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pour obtenir le grade de : Docteur d’HESAM Université
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THÈSE dirigée par :
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Résumé

Cette thèse porte sur la modélisation et la caractérisation du comportement thermomécanique des

matériaux viscoélastiques et poro-viscoélastiques. Le travail est divisé en deux parties principales :

une concerne la technique expérimentale d’analyse mécanique dynamique (Dynamic Mechanical Anal-

ysis DMA) et l’autre s’intéresse aux performances d’amortissement des matériaux poro-viscoélastiques.

Dans la première partie, les propriétés viscoélastiques décrites à partir du module complexe et mesurées

par DMA en flexion, sont analysées en profondeur à la fois d’un point de vue théorique et expérimen-

tal. Une attention particulière est accordée aux effets des modes opératoires et des machines d’essais

utilisées sur les propriétés mesurées. Afin d’obtenir une meilleure analyse de l’influence des écarts con-

statés, des modèles à dérivées fractionnaires (FDM) sont calibrés dans le cadre bayésien. Les résultats

montrent qu’il existe une grande variabilité en fonction des modes de fonctionnement ou des fabricants

de machines et que les modèles statistiques peuvent expliquer ces différences. Dans la deuxième par-

tie, la dissipation de l’énergie mécanique due à la viscoélasticité de trois matériaux poreux différents

est explorée dans la gamme des basses fréquences. Dans un premier temps, une approche numérique

est proposée pour générer des prédictions dans le domaine temporel du comportement hystérique des

matériaux sous différentes conditions de chargement. Ensuite, un modèle éléments finis utilisant un

FDM est proposé pour décrire le comportement de panneaux simplement appuyés et recouverts d’une

couche libre de matériau poreux. Des expériences sont réalisées pour valider le modèle proposé. En-

fin, une méthode inverse basée sur l’inférence bayésienne est présentée pour identifier les propriétés

viscoélastiques de ces matériaux à partir d’essais de vibration. Les résultats de ces analyses montrent

le grand potentiel des matériaux poro-viscoélastiques pour l’amortissement des vibrations mécaniques.

Mots-clés : Matériaux viscoélastiques, Matériaux poreux, DMA, Essais mécaniques, Modélisation

thermomécanique, Inférence bayésienne.
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Abstract

This thesis deals with the modeling and characterization of the thermomechanical behavior of

viscoelastic and poro-viscoelastic materials. The work is divided into two main parts: one concern-

ing the experimental technique Dynamic Mechanical Analysis (DMA) and the other related to the

damping performance of poro-viscoelastic materials. In the first part, the viscoelastic property known

as complex modulus measured by the flexural modes of DMA is deeply examined theoretically and

experimentally. Special attention is paid to the effects of operational modes and machines on various

properties. Aiming to obtain a better analysis of the impacts of the discrepancies found, fractional

derivative models (FDM) are calibrated within the Bayesian framework. Results show that DMAs

have a great variability between modes or manufacturers and statistical models may mitigate these

issues. In the second part, the dissipation of mechanical energy inherent to the viscoelasticity of three

different porous materials is explored in the low-frequency range. Initially, a numerical approach is pro-

posed to generate predictions in the time domain of the hysteretic behavior of the analyzed materials

under different loading conditions. Then, a finite element model that considers a FDM is proposed to

describe the behavior of simply supported panels covered with a free-layer of porous material. Exper-

iments are carried out to validate the proposed model. Finally, an inverse method based on Bayesian

inference was presented to identify the viscoelastic properties of these materials from vibration tests.

The results of these analyses showed the great potential of poro-viscoelastic materials to be applied

to damp mechanical vibrations.

Keywords : Viscoelastic materials, Porous materials, DMA, Mechanical testing, Thermomechanical

modeling, Bayesian inference.
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Résumé étendu

1. Introduction

Au cours des dernières années, différentes industries ont développé de nouveaux matériaux visant

à améliorer les performances de leurs produits. Dans ce contexte, il est possible de mettre en évidence

les progrès liés à l’utilisation de matériaux dit viscoélastiques, notamment à des fins de contrôle du

bruit et des vibrations.

Ces matériaux ont des caractéristiques à la fois élastiques et visqueuses, ce qui les rend capables de

dissiper une partie de l’énergie vibratoire. Néanmoins, leur réponse peut varier considérablement en

fonction des conditions auxquelles ils sont soumis. Une caractérisation appropriée et une modélisation

soignée de ces matériaux deviennent donc de la plus haute importance pour la conception et l’analyse

des structures [7, 14].

Dans cette thèse, on se concentre initialement sur le module complexe mesuré par la technique

expérimentale appelée Analyse Mécanique Dynamique. L’idée centrale est évaluer les formulations

mathématiques, la répétabilité et la reproductibilité des essais expérimentaux et la manière dont ces

incertitudes affectent les prédictions des modèles viscoélastiques.

En outre, on vise aussi à explorer la viscoélasticité de certains matériaux poreux dont la ma-

trice est en polymère. D’abord, on propose des modèles simplifiés pour décrire leur comportement

d’amortissement dans les domaines temporel et fréquentiel. Cela permet d’avoir un bon compromis

entre précision et temps de calcul. Ensuite, on présente une approche inverse pour l’identification des

propriétés viscoélastiques par l’inférence bayésienne.

Ce travail a été réalisé dans le cadre d’une cotutelle de thèse entre l’Universidade Federal do Rio

de Janeiro (UFRJ) à Rio de Janeiro et le Conservatoire National des Arts et Métiers (Cnam) à Paris,

co-encadré par Professeurs Daniel Castello, Jean-François Deü et Lucie Rouleau.
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RÉSUMÉ ÉTENDU

Partie I. Aspects Théoriques

La première grande partie de cette thèse présente les principaux aspects théoriques qui ont permis

le développement de ce manuscrit. Elle se compose de deux chapitres décrits ci-dessous.

2. Viscoélasticité linéaire

Ce chapitre aborde les concepts fondamentaux liés à la théorie de la viscoélasticité linéaire afin

de faciliter la compréhension du lecteur sur la suite du manuscrit. Tout d’abord, la définition des

matériaux viscoélastiques est présentée, ainsi que les trois phénomènes qui leur sont couramment

associés : la relaxation, la fluage et les phénomènes d’hystérésis. Ensuite, la loi de comportement

sous la forme d’une intégrale héréditaire est établie par le principe de superposition de Boltzmann, ce

qui met en évidence la dépendance temporelle. Le comportement de ces matériaux est alors analysé

lorsqu’ils sont soumis à un chargement dynamique, permettant de faire apparâıtre la notion de module

complexe. Différents modèles mathématiques basés sur des analogues mécaniques (ressort-amortisseur)

et des dérivés fractionnaires sont également abordés. Enfin, les effets du temps/de la fréquence et de

la température sur leurs propriétés mécaniques sont abordés. On se concentre principalement sur les

matériaux thermo-rhéologiques et le principe de superposition temps-température. Les équations et

les concepts de chaque sujet sont détaillés dans la thèse.

3. Problèmes inverses dans le cadre bayésien

Le troisième chapitre de la thèse aborde les principales idées de calibration et de validation des mod-

èles mathématiques, en plus de la quantification des incertitudes. Dans un premier temps, l’estimation

des paramètres par une approche bayésienne est contextualisée. Ensuite, la méthode numérique de

Monte Carlo par châıne de Markov (en anglais, Markov Chain Monte Carlo, MCMC), notamment

utilisée pour résoudre ce type de problème, est présentée. Les principaux algorithmes de Metropolis-

Hastings (MH), Adaptive Metropolis (AM), Delayed Rejection (DR) et Delayed Rejection Adaptive

metropolis (DRAM) sont discutés. Après, les concepts et méthodes de validation et de vérification

(V&V) sont définis. Enfin, la quantification des incertitudes par la méthode de Monte Carlo est

abordée. Les détails de chaque sujet sont présentés dans la thèse.
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RÉSUMÉ ÉTENDU

Partie II. Analyse Mécanique Dynamique

L’analyse mécanique dynamique (en anglais, dynamic mechanical analysis, DMA) est une méth-

ode couramment utilisée pour caractériser le comportement des matériaux. Elle permet d’étudier

plusieurs aspects des matériaux tels que la composition, le comportement physique et les propriétés

viscoélastiques.

D’une manière générale, cette technique est polyvalente. Différents types d’essais et différentes

conditions de test peuvent être utilisés, selon le modèle d’équipement et ses accessoires. Néanmoins,

une analyse de la littérature montre que les valeurs absolues du module complexe et des températures

liées aux transitions de phase peuvent diverger entre les échantillons, les porte-échantillons et les

paramètres de test.

Cette seconde partie de la thèse est dédiée à l’étude du module complexe, qui est la principale

propriété viscoélastique identifiée par DMA, mesuré par les modes de flexion. Elle est divisée en deux

chapitres comme décrits ci-dessous.

4. Module complexe mesuré par un analyseur mécanique dynamique

L’objectif de ce chapitre est d’évaluer les impacts de différents modes de flexion et équipements

sur les mesures du module complexe. Tout d’abord, on détaille la formulation mathématique utilisée

par chaque machine testée dans ce travail. Ensuite, on effectue un premier cas d’étude concernant

ces effets sur le module complexe dépendant de la température et sur la température de transition

vitreuse. Enfin, un deuxième cas d’étude estanalysé pour étudier l’influence de la fréquence et de la

température sur le modèle complexe et sur le comportement à long terme du matériau. Un attention

particulière est portée à la répétabilité et à la reproductibilité des essais.

4.1. Formulation mathématique

Les trois modes de flexion existant dans les équipements DMA sont un simple encastrement (en

anglais, single cantilever, SC), un double encastrement (en anglais, dual cantilever, DC) et une flexion 3

points (en anglais, three-point bending, 3PT). Chacun correspond à un modèle mathématique spécifique

pour le calcul du module complexe. De façon plus générale, ces formulations sont basées sur les

conditions aux limites (figures 1-3), les théories d’élasticité et de viscoélasticité, en plus des hypothèses
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RÉSUMÉ ÉTENDU

retenues par le fabricant de la machine.

Dans cette thèse, on utilise trois équipements de différents fabricants : PerkinElmer 8000 (PE),

TA Q800 (TA) et Netzsch 242 E Artemis (NET). Les équations pour chaque mode de flexion sont

présentées ci-dessous, où Ks est la rigidité mesurée définie comme le rapport entre la force appliquée

à l’échantillon F et l’amplitude du déplacement a, S est la distance entre les appuis fixes, l = S/2, I

est le moment d’inertie, t est l’épaisseur de l’échantillon et ν est le coefficient de Poisson.

Simple encastrement (SC)
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Double encastrement (DC)
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Figure 2: Modèle DC
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Flexion 3 points (3PT)
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Figure 3: Modèle 3PT
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4.2. Dispositif expérimental et matériau testé

Comme indiqué précédemment, les trois machines utilisées sont PerkinElmer 8000 (PE), TA Q800

(TA) et Netzsch 242 E Artemis (NET). Leurs limites opérationnelles sont résumées dans le tableau 1.

Quant au matériau testé, on choisit la résine époxy car sa procédure de fabrication des échantillons

est bien mâıtrisée. Deux lots d’échantillons (un pour chaque étude) ont été produits et conditionnés

de la même manière, ce qui réduit encore les incertitudes quant à la variabilité du matériau.

Table 1: Caractéristiques techniques de chaque machine DMA.

Caractéristiques NET PE 8000 TA Q800

Plage de temperature [°C] -170 to 600 -190 to 400 -150 to 600
Vitesse de chauffage [°C/min] 0.01 to 20 0 to 20 0.1 to 20
Bande de fréquence [Hz] 0.01 to 100 0 to 600 0.01 to 200
Résolution de fréquence [Hz] 0.001
Plage de déplacement [µm] ±240 ±1000 ±0.5 to 10000
Résolution de déplacement [µm] 0.0005 0.001 0.001
Force [N] 24 ±10 ±18
Résolution de la force [N] 0.0005 0.002 0.00001

4.3. Cas d’étude I: influence de la température

Dans cette étude, on évalue la répétabilité et la reproductibilité des valeurs estimées pour le module

complexe lorsqu’il est mesuré en fonction de la température par les essais de flexion (SC, DC et 3PT)

sur trois machines DMA (PE, TA et NET). De plus, on vise également à observer expérimentalement

les effets de la géométrie d’échantillon.
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RÉSUMÉ ÉTENDU

Pour atteindre ces objectifs, on a appliqué des conditions de test (plage de température, vitesse de

chauffage, amplitude de déplacement, tailles des échantillons) assez similaires, respectant les limites

opérationnelles de chaque équipement. Aussi, on a testé des échantillons de tailles très différentes

sur l’équipement PE grâce à la flexibilité de ses porte-échantillons. Les conditions et paramètres de

chaque test sont détaillés dans la thèse.

La figure 4 montre les valeurs moyennes et les écarts types du module de stockage mesurés ex-

périmentalement. On vérifie qu’on obtient une bonne répétabilité des tests. Cependant, les valeurs

estimées pour le module sont nettement altérées par le mode de fonctionnement, l’équipement et même

les dimensions des échantillons. On observe que les valeurs les plus élevées sont obtenues pour le mode

3PT.

Le tableau 2 montre les valeurs moyennes et les écarts types de la température de transition

vitreuse identifiée. Comme le plus grand écart type est égal à 1.42 °C, on peut donc considérer une

bonne répétabilité. Les différences entre les modes peuvent être attribuées à la position du capteur de

température par rapport à l’échantillon et aussi, à la taille de la chambre thermique.

Table 2: Température de transition vitreuse.

DMA Machine PE - Set 1 PE - Set 2 TA NET

SC 61.21 ± 0.34 61.80 ± 0.60 63.99 ± 1.42 -
DC 56.44 ± 1.03 59.30 ± 0.39 61.59 ± 0.99 -
3PT 51.57 ± 0.52 56.86 ± 0.50 58.63 ± 0.11 56.95 ± 0.56

Enfin, on réalise une étude paramétrique sur les effets des dimensions et des propriétés mécaniques

(S, w, t, Ks, ν) qui interviennent dans les formulations mathématiques. Il est évident que les différentes

équations estiment différentes valeurs. De plus, le mode DC est le plus sensible aux changements.

4.4. Cas d’étude II: influence de la température et de la fréquence

Cette étude a deux objectifs principaux. Le premier est lié à l’analyse de la répétabilité et la

reproductibilité des valeurs estimées pour le module lorsqu’il est mesuré en fonction de la température

et de la fréquence par les modes de flexion. Le second consiste à de déterminer le comportement à

long terme du matériau par le principe de superposition et à évaluer sa variabilité selon le type de

test.
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Figure 4: Comparaison entre les modules de stockage mesurés par différentes machines. (a) E′(ω)|SC ,
(b) E′(ω)|DC et (c) E′(ω)|3P T .

Pour cela, on effectue des essais avec les modes SC, DC et 3PT sur les équipements TA et PE. On

choisit des conditions de test similaires, respectant les limites opérationnelles de chaque équipement.

Les détails sont présentés dans la thèse.

Comme pour le premier cas d’étude, on obtient une répétabilité des tests satisfaisante. On peut

aussi vérifier que les effets de la température et de la fréquence sont compatibles avec la théorie de

la viscoélasticité. En revanche, des différences entre les modes et machines peuvent être observées.

Quelques résultats obtenus pour le module de stockage sur la machine TA et tracés sur la figure 5 en

témoignent.

Une fois le module complexe mesuré, on procède à la validation du comportement thermorhéologique

simple. A cet effet, on trace les diagrammes de Cole-Cole et Black. On peut visualiser que cette hy-

pothèse est vérifiée pour tous les résultats malgré les différences entre les valeurs estimées du module.
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Figure 5: Module de stockage E′(ω, T0)|T A mésuré par la machine TA.

Enfin, on applique le principe de superposition temps-température pour génerer des courbes

mâıtresses et par conséquent, identifier le comportement à long terme. Les facteurs de translation

horizontale nécessaires à cette procédure sont déterminés par la méthode proposée par Rouleau et al.

[2] puis validés par la calibration du modèle de l’équation Williams–Landel–Ferry (WLF). Les figures

6 et 7 montrent les courbes mâıtresses générées pour les modules de stockage et de perte dans tous les

tests effectués.
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Figure 6: Comparaison entre les courbes mâıtresses génerées à partir des mesures obtenues par la
machine TA. (a) Module de stockage E′(ω, T0)|T A et (b) module de perde E′′(ω, T0)|T A.
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Figure 7: Comparaison entre les courbes mâıtresses génerées à partir des mesures obtenues par la
machine PE. (a) Module de stockage E′(ω, T0)|P E et (b) module de perde E′′(ω, T0)|P E .

5. Modélisation du module complexe par approche bayésienne

Ce chapitre traite de la calibration de modèles viscoélastiques par approche bayésienne pour le

module complexe. L’objectif principal est d’analyser les effets des incertitudes inhérentes aux mesures

des trois modes de flexion par DMA dans les prédictions de modèles calibrés. Pour cela, on considère

les courbes mâıtresses expérimentales obtenues au chapitre précédent.

5.1. Modèle viscoélastique

Pour décrire le comportement du module complexe, on choisit le modèle à dérivée fractionnaire à

cinq paramètres. En effet, il permet de prédire l’asymétrie observée dans les courbes expérimentales

du module de perte, et le comportement du module de stockage aux hautes fréquences. Ainsi, le

module complexe est exprimé par

E∗(ω) = E0 + (E∞ − E0)(jωτ)α

1 + (jωτ)β
, (4)

où E0 est le module relaxé, E∞ est le module non-relaxé, τ est le temps de relaxation, α et β sont

les ordres fractionnaires. Ces cinq paramètres doivent respecter les conditions thermodynamiques

suivantes: E∞ > E0 > 0, τ > 0, 0 < α < 1, 0 < β < 1 et α > β. De plus, ils doivent être estimés à

partir d’une méthode inverse.
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5.2. Déscription du processus de calibration

Dans ce travail, on utilise l’approche bayésienne pour estimer les cinq paramètres du modèle choisi,

θ = {E0, E∞, τ, α, β}. Pour cela, on considère une loi a priori non informative: chaque paramètre est

décrit par une loi a priori uniforme. L’hypothèse d’une indépendance mutuelle a été adoptée. Par

ailleurs, on considère que le bruit est additif ce qui conduit à une fonction de vraisemblance décrite

par une loi Gaussienne.

Le processus de calibration comprend deux étapes. La première réalise une analyse déterministe

utilisant l’estimateur du maximum a posteriori (MAP). La seconde étape consiste à appliquer la

méthode de Monte Carlo par châıne de Markov (MCMC) en utilisant l’algorithme DRAM. Les détails

théoriques et pratiques d’implémentation sont donnés dans la thèse.

5.3. Résultats

Le tableau 3 montre la valeur attendue ainsi que l’intervalle de confiance à 95 % de chaque

paramètre estimé en considérant les résultats expérimentaux de la machine TA. On note que les

valeurs varient selon le mode de fonctionnement et que les plus élevées sont estimées en général pour

le mode 3PT. Cependant, on obtient une bonne concordance entre les intervalles de confiance. Sur

la figure 8, on compare les modèles stochastiques obtenus dans cette analyse, ce qui met en évidence

l’importance de considérer les incertitudes dans les prédictions du modèle.

Par ailleurs, on peut parvenir à des conclusions similaires si l’on analyse les résultats obtenus pour

le module complexe mesuré par la machine PE. Ils sont présentés dans la thèse.

Table 3: Valeur attendue et intervalle de confiance (CI) à 95 % de chaque paramètre inconnu θ obtenus
à partir de données provenant de la machine TA.

Mode
E[E0] [×107 Pa] E[E∞] [×109 Pa] E[τ ] [×10−3 s] E[α] E[β]

95 % CI 95 % CI 95 % CI 95 % CI 95 % CI

SC
2.19 0.80 1.68 0.55 0.46

[0.11, 5.26] [0.48, 1.24] [0.21, 5.24] [0.44, 0.72] [0.36, 0.59]

DC
2.54 0.75 3.43 0.63 0.51

[0.13, 6.74] [0.40, 1.30] [0.27, 13.26] [0.44, 0.89] [0.36, 0.74]

3PT
3.43 0.71 8.64 0.70 0.57

[0.14, 8.57] [0.39, 1.26] [0.64, 35.56] [0.49, 0.96] [0.38, 0.80]
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(a) (b)

Figure 8: Comparaison entre les modèles calibrés des modes SC, DC et 3PT. (a) E′(ωr, T0)|T A et (b)
E′′(ωr, T0)|T A.

Partie III. Matériaux Poro-viscoélastiques

La troisième grande partie est consacrée à l’étude du comportement dissipatif de différents matéri-

aux poreux dans la gamme des basses fréquences. Elle est également composée de deux chapitres

décrits ci-dessous.

6. Performances d’amortissement des mousses polymères dans la gamme des
basses fréquences

Dans ce chapitre, on modélise la dissipation de l’énergie mécanique de deux mousses polymères

lorsque ces matériaux sont soumis à des charges cycliques (domaine temporel) et à des vibrations

structurelles (domaine fréquentiel). L’objectif est de relier les propriétés viscoélastiques mesurées

par des tests DMA à leurs performances d’amortissement dans les applications dynamiques à basse

fréquence. Pour cela, on considère uniquement la phase viscoélastique solide puisque les interactions

fluide-structure peuvent être négligées dans la région des basses fréquences.

6.1. Description des matériaux testés

Afin d’explorer les différents comportements viscoélastiques, on étudie une mousse de mélamine à

cellules ouvertes (mousse A) et une mousse de polyurethane à cellules fermées (mousse B). Ces deux

matériaux ont été caractérisés précédemment par Bonfiglio et al. [98] et Henriques et al. [1].
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RÉSUMÉ ÉTENDU

Le tableau 4 ci-dessous présente les paramètres du modèle fractionnaire de Zener identifiés à 20 °C

par Henriques et al. [1]. Ils seront utilisés dans ce chapitre pour décrire le module de cisaillement

complexe.

Table 4: Paramètres du modèle fractionnaire de Zener, où G0 est le module de cisaillement relaxé, G∞
est le module de cisaillement non-relaxé, τ est le temps de relaxation et α est l’ordre fractionnaire.

Mousse G0 [Pa] G∞ [Pa] τ [s] α

A 4.79 × 104 8.63 × 104 1.32 × 10−1 0.43
B 1.31 × 104 2.11 × 106 4.70 × 10−8 0.30

6.2. Cas d’étude I: chargement cyclique

La première étude propose une approche numérique pour estimer la dissipation de l’énergie mé-

canique lorsque des mousses polymères sont soumises à des chargements cycliques unidimensionnels

dans le domaine temporel. Pour ce faire, on considère ici que le comportement de ces matériaux est

décrit par le modèle de Zener dont la relation constitutive est présentée dans l’équation 5 et dont les

paramètres sont indiqués dans le tableau 4.

σ(t) + τα dασ(t)
dtα

= G0ε(t) + G∞τα dαε(t)
dtα

. (5)

L’approche consiste à appliquer un chargement cyclique unidimensionnel sur le matériau puis à

estimer sa réponse à partir de son équation constitutive en utilisant la méthode d’intégration numérique

basée sur des matrices bandes triangulaires [133]. Enfin, on trace le graphique des contraintes et

déformations pour analyser les cycles d’hystérésis et, par conséquent, la performance d’amortissement

de ces matériaux.

Deux cas numériques sont étudiés dans ce manuscript. Le premier évalue l’influence du chargement

cyclique. Ce cas met en évidence que plus la vitesse et l’amplitude du chargement sont élevées, plus

la dissipation est importante, comme le montre la figure 9. Le second cas analyse l’influence de la

température puisque les matériaux possèdent un comportement thermorhéologique simple. Pour cela,

on a pris en compte les facteurs de translation horizontale déterminés par Henriques et al. [1]. Les effets

de la témperature sont présentés sur la figure 10. Par ailleurs, ces exemples permettent notamment

d’observer que la mousse B a une bonne capacité à dissiper de l’énergie mécanique.
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Figure 9: Comparaison entre les boucles d’hystérésis de l’étude des effets de fréquence d’excitation.
Mousses (a) A et (b) B.
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Figure 10: Comparaison entre les boucles d’hystérésis de l’étude des effets de température. Mousse
(a) A et (b) B.

6.3. Cas d’étude II: panneaux simplement appuyés

La deuxième étude développe et valide expérimentalement un modèle éléments finis 3D pour prédire

le comportement des mousses polymères dans le domaine fréquentiel lorsqu’elles sont appliquées à des

structures vibrantes. On analyse également la performance d’amortissement de chaque mousse.

D’abord, on effectue des essais de vibrations mécaniques sur des panneaux simplement appuyés

assemblés en deux configurations (sans et avec mousse de polymère), comme le montre la figure 11.

Un effort ponctuel est appliqué par un marteau d’impact sur la face nue de la plaque. On mesure
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l’accélération aux quatre points sur la même surface, comme indiqué sur la figure 12, sur la bande

de fréquence [0-800] Hz à la température ambiante. La comparaison en figure 13 entre résultats des

configurations montre que la structure composée de la mousse B a une bonne capacité d’amortissement.

Plaque de base : KE - ME

(a)

Plaque de base:

Mousse

G*(ω)

KE - ME

KV
 - MV

(b)

Figure 11: Configurations de panneaux simplement appuyés pour l’étude des performances
d’amortissement des vibrations. Configurations (a) 1 et (b) 2.
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6
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(b)

Figure 12: L’emplacement des mesures d’excitation et d’accélération. (a) Photographie de la configu-
ration expérimentale et (b) diagramme schématique.

Ensuite, on procède à la modélisation du comportement des structures testées. Pour ce faire, on

fait les hypothèses suivantes. La plaque de base est modélisée comme un milieu élastique linéaire

homogène isotrope, avec amortissement structurel. La mousse de polymère est quant à elle modélisée

comme un milieu viscoélastique linéaire homogène isotrope dont les propriétés sont dépendantes de la

fréquence. Son coefficient de Poisson, cependant, est considéré comme constant, ce qui fait que toutes

ses propriétés mécaniques ont la même dépendance à la fréquence.

Les formulations éléments finis pour les configurations 1 et 2 sont, respectivement,

[(1 + jη)KE − ω2ME ]US(ω) = F S(ω) (6)
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Figure 13: Comparaisons entre les FRF mesurés des configurations 1 et 2. Mousse (a) A et (b) B.

et

[KE + G∗(ω)K0
V − ω2(ME + MV )]US(ω) = F S(ω), (7)

où j2 = 1, η est le facteur d’amortissement structural, KE et ME sont les matrices respectivement de

raideur et de masse liées à la partie élastique de la structure, KV etMV sont les matrices respectivement

de raideur et de masse liées à la partie viscoélastique de la structure, F S(ω) le vecteur des sollicitations

et US(ω) le vecteur de degrés de liberté. Le module de cisaillement G∗(ω) de la mousse est décrit par

le modèle fractionnaire de Zener qui est défini par

G∗(ω) = G0 + G∞(jωτ)α

1 + (jωτ)α
, (8)

où les coefficients {G0, G∞, τ, α} sont donnés dans le tableau 4.

En figures 14 et 15, on présente chaque configuration expérimentale avec le modèle éléments finis

implémenté pour les simulations. Les comparaisons entre les résultats expérimentaux et numériques

sont représentées sur les figures 16 et 17. On prouve que le modèle développé est capable de prédire

le comportement de la structure dans la bande fréquentielle choisie.

7. Caractérisation inverse des propriétés viscoélastiques des matériaux poreux

Ce chapitre propose une méthodologie expérimentale-numérique pour la caractérisation inverse des

propriétés viscoélastiques des matériaux poreux. L’objectif est de calibrer des modèles fractionnaires
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(a)

y

z

(b)

Figure 14: Configuration 1. (a) Plaque d’aluminium en appuis simples sur un cadre en acier et (b)
maillage de la structure correspondant.

(a)

y

z

(b)

Figure 15: Configuration 1. (a) Plaque d’aluminium en appuis simples sur un cadre en acier avec la
mousse B et (b) maillage de la structure correspondant.

par une approche bayésienne, lors de la modélisation de matériaux poreux en tant que solides vis-

coélastiques monophasés avec des propriétés dépendant de la fréquence. Pour ce faire, on considère le

modèle éléments finis 3D développé et validé au Chapitre 6.

7.1. Méthodologie

La méthodologie de caractérisation inverse proposée comprend quatre étapes. Dans un premier

temps, on effectue des essais vibratoires sur des panneaux simplement appuyés pour obtenir leurs
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Figure 16: Comparaison de la FRF simulée à la FRF mesurée pour les configurations (a) 1 et (b) 2
de la mousse A.
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Figure 17: Comparaison de la FRF simulée à la FRF mesurée pour les configurations (a) 1 et (b) 2
de la mousse B.

fonctions de réponse en fréquence (FRF). L’équipement utilisé ainsi que les conditions d’essai sont

similaires à ceux présentés au chapitre précédent. Ensuite, on estime les FRFs via les modèles des

équations 6.12 et 6.14 en utilisant la méthode d’approximation modale. Puis, on estime les propriétés

viscoélastiques du matériau poreux. Enfin, on valide le modèle estimé.

7.2. Méthode Inverse

La méthode inverse vise à déterminer les quatre paramètres θ = {G0, G∞, τ, α} du modèle adopté

pour décrire le comportement viscoélastique du matériau analysé (équation 8). Pour ce faire, on fait

29
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la calibration du modèle par l’approche bayésienne afin de considérer les incertitudes des résultats

expérimentaux. Ensuite, on vérifie et valide le modèle estimé.

Pour la calibration du modèle, chaque paramètre est décrit par une loi a priori uniforme, en

considérant l’hypothèse d’une indépendance mutuelle. Puisqu’on considère que le bruit est additif, on

définit une loi Gaussienne pour la fonction de vraisemblance. La variance est considèrée ici comme

une variable aléatoire décrite par une loi inverse-gamma. Deux étapes sont alors réalisées: la première

porte sur l’estimateur du MAP, tandis que la seconde consiste à utiliser la méthode MCMC avec

l’algorithme DRAM.

Pour la vérification et la validation, on propage les incertitudes dans le modèle calibré. On compare

les FRFs mesurées et simulées puis on estime la différence entre les fréquences de résonance mesurées

et simulées. Par ailleurs, on estime le FRAC (en anglais, frequency response assurance criterion).

Il convient de noter que les étapes de calibration et validation doivent utiliser des mesures dif-

férentes. Ainsi, on divise les résultats expérimentaux en deux ensembles de données pour évaluer leus

impacts sur l’estimation. Chaque ensemble de données Sijkl est défini comme l’ensemble pour lequel

la calibration utilise les FRF mesurées par les accéléromètres {ACi, ACj} et pour lequel la validation

utilise les FRFs mesurées par les accéléromètres {ACk, ACl}, où i, j, k, l in {1, 2, 3, 4} et i ̸= j ̸= k ̸= l.

Les détails théoriques et pratiques d’implémentation sont donnés dans la thèse.

7.3. Résultats

On applique la méthode inverse pour déterminer les propriétés de deux matériaux poreux: la

mousse de polyurethane à cellules fermées (matériau B), étudiée au chapitre 6, et un matériau poreux

à base de caoutchouc recyclé (matériau C). Les tableaux 5 et 6 comparent les valeurs attendues et les

intervalles de confiance à 95 % pour les matériaux B et C. On montre que les valeurs attendues varient

selon ensemble de données lors de l’étape de calibration, mais les intervalles de confiance ont montré

une bonne corrélation entre les estimations.

Sur les figures 18 et 19, on compare les résultats expérimentaux avec les enveloppes stochastiques

générées après la propagation des incertitudes dans le modèle. On vérifie par cette comparaison que

les modèles calibrés sont capables de prédire le comportement du système de façon satisfaisante. Les

légères différences observées aux fréquences les plus élevées peuvent être corrélées avec la méthode de
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Table 5: Valeur attendue et intervalle de confiance (CI) à 95 % de chaque paramètre inconnu θ obtenus
à partir de données du matériau B.

Ensemble de données
E[G0]

[Pa] E[G∞]
[Pa] E[τ ]

[s] E[α]
95 % CI 95 % CI 95 % CI 95 % CI

S1234
1.09 ×104 2.66 ×106 4.42 ×10−8 0.42

[0.59, 1.89] [1.45, 4.42] [3.09, 5.88] [0.35, 0.49]

S3412
1.21 ×104 1.92 ×106 4.53 ×10−8 0.38

[0.31, 2.31] [1.12, 3.37] [3.08, 5.95] [0.32, 0.47]

Table 6: Valeur attendue et intervalle de confiance (CI) à 95 % de chaque paramètre inconnu θ obtenus
à partir de données du matériau C.

Ensemble de données
E[G0]

[Pa] E[G∞]
[Pa] E[τ ]

[s] E[α]
95 % CI 95 % CI 95 % CI 95 % CI

S1234
1.90 ×104 2.36 ×107 1.93 ×10−7 0.61

[1.05, 2.79] [0.80, 9.10] [0.14, 9.56] [0.53, 0.68]

S3412
2.03 ×104 2.22 ×107 1.24 ×10−7 0.56

[1.26, 2.94] [0.71, 9.04] [0.08, 9.33] [0.51, 0.62]

réduction modale utilisée pour le calcul des FRF.
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Figure 18: Propagation d’incertitude en tenant compte des résultats de l’ensemble de données S1234
du matériau B. (a) Étape de calibration - AC1 et (b) étape de validation - AC3.
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Figure 19: Propagation d’incertitude en tenant compte des résultats de l’ensemble de données S1234
du matériau C.(a) Étape de calibration - AC1 et (b) étape de validation - AC3.

De plus, dans le cas particulier du matériau B, on fait une comparaison entre les résultats estimés

dans cette méthodologie avec les paramètres obtenus à partir d’un rhéomètre de torsion [1] (présentés

au chapitre 6). Comme le montre la figure 20, on obtient un bon accord entre les FRFs générées

à partir des valeurs obtenues par chaque méthode. Cela augmente la crédibilité de la méthodologie

proposée.
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Figure 20: Comparaison entre les FRFs mesurée et simulées à partir de paramètres du DMA [1] et de
la méthode inverse pour la localisation de AC1 pour le matériau B.
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8. Conclusions et perspectives

Cette thèse examine deux problèmes principaux concernant la caractérisation et la modélisation

des matériaux viscoélastiques et poro-viscoélastiques. Le premier problème a porté sur la technique

de caractérisation DMA, tandis que le second a concerné de la dissipation de l’énergie mécanique

provoquée par certains matériaux poreux en raison de leur viscoélasticité. Les principales réalisations

sont énumérées ci-dessous.

Principales contributions reportées dans ce manuscrit de thèse

� Analyse de la répétabilité et de la reproductibilité des tests expérimentaux réalisés sur les
modes de flexion des machines DMA.

� Analyse des incertitudes expérimentales des essais de flexion DMA dans la calibration des
modèles viscoélastiques.

� Prédiction numérique du comportement cyclique des mousses polymères à partir d’un
modèle à dérivée fractionnaire dans le domaine temporel.

� Développement et validation expérimentale d’un modèle élément finis 3D d’une structure
recouverte d’une couche de matériau poreux, considérant uniquement la viscoélasticité du
matériau poreux.

� Développemnt d’une méthode inverse par une approche bayésienne pour l’identification
des propriétés viscoélastique des matériaux poreux.

Au-delà des résultats obtenus durant cette thèse, il reste toujours des problématique à aborder

sur les sujets étudiés. Parmis les perspectives de travail mentionnées dans le manuscrit, les suivantes

peuvent être soulignées:

Principales suggestions pour les travaux futurs

� la corrélation entre les modes de flexion de la DMA et les essais mécaniques (comme la
traction et la flexion trois points) sur des machines universelles comme Instron;

� la modélisation des deux phases des matériaux poreux et de leurs effets de couplage en util-
isant la théorie de Biot pour inclure d’autres mécanismes de dissipation tels que thermiques
et visqueux visant à mieux décrire leur comportement à des fréquences plus élevées;

� l’analyse de la possibilité d’effectuer une caractérisation inverse des mousses polymères à
des fréquences plus élevées.
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Chapter 1

Introduction

This chapter gives some background to the work developed throughout this thesis. The context
as well as the objectives are first specified. Then, a description of the practical organization of
this thesis in the context of a “cotutelle” agreement between the Universidade Federal do Rio de
Janeiro (UFRJ), Rio de Janeiro/RJ, and the Conservatoire National des Arts et Métiers (Cnam),
Paris/France, is carried out. Finally, the structure of the present manuscript is introduced,
followed by the main contributions achieved during this period.
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1.1. CONTEXT

1.1 Context

The continuous search for new materials is a milestone in our history since the most historical

periods. Its development provides significant economic and social improvements for society in general.

It is inherent to the human being to always look forward to, create, explore something new to expand

the limits of human effort and achievements.

Nowadays, different industries have pushed this evolution of materials. A great example is the

transport industry, which invests significantly in the search for new materials that are lighter and more

resistant, and that would help to reduce vibrations, gas emissions, and fuel consumption. Another

example is the civil industry, which seeks materials that assure strength, resistance, flexibility, cost-

effectiveness, and prevent corrosion.

Within this context, it is possible to highlight the increasing progress and use of materials known

as viscoelastic. They have been widely applied as constrained or unconstrained layers in the most

different structures for purposes of noise and vibration control [3–7]. Despite the achievements in

this field, there are still improvements to be made concerning the prediction of material’s behavior,

especially in terms of experimental characterization, model calibration and validation.

It is well-known that viscoelastic materials have both elastic and viscous characteristics [8–11].

They can benefit, for instance, from their dissipative properties without losing their ability to produce

stable structures. Nevertheless, their response may vary considerably depending on the conditions to

which they are subjected.

These materials are generally polymers whose properties can be adjusted/improved on their man-

ufacturing process to better fit on a specific application. Some of their main features are the excellent

combination of mechanical properties (e.g., damping and stiffness), durability, lightweight, relatively

low cost, and thermal stability [4, 7, 12]. However, these properties may be affected by many oper-

ational and environmental factors such as temperature, time/frequency, humidity, pressure, preload,

strain amplitude, and porosity [8, 13].

An appropriate characterization and careful modeling of viscoelastic properties become indispens-

able to obtain an accurate prediction of the mechanical behavior of these materials. These steps are of

the utmost importance to the design and analysis of structures, to optimize projects, and to minimize

their risks [7, 14].
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With this in mind, several experimental methods have been developed and improved to measure the

properties of such materials, especially as a function of temperature and time/frequency. Currently, it

is even possible to measure them at the three scales, namely nano, micro and macroscopic, depending

on the focus of the analysis and the intended use of these materials [15].

Among the techniques on the macroscale, in particular, it is possible to highlight the application

of the one named Dynamic Mechanical Analysis (DMA). It has been widely used to characterize

polymer-based materials mainly as a function of temperature and frequency. Aspects such as material’s

modulus, thermal transitions, and long-term behavior can be easily determined by only performing

quick and simple tests [16]. Nevertheless, some inconsistencies can be found in literature [17, 18] and

consequently, it deserves a closer inspection and study.

As for the modeling of the viscoelastic response, different approaches can be found in the literature

as mechanical analogs [7, 10], internal variables [3, 19, 20], and fractional derivative models [7, 21–24].

