
THESIS TO OBTAIN THE DEGREE OF DOCTORTHESIS TO OBTAIN THE DEGREE OF DOCTOR

OF THE UNIVERSITY OF MONTPELLIEROF THE UNIVERSITY OF MONTPELLIER

In Information Security

Doctoral School: Information, Structures and Systems sciences (I2S)

Research Unit: LIRMM

Unsupervised Side-Channel Analysis Based on Mutual
Information and its Neural Estimation

Unsupervised Side-Channel Analysis Based on Mutual
Information and its Neural Estimation

Presented by Valence CRISTIANI

December 07, 2022

Under the supervision of:
Philippe MAURINE and Maxime LECOMTE

In front of the jury composed of:

Louis GOUBIN, Professor, Université de Versailles Saint-Quentin Reporter

Matthieu RIVAIN, Security Expert, CryptoExperts, Paris Reporter

Emmanuel PROUFF, Security Expert, Paris Examiner

François-Xavier STANDAERT, Professor, Université Catholique de Louvain Examiner

Christophe CLAVIER, Professor, Université de Limoges Examiner

Bruno ROUZEYRE, Professor, Université de Montpellier, LIRMM President of Jury

Philippe MAURINE, Associate Professor, Université de Montpellier, LIRMM Supervisor

Maxime LECOMTE, Research Scientist, CEA-Leti, Grenoble Co-supervisor

Thomas ROCHE, Security Expert, NinjaLab, Montpellier Invited member

Eleonora CAGLI, Research Scientist, CEA-Leti, Grenoble Invited member

ii

“Yes, I am a criminal. My crime is that of curiosity. My crime is that of outsmarting you,
something that you will never forgive me for. I am a hacker, and this is my manifesto. You
may stop this individual, but you can’t stop us all. . . after all, we’re all alike.”

The Mentor (Loyd Blankenship)

iii

UNIVERSITY OF MONTPELLIER

Abstract
Doctor of Philosophy

Unsupervised Side-Channel Analysis Based on Mutual Information and its
Neural Estimation

by Valence CRISTIANI

Side-Channel Analysis (SCA) is defined as the process of gaining information on a
device holding a secret through its physical leakage such as power consumption or
Electromagnetic (EM) emanations. Whatever the utilized strategy, the amount of in-
formation one could gain from a side-channel data, called a trace, is always bounded
by the Mutual Information (MI) between the secret and the trace. This makes it, all
punning aside, a key quantity for leakage evaluation. Unfortunately, traces are usu-
ally of too high dimension for classical statistical estimators to stay sound when
computing the MI over full traces. However, recent works from the machine learn-
ing community have shown that it is possible to evaluate the MI in high dimensional
space thanks to newest deep learning techniques. This thesis explores how this new
estimator impacts the side-channel domain.

The first part is dedicated to an analysis of the Mutual Information Neural Esti-
mation (MINE) technique in a side-channel context which aim is to derive the best
way of using such tool in practice. It shows that the intrinsic multi-dimensional
aspect of the technique is highly valuable for SCA since there are often multiple
leakage sources in side-channel traces. The method is derived as a generic leakage
assessment tool that can be used whatever the type of data, device or implementa-
tion.

HTTPS://WWW.UMONTPELLIER.FR

iv

Knowing how much information is contained in the traces is different from know-
ing how to exploit it optimally to recover a secret such as a cryptographic key,
especially in an unsupervised context when no profiling of the target is allowed.
Therefore, the second part of this thesis presents a new mathematical framework,
designed to bridge classical Mutual Information Attacks (MIA) and the multidi-
mensional aspect of neural-based estimators. This allows to derive, to the best of
our knowledge, the first unsupervised attack able to benefit from both the power
of deep learning techniques and the valuable theoretical properties of MI. In prac-
tice this attack suffers from two drawbacks : the time complexity, since it requires
as many network trainings as there are key hypotheses (often 256), and a strong a
priori on the leakage model of the target device.

The third part of the thesis makes use of the previously introduced mathematical
framework to build a deep learning architecture able to recover by itself such a leak-
age model. It allows to derive a new unsupervised attack, the EVIL Machine Attack,
with only one network training solving the two precedent issues at the same time.

The analysis of the EVIL machine in the context of masked implementations gave
rise to questions about stochastic attacks and their generalization to higher-order
versions. The last part of this thesis is dedicated to an analysis followed by a new
unsupervised attack proposition, the Joint Moment Regression, which is agnostic to
the underlying masking scheme as opposed to state-of-the-art techniques.

v

Acknowledgements
J’ai vécu cette thèse comme une aventure. Une aventure scientifique, intellectuelle
mais surtout une aventure humaine. C’est pourquoi j’aimerais profiter de ces quelques
lignes pour prendre le temps d’affirmer toute ma reconnaissance envers les person-
nes qui m’ont accompagné, aidé et avec qui j’ai partagé des moments inoubliables
durant ces trois belles années.

Tout d’abord, si j’ai choisi de me lancer dans cette thèse, c’est grace à Maxime,
mon encadrant, que j’ai rencontré lors de mon stage de fin de master au CEA. J’avais
l’intuition que nos personnalités pourraient correspondre et je peux dire a posteriori
que, au moins selon mes critères d’encadrement, Maxime était proche de l’optimalité
(et ce dès la première epoch ce qui est plutôt impressionnant dans notre domaine). Il
a su me laisser une grande liberté en me faisant confiance même lorsque je partais
dans des directions qui semblaient un peu folles, toujours en m’accompagnant avec
un mélange de bienveillance et de pertinence (deux qualités que j’ai rarement trou-
vées si bien réunies chez une même personne). Merci Maxime pour tout cela et
j’éspère que tu me pardonnera toutes les fois où je t’ai retenu jusqu’à la fermeture
du CEA. Nos discussions étaient tout simplement trop passionantes...

J’aimerais également témoigner toute ma gratitude envers Philippe, mon di-
recteur de thèse. Il a su malgré la distance, m’accompagner dans ma thèse, en
montrant toujours beaucoup d’intérêt pour mes idées, tout en les challengeant de
manière constructive. Les questions que nos discussions soulevaient m’amenaient
très souvent à formaliser les concepts et participaient largement à l’émergence de
nouvelles idées. Un grand merci Philippe pour ta bienveillance et ta dévotion à la
transmission, j’ai toujours eu le sentiment que tu ne laisserais jamais tomber un doc-
torant, même quand il s’agit de relire un papier imbittable un dimanche soir, avant
une deadline !

Je voudrais aussi remercier particulièrement Thomas Hiscock, mon encadrant
de stage. Il m’a permis de rejoindre le CEA, m’a donné le goût pour le domaine
des attaques par canaux cachés et à continuer de suivre mes travaux tout au long de
ma thèse. Merci aussi pour les innombrables coups de pouce techniques, sans lui je
serais toujours en train d’installer tensorflow-gpu...

Je souhaite remercier sincèrement Louis Goubin et Matthieu Rivain, rapporteurs
de mon manuscrit, d’avoir produit des rapports particulièrement pertinents mal-
gré la contrainte de temps demandée. Je remercie également Emmanuel Prouff,
François-Xavier Standaert, Christophe Clavier, Bruno Rouzeyre, Thomas Roche et
Eleonora Cagli d’avoir tous très gentiment accepté de prendre part à mon jury de
thèse.

vi

Si l’encadrement joue un role central, il n’est certainement pas le seul ingrédi-
ent nécessaire à une thèse épanouïe. J’ai eu la chance d’évoluer dans un laboratoire
avec une ambiance fantastique. J’aimerais remercier tous mes collègues et amis doc-
torants avec qui j’ai partagé le plus clair de mes journées depuis trois ans. Merci
Raphaël pour ton authenticité, merci à Thomas et Romain pour la dynamique pos-
itive que vous insufflez dans le labo (ps: j’emm**** Caro !). Merci à Julien pour
ta gentillesse et ta curiosité, merci Gaëtan pour toutes ces soirées karaokés absolu-
ment nécessaire à la réussite d’une thèse, merci également à Ninon, Camille et Nina
d’avoir égayé ces soirées (et pleins d’autres moments comme ces bivouacs incon-
grus), merci à Amine, mon compagnon au CEA from day one, merci à Nikos, Dorian,
Jonathan et en particulier à Guillaume pour nous avoir si souvent tous réunis.

Un grand merci à mes anciens collègues du LSOSP, en particulier à Jacques,
Alexis, Antoine, Meriem, Soraya, Sylvain pour m’avoir accueilli et guidé lors de mon
arrivée. Je remercie Loïc Masure (et de nouveau à FX) pour les discussions passion-
nantes au sujet de l’apprentissage des schémas de masquage par les réseaux neu-
ronaux et pour la collaboration qui en a découlé. Merci également à Victor Lomne
pour l’ensemble de nos discussions qui m’ont amené à devenir un Ninja :).

J’aimerais remercier de tout cœur mes proches pour leur soutien infaillible. Merci
Alice de m’avoir ensoleillé lors de la rédaction de ce manuscrit et merci à Sandrine
et Valéry de m’avoir hebergé pendant cette même periode. Merci également à mes
grand-parents pour leur indéfectible soutien ainsi que pour l’hospitalité dont ils font
preuve et qui m’est si chère chaque fois que je viens à Paris. Enfin et surtout un
immense merci à ma mère pour la quantité, si grande que je ne pourrais tous les
citer, de services rendus pendant cette thèse et surtout pour son amour inconditionel
qui me guide au quotidien.

Pour conclure, je tiens aussi à remercier mon réveil, qui, ayant eu la bonne idée
de ne jamais sonner durant ces trois années, m’a permis de rester toujours en forme,
prêt à festoyer avec les équations.

(x2 + y2 − 1)3 − x2y3 = 0

vii

Contents

Abstract iii

Acknowledgements v

1 Context and motivations 1
1.1 Introduction to Cryptography . 1
1.2 Side-Channel Analysis . 3

1.2.1 Notations . 4
Probabilistic notations . 4
SCA framework . 5

1.2.2 Leakage Assessment . 5
Higher-Order Detection . 7

1.2.3 Side-Channel Attacks . 7
Supervised Attacks . 8
Unsupervised Attacks . 9

1.2.4 Side-Channel Countermeasures 12
Hiding . 12
Masking . 12

1.3 Emergence of Deep Learning in SCA . 13
1.3.1 General Concept of Deep Learning 13
1.3.2 Deep Learning-based SCA . 14

1.4 Information Theory . 15
1.5 Thesis Motivations and Outline . 16

2 Leakage Assessment through Neural Estimation of the Mutual Information 19
2.1 Introduction . 20

2.1.1 Context . 20
2.1.2 Chapter Organization . 20

2.2 Mutual Information Neural Estimation 21
2.3 Analysis of MINE in a Side-Channel Context 23

2.3.1 Simulated Traces Environment 23
2.3.2 Input Decompression . 25

Learning Random Permutations 26
2.3.3 MINE in Higher Dimension . 27
2.3.4 Analysis of the Overfitting Problem 28

Validation Loss Function . 30

viii

Fill the Holes . 31
2.4 Application of MINE in an Evaluation Context 32

2.4.1 Leakage Evaluation of an Unprotected AES 32
ADC Comparison . 33

2.4.2 Leakage Evaluation of a Masked AES from the ASCAD Database 33
2.4.3 Instructions Leakage . 34

Coil Comparison . 35
2.5 Conclusion . 35

3 Revisiting Mutual Information Analysis: Multidimensionality, Neural Es-
timation and Optimality Proofs 37
3.1 Introduction . 38

3.1.1 Context . 38
3.1.2 Contributions . 39

3.2 Mutual Information Analysis . 40
3.2.1 Unsupervised attacks . 40
3.2.2 State of the Art . 41

MIA Version 1 (Leakage model a priori free) 41
MIA Version 2 (Leakage model a priori dependent) 42

3.2.3 About the Distinguishability . 43
3.2.4 Towards an Optimal Partition Function 44
3.2.5 Analytical Resolution . 45
3.2.6 Selecting Leakage Model a Priori 48
3.2.7 Leakage Model Uncertainty and Noise 49

3.3 MIA Against Masked Implementations 50
3.3.1 MIA, a Natural Choice Against Masking 51
3.3.2 About the Partition Function in the Presence of Masking 51
3.3.3 Noise and Multidimensionality 55

3.4 Neural Estimated Mutual Information Analysis (NEMIA) 57
3.4.1 Multidimensional Paradigm . 57
3.4.2 Attack Description . 59

3.5 Simulation Experiments . 59
3.5.1 About the Network’s Architecture 60
3.5.2 On the Importance of the a Priori 60
3.5.3 The Potential of Multidimensionality 61

Traces Generation . 61
Compared Strategies . 63

3.5.4 Empirical Validation of Theorem 5 64
3.6 A practical Case: Attack on ASCAD . 65
3.7 Conclusion and Perspectives . 68

ix

4 The EVIL Machine: Encode, Visualize and Interpret the Leakage 69
4.1 Introduction . 70

4.1.1 Context . 70
4.1.2 Contributions . 71

4.2 Learning a Leakage Model Representation 71
4.2.1 Notations and SCA framework 71
4.2.2 Building the Network’s Architecture 72
4.2.3 Simulation Experiments . 74

Hamming Weight Leakage Model 74
Linear Leakage Model . 75
Multidimensional Leakage Model 76
Non-Linear Leakage Model . 76

4.3 The EVIL Machine Attack . 77
4.3.1 One Training to Rule them All 78
4.3.2 About the Distinguisher . 79

Assumption on the Degree of Ek∗ 79
Distinguisher . 80
Intuition Behind the Assumption 80
Experiments Supporting the Assumption 80

4.3.3 Attack Description . 81
4.3.4 Experimental Results . 82

Experiments on Synthetic traces 82
Experiments on Real Traces . 83

4.4 Introduction to Higher-Order Generalization 84
4.4.1 Encoder’s Output and Joint Moments 84

Hypothesis on the Encoder’s Output 85
Experiment Supporting the Hypothesis 85
About the Distinguisher . 86

4.4.2 A Practical Case on ASCAD . 87
4.5 Conclusion . 88

5 Fit the Joint Moments: How to Attack any Masking Scheme 89
5.1 Introduction . 90

5.1.1 Context . 90
5.1.2 Contributions . 91

5.2 Related Work and Limitations . 92
5.2.1 General Attack Framework . 92
5.2.2 Linear Regression Analysis . 92
5.2.3 Masking . 93
5.2.4 Second-Order LRA . 94
5.2.5 Limitations . 96

5.3 Joint Moments Regression . 97

x

5.3.1 Joint Moments . 97
5.3.2 Attack Description . 98
5.3.3 Attack Soundness . 99
5.3.4 Simulation Experiments . 100

Implementation . 100
Generating Datasets . 101
Results . 102
About the Biased Schemes . 104

5.4 Generalized Method of Moments Paradigm 105
5.4.1 Background on GMM . 105
5.4.2 Parallel with the JMR Attack . 106
5.4.3 Improving JMR Using GMM Theory 107

Using the Optimal Weighting Matrix 107
The Case of Biased Schemes . 108

5.5 Experiments on Real Traces . 109
5.5.1 Attack on a First-Order Boolean Masked AES (ASCAD) 110

Results . 110
5.5.2 Attack of an open source Hardened AES implementation (AS-

CADv2) . 110
Acquisition Setup . 111
Simulating an Unshuffled Version 112
Results . 113

5.5.3 Discussion . 113
5.6 Conclusion . 114

6 General Conclusion 115

A Proofs for chapter 3 117
A.1 Proofs of Lemma 1 . 117
A.2 Proof of Corollary 1 . 117
A.3 Complementary material on the entropy 118
A.4 Proof of Theorem 5 at Order n . 119

B Networks Architecture for chapter 3 121

C Networks Architecture for chapter 4 123

D Proofs for chapter 5 125
D.1 Proof of Proposition 5 . 125
D.2 Proof of Proposition 6 . 126

Bibliography 129

xi

List of Figures

1.1 Generic cryptographic scheme . 1
1.2 Electromagnetic trace of an AES . 4
1.3 A simple neural network architecture 14

2.1 Evolution of MINE’s loss function over time 24
2.2 MINE with input decompression . 25
2.3 Impact of input decompression on learning random permutations . . . 27
2.4 Comparison of MINE with classical estimators in higher dimension . . 28
2.5 Over estimation of MINE at the end the training (overfitting) 29
2.6 Two possible strategies against overfitting 31
2.7 Leakage evaluation of an unprotected AES 33
2.8 Leakage evaluation of a masked AES (ASCAD) 33
2.9 Cartography of the MI between instructions and traces estimated by

MINE on a PIC16F . 35

3.1 I
(

f (Zk), L
)

in terms of k, with k∗ = 0 61
3.2 Guessing entropies for the considered attacks 64
3.3 Comparison of I

(
Zk∗ , L

)
and I

(
HW(Zk∗), L

)
on masked synthetic

traces . 65
3.4 Analysis of the ASCAD leakage model:

a) Test from remark 5 - b) & c) Coeficients of a linear regression on the
given variable . 66

3.5 Guessing entropies for the considered attacks on ASCAD with added
noise . 67

4.1 The EVIL Machine Architecture . 73
4.2 Evolution of the encoder’s output: E(z), ∀z ∈ Z versus epochs (Ham-

ming weight leakage model). 75
4.3 Evolution of the encoder’s output: E(z), ∀z ∈ Z versus epochs (linear

leakage model). 75
4.4 Evolution of the encoder’s output: E(z), ∀z ∈ Z versus epochs (mul-

tidimensional leakage model). 76
4.5 Evolution of the encoder’s output: E(z), ∀z ∈ Z versus epochs (non-

linear leakage model). 77
4.6 Evolution of the encoders’ output for the correct and a wrong key guess. 78

xii

4.7 Evolution of the distinguisher D(k) versus epochs for all the key can-
didates. 81

4.8 Guessing entropies of EMA and LRA. 84
4.9 Evolution of the encoder’s output: E(z), ∀z ∈ Z on masked synthetic

traces (linear leakage model of the shares). 86
4.10 Attack results on ASCAD with 10k traces. 88

5.1 Guessing entropies versus standard deviation of the noise for the con-
sidered second-order attacks after the processing of A) 216, B) 216, C)
28 × 255 traces. 103

5.2 Guessing entropies versus standard deviation of the noise for the con-
sidered third-order attacks after the processing of A) 224, B) 224, C)
28 × 2552, D) 216 × 255 traces. 105

5.3 Guessing entropies for the improved JMR attacks, using the GMM
theory, and for (HO)CPA-0 after the processing of A) 216, B) 216, C)
28 × 255, D) 216 × 255 traces. 108

5.4 Comparison of different attacks’ guessing entropies on ASCAD 111
5.5 Comparison of different attacks’ guessing entropies on the secured

ANSSI’s AES . 114

B.1 Network architecture for MINE . 121
B.2 Network architecture for the classifiers (Supervised and DDLA) 122

C.1 Architecture of the encoder E . 123
C.2 Architecture of MINE A and B . 123

xiii

List of Publications

Main Works

1. Leakage Assessment Through Neural Estimation of the Mutual Information -
Valence Cristiani, Maxime Lecomte & Philippe Maurine - Published in Inter-
national Conference on Applied Cryptography and Network Security (ACNS)
2020.

2. Revisiting Mutual Information Analysis: Multidimensionality, Neural Estima-
tion and Optimality Proofs - Valence Cristiani, Maxime Lecomte & Philippe
Maurine - Submitted to Journal of Cryptology (JoC).

3. The EVIL Machine: Encode, Visualize and Interpret the Leakage - Valence Cris-
tiani, Maxime Lecomte & Philippe Maurine - Submitted to Symposium On
Applied Computing (SAC) 2023.

4. Fit the Joint Moments: How to Attack any Masking Schemes - Valence Cris-
tiani, Maxime Lecomte, Thomas Hiscock & Philippe Maurine submitted - Sub-
mitted to IEEE Open Access.

Side Works

5. A Bit-Level Approach to Side Channel Based Disassembling - Valence Cris-
tiani, Maxime Lecomte & Thomas Hiscock - Published to CARDIS 2019.

6. Don’t Learn What You Already Know: Grey-Box Modeling for Profiling Side-
Channel Analysis against Masking - Loïc Masure, Valence Cristiani, Maxime
Lecomte & Fançois-Xavier Standaert - Published to Cryptographic Hardware
and Embedded Systems (CHES) 2023.

xiv

À mon père, qui m’a énormément inspiré, et avec qui j’aurais adoré partager les découvertes
et les questionnements qui m’ont été offerts durant ces trois années.

1

Chapter 1

Context and motivations

“If you reveal your secrets to the wind,
you should not blame the wind for
revealing them to the trees."

Kahlil Gibran, The Wanderer

1.1 Introduction to Cryptography

Everyone remembers that day in primary school when this message written on a
small piece of paper, sent by a little boy discovering the wriggling of love, was in-
tercepted by the teacher while passing from hand to hand with the ultimate goal of
getting to Ema. A simple shift of each letter three letters further down the alphabet
would have saved him from the intense feeling of shame of having the whole class
know that he had just declared his love to Ema. Unfortunately, he only discovered
cryptography a few years later...

The term cryptography, from the greek kryptós (secret) and graphein (writing),
refers to the art of encrypting messages. It encompasses all the techniques useful
for a secure communication in the presence of an adversary. The basic idea is to
transform a private message, the plaintext, into an unintelligible message, the cipher-
text, which should appear like nonsense to anyone who intercepts it. The only way
to understand this message would be to reverse to process of encryption, which of-
ten involves owning a secret. As stated by A. Kerckhoff in his famous principle,

To Ema
 Wr Hpd
 To Ema

I love you

 Ema

L oryh brt

Hpd

I love you

 Ema

FIGURE 1.1: Generic cryptographic scheme

2 Chapter 1. Context and motivations

the general specifications of the encryption scheme should not be part of this se-
cret. The encryption procedure should rely on a secret key, often shared by the two
parties trying to communicate, but everything else about the system should be pub-
lic knowledge. For example, in Caesar’s code described above, the fact that letters
may be shifted by a certain amount would be public knowledge and the specific
shift of three would be the shared secret. Obviously, under these conditions, the
latter scheme does not feel very secure. One could easily try the 26 possible shifts
and recover the private message, thereby conducting the most basic cryptanalysis
technique...

Cryptanalysis is the branch of cryptology (the science of the secret) studying the
resistance of cryptographic schemes. The main goal is to develop attacks in order to
assess to what extent a malicious adversary could break a crypto-system’s security
claims. Cryptography and cryptanalysis are complementary domains that evolve in
symbiosis with the aim of converging toward secure algorithms.

