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Résumé : Simulation de l’atomisation primaire dans des injecteurs
aéronautiques avec une méthode d’adaptation de maillage massive-
ment parallèle

Dans les turbines à gaz aéronautiques, le système d’injection de kérosène liquide joue un rôle
primordial sur l’opérabilité de la chambre de combustion. Il conditionne directement la stabilité
de la flamme et les performances d’allumage, de réallumage et de non-extinction. De plus, le
système d’injection doit avoir le comportement attendu sur une très large gamme de conditions
opératoires : faible débit liquide au ralenti ou au réallumage / fort débit liquide au décollage,
faible ou forte viscosité selon la température du carburant. La conception du système d’injection
est donc difficile et résulte de plusieurs compromis. Cette tâche est rendue encore plus complexe
par le manque de caractérisation expérimentale du système d’injection en conditions opératoires
réalistes.

Cette thèse cherche à évaluer les capacités de la simulation instationnaire et plus particulière-
ment de la simulation aux grandes échelles (LES) pour la simulation de l’atomisation primaire
et la prédiction des performances des systèmes d’injection de kérosène liquide dans les cham-
bres de combustion aéronautiques. La simulation numérique présente l’avantage de donner accès
à l’ensemble des quantités importantes pour mesurer ces performances : taille et volume des
gouttes de carburant, distribution spatiale des gouttes, taux d’entraînement du gaz, . . . Cependant,
l’atomisation primaire étant un phénomène fortement non-linéaire, ce type de simulation requiert
des résolutions de maillage très fines des couches de cisaillement et des interactions entre les deux
phases fluides, afin de reproduire fidèlement la dynamique de l’écoulement. Cette nécessité aug-
mente considérablement leur coût de calcul. Le caractère fortement multi-échelle de l’atomisation
nécessite donc d’avoir recours à un grand nombre de processeurs en parallèle et à des méthodes
numériques Eulériennes ou Lagrangiennes adaptées aux caractéristiques locales du spray, capables
d’exploiter cette puissance de calcul.

Le logiciel YALES2, développé par le laboratoire CORIA et utilisé dans le groupe Safran,
dispose d’un solveur pour la simulation de l’atomisation primaire basé sur la méthode Ghost-
Fluid et sur le suivi d’interface de type Level-Set Conservative. Ce logiciel comporte également
des méthodes de résolution des équations de Navier-Stokes à faible nombre de Mach efficaces
sur un grand nombre de processeurs. Toutes ces méthodes combinées ont été utilisées préalable-
ment à cette thèse pour simuler l’atomisation primaire en sortie d’un injecteur à triple disque et
l’atomisation airblast à prefilming dans un injecteur réaliste fourni par Safran Helicopter Engines.
Ces différentes études Eulériennes ont montré l’importance de la résolution du maillage sur la dy-
namique de l’interface. La prédiction de l’atomisation nécessite en effet de résoudre finement les
modes instables de l’interface pour obtenir la formation des premiers ligaments et leur subséquente
rupture en gouttelettes.

Pour faire face à ces défis, une méthode d’adaptation de maillage parallèle basée sur la librairie
d’adaptation séquentielle libre MMG créée à l’INRIA, a été développée dans le logiciel YALES2.
Cette méthode combine adaptation séquentielle et répartition de charge parallèle pour réaliser
l’adaptation de maillage en parallèle sur des maillages de grande taille. Ce type de méthode
d’adaptation peut maintenant servir en cours de simulation à concentrer les cellules du maillage
où l’interface liquide/gaz se trouve afin de réduire le coût de calcul. En combinant cette adaptation
de maillage isotrope au solveur Level Set et à un modèle de transport de spray Lagrangien, on peut
obtenir un couplage cohérent des différentes approches en respectant leur domaine de validité.

L’objectif de cette thèse est de combiner l’ensemble de ces techniques pour modéliser et
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simuler l’atomisation primaire de kérosène liquide avec le logiciel YALES2 à l’intérieur et en
sortie des systèmes d’injection aéronautiques. La thèse se décompose en deux parties : (i) Le
développement et la validation de méthodes numériques Eulériennes robustes, massivement par-
allèles, et précises pour l’atomisation turbulente sur maillages non-structurés adaptatifs; (ii) Le
couplage de ces méthodes avec une approche Lagrangienne pour le transport du spray. Les simu-
lations réalisées sont validées par la comparaison à des mesures expérimentales, et à des solutions
théoriques ou numériques de référence.

Mots clés : Ecoulements diphasiques incompressibles; Atomisation primaire; Volumes Finis;
Simulation aux grandes échelles; Maillages non structurés; Adaptation de maillage dynamique;
Level set conservative; Calcul haute performance; Géométries complexes

***

Abstract: Numerical simulation of primary atomization in aeronauti-
cal injectors using a massively parallel adaptive mesh refinement tech-
nique

In aeronautical gas turbines, the liquid kerosene injection system has a crucial role on the combus-
tor operability. Indeed, it directly conditions flame stability and ignition performances, as well as
re-ignition and non-flameout. Moreover, the injection system must have the expected behavior on
a broad range of operating conditions: low liquid flow rate at low velocity or at re-ignition/high
liquid flow rate at take-off, variable fuel viscosity depending on its temperature. The design of
injection systems is thus challenging and therefore the result from several compromises. This task
is made even more complex by the lack of experimental characterization of injection systems in
realistic operating conditions.

This doctoral thesis seeks to assess the capabilities of unsteady simulations, Large-Eddy Sim-
ulations (LES) in particular, for simulating primary atomization and predicting the performances
of liquid kerosene injection systems in aeronautical combustion chambers. Numerical simulations
allow to access a set of important parameters to measure these performances: size and volume
of fuel drops, spatial distribution of drops, gas drive rate, . . . However, primary atomization is a
highly non-linear process, and hence this type of simulations requires very fine grid resolutions
of shear layers and interactions between the two fluid phases, in order to reliably reproduce the
complex flow dynamics. This requirement significantly increases their computational cost. Thus,
the multi-scale nature of atomization necessitates to use a large number of processors in parallel,
and to employ Eulerian or Lagrangian numerical methods suited for local spray characteristics,
able to exploit this computational power.

The YALES2 software program, developed at CORIA laboratory and used in Safran group,
features a solver for simulating primary atomization, based on the Ghost-Fluid Method and on
the Accurate Conservative Level Set interface-capturing method. This software also features mas-
sively parallel numerical methods for solving the low-Mach Navier-Stokes equations. All these
numerical methods combined have been employed prior to this doctoral thesis for simulating pri-
mary atomization of a liquid jet discharged from a triple-disk injector, and of the airblast atomiza-
tion with prefilming in a realistic industrial injector provided by Safran Helicopter Engines. These
various Eulerian studies have shown the importance of local mesh resolution on the interface dy-
namics. Indeed, numerically predicting atomization necessitates the fine resolution of unstable
interfacial modes to yield the formation of the first ligaments and their subsequent break-up into
small droplets.
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To address these challenges, a parallel adaptive mesh refinement strategy based on the MMG
free sequential adaptation library, created at INRIA, has been developed in the YALES2 software
program. This method combines sequential adaptation together with parallel load balancing to
perform parallel adaptive mesh refinement on large and massively-distributed grids. It can now be
used throughout a simulation to concentrate the mesh cells at the liquid-gas interface location to
reduce the computational cost. By combining this isotropic dynamic mesh adaptation strategy with
the Level set solver and with a Lagrangian solver to model the transport of the dispersed spray,
one can obtain a consistent coupling of the various approaches respecting their validity range.

The aim of this doctoral thesis is to combine these various techniques to model and compute
liquid kerosene primary atomization using the YALES2 software program, within and at the out-
let of aeronautical injection systems. The thesis is divided into two parts: (i) Development and
validation of robust, massively parallel, and accurate Eulerian numerical methods for simulating
turbulent atomization on adaptive unstructured grids; (ii) Coupling of these methods to a La-
grangian modeling approach for spray transport. The conducted simulations are validated against
experiments, and against theoretical or numerical reference solutions.

Keywords: Multiphase flows; Primary atomization; Finite volume; Incompressible flow LES;
Unstructured grids; Adaptive mesh refinement; Conservative level set; High-performance comput-
ing; Complex geometries

***
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Introduction

Multiphase flows are ubiquitous in nature and in industrial systems, and understanding the forma-
tion of sprays is crucial for designing complex injection technologies. More specifically, turbulent
atomization is of first importance in aeronautical combustors, into which fuel is injected in liq-
uid form, goes under atomization, evaporation, turbulent mixing and eventually combustion (see
Fig. 1). All these physical processes are strongly interdependent, and thus improving numerical

Figure 1: Representation of an aeronautical combustor, in which many physical phenomena take
place: atomization, droplet transport, evaporation, turbulent mixing and combustion.

predictions of pollutant formation requires deep numerical insights into the atomization process.
This process designates the evolution of large liquid structures into small droplets and thus governs
the liquid droplet distribution in the combustor and the subsequent evaporation. The structure of
an atomizing spray can be decomposed into two main regions: primary and secondary atomization
regimes, as depicted in Fig. 2 for a swirling spray (reprinted from [1]).

In order to properly simulate an atomizing spray, the temporal evolution of the liquid-gas
interface topology together with surface tension effects need to be accurately represented on a
numerical grid. To this aim, interface-capturing techniques are classicaly employed, such as Vol-
ume Of Fluid (VOF) [3] or Level Set (LS) methods [4, 5], and are coupled to a numerical surface
tension model. Realistic industrial injector geometries for primary atomization simulations are
very complex, including sharp edges and narrow corners, which hinders the meshing task with
cartesian grids: the use of unstructured meshes is thus well suited for this type of simulations [6].
Although the literature remains limited about unstructured atomization computations, previous



2 Chapter 0. Introduction

Figure 2: Illustration of primary and secondary atomization regimes for a swirling spray, obtained
in the experimental study of [2]. This figure is reprinted from [1].

studies on static meshes can be found, such as [7, 8, 9, 10, 11, 12, 13, 14] for Volume Of Fluid
(VOF) interface-capturing techniques, or [15, 16, 17, 18, 19] for Level Set methods (LS).

Despite many years of study, high-performance atomization simulations remain a challenge:
the wide range of involved time and space scales leads to important calculation costs. To tackle
this issue, the use of Adaptive Mesh Refinement (AMR) is particularly helpful, allowing the al-
location of computational resources to the interface dynamics. A popular technique for solving
incompressible two-phase flows on adaptive cartesian grids is tree-based AMR (quad/octree), as
in the work of Popinet [20, 21]. Regarding unstructured meshes, Dai and Schmidt [22] proposed a
moving-mesh algorithm to simulate free-surface flows with large deformations on adaptive tetra-
hedral grids. Both studies are proposed in the context of VOF methods, and the meshes are typ-
ically refined based on the local curvature of the interface. For classical Level Set methods on
adaptive tetrahedral grids, Morgan and Waltz [23] introduced a method to treat evolving fronts
with specified velocity, while Rodriguez et al. presented a parallel two-phase flow solver using a
finite-element formulation in [24], where the adaptive mesh is refined based on the distance to the
interface.

However, even with the help of AMR techniques, interfacial liquid-gas flows of practical in-
terest may still exhibit prohibitive computational costs, due to the substantially large number of
droplets formed during the atomization process, that need to be resolved in the numerical domain
using the adaptive grid. Thus, to further increase the efficiency and the accuracy of the computa-
tions of such flows, especially the dispersed phase where only isolated drops are present, hybrid
Eulerian-Lagrangian techniques have arisen over the past decade such as [25, 26, 27, 28, 1], all
for cartesian grids. The idea is to convert the small and spherical resolved Eulerian droplets to
Lagrangian Point Particles (LPP). With such multi-scale modeling strategy, the converted drops,
usually poorly resolved by the grid, are treated more efficiently and accurately, and do not need to
be resolved anymore: local coarsening of the mesh can thus be performed dynamically when using
AMR [26, 28]. As a consequence, a mist of drops can be transported much further in a numerical
domain, without adding a large number of mesh cells which would be required for transporting
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many resolved drops over a large distance.

In this work, the Accurate Conservative Level Set (ACLS) method is used to capture the inter-
face on 2D and 3D unstructured grids (triangular and tetrahedral): this method accurately predicts
the interface dynamics while conserving a smoothed phase indicator. The ACLS method is thus
not strictly mass-conserving, but the errors in the liquid mass conservation are small and con-
trolled [29, 30, 31]. The ACLS method relies on the use of a hyperbolic tangent function to
represent the interface, as in the THINC scheme of Xiao et al. [32, 33], proposed earlier in the
context of algebraic VOF methods. The ACLS hyperbolic tangent function is advected by the
fluid, and then reshaped using a reinitialization equation. ACLS on unstructured grids has been
proposed before in [16, 17] on static meshes, and by Antepara et al. [34] for adaptive tetrahedral
grids. In this latter, non-conforming AMR with an octree data structure is used. In the present
work, massively distributed adaptive conforming unstructured grids are employed, and adapted
isotropically using both metric-based and skewness-based quality criteria. We extend these previ-
ous unstructured ACLS studies by including an adapted and improved reinitialization method, first
introduced by Chiodi and Desjardins for cartesian grids [35] and that has never been implemented
to date for unstructured grids. In particular, interface-merging properties of this latest reinitializa-
tion equation are discussed. Indeed, the original ACLS equation involves numerical estimation of
the hyperbolic tangent gradient, which is difficult to compute accurately on unstructured meshes.
It is thus susceptible to induce artificial deformation of the interface. The latest equation takes ad-
vantage of a mapping onto a classical distance level set while much better preserving the interface
shape. Moreover, in the proposed framework, a narrow band around the liquid-gas interface is built
to compute interface features only in the area of interest [36], allowing significant computational
savings. In order to compute interface normals and curvature, the signed-distance function is re-
constructed in parallel at nodes in the narrow band using a Geometric-Projection Marker Method
(GPMM). This method relies on the triangulation of the level set iso-contour and exact geometric
projection to the closest surface elements. Surface tension is treated explicitly using the Ghost-
Fluid Method (GFM) [37]. The interface-capturing procedure using adaptive unstructured grids is
then coupled to a Lagrangian modeling strategy, designed for tetrahedral meshes: the small and
spherical resolved droplets are converted to Lagrangian Point Particles (LPP), using conversion
criteria based on numerical and geometrical considerations. The reverse transformation, namely
the Lagrangian-to-Eulerian conversion, necessitates the implementation of a re-impact algorithm
of a Lagrangian particle onto the resolved interface. Such algorithm is not yet implemented in
the present multiscale procedure. As a consequence, only the droplets at a certain distance from
the resolved interface will be converted. Once an Eulerian resolved droplet is transformed, the
tetrahedral mesh is automatically and locally coarsen around the newly introduced Lagrangian
particle.

This manuscript is divided into two major parts. The first part focuses on the Eulerian solver.
After a first general chapter about incompressible two-phase liquid-gas flow modeling, the var-
ious building blocks of the procedure implemented in the YALES2 unstructured incompressible
code [38] are presented, namely the ACLS interface-capturing technique, the fractional-step inte-
gration of Navier-Stokes equations with explicit treatment of jump conditions, and the dynamic
mesh adaptation strategy. The accuracy, spatial convergence, and computational efficiency of the
unstructured ACLS method are assessed on classical interface transport test cases. The behavior
of the overall algorithm in the case of canonical capillary-driven two-phase flows is then verified.
Finally, two LES simulations with large density ratios in complex geometries are performed on
adaptive tetrahedral meshes: the break-up of a turbulent liquid jet discharged from a low-pressure
compound nozzle [39, 40] and of a non-reactive high-pressure liquid jet in crossflow are shown at
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various resolutions, demonstrating the accessibility of jet instabilities with 3D adaptive unstruc-
tured meshes. Results are validated against experiments performed in the same conditions [41, 42].
The second part of this manuscript presents the hybrid Eulerian-Lagrangian multiscale modeling
strategy, designed for adaptive tetrahedral grids. The equations solved by the Lagrangian solver
are first derived, and the underlying assumptions explicitly mentioned. Then, the conversion pro-
cedure between the two frameworks and its coupling with Adaptive Mesh Refinement (AMR) are
detailed. The hybrid strategy is eventually applied and tested on canonical cases, and on the same
high-pressure liquid jet in crossflow than the one presented in the first part of this work. It thus
allows to assess the computational performances of the proposed multi-scale coupling procedure
using massively-distributed adaptive unstructured grids.



Part I

Interface-capturing procedure on
adaptive unstructured grids
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1.1 Navier-Stokes equations with interfaces

1.1.1 General equations

Fluid flows are ubiquitous in nature and in industrial systems. A few examples include air flowing
around an aircraft (aerodynamics), blood flows (hemodynamics), or ocean breaking waves. The
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motion of fluids under the continuum hypothesis obey to the well-know Navier-Stokes equations.
These equations are written in conservative form as:

∂ρ

∂t
+∇ · (ρu) = 0

∂(ρu)
∂t︸ ︷︷ ︸

local momentum variation

+ ∇ · (ρu ⊗ u)︸ ︷︷ ︸
momentum convection

= −∇p︸ ︷︷ ︸
pressure forces

+ ∇ · τ︸ ︷︷ ︸
viscous forces

+ ρg︸︷︷︸
gravitational forces

(1.1)

(1.2)

with ρ the fluid density, u the fluid velocity vector field, p the pressure field, τ the viscous stress
tensor, and g the gravitational acceleration. Eqs. (1.1) and (1.2) are mass and momentum conser-
vation equations, respectively. For an isotropic Newtonian fluid, the viscous stress tensor is related
to the strain rate tensor as:

τ = 2µS + λ(∇ · u)I (1.3)

where µ is the fluid dynamic viscosity, S = 1/2
(
∇u + (∇u)T

)
is the strain rate tensor, I is the

identity matrix, and λ is the second viscosity coefficient. In the case of an anisotropic fluid, a
viscosity tensor µ would be necessary: this case is not considered in this work. The expression
of the stress tensor τ can be further simplified. Let us consider the volume viscosity µV of an
isotropic Newtonian fluid, defined as µV = λ+(2/3)µ. Under Stokes’ hypothesis, the dilatational
viscosity µV is ignored:

µV = λ+ (2/3)µ = 0 (1.4)

leading to λ = −(2/3)µ. the viscous stress tensor thus writes:

τ = µ
(
∇u + (∇u)T

)
− 2

3
µ(∇ · u)I (1.5)

1.1.2 Incompressible flows

The Mach number M, characterizes the flow velocity |u| relatively to the local speed of acoustic
perturbations a:

M =
|u|
a

(1.6)

with a defined as:

a =

√(
∂p

∂ρ

)

S

(1.7)

The derivative is taken isentropically, i.e. at constant entropy S. Indeed, the propagation of an
acoustic wave is approximated as an adiabatic process. In this work, the flows are all assumed to
be incompressible, i.e. M ≪ 1. In this case, relative density variations are neglected [43]:

∆ρ

ρ
∼ M2 ≪ 1 (1.8)

and hence density is taken as a constant. In these conditions, the continuity equation Eq. (1.1)
reduces to:

∇ · u = 0 (1.9)

meaning that the velocity field is solenoidal. Please note that while only incompressible flows
will be considered, Eq. (1.1) will be retained for numerical implementation reasons, in addition
to Eq. (1.9). Finally, as a consequence of Eq. (1.9), the viscous stress tensor Eq. (1.5) can be
simplified:

τ = µ
(
∇u + (∇u)T

)
(1.10)



1.1. Navier-Stokes equations with interfaces 9

1.1.3 Incompressible flows with surface tension

By considering an interfacial flow, involving two immiscible fluid phases (e.g. a liquid-gas flow),
it is necessary to include a term accounting for the interface between the phases. In the case
of liquid-gas flows, this term needs to include surface tension effects, and appears, explicitly or
within the pressure term, in the momentum equation Eq. (1.2).

1.1.3.1 Molecular origin of surface tension

Let us consider a liquid-gas interface Γ. The molecules in the bulk liquid phase are pulled equally
in every direction due to cohesive forces: the net force is hence zero. However, at the interface,
the liquid molecules interact not only with other liquid molecules, but also with gaseous ones.
Interaction forces between two molecules of the same type are called "cohesive forces", whereas
interaction forces between two different types of molecules are "adhesive forces", see Fig. 1.1.
This interfacial state results in a contraction of the surface to its minimum area.

Figure 1.1: Interaction of liquid molecules, resulting in interfacial tension.

In terms of energy, liquid molecules at the surface have less bonds on average than the ones
in the bulk of liquid. As a consequence, they are in a higher state of energy [44, 45, 46, 47]. This
excess of surface energy can be expressed using the interfacial free energy E per unit area [48]:

σ =
∂E

∂A
(1.11)

where σ is called the surface tension coefficient. This macroscopic quantity can be seen either as
an energy per unit area, or equivalently as a force per unit length. For the liquid to minimize its
energy state (i.e. reach a thermodynamic optimum), the interface will reduce to the minimum area
with the smoothest shape possible. This is why small droplets are spherical: it minimizes surface
energy.

1.1.3.2 The one-fluid formulation

In this formulation, the surface tension forces per unit volume Fσ are included explicitly in the
momentum equation Eq. (1.2) and thus one set of governing equations is used for the whole flow
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domain [49]:

∂(ρu)
∂t

+∇ · (ρu ⊗ u) = −∇p︸ ︷︷ ︸
pressure forces

+ ∇ · τ︸ ︷︷ ︸
viscous forces

+ ρg︸︷︷︸
gravitational forces

+ Fσ︸︷︷︸
surface tension forces

(1.12)

The capillary forces Fσ have a role only at the interface. Away from it, the classical incompressible
momentum equation is valid. In this subsection, two surface-tension formulations are presented:
namely the volumetric and integral formulations, originally named and presented in [50].

1.1.3.2.1 Volumetric formulation

Let us consider an interface Γ between two phases in a fluid domain, and A the portion of the
interface in a control volume V . The surface tension force by unit area fσ, i.e. the surface tension
stress, is given by the stress balance equation [49]:

fσ = σκn︸︷︷︸
normal stress

+ ∇Aσ︸ ︷︷ ︸
tangential stress

(1.13)

where σ is the surface tension coefficient, κ = −∇ · n is the interface curvature, n is the interface
normal, and ∇Aσ = ∇σ − n(n · ∇σ) is the surface gradient of the variable surface tension
coefficient. This surface term, tangential to the interface, is called Marangoni stress. For a constant
σ, this term is obviously zero. By integrating fσ over the surface A [49]:

∫

A
fσ dA =

∫

V
fσδA(x − xA) dV (1.14)

where δA(x − xA) is a surface Dirac δ-function, which is non-zero only at the interface location
x = xA. As a consequence, the surface tension force per unit volume Fσ is:

Fσ = fσδA(x − xA) = (σκn +∇Aσ)δA(x − xA) (1.15)

By defining δA = δA(x − xA) and using a constant surface tension coefficient, which will be the
case in this work, the volumetric surface tension force reduces to:

Fσ = σκnδA (1.16)

Thus, the surface tension volumetric force is proportional to the constant surface tension coeffi-
cient σ and to the curvature κ, is normal to the interface, and takes place only at the interface
location as a singular distribution [51].

As a starting point for volumetric numerical models of surface tension, the surface Dirac δ-
function nδA is written as the gradient of a Heaviside function H , which yields the following
reformulated analytical expression:

Fσ = σκ∇H (1.17)

where H is equal to 1 in liquid, and to 0 in gas. The central stake in volumetric numerical models
of surface tension is to find a proper approximation for the sharp Heaviside function H [50]. This
point will be discussed later in this chapter (Section 1.4).
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1.1.3.2.2 Integral formulation

In two dimensions, using a constant surface tension coefficient and the curvilinear abscissa s to
parametrize the portion of interface A in the control volume V [50]:

∫

V
Fσ dV =

∫

V
σκnδA dV =

∫

A
σκn ds (1.18)

Using the first Frenet–Serret formula, i.e. κnds = dt with dt the infinitesimal tangent vector to
the interface, the previous integral expression yields:

∫

A
σκn ds =

∫

A
σ dt = σ

∫

A
dt (1.19)

which eventually writes: ∫

V
Fσ dV = σt (1.20)

with t the unit tangent vector to the interface. In the case of a closed interface contour, the net
force exerted by surface tension is zero:

∮

A
σ dt = σ

∮

A
dt = 0 (1.21)

Thus, from a mechanical point of view, surface tension itself is a contact force per unit length
tangential to the interface that has no effect on the variation of total momentum, which is probably
the most intuitive way to represent it: one easily visualizes a curve under tension. However, its
volumetric resultant is a body force normal to the interface: it represents a force resisting the
extension of the surface [48, 51, 52].

1.1.3.3 Formulation with jump conditions

Using this formulation, classical incompressible Navier-Stokes equations Eqs. (1.1, 1.2) are writ-
ten for each of the adjacent phases separately, and jump conditions are used for the sharp interface
boundary conditions between the two fluids.

Without phase change and with incompressible viscous fluids, the normal kinematic condition
at a liquid-gas interface Γ, derived from the mass flow rate conservation across the interface,
yields:

ul,Γ · n = ug,Γ · n (1.22)

where ul,Γ and ug,Γ are liquid and gas velocities at the interface, respectively. If we assume that
on the interface the tangential velocities are continuous [53], the kinematic condition writes:

[u]Γ = ul,Γ − ug,Γ = 0 (1.23)

with [.]Γ the jump across the interface. The kinematic condition thus means that the velocity field
u is continuous across Γ.

For an incompressible Newtonian fluid, using Eq. (1.10), the total stress tensor is:

T = −pI + τ = −pI︸︷︷︸
pressure stresses

+µ
(
∇u + (∇u)T

)
︸ ︷︷ ︸

viscous stresses

(1.24)

The balance of stresses on a unit area A of interface Γ gives [54]:

fσ + [T]Γ · n = 0 (1.25)



12 Chapter 1. Computational Fluid Dynamics with interfaces

with fσ the surface tension stress given by Eq. (1.13):

σκn +∇Aσ +
[
−pI + µ

(
∇u + (∇u)T

)]
Γ
· n = 0 (1.26)

Considering only normal stresses, the previous equation yields:

σκ+ nT ·
[
−pI + µ

(
∇u + (∇u)T

)]
Γ
· n = 0 (1.27)

Hence:
σκ− [p]Γ + nT ·

[
µ
(
∇u + (∇u)T

)]
Γ
· n = 0 (1.28)

Finally, the normal momentum jump condition for Newtonian incompressible fluids is:

[p]Γ = pl,Γ − pg,Γ = σκ+ 2 [µ]Γ nT ·∇u · n (1.29)

where pl,Γ and pg,Γ are liquid and gas pressures at the interface, respectively. With this formula-
tion, the pressure jump and thus surface tension forces can be embedded in the pressure gradient
term of the momentum equation Eq. (1.2). This approach, formulated using jump conditions, will
be used in this work. In the case of static fluids, Eq. (1.29) becomes:

[p]Γ = pl,Γ − pg,Γ = σκ (1.30)

which is the well-known Young–Laplace equation, relating pressure and surface tension for an
interface in equilibrium [55, 56].

1.1.4 Non-dimensional numbers

This section provides a list of the non-dimensional numbers that will be used in this work.

• The Reynolds number is the ratio between inertia and diffusion:

Re =
ρ|u|Lc
µ

=
|u|Lc
ν

∼ momentum convection
momentum diffusion

(1.31)

with Lc a characteristic length scale, and ν = µ/ρ the kinematic viscosity.

• The Weber number is the ratio between inertia ad surface tension:

We =
ρ|u|2Lc
σ

∼ inertial forces
cohesive forces

(1.32)

• The Laplace number can be seen as a Reynolds number based on the visco-capillary velocity
σ/µ:

La =
Re2

We
=
ρσLc
µ2

∼ cohesive forces
viscous forces

(1.33)

• The Ohnesorge number, which is related to the Laplace number by an inverse relationship:

Oh =
1√
La

=

√
We

Re
=

µ√
ρσLc

∼ viscous forces
cohesive forces

(1.34)

• The Capillary number is the flow velocity made non-dimensional using the visco-capillary
velocity:

Ca =
|u|
σ/µ

=
|u|µ
σ

∼ flow velocity
visco-capillary velocity

(1.35)
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1.2 Numerical resolution of incompressible Navier-Stokes equations

This section aims at introducing the numerical framework used in this thesis and its stakes to
solve the incompressible Navier-Stokes equations in the general case using the YALES2 flow
solver [38]. Specific features involved for simulating interfacial incompressible two-phase flows
will be presented in the subsequent chapter.

1.2.1 Projection method

The projection method, widely used for simulating incompressible flows, is based on Helmholtz’
theorem. This fundamental theorem of vectorial calculus allows to decompose any smooth vec-
torial field into an irrotational field (curl free) and a solenoidal field (divergence free). Applied to
the flow velocity field, it writes:

u = ui + us (1.36)

with ui and us the irrotational and solenoidal velocity fields. The following two relations are thus
verified: {

∇× ui = 0

∇ · us = 0
(1.37)

The irrotational part ui is a conservative vector field, which means that it derives from a scalar
potential φ:

ui = ∇φ (1.38)

Applying the divergence operator to Eq. (1.36) yields:

∇ · u = ∇ · ui +∇ · us︸ ︷︷ ︸
=0

= ∇ · (∇φ) (1.39)

eventually:

∇ · u = ∇2φ (1.40)

which is a Poisson equation for φ. This type of equation is classified as an elliptic partial differen-
tial equation (PDE), and its resolution allows to determine φ from u, to then find the irrotational
part of the velocity field ui with Eq. (1.38). Enventually, the solenoidal part is us = u− ui, which
allows to enforce the solenoidal nature of a velocity field: it is hence well-suited for the numerical
resolution of incompressible flows. The velocity field is then said to be projected.

The application of this method to the incompressible Navier-Stokes equations yields to three
steps, to advance the velocity field in time from un at time tn to un+1 at time tn+1. These steps
have been formulated by Chorin (1967) [57] as follows:

(i) To obtain a first approximation of the velocity field un+1 from un, one writes the momen-
tum conservation equation without the pressure gradient, which only contributes to the irro-
tational part of the velocity field ui. One then formulates an equation to explicitly compute
a predicted velocity u∗ from un:

ρu∗ − ρun

∆t
= ∇·

(
µ
(
∇un + (∇un)T

))
−∇·

(
ρun ⊗ un

)
(1.41)

Please note that this prediction equation is written in conservative form, consistently with
what will be presented subsequently in this manuscript.
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(ii) The pressure gradient is taken into account as:

un+1 − u∗

∆t
= −1

ρ
∇pn+1/2 (1.42)

which is then impossible because pn+1/2 is unknown at this point. However, by applying
the divergence operator to Eq. (1.42), one gets:

∇ · un+1 −∇ · u∗

∆t
= ∇ ·

(
−1

ρ
∇pn+1/2

)
(1.43)

Then, enforcing ∇ · un+1 = 0 yields:

1

∆t
∇ · u∗ = ∇ ·

(
1

ρ
∇pn+1/2

)
(1.44)

which is a Poisson equation for pressure.

(iii) Once pn+1/2 is known, its gradient (i.e. the irrotational part of the predicted velocity field
u∗
i ) can be computed and soustracted to the predicted velocity field, leading to the solenoidal

updated velocity field u∗
s = un+1:

un+1 = u∗ − ∆t

ρ
∇pn+1/2 (1.45)

This step is referred as the correction step.

The application of this method in YALES2 is different. Indeed, Eq. (1.41) without the pressure
term can lead to unphysical results due to the fractioning of time marching. The original method
is thus modified in YALES2 as follows [58]:

(i) A first velocity predition û is performed by considering the complete momentum equation,
including the pressure field at time step n:

ρû − ρun

∆t
= ∇·

(
µ
(
∇un + (∇un)T

))
−∇·

(
ρun ⊗ un

)
−∇pn−1/2 (1.46)

The similarities between the previous pressure field pn−1/2 and the one to compute pn+1/2

lead to an accurate velocity estimator û, which takes into account the boundary conditions
applied to un+1. The pressure term at tn−1/2 is then soustracted to this estimator:

ρu∗ − ρû
∆t

= ∇pn−1/2 (1.47)

(ii) The updated pressure field pn+1/2 is then obtained as in Chorin’s projection method follow-
ing the Poisson equation Eq. (1.44).

(iii) Eventually, the correction step is performed following Eq. (1.45).

The original momentum equation is indeed obtained by summing Eqs. (1.46), (1.47) and (1.42).
Moreover, including the previous pressure gradient ∇pn−1/2 at the prediction step leads to a
reduction of the errors related to the time-stepping process. The linear solver used to solve the
Poisson equation for pressure is the Deflated Preconditioned Conjugate Gradient of [59].



1.2. Numerical resolution of incompressible Navier-Stokes equations 15

1.2.2 Turbulence modeling - Large-Eddy Simulation (LES)

Turbulence has been described by Richard Feynman as the most important unsolved problem in
classical physics. This physical phenomenon is ubiquitous, and characterized by irregularities,
vortical structures, and chaotic behaviors of the flow (see Fig. 1.2): it is indeed very sensitive to
initial conditions ("butterfly effect"). Turbulence arises from flow instabilities, and covers a broad

Figure 1.2: Fragment of Studies of water passing obstacles and falling by Leonardo da Vinci,
c. 1508-1509 (Public Domain, from http://commons.wikipedia.org). This figure is reprinted
from [60].

continuous range of spatial scales: from the largest scales le (energetic scales), to the smallest
scales ld (dissipative or Kolmogorov scales). As the smallest scales ld are much greater than the
molecular mean free path λ (ld ≫ λ; continuum hypothesis), the Navier-Stokes equations describe
turbulence. The transition regime from laminar state to turbulent state can be characterized using
the Reynolds number defined by Eq. (1.31). Turbulence is very important in industrial systems, as
it enhances energy transfer.

There are three main approaches to simulate turbulent flows:

(i) Direct Numerical Simulations (DNS): The Navier-Stokes equations, which intrinsically ac-
count for turbulence, are solved directly without any additional physical model. If one
sets the cell size ∆x to the same order of magnitude than the dissipative length scale ld:
∆x ∼ ld, all turbulent scales are resolved. Moreover, unsteady characteristics of the flow
can be studied by employing DNS. However, the cost of these simulations can quickly be-
come prohibitive, especially when atomization in realistic 3D industrial configurations is
considered. Indeed, it has been demonstrated that the number of mesh points Np required
to compute all the turbulence scales in 3D are related to the Reynolds number based on the
energetic length scale: Np ∼ Re

9/4
le

. DNS are thus suited for moderate Reynolds number
flows [61];

(ii) Reynolds-Averaged Navier-Stokes (RANS) simulations: All scales of turbulence are modeled
using statistical tools and a closure method through a turbulent viscosity µt. These closures
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can be either algebraic (e.g. Goertler model, Prandtl mixing length), with one equation
(e.g. Prandtl model, Spalart-Allmaras model), or with two equations (e.g. (k, ε) and (k,ω)

models). Only the time-averaged flow characteristics are considered, but the restitution time
is short: this approach is widely used in industry for this reason;

(iii) Large-Eddy Simulations (LES) is an intermediate approach between DNS and RANS. The
largest turbulence scales of the flow are resolved, while vortical structures smaller than a
cut-off length scale ∆ are modeled from the large-scale informations, based on closure
assumptions. This scale separation is performed by employing a spatial filtering operation.
The cut-off scale ∆ is usually closely related to the grid resolution, allowing to study the
unsteady behavior of the flow. Large-Eddy Simulations allow to set the turbulence resolution
cursor according to need or to computational resources available, leading to much cheaper
simulations than when performing DNS, while still accessing unsteady characteristics of the
flow. This is why it is starting to be used in industry.

In this work, DNS are performed for academic cases (Chapter 3), while LES is employed for 3D
injection simulations (Chapter 4).

In the LES framework, a field ζ can be split up into a filtered part ζ and a sub-filtered (or
subgrid) field ζ ′:

ζ(x, t) = ζ(x, t) + ζ ′(x, t) (1.48)

where the spatially-filtered field is defined by the following convolution:

ζ(x, t) = ζ ∗G∆ =

∫

R3

ζ(x′, t)G∆(x − x′) dx′ (1.49)

with G∆ the filter convolution kernel, associated with the cutoff length scale ∆. The scales l < ∆

are filtered. If the wavenumber k = 2π/l is introduced, the wavenumbers k > k∆ = 2π/∆

are filtered, leading to a low-pass filtering operation. The filter kernel G∆ should satisfy the
normalization condition: ∫

R3

G∆(x) dx = 1 (1.50)

and can commute, under conditions, with spatial and temporal derivatives:

∂ζ

∂x
∗G∆ =

∂

∂x
(ζ ∗G∆) and

∂ζ

∂t
∗G∆ =

∂

∂t
(ζ ∗G∆) (1.51)

As pointed out in [62], commutativity with spatial derivation operators is ensured if the filter G∆

is isotropic, and if the filter size ∆ is homogeneous. In practice, the spatial filtering is performed
implicitly through the mesh, and hence the filter size ∆ is closely related to the grid resolution.
The commutation error is proportional to d∆(x)/dx, and can thus become non-negligible if local
cell-size gradients are important. In our work, even with the use of Adaptive Mesh Refinement,
cell-size gradients are smooth and controlled in the remeshing procedure, and thus, as it is usually
done in LES, the spatial commutation is assumed. Furthermore, temporal commutation is ensured
if the mesh does not evolve with time. If a moving mesh is employed (e.g. for simulating piston
engines), which is not the case in this thesis, commutation errors need to be considered [63].