The latter is appreciated for describing the behavior of these materials satisfactorily, with a limited

number of parameters.

Regardless of the approach chosen, the adopted constitutive model presents a set of parameters

that must be correctly estimated and validated. On several occasions, the process of model calibration

is formulated based on inverse problems. This is because the direct determination of each material

parameter can be costly, time-consuming, and even never achieved in practice.

In this framework, several techniques can be employed, ranging from deterministic to probabilis-

tic ones [25–27]. To tackle model and experimental uncertainties, and noise measurements, Bayesian

inference methods have been widely used, providing means of constructing stochastic models to de-

scribe the material’s response and provide more complete information about the model parameters

[14, 28, 29].

These constitutive models can be associated with numerical methods to simulate the material’s

response under different conditions, helping the design of various structures. Among the numerical

tools, the Finite Element Method (FEM) has proven to be a very efficient one as it ensures a good com-

promise between accuracy and computational complexity. Nevertheless, it can be prohibitively costly

in computational terms when dealing with large models and repeated routines such as optimization

procedures and uncertainty propagation. This highlights the need for cost-efficient simulation tools.
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This work contributes to filling some gaps in studies of viscoelastic materials, its characterization,

and modeling. Initially, it is focused on the experimental technique DMA, mainly concerning the

viscoelastic property known as the complex modulus measured by the flexural modes. The central

idea is to provide insights regarding mathematical formulations, repeatability and reproducibility of

experimental tests, and how measurement uncertainties affect model predictions. Then, it aims at

exploring the viscoelasticity of some porous materials whose matrix is made by polymer. One of its

goals is to propose a simplified model to describe their damping behavior, which results in a good trade-

off between accuracy and computational time. Another goal is to propose a inverse characterization

strategy through Bayesian inference based on the developed model.

1.2 Objectives

The objectives of this thesis are summarized in Fig. 1.1 and described below.

1. To analyze the characterization technique Dynamic Mechanical Analysis. This work contributes

to filling the gap in studies about the divergences between the measurements performed in DMA

machines, focusing on the three flexural modes available in these machines. It provides a theo-

retical background concerning the mechanisms of each operational mode with the corresponding

mathematical formulations adopted in each DMAmachine. The repeatability and reproducibility

of the measurements are addressed. Comparisons between the estimated values for the modulus,

the glass transition temperatures (Tg), and the long-term behavior are performed. The effects

of geometric and mechanical parameters are analyzed. Furthermore, fractional derivative mod-

els are calibrated through the Bayesian framework to study the effects of DMA data in model

predictions.

2. To characterize and model the damping performance of polymeric foams. This work contributes

to assessing the capacity of two polymeric foams to dissipate mechanical energy through their

viscoelastic properties. A fractional derivative model is adopted to describe their mechanical

behavior. Model predictions in the time domain concerning their hysteretic behavior are given

for different scenarios of loading and temperature. A FE model combined with the fractional

derivative model is proposed to evaluate their capacity to damp structural vibrations in the

low-frequency range. Experiments are carried out to validate the proposed model. The effects
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of some parameters on the system response are addressed.

3. To inverse characterize the viscoelastic properties of porous materials. The goal is to propose

an experimental-numerical approach to inverse characterize viscoelastic properties of porous

materials from a Bayesian perspective. A fractional derivative model is calibrated and validated

for two different porous materials. Results are even compared with those obtained using other

techniques.

Thesis

Dynamic mechanical analysis

Complex modulus

Temperature dependence Long-term

Poro-viscoelastic materials

Damping perfomance

Cyclic load Structural vibration

Inverse characterization

Viscoelastic properties

Figure 1.1: Overview of the thesis.

1.3 Description of work environment

This thesis was carried out within the scope of a joint supervision (“cotutelle” agreement) between

the Laboratório de Acústica e Vibrações (LAVI) at UFRJ, Rio de Janeiro/Brazil, and the Laboratoire

de Mécanique des Structures et des Systèmes Couplés (LMSSC) at Cnam, Paris/France. It can be

divided into three parts corresponding to the periods spent in each institute: UFRJ/Cnam/UFRJ.

The first part of the thesis took place in the ’home’ laboratories at UFRJ, in Rio de Janeiro. It

consisted of taking the mandatory courses, doing the teaching internship, preparing for the Ph.D.

qualifying exam, and investigating the characterization technique dynamic mechanical analysis. This

investigation, in particular, led to the preparation of some articles for an international peer-reviewed

journal and for some international conferences.

Following this first part, started a period entirely dedicated to the study of porous materials in

the host laboratory at Cnam, in Paris. The initial investigations resulted in the development of

several numerical codes related to finite element modeling, model reduction techniques, experimental

modal analysis, inverse methods. This also led to the preparation of some articles for international
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peer-reviewed journal and for some international conferences.

Finally, back to Rio de Janeiro, the study of porous materials was continued and a special attention

was given to the inverse characterization through Bayesian approach.

1.4 Thesis outline

After this introduction, the thesis is divided in three main parts as follows.

Part I consists of presenting the theoretical background, which was the basis for the development

of this thesis. It comprises Chapters 2 and 3.

� Chapter 2 provides a detailed description of the scientific fields related to the theory of linear

viscoelasticity. It first presents the phenomenological aspects and the constitutive equations of

viscoelastic materials. Then, it analyzes their dynamic response, bringing the concept of complex

modulus. Afterward, it presents two approaches to model their macroscopic behavior, namely

mechanical analogs and fractional derivative models. Finally, it discusses the effects of both

time/frequency and temperature on the material’s response.

� Chapter 3 is focused on the concepts of model calibration, model validation and uncertainty

quantification. It first defines an inverse problem and formulates it in a Bayesian framework.

Then, it reviews Markov chain Monte Carlo techniques, presenting some classical algorithms.

Finally, it brings in the main concepts of model validation techniques and uncertainty quantifi-

cation.

Part II, in turn, consists of the first main investigation of this thesis related to the characterization

technique Dynamic Mechanical Analysis (DMA). It contains Chapters 4 and 5.

� Chapter 4 is dedicated to the investigation of the viscoelastic property known as complex modulus

measured by DMA. It first introduces the concepts of complex modulus and how this property is

mathematically formulated and measured in the three flexural modes. Then, it details the equip-

ments used. Finally, two case studies are treated: one concerning the temperature dependence

and other related to the long-term behavior.
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� Chapter 5 is concerned with the calibration of viscoelastic models to describe the complex mod-

ulus measured by DMA considering the Bayesian inference. It first describes the methodology

adopted. Then, it presents the constitutive model chosen. Finally, it analyses the results ob-

tained.

Part III consists of the second main investigation concerned with the damping behavior of porous

materials in the low-frequency range. It comprises Chapters 6 and 7.

� Chapter 6 investigates experimentally and numerically the damping performance of two poly-

meric foams in both time and frequency domains. It first describes the studied foams, presenting

their main features and the hypotheses assumed to model their behavior. Then, it discusses the

first case study concerning the dissipation of mechanical energy due to cyclic loads. Finally, it

talks about the second case study corresponding to their capacity to damp structural vibration

in the low-frequency range.

� Chapter 7 treats the inverse characterization of the viscoelastic properties of two porous materials

in a Bayesian framework. It first brings in the methodology adopted to assess the properties.

Then, it details all the experimental set-up. Afterward, it presents the constitutive equation

together with the finite element formulation. Finally, it discusses the results obtained by the

proposed approach.

Finally, Chapter 8 brings the conclusive remarks together with perspectives for future works.

1.5 Overview of the main contributions

The main scientific contributions included in the present thesis can be highlighted with publications

in international peer-reviewed journals and conference papers, and a book chapter.

� Published articles:

1. ORLANDINI, L.R.; HENRIQUES, I.R.; CASTELLO, D.A.; BORGES, L.A.; SOARES, B.G..

Dynamic mechanical characterization of epoxy-based thermosetting materials loaded with lignin.

Journal of the Brazilian Society of Mechanical Sciences and Engineering, v. 42, n. 8, 2020.
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2. HENRIQUES, I.R.; ROULEAU, L.; CASTELLO, D.A.; BORGES, L.A.; DEÜ, J.-F.. Viscoelas-

tic behavior of polymeric foams: experiments and modeling. Mechanics of Materials, v. 148,

2020.

3. HENRIQUES, I.R.; BORGES, L.A.; COSTA, M.F.; SOARES, B.G.; CASTELLO, D.A.. Com-

parisons of complex modulus provided by different DMA. Polymer Testing, v. 72, p. 394-406,

2018.

� Submitted/ To be submitted:

1. HENRIQUES, I.R.; ROULEAU, L.; CASTELLO, D.A.; BORGES, L.A.; DEÜ, J.-F.. Modeling

and experimental validation of damping performance of polymeric foams in the low-frequency

range.

� International conferences:

1. HENRIQUES, I.R.; ROULEAU, L.; BORGES, L.A.; M.F. COSTA; DEÜ, J.-F.; CASTELLO,

D.A.. Comparisons of viscoelastic properties measured by different mechanical tests. 5th Brazil-

ian Conference on Composite Materials, BCCM5, São Carlos, Brazil, 2020. (Accepted)

2. HENRIQUES, I.R.; ROULEAU, L.; CASTELLO, D.A.; BORGES, L.A.; DEÜ, J.-F.. Experi-

mental characterization and modeling of poroviscoelastic materials. 5th Brazilian Conference on

Composite Materials, BCCM5, São Carlos, Brazil, 2020. (Accepted)

3. ROULEAU, L.; HENRIQUES, I.R.; CASTELLO, D.A.; BORGES, L.A.; DEÜ, J.-F.. Inverse

characterization of the damping performance of porous materials. Forum Acusticum, FA 2020,

Lyon, France, 2020.

4. HENRIQUES, I.R.; ROULEAU, L.; CASTELLO, D.A.; BORGES, L.A.; DEÜ, J.-F.. Damping

performance of porous materials through dynamic analysis. Proceedings of 48th International

Congress and Exposition on Noise Control Engineering, Internoise 2019, Madri, Spain, 2019.

5. HENRIQUES, I.R.; BORGES, L.A.; COSTA, M.; SOARES, B.G.; CASTELLO, D.A.. Differ-

ences between DMA modes and testing equipments. Proceedings of the 4th Brazilian Conference

on Composite Materials, BCCM4, Rio de Janeiro, Brazil, 2018.
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6. HENRIQUES, I.R.; BORGES, L.A.; CASTELLO, D.A.; COSTA, M.; SOARES, B.G.. Compar-

ison of complex modulus provided by three different dynamic mechanical analyzers. Proceedings

of the 4th Brazilian Conference on Composite Materials, BCCM4, Rio de Janeiro, Brazil, 2018.

7. HENRIQUES, I.R.; BORGES, L.A.; CASTELLO, D.A.; SOARES, B.G.; COSTA, M.. A critical
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Congress of Mechanical Engineering, COBEM 2017, Curitiba, Brazil, 2017.

� Book Chapter:

1. HENRIQUES, I.R.; BORGES, L.A.; CASTELLO, D.A.. The mechanical behavior of viscoelastic

materials in the frequency domain. In: Fleury A., Rade D., Kurka P. (eds) Proceedings of

DINAME 2017. Lecture Notes in Mechanical Engineering. Springer, Cham, 2019.
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Theoretical Aspects
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Introduction

The general objective of the first part of this thesis is to present the main concepts and theoretical

background of the two theories utilized in this work. The first chapter introduces the essential concepts

of linear viscoelasticity and its construction. It intends to facilitate the comprehension of viscoelastic

materials behavior and the main tools and models used to characterize these materials. The second

chapter focuses on the field of uncertainty quantification. It aims to introduce the main concepts and

tools used herein to estimate and validate material parameters through this framework.
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Chapter 2

Linear viscoelasticity

This chapter aims to present the theoretical background of linear viscoelasticity, highlighting
the important aspects of the development of this work and its comprehension. It is organized
as follows. Section 2.1 introduces viscoelastic materials and describes the three main charac-
teristics of viscoelastic materials: creep, stress relaxation, and hysteresis. Section 2.2 presents
the constitutive equations based on the Boltzmann superposition principle. Section 2.3 deals
with the mechanical behavior of these materials when they are subjected to dynamic loads,
bringing the concept of complex modulus. Section 2.4 presents an approach to describe the
macroscopic behavior of viscoelastic materials based on mechanical analogs, introducing some
classical models. Section 2.5 presents another approach to describe the macroscopic behav-
ior based on fractional derivatives, focusing on the four-parameter and five-parameter models.
Section 2.6 discusses the effects of time/frequency and temperature on the material’s response.
The special group of thermo-rheologically simple materials is defined and the time-temperature
superposition principle is treated.

Content

2.1 Phenomenological aspects: relaxation, creep and hysteresis . . . . . . . . . . . . . . . 72

2.2 Boltzmann superposition principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2.3 Dynamic response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

2.4 Mechanical analogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

2.4.1 Maxwell and Kelvin-Voigt models . . . . . . . . . . . . . . . . . . . . . . . . . 78

2.4.2 Standard linear solid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2.4.3 Generalized models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

2.5 Fractional derivative models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

2.5.1 Four-parameter fractional derivative model . . . . . . . . . . . . . . . . . . . . 83

2.5.2 Five-parameter fractional derivative model . . . . . . . . . . . . . . . . . . . . 85

2.6 Effects of time/frequency and temperature . . . . . . . . . . . . . . . . . . . . . . . . 87

2.6.1 General Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

2.6.2 Thermorheologically simple materials . . . . . . . . . . . . . . . . . . . . . . . 89

71



2.1. PHENOMENOLOGICAL ASPECTS: RELAXATION, CREEP AND
HYSTERESIS

2.1 Phenomenological aspects: relaxation, creep and hysteresis

Linear viscoelastic materials are outside the scope of theories of elasticity and viscosity as they

present both elastic and viscous properties. As a consequence, these materials have the capacity to

both store and dissipate mechanical energy, being only able to recover some of the work done to deform

them.

Furthermore, viscoelastic materials can be defined as materials with memory effects. It means

that their current state of stress depends on the entire deformation history: both deformation path

and deformation rates. Therefore, both stress and strain are time-dependent or frequency-dependent

[9, 30].

Because of this time/frequency dependency, some phenomena are associated with viscoelastic ma-

terials depending on the excitation applied [8, 11]. The most commonly observed are relaxation, creep,

and hysteresis as described below.

The relaxation phenomenon, also called as relaxation of stress, consists of the gradual decrease of

stress with time (see Fig. 2.1a) under a constant deformation/strain (see Fig. 2.1b). This behavior

is studied by imposing constant uniaxial deformation/strain on the material sample, initially non-

deformed, and measuring the stress required to maintain that strain over time.

In other words, let the constant strain ε(t) be a step function of magnitude ε0 such as

ε(t) = ε0H(t), (2.1)

where H(t) is the unit Heaviside step function. Then, the stress history σ(t) decreases with time and

it is given by

σ(t) = ε0E(t), (2.2)

where E(t) is the relaxation modulus and it is a monotonically decreasing function of time.
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HYSTERESIS

t

σ(t)

(a) Stress relaxation response (b) Constant strain applied

Figure 2.1: Relaxation phenomenon.

The creep phenomenon, also called as retardation of strain, consists of the gradual increase of

strain with time (see Fig. 2.2a) under constant stress (see Fig. 2.2b). When this stress is released, the

strain recovers or decreases progressively, sometimes even achieving zero. This phenomenon is studied

by imposing constant uniaxial stress on the material sample, initially non-stressed, and measuring the

strain required to maintain that stress over time.

In other words, let the constant stress σ(t) be a step function of magnitude σ0 such as

σ(t) = σ0H(t). (2.3)

Then, the strain ε(t) increases with time and it is expressed as

ε(t) = σ0J(t), (2.4)

where J(t) is the creep compliance and it is a monotonically increasing function of time.
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(a) Strain creep response (b) Constant stress applied

Figure 2.2: Creep phenomenon.

Finally, the hysteresis is observed in the stress-strain curve when a cyclic load is considered. As

shown in Fig. 2.3, the loading and unloading curves do not coincide, forming a loop. The area inside

this loop is called as hysteresis and it represents the energy lost during a cycle. This dissipation of

mechanical energy depends on the excitation rate and temperature.

Figure 2.3: Stress-strain curve for a linearly viscoelastic material, describing the hysteresis loop during
a loading-unloading cycle.

2.2 Boltzmann superposition principle

Under the hypothesis of small strains and isothermal mechanical processes, the constitutive equa-

tions of a linear viscoelastic material can be formulated based on the Boltzmann superposition principle
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[9]. It establishes that the effect of a compound cause is the linear sum of the effects of the individual

causes. Figure 2.4 illustrates, for example, this principle for the creep process. Each stress loading

contributes independently to the strain of the material. The total creep is the linear sum of the creep

strain caused by the stress loading history.

t

σ(t)

∆σ1

∆σ2

∆σ3

t1 t2 t3

(a) Stress loading

tt1 t2 t3

ε(t)

ε1(t)

ε2(t)

ε3(t)

(b) Strain response

Figure 2.4: The Boltzmann superposition principle. Each stress loading causes strain change indepen-
dently.

Therefore, if the strain history ε(t) is specified, the one-dimensional constitutive equation is given

by a convolution integral such as [9]

σ(t) =
∫︂ t

−∞
E(t − τ)dε(τ)

dτ
dτ, (2.5)

where σ(t) is the stress component at time t, E(t) is the relaxation modulus. Considering a zero

strain history before the application of the loading and a step discontinuity at t = 0, Eq. 2.5 may be

rewritten as

σ(t) = E(t)ε(0) +
∫︂ t

0
E(t − τ)dε(τ)

dτ
dτ, (2.6)

where ε(0) is the strain at t = 0.

Another way to express this stress-strain relation is obtained by reversing the roles of stress and

strain. Therefore, for the case in which the stress history σ(t) is specified, the one-dimensional con-

stitutive equation is [9]

ε(t) =
∫︂ t

−∞
J(t − τ)dσ(τ)

dτ
dτ, (2.7)
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where ε(t) is the strain component at time t and J(t) is the creep compliance. Considering zero stress

before the application of the loading and a step discontinuity at t = 0, Eq. 2.7 may be rewritten as

ε(t) = J(t)σ(0) +
∫︂ t

0
J(t − τ)dσ(τ)

dτ
dτ. (2.8)

2.3 Dynamic response

As viscoelastic materials are subjected to dynamic loads in several applications, it becomes inter-

esting to investigate the behavior of these materials in this situation. Moreover, dynamic experiments

are often more desired than static ones because they can measure viscoelastic response at shorter times

in a more accurate way.

The stress-strain relation is now obtained by considering the excitation as a harmonic or sinu-

soidal steady-state one, also called as dynamic excitation. It is worthwhile mentioning that the term

‘dynamic’here is not related to inertial effects or resonance [9].

Let the strain history be a sinusoidal function defined as

ε(t) = ε0ejωt, (2.9)

where j =
√

−1 is the imaginary number and ω is the angular frequency in radians per second.

The stress is also a sinusoidal function in time, if only the steady state form is considered. Thus,

by the use of Fourier transform in Eq. 2.5, the one-dimensional constitutive equation becomes [9]

σ̃(jω) = E∗(ω)ε̃(jω), (2.10)

where q̃(jω) denotes the Fourier transform of the variable q(t), and E∗(ω) = Ẽ(jω) × (jω) is the

complex modulus that can be expressed in terms of its real and imaginary components such as

E∗(ω) = E′(ω) + jE′′(ω) = E′(ω)(1 + jη(ω)) (2.11)

where E′(ω) is the real part known as storage modulus, E′′(ω) is the imaginary part known as loss

modulus, and η(ω) = E′′(ω)/E′(ω) is known as loss factor. The storage modulus corresponds to

the elastic response, representing the material’s ability to store energy. The loss modulus, in turn,
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is associated with the viscous response, corresponding to the material’s ability to dissipate energy.

Finally, the loss factor represents how quickly material dissipates energy; it thus quantifies the damping

capacity.

Another way of expressing the stress-strain relation shown in Eq. 2.10 is obtained by means of the

complex exponential form. Therefore, Eq. 2.10 is rewritten as

σ̃(jω) = |E∗(ω)|ε0ej(ωt+δ), (2.12)

where |E∗(ω)| is the absolute value of E∗(ω) and δ = tan−1[E′′(ω)/E′(ω)].

2.4 Mechanical analogs

The mechanical behavior of linear elastic material is usually modeled by a linear spring as shown

in Fig. 2.5a. On the other hand, the behavior of a linear viscous fluid is usually described by a

linear dashpot as shown in Fig. 2.5b. As the macroscopic behavior of viscoelastic materials involves

aspects of both elastic solid and viscous fluid responses, models for viscoelastic materials are classically

represented by the combination of springs and dashpots. This strategy of building mechanical models

is called mechanical analogs.

E

(a) Elastic behavior

µ

(b) Viscous behavior

Figure 2.5: Mechanical analogs.

Mechanical analogs are phenomenological models. They cannot describe molecular or supramolec-

ular mechanisms in the material, but only its macroscopic response [30]. Despite this, they are quite

useful to predict the material’s response to different loading situations and also to visualize how the

viscoelastic behavior can arise [11].

There are many possible combinations of spring-dashpots, such as a spring connected in se-

ries/parallel to a dashpot, or several elements assembled in series/parallel, each one having its char-

acteristics. Therefore, it is possible to characterize the response of many viscoelastic materials with
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these models.

The constitutive equations are obtained through force analysis, geometrical considerations, and

force-deformation relations of the structural elements. In this procedure, the mechanical elements

are considered massless, inertia effects are neglected, and rheological concepts (stress and strain) are

introduced once the force-deformation relation is well-defined [10].

Some examples of classical mechanical analogs are the Maxwell, the Kelvin-Voigt, the three-

parameter, and generalized models. They are discussed in the next subsections in detail.

2.4.1 Maxwell and Kelvin-Voigt models

Maxwell model is one of the simplest model to describe the viscoelastic behavior [10]. It consists

of a spring and a dashpot connected in series as shown in Fig. 2.6a. From force analysis, one can

observe that the force is the same in both elements: σtotal(t) = σs(t) = σd(t), where the subscripts

s and d denote, respectively, spring and dashpot. From geometry, the total strain is the sum of the

strains in each element: εtotal(t) = εs(t) + εd(t). The constitutive equation for Maxwell model is then

given by

ε̇(t) = σ̇(t)
E

+ σ(t)
µ

, (2.13)

where E and µ are, respectively, the elastic modulus and the viscosity of the material.

For this model, the complex modulus shown in Eq. 2.11 can be written as

E∗(ω) = jEωµ

E + jωµ
= E

[︃
jωτ

1 + jωτ

]︃
, (2.14)

where τ = µ/E is the relaxation time.

Another simple model to describe the viscoelastic behavior is called as Kelvin-Voigt model [10].

It connects a spring and a dashpot in parallel as shown in Fig. 2.6b. From the force analysis, it can

be seen that the total force is the sum of the forces in each element, σtotal(t) = σs(t) + σd(t). From

geometry, the strain is the same in both elements, εtotal(t) = εs(t) = εd(t). The constitutive equation

is thus given by

σ(t) = Eε(t) + µε̇(t). (2.15)
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The corresponding complex modulus is expressed as

E∗(ω) = E + jωµ. (2.16)

µ

E

(a) Maxwell model

µ E

(b) Kelvin-Voigt model

Figure 2.6: Basic mechanical analogs.

Due to the simplicity of these models, they do not describe perfectly the response of real viscoelastic

materials to both stress and strain excitations. Maxwell model is only able to predict the relaxation

phenomenon, whereas Kelvin-Voigt model can only predict the creep phenomenon. Hence, they can

not independently model a viscoelastic material which can present both phenomena, as explained in

Section 2.1. For this reason, some authors prefer to call them as a unit rather than models [30].

2.4.2 Standard linear solid

The simplest model that provides a good approximation for a real viscoelastic behavior contains

three elements - two linear springs and a dashpot - and it is known as the three-parameter model or

standard linear solid [10]. Figure 2.7 shows the two possible ways to construct this model: a Maxwell

model connected in parallel to a linear spring (see Fig. 2.7a) and a Kelvin-Voigt model connected in

series to a linear spring (see Fig. 2.7b).
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Figure 2.7: Standard linear solid model.

Both representations present the same form of constitutive equation [10]. For instance, let us focus

on the Maxwell representation, also called as Zener model, to build the stress-strain relation. The

subscript MM denotes the Maxwell element.

From the force analysis, the total force is the sum of the forces in each component, σtotal(t) =

σMM (t) + σs(t). From geometry, the total strain is the same in both components and so, εtotal(t) =

εMM (t) = εs(t). The constitutive equation for Zener model is thus given by

σ(t) + µ

E
σ̇(t) = E0ε(t) +

[︃
E + E0

E

]︃
µε̇(t), (2.17)

and the corresponding complex modulus is expressed as follows

E∗(ω) = E0 + E∞(jωτ)
1 + (jωτ) , (2.18)

where E0 is the relaxed modulus, corresponding to the value of the modulus at low frequencies, and

E∞ = E0 +E is the unrelaxed modulus, corresponding to the value of the modulus at high frequencies.

2.4.3 Generalized models

The three-parameter model can describe more realistically the behavior of viscoelastic materials

once it can model relaxation and creep phenomena. However, it often fails to describe the behavior

when these materials are, for example, subjected to dynamic loads. To overcome this issue, generalized

models with a greater number of elements have been built.
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At first, the more elements the model has, the more accurate it becomes to describe the behavior

of real viscoelastic materials. Two standard generalizations of mechanical analogs are the generalized

Maxwell and generalized Kelvin-Voigt models.

Figure 2.8 shows the generalized Maxwell model also known as Weichert model [31]. As can be

seen, it consists of assembling a spring and N Maxwell models in parallel.

E0

µ1

E1

µ2

E2

µN

EN

Figure 2.8: Generalized Maxwell model (Weichert model).

From force analysis, the total force is the sum of the forces in each component and so, σtotal(t) =

σs(t) + σMM1(t) + σMM2(t) + ... + σMMN
(t). From geometry, the strain is the same in all components,

i.e., εtotal(t) = εs(t) = εMM1(t) = εMM2(t) = ... = εMMN
(t). Therefore, the constitutive equation of

this generalized Maxwell model is

σ(t) =
[︄
E0 +

N∑︂
i=1

∂/∂t

∂/∂t

Ei
+ 1

µi

]︄
ε(t), (2.19)

and the corresponding complex modulus is given by

E∗(ω) = E0

[︃
1 +

N∑︂
i=1

γi
jωτi

1 + jωτi

]︃
, (2.20)

where E∞ = E0(1 +
∑︁N

i=1 γi) and τi is the relaxation time of the ith element Maxwell model.

Figure 2.9 shows the generalized Kelvin-Voigt model, also called as Anelastic Displacement Fields

(ADF) model [32]. As can be seen, it consists of a spring assembled in series to N Kelvin-Voigt models.
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µ1

E1

µ2

E2

µN

EN

E0

Figure 2.9: Generalized Kelvin-Voigt model (Anelastic Displacement Fields, ADF).

From force analysis, the total force is the same in all components and so, σtotal(t) = σs(t) =

σMM1(t) = σMM2(t) = ... = σMMN
(t). From geometry, the strain is the sum of the strain in each

component, i.e., εtotal(t) = εs(t) + εMM1(t) + εMM2(t) + ... + εMMN
(t). Therefore, the constitutive

equation of this generalized Kelvin-Voigt model is

ε(t) =
[︃ 1

E0
+

N∑︂
i=1

1
Ei + µi

]︃
σ(t), (2.21)

with the corresponding complex modulus given by

E∗(ω) = E0

[︃
1 +

N∑︂
i=1

∆i
ω2 + jωΩi

ω2 + Ω2
i

]︃
, (2.22)

where Ωi is the inverse of relaxation time at a constant strain and ∆i is the relaxation strength

associated with ith scalar modulus.

2.5 Fractional derivative models

Another way of modeling viscoelastic behavior is based on the use of fractional derivative operators.

This approach was proposed by Bagley and Torvik [21], and it has proven to be more attractive than

others to describe the dynamic behavior of various materials. Indeed, only a couple of parameters are

needed to describe the variations of dynamic properties, which makes it suitable for vibration calcu-

lations. Some other advantages are the easy fitting of experimental measurements, the link between

molecular theories and macroscopic behavior, the fulfillment of the second law of thermodynamics,

and the prediction of hysteresis loops [33, 34].

The constitutive equations are thus built considering that the stress-strain relation is expressed as

a fractional differential equation. The general form of the one-dimensional constitutive model based
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on fractional operators in the time domain is given by [21]

σ(t) +
n∑︂

i=1
biD

βi [σ(t)] = a0ε(t) +
m∑︂

k=1
akDαk [ε(t)], (2.23)

where ai and bi are material constants, βi and αk are the order of the fractional derivatives that

must be within 0 and 1, and Dαk and Dβi are the Caputo fractional derivatives (see Appendix A for

further details). The number of time derivatives m and n must satisfy the following thermodynamics

restrictions: m = n or m = n + 1.

Recalling that, the Fourier transform F [·] of the fractional derivative operator is given by

F

[︃
dα

dtα
q(t)

]︃
= (jω)αq̃(jω), (2.24)

Eq. 2.23 can be easily written in the frequency domain. Thus, applying Fourier transform on Eq.

2.23, the general form of the one-dimensional relationship between stress σ̃(jω) and strain ε̃(jω) is

given by

σ̃(jω) +
n∑︂

i=1
bi(jω)βi [σ̃(jω)] = a0ε̃(jω) +

m∑︂
k=1

ak(jω)αk [ε̃(jω)]. (2.25)

The general form of complex modulus for a fractional derivative model is expressed as follows

E∗(ω) = a0 +
∑︁m

k=0 ak(jω)αk

1 +
∑︁n

i=1 bi(jω)βi
. (2.26)

The complete thermodynamic analysis and the restrictions imposed on fractional derivative models

are given by Bagley and Torvik [22], and Lion [23]. Detailed analysis of the use of fractional derivative

operators and also historical information about this topic can be found in the reference book of

Mainardi [24].

The fractional derivative models having four and five parameters are focused in sequence. The

constitutive equations and the mathematical formulations of complex modulus are also highlighted.

2.5.1 Four-parameter fractional derivative model

The four-parameter fractional derivative model, also called as fractional Zener model, is the sim-

plest fractional model to describe the dynamic behavior of real materials in a wide frequency range
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[21, 35]. The one-dimensional constitutive equation in the time domain for this model is derived from

Eq. 2.23 and given by

σ(t) + τα dασ(t)
dtα

= E0ε(t) + E∞τα dαε(t)
dtα

, (2.27)

where E0 is the modulus at zero frequency, also known as relaxed modulus or static modulus of

elasticity, E∞ is the high frequency limit value of modulus, also known as unrelaxed modulus, τ is the

relaxation time described by a power function [35]. According to Bagley and Torvik [22], these four

parameters must obey the thermodynamic constraints shown in Eq. 2.28 to be physically meaningful.

E∞ > E0 ≥ 0, τ > 0 and 0 < α ≤ 1. (2.28)

By the use of Fourier transform, the constitutive equation shown in Eq. 2.27 can be written in the

frequency domain as follows

[1 + τα(jω)α]σ̃(jω) = [E0 + (E∞ − E0)τα(jω)α]ε̃(jω). (2.29)

The corresponding complex modulus is thus defined as

E∗(ω) = E0 + E∞(jωτ)α

1 + (jωτ)α
, (2.30)

where the storage and loss moduli, and loss factor are, respectively, given by

E′(ω) = E0 + (E∞ + E0)cos(απ/2)(ωτ)α + E∞(ωτ)2α

1 + 2cos(απ/2)(ωτ)α + (ωτ)2α
, (2.31)

E′′(ω) = (E∞ − E0)sin(απ/2)(ωτ)α

1 + 2cos(απ/2)(ωτ)α + (ωτ)2α
(2.32)

and

η(ω) = (E∞ − E0)sin(απ/2)(ωτ)α

E0 + (E∞ − E0)cos(απ/2)(ωτ)α + E∞(ωτ)2α
. (2.33)

Finally, some points should be highlighted concerning the effects of these four parameters (α,E0,E∞

and τ) and the variations of complex modulus as outlined by Pritz [35]. From Eqs. 2.31 to 2.33, it

can be seen that storage modulus increases from E0 to E∞ as frequency increases, while the slope
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of the storage modulus curve at the inflection point is affected by the value of α: the smaller α, the

smaller the slope is. Both loss modulus and loss factor curves have only one symmetric peak related

to frequency. The slope of the increase and decrease of these curves, respectively, below and above

the peak is influenced by α. Furthermore, the frequency at which the maximum loss modulus occurs

is given by 1/τ .

Figure 2.10 illustrates these effects for the absolute value of complex modulus, |E∗(ω)|, and loss

factor, η(ω). The following parameters were considered constant E0 = 104 Pa, E∞ = 106 Pa and

τ = 10−8 s, while parameter α varied from 0.3 to 0.7.
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Figure 2.10: Representation of the complex modulus of the four-parameter fractional derivative model.

2.5.2 Five-parameter fractional derivative model

As previously mentioned, the four-parameter fractional derivative model is effective to describe the

frequency dependence of a viscoelastic property. However, this model is only able to predict symmetric

loss peak, which is not always the case: some materials have shown loss modulus and loss factor curves

flattening after the peak. As a result, Pritz [36] proposed the introduction of a fifth parameter β into

the model aiming at overcoming this issue.

In this way, the five-parameter fractional derivative model, also referred to as the five-parameter

fractional derivative Zener model, allows the prediction of an asymmetrical loss peak and a better

description of high-frequency behavior [36]. The one-dimensional constitutive equation in the time

domain for this model is given by
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σ(t) + τβ dβσ(t)
dtβ

= E0ε(t) + E0τβ dβε(t)
dtβ

+ (E∞ − E0)τα dαε(t)
dtα

. (2.34)

where β is the order of the fractional derivative introduced to describe the flattening of curve after

the peak. It must be within 0 and 1.

It should be pointed out that, even though some parameters appear in both Eqs. 2.27 and 2.34,

they do not necessarily signify the same thing. The parameter E∞ is related to the high-frequency

behavior, but it is not anymore the limit value. The parameter τ , in turn, is also the relaxation time

described by a power function, but its value is different from the one of the four-parameter model.

Furthermore, these five parameters must obey the thermodynamic constraints shown in Eq. 2.35 to

be physically meaningful [36].

E∞ ≥ E0 ≥ 0, τ > 0 and 0 < β < α ≤ 1. (2.35)

By the use of Fourier transform on Eq. 2.34, the relationship between stress and strain is written

in frequency domain such as

[1 + τβ(jω)β]σ̃(jω) = [E0 + E0τβ(jω)β + (E∞ − E0)τα(jω)α]ε̃(jω), (2.36)

leading to the following complex modulus

E∗(ω) = E0 + (E∞ − E0)(jωτ)α

1 + (jωτ)β
, (2.37)

where the storage and loss moduli, and loss factor are, respectively, given by

E′(ω) = E0 + (E∞ − E0)cos(απ/2)(ωτ)α + cos[(α − β)π/2](ωτ)α+β

1 + 2cos(βπ/2)(ωτ)β + (ωτ)2β
(2.38)

E′′(ω) = (E∞ − E0)sin(απ/2)(ωτ)α + sin[(α − β)π/2](ωτ)α+β

1 + 2cos(βπ/2)(ωτ)β + (ωτ)2β
(2.39)

and

η(ω) = (E∞/E0 − 1){sin(απ/2)(ωτ)α + sin[(α − β)π/2]}(ωτ)α+β

1 + 2cos(βπ/2)(ωτ)β + (ωτ)2β + (E∞/E0 − 1){cos(απ/2)(ωτ)α + cos[(α − β)π/2](ωτ)α+β}
.

(2.40)
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Finally, some points should be highlighted concerning the effects of these five parameters and the

variations of complex modulus as outlined by Pritz [36]. From Eqs. 2.38 to 2.40, it can be seen

that storage modulus monotonically increases from E0, but does not have an upper limit. Both loss

modulus and loss factor curves increase after a slight decrease after the peak. The slope of both storage

and loss moduli curves is determined by the value of α − β. Furthermore, the low-frequency behavior

of loss modulus and loss factor curves is influenced by α, whereas the high-frequency one is affected

by β.

Figure 2.11 illustrates these effects for the absolute value of complex modulus, |E∗(ω)|, and loss

factor, η(ω). The following parameters were considered constant E0 = 104 Pa, E∞ = 106 Pa, τ = 10−8

s and α = 0.5, while parameter β varied from 0.05 to 0.45.
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Figure 2.11: Representation of the complex modulus of the five-parameter fractional derivative model.

2.6 Effects of time/frequency and temperature

The time/frequency and temperature dependencies of viscoelastic materials are crucial to char-

acterize their behavior as they can change drastically their mechanical response. Hence, this section

focus on the physical phenomena that influence these dependencies and how they lead to the general

behavior of these materials.
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2.6.1 General Aspects

The temperature dependence is a consequence of the microstructure of viscoelastic materials. In

the particular case of amorphous polymers, this microstructure is composed of entangled long chains

of molecules that, depending on the composition and temperature, can have different types of bonds

between themselves. In general, more cross-linked molecules indicate a higher strength of the material,

while less entangled molecules indicate a more viscous behavior.

Figure 2.12 illustrates the temperature dependence of a typical viscoelastic mechanical property.

At low temperatures, the amorphous regions of a polymer are in the glassy state. In this state, the

molecules are frozen in place: they may be able to vibrate slightly, but they do not have any segmental

motion in which portions of the molecule wiggle around. It makes the material usually hard, rigid, and

brittle. If the polymer is heated, it will eventually reach its glass transition. In this region, portions of

the molecules can start to wiggle around allowing some movement between chains, which, in turn, raise

the influence of viscous behavior. Note that the transition does not occur at a single temperature. As

the temperature increases, the polymer reaches its rubbery state. In this state, molecules easily slide

between each other, providing a soft movement and lowering the stiffness of the material. It makes

the material usually soft and flexible. If the temperature rises above the rubbery state, the material

can gradually transit to a liquid state, where there is no more entanglement between molecules, and

intermolecular bonds are weak.

Figure 2.12: Regions of viscoelastic behavior according to temperature changes.
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Another important feature is the time/frequency dependence. This dependency may have great

impacts on material properties. Its effects are similar to what happens with temperature changes.

Over long enough time periods, or small enough frequencies, the viscoelastic material becomes softer

and more fluid-like, passing through transitions, due to molecular arrangements.

Nevertheless, sometimes this effect may be almost undetectable depending on the time scale. A

way to verify its influence is through the dimensionless number known as Deborah Number [8, 13].

This number compares the time that the material takes to respond to an excitation and the time of

the experiment as defined in Eq. 2.41.

nD = τrex

τexp
(2.41)

where τrex is the time scale of the material rearrangements and τexp is the experimental time scale.

In Eq. 2.41, when nD → ∞, the relaxation time is much greater than the experimental time

leading to a pure elastic behavior. On the other hand, when nD → 0, the relaxation time is too low

in comparison to the experimental time leading to a pure viscous behavior. Indeed, a more fluid-

like material needs less time to flow than a solid-like material when subjected to the same loading

rate. When Deborah number is between these limits, the viscoelastic behavior emerges. Polymers, in

particular, have nD ≈ 1, being called as viscoelastic materials par excellence.