The art of cryptography is very ancient but has experienced tremendous growth
in the last century, with the advent of computers and the general rise of information
technology. It has become increasingly complex and is now considered a proper
science, often called Modern Cryptography, taking place at the intersection of many
disciplines such as applied mathematics, computer science, electrical engineering,
and information security. Modern cryptographic protocols are designed to ensure at
least one of the four following information security properties:

1. Confidentiality: The private message should only be retrievable by a set of au-
thorized parties.

2. Integrity: the receiver should be convinced that the message has not been mod-
ified during transmission.

3. Authenticity: the receiver should be able to identify the sender of the message.

4. Non-repudiation: The sender should not be able to deny sending the message
afterward.

Low-level cryptographic routines, often called cryptographic primitives, are the
basic blocks used to build cryptographic protocols. A primitive is considered mathe-
matically secured if an adversary, granted with the ability to query as many couples
(plaintext, ciphertext) as he wants, can not recover the secret key in a reasonable
amount of time.

Two branches of cryptography may be distinguished: the symmetric and asym-
metric cryptography. The first one, known as secret key cryptography, is the most
ancient one and is predicated on the idea that the two entities involved have shared
a common secret prior to the communication. The second, also known as public key

1.2. Side-Channel Analysis 3

cryptography, was first introduced in the 1970s and differs from symmetric cryptog-
raphy in the fact that the key used for the encryption is not the same as the one used
for the decryption. Such schemes are computationally heavier and are often only
used to securely share a symmetric key between two parties. Even though some
ideas may be extended to asymmetric cryptography, a significant part of this thesis
focuses on analyzing the security of symmetric crypto-systems. Most of the exam-
ples and experiments are conducted on the Advanced Encryption Standard (AES)
which is the most used symmetric cryptographic primitive nowadays.

1.2 Side-Channel Analysis

Modern cryptography proposes solutions to secure communications. Until the mid-
dle of the nineties, cryptographic algorithms were considered as a black-box in the
sense that an adversary can only observe the inputs and outputs of a computation.
Therefore, the actual security of the system was equivalent to the mathematical se-
curity of its primitives. However, in his seminal paper about Side-Channel Analysis
(SCA) [Koc96], Paul Kocher showed that this black-box model may not always be
the appropriate adversary’s model. Indeed, cryptographic algorithms are imple-
mented on electronic devices which inevitably manipulate the secret keys. Such
manipulations involve physical processes, mostly related to the flow of electrons in
semiconductors, and may thus, induces observable variations in the surrounding of
the device.

These variations may take different forms: the so called side-channels. Any mea-
surable physical quantity carrying information about the secret can be considered a
side channel. The most famous examples are the instantaneous power consump-
tion of a device [KJJ99] and its ElectroMagnetic (EM) emanations [QS01]. Figure 1.2
shows an example of the EM emanation captured by an EM probe positioned close to
a device executing an AES. Such acquired data are often called side-channel traces.
Many other side-channels have been pointed out in the literature such as timing
attacks [BT11], cache monitoring [Per05] or even network packets length analy-
sis [Sch+14].

Secret keys take the form of bit string long enough so that the number of possi-
ble combinations would far exceed the brute force capability of any adversary. For
example, the AES in its lowest security setting involves 128 bits secret keys leading
to 2128 key possibilities. Enumerating all these possible values would be longer than
the age of the universe. The main idea of a side-channel attack is to gather enough
information, via the leakage channel, so that the amount of remaining possibilities
becomes enumerable in a reasonable time. It often involves a divide and conquer
strategy. Indeed, algorithms use key chunks to perform independent computations
which may induce leakage on intermediate variables only depending on a sub-part
of the key. For example, in the AES the internal variables are naturally processed at

4 Chapter 1. Context and motivations

0 50 100 150 200 250
Time (s)

EM

FIGURE 1.2: Electromagnetic trace of an AES

the byte level and a typical SCA strategy would be to focus only on one specific key
byte and repeat the process 16 times to recover the whole key.

1.2.1 Notations

Probabilistic notations

Random variables are represented as upper-case letters such as X. They take their
values in the corresponding set X depicted with a calligraphic letter. The carnality
of X is denoted |X |. Lower-case letters such as x stand for elements of X . The
probability density function associated to the variable X is denoted PX (replaced by
P when there is no ambiguity). The notations PX(X = x) and PX(x) are equivalent.
If f is a function defined overX , EX[f (X)] denotes the expected value of the random
variable f (X), under the distribution PX so that:

EX[f (X)] = ∑
x∈X

PX(x) · f (x) (1.1)

Such notation is replaced by E[f (X)] when there is no ambiguity. Similarly, the
variance of f (X) is denoted by VarX[f (X)] (or Var[f (X)]) , :

VarX[f (X)] = ∑
x∈X

PX(x) · (f (x)−EX[f (X)])2 (1.2)

When two random variables X and Y are considered, their joint probability den-
sity function is denoted by PX,Y. The conditional probability of X given Y is denoted
P(X | Y). The covariance of the two variables is denoted by cov(X, Y):

cov(X, Y) = ∑
x∈X

∑
y∈Y

PX,Y(x, y) · (x−EX[X]) · (y−EY[Y]) (1.3)

1.2. Side-Channel Analysis 5

Eventually, when a set of realization (xi)1≤i≤N of X is available, the hat notation
represents a statistical estimation of the underlying quantity. For example:

ÊX[f (X)] =
1
N

N

∑
i=1

f (xi) (1.4)

SCA framework

In this thesis, the evaluation/attack framework is described considering that an ad-
versary targets the manipulation of a sensitive variable Z ∈ Z = Fn

2 , for a given
n ∈ N. This variable is supposed to functionally depends on a public variable
X ∈ X = Fm

2 , for a given m ∈ N, and a secret key chunk k∗ ∈ K = Fm
2 through the

relation: Z = g(X, k∗) where g : X ×K → Z is a known function depending on the
underlying cryptographic algorithm. For simplicity, g(X, k) is denoted gk(X) in the
rest of the thesis.

The evaluator/adversary is supposed to be able to acquire a set {(ℓi, xi), 1 ≤
i ≤ N} of N side-channel traces labeled with the corresponding public value of
X. Depending on the situation, the latter may have control over the X variable (be
able to choose it) or not. Traces correspond to realizations of a leakage variable
L ∈ L coming from a stochastic process S , Z S−→ L. When the sensitive variable is
directly processed in the internal of the device (i.e. no masking countermeasure, see
section 1.2.4) the leakage L is supposed to be separable into a deterministic and a
noise part:

L = φ(Z) + N (1.5)

where φ is a function from Z to Rp, for some p ∈ N, denoted the leakage model
in this thesis and where N represents an independent noise distribution (which is
often supposed to be normal). Note that in this thesis, the expression Leakage model
stands for the deterministic part of the true leakage which may differ from other
SCA materials. In addition, we consider the leakage model to be potentially multi-
dimensional: it encompasses the whole side-channel trace which can be composed
of thousands of time samples (for example, Figure 1.2 contains p = 50k samples).

1.2.2 Leakage Assessment

A first step that a designer/adversary may conduct to identify a side channel, is to
perform a leakage detection. Many techniques have been developed for this purpose
and are known as leakage assessment techniques. The main goal is to identify if L
contains information about Z. A minimum requirement for a leakage to occurs is
that there exist z1 and z2 such that φ(z1) ̸= φ(z2). The more values of Z with a
different model, the better the leakage. However, these differences should also be
compared to the amount of noise present in the traces. Indeed a low difference
between φ(z1) and φ(z2) drowned in the noise would not be very informative.

6 Chapter 1. Context and motivations

The main problem to characterize differences between values of φ(Z) is that φ is
often a highly multidimensional function since it represents the whole trace. In addi-
tion, the leakage may only occur in small specific areas of the traces. In other words,
even in the case of a leakage, φ(z1) and φ(z2) represent long vectors that are very
likely equal on most of their components. That is why a classical solution to leakage
assessment is to compute sample-wise statistics SL(s), for 1 ≤ s ≤ p, on the variables
L[s] representing the projection of the leakage on one of its components. The aim of
such statistics is to quantify a sort of instantaneous signal strength, transforming a
non-trivial multi-dimensional problem into a simple monodimensional one. There
exists multiple of these statistics such as the Sum of Differences (SoD) [RO05], the
Sum of Squared T-difference (SoST) [GLRP06], the Normalized Inter-Class Variance
(NICV) [Bha+14]. We give here as an example, one of the most famous of them
which is the classical Signal-to-Noise Ratio (SNR). It is defined as:

SNRL(s) =
VarZ

[
E[L[s] | Z]

]
EZ

[
Var[L[s] | Z]

] (1.6)

The intuition behind this formula is that it compares the variance of the signal inter-
class (representing the useful part of the signal) to the intra-class variance (repre-
senting the noise). A peak of SNR corresponds to a leakage area in the traces.

Since the essence of such statistic is to assess if there exists some kind of informa-
tion between L and Z, it is also possible to use the Mutual Information (MI) which
is exactly designed for such purpose as explained in section 1.4:

MIL(s) = I(Z, L[s]) (1.7)

The way to conduct the MI estimation is not discussed here as it is the object of
Chapter 2. However, as shown in [PR09] it can be easily estimated when dealing
with univariate variables.

Remark 1. One may argue that such computation cannot be done by an adversary in a black-
box setting because it requires the knowledge of Z and therefore of the correct key chunk k∗.
However, in many cases, the g function linking Z and X for a fixed k∗ is a bijective function.
For example, in the AES case a classical choice of sensitive variable is Z = Sbox[X ⊕ k∗].
This implies that partitioning traces according to Z is the same as partitioning them ac-
cording to X. In such a cases, Equation 1.6 and Equation 1.7 can be replaced respectively
by:

SNRL(s) =
VarX

[
E[L[s] | X]

]
EX

[
Var[L[s] | X]

] (1.8)

MIL(s) = I(X, L[s]) (1.9)

1.2. Side-Channel Analysis 7

The two main drawbacks of such univariate statistics are the following:

1. They can not detect higher-order leakages, in other words, they would fail to
detect a leakage that comes from the dependency of multiple samples. Such
leakage models are widely met when dealing with masked implementations
(see section 1.2.4).

2. They can not accumulate several small leakages coming from multiple differ-
ent sources. They would fail to detect a leakage if all the instantaneous leak-
ages stay under the detection threshold while the aggregation of all these small
leakages would still make the trace informative.

Higher-Order Detection

The previously discussed univariate statistics could be extended in order to detect
higher-order leakages. If one wants to detect up to a d-order leakage the main idea
is to combine all the possible d-tuple of time samples from the trace through a Com-
bining function C : Rd → R and to apply the univariate statistic on the output of C.
Formally, for all (s1, . . . , sd) ∈ J1, pKd one can compute:

S(C)
L (s1, . . . , sd) = SL(C(L[s1], . . . , L[sd])) (1.10)

The choice of the combining function is not trivial. Some proposals have been made
in [PRB09; OM06]. A common choice is the centered product combining function1.
Even without considering the choice of the combining function, this method suffers
from a major drawback. Indeed, the number of possible d-tuple increases exponen-
tially with d and becomes quickly critical even for low values of d.

In addition, even though such a strategy solves to some extent the first drawback
of the univariate method, it does not bring anything regarding the second drawback
related to the problem of aggregating enough small leakages to pass above a detec-
tion threshold.

1.2.3 Side-Channel Attacks

Any side-channel attack aiming at recovering a key chunk k∗ ∈ K can be summa-
rized in the following two-step procedure:

1. Acquire a set of traces L = {(ℓi, xi), 1 ≤ i ≤ N} labeled with their correspond-
ing public variable.

1 The centered product is related to the d-order centered joint moment of a distribution and thus,
may keep d-order statistical information.

8 Chapter 1. Context and motivations

2. Apply a distinguisher function mapping any set of traces L to a scoring vector
in R|K|:

D : L→

...

DL[k]
...

 (1.11)

Such procedure will then be repeated for all key chunks (obviously, the same
set of traces can be re-used if they contain leakage related to multiple key chunks).
Then, the adversary will feed all the scoring vectors into a key enumeration algo-
rithm [VC+13; PSG16] which should test the keys one by one from the most prob-
able to the least probable according to the scoring vector of each key chunk (most
of the times, the scores are normalized to be treated as probabilities). The test usu-
ally considers a given couple (plaintext, ciphertext) and consists in encrypting the
plaintext and comparing it to the ciphertext. The exact design of such enumeration
algorithms is out of the scope of this thesis but as a rule of thumb the better the score
of each correct key chunk, the faster the algorithm will find the full key. Even if a
correct key chunk is ranked first through the distinguisher one should also consider
its distinguishability with respect to the other hypothesis because it affects the final
enumeration.

Therefore, an exciting part of side-channel attacks lies in the design and choice
of such a distinguisher. A first observation from [WOS14] is that there does not exist
a generic distinguisher that would asymptotically (with respect to the number of
acquired traces) work whatever the leakage model φ. This means that the adversary
has to use some kind of a priori knowledge on the leakage model of the target to
choose a distinguisher. Side-channel attacks are mostly divided into two categories:
the supervised attacks where this a priori comes from a preliminary profiling phase of
the target and the unsupervised attacks where this a priori comes from pure physical
knowledge about how electronics works and from assumptions on the device being
targeted.

Supervised Attacks

Supervised attacks correspond to a strong adversary’s model where the latter is sup-
posed to be able to conduct a profiling phase of the target with full control on the
device, prior to the attack. Such a profiling phase is a machine learning task whose
goal is to learn either a generative or a discriminative model of the leakage from la-
beled examples. A generative model is an estimation of the conditional probability
P(L | Z). A discriminative model is an estimation of the conditional probability
P(Z | L). Both are linked through the well-known Bayes’ theorem:

P(Z | L) =
P(L | Z) · P(Z)

P(L)
(1.12)

1.2. Side-Channel Analysis 9

Given a set of attack traces L = {(ℓi, xi), 1 ≤ i ≤ N}, a common way to derive a
distinguisher from a discriminative model is to define:

DL[k] =
N

∏
i=1

P(Z = g(xi, k) | L = ℓi) (1.13)

If the model is generative, one can replace P(Z = g(xi, k) | L = ℓi) by P(L = ℓi | Z =

g(xi, k)) · P(Z = g(xi, k)), since the denominator P(L) is independent from the key
and would not change the ranking. A classical example of generative models used in
supervised attacks is the Gaussian template attacks [CRR02] which estimates each
class P(L|Z = z) assuming that it is a multivariate Gaussian distribution. Deep
neural network based attacks, mentioned in subsection 1.3.2, constitutes a common
example of discriminative model.

If the model, either generative or discriminative, is perfectly learned during the
profiling phase, these attacks are known to be optimal from an information theory
point of view. Therefore, research in this field mostly resides in practical improve-
ments of machine learning tools (essentially deep learning tools in the last 5 years) in
order to improve the estimation of probability distributions in an SCA context. The
main drawback of these attacks is their assumption on the adversary’s capability. It
is often impossible to run the profiling phase on the target device itself. A more real-
istic assumption is that the adversary may acquire a clone of the device over which
she would have full control. However, it is not always easy to find the exact same
model and setup than the targeted device and it introduces the template portability
problems [EG12b] due to variations in the manufacturing process.

Unsupervised Attacks

As opposed to supervised attacks, unsupervised attacks do not require preliminary
profiling of the target, constituting a broader threat since they imply weaker assump-
tions on the adversary model. Since they do not suppose prior specific information
on the device, one has to use physical a priori to design a sound distinguisher. Such
a priori is usually related to the binary representation of the sensitive variable since
processors manipulate bits. There exist multiple distinguishers translating different
types of a priori into an actual strategy. They consist in computing, for all key can-
didate k, a certain statistic from the traces under the assumption that the sensitive
variable is Zk = g(X, k). Since statistics are usually well suited for univariate data,
they suffer from the same problem as leakage assessment techniques. The classical
method is to compute a sample-wise statistic on all the samples of the traces and to
retain the maximum (or minimum) as a score.

10 Chapter 1. Context and motivations

Differential Power Analysis. Historically, one of the first proposed a priori is
to suppose that a particular bit of the sensitive variable induces differences in the
leakage when set to 0 or 1. This gives rise to the so called Differential Power Analysis
(DPA) [KJJ99]. In such case one can define the following distinguishers:

D(DPA)
L [k] = max

s

[
1
|Ak| ∑

ℓ∈Ak

ℓ[s]− 1
|Bk| ∑

ℓ∈Bk

ℓ[s]
]

(1.14)

where ℓ[s] stands for sample s of trace ℓ and Ak and Bk form a partition of the set of
traces L according to the value of the leaking bit of Zk. Such distinguisher exploits
the leakage of only one bit of the sensitive variable.

A more generic framework, brought by the stochastic attacks, allows to take into
account more generic a priori. In such attacks, the adversary expresses the instanta-
neous leakage model φk∗ [s] as a parametric model whose parameters are regressed
from the traces through a regression technique, still under a key assumption. A
measure of fitness is then used as distinguisher.

Correlation Power Analysis. The most famous example is probably the Correla-
tion Power Analysis (CPA) [BCO04] which assumes that there exist some parameters
α, β ∈ R such that:

φk∗ [s](Zk∗) = α ·HW(Zk∗) + β (1.15)

where HW stands for the Hamming weight function counting the number of bits set
to 1 in the variable. In such a case, the measure of fitness can directly be computed
with the Pearson correlation coefficient:

D(CPA)
L [k] = max

s

[
ĉov(L[s], HW(Zk))√

V̂ar(L[s]) · V̂ar(HW(Zk))

]
(1.16)

Linear Regression Analysis. Then, the Linear Regression Analysis [Dog+12],
came to relax the assumption that all the bits of the sensitive variable should have the
same contribution to the leakage. Instead, they may be weighted by real coefficients
(α0, . . . , αn) ∈ R:

φk∗ [s](Zk∗) = α0 +
n

∑
i

αi · Zk∗ [i] (1.17)

where Zk∗ [i] represents the ith bit of Zk∗ . Such assumption traduces the fact that
the instantaneous leakage model can be expressed as a polynomial of degree one.
Thus, for all key hypothesis k, a linear regression can be performed to find such
polynomial pk[s] of degree 1 minimizing the quadratic error E[

(
L− pk(Zk)

)2
]. Then,

the coefficient of determination (R2) can be used as a distinguisher:

D(LRA)
L [k] = max

s

[
1−

Ê[
(

L[s]− pk[s](Zk)
)2
]

V̂ar(L[s])

]
(1.18)

1.2. Side-Channel Analysis 11

Model-Based Attacks. Another type of strategy, denoted the Model-Based At-
tack (MBA) in this thesis, partitions the set of traces into classes, collapsing traces
that should have a similar leakage according to an a priori model M. Such parti-
tion is done under a key hypothesis k and it corresponds to re-label the traces with
M(Zk) instead of Zk. Then a leakage assessment technique SM(Zk)

L can be used as
a distinguisher considering the new labels. If the model is sound the maximum
leakage should be reached when the partition has been done with the correct key
hypothesis.

D(MBA)
L [k] = max

s

[
SM(Zk)

L (s)
]

(1.19)

The most classic example of such model-based attacks is probably the Mutual Infor-
mation Analysis (MIA) [Gie+08] which uses the MI as leakage assessment technique:

D(MIA)
L [k] = max

s

[
I(L[s], M(Zk))

]
(1.20)

An in-depth analysis about this strategy and the optimal choice of the model is con-
ducted in Chapter 3.

All the distinguishers discussed in this section have their strengths and weak-
nesses. It is not possible to rank them according to a single objective criteria, for
example the number of required traces to rank the correct key at the first position.
As shown in [Dog+12] a CPA performs better than a LRA if the true leakage is effec-
tively a Hamming weigh model because it is simpler (with a lower capacity) which
induces a higher distinguishability. For the same reason, if the leakage effectively
comes from only one bit, the DPA may outperform the other attacks. However,
in many practical cases the LRA would perform better because the bit are weighted
with very different coefficients, (even sign inversions [CLH20]). The main advantage
of the MBA is that they offer a way to work with any leakage assessment techniques.
This means that any improvement of such techniques would automatically be trans-
latable into an improvement of the corresponding attack (which is the outline of the
two next chapters of this thesis).

Distinguishers discussed in this section all have different strengths, yet they all
share the same drawback: the fact of being intrinsically unidimensional. The two in-
convenients discussed in subsection 1.2.2 for the leakage assessment technique also
apply to these distinguishers. The maximum along time samples could be replaced
by some kind of combination of several samples (for example summing the scores
over a window) but such a strategy would be impacted by non-informative samples
and brings questions about the length of the window. In any case, the incentive of
designing an intrinsically multidimensional distinguisher is high and the intuition
behind this thesis is that research in this direction might be fruitful, especially with
the global rise of deep learning techniques introduced in section 1.3.

12 Chapter 1. Context and motivations

1.2.4 Side-Channel Countermeasures

In order to counteract side-channel attacks, designers may implement strategies that
aim at reducing the dependency between the leakage and the sensitive variables.
These countermeasures are mainly divided into two categories: the hiding and the
masking countermeasures which can be combined to increase security.

Hiding

The main principle of hiding countermeasures is to add perceived noise in the ad-
versary’s measurements without modifying the internal variables being processed.
Many techniques have been proposed for that purpose. Most of them aim at ran-
domizing the power consumption of the device by arbitrarily altering the process-
ing time of the sensitive variables, making the traces desynchronized with respect
to their interesting part. Such misalignment techniques reduce the dependency be-
tween the leakage and the secret and complexify the attacks, especially the ones
based on univariate statistics. Software-level methods for randomizing the power
consumption include the shuffling of independent operations [VC+12], the insertion
of dummy instructions [CK09; CK10] or the code polymorphism [Bel+18b] which
combines many interesting techniques. Hardware-level methods include instruction
randomization through the use of non-deterministic processors [IPS02; MMS01] or
the enhancement of a jittering effect via a clock with unstable frequency, or via an
asynchronous logic style [Moo+02; Moo+04].

A common approach to defeat such countermeasures is to apply some kind of
preprocessing to the traces before the attack. These include realignment through
pattern matching [Nag+07], integration techniques [Man04; MOP10] or transforma-
tion of small parts of the traces into probability distribution as in the SCATTER strat-
egy [Thi+18]. More recently, deep learning techniques came proposing a sound al-
ternative to such preprocessing techniques (mainly for the supervised attacks) with
promising results as discussed in subsection 1.3.2.

Masking

As opposed to hiding, masking countermeasures modify the internal variables of
the algorithms using secret sharing techniques [Cha+99]. The idea is to split each
sensitive intermediate variable Z, into d shares: (Zi)1≤i≤d. The d− 1 shares Z2, ..., Zd

are randomly chosen and the last one, Z1 is processed such that:

Z1 = Z ∗ Z2 ∗ · · · ∗ Zd (1.21)

for a group operation ∗ of Z . The processing of Z is replaced by the processing
of all the shares which are only recombined at the end of the computation to give
the correct ciphertext. This has the effect of complexifying the stochastic process

1.3. Emergence of Deep Learning in SCA 13

S generating L from Z, rendering it no longer separable into a deterministic and a
noise part. Assuming the masks are uniformly distributed, the knowledge of d− 1
shares does not tell anything about Z (this is why such masking is said to be of order
d− 1).

