How does the early functional organization relate to early capacities of human infants? What functional role does the intrinsic network dynamics plays at this age? Does it further mature with the maturation of function in infants? What can be the possible neural mechanisms giving rise to the maturation of such functional role? These outstanding questions still remain unanswered, partly due to the difficulty in recording neural activity at this age but also due to our lack of understanding of aspects of neural dynamics that may be critical for the implementation of brain functions.

My current thesis work builds precisely on the hypothesis that random-like but nevertheless organized fluctuations in neural response trajectories are one such under-explored yet crucial component. This hypothesis was investigated in two ways: first, looking for evidence in the experimental data, we confirmed that the response variability modulations have a rich task-related structure, pointing towards a functional role for such variations; and second, by theoretically proposing and computationally modeling circuit-level mechanisms that could enforce and shape such structured response variability. Specifically, in the first study (Chapter 3), we decided to probe the dynamic relationship between spontaneous and stimulus-evoked activity and its maturation during the first six post-natal months. We hypothesized that if spontaneous activity plays a functional role, pre-and post-stimulus variability must also get progressively more organized with the maturation of the stimulus-evoked responses (besides and beyond maturation of the mean response properties). Next, in chapter 4, based on the analysis of simple computational neural field model, we investigated the link between the relative strengths of excitatory and inhibitory interactions in local circuits and the resulting ways in which an applied stimulus shapes neural population responses. To this end, we propose that changes in these relative strengths may modulate the level of temporal jitter in neural responses to a stimulus and thus mediate the changes in response latency variability empirically observed and measured in the first study, through early development. It remains to be understood in the future whether the veritable phase transitions between possible stimulus coding schemes predicted by our model really occur in actual circuits and, notably, in infants as an effect of the still poorly characterized maturation of local circuit excitatory and inhibitory connections and conductance.

Finally, based on the results obtained from the study described in Chapter 3, we designed new analyses and an experiment to test the hypothesis that part of neural response variability tracks the internal cognitive variables such as attention or expectations in infants. In Appendix A, I demonstrate the utility of investigating trial-by-trial variability of neural responses and its relation to neurophysiological markers of attention in human infants. In Appendix B, I describe the ongoing experiment we designed to probe the role of prior expectations and brain-state dependence on perception of a forthcoming ambiguous stimuli. Finally, a spin-off application to repair artefacts in EEG recordings was also inspired by taking a dynamical systems approach to understand our results on neural variability, which is described in Appendix C of this thesis.
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Abstract

Human infants learn accurate stimulus representations in the face of unreliable incoming sensory inputs, substantially longer information transmission delays, and quickly changing anatomical and functional architecture at this age. Despite a large amount of research examining how the processing of sensory stimuli becomes progressively structured throughout early development, the basic computational mechanisms that may underpin such a learning feat remain unclear. This lack of adequate understanding could be due to the fact that some aspects of brain dynamics, which are critical to brain function, have been understudied. To close this gap, in this thesis, I will focus on the variability of neural activity, which has received far less attention than the average evoked responses, despite the fact that such variability owing to intrinsic fluctuations in brain activity is pervasive in stimulus-evoked responses. I will present two original studies that improve our knowledge of how structured variability in neural response patterns emerge in infants, possible functional changes underpinning it, and the circuit-level mechanisms that might underlie the maturation of such variability.

In the first study, I provide empirical evidence for the existence and development of structured, stimulus-relevant modulations of trial-by-trial and moment-to-moment variability in the Electroencephalography (EEG) signals of 2-6 months old infants and in adults. Confirming previous observations in adults, we find that the effects of stimulus on the spontaneous background fluctuations is only "modulatory" rather than determinant. In infants nonetheless, the temporal structure of these weak modulations depend on the difficulty of the task at hand. Dynamical systems interpretation of these results allows us to suggest that the Event-Related Potential (ERP) components act as weakly attracting modes of a low-dimensional energy landscape in which neural trajectories are transiently constrained due to stimulus arrival. In the second study, using a simple computational model that approximates mean-field activity of excitatory and inhibitory (E-I) populations within a generic local cortical circuit, we observe that the "contrast" of the presented stimulus can impact various aspects of responses; notably the mean firing rate or oscillatory frequency of the collective population activity, but more importantly, the latency of the peak responses depending on the E-I synaptic strengths and their balance. Fluctuations in spontaneous baseline activity interact non-linearly with applied stimulus strength, resulting in variability in all three aspects of the response, including temporal jitters in response peaks, which iii was well identified in the first study. The computational model relates maturation in excitatory and inhibitory conductances to the amount of jitter, and thus provides a possible explanation for the observed maturation of response variability during early development.

This thesis hence advocates for studying the second-order statistics or neural response variability, which especially in infants is often discarded as "uninformative background noise" but could be an integral part of cognitive algorithms given its precise structure and link to the network dynamics.

Résumé

Les nourrissons humains apprennent des représentations précises des stimuli face à des données d'entrées sensorielles peu fiables, à des délais de transmission d'informations sensiblement plus longues et à des changements d'ordre anatomique et d'ordre architecture fonctionnel plus rapides à cet âge-là. En dépit d'un grand nombre de recherches examinant comment le traitement des stimuli sensoriels devient progressivement structuré tout au long du développement précoce, les mécanismes informatiques de base qui peuvent sous-tendre un tel exploit d'apprentissage ne sont pas encore clairs. Ce manque de compréhension pourrait être dû au fait que certains aspects de la dynamique du cerveau, qui sont essentiels au fonctionnement du cerveau, ont été sous-étudiés. Pour combler cet écart, dans cette thèse, je me concentrerai sur la variabilité de l'activité neurale, qui a reçu beaucoup moins d'attention que la moyenne des réponses évoquées, malgré le fait que la variabilité due aux fluctuations intrinsèques de l'activité cérébrale est omniprésente dans les réponses stimulées. Tout d'abord, je vais passer en revue la littérature récente passionnante sur les fluctuations de l'activité spontanée et leur développement ainsi que la modélisation théorique. Ensuite, je présenterai deux études originales qui améliorent notre connaissance de la façon dont la variabilité structurée dans les modèles de réponse neurale émergent chez les nourrissons, les changements fonctionnels possibles qui la sous-tendent, et les mécanismes au niveau des circuits qui pourraient sous-tendre la maturation de cette variabilité.

Dans la première étude, je fournis des preuves empiriques de l'existence et du développement de modulations structurées et pertinentes aux stimuli d'essai-par-essai et moment-au-moment de variabilité instantanée dans les signaux d'électroencéphalographie (EEG) chez les nourrissons de
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Motivation

The existence of brain's ongoing neural activity has been known ever since Richard Catan recorded the first neural signals in the primate cerebral cortex (1875). In recent years, there has been a renewed interest in the intrinsic dynamics of the brain1 for several reasons: First, even in the moments of rest, neural activity reveals a spatio-temporal organization that undergoes spontaneous yet dynamically structured modulations that are characteristic of various behavioural states. During task conditions, such so called spontaneous activity persists in terms of trial-bytrial variability of neural responses, and pre-stimulus spontaneous states influences the cortical processing as well as animal's perception of the ambiguous stimuli. Although important, specific role of spontaneous dynamics in cognition remains widely debated. While some theories suggest that the intrinsic dynamics is merely an epiphenomenon of the anatomically structured noise correlations (and hence carries no behaviourally relevant information about the external world), others hypothesize a functional role, especially suggesting that the spontaneous fluctuations carry generative internal models of animal's environment, and hence can represent the stimulus history and generic priors at rest, or task-relevant contextual priors during task conditions.

If the brain's intrinsic dynamics is to serve a functional role for a healthy adult-like behaviour, it is important to understand how and when during the maturation calendar does this role emerge. Currently our understanding about emergence of adult-like intrinsic network dynamics remains limited. However, from animal models of development, we are beginning to uncover that such dynamics do not manifest itself in its adult condition right away, but is rather shaped by complex and abrupt developmental changes. It arises in tandem with (1) the development of short-and long-range anatomical connections in thalamo-cortical and cortical networks, (2) reorganization of excitatory and inhibitory local circuits and (3) increased experience with the external environment. Despite these massive changes and relative immaturity of the brain, earliest recordings from premature human infants and fetuses (in-utero) have shown that as early as the third trimester into pregnancy, the immature human brain reacts to its environment and is able to discriminate sophisticated features of many auditory, visual and somatosensory A fundamental question in Neuroscience is about how the brain computes and processes the incoming information across many spatiotemporal scales. It is widely agreed that the sequence of action potentials or spikes of a single neuron form the basic unit of information in the brain.

Surprisingly though, which neural mechanisms (or "readouts") are used by the neural circuits in order to represent meaningful features of the stimuli is still a point of contention [START_REF] Barack | Two views on the cognitive brain[END_REF][START_REF] Baker | A Philosophical Understanding of Representation for Neuroscience[END_REF]. The mechanisms that prepare the brain to keep track of both its own mental states and the state of the external world thus remain hotly debated. This is because, from single neurons to large-scale networks, nervous system is intrinsically noisy, which makes any neural mechanism not robust against such noise an unreliable candidate for representing behaviourally relevant information. On the other hand, what is traditionally considered as noise might actually be a representative part of the information itself, or at the least, a feature needed for information to be successfully processed and transformed. For e.g., a complex neural code could be mistaken as noise due either to the lack of tracking of enough experimental variables or due to poor resolution of neural recordings. Whether such noise carries information relevant to animal's behaviour or not has hence been crucial for comprehending what is a 'representation' in the brain2 .

A brief History of Noise in the Brain

Below I summarize the historical insights gained from inspecting noise at different scales in the hope of unifying various different concepts about neural noise in the literature. The studies presented here are by no means exhaustive, instead it is exactly the opposite, as I have tried to summarize the key ideas and questions that are prominent in the field by only including roughly the chronologically first results.

Noise in Single Neurons

Single neuron is intrinsically noisy as observed in the irregularity of its firing patterns. Repeated presentation of the exact same stimuli will sometimes cause a neuron to generate action potentials (or spike trains) and other times not and almost always a slightly different sequence of spikes at each presentation [START_REF] Softky | The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs[END_REF]. In their Nobel prize winning work, Adrian and Zotterman (1925) showed for the first time that the intensity of a stimulus is coded as a "rate" of neural spikes in sensory neurons while amplitude of an individual action potential remains unchanged (Adrian & Zotterman, 1926b). Widely recognized view since then had been that the firing rate of a single neuron completely describes specific stimulus features, with the precise timing of individual spikes conveying no additional information. It has been observed that at the same level of mean firing rate, the distributions of inter-spike intervals (ISI) can vary drastically [START_REF] Reich | Interspike intervals, receptive fields, and information encoding in primary visual cortex[END_REF]. ISIs most of the times follow a Poisson distribution suggesting a stochastic origin for the spike-timing variability. The variance in the distribution of spike-times is hence as large or sometimes even slightly larger than the mean spike rate of the neuron [START_REF] Perkel | Neuronal spike trains and stochastic point processes: II. Simultaneous spike trains[END_REF][START_REF] Britten | Responses of neurons in macaque mt to stochastic motion signals[END_REF][START_REF] Johnson | Point process models of single-neuron discharges[END_REF]. A pure 'rate code' interpretation suggests that since the variance in the spike timing is much larger than the average integration window upon which neuron can accumulate spikes from its incident neurons, such spike-timing variance cannot be used by neurons for information processing [START_REF] Shadlen | Noise, neural codes and cortical organization[END_REF][START_REF] Hubel | Shape and arrangement of columns in cat's striate cortex[END_REF].

In this sense, the variability in the timing of single neuron spike response would be a nuisance to the neural code and firing rate can be considered as a noisy descriptor of the incoming stimulus.

However, in many cases ISI has been observed to deviate from this stochastic, Poisson process giving rise to more regular spike timings [START_REF] Maimon | Beyond poisson: increased spike-time regularity across primate parietal cortex[END_REF][START_REF] Deweese | Binary spiking in auditory cortex[END_REF][START_REF] Gur | High response reliability of neurons in primary visual cortex (v1) of alert, trained monkeys[END_REF]. Moreover, for rapidly time-varying stimuli, each individual spikes can code for different information about the stimulus [START_REF] Reich | Interspike intervals, receptive fields, and information encoding in primary visual cortex[END_REF][START_REF] Gerstner | Neural codes: firing rates and beyond[END_REF]. A competing hypothesis has been hence proposed to explain these observations: the 'temporal code' hypothesis argues that the precise spike times and their intervals can code for some features of the stimulus not instantly apparent looking at only a single neuron [START_REF] Mainen | Reliability of spike timing in neocortical neurons[END_REF][START_REF] Engel | Temporal coding in the visual cortex: new vistas on integration in the nervous system[END_REF]. In this latter case, the higher variance in the ISI distribution is not a noise to discard, but provides a rich bandwidth for information transfer and coding [START_REF] Borst | Information theory and neural coding[END_REF] (in addition to carrying information about the stimulus itself ), or (3) if an evolutionary or ecological goal can be attributed to such mechanisms. Broadly, if some activity pattern or dynamics correlates with an external (e.g. orientation encoding) or internal task variable (e.g. confidence or task demand), it can still be considered a representation, but that does not necessarily mean that it is the function of that pattern of activity [START_REF] Ebitz | The population doctrine in cognitive neuroscience[END_REF] and single neuron spiking patterns can only be understood in terms of neuron's precise temporal co-ordination with various other neurons [START_REF] Llinás | The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function[END_REF][START_REF] Bialek | Reading a neural code[END_REF].

The central argument given against the rate codes (and in favour of temporal codes) is this:

How could the cortex "detect" a specific stimulus feature if it had to rely solely on just a single cell whose spike pattern is noisy most of the times [START_REF] Ferster | Is neural noise just a nuisance?[END_REF]? Whether the cortex uses simple firing rates or more dynamic spike timings has an impact on how this problem is treated.

If a single neuron can only give poor estimate of instantaneous firing rate, the cortex must use ensembles of neurons that code for the same stimulus property in order for noise to be averaged out. On the other extreme, if the spike-times of neurons were completely deterministic (given that enough neurons are observed), then an ensemble where each neuron codes for a different information about the stimuli will be preferable in order to increase the amount of information that can be transferred by a single neuron [START_REF] Shadlen | Is there a signal in the noise?[END_REF]. Shadlen & Newsome, looking at the micro-structural organization of primate visual cortex (i.e. visual field maps) for the first time concluded that "the cortex is likely to propagate a noisy rate code through redundant, patchy interconnections." [START_REF] Shadlen | Noise, neural codes and cortical organization[END_REF], 1995). This view has since persisted in the literature even when considering average firing rates across ensembles of neurons.

Long since these seminal results, the debates about neural codes are still not settled. There is a considerable evidence supporting both rate codes and numerous types of temporal codes (for e.g. latency to first peak or synchrony coding), even when the phrase "neural code" is no longer attributed to single neurons but to neural populations [START_REF] Harris | Neural signatures of cell assembly organization[END_REF][START_REF] Jazayeri | Navigating the neural space in search of the neural code[END_REF][START_REF] Barack | Two views on the cognitive brain[END_REF]. It is possible that different cortical regions use different information coding schemes and even hybrid coding schemes [START_REF] Decharms | Neural representation and the cortical code[END_REF]. As we detail in the next sections, numerous new evidence suggests that the information represented in the single neuron changes throughout the course of experiment depending on the networks that the neuron is embedded in (see [START_REF] Harris | Neural signatures of cell assembly organization[END_REF][START_REF] Stanley | Reading and writing the neural code[END_REF] for review). Moreover, neural codes do not remain constant but evolve through time with various conditions [START_REF] Eggermont | Is there a neural code?[END_REF][START_REF] Avitan | Code under construction: neural coding over development[END_REF]. The debates over which specific coding schemes are used by the cortex hence remain superficial and elusive. It is even arguable whether or not the dichotomy between rate and and temporal coding is real [START_REF] Rieke | Spikes: Exploring the Neural Code[END_REF][START_REF] Stevens | Neural coding: The enigma of the brain[END_REF][START_REF] Quiroga | Principles of neural coding[END_REF][START_REF] Lin | The function of groups of neurons changes from moment to moment[END_REF].

One significant takeaway from this discourse, however, is that examining noise in single neurons was an important step forward in stirring debates regarding its possible information theoretic advantage. For the first time, these debates considered that 'noise' can be a dynamic property of neurons and neural populations rather than a nuisance to be avoided. Many later arguments about whether variability of neural responses is functionally relevant or not were built upon these ideas and especially upon understanding whether the temporal dimension is important for information coding in the brain or not [START_REF] König | Integrator or coincidence detector? the role of the cortical neuron revisited[END_REF].

A brief History of Noise in the Brain

Noise in Local Neural Populations

Since the instantaneous firing rate of a single neuron is noisy, the only way for the cortex to make sense of its average firing rate is by averaging out such noise across all neurons coding for the same stimulus [START_REF] Ferster | Is neural noise just a nuisance?[END_REF][START_REF] Shadlen | Is there a signal in the noise?[END_REF]. For this computation however, one requires that only the signal relevant to stimulus features is shared across neurons, while stimulus irrelevant spontaneous activity or "noise" should remain independent across neurons such that it can be discarded with the across-neuron averaging process [START_REF] Bartolo | Information-limiting correlations in large neural populations[END_REF]. Rejecting this assumption, Arieli et al. gave a direct evidence that the neural activity, both in the absence or presence of stimulus is strongly correlated across many neurons in a neural population (which they referred to as "shared variability") as recorded by the optical imaging over the anesthetized cat visual cortex [START_REF] Arieli | Coherent spatiotemporal patterns of ongoing activity revealed by real-time optical imaging coupled with single-unit recording in the cat visual cortex[END_REF]. They observed waves of correlations in neural firing that fluctuated tremendously from one moment to the next, and was not tamed upon arrival of the stimulus. Such patterns hence contributed to a substantial across-trial variability that dwarfed the evoked responses [START_REF] Arieli | Coherent spatiotemporal patterns of ongoing activity revealed by real-time optical imaging coupled with single-unit recording in the cat visual cortex[END_REF][START_REF] Arieli | Dynamics of ongoing activity: Explanation of the large variability in evoked cortical responses[END_REF]. Single-trial response patterns could still be predicted by taking an algebraic sum of the pre-stimulus spontaneous activity and the evoked activity, and it was concluded that most of the trial variability can be explained by spontaneous activity fluctuations and thus be removed by across-trial averaging.

This observation however still posed a problem with the 'cortical readout': Unlike the experimenter, neural circuits do not wait to perceive a stimulus until many trials are passed and cannot hence use across trial averaging to remove the shared variability in order to improve the stimulus decoding. If the stimulus-irrelevant variability is ubiquitous, how does the single neuron integrate the inputs related to the stimulus distinct from the inputs due to such stimulusindependent shared variability? [START_REF] König | Integrator or coincidence detector? the role of the cortical neuron revisited[END_REF] If such shared variability was simply a random noise, an animal's ability to detect the stimulus from the population readout would be no better than the information contained in the responses of tremendously noisy single neurons.

These results hinted for the first time to the hypothesis that such synchronous firing of neurons and hence, also the timing at which neurons fire relative to each other must play an important role for information processing [START_REF] Ferster | Is neural noise just a nuisance?[END_REF][START_REF] Britten | The analysis of visual motion: a comparison of neuronal and psychophysical performance[END_REF].

In later experiments, simultaneously recording single unit activity along with optical imaging of large neural population in visual area V1 and V2, it was demonstrated that the single neuron firing rate, either in the absence or presence of stimuli, is tightly correlated to the instantaneous spatial patterns of the population's activity (i.e. cortical state) [START_REF] Tsodyks | Tsodyks00[END_REF]. Each neuron had its own preferred cortical state (PCS), in the presence of which, neurons will show spontaneous (or evoked) bursting. I.e. apart from the preference for the extrinsic properties of the stimulus, single neuron firing rate also depended on the intrinsic cortical network state [START_REF] Tsodyks | Tsodyks00[END_REF]. In a follow up study, Kenet et al. observed that occurrence of such PCS in the ongoing activity (during closed eyes) was more frequent than randomly plausible, and that many of such dynamically switching states corresponded to the cortical states evoked during the stimulus presentation. However, an important distinction being that by definition, in the former Chapter 1. Primer on Neural Noise case, such states occurred in the absence of external stimulus [START_REF] Kenet | Spontaneously emerging cortical representations of visual attributes[END_REF]. This was the first evidence showing that the spontaneous activity states resemble evoked states (See Fig

1.1A).

Later, Fiser et al. showed that the spontaneous activity is only marginally modified by the stimulus and that the correspondence between spontaneous and task-evoked activity patterns increases with age in visual cortex of ferrets, as the spontaneous activity dynamics in old Ferrets changes to reveal more similarity to the evoked patterns [START_REF] Fiser | Small modulation of ongoing cortical dynamics by sensory input during natural vision[END_REF]. Such developmental effects on matching between spontaneous and evoked activity occurs specifically for natural stimuli (movie-watching) but not for artificial stimuli (noise or gratings) and this matching disappears when correlations between neurons are destroyed, further confirming that noise correlations within the population might represent important aspects of information processing [START_REF] Ringach | Spontaneous and driven cortical activity: implications for computation[END_REF][START_REF] Berkes | Spontaneous cortical activity reveals hallmarks of an optimal internal model of the environment[END_REF] .

These studies advanced our knowledge in three aspects: First, they showed that the 'noise' can not only be shared across neurons but it is spatio-temporally organized. Second, they demonstrated how the neural ensembles are able to communicate across two different spatiotemporal scales. I.e. the spontaneous cortical state defined at a population level can influence the faster, spontaneous bursting of a single neuron. And third, they demonstrated that the spontaneous activity state (or 'shared variability') reveals a functional architecture of the cortex that represents which neurons are more likely to share the same information among them (even in the absence of the external stimuli). It has been hence conceived that such spontaneous dynamic switching between cortical states could be "a cortex's way to prepare 'default' parameter values" [START_REF] Kenet | Spontaneously emerging cortical representations of visual attributes[END_REF], which after enough exposure to the statistics of the environment, may be changed to reflect the priors about the incoming stimulus [START_REF] Orbán | Neural Variability and Sampling-Based Probabilistic Representations in the Visual Cortex[END_REF]. If this is the case, such spontaneous activity should play a crucial role in the development of sophisticated neural circuits that are dependent on the environmental statistics [START_REF] Kirkby | A role for correlated spontaneous activity in the assembly of neural circuits[END_REF][START_REF] Colonnese | Thalamocortical function in developing sensory circuits[END_REF].

Noise in Large-Scale Distributed Networks

Uncovering the dynamic switching of cortical state opened up the possibility that such switching at whole-brain level might reveal the neural underpinnings of complex internal variables such as motivated behaviour, waxing and waning of attention, prediction of upcoming stimuli or spontaneously arising conscious thoughts [START_REF] Llinás | The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function[END_REF][START_REF] Binder | Conceptual processing during the conscious resting state: a functional mri study[END_REF][START_REF] Raichle | Intrinsic brain activity sets the stage for expression of motivated behavior[END_REF]. The fact that we do not perceive a spontaneous switching between distinct orientation gratings at rest every-time an evoked state spontaneously appears in visual cortex V1 suggests that such cortical states must coordinate across large-scale distributed networks in order to be accessible to perception and, eventually, for successful cognition [START_REF] Mesulam | From sensation to cognition[END_REF][START_REF] Dehaene | Ongoing spontaneous activity controls access to consciousness: a neuronal model for inattentional blindness[END_REF].

One of the first evidence for the large-scale organization of spontaneous activity came from functional neuroimaging studies [START_REF] Biswal | Functional connectivity in the motor cortex of resting human brain using echo-planar mri[END_REF][START_REF] Bressler | Large-scale cortical networks and cognition[END_REF][START_REF] Hampson | Detection of functional connectivity using temporal correlations in mr images[END_REF]Raichle Figure 1.1: Relation between functional architecture and Single Neuron Firing Patterns. Both evoked and spontaneous (closed eyes) bursting in single neuron spike trains can be successfully reconstructed (blue trace in A & B) by taking into consideration that particular neuron's preferred, population cortical state (in C and D). After every stimulus presentation, evoked state becomes similar to the neuron's preferred state (in red trace), but also such cortical state appears spontaneously (during closed eyes). Figure adapted from [START_REF] Tsodyks | Tsodyks00[END_REF].

Chapter 1. Primer on Neural Noise et al., 2001). Resting state activity, as measured with blood oxygen level-dependent (BOLD) signals at rest in the absence of any stimulus or during anesthesia or sleep, is organized into functionally specific but spatially distinct networks (known as Resting State Networks (RSN)) [START_REF] Fox | The human brain is intrinsically organized into dynamic, anticorrelated functional networks[END_REF]Fox & Raichle, 2007). These RSNs resemble the networks of cortical regions that are also co-activated preferentially for different task requirements [START_REF] Hampson | Detection of functional connectivity using temporal correlations in mr images[END_REF][START_REF] Calhoun | Modulation of temporally coherent brain networks estimated using ica at rest and during cognitive tasks[END_REF][START_REF] Yeo | The organization of the human cerebral cortex estimated by intrinsic functional connectivity[END_REF][START_REF] Chen | The human brain traverses a common activation-pattern state space across task and rest[END_REF]. These co-activation patterns of the resting brain (or 'functional connectivity' (FC)) is robust across participants [START_REF] Damoiseaux | Consistent resting-state networks across healthy subjects[END_REF] and across different sessions in the same participant [START_REF] Choe | Reproducibility and temporal structure in weekly resting-state fmri over a period of 3.5 years[END_REF]. Furthermore, the dynamics of such FC networks can predict task performance [START_REF] Gordon | Individual variability of the system-level organization of the human brain[END_REF] as well as state [START_REF] Martin | State-related neural influences on fmri connectivity estimation[END_REF] and trait-like individual behaviours [START_REF] Hsu | Restingstate functional connectivity predicts neuroticism and extraversion in novel individuals[END_REF] in typical healthy cohorts. Due to its high reliability and reproducibility, RSNs are considered also to represent the global functional organization of the brain similar to the local cortical states defined in the previous discussion [START_REF] Kenet | Spontaneously emerging cortical representations of visual attributes[END_REF]. This functional architecture is further known to change during learning [START_REF] Lewis | Learning sculpts the spontaneous activity of the resting human brain[END_REF], maturation and aging [START_REF] Fair | The maturing architecture of the brain's default network[END_REF][START_REF] Fransson | Resting-state networks in the infant brain[END_REF][START_REF] Chan | Decreased segregation of brain systems across the healthy adult lifespan[END_REF]Naik, Banerjee, et al., 2017), vigilance states [START_REF] Tagliazucchi | Decoding wakefulness levels from typical fmri resting-state data reveals reliable drifts between wakefulness and sleep[END_REF] as well as across many clinical conditions [START_REF] Bassett | Human brain networks in health and disease[END_REF][START_REF] Raichle | The brain's default mode network[END_REF][START_REF] Greicius | Resting-state functional connectivity in neuropsychiatric disorders[END_REF]. Similar to local cortical states observed by Kenet et al, these large-scale correlations are also shaped by the long-range anatomical connectivity [START_REF] Zimmermann | Structural architecture supports functional organization in the human aging brain at a regionwise and network level[END_REF]. However, wholebrain computational models and empirical studies quantifying the match between structural and functional connectivity have shown that anatomical connectivity can only partially explain such functional connectivity, providing evidence that the precise local state dynamics also plays an important role in observing RSNs and their temporal fluctuations [START_REF] Honey | Predicting human resting-state functional connectivity[END_REF][START_REF] Deco | Resting-state functional connectivity emerges from structurally and dynamically shaped slow linear fluctuations[END_REF][START_REF] Chaudhuri | A large-scale circuit mechanism for hierarchical dynamical processing in the primate cortex[END_REF].

Neurophysiological origins of these RSNs help better understand the temporal dynamics of these networks. First, very slow-frequency (<0.01 Hz) long-distance correlations have been observed in similar fluctuations of single-neuron firing rates [START_REF] Mukamel | Coupling between neuronal firing, field potentials, and fmri in human auditory cortex[END_REF][START_REF] Nir | Interhemispheric correlations of slow spontaneous neuronal fluctuations revealed in human sensory cortex[END_REF] as well as in band limited power of much faster gamma (40-80 Hz) oscillations of local field potentials (LFP) [START_REF] Schölvinck | Neural basis of global resting-state fmri activity[END_REF]. BOLD signal FC has also been correlated with very slow cortical potentials (SCP) and infra-slow fluctuations (<0.1Hz) from ECoG as well as EEG recordings [START_REF] He | The fmri signal, slow cortical potential and consciousness[END_REF][START_REF] Palva | Infra-slow fluctuations in electrophysiological recordings, blood-oxygenation-level-dependent signals, and psychophysical time series[END_REF]. Studies simultaneously recording fMRI and EEG (or LFP) signals in humans have provided further evidence for cross-frequency couplings between RSN fluctuations and the band-limited power fluctuations of delta, theta, alpha, beta or gamma bands [START_REF] Mantini | Electrophysiological signatures of resting state networks in the human brain[END_REF][START_REF] Kayser | A comparison of hemodynamic and neural responses in cat visual cortex using complex stimuli[END_REF][START_REF] Mukamel | Coupling between neuronal firing, field potentials, and fmri in human auditory cortex[END_REF][START_REF] Logothetis | What we can do and what we cannot do with fmri[END_REF] suggesting that there is no single characteristic rhythm at which distant brain regions spontaneously communicate and that this relationship tend to be more complex [START_REF] Florin | The brain's resting-state activity is shaped by synchronized cross-frequency coupling of neural oscillations[END_REF]. Aside from global, band-limited power changes, a spatially more fine-grained correlation has also been identified between RSNs and EEG 'Microstates', i.e. the topographic patterns in resting state EEG signals that are quasi-stable for 50-100 ms. Typically, four EEG topographic patterns are observed at rest whose fluctuations at sub-second timescales, when 1.1. A brief History of Noise in the Brain convoluted with slow hemodynamic function, correlated well with four of the RSNs identified from fMRI studies (namely visual, phonological, salience and frontoparietal attention networks) [START_REF] Britz | Bold correlates of eeg topography reveal rapid resting-state network dynamics[END_REF] 

(See Fig 1.2).
Given the magnitude of difference in their temporal scales, the coexistence of similar longrange connections inferred from much faster electrophysiology signals and slower (but behaviorally relevant) BOLD signals is surprising and suggests that the distant brain regions can communicate at many different time-scales at once, where long-range co-ordination at slower frequency might drive the faster, more specialized local communications [START_REF] Florin | The brain's resting-state activity is shaped by synchronized cross-frequency coupling of neural oscillations[END_REF][START_REF] Wang | Electrophysiological low-frequency coherence and cross-frequency coupling contribute to bold connectivity[END_REF][START_REF] Arce-Mcshane | Primary motor and sensory cortical areas communicate via spatiotemporally coordinated networks at multiple frequencies[END_REF]. These observations also hint at large-scale spontaneous co-ordination being essentially 'scale-invariant', where faster brain-state switching must be self-similar to also be correlated at the slower timescales. This was directly confirmed by the observation that the time-series of EEG micro-states switching follows a scale-free or power-law dynamics, i.e. information carried by faster microstates switching is also preserved at slower time-scales (Van de Ville et al., 2010).

These empirical results showed that the spontaneous activity is remarkably organized at many different spatial and temporal scales. These results highlighted the importance of co-ordination dynamics [START_REF] Kelso | Coordination dynamics[END_REF], and specifically a need for better understanding the relationship between global brain states defined by the coordinated spontaneous activity and more traditional, wellunderstood localized task-evoked processing of the stimulus. These studies further opened up a way to understand the role of spontaneous activity dynamics in successful perception and behaviour. One obvious consequence of ubiquitous spontaneous activity is that the identical presentation of the same stimulus over many trials does not elicit the same neural response and the trial-totrial and moment-to-moment variability remains very high, even after the strongest stimulus perturbation [START_REF] Shadlen | Is there a signal in the noise?[END_REF][START_REF] Fox | Coherent spontaneous activity accounts for trial-to-trial variability in human evoked brain responses[END_REF][START_REF] Arieli | Dynamics of ongoing activity: Explanation of the large variability in evoked cortical responses[END_REF][START_REF] Fiser | Small modulation of ongoing cortical dynamics by sensory input during natural vision[END_REF].

One may argue that such neural variability is insignificant if the investigator is solely interested in the neural correlates of 'sensory features' that stay consistent across repeated presentations of the same stimulus. Despite large variability, the current methods of averaging across trials can recover the 'true' stimulus representation if the simple algebraic sum of baseline spontaneous state and task-evoked activity can explain the majority of trial-by-trial variability. [START_REF] Arieli | Dynamics of ongoing activity: Explanation of the large variability in evoked cortical responses[END_REF][START_REF] Becker | How ongoing neuronal oscillations account for evoked fMRI variability[END_REF][START_REF] Azouz | Cellular mechanisms contributing to response variability of cortical neurons in vivo[END_REF]. There are two critical (and related) assumption here: First is that the baseline spontaneous activity at each trial remains constant throughout the time-window of interest and second, the spontaneous activity state observed at each trial is random enough such that averaging across trials recovers only the evoked responses. This is why, in order to increase signal-to-noise ratio, conventional event-related paradigms perform a "baseline correction", removing the pre-stimulus spontaneous activity from the single-trial poststimulus response [START_REF] Luck | Event-related potential studies of attention[END_REF][START_REF] Friston | Characterizing evoked hemodynamics with fMRI[END_REF]. In the upcoming sections I highlight the situations where these assumptions of independence and linear superposition of spontaneous and evoked activity are unmet (referred to hereafter as linearity assumption). These studies collectively provide that the interaction between spontaneous and task-evoked activity can be non-additive and highlight the importance of understanding the second order statistics (i.e. variability) beyond across-trial mean.

Global Arousal States Falsify Linearity Assumption

One of the first studies demonstrating a violation of the linearity assumption came from Kisley & Gerstein, who carefully manipulated the general arousal states of anesthetized rats, by changing the levels of ketamine/xylazine anesthesia [START_REF] Kisley | Trial-to-trial variability and state-dependent modulation of auditory-evoked responses in cortex[END_REF]. Using an auditory click stimulation, they were able to show that evoked responses were more reliable (or less variable) across trials in deep and light anesthesia, while in the medium doses of anesthesia Chapter 1. Primer on Neural Noise (where animal can still transition between low and high arousal states), the responses varied a lot, giving high trial-by-trial response variability [START_REF] Kisley | Trial-to-trial variability and state-dependent modulation of auditory-evoked responses in cortex[END_REF]. In medium anesthesia, each individual spontaneous bursting events of multi-unit activity dynamically modified the size and shape of the following evoked responses, i.e. the evoked responses were qualitatively different depending on when the animal was stimulated with respect to the pre-stimulus burst activity. A linear superposition of spontaneous and task-evoked activity would not be able to explain such an effect [START_REF] Kisley | Trial-to-trial variability and state-dependent modulation of auditory-evoked responses in cortex[END_REF].

Another striking effect of arousal state changes on evoked responses can be observed in rat olfactory bulb, where during anesthesia, three-quarters of the neurons responsive to a specific odor in the anesthetized state becomes less responsive during wakeful state, while others switch from being excitatory to inhibitory, completely changing the sign of average firing rates in anesthesia and wakefulness [START_REF] Rinberg | Sparse odor coding in awake behaving mice[END_REF]Fontanini & Katz, 2008) (See Fig 1.3A,B). It has been argued that in the awake animal, more olfactory neurons code for the 'task demand' rather than simply coding for odors, giving rise to these differences. These results suggest that while the linearity assumption may still hold in the cases where the excitability of neurons remains constant across time, such assumption may break down if the brain state, arousal state and excitability of the cortex changes throughout the experiment.

Various studies since then have shown that the levels of consciousness or global arousal states change the spatio-temporal structure of the spontaneous activity, which consequently changes its interaction to task-evoked responses in non-trivial ways as shown in the previous example [START_REF] Fontanini | Behavioral states, network states, and sensory response variability[END_REF]. In general, spontaneous activity in low arousal states (as in deep sleep, deep anesthesia and disorders of consciousness) are marked by local, low-frequency, high amplitude oscillations at macroscopic level (delta waves), which co-occur with microscopic changes in neural activity alternating between completely synchronous neural firing and a complete silence [START_REF] Steriade | A novel slow (< 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components[END_REF][START_REF] Brown | General anesthesia, sleep, and coma[END_REF][START_REF] Nir | Regional slow waves and spindles in human sleep[END_REF]. On the other hand, high arousal states are marked by low amplitude activity and spatially more global increase in power of higher frequencies at macro-scale, which is accompanied by more asynchronous, complex neural firing at micro-scale [START_REF] Skarda | How brains make chaos in order to make sense of the world[END_REF][START_REF] Goldman | Bridging single neuron dynamics to global brain states[END_REF]. Moreover, the large-scale correlational structure of spontaneous activity as observed by resting state BOLD signals, is characterized by more diverse brain states and more complex switching dynamics among these states during wakefulness. While during sedation, such temporal dynamics is reduced to very small number of states, mostly resembling the long-range structural connectivity of the animal's brain [START_REF] Barttfeld | Signature of consciousness in the dynamics of resting-state brain activity[END_REF][START_REF] Demertzi | Human consciousness is supported by dynamic complex patterns of brain signal coordination[END_REF].

Further, stimulating the cortex in the high arousal vs low arousal states have very different outcomes in terms of evoked activity and resulting behaviour [START_REF] Dehaene | Ongoing spontaneous activity controls access to consciousness: a neuronal model for inattentional blindness[END_REF][START_REF] Strauss | Disruption of hierarchical predictive coding during sleep[END_REF][START_REF] Panagiotaropoulos | Neuronal discharges and gamma oscillations explicitly reflect visual consciousness in the lateral prefrontal cortex[END_REF][START_REF] Petersen | Interaction of sensory responses with spontaneous depolarization in layer 2/3 barrel cortex[END_REF]. For e.g., the transcranial magnetic stimulation (TMS) during deep non-rapid eye movement (NREM) sleep have been shown to result into a high amplitude,short lived, more localized evoked patterns, while the same stimulation during awake state will generate a weaker, more complex, but spatio-temporally Although during anesthesia, baseline activity is low, the odor-evoked firing rate for amyl acetate is much higher, while during wakefulness, the net odor evoked effect is inhibitory rather than excitatory despite baseline firing rate being higher compared to anesthesia, suggesting a non-trivial negative correlation between spontaneous and evoked activity (C) Magnetic stimulation during deep stages of sleep confines neural activity in time and space, while the same during wakefulness generates temporally complex, long-lasting and spatially diverse responses. Figure adapted from [START_REF] Fontanini | Behavioral states, network states, and sensory response variability[END_REF].

Chapter 1. Primer on Neural Noise long-lasting and widespread evoked patterns (Massimini et al., 2005) (Fig 1.3C). Another interesting consequence of the global arousal state and spontaneous activity on behaviour has been observed during human learning in sleep, whereby reactivating acoustic memories during deep NREM sleep paradoxically resulted in the impairment of later performance on those memory items [START_REF] Andrillon | Formation and suppression of acoustic memories during human sleep[END_REF]. This is surprising since reactivating the same acoustic memories during lighter sleep stages (during REM and light NREM sleep) is inductive of learning and improvement of performance on the later sessions [START_REF] Arzi | Humans can learn new information during sleep[END_REF][START_REF] Sallinen | Processing of auditory stimuli during tonic and phasic periods of REM sleep as revealed by event-related brain potentials[END_REF].

These paradoxical effects were linked to the two different types of spontaneous activity fluctuations dominant during those two levels of arousal states: Frontal 'sleep spindles' characteristic of REM sleep positively correlated with the improvement in learning during high arousal states.

While 'slow waves' more dominant during deep sleep were negatively correlated with memory formation [START_REF] Andrillon | Formation and suppression of acoustic memories during human sleep[END_REF]. These studies demonstrate that the interaction between spontaneous and evoked activity is not always straightforward. Global changes of arousal or levels of consciousness are able to dramatically and qualitatively change the spatio-temporal structure of spontaneous activity, which in turn can change the evoked responses and behavioural outcome in a non-linear or all-or-none fashion.

Brain-state dependent Computations

Aside from variations in global arousal and vigilance states, spontaneous activity has been demonstrated to impact the task-evoked responses and subsequent behavior on a trial-by-trial basis in a way that cannot be described by the linearity assumption. Many variables contribute to the trial-by-trial variability. For instance, behavioural states can vary dramatically as reflected in the moment to moment fluctuations of attention, confidence, motivation or expectations.

Moreover, as we have detailed previously, the neural states represented by the spontaneous fluctuations in local and long-range correlations may also vary from trial to trial, further influencing the evoked responses as well as subsequent behavioural performance [START_REF] Mccormick | Neuromodulation of Brain State and Behavior[END_REF][START_REF] Gonzalez-Castillo | Task-based dynamic functional connectivity: Recent findings and open questions[END_REF]. While behavioural and neural state fluctuations must be related, how well the two correspond with each other remains elusive but is recently gaining interest [START_REF] Mccormick | Neuromodulation of Brain State and Behavior[END_REF].

In many studies, pre-stimulus baseline fluctuations in relevant cortical regions have been shown to affect perception of brief, ambiguous stimuli in visual [START_REF] Hesselmann | Spontaneous local variations in ongoing neural activity bias perceptual decisions[END_REF]Hesselmann, Kell, & Kleinschmidt, 2008;[START_REF] Baria | Initial-state-dependent, robust, transient neural dynamics encode conscious visual perception[END_REF], auditory [START_REF] Sadaghiani | Distributed and antagonistic contributions of ongoing activity fluctuations to auditory stimulus detection[END_REF][START_REF] Sadaghiani | Ongoing dynamics in large-scale functional connectivity predict perception[END_REF], and somatosensory domain [START_REF] Boly | Baseline brain activity fluctuations predict somatosensory perception in humans[END_REF][START_REF] Baumgarten | Prestimulus alpha power influences tactile temporal perceptual discrimination and confidence in decisions[END_REF]. For instance, upon presentation of Rubin's face-vase ambiguous figure, perceptual decision is biased towards face rather than vase on the trials where pre-stimulus activity in Fusiform Face Area (FFA) is higher [START_REF] Hesselmann | Spontaneous local variations in ongoing neural activity bias perceptual decisions[END_REF]. Similarly, a higher pre-stimulus activity in right motion-sensitive occipito-temporal cortex (hMT+) was observed (but not in other regions) when the subjects were able to perceive a peri-liminal coherence in random dot motion task (Hesselmann, Kell, & Kleinschmidt, 2008). In both studies, the absence of cor-1.2. Signal in the Noise relation between pre-stimulus and evoked activity levels across successful trials suggested that the relationship between pre-stimulus spontaneous activity and post-stimulus evoked activity is non-additive) [START_REF] Hesselmann | Spontaneous local variations in ongoing neural activity bias perceptual decisions[END_REF]. One recent study investigating conscious perception of subliminally presented orientation gratings in adults using MEG activity recordings further showed that the decoder trained to classify seen vs unseen correct trials had higher classification accuracy starting from 1s prior to the stimulus presentation, suggesting that pre-stimulus brain state can successfully predict the outcome of the perception (seen or unseen) on the following trial (see fig 1.4).

Similarly, EEG and MEG investigations have revealed that the pre-stimulus band-limited power and phase of ongoing oscillations are able to predict the evoked responses and visual awareness on the following trial and thus impact the trial-variability in perceptual outcomes [START_REF] Mathewson | To see or not to see: prestimulus α phase predicts visual awareness[END_REF]. For e.g., a higher pre-stimulus α-band power is shown to be detrimental for correct discrimination of subliminal stimuli [START_REF] Van Dijk | Prestimulus oscillatory activity in the alpha band predicts visual discrimination ability[END_REF], for inhibition of falsealarms in go-no go tasks [START_REF] Mazaheri | Prestimulus alpha and mu activity predicts failure to inhibit motor responses[END_REF] and for confidence in decisions following tactile temporal duration perception [START_REF] Craddock | Prestimulus alpha oscillations over somatosensory cortex predict tactile misperceptions[END_REF][START_REF] Baumgarten | Prestimulus alpha power influences tactile temporal perceptual discrimination and confidence in decisions[END_REF]. Supporting the linearity assumption, it can be argued that the power of α oscillations indicate the excitability of cortex and hence, high pre-stimulus α-power would mean weaker evoked responses and poorer performance. Linkenkaer et al have shown that the relationship between α power and task performance follows an inverted U-shape curve, where intermediate pre-stimulus α amplitudes facilitates attention, stimulus detection and faster reaction times [START_REF] Linkenkaer-Hansen | Prestimulus oscillations enhance psychophysical performance in humans[END_REF]. Such an effect discards linearity assumption and would be virtually undetectable with the across-trial averaging.

Moreover, not only the power, but phase of pre-stimulus θ,α, β and γ oscillations have also been repeatedly related to the perceptual outcome and to influence the evoked responses [START_REF] Palva | Early neural correlates of conscious somatosensory perception[END_REF][START_REF] Iemi | Multiple mechanisms link prestimulus neural oscillations to sensory responses[END_REF]. These studies point out that the low-frequency alpha oscillations may not reduce the excitability of cortex, but may actively participate in gating of the incoming stimulus by changing the ongoing oscillatory phase dynamics (Palva & Palva, 2007;[START_REF] Engel | Dynamic predictions: oscillations and synchrony in top-down processing[END_REF]. In one study, the phase of slow cortical potentials (<0.1Hz) at the time of stimulus onset predicted hits vs misses, but also determined the power in higher frequencies (1-40 Hz) at every single trial [START_REF] Monto | Very slow eeg fluctuations predict the dynamics of stimulus detection and oscillation amplitudes in humans[END_REF]. Here again, the exact temporal scale proves not to be as informative as cross-frequency pre-stimulus phase and power relations. Combined together, these results suggest that the relationship between ongoing and evoked activity is more complicated than simple linear contributions and in all cases, computations are dependent on the brain state at the time of stimulus onset. Does the higher baseline activity always indicate better or worse perception of the stimulus presented in the following trial? This question has been addressed by separating the trials between hits and misses of the sparse, subliminal stimuli and understanding pre-stimulus activity of various functionally specialized cortical regions in these conditions [START_REF] Sadaghiani | Distributed and antagonistic contributions of ongoing activity fluctuations to auditory stimulus detection[END_REF][START_REF] Hesselmann | Predictive coding or evidence accumulation? false inference and neuronal fluctuations[END_REF]. A higher baseline activity in fronto-parietal attention network is Figure 1.4: Pre-stimulus Brain State Influences Perception of Ambiguous Stimuli on the following trial. (A) Pre-stimulus BOLD activity in right Fusiform Face Area (FFA) is significantly higher for face percept than for vase percept in Rubin's ambiguous image. (B) Decoder trained to classify subjective reports (seen or unseen) of subliminal orientation gratings based on MEG activity patterns perform above-chance level starting from the 1 s period before stimulus onset. The decoder trained on pre-stimulus period does not generalize well on the post-stimulus period, suggesting that the neural activity in the two epochs contain different information about the conscious percept. (C) Subjective perception of whether the peri-liminal dot motion is random or coherent depends on the pre-stimulus activity in right motion sensitive occipito-temporal cortex. When subjects correctly percieve coherent motion, no significant correlation was observed between pre-and post-stimulus BOLD activity, suggesting that this effect cannot be explained by linear interaction between pre-stimulus and post-stimulus activity. (A-C) Figures adapted from [START_REF] Hesselmann | Spontaneous local variations in ongoing neural activity bias perceptual decisions[END_REF], [START_REF] Baria | Initial-state-dependent, robust, transient neural dynamics encode conscious visual perception[END_REF] and (Hesselmann, Kell, & Kleinschmidt, 2008) respectively. 1.2. Signal in the Noise related to the bias towards more misses than hits, suggesting that in these regions, pre-stimulus fluctuations are detrimental to successful perception. On the contrary, high pre-stimulus baseline of Default Mode Network (DMN) regions predicts more post-stimulus deactivation of this region and a bias towards more hits than misses [START_REF] Sadaghiani | Distributed and antagonistic contributions of ongoing activity fluctuations to auditory stimulus detection[END_REF]. Hence, it was proposed that the relationship between spontaneous and evoked activity and its influence on behaviour depends on the specialized regions of investigation as well as on the context of the task at hand [START_REF] Sadaghiani | The relation of ongoing brain activity, evoked neural responses, and cognition[END_REF]. Do these pre-stimulus fluctuations reflect more general trial-by-trial fluctuations of arousal and attention, or do they also relate to the context specific predictions for the upcoming trial?

One recent MEG study utilizing forced-choice decision paradigm with subliminal stimuli was able to decode a clear double dissociation between content-specific and content-general role of pre-stimulus brain-states [START_REF] Podvalny | A dual role of prestimulus spontaneous neural activity in visual object recognition[END_REF]. I.e. content-general spontaneous activity facilitates the detection of a subliminal stimuli irrespective of its identity, while the contentspecific spontaneous activity facilitates the discriminability of object categories [START_REF] Podvalny | A dual role of prestimulus spontaneous neural activity in visual object recognition[END_REF]. This study convincingly resolves that the spontaneous fluctuations relate to the general excitability of the cortex, but might separately reflect the content-specific priors or expectations for the prediction of the upcoming stimuli [START_REF] Podvalny | A dual role of prestimulus spontaneous neural activity in visual object recognition[END_REF][START_REF] Hesselmann | Predictive coding or evidence accumulation? false inference and neuronal fluctuations[END_REF][START_REF] Wyart | How ongoing fluctuations in human visual cortex predict perceptual awareness: baseline shift versus decision bias[END_REF].

Together, these studies confirm that spontaneous activity dynamics influences task-evoked activity, giving rise to the huge trial-variability observed in traditional trial-based / task-evoked paradigms. These studies also point towards an intriguing functional role for the spontaneous fluctuations in local and large-scale networks, whereby dynamics of such activity can not only represent the excitability of cortex and hence arousal or attention of the animal, but can also denote predictive priors about the upcoming stimuli, which can actively influence the perception and decision of the incoming ambiguous stimulus. Such spontaneous activity might further be modified according to the stimulus history [START_REF] Pezzulo | The secret life of predictive brains: what's spontaneous activity for? Trends in Cognitive Sciences[END_REF][START_REF] Orbán | Neural Variability and Sampling-Based Probabilistic Representations in the Visual Cortex[END_REF]. Notably, when the incoming information is ambiguous (as in the subliminal stimuli), the influence of such priors may be stronger than the evidence (stimulus) itself.

Exactly how the co-ordinated pre-stimulus brain state affect such processes currently remains poorly understood, and simultaneous EEG/MEG and fMRI recordings in disambiguation paradigms is required in order to fully comprehend the mechanisms that confer the pre-stimulus brain state such a role. Nevertheless, these studies indicate that spontaneous activity state prior to the stimulus presentation can change across trials due to factors not explicitly controlled by the experimenter. For e.g., in one study, trial-variability in BOLD fMRI signals recorded from left somatosensory cortex correlated with the auxiliary information such as the force applied by subjects during button press (Fox et al., 2007). 