2.6.2 Thermorheologically simple materials

Viscoelastic materials are time (t) (or frequency (ω)) and temperature (T ) dependent. In this

regard, a viscoelastic function can be written according to both dependencies; for example, the relax-

ation modulus can be denoted by E(t, T ) instead of just E(t) as well as the complex modulus can be

represented by E∗(ω, T ) instead of E∗(ω). Therefore, in rheological studies, these dependencies may

need to be accounted for.

There is a special group of viscoelastic materials known as Thermo-rheologically Simple Materials

[37] that presents mechanical properties with particular temperature dependence. For them, all relax-

ation times have the same temperature dependence, i.e., time and temperature dependences can be

considered as the same phenomenon.

Changes in temperature stretch or shrink the effective time scale [8, 11]. In other words, changes
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in temperature cause relaxation modulus to be shifted to the right or left when plotted against time

(or frequency) on a log scale. But, the short-term E(t → 0) and the long-term E(t → ∞) of relaxation

modulus remain the same, regardless of temperature.

Such materials obey the Time-Temperature Superposition Principle (TTSP) [37] and can be ex-

perimentally identified through Cole-Cole [38] and Black [39] diagrams. These concepts are explained

in the next subsections.

2.6.2.1 Time-temperature superposition principle (TTSP)

Time-Temperature Superposition Principle (TTSP), also known as Method of Reduced Variables,

is an empirical principle that is valid for most polymers in the linear regime as well as in nonlinear

regime when close to their transition region. It classically determines that a single master curve that

covers many decades of time or frequency can be obtained by applying horizontal aT and vertical bT

shift factors to isotherms just above or below the reference temperature T0 [8, 9, 37].

The generated master curve enables one to have more information about material behavior than

the curves of the original data. They expand the available time range which is usually restricted due to

instrument limitations [40]. Hence, TTSP becomes an important procedure to predict the viscoelastic

behavior over a very long-time regime just by measuring it at a set of temperatures {T1, T2, ..., TN }.

From a molecular point of view [8, 40], TTSP implies that there is an equivalence between vis-

coelastic properties measured at a temperature T and time t, and those measured at a reference

temperature T0 and reduced time tR.

From the mathematical point of view, this principle is expressed as

E(t, T ) = bT E(tR, T0), (2.42)

where t is the time at which the material reaches a particular response at temperature T , tR =

t/aT (T, T0) is the reduced time, and aT and bT are the shift factors that depend on the material and

on T0.

Furthermore, this principle can also be expressed in the frequency domain by the use of Fourier

transform in Eq. 2.42. In this case, it is known as frequency-temperature superposition principle

(FTSP) [14]. Thus, Eq. 2.42 becomes
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E∗(ω, T ) = bT E∗(ωR, T0), (2.43)

where ωR = ω × aT (T, T0) is the reduced angular frequency in radians per second.

The horizontal shift factor aT describes the relationship between relaxation time and temperature

and is described by different models in literature [8, 41, 42]. For temperatures closer to glass transition

(Tg < T < Tg + 100 °C), one of the main models used is the empirical relationship known as the

Williams-Landel-Ferry (WLF) equation proposed by Williams et al. [43]. It assumes that the fractional

free volume of polymers increases with temperature, and it is defined as

log aT (T, T0) = − C1(T − T0)
C2 + (T − T0) , (2.44)

where T is the temperature in Kelvin and, C1 and C2 are empirical constants that depend on the

material and the reference temperature T0, which have an order of magnitude of 10 and 100K, respec-

tively [8]. When the reference temperature chosen for the analyses corresponds to the glass transition

one, C1 and C2 are the universal constants that Ferry has proposed and whose values are, respectively,

17.44 and 51.6 K [8].

The vertical shift factor bT , on the other hand, describes the thermal expansion effects of the

material, having a lower temperature dependence in comparison to the horizontal shift factor. It

is usually modeled through the Bueche-Rouse theory [44]. This theory assumes that the material

property is proportional to the product of the density ρ and the temperature T . As temperature

changes, the thermal expansion effects modify the density of the material. The vertical shift factor bT

is thus given by [41]

bT (T, T0) = T0ρ0
Tρ

, (2.45)

where ρ0 is the density at temperature T0.

To illustrate this idea of applying shift factors into isotherm curves, Fig. 2.13 shows the method-

ology behind this principle. The symbol E is adopted to denote any viscoelastic property. First,

experimental measurements are carried out, and the material property is determined as a function of

frequency at different temperatures (see Fig. 2.13a). Afterward, the horizontal shift factors aT are
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applied to the isotherm curves (see Fig. 2.13b). Finally, the vertical factors bT are applied to obtain

the final master curve (see Fig. 2.13c), which has a greater frequency window than the original curves.

(a) Isotherms: T2 > T0 > T1 (b) Horizontal Shifting aT

(c) Vertical Shifting bT

Figure 2.13: Time-Temperature Superposition Principle (TTSP) [2].

2.6.2.2 Cole-Cole and Black diagrams

In some cases, thermo-rheologically simplicity can not be expected such as if the material passes

through a phase transformation, if it burns or decomposes, if it has a multiplicity of relaxation mech-

anisms, or if it is composed by different phases with different temperature dependencies [11, 40]. Two

simple ways to check the validity of this assumption and the applicability of TTSP are through the

Cole-Cole Diagram [38] and the Black Space [39].

The so-called Cole-Cole Diagram is obtained by plotting the imaginary part of the material modulus

against the real one in a double logarithmic scale, for example, E′′(ω, T ) × E′(ω, T ). The Black Space

or Wicket Plot, on the other hand, is determined by plotting loss factor against modulus amplitude,

such as η(ω) × |E∗(ω, T )|.

In both diagrams, the hypothesis of thermo-rheological simple behavior is validated when all data

obtained at different frequencies and temperatures lie close to one single curve. As stated by Dae Han
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and Kim [38], these diagrams must fall on a continuous circular arc; in which a circular arc with a

particular shape is obtained for each temperature analyzed.

Furthermore, they can also identify the need for vertical shifting when a slight temperature de-

pendence is exhibited. In this situation, parallel isotherms are observed in the diagrams [2].
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Chapter 3

Model calibration & validation

This chapter aims to present theoretical aspects of the Bayesian framework for inverse problems
and model validation techniques, highlighting the important aspects related to this work and
its comprehension. It is organized as follows. Section 3.1 first defines an inverse problem and
then discusses its concepts from a Bayesian perspective. Section 3.2 deals with Markov chain
Monte Carlo techniques, which are commonly employed to solve a stochastic inverse problem,
and presents classical algorithms. Section 3.3 introduces the main concepts of model validation
techniques, focusing on the approaches adopted herein.
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3.1. PARAMETER ESTIMATION FROM A BAYESIAN PERSPECTIVE

3.1 Parameter estimation from a Bayesian perspective

Nowadays, the formalism of inverse problems is quite useful in engineering due to their capacity to

indirectly identify system parameters by analysing its response. According to Alifanov, ‘solution of an

inverse problem entails determining unknown causes based on observation of their effects’. This is in

contrast with direct problem where causes are given and the effects are unknown and to be determined.

Therefore, inverse problems techniques are powerful tools to determine initial conditions, boundary

conditions and other system parameters from a set of measurements [25, 26, 45].

Let us consider a mathematical model f , that is used to describe a physical system S, which has

a certain set of inputs x ∈ ℜNx and a set of measured outputs y ∈ ℜNy that may have noise. Also,

consider that the model f has a set of parameters θ ∈ ℜNθ that may be inaccurate. In other words,

model parameters may not be completely known. In this regard, the system’s measured response y

can be expressed as follows:

y = f(θ,x, e) (3.1)

where f : ℜNθ × ℜNx → ℜNy is the model mathematical operator and e ∈ ℜnx is related to model

inaccuracies and noise. The symbols Nx, Ny and Nθ denote the number of inputs (dimension of the

vector x), observables quantities (dimension of the vector y) and unknown parameters (dimension of

the vector θ), respectively.

The inverse problem consists of determining the set of parameters θ given the system’s measured

response y and the set of input variables x. That is, one would say that the objective of this kind of

problem is to find the most suitable unknown parameters θ which provide minimum distance between

measurement y and predictions f(θ,x) according to some metric previously defined by the user.

An important point is that inverse problems are often considered as ill-posed. They do not satisfy

any postulate of Hadamard [46]: the conditions of existence, uniqueness, and stability concerning the

input data. Besides, they are also considered to be non-local and\or non-causal, leading to abrupt

changes of its solutions by small variations on the data set [26].

Various numerical techniques are used to solve this kind of problem for parameter estimation [27].

One may cite, for instance, Tikhonov regularization, gradient-based methods, nonlinear regressions,
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and the Bayesian approach. The latter, however, presents some advantages over the classical methods,

mainly because it allows to add prior information about the set of parameters θ and to quantify the

uncertainties about them. For this reason, this statistical framework is adopted herein and its main

aspects are described in the next paragraphs.

In a Bayesian framework, all unknown quantities and measurements are considered as random

variables. The uncertainty about each random variable is modeled through its probability density

function (PDF), which describes the current state of knowledge or the prior on this parameter. Further,

the solution of the inverse problem is also modelled in terms of a PDF, called posterior distribution.

Henceforth, the following notation is used: π(θ) represents the PDF of a random variable θ, π(θ, y)

represents the joint PDF of the random variables θ and y, π(θ|y) represent the conditional PDF of θ

given y, and π(θ) represents the PDF of a random vector θ.

Therefore, the objective of the inverse problem through a Bayesian perspective is not anymore

the search for a set of unknown parameters θ but to extract all possible information about them

consistently with (i) the set of measured data y, (ii) the mathematical model f , and (iii) the information

about θ before the measurement acquisition. The problem thus tries to find a probability density

function for θ given the available data y.

From a mathematical point of view, the relation between the random variables y, θ and x relies

on Bayes’ theorem, also referred as Bayes’ theorem of inverse problems [25, 26], as

π(θ|y) = π(y|θ)π0(θ)
π(y) (3.2)

where π(θ|y) is the posterior probability density function of the model parameters, π(y|θ) is the

likelihood function, π0(θ) is the prior model adopted for the unknown parameters θ, and π(y) is the

probability density function of measured data y given by

π(y) =
∫︂

ℜNθ
π(θ,y)dθ. (3.3)

In practice, the marginal density π(y) is hardly available since it requires a large number of

experiments to get some information about it. Fortunately, this PDF plays the role of a scaling

constant and has often little influence [26]. Hence, Eq. 3.2 becomes
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π(θ|y) ∝ π(y|θ)π0(θ). (3.4)

Generally speaking, one would say that, from Eq. 3.4, the procedure to solve a Bayesian inverse

problem can be divided into three main steps. The first one is to estimate the prior PDF π0(θ) based

on all the knowledge of the parameters already obtained. The second one is to obtain a likelihood

function π(y|θ) which describes the relationship between model parameters and experimental data.

Finally, the third is to develop a method to obtain the posterior PDF π(θ|y).

Therefore, it becomes quite important to comprehend the components of Eq. 3.4 as they are the

base for solving inverse problems from a Bayesian perspective [25, 26].

3.1.1 Choice of the prior probability density function

One crucial step in this framework is the choice of the prior probability density function π0(θ),

which is often the most challenging endeavor as well. The major difficulty with finding an adequate

prior PDF lies in the essence of the prior information about the parameters θ.

In general terms, the prior PDF π0(θ) is the initial guess of parameter distribution, reflecting the

uncertainty related to the parameters θ. Indeed, it can be seen as a measure of the knowledge a priori

of the user on the parameters to identify.

The prior model may be built exploring all the information available about θ before measurements.

One often makes use of data from previous experiments, data from manufacturer catalogs, or empirical

data obtained from people working in the field. There are many possible choices to priors distribution

such as Gaussian, uniform, or chi-squared distributions [25, 26]. However, if there is no reliable

knowledge of the parameters, it is recommended to adopt a non-informative prior, i.e., a uniform

density distribution with its range encompassing all possible values.

3.1.2 Choice of the likelihood function

The most straightforward step in statistical inversion is often the choice of the likelihood function

π(y|θ). This function incorporates the knowledge about the model, the noise, and the modeling

uncertainties.

Generally speaking, the conditional PDF π(y|θ) is the likelihood of obtaining the results y given
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a set of parameters θ. It reflects the uncertainty related to the measured data y, and it can be seen

as a measure of the fidelity of the model to the measured data.

The specification of the likelihood function depends on the hypotheses about the distribution of

noise. Different formulations can be used to model it [26]. Assuming that the noise e is modeled as

an additive and considered to be iid, Eq. 3.1 can be rewritten as:

y = f(θ,x) + e, (3.5)

in which the expected value E[e] = 0 and the constant variance σ2 = E[(y − E[y])2].

Then, the likelihood function π(y|θ) can be expressed as follows

π(y|θ) = πnoise(y − f(θ,x)|θ) (3.6)

where πnoise(y − f(θ,x)|θ) is the probability density of the additive noise e evaluated in y − f(θ,x).

Furthermore, if one assumes that this additive noise follows, for example, a Gaussian distribution

with zero mean and a covariance matrix Σ such as

e ∼ N(0, Σ), (3.7)

the likelihood is expressed as [25, 26]

π(y|θ) = 1
(2π)Ny |Σ|1/2 exp

{︃
− 1

2[y − f(θ,x)]T Σ−1[y − f(θ,x)]
}︃

. (3.8)

Finally, the covariance matrix Σ can be defined as a diagonal covariance matrix such as

Σ =

⎡⎢⎢⎢⎢⎣
σ2

1 0 . . . 0
0 σ2

2 . . . 0
...

...
. . . 0

0 0 . . . σ2
Ny

⎤⎥⎥⎥⎥⎦ (3.9)

where σ2
i is the standard deviation of the ith set of measured data yi. Moreover, if one does not know

this deviation, it is possible to consider it as an additional random parameter to be estimated [25].
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3.1.3 Posterior probability density function and point estimates

The posterior probability density function π(θ|y) represents the probability of observing the pa-

rameters θ given the measured data y. Alternatively, it can be seen as the measure of knowledge

about the parameters θ after performing measurements to obtain y.

From this posterior PDF, one may readily compute some point estimates to define the most likely

values of the parameters θ based on concepts of mean, median, or mode. In this context, different

ways can be found in the literature based on Bayesian ideas. Among them, it is possible to highlight

three estimators: the maximum likelihood θ̂ML, the maximum a posteriori θ̂MAP and the mean of the

posterior distribution Eθ|y(θ) as described next.

The maximum likelihood (ML) θ̂ML is one of the most popular estimates. It is defined as the

parameter value that is most likely to create the measured data y given by

θ̂ML = arg max
θ∈ℜNθ

π(y|θ). (3.10)

The maximum a posteriori (MAP) θ̂MAP , also referred as posterior mode, is another popular

estimates. It is defined as the parameter value that maximizes the posterior PDF π(θ|y) such as

θ̂MAP = arg max
θ∈ℜNθ

π(θ|y). (3.11)

It should be pointed out that when the prior π0(θ) is defined by a uniform distribution, the

maximum a posteriori is equivalent to the maximum likelihood, i.e. θ̂MAP = θ̂ML. Also, both

estimators require the application of an optimization technique such as gradient-based methods.

Finally, the mean of the posterior distribution Eθ|y(θ) is another common point estimate defined

as

Eθ|y(θ) =
∫︂

ℜNθ
θπ(θ|y)dθ, (3.12)

for which one has to solve an integration on a high-dimensional space ℜNθ .

Nevertheless, a closed-form analytical expression for this posterior PDF is seldom available. The

mathematical operator f(θ,x) is often non-linear and this PDF π(θ|y) is defined in a high-dimensional

space. One of the most efficient ways to explore it is through sampling based techniques such as the

Markov Chain Monte Carlo Techniques (MCMC), which are adopted in this work. Their basics aspects
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are described in the next section. For more information, one may cite the reference books by Kim

et al. [47], Smith [25], Kaipio and Somersalo [26].

3.2 Markov chain monte carlo (MCMC) techniques

Markov Chain Monte Carlo (MCMC) techniques are general computational approaches that have

been widely employed in different areas to explore the posterior probability function based on the

ideas of Monte Carlo integration and Markov chains. They are considered to be conceptually simple,

easy to be implemented, and explore more efficiently the whole space of parameters when dealing with

large dimensions [25, 26].

Markov chains are sequences of S-valued random variables that satisfy the Markov property which

states that the probability of future states only depends on the present state. They are stochastic

processes such that the past and future states are independent of each other. Further, they are

described by three elements: a state-space S, an initial distribution, and a transition or Markov kernel

[25].

The central idea behind MCMC is to design a Markov chain θ = {θ(1),θ(2), ...,θ(M)} whose

stationary distribution is exactly the one that we are interested in sampling from, often referred as

target distribution π(θ). The samples are generated sequentially so that the sample distribution θ(j)

depends only on the last generated sample θ(j−1).

When dealing with inverse problems, the target distribution is the posterior probability density

function, i.e. π(θ) = π(θ|y), which can always be approximated by the method regardless of how it is

initialized. However, depending on initialization, the method can present a transient behavior before

converging to the solution. Hence, the influence of this transient period should be eliminated from the

Markov chain by removing the initial samples, which is also called as burn-in period.

The Markov chain generated {θ(1),θ(2), ...,θ(M)} is considered to be homogeneous, irreducible and

aperiodic. From this chain, it is thus possible to determine any statistical parameter according to the

interest of the researcher, such as, for example, mean, variance, kurtosis.

There are several MCMC methods to achieve this goal. The main differences between them are

associated with convergence rates and also with the acceptance rate of the Markov chain [26]. The

basic aspects and implementation characteristics of some classical algorithms are presented next.
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3.2.1 Metropolis-Hastings (MH)

One of the simplest and most used algorithm to solve inverse problems within the Bayesian ap-

proach is the Metropolis-Hastings (MH) algorithm proposed by Metropolis et al. [48] and modified by

Hastings [49].

The method starts with an initial sample θ(0) which is used to generate a candidate θ(∗) from a

proposal distribution π(θ(∗)|θ(j−1)), which can be symmetric such as π(θ(∗)|θ(j−1)) = π(θ(j−1)|θ(∗))

or nonsymmetric. Afterwards, the candidate θ(∗) is accepted or rejected with probability equal to

Hastings ratio such as

αMH = min

{︃
1,

π(θ(∗)|y) π(θ(j−1)|θ(∗))
π(θ(j−1)|y) π(θ(∗)|θ(j−1))

}︃
, (3.13)

where π(θ(i)|y) is the target distribution as shown in Eq. 3.2.

To decide if the candidate is accepted or not, the probability αMH is compared with another

random sample value u generated from a uniform distribution on the set [0, 1]. If u < αMH , the

sample is accepted, becoming the new value of the chain θ(j) = θ(∗). However, if u > αMH , the

candidate is rejected and so, the value of the chain is thus not modified θ(j) = θ(j−1). It is important

to notice that, if the parameter αMH ≥ 1, the procedure always accepts the proposal, but if αMH < 1,

there is still a chance to the value be accepted. This property of accepting better cases and occasionally

worst cases ensures that the chain will converge to the values where the likelihood has high density,

but it will still visit the whole state space.

Another important point is the choice of the proposal function since it affects the exploration of

the parameter space and the convergence of the algorithm. A small step-size in the proposal transition

yields a poor exploration of the parameter space and slow convergence. A large step-size, on the other

hand, can lead to low acceptance rates, which indicates that the chain moves slowly and can sometimes

stagnate. The acceptance rate must be thus verified over the sampling process in order to ensure that

convergence is achieved. Reasonable values of acceptance ratio are within 0.1 and 0.5 [25].

Algorithm 1 summarizes the classical formulation of Metropolis-Hastings algorithm [25, 26].
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Algorithm 1 Metropolis-Hastings Algorithm

1: Set the number of chain elements M
2: Determine the initial sample θ(0) and the initial covariance matrix Σ0
3: for j = 1 to M do
4: Sample a candidate θ(∗) from a proposal distribution π(θ(∗)|θ(j−1))
5: Sample a random number u from a uniform distribution: u ∼ U(0, 1)
6: Calculate the acceptance ratio αMH given by Eq. 3.13
7: if u < α(θ(∗)|θ(j−1)) then

8: accept θ(∗) and set θ(j) = θ(∗)

9: else
10: reject θ(∗) and set θ(j) = θ(j−1)

11: end if
12: end for

3.2.2 Delayed rejection adaptive metropolis (DRAM)

One of the main concerns of Metropolis-Hastings algorithm is related to convergence rates. Regard-

less the choice of the proposal distribution function, the method does not incorporate any additional

information during the sampling process and chain generation. This may lead to slow convergence

rate and a high computational cost.

Bearing this in mind, Haario et al. [50] proposed the Delayed Rejection Adaptive Metropolis

(DRAM) algorithm aiming at improving the efficiency of MCMC methods. It combines the main

characteristics of the Adaptive Metropolis (AM) [51] and Delayed Rejection (DR) [52] algorithms,

while retaining the Markovian property and reversibility of the Markov chains.

The basic aspects of the AM, DR and DRAM algorithms are thus detailed in the next subsections.

3.2.2.1 Adaptive metropolis (AM)

The Adaptive Metropolis (AM) algorithm proposed by Haario et al. [51] is the first adaptive MCMC

algorithm. It aims to adapt the Gaussian proposal distribution function considering the sample path

of the Markov chain. Somehow, it tries to overcome an issue of the method as one has to build a

proposal PDF based on the support domain and the dimension of the target PDF which are not yet

known before the inference process.

The basic idea behind the AM algorithm is to tune the covariance matrix Σ of the proposal PDF

based on the past states of the chain {θ(j−k), ...,θ(j−1),θ(j)} that have already been accepted in the

MH algorithm. This approach, however, affects the Markovian properties of the chain, only keeping

103



3.2. MARKOV CHAIN MONTE CARLO (MCMC) TECHNIQUES

the ergodicity properties of the samples [51].

The updating routine is quite straightforward. A strictly positive definite initial covariance matrix

Σ0 is chosen based on the prior knowledge. During an initial non-adaptative period denoted by j0,

this covariance matrix held constant is used to compute the states of the chain so that Σ = Σ0. After

this period, the covariance matrix Σ is updated considering the past states of the chain such as

Σj = spcov(θ0,θ1, ...,θj−1) + ϵIp, (3.14)

where sp is a scale factor related to the dimension p of the parameter space, ϵ ≥ 0 is a constant value

that may be small, and Ip denotes the p-dimensional identity matrix. The scale factor sp is often taken

to be sp = 2.382/p. According to Gelman et al. [53], this value can optimize the mixing properties of

MH when dealing with Gaussian distributions. Furthermore, the term ϵIp ensures that Σj is positive

definite and for many practical cases, one often sets ϵ = 0.

A recursive formula can be used to estimate this updated covariance matrix in order to reduce the

computational cost [25, 50]. Therefore, Eq. 3.14 becomes

Σj+1 = j − 1
j

Σj + sp

j
[jθ(j−1)(θ(j−1))T − (j + 1)θ(j)(θ(j))T + θ(j)(θ(j))T + ϵIp] (3.15)

where θ
(j+1)

is the sample mean computed recursively such as

θ
(j+1) = j

j + 1θ
(j) + 1

j + 1θ
(j). (3.16)

It is worthwhile mentioning that this algorithm can be improved if adaptation period occurs at

prescribed intervals of length j0.

3.2.2.2 Delayed rejection (DR)

The Delayed Rejection (DR) algorithm aims to improve the efficiency of MCMC estimates regard-

ing asymptotic variance ordering. It proposes a strategy to build a sequence of alternative candidates

θ(∗n), n = 1,..., ns, if the first generate candidate θ(∗1) is rejected. As the acceptance probability of

this new stage candidate is estimated, the reversibility of the Markov chain is kept.

This process of delaying rejection can be performed for a fixed or random number of stages (ns)
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working on an iterative process. In doing so, however, one may increase significantly the computational

time. For instance, Mira [52] and Haario et al. [50] both propose 3 stages (ns = 3), whereas Smith

[25] proposes 2 stages (ns = 2). According to Haario et al. [50], the first stage enables a more global

exploration.

As a result, the DR algorithm acts as a partial local adaptation of the proposal. It maintains the

Markovian properties and reversibility in each new state of the Markov chain [50, 52].

The method is quite straightforward. It takes into account the first probability of acceptance α1

corresponding to the MH process according to Eq. 3.13. If the first candidate θ(∗1) is rejected, a

second one θ(∗2) is thus sampled from a second proposal distribution π2(θ(∗2)|θ(j−1),θ(∗1)) and a new

acceptance probability is calculated as follows

α2(θ(∗2)|θ(j−1),θ(∗1)) =

min

{︃
1,

π(θ(∗2)|y)π(θ(∗1)|θ(∗2))π2(θ(j−1)|θ(∗2),θ(∗1))[1 − αMH(θ∗1|θ(∗2))]
π(θ(j−1)|y)π(θ(∗1)|θ(j−1))π2(θ(∗2)|θ(j−1),θ(∗1))[1 − αMH(θ∗1|θ(j−1))]

}︃
.

(3.17)

If this second candidate θ(∗2) is rejected, the iterative process can be stopped keeping the current

state θ(j) = θ(j−1) or can compute a third new stage. The recursive relations to construct the

candidates θ(∗i) and the corresponding probabilities αi(θ(∗i), ...,θ(∗),θ(j−1)) can be found in the works

of Mira [52] and Haario et al. [51].

Finally, some points should be noted. This algorithm ensures a smaller rejection rate as a result

of the smaller asymptotic variance of the samples of the chain. The proposal PDF, for the jth stage,

may be calculated according to

πr(θ(∗r)|θ(j−1),θ(∗r−1)) ∼ N(θj−1, γr
sΣj−1

r ), (3.18)

where γs < 1 is the shrinkage factor which increases mixing. for example, Haario et al. [50] consider

γs = 1
10 and Smith [25] consider γs = 1

5 . Further, the covariance matrix Σr shown in Eq. 3.18 can be

updated following some adaptive algorithm such as AM.
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3.2.2.3 DRAM: AM + DR

DRAM algorithm combines the two complementary approaches DR and AM to modify the proposal

function aiming at increasing the convergence rate of the stationary PDF and improving the acceptance

ratio. DR method consists of a mechanism to modify the proposal PDF aiming at improving mixing,

leading to temporary modifications. AMmethod, on the other hand, is addressed to adapt the proposal

PDF using the information learned about the posterior, which results in permanent changes.

Algorithm 2 summarizes the classical formulation of Delayed Rejection Adaptive Metropolis method

[25, 26].

Algorithm 2 Delayed Rejection Adaptive Metropolis Algorithm

1: Set the number of chain elements M
2: Determine the initial sample θ(0) and the initial covariance matrix Σ0
3: for j = 1 to M do
4: Sample a candidate θ(∗) from a proposal distribution π(θ(∗)|θ(j−1))
5: Sample a random number u from a uniform distribution: u ∼ U(0, 1)
6: Calculate the acceptance ratio αMH given by Eq. 3.13
7: if u < α(θ(∗)|θ(j−1)) then

8: accept θ(∗) and set θ(j) = θ(∗)

9: else
10: Sample a second candidate θ(∗2) from a proposal distribution π2(θ(∗2)|θ(j−1),θ(∗))
11: Sample a random number u from a uniform distribution: u ∼ U(0, 1)
12: Calculate the acceptance ratio α2 given by Eq. 3.17
13: if u < α2(θ(∗2)|θ(j−1),θ(∗)) then

14: accept θ(∗2) and set θ(j) = θ(∗2)

15: else
16: reject θ(∗2) and set θ(j) = θ(j−1)

17: end if
18: end if
19: if j > j0 then
20: update the covariance matrix Σj given by Eq. 3.14
21: else
22: Σj = Σj−1
23: end if
24: end for

3.3 Model Validation

The process of model calibration alone cannot guarantee the accuracy of prediction when the system

is submitted to different scenarios and conditions, regardless of the calibration technique adopted [20].

Efforts shall be made to validate the calibrated models. In this context, the field of verification and
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validation (V&V) [54, 55] appeared to study and quantify how accurate a model prediction is to the

actual system behavior.

Comprehensive information about the verification and validation (V&V) field applied to the anal-

ysis of computational models can be found in the reports by AIAA [54] and by ASME [55] and in the

reference book of [56]. According to Borges et al. [20], V&V comprises seven steps as:

1. enlightening position on the use of the model;

2. experiment design and measurement;

3. model calibration based on parameter estimation;

4. judgment of the model predictions based on new experimental data;

5. judgment of the model predictions in an environment which provides data more complex than

the one used in the process of model calibration;

6. make model improvements depending on the results obtained in item 5;

7. going back to item 3 depending on the results obtained in items 5 and 6.

Within a V&V program, it is clear that model calibration is one of the main steps, and another

main point is related to the analysis of the predictive capacity of the model. This assessment is done

employing model validation techniques.

Model validation is a process of determining the degree to which a model is an accurate representa-

tion of the real world from the perspectives of the intended uses of the model [54, 57]. In other words,

model validation aims at evaluating the predictive capability of a numerical model for its intended use

[55].

This process of judging the model accuracy is accomplished by performing quantitative comparisons

between experimental data and model predictions for a scenario different from the one used for model

calibration. According to Schwer [58], three basic elements of validation assessment are:

1. items to be compared;

2. manner in which to make the comparison;
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3. determination of accuracy;

in which these last two items are often done through validation metrics.

Generally speaking, validation metrics provide a mathematical measure of the agreement between

numerical simulations and experimental measurements. They often estimate the difference between

these two results in a way that zero is achieved if they are equivalent. Furthermore, they should

incorporate the uncertainties associated with the numerical and experimental outcomes to better

evaluate the confidence level of the model.

In this context, the formulation and assessment of validation metrics have been attracted to the

focus of many kinds of research. Indeed, several metrics applied to different applications can be

found in literature such as [12, 14, 20, 29, 57–61], to cite a few. A typical one, for example, is a

quantification metric that is defined as the magnitude of the difference between the experimental and

numerical outcomes normalized by dividing this difference by measurement.

Concerning the uncertainties, Oberkampf and Barone [57] pointed out that a functional form of

the metric is not absolute, nor unique, and so, both measurement and model uncertainties should

be included to evaluate the reliability of model predictions. They can be classified either as random

variables or unknown quantities. In the context of the present work, uncertainties are considered to

be random variables.

3.4 Uncertainty quantification and propagation throughMonte Carlo method

Uncertainty quantification and propagation evaluate the impact of uncertainties of a set of param-

eters ψ ∈ ℜNp on the system’s response y ∈ ℜNy . It increases the confidence level of the predictions

as well as better estimations of risks related to specific design choices.

In general terms, uncertainty quantification (UQ) is an inverse analysis that consists of analytically

or numerically measuring uncertainties over a set of parameters ψ according to the available data of a

system and its error. Such quantification can be done either in the form of error bounds or probability

distribution functions. Uncertainty propagation (UP), on the other hand, is a forward study that

consists of mapping the uncertainty in the parameters ψ to uncertainty on the model predictions y

[62].
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Within a Bayesian perspective, the uncertainties of a set of parameters ψ are modeled as random

variables, and as a result, they are described by a PDF π(ψ). Hence, all informations about the

uncertainties of model predictions can be extracted from the joint PDF π(y,ψ) as follows

π(y) =
∫︂

Dψ

π(y,ψ)dψ =
∫︂

Dψ

π(y|ψ)π(ψ)dψ. (3.19)

However, as can be seen in Eq. 3.19, one has to compute a multidimensional integral to assess the

uncertainties, which is a difficult task to use conventional integration methods. Accordingly, sampling

techniques such as Monte Carlo (MC) are commonly employed as they can provide a simpler and more

robust solution.

The Monte Carlo method is a step-wise procedure. First, a certain number of samples ns are drawn

from a PDF that describes the informations about the parameters ψ(ns). Then, the deterministic

problem is calculated using each one of these drafted samples, leading to ns model predictions. Finally,

from the PDFs of the outputs, one may be able to compute all statistics such as the expected value

and the variance, respectively, expressed in Eqs. 3.20a and 3.20b.

E[y] = 1
ns

ns∑︂
r=1

yr, (3.20a)

V[y] =
ns∑︂

r=1

(yr − E[y])2

ns − 1 . (3.20b)

This approach enables one to have, in a simple way, a much richer knowledge of a system’s response,

only requiring the solutions of a deterministic model. Besides, the propagation of the PDFs from input

quantities through the model leads to a PDF for its response.

Furthermore, it is important to emphasize that the solution obtained is an approximation of the

desired response, as only an infinite amount of simulations would provide a perfect PDF. Hence, pre-

cision depends on the number of samples considered, and convergence criteria need to be implemented

to evaluate the minimum number of samples which guarantees that the method produces a stable

solution.
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Introduction

Dynamic Mechanical Analysis (DMA) has become a powerful technique in the field of rheology by

enabling one to identify and characterize the material’s properties primarily as a function of tempera-

ture and frequency. It often provides more information about the material’s behavior than techniques

based solely on static tests [16].

In this regard, DMA has become widely used in several areas to study the various aspects of a

material. The traditional applications are concerned with the identification of thermal transitions and

how some parameters affect the material’s behavior [5, 63–75], to mention a few. Recently, the use of

DMA has been expanded to other research areas such as crack healing [76], the spatial distribution of

material properties [77], and mechanical properties of heterogeneous materials [78, 79].

Despite the vast range of applications and its potential, the absolute values of the modulus and

temperatures related to phase transitions are well-known to show divergences between samples, loading

clamps and testing parameters [18, 67, 69, 80–93]. Difficulty in correlating DMA measurements to

other experimental techniques have also been reported in literature [18, 67, 87, 94–98].

For these reasons, some standards suggest that the generated data only indicates relative values

according to Lee-Sullivan and Dykeman [82]. Also, DMA results are often referred to as valuable

only for purposes of quality control, research, development, and establishment of optimum processing

conditions as reported by Deng et al. [87].

Few researches in the literature, however, explore these divergences. Mathematical formulations

for estimating the complex modulus in each operational mode are usually not examined. Parametric

studies, therefore, are also not done. Furthermore, the differences inherent to different commercial

equipment are also not commonly investigated.

Aiming to fill this gap, this second part of the thesis is dedicated to the study of the complex
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modulus measured by the flexural modes (single and dual cantilever, and three-point bending) existing

in three DMA equipment. It is divided into two chapters.

The first chapter evaluates theoretically and experimentally the effects of both operational modes

and machines on the complex modulus. First, a theoretical study is carried out about this tech-

nique, focusing on the mechanisms of each test and the mathematical formulations proposed by each

equipment. Then, experimental tests are carried out to assess the temperature-dependent complex

modulus. Special attention is given to the reproducibility and repeatability of the tests. Next, a

parametric study is carried out to analyze the impacts that are caused by the different formulations

and hypotheses adopted. After that, more experimental tests are performed, but this time to evaluate

the frequency and temperature-dependent complex modulus. Special efforts are devoted to generating

the experimental master curves to study long-term behavior identified by the different tests.

The second chapter aims to calibrate fractional derivative models through the Bayesian approach

to evaluate the impact of experimental uncertainties identified in the preceding chapter on the predic-

tions of numerical models. First, the methodology adopted is briefly described. Then, the constitutive

model is presented, giving the justification for its choice. Afterward, the results of the calibration

procedure are discussed. The effects of different data-sets are studied.

Objectives of Part II

To sum up, the main objectives of the second part of this thesis regarding the characterization
technique DMA are:

� gather the mathematical formulations of complex modulus adopted by different DMA
manufacturers;

� investigate the effects of the flexural modes and testing equipment on the measurements;

� analyze the reproducibility and repeatability of the tests;

� study the long-term behavior;

� calibrate fractional derivative models through Bayesian approach to assess the impacts of
the experimental variability on model predictions.
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Chapter 4

Complex modulus provided by dynamic
mechanical analyzer (DMA)

This chapter consists of an investigation of the complex modulus measured by a dynamic me-
chanical analyzer (DMA). The main objective is to assess the impacts of different flexural modes
and testing equipment on the estimates of this viscoelastic property.
It is organized as follows. First, Section 4.1 provides a discussion of the DMA principles and
the mathematical formulation of each mode provided by each DMA machine. Then, Section
4.2 describes the experimental apparatus design in detail. Next, Section 4.3 presents the first
case study concerning these effects on the temperature-dependent complex modulus (Henriques
et al. [17]). Afterward, Section 4.4 discusses the second case study concerning these effects on
the long-term behavior (Henriques et al. [99]). Finally, Section 4.5 outlines the main conclusions
drawn from these studies.
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4.1. FUNDAMENTALS

4.1 Fundamentals

This section introduces the theoretical aspects related to the DMA technique and the complex

modulus estimated by it.

4.1.1 DMA principles

The DMA operation mechanism consists of applying a sinusoidal force to a sample and measuring

its deformation, or applying a sinusoidal deformation and measuring its force, or even applying a

constant force/deformation and measuring its creep/relaxation modulus. The material’s response can

be characterized as a function of temperature, frequency, time, stress, or a combination of these control

parameters, depending on the intended use of the material. Based on these measurements, DMA can

determine some material’s properties [16, 87].

The material modulus reported over the test is a complex quantity that enables one to better

analyze the material’s behavior, as explained in Section 2.3. It may represent shear, tensile or flexural

modulus, depending on the chosen operational mode.

It is worthwhile mentioning that the complex modulus measured in DMA is not the same as

Young’s modulus of the classic Hooke’s law from the theory of elasticity. When testing an elastic

material under a uniaxial state of stresses, Young’s modulus is estimated by the computation of the

slope of a stress-strain curve in the linear region. As for the complex modulus of a viscoelastic material,

when a uniaxial state of stresses holds, its estimation demands the material’s response to an oscillatory

excitation [16].

4.1.2 Mathematical formulation for complex modulus

First, let’s consider that a sample is being tested in a mode such that the uniaxial stress state

holds. Second, let’s consider the use of dynamic stress to deform a sample, i.e., sinusoidal stress

is being applied to a sample and its deformation is being measured. This oscillatory stress can be

expressed as

σ(t) = σ0 sin(ωt), (4.1)

with σ0 as the amplitude. Consequently, the strain history ε(t) can be given by
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ε(t) = ε0 sin(ωt + δ), (4.2)

with ε0 as the amplitude of the strain history and δ as the phase angle between the applied stress σ(t)

and the response ε(t). Figure 4.1 shows the oscillatory stress and the strain response.

The one-dimensional stress-strain relation in the frequency domain is thus given by [9]

σ̃(ω) = E∗(ω)ε̃(ω) (4.3)

where E∗(ω) is the complex modulus defined in Eq. 2.11.

σ
,ε

  

 

t  

δ σ(t)  
ε(t)  

Figure 4.1: Stress σ(t) and strain ε(t) curves as function of time t of a linearly viscoelastic material
under a dynamic loading.

From the measurements of the force, the displacement, and the phase angle, DMA determines each

component of the complex modulus. This estimate also depends on the sample geometry, operational

mode, and boundary conditions. As one seeks to analyze and scrutinize the estimates provided by

DMA, it is required to describe the physical mechanism and the mathematical formulation associated

with each operational mode.

