, a)

]
+ η

)
.
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D.3 Proof of Prop. 2
Property 5.

Q
π+
+ (s, a) =

{
Q
π+
\ā (s, a) if a 6= ā,

Ea∼π̄
[
Q
π+
\ā (s, a)

]
+ η if a = ā.

Proof.

Q
π+
+ (s, a) := r+(s, a) + γEs′∼P+(.|s,a)

[
V
π+
+ (s′)

]
=


r(s, a)− η + γEs′∼P(.|s,a)

[
V
π+
+ (s′)

]
if a 6= ā

Ea∼π̄
[
r(s, a) + γEs′∼P(.|s,a)

[
V
π+
+ (s′)

]]
if a = ā

=
{
Q
π+
\ā (s, a) if a 6= ā

Ea∼π̄
[
Q
π+
\ā (s, a)

]
+ η if a = ā

.

D.4 Proof of Prop. 3
Property 6. The following policy π+ is greedy with respect to Q+:

π+(·|s) =


I
{
a∈arg maxAQ+\ā(s,a)

}
∣∣∣ arg maxAQ+\ā(s,a)

∣∣∣ if GQ+\ā(s) > η,

I
{
a = ā

}
otherwise.

Proof.

max
A

Q+(s, ·) > Q+(s, ā)⇔ max
A

Q+\ā(s, a) > Eπ̄
[
Q+\ā(s, a)

]
+ η

⇔ GQ+\ā(s) > η.

D.5 Proof of Thm. 3
Theorem. T is a γ-contraction, and converges to Qπ

∗
+
\ā where π∗+ is the optimal policy in the lazy-MDP.

Proof. First, we define the operator in the augmented MDP

T+ : Q+(s, a)→ r+(s, a) + γEs′∼P+(.|s,a)

[
max
A+

Q+(s′, .)
]

which is known to be a contraction, and its successive applications converges to the unique, optimal fixed
point, Q∗+(s, a ∈ A+):

Q∗+(s, a) = r+(s, a) + γEs′∼P+(.|s,a)

[
max
A+

Q∗+(s′, .)
]
.
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Now, let Q\ā1
(s, a ∈ A) and Q\ā2

(s, a ∈ A) be arbitrary Q-function of the base MDP, let s, a be any
state-action pair in the base MDP, and assume without loss of generality that TQ\ā1

(s, a) ≥ TQ\ā2
(s, a).

We have

0 ≤ |T Q\ā1
(s, a)− T Q\ā2

(s, a)|
= T Q\ā1

(s, a)− T Q\ā2
(s, a)

= T+Q1+(s, a)− T+Q2+(s, a)
= γEs′|s,a[Q1+(s′, a∗1)−Q2+(s′, a∗2)︸ ︷︷ ︸

≥Q2+(s′,a∗1)

] with a∗i ∈ arg max
A+

Qi(s′, ·)

≤ γEs′|s,a[Q1+(s′, a∗1)−Q2+(s′, a∗1)].

If a∗1 6= ā, we have

γEs′|s,a
[
Q1+(s′, a∗1)−Q2+(s′, a∗1)

]
= γEs′|s,a

[
Q\ā1

(s′, a∗1)−Q\ā2+
(s′, a∗1)

]
≤
∥∥∥Q\ā1

−Q\ā2

∥∥∥
∞
.

If a∗1 = ā, we have

γEs′|s,a
[
Q1+(s′, a∗1)−Q2+(s′, a∗1)

]
= γEs′|s,a

[
Eπ̄
[
Q̂1(s′, a′) + η

]
− Eπ̄

[
Q̂2(s′, a′) + η

]]
≤
∥∥∥Q\ā1

−Q\ā2

∥∥∥
∞
.

Thus, we can conclude that ‖T Q\ā1
− T Q\ā2

‖∞ ≤ γ‖Q\ā1
−Q\ā2

‖∞, making T a γ-contraction.

Now we show that successively applied, it converges to Qπ
∗
+
\ā .

Let T N+ (q+) = T+ ◦ . . . ◦ T+︸ ︷︷ ︸
Ntimes

(Q+). As T N+ (Q+) converges to Q∗+ with N , we have:

∀ε > 0, ∃Nε,
∥∥∥T Nε+ (Q+)−Q∗+

∥∥∥
∞
< ε

Besides, for a 6= ā, we have:

T+(Q+)(s, a) = T (Q\ā)(s, a),
Q∗+(s, a) = Q∗\ā(s, a),

so,

∀s ∈ S, a ∈ A
∣∣∣T Nε(Q\ā)(s, a)−Q∗\ā(s, a)

∣∣∣ =∣∣∣T Nε+ (Q+)(s, a)−Q∗+(s, a)
∣∣∣,
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and ∥∥∥T Nε(Q\ā)−Q∗\ā
∥∥∥
∞

= max
s∈S,a∈A

∣∣∣T Nε(Q\ā)(s, a)−Q∗\ā(s, a)
∣∣∣

= max
s∈S,a∈A

∣∣∣T Nε+ (Q+)(s, a)−Q∗+(s, a)
∣∣∣

≤ max
s∈S,a∈A+

∣∣∣T Nε+ (Q+)(s, a)−Q∗+(s, a)
∣∣∣

=
∥∥∥T Nε+ (Q+)−Q∗+

∥∥∥
∞
< ε

D.6 Proof of Thm. 4
Theorem 8. Let Qπ̄(s, a ∈ A) be the Q-function of the default policy in the base MDP. Then: ηmax =
maxsGQπ̄ (s).

Proof. Since the lazy-gap does not depend on η when the agent always follows the default policy:

ηmax = sup
{
η > 0 | ∃s, G∗(s) = η

}
= max

s
G∗(s).

D.7 Proof of Thm. 5
Theorem. Let π∗ be the optimal policy in the base MDP, and Q∗(s, a ∈ A) the associated Q-function.
Then:

ηmin =

min
s

max
a

Q∗(s, a)− Eπ̄
[
Q∗(s, ·)

]
1 +

(
Eπ∗

[
Zπ∗(s, ·)

]
− Eπ̄

[
Zπ∗(s, ·)

]) ,
with ηmin ≥ 0.