Using the properties detailed above, the Navier-Stokes equations can now be filtered. Let us
consider the momentum equation, using the Einstein notation for convenience, i.e. writing the
vectors as ζ =

∑3
i=1 ζiei = ζiei and tensors as ζ = ζi,jei,j :

∂(ρui)

∂t
+
∂(ρuiuj)

∂xj
= − ∂p

∂xi
+
∂τi,j
∂xj

+ ρgi (1.52)
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By removing gravity for convenience and filtering, the equation yields:

∂(ρui)

∂t
+
∂(ρuiuj)

∂xj
= − ∂p

∂xi
+
∂τi,j
∂xj

(1.53)

Then, using a constant density together with spatial and temporal commutativity (Eq. (1.51)):

∂ (ρui)

∂t
+
∂ (ρuiuj)

∂xj
= − ∂p

∂xi
+
∂τi,j
∂xj

(1.54)

Using the relation uiuj = ūiūj + u′iu
′
j = ūiūj + (uiuj − ūiūj), the filtered momentum equation

becomes:
∂ (ρui)

∂t
+
∂ (ρūiūj)

∂xj
= − ∂p

∂xi
+
∂τi,j
∂xj

+
∂

∂xj

(
−ρ (uiuj − ūiūj)︸ ︷︷ ︸

τSGS
i,j

)
(1.55)

The filtered momentum equation for incompressible flows eventually writes:

∂ (ρui)

∂t
+
∂ (ρūiūj)

∂xj
= − ∂p

∂xi
+
∂τi,j
∂xj

+
∂τSGS

i,j

∂xj
(1.56)

with τSGS
i,j the subgrid Reynolds stress tensor. This term necessitates a closure: a subgrid model is

hence needed.
The Boussinesq approximation [64] is the starting point of subgrid modeling. By analogy with

the viscous stress tensor expression for incompressible Newtonian fluids Eqs. (1.3, 1.5, 1.10), the
Boussinesq hypothesis writes:

τSGS
i,j = 2µSGSSi,j = µSGS

(
∂ui
∂xj

+
∂uj
∂xi

)
(1.57)

with µSGS the subgrid viscosity (also called turbulent viscosity), and Si,j the strain rate tensor
of the filtered velocity field. Please note that the expression above only considers the deviatoric
part of the subgrid scale tensor. The isotropic part −(2/3)ρkSGSδi,j , which contains the tur-
bulent kinetic energy kSGS not resolved by the grid, is usually neglected for low subgrid Mach
numbers [65]. The subgrid viscosity µSGS is expressed using a subgrid model. To this aim,
Smagorinsky [66] developed a model in which the turbulent viscosity is built as:

νSGS =
µSGS

ρ
= (CS∆)2

√
2Si,jSi,j (1.58)

where CS is the so-called Smagorinsky constant: CS ≃ 0.18 in the case of homogeneous isotropic
turbulence [67]. However, this model is often found to induce excessive damping of the resolved
structures for transitional flows [68, 69]. To overcome this drawback, a dynamic estimation of the
constant CS = CS(x, t) can be performed, to adjust locally in space and time to the turbulent flow.
This idea led to the well-known dynamic Smagorinsky subgrid model [70, 71], which is based on
the Germano identity [72, 73]. This identity allows any subgrid scale tensor computed at two
different filtering levels ∆ and ∆′ (test filter) with ∆′ > ∆ (usually ∆′ = 2∆), to be expressed
analytically:

Li,j = Ti,j − τ̃SGS
i,j (1.59)
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where τ̃SGS
i,j is the subgrid scale tensor filtered by applying the test filter, Ti,j = ρ

(
˜̄ui˜̄uj − ũiuj

)
is

the subgrid-scale tensor obtained by applying the test filter to the momentum equation Eq. (1.56),
and Li,j = ρ

(
˜̄ui˜̄uj − ˜̄uiūj

)
is the resolved turbulent stress calculated explicitly for the resolved

velocity ūi. The underlying assumption is that a scale invariance exists in the wavenumber band
defined by these two filters. The dynamic Smagorinsky model is used in the Large-Eddy Simula-
tions performed in this thesis.

1.2.3 Meshing

In order to numerically solve the Navier-Stokes equations, the domain is partitioned into a set of
elements, which entirely cover the domain and do not overlap [74].

In one dimension, the only way is to divide space into intervals. With more dimensions, there
are more possibilities: the meshes can be either structured (or cartesian) or unstructured. For
cartesian grids, which are easy to implement in computers, each neighbor may be found with a
trivial numbering of the cells: (i, j) in 2D or (i, j, k) in 3D. The grid lines are not necessarly
parallel to each other, they may be curved for instance. These meshes are more suitable for simple
geometries: it is for example impossible to tesselate a disk with a structured grid. They may also
be costly if fine resolution is locally required. Thus, a popular extension technique for cartesian
meshes is to use multi-block structured grids: the domain is partitioned into several structured
blocks, each of them containing a certain number of elements. With this framework, a numbering
(i, j) or (i, j, k) is not mandatory, and meshing of curved geometries becomes possible: e.g. H-
grid, O-grid, see Fig. 1.3 (a) and (b).

Figure 1.3: Examples of multi-block structured meshes.

The goal in this thesis is to design algorithms for simulations in very complex geometries, i.e.
applicable to realistic industrial systems, including sharp edges, narrow corners. To handle these
complex geometries, the most suitable body-fitted mesh topology is unstructured grids: they can
indeed fit an arbitrary domain boundary [74]. Less cells are usually required with this type of
meshes, but are way more complicated to implement: each cell needs to have an identificator and
the neighbors are found with a given connectivity, which leads a priori to less efficiency compared
to cartesian grids, where the cells can be accessed straighforwardly. In practice, unstructured
grids are usually made of triangles, quadrilaterals, or arbitrary polygons in 2D (see Fig. 1.4), and
tetrahedra, hexahedra or arbitrary polyhedra in 3D. In this work, simplicial linear meshes (i.e.
triangular and tetrahedral) are used. Their generation is based on Delaunay triangulation: no point
is inside the circumcircle of any triangle, which guarantees a good mesh quality.

In order to save computational resources and tesselate the computational domain according to



1.2. Numerical resolution of incompressible Navier-Stokes equations 19

Figure 1.4: Examples of 2D unstructured meshes. Reprinted from [11].

need, Adaptive Mesh Refinement (AMR) techniques have arisen. A popular technique for solving
incompressible two-phase flows on adaptive cartesian grids is tree-based AMR (quad/octree), as
in the work of Popinet [20, 21]. An example of two-phase flow application of cartesian tree-based
AMR using the Gerris flow solver is displayed in Fig. 1.5. These methods can also be applied for

Figure 1.5: Jet created by the collapse under surface tension of an air bubble just below the sur-
face of still water: the resolution varies along the interface according to local interface curvature.
Reprinted from [75].

unstructured grids, but are way more complicated to implement [34].
In the present work, massively distributed, adaptive, and conforming (i.e. no hanging nodes)

unstructured grids are employed. They are adapted using both metric-based and skewness-based
quality criteria. For simplicial meshes (triangular and tetrahedral), the skewness S can be defined
based on the equilateral volume as [76]:

S =
optimal cell size − cell size

optimal cell size
(1.60)

which means that S → 1 leads to a bad quality cell (e.g. a high aspect ratio triangle in 2D).
The optimal cell size is the equilateral area (2D) or volume (3D): see Fig. 1.6 for an illustration
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Figure 1.6: Illustration of the skewness computation based on the equilateral volume for a trian-
gular mesh cell. Reprinted from [76].

with a triangular cell. If the skewness is too high, some solvers may have accuracy and stability
issues. This method for determining the skewness is common and the default one for simplicial
grids. Other methods exist, such as computing the skewness based on the deviation from a nor-
malized equilateral angle, but are neither used nor detailed here: see Bakker (2008) [76] for more
details. The external, sequential, remeshing library MMG [77] is used in this thesis, coupled to
the YALES2 flow solver [78], so that parallel iterative remeshing-partitioning processes are per-
formed dynamically around a moving material interface throughout a run. Such process can be
done not only for interfacial two-phase flow applications, but also in the context of combustion.
An example of such application is shown in Fig. 1.7, where a tetrahedral mesh is dynamically
refined around the flame front in a semi-industrial burner. As seen in the figure, a fine resolution

Figure 1.7: Dynamic mesh adaptation using YALES2/MMG for combustion applications [79, 80].
The top slice depicts the temperature field T , while the bottom one shows the heat release ω̇T
together with the adapted tetrahedral grid.
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is imposed around the flame front, and a smooth increase in cell size occurs as the distance to the
interface increases: we will come back to this point later in the manuscript (Section 2.4.1). The
YALES2/MMG parallel mesh adaptation strategy relies on a two-level grid decomposition: cells
are gathered in cell groups, themselves gathered within a processor. The double-domain decompo-
sition of YALES2 is presented and illustrated in Section 1.2.6 of the present chapter. The technical
details about the two-level parallel dynamic grid adaptation technique, in the context of interfacial
two-phase flows, are presented in the subsequent chapter (Section 2.4).

1.2.4 Finite-Volume discretization - Control volume

In the finite-volume framework for spatial discretization, the integral form of the conservation
equations are used as a starting point. The computational domain is divided into a finite number
of control volumes V , and the equations are integrated over each of these control volumes [74].
This framework allows to conserve well physical quantities inside the domain, as a flux leaving a
control volume enters the neighboring one. The momentum equation in integral form writes:

∫

V

∂(ρu)
∂t

dV +

∫

V
∇ · (ρu ⊗ u) dV = −

∫

V
∇p dV +

∫

V
∇ · τ dV +

∫

V
ρg dV (1.61)

Using the divergence theorem, the equation becomes:
∫

V

∂(ρu)
∂t

dV +

∮

A
(ρu ⊗ u) · dA = −

∮

A
pdA +

∮

A
τ · dA +

∫

V
ρg dV (1.62)

with dA = ndA the oriented surface vector. For sake of simplicity, the gravity term is removed
and the equation can be re-organized as:

∫

V

∂(ρu)
∂t

dV =

∮

A

(
− (ρu ⊗ u) · n − pn + τ · n

)
dA (1.63)

For a classical cartesian staggered MAC grid, originally introduced for free-surface flow sim-
ulations (i.e. one fluid involved) [49] within the Marker-And-Cell (MAC) method of Harlow and
Welch (1965) [81], the control volumes for pressure and velocity are shifted: pressure is stored at
mesh cell centers, while velocity is defined at cell faces. Both are defined at the center of their
respective control volumes. Thus, the control volumes for pressure coincide with the grid cells
(i.e. based on the primal mesh), see Fig. 1.8 for notations.

However in the YALES2 incompressible flow solver [38] used in the present work, control
volumes do not coincide with the grid, they are indeed based on the dual mesh, constructed from
the centers of edges and simplicial elements (dual cells connect centroids of cells to centroids of
faces). The flow data such as pressure and velocity are stored at grid nodes: they are collocated.
The unstructured finite-volume schemes employed in this thesis are pair-based: index i will repre-
sent the node around which the control volume is defined, and k will represent a neighbor of the
node i, in the set of neighbors Ni. See Fig. 1.9 for notations. As it can be seen in the figure, the
node-based control volumes are polyhedral. Eq. (1.63) is thus applied to each polyhedron of the
dual mesh.

In YALES2, 4th-order central finite-volume schemes are written on the dual grid [38]. The
average of a quantity ζ over the control volume V is approximated by its nodal value:

∫

V
ζ dV ≃ ζiVi (1.64)
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Figure 1.8: Notations for a staggered MAC grid. Reprinted from [49].

Figure 1.9: Grid notations for the YALES2 flow solver; Node-centered control volume.

As mentioned in [82], this expression is only first-order accurate for a generic mesh. It becomes
second-order accurate if the control volume center of mass is located at the node position. This
is only true if the mesh is locally uniform and isotropic. The discretization errors are greatly
reduced by avoiding large cell-size ratios between adjacent cells. Thus, special care is required
when refining the grid locally using isotropic Adaptive Mesh Refinement (AMR), so that a smooth
decrease in grid size towards the region of interest is performed.
The integrated gradient operator applied to a scalar field ζ writes:

∫

V
∇ζ dV =

∮

A
ζ dA ≃ ∇ζ|iVi (1.65)

The integrated divergence operator applied to a flux F writes:
∫

V
∇ · F dV =

∮

A
F · dA ≃ ∇ · F|iVi (1.66)
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Eqs. (1.65) and (1.66) can now be used to obtain the discretized expressions for the node-based
gradient and divergence operators. Second and fourth-order gradients of a quantity ζ are computed
at a given node i using the gradient theorem as:

∇ζ|i =
1

Vi

∑

k∈Ni

ζikdAik (1.67)

with Ni the set of neighbors of node i, ζik the pair-based estimation of ζ, computed to either second
or fourth order, and dAik the normal vector to the portion of the control volume Vi, associated to
pair ik (red solid line in Fig. 1.10). Second and fourth-order approximations of the gradient are
written as:

∇ζ|2ndi =
1

Vi

∑

k∈Ni

(
ζi + ζk

2

)
dAik (1.68)

∇ζ|4thi =
1

Vi

∑

k∈Ni

(
ζi + ζk

2
+

∇ζ|2ndi −∇ζ|2ndk

6
·∆xik

)
dAik (1.69)

where ∆xik is the direction of the pair ik. It is useful to define the unit pair direction eik =

∆xik/∆xik, which will be used in the subsequent chapters. It should be noted that this discretiza-
tion scheme is fourth-order accurate on quasi-regular grids. More details about the high-order
finite-volume framework used can be found in [83]. Using the divergence theorem, the divergence
of a flux F writes:

∇ · F|i =
1

Vi

∑

k∈Ni

Fik · dAik (1.70)

with Fik the pair-based flux computed as in the gradient to either second or fourth order. To ease

Figure 1.10: Finite-volume pair-based discretization in YALES2, using node-centered control vol-
umes Vi.

the reading of the manuscript, the necessary details about the pair-based finite-volume schemes
are recalled in the next chapter (Section 2.2.3).
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1.2.5 Time integration

Explicit temporal integration is performed. Several schemes are available in YALES2, such as the
fourth-order Runge-Kutta scheme (RK4). Let us consider the generic transport equation of a given
quantity ζ:

∂ζ

∂t
+ u ·∇ζ = 0 (1.71)

where the flow velocity u is assumed constant. If one introduces Ci the discretized convection term
at node i, a simple one-step discretized transport equation writes:

ζn+1
i = ζni −∆tCi (ζni ,ui) (1.72)

The RK4 method decomposes the advancement into four steps as follows:





ζ
(1)
i = ζni − ∆t

4 Ci (ζni ,ui)
ζ
(2)
i = ζni − ∆t

3 Ci
(
ζ
(1)
i ,ui

)

ζ
(3)
i = ζni − ∆t

2 Ci
(
ζ
(2)
i ,ui

)

ζn+1
i = ζni −∆tCi

(
ζ
(3)
i ,ui

)
(1.73)

When the fluxes are linearized with respect to ζ (constant convection velocity), the RK4 method
is also called a Taylor method as it relies on a Taylor expansion of the Right-Hand Side (RHS).

The time-marching scheme used in this work, called TFV4A [84], builds upon the RK4
scheme, which can be rewritten as a two-step method by recursion as:




ζ
(2)
i = ζni − ∆t

3 Ci (ζni ,ui) + ∆t2

12 C2
i (ζ

n
i ,ui)

ζn+1
i = ζni −∆tCi (ζni ,ui) + ∆t2

2 C2
i

(
ζ
(2)
i ,ui

) (1.74)

where C2 = C ◦ C = u ·∇(u ·∇ζ) is the twice-applied convection operator (4∆-stencil). These
two detailed expressions have been obtained by replacing ζ(1)i in the expression of ζ(2)i , ζ(3)i in the
expression of ζn+1

i , and then developing by linearity. The so-called TFV4A scheme used in this
thesis is indeed a blend of the RK4 method Eq. (1.74) and a Lax-Wendroff type scheme, named
TTG4A (Two-step Taylor-Galerkin). The TTG4A scheme is written as:




ζ
(2)
i = ζni − ∆t

3 Ci (ζni ,ui) + ∆t2

12 Di (ζ
n
i ,ui)

ζn+1
i = ζni −∆tCi (ζni ,ui) + ∆t2

2 Di

(
ζ
(2)
i ,ui

) (1.75)

where the twice-composed convection operator C2 in RK4 is replaced by a compact diffusion
operator D (2∆-stencil) in TTG4A. This is the only difference between the two schemes. A linear
combination between RK4 and TTG4A yields:




ζ
(2)
i = ζni − α∆t

3 Ci (ζni ,ui) + (1− α)∆t
2

12 C2
i (ζ

n
i ,ui) + α∆t2

12 Di (ζ
n
i ,ui)

ζn+1
i = ζni − α∆tCi (ζni ,ui) + (1− α)∆t

2

2 C2
i

(
ζ
(2)
i ,ui

)
+ α∆t2

2 Di

(
ζ
(2)
i ,ui

) (1.76)

where α is an adjustable parameter, to set the impact of the diffusive terms. α = 1 yields the
TTG4A scheme which is stable and diffusive, while α = 0 recovers the RK4 scheme.
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1.2.6 Domain decomposition - Parallelization

High-Performance Computing (HPC) is an essential tool for simulating complex industrial pro-
cesses. Indeed, for example, designing industrial injectors requires to simulate complex three-
dimensional two-phase flows. Atomization especially, which leads to the formation of a large
amount of droplets, involves a substantial number of degrees of freedom. Thus, large computa-
tional resources are necessary to run these simulations, and as a consequence CFD code perfor-
mances by the mean of parallelization are at the core of the problem. To optimize a parallel CFD
code, one has to ensure that the load on each processor is balanced. Indeed, at each global com-
munication, processors will have to wait for each other, leading to a simulation roughly driven by
the slowest processor. A special attention should then be dedicated to the initial mesh partitioning
in order to distribute each piece of the computational domain to the various processors, in the
most balanced way possible. In YALES2, to optimize this distribution and memory management,
a double domain decomposition is performed.

In the double domain decomposition [38, 58], illustrated in Fig. 1.11, a first partition of the
mesh is performed as in single domain decomposition methods. This operation leads to one cell
group on each processor. Next, each processor will split its subdomain into cell groups, with the
requested number of cells per group specified by the user at the beginning of the run. Between
these groups, internal communicators are built, whose role is similar than the one of external
communicators but which will not be concerned by the external parallelization library, which is
the Message Passing Interface (MPI) library used in YALES2. This framework allows to form
contiguous blocks in memory, so that data operations required for a computation on one group
can be loaded simultaneously in the cache memory of the processor. This methods is then said
"cache-aware", which greatly optimizes data transmissions between the processor’s Random Ac-
cess Memory (RAM) and its cache memory, leading to efficient data accesses. Moreover, one can
adjust the group size to the cache memory capacity of the processors used for the run.

Figure 1.11: Double domain decomposition of a 2D triangular mesh. The cells located between
black thick lines are those shared by different processors, and are thus involved in external com-
munications (MPI). The grey cells are at the boundary of different cell groups within a processor
(internal communications). Reprinted from [58].
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The Deflated Preconditioned Conjugate Gradient (DPCG) linear solver of Malandain et al. [59]
used in this work to solve the pressure Poisson equation in the context of the projection method
(presented in Section 1.2.1) is optimized by using the so-called double domain decomposition.
Indeed, the DPCG algorithm is similar to multigrid methods and hence requires to deal with com-
putational operations on a coarse grid: the double domain decomposition is hence well-suited,
convenient, to perform these operations. Eventually, local refinement of the mesh can be per-
formed directly on cell groups, and thus internal and external communicators associated with the
cell group do not necessitate to be rebuilt.

The global partitioning for the repartition of the cells on processors and the local partitioning
into cell groups on each processor are performed using the METIS library [85].

1.3 Sharp interface-capturing techniques

For liquid-gas multiphase flows, in order to numerically describe the evolution of the liquid-gas
interface dynamics and topology in time and space, as well as to compute the material properties
and surface tension forces, dedicated numerical methods and models are needed. The methods
available for such purpose are numerous, but can be gathered into several main categories of
methods.

The first generation of techniques derives from the pioneering Marker-And-Cell (MAC) method
(1965) [81], which was originally used for simulating free-surface flows (i.e. one fluid involved),
but evolved later to compute multifluid problems. The MAC method consists in placing La-
grangian virtual marker particles in Eulerian cells and advecting them with the updated velocity
field. If a cell contains a particle, it is considered to contain fluid. This way, flow visualization of
the free surface is possible [86]. The idea of using Lagrangian markers to represent and advect an
interface has led to another method, namely the Front-Tracking (FT) method (1992) [87, 88, 89].
In this method, the interface is a chain of markers connected by segments (called front), which
yields an explicit description of the interface position (see Fig. 1.12). The advantage of the FT

Figure 1.12: Illustration of the Front-Tracking method. Reprinted from [89].

method is its accuracy, as it allows sub-grid resolution of the interface dynamics. However, it
does not implicitly predict topology changes, and thus an additional explicit criterion is required.
The MAC and FT techniques are gathered in the interface-tracking class of methods (Lagrangian
advection of the liquid-gas interface).
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On the other hand, Eulerian interface advection techniques, classified into the interface-capturing
class, are the most widely-used methods for simulating material interface dynamics. They rely on
the transport of an implicit function, used to identify the phases and describe the interface geome-
try. The main interface-capturing methods are the Volume-Of-Fluid (VOF) [90] and the Level Set
(LS) techniques [91, 92, 4]. The VOF method uses and advects the volume fraction to account for
the interface presence, while in the classical LS method the interface is located as the zero-level
of a regular, signed-distance function.

Besides properly simulating the interface dynamics, one needs to compute the material prop-
erties, such as density and viscosity, from the interface location. On one hand, for sharp-interface
techniques, the interface is a discontinuity and thus the density and viscosity values encounter a
jump across the interface: a Heaviside function can thus a priori be used, but is often regularized
for numerical reasons. The VOF, LS, MAC, and FT methods belong to this sharp-interface cat-
egory. On the other hand, in diffuse-interface methods, a physical interface thickness is defined
and these material properties are continuous functions of the local phase indicator function. The
diffuse-interface methods include in particular Phase-Field (PF) techniques [93, 94, 95], based on
the convection-diffusion equation of the phase, by introducing physical effects that govern inter-
faces in a thermodynamically consistent way [96, 49]. Another technique in this category is the
Second-Gradient (SG) method [97, 98, 99, 100], which considers, within the continuous transition
zone, second-order density terms such as (∇ρ)2 in Navier-Stokes equations and in thermodynamic
quantities. Eventually, one can mention the Constrained Interpolation Profile (CIP) method [101],
in which the transition between the two fluids is described by a cubic polynomial [49].

The method used in this thesis to describe the liquid-gas interface dynamics belongs to interface-
capturing techniques (Eulerian description), and derives from a sharp-interface framework (dis-
continuous material properties). As a consequence, an emphasis is put on this class of methods
(i.e. VOF and LS methods) in the rest of this section. It should eventually be mentioned that the
numerical methods for sharp interface capturing presented in detail in the following are classified
according to Mirjalili et al. (2017) [102], and are introduced in the context of a finite-volume
spatial discretization.

To ease the reading of the following sub-sections, a graphical classification of sharp interface-
capturing methods is provided in Fig. 1.13.

1.3.1 Volume Of Fluid (VOF)

The VOF method was first introduced in [90] and is now one of the most famous and success-
ful interface-capturing methods. The idea is to introduce a liquid volume fraction C, which is
conserved throughout a simulation to numerically respect mass conservation. This function is the
spatial average over a control volume V of a phase indicator function (Heaviside) H , defined as:

H(x, t) =

{
1 if x is in liquid

0 if x is in gas
(1.77)

Therefore, the volume fraction of liquid C, also known as the "color function", is:

C(x, t) =
1

V

∫

V
H(x, t) dV (1.78)

The phase indicator H is advected with the flow, its material derivative DH/Dt thus vanishes:

DH

Dt
=
∂H

∂t
+ u ·∇H =

∂H

∂t
+∇ · (uH)−H∇ · u = 0 (1.79)
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Figure 1.13: Classification of sharp interface-capturing techniques. Inspired by [102].

By integrating Eq. (1.79) over the control volume V :
∫

V

∂H

∂t
dV +

∫

V
∇ · (uH) dV −

∫

V
H∇ · u dV = 0 (1.80)

Using Eq. (1.78) and the divergence theorem, Eq. (1.80) becomes:

V
∂C

∂t
+

∫

A
uH · dA −

∫

V
H∇ · u dV = 0 (1.81)

Even in the framework of incompressible flows (i.e. ∇ · u = 0), the third term may be kept
for numerical implementation purposes [102]. Nonetheless, without this term, the semi-discrete
advection equation of the color function C eventually yields:

Cn+1 = Cn − ∆t

V

∫

A
F · dA (1.82)

with ∆t = tn+1 − tn the time step and F = uH the flux across the control surface A. It should be
noted that if Eq. (1.82) is summed all over the grid cells with correct boundary conditions, we get∑

cellsC
n+1 =

∑
cellsC

n, leading to liquid volume conservation over time [49].
The evaluation of the flux budget across the control surface

∫
A F · dA requires a numerical

approximation of the phase indicator H . This approximation can be either algebraic (e.g. a poly-
nomial or trigonometric function) or geometric (e.g. via a line or plane equation, for 2D or 3D,
respectively). These two types of approximation yield to two classes of VOF methods: algebraic
and geometric VOF methods, respectively.

1.3.1.1 Algebraic VOF

Algebraic VOF methods are one of the first interface-capturing methods that have been developed.
The original VOF method of Hirt and Nichols (1981) [90] belongs to this class. In algebraic
VOF methods, the sharp phase indicator H is approximated numerically using algebraic functions
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(volume-averaged, polynomial, hyperbolic tangent). Thus, algebraic VOF methods proceed in two
steps: (i) Reconstruction of the fluxes F through an algebraic approximation of H; (ii) Advection
of the volume-fraction field from Cn to Cn+1.

Depending on the numerical method chosen to compute the fluxes F = uH , algebraic VOF
schemes can be divided into compressive schemes and THINC schemes, where THINC stands for
Tangent of Hyperbola for INterface Capturing.

1.3.1.1.1 Compressive schemes

The idea of compressive schemes is to use the orientation of the interface normal with respect to
the computational cell face normal [102], represented by the angle θf . A face flux Ff = ufCf ,
in which the color function C approximates the heaviside function H , is thus estimated. For
each face f , upwind U, donor D, and acceptor A cells are defined, depending on the local flow
direction given by the local face velocity field uf . An illustration of such methodology is provided
in Fig. 1.14 for a polyhedral grid, reprinted from [48].

Figure 1.14: Illustration of upwind U, donor D, and acceptor A cells associated with a cell face
f on a polyhedral mesh. U, D, and A are determined by the orientation of the local velocity field
uf . Reprinted from [48].

In order to accurately estimate the face volume fraction Cf , a non-diffusive and bounded
advection scheme is required. However, as mentioned in [103], the use of only a compressive
scheme can cause an alignment of the fluid interface with the grid, whereas using only a diffu-
sive scheme leads to a loss of accuracy when the flow is not oriented along a grid line. This
issue gave birth to blended high-resolution (HR) schemes, mixing compressive and diffusive HR
schemes. An HR scheme is a high-order scheme combined with the Convective Boundedness
Criterion (CBC) [104], which ensures that neither undershoots nor overshoots will appear in the
computational cell. Several examples of blending advection schemes exist, such as HRIC [105],
CICSAM [106], STACS [107], HiRAC [108], and M-CICSAM [109].

The HR schemes can be formulated in the Normalized Variable Diagram (NVD) framework [110],
which determines boundedness, stability and numerical diffusion conditions. In the NVD-CBC
framework, a normalized face-based volume fraction C̃f is used:

C̃f (x) =
Cf (x)− CU

CA − CU
(1.83)

together with:

C̃D(x) =
CD(x)− CU

CA − CU
(1.84)
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where the subscripts A, U and D stand for acceptor, upwind, and donor cells, respectively, deter-
mined by the flow direction [109]. Thus, using this normalization process, C̃U = 0 and C̃A = 1.
Thanks to the CBC, C̃f = f(C̃D). The blending between a compressive downwind scheme and a
diffusive high-resolution scheme, also called "switching strategy" is written as [109]:

C̃f ,blend = γf (θf )C̃f ,compressive + (1− γf (θf )) C̃f ,diffusive (1.85)

with γf (θf ) the blending function (0 ≤ γf ≤ 1), depending on the interface orientation θf . As
suggested by [108, 109], the blending function can be written as:

γf = min

(∣∣∣ ∇C|D · d
|∇C|D| · |d|

∣∣∣
m
, 1

)
(1.86)

where d is the distance vector connecting the centers of the donor and acceptor cells (i.e. along a
grid line), and ∇C|D is the interface normal in the donor cell. The idea is to use the compressive
scheme when the interface normal is aligned with the grid line, the diffusive scheme when the
vectors are perpendicular, and a mix of the two in all intermediate situations.

However, the blended C̃f ,blend cannot be expressed in terms of nodal values at the center of
the cells from Eq. (1.85). To overcome this difficulty, several implementation methods of blended
HR schemes have arisen. Among these methods [111, 112, 113, 114], the Downwind Weighting
Factor (DWF) method [112] can be cited as an example. It relies on the use of a face-based
weighting factor βf (C̃f ,blend, θf ), which carries all the information about the fluid distribution
(C̃f ,blend) and interface orientation (θf ) so that:

Ff = βf (C̃f ,blend, θf )Ff ,A +
(
1− βf (C̃f ,blend, θf )

)
Ff ,D (1.87)

with the downwind weighting factor βf expressed as:

βf =
C̃f ,blend − C̃D

1− C̃D

(1.88)

As mentioned in [102], the accuracy of compressive algebraic VOF methods is generally an
order of magnitude lower than recent geometric VOF methods, and depends on the local CFL
criterion. Another drawback is the potential need to add an artificial interface sharpening term for
flows with high strain rates, in order to avoid numerical diffusion.

1.3.1.1.2 THINC schemes

The idea of THINC schemes is to approximate the phase indicator function H by a hyperbolic
tangent function H̃ . The THINC method has been originally proposed in 1D in 2005 by [32], and
revisited in 2011 in [33]. It relies on the use of the following piecewise interpolation function:

H̃(x) =
α

2
(1 + γ tanh (βf(x,xΓ))) (1.89)

where α, γ and β are parameters which determine the quality of the solution. α ensures the
boundedness of the function, γ is equal to 1 or −1 depending on the interface direction, and β sets
the steepness of the profile:

lim
β→∞

H̃(x) = H(x) (1.90)
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The function f(x,xΓ) is a relative distance function to the position of the jump center xΓ (i.e. the
interface position). The original discretized expression for a 1D cartesian finite-volume scheme
can be found in [32, 33].

The original extension of the THINC method to 2D and 3D cartesian grids, the MTHINC
method (2012) [115] is done by using either a plane or a quadratic equation to represent the cell-
wise interface. For a plane representation, the interface Γ is given by the equation:

nxx+ nyy + nzz + d = 0 (1.91)

with n = (nx,ny,nz) the interface normal, computed from the volume fraction C:

n =
∇C

|∇C| (1.92)

and d is determined from the given volume fractions. The smoothed phase indicator thus writes:

H̃(x) =
1

2
(1 + tanh (β(nxx+ nyy + nzz + d))) (1.93)

The extension of this work to unstructured grids, the UMTHINC method, appeared in 2014 [116],
with usage of a plane to represent the interface within a cell.

To improve the cell-wise representation of the interface in the UMTHINC method, a quadratic
polynomial P(x) has been used in [117]:

H̃(x) =
1

2
(1 + tanh (β(P(x) + d))) (1.94)

This idea has been combined with a hybrid integration technique, blending 1D exact integration
and Gaussian quadrature to integrate the flux F = uH̃ in Eq. (1.82). Indeed, integrating the
multi-dimensional hyperbolic tangent function is another issue to tackle in the implementation of
MTHINC/UMTHINC schemes. This blended spatial integration scheme then paves the way to
a full Gaussian quadrature integration: the THINC/QQ scheme (THINC method with quadratic
surface representation and Gaussian quadrature) of [118] (2017).

Recent studies report the use of a level set signed-distance function ϕ(x) to retrieve the quadratic
polynomial P(x): the THINC/LS [119] (2018) and THINC/QQLS [120] (2019) methods, with
Gaussian quadrature integration. The THINC scaling, including the level set function, writes:

H̃(x) =
1

2
(1 + tanh (βϕ(x))) (1.95)

where ϕ, the level set signed-distance function defined as ϕ(x) = ±|x − xΓ|, is approximated
within a cell as:

ϕ(x) = P(x) (1.96)

Thus, the interface is Γ = {x ∈ R3|ϕ(x) = P(x) = 0}. The usage of a level set function allows
an accurate computation of geometrical informations (interface normal and curvature). However,
as it will be seen later, the advection of the level set function ϕ does not ensure mass conservation,
and thus a correction ϕ∆(x) computed by a constraint on the volume fraction C is needed to
enforce mass conservation [119]:

H̃(x) =
1

2

(
1 + tanh

(
β(P(x) + ϕ∆(x))

))
(1.97)

with ϕ∆(x) computed so that:
1

V

∫

V
H̃ dV = Cn (1.98)

Hence, with this constraint, the interface is represented as Ψ(x) = P(x) + ϕ∆(x) = 0. This
equation is named "Polynomial Surface of the Interface (PSI) equation" in [121] (2021).
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1.3.1.2 Geometric VOF

A geometric VOF method requires two steps: (i) Explicit reconstruction of the interface from the
cell-wise volume fractions C; (ii) Advection of the reconstructed interface in a given velocity field
u using geometric methods, either direction by direction (split) or in one step (unsplit).

1.3.1.2.1 Interface reconstruction

The most widely used technique to explicitly reconstruct the interface within a computational cell
is the Piecewise Linear Interface Calculation (PLIC) scheme of Debar (1974) [122]. This method
consists in approximating the interface within a mesh cell as a line (2D) or a plane (3D). The
equation of the cell-wise interface writes:

n · x + α = nxx+ nyy + nzz + α = 0 (1.99)

where α is a constant, adjusted so that the liquid volume enclosed under the interface Vl equals
C×V , with V the total volume of the cell. The key part in PLIC reconstruction schemes is to find
the local normal vector in cell k: nk.

In Youngs’ method (1982) [123], the normal is computed from the normalized local gradient
of volume fraction, discretized with finite differences:

nk =
∇kC

|∇kC|
(1.100)

This method is fast and is accurate at low resolutions, i.e. when the radius of curvature is com-
parable to the cell size: second-order spatial convergence when approximating an ellipse [49].
However, the rate of convergence of the method lowers at high resolutions: first-order conver-
gence for an ellipse reconstruction [49].

A method which shows better spatial convergence at high resolutions is the Centered-columns
(CC) method of Scardovelli and Zaleski (2003) [124]. Presented in 2D for sake of simplicity, even
if 3D extension for cartesian grids is possible, it relies on the use of height and width functions
within a cell block, y = f(x) and x = g(y), constructed by summing the volumes fractions
column-wise or row-wise, respectively. For a 3x3 block, one would compute the height functions
yi−1 and yi+1, and the width functions xj−1 and xj+1. Then, the functions in the central column
(yi) and row (xi) are estimated with a linear equation for each, where the slope, computed using a
centered scheme, is the corresponding normal component value:

{
sgn(ny)y = −nxx+ α1

sgn(nx)x = −nyy + α2

(1.101)

where the signs of ny and nx are computed explicitly with centered finite differences, since ny =
−∂C/∂y and nx = −∂C/∂x. Indeed, summing the volume fractions yields to the loss of the
information about the phases. However, depending on the interface topology and on how it cuts the
borders of the cell block, only one of the two representations gives the correct slope. In some cases,
the CC scheme may not even give the correct slope and an off-centered scheme is then necessary.
To select the correct computed slope, nx or ny, the angular coefficient with the minimum absolute
value is chosen. When several estimates are available for the same slope coefficient (e.g. nx,1 and
nx,2), the coefficient with the minimum-absolute value is chosen. The CC method reconstructs
well any linear interface thanks to the two additional criteria, but becomes weakly accurate when
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interface curvature is important. This issue has led to the development of a two-segment cell-
wise interface reconstruction by the same authors (2003) [124], to improve the representation of
high-curvature regions.

To combine the good behaviors of Youngs’ and Centered-columns methods at low and high
resolutions, respectively, Aulisa et al. proposed the Mixed Youngs-Centered (MYC) method
(2007) [125]. The best of the computed lines or planes with the CC method is first selected,
then a selection between this best one and Youngs’ method is done. The MYC method seems to
be the most popular method for cartesian grids, as it shows a good accuracy/cost balance.

The Efficient Least-squares VOF Interface Reconstruction Algorithm (ELVIRA) technique,
introduced by Pilliod and Puckett (2004) [126], also considers the height y = f(x) and width x =

g(y) functions to compute an optimal linear/planar approximation of the cell-wise interface. In
addition to the centered scheme to compute the slopes nxc and nyc as in the CC scheme, backward
and forward estimates are also considered. This framework gives a total of 6 normal candidates in
2D (nn with n = 1...6, from nxc, nxf , nxb, nyc, nyf , and nyb). First, the constant αn is computed
by enforcing volume conservation in the central cell. The choice is then made by minimizing a
volume-fraction-based least-squares error E(n) in L2 and L∞ for the 3x3 block of cells, between
the predicted volume-fraction field C̃(nn) in the surrounding 8 cells for the candidate n, and the
actual volume fraction C. The ELVIRA method is second-order accurate, but is computationally
expensive, especially in 3D where the number of normal candidates becomes large [127, 7].

For unstructured grids, Ivey and Moin [9] (2015) developed an embedded height-function
framework to compute second-order normals. However, the prefered method to compute the in-
terface normal on unstructured grids is not clear [102].

Once the normal vector is computed in Eq. (1.99), one needs to compute the constant α by en-
forcing liquid volume conservation. For cartesian meshes analytical methods are available [128].
For general polyhedra root-finding algorithms are typically employed: one has to find the zero of a
non-linear function f(α) = Vl(α)− C∆x3, with Vl(α) the estimated liquid volume from a guess
of α, and C∆x3 the actual liquid volume in a cell of size ∆x and volume V = ∆x3 [49, 129].

1.3.1.2.2 Interface advection

The volume fraction field C is advanced in time using Eq. (1.82). The advection can be performed
either direction by direction, by decomposing the time-marching procedure into a set of one-
dimensional equations (split schemes), or in one step (unsplit or multi-dimensional schemes).
Thus, for split advection schemes, as each of the velocity derivative components is used seperately
and is generally non-zero, the third term of Eq. (1.81) is kept even if the multi-dimensional flow is
incompressible [130]. The VOF transport equation thus writes:

Cn+1 = Cn − ∆t

V

∫

A
F · dA +

∆t

V

∫

V
H∇ · u dV (1.102)

For unsplit advection schemes, ∇ · u = 0 is used and hence the last term is removed.