However, partial information on the d shares can be exploited to retrieve infor-
mation about Z. That is why, to defeat masking, one should use a distinguisher able
to combine the leakage of at least d samples of the traces (assuming shares do not
leak at the same time). For supervised attacks, this corresponds to modeling mul-
tivariate probability densities which does not drastically change the shape of the
attack even though it significantly increases the number of required traces. It is a bit
trickier for unsupervised attacks. A common strategy is to combine a model-based
attack with higher-order leakage assessment techniques discussed in section 1.2.2.
However, such strategies bring questions about the optimal choice of the model (as
discussed in Chapter 3) and about the combination function. Stochastic attacks may
also be extended to deal with masked implementations [DDP13], although they suf-
fer from limitations pointed out in Chapter 5.

1.3 Emergence of Deep Learning in SCA

1.3.1 General Concept of Deep Learning

Machine learning is a branch of computer science that groups all the techniques that
aim at granting a computer the ability to learn from data. Deep Learning (DL) is a
sub-part of machine learning based on artificial neural networks. Such networks are
inspired by the processing of information in biological systems and aim at approxi-
mating a function solving an optimization problem. They consist of a succession of
processing units called neurons organized in layers as represented in Figure 1.3. In-
put and output layers are specified by the function that should be approximated.
Hidden layers are not specified which gives rise to many different architectures
adapted by designers to the nature of the underlying problem. By analogy with the
synapses in the brain, neurons share connections with the adjacent layers’ neurons.
The strength of such connections is materialized by weighting coefficients which are
updated during the training phase of the network. The objective of the network is en-
coded in the so called loss function which should be minimized. Such a loss function
takes as input the output of the network and may also take some additional data of-
ten called the labels. The training consists in applying a form of the gradient descent
algorithm in order to minimize the loss function, computed with the available data.
Each parameter is iteratively updated in the opposite direction of the loss function’s
gradient, which is estimated through the backpropagation algorithm [Kel60].

14 Chapter 1. Context and motivations

FIGURE 1.3: A simple neural network architecture

1.3.2 Deep Learning-based SCA

Deep learning has been introduced in SCA mainly in the context of supervised at-
tacks. Indeed the estimation of a discriminative model is a classification task that fits
perfectly with the DL paradigm. Given a set of training traces (ℓi)1≤i≤N ∈ Rp asso-
ciated with their correct labels: (zi)1≤i≤N ∈ Z , the task of the network is to estimate
the probability density: P(Z | L), or in other words, a function f : Rp → [0, 1]|Z|

which, for a given trace, outputs a probability distribution for the values of Z. The
network is a function Fθ : Rp → [0, 1]|Z| parameterized by some trainable param-
eters θ ∈ Θ. The training process corresponds to minimizing over Θ a well-chosen
loss function L(θ). There exist several such loss functions, for example, [MDP19]
showed that the negative log-likelihood is sound in an SCA context:

L(θ) = 1
N

N

∑
i=1
−log2(Fθ(ℓi)[zi]) (1.22)

The main advantage of using DL over more classical hand-crafted methods is the
flexibility of neural networks. Indeed, it has been shown in the universal approxima-
tion theorem [HSW89] that even a one (hidden) layer Multi Layer Perceptron (MLP)
can approximate any given function with an arbitrary precision (provided that the
layer size is not bounded). This means that neural networks can deal, in theory, with
big parts of the traces, automatically learning how to combine multiple samples if
necessary, while reducing the need for preprocessing techniques. The initial work
from Maghrebi et al. [MPP16] introduced them to SCA in order to deal with potential
non-Gaussian distributions, especially in the context of masking and showed they
were a sound alternative to Gaussian template attacks in practice.

The advantage of DL techniques is not only theoretical. Indeed, DL has been
a very active field for this last few years and many works focus on turning the

1.4. Information Theory 15

good theoretical properties of neural networks into practical results, for example,
by providing new architectures or optimizations in the learning process. Such im-
provements in the DL techniques directly impact the DL-based SCA. For example,
[CDP17] showed that the Convolutional Neural Networks (CNN), originally devel-
oped for computer vision due to their shift-invariant properties, can be applied to
counter misalignment in side-channel traces.

Many works (not always reproducible...) have followed essentially in the field
of supervised attacks. However, such a classification method could very well be
turned into a leakage assessment technique. Indeed, a network predicting the Z
variable from L better than random indicates that a leakage occurs in L with respect
to Z. This is essentially what is done in [MWM21] except that they fix only 2 classes
for Z and try to predict them. Since any leakage assessment technique can be turned
into an unsupervised model-based attack, such DL-based leakage assessment have
their corresponding unsupervised attack introduced in [Tim19] (one may notice the
inconsistency in the date of publication of these two papers). The main problem
of [Tim19] is that it does not discuss the choice of the model. Indeed, it is hard to
analytically reason from classification neural network outputs and their analysis is
mostly empirical. This is why one of the core ideas of this thesis is to bridge DL
techniques to some more tractable concepts from the information theory in order to
ease the theoretical reasoning.

1.4 Information Theory

The entropy H(X) [Sha48] of a random variable is a fundamental quantity in in-
formation theory that indicates how much information one would gain, in average,
by learning a particular realization x of X. It is defined as the expectation of the
self-information log2(1/pX). In a discrete context:

H(X) = ∑
x∈X

PX(x) · log2(
1

PX(x)
) (1.23)

In a side-channel context, X could be replaced by L, the leakage variable. However,
one is not interested in the absolute information provided by L but rather in the
amount of information revealed about a second variable such as a sensitive variable
Z. This is exactly what is measured by the mutual information I(Z, L). It is defined
as:

I(Z, L) = H(Z)−H(Z | L) = H(L)−H(L | Z) (1.24)

whereH(A | B) stands for the conditional entropy of A knowing B:

H(A | B) = ∑
b∈B

PB(b) · H(A | B = b) (1.25)

16 Chapter 1. Context and motivations

Another useful way to characterize I(Z, L) is to express it as the Kullback-Leibler
(KL) divergence between the joint distribution and the product of the marginals:

I(Z, L) = DKL(PZ,L || PZ ⊗ PL)

= ∑
z∈Z

∑
l∈L

P(z, l) · log
(P(z, l)

P(z) · P(l)
) (1.26)

1.5 Thesis Motivations and Outline

As shown throughout this introductory chapter, many techniques have been de-
veloped to extract and exploit the dependency between a sensitive variable and a
leakage variable. This diversity makes it hard for designers and evaluators to draw
an objective metric in order to assess leakage. From an information theory point of
view, the maximum amount of information one could extract from a side-channel
trace is bounded by the mutual information, I(Z, L) between the sensitive variable
Z and the trace L. This quantity is, indeed, central in the side-channel domain. The
goals of the different actors could be summarized as follows:

• Designers aim at implementing countermeasures to decrease as far as possible
I(Z, L), with computational, spatial and efficiency constraints.

• Evaluators aim at estimating I(Z, L) as closely as possible to assess leakages
in a worst-case scenario.

• Attackers aim at developing strategies to partially or fully exploit I(Z, L) in
order to recover a secret.

The main problem of such a unified paradigm is that I(Z, L) is known to be
hard to estimate from drawn samples when the variables live in a high dimensional
space, which is generally the case of L. Indeed, computing I(Z, L) usually requires
an estimation of the conditional density Pr(Z|L) which is hard because of the well-
known curse of dimensionality. This explains why conventional leakage assessment
tools and classical attack strategies typically focus on one (or a few) samples at a
time in the trace. As a result, the amount of information effectively detected or used
may be significantly lower than I(Z, L).

In a completely unrelated context, Belghazi et al. [Bel+18a] lately introduced a
Mutual Information Neural Estimator (MINE) which uses the power of deep learn-
ing to compute mutual information in high dimension. They have proposed appli-
cations in a pure machine learning context but we argue that this tool might be of
great interest in the side-channel domain. Indeed, as discussed in subsection 1.3.2,
deep learning techniques seem to be promising and well-suited for SCA. Being able
to efficiently compute I(Z, L) in an unsupervised way (no profiling of the target
needed), no matter the target, the implementation, or the countermeasures used,
would be highly relevant for all the different parties.

1.5. Thesis Motivations and Outline 17

The analysis of MINE in a side-channel context is the first contribution of this
thesis and is discussed in Chapter 2. We show that it constitutes a new multidimen-
sional leakage assessment tool that outputs an interpretable number representing
the upper bound of information one could potentially exploit from the target.

However, knowing how much information is leaking is not the same as knowing
how to exploit it to retrieve a secret. If such an upper bound may be approached in
the context of supervised attacks, it is much less straightforward for unsupervised
attacks. Since MINE constitutes a new leakage assessment technique, we naturally
derive it as an unsupervised model-based attack, the Neural Estimation Mutual In-
formation Analysis (NEMIA) in Chapter 3. It revisits the classical MIA, mitigating
some common misconceptions about its genericity with respect to the adversary’s
leakage model a priori, and conducting an in-depth analysis related to the optimal
choice of the model in a multidimensional context.

While NEMIA bridges the good properties of mutual information and the power
of the latest DL techniques, it appears that it has two major practical drawbacks: the
time complexity (it requires as many network trainings as there are key candidates)
and the need for an explicit model which requires a strong a priori. In Chapter 4, we
derive from the mathematical framework developed for NEMIA, a new deep learn-
ing architecture, denoted the EVIL machine, able to automatically recover the leak-
age model of a device. Such a machine is then turned into an unsupervised attack:
the EVIL Machine Attack (EMA). It combines the good properties of the stochastic
attacks (flexibility on the a priori) and the potential of DL techniques while requiring
only one network training, thus overcoming the two main issues of NEMIA and of
DL model-based attack in general.

Eventually, the analysis of EMA in the context of masked implementations raised
questions about higher-order generalizations of stochastic attacks. Some inconsis-
tencies related to the genericity of the state-of-the-art generalizations with respect to
the masking scheme are pointed out in Chapter 5. We then propose a new unsuper-
vised strategy, the Joint Moment Regression (JMR), which aims at being generic re-
garding the masking scheme, while still benefiting from the flexibility of the stochas-
tic attacks. As a final thought, we highlight the fact that EMA and JMR might be
combined to form a deep learning-based unsupervised attack agnostic to the under-
lying masking scheme and requiring only one network training.

To ease the reading of this thesis and make the chapters standalone, there may
be small overlaps between their introductory parts as we reintroduce notations that
are useful for the understanding of the aforesaid chapters.

19

Chapter 2

Leakage Assessment through
Neural Estimation of the Mutual
Information

“Truth is multi-dimensional."

Peter Shepherd

A large variety of side-channel attacks have been developed to extract secrets from elec-
tronic devices through their physical leakages. Whatever the utilized strategy, the amount
of information one could gain from a side-channel trace is always bounded by the Mutual
Information (MI) between the secret and the trace. This makes it, a key quantity for leakage
evaluation. Unfortunately, traces are usually of too high dimension for existing statistical
estimators to stay sound when computing the MI over full traces. However, recent works
from the machine learning community have shown that it is possible to evaluate the MI in
high dimensional space thanks to new deep learning techniques. This chapter explores how
this new estimator could impact the side channel domain. It presents an analysis whose aim
is to derive the best way of using this estimator in practice. Then, it shows how such a tool
can be used to assess the leakage of any device.

20
Chapter 2. Leakage Assessment through Neural Estimation of the Mutual

Information

2.1 Introduction

2.1.1 Context

As explained in the introductory chapter, Side-Channel Analysis (SCA) is defined as
the set of techniques aiming at gaining information on a secret, owned by a system,
through an auxiliary leakage channel often related to its physical implementation.
The secret is usually a cryptographic key but could be as well basic block execution,
assembly instructions, or even the value of an arbitrary register. The basic assump-
tion is that the secret and the side-channel data are statistically dependent. Many
techniques have been developed to exploit part of this dependency and mount an
attack but the incentive to develop a leakage assessment protocol can be found in
several works [MSQ08; SM15; Bro+19]. From a purely theoretical point of view,
the best metric to assess the quantity of leakage would be the mutual information
I(Z, L) between the sensitive variable and the full trace as it measures the depen-
dency between these two variables, by definition. However, such a metric has not
really been used in the state-of-the-art. Indeed, it is famously hard to estimate due to
the so called curse of dimensionality. Traces being usually of too high dimension, the
majority of the leakage assessment techniques work in a univariate way, computing
sample-wise statistics from the trace, as pointed out in subsection 1.2.2. Thus, they
may underestimate the leakage or even state that there is no leakage when there is.

On the other hand, latest deep learning techniques have proved to be a very
interesting tool for SCA since neural networks are able to automatically combine
information from many samples of the traces. In addition, Belghazi et al. [Bel+18a]
lately introduced a Mutual Information Neural Estimator (MINE) which uses deep
learning techniques to produce an estimation of mutual information between high
dimensional variables. MINE has been developed in a completely unrelated context,
but this chapter proposes to analyze its applicability in the side-channel domain.
The goal is to derive the best way to use MINE, in order to develop a new leakage
assessment tool able to directly compute I(Z, L).

2.1.2 Chapter Organization

The general method and the mathematical ideas behind MINE are presented in sec-
tion 2.2. Section 2.3 proposes an in-depth analysis of MINE in a side-channel context
supported with synthetic traces, highlights the problem of overfitting and suggests
ways of dealing with it. Section 2.4 provides some real case applications. It shows
how this estimator constitutes a reliable leakage assessment tool that can be used
to compare leakage from different implementations and devices. This section also
shows that such an estimator can be used as a guide for an evaluator/attacker to
maximize the MI captured from different hardware side-channel setups.

2.2. Mutual Information Neural Estimation 21

2.2 Mutual Information Neural Estimation

Mutual information is a powerful tool in data science since it measures the depen-
dencies between two variables. In our case, it may be seen as an upper bound on the
amount of information an attacker could gain on the secret from the target’s leak-
age. The main problem is that side-channel data are often of too high dimension for
classical estimators to stay sound when computing the MI with the full trace. The
most common ways to estimate MI are the histogram method and the kernel density
estimation both described in [PR09]. There also exists a non parametric estimation
based on k-nearest neighbors [KSG04]. This chapter is interested in MINE [Bel+18a],
a new estimator based on deep learning techniques, which claims to scale well with
high dimensions. Technical details about MINE are given hereafter.

A well known property of I(Z, L) is its equivalence with the Kullback-Leibler
(KL) divergence between the joint probability pZ,X = Pr(Z, L) and the product of
the marginals pZ ⊗ pL = Pr(Z) · Pr(L):

I(Z, L) = DKL(pZ,L || pZ ⊗ pL) (2.1)

where DKL(p, q) is defined as follow:

DKL(p || q) = Ep

[
log

(
p
q

)]
(2.2)

whenever p is absolutely continuous with respect to q. This property guarantees that
when q is equal to 0, p is also equal to 0 and there is no division by 0 in the logarithm.
By definition, pZ,L is absolutely continuous with respect to pZ ⊗ pL.

The key technical ingredient of MINE is to express the KL-divergence with varia-
tional representations, especially the Donsker-Varadhan representation that is given
hereafter. Let p and q be two densities over a compact set Ω ∈ Rd.

Theorem 1. (Donsker-Varadhan, 1983) The KL-divergence admits the following dual rep-
resentation:

DKL(p || q) = sup
T: Ω→R

Ep[T]− log(Eq[eT]) (2.3)

where the supremum is taken over all functions T such that the two expectations are finite.

A straightforward consequence of this theorem is that for any set F of functions
T : Ω→ R satisfying the integrability constraint of the theorem we have the follow-
ing lower bound:

DKL(p || q) ≥ sup
T∈F

Ep[T]− log(Eq[eT]) (2.4)

Thus, using Equation 2.1, one have the following lower bound for I(Z, L):

I(Z, L) ≥ sup
T∈F

EpZ,L [T]− log(EpZ⊗pL)[e
T]) (2.5)

22
Chapter 2. Leakage Assessment through Neural Estimation of the Mutual

Information

How to compute I(Z, L). To put it short, the idea is to define F as the set of all
functions Tθ parametrized by a neural network with parameters θ ∈ Θ and to look
for the parameters maximizing the loss function L : Θ→ R:

L(θ) = EpZ,L [Tθ]− log(EpZ⊗pL)[e
Tθ]) (2.6)

This loss function is itself bounded by I(Z, L). The universal approximation theo-
rem for neural networks guarantees that this bound can be made arbitrarily tight for
some well-chosen parameters θ. The goal is then to find the best θ, potentially using
all the deep learning techniques and, more generally, all the tools for optimization
problem-solving. The expectations in Equation 2.6 can be estimated using empirical
samples from pZ,L and pZ ⊗ pL and the maximization can be done with the classi-
cal gradient ascent. A noticeable difference with a classical deep learning setup is
that the trained network is not used for any kind of prediction. Instead, the evalu-
ation of the loss function at the end of the training gives an estimation of I(Z, L).
We give hereafter the formal definition of the estimator as stated in the original pa-
per [Bel+18a].

Definition 1. (MINE) Let A = {(z1, ℓ1), . . . , (zn, ℓn)} and B = {(∼z1,
∼
ℓ1), . . . ,

(
∼
zn,
∼
ℓn)} be two sets of n empirical samples respectively from pZ,L and pZ ⊗ pL. Let F =

{Tθ}θ∈Θ be the set of functions parametrized by a neural network. MINE is defined as
follows:

Î(Z, L)n = sup
T∈F

EA[T]− log(EB [eT]) (2.7)

where ES [·] stands for the expectation empirically estimated over the set S .

The main theoretical result proved in [Bel+18a] is that MINE is strongly consis-
tent.

Theorem 2. (Strong consistency) For all ϵ > 0 there exist a positive integer N such that:

∀n > N, |I(Z, L)− Î(Z, L)n| < ϵ, a.e. (2.8)

In practice, one often only have a set of samples from the joint distribution:
A = {(z1, ℓ1), . . . (zn, ℓn)}. Samples from the product of the marginals can be ar-
tificially generated by shuffling the variable X using a random permutation σ: B =

{(z1, ℓσ(1)), . . . , (zn, ℓσ(n))}. We provide a pseudo-code implementation of MINE, in
algorithm 1, that uses minibatch gradient ascent. Note that B is regenerated af-
ter each epoch. Thus, this algorithm is not strictly implementing MINE as defined
in Equation 2.7 because B is fixed in this definition. Theoretical arguments are pro-
vided in subsection 2.3.4 to explain why this regeneration limit overfitting in practice
and is therefore mandatory.

2.3. Analysis of MINE in a Side-Channel Context 23

Algorithm 1: Mine implementation
Input: A = {(z1, ℓ1), . . . (zn, ℓn)}
θ ← Initialize network parameters
Choose b a batch size such that b | n
repeat

Generate B = {(z1, ℓσ(1)), . . . , (zn, ℓσ(n))} with a random permutation σ

Divide A and B into n
b packs of b elements: A1, . . . , A n

b
and B1, . . . , B n

b

for i = 1; i = n
b do

L(θ)← EAi [Tθ]− log(EBi [eTθ]) // Evaluate the loss function

G(θ)← ∇θL(θ) // Compute the gradient

θ ← θ + µG(θ) // Update the network parameters (µ is the
learning rate)

end
until convergence of L(θ)

2.3 Analysis of MINE in a Side-Channel Context

MI has found applications in a wide range of disciplines and it is not surprising that
it is also of great interest for side-channel analysis. Unlike Pearson correlation coeffi-
cient, it detects non-linear dependencies and thus does not require any assumptions
on the leakage model. Another key property of the MI is that it is invariant to bijec-
tive transformations of the variables. This is of interest for side-channel as Z usually
represents the state of an internal variable (ex: Z = k∗ ⊕ X for an AES) and is there-
fore unknown but bijectively related to a public variable X. In that case, there exists
a bijective function gk∗ such that Z = gk∗(X) and:

I(Z, L) = I(g−1
k∗ (Z), L) = I(X, L) (2.9)

Thus, one may estimate I(Z, L) with only the knowledge of X and L and therefore
quickly get the amount of leakage an attacker could potentially exploit.

In what follows, we consider that we are granted n samples (z1, ℓ1), . . . , (zn, ℓn) of
traces associated to the sensitive variable being processed in the device (or as stated
above, to any bijection of this variable). These samples will be either generated on
simulation or measured from real case experiments. The goal is to derive the best
way to use MINE in a side-channel context in order to compute a reliable estimation
of I(Z, L).

2.3.1 Simulated Traces Environment

In order to assess the capabilities of MINE experiments on synthetic traces were
first conducted. These traces have been generated using a leakage model which
may seem awkward since the whole point of conducting MI analysis is to avoid
any assumption on the leakage model. But we argue that as a first step, it brings

24
Chapter 2. Leakage Assessment through Neural Estimation of the Mutual

Information

1e3

loss

0.8

B
it
s

Epochs

1

FIGURE 2.1: Evolution of MINE’s loss function over time

a valuable advantage: the environment is perfectly controlled, thus the true MI is
known and can be used to evaluate the results and compare different settings.

Trace generation. To generate traces, featuring nl + nr independent samples, a
sensitive byte 0 ≤ s ≤ 255 was first drawn uniformly. The leakage was spread over
the nl samples drawn from a normal distribution centered in the Hamming Weight
(HW) of s and with noise σ ∼ N (HW(z), σ). The nr remaining samples are random
points added to the trace to artificially increase the dimension and be closer from a
real scenario. Each of the nr samples is drawn from a normal distribution centered in
c and with noise σ ∼ N (c, σ), where c is an integer itself drawn uniformly between
0 and 8. A very simple yet informative case is to set nl = 1, nr = 0 and σ = 1. In that
case, the true mutual information I(Z, L) is equal to:

I(Z, L) = H(Z)− H(Z|L)

= 8−
255

∑
z=0

∫ ∞

−∞
Pr(z, l) · log2

(
1

Pr(z|l)

)
dl

= 8−
255

∑
z=0

∫ ∞

−∞

1
28

1√
2π

e−
1
2 (l−HW(z))2 · log2

(
∑255

z′=0 e−
1
2 (l−HW(z′))2

e−
1
2 (l−HW(z))2

)
dl

≈ 0.8 bits

(2.10)

As a first step, we applied MINE to a set of 10k synthetic traces generated with
these parameters. The network was set to be a simple Multi Layer Perceptron (MLP)
with two hidden layers of size 20. The Exponential Linear Unit (ELU) was used as
the activation function. The input layer was composed of two neurons, representing
the value of the sensitive variable Z and the one-dimensional trace L. The output
was a single neuron giving the value of the function Tθ . The batch size was set to
500. The value of the loss function L(θ) over time is plotted in Figure 2.1. An epoch
represents the processing of all the data so the parameters are updated 20 times per
epoch.