Variability Quenching, and its Implications

The fact that the spontaneous activity interacts non trivially with the incoming (single-trial) evoked responses indicates that the trial-averaged mean response is not a sufficient metric for all the stimulus-relevant changes that occur at every single trial and trial-variability might provide more holistic view of single-trial spontaneous-evoked interaction. Indeed, if the relationship between baseline and evoked activity was trivial (additive), one would expect a positive correlation between pre-stimulus baseline activity levels and the resulting task-evoked activity levels and trial-variability would remain constant before and after stimulus presentation. On the contrary, only in the case where spontaneous-evoked relationship is negative, one would observe a decrease in across-trial variability following stimulus onset (See fig 1.5 for illustration).

Signal in the Noise

Numerous studies find that neural variability across and within trials do not remain constant but is modified after the stimulus presentation (as compared to the pre-stimulus baseline) [START_REF] Dinstein | Neural variability: friend or foe?[END_REF]. Except for the stimulus requiring evidence accumulation over time where higher variability might be beneficial [START_REF] Churchland | Variance as a signature of neural computations during decision making[END_REF], stimulus presentation has been shown to reduce or 'quench' the between and within-trial variability with variety of stimulus types, suggesting that the spontaneous and task-evoked activity negatively interact [START_REF] Wolff | Prestimulus dynamics blend with the stimulus in neural variability quenching[END_REF][START_REF] Wainio-Theberge | Dynamic relationships between spontaneous and evoked electrophysiological activity[END_REF][START_REF] Kelly | Local field potentials indicate network state and account for neuronal response variability[END_REF][START_REF] Churchland | Stimulus onset quenches neural variability: a widespread cortical phenomenon[END_REF][START_REF] He | Spontaneous and task-evoked brain activity negatively interact[END_REF] (See Fig 1.5 for explanation). Such variability quenching is a cortex-wide phenomenon and has been observed in individual membrane potentials, firing rates of single neurons, as well as in variability shared across neurons [START_REF] Churchland | Stimulus onset quenches neural variability: a widespread cortical phenomenon[END_REF][START_REF] Goris | Partitioning neuronal variability[END_REF]. Such variability changes are independent of the stimulus selectivity of a single neuron or a cortical region i.e., irrespective of the average firing rate or trial-averaged evoked responses [START_REF] He | Average Is Optimal: An Inverted-U Relationship between Trial-to-Trial Brain Activity and Behavioral Performance[END_REF][START_REF] Goris | Partitioning neuronal variability[END_REF][START_REF] Arieli | Dynamics of ongoing activity: Explanation of the large variability in evoked cortical responses[END_REF][START_REF] Ito | Task-evoked activity quenches neural correlations and variability across cortical areas[END_REF]. The amount of stimulus-relevant reduction in baseline variability is further correlated with the subject's perceptual ability [START_REF] Arazi | The magnitude of trial-by-trial neural variability is reproducible over time and across tasks in humans[END_REF][START_REF] Arazi | Neural variability quenching predicts individual perceptual abilities[END_REF] and behavioural performance [START_REF] Wolff | Neural variability quenching during decision-making: neural individuality and its prestimulus complexity[END_REF][START_REF] Haigh | Cortical variability in the sensory-evoked response in autism[END_REF] and is enhanced by conscious access of a stimulus [START_REF] Baria | Initial-state-dependent, robust, transient neural dynamics encode conscious visual perception[END_REF][START_REF] Schurger | Cortical activity is more stable when sensory stimuli are consciously perceived[END_REF] or by top-down attention of the same stimulus [START_REF] Broday-Dvir | Quenching of spontaneous fluctuations by attention in human visual cortex[END_REF][START_REF] Arazi | Neural variability is quenched by attention[END_REF].

Although quenching is a widespread phenomenon, most studies report only a small amount of reduction in the ongoing variability after stimulus onset. Moreover, the levels of absolute individual pre-stimulus variability has been shown to be relatively stable across different tasks (involving different sensory modalities) and across experimental sessions [START_REF] Arazi | Neural variability quenching predicts individual perceptual abilities[END_REF] and hence is suggested to be an individual characteristic. Contrary to the classical assumption that neural variability is detrimental for the task-performance, it has been shown that the optimal levels of pre-stimulus and resting-state moment-to-moment fluctuations correlate with better performance [START_REF] Wolff | Neural variability quenching during decision-making: neural individuality and its prestimulus complexity[END_REF][START_REF] Mišic | Brain noise is task dependent and region specific[END_REF]. Such task-variability has been shown to further increase with development [START_REF] Mcintosh | The development of a noisy brain[END_REF] and is seen as facilitating the behaviour of elderly people in the face of structural deterioration [START_REF] Naik | Metastability of cortical bold signals in maturation and senescence[END_REF][START_REF] Garrett | Blood oxygen leveldependent signal variability is more than just noise[END_REF].

These results indicate an important conceptual consequence for the assumptions of classical evoked paradigms: intuition would suggest that if higher stimulus-evoked activity on average correlates with better behavioural performance on some task, the individual trials with very high (or very low) neural responses should also indicate better (or worse) performance on that trial. On the contrary, the 'variability quenching' posits that the best performance would be achieved by the intermediate single-trial evoked levels, producing an inverted-U shaped relationship between single-trial activity levels and behavioural performance [START_REF] He | Average Is Optimal: An Inverted-U Relationship between Trial-to-Trial Brain Activity and Behavioral Performance[END_REF]. Because of the negative correlation between baseline and evoked activity, the very high baseline would result into 'deactivation' or stronger 'reduction' of the evoked responses in order to produce activity closer to the optimal average response [START_REF] Wainio-Theberge | Dynamic relationships between spontaneous and evoked electrophysiological activity[END_REF]. Hence, trials with very high Chapter 1. Primer on Neural Noise pre-stimulus variability will reduce its variability the most to achieve a 'target brain state' or a 'target trajectory' after stimulus onset [START_REF] Wolff | Prestimulus dynamics blend with the stimulus in neural variability quenching[END_REF]. Variability quenching hence suggests that the 'true evoked response' at every single trial may remain 'hidden' and concealed while only the combined effect of spontaneous and evoked activity is highlighted in the across-trial averaging process (See fig 1.5C).

The variability quenching has been further related to the reduction in power of ongoing infraslow, α and β band oscillations as well as Event-related desynchronization (ERD) [START_REF] Huang | Is there a nonadditive interaction between spontaneous and evoked activity? phase-dependence and its relation to the temporal structure of scale-free brain activity[END_REF][START_REF] Daniel | The Relationship between Trial-by-Trial Variability and Oscillations of Cortical Population Activity[END_REF][START_REF] Becker | How ongoing neuronal oscillations account for evoked fMRI variability[END_REF][START_REF] He | Spontaneous and task-evoked brain activity negatively interact[END_REF][START_REF] Huang | Is there a nonadditive interaction between spontaneous and evoked activity? phase-dependence and its relation to the temporal structure of scale-free brain activity[END_REF][START_REF] Wainio-Theberge | Bridging the gap -Spontaneous fluctuations shape stimulus-evoked spectral power[END_REF], giving way to the overarching hypothesis that perhaps the distinction between evoked and spontaneous activity itself is an artificial one and that perhaps all changes relevant to the stimulus presentation can be completely explained in terms of active modification of the ongoing neural trajectory that manifests into the changing power or phase relationships of various coordinated ongoing oscillations [START_REF] Başar | Induced rhythms in the brain[END_REF][START_REF] Fries | A mechanism for cognitive dynamics: neuronal communication through neuronal coherence[END_REF][START_REF] Klimesch | Eventrelated phase reorganization may explain evoked neural dynamics[END_REF][START_REF] Bolt | Beyond the evoked/intrinsic neural process dichotomy[END_REF][START_REF] Chen | Computing by modulating spontaneous cortical activity patterns as a mechanism of active visual processing[END_REF].

A neural state of the brain at any given moment can be understood as a point in a high dimensional space, where each dimension represents the instantaneous neural activity of all neural units (single neuron, or cortical region) [START_REF] Vyas | Computation through neural population dynamics[END_REF][START_REF] Mccormick | Neuromodulation of Brain State and Behavior[END_REF]. In this sense, the pre-stimulus variability (across time and trials) represents all possible internal states the system can explore in the absence of a stimulus and its post-stimulus quenching represents the reduction in this state-space due to stimulus onset [START_REF] Wolff | Prestimulus dynamics blend with the stimulus in neural variability quenching[END_REF]. Such reduction ensures a robust encoding of the stimulus-relevant information and as we will see from the dynamical systems point of view, it relates to a system temporarily exerting a control over its own trajectory [START_REF] Deco | Neural network mechanisms underlying stimulus driven variability reduction[END_REF]. Accordingly, both a higher pre-stimulus or resting state variability and a lower post-stimulus variability (i.e. stronger quenching) should facilitate the behavioural performance.

In general, during the typical period of a cognitive experiment, the global neural state is bound to be altered either due to spontaneous fluctuations in cortical states [START_REF] Tsodyks | Tsodyks00[END_REF][START_REF] Hansen | Functional connectivity dynamics: modeling the switching behavior of the resting state[END_REF] or more non-random factors such as due to short-term plasticity changes [START_REF] Fujisawa | Behavior-dependent short-term assembly dynamics in the medial prefrontal cortex[END_REF], neural adaptation [START_REF] Benda | Neural adaptation[END_REF], vigilance or attention [START_REF] Harris | Cortical state and attention[END_REF], changing predictive priors [START_REF] Pezzulo | The secret life of predictive brains: what's spontaneous activity for? Trends in Cognitive Sciences[END_REF], change in excitatory and inhibitory balance of neural networks [START_REF] Fontanini | Behavioral states, network states, and sensory response variability[END_REF] and changes in arousal and consciousness [START_REF] Werner | Consciousness related neural events viewed as brain state space transitions[END_REF]. Because of such rapid changes in the brain's internal state, evoked responses from one trial to the next are bound to be modified, even if the external stimulus parameters remain identical [START_REF] Buonomano | State-dependent computations: Spatiotemporal processing in cortical networks[END_REF]. While trial averaging might be a great way for an experimenter to understand the stable neural responses that encodes 'external stimulus properties', as discussed before, such averaging process cannot be utilized by the cortex since the downstream neurons must differentiate between global internal state changes and changes due to variations in the external stimulus properties at every single trial. Furthermore, even though such changes are not explicitly manipulated by the experimenter, these 'hidden' network state changes 1.2. Signal in the Noise inevitably confound the inferred evoked responses obtained by trial-averaging. It is then crucial to consider experimental paradigms and analyses that take into account between and withintrial variability across different conditions, considering task-evoked responses as a deviation of a continually evolving neural trajectory defined by the whole-brain neural interactions [START_REF] Huk | Beyond trial-based paradigms: Continuous behavior, ongoing neural activity, and natural stimuli[END_REF]. Studies recording mesoscale responses in the local neural populations demonstrate that when network-level brain activity is considered by treating them as high-dimensional neural trajectories, they reveal more information about the stimulus than available in the trial averages [START_REF] Jones | Natural stimuli evoke dynamic sequences of states in sensory cortical ensembles[END_REF][START_REF] Ebitz | The population doctrine in cognitive neuroscience[END_REF]. The revolution in the field is underway where systematic large-scale neural and behavioural recordings will shed light on how seemingly very different neural, cognitive and behavioural state dependent processes can be related to each other by understanding them as a change in neural state spaces [START_REF] Shenoy | Measurement, manipulation and modeling of brain-wide neural population dynamics[END_REF][START_REF] Lin | The function of groups of neurons changes from moment to moment[END_REF][START_REF] Langdon | An evolving perspective on the dynamic brain: notes from the brain conference on dynamics of the brain: temporal aspects of computation[END_REF][START_REF] Rabinovich | Sequential dynamics of complex networks in mind: Consciousness and creativity[END_REF][START_REF] Stringer | Spontaneous behaviors drive multidimensional, brainwide activity[END_REF][START_REF] Huk | Beyond trial-based paradigms: Continuous behavior, ongoing neural activity, and natural stimuli[END_REF].

In the next section, we review the mathematical framework of dynamical systems that helps formalize these ideas.

The Dynamical Brain

"We both step and do not step in the same rivers. We are and are not." -Heraclitus, Homeric Questions

24.3-5

If the response of a single neuron, neural ensembles or a single cortical region can only be understood by taking into account the global state of the cortex which itself is ever changing, then one must accept the cortex's complex, non-linear, and dynamic character in order to fully comprehend cortical computations [START_REF] Varela | The brainweb: phase synchronization and large-scale integration[END_REF]. As Heraclitus poetically puts it, the self is ever changing since the physical conditions that generate conscious experience and behaviour can vary from moment-to-moment. To reconcile with this ubiquitous change, we must adapt our analyses of neural data in accordance with the mathematical models that can comprehend such dynamic nature of the brain. In this section, I introduce two notions borrowed from Statistical Physics: complex systems and nonlinear dynamics, specifically as they have been discussed in the context of Computational Neuroscience.

Complex Systems

In his philosophical essay, theoretical physicist P.W. Anderson (1923Anderson ( -2020) ) argued that the 'more is different' [START_REF] Anderson | More is different[END_REF]. In the reductionist views of science, it is assumed that the behaviours of system at the large-scale can be deduced completely from the behaviours at the smaller scales. In the context of Neuroscience, it is implicit that the isolated neuron, isolated synaptic interaction or activity of a segregated brain region can fully represent a part of the stimulus in a well-defined experiment. A complex cognition then is assumed to be a series of such representational steps put together. While this maybe true for encoding basic features of sensory processing (such as receptive fields), representations of higher order cognitive processes by a single neural population or segregated brain regions become less clear while taken in isolation. Further, the existence of long-range correlations of ubiquitous spontaneous and task-evoked activity at the scale shorter than the synaptic delays between them are difficult to explain with reductionist view. For e.g. stimulus-induced, almost instantaneous long-range phase-synchronizations observed in fast oscillatory activity will not be explained by considering only the synaptic delays between a pair of neural populations in isolation [START_REF] Buzsaki | Rhythms of the brain[END_REF][START_REF] Salinas | Correlated neuronal activity and the flow of neural information[END_REF].

Anderson pointed out that laws that govern large scale systems can be widely different from those that operate at smaller scales. For e.g., temperature is a macroscopic property defined only for ensembles of atoms but cannot be defined for an individual atomic or subatomic units. It can only be understood in terms of the collective dynamic interactions between velocities of atoms.
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Drawing from this analogy, some scholars in the field argued that the large-scale oscillatory activity as observed in EEG/MEG or LFP can only be understood in terms of 'emergent neural properties' that arise due to non-linear interactions between neural ensembles distributed across brain regions [START_REF] Skarda | Chaos and the new science of the brain[END_REF][START_REF] Freeman | Nonlinear brain dynamics as macroscopic manifestation of underlying many-body field dynamics[END_REF][START_REF] Yuste | From the neuron doctrine to neural networks[END_REF][START_REF] Bressler | Large-scale cortical networks and cognition[END_REF].

Moreover, in a closed-loop system such as brain, just as combined neural interactions define the current state of the system, the goal-directed behaviours, environmental cues, attention, arousal, learning, top-down predictions can equally determine the self-organization of the neural states.

Thus, the neural activity and function of the single neuron or neural ensembles should depends on the context in which they are embedded in [START_REF] Fontanini | Behavioral states, network states, and sensory response variability[END_REF][START_REF] Lin | The function of groups of neurons changes from moment to moment[END_REF][START_REF] Panichello | Shared mechanisms underlie the control of working memory and attention[END_REF]. We will come back to this point later in the next section.

Two other ingredients are important for the emergence of the complex behaviour apart from non-linear interactions: critical phase transitions and hierarchical symmetry breaking. Phase transitions in a complex system are defined as the sudden, qualitative changes in the spatiotemporal patterns and overall behaviour of the system, despite a smooth transition in the collective interactions at micro-scale or as a function of smoothly varying external stimulus [START_REF] Kelso | Coordination dynamics[END_REF]. The first evidence of such phase transitions in brain was provided by Haken et al., who in a series of experiments demonstrated that when human subjects follow the smooth variations in a frequency of external periodic stimulus, an abrupt transition can occur from syncopated to synchronous response at a specific critical frequency of the stimulus. Such transition is accompanied by equally abrupt changes in MEG neural activity patterns [START_REF] Bressler | Cortical coordination dynamics and cognition[END_REF]. I.e. after a critical frequency is crossed, the system settles transiently from one 'steady state' to another. This qualitative change is impossible to explain without invoking the non-linear co-ordination dynamics. Apart from these studies, the metaphor of phase transition has been generously used to describe the 'neural phase transitions' that occur in the functional architecture as a result of deep anesthesia, sleep or pathology, that qualitatively changes the 'representational content' of single neurons or neural populations as summarized in previous sections [START_REF] Wallace | The sleep cycle: a mathematical analysis from a global workspace perspective[END_REF](Wallace, , 2005a)).

Furthermore, when the stimulus information becomes accessible to the global neural workspace, such conscious experiences also can be explained in terms of 'bifurcation' in the co-ordinated neural space [START_REF] Werner | Consciousness related neural events viewed as brain state space transitions[END_REF][START_REF] Dehaene | Ongoing spontaneous activity controls access to consciousness: a neuronal model for inattentional blindness[END_REF][START_REF] Sergent | Bifurcation in brain dynamics reveals a signature of conscious processing independent of report[END_REF]. For example, while the initial stages of sensory processing are more linear, or hierarchical the "all-or-none" ignition response depends on the temporary functional reorganization in the 'dynamic core' , which qualitatively decides the fate of the incoming stimulus [START_REF] Werner | Consciousness related neural events viewed as brain state space transitions[END_REF][START_REF] Dehaene | Ongoing spontaneous activity controls access to consciousness: a neuronal model for inattentional blindness[END_REF].

'Dynamic core' is defined as a continuously evolving but transiently stable set of coordinated neural ensembles that serves as a physical substrate for each conscious experience [START_REF] Cavanna | Dynamic functional connectivity and brain metastability during altered states of consciousness[END_REF].

Symmetry breaking can be loosely understood as small differences in some physical properties of micro-scale units, that makes some phase-transitions of the system more plausible than others [START_REF] Anderson | More is different[END_REF]. Such differences hence affect the large-scale qualitative behaviour of the system and its trajectories (Pillai & Jirsa, 2017a;[START_REF] Woodman | Emergent dynamics from spiking neuron networks through symmetry breaking of connectivity[END_REF]. In the context of Chapter 1. Primer on Neural Noise neuroscience, the asymmetries in the long-range structural connectivity provides the constraints on the whole-brain dynamics by means of the heterogeneity across local (regional) neural populations [START_REF] Fousek | The structured flow on the brain's resting state manifold[END_REF]. Apart from structural connectivity, as discussed in previous sections, the brain's collective dynamical state defined by the 'noise' co-ordination across distant neural regions at any moment can also bias information flows in the large-scale networks, such that some functional states are more effective than others in processing the incoming stimuli or propagating the external perturbation [START_REF] Kirst | Dynamic information routing in complex networks[END_REF][START_REF] Papadopoulos | Relations between large scale brain connectivity and effects of regional stimulation depend on collective dynamical state[END_REF]. Symmetry breaking provides a reconciliation between complex whole-brain dynamics and the traditional hierarchical models of information processing [START_REF] Van Essen | Information processing in the primate visual system: an integrated systems perspective[END_REF] in the following ways:

First, it has been shown that the ratio of excitatory-inhibitory neurons is not constant across cortical regions, but defines a cortical gradient along the sensory-motor to trans-modal cortical axis [START_REF] Huntenburg | Large-scale gradients in human cortical organization[END_REF]. Similar hierarchy in the structural connectivity allows for the modularity and functional specialization of different brain regions across the cortex [START_REF] Margulies | Situating the default-mode network along a principal gradient of macroscale cortical organization[END_REF][START_REF] Tian | Topographic organization of the human subcortex unveiled with functional connectivity gradients[END_REF]. Such symmetry breaking also defines a timescale hierarchy across cortex, whereby faster, short-lasting neural dynamics maintain more local, invariant representational features in sensory networks, while slower, long-lasting neural dynamics retains more abstract, long-term representations in trans-modal dynamic core defined by the default mode network (DMN) [START_REF] Himberger | Principles of temporal processing across the cortical hierarchy[END_REF][START_REF] Chaudhuri | A large-scale circuit mechanism for hierarchical dynamical processing in the primate cortex[END_REF].

Another hallmark of complex systems is their self-organization around critical points. Criticality is referred to a distinct set of properties that can only be found at the boundary of phase transitions [START_REF] Chialvo | Emergent complex neural dynamics[END_REF]. Many large-scale computational models trying to infer the spontaneous large-scale functional connectivity dynamics from the local dynamics of individual cortical regions have found that the best fit between the simulated and empirical functional connectivity appears when the system is poised near 'critical points' [START_REF] Deco | Resting-state functional connectivity emerges from structurally and dynamically shaped slow linear fluctuations[END_REF][START_REF] Hansen | Functional connectivity dynamics: modeling the switching behavior of the resting state[END_REF][START_REF] Demirtaş | Hierarchical Heterogeneity across Human Cortex Shapes Large-Scale Neural Dynamics[END_REF]. Complex systems in nature are hypothesized to organize between complete order and disorder or at the 'edge of chaos'. Such a situation confers many computational benefits: the system that is too ordered or too disordered cannot represent many spatio-temporal patterns while at the edge of critical transitions, the system can be minimally stable and yet flexible enough for fast transition into any dynamic states [START_REF] Deco | Emerging concepts for the dynamical organization of resting-state activity in the brain[END_REF]. The dynamics of spontaneous activity, if critical, would then benefit by being maximally variable (Garrett et al., 2010). One of the signatures of critical behaviour is the scale-invariance. I.e. at the critical point, many different components at different spatial scales can 'communicate' through temporal synchrony as we have briefly touched upon in previous sections. The power laws, such as those observed in 1 f noise profile of resting dynamics suggest that the brain at rest operates near the edge of critical phase transitions [START_REF] He | Scale-free brain activity: past, present, and future[END_REF][START_REF] Van De Ville | EEG microstate sequences in healthy humans at rest reveal scale-free dynamics[END_REF]. Such long-range correlations in neural dynamics have been further related to similar fluctuations in behavioural performance during continuous performance task [START_REF] Palva | Neuronal long-range temporal correlations and avalanche dynamics are correlated with behavioral scaling laws[END_REF]. Another signature of potential criticality in the brain are neural avalanches in the spontaneous neural firing whereby some neural groups show a cascade of firing bursts whose size distribution can be approximated 1.3. The Dynamical Brain by a power law [START_REF] Plenz | The organizing principles of neuronal avalanches: cell assemblies in the cortex?[END_REF].

Together, these ideas provide a view of the 'metastable brain' whereby functionally and spatially segregated neural populations simultaneously integrate information across many different timescales. The 'task-evoked changes' in this framework can hence be understood in terms of the rapid phase transitions where the system transiently and robustly controls its dynamics in order to carry out a reliable stimulus-relevant processing [START_REF] Tognoli | The metastable brain[END_REF]. Spontaneous activity dynamics in this view is not only functionally relevant but the most important ingredient to produce optimal cognition. We expand upon these ideas more formally in the next section.

Information Processing in a Non-linear Dynamical System

Historically there have been at least two views about how the brain processes information [START_REF] Barack | Two views on the cognitive brain[END_REF]. In the long withstanding behaviourist traditions that gave rise to 'bottom-up' information processing view, human brain is considered at best to be a transducer, that serially and hierarchically represents and modifies the incoming sensory signals through its neural activity. Each neuron (or neural population that codes for the same information) transfers the information or 'evidence' accumulated by itself to the downstream neurons [START_REF] Barlow | The neuron doctrine in perception[END_REF].

According to this view, memories are represented into precise synaptic strengths of the networks of neurons, and hence a specific connection (and their strengths) between neurons is necessary to produce a specific computations and behaviour. Every time the brain encounters a stimulus, the same sets of neurons will fire in sequence, starting from sensory to trans-modal cortices. 'Dynamics' is then a byproduct of this hierarchical information transfer between neurons or neural populations. While important for understanding of sensory response coding for simple stimulus features, this view fails to explain the evidence from "neural assemblies", where different neurons [START_REF] Harris | Neural signatures of cell assembly organization[END_REF] and brain regions [START_REF] Himberger | Principles of temporal processing across the cortical hierarchy[END_REF][START_REF] Banerjee | Using large-scale neural models to interpret connectivity measures of cortico-cortical dynamics at millisecond temporal resolution[END_REF] temporarily modify their neural activity depending on the context in which they are embedded. It also fails to explain how previously discussed brain-state (and context) dependent processing can take place in such neural networks [START_REF] Buonomano | State-dependent computations: Spatiotemporal processing in cortical networks[END_REF].

An alternative view of information processing rooted in the dynamical systems theory (DST) was advanced in parallel by John Hopfield [START_REF] Hopfield | Neural networks and physical systems with emergent collective computational abilities[END_REF] and Walter Freeman [START_REF] Freeman | Changes in spatial patterns of rabbit olfactory eeg with conditioning to odors[END_REF]. This view emphasizes the importance of recurrent feedback connections, nonlinear interaction between neurons and emergent, self-organizing computational properties that can arise spontaneously even before the need for exposing such neural networks to the real world experiences [START_REF] Hopfield | Neural networks and physical systems with emergent collective computational abilities[END_REF][START_REF] Skarda | Chaos and the new science of the brain[END_REF]). Such 'neural population doctrine' delineates that behaviour emerges from the co-ordination dynamics of neural populations [START_REF] Harris | Neural signatures of cell assembly organization[END_REF][START_REF] Yuste | From the neuron doctrine to neural networks[END_REF]. Dynamical systems view provides that the activity of all neurons at any given time can be understood as a point in a high dimensional space. In a large-scale brain system, the space of all such possible states or 'spatial configurations' of neural firing rates can be visualized as an energy landscape (See Fig. 1.6A). The geometric shape of such landscape is significantly constrained by the structural connectivity, synaptic delays, hierarchies of excitatory/inhibitory Chapter 1. Primer on Neural Noise balance and neurotransmitters among other parameters (Pillai & Jirsa, 2017a). Such constraints due to symmetry breaking between neural states would suggest that some states (or configurations) are more probable than others. These states, because of their high probability, can be considered as 'low energy states' or 'attractors'. In the surrounding of these states the neural trajectory will be 'forced' or 'attracted' towards these configurations and hence remains robust to external perturbation or 'noise'. Here 'energy' is some macroscopic mathematical property of the system such as for e.g., average signal strength of the configuration (dependent on the the average firing rate) [START_REF] Renart | Variability in neural activity and behavior[END_REF], or simply a combined probability of observing a specific neural configuration [START_REF] Watanabe | Energy landscape and dynamics of brain activity during human bistable perception[END_REF]. These properties cannot be attributed to the single-neurons but 'emerges' as the microscopic neural activities of single neurons or neural units self-organize. [START_REF] Yuste | From the neuron doctrine to neural networks[END_REF] and [START_REF] Renart | Variability in neural activity and behavior[END_REF] .

The memories in this perspective, are not the specific synaptic strengths or detailed physical synaptic connections but low-dimensional sub-spaces defined by attractors or 'structured flows' on such manifolds [START_REF] Hopfield | Computing with neural circuits: A model[END_REF]Pillai & Jirsa, 2017a). I.e., each stimulus can be 1.3. The Dynamical Brain distinctly encoded and retrieved by targeting a specific spatio-temporal pattern or trajectory of co-ordinated neural activity. A spatial or natural 'computation' on the stimulus is then the transformation between one such state space to another (Fig. 1.6B). For e.g., two simultaneously presented stimuli can activate two stable spatio-temporal patterns related to the two attractors on this manifold. Modulation of spatial attention from one of the stimuli to another can then be understood as a change in the energy landscape such that the spatio-temporal pattern related to the attended stimulus becomes more 'reproducible' and 'stable' i.e. the valley around that specific attractor becomes 'deeper' and its attractor basin 'narrower' (See fig. 1.6B).

The most defining characteristic that differentiates this 'dynamic Hopfieldian view' from the traditional 'Sherringtonian view' is structural and functional degeneracy [START_REF] Barack | Two views on the cognitive brain[END_REF]. I.e., it suggests that any assemblies of neurons can achieve a desired 'neural state' temporarily and robustly as long as they are able to embed a low-dimensional representation of stimulus within their co-ordinated activity [START_REF] Vyas | Computation through neural population dynamics[END_REF]. This view argues that since the behaviour requires an information transfer on the timescales faster than the synaptic changes that can take place in anatomical circuits, dynamics must play a functional role in the information transfer3 [START_REF] Battaglia | Function follows dynamics: state-dependency of directed functional influences[END_REF]. Although synapses, structural hierarchies and functional specialization of brain regions do matter in this view, they are second-level explanations, which provide constraints on the 'geometric shape' of the said manifold (Pillai & Jirsa, 2017a). Such dynamic view of the brain hypothesize that the basic unit of information in the brain is not the firing rate of a single neuron and their connections, but the low-dimensional manifolds or neural spaces underlying the dynamic neural interaction, which in turn determines the firing rate of single neurons. [START_REF] Barack | Two views on the cognitive brain[END_REF]. This view advocates that, all the relevant details for understanding any stimulus-relevant changes at any given point in time, is contained in the dynamic neural trajectory unfolding on such manifolds [START_REF] Vyas | Computation through neural population dynamics[END_REF][START_REF] Buonomano | State-dependent computations: Spatiotemporal processing in cortical networks[END_REF], which can still be high-dimensional but with a dimensionality relatively lower than the maximum possible (since the collective emergent coordination between these degrees of freedom effectively reduces the dimensionality).

In the next section, I formalize the DST framework to understand how the incoming stimulus may interact with the spontaneous neural population dynamics.

Energy Landscapes and Neural Trajectories

Hopfield showed for the first time that, a neural network of very simple neurons with recurrent feedback connections can 'learn', 'memorize' and 'retrieve' distinct spatio-temporal patterns for different stimulus. Learning in such a network can be described in terms of reaching a specific stable state (defining a distinct spatio-temporal pattern) in a dynamical system. In its most abstract form, a dynamical system can be defined as follows:
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dx dt = f (x(t), u(t))
where, x(t) represents a high-dimensional vector defining the brain-state i.e. activity pattern of all neural units at time t and u(t) represents the external input at this time. f is some nonlinear function of the combined activity of system's intrinsic state x(t) and the external inputs u(t).

Although Hopfield described 'stable point attractors' as the mechanisms to represent distinct memories of stimulus features in the activity of neural ensembles, it has been shown that such a simple dynamical system is nonetheless capable of generating very complex dynamics due to the recurrence (i.e. the system's dependence on its own state) and non-linearity (i.e. interaction between neurons being asymmetric) [START_REF] May | Simple mathematical models with very complicated dynamics[END_REF]. The geometries of different types of complex manifolds other than 'stable point attractors' have since been well-understood in the general field of dynamical systems [START_REF] Rabinovich | Dynamical bridge between brain and mind[END_REF] (see Fig 1 .7).

While Hopfield emphasized stable point-like attractors, Walter Freeman around the same time demonstrated that the neural assemblies (recorded as EEG spatial patterns) in the rabbit olfactory bulb represents the models of odors through chaotic neural trajectories [START_REF] Skarda | How brains make chaos in order to make sense of the world[END_REF]. He observed that the spatial EEG pattern of oscillatory 'bursts' evoked by the same odors were at each time slightly different, but the temporal sequence of EEG patterns nonetheless reliably represented the anticipated odors separately from the trajectories of unanticipated odors [START_REF] Skarda | How brains make chaos in order to make sense of the world[END_REF]. In large-scale neural systems, given the high variability in the trial-by-trial and moment-to-moment fluctuations of neural responses, it seems unlikely that at every occurrence of the stimulus onset, the system reaches classical attractor states (evoked activity pattern) or a limit cycle (stable oscillations). Building upon our previous discussion, neurophysiological recordings repeatedly reveal that 'transient', sequential 'dynamic flows' may be suitable to explain the task-evoked dynamics where the neural trajectories (although robust against noise) do not necessarily stabilize into a specific point attractor state but keep whirling around them, by sampling semi-stochastically a lower-dimensional manifold [START_REF] He | Robust, Transient Neural Dynamics during Conscious Perception[END_REF][START_REF] Rabinovich | Robust transient dynamics and brain functions[END_REF][START_REF] Buonomano | State-dependent computations: Spatiotemporal processing in cortical networks[END_REF][START_REF] Mazor | Transient dynamics versus fixed points in odor representations by locust antennal lobe projection neurons[END_REF]. Many theoretical explanations of such a robust but transient dynamics are possible, detailed discussion of which is difficult to cover here and I only give references that have analytically explained such behaviours: 'Metastable attractors' [START_REF] Deco | The dynamics of resting fluctuations in the brain: metastability and its dynamical cortical core[END_REF] are attractors unable to fully retain the system in its surrounding permanently, 'ghost attractors' [START_REF] Vohryzek | Ghost attractors in spontaneous brain activity: Recurrent excursions into functionally-relevant bold phase-locking states[END_REF] are relics of existing attractors, still slowing down the dynamics even after their disappearance through a critical boundary-or 'strange attractors' [START_REF] Röschke | The eeg is not a simple noise: strange attractors in intracranial structures[END_REF]) -which have complex fractal topology yet, can deterministically give rise to robust trajectories, which at shorter timescales might be indistinguishable from random fluctuations. In all of these conditions, despite seemingly erratic neural trajectories, system can nonetheless robustly represent a time-varying stimulus, by transiently constraining its dynamics around the times of stimulus presentation, without being stuck into a specific evoked potential pattern.
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Figure 1.7: Examples of Proposed Dynamical Landscapes for Brain Dynamics. (A) Fixed point attractor, where stimulus-driven system stabilizes in a specific activity pattern (B) Metastable state or saddle node, where depending on the initial state, the system can converge to a specific pattern, or can diverge far away from it. (C) A simple heteroclinic chain of two metastable states. If the system do enter one of the metastable state, it will follow a specific path along the second metastable state. (D) Stable heteroclinic channel, where once the system enters the specific metastable state, it will traverse through a reliable path. (E) These dynamical landscape can change in time, as a result of global arousal and state changes. The figures adapted from [START_REF] Rabinovich | Robust transient dynamics and brain functions[END_REF] and from [START_REF] Skarda | How brains make chaos in order to make sense of the world[END_REF] We can visualize these concepts with a few well-known examples of attractor manifold geome- or 'hidden' due to the high-dimensionality of the total interacting neural units.

However by observing the kinematics of neural trajectories either during task or rest state, we can take hints about the underlying manifold that may generate task evoked states. Kinematics of brain states can be defined in terms of how fast or slow the neural trajectories evolve at given time. If a specific stimuli induce robust speed changes to the ongoing neural trajectory, we would observe a lower trial-by-trial variability and a characteristic speed profile of neural trajectory [START_REF] He | Robust, Transient Neural Dynamics during Conscious Perception[END_REF]. At systems level, speed deviations have been previously defined in terms of changing EEG or MEG topographic patterns [START_REF] Baria | Initial-state-dependent, robust, transient neural dynamics encode conscious visual perception[END_REF][START_REF] Schurger | Cortical activity is more stable when sensory stimuli are consciously perceived[END_REF] as well as in terms of change in functional connectivity across brain regions (Lombardo, Cassé-Perrot, et al., 2020;[START_REF] Shine | The low-dimensional neural architecture of cognitive complexity is related to activity in medial thalamic nuclei[END_REF][START_REF] Schiepek | Pathologically reduced neural flexibility recovers during psychotherapy of ocd patients[END_REF]. Both faster and slower speed of neural configurations have been previously related to conscious perception of the incoming ambiguous stimuli [START_REF] Schurger | Cortical activity is more stable when sensory stimuli are consciously perceived[END_REF][START_REF] Baria | Initial-state-dependent, robust, transient neural dynamics encode conscious visual perception[END_REF] as well as to exploration and exploitation phases during learning of a new task [START_REF] Müller | Brain state kinematics and the trajectory of task performance improvement[END_REF]. Especially, during exploration phases, speed of brain-state reconfiguration is higher, which reduces after the task is learnt. Apart from the task-states, the speed of resting state functional connectivity has been further observed to reduce as the result of sleep deprivation (Lombardo, Cassé-Perrot, et al., 2020), aging [START_REF] Battaglia | Dynamic functional connectivity between order and randomness and its evolution across the human adult lifespan[END_REF] and pathology [START_REF] Schiepek | Pathologically reduced neural flexibility recovers during psychotherapy of ocd patients[END_REF], while increased speed of configuration variations is related to increased behavioural flexibility [START_REF] Schiepek | Pathologically reduced neural flexibility recovers during psychotherapy of ocd patients[END_REF] and reduced response time variability [START_REF] Mcintosh | Increased brain signal variability accompanies lower behavioral variability in development[END_REF].

In sum, these studies suggest that the brain-state kinematics can reveal the rich repertoire of dynamical changes that take place both during rest as well as task-conditions. From the dynamical systems point of view, trial-by-trial and moment-to-moment fluctuations in neural trajectory are not always an uninformative noise, but might point to an important features of the systems level adaptation of stimuli. In order to understand all stimulus relevant changes to the ongoing neural activity, we should hence adopt this dynamic perspective.
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Figure 1.8: Schematic of Mean Field Models. Spiking dynamics of single neuron can be modelled by assuming that the sub-threshold neural dynamics is less important than the neural spikes and then approximating these spikes with sufficient details on various time constants using leaky integrate and fire (LIF) model. Collective network dynamics of large spiking neural ensembles can be approximated by mathematically reducing the degree of freedoms (or dimensions) of dynamical systems by realistic assumptions regarding the relative time-constants of synaptic currents and conductances. Most common approximations are neural mass models and neural field models, which simulate the average synaptic activity of large excitatory and inhibitory neural ensembles, to resemble the activity observed at single scalp EEG electrode. Figure adapted from [START_REF] Gerstner | Neuronal dynamics: From single neurons to networks and models of cognition[END_REF].

Dynamic Mean Field Models

In the previous section we explored the ideas from neural population doctrine [START_REF] Ebitz | The population doctrine in cognitive neuroscience[END_REF][START_REF] Yuste | From the neuron doctrine to neural networks[END_REF][START_REF] Harris | Neural signatures of cell assembly organization[END_REF]. In order to reconcile these ideas with traditional singleneuron doctrine, it is important to understand the mechanisms by which microscopic non-linear interactions (between spiking neurons) realize into emergent mesoscopic population dynamics and finally at macro-scale into whole-brain network dynamics.

In-silico simulations of realistic Mean Field Neural network models allow this exploration by approximately reducing the degrees of freedom from astronomically large number of interneuron interactions to low-dimensional state-spaces [START_REF] Deco | The dynamic brain: from spiking neurons to neural masses and cortical fields[END_REF]. These mesoscopic models balance the trade-off between high biological realism and complexity of capturing the most relevant population dynamics for sensation, perception and cognition [START_REF] Deco | Rethinking segregation and integration: contributions of whole-brain modelling[END_REF]. These models differ in terms of the population neural dynamics that they explain. While neural field models estimate the spatio-temporal distribution of the population activity, neural mass models only estimate the average synaptic activity of an entire population as a single point process (see 1.8). In what follows, I first give the assumptions upon which these reductions are possible for a specific type of simple but bio-physically realistic fixed point attractor network model: the reduced Wang-Wong (RWW) and then review a few reduced models which have previously simulated neural dynamics and a systematic exploration of response variability.

In its simplest form, the membrane potential fluctuations V (t) in a single neuron can be defined by a simple integrate and fire model as follows:

Chapter 1. Primer on Neural Noise

C m dV (t) dt = -g m (V (t) -V rest ) -I syn (t) (1.1)
where, C m and g m represents membrane capacitance and leak conductance respectively, V r est is the resting potential and I syn (t) gives the average input current received by this neuron.

When this membrane potential reaches beyond some threshold V t hr, a spike is generated and transmitted to other neurons, and the voltage V is resetted to baseline for a fixed duration during which the cell cannot generate more spikes.

The total synaptic current I syn (t) depends on all the cell types of pre-synaptic neuron in the network that this neuron is embedded in and is given by the two types of recurrent excitatory currents (I AM P A,rec and I N M DA,rec ), and recurrent inhibitory currents due to GABArgic (I GABA ) neurons, as well as external currents received through external stimulus (I AM P A,ext ) Apart from the reduced Wang-Wong model, many other models have been proposed to bridge 1.3. The Dynamical Brain the gap between different neural phenomena at various spatio-temporal scales. These models can be classified either as exactly reduced models or phenomenological models. In the first case, simplified but realistic hypotheses are made on the micro-scale parameters and microstructural connectivity determining the single-neuron dynamics. These assumptions allow writing dynamical equations for the spiking neurons which can be mathematically reduced to arrive at the average collective macro-scopic dynamics. One such model is Monbrio-Paz-Rowin model, which can get transitions from asynchronous to synchronous activity regimes for instance, with macroscale parameters being function of the microscale dynamics [START_REF] Montbrió | Macroscopic description for networks of spiking neurons[END_REF]. The Stefanescu-Jirsa model is also a rigorously reduced model, which has more degrees of freedom and can generate many more dynamic behaviors [START_REF] Stefanescu | A low dimensional description of globally coupled heterogeneous neural networks of excitatory and inhibitory neurons[END_REF]. The phenomenological models, on the other hand do not make a formal reduction of the micro-scale dynamics to the emergent macro-scale dynamics but the dynamic equations directly explain the macro-scale activity by qualitatively reproducing the type of dynamic phenomena that occurs at the macroscale. Reduced Wang-wong models described above falls into this category.

I
In general, many types of computational network models have been proposed to explain the dynamical mechanisms underlying neural response variability and its stimulus driven modulations in canonical local neural circuits. Depending upon their collective emergent dynamic properties, these models can be roughly divided as: (1) "Multi-stable" attractor models (Litwin-Kumar & Doiron, 2012), (2) Chaotic Network Models [START_REF] Rajan | Stimulus-dependent suppression of chaos in recurrent neural networks[END_REF] and (3) Stochastic supralinear network models (SSN) (Hennequin et al., 2018a). In the first case, the neural network noisily wanders among multiple possible stable attractors in the absence of the external stimulus, while an external stimulation will reduce this variability by stabilizing the network dynamics in the basin of attraction of one of these attractor states. In the second case, population firing rates exhibit erratic spontaneous fluctuations, and a strong stimuli can suppress such chaos by exhibiting a control on this trajectory. In the third case, the system is very close to destabilization from a single stable state, resulting into stochastic excursions from this state, which explains the variability in spontaneous neural activity, however, such destabilization is prevented by the recurrent inhibition in the network. In the presence of stimulus, the increased inputs counter-intuitively results in more net inhibition in the system, which briefly stabilizes the system into the attractor state for the duration of the stimulus. Hence, balance between hidden feed-forward excitation and recurrent inhibition reduces the post-stimulus variability in this case. We will discuss this in more detail in chapter 4. 

Summary

In this chapter, I introduced a selection of core concepts related to spontaneous activity dynamics. Specifically, I tried to address the main contentions surrounding neural noise in the mainstream theories of cortical processing and presented the evidence for the usefulness of the brain's intrinsic neural dynamics. The studies presented here establish the following:

• The brain's intrinsic dynamics, as revealed by the spontaneous activity during rest or by neural variability during task, is spatio-temporally organized across different scales.

• When the brain is at rest, such intrinsic dynamics allows the exploration of realms of possible functional states, even when the structure of the brain remains relatively stable at such shorter time-scales.

• During task conditions, brain's intrinsic dynamics influences the processing of the incoming stimuli non-trivially, possibly by providing top-down predictions for the incoming stimuli.

Consequently, the interaction between spontaneous and task-evoked activity are better understood by investigating trial-by-trial and moment-to-moment fluctuations in the brain states.

• In a system as complex as the brain, variability in global brain states provides a way to evaluate the hidden dynamical manifold upon which neural trajectories or population dynamics evolve after stimulus-presentation.

Summary

Despite the growing interest in brain's intrinsic dynamics, current literature is heavily biased towards resting state studies. Except for the studies evaluating conscious access of the ambiguous stimuli, little is known about how the brain's intrinsic dynamics changes in response to the incoming stimuli. Difficulty in this understanding is partly because in the adult brain, the spontaneous and task-evoked dynamics are tightly intertwined.

The ultimate test of functional relevance of brain's intrinsic dynamics would be to gauge its ontogeny. How does the spontaneous activity emerge? How does it affect the stimulus processing early in life when the experience with the world is limited, structural changes are ample and the neural codes are still under construction? Furthermore, if we could observe changes of the effective landscape of brain dynamics and its variability through development, could we explain them in terms of changes of the underlying connectivity? These questions are addressed in the two research chapters of Part 2. Before going to our research results, however, given the importance of addressing development, I will first review the studies investigating neural dynamics in immature animals as well as in human infants.

Chapter 2

Infants: Not a Blank State Infants were, for long thought to be the blank slates living in "great blooming, buzzling confusion". (James's, 1863) due to their sub-optimal motor behaviour at early ages. Even after Jean Piaget (1896Piaget ( -1980) ) systematically characterized the children's cognitive skills in terms of distinct stages of mental development [START_REF] Piaget | The origins of intelligence in children[END_REF], our understanding about infant cognition remained restricted to what they act upon, and how they manipulate the physical world around them due to lack of proper methods to gauge the subtleties of their behaviour. A long held view of the brain development had since been that newborns start as reflexive input-output machines, processing and transforming sensory stimuli without showing a capacity for any higher order cognition, with more abstract thought and goal directed functions emerging later in life as they acquire more experience and their neural architecture is mature enough to support these functions [START_REF] Huitt | Piaget's theory of cognitive development[END_REF].

Today a century later, combining non-invasive neuroimaging methods and carefully designed experiments with the animal models of development, we find that the process of development is much more complex than what would have been previously acknowledged. Behavioural evidence suggests that toddlers do not passively respond to their environments. Quite the contrary, from a very early age, they actively seek information that enhances their learning and exploration [START_REF] Stahl | Observing the unexpected enhances infants' learning and exploration[END_REF]. They form expectations and show preferences for the violation of these expectations and use them as the opportunity for updating their model of the world [START_REF] Kayhan | Infants differentially update their internal models of a dynamic environment[END_REF]. Such active inference from their environments is perhaps what makes them ingenious learners, the only known machines able to master human language or perceive and generate abstractions [START_REF] Dehaene-Lambertz | The Infancy of the Human Brain[END_REF][START_REF] Baek | How an infant's active response to structured experience supports perceptual-cognitive development[END_REF][START_REF] Köster | Making sense of the world: infant learning from a predictive processing perspective[END_REF][START_REF] Tenenbaum | How to grow a mind: Statistics, structure, and abstraction[END_REF]. Similarly, adult-like electrophysiological signatures of many higher-order cognitive tasks such as abstract rule learning [START_REF] Kabdebon | Symbolic labeling in 5-month-old human infants[END_REF] or conscious perception [START_REF] Kouider | A neural marker of perceptual consciousness in infants[END_REF] have been observed as early as 5 months. Prior expectation of the upcoming stimuli have been shown to modify the activity of sensory regions in 5-7 month old infants [START_REF] Emberson | Top-down modulation in the infant brain: Learning-induced expectations rapidly affect the sensory cortex at 6 months[END_REF] and to shape the neural dynamics to the (un)expected stimuli 2.1. Structural Development And Transient Neural Circuits in 12-month old infants [START_REF] Kouider | Neural dynamics of prediction and surprise in infants[END_REF]. These studies falsify the "progressive organization" view of the brain, whereby functional specialization is achieved slowly from the low-level to higher-level regions only after brain matures.

How do the infants posses early capacity for higher-order cognition? Early brain maturation is a complex phenomena whereby anatomy, intrinsic neural dynamics and experience dependent activity interact and shape each other to give rise to sophisticated behaviour. While development of the first two ingredients is somewhat well-understood in early infancy (See [START_REF] Dehaene-Lambertz | The Infancy of the Human Brain[END_REF] for review), the dynamics remains largely ignored. It is possible that in the absence of adult-like more specific or faster long-range neural connections, the brain's functional architecture and hence brain's intrinsic dynamics provides for the "functional scaffold" upon which sophisticated neural computations and in turn cognition can still take place [START_REF] Reid | From functional architecture to functional connectomics[END_REF].

Understanding the underlying neural dynamics and hence the so called spontaneous activity from the earliest ages is thus important. It also allows us to better characterize the computational role of neural dynamics and its relationship to evoked responses from the earliest ages.

In the sections below hence, I will first briefly review developmental changes in anatomical architecture at local and large-scale, while trying to integrate various findings from rodents, primates and humans. Next, I will review the emergence of spontaneous activity in the developing brain. Since the earliest data available for this purpose is from animal models, I will especially review the utility of such activity in the development of visual system of rodent pups but also later in large-scale scalp EEG activity of human infants.

Structural Development And Transient Neural Circuits

Like many primates, the basic structural architecture in humans develops prenatally in the last trimester of gestation. In human fetuses at 18 wGA (Gestational Age in weeks)4 , the earliest neurons are organized into three zones: the "superficial" marginal zone (MZ) and "deep" subplate (SP) zone, which are separated by later-developing cortical plate (CP) neurons (See fig 2.1A).

Synapses between neurons first appear about 23-26wGA, and neurons progressively migrate from subplate zone to the cortical plate around 28-32 wGA [START_REF] Kostović | The development of the subplate and thalamocortical connections in the human foetal brain[END_REF]. Transformation of 3-layered pre-columns into adult-like 6-layered laminar structure is fully visible at 32 wGA and some early short-ranged and long-range connectivity is also observed from diffusion tensor imaging (DTI) [START_REF] Kostović | The development of the subplate and thalamocortical connections in the human foetal brain[END_REF][START_REF] Takahashi | Emerging cerebral connectivity in the human fetal brain: an mr tractography study[END_REF]. Glutamatergic cells migrate first from subplate to cortical plate and inhibitory GABArgic interneurons arrive later [START_REF] Kolasinski | Radial and tangential neuronal migration pathways in the human fetal brain: anatomically distinct patterns of diffusion mri coherence[END_REF]. Parvalubin inhibitory interneurons differentiate around 26 wGA, and develop very slowly until at least 10 post-natal months [START_REF] Dehaene-Lambertz | The Infancy of the Human Brain[END_REF]. A transient circuitry from thalamus to subplate neurons and thalamus to pyramidal cells in cortical plate is observed during 26-32 wGA during the cell migration and has been assumed to amplify the Chapter 2. Infants: Not a Blank State input neural signal at this age [START_REF] Kanold | The subplate and early cortical circuits[END_REF]. Similar stages of transient neural circuits have been observed in rodents and each stage correlates with a distinct spontaneous neural dynamics during different ages, although the exact age when these transitional stages occur across humans is less well-known [START_REF] Molnár | Transient cortical circuits match spontaneous and sensory-driven activity during development[END_REF]. However, it is known that this circuitry is critical in the organization of the cortex and its disruption is hypothesized to result in distinct neuropathologies at later adult life [START_REF] Molnár | Transient cortical circuits match spontaneous and sensory-driven activity during development[END_REF].

Gradual changes in excitatory-inhibitory balance in visual cortex is observed throughout the subplate to cortical migration owing to the changing roles of neurotransmitters [START_REF] Hensch | Critical period regulation[END_REF]): In early post-natal stages of rodents development GABArgic neurons are excitatory which 'switches' to their adult-like inhibitory role shortly after birth. Initially, glutamatergic transmission is purely mediated by NMDA-receptor based synapses and AMPA receptors remain "silent" [START_REF] Ben-Ari | GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations[END_REF][START_REF] Ben-Ari | Excitatory actions of gaba during development: the nature of the nurture[END_REF]. This general pattern is further subject to hierarchical heterogeneities and can change throughout the species. At least one computational model has shown that the gradual changes in response delays of GABArgic neural population in relation to excitatory populations, result in abrupt changes in local circuit neural dynamics [START_REF] Romagnoni | Progressive alignment of inhibitory and excitatory delay may drive a rapid developmental switch in cortical network dynamics[END_REF] as we will review in the next section.