Split advection For operator split schemes, one considers the one-dimensional version of
Eq. (1.102). For sake of simplicity, the integration is performed over a 2D square cell (i, j) of area
A = ∆x∆y = ∆x2:

Cn+1
i,j = Cni,j −

∆t

∆x2

2∑

Li=1

FLi +∆tC̃i,j
∂u

∂x

∣∣∣
i

(1.103)
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where Li = 1, 2 are the 2D cell line boundaries with respect to direction i, crossed by the respec-
tive fluxes FLi . C̃i,j can be chosen either as Cni,j (explicit scheme) or Cn+1

i,j (implicit scheme).
Using a centered finite-difference discretization for the derivative of the velocity component u
along x, and considering the cell boundaries (i+1/2, j) and (i−1/2, j), the discretized transport
equation for direction i yields:

Cn+1
i,j = Cni,j −

∆t

∆x2
(
Fi+1/2,j − Fi−1/2,j

)
+∆tC̃i,j

ui+1/2,j − ui−1/2,j

∆x
(1.104)

For the Eulerian-Implicit (EI) advection scheme, C̃i,j = Cn+1
i,j , the advection equation be-

comes:

Cn+1
i,j =

Cni,j − ∆t
∆x2

(
Fi+1/2,j − Fi−1/2,j

)

1− ∆t
∆x

(
ui+1/2,j − ui−1/2,j

) (1.105)

where the fluxes F are computed in an "Eulerian" manner from Cni,j , with an area-fluxing scheme.
An onto-cell implicit linear mapping, depicted in Fig. 1.15 (a) is used, of which the results depend
on the local velocity field: in the figure, a contraction is represented. The fluxes can be computed
before the advection of the interface by the mapping, from the left and right shaded areas inside
the tessellated rectangle of area Ax issued from the grid mapping. If we introduce a coefficient a
which is the contraction/expansion coefficient of the onto-cell mapping:

a =
1

1− ∆t
∆x

(
ui+1/2,j − ui−1/2,j

) (1.106)

The EI advection equation eventually writes:

Cn+1
i,j = a

(
Cni,j −

∆t

∆x2
(
Fi+1/2,j − Fi−1/2,j

))
(1.107)

Thus, the updated volume-fraction field is the sum of the compressed (or expanded) areas. If one
looks at Fig. 1.15 (a) as an example: the updated C-field can be obtained either by multiplying the
sum of the 3 original shaded areas inAx on the left by the compression coefficient a, or by directly
summing the compressed areas obtained after the mapping of the interface onto the central cell on
the right of Fig. 1.15 (a).

For the Lagrangian-Explicit (LE) advection scheme, C̃i,j = Cni,j , the advection equation be-
comes:

Cn+1
i,j = Cni,j

(
1 +

∆t

∆x

(
ui+1/2,j − ui−1/2,j

))
− ∆t

∆x2
(
Fi+1/2,j − Fi−1/2,j

)
(1.108)

where the fluxes F are computed in an "Lagrangian" manner by advecting the end points of the
interface segments. For the LE scheme an out-of-cell explicit linear mapping is used, depicted in
Fig. 1.15 (b), of which the results also depend on the local velocity field. To avoid inconsistencies
(C < 0 or C > 1), the fluxes are computed after the Lagrangian advection of the interface
segments by the mapping [130, 131], from the left and right white areas inside the cell (i, j) in
Fig. 1.15 (b) right. If we introduce a coefficient b which is the contraction/expansion coefficient
of the out-of-cell mapping:

b = 1 +
∆t

∆x

(
ui+1/2,j − ui−1/2,j

)
(1.109)

The LE advection equation eventually writes:

Cn+1
i,j = bCni,j −

∆t

∆x2
(
Fi+1/2,j − Fi−1/2,j

)
(1.110)
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Thus, bCni,j is the compressed shaded area inside the compressed central cell of areaAx in Fig. 1.15
(b) right. As mentioned in [125], the Lagrangian advection by a one-dimensional flow of a VOF/-
PLIC reconstruction changes its orientation, as shown by the black dotted interface line in Fig. 1.15
(b) right. Therefore, the EI and LE fluxes are different.

Figure 1.15: Illustration of the mappings used in the split advection schemes: (a) Contraction
using a horizontal onto-cell implicit linear mapping ΠI,x; (b) Contraction using a horizontal out-
of-cell explicit linear mapping ΠE,x.

To achieve a great conservation property, the two schemes presented above are usually com-
bined to give the well-known EI-LE advection scheme. Indeed, the implicit mapping sequence
along x followed by the explicit one along y conserves area (or mass) exactly. This 2D combina-
tion can be either split if an intermediate reconstruction of the interface is performed between the
two direction sweeps, or unsplit. The discrete incompressibility constraint ∇ · u = 0 writes:

(
ui+1/2,j − ui−1/2,j

)
+
(
vi,j+1/2 − vi,j−1/2

)
= 0 (1.111)

The combined linear mapping Π multiplies the area Ax of the initial rectangle in Fig. 1.15 (a) by
the product of the compression/expansion coefficients ab:

ab =
1 + ∆t

∆x

(
vi,j+1/2 − vi,j−1/2

)

1− ∆t
∆x

(
ui+1/2,j − ui−1/2,j

) (1.112)

which equals to 1 by using Eq. (1.111), leading to exact area conservation:

Ay = Π(Ax) = ΠE,y (ΠI,x(Ax)) = abAx = Ax (1.113)

To avoid asymmetries, the direction of the first implicit advection should be alternated in time [49,
125], e.g.: {

tn → tn+1 : x− y

tn+1 → tn+2 : y − x
(1.114)

The 2D EI-LE split scheme is here summarized:
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(i) Reconstruct the interface Γ at tn from Cn;

(ii) Compute the Eulerian area fluxes in the first spatial direction;

(iii) Update an intermediate volume fraction field (Cn → C∗) using the EI scheme;

(iv) Reconstruct the intermediate interface Γ∗ from the intermediate volume fraction field C∗;

(v) Compute the Lagrangian fluxes in the other spatial direction;

(vi) Update the volume fraction field (C∗ → Cn+1) using the LE scheme;

(vii) Reconstruct the interface Γn+1 from the updated volume fraction field Cn+1.

The first EI-LE scheme which is bounded (i.e. 0 ≤ C ≤ 1) and mass-conserving has been
proposed in 2D in [124, 132] (2003). This bounded and mass-conserving method has then been
extended to 3D in [125] (2007), and consists of 3 EI-LE advection steps (one for each spatial
direction x, y, z), corresponding to 6 advection/reconstruction steps in total.

In 2010, Weymouth and Yue [133] proposed a split advection scheme, conditionally bounded
and discretely mass-conserving, which consists of three LE steps. The boundedness property is
ensured by the mean of a CFL restriction criterion.

Unsplit advection For unsplit advection schemes, the transported area (2D) or volume (3D)
is fluxed in one multi-dimensional step. These schemes are accurate but their implementation can
become tricky, as complex flux polyhedra in computational cells containing the interface need to
be computed. This is particularly true in 3D and with unstructured meshes. Moreover, additional
treatments are necessary to address mass conservation issues in 3D.

One of the first Eulerian unsplit scheme is the one of Rider and Kothe (1998) [130], proposed
for 2D cartesian meshes. In this method, the face-based velocity components on a staggered MAC
grid are used to compute the trapezoidal flux, which accounts for the multidimensionality of the
flow. This scheme leads to overlapping region and hence mass conservation issues to tackle. To
address this issue, Lopez et al. (2004) [134] proposed a scheme, still for 2D cartesian grids, which
uses cell-vertex velocities instead, computed by interpolating the face-based velocities. With this
construction, no overlap regions appear and thus mass conservation properties are improved com-
pared to the scheme of Rider and Kothe.

For 3D cartesian meshes, Hernandez et al. (2008) [135] proposed an extension of the work
of Rider and Kothe, using planes from edge-based velocities to compute the volume fluxes. As
in Rider and Kothe (1998), this method can lead to overlapping regions and hence mass con-
servation issues. Later, Owkes and Desjardins (2014) [136] introduced a method which can be
seen as an extension of the works of Lopez et al. (2D with vertex velocities) and Hernandez et
al. (3D with edge velocities), with discrete mass conservation. As in Lopez et al., the fluxes are
based on vertex velocities. This scheme is a bounded, mass-conserving, 3D unsplit VOF advec-
tion algorithm. Fig. 1.16, reprinted from [136], illustrates the flux computation in the 2D and
3D cartesian unsplit advection schemes mentioned. Owkes and Desjardins further advanced their
unsplit advection scheme in [137] (2017), by adding a refined grid that provides consistent fluxes
of mass and momentum defined on a staggered grid and discrete conservation of mass and mo-
mentum, even for flows with large density ratios. This modification has then been applied on the
electrohydrodynamic-assisted atomization of a liquid jet, for which the PLIC interface is shown
in Fig. 1.17.
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Figure 1.16: Illustration of the flux computation in various cartesian unsplit advection schemes.
This figure is reprinted from [136].

Regarding unstructured grids, Jofre et al. (2014) [7] extended the scheme of Owkes and Des-
jardins (2014), with the treatment of non-convex polyhedra. Later, Ivey and Moin (2017) [10]
improved the computation of flux polyhedra to propose a discretely conservative and bounded
unsplit VOF advection scheme on unstructured meshes.

1.3.2 Level Set (LS)

1.3.2.1 Standard Level Set (SLS)

Classical level set methods, introduced by Sethian (1982) [91, 92] is a powerful tool to track
evolving interfaces in computational geometry, and rely on the use of a smooth, continuous func-
tion ϕ(x, t). This function is a signed-distance function to the interface Γ:

ϕ(x, t) = ±|x(t)− xΓ(t)| (1.115)
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Figure 1.17: Electrohydrodynamic-assisted atomization of a liquid jet. Reprinted from [137].

where xΓ(t) is the position of the interface at time t. For liquid-gas flows, the sign of ϕ is deter-
mined by the fluid phase, e.g.:





ϕ(x, t) > 0 if x is in liquid

ϕ(x, t) = 0 if x is at the interface (x = xΓ)
ϕ(x, t) < 0 if x is in gas

(1.116)

Thus, the interface is the zero-level implicit surface of ϕ:

Γ(t) = {x ∈ R3|ϕ(x, t) = 0} (1.117)

A one-dimensional representation which illustrates the principle of the standard level set method
is given by Fig. 1.18.

Even though one only describes the application of traditional level set methods to non-reacting
liquid-gas flow problems in this thesis, they can be used for a wide range of applications, such as
computer vision, combustion, shock propagation, electromigration, solidification, optimal path
planning, or grid generation. Level set techniques have been extended to two-phase flows by
Sussman et al. (1994) [4].

The level set function moves with the fluid, at the flow velocity u:

∂ϕ

∂t
+ u ·∇ϕ = 0 (1.118)

If the unit interface normal n = ∇ϕ/|∇ϕ| is introduced, the transport equation becomes:

∂ϕ

∂t
+ u · n|∇ϕ| = 0 (1.119)

However, ϕ loses its signed-distance property after advection: where the interface is stretched,
the gradient of ϕ becomes steeper, and where the interface is compressed the gradient becomes
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Figure 1.18: One-dimensional illustration of the standard level set method: (a) The level set is
computed in the entire domain; (b) The level set is computed only in the neighborhood of the
interface Γ, here with k = 4 points on each side of Γ (adapted from [92]). In this work: "Fluid 1"
is gas, "Fluid 2" is liquid.

smoother. To fix this problem, Sussman et al. (1994) [4] introduced a reinitialization procedure to
make ϕ a signed-distance function again:

∂ϕ

∂τ
+ sgn(ϕ0)(|∇ϕ| − 1) = 0 (1.120)

with ϕ0 the level set function after transport that needs to be reinitialize, and sgn(ϕ0) the signature
function of ϕ0:

sgn(ϕ0) =





1 if ϕ0 > 0

0 if ϕ0 = 0

−1 if ϕ0 < 0

(1.121)

Eq. (1.120) is a Hamilton-Jacobi equation, with the Hamiltonian H = sgn(ϕ0)(|∇ϕ| − 1),
solved in pseudo-time τ until convergence to |∇ϕ| = 1, which yields a signed-distance function.
This ensures that the slope of the function near the interface remains unchanged over time. The
reinitialization step is critical in all level-set based methods, as it can introduce spurious deforma-
tion of the interface, potentially leading to very unphysical solutions and bad mass-conservation
properties. Thus, improvements have been brought to the original reinitialization step. For exam-
ple, the sign function sgn(ϕ0) can be replaced by a smoother function S(ϕ), as suggested by Peng
et al. (1999) [138]:

∂ϕ

∂τ
+ S(ϕ)(|∇ϕ| − 1) = 0 (1.122)

where:

S(ϕ) =
ϕ√

ϕ2 + |∇ϕ|2∆x2
(1.123)

An advantage of traditional level set methods is the accuracy they provide to compute interface
topology properties, such as normals n = ∇ϕ/|∇ϕ| and curvature κ = −∇ · n due to the
smoothness of the ϕ-field. Classical level set methods are rather simple, efficient, but not mass
conserving, and hence considerable efforts have been put into improving the original method,
leading to various techniques which derive from the original framework presented above. These
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improvements come however at the cost of additional complexity, and hence taking care of the
computational performance of the methods becomes critical.

To this aim, Chopp (1993) [139], then Adalsteinsson and Sethian (1995) [36] proposed to work
only near the zero-contour of ϕ, i.e. the front of interest. This process is called "narrow banding".
Using a narrow band around the interface reduces the number of operations per iteration, and is
thus a rather straightforward way to implement fast level set methods. Indeed, in 3D, the number
of operations in one time step lowers from O(N3) to O(2kN2), with N the number of grid points
in one direction and 2k the total number of points in the narrow band, if one considers that the
front has roughly N2 points [92]. This approach can also be beneficial regarding the explicit CFL
time-step restriction: the criterion can be defined only in the narrow band instead of looking at the
maximum advection velocity in the whole computational domain.

Fast numerical methods, such as the Fast Marching Method (FMM) of Chopp (2001) [140] or
the Fast Sweeping Method (FSM) of Zhao (2005) [141], can also be used for the reinitialization
step to solve the Eikonal equation |∇ϕ| = 1. These methods are efficient and accurate, but their
parallel implementation is challenging [102].

1.3.2.2 Conservative Level Set (CLS)

To reduce the mass losses of the original level set method, several authors have used the fact that
these losses reduce under mesh refinement (spatial convergence of the mass error). For example
Herrmann (2008) [15] uses an auxiliary fine cartesian grid to resolve the level set field, while
Gibou et al. (2018) [142] use octree Adaptive Mesh Refinement (AMR) close to the interface.
These high-resolution level-set approaches indeed reduce mass conservation errors, which depend
on the two-phase flow simulated, but do not allow mass conservation to within machine accuracy.
For instance, when simulating a complex turbulent atomizing spray, droplets at resolution limit or
poorly-resolved will inevitably be present in the domain, and can thus still disappear.

An attempt towards discrete mass conservation is the Conservative Level Set (CLS) method
of Olsson and Kreiss (2005) [29], which has emerged from a smeared out Heaviside function H̃ ,
originally computed from the signed-distance function ϕ to reconstruct the material properties
(density, viscosity):

H̃(ϕ) =





0 if ϕ < −ε
1
2 + ϕ

2ε +
1
2π sin

(
πϕ
ε

)
if − ε ≤ ϕ ≤ ε

1 if ϕ > ε

(1.124)

where ε is half the thickness of the interface profile. Similarly, Olsson and Kreiss (2005) used a
continuous smoothed Heaviside function ψ to represent the interface:

ψ(x, t) =
1

2

(
tanh

(
ϕ(x, t)
2ε

)
+ 1

)
(1.125)

with the interface normals and curvature computed as:




n = ∇ψ
|∇ψ|

κ = −∇ · n = −∇ ·
(

∇ψ
|∇ψ|

) (1.126)

Using ψ, the interface is located at the iso-level 1/2:

Γ(t) = {x ∈ R3|ψ(x, t) = 1/2} (1.127)
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Assuming the flow is incompressible, the scalar ψ is advected as:

∂ψ

∂t
+∇ · (ψu) = 0 (1.128)

and then reshaped to its original hyperbolic-tangent shape using the following reinitialization equa-
tion, integrated in pseudo-time:

∂ψ

∂τ
= ∇ ·


 ε∇ψ︸ ︷︷ ︸

Isotropic diffusion flux

− ψ(1− ψ)n︸ ︷︷ ︸
Normal resharpening flux


 (1.129)

Later, Olsson et al. (2007) [30] modified the reinitialization Eq. (1.129) by projecting the diffusion
flux in the normal direction:

∂ψ

∂τ
= ∇ ·


 ε(∇ψ · n)n︸ ︷︷ ︸

Normal diffusion flux

− ψ(1− ψ)n︸ ︷︷ ︸
Normal resharpening flux


 (1.130)

which reduces the errors induced by tangential fluxes.
The CLS method is not strictly conservative for two reasons. First, the approximate and exact

enclosed volumes of liquid are respectively:

Ṽl =

∫

V
ψ dV and Vl =

∫

V
H(ψ − 1/2) dV (1.131)

where H is the Heaviside function (0 in gas, 1 in liquid). In the CLS method, the approximate
volume Ṽl is conserved, but differs from the exact volume Vl due to interface curvature, i.e. in
the ubiquitous case of non-straight interfaces. Moreover, other sources of numerical errors arise
on non-uniform meshes, when the cell size varies locally: this point will be discussed in the next
chapter.

Desjardins et al. (2008) [31] further improved the CLS method, yielding the Accurate Conser-
vative Level Set (ACLS) method. In order to avoid spurious normal orientation due to the sharp
nature of ψ, they proposed to compute the normal vector n using a reconstructed signed-distance
function ϕ with the help of a Fast Marching Method (FMM):

n =
∇ϕFMM

|∇ϕFMM| (1.132)

This method has been used to simulate the turbulent atomization of a liquid Diesel jet, as depicted
in Fig. 1.19.

However, solving Eq. (1.130) can lead to dispersion errors. Hence, in order to keep ψ bounded,
TVD schemes have to be employed, resulting in numerical dissipation. Moreover, high levels of
reinitialization using Eq. (1.130) result in artificial deformation of the interface, even if the normal
vector is exact, as detailed in McCaslin and Desjardins (2014) [143].

To limit spurious deformation of the interface, especially when the interface is (quasi-)static,
McCaslin and Desjardins (2014) [143] proposed a localized reinitialization process, to reinitialize
according to need, by introducing a spatially and temporally varying coefficient α:

∂ψ

∂τ
= ∇ ·


α


 ε(∇ψ · n)n︸ ︷︷ ︸

Normal diffusion flux

− ψ(1− ψ)n︸ ︷︷ ︸
Normal resharpening flux





 (1.133)
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Figure 1.19: Turbulent atomization of a liquid Diesel jet with the original Accurate Conservative
Level Set (ACLS) method (2008). Reprinted from [31].

which is included in the pseudo-time integration τ̃ = ατ after mathematical developments which
can be found in [143]:

∂ψ

∂τ̃
= ∇ ·


 ε(∇ψ · n)n︸ ︷︷ ︸

Normal diffusion flux

− ψ(1− ψ)n︸ ︷︷ ︸
Normal resharpening flux


 (1.134)

As mentioned in their work, the coefficient α should be defined in a way that reflects how much
reinitialization is locally required. The amount of necessary reinitialization must depend on how
much the level set has been locally deformed. Two sources of level set deformation are identified in
their work: (i) the kinematics of the velocity field and (ii) numerical diffusion associated with the
evolution of ψ through the discrete solution of the transport equation (Eq. (1.128)). Their method
leads to a reduction of spurious interface deformation for the less active parts of the interface, as
displayed in Fig. 1.20.

Waclawczyk (2015) [144] treated the issue of artificial deformation of the interface by taking
advantage of an analytical signed-distance level set to find a reinitialization equation similar to the
traditional Hamilton-Jacobi level-set reinitialization equation Eq. (1.120) as:

∂ψ

∂τ
= ∇·

(
ψ(1− ψ) (|∇ϕmap · n| − 1)n

)
(1.135)

where ϕmap = ε ln (ψ/(1− ψ)) is an analytical signed-distance function, mapped in the transient
part of the hyperbolic tangent profile: i.e. ψ ∈]0; 1[. In [144], the normal vector is computed
at the beginning of the reinitialization iteration process from this mapped distance function: n =

∇ϕmap,τ=0/|∇ϕmap,τ=0|. This idea then paved the way to Chiodi and Desjardins (2017) [35],
who proposed a reformulation of the sharp term ψ(1−ψ), leading to a form of the reinitialization
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Figure 1.20: Outcome of a drop impact onto a static free surface; Left: uniform reinitialization,
Right: Localized reinitialization. Reprinted from [143].

which is very accurate, and thus does not induce large deformation of the interface, even at high
levels of reinitialization. This is very significant when looking at the case of static interfaces. This
reformulated reinitialization writes:

∂ψ

∂τ
= ∇ ·


 1

4 cosh2
(
ϕmap

2ε

) (|∇ϕmap · n| − 1)n


 (1.136)

with the normals computed using Eq. (1.132). The flux is now written without ψ, and is thus less
sensitive to its bounds. As a consequence, non-TVD schemes can be employed. In [35], this up-
graded ACLS method has been used to simulate a turbulent liquid jet being injected into quiescent
gas, demonstrating the capabilities of the method to simulate complex turbulent three-dimensional
liquid-gas flows. The results are reprinted in Fig. 1.21. However, similarly to purely compressive

Figure 1.21: DNS of a turbulent liquid jet injected into quiescent gas using the reformulated ACLS
method (2017): renderings of the liquid-gas interface. Reprinted from [35].

schemes in Section 1.3.1.1.1, this form is very "compressive": it is susceptible to induce locking
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on the mesh. In this case the interface can be aligned with grid edges, potentially leading in turn to
bad prediction of implicit topology changes. This equation can be further improved to solve this
"locking issue". This particular point is treated in this thesis: a locking fix is proposed, improving
for example front-merging scenarios. An extension of the ACLS method using the reinitialization
Eq. (1.130) to unstructured three-dimensional grids can be found in Balcazar et al. (2014) [17].
In the present research, an extension of the ACLS method to 3D unstructured grid is also pro-
posed, featuring the state-of-the-art reinitialization process: Eq. (1.136), which to our knowledge
has never been implemented for unstructured grids prior to this work. Nonetheless, the locking fix
mentioned above can be used for both cartesian and unstructured meshes.

1.3.3 Coupled Level-Set and Volume-Of-Fluid method (CLSVOF)

The CLSVOF method is a hybrid interface-capturing procedure, combining the VOF method for
its mass-conservation properties together with the classical Level Set for an accurate computa-
tion of interface-topology features (normals and curvature). The overall accuracy of the method
is higher than VOF or LS methods separatly, but is more computationally expensive. The first
CLSVOF method has been introduced by Sussman and Puckett (2000) [145]. One can also men-
tion the CLSVOF method of Ménard et al. [146], which led to one of the first detailed simulations
of an atomizing liquid jet: see Fig. 1.22. This latter method is implemented in the well-known
Archer DNS code, also developed at CORIA laboratory by Berlemont and collaborators. Liter-
ature results, obtained prior to the present work with the Archer code, are used in this thesis to
validate some of the results presented in Chapter 4.

Figure 1.22: Development of an atomizing liquid jet using the CLSVOF method, implemented in
the Archer DNS code. Reprinted from [146].

1.3.4 Moment Of Fluid methods (MOF)

The Moment Of Fluid method (MOF), originally introduced in [147, 148, 149] and then applied
to multiphase flow simulations in [150, 151, 152], is an extension of the geometric VOF method,



1.3. Sharp interface-capturing techniques 45

resulting in improved accuracy. In addition to the liquid volume fraction C (0th moment of liq-
uid volume), the reference phase centroid (or center of mass) within a computational cell xl (1st
moment of liquid volume) is also tracked:

xl =
1

V

∫

V
xH dV (1.137)

where V is the control volume, and H the Heaviside function (1 in liquid, 0 in gas). These data
are sufficient to reconstruct the approximate interface within each mixed cell (i.e. 0 < C < 1),
and thus no additional data are required from the neighboring cells [152]. The MOF method
reconstructs any linear interface exactly and is thus second-order accurate [147, 148, 152].

The MOF method with PLIC interface reconstruction (n·x+α = 0, see Eq. (1.99)) necessitates
the determination of interface normal n and shortest distance α of interface from cell center, as
in geometric VOF methods. While α is computed by enforcing liquid volume conservation as in
VOF methods (i.e. volume fraction error E0 = 0), the normal n is determined simultaneously
from a constrained minimization of centroid defect E1 [150, 152]:




E0(n,α) = |C̃(n,α)− C| = 0

E1(n,α) =
∣∣∣
∣∣∣x̃l(n,α)− xl

∣∣∣
∣∣∣
2

(1.138)

where, similarly to the ELVIRA technique [126] for geometric VOF algorithms (see Section 1.3.1.2.1),
the predicted field .̃ given the guessed plane reconstruction (n,α) is compared to the original (ref-
erence) field. An illustration of the MOF-PLIC interface reconstruction is displayed in Fig. 1.23.

Figure 1.23: Illustration of the MOF-PLIC interface reconstruction using liquid centroids. Inspired
by [152].

In MOF methods, the volume fraction and the phase centroids are advected simultaneously
and consistently in each cartesian direction using split algorithms: for instance in [152] the EI-LE
scheme [124, 132, 125] for phase centroids together with the Weymouth-Yue procedure [133] for
the volume fraction have been used (see Section 1.3.1.2.2).

It should be noted that the MOF method is computationally expensive compared to the other
existing interface-capturing methods, which motivates the use of hybrid techniques to find a com-
promise between accuracy and cost [153]. In Mukundan et al. (2022) [153], a switch is performed,
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based on local interface curvature resolution, between MOF and CLSVOF methods throughout
the simulations: the under-resolved regions are treated using the MOF method. This hybrid MOF-
CLSVOF technique, applied to the simulation of an atomizing liquid diesel jet, is depicted in
Fig. 1.24.

Figure 1.24: MOF-CLSVOF hybridation technique applied to the atomization of a turbulent liquid
diesel jet. Red regions are treated using the MOF interface reconstruction, while blue regions
employ the CLSVOF method. Reprinted from [153].

1.4 Surface-tension modeling methods

After having discussed the main sharp interface-capturing methods as a numerical tool to compute
the motion of a material interface, one now needs, for liquid-gas flows, to compute surface tension
forces in the sharp-interface framework. According to Popinet (2018) [50], the surface-tension
models can be classified into two categories: (i) integral and (ii) volumetric numerical formula-
tions. For (i), an expression of the integrated surface tension force is written, which is found to
be advantageous in terms of momentum conservation in finite-volume frameworks. Moreover,
these formulations do not require the computation of the interface curvature, which is one of the
bottlenecks of numerical methods for liquid-gas flows. For (ii), a local force per unit volume (i.e.
volumetric) is considered, which depends on the curvature of the interface κ, and on a numerical
approximation to regularize the sharp Heaviside function H . Thus, all volumetric methods lead
to a characteristic interface thickness. The volumetric methods have proven to be robust over the
years, and are the most widely used in the literature to simulate 3D complex atomizing jets, which
is the goal of the present work.
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1.4.1 Surface tension formulations

1.4.1.1 Continuum Surface Stress (CSS) - Integral formulations

The Continuum Surface Stress (CSS) method has been introduced by Gueyffier et al. [154] (1999).
One can write the volumetric surface tension force Fσ with a constant surface tension coefficient,
introduced earlier in this chapter (see Eq. (1.16)), as:

Fσ = σκnδA = ∇ · Tσ,AδA (1.139)

with Tσ,A the surface stress tensor associated with surface tension. This tensor is defined as [49]:

Tσ,A = σIA = σ(I − n ⊗ n) (1.140)

The volumetric surface tension force is then expressed as:

Fσ = ∇·
(
σ(I − n ⊗ n)δA

)
(1.141)

For a VOF method, the surface Dirac delta function δA can be approximated as |∇C| (this ap-
proximation will be detailed in the subsequent section), which eventually yields:

Fσ = ∇·
(
σ(I − n ⊗ n)|∇C|

)
(1.142)

The expression above has two main advantages: it does not require to compute a curvature, and
it is inherently conservative. Indeed, this method is related to the integral formulation of surface
tension. By noticing that n = t1⊗ t2, with t1,2 two orthonormal tengent vectors to the surface, the
volumetric force writes [49]:

Fσ = ∇·
(
σ(t1 ⊗ t1 + t2 ⊗ t2)|∇C|

)
(1.143)

If this equation is integrated in the context of a finite-volume method:
∫

V
Fσ dV =

∫

V
∇·

(
σ(t1⊗t1+t2⊗t2)|∇C|

)
dV =

∮

A

(
σ(t1⊗t1+t2⊗t2)|∇C|

)
·dA (1.144)

Thus, as mentioned in [50], the contributions of surface tension forces to neighboring control
volumes cancel out exactly which ensures exact local and global momentum conservation for
surface tension. The CSS method however, requires the numerical approximation of the surface
Dirac function δA, leading to a characteristic interface thickness.

Another method which is related to the integral formulation of surface tension and that does not
introduce any characteristic interface thickness is the momentum-conservative and well-balanced
surface tension model of Abu-Al-Saud et al. [52] (2018). This model, introduced in 2D using a
level set representation of the interface, uses Eqs. (1.20) and (1.21) to write the integral surface
tension force between two points A and B at which the interface intersects a control volume:

∫

V
Fσ dV =

∮ B

A
σ dt = σ(tB − tA) (1.145)

The surface tension force is hence computed by the difference between entry and exit tensions,
leading to an intrinsically-conservative model.

Note that the approaches presented in this section naturally include Marangoni effects, which
is not the case for volumetric formulations, where the surface gradient term needs to be added in
Fσ in case of variable surface tension coefficient.



48 Chapter 1. Computational Fluid Dynamics with interfaces

1.4.1.2 Continuum Surface Force (CSF)

The Continuum Surface Force (CSF) method for modeling surface tension is one of the most
popular (if not the most) model, especially for VOF interface-capturing schemes. It belongs to
volumetric formulations of surface tension, which can all be summarized as [50]:

Fσ = σκnδA = σκ∇H(x − xΓ) (1.146)

The idea of this class of methods is to find a proper numerical approximation Hε of the Heaviside
function H , which leads to a characteristic interface thickness ε so that:

lim
ε→0

Hε = H (1.147)

In the CSF method, introduced by Brackbill et al. [155] (1992) for VOF methods, the volume
fraction field C is used: Hε = C, with ε = ∆x the cell size:

Fσ = σκ∇C (1.148)

1.4.1.3 Smoothed interface representation

The smoothed interface representation, proposed by Sussman et al. [4] (1994) for a level set in-
terface representation, writes the smeared out Heaviside function Hε from the signed-distance
function ϕ as presented earlier in this chapter. The expression is recalled here:

Hε(ϕ) =





0 if ϕ < −ε
1
2 + ϕ

2ε +
1
2π sin

(
πϕ
ε

)
if − ε ≤ ϕ ≤ ε

1 if ϕ > ε

(1.149)

where ε is half the thickness of the interface. The volumetric surface tension force then yields:

Fσ = σκ∇Hε(ϕ) (1.150)

1.4.1.4 Ghost-Fluid Method (GFM)

Using the Ghost-Fluid Method (GFM) of Fedkiw et al. (1999) [37], surface tension forces are
embedded in the pressure gradient through the pressure jump at the interface [p]Γ defined by
Eq. (1.29). This method for modeling surface tension is thus usually associated with the jump
condition formulation (Section 1.1.3.3). However, it has been shown by [50] that it can be seen as
a volumetric method as well, showing the equivalence between the two formulations.

Let us consider a one-dimensional numerical domain. A simple pressure gradient discretiza-
tion within one of the phases at i+ 1/2 gives:

∇p|i+1/2 =
pi+1 − pi

∆x
(1.151)

If the interface Γ is located in [xi; xi+1], the pressure gradient accounts for the pressure jump [p]Γ:

∇p|Γ,i+1/2 =
pi+1 − pi

∆x
− [p]Γ

∆x
= ∇p|i+1/2 −

[p]Γ
∆x

(1.152)

which yields for two fluids with equal dynamic viscosity coefficients:

∇p|Γ,i+1/2 = ∇p|i+1/2 −
(σκ)|i+1/2

∆x
(1.153)
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The volumetric surface tension force is hence:

Fσ|i+1/2 = (σκδ)|i+1/2 (1.154)

with

δ|i+1/2 =

{
±1/∆x if Γ ∈ [xi; xi+1]

0 otherwise
(1.155)

The sign depends on the orientation of the interface relatively to the phases. The corresponding
Heaviside function H is then:

H|i+1 =

{
1 if xi+1 is in liquid

0 if xi+1 is in gas
(1.156)

Indeed, if the interface Γ crosses the edge connecting the nodes i and i+ 1, with i+ 1 in liquid:

Fσ|i+1/2 = (σκδ)|i+1/2 = (σκ∇H) |i+1/2 = (σκ)|i+1/2
H|i+1 −H|i

∆x
=

(σκ)|i+1/2

∆x
(1.157)

The Ghost-Fluid Method can be used either with VOF interface-capturing schemes or with
level set methods. Indeed, the condition "xi+1 in liquid" to compute the Heaviside function can
be determined using either the condition C > 0.5 on the volume fraction, or ϕ > 0 for distance
level set schemes:

H(x) =

{
1 if ϕ(x) > 0 (C > 0.5)

0 otherwise
(1.158)

To summarize, the GFM also belongs to volumetric formulations:

Fσ = σκ∇H(x) (1.159)

As explained in [50], a characteristic thickness of order ∆x is also introduced in the GFM as in
the other volumetric methods. Indeed, the approximation of the Heaviside function is insensitive
to a shift of ∆x/2 of the interface location.

The GFM is the surface tension modeling method used in this thesis. As a consequence, a more
detailed presentation and derivation of the method, from the point of view of the jump condition
formulation, and its implementation in YALES2 is given later in this manuscript (Section 2.3.2).

1.4.2 Well-balanced schemes - Discrete Laplace balance

If one considers the Navier-Stokes equations with surface tension for static fluids, one obtains the
continuous balance between pressure and surface tension:

∇p = σκnδA (1.160)

which writes for volumetric formulations of surface tension:

∇p = σκ∇H (1.161)

Recover this balance numerically, even if not trivial to obtain, is crucial for capillary-driven flows,
for which pressure and surface tension are often close to equilibrium. A procedure which allows
to achieve discrete equilibrium is qualified as well-balanced. If this property is not verified, the
numerical problem becomes quasi-static because of the arising of spurious currents, characterized
by parasitic vortical velocity patterns around the liquid-gas interface (see Fig. 1.25).
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Figure 1.25: Spurious currents around a stationary bubble using a VOF method. Reprinted
from [88].

A well-balanced procedure requires a common numerical operator to discretize the pressure
gradient ∇p and the Heaviside gradient ∇H . This condition leads to the exact cancellation of
errors related to the discretization of these two terms. In this case, with a constant surface tension
coefficient σ and a constant curvature κ, Eq. (1.161) writes [156, 50]:

p = σκH + constant (1.162)

Thus, the well-known Laplace balance for a static droplet can be discretely recovered provided
compatible gradient operators are applied to p and H , and that the curvature κ is constant [21].

However, the usual approximations of the Heaviside function H (volume fraction C for CSF,
regularized Heaviside Hε(ϕ), or H(x) in the GFM) are sharp functions, and thus the estimation
of ∇H is very likely to be inaccurate. As a consequence, if the curvature computation derives
from this gradient estimation through the interface normal n (e.g. κ = ∇ · n = ∇ · (∇C/|∇C|)
for the CSF method), the resulting curvature will be even more inaccurate. Conversely, if one
finds a better curvature discretization related to ∇H , one has to take care not to break the well-
balanced property by introducing a different numerical operator than the one used for ∇p. It is
thus crucial to decouple the evaluation of ∇H , which is necessary to balance ∇p to yield a well-
balanced scheme, from the curvature computation, which needs to be as accurate as possible. As
explained in [50], this decoupling is naturally done in the level set method and its variants, as H
is usually computed with the Ghost-Fluid Method (GFM), and κ is evaluated from the signed-
distance function ϕ (either transported in SLS methods, or reconstructed in CLS methods), which
is a smooth function.

In particular, in the ACLS framework used in this thesis, the GFM is employed for model-
ing surface tension and the signed-distance function ϕ is reconstructed geometrically to compute
interface normals and curvature. As a consequence, as it will be seen in later, the curvature is cal-
culated by differentiating a smooth function (Section 2.2.4.1), and the numerical operators used
for this purpose are different from the ones employed for the treatment of surface tension within
the pressure gradient, in the Poisson equation (Section 2.3.2.2, Eq. (2.57)). Moreover, common
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differential operators are used for discretizing the pressure gradient without embedded surface
tension ∇p and the pressure jump [p]Γ∇H = σκ∇H (Eqs. (2.57) and (2.59)).

In the next section, the main methods used in the literature to compute the interface curvature
are presented, and the ability of the methods to obtain a constant curvature field at the interface,
required to obtain the well-balanced property, is discussed.

1.4.3 Interface curvature computation

There are two main approaches in computing the interface curvature κ in interface-capturing meth-
ods: (i) by using the implicit representation of the interface F (x, y, z) = 0; (ii) by using an explicit
representation of the interface z = f(x, y), reconstructed from its implicit representation.

1.4.3.1 Implicit surface representation

For Level Set methods, the most natural way to compute interface normal n and curvature κ is to
directly discretize the formulas given by differential geometry. Indeed, using the smooth signed-
distance function ϕ yields accurate computations of normal and curvature. The interface normal
writes:

n =
∇ϕ

|∇ϕ| (1.163)

And the curvature is simply:

κ = ∇ · n = ∇ ·
(

∇ϕ

|∇ϕ|

)
(1.164)

According to Goldman (2005) [157], the curvature can also be equivalently written as:

κ =
Tr (H(ϕ))− ∇ϕT

|∇ϕ| ·H (ϕ) · ∇ϕ
|∇ϕ|

|∇ϕ| (1.165)

where H(ϕ) = ∇∇ϕ is the Hessian matrix of the signed-distance function. This last formula is
used in this work, as it has proven to be more accurate than Eq. (1.164) in our numerical frame-
work. The detailed discretization is given in the subsequent chapter. It should be noted that in
this work, as the ACLS method is used, the signed-distance function ϕ is not transported and thus
needs to be reconstructed from the interface location. This reconstruction is geometric from the
explicit interface and is detailed in the next chapter.

Using Eqs. (1.164) or (1.165) yields a local computation of the curvature. It is thus necessary
to then interpolate the local values to obtain the value at the interface. As mentioned in [50], this is
a drawback when considering well-balanced properties and verifying discrete Laplace equilibrium
at arbitrary resolutions, as it leads to a non-constant curvature field at the interface.