Proof.

Corollary 2. Let x(t) = u(t)
1+v(t) for all t where x(t) ≥ 0, and xmin = mint x(t), xmax = maxt x(t) Then:

xmin = min
t

(
u(t)− xminv(t)

)
xmax = max

t

(
u(t)− xmaxv(t)

)
Proof of corollary:

We have, for all t, xmin = x(t∗) ≤ x(t). Since x(t) > 0, we have for all t,

u(t)− x(t∗)v(t) ≥ u(t)− x(t)v(t) = x(t)



178 APPENDIX D. ANNEX OF CHAPTER 7

And since x(t) > x(t∗), for all t,

u(t)− x(t∗)v(t) ≥ x(t∗) = u(t∗)− x(t∗)v(t∗),

which means that
x(t∗) = min

t

(
u(t)− x(t∗)v(t)

)
Similarly, we have, for all t, xmax = x(T ∗) ≥ x(t). Since x(t) > 0, we have for all t,

u(t)− x(T ∗)v(t) ≤ u(t)− x(t)v(t) = x(t)

And since x(t) ≤ x(T ∗), for all t,

u(t)− x(T ∗)v(t) ≤ x(T ∗) = u(T ∗)− x(T ∗)v(T ∗),

which means that
x(T ∗) = max

t

(
u(t)− x(T ∗)v(t)

)
So we prove both qualities of the corollary. An immediate consequence of this corollary is that if
x(s, t) = u(s,t)

1+v(s,t) with v(s, t) ≥ 0, then xminimax = mins maxt x(s, t) verifies:

xminimax = min
s

max
t

(
u(s, t)− xminimaxv(s, t)

)
Now, we will use u(s, a) = Q∗(s, a)− Eπ̄

[
Q∗(s, .)

]
and v(s, a) = Eπ∗

[
Zπ
∗(s, .)

]
− Eπ̄

[
Zπ
∗(s, .)

]
. Note

that u(s, a) > 0. If v(s, a) ≤ −1 then whatever is η, it is always better to follow π∗ (indeed, the lazy-gap
is always larger than η):

GQ∗\ā(s) = max
a

Q∗\ā(s, a)− Eπ̄
[
Q∗\ā(s, .)

]
= max

a
Qπ
∗
(s, a)− ηEπ∗

[
Zπ
∗
(s, .)

]
− Eπ̄

[
Qπ
∗
(s, .)− ηZπ

∗
(s, .)

]
= max

a
u(s, a)− ηv(s, a) > η

Hence we only consider v(s, a) > −1. In that case, x(s, a) = u(s,a)
1+v(s,a) > 0 and we can apply equ. D.7 to

η∗ = xminimax:

η∗ = min
s

max
a

(
u(s, a)− η∗v(s, a)

)
= min

s
GQ∗\ā(s)

D.8 Effect of the cost
In order to empirically validate the cost boundaries we established in Chapter 7.5, we display in Fig. D.1
the frequency of lazy actions played by an optimal agent as a function of η in the R&B and KDT
environments, under different default policies. As expected, when η < ηmin no lazy actions are ever
selected, and when η > ηmax, the agent always chooses the lazy action.
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(a) (b) (c) (d)

Figure D.1: Frequency of the lazy action as a function of η in various scenarios. With η < ηmin, the
agent never uses the lazy action, and with η > ηmax, the agent always uses the lazy action. Note that
the empirical values for ηmin and ηmax match the values calculated with the theoretical expressions from
Chapter 7.5. (a) KDT with a uniform random default policy. (b) KDT with a default policy that always
takes second-best actions. (c) R&B with a uniform random default policy. (d) R&B with a default
policy that always takes second-best actions.

D.9 Implementation details
For the Atari experiments, we used the default architectures and hyperparameters in the standard imple-
mentations from Dopamine. Details of the networks architecture, learning procedure and hyperparameter
selection are described in Castro et al. (2018). For the discrete environments (KDT and R&B) we could
compute exact value functions via Value Iteration up to convergence. In the exploration experiment, we
assumed that the agent had no knowledge of the dynamics of the environment and used tabular Q-learning
with learning rate α = 0.5, epsilon-greedy exploration starting at ε0 = 0.1 and linearly decayed until
ε∞ = 0. The training is performed over 100 steps containing 1000 episodes of maximum length 1000.

D.9.1 Lazy-gap as a measure of state importance
Fig. D.2 displays states importance according to these measures on the KDT environment. As visible, the
lazy-gap only attributes importance to the states that lead to key actions (picking up the keys, passing
through the doors, reaching the treasure). On the other hand, the action-gap uniformly emphasizes all the
states along the trajectory of the optimal policy, while the importance advice is dominated by temporal
proximity to the rewards and does not discriminate key actions.

D.9.2 Atari curves
We display the in-game scores of DQN, DQN with warm restarts, and DQN in Lazy-MDPs in all Atari
2600 games that are mentioned in Chapter 7.7.4 in Fig. D.3. For each game, two figures are provided: the
left figure contains the scores, the right figure contains the fraction of controls (between 0 and 1, 0 being
maximally lazy, and 1 taking control in all states) by the agent in the lazy-MDP.
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(a) action gap (b) important advice (c) lazy-gap η = 0.03 (d) lazy-gap η = 0.05

Figure D.2: State importance according to different metrics. Top row: KDT without the key. Bottom row:
KDT with the key. (a) Importance according to the action-gap. (b) Importance according to importance
advice. (c) Importance according to the lazy-gap with η = 0.03. (d) Importance according to the lazy-gap
with η = 0.05. Brighter colors indicate higher importance.
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Figure D.3: Performances on all 60 Atari 2600 games.
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Appendix E

Annex of Chapter 8

We organize the supplementary material for Chapter 8 as follows: in Appendix E.1, we include the proofs
of results from the main text, as well as additional formalism; in Appendix E.2, we provide additional
details about the proposed algorithms, including pseudo-code and figures that did not fit in the main text;
and in Appendix E.3, we detail our experimental procedure, including hyperparameters for all methods.