Synaptic connectivity as recognized from tracer studies in immature primates show that while both feed-forward and feedback connections are already in place at pre-term, the feedback connections remain unspecific and extensive pruning of these connections is observed throughout early life [START_REF] Kennedy | Self-organization and pattern formation in primate cortical networks[END_REF][START_REF] Dehaene-Lambertz | The Infancy of the Human Brain[END_REF]. After term birth, gray and white matter connections continue to grow in humans with heterogeneity of maturation across different brain regions [START_REF] Leroy | Early maturation of the linguistic dorsal pathway in human infants[END_REF]. While visual cortex and its long-range white-matter connections (optical radiation) mature around 12 weeks of age, myelination in other corticocortical connections grow much slowly throughout early puberty and likely for even longer during life. However, some myelination in all associative areas except frontal regions is observed at the end of the first year [START_REF] Dubois | Microstructural correlates of infant functional development: example of the visual pathways[END_REF]. Massive synaptic formation and axonal growth across whole-brain still takes place upto 3 post-natal months (12 weeks) [START_REF] Dehaene-Lambertz | The Infancy of the Human Brain[END_REF] and further continues to grow for at least first two decades of life or even longer [START_REF] Dubois | Development of structural and functional connectivity[END_REF]Douaud et al., 2014).

These structural changes in long-range and local structural architecture are bound to shape the spontaneous activity at all spatio-temporal scale. The spontaneous activity and its interaction with external world has been extensively studied mostly in rodents but also very early pre-term infants from the earliest ages of 23 wGA. Next we discuss the development of spatio-temporal structure of spontaneous and evoked activity from its genesis in embryos.

Development of Spontaneous Activity: Animal Models

First waves of spontaneous neural activity (i.e. activity without any apparent external inputs) are observed in embryos of various species even before completion of neurogenesis or full neural [START_REF] Molnár | Transient cortical circuits match spontaneous and sensory-driven activity during development[END_REF], [START_REF] Kolasinski | Radial and tangential neuronal migration pathways in the human fetal brain: anatomically distinct patterns of diffusion mri coherence[END_REF] and [START_REF] Leroy | Early maturation of the linguistic dorsal pathway in human infants[END_REF]. [START_REF] Avitan | Code under construction: neural coding over development[END_REF] migration of neurons from subplate to cortical plate [START_REF] Molnár | Transient cortical circuits match spontaneous and sensory-driven activity during development[END_REF]. Apart from sensory cortices [START_REF] Blankenship | Mechanisms underlying spontaneous patterned activity in developing neural circuits[END_REF], wave-like propagation of such activity has been observed in retina [START_REF] Galli | Spontaneous impulse activity of rat retinal ganglion cells in prenatal life[END_REF], cochlea [START_REF] Tritsch | The origin of spontaneous activity in the developing auditory system[END_REF] and spinal cord [START_REF] Gonzalez-Islas | Spontaneous network activity in the embryonic spinal cord regulates ampaergic and gabaergic synaptic strength[END_REF]. In mammalian nervous system, very early local neocortical activity is initially driven by the activity in the sensory periphery, and has been shown to partially help with the coarse, neural assembly formation in especially auditory and visual cortices [START_REF] Huberman | Mechanisms underlying development of visual maps and receptive fields[END_REF][START_REF] Kandler | Tonotopic reorganization of developing auditory brainstem circuits[END_REF] as well as in hippocampus [START_REF] Cossart | How development sculpts hippocampal circuits and function[END_REF] (See fig 2.2 for the proposed maturation calendar of these events in Ferret pups.). In mouse visual system, spontaneous retinal waves appear even before the photo-receptors can transduce external light, drives the spontaneous activity in the visual cortex and disappears around the time of eye opening [START_REF] Ackman | Role of emergent neural activity in visual map development[END_REF]. These retinal waves can be classified into 'early' and 'late' stages of development, which differ greatly in terms of their spatio-temporal structure as well as their underlying molecular and genetic sources [START_REF] Blankenship | Mechanisms underlying spontaneous patterned activity in developing neural circuits[END_REF].

In the early stage (P0-P9 days (Postnatal days) after birth but before eye opening), retinal 2.2. Development of Spontaneous Activity: Animal Models and cortical spontaneous activity (in visual cortex V1) as observed through calcium imaging, propagate in very slow waves (<0.01Hz) encompassing largely synchronous spatial domains that follow random trajectories, while around the time of eye opening (around P10), such waves of calcium activity become brief, spatially patchy (sparse) but more regular [START_REF] Rochefort | Sparsification of neuronal activity in the visual cortex at eye-opening[END_REF].

One wide-field calcium imaging study in mice observed that the early stage (P0-P9) retinal waves are perfectly correlated with the wave-like spontaneous activity in superior colliculus, thalamus and visual cortex V1 in the beginning, but just before eye opening (P10), the activity of visual cortex V1 gradually becomes less sensitive to the spontaneous drive from retina. In this later stage, blocking the retinal drive does not interrupt the spontaneous activity emergence in the visual cortex [START_REF] Gribizis | Visual cortex gains independence from peripheral drive before eye opening[END_REF]. In contrast, inhibiting retinal waves in the earlier stages of development has been shown to have fatal consequences for the formation of topographic maps [START_REF] Kirkby | A role for correlated spontaneous activity in the assembly of neural circuits[END_REF].

A recent study further demonstrated that the structure of the later stage (P8-P11) retinal spontaneous activity in mice visual system mimics the cortical activity generated by external stimuli (specifically the "visual motion flows") [START_REF] Ge | Retinal waves prime visual motion detection by simulating future optic flow[END_REF]. This study hence concluded that the retinal activity partially shapes the epigenesis and refinement of local neural networks in cortex by likely simulating the statistics of the environment that animal will later discover [START_REF] Avitan | Code under construction: neural coding over development[END_REF]. At least in mice visual cortex hence right before the eye opening, the cortical activity becomes gradually decoupled from the spontaneous peripheral drive and instead is driven largely by sustained, recurrent cortical network activity [START_REF] Colonnese | Spontaneous activity in developing sensory circuits: implications for resting state fmri[END_REF][START_REF] Colonnese | Thalamocortical function in developing sensory circuits[END_REF][START_REF] Gribizis | Visual cortex gains independence from peripheral drive before eye opening[END_REF]. Hence, from the earliest age, retinal waves or sensory activity is not simply transduced to the cortex, but likely interacts with the immature cortical dynamics [START_REF] Molnár | Transient cortical circuits match spontaneous and sensory-driven activity during development[END_REF][START_REF] Chiu | Spontaneous activity in developing ferret visual cortex in vivo[END_REF].

This view is further corroborated by the studies comparing the spontaneous and evoked activity before and after eye opening in immature ferret visual cortex [START_REF] Chiu | Spontaneous activity in developing ferret visual cortex in vivo[END_REF][START_REF] Smith | Distributed network interactions and their emergence in developing neocortex[END_REF][START_REF] Orbán | Neural Variability and Sampling-Based Probabilistic Representations in the Visual Cortex[END_REF]. In these ferrets, a precise modular functional architecture (i.e. functional topographic maps) spanning several mm of visual cortex already existed ten days before eye opening (at post-natal day P21) [START_REF] Smith | Distributed network interactions and their emergence in developing neocortex[END_REF]. Such modular organization of spontaneous activity, although initially immature, nonetheless exists even in the absence of well developed long-range cortico-cortical connections [START_REF] Durack | Development of horizontal projections in layer 2/3 of ferret visual cortex[END_REF]. Longitudinally tracking the spontaneous organization of immature ferrets, Smith et al. further showed that such large-scale functional organization even before eye opening, could be used to accurately predict the evoked patterns that will be dedicated to different orientation gratings [START_REF] Smith | Distributed network interactions and their emergence in developing neocortex[END_REF] (see Fig 2 .3).

Recording depth EEG and multi-unit activity responses to light flashes in immature mice, one study found that mice visual cortex went through three stages of responsiveness [START_REF] Colonnese | A conserved switch in sensory processing prepares developing neocortex for vision[END_REF]: First, a Physiological blindness of immaturity (< P7 days): At this age, the visual cortex remained mostly quiescent, with spontaneous, short-lasting high frequency rhythmic bursts occasionally separating the epochs of quiescence. However, light flashes of even very high [START_REF] Smith | Distributed network interactions and their emergence in developing neocortex[END_REF] 2.2. Development of Spontaneous Activity: Animal Models intensity did not elicit any neural response in mice at this age. Second, a Bursting period is observed from (P8-P11), where brief light stimulation resulted in evoked high frequency rhythmic bursts. and Third, an Acuity period (>P12, after eye opening), whereby the high amplitude bursts slow wave activity seen before disappeared both in spontaneous as well as in the evoked activity to the light flashes and instead, adult-like continuous spontaneous activity and graded evoked responses were observed ( Fig 2.4). It has been shown further that the retinal waves drove the spindle bursts in blindness period. When retinal input was removed, the bursts disappeared, however the continuous quiescent periods in between still remained and hence, it was suggested that while the bursts are driven by retinal activity, continuous activity periods mark endogenously driven cortical network activity [START_REF] Colonnese | Thalamocortical function in developing sensory circuits[END_REF].

These results were also further compared with EEG activity from human infants from 28-40 wGA and similar bursty responses were observed, known as 'evoked delta-brushes', whose amplitude, latency and duration gradually decreased to become adult-like [START_REF] Colonnese | A conserved switch in sensory processing prepares developing neocortex for vision[END_REF]. However, this comparison between humans and mice had been criticized and we will address this criticism in the next section.

Nevertheless, these studies on animal models provide a remarkable vision into the early emergence of spatio-temporal dynamics of spontaneous activity: They show that early molecular and genetic programs along with transient neural circuits initiate the organization of early spontaneous activity in sensory periphery and different sensory regions of the cortex [START_REF] Ruthazer | Learning to see: patterned visual activity and the development of visual function[END_REF]. This early stage neural communication, along with genetic programs for neurogenesis and neural migration shape the mature neural circuits [START_REF] Molnár | Transient cortical circuits match spontaneous and sensory-driven activity during development[END_REF]. Later stage recurrent network activity, independently from the retinal wave drive, is organized into functional neural assemblies [START_REF] Romano | Spontaneous neuronal network dynamics reveal circuit's functional adaptations for behavior[END_REF][START_REF] Smith | Distributed network interactions and their emergence in developing neocortex[END_REF], which can faithfully share the representation of sensory features when animal encounters external stimuli [START_REF] Smith | Distributed network interactions and their emergence in developing neocortex[END_REF][START_REF] Romano | Spontaneous neuronal network dynamics reveal circuit's functional adaptations for behavior[END_REF][START_REF] Miller | Visual stimuli recruit intrinsically generated cortical ensembles[END_REF] (see Fig 2 .3). Finally, as we have seen before, similarity between the distributions of spontaneous and evoked activity patterns further increase with development in Ferrets after eye opening [START_REF] Berkes | Spontaneous cortical activity reveals hallmarks of an optimal internal model of the environment[END_REF][START_REF] Fiser | Small modulation of ongoing cortical dynamics by sensory input during natural vision[END_REF]. Spontaneous activity dynamics can be gradually modified by the stimulus history, i.e. by the statistics of the environment after eye opening [START_REF] Fiser | Statistically optimal perception and learning: from behavior to neural representations[END_REF].

Development of Large-scale Spontaneous Activity in Human Infants

Scalp EEG activity had been recorded in humans since the earliest ages from when the pre-term infants can be survived. With intensive post-natal care, human infants now regularly survive from 28 wGA, however some have survived without neurological pathology as early as 23

wGA [START_REF] Dehaene-Lambertz | The Infancy of the Human Brain[END_REF]. In these early pre-term human infants, spontaneous activity goes through several continuous changes in terms of its spatio-temporal and spectral features which can be related to the clinical and electro-physiological reactivity of infants (Fig 

Development of Spontaneous Activity: Animal Models

Similar to mice before eye opening, the most commonly observed feature of activity before term age is its relative discontinuity, whereby spontaneous short bursts of high-amplitude (300µV ) activity are separated by tens of seconds of low-voltage activity. [START_REF] André | Electroencephalography in premature and full-term infants. developmental features and glossary[END_REF].

However, unlike the 'switch-like' behaviour observed in mice visual cortex, in human infants, the spontaneous activity bursts on scalp cannot simply be described as a single high frequency rhythm nested with slow frequency waves, but rather posses complex features involving many different frequencies which follow a series of continuous developmental changes (See Fig 2.5):

these commonly include reduction in overall voltage amplitudes and especially of bursts, gradual reduction in epochs of discontinuity and it gradual disappearance during wakefulness around the time of birth and overall increase in the power of higher frequencies. dominant frequency of the cortex changes from very low 0.5-1.5Hz to high (4Hz), first activity transients on frontal electrodes appear and their correspondence to quiet sleep increases around the same time when anterier slow waves and thea bursts disappear. Full electrophysiological reactivity to auditory flashes or somatosensory touch can be observed from around this age [START_REF] André | Electroencephalography in premature and full-term infants. developmental features and glossary[END_REF].

Although previous attempts had been made to compare the developmental stages in human infants with those observed in rodents [START_REF] Molnár | Transient cortical circuits match spontaneous and sensory-driven activity during development[END_REF][START_REF] Domínguez | A transient postnatal quiescent period precedes emergence of mature cortical dynamics[END_REF][START_REF] Colonnese | Thalamocortical function in developing sensory circuits[END_REF], many discrepancies still remain in fully understanding this correspondence.

Some similarities between early pre-term human infants and post-natal days before eye opening in mice have been established: existence of spontaneous discontinuous theta bursts in preterm infants and lack of general reactivity before 28 wGA has been compared to the periods of 'physiological blindness' in rodents. Second, evoked delta brushes have been observed in some studies (but not others) from 28 wGA onwards in response to visual flashes [START_REF] Colonnese | A conserved switch in sensory processing prepares developing neocortex for vision[END_REF], auditory clicks [START_REF] Kaminska | Cortical auditory-evoked responses in preterm neonates: Revisited by spectral and temporal analyses[END_REF], and hand movement [START_REF] Milh | Rapid cortical oscillations and early motor activity in premature human neonate[END_REF]. Second, the bursting period ends in restful awake states in human pre-term infants around the time of term birth, similar to the acuity period in mice [START_REF] Colonnese | Spontaneous activity in developing sensory circuits: implications for resting state fmri[END_REF][START_REF] Colonnese | Thalamocortical function in developing sensory circuits[END_REF]. However, occasional relatively low-amplitude bursts called "Tracé alternant" still appear in quiet sleep from 37 wGA to 44 wGA in human infants [START_REF] André | Electroencephalography in premature and full-term infants. developmental features and glossary[END_REF]. Third, both in pre-term human infants and immature mice, as the neural activity becomes more continuous, the behavioural states (quiet or active sleep and quiet or agitated wakefulness in infants, quiet rest and movements in mice) become discernible. Fourth, in mice sensory cortex, population neural activity becomes sparser, similarly in humans, long-range asynchrony of activity across activity patterns appearing at specific spatial locations such as: anterior slow waves, sharp waves, delta brushes, and theta temporal activities, the duration of discontinuities between two bursts. Asynchrony between bursty activity observed at different electrodes, amplitude of bursts and dominant frequency of the power spectrum. Reactivity of the infants also varies with age. For full list of features: See [START_REF] André | Electroencephalography in premature and full-term infants. developmental features and glossary[END_REF]. Summary figure adapted from [START_REF] Wallois | Synopsis of maturation of specific features in eeg of premature neonates[END_REF].

Development of Spontaneous Activity: Animal Models

electrodes has been observed starting from ∼ 32 wGA, which had been taken as a proof for similar course of development. Because evoked delta-brushes in mice reflect an "all-or-none" response, it was proposed that this response represents only 'detection' of the stimulus, and only the subsequent, adult-like graded response during the acuity phase is thought to be in response to 'discrimination' of the stimulus [START_REF] Colonnese | Thalamocortical function in developing sensory circuits[END_REF][START_REF] Molnár | Transient cortical circuits match spontaneous and sensory-driven activity during development[END_REF].

However, neurocognitive studies of in-utero human fetuses as well as very early pre-term infants have contradicted this view. First, behavioural and neural responses to auditory stimulation have been reported pre-natally from as early as 6 months of gestation as observed from fetal MRI and MEG studies,as well as from pre-term infants' EEG [START_REF] Mahmoudzadeh | Functional maps at the onset of auditory inputs in very early preterm human neonates[END_REF][START_REF] Mahmoudzadeh | Syllabic discrimination in premature human infants prior to complete formation of cortical layers[END_REF][START_REF] Weitzman | Maturation and topography of the auditory evoked response of the prematurely born infant[END_REF][START_REF] Holst | Development of auditory evoked fields in human fetuses and newborns: a longitudinal meg study[END_REF]. In most of these early studies in humans, evoked delta brushes were either not elicited or were ignored when randomly elicited due to its very large amplitude contaminating the average evoked responses across trial [START_REF] Weitzman | Maturation and topography of the auditory evoked response of the prematurely born infant[END_REF][START_REF] Mahmoudzadeh | Functional maps at the onset of auditory inputs in very early preterm human neonates[END_REF]. One study recording Event-Related Potentials (ERP) in 28-32 wGA infants from the quiet (discontinuous) transients demonstrated that from these earliest stages, the infants' ERPs show distinct sequential evolution of evoked topographies at specific latency, moreover, infants were able to discriminate between the phonetic changes or the changes in male vs female voice [START_REF] Mahmoudzadeh | Functional maps at the onset of auditory inputs in very early preterm human neonates[END_REF] as observed from their distinct ERP topographic profiles for these conditions. Even in the 29wGA infants i.e. even before the neural migration or formation of cortical columns is complete , the infants showed a "mismatch" response in speech syllables. This results are striking because using functional near infrared spectroscopy (fNIRS), the same authors also showed that as early as 29wGA, oxyhemoglobin responses to mismatch of phonemes can be observed in inferior frontal gyri, right at the onset of neural activity in humans [START_REF] Mahmoudzadeh | Syllabic discrimination in premature human infants prior to complete formation of cortical layers[END_REF] (See fig 2.6 for details). Apart from these studies, many others have shown that from early infancy, despite immature spontaneous EEG activity ( comprising "bursts" and discontinuities), very early preterm infants respond to the environment, not just by merely detecting the stimulus, but also by discriminating between relatively complex features of auditory [START_REF] Holst | Development of auditory evoked fields in human fetuses and newborns: a longitudinal meg study[END_REF] or even tactile stimulus [START_REF] Marcus | Tactile sensory capacity of the preterm infant: manual perception of shape from 28 gestational weeks[END_REF].

The discrepancy in humans and rodent results can be due to many reasons: First, unlike in mice, in human preterms, the discontinuous periods are not strongly "quiescent", but already show complex spatio-temporal and spectral patterns, which likely endow human infants a functional capacity even during the immature neural activity. Indeed, it has been observed that maturation calendars for genetic expressions and chronology of brain development are quite different in the two species and hence direct comparison of the two species should be read with caution. It is quite possible that these innate factors already equip the human preterms to support the basic linguistic processing capacities that are not present in rodents [START_REF] Mahmoudzadeh | Functional maps at the onset of auditory inputs in very early preterm human neonates[END_REF]. Secondly, in rodent studies, the timing of 'developmental switch' varied depending on the sensory modality (in barrel cortex vs visual cortex), and whether and when such switch occurs in higher order associative cortex is unknown. Due to difficulty in discerning distinct wake-sleep states in very early pre-terms, only auditory and tactile stimuli have been tested ubiquitously. In future, invasive primate studies may reconcile the theories from rodent results and pre-term human cognitive neurophysiology.

As revealed by the resting state functional MRI studies of preterm infants, large-scale spatiotemporal organization of coordinated spontaneous activity (Resting State Networks: RSNs) are already in place as early as the third trimester after gestation [START_REF] Doria | Emergence of resting state networks in the preterm human brain[END_REF][START_REF] Schöpf | Watching the fetal brain at 'rest[END_REF]. Even though initially fragmented, these RSNs show an adult-like functional connectivity already by the age of term birth i.e. even before any experience dependent activity can be observed or the myelination of long-range connections is complete. This complex organization also includes the networks involving higher order cognition (for e.g., the Default Mode Network (DMN), fronto-parietal networks and executive network, which in adults are related to task irrelevant behaviours, focused attention on the task and switching between these two modes respectively [START_REF] Menon | Large-scale brain networks and psychopathology: a unifying triple network model[END_REF]). The early fragmented version of spontaneous activity in pre-term infants, can have influences from both, a feed-forward drive from periphery as well as the endogenous thalamo-cortical or cortico-cortical drive. The co-existence of these functional networks however is remarkable and suggests an emerging synchrony in the early pre-mature phase of quiescence and bursting across distant regions. One study looking at frequency specific EEG functional connectivity in pre-term infants (28-33 week conceptional age 5 ) has found that the early bursting events are initially randomly organized, while at the later ages (37-43

5 Conceptional age is defined as GA at birth plus number of weeks postpartum.

week conceptional age), such high frequency (8-15Hz) bursts form functional modules around the occipital and frontal electrode clusters [START_REF] Omidvarnia | Functional bimodality in the brain networks of preterm and term human newborns[END_REF].

To sum, an extensive literature suggests that the early development in neonates of all species is marked by a sudden or gradual shift in spontaneous activity dynamics, which spans across many spatio-temporal scales. In rodents, such 'switch' is predominantly marked by disappearance of sensory periphery driven activity along with gradually increasing complexity of recurrent neural network dynamics which results into beginning of the state-dependent processing of the incoming stimulus. Although in rodents the immature spontaneous neural dynamics is considered to mostly result into rudimentary (all-or-none) 'detection' of the incoming stimuli, in pre-term human infants, the partially mature dynamics is functional from the earliest ages. Complexity of neural signals in human infants gradually increases even after birth, as reflected by the prolonged development of neural dynamics in term birth neonates.

In the next section, we will discuss this in detail.

Development of Complexity in Spontaneous Network Dynamics

After the cortical neural networks become endogenously driven, structured external input as well as maturation of short-range and long-range structural connectivity shape the dynamical landscape of the recurrent cortical networks. As we have discussed in the previous chapter, spontaneous neural signal variability and complexity in this sense can be related to a larger dynamic repertoire of metastable states, enabling infants with an enhanced capacity for information processing.

A few studies have hence investigated the development of large-scale moment-to-moment fluctuations or complexity of neural signals, either using EEG, ECoG or fMRI [START_REF] Wen | Development of dynamic functional architecture during early infancy[END_REF][START_REF] Mcintosh | Increased brain signal variability accompanies lower behavioral variability in development[END_REF][START_REF] Mišic | Brain noise is task dependent and region specific[END_REF][START_REF] Mcintosh | The development of a noisy brain[END_REF]. A typical observation across all studies suggest that the complexity of continuous neural signals across many temporal scales increases with age throughout the course of development. Moment-to-moment fluctuations in resting state functional connectivity were reported to linearly increase across whole-brain during natural sleep in first 2 years of life [START_REF] Wen | Development of dynamic functional architecture during early infancy[END_REF]. Such changes in variability however are not uniform across brain regions. Typically, the dynamic fluctuations in primary sensory functional networks reduce, while the same in higher order functional systems increase with age, suggesting that the higher order functional regions become more flexible in modulating their spontaneous activity. Similar observation has been made by measuring multi-scale entropy of single-trial moment-to-moment fluctuations during passive auditory and visual stimulation in infants and children aged 27 days to 5 years [START_REF] Lippe | Electrophysiological markers of visuocortical development[END_REF][START_REF] Mcintosh | Increased brain signal variability accompanies lower behavioral variability in development[END_REF]. The entropy of the spontaneous signals linearly increased with age at all temporal scales, but this trend however was modality specific: with development of visual system complexity being faster than that of auditory system. Moreover, in young children (6-16 yr), activity evoked in the right fusiform gyrus by upright faces was more variable compared with inverted faces [START_REF] Mišic | Brain noise is task dependent and region specific[END_REF]. Further, in 8-15 yr old children, such increase in pre-stimulus neural signal variability has been shown to decrease variability of response times and improve performance on face memory task [START_REF] Mcintosh | The development of a noisy brain[END_REF].

These early studies point towards an increased repertoire of functional metastable states at rest in early infancy and suggest the importance of variability of spontaneous activity for behavioural performance in childhood. Despite such attempts at explaining evolution of spontaneous activity changes, direct contributions of pre-stimulus brain-states to infant's evoked responses remain illusive. In Chapter 3, hence we attempted to study the link between pre-stimulus spontaneous dynamics and evoked responses using a dynamics-aware approach. Especially we used trial-by-trial and moment-to-moment response variability as markers for change in spontaneous dynamics when infants processed central and lateral face stimuli. In order to fully comprehend the results presented in Chapter 3, in the next section I briefly describe early face processing stages and related neural responses in infants.

Neural Basis of Infant Face Processing

Faces are one of the most frequent stimuli encountered by infants after birth. Within first few minutes of life, infants show attraction for human faces and by 2 months of age, they are able to recognize mother's face distinct from others [START_REF] Valenza | Face preference at birth[END_REF]. These early preferences for faces, despite no prior experience of human face processing in infants has strengthened the argument that early face processing capacities are innate. Given special importance of face processing in social context, the functional architecture for face processing might be evolutionary preserved [START_REF] Leppänen | Tuning the developing brain to social signals of emotions[END_REF].

Typically, face-processing can be divided into two distinct steps: face detection, i.e. the ability to understand that a certain visual stimulus is present and that it is a face, and face recognition,i.e.

the ability to distinguish whether the same face was encountered before [START_REF] Bruce | Understanding face recognition[END_REF].

Separating face detection and recognition stages in adult neural responses has proven to be difficult owing to their already mature structural and functional neural architecture. Dynamics of face processing in infants however provides the opportunity to disentangle the maturation calendar between these two processes. It has been proposed that newborns possess an innate predisposition to orient towards faces and face-like objects which shares configural or featural similarity to faces. This earlier preference is likely controlled by thalamo-cortical and early premature cortico-cortical connections, which confer the early capacity for face detection to infants [START_REF] Johnson | The two-process theory of face processing: modifications based on two decades of data from infants and adults[END_REF]. On the other hand, experience dependent specialization of neural circuits should be required for adult-like face recognition capacity [START_REF] Johnson | The two-process theory of face processing: modifications based on two decades of data from infants and adults[END_REF].

At least one early study using PET scans found that the functional cortical architecture supporting (women) face processing similar to adults already existed at the age of 2 months [START_REF] Tzourio-Mazoyer | Neural correlates of woman face processing by 2-month-old infants[END_REF]. A more recent fMRI study demonstrated that the cortex of 4-6 month old infants is functionally organized into spatially distinct cortical regions that responded more to human faces than to natural scenes but not more than other object categories (Deen et 2.3. Neural Basis of Infant Face Processing al., 2017). Despite the anatomical long-range connections being slow to mature, the face-selective regions spanned strikingly similar regions to adult face-processing architecture: fusiform gyrus, lateral occipital cortex, superior temporal sulcus (STS) and medial prefrontal cortex. Given that these regions do not exclusively respond to faces but also to other objects suggest that this early activity likely provide a functional scaffold for later refinement of strong category specific responses and perhaps for long-range connectivity between these distant regions [START_REF] Deen | Organization of high-level visual cortex in human infants[END_REF]. Temporal dynamics of early sensitivity to human faces is best studied with MEG and EEG recordings. In adults Event Related Potential (ERPs) or Event Related Fields (ERF) paradigms, typical face processing is characterized into 4 separate stages: First, an early positivity covering posterior occipital regions about 100 ms after face presentation has been observed in both EEG (P1) and MEG (M100) recordings, which is sensitive to the detection or structural encoding of faces but not to recognition [START_REF] Liu | Stages of processing in face perception: an meg study[END_REF][START_REF] Itier | Inversion and contrast polarity reversal affect both encoding and recognition processes of unfamiliar faces: a repetition study using erps[END_REF]. Second, a negativity surrounding occipito-temporal electrodes 170ms (N170 or M170) have been observed, which is stronger for faces than for houses and is sensitive to both, detection as well as recognition of faces. This is the most stable component observed across many different tasks involving face perception, which has its sources in Fusiform Face Area (FFA) [START_REF] Bentin | Electrophysiological studies of face perception in humans[END_REF]. Third, N250r response is evoked if the face is familiar or is encountered in recent history [START_REF] Schweinberger | Event-related brain potential evidence for a response of inferior temporal cortex to familiar face repetitions[END_REF] and finally, longer latency ERP components (>=400 ms) are observed in response to recognition of the faces i.e. retrieval of semantic information about the faces [START_REF] Schweinberger | Event-related brain potential evidence for a response of inferior temporal cortex to familiar face repetitions[END_REF]. Hence, P1

is the earliest component subscribed to 'face detection' while later components including N250r and P400 can be subscribed to 'face recognition', with N170 component being the intermediate component that helps with both face detection as well as recognition [START_REF] Liu | Stages of processing in face perception: an meg study[END_REF].

De Haan and collegues have extensively mapped the adult-equivalent stages of face processing and their development in human infants and children [START_REF] De Haan | Development of face-sensitive event-related potentials during infancy: a review[END_REF]. First, similar to adults, involvement of early P1 responses in face detection have been suggested due to its higher amplitude and earlier latencies to upright faces as compared to other non-face or inverted face images [START_REF] Taylor | Direction of gaze effects on early face processing: eyes-only versus full faces[END_REF]. Unlike adults, two other face-selective components have been found in infants at occipito-temporal electrode sites: the largest positive peak at 400 ms ( P400) and a negative deflection interrupting this peak about 290 ms post-stimulus (N290). These two components are sensitive to face inversion, gaze aversion, gender as well as individual face identity [START_REF] De Haan | Development of face-sensitive event-related potentials during infancy: a review[END_REF][START_REF] Farroni | Eye contact detection in humans from birth[END_REF][START_REF] Righi | Infants' experience-dependent processing of male and female faces: Insights from eye tracking and eventrelated potentials[END_REF][START_REF] Scott | Featural and configural face processing in adults and infants: A behavioral and electrophysiological investigation[END_REF]).

These components have been recognized at least as early as 12-weeks of age and have been shown

to gradually become more specific to faces than other objects with age [START_REF] De Haan | Development of face-sensitive event-related potentials during infancy: a review[END_REF].

Due to their spatial distributions on the scalp and early latencies in detecting face-specific features rather than other objects, these components are considered equivalent to the N170 adult response [START_REF] Farroni | Eye contact detection in humans from birth[END_REF]. Other components have been observed in infants dedicated mostly to the recognition and familiarity of faces, such as a negative central component (Nc) most prominent at fronto-central electrodes 400-800 ms post-stimulus and a late slow wave 800-1500 ms poststimulus. Nc component is associated with infant's allocation of attention, or more generalized arousal, or to other contextual processing of faces such as stimulus probability [START_REF] De Haan | Development of face-sensitive event-related potentials during infancy: a review[END_REF][START_REF] Richards | The development of visual attention and the brain[END_REF]. However, these components are more unstable across studies partially due to inclusion of different age groups across studies, difficulty in detecting these components due to its very late latency and slow potential, and poorly understood maturation of these components throughout infancy. Regardless, these studies confirm the existence of early capabilities for both the processes: face detection and face recognition through a distinct functional architecture and temporal dynamics for both these processes. In the next chapter, I illustrate how these two processes mature differentially in early infancy, and specifically that the intrinsic network dynamics might have a role to play during this maturation.

Summary

In this chapter, I introduced a selection of empirical studies and theories about the development of neural activity from the earliest ages in various species. I then presented the comparison and controversies related to differential development of neural dynamics in rodents and very early pre-term human infants. Finally, I reviewed a few limited studies that characterize the development of neural noise in first post-natal years of human life and also presented a brief synopsis for the infant visual evoked responses during early infancy.

The studies presented here establish the following:

• The brain during early infancy is not simply a miniature version of adult brain and hence, the neural dynamics in infants and adults is very different.

• Neural activity emerges early during the embryo-genesis and most of this activity is spontaneous since at the earliest ages it is not driven by external inputs.

• Very early local cortical activity is shaped by a complex interaction between transient anatomical micro-structure, peripheral spontaneous drive and recurrent cortical drive. This activity partly shapes the later evoked responses, by shaping the formation of functional neural assemblies.

• In human, however from as early as 28-29 wGA, the immature activity is responsive to the external environment and is "functional" as observed in sophisticated discrimination of fine-grained stimulus properties.

• spatio-temporal structure of large-scale spontaneous neural signals in post-natal human infants continues to grow more complex with age.

As reviewed in this chapter, unlike preterm infants and immature rodents, most post-natal 

Chapter Overview

Scalp EEG Recordings remain one of the most accessible, non-invasive neuroimaging methods for relating early cognitive capabilities of infants to their neural dynamics. Furthermore, as discussed in the previous chapter, the early evoked responses to face processing have been wellunderstood in terms of spatial distribution at scalp topography, onset latencies and amplitudes of the event related potentials (ERP) at various stages during infancy. We took advantage of this knowledge in order to understand the functional role of neural dynamics and its maturation.

Specifically, in this chapter6 , we study the dynamic relationship between spontaneous and evoked activity by the means of response variability and neural trajectory kinematics. We propose various measures of neural variability and relate them to phase-reset dynamics of ongoing alpha oscillations as well as with spontaneous fluctuations in microstates. We emphasize the relevance of exploring neural variability and discuss its maturation in the context of flexible, metastable dynamics.

Chapter 3. Event-Related Variability is Modulated by Task and Development

Abstract

In carefully designed experiments, cognitive scientists interpret the mean ERP in terms of cognitive operations. However, the huge signal variability from one trial to the next, questions the representability of such mean events. We explored here whether this variability is an unwanted noise, or an informative part of the neural response. We took advantage of the rapid changes in the visual system during human infancy and analyzed the variability of visual responses to central and lateralized faces in 2-to 6-month old infants and adults using high-density electroencephalography (EEG). We observed that neural trajectories of individual trials always remain very far from ERP components, only moderately bending their direction with a substantial temporal jitter across trials. However, single trial trajectories displayed characteristic patterns of acceleration and deceleration when approaching ERP components, as if they were under the active influence of steering forces causing transient attraction and stabilization. These dynamic events could only partly be accounted for by induced microstate transitions or phase reset phenomena. Furthermore, these structured modulations of response variability, both between and within trials, had a rich sequential organization, which, in infants, was modulated by the task difficulty. Our approaches to characterize Event Related Variability (ERV) expand and reinterpret classic ERP analyses, making them compliant with pervasive neural variability and providing a more faithful description of neural events following stimulus presentation.

Introduction

Since Wundt (1832Wundt ( -1920)), the purpose of psychology has been to decompose complex cognitive functions into simpler processes, or mental operations, that could be studied in relative isolation thanks to the careful manipulation of experimental parameters [START_REF] Posner | Cognitive neuroscience: Origins and promise[END_REF].

Following this ambition, thousands of studies have been published each year in which the peaks and troughs of average, stimulus-locked neural timeseries (i.e. Event-Related Potentials: ERPs) have been explained as neural correlates of cognitive operations. It is indeed quite remarkable that averaging neural signals across multiple presentations of the same stimulus recovers robust and reproducible responses across participants. The ERP literature has progressively identified specific neural components whose latency and scalp-topography have been related to particular cognitive operations, from sensory processes (e.g. recognition of faces: N170) [START_REF] Ghuman | Dynamic encoding of face information in the human fusiform gyrus[END_REF], to high-level processes (e.g. detecting lexicon incongruencies: N400) [START_REF] Kutas | Electrophysiology reveals semantic memory use in language comprehension[END_REF], or monitoring our own behavioral errors (ERN: Error Related Negativity) [START_REF] Dehaene | Localization of a neural system for error detection and compensation[END_REF].

In this framework, the ongoing/background activity is considered as an unwanted noise discarded through the averaging process [START_REF] Jasper | Electrical signs of cortical activity[END_REF]. While measurement errors and artefacts are indeed unwanted [START_REF] Verleger | Correction of EOG artifacts in event-related potentials of the EEG: Aspects of reliability and validity[END_REF], the trial-by-trial variation of the recorded signal could also be a genuine property of the participant's brain. Furthermore, since complete cogni-3.1. Introduction tive processes take place within each individual trial, and mental operations can vary from one trial to the next (e.g. stimulus visibility at threshold, confidence variation, change of strategy, etc), the signature of these operations should be detectable within individual trials -without averaging. This methodological tour-de-force is sometimes accomplished by powerful time-series pre-processing or machine learning algorithms [START_REF] Jung | Analysis and visualization of single-trial event-related potentials[END_REF][START_REF] Vahid | Applying deep learning to single-trial EEG data provides evidence for complementary theories on action control[END_REF]. However, all these methods implicitly assume that the pertinent ERP is a weak signal sunk in uncorrelated noise. Is this tenet itself as straightforward as it seems?

An increasing number of studies suggest that the background activity fluctuations are part of the cognitive process itself and can bias perceptual reports and affect stimulus detection [START_REF] Hesselmann | Spontaneous local variations in ongoing neural activity bias perceptual decisions[END_REF][START_REF] Sadaghiani | Distributed and antagonistic contributions of ongoing activity fluctuations to auditory stimulus detection[END_REF]. Specifically the oscillatory components of the background activity, notably in the alpha band (8-12 Hz), are long known to be suppressed at stimulus presentation (Adrian & Zotterman, 1926a) and whose pre-stimulus power inversely correlate with behavioral performance [START_REF] Van Dijk | Prestimulus oscillatory activity in the alpha band predicts visual discrimination ability[END_REF]. Nonetheless, these oscillations are never completely suppressed and such "ongoing oscillations" display rich phase dynamics that plays an important role in top-down cognitive processes (Palva & Palva, 2007) and contributes to the detection of the ERP itself [START_REF] Hanslmayr | Alpha phase reset contributes to the generation of ERPs[END_REF]. Moreover, post-stimulus activity and ongoing fluctuations do not simply add up but non-linearly interact [START_REF] He | Spontaneous and task-evoked brain activity negatively interact[END_REF] explaining the resulting perception [START_REF] Vanrullen | Ongoing EEG phase as a trial-bytrial predictor of perceptual and attentional variability[END_REF]. Finally, similarities between spontaneous and stimulus-related activity increases along development [START_REF] Kenet | Spontaneously emerging cortical representations of visual attributes[END_REF], possibly suggesting that such spontaneous activity encodes the structure of the environment as priors [START_REF] Berkes | Spontaneous cortical activity reveals hallmarks of an optimal internal model of the environment[END_REF][START_REF] Pezzulo | The secret life of predictive brains: what's spontaneous activity for? Trends in Cognitive Sciences[END_REF]. In such an alternative framework, brain activity is thought to be sampling a high-dimensional space of possible neural configurations. Such brain activity is considered to unfold along trajectories that are seemingly erratic and stochastic, and yet are loosely shaped by a latent "dynamical landscape" defined by attractor valleys and ridges connecting them [START_REF] Mazor | Transient dynamics versus fixed points in odor representations by locust antennal lobe projection neurons[END_REF][START_REF] Chaudhuri | The intrinsic attractor manifold and population dynamics of a canonical cognitive circuit across waking and sleep[END_REF][START_REF] Gu | The energy landscape of neurophysiological activity implicit in brain network structure[END_REF]. Spontaneous activity can thus organize in reproducible "microstates" which are visited in complex sequences, differing from mere random walks (Van de Ville et al., 2010). This irregular activity can still be modulated by the task demands, arousal, vigilance, etc. at the moment of stimulus presentation [START_REF] Huk | Beyond trial-based paradigms: Continuous behavior, ongoing neural activity, and natural stimuli[END_REF].

Compatible with this scenario, it was observed that inter-trial variability (which reflects the background activity fluctuations) is not constant but is characteristically reduced in the poststimulus period with respect to baseline at rest. This "variability quenching"(VQ) after stimulus presentation is a cortex-wide phenomenon robustly observed at many spatiotemporal scales and across many different tasks [START_REF] Churchland | Stimulus onset quenches neural variability: a widespread cortical phenomenon[END_REF][START_REF] Arazi | Neural variability quenching predicts individual perceptual abilities[END_REF]. Although different mechanisms may be responsible for it at different scales -e.g. change in excitatory/inhibitory synaptic currents at the micro-scale (Hennequin et al., 2018a), or power increase or phase reset of ongoing oscillations at the macro-scale [START_REF] Daniel | The Relationship between Trial-by-Trial Variability and Oscillations of Cortical Population Activity[END_REF][START_REF] Iemi | Multiple mechanisms link prestimulus neural oscillations to sensory responses[END_REF])-, the net functional effect in all cases is similar and corresponds to an increased reproducibility of neural trajectories, which, in human adults, can further be improved by active attention 57 Chapter 3. Event-Related Variability is Modulated by Task and Development [START_REF] Broday-Dvir | Quenching of spontaneous fluctuations by attention in human visual cortex[END_REF] or conscious awareness [START_REF] Schurger | Reproducibility distinguishes conscious from nonconscious neural representations[END_REF]. Further evidence is nevertheless needed to understand whether this variability reduction is simply an epiphenomenon or plays a direct role in information processing. We argue that if variability modulations are functionally important (rather than noise), they should have a temporal structure as is the case with ERPs and this structure should emerge relatively early in life. Moreover, this phenomenon might get progressively more complex along development, reflecting the scaffolding of perceptual and cognitive processes.

To test this hypothesis, here we sought to understand the organization of response variability in 5 to 24-week-old human infants [START_REF] Adibpour | Right but not left hemispheric discrimination of faces in infancy[END_REF] as well as in adults when they were presented with human faces. We chose to study this question in human infants for three reasons:

Firstly, because during the first semester of life, rapid and inhomogeneous maturation takes place, especially in the visual domain [START_REF] Braddick | Development of human visual function[END_REF], allowing age to be used as a factor to separate different neural/cognitive processes that might overlap in already mature adult brains. The peripheral visual structures reach maturity during the first semester, accompanied by a rapid myelination of optical radiations and synaptogenesis in primary visual areas [START_REF] Adibpour | Right but not left hemispheric discrimination of faces in infancy[END_REF]. This leads to a remarkable acceleration in the latency of ERP component P1, from

around 350 ms at birth to 100ms (the adult value) around 12 weeks [START_REF] Mcculloch | Maturation of the pattern-reversal VEP in human infants: a theoretical framework[END_REF].

Interestingly, the left and right hemispheres do not mature at the same rate [START_REF] Chiron | The right brain hemisphere is dominant in human infants[END_REF], in the motor, language [START_REF] Dubois | Structural asymmetries in the infant language and sensori-motor networks[END_REF] or visual system [START_REF] Adibpour | Right but not left hemispheric discrimination of faces in infancy[END_REF] allowing for a direct comparison of the impact of maturation on similar neural pathways as a function of the hemifield of stimulus presentation. The second reason is the observation that human infants are exceptional learners [START_REF] Dehaene-Lambertz | The Infancy of the Human Brain[END_REF]. If variability modulation is an intrinsic part of the building and manipulation of internal models [START_REF] Berkes | Spontaneous cortical activity reveals hallmarks of an optimal internal model of the environment[END_REF] the fast learning pace of infanthood might reveal more complex dynamical changes than the adults who possess relatively stable internal models. Finally, it is a common belief to disregard ongoing activity as a nuisance that compromises the robustness and reproducibility of infant ERPs. We might thus miss important information on the potential structure of the variability modulation in single-trial responses that might lead to better hypotheses and tools to gauge infant cognition.

Using multivariate pattern analysis to track systems level variability induced by visual stimuli, we show that both across and within-trial variability has a complex organization that gradually evolves through early infancy, which by the second trimester of life reaches a spatiotemporal structure remarkably similar to that of adults. Moreover, applying our measures of variability for the same infants observing easy and difficult stimuli, we show that stimulus-driven modulations fo variability are not only dependent on structural changes of their brain since the same infant is able to flexible modulate neural variability depending on the task demands. We show that phase and amplitude of alpha oscillations contribute to the events of stronger variability quenching for adults, but not directly for infants. Furthermore, tracking microstate transitions, we demonstrate that visual stimuli neither exert a complete reset of the system towards specific positions in high-dimensional space of possible spatial configurations, nor constrain the trajecto-
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ries to follow a specific paths with precision. On the contrary, the effects of stimulus presentation remain "modulatory", slightly bending the trial trajectories towards specific directions by accelerating or decelerating the "speed of topography reconfiguration" (i.e., the rate of fluctuations in within-trial variability) at precise post-stimulus latencies. Taken together, our results suggest that the stimulus does not impact "where the system is" as much as it impacts, "how the system flows" after stimulus presentation. We propose the term Event-Related Variability (ERV) to collectively describe this remarkable sequential and task-specific organization of variability quenching and boosting events, both between and within-trials, which complements the classic descriptions of the modulations of average response (ERP). Such nontrivial ERV dynamics reveals an immediate richness of structured states in infants compared to adults, confirming a potential role of variability modulations as a computing resource since the earliest ages.

Materials and Methods

In this study, we re-analyzed high-density (128 channels) Electroencephalography (EEG) data previously reported by [START_REF] Adibpour | Right but not left hemispheric discrimination of faces in infancy[END_REF]) and compared our results with adults performing the same paradigm in a separate EEG experiment. We derived three novel measures based on multivariate pattern analysis to track the single trial dynamics and variability induced by the visual stimuli: First, we sought to quantify how individual trial trajectories approach the wellknown ERP components (referred hereafter as "ERP flybys"). This allowed us to evaluate how the single-trial distributions of latency and distances to the ERP templates develop during the first semester of life in comparison to adults. Secondly, we examined the "between-trial variability" to quantify how close (or far) individual trial trajectories remained from each other as they evolved through time. This corresponds to the "variability quenching" phenomenon described earlier. Thirdly, we introduced a novel metric of instantaneous rate of brain state reconfiguration i.e. "within-trial speed" to track the moment-to-moment fluctuations along individual trials.

Finally, as activity fluctuations have oscillatory components, we also studied how the dynamics of the three metrics above relate to alpha oscillatory dynamics and, specifically to alpha phase reset, since stimulus-induced alpha phase reset has been proposed as one of the mechanisms for variability quenching [START_REF] Iemi | Multiple mechanisms link prestimulus neural oscillations to sensory responses[END_REF]. In the next sections, we provide more details on the cohorts, experimental paradigm as well as our analysis methods.

Subjects

The reported results included data from two cohorts. 

Task Paradigm

For the Lateralized Faces, each trial started by a rotating colored bull's-eye that remained at the center of the screen during the whole experiment to attract infants' attention to the center of the screen. Streams of face images (male or female face out of 6 neutral, unfamiliar front faces) appeared consecutively on the left and right side of the bull's eye for 250 ms followed by a variable delay between images (550 to 950 ms post-offset of the image with a 50-ms step).

The asynchronous presentation ensured minimal anticipatory gaze to the left or right side. To investigate the inter-hemispheric transfer of information in infants, each stream included three types of images: a side-assigned face image (standard), a novel face (new-deviant), or the face commonly assigned to the other side (known-deviant), with the expectations that an efficient inter-hemispheric transfer ensures ERP response to known-deviant faces to be similar to standard faces. Each block included 80 % standard, 10 % new-deviant and 10 % known-deviant faces.

For the current analyses however, we considered all faces presented on either left or right side;

irrespective of this distinction. For central faces, one female and one male face, not used during the lateralized paradigm, were presented at the center of the screen for 250 ms, spaced by a random interval of 550-950 ms during which the colored bull's eye was presented.

EEG Protocol and Pre-Processing.

EEG recordings were acquired with EGI net comprising 128 electrodes for infants and 256 electrodes for adults, and digitized in real-time at a sampling rate of 250 Hz. EEG data was further pre-processed in EEGLAB software. Recordings were band-pass filtered between 0.5 and 20 Hz, the signal was segmented into epochs of 1.9 s (-0.4 to 1.5s relative to the onset of face presentation). Channels and trials contaminated by motion or eye-blink artifacts were rejected.

For infants, additional trials were rejected when the eye-gaze moved away from the screen; by manual inspection of video-recordings. Epochs were re-referenced by reference averaging but no baseline correction was applied to allow unbiased analyses of post-stimulus variability as compared to pre-stimulus variability. Finally, EEG topographies were normalized by dividing the activity of each sensor by the global field power (GFP, i.e. standard deviation across sensors) at each time-point. For the current analysis, further temporal smoothing was applied by averaging the activity at each sensor in a 100-ms overlapping sliding window centered at a given time point in each trial (all results were validated without this temporal smoothing). Additional information about data acquisition, pre-processing and task paradigm not pertaining to the current study is detailed elsewhere [START_REF] Adibpour | Right but not left hemispheric discrimination of faces in infancy[END_REF]. For infants, final dataset considered for further
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analyses included 110 ± 60 trials (min= 38 , max = 246 trials) each for left and right faces, and 32 ± 17 trials (min= 3, max=74 trials) for central faces condition. For adults, the final dataset included 353 ± 33 (min= 255, max=363 trials) trials each for the left and right faces. 

Trajectory in Principle Component (PC) Space

Microstates Analysis

K-Means Clustering:

To derive combined microstates for infants, 128-dimensional continuous EEG signals were concatenated across time dimension for all infants after the preprocessing steps were performed.

Bad segments were ignored from the analysis and bad channels were interpolated using linear spatial interpolation. Each individual topographic pattern at time t was normalized by GFP before passing it to the further analysis. Python library scikit-learn was used for clustering continuous data into discrete microstates, with number of clusters pre-defined (n=4). The 4 cluster means thus identified were than considered as "microstates" (shown in Fig 2C top panel).

Nearest neighbor algorithm was then used to assign microstate labels to each instantaneous topographic pattern. That is, for each subject, the instantaneous topography at each time-point was compared to the 4 microstates using correlation distance (1-Pearson correlation) and a microstate closest to the instantaneous topography at time t was assigned as a label at this time.

For each subject, the symbolic sequences of microstate transitions (labeled from 1-4) were further segmented into epochs to align them to stimulus onset times.

Microstate Transition Trains and Transition Probabilities:

Each epoch of labeled sequences was then binarized to encode a transition:i.e. if the microstate changed from the current one to the next at time t, it was encoded as a "spike" (or 1) at the time 

Extracting ERP Templates

Measures of Trial Variability

Measures of trial-variability (i.e. flyby to known ERP templates, between-trial variability and within-trial speed) were calculated as topographic dissimilarity using spatial correlation distance (1-Pearson correlation coefficient) as dispersion metric. Hence, absolute distances varied from 0 (absolute correlation) to 2 (no correlation). Correlation distance decouples the topographic patterns from their magnitudes, allowing focusing on the relative spatial patterns rather than their absolute magnitudes. Note that for our study, correlation distance was mathematically equivalent to previously used cosine dissimilarity measure since our data was reference averaged at each time-point (hence, mean across sensors equals to zero).

'Flyby' to ERP Templates.