1.4.3.2 Explicit surface representation

A popular technique to compute the interface curvature is the height-function (HF) method [158,
159, 160]. It has been used especially in the framework of VOF methods, but implementations for
level set methods have also been proposed. The HF algorithms rely on the definition of a local
coordinate system in which the interface (line or plane for VOF-PLIC) is described explicitly
as a graph of a function. In 2D, this leads to height and width function: y = hy(x) and x =

gx(y), respectively. The choice of either of these functions depends on the local orientation of the
interface normal n. If |ny| > |nx|, y = hy(x) will be used, otherwise if |nx| > |ny|, x = gx(y)
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will be used [49]. The interface curvature κ is then obtained by differenciating the appropriate
function:

κ =
h′′y(x)(

1 + h′2y (x)
)3/2 or κ =

g′′x(y)

(1 + g′2x (y))
3/2

(1.166)

Discretely, on a 2D cartesian grid, the height h and width g functions are constructed by
summing the volume fractions C column-wise or row-wise, respectively:

hi =
∑

j

∆yCi,j or gj =
∑

i

∆xCi,j (1.167)

where the number of cells taken into account for the sums is determined by the size of stencil used.
According to Popinet (2009, 2018) [21, 50], from 3 to 9 cells may be required, depending on the
interface configuration. For instance, using (3x7) and (7x3) stencils as in early implementations
for height and width, respectively, leads to:

hi =

k=3∑

k=−3

∆yCi,j+k or gj =

k=3∑

k=−3

∆xCi+k,j (1.168)

The discrete first and second derivatives are then:




h′i =
hi+1−hi−1

2∆x

h
′′
i =

hi+1−2hi+hi−1

∆x2

(1.169)

or 



g′j =
gj+1−gj−1

2∆y

g
′′
j =

gj+1−2gj+gj−1

∆y2

(1.170)

eventually leading to the interface curvature estimation at cell (i, j) with Eq. (1.166). Situations
exist where the height or width is not within the cell boundary. In this case, it is more accurate
to interpolate the neighboring curvatures to obtain the local value. In should be noted that apart
from this particular case, no further interpolation is needed: the curvature computed is directly
obtained at the interface, which is a great advantage to obtain a constant curvature in the context
of well-balanced schemes.

A weakness of HF methods is however known for under-resolved interfaces: consistent inter-
face heights and widths become increasingly difficult to form as the interface resolution decreases,
typically when κ∆x < 1/5 [50]. This can lead to failure of the curvature estimation using both
horizontal and vertical procedures, because of the impossibility to differenciate twice the interface
positions. Therefore, a generalized HF (GHF) curvature estimation has been proposed by Popinet
(2009) [21], to perform a switch between the standard HF curvature estimation, used when the
radius of curvature is resolved enough, and parabola-fitting methods with least-squares minimiza-
tion such as the Parabolic Reconstruction Of Surface Tension (PROST) method of Renardy and
Renardy (2002) [156], to increase the robustness of the overall procedure when the number of
interface positions obtained is not sufficient to differenciate.

Recently, Karnakov et al. (2020) [161] proposed a more accurate method than parabolic fitting
for increasing the robustness of the HF method in the case of under-resolved interfaces. In their
method, particles are employed for estimating the curvature from the PLIC-reconstructed interface
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(lines/planes). As with the GHF curvature computation of Popinet (2009) [21], this hybrid method
provides a second-order convergent curvature on cartesian grids at high resolutions (standard HF),
while reducing the errors at low interface resolutions using the particle method instead of parabolic
fitting.

1.4.4 Explicit time integration - Capillary time-step restriction

When simulating interfacial liquid-gas flows using time-explicit methods, the temporal integration
needs to be fine enough to capture the fastest capillary wave that can be captured by the mesh.
A stability criterion related to capillary phenomena should then be added to the standard CFL
criterion for the time-explicit interface transport.

A capillary wave propagating at the interface between a liquid and a gas follows the dispersion
relation [162, 48]:

ω2
σ =

σk3

ρl + ρg
(1.171)

where ωσ is the angular frequency, k is the wavenumber, ρl and ρg are liquid and gas densities,
respectively. The phase velocity is defined as:

cσ =
ωσ
k

=

√
σk

ρl + ρg
(1.172)

Hence, the fastest capillary waves are those with the largest wavenumber kmax, or minimum wave-
length λmin = 2π/kmax. The shortest wavelength resolved by the computational mesh, associated
with the fastest capillary wave, is [48]:

λmin = 2∆x (1.173)

with ∆x the cell size. Therefore, the associated largest wavenumber is:

kmax =
2π

λmin
=

π

∆x
(1.174)

Thus, the phase velocity of the fastest capillary wave captured by the grid is:

cσ,max =
ωσ
kmax

=

√
σkmax

ρl + ρg
=

√
σπ

∆x(ρl + ρg)
(1.175)

Eventually, the corresponding minimum time-step according to Brackbill et al. [155] to temporally
resolve the fastest capillary wave is:

∆t < ∆tσ,min =
∆x

2cσ,max
=

√
∆x3(ρl + ρg)

4πσ
(1.176)

The assumptions that lead to the 4π term are debatable [50, 163, 164]. For example, Denner and
van Wachem (2015) presented a revised capillary timestep constraint in [164], taking into account
the Doppler shift induced by the interface motion:

∆t < ∆tσ,min =
∆x√

2cσ,max + uΓ · k/|k|
(1.177)

where uΓ is the velocity at the interface and k the wavenumber vector.
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The capillary time-step restriction leads to strong constraints on the time step, especially when
refining the grid: ∆t scales as ∆x3/2 and thus this constraint becomes dominant over the transport
CFL restriction at fine mesh resolutions. Nevertheless, as widely done in the literature, a time-
explicit discretization of surface tension is used in this work, and the capillary time-step constraint
used in YALES2 is presented in the subsequent chapter. Implicit time-stepping methods remain an
active research topic: alleviate the strong constraint on the time step could indeed be particularly
helpful for simulating small-scale flows, such as in microfluidic applications. A review of existing
implicit time-stepping methods can be found in [50].
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A two-phase flow solver for adaptive
unstructured grids
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This second chapter is dedicated to the presentation of the YALES2 two-phase liquid-gas flow
solver. A brief overview of the mathematical framework and the full procedure are first given.
Then, the detailed numerical implementation of the Accurate Conservative Level Set (ACLS)
interface-capturing algorithm for unstructured grids (triangular and tetrahedral) is presented, with
an emphasis on the geometric reconstruction of the signed distance to the interface, and on the
discretized reinitialization equation. The consistent coupling of the interface transport with the
incompressible flow solver is then detailed, and surface tension forces, treated using the Ghost-
Fluid Method (GFM), are integrated in the projection method through the pressure jump, itself
within the pressure gradient. The time-integration being explicit, these surface tension forces
constrain the time step, to be able to resolve the fastest capillary waves in the domain. Eventually,
the isotropic Adaptive Mesh Refinement (AMR) strategy, employed to concentrate the mesh cells
around the liquid-gas interface, is presented.
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2.1 Overview of the framework

2.1.1 Accurate Conservative Level Set

In the Accurate Conservative Level Set (ACLS) framework [31], the liquid-gas interface Γ is
represented using a hyperbolic tangent profile:

ψ(x, t) =
1

2

(
tanh

(
ϕ(x, t)
2ε

)
+ 1

)
(2.1)

where the parameter ε sets the thickness of the profile, and ϕ(x, t) = ±|x(t)−xΓ(t)| is the signed-
distance function.
Using ψ, the interface is located at the iso-level 1/2:

Γ(t) = {x ∈ R3|ψ(x, t) = 1/2} (2.2)

as depicted in the one-dimensional example of Fig. 2.1. In this figure, a characteristic profile
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Figure 2.1: Interface capturing on a one-dimensional example using the ACLS method. xΓ = 0;
δψ = 4ε.

thickness δψ is used, computed based on the maximum gradient of ψ:

δψ =
1

max |∇ψ| = 4ε (2.3)

Assuming the flow velocity field u is divergence free, the scalar ψ is advected via the following
equation:

∂ψ

∂t
+∇ · (ψu) = 0 (2.4)

and then reshaped, at every time step, using the reinitialization equation of [31]:

∂ψ

∂τ
= ∇ · ( ε(∇ψ · n)n︸ ︷︷ ︸

Diffusion

− ψ(1− ψ)n︸ ︷︷ ︸
Resharpening

) (2.5)



2.1. Overview of the framework 57

where τ is a pseudo-time, and n is the interface normal:

n =
∇ϕ

|∇ϕ| (2.6)

A new form of the reinitialization equation was recently proposed by Chiodi et al. in [35]:

∂ψ

∂τ
= ∇ ·


 1

4 cosh2
(
ϕmap

2ε

) (|∇ϕmap · n| − 1)n


 (2.7)

where ϕmap = ε ln (ψ/(1− ψ)) is an analytical signed-distance function, mapped for ψ ∈]0; 1[.
More details regarding the history of conservative level-set reinitialization equations can be found
in Section 1.3.2.2. As detailed in [31] and [35], Eqs. (2.5) and (2.7) converge fast and thus solving
one or the other in a fixed small number of pseudo-time steps ∆τ with ∆τ ∼ ∆x ∼ ε is sufficient
to reach steady state. In the present work, for the sake of simplicity, 3 steps are performed at every
iteration instead of checking the convergence of Eq. (2.5) or (2.7).

The signed-distance function ϕ is reconstructed at nodes in the narrow band around the in-
terface using a Geometric-Projection Marker Method (GPMM), firstly introduced in [165], to
estimate the smallest distance to the interface. The mean curvature κ is computed directly from ϕ

using Goldman’s formula [157]:

κ =
Tr (H(ϕ))− ∇ϕT

|∇ϕ| ·H (ϕ) · ∇ϕ
|∇ϕ|

|∇ϕ| (2.8)

where H(ϕ) is the Hessian matrix of the signed-distance function.
The ACLS method is not strictly conservative for two reasons. First, the approximate and

exact enclosed volumes of liquid are respectively:

Ṽl =

∫

V
ψ dV and Vl =

∫

V
H(ψ − 1/2) dV (2.9)

where H is the Heaviside function (0 in gas, 1 in liquid). In the ACLS method, the approximate
volume Ṽl is conserved, but differs from the exact volume Vl due to interface curvature, i.e. in the
ubiquitous case of non-straight interfaces.

A second reason for losing liquid mass on irregular meshes is the variation of the mesh resolu-
tion from fine to coarse, which leads to the smoothing of ψ, and may imply a loss of the ψ = 1/2

iso-surface. In this case, the interface is not detected anymore and gas can be set instead of liquid.
Finally, the reinitialization process on non-homogeneous meshes may also induce errors in

the transport speed: the profile thickness parameter ε varies based on the local grid resolution,
typically set to ∆x/2 (more details about the computation of ε are provided in Section 2.2.5).
Spatial variations of this parameter induce changes in the profile thickness, which in turn may
induce errors on the transport velocity of the ψ = 1/2 iso-surface.

Because of all these numerical errors on non-homogeneous meshes, special attention is needed
when coupling the ACLS procedure with dynamic mesh adaptation, so that the interface never
encounters strong cell-size gradients.

In this work, two types of cell size ∆x will be used to characterize unstructured grid dis-
crete elements: (i) a node-based cell size ∆xi, which characterizes the local mesh resolution at
node i, computed from the node-based control volume Vi (see Fig. 2.5): ∆xi =

√
Vi in 2D and

∆xi =
3
√
Vi in 3D; (ii) the length of the pair of nodes ∆xik, which will be used for the pair-based

numerical schemes presented later in this manuscript.
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2.1.2 Navier-Stokes equations

The momentum equation for an incompressible Newtonian fluid is written in each of the phases
as:

∂u
∂t

+∇ · (u ⊗ u) = −1

ρ
∇p+∇ · τ + g (2.10)

with ∇ · u = 0. As presented in Section 1.1.3.3, the flow velocity is assumed continuous in both
normal and tangential directions across the liquid/gas interface Γ, and hence there is no velocity
jump: [u]Γ = 0. However, pressure and density are discontinuous across Γ [53]. Surface tension
σ is embedded in the pressure jump [p]Γ, and, without Marangoni forces, the pressure jump is
written as:

[p]Γ = pl,Γ − pg,Γ = σκΓ + 2[µ]Γnt ·∇u · n (2.11)

Numerically, it is treated explicitly using the Ghost-Fluid Method (GFM) [37]. In Eq. (2.11), n is
the interface normal from Eq. (2.6), κΓ is the interface mean curvature, pl,Γ and pg,Γ are the liquid
and gas pressure at the interface, respectively. The material properties are reconstructed as:

ρ(x, t) = ρg + (ρl − ρg)H(ψ(x, t)− 1/2) and µ(x, t) = µg + (µl − µg)ψ(x, t) (2.12)

for the density and the dynamic viscosity, respectively. As in the original CLS method of Olsson
and Kreiss (2005) [29] and original ACLS method of Desjardins et al. (2008) [31], the smoothed
Heaviside function ψ is used to reconstruct the viscosity field, increasing the robustness of the
method: the Ghost-Fluid Method (GFM) is indeed challenging to apply in the presence of the
viscous term [31]. Moreover, as mentioned in [31], for turbulent flows, the viscous terms are ex-
pected to be significant only at the smallest scales, which do not contain much energy. Hence, the
choice of smoothing the viscosity discontinuity is not likely to influence significantly the quality
of the solution.

A projection method [57], presented in Section 1.2.1, is employed to solve the incompressible
Navier-Stokes equations with surface tension. The linear solver used to solve the Poisson equation
for pressure is the Deflated Preconditioned Conjugate Gradient of [59].

2.1.3 Summary of the full solution procedure

To ease the reading of the present chapter, the full solution procedure is here summarized:

(i) Using the unstructured ACLS algorithm, advance the interface implicitly through the ψ field
with Eq. (2.37) using un (Section 2.2.7), then reinitialize ψ to reform the hyperbolic tangent
profile with Eq. (2.31) (Section 2.2.6).

(ii) Set the new narrow band around the interface (Section 2.2.1).

(iii) Compute interface features in the narrow band: geometric signed distance ϕGPMM (Sec-
tion 2.2.2), normals n (Eq. (2.25); Section 2.2.4), curvature κΓ (Eq. (2.26) then Eq. (2.29);
Section 2.2.4).

(iv) Predict the velocity field u∗ from un, using the momentum correction at the interface
of [166] adapted to unstructured meshes (Section 2.3.1).

(v) Project the velocity field by solving the Poisson equation, in which interface jump conditions
are treated with the Ghost-Fluid Method (Eq. (2.57); Section 2.3.2).
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(vi) Correct the velocity, with the pressure gradient that includes the jump conditions using the
Ghost-Fluid Method (Eq. (2.58); Section 2.3.2), eventually leading to un+1 so that ∇ ·
un+1 = 0.

(vii) Grid adaptation (Section 2.4).

2.2 Accurate Conservative Level Set algorithm

2.2.1 Narrow-band ACLS

In order to reduce computational costs, interface features such as signed distance, normals, cur-
vature and reinitialization fluxes are computed in a restricted region around the interface, called
"narrow band" [36]. Each node i belonging to the narrow band is identified with a signed integer
bi (b > 0 in liquid and b < 0 in gas), depending on the node layer it is part of. The flagging of the
narrow band is illustrated in Fig. 2.2 (a). Using this methodology, an edge ik crossing the interface

Figure 2.2: (a) Flagging of the narrow band around the interface Γ, here ik is a pair of nodes
crossing the interface; (b) Pair-based band-layer index Bik for data propagation in the Geometric-
Projection Marker Method (GPMM).

verifies bibk = −1. In practice, the band width is set between 8 and 12 cells on each side of the
interface: 8 ≤ |b|max ≤ 12.

2.2.2 Signed-distance function reconstruction: the GPMM algorithm

To compute the interface normals (Eq. (2.6)) and curvature (Eq. (2.8)), a reconstructed signed-
distance function ϕ is used. As detailed in [31], using this smooth function instead of ψ for the
computation of normal avoids spurious orientation of this normal vector, which is thus appropri-
ate for the reinitialization equation. This distance reconstruction is challenging on unstructured
meshes, and very few massively parallel algorithms are able to do it. In the work of Dapogny
and Frey [167], the signed-distance function is reconstructed on unstructured meshes from a tri-
angulation of the interface using the unsteady Eikonal equation. In particular, the reduction of
triangulation-induced numerical errors when refining the mesh close to the interface is discussed
and quantified. In this work, the interface is also approximated by a triangulation before recon-
structing the distance, but it has been chosen to proceed geometrically using a pair-based Fast-
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Marching Method (FMM) for its computation from the explicit surface. The methodology is the
following:

(i) A preliminary sorting of the node pairs in the narrow band is performed to be able to sweep
from the close-interface band layers to the ones further;

(ii) A segmentation (2D) or triangulation (3D) of the interface within grid cells is done;

(iii) A Fast-Marching Method (FMM) is then performed along the edges to build a collection of
the closest segments (2D) or triangles (3D) at each node of the band;

(iv) The signed-distance function is computed from an exact geometric projection at each node
of the band.

All these steps constitute the Geometric-Projection Marker Method (GPMM), first introduced
in [165] and presented here in more details.

2.2.2.1 Sorting of the node pairs

In order to propagate data efficiently from the first band level |b| = 1 to the furthest |b| = |b|max,
sorting the pairs of nodes layer by layer in the narrow band is necessary. To do so, a pair-based
band-layer index Bik is defined as follows:

Bik =

{
1 if bibk = −1

min (|bi|, |bk|) + 1 if bibk ̸= −1
(2.13)

with 1 ≤ Bik ≤ |b|max + 1. This index, depicted in Fig. 2.2 (b), is computed by looping on the
pairs ik and using pair-to-node connectivity.

2.2.2.2 Determination of intersection points

It is then needed to compute the position xP of the intersection points P between the interface
Γ and the edges ik crossing the interface (Bik = 1). Given the conservative level-set functions
ψi and ψk (Eq. (2.1)) at the nodes i and k belonging to a crossing pair ik, one can invert these
functions to build two distance functions to the interface ϕinv,i and ϕinv,k:

{
ϕinv,i = 2εiatanh (2ψi − 1)

ϕinv,k = 2εkatanh (2ψk − 1)
(2.14)

The level-set position θ on a pair ik crossing the interface is then calculated as:

θ =
ϕinv,i

ϕinv,i − ϕinv,k
(2.15)

which means that θ = 0 and θ = 1 correspond to Γ at nodes i and k, respectively. Thus, if the pair
of nodes ik verifies the condition (ψi − 0.5)(ψk − 0.5) < 0, the position of the intersection point
is eventually computed by interpolating the nodal coordinates as:

xP = xi + θ(xk − xi) = xi + θ∆xik (2.16)
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Figure 2.3: Segmentation of the interface in 2D. PK(MI) is the K-th intersection point associated
with the I-th marker MI .

2.2.2.3 Segmentation/Triangulation of the interface

In order to compute the distance to an explicit interface, noted Γ∗ in the following, a segmentation
in 2D or a triangulation in 3D of the implicit interface Γ is first performed. This step is illustrated
in 2D in Fig. 2.3. The concept of marker stems from this procedure. A marker M is an array
containing the coordinates xK(M) = (xK(M), yK(M), zK(M)) of its associated intersection
points PK(M) seen in Fig. 2.3. Hence, for 2D triangular grids, each interface segment is defined
by a set of two intersection points (K = 1, 2) stored in a marker. For 3D tetrahedral meshes, there
can be three or four intersection points depending on how the interface intersects a tetrahedron.
For a three-point intersection, the interface within the cell is defined by a single triangle. In the
case of a four-point intersection, the resulting quadrilateral is divided into four triangles to ease
the storing of the surface elements, leading in both cases to three points stored in one marker in
3D (K = 1, ..., 3).

Each node of the narrow band knows a maximum fixed number of markers NM defined by the
user (I = 1, ...,NM ), which is usually set to 3 in 2D and 10 in 3D. Indeed, as studied in [165],
propagating several markers significantly improves the accuracy and spatial convergence of the
method. A set of markers known by a node i of the narrow band is a marker list. Each marker
M , which is a node-based array Mi, also contains the absolute distance d(Mi) from the node i to
the associated surface element, and two identificators id1,2(Mi). id1 is the processor number and
id2 is the mesh element number in which the intersection points are. A 2D nodal marker list is
presented in Table 2.1.

Table 2.1: A 2D marker list for a node i of the narrow band: 2 identificators id1,2, 4 coordinates
(K = 1, 2), 1 distance d.

M1,i ... MI,i ... MNM ,i

id1(M1,i) ... id1(MI,i) ... id1(MNM ,i)

id2(M1,i) ... id2(MI,i) ... id2(MNM ,i)

x1(M1,i) ... x1(MI,i) ... x1(MNM ,i)

y1(M1,i) ... y1(MI,i) ... y1(MNM ,i)

x2(M1,i) ... x2(MI,i) ... x2(MNM ,i)

y2(M1,i) ... y2(MI,i) ... y2(MNM ,i)

d(M1,i) ... d(MI,i) ... d(MNM ,i)
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The markers will then be sorted by distance for each node i, within the marker list so that:

d(M1,i) < ... < d(MI,i) < ... < d(MNM ,i) (2.17)

2.2.2.4 Sorting of markers and distance computation

When a marker is evaluated to update and fill marker lists, a check is first performed based on
the two marker identificators to identify whether the marker is already present in the marker list
or not. If not, the marker distance needs to be estimated to place the new marker in the list. Two
cases are then considered based on the nodal band-layer index bi, and a threshold |b|exact = 2:
(i) in the first two band levels, i.e. if |bi| ≤ |b|exact, the distance d is computed by performing an
exact geometric projection; (ii) for the furthest band levels, i.e. if |b|exact < |bi| ≤ |b|max, the
distance is initially approximated in order to speed-up the marker-sorting procedure. We focus on
2D triangular grids in the following for sake of simplicity.

In case (i), the geometric projection algorithm is used, illustrated in Fig. 2.4. If the projection

Figure 2.4: Projection algorithm to compute the exact geometric absolute distance d to the trian-
gulated interface Γ∗.

is inside the element (Fig. 2.4 (a)), the distance to the segment [P1P2] stored in marker MI,i at
node i is computed geometrically as:

d(MI,i) =

∣∣∣(xi − xP1) · nP1P2

∣∣∣
∣∣∣nP1P2

∣∣∣
(2.18)

where nP1P2 is the normal vector to the interface segment [P1P2]. Otherwise, if the projection is
outside the element (Fig. 2.4 (b)), the distance d is the distance between the node i and the closest
intersection point PK :

d(MI,i) = min(|xi − xP1 |, |xi − xP2 |) (2.19)

For case (ii), the distance is simply approximated for the sorting as:

d(MI,i) = min



∣∣∣xi − xP1

∣∣∣,
∣∣∣xi − xP2

∣∣∣,

∣∣∣(xi − xP1) + (xi − xP2)
∣∣∣

2


 (2.20)

Once the marker distance is estimated, it is then needed to sort the marker by distance and thus
include the new one in the nodal marker list. This procedure is presented in Algorithm 1.
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Algorithm 1 Update of a marker list at a node i of the narrow band. The new marker to be included
in the list is M∗,i.

1: if d(M∗,i) ≤ d(M1,i) then
2: for I = NM − 1, 1,−1 do
3: MI+1,i =MI,i

4: end for
5: M1,i =M∗,i
6: else if d(M∗,i) ≥ d(MNM ,i) then
7: return
8: else
9: for I = 1,NM − 1 do

10: if d(M∗,i) < d(MI+1,i) then
11: for I ′ = NM − 1, 1 + I,−1 do
12: MI′+1,i =MI′,i

13: end for
14: MI+1,i =M∗,i
15: return
16: end if
17: end for
18: end if

2.2.2.5 Optimization and parallelization

The present algorithm is iterative for parallelism purposes. YALES2 parallelization uses a double-
domain decomposition: within a processor, grid elements are assembled in groups. To optimize
the algorithm, it is necessary to check local changes, within a cell group or a processor.

In addition to the marker list array, another array which contains marker flags F(M) (0 or
1) is created before propagating data (i.e. after treating the first band level) in the narrow band.
Fi(M) = 1 means that the markerM is new in the list at node i: e.g. this flag would be turned to 1

right after lines 5 and 14 of Algorithm 1. This operation allows to have updated information on the
status of markers during data propagation, and thus avoids unnecessary repetition of computational
operations (e.g. redundant updates and sorting of markers).

Another optimization is to store the squared distance d2(MI,i) in marker lists instead of the
distance d(MI,i), to avoid many calculations of square roots, which have seen to be very expensive
due to the large number of distance computations in the present algorithm. Indeed, this minor
change does not affect the comparison and sorting of markers.

2.2.2.6 Final nodal signed-distance computation in the narrow band

Once all markers are sorted, M1,i contains the smallest squared distance d2(M1,i). The signed-
distance is thus simply computed at node i as ϕi = ±

√
d2(M1,i) if |bi| ≤ |b|exact, otherwise for

the nodes where the distance d in markers has been only approximated for the sorting (|b|exact <
|bi| ≤ |b|max), the distance ϕi is eventually computed using the projection algorithm presented
above (Fig. 2.4) onto the closest surface element, known thanks to the marker sorting.
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2.2.3 Finite-volume framework for unstructured grids: spatial discretization and
notations

As seen in Chapter 1, YALES2 is a pair-based finite-volume incompressible solver with node-
centered control volumes [38]. To ease the reading of the present chapter, the main elements and
formulas used in the following sections are briefly recalled.

The control volumes Vi are based on the dual mesh, as shown in Fig. 2.5. The spatial discretiza-
tion is ensured by 4th-order central finite-volume schemes, written on the dual mesh constructed
from edge and element centers (dual cells connect centroids of cells to centroids of faces). In this

Figure 2.5: Finite-volume pair-based discretization in YALES2, using node-centered control vol-
umes Vi.

framework, presented earlier in Section 1.2.4, second and fourth-order gradients of a quantity ζ
are computed at a given node i using the gradient theorem as:

∇ζ|i =
1

Vi

∑

k∈Ni

ζikdAik (2.21)

with Ni the set of neighbors of node i, ζik the pair-based estimation of ζ, computed to either second
or fourth order, and dAik the normal vector to the portion of the control volume Vi, associated to
pair ik (red solid line in Fig. 2.5). Second and fourth-order approximations of the gradient are
written as:

∇ζ|2ndi =
1

Vi

∑

k∈Ni

(
ζi + ζk

2

)
dAik (2.22)

∇ζ|4thi =
1

Vi

∑

k∈Ni

(
ζi + ζk

2
+

∇ζ|2ndi −∇ζ|2ndk

6
·∆xik

)
dAik (2.23)

where ∆xik is the direction of the pair ik. It is useful to define the unit pair direction eik =

∆xik/∆xik, which will be used in the following sections. Using the divergence theorem, the
divergence of a flux F writes:

∇ · F|i =
1

Vi

∑

k∈Ni

Fik · dAik (2.24)

with Fik the pair-based flux computed as in the gradient to either second or fourth order.
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2.2.4 Interface normals and curvature computation

The interface normals and curvature are computed in the narrow band around the interface, using
the reconstructed signed-distance function ϕ from the GPMM algorithm presented above.

The interface normals are pair-based, and computed as:

nik = ∇ϕGPMM|4thik = (∇ϕGPMM|4thi +∇ϕGPMM|4thk )/2 (2.25)

where ∇ϕGPMM|4thi or k are fourth-order nodal gradients, computed using Eq. (2.23).
The interface curvature κΓ is computed in two steps: (i) the curvature is first estimated at nodes

(κi) in the narrow band using Eq. (2.8); (ii) for the node pairs crossing the interface (bibk = −1),
a linear interpolation of the nodal curvature radii Ri = 1/κi is performed to obtain κΓ.

2.2.4.1 Computation of curvature at nodes

The local mean curvature at a node i is given by discretizing Eq. (2.8):

κi =

Tr (Hi(ϕGPMM))− ∇ϕTGPMM|2ndi∣∣∣∇ϕGPMM|2ndi

∣∣∣
·Hi (ϕGPMM) · ∇ϕGPMM|2ndi∣∣∣∇ϕGPMM|2ndi

∣∣∣
∣∣∣∇ϕGPMM|2ndi

∣∣∣
(2.26)

where Hi(ϕGPMM) is the discretized Hessian operator at node i applied to the reconstructed
signed-distance function ϕGPMM. Two discretizations of the Hessian operator are studied in this
work: compact and non-compact. The compact Hessian computation necessitates only neighbor-
ing nodes (i.e. a compact stencil), and is written as:

HC
i (ϕGPMM) =

1

Vi

∑

k∈Ni



ϕGPMM,k − ϕGPMM,i

∆xik
eik

︸ ︷︷ ︸
Alignedwith ik

+∇ϕGPMM|2ndik −
(
∇ϕGPMM|2ndik · eik

)
eik

︸ ︷︷ ︸
Orthogonal to ik


⊗dAik

(2.27)
whereas the non-compact formulation is simply obtained by applying two consecutive second-
order gradients, leading to a non-compact stencil:

HNC
i (ϕGPMM) = ∇

(
∇ϕGPMM|2nd

)∣∣∣
2nd

i
(2.28)

2.2.4.2 Interpolation for crossing pairs

Once the nodal curvatures are computed, a linear interpolation of the curvature radii is performed
for the pairs ik crossing the interface Γ, resulting in a pair-based interface curvature:

κΓ,ik =
1

θRi + (1− θ)Rk
=

κiκk
θκk + (1− θ)κi

(2.29)

with θ the interpolation weight (0 < θ < 1), defined in Eq. (2.15), representing the position of the
interface on the crossing pair ik.
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2.2.5 Computation of the interface profile thickness

As mentioned in Section 2.1.1, the parameter ε, which sets the thickness of the hyperbolic tangent
profile ψ, depends on the local mesh resolution: ε = ε(x). This parameter is computed at nodes
as follows:

εi = εF

∑
k∈Ni

∆xik|dAik|∑
k∈Ni

|dAik|
(2.30)

where Ni is the set of neighbors of node i, εF is a constant scaling factor: typically 1/2, ∆xik
is the pair length, and dAik is the surface defined in Fig. 2.5. As presented in detail recently by
Waclawczyk in [168], spatial variations of the interface profile thickness ε may cause a departure
from equilibrium in the intermittency region, i.e. the transient part of the ψ profile. In this case,
an extension of the mapping procedure used to obtain Eq. (2.7) is needed. However, in this work,
by performing Adaptive Mesh Refinement (AMR) around the interface, the mesh is homogeneous
around it and the variations of ε from one node to another are expected to be minor. Thus, in this
manuscript, the intermittency region is assumed to be in the equilibrium state. This assumption
does not impact neither the normal nor the curvature computation, as they are both estimated from
the geometrically-reconstructed signed-distance function ϕGPMM: they do not depend analytically
on the ψ-function.

2.2.6 Discretization of the reinitialization equation

The reformulated reinitialization (Eq. (2.7)) is discretized using Eq. (2.24):

ψn
∗+1
i − ψn

∗
i

∆τ
=

1

Vi

∑

k∈Ni




1

4 cosh2
(
ϕn

∗
map,ik

2εik

)
(
∇ϕmap|n

∗
ik · nik − nik · nik

)

nik · dAik

(2.31)
where ϕmap,ik = (ϕmap,i + ϕmap,k)/2 and εik = (εi + εk)/2 are linearly interpolated interface
distance and profile thickness, respectively. ∇ϕmap|ik is computed using a compact term in the
direction of the node pair as in Eq. (2.27):

∇ϕmap|ik =
ϕmap,k − ϕmap,i

∆xik
eik

+
∇ϕmap|2ndi +∇ϕmap|2ndk

2
−
(
∇ϕmap|2ndi +∇ϕmap|2ndk

2
· eik

)
eik (2.32)

where ∇ϕmap|2ndi or k are second-order nodal gradients computed using Eq. (2.22).
The interface normals nik are computed with Eq. (2.25). It has been chosen to use non-unit

normals, to avoid spurious gradient orientations when several interfaces are close to each other,
and thus improve the front-merging properties of the implemented reinitialization.

A particular numerical treatment is needed for the nodes of the narrow band where ψ is close
to 0 or 1. Indeed, at these nodes, ϕmap is difficult to estimate and two improvements in the
reinitialization algorithm are introduced: (i) in order to ensure a correct computation of ∇ϕmap|ik,
which requires several nodal values of ϕmap, an under/overshoot tag is attributed to all pairs with
at least one node concerned by ψ falling outside ]0, 1[; (ii) the resharpening term is removed so
that the reinitialization becomes purely diffusive. Using the original isotropic diffusion term of
Olsson and Kreiss [29] in this case, the reinitialization then takes the form:

ψn
∗+1
i − ψn

∗
i

∆τ
=

1

Vi

∑

k∈Ni

εik∇ψ|n∗
ik · dAik (2.33)
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with ∇ψ|n∗
ik discretized as in Eq. (2.32). Once the overshoots or undershoots of ψ disappear, the

reinitialization turns back to its main form given by Eq. (2.31).
Usually, 3 steps of reinitialization are performed and the pseudo-timestep of each reinitializa-

tion step is simply determined by a Fourier condition on the diffusive part of the reinitialization.
This stability condition leads to:

∆τ = min
pairs ik

(
Fo.∆x2ik
εik

)
(2.34)

where ∆xik stands for the length of the pair ik, and Fo is the Fourier number set to 0.5. Hence,
with εik ∼ ∆xik, ∆τ ∼ ∆xik.

2.2.7 Transport of the ACLS function - Time integration

The ACLS function ψ is advected using Eq. (2.4). In YALES2, a 4th-order discretization is per-
formed for convective terms, leading to the following semi-discrete equation for a node i:

∂ψi
∂t

+∇ · (ψu)
∣∣∣
i
= 0 (2.35)

Then by applying Eq. (2.24):

∂ψi
∂t

+
1

Vi

∑

k∈Ni

ψikuik · dAik = 0 (2.36)

Using a 4th-order spatial discretization as in Section 2.2.3, Eq. (2.36) yields:

∂ψi
∂t

+
1

Vi

∑

k∈Ni

(
ψi + ψk

2
+

∇ψ|2ndi −∇ψ|2ndk

6
·∆xik

)

(
ui + uk

2
+

∇u|2ndi −∇u|2ndk

6
·∆xik

)
· dAik = 0 (2.37)

Time integration is performed using the TFV4A scheme of [84], which is a 4th-order, Runge-
Kutta-like, time-marching scheme: see Section 1.2.5 for more details. The timestep ∆t is com-
puted from the classical explicit CFL stability criterion:

∆t = min
pairs ik

(
CFL|dAik|∆xik

|uik · dAik|

)
(2.38)

where ∆xik is the length of the pair ik. The full ACLS procedure is depicted in Fig. 2.6.



68 Chapter 2. A two-phase flow solver for adaptive unstructured grids

Figure 2.6: Full ACLS procedure: the blue boxes represent computations in the narrow band.
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2.3 Incompressible flow solver

To solve the incompressible Navier-Stokes equations, a projection method is employed [57]: it is
thus needed to solve a Poisson equation accounting for the interfacial pressure jump.

2.3.1 Velocity prediction with momentum correction

In order to avoid velocity mixing between liquid and gas, and thus limit spurious kinetic energy
transfers at the interface, Desjardins and Moureau introduced a momentum correction at the in-
terface in [166]. Indeed, two sources of non-conservation of momentum are identified in the
projection procedure: (i) the velocity prediction which needs to be tightly coupled to interface
transport through density; (ii) the correction step as it is written in non-conservative form. The
dominant error regards the transport step (i): the strategy detailed in this section is thus to limit
the momentum-conservation errors at the prediction step. In this section, we only consider the
convection term in Eq. (2.10) for convenience. The prediction step writes:

u∗ − un

∆t
= −∇ ·

(
un+1/2 ⊗ un+1/2

)
(2.39)

which can be rewritten in terms of momentum:

ρ∗∗u∗ − ρnun

∆t
= −∇ ·

(
ρn+1/2un+1/2 ⊗ un+1/2

)
(2.40)

where ρ∗∗ is a predicted density computed from the following step:

ρ∗∗ − ρn

∆t
= −∇ ·

(
ρn+1/2un+1/2

)
(2.41)

Eq. (2.41) can be discretized in space as:

ρ∗∗i − ρni
∆t

= − 1

Vi

∑

k∈Ni

ρ
n+1/2
ik uik · dAik (2.42)

with ρn+1/2
ik computed using a simple upwinded scheme to ensure the boundedness of the density

flux at the interface:

ρ
n+1/2
ik =





(1− Uik)
ρni + ρnk

2
+ Uikρni if uik · dAik ≥ 0

(1− Uik)
ρni + ρnk

2
+ Uikρnk if uik · dAik < 0

(2.43)

where the pair-based limiter U is computed as:

Uik = max

( |b|upw −min (|bi|, |bk|) + 1

|b|upw
, 0

)
(2.44)

with |b|upw = 5, meaning that the first five narrow-band levels from the interface are concerned by
the upwinding, which decreases when increasing the band number. A similar numerical strategy
is applied for the conservative flux of Eq. (2.40):

ρ∗∗i u∗
i − ρni uni
∆t

= − 1

Vi

∑

k∈Ni

ρu
∣∣∣
n+1/2

ik
uik · dAik (2.45)
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with ρu
∣∣∣
n+1/2

ik
calculated to 4th-order as:

ρu
∣∣∣
n+1/2

ik
=





(1− Uik)
ρni uni + ρnkunk

2
+ Uikρni uni + ρ

n+1/2
ik

∇u|2ndi −∇u|2ndk

6
·∆xik

if uik · dAik ≥ 0

(1− Uik)
ρni uni + ρnkunk

2
+ Uikρnkunk + ρ

n+1/2
ik

∇u|2ndi −∇u|2ndk

6
·∆xik

if uik · dAik < 0

(2.46)

The proposed method is not stated as mass-momentum consistent, but allows momentum
conservation over ∆t at the prediction step (no velocity mixing between gas and liquid). A
momentum-conservation error appears when ρ∗∗ is discarded and replaced by ρn+1: this error
however remains smaller than errors at the prediction step. Mass-momentum consistency, which
is a required feature to robustly simulate complex high-density ratio two-phase flows as mentioned
in [169], [170] or [171], is left for future work.