As shown, the results are mixed. On one hand, the loss function is always under
the true MI and it seems that the limit superior of MINE is converging over time
towards 0.8, i.e. the true MI. On the other hand, the loss function experiences a lot
of drops and the convergence is very slow (above 200k epochs). Drops may be due
to the optimizer used (ADAM [KB14]) and happens when the gradient is very close

2.3. Analysis of MINE in a Side-Channel Context 25

loss

FIGURE 2.2: MINE with input decompression

to 0. Increasing the size/number of hidden layers did not produce any significantly
better results. In that state MINE is clearly not of any use for side-channel: the
convergence is not clear and a classical histogram method would compute the MI
faster and better for one-dimensional traces.

2.3.2 Input Decompression

Trying to gain intuition about the reasons causing the network to perform poorly
in this situation, we hypothesized that the information in the first layer, especially
the value of z, could be too condensed in the sense that only one neuron is used to
describe it. Intuitively, the information provided by z about the corresponding trace
ℓ is not continuous in z. The meaning of this statement is that there is no reason
that two close values of z induce two close values of l. For example, in a noise-free
Hamming weight leakage model, the traces corresponding to a sensitive value of 127
and 128 would be very different since HW(127) = 7 and HW(128) = 1. Since neural
networks are built using a succession of linear and activation functions which are all
continuous, approximating functions with quick and high variations may be harder
for them. Indeed, building a neural classifier that extracts the Hamming weight of an
integer is not an easy task. However, if the value of this integer is split into multiple
neurons holdings its binary representation, the problem becomes trivial as it ends
up being a simple sum.

This observation led us to increase the input size to represent the value of z in its
binary form, thus using 8 neurons. However, computing I(Z, L) in that case gives
an unfair advantage to the arbitrarily chosen Hamming weight model. Indeed, the
value of L would be closely related to the sum of the input bits. So we decided to
compute I(Z⊕ k, L) instead of I(Z, L), with a fixed k. As stated above this bijective
transformation does not change the MI anyway and removes a possible confusion
factor in the analysis. Results with the same parameters as before (nl = 1, nr = 0,
σ = 1) are presented in Figure 2.2. They bear no comparison with the previous ones.
With this simple trick, MINE quickly converges toward the true MI. The estimation
seems robust as restarting the training from different initializations of the network
always produces the same results. The order of magnitude of the computational
time for the 500 epochs is around two minutes.

26
Chapter 2. Leakage Assessment through Neural Estimation of the Mutual

Information

Remark 2. Note that any constant function Tθ would produce a loss function of 0. We
argue that this could explain the knee point around 0 bit in the learning curve: it is indeed,
easy for the network to quickly reach 0 tuning the parameters towards a constant function,
before learning anything interesting.

Before testing this method for higher dimension traces, we propose to analyze
more in-depth this Input Decompression (ID). The goal is to understand if this re-
sult was related in any way to our simulation setup or if ID could be applied to more
generic cases. As a first step, we tried to decompress L instead of Z, binning the
value of L to the closest integers, then using its binary representation as input neu-
rons. As expected, it did not work: results looked like Figure 2.1, as L is by essence
a continuous variable. If there is no interest in splitting into multiple neurons an in-
trinsically continuous variable, our hypothesis is that, for categorical variables, the
greater the decompression, the faster the training.

Learning Random Permutations

In order to test this hypothesis in a more generic case, this section proposes to build
a neural network Pθ which goal is to learn a random permutation P of {0, . . . , n− 1}
and to analyze its performance in terms of ID. Permutations have been chosen be-
cause they are arbitrary functions with no relation between close inputs. For an
integer m < n the network returns a float Pθ(m) which has to be as close as possible
to P(m). The loss function was defined as error: L(θ) = |Pθ(m) − P(m)|. Net-
work architecture was again a simple MLP but with 3 hidden layers of size 100.
To study the effect of ID the input layer was defined to be the representation of
m in different bases, with one neuron per digit. For example, with n = 256, all
bases in 256, 16, 7, 4, 3, 2, 1 were considered resulting in a first layer of respectively
{1, 2, 3, 4, 6, 8, 256} neurons (base 1 is actually the One Hot Encoding (OHE)). The
training dataset was a list of 10k integers uniformly drawn from {0, . . . , n− 1}. Loss
functions in terms of ID are depicted in Figure 2.3. At the end of the training, plots
are exactly ordered in the expected way: greater decompression leads to faster and
better training.

In a recent analysis, Bronchain et al. [BS19] have shown that it was hard for a MLP
to learn the Galois multiplication in GF(2n) when n ≥ 8. As Galois multiplication
suffers from the same non-continuity than random permutations, we argue that blue
plots confirm this result. With no ID our MLP did not show the beginning of a
convergence towards 0. But we do think their network may have been successful
with ID. Pink plots show that the best choice is to use the OHE. The problem with
OHE is that the number of neurons (and therefore the computational time) scales
linearly with n (the number of categories of the underlying problem), where it only
scales logarithmically with any other base. In side-channel, one mostly deals with
bytes (256 categories) and will therefore use the OHE. However, subsection 2.4.3

2.3. Analysis of MINE in a Side-Channel Context 27

Base/Input layer
256/1
16/2
7/3
4/4

3/6
2/8
1/256

(A) n = 28

1e3

(B) n = 216

FIGURE 2.3: Impact of input decompression on learning random
permutations

presents a scenario where using base 2 is a better choice, when computing the MI
with assembly instructions.

Remark 3. Note that the constant function Pθ =
n
2 would result in an average loss function

of n
4 , which explains the knee point around n

4 observable in most of the curves: quickly
converging towards this function is an efficient strategy for the network to minimize its
loss at the beginning of the learning phase. We verified this statement by looking at the
predictions of the network which were all close from n

2 in the early stages of the training.

2.3.3 MINE in Higher Dimension

This section presents results of simulations in higher dimension and compare MINE
estimation to that provided by the classical histogram and KNN methods. The his-
togram estimator has been implemented following the description from [PR09] and
Steeg’s implementation [Ste14] has been utilized for KNN. Network architecture de-
scribed in subsection 2.3.1 has been used with OHE to encode the S variable. We
have kept nl = σ = 1 so the true MI is still around 0.8 bits but nr was no longer set
to 0 in order to increase the traces dimension. Figure 2.4 shows the results for nr = 1
and nr = 9. In both case MINE correctly converges toward the true MI. The his-
togram method tends to overestimate the MI (as explained in [VEB10]) while KNN
method underestimates it. With dimension greater than 10 these methods are not
reliable anymore. One could argue that any dimension reduction technique applied
in the above experiments would allow to compute the MI with classical estimators.
While this is true in this case it may result in a loss of information in a real case sce-
nario where the information could be split into multiple samples of the traces. We
have conducted many experiments with different parameters and MINE always re-
turned reliable estimations even in very high dimension (ex: Figure 2.5b with nl = 5
and nr = 1000).

28
Chapter 2. Leakage Assessment through Neural Estimation of the Mutual

Information

(A) Trace dimension = 2
(nl = 1, nr = 1, σ = 1)

(B) Trace dimension = 10
(nl = 1, nr = 9, σ = 1)

FIGURE 2.4: Comparison of MINE with classical estimators in higher
dimension

2.3.4 Analysis of the Overfitting Problem

Results of simulations are encouraging as they seem accurate with a lot of different
parameters but one problem still has to be solved before testing MINE on real traces:
when to stop the training ? Until now, training has been manually stopped when the
loss had converged towards the true MI. No such threshold value will be granted in
real cases. One could argue that since the loss function is theoretically bounded by
the true MI, a good strategy would be to let the training happen during a sufficiently
long time and to retain the supremum of the loss function as the MI estimation.
We argue that this strategy is not viable: in practice the bound does not hold as
expectations in the loss are not the true expectations but are only estimated through
empirical data. Thus, MINE can still produce output above the true MI. Figure 2.5
shows this phenomenon: training has been intentionally let running for a longer
time in these experiments and MINE overestimates the MI at the end of the training.
In other terms, MINE is no exception to the rule when it comes to the overfitting
problem: the network can learn ways to exploit specificities of the data it is using to
train, in order to maximize its loss function. We propose hereafter a detailed analysis
of this problem and answer to the following question: is it possible to control (for
example to bound with a certain probability) the error made by the network ?

Let us return to the definition of MINE estimator:

Î(Z, L)n = sup
θ∈Θ

EA[Tθ]− log(EB [eTθ]) (2.11)

The problem comes from the fact that the two expectations are estimated over the
set of empirical data A and B. The error can not be controlled in the classical way
with the central limit theorem because there is a notion of order that is important:
the two setsA and B are selected before the network tries to find the supremum over
Θ. Thus, the network can exploit specificities of A and B in its research. We show in
Theorem 3 that given two sets A and B, the supremum may not even be bounded.

2.3. Analysis of MINE in a Side-Channel Context 29

(A) Trace dimension = 15
(nl = 5, nr = 10, σ = 1)

(B) Trace dimension = 1005
(nl = 5, nr = 1000, σ = 1)

FIGURE 2.5: Over estimation of MINE at the end the training
(overfitting)

Theorem 3. Let X, Y be two random variables over Ω. Let x⃗ = (x1, . . . , xn) ∈ Ωn and
y⃗ = (y1, . . . , yn) ∈ Ωn be two samples of n realizations of respectively X and Y. Then,

sup
T: Ω→R

Ex⃗[T(X)]− log(Ey⃗[eT(Y)]) < ∞⇔ ∀i, ∃j such that xi = yj

Proof. Let us introduce two new random variables, X′ and Y′ defined as follows:

∀ω ∈ Ω, P(X′ = ω) =
1
n
· |{xi = ω}| and P(Y′ = ω) =

1
n
· |{yi = ω}|

The samples x⃗ and y⃗ are perfect samples of X′ and Y′ (by definition of X′ and Y′),
thus, the estimated expectations are equal to the true expectations computed over
this new variables:

sup
T: Ω→R

Ex⃗[T(X)]− log(Ey⃗[eT(Y)]) = sup
T: Ω→R

EX′ [T(X′)]− log(EY′ [eT(Y′)])

Now let us assume the right part of the equivalence. This condition means that
there is no isolated xi, or in other words: ∀ω, Pr(Y′ = ω) = 0 ⇒ Pr(X′ = ω) = 0.
This guarantees the absolute continuity of pX′ with respect to pY′ and thus, that
DKL(pX′ || pY′) exists. Therefore, using Theorem 1:

sup
T: Ω→R

Ex⃗[T(X)]− log(Ey⃗[eT(Y)]) = DKL(pX′ || pY′) < ∞

If, on the other hand, this condition is false: ∃i such that ∀j, xi ̸= yj. For any
given function T one can exploit this isolated xi modifying T(xi) without influencing
the second expectation. In particular, if T(xi) tends towards infinity:

30
Chapter 2. Leakage Assessment through Neural Estimation of the Mutual

Information

lim
T(xi)→∞

[
Ex⃗[T(X)] − log(Ey⃗[eT(Y)])

]
= lim

T(xi)→∞

[
1
n

n

∑
k=1

xkT(xk) − log(
1
n

n

∑
k=1

ykeT(yk))

]

= lim
T(xi)→∞

[
1
n

n

∑
k=1

xkT(xk)

]
− log(

1
n

n

∑
k=1

ykeT(yk))

= ∞

So in that case:
sup

T: Ω→R

Ex⃗[T(X)]− log(Ey⃗[eT(Y)]) = ∞

This theorem means that most of the time (and especially for high dimensional
variables) the supremum is infinite and MINE is not even well defined. The natural
question that comes now is: why does MINE seem to work in practice?

We claim that this is due to the implementation and especially to the random-
ization of the set B evoked in section 2.2: after each epoch a new permutation σ is
drawn to generate samples from pZ ⊗ pL: B = {(z1, ℓσ(1)), . . . , (zn, ℓσ(n))}. Thus, the
isolated samples fromA are not always the same at each epoch which does not leave
time for the network to exploit them. To verify that this was a key element, MINE
was run without this randomization process. The loss function diverged towards
infinity, as predicted by Theorem 3.

In the long run, the network can still learn statistical specificities of the dataset
such as samples from A that has a greater probability of being isolated, and exploit
them. This explains why MINE may overfit when it has a long time to train. That is
why we suggest to add a validation loss function.

Validation Loss Function

A validation loss function is a common tool when it comes to detect overfitting and
stop the training at the right time. The idea is to split the dataset A into a training
dataset At and a validation one Av and to only use At for the training. At the end of
each epoch, the loss function is computed both on At and Av. As the data from Av

are never used during training, MINE cannot overfit on them. Thus, it is safe to take
the supremum of the loss computed over Av as our MI estimation. It also provides a
useful condition to stop the training as the decrease of the validation loss function is
usually a sign of overfitting. Figure 2.6a shows an example where the training loss
function and the validation one (computed on 80% and 20% of the data) respectively
increase and decrease after a while. Training could have been stopped after the 500th

epoch.

2.3. Analysis of MINE in a Side-Channel Context 31

MlNE Validation
loss

(A) Validitaion strategy
(nl = 10, nr = 0, σ = 1)

loss

(B) Fill the holes strategy
(nl = 1, nr = 0, σ = 1)

FIGURE 2.6: Two possible strategies against overfitting

Fill the Holes

Theorem 3 states that there is still a case where the supremum is bounded: when
∀a ∈ A, ∃b ∈ B such that a = b, or in other words, when there is no isolated value
in A. An alternative solution to prevent overfitting is thus to force this condition
to be true instead of regenerating B after each epoch. Naively filling the holes by
adding to B all the isolated values is not a good idea because the resulting set would
be biased, not containing stricto sensu samples drawn from pZ ⊗ pL. However, with
A = {(z1, ℓ1), . . . (zn, ℓn)}, AZ = {z1, . . . , ℓn} and AL = {z1, . . . , ℓn} one can define
B′ as the Cartesian product1 B′ = AZ × AL which is by definition a non-biased
dataset that covers all the elements of A. The problem is that its size is no longer
n but n2 which drastically impacts the computational time of MINE as the network
has to compute Tθ(b) for all b ∈ B′ at each epoch. However, the number of network
evaluations can be reduced to c · n where c is the cardinality of the set Z made up of
all the possible values taken by the sensitive variable Z. For example, if S is a byte,
c = 256. The idea is to evaluate Tθ on the c · n elements of the set Z ×AL which is
sufficient to cover all the couples from B′ as elements fromAZ×AL can all be found
in Z ×AL.

With this implementation MINE is fundamentally bounded by a quantity de-
noted Maxmi equal to the KL-divergence between the empirical distributions as-
sociated to A and B as stated in the proof of Theorem 3. Figure 2.6b shows an
example of MINE with this implementation applied to the already considered case
(nl = 1, nr = 0, σ = 1). One may observe that the loss function is a lot smoother
and is effectively bounded by Maxmi (we tried to let the network train for more than
100k epochs) which is another empirical confirmation of Theorem 3.

However, when the dimension of the variables increases samples tend to be more
and more unique. At the limit, they hold the full information about the correspond-
ing sensitive variable z which means that Maxmi will tends towards H(Z). Know-
ing if the network will always converge towards his supremum or will stabilize to a

1 These sets are actually multisets as they may contains repetitions of a single elements but the
Cartesian product can be canonicaly extended to multisets.

32
Chapter 2. Leakage Assessment through Neural Estimation of the Mutual

Information

value close to the true MI is an open question. We do think that the randomization
proposed in the precedent strategy may help to that aim and that is why we will
stick to the validation method for our real-life experiments, which is faster anyway.

2.4 Application of MINE in an Evaluation Context

This section provides real case examples where MINE could be useful especially in
an evaluation context. Its most straightforward utilization is probably to assess the
quantity of information leaking from a device when it computes a cryptographic
algorithm. It can be seen as a first security metric, easy to compute whatever the
target and the implementation, with low expertise required. However, MINE only
returns an upper bound on the amount of leakage potentially usable. In practice, an
attacker may not be able to fully exploit this information, depending on her strategy,
and that is why classical evaluation methods still have to be performed.

That being said, MINE is also a great comparison tool. Indeed, its output is an
interpretable number that allows to objectively rank different devices or implemen-
tations in terms of their leakage. It can be used to analyze the effect of a countermea-
sure or even to compare different hardware setup in order to maximize the MI for
future attacks or evaluations.

2.4.1 Leakage Evaluation of an Unprotected AES

As a first real case experiment, our target was an unprotected AES implemented on
a cortex M4 device. 20k EM traces centered on the first round of the AES have been
acquired through a Langer probe (RF-B 0,3-3) linked to an low noise amplifier and
a Tektronix oscilloscope (MSO64, 2.5 GHz) with a sample rate of 1 GS/s. Resulting
traces had a length of 50k samples. They have been labeled with the first byte of the
corresponding plaintext which was drawn randomly for each computation of the
AES.

The main goal of this first experiment was to demonstrate how adding more
samples to the analysis, which is the purpose of MINE, increases the amount of
information one can recover. To this end, only the n samples with the maximum
SNR were kept in the traces, with n in {1, 5, 500}. Network architecture was the
same as in the simulated experiments. Results are presented in Figure 2.7. The thick
blue plot shows that if one only uses one sample in his analysis (for example with a
CPA or histogram-based MIA) he would be able to extract at most 1.15 bits about the
secret, per trace. While it is a huge amount of information (it is an unprotected AES)
it is possible to extract almost 4 times more using 500 samples. For clarity reasons,
only the validation loss has been plotted. Training has been stopped after epoch
500 as these validations (especially the green one) started to decrease. Going further
with n ≥ 500 did not produce better results as it seems that the remaining samples
were absolutely not informative about the secret.

2.4. Application of MINE in an Evaluation Context 33

8 bitsADC: 15 bits

FIGURE 2.7: Leakage
evaluation of an
unprotected AES

FIGURE 2.8: Leakage
evaluation of a

masked AES (ASCAD)

ADC Comparison

The oscilloscope used in the former experiment offers the possibility to set the ADC
precision to either 8 or 15 bits. This is a good opportunity to show MINE compar-
ative interest and its ability to answer questions such as "Is it really worth it to buy
the newest scope with the enhanced ADC precision?" in a quantitative and objective
way. 10k traces instead of 20k (so that the occupied memory stayed constant) were
thus acquired with the 15 bits precision. Results are represented by the thin plots
on Figure 2.7. In this case, the answer is that there is a slight improvement (around
10%) working with the 15 bits precision rather than the 8 bits one.

2.4.2 Leakage Evaluation of a Masked AES from the ASCAD Database

One of the main difficulties of side-channel analysis is to extract information even
when the target algorithm has been masked. Indeed, masking removes all the first-
order leakage and thus, obliges one to combine samples together to detect a depen-
dency with the secret. This is usually very long as all the couples of samples (or
n-tuple) have to be tested.

It is thus a great challenge for MINE to see if it is able to automatically perform
this recombination, and detect higher-order leakages. For that purpose, the public
dataset ASCAD [Ben+18] (with no jitter) has been used. It provides a database of
50k EM traces of 700 samples each, of an AES protected with a Boolean masking. A
MI estimation, derived from deep learning attack results, has already been done on
this dataset [MDP19]. They reported a MI of 0.065 bit between the traces and the
third key byte (the first two were not masked) which provides a reference point.

At first, MINE was not successful: the loss function increased but the validation
started to decrease very early which is a direct sign of overfitting. Intuitively, when
the underlying problem is more complex, it may be easier for the network to learn
properties of the empirical data before the true structure of these data. Then, classical
solutions against overfitting have been applied to MINE. These include Batch Nor-
malization (BN) layers, dropout, and regularization techniques. While the last, did
not impact performances significantly, the combination of BN and dropout greatly

34
Chapter 2. Leakage Assessment through Neural Estimation of the Mutual

Information

improved the results. A BN layer has been applied to the inputs in order to nor-
malize them. This is known to make the loss function smoother and thus the opti-
mization easier [San+18]. Dropout was activated with p = 0.2 so that each neuron
has a probability p of being set to 0 when an output of the network is computed
(except when the validation is computed). This is also known to reduce overfitting
and make the training more robust [Sri+14].

Results are presented in Figure 2.8: validation loss reached a value of 0.2 bits
which is about three times bigger than the MI reported in [MDP19]. Due to how
validation is computed this value cannot be an overestimation of the MI. Our MLP
structure may be a little more adapted than the CNN used in [MDP19] as there is
no jitter in that case. We also suggest that the input decompression technique, only
usable with MINE, could help the network to learn, especially for complex problems
such as when the algorithm is masked. This may explain why MINE was able to
extract more information in that case. One can observe that it took 100 epochs for
the network to start to learn something. It may seem random but this period of 100
epochs was surprisingly repeatable across experiments.

2.4.3 Instructions Leakage

Another advantage of MINE is that it cannot only compute MI for high dimensional
traces but also for secrets with a high number of classes. This is the case if one is
interested in recovering information about the raw assembly instructions that are
being executed. This branch of SCA is called Side Channel Based Disassembling
(SCBD) [GP08; EPW10; Str+15; CLH20] and the main difficulty in this domain is the
size of the attacked variable, generally the couple (opcode, operands) which is no
longer a simple byte. For example the target device in [EPW10; Str+15; CLH20] is a
PIC16F from Microchip which encodes its instruction on 14 bits. Even though some
opcodes are not valid, the number of possible couples (opcode, operands) is around
212. It is even worse for more complex processors encoding their instruction on 16
or 32 bits. MINE treats the attacked variable as an input and the number of neurons
used to encode it can be adjusted with ID as stated in subsection 2.3.2. Using base 2,
one only need 14 neurons to encode an instruction in the PIC example.

In order to test MINE in this context, we have generated a program with 12k
randoms instructions for the PIC. Using the same experimental setup described in
section 4.2 of [CLH20], an EM trace of the whole execution has been acquired (it
was averaged on 500 traces as the program is repeatable). This trace has then been
separated into 12k sub-traces of 2000 samples each. Each sub-trace was labeled with
the executed instruction. As it has been shown in [CLH20] that the probe position
may be very important, MINE has been applied at 100 different positions (using a
(10 × 10) grid) resulting in the MI cartography given in Figure 2.9. The value at
each position is the mean of the network’s validation computed over the 100 last
epochs of the training (all the training lasted 500 epochs and a Gaussian filter has

2.5. Conclusion 35

Bits

FIGURE 2.9: Cartography of the MI between instructions and traces
estimated by MINE on a PIC16F

been applied to the figure). Up to 8 bits of information have been found for the best
positions which is a high amount if one compares to the full entropy of an instruction
which is approximately 12 bits. This shows that MINE stays sound even when the
target variable has a high number of classes.