E.1 Mathematical elements and proofs

E.1.1 Possible definitions of reversibility

In this section, we present several intuitive definitions of reversibility in MDPs. We chose the third
definition as our reference, which we argue presents several advantages over the others, although they can
be interesting in specific contexts. Indeed, Equ. E.1.1 is simpler than Equ. E.1.1, as it does not depends on
the discount factor, and more general than Equ. E.1.1, as it does not enforce a fixed number of timesteps
for going back to the starting state.

Discounted reward.

φπ,K(s, a) :=
K∑
k>t

γk−tpπ(st+k = s | st = s, at = a) ,

φπ(s, a) :=
∞∑
k>t

γk−tpπ(st+k = s | st = s, at = a).

Fixed time step.

φπ,K(s, a) := sup
k≤K

pπ(st+k = s | st = s, at = a) ,

φπ(s, a) := sup
k∈N

pπ(st+k = s | st = s, at = a).

183
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Undiscounted reward.

φπ,K(s, a) :=
K∑
k=1

pπ(st+k = s, st+k−1 6= s, . . . , st+1 6= s | st = s, at = a) ,

= pπ(s ∈ τt+1:t+K+1 | st = s, at = a) .

φπ(s, a) :=
∞∑
k=1

pπ(st+k = s, st+k−1 6= s, . . . , st+1 6= s | st = s, at = a) ,

= pπ(s ∈ τt+1:∞ | st = s, at = a).

E.1.2 Additional properties

1

2

3

0.1
0.1

0.1
0.9

0.9

0.9

Figure E.1: Counter-
example for propo-
sition 4. The initial
state is sampled
uniformly amongst
{0, 1, 2}.

We write s→ s′ if ψπ(s, s′) ≥ 0.5 ("it is more likely to go from s to s′ than to go
from s′ to s") and s⇒ s′ if ψπ(s, s′) = 1 ("it is possible to go from s to s′, but it
is not possible to come back to s from s′").

1. ψπ(s, s′) + ψπ(s′, s) = 1

2. if s0 ⇒ s1 ⇒ s2 then s0 ⇒ s2 (transitivity for ⇒)

3. if s0 → s1 → · · · → si ⇒ si+1 → · · · → st then s0 ⇒ st

4. in general s1 → s2 and s2 → s3 doesn’t imply s1 → s3

Proofs:
(1) ψπ(s, s′) + ψπ(s′, s) = Eτ∼πEt 6=t′|st=s,st′=s′

[
1t′>t + 1t′<t

]
=

Eτ∼πEt6=t′|st=s,st′=s′
[
1
]

= 1.
(2) and (3): As (3) is stronger than (2), we only prove (3). If it is possible to have s0 after st in a

trajectory, then it is possible to have si after st. As we have a positive probability of seeing st after si+1,
we have a positive probability of seeing si after si+1, which contradicts si ⇒ si+1.

(4) A counter example can be found in Fig. E.1. In this case we clearly have s1 → s2, s2 → s3 and
s3 → s1.

E.1.3 Proofs of Theorem 1 and Theorem 2
In the following, we prove simultaneously Theorem 6 and Theorem 7. We begin by two lemmas.

Lemma 1. Given a trajectory τ , we denote by #T (s→ s′) the number of pairs (s, s′) in τ1:T such that s
appears before s′. We present a simple formula for ψ(s′, s) according to the structure of the state trajectory:

ψπ,T (s, s′) =
Eτ∼π

[
#T (s→ s′)

]
Eτ∼π

[
#T (s→ s′) + #T (s′ → s)

] .
Proof. In order to simplify the notations, we leave implicit the fact that indices are always sampled within
[0, T ].

ψπ,T (s, s′) = EπEt 6=t′|st=s,st′=s′
[
1t′>t

]
,

=
EπEt6=t′

[
1t′>t1st=s1st′=s′

]
EπEt6=t′

[
1st=s1st′=s′

] .
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Similarly, we have:

EπEt′>t
[
1st=s1st′=s′

]
=

EπEt6=t′
[
1t′>t1st=s1st′=s′

]
Et6=t′

[
1t′>t

] .

Combining it with our previous equation:

ψπ,T (s, s′) =
EπEt′>t

[
1st=s1st′=s′

]
Et 6=t′

[
1t′>t

]
EπEt6=t′ ,

[
1st=s1st′=s′

] ,

= 1
2
EπEt′>t

[
1st=s1st′=s′

]
EπEt 6=t′

[
1st=s1st′=s′

] .
Looking at the denominator, we can notice:

EπEt 6=t′
[
1st=s1st′=s′

]
= 1

2EπEt<t
′
[
1st=s1st′=s′

]
+ 1

2EπEt
′<t

[
1st=s1st′=s′

]
,

= 1
2EπEt<t

′
[
1st=s1st′=s′ + 1st=s′1st′=s

]
,

which comes from the fact that t and t′ play a symmetrical role. Thus,

ψπ,T (s, s′) =
Eτ∼πEtEt′>t

[
1st=s1st′=s′

]
Eτ∼πEtEt′>t

[
1st=s1st′=s′ + 1st=s′1st′=s

] .
Since

Eτ∼π
[
#T (s→ s′)

]
=
∑
i<j≤T

1si=s1sj=s′ ,

=
(
T

2

) ∑
i<j≤T

1(
T
2
)1si=s1sj=s′ ,

=
(
T

2

)
Eτ∼πEtEt′>t

[
1st=s1st′=s′

]
,

we get:

ψπ,T (s, s′) =
(
T
2
)
Eτ∼π

[
#T (s→ s′)

](
T
2
)
Eτ∼π

[
#T (s→ s′) + #T (s′ → s)

] ,
ψπ,T (s, s′) =

Eτ∼π
[
#T (s→ s′)

]
Eτ∼π

[
#T (s→ s′) + #T (s′ → s)

] .