2.3.2 Ghost-Fluid Method

The Ghost-Fluid Method [31, 37] is a robust and accurate way to explicitly deal with jump con-
ditions. Let us consider the jump at a liquid-gas interface in one dimension of a physical quantity
ζ, written [ζ]Γ = [ζ](xΓ) = ζl(xΓ)− ζg(xΓ) = ζl,Γ − ζg,Γ. The liquid and gas quantities in each
phase can be extended in the other phase by continuity:

ζl(x) = ζl,Γ+(x−xΓ)
∂ζ

∂x

∣∣∣
l,Γ

+O(x−xΓ)
2 and ζg(x) = ζg,Γ+(x−xΓ)

∂ζ

∂x

∣∣∣
g,Γ

+O(x−xΓ)
2

(2.47)
which leads to the expression of the jump everywhere in the fluid domain:

[ζ](x) = [ζ]Γ + (x− xΓ)

[
∂ζ

∂x

]

Γ

+O(x− xΓ)
2 with

[
∂ζ

∂x

]

Γ

=
∂ζ

∂x

∣∣∣
l,Γ

− ∂ζ

∂x

∣∣∣
g,Γ

(2.48)

The extension to 3D is straightforward:

[ζ](x) = [ζ]Γ + (x − xΓ) · [∇ζ]Γ +O(x − xΓ)2 (2.49)

Fig. 2.7 illustrates the principle of the Ghost-Fluid Method. In the following, this methodology
is used to discretize the pressure gradient in the numerical framework of this study: pair-based
finite-volume schemes.

2.3.2.1 Discretization of the pressure gradient

A first-order finite-difference approximation of the pressure term gives:

1

ρ

∂p

∂x

∣∣∣
l,i+ 1

2

=
1

ρl

pl,i+1 − pl,i
∆x

+O(∆x) (2.50)

Using the pressure jump at xi, the liquid pressure is pl,i = [p]i + pg,i and can be replaced as
follows:

1

ρ

∂p

∂x

∣∣∣
l,i+ 1

2

=
1

ρl

pl,i+1 − [p]i − pg,i
∆x

+O(∆x) (2.51)
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Figure 2.7: Ghost-Fluid Method: extension of the jump of a physical quantity ζ.

The expression for the pressure jump [p]i is given by Eq. (2.48):

[p]i = [p]Γ + (xi − xΓ)

[
∂p

∂x

]

Γ

+O(xi − xΓ)
2 (2.52)

[p]Γ is a known quantity (Eq. (2.11)) but [∂p/∂x]Γ is unknown a priori. With the assumption
that the velocity is continuous across the interface, the pressure term in the momentum equation
Eq. (2.10) should also be continuous:

[
1

ρ

∂p

∂x

]

Γ

= 0 ⇐⇒ 1

ρl

∂p

∂x

∣∣∣
l,Γ

=
1

ρg

∂p

∂x

∣∣∣
g,Γ

(2.53)

After many developments, which can be found in [31], the final form of the discretized pressure
gradient for finite differences is obtained, for Γ ∈ [xi;xi+1]:

1

ρ

∂p

∂x

∣∣∣
l,i+ 1

2

=
1

ρ

∂p

∂x

∣∣∣
g,i+ 1

2

=
1

ρ∗
pl,i+1 − pg,i

∆x
− 1

ρ∗
[p]Γ
∆x

+O(∆x) (2.54)

with ρ∗ = θρg + (1− θ)ρl a modified density, computed using the interpolation weight defined in
Eq. (2.15).

2.3.2.2 Implementation in the Poisson solver

YALES2 is a pair-based finite-volume solver, as a result implementation of finite-difference schemes
can be performed on the pairs. The expression of the discretized pressure term of the momentum
equation written in Eq. (2.54) is integrated in the Poisson solver of YALES2 to account for inter-
facial jump conditions.

To solve the incompressible Navier-Stokes equations, a projection method is employed [57].
The Poisson equation, used to enforce the solenoidal nature of the velocity field un+1, is:

∇ ·
(
1

ρ
∇p

)
=

1

∆t
∇ · u∗ (2.55)

with u∗ the predicted velocity, estimated from un (see previous Section 2.3.1). Eq. (2.55) can be
discretized as presented in Section 2.2.3:

∑

k∈Ni

1

ρ
∇p

∣∣∣
ik
· dAik =

1

∆t

∑

k∈Ni

u∗
ik · dAik (2.56)
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in which the pressure gradient is computed at pairs. A linear system of the form Ap = b that
includes the jump conditions needs to be solved, and is written as:

∑

k∈Ni

1

ρ∗
pk − pi
∆xik

eik · dAik

︸ ︷︷ ︸
Ap

=
1

∆t

∑

k∈Ni

u∗
ik · dAik +

∑

k∈Ni

1

ρ∗
[p]Γ
∆xik

eik · dAik

︸ ︷︷ ︸
b

(2.57)

The second part of the RHS b, which contains the pressure jump, is added for all pairs ik crossing
the interface. The linear system is solved using the Deflated Preconditioned Conjugate Gradient
of [59].

The correction step is written as:

un+1 − u∗

∆t
= −1

ρ
∇p

∣∣∣
i

(2.58)

in which the pressure gradient is calculated at nodes. For a pair of nodes which does not cross
the interface (i.e. within one incompressible phase, liquid or gas), the pressure gradient is simply
discretized as in Section 2.2.3, with a constant density ρ corresponding to the phase. For a crossing
pair ik, the jump conditions need to be accounted for:

1

ρ
∇p

∣∣∣
2nd

i
=

1

ρiVi

∑

k∈Ni

pi + pk + [p]k
2

dAik (2.59)

where the pressure jump is expressed from the developments above using the Ghost-Fluid Method:

[p]k =
ρi
ρ∗

[p]Γ +

(
1− ρi

ρ∗

)
(pi − pk) (2.60)

2.3.3 Time integration - Capillary timestep restriction

As in Section 2.2.7, time integration is performed using the TFV4A scheme of [84], which is
a 4th-order, Runge-Kutta-like, time-marching scheme: see Section 1.2.5 for more details. The
timestep ∆t is computed from the explicit capillary constraint:

∆t = min
crossing pairs ik

√
STN2∆x2ikmin(ρg, ρl)

σ|κΓ,ik|
(2.61)

where STN is the surface tension number, usually set to 0.5.

2.4 Isotropic dynamic mesh adaptation strategy

As introduced in Section 1.2.3, to resolve the small physical scales at the liquid-gas interface on
tetrahedral grids at a moderate cost, an isotropic Adaptive Mesh Refinement (AMR) technique
is used [78], employing the MMG sequential remeshing library [77]. The parallelism is handled
by the YALES2 flow solver (interpolation, data transfer), so that the dynamic mesh adaptation
strategy is tailored for massively-distributed grids.
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2.4.1 Target metric generation

Special attention is needed when coupling AMR with the ACLS interface-capturing method to
avoid liquid mass losses, so that the interface Γ never encounters cell-size gradients. Thus, the
mesh is refined around the interface based on the signed distance D = ϕ to it, so that Γ always
stays in a protected region of constant cell size (or metric) ∆xmin, defined by the user. To this
aim, a target metric M is generated at nodes as a function of the reconstructed signed-distance
function D = ϕGPMM (see Fig. 2.8 for spatial evolution of M) [6]:

M(D) = min
(
∆xinit, max

(
∆xmin, (|D| −Np∆xmin)× |∇M|0

))
(2.62)

where ∆xinit is the initial coarse cell size, |∇M|0 is the prescribed cell-size gradient, defined
by the user, typically set to 1.3, to ensure a smooth and controlled linear transition of the metric
from the finest cells of size ∆xmin to the coarsest ones of size ∆xinit. Np∆xmin is the half-width
of the refined region, with Np a user-defined parameter, usually set between 6 and 12. Indeed,
the choice of Np drives the size of the adaptive grid and the remeshing frequency. Increasing the
value of Np leads in turn to an increase in the number of mesh cells (wider refined zone), but one
needs to remesh less often in order to keep the interface in the finest region (less AMR calls).
Conversely, reducing the value of Np diminishes the number of grid cells (thiner refined zone),
but remeshing is needed more frequently (more AMR calls). In our massively-parallel two-phase
flow simulations, 6 < Np < 12 seems a good compromise between mesh size and adaptation
frequency. It is important to stress that this metric evolution ensures that the remeshing process

Figure 2.8: Adaptive mesh refinement strategy: refinement based on the distance D to the inter-
face.

occurs at the vicinity of the interface but never at the interface itself. This strategy avoids any
interpolation error at the interface location. It should also be noted that as the reconstructed GPMM
signed-distance ϕGPMM is needed far from the interface to build the target metric in Eq. (2.62),
the narrow band is set three times wider when adaptation is triggered at a given solver iteration.
For iterations without AMR, the classical value is used (see Section 2.2.1).

2.4.2 Automatic triggering

In practice, the adaptation process is triggered automatically when the interface is a few cells away
from the edge of the fine region. This is done by the mean of a user-defined protected distance
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ϕp, which determines the width of a protected region within the fine zone. This width is typically
half the one of the refined region: |ϕp| = N ′

p∆xmin = (Np/2)∆xmin. It thus means that the
interface should always have at least N ′

p fine cells of size ∆xmin ahead of it. The AMR process is
triggered each time at least one node i belonging to the protected region (i.e. |ϕGPMM,i| < |ϕp|)
falls outside the refined region. The automatic distance-based triggering strategy for a perfectly
straight interface is illustrated in Fig. 2.9. This automatic triggering leads to considerable com-
putational savings in remeshing compared to the use of a constant user-defined frequency, as it
adapts dynamically to the instantaneous displacement of the interface.

2.4.3 Parallel iterative remeshing

The parallelism of the dynamic mesh adaptation procedure relies on the double-domain decom-
position of the YALES2 flow solver, presented in Section 1.2.6: grid cells are gathered in cell
groups (typically 500 cells per group: Ncells/group = 500), themselves gathered within a proces-
sor [38]. The treatment of the interface between processors is delicate when performing dynamic
mesh adaptation: one has to deal with bad quality cells at these interfaces. The moving interface
method, generalized to a two-level domain decomposition [78, 80], is used to address this issue:
the regions near the processor boundaries are firstly left untouched, which yields a local adaptation
step without any communications between ranks, calling the MMG sequential library [77]. This
induces bad quality cells, identified by their skewness, at processor interfaces (see Fig. 2.10).
Then, interfacial element groups are moved so that the previous processor interface becomes im-
mersed within the new partition, which will be then adapted in turn. This procedure is done
iteratively until no bad quality cells remain in the domain. The scheduling of the movement of cell
groups is driven by a constrained load balancing algorithm using the METIS library [85]. This
operation ensures that the number of tetrahedral cells remains properly balanced between ranks.
The two-level parallel dynamic grid adaptation technique is illustrated in Fig. 2.11.
The full parallel dynamic mesh adaptation procedure can then be detailed as [6, 80]:

(i) Advancement of the liquid-gas interface using the unstructured ACLS procedure;

(ii) Generation of the target metric M given by Eq. (2.62);

(iii) For each processor, cell groups are merged into a single one;

(iv) Each MPI process calls the MMG sequential library [77] to adapt each merged group pro-
vided the target metric M. The nodes at merged group boundaries (processor interfaces or
walls) are frozen to preserve the connectivity of processor interfaces and minimize parallel
communications. The drawback is the generation of bad quality cells at processor interfaces,
measured by their skewness S;

(v) For each processor, adapted merged groups are split into cell groups using the METIS col-
oring library [85], so that each group contains Ncells/group, and data are interpolated on the
new mesh;

(vi) The two-level moving interface method of [78] is employed to deal with bad quality cells:
the location of processor interfaces is modified iteratively and sequential load balancing is
performed. The element groups to be transfered are selected based on the skewness of the
cells at the processor interface. Thus, the skewness S of each cell C with at least one node
connected to the interface γ between the local MPI process Pin(γ) and its neighbor Pout(γ)
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Figure 2.9: 1D illustration of the AMR triggering using a user-defined protected distance |ϕp| =
(Np/2)∆xmin: (a) Liquid-gas interface Γ right after an adaptation process (instant t); (b) Interface
N fluid iterations later (instant t+N∆t), triggering of AMR; (c) Remeshing around Γ at t+N∆t.

is computed. This skewness is compared to the maximum allowed skewness Smax, defined
by the user (typically 0.99). If bad quality cells are present at processor interface γ, i.e.:

max
C

(S(C, γ)) > Smax (2.63)
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Figure 2.10: Bad-quality grid cells at interfaces between processors. Courtesy of A. Froehly -
ParMMG [77].

Figure 2.11: Schematic of the two-level moving interface parallel adaptation strategy for 4 pro-
cessors. The thin black lines represent the interfaces between cell groups and the different colors
correspond to the processor ranks. Reprinted from [80].

the associated cell group at the boundary of Pin(γ) is transfered to Pout(γ), and the interfa-
cial cells are thus immersed into the Pout(γ) partition. This approach drastically decreases
the number of transfered element groups and therefore increases the efficiency of the adap-
tation step. Once the element groups have been transfered, the element and element group
connectivities are rebuilt;

(vii) Steps (iii) to (vi) are repeated to iteratively adapt the mesh, until the maximum skewness
of the full grid is below Smax. In addition to the skewness, a local metric error εM is also
computed, relatively to the target metric. The maximum relative metric error in the domain
should be lower than a user-defined threshold εM,max, typically set between 30% and 120%

of the target metric. If both the maximum skewness and relative metric error criteria are
satisfied, the grid is considered as adapted and the fluid calculation continues with the new
grid, until the next automatic AMR triggering (Section 2.4.2).



CHAPTER 3

Validation on unstructured grids

Disclaimer: Part of this chapter has been published in Journal of Computational Physics [216].
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The present chapter aims to validate the various parts of the YALES2 two-phase flow solver
presented in the previous chapter, using static and adaptive unstructured meshes. The accuracy
and convergence of the GPMM signed-distance reconstruction and of the interface curvature com-
putation, a central matter in interfacial flows, are first assessed both in 2D and 3D for circular
and spherical interfaces, respectively. Then, classical interface-transport tests are performed with
quantified error levels and spatial convergence. Eventually, the ability of the solver to properly
simulate surface-tension-driven flows and to implicitly predict topology changes (breakup and
merging; which is not guaranteed when discretizing the latest reinitialization equation), is checked
through canonical two-phase flow examples.

3.1 Accuracy of signed-distance and curvature computation

A 2D/3D static droplet of radius Rd is initialized on homogeneous triangular/tetrahedral grids to
assess the accuracy of the GPMM procedure, both in 2D and 3D, for the signed-distance recon-
struction on irregular meshes. The test case, which will also be used to assess the accuracy of the
interface curvature computation, is illustrated in Fig. 3.1. Errors are calculated as follows:

L2(ϕ) =

√√√√ 1

Ni∈|b|

Ni∈|b|∑

i=1

(ϕth,i − ϕGPMM,i)
2 and L∞(ϕ) = max

i∈|b|

∣∣∣ϕth,i − ϕGPMM,i

∣∣∣ (3.1)

where |b| is the absolute narrow-band level, ϕth,i is the theoretical distance at node i to the cir-
cular/spherical interface, and Ni∈|b| is the total number of nodes in the corresponding absolute
narrow-band level. The calculations of L2 and L∞ are performed for nodes belonging to edges
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Figure 3.1: Static droplet of radius Rd in a squared domain. The signed distance from a node i to
the interface Γ is ϕi. κΓ is the curvature at the interface.

crossed by the interface (|b| = 1) and in the sixth band level (|b| = 6, far from the interface).
As homogeneous triangles/tetrahedra are used to tessellate the domain, the mesh cell size is com-
puted as ∆x =

√
Vi in 2D, and as ∆x = 3

√
Vi in 3D, where Vi is the control volume based on the

dual mesh around a node i. Results are shown in Fig. 3.2 and Fig. 3.3 for the 2D and 3D cases,
respectively.

It can be seen in Fig. 3.2 (a) that in the first band level (|b| = 1), i.e. close to the interface,
the GPMM procedure converges with second-order accuracy (L2 and L∞) with low error values,
which is satisfactory for triangular grids. Fig. 3.2 (b) shows the results for the sixth band level
(|b| = 6), i.e. far from the interface. Again, as the resolution of the droplet increases, both L2 and
L∞ errors exhibit second-order convergence. The errors and corresponding order of convergence
for 3D tetrahedral meshes are displayed in Fig. 3.3 and Table 3.1: second-order convergence is
shown for the L2 norm, while the L∞ error displays a convergence closer to first order. As several
markers are propagated in the narrow band (NM = 3 in 2D and NM = 10 in 3D, see Sec-
tion 2.2.2), a sufficient amount of data is available at a node far from the interface to compute the
projected distance to the closest surface element. The advantage of the GPMM algorithm, which is
an exact geometric projection, is that the numerical errors are only induced by segmentation (2D)
or triangulation (3D): a perfect line (2D) or plane (3D) on an unstructured mesh leads to a distance
computed within machine accuracy. A way to lower the errors even more could be to improve
the sub-grid representation of the interface, such as attaching Lagrangian particles to the interface,
similarly to Front-Tracking techniques, and to compute the distance at nodes in the narrow band
to the closest particles [172].

On the same test case, the accuracy of the interface curvature κΓ (Eq. (2.29)) is evaluated in
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Figure 3.2: L2 and L∞ of the reconstructed signed-distance function ϕ with the 2D GPMM algo-
rithm (Geometric-Projection Marker Method), in first (a) and sixth (b) narrow-band levels |b|. The
dashed and solid lines are first and second-order convergence, respectively.

100 101 102

Rd/∆x

10−8

10−7

10−6

10−5

10−4

L
2
(φ

)
an

d
L
∞

(φ
)

(a) 3D ; |b| = 1

L2 - GPMM
L∞ - GPMM

100 101 102

Rd/∆x

10−8

10−7

10−6

10−5

10−4

L
2
(φ

)
an

d
L
∞

(φ
)

(b) 3D ; |b| = 6

L2 - GPMM
L∞ - GPMM

Figure 3.3: L2 and L∞ of the reconstructed signed-distance function ϕ with the 3D GPMM algo-
rithm (Geometric-Projection Marker Method), in first (a) and sixth (b) narrow-band levels |b|. The
dashed and solid lines are first and second-order convergence, respectively.
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Table 3.1: Error norms of the reconstructed signed-distance function ϕ using the 3D GPMM algo-
rithm, in first and sixth band levels for each resolution. The corresponding order of convergence
are given within parentheses.

Rd/∆x L2(ϕ1) L∞(ϕ1) L2(ϕ6) L∞(ϕ6)

1.649 3.122× 10−5 6.880× 10−5 3.064× 10−5 7.065× 10−5

3.104 7.474× 10−6 (2.26) 1.917× 10−5 (2.02) 8.002× 10−6 (2.12) 2.077× 10−5 (1.94)
6.973 1.815× 10−6 (1.75) 5.829× 10−6 (1.47) 2.169× 10−6 (1.61) 5.322× 10−6 (1.68)
14.66 4.608× 10−7 (1.84) 1.559× 10−6 (1.77) 5.909× 10−7 (1.75) 1.791× 10−6 (1.47)
31.74 1.159× 10−7 (1.79) 5.413× 10−7 (1.37) 1.506× 10−7 (1.77) 7.631× 10−7 (1.10)

2D and 3D using the following error norms:

L2(κ) =
1

κΓ,th

√√√√ 1

Ncp

Ncp∑

ik=1

(κΓ,th − κΓ,ik)
2 and L∞(κ) =

1

κΓ,th
max
cp

∣∣∣κΓ,th − κΓ,ik

∣∣∣ (3.2)

where Ncp stands for the total number of node pairs crossing the interface Γ, κΓ,th is the constant
theoretical curvature of the circle/sphere, and κΓ,ik is the pair-based interface curvature, for a node
pair ik among the crossing pairs, obtained with Eq. (2.29). Results are shown in Fig. 3.4, for the
two different discretizations of the Hessian operator H (ϕGPMM) in Eq. (2.26). The non-compact
discretization consists in applying two consecutive second-order gradients to the reconstructed
signed-distance function ϕGPMM (Eq. (2.28)), leading to a non-compact stencil, whereas a smaller
stencil is used in the compact formulation: only direct-neighbor points are used to compute the
Hessian (Eq. (2.27)). Slight convergence of the L2-norm is observed for the 2D and 3D interface
curvatures computed using the non-compact Hessian matrix. However, using a compact stencil
leads to divergence of the curvature for both L2 and L∞ norms, in 2D and 3D. Eventually, a
comparison in 3D between the non-compact Goldman curvature and a non-compact discretization
of the classical curvature κ = ∇ ·n is shown in Fig. 3.5: better convergence properties of the non-
compact Goldman curvature are displayed, despite slightly higher errors at very low resolutions.
As a consequence, the non-compact Goldman formulation will be used in the following.
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Figure 3.4: L2 andL∞ norms of the 2D (a) and 3D (b) interface curvature κΓ, considering two spa-
tial discretizations of the Hessian operator: with compact and non-compact stencils. The dashed
and solid lines are first and second-order convergence, respectively.
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Figure 3.5: L2 and L∞ norms of the 3D interface curvature κΓ, using Goldman’s formula and the
classical formula, both discretized with non-compact stencils. The dashed and solid lines are first
and second-order convergence, respectively.
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3.2 Interface transport tests

In order to assess the accuracy, spatial convergence and robustness of the ACLS procedure, clas-
sical interface transport tests are performed.

3.2.1 Static sphere on static tetrahedral grids

A 3D static sphere is initialized on a homogeneous tetrahedral mesh. The initial signed-distance
and ACLS functions are set as:

ϕ0(x, y, z) = R−
√
x2 + y2 + z2 ψ0(x, y, z) =

1

2

(
tanh

(
ϕ0(x, y, z)

2ε

)
+ 1

)
(3.3)

whereR is the radius of the sphere. The two reinitialization equations Eq. (2.5) [31] and Eq. (2.7) [35]
are compared at two grid resolutions: 6 and 12 points in the sphere radius R, and each of them
is performed 50, 000 times throughout the runs. As homogeneous tetrahedra are used to tessellate
the domain, the mesh cell size is computed as ∆x = 3

√
Vi, where Vi is the control volume based

on the dual mesh around a node i. Results are presented in Fig. 3.6. As presented in [35] for

Figure 3.6: 3D static sphere transport test on two tetrahedral grids: comparison between Eq. (2.5)
(original ACLS reinitialization) and Eq. (2.7) (reformulated reinitialization) after 50,000 iterations
of reinitialization.

cartesian meshes, it is observed that the reformulated reinitialization Eq. (2.7) induces much less
artificial deformation of the interface at high levels of reinitialization, here on tetrahedral meshes.
Thus, the conclusion of [35] can be extended to unstructured meshes.

3.2.2 Rotation of a notched disk on static triangular grids

In order to assess the robustness of the methods presented above for the transport of interfaces with
topology that includes sharp edges and corners, the classical notched disk rotation case, introduced
by S.T. Zalesak in [173], is first run on homogeneous triangular grids. A two-dimensional disk
of radius R = 0.15, with a notch of width w = 0.05, is initialized at (x, y) = (0, 0.25) in a
[−0.5; 0.5]2 square. Given the unit angular velocity Ω and the origin of the domain as the center
of rotation (x0, y0) = (0, 0), the velocity field is:

u(x, y) =
(−Ω(y − y0)

Ω(x− x0)

)
=

(−y
x

)
(3.4)
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Thus, the disk has performed one full rotation about the origin when t/T ′ = tΩ/2π = 1, with T ′

the time necessary for a single rotation. In the present paragraph, 10 rotations are simulated (i.e.
up to t/T = t/(10T ′) = 1) on triangular meshes with a CFL of 0.48, which in theory should
not change the shape of the slotted disk. Three reinitialization steps are done at each temporal
iteration and ε = ∆x/2. The narrow band is of width |b|max = 12 to ensure that |∇ψ| = 0 at the
edge of the band and thus better preserve mass.

Final interface contours after 10 rotations are presented in Fig. 3.7 for various mesh reso-
lutions. Even if not mandatory as the exact solution is known to be the initial condition, the
results are superimposed over a highly-resolved simulation (400 points in the disk radius), which
is included in the convergence study thereafter. Good mesh convergence properties for interface
dynamics are demonstrated: at the highest resolution shown (100 points in the disk radius), the
initial shape is well retrieved. Fig. 3.8 shows two scalar fields, namely the signed narrow-band

Figure 3.7: Interface contours after 10 rotations for various mesh resolutions. The thin line repre-
sents a simulation performed with 400 points in the disk radius.

Figure 3.8: Scalar fields after 10 rotations with R/∆x = 50. (a) Signed narrow-band levels b; (b)
Reconstructed signed-distance function ϕGPMM. Black contours represent the interface.

levels b and the reconstructed signed-distance function using the GPMM algorithm ϕGPMM, after
10 rotations for R/∆x = 50. These fields are seen to be smooth and well computed. Fig. 3.9
depicts the node normal vector field around the interface in the same computational conditions: as
detailed in Section 2.2.2, computing the normals from a signed-distance function avoids spurious
normal orientation.

To quantitatively assess the accuracy of the method, we use a methodology inspired by [137]
to compute boundedness, shape, and mass errors. The boundedness error Ebound corresponds to
the largest violation of bounds of the ACLS function ψ during the simulations (0 ≤ t ≤ T ),
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Figure 3.9: Node normal vector field ni = ∇ϕGPMM

∣∣∣
4th

i
around the interface after 10 rotations

with R/∆x = 50, colored by the signed narrow-band levels b.

whereas the shape and mass errors are computed at the end of the runs (t = T ):

Ebound = max
t=0...T

(
max

(
− min
i=1...Ncv

(ψi(t)Vi), max
i=1...Ncv

((ψi(t)− 1)Vi)

))
(3.5)

Eshape(T ) =

Ncv∑

i=1

∣∣∣ψi(T )− ψi(0)
∣∣∣Vi (3.6)

Emass(T ) =
∣∣∣
Ncv∑

i=1

ψi(T )Vi−
Ncv∑

i=1

ψi(0)Vi

∣∣∣ and mass loss [%] =
100

∣∣∣
∑Ncv

i=1 ψi(T )Vi −
∑Ncv

i=1 ψi(0)Vi

∣∣∣
∑Ncv

i=1 ψi(0)Vi
(3.7)

where Ncv is the total number of node-based control volumes in the domain. These errors allow
the estimation of the largest overshoot/undershoot in the domain, the discrepancies in the final
shape compared to the initial shape, and the mass loss throughout the run, respectively. The
computational efficiency is measured through a reduced computational time RCT:

RCT =
WCT×Ncores

Niter ×Ncv
(3.8)

with WCT the Wall Clock Time, Ncores the number of cores, and Niter the number of temporal
iterations performed. The results are presented in Table 3.2.

Although machine accuracy is not reached, the level of errors in mass remains very low for all
resolutions. Moreover, neither undershoot nor overshoot are present at the end of the simulation
(10 rotations) for most of the resolutions: some appear during these runs, but with an extremely
small amplitude as demonstrated by the maximum boundedness error values, and are naturally
corrected over time as the interface topology becomes smoother. The shape error is plotted in
Fig. 3.10: the method exhibits between first and second-order convergence on two-dimensional
triangular meshes for this test case. The parallel efficiency of the conservative level set solver is
demonstrated through the RCT values, which remain low for all calculations.

3.2.3 Circle deformation in a vortex on static triangular grids

A two-dimensional deformation of a disk in a vortex is then run [174]. This test is used to evaluate
the behavior of the algorithms at resolution limit, which is useful for two-phase flow simulations,
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Table 3.2: Error norms for each mesh resolution at the end of the notched disk test, and computa-
tional cost of the runs.

R/∆x Ebound Eshape(T ) Emass(T ) mass loss [%] Ncores RCT [µs]

12.5 7.567× 10−7 1.360× 10−2 1.410× 10−7 2.406× 10−4 1 3.3
25 3.707× 10−7 7.544× 10−3 1.158× 10−7 1.986× 10−4 1 2.9
50 1.654× 10−7 2.226× 10−3 1.736× 10−9 2.980× 10−6 2 3.5

100 4.641× 10−8 8.427× 10−4 1.874× 10−8 3.219× 10−5 8 4.9
200 1.295× 10−8 3.434× 10−4 3.473× 10−9 5.965× 10−6 28 5.8
400 3.368× 10−9 1.224× 10−4 3.076× 10−9 5.284× 10−6 112 5.8
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Figure 3.10: Shape error Eshape after 10 rotations of the 2D notched disk (t = T ), for various
mesh resolutions: from 12.5 to 400 points in the disk radius. The dashed and solid lines are first
and second-order convergence, respectively.

as thin ligaments are present. A disk of radius R = 0.15 is initially centered at (x, y) = (0, 0.25)

in a 2D box of dimensions [−0.5; 0.5]2. The disk is deformed by a swirling velocity field:

u(x, y, t) =
(−2 sin2(πx) sin(πy) cos(πy) cos(πt/T )

2 sin2(πy) sin(πx) cos(πx) cos(πt/T )

)
(3.9)

The disk is first stretched for 0 ≤ t ≤ T/2, and then unstretched for T/2 ≤ t ≤ T . At t = T ,
the exact solution coincides with the initial condition. The total simulation time is chosen as
T = 8. The initial CFL number is 0.64 for all performed simulations of this paragraph. Three
reinitialization steps are done at each temporal iteration and ε = ∆x/2. The narrow band is of
width |b|max = 12.

Maximum and final interface deformation, at t = T/2 and t = T respectively, are presented in
Fig. 3.11 for various mesh resolutions. The results are superimposed over a highly-resolved sim-
ulation (400 points in the disk radius). Good mesh convergence properties are demonstrated: at
the highest resolution shown (100 points in the disk radius), the original circular shape is perfectly
retrieved. It should also be observed that at resolution limit, no locking phenomenon on the mesh
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nor artificial surface tension occur: the tail breaks up into small circles. Indeed, in case of bad
prediction of the resharpening term in the reinitialization Eq. (2.7), interfaces in ACLS/two-phase
flow simulations can be locked on the grid and follow its pattern at resolution limit. As a conse-
quence, the interfaces are kept from breaking up or merging: in such scenario, artificial surface
tension occurs and the ACLS method is not able to correctly predict topology changes.

Figure 3.11: Interface contours at maximum deformation (t = T/2; top) and final shape (t = T ;
bottom) for various mesh resolutions. The thin line represents a simulation performed with 400
points in the disk radius.

Using the same methodology than in the previous section, boundedness, shape, and mass
errors (Eq. (3.5) to (3.7)) are computed at the end of the runs (t = T ). The results are presented
in Table 3.3, with the reduced computational times of the runs (Eq. (3.8)). Again, the levels of
error in bound and mass remain very low. Good mass conservation is ensured even at coarse grid
resolutions. Convergence of the geometric error is displayed in Fig. 3.12: the method exhibits
between first and second-order convergence on two-dimensional triangular meshes. Indeed, no
numerical breakup occurs from R/∆x = 200, leading to different error types and thus different
convergence rates. This behavior has been observed in other works, such as in [152].

3.2.4 Sphere deformation in a vortex on adaptive tetrahedral grids

The previous test case can be extended to 3D [174]. A sphere of radius R = 0.15 is initialized
at (x, y, z) = (−0.15,−0.15,−0.15) in a [−0.5, 0.5]3 three-dimensional box. The advection
velocity is specified as:

u(x, y, z, t) =




2 sin2(πx) sin(2πy) sin(2πz) cos(πt/T )

− sin(2πx) sin2(πy) sin(2πz) cos(πt/T )

− sin(2πx) sin(2πy) sin2(πz) cos(πt/T )


 (3.10)



3.2. Interface transport tests 87

Table 3.3: Error norms at the end of the circle deformation test, and computational cost of the
runs.

R/∆x Ebound Eshape(T ) Emass(T ) mass loss [%] Ncores RCT [µs]

12.5 4.135× 10−6 3.642× 10−2 1.790× 10−9 2.518× 10−6 1 4.7
25 7.525× 10−7 8.452× 10−3 4.637× 10−8 6.551× 10−5 1 3.8
50 1.883× 10−7 1.970× 10−3 3.223× 10−8 4.558× 10−5 2 3.7

100 4.121× 10−8 6.016× 10−4 1.053× 10−8 1.490× 10−5 8 5.2
200 1.392× 10−8 2.719× 10−4 3.155× 10−9 4.464× 10−6 28 6.1
400 3.011× 10−9 1.289× 10−4 1.165× 10−9 1.649× 10−6 112 6.4
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Figure 3.12: Shape error Eshape at the end of the 2D circle deformation in a vortex test (t = T ),
for various mesh resolutions: from 12.5 to 400 points in the disk radius. The dashed and solid
lines are first and second-order convergence, respectively.

The simulation time is chosen as T = 3. At t = T , i.e. after one full stretch/unstretch cycle,
the initial sphere is supposed to be recovered. At maximum deformation (t = T/2), a thin sheet
is formed and breaks up numerically into small spheres if the mesh is not fine enough. Adap-
tive tetrahedral meshes are used for this test case, dynamically and locally refined during the runs
around the interface location, with a metric ∆xmin. Here, it has been chosen to change the back-
ground mesh from one simulation to another so that ∆xmax/∆xmin = 5 for all runs. Larger ratios
will be considered in the next sections of this manuscript. For all calculations of this section, the
refined region is of half-width 10∆xmin (Np = 10, see Fig. 2.8), and AMR is triggered each time
the interface is closer than 5 cells from the border of this fine region. The narrow-band width
|b|max is set to 10, and the initial CFL number is 0.64.

Interface contours are seen in Fig. 3.13 and contours along with the tetrahedral cell-size dis-
tribution in Fig. 3.14: good convergence is observed, and the final shape is almost retrieved for
R/∆xmin = 60. The results are in accordance with the ones obtained for the two-dimensional
case. The computational efficiency, measured through the reduced computational time RCT
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Figure 3.13: Interface contours at maximum stretch (t = T/2; top) and final shape (t = T ;
bottom) for various adaptive mesh resolutions.

Figure 3.14: Tetrahedral cell size distribution at maximum stretch (t = T/2) for various adaptive
mesh resolutions.

(Eq. (3.8)), is presented in Table 3.4. The RCT is computed for each of the two parts of the

Table 3.4: Computational costs of the sphere deformation simulations using adaptive tetrahedral
grids

R/∆xmin Ncores Ncells,ini/Ncores RCT [µs] RCTACLS [µs] RCTAMR [µs] NAMR,substeps/NAMR Ncores ×WCT [h]

15 10 93,361 150.8 77.2 73.6 4.4 14.1
30 28 122,645 206.6 86.3 120.3 5.4 141.6
60 224 71,239 366.6 99.4 267.2 8.1 2271.1

procedure needed in this test case: the interface-capturing technique (ACLS) and the remesh-
ing part (AMR). The different values of RCT presented in this table relate to each other as:
RCT = RCTACLS + RCTAMR. The increase in computational time remains low when increas-
ing the resolution, and is mainly due to adaptive mesh refinement. Indeed, the AMR processes
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triggered throughout the runs require more substeps to converge to a good-quality grid in average
when increasing the resolution, due to the increasing number of bad quality cells at interfaces
between processors. The average number of adaptation substeps necessary per grid adaptation
process, NAMR,substeps/NAMR in Table 3.4, increases with resolution, leading to an increase in
RCTAMR. Eventually, for an easy comparison with other results in the literature of level-sets,
three additional simulations using uniform static tetrahedral grids are included, with increasing
resolution from L/∆x = 100, with L the length of the box. The results are presented in Fig. 3.15
and Table 3.5. In this table, as uniform static grids have been used, RCT is the Reduced Com-
putational Time of the pure ACLS interface-capturing technique (i.e. without AMR). Fig. 3.15
shows similar results compared to the study with AMR, for equivalent resolutions, while Table 3.5
demonstrates the great scalability of the pure ACLS interface-capturing procedure. The cost in
CPU-hours is also included and can be compared to the results of Table 3.4: a gain of factor 10 in
cost is displayed when using AMR for the finest simulation.

Figure 3.15: Interface contours at maximum stretch (t = T/2) and final shape (t = T ) for various
uniform mesh resolutions.

Table 3.5: Computational costs of the sphere deformation simulations using uniform tetrahedral
grids

L/∆x R/∆x Ncores Ncells/Ncores RCT [µs] Ncores ×WCT [h]

100 15 80 107,715 85.9 64.4
200 30 640 107,715 87.3 1281.8
400 60 5120 107,715 97.1 22186.7

3.3 Capillary-driven flows

3.3.1 Damping of a capillary wave on static triangular grids

The damping of a two-dimensional surface wave is then studied. Two superposed immiscible
viscous fluids at rest are separated by a flat interface, initially perturbed by a small-amplitude
sinusoidal capillary wave (see Fig. 3.16). The initial signed-distance function is written as:

ϕ0(x, y) = −y −A0 cos

(
2πx

λ

)
(3.11)

in a two-dimensional [−λ/2;λ/2]2 domain which is periodic in the x-direction, and with slip walls
for top and bottom boundaries. The initial wave amplitude is chosen asA0 = λ/100, with λ = 2π
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Figure 3.16: Illustration of the damped wave test case.

the wavelength of the perturbation. The initial perturbation is damped over time due to viscous
dissipation.

The results are compared to analytical solutions from Prosperetti’s theory [175], which quanti-
fies the viscous damping for vanishingly small amplitudes and infinite domains as an initial-value
problem. The theoretical solution for two fluids with equal kinematic viscosity ν and λ = 2π is:

Ath(t) =
4(1− 4β)ν2

8(1− 4β)ν2 + ω2
0

A0erfc
√
νt+

4∑

i=1

zi
Zi

(
A0ω

2
0

z2i − ν

)
exp

(
(z2i − ν)t

)
erfc

(
zi
√
t
)

(3.12)
where zi are the four roots - two pairs of conjugated complex numbers - of the following fourth-
order polynomial equation:

z4 − 4β
√
νz3 + 2(1− 6β)νz2 + 4(1− 3β)ν3/2z + (1− 4β)ν2 + ω2

0 = 0 (3.13)

and Zi =
∏4
j=1,j ̸=i(zj − zi). In the case of equal density ρ, β = 1/4 and the normal-mode

oscillation frequency ω0 is computed from the dispersion relation as follows:

ω2
0 =

σ

2ρ
(3.14)

The non-dimensional time is t∗ = ω0t. The calculations are performed on three homogeneous
triangular grids (λ/∆x = 30; 100; 200) up to T ∗ = ω0T = 25, which corresponds to approxi-
mately 4 oscillations. The unity density ratio case is investigated, gravity is neglected, and 3 steps
of reinitialization are performed at each timestep. The physical and numerical parameters of the
runs are summarized in Table 3.6.

The temporal evolution of the wave amplitude over time is depicted in Fig. 3.17 (a). The
damping is correctly reproduced from 100 points in the wavelength λ in the case of equal densities.
Fig. 3.17 (b) shows the instantaneous relative amplitude error |A(t) − Ath(t)|/A0 and confirms
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Table 3.6: Physical and numerical parameters for the viscous damping of a capillary wave case.