For each subject and for each condition, flyby distance from trial k to a certain ERP template X at time t was calculated as correlation distance:

∆(k, t) = 1 -ρ(X, φ(k, t))
Where, ρ is the Pearson's correlation coefficient and φ(k, t) represents the voltage topography at trial kand time t. These single-trial distance time-series were further averaged across trials for each ERP template to obtain a single time-series per subject for P1 and P400 templates and for each condition (Fig 3 .3 A).
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'Flyby' Latency and Distance.

In the predefined time range for each ERP template, moments of closest 'flybys' to these templates were identified as the time-points when the distance ∆ fell into the lowest 5 percentile of the overall distance distribution. Latency of these moments were used for the analyses of median and jitter in flyby latencies for each infant (Fig 3 .3). The time-range to derive flybys was restricted to 150-350 ms for P1 template and 400-600 ms for P400 template in case of lateral faces. For central faces, 0-150 ms for P1 template and 350-550 ms for P400 template. For adults, the analysis was restricted to 0-150 ms for P1 and 150-500 ms for P400 template. Between-Trial Variability.

For each subject and for each condition, between-trial variability at time t was calculated as the average of all pairwise spatial correlation distances between all trial-pairs i and j as follows:

∆(t) = 1 n 2 ij (1 -ρ(Φ(i, t), Φ(j, t)))
Where, n = total number of trials, n 2 suggests all pair-wise combinations of trials, ρ is Pearson correlation coefficient and Φ(j, t) represents sensor topography at trial j and timepoint t. One such absolute single-subject between-trial variability time-courses were derived per condition and further z-scored across time, to obtain relative between-trial variability. These 

Topography of Between-trial Variability Quenching.

If sensor χ has δ number of neighboring channels, Between-trial variability is calculated for this sensor at time t as follows:

∆(χ, t) = 1 n 2 ij (1 -ρ(Φ χ (i, t), Φ χ (j, t)))
Where, ρ is Pearson correlation coefficient; Φ χ (i, t) is δ + 1 dimensional activity vector at time t and trial i, where each dimension represents neighbors of sensor χ (including itself).

Neighbors of each channel were inferred from the channel-connectivity matrix estimated using find_ch_connectivity function of MNE-python. For each subject, instead of single global between-trial variability time-series, now we obtained one time-series each for each sensor. This absolute sensor-level between-trial variability was further Z-scored across time to obtain relative variability for each sensor. These channel x time matrices for each subject were further averaged to obtain group-level between-trial variability topography(Fig S6).

Quantifying Features of Ongoing Alpha Oscillations

For each subject and conditions, pre-processed epochs of EEG signals were first band-pass filtered in a narrow frequency band of 9-12 Hz using MNE Python's default FIR filter. Analytic signals (y n ) were than derived for each channel as follows:

y n (t) = x n (t) + jH(x n (t)) = Re (iφn(t))
Where H(x n (t)) represents Hilbert transform of the original signal x n (t). This analytical signal discards negative frequency components without loss of information and makes instantaneous phase φ n (t)) of the signal accessible. Moreover, Circular Variance (CV) i.e. the variability in instantaneous phases (or phase asynchrony) can be calculated simply as follows:

var(y n (t)) = 1 -R
Where R is the Kuramoto Order Parameter, which determines the average phase synchrony across trials. The CV varies between 0 to 1 with 0 suggesting complete synchrony and 1 suggesting that all trials have completely misaligned phases at time t. Moreover, to assess instantaneous amplitude envelope or alpha power at each time-point, we simply consider the absolute value of analytical signal, i. 

Within-Trial Speed

For each trial k, within-trial speed at time t was calculated as spatial correlation distance between topography at that time-point and the same at the consecutive time-point.

∆(k, t) = 1 -ρ(Φ(k, t), Φ(k, t + 1))
Where, ρ is Pearson correlation coefficient and Φ(k, t) represents sensor topography at trial k and timepoint t. Overall absolute within-trial speed for each subject was obtained by first averaging speed time-courses across trials and then averaging the mean speed time-courses across time (Fig S7E).
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flyby Triggered Speed Profiles.

For each subject, moments of 'flyby' to known ERP templates were identified as described above (i.e., trial-to-template distance falling in the lowest 5 th percentile). Trial-speed segments at each occurrence of 'flyby' were extracted as speed time-course from 400-ms before to 400-ms after 'flyby'. Each of these 800-ms long speed time-courses were averaged to obtain a single speed Trial Speed Distribution.

To obtain trial-speed distribution for each age-group per condition, all single-trial speed timecourses were concatenated along time and along subjects in that age-group to obtain one single speed distribution. Probability density was obtained by normalizing area under each bin to 1.

Normalized bin-counts (density) were plotted on a log-log scale (Fig S7F).

Fitting power-law to the Trial Speed Distributions.

We first temporally concatenated all the trials for each subject per each condition and agegroup cohorts. This allowed us to reliably estimate the parameters for heavy-tailed distributions.

We transformed the distribution of trial-speed into the standard normal distribution and finally fitted a least square regression line to the section of log-log plot achieved from the standard normal-distribution. We further repeated the procedure for each subject and obtained slopes and biases of the best-fit lines per subject and compared across the age-groups.

Statistics.

Potential linear age-trends were tested using one-tailed permutation test on Pearson Correlation Coefficient (number of permutation=1000). Significant reductions in variability time-courses were tested using one-sample t-test and correction for multiple comparison and temporal nonindependence was applied using cluster based permutation test as implemented in MNE-python [START_REF] Gramfort | MEG and EEG data analysis with MNE-Python[END_REF] . Group-level differences between paired groups of variables (variability in lateral vs central faces) were tested using nonparametric two-tailed Wilcoxon signed-rank tests (from Scipy package). Group differences between 5-12 week-old (first trimester) infants, 16-24 week-old (second trimester) infants and adults were tested using non-parametric Kruskal-wallis test (Scipy implementation), followed by post-hoc pair-wise comparisons using Mann-Whitney U test with Bonferroni correction (using scikit-posthocs package).

Results

Event-Related Potentials (ERP) evoked by face presentation in infants and adults

Both infants (N=39, 5-24 weeks) and young adults (N=13, 21-27 years) were presented with unfamiliar faces, alternatively between the lateral hemi-fields, and for a subset of infants (N=22, 5-22 weeks), separately in the central visual field (Fig. 3.1A, [START_REF] Adibpour | Right but not left hemispheric discrimination of faces in infancy[END_REF]. Classical ERP analyses revealed two prominent ERP components: an early "P1" and a late "P400". These components, commonly identified in infants in response to visual images and particularly faces, correspond to different cognitive stages: P1 is considered as the first cortical response in primary visual areas whereas the P400 is a higher order response related to face perception and stimulus familiarity, with sources in the fusiform region [START_REF] De Haan | Development of face-sensitive event-related potentials during infancy: a review[END_REF]. These components, visible in the grand average topography in To quantify age-dependency of flyby latencies and latency jitters around the ERP components, we estimated the distribution of closest single-trial flybys for each infant and adult and studied whether their medians and standard deviations were correlated with age. In agreement with P1 latency measures across ages in previous studies, we found that flybys to ERP components tended to occur at earlier latencies with increasing age. However, flybys did not necessarily become more accurate, i.e. with a more precise timing at each trial. On the contrary, for some of the ERP components, the jitter in the timing at which the closest flybys occurs (dissimilarity from reference ERP component topography) increased with age, suggesting that trajectory variability is not always a "bug" to correct for, but a feature growing through development.

More specifically, for flyby latencies: The median of the flyby latencies to both the P1-and P400-templates significantly decreased with infant's age for the faces presented on the right hemifield (P1: r = -0.39, p < 0.006 from 280 ms at 5 weeks to 200 ms at 24 weeks; P400: For left and central faces, we observed no effect of age on these measures in infants (Fig

S3 C, D top panels).

The effect of age for the right faces (processed by the left-hemisphere) was related to an initial delay in flyby latencies in the youngest infants. Thus, the catch-up relatively to the more mature right hemisphere during this period is congruent with several results showing a slower maturation of the left hemisphere compared to right [START_REF] Chiron | The right brain hemisphere is dominant in human infants[END_REF]. Similar catch-up of the maturation of the left dorsal linguistic pathway relative to the right has also been described during the first semester post-term [START_REF] Leroy | Early maturation of the linguistic dorsal pathway in human infants[END_REF]. To summarize, single-trial event-related dynamics significantly changed with age. ERP flybys became in general more fluid (faster and relatively more variable in timing or distance of approach). The observed developmental changes to ERP flybys were specific for the considered ERP component (P1 or P400) and, in the case of infants, for the hemisphere probed by the lateralized stimulus (indicating thus a possible influence of selective connectivity maturation).

In all cases and at all ages, single trial trajectories remained rather distant from ERP templates even at the moments of closest flyby (with correlation distances larger than 0.8, not so far away the unit value which would correspond to complete lack of correlation), compatibly with the large variability observed earlier. 

Between-trial Variability Quenching (VQ) After Stimulus Presentation

Irrespective of their approach to the templates, trials can remain far or close to each other at any point. Hence, we investigated between-trial variability. Again we found that trajectories remained highly dissimilar, as denoted by an average correlation distance of 0.95±0.12 between the time-aligned trajectories of different trials. Although large in absolute terms, the between trials distance relatively reduced at specific peri-stimulus times. We observed a significant poststimulus decrease in the between trial variability for all task-conditions and for both infants and EEG responses have oscillatory components, with a spectral resonance in the alpha band (9-12 Hz) which was relatively prominent in adult subjects, but way less marked in infants (Fig. S6A). To investigate the relation between VQ and reconfiguration of alpha oscillatory dynamics, we narrow-band filtered the EEG signals in a band of interest and extracted phase and amplitude of the oscillations through Hilbert transform (see Methods). We then quantified the time-courses of trial-averaged alpha power modulation (Fig. S6B, top) as well as the circular variance (CV) of alpha phases across time-aligned trials (Fig. S6B, middle). Average alpha power was not significantly modulated in the peri-stimulus duration in infants, it was only slightly reduced in adults ( 0.8 S.D. below the baseline) and for infants, this reduction was never significant at the level of global topography averages. The effect of stimulus presentation was slightly more pronounced on the phase of alpha oscillations. The measured CV of alpha phase across stimulus-aligned trials denoted a poor phase-alignment between-trial, with an average value of 0.80(±0.06) in infants and 0.93(±0.02) in adults, close to the unit value that would correspond to a complete asynchrony of phases across trials. Face presentation did not induce a complete reset of ongoing oscillations, once again in line with the large variability in Fig. 3.2. Nevertheless, the dynamics of alpha phases, as with that of the EEG topographies, also experienced some bias:

the CV significantly dropped in specific time-ranges following the stimulus, to values 0.4 S.D.

below its mean for infants and 1.5 S.D. below its mean for adults (Fig S6B, middle panel). Remarkably, CV drop and VQ had partially dissociated spatiotemporal dynamics in infants. In most infant subjects, drops of alpha phase CV tended to precede VQ, as revealed by a peak 3.3. Results at a negative latency of the cross-correlogram between the time-courses of VQ and CV (Fig. S6D). Moreover, in infants, significant VQ could be observed for longer times, even after CV was restored to baseline values due to loss of phase alignment between trials (Fig 3 .4C). Furthermore, the spatial extension of the CV drop and VQ phenomena were generally different, as indicated by the time-courses of the numbers of channels showing significant CV drop or significant VQ (Fig S6C). In infants, the channels affected by VQ extend way beyond the range of significant CV drop (see topographies in Fig S6C). For instance, for old infants at the peak of VQ, 35% of EEG sites showed significant between-trial variability reduction as compared to 10% channels that showed CV reduction. Only for adults, the time ranges and the spatial extension of VQ and CV drop completely overlapped.

These results collectively prove the existence of a rich temporal structure in the dynamics of between-trials variability, qualitatively and quantitatively maturing over the first semester postterm birth. Furthermore, in the same infants, its temporal structure can be modulated depending on the task at hand. For infants, alpha phase reset and VQ are intertwined but distinct events: substantial VQ can exist even in the absence of an increased phase alignment between trials as made clear by analyses of variability dynamics. However, alpha phase reset might trigger VQ as, in infants, more localized and shorter-lasting CV drops precede more broadly extended and longer lasting VQ events.

Maturation of Within-trial Variability and its Relation to Alpha Phase Reset

Our third and last approach was the analysis of within-trial variability. To track within-trial variability, we quantified the amount of variation in the topography of EEG activation from one time-point to the next. This corresponds to the distance traveled in the space of possible activity topographies over a unit time or, equivalently, to the speed of motion in this highdimensional space (see Methods). With this approach, topographies of activation which are stable over time and fluctuate very little from one moment to the next will yield instantaneous within-trial variability close to zero. Conversely, abrupt changes of topographies occurring at specific instants -e.g. eventual switching between microstates ( [START_REF] Michel | EEG microstates as a tool for studying the temporal dynamics of whole-brain neuronal networks: A review[END_REF]; cf. These characteristic speed profiles are reminiscent of the accelerations and deceleration that a physical ball would experience when rolling on a non-flat surface, accelerating while descending into a valley and decelerating while ascending out of the valley due to gravity (see illustration in Fig. 3.5C). It is thus tempting to interpret these speed profiles as if reflecting the sampling of a structured landscape of effective free energy [START_REF] Landau | Statistical Physics[END_REF]. In this statistical physics-like view, neural trajectories would unroll under the influence of force fields generated by an effective energy landscape [START_REF] Gu | The energy landscape of neurophysiological activity implicit in brain network structure[END_REF]. These forces act as biases on the system's trajectory in the proximity of critical points associated to ERP components. 5-12wo vs 16-24 wo: p = n.s. 5-12 wo vs adults: p= 0.0003 16-24 wo vs adults: p= 0.03 Table 3.3: Flyby triggered within-trial speed profile time-series (z-scores) across the three agegroups were compared using cluster-based permutation F-tests separately for each ERP template and for each hemi-field to find the significant time clusters (p<0.05). During post-hoc analyses, average within-trial speed in these significant time-windows was compared using Kruskal-Wallis test. Pair-wise comparisons were tested using Mann-Whitney U-test. P-values are corrected for Bonferroni correction.

landscape gets progressively more sculpted and the neural trajectories can be thought of as being more actively controlled. (see Discussion).

ERP flybys are associated with transient phase reset but not amplitude modulation events

As in the case of between-trial variability, modulations of single-trial oscillatory dynamics may be an important contribution to the observed variations of the within-trial speed. We thus computed flyby triggered averages of the instantaneous phase of ongoing alpha oscillations at all channels (Fig 3 .5D). In the surrounding of the closest flyby time, oscillatory patterns can be clearly distinguished, suggesting that flyby events tend to occur at similar instantaneous alpha phase. These analyses thus provide a strong evidence for phase reset in the surrounding of the 3.4. Discussion flybys: (i) for all age groups; and, (ii) with a distinct global topography for each ERP component. This phase alignment between the oscillations at different ERP flybys begins 200 ms before the flyby event and ends around the same time after the flyby. These times correspond to the alpha oscillatory period with a variable decorrelation time (hence the oscillatory pattern fades away farther away from the closest flyby time in Fig. 3.5D,). Due to this transient phase alignment of alpha oscillations to ERP component flybys, flyby triggered Circular Variance (CV) across singleflyby events dropped significantly (Fig 3.5 E). However, the profile of circular variance drop was simpler than the profiles of within-trial speed variation and showed just a single minimum at flyby time, without peri-stimulus increases (unlike the speed profiles).

Importantly, within-trial speed modulations were paralleled by phase modulations but not as clearly by amplitude modulations. Considering the amplitude of the signal alpha component, alpha power surrounding ERP flybys did not significantly deviate from baseline values for any of the groups (Fig. S8A). Beyond analyses of band-restricted oscillatory dynamics, we also considered more general modulations of broadband signal-to-noise ratio, by quantifying the L2-norm of the topography of activation to track average activity levels at all channels. Averages of L2- stimulus type (the only exception being a significant increase at P400-flyby, limited to the adult group). To summarize, we observed characteristic accelerations and decelerations of speed along single-trial neural trajectories in the vicinity of closest flybys to ERP components. These speed profiles were suggestive of the transiently attracting and repelling forces. They were associated with brief phase-coherent events phase-locked to ERP flybys and could be clearly detected since early infancy, despite the absence of systematic modulations of alpha or broadband power. Average speed increased with age, but transient decelerations at flyby also became more marked.

Together, these findings hint at neural trajectories sampling an internal landscape of attracting configurations, with an improved sampling capacity (as the within-trial variability increases) and a more marked structuring of this landscape, as development progresses.

Discussion

In this study, we demonstrate the existence of a rich temporal organization of the neural responses to stimulus in adults and infants that goes beyond the mean response captured by ERPs.

We propose the concept of Event-Related Variability (ERV) to refer to the temporally structured dynamics of the response fluctuations. To characterize ERV, we focused on the complementary aspects of: single-trial (dis-)similarity to known ERP components (ERP flyby analyses, Fig. 3.3); Chapter 3. Event-Related Variability is Modulated by Task and Development reproducibility of response trajectories across different trials (between-trials variability analyses, Fig. 3.4); and speed of reconfiguration of the induced activity topographies along individual trials (within-trial speed analyses, Fig. 3.5). We furthermore put these three aspects in relation with the dynamics of ongoing alpha oscillations to study the contribution of phase reset to ERP flybys and variability quenching. Our results confirm that, for both infants and adults, the across-trial variability of neural responses remains very large (absolute correlation distances of order 0.95, hence Pearson correlation coefficient 0.05) and that stimulus presentation does not suppress ongoing fluctuations (probabilities of transition between microstates were not significantly affected). Yet this variability is significantly modulated by face presentation in a non-trivial way, as exposed by the ERP flybys and variability quenching.

In all conditions, a period of decreased variability across trial trajectories (variability quenching) is detected after stimulus presentation, confirming many previous reports in adults [START_REF] Schurger | Reproducibility distinguishes conscious from nonconscious neural representations[END_REF][START_REF] Arazi | Neural variability quenching predicts individual perceptual abilities[END_REF][START_REF] Ito | Task-evoked activity quenches neural correlations and variability across cortical areas[END_REF][START_REF] Schurger | Cortical activity is more stable when sensory stimuli are consciously perceived[END_REF]. Beyond these previous studies, we observe that the time-range of between-trial variability quenching evolves through age and that, at a given age, is strongly and qualitatively modified by the task at hand. Furthermore, we observe that variability quenching always occurs in time ranges in which trials approach ERP landmark topographies (ERPs flybys). The converse however is not true. This establishes ERP flybys and between-trial variability quenching as partly independent phenomena. The fact that some flybys co-occur with a between-trial variability quenching and some others not, suggest that there are different ways to approach an ERP component. Trials can approach a specific activity configuration similar to the target ERP components in a rather unconstrained fashion and hence with no change of variability between trials. On the contrary, trials can follow a specific path of approach more faithfully, producing a quenching of the between-trial variability.

Variability quenching (VQ) is also partially independent of the phase reset of ongoing alpha oscillations in infants. The alpha phases were generally poorly synchronized across trials (circular variance between phases: 0.8 even at the strongest quenching). Nonetheless a slight but significant decrease in circular variance was observed preceding VQ in infants. Importantly, variability quenching affected more extended sets of channels than the ones at which a significant phase reset was detected, especially in older infants. Furthermore, variability quenching lasted longer than the periods of phase alignment between trials following the phase reset. At the level of within-trial variability, the rich structure of within-trial speed modulations was not explained by simple variations in alpha oscillatory phase and amplitude (or by signal-to-noise ratio). Even for adults, where alpha phase reset co-occurred with across-trial variability quenching, local temporal structure of within-trial speed modulations was richer than the alpha phase reset phenomenon. Thus, reset of oscillatory dynamics may be only one facet of the complex variability modulations that system's response trajectories experience in response to a stimulus.

Might Variability Quenching denote Top-down Processes?

Various elements suggest that quenching events are not a mere automatic consequence of stimulus presentation, but might signal a more controlled system's trajectory, possibly implementing a form of top-down regulation: First, quenching could occur late even after the stimulus disappears, for example 400-600 ms, e.g. in P400 time-window in older infants. Second, age did not simply extend the time-window of quenching but shifted its target, from P1 to P400, and third, even at a given age, the quenching dynamics was qualitatively modified by changes in the stimulus configuration. First-trimester infants showed P1-component flybys for both central and lateral faces, but variability quenching at P1 flyby occurred only for lateralized faces, i.e. for the most challenging task. Indeed, lateralized faces were much more difficult to perceive because they were presented briefly at a random interval and in a competition with the central attractor that helped avoid infants' saccades. Moreover, the slow maturation of parafovea compared to fovea [START_REF] Allen | Development of grating acuity and contrast sensitivity in the central and peripheral visual field of the human infant[END_REF] made this brief lateral stimulus even less discernible for the younger infants. We hypothesize that variability quenching events through top-down control processes helped the infants' guide their attention in the absence of a strong bottom-up signal. For e.g. younger infants might try to shift their attention towards the lateralized stimuli in order to "detect" it, without recognizing a specific face, or even extracting facial features, while the older infants and adults might shift their attention to the periphery only after detecting the stimulus, which then allows them to guess / recognize the face. This could explain the shift of variability quenching from the P1 component (related merely to the detection of the visual input) to the P400 ERP component that is related to the face processing. Similarly, when the face was centrally presented, younger infants could focus on the face identity, the detection part being plainly evident. From this interpretation, a quenching event (that indicates a transient constraining of the system's dynamics to a specific trajectory) might reflect more intensive information processing than the "hit and run" visit to the P1-component observed in older participants and in the case of an easily perceived visual event (central faces) for younger participants. The existence of top-down regulatory mechanisms in infants has been confirmed experimentally [START_REF] Emberson | Top-down modulation in the infant brain: Learning-induced expectations rapidly affect the sensory cortex at 6 months[END_REF][START_REF] Kabdebon | Symbolic labeling in 5-month-old human infants[END_REF][START_REF] Kouider | Neural dynamics of prediction and surprise in infants[END_REF]. Notably, the shift of focus for variability quenching, from P1 to P400 at 12 weeks (for lateral faces) corresponds to the first milestone in visual development when several peripheral structures reach maturity (e.g. lens, fovea) and myelination of the optical fibers and maturation of V1 reach a plateau after a period of rapid change. It translates in the convergence to adult values of the P1 latency for centrally presented stimuli around 12 weeks [START_REF] Dubois | Microstructural correlates of infant functional development: example of the visual pathways[END_REF], while peripheral vision matures more slowly [START_REF] Allen | Development of grating acuity and contrast sensitivity in the central and peripheral visual field of the human infant[END_REF]. Feed-back connectivity is also progressively restructured after term-birth, passing from disperse growth to selective pruning [START_REF] Kennedy | Self-organization and pattern formation in primate cortical networks[END_REF] which may allow for more effective attention control or predictive influences.

We note, finally, that, in adults, modulations of alpha oscillatory activity have been interpreted too as signatures of top-down control and attention mechanisms [START_REF] Jensen | An oscillatory mechanism for prioritizing salient unattended stimuli[END_REF][START_REF] Klimesch | Alpha-band oscillations, attention, and controlled access to stored information[END_REF], although with some controversy on the relative contribution of power and phase changes [START_REF] Van Diepen | Attention and temporal expectations modulate power, not phase, of ongoing alpha oscillations[END_REF]. Here we found the evidence for phase reset preceding ERP component flybys but not for consistent power changes (Fig. S6 B and S8 A). Modulations of alpha oscillatory dynamics and more general reductions of trajectory variability (robustly detected at all ages) co-occurred in adults suggesting a potential equivalence [START_REF] Daniel | The Relationship between Trial-by-Trial Variability and Oscillations of Cortical Population Activity[END_REF].

As we have seen, however, in infants, the two phenomena are partly decoupled (cf. again Fig S6C). Thus, the study of an early infancy developmental window provides a unique opportunity to disentangle two possible mechanisms that could underlie attention modulations: on one side, timed and selective inhibition, provided by alpha oscillations reconfiguration [START_REF] Foxe | The role of alpha-band brain oscillations as a sensory suppression mechanism during selective attention[END_REF]; and, on the other, reduced noise [START_REF] Arazi | Neural variability is quenched by attention[END_REF] and controlled selection of statespecific trajectories [START_REF] Baria | Initial-state-dependent, robust, transient neural dynamics encode conscious visual perception[END_REF][START_REF] He | Robust, Transient Neural Dynamics during Conscious Perception[END_REF]. In future, task difficulty and information processing load should be parametrically adjusted to investigate their respective influence on ERV dynamics and its coupling to modulations of alpha oscillatory activity, from early infancy to adulthood.

Within-Trial Variability Modulation

Beyond the common focus on modulations of variability between trials, we emphasized variability modulation events taking place within individual trials. We confirmed previous results obtained for adults [START_REF] Schurger | Cortical activity is more stable when sensory stimuli are consciously perceived[END_REF][START_REF] Baria | Initial-state-dependent, robust, transient neural dynamics encode conscious visual perception[END_REF] and extended them to infants. If a between-trial variability quenching event denotes that the flow of system's trajectories is restrained to a specific manifold when reaching and leaving an ERP component, the phenomenon of within-trial slowing-down suggests that the flow of each of the individual trajectories on this manifold characteristically decelerates when the system approaches certain landmarks (ERP component flyby). This is important, because perception and cognition happen in real time (without waiting for multiple stimulus presentations before perceiving a face). Therefore, instantaneous modulations of response variability can be instrumental only if they occur within individual trials. The slight slowing-down of individual trials near P1-and, in a particularly marked way, P400-flybys, correspond to the system trajectories lingering in an orbit around the corresponding ERP template for a short time. Such transient restriction in the system's fluctuations -or even the boosted speed when entering or leaving the orbit, as for P1 flybys might be detected, e.g., by an integrator neuron -serving as a tempotron readout [START_REF] Gütig | The tempotron: a neuron that learns spike timing-based decisions[END_REF]-to signal that a given stage in cognitive processing has been reached and thus initiate the next processing step in a sequence [START_REF] Zylberberg | The human Turing machine: A neural framework for mental programs[END_REF]. These speed modulation profiles can remain well identifiable by the system, despite the large variability of spatial topographies at ERP flybys.

Combined together, our results suggest that more than the current position of the system in its configuration space, ERPs are marked by "how" the system is flowing through and away from its current position. The evolution of the system seems far from being at a stable attractor. The fact that dynamics is dominated by structured fluctuations make such a system compliant with reservoir computing systems [START_REF] Maass | Real-time computing without stable states: A new framework for neural computation based on perturbations[END_REF], in which intrinsic chaotic fluctuations are only transiently reduced by the applied inputs and are actually needed to boost learning capabilities.

Mechanisms underlying Variability Modulations and their Possible Functional Relevance

The question remains as to what mechanisms could be responsible for the emergence of such a structured ERV components. This question has been explored in some depth for the quenching of firing rate variability in neuronal population responses to a stimulus [START_REF] Churchland | Stimulus onset quenches neural variability: a widespread cortical phenomenon[END_REF][START_REF] Fairhall | Whither variability?[END_REF], where mechanisms such as attractor stabilization (Litwin-Kumar & Doiron, 2012), chaos suppression [START_REF] Rajan | Stimulus-dependent suppression of chaos in recurrent neural networks[END_REF] or "supra-linear stabilization" (Hennequin et al., 2018a) have been proposed. Large-scale computational efforts have demonstrated that such mesoscopic properties could indeed be an ingredient for the macroscopic variability quenching [START_REF] Ponce-Alvarez | Task-driven activity reduces the cortical activity space of the brain: experiment and whole-brain modeling[END_REF] which are sampling a more global activity than the neural firing recordings reviewed by Churchland et al. Contrarily, some studies have suggested that macroscopic quenching could be due to the variations in the baseline and/or the phase of ongoing alpha oscillations [START_REF] Daniel | The Relationship between Trial-by-Trial Variability and Oscillations of Cortical Population Activity[END_REF][START_REF] Iemi | Multiple mechanisms link prestimulus neural oscillations to sensory responses[END_REF]. These views are akin in spirit to earlier and more recent proposals that oscillatory phase and amplitude modulations are responsible for the generation of ERP components and their trial-to-trial fluctuations [START_REF] Hanslmayr | Alpha phase reset contributes to the generation of ERPs[END_REF].

Here we have found indeed that phase reset events tend to precede the detected between-trial variability quenching events (Fig. 3.4C, Fig S6). However, as discussed before, neural response trajectories keep being restrained to a common manifold even when ongoing oscillations are not anymore aligned in phase, due to spontaneous de-correlation. A more general form of trajectory control may thus be acting, and alpha phase reset could be an early component of the implied control mechanisms, if not their causal trigger (as phase reset seems to precede quenching), or, alternatively, just an epiphenomenal manifestation of them.

Moreover, the characteristic kinematics of system's evolution was observed here as neural trajectories approach ERP components. Such type of kinematics and effective landscapes may naturally emerge because of the non-linear dynamics of multi-scale neural circuits, self-organizing into structured flows on low-dimensional manifolds (Pillai & Jirsa, 2017a). The occurrence of coherent oscillations and phase reset dynamics at ERP flyby (Fig 3 .5D) would not be incompatible with a structured internal landscape of the attracting states being sampled. Indeed, nonlinear oscillators can respond with endogenously-generated phase shifts to external forces [START_REF] Acebrón | The Kuramoto model: A simple paradigm for synchronization phenomena[END_REF][START_REF] Kirst | Dynamic information routing in complex networks[END_REF], and the effects of approaching a dynamical critical point at ERP flyby can be conceptualized as forces acting on the (oscillating) system's trajectory. Thus, phase reset events could be precisely caused by the curvature of the internal effective energy landscape being sampled. Note that, if the observed speed profiles had to be explained as due to motion in a force field, the free energy minimum of this landscape would then be located at the first maximum of speed, which precedes the time of closest passage near ERP templates by 50-100ms.

Thus, ERP-like configurations, associated to the lowest speed, would not be the "attractors" but rather signal the moment of crossing from one critical point to the next.

In this framework, changes of ERV dynamics through development and learning would be accounted for by the growth of more marked barriers and sinks in the effective energy landscape or, equivalently, bifurcations causing the birth, fusion or death of different attractors or saddle points in the system's high dimensional phase space. Such conjectures may be potentially validated by estimating the morphology of an effective free energy landscape surrounding the ERP templates [START_REF] Ezaki | Energy landscape analysis of neuroimaging data[END_REF]. Similar to previous studies, we find here also the increase of overall within-trial variability along early development (Fig. S7 A-B ) [START_REF] Garrett | The importance of being variable[END_REF][START_REF] Mcintosh | Increased brain signal variability accompanies lower behavioral variability in development[END_REF]. This increased structuring of the landscapes that shaped the brain activity may mediate the capability to learn internal statistical models of environment, for better inferences in perception [START_REF] Berkes | Spontaneous cortical activity reveals hallmarks of an optimal internal model of the environment[END_REF].

Additional theoretical and computational investigation will be needed to disambiguate which of the possible scenarios is leading to the observed quenching. Indeed, different models may predict different statistical distributions of secondary features -such as e.g. the jitter in latencies from stimulus presentation (or phase reset events) to ERP component flybys-to compare with the empirically measured ones. Furthermore, parameters such as the local excitation/inhibition balance within cortical populations evolve with age [START_REF] Hensch | Excitatory-inhibitory balance and critical period plasticity in developing visual cortex[END_REF] and the maturation of these parameters may predict different ERV developmental trajectories depending on the actual dynamic mechanism. To probe the functional relevance of ERV, a focus on an early developmental period (and, particularly, as early as the first trimester of life), may be once again crucial. Indeed, the functional architecture scaffold at this age is not yet full developed [START_REF] Dehaene-Lambertz | The Infancy of the Human Brain[END_REF]. At the same time, ERV dynamics is already rich and still evaluative and separable from phenomena such as alpha modulations that are dominating in adults and may be concealing subtler functional aspects of response variability.

Our approach has methodological limitations that could be overcome by future developments.

For instance, the extraction of ERP templates in our case depended on a manual inspection based on the developmental literature, but more sophisticated algorithms for the temporal clustering of single-trial ERP topographies [START_REF] Vahid | Applying deep learning to single-trial EEG data provides evidence for complementary theories on action control[END_REF] could be used and combined with our variability analyses schemes. The occurrence of large within-trial variations and, particularly, of extreme within-trial speed values at certain times (Fig. S7 B)-also need to be put in correspondence with the scale-free dynamics of microstate transitions (Van de Ville et al., 2010) or other approaches to describe spontaneous dynamics as random walks in high-dimensional state spaces, which also correlate speed variations with development and cognitive performance [START_REF] Hansen | Functional connectivity dynamics: modeling the switching behavior of the resting state[END_REF][START_REF] Battaglia | Dynamic functional connectivity between order and randomness and its evolution across the human adult lifespan[END_REF]Lombardo, Cassé-Perrot, et al., 2020). Finally, linking activity to whole-brain network state dynamics (i.e. what is the functional connectivity triggered by an ERP flyby?) may allow definitely assessing whether exchange of information is dominated by bottom-up or top-down flows at different ages or ERP stages [START_REF] Bastos | Visual areas exert feedforward and feedback influences through distinct frequency channels[END_REF].

In terms of phase reset analysis, we only considered the oscillatory phase and power in alpha oscillations and compared it with the broadband variability changes. However, different phasepower-variability relationships have been recently observed across different frequency bands and hence future analysis will benefit from this separation [START_REF] Wainio-Theberge | Dynamic relationships between spontaneous and evoked electrophysiological activity[END_REF]. Finally, our microstate analyses were confined by the contributions due to stimulus presentations and 86 3.5. Conclusion hence cannot be considered as 'truly spontaneous fluctuations'. Although this was in the spirit of assessing spontaneous-evoked dynamics as a single neural trajectory, in future, directions of the low dimensional manifold which best explains the variance in presented stimulus can be separated from other directions and analyzed separately [START_REF] Müller | Brain state kinematics and the trajectory of task performance improvement[END_REF].

Conclusion

ERPs have been an attractive description of the post-stimulus brain activity, described as successive steps defined by their reproducible latency and brain sources, allowing obtaining neural algorithms underlying cognition. However, this description was somewhat misleading, ignoring the ongoing activity. The framework proposed here encompasses both aspects. We recovered that ERP components serve as a "compass" to identify special dynamical points for the ongoing activity sampling erratically vast volumes of the neural configurations space, confirming that ERPs are indeed capturing neural consequences of a stimulus presentation. At the same time, we also showed that they are far from capturing the entire activity patterns following a stimulus. We proposed the term ERV, as a better concept to describe the neural consequences of a stimulus. This proposal is not purely semantic, since it allows describing the ERP maturation in integrated manner on one hand and emphasizes the structured variability of the background EEG on the other. It allows thus speculating that the gradual change of ongoing activity might reflect the increasing knowledge of the environment throughout development of a structured internal landscape biasing neural trajectories (that, on their turn, through their volatility, can efficiently sample this landscape).This approach might be particularly fruitful to investigate neurodevelopmental disorders and their cognitive consequences. Figure S3.6: (Caption Contd. from previous page:)(C) Time-series of Percentage of EEG channels with significant reductions in Between-trial variability or VQ (in blue) and reductions in CV (in red) for the young (dashed lines) and old (solid lines) infants and for adults (significant channels were computed using uncorrected cluster based t-test at each timepoints). In Insets:

Comparison of topographies of CV and VQ for the three age groups in the duration where maximum number of channels are significant for VQ. Significant channels in these time-windows are marked in red. (D) time-lagged cross correlation between CV and VQ time-series, averaged across electrodes and subjects. The times of peak correlation are marked for each age group in both conditions. Inset picture shows the same for adults. Shaded areas mark S.E.M. across subjects for each cohort and conditions. Chapter 4

Phase transitions in stimulus encoding as an effect of smooth conductance changes

Chapter Overview

We developed a kinematic description of stimulus-driven neuronal trajectories in the previous chapter, implying that the response to inputs is determined by collective circuit dynamics (and, notably, by its emergent attractors and associated effective landscapes). We also found that the dynamics of approaching these attracting and repelling configurations evolve through maturation.

One notable finding from the previous study was that with increasing age, the latency to the first peak of the stimulus response (P1 component) becomes more variable rather than reducing its fluctuations around the mean and therefore increasing precision. Early infancy is a period during which the organization of brain circuits undergoes substantial changes, both at the local microcircuit and at the meso-and macro-scales. Unfortunately, information about the precise changes in excitatory and inhibitory conductances in human multi-scale brain circuitry is still mostly absent. A possibility could thus be to attempt the reverse-engineering of these changes by adopting an inverted perspective. In this chapter 7 we consider a toy mean-field model of a generic brain region's local circuit and systematically investigate the type of stimulus response that this circuit can generate as a consequence of changes in its recurrent conductance strengths. This agnostic exploration can reveal which qualitative directions of structural circuit maturation could be compatible with the observed direction of stimulus response maturation, and, specifically, with the emergence of a growing jitter in the timing of first stimulus response peak. The analysis of the model leads thus to a precise hypotheses about circuit modifications that can explain the observed response changes and that could be disambiguated and probed by future experimental investigations. conductance changes

Abstract

Neural ensembles have been reported to encode stimulus properties in different ways, with the strength of received stimulus-driven inputs affecting the amplitude of the response, its oscillatory frequency or its peak latency. Here we show that a generic toy-model of interacting populations of excitatory and inhibitory neurons can give rise to all three different stimulus encoding types, sometimes even simultaneously as a function of the relative strength of local excitatory and inhibitory conductances. Further, small continuous variations of these local conductances, or, equivalently, of the strength of the applied stimulus can induce sharp transitions to qualitatively different encoding types, giving rise in some regime to a more pronounced variability in the timing of the response to stimulus. In future, our model can be used to predict variations in response properties arising due to changes in brain state or development, or to infer which conductance modulations may be the underlying cause of observed stimulus response modifications, as, for instance, the maturation of response latency variability occurring through early infancy.

Introduction

One of the most widely studied questions in Neuroscience is related to how changes in the properties of a presented stimulus (contrast or orientation of a visual stimulus, loudness or pitch of a sound, tactile speed etc) translate into changes of the neural response properties, providing an "encoding" of the stimulus. Since detailed information about the individual neuron's response to stimulus is not always available, a variety of studies have investigated neural coding at the level of collective population activity, which is accessible to extracellular field recordings (LFP)

and other non invasive approaches such as electro-or magnetoencephalography (EEG, MEG).

Perhaps the simplest and earliest considered (Adrian & Zotterman, 1926a) type of encoding is rate coding in which the properties of the stimulus modulate the firing rate of an encoding neuron or the response amplitude of an encoding set of neurons with similar response properties (such as a column of cells with similar stimulus selectivity). Other types of encoding have however been considered. In the case of frequency coding, the oscillation frequency of a collectively oscillating neuronal populations is modified by the stimulus properties, as observed, e.g., in LFP or EEG investigations of responses to visual stimuli with increasing contrast or speed of motion, depending on the considered cortical area [START_REF] Lowet | Input-dependent frequency modulation of cortical gamma oscillations shapes spatial synchronization and enables phase coding[END_REF][START_REF] Orekhova | Frequency of gamma oscillations in humans is modulated by velocity of visual motion[END_REF]. Other studies yet have found evidence for the existence of latency coding in which the stimulus affects the time needed from stimulus presentation to the emergence of a peak neuronal response, a first spike for single units [START_REF] Gawne | Latency: another potential code for feature binding in striate cortex[END_REF][START_REF] Gollisch | Rapid neural coding in the retina with relative spike latencies[END_REF][START_REF] Storchi | Comparison of latency and rate coding for the direction of whisker deflection in the subcortical somatosensory pathway[END_REF] or a first response peak for integrated LFP or EEG signals [START_REF] Gebodh | Effects of Stimulus Size and Contrast on the Initial Primary Visual Cortical Response in Humans[END_REF][START_REF] Banerjee | Chronometry on Spike-LFP Responses Reveals the Functional Neural Circuitry of Early Auditory Cortex Underlying Sound Processing and Discrimination[END_REF]. These encoding schemes are not exclusive and could co-exist, although they are often investigated independently, especially when considering the circuit mechanisms that could underlie their origin.

Introduction

Another aspect of neuronal responses to stimuli which only rarely have started attracting the deserved attention is their variability. Classical studies assume that the spontaneous activity is uncorrelated to the stimulus evoked responses, and hence the neural responses to the repeated identical stimuli can be averaged across many presentations in order to cancel out the spontaneous activity as an unwanted background noise [START_REF] Luck | An introduction to the event-related potential technique[END_REF]. However, this view has been challenged by a growing number of studies that show that the level of spontaneous activity at the time of stimulus presentation can non-trivially influence the evoked responses at every trial and that the resulting trial-by-trial response variability is correlated ultimately with the resulting behaviour [START_REF] Renart | Variability in neural activity and behavior[END_REF][START_REF] Waschke | ll Perspective Behavior needs neural variability[END_REF]. The presentation of stimuli has been shown, in a variety of cases and for multiple signal types, to reduce the variability of neural responses [START_REF] Churchland | Stimulus onset quenches neural variability: a widespread cortical phenomenon[END_REF], due to an increased signal-to-noise ratio or to phase-reset mechanisms [START_REF] Daniel | The Relationship between Trial-by-Trial Variability and Oscillations of Cortical Population Activity[END_REF][START_REF] Iemi | Multiple mechanisms link prestimulus neural oscillations to sensory responses[END_REF]. At the same time, this variability quenching at the level of response amplitudes can coexist with a strong residual variability at the level of the timing of peak response components, such as early visual responses (e.g. the P1 EEG component), as

shown by the studies of our previous chapter. In particular, this study also showed that the jitter of the latency of the first peak response increases with age in a task-dependent manner, as a novel fingerprint of development through early infancy [START_REF] Naik | Eventrelated variability is modulated by task and development[END_REF].

Considering variations of neural response properties through development provides an interesting perspective, as, especially early during the development of visual neural circuits, many structural changes take place such as neural pruning and reconfiguration of local network connectivity, rapid myelination of synapses or changing role of inhibitory synapses [START_REF] Powell | A hybrid method for nonlinear equations[END_REF][START_REF] Dubois | The early development of brain white matter: a review of imaging studies in fetuses, newborns and infants[END_REF][START_REF] Khazipov | Neonatal cortical rhythms. Neural circuit development and function in the brain[END_REF]. The remarkable changes in the excitatory-inhibitory balance in these circuits may possibly allow for greater plasticity and flexibility of neural encoding [START_REF] Hensch | Critical period regulation[END_REF]. More pragmatically, these developmental alterations could mechanistically impact the way neuronal populations respond to the incoming stimuli, as well as the trial-totrial variability of these responses, by modifying the dynamic working point of collective neural dynamics within local circuits.

In this study, we systematically explore through a computational modelling approach how changes of the strength of local recurrent excitatory and inhibitory couplings affect the nature of population responses to the stimulus. Specifically, we consider a simple mean-field model of a generic stimulus-encoding brain region [START_REF] Deco | How local excitation-inhibition ratio impacts the whole brain dynamics[END_REF], including an excitatory and an inhibitory neuronal populations, reciprocally coupled by non-instantaneous synaptic currents and receiving an external stimulus-related input drive of variable strength. We find that, depending on the strengths of excitatory and inhibitory couplings, this single model can give rise to all the before-mentioned stimulus encoding types, as probed by an analysis of the mutual information between simulated input and output response features: i) average activation amplitude;

ii) frequency of ongoing oscillations; and, iii) latency of the first peak response. The obtained "codograms" -or phase diagrams of encoding type -reveal the existence of sharp transitions in the nature of possible encoding -e.g. from rate-to latency-based codes-as a result of small 99 Chapter 4. Phase transitions in stimulus encoding as an effect of smooth conductance changes and continuous variations of synaptic parameters.

A prediction of our model is thus that conductance and excitation-inhibition balance variation such as the ones occurring through development could lead to qualitative modifications of the way in which stimuli are represented by neural populations. In particular, our model includes regimes in which fluctuations of spontaneous baseline activity or of input drive strength would precisely translate into fluctuating latencies of the peak response to a stimulus. Our agnostic modelling approach suggests thus possible mechanisms for the emergence of the trial-to-trial variability in neuronal response timing. It furthermore opens the way to reverse engineer the circuit-level determinants of the increase of response jitter which is empirically observed to occur along development across the first, critical semester of life.

Results

We constructed a computational mean-field model of a generic cortical region. This model involves two neuronal populations, one excitatory (E) and one inhibitory (I), connected by conductance couplings with a dynamic time-course (see Methods, Such stimulus input drive, depending on the system, could be growing e.g. because of increased "contrast" or because of a better alignment of the stimulus to the stimulus selectivity properties of the considered populations. On the other hand, the total synaptic currents that drive the firing rate in this local neural populations can also vary depending on the changing drive from other distant cortical regions (for e.g. due to feedback connections to visual cortex V1). From the point of view of our phenomenological model, the net effect of all these mechanisms would always be an increase in the numeric value of the applied input drive current, so we'll use the term "increasing stimulus strength" in general without delineating mechanisms in the following. An effect, important for us, of this different choices of activation functions for E and I is that, at low stimulus strength, the system is actively stabilized by the inhibitory population, whose output firing level is initially much stronger than for excitation. Only when the external input is further increased, the gap between excitatory and inhibitory firing rates is closed, thus increasing the net excitability.

In the next sections, we systematically describe the possible regimes that such a regional dynamic mean-field model can generate.

Dynamic Repertoire at Baseline

In the absence of external input or baseline noise, the model goes through many phase transitions as a function of changing recurrent synaptic strengths (Fig. 4.1(C-F)). In principle, all four synaptic strengths w EE , w EI , w IE and w II could be adjusted independently, so that the parameter space is four-dimensional. We defined an initial search hyper-volume overlapping with the one explored by [START_REF] Demirtaş | Hierarchical Heterogeneity across Human Cortex Shapes Large-Scale Neural Dynamics[END_REF] The diagram showing the existing dynamical regimes at baseline conditions will aid in interpreting the observed transitions that occur while driving the system with greater stimulus-related currents, as we will see in the following section.

Phase portraits associated to the baseline activity states

We illustrate here the dynamical system mechanisms underpinning the previously described baseline states. Further decreasing w EI pushes the S I nullcline even more downwards relative to the S E nullcline, and causes the limit cycle to shrink (reduced oscillation amplitude) and, to ultimately vanish. The disappearance of limit cycle results instead into the emergence of a new stable fixed point, but, this time, at a higher activity rate, which corresponds to the asynchronous up state Other nullcline crossing topologies can be obtained starting from the down state and decreasing w EI while keeping w IE unchanged. The S I nullcline bends downwards but the S E nullcline does not bend anymore upwards, so that a stable limit cycle now arise without the stable down state losing its stability. This results into the emergence of the oscillatory bistable regime, i.e. of bistability between an asynchronous low firing rate down state and a stable amplitude oscillatory state (). A corresponding phase portrait is here shown in Fig. 4.2 E for the specific parameter choice (w EI , w IE ) = (1.4, 3.5)). An even stronger decrease of w EI , as before, causes the limit cycle to shrink and vanish, leading to the second bistable regime, now between the two asynchrounous states, with lower or higher firing rate (8). A corresponding phase portrait is finally shown in Fig. 4.2 F for the specific parameter choice (w EI , w IE ) = (0.7, 3.5)).

Bi-dimensional phase portraits and the changing configurations of the S E and S I nullclines are hence enough to explain the mechanisms leading to transitions between alternative baseline dynamic regimes.

Stimulus-driven Phase Transitions

The relative positions of nullclines and hence, the dynamical regimes of the systems can also be changed by changing the total synaptic input currents in the network, for e.g. to mimic the changes induced by the presentation of a stimulus or to mimic the incoming currents from other cortical regions via feed-forward and feedback connections. Therefore, we expect that the presentation of stimulus of varying strength or varying input currents other than those from recurrent connections in general can also lead to qualitative changes in the dynamical regime of the responding region.

In the model, generic external inputs are modelled as additional currents

I (E)
ext and

I (I)
ext injected, respectively, in the E and the I populations. Here, we consider that these currents increase when the strength of the stimulus increases, however as just described, other interpretations could be equally possible (also, see Discussion), leading nonetheless to analogous functional effects (from the point of view of the model, a driving current grows, no matters the cause of this increase). In the following, we systematically study the effects of applying a growing strength of stimulus starting from all the different baseline regimes discussed in the previous section.

We apply stimuli in a range of several decibels, expressing their strength relative to a reference baseline drive level (see Methods for details).

The way in which external stimuli affect the response of the receiving region can widely differ between the alternative baseline regimes (fig 4 .3). In all cases, a strong input current to the E population (moving from left to right in the rate surfaces of figures 4.3B-D) increases the overall firing rate, while increased drive to the I population reduces the rate (moving upward in the rate surfaces of figures 4.3B-D). In all cases, the starting baseline regime is located at the lower left corner of the rate surfaces, indicated by the corresponding symbol, asynchronous down state for Chapter 4. Phase transitions in stimulus encoding as an effect of smooth conductance changes (). As visible in the surfaces, however, other regimes can be found in presence of externally applied inputs different from the starting one. For sufficiently strong external drive to the I population the system always enter an asynchronous down state before silencing completely the E population. Increasing the external drive to the E population in the absence of a compensatory increasing drive to the I population however causes qualitative transformations of the dynamical regime to arise.

When starting from an asynchronous down state at baseline (L), the application of a weak square pulse stimulus (< 3dB) will transiently push the firing rate and synaptic activity of the model region to a higher-level plateau value (Fig. 4.3E). A transition to the oscillatory regime (G) is instead observed for stronger stimuli(Fig. 4.3F). in all cases, however, after stimulus offset, activity levels will return to the previous baseline values.

When starting from the asynchronous bistable regime at baseline ( 8), increasing stimulus strength can cause the low firing rate down state to lose its stability, resulting in a discontinuous jump to the higher firing rate 'up state' (I,Fig. 4.3G). When further increasing the stimulus strength (or when starting already from an up state since baseline), a graded increase of synaptic activation can still be observed, however, this increase will be only moderate as, in the up state, the activation level is already close to saturation (Fig. 4.3H). At stimulus offset, the system returns to the original asynchronous bistable regime. However, if the applied stimulus has been strong enough to elicit a transition to the up state during stimulation, then the region will still remain persistently in this excited condition even in absence of the stimulus, as the high firing rate fixed point is stable in the baseline bistable regime. Such a regime can thus effectively serve as a working memory of the presented stimulus, as already proposed ( [START_REF] Wong | A recurrent network mechanism of time integration in perceptual decisions[END_REF], see also Discussion). Another interesting property of the asynchronous bistable baseline regime is that, when the stimulated region sits in the low firing rate branch and if a stimulus is strong enough to elicit a transition to the high firing rate branch, then the transition from the down to the up state is not instantaneous but occurs with a latency whose duration is inversely related to the applied stimulus strength (see the varying spacing between the synaptic activity traces for intermediates stimuli strength in Fig. 4.3G). We will further discuss this property in the next section devoted to stimulus encoding, as the existence of this bistable regime makes the emergence of latency-based encoding possible.