Lemma 2. Assume that we are given a fixed trajectory where s appears k ∈ N times, in the form of :

s0 −→︸︷︷︸
n0(s′)

s −→︸︷︷︸
n1(s′)

s −→︸︷︷︸
n2(s′)

s −→︸︷︷︸
n3(s′)

. . . −→︸︷︷︸
nk−1(s′)

s −→︸︷︷︸
nk(s′)

,
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where ni(s′) denotes the number of times s′ appears between the ith and the (i+ 1)th occurrence of s. In
this case,

#T (s→ s′) =
k∑
i=0

i× ni(s′) .

If we suppose that n1(s′) = n2(s′) = · · · = nk−1(s′), we also have

#T (s→ s′)−#T (s′ → s) = k
(
nk(s′)− n0(s′)

)
.

Proof. Equ. 2 comes directly from #T (s→ s′) =
∑k
i=1
∑k
j=i nj(s′) =

∑k
i=0 i× ni(s′). To prove Equ. 2,

we first notice that #T (s→ s′) + #T (s′ → s) = k ×
∑k
i=0 ni(s′). Thus

#T (s→ s′)−#T (s′ → s) = 2×#T (s→ s′)−
(
#T (s→ s′) + #T (s′ → s)

)
,

= 2
(
k nk(s′) + n1(s′)

k−1∑
i=0

i

)
−
(
k nk(s′) + k n0(s′) + k (k − 1)n1(s′)

)
,

= k nk(s′)− k n0(s′) .

Theorem 1. For every policy π and s, s′ ∈ S, ψπ,T (s, s′) converges when T goes to infinity.

Theorem 2. Given a policy π, a state s, and an action a, we can link reversibility and empirical
reversibility with the inequality: φ̄π(s, a) ≥ φπ(s,a)

2 .

Proof. For a policy π and s, s′ ∈ S, we define φ̂π(s, s′) the quantity pπ(s ∈ τt+1:∞ | st = s′) such that
φπ(s, a) = Es′∼P (s,a)

[
φ̂π(s, s′)

]
In order to prove the theorem, we first prove that ψT (s′, s) converges to

a quantity denoted by ψ(s′, s), and that:

∀s, s′ ∈ S, φ̂
π(s, s′)

2 ≤ ψ(s′, s) .

We subdivide our problem into four cases, depending on whether s and s′ are recurrent or transient.

Case 1: pπ(s ∈ τt+1:∞ | st = s) < 1 and pπ(s′ ∈ τt+1:∞ | st = s′) = 1 (s is transient and s′ is recurrent
for the Markov chain induced by π). Informally, this means that if a trajectory contains the state s′ we
tend to see s′ an infinite number of times, and we only see s a finite number of times in a given trajectory.

This implies φ̂π(s, s′) = pπ(s ∈ τt+1:∞ | st = s′) = 0, as recurrent states can only be linked to other
recurrent states (Norris, 1998). It is not possible to find trajectories where s appears after s′, thus
ψT (s′, s) = 0 = ψ(s′, s). Equ. E.1.3 becomes "0 ≤ 0".

Case 2: pπ(s ∈ τt+1:∞ | st = s) = 1 and pπ(s′ ∈ τt+1:∞ | st = s′) < 1 (s is recurrent and s′ is transient
for the Markov chain induced by π).

As before, this implies φ̂π(s′, s) = pπ(s′ ∈ τt+1:∞ | st = s) = 0, and thus it is not possible to see in
a trajectory s after s′. It implies ψT (s′, s) = 1 = ψ(s′, s), so Equ. E.1.3 is verified.
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Case 3: pπ(s ∈ τt+1:∞ | st = s) = 1 and pπ(s′ ∈ τt+1:∞ | st = s′) = 1 (s is recurrent and s′ is recurrent
for the Markov chain induced by π). We denote by Tk the random variable corresponding to the time
of the kth visit to s. A trajectory can be represented as follows:

s0 −→︸︷︷︸
n1(s′)

s −→︸︷︷︸
n2(s′)

s −→︸︷︷︸
n3(s′)

s −→︸︷︷︸
n4(s′)

. . . −→︸︷︷︸
nk(s′)

s = sTk −→︸︷︷︸
nk+1(s′)

,

where, writing ∼ the equality in distribution, n2(s′) ∼ n3(s′) ∼ · · · ∼ nk(s′) and Eτn2(s′) = Eτn3(s′) =
· · · = Eτnk(s′) using the strong Markov property. From Lemma 1 we get:

ψπ,T (s, s′) =
Eτ∼π

[
#T (s→ s′)

]
Eτ∼π

[
#T (s→ s′) + #T (s′ → s)

] ,
= 1

2
Eτ∼π

[
#T (s→ s′) + #T (s′ → s) + #T (s→ s′)−#T (s′ → s)

]
Eτ∼π

[
#T (s→ s′) + #T (s′ → s)

] ,

= 1
2 +

Eτ∼π
[
#T (s→ s′)−#T (s′ → s)

]
2Eτ∼π

[
#T (s→ s′) + #T (s′ → s)

] .
We can see from Lemma 2 :

Eτ
[
#Tk(s→ s′)−#Tk(s′ → s)

]
= −kEτn1(s′) .

Thus,

Eτ
[
#Tk(s→ s′)−#Tk(s′ → s)

]
Eτ∼π

[
#Tk(s→ s′) + #Tk(s′ → s)

] = −kEτn1(s′)
kEτn1(s′) + k2 Eτn2(s′)

−−−−→
k→∞

0.

Given t ∈ N and a trajectory τ , we denote #T (s) the random variable corresponding to the number
of times when s appear before t, such that a trajectory has the following structure :

s0 −→︸︷︷︸
n1(s′)

s −→︸︷︷︸
n2(s′)

s −→︸︷︷︸
n3(s′)

s −→︸︷︷︸
n4(s′)

. . . −→︸︷︷︸
nk(s′)

s = sT#T (s) −→ st −→︸ ︷︷ ︸
nk+1(s′)

s = sT#T (s)+1 .