ρl/ρg µl/µg La = ρλσ/µ2 λ/∆x ∆t∗

1 1 3000 30; 100; 200 0.001
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(a) Time evolution of the wave amplitude
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Figure 3.17: (a) Temporal evolution of the dimensionless wave amplitude A/λ over non-
dimensional time t∗ = ω0t; (b) Instantaneous relative amplitude error |A−Ath|/A0.

the convergence properties. To quantify further the differences between theory and numerical
simulations, the following L2 norm is computed, as in [21]:

L2 =
1

λ

√
1

T ∗

∫ T ∗

t∗=0
(A(t∗)−Ath(t∗))

2 dt∗ (3.15)

whereA andAth are the computed and theoretical wave amplitudes at a given instant, respectively.
The L2-norm values and the computational costs of the runs are presented in Table 3.7.

Table 3.7: Error levels of the L2 norm (Eq. (3.15)) and reduced computational time (RCT;
Eq. (3.8)) for each resolution. The corresponding order of convergence are given within parenthe-
ses.

λ/∆x L2 Ncores Ncells/Ncores RCT [µs]

30 9.602× 10−4 1 2028 23.2
100 2.042× 10−4 (1.29) 1 22,476 13.3
200 1.035× 10−4 (0.98) 4 22,520 20.2

The results show first-order convergence on triangular grids in the case of unity density ratio. In
order to compare with other solvers for this well-known test case, the L2 relative error norm,
in which the numerical and theoretical amplitudes are normalized by the amplitude of the initial
perturbationA0, is displayed in Fig. 3.18 alongside the results from the CSF method [154] and the
ones from Popinet 2009 [21], both obtained for cartesian grids. The latter method has proven to
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be one of the most accurate methods available for cartesian grids. As mentioned in [21], the CSF
results suffer from the influence of the top and bottom boundaries, as a squared domain has been
used. This results in a much lower convergence at higher resolutions. A squared domain has also
been used in our study, but the influence of the top and bottom boundaries seems less important.
The first-order convergence, which is still satisfactory for unstructured grids, can be attributed to
the weak convergence of the curvature computation on unstructured grids. In order to improve the
accuracy and convergence, a more accurate surface tension model for unstructured grids will be
needed in the future. Nonetheless, the overall algorithm robustness and physical meaning in the
case of surface tension/viscosity interactions on unstructured grids is validated.

100 101 102 103

λ/∆x

10−4

10−3

10−2

10−1

100

L
2

re
la

ti
ve

er
ro

r

This study (Unstructured)

CSF (Cartesian)

Popinet 2009 (Cartesian)

1st order

2nd order

Figure 3.18: L2 relative error norm for the present study, compared to the CSF method [154] and
Popinet 2009 [21].

3.3.2 Spurious currents on static tetrahedral grids

This elementary test is used to assess the numerical errors induced by the surface tension computa-
tion procedure. For a static droplet, it aims to show the capability of a method to predict Laplace’s
law, i.e. the balance between surface tension and pressure forces. For a droplet in equilibrium,
the theoretical velocity is 0 and thus non-physical velocities indicate the presence of spurious (or
parasitic) currents. Exact balance (to machine accuracy) has been shown first on cartesian grids
in [21]. More recently, Abu-Al-Saud et al. [52] demonstrated equilibrium to machine precision
in a level set framework without reinitialization, if the simulation is run long enough relative to
a dissipative timescale Tµ = ρD2/µ. As mentioned and demonstrated in [176] and [52], exact
balance cannot be retrieved with level set methods when reinitialization is needed. Consequently,
it is not possible to reach exact Laplace balance in our framework. Thus, in this work, we study
spurious currents only to check the robustness and assess the numerical errors of the algorithms
due to the initial interface perturbation/curvature and to high levels of reinitialization over a large
number of solver iterations, in physical conditions close to the ones found in the range of the tar-
geted practical applications, i.e. realistic liquid injection systems. To this mean, a high Laplace
number is investigated: La = 2, 000, 000.

To study the magnitude of spurious currents over time, the maximum Capillary number is
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used: Camax = µlumax/σ. Time is normalized using a visco-capillary timescale: t∗ = t/τ , with
τ = µlD/σ. A three-dimensional droplet of diameter D is initialized in a closed unit centimetric
square box. The simulations are performed on three static tetrahedral grids, up to t∗ = 10, 000. 3
reinitialization steps are performed at each iteration, and the explicit capillary time-step constraint
STN in Eq. (2.61) is set to 0.71 for all resolutions. The physical and numerical parameters are
presented in Table 3.8.

Table 3.8: Physical and numerical parameters for the measurements of spurious currents.

ρl/ρg µl/µg La = ρlσD/µ
2
l D/∆x

1000 50 2 × 106 10; 20; 40

Results are presented in Fig. 3.19 (a) and (b). Reasonably low errors (Camax ∼ 10−3) are
seen for all resolutions, and a significant reduction of the spurious current magnitude is observed
for D/∆x = 40. The spatial convergence of the spurious currents, which dominate the solution in
such physical conditions, is displayed, and the presented procedure is demonstrated to be highly
robust on unstructured grids.
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Figure 3.19: Spurious currents around a static droplet on tetrahedral meshes. La = 2, 000, 000.
ρl/ρg = 1000. µl/µg = 50.

3.3.3 Rayleigh-Plateau instability on static tetrahedral grids

In this section, following the studies of [21, 22, 31, 146], numerical predictions of the capillary
instability are performed on 3D static unstructured meshes and validated against Weber’s linear
theory [177]. A static column of water of density ρl, dynamic viscosity µl, and surface tension
σ in quiescent air is considered. This column is infinite in the x-direction and its radius is r0. A
small axisymmetric perturbation wave is imposed at the column surface. The perturbation is given
by:

r(x, t) = r0 + εr0 exp (ωt+ ikx) (3.16)

where ε is the perturbation, assumed to be small, k = 2π/λ is the wavenumber, and ω is the growth
rate. Using the non-dimensional wavenumber ξ = kr0 and growth rate ω0 =

√
σ/(2ρlr

3
0), the
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equation for the growth rate in Weber’s theory applied to static jets, for ξ < 1, is given by:

ω2 +
3µlξ

2

ρlr
2
0

ω = ω2
0ξ

2(1− ξ2) (3.17)

The mathematical developments leading to this result can be found in [178].
The simulations are performed in a 3D, periodic in the x-direction, cylindrical domain of

length [0;λ] and radius [0; 3r0]. The signed-distance function is initialized as:

ϕ0(x, y, z) = r0 − εr0 cos (kx)−
√
y2 + z2 (3.18)

where r0 = (1/3)× 10−3m, and the initial velocity is set to 0. In order to keep the interface free
from spurious signals, the initial perturbation is set to be of the same order of magnitude than the
homogeneous tetrahedral-cell size: εr0 ∼ ∆x, here ε = 0.06. The runs are performed at various
ξ values, ranging between 0 and 1 (unstable oscillatory solutions), and using a coarse effective
resolution of r0/∆x = 6. The definition of the cases can be found in Table 3.9. For all cases, the

Table 3.9: Cases definition for the Rayleigh-Plateau instability simulations.

Case λ [mm] λ/r0 ξ = kr0 Ncells

1 16 48 0.13 2.5M
2 8 24 0.26 1.3M
3 4 12 0.52 637K
4 3.3 10 0.63 525K
5 2.8 8.5 0.74 453K
6 2.3 7 0.90 372K

narrow-band width is |b|max = 12 and 3 steps of reinitialization are performed at each timestep.
Classical water/air parameters are used, and are summarized in Table 3.10. The Laplace number
is La = ρlr0σ/µ

2
l = 18, 530.

Table 3.10: Physical parameters for the Rayleigh-Plateau instability simulations.

ρl/ρg µl/µg La

829 62 18,530

The interface contours for ξ = 0.52 (Case 3) can be seen in Fig. 3.20: implicit interface
topology changes are correctly predicted. A qualitative comparison of the interface topology close
to breakup between the present coarse simulation (Fig. 3.20 (c)) and a more resolved simulation:
another static tetrahedral grid with r0/∆x = 24, is shown in Fig. 3.21. The relative deformation
based on the maximum radius is defined at x = λ/2 as:

rmax − r0
εr0

= exp (ωt) (3.19)

The characteristic time is tσ = 1/ω0 = 1.013ms. Using tσ, Eq. (3.19) becomes:

ln

(
rmax − r0

εr0

)
=

ω

ω0

t

tσ
(3.20)
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Figure 3.20: Rayleigh-Plateau instability on a homogeneous tetrahedral mesh: interface contours
at various non-dimensional times t/tσ. La = 18, 530. ξ = kr0 = 0.52. r0/∆x = 6. tσ = 1/ω0.

Figure 3.21: Interface contour in the pinch-off region. La = 18, 530. ξ = kr0 = 0.52. (a)
r0/∆x = 6; (b) r0/∆x = 24.

This term is linear in time and the derivative is the non-dimensional growth rate. However, due to
the use of fully 3D tetrahedral meshes, several causes of inaccuracy might deteriorate the quality
of the computed growth rate: (i) the jet can be slightly off-centered in the radial direction, (ii)
the maximum amplitude can be strongly shifted from the middle of the jet in the longitudinal
direction. While problem (ii) is solved by choosing an initial perturbation of the same order of
magnitude than the cell size, problem (i) requires a dedicated methodology. To post-process the
results, the jet is discretized into rings of chosen thickness δ = 80µm, and area A. For each ring i
of each temporal solution n, the mean radius is computed from the mean center:

r
∣∣∣
n

i
=

1

A

∫

A

√
(y − y)2 + (z − z)2 dA (3.21)

where y = (1/A)
∫
A y dA and z = (1/A)

∫
A z dA. The maximum mean radius r

∣∣∣
n

max
is then

computed for each temporal solution n. The temporal evolution of the relative deformation for
ξ = 0.52 (Case 3) is plotted in Fig. 3.22 (a). Despite a non-linear phase at the beginning of the
calculation, remaining until the disturbance has grown quite large, the non-dimensional growth
rate ω/ω0 is correctly predicted. To quantify the growth rate only in the linear part, a temporal
mean is performed from t/tσ = 4 to the breakup. The standard deviation SD of the growth-rate
signal is also computed within the range considered:

SD =

√√√√ 1

N − 1

N−1∑

n=1

(
ω

ω0

∣∣∣
n
− ω

ω0

∣∣∣
mean

)2

(3.22)

where N is the total number of temporal solutions.
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Figure 3.22: Rayleigh-Plateau instability. La = 18, 530. r0/∆x = 6. (a) Temporal evolution
of the relative deformation based on the maximum radius for ξ = kr0 = 0.52, tσ = 1/ω0. (b)
Dispersion diagram; the error bars represent the standard deviation SD of the growth-rate signal
±SD (see Eq. (3.22)).

The theoretical and numerical growth rates for all computed non-dimensional wavenumbers ξ
are presented in Table 3.11 and depicted in the dispersion diagram of Fig. 3.22 (b). Larger standard
deviations are obtained in the second and sixth cases (ξ = 0.26 and ξ = 0.90 respectively): the
linear regime is more oscillatory, less clear to identify, in these two conducted simulations.

Table 3.11: Numerically predicted mean growth rates versus theoretical growth rates from Weber’s
theory, with r0/∆x = 6.

Case ξ ω/ω0|mean ω/ω0|th Relative error Standard deviation SD

1 0.13 0.109 0.130 -16.2% 0.011
2 0.26 0.273 0.252 +8.3% 0.059
3 0.52 0.452 0.442 +2.3% 0.020
4 0.63 0.469 0.483 -2.9% 0.019
5 0.74 0.470 0.489 -3.9% 0.034
6 0.90 0.355 0.383 -7.3% 0.048

3.3.4 3D droplet collision using adaptive mesh refinement

This section aims to validate the unstructured discretization of the reformulated reinitialization
equation in the case of an interface merging scenario. This is a non-trivial case: a bad prediction of
the resharpening term leads to the locking of the interface on the grid, and as a consequence keeps
the two interfaces of the two droplets from merging. In order to demonstrate that the presented
procedure allows implicit topology changes, a head-on collision of two equal-size droplets of
water in air is computed.

The physical parameters involved in this process are the Weber number We = ρlu
2
rD/σ, with

ur the relative velocity of the two droplets; the Ohnesorge number Oh = µl/
√
σρlD; the non-

dimensional impact parameter X, which is 0 for a head-on collision; and the droplet diameter
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ratio ∆. The values are presented in Table 3.12 and correspond to the experiment of [179], in the
reflexive separation regime. The narrow-band width is |b|max = 10, and the minimum cell size
∆xmin = 6µm is imposed in a refined region of half-width 10∆xmin (Np = 10, see Fig. 2.8).
The mesh adaptation process is triggered automatically when the interface is 5 cells away from
the border of the refined region, which leads to massive computational savings. Three steps of
reinitialization are performed at each iteration.

Instantaneous interface positions and meshes are presented in Fig. 3.23, and show good inter-
face quality and accuracy, even after a very large number of iterations (∆t ∼ 0.01µs). Despite
the presence of an entrapped bubble, which may be due to the lack of perfect symmetry with the
unstructured grid, implicit topology changes are shown, and fair overall dynamics is displayed
compared to the experimental results of [179], as depicted in Fig. 3.24. The computational effi-
ciency is presented in Table 3.13.

Table 3.12: Physical parameters for the water/air head-on droplet collision simulation.

We Oh ∆ X

23 0.0047 1 0

Figure 3.23: Water/Air droplet collision. We = 23; Oh = 0.0047; X=0; ∆ = 1; D/∆xmin =

133.

Table 3.13: Computational performances of the water/air head-on droplet collision simulation.

D/∆xmin ∆xmax/∆xmin Ncells,ini Ncores RCTAMR [µs] RCT [µs]

133 17 36M 448 23.8 239.4
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Figure 3.24: Water/Air droplet collision simulation compared to the experiment of [179], per-
formed in the same physical conditions. We = 23; Oh = 0.0047; X=0; ∆ = 1; D/∆xmin = 133.
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This fourth chapter aims to assess the capabilities of the YALES2 two-phase flow solver to
perform massively-parallel high-fidelity LES simulations of complex turbulent atomizing liquid
jets, using adaptive tetrahedral grids. Two different physical situations are investigated, both with
high-density ratios: (i) A low-pressure water jet discharged from a triple-disk nozzle in quiescent
air; (ii) A high-pressure kerosene jet atomized by a strong air crossflow. While atomization in
case (i) is mainly governed by capillary instabilities and turbulence, case (ii) involves air-assisted
atomization, driven by aerodynamic inertia. The computational costs and performances of the
simulations are analyzed, as well as the overall behaviors of the jets, validated against experiments
performed in the same physical conditions.

4.1 LES of a low-pressure water jet from a compound nozzle

This study follows the experiments of [39] and the simulations of [40]. A single low-pressure
compound nozzle is considered: three shifted cylinders are superimposed, as depicted in Fig. 4.1,
from which water is injected in quiescent air at Reynolds number Re = 3653, based on the
discharge orifice diameter dinj = 180µm, and liquid Weber number Wel = 1061. The shift of the
disks induces non-axial velocity components, and a double-vortex flow is formed, as illustrated in
Fig. 4.2.

Figure 4.1: Compound nozzle geometry: triple-disk injector.
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Figure 4.2: Illustration of the double-vortex internal flow in the cavity disk (Disk 2 in Fig. 4.1):
velocity magnitude along with streamlines.

In these physical conditions, primary atomization is mainly driven by capillary effects such as
ligament breakup and jet forming by bubble burst, and enhanced by liquid turbulence. The issued
water jet is slow, and hence aerodynamic forces are negligible. As the injector geometry strongly
conditions the primary breakup process, the unsteady resolution of the internal flow is important,
as mentioned in [40].

In this work, the whole flow is computed by the mean of one Large-Eddy Simulation (LES),
from the internal flow to the primary atomization process. The LES turbulence model is the
dynamic Smagorinsky model [70, 71]. Adaptive tetrahedral meshes are used and two resolutions
are investigated: ∆xmin = 5µm and ∆xmin = 2.5µm. For the two simulations, the refined region
is of half-width 10∆xmin (Np = 10, see Fig. 2.8), and AMR is triggered each time the interface is
5 cells away from the edge of this region. The jet morphology and angle are studied, and compared
to the ones of [40].

4.1.1 Internal flow

As presented above, the adaptive mesh refinement strategy is based on interface displacement,
and thus the mesh size inside the injector, where only liquid is present, is the same for the two
conducted calculations: the y+ field represented at the walls is shown in Fig. 4.3. Reynolds
temporal statistics of the velocity field (mean and root mean square) are accumulated using a
weighted sampling at every time step as follows:

u (Tacc +∆t) =
Tacc

Tacc +∆t
u (Tacc) +

∆t

Tacc +∆t
u (Tacc +∆t) (4.1)

u′ (Tacc +∆t) =

√
Tacc

Tacc +∆t

(
u′2 (Tacc) + u2 (Tacc)

)
+

∆t

Tacc +∆t
u2 (Tacc +∆t)− u2 (Tacc +∆t)

(4.2)
with Tacc the total accumulation time. Converged temporal statistics of the flow velocity projected
in the nozzle exit plane are shown in Fig. 4.4: the double-vortex secondary flow of the discharged
disk (Disk 3 of Fig. 4.1) is clearly displayed.
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Figure 4.3: y+ distribution represented at boundaries. dinj = 180µm. Re = 3653. Wel = 1061.

Figure 4.4: Velocity statistics: (a) Mean (Eq. (4.1)) and (b) Root Mean Square (Eq. (4.2)) velocity
projected in the exit section. dinj = 180µm. Re = 3653.
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4.1.2 External flow

A comparison of interface topologies and vorticity-dominated regions at the two simulated res-
olutions are shown in Fig. 4.5. A clear difference is seen in the appearance of jet instabilities:
a closeup on some capillary effects, especially the Rayleigh-Plateau instability is shown for the
2.5µm case in Fig. 4.6. It depicts the temporal evolution of a ligament, circled in red in Fig. 4.6
(a), which is pinched off in Fig. 4.6 (b) until breakup (c) to produce two droplets. These outcome
drops later collide and merge. These observations are simply not accessible with ∆xmin = 5µm.
The jet topology in the 2.5µm case is close to the one obtained by a DNS simulation at 1.44µm,
performed with a symmetry plane in [40] and to the experiment: the comparison is displayed in
Fig. 4.7. This similarity is encouraging to target an even higher resolution. Fig. 4.8 shows the
mesh cell-size distribution for both computed resolutions. The background mesh is kept identical
for both, and it does not affect the quality of the solution: only smooth cell-size gradients are
present in the domain, even with a higher cell-size ratio ∆xmax/∆xmin = 22.8 in the 2.5µm case.

Eventually, the spray angle α is estimated at various distances z/dinj away from the nozzle exit
for dinj/∆xmin = 72, in order to compare with the simulations and experiments of [40]. An image
processing technique has been employed on 250 frames, corresponding to 250µs of physical time,
of the projected shadow of the spray to obtain a single mean image: Fig. 4.9 (a). The angle values
are presented in Fig. 4.9 (b): the angles are rather overestimated, especially close to the nozzle,
compared to the experimental values presented in [40], which lie between 20◦ and 25◦. This
could be explained by the lack of atomization close to the nozzle in our numerical simulations.
Nevertheless the overall behavior is correct, despite a more significant decrease of the angle with
the distance from the nozzle exit.

4.1.3 Computational performances

The computational cost and performances of the two conducted simulations on adaptive tetrahe-
dral grids are shown in Table 4.1. The reduced computational time RCT is computed following
Eq. (3.8) for each of the major parts of the complete procedure: the interface-capturing technique
(ACLS), the remeshing part (AMR), and the linear solver (Poisson). The different values of RCT
presented in this table relate to each other as: RCT = RCTACLS+RCTAMR+RCTPoisson. The
CPU time is defined, using the notations of Eq. (3.8), as:

CPUtime = WCT×Ncores = RCT×Niter ×Ncv (4.3)

Good scalability of the unstructured ACLS/AMR procedure is displayed. Furthermore, the
size of the meshes is moderate: in comparison, the same run at dinj/∆xmin = 72 on a static grid
requires 8192 cores and 1.62B cells. Hence, the present adaptive method allows huge computa-
tional savings for simulations on tetrahedral grids.

Table 4.1: Computational costs and performances of the low-pressure compound injector simula-
tions on adaptive grids. The simulations have been conducted on 2nd Gen AMD EPYC processors.

dinj/∆xmin Ncores Ncells RCT [µs] RCTACLS [µs] RCTAMR [µs] RCTPoisson [µs] CPU time [h]/Phys. time [ms]

36 600 48M 287.6 99.7 137.2 50.7 52,174
72 1400 141M 549.8 142.0 208.6 199.2 915,531
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Figure 4.5: Interface contours and Q-criterion of the water jet atomizing from a low-pressure
compound nozzle in quiescent air at the two investigated resolutions: (a) ∆xmin = 5µm and (b)
∆xmin = 2.5µm.
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Figure 4.6: Closeup on some capillary effects during the atomization process of a water jet in
quiescent air from a low-pressure compound nozzle. dinj = 180µm. Re = 3653. Wel = 1061.
∆xmin = 2.5µm.
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Figure 4.7: Qualitative comparison of the jet topology close to the nozzle between (a) the experi-
ment, (b) the present ACLS/LES study using YALES2 (∆x = 2.5µm at the interface), and (c) the
CLSVOF/DNS performed with the Archer code (∆x = 1.44µm). This figure has been built upon
the one of [40].

Figure 4.8: Mid-plane colored by cell size. dinj = 180µm. (a) ∆xmin = 5µm; (b) ∆xmin =

2.5µm.
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Figure 4.9: Estimation of the spray angle α at different distances z/dinj from the nozzle exit.
dinj/∆xmin = 72.

4.2 LES of a high-pressure kerosene jet in crossflow

In order to test the capabilities of the algorithm for resolving atomization in aeronautical injec-
tion systems, a non-reactive liquid kerosene jet in crossflow (JICF) injection has been simulated.
Liquid is injected through a nozzle into a plenum where a stream of air flows in the perpendicular
direction to the liquid (the crossflow). Then, the jet bends towards the air direction and atom-
izes due to the aerodynamic interaction. The results presented in this section are issued from a
joint study between the present work and the one of [180]: the simulations are here exploited
as a validation of all algorithms presented earlier in this manuscript, and to assess the computa-
tional performances of the various parts of the upgraded YALES2 two-phase flow solver. A more
in-depth physical analysis of the case can be found in [180].

The chosen configuration is the experimental test-bench by Becker and Hassa [41], which
consists of a kerosene JICF injected into a high-pressure environment representative of the ambient
conditions found within aeronautical gas turbines. The physics of the JICF is governed by the two
following parameters: the kinetic energy ratio between the liquid and gaseous phases q and the
gaseous Weber number Weg. They are defined as follows:

q =
ρlu

2
l

ρgu2g
and Weg =

ρgu
2
gdinj

σ
(4.4)

where ρ is the density, u is the bulk velocity of the flow, dinj is the liquid nozzle diameter (0.45mm

in Fig. 4.10) and σ is the surface tension coefficient. The subindexes l and g denote liquid and
gaseous phases respectively.

4.2.1 Numerical setup

The numerical setup is the one of Guillamon et al. (2021) [181]. Fig. 4.10 (a) shows the numerical
setup replicating the experiment from [41]. It consists of a plenum of dimensions (Lx,Ly,Lz) =
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Figure 4.10: Numerical domain and boundary conditions of the experimental test bench of Becker
and Hassa [41]: (a) complete domain, (b) detailed view of the injection nozzle. All dimensions
are in mm.

(270mm, 40mm, 25mm) and a tapered nozzle for liquid injection. A close-up view of the nozzle
is shown in Fig. 4.10 (b). The injected liquid is JET-A kerosene with density ρl = 795kg.m−3,
dynamic viscosity µl = 1.5 × 10−3kg.m−1.s−1 and surface tension σ = 22 × 10−3kg.s−2. The
gaseous crossflow is pressurized air at 6bar with density ρg = 7.21kg.m−3 and dynamic vis-
cosity µg = 1.82 × 10−5kg.m−1.s−1. The density and dynamic viscosity ratios are respectively
ρl/ρg = 110 and µl/µg = 83. The Ohnesorge number is Oh = µl/

√
ρlσdinj = 0.017. Two op-

erating points studied experimentally by [41] are simulated. They are given by the dimensionless
numbers q and Weg shown in Table 4.2. Two interface resolutions are considered for both operat-
ing points: ∆xmin = 20µm and 10µm, that can be expressed relative to the injection diameter as
dinj/∆xmin = 22.5 and 45 respectively. Therefore, a total of four JICF cases are computed. These
simulations are performed with LES where a dynamic Smagorinsky closure is used for modeling
the unresolved turbulence scales [70, 71].

Table 4.2: JICF operating points

Operating point ul[m.s−1] ug[m.s−1] Reg q Weg dinj/∆xmin

1 17.5 75 0.92 × 106 6 830 22.5; 45
2 23.33 100 1.22 × 106 6 1470 22.5; 45

For kerosene injection, a Poiseuille profile is prescribed at the liquid inlet. The mean velocity
of this profile is equal to the bulk velocity ul given in Table 4.2. Regarding the gaseous phase,
the experiments from [41] report a gaseous boundary layer thickness of 5mm right upstream the
injector. As the numerical domain is smaller than the experimental test bench, a velocity profile
with near-wall and outer regions is specified at the gaseous inlet. The near-wall region is modeled
considering that the gaseous phase evolves in the streamwise direction as a turbulent boundary
layer along a flat plate. Its thickness is calculated following a 1/7th power law. The outer part of
the velocity profile has a constant value chosen so that the injected mass flow rate matches the one
reported in the experiments. Additionally, synthetic turbulent fluctuations are added to the mean
velocity profiles since the Reynolds numbers at the gaseous inlet Reg shown in Table 4.2 indicate
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turbulent flow.
The initial mesh is the same for all simulations: it consists of 66M tetrahedral elements

(Ncells = 66M). The number of cores Ncores allocated to each simulation ensures a constant ratio
Ncells/Ncores between 100,000 and 150,000. For all simulations, the refined region is of half-width
10∆xmin (Np = 10, see Fig. 2.8), and AMR is triggered each time the interface is 4 cells away
from the edge of this region. Each case will yield different meshes as function of the operating
condition and mesh resolution, see Table 4.4. Therefore, the simulations will have different costs,
see Table 4.5. Physical running times simulated depend on the computational resources available.

4.2.2 Jet topology and breakup

The effect of mesh resolution (see Table 4.4) is shown in the instantaneous snapshots of Fig. 4.11
for the operating point Weg = 1470. The liquid-gas interface and the mesh at the plane y = 0

are displayed. As for the atomizing spray issued from a low-pressure compound nozzle (Sec-
tion 4.1), the interface cell size has a direct effect onto breakup and atomization. Surface breakup
mechanisms [41], characterized by corrugations in the dense core surface, are observed for both
simulations but much less pronounced for the coarse case. Column instabilities [41] are clearly
visible in the fine case, but barely apparent in the coarse simulation. These differences between
the two interface resolutions overall lead to much more droplets produced by the primary atom-
ization process in the fine simulation (see Table 4.4), as it can be seen from the different liquid
ligaments and structures that result from the breakup of the liquid dense core. Moreover, the small-
est droplets directly issued from the dense core (surface breakup) are more susceptible to remain
tracked using the fine adaptive grid (less mass losses). Subsequent secondary atomization may
also be affected by the resolution, as the finest mesh can capture smaller droplets than the coarse
grid (see Table 4.4).

Regarding the operating point, Fig. 4.12 shows instantaneous snapshots of the liquid-gas in-
terface for the finest case (dinj/∆xmin = 45), for both values of Weg. The same time instant than
in Fig. 4.11 is displayed. By comparing the operating points, it is seen that both cases present
column breakup features, but more pronounced for Weg = 830: this simulation indeed shows that
the ligaments formed during primary atomization stretch and form lobes more pronounced (see
Figs. 4.12 (a) and (b)) than for Weg = 1470. The operating point Weg = 1470 features a higher
gas velocity, inducing more lateral instabilities (i.e. more surface breakup) due to the strong shear
force exerted by the incoming air [180]: the dense core is thus thiner as seen in Fig. 4.12 (c),
compared to Fig. 4.12 (a). It is clear by comparing Figs. 4.12 (b) and (d) that the operating point
with the highest gaseous Weber number produces more droplets: this is confirmed by Table 4.4.

4.2.3 Vertical trajectory and experimental validation

Numerical simulations are validated with the experimental correlation obtained by [41] for the
vertical jet penetration. It has been obtained by testing experimentally several operating condi-
tions, and has a standard deviation of value 0.81. The correlation corresponds to the trajectory of
the jet’s windward side, and is given by:

z

dinj
= 1.57q0.36 ln

(
1 + 3.81

x

dinj

)
(4.5)

This trajectory depends solely on the q factor, as the authors state that the influence of the Weber
number on the trajectory is negligible. Other experimental studies, such as the one by Ragucci [42],
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Figure 4.11: Lateral view of meshes and interface contours near the injector at time instant t =
0.3ms. q = 6. Weg = 1470.



110 Chapter 4. Application to injection systems

Figure 4.12: Instantaneous front (left) and lateral (right) views at time instant t = 0.3ms for the
two operating conditions. dinj/∆xmin = 45. q = 6. Weg = 830 (top), Weg = 1470 (bottom).
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Figure 4.13: Numerical mean jet trajectories for (a) Weg = 830 and (b) Weg = 1470 compared
with the experimental correlation from Becker [41]. The grey area represents the standard devia-
tion of the experimental trajectory correlation provided by [41].

provide experimental correlations with a dependence on We. While the role of We on the trajec-
tory is still an open question, the results of our simulations are only compared to the ones of [41]
(Eq. (4.5)).

The resulting mean trajectories are shown in Fig. 4.13. The experimental correlation is given
by the black solid line, and the shadowed area denotes its confidence region. The red and blue lines
are the numerical mean trajectories for the coarse and fine mesh resolutions, dinj/∆xmin = 22.5

and dinj/∆xmin = 45, respectively. These trajectories have been obtained by calculating the
location z/dinj of the maximum value of the gradient in the z direction of the time-averaged

level-set function, max
(
∇zψ (x)

)
, for each value of the abscissa x/dinj. This method has been

chosen as it is based on the experimental methodology used by [41] for obtaining the experimental
correlations. Fig. 4.13 (a) shows the Weg = 830 operating point from Table 4.2. The trajectory
from the coarse mesh is accurately estimated in the near-nozzle region and gets underestimated
further downstream for x/dinj > 5. The fine resolution shows a better approach to experiments,
always comprised within the confidence interval of the experimental correlation. Regarding the
operating point Weg = 1470, shown in Fig. 4.13 (b), the same trends are observed: the coarse
mesh underestimates the trajectory downstream, while the fine mesh shows good experimental
comparison within all the displayed range. The numerical trajectories show in some regions a
non-smooth behavior since full convergence has not been achieved in all cases due to the high cost
of the simulations (see Table 4.4). This occurs specially from x/dinj > 2.5 in Fig. 4.13 (a) for
dinj/∆xmin = 22.5 and in Fig. 4.13 (b): closer to the injector, the dense core is present and the
continuous presence of liquid yields smooth trajectories, while further away atomization produces
ligaments and droplets that hinder the convergence of mean trajectories.

The accuracy of the mean numerical trajectories can be quantitatively assessed by defining a
L2 error as in Eq. (4.6):

L2 =

√√√√ 1

N

N∑

i=1

(
z

dinj

∣∣∣
exp,i

− z

dinj

∣∣∣
num,i

)2

(4.6)

where N is the total number of sample points along the trajectory coordinate x/dinj. The values
for each case are shown in Table 4.3. For both operating points, the coarse resolution show similar
and larger errors than for the fine case due to the underestimation of the experimental trajectory
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further downstream. The fine resolutions show lower errors, with agrees with the observations of
Fig. 4.13. The simulation for the low Weg and fine resolution yields the lowest error of all.

Table 4.3: Error levels of the L2 norm (Eq. (4.6)) for jet in crossflow simulations

Weg dinj/∆xmin L2

830 22.5 1.147
830 45 0.501

1470 22.5 1.182
1470 45 0.544

4.2.4 Computational performances

Table 4.4 shows the number of cores, tetrahedral elements and droplets generated at t = 0.3ms for
all simulations. By comparing the mesh resolutions for each operating point, it is observed that six
times more droplets are generated when the minimum cell size is reduced twice. Thus, as more
droplets are resolved, more cores are needed to keep the ratio Ncells/Ncores constant for optimal
performances: when the resolution increases twice, the number of elements rises near fivefold.
When the operating points are compared at identical mesh resolutions, around 50% more droplets
are present in the highest gaseous-Weber case. This is due to a higher crossflow velocity, which
increases the number of droplets generated by surface breakup.

The computational performances and costs are shown in Table 4.5. The Reduced Computa-
tional Times (RCT) are calculated according to Eq. (3.8) for each of the major parts of the com-
plete procedure: the interface-capturing technique (ACLS), the remeshing part (AMR), and the lin-
ear solver (Poisson). They relate to each other as: RCT = RCTACLS+RCTAMR+RCTPoisson.
The CPU time is defined following Eq. (4.3). In all cases, the time spent in the ACLS procedure
is almost constant and moderate despite the large liquid-gas surface to be resolved, demonstrating
the high scalability of the interface-capturing algorithm. Most of the total computational time is
spent in the AMR routine: indeed, the jet velocity is high and hence the AMR is automatically
triggered much more frequently than in the low-pressure jet simulations of Section 4.1. In gen-
eral, jet in crossflow simulations are more expensive than the low-pressure jet ones (see Table 4.1
for comparison): while this latter jet is governed by capillary forces and aerodynamic effects are
negligible, the jet in crossflow atomization is driven by aerodynamics and inertia (the limiting
timestep of the simulations is always due to the CFL number).

It can be concluded that most of the computational resources allocated to the jet in crossflow
cases are used for solving the AMR routine, making these computations highly expensive for cases
where very small droplets are generated and a higher resolution of the atomization is required.
A promising solution to this problem is coupling the presented methodology to a Lagrangian
solver that could identify spherical droplets and convert them to Lagrangian Point Particles (LPP).
This Eulerian-Lagrangian two-way coupling would allow spherical droplets to move following a
ballistic motion and break up according to secondary atomization models. In this way, droplets
would not be resolved with the Eulerian mesh by the ACLS/AMR methodology, saving huge
computational resources.
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Table 4.4: Number of computational cores, mesh cells and droplets generated for jet in crossflow
simulations. All values correspond to time instant t = 0.3ms.

Weg dinj/∆xmin Ncores Ncells Ndrops

830 22.5 768 100M 394
830 45 3840 430M 2221
1470 22.5 1024 138M 596
1470 45 5760 830M 4153

Table 4.5: Computational performances for jet in crossflow simulations at time instant t = 0.3ms.

Weg dinj/∆xmin RCT [µs] RCTACLS [µs] RCTAMR [µs] RCTPoisson [µs] CPU time [h]/Phys. time [ms]

830 22.5 494.1 88.8 362.3 43.0 17,100
830 45 1549.7 192.0 1182.6 175.1 204,200
1470 22.5 1061.5 145.3 838.0 78.2 28,700
1470 45 1760.7 164.1 1476.7 119.9 413,000
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The first part of this manuscript raised the need to alleviate several computational constraints
in atomization simulations, especially the jet in crossflow configuration. First, the large number
of droplets produced by the atomization process increases significantly the size of the grid, even
with Adaptive Mesh Refinement (AMR). This yields to prohibitive computational costs, especially
when it comes to validation against experiments far from the injection location. Then, in such
simulations driven by inertia, high-velocity drops may force the triggering of AMR very often,
leading again to an increase in computational cost. Eventually, the smallest drops in the domain are
poorly resolved using classical interface-capturing techniques, even with AMR, and mass losses
(even if reasonable) occur using the ACLS method. This second part is an attempt to address
these issues, still using adaptive unstructured grids. The goal is to couple the adaptive Eulerian
methodology, presented in the first part of this thesis, to a Lagrangian modeling technique for
the small spherical drops close to resolution limit. The small (in terms of effective resolution)
and spherical Eulerian droplets need to be converted into point particles dynamically, throughout
the simulations and hence robust conversion criteria are needed for such hybrid Euler-Lagrange
technique. The use of AMR paves the way to a robust and efficient multi-scale strategy, allowing
to target the optimal conditions for both frameworks: well-refined Eulerian drops, and strong
coarsening of the mesh around the newly-introduced particles to meet the Lagrangian assumptions
and automatically lighten the grid.

5.1 Governing equations of the Euler-Lagrange framework

5.1.1 Equations of motion of Lagrangian point particles

The first theoretical approach for describing the motion of a rigid spherical particle has been
conducted by Stokes (1851) [182], in which a point particle is immersed in a viscous fluid with a
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low relative velocity. By writing Newton’s second law of motion for the particle in the presence
of dominant viscous forces over inertia (i.e. low Reynolds number Re ≪ 1) [183]:

mp
dup
dt

= 3πdpνρ(ũ(xp)− up) (5.1)

with mp, dp, and up the particle mass, diameter, and velocity, respectively. ν and ρ are the fluid
kinematic viscosity and density, respectively. ũ(xp) is the undisturbed fluid velocity at the particle
position (i.e. at the particle mass center). FD,St = 3πdpνρ(ũ(xp)−up) is the well-known Stokes’
drag force. One can thus write the Stokes dimensionless number St, which represents the ratio
between the particle characteristic time τp and the shortest turbulent flow characteristic time τd
(dissipative time scale). These time scales write, respectively [183]:

τp =
ρp
ρ

d2p
18ν

and τd =
l2d
ν

(5.2)

with ρp the particle density, and ld the turbulent dissipative length scale (Kolmogorov scale). The
Stokes number then yields [183]:

St =
τp
τd

=
1

18

ρp
ρ

(
dp
ld

)2

(5.3)

The asymptotic behaviors of the particle provided by the Stokes number are [183]:

• St ≪ 1: the particle time scale is much shorter than the turbulent flow dissipative time
scale (τp ≪ τd). The particle follows perfectly the flow streamlines and is thus a tracer: the
particle trajectory is driven by the flow dynamics;

• St ≫ 1: the particle time scale is much longer than the turbulent flow dissipative time scale
(τp ≫ τd). The particle trajectory does not follow the flow streamlines.