Nevertheless, many works reported differences between operational modes, indicating some incon-

sistencies regarding complex modulus estimates. It can be problematic for standardization, especially

on modes that should provide estimates for the same material property. In this regard, single can-

tilever, dual cantilever, and three-point bending modes are of special importance as they are the
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bending clamps in DMA, measuring thus flexural modulus. In this work, these three modes are

chosen to be analyzed.

Single cantilever (hereinafter referred to as SC) mode consists of a sample anchored on one end

by a stationary clamp and attached to a moveable clamp on the other one. Through this moveable

clamp, a controlled force is applied by the motor. In this mode, it is important to emphasize that

the span (S) between these two clamps may vary as the moveable clamp can present a minor lateral

movement, and as a result, it should be measured before each test. The basic characteristics of this

mode as well as the equivalent mechanical model are represented in Fig. 4.2.

(a) Test mechanism

F

S w
t

(b) Mechanical Model

Figure 4.2: Single Cantilever (SC) mode.

Dual cantilever (hereinafter referred to as DC) mode, in turn, consists of a sample anchored on

both ends by stationary clamps. The moveable clamp, which applies the motor force, is placed at

the midpoint of the sample. The span (S) is now fixed and considered as the distance between the

fixed clamps. Fig. 4.3 shows the mechanism and the equivalent mechanical model for this operational

mode.

In both SC and DC modes, the sample is fixed in the apparatus (more precisely, in both ends

and the middle for DC, and both ends for SC) and so, it is usually considered not to deform in this

clamped region. Nevertheless, it seems that this condition is never achieved in practice. DMA samples

often have their ends deformed after tests due to clamping in SC and DC modes. The clamping ends

introduce shear deformation to the sample and so, this effect should be taken into account when

elaborating strategies to compute the material modulus.

Finally, three-point bending (hereinafter referred to as 3PT) mode consists of a sample that is
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(a) Test mechanism

F

S

w
t

(b) Mechanical Model

Figure 4.3: Dual Cantilever (DC) mode.

only supported at both ends by stationary clamps, as shown in Fig. 4.4. The controlled force is

applied at the midspan through the moveable clamp, and the span (L) is fixed being considered as

the distance between the supports. But, unlike SC and DC modes, the sample is free to move as it is

only supported. Additionally, this mode is often considered as a pure mode of deformation because

there is no clamping effect.

(a) Test mechanism

S

FF
w

t

S

(b) Mechanical Model

Figure 4.4: Three-point bending (3PT) mode.

Concerning the process of building mechanical models for the operational modes, one must rely

on the theory of linear elasticity [100] and the theory of linear viscoelasticity [9]. The model complex-

ity may vary from one dimensional to three-dimensional formulations depending on the hypotheses

adopted, which should reflect both the physical conditions of the mechanical apparatus and the phys-

ical behavior of the sample during the tests.

As for the DMA manufacturers, they also adopt some hypotheses that are appropriate to their
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equipment and the model formulation is implicitly written within their software that is used to provide

estimates for the modulus. In this work, three DMA machines that are commonly found in the market

were used, namely: PerkinElmer 8000, TA Q800, and Netzsch 242 E Artemis. Each manufacturer

presents its unique characteristics.

Regarding the mathematical formulation of these three modes, PerkinElmer 8000 (hereinafter

referred to as PE) considers a small shear correction taking into account a constant Poisson’s ratio.

This constant Poisson’s ratio is considered to be between ν = 0.33 and ν = 0.5 as these values

are commonly related to, respectively, the glassy region and the rubbery region. In this work, it is

considered ν = 0.35. Hence, the absolute value of complex modulus is determined for SC, DC, and

3PT modes through Eqs. 4.4, 4.5 and 4.6 as shown below.

|E∗
SC(ω)|P E = Ks

S3

12I

[︄
1 + 2.9

(︃
t

S

)︃2
]︄

, (4.4)

|E∗
DC(ω)|P E = Ks

l3

24I

[︄
1 + 2.9

(︃
t

l

)︃2
]︄

, (4.5)

|E∗
3P T (ω)|P E = Ks

S3

48I

[︄
1 + 2.9

(︃
t

S

)︃2
]︄

, (4.6)

where Ks is the measured stiffness given by the ratio between the force applied to the sample (F ) and

the displacement amplitude (a), l is the distance between the fixed clamp and the moveable clamp, S

is the total span, I is the inertia moment, and t is the sample’s thickness.

DMA TA Q800 (hereinafter referred to as TA) also assumes a shear correction based on a constant

Poisson’s ratio. In this work, it is assumed a constant value of ν = 0.35 as adopted in the PE

machine. Additionally, TA introduces an extra term called clamping correction factor (Fc) to consider

the deformation of the sample within the clamped regions in both SC and DC modes. Therefore, the

absolute value of complex modulus for SC, DC, and 3PT modes can be estimated, respectively, by

Eqs. 4.7, 4.8 and 4.9 as shown next.

|E∗
SC(ω)|T A = 1

Fc
Ks

S3

12I

[︄
1 + 2.4(1 + ν)

(︃
t

S

)︃2
]︄

, (4.7)

|E∗
DC(ω)|T A = 1

Fc
Ks

S3

24I

[︄
1 + 2.4(1 + ν)

(︃2t

S

)︃2
]︄

, (4.8)
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|E∗
3P T (ω)|T A = Ks

S3
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[︄
1 + 0.6(1 + ν)

(︃2t

S

)︃2
]︄

, (4.9)

where ν is the Poisson’s ratio. The clamping correction factor Fc is determined through Eq. 4.10 and

is shown in Fig. 4.5 as a function of S/t. Note that the influence of this term in the absolute value of

complex modulus can vary depending on the value of S/t: as S/t increases, Fc reaches an asymptotic

value between 0.9 and 1.

Fc = 0.7616 − 0.02719
√︄(︃

S

t

)︃
+ 0.1083 ln

(︃
S

t

)︃
. (4.10)
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Figure 4.5: Clamping Correction Factor Fc for some values of L/t

Finally, the mathematical formulation of Netzsch 242 E Artemis (hereinafter referred to as NET)

does not take into account the influence of Poisson’s ratio in the modulus. It formulates the absolute

value of complex modulus for SC, DC, and 3PT modes, respectively, as shown in Eqs. 4.11, 4.12 and

4.13.

|E∗
SC(ω)|NET = F

a

S3

12I
, (4.11)

|E∗
DC(ω)|NET = F

a

S3

192I
, (4.12)
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|E∗
3P T (ω)|NET = F

a

S3

48I
. (4.13)

4.2 Experimental set-up

This section is devoted to detail all the experimental set-up adopted in this work to measure the

complex modulus.

4.2.1 Description of testing equipments

As previously mentioned, three DMA machines from different manufacturers were used herein to

perform dynamic tests to measure the complex modulus E∗(ω) of a viscoelastic material: PerkinElmer

8000 (PE), TA Q800 (TA), and Netzsch 242 E Artemis (NET). They were available, respectively, at

Laboratório de Acústica e Vibrações (LAVI), Instituto de Macromoléculas Professora Eloisa Mano

(IMA) and Laboratório de Processamento e Caracterização de Materiais (LPCM) of UFRJ.

These machines are all made of four basic components: force motor, displacement sensor, sample

holder, and furnace, as shown in Figs. 4.6-4.8. Force motor provides the control of all forces required to

the sample. The displacement sensor is the detection system, and it tracks any changes in the sample.

In TA, it consists of a high resolution linear optical encoder. In PE and NET, on the other hand,

it consists of an LVDT system. Sample holders enable one to perform different modes of operation.

The clamps have a high stiffness to minimize the compliance, and they also have a low mass for

fast temperature equilibration. The furnace provides temperature control during the tests. In TA and

NET, it is an automatic furnace. In PE, it is a manual one. The main difference between an automatic

and a manual furnace is the setup time.

(a) Machine
(b) Components

Figure 4.6: Photograph of DMA PerkinElmer 8000.
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(a) Machine (b) Components

Figure 4.7: Photograph of DMA TA Q800.

(a) Machine
(b) Components

Figure 4.8: Photograph of DMA Netzsch 242 E Artemis.

Finally, Tab. 4.1 presents a comparison of the operational range of each DMA machine used in

this work.
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Table 4.1: Technical characteristics of each DMA machine.

Characteristics NET PE 8000 TA Q800

Temperature Range [°C] -170 to 600 -190 to 400 -150 to 600
Heating Scanning Range [°C/min] 0.01 to 20 0 to 20 0.1 to 20
Frequency Range [Hz] 0.01 to 100 0 to 600 0.01 to 200
Frequency Resolution [Hz] 0.001
Displacement Range [µm] ±240 ±1000 ±0.5 to 10000
Displacement Resolution [µm] 0.0005 0.001 0.001
Force Range [N] 24 ±10 ±18
Force Resolution [N] 0.0005 0.002 0.00001

4.2.2 Material and samples manufacture

An epoxy resin (ER) based on bisphenol A, whose trade name is Araldite LY 1564 BR, was

purchased from Maxepoxi (São Paulo, Brazil). This ER has an epoxide equivalent weight of 161-173

g/eq and a viscosity at 25 °C of 1200-1400 mPa.s. The curing agent based on cycloaliphatic amines,

whose trade name is Aradur 2963 BR, was also purchased from Maxepoxi (São Paulo, Brazil). It has

a density of 1 g/cm3 and a viscosity at 25 °C of 30-70 mPa.s.

Two batches of material, one for each case study, were prepared strictly following the same pro-

cedure. The epoxy resin and the curing agent were first mixed in a stoichiometric proportion of 48

phr related to the ER as indicated by the manufacturer, aiming at providing the best mechanical

performance. Then, the system was put on an ultrasonic bath for 15 min to reduce air bubbles. Af-

terward, the mixture was poured in silicone rubber molds with appropriate dimensions and cured at

room temperature for 24 h. A post-curing step was carried out at 60 °C for 8 h. Finally, the samples

were demolded and superficially sanded in both sides using super fine sandpaper to remove superficial

defects and to meet the required dimensions.

Samples’ dimensions varied according to DMA machine and case study as shown on Tables 4.2 and

4.3, where L is the sample’s length, w is the width and t is the thickness. It is noteworthy that two

sets of samples with different geometries were manufactured for tests performed using the PE machine

in the first case study. Furthermore, they were all stored under the same conditions before testing to

certify that the results can be comparable.
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Table 4.2: Samples’ dimensions for the first case study, where L is the sample’s length, w is the width
and t is the thickness.

DMA Mode L [mm] w [mm] t [mm]

PE - Set 1
SC 35.00 ±0.05 12.29 ±0.04 3.20 ±0.01
DC 52.50 ±0.05 10.04 ±0.15 3.21 ±0.01
3PT 52.50 ±0.05 10.16 ±0.04 3.20 ±0.01

PE - Set 2
SC 25.0 ±0.05 7.02 ±0.08 1.93 ±0.09
DC 50.00 ±0.05 6.89 ±0.01 2.06 ±0.04
3PT 50.00 ±0.05 6.93 ±0.08 2.02 ±0.01

TA
SC 35.00 ±0.05 12.47 ±0.02 3.20 ±0.01
DC 60.00 ±0.05 11.91 ±0.03 3.20 ±0.02
3PT 60.00 ±0.05 12.27 ±0.07 3.23 ±0.06

NET 3PT 60.00 ±0.05 9.88 ±0.14 3.16 ±0.01

Table 4.3: Samples’ dimensions for the second case study, where L is the sample’s length, w is the
width and t is the thickness.

DMA Mode L [mm] w [mm] t [mm]

PE
SC 25.00 ±0.05 7.01 ±0.08 2.05 ±0.01
DC 52.00 ±0.05 9.85 ±0.18 3.23 ±0.02
3PT 52.00 ±0.05 9.79 ±0.16 3.21 ±0.01

TA
SC 35.00 ±0.05 12.11 ±0.04 3.17 ±0.03
DC 60.00 ±0.05 11.98 ±0.23 3.16 ±0.01
3PT 60.00 ±0.05 12.09 ±0.07 3.17 ±0.02

4.3 Study I: temperature-dependent complex modulus

In Study I, the effects of the flexural modes and testing equipment on the temperature-dependent

complex modulus are investigated. Experimental tests were first carried out using SC, DC, and 3PT

modes in three DMA machines. Then, the measurement results were compared to study the influence

of both operational mode and testing equipment on the measured value of the modulus and also on

the glass transition temperature Tg. The repeatability of each type of test was also analyzed. Finally,

numerical analyses considering the sensitivity of the modulus to material and model parameters such

as Poisson’s ratio and geometry were performed.
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4.3.1 Test conditions

Dynamics tests were performed in SC, DC, and 3PT modes in all three DMA machines, namely

PE, TA, and NET. They were all carried out in similar conditions to obtain reliable results. Besides,

mechanical calibrations were carried out before each set of tests of each operational mode.

A temperature scan technique was employed. After an isotherm of 30 min at 25 °C, the temperature

varied from 25 to 90 °C with a heating rate of 2 °C/min at a constant frequency of 1 Hz. The strain

amplitude was set to 50µm to ensure that the linear viscoelastic hypothesis holds. As 3PT is a

tensioning clamp, a force track was set to 120 % which means that the static force was 120 % of the

dynamic force along with the test.

As Menard [16] recommends, three samples were used on each test to reduce the risks of abnor-

malities due to the fabrication or experimental errors. The normal statistics of sampling and data

analysis were performed. Hence, all experimental results are presented as the mean of these three

samples together with the corresponding standard deviation.

Testing parameters are summarized on Table 4.4, where t is thickness, S is the span, S/t is the

span-to-thickness ratio and a is the amplitude. It is worth recalling that tests were performed in

PE machine considering two sets of samples with different geometries and spans to also evaluate the

influence of the sample’s geometry in the measurements.

Table 4.4: Testing parameters for the first case study, where t is thickness, S is the span, S/t is the
span-to-thickness ratio and a is the amplitude.

DMA Mode t [mm] S [mm] S/t a [mm] Force Track [%]

PE - Set 1
SC 3.2 17.2 5.4 50 -
DC 3.2 40.0 12.5 50 -
3PT 3.2 45.0 14.1 50 120

PE - Set 2
SC 2.0 12.2 6.1 50 -
DC 2.0 20.0 10.0 50 -
3PT 2.0 35.0 17.5 50 120

TA
SC 3.2 17.5 5.5 50 -
DC 3.2 35.0 10.9 50 -
3PT 3.2 50.0 15.6 50 120

NET 3PT 3.2 40.0 12.5 50 120
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4.3.2 Experimental results & discussion

SC, DC, and 3PT modes were performed in PE, TA, and NET machines using the same test

conditions in temperature scan. This section presents a comparative analysis of the experimental

results to assess the effects of testing equipment and operational modes, followed by a discussion part.

4.3.2.1 Influence of testing equipment

SC mode was performed in two DMA machines, PE and TA, using the same test conditions. In

PE, tests were carried out for two sets of samples with different geometries. The measurement results

for storage and loss moduli are shown in Fig. 4.9.
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Figure 4.9: Comparisons between complex modulus measured in SC mode.

It can be noted the classical three regions of viscoelastic behavior [8, 101] in both DMA results.

Storage modulus decreased with temperature. This decrease was even more rapid as the material

approached its glass transition due to the large scale molecular movement and its softening. Then, it

reached a plateau as the temperature was further increased. Loss modulus, in turn, increased slightly

up to approximately 65 °C and from there, it suddenly decreased with the increase in temperature.

It can also be observed by the low amplitudes of the standard deviations that the DMA machines

provided good results when performing tests using the same test conditions and testing parameters

in the same machine, especially in the glassy state. In other words, the repeatability was quite good.

At 30 °C, for example, the results of storage modulus from TA samples were within 4.4 %, from PE

Set 1 samples were within 5.9 % and from PE Set 2 samples were within 3.1 %. The results for glass

127



4.3. STUDY I: TEMPERATURE-DEPENDENT COMPLEX MODULUS

transition temperatures (Tg), here considered as the peak of loss modulus curves, were also very similar,

being 1.42 °C for TA samples the largest standard deviation observed.

However, when SC tests were performed with different geometries in the same machine as was the

case of PE Set 1 and PE Set 2, the measurement results of storage modulus had a poor agreement.

This difference, however, decreased as temperature increased. In the glassy state, the results from

PE Set 2 were almost 53 % higher than the ones from PE Set 1. In the rubbery state, PE Set 2 was

only 8 % higher. The measurement results of loss modulus, in turn, had a poor agreement at low

temperatures but after approximately 55 °C, this difference decreased significantly. For instance, at

low temperatures, PE Set 2 was almost twice as high as PE Set 1. This difference reduced to 5 %

at around 58 °C and to 2 % at around 90 °C. Besides, the glass transition was identified at a lower

temperature for PE Set 1.

Comparing the results provided by these two machines in this operational mode, only the averages

from PE Set 2 and TA had a reasonable agreement for storage modulus in both glassy and rubbery

states. PE Set 2 was within 98 % of TA at low temperatures and almost 90 % at high temperatures.

It was somewhat surprising considering the testing parameters used. As shown in Tab. 4.4, PE Set 2

and TA had different values for the sample’s thickness, span and, span-to-thickness ratios. However,

the average results for loss modulus showed TA having higher values in all temperature range. In fact,

its peak value was 56 % higher than the one of PE Set 1 and 18 % than the one of PE Set 2. Despite

these differences in terms of moduli magnitude, temperatures related to the onset point of storage

modulus and to the peak point of loss modulus had a small variation up to 5 °C. In particular, the

average result of Tg was 61.2 °C for PE Set 1, 61.8 °C for PE Set 2, and 63.9 °C for TA. The difference

between the highest and lowest Tg’s was 4.5 °C (see Tab. 4.5).

DC mode was also performed in PE and TA machines. Test conditions were the same and two

sets of samples were also tested in PE. Figure 4.10 shows the average results with the corresponding

standard deviations.

As in SC mode, it can be noticed the three regions of viscoelastic behavior [8, 101]. The repeatabil-

ity among samples from the same set was also good. In fact, DC results had lower standard deviations

than SC results. For comparison, TA samples were within 2.4 %, PE Set 1 within 1.2 %, and PE Set

2 samples within 2.5 % at 30 °C.
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Figure 4.10: Comparisons between complex modulus measured in DC mode.

Comparing the measurements performed in PE machine, once again the sample’s geometry affected

them. PE Set 1 and PE Set 2 had a poor agreement for storage modulus, especially in both glassy

state and glass transition region. At low temperatures, PE Set 1 was approximately 18 % higher than

PE Set 2. However, during the glass transition, PE Set 2 was the one higher, being, for example,

46 % higher at 65 °C. Their loss modulus curves, in turn, had almost identical shapes with their peaks

presenting nearly the same value: PE Set 1 was around 2 % higher than PE Set 2. They differed by

only a shift on temperature due to the different Tg.

Comparing the values measured by these two machines, TA provided higher values for both storage

and loss moduli for all temperature range tested. For storage modulus, the greatest discrepancies were

observed during the glass transition. At 65 °C, for example, TA was almost four times PE Set 1 and

three times PE Set 2. For loss modulus, on the other hand, the greatest discrepancies were observed

after the transition. Indeed, the peak value of loss modulus in TA was 47 % higher than PE Set 2.

As for the glass transition temperature, the average result of Tg was 56.4 °C for PE Set 1, 59.3 °C for

PE Set 2, and 61.6 °C for TA. The difference between the highest and lowest Tg’s was 7.2 °C (see Tab.

4.5).

Finally, 3PT mode was performed in three DMA machines, PE, TA, and NET. Tests were carried

out using similar conditions in these machines and two sets of samples were investigated in PE. Figure

4.11 shows the average results with the corresponding standard deviations.

As SC and DC modes, the three regions of viscoelastic behavior can be seen. However, the
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Figure 4.11: Comparisons between complex modulus measured in 3PT mode.

repeatability varied according to the region and also to the machine. From the results of the storage

modulus, it can be observed that all DMA machines had good repeatability on the glassy state. At

30 °C, for instance, TA samples were within 1 %, NET samples within 0.03 %, PE set 1 within 4 %,

and PE set 2 within 2 %. However, at the end of the glass transition and also in the rubbery state, PE

results had bad repeatability. For instance, PE Set 1 and PE Set 2 samples were within, respectively,

110 % and 64 % at 65 °C, and 46 % and 72 % at 80 °C. The other machines had good repeatability on

the rubbery state as NET samples were within a 0.04 % range and TA samples within a 9.5 % range.

The same behavior of storage modulus can be noted for the loss modulus.

It is worthwhile mentioning that these large deviations in 3PT mode have also been reported in

the literature [16, 79, 91, 102]. They are commonly associated with the fact that the sample is only

supported and so, there is a possible loss of contact between the sample and the sensor due to the low

stiffness of the material or even the slippage of the sample.

Unlike SC and DC modes, the results from the PE machine had a good agreement in the glassy

state, regardless of the sample’s dimensions and testing parameters. For example, PE Set 2 was only

4.7 % higher than PE Set 1 at 30 °C. However,the results began to be inconsistent as temperature

increased, especially at the end of the glass transition. PE Set 1 was almost four times PE Set 2 at

65 °C.

Comparing the values among DMA machines, NET provided a higher storage and loss moduli in

the glassy state. In the rubbery state, NET presented a higher storage modulus but its loss modulus
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stayed below TA. The onset point of storage modulus and the peak of loss modulus were identified at

a lower temperature in NET measurements, indicating that the glass transition happened first in this

DMA machine. The average value of Tg was around 51.6 °C for NET, 58.6 °C for PE Set 1, 56.9 °C

for PE Set 2, and 57 °C for TA. The difference between the highest and the lowest was approximately

7.7 °C (see Tab. 4.5).

Nonetheless, it was surprising that the results of TA and both sets of PE showed a good agreement,

especially for storage modulus in the glassy state, regardless of the sample’s dimensions. From Tab.

4.4, one can note that only PE Set 1 and TA had similar values for both sample’s thickness and

span-to-thickness ratios.

4.3.2.2 Influence of operational mode

Another way to evaluate these experimental results is to compare the ones provided by the same

machine to study the influence of operational mode. Figures 4.12 to 4.14 show the average results

with the corresponding standard deviations for both storage and loss moduli obtained in PE and TA

machines.
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Figure 4.12: Comparisons between complex modulus measured by PE machine using samples from set
1.
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Figure 4.13: Comparisons between complex modulus measured by PE machine using samples from set
2.

30 40 50 60 70 80 90

T [°C]

10
-1

10
0

10
1

10
2

10
3

10
4

E
'(

)|
T

A
 [

M
P

a
]

SC

DC

3PT

(a) E′(ω)|T A

30 40 50 60 70 80 90

T [°C]

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

E
''
(

)|
T

A
 [

M
P

a
]

SC

DC

3PT

(b) E′′(ω)|T A

Figure 4.14: Comparisons between complex modulus measured by TA machine.

It can be observed that the measured modulus indeed depended on the operational mode in both

DMA machines. This indicates inconsistencies on the DMA machines as the moduli are material

parameters, being only dependent on the material tested [9, 103]. Therefore, they should not change

between types of tests that measures the same property.

In both PE and TA machines, 3PT mode provided the highest values during the glassy state, while

SC gave the highest ones in the rubbery state. Nevertheless, the differences between the results of

both SC and DC modes decreased as the material passed its glass transition. From TA results for

storage modulus, for example, 3PT mode was almost 42 % higher than SC mode and 19 % than DC

mode at 30 °C, while SC mode was almost 51 % higher than DC mode and 33 % than 3PT mode at
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80 °C.

Moreover, SC mode identified higher values for Tg as highlighted in Tab. 4.5. For instance, in the

TA machine, the Tg observed in SC mode was around 4 % higher than the one in DC mode and 13 %

than the one in 3PT mode. This difference may be related to the position of the sensor concerning

the sample. The sensor is fixed in the apparatus, near to the moveable clamp of the system, and

as a consequence, the position of the sensor concerning the sample is different when one changes the

operational mode. In SC mode, the sensor is near the end of the sample. In DC and 3PT modes, on

the other hand, the sensor is near the middle of the sample. The heat radiation in the furnace is also

another influential factor [83, 90, 96].

Table 4.5: Temperature Scans

DMA Machine PE - Set 1 PE - Set 2 TA NET

SC 61.21 ± 0.34 61.80 ± 0.60 63.99 ± 1.42 -
DC 56.44 ± 1.03 59.30 ± 0.39 61.59 ± 0.99 -
3PT 51.57 ± 0.52 56.86 ± 0.50 58.63 ± 0.11 56.95 ± 0.56

4.3.2.3 Discussion

To sum up, although the same material was being tested, the modulus’ estimates varied according

to both the operational mode and the DMA manufacturer. From the physical point of view, this

should not occur as the same physical property was being estimated during all those tests. The key

point here is that the material modulus has a very clear physical meaning as it is a constitutive

parameter that relates stress and strain in the frequency domain as can be seen in the reference books

by Christensen [9], Lakes [11], Wineman and Rajagopal [10], and Drodzdov [103]. Therefore, the

discrepancies observed in the modulus estimates deserve further investigations.

Although literature [87, 91] suggests that instrumentation compliance, sample’s geometry, stiffness,

and span-to-thickness ratio may influence DMA results, it is possible to observe that these influences

depend on the operational mode. In SC mode, the measurement results obtained by the PE machine

showed that the changes of sample’s stiffness and dimensions, and span-to-thickness ratios modified

”the estimate of the material’s modulus” provided by DMA. But it was possible to find reasonable

agreement in some results of storage modulus from two machines even though the testing parameters

were different. In DC mode, on the other hand, there is no agreement in the results even for the
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ones provided by the same machine, indicating a great dependency on the testing parameters and

instrumentation compliance. Finally, in 3PT mode, the results of storage modulus from two machines

presented some consistency for the temperature range investigated, despite the differences in the

geometry and instrumentation compliance.

Therefore, it seems that the effects of sample’s geometry, stiffness, and span-to-thickness ratios are

only relevant for SC and DC modes as changes in these parameters modified the estimated material’s

modulus even when using the same DMA machine. As previously mentioned in Section 4.1.2, both

SC and DC modes have some clamp conditions and these may affect the measurements. The shear

deformation and thermal stresses, for example, may be larger than expected.

When comparing DMA results from different machines, however, one should keep in mind that

each testing equipment has its mathematical formulation for complex modulus as explained in Section

4.1.2. Therefore, small variations in the modulus’ estimate from different DMA machines are quite

expected to happen. For example, in SC and DC modes, only the mathematical formulation of TA

introduced an extra factor (Fc) to reduce the clamping effects, but its influence depends on the ratio

S/t as illustrated in Fig. 4.5. In this work, 1/Fc was around 1.14 in both SC and DC modes, increasing

14 % the modulus measured. Moreover, NET does not consider the effects of Poisson’s ratio in these

three operational modes.

4.3.3 Parametric study

As the experimental measurements evidenced some deviations, a parametric study was carried out

to assess the effects of geometric and mechanical parameters and temperature. In each analysis, only

one parameter, shown in Eqs. 4.4 to 4.13, was varied, while the others were considered to be constant.

The influence of the geometric parameters (S, w, and t) was first evaluated for each operational

mode. Accordingly, a constant value was chosen for the stiffness Ks, and only one geometric parameter

was varied while the others remained constants. Figures 4.15 to 4.17 show the theoretical influence

of the geometric parameters. The absolute value of complex modulus is directly proportional to the

span, but it is inversely proportional to both sample’s thickness and width in all cases. 3PT mode has

the greatest dependence on the sample’s thickness and width, whereas SC mode on the span.
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Figure 4.15: Effects of geometry on complex modulus measured in SC mode.
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Figure 4.16: Effects of geometry on complex modulus measured in DC mode.
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Figure 4.17: Effects of geometry on complex modulus measured in 3PT mode.

Afterward, the influence of the measured stiffness (Ks) is analyzed. For this, the parameters (S,

w, t, ν) were the same in all formulations and kept constant. Figure 4.18 shows the absolute value of

complex modulus as a function of the measured stiffness for all three modes. It can be seen that the

estimated modulus increased with the increase of the material’s stiffness and also that TA provided

the highest values. The difference between them increased with the measured stiffness. DC mode

presented the greatest variations up to 76 % between TA and PE, whereas 3PT mode had the lowest

ones up to 11 % between TA and NET when considering the entire range from 0 to 0.5 0.5 N/µm.

Hence, 3PT is the mode with the least sensibility to the different formulations and should be the most

consistent when comparing different machines while DC mode should be the least consistent, for the

available data in this work.
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Figure 4.18: Effects of stiffness on complex modulus.

Then, the effects of Poisson’s ratio were examined. In some DMA machines, this property is as-

sumed to be constant in their mathematical formulation. However, in viscoelastic materials, Poisson’s

ratio is considered to be temperature- and frequency-dependent [104–107]. Indeed, it usually increases

with temperature and decreases with frequency. Pandini and Pegoretti [107], for example, showed

that 0.5 instead of 0.35 would be more appropriate for two differently cross-linked epoxy resins in the

rubbery region.

In this regard, let consider the mathematical formulation provided by TA machine shown in Eqs.

4.7 to 4.9 to investigate how the variation of Poisson’s ratio can affect the measured modulus by each

operational mode. Considering that the applied force, the displacement amplitude, the span and the

sample’s geometry are the same in SC, DC, and 3PT modes, Fig. 4.19 shows the absolute value of

complex modulus as a function of Poisson’s ratio.
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Figure 4.19: Effects of Poisson’s ratio on complex modulus measured by TA machine.

It can be observed that modulus increased with the increase of Poisson’s ratio, being DC mode the

one presenting the greatest dependence. Considering the entire range from -1 to 0.5 (see Fig. 4.19a),

the modulus increased approximately 48 % in DC, whereas 12 % in SC and 3PT. When considering

the range from 0.3 to 0.5 (see Fig. 4.19b), this variation reduced to 5 % in DC and 1 % in SC and

3PT. Therefore, depending on the material, the assumption of a constant Poisson’s ratio does not lead

to great changes.

To further explore the relevance of Poisson’s ratio dependence on temperature in these measure-

ments, a comparative plot was traced using Eqs. 4.7, 4.8 and 4.9 considering the hypotheses of a

constant Poisson’s ratio and a temperature-dependent Poisson’s ratio, which varies linearly from 0.35

to 0.5 according to temperature. The linear model proposed is expressed as follows

ν(T ) = 0.35 + 0.15
[︃ (T − Ti)

(TF − Ti)

]︃
, (4.14)

where Ti is the initial temperature and TF is the final temperature. Figure 4.20 shows the results

obtained for each operational mode, suggesting that the effect of varying Poisson’s ratio is neglectable

on modulus measurements for all three modes.
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Figure 4.20: Comparison between the effects of a constant Poisson’s ratio and a linear temperature-
dependent Poisson’s ratio on complex modulus measured by TA machine.

Finally, the influence of temperature on each model provided by Eqs. 4.4 to 4.13 was analyzed

by setting the parameters Ks, S, w, and t to the same values obtained by the TA machine in each

mode. Figure 4.21 compares the differences between each mathematical formulation as temperature

increased. As suggested by the previous results shown in Fig. 4.18, the mathematical formulation

from TA provided the highest estimates for all three modes. The differences between the formulations

are more noticeable in DC results. On the other hand, 3PT mode had almost the same value for all

formulations.
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Figure 4.21: Effects of mathematical formulation on complex modulus.

4.4 Study II: temperature and frequency-dependent complex modulus

In Study II, the effects of the flexural modes and testing equipment on the temperature and

frequency-dependent complex modulus were investigated. The objectives of this work were twofold.

The first one was to observe how both temperature and frequency dependencies were experimentally

measured in DMA tests using all flexural modes. The second one was to assess the effects of these

modes and testing equipment on the long-term behavior of viscoelastic materials. For these purposes,

experimental measurements were first carried out in SC, DC, and 3PT modes. The repeatability

of each type of test was also analyzed. The hypothesis of thermo-rheological simple behavior was

then validated, allowing the application of the time-temperature superposition principle to generate

experimental master curves.
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4.4.1 Test conditions

Dynamics tests were performed in SC, DC, and 3PT modes only in PE and TA machines. They

were all carried out in similar conditions in order to obtain reliable results. Furthermore, mechanical

calibrations were carried out prior to each set of tests of each operational mode.

Temperature-frequency scan technique was employed. Frequency sweeps from 1 to 100 Hz were

carried out at fourteen temperatures from 25 to 90 °C. Isotherms were maintained for 5 min every 5 °C

and the heating rate was 2 °C/min. The strain amplitude was set to 10 µm to remain in the linear

viscoelastic regime. The force track for 3PT tests was again set to 120 %.

Similarly to Study I, at least two samples were used on each test to reduce the risks of abnormalities

due to fabrication or experimental errors. The normal statistics of sampling and data analysis were

performed. Hence, all experimental results are presented as the mean of these samples together with

the corresponding standard deviation.

Testing parameters are summarized on Table 4.6, where t is thickness, S is the span, S/t is the

span-to-thickness ratio and a is the amplitude. Only one set of samples were tested in each operational

mode in each machine.

Table 4.6: Testing parameters for the second case study, where t is thickness, S is the span, S/t is the
span-to-thickness ratio and a is the amplitude.

DMA Mode t [mm] S [mm] S/t a [µm] Force Track [%]

PE
SC 2.0 12.2 6.1 10 -
DC 3.2 30.0 9.4 10 -
3PT 3.2 35.0 10.9 10 120

TA
SC 3.2 17.5 5.5 10 -
DC 3.2 35.0 10.9 10 -
3PT 3.2 50.0 15.6 10 120

4.4.2 Experimental results & discussion

SC, DC, and 3PT modes were performed in PE and TA machines using the same test conditions

in temperature and frequency scans. This section discusses the experimental results to observe the

influences of operational mode and testing equipment.
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4.4.2.1 Influence of operational mode

As the complex modulus showed similar behavior in the measurements performed through PE

and TA machines, the conclusions were quite similar. For this reason, only the experimental results

obtained by the TA machine were analyzed and discussed next. The results from the PE machine can

be found in Appendix B.

Figures 4.22 to 4.24 show the experimental results obtained in SC, DC and 3PT modes, respec-

tively. It can be noted that all of them identified the classical viscoelastic response associated with

thermosetting resins [8]. That is, the mechanical behavior of these polymers was directly affected

by temperature and frequency. The increase in temperature caused a decrease in the modulus. The

increase in frequency, in turn, caused an increase in the modulus and also in the glass transition tem-

perature (Tg). These effects are associated with the molecular rearrangements of polymer chains and

relaxation phenomena.

From Figs. 4.22a, 4.23a and 4.24a, the storage modulus was almost constant with frequency and

temperature between 25 and 50 °C. It indicates that the system was in the glassy state, presenting thus

lower molecular mobility and higher resistance to strain. Between 55 and 90 °C, on the other hand,

this modulus decreased with an increase in temperature but increased with an increase in frequency.

It suggests that the system was in the glass transition region, presenting higher molecular mobility

and lower resistance to strain.

Furthermore, all tests had good repeatability as the standard deviations presented low amplitude

levels on the full analyzed range. 3PT provided the highest amplitudes, but they were less than 10 %.

A similar pattern was observed in the measurement results in the works of Henriques et al. [17] and

McAninch et al. [91] for epoxy systems.

Comparing the results from these three flexural modes, however, 3PT presented the highest es-

timates for both storage and loss moduli in all range of frequency and temperature, whereas SC

presented the lowest ones. Figure 4.25 directly compares the values measured for storage modulus

at, for example, 25 and 70 °C to highlight the differences. Considering the applied frequency equal to

10 Hz, 3PT was 32 % (respectively 44 %) higher than SC and 21 % (respectively 41 %) higher than DC

at 25 °C (respectively 70 °C).

These variations due to changes in operational mode can also be observed in the work of Feng
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Figure 4.22: Complex modulus measured in SC mode by TA machine.
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Figure 4.23: Complex modulus measured in DC mode by TA machine.
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Figure 4.24: Complex modulus measured in 3PT mode by TA machine.
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Figure 4.25: Comparisons between the temperature and frequency-dependent complex modulus mea-
sured in SC, DC and 3PT modes by TA machine.

and Guo [93]. Even though the testing parameters were different from this work, the results therein

also showed 3PT having the highest modulus in the temperature and frequencies investigated for

epoxy-based composites.

Despite the differences in the values of both storage and loss moduli, the Cole-Cole diagram

and Black Space were built to verify if the thermo-rheological simple behavior could be identified in

the measured data provided by all three modes. Figures 4.26 to 4.28 show that all E′(ω) × E′′(ω)

and η(ω) × |E∗(ω)| curves in double logarithmic scales at different temperatures fall on a continuous

circular arc, fulfilling thus the requirements of thermo-rheological simplicity. Nevertheless, some points

from the measurements deviated from the curves at high frequencies and temperatures, especially in

3PT mode, and they are associated with experimental difficulties such as, for example, resonance

phenomena [5, 108] and sample slippage [17].

As the material met the assumption of thermo-rheological simple behavior, the time-temperature

superposition principle was employed to generate master curves. In this regard, the temperature

chosen as reference for this procedure was T0 = 70 °C, and only the measurement points related to the

temperature range 55 to 90 °C were considered. It should be pointed out that only horizontal shifting

was considered as neither the Cole-Cole diagram nor Black space evidenced a need for vertical shifting
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Figure 4.26: Validation of thermo-rheological simple behavior considering measurements in SC mode
by TA machine.
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Figure 4.27: Validation of thermo-rheological simple behavior considering measurements in DC mode
by TA machine.

[2].

The horizontal shift factors were first computed for all samples of SC, DC, and 3PT modes using

the optimized method proposed by Rouleau et al. [2]. Afterward, they were fitted by the WLF equation

to certify the consistency of their values. Figure 4.29 compares the factors obtained by each method,

showing a good agreement for all three modes. Table 4.7 presents the empirical constants C1 and C2

that led to a good fit with the optimized shift coefficients.
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Figure 4.28: Validation of thermo-rheological simple behavior considering measurements in 3PT mode
by TA machine.
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Figure 4.29: Horizontal shift coefficients aT (T, T0) applied to the isotherms from measurements ob-
tained by TA machine, shown in Figs. 4.22-4.24. The optimised coefficients are fitted by WLF
equation.
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Table 4.7: Empirical constants of WLF equation calibrated using measurements obtained by TA
machine.

Constants SC mode DC mode 3PT mode

C1 11.14 ± 0.32 13.41 ± 0.45 7.69 ± 1.83
C2 [K] 73.97 ± 5.42 88.47 ± 2.27 54.87 ± 9.14

To better compare the effects of operational mode in these estimates, Fig. 4.30 directly compares

the results obtained in each test. It can be observed a slight difference among them, especially at

higher temperatures. As a consequence, the fitting parameters C1 and C2 of the WLF equation shown

in Tab. 4.7 were not the same, but they were very close to each other. This fact is coherent with the

concepts of these empirical constants once they depend on the material and the reference temperature,

not on the operational mode [8]. Moreover, Arzoumanidis and Liechti [109] also observed a similar

pattern when estimating these parameters using measured data from tensile and shear tests.
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Figure 4.30: Comparison between the horizontal shift coefficients aT (T, T0) obtained for SC, DC and
3PT modes. The optimised coefficients (markers: *) are fitted by WLF equation (solid line: -).

