The effect of Wharton’s jelly extracellular matrix/tannic acid supplementation on porous gelatin foams
Effet de la supplémentation par de la matrice extracellulaire de la gelée de Wharton et de l'acide tannique sur des mousses de gélatine poreuse
Résumé
Tissue engineering is the development of functional tissue substitutes that can be used for reconstructing damaged tissues or organs. The main focus in the field of tissue engineering is to develop biomaterials that able to mimic critical features of the extracellular matrix (ECM), the three-dimensional microenvironment surrounding cells in the tissues and organs of the body. In this context, ECM derived from human tissue such as placenta and umbilical cord could be an ideal source for the construction of natural matrices. Wharton's jelly (WJ) is a connective tissue found in the umbilical cord. The ECM of this tissue has shown beneficial effects in healing. However, despite ECM derived scaffolds offer promising regenerative responses in many settings it is limited in availability and mechanical properties for shaping such matrices to obtain more robust and long-lasting structures. In addition, composition and the release of certain compounds as a function of the modes of fabrication are primordial by their influence on the cellular processes such as differentiation and migration. The subject of this thesis was therefore the investigation of the interaction between the proteins and glycosaminoglycans of the Wharton jelly extracellular matrix with gelatin foams which acts as a backbone to form a tissue engineering scaffold that would be stable in the physiological conditions within the timeframe required for regeneration and cellular in-growth. In this study, we developed a gelatin based porous scaffold supplemented with WJ derived ECM micro-particles or Tannic acid (TA). Within the scope of the thesis study, proposed porous scaffold supplemented with WJ derived ECM micro-particles was assessed for in vitro studies in response to Human umbilical cord mesenchymal stem cells (HUCMSCs) and THP-1 immune cells. Cell-scaffold interactions have been assessed by cell viability assay and SEM imaging. TA was incorporated to the blank gelatin scaffold for the assessment of antimicrobial and anti-biofilm efficiency of defined formulation against Gram-positive bacteria, Staphylococcus aureus. Scaffolds were fabricated by using freeze-drying technique. Microbial transglutaminase (TGA) was used to crosslink the composite hydrogels and to tailor their mechanical properties. Stability of crosslinked blank gelatin foams were evaluated in physiological and enzymatic conditions. Pore size and the extent of the porosity were evaluated by Scanning electron microscopy (SEM) and Mercury intrusion porosimetry (MIP) analysis, respectively...
La réticulation par la transglutaminase microbienne a permis à la gélatine de se dégrader de manière contrôlée sans perdre sa biocompatibilité. Cependant, l'ajout d'acide tannique a rendu la structure cytotoxique, sans toutefois pouvoir fournir une inhibition bactérienne complète. La taille des microparticules de gelée de Wharton se situait dans une plage appropriée pour l'induction de la régénération tissulaire. L'échafaudage composite Gélatine/WJ obtenu présentait une dispersion homogène de microparticules de gelée de Wharton et aucune différence significative n'a été observée sur la taille des pores avant et après l'ajout de gelée de Wharton. La réponse des monocytes THP-1 et des macrophages à l'échafaudage supplémenté en microparticules de gelée de Wharton était minimale, tout comme l'échafaudage vierge en gélatine, ce qui montre que la gelée de Wharton n'a pas d'effet spécifique sur les cellules immunitaires innées. Bien que la supplémentation en microparticules de gelée de Wharton n'ait pas eu d'effet significatif sur la prolifération des HUCMSC, on a observé que la pénétration des cellules était améliorée en présence de gelée de Wharton. Sur la base des résultats présentés, les deux matrices composites, la gélatine supplémentée en microparticules de gelée de Wharton et la gélatine supplémentée en acide tannique, pourraient être évaluées pour la conception de nouveaux échafaudages qui répondent aux caractéristiques antimicrobiennes et biocompatibles pour les applications d'ingénierie des tissus mous.
Origine | Version validée par le jury (STAR) |
---|