Coil Comparison

Similar to what has been done regarding the selection of the oscilloscope precision,
another hardware comparative experiment was conducted. Two probes with two
different coil orientations (Langer ICR HH and HV 100-27) have been used. While
the "hot" zones are globally the same, one may observe that the coil orientation may
have a significant impact on the captured information for some specific positions.
This experiment suggests that MINE could be used to guide the positioning of EM
probes during evaluations.

2.5 Conclusion

This chapter suggests ways MINE, a new deep learning technique to estimate mu-
tual information, could constitute a new tool for side-channel analysis. The main
advantage is its ability to estimate MI between high dimensional variables. Indeed,
being able to consider full (or large part of) traces as a variable, allows to assess all
potential leakage sources with no a priori on the leakage model neither on the im-
plementation. It seems that MINE can be used as a very simple tool to obtain an
objective leakage evaluation from traces. Thus, it may be employed for massive and
quick evaluations for designers in their development process as well as for evalua-
tors as a first leakage metric.

These suggestions result from a theoretical and practical analysis of MINE in
a side-channel context. MINE’s overfitting problem has been deeply investigated
as well as the way input representation may have a big impact on performances.
The next natural challenge, which is the object of the next chapter is to investigate

36
Chapter 2. Leakage Assessment through Neural Estimation of the Mutual

Information

possible usages of MINE for extracting secrets in an unsupervised way i.e. in an
attack context.

37

Chapter 3

Revisiting Mutual Information
Analysis
Multidimensionality, Neural Estimation and Optimality
Proofs

“Information is not knowledge."

Albert Einstein

The preceding chapter showed how Mutual Information Neural Estimation (MINE)
could be applied to side-channel analysis in order to evaluate the amount of leakage of an
electronic device. One of the main advantages of MINE over classical estimation techniques
is to enable the computation between high dimensional traces and a secret, which is relevant
for leakage assessment. However, optimally exploiting this information in an attack context
in order to retrieve a secret remains a non-trivial task especially when a profiling phase of
the target is not allowed. Within this context, the purpose of this chapter is to address this
problem based on a simple idea: there are multiple leakage sources in side-channel traces
and optimal attacks should necessarily exploit most/all of them. To this aim, a new math-
ematical framework, designed to bridge classical Mutual Information Analysis (MIA) and
the multidimensional aspect of neural-based estimators, is proposed. One of the goals is to
provide rigorous proofs consolidating the mathematical basis behind MIA, thus alleviating
inconsistencies found in the state of the art. This framework allows to derive a new attack
called Neural Estimated Mutual Information Analysis (NEMIA). To the best of our knowl-
edge, it is the first unsupervised attack able to benefit from both the power of deep learning
techniques and the valuable theoretical properties of MI. From simulations and experiments
conducted in this paper, it seems that NEMIA performs better than classical and more re-
cent deep learning based unsupervised side-channel attacks, especially in low-information
contexts.

38
Chapter 3. Revisiting Mutual Information Analysis: Multidimensionality, Neural

Estimation and Optimality Proofs

3.1 Introduction

3.1.1 Context

The previous chapter took advantage of a new deep learning technique called Mu-
tual Information Neural Estimation (MINE) [Bel+18a] to develop a side-channel tool
able to reliably estimate the MI between the secret and full traces. It drastically re-
duces the impact of high dimensionality on the estimation reliability compared to
classical estimators. This tool allows one to get an absolute leakage quantification
from raw traces which is helpful for designers or evaluators to perform leakage as-
sessment. However, knowing how much information is potentially usable is dif-
ferent from actually exploit it. This chapter analyzes the impact of this tool from
the attacker’s point of view. Is an adversary also able to use the inherent multidi-
mensional properties of MINE to exploit at the same time all the potential leakage
sources ? And if so, what is the optimal way to do it ? This chapter aims at answering
these questions.

Side-channel attacks are mainly divided into two categories: supervised SCA,
where the adversary can first perform a characterization of the target, and unsu-
pervised SCA in which this profiling step is not possible. For profiled SCA, one is
theoretically able to exploit all the information I(Z, L) by perfectly learning the tar-
get’s leakage model during the characterization phase. Deep learning attacks have
been shown to effectively extract all the available information when using the neg-
ative log likelihood as loss function [MDP19]. Therefore the problem is closed, at
least in theory, for profiled SCA.

However, this is not the case for unsupervised attacks, where the true leakage
model of the target is unknown to the adversary. In this situation, only a frac-
tion of I(Z, L), which value depends on the correctness of one’s a priori on the
leakage model, can be exploited. For example, the Correlation Power Analysis
(CPA) [BCO04] is efficient for linear dependencies between the leakage and a certain
function of the intermediate variable (often being the Hamming weight function).
The Linear Regression Analysis (LRA) [Dog+12] also assumes a linear dependency
but can handle different weights for each bit of the intermediate variable.

Mutual Information Analysis (MIA), however, has been introduced as a generic
strategy able to capture any kind of dependencies. Papers addressing the theoretical
background behind MIA [Gie+08; PR09; VCS09; Bat+11] all present MIA as SCA
distinguisher able to recover the correct key without any knowledge on the target
nor on its leakage model. However, this leakage model free strategy only works to
target non-bijective intermediate variables which makes it well suited for the DES
(as the DES S-boxes are not bijectives) but less suited for more recent algorithms
such as the AES. This explains why MIA has not often been used in practice.

3.1. Introduction 39

A second version of the MIA allowing to target any intermediate variables (and
is therefore applicable in many more contexts) has also been developed. These two
versions are not separated in the literature but we decided to do so in this paper
to clarify the relationship between MIA and leakage model a priori. Indeed, this
second version is not leakage model free i.e. it requires an a priori on the leakage
model to work. However, one of the main advantages of this attack is that it is not
limited to linear leakage model and more generally, does not require any assumption
on the leakage distribution (as long as the adversary’s a priori is sufficiently correct).
However, this gain in genericity comes at the cost of efficiency: CPA has always been
proved to work better than MIA in classical attack scenarios since leakage models
are often linear. Therefore MIA is more seen as a great tool in theory that does not
offer much in practice.

However, one of the main advantages of MIA is that it generalizes well to higher
dimension variables and offers a way to potentially use a bigger part of the informa-
tion contained in a side-channel trace. This has not really been used in the literature
(except to extend MIA for masked implementation [PR09; Bat+11]) due to MI estima-
tors limitations. But recent breakthroughs regarding neural estimation encourages
to revisit classical MIA in order to make it highly multidimensional, to get closer to
an optimal attack regarding the amount of information being used from the traces.

Even if neural estimation techniques can be applied in the leakage model free
version of the MIA, we are more interested in the second version of MIA since it
does not impose restrictions on the targeted algorithm. However, we argue that the
mathematical framework behind this version (developed in [Gie+08; PR09; VCS09;
Bat+11]) is not complete and rely too much on intuition. As a result, it is difficult to
derive the best way to use the new MI estimators, especially in the context of high
dimensional variables, where intuition quickly falls short. That is why rebuilding a
mathematical framework along with rigorous proofs on how to conduct an optimal
multidimensional MIA is one of the contributions of this chapter.

3.1.2 Contributions

1. Clarifying the State Of The Art (SOTA) around the MIA.

We explicitly split MIA into two different versions (this is not explicitly done in the
SOTA), to help understanding the need or not of an a priori on the leakage model
(subsection 3.2.2). We then highlight inconsistencies with the second version mainly
related to the fact that MIA relies on a distinguisher computing a score for each key
hypotheses, but the wrong hypotheses scores are not taken into account in the analysis
(subsection 3.2.3). This leads us to define a new generic version of MIA which objective
is related to a maximization problem that includes the impact of the wrong hypotheses
scores (subsection 3.2.4).

40
Chapter 3. Revisiting Mutual Information Analysis: Multidimensionality, Neural

Estimation and Optimality Proofs

2. Providing proofs to analytically solve the mathematical problems emerging
from our new version of MIA.

One of the main contributions of this chapter, given by Theorem 4 (subsection 3.2.5),
is to solve the optimization problem defined in subsection 3.2.4. Then, Theorem 5
provides an extension of the analysis in the context of masking (section 3.3). Both
theorems are designed to take into account the potential multidimensionality of the
leakage and therefore are suited to support the use of the new neural MI estimators.

3. Presenting a new unsupervised multidimensional attack: the Neural Estimated
Mutual Information Analysis (NEMIA).

Mathematical results are then combined with recent breakthroughs regarding neural
MI estimation in high dimension. This allows to derive, to the best of our knowledge,
the first unsupervised side-channel attack able to benefit from both deep learning tech-
niques (highly multidimensional, no pre-processing of the data...) and the valuable
theoretical properties of MI (section 3.4).

4. Providing Simulations and experiments to support the analysis.

Simulations are provided both to empirically validate the mathematical analysis as well
as to gain intuition about their meaning and about which situations are best suited for
the use of NEMIA (section 3.5). Eventually, practical experiments on the ASCAD
database (both on raw traces and on artificially noised traces) are conducted and show
that this new attack seems outperform classical SCA strategies in terms of number of
traces needed and noise resiliency (section 3.6).

3.2 Mutual Information Analysis

3.2.1 Unsupervised attacks

Suppose an adversary wants to recover the secret key used by the physical imple-
mentation of a cryptographic algorithm. He has access to a set of traces (Li)1≤i≤n

labeled with a public variable Xi used for the encryption/decryption. The general
idea of an unsupervised side-channel attack is to make a series of hypotheses ki, on
a sub-part of the key and to use a distinguisher D(k) allowing to rank the different
candidates. Distinguishers use statistical dependencies between traces and an inter-
mediate variable Zk∗ = g(X, k∗) that depends on a public variable X and the correct
key k∗ through a deterministic function g : X × K → Z related to the underlying
algorithm. For simplicity, g(X, k) is denoted gk(X) in the rest of the chapter.

Common distinguishers such as Pearson’s coefficient or coefficient of determi-
nation in a linear regression exploit some a priori on the leakage model. A common
intuition about mutual information used as a distinguisher [Gie+08] is that it has
been introduced precisely to reduce the need to have an a priori. It is often found in
the literature (e.g. [Bat+11]) that it aims at generality, leading to successful attacks

3.2. Mutual Information Analysis 41

without requiring specific knowledge or assumptions on the target. While this is
true in some sense, this assertion is mitigated hereafter.

3.2.2 State of the Art

This section presents the state of the art of MIA [Gie+08; PR09; VCS09; Bat+11] and
is organized to discuss and clarify the importance of the adversary’s leakage model
a priori.

MIA uses a distinguisher D which takes the following form1:

D(k) = I
(

f (Zk), L
)

(3.1)

with f being a function transforming the guessed intermediate variables Zk. This
function is one of the main concerns of this chapter. It is often called the "model" of
the adversary. The requirement of a model may seem contradictory with the claims
of genericity of the MIA. Actually, this model can be replaced by the identity function
making the MIA independent of any a priori on the leakage model. This version of
the MIA is presented hereafter.

MIA Version 1 (Leakage model a priori free)

In its most basic form, MIA uses I(Zk = gk(X), L) as a distinguisher, making hy-
potheses on k. With φ : Z → Rn representing the leakage model of the target, L can
be written as L = φ(Zk∗)+ N, with N being a random variable independent of Zk for
all k, and representing the noise. With these notations, the distinguisher becomes:

D(k) = I
(
Zk, φ(Zk∗) + N

)
(3.2)

Proposition 1. This distinguisher is maximized for the correct key hypothesis k∗.

Proof. Using Equation 1.24, for any k ∈ K:

D(k∗)−D(k) = H(L)−H(L | Zk∗)−
[
H(L)−H(L | Zk)

]
= H

(
φ(Zk∗) + N | Zk

)
−H

(
φ(Zk∗) + N | Zk∗

) (3.3)

Since adding knowledge can only decrease entropy:

D(k∗)−D(k) ≥ H
(

φ(Zk∗) + N | Zk, Zk∗
)
−H

(
φ(Zk∗) + N | Zk∗

)
(3.4)

1 Due to MI estimator limitations, D(k) is often replaced in practice by maxi I(f (Zk), L[i]), where
L[i] represents the i-th sample of the trace. This does not affect the theory described in this section
so we decided to keep it as described in Equation 3.1 for the sake of simplicity. More details are
provided in subsection 3.4.1.

42
Chapter 3. Revisiting Mutual Information Analysis: Multidimensionality, Neural

Estimation and Optimality Proofs

Now using the independence of N and the fact that φ(Zk∗) is entirely determined by
Zk∗ :

D(k∗)−D(k) ≥ H(N)−H(N)

≥ 0
(3.5)

which concludes the proof.

This strategy does not require any assumption on the leakage model of the tar-
get. However, it only works if the correct key hypothesis is distinguishable from the
other ones, or, in other words, if D(k) < D(k∗), ∀k ̸= k∗, which is not guaranteed
by Proposition 1. An important property of the MI is that it is preserved by injec-
tive transformations of the input variables. So if different key hypotheses yield Zk

variables differing from each other only by a permutation (for example if the gk func-
tions are bijective), I(Zk, L) would be constant for all k and the distinguisher could
not discriminate key candidates. Therefore, gk has to be non-injective. For example,
one could target the output of the first round DES S-box.

While this form of MIA is effectively leakage model free, it comes with a huge
constraint since in many interesting cases gk is bijective. In the AES case, this means
that one cannot target the output of the first S-box since Sbox[k∗ ⊕ P] is bijective
with P. In [PR09] and [RGV14b], authors suggest to target the bitwise addition be-
tween two S-box outputs during the MixColumns operation. This requires making
hypotheses on 16 bits of the key (leading to 216 MI computations). Moreover, it is
only feasible if this operation leaks enough information which may not be the case in
practice. Indeed, for hardware implementations, this step is usually fully combina-
torial and does not use any register. This explains why most of the MIA experiments
in the literature have been performed on the DES.

MIA Version 2 (Leakage model a priori dependent)

It is still possible to target Zk∗ = gk∗(P) for bijective gk functions. The idea is to
apply a non-injective function f to Zk and use I(f (Zk), L) as distinguisher. The
application of f create a partition of Z so f will be called the "partition function"
in the rest of this thesis. Since no data transformation can create information (this
is the so called data processing inequality [BR12]), the application of f inevitably
decreases the initial information: ∀ f , ∀k, I(f (Zk), L) ≤ I(Zk, L). The goal is then to
find a function that decreases more I(Zk, L) than I(Zk∗ , L) and therefore, enhance
the discriminating power of the analysis.

For example, assuming that bits leak independently, [Gie+08] proposes to drop
one bit of Z. This is equivalent to redefine the intermediate variable as a restric-
tive number of bits of gk∗(P), and apply MIA version 1 with no partition func-
tion. Another idea is to use a guessed version φ̄ of the leakage model φ. Indeed,
I
(

φ(Zk), φ(Zk∗) + N
)

is clearly maximized for k = k∗. Therefore, if φ̄ is not too
far from φ, I

(
φ̄(Zk), φ(Zk∗) + N

)
may still be maximized for k = k∗. It is shown

3.2. Mutual Information Analysis 43

in [VCS09] that error in the approximation of φ may be less penalizing than for other
attacks.

In addition, MIA is more flexible in the sense that it is not limited to exploit linear
dependencies and gives an option to mount a successful attack with any leakage
model. However, it should be emphasized that, for this version, the adversary must
have a good enough a priori on the leakage, otherwise, the attack is unsuccessful. A
suitable choice for the partition function necessarily uses assumptions on φ.

While we think this point needed to be clarified, we do not see this as a criticism
of MIA. As stated in[WOS14], hopes of finding a leakage model free strategy able to
target a bijective intermediate variable are vain, even outside the context of MIA. We
present hereafter a synthetic proof of the main result of [WOS14].

Proposition 2. Let gk be a bijective map for all k. For any strategy S which takes as input
a set of traces L⃗ =

(
φ(gk∗(Pi))

)
1≤i≤n and outputs a ranking of the different key hypotheses,

there exists a leakage model φ̃ that would rank k∗ in the last position such that the attack
completely fails.

Proof. First, apply S on traces obtained through any leakage model φ0 and denote
by k̄ the last key returned by S. Now, for all P, define φ̃0(gk∗(P)) = φ0(gk̃(P)), which
completely defines φ̃0 as gk̄ is bijective. Applying S on traces obtained through φ̃0

would now rank k∗ in the last position.

This proposition shows that there does not exist any generic distinguisher, that
would both:

1) Exploit statistical dependencies between traces and an intermediate variable
bijectively related to the plaintext.

2) Work whatever the leakage model of the target.

Since MIA version 2, with a fixed partition function, verifies 1), it necessarily fails
for some leakage models or, in other words, has to use an assumption on the leakage
model to succeed. Even though it requires an analysis on what partition function
should be used, the rest of this chapter is more focused on MIA version 2 since it is
more generic in the sense that it can be applied in many more situations.

3.2.3 About the Distinguishability

As stated in [WO11], even if D(k) is maximized for k = k∗, it is not enough to
guarantee a successful attack in practice, when noise comes into play. What is really
important is the difference between D(k∗) and the others, or in other words, the
distinguishability of the correct hypothesis through the distinguisher D. The idea
found in the literature is that for a wrong key hypothesis:

«false predictions will form a partition corresponding to a random sampling of
[L] and therefore simply give scaled images of the global side-channel probability

44
Chapter 3. Revisiting Mutual Information Analysis: Multidimensionality, Neural

Estimation and Optimality Proofs

density function. Hence, the estimated mutual information will be equal (or close)
to zero in this case.» [Bat+11].

We do not agree with this fact since the wrong hypotheses scores totally depend
on the partition function f and on gk. As explained in the previous section, if the
gk’s are bijective, all the scores would be equal if f is also bijective. This fact is well
noted in all the papers about MIA but we would like to emphasize that even for
non-bijective f the wrong hypotheses score depends on the "degree of bijectiveness"
of f . Intuitively, the more compact f is (in the sense of more collisions through f)
the smaller the wrong hypotheses scores would be. But the same is true for the
correct score which means that there is a trade-off between how much one wants
to decrease I

(
f (Zk), L

)
for the wrong k and keep I

(
f (Zk∗), L

)
high, to enhance the

distinguishability.

3.2.4 Towards an Optimal Partition Function

In the SOTA, the partition function is not seen as a parameter on which a maximiza-
tion research could be done. Therefore, no research on finding the optimal function
f has been conducted. It is generally fixed to one or two constant choices, except
in [PR09] where authors proposed that f could be a generic function. However, it is
stated that the adversary:

«does not need a good linear approximation of φ but only a function [f] such
that the mutual information I

(
f (Zk∗), φ(Zk∗)

)
is non-negligible » [PR09].

Again, this condition is necessary but not sufficient. Even if bijective functions
are excluded one can create the following f0 function such that:

f0(x) =

0, if x ∈ {0, 1}

x, else
(3.6)

Being almost the identity function, f0 is such that I
(

f0(Zk∗), φ(Zk∗)
)

is high but
would have a very low discriminating power. This shows that the wrong hypotheses
scores cannot be left out of the analysis. One typically wants to find the f function
maximizing the distinguishability of the correct hypothesis. Several criterion has
been studied in the literature [WO11; RGV14a]. In this chapter we chose to use the
nearest rival criterion2. Therefore, let us define the optimal set of functions Fopt as:

Fopt = arg max
f :Z→Rn

{
I
(

f (Zk∗), L
)
−max

k ̸=k∗

[
I
(

f (Zk), L
)]}

(3.7)

Fopt is a set since the maximum is reached by an infinite amount of functions. In-
deed, if fopt ∈ Fopt, for any bijection b, b ◦ fopt is also in Fopt since bijections do not
affect MI. Note that f is not restricted to be one-dimensional. Its domain is set to be
Rn where n can be any positive integer.

2 Note that other criterion such as the distance with the mean of the wrong hypotheses could also
have been used without modifying the analysis as discussed in remark 4.

3.2. Mutual Information Analysis 45

3.2.5 Analytical Resolution

Being consistent with Proposition 2, Fopt depends on L and therefore on the leakage
model. Since knowledge on φ is required anyway, this section assumes a full knowl-
edge on φ in order to conduct an analytical analysis to find the optimal f function.
Traces are also supposed to be acquired in an ideal set-up, without noise, so that, at
least for a significant sub-part of the trace, L = φ(Zk∗). Bounds taking into account
imperfect knowledge on φ as well as noise will be given in subsection 3.2.7.

A natural choice for the partition function would be to take f = φ because it
maximizes the left term in Equation 3.7: I

(
f (Zk∗), φ(Zk∗)

)
. But it may be possible

to find a function that would maximize the global objective without maximizing
the left term of Equation 3.7 (we emphasize that f and φ can be multi-dimensional
which make the intuition harder to have). Theorem 4 actually proves that it is not
possible and that whatever the leakage model, φ ∈ Fopt. The main demonstration
requires the use of a helper which is introduced in the form of a lemma hereafter.

Lemma 1. Let f : Z → Rn be any function. For any leakage model φ: Z → Rn there exists
a decomposition of f into f = f2 ◦ f1, with f1 : Z → N, f2 : N → Rn, satisfying the two
following properties:

1) ∃ f3 : Im f1 → Rn such that f3 ◦ f1 = φ

2) ∀z ∈ Z , f2| f1

(
φ−1({φ(z)})

) is bijective of reciprocal f−1
2 | f2◦ f1

(
φ−1({φ(z)})

)
Proof. The proof is given in Appendix A.

Theorem 4. Let P follow a uniform distribution. Let Zk represent the hypothetical inter-
mediate variables such that Zk = gk(P) with bijective gk’s. Let φ: Z → Rn be the leakage
model of the target so that L = φ(Zk∗). Then, φ ∈ Fopt.

