Algorithms Aspects of « Multistage » Optimization
Aspects algorithmiques de l'optimisation « multistage »
Résumé
N a classical combinatorial optimization setting, given an instance of a problem one needs to find a good feasible solution. However, in many situations, the data may evolve over time and one has to solve a sequence of instances. Gupta et al. (2014) and Eisenstat et al. (2014) proposed a multistage model where given a time horizon the input is a sequence of instances (one for each time step), and the goal is to find a sequence of solutions (one for each time step) reaching a trade-off between the quality of the solutions in each time step and the stability/similarity of the solutions in consecutive time steps. In Chapter 1 of the thesis, we will present an overview of optimization problems tackling evolving data. Then, in Chapter 2, the multistage knapsack problem is addressed in the offline setting. The main contribution is a polynomial time approximation scheme (PTAS) for the problem in the offline setting. In Chapter 3, the multistage framework is studied for multistage problems in the online setting. The main contribution of this chapter was the introduction of a structure for these problems and almost tight upper and lower bounds on the best-possible competitive ratio for these models. Finally in chapter 4 is presented a direct application of the multistage framework in a musical context i.e. the target-based computed-assisted orchestration problem. Is presented a theoretical analysis of the problem, with NP-hardness and approximation results as well as some experimentations.
En optimisation combinatoire classique, étant donné une instance d’un problème, il est demandé de trouver une bonne solution réalisable. Cependant, dans de nombreux cas, les données peuvent évoluer au cours du temps et il est demandé de résoudre une séquence d’instances. Gupta et al. (2014) et Eisenstat et al. (2014) ont proposé un modèle multistage où étant donné un horizon de temps, l’entrée est une séquence d’instances (une pour chaque pas de temps), et l’objectif est de trouver une séquence de solutions (une pour chaque pas de temps) qui atteindrait un compromis entre la qualité des solutions à chaque pas de temps et la stabilité/similarité des solutions pour des pas de temps consécutifs. Dans le Chapitre 1, nous présenterons un aperçu des problèmes d’optimisation prenant en compte des données évolutives. Dans le Chapitre 2, le problème du sac-à-dos est traité dans un contexte offline. La contribution principale est un schéma d’approximation polynomiale (PTAS). Dans le Chapitre 3, le cadre multistage est étudié pour des problèmes multistage dans un contexte online. La contribution principale est l’introduction d’une structure pour ces problèmes avec des bornes presque serrées supérieures et inférieures sur les meilleurs ratios compétitifs de ces modèles. Enfin, dans le Chapitre 4 est présenté une application directe du cadre multistage dans un contexte musical, i.e l’orchestration assistée par ordinateur avec son cible. Nous avons présenté une analyse théorique du problème, en montrant sa NP-difficulté, des résultats d’approximation ainsi que des expérimentations.
Origine | Version validée par le jury (STAR) |
---|