Later, based on the work of Maxey and Riley (1983) [184], and Gatignol (1983) [185], a rigid
spherical Lagrangian Point Particle (LPP) p with a constant mass mp = ρpVp, position xp and
velocity up, moving in a surrounding gas flow of constant density ρg, constant dynamic viscosity
µg, and velocity u, follows the general equation:

mp
dup
dt

= FI + FG + FD + FA + FH (5.4)

which is derived from Newton’s second law of motion. In this equation, the various forces F are:

• FI = ρgVp

(
∂ũ(xp)
∂t +∇ũ(xp) · ũ(xp)

)
is the inertial force, where ũ(xp) is the undisturbed

gas velocity at the particle position;

• FG = (ρp − ρg)Vpg is the gravitational force;

• FD is the drag force;

• FA is the added-mass force, which accounts for the relative acceleration of the surrounding
gas;

• FH is the history force, arising from the time necessary to develop the boundary layer around
the droplet [186, 48].



5.1. Governing equations of the Euler-Lagrange framework 119

In this work, particles represent droplets, and thus large liquid-gas density ratios are involved:
ρp = ρl ≫ ρg. As a consequence, the inertial force, the added-mass force, and the history force
can be neglected [187, 188]. These simplifications eventually lead to the following set of equations
governing the trajectory of the mass center of a particle p:

dxp
dt

= up

mp
dup
dt

= FG + FD

(5.5)

(5.6)

With the assumption ρp ≫ ρg, the buoyancy effect may be neglected and the gravitational force
FG now writes:

FG = ρpVpg = mpg (5.7)

The drag force FD is:

FD = mp
ũ(xp)− up

τp
(5.8)

with τp the response time scale of the particle, which depends on the drag coefficient CD and
particle Reynolds number Rep:

τp =
4

3CDRep

ρp
ρg

d2p
νg

(5.9)

Using Eq. (5.9), Eq. (5.8) writes:

FD =
π

8
dpµgCDRep(ũ(xp)− up) (5.10)

Rep, the Reynolds number based on the particle diameter, is defined at the Lagrangian point-
particle as:

Rep =
ρg|ũ(xp)− up|dp

µg
(5.11)

The drag coefficient CD strongly varies with Rep, and thus necessitates a closure. The correlation
of Schiller and Naumann [189], which extends Stokes’ drag law, is used in this work. Stokes’ law
is applied when Rep < 1, the empirical correlation of Schiller and Naumann if 1 < Rep < 1000,
and a constant value due to the sufficiently developed turbulence behind the particle for large
particle Reynolds numbers Rep > 1000:

CD =





24
Rep

, if Rep < 1

24
Rep

(
1 + 0.15Re0.687p

)
, if 1 < Rep < 1000

0.44, if Rep > 1000

(5.12)

A particle Weber number can also be defined:

Wep =
ρg|ũ(xp)− up|2dp

σ
(5.13)

It should be noted that the liquid-gas flows studied in this work are considered in the dilute
regime. As a consequence, particle-particle interactions are neglected: particle collisions and
scaling of drag force with volume fraction will not be considered.
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As briefly seen earlier in this section, the resolved gaseous velocity field u can be decomposed
into an undisturbed velocity field ũ, and a velocity disturbance u′ induced by the presence of the
particle considered. This idea has been suggested first by Maxey et al. (1997) [190] and writes:

u(xp) = ũ(xp) + u′(xp) (5.14)

The velocity disturbance u′ accounts for the mechanical action of the Lagrangian particle on the
resolved gaseous flow field.

5.1.2 One-way coupling approximation

In the one-way coupling approximation, the influence of the particles on the gaseous flow field is
neglected: u = ũ and u′ = 0. As a consequence, the momentum contribution of the Lagrangian
particles on the Eulerian flow is neglected. The validity of the one-way approximation is related
to the mass fraction of the particles [191, 192, 193, 27]: it is indeed valid when there are only a
few particles in the gaseous flow field. For instance, according to Crowe et al. (1998) [191], one
can assess the importance of momentum coupling for canonical flows by estimating the ratio ΠM
between the drag force FD due to the particles in a certain volume V = L3 and the momentum
flux ϕM of the carrier phase through the volume. For a Stokes flow, after many developments, the
momentum coupling parameter yields:

ΠM =
FD
ϕM

=
C

1 + StM
(5.15)

with StM = (τpu)/L the Stokes number for momentum transfer, and C the mass concentration
of particles, defined as:

C =
αpρp

(1− αp)ρ
(5.16)

where αp = Vp/V is the volume fraction of the particles. Hence, the momentum coupling effects
are less important for small mass concentrations of particles.

The one-way coupling approximation is used in all simulations presented in this work.

5.1.3 Influence of the particles on the flow: two-way coupling

In order to account for the influence of the particles on the flow, a two-way coupling momentum
source term Φp→f needs to be added in the momentum equation, which now writes:

∂(ρu)
∂t

+∇ · (ρu ⊗ u) = −∇p+∇ · τ + ρg +Φp→f (5.17)

The momentum source term is expressed as:

Φp→f =

Np∑

p=1

−FD,pδ(x − xp) (5.18)

Using the Particle-Source-In-Cell (PSIC) model of Crowe (1977) [194] to approximate the Dirac-
delta function δ(x − xp), the momentum source term is now written as:

Φp→f =
1

V

Np∑

p=1

−FD,p (5.19)



5.1. Governing equations of the Euler-Lagrange framework 121

where Np is the number of particles acting on the control volume V . The computation of this
backward-coupling term requires interpolation of particle data on the Eulerian grid, to project
back the particle drag force to the fluid grid. As mentioned in the latest review of Brandt and
Coletti (2022) [195], this is problematic when the particles are not much smaller than the local
grid spacing, and when they are so dilute to produce a stiff force field [192]. Indeed, a well-
known problem when performing two-way coupled Euler-Lagrange modeling is that the velocity
field available on the Eulerian grid is the disturbed velocity field u, not the undisturbed field ũ. If
u = ũ is set to compute the drag force FD as in the one-way coupling approximation, an error is
introduced. This error relates to the magnitude of the velocity disturbance u′ = u − ũ, which is
itself related to the particle diameter/cell size ratio dp/∆x. This explains why it is necessary to
keep the local cell size much larger than the particle size: dp ≪ ∆x. A detailed quantification of
these errors using the PSIC model, for various particle Reynolds numbers and dp/∆x, have been
performed by Evrard et al. (2021) in [196]. For example, in the Stokes regime, the relative error
is of order (6/5)× (dp/∆x).

To reduce these errors for higher particle diameter/cell size ratios (typically 1 < dp/∆x < 10),
Capecelatro and Desjardins (2013) [197] introduced a Volume-Filetered (VF) formulation of the
momentum exchange term:

Φp→f =

Np∑

p=1

−G (|x − xp|)FD,p (5.20)

where G (|x − xp|) is a Gaussian filter kernel, to regularize the backward projection of the drag
force to the fluid grid.

More recently, to reduce the errors even more for arbitrary dp/∆x values, Evrard et al. (2020) [198]
proposed a corrected VF formulation, using a Wendland filter kernel (whose length scale relates to
dp), by accounting for the particle-induced velocity disturbance u′. This method allows to recover
the locally-averaged undisturbed velocity field < ũ > (xp) by substracting the velocity distur-
bance contribution (correction term) from the locally-averaged gaseous flow field < u > (xp).
The advantage of this approach is that it converges with mesh refinement.

Another approach is to perform a strong coarsening of the grid around the particle, to keep
dp ≪ ∆x so that the errors on the drag force remain as small as possible. In this case filtering is
not necessary. This approach is prefered in this work, as the Adaptive Mesh Refinement (AMR)
procedure proposed in the first part of the present manuscript allows to perform a strong local
coarsening of the grid. Despite the only use of the one-way coupling approximation in this study,
the coupling with AMR is implemented in this work and constitutes a start towards future two-way
coupled Euler-Lagrange simulations.

To sum-up this Section 5.1, the Lagrangian modeling framework that will be used to represent
spherical droplets issued from atomization and advected in a surrounding gas flow in the hybrid
Euler-Lagrange simulations has been presented. The matter which now needs to be addressed is:
How to bridge the adaptive unstructured Eulerian framework, presented in the first part of this
thesis, and the Lagrangian framework? In other words, one now needs to address the conversion
methodology between the frameworks and its associated criteria to yield a robust and efficient
multi-scale strategy using unstructured grids.
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5.2 Conversion between Eulerian and Lagrangian frameworks

5.2.1 Identification of isolated Eulerian liquid structures

In order to uniquely detect and identify each separated Eulerian liquid structure in the domain, a
parallel algorithm suited for the unstructured grids used in this work, similar to the one of Her-
rmann (2010) [25], is employed. Using this tagging procedure, each liquid structure in the domain
has a unique identificator (called "color" in the present work), noted Cd = 1...Nd in the following.
From the algorithmic point of view, it allows to loop over each liquid droplet and compute its
characteristics.

The volume of an isolated Eulerian liquid droplet Vd is integrated as follows:

Vd =

∫

V
ψ dV ≃

∑

i∈band
ψiVi (5.21)

where ψ is the ACLS hyperbolic tangent function, V is the control volume, and i ∈ band is the
node considered in the narrow band flagged around the interface of the liquid structure of interest.
The droplet equivalent diameter dd can be computed directly from Vd:

dd =

(
6Vd
π

) 1
3

(5.22)

The position xd and velocity ud of the Eulerian droplet are then calculated according to the
following equations, respectively:

xd =
1

Vd

∫

V
ψx dV ≃

∑
i∈band ψixiVi∑
i∈band ψiVi

(5.23)

and

ud =
1

Vd

∫

V
ψu dV ≃

∑
i∈band ψiuiVi∑
i∈band ψiVi

(5.24)

In order to evaluate the sphericity of the liquid structure, its aspect ratio γd can also be com-
puted:

γd ≃
minik∈cp |xΓ,ik − xd|
maxik∈cp |xΓ,ik − xd|

(5.25)

with ik ∈ cp the pair of nodes ik among the set of crossing pairs cp, xd the volume center of the
droplet computed using Eq. (5.23), and xΓ,ik the position of the interface Γ on a crossing pair ik,
interpolated from the position of nodes i and k as in Eq. (2.16), recalled here for convenience:

xΓ,ik = θxk + (1− θ)xi (5.26)

5.2.2 Conversion criteria between Eulerian and Lagrangian frameworks

5.2.2.1 Eulerian-to-Lagrangian transfer

In order to meet the sphericity condition when transforming an Eulerian droplet into a Lagrangian
Point Particle (LPP), the droplet of interest needs to be small enough so that surface tension re-
mains the dominant force, and thus maintains the spherical shape of the droplet. To this aim, for
instance, a criterion based on the critical Weber number Wecrit, at which droplets begin to break
up, can be employed [1]. Nonetheless, developing generic physical-based criteria is challeng-
ing, and is left for future improvements of the proposed conversion methodology. In this work,
as widely done in the literature for cartesian grids, we propose to use criteria mainly based on
numerical and geometrical considerations, adapted here to unstructured grids.
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5.2.2.1.1 Size criterion - Threshold volumes

Size criteria are usually defined based on an effective resolution of the droplet (i.e. the number of
grid points in the drop diameter). The idea behind this definition is that a poorly-resolved Eulerian
droplet - less than 2 to 5 points in the diameter according to [199] - will not be properly represented
on the Eulerian grid, and in the context of the ACLS method, this can lead to mass losses: a very
small liquid fragment (e.g. resolved with one or two points) advected over a long distance may
eventually vanish. A threshold volume Vcut can thus be defined as [25, 27, 1]:

Vcut =
πd3cut
6

; dcut = α∆x (5.27)

with α the number of points in the cut diameter.
In this work, inspired by the idea of Zuzio et al. (2017) [28] which consists in discriminat-

ing small and medium liquid structures, two threshold volumes are used: a small and a medium
threshold. They are defined respectively as:

Vcut,small =
πd3cut,small

6
; dcut = αsmall∆x (5.28)

and

Vcut,medium =
πd3cut,medium

6
; dcut = αmedium∆x (5.29)

where αsmall and αmedium are user-defined parameters. Typically, αsmall = 2 and αmedium = 10.
We call "small liquid inclusions" the droplets for which Vd < Vcut,small, and "medium liquid

inclusions" the droplets for which Vcut,small < Vd < Vcut,medium. A small liquid inclusion is con-
verted into an LPP without further considerations, whereas medium liquid inclusions will undergo
other conversion criteria to determine whether they should be treated as Lagrangian particles or
not.

5.2.2.1.2 Shape criterion - Aspect ratio

For medium liquid inclusions, a shape criterion is to be verified. Indeed, a more resolved liquid
structure can be more subject to shape variations, and thus a sphericity check is necessary to avoid
conversions of ligaments which would meet the medium volume criterion. The aspect ratio γd
is considered to this aim. As mentioned in Ling et al. (2015) [27], a shape criterion should be
defined using a geometric tolerance, noted εγ . The shape criterion used in the present study is the
one of Ling et al. (2015) [27], and writes:

|γd − 1| < εγ (5.30)

Indeed, γd = 1 means that the droplet of interest is perfectly spherical. The geometric tolerance is
typically set to εγ = 0.1.

5.2.2.1.3 Distance criterion

As in Ling et al. (2015) [27], the proposed model does not include the droplet impact on the
interface, and thus a distance criterion is used to verify that the liquid structure considered for
transfer is sufficiently far from the resolved liquid-gas interface. This distance is typically the
droplet equivalent diameter dd. The proposed methodology consists in flagging nodes as part of
an "influence region" of the equivalent spherical droplet associated with the liquid structure of



124 Chapter 5. Lagrangian Particle Tracking for liquid-gas flows

interest, and check that no other liquid structure is present in this region. This spherical influence
region has a radius Rd, computed as:

Rd = βdd + δψ (5.31)

where δψ = 4ε is the interface profile thickness, defined in Eq. (2.3), and β is a user-defined
parameter, typically β = 1. It should be noted that this criterion assumes that the liquid structure
evaluated is spherical. Hence, this criterion applies to all medium liquid inclusions which already
verify the shape criterion. The influence region is depicted in Fig. 5.1. A node i is in the influence

Figure 5.1: Illustration of the distance criterion, using the influence region (delimited by the black
dashed line) of the equivalent spherical droplet (black solid line) associated with the resolved
liquid structure of interest (blue solid line). The resolved droplet is represented as a large ellipsoid
to ease the reading of the figure.

region if the relation
ϕd,i = |xd − xi| < Rd (5.32)

is verified. This idea is inspired by the work of Zuzio et al. (2017) [28], which consists in asso-
ciating a level set function to particles as part of a re-impact procedure of an LPP onto a resolved
interface. Thus, the proposed algorithm can be partially re-used for the purpose of a Lagrangian-
to-Eulerian transfer. As seen in Fig. 5.1, a robust criterion is required in order to avoid the self-
detection of the liquid structure. The proposed criterion checks that only gas is present at the nodes
(i.e. ψi < 0.5) belonging to the following region:

max
ik∈cp

|xΓ,ik − xd|+ δψ < |xd − xi| < Rd (5.33)

If this is the case, the medium liquid inclusion candidate is eventually qualified for transfer to the
Lagrangian framework, as it verifies all criteria: size, shape, and distance.

5.2.2.2 Lagrangian-to-Eulerian transfer

In order to account for potential impacts of Lagrangian particles onto the resolved liquid-gas in-
terface, a re-impact algorithm is necessary. Such algorithm is not implemented yet in YALES2
and is left for future work. Nevertheless, the principles of such algorithm are given in this section,
according to the methodologies of Herrmann (2010) [25], and of Zuzio et al. (2017) [28], which
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are suited for level-set interface-capturing methods. The first step is to determine whether a La-
grangian particle is on a collision course or not. For such detection, two main criteria can be used:
a distance criterion [25, 28], and a direction criterion [28]. The distance criterion typically writes:

|xp − xi| < rp +∆x (5.34)

where xp is the position of the particle, xi are the coordinates of the node i, and rp is the particle
radius. As mentioned in the previous section, this equation strongly resembles to Eq. (5.32). The
direction criterion is expressed as follows:

up ·∇ϕ > 0 (5.35)

with up the particle velocity, and ϕ the signed-distance function. If a particle impacts the resolved
surface, the level set field then needs to be reconstructed as:

ϕi = rp − |xp − xi| (5.36)

for all nodes inside the droplet. The reinitialization equation is then applied to update the level set
field in the gaseous phase.

Please note that such methodology needs special attention to ensure mass and momentum
conservation during transfer. Moreover, in our framework with AMR, it requires to suddenly
and strongly refine the mesh locally, which is challenging. Thus, an implementation of such
procedure might necessitate progressive grid refinement as the particle approaches the resolved
interface, leading in turn to other challenges for two-way coupled Lagrangian Particle Tracking
(LPT) methods.

5.2.3 Coupling with Adaptive Mesh Refinement

Inspired by the pioneering work of Tomar et al. (2010) [26] and by Zuzio et al. (2017) [28], the
present multiscale procedure works in synergy with the AMR process. The idea is to coarsen the
grid after conversion so that the newly introduced Lagrangian particle is much smaller than the
local cell size. Even if only the one-way coupling strategy is used in this work, this synergy is
developed in order to introduce a two-way coupling strategy in the near future.

Once a resolved droplet is qualified for transfer, i.e. meets all Euler-to-Lagrange conversion
criteria, it first needs to be removed from the Eulerian grid. This operation is simply done by
setting ψi = 0 for all nodes i belonging to the narrow band built around the droplet of interest.
Then, the narrow band is rebuilt to account for the removal of interface. Eventually, the signed-
distance function ϕ needs to be reconstructed, and hence the GPMM algorithm of Section 2.2.2
is employed again to obtain the new ϕGPMM field. This field is indeed necessary for the AMR
process, as seen in Section 2.4. Once all these operations have been performed, the AMR process
automatically coarsen the grid. In order to avoid AMR to be triggered at every iteration and to
limit the overhead, the Eulerian-to-Lagrangian conversion is employed only when AMR is to be
triggered anyway by the Eulerian solver. This way, no additional AMR process is called.

5.2.4 Summary of the conversion procedure

The present chapter, which details all the steps and conditions of the Euler-to-Lagrange conversion
procedure, can be summarized in the flowchart presented in Fig. 5.2.
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Figure 5.2: Flowchart of the Eulerian-to-Lagrangian conversion.
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This sixth chapter firstly aims to validate the hybrid multi-scale Euler-Lagrange procedure
presented in the previous chapter, on canonical test cases using adaptive tetrahedral meshes. The
Euler-Lagrange strategy is then applied to the same liquid jet in crossflow case than the one con-
ducted in the first part of the manuscript (Chapter 4). As a consequence, the jet topologies and
computational performances of the hybrid and fully Eulerian simulations are compared.

6.1 Settling droplet

As a first validation of the hybrid Eulerian-to-Lagrangian conversion and of the one-way coupled
Lagrangian Particle Tracking solver itself, the well-known droplet settling test case is investigated.
This study follows the ones of Ling et al. (2015) [27] and of Zuzio et al. (2017) [28].

A static droplet of diameter D is initialized in a cuboid tank of dimensions Lx = Lz = Ly/2,
filled with a quiescent gas. The droplet falls along the y < 0 direction under the influence of grav-
ity, with an increasing vertical velocity |uy| over time, until the equilibrium between gravitational
and drag forces is reached. At this point, the acceleration is zero and hence the velocity is constant.
It is thus possible to extract a terminal settling velocity ut from the simulation and compare it with
existing empirical correlations.

The study of Ling et al. (2015) [27] reports a substantial retarding effect of the walls on the
terminal falling velocity of the droplet. This effect depends on the ratio between the droplet or
particle diameter D = dp, and the smallest dimension of the cuboid gas tank Lx = Lz . In their
work, where dp/Lx = 1/10, the correlation of Di Felice (1996) [200] for a cylindrical tube is used
to correct the drag calculation in the equation of motion of the particle:

η =
ut

ut,unbounded
=

(
1− dp/Lx

1− 0.33dp/Lx

)2.7

(6.1)

To limit these bound effects, the cuboid numerical domain in the present work is chosen so that
dp/Lx = 1/50. No correction of the drag calculation accounting for the walls is used in the
present study.
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As in Zuzio et al. (2017) [28], the Eulerian droplet is converted into a Lagrangian Point Particle
(LPP) at the first iteration. The numerical setup of the present study is summarized in Fig. 6.1.
The Eulerian droplet, initially placed at (0,Ly/20, 0), is refined at its interface with a cell size
∆xmin chosen so that the diameter of the droplet D contains 32 points: D/∆xmin = 32. The
droplet is detected and converted into an LPP of diameter dp = D at the end of the first iteration,
and the coarsening procedure activates until dp/∆xmax = 1/10. Please note however that, as
mentioned in Ling et al. (2015) [27] and in Zuzio et al. (2017) [28], the one-way coupled LPP
simulation is mesh independant in this test case. The physical parameters are the ones of Ling et

Figure 6.1: Numerical setup for the settling droplet test case: (a) At the initialization; (b) At the
end of the first iteration. The droplet falls along the y < 0 direction.

al. (2015) [27], and are summarized in Table 6.1. The simulation time is T = 0.03s as in the
previous studies mentioned. The resulting temporal evolutions of the particle vertical position and

Table 6.1: Physical parameters for the settling droplet test case.

ρl (kg.m
−3) ρg (kg.m

−3) µl (kg.m
−1.s−1) µg (kg.m

−1.s−1) dp (m) σ (N.m−1) g (m.s−2)

1000 10 10−3 10−4 10−4 0 9.8

velocity are displayed in Fig. 6.2 (a) and (b), respectively. The particle falling occurs as expected
for both of these values: the temporal evolutions correspond to what has been presented in Ling
et al. (2015) [27] and in Zuzio et al. (2017) [28]. The terminal velocity can be compared to the
empirical correlation of Clift and Gauvin (1970) [201], which is obtained through the standard
drag calculation for unbounded domains. As seen in Fig. 6.2 (b), the simulation value agrees well
with the empirical value. To quantify the result, the relative error is presented in Table 6.2.
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Figure 6.2: (a) Temporal evolution of the y-position of the falling droplet; (b) Temporal evolution
of the uy-velocity of the falling droplet against the terminal velocity for unbounded domains of
Clift and Gauvin (1970) [201].

Table 6.2: Terminal velocity result and comparison for the settling droplet test case.

Computed ut (m.s−1) Terminal velocity of Clift and Gauvin [201] ut,CG (m.s−1) Relative error

0.0500 0.0493 +1.42%

6.2 Accelerated droplet

In order to test the robustness of the Eulerian-to-Lagrangian conversion/coarsening procedure, the
accelerated droplet test case of Zuzio et al. (2017) [28] is then run for validation. A spherical
liquid droplet of diameter D = 0.1m, initially at rest at the center of a cubic box of dimension
L = 6.5m, is accelerated along the x > 0 direction by a uniform axial air flow of velocity u(t =
0) = (U0, 0, 0). As mentioned in their work, this physical situation is relevant for atomization
simulations, as it corresponds to droplet generation configurations. Again, the one-way coupling
approximation is used in this test case.

The physical parameters are the ones of Zuzio et al. (2017) [28] and are presented in Table 6.3.
These physical parameters yield a Weber number of WeD = (ρlU

2
0D)/σ = 2 and a Reynolds

Table 6.3: Physical parameters for the accelerated droplet test case.

ρl (kg.m
−3) ρg (kg.m

−3) µl (kg.m
−1.s−1) µg (kg.m

−1.s−1) D = dp (m) σ (N.m−1) U0 (m.s−1)

2 1 10−3 10−3 0.1 10−3 0.1

number of ReD = (ρlU0D)/µl = 10. The acceleration is studied up to a final time T = 2s, and
the time step is set to ∆t = 10−3s for all simulations. Slip conditions are applied for the walls
tangent to the air flow, and inlet/outlet boundary conditions for walls perpendicular to it.

Five simulations are run, four fully Eulerian simulations of increasing resolutions (4, 8, 16, 32
points in the drop diameter), and one LPP simulation initialized using the finest grid (32 points in
the drop diameter at initialization). For the LPP simulation, as in the settling droplet study, the
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droplet is detected and converted into a Lagrangian Point Particle at the end of the first iteration.
The coarsening procedure then activates so that dp/∆xmax = 0.1. The numerical setup for the
LPP simulation is displayed in Fig. 6.3.

Figure 6.3: Numerical setup for the accelerated droplet test case (LPP simulation): (a) At the
initialization; (b) At the end of the first iteration. The droplet is accelerated along the x > 0

direction.

The position xd and velocity ud of the Eulerian droplet are calculated according to Eqs. (5.23)
and (5.24), respectively.

The temporal evolution of the droplet/particle position and velocity for all simulations are
shown in Fig. 6.4 (a) and (b), respectively. The final values are reported in Table 6.4. Spatial con-
vergence of the Eulerian simulations is observed, demonstrating the consistency of the averaging
procedure to calculate Eulerian droplet characteristics. The finest Eulerian simulation can be con-
sidered as a reference solution. The LPP simulation underestimates the acceleration of the droplet,
nonetheless the behavior is correct overall despite a strong coarsening of the mesh. It should be
noted that the LPP simulation is sensitive to the initial position of the Lagrangian particle on the
grid at conversion, due to interpolation errors of the gas velocity at the particle. Table 6.4 also
exhibits the final number of tetrahedral mesh cells for each conducted simulation. The results
demonstrate an approximate gain of factor 20 on the grid size using the Lagrangian model com-
pared to the coarsest Eulerian simulation, and a gain of factor 170 compared to the finest Eulerian
simulation.
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(b) Droplet velocity

D/∆xmin = 4 − Euler
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D/∆xmin = 16 − Euler

D/∆xmin = 32 − Euler
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Gas axial velocityU0

Figure 6.4: (a) Temporal evolution of the x-position of the accelerated droplet; (b) Temporal
evolution of the ux-velocity of the accelerated droplet.

Table 6.4: Final axial positions xf , axial velocities ux,f , and number of grid cells Ncells,f for the
accelerated droplet test case.

Simulation xf (m) ux,f (m.s−1) Ncells,f

Euler 4 0.0581 0.0932 76, 772

Euler 8 0.0557 0.0911 120, 319

Euler 16 0.0534 0.0904 240, 039

Euler 32 0.0523 0.0904 679, 423

Lagrange (1W) 0.0451 0.0922 3, 993

6.3 High-pressure kerosene jet in crossflow

The final application case of this study is a hybrid Eulerian-Lagrangian high-pressure kerosene
jet in crossflow, already presented for the fully Eulerian case in Section 4.2. The operating point
corresponding to the highest gaseous Weber number Weg = 1470 is chosen, for its ability to
produce more droplets and the computational challenges that it poses. This simulation is thus well-
suited to assess the computational performances of the proposed multiscale strategy, and compare
them against the fully Eulerian case. As in Section 4.2, two interface resolutions are studied,
namely ∆xmin = 20µm (dinj/∆xmin = 22.5) and ∆xmin = 10µm (dinj/∆xmin = 45). The
boundary condition for Lagrangian particles is a slip-on-wall condition: up · nwall = 0 (only the
tangential component to the wall is non-zero). In order to perform a large number of conversions,
the cut diameter for medium liquid inclusions is set to 16∆xmin, and the geometric tolerance εγ
is set to 15%, for both resolutions.

6.3.1 Visualization of the jet

A comparison of jet topologies between the hybrid Eulerian-Lagrangian simulation and the fully
Eulerian one for the coarse resolution ∆xmin = 20µm is shown in Fig. 6.5, at t = 0.3ms as in
Section 4.2. For the multiscale simulation, the Lagrangian Point Particles are also represented.
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As expected, much more droplets/particles are present in the domain for the hybrid simulation.
Atomization and column instabilities are seen to be more pronounced when using the one-way
coupled Lagrangian Particle Tracking, resulting in an upward shift of the instantaneous jet tra-
jectory. Eventually, the side view displays a good agreement between the two simulations in the
impact region of drops/particles onto the bottom wall, confirming the choice of a slip-on-wall
boundary condition.

Figure 6.5: Topology of the high-pressure kerosene jet in crossflow at t = 0.3ms, using the hybrid
Euler-Lagrange strategy versus the fully Eulerian simulation of [180]. Weg = 1470; ∆xmin =

20µm; dcut,medium = 16∆xmin; εγ = 0.15.

A more developed hybrid jet for the coarse resolution ∆xmin = 20µm, at t = 0.375ms, is
displayed in Figs. 6.6 and 6.7. Over 1000 particles are present in the domain at this time instant. It
should be noted that the one-way coupling approximation is less relevant in the near-core region.
Indeed, the mass fraction of the particles is higher in this region of the flow, and thus the need of a
two-way coupled Lagrangian strategy together with a re-impact algorithm might arise to properly
simulate the jet instabilities. Figs. 6.6 and 6.7 also show that a large number of particles impacts
the bottom wall. This is particularly true when the surface breakup mechanism is dominant [41],
which is the case for these operating conditions. Hence, a film model could be integrated in the
hybrid strategy to improve the prediction of the spray behavior close to the bottom wall. The
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Figure 6.6: Topology of the high-pressure kerosene jet in crossflow and count of Lagrangian
particles at t = 0.375ms, using the hybrid Euler-Lagrange strategy. Weg = 1470; ∆xmin =

20µm; dcut,medium = 16∆xmin; εγ = 0.15.

Figure 6.7: Topology of the high-pressure kerosene jet in crossflow along with the adaptive
tetrahedral grid at t = 0.375ms, using the hybrid Euler-Lagrange strategy. Weg = 1470;
∆xmin = 20µm; dcut,medium = 16∆xmin; εγ = 0.15.
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Figure 6.8: Temporal evolution of the high-pressure kerosene jet in crossflow along with the adap-
tive tetrahedral grid, using the hybrid Euler-Lagrange strategy. Weg = 1470; ∆xmin = 20µm;
dcut,medium = 16∆xmin; εγ = 0.15.
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temporal evolution of the interface, still for the coarse resolution ∆xmin = 20µm, along with
the particles and the adaptive tetrahedral grid is shown in Fig. 6.8. It is clearly observed that
the particles travel much further than an equivalent resolved Eulerian droplet would, due to mass
losses induced by the poorly-resolved drop disappearance after a certain distance of advection.

The particle size distribution at time instant t = 0.375ms is shown in Fig. 6.9. All particles
with a diameter dp < 2∆xmin = 40µm are issued from converted droplets based on their size
only, without neither shape nor distance considerations (small liquid inclusions). The rest of the
particles (medium liquid inclusions: 2∆xmin = 40µm < dp < 16∆xmin = 320µm) are issued
from drop conversions based on size, shape, and distance criteria. As observed in the histogram,
no particle with dp > 4.5∆xmin = 90µm are present in the domain, meaning that the medium
size criterion could be more restrictive without changing the actual distribution. To quantitatively
assess the typical droplet size in the present study, and compare it to the experimental study of
Becker and Hassa (2002) [41], the Sauter Mean Diameter (SMD) d32 can be computed as [202]:

d32 =

∑Np

p=1 d
3
p∑Np

p=1 d
2
p

(6.2)

which yields d32 = 50.2µm for the present particle distribution. The experiment of Becker and
Hassa (2002) [41] reports an SMD far downstream the injection location (plane x = 80mm) of
d32,exp = 30.8µm, which is significantly lower than in the present simulation. Thus, secondary
atomization models would be needed for Lagrangian particle breakup, to better match the experi-
mental data using this interface cell size of ∆xmin = 20µm.

Figure 6.9: Particle diameter distribution at t = 0.375ms, using the hybrid Euler-Lagrange strat-
egy. Weg = 1470; ∆xmin = 20µm; dcut,medium = 16∆xmin; εγ = 0.15.

An early stage of the jet contour with particles at the fine resolution ∆xmin = 10µm, at
t = 0.15ms, is shown in Fig. 6.10. The interface contour is cut by the mid-plane, on which the
adaptive tetrahedral grid is represented for Fig. 6.10 (a), and the velocity field for Fig. 6.10 (b).
Eventually, a closeup on a Lagrangian conversion is provided in Fig. 6.11.
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Figure 6.10: Early stage of the development of the Eulerian-Lagrangian high-pressure kerosene jet
in crossflow along with (a) the adaptive tetrahedral grid, and (b) the velocity field in the mid-plane.
Weg = 1470; ∆xmin = 10µm; dcut,medium = 16∆xmin; εγ = 0.15.

Figure 6.11: High-pressure kerosene jet in crossflow - Closeup on an Euler-to-Lagrange conver-
sion. Weg = 1470; ∆xmin = 10µm; dcut,medium = 16∆xmin; εγ = 0.15.

6.3.2 Computational performances

The simulation features for the coarse simulation ∆xmin = 20µm are given in Table 6.5, for both
the Eulerian and the hybrid Eulerian-Lagrangian cases. The values correspond to time instant
t = 0.3ms. The number of droplets, resolved and modeled, is displayed. It is seen that the
Euler-Lagrange simulation almost doubles the number of drops/particles in the domain at this
time instant compared to the Eulerian case, for less resolved liquid structures. As a consequence,
the hybrid case employs a lighter mesh: 26M cells less (−19%). Similar mesh element loads
per core are employed between the two simulations and thus their performances based on the
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Reduced Computational Times (RCT; Eq. (3.8)), shown in Table 6.6, can be compared reliably. A
gain of factor 2 in total RCT is displayed when performing the hybrid simulation. Indeed, as less
resolved structures are present in the domain, the ACLS procedure for interface capturing and the
Poisson linear solver are substantially faster. For the hybrid simulation, RCTEul.−Lag. includes the
conversion routines (drop tagging algorithm, checks of conversion criteria, removal of qualified
liquid structures from the grid...) and particle transport. In particular, it includes the time spent
in the routines which compute the droplet characteristics (volume, position, velocity, aspect ratio)
and the additional call to the GPMM distance algorithm. Thus, the overhead induced by these
additional calls is amply balanced by the smallest liquid-gas surface density (and hence the lighter
grid). Moreover, converting the smallest resolved drops into Lagrangian particles, which can
often be the fastest liquid structures in the domain for this case, avoids to remesh automatically
too frequently because of these fast small droplets. As a consequence, it leads to less time spent
in the AMR routine, even with the introduction of strong coarsening ratios. It should also be
noted that as less cores are used for the hybrid simulation, the AMR procedure converges faster
on average, due to less bad quality cells at core boundaries: this phenomenon has been detailed
in Section 3.2.4. Eventually, the cost of the two simulations is given, with an advantage for the
hybrid simulation.

Table 6.5: Number of computational cores, mesh cells and droplets generated for the hybrid
Eulerian-Lagrangian jet in crossflow simulation and comparison to the fully-Eulerian simulation
of [180], whose performance values are displayed in Chapter 4, Table 4.4. All values correspond
to time instant t = 0.3ms. Weg = 1470; ∆xmin = 20µm (dinj/∆xmin = 22.5).

Case Ncores Ncells Ncells/Ncores Ndrops,resolved Ndrops,modeled Ndrops,total

Euler 1024 138M 135K 596 0 596
Euler-Lagrange 720 112M 156K 550 474 1024

Table 6.6: Computational performances of the hybrid Eulerian-Lagrangian jet in crossflow sim-
ulation and comparison to the fully-Eulerian simulation of [180], whose performance values are
displayed in Chapter 4, Table 4.5. All values correspond to time instant t = 0.3ms. Weg = 1470;
∆xmin = 20µm (dinj/∆xmin = 22.5).

Case RCT [µs] RCTACLS [µs] RCTAMR [µs] RCTPoisson [µs] RCTEul.−Lag. [µs] CPU time [h]/Phys. time [ms]

Euler 1061.5 145.3 838.0 78.2 0 28,700
Eul.-Lag. 551.2 95.0 412.9 34.7 8.6 26,552

As for the coarser jets, Tables 6.7 and 6.8 present the computational informations relative to
the fine Eulerian and hybrid Eulerian-Lagrangian cases at ∆xmin = 10µm (dinj/∆xmin = 45),
at a time instant closer to the beginning of injection: t = 0.15ms. Again, more droplets/particles
are present in the domain for the hybrid simulation compared to the Eulerian one. The smaller in-
crease in Ndrops,total between the Eulerian and the hybrid cases (+40%), compared to the coarse
simulations (+70%), is due to the earlier time instant studied. Nonetheless, a clear reduction in the
number of resolved liquid structures and hence a lighter grid are already observed for the multi-
scale simulation (−44M cells; −27%). The number of elements per core is significantly different
between the two simulations, and hence it is not easy to clearly compare the RCT values. How-
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ever, one can observe in Table 6.8 similar trends than for the coarse study regarding RCTACLS,
RCTPoisson, and RCTEul.−Lag., with a doubled number of cores for the multiscale simulation.
The large increase in RCTAMR and in cost can be explained by two main reasons: (i) The number
of cores is too large for the beginning of the simulation, leading in particular to bad quality cells at
the interface between processors keeping the AMR process from converging fast; (ii) the jet is not
developed and atomized enough at this time instant for the conversion procedure to reach its full
potential. Indeed, as seen in Fig. 6.8 (b) and (d) for the coarse case, many droplets are produced
by the atomization process between t = 0.15ms and t = 0.3ms.

Table 6.7: Number of computational cores, mesh cells and droplets generated for the hybrid
Eulerian-Lagrangian jet in crossflow simulation and comparison to the fully-Eulerian simulation
of [180]. All values correspond to time instant t = 0.15ms. Weg = 1470; ∆xmin = 10µm

(dinj/∆xmin = 45).

Case Ncores Ncells Ncells/Ncores Ndrops,resolved Ndrops,modeled Ndrops,total

Euler 1152 163M 142K 850 0 850
Euler-Lagrange 1440 119M 83K 738 448 1186

Table 6.8: Computational performances of the hybrid Eulerian-Lagrangian jet in crossflow sim-
ulation and comparison to the fully-Eulerian simulation of [180]. All values correspond to time
instant t = 0.15ms. Weg = 1470; ∆xmin = 10µm (dinj/∆xmin = 45).

Case RCT [µs] RCTACLS [µs] RCTAMR [µs] RCTPoisson [µs] RCTEul.−Lag. [µs] CPU time [h]/Phys. time [ms]

Euler 1274.8 151.0 1043.3 80.5 0 62,922
Eul.-Lag. 1375.3 127.4 1171.4 65.9 10.6 96,440



Conclusion and future work

Unstructured ACLS/GFM interface-capturing method for LES of pri-
mary atomization

An efficient, massively-parallel, and robust complete procedure for the computation of two-phase
liquid-gas flows on unstructured meshes has been presented. Spatial convergence and accuracy
of the interface-capturing technique, which includes the first unstructured version of the latest
ACLS reinitialization equation, have been first demonstrated through well-known interface trans-
port tests, both in 2D and 3D, and confirmed by the results obtained on canonical two-phase flow
examples. Capillary-driven flows are correctly computed on triangular and tetrahedral grids, de-
spite the challenges that poses the use of these irregular meshes. Complex 3D turbulent atomizing
jets have been simulated, such as the jet issued from a triple-disk injector (Fig. 6.12), with a good
prediction of their overall dynamics.