Proof. Let S f = I
(

f (Zk∗), L
)
−maxk ̸=k∗

[
I
(

f (Zk), L
)]

represent the distinguishabil-
ity score for a given function f such that:

Fopt = arg max
f :Z→Rn

{S f }

Since all the Zk follow a uniform distribution (P follows a uniform distribution and
the gk functions are bijective), the entropy H(f (Zk)) is equal for all k. Then using
I(A, B) = H(A)− H(A | B):

S f = −H
(

f (Zk∗) | L
)
+ min

k ̸=k∗

[
H
(

f (Zk) | L
)]

(3.8)

Symmetrically, using I(A, B) = H(B)− H(B | A):

S f = −H
(

L | f (Zk∗)
)
+ min

k ̸=k∗

[
H
(

L | f (Zk)
)]

(3.9)

46
Chapter 3. Revisiting Mutual Information Analysis: Multidimensionality, Neural

Estimation and Optimality Proofs

Let f : Z → Rn be any function. Applying Lemma 1, there exist f1 and f2 satis-
fying the two properties given in Lemma 1, such that f = f2 ◦ f1. The goal is to
show that S f ≤ Sφ. The proof is divided into two phases: first show that S f ≤ S f1

using Equation 3.8, then show that S f1 ≤ Sφ using Equation 3.9. Let us start with
Equation 3.8:

S f = −H
(

f2 ◦ f1(Zk∗) | L
)
+ min

k ̸=k∗

[
H
(

f2 ◦ f1(Zk) | L
)]

≤ −H
(

f2 ◦ f1(Zk∗) | L
)
+ min

k ̸=k∗

[
H
(

f1(Zk) | L
)] (3.10)

since applying f2 in the second term can only decrease entropy (see Lemma 2). The
goal is now to remove f2 in the first term:

−H
(

f2 ◦ f1(Zk∗) | L
)
= ∑

l∈L
f̄2∈Im f2

P(l) · P(f̄2 | l) · log(P(f̄2 | l))
(3.11)

P(f̄2 | l) = P
(

f2 ◦ f1(Zk∗) = f̄2 | φ(Zk∗) = l
)

= P
(

f1(Zk∗) ∈ f−1
2 (f̄2) | φ(Zk∗) = l

) (3.12)

Knowing that φ(Zk∗) = l implies that Zk∗ ∈ φ−1({l}) and also that f1(Zk∗) ∈
f1(φ−1({l})). Let Al denotes f1(φ−1({l})) to avoid heavy notations. Then:

φ(Zk∗) = l =⇒ f1(Zk∗) ∈ Al

=⇒ f1(Zk∗) ∈ f−1
2 (f2(Al))

(3.13)

which means that:

P(f̄2 | l) =

{
P
(

f1(Zk∗) ∈ f−1
2 | f2(Al)(f̄2) | l

)
if f̄2 ∈ f2(Al)

0 else
(3.14)

Lemma 1 states that f2|Al is bijective of reciprocal f−1
2 | f2(Al), so if f̄2 ∈ f2(Al):

P(f̄2 | l) = P
(

f1(Zk∗) = f−1
2 | f2(Al)(f̄2) | l

)
(3.15)

Let us plug this result back into Equation 3.11:

−H
(

f2 ◦ f1(Zk∗) | L
)
= ∑

l∈L
∑

f̄2∈ f2(Al)

P(l) · P
(

f1(Zk∗) = f−1
2 | f2(Al)(f̄2) | l

)
·

log
(

P
(

f1(Zk∗) = f−1
2 | f2(Al)(f̄2) | l

)) (3.16)

Applying the following change of variable in the second sum: f̄1 = f−1
2 | f2(Al)(f̄2):

−H
(

f2 ◦ f1(Zk∗) | L
)
= ∑

l∈L
∑

f̄1∈Al

P(l) · P
(

f1(Zk∗) = f̄1) | l
)
·

log
(

P
(

f1(Zk∗) = f̄1) | l
)) (3.17)

3.2. Mutual Information Analysis 47

Finally, since P
(

f1(Zk∗) = f̄1) | l
)
= 0 when f̄1 ∈ Im f1 \ Al , one can artificially add

some terms equal to 0 in the second sum:

−H
(

f2 ◦ f1(Zk∗) | L
)
= ∑

l∈L
∑

f̄1∈Im f1

P(l) · P(f̄1 | l) · log
(

P(f̄1 | l)
)

= −H
(

f1(Zk∗) | L
) (3.18)

Applying this result to Equation 3.10 gives:

S f ≤ −H
(

f1(Zk∗) | L
)
+ min

k ̸=k∗

[
H
(

f1(Zk) | L
)]

S f ≤ S f1

(3.19)

which concludes the first step of the demonstration.

Now the goal is to show that S f1 ≤ Sφ. Lemma 1 guarantees that there exists f3

such that f3 ◦ f1 = φ. Let us use this in Equation 3.9:

S f1 = −H
(

L | f1(Zk∗)
)
+ min

k ̸=k∗

[
H
(

L | f1(Zk)
)]

≤ −H
(

L | f1(Zk∗)
)
+ min

k ̸=k∗

[
H
(

L | f3 ◦ f1︸ ︷︷ ︸
φ

(Zk)
)] (3.20)

since applying f3 to the known variable can only increase the global entropy (see
Lemma 3). Now using L = φ(Zk∗):

−H
(

L | f1(Zk∗)
)
≤ 0

−H
(

L | f1(Zk∗)
)
≤ −H

(
φ(Zk∗)|φ(Zk∗)

)
= 0

(3.21)

Therefore:

S f1 ≤ −H
(

L | φ(Zk∗)
)
+ min

k ̸=k∗

[
H
(

L | φ(Zk)
)]

S f1 ≤ Sφ

(3.22)

Finally, using both part of the demonstration:

S f ≤ S f1 ≤ Sφ (3.23)

which ensures that φ is better than any other functions and so that φ ∈ Fopt.

Remark 4. Demonstration of Theorem 4 would have worked exactly the same if one had first
fixed a particular hypothesis k, and tried to maximize S f ,k = I

(
f (Zk∗), L

)
− I

(
f (Zk), L

)
.

Therefore, for each k, φ maximizes the distance between the score of k∗ and k which is an
even stronger version of the theorem. One could not be sure that such a function would exist
a priori, that is why Fopt has not been defined with this criterion. However, this shows a
posteriori that Theorem 4 is still valid even if one decides to redefine Fopt, for example using
the distance with the mean (instead of the maximum) of the wrong hypotheses scores.

48
Chapter 3. Revisiting Mutual Information Analysis: Multidimensionality, Neural

Estimation and Optimality Proofs

Interpretation. This theorem tells that to conduct an optimal MIA, one has to
transform the targeted variable Zk by applying the leakage model φ (or any bijection
of φ) and use I(φ(Zk), L) as a distinguisher. Note the multidimensional aspect of
this theorem since both φ(Zk) and L can live in high dimensional space. This is a key
point in this chapter that will be discussed in detail in subsection 3.4.1 which bridges
this theorem with newest multidimensional MI estimators in order to derive a new
attack. Note that this theorem also implies that if the leakage model is itself bijective,
MIA is not a valid strategy since the distinguishability score would be bounded by
0.

3.2.6 Selecting Leakage Model a Priori

In a real-life experiment, one might not perfectly know the leakage model φ but only
an estimation φ̄. This is especially true when working in an unsupervised context.
This section provides a procedure to evaluate the correctness of φ̄, helping to choose
from multiple guesses φ̄1, . . . , φ̄n. This test relies on the following observation:

Proposition 3. Let L = φ(Zk∗) + N, with N an independent random variable representing
the noise. Then: φ ∈ arg max f [I

(
f (Zk∗), L

)
]

Proof. On one hand:

I
(

f (Zk∗), L
)
= H(L)−H

(
L | f (Zk∗)

)
≤ H(L)−H

(
φ(Zk∗) + N | f (Zk∗), φ(Zk∗)

)
≤ H(L)−H(N)

(3.24)

and on the other hand:

I
(

φ(Zk∗), L
)
= H(L)−H

(
L | φ(Zk∗)

)
= H(L)−H

(
φ(Zk∗) + N | φ(Zk∗)

)
= H(L)−H(N)

(3.25)

Then:
I
(

φ(Zk∗), L
)
≥ I

(
f (Zk∗), L

)
(3.26)

which concludes the proof.

The identity function obviously also maximizes: I
(

f (Zk∗), L
)

so combining this
with Proposition 3:

I
(
Zk∗ , L

)
= I

(
φ(Zk∗), L

)
(3.27)

or,
I
(
Zk∗ , L

)
= max

k
[I
(

φ(Zk), L
)
] (3.28)

Then, if k∗ is known (for example in an evaluation setup) one can use Equa-
tion 3.27 and estimate I

(
Zk∗ , L

)
and I

(
φ̄(Zk∗), L

)
and compare them. If the lat-

est is too far from I
(
Zk∗ , L

)
, one may reject φ̄ as being a good approximation of

3.2. Mutual Information Analysis 49

the true underlying leakage model. If k∗ is unknown, the adversary can still use
Equation 3.28 estimating I

(
φ̄(Zk), L

)
for all k, and comparing the maximum with

I
(
Zk0 , L

)
(k0 can be chosen randomly since all the Zk variables are just permutation

of each other which does not affect MI). Note that this test is only a rejection test
since passing the test does not guarantee a good estimation of φ: for example, the
identity function always passes the test.

3.2.7 Leakage Model Uncertainty and Noise

Let assume that the adversary has chosen a given estimation φ̄ of φ. Let also assume
that the ideal data L = φ(Zk∗), used in Theorem 4, are now noisy so that the acquired
data takes the following form: L̄ = φ(Zk∗) + N, with N an independent random
variable. This section aims at complementing Theorem 4 by lower bounding the
distinguishably score S̄φ̄ that one would get in practice in such a context:

S̄φ̄ = I
(

φ̄(Zk∗), L̄
)
−max

k ̸=k∗

[
I
(

φ̄(Zk), L̄
)]

(3.29)

Our goal is to compare S̄φ̄ with the optimal score Sφ (from Theorem 4) that one
would get with the perfect knowledge of φ and un-noised data such that:

Sφ = I
(

φ(Zk∗), L
)
−max

k ̸=k∗

[
I
(

φ(Zk), L
)]

(3.30)

Proposition 4. S̄φ̄ is lower-bounded by the following inequality:

S̄φ̄ ≥ Sφ − H(N)− H
(

φ(Zk∗) | φ̄(Zk∗)
)
−max

k ̸=k∗

[
H
(

φ̄(Zk) | φ(Zk)
)]

(3.31)

Proof. Using the same argument as in Equation 3.9 one has:

S̄φ̄ = −H
(

φ(Zk∗) + N | φ̄(Zk∗)
)
+ min

k ̸=k∗

[
H
(

φ(Zk∗) + N | φ̄(Zk)
)]

(3.32)

Since removing noise on the right term can only decrease entropy:

S̄φ̄ ≥ −H
(

φ(Zk∗) + N | φ̄(Zk∗)
)
+ min

k ̸=k∗

[
H
(

φ(Zk∗) | φ̄(Zk)
)]

(3.33)

Now since H(A + B) ≤ H(A) + H(B) and using the independence of N:

S̄φ̄ ≥ −H(N)− H
(

φ(Zk∗) | φ̄(Zk∗)
)
+ min

k ̸=k∗

[
H
(

φ(Zk∗) | φ̄(Zk)
)]

(3.34)

50
Chapter 3. Revisiting Mutual Information Analysis: Multidimensionality, Neural

Estimation and Optimality Proofs

Using H(A | B) ≥ H(A | C)− H(B | C) which can be shown through information
Venn diagram:

S̄φ̄ ≥ −H(N)− H
(

φ(Zk∗) | φ̄(Zk∗)
)
+ min

k ̸=k∗

[
H
(

φ(Zk∗) | φ(Zk)
)
− H

(
φ̄(Zk) | φ(Zk)

)]
≥ −H(N)− H

(
φ(Zk∗) | φ̄(Zk∗)

)
+ min

k ̸=k∗

[
H
(

φ(Zk∗) | φ(Zk)
)]

−max
k ̸=k∗

[
H
(

φ̄(Zk) | φ(Zk)
)]

(3.35)

Now let Sφ appear in the equation:

min
k ̸=k∗

[
H
(

φ(Zk∗) | φ(Zk)
)]

= min
k ̸=k∗

[
H
(

φ(Zk∗) | φ(Zk)
)]
−

0︷ ︸︸ ︷
H
(

φ(Zk∗) | φ(Zk∗)
)

= Sφ

(3.36)

So:

S̄φ̄ ≥ Sφ − H(N)− H
(

φ(Zk∗) | φ̄(Zk∗)
)
−max

k ̸=k∗

[
H
(

φ̄(Zk) | φ(Zk)
)]

(3.37)

which concludes the proof.

This proposition describes the impact of the noise and leakage model approx-
imation in a quantitative way. Its qualitative interpretation is fairly intuitive. It
clearly shows that one has two strategies to get closer to the optimal score: reduc-
ing the noise entropy or improving his guess on φ̄. When H(N) tends towards 0
and φ̄ gets closer to φ , S̄φ̄ tends towards the optimal score Sφ. It also captures
the fact that bijective errors do not impact the outcome of the attack since if there
exists a bijection between φ̄(Zk) and φ(Zk), both terms H

(
φ(Zk∗) | φ̄(Zk∗)

)
and

maxk ̸=k∗ [H
(

φ̄(Zk) | φ(Zk)
)
] would be equal to 0.

3.3 MIA Against Masked Implementations

Masking is one of the most widely used countermeasures to protect implementations
of block ciphers against side-channel analysis [Cha+99]. The idea is to split each
sensitive intermediate value Z, into d shares, following the relation:

Z1 = Z ∗ Z2 ∗ · · · ∗ Zd (3.38)

for a group operation ∗. The d− 1 shares Z2, ..., Zd are randomly chosen and the last
one, Z1, is processed such that Equation 3.38 is satisfied. Assuming the masks are
uniformly distributed, the knowledge of d− 1 shares does not tell anything about Z.
However, partial knowledge on the d shares can be exploited to retrieve information
on Z. That is why, to defeat masking, one should use a distinguisher able to combine

3.3. MIA Against Masked Implementations 51

the leakage of at least d samples of the traces (assuming masks do not leak at the
same time). Higher-order correlation attacks [Mes00] exploit a combining function,
C : Rd → R , which transforms a multidimensional leakage into a single value such
that the output of C correlates with Z. The optimal combining function is unknown
but most of the time, the centered product between the shares is used [PRB09].

3.3.1 MIA, a Natural Choice Against Masking

Although higher-order CPA attacks lead to successful key recoveries, they are not
optimal from an information-theoretic point of view. Indeed, by the data processing
inequality [BR12], the application of the combining function leads to an information
loss. Opposed to Pearson’s correlation, mutual information can deal with depen-
dencies of multidimensional variables. Therefore, no combining function is required
which makes MIA a very natural strategy against masked implementations. An ex-
tension of MIA in the context of masking has been proposed in [PR09] and [Bat+11].
The idea is very similar to the non-masked case. Concepts of MIA versions 1 and 2
still apply and one can use I(f (Zk), L) as a distinguisher.

3.3.2 About the Partition Function in the Presence of Masking

Using I(f (Zk), L) as distinguisher still raises the question of the optimal f function.
Theorem 4 cannot be applied straightforwardly since, for masked implementation,
the leakage cannot be expressed as a deterministic function φ(Zk∗) modulo some
noise. Instead, with Zi representing the shares, one now has:

L = ∑
i

φi(Zi) (3.39)

for some functions φi : Z → Rn. Note that, as for the unmasked case, a noise-
free version of the leakage is first considered to simplify the analysis. Noise will be
added in subsection 3.3.3. Most of the time, the φi supports can be supposed disjoint
(i.e. leakages of the shares do not overlap). In that case, the leakage vector could be
summarized as:

L = [φ1(Z1), . . . , φd(Zd)] (3.40)

with φi taking its values in a subspace of Rn. Even with this simplification, we
could not solve analytically the problem of finding an optimal partition function, or,
in other words, a function f ∈ Fopt as defined in Equation 3.7. However, we still give
some useful insights in the common case of Boolean masking on a device leaking the
Hamming weight (or Hamming distance with a known value) of the shares.

For this specific case, [Bat+11] tried to use the Hamming weight as well as the
identity function for f (they were attacking the output of a DES S-box, therefore a
non-injective intermediate variable). The Hamming weight produced better results.
Their justification is that the Hamming weight is closer to the underlying leakage

52
Chapter 3. Revisiting Mutual Information Analysis: Multidimensionality, Neural

Estimation and Optimality Proofs

model of the circuit. We do not find this justification straightforward especially in
a multivariate context since even in the ideal case where the leakage could be ex-
pressed as:

L = [HW(Zk∗ ⊕M), HW(M)] (3.41)

HW(Zk∗) is not directly related to any physical leakage. More generally, there is no
proof that if all shares leak with the same leakage model φ, taking f = φ is the opti-
mal (or even a good) option. However, in the specific case of a Hamming weight
leakage model, [PRB09] has shown that their exists a linear correlation between
HW(Zk∗) and the covariance: cov

(
HW(Zk∗ ⊕M), HW(M)

)
which is a clue that there

exists a non-negligible mutual information between HW(Zk∗) and L. However, we
go further in this chapter by showing in Theorem 5 that there is actually no loss of
information when applying the Hamming weight function to the Zk∗ variable. This
result can then be used to give a formal justification for using f = HW, as done
hereafter.

Let us introduce FLe f t as the left part of Equation 3.7:

FLe f t = arg max
f :Z→Rn

{
I
(

f (Zk∗), L
)}

(3.42)

This set does not consider the wrong hypotheses. Therefore it is not hard to find
a function f ∈ FLe f t: the identity or any bijective function works. The problem is
that with a bijective map, I

(
f (Zk∗), L

)
= I

(
f (Zk), L

)
for any k. However, a non-

injective function f such that f ∈ FLe f t would naturally decrease I
(

f (Zk), L
)

and
create some distinguishability. Such a function is not a priori likely to exist. But the
following theorem shows that, while being highly non-injective, HW ∈ FLe f t.

Theorem 5. Let L represent the leakage of a masked variable Zk∗ with a mask M. Let both
shares follow any bijection b1 and b2 of a Hamming weight leakage model so that:

L =
[
b1
(
HW(Zk∗ ⊕M)

)
, b2

(
HW(M)

)]
(3.43)

Then, HW ∈ FLe f t or in other words: I
(
HW(Zk∗), L

)
= I

(
Zk∗ , L

)
.

The following proof is generalized to higher-order in section A.4, (see subsec-
tion 3.5.4 for an empirical validation), but for simplicity, only a first-order masking
is considered here.

Proof. Since bijective transformations do not impact mutual information, one can
consider without loss of generality that:

L =
[
HW(Zk∗ ⊕M), HW(M)

]
(3.44)

3.3. MIA Against Masked Implementations 53

Now let us evaluate I
(

f (Zk∗), L
)

using Equation 1.26:

I
(

f (Zk∗), L
)
= ∑

f̄∈ f (Z)
∑
l∈L

P(f̄ , l) · log
(

P(f̄ , l)
P(f̄) · P(l)

)
(3.45)

One can split the first sum by summing on z instead of f̄ :

I
(

f (Zk∗), L
)
= ∑

z∈Z
∑
l∈L

P(z, l) · log
(

P(l | f (z))
P(l)

)
= ∑

z∈Z
∑
l∈L

P(z) · P(l | z) · log
(

P(l | f (z))
P(l)

) (3.46)

Since the identity function is bijective and maximizes this quantity, it would be
enough to show that P(l | HW(z)) = P(l | z) for any given z and a given l =

[HW(z⊕m), HW(m)] for a fixed m. Let us start by the latter term:

P(l | z) = P(HW(m)) · P(HW(z⊕m) | z, HW(m)) (3.47)

To compute the right term one can evaluate the cardinal of the set M of all the masks
m′ satisfying the following conditions:

1) HW(m′) = HW(m)

2) HW(z⊕m′) = HW(z⊕m)

and divide by the number of byte with a Hamming Weight of HW(m) which is
(8

HW(m)).

To evaluate this cardinal, we first show an invariance property. For any m′ ∈M, let
nm′ denotes the number of bits set to 1 in m′ such that there is also a bit set to 1 at the
same position (0 to 7) in z. Then:

HW(z⊕m′) = HW(m′) + HW(z)− 2 · nm′ ⇐⇒

nm′ =
HW(m′) + HW(z)−HW(z⊕m′)

2

(3.48)

Now since m′ satisfies the above two conditions:

nm′ =
HW(m) + HW(z)−HW(z⊕m)

2
(3.49)

which does not depend on m′ anymore. As nm′ has to be a positive integer, the above
equation shows that:

HW(m) + HW(z)−HW(z⊕m) /∈ 2N =⇒ M = ∅ (3.50)

54
Chapter 3. Revisiting Mutual Information Analysis: Multidimensionality, Neural

Estimation and Optimality Proofs

This allows us to define a generic n as:

n =

HW(m)+HW(z)−HW(z⊕m)

2 , if HW(m) + HW(z)−HW(z⊕m) ∈ 2N

−1, otherwise
(3.51)

so that ∀m′ ∈M, nm′ = n.

Reciprocally, one can see that each byte m′ such that HW(m′) = HW(m) and nm′ = n
is in M. So to form a valid m′ ∈ M one has to choose first the position of the n ’1s’
superposing with the ’1s’ in z, which lead to (HW(z)

n) possibilities. Then, choose the
positions of the remaining ’1s’, which lead to (8−HW(z)

HW(m)−n) possibilities. Therefore, with

the convention (l
k) = 0 when k is strictly negative:

P(HW(z⊕m) | z and HW(m)) =

(
HW(z)

n

)
·
(

8−HW(z)
HW(m)− n

)
· 1
(8

HW(m))
(3.52)

Injecting this into Equation 3.47 gives:

P(l | z) =
(8

HW(m))

28 ·
(

HW(z)
n

)
·
(

8−HW(z)
HW(m)− n

)
· 1
(8

HW(m))

=
1
28 ·

(
HW(z)

n

)
·
(

8−HW(z)
HW(m)− n

) (3.53)

Now let us evaluate P(l | HW(z)):

P(l | HW(z)) = P(HW(m)) ·
A︷ ︸︸ ︷

P(HW(z⊕m) | HW(z) and HW(m)) (3.54)

And,
A = ∑

z′ s.t.
HW(z′)=HW(z)

P(z′ | HW(z)) · P(HW(z′ ⊕m) | z′ and HW(m)) (3.55)

Now using result from Equation 3.52:

A = ∑
z′ s.t.

HW(z′)=HW(z)

1
(8

HW(z))
·
(

HW(z′)
n

)
·
(

8−HW(z′)
HW(m)− n

)
· 1
(8

HW(m))

=

(
HW(z)

n

)
·
(

8−HW(z)
HW(m)− n

)
· 1
(8

HW(m))

(3.56)

since all the terms are constant in the sum and there are exactly (8
HW(z)) of them.

Now plugging this into Equation 3.54 gives:

P(l | HW(z)) =
1
28 ·

(
HW(z)

n

)
·
(

8−HW(z)
HW(m)− n

)
= P(l | z) (3.57)

3.3. MIA Against Masked Implementations 55

Thus,
I
(
HW(Zk∗), L

)
= I

(
Zk∗ , L

)
(3.58)

which ensures that HW ∈ Fle f t and concludes the proof.

Interpretation. This theorem shows that when the shares leak in Hamming
weight, it is sound to use f = HW in practice because it creates some distinguisha-
bility by decreasing the information only for the wrong hypotheses. Since the Ham-
ming distance with a computable value can be rewritten as a Hamming weight, it
also works in that case. However, Theorem 5 is not generalizable to any leakage
model φ (for example on 3 bits words, φ = 2b1 + b2 + b3 gives a counter-example).
Knowing if there exists a generic strategy against masking (depending on φ but
working for any φ) or if one will always be condemned to work on a case-by-case
basis is an interesting question and may be handled in future works.