Finally, each isotherm was shifted according to the corresponding shift factor aT (T, T0), and the

experimental master curves were generated at the reference temperature T0 = 70 °C as shown in Fig.

4.31. The moduli behavior is predicted over a large frequency range up to about 105Hz. From the

curve of storage modulus E′(ω), one can thus infer the long-term behavior of the material [8]. From

the curve of loss factor η(ω), in turn, one can assess the damping capacity of the material.

Comparing these master curves, it can be seen that 3PT provided, in general, the highest values for
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Figure 4.31: Comparison between experimental master curves built at T0 = 70 °C considering mea-
surements of complex modulus by TA machine.

both storage and loss moduli, as already suggested by previous results. When analyzing the response

along with the frequency, however, it is possible to observe similar material’s behavior regardless of

the modality test performed.

From Fig. 4.31a, all curves of storage modulus E′(ω) followed the same pattern where the three

regions of viscoelastic behavior could be identified. The modulus initially had approximately a constant

value in the low frequencies. Afterward, it increased significantly with the frequency until it reached

a new plateau at high frequencies. Moreover, the beginning and end of the slope of the curves of the

three tests happened at similar frequencies.

From Fig. 4.31b, all curves obtained for the loss modulus E′′(ω) also showed three regions of

behavior. Initially, it increased significantly with the frequency until reaching a maximum value, and

from this point, it presented a slight decay toward a constant value. Moreover, the peak happened

almost at the same frequency in the three tests.

4.4.2.2 Influence of testing equipment

As previously mentioned, the temperature and frequency-dependent complex modulus was mea-

sured in three flexural modes by two DMA machines. Figure 4.32 compares the results from these

two testing equipment at three selected temperatures T = {25 °C, 60 °C, 90 °C}. Similar to Study I,

their influence on experimental measurements depended on the operational mode and also on the test

temperature. The TA machine estimated a higher modulus for most temperatures and frequencies,
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especially in DC mode. These differences are quite similar for the other temperatures; hence, they

have not been shown here.
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Figure 4.32: Comparisons between the temperature and frequency-dependent complex modulus mea-
sured by TA and PE machines.

Table 4.8 compares the results of the empirical constants C1 and C2 obtained in the different tests

performed on the two machines. DC mode was the one most affected by testing equipment, whereas

3PT was the one less affected.

Table 4.8: Comparison between the empirical constants of WLF equation calibrated using measured
data from SC, DC and 3PT modes.

Mode Constants PE machine TA machine

SC
C1 8.52 11.14 ± 0.32

C2 [K] 57.6 73.97 ± 5.42

DC
C1 9.31 ± 0.47 13.41 ± 0.45

C2 [K] 63.36 ± 4.14 88.47 ± 2.27

3PT
C1 7.65 ± 0.58 7.69 ± 1.83

C2 [K] 54.15 ± 0.47 54.87 ± 9.14

Finally, Figs. 4.33 to 4.35 compare the experimental master curves obtained, respectively, in the

tests performed in SC, DC, and 3PT modes by the two testing equipment. As can be seen, all master

curves built using measured data from the TA machine presented the highest values for both storage

and loss moduli. A similar pattern was observed in the first study case (see Section 4.3), in which the

moduli was only measured as a function of temperature.
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Nevertheless, a similar material behavior can be noted in the curves regardless of the testing

equipment. This suggests a small influence of the machine in identifying the relaxation time of the

material.
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Figure 4.33: Comparison between experimental master curves built at T0 = 70 °C considering mea-
surements of complex modulus in SC mode.
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Figure 4.34: Comparison between experimental master curves built at T0 = 70 °C considering mea-
surements of complex modulus in DC mode.
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Figure 4.35: Comparison between experimental master curves built at T0 = 70 °C considering mea-
surements of complex modulus in 3PT mode.

4.5 Conclusion

This chapter presented an inter-laboratory study about the complex modulus measured by the

flexural modes existing in DMA machines. It was divided into two parts: (i) theoretical analysis and

(ii) experimental tests. The main results achieved may be described as follows.

The first part related to theoretical aspects explained the key features of each operational mode,

such as mechanism and mathematical formulation. It highlighted that SC and DC modes may present

clamping effects and that each DMA machine has its model assumptions. Consequently, some dis-

crepancies among estimates from different machines may happen even if the test conditions are the

same.

The second part consisted of two experimental investigations concerning how this modulus is

measured only as a function of temperature and as a function of both temperature and frequency. It

aimed to evaluate the effects of operational modes and testing equipment on the values of the moduli,

on the glass transition temperature and also on the long-term behavior. Moreover, it also addressed

the repeatability and reproducibility of the tests.

The experimental results showed that DMA measurements can vary among modes and machines.

Although the repeatability of the tests was reasonable, the reproducibility was quite poor. These

uncertainties, however, varied according to the region of viscoelastic behavior. Furthermore, SC and
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DC modes indeed suffered from clamping effects as the ends of the samples deformed after the tests,

and they were the most affected by the sample’s geometry and DMA machine. 3PT mode, on the

other hand, was found to be the one more reliable among the flexural modes, and it provided the

highest estimates.

It is worth recalling that these findings cannot be generalized to other viscoelastic materials but

draw attention of common issues when dealing with this technique. Moreover, it emphasized the need

for revision of the current standards to define new procedures for the measurement of this property,

which is widely used to describe the material’s behavior.
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Chapter 5

Modeling the complex modulus within
Bayesian framework

This chapter is concerned with the calibration of fractional derivative models within the Bayesian
framework for a viscoelastic material considering experimental data acquired by the three flex-
ural modes in a DMA machine. The main objective is to study the effects of uncertainties
inherent to DMA measurements carried out in different set-ups on model predictions. In this
regard, it could provide insights about the reliability of models calibrated from DMA data.
It is organized as follows. First, Section 5.1 provides a brief description of the methodology
adopted for modeling the complex modulus. Then, Section 5.2 details the mathematical formu-
lation adopted to model material’s behavior. Afterward, Section 5.3 shows and discusses the
calibrated models. Finally, Section 5.4 presents the concluding remarks.
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5.1 Methodology

This section outlines the methodology adopted to model the complex modulus measured by DMA

machine aiming at observing the effects of both operational mode and machine on the model param-

eters and consequently, on its predictions. Figure 5.1 schematic illustrates this approach which was

mainly divided into three main steps. The first step comprised the tests performed using SC, DC, and

3PT modes in two DMA machines and the attainment of experimental master curves. The second

one, in turn, involved the description of the material behavior using a fractional derivative model. Fi-

nally, the third main step was concerned with the model calibration procedure through the Bayesian

framework.

Stage 1 Stage 2

Stage 3

Initial Parameters

Constitutive Model

DMA Measurements

Experimental Master Curves

Calibration Procedure

Estimated Parameters Model Calibrated

Figure 5.1: Schematic diagram of methodology employed to calibrate viscoelastic models considering
measured data from DMA.

An important point to mention is that the experimental data used for the calibration of the models

corresponded to the results presented in the second case study of the preceding chapter. A complete

description of the machines and material can be found in Section 4.2 of Chapter 4, and the results

obtained in Section 4.4. For the sake of conciseness of this chapter, they are not reported herein.

5.2 Modeling

Once an experimental master curve is built, one can calibrate viscoelastic models to provide predic-

tions of the material’s response when applied in structures and submitted to the most varied loading

conditions, for example, in finite element simulations. Different constitutive models can be found in

literature as introduced in Chapter 2. It was adopted herein the five-parameter fractional derivative
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model (5PFDM), explained in subsection 2.5.2 of Chapter 2, to describe the viscoelastic behavior of

the investigated material. Accordingly, the complex modulus E∗(ω) was expressed as follows

E∗(ω) = E0 + (E∞ − E0)(jωτ)α

1 + (jωτ)β
, (5.1)

where E0 and E∞ are, respectively, the relaxed and unrelaxed moduli, τ is the relaxation time, and α

and β are the orders of the fractional derivative model. These five parameters θ = {E0, E∞, τ, α, β}

must respect the thermodynamic restrictions given by Eq. 2.35 and be determined by inverse tech-

niques.

It is worth highlighting the reasons why this model was chosen. In general, fractional models have

been able to describe the dynamic behavior of different viscoelastic materials along with frequency.

The model with five parameters, in particular, can depict the asymmetry evidenced in the peaks of the

experimental master curves of the loss modulus and the loss factor, in addition to the slight increase

of the module at the highest frequencies. Besides, Orlandini et al. [74] recently calibrated this model

satisfactorily for epoxy-based materials.

5.3 Results & discussion: identification of viscoelastic parameters

This section presents the results of the calibration of the models adopted to describe the long-term

viscoelastic behavior. To this end, a probabilistic approach based on Bayesian inference, explained

in Chapter 3, was considered to assess information about the posterior probability density function

π(θ|Y ) of the model parameters θ = {E0, E∞, τ, α, β} that define the fractional model given by Eq.

5.1.

5.3.1 Description of calibration procedure

As previously mentioned, the measured data Y comprised the experimental master curves built

at T0 = 70 °C in the Chapter 4 for complex modulus E∗(ωr, T0). The unknown parameter vector was

defined as θ = {E0, E∞, τ, α, β}T . However, as these parameters vary several orders of magnitude,

they were normalized θs = {p1, p2, p3, p4, p5}T to improve the performance of the inverse method [25]

as
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p1 = E0 × 10−7[Pa], (5.2a)

p2 = E∞ × 10−9[Pa], (5.2b)

p3 = τ × 103[s], (5.2c)

p4 = α, (5.2d)

p5 = β. (5.2e)

It is worth mentioning that the scale set for parameters E0 and E∞ were chosen according to the

values obtained for storage modulus in the lower and higher frequencies, respectively, as shown in Fig.

4.31. The scale set for parameter τ was based on the results presented in the work of Orlandini et al.

[74] for a similar epoxy system.

All data-set obtained for each DMA equipment has been split into three different subsets (SC, DC

and 3PT) to quantify the effects of operational mode on the model updating process and consequently,

on the model parameters. For each one, a specific structure was adopted.

Initially, the complex modulus of the ith sample was organized in a N-dimensional vector E∗|Si =

{E∗(ω1, T0)|Si, . . . , E∗(ωN , T0)|Si}T . Afterward, this vector was separated into its real ℜ[E∗|Si] and

imaginary ℑ[E∗|Si] parts to consider both elastic and viscous effects in the process, and also to avoid

issues when building the covariance matrix. Finally, a statical analysis was carried out to estimate the

mean value and standard deviation of each part. Accordingly, the measured data Y corresponded to

a 2N-dimensional vector defined as follows

Y = {ℜ[Ẽ]ℑ[Ẽ]}T (5.3)

where ℜ[Ẽ] and ℑ[Ẽ] are the average results for the real and imaginary parts, respectively.

For the model calibration step using Bayesian inference, one must define the likelihood function

π(Y |θ) and the prior distribution π0(θ) of each unknown parameter, as shown in Eq. 3.4. In this

work, the likelihood function π(Y |θ) was defined by the distribution of the additive error as shown

in Eq. 3.6, whereupon it was considered e ∼ N(0, Σ). A diagonal empirical covariance matrix Σ, as

shown in Eq. 3.9, was built with the maximum variance found from the experimental measurements,

i.e., σ2
i = σ2

max.
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Concerning the prior distributions π0(θ), a uniform prior distribution is herein assumed for the

unknown parameters θ = {E0, E∞, τ, α, β}T as there is no reliable knowledge of them. Every random

variable was constructed under the hypothesis that they were mutually independent. Moreover, the

marginal prior for the variable θ was defined to be within the set Dθ such as

Dp1 = {p1 ∈ R|0 < p1 < 10}, (5.4a)

Dp2 = {p2 ∈ R|0 < p2 < 10}, (5.4b)

Dp3 = {p3 ∈ R|p3 > 0}, (5.4c)

Dp4 = {p4 ∈ R|0 < p4 < 1}, (5.4d)

Dp5 = {p5 ∈ R|0 < p5 < 1}. (5.4e)

These limit values Finally, the values for parameters α and β were chosen following the thermo-

dynamics constraints explained in subsection 2.5.2 of Chapter 2.

After setting all parameters and distributions, the calibration of the model started. Firstly, a

deterministic analysis was done to assess the maximum a posteriori estimate θ̂MAP shown in Eq.

3.11. Then, the approximate posterior covariance matrix is determined as Σ̂ ≈ (JT ΣJ)−1, where the

operator J is related to the model Jacobian evaluated at θ̂MAP . Finally, the posterior distribution of

the unknown parameters π(θ|Y ) was explored with the DRAM algorithm. In the AM method, the

adaptation occurred at prescribed intervals of length j0 = 100 with a Gaussian candidate distribution.

In the DR method, three stages were considered in which γs = {1/5, 1/4, 1/3}. A total number of

NMC = 200000 samples was considered.

5.3.2 Model calibration

The calibrations performed using measured data from TA and PE machines showed similar behav-

ior, thus leading to similar conclusions. Hence, only the results generated from the TA machine are

analyzed and discussed next. The results from the PE machine can be found in Appendix B.

As a starting-point, a MAP estimator was carried out to find an optimum point θ̂MAP to start

the MCMC sampling process. This is done to reduce the computational cost of the estimation. The

results achieved for each unknown parameter are shown in Tab. 5.1.

159



5.3. RESULTS & DISCUSSION: IDENTIFICATION OF VISCOELASTIC
PARAMETERS

Table 5.1: MAP results for the measurements subsets SC, DC and 3PT from TA machine.

Subset E0 [Pa] E∞ [Pa] τ [s] α β

Initial 1.00 × 107 1.00 × 109 0.50 × 10−3 0.5 0.5

MAP - SC 0.78 × 107 1.13 × 109 0.33 × 10−3 0.46 0.40
MAP - DC 0.16 × 107 1.21 × 109 0.40 × 10−3 0.47 0.42
MAP - 3PT 0.51 × 107 1.03 × 109 1.58 × 10−3 0.54 0.46

Figure 5.2 compares the results obtained for SC, DC, and 3PT modes using the DRAM algorithm,

evidencing the well-mixing samples and that the stationarity of the posterior distributions has been

reached. The convergence was monitored by computing the cumulative mean in the Markov chain of

all the parameters. From these means, it is possible to infer that both parameters E0 and τ were more

affected by the set of measured data, that is, by the operational modes. Finally, Tab. 5.2 summarizes

the analyses of the MCMC samples, showing that the acceptance rate values were consistent [25].
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Figure 5.2: Convergence analysis for the 5PFDM using DRAM algorithm with each data-set from TA
machine.
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Figure 5.2: Convergence analysis for the 5PFDM using DRAM algorithm with each data-set from TA
machine.

Table 5.2: MCMC results using DRAM algorithm for each data-set from TA machine.

Mode Total samples Burn-in Acceptance rate

SC 200000 150000 38.95
DC 200000 150000 26.40
3PT 200000 175000 39.68
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After discarding the samples from the burn-in period, Monte Carlo approximations were computed

for the posterior mean E[θ] and 95 % credibility interval (CI) of each model parameter θ as shown

in Tab. 5.3. It is possible to observe that the mean value of these estimates varied according to the

operational mode, but their credibility intervals were quite close to each other. Furthermore, both

parameters E0 and τ were indeed the ones most affected by the operational mode.

Table 5.3: Posterior mean value and 95 % credibility interval (CI) of the unknown parameters θ for
each data-set from TA machine.

Mode
E[E0] [×107 Pa] E[E∞] [×109 Pa] E[τ ] [×10−3 s] E[α] E[β]

95 % CI 95 % CI 95 % CI 95 % CI 95 % CI

SC
2.19 0.80 1.68 0.55 0.46

[0.11, 5.26] [0.48, 1.24] [0.21, 5.24] [0.44, 0.72] [0.36, 0.59]

DC
2.54 0.75 3.43 0.63 0.51

[0.13, 6.74] [0.40, 1.30] [0.27, 13.26] [0.44, 0.89] [0.36, 0.74]

3PT
3.43 0.71 8.64 0.70 0.57

[0.14, 8.57] [0.39, 1.26] [0.64, 35.56] [0.49, 0.96] [0.38, 0.80]

Once the mapping between the random vector θ and the model prediction was non-linear, the

samples could have some level of linear correlation. For this reason, scatter plots were built, as

shown in Fig. 5.3. It can be seen little or no correlation between the parameters, which endorses the

independence hypothesis adopted for all random variables when building the prior PDFs.

Figure 5.4 shows the marginal posterior PDFs computed for each unknown parameter θ. It can

be seen that the PDFs for both E0 and τ deviate from a Gaussian distribution. These parameters

were the most affected by the data-set, i.e., by the operational mode: the posterior mean and the 95 %

credibility interval varied significantly, as evidenced in Tab. 5.3.

162



5.3. RESULTS & DISCUSSION: IDENTIFICATION OF VISCOELASTIC
PARAMETERS

Figure 5.3: Posterior samples generated using DRAM algorithm with each data-set from TA machine.
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machine.
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Finally, the uncertainty propagation from the model parameters θ ∼ π(θ|Y ) to the complex mod-

ulus E∗(ω) was done for all data-sets. All samples {θ(1), · · · ,θ(Nmc)} from the posterior distribution

π(θ|Y ) were considered as input to the forward problem in order to guarantee mean square conver-

gence.

Figures 5.5 to 5.7 show the results of this uncertainty propagation. They graphically compare the

95 % credibility interval of the calibrated 5PFDM models and the experimental master curves. It is

possible to note that the credibility intervals were initially large, but they decreased with the increase

of frequency. Furthermore, all calibrated models had a good agreement with the experimental data.

(a) E′(ωr, T0)|SC (b) E′′(ωr, T0)|SC

Figure 5.5: Uncertainty propagation when considering θ ∼ π(θ|Y ) for the data-set of SC mode from
TA machine.
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(a) E′(ωr, T0)|DC (b) E′′(ωr, T0)|DC

Figure 5.6: Uncertainty propagation when considering θ ∼ π(θ|Y ) for the data-set of DC mode from
TA machine.

(a) E′(ωr, T0)|3P T (b) E′′(ωr, T0)|3P T

Figure 5.7: Uncertainty propagation when considering θ ∼ π(θ|Y ) for the data-set of 3PT mode from
TA machine.

To study the effects of operational modes on model predictions, Fig. 5.8 compares all three

calibrated models obtained using measured data from SC, DC, and 3PT modes. It can be seen the

3PT mode had the highest uncertainties, especially at low frequencies. Additionally, the posterior

mean value may differ between the tests. However, when considering the uncertainties related to the

estimates, a good agreement can be found.
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(a) E′(ωr, T0) (b) E′′(ωr, T0)

Figure 5.8: Comparison between the calibrated models from SC, DC, and 3PT modes of TA machine.

To analyze the effects of testing equipment on the predictions of material’s behavior, Figs. 5.9

to 5.11 show all calibrated models for each operational mode tested in PE and TA machines. They

graphically compare the 95 % credibility intervals achieved. It can be observed that the highest

uncertainties were associated with the models calibrated from the data-sets of the TA machine. A good

agreement can be observed, however, in the low frequencies when taking into account the uncertainties.

(a) E′(ωr, T0)|SC (b) E′′(ωr, T0)|SC

Figure 5.9: Comparison between the calibrated models from SC mode of TA and PE machines.
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(a) E′(ωr, T0)|DC (b) E′′(ωr, T0)|DC

Figure 5.10: Comparison between the calibrated models from DC mode of TA and PE machines.

(a) E′(ωr, T0)|3P T (b) E′′(ωr, T0)|3P T

Figure 5.11: Comparison between the calibrated models from 3PT mode of TA and PE machines.

5.4 Conclusion

This chapter presented the calibration of fractional derivative models to describe the viscoelastic

behavior identified by the different flexural tests of DMA. The main goal was to assess the impacts

of different data-sets in the model’s predictions, taking into account the uncertainties related to the

measurements and model assumptions.

The results evidenced that operational modes and testing equipment can indeed influence the es-

timated parameters in different amounts. Consequently, numerical predictions performed from them

are also affected, leading to divergences between model and reality. However, the effects of these un-
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knowns can be minimized and better understood when considering the uncertainties on the parameter

estimation.

After performing the uncertainty propagation on the forward problem, the predictions provided by

the different sets of parameters displayed good agreement to experiments. It reaffirmed the robustness

of the method to acquire the system’s parameters, highlighting the importance of taking into account

the uncertainties in parameter estimation to have better predictions of the material’s behavior.
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Introduction

Over the past few years, porous materials have been widely used for noise and vibration control

in several applications such as civil, aerospace, and automotive industries. Their energy dissipation

mechanisms have been proved useful for sound absorption and damping purposes. Thus, the char-

acterization and modeling of their material properties are essential for predictive analyses of their

acoustics and mechanical behavior.

Generally speaking, porous materials are composed of a matrix and a porous space filled by fluid,

usually air. Their behavior depends on the composition of both phases in addition to the fluid-structure

interactions that may happen [110, 111]. Nevertheless, depending on the conditions they are subjected

to, only one material phase is relevant. For example, the fluid-phase of polymeric foams usually has a

negligible role either under vacuum conditions or in the low-frequency range [85, 112–117].

Different approaches can be found in literature to describe their behavior such as Biot theory [118–

120], equivalent fluid representation and equivalent solid description [121–123]. Each one with its own

hypotheses, models, numerical and analytical methods of solution, and challenges. For instance, when

the hypothesis of solid viscoelastic material is adopted, it is quite common to use fractional models to

describe their properties as a function of frequency [1, 124–128].

From an experimental point of view, many efforts have been made to develop and improve mea-

surement methods to assess their characteristics in the last years. Jaouen et al. [124] reviewed some

techniques concerned with the characterization of elastic and damping features, classifying them as

quasi-static or dynamic methods. Egab et al. [129] analyzed experimental techniques related to the

identification of physical properties such as porosity, while also performing an investigation on the

existing modeling theories. Recently, Bonfiglio et al. [98] examined some methods regarding the vis-

coelastic properties of poroelastic media used in vibroacoustic applications.
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Efforts have also been made to characterize these materials by inverse methods. Since direct mea-

surement of all material properties often requires different testing equipment, it could be troublesome

in some sense to rely on them. In this context, Renault et al. [130] proposed an approach to inverse

estimate the elastic properties from beam bending vibrations. Chazot et al. [28] proposed a method

to extract the elastic and acoustical parameters from standing wave tube tests. Bonfiglio and Pom-

poli [131] reviewed some inverse techniques to estimate physical properties from acoustical tests, to

mention a few.

Bearing all this in mind, the third part of this thesis aims to explore the damping performance

of some porous materials, in particular an open-cell foam, a closed-cell foam and a granular material,

through the viscoelasticity inherent in their matrices. It is divided into two chapters.

The first chapter aims to examine the mechanical energy dissipation of two polymeric foams when

subjected to cyclic loads (study I) and structural vibrations (study II) from fractional derivative models

calibrated using experimental data of a torsional rheometer. Initially, an approach to numerically

predict their behavior in cyclic loads is proposed. The effects of the loading rate and temperature are

investigated. Then, the capacity of these materials to damp structural vibrations is analyzed. Finally,

a finite element model considering only the viscoelasticity of the matrix is proposed and validated.

The influences of geometry and mechanical properties are studied.

The second chapter proposes a strategy to inverse characterize the viscoelastic properties of porous

materials through the Bayesian approach. More specifically, it aims to calibrate and validate fractional

derivative models for the complex shear modulus. Initially, the method is applied and validated for

a polymeric foam previously studied in the first chapter. Then, it is used to characterize a granular

material that, to the author’s best knowledge, has not yet been modeled in the literature.

Objectives of Part III

To sum up, the main goals of the third part of this thesis concerning porous materials are:

� evaluate the mechanical energy dissipation through viscoelastic properties;

� propose an approach to predict the response of polymeric foams to cyclic loads;

� develop and validate a finite element model considering only the viscoelasticity of the
matrix whose properties are described by a fractional derivative model;
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� propose a numerical-experimental method to calibrate and validate viscoelastic models for
porous materials, relying on the Bayesian framework.
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Chapter 6

Damping performance of polymeric foams
in the low-frequency range

This chapter analyses the dissipation of mechanical energy of two polymeric foams with different
viscoelastic behavior in both time and frequency domains. The goal is to relate viscoelastic
properties measured through a torsional rheometer with their damping performance in the low-
frequency dynamic applications. In this way, it could help designing damping solutions based on
foams. For instance, the time-domain response of foams to loading-unloading cycles is of interest
when studying shock and vibration isolation during shipping and transportation in packaging
applications. The frequency-domain response, in turn, is of interest when investigating the
potential use of foam layers as passive damping of structures.
It should be highlighted that both studies here described neglected the air-skeleton interactions
since they were carried out in the low-frequency range. As a result, the investigated foams
were considered as monophasic viscoelastic solids with frequency-dependent properties. From
a physical point of view, in closed-cell foams, the pressure caused by the presence of air in the
pores contributes to the material’s stiffness. In open-cell foams, on the other hand, the air can
escape when the material is under loading conditions. However, the airflow does not have a great
influence when the material is subjected to quasi-static conditions or excited in the low-frequency
range [11]. Furthermore, the intrinsic mechanical dissipation related to the viscoelastic solid
skeleton has been pointed out to play a major role in the analyzed low-frequency range [122].
It is organized as follows. First, Section 6.1 provides a complete description of the polymeric
foam materials herein investigated. Then, Section 6.2 presents the investigation on the mechan-
ical energy dissipation when these materials are subjected to cyclic loads in the time domain
(Henriques et al. [1]). Afterward, Section 6.3 focuses on the study of their damping performance
when they are subjected to structural vibrations in the low-frequency range (Henriques et al.
[128]). Finally, Section 6.4 summarizes the main contributions.
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6.1. DESCRIPTION OF TESTED MATERIALS

6.1 Description of tested materials

In this chapter, two different polymeric foams were investigated aiming at exploring the variety

of porous materials commonly employed on the passive control of noise and vibration. One of them

was made of melamine resin, a thermosetting polymer, having open cells (hereinafter referred to as

foam A), and the other was made of polyurethane, also a thermosetting polymer, having closed cells

(hereinafter referred to as foam B). Both foams were air-saturated materials being highly porous and

soft such that inertial, elastic, and viscous coupling effects were weaker.

Figure 6.1 shows optical microscope images of their cell structures. Foam A has a very filigree

structure with very small cells and thin cell walls in white. Foam B, on the other hand, has closed

cells with solid membranes; it is possible to observe some of these cells open as a consequence of the

cross-sectional cut. Additionally, both foams exhibit uniformly distributed cells.

1 mm

(a) Foam A

1 mm

(b) Foam B

Figure 6.1: Optical microscope images of the cell structure of the two different foam materials.

These foams were industrially produced and their manufacturing processes are not known. Nev-

ertheless, they were part of the five porous materials characterized in an interlaboratory campaign of

Bonfiglio et al. [98] on the dynamic elastic properties of poroelastic media. From the measurement

results presented therein, these two particular foams can be modeled as homogeneous and almost

isotropic with a constant and real-valued Poisson’s ratio. As a consequence, all foam’s mechanical

moduli had the same frequency dependence. This feature of foams has also been evidenced in previous

experimental works such as Mariez et al. [132], Jaouen et al. [124] and Etchessahar et al. [116].

Table 6.1 presents the nomenclature adopted as well as selected properties for the development of
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this work, whereby the foams are sorted by density. Cell type, Poisson’s ratio ν and density ρ were

extracted from the work of Bonfiglio et al. [98]. It should be highlighted that the value of Poisson’s

ratio is a representative one chosen from the experimental results presented in [98]. The values for

the densities ρ’s were verified (see Appendix C for details). The glass transition temperature Tg

was determined by a differential scanning calorimetry (DSC) following the standard DIN EN ISO

11357-2:2014-07 (see Appendix D for details).

Table 6.1: Description of tested materials, where ν is the Poisson’s ratio, ρ is the nominal density and
Tg is the glass transition.

Foam Material base Cell type ν ρ [kg/m3] Tg [°C]

A melamine open 0.30 10 n/a
B polyurethane closed 0.35 48 -35.5

Moreover, Henriques et al. [1] have recently characterized and modeled their complex shear modulus

G∗(ω). They first performed dynamic tests in a torsional rheometer at different temperatures and

frequencies. Then, they calibrated a four-parameter fractional derivative model for each foam material

considering a reference temperature of 20 °C. Table 6.2 shows the four parameters estimated therein

whose values were considered in this work.

Table 6.2: Fractional derivative model parameters of tested materials, where G0 is the relaxed shear
modulus, G∞ is the unrelaxed shear modulus, τ is the relaxation time and α is the order of fractional
derivative.

Foam G0 [Pa] G∞ [Pa] τ [s] α

A 4.79 × 104 8.63 × 104 1.32 × 10−1 0.43
B 1.31 × 104 2.11 × 106 4.70 × 10−8 0.30

6.2 Study I: cyclic loads

In Study I, the dissipation of mechanical energy of two polymeric foams was numerically investi-

gated in the time domain. Firstly, a one-dimensional cyclic loading was prescribed to the material.

Then, the constitutive equation adopted to describe the viscoelastic behavior was numerically inte-

grated, obtaining the material’s response. Finally, hysteresis curves were obtained to quantify the

amount of energy lost. The simulations were carried out considering different loading rates and dif-
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ferent temperatures.

6.2.1 Description of numerical cases

One of the phenomena observed in viscoelastic materials is a hysteresis in a stress-strain curve

when a cyclic loading is applied, as explained in Section 2.1 of Chapter 2. The amount of dissipated

energy during a loading-unloading cycle may even vary according to loading rate and temperature

[8, 11].

Aiming at determining the time domain behavior of these materials when prescribing a loading-

unloading stress history σ(t), two numerical cases were carried out considering one-dimensional tran-

sient analyses. The first case consisted of evaluating the effects of the loading rate on the material’s

response, while the second one consisted of assessing the impacts of the temperature.

Both analyses assumed the polymeric foams as isotropic homogeneous viscoelastic materials. Their

mechanical behavior was described using the four-parameter fractional derivative model calibrated by

Henriques et al. [1], as introduced in Section 6.1. Therefore, the one-dimensional relationship between

their stress σ(t) and strain ε(t) in the time domain was given by

σ(t) + τα dασ(t)
dtα

= G0ε(t) + G∞τα dαε(t)
dtα

, (6.1)

whose model parameters {G0, G∞, τ, α} are presented in Tab. 6.2 for each foam material considering

a reference temperature of 20 °C. Nevertheless, these model parameters can be assessed at any desired

temperature as the investigate materials presented thermo-rhelological simple behavior [1].

Since Eq. 6.1 does not have an analytical solution, the numerical approach based on triangular

strip matrices proposed by Podlubny [133] was implemented in MATLAB® software to solve the

numerical cases (see Appendix A for further details). The reader is referred to Podlubny [133] and

Podlubny et al. [134] for additional details.

6.2.2 Results & discussion of case 1: loading rates

Figure 6.2 shows the two prescribed stress histories applied to the materials to analyze the effects of

loading rates considering a reference temperature of 20 °C. For both situations, three linear loading-

unloading cycles (sawtooth behavior) were performed in a way that both excitation frequency and
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maximum stress level successively increased. The complete first loading-unloading cycle takes 0.5 s

(×10−3) with a maximum stress level of 1 Pa. The second one, in turn, takes 1.0 s (×10−3) with a

maximum level of 2 Pa. The third cycle, finally, takes 1.5 s (×10−3) with a maximum level of 3 Pa.

Note that the difference between these two stress histories relied on the very distinct time scales, about

100 s in the first case and 10−3 s in the second one.
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Figure 6.2: Prescribed stress histories σ1(t) and σ2(t) for the study of rate effects in hysteresis cycles.

Figure 6.3 shows the strain responses given by each foam for both loading cases. They were

obtained by integrating the constitutive equation expressed in Eq. 6.1 through the algorithm proposed

by Podlubny [133].
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Figure 6.3: Strain responses obtained for each scenario at 20 °C.
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In both scenarios, foam A showed a behavior very close to elastic. It deformed almost linearly

during loading and returned almost completely to its original shape also linearly during unloading,

especially for load case 2. Foam B, in turn, showed a dissipative behavior. It deformed during loading,

but it was not able to return to its original shape after each unloading; it retained some of the strain.

Figure 6.4 shows the stress-strain curves obtained for the two load cases. It is possible to observe

hysteresis loops in all scenarios and also, a permanent strain at the end of each cycle. This is even

more evident for foam B.
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Figure 6.4: Stress-strain responses obtained for each scenario at 20 °C.

Furthermore, for the first load case, foam A required more force to achieve the same amount of

strain than foam B. For the second load case, on the other hand, foam A deformed more easily. This

comparison supports the idea that foam B has more energy dissipation capacity than foam A. These

results are consistent with the strong viscoelastic behavior identified for foam B by Henriques et al.

[1].

Finally, Fig. 6.5 compares the effects of loading rate for each foam. The dissipation of mechanical

energy is indeed dependent upon the stress applied and its rate for both foams. The higher the

maximum stress level, the greater the percentage of dissipation per cycle. Additionally, they all

exhibit a lower energy loss in the second load case whose stress rate was 103 times higher than the

first case. This means that aspects of elastic behavior were more predominant than the viscous ones,

especially for foam A.
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Figure 6.5: Comparison between the stress-strain responses of load cases 1 and 2 at 20 °C.

6.2.3 Results & discussion of case 2: temperature

As the investigated materials present thermo-rheological simple behavior, the influence of temper-

ature can be taken into account through the horizontal aT (T, T0) and vertical bT (T, T0) shift factors

from the time-temperature superposition principle. This is because the complex shear modulus G∗(ω)

can be predicted for any temperature once models for these factors have been previously calibrated.

Figure 6.6 shows the prescribed stress history σ3(t) applied to the materials to assess the effects of

temperature. Only one cycle of loading-unloading was considered with a time scale of the order of 100

s. Moreover, the complete loading-unloading cycle takes 2.5 s with a maximum stress level of 5 Pa.

The strain responses were thus estimated by combining the WLF model (see Eq. 2.44) of the

horizontal shift factor aT (T, T0) calibrated by Henriques et al. [1] and the constitutive equation shown

in Eq. 6.1. Table 6.3 recalls the empirical constants C1 and C2 found therein for each foam material,

which were needed to estimate aT (T, T0) and consequently, the complex shear modulus G∗(ω) and the

corresponding model parameters {G0, G∞, τ, α} at the desired temperature.

Figure 6.7 shows the responses obtained at four temperatures T = {−10 °C, 0 °C, 10 °C, 20 °C}. It

can be seen that the strain increased with the increase in temperature. For example, the maximum

deformation found was 0.0060 (resp. 0.0018) at −10 °C and 0.0083 (resp 0.0185) at 20 °C for foam A

(resp. foam B). These features can be related to molecular motion of polymer chains: as temperature

increases, the mobility of the chains increases, which means that the material can deform more easily.
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Figure 6.6: Prescribed stress history σ3(t) for the study of temperature effects in hysteresis cycles.

Table 6.3: Empirical constants of WLF model extracted from the work of Henriques et al. [1].

Foam C1 C2 [K]

A 9.80 115.08
B 17.99 153.03
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Figure 6.7: Strain responses obtained for load case 3.

Figure 6.8 compares the stress-strain curves obtained for each temperature. For both materials, the

energy loss increased significantly by varying the temperature from −10 °C to 20 °C: the dissipation
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increased almost 7 times for foam A and 4 times for foam B. As in load cases 1 and 2, foam B presents

a better capacity to dissipate energy than foam A at all analyzed temperatures.
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Figure 6.8: Comparison between stress-strain responses obtained for load case 3 for the study of
temperature effects.

6.3 Study II: simply supported panels

In Study II, the damping behavior of the two polymeric foams was experimentally and numerically

investigated in the frequency domain. The objectives of this work were twofold. The first goal was to

experimentally study if the polymeric foams could be used as free-layer damping treatment to reduce

structural vibrations significantly. The second one was to evaluate if the four-parameter fractional

derivative model calibrated using measured data from a torsional rheometer [1] could be used on a FE

model to predict damping effects with a relevant precision in the low-frequency range.

For these purposes, vibration tests were performed on simply supported panels mounted in two

different structural configurations, as shown in Fig. 6.9, to better evaluate the impacts of the foam

layers on the system dynamics. Then, finite element simulations were carried out considering only

the viscoelasticity of the skeleton whose properties were previously characterized through torsion

tests. Afterward, comparisons between the measured frequency response functions (FRFs) and those

predicted from the simulations were done to assess the validity of the model assumptions. Finally,

numerical analyses considering the sensitivity of the FRFs to the foams material parameters were

performed.
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Base plate

(a) Aluminum plate (configuration 1)

Base plate

Foam layer

(b) Aluminum plate bonded with a foam
(configuration 2)

Figure 6.9: Configurations of simply supported panels for the study of vibration damping performance.

6.3.1 Experiments

This section describes the experimental set-up and discusses the corresponding measurement re-

sults. All the experiments were performed at Laboratoire de Mécanique des Structures et des Systèmes

Couplés (LMSSC) of Cnam.

6.3.1.1 Description of testing equipment

The experimental rig chosen to measure the frequency response function (hereinafter referred to as

FRF) for the two configurations under study is schematically shown in Fig. 6.10. It was composed of

suspended panels mounted on a specific frame to approximate simply supported conditions [135], four

accelerometers, an impact hammer, and a PC equipped with M+P VibPilot-E hardware and M+P

Analyzer software for signal acquisition and export data. A description of each component is shown

in Table 6.4. Furthermore, the post-processing was performed in MATLAB® software.

Spectrum 
analyserPC

Impact
hammer

Accelerometers

Aluminum plate

(a) Configuration 1

Spectrum 
analyserPC

Impact
hammer

Accelerometers

Aluminum plate
Foam layer

(b) Configuration 2

Figure 6.10: Schematic diagram of the experimental rig.
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Table 6.4: Description of each component of the experimental rig.

Equipment Model Serial Sensitivity

Impact Hammer IH-02 611756 2.52 [mV/N]
Accelerometer 1 PCB352C22 LW214512 10.46 [mV/g]
Accelerometer 2 PCB352C22 LW214395 10.73 [mV/g]
Accelerometer 3 PCB352C22 LW214393 10.61 [mV/g]
Accelerometer 4 PCB352C22 LW214397 10.70 [mV/g]
M+P Hardware VibPilot-E B170105 -

The simply supported panel of configuration 1 consisted of a rectangular aluminum plate with

dimensions 0.003 m × 0.360 m × 0.420 m (see Fig. 6.11) mounted on a steel frame, following the

description of assembly given by Robin et al. [135]. The panel of configuration 2, on the other hand,

was obtained by gluing a free-layer of foam material with dimensions 0.025 m × 0.200 m × 0.200 m

centered on the back of the aluminum plate from configuration 1 (see Fig. 6.12). This bonding was

done by a spray adhesive model Foam Fast 74 from 3M, which allowed to extend an approximately

uniform layer without influencing the system’s mass and stiffness. It is worth mentioning that each

foam studied had its aluminum plate and steel frame to reduce experimental issues related to the

gluing process and assembly. The layers of foam materials have been cut off from the same small-sized

block of the material used in the work of Henriques et al. [1] to limit the potential effects of spatial

heterogeneity and manufacturing process.