Figure 6.12: Volume rendering of the atomizing jet issued from a low-pressure compound nozzle.

The accuracy and convergence of the numerical framework presented in this manuscript can
be further improved by using the higher-order finite-volume schemes of [83], which have proven
to upgrade the operator discretization on unstructured grids and hence the interface curvature
computation. The treatment of the viscous term in the momentum equation, which is not yet
written in conservative form, and especially at the interface can also be upgraded, to be able to
perform more accurate simulations where viscosity plays a central role, for instance computations
at low Reynolds or Laplace numbers (e.g. rising bubble, settling droplet). Moreover, dedicated
studies for the solver to achieve well-balanced and momentum-conservation properties need to be
conducted (e.g. spurious currents relatively to a dissipation time scale for static and translated
droplets [52], deformation of a convected high-density droplet [203], kinetic energy conservation
of an oscillated droplet [203]). A revised, less restrictive, explicit or even an implicit treatment
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of surface tension would help to alleviate the strong capillary time-step constraint, even if for the
latter the removal of this constraint is not guaranteed [164]. Eventually, an additional subgrid LES
model dedicated to primary atomization could also be integrated [204].

Adaptive Mesh Refinement (AMR)

Adaptive mesh refinement allows significant computational savings, especially in the case of com-
plex turbulent 3D flows: highly-resolved flows with large density ratios in complex geometries
using unstructured meshes are now accessible. The results obtained in the low-pressure com-
pound nozzle case demonstrate the potential of the method to access a deep numerical insight
of jet instabilities and internal flow dynamics with 3D adaptive unstructured meshes. This is a
significant progress for the computation of realistic industrial flows.

The refinement strategy can be extended and feature more options, such as combining the
present distance criterion with a physical-based one. For instance, a vorticity-based criterion as
in [205]:

|∇× u|∆x
max (|u|) < εω

with εω a user-defined threshold parameter. Indeed, the regions with high interface curvature
are often associated with high vorticity values [205]. Grid refinement directly based on interface
curvature resolution as in the works of [21, 22] seems very challenging with our framework. As
mentioned in Chapter 2, the proposed interface-capturing procedure is neither designed for the
interface to see various cell sizes at its close vicinity, nor to interpolate at the interface itself.

A strong limitation of the current adaptation methodology is the imposition of a mesh size
which needs to be homogeneous in all directions, so that remeshing is achieved with quasi-
isotropic tetrahedral elements. However, the physical phenomena to describe, such as boundary
or shear layers, are in most cases occuring with a preferential direction. As a consequence, an
anisotropic AMR technique can be used to adapt the grid using anisotropic tetrahedral cells, in
accordance with the preferential direction of the flow of interest. This strategy, currently in devel-
opment in YALES2 [206], would lead to substantial computational gains. Some of the resulting
challenges are the preservation of the accuracy, stability, and robustness of the numerical schemes,
as well as the definition of meaningful physics-based refinement criteria. For interfacial liquid-
gas flows, a central challenge lies in the computation of the interface curvature. A comparison
between a triangular isotropic grid and an anisotropic one is illustrated in Fig. 6.13 [207]:

Figure 6.13: Isotropic triangular mesh (Left) versus Anisotropic triangular mesh (Right).
Reprinted from [207].
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Euler-Lagrange multi-scale strategy

To further increase the computational gain, especially in the liquid jet in crossflow simulations
where many droplets need to be resolved in the domain and to be transported far from the injec-
tion location, an Eulerian-Lagrangian strategy designed for tetrahedral grids has been proposed
to treat the small and spherical droplets as Lagrangian Point Particles (LPP), allowing a strong
local coarsening of the tetrahedral mesh, as displayed in Fig. 6.14. Classical Euler-to-Lagrange
conversion criteria based on volume, aspect ratio, and distance of the candidate droplets from the
resolved interface, found in the literature for cartesian grids, have been adapted to unstructured
meshes. The multi-scale coupling results in lighter simulations in terms of mesh size at equivalent
interface resolutions.

Figure 6.14: Liquid kerosene jet in crossflow using the multi-scale Euler-Lagrange strategy.

Further validations are required to validate the physics, such as comparing converged droplet
statistics for the Eulerian-Lagrangian jet in crossflow case versus the fully Eulerian one, and versus
experiments. To increase the level of sophistication of the direct conversion procedure (Euler
to Lagrange), more physical conversion criteria could be added, such as the internal energy of
a droplet to detect whether the drop of interest oscillates due to surface tension or not. After
the present work, more focused on the direct conversion algorithm with forward coupling and
strong local coarsening of the grid, a robust and accurate two-way coupling strategy can now be
integrated in the solver. To this aim, the volume-filtered formulation of the momentum transfer
term of Capecelatro and Desjardins (2013) [197] could be used, with the improvements of Evrard
et al. (2020) [198] to account for the velocity disturbance of the particle on the flow, for the
procedure to be still accurate when the Lagrangian particle is not much smaller than the local cell
size. Eventually, the reverse conversion (Lagrange to Euler) can be implemented to account for
the impact of an LPP onto the resolved interface. In this case, strong refinement of the mesh is
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necessary and constitutes a challenge to address in the future.

Secondary atomization and spray-wall interactions

This thesis has dealt with both interface-resolved primary atomization and Lagrangian modeling
of the resulting droplets. To better numerically predict the outcome of an atomizing spray in
terms of granulometry (droplet size distribution, SMD), secondary atomization models, such as
the one of Gorokhovski (2001) [208, 181], can be added to the presented Lagrangian modeling
framework. Moreover, a film model can also be used to improve the numerical prediction of
spray-wall interactions, and thus account for the droplet size distribution that comes from film
breakup [209]: this is of first importance for airblast atomization simulations.

Towards multi-scale vaporizing liquid-gas flows

Furthermore, this work paves the way to both interface-resolved and Lagrangian evaporation. For
Eulerian simulations of vaporizing two-phase liquid-gas flows, the Navier-Stokes equations pre-
sented in Chapter 1 together with jump conditions need to be extended and thus new challenges
emerge [210]. In addition to the mass and momentum equations (Eqs. (1.1) and (1.2), respec-
tively), the conservation equation of species in the gas phase (in the case of pure liquid) also needs
to be considered [211]:

∂(ρY )

∂t
+∇ · (ρY u) = ∇ · (ρD∇Y ) (6.3)

with Y and D the vapor mass fraction and diffusivity, respectively. For non-reacting problems,
the remaining inert gas is 1 − Y . The following energy conservation equation also supplies the
incompressible equation system in case of phase change [211]:

∂(ρCpT )

∂t
+∇ · (ρCpTu) = ∇ · (λ∇T ) (6.4)

where T is the fluid temperature, Cp is the specific heat under constant pressure, and λ is the ther-
mal conductivity. The additional physics related to phase change induce more complex interfacial
jump conditions. The velocity is not continuous due to mass transfer across the interface Γ, and
hence the normal kinematic jump condition writes:

[u · n]Γ = ṁ

[
1

ρ

]

Γ

(6.5)

with ṁ the vaporization rate. This key quantity for phase change also appears in the normal
momentum jump condition:

[p]Γ = pl,Γ − pg,Γ = σκ+ 2 [µ]Γ nT ·∇u · n − ṁ2

[
1

ρ

]

Γ

(6.6)

In addition, other discontinuities, such as a heat flux jump, appear implicitly in the definition of
ṁ. Furthermore, as the continuity equation does not reduce to ∇ · u = 0, the transport equation
of the smooth phase indicator ψ (if ACLS is employed) now writes:

∂ψ

∂t
+ u ·∇ψ = 0 (6.7)

To summarize the main numerical challenges emerging when interface-resolved phase change is
considered [212]:
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(i) The computation of the evaporation rate ṁ, which appears in all interfacial jump conditions.
This implies the computation of additional quantities at the interface Γ to handle the new
discontinuities, such as temperature TΓ and vapor mass fraction YΓ, and a thermodynamic
closure;

(ii) The velocity discontinuity [u ·n]Γ, which needs to be accounted for in the projection method
and in all transport equations;

(iii) Interface regression caused by phase change;

(iv) Solving of temperature T and vapor mass fraction Y conservation equations.

Regarding Lagrangian evaporation, the equations describing particle motion Eqs. (5.5) and (5.6)
are supplied with an equation for the diameter reduction of the particle. The reduction of dp(t)
depends on the particle evaporation rate ṁp (mass transfer). In order to completely character-
ize the evaporation process, a particle temperature Tp(t) evolution equation is also required (heat
transfer). In the case of multi-component vaporization, the evolution of the mass fraction Yp,k of
each specie k of the particle p is also written [213]. In YALES2, the Spalding evaporation model
(1953) [214] extended with the Abramzon and Sirignano model (1989) [215] to account for the
finite thickness of the thermal and mass boundary layers around the droplet is available.





Long résumé

Les écoulements diphasiques liquide-gaz sont omniprésents dans la nature et dans les systèmes
industriels, et la compréhension de la formation des sprays est cruciale pour concevoir des tech-
nologies d’injection complexes. Plus précisément, l’atomisation turbulente est de première im-
portance dans les chambres de combustion aéronautiques, dans lesquelles le carburant est injecté
sous forme liquide, puis subit les processus consécutifs d’atomisation, d’évaporation, de mélange
turbulent et enfin de combustion.

Tous ces processus physiques sont fortement interdépendants et, par conséquent, l’amélioration
de la prédiction numérique de la formation de polluants nécessite des connaissances numériques
approfondies du processus d’atomisation. Celui-ci désigne la fragmentation de grandes struc-
tures liquides homogènes en petites gouttelettes, et gouverne ainsi la distribution des gouttelettes
de carburant dans la chambre de combustion, et par suite l’évaporation. La structure d’un spray
s’atomisant peut être décomposée en deux régions principales : les régimes d’atomisation primaire
et secondaire.

Afin de fidèlement simuler un spray en atomisation, l’évolution temporelle de la topologie
de l’interface liquide-gaz ainsi que les effets de tension de surface doivent être représentés avec
précision sur une grille numérique. Pour cela, des techniques de suivi d’interface sont classique-
ment employées, telles que les méthodes Volume Of Fluid (VOF) [3] ou Level Set (LS) [4, 5], et
sont couplées à un modèle numérique de tension de surface. Les géométries réalistes d’injecteurs
industriels pour les simulations d’atomisation primaire sont très complexes, incluant notamment
des pointes et des coins étroits, ce qui complique l’étape de maillage avec des grilles cartésiennes
: l’utilisation de maillages non structurés est donc bien adaptée à ce type de simulations [6]. Bien
que la littérature demeure limitée sur les calculs d’atomisation en non structuré, des études an-
térieures sur des maillages statiques peuvent être trouvées, telles que [7, 8, 9, 10, 11, 12, 13, 14]
pour les techniques de capture d’interface Volume Of Fluid (VOF), ou [15, 16, 17, 18, 19] pour
les méthodes Level Set (LS).

En dépit de nombreuses années de recherche, les simulations haute performance et haute
fidélité de l’atomisation demeurent un défi : la large gamme d’échelles temporelles et spatiales
impliquées induit d’importants coûts de calcul. Afin de pallier à ce problème, l’utilisation de
techniques d’adaptation de maillage dynamique (AMR) est particulièrement utile, permettant
l’allocation des ressources de calcul à la dynamique de l’interface. Une technique populaire
pour simuler les écoulements diphasiques incompressibles sur des grilles cartésiennes adapta-
tives est l’AMR avec structure de données arborescente (quad/octree), comme dans les travaux de
Popinet [20, 21]. Concernant les maillages non structurés, Dai et Schmidt [22] ont proposé un
algorithme de maillage mobile pour simuler des écoulements à surface libre avec de grandes dé-
formations sur des grilles tétraédriques adaptatives. Les deux études sont proposées dans le cadre
des méthodes VOF, et les maillages sont généralement raffinés avec un critère de courbure locale
de l’interface. Pour les méthodes classiques Level Set sur des grilles tétraédriques adaptatives,
Morgan et Waltz [23] ont introduit une méthode pour traiter les fronts évolutifs avec vitesse pre-
scrite, tandis que Rodriguez et al. ont présenté un solveur CFD parallèle à deux phases utilisant
une formulation par éléments finis dans [24], où le maillage adaptatif est raffiné en fonction de la
distance à l’interface.

Cependant, même avec l’aide de techniques AMR, les écoulements interfaciaux liquide-gaz
d’intérêt pratique peuvent encore présenter des coûts de calcul prohibitifs, en raison du nombre
élevé de gouttelettes formées pendant le processus d’atomisation, qui doivent être résolues dans le
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domaine numérique en utilisant la grille adaptative. Ainsi, pour augmenter davantage l’efficacité et
la précision des calculs de tels écoulements, en particulier la phase dispersée où seules des gouttes
isolées sont présentes, des techniques hybrides Eulériennes-Lagrangiennes sont apparues au cours
de la dernière décennie, telles que [25, 26, 27, 28, 1], qui emploient des grilles cartésiennes. L’idée
est de convertir les petites gouttes sphériques Eulériennes résolues en particules Lagrangiennes
ponctuelles (LPP). Avec une telle stratégie de modélisation multi-échelles, les gouttes converties,
généralement mal résolues par la grille, sont traitées plus efficacement et plus précisément, et
n’ont plus besoin d’être résolues : le déraffinement local du maillage peut ainsi être effectué
dynamiquement avec utilisation de l’AMR [26, 28]. Par conséquent, un brouillard de gouttes peut
être transporté beaucoup plus loin dans un domaine numérique sans utiliser un grand nombre de
cellules, qui seraient nécessaires pour transporter de nombreuses gouttes résolues sur une grande
distance.

Dans ce travail, la méthode ACLS (Accurate Conservative Level Set) est utilisée pour suivre
l’interface sur des maillages 2D et 3D non structurés (triangulaires et tétraédriques) : cette méthode
prédit avec précision la dynamique de l’interface tout en conservant un indicateur de phase lissé.
La méthode ACLS n’est donc pas strictement conservative en masse, mais les erreurs sur la conser-
vation de la masse liquide demeurent faibles et maîtrisées [29, 30, 31]. La méthode ACLS repose
sur l’utilisation d’une fonction tangente hyperbolique pour représenter l’interface, comme dans
le schéma THINC de Xiao et al. [32, 33], proposé précédemment dans le contexte des méthodes
VOF algébriques. La fonction tangente hyperbolique ACLS est advectée par l’écoulement fluide,
puis remodelée en tangente hyperbolique à l’aide d’une équation de réinitialisation. La méthode
ACLS sur grilles non structurées a été proposée précédemment dans [16, 17] sur maillages sta-
tiques, et par Antepara et al. [34] pour des grilles tétraédriques adaptatives. Dans ce dernier cas, un
AMR non conforme avec une structure de données octree est utilisé. Dans le présent travail, des
grilles non structurées adaptatives massivement distribuées sont employées, et adaptées grâce à la
librairie de remaillage MMG de manière isotrope, en utilisant à la fois des critères de qualité basés
sur la métrique et sur l’allongement des cellules. Nous étendons ces précédentes études ACLS non
structurées en incluant une méthode de réinitialisation adaptée et améliorée, initialement intro-
duite par Chiodi et Desjardins sur grilles cartésiennes [35], et qui n’a jamais été implémentée pour
des grilles non structurées préalablement à ce travail. En particulier, les propriétés de fusion de
plusieurs interfaces de cette dernière équation de réinitialisation sont discutées. En effet, l’équation
ACLS originale implique une estimation numérique du gradient de tangente hyperbolique, qui est
difficile à calculer avec précision, particulièrement sur maillages non structurés. Elle est donc sus-
ceptible d’induire une déformation parasite de l’interface. L’équation reformulée, quant à elle, tire
parti d’une fonction level set distance classique tout en préservant beaucoup mieux la forme de
l’interface. De plus, dans le cadre proposé, une bande étroite autour de l’interface liquide-gaz est
construite afin de calculer les caractéristiques de l’interface uniquement dans la zone d’intérêt [36],
permettant des économies de calcul importantes. Par ailleurs, afin de calculer les normales et la
courbure de l’interface, une fonction distance signée est reconstruite en parallèle aux nœuds de la
bande étroite à l’aide d’une méthode de projection géométrique à marqueurs multiples (GPMM).
Cette méthode repose sur une triangulation de l’interface et une projection géométrique exacte sur
les éléments de surface les plus proches des noeuds considérés. La tension de surface est traitée ex-
plicitement à l’aide de la méthode Ghost-Fluid (GFM) [37]. La procédure de suivi d’interface sur
grilles adaptatives non structurées est ensuite couplée à une stratégie de modélisation Lagrang-
ienne, conçue pour des maillages tétraédriques : les petites gouttes résolues et sphériques sont
converties en particules Lagrangiennes ponctuelles (LPP), en utilisant des critères de conversion
basés sur des considérations numériques et géométriques. La transformation inverse, à savoir la
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conversion Lagrangienne-Eulérienne, nécessite la mise en œuvre d’un algorithme de ré-impact
d’une particule Lagrangienne sur l’interface résolue. Un tel algorithme n’est pas encore implé-
menté dans la présente procédure multi-échelle. En conséquence, seules les gouttelettes situées à
une certaine distance de l’interface résolue seront converties. Une fois qu’une gouttelette Euléri-
enne résolue est transformée, le maillage tétraédrique est déraffiné automatiquement et localement
autour de la particule lagrangienne nouvellement introduite.

Ce manuscrit est divisé en deux grandes parties. La première partie se concentre sur le solveur
Eulérien. Après un premier chapitre général sur la modélisation des écoulements liquide-gaz
diphasiques incompressibles, les différentes composantes de la procédure implémentée dans le
code non structuré incompressible massivement parallèle YALES2 [38] sont présentées, à savoir
la technique ACLS pour le suivi de l’interface, l’intégration à pas fractionnaire des équations de
Navier-Stokes avec traitement explicite des conditions de saut, et la stratégie d’adaptation dy-
namique de maillage. La précision, la convergence spatiale et l’efficacité de calcul de la méthode
ACLS non structurée sont évaluées sur des cas test de transport d’interface classiques. Le com-
portement de l’algorithme global dans le cas d’écoulements diphasiques capillaires canoniques
est ensuite vérifié. Enfin, deux simulations LES avec de grands rapports de densité en géométrie
complexe sont réalisées avec des maillages tétraédriques adaptatifs : la rupture d’un jet liquide tur-
bulent issu d’un injecteur composé basse pression [39, 40] et d’un jet liquide haute pression non
réactif en écoulement transverse sont présentés à différentes résolutions, démontrant l’accessibilité
des instabilités de jet avec des maillages non structurés adaptatifs 3D. Les résultats sont confron-
tés à des expériences réalisées dans les mêmes conditions [41, 42]. La deuxième partie de ce
manuscrit présente la stratégie de modélisation multi-échelle hybride Eulérienne-Lagrangienne,
conçue pour des grilles tétraédriques adaptatives. Les équations résolues par le solveur Lagrang-
ien sont d’abord dérivées et les hypothèses sous-jacentes explicitement mentionnées. Ensuite, la
procédure de conversion entre les deux points de vue et son couplage avec l’adaptation dynamique
de maillage (AMR) sont détaillés. La stratégie hybride est finalement appliquée et testée sur des
cas canoniques, et sur le même jet liquide haute pression en écoulement transverse que celui
présenté en première partie de ce travail. Il permet ainsi d’évaluer les performances de calcul de la
procédure de couplage multi-échelle proposée, en utilisant des grilles non structurées adaptatives
massivement distribuées.

Le solveur Eulérien diphasique liquide-gaz de YALES2 est présenté en détails dans un pre-
mier temps. Un bref aperçu du cadre mathématique et la procédure complète sont d’abord donnés.
Ensuite, l’implémentation numérique détaillée de l’algorithme de suivi d’interface ACLS (Ac-
curate Conservative Level Set) pour maillages non structurés (triangulaires et tétraédriques) est
présentée. En particulier, les équations sont discrétisées à l’aide de schémas Volumes Finis cen-
trés. L’accent est mis sur la reconstruction géométrique de la fonction distance signée à l’interface
pour le calcul de la normale et de la courbure, et sur la discrétisation de l’équation de réinitiali-
sation. Le couplage cohérent du transport d’interface avec le solveur incompressible, nécessaire
afin de limiter les erreurs numériques sur la quantité de mouvement, est ensuite détaillé, et les
forces de tension de surface, traitées à l’aide de la méthode Ghost-Fluid (GFM), sont intégrées
dans la méthode de projection à travers le saut de pression à l’interface, lui-même inclus dans le
gradient de pression. L’intégration en temps étant explicite, ces forces capillaires contraignent le
pas de temps, afin de pouvoir résoudre les ondes capillaires les plus rapides du domaine. Enfin, la
stratégie isotrope d’adaptation dynamique de maillage (AMR), utilisée pour concentrer les mailles
autour de l’interface liquide-gaz, est présentée. Une attention particulière est portée sur le contrôle
du gradient de taille de maille en dehors de la zone la plus fine.

Une fois la procédure complète présentée, il nous faut valider les différentes composantes du
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solveur diphasique de la plateforme YALES2, en utilisant des maillages non structurés statiques
et adaptatifs. La précision et la convergence de la reconstruction de la distance signée (algorithme
GPMM) et du calcul de la courbure de l’interface, une question centrale pour la simulation des
écoulements interfaciaux, sont d’abord évaluées à la fois en 2D et en 3D pour des interfaces
circulaires et sphériques, respectivement. Cette étude nous apprend notamment que l’algorithme
GPMM pour la reconstruction géométrique de la fonction distance signée converge en moyenne à
l’ordre 2 en espace (normeL2 en 2D et en 3D), et que la courbure calculée converge à l’ordre 0.5 en
moyenne (norme L2 en 2D et en 3D) lorsqu’un opérateur Hessienne non compact est utilisé. Puis,
des cas tests classiques de transport d’interface, comme le serpentin ou le disque de Zalesak, sont
effectués avec des niveaux d’erreur quantifiés et une convergence spatiale évaluée entre les ordres
1 et 2 pour l’algorithme de suivi d’interface. Enfin, la capacité du solveur à simuler correctement
les écoulements pilotés par la tension superficielle et à prédire implicitement les changements de
topologie (rupture et fusion d’interfaces ; ce qui n’est pas nécessairement garanti en discrétisant
la nouvelle équation de réinitialisation), est vérifiée par la simulation d’écoulements diphasiques
canoniques, comme l’amortissement d’une onde capillaire 2D ou l’instabilité de Rayleigh-Plateau.
Ces cas démontrent la capacité du solveur à reproduire fidèlement la physique sur maillages non-
structurés, et valident ainsi le calcul de la courbure, elle-même impliquée dans le calcul des forces
capillaires. Une simulation de collisions de gouttes est également effectuée, afin de vérifier la
capacité à prédire implicitement les changements de topologie avec la nouvelle réinitialisation,
couplée à l’adaptation dynamique de maillage.

Le dernier chapitre de la première partie vise à évaluer les capacités du solveur diphasique
amélioré de YALES2 à effectuer des simulations LES haute fidélité, massivement parallèles,
d’atomisation de jets liquides turbulents complexes, en utilisant des grilles tétraédriques adapta-
tives. Deux situations physiques différentes sont étudiées, toutes deux avec des rapports de densité
élevés : (i) Un jet d’eau basse pression issu d’un injecteur à trois disques dans de l’air au repos ;
(ii) Un jet de kérosène haute pression atomisé par un fort écoulement d’air transverse. Alors que
l’atomisation dans le cas (i) est principalement régie par les instabilités capillaires et la turbulence,
le cas (ii) implique une atomisation assistée par de l’air, et donc pilotée par les effets d’inertie
aérodynamique. Les coûts de calcul et les performances des simulations sont analysés, de même
que les comportements globaux des jets (angle de spray, trajectoire), validés par des expériences
réalisées dans les mêmes conditions physiques.

Ainsi, la première partie de ce manuscrit a soulevé la nécessité d’alléger plusieurs contraintes
de calcul pour les simulations d’atomisation, en particulier pour le jet atomisé en écoulement trans-
verse. Premièrement, le grand nombre de gouttelettes produites par le processus d’atomisation
augmente considérablement la taille de la grille, même avec adaptation dynamique de maillage
(AMR). Ceci entraîne des coûts de calcul prohibitifs, en particulier lorsqu’il s’agit de valida-
tion par rapport à des données d’expérience obtenues loin du lieu d’injection. Ensuite, dans de
telles simulations pilotées par l’inertie, les gouttes advectées à grande vitesse peuvent forcer plus
souvent le déclenchement de l’AMR, entraînant également une augmentation du coût de calcul.
Enfin, les plus petites gouttes dans le domaine sont mal résolues en utilisant les techniques clas-
siques de capture d’interface, même avec adaptation dynamique de maillage, et des pertes de
masse (même raisonnables) se produisent en utilisant la méthode ACLS. La seconde partie du
manuscrit est donc une tentative de résolution de ces problèmes, toujours à l’aide de grilles adap-
tatives non structurées. L’objectif est de coupler la méthodologie Eulérienne adaptative, présentée
dans la première partie de cette thèse, à une technique de modélisation Lagrangienne pour les
petites gouttes sphériques proches de la limite de résolution. Les petites gouttelettes Eulériennes
(en terme de résolution effective), sphériques, doivent être converties en particules ponctuelles de
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manière dynamique, en cours de simulation et, par conséquent, des critères de conversion robustes
sont nécessaires pour la mise en place d’une telle technique hybride Euler-Lagrange. L’utilisation
de l’adaptation dynamique de maillage ouvre la voie à une stratégie multi-échelle robuste et ef-
ficace, permettant de cibler les conditions optimales pour les deux points de vue : gouttes Eu-
lériennes bien résolues, et fort déraffinement local du maillage autour des particules nouvellement
introduites pour répondre aux hypothèses lagrangiennes, et ainsi alléger automatiquement la grille.

Afin de respecter la condition de sphéricité lors de la transformation d’une gouttelette Euléri-
enne en une particule Lagrangienne ponctuelle (LPP), la gouttelette d’intérêt doit être suffisam-
ment petite pour que la tension de surface soit la force prépondérante et maintienne ainsi la forme
sphérique de la goutte. Dans ce but, par exemple, un critère basé sur le nombre critique de We-
ber Wecrit, au delà duquel les gouttelettes commencent à se fragmenter, peut être employé [1].
Néanmoins, l’élaboration de critères génériques basés sur la physique est un défi et est laissée
pour de futures améliorations de la méthodologie de conversion proposée. Dans ce travail, comme
répandu dans la littérature pour les maillages cartésiens, nous proposons d’utiliser des critères
principalement basés sur des considérations numériques et géométriques, adaptés ici aux mail-
lages non structurés. Ainsi, les critères de transfert du formalisme Eulérien vers le point de vue
Lagrangien retenus sont basés sur: (i) deux volumes de coupure pour les petites et moyennes in-
clusions liquides (calculés à partir de la résolution effective maximale souhaitée pour convertir);
(ii) la forme afin de respecter la condition de sphéricité et ainsi éviter de convertir des ligaments
à faible volume; (iii) la distance entre la goutte candidate et l’interface résolue, afin d’éviter une
situation de ré-impact, non prise en compte dans ce travail.

Nous pouvons à présent tester et valider la procédure hybride multi-échelle Euler-Lagrange
présentée, sur des cas tests canoniques (accélération d’une goutte par un écoulement d’air axial,
goutte en chute libre) utilisant des maillages tétraédriques adaptatifs. La stratégie Euler-Lagrange
est ensuite appliquée au même jet liquide atomisé par un écoulement d’air transverse que celui
mené dans la première partie du manuscrit (Chapitre 4). De ce fait, les topologies de jet et les
performances de calcul des simulations hybrides et entièrement Eulériennes peuvent être com-
parées. En particulier, un gain sur la taille du maillage non structuré (nombre de cellules) est mis
en évidence.

En conclusion, une procédure complète, efficace, massivement parallèle et robuste pour le cal-
cul d’écoulements diphasiques liquide-gaz sur des maillages non structurés a été présentée. La
convergence spatiale et la précision de la technique de suivi d’interface ACLS, qui comprend la
première version non structurée de l’équation de réinitialisation ACLS reformulée, ont d’abord
été démontrées par des tests de transport d’interface bien connus, à la fois en 2D et en 3D, et con-
firmées par les résultats obtenus sur des cas tests canoniques d’écoulements diphasiques liquide-
gaz. Les écoulements capillaires avec interface sont correctement calculés sur des grilles trian-
gulaires et tétraédriques, malgré les défis que pose l’utilisation de ces maillages irréguliers. Des
jets d’atomisation turbulents 3D complexes ont été simulés, comme le jet issu d’un injecteur triple
disque, avec une bonne prédiction de leur dynamique globale comparativement aux expériences.

La précision et la convergence du cadre numérique présenté dans ce manuscrit peuvent être
encore améliorées en utilisant les schémas volumes finis d’ordre supérieur de [83], qui se sont
avérés améliorer la discrétisation des opérateurs sur des grilles non structurées, et donc le calcul
de la courbure de l’interface. Le traitement du terme visqueux dans l’équation de quantité de
mouvement, qui n’est pas encore écrit sous forme conservative, et notamment à l’interface peut
également être amélioré, afin de pouvoir effectuer des simulations plus précises lorsque la viscosité
joue un rôle central, par exemple des calculs à faible nombre de Reynolds ou de Laplace (bulle
montante, goutte en chute libre). De plus, des études dédiées au caractère well-balanced et de
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conservation de la quantité de mouvement doivent être menées (par exemple, évolution temporelle
de courants parasites basée sur une échelle de temps dissipative pour des gouttes statiques et en
translation [52], advection d’une goutte très dense [203], conservation de l’énergie cinétique d’une
goutte oscillante [203]). Un traitement explicite revu, moins contraignant, voire implicite de la
tension de surface permettrait d’alléger la forte contrainte de pas de temps capillaire, même si
pour ce dernier traitement la suppression complète de cette contrainte n’est pas garantie [164].
A terme, un modèle LES de sous-maille supplémentaire dédié à l’atomisation primaire pourrait
également être intégré [204].

L’adaptation dynamique de maillage offre des gains importants sur le coût de calcul, en parti-
culier dans le cas d’écoulements 3D turbulents complexes : simuler des écoulements diphasiques
hautement résolus, avec de grands rapports de densité, en géométrie complexe, et en utilisant des
maillages non structurés est désormais accessible. Les résultats obtenus dans le cas de l’injecteur à
triple disque démontrent le potentiel de la méthode pour accéder à une compréhension numérique
approfondie des instabilités de jet, mais aussi de la dynamique d’écoulement interne à l’injecteur
avec des maillages non structurés adaptatifs 3D. Ceci constitue une avancée significative pour le
calcul d’écoulements diphasiques industriels réalistes, et donc pour la conception et la discrimina-
tion des injecteurs.

La stratégie d’adaptation de maillage peut être étendue et inclure davantage d’options, telles
que la combinaison du critère de distance actuel avec un critère basé sur la physique. Par exemple,
un critère basé sur la vorticité comme dans [205]. En effet, les régions à forte courbure d’interface
sont souvent associées à des valeurs de vorticité élevées [205]. Le raffinement de la grille di-
rectement basé sur la résolution de la courbure de l’interface comme dans les travaux de [21, 22]
semble très difficile avec notre cadre de travail. Comme mentionné dans le chapitre 2, la procédure
de suivi d’interface proposée n’est ni conçue pour que l’interface rencontre différentes tailles de
cellules à son voisinage proche, ni pour interpoler à l’interface elle-même.

Une forte limitation de la méthodologie d’adaptation actuelle est l’imposition d’une taille de
maille qui doit être homogène dans toutes les directions, de sorte que le remaillage soit réalisé
avec des éléments tétraédriques quasi-isotropes. Cependant, les phénomènes physiques à décrire,
tels que les couches limites ou les couches de cisaillement, se produisent dans la plupart des
cas avec une direction préférentielle. En conséquence, une technique AMR anisotrope peut être
utilisée pour adapter le maillage à l’aide de cellules tétraédriques anisotropes, conformément à
la direction préférentielle que présente l’écoulement d’intérêt. Cette stratégie, actuellement en
développement dans YALES2 [206], permettrait des gains de calcul substantiels. Certains des
défis qui en résultent sont la préservation de la précision, de la stabilité et de la robustesse des
schémas numériques, ainsi que la définition de critères de raffinement significatifs basés sur la
physique. Pour les écoulements interfaciaux liquide-gaz, un défi majeur réside dans le calcul de la
courbure de l’interface.

Afin d’augmenter davantage le gain en coût de calcul, en particulier pour le jet liquide atomisé
par un écoulement d’air transverse où de nombreuses gouttes doivent être résolues dans le domaine
et transportées loin du lieu d’injection, une stratégie Eulérienne-Lagrangienne conçue pour grilles
tétraédriques a été proposée, pour traiter les petites gouttes sphériques sous forme de particule
lagrangiennes ponctuelles (LPP), permettant un fort déraffinement local du maillage tétraédrique.
Les critères de conversion classiques Euler vers Lagrange basés sur le volume, la forme, et la
distance des gouttes candidates à l’interface résolue, issus de la littérature pour grilles cartési-
ennes, ont été étendus aux maillages non structurés. Le couplage multi-échelle se traduit par des
simulations plus légères en termes de taille de maillage à des résolutions d’interface équivalentes.

De plus amples validations sont nécessaires pour valider la physique des cas les plus com-
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plexes, telles que la comparaison de statistiques de gouttes convergées pour le jet Eulérien-Lagrangien
en écoulement transverse par rapport au jet entièrement Eulérien, et par rapport aux expériences.
Pour élever le niveau de sophistication de la procédure de conversion directe (Euler vers Lagrange),
des critères de conversion plus physiques pourraient être ajoutés, tels que l’énergie interne d’une
goutte pour détecter si celle-ci oscille dû à sa tension superficielle ou non. Pour la suite de ce
travail, plus axé sur l’algorithme de conversion directe avec couplage one-way et fort déraffine-
ment local de la grille, une stratégie de couplage two-way robuste et précise peut maintenant être
intégrée au solveur. Dans ce but, la formulation filtrée en volume du terme de transfert de quantité
de mouvement de Capecelatro et Desjardins (2013) [197] pourrait être utilisée, avec les améliora-
tions d’Evrard et al. (2020) [198] pour tenir compte de la perturbation de vitesse de la particule
sur l’écoulement, afin que la procédure reste précise lorsque la particule Lagrangienne n’est pas
beaucoup plus petite que la taille de cellule locale. Finalement, la conversion inverse (Lagrange
vers Euler) peut être mise en œuvre pour tenir compte de l’impact d’une particule Lagrangienne
sur l’interface résolue. Dans ce cas, un fort raffinement du maillage est nécessaire et constitue un
défi à relever dans le futur.

Cette thèse a traité à la fois de l’atomisation primaire avec interface résolue et de la modéli-
sation Lagrangienne des gouttes qui en résultent. Pour mieux prédire numériquement le résultat
d’un spray en atomisation en termes de granulométrie (distribution de taille de gouttes, SMD), des
modèles d’atomisation secondaire, comme celui de Gorokhovski (2001) [208, 181], peuvent être
ajoutés au cadre de modélisation Lagrangien présenté. De plus, un modèle de film peut également
être utilisé pour améliorer la prédiction numérique des interactions spray-paroi, et ainsi rendre
compte de la distribution de la taille des gouttelettes qui proviennent de la rupture du film [209]
: ceci est de première importance pour l’atomisation aérodynamiquement assistée (par exemple
pour l’atomisation de type airblast).

De plus, ce travail ouvre la voie à la fois à l’évaporation avec interface résolue, et à l’évaporation
Lagrangienne. Pour les simulations Eulériennes d’écoulements liquide-gaz diphasiques évapo-
rants, les équations de Navier-Stokes présentées dans le chapitre 1 ainsi que les conditions de saut
doivent être étendues et ainsi de nouveaux défis émergent [210]. En plus des équations de masse et
de quantité de mouvement, l’équation de conservation des espèces en phase gazeuse (dans le cas
de liquide pur) doit également être prise en compte [211]. En outre, la physique supplémentaire
liée au changement de phase induit des conditions de saut à l’interface plus complexes. La vitesse
n’est pas continue en raison du transfert de masse à travers l’interface. Ainsi la condition de saut
cinématique normale s’écrit avec ṁ le taux de vaporisation. Cette quantité clé pour le changement
de phase apparaît également dans la condition normale de saut de quantité de mouvement. De plus,
d’autres discontinuités, comme un saut de flux de chaleur, apparaissent implicitement dans la déf-
inition de ṁ. Par ailleurs, comme l’équation de continuité ne se réduit pas à ∇ · u = 0, l’équation
de transport de l’indicateur de phase lisse ψ doit être modifée en conséquence. Pour résumer les
principaux défis numériques qui émergent lorsque le changement de phase avec interface résolue
est considéré [212] :

(i) Le calcul du taux d’évaporation ṁ, qui apparaît dans toutes les conditions de saut à l’interface.
Cela implique le calcul de quantités supplémentaires à l’interface pour gérer les nouvelles
discontinuités, telles que la température à l’interface TΓ et la fraction massique de vapeur à
l’interface YΓ, et une fermeture thermodynamique ;

(ii) La discontinuité de vitesse [u · n]Γ, qui doit être prise en compte dans la méthode de projec-
tion et dans toutes les équations de transport ;

(iii) La régression d’interface causée par le changement de phase ;
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(iv) La résolution des équations de conservation de la température T et de la fraction massique
de vapeur Y .

En ce qui concerne l’évaporation Lagrangienne, les équations décrivant le mouvement des
particules sont complétées par une équation pour la réduction du diamètre de la particule. La
réduction de dp(t) dépend du taux d’évaporation des particules ṁp (transfert de masse). Afin de
caractériser complètement le processus d’évaporation, une équation d’évolution de la température
des particules Tp(t) est également requise (transfert de chaleur). En cas d’évaporation multi-
composantes, l’évolution de la fraction massique Yp,k de chaque espèce k de la particule p est
également écrite [213]. Dans YALES2, le modèle d’évaporation de Spalding (1953) [214] étendu
avec le modèle d’Abramzon et Sirignano (1989) [215] pour tenir compte de l’épaisseur finie des
couches limites thermique et massique autour la goutte est disponible.
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