The Interplay between Quantum Contextuality and Wigner Negativity
Relation entre contextualité quantique et négativité de la fonction de Wigner
Résumé
The use of quantum information in technology promises to supersede the so-called classical devices used nowadays. Understanding what features are inherently non-classical is crucial for reaching better-than-classical performance. This thesis focuses on two nonclassical behaviours: quantum contextuality and Wigner negativity. The former is a notion superseding nonlocality that can be exhibited by quantum systems. To date, it has mostly been studied in discrete-variable scenarios. In those scenarios, contextuality has been shown to be necessary and sufficient for advantages in some cases. On the other hand, negativity of the Wigner function is another unsettling non-classical feature of quantum states that originates from phase-space formulation in continuous-variable quantum optics. Continuous-variable scenarios offer promising candidates for implementing quantum computations. Wigner negativity is known to be a necessary resource for quantum speedup with continuous variables. However contextuality has been little understood and studied in continuous-variable scenarios. We first set out a robust framework for properly treating contextuality in continuous variables. We also quantify contextuality in such scenarios by using tools from infinite-dimensional optimisation theory. Building upon this, we show that Wigner negativity is equivalent to contextuality in continuous variables with respect to Pauli measurements thus establishing a continuous-variable analogue of a celebrated result by Howard et al. We then introduce experimentally-friendly witnesses for Wigner negativity of single mode and multimode quantum states, based on fidelities with Fock states, using again tools from infinite-dimensional optimisation theory. We further extend the range of previously known discrete-variable results linking contextuality and advantage into a new territory of information retrieval.
La physique quantique a révolutionné notre façon de concevoir la nature et provoque une nouvelle révolution technologique. L'utilisation de l'information quantique dans la technologie promet de supplanter les dispositifs dits classiques utilisés de nos jours. Il est essentiel de comprendre quelles caractéristiques sont intrinsèquement non classiques pour atteindre des performances supérieures à celles des dispositifs actuels. Cette thèse se concentre sur deux comportements non classiques : la contextualité quantique et la négativité de Wigner. Jusqu'à présent, la contextualité a surtout été étudiée dans des scénarios à variables discrètes, où les observables prennent des valeurs dans des ensembles discrets et généralement finis. Il a été démontré que la contextualité est nécessaire et suffisante pour les avantages dans certains cas. D'autre part, la négativité de la fonction de Wigner est une autre caractéristique non classique troublante des états quantiques qui provient de la formulation de l'espace de phase en optique quantique. La négativité de la fonction de Wigner est connue pour être une ressource nécessaire à l'accélération quantique. Nous établissons un cadre robuste pour traiter la contextualité dans les variables continues. Nous quantifions la contextualité dans de tels scénarios en utilisant des outils de la théorie de l'optimisation en dimension infinie. Nous montrons que la négativité de Wigner est équivalente à la contextualité dans les variables continues pour les mesures de Pauli. Nous introduisons ensuite des témoins expérimentaux pour la négativité de Wigner des états quantiques multimodes, basés sur les fidélités avec les états de Fock.