(a) Photograph of experimental configura-
tion
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(b) Schematic diagram

Figure 6.11: Simply supported panel mounted in configuration 1.
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(a) Photograph of experimental configura-
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(b) Schematic diagram

Figure 6.12: Simply supported panel mounted in configuration 2.

The impact hammer was used to apply a point force (hereinafter referred to as F) to excite the

panel. The four accelerometers (hereinafter referred to as ACi, where i denotes the corresponding

number) were glued on the bare panel side through beeswax in different locations to measure the

structure’s response. Since each accelerometer weighted approximately 0.5 g, it was assumed to not

affect the response of the panel. Both hammer and accelerometers were connected to M+P VibPilot-E

hardware, which, in turn, was connected to a computer.

The positions of the force applied and the accelerometers are detailed on Tab. 6.5 and can be seen

in Fig. 6.13.

Table 6.5: Locations of the applied force (F) and the four accelerometers (ACi, where i ∈ {1, 2, 3, 4})
placed on the bare panel side to measure the structure’s response.

Coordinates F AC1 AC2 AC3 AC4

y [m] 0.08 0.28 0.14 0.08 0.30
z [m] 0.08 0.08 0.18 0.34 0.32
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Figure 6.13: Locations of the applied force and the accelerometers placed on the bare panel side.

6.3.1.2 Test conditions

A SIMO (Single-Input, Multiple-Output) analysis was performed on each structural configuration

aiming at evaluating how the free-layer of foam affects the system dynamics. Each structure was

excited by a point force and the system’s response was measured by the four accelerometers simul-

taneously. The measurements were recorded up to 800 Hz, with a frequency resolution of 0.5 Hz, at

ambient conditions (room temperature and in the presence of air). Each FRF was determined from

the measured input and output based on averaging three measurements in the complex domain at

each frequency.

It is important to highlight that each structure was tested ten times to verify the repeatability of

the measurements and to perform statistical analysis. Hence, all experimental results are presented

as the mean of these ten measurements together with the confidence interval of 95 %.

6.3.1.3 Results

Aiming at evaluating the damping performance of two polymeric foams, the frequency response

functions (FRFs) of suspended panels mounted on a specific frame to approximate simply supported

conditions were experimentally measured in the low-frequency range. For each foam analyzed, two

configurations were assembled, as shown in Figs. 6.11 and 6.12.

Figure 6.14 compares all measured FRFs of configurations 1 and 2 of foam A. It is possible to

188



6.3. STUDY II: SIMPLY SUPPORTED PANELS

observe that both configurations presented almost similar behavior as the amplitude and resonant

frequencies of the FRFs were nearly the same. That is, the addition of foam A on the aluminum plate

did not change the structure’s response significantly. Consequently, this foam is not attractive to damp

structural vibrations. Furthermore, the repeatability of the tests performed in each configuration was

quite good as the confidence intervals were very narrow.
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Figure 6.14: Comparisons between the measured FRFs of configurations 1 and 2 of foam A.

To quantify the effects of the addition of foam A on the structure, an experimental modal analysis

(EMA) was carried out to extract the natural frequencies (fn) and damping coefficients (ζ) of each

structure tested. This modal parameter extraction was done in each measured FRF in the form of

acceptance by an in-house program based on SDOF extraction techniques [136, 137]. Initially, the

parameters fn and ζ were assessed using a least-square solution as described in Brandt [137]. Then,
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the parameters were estimated using the Circle-fit method [136] to validate the previous results.

Table 6.6 and 6.7, respectively, show the empirical mean of both natural frequencies (fn) in Hz

and damping coefficient (ζ) in %. As expected, the results of configurations 1 and 2 of foam A were

quite similar, evidencing that this foam did not have much effect on the system’s response.

Table 6.6: Comparison between the estimated natural frequencies (fn) of configuration 1 and 2 of
foam A.

Configuration 1 2 3 4 5 6 7 8 9

1 [Hz] 102.73 225.71 270.33 391.67 429.74 548.03 594.22 669.25 718.88
2 [Hz] 101.41 223.80 268.14 389.62 427.05 544.42 591.55 666.51 714.09

Table 6.7: Comparison between the estimated damping coefficients (ζ) of configuration 1 and 2 of
foam A.

Configuration 1 2 3 4 5 6 7 8 9

1 [%] 0.07 0.02 0.05 0.05 0.13 0.11 0.05 0.13 0.23
2 [%] 0.11 0.07 0.05 0.05 0.13 0.11 0.07 0.14 0.27

Figure 6.15 presents the results obtained of configurations 1 and 2 of foam B. It can be seen that

the addition of foam B modified the responses via mass and damping. It decreased both resonant

frequencies and magnitude of resonance peaks, while increased the width of the resonant peaks. These

differences got more evident as frequency increased.

From the measurements obtained by AC1 shown in Fig. 6.15a, for example, the first peak in the

FRFs of configurations 1 and 2 was, respectively, identified at 103 Hz and 99 Hz with magnitude of

42 dB and 35 dB, while the fifth peak was observed at 432 Hz and 420 Hz with corresponding amplitudes

of 51 dB and 41 dB.

Therefore, foam B has the potential to be applied as a layer in damping treatments to reduce

structural vibrations. An important point worth mentioning is that the addition of this foam did not

significantly increase the mass of the structure, only about 5 %, which makes its application even more

attractive. Furthermore, the repeatability of the tests performed in each configuration was quite good

as the confidence intervals were narrow.

An experimental modal analysis was also performed on these structures to quantify the effects of
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the addition of foam B on the system. The modal parameter extraction techniques were similar to

those used in the analysis of the configurations of foam A.

Tables 6.8 and 6.9 present the results obtained in this stage. It can be seen that the impact of

foam B was clear and significant: configuration 2 had lower natural frequencies and higher damping

coefficients. These results reinforce the idea of using foam B to damp structural vibrations.
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Figure 6.15: Comparisons between the measured FRFs of configurations 1 and 2 of foam B.

Table 6.8: Comparison between the estimated natural frequencies (fn) of configuration 1 and 2 of
foam B.

Configuration 1 2 3 4 5 6 7 8 9

1 [Hz] 103.44 225.75 272.58 394.16 431.81 552.02 598.67 674.98 723.33
2 [Hz] 99.10 219.94 263.50 386.13 420.38 533.06 587.46 660.41

191



6.3. STUDY II: SIMPLY SUPPORTED PANELS

Table 6.9: Comparison between the estimated damping coefficients (ζ) of configuration 1 and 2 of
foam B.

Configuration 1 2 3 4 5 6 7 8 9

1 [%] 0.08 0.03 0.03 0.04 0.14 0.13 0.05 0.11 0.22
2 [%] 0.27 0.22 0.34 0.38 0.62 1.24 0.82 1.08 1.52

It is important to note that, even though different aluminum frames and plates were used to build

each configuration 1, their responses were approximately the same as indicated by the results of the

modal analysis performed on each one (see Tabs. 6.6 to 6.9). Figure 6.16 below also highlights the

good reproducibility and repeatability of the tests. However, the small differences observed indicate

that, for the numerical simulations, a model updating procedure should be conducted to find the

properties that better describe the test conditions of each plate.
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Figure 6.16: Comparisons between the measured FRFs of configurations 1.
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As the main difference among the configurations 2 under analyses was indeed the type of foam

material, one may conclude that foam B has a greater damping capacity than foam A from the results

presented above. To further compare the performance of these two materials, the FRFs obtained for

each one are traced in Fig. 6.17. One can observe that the width of the resonant peaks are wider and

the amplitudes are smaller, especially after about 250 Hz. This agrees well with the results of Study I

and the work of Henriques et al. [1].
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Figure 6.17: Comparisons between the measured FRFs of configurations 2 of foams A and B.

6.3.2 Finite element formulation

This section presents the finite element models adopted to solve the structural problems in the

frequency domain.
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6.3.2.1 Structural problem

Figure 6.18 shows the description and notations of a general structural problem. The solid structure

occupies the domain denoted by ΩS . It is described by the variable displacement uS . Moreover, its

boundary is separated into contours of:

� imposed Dirichlet boundary condition: ΓS
1

� prescribed Neumann boundary condition: ΓS
2

Γ₂� 

Γ₁� 

nS
[Ω�; uS] 

Structure

fS

Figure 6.18: Description of the structural problem.

Next, the finite element formulation is presented considering a steady state time-harmonic response

of the ejωt.

6.3.2.2 Governing equation and boundary conditions

The structural domain is governed by the elastodynamic linearized equation at a angular frequency

ω as follows

∇ · σS + ρSω2uS = 0 in ΩS , (6.2)

where ρS is the structure mass density, uS denotes the displacement vector field and σS denotes the

Cauchy stress tensor. Assuming Hooke’s law and using Voigt notation, this stress tensor σS can be

related to the strain tensor εS such as
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⎡⎢⎢⎢⎢⎢⎢⎢⎣

σ11
σ22
σ33
σ12
σ13
σ23

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

λ + 2µ λ λ 0 0 0
λ λ + 2µ λ 0 0 0
λ λ λ + 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

εS
11

εS
22

εS
33

2εS
12

2εS
13

2εS
23

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (6.3)

where λ and µ are the Lamé coefficients, and the strain tensor εS is defined as

εS = 1
2[(∇uS) + (∇uS)T ]. (6.4)

It is worth mentioning that, if the structure is composed of a viscoelastic material, Lamé coefficients

are complex and frequency-dependent denoted by λ∗(ω) and µ∗(ω). Consequently, both stress and

strain tensors become complex and frequency-dependent such as σS
∗(ω) and εS

∗(ω) by means of

Fourier transform.

Concerning the boundary conditions of this problem, a prescribed displacement ud is applied to the

external boundary ΓS
1 of ΩS and a prescribed harmonic force fS is applied to the external boundary

ΓS
2 of Ω, respectively, given by

{︄
uS = ud = 0 on ΓS

1

σS · nS = fS on ΓS
2 .

(6.5a)

(6.5b)

6.3.2.3 Variational formulation

The derivation of the variational formulation is done by means of the test-function method. Let

CuS be the admissible space of regular functions uS in ΩS . Let δuS be a frequency-independent test

function, associated with the displacement field uS , belonging to the admissible space C∗
uS = {δuS ∈

CuS |δuS = 0 in ΓS
1 }. Multiplying Eq. 6.2 by δuS ∈ C∗

uS and applying a Green’s formula leads to

∫︂
ΩS

(∇ · σS) · δuSdΩS + ρω2
∫︂

ΩS
uS · δudΩS −

∫︂
ΓS

(σS · nS) · δuSdS = 0, ∀δuS ∈ C∗
uS . (6.6)

Applying the conditions expressed in Eqs. 6.5a and 6.5b into Eq. 6.6, the final variational form

reads
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∫︂
ΩS
σS : ∇(δuS)dΩS − ρSω2

∫︂
ΩS
uS · δuSdΩS =

∫︂
ΓS1
fS · δuSdS, ∀δuS ∈ C∗

uS . (6.7)

6.3.2.4 Finite element discretization

Discretizing the structural domain ΩS into ne classical finite elements and interpolating the macro-

scopic field uS in terms of the nodal displacement variable US yields, for the eth element,

uS
e = Ne

uSU
Se

, (6.8)

where Ne
uS is the corresponding shape function.

Equation 6.7 is then discretized by means of finite element method and the following matrix

equation for a general structural problem is obtained

[KS − ω2MS ]US(ω) = F S(ω), (6.9)

where US(ω) and F S(ω) are, respectively, the displacement and load vectors at angular frequency ω,

and KS and MS are, respectively, the global stiffness and real mass matrices given by

KS =
Ne∑︂

k=1

∫︂
ΩSe

BeT

uSCBe
uS dΩSe (6.10a)

MS =
Ne∑︂

k=1

∫︂
ΩSe

NeT

uS ρSNe
uS dΩSe , (6.10b)

where C is the constitutive matrix of the material, Be
uS = DuSNe

uS is the discrete gradient matrix and

DuS is the gradient operator defined by

DuS =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂/∂x 0 0
0 ∂/∂y 0
0 0 ∂/∂z
0 ∂/∂z ∂/∂y

∂/∂z 0 ∂/∂x
∂/∂y ∂/∂x 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (6.11)

The first structural configuration consisted of a mono-layer panel made of aluminum as shown in

Fig. 6.9a. The system was thus modeled under the hypothesis of homogeneous linear isotropic elastic
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material with structural damping. In this sense, Eq. 6.9 becomes

[(1 + jη)KE − ω2ME ]US(ω) = F S(ω), (6.12)

where KE and ME are, respectively, the stiffness and mass matrices related to the elastic component

and η is its structural loss factor. Accordingly, the constitutive matrix C was defined as

C = E

(1 − 2ν)(1 + ν)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(1 − ν) ν ν 0 0 0
ν (1 − ν) ν 0 0 0
ν ν (1 − ν) 0 0 0

0 0 0 (1 − 2ν)
2 0 0

0 0 0 0 (1 − 2ν)
2 0

0 0 0 0 0 (1 − 2ν)
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6.13)

The second configuration, in turn, was a two-layered panel made of aluminum and a foam material

as shown in Fig 6.9b. It thus involved an elastic structure bonded to a homogeneous linear isotropic

viscoelastic component whose properties were frequency-dependent. In this respect, Eq. 6.9 is then

rewritten as follows

[KE + G∗(ω)K0
V − ω2(ME + MV )]US(ω) = F S(ω), (6.14)

where K0
V is the stiffness matrix related to the viscoelastic component and computed for a unit shear

modulus, MV is the mass matrix of the viscoelastic component, and G∗(ω) is the complex shear

modulus of the viscoelastic material modeled herein by the four-parameter fractional derivative model

(see subsection 2.5.1 of Chapter 2) shown in Eq. 6.15.

G∗(ω) = G0 + G∞(jωτ)α

1 + (jωτ)α
, (6.15)

where G0 and G∞ are, respectively, the relaxed and unrelaxed shear moduli, τ is the relaxation time

and α is the order of the fractional derivative model.

It is worth noting that the hypotheses of isotropy and constant Poisson’s ratio were also adopted

for the foams as detailed in Section 6.1. In this way, all foam’s mechanical moduli were independent of

the direction and also had the same frequency dependence. For example, the complex modulus E∗(ω)
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can be estimated by the relationship between the Poisson’s ratio and the complex shear modulus G∗(ω)

such as

E∗(ω) = 2(1 + ν)G∗(ω), (6.16)

which leads to the following three-dimensional constitutive matrix

C∗(ω) = G∗(ω)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2(1 − ν)
1 − 2ν

2ν

1 − 2ν

2ν

1 − 2ν
0 0 0

2ν

1 − 2ν

2(1 − ν)
1 − 2ν

2ν

1 − 2ν
0 0 0

2ν

1 − 2ν

2ν

1 − 2ν

2(1 − ν)
1 − 2ν

0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6.17)

6.3.3 Numerical implementation and mesh convergence

An in-house program using GMSH [138] and MATLAB® software was developed to build the

geometries and related meshes, and also to compute the frequency response functions (FRFs) through

the direct or model reduction methods [139]. It is worth mentioning that the codes were validated

from a comparative analysis with simulations performed with NASTRAN® software.

For both FE models, the structure was modeled with three-dimensional finite elements, more

specifically the 20-node hexahedral element. This type of element has quadratic shape functions and

allows the numerical models to show a good capacity of describing the important physical mechanisms

[140].

The FE model of configuration 1, shown in Eq. 6.12, was first developed and validated. The

following properties were considered for the aluminum plate: Young’s modulus E = 69 GPa, Poisson’s

ratio ν = 0.35, mass density ρ = 2700 kg/m3 and structural loss factor η = 0.001. Only one layer mesh

in the thickness was generated and different element sizes were considered. Based on some numerical

tests, the finite element mesh was set with 1512 elements and 32931 degrees of freedom as detailed in

Tab. 6.10 and graphically illustrated in Fig. 6.19.
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Figure 6.19: Finite element mesh for configuration 1.

After validation and convergence of numerical results, a model updating routine was implemented

in MATLAB® software to estimate the properties (E, ν, ρ, and η) of each aluminum plate that best

describe the experimental conditions. It consisted of the minimization of a squared error cost function

defined as follows

CF (θ) =
Nf∑︂
i=1

[Y (ωi) − f(θ, ωi)]2 (6.18)

where θ = {E, ν, ρ, η} is the vector of the properties to be estimated, ωi is the ith measured frequency,

Nf is the total number of frequencies, Y is the vector of the experimental data, f(θ, ω) is the vector

of model predictions.

It is worth mentioning that the FRFs were computed using the multi-model approach [139] in

this optimization routine. The optimization was done with the help of the MATLAB® function

fminsearchbnd. Also, a specific organization was adopted to the experimental vector Y as

Y = {ℜ[FRF˜ |AC1]; · · · ; ℜ[FRF˜ |AC4]; ℑ[FRF˜ |AC1]; · · · ; ℑ[FRF˜ |AC4]}T , (6.19)

where ℜ[ã] and ℑ[ã] are, respectively, the real and imaginary parts of a complex vector ã.

This full characterization eliminates imprecisions on the properties of the aluminum plates, which

were not previously measured, and minimizes the effects of the flexibility of the blades linking the
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plate to the steel frame built around it [141]. Hence, it allows us to focus only on the characterization

of the free-layer of foam material of configuration 2.

The FE model of configuration 2, shown in Eq. 6.14, was thus implemented for each structure

tested. For the aluminum plate, the properties considered were those obtained by the optimization

procedure described above. For the foam layer, in turn, the properties considered are shown in Tabs.

6.1 and 6.2 in Section 6.1. Only one layer mesh was generated to the aluminum plate, whereas

different quantities of layers mesh were generated to the foam material. Different element sizes were

also considered. The mesh with 2712 elements and 48429 degrees of freedom converged to the proper

response as detailed in Tab. 6.10 and graphically represented in Fig. 6.20.

z

xy

(a) Isometric view

y

z

(b) Top view

Figure 6.20: Finite element mesh for configuration 2.

Table 6.10: Description of finite element meshes of configurations 1 and 2.

Configuration Elements Number of nodes Degrees of freedom

1 1 × 36 × 42 10977 32931

2
1 × 36 × 42

16143 484293 × 20 × 20

6.3.4 Model validation & discussion

This section compares the experimental measurements with the simulated responses for the two

structural configurations under study. This verifies the possibility of correctly predicting their me-
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chanical behavior with the adopted methodology and FE formulation.

6.3.4.1 Comparison between experimental data and simulation: foam A

As previously explained, the FE model of configuration 1 used for foam A was first implemented,

followed by a model updating routine to find the material’s properties (E, ρ, ν, η) of the aluminum

plate. Table 6.11 compares the initial parameters with the ones estimated in this routine.

Table 6.11: Comparison between the initial and optimized properties for aluminum plate used for
foam A.

E [GPa] ν ρ [kg/m3] η [%]

Initial 69.000 0.3500 2700 0.10
Optimized 70.914 0.3386 2800 0.11

Figure 6.21 compares the experimental FRFs with the simulated ones computed through the

direct method considering the optimized parameters shown in Tab. 6.11 of the aluminum plate. It

is shown that the model had, on the whole, a good agreement with the experimental results. Even

though it underestimated the resonant frequencies, the biggest difference between the experimental

and numerical values was less than 6 % in the first excitation mode. Table 6.12 shows the resonant

frequencies (fr) identified at the location of AC1, where the relative discrepancy δfr was calculated as

δf i
r =

|f i
r−exp − f i

r−sim|
f i

r−exp

× 100%, (6.20)

where f i
r−exp and f i

r−sim correspond, respectively, to the ith measured and simulated resonant fre-

quency.
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Figure 6.21: Comparisons between the FRFs obtained by experimental measurements and numerical
simulations using optimized parameters of configuration 1 used for foam A.

Table 6.12: Comparison between the experimental and numerical resonant frequencies obtained at the
location of AC1 of configuration 1 used for foam A.

1 2 3 4 5 6 7 8 9

Experimental [Hz] 102.5 225.5 270.5 391.5 430 548 594 669 718.5
Numerical [Hz] 97 221 265 388.5 427 546.5 594.5 669 715.5

Discrepancy δfr [%] 5.4 2.0 1.9 0.8 0.7 0.3 0.1 0 0.4

It is noteworthy that previous experiments [135] showed that a discrepancy of 5 % observed in the

first mode of vibration is due to the rigid structure built around the aluminum plate. This is because

this frame adds some stiffness to the experimental set-up, but it is not considered in the modeling.

For this reason, the model predictions presented here were considered sufficiently accurate.
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The FE model of configuration 2 with foam A was thus implemented. Figure 6.22 compares

the measured FRFs with those estimated using the optimized properties shown in Tab. 6.11 of the

aluminum plate and the viscoelastic properties shown in Tabs. 6.1 and 6.2 of foam A. It is possible

to observe good levels of correlation between the results in terms of resonant frequencies and FRF

amplitudes. Similar to configuration 1, the biggest difference between the experimental and numerical

resonant frequencies was noticed for the first mode of vibration, but it was less than 5 % as presented

in Tab. 6.13.
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Figure 6.22: Comparisons between the FRFs obtained by experimental measurements and numerical
simulations of configuration 2 with foam A.
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Table 6.13: Comparison between the experimental and numerical resonant frequencies obtained at the
location of AC1 for configuration 2 with foam A.

1 2 3 4 5 6 7 8 9

Experimental [Hz] 101.5 224 268 389.5 427 544.5 591.5 666.5 713.5
Numerical [Hz] 96.5 219.5 263.5 387 425 543 592 666.5 711

Discrepancy δfr [%] 4.9 2.0 1.7 0.6 0.5 0.3 0.1 0 0.4

It should be pointed out that the system dynamics of configuration 2 with foam A are mainly

governed by the aluminum plate as was identified in the comparative analysis of the experimental

results in subsection 6.3.1 (see Fig. 6.14).

6.3.4.2 Comparison between experimental data and simulation: foam B

A similar procedure was carried out for the configurations of foam B. The FE model of configuration

1 was first built and then, the properties of the aluminum plate were adjusted by the model updating

routine. Table 6.14 compares the initial parameters with the ones estimated in this routine.

Table 6.14: Comparison between the initial and optimized properties for aluminum plate used for
foam B.

E [GPa] ν ρ [kg/m3] η [%]

Initial 69.000 0.3500 2700.0 0.10
Optimized 70.835 0.3581 2798.5 0.11

Figure 6.23 compares the experimental FRFs of configuration 1 used for foam B with the simulated

ones computed using the optimal parameters shown in Tab. 6.14. Small differences can be observed

as the model underestimated the resonant frequencies, as evidenced in Tab. 6.15. The greatest

discrepancy observed in the first mode of vibration stems from the flexibility of the blades linking

the plate to the frame built around it, which added some stiffness to the setup. Nevertheless, the

curves are superimposed satisfyingly, indicating thus the system dynamics can be described by this

FE model.
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Figure 6.23: Comparisons between the FRFs obtained by experimental measurements and numerical
simulations using optimized parameters of configuration 1 used for foam B.

Table 6.15: Comparison between the experimental and numerical resonant frequencies obtained at the
location of AC1 of configuration 1 used for foam B.

1 2 3 4 5 6 7 8 9

Experimental [Hz] 103 226 272.5 394 432 552 598.5 675 722.2
Numerical [Hz] 98 222.5 267.5 391.5 430 550.5 599 674 721

Discrepancy δfr [%] 4.9 1.6 1.8 0.6 0.5 0.3 0.1 0.2 0.2

The results of configuration 2 with foam B are compared in Fig. 6.24. On the whole, good levels

of agreement were found between the numerical and measured FRFs. There are small discrepancies,

especially in the first resonant peak: the model overestimated the damping and underestimated the

resonant frequencies. At the location of AC1, for example, the first resonant frequency was identified
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at about 99 Hz with an amplitude of 35.42 dB in the measured data, whereas the model predicted it

at a frequency of 93.5 Hz (5.6 % lower) with 41.79 dB amplitude (17.9 % higher). Nevertheless, this

was already expected due to the differences observed in configuration 1.
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Figure 6.24: Comparisons between the FRFs obtained by experimental measurements and numerical
simulations of configuration 2 with foam B.

Finally, Table 6.16 compares the resonant frequencies obtained through experiments and numerical

simulations for this case. These results highlight that the model can provide good estimates in the

low-frequency range for this type of foam.
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Table 6.16: Comparison between the experimental and numerical resonant frequencies obtained at the
location of AC1 of configuration 2 with foam B.

1 2 3 4 5 6 7 8 9

Experimental [Hz] 99 220 263.5 386 420 534.5 587.5 660 700
Numerical [Hz] 93.5 216 258 382.5 418.5 535 588.5 662 699

Discrepancy δfr [%] 5.6 1.8 2.1 0.9 0.4 0.1 0.2 0.3 0.1

6.3.4.3 Discussion

To sum up, the performances of two polymeric foams to damp structural vibrations in the low-

frequency range were assessed experimentally and numerically. It was shown that one of the foams

is capable of introducing significant damping on the system without actually causing major changes

in its weight. Moreover, the comparisons between experimental and numerical results indicated the

proposed approach was amenable for all configurations. The FE model indeed provided accurate

predictions of the system behavior.

Thus, the constitutive models properly calibrated from measured data provided by a torsional

rheometer are reliable to be associated with a FE model that considers only the viscoelasticity. This

simplified model adopted for the polymeric foams as homogeneous viscoelastic solids proved effective

for vibration analyses in low frequencies. It serves for its purposes by reducing the computational time

and can be used as an efficient tool to quickly have predictions of such materials.

Another advantage is that the proposed model allows the use of model reduction techniques [139],

which provides a further improvement in its computational cost. Figure 6.25, for example, illustrates

the case when the multi-modal reduction technique is applied to calculate the response of configuration

with foam B, showing a good relationship with the direct method. This makes it even more attractive,

mainly, to be used in repeated routines such as optimization and uncertainty propagation.

It is also worth bearing in mind that the measurements were performed under ambient conditions,

that is, in the presence of air. External parameters may influence the experimental measurements, and

foams are, somehow, sensitive to them [85, 116]. The inherent uncertainties related to the experimental

set-up and acquisition of data can also have a certain degree of influence. Small discrepancies were

expected, but they were not significant in the present investigation.
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Figure 6.25: Frequency response function of configuration 2 with foam B considering the location of
AC1. Performance of multi-modal approach.

6.3.5 Parametric study

As the models provided good agreement with the experimental measurements, an analysis of sen-

sitivity was carried out for each configuration 2 to observe the effects of the geometric and mechanical

parameters of the foam layer on the frequency responses. In each case studied, only one parameter

was varied, while the others were considered to be constant to observe the individual influence in the

damping performance.

Various scenarios in which the free-layer of foam material had different values of model parameters

(G0, G∞, τ, α), density, Poisson’s ratio, and dimensions of thickness, width, and length (hereinafter

referred to as ρ, ν, t, w and L, respectively) were evaluated. The FRFs were computed through the

multi-modal approach [139] as it provided a good time-accuracy trade-off to obtain the approximated

solutions. Furthermore, they were estimated only for the mesh point located on the position of AC1

(see Tab. 6.5).

Figures 6.26 and 6.27 show the variations of the FRFs by varying ±20 % each of the four viscoelastic

parameters (G0,G∞,τ , and α) for the configurations 2 with, respectively, foams A and B. A related

point to consider is that, to better visualize the influence of these model parameters on the structure’s
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response with foam A, only the frequency band with the greatest variation is shown.

It can be seen that the variations of model parameters G0, G∞, and τ resulted in a decrease

concerning the reference value of the maximum amplitudes of the FRFs in both structures studied.

For the particular case of foam A, the change in its parameters caused a limitation in the model of

predicting all resonance peaks. The impacts of α, on the other hand, was noticed only for the structure

with foam B, especially when increasing it in 20 %.
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Figure 6.26: Effects of the four model parameters (G0, G∞, τ and α) on the estimated FRF for
configuration 2 with foam A considering the location of AC1.

The influences of the material properties ρ and ν are shown in Figs. 6.28 and 6.29 for configurations

2 with foams A and B, respectively. For the analysis of ρ, a variation of 20 % of its value was used.

For the analysis of ν, on the other hand, three values identified in the work of Bonfiglio et al. [98] for

these materials were adopted.
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Figure 6.27: Effects of model parameters on the estimated FRF for configuration 2 with foam B
considering the location of AC1.

The results obtained for foam A showed that variations in its properties did not result in major

changes, even in the highest simulated frequencies. The increase in its ρ slightly decreased the reso-

nance frequencies (up to 1.5 Hz in the last resonant peak), keeping approximately the same amplitudes.

The increase in its ν did not lead to remarkable changes.

The results for foam B, on the other hand, showed that the structure is susceptible to changes

in both properties. The increase in its ρ caused a decrease in the resonant frequencies and the

maximum amplitudes of the FRF. The increase in its ν, in turn, increased both resonance frequencies

and maximum amplitudes. For both cases, these variations are more noticeable as the frequency

increased; the last resonant frequency, for example, decreased up to 9 Hz for ρ, and increased up to
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5.5 Hz for ν.
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Figure 6.28: Effects of material properties (ρ and ν) on the estimated FRF for configuration 2 with
foam A considering the location of AC1.
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Figure 6.29: Effects of material properties (ρ and ν) on the estimated FRF for configuration 2 with
foam B considering the location of AC1.

Finally, Figs. 6.30 and 6.31 show the effects of varying ± 20 % each geometric parameter L, w

and t on the FRFs. For foam A, the effects of geometry are minimal and can be disregarded as with

other parameters. For foam B, the effects can be noticed especially around each resonance peak; when

the value of the parameter increased or decreased by ± 20 %, both resonant frequency and maximum

amplitude of the FRF decreased and increased.
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Figure 6.30: Effects of geometry (L, w and t) on the estimated FRF for configuration 2 with foam A
considering the location of AC1.
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Figure 6.31: Effects of geometry (L, w and t) on the estimated FRF for configuration 2 with foam B
considering the location of AC1.

To sum up, the results for foam A showed that the system is not sensitive to its variations even at

the highest frequencies of the study, regardless of the parameter analyzed. The results for foam B, in

turn, showed that the system response can be even affected since the first resonance peak, suggesting

that its parameters could be optimized to improve weight and performance.

6.3.6 Limitations of the model

To illustrate the limitations of the proposed model, experimental tests and numerical simulations

were performed again for each configuration 2, increasing the frequency range up to 1600Hz. The

procedure adopted was similar to one employed in the previous analyses.
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Figure 6.32 compares the FRFs measured by AC1 for each configuration tested. As observed in the

low-frequency range, configuration 2 with foam B has a greater capacity to damp structural vibrations

up to 1600 Hz than the one with foam A. Nevertheless, after 1400 Hz, the responses got closer to each

other in such a manner as to suggest that the foams decreased their influence and that the response

of the structure started to be governed by the aluminum plate and the frame.
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Figure 6.32: Comparison between the experimental FRFs of configurations 2 with foams A and B
measured by AC1 considering frequencies up to 1600 Hz.

Figures 6.33 and 6.34 compare the experimental results and models predictions provided by direct

method considering the location of AC1. For both foams, it can be observed that the model can predict

up to 10th mode of vibration, that is, up to about 900 Hz. After this point, some small observed peaks

can be attributed to frame modes; for example, from Fig. 6.33, one can observe small peaks around

1000, 1200, and 1400 Hz. As a consequence, they cannot be predicted by the model developed.

Once again the gaps between the first simulated and measured peaks can be associated with the

non-ideal experimental boundary conditions (flexural bending modes of the frame), as previously

explained. Accordingly, the finite element model proposed for a structure bonded to a free-layer of

foam material is validated for frequencies up to 900 Hz.
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Figure 6.33: Comparison between the FRFs obtained by experimental measurements and numerical
simulations of configuration 2 with foam A considering the location of AC1 and frequencies up to
1600 Hz.
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Figure 6.34: Comparison between the FRFs obtained by experimental measurements and numerical
simulations of configuration 2 with foam B considering the location of AC1 and frequencies up to
1600 Hz.

6.4 Conclusion

This chapter dealt with the characterization, modeling, and predictions of the mechanical behavior

of two different types of polymeric foams. The main objective was to explore the damping performance

of these foams in the low-frequency range when considering only the viscoelasticity of their polymer

skeletons. In this sense, two case studies were carried out whose main conclusions can be summarized
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as follows.

The first study proposed a numerical method to provide predictive scenarios in the time domain

of cyclic stress, encompassing different rates and temperatures. It considered the fractional derivative

and WLF models both calibrated using measured data from a torsional rheometer. Results evidenced

hysteresis in the responses of both foams. They also showed the effects of stress level, stress rate, and

temperature on the loops.

The second study performed experimental measurements and numerical simulations on simply

supported panels to verify the damping induced by these materials in structural vibrations and the

possibility of predicting their mechanical behavior through the use of viscoelastic properties measured

by a torsional rheometer. Through the experimental results, it was possible to find a good damping

performance with a negligible increase in mass. Through the comparison of numerical and experimental

results, it was possible to validate the proposed FE model for all studied configurations.

In conclusion, both studies showed that fractional derivative models calibrated from a torsional

rheometer provide predictions about the damping capabilities of polymeric foams. Moreover, they

highlighted the potential of one of the foams to be applied as a layer in damping treatments.
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Chapter 7

Inverse characterization of viscoelastic
properties of porous materials

This chapter presents an experimental-numerical methodology for the inverse characterization
of viscoelastic properties of two different porous materials (Henriques et al. [142]). The goal is
to calibrate fractional derivative models within the Bayesian framework. In this way, it could
be an alternative method to characterize this kind of material.
It should be pointed out that this inverse characterization neglected the air-skeleton interactions
since it was performed in the low-frequency range. Accordingly, the porous materials were mod-
eled as monophasic viscoelastic solids with frequency-dependent properties. This assumption
proved to be amenable after the studies carried out in Chapter 6.
It is organized as follows. First, Section 7.1 describes the methodology of the present approach.
Then, Section 7.2 is dedicated to the experimental set-up. Next, Section 7.3 presents the
mathematical formulation for the finite element simulation of the system response. Afterward,
Section 7.4 shows and discusses the application of the inversion method used. Finally, Section
7.5 presents the conclusions of this work.
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7.1 Methodology

This section gives a layout of the methodology applied to assess the viscoelastic properties, more

specifically the complex shear modulus G∗(ω), of two different porous materials from a Bayesian

perspective. The latter uses as frequency response function (FRF) the accelerance defined as

FRF˜ (ω) = Ã(ω)
F̃ (ω)

(7.1)

where Ã(ω) and F̃ (ω) are, respectively, the Fourier transforms of the acceleration in m/s2 and the

force measured in N.

Figure 7.1 shows a schematic diagram of this methodology which was divided into four main

stages. The first stage consisted of experimentally measure the FRF of simply supported panels in

the low-frequency range at ambient conditions. The second one consisted of numerically estimate the

FRFs using the finite element method. The third step, in turn, consisted of quantifying the difference

between the experimental and numerical FRFs. Finally, the fourth main stage consisted of the inverse

procedure based on the Bayesian approach to assess the viscoelastic properties of the investigated

material.
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Figure 7.1: Schematic diagram of methodology employed to inverse identify viscoelastic properties of
porous materials.

Two different layouts of simply supported panels were used, as shown in Fig. 7.2. The vibratory
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response of an aluminum plate was first measured to perform a model updating process to take into

account, for example, imperfections in the realization of the boundary conditions. Then, the response

of the structure assembled with the free-layer of porous material to be characterized was measured.

Base plate F

(a) Aluminum plate (configuration 1)

Base plate

Foam layer

F

(b) Aluminum plate bonded with a free-
layer of porous material (configuration 2)

Figure 7.2: Configurations of simply supported panels.

7.2 Experiments

This section outlines the investigated porous materials, the experimental set-up and the corre-

sponding measurement results. All the experiments were performed at Laboratoire de Mécanique des

Structures et des Systèmes Couplés (LMSSC) of Cnam.

7.2.1 Description of tested materials

In this chapter, two different porous materials were investigated: one of them was a closed-cell

polyurethane foam (hereinafter referred to as material B), and the other was a reconstituted porous

rubber (hereinafter referred to as material C). Material B represents the group of closed cell foams and

was identical to foam B studied in Chapter 6. Material C, on the other hand, represents the group of

consolidated granular materials.

Figure 7.3 shows optical microscope images of the structure of studied materials. It becomes

evident the difference between the constituents and the manufacturing process of these materials.

Like material B, material C was also industrially produced and its manufacturing process is not

known. Nevertheless, it was also part of the five porous materials characterized in an interlaboratory

campaign of Bonfiglio et al. [98] on the dynamic elastic properties of poroelastic media. From the

measurement results presented therein, this material can also be modeled as homogeneous and almost

isotropic with a constant and real-valued Poisson’s ratio.
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1 mm

(a) Material B (b) Material C

Figure 7.3: Optical microscope images of the structure of the two different porous materials.

Table 7.1 presents the nomenclature adopted as well as selected properties for the development of

this work, whereby the materials are sorted by density. Both Poisson’s ratio ν and density ρ were

extracted from the work of Bonfiglio et al. [98]. It should be highlighted that the value of Poisson’s

ratio is a representative one chosen from the experimental results presented therein. Moreover, the

values for the densities ρ’s were verified (see Appendix C for details).

Table 7.1: Description of tested materials, where ν is the Poisson’s ratio and ρ is the nominal density.

Material Description ν ρ [kg/m3]

B closed-cell polyurethane foam 0.35 48
C reconstituted porous rubber 0.35 240

7.2.2 Description of testing equipment and test conditions

The experimental rig and test conditions were the same as the ones used for the second study case

of Chapter 6. A detailed description can be found in subsection 6.3.1 of Chapter 6. Aiming at the

enhanced readability of this chapter, the main aspects are recalled below.

Frequency response functions (FRFs) of simply supported panels with and without a free-layer of

porous material were measured by four accelerometers in a bandwidth of [0-800] Hz with a frequency

step of 0.5 Hz at ambient conditions. A total of 10 tests were performed on each structure, allowing

statistical analysis.
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7.2.3 Results

The experimental results of the structures built for material B are compared in Fig. 6.15 and

discussed in subsection 6.3.1 of Chapter 6. Hence, they have not been reported here.

Figure 7.4 compares the experimental FRFs of configurations 1 and 2 of material C. The results

illustrate the mean value of the tests together with the confidence interval of 95 %. It is possible to

observe that the addition of this material greatly affected the response of the structure since the first

resonance peak. Indeed, this response became more damped in such a way that only the first five

resonance peaks could be distinguished. These results evidenced the strong viscoelastic behavior of

this porous material, also pointed out by Bonfiglio et al. [98].
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Figure 7.4: Comparisons between the measured FRFs of configurations 1 and 2 of material C.

222



7.3. MODELING

7.3 Modeling

This section presents the finite element models adopted and the details related to the numerical

implementation.

7.3.1 Finite element formulation

The hypotheses adopted were similar to those employed for configurations 1 and 2 studied in

Chapter 6. Even though previously developed in subsection 6.3.2 of Chapter 6, the main equations

are briefly repeated in the following for the sake of self-contained readability of this chapter.