When starting from the bistable oscillating regime ((), transitions out of the low firing rate asynchronous down branch can again be induced by sufficiently strong stimuli, but this time to the stable amplitude oscillating regime (G, Fig. 4.3I). With increasing stimulus strength the average firing rate increases, the oscillation frequency increases and the oscillation amplitude decreases. The application of even stronger stimuli, or of stimuli of similar strength but applied when the system is already in the oscillating branch at baseline will cause ultimately the limit cycle to shrink until when it disappears, replaced by a newly stabilized high firing rate working point Fig. 4.3J). As for the asynchronous bistable point, stimulus offset does not cause a return to the asynchronous low-firing rate branch by itself, as the limit cycle is stable also in absence of 4.3. Results the stimulus. Therefore, in this bistable oscillatory regime the application of a stimulus is likely to engender long-lasting induced oscillations (see Discussion). Once again as in the asynchronous bistable regime, it is only the application of a further drive to the inhibitory population that can push back the system to the low firing rate branch, when trapped in the higher firing rate (asynchronous or oscillating) branch (see Discussion).

Taken together, these selected examples indicate that the different dynamical regimes that the regional local circuit can generate are hierarchically ordered: the asynchronous down state lies at the lower order, oscillations (if exists) lie at an intermediate order and the asynchronous up state at the highest order. Application of increasing drive to the E population cause the system to ascend this hierarchy (eventually skipping steps, if one of the steps -e.g. the oscilatory regimedoes not exist in its stable form for the chosen parameters). On the contrary the application of increasing drive to the I population allows descending along this hierarchy in the opposite order.

Our analyses predict thus that a system poised close to critical dynamical transitions at rest is capable of responding to the incoming stimuli in many possible ways, and also sometimes when certain thresholds of stimulation strength are crossed, react to the stimuli by altering the nature of evoked dynamics and inducing post-stiimulus persistent activity, either asynchronous or oscillating. Moreover, evolution of the effective excitatory and inhibitory strengths either due to maturation or through experience can qualitatively change the neural response of this local neural network. Such extreme variety of possible stimulus-induced regimes and inter-regime transitions provides the basis for decoding the properties of the applied stimulus from other features rather than simply the average level of elicited activity as we now discuss in the following section.

Stimulus Encoding and "Codograms"

As previously discussed, stimulus strength affects the resulting population activity levels in all regimes, which can be seen as a form of rate coding. At the same time, increasing stimulus strength can also cause an increase in the oscillation frequency (in the G and regimes) or a decrease of the waiting time for a transition to higher firing rate state (in the 8 regime), which could be seen, respectively, as a form of respectively the frequency or latency population coding.

These types of encoding are not exclusive and can coexist in some of the regimes, as indicated by the red annotations in Fig. panels 4.3E-J. The question remains as to how well these possible features can actually encode the stimulus strength.

To answer this question we systematically explored the w EI and w IE surface to seek for the presence of the three aforementioned types of possible encodings: rate-, frequency and latencybased. We then derived "codograms" by quantifying a Mutual Information (MI)-index ( or MII) between the strength of the applied stimulus and the relative variations of different neural response features. Such MII index is bounded in the unit interval and takes a value close to the maximum of MII = 1 if a monotonic growth of the stimulus strength translates into a monotonic variation of the target output feature. The benefit of using MII is that it quantifies the stimulusto-response relationship without assuming a specific shape or bandwidth of variation in these two conductance changes Figure 4.3: (H) In the same regime, stimulating oscillatory branch with weak stimulus encodes the stimulus in frequency of ongoing oscillations while even stronger stimulus will transiently stop the oscillations, with stimulus still coded in response amplitude. (I) Stimulating a working point in the down state with weak stimulus simply increases the response amplitude, while (J) A stronger stimulus will cause transient oscillations with stimulus coded in the latency of the first peak response (or phase) and frequency of these transient oscillations.

quantities (see Methods for details). Specifically, for "rate codes", we quantified MII between stimulus strength and stimulusinduced modulations of the average amplitude of the synaptic activity and hence of the firing rate (see codogram in Fig. 4.4A). For "latency codes", we tracked the latency of the first response peak whenever a state switching occurred as an effect of stimulus even transiently (see codogram in Fig. 4.4B. Finally, for "frequency codes", we evaluated MII between stimulus strength and frequency oscillations in all cases where oscillatory phase was detected following stimulus presentation (see codogram in Fig. 4.4C. These cases include induced persistent oscillations or transiently damping oscillations emerging when starting from an asynchronous down regime, but also variations in the frequency of ongoing oscillations when already starting from an oscillatory baseline. Methods for details on its computation), the MII for rate coding was saturating to the maximum possible unit value everywhere in the asynchronous down state, but also in other regimes. Only in the persistent oscillatory regime, MII for rate coding dropped to lower yet sufficiently high values of MII > 0.8. In this regime, the never suppressed ongoing oscillations contributes to the rate-variance and hence intrinsic noise to the neural coding. This ubiquity of high rate-based MII values implies that the incoming stimulus was coded into network's average firing rate regardless of the qualitatively different type of baseline and evoked neural dynamics. Additional types of encodings hence were not an alternative to rate coding, but existed simultaneously with it.

To the right of strength and peak latency when the system undergoes a stimulus-induced transition from a asynchronous down state to an asynchronous up state or to an oscillatory regime.

The two shown curves correspond to alternative starting baseline regimes. In the case of Fig. 4.4E, we show a curve for an initial condition in the low firing rate branch of an asynchronous bistable regime (8). In this case, the activity remain always asynchronous and not oscillating, producing evoked waveforms similar to the (b) cartoon, and the latency to the overshoot peak response decreases very rapidly and monotinically with increasing stimulus strength. In the case of a low-w IE asynchronous down baseline regime (L 2 , Figs. ongoing oscillations smoothly increases, until when the stimulus is strong enough to cause the destabilization of the limit cycle and thus its "squeezing" into a monostable asynchronous up state in which frequency coding is not anymore possible. The largest frequency increase observed for the selected point is four-fold. Our model is expressed in terms of arbitrary units therefore we cannot use it for quantitatively precise predictions. Nevertheless, supposing that baseline oscillation frequencies are in the 1-5 Hz range, the observed frequency gain would allow stimulus -rate, latency and frequency-are combined to generate a unique RGB-scheme color code (see Methods). The existence of "white zones" in this combined codograms indicates that for some combination of baseline dynamical regimes and stimulus ranges all three possible encoding conductance changes schemes can simultaneously coexist. For low stimulus strength, the combined codogram is mostly "red", denoting dominance of the pure rate-based encoding. "green" and "yellow" colored stripes in lower to intermediate stimulus ranges indicate increasing likelihood for exclusive or ratemixed frequency-based encoding, but these colors disappear for the upper-intermediate and high stimulus strength ranges, dominated by "pink/lila" color, i.e. a coexistence of rate-and latencybased encoding (see Discussion).

These codograms are obviously in tight correspondence with the phase-diagrams of baseline and stimulus induced dynamic regime transitions studied in Figs. 4.1 and 4.3, now revisited from an information-theoretical point of view, i.e. by considering a dynamical regime as communication channel for transmitting information from the stimulus to the output response [START_REF] Cover | Elements of information theory (wiley series in telecommunications and signal processing[END_REF]. In this view, changing conductances produce modulations of the capacity of these channels. As development produced changes both at the level of local conductances (here phenomenologically summarized by the coupling coefficients w EI and w EI ) and of longrange conductances (modelled here into changes of the external driving currents), we can expect development to change the "color" of the type of stimulus-encoding that these maturing local neural circuits can produce.

Baseline fluctuations and latency jitter

Until now we have investigated the modifications in the intrinsic dynamic regimes caused by a continually increasing external current drive, that further deviates the system from an initially stable baseline condition. Apart from these precise transitions of dynamical regimes, other factors can also cause the system to randomly fluctuate around average baseline conditions even in absence of the external stimuli. For e.g., fractions of open or closed voltage-gated channels in the network depends on many environmental factors and can be considered as 'randomly fluctuating' for our purpose. Such fluctuations at rest has been considered in the dynamic meanfield models as ours through the additional Gaussian noise component in the system dynamics [START_REF] Deco | How local excitation-inhibition ratio impacts the whole brain dynamics[END_REF]. An important question is how these baseline fluctuations affect the variability of stimulus response. We focus here particularly on a special type of stimulus variability, which is response latency jitter. Previous studies, including our own, have shown for instance that the latency of start of the response or first peak responses to visual stimulus fluctuates from trial-to-trial [START_REF] Naik | Eventrelated variability is modulated by task and development[END_REF][START_REF] Bagshaw | Single trial variability of eeg and fmri responses to visual stimuli[END_REF][START_REF] Kovarski | Reduced visual evoked potential amplitude in autism spectrum disorder, a variability effect?[END_REF] and that this variability in latency is not suppressed by development but, on the contrary, increases in certain task conditions (see Chapter 3) but also during pathology [START_REF] Kovarski | Reduced visual evoked potential amplitude in autism spectrum disorder, a variability effect?[END_REF].

Our model modified to engender noise-driven baseline fluctuations can be used to probe potential circuit mechanisms underlying the origin of this latency jitter and its modulations. A key observation here is that, as we have seen, our regional model is able to generate variable latencies to peak response in all parameter configurations enabling latency coding and, notably, in the asynchronous bistable regime (8). In giving rise to MI = 1. (H) For strong enough stimuli, the response is also coded in the latency to peak, with stronger stimuli causing faster response (and hence shorter response latency). All response time-series associated to these codes are shown in panels (a-i) (I) Only stronger stimuli give rise to transient oscillatory response, resulting in non-monotonic frequency codes, each associated to different types of oscillations (shown in example time-series f to i). could think at these superimposed response time-series as to different "trials" in a task). A zoom on the pre-stimulus period (blue inset) showcases the baseline fluctuations in the spontaneous activity for the 100 randomly chosen trials for a fixed chosen level of noise to synaptic gating variables (see Methods).

Such spontaneous pre-stimulus activity is irregular, displaying time-to time abrupt changes, so that one can expect a greater diversity in baseline levels at the exact moment of stimulus onset.

The fixed strength of stimulus has been chosen in this numeric experiment to be sufficiently large to always elicit a switching transition to the high firing rate branch. The fluctuating baseline levels preceding stimulus do not affect so much the average response amplitude, as this is strongly ruled by the phase portrait of system's dynamics (cf. Fig. 4.2 F) and all trials reach the same level of activity after the initial transient overshoot period. However, the time needed to reach the response peak fluctuates as an effect of changing baseline level despite a fixed stimulus strength.

A zoom on the early post-stimulus range (green inset) allows clearly appreciating the variability in the latency needed to reach the up state plateau starting from the noisy down state baseline. Methods) grows with increasing baseline noise level. Accordingly the precision of latency-based coding also drops. Note that for the stimulus strength applied here (referring to 4 dB) the latency-based MII for the chosen regime is close to 1 in absence of baseline noise (cf. S4.3C, 4th column). In the presence of sufficiently weak noise, this latency coding is still preserved. However, as the jitter of latency increases with increasing baseline noise, the MII of latencybased codes also starts dropping, reaching only 40% of retained information about stimulus amplitude for the maximum used noise level (see Fig. 4.5C).

As shown by

Hence, the capacity to generate latency-based encoding in certain regimes is associated with the existence of latency jitter as soon as the baseline level is noisy. In other words, we could conceive that latency changes depend on the same dynamic mechanism, both when these changes are due to stimulus variations or due to the baseline fluctuations. We have not yet achieved a complete analytical characterization allowing us to predict the amount of expected jitter from circuit's parameters. We have however explored numerically the regions of the parameter space where the presence of baseline noise, directly translates into the observable amount of response latency jitter (Fig. 4.5D). By repeatedly presenting a fixed intensity stimulus on top of a noisy 4.3. Results baseline at different working points, we sampled the distribution of observed latencies. We then identified the working points (w EI , w IE ) for which this distribution was Gaussian, reflecting the distribution of the pre-stimulus baseline noise. Or on the contrary, the latency distributions can deviate from a Gaussian centered on a precise value to become platykurtic, associated to a uniform spread of latencies over a continuous range (examples of this different types of latency distribution are depicted in the lower part of Fig. 4.5D). In Fig. 4.5D we represent in white the region of coupling values for which the latency distributions were Gaussian, reflecting the baseline noise process. This region includes the asynchronous bistable regime (8) and extend also partly to the oscillatory bistable regime for the given stimulus strength. It seems thus that the existence of a gap between two attracting states (such as, the down and the up fixed points in the asynchrnous bistable regime considered in Figs. 4.5A-C) is necessary for a large response temporal jitter to emerge.

We hypothesize hence that latency to peak response gets shorter, as a function of gap between the down and the up fixed points. Gap crossing could be helped either by "pushing towards the high firing rate regime" (as when a stronger stimulus-related input drive is given) or by making the gap itself narrower (as when noisy fluctuations transiently raise the baseline level). In this view, we would thus expect the amount of expected jitter to depend on the synaptic conductances, and specifically on w EI and w IE , as they control the positions of the nullcline crossings and, thus, the extent of the gap between up and down states. A numeric hint that this prediction may indeed hold is shown in the inset of Fig. 4.5D, in which we zoomed into the region surrounding the reference asynchronous bistable working point (8). The jitter is not constant but varies smoothly, in a way which we expect if it was related to the gap size between the two attractor states. In future, an analytical exploration is needed to correlate the varying jitter levels to a varying inter-attractor gap size. Other regions of the phase diagram exhibited latency encoding but do not directly translate the baseline noise levels to sensible latency jitter. This is for instance the case of the low-w IE working point denoted as L 2 . We don't have a clear explanation for this fact yet, as stimulus-induced transitions to different regimes other than to the asynchronous up fixed point do still occur. It is possible however that the reduced excitability and the increased inhibitory stabilization of the system for this working point makes it less susceptible to noisy perturbations.

Discussion

In this article we studied a basic model with two E and I populations connected by recurrent synaptic currents and receiving external inputs of varying strength, which has previously been utilized as a model for regional dynamics within large-scale whole-brain computational models [START_REF] Deco | How local excitation-inhibition ratio impacts the whole brain dynamics[END_REF][START_REF] Demirtaş | Hierarchical Heterogeneity across Human Cortex Shapes Large-Scale Neural Dynamics[END_REF]. We have shown that, despite its simplicity, this model is able to generate a great variety of possible baseline dynamical regimes and that, as an effect of an applied stimulus, or of smoothly varying conductance strengths, the system can undergo conductance changes 
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transitions between these different regimes. Importantly, dynamic richness translate into the possibility of encoding stimulus strength in a variety of response features, including the average activity level but, beyond it, also the frequency of the induced oscillations or the latency needed to reach a response peak from stimulus onset. Via a mutual information analysis, we have explored how the system's dynamic phase diagram maps into a set of "codograms" that reveals the extent or fidelity of stimulus encoding. Our systematic analyses can be helpful to predict non-trivial variations of response properties and encoding schemes that may arise in a local brain regions as an effect of maturation or other modulations to synaptic conductances. Furthermore, our model was able to account for the existence of a temporal jitter in stimulus responses in certain dynamical regimes. Our model can hence shed light on synaptic variations underlying the increase of such a jitter observed during early development (see Fig. 3.3, Chapter 3).

Does our model have Inhibitory-Stabilized Regimes?

Many other studies have considered the variety of dynamical regimes that can arise in simple coupled population models, revealing the subtleties of the interplay between E and I populations responding to a stimulation and emphasizing how different relative strengths of excitatory and inhibitory conductances can affect response gain and persistence [START_REF] Wolf | Dynamical models of cortical circuits[END_REF][START_REF] Sadeh | Inhibitory stabilization and cortical computation[END_REF]. Regimes that have attracted considerable interest both from a theoretical and an experimental perspective are balanced regimes, in which recurrent (and external) excitatory currents are approximately balanced by inhibitory currents of equal strength [START_REF] Van Vreeswijk | Chaos in neuronal networks with balanced excitatory and inhibitory activity[END_REF][START_REF] Okun | Instantaneous correlation of excitation and inhibition during ongoing and sensory-evoked activities[END_REF] or more general inhibition-stabilized regimes, in which recurrent excitation is very strong so that runaway excitatory currents occur in absence of an exact balancing of excitation by inhibition [START_REF] Ozeki | Inhibitory stabilization of the cortical network underlies visual surround suppression[END_REF][START_REF] Ahmadian | What is the dynamical regime of cerebral cortex? Neuron[END_REF].

A special type of inhibition-stabilized networks are supralinear-stabilized networks which have been considered as potentially explaining the experimentally observed reduction of response variability following the application of a stimulus (Hennequin et al., 2018b). These regimes are distinguished by different time-courses of E and I populations preceding and following stimulation and by different expected distributions of correlations between neurons in the population. In our study, we do not model the rate of individual cells within the populations, nor the detailed E and I currents that each neuron receive, but we adopt a much coarser resolution considering only massively-integrated intra-and inter-population currents. We cannot therefore establish an exact mapping between the regimes we observe in our model and those previously described.

Yet, in our model as well, it is the relative strength of excitatory influence on the inhibitory population and vice-versa that determines changes between dynamical regimes in large parts.

Furthermore it is the effective modification of these relative strengths by the application of additional extrinsic excitatory or inhibitory currents that causes the stimulus-induced regime transitions. As previously discussed, the initial parameter ranges (scanned for the realization of Fig. 4.1C-D) have been chosen to overlap with the ones considered by [START_REF] Demirtaş | Hierarchical Heterogeneity across Human Cortex Shapes Large-Scale Neural Dynamics[END_REF]. In this study, the synaptic strengths of the regional cortical network models were first conductance changes constrained by a hierarchical gradient axis found from T1/T2 weighted images, and then the optimal values of wEE and wIE parameters for each regions were approximated such that the average Pearson correlation between empirical and simulate BOLD functional connectivity(FC) matrix is maximized [START_REF] Demirtaş | Hierarchical Heterogeneity across Human Cortex Shapes Large-Scale Neural Dynamics[END_REF]. This study found that the cortical regions operated in the dynamical regime close to critical transitions and hence these transitions are accessible by the system in the presence of baseline noise or as a function of applied stimulus strength as demonstrated here.

Finally retained level of recurrent self-excitation (w EE = 1.25) is way stronger than the one of recurrent self-inhibition (w II = 0.16) in our model. Such strong self-excitation that is prone to cause explosion of firing rates is however compensated by inhibition. Indeed the considered strengths of inhibition on the E population (2 ≤ w IE ≤ 4) are much stronger than inhibition on the I population, allowing inhibitory activation not to self-limit itself and to strongly brake runaway excitatory responses. Equally strong levels of excitation on the I population -w EI varies on the same range of w IE -guaranteeing that the rise of inhibition occur promptly when excitatory activity rises. Excitation on inhibition remain however weaker than self-excitation, so that the system can be strongly inhibition-stabilized without being inhibition-dominated up to complete silencing and high firing rate regimes are still possible. Note that the E population can indeed be silenced only when sufficiently increasing the external drive to the I population (cf. Fig. 4.3B-D). Explosion of the activity for increased drives to the I population is then also prevented by a saturating transfer function. In previous studies, a compensatory mechanism called 'Feedback Inhibitory Control' has been suggested in order to flexibly adjust the synaptic strengths from I to E populations, such that the net current in the system remains at a lower steady state [START_REF] Deco | How local excitation-inhibition ratio impacts the whole brain dynamics[END_REF][START_REF] Demirtaş | Hierarchical Heterogeneity across Human Cortex Shapes Large-Scale Neural Dynamics[END_REF]. However, here in order to avoid further non-linearities in the system, and due to lack of convincing empirical evidence for such a feedback mechanism, we avoided employing such mechanism. In the experiments illustrated by Fig. 4.3E-J and Fig. 4.4, we have considered that the applied input increases uniquely the drive to the E population (i.e. we have put to zero the I ext,I current). Our choice was motivated by the desire to have a systematic exploration of possible types of transition scenarios and there would have been a combinatorial explosion of possible configurations considering drive to both inhibition and excitation. In the absence of additional external drive directed to the I population the system is often pushed by strong stimuli in regimes with persistent oscillations or high-firing asynchronous firing. Whenever the baseline regime is bistable, as for the 8 or the regimes, these excited states will continue to be stable even after stimulus offset and the system will not spontaneously return to an asynchronous low-firing rate baseline (cf. Fig. 4.3G and J), unless a transiently enhanced drive to the inhibitory population is applied, as an effect of a strong noisy fluctuations, or due to a delayed strong responses of inhibitory populations as compared to the excitatory population. Indeed, the stimulus is here modelled as a square-wave pulse of purely excitatory current, but in physiological conditions stimulus-related inputs are received by both the E and the I populations. Further, the rise and decay time-constants of the resulting 4.3. Results post-synaptic excitatory and di-synaptic inhibitory currents are different, resulting in "double exponential" bi-phasic stimulus-related currents to arise, in which an initial rise can be observed, with a net excitatory effect, followed by a decay in inputs to excitatory population resulting into a net inhibitory effect. We remark thus that the observed sequence of visited dynamic regimes when growing stimulus strength could be modified not only by changing population conductance strengths, but also by changing the relative response onset times of excitatory and inhibitory populations-an aspect that we have not considered here but that has been studied elsewhere [START_REF] Romagnoni | Progressive alignment of inhibitory and excitatory delay may drive a rapid developmental switch in cortical network dynamics[END_REF].

Could Development Induce Transitions between Dynamical Regimes?

Transitions to alternative regimes that persist after stimulus removal are not however necessarily an artefact of our model. Stimulus-induced oscillations or reverberating activity can indeed serve as a form of working memory [START_REF] Wang | Synaptic reverberation underlying mnemonic persistent activity[END_REF][START_REF] Pesaran | Temporal structure in neuronal activity during working memory in macaque parietal cortex[END_REF]. The capacity to maintain working memory representation of stimuli lasting over a variety of time-scales is ubiquitous across cortical regions [START_REF] Murray | A hierarchy of intrinsic timescales across primate cortex[END_REF] and the performance of the working memory, relying on this possibility of sustained activation, is known to evolve through development, and, especially in early infancy [START_REF] Luck | The capacity of visual working memory for features and conjunctions[END_REF][START_REF] Ross-Sheehy | The development of visual short-term memory capacity in infants[END_REF] or as an effect of top-down control [START_REF] Edin | Mechanism for top-down control of working memory capacity[END_REF]. A neural circuit operating in proximity of the transition lines between the asynchronous down state (L) and the asynchronous or oscillating bistable regimes ( and 8) could switch from a non-reverberating to a reverberating mode through only limited changes of synaptic conductances, such as an increase in the recurrent self-excitation w EE (i.e. moving upward on the parameter space section in Fig. 4.1C-D) or, yet, a reduction of the excitation on the I population w EI (i.e. moving to the left on the parameter space section in Fig. 4.1E-F).

Such effective parameter modulations could well correspond to phenomenological effects of developing recurrent excitation [START_REF] Ashby | Maturation of a recurrent excitatory neocortical circuit by experience-dependent unsilencing of newly formed dendritic spines[END_REF] or of neuromodulation [START_REF] Brunel | Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition[END_REF].

Analogously, effective variations of w EI could also serve as circuit-level basis for the observed developmental maturation of the frequency and stability of induced and spontaneous oscillations [START_REF] Cho | Development of sensory gamma oscillations and cross-frequency coupling from childhood to early adulthood[END_REF][START_REF] Bitzenhofer | Gamma activity accelerates during prefrontal development[END_REF].

An intriguing developmental pattern recently detected in visually evoked neural activity, is the increase in response time jitter observed through early infancy (and that we have discussed in Fig. 3.3, and 3.5 of Chapter 3). As previously commented, only bistable baseline regimes seem to be able to generate consistent jitter and the amount of jitter that can be observed reflects the gap existing between the different possible lower or higher firing rate modes of activity, which are once again under the control of conductance changes. The numerical analyses of Fig. 4.5D suggest that a mechanism that could lead to expanded jitter without altering the fundamental dynamics of generating a high firing rate peak response on top of a lower firing rate baseline would be a shift on the parameter plane in the direction of jointly increasing w EI and w IE couplings, i.e. of the strength of mutual control that E and I populations exert on each other. Such development of a higher jitter could then be a "spandrel", an unavoidable yet a functional conductance changes consequence of the strengthening of such mutual coupling, expected to occur along the path toward a more strongly balanced and higher-gain inhibition-stabilized regime [START_REF] Sadeh | Inhibitory stabilization and cortical computation[END_REF] and, possibly, the sculpting of better canalizing effective energy landscapes shaping the system dynamics fluctuations (cf. It is important to note that all quantities in our model are expressed in arbitrary units that could be re-scaled or re-normalized. The specific numeric values of parameters, and of input and output activity strengths do not have an absolute meaning and cannot be put in quantitative correspondence with empirically measured quantities, in a straightforward or unequivocal way. The same arbitrariness holds for time units, so that our toy-model cannot be used to formulate precise quantitative predictions of expected response latencies or of the frequency of induced oscillations.

Yet, our model can be still be useful in a heuristic -if not predictive-perspective to interpret convergent experimental evidence or to formulate novel hypotheses about circuit mechanisms that could produce observed changes in the quality of stimulus-induced activity. Indeed, at least the qualitative directions of parameter variations, if not the exact amounts of variation, needed to induce phase transitions between dynamical regimes should still be suggestive of circuit-level mechanisms that may occur in actual circuits. Even if all the transition mechanisms that we have illustrated -destabilization or emergence of fixed points with higher or lower activity, continuous or discontinuous appearance of limit cycles, bistability-are rather elementary, they all occur within our model in a relatively compact parameter range. Our toy-model should then be considered as a dictionary of possible dynamical transitions that a simple cortical circuit could generate, providing qualitative indications about possible synaptic or input change mechanisms that could generate them. The combination of observations about stimulus response dynamics for different stimulus intensities or for different brain states or developmental stages could then provide sufficient clues to identify possible paths in the parameter space of the model compatible with all these findings simultaneously, thus enabling reverse-engineering speculations.

We considered in the manuscript that variations of driving current reflect an applied stimulus.

However an alternative interpretation for changes in these driving currents would be a general variation of background synaptic drive, associated to a generalized increase in excitability, or even a specific growth of long-range excitatory connections conveying inputs from distant regions.

Thus some of the transitions that we described as stimulus-induced could also be obtained as an effect of the prominent development of short and long-range inter-regional connections throughout early infancy [START_REF] Dubois | Development of structural and functional connectivity[END_REF][START_REF] Dubois | Microstructural correlates of infant functional development: example of the visual pathways[END_REF].

From Richness of Dynamics to Richness in Neural Encoding

Finally, the systematic construction of codograms -the algorithmic counterpart of phase diagrams, in the sense of the three level of neural circuit function description postulated by [START_REF] Marr | From understanding computation to understanding neural circuitry[END_REF])-revealed the existence of certain type of encodings even when they were not a priori expected. For instance, a solid frequency-based encoding was found even outside regimes able to sustain stable oscillatory behaviors, revealing that stimulus-induced oscillatory transients 4.4. Methods may be more than simple epiphenomena but might also play an actual representational role (as already pointed out by [START_REF] Bondanelli | Coding with transient trajectories in recurrent neural networks[END_REF][START_REF] Ichikawa | Short-term memory by transient oscillatory dynamics in recurrent neural networks[END_REF]). The codogram analysis also revealed extended zones with an overlap between the existence of different types of stimulus encoding (e.g. rate-based with latency-based). As clear from Fig. S4.3, the fidelity of encoding of the stimulus depend on the considered range of stimulus strength. Different encodings have optimal fidelity for different stimulus ranges, also depending on their turn on the chosen synaptic conductances values. The dynamic richness provided by the circuit hence allows maintaining high fidelity of encoding over a very broad range of possible stimulus strengths by enabling other types of stimulus encoding for stronger stimuli when the preceding type of encoding starts losing fidelity (e.g. switching from a rate-based to a latency-based encoding, displaying highest MII values respectively for low or higher intermediate stimulus ranges). A potential readout of the encoded stimulus strength could also take advantage of the redundancy between alternative coexisting encoding schemes to perform denoising and, thus, a better decoding. In other words, the development dependent changes in circuit dynamics may not only affect the baseline dynamics, but can also change the underlying neural coding of the same external stimulus [START_REF] Avitan | Code under construction: neural coding over development[END_REF].

Future model extensions embedding a more detailed description of the firing rate dynamics of individual neurons within the population and of detailed stimulus properties besides its strength will allow us developing codograms for more elaborate types of encoding, such as correlationbased codes [START_REF] Decharms | Primary cortical representation of sounds by the coordination of action-potential timing[END_REF][START_REF] El-Gaby | An emergent neural coactivity code for dynamic memory[END_REF] which are currently beyond the scope of our rough population-level mean-field models.

Methods

Computational Model

We developed a bio-physically realistic Mean-field model based on [START_REF] Deco | How local excitation-inhibition ratio impacts the whole brain dynamics[END_REF], that describes the average firing rates of interconnected Excitatory (E) and Inhibitory (I) neural populations (Fig 4.1A). Taking advantage of the slow responsiveness of NMDA receptors as compared to AMPA receptors, this model reduces the parameter space of a large recurrent spiking network into a two variable coupled dynamical system [START_REF] Wong | A recurrent network mechanism of time integration in perceptual decisions[END_REF]. Total input currents for these Excitatory and Inhibitory neural populations can be described as follows:

I E (t) = I 0,E + I ext,E + w EE S E (t) -w IE S I (t)
(4.1)

I I (t) = I 0,I + I ext,I + w EI S E (t) -w II S I (t) (4.2)
Where, w EE and w II represents the recurrent excitatory and inhibitory connection strengths respectively. w IE represents strengths of inhibitory to excitatory synaptic connections, while conductance changes w EI maps the same for excitatory to inhibitory synaptic connections. I 0,(i) is the constant baseline current of the population i (where i ∈ {E, I}).

In addition, each population i ∈ {E, I} can optionally receive an external current I ext,(i) , which can be considered as either an input coming from a long-range connection to other brain regions or as the stimulus input.

S i (t) is a synaptic gating variable of population i. It represents the fraction of open gated channels or synapses and determines the ability to suppress or facilitate synaptic activity of the whole population. The time-evolution of this synaptic activity can be described by the following coupled differential equations:

dS E (t) dt = -S E (t) τ E + (1 -S E (t))γr E (t) + σν E (t) (4.3)
and for inhibitory population

dS I (t) dt = -S I (t) τ I + γr I (t) + σν I (t) (4.4)
Without sustained input, the synaptic activity decreases with the time constant τ (i) and increases proportional to the fraction of the closed synaptic channels 1 -S (i) . σ is the standard deviation of the uncorrelated Standard Gaussian noise describing the spontaneous fluctuations around the baseline synaptic activity I 0,(i) . r (i) is the average firing rate of the population (i) ∈ {E, I} as computed by the nonlinear transfer function Φ as follows:

r (i) = Φ(I (i) ) = a (i) I (i) -b (i) 1 -exp(-d (i) (a (i) I (i) -b (i) ))
; i ∈ {E, I} (4.5) 

Analysis of the Phase Portrait

For each of the canonical working points identified in Fig 4 .1, we obtained the steady state solutions of the dynamical system in the absence of external current or noise. This steady state solution is given by S * = (S * E , S * I ) for which:

0 = -S * E τ E + (1 -S * E )γΦ(S * E ) (4.6) 0 = -S * I τ I + (1 -S * I )Φ(S * I ) (4.7)
The roots of the above 2-dimensional nonlinear system were numerically determined by evaluating the local minimum using Powell's Method [START_REF] Powell | A hybrid method for nonlinear equations[END_REF] Unless otherwise specified, we depict the steady state values of all dynamic variables as relative change from the values observed at the baseline fixed point in 'down state'. Numerically determined root at this 'down state' is (S E0 , S I0 ) = (0.0004, 0.05). We measured the relative changes in synaptic activity in decible power (S (i) P ) such that:

S (i) P = log 10 ( S (i) S 0 )dB; i ∈ {E, I}
This quantity now represents all the large shifts in the neural dynamics uniformly.

Effect of External Inputs

Starting from one random initial condition for an example working point in each dynamical regime, we applied a square stimulus pulse lasting 1-s, with stimulus strength (or height of the square pulse) logarithmically varying between very weak (10 -5 nA ) to very strong (10 2 nA) input currents compared to the baseline excitatory and inhibitory currents (of the order 10 -1 nA). For the simplicity of presentation, we again converted the input currents to decibels or, relative 123 Chapter 4. Phase transitions in stimulus encoding as an effect of smooth conductance changes stimulus strength from the weakest stimulus strength (I 0,ext ) as follows: and 3.latency of the maximum response or the first peak (in early and late windows). We then quantified the probability that a specific statistic monotonically increases or decreases with the increase in stimulus strength by using a mutual information index (MII). This was done for each pair of working points defined by w EI and w IE as follows:

I (i)
M II(X, Y ) = 2I(X; Y ) H(X) + H(Y )
where, H(X) and H(Y ) gives the entropies of distributions of stimulus strength and the observed statistic. I(X; Y ) is the mutual information between the two variables which is given as follows:

I(X; Y ) = y∈Y x∈X p (X,Y ) (x, y)log( p (X,Y ) (x, y) p X (x)p Y (y) )
Pragmatically, both the values of stimulus strengths (X) and of the statistic in question (Y)

were first sorted and divided into bins with varying bin-sizes but stable bin-counts. This ensured that the entropy of both the distributions are equalized. Next, the joint-probability of this probability mass distributions were evaluated as the frequency of observing specific bin-values together. Finally, the mutual information was calculated on this normalized joint distribution histograms as described above. This normalized values were considered as mutual information index (MII). The entropy normalization ensured tha the MII values are bounded from 0 to 1.

And also that even if the bandwidths for the two variables are different if a monotonic increase or decrease in neural response statistic w.r.t the stimulus strength will reliably capture the desired reliability value. 

Measures of Latency Variability

In order to understand the latency variations with respect to the baseline noise at a specific working point and for a specific stimulus strength, we simulated 100 trials with same initial condition but different instance of baseline gaussian random process at each trial and applied a constant stimulus square pulse of strength ((I 0,ext = 0.05nA)), once the trial trajectories reached the steady state. At each trial, we computed the latency of the highest response during the entire duration of the stimulus presentation. Then for the same level of noise, we calculated the acrosstrial variability in these latencies by considering coefficient of variance (CV) i.e. S.D. of peak response latency divided by the average peak amplitude across trials. These CVs were evaluated with different levels of baseline noise, varying from [0.1 . . . 100] (a.u.). For the example presented in Fig 4 .5A, we chose the working point (w EI = 0.7, w IE = 3.5), i.e. the point where the system is in the the asynchronous bistable dynamic regime.

For evaluating whether the baseline noise completely translates into the across-trial jitter in peak latency at each working point, we first normalized the single-trial latency distributions to have a unit variance and zero mean. I.e. we removed the effect of average peak amplitudes, which can be different across trial depending on the pre-stimulus baseline. Then, we evaluated the Gaussianity of the resulting single-trial latency distributions using a Kolmogorov-Smirnov Test for standard distributions. The p-values of KS-test is plotted in figure 4.5D. If the latency jitter followed a standard gaussian distribution, p-value will be greater than chance level (p>0.05), while for any other distributions, the same will be less than the 5% confidence interval (p<0.05).

Numerical Integration

Equations 4.1-4.5 were solved by the 4th order Runge-Kutta integrator with a step size dt = 0.0001. When the noise was added, the stochastic differential equations were solved using a strong order 1 Runge-Kutta scheme, which solves Stratonovich integral. All the analyses and numerical calculations were performed with Python's Numpy, Scipy, and Matplotlib. A non-zero MI indicates there exists a neural coding of the incoming stimulus in this feature, while zero (in blue) represents absence of coding into this feature. (D) Combined codograms summarizing the amount of multiple simultaneous codes existing at each working point. The MI values at each point, were color coded such that an absolute rate coding is represented in red color, an absolute frequency code is represented by Green color and an absolute peak latency code is represented by blue color, while combinations of these colors represent that a combined neural code exists at that point (c.f. the color triangle in the right). Hence, a combination of rate code and frequency code is represented in yellow, a combination of rate code and latency code is represented in pink and the same for frequency and latency coding is represented in cyan. If all codes exist at the same time, it is represented in white. A clear evolution from absolute rate code to the various combinations of codes is visible as the stimulus strength increases.

Chapter 5 General Discussion and Perspectives

The main aim of this thesis was to understand the ontogeny and possible origins of stimulusdriven alterations to ongoing neural dynamics. The first study looked at task-relevant modulations in brain-state kinematics and response variability in order to characterize neural dynamics and the associated underlying manifold during face processing throughout early infancy. In the second study, we employed a simple, theoretical neural mass model to simulate the sudden shifts in circuit-level spontaneous-evoked relationships common to early infancy and its influence on population neural codes and especially on variability in latency to first peak responses. In Chapter 3, We started with the investigation of task-evoked changes to neural variability in awake, task-attentive infants during the first semester of life. To this end, we established that as early as 5-24 weeks of age, the ongoing neural trajectories are actively and significantly modified in awake infants in response to face presentation. Furthermore, we observed a complex, qualitative and quantitative age-related changes in this dynamics throughout the first semester of life. While some of these changes can be attributed to the improved face-processing capacities of infants at this age, others were independent of such functional improvements. Intrigued by these results in infants, we further extended our analyses in adults performing the exact same task as infants.

We confirmed the existence of transient and robust modulations of neural trajectories following rapid face presentation. Comparing these kinematic changes to classical Event-related Potentials (ERPs) allows us to interpret major face-processing stages in terms of robust switching from one metastable state to another (see below). We refer to all these different changes in trial-by-trial and moment-to-moment variability as Event Related Variability (ERV).

One surprising discovery from this previous study was the age-related increases observed in both, latency of the first ERP response (P1) as well as the increase in within-trial speed fluctuations around this ERP state. These results inspired us to investigate whether or not a circuit level mechanism can explain such maturation in variability of response latency. In Chapter 4 hence, we adopted a simple computational model that can simulate the average synaptic activity of a canonical local neural circuit. Here, we observed that indeed there existed a bistable dy-Chapter 5. General Discussion and Perspectives namical regime where the noisy baseline fluctuations in pre-stimulus network activity translated into a significant difference in the latency to peak response. In addition, this model allowed us to understand the effects of change in circuit conductances on the neural dynamics and how it translates into the encoding of the incoming stimulus. This study allowed us to put our results into the perspective of changing information coding during neural development. Below I reiterate some of the important new findings from the two studies and discuss their implications.

Metastable States, Maturation of Energy Barriers and

Rest-to-task Switching

In this thesis, we emphasized the importance of studying neural trajectories and brain state dynamics. A characteristic result from the first study was the identification of transient slowing down of neural trajectories in the vicinity of classical Event Related Potentials (ERP) components relative to other times. These results demonstrated that brain states defined in the vicinity of ERP components can be seen as 'dynamic attractors' [START_REF] Buonomano | State-dependent computations: Spatiotemporal processing in cortical networks[END_REF] or 'metastable states' [START_REF] Rabinovich | Dynamical bridge between brain and mind[END_REF]. Metastable states are defined as a regime in a dynamical system's phase space where the dwell times of the system are longer relative to other time-points and such transiently stable states can be separated from erratic random fluctuations at other times. The existence of metastable attractor dynamics in brain have been eluded previously in numerous theoretical descriptions [START_REF] Deco | The dynamics of resting fluctuations in the brain: metastability and its dynamical cortical core[END_REF][START_REF] Rabinovich | Transient cognitive dynamics, metastability, and decision making[END_REF]. Several empirical studies have also shed light on how such sequences of transiently stable neural states at mesoscale [START_REF] Camera | Cortical computations via metastable activity[END_REF][START_REF] Mazor | Transient dynamics versus fixed points in odor representations by locust antennal lobe projection neurons[END_REF] and macro-scale [START_REF] Baria | Initial-state-dependent, robust, transient neural dynamics encode conscious visual perception[END_REF][START_REF] Hutt | Sequences by metastable attractors: interweaving dynamical systems and experimental data[END_REF]) can be relevant for information processing in the presence of external stimulus. Theoretical studies have further demonstrated that despite their erratic trajectories, such switching in complex network states are able to perform any arbitrary logical operations using continuously evolving neural trajectories [START_REF] Neves | Computation by switching in complex networks of states[END_REF][START_REF] Buonomano | State-dependent computations: Spatiotemporal processing in cortical networks[END_REF]. Here we provided a clear evidence for the existence of such states during early infancy, their possible functional relevance during crucial stages of face processing and change in their prominence throughout maturation.

Both in infants and in adults, the dwell times in the vicinity of early processing states (P1) were much shorter than the later processing stages (P400) i.e. trajectory speed was much slower at later than earlier processing stages. However in infants we observed a qualitative and quantitative maturation effects in the reproducibility, trajectory speed and basin of attraction around these early (P1) and late (P400) metastable states. These effects are schematically summarized in Fig 5 .1(A). In brief, we observed that despite being largely erratic, neural trajectories were locally more confined as identified using various ERV measures. With age, the later stages of processing (P400) become dynamically more stable than the earlier stages (P1), as marked by their increased stability, reproducibility and smaller attractor basin (closer flyby trajectories) in older than younger infants (and in the same younger infants, for central faces than for lateral faces). As discussed in detail in Chapter 3, such qualitative shift was possibly related to different One study previously showed that individual perceptual ability in adults were positively correlated with the amount of post-stimulus variability quenching across trials, even when mean EEG activity did not correlate with task-performance [START_REF] Arazi | The magnitude of trial-by-trial neural variability is reproducible over time and across tasks in humans[END_REF].

Specifically, this study showed that individuals who exhibited stronger across-trial variability had steeper psychometric curves and hence, were able to discriminate between very fine-grained stimulus relevant changes [START_REF] Arazi | The magnitude of trial-by-trial neural variability is reproducible over time and across tasks in humans[END_REF]. Although we did not explicitly collect behavioural data on the perceptual ability of infants, we showed that the control of neural trajectories at different face processing stages evolved such that at each age, only the perceptually difficult task was marked by variability quenching or tighter control -"detection" of lateral faces (indicated by P1 response) in 5-12 weeks old infants, "recognition" (indicated by P400 response) in 16-24 weeks old infants but also of central faces in 5-12 weeks old infants, and "perception" or "familiarity" of faces (indicated by P400 responses) in adults. At least one previous study has shown that moment-to-moment BOLD signal variability is modified depending upon the task difficulty when adults perceived different levels of degraded images [START_REF] Garrett | Brain signal variability is parametrically modifiable[END_REF]. Although due to poor time-resolution of fMRI signals, dynamics of such fluctuations around local events could not be resolved. Given previous results showing that variability quenching is higher during consciously perceived ambiguous stimuli rather than unseen stimuli [START_REF] Schurger | Reproducibility distinguishes conscious from nonconscious neural representations[END_REF][START_REF] Baria | Initial-state-dependent, robust, transient neural dynamics encode conscious visual perception[END_REF][START_REF] Schurger | Cortical activity is more stable when sensory stimuli are consciously perceived[END_REF] and for attended rather than attended stimuli [START_REF] Arazi | Neural variability is quenched by attention[END_REF][START_REF] Broday-Dvir | Quenching of spontaneous fluctuations by attention in human visual cortex[END_REF][START_REF] Renart | Variability in neural activity and behavior[END_REF], we propose that the variability quenching observed at different processing stages either indicate a "more information processing"

or "higher effort" at those processing stage. Although more experiments are needed to confirm this hypothesis.

The sequence of transiently stable attractor states as has been observed here are known as heteroclinic channels, and the reproducible trajectories underlying these states are known as heteroclinic cycles or orbits [START_REF] Rabinovich | Transient cognitive dynamics, metastability, and decision making[END_REF]. In fig 1.7, we saw an example of the geometry of manifold that can generate such reproducible sequence of metastable states. The speed modulations here allowed inferring the energy landscape and the local geometry of such task-specific manifold. Neural activity can be imagined as the path traced by a ball rolling on top of such geometric manifold and the dynamics can be understood as 'forces' that shape the path of this ball [START_REF] Ebitz | The population doctrine in cognitive neuroscience[END_REF][START_REF] Gu | The energy landscape of neurophysiological activity implicit in brain network structure[END_REF]. Our results on speed modulations suggest that at the time when the ball (trial) passes closest to the evoked states, the speed of the ball is the slowest, hence the "energy" of the underlying landscape is highest at this moment. The amount of deceleration in trajectory provides the height of the 'energy barrier' that the ball (activity pattern) must cross in order to reach from one critical point to another (See fig 5 .2). The agerelated increase in the speed surrounding the first processing stage (P1) indicated that the effort necessary for the system to move from its initial brain state to task-relevant neural trajectory decreased with increasing age. I.e. the height of energy barrier reduced, possibly related to the older infants becoming faster to detect the stimuli as observed from previous results [START_REF] Adibpour | Right but not left hemispheric discrimination of faces in infancy[END_REF]. Interestingly, this age-related increase in speed around P1 occurred along with the increase in spontaneous speed fluctuations across all time-points considered, which is in agreement with the hypothesis that the increased temporal complexity of neural signal fluctuations make the system more flexible with age [START_REF] Lippe | Electrophysiological markers of visuocortical development[END_REF][START_REF] Mcintosh | Increased brain signal variability accompanies lower behavioral variability in development[END_REF]. Our results corroborate Switching the view that the spatiotemporal organization of the spontaneous activity in visual cortex V1 changes with age, making it easier to reach to the evoked state [START_REF] Orbán | Neural Variability and Sampling-Based Probabilistic Representations in the Visual Cortex[END_REF]. While Orban et al 's findings were specific to the visual cortex responses, here we have shown the same at the coarser spatio-temporal scale. However, we show that the faster detection does not necessarily suggest that the trajectory speed increases at all processing stages. Quite the contrary, and in line with previous results, the older infants and adults (but also younger infants presented with central faces) spent more time in the vicinity of later (P400) processing stage, suggesting a stronger task-related control on the spontaneous neural trajectory at later times as compared to early sensory responses [START_REF] Schurger | Cortical activity is more stable when sensory stimuli are consciously perceived[END_REF][START_REF] Arazi | Neural variability is quenched by attention[END_REF].

Overall, faster state switching (or increased within-trial speed fluctuations and increased moment-to-moment variability) would indicate that the dynamic repertoire of the system (i.e. number of possible energy states the system can be in at any point in time) increased with age [START_REF] Ghosh | Noise during rest enables the exploration of the brain's dynamic repertoire[END_REF][START_REF] Lippe | Electrophysiological markers of visuocortical development[END_REF]. This means that in older infants as compared to younger infants, the pre-stimulus brain state at the time of stimulus onsets were more variable in terms of their energy levels (fig 5.2). A few previous studies have attempted to link the features of the energy landscapes derived from functional MRI whole-brain activity to the individual differences in gray matter volumes across different brain regions as well as with subjective visual experience of an ambiguously changing percept [START_REF] Watanabe | Energy landscape and dynamics of brain activity during human bistable perception[END_REF]. Here we propose that depending on how far the system's initial state is from the early evoked state (or entry point of the evoked heteroclinic orbit), the heights of the energy barrier that the system needs to cross were also more variable across trials. This might explain the decreased prominence (and the higher between-trial variability) observed at P1 response in older infants (but also for younger infants while processing central faces). This early spontaneous-evoked dynamics is a complex function of hidden internal network state at the time of stimulus onset, strength of incoming stimulus, long-and short-range anatomical connectivity, synaptic strengths, and related information transmission delays (among many other parameters). Since all of these variables are impossible to track experimentally, we turned to a simple computational model to give mechanistic explanation for the spontaneous to taskevoked activity switching. In our second study we showed that considering the relationship between some of these parameters, we can indeed lay out the dynamical regimes in which a canonical neural circuit operates. Especially we showed that when the system moves from a low-firing regime to high-firing asynchronous or oscillating regimes, the latency of the first peak in population neural response depended on the baseline noise levels. Not only this, there existed a regime in this system where the latency coding was more prominent than the simple rate coding. In the context of our empirical results, this means that the latency to P1 flyby can be modified independently from the magnitude of closest flyby distance depending on the pre-stimulus brain state. However, a caution is required in interpreting the two results together.

In the empirical study (Chapter 3), variability in P1 responses depended on the network state defined at the global, whole-brain level neural activity, whereas in the modelling study (Chapter 4), the variability of responses were contributed by the random fluctuations in average-synaptic gating variable of local neural population. Although in the modelling study, we have indirectly taken into account the change in local network excitability due to long-range conductances, a systematic study with whole-brain computational model is required whereby the effect of wholebrain network state on latency to local neural responses can be quantitatively assessed. Since our computational model comprises of only a single canonical circuit, the observable dynamics is bistable, where network activity changes from stable low-firing activity to high-firing asynchronous or oscillatory regime, and hence we are only able to qualitatively model the effect on the first peak response. That said, our model is parsimonious in the sense that it only includes one excitatory and inhibitory neural population. A truly metastable or multi-stable behaviour arises by integrating large-scale noise-correlations structured by the bio-physically realistic longrange feed-forward and feedback anatomical connections and heterogeneity across local circuit dynamics [START_REF] Mejias | Feedforward and feedback frequency-dependent interactions in a large-scale laminar network of the primate cortex[END_REF][START_REF] Chaudhuri | A large-scale circuit mechanism for hierarchical dynamical processing in the primate cortex[END_REF]. It remains to be understood how such network states influence the spontaneous activity fluctuations in the down-stream regions as well

Development of Transient Neural Codes

as their impact on the latency variability during evoked responses.

Development of Transient Neural Codes

Of note here are the sharp transitions in the stimulus encoding modes as a function of smooth variation in excitatory-inhibitory balance of synaptic currents as we observed in our canonical local neural circuit model. As introduced in Chapter 2, the developing brain goes through many transient changes in local and long-range neural circuits starting from very early premature ages [START_REF] Dehaene-Lambertz | The Infancy of the Human Brain[END_REF][START_REF] Dubois | Structural asymmetries in the infant language and sensori-motor networks[END_REF][START_REF] Kolasinski | Radial and tangential neuronal migration pathways in the human fetal brain: anatomically distinct patterns of diffusion mri coherence[END_REF][START_REF] Kostović | The development of the subplate and thalamocortical connections in the human foetal brain[END_REF], with each change likely serving a crucial role in supporting the neural dynamics and consequently neonatal function at different ages [START_REF] Molnár | Transient cortical circuits match spontaneous and sensory-driven activity during development[END_REF]. While some changes such as post-natal maturation of GABArgic inhibitory neurons and change in their electrophysiological properties-are gradual, slowly progressing towards the adults levels [START_REF] Hensch | Critical period regulation[END_REF], other population level changes are abrupt as we have seen with the examples of the switch in rodent pups [START_REF] Colonnese | Spontaneous activity in developing sensory circuits: implications for resting state fmri[END_REF]. Similarly, at a very different scale, preterm human infants go through variety of gradual changes in their spontaneous EEG activity, with duration of discontinuities and bursts reducing with age and then disappearing around the time of birth [START_REF] André | Electroencephalography in premature and full-term infants. developmental features and glossary[END_REF][START_REF] Domínguez | A transient postnatal quiescent period precedes emergence of mature cortical dynamics[END_REF]. Such "bifurcation" in network dynamics where the meso-scopic and macroscopic population activity suddenly transition from one type of dynamics to another as a result of microscopic changes is what can be described from our modelling study. One recent study using a very similar two-population Wilson-Cowan computational model (as the one presented in Chapter4) had identified very similar dynamical regimes as the one described in our phenomenological model [START_REF] Romagnoni | Progressive alignment of inhibitory and excitatory delay may drive a rapid developmental switch in cortical network dynamics[END_REF]. These authors had quantitatively optimized the dynamical working point of the network to specifically observe the 'developmental switch' described by [START_REF] Colonnese | A conserved switch in sensory processing prepares developing neocortex for vision[END_REF]. The authors showed that gradual increase in the response delays of inhibitory population activity (as compared to excitatory response delays) could control the network dynamics and eventually the 'dynamical switch' in spontaneous activity dynamics as observed in rat LFP signals [START_REF] Romagnoni | Progressive alignment of inhibitory and excitatory delay may drive a rapid developmental switch in cortical network dynamics[END_REF]. Especially, they were able to show the transition from high amplitude "bursty" network regime (as observed in delta brushes and spontaneous activity transients (SATs) [START_REF] Tolonen | Development of the spontaneous activity transients and ongoing cortical activity in human preterm babies[END_REF]) in human infants and rodent pups, to the adult-like continuous, noisy asynchronous (steady state continuous) activity as observed just before eye opening in rats and shortly around the birth in humans [START_REF] Romagnoni | Progressive alignment of inhibitory and excitatory delay may drive a rapid developmental switch in cortical network dynamics[END_REF][START_REF] Domínguez | A transient postnatal quiescent period precedes emergence of mature cortical dynamics[END_REF]. The same type of switch from high amplitude oscillations to continuous asynchronous activity can be observed also in our model as a function of smooth relative changes in excitatoy-inhibitory synaptic strengths (See fig 4.1 and 4.3 in Chapter 4). Going beyond the previous computational study, we demonstrated in Chapter 4 that as a result of these transitions in network dynamics, similar shift in neural encoding of the external stimulus strength could also be observed. Especially, we showed that even during the low-firing 'down state', or bistable oscillatory regime, a strong enough stimuli could transiently induce oscillatory busts, while simultaneously encoding the external stimulus strength in both, neural response amplitude as well as frequency of the bursts. This encoding was strongest closer to the critical transition line between low-activity 'down' state and various high firing or low-and-high firing bistable regimes. I.e. even when the population activity is relatively "silent" (in down-state) or "bursty" (as in the case of oscillatory bistable regime), neural circuits poised close to the critical transitions are sensitive to the external stimulus strength.