Eτ
[
#T (s→ s′)−#T (s′ → s)

]
Eτ
[
#T (s→ s′) + #T (s′ → s)

] ≤ Eτ
[
##T (s)(s→ s′)−##T (s)(s′ → s)

]
+ Eτ#T (s)nk+1(s′)

Eτ##T (s)(s→ s′) + Eτ##T (s)(s′ → s) ,

−−−−→
T→∞

0 as in Equ. E.1.3.

And,

Eτ
[
#T (s→ s′)−#T (s′ → s)

]
Eτ
[
#T (s→ s′) + #T (s′ → s)

] ≥ Eτ
[
##T (s)(s→ s′)−##T (s)(s′ → s)

]
− Eτ

∑#T (s)+1
i=1 ni(s′)

Eτ
[
##T (s)(s→ s′) + ##T (s)(s′ → s)

] ,

−−−−→
T→∞

0

Therefore,
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Eτ
[
#T (s→ s′)−#T (s′ → s)

]
Eτ
[
#T (s→ s′) + #T (s′ → s)

] −−−−→
T→∞

0 , and finally,

ψπ,T (s, s′) = 1
2 +

Eτ
[
#T (s→ s′)−#T (s′ → s)

]
2Eτ∼π

[
#T (s→ s′) + #T (s′ → s)

] −−−−→
T→∞

1
2 .

As φ̂π(s, s′) = 1 here, we immediately have φ̂π(s,s′)
2 = ψ(s′, s). We can notice that the inequality is

tight in this case.

Case 4: pπ(s ∈ τt+1:∞ | st = s) < 1 and pπ(s′ ∈ τt+1:∞ | st = s′) < 1 (s is transient and s′

is transient for the Markov chain induced by π). To simplify the following formulas, we will write
α = pπ(s ∈ τt+1:∞ | st = s′). Here, we denote by #(s) the random variable corresponding to the total
number of visits of the state s, and #(s→ s′) the number of pairs such that s appears before s′. #(s)
follows the geometric distribution G (1− pπ(s ∈ τt+1:∞ | st = s)).

#T (s→ s′) converges almost surely to #(s→ s′), and we have #T (s→ s′) ≤ #(s→ s′). Therefore,
using the dominated convergence theorem, Eτ

[
#T (s→ s′)

]
−−−−→
T→∞

Eτ
[
#(s→ s′)

]
, and thus:

ψπ,T (s′, s) =
Eτ
[
#T (s′ → s)

]
Eτ
[
#T (s→ s′) + #T (s′ → s)

] −−−−→
T→∞

Eτ#(s′ → s)
Eτ
[
#(s→ s′) + #(s′ → s)

] = ψπ(s′, s) .

This time, we consider a trajectory τ where s appears k times after s′, such that it is of the form:

s′ . . . s′

n0(s′)≥0
−→ s . . . s

n1(s)>0
−→ s′ . . . s′

n1(s′)>0
−→ s . . . s

n2(s)>0
−→ · · · −→ s′ . . . s′

nk−1(s′)>0
−→ s . . . s

nk(s)>0
−→ s′ . . . s′

nk(s′)≥0
−→

Here, n0(s′) is the number of times when s′ appears in the trajectory before the first appearance
of s′, ni(s) is the number of times when s appears between two occurrences of s′, and nk(s′) the
number of times when s′ appears after the last appearance of s. From the strong Markov property,
n1(s′) ∼ n2(s′) ∼ · · · ∼ nk−1(s′) and n1(s) ∼ n2(s) ∼ · · · ∼ nk(s). Note also that these variables
are all independent. Here k is a random variable following the geometric distribution G(α) where
α = p(s ∈ τt:∞ | st = s′). Notice that when nk(s′) > 0, we have nk(s) ∼ n1(s) and nk(s′) ∼ n1(s′).

Using these two simplifications, one can write:

Eτ
[
#(s′ → s)−#(s→ s′)

∣∣∣k] ≥ Eτ
[
#(s′ → s)−#(s→ s′)

∣∣∣k, nk(s′) > 0
]
,

≥ Eτ
[
n0(s′)

[
n1(s) + (k − 1)n1(s) + nk(s)

]
− n1(s)

[
kn1(s′) + nk(s′)

]
+

nk(s)
[
kn1(s′)− nk(s′)

]
− nk(s′)(k − 1)n1(s)

∣∣∣k, nk(s′) > 0
]
,

≥ −kEτ
[
n1(s)

∣∣∣k]Eτ[nk(s′)
∣∣∣k, nk(s′) > 0

]
as in Lemma 2 ,

≥ −kEτ (n1(s))Eτ (n1(s′)) .

Likewise,
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Eτ
[
#(s′ → s) + #(s→ s′)

∣∣ k] = Eτ
[
k n1(s)nk(s′) + k n0(s′)n1(s) + k (k − 1)n1(s)n1(s′)

∣∣∣k] ,
= k

[
Eτ
[
n1(s)

]
Eτ
[
n1(s′)

]
+ Eτ

[
n1(s)

]
Eτ
[
n0(s′)

]]
+ k(k − 1)Eτ

[
n1(s)

]
Eτ
[
n1(s′)

]
.