Thus, for configuration 1, the finite element discretization of the differential equations results in

the following equation of motion

[(1 + jη)KE − ω2ME ]US(ω) = F S(ω), (7.2)

where KE and ME are, respectively, the stiffness and mass matrices related to the elastic component, η

is its structural loss factor, and US(ω) and F S(ω) are, respectively, the displacement and load vectors

at angular frequency ω.

For configuration 2, on the other hand, the discretised equation of motion is given by

[KE + G∗(ω)K0
V − ω2M]US(ω) = F S(ω), (7.3)

where K0
V is the stiffness matrix related to the viscoelastic component and computed for a unit shear

modulus, M is the global mass matrix, G∗(ω) is the complex shear modulus of the viscoelastic material

modeled herein by the four-parameter fractional derivative model (4PFDM), previously explained in

subsection 2.5.1 of Chapter 2, as

G∗(ω) = G0 + G∞(jωτ)α

1 + (jωτ)α
, (7.4)

where G0 and G∞ are, respectively, the relaxed and unrelaxed shear moduli, τ is the relaxation time

and α is the order of the fractional derivative model. These four parameters θ = {G0, G∞, τ, α} must

obey the thermodynamic constraints shown in Eq. 2.28 and has to be assessed by means of inverse

analysis.
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7.3.2 Numerical implementation

Similarly to Chapter 6, an in-house program combining GMSH [138] and MATLAB® software was

used to build the geometries together with the corresponding meshes, and also to compute the FRFs.

Here, they were estimated through the model reduction technique known as multi-model approach

[139] to reduce the computational time of the problem.

The investigated structures were modeled with the 20-node hexahedral elements since they describe

better some physical mechanisms like, for example, the shear behavior of the viscoelastic material.

Firstly, the FE model of each configuration 1 tested was implemented to perform a model updating

routine to identify the equivalent properties of the aluminum plate together with the frame, similar

to what was described in subsection 6.3.3 of Chapter 6. Then, the FE model of each configuration 2

tested was implemented to perform the inverse characterization of the viscoelastic properties of the

porous layer. A preliminary study was conducted in an attempt to determine the number of pseudo-

normal modes to be included in the projection basis and also to chose the finite element mesh. Figure

7.5 shows the adopted mesh with 14241 degrees of freedom.

z

xy

(a) Isometric view

y

z

(b) Top view

Figure 7.5: Finite element mesh adopted for the inverse method.

7.4 Results & discussion: identification of viscoelastic parameters

This section presents and discusses the results of the calibration of models adopted to describe

the viscoelastic behavior of the two porous materials as well as the associated validation. For this, a

probabilistic approach based on Bayesian inference, previously explained in Chapter 3, was considered
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to assess information about the posterior probability density function π(θ|Y ) of the model parameters

θ = {G0, G∞, τ, α} that characterize the constitutive equation given by Eq. 7.4.

7.4.1 Material B

7.4.1.1 Description of calibration and validation procedures

As previously mentioned, the viscoelastic parameters to be identified in this inverse characterization

were defined as θ = {G0, G∞, τ, α}T . Nevertheless, they vary by some orders of magnitude for the

investigated material according to the results presented by Bonfiglio et al. [98] and Henriques et al.

[1]. Aiming at enhancing the performance of the identification process [25], they were normalized

θs = {p1, p2, p3, p4}T based on the results presented by Henriques et al. [1] such as

p1 = G0 × 10−4[Pa], (7.5a)

p2 = G∞ × 10−6[Pa], (7.5b)

p3 = τ × 108[s], (7.5c)

p4 = α. (7.5d)

For both calibration and validation steps, the experimental data Y comprised the frequency re-

sponse functions (FRFs) computed from the point excitation force provided by the impact hammer

and the response accelerations measured by the four accelerometers {AC1, AC2, AC3, AC4}, as shown

in Fig. 6.13. Some points should be highlighted.

All measured data has been split into two different subsets to quantify the influence of a par-

ticular calibration data-set on the model updating process, and because model validation must be

independent of model updating, as shown in Tab. 7.2. A measurement subset Sijkl was defined as the

set for which calibration was performed using as observed data the FRFs measured by accelerometers

{ACi, ACj} and for which model validation was quantified using as observed data the FRFs measured

by accelerometers {ACk, ACl}, where i, j, k, l ∈ {1, 2, 3, 4} and i ̸= j ̸= k ̸= l.
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Table 7.2: Definition of subsets Sijkl used for model calibration and model validation of material B,
where i, j, k, l ∈ {1, 2, 3, 4} and i ̸= j ̸= k ̸= l.

Subset Model calibration Model validation

S1234 Y = {FRF˜ |AC1 FRF˜ |AC2}T Y = {FRF˜ |AC3 FRF˜ |AC4}T

S3412 Y = {FRF˜ |AC3 FRF˜ |AC4}T Y = {FRF˜ |AC1 FRF˜ |AC2}T

Besides, a specific organization structure of the experimental data was adopted. The complex

FRF measured by an accelerometer ACi was organized in a N-dimensional vector FRF˜ |ACi =

{FRF˜ (ω1)|ACi, . . . , FRF˜ (ωN )|ACi}T . Accordingly, the measured data Y for a given subset Sijkl,

described in Tab. 7.2, corresponded to a 4N-dimensional vector defined as follows

Y = {ℜ[FRF˜ |ACi]T ℜ[FRF˜ |ACj ]T ℑ[FRF˜ |ACi]T ℑ[FRF˜ |ACj ]T }T (7.6)

where ℜ[ã] and ℑ[ã] are, respectively, the real and imaginary parts of a complex vector ã.

It is important to highlight that the calibration step did not consider all the experimental points

obtained in the measurements. Only the experimental points related to the resonance peaks and

ten more points linearly-spaced frequency grids (△f = 1.5 Hz) located around each resonance peak

were selected, as illustrated in Fig. 7.6. This technique improved the computational time since the

dimension of the vector Y reduced drastically; initially, it had 6400 points, but after selection, it

reduced to 396 points.
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Figure 7.6: Selected points for calibration procedure in which △f = 1.5 Hz.
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For the model calibration step using Bayesian inference, it is required one to specify the likelihood

π(Y |θ) and the prior π0(θ) as shown in Eq. 3.4. It was assumed herein that the likelihood function

π(Y |θ) was defined by the distribution of the additive error, leading to e ∼ N(0, Σ). A diagonal

covariance matrix Σ, as shown in Eq. 3.9, was assumed with sample-based error variance. That

is, the variance σ2
i was treated as an additional random parameter defined by the inverse gamma

distribution [25].

Concerning the priors π0(θ), it was assumed herein a uniform prior distribution for the normalized

parameters θs = {p1, p2, p3, p4}T . Every random variable was constructed under the hypothesis that

they were mutually independent. Moreover, the marginal prior for the variable θ was defined to be

within the set Dθ such as

Dp1 = {p1 ∈ R|0 < p1 < 3}, (7.7a)

Dp2 = {p2 ∈ R|1 < p2 < 5}, (7.7b)

Dp3 = {p3 ∈ R|3 < p3 < 6}, (7.7c)

Dp4 = {p4 ∈ R|0 < p4 < 0.5}, (7.7d)

which the limit values were chosen based on the results presented in the works of Bonfiglio et al. [98]

and Henriques et al. [1].

With all parameters defined, the calibration of the model started. Firstly, a deterministic analysis

was done to assess the maximum a posteriori (MAP) estimate θ̂MAP shown in Eq. 3.11. Then, the

approximate posterior covariance matrix was determined as Σ̂ ≈ (JT Σ0J)−1. The operator J is

related to the model Jacobian evaluated at θ̂MAP and Σ0 corresponds to the initial covariance matrix

whose variance was calculated as follows

σ2
0 =

∑︁Ny

i=1[Y − f(θ̂MAP ,x)]2

Ny − Nθ
, (7.8)

where Ny is the number of measured data chosen to be analyzed and Nθ is the number of parameters

[25].

Finally, the posterior distribution of the unknown parameters π(θ|Y ) was explored with the DRAM

algorithm, explained in subsection 3.2.2 of Chapter 3. In the AM method, the adaptation occurred
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at prescribed intervals of length j0 = 100 with a Gaussian candidate distribution. In the DR method,

three stages were considered in which γs = {1/5, 1/4, 1/3}. A total number of NMC = 50000 samples

was considered.

7.4.1.2 Model calibration

For all measurement subsets studied, a MAP estimator was first performed to find the best point

θ̂MAP to start MCMC sampling, removing long warm-up steps. As the prior PDFs were described

by uniform distributions, this point estimate was reduced to the maximum-likelihood (ML) estimator.

Table 7.3 summarizes the results obtained in this step for both measurement subsets S1234 and S3412.

It can be seen that the estimated parameters varied according to the measurement subset, and the

parameters G∞ and τ were the ones most affected.

Table 7.3: MAP results for the two measurement subsets Sijkl, i, j, k, l ∈ {1, 2, 3, 4} and i ̸= j ̸= k ̸= l,
of material B.

Subset G0 [Pa] G∞ [Pa] τ [s] α

Initial 1.00 × 104 2.00 × 106 1.00 × 10−8 0.5

MAP - S1234 0.87 × 104 2.06 × 106 4.25 × 10−8 0.39
MAP - S3412 1.05 × 104 2.77 × 106 3.07 × 10−8 0.42

Figure 7.7 compares the measured FRFs with the ones estimated using an initial value θ0 and

using the MAP estimate θ̂MAP . It graphically illustrates the improvement achieved by this point

estimator.

After that, the sampling started using DRAM algorithm and the convergence was monitored by

computing the cumulative mean in the Markov chain of all the parameters. Figure 7.8 shows the results

obtained, evidencing the well-mixing samples and that the stationarity of the posterior distributions

has been reached.
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Figure 7.7: Comparison between experimental data and model prediction using MAP estimate θ̂MAP

for both measurement subsets S1234 and S3412 of material B.
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Figure 7.8: Convergence analysis for the 4PFDM using DRAM algorithm of material B.
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Figure 7.8: Convergence analysis for the 4PFDM using DRAM algorithm of material B.

Table 7.4 summarizes the analyses of the MCMC samples for the two measurement subsets S1234

and S3412. For the former, the chain reached the convergence after 35000 samples with an acceptance

rate of 36.48 %. For the latter, in turn, the convergence was reached after 40000 samples with an

acceptance rate of 27.71 %. Both analyses showed consistent acceptance rate values.

Table 7.4: MCMC results using DRAM algorithm for the two measurement subsets Sijkl, i, j, k, l ∈
{1, 2, 3, 4} and i ̸= j ̸= k ̸= l, of material B.

Subset Total samples Burn-in Acceptance rate

S1234 50000 35000 36.48 %
S3412 50000 40000 27.71 %

After discarding the samples from the burn-in period, Monte Carlo approximations were computed

for the posterior mean (E[θ]) and 95 % credibility interval (CI) of each model parameter θ. Table 7.5

shows the results for the two measurement subsets S1234 and S3412. It is possible to observe that the

mean values of the parameters obtained by the different subsets were very close. The parameter G∞
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was the one most affected by the measurement subset, while τ was the one less affected.

Table 7.5: Posterior mean value and 95 % credibility interval of the unknown parameters θ for the two
measurement subsets Sijkl, i, j, k, l ∈ {1, 2, 3, 4} and i ̸= j ̸= k ̸= l, of material B.

Subset
E[G0]

[Pa] E[G∞]
[Pa] E[τ ]

[s] E[α]
95 % CI 95 % CI 95 % CI 95 % CI

S1234
1.09 ×104 2.66 ×106 4.42 ×10−8 0.42

[0.59, 1.89] [1.45, 4.42] [3.09, 5.88] [0.35, 0.49]

S3412
1.21 ×104 1.92 ×106 4.53 ×10−8 0.38

[0.31, 2.31] [1.12, 3.37] [3.08, 5.95] [0.32, 0.47]

Even though the independence hypothesis was adopted for all random variables when building the

prior PDFs, the samples could still indicate some level of linear correlation once the mapping between

the random vector θ and the model prediction was nonlinear. In this regard, scatter plots were studied

in an attempt to assess the linear correlation between the parameters as shown in Fig. 7.9. For both

S1234 and S3412, the model parameters exhibited little or almost no correlation with each other.

Figure 7.9: Posterior samples generated using DRAM algorithm for the 4PFDM of material B.

231



7.4. RESULTS & DISCUSSION: IDENTIFICATION OF VISCOELASTIC
PARAMETERS

Figure 7.10 shows the marginal posterior PDFs computed for each unknown parameter θ. It can be

seen that, in both measurement subsets, the marginal posterior PDF for the relaxation time τ deviated

from a Gaussian distribution. However, this parameter was the one less affected by the measurement

subset Sijkl: the posterior mean and the 95 % credibility interval remained almost unchanged, as

shown in Tab. 7.5.

It is worth mentioning that the plate with this porous material is lightly damped from the results

presented in the second study case in Chapter 6. Hence, the resonance frequencies (FRF peaks) and

the FRF magnitude at these resonance frequencies are much more affected by the stiffness parameters

of the aluminum plate, explaining the larger uncertainties to the parameters related to the viscoelastic

layer.
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Figure 7.10: PDFs for the parameters of the 4PFDM of material B.

Finally, the uncertainty propagation from the model parameters θ ∼ π(θ|Y ) to the structure’s

frequency response functions FRF˜ (ω) was done for both measurement subsets S1234 and S3412. For

this, the FRFs were computed through the multi-model approach considering all frequency range,

e.g. from 0 to 800 Hz. All samples {θ(1), · · · ,θ(Nmc)} from the posterior distribution π(θ|Y ) were
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considered as input to the forward problem in order to guarantee mean square convergence.

Figures 7.11 and 7.12 show the results of this uncertainty propagation. They graphically illustrate

the 95 % credibility interval of the calibrated 4PFDM and the FRFs measured by accelerometers ACi

and ACj for each measurement subset Sijkl.
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Figure 7.11: Uncertainty propagation when considering θ ∼ π(θ|Y ) for measurement subset S1234 of
material B. Frequency response functions computed for the two accelerometers AC1 and AC2 used in
the calibration procedure.
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Figure 7.12: Uncertainty propagation when considering θ ∼ π(θ|Y ) for measurement subset S3412 of
material B. Frequency response functions computed for the two accelerometers AC3 and AC4 used in
the calibration procedure.

It can be seen that the credibility intervals were quite narrow for most of the frequency range.

233



7.4. RESULTS & DISCUSSION: IDENTIFICATION OF VISCOELASTIC
PARAMETERS

Higher uncertainties appeared after approximately 680 Hz. It can also be noticed that the largest

discrepancies between the calibrated model and the corresponding measured data happened in the

frequency range [680-800] Hz for both FRFs in the measurement subset S1234 and for the FRF obtained

by AC3 in the measurement subset S3412. This difficulty may be related to the multi-model approach

used to compute the FRFs in the uncertainty propagation. Nevertheless, a good agreement, on the

whole, can be observed.

It is worth mentioning that the issue related to high frequencies could be minimized, for example,

if the direct method was employed to calculate FRFs. To exemplify this fact, the FRFs were thus

computed through the direct method considering only the posterior mean values of the unknown

parameters θ due to the computational costs. Figures 7.13 and 7.14 show the results obtained for

both data-sets, highlighting the improvements achieved.
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Figure 7.13: Comparison between experimental data and the calibrated model for measurement subset
S1234 of material B. The frequency response function was computed through the direct method using
the posterior mean value of the unknown parameters θ.
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Figure 7.14: Comparison between experimental data and the calibrated model for measurement subset
S3412 of material B. The frequency response function was computed through the direct method using
the posterior mean value of the unknown parameters θ.

7.4.1.3 Model validation

Once a model has been calibrated using a probabilistic approach, the next step is to evaluate the

degree to which a given model predicts the response of interest for the studied system. To achieve this

goal, the observed data was different from those used in model updating. Two steps, one qualitative

and the other quantitative, were carried out.

The first stage of validation consisted of performing the uncertainty propagation for the FRFs of

the two accelerometers Ak and Al in each measurement subset Sijkl. It is worth reminding that the

information provided by these two accelerometers was not used to update the model parameters.

The FRFs were thus computed through the multi-model approach from 0 to 800 Hz. All samples

{θ(1), · · · ,θ(Nmc)} from the posterior distribution π(θ|Y ) were considered as input to the forward

problem in order to guarantee mean square convergence.

Figures 7.15 and 7.16 show the posterior predictive probabilities for the FRFs of each measure-

ment subset S1234 and S3412, respectively. They compare the 95 % credibility interval for the 4PFDM,

computed after propagating the uncertainty in model parameters, and the FRFs measured by ac-

celerometer ACk and ACl for each measurement subset Sijkl.
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Figure 7.15: Uncertainty propagation when considering θ ∼ π(θ|Y ) for measurement subset S1234 of
material B. Frequency response functions computed for the two accelerometers AC3 and AC4 used in
the validation procedure.
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Figure 7.16: Uncertainty propagation when considering θ ∼ π(θ|Y ) for measurement subset S3412 of
material B. Frequency response functions computed for the two accelerometers AC1 and AC2 used in
the validation procedure.

For both data-sets, the credibility intervals were quite narrow. After 680 Hz, higher uncertainties

appeared, and the largest discrepancies between the model prediction and the corresponding experi-

mental result were observed. As mentioned for the calibration step, this issue at high frequencies may

be related to the model reduction technique used and can be minimized if one makes use of the direct

method to compute the FRFs.
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Despite this, both model predictions presented good levels of agreement between the experimental

measurements and the 95 % credibility intervals. They satisfactorily predicted the resonant frequencies

and FRF peaks. These results indicate that the simplified calibrated models have great predictive

capabilities of the system’s response.

The second stage of validation consisted of measuring the accuracy between experimental data and

model predictions. For this, a validation metric was appropriately defined to quantify the discrepancies

between the model prediction with measured data.

In this work, a validation metric based on the relative discrepancy for resonant frequencies (here-

inafter referred to as δfr) in [%] was adopted. It was defined as follows

δfn
i =

|f i
r−exp − f i

r−sim|
f i

r−exp

× 100%, (7.9)

where f i
r−exp and f i

r−sim correspond, respectively, to the ith measured and estimated resonant fre-

quency.

Table 7.6 shows the discrepancies calculated from the resonant frequencies measured by each

accelerometer used for the validation step. For both subsets S1234 and S3412, it is possible to observe

that the highest values estimated were less than 7 %. Assuming 20 % as the upper limit on acceptable

accuracy for model validation as stated by Schwer [58], one can thus infer that the agreement between

the predictions and the experiment is quite high.

Table 7.6: Validation metric δfr [%] for material B.

Subset δfn
1 δfn

2 δfn
3 δfn

4 δfn
5 δfn

6 δfn
7 δfn

8 δfn
9

S1234
AC3 5.6 1.8 2.1 0.5 0 0.9 0.4 0.7 6.8
AC4 5.6 1.8 2.1 0.6 0.2 1.5 0.3 0.9 -

S3412
AC1 5.6 1.8 2.1 0.5 0.1 1.4 0.3 0.5 5.8
AC2 5.6 1.8 2.1 0.5 0 1.9 0.4 0.4 5.6

The largest discrepancies were estimated for the first and the last mode of vibration and they can

be explained as follows. The first is related to the differences between the hypotheses of the numerical

model and the experimental apparatus: the blades that connect the aluminum plate to the steel frame

built around it were not considered despite adding some stiffness to the system. The last is related to

the model reduction technique adopted to compute the system’s response.
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Therefore, both measurement subsets led to good levels of fitting for the investigated frequency

band. All stochastic models built were in good agreement with the corresponding experimental data.

The results of the validation metric reinforced the idea that the model can reproduce the dynamic

behavior of the system within the low-frequency range.

7.4.1.4 Comparison with other techniques

As discussed in Chapter 6, the viscoelastic properties of material B were characterized through

a torsional rheometer (TR), and from these results, a fractional derivative model was calibrated by

the least square method in the work of Henriques et al. [1]. This subsection presents a comparison

between the parameters estimated by Henriques et al. [1] and by the proposed inverse method, and

their effects on model predictions.

Table 7.7 compares the estimated values of the four parameters θ = {G0, G∞, τ, α} by the different

approaches. It is possible to observe that the average values estimated for the parameters G∞ and α are

more discrepant (in percentage terms) when compared to those estimated by the TR. Nevertheless,

if one considers the credibility intervals shown in Tab. 7.5, all estimated parameters had a good

agreement with each other, regardless of the calibration procedure.

Table 7.7: Comparison between the four parameters θ = {G0, G∞, τ, α} estimated by different ap-
proaches for material B.

Method E[G0] [Pa] E[G∞] [Pa] E[τ ] [s] E[α]

TR 1.31 × 104 2.11 × 106 4.70 × 10−8 0.30
MCMC − S1234 1.09 × 104 2.66 × 106 4.42 × 10−8 0.42
MCMC − S3412 1.21 × 104 1.92 × 106 4.53 × 10−8 0.38

As explained in subsection 2.5.1 of Chapter 2, parameters G0 and G∞ are related to the modulus

value when frequency tends, respectively, to zero and infinity, parameter τ is related to the relaxation

time, and α is the order of the fractional model that affects the slope of the curve. Thus, the results

obtained suggest that, when evaluating the behavior of the complex shear modulus G∗(ω) along with

the frequency, the greatest impact is related to the slope of the curve as the parameter α varied

considerably.

The complex shear modulus was thus calculated using the parameters estimated by each method.
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For the proposed one, all samples from the posterior PDFs were considered for both measurement

subsets in order to construct the credibility intervals. Figure 7.18 shows the results obtained for the

absolute value, |G∗(ω)|, considering the frequency range from 10−4 to 1010Hz. As expected, the main

difference among the curves is related to their slope.

Finally, to analyze the impacts of these sets of parameters on the FRFs, model predictions were

calculated using the direct method considering the mean values of the parameters for the location of

AC1. The results are shown in Fig. 7.18.

It can be seen that all sets of parameters can provide a good correlation with the experimental

results. The main difference among them is related to the amplitude of the FRF peaks as the model

prediction provided by TR set overestimated them on the whole. The resonance frequencies, on the

other hand, were quite similar, as evidenced on Tab. 7.8.

Figure 7.17: Absolute value of complex shear modulus, |G∗(ω)|, of material B. Comparison between
the calibrated models from TR measurements [1] and the proposed inverse characterization.
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Figure 7.18: FRFs obtained for the location of AC1 for material B. Comparison between experimental
data and model predictions using parameters obtained from TR measurements [1] and the ones from
the proposed inverse characterization.

Table 7.8: Comparison between the resonance frequencies from measured data and calibrated models
by different approaches for material B.

1 2 3 4 5 6 7 8 9

Experimental 99.0 220.0 263.5 386.0 420.0 534.5 587.5 660.0 700.0
TR 93.5 216.5 259.0 383.5 420.0 539.0 589.5 666.0 702.5

MCMC − S1234 93.5 216.0 258.0 384.0 420.0 544.0 590.5 665.0 -
MCMC − S3412 93.5 216.0 258.0 383.5 420.0 543.0 590.0 664.0 -

7.4.2 Material C

7.4.2.1 Description of calibration and validation procedures

The goal of this inverse characterization was again to identify the four viscoelastic parameters

θ = {G0, G∞, τ, α}. Nevertheless, these parameters may vary significantly in terms of orders of

magnitude, affecting a lot the search for parameters. Since the scale of each parameter was not so well

defined for material C, they were rescaled logarithmically to have design parameters with the same

order of magnitude to avoid conditioning problems [6, 143] as follows
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p1 = 0.1 log(G0), (7.10a)

p2 = 0.1 log(G∞), (7.10b)

p3 = −0.1 log(τ) (7.10c)

p4 = α. (7.10d)

Similarly to material B, the experimental data Y for both calibration and validation steps com-

prised the frequency response functions (FRFs) computed from the point excitation force provided by

the impact hammer and the response accelerations measured by the four accelerometers {AC1, AC2, AC3, AC4},

as shown in Fig. 6.13. Moreover, two different subsets were generated to quantify the influence of a

particular calibration data-set on the model updating process, and because model validation must be

independent of model updating, as detailed in Tab. 7.9.

Table 7.9: Definition of subsets Sijkl used for model calibration and model validation of material C,
where i, j, k, l ∈ {1, 2, 3, 4} and i ̸= j ̸= k ̸= l.

Subset Model calibration Model validation

S1234 Y = {FRF˜ |AC1 FRF˜ |AC2}T Y = {FRF˜ |AC3 FRF˜ |AC4}T

S3412 Y = {FRF˜ |AC3 FRF˜ |AC4}T Y = {FRF˜ |AC1 FRF˜ |AC2}T

Accordingly, the measured data Y for a given subset Sijkl, described in Tab. 7.9, was defined as

a 4N-dimensional vector such as

Y = {ℜ[FRF˜ |ACi]T ℜ[FRF˜ |ACj ]T ℑ[FRF˜ |ACi]T ℑ[FRF˜ |ACj ]T }T . (7.11)

The calibration step again did not consider all the experimental points obtained in the measure-

ments to improve the computational cost. From the results shown in subsection 7.2.3, however, only

the first five resonance peaks were well defined for the structure with material C, resulting in a spe-

cific selection. Until 400 Hz, only the experimental points related to the resonance peaks and ten

more points linearly-spaced frequency grids (△f = 1.5 Hz) located around each resonance peak were

selected, similar to that used in the analysis of material B. After 400 Hz, in turn, some experimental
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points linearly-spaced frequency grids were chosen where there was a tendency for resonance peaks.

This technique reduced drastically the dimension of the vector Y : from 6400 to 376 points. Figure

7.19 illustrates the selected points when considering the experimental data provided by AC1.
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Figure 7.19: Selected points for model calibration procedure for material C.

As for the priors π0(θ) of the design parameters {p1, p2, p3, p4}T , it was assumed uniform distribu-

tions whose marginals were defined to be within the set Dθ such as

Dp1 = {p1 ∈ R|0.4 < p1 < 0.6}, (7.12a)

Dp2 = {p2 ∈ R|0.5 < p2 < 0.8}, (7.12b)

Dp3 = {p3 ∈ R|0.6 < p3 < 1}, (7.12c)

Dp4 = {p4 ∈ R|0 < p4 < 1}. (7.12d)

It is important to underline that every random variable was constructed under the hypothesis that

they were mutually independent. Also, the limit values for parameters p1 and p2 were chosen based

on the results presented in the work of Bonfiglio et al. [98].

The likelihood function π(Y |θ) was once more defined by the distribution of the additive error,

leading to e ∼ N(0, Σ). A diagonal covariance matrix Σ, as shown in Eq. 3.9, was considered

assuming sample-based error variance. The variance σ2
i was considered as an additional random

parameter defined by the inverse gamma distribution [25].

Thus, with all parameters defined, the calibration of the model started. Firstly, a deterministic
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analysis was done to assess the maximum a posteriori estimate θ̂MAP shown in Eq. 3.11. Then, the

approximate posterior covariance matrix was determined as Σ̂ ≈ (JT Σ0J)−1 whose initial covariance

matrix Σ0 was calculated by Eq. 7.8. Finally, the posterior distribution of the unknown parameters

π(θ|Y ) was explored with the DRAM algorithm. In the AM method, the adaptation occurred at

prescribed intervals of length j0 = 100 with a Gaussian candidate distribution. In the DR method,

three stages were considered in which γs = {1/5, 1/4, 1/3}. A total number of NMC = 40000 samples

was considered.

7.4.2.2 Model calibration

The first step of this inverse characterization consisted of performing a MAP estimator to find the

best point θ̂MAP to start MCMC sampling. For this particular case, it was equivalent to performing

the ML estimator since uniform prior distributions were adopted for the unknown parameters. Table

7.10 shows the results obtained for the two measurement subsets S1234 and S3412. It can be noted that

each set of experimental data resulted in a different estimate for the four parameters, among which

G∞ was the one most affected.

Table 7.10: MAP results for the two measurement subsets Sijkl, i, j, k, l ∈ {1, 2, 3, 4} and i ̸= j ̸= k ̸= l,
of material C.

Subset G0 [Pa] G∞ [Pa] τ [s] α

Initial 1.00 × 105 1.00 × 107 1.00 × 10−8 0.20

MAP - S1234 2.10 × 104 7.91 × 107 3.31 × 10−8 0.62
MAP - S3412 1.95 × 104 4.89 × 107 3.48 × 10−8 0.57

Figure 7.20 compares the measured FRF with the ones estimated using any initial parameters

θ0 and using MAP estimates θ̂MAP . This comparison evidences that θ̂MAP is more realistic for the

measured data than the initial parameters θ0.

Thereafter, DRAM algorithm explored the posterior PDFs. Figure 7.21 presents the chains to-

gether with the corresponding cumulative means. The well-mixing behavior of the chains and the

convergence of the method to the stationary posterior PDF can be easily verified in the Markov chain

of all the parameters.
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Figure 7.20: Comparison between experimental data and model prediction using MAP estimate θ̂MAP

for both measurement subsets S1234 and S3412 of material C.
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Figure 7.21: Convergence analysis for the 4PFDM using DRAM algorithm of material C.
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Figure 7.21: Convergence analysis for the 4PFDM using DRAM algorithm of material C.

Table 7.11 summarizes the MCMC sampling for both measurement subsets S1234 and S3412. The

acceptance rate and the number of samples needed for the convergence varied according to the set of

experimental data used during the calibration process. Nevertheless, both sets presented acceptable

values.

Table 7.11: MCMC results using DRAM algorithm for the two measurement subsets Sijkl, i, j, k, l ∈
{1, 2, 3, 4} and i ̸= j ̸= k ̸= l, of material C.

Subset Total samples Burn-in Acceptance rate

S1234 40000 30000 54.17
S3412 40000 35000 64.92

Table 7.12 presents the posterior mean (E[θ]) together with the 95 % credibility interval (CI) of

each model parameter θ obtained after discarding the samples from the burn-in period. It can be seen

that the results obtained by the different subsets were very close to each other. The parameter α was

the one most affected by the measurement subset, while G∞ was the one less affected.
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Table 7.12: Posterior mean value and 95 % credibility interval of the unknown parameters θ for the
two measurement subsets Sijkl, i, j, k, l ∈ {1, 2, 3, 4} and i ̸= j ̸= k ̸= l, of material C.

Subset
E[G0]

[Pa] E[G∞]
[Pa] E[τ ]

[s] E[α]
95 % CI 95 % CI 95 % CI 95 % CI

S1234
1.90 ×104 2.36 ×107 1.93 ×10−7 0.61

[1.05, 2.79] [0.80, 9.10] [0.14, 9.56] [0.53, 0.68]

S3412
2.03 ×104 2.22 ×107 1.24 ×10−7 0.56

[1.26, 2.94] [0.71, 9.04] [0.08, 9.33] [0.51, 0.62]

Scatter plots were thus constructed to assess whether the independence hypothesis adopted for all

random variables was coherent. Figure 7.22 shows the results obtained for both calibrations performed,

evidencing little or no correlation between the parameters.
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Figure 7.22: Posterior samples generated using DRAM algorithm for the 4PFDM of material C.

Figure 7.23 shows the marginal posterior PDFs computed for each unknown parameter. In both

measurement subsets, the PDFs for parameters G∞ and τ deviated from Gaussian distribution. Nev-

ertheless, they almost did not differ with the data-set used in the calibration step.
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Finally, the uncertainties related to the estimated parameters θ ∼ π(θ|Y ) were propagated for

both sets to observe the behavior of the calibrated models. In this regard, the FRFs were computed

through the multi-model approach considering all frequency range. All samples from the posterior

PDF π(θ|Y ) were used as input to the forward problem, ensuring the mean square convergence.

Figures 7.24 and 7.25 graphically compare the 95 % credibility interval of the calibrated 4PFDM

with the corresponding experimental result for both subsets S1234 and S3412, respectively. It can be

seen that the credibility intervals were quite narrow, increasing with frequency. The largest differences

observed in the highest frequencies can be associated with the model reduction technique used to

calculate the FRFs and also with the model assumptions.

Besides that, it can also be noted that the models underestimated the resonant peaks in terms of

amplitude and frequency. Despite this, these simplified calibrated models are capable of describing

the dynamic behavior of the system.
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Figure 7.23: PDFs for the parameters of the 4PFDM of material C.
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Figure 7.24: Uncertainty propagation when considering θ ∼ π(θ|Y ) for measurement subset S1234 of
material C. Frequency response functions computed for the two accelerometers AC1 and AC2 used in
the calibration procedure.
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Figure 7.25: Uncertainty propagation when considering θ ∼ π(θ|Y ) for measurement subset S3412 of
material C. Frequency response functions computed for the two accelerometers AC3 and AC4 used in
the calibration procedure.

7.4.2.3 Model validation

This section aims to assess the credibility of the calibrated models through the basic principles of a

validation process. The observed data analyzed was thus different from the one used for the calibration

step. Validation was performed by graphically comparing estimated and measured quantities, and by

computing the validation metrics similarly to what was done to material B.
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To start the validation procedure, the uncertainties inherent of the estimated parameters θ ∼

π(θ|Y ) were propagate to the structure’s frequency response functions FRF˜ (ω) of the two accelerom-

eters Ak and Al in each measurement subset Sijkl. The FRFs were calculated using all samples

{θ(1), · · · ,θ(Nmc)} from the posterior PDF π(θ|Y ) through the multi-model approach for the investi-

gated frequency band.

The results of this forward uncertainty propagation for the subsets S1234 and S3412 are, respectively,

represented in Figs. 7.26 and 7.27. In both cases, the 95 % credibility intervals of the 4PFDM are

compared to the related experimental measurements, showing good accordance. The intervals were,

on the whole, quite narrow. Also, higher discrepancies mainly related to the approximate method of

calculating the FRFs can be observed after 500 Hz, as previously discussed in the calibration step.

To continue the process, the validation metric based on the relative discrepancy for resonant

frequencies expressed in Eq. 7.9 was computed to quantify the degree of accuracy of the model

predictions. Table 7.13 shows the computed values for the first five resonant peaks for both data-sets

S1234 and S3412.

It can be noted that the largest discrepancy of approximately 9 % was estimated for the first

resonant peak. This value can be explained by the experimental assembly of the aluminum plate to

the steel frame: the blades used to fix the aluminum plate added some stiffness to the system, which, in

turn, was not taken into account in the modeling. Nevertheless, the upper limit of 20 % recommended

by Schwer [58] for model validation was respected.

Therefore, both qualitative and quantitative results presented herein give a position in favor of the

calibrated models. One may conclude that they reproduced quite well the dynamic behavior of the

system.
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Figure 7.26: Uncertainty propagation when considering θ ∼ π(θ|Y ) for measurement subset S1234 of
material C. Frequency response functions computed for the two accelerometers AC3 and AC4 used in
the validation procedure.
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Figure 7.27: Uncertainty propagation when considering θ ∼ π(θ|Y ) for measurement subset S3412 of
material C. Frequency response functions computed for the two accelerometers AC1 and AC2 used in
the validation procedure.

Table 7.13: Validation metric δfr [%] for material C.

Subset δfn
1 δfn

2 δfn
3 δfn

4 δfn
5

S1234
AC3 8.7 2.5 2.6 0.7 0
AC4 8.7 2.5 1.9 0 1.8

S3412
AC1 8.1 2.5 3.0 0.4 0
AC2 8.1 2.5 2.2 0 0.5
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7.5 Conclusion

This chapter offered a promising approach for the inverse identification of the viscoelastic properties

of porous materials based on a Bayesian framework. The adopted strategy enabled the calibration and

validation of fractional derivative models for two different materials, taking into account the inherent

uncertainties from modeling and measurements. The main findings may be summed up as follows.

The method based on Bayes’ rule was robust since it added a priori information about the pa-

rameters to build the cost function. It employed the DRAM algorithm to explore the sample space,

generating posterior PDFs for the parameters rather than only point estimates. This allowed the com-

putation of some statistics, such as the mean and credibility intervals, which enabled a richer analysis

of the results. The joint PDFs were also obtained during this process, allowing the assessment of a

possible dependency between the parameters.

Furthermore, stochastic models were computed, showing a reasonable level of correlation with

measured data. Small differences were observed, however, some guide lines were given during results

analysis to help the user to assess their reliability and, if necessary, to improve their quality.
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Chapter 8

Conclusions and perspectives

In this thesis, two main problems related to viscoelastic and poro-viscoelastic materials were
investigated. In the first problem, the characterization technique known as DMA, which is
commonly used to determine the complex modulus of these materials, was analyzed in detail.
In the second problem, the dissipation of mechanical energy caused by some porous materials
due to their intrinsic viscoelasticity was explored.
This chapter gathers the most important contributions of each problem, also giving prospects
for future works.

Content

8.1 Dynamic mechanical analysis (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

8.1.1 Achievements and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

8.1.2 Perspectives for future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

8.2 Poro-viscoelastic materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

8.2.1 Achievements and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

8.2.2 Perspectives for future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

255



8.1. DYNAMIC MECHANICAL ANALYSIS (DMA)

8.1 Dynamic mechanical analysis (DMA)

8.1.1 Achievements and outlook

Dynamic mechanical analysis is a versatile technique commonly used to characterize the thermo-

mechanical behavior of viscoelastic materials. One of its advantages is to perform different tests

under distinct conditions, which provides a significant amount of information and enables a better

understanding of the material’s response. However, DMA results indeed depend on various factors.

It is problematic as applications require a consistent measurement of properties, as uncertainties and

wrong estimates can affect the development of a project critically.

On the first evaluation of this work, the complex modulus was measured as a function of tempera-

ture by three different DMA machines in a single cantilever, dual cantilever, and three-point bending

modes. All experimental results evidenced the three main regions of the viscoelastic behavior and,

consequently, allowed the identification of the glass transition temperature of the material. However,

these results were not consistent between operational modes and even equipment.

It was noticed some differences in the values measured for the modulus, especially in the glassy

state, and also for the glass transition temperature. Concerning the operational modes, three-point

bending estimated the highest values. Regarding the equipment, these divergences were more promi-

nent on single and dual cantilever modes, where clamp effects and sample size had the biggest influ-

ences. As a result, a parametric study was carried out to verify the effects of each parameter from the

mathematical models adopted by each DMA machine. This analysis showed that different approaches

were used for the same type of test and the hypothesis of a constant Poisson’s ratio seems reasonable,

for example.

On the second evaluation, the complex modulus was measured as a function of temperature and

frequency by two different DMA machines again in the flexural modes. All measurement results indi-

cated the thermo-rheological simple behavior, which made it possible to apply the time-temperature

superposition principle for the generation of master curves. The optimized shift factors estimated in

this procedure were very consistent, being even fitted by the WLF equation. Moreover, the long-term

behavior identified by the different tests was quite similar.

Nevertheless, such as observed in the first study, the results showed differences in the values of the

modulus. The three-point bending mode once again identified the highest estimates. This variation,
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however, varied according to the investigated frequency. It drew attention since these experimental

master curves are often used for the calibration of mechanical models to be applied in numerical

predictions of the material’s behavior.

Finally, on the third evaluation, a five-parameter fractional derivative model was calibrated within

the Bayesian framework for each data-set aiming at analyzing the impacts on model predictions. From

the results, it was possible to observe a relatively good agreement between the model parameters when

considering the estimated credibility intervals. That is, when taking into account the uncertainties of

measurements and model assumptions, it was possible to obtain very similar predictions, especially at

lower frequencies.