As discussed in chapter2 in detail, the current literature on premature infants and rodent pups contradict each other in terms of the nature of neural responses to brief stimuli during the so called 'early', 'pre-sensory' or "bursting" mode. While a few rodent and preterm infant studies observed stimulus-induced "all-or-none" evoked delta-brushes [START_REF] Colonnese | Spontaneous activity in developing sensory circuits: implications for resting state fmri[END_REF][START_REF] Domínguez | A transient postnatal quiescent period precedes emergence of mature cortical dynamics[END_REF], others have clearly identified adult-like, linearly graded ERP response from the silent part of the pre-term neural activity [START_REF] Mahmoudzadeh | Syllabic discrimination in premature human infants prior to complete formation of cortical layers[END_REF][START_REF] Mahmoudzadeh | Functional maps at the onset of auditory inputs in very early preterm human neonates[END_REF] even before the said 'switch' in spontaneous network dynamics can be observed. While the former studies argue that in bursting period, rodent pups and preterm neonates are only able to a coarse detection of the presented stimuli, the latter, human ERP studies have shown a remarkable capacity of very early preterm neonates in discriminating the various features of auditory stimuli, as observed in the very different but stable ERP topographies across two different phonetic features of speech syllable and a graded responses to a repeated stimuli [START_REF] Mahmoudzadeh | Syllabic discrimination in premature human infants prior to complete formation of cortical layers[END_REF]. Simply by adding a strong noise to our toy-model, we can mimic the discontinuous, bursty spontaneous activity as observed in pre-term infants and rodents. Noise can allow the population dynamics to wonder between the transiently oscillating and low-stable state during resting condition. In such a model, an external stimulus can sometimes produce oscillatory bursts or a graded neural response depending on the pre-stimulus baseline neural activity of the system as well as the strength of external stimulus. Our "codograms" show that in both the cases, the stimulus strength can be encoded differently, in terms of mean amplitude as well as average frequency of the bursty rhythmic response across different trials. And hence, even during the immature bursty periods, a graded, ERP-like response is possible without the need for the adult-like asynchronus neural activity regime. Supporting the studies in human infants [START_REF] Mahmoudzadeh | Functional maps at the onset of auditory inputs in very early preterm human neonates[END_REF], we propose that infants do not have to wait for the adult-like continuous neural activity to appear to be sensitive to the fine-grained external feature of the stimulus. The existence of oscillatory bistable regimes are enough for the local circuits to collectively compute the features of the external stimuli or to produce a sustained neural activity. Currently, there remains many gaps in understanding how the discontinuous, bursty activity is generated. An early thalamo-cortical circuits as well as early born subplate neurons' connections to early migrating neurons cortical neurons have been proposed as giving rise to the neural bursts, while the 'silent' parts of the network activity is thought to be resulting from the cortical recurrent activity [START_REF] Colonnese | Thalamocortical function in developing sensory circuits[END_REF][START_REF] Molnár | Transient cortical circuits match spontaneous and sensory-driven activity during development[END_REF]. Furthermore, only a few studies have explored the effect of immature local recurrent dynamics on discrimination response of the incoming stimuli in rodents [START_REF] Smith | The development of cortical circuits for motion discrimination[END_REF]. In future, a more realistic computational model that takes into account 5.3. Implications for Information Processing and Infant Cognition these different types of interactions will be needed to understand the precise relationship between immature network circuits, its recurrent network dynamics, population codes that these circuits can support [START_REF] Avitan | Code under construction: neural coding over development[END_REF] as well as the possible state-dependent processing in these atypical, transient neural circuits.

Given the simplicity of our toy-model however, we cannot demonstrate the complex spatiotemporal EEG dynamics observed in very early pre-terms (as early as 10-weeks before term birth), in response to repeated auditory stimulation [START_REF] Mahmoudzadeh | Functional maps at the onset of auditory inputs in very early preterm human neonates[END_REF]. This is because, as discussed such succession of metastable ERP states requires hierarchical and parallel processing of the stimulus at this very early age. Whole-brain modelling studies have shown that heterogeneity in the local network dynamics across cortical regions plays an important role in such hierarchical yet parallel information processing [START_REF] Chaudhuri | A large-scale circuit mechanism for hierarchical dynamical processing in the primate cortex[END_REF]. Taking clues from the cortical gradients observed in T1/T2 weighted images of adult humans, one study estimated the realistic differences in the ratio of excitatory and inhibitory (E-I) synaptic strengths across sensory to associative regions [START_REF] Demirtaş | Hierarchical Heterogeneity across Human Cortex Shapes Large-Scale Neural Dynamics[END_REF]. An extensive parameter tuning of local E-I synaptic strengths was required to fit the model-derived whole-brain functional connectivity dynamics with empirical adult-data. This study showed a remarkable gradient in local area network dynamics, whereby dynamics of the sensory regions were tuned away from the boundary of critical phase transition, while the same for associative regions were poised closer to this boundary [START_REF] Demirtaş | Hierarchical Heterogeneity across Human Cortex Shapes Large-Scale Neural Dynamics[END_REF]. This study was not only able to reproduce spatio-temporal properties of empirical functional connectivity dynamics, but also demonstrated the precise spectral properties of resting neural activity as observed in adult LFP / MEG and EEG recordings [START_REF] Demirtaş | Hierarchical Heterogeneity across Human Cortex Shapes Large-Scale Neural Dynamics[END_REF].

Stimulation of such detailed whole-brain models tuned to micro-structural properties of early pre-term infants is required in order to explore the exact mechanistic role of "relatively silent" local area dynamics in producing spatio-temporally complex evoked EEG patterns. For obvious difficulty in collecting data at this very early age, the availability of diffusion tensor imaging (DTI), T1/T2 weighted images and resting state or task-based fMRI/ MEG/ EEG datasets in very early pre-term neonates currently remains limited, so does our knowledge about the mechanisms conferring the remarkable information capacity to human brain, right at the onset of neural activity as early as the third trimester of gestation. In future, with the availability of such large-scale datasets, similar whole-brain modelling studies precisely tuned to the realistic parameters of very early pre-term infant brain can fill this gap in our knowledge.

Implications for Information Processing and Infant Cognition

Although it may appear trivial at first, our dynamic description of event-related states departs conceptually from the traditional interpretations of ERP components. Traditional ERP analyses assume that the waveforms of each ERP components estimated from the trial-averaged activity is reliably evoked at every single trial, but is only distorted by the large background noise. What Chapter 5. General Discussion and Perspectives changes across trials is simply the relative amplitude or latency of these waveforms owing to this background noise. This was also our initial assumption while designing the flyby analyses presented in the thesis. However, as we saw in Chapter 3, at least in case of infants, the fact that the robustness of EEG topographies can be drastically different across different evoked components (despite signal-to-noise ratio remaining the same), suggests that it is in principle possible that the single-trial trajectories remain far away from some evoked states on some trials and pass closer at other trials. Does this distance and hence trial variability indicate behaviourally relevant information? In other words, does the changed neural trajectory at certain trial at least in parts indicate the change in information flow of the system? The metastable view of the brain and our methods to gauge variability take into account the fact that the ERP amplitudes and latencies at every single trial do not only depend on the initial brain state [START_REF] Baria | Initial-state-dependent, robust, transient neural dynamics encode conscious visual perception[END_REF] but also on the brain state changes during the course of a single trial.

Successful cognition relies on hierarchical and parallel processing of the information across brain regions. This hierarchical processing does not only depend on the anatomical connections between brain regions but also on the functional connectivity defined by the transient coordination of these brain regions [START_REF] Kopell | Beyond the connectome: the dynome[END_REF]. For e.g., one study recently showed that BOLD activation patterns across whole-brain could be predicted based on the "activity flow" over the topography of resting-state networks [START_REF] Cole | Activity flow over resting-state networks shapes cognitive task activations[END_REF]. Furthermore, the information transfers in task-specific brain regions were flexibly coordinated by the hub regions located in cognitive control networks [START_REF] Ito | Cognitive task information is transferred between brain regions via resting-state network topology[END_REF]. Indeed, the resting state functional connectivity itself is shown to change throughout the time [START_REF] Kopell | Beyond the connectome: the dynome[END_REF]. Such fast reconfiguration of functional networks during the course of experiment can hence influence the "information flows" at different stimulus processing stages such as the one defined by the P1 component or by the P400 component. In complex networks such as brain, even those regions not directly coding for the stimulus features can still take part in deciding the information flows and hence, the direction of the neural trajectories on the hypothetical manifold. Internal cognitive processes such as attention, arousal, top-down predictions or task-demand can reconfigure the large-scale networks (or "brain state") and hence whole-brain neural trajectory defined by the information flows on these networks [START_REF] Mccormick | Neuromodulation of Brain State and Behavior[END_REF]. Furthermore, noisy excursions of neural trajectories during the processing of stimulus can also occur due to the changed force field without apparent behavioural relevance. E.g. if the effective connectivity between the brain regions change at some time-point due to "structured noise-correlations" across brain regions, the information route at that specific time-point may also transiently change [START_REF] Kirst | Dynamic information routing in complex networks[END_REF]. In both these cases, the evoked responses available from the average signal may not always be sufficient or the most reliable representation of the single-trial evoked responses, whereas flyby to ERP states can capture more fine-grained single trial variations in the locality of the relevant stimulus-evoked state. For this theoretical description to be convincing, we must demonstrate its usefulness and behavioural relevance beyond traditional ERP measures. Experiments that quantitatively measure or modify internal variables such as infant's attention or expectations across trials can be 138 5.3. Implications for Information Processing and Infant Cognition a great resource for systematically understanding the functional relevance of our ERV methods. This is the motivation for presenting the two ongoing studies by our group in Appendix A and B.

The study presented in Appendix A, is led by Leroy et al in order to investigate attentional blink in 3-4 month old infants. In this study, single trial fluctuations in pupil size as well as eye gaze were tracked as a proxy for marking infant's engagement with the task on every single trial, which allowed us to test whether variability in single-trial neural trajectories were related to the physiological markers of infant attention. We also tested whether or not the latency to approach a specific state evoked by a salient stimuli had any serial attention effect on the processing of the upcoming stimuli. We present the summary of results briefly in Fig 5 .3 and in more details in Appendix A.

We designed the study presented in Appendix B, specifically to test the hypothesis that the top-down predictions actively control the force fields of the underlying manifold, singletrial neural trajectories, and hence between-and within-trial response variability. This study in addition allows us to understand the effect of prior expectations in ambiguity resolution during early infancy (3-6 month old infants). Figure 5.4 shows the basic idea behind designing this study. Infants can be trained to learn an association between a word and a specific informative (faces vs houses) vs non-informative (noise) image categories [START_REF] Kabdebon | Symbolic labeling in 5-month-old human infants[END_REF]. Once the symbolic labelling for categories are learnt, this word-category associations can be exploited in order to test the hypotheses of whether or not infant's predictions about the incoming stimuli can be modified in a category-specific manner as follows: After the initial associative learning phase, infants were presented with an ambiguous face-house (target) stimulus followed by one of the three category specific labels: face-specific, house-specific or noise-specific ('sham') word cues. Infant's response to an ambiguous features (mixed face-house category) can be then analyzed to understand how the neural response trajectories to this ambiguous stimuli evolve followed by the informative labels (predictive of face or house) as compared to those followed by uninformative labels (predictive of noise). Specifically we asked whether neural trajectories followed by the ambiguous stimuli preceded by the informative words should be more similar to their category specific clear image counterparts than those preceded by "sham" word (i.e. word 3). We further hypothesized that the brain state followed by the cue labels should be more reproducible after the informative cue (word 1 and 2) as compared to uninformative cue (word 3). And finally, we also aspired to test whether the pre-target activity can have information about the category specific response. This study is currently ongoing and the data will be analyzed after the thesis submission. In Appendix B however, we provide more details about the experimental design, analyses to be performed and details about some results on two separate adult pilot subjects.

In conclusion, these studies will allow us to explore the response variability and dynamics of the neural trajectories as a function of attention, arousal and top-down expectations by systematically manipulating these cognitive processes at early ages. The preliminary results presented On the early P400 flyby trials to teddy bear onset(left panel), the power-drop of tagged frequency was more sustained at the subsequent target (T2), while the power-drop for the late flyby to teddy-bear P400 template indicated only a transient power-drop in tagged frequency. Overall these preliminary results demonstrate the significance of flyby measures in tracking attention or arousal on salient stimuli and the subsequent stimuli. in appendix A also confirm that the ERV approaches proposed in this thesis are reliable and general enough to be used for other data-sets.

Methods for Estimating Manifold Dimensionality and Energy Landscapes

As partially demonstrated in Chapter 3 and Appendix A, one of the advantages of the methods developed in this thesis is its ability to track behaviourally relevant variables at single-trial Figure 5.4: Manipulating and Understanding the Effects of Prior on Ambiguity Resolution. Infants are familiarized with the word-image association pairs during habituation phase. Once the category specific associations are learnt, during the test phase, an ambiguous face-house image can be presented followed by the word-cues associated with each category (faces, houses or sham words associated with non-informative noise images). With sufficient delay between cue words and target ambiguous images, the effect of pre-stimulus brain state on the following poststimulus neural trajectories can be measured on trial-by-trial basis. The responses to ambiguous images followed by category specific cues can be further compared with the responses of category specific clear images sparsely spread across the test phase. See Appendix B for more details. resolution, which confers increased temporal resolution as compared to the trial-averaged evoked signals. This advantage derives from considering the multi-variate neural signals as a trajectory in higher dimensional space, where each dimension represents an activity spanned by one EEG sensor. Indeed, a lot of trial variability in ERP waveforms measured at an isolated sensor can be accounted for by considering the shape of ERP waveforms on all other sensors. In order to improve signal-to-noise ratio at single-trial level, we could employ these spatio-temporal correlations. This methodological advantage of topographic spaces is not new, and long been exploited by other analyses methods such as representational similarity analysis (RSA) [START_REF] Diedrichsen | Representational models: A common framework for understanding encoding, pattern-component, and representational-similarity analysis[END_REF], multi-variate pattern analysis [START_REF] Haxby | Multivariate pattern analysis of fmri: the early beginnings[END_REF] and single-trial decoding techniques [START_REF] Dehaene | Decoding the dynamics of conscious perception: The temporal generalization method. Micro-, meso-and macro-dynamics of the brain[END_REF] as well as spatial filtering [START_REF] Schurger | Reducing multi-sensor data to a single time course that reveals experimental effects[END_REF]. Our ERV analyses tried to deconstruct these partially "black-box" measures in order to reconcile the relationship between what is considered typically as 'signal' (directions that remains invariant across repeated presentations of the stimulus: ERPs) and what is discarded as 'noise' (directions not directly coding for the stimulus features: Spontaneous fluctuations or response variability).

The strength of our analyses stems not only from using the temporal structure in highdimensional neural trajectories but also from explaining the (ir-)regularity of these patterns by means of dynamical systems concepts. Numerous studies show that during task conditions and in general during rest, dynamic neural trajectories vary only in a few selected dimensions [START_REF] Mazor | Transient dynamics versus fixed points in odor representations by locust antennal lobe projection neurons[END_REF]Shine, Breakspear, et al., 2019;[START_REF] Müller | Brain state kinematics and the trajectory of task performance improvement[END_REF]. Moreover, existence of metastable states even during rest suggests that the neural trajectories are briefly and locally confined into a much lower dimensional space than total dimensions recorded by EEG sensors.

Our estimation of brain-state kinematics can be improved substantially by finding the dimensions relevant for the specific task session [START_REF] Müller | Brain state kinematics and the trajectory of task performance improvement[END_REF]. Further, the fact that not all EEG sensors (dimensions) independently code for behaviourally relevant information also means that it should be possible to reduce the dimension of this data in a way such that few selected patterns (and hence a lower-dimensional neural trajectories) can explain the task-session relevant behavioural variables of interest (Shine, Breakspear, et al., 2019). We made use of this assumption in Appendix C, and show a realistic application of this theoretical assumption. We hypothesized that we should be able to interpolate the missing, artifact-contaminated entries of our neural dataset if the neural trajectories span only a low-dimensional manifold. We used a low-rank matrix completion algorithm along with an optimization technique previously proposed by [START_REF] Keshavan | Optspace: A gradient descent algorithm on the grassmann manifold for matrix completion[END_REF] and showed that this algorithm can interpolate the missing entries up-to some upper bound on accuracy. Inclusion of higher number of trials after interpolation sufficiently improved the statistical power of some of the traditional ERP analyses but also of our ERV analyses.

One of the methodological and conceptual limitation of our study presented in Chapter 3 is that we restricted our flyby and within-trial speed analyses to a few well-known evoked states.

While this helped us to indirectly understand the geometry of the underlying neural manifold locally in the vicinity of these precise ERP template states, in the presence of tremendous trial variability, trial averaged evoked states can not always be considered as reliable templates for estimating "hidden stable neural states". This opens up new technical challenges as identifying neural states without any a priori knowledge about evoked responses is proven much more difficult. Our analyses would benefit from other sophisticated methods that can derive the possible sequence of latent metastable attractor states in unsupervised manner [START_REF] Beim Graben | Detecting event-related recurrences by symbolic analysis: applications to human language processing[END_REF][START_REF] Cunningham | Dimensionality reduction for large-scale neural recordings[END_REF].

The field of machine learning is ripe with the unsupervised clustering and non-linear dimen- Chapter 5. General Discussion and Perspectives sionality reduction algorithms that can make use of higher order spatio-temporal regularities in neural data to estimate cleaner metastable state sequences [START_REF] Roweis | Nonlinear dimensionality reduction by locally linear embedding[END_REF][START_REF] Meyer | Introduction to autoencoders[END_REF] and even the geometry of underlying manifold [START_REF] Watanabe | Energy landscape and dynamics of brain activity during human bistable perception[END_REF][START_REF] Watanabe | Energy landscape and dynamics of brain activity during human bistable perception[END_REF][START_REF] Vyas | Computation through neural population dynamics[END_REF]. Here I give an example of the utility of one type of artificial neural network model for this purpose: namely a Gaussian Spherical Restricted Boltzmann Machine (RBM) [START_REF] Decelle | Gaussian-spherical restricted boltzmann machines[END_REF] 8 . RBMs are simple generative neural network models that can 'learn' the hidden statistical regularities in multivariate neural time-series and can be used for dimensionality reduction of raw neural trajectories in lieu of Independent Component Analysis (ICA) or Principle Component Analaysis (PCA) methods. For e.g., they have been previously used to identify the intrinsic resting state networks from regional fMRI time-series [START_REF] Hjelm | Restricted boltzmann machines for neuroimaging: an application in identifying intrinsic networks[END_REF]. While the linear matrix factorization algorithms such as ICA or PCA assume that the empirical neural timeseries are generated by linear combination of various spatially distributed neural sources, RBMs can also identify non-linear mixture of the hidden sources. When neural activity patterns at each time-point are inputted to the visible layer of this network, initially, a "stochastic decision" is made about whether an activity of specific node (an electrode, a brain region or at single neuron) should contribute to the first approximation of the low-dimensional representations.

Then during the "reconstruction" phase, the hidden layer outputs are played back to reconstruct the approximation of the visible layer activity. Weights between visible and hidden layer networks are automatically optimized such that the "replayed" network activations are as close to the original neural activations presented at visible layer. These networks use an "energy function" i.e. the joint probability of observing a specific visible layer and hidden layer activity patterns together, to update the weights of the networks. Applying some constraints on the traditional RBMs allows [START_REF] Decelle | Gaussian-spherical restricted boltzmann machines[END_REF] deriving the 'learning dynamics' in these networks.

i.e. to understand how the weight matrices evolve at each learning step. It turns out that such energy-based description of this modified neural network model has the similarity to the statistical mean field models called spin-glasses and hence, can be used to analytically estimate the fixed points of the low-dimensional manifold and profiles of energy barriers between them (See 5.5 for more details) based simply on the probability of observing some activity patterns more than others. Hence, these models allow a quantitative analyses of the dynamical concepts we have so far used only in metaphorical sense.

During my PhD work, we briefly explored the utility of Gaussian Spherical RBMs. Here I give a brief description of the interesting aspects that such models can reveal: Fig 5 .5A shows a schematic of example application of gaussian spherical RBMs. BOLD signal resting-state patterns from 89 brain regions at each time-point were parsed as samples to the RBM and learning was stopped after when the desired number of fixed-points (n=11) have been reached by the 5.5. Concluding Remarks model. In fig 5.5B, the original time-series is observed in the left (after reducing dimensionality for visualization purposes), Each point represents an activity pattern at some time, and hence this plot represents a low-dimensional state-space spanned by the network. On the right side, the same activity patterns have been projected to the hidden space. Now a temporal structure can be appreciated as visible in the geometry of the ring-like manifold. Instead of studying the original noisy data, hence the brain-state kinematics can now be studied on the neural trajectories in the hidden space. An important distinction from typical RBMs with the gaussian spherical ones is their ability for a thermodynamic interpretation of the "learning dynamics", which also provides us with the height of the energy barriers between the identified fixed points.

In sum, use of such data analysis methods along with brain-state kinematics analyses developed in this thesis, will in future allow us to quantitatively analyze various theoretical concepts that we have only discussed metaphorically in this discussion.

Concluding Remarks

Brain's intrinsic activity, right from its genesis, and down to the simplest sensory regions, presents itself with a complexity and diversity that is intriguing for the researchers dealing with the problems of representation, cortical computations and information encoding in the brain.

We are only at the beginning of understanding the role of such ubiquitous variability in normal brain functioning, its co-ordination across spatio-temporal scales, its development throughout the transient changes in neural circuits, its interaction with the incoming information and its relationship to the higher-order cognitive processes. In this thesis, I built upon the many previous works investigating these questions by especially focusing on the developmental and dynamical aspects of the neural variability.

This thesis collectively provides a comprehensive theoretical, empirical and mechanistic account of neural response variability and its modulation due to: 1. maturation during early infancy, 2. network level-mechanistic changes, and 3. intrinsic cognitive processes such as attention or prediction. My first PhD work (chapter 3) provided the first experimental evidence for structured modulations of neural response variability in the first 6 months of life. This study led us to speculate that state-based computations on low-dimensional manifold and population-level neural dynamics may be two key components giving rise to the ubiquitous trial-variability. In chapter 4, then we provided an evidence for state-dependent encoding of the incoming stimulus and its dependence on the maturation of intrinsic mesoscale network properties. In this study, we also numerically established the relationship between dynamical state-switching and response latency variability. Further experiments are needed to confirm the relevance of neural variability for cognition during early infancy. To this end however, we briefly demonstrated relationship between trial-by-trial variability and physiological markers of infant's attention (Appendix A).

We also presented an experimental design and proposed analyses that can definitely provide evidence for the state-dependent processing in the infant brain (Appendix B). Finally we show that if the low-dimensional manifold is indeed a relevant dynamic description for explaining both the spontaneous and evoked activity, then we can use these principles for practical applications such as interpolation of missing entries in multi-variate neural recordings using the information available on the low-dimensional spatio-temporal relationships (Appendix C).

To conclude, in this thesis, we stress that the interaction between intrinsic neural dynamics and incoming information (and hence the resulting neural variability) is not merely a subtext, but an important aspect of healthy maturation of the brain.

Part III

Additional material

A.2. Methods experimental paradigm and the preliminary results acquired so far.

A.2 Methods

A.2.1 Task Paradigm

Fig A .1A explains the experimental paradigm. Each trial started with a "salt-and-pepper" noise texture constantly flickering at 10Hz in left and right sides of the screen, along with a salient, colored teddy bear (target T1) in the central visual field. This salient stimulus was used in order to keep the infants gaze in the center. After a variable time SOA (stimulus onset asynchrony) (400,800 or 1200ms), a stimuli pair made of a face and a scrambled face appeared briefly (for 500 ms) on each side of the teddy bear (target T2). The location of face stimuli (either in left or right hemifield) was chosen pseudo-randomly at each trial and this face acted as a spatial 'cue' for the clear face appearing later. In 1 3 rd of the trials, cue was omitted, leaving only a teddy bear on the screen for the entire duration. After a fixed delay of 1.6s post-T2 onset, the teddy bear disappeared and a the face reappeared as a feedback (T3) on the same side where it had appeared before. The flickering of the screen on both hemifields was kept on for the entire duration of the experiment. Eye movement as well as neural entrainment at the tagged frequency was measured at every trial. At T2 onset, the level of flickering (tagging) drops because the stimulus masks the noise texture. Thus, we expected to see a drop in neural entrainment, ie lower EEG power at the tagged frequency, when the infants are paying attention to T2.

For the purpose of current analysis, we are only interested in the first two targets: the teddy bear (T1) and the salient stimuli pair (T2) appearing after the teddy bear. Specifically, we wanted to understand whether or not infant's engagement with the salient teddy bear stimulus had an effect on the processing of the following face-mask stimuli. We studied variability of T1-related EEG components using fly-by methodology to uncover modulation of the attention bottleneck across trials.

A.2.2 EEG Pre-processing

After epoching and removing artifacted data with the pre-processing algorithm developed in the lab, signals were band-pass filtered in [1-15] Hz frequency band. No baseline correction was applied but at each time-point, topographies were re-referenced to channel-averaged values. A 30-ms sliding-window smoothing was applied to voltage time-series and the resulting time-series were z-scored across time.

B.2. Study Design

instructed to play these videos once per day to infants, starting from J-3 (i.e. for 3 days from the lab testing). In these videos, 5 different exemplars of face, house and noise textures were included. This was done in order to improve infants' exposure to the experiment and hence learning in the lab.

Testing part: Each test trial lasted for about 5000 ms. The trial structure was very similar to the one in training part, however, the timing between 'cue word' and the target image was kept longer this time (2000 ms). The longer time was chosen so that the pre-stimulus brain state for target image can be well separated from the responses to the preceding cue onset. Moreover, as described before, in 66% of these trials, instead of clear images, we presented the face-house superimposed ambiguous images. While only for 33% of the trials, clear faces , houses or noises were also presented consecutively after their respective cue words. In order to make sure that the infants can differentiate the word-onset followed by image-onset trial structure, and not the other way round, we were obliged to keep the temporal duration between image onset and the word onset of the following trial longer than 2000 ms, Hence a 3000 ms of delay was chosen between the image onset of one trial and the word onset of the consecutive trial. 3 trials for each category were presented as block design (repeated 3 times each), and the later trials were pseudo-randomized. During test part, the word-image onset were completely pseudorandomized. I.e. any category specific word could follow any other, with either ambiguous or clear images. Pseudo-blocks of 9 randomly distributed trials were used in order to make sure that each of these 9-trial blocks contain the desired word-image pair distribution (i.e. 6 out of 9 times, images should be ambiguous images while 3 times clear images (random from face, house or noise), each of these 6 repetitions of ambiguous image are equally but randomly preceded by the three cue words.)

Participants: We are currently recruiting 14-20 weeks old infants in our cohort.

Stimuli: Three bi-syllabic words were generated by concatenating synthesized consonant/vowel (CV) syllables. The three words chosen included: /Ka/-/fou /, /Pau /-/van/and /Tou /-/yon /. None of these words had meaning however, they contained three distinct sets of consonants and vowels from French language ensuring that the CV from the three words remain sufficiently different from each other. The syllables were generated with a fixed duration of 250 ms and were digitized at 22,050 Hz. The syllables were concatenated to form bi-syllabic words (duration, 500 ms),after normalizing in their spectral properties.

For the target images, we chose two category specific gray images: A young adolescent male face and in similar contrast, a house image. A noise texture was created by superimposing face and house images and randomly reshuffling the pixel intensities for 500 times. When infants were "home-trained" they were exposed to 5-other exemplars of the same categories. A doubleexposure ambiguous image was created by fusing face-image with different opacity (varying from 50% to 100% opacity) on top of the opaque house image. All images were further equalized in B.2. Study Design terms of their lower-level features such as contrast means and histograms while still keeping the perceptual features. This was done using a shine toolbox. We ran an adult-pilot to understand the perception of these images in adults and then selected the image with 70% face-opacity on top of the house image. We describe this procedure in the next section.

B.2.1 Adult Pilot for Selection of Ambiguous Face Thresholds

An adult participant (26 yo, male) was presented with the ambiguous face-house images chosen at random from the 5 opacity levels as described in figure B.2. Moreover, a clear face, clear house and a noise image was also included in this stimulus set. Each image lasted for 500ms followed by a 700-900 ms of brief pause in between and each image presentation was accompanied by a brief bell sound. Adult seated upright while EEG was recorded using 64channel dry-electrodes bio-semi EEG head cap. The results are presented in fig B.2 (bottom panel). An all-or-none face-related N170 Event-Related Potential Response (ERP) component was observed ∼ 200 ms after stimulus onset on right occipital electrodes only for the faces with opacity levels 70% and above (For more details on this face-ERP component see [START_REF] Furey | Dissociation of face-selective cortical responses by attention[END_REF]). Further, in this response, a graded effect of face opacity levels was also observed.

Moreover, the topography of face-like and house-like responses were very different. These results suggested us that a collective threshold of ambiguous image can be kept at 70% face-opacity level for infants, which will be the lower bound for detecting faces in adults.

In addition, the same pilot experiments were run for infants of various ages, interspersed during the break of other similar experiment. Although the results were not fully conclusive, we decided to go with the 70% face opacity image, since that was the lower threshold for perceiving clear face for the adult pilot.

B.2.2 Adult Pilot on Task

A separate adult participant (28 yo, male) was first familiarized with the task using the same home-training video as infants for ∼ 2 -3 mins (while setting up the electrodes). This video helped the participant familiarize with the task structure and to generate word-category associations. After this, EEG signals were recorded with 128-electrode Hydrocel GSN cap, while the paradigm explained in Fig B .1 was presented. However, because adults do not generally require a lot of incentive to remain engaged with the task in comparison to infants, the feed-back "bobbing" of images and attention grabber sounds were removed. With this simplification, the final experiment looked like this: A training part with clear face, house and noise images included a word onset followed by the image onset with 1s delay between them, and finally the trial offset after a variable delay of 2.25-2.5s delay from image onset.

During two distinct test sessions, two ambiguous images were presented (with face opacity of 50 % in the first session and 70% in the second session). Each ambiguous image was followed by either the 'face word', 'house word' or 'sham word'. The word onset was followed by the One adult pilot (26 y, male) was tested with the randomly repeated presentation of one out of these 8 images for 500 ms. An all-or-none N170 response can be detected on the posterior electrodes for the ambiguous images with face-opacities greater than or equal to 70%. Images perceived as "house" had distinct topography as compared to those perceived as face.

C.3. Introduction amplitude voltage fluctuations are a norm rather than an exception. On the other hand, long continuous data recording is difficult to obtain due to their low attention spans, fatigue and common sleep episodes at this age. All of these problems result into very high amount of trial rejection in infant studies. For example, it is common to have 100-300 trials per experimental condition in healthy adults, while in children and infants, usable trials can be as few as 30 or less. To avoid rejecting too many trials -especially when they are so precious because so limited in number as in the case of infant experiments-, any algorithm that can approximate the lost signal to some extent becomes extremely valuable ( [START_REF] Maguire | Improving data retention in eeg research with children using child-centered eye tracking[END_REF][START_REF] Bell | Using eeg to study cognitive development: Issues and practices[END_REF]).

A common practice in the current electrophysiology analyses is to detect the possible noise sources either manually or using automated artifact detection algorithms, reject the noisy trials and possibly repair (or interpolate) signals if the contamination of individual trials is minimal ( [START_REF] Luck | An introduction to the event-related potential technique[END_REF][START_REF] Huang | Eeg/erp data analysis toolboxes[END_REF]). Since many current evoked-analysis paradigms (such as ERPs, ERFs, ERD, ERS etc) rely on the averaging of signals across trials and across subjects, they require large number of trials to yield robust and significant findings as inter-trial variability is very large. One may hence want to increase the amount of trials by relaxing the criteria for artifacted trial exclusion, however this would further increase the noisiness of the data. Therefore, there is always a trade off to maintain between the number of retained trials and the amount of noise being included for evoked activation analyses. If the artifact rejection protocols usually applied for typical healthy adult populations had to be used as well for experiments in atypical populations, the number of excluded trials would be too large. Therefore, relaxed rejection criteria are used, resulting in the inclusion of time-series with way more sporadic artifact-related 'gaps' than in standard studies. This situation suggests an even more dire need for an artifact rejection and repair algorithm. Independent Component Analysis (ICA) or Signal Space Projections (SSP) are common candidates for artifact detection, rejection and/or repair in healthy adults ( [START_REF] Viola | Semi-automatic identification of independent components representing eeg artifact[END_REF][START_REF] Gramfort | Mne software for processing meg and eeg data[END_REF][START_REF] Uusitalo | Signal-space projection method for separating meg or eeg into components[END_REF]). These techniques remove the noise by separating the common known sources of contamination such as heartbeat, ocular movements due to eye blinks or muscle movements. Since these artifacts are periodic, have a single noise source and often include high amplitude fluctuations, they are easy to detect by ICA or SSP. However, large voltage fluctuations of actual neural origin -which are more common in recordings of atypical populations than of healthy populations ( [START_REF] Hoehl | Recording infant erp data for cognitive research[END_REF]) and in infants relative to adults, due to skull weak ossification and brain immaturity -may be more difficult to separate from fluctuations due to other environmental or biological noise sources. [START_REF] Fló | Automated pipeline for infants continuous eeg (apice): a flexible pipeline for developmental studies[END_REF] showed for example that ICA does not improve ERP robustness in young infants. Moreover, these algorithms cannot correct for the motion artifacts that are very frequent and randomly distributed along the experiment. A common practice in adults is to simply omit the epochs containing motion artifacts based on manual inspection after ICA or SSP has been applied. The resulting gaps must then still be fitted by a suitable artifact repair algorithm.

Here we propose a novel artifact repair method that is agnostic to the sources of artifacts.

C.5. Results

which data quality was marked insufficient in the original cohort (without reconstruction) were removed from further comparison. (Fig C .5A represents the experimental paradigm, described in greater detail by [START_REF] Adibpour | Right but not left hemispheric discrimination of faces in infancy[END_REF]. The comparison between ERPs obtained after data reparation with the two considered methods are discussed later and depicted in figure C.5C.

C.4.6 Between-trial Variability

Recently our group and others have shown that the single-trial variability of each subject can serve as an important marker of cognitive development and flexibility in infants and children [START_REF] Naik | Eventrelated variability is modulated by task and development[END_REF][START_REF] Vakorin | Variability of brain signals processed locally transforms into higher connectivity with brain development[END_REF]). Indeed, even if part of between-trial variability could be due to unwanted environmental and biological noise, when these noise sources are sufficiently removed, the remaining between-trial variability can reflect underlying dynamical changes [START_REF] Mcintosh | The development of a noisy brain[END_REF]). Here we considered how our artifact reparation procedures can improve as well the quantification of between-trials signal variability, beyond ERP analyses.

Specifically we focus on neural trajectory variability in a time-range matching the P400 response (i.e. a 400-600 ms peri-stimulus time window), which displays stronger maturation of "Event Related Variability" (ERV) across age during early infancy (see [START_REF] Naik | Eventrelated variability is modulated by task and development[END_REF] for details).

To evaluate between-trial variability, we calculated, (following [START_REF] Naik | Eventrelated variability is modulated by task and development[END_REF]), pairwise correlation distances between different trials at each time-point and averaged these distances over the time-range of interest for each subject. We then compared this metric between very young (5-12 weeks old) and very old (16-24 weeks old) infants, first with the original data (with Spline interpolation) and, second, using low-rank matrix completion signal reconstruction (cf. figure C.5D).

C.5 Results

C.5.1 Algorithm performance benchmarking via surrogate artifacted data

As described in the previous Methods section, we generated a library of ∼ 10 5 realistic patterns 

C.5.4 Between-Trial Variability Quenching

As demonstrated in the previous section, our method was able to successfully reconstruct ERPs better than the Spherical Spline method. In a previous study by our group ( [START_REF] Naik | Eventrelated variability is modulated by task and development[END_REF]) we have shown that the variability of neural trajectories in response to stimuli was C.6. Discussion the reparation of sparse artifact damages. For instance the STAR method by (de Cheveigné, 2016) also adopts a linear projection strategy by attempting to estimate missing sections of the data in terms of the linear covariance structure of data from observed channels. There are two key differences with our methods. First, in our approach we perform local projections on short chunks of the data, rather than on the whole time-series. In other words, the linear model for projection is locally adjusted rather than globally determined, so different projection matrices can be eventually used for different individual gaps within a same recording. Such local adjustment could however be implemented even in the STAR method, estimating different covariance matrices for different data segments. A second, more fundamental difference is our emphasis on low-dimensionality. In a covariance-based approach, such as STAR, the underlying completion model has always the same dimensionality of the original data. In our case, on the contrary, we explicitly assume that the right completion model has a smaller dimensionality than the recorded dataset. This is a strong assumption, potentially prone to information loss. The justification of our low-dimensionality ansatz is not of a methodological nature, but reflects a prior hypothesis motivated by experimental findings. Indeed, a growing amount of literature shows that neural signals are redundant due to high spatio-temporal correlation of spontaneous activity observed at many different scales [START_REF] Ganguli | Compressed sensing, sparsity, and dimensionality in neuronal information processing and data analysis[END_REF][START_REF] Gao | A theory of multineuronal dimensionality, dynamics and measurement[END_REF]. This reflects the fact that neural trajectories unfold over low-dimensional, brain state specific manifolds, due to both learning and the self-organized collective nature of brain network dynamics ( [START_REF] Chaudhuri | Computational principles of memory[END_REF][START_REF] Pillai | Symmetry Breaking in Space-Time Hierarchies Shapes Brain Dynamics and Behavior[END_REF]Shine, Breakspear, et al., 2019)). The local geometric structure of neural activity manifolds thus constrains the way in which neural activity configurations can fluctuate and effectively reduce the dimensionality of the space in which these configurations can be sampled. Our method intends to take advantage of this hypothesis by learning the local tangent space orientation of the unknown underlying manifold sampled by multi-variate EEG time-series. Hence, unlike other interpolation methods, our method does not simply fill the missing entries when artifacts were detected, but completely regenerates a 'fake' data matrix under the local low-dimensionality ansatz. We have checked, however, that, for observed entries, the correlation between actually measured activity values and the regenerated ones is nearly perfect (cf. Fig. SC.2B). This means that the lowdimensionality ansatz is not completely "out of the blue sky" but correctly embeds an essential aspect of the actual data. By constraining the regeneration of missing entries to be performed on locally adjusted linear spaces tangent to the neural trajectory manifold we automatically perform a denoising operation, as noise causes trajectories to transiently departs from the manifold. In this sense, the reduced but still significant performance of rendering for "hidden" (i.e. surrogate missing) data matrix entries could be explained by the fact that the local high-dimensional noise component of the signal cannot be regenerated but just its low-dimensional trend.

With regards to the actual EEG data analyses discussed by Fig. C.5, it may then seem suprising that result quality can actually be improved. Indeed, because of data processing inequality, no algorithm, independently from how powerful and sophisticated it is, can recreate Low-Rank Matrix Estimation permanently lost information. A solution to this apparent paradox may be that the irremediably lost information conveyed by artifacted data sections is redundant with information present in some other observations, either of activity in other channels or even of the same channel at different times outside its corrupted sections. Because of redundancy, this information is equivalent to the lost one. However, because of the technical difficult of handling artifacted channels, too much data are usually discarded, thus throwing away as well usable "copies" of the missing information. Ultimately, signal repairing allows keeping more trials. Besides the fact that this increased sample size boosts statistical power per se, it does it in a reliable and sound manner, as the new information injected in the analysis by the additional included trials is genuine and not uniquely a random guess. This is also the reason why not only ensemble-level ERP analyses of from signal repair. Our procedure does not limit itself to infer a generic trial-group level signal trend common to multiple trials (which would be enough to improve ERP estimation, but not single-trial-level analyses). On the contrary it actually infers information about activity within gaps at specific spatiotemporal locations extracting it from its redundant copies dispatched at different spatiotemporal locations. In other words, each trial can be individually regenerated at a certain extent, and not only average activity. This is a crucial asset of our method, opening the way to its applications in study in which the functional role of between-trial variability is explicitely investigated [START_REF] Churchland | Stimulus onset quenches neural variability: a widespread cortical phenomenon[END_REF][START_REF] Arazi | Neural variability is quenched by attention[END_REF][START_REF] Mccormick | Neuromodulation of Brain State and Behavior[END_REF][START_REF] Naik | Eventrelated variability is modulated by task and development[END_REF]).

Here we illustrated only one proof-of-concept application of our method to a high-density EEG dataset including first semester of life infants [START_REF] Adibpour | Right but not left hemispheric discrimination of faces in infancy[END_REF][START_REF] Naik | Eventrelated variability is modulated by task and development[END_REF]. However, given the generality of this method, it can be applied to any multi-sensory neural data including LFP, MEG and ECoG to name a few. However, the optimal hyperparameters to be selected could be different for different datasets and types of signal. In the case of our example application, we estimated optimal parameters based on bootstrapping library of surrogate artifacted data which was highly tailored to the specific dataset we wanted to complete. Precisely the same procedure could be adapted to other datasets, for different scientific problems and different modalities of recording, thus opening the way to a dataset-specific optimization of repairing procedures, potentially superior to benchmarking with simulated signals from generic statistical models (cf. e.g. (de Cheveigné, 2016)).

C.6.1 Limitations and Future Work

One of the main limitation of our OptSpace-based method is its time complexity. Unlike most interpolation techniques, this method is applied not just to the peri-stimulus epoched times, but on the entire data matrix of continuous data artificially segmented into blocks of reasonable sizes. Such a "holistic" approach is needed as we need the whole data to infer a bundle of hyperplanes locally tangent to the hypothesized but unknown neural activity manifold. In our procedure, an optimization step is iterated as many times as the number of time blocks in C.7. Conclusion which the continuous multivariate time-series is divided. While multiple iterations are needed to improve the accuracy of the inference of missing values, each of these optimization steps scale linearly with number of missing entries |E|, rank r and blocksize n as time complexity is O(|E|r log n). Since the computational cost of applying our data repair method is not negligible, one should consider beforehand what is the expected level of improvement that its application could yield for the specifically planned data analyses. When studying, for instance, data from healthy adults in highly stable experimental conditions, the gain from applying data completion could be so low that the additional time (and CO 2 ) expenditure needed for signal repair may not be worth to undertake. There are cases, however, such as studies involving patients of Parkinson's or Alzheimer's diseases of elderly subjects or, young children and infants, in which increasing trial retention is an absolute necessity, as the degree of signal corruption due to artifacts is very high. It is thus especially for these "atypical cohorts" that we expect our method will serve as a valuable resource.

We note that low-rank matrix completion is a machine learning optimization problem, whose range of applications goes well beyond signal repair. This means that the very active research in other research fields -as e.g. compressed sensing ( [START_REF] Ganguli | Compressed sensing, sparsity, and dimensionality in neuronal information processing and data analysis[END_REF]))-may yield in a near future superior and faster algorithms for matrix completion. As our pipeline is not built ad hoc for EEG signal repair, but capitalizes on the encounter between a general hypothesis -low dimensionality and activity-and an equally general and widespread algorithmic problem, it will be possible to profit of any advances obtained in different fields, simply by replacing the OptSpace step with any other better algorithm performing the same low-rank matrix completion task.

C.7 Conclusion

Low-Rank Matrix completion method is able to successfully repair artifacts without any assumptions about the underlying sources that might have generated these artifacts. Taking advantage of the combined spatio-temporal structure of the neural data, this method is able to successfully reconstruct the signal of interest not just for the evoked activity but also for intrinsic neural activity. This method significantly improves trial retention, which in many cases further improves the effect sizes during hypothesis testing. Such a method improves the usability of noisy EEG signals, a critical aspect especially when the number of rejected trials tends to be large, as in atypical and pathological cohorts. 
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Figure 1

 1 Figure 1.2: EEG Microstates and their similarity to BOLD Resting State Dynamics. (A) Microstates are quasi-stable EEG patterns whose intermittent switching at the sub-second timescale has been related to similar switching in fMRI resting state networks. (B) A random walk embedding analysis of microstates time-series shows that their dynamics at slower and faster time-scales are self-similar. Figure adapted from (Van de Ville et al., 2010) (C) Activity in many spatially distinct voxels co-vary with one of the four EEG microstates, and spatial patterns of these covariations reveal correspondence between each of the 4 EEG microstates to four of the resting state networks. Figure adapted from[START_REF] Britz | Bold correlates of eeg topography reveal rapid resting-state network dynamics[END_REF] 
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 1 Figure 1.3: Arousal related Global Brain States change Responsiveness of Neurons and Neural Populations (A) During epochs of faster EEG waves, single neurons and neural ensembles in anesthetized rat's olfactory cortex are more responsive to odors than during the slow wave epochs. (top): EEG recordings (middle) single trial, single unit recording (bottom) across trial peri-stimulus histogram. (B)Average population firing rate in an olfactory bulb cell in response to two different odors (in red and blue) during anesthesia and wakefulness.Although during anesthesia, baseline activity is low, the odor-evoked firing rate for amyl acetate is much higher, while during wakefulness, the net odor evoked effect is inhibitory rather than excitatory despite baseline firing rate being higher compared to anesthesia, suggesting a non-trivial negative correlation between spontaneous and evoked activity (C) Magnetic stimulation during deep stages of sleep confines neural activity in time and space, while the same during wakefulness generates temporally complex, long-lasting and spatially diverse responses. Figure adapted from[START_REF] Fontanini | Behavioral states, network states, and sensory response variability[END_REF].
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 15 Figure 1.5: The relationship between spontaneous and task-evoked activity can be understood by evaluating pre-and post-stimulus across-trial variability. (a) If spontaneous activity has no influence on the evoked activity, across-trial variability remains constant even when mean (evoked) activity increases. (b) If relationship between spontaneous and task-evoked activity is additive (non-trivial), low pre-stimulus activity results in lower activation (or deactivation), and hence the increase in across-trial variability post-stimulus. (c) If the predictive coding was to be employed, low pre-stimulus activation systematically results in enhanced evoked responses and as a consequence, variability quenching can be observed. Figure adapted and modified from (Wainio-Theberge et al., 2021). (d-f) Same three scenarios depicted onto a continuous trajectory of spontaneous activity. Evoked activities are exaggerated for illustration purposes. Note that in the last two cases, the average effect will be null. Figure adapted from[START_REF] He | Spontaneous and task-evoked brain activity negatively interact[END_REF] 

Figure 1

 1 Figure 1.6: Population Neural Activity as a Trajectory Confined by the Dynamical Landscape. (A) Energy landscape of network defined by combined activity of two neurons. Each point in the grid represents a distinct neural state (activity pattern). The height of the map symbolizes the 'energy' of the network i.e. a macroscopic mathematical property of a specific activity pattern (for e.g. an average activity amplitude). The landscape describes all potential activity patterns, with the 'valleys' (red dots) representing stable, low energy activity patterns. The dashed circle indicates an 'attractor basin', from where activity patterns robustly converge to the attractor state. (B) Attention can change the energy landscape. When two sensory stimuli are presented, patterns 1 and 2 are activated (top) stimulus activating pattern 2 is being attended to. (bottom) stimulus activating pattern 1 is attended. Attention reduces average activity (black arrow) as well as the size of attractor basin, hence limiting the effect of noise. Figures adapted from[START_REF] Yuste | From the neuron doctrine to neural networks[END_REF] and[START_REF] Renart | Variability in neural activity and behavior[END_REF] .

  Fig 1.9 represent all three possible regimes.

Figure 1 . 9 :

 19 Figure1.9: Dynamic Mechanisms for Variability and Its Stimulus Driven Quenching. (A) In multistable attractor models, system wonders into various possible attractor configurations at rest and upon stimulus arrival, stabilizes into one of the attractor states reducing the across trial variability. (B) In chaos suppression, there are no stable attractor state and system wonders in erratic trajectories, however upon stimulus arrival, it reliably follows a specific path along a reproudicible trajectory, (C) In stochastic supralinear stabilized networks (SSN), the attractor basin of a single attractor is much wider while upon stimulus arrival, this basin is reduced, confining the trajectories in some space. Figure adapted from(Hennequin et al., 2018b) 

Figure 2

 2 Figure 2.1: Transient Circuits and Structural Development. (A) Earliest prenatal cortex is dominated by the tranient neural connection between early arriving neurons in subplate (SP) and marginal zone (MZ), with cortical plate (CP) arriving later. Spontaneous activity of the three types of neurons are observed early, is spatio-temporally organized and different for the three layers. The transient connections from thalamus to MZ and to SP, along with the early spontaneous activity is thought to be critical in organizing and pruning of local neural connectivity, and also in amplifying the neural inputs in early pre-mature brains. Abrupt changes in spontaneous dynamics is observed due to transient circuit changes. (B) Glutamatergic neurons migrate from subplate to cortical plate earlier than the GABArgic neurons. (C) Grey matter maturation progresses throughout the first year of life, as observed from normalized T2w surface maps. The primary areas (central sulcus, Heschl's gyrus, and occipital pole) are more mature by 14 postnatal weeks (in yellow). Figures adapted respectively from[START_REF] Molnár | Transient cortical circuits match spontaneous and sensory-driven activity during development[END_REF],[START_REF] Kolasinski | Radial and tangential neuronal migration pathways in the human fetal brain: anatomically distinct patterns of diffusion mri coherence[END_REF] and[START_REF] Leroy | Early maturation of the linguistic dorsal pathway in human infants[END_REF].