Thus,

Eτ
[
#(s′ → s)−#(s→ s′)

]
Eτ
[
#(s→ s′) + #(s′ → s)

] =
∑∞
i=1 p(k = i)Eτ [#(s′ → s)−#(s→ s′) | k = i]∑∞
i=1 p(k = i)Eτ [#(s→ s′) + #(s′ → s) | k = i]

,

≥ −
∑∞
i=1 α

i−1(1− α) iEτ
[
n1(s)

]
Eτ
[
n1(s′)

]∑∞
i=1 α

i−1(1− α)
[
i
(
Eτ
[
n1(s)

]
Eτ
[
n1(s′)

]
+ Eτ

[
n1(s)

]
Eτ
[
n0(s′)

])
+ i (i− 1)Eτ

[
n1(s)

]
Eτ
[
n1(s′)

]] ,

≥ −
∑∞
i=1 α

i−1(1− α)iEτ
[
n1(s)

]
Eτ
[
n1(s′)

]∑∞
i=1 α

i−1(1− α)
[
iEτ

[
n1(s)

]
Eτ
[
n1(s′)

]
+ i (i− 1)Eτ

[
n1(s)

]
Eτ
[
n1(s′)

]] ,
≥ −

∑∞
i=1 α

i−1(1− α) i∑∞
i=1 α

i−1(1− α)
[
i+ i (i− 1)

] ,
≥ −

∑∞
i=1 α

i−1(1− α) i∑∞
i=1 α

i−1(1− α) i2
,

≥ −
1

1−α
1+α

(1−α)2

,

≥ −1− α
1 + α

.

From Lemma 1,

ψπ(s′, s) = 1
2

(
1 +

Eτ
[
#(s′ → s)−#(s→ s′)

]
Eτ∼π

[
#(s→ s′) + #(s′ → s)

]) ,

≥ 1
2

(
1− 1− α

1 + α

)
,

≥ α

1 + α
,

≥ α

2 = φ̂π(s, s′)
2 .

As a quick summary, we divided our problem in 4 cases, and proved that in each case, for every pair
of states s, s′, we have ψπ(s′, s) ≥ φ̂π(s,s′)

2 .
To end the proof, we simply take the expectation over the distribution of the next states:

Es′∼P (s,a)ψπ(s′, s) ≥ 1
2Es

′∼P (s,a)φ̂π(s, s′) ,

φ̄π(s, a) ≥ φπ(s, a)
2 .
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E.1.4 Proof of Proposition 1
Proposition 1. We suppose that we are given a state s, an action a such that a is reversible in K steps,
a policy π and ρ > 0. Then, φ̄π(s, a) ≥ ρK

2 , where A denotes the number of actions. Moreover, we have
for all K ∈ N: φ̄π(s, a) ≥ ρK

2 φK(s, a).

Proof. We first prove the second part of the proposition, which is more general. From Definition 8, and as
the set of policies is closed, there is a policy π∗ such that φK(s, a) = pπ∗(s ∈ τt+1:t+K+1 | st = s, at = a).
We begin by noticing that π has a probability at least equal to ρ to copy the policy π∗ in every state.

It can be stated more formally:

∀s ∈ S,Ea∼π(s),a∗∼π∗(s)(1a=a′) =
∑
a∈A

pπ(a | s)pπ∗(a | s) ≥ ρ
(∑
a∈A

pπ∗(a | s)
)

= ρ .

Then, we have:

φπ,K(s, a) = pπ(s ∈ τt+1:t+K+1 | st = s, at = a) ,
= Eπ

[
1s∈τt+1:t+K+1 | st = s, at = a

]
,

= Est+2,...,st+K+1∼πEst+1∼p(st,at)
[
1s∈τt+1:t+K+1 | st = s, at = a

]
,

= Est+3,...,st+K+1∼πE at+1∼π(st+1)
st+2∼p(st+1,at+1)

Est+1∼p(st,at)
[
1s∈τt+1:t+K+1 | st = s, at = a

]
,

= Est+3,...,st+K+1∼πEat+1∼π(st+1),a′t+1∼π
∗(st+1)

st+2∼p(st+1,at+1)
Est+1∼p(st,at)

[
1s∈τt+1:t+K+1 | st = s, at = a

]
,

≥ Est+3,...,st+K+1∼πEat+1∼π(st+1),a∗t+1∼π
∗(st+1)

st+2∼p(st+1,at+1)
st+1∼p(st,at)

[
1s∈τt+1:t+K+1 | st = s, at = a, at+1 = a∗t+1

]
1at+1=a∗t+1

,

≥ ρEst+3,...,st+K+1∼πEst+1,st+2∼π∗
[
1s∈τt+1:t+K+1 | st = s, at = a

]
, and iterating the same process, ,

≥ ρKEst+1,st+2,...,st+K+1∼π∗
[
1s∈τt+1:t+K+1 | st = s, at = a

]
,

≥ ρKφK(s, a) .

We can conclude using Theorem 7: φ̄π(s, a) ≥ φπ(s,a)
2 ≥ φπ,K(s,a)

2 ≥ ρK

2 φK(s, a).

E.2 Additional details about Reversibility-Aware RL
E.2.1 Learning a reversibility estimator
We illustrate how the reversibility estimator is trained in Fig. E.2. We remind the reader that it is a
component that is specific to RAC. See Algorithm 5 for the detailed procedure of how to train it jointly
with the standard precedence estimator and the RL agent.

E.2.2 Pseudo-code for RAE and RAC
We give the pseudo-code for the online versions of RAE (Algorithm 4) and RAC (Algorithm 5). The
rejection sampling policy π̄ under approximate reversibility φ and threshold β is expressed as follows:

π̄(a|x) =
{

0 if φ(x, a) < β

π(a|x)/Z otherwise, with Z =
∑
a′∈A 1{φ(x, a′) ≥ β}π(a′|x)

.
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Figure E.2: The training procedure for the reversibility estimator used in RAC.