A key aspect here is that the modulus estimate provided by DMA equipment is a physical property

and although some variations may naturally stem from data uncertainties, its variations as a function

of equipment or operational modes are meaningless from the physical point of view. It means that,

when analyzing the results, it has to be kept in mind the entire experimental description, that is, from

the test conditions to the same model of equipment.

8.1.2 Perspectives for future works

The use of viscoelastic materials has been intensified on many applications due to their attractive

mechanical properties. However, there is still a need for better standard tests and methods to measure

these materials’ mechanical properties as the applications require more reliable results and better

predictions of the material’s behavior.

The results presented suggest that further investigations are necessary to understand more deeply

the discrepancies between each DMA machine and to create a precise and reliable way to measure the

viscoelastic properties of a material using these machines. These include the study of:

� the clamp effects, especially for the single cantilever mode as it was the most unreliable between

the flexural modes analyzed when the sample dimensions were modified;

� the sample’s size as it may cause the appearance of other effects on the material, for example,

the shear stress;

� the mathematical formulation as it may be necessary to compensate the equipment stiffness;
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� the correlation between these DMA operational modes and mechanical tests (tension and three-

point bending) on universal machines as Instron;

Furthermore, it becomes interesting to carry out the same studies for other types of viscoelastic

materials to see how far these differences can go.

8.2 Poro-viscoelastic materials

8.2.1 Achievements and outlook

Porous materials have been applied to different areas of engineering and applied sciences. The

dissipative properties due to viscoelasticity have been proved to be beneficial for some applications.

Recently, there is a great interest in studying the responses of these materials to low-frequency vi-

brations as they have the potential to be used for passive damping of structures as constrained or

extensional layers.

With this in mind, this work dealt with the characterization, modeling, and predictions of the

dissipation of mechanical energy by three different porous materials in the low-frequency range. A

total of three investigations were carried out focusing on the damping performance of these materials

when considering only the viscoelasticity of their porous skeletons, neglecting thus the fluid phase and

the air-structure interactions.

In the first study, a numerical approach was proposed to provide predictive scenarios in the time

domain of cyclic stress through the use of calibrated viscoelastic models. This technique allowed the

evaluation of stress levels, stress rates, and temperatures. Two polymeric foams were examined.

The numerical results evidenced hysteresis loops commonly associated with viscoelastic materials

in the responses of the two investigated foams. It was shown that the dissipation of mechanical energy

increased with the increase in stress level and temperature. Additionally, it was suggested that one of

these foams exhibited good damping ability.

The second study, in turn, assessed the damping introduced by a polymeric foam on simply sup-

ported panels through vibrational tests in the low-frequency range. Then, a finite element model

combined with a fractional derivative model calibrated using measured data from a torsional rheome-

ter was proposed and validated. An important point to be detached is that the porous materials were
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modeled as homogeneous isotropic linear viscoelastic solid materials.

The experimental results showed that the introduction of one of the foams on the system could

indeed damp structural vibrations. One of the advantages was that this particular foam did not affect

the system’s mass significantly. In this way, it was demonstrated that it is possible to benefit from a

good trade-off between damping and weight.

The comparison between the experimental and numerical results showed that the proposed model

was amenable for all configurations tested. The model predictions regarding the damping effects

showed relevant accuracy in the low-frequency range. Therefore, the viscoelastic properties measured

by a torsional rheometer are reliable to be used in FE models that consider the viscoelastic foams as

homogeneous monophasic solid.

As a result, a parametric study was carried out to verify the effects of geometric and mechanical

parameters of foams. This analysis evidenced that these parameters could be optimized for weight and

performance, depending on the material. Furthermore, an additional investigation was done to assess

the predictive capacity of the proposed model, which demonstrated its limitation to low frequencies.

It is worth noting that this model reduces computational time considerably. It can be even opti-

mized through the use of model reduction techniques. Therefore, this method becomes attractive to

be used in the pre-design of structures integrating foams as passive damping treatments.

Finally, in the third study, an inverse characterization procedure was proposed to calibrate vis-

coelastic models for two porous materials within the Bayesian framework. The uncertainties from

model assumptions and experimental measurements could be quantified. The influence of the experi-

mental data-sets employed for the calibration step could also be analyzed.

The results showed that the data-set could indeed influence the estimates generated by the method

and that some parameters were still more sensitive to these variations than others. However, it was

possible to have a good agreement between them when taking into account the credibility intervals

generated by their uncertainties. It is worth recalling that this method does not aim to determine the

parameters with the highest reliability, but rather to determine the best set of parameters, estimating

confidence intervals for them.

Furthermore, the estimates obtained for one of the investigated materials were even compared with

the results obtained by other characterization techniques. This correlation showed good agreement
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and, consequently, reliability in this approach.

8.2.2 Perspectives for future works

The results presented in this thesis highlighted the great potential of some porous materials with

viscoelastic features to be used as damping treatment. It thus became evident that this field deserves

more attention to better understand and benefit from these materials.

Concerning the first case study of Chapter 6, the following perspective can be pointed out:

� the accomplishment of experimental cyclic loading tests as it could validate the numerical method

presented and also could shed light on possible limitations;

As regards the second case study of Chapter 6, the following steps can be highlighted:

� the modeling of the two phases of porous materials and their coupling effects using Biot’s theory

to include other dissipation mechanisms such as thermal and viscous ones aiming to better

describe their behavior at higher frequencies;

To do that, there is a need for

– Bayesian inverse identification of all material parameters needed to model the solid and

fluid phases of the material from experimental measurements on an impedance tube;

– the analysis of improvements in model predictions due to the use of Biot’s theory;

– the construction of a new model by the introduction of viscoelastic properties on Biot’s

theory to properly describe both phases of the porous material, taking into account the

viscoelasticity of the solid phase;

� the analysis of the newly developed method to evaluate its performance;

� the investigation of the possibility to perform inverse characterization of foams at higher fre-

quencies.
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[7] D A Rade, J.-F. Deü, D A Castello, A M G de Lima, and L Rouleau. Passive Vibration Control

Using Viscoelastic Materials, chapter 5. Springer, Cham, 2019.

[8] John D Ferry. Viscoelastic properties of polymers. Wiley, New York, 3 edition, 1980.

[9] R M Christensen. Theory of Viscoelasticity - An Introduction. Academic Press, New York, 2

edition, 1982.

261



BIBLIOGRAPHY

[10] Alan S. Wineman and K.R. Rajagopal. Mechanical Response of Polymers. Cambridge University

Press, New York, 1 edition, 2000.

[11] Roderic Lakes. Viscoelastic materials. Cambridge University Press, 1 edition, 2009.

[12] D.A. Castello, L.A. Borges, V.O.B. Santos, B.G. Soares, S.A. Martins, and A.A. Silva. A general

approach for viscoelastic model validation applied on the analyses of epoxy resin modified by

end-functionalized liquid polybutadiene. Journal of the Brazilian Society of Mechanical Sciences

and Engineering, 39(3):993–1007, 2016.

[13] N W Tschoegl. Time Dependence in Material Properties: An Overview. Mechanics of Time-

Dependent Materials, 1(1):3–31, 1997.

[14] W P Hernández, D A Castello, N Roitman, and C Magluta. Thermorheologically simple materi-

als: A bayesian framework for model calibration and validation. Journal of Sound and Vibration,

402:14–30, 2017.

[15] R. S. Lakes. Viscoelastic measurement techniques. Review of Scientific Instruments, 75(4):

797–810, 2004.

[16] Kevin P. Menard. Dynamic mechanical analysis : a practical introduction. CRC Press, Boca

Raton, 1 edition, 1999.

[17] I.R. Henriques, L.A. Borges, M.F. Costa, B.G. Soares, and D.A. Castello. Comparisons of

complex modulus provided by different DMA. Polymer Testing, 72:394–406, 2018.

[18] Isadora R. Henriques, Lavinia A. Borges, and Daniel A. Castello. The Mechanical Behavior of

Viscoelastic Materials in the Frequency Domain. In Agenor de T Fleury, Domingos A Rade, and

Paulo R G Kurka, editors, Proceedings of DINAME 2017, pages 65–81. Springer, Cham, 2019.

[19] Bernard D Coleman and Morton E Gurtin. Thermodynamics with Internal State Variables. The

Journal of Chemical Physics, 47(2):597–613, 1967.

[20] F.C.L. Borges, D.A. Castello, C. Magluta, F.A. Rochinha, and N. Roitman. An experimental as-

sessment of internal variables constitutive models for viscoelastic materials. Mechanical Systems

and Signal Processing, 50-51:27–40, 2015.

262



BIBLIOGRAPHY

[21] R L Bagley and P J Torvik. A Theoretical Basis for the Application of Fractional Calculus to

Viscoelasticity. Journal of Rheology, 27(3):201–210, 1983.

[22] R L Bagley and P J Torvik. On the Fractional Calculus Model of Viscoelastic Behavior. Journal

of Rheology, 30(1):133–155, 1986.

[23] Alexander Lion. On the thermodynamics of fractional damping elements. Continuum Mechanics

and Thermodynamics, 9(2):83–96, 1997.

[24] Francesco Mainardi. Fractional calculus and waves in linear viscoelasticity. Imperial College

Press, London, 1 edition, 2010.

[25] Ralph C. Smith. Uncertainty quantification: theory, implementation, and applications. Society

for Industrial and Applied Mathematics, Philadelphia, 2013.

[26] Jari P. Kaipio and Erkki Somersalo. Statistical and computational inverse problems, volume 160.

Springer, New York, 2005.

[27] Richard Aster, Brian Borchers, and Clifford Thurber. Parameter estimation and inverse prob-

lems. Academic Press, 1 edition, 2005.

[28] Jean-Daniel Chazot, Erliang Zhang, and Jérôme Antoni. Acoustical and mechanical characteri-

zation of poroelastic materials using a Bayesian approach. The Journal of the Acoustical Society

of America, 131(6):4584–4595, 2012.

[29] W. P. Hernández, D. A. Castello, and C. F.T. Matt. On the model building for transmission line

cables: a Bayesian approach. Inverse Problems in Science and Engineering, 26(12):1784–1812,

2018.

[30] Nicholas W. Tschoegl. The Phenomenological Theory of Linear Viscoelastic Behavior. Springer-

Verlag Berlin Heidelberg, 1 edition, 1989.

[31] E Wiechert. Ueber elastische Nachwirkung. Hartungsche buchdr., 1889.

[32] G. A. Lesieutre and E. Bianchini. Time domain modeling of linear viscoelasticity using anelastic

displacement fields. Journal of Vibration and Acoustics, Transactions of the ASME, 117(4):

424–430, 1995.

263



BIBLIOGRAPHY

[33] K. Dovstam. Augmented Hooke’s law based on alternative stress relaxation models. Computa-

tional Mechanics, 26(1):90–103, 2000.

[34] Mikael Enelung and Peter Olsson. Damping described by fading memory - analysis and applica-

tion to fractional derivative models. International Journal of Solids and Structures, 36:939–970,

1999.

[35] T. Pritz. Analysis of four-parameter fractional derivative model of real solid materials. Journal

of Sound and Vibration, 195(1):103–115, 1996.

[36] T. Pritz. Five-parameter fractional derivative model for polymeric damping materials. Journal

of Sound and Vibration, 265(5):935–952, 2003.

[37] F. Schwarzl and A. J. Staverman. Time-Temperature Dependence of Linear Viscoelastic Behav-

ior. Journal of Applied Physics, 23(8):838–843, 1952.

[38] Chang Dae Han and Jin Kon Kim. On the use of time-temperature superposition in multicom-

ponent / multiphase polymer systems. Polymer, 34(12):2533–2539, 1993.

[39] Marniz Van Gurp and Jo Palmen. Time-Temperature Superposition for Polymeric Blends.

Rheology Bulletin, 67(1):5–8, 1998.

[40] Kwang Soo Cho. Viscoelasticity of Polymers : Theory and Numerical Algorithms. Springer

Netherlands, 1 edition, 2016. doi:10.1007/978-94-017-7564-9.

[41] J Dealy and D Plazek. Time-Temperature Superposition - A Users Guide. Rheology Bulletin,

78(2):16–31, 2009.

[42] Igor Emri and Marina Gergesova. Time-Dependent Behavior of Solid Polymers, volume 1. 2010.

[43] Malcolm L. Williams, Robert F. Landel, and John D. Ferry. The Temperature Dependence of

Relaxation Mechanisms in Amorphous Polymers and Other Glass-forming Liquids. Journal of

the American Chemical Society, 77(14):3701–3707, 1955.

[44] F Bueche. The Viscoelastic Properties of Plastics. The Journal of Chemical Physics, 22(4):

603–609, 1954.

264

https://doi.org/10.1007/978-94-017-7564-9


BIBLIOGRAPHY

[45] M. J. Colaço, H. R. B. Orlande, and G. S. Dulikravich. Inverse and optimization problems in

heat transfer. Journal of the Brazilian Society of Mechanical Sciences and Engineering, XXVIII

(1):1–24, 2006.

[46] Jacques Hadamard. Lectures on Cauchy’s Problem in Linear Partial Differential Equations.

Dover, New York, 1 edition, 1952.

[47] Hoon Kim, Christian P. Robert, and George Casella. Monte Carlo Statistical Methods. Springer,

New York, 2 edition, 2004.

[48] Nicholas Metropolis, Arianna W. Rosenbluth, and Marshall N. Rosenbluth. Equation of state

calculations by fast computing machines. Journal of Chemical Physics, 21(6):1087–1092, 1953.

[49] W. K. Hastings. Monte Carlo sampling methods using Markov chains and their applications.

Biometrika, 57(1):97–109, 1970.

[50] Heikki Haario, Marko Laine, Antonietta Mira, and Eero Saksman. DRAM: Efficient adaptive

MCMC. Statistics and Computing, 16(4):339–354, 2006.

[51] Heikki Haario, Eero Saksman, and Johanna Tamminen. An adaptive Metropolis algorithm.

Bernoulli, 7(2):223–242, 2001.

[52] Antonietta Mira. On Metropolis-Hastings algorithms with delayed rejection. Metron - Interna-

tional Journal of Statistics, 59(3-4):231–241, 2001.

[53] Andrew Gelman, Gareth O Roberts, and Walter R Gilks. Efficient Metropolis jumping rules.

Bayesian Statistics, 5:559–607, 1995.

[54] AIAA. Guide for the Verification and Validation of Computational Fluid Dynamics Simulations.

Technical report, Reston, 1998.

[55] ASME. Guide for the verification and validation in computational solid dynamics. Technical

report, American Society of Mechanical Engineers, 2006.

[56] W Oberkampf and Christopher Roy. Verification and Validation in Scientific Computing. Cam-

bridge University Press, 1 edition, 2010.

265



BIBLIOGRAPHY

[57] William Oberkampf and Matthew Barone. Measures of Agreement Between Computation and

Experiment: Validation Metrics. Journal of Computational Physics, 217(1):5–36, 2006.

[58] Leonard E. Schwer. Validation metrics for response histories: perspectives and case studies.

Engineering with Computers, 23(4):295–309, 2007.

[59] Christopher J. Roy and William L. Oberkampf. A comprehensive framework for verification,

validation, and uncertainty quantification in scientific computing. Computer Methods in Applied

Mechanics and Engineering, 200(25-28):2131–2144, 2011.

[60] Yu Liu, Wei Chen, Paul Arendt, and Hong-Zhong Huang. Toward a Better Understanding of

Model Validation Metrics. Journal of Mechanical Design, 133(7):071005, 2011.

[61] Daniel Alves Castello, Carlos Frederico, and Trotta Matt. A Validation Metrics Based Model

Calibration Applied on Stranded Cables. Journal of the Brazilian Society of Mechanical Sciences

and Engineering, 33(4):417–427, 2011.
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Appendix A

Fractional Calculus

A.1 Fractional derivative

Fractional calculus is a topic as old as classical calculus [144]. However, it was only in the last few

decades that it has gained prominence in the most diverse areas of engineering and applied science.

For instance, one may cite the use of fractional derivatives in linear viscoelasticity [21, 22, 24] and

signal processing.

Several definitions of fractional derivatives can be found in the literature [144, 145]. Each one

possesses its features. In the following, we introduce two definitions commonly employed in viscoelastic

problems given by Riemann-Liouville and by Caputo.

Definition 1 (Riemann-Liouville) Let 0Dα
t be the Riemann-Liouville fractional derivative operator de-

fined for any t > 0 with order α > 0. Let m be a positive integer (m ∈ N) such that m − 1 < α ≤ m.

The Riemann-Liouville fractional derivative of order α of a function f(t) is given by

0Dα
t [f(t)] :=

⎧⎪⎨⎪⎩
1

Γ(m − α)
dm

dtm

∫︁ t
0

f(t)
(t − τ)α+1−m

dτ, if m − 1 < α < m,

dm

dtm f(t), if α = m,
(A.1)

where Γ is the well-known Euler Gamma function.

Definition 2 (Caputo) Let ∗
0Dα

t be the Caputo fractional derivative operator defined for any t > 0 with

order α > 0. Let m be a positive integer (m ∈ N) such that m − 1 < α ≤ m. The Caputo fractional

derivative of order α of a function f(t) is expressed as follows
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0Dα
t [f(t)] :=

⎧⎪⎨⎪⎩
1

Γ(m − α)
∫︁ t

0
fm(τ)

(t − τ)α+1−m
dτ, if m − 1 < α < m,

dm

dtm f(t), if α = m.
(A.2)

A.2 Integration method for fractional differential equations

One of the main issues when dealing with fractional derivative equations is the fact that few

problems offer an analytical and closed solution. For this reason, the use of special functions is often

required, such as the so-called Mittag-Leffler function [24]. Different methods can be found in the

literature to solve this kind of equation, the matrix approach proposed by Podlubny [133] was adopted

in this thesis and implemented in MATLAB® software, making use of some functions provided by

Podlubny et al. [134].

In general terms, this particular approach consists in solving a linear ordinary fractional differential

equation by formulating a system of algebraic equations, rather than using recurrence relations. It

makes use of triangular strip matrices to combine numerical differentiation of integer order and m-fold

integration, resulting in the simplification of the numerical solution [133, 134]. In the following, the

mathematical strategy is briefly described.

Let a causal function f(t) be defined in a support [a, b] such that f(t) ≡ 0 if t < a. The Riemann-

Liouville fractional derivative of order α ∈ [m − 1, m[ is thus given by

Dα
t f(t) = 1

Γ(m − α)
dm

dtm

∫︂ t

a

f(τ)
(t − τ)α−m−1 dτ. (A.3)

Let the time support t ∈ [a, b] be discretized in N +1 equidistant points with step h as tk = hk (k =

0, 1, 2, . . . , N), where t0 = a and tN = b. Applying the backward fractional difference approximation

for the αth derivative at points tk, one obtain

Dα
t f(t) ≈ ∇αf(tk)

hα
= h−α

k∑︂
j=a

(−1)j

(︄
α
j

)︄
fk−j . (A.4)

Considering all N + 1 points, Eq. A.4 can be written in the matrix form as follows
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⎡⎢⎢⎢⎢⎣
h−α∇αf(t0)
h−α∇αf(t1)

...
h−α∇αf(tN )

⎤⎥⎥⎥⎥⎦ = BN
α

⎡⎢⎢⎢⎢⎣
f0
f1
...

fN

⎤⎥⎥⎥⎥⎦ , (A.5)

where the matrix BN
α is defined as the discrete analog of left-sided fractional differentiation of order

α expressed by

BN
α = a

hα

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ωα
0 0 0 0 . . . 0

ωα
1 ωα

0 0 0 . . . 0
ωα

2 ωα
1 ωα

0 0 . . . 0
. . .

. . .
. . .

. . . . . . . . .

ωα
N−1

. . . ωα
2 ωα

1 ωα
0 0

ωα
N ωα

N−1
. . . ωα

2 ωα
1 ωα

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (A.6)

with

ωα
j = (−1)j

(︄
α
j

)︄
, j = 0, 1, 2, · · · , N. (A.7)

A similar procedure can be done for non-equidistant points. In this situation, let consider the

causal function f(t) and the Riemann-Liouville fractional integral of order α ∈ ℜ+ such as

D−α
t f(t) = 1

Γ(α)

∫︂ t

a
(t − τ)α−1f(τ)dτ. (A.8)

Let the time support t ∈ [a, b] be discretized in non-equidistant points as follows

D−α
t f(t) = 1

Γ(α)

∫︂ tk

0
(tk − ξ)α−1f(ξ)dξ (A.9a)

=
k∑︂

j=1
f(ξj)(tk − tj−1)α − (tk − tj)α

Γ(α + 1) , (A.9b)

where t0 = 0, tk = t and tj−1 ≤ ξj ≤ tj . Considering ξj = tj , for instance, Eq. A.9b reduces to

0D−α
tk

f(t) =
k∑︂

j=1

[︁(tk − tj−1)α − (tk − tj)α

Γ(α − 1)
]︁
f(tj), (A.10)

which can be written for all N + 1 points in a matrix equation as
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⎡⎢⎢⎢⎢⎢⎢⎣
gt0

gt1
...

gtN−1

gtN

⎤⎥⎥⎥⎥⎥⎥⎦ = INα

⎡⎢⎢⎢⎢⎢⎢⎣
f0
f1
...

fN−1
fN

⎤⎥⎥⎥⎥⎥⎥⎦ (A.11)

The term INα is defined as the discrete analog of fractional integration on non-equidistant points.

Therefore, in a natural way, the fractional differentiation for non-equidistant points can be obtained

by simply inverting matrix INα.
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Appendix B

Complex modulus measured by PE machine

This annex presents the results obtained for the temperature and frequency-dependent complex

modulus measured by the PE machine discussed in Chapters 4 and 5.

B.1 Experimental results
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Figure B.1: Complex modulus measured in SC mode by PE machine.

281



B.1. EXPERIMENTAL RESULTS

10
0

10
1

10
2

Frequency [Hz]

10
1

10
2

10
3

10
4

E
'(

)|
D

C
 [

M
P

a
]

25°C

30°C

35°C

40°C

45°C

50°C

55°C

60°C

65°C

70°C

75°C

80°C

85°C

90°C

(a) E′(ω)|DC

10
0

10
1

10
2

Frequency [Hz]

10
0

10
1

10
2

10
3

E
''(

)|
D

C
 [

M
P

a
]

25°C

30°C

35°C

40°C

45°C

50°C

55°C

60°C

65°C

70°C

75°C

80°C

85°C

90°C

(b) E′′(ω)|DC

Figure B.2: Complex modulus measured in DC mode by PE machine.
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Figure B.3: Complex modulus measured in 3PT mode by PE machine.
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Figure B.4: Validation of thermo-rheological simple behavior considering measurements in SC mode
by PE machine.
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Figure B.5: Validation of thermo-rheological simple behavior considering measurements in DC mode
by PE machine.
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Figure B.6: Validation of thermo-rheological simple behavior considering measurements in 3PT mode
by PE machine.

Table B.1: Empirical constants of WLF equation calibrated using measurements obtained by PE
machine.

Constants SC mode DC mode 3PT mode

C1 8.52 9.31 ± 0.47 7.65 ± 0.58
C2 [K] 57.6 63.36 ± 4.14 54.15 ± 0.47
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Figure B.7: Horizontal shift coefficients aT (T, T0) applied to the isotherms from measurements ob-
tained by PE machine, shown in Figs. B.1-B.3. The optimised coefficients are fitted by WLF equation.
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Figure B.8: Comparison between experimental master curves built at T0 = 70 °C considering measure-
ments of complex modulus by PE machine.
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B.2 Modelling temperature and frequency effects

Table B.2: MAP results for the measurements subsets SC, DC and 3PT from PE machine.

Subset E0 [Pa] E∞ [Pa] τ [s] α β

Initial 1.00 × 107 1.00 × 109 0.50 × 10−3 0.5 0.5

MAP - SC 1.55 × 107 0.78 × 109 1.12 × 10−3 0.52 0.45
MAP - DC 1.09 × 107 0.64 × 109 0.84 × 10−3 0.56 0.48
MAP - 3PT 2.50 × 107 0.54 × 109 3.16 × 10−3 0.70 0.59
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Figure B.9: Convergence analysis for the 5PFDM using DRAM algorithm with each data set from PE
machine.
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Figure B.9: Convergence analysis for the 5PFDM using DRAM algorithm with each data set from PE
machine.

Table B.3: MCMC results using DRAM algorithm for each data set from PE machine.

Mode Total samples Burn-in Acceptance rate

SC 200000 150000 78.20
DC 200000 150000 64.40
3PT 200000 150000 72.73
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Table B.4: Posterior mean value and 95 % credibility interval (CI) of the unknown parameters θ for
each data set from PE machine.

Mode
E[E0] [×107 Pa] E[E∞] [×109 Pa] E[τ ] [×10−3 s] E[α] E[β]

95 % CI 95 % CI 95 % CI 95 % CI 95 % CI

SC
1.53 0.78 1.13 0.52 0.45

[1.01, 2.08] [0.73, 0.84] [0.86, 1.45] [0.50, 0.55] [0.44, 0.47]

DC
1.30 0.61 1.08 0.58 0.49

[0.11, 2.77] [0.47, 0.81] [0.36, 2.24] [0.49, 0.69] [0.43, 0.58]

3PT
2.59 0.53 3.78 0.71 0.60

[0.21, 5.75] [0.41, 0.67] [1.58, 7.67] [0.55, 0.87] [0.46, 0.75]

Figure B.10: Posterior samples generated using DRAM algorithm with each data set from PE machine.
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Figure B.11: PDFs for the parameters generated using DRAM algorithm with each data set from PE
machine.
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(a) E′(ωr, T0)|SC (b) E′′(ωr, T0)|SC

Figure B.12: Uncertainty propagation when considering θ ∼ π(θ|Y ) for the data-set of SC mode from
PE machine.

(a) E′(ωr, T0)|DC (b) E′′(ωr, T0)|DC

Figure B.13: Uncertainty propagation when considering θ ∼ π(θ|Y ) for the data-set of DC mode from
PE machine.
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(a) E′(ωr, T0)|3P T (b) E′′(ωr, T0)|3P T

Figure B.14: Uncertainty propagation when considering θ ∼ π(θ|Y ) for the data-set of 3PT mode
from PE machine.

(a) E′(ωr, T0) (b) E′′(ωr, T0)

Figure B.15: Comparison between the calibrated models from SC, DC, and 3PT modes of PE machine.
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Appendix C

Identification of density ρ

This annex presents the experimental procedure as well as the results of the density ρ of the porous

materials described in Section 6.1 of Chapter 6, and subsection 7.2.1 of Chapter 7. All experiments

were performed at Centro de Mecânica Não-Linear (MECANON) of COPPE/UFRJ.

C.1 Description of experimental procedure

Cubic samples, having dimensions of approximately 0.025 m × 0.015 m × 0.015 m, were first cut

by hand using a box cutter from the same block of material used in the work of Henriques et al. [1],

as shown in Fig. C.1. Afterward, they were weighted on a microgram scale (model ATX224 from

SHIMADZU), as shown in Fig. C.2.

Material C

Material B

Material A
1 cm

Figure C.1: Photograph showing the samples of materials A, B and C. They were cut by hand using
a box cutter.
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Figure C.2: Photograph of the microgram scale (model ATX224 from SHIMADZU).

A total of 3 samples of each material were weighted to reduce the risks of abnormalities due to the

manufacturing process, and also to verify the repeatability of the measurements. Besides, the normal

statistics of sampling and data analysis were performed.

C.2 Results

Table C.1 shows the results obtained of each sample weighted as well as the empirical mean and

standard deviation.

Table C.1: Estimated densities ρ [kg/m3] for materials A, B and C, where E{ρ} is the mean value and
σρ is the corresponding standard deviation.

Foam Sample 1 Sample 2 Sample 3 E{ρ} σρ

A [kg/m3] 9.96 9.70 10.21 9.96 0.25
B [kg/m3] 47.72 50.29 49.65 49.22 1.34
C [kg/m3] 236.79 248.54 243.35 242.89 5.88
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Appendix D

Identification of Tg of polymeric foams
through DSC technique

This annex presents the experimental procedure as well as the results of the glass transition tem-

perature Tg of the polymeric foams described in Section 6.1 of Chapter 6. All experiments were

performed at Centro de Mecânica Não-Linear (MECANON) of COPPE/UFRJ.

D.1 Description of testing equipment and test conditions

Differential scanning calorimetry (DSC) was performed with a DSC 200 F3 from Netzsch, shown

in Fig. D.1, to identify the glass transition temperature Tg of the foams studied in this thesis. The

experimental procedure followed the recommendations provided by DIN EN ISO 11357-2:2014-07.

Figure D.1: Photograph of DSC 200 F3 from Netzsch.
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D.1. DESCRIPTION OF TESTING EQUIPMENT AND TEST CONDITIONS

Initially, the samples were cut by hand using a box cutter, weighted on a microgram scale (model

ATX224 from SHIMADZU), and individually sealed in a hermetic aluminum pan using a sealing press

(model 6.240.10-80 from Netzsch). Afterward, the sample was put on a chamber with a constant known

flux of pure nitrogen. Figure D.2 shows photographs of these experimental apparatus. Finally, two

heating/cooling cycles were performed on the machine while measuring the heat flux on the chamber.

An empty hermetic aluminum pan was used as a reference. The post-processing was performed by the

analysis software provided by the equipment manufacturer.

(a) Microgram scale (model
ATX224 from SHIMADZU)

(b) Sealing press (model
6.240.10-80 from Netzsch)

(c) DSC chamber

Figure D.2: Photographs of the experimental set-up.

It is worth mentioning that the first cycle evaluated the material’s properties in the as-molded

condition. Therefore, it was applied only to erase the material’s thermal history and set a known

thermal profile upon the sample. The second one, in turn, assessed the inherent properties of the

material. As a consequence, it could be used to determine the glass transition temperature Tg.

The description of test conditions for the characterization of each foam is given next.

D.1.1 Foam A

Foam A samples weights of approximately 5 mg were used. Afterward, they are manipulated with

pincers and sealed on the aluminum pans individually, as can be seen in Fig. D.3. The experiments

were performed on two samples as follows.

Initially, the temperature was set at room temperature about 20 °C. Afterward, constant heating
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D.2. RESULTS

was applied to the sample up to 400 °C followed by a constant cooling down to -50 °C (first heat-

ing/cooling cycle). Finally, the second heating ramp was applied from 50 to 450 °C followed by the

second cooling ramp down to -50 °C. All thermal loads were carried out at a controlled temperature

rate of 20 K/min and flow of pure nitrogen of 50 ml/min. The isothermal hold at the beginning of

each ramp was 5 min.

1 cm

Figure D.3: Photograph showing one of the samples of foam A inside the aluminum pan before it was
closed. The sample was cut by hand using a box cutter.

D.1.2 Foam B

As for foam B, sample preparation followed the same procedures described for foam A, with sample

weights of approximately 7 g. The experiments were performed on two samples individually with the

same temperature rates, nitrogen flow conditions, and isothermal holds used for foam A. Nevertheless,

the temperature ranges were different.

Initially, the temperature was set at room temperature about 20 °C. Afterward, the first heating

ramp was applied to the sample up to 100 °C, followed by the first cooling ramp down to -170 °C. In

sequence, the second heating ramp was applied from -170 to 100 °C, followed by the second cooling

ramp down to -170 °C.

D.2 Results

Figure D.4 illustrates the temperature scans performed for one of the samples of each material

studied.
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(a) Foam A

(b) Foam B

Figure D.4: DSC scans.

Table D.1 summarizes the results obtained for each foam material tested. It is important to

mention that these values were estimated using the onset point.

Table D.1: Estimated glass transition temperature Tg [°C] for foams A and B, where E{Tg} is the
mean value and σTg is the corresponding standard deviation.

Foam E{Tg} σTg

A [°C] - -
B [°C] -35.5 0.02
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Appendix E

MIMO tests and experimental modal
analysis

This annex presents the experimental procedure as well as the results of the MIMO (Multiple-Input,

Multiple-Output) tests performed for each configuration 2 tested in the second case study (Section

6.3) of Chapter 6. All the experiments were performed at Laboratoire de Mécanique des Structures

et des Systèmes Couplés (LMSSC) of Cnam.

E.1 Methodology

Experimental modal analysis was divided into two main parts. The first one is concerned with

the experimental measurements of the frequency response functions (FRFs) and the coherence of

structure. The second one is related to the modal parameter estimation (natural frequencies, damping

coefficients, and mode shapes).

In this work, the roving hammer test was first conducted. Four accelerometers were thus fixed at

four different locations, and the structure was impacted at several points to obtain a fair representation

of the mode shapes. Figure E.1 illustrates all impact points equally distributed on the panel and the

locations of the four accelerometers.

The measurements were recorded up to 800 Hz, with a frequency resolution of 0.5 Hz at ambi-

ent conditions (room temperature and in the presence of air). Each FRF was determined from the

measured input and output based on averaging three measurements in the complex domain at each

frequency.
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z
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6
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m
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Figure E.1: Experimental mesh.

Then, the post-treatment was performed on an in-house toolbox developed on MATLAB® soft-

ware. The list below summarizes the procedure adopted, evidencing the methods implemented for

each step when necessary.

1. Evaluation of the measured FRFs and the principle of reciprocity [136, 146]

2. Evaluation of the measured coherence functions

3. Estimation of the modes of vibration

� Complex Mode Indicator Function (hereinafter referred to as CMIF) [147]

4. Estimation of the poles

� Least-Squares Complex Frequency (hereinafter referred to as LSCF) [148]

5. Estimation of the residues

� Least-Squares Frequency-Domain (hereinafter referred to as LSFD) [148, 149]

6. Estimation of the mode shapes and modal participation
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E.2. RESULTS

� Singular Value Decomposition (hereinafter referred to as SVD) [148, 149]

7. Modal validation

� Mean-Phase-Correlation (hereinafter referred to as MPC) [148, 150, 151]

� Mean-Phase-Deviation (hereinafter referred to as MPD) [151]

� Modal Assurance Criterion (MAC) [152]

E.2 Results
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Figure E.2: Averaged coherence function showing the quality of the FRF measurements performed in
each configuration 2 tested.
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Figure E.3: Averaged coherence function showing the quality of the FRF measurements performed in
each configuration 2 tested.
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Table E.1: Estimated natural frequencies (fn) and damping coefficients (ζ) for each configuration 2
tested.

Material
Modal

1 2 3 4 5 6 7 8 9
Parameter

A
fn [Hz] 101.0 223.3 267.7 389.0 426.6 544.1 590.9 665.9 712.3
ζ [%] 0.10 0.06 0.06 0.05 0.16 0.14 0.07 0.14 0.25

B
fn [Hz] 98.6 219.1 262.8 385.4 420.1 538.4 586.8 659.8 692.1
ζ [%] 0.30 0.24 0.38 0.36 0.60 0.64 0.71 1.18 1.58

Table E.2: Validation of the estimated modes for each configuration 2 tested.

Method 1 2 3 4 5 6 7 8 9

A
MPC [%] 87.4 95.9 96.6 96.5 99.6 99.7 98.5 99.5 99.6
MPD [°] 6.4 6.4 5.7 5.3 2.5 2.4 3.7 4.0 3.0

B
MPC [%] 99.4 99.9 99.9 99.8 99.6 99.7 99.9 97.2 94.6
MPD [°] 1.6 1.3 1.6 1.3 2.9 2.0 2.0 7.5 11.0
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Figure E.4: Auto-MAC with experimental modes for each configuration 2 tested.
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Isadora RUAS HENRIQUES

Analysis, characterization and modeling of
viscoelastic and poro-viscoelastic materials

Résumé : Cette thèse porte sur la modélisation et la caractérisation du comportement
thermomécanique des matériaux viscoélastiques et poro-viscoélastiques. Le travail est divisé
en deux parties principales : une concerne la technique expérimentale d’analyse mécanique
dynamique (Dynamic Mechanical Analysis DMA) et l’autre s’intéresse aux performances
d’amortissement des matériaux poro-viscoélastiques. Dans la première partie, les propriétés
viscoélastiques décrites à partir du module complexe et mesurées par DMA en flexion,
sont analysées en profondeur à la fois d’un point de vue théorique et expérimental. Une
attention particulière est accordée aux effets des modes opératoires et des machines d’essais
utilisées sur les propriétés mesurées. Afin d’obtenir une meilleure analyse de l’influence des
écarts constatés, des modèles à dérivées fractionnaires (FDM) sont calibrés dans le cadre
bayésien. Les résultats montrent qu’il existe une grande variabilité en fonction des modes
de fonctionnement ou des fabricants de machines et que les modèles statistiques peuvent
expliquer ces différences. Dans la deuxième partie, la dissipation de l’énergie mécanique due
à la viscoélasticité de trois matériaux poreux différents est explorée dans la gamme des basses
fréquences. Dans un premier temps, une approche numérique est proposée pour générer
des prédictions dans le domaine temporel du comportement hystérique des matériaux sous
différentes conditions de chargement. Ensuite, un modèle éléments finis utilisant un FDM
est proposé pour décrire le comportement de panneaux simplement appuyés et recouverts
d’une couche libre de matériau poreux. Des expériences sont réalisées pour valider le modèle
proposé. Enfin, une méthode inverse basée sur l’inférence bayésienne est présentée pour
identifier les propriétés viscoélastiques de ces matériaux à partir d’essais de vibration. Les
résultats de ces analyses montrent le grand potentiel des matériaux poro-viscoélastiques pour
l’amortissement des vibrations mécaniques.

Mots clés : Matériaux viscoélastiques, Matériaux poreux, DMA, Essais mécaniques, Modélisa-
tion thermomécanique, Inférence bayésienne.

Abstract : This thesis deals with the modeling and characterization of the thermomechanical
behavior of viscoelastic and poro-viscoelastic materials. The work is divided into two main
parts: one concerning the experimental technique Dynamic Mechanical Analysis (DMA) and
the other related to the damping performance of poro-viscoelastic materials. In the first part,
the viscoelastic property known as complex modulus measured by the flexural modes of DMA
is deeply examined theoretically and experimentally. Special attention is paid to the effects
of operational modes and machines on various properties. Aiming to obtain a better analysis
of the impacts of the discrepancies found, fractional derivative models (FDM) are calibrated
within the Bayesian framework. Results show that DMAs have a great variability between
modes or manufacturers and statistical models may mitigate these issues. In the second
part, the dissipation of mechanical energy inherent to the viscoelasticity of three different
porous materials is explored in the low-frequency range. Initially, a numerical approach is
proposed to generate predictions in the time domain of the hysteretic behavior of the analyzed
materials under different loading conditions. Then, a finite element model that considers a
FDM is proposed to describe the behavior of simply supported panels covered with a free-layer
of porous material. Experiments are carried out to validate the proposed model. Finally,
an inverse method based on Bayesian inference was presented to identify the viscoelastic
properties of these materials from vibration tests. The results of these analyses showed the
great potential of poro-viscoelastic materials to be applied to damp mechanical vibrations.

Keywords : Viscoelastic materials, Porous materials, DMA, Mechanical testing, Thermomechani-
cal modeling, Bayesian inference.
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