Remark 5. Note that since I
(
Zk∗ , L

)
= I

(
HW(Zk∗), L

)
= maxk[I

(
HW(Zk), L

)
], the

procedure described in subsection 3.2.6 can also be applied on a masked implementation, to
test the validity of the Hamming weight leakage model hypothesis. If the Hamming weight is
too far from the true model, a practical alternative is to use only specific bits of the unmasked
variable as partition function. An example of this is given in section 3.6.

Considering the distinguishability score:

S f = I
(

f (Zk∗), L
)
−max

k ̸=k∗

[
I
(

f (Zk), L
)]

(3.59)

HW has not been shown to be optimal. However, a partial result can be given intro-
ducing the concept of "wider" function.

Definition 2. A function f is said wider than g if there exists another function h such that:
h ◦ f = g.

Corollary 1. Let L be defined as in Equation 3.43. Then, for any function h̄ wider than HW,
SHW ≥ Sh̄.

Proof. The proof is given in Appendix A.

Even though we do not conjecture so, a function with a better distinguishability
than the HW may exist. But a straightforward consequence of Theorem 5, given by
Corollary 1, is that HW has a better distinguishability score than any other wider
function.

3.3.3 Noise and Multidimensionality

The advantage of MINE is to be able to exploit the information contained in multi-
ple samples at the same time. In a Hamming weight leakage scenario, the Hamming

56
Chapter 3. Revisiting Mutual Information Analysis: Multidimensionality, Neural

Estimation and Optimality Proofs

weight of a variable is probably not going to leak perfectly on a single sample. In-
stead, multiple samples may leak a noisy version of it. To ensure that it is sound
to use MINE and its multidimensional capabilities to mount an attack in the case of
masking, one would need a multidimensional version of Theorem 5. This is exactly
the purpose of Corollary 2, in which the noise is directly included.

In the context of masking the actual useful part of the leakage could be expressed
as:

L =
[
b1
(
HW(Zk∗ ⊕M)

)
+ N1, . . . , bm1

(
HW(Zk∗ ⊕M)

)
+ Nm1 ,

b′1
(
HW(M)

)
+ N′1, . . . , b′m2

(
HW(M)

)
+ N′m2

] (3.60)

with bi and b′j being bijective maps, and Ni and N′j being discrete noise variables
independent of the shares. The following corollary shows that Theorem 5 is still
valid in that case.

Corollary 2. Let L be defined as in Equation 3.60. Then, one still has HW ∈ FLe f t as
defined in Equation 3.42.

Proof. As for Theorem 5, one can drop, without loss of generality, the bijections in L
as they do not affect the MI. Let N be the noise vector [N1, . . . , Nm1 , N̄1, . . . , N̄m2] and
L̄ the noise-free version of the leakage so that L = L̄ + N. As for Theorem 5, it is
enough to show that P(l | HW(z)) = P(l | z) for any given l and z. Decomposing
on all the possible values of the noise one has:

P(l | z) = ∑
n∈N

P(n) · P(L = l | z and n)

= ∑
n∈N

P(n) · P(L̄ = l − n | z)
(3.61)

Since L̄ is noise free, it consists of the repetition of the same two variables: HW(Zk∗ ⊕
M) (m1 times) and HW(M) (m2 times). So for the probability P(L̄ = l − n | z) to be
non-zero, the vector l− n should be constant on its first m1 coordinates, and constant
on its m2 last one. Let Nc be the subset of N verifying the precedent property. If
n /∈ Nc, then:

P(L̄ = l − n | z) = P(L̄ = l − n | HW(z)) = 0 (3.62)

Else, if n ∈ Nc, then, with an = (l− n)[1], bn = (l− n)[m1 +m2] and L̃ = [HW(Zk∗ ⊕
M), HW(M)]:

P(L̄ = l − n | z) = P(L̃ = [an, bn] | z) (3.63)

So Equation 3.61 can be rewritten as:

P(l | z) = ∑
n∈Nc

P(n) · P(L̃ = [an, bn] | z) (3.64)

3.4. Neural Estimated Mutual Information Analysis (NEMIA) 57

Since, Theorem 5 tells that P(L̃ = [an, bn] | z) = P(L̃ = [an, bn] | HW(z)):

P(l | z) = ∑
n∈Nc

P(n) · P(L̃ = [an, bn] | HW(z))

P(l | z) = ∑
n∈Nc

P(n) · P(L̄ = l − n | HW(z))

P(l | z) = P(l | HW(z))

(3.65)

which concludes the proof.

This corollary shows that it is sound to use I(HW(Zk), L) as distinguisher even
when considering a noisy multidimensional leakage vector. Theorem 5 still applies
and MINE may benefit from the different leakage sources resulting in an attack (pre-
sented in the next section) exploiting a bigger amount of the available information.

3.4 Neural Estimated Mutual Information Analysis (NEMIA)

This section aims at formally describing the new attack proposed in this chapter.
Note that throughout this work, a tool able to compute I(Z, L) with high dimen-
sional variables has been assumed to exist. This research has been driven by recent
progress regarding neural estimation techniques. However, this work is not abso-
lutely related to MINE. It would stay sound with any MI estimator able to work in
high dimension. In particular, any progress in the field, which is likely to happen
since it is a very active domain, would instantly impact the attack efficiency.

3.4.1 Multidimensional Paradigm

MINE is by essence a tool that estimates MI in a multidimensional way, enabling to
compute the MI between f (Zk) and full (or at least large part of) traces. This was
not possible with classical MI estimators which do not scale with high dimensional
variables. Until now, MIA was only performed with the following distinguisher:

Dold(k) = max
i
I(f (Zk), L[i]) (3.66)

where L[i] represents the i-th sample of the trace. This way, trace dimension is kept
low, allowing methods such as the histogram or the kernel density estimation [PR09]
to produce reliable results. However, this comes at the cost of sacrificing some, and
maybe a large part, of the available information. MINE allows to directly use:

Dnew(k) = I(f (Zk), L) (3.67)

as a distinguisher. This comes with two main advantages:

• Intermediate variables often leak at multiple instants in the trace. MINE allows
to exploit all these leakage sources at the same time.

58
Chapter 3. Revisiting Mutual Information Analysis: Multidimensionality, Neural

Estimation and Optimality Proofs

• Other intermediate variables, statistically dependent from the first one, can
also leak information. For example, there could be some useful information
about an AES key, before and after the application of the first S-box. In this
context, MINE could exploit leakage from both intermediate variables at the
same time, without any assumption related to the kind of link between these
variables.

Theorem 4 states that the optimal distinguisher is I(φ(Zk), L) with φ being the
leakage model. It is important to note that φ(Zk) itself can be multidimensional.
Therefore, an optimal MI attack should exploit this multidimensionality of the leak-
age model to increase the distinguishability of the correct hypothesis. However, it is
frequent that multiple samples leak with the same underlying model: for example,
a noisy version of the Hamming weight of Sbox[k∗ ⊕ P] can leak multiple times in
the trace. In such a context, the deterministic parts of the leakage of all these sam-
ples are all bijectively related. As adding bijection of the same variables multiple
times would not change the MI, one can keep only one version of each different sub-
leakage model. For example, if the target leaks (maybe multiple times) the Ham-
ming weight of the first S-box of an AES and the Hamming distance between the
S-box and k ⊕ P, Zk could be defined as k ⊕ P and one could replace φ(Zk) by the
two-dimensional vector:[

HW
(
Sbox[Zk]

)
, HW

(
Sbox[Zk]⊕ Zk

)]
(3.68)

Remark 6. In practice, one may deliberately drop some intermediates variables for not being
enough discriminating for wrong key candidates making them less tolerant regarding errors
in the estimation of φ. For example, it is theoretically possible to use leakage on a xor:
HW(k⊕ P) (assuming a Hamming weight a priori) but it is preferable to use intermediate
variables where each bit depends on multiple bits of k such as the output of an S-box. Indeed,
these variables are more discriminating since single bit errors on k are diffused to the whole
variable which prevents from rewarding wrong hypotheses with several correct bits.

Scalability with Masking Order. In the context of masking, another advantage
of multidimensionality emerges. In a classical d-order attack one often does not
know the exact leakage time of each share, and therefore, has to compute the value
of the distinguisher for each possible tuple (i1, . . . , id) and select the maximum. In
the case of MIA the old distinguisher takes the following form:

Dold(k) = max
i1,...,id
{I(f (Zk), L[i1, . . . , id])} (3.69)

For long traces, this can become a huge constraint since the total number of tu-
ples grows exponentially with the masking order. Our version of the MIA which
uses I(f (Zk), L) as distinguisher, does not suffer from this since it does not require
any kind of recombination between time samples. Note that it does not mean that

3.5. Simulation Experiments 59

masking is useless: it still decreases exponentially the information contains in side-
channel traces [PR13] and an attack may require exponentially more traces to suc-
ceed. However, for a fixed number of traces, the computational effort required to
mount a NEMIA does not scale exponentially with the order of the attack.

3.4.2 Attack Description

A step-by-step description of the NEMIA is given hereafter. It takes as input a set of
traces and outputs a ranking of the key hypotheses.

1. Define an a priori φ̄ on the leakage model. It can be multidimensional if mul-
tiple intermediate variables related to the key leak information. Also, a single
intermediate variable can have different leakage models at different times. The
test described in subsection 3.2.6 can be used to detect wrong a priori. Even if
MIA is tolerant regarding estimation errors on φ, better a priori lead to more
efficient attacks.

2. Compute, for all k, the hypothesis vectors: Hk = φ̄(Zk).

3. Compute I(Hk, L), for all k, with MINE3. This implies to run 256 neural net-
work trainings.

4. Rank the key hypotheses.

For masked implementation, the only step that changes is the construction of
Hk. If the shares have a Hamming weight leakage model, Theorem 5 proves that it
is sound to use the Hamming weight of the corresponding unmasked intermediate
variable in Hk (one may do this for multiple intermediate variables). For a generic
leakage model of the shares, the best strategy to adopt remains an open question.
It appears that, in some cases, it is efficient to keep a restrictive number of bits of
the unmasked variable as partition function, for example in a situation where some
bits of the shares leak much more information than the others (an example of this is
given in section 3.6).

3.5 Simulation Experiments

In order to gain confidence in the mathematical results presented in this chapter,
as well as to gain intuition about their implications, this section presents experi-
ments on synthetic data. These experiments all use the same architecture of MINE.
It should be seen as a proof of concept with almost no hyper-parameters tuning
and without considering recent optimizations nor improvements in the technique
(non-exhaustively: [CL20; Lin+19; Cha+19]). A study focused on deep learning
optimizations would be interesting but is out of the scope of this thesis.

3 For robustness, the MI estimation is not set to be the supremum of the validation loss, but instead,
the supremum of a moving average along the epochs off the validation loss with a window size
of w which depends on the variability between epochs (w = 10 in this chapter)

60
Chapter 3. Revisiting Mutual Information Analysis: Multidimensionality, Neural

Estimation and Optimality Proofs

3.5.1 About the Network’s Architecture

The network’s input layer consists of a concatenation of both Z and L variables.
We have shown in Chapter 2 that the representation of Z is important and that one
should use the One-Hot Encoding (OHE) or a binary encoding of Z (unless other-
wise specified we used the OHE in this chapter). The output layer is a single neuron.
Other layers are not specified by the method and should be adapted to the underly-
ing problem (e.g. convolutional layers to counter jitter or traces misalignment).

For our experiments, we used a Convolutional Neural Network (CNN) where
a batch normalization layer is added after the first layer and dropout layers are in-
serted after each hidden layer in order to mitigate overfitting. The activation func-
tion is set to the Exponential Linear Unit (ELU) and the batch size to 1000. The
precise architecture is depicted in Appendix B. The validation dataset represents 20
percent of the full dataset.

3.5.2 On the Importance of the a Priori

The main message of Theorem 4 is that, to maximize the distinguishability of the cor-
rect hypothesis, one should use the leakage model φ to create the hypothesis vectors
Hk. In a classical side-channel scenario, with no other specific information, one may
often guess a Hamming weight leakage of the intermediate variables. This is justi-
fied by electronic arguments. However, it has been shown that bits may have differ-
ent leakage behaviours, such as leakage weighting or even sign inversions [CLH20].
To illustrate Theorem 4, 10k synthetic traces leaking a slightly modified version φ0 of
the Hamming weight have been generated. They consist of a single sample leaking
the Hamming weight of Zk∗ = Sbox(k∗ ⊕ P) but with a flipped sign for bit 0 so that:

φ0(z) = −z0 +
7

∑
i=1

zi (3.70)

with zi representing the i-th bit of z. Some Gaussian noise has been added to the
traces so that L = φ0(Z) +N (0, 1). Figure 3.1 shows the results of a NEMIA with
k∗ = 0, both with HW and φ0 as partition function. As predicted by Theorem 4, the
distinguishability score:

S f = I
(

f (Zk∗), L
)
−max

k ̸=k∗

[
I
(

f (Zk), L
)]

(3.71)

is higher for f = φ0 than for f = HW. Obviously, an attacker may not know φ0 and
an attack with the Hamming weight still succeeds in that case. However, this shows
that, if by any means, an adversary knows the particularity of bit 0 of such a target,
he can perform more efficient attacks.

Semi-Supervised Attacks. This opens the idea of semi-supervised attacks. One
of the main problems of profiling attacks is the portability [EG12b]. Indeed, dur-
ing the characterization phase, the adversary learns a perfect representation of the

3.5. Simulation Experiments 61

0 50 100 150 200 250
Hypothesis

0.0

0.2

0.4

0.6

0.8
In

fo
rm

at
io

n
(B

it)

HW = 0.30

0 = 0.69
f = 0
f = HW

FIGURE 3.1: I
(

f (Zk), L
)

in terms of k, with k∗ = 0

leakage model which may overfit on the particular target which is profiled. It has
been shown that portability to other targets is not trivial. Therefore NEMIA could
be turned into a semi-supervised attack where the purpose of the characterization
phase is only to learn general leakage characteristics, such as the sign or weighting
of each bit, and use them as an improved a priori for a NEMIA. Since NEMIA is ag-
nostic towards bijective errors in the leakage model estimation, it has a better chance
of being portable on many other targets similar to the one used for profiling.

3.5.3 The Potential of Multidimensionality

One of the main advantages of NEMIA is its potential to exploit at the same time,
multiple leakage sources. It is possible that multiple intermediate variables leak
information on the key and each particular variable may leak multiple times in the
traces. This section aims at showing how NEMIA could exploit all these leakage
sources as well as to compare it with other state of the art attacks.

Traces Generation

To this aim, a dataset of 100k synthetic traces have again been generated. These
traces represent the leakage of an AES that both leaks Ak∗ = HW(Sbox[k∗ ⊕ P])
and Bk∗ = HW(Sbox[k∗ ⊕ P]⊕ (k∗ ⊕ P)). One could imagine that the bus leaks the
Hamming weight of the S-box data and that the update of the state register leaks the
Hamming distance with its precedent value (e.g. [Mor+08]).

One of the strength of using deep learning in an unsupervised attack is the ab-
sence of need for preprocessing techniques. To highlight this fact we also added 90 %
of uninformative samples as well as some misalignment in the traces following the
shifting deformation procedure introduced in [CDP17] which simulates a random
delay effect of maximal amplitude T by shifting each trace by a random number
uniformally drawn between 0 and T. The procedure for the trace generation is de-
picted in algorithm 2.

62
Chapter 3. Revisiting Mutual Information Analysis: Multidimensionality, Neural

Estimation and Optimality Proofs

Algorithm 2: Generate Traces

Output: L, a (100k, 1010) array
Output: P, a (100k array
P← Draw 100k plaintexts uniformly from J0, 255K
A← HW(Sbox[P⊕ k∗])
B← HW(Sbox[k∗ ⊕ P]⊕ (k∗ ⊕ P))
S← Draw 1010 samples from a GaussianN (0, 102) // Generate a

baseline shape

L← Repeat S 100k times to form a (100k, 1010) array
for 1 ≤ i ≤ 100k do

for 1 ≤ j ≤ 50 // Add leakage one every 10 samples
do

L[i, 10 ∗ j]← L[i, 10 ∗ j] + A[i]
L[i, 10 ∗ j + 500]← L[i, 10 ∗ j + 500] + B[i]

end
end
R← Draw an array (100k, 1010) of random number from a Gaussian
N (0, 202)

L← L + R // Add some noise
for 1 ≤ i ≤ 100k do

sh← Draw a random integer uniformly from J0, 10K
L[i]← Roll(L[i], sh) // Apply the jitter (Roll shift the array by

sh)

end
return L, P

3.5. Simulation Experiments 63

Compared Strategies

We used the generated dataset to compute and compare guessing entropies for the
following attack strategies:

1. A classical CPA [BCO04] with a Hamming weight model.

2. A classical MIA with a Hamming weight model computing the MI with the
histogram method described in [Bat+11] with 9 bins.

3. NEMIAPartial , only considering the Hamming weight leakage (Ak) to construct
the hypothesis vectors Hk = Ak:

4. NEMIAFull , considering both leakages (Ak and Bk) to construct the hypothesis
vectors Hk = [Ak, Bk].

5. The Differential Deep Learning Analysis (DDLA) introduced in [Tim19]. It is
sound to compare NEMIA to DDLA since both methods use deep learning
with an unsupervised approach. It builds 256 classifiers, one for each key hy-
pothesis, and uses a metric (we used the accuracy as suggested in [Tim19]) as
a distinguisher. Note that a partition function also has to be applied to the in-
termediate variables but its optimal choice has not been discussed in [Tim19].
We use the Hamming weight function in this experiment.

6. A classical deep learning supervised attack [MPP16], denoted DL-supervised,
where a network is train to classify amoung the 256 classes. The total number
of traces is divided into 80% for training and 20% for the actual attack. The
architechture of the network is depicted in Appendix B.

7. The same deep learning attack but in a non-limited setup regarding the num-
ber of traces during profiling. In practice we have trained the network using
another dataset of 100k traces generated with algorithm 2. This attack is de-
noted DL-supervised∞.

Figure 3.2 shows the evolution of the average rank of k∗ for each attack. Each
point represents the average over 100 attacks computed with traces randomly drawn
from the 100k traces dataset. It appears that for low numbers of traces, CPA performs
the best amoung the unsupervised attacks but this is not very meaningful since at-
tacks with such guessing entropies (greater than 20 on a single key byte) are not
really exploitable for a full key recovery. Deep learning attacks behave more like if
they had a threshold: after a certain number of traces, one can observe a quick drop
in their guessing entropies.

As predicted by the theory, NEMIAFull converges faster towards a ranking of 0
than NEMIAPartial , and both converge faster than CPA. NEMIAPartial outperforms
DDLA and also the supervised DL attack with a restricted number of traces for pro-
filing. This may seem counter-intuitive but in this case we argue that the learning

64
Chapter 3. Revisiting Mutual Information Analysis: Multidimensionality, Neural

Estimation and Optimality Proofs

2000 4000 6000 8000 10000
Number of traces

0

20

40

60

80

100

120

140

Av
er

ag
e

ra
nk

 o
f k

*

CPA
MIA
DDLA
DL-Supervised
DL-Supervised
NEMIAPartial

NEMIAFull

FIGURE 3.2: Guessing entropies for the considered attacks

problem is simpler for NEMIA since it has to deal with 9 different classes instead
of 256 for the DL model. This may result into succesfull profiling with less traces.
In this case, the application of the partition function is only beneficial and does not
induce information loss since the true leakage model is known.

To the best of our knowledge, classical MI-based attacks always performed worse
than CPA in the literature, when considering the Hamming weight model, which is
again confirmed by our results. This experiment shows that in a low-information
scenario (noisy traces with jitter), NEMIA may be worth considering among the
other unsupervised attacks.

3.5.4 Empirical Validation of Theorem 5

Theorem 5 may seem very counterintuitive since it basically states that: when shares
of a Boolean masking leak in a Hamming weight model, one has:

I
(
HW(Zk∗), L

)
= I

(
Zk∗ , L

)
(3.72)

which is surprising since HW is highly non-injective and should at first glance, de-
crease the information. Corollary 2 says that this is even true when multiple samples
leak a noised version of the Hamming weight of the shares. To verify this claim, 100k
synthetic traces have been generated considering the following leakage:

L =
[
HW(Zk∗ ⊕M) + N1, . . . , HW(Zk∗ ⊕M) + N10,

HW(M) + N11, . . . , HW(M) + N20
] (3.73)

with Zk∗ = Sbox(k∗ ⊕ P), Ni = N (0, 1) and M being uniformly distributed in
Z/256Z.

Figure 3.3a shows the evolution of the loss function for both the HW and the
identity function for the correct key hypothesis. As predicted, both converge to-
wards the same value which confirms experimentally that the application of the HW

3.6. A practical Case: Attack on ASCAD 65

0 200 400 600 800 1000
Epoch

0.2

0.0

0.2

0.4
Bi

ts

f = Id
f = HW

(A) First order masking (σ = 1)

0 200 400 600 800 1000
Epoch

0.0

0.2

0.4

0.6

Bi
ts

f = Id
f = HW

(B) Second order masking (σ = 0.5)

FIGURE 3.3: Comparison of I
(
Zk∗ , L

)
and I

(
HW(Zk∗), L

)
on

masked synthetic traces

does not alter information. The HW function is even doing a little better which can
be explained with practical machine learning considerations. Indeed, the informa-
tion being constant, it is easier for the network to learn with a 9-classes variable than
with a 256 classes variable (note that in this experiment, id(Zk∗) has been encoded in
binary rather than in OHE, because it produced slightly better results). Also, since
overfitting was not really a problem in this experiment, the dropout parameter has
been set to p = 0.1.

Figure 3.3b shows the result of the same experiment performed on a second-
order masking, with three shares and 10 leakage samples for each. Noise has been
a bit decreased (σ = 0.5 instead of 1) to keep comparable level of information. This
result confirms that Theorem 5 is generalizable to higher-order masking, as shown
in section A.4, and that MINE is able to extract information even with a second-order
masking.

3.6 A practical Case: Attack on ASCAD

This section provides a real case experiment on the public dataset of ASCAD [Ben+18].
We only considered the training dataset composed of 50k traces composed of 700
samples focusing on the processing of the third byte (the first two are not masked)
of the masked state Sbox(k∗[3] ⊕ P[3]) ⊕ r[3], with r being the mask variable and
with a fixed key k∗[3].

Since it is a masked implementation, the test described in remark 5 has first
been conducted. Results are presented in Figure 3.4a. I

(
Zk∗ , L

)
is more than four

times greater than I
(
HW(Zk∗), L

)
which indicates that the underlying leakage of

the shares is far from a pure Hamming weight model. In parallel to this, authors
in [Tim19] applied the DDLA strategy which also requires a partition function and
they reported that, for the ASCAD database, only keeping the value of the Least Sig-
nificant Bit (LSB) produced better results than the Hamming weight without giving
further explanations.