Figure 2

 2 Figure 2.2: Maturational Calendar of Spontaneous Activity in Ferret Visual Cortex. Before eye opening, spontaneous retinal waves, long-range cortical correlated activity and topographic maps guide structural local connectivity. With maturation of recurrent connectivity (marked by change in density of inhibitoy neurons and synaptogenesis), retinal waves are suppressed and the further refinement of various types of orientation and direction selectivity is guided completely by environmental inputs. Sparsification of neural activity occurs as reflected in decrease of population noise correlation, when spontaneous activity starts to become similar to evoked activity, suggesting that at this point, cortical spontanoeus activity is finally driven by experience-dependent activity. Figure adapted from[START_REF] Avitan | Code under construction: neural coding over development[END_REF] 

Figure 2 . 3 :

 23 Figure 2.3: Maturation in Spatio-temporal Organization of Spontaneous Activity Predicts Future Orientation Selectivity (a) Longitudinal correlations in spontaneous activity patterns of Ferret visual cortex. EO = Eye opening. As early as 10 days before eye opening (EO-10), spontaneous activity is spatio-temporally organized into modules that presents similarity to orientation selective maps. (b-c) As the time of eye opening nears, this functional organization becomes more precise at predicting the future orientation selectivity of different modules. Figure adapted from[START_REF] Smith | Distributed network interactions and their emergence in developing neocortex[END_REF] 

Figure 2 . 4 :

 24 Figure 2.4: Development of Flash Evoked Responses in Mice. (A) Depth EEG, single trial responses. Mice visual cortex goes through abrupt developmental changes in spontaneous and evoked dynamics. During very early visual blindness period (ltP 7 = post-natal day 7), no evoked response can be elicited, although occasional spontaneous bursts (indicated by star) can still appear. (middle) from P8-P11, high frequency evoked bursts are observed on top of late negative slow potentials. Towards the eye opening (P12 onwards), evoked bursts largely disappear in awake mice, while in sleep states they can still be observed. (B) (top) average depth EEG time-courses aligned to the peak multi-unit activity (MUA) rate for each animal; the red circle (± S.D.) represents time of flash with respect to peak MUA. High S.D. shows that MUA peak latency is imprecise w.r.t. flash, during bursty periods (P8-11). (Middle panel) average timeseries spectrogram and (bottom) average rate of MUA. Switch from bursting to acuity response occurs before eye opening. Figure adapted from (Colonnese et al., 2010).

Figure 2 . 5 :

 25 Figure2.5: Synopses of Developmental features of spontaneous EEG dynamics in pre-term infants. X-axis presents age in gestational weeks (wGA), y-axis presents various phenomena that transiently appear and disappear during different stages of development. The features that change include: Correspondence between EEG temporal organization and sleep stages, different activity patterns appearing at specific spatial locations such as: anterior slow waves, sharp waves, delta brushes, and theta temporal activities, the duration of discontinuities between two bursts. Asynchrony between bursty activity observed at different electrodes, amplitude of bursts and dominant frequency of the power spectrum. Reactivity of the infants also varies with age. For full list of features: See[START_REF] André | Electroencephalography in premature and full-term infants. developmental features and glossary[END_REF]. Summary figure adapted from[START_REF] Wallois | Synopsis of maturation of specific features in eeg of premature neonates[END_REF].
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 26 Figure 2.6: Preterm infants discriminate phonetic syllables even before cortical layer formation.Oxyhemoglobin responses as measured with NIRS in 29-wGA-old (dotted lines) and 32-wGAold (solid lines) pre-terms in response to change in phonetic features ('ba' vs 'ga': DP blocks in red) or in male vs female voice (DV blocks in blue). A syllable was repeated in standard block (ST) while in deviant (D) blocks, a change of syllable occurred thrice. Youngest infant (29 wGA) responded similarly to the oldest infants (32 wGA) suggesting that responses were stable across ages. Both left and right inferior frontal regions were active, with former responding only to the change in phonemes, while later responding to both the change in phoneme and voice. Topographic organization for the two responses can be appreciated in the center. Figure adapted from[START_REF] Mahmoudzadeh | Syllabic discrimination in premature human infants prior to complete formation of cortical layers[END_REF][START_REF] Dehaene-Lambertz | The Infancy of the Human Brain[END_REF] .

For

  one example subject, 12s long segment of clean continuous EEG data containing 10 consecutive (left and right faces) trials were low-pass filtered using 100 ms overlapping sliding window. This segment of EEG data was normalized by dividing the activity at each sensor by the instantaneous global field power. This standardized 128-dimensional time x channel matrix was transformed into three orthogonal components that explain a maximum amount of the variance (82% of total temporal variance was explained by first 3 components) using PCA decomposition from scikit-learn toolbox in python and the resulting PC coefficients were used to visualize 3dimensional trajectory shown in Fig 3.2B)

  t. These transition trains (visible in Fig 2C) were further smoothened by convolving them with a 100ms smooth Gaussian kernel. These smooth transition curves were averaged across trials to convert the transition trains into transition probabilities (Fig 3.2C Bottom panel). Chapter 3. Event-Related Variability is Modulated by Task and Development Microstate Observation Probability:To calculate probability of observing a specific Microstate at time t after stimulus presentation, the epochs of labeled microstate data was simply one-hot encoded and summed across trials for each microstate individually in time-aligned manner. These observation probabilities were then averaged across subjects for comparison across age-groups (FigS2).

For

  each condition (left, right and central) and for each cohort (infants and adults), we derived grand average ERP topography by averaging subject-specific ERP activity separately for each sensor across subjects (Fig 3.1 for infants, Fig S1A for adults). For infants, we identified 'P1 template' as grand-average topography in the range of 225-275 ms post-stimulus for lateralized faces and in the range of 125-175 ms post-stimulus for central faces. Similarly, 'P400-template' was derived as the average topography in the range of 525-575 ms post-stimulus for both lateral and central faces (Fig S3 A). For adults, we identified 'P1 template' as the grand average topography in 75-125 ms post-stimulus while 'P400 template' was identified as 375-425 ms post-stimulus (Fig S3 B). These time-ranges were chosen by selecting a 50ms long time-window around the peak ERP response topography as inspected manually.

  These timeranges were chosen based on the lowest flyby distance in the grand-average curves. Mean and S.D. of all single-trial flyby distances in these time-ranges were calculated for the comparison across subjects. (Fig 3.3C, Fig S4 E-F).

  z-scored time-series were further averaged in the previously defined time-range for P1 and P400flybys to obtain relative between-trial variability around flybys(Fig 3.4, Fig S5).

  e. |y n (t)|. These quantities were derived for each channel, at each timepoint and averaged across channels to evaluate group-level differences in Fig S6 for between-trial CV and amplitude as well as between flyby snippets in Fig 3.5 and S8 for evaluating phase synchrony and alpha power around flyby.

  profile per template (Fig 3.5B). These subject-specific absolute speed profiles were z-scored along the time dimension to obtain relative speed profiles around flyby and further averaged to obtain group-average speed-profiles (Fig 3.5C; Fig S7A). To compare flyby triggered instantaneous speed across infants, peak speed (for P1 template) and lowest speed (for P400 template) were identified in the 100 ms time-window centered at 'flyby' moment (Fig S7B-D).

  Figure 3.1: Task Paradigm and Infant Visual ERPs A: Infants (and adults) were presented with unfamiliar faces consecutively in the left and right hemi-field. A subset of infants was also presented with faces in center. B: Grand Average voltage topographies for the three conditions for infants. Early (P1) and late (P400) ERP components (marked with red and green horizontal bars respectively) are visible for each condition.

Figure 3. 3 :

 3 Figure 3.3:Maturation of single-trial Flyby statistics A: Average flyby distances to P1 (left) and P400 (right) ERP templates (shown on top) for each infant. Each row represents a single infant, sorted in ascending order according to their age (from youngest = 5.6 weeks to oldest=23.1 weeks). Red vertical lines emphasize the reduction in average flyby distance from 150-350 ms for P1 and 400-600ms for P400 templates. The slopes of red lines suggest that latency of closest distance reduces with age. B: Median flyby latency significantly decreased with age for both P1 (top left) and P400-flyby (top right panel). At the same time, S.D. of single-trial flyby latencies significantly increased with age for P1 (bottom left panel) and showed a negative trend with age for P400 template (bottom right panel). Inset box-plots represent the same statistics for adults. C: Average flyby distances to P1 template showed non-significant increase with age (top left panel), while the same for P400 template decreased with age (top right panel). Boxplots indicate that once again adults followed the same trends. Shaded areas indicate 95% confidence interval for the slope of the least square fitting line, all r-values corrected for multiple comparisons with 1-tailed permutation t-test).

  3.3.3 Single-trial Flybys to Classic ERP Components are Modulated by Age and Hemisphere Despite erratic trajectories, grand average ERP topographies are reproducible across studies suggesting they capture stimulus-relevant information. Hence, we analyzed how individual trials approach (or flyby) these "landmark events". We defined the grand averaged P1 and P400 topographies (separately for infants and adults) as "ERP-templates" (Fig S3) and examined the distributions of the latencies and distances of the single-trial flybys to these templates (Fig 3.3 and S4, see Methods). For all task-conditions, trials remained quite far from the ERP-templates most of the time (flyby distance 0.8-1; Pearson correlation: 0-0.2, Fig 3.3A, FigS4A, B), in line with the finding 3.3. Results that system's trajectories fill the entire configuration space. However, individual trial trajectories slightly and significantly reduced their distance to the ERP-templates around specific latencies (Distance drops in Fig. 3.3A and S4A respectively for right and left faces, emphasized by red vertical lines), in line with the intuition that stimulus induces small trajectory inflections independently from where exactly the system is transiting. For lateral faces, trials approached the P1-template around [150, 350] ms; and the P400-template about [400,600] ms post-stimulus onset. For the central faces, closest approach to ERP templates occurred, within the broad ranges between -150 and 150 ms for the P1 template, and for the P400 template between 350 and 550 ms (Fig S4 B).

r

  = -0.38, p < 0.009 from 600 ms to 500 ms, Fig.3.3A). This decreasing trend was confirmed in adults whose median flyby latencies were much faster than in infants (inset box-plots in Fig.3.3B: P1 median latencies across adults: 96 ± 13 ms and P400 median latencies: 312 ± 20 ms for right faces). In each infant, the dispersion around the median latency value was 40-60ms. Age also affected this dispersion but differently for the P1 (Fig 3.3B left bottom panel, r = 0.45, p < 0.002) and P400 component (Fig 3.3B, right bottom panel, r = -0.26, p < 0.055). There was an increase with age in the spread of the flyby latency distribution, suggesting that the timing of approach to the P1-template became less accurate, or more flexible, through early development. It contrasted with the inverse and moderate trend for the P400-flybys. Interestingly, adults also showed a 40-60 ms jitter across trials, but similar for the two components (Fig.3.3B box plots: P1-latency jitters: 54 ± 4ms and P400 latency jitters: 57 ± 3 ms for right faces).

Chapter 3 .

 3 Event-Related Variability is Modulated by Task and Development Similar age-effect analyses can be performed on the flyby distance to the template for each trial (flyby distance amplitude distributions: Fig 3.3C, Supp. Fig S4 E, F). No age-effect was significant for P1 flybys. For P400 flybys, the mean distances reduced with age in the case of left, right and central faces, suggesting that on an average, trials for older infants passed closer to P400-template than those for young infants. (r = -0.37, p < 0.02, r = -0.52, p < 0.006, r = -0.26, p < 0.06 for left, right and central faces respectively). For P400-flybys, these trends continued well into the adulthood, i.e., trials passed on average much closer to the template (Fig 3.3C, right box insets and Fig S4 E, F box-plots and table 1). Finally, the variability of the flyby distances either remained unchanged, for the P1-template; or even grew with age, for the P400-template (age correlation for infants, left faces: r = 0.42, p < 0.003; right faces: r = 0.34, p < 0.02 and central faces: r = 0.53, p < 0.007, with the similar trend continuing for adults).

  adults (Blue plots in Fig 3. sup Fig S5). For infants, between-trial variability significantly remained 1-2.5 standard deviations lower than the average baseline variability 200-700 ms post-stimulus (p < 0.001 for left, right faces and p<0.003 for the central faces), while in adults, significant Variability Quenching (VQ) occurred 150-500 ms (p < 0.005), similar to the duration previously reported for variability quenching in adults[START_REF] Schurger | Cortical activity is more stable when sensory stimuli are consciously perceived[END_REF].3.3.4.1 Between-trial VQ is Not Automatically Induced by ERP Component FlybysThe latency of the largest post-stimulus VQ (lowest variability) significantly differed across age-groups and task conditions. Strikingly, for lateralized faces, the latency of the significant VQ coincided with the latency of the closest P1-flyby in the youngest infants (First trimester: 5-12 week-olds, N=14) whereas in the older infants (Second Trimester: 16-24 weeks, N=13), the moments of VQ co-occurred with the P400-flyby (Fig 3.4A). In other words, in younger infants, the bundle of single trial trajectories remained on an average more compact when flying by the P1-template (significant VQ times: 204-352 ms, window of closest P1-flyby: 175-400 ms). By contrast, in older infants, trials remained the closest to each other when passing near the P400-template (significant VQ: 432 -616 ms, closest P400-flyby: 432-620 ms). Importantly, the absence of between-trial VQ did not imply absence of a flyby. Indeed, in first-trimester infants, trials still had a marked P400-flyby even when there was no between-trial VQ at the corresponding latency. Analogously, there was still a P1-flyby for second-trimester infants despite the lack of a P1 VQ. These effects were consistent for both left and right face presentation (FigS5A-B).Thus, flying by an ERP component appears to be a necessary but not a sufficient condition for between-trial VQ. In adults too, a single window of VQ coincided with the P400-flyby, similar to the second-trimester infants' pattern(Fig 3.4C, Fig S5 C, and D). However, the VQ was much larger in adults than in infants, trials remaining significantly close to each other during the entire duration of the P400-flyby (significant VQ: 140 -460 ms, P400-Flyby: 120-528 ms).

Figure 3 . 4 :

 34 Figure 3.4: Maturation of Between-trial variability and its relation to Flyby distances A: Group average between-trial correlation distance (blue curves, Z-scored) for 5-12 weeks (N= 14, top panel) and 16-24 weeks (N= 13, bottom panel) old infants plotted together with grandaverage flyby distances (Z-scored) to P1 (red line) and P400 templates (orange line), for the lateral faces. Significant reduction in between-trial variability coincides with the closest-flyby to P1-template for 5-12wo infants (top panel), and with the P400-template for 16-24wo infants (bottom panel). B: For central faces, significant between-trial variability (blue line) reduction coincides with P400-flyby (orange line) for both groups. Shaded areas indicate standard error to the mean. (caption contd.)

Figs. 3 .

 3 Figs. 3.2C and S2) -would map to sudden increases of the instantaneous within-trial speed. Again, analogously to between-trial variability analyses, we related the changes of within-trial variability to the dynamics of alpha oscillations (Fig 3.5, S7).

  norm of activation over stimulus-aligned trials did not show any significant upward or downward modulation in any time range following the stimulus (Fig S8B, neither for lateral faces (top panel) , nor for central faces (bottom panel)). This corresponds to the fact that strong voltage activity can be found at any time within individual trials, due to ongoing fluctuations (cf. Fig 3.2A-C) and are not restricted to the classic ERP time-ranges. As shown by Fig. S8 C, we again found flat profiles of L2-norm change around flyby events for most combinations of age and

Figure S3. 1 :

 1 Figure S3.1: Variability of Adult ERP Responses. A: Grand average spatiotemporal responses for adults when they were presented with faces consecutively on the left and right hemifield (top and bottom panel respectively). Voltage topography of early ( 100 ms) and late ( 400 ms) ERP components were similar to those observed for infants. Hence we considered these topographies as P1 and P400 response topographies for adults (marked in blue and red respectively). B (Left panel): Example voltage time-courses averaged across contra-lateral occipital electrodes for one representative adult for faces presented in the left hemi-field. Average (ERP) time-course (red) is notably weak as compared to strong single-trial fluctuations (blue). (Right panel): Single-trial topographies of P1 and P400 responses are notably very different from the grand average as shown for the example trials.

Figure S3. 2 :

 2 Figure S3.2: Microstate Modulations in Peri-stimulus Duration. (A-D): Probability of observing a specific microstate at time (t) after stimulus onset (vertical black lines), averaged across trials and across participants separately for the young (5-12 weeks) and old (16-24 weeks) infants. For all microstates, this probability remained at chance level ( p(obs) = 0.25, indicated with the black horizontal dashed line) at all times. 500 ms post stimulus probability of observing microstates C (and D) were significantly above (or below) chance level, with the significant age difference observed for the state D. Shaded regions indicate S.E.M. Microstate topographies are shown on the right of each panel for the reference.

Figure S3. 3 :

 3 Figure S3.3: Grand Average ERP Templates for the early (P1) and Late (P400) ERP components in each condition (lateral or central stimulation) for infants (A) and for adults (B).For infants we identified "P1 template" as average topography in the range of ∼ 225 -275 ms post-stimulus stimulus for lateralized faces and in the range of ∼ 125 -175 ms post-stimulus stimulus for central faces, "P400-template" template" was identified as the average topography in the range of ∼ 525 -575 ms post post-stimulus stimulus for both lateral and central faces. For adults, we identified "P1 template" as the grand average topography in ∼ 75 -125 ms poststimulus stimulus while "P400 template" was identified as ∼ 375 -425 ms post-stimulus. The selection of time-windows was based on 50ms window surrounding the peak response as derived from visual inspection of topography time-series.

Figure S3. 4 :

 4 Figure S3.4: Differential Maturation of Single-trial flybys for Different Conditions. (A-B) Average flyby distances to P1 and P400-like templates for each infant. Each row represents a single infant, sorted in ascending order according to their age. (A) For left faces, trials on an average passed closer in the range of [150,350] ms for P1 and [400,600] ms for P400 template and (B) For central faces in the range of [-150, 150] ms for P1 and [350,550] ms for P400 template. (C & D) No significant age trend was observed, neither in median (top) nor in S.D. of the latencies for left faces (r < 0.01, p > 0.2 for all correlations) or central faces. Except for the P400 median latency (r = 0.46, p < 0.02 ) which was related to increase in ERP latency itself. Inset box-plots represent this statistic for adults when available. (E & F) For both conditions, mean flyby distance amplitude to P400 template (top right panels) significantly reduced with age (r= -0.35, p<0.018 for left faces, r = -0.52, p<0.006 for central faces) but not for P1 template (top left panels) . r-values corrected for multiple comparison with one-tailed permutation test. Box plots represent statistics for adults. When significant, the age trend were extended until the adulthood. (Non-)Significance of linear regression is marked by (red or) green checkmarks.

Figure S3. 5 :

 5 Figure S3.5: Condition Wise between between-trial Variability for lateral faces. for infants (A & B) and adults (C & D). Blue lines indicate group-averaged between-trial variability z-scored across time. Red and orange lines indicate group averaged flyby distance from their corresponding P1 and P400 templates respectively. Horizontal lines indicate significant reductions from average. (One-sample t-test, cluster based permutation test, p<0.05). For both left and right faces, young infants reduced variability around P1-flyby while old infants and adults reduced variability around P400-flybys. Since there was no qualitative difference between the two lateralized faces, we chose to combine them. (E) Difference in relative variability (variability quenching: VQ) across age-groups for P1 and P400 flybys. With age, variability significantly increased around P1 while the same around P400 significantly reduced. (F) Task-dependence of variability quenching. For the same infants, variability quenching shifted from P1 to P400 flyby when presented with central faces as compared to lateral faces. I.e. the variability was higher at P1 for central than lateral faces while this trend reversed at P400 flyby.

Figure S3. 6 :

 6 Figure S3.6: Relationship between Variability Quenching (VQ) and Ongoing Alpha Oscillations. (A) Grand averaged power spectral density (PSD) curves averaged across all electrodes, epochs and subjects for each age-group and condition separately. No prominent peak observed for infants, while for adults power increase in 9-12 Hz range is observed (visible as a bump in the green curve in the zoomed inset). (B) (top panel) Channel-averaged, stimulusaligned aligned amplitude envelope of EEG signal band-pass filtered in alpha frequency and averaged across subjects for each age-group and for lateral and central faces (in left and right panel respectively). (Bottom panel) Circular Variance (CV) of instantaneous alpha phases across trials for the same signals. CV reduced significantly for each groups in specific time-range after stimulus presentation (p<0.05). (caption contd.)

Figure S3. 7 :

 7 Figure S3.7: Maturation of Within-trial trial Speeds. (A) Absolute within-trial speed (averaged across all trials and times for each subject) for lateral and central faces (in left and right panels respectively). Absolute speed increases with age for each condition. Each dot represents one infant. Box plot represents the same metric for adults. (B) Instantaneous speed distributions (log-log plot) were heavy-tailed with adults and 16-24 week old infants being faster than 5-12 weeks infants for each condition. Each dot represents probability density for observing specific within-trial speed range at any time. (C) Relative within-trial speed profiles (z-scores) in the vicinity of P1 and P400-flybys for the faces presented on the central visual field. (Caption Contd. on the next page)

Figure S3. 8 :

 8 Figure S3.8: Signal Strength or Signal to Noise Ratio. (A) Group averaged flyby triggered amplitude envelope of the alpha oscillatory component for young (5-12 weeks), old (16-24 week) infants and adults when they were presented with lateral faces. No significant modulation was observed for alpha power in the surroundings of P1 (left panel) or P400 (right panel) flybys. Power was averaged across all channels for each subject. (B) Broadband power or L2 Norm of the activation topographies (averaged across trials and across age-groups for lateral (top panel) and central faces (bottom panel).(C) Group averaged flyby triggered broadband power (or L2 norm) around the flyby to the ERP template P1 and P400( in left and right panels respectively) and for lateral and central faces (in top and bottom panels respectively). Shaded regions represents S.E.M. across subjects.

  Fig 4.1A). The E population excites itself with synaptic strength w EE and it excites the I population with synaptic strength w EI . On the other hand, recurrent inhibition inhibits the I population with strength w II and it inhibits the E population with strength w IE . Besides recurrent currents mediated by these synaptic conductances, the E and I populations receive in addition external driving currents I ext,E and I ext,I , that can be tuned to vary from baseline values I 0,E or I 0,I to higher values reflecting the application of stimuli with increasing strength. Our model is abstract, so it does not allow representing details of the mechanisms leading to a stimulus-related increase of the current.

  The total average synaptic currents (I E , I I ), including both recurrent and external contributions, are further passed through a non-linear activation function. As shown by Fig 4.1B (in logarithmic scale, as we measure gain in decibels), we adopt different activation functions for E and I populations. The values endowing the non-linearities and different rise times in the two activation functions were derived from previous work[START_REF] Deco | How local excitation-inhibition ratio impacts the whole brain dynamics[END_REF] based on the mean-field behaviour of different gating dynamics of NMDA and GABA-mediated synapses. The ranges for excitatory and inhibitory conductances derive from previous work by[START_REF] Demirtaş | Hierarchical Heterogeneity across Human Cortex Shapes Large-Scale Neural Dynamics[END_REF], who used the similar mean field approximation as regional model within a large-scale whole-brain 100 4.3. Results model. In this model, parameters of local dynamics were fitted to adult neuroimaging data about hierarchical heterogeneity.

  and including notably the best-fit parameters they obtained. As a first step, we chose to look into configurations in which mutual interactions between E and I populations are balanced, and further explored parameter space sections along the w EE and w EI (= w IE ) directions, for various values of w II , tracking changing values of the mean synaptic activity and, when an oscillation was present, also its frequency of oscillation. Several of these sections are shown in Fig S4.1. We also report in Fig 4.1C, a mean activity surface along these w EI = w IE sectioning direction for the finally retained w II value, selected because of the greater diversity of dynamical regimes it was exhibiting in the probed ranges. As visible in both Fig 4.1C and fig S4.1, average synaptic activity (S E and S I ) decreases with homogeneously increasing the balanced inter-population coupling w EI = w IE , in agreement with the fact that, at baseline, inhibition is dominating. Three dynamically different regimes can be clearly distinguished, which here we define as: 1. asynchronous 'Down state', corresponding to a non oscillating, constant low firing rate regime (L), 2. 'Oscillatory state', exhibiting marked ongoing oscillations (G); and 3. asynchronous 'Up state', once again a steady activity condition, but this time with a much higher firing rate (I) (Fig 4.1D). The range of existence of these three different regimes are summarized graphically by the sketch in Fig 4.1D. These three regimes invariantly existed over the entire probed range of w EE . We, therefore, also froze the recurrent excitation strength to a reference value of w EE = 12.5, as we previously did for w II and explored the effects of unbalancing the synaptic couplings between the E and I populations, in the surroundings of these fixed w EE and w II values. As shown by Fig 4.1E -where the w EI = w IE section is marked by a red line, matching the range also indicated by a red line in Fig 4.1C-, an increase in w EI decreases excitatory synaptic activity, suggesting that enhancing excitation to the inhibitory population gives rise to a net inhibitory effect in the network. Remarkably, unbalancing the mutual coupling in the 101 Chapter 4. Phase transitions in stimulus encoding as an effect of smooth conductance changes direction of a stronger inhibition toward the E population, i.e. further increasing w IE , allows the emergence of two qualitatively novel dynamical regimes: a bistability between asynchronous low and high firing states ('asynchronous bistable', 8); and a bistability between asynchronous low firing state and the oscillatory state ('oscillatory bistable', ), as revealed by a "salt and pepper" appearance of the synaptic activity pattern in the top left corner of Fig 4.1E (due to the random selection of initial conditions and, thus, the random stabilization of the system in either one of two possible bistable states). Finally, in the lower right corner of Fig 4.1E, to the right of the oscillatory region, a transitional regime (marked by a hatching in the sketch of Fig 4.1F) is observed in which damped oscillations are clearly visible, due to a slowing decay rate in proximity of transition towards the oscillatory state. Fig S4.2 provides the evolution of oscillatory frequency as a function of synaptic strengths for the oscillatory regimes in Fig 4.1F.

  Fig. 4.2 shows bi-dimensional phase portraits for the canonical example working points in each identified dynamical regime. Change in w EI and w IE parameters shift or bend the S E and S I nullclines, and thus changes the relative positions of the fixed points determining the flows of (dynamic changes in) excitatory and inhibitory synaptic activity. At the asynchronous down state working point (L, (w EI , w IE ) = (3, 3.5)), there is a single crossing between the nullclines giving rise to a low activity stable attractor state. Note that we use the value of synaptic activity (S E,0 ) observed at this working point in 'down state' as the reference baseline activity for all phase portraits, and hence levels of synaptic activation will be expressed in decibels relative to this reference activation level (see Methods for details).Starting from this asynchronous down state working point, a decrease in w EI bends the curvature of the S I nullcline slightly downwards (depicted in green), a decrease in w IE bends the curvature of the S E nullcline slightly upwards(depicted in orange). These combined changes in relative nullcline positions cause the loss of stability of the asynchronous down state. It also causes the emergence of a new critical point (with an unstable direction surrounded by a stable limit cycle), associated to a new regime of stable amplitude oscillations (G). The nullcline configuration and associated example time-series of S E are shown in Fig.4.2 C for the specific parameter choice of (w EI , w IE ) = (2, 2.25)).

(

  Figure 4.1: Dynamic Repertoire of the Model. (A)Model Architecture. (B) Nonlinear activation function Φ represents the relationship between input current gain and model response in terms of gain in population firing rates (unit decibel for relative changes from baseline). (C) Steady state mean baseline activity of E population (S E ) as a function of local synaptic strengths w EE &w EI (= w IE ) for a fixed value of w II = 0.16 (D) When synaptic strengths of E to I and I to E populations are kept equal, three different regimes are visible: low firing rate regime or 'down state' (L), high firing rate regime or 'up state'(I) and oscillatory regime (G). Red horizontal line represents the wEE point which was expanded in panels (E-F) that depicts the excitatory synaptic activity as a function of w EI and w IE . Now two more additional regimes are visible: Asynchronous bistable (8) with co-existence of up and down states and Asynchronous-oscillatory bistable regime () with co-existence of down state and oscillatory state. The hatched regime represents very low amplitude damped oscillations or spiral. Red diagonal depicts the line for which synaptic activity is expanded in panel C.(F) Simplified version of all possible dynamical regimes.

Fig. 4 .

 4 Fig. 4.3B (L), asynchronous bistable for Fig. 4.3C (8) and bistable oscillatory for Fig. 4.3D

Figure 4 . 3 :

 43 Figure 4.3: Effect of External Stimulus on Intrinsic Dynamics. (A) For each dynamic regime, one example working point is selected and a 1-s long square pulse is applied to E and I populations.(B-D) Average post-stimulus synaptic activity as a function of strength of stimulus current applied to E (x-axis) & I population (y-axis) (I ext,E & I ext,I respectively for (B) Asynchronous bistable, (C) Asynchronous Oscillatory bistable and for (D) Asynchronous monostable 'Down state'. Increase in I ext,E systematically traverses through different dynamical regimes. While increase in I ext,I dampens the overall activity to zero. (E-J) Example post-stimulus time-series for different stimulus strengths and working points: (E) Stimulating lower branch (or down state) of asynchronous bistable regime with a strong enough excitatory current (I ext,E ) causes the sustained high firing response with weaker stimulus (light blue curves) delaying the population response, while stronger stimulus inducing a faster response. (F) For the higher branch of this bistable regime, increasing stimulus strength simply increases the response amplitude. (G) For the asynchronous oscillatory regime, stimulating the lower branch causes the sustained oscillatory response, with stimulus coded in response delay as well as frequency of oscillations. (caption contd. on the next page)

  Fig S4.3 for the same codograms, divided by different ranges of stimulus strength.

Fig panels 4 .

 4 Fig panels 4.4D-I show different characteristic examples of monotonic inter-dependencies between stimulus strength and the three potentially coding features of neural response. Figs 4.4D and 4.4G correspond to two different working points in the asynchronous 'down state' regime (L 1 and L 2 ) and show how firing rates increase for increasing stimulus strength, with a profile reminiscent of usual 'neurometric' curves. Such a smooth monotonicity translates into the maximum value of the MII (=1) for rate coding. Indeed, as visible in the codogram of fig 4.4A (see

  Fig. 4.4G, the cartoons (a) and (b), represent two typical evoked response waveforms starting from the down-state whereby, (in a) a weak stimulus pulse evokes a smoothly rising response which remains in the vicinity of the low-firing rate plateau; or (in b) a stronger stimulus elicits a transient state switching to the high firing regime and thus displaying a transient overshoot peak. When considering the latency coding (the codogram of Fig 4.4 B), the target output feature we consider is precisely the latency to reach this first response peak counted conductance changes starting from stimulus onset. Figs. 4.4E & H represent typical relationships between stimulus

  Figs. 4.4E). As revealed by the latency-based codogram inFig 4.4 B, we observed that the fidelity of the latency-based encoding is generally lower than for rate-based encoding, as associated to generally lower MII values. This was related to the probed range of stimulus strength. Latency code for the asynchronus bistable regime (fig 4.4E), although more widespread (higher variation of latency values) existed only for a narrow range of stimulus strengths as compared to the asynchronus down state close to the transition from low to high state (L 2 , fig 4.4H). The only baseline regimes not displaying evidence for some latency-based encoding are the ones for which bistability does not exist, neither at baseline nor as an effect of the applied stimulus. Latencybased MII thus vanish for very strong w EI and w IE , when inhibition is too strongly stabilizing -thus preventing critical transitions out of the monostable asynchronous down state-or when the baseline regime is a monostable asynchronous up state. The highest MII are observed for low-w IE down baseline regimes (of the L 2 type) associated to transient oscillatory ringing. However the broader ranges of spanned latencies are found in the asynchronous bistable regime. More globally, the MII values (and hence the latency coding) increases as the dynamics of the system moves closer to the critical boundary between the stable states (from down to oscillatory to up-states). Moving now to oscillatory coding (the codogram of Fig 4.4 C), we observe that, when applying the stimulus on a baseline oscillatory regime (G,Fig 4.4 F), the frequency of

  spread over the alpha and beta range of frequencies. The frequency-based MII approaches the maximum unit value in the oscillating regime (G), as visible from the codogram of Fig. 4.4C. When comparing this codogram with the phase-diagram in Fig 4.1F, we notice that the region in which frequency coding is observed extends beyond the limits of the oscillatory (G) and the bistable oscillatory () regimes alone. Indeed, at baseline or as an effect of the applied stimulus, many other coupling configurations give rise, at least for a certain stimulus range, to transient damping oscillations, whose frequency is also affected by the stimulus intensity and can thus provide a form of encoding. This is particularly evident when considering low-w IE down regimes for which transient oscillations are very pronounced (approximately indicated by the hashed region in Fig 4.1F). The frequency variations obtained when applying stimuli of growing strength to the L 2 baseline regime are not monotonic but show instead two distinct ranges of monotonic increase as observed in Fig 4.4 I. Initially, the stimulus elicit only transient damping oscillations, generating response waveforms of the type of the cartoons (f ) and (g) in the right column of Fig 4.4. The frequency of these transient oscillations monotonically rises as a function of applied stimulus strength until when genuine stable amplitude oscillations become possible, because of a stimulus-induced transition to the oscillating regime. In this new phase, frequency initially drops, but then starts growing again -analogously to Fig 4.4 F for the oscillating baseline regime (G)-, giving rise to response waveforms similar to the (h) and (i) cartoons. Finally, this stimulus-induced persistent oscillations again coalesce into a saturating high-firing rate steady response, as it happened for the oscillating baseline case. Therefore, the bands of lower MII values in the frequency-based codogram of fig 4.4C, surrounding the oscillating regime zone, reflect the existence of complex, non monotonic variations of frequency as a function of the stimulus strength, as various ranges of transient or persistent oscillations are traversed through a cascade of stimulus-induced transitions, specifically, when the resting dynamics of the system lies in the down state (L) or in the lower branch of the two bistable states (8 & ). As previously mentioned, Fig S4.3 provides a more detailed breakout of encoding efficiencies as a function of stimulus strength, by showing codograms of MII evaluated over different ranges of stimulus strength. For low stimulus strengths, the only encoding reaching near-unit MII values (indicating reliable encoding) is rate encoding (Fig S4.3A). As an effect on increasing stimulus strength, the position of the different dynamical regimes shifts on the w EI /w IE plane (notably the oscillatory and bistable oscillatory regimes shift toward the right), also causing the band of reliable frequency-based MII to shift toward the right (Fig S4.3B). Latency-based encoding appears more pervasively over the probed parameter range for larger stimulus strengths (Fig S4.3C), when most of the parameter configurations start allowing bistability, a necessary and sufficient condition for a latency encoding to be present in our model. Finally, we also show in Fig S4.3D, a combined codogram, where the MII for the three considered encoding features

  Figure 4.4: Stimulus driven transitions in neural coding. (A-C) Mutual information between stimulus strength and the three different statistics as a function of w EI and w IE synaptic strengths. Rate coding is Universal, while frequency coding is strongest during oscillatory regime and latency coding is strongest near the critical transitions between down state to up states. (Covering all dynamic regimes where down state exists.) (D-F) Example relationships between stimulus strength and statistics of post-stimulus neural activity for 3 different working points in the phase diagram: (D) Rate coding in Down state defining low firing rate regime, (E) latency to peak response during the down state of asynchronous-bistable regime (8) and (F) Frequency coding during oscillatory regime (G). (G-I) All the three codes can also be observed simultaneously for a single working point, for different ranges of stimulus strengths: e.g. in down state situated close to the transition lines in the original phase diagram L. (caption contd. on the next page)

  Fig 4.5B, the existence of a latency-encoding is not disrupted by the introduction of baseline noise, as the average latency to peak still continues being reduced by increasing stimulus strength, as in the noiseless case depicted by Fig 4.4E. However, as shown by Fig 4.5C, with increasing noise the variability of the latency, quantified by Coefficient of Variation (CV, see

Figure 4

 4 Figure 4.5: Latency Jitter of Neural Responses during asynchronous bistable regime (8).(A) Illustration of Spontaneous fluctuations (at baseline) giving rise to variability in the latency of peak neural responses (for a given stimulus strength(I ext,E = 0.05) and noise level (sigma = 0.1)). (B) Even after the small amount of baseline noise, a robust relationship exists between incoming stimulus strength and latency to maximum response. (C) For a chosen stimulus strength (applied to excitatotry population (I ext,E = 0.05)), increase in the amount of baseline noise increases the CV of latency to peak response (or "latency jitter")). (D) p-value of Kolmogorov-Smirnov (KS) Test run on the single-trial latency distributions as a function of synaptic strengths between E-I populations. If p>0.05 (represented in white), distribution is gaussian normal, if p<=0.05 (shown in black) distribution is not normal. Only for the asynchronous bistable state 8, jitter in baseline noise directly translates into the jitter in latency. The zoomed segment shows actual values of S.D. of these distributions as a function of w EI and w IE . The noise level (σ = 1) and input stimulus strengths (I ext = 0.03) are kept constant at each working point.

  Fig 1.7, Chapter 1).

  as implemented in Python's fsolve function. Fixing the values of the recurrent synaptic strengths at w EE = 12.5 and w II = 0.1632, we numerically explored the model behaviour as a function of the balance between excitatory and inhibitory synaptic strengths. Dynamics of the model in the vicinity of various attractor points for different combinations of w EI and w IE ranges is shown in Fig 4.2. The stability of these solutions was determined by visual inspection of trajectories surrounding the fixed points.

  Information Index and Codograms In order to understand the neural coding at each working point in the phase diagram, we applied a 1-s long squared pulse current to the excitatory population (I ext,E ) with varying stimulus strength or amplitude current (ranging from I ext,E ∈ [0, 4]dBA matching the absolute extrinsic current values of {10 -5 , 10 -4 , ...10 2 }A) and calculated the following statistics s of the resulting response as a function of stimulus strength in early and late response windows (defined by [0-200] ms post-stimulus and [200-800] ms post-stimulus respectively): 1. average post-stimulus firing rate (in the late window), 2. frequency of steady state oscillations (in the late window)

Combined Codograms:

  The surfaces for joint codograms in Fig S4.3D were generated by normalizing the individual MII surface values (of rate, latency and oscillatory coding) from 0-1 into the values varying between 0-255 (to mimic intensity of a pixel in gray-scale image) and then passing these values to Red, Green and Blue channels to combine the color values of the 4.4. Methods pixels into a single image.

Figure S4. 2 :

 2 Figure S4.2: Frequency of Baseline Steady-state Oscillations (for the oscillatory phases represented in the main figure (4.1F)), for (A)Excitatory and (B) Inhibitory populations. With increased synaptic strength from excitatory to inhibitory population, oscillatory frequency gradually decreased. Damped oscillatory regime is not shown.

5. 1 .

 1 Metastable States, Maturation of Energy Barriers and Rest-to-task Switching cognitive efforts required for different neural processing stages in younger and older infants (fig 5.1B).

Figure 5 . 1 :

 51 Figure 5.1: Schematic Summary of ERV results. (A) Early (P1) and Late (P400) face processing stages can be understood in terms of reproducible metastable states separated by each other through a fast transient regime. The blue dots represent the evoked states estimated from the closeness to trial-averaged template, while each black arrow represents a neural trajectory following stimulus onset. Red dot represents an instantaneous spatio-temporal EEG pattern. With age, the later stages of processing (P400) become dynamically more prominent than the earlier stage (P1), as marked by their increased stability, reproducibility and smaller attractor basin (closer flyby trajectories). (B) These shifts in meta(stability) of different evoked states might be related to the progressive development of various stages of face processing that may require tighter control of trajectories depending on the developmental stage (see discussion of top-down control in Chapter 3 for more details).

Figure 5 . 2 :

 52 Figure 5.2: Schematic representation of Energy barriers.In a bistable regime defining resting state (state A) and the task-relevant state (state B), intrinsic noise defines the dynamic repertoire of the system, which then determines the number of possible energy states system can be in at the time of the stimulus onset. Depending on the initial state of the system at each trial, trials can cross the energy barriers with different latencies, explaining the variability in first peak responses (P1). Trials close to the barrier will take shorter time to peak, and vice-versa.

Figure 5

 5 Figure 5.3: Relating Single-trial Flybys to Infant Attention. (A) The task-paradigm (see Appendix A for more details). (B) ERPs for the trials passing earlier vs later to the P400 evoked template after teddy-bear onset. In the late P400-flyby trials, the existence of an intermittent ERP component (N290) is clearly visible as a strong negative deflection in posterior electrodes, which is absent in the early flyby trials. (C) (Baseline corrected) pupil size constriction after teddy-bear onset for early and late P400 flyby trials. On early flyby trials, pupils remain less constricted than for late flyby trials. (D) Serial processing effects of different P400-flyby latencies.On the early P400 flyby trials to teddy bear onset(left panel), the power-drop of tagged frequency was more sustained at the subsequent target (T2), while the power-drop for the late flyby to teddy-bear P400 template indicated only a transient power-drop in tagged frequency. Overall these preliminary results demonstrate the significance of flyby measures in tracking attention or arousal on salient stimuli and the subsequent stimuli.

Figure 5 . 5 :

 55 Figure 5.5: An example of using RBMs to find intrinsic metastable states and underlying manifold from multi-variate neural activity patterns. (A) Time-varying neural activity patterns can be parsed to Restricted Boltzmann Machines (RBMs) in order to identify the hidden attractor activity states ( valleys in the manifold) and the heights of energy barriers between them can be approximated. Figure adapted and modified from (Watanabe et al., 2014) for illustration purposes. (B) Geometry of example neural state space obtained by random sampling of neural activity trajectory from raw time-series (visible layers) (left panels) and its projection to hidden manifold (in right panel). Each dot represents a multivariate activity pattern at different timepoints. Time is color-coded. Red dots represent the location of lowest-energy points in state space. I.e. valleys or attractors in the manifold. Dimensionality reduction is applied using PCA and only first three dimensional pairs are shown for state-space visualization. Apparent temporal structure can be appreciated in the hidden layer activity.(C) Approximating the profiles of energy barriers between one attractor state and all others. The paths of least resistence i.e. the transition between the state-pairs with lowest energy barriers will be more probable than others. Fig. B and C were derived from our very first exploration of Gaussian Spherical RBMs on resting state fMRI dataset in collaboration with researchers at INRIA, Paris-Saclay.

  infants. Finally, fig B.1B represents the block structure for the experiment. During training part, first

  Figure B.2: Selection of Threshold for Ambiguous Image. (Top) two clear images of face and house were mixed with varying opacity of face image on top of a clear house image. (Bottom)One adult pilot (26 y, male) was tested with the randomly repeated presentation of one out of these 8 images for 500 ms. An all-or-none N170 response can be detected on the posterior electrodes for the ambiguous images with face-opacities greater than or equal to 70%. Images perceived as "house" had distinct topography as compared to those perceived as face.

  Figure C.3: Examples of signal reconstruction. (A) Unfiltered simulated bad block (represented here as a C × T matrix). Missing values are visible as blue patches. (bottom panel:) Quality of reconstruction for a single time-series obtained from one channel represented by red box in the top panel. Original time series (ground truth) is plotted in black, the retained sections of timeseries with missing entries (artificially dropped surrogate bad times) are marked in blue, and the achieved reconstructed time-series in red. (B) (top:) Reconstructed matrix and (bottom:) the same channel (as in panel A) after applying 20Hz low-pass filter and thereby removing power-line noise. In both cases, a remarkable agreement between the ground truth (black line) and the reconstructed time-series (red line) is visible. The troughs and valleys of the timeseries are faithfully reconstructed, even when oscillations are as strong as before filtering, although the exact amplitude of the reconstruction might slightly be different. Performance is quantified in detail in the following. (C-E)Example comparison of OptSpace and Spherical spline interpolation. (C). A typical block with artifacted entries represented in black.(D) Block recovered by OptSpace with rank = 20. (E) The same block recovered with Spherical spline interpolation. The apparent reversal of polarity in the lower (occipital) channels is visible. Examples of three recovered channels (highlighted by red rectangles) are shown in the bottom panels. High amplitude oscillations were over-represented in Spherical Spline recovery because it was contaminated by artifact oscillations at E59. Overall fit was better for OptSpace algorithm (Pearson's r = 0.988) than for Spherical Spline (Pearson's r = 0.678) interpolation.

  Fig. C.5C but also "ERV" analyses ((Naik et al., 2021)) of Fig. C.5D can benefit

Figure

  Figure SC.2: Effects of Severity on Model Performance. Boxplots represent distribution of Pearson's correlation coefficient between ground truth and recovered entries by OptSpace across all 25000 simulations, for when (A) the entries are missing from bad blocks (i.e. artifacted) versus (B) when the entries are revealed. The performance of recovering missing entries reduces with increased severity, while the same for the revealed entries remain constant. Nonetheless, the correlation remains significantly higher than zero across all entries. The transparent dots represent actual data points.
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  syn = I AM P A,ext + I AM P A,rec + I N M DA,rec + I GABA

	(1.2)
	How much input current is contributed by each of these components at a given time at time
	t further depends on: 1. cell's current membrane potential (V (t)), 2. membrane conductance of
	different types of synapses (AMPA, NMDA or GABA), 3. strength of synaptic weights at each
	pre-synaptic junction and 4. fraction of open channels of neurons at time t (s(t)), which further
	depends on the rise and decay times of receptor neuron's synapse as well as number of spikes
	generated by all the incident pre-synaptic neurons.
	(Wong & Wang, 2006) demonstrated a mathematically plausible dynamic mean-field reduc-
	tion of networks of spiking neurons by considering the following assumptions: 1. fraction of open
	voltage-gated channels at any point in time can be replaced by a probabilistic Gaussian fluctu-
	ation around some average, 2. the average firing rate of neural ensembles can be approximated
	by a sigmoidal input-output function, 3. the mean firing rate of inter-neurons is assumed to be
	higher than the same for the excitatory population and hence, the input-output transfer func-
	tion of interneurons were assumed linear. 4. Since synaptic time-constant of NMDA receptor
	is the longest compared to other synapses, NMDA excitatory neurons are assumed to dominate
	the population dynamics and hence rising times of AMPA and GABA receptors are considered
	almost instantaneous. This gives the final simplified coupled dynamic equations for the approx-
	imation of mean firing rate of excitatory and inhibitory neural populations, which is studied in
	chapter 4. Such reduced Wang-Wong model can only describe steady state attractor states and
	population level switching between states is not possible without presence of noise. (Hansen et
	al., 2015) proposed an enhance dynamic mean field model, that with the slight modification in
	parameter values, is able to generate rich dynamical switching between various functional states
	as has been observed in resting state functional connectivity dynamics. We further modified the
	parameter range of this model in order to study more complex non-linear behaviours in Chapter
	4.

  Before 28 wGA, infants' sleep stages are difficult to discern either clinically (from behaviour) or from EEG activity and general reactivity to external stimulation (e.g. touch) remains low.

From 28 wGA, brief epochs of active sleep is recognizable from clinical measures but not yet from the EEG activity. Electrophysiological signals although relatively quiet, still have complex spatiotemporal features that include anterior slow waves, and theta waves. From 30 wGA onwards, high correspondence between EEG activity and clinical measures of different sleep stages (active sleep vs quiet sleep) is observed. From 32 wGA, awakenings become more clearly visible, and

  generic signal entropy or complexity has never been explored before. Hence, next in chapter 3, we decided to systematically study the relationship between spontaneous and evoked responses, in terms of response variability. As shown in animal studies and infants, transient anatomical neural circuits shape the relationship between spontaneous and evoked activity, hence in chapter 4, we qualitatively investigated the link between local circuit mechanisms, network dynamics and neural codes through a toy computational model.

	2.4. Summary
	responses, beyond Chapter 3
	Event-Related Variability is Modulated by Task
	and Development
	studies after term-birth have either investigated evoked responses and their functional relevance
	in isolation or generic properties of resting state networks/ spontaneous fluctuations without
	considering development of evoked responses. How development affects variability of stimulus

  Event-Related Variability is Modulated by Task and Development a second group of young adults (N= 13, Mean age: 23.39 ± 2.32 years, age range: 21 to 27.1 years, 6 females) who were presented with the lateralized faces following the same paradigm as infants. The study was approved by the ethical committee for biomedical research. All adult subjects and parents of infants gave written informed consents before participating in the study.

	Chapter 3.
	The first group of healthy full-term
	infants (N = 39, Mean age: 14.15 ± 4.79 weeks, age range: 5.6 to 23.6 weeks, 11 girls) was
	studied elsewhere to investigate the functional maturation of visual Event Related Potentials
	(ERP) to lateralized faces (Adibpour et al., 2018). A subset of these infants (N = 22, Mean age:
	14 ± 4.96 weeks, age range: 5.6-22 weeks, 7 girls) was also tested to study ERP responses to
	central faces. To compare the results obtained for infants with adults, we additionally included
	59

Table 3 .

 3 Table 2 and the box plots in Figure3.4D show that adult values further continue the trends observed in infancy. 2: Between-trial variability (z-scores) were compared for the three age-groups (5-12 week old: first trimester infants, 16-24 weeks old: third trimester infants and adults) in their respective moments of P1 and P400 closest flybys using separate Kruskal-Wallis tests for different ERP templates (P1, P400 ) and for faces presented in the left and right hemi-field. The main effects are reported before post-hoc Mann-Whitney U-test for pair-wise comparisons. P-values are corrected for multiple comparisons using Bonferroni correction.

	Table2 Age Difference in Between-trial Variability around Flybys (z-scores)
		Left Faces	Right Faces
		H = 11.72,p<0.003	H = 12.95, p=0.001
	P1	5-12wo vs 16-24 wo: 0.25 (n.s.)	5-12 wo vs 16-24 wo: 0.5 (n.s.)
		5-12 wo vs adults: p= 0.003	5-12 wo vs adults: p= 0.002
		16-24 wo vs adults: p= 0.229 (n.s.)	16-24 wo vs adults: p= 0.05
		H = 16.68 p = 0.0002	H=14.10,p=0.0009
	P400	5-12wo vs 16-24 wo: p = 0.001	5-12 wo vs 16-24 wo: p= 0.08 (n.s.)
		5-12 wo vs adults: p = 0.001	5-12 wo vs adults: p= 0.002
		16-24 wo vs adults: p >0.8 (n.s.)	16-24 wo vs adults: p =0.1 (n.s.)

3.3.4.3 Between-trials Variability Quenching is not Equivalent to Alpha Phase Reset Dynamics

Table 4 .