Algorithm 4: RAE: Reversibility-Aware Exploration (online)
Initialize the agent weights Θ and number of RL updates per trajectory k;
Initialize the precedence classifier weights θ, ξ, window size w, threshold β and learning rate η;
Initialize the replay buffer B;
for each iteration do

/* Collect interaction data and train the agent. */
Sample a trajectory τ = {xi, ai, ri}i=1...T with the current policy;
Incorporate irreversibility penalties τ ′ =

{
xi, ai, ri + rβ

(
ψθ,ξ(xi, xi+1)

)}
i=1...T ;

Store the trajectory in the replay buffer B ← B ∪ τ ;
Do k RL steps and update Θ;
/* Update the precedence classifier. */
for each training step do

Sample a minibatch Dbatch from B;
/* Self-supervised precedence classification, loss in Equ. E.2.2. */
θ ← θ − η∇θLSSL(Dbatch);
ξ ← ξ − η∇ξLSSL(Dbatch);

end
end
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Algorithm 5: RAC: Reversibility-Aware Control (online)
Initialize the agent weights Θ and number of RL updates per trajectory k;
Initialize the precedence classifier weights θ, ξ, window size w, threshold β and learning rate η;
Initialize the reversibility estimator weights ζ;
Initialize the replay buffer B;
for each iteration do

/* Collect interaction data with the modified control policy and train the
agent. */

Sample a trajectory τ under the rejection sampling policy π̄ from Equ. E.2.2 ;
Store the trajectory in the replay buffer B ← B ∪ τ ;
Do k RL steps and update Θ;
/* Update the precedence classifier. */
for each training step do

Sample a minibatch Dbatch from B;
/* Self-supervised precedence classification, loss in Equ. E.2.2. */
θ ← θ − η∇θLSSL(Dbatch);
ξ ← ξ − η∇ξLSSL(Dbatch);

end
/* Update the reversibility estimator, loss in Equ. E.2.2. */
for each training step do

Sample a minibatch Dbatch from B;
/* Regression of the precedence classifier probabilities. */
ζ ← ζ − η∇ζLL2(Dbatch, ψθ,ξ);

end
end
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This is equivalent, on average, to sampling from the policy π until an action that is reversible enough is
found.

The loss we use to train the precedence estimator has the expression:

LSSL(Dbatch) = 1
|Dbatch|

∑
(x,x′,y)∈Dbatch

−y log
(
ψθ,ξ(x, x′)

)
+ (1− y) log

(
1− ψθ,ξ(x, x′)

)
,

where y is the binary result of the shuffle, with value 1 if observations were not shuffled (thus in the correct
temporal order), and 0 otherwise. Pairs of observations (x, x′) can be separated by up to w timesteps.

The loss we use to train the reversibility estimator (in RAC only) has the expression:

LL2(Dbatch, ψθ,ξ) = 1
2 |Dbatch|

∑
(x,a,x′)∈Dbatch

(
ψθ,ξ(x, x′)− φζ(x, a)

)2
,

where (x, a, x′) are triples of state, action and next state sampled from the collected trajectories.
The offline versions of both RAE and RAC can be derived by separating each online algorithm into

two parts: 1) training the precedence classifier (and the reversibility estimator for RAC), which is achieved
by removing the data collection and RL steps and by using a fixed replay buffer; and 2) training the RL
agent, which is the standard RL procedure augmented with modified rewards for RAE, and modified
control for RAC, using the classifiers learned in the first part without fine-tuning.

E.3 Experimental details
E.3.1 Reward-free Reinforcement Learning
Cartpole. The observation space is a tabular 4-dimensional vector: (cart position x, cart velocity ẋ,
pole angle θ, pole velocity θ̇). The discrete action space consists of applying a force left or right. The
episode terminates if the pole angle is more than ±12◦ (|θ| ≤ 0.209 radians), if the cart position is more
than ±2.4, or after 200 time-steps. It is considered solved when the average return is greater than or
equal to 195.0 over 100 consecutive trials.

Architecture and hyperparameters. The reversibility network inputs a pair of observations and
produces an embedding by passing each one into 2 fully connected layers of size 64 followed by ReLU.
The two embeddings are concatenated, and projected into a scalar followed by a sigmoid activation. We
trained this network doing 1 gradient step every 500 time steps, using the Adam optimizer (Kingma and
Ba, 2014) and a learning rate of 0.01. We used batches of 128 samples, that we collected from a replay
buffer of size 1 million. The penalization threshold β was fine-tuned over the set [0.5, 0.6, 0.7, 0.8, 0.9] and
eventually set to 0.7. We notice informally that it was an important parameter. A low threshold could
lead to over penalizing the agent leading the agent to terminate the episode as soon as possible, whereas a
high threshold could slow down the learning.

Regarding PPO, both the policy network and the value network are composed of two hidden layers of
size 64. Training was done using Adam and a learning rate of 0.01. Other PPO hyperparameters were
defaults in Raffin et al. (2019), except that we add an entropy cost of 0.05.

E.3.2 Learning reversible policies
Environment. The environment consists of a 10 x 10 pixel grid. It contains an agent, represented by a
single blue pixel, which can move in four directions: up, down, left, right. The pink pixel represents the
goal, green pixels grass and grey pixels a stone path. Stepping on grass spoils it and the corresponding
pixel turns brown, as shown in Fig. 8.5b. A level terminates after getting to the goal, or after 120 timesteps.
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Upon reaching the goal, the agent receives a reward of +1, every other action being associated with 0
reward.

Architecture and hyperparameters. The reversibility network takes a pair of observations as input
and produces an embedding by passing each observation through 3 identical convolutional layers of kernel
size 3, with respectively 32, 64 and 64 channels. The convolutional outputs are flattened, linearly projected
onto 64 dimensional vectors and concatenated. The resulting vector is projected into a scalar, which goes
through a final sigmoid activation.

As done for Cartpole, we trained this network doing 1 gradient step every 500 time steps, using the
Adam optimizer with a learning rate of 0.01. We used minibatches of 128 samples, that we collected
from a replay buffer of size 1M. The penalization threshold β was set to 0.8, and the intrinsic reward was
weighted by 0.1, such that the intrinsic reward was equal to −0.11ψ(st,st+1)>0.8 ψ(st, st+1).

For PPO, both the policy network and the value network are composed of 3 convolutional layers of
size 32, 64, 64. The output is flattened and passed through a hidden layer of size 512. Each layers are
followed by a ReLU activation. Policy logits (size 4) and baseline function (size 1) were produced by a
linear projection. Other PPO hyperparameters were defaults in Raffin et al. (2019), except that we add
an entropy cost of 0.05.