 4 1 lists the values of all the relevant parameters that are fixed for excitatory and inhibitory populations respectively. Our model contains 4 free parameters (w EE , w EI , w IE , w II ),

	which determines the model behaviour and information coding. We simulated the model for
	various combination of these parameter ranges as indicated in table 4.2 and report the possible
	phases and the model behaviour in Fig 4.1 and 4.2. The fixed parameters and some of the
	combinations of the free parameter ranges were previously identified as the best fits to the
	empirical functional connectivity data by (Demirtaş et al., 2019) in a slightly different version of
	this model.		
	Parameter Excitatory (E) Population Inhibitory (I) Population
	γ	0.641	-
	I 0	0.382 nA	0.2674 nA
	τ	0.1s	0.01s
	a	310 nC -1	615 nC -1
	b	125	177
	d	0.16	0.087
		Table 4.1: Values of fixed parameters of the Model

à 6 mois et chez les adultes. Confirmant les observations antérieures chez les adultes, nous constatons que les effets du stimulus sur les fluctuations spontanées du fond ne sont que «modulateurs» mais plutôt que déterminants. Chez les nourrissons, la structure temporelle de ces faibles modulations dépend néanmoins de la difficulté de la tâche à accomplir. L'interprétation de ces résultats par les systèmes dynamiques nous permet de suggérer que les composants du potentiel lié aux événements (ERP) agissent comme des modes faiblement attirants d'un paysage énergétique de faible dimension dans lequel les trajectoires neuronales sont temporairement contraintes en raison de l'arrivée de stimulus. Une application dérivée pour réparer des enregistrements EEG artéfacts a été inspirée par cette hypothèse de paysage de faible dimension, qui est décrite dans v une annexe à la thèse. Dans la deuxième étude, à l'aide d'un modèle de calcul simple qui se rapproche de l'activité de champ moyen des populations excitatrices et inhibitrices (E-I) dans un circuit cortical local générique, nous observons que le « contraste » du stimulus présenté peut avoir une incidence sur divers aspects des réponses; notamment la cadence de tir moyenne ou la fréquence oscillatoire de l'activité collective de la population, mais surtout la latence des pics de réponses en fonction des forces synaptiques E-I et de leur équilibre. Les fluctuations de l'activité initiale spontanée interagissent de façon linéaire avec la force appliquée du stimulus, ce qui entraîne une variabilité des trois aspects de la réponse, y compris la nervosité temporelle dans les pics de réponse, qui a été bien identifiée dans la première étude. Le modèle computationnel relie donc la maturation dans les conductances excitatrices et inhibitrices à la quantité de gigue, et fournit ainsi une explication possible pour la maturation observée de la variabilité de réponse au début du développement. Cette thèse plaide donc pour l'étude des statistiques de second ordre ou de la variabilité de la réponse neurale, qui en particulier, chez les nourrissons est souvent écartée comme « bruit de fond non formatif » mais pourrait faire partie intégrante des algorithmes cognitifs étant donné sa structure précise et son lien avec la dynamique du réseau. vi

The brain's intrinsic dynamics refers here to the neural activity not correlated with any features of the experimentally controlled external stimuli. Since such network dynamics often seem to change relatively spontaneously in relation to the controlled aspects of the external stimulus, the phrases intrinsic dynamics and spontaneous dynamics are often used interchangeably in the literature.

Different branches of investigation (Neuroscience/ Cognitive Science/ AI) have different notions of 'representation'. For philosophical discussion on this topic I refer the reader to[START_REF] Baker | A Philosophical Understanding of Representation for Neuroscience[END_REF] and the references therein. In its broadest sense, the neural activity (and its dynamics) in some parts of the brain is considered to be a 'representation' of some stimulus if: (1) it carries partial or full information about the presented stimulus, (2) if such activity plays a specific mechanistic (or functional) role in (conscious or unconscious) animal behaviour

For a detailed discussion on how single neurons can change their activity in 'context dependent' manner (when embedded in an active network assembly) by using mechanisms of "functional homeostasis", I point the readers to[START_REF] Marder | Variability, compensation and homeostasis in neuron and network function[END_REF] 

Gestational age relates to number of weeks from mother's first day of the last menstrual cycle to infant's birth date

This chapter was adapted from the manuscript submitted to Neuroimage and currently under review after minor revision. Authors: Shruti Naik, Parvaneh Adibpour, Jessica Dubois, Ghislaine Dehaene-Lambertz, Demian Battaglia

This chapter is an adaptation of a manuscript in advanced state of preparation that will be submitted in close proximity of thesis defense. Authors: Shruti Naik, Ghislaine Dehaene-Lambertz, Demian Battaglia

During my PhD, I only briefly explored this model in collaboration with the inventors of these models and researchers at INRIA-Aurelien Decellle and Cyril Furtlehner, here I present a single subject data-point to demonstrate the utility of these models for identifying stable states in neural data. This collaboration will be continued in future and the data processed will be analyzed in order to explore specificity of hidden states

The progress of this study was stalled due to health measures during COVID-19.The participants are currently being recruited for this study, The preliminary Analysis on 8 infants did not yield any significant exploration. However, for the purpose of completeness I present here the study design and the motivation for it.

This appendix is the adaptation of the manuscript submitted to Journal of Neuroscience Methods, which is currently under review. Authors: Shruti Naik, Ghislaine Dehaene-Lambertz, Demian Battaglia
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Appendix A

Relating Event-Related Variability to Behavioural Markers One impending question that remains only partially answered in this thesis is: Are Eventrelated Variability (ERV) measures simply a statistical trick or do they indicate meaningful indices of the neural computations not visible with other traditional analyses? Here I present a usefulness of our single-trial fly-by measure in understanding the "attentional bottleneck" [START_REF] Shapiro | The attentional blink[END_REF] in 3-4 months old infants 9 .

A.1 Overview

In this study, Leroy et al studied how attention to a salient stimulus (T1) impairs attention to a subsequent stimulus (T2) presented in close proximity. In adults, it has been shown that T2 is either processed with lower performance or may even be missed when the time interval between T1 and T2 is smaller than half a second [START_REF] Marti | A shared cortical bottleneck underlying attentional blink and psychological refractory period[END_REF]. We studied the developmental mechanism of such attentional bottleneck in healthy 3-4 months old infants using visual stimuli.

In order to track attention of infants at each trial, pupil size, infant gaze and EEG signals were simultaneously tracked along with a technique called frequency tagging. This method allows quantifying the deployment of infant attention by the way of analyzing stimulus-evoked responses at a given frequency, namely the tagging frequency. Especially, it takes advantage of the fact that intrinsic neural rhythms can be entrained to the tagged frequency of the rhythmically flickering external stimuli and the stimulus on top of this flickering noise pattern can briefly perturb the neural entrainment 10 . This data is naturally interesting for our purpose of testing the usefulness of single-trial fly-by measures as they allow us to compare this measure with other trial-bytrial markers of infant attention. This work is still in progress, however below I discuss the 9 This work is led by François Leroy and is still ongoing. I only present here in brief the analyses relevant for the current discussion. 10 For more details on this method, I refer to (Cohen & Gulbinaite, 2017) for the trials passing earlier vs later to the P400 response template after teddy-bear onset. In the late P400-flyby trials, the existent of an intermittent ERP component (N290) is clearly visible as a strong negative deflection in posterior electrodes. (C) (Baseline corrected) pupil size constriction after teddy-bear onset for early and late P400 flyby trials. On early flyby trials, pupils remain less constricted than for late flyby trials. (D) Serial processing effects of different P400-flyby latencies. On the early P400 flyby trials to teddy bear onset(left panel), the powerdrop of tagged frequency was more sustained at the subsequent target (T2), while the power-drop for the late flyby to teddy-bear P400 template indicated only a transient power-drop in tagged frequency. Overall these preliminary results demonstrate the significance of fly-by measures in tracking attention or arousal on salient stimuli and the subsequent stimuli.

A.3. Preliminary Results

A.2.3 ERP Template Creation and Fly-by Latencies

In order to perform trial-by-trial analysis at teddy-bear onset, we used a subject-specific P400template (the most prominent ERP response following teddy-bear onset). For each subject, the P400-ERP template was derived using trial-averaged topography at the first GFP (global field power) peak in the time-window of ms. This time-window was chosen in order to cover 50ms time-window around the latency of P400 response to teddy-bear in grand-averaged ERPs.

All trials for were grouped together in order to derive a single P400 template per subject. Next for each trial, we calculated the latency to the closest P400-flyby as time after teddy-bear onset where the distance was lowest in the 100ms time-window surrounding the trial-averaged (ERP)

peak. The trials were then divided by median split, into 'early' and 'late' P400 trials. I.e. the trials that were faster to approach the P400 template vs those that were slower, following the teddy-bear onset. Next I present the main differences across these groups.

A.3 Preliminary Results

First we tried to understand the differences in the traditional Event-related potential (ERP) responses between trials that approached the P400 template early vs late following the teddy-bear onset (Fig A.1B). We observed that for both early and late P400 flyby trials the P1 response amplitude was the same, however for the trials with late P400 flybys, there was a significant negative deflection of voltages in the posterior electordes at ∼ 340 ms post-teddy bear onset. I.e. late flyby to P400 template marked an additional ERP response, which was absent in the trials with early flybys. Due to its similarity in latency and spatial distirbution to well-known face ERP response, we called it N290 response. This response had been previously implicated as a marker of sustained attention for face-stimuli as compared to toy stimuli in infants [START_REF] Guy | The cortical development of specialized face processing in infancy[END_REF].

Does this mean that late flyby to P400 template is a marker of sustained attention to teddybear? To test this, next we compared pupil diameters across early and late flyby trials (Fig A.1C). We observed that following teddy bear onset, infant's pupil size across the two groups were significantly different. Especially, pupils were more constricted for the trials with late P400flybys than for the early P400 flybys. Hence, the differences in flyby latency were partly linked to physiological markers of arousal across these trial groups [START_REF] Mathôt | Tuning the senses: How the pupil shapes vision at the earliest stage[END_REF].

Next we tested whether or not later or earlier flybys to teddy-bear P400 responses had different effects on the processing of the later (T2) stimuli. To test this, we turned to the EEG Power at the tagged frequency in the epochs after T2 onset (Fig A .1D). For the early P400 flybys to teddy bear onset, we observed a sustained and more pronounced power-drop at the tagged frequency as compared to the late P400 flyby, where the power-drop was confined only to the duration of the T2 onset. These results hence crucially showed that infants more effectively processed the face-mask stimuli in the trials where they were less distracted by the teddy bear. Below we summarize these results.

A.4 Implications

In this preliminary analysis, we showed that first, different trials are able to approach ERP templates at significantly different latencies. This trial-by-trial variability in the latency to approach P400 templates is not simply noise, but were related to the (non-)existence of a significant (N290) ERP response on some trials but not others. The amplitude of N290 response had been previously shown to increase in response to sustained attention to the stimuli in infants [START_REF] Guy | The cortical development of specialized face processing in infancy[END_REF]. Hence, we concluded that on the trials with late P400 flyby, infants paid more attention to (possibly the facial features of ) the teddy bear as compared to the early P400 flyby trials. Moreover, the late flyby to P400 response was also significantly correlated with the physiological fluctuations in pupil size. Pupil size has been previously linked to levels of arousal in many previous studies, with pupil constriction being associated with more focused spatial attention [START_REF] Mathôt | Tuning the senses: How the pupil shapes vision at the earliest stage[END_REF], and hence here possibly suggest that the modulation of infant attention to teddybear onset across trials was likely modulated by variations in arousal.

Furthermore, these results also confirmed the serial effect of (in-)attention to teddy bear stimuli on the later processing of the brief face-mask stimuli. Especialy,we observed that on the trials with late P400 flyby, where infants were likely more engaged with the teddy bear, attention to the later (T2) stimuli was impaired as observed by the short-lasting power-dropped in tagged frequency. While for the early P400 flyby trials, the opposite effects were observed. A power-drop in the tagged frequency is a marker of shift in infant's attention shifing away from center (teddy bear) to periphery (face or mask). This is because, the alpha rhythm entrained to the frequency of the peripheral flickering background will be briefly perturbed by the presence of the face-mask stimuli. I.e. the larger the attentional gain, the flickering noise suppression will be stronger and hence, the larger power drop of EEG signal at the tagged frequency. even though infant's gaze was fixed at the centre teddy bear, more or less attention to the periphery can be tracked by such power-drop [START_REF] Stimulus Cohen | Rhythmic entrainment source separation: Optimizing analyses of neural responses to rhythmic sensory stimulation[END_REF][START_REF] Toffanin | Using frequency tagging to quantify attentional deployment in a visual divided attention task[END_REF].

To conclude, these results suggest that the latency variability in flyby to ERP templates is not a noise but indicates important task-relevant variables such as attention or arousal. Adaptation of single-trial flyby further allowed demonstrating the mechanisms of attentional blink as early as 3-4 months old infants. Here we only considered two groups of early and late P400 flybys and effects at T1 and T2, however, true trial-by-trial variation in these measures can be correlated to understand the robustness of these effects. Many questions still remain for e.g., whether the infants made more correct saccades at T2 (towards face rather than scrambled face) or simply more number of saccades due to arousal, how is the processing of T3 affected? These questions will be discussed in extensive detail in the full manuscript by currently in preparation by Leroy et al.

Appendix B

Role of Expectations in Shaping the Neural

Manifold

B.1 Motivation

Infants learn the statistical models of their environment and build active inferences from early ages [START_REF] Köster | Making sense of the world: infant learning from a predictive processing perspective[END_REF]. Prior expectations have been shown to shape the responses to the upcoming stimuli in 6-month old infants [START_REF] Emberson | Top-down modulation in the infant brain: Learning-induced expectations rapidly affect the sensory cortex at 6 months[END_REF] and 12-month old infants [START_REF] Kouider | Neural dynamics of prediction and surprise in infants[END_REF]. However the neural mechanisms by which these prior expectations are represented still remains unknown. Most of these developmental studies have investigated the effects of priors on the posterior response and have not evaluated the direct interaction between neural correlates of priors and how they affect posterior response. Studies from human adults have theorized that the pre-stimulus brain states possibly encode predictive priors about the upcoming stimuli and can significantly shape the response to ambiguous stimuli [START_REF] Gilbert | Brain states: top-down influences in sensory processing[END_REF][START_REF] Pezzulo | The secret life of predictive brains: what's spontaneous activity for? Trends in Cognitive Sciences[END_REF][START_REF] Podvalny | A dual role of prestimulus spontaneous neural activity in visual object recognition[END_REF]. Especially, one study has shown that pre-stimulus brain states can not only facilitate the detection of the forthcoming stimuli but also the recognition of it in a category-specific manner [START_REF] Podvalny | A dual role of prestimulus spontaneous neural activity in visual object recognition[END_REF].

Following the results and discussion in chapter 3, here 11 we decided to explicitly manipulate expectation in 14-24 weeks old infants in order to understand the effect of this change on prestimulus brain state as well as the interaction between pre-and post-stimulus neural responses to an incoming ambiguous stimuli.

In order to understand whether or not category specific expectations can be formed by ∼ 3-6 month old infants, we decided to exploit word-category associations. It has been shown that 5months old infants are able to learn word-object associations and to understand a label associated with an abstract rule [START_REF] Kabdebon | Symbolic labeling in 5-month-old human infants[END_REF]. Furthermore, in 4-6 month old infants, functionally specialized cortical regions already exists that preferentially respond for faces or natural scenes rather than for other categories [START_REF] Deen | Organization of high-level visual cortex in human infants[END_REF], suggesting that infants can discriminate between faces and other categories especially outdoor scenes such as houses.

Hence, we decided to test: first, whether infants learn the word to object category associations for familiar objects such as faces and unfamiliar yet distinct objects such as houses. Secondly, we wanted to understand whether or not these learnt associations facilitate in perception of a "double-exposure" face-house superimposed image [START_REF] Furey | Dissociation of face-selective cortical responses by attention[END_REF]. Our hypothesis was that when the same ambiguous image is preceded by the words that cue different object category, neural representations of this same ambiguous image should change across trials and especially, the neural responses should be closer to the category for which the infants were cued. Third, we considered whether the brain state for informative vs non-informative word-cues were different and whether or not it influenced the representation of the ambiguous image. (Fig 5.4 shows the basic idea behind the design.)

B.2 Study Design

Task Paradigm: In the training part, clear images of face, house and uninformative noise texture were presented each time preceded briefly by one of the three distinguishing 'cue words', each of which were uniquely associated to one of the three categories. Cue words were counterbalanced across categories and subjects. After a short habituation phase of 30 trials on wordsimage category pairs, learning was evaluated during the test phase. In the test phase, we presented a well-calibrated "double exposure" image of face superimposed on house (target image) on 66% of the trials. 1 3 rd of these trials preceded by the cue words associated with face category, 1 3 rd with house and the rest of the trials were preceded by the cue word associated with sham noisy image. For rest of the 33% of trials, occasionally the congruent clear faces or congruent clear houses or congruent noise images were also presented in order to remind infants the word-category associations in the middle of the long test phase. Fig B .1A shows the task design.

Training part: Each trial started with a colored ball in centre of the screen, in order to attract infant's gaze to the center of the screen and shortly after a variable delay, a 500ms long bell-sound was presented in order to alert the infants about the start of the trial. Immidiately after the offset of this "attention grabber" sound, the cue word was presented. 1000 ms after the word onset, a congruent image of corresponding face, house or noise was presented for another 1000 ms. If the image was informative of the object category (i.e. face or house but not noise), a feedback sound was played along with the slight "bobbing" movement of the image right before the image offset, in order to keep the infants interested for the task during a comparatively long trial. The delay between face-onset and the word-onset of the next trial was kept to be 1300-2600 ms.

In addition to training in lab, a few infants were also initially exposed to "home-training".

For this, pre-recorded videos of the training parts were sent at home via e-mail and parents were For training part, after an initial block design (3 repeated presentation of each category specific word-images), rest of the trials were pseudorandomized. In test part, 66% trials contained ambiguous images followed each time by a different word associated with specific category, on 33% of the trials, the clear face, house or noise texture were also presented preceded by their congruent words in order to remind the infants of the pairings. ambiguous image onset with 2s of delay in between and the trial finished after variable delay of 3-3.5s after image onset. The subject reported "never seeing a face" for 50% opacity levels while "seeing face but not house" for the 70 % opacity level image. The preliminary results from this single subjects although useful, will be less accurate to present here and more adult pilots will be required in order to conclude the effects that we would like to test. Specifically, we will ask these questions: Are neural responses to the ambiguous stimuli preceded by the informative words more similar to their category specific responses than those preceded by "sham" word (i.e.

word 3). Is brain state between cue and target more reproducible after the informative cue (word 1 and 2) as compared to uninformative cue (word 3)? Does pre-target activity has information about category specific response?

Below I give the specific analysis that will be necessary to test these hypotheses.

B.3 Proposed Analyses

Our main aim is to understand whether or not neural trajectories following ambiguous target image becomes more similar to the category specific neural trajectories when followed by an informative cue. I give specific future analysis markers which will be included to investigate the answer the questions mentioned in above example:

• we would like to understand if the response to ambiguous image becomes more similar to face (house) if the same image is followed by the face (house)-specific label (cue), vs uninformative noise cue. In order for this, using traditional ERP analyses to clear face/house images, we will first identify the ERP components that can differentiate between the face, house and noise images.

• In order to classify the response to ambiguous images, next we apply single-trial flyby distance analyese from our previous study, by considering in the same infants, the ERP templates obtained from clear face and house responses.

• Our third goal is to check if the pre-stimulus brain-state (i.e. the neural activity state defined just before onset of ambiguous image) can predict distinct trajectories following informative cue words (face-word or house-word) vs uninformative cue words (noise-words).

To this end, we plan to extract a low-dimensional trajectories explaining the highest stimulus specific variance in our data and to apply ERV analysis independent of templates.

• Finally, each individual trials with ambiguous image can be labelled by their trajectories being closer to 'face-like','house-like' or 'noise-like' ERP responses. Next, a decoding technique can be utilized to predict these a posteriori labels based on the prior brain state. Classification accuracy of these decoders can give hints about whether or not category specific priors are contained in the pre-stimulus brain state activity. This work is currently ongoing, and many changes to experimental design are still being adapted as we observe the infants' engagement on the task. One of the main caveats for data collection is the total duration for the task, which is much longer than average times of taskengagement (∼ 5-7 mins) in infants. However, with attention grabber and feedback sounds, we are being able to retain infants for 10-15 mins on the task. The data will be thoroughly analyzed after the thesis submission.

Appendix C

Repairing Artifacts in Neural Activity Recordings using Low-Rank Matrix Estimation

C.1 Chapter Overview

From our discussion in this thesis, it becomes clear that functionally relevant resting state and evoked neural activity dynamics lie on the low-dimensional manifold. In other words, neural activity at any given time and sensor is not a randomly sampled point in the state space but has a precise spatio-temporal structure that allows the explanation of such activity with small number of variables. In this appendix 12 , we hypothesized that this assumption can be used for the application of missing entries into neural recordings. Hence, here we propose a low-rank matrix completion algorithm to recover artifact-corrupted entries of neural activity time-series.

We show that this algorithm faithfully reconstructs true voltage values for missing entries even in presence of severe artifacts. As compared to state of the art spatial interpolation method, the low-rank matrix completion technique substantially improves statistical power of ERP analyses as well as single-trial analyses in each subject. The current method complements other artifact repair techniques and can be applied to any neural data where artifact-induced gaps are randomly distributed across sensors and time.

C.2 Abstract

Background: Electrophysiology recordings are often contaminated by artifacts such as eye movements or subject's motion, causing the rejection of large amounts of data. The consequent reduction in the number of available trials further reduces the statistical power and threatens the detection of significant experimental effects of interest. Hence, algorithms for signal recon-Low-Rank Matrix Estimation struction becomes an essential tool, allowing experimenters to retain as many number of trials as possible despite contamination by sparse artifacts.

New Method: Here we present a signal reconstruction algorithm, based on a solution to the low-rank matrix completion problem, that takes advantage of the high spatio-temporal correlations in neural signals to repair artifacted entries. Low-dimensionality of neural data allows us to learn the missing entries using a gradient descent algorithm in lower dimensions, which then provides a faithful reconstruction of signals, as long as gaps are sparsely distributed, even when artifact corruption is widespread. We carry out numerical simulations for benchmarking the proposed method and for estimating optimal hyper-parameters for its application on actual EEG data. We further assess the fidelity of reconstruction by detecting Event-Related Potentials (ERP) from a highly artifacted EEG time-series from human infants performing a visual face processing task.

Results: Our method, benchmarked on suitable surrogate signals with simulated artifacts but known ground truth, can synthesize missing entries in corrupted recordings with very high accuracy (Pearson correlation estimated to ≈ 0.5-0.99). In other words, reconstructed epochs in surrogate artifacted data have a good match with the ground truth signals. Using the proposed signal repairing method, a larger number of trials can be retained for ERP analysis of recordings, thus increasing statistical power.

Comparison to Other Methods: Compared to a state-of-the art interpolation technique (spherical spline interpolation), the proposed method significantly improves the standardized error of the mean (SEM) in ERP group analysis, as well as for between-trial variability analysis. This improvement further increases the statistical power and reveals significant effects which would have been deemed insignificant without reconstruction.

Conclusion:

Data retention can be significantly increased by taking advantage of the lowdimensionality of multivariate neural signals. Our method is agnostic to the type of neural recordings and can be applied to any time-continuous neural signal where artifacts are sparse but spread out across epochs and channels.

C.3 Introduction

Electrophysiology recordings are valuable tools for studying the neural correlates of cognition in humans as well as animals. Despite the development of new imaging techniques such as fMRI or near infra-red spectroscopy, EEG and the related Event Related Potentials (ERPs) approach still remains among the most reliable and practically feasible tools to study cognition, especially in human populations such as patients with pathology, elderly subjects, infants or children ( [START_REF] Luck | An introduction to the event-related potential technique[END_REF][START_REF] Csibra | Electrophysiological methods in studying infant cognitive development[END_REF]).

One of the biggest challenges of EEG/MEG data is however the very small signal-to-noise ratio due to the wide range of noise and artifact sources. This problem is especially exacerbated in infants, where apart from line noise and faulty channels, unexpected movements and high Low-Rank Matrix Estimation

We consider the task of artifact repair as a matrix completion problem, which is a well studied machine-learning task of filling in the missing entries from a partially observed matrix (here the channel × time matrix of neural activity observations). Since this problem is intrinsically under-determined, some additional hypotheses are required, assuming the form of constraints on the entries to be filled in. For instance, a common way to turn the problem of matrix completion into a well-posed problem is to enforce that the completed matrix have the lowest possible rank ( [START_REF] Laurent | Matrix completion problemsmatrix completion problems[END_REF]). Choosing this mathematical optimization goal corresponds to assuming that a large degree of local linear inter-dependency should exist between the activity time-series of different channels, or that, in other words, neural state trajectories should unfold over manifolds of lower dimension than the one of the whole neural states space. Precisely this hypothesis has been recently advocated by an impressive number of independent theoretical and experimental systems neuroscience studies at different spatio-temporal scales [START_REF] Mazor | Transient dynamics versus fixed points in odor representations by locust antennal lobe projection neurons[END_REF][START_REF] Cunningham | Dimensionality reduction for large-scale neural recordings[END_REF][START_REF] Gao | On simplicity and complexity in the brave new world of large-scale neuroscience[END_REF][START_REF] Mazzucato | Stimuli Reduce the Dimensionality of Cortical Activity[END_REF][START_REF] Chaudhuri | Computational principles of memory[END_REF][START_REF] Jazayeri | Navigating the neural space in search of the neural code[END_REF][START_REF] Pillai | Symmetry Breaking in Space-Time Hierarchies Shapes Brain Dynamics and Behavior[END_REF][START_REF] Wärnberg | Perturbing low dimensional activity manifolds in spiking neuronal networks[END_REF]Shine, Breakspear, et al., 2019;[START_REF] Rué-Queralt | Decoding brain states on the intrinsic manifold of human brain dynamics across wakefulness and sleep[END_REF]. The low-dimensionality of neural recordings has been explicitly quantified for several neural datasets [START_REF] Ganguli | Compressed sensing, sparsity, and dimensionality in neuronal information processing and data analysis[END_REF][START_REF] Gao | A theory of multineuronal dimensionality, dynamics and measurement[END_REF]. Especially in case of high density EEG data, the underlying number of brain sources generating scalp topography are way fewer than the number of sensors [START_REF] Sohrabpour | Imaging brain source extent from eeg/meg by means of an iteratively reweighted edge sparsity minimization (ires) strategy[END_REF][START_REF] De Cheveigné | Joint decorrelation, a versatile tool for multichannel data analysis[END_REF]. Therefore, we consider it legitimate to ground our artifact repair procedure onto a powerful low-rank matrix completion algorithm, that treat corrupted signal observations as 'missing values' to be predicted based on their interdependence with other observed entries.

Recently, theoretical proofs and numerical solutions have been provided showing that the corrupted matrix can be recovered with very high accuracy given specific bounds on the revealed matrix entries, and with an assumption that the original matrix has a low dimensionality, yielding successful applications in the fields of collaborative filtering, compressed sensing and image processing [START_REF] Candes | Matrix completion with noise[END_REF][START_REF] Keshavan | Matrix completion from a few entries[END_REF][START_REF] Keshavan | Optspace: A gradient descent algorithm on the grassmann manifold for matrix completion[END_REF][START_REF] Jiang | Light field compression using depth image based view synthesis[END_REF]. Here, we tested whether similar algorithm can be applied to neural data and, specifically, to repair the EEG artifacts from recordings of human infants. Hence, after all the typical pre-processing steps were performed for the artifact detection, we applied the proposed learning algorithm for filling-in the remaining artifact-related gaps. Specifically, we studied the algorithm performance in two ways. First, we benchmarked the current approach by testing its performance on data with artificially created gaps that preserves the exact artifact patterns of a typical EEG dataset. Since the ground truth data hidden by the artifacts are known for these realistic surrogate data, we could quantify how accurately can the algorithm recover these signals, as a function of the severity of the applied artifacts. Second, to test the usefulness of such an approach for the analyses of actual Cognitive Neuroscience experiments, we demonstrated that this gap-filling algorithm can significantly improve statistical power in the detection of ERP components, as compared to spherical spline interpolation C.4. Methods [START_REF] Perrin | Spherical splines for scalp potential and current density mapping[END_REF])), a state-of-the-art competitor algorithm. Moreover, we also showed that our method allows for a better comparison of single-subject metrics, such as between-trial variability. Especially, thanks to an improved number of trials after signal repairing, we are able to prove the existence of significant differences in between-trial variability across young and old infants, which were previously studied ( [START_REF] Naik | Eventrelated variability is modulated by task and development[END_REF]) but deemed not significant, because of a large number of artifacted, unrepaired trials.

C.4 Methods

C.4.1 Proposed Algorithm and Assumptions

Let D be a C × T neural data matrix, where C represents the total number of channels and T the length of the signal time-series. We assume that this large matrix D has already been examined for artifact detection and consider thus that it still contains missing entries for which data was marked as corrupted and not recoverable using more conventional techniques. We present an algorithm for filling these entries that is based on matrix completion algorithm known as OptSpace introduced by [START_REF] Keshavan | Matrix completion from a few entries[END_REF]. For full details on the matrix completion algorithm itself and proofs of its convergence, we refer to the original literature. However, in this section we will explain in a simplified manner the essence of its operation and how we use it specifically to perform multi-variate time-series reparation.

The first step of our approach is data epoching, i.e. usually large data matrix D, is first split into finite number of short non-overlapping epochs M k of size C × T k (T k << T ). The reason for data epoching is two-fold. First, applying matrix completion algorithm on the entire data matrix at once is computationally expensive and sometimes impossible due to memory constraints, whereas dividing it into shorter epochs can achieve faster convergence. Second, epoching enables temporally local prediction of the missing entries, by employing different optimized projections for different epochs, as we will see later. It should be noted however that this data epoching procedure differs from the epoching process of the event-related paradigm. Unlike ERP epochs, in this step we are agnostic to the external events i.e. stimulus onsets. We simply divide the full length matrix into smaller blocks.

The next step consists of applying a matrix completion procedure epoch by epoch. Specifically, let Ω(M) be the set of all known (non-corrupted) entries of a given data epoch M and (M) its complement, i.e. the set of all corrupted entries. To fill the gaps in M we need to infer values for the entries (M) solely based on the entries in Ω(M) and from the assumption that the original matrix M, can be approximated by a reasonably low rank matrix with rank r, i.e. Multi-sensor Neural data can be considered as a trajectory in a high dimensional space. However, the knowledge of this trajectory is incomplete, as some observations are missing, generally because of artifacts corrupting them (as indicated by dashed red line sections in the figure here). We can however make the hypothesis that the trajectory is continuous and unfolds over a low-dimensional manifold in data space (here represented as a sphere). Under these assumptions we can model short segments of the trajectory via their projections on locally optimized hyper-planes, with the same dimensionality of the actual unknown manifold. Through the optimization procedure, an inference is performed for the whole trajectory segment projection, i.e. for the observed but also the unobserved datapoints. In this way reasonable guesses for discarded data segments can be obtained, in a way respectful of local data geometry. This figure also serves as a graphical abstract.

C.4. Methods

Going back to the matrix completion algorithm, for each of the blocks M, we could determine its missing entries by choosing an optimal projection space such that the following cost function is minimized:

where || • || F denotes Frobenius norm (i.e. sum of squared matrix entries). Note that, even though the embedded minimization is over S, the cost function still depends on the matrices X and Y. The idea is precisely to identify an optimal projection subspace, by finding an orthogonal X and Y, such that it minimizes the discrepancy between the observed entries of M and the corresponding entries of its low-dimensional, linearly-projected model M. The observed entries Ω( M) will be a reproduction as faithful as possible of the observed entries Ω(M). Eventually, through the optimization of F(X, Y), we will also determine all other entries of M, including the entries ( M) that can serve as repaired or filled-in values for the corrupted entries (M).

The issue however is that there are several unknowns. To begin with, the rank r of the matrix M, which determines the size of S, is unknown. Second, optimizing the aforementioned cost function could be a tough undertaking with no prior assumptions about the missing entries.

A solution comes from defining a new matrix M E :

0, otherwise i.e., the corrupted entries of (M) are simply replaced by zeroes. A low-rank matrix closest to this zero-filled matrix M E is easy to find with singular value decomposition (SVD) and provides a good first guess for the rank r of M and S, which further needs to be adjusted and optimized as an algorithm hyperparameter (see later). Furthermore, to facilitate convergence of the optimization of F(X, Y), one can use the factors of the singular value decomposition of

0) as initial conditions. Starting from this M(0) , the matrix entries can then be adjusted via a gradient descent algorithm until when a local optimum of F(X, Y) is found. Some additional technical aspects must be taken into account to guarantee the performance, such as a "trimming" of M E to eliminate over-represented rows and columns and the use of a suitable regularization during the optimization. For these details, we invite the reader to refer to the original publications introducing the OptSpace algorithm and its variants ( [START_REF] Keshavan | Optspace: A gradient descent algorithm on the grassmann manifold for matrix completion[END_REF][START_REF] Keshavan | Matrix completion from a few entries[END_REF]). [START_REF] Keshavan | Optspace: A gradient descent algorithm on the grassmann manifold for matrix completion[END_REF] proved that, given some assumptions, the described optimization procedure can recover the missing entries exactly. These assumptions are as follows: 1) The rank r of the actual matrix should be sufficiently low, with its singular values spread across all basis vectors; 2) each row and column should have at least one observed entry and there is a lower bound on the overall number of missing entries depending on the rank and total elements of the Low-Rank Matrix Estimation matrix; and, 3) missing values should be distributed uniformly at random. For time-series of neural activity recordings, the first two assumptions are not too far fetched since, as previously mentioned, it is reasonable to suppose that neural activity unfolds on low-dimensional manifolds ( [START_REF] Ganguli | Compressed sensing, sparsity, and dimensionality in neuronal information processing and data analysis[END_REF][START_REF] Gao | A theory of multineuronal dimensionality, dynamics and measurement[END_REF]). Furthermore, every brain population has some non-zero baseline activity, even at rest. However, the third assumption for uniform distribution of missing values does not always hold for EEG Data. Indeed typical artifacts can be bursty in nature and, hence, missing values can be concentrated in single channel or at all channels on several time-points. Due to this caveat, one can only expect to approximately recover the true matrix. It is thus necessary to estimate how well matrix completion can work based on numerical experiments, given that the criteria for exact convergence are not always fulfilled. To accomplish this, we must create appropriate benchmarking datasets for which the ground truth signal is known, i.e. surrogate EEG datasets with artificially introduced gaps that mimic the impact of real artifacts.

C.4.2 EEG Dataset

C.4.2.1 Subjects

The dataset serving as basis for generating surrogates as well as for further ERP and singletrial analyses consists of electrophysiological responses from N=40 full-term healthy infants aged between 5.8 and 24 weeks (mean: 14.2 weeks, 25 girls). The experiment was conducted to study the development of hemispheric specialization of face processing in human infants. The study was approved by the ethical committee for biomedical research. Parents of all infants gave written informed consents before participating in the study. Human faces were presented in the left and right hemifield while infants'attention was attracted in the center by colorful rotating circles.

EEG was recorded with 128 Geodesic channels. EEG paradigm is explained briefly later in the ERP validation section and a detailed explanation can be found in [START_REF] Adibpour | Right but not left hemispheric discrimination of faces in infancy[END_REF].

C.4.2.2 Preprocessing and artifact labeling

For each subject, maximum of 9-15 mins of recordings (continuous or interrupted) were obtained from each of the 128 channels with the sampling rate of 250 Hz. The data was first bandpass filtered between 0.5-20 Hz in order to remove slow drifts as well as high frequency power-line and muscle noise, resulting in a data matrix D. Additionally, the reconstruction performance was also tested without low-pass filtering. In either case, motion and blink artifacts were marked if sudden jumps were detected exceeding a voltage amplitude >250 µV or if the deviation between fast and slow average amplitude exceeded the mark of 150 µV. Further epochs were marked as artifacted using manual inspection. When a channel had more than 70% of rejected time-points, it was rejected for the entire recording (i.e marked bad for the entire recording). On average, 5-10 electrodes were rejected in each baby (and the corresponding rows were then trimmed from the data matrix). When a time-point was rejected in more than 75% of the electrodes, this C.4. Methods time-point was marked bad for all channels (and the corresponding column was then trimmed from the data matrix). Furthermore, all entries whose voltage value was greater than 10 S.D. from the overall voltage mean were also marked as bad.

According to the previously introduced definition, we call (D) the set of corrupted entries of D and Ω(D) its complement set of good entries. Any matrix block formed by a set of temporally contiguous columns of D with entries all belonging to Ω(D) is an element M (good) of the set good(D) of all possible "good" blocks (i.e. without artifacted entries). 

C.4.3 Numerical Analysis of Model Performance

C.4.3.1 Hyperparameters

For any real EEG dataset, the number of total time-points T in raw data is always much larger than the number of sensors. For our dataset in particular, the dimension of the data matrix

. In these conditions, attempts to recovering all the missing entries at once is not advisable, for practical reasons, first, as the input matrix would be large -data matrix for each subject contains ∼ 10 5 time points-, and, second and more importantly, because the activity time-series may be visiting different low-rank manifold components at different times, as an effect of spontaneous or evoked state change (cf. [START_REF] Hansen | Functional connectivity dynamics: modeling the switching behavior of the resting state[END_REF][START_REF] Vidaurre | Spectrally resolved fast transient brain states in electrophysiological data[END_REF]).

Hence to avoid huge information loss and to meet the expectation of the original algorithm, we split the original matrix D into a series of k non-overlapping epochs M k , each of which are assumed to have some low rank r and size C × T k , and where the length of epoch

The performance of the algorithm may depend on our choice of T k and must thus be tested against its variations.

Moreover, the performance also depends on our guess for the rank r to be assumed for the completion of each shorter block M k . As previously mentioned, a good guess for it may be the rank of the zero-filled block matrix M E k . If such estimation can provide a first indication of the range of ranks to investigate, it could also vary substantially from block to block, due to varying Low-Rank Matrix Estimation noise levels more than to actual signal dimensionality changes. We make therefore the practical choice of using the same r for completing all the different M k 's into which D is split. We thus treat r as a second hyperparameter, whose variations may affect performance and that should be optimized.

Finally, the performance of the algorithm will also depend on the severity of the artifact to repair, i.e. on the number of corrupted entries within (M k ). When benchmarking the algorithm, severity percentile class q can also be chosen, as we can generate surrogate artifacted blocks by overlaying on a good block M (good) the artifact mask B M (bad) of bad blocks with the desired artifact severity (see next subsection).

C.4.3.2 Library construction and bootstrapping

In order to generate realistic surrogate data for benchmarking, we first built a library of good and bad data chunks as follows: At every iteration, a chunk of EEG data of a given blocksize was selected at random from any of the subjects in the dataset without replacement. The size of chunk was systematically varied between a maximum number of time-points T k,max = 470 timepoints (or 1.88s) and a minimum T k,min = 20 time-points (or 0.08s). This randomly chosen block was labeled good or bad depending on the fraction of entries it included that were previously labeled as artifacted. The random extraction of good and bad blocks continued until when we reached the desired library size. This procedure is illustrated in Figure C.2B. The number of good blocks that can be found depends on how noisy the EEG data is. For instance, in our dataset, out of the data table D for one subject, we could extract a ratio of ∼ 20 good blocks vs O(10 5 ) bad blocks, when using the largest block length T k,max . Larger number of good blocks could be found when constructing libraries for shorter block-sizes (as it was easier to fit shorter blocks between two artifact-induced data gaps). For every block-size, we also assigned each of the extracted bad-blocks to a percentile class of severity q. Note, that even for T k = T k,max , most of the bad blocks had only a few corrupted entries, as indicated by the strongly right-skewed distribution of artifact severities over the extracted library bad(D), shown in Figure C.2B.

Based on the libraries good(D) and bad(D) of good and bad blocks extracted from the considered datatable D, we generated realistic data-compliant surrogate bad matrices. For each blocksize values T k ∈ {20, 70, 120,..., 470} and severity percentile q ∈ {1,2,...,5}, good blocks M (good) and bad blocks M (bad) were sampled with replacement from good(D) and bad(D) respectively. A surrogate artifacted block M (good),E was then computed by performing entry-wise multiplication between the original good block M (good) and the artifact mask B M (bad) of the bad block M (bad) . In this way we obtain a surrogate artifacted block for which the ground truth signals masked by the imposed artifact pattern is known, as the set of corrupted entries (M (good) ) is empty by definition.

Each of these corrupted matrices were given as input to the matrix completion algorithm and performance was measured in terms of both Frobenius distance and Pearson correlation between the ground truth good matrix block M (good) and the matrix with repaired gaps generated from 

C.4.4 Method Validation on actual data analysis applications

No method can create information. Our method is no exception, and not only fills gaps with values that may be different from the real one, but furthermore can alter the time-series even in sections where real data would be available, as the original data matrix with gaps is replaced by a low rank approximation without gaps. It is thus important to understand whether our artifact repairing algorithm can guarantee or, ideally, improve the quality of actual neurosciencerelevant analyses with respect to analyses without completion or completed via competitor stateof-the-art techniques. We thus quantified Event-related potentials (ERPs) and modulations of between-trial variability quenching, two relevant markers for cognitive neuroscience analyses, assessing the relative improvements achieved by two data completion methods, our proposed method and an alternative, more conventional spherical spline interpolation method. Spherical spline interpolation is a spatial interpolation method, that is applied to fill missing entries of the bad channels in each subject's evoked responses (e.g. by using the MNE python's in-built function evoked.interpolate_bads). At each time-point, Spline interpolation considers the relative spatial positions of the good and bad channel on the head model. The voltage entries of all the good and bad channels are first projected onto a unit sphere. Then a matrix is computed to project good channels onto the bad channels on this sphere, which is then used to interpolate data in the bad channels. The detailed explanation of this method can be found in [START_REF] Perrin | Spherical splines for scalp potential and current density mapping[END_REF]. Importantly, this method does not explicitly take into account temporal correlations in the data and is not designed to repair small gaps but operates by generating a full spline-interpolated time-series for an entire channel marked as bad. Comparison of performance between our method and spherical spline interpolation is given in (B) Out of actual recording we extract both "good" and "bad" blocks made respectively of data epochs not including or including artifact gaps (see text for details). Good block dictionary contains 10 4 times less blocks than the bad block dictionary. i.e. very few epochs were found without any artifacts. Bad blocks were sorted according to the severity of missing values in the block. (C) The distribution of severity (i.e. % fraction of corrupted values) follows a power law. i.e. for a given size, most of the blocks contained very few missing entries. Q1-Q5 represents percentiles of this distribution and we use this percentile limits to group bad blocks in sub-classes with growing severity. In the following, we generate surrogate artifacted data blocks with known ground truth signal, by overlaying actual artifact masks mediated from bad blocks on top of good blocks. We will test artifact repairing performance on these surrogate artifacted blocks, varying block-size, severity, and rank of the block matrix to be reconstructed.

C.4.5 Event Related Potentials

We applied our reconstruction algorithm on N = 34 subjects, a subset of the previously described dataset with the blocksize = 120 and varied ranks depending on the amount of corrupted entries of the blocksizes. After signal reconstruction with both methods, baseline correction and reference averaging steps were performed to improve the signal-to-noise ratio. Channels were further rejected if they remained irrecoverable after applying OptSpace throughout all epochs and normalized by the Global Field Power (GFP) at each time-point. We then averaged the evoked responses from the left occipito-temporal cluster across time-aligned trials and compared the resulting ERPs when visual face stimuli were presented in either the left or right visual hemifield. A grand ERP response was computed by further averaging across subjects. Subjects for Low-Rank Matrix Estimation

The libraries of good and bad blocks were generated directly from the original data without applying any filtering and hence power line noise is present on the channels that is visible in panel A. The fitting is improved remarkably when the power line noise is filtered out using a 20Hz lowpass filter. iterations, including all severity quantiles,ranks and blocksizes.

Overall, the model performed well across all bootstrapped simulations (median correlation between all matrix entries = 0.976 ± 0.0338, median Frobenius distance = 0.107 ± 0.0685).

Observed entries were recovered nearly perfectly (median correlation = 0.997 ± 0.01 , median

Frobenius distance = 0.037±0.036). While the accuracy of recovering artifacted entries was lesser than that of revealed entries, it was still significantly higher (median correlation = 0.47 ± 0.36 , median Frobenius distance = 0.35 ± 0.25) and apart from a few data blocks ( 10 % blocks out of O(10 4 )) where it was impossible to meet the assumptions of the algorithm, all other correlations between recovered entries and ground-truth entries were positive. In all cases, the correlations Low-Rank Matrix Estimation (and Frobenius distance) were significantly higher (smaller) than what is expected by chance level reconstruction (estimated via permutation testing, deeming correlations significant with 95% confidence when larger than C chance = 0.03 and distances when smaller than D chance = 39.038). 

C.5.2 Algorithm performance dependence on algorithm hyperparameters

The variability of accuracy scores may depend on the choice of hyperparameters. We then moved to study the dependence of the repairing performance upon tuning of the three hyperparameters. to the third percentile of artifact severity, when using smaller blocksize and higher rank values.

The average reconstruction accuracy remains satisfactorily high (r ∼ 0.88) even for the highest severity percentile, i.e. when 30-45% of the entries are corrupted.

C.5. Results

Performance decreases monotonically with increasing blocksize. However, this decrease is much less marked when a sufficiently large rank is used, i.e., as Figure C.4B suggests, there is a combined effect of rank and blocksize. For the lowest rank r = 4, model performance decreases quite rapidly with blocksize. However, for rank r ≥ 12 onwards, there is not significant gain in the performance from further raising the rank. This fact may be an indirect confirmation of the fact that our initial low-rank assumption for the data was well justified (see Discussion).

Indeed, the median rank of the data blocks before applying the OptSpace algorithm were quite high (median rank = 114 ± 10), and reflected the number of channels with non-zero entries, suggesting that the higher matrix rank reflects the noise in the data. This was further confirmed with the increase of blocksize, for all approximated matrix ranks. This was due to the fact that the longer blocksizes tolerate more deviations from the actual neural trajectory, and hence local reconstruction is improved at the expense of overall global reconstruction of the manifold. Here again, lower matrix ranks could approximate the missing entries better than the higher ranks, suggesting again that the lower matrix rank reduces overfitting of the existing entries, allowing for better reconstruction of the missing entries.

Finally, Figure C.4C displays effect of the artifact severity percentile on the performance. For all severity levels, our method appears to be capable of reasonably reconstructing the ground truth with greater than 90% of mean accuracy. However, as revealed by a developing downward performance distribution tail, as the severity quartile increases, some of the artifacted blocks begin to be reconstructed with reduced accuracy. With increased severity, indeed the reconstruction of missing values is compromised (cf. Fig SC .2), i.e. artifacts in the first quantile were more faithfully reconstructed (Median Pearson's r = 0.82) than the same in the fifth quantile (Pearson's r = 0.4). However, for all severity classes, the performance remained significntly higher, as indicated by positive correlation coefficient values. This trend was not marked for revealed entries as they were always faithfully reconstructed nearly perfectly. The effect of severity in recovering artifacted entries can be understood in terms of violation of a random sampling of the missing values. As the severity of artifacts rises, there is insufficient information in the revealed entries of the matrix to faithfully reconstruct the missing entries. Furthermore, the chance of witnessing bursts of missing values concentrated in a single channel or clustered around single epoch of time grows rapidly with increase in severity, further lowering the quality of reconstruction.

C.5.3 Event-Related Potentials

Using the optimal values for the blocksize and rank hyperparameters as determined through the benchmarking process, we applied signal reconstruction on an actual EEG dataset deriving from a real cognitive neuroscience experiment ( [START_REF] Adibpour | Right but not left hemispheric discrimination of faces in infancy[END_REF]) and tested how the can be made: First, The grand-average curve in both the cases have excellent similarity, with the reconstructed data replicating the peaks and troughs at the exact same latency as the minimally interpolated data (with spherical spline interpolation). This is noteworthy as our method does not only fill the gaps in the evoked data but fully regenerates the entire time-series to make it compliant with a low-rank model, and hence, the alterations in ERPs could have been induced even far from the epochs where most artifacts are detected. The fact that ERP is still faithfully captured indicate that the ERP spatiotemporal characteristics may be strongly determined by the topology of the low-rank manifold over which neural trajectory unfolds and that our algorithm learn to extract (see Discussion).

Second, only for the low-rank matrix-completed time-series, we observed a significant reduction of the standard error of the mean (SEM) across subjects, due to the fact that we can now include way more trials, many of which in reality where corrupted only at specific locations but carried otherwise meaningful and relevant information. As a result, the increased statistical power makes possible detecting as significant effects of smaller size. Notably, we calculated the contra and ipsi-lateral ERP responses of left occipito-temporal channels when faces were presented in the left and right hemifield. The two responses significantly differed in the timewindow of 250-450 ms. We found that this response was significantly different depending on the hemifield in which the faces were presented. Because of the reduced across-subject variance, and increased confidence in the mean curve, we observed a 1000-fold increase in the size of this effect for reconstructed data as compared to original data (One sample f-test F(1,37) = 8.7, p=0.004 for spherical spline interpolation, One sample f-test F(1,37) = 26.33, p=2.2 * 10 -6 for low-rank Low-Rank Matrix Estimation a sensible neuromarker to track congitive development: In particular, through a paradigm that we named "Event-Related-Variability" (ERV) analysis in [START_REF] Naik | Eventrelated variability is modulated by task and development[END_REF], we showed that between-trial variability is quenched at certain peristimulus times and that the exact timing and spatial pattern of quenching is modulated by development.

Here we show that artifact reparation via our novel method can as well improve the sensitivity of response variability analyses. Fig C .5D depicts the subject-level distributions of Z-scored between-trial variability in the vicinity of P400 ERP component for two age-groups: young infants (5-12 weeks old) and old infants (16-24 weeks). Here again, we observe that the singlesubject distributions of between-trial variability were easier to discriminate between age groups for the reconstructed data as compared to the original data (Wilcoxon Ranksum Test for equality of medians between the two age-groups: p=0.06 for original data vs p=0.005 for reconstructed data).

Hence, we are able to show that the improved number of trials due to reconstruction did not simply improve average discrimination due to the higher-number of included trials, but also reconstructed individual trials faithfully, so to be able to track differences in their variability.

Overall, our results suggest that such a method is not only able to retain higher number of trials, but also able to retain subtle features of the intrinsic neural signals.

C.6 Discussion

In this study we have demonstrated how a low-rank matrix completion algorithm along with Gradient Descent learning of Grassman manifolds can be used to "fill" the missing entries due to artifacts in actual EEG recordings. After comparing this algorithm's performance with a stateof-the-art alternative method, and studying performance dependence on the chosen parameters, we also provided a proof-of-concept demonstration of the algorithm usefulness, showing how ERP and single-trial analyses of an actual EEG dataset can be improved. In particular, we have shown that the use of our method can substantially increase the number of trials that can be retained for further analyses, as compared to a simple spherical spline interpolation, thus generally increasing statistical power of estimation and discrimination. Our method can easily be inserted within existing preprocessing pipelines in case of cohorts for which noise is high and yet trial retention is the absolute necessity.

Other methods for artifact repairing have been introduced. With a few notable exceptions (cf. (de Cheveigné & Arzounian, 2018)), most of the signal recovery algorithms for neural data rely either on channel-by-channel recovery of signals using algorithms traditionally developed for time-series interpolation [START_REF] Luck | An introduction to the event-related potential technique[END_REF] or use spatial interpolation at specific time points [START_REF] Courellis | Eeg channel interpolation using ellipsoid geodesic length[END_REF]. These approaches do not take advantage of the redundancy of the EEG signal in spatiotemporal and spectral domain. The spherical spline spatial interpolation methods used here as comparison term belongs to this category. Other methods previously described in the literature, however, use similar approaches as ours and are thus particularly adapted for Low-Rank Matrix Estimation C.8 Supplementary Figures