E.3.3 Sokoban
We use the Sokoban implementation from Schrader (2018). The environment is a 10x10 grid with a unique
layout for each level. The agent receives a -0.1 reward at each timestep, a +1 reward when placing a box
on a target, a -1 reward when removing a box from a target, and a +10 reward when completing a level.
Observations are of size (10, 10, 3). Episodes have a maximal length of 120, and terminate upon placing
the last box on the remaining target. At the beginning of each episode, a level is sampled uniformly
from a set of 1000 levels, which prevents agents from memorizing puzzle solutions. The set is obtained
by applying random permutations to the positions of the boxes and the position of the agent, and is
pre-computed for efficiency. All levels feature four boxes and targets.

We use the distributed IMPALA implementation from the Acme framework (Hoffman et al., 2020)
as our baseline agent in these experiments. The architecture and hyperparameters were obtained by
optimizing for sample-efficiency on a single held-out level. Specifically, the agent network consists of three
3x3 convolutional layers with 8, 16 and 16 filters and strides 2, 1, and 1 respectively; each followed by
a ReLU nonlinearity except the last one. The outputs are flattened and fed to a 2-layer feed-forward
network with 64 hidden units and ReLU nonlinearities. The policy and the value network share all
previous layers, and each have a separate final one-layer feed-forward network with 64 hidden units and
ReLU nonlinearities as well. Regarding agent hyperparameters, we use 64 actors running in parallel, a
batch size of 256, an unroll length of 20, and a maximum gradient norm of 40. The coefficient of the
loss on the value is 0.5, and that of the entropic regularization 0.01. We use the Adam optimizer with a
learning rate of 0.0005, a momentum decay of 0 and a variance decay of 0.99.

The precedence estimator network is quite similar: it consists of two 3x3 convolutional layers with 8
filters each and strides 2 and 1 respectively; each followed by a ReLU nonlinearity except the last one.
The outputs are flattened and fed to a 3-layer feed-forward network with 64 hidden units and ReLU
nonlinearities, and a final layer with a single neuron. We use dropout in the feed-forward network, with a
probability of 0.1. Precedence probabilities are obtained by applying the sigmoid function to the outputs
of the last feed-forward layer. The precedence estimator is trained offline on 100k trajectories collected
from a random agent. It is trained on a total of 20M pairs of observations sampled with a window of size
15, although we observed identical performance with larger sizes (up to 120, which is the maximal window
size). We use the Adam optimizer with a learning rate of 0.0005, a momentum decay of 0.9, a variance
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decay of 0.999. We also use weight decay, with a coefficient of 0.0001. We use a threshold β of 0.9. We
selected hyperparameters based on performance on validation data.

E.3.4 Reversibility-Aware Control in Cartpole+
Learning ψ. The model architecture is the same as described in Appendix E.3.1. The training is done
offline using a buffer of 100k trajectories collected using a random policy. State pairs are fed to the
classifier in batches of size 128, for a total of 3M pairs. We use the Adam optimizer with a learning rate
of 0.01. We use a window w equal to 200, which is the maximum number of timesteps in our environment.

Learning φ. We use a shallow feed-forward network with a single hidden layer of size 64 followed by
a ReLU activation. From the same buffer of trajectories used for ψ, we sample 100k transitions and feed
them to φ in batches of size 128. As before, training is done using Adam and a learning rate of 0.01.

E.3.5 DQN and M-DQN in Cartpole+
We use the same architecture for DQN and M-DQN. The network is a feed-forward network composed of
two hidden layers of size 512 followed by ReLU activation. In both cases, we update the online network
every 4 timesteps, and the target network every 400 timesteps. We use a replay buffer of size 50k, and
sample batches of size 128. We use the Adam optimizer with a learning rate of 0.001.

We train both algorithms for 2M timesteps. We run an evaluation episode every 1000 timesteps,
and report the maximum performance encountered during the training process. We perform a grid
search for the discount factor γ ∈ [0.99, 0.999, 0.9997], and for M-DQN parameters α ∈ [0.7, 0.9, 0.99] and
τ ∈ [0.008, 0.03, 0.1]. The best performances were obtained for α = 0.9, τ = 0.03, and γ = 0.99.

E.3.6 Reversibility-Aware Control in Turf
Learning ψ. We use the same model architecture as in RAE (Appendix E.3.2), and the same offline
training procedure that was used for Cartpole+ (Appendix E.3.4). The window w was set to 120, which
is the maximum number of steps in Turf.

Learning φ. The architecture is similar to ψ, except for the last linear layers: the output of the
convolutional layers is flattened and fed to a feed-forward network with one hidden layer of size 64
followed by a ReLU. Again, we used the exact same training procedure as in the case of Cartpole+
(Appendix E.3.4).

E.3.7 Safety and Performance Trade-off in Turf
We investigate the performance-to-safety trade-off induced by reversibility-awareness in Turf. In Fig. E.3a,
we see that the agent is not able to reach the goal when the threshold is greater than 0.4: with too high a
threshold, every action leading to the goal could be rejected. We also see that it solves the task under
lower threshold values, and that lowering β results in faster learning. On the other hand, Fig. E.3b shows
that achieving zero irreversible side-effects during the learning is only possible when β is greater than 0.2.
In this setting, the optimal thresholds are thus between 0.2 and 0.3, allowing the agent to learn the new
task while eradicating every side-effect.

This experiment gives some insights on how to tune β in new environments. It should be initialized at
0.5 and decreased progressively, until the desired agent behaviour is reached. This would ensure that the
chosen threshold is the maximal threshold such that the environment can be solved, while having the
greatest safety guarantees.
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Figure E.3: (a): Reward learning curve for PPO+RAC and several thresholds β (average over 10 random
seeds). A threshold of 0 means actions are never rejected, and corresponds to the standard PPO. (b):
Number of irreversible side-effects (grass pixels stepped on). For β between 0.2 and 0.4, 0 side-effects are
induced during the whole learning.
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