66
Chapter 3. Revisiting Mutual Information Analysis: Multidimensionality, Neural

Estimation and Optimality Proofs

0 100 200 300 400
Epoch

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

Bi
ts

×4

f = Id
f = LSB
f = HW

(A) I(f (Zk∗), L)

140 160 180 200 220 240
Sample

0.5

0.0

0.5

1.0

1.5

Re
gr

es
sio

n
co

ef
ici

en
t

bit 0
bit 1
bit 2
bit 3
bit 4
bit 5
bit 6
bit 7

(B) r[3]

500 520 540 560 580 600
Sample

0.5

0.0

0.5

1.0

Re
gr

es
sio

n
co

ef
ici

en
t

bit 0
bit 1
bit 2
bit 3
bit 4
bit 5
bit 6
bit 7

(C) Sbox(k∗[3]⊕ P[3])⊕ r[3]

FIGURE 3.4: Analysis of the ASCAD leakage model:
a) Test from remark 5 - b) & c) Coeficients of a linear regression on

the given variable

In a real attack scenario, an adversary mounting a NEMIA could obviously try
to use every single bit of the unmasked variable as partition function. But in order
to gain some intuition, and since the masks values are given in the database, we
first performed a linear regression on both shares, assuming bits leak independently
so that the actual leakage of share s is: ∑7

i=0 αisi + β. Figures 3.4b and 3.4c show
the evolution of the αi coefficients, on a leakage window for both shares. Since the
implementation is protected by a Boolean masking, a mono-bit leakage is exploitable
only if it is present on the same bit of both shares. Out of the 8 bits, bit 0 (LSB) is
clearly the one that leaks the most information since its coefficients are among the
greatest ones in both shares. Thus, we computed with MINE I(Zk∗ [0], L) where
Zk∗ [0] represents the LSB of Sbox(k∗[3] ⊕ P[3]). It returned 0.09 bit, which is two
times more than the information left with the Hamming weight (see Figure 3.4a).
This indicates that the LSB may be a good partition function since it is highly non-
injective and still keep a decent amount of information for the correct hypothesis. We
also tried with other bits but the information, while being non-zero, was significantly
lower. Even though attacks with the Hamming weight were successful, we decided
to use the LSB as partition function for the rest of our analysis. The attacks presented
in this section uses the whole 700 samples as input. We compared the following
attacks:

1. A classical second-order CPA [PRB09] with a Hamming weight model.

2. A second-order MIA with a LSB model computing the MI with the histogram
method described in [Bat+11] with 9 bins.

3. NEMIA with LSB as a partition function. The architechture of the network is
depicted in Appendix B.

4. The Differential Deep Learning Analysis (DDLA) using the accuracy as distin-
guisher and with LSB as partition function. The architechture of the network
is depicted in Appendix B.

3.6. A practical Case: Attack on ASCAD 67

0 5 10 15 20
Added noise (standard deviation)

0

25

50

75

100

125
Av

er
ag

e
ra

nk
 o

f k
*

Second order CPA
Second order MIA
DDLA
DL-Supervised
NEMIA

FIGURE 3.5: Guessing entropies for the considered attacks on
ASCAD with added noise

5. A deep learning supervised attack [MPP16], denoted DL-supervised, where a
network is train to classify among the 256 classes (we do not apply any par-
tition functions because it is not required in a supervised context). The total
number of traces is divided into 80% for training and 20% for the actual attack.
The architechture of the network is depicted in Appendix B.

Results. In order to evaluate the potential of NEMIA to exploit leakage even
in very low information context, the dataset has been artificially degraded adding
Gaussian noise N (0, σ2) to each sample. All the attacks have been performed with
σ going from 0 to 20, using the whole 50k traces. For each level of noise, the attacks
have been repeated 10 times (with different random sampling of the noise) in order
to compute the average rank of the correct hypothesis. Results are presented in
Figure 3.5. They confirm that NEMIA is able to succeed in situations where the
considered state of the art attacks would not.

As for the experiment in subsection 3.5.3, the DL-Supervised attack performs
worse than the unsupervised attack which is non-intuitive. However, an adversary
performing a supervised attack would likely have an unlimited amount of traces for
profiling which will give rise to the best attack in terms of attack traces. We lack
traces to compute the equivalent of DL-Supervised∞ for such noise level. It appears
that the application of the partition function (the LSB which only has two classes)
makes the training easier for the networks which explain why a DL model, with a
restricted number of traces for profiling, underperforms compared to the supervised
attacks. Obvioulsy the partition function could be applied even in the supervised
case (i.e. building a two classes classifier) but one would then loose the interest of
being in a supervised context where no assumption has to be done on the leakage
model.

68
Chapter 3. Revisiting Mutual Information Analysis: Multidimensionality, Neural

Estimation and Optimality Proofs

3.7 Conclusion and Perspectives

This chapter first proposes a clarification of the state of the art around the MIA.
It provides rigorous proofs whose goal is to derive the optimal MI-based attack
working with high-dimensional traces. Combined with recent breakthroughs on
neural MI estimation techniques, this allows to mount a new attack: the NEMIA,
which benefits from both the strength of deep learning and information theory. Be-
ing able to exploit at the same time multiple leakage sources, it pushes the amount
of effectively used information (depending on the strength of the attacker a priori)
closer to the actual existing information between traces and secret. Simulations
and real case experiments are presented to support the mathematical theory devel-
oped in this chapter. They also show that NEMIA outperforms classical uni/bi-
variate side-channel attacks and that this strategy may be worth to consider in low-
information/high-noise situations, where all (or a large part of) the available infor-
mation contained in traces need to be used to mount a successful attack.

Several lines of research emerge from this chapter. The mathematical analysis
could be further extended, especially in the context of masking, in order to develop
strategies for generic leakage model of the shares or for other masking schemes such
as arithmetic masking. On the practical side, integrating the latest optimization on
neural estimation techniques, as well as deep learning research on optimal networks
architecture and hyper-parameters would allow to mount more efficient attacks, tak-
ing as input larger portion of the traces, leading to better/easier attacks.

The two main difficulties of conducting a NEMIA in practice is the choice of the
partition function, which can be hard when the adversary has very low knowledge
on how the device leaks, and the time complexity of the attack since it requires 256
neural network trainings. The next chapter proposes a solution to tackle both prob-
lems at the same time.

69

Chapter 4

The EVIL Machine
Encode, Visualize and Interpret the Leakage

“Insanity is applying a singular
dimensional answer to a multi
dimensional experience."

David Ault

Unsupervised side-channel attacks allow extracting secret keys manipulated by crypto-
graphic primitives through leakages of their physical implementations. As opposed to su-
pervised attacks, they do not require a preliminary profiling of the target, constituting a
broader threat since they imply weaker assumptions on the adversary model. Their downside
is their requirement for some a priori knowledge on the leakage model of the device. On one
hand, stochastic attacks such as the Linear Regression Analysis (LRA) allow for a flexible
a priori, but are mostly limited to a univariate treatment of the traces. On the other hand,
model-based attacks require an explicit formulation of the leakage model but have been ex-
tended to multidimensional versions allowing to benefit from the potential of Deep Learning
(DL) techniques (see NEMIA in the preceding chapter). The EVIL Machine Attack (EMA),
introduced in this chapter, aims at taking the best of both worlds. Inspired by generative
adversarial networks, its architecture is able to recover a representation of the leakage model,
which is then turned into a key distinguisher allowing flexible a priori. In addition, state-of-
the-art DL techniques require 256 network trainings to conduct the attack. EMA requires
only one, scaling down the time complexity of such attacks by a considerable factor. Simu-
lations and real experiments show that EMA is applicable in cases where the adversary has
very low knowledge on the leakage model, while significantly reducing the required number
of traces compared to a classical LRA. Eventually, a generalization of EMA, able to deal with
masked implementation, is introduced.

70 Chapter 4. The EVIL Machine: Encode, Visualize and Interpret the Leakage

4.1 Introduction

4.1.1 Context

Side-Channel Analysis (SCA) is mainly divided into two categories: supervised and
unsupervised SCA and their utilization depends on the considered threat model. In
the first one, the adversary is supposed to be able to conduct a profiling step of the
target, most likely on a clone device, in which she learns the leakage model of the
intermediate variables and then adopts a maximum likelihood approach to recover
the secret key. This includes strategies such as Gaussian template attacks [CRR02] or
deep learning profiled attacks [MDP19]. If the model is perfectly learned during the
characterization phase, these attacks are known to be optimal from an information
theory point of view.

However, being able to conduct a sound profiling step is not always possible and
refers to a strong threat model for the adversary. Indeed, the latter one may not be
able to obtain a clone with full control on the device and even in cases where she
could, template portability issues [EG12a] may still stand in the way. In this case,
the adversary can “replace” the profiling of the target by its a priori on the leakage
model to mount what is called unsupervised SCA. Such an a priori usually comes
from physical assumptions and is central to unsupervised SCA. Indeed, as shown
in [WOS14], there does not exist a generic unsupervised strategy that would work
without requiring such an a priori. However, a priori is a very vague term that only
captures the fact that the adversary has to have some knowledge about the leakage
model for the attack to work. This knowledge can take many different forms.

In a first type of unsupervised SCA, known under the stochastic attacks, the a
priori takes the form of a parametric model. For example, the well-known Linear
Regression Analysis (LRA) [Dog+12] falls into this category. The advantage of such
attacks is their ability to work with weak a priori such as the only assumption that
the bits of the sensitive variable leak independently. This makes them robust and
applicable in a wide range of cases.

Another type of strategy, denoted the model-based attacks, requires the a priori
on the model to be expressed as an explicit function (a.k.a. the partition function in
Chapter 3). A famous example would be the classical Mutual Information Analysis
(MIA) [Gie+08]. Some attacks of this category have recently been extended in order
to use deep learning techniques (NEMIA or [Tim19; ZLG21]) allowing to take ad-
vantage of the multidimensional treatment of the traces. It reduces at the same time
the need for preprocessing with for example filtering or realignment techniques. The
preceding chapter showed that such attacks can exploit a larger part of the informa-
tion contained in the traces and may outperform state-of-the-art stochastic attacks.
However, they suffer from two major drawbacks:

• The choice of the partition function which is closely related to the leakage
model a priori. Indeed, each bit of the intermediate variable can have very
different leakage behavior (especially when it comes to Electro-Magnetic (EM)

4.2. Learning a Leakage Model Representation 71

measurements) and even sign inversions of their coefficients [CLH20]. In these
cases, a classical Hamming weight a priori may lead to unsuccessful attacks
where an LRA would work.

• The time complexity of the attack which requires as many network trainings
as there are key hypotheses (which means 256 trainings when attacking a key
byte). If the adversary wants to test multiple a priori, this issue is then ampli-
fied which leads to complex or even unpractical attacks for highly noisy target
requiring a lot of traces and therefore long trainings.

4.1.2 Contributions

This chapter presents a new unsupervised strategy, denoted the EVIL Machine At-
tack (EMA), which allows to use a flexible a priori (as in the stochastic attack) while
still being able to exploit the power of deep learning. We show that it only requires
one network training whatever the number of key hypotheses. Therefore, EMA
overcomes the two main issues of unsupervised deep learning attacks.

The architecture of the EVIL machine is presented in section 4.2. It is a Genera-
tive Adversarial Network (GAN) like structure whose goal is to derive the leakage
model of the target under a key assumption. The actual attack and how the number
of network training is reduced to only one is described in section 4.3. Results on syn-
thetic and real traces are also presented in this section. Eventually, section 4.4 gives
an introduction to a higher-order version of the attack, when dealing with masked
implementation.

4.2 Learning a Leakage Model Representation

As shown in chapter 3, one of the main difficulties of the model-based SCA is to
have a sound representation of the leakage model to use it as a partition function.
The original idea of this work is to transfer the task of finding such a representation
to a neural network without having to use any a priori. This representation is con-
ditioned by a key assumption otherwise it would provide an a priori free strategy
contradicting [WOS14]. So to ease the reading of the chapter, the correct key is first
assumed to be known in this section. However, section 4.3 shows how such a tool
can be turned into an actual unsupervised attack.

4.2.1 Notations and SCA framework

We recall here the SCA notations used in this chapter. In order to gain information
on the secret key the adversary targets the manipulation of a sensitive variable Z ∈
Z = Fn

2 , for a given n ∈ N. This variable is supposed to functionally depends on
a public variable X ∈ X = Fm

2 , for a given m ∈ N, and a secret key k∗ ∈ K = Fm
2

through the relation: Z = g(X, k∗) where g : X × K → Z is a known function

72 Chapter 4. The EVIL Machine: Encode, Visualize and Interpret the Leakage

depending on the underlying cryptographic algorithm. If an hypothesis k is made
on the secret key, one can define Zk = g(X, k) such that Z = Zk∗ .

For a fixed k we denote by gk the g(·, k) function. All the gk are supposed to be
bijective in this chapter of reciprocal g−1

k (for example, in the classical first round AES
case one would have gk(X) = SBOX[X ⊕ k] of reciprocal g−1

k (Z) = SBOX−1[Z ⊕ k].
Eventually, traces L leaking information about Z through a leakage model φ can be
expressed as L = φ(Z) + E where E represent an independent noise variable.

4.2.2 Building the Network’s Architecture

Classical Mutual Information (MI) attacks rank the key hypotheses with the follow-
ing distinguisher:

D(k) = I
(

f (Zk), L
)

(4.1)

where I(X, Y) stands for the MI between X and Y and f is the partition function
transforming the guessed intermediate variable. The starting point of the reasoning
behind the EVIL machine is the Theorem 4 (the main theoretical result of the Chap-
ter 3) which states that the leakage model φ belong to the set of optimal partition
functions as recalled hereafter:

Theorem 1. (Leakage model optimality)

φ ∈ Fopt = arg max
f :Z→Rp

{
I
(

f (Zk∗), L
)
−max

k ̸=k∗

[
I
(

f (Zk), L
)]}

(4.2)

Note that traces can be multidimensional. Therefore the output domain of φ is Rp

where p can be any positive integer.

Our goal is to derive from this theorem a neural network architecture able to pro-
duce an encoding function E : Z → R of the leakage model φ. The main challenge
is to define the network’s objective function. Optimally, E should carry the same
information as φ and therefore be a bijection of φ encoding it into one dimension1.
Combined with Equation 4.2, this property could be derived as an objective for E.
Indeed, since bijective transformations do not affect the MI:

E ∈ B(φ) =⇒ E ∈ Fopt (4.3)

where B(φ) stands for the set of all bijections of φ. The reciprocal of Equation 4.3 is
not formally proven even though we conjecture so. Thus, we make the hypothesis
here that a function belonging to Fopt would give a valuable representation of the
leakage model and try to find such a function thanks to deep learning tools. A naive

1 One could design an encoding function encoding the leakage model in more than one dimension.
However, preliminary analyses did not show any real value of increasing the output dimension.
In addition, since one-dimensional data are easier to interpret and better suited for the attack
phase presented in section 4.3, we only focus on functions with a one-dimensional output in this
work.

4.2. Learning a Leakage Model Representation 73

Encoder

E

MINE

A

MINE

B

L

Traces
Objective A

Objective B

Objective E

FIGURE 4.1: The EVIL Machine Architecture

idea would be to use the difference of the MI term in Equation 4.2 as an objective
function for E. However, such an expression can hardly be used in a deep learning
framework.

The first problem is the presence of the max function which is not differentiable.
This problem can be solved using Remark 4 which states that the theorem is still
valid if one fixes k̄ ∈ K \ k∗. So ∀k̄ ∈ K \ k∗:

φ ∈ Fopt = arg max
f :Z→Rp

{
I
(

f (Zk∗), L
)
− I

(
f (Zk̄), L

)}
(4.4)

The second problem is the computation of the MI terms which are known to be hard,
especially for high-dimensional traces. However, we showed in Chapter 2 that these
MI terms could be estimated using deep learning tool and more precisely a Mutual
Information Neural Estimator (MINE) [Bel+18a]. Therefore such a tools could be
incorporated into the EVIL machine architecture in order to compute the objective
function of the encoder E. In this chapter it is enough to see MINE as a black-box
deep learning method that defines a network, taking as input the traces and label
variable, with an objective function converging toward the MI between these two
variables. Further details on the theory and implementation in an SCA context can
be found in Chapter 2.

Architecture. The architecture of the EVIL Machine is depicted in Figure 4.1. It
is composed of three neural networks interacting with each other:

• An encoder E which takes as input a label (for instance, the value of Zk∗ or Zk̄)
and outputs a value in R (its final layer is a single neuron).

• MINE A which objective function produces an estimation Î(E(Zk∗), L) of
I(E(Zk∗), L).

74 Chapter 4. The EVIL Machine: Encode, Visualize and Interpret the Leakage

• MINE B which objective function produces an estimation Î(E(Zk̄), L) of
I(E(Zk̄), L), where k̄ is fixed to any value in K \ k∗.

The encoder E is applied on both Zk∗ and Zk̄ where k̄ can be fixed to any value except
k∗. Then E(Zk∗) and E(Zk̄) are both concatenated with the traces (each trace is con-
catenated with its associated encoded label) and provided to the MINE networks
which estimate both MI terms of Equation 4.4. Their difference is used as an ob-
jective function for the encoder. If all the objective functions are correctly optimized
(with usual deep learning techniques), E should converge toward an element ofFopt,
potentially close to a bijection of φ. In theory, on entire execution of MINE A and
B should be run after each epoch of E which would be very long. So we decided to
mimic the idea found in the field of GANs [Goo+14] and run successively one epoch
of E and one epoch of A and B (in parallel) hoping that this strategy accelerates the
convergence without worsening the results.

4.2.3 Simulation Experiments

We have implemented the generic architecture described in the previous section us-
ing the TensorFlow library [al.15]. The precise architecture of each network is de-
picted in Appendix C. In order to validate the methodology and gain intuition
about the network behavior, this section provides simulation experiments on syn-
thetic traces generated with different leakage models. The idea is to observe the
evolution of the output of E over the training epochs and to compare it to the known
underlying leakage model to assess if that is converging toward a bijection of φ.

Hamming Weight Leakage Model

For the first experiment, we have generated the most basic side-channel traces com-
posed of one sample leaking a noised version of the Hamming weight of Zk∗ =

SBOX[P ⊕ k∗], with P and k∗ respectively representing a plaintext and a key byte.
The leakage traces can then be expressed as:

L = HW(Zk∗) +N (0, 1) (4.5)

with N (0, 1) representing the standard normal distribution. The evolution of the
output of E is depicted in Figure 4.2. For each epoch, we plot E(z) for all z ∈ Z .
Each of these 256 values are colored according to their Hamming weight. The first
observation is that the encoder is learning to cluster the different values of Z ac-
cording to their Hamming weight. It thus correctly learns a bijection of the true
leakage model. It should be noted that E clusters the Hamming weight classes in
order which was not guaranteed by the mathematical analysis. The latter result be-
ing robust over multiple simulations, we conjectured that such a representation is
“simpler” in a way and naturally emerges from the gradient descent algorithm.

4.2. Learning a Leakage Model Representation 75

FIGURE 4.2: Evolution of the encoder’s output: E(z), ∀z ∈ Z versus
epochs (Hamming weight leakage model).

FIGURE 4.3: Evolution of the encoder’s output: E(z), ∀z ∈ Z versus
epochs (linear leakage model).

Linear Leakage Model

To assess the EVIL machine capabilities on a more generic leakage model, we re-
peated the previous experiment emulating a linear leakage with respect to the bits
of the sensitive variable. In this case, the leakage traces can then be expressed as:

L = φ0(Zk∗) +N (0, 1) (4.6)

with φ0 = ∑8
1 αibi where bi represents the projection on the ith bit and αi a random

coefficient uniformly drawn from [−1, 1]. Results are depicted in Figure 4.3. Each
point is colored according to the value of φ0(z). The encoder is again converging
towards a meaningful representation of the leakage model. Indeed, the figure looks
like a uniform rainbow which highlights the fact that the relation between E(Zk∗)

and φ0(Zk∗) is quasi-linear.

76 Chapter 4. The EVIL Machine: Encode, Visualize and Interpret the Leakage

(A) Colored according to HW(Z+
k∗) (B) Colored according to HW(Z−k∗)

FIGURE 4.4: Evolution of the encoder’s output: E(z), ∀z ∈ Z versus
epochs (multidimensional leakage model).

Multidimensional Leakage Model

One of the main advantages of the EVIL machine is its ability to take large parts of
the trace as input and to compress int one neuron multiple leakage sources. To high-
light this multidimensional capability we design a simple example where the leak-
age is split on two samples. Each sample leaks respectively the Hamming weight
of Z+

k∗ and Z−k∗ which represent the four most and least significant bits of Zk∗ . The
leakage traces can then be expressed as:

L = [HW(Z+
k∗) +N (0, 1), HW(Z−k∗) +N (0, 1)] (4.7)

Results are presented in Figure 4.4. The two plots are the same but colored dif-
ferently. Figure 4.4a is colored according to HW(Z+

k∗) while Figure 4.4b is colored
according to HW(Z−k∗). It appears that the encoder uses the macro structure (the
five big branches) to encode the information on Z+

k∗ and the micro structure (the
position in the branch) to encode the information on Z−k∗ . Therefore, the encoder
successfully learned a compressed version of a multidimensional leakage model. In
this case it could almost be expressed as linear combination of both leakage sources:
E(z) ≈ αHW(Z+

k∗) + βHW(Z−k∗), for some α, β ∈ R.

Non-Linear Leakage Model

Finally, to show that the EVIL machine is not limited to linear leakage models, we
present an experiment with a non-linear model φNL. We used a linear leakage model
φ0 on the 7 MSBs of Zk∗ where the sign of the leakage is determined by the value of
the LSB: φNL = (−1)b8 ∗ φ0 with φ0 = ∑7

1 αibi, where αi are random coefficient
uniformly drawn from [0, 1]. The leakage traces can then be expressed as:

L = φNL(Zk∗) +N (0, 1) (4.8)

Results are depicted in Figure 4.5. Each point is colored according to the value of
φ0(z). In this case, it appears that the encoder learned a representation of the leakage

4.3. The EVIL Machine Attack 77

FIGURE 4.5: Evolution of the encoder’s output: E(z), ∀z ∈ Z versus
epochs (non-linear leakage model).

model φNL composed of two symmetric branches, each one encoding the linear part
of the model φ0 but in the opposite direction due to the sign inversion related to the
value of the LSB of Zk∗ . This confirms that the EVIL machine can still learn sound
representations of the leakage even if the latter is non-linear.

This section has shown that the EVIL machine could learn a sound representation
of the leakage model. Such a tool can be useful in itself, for example, for designers
to gain intuition on the leakage of their devices. It does require the knowledge of
the key to work, however, it is possible to use key guesses as explained in the next
section which aims at turning this tool into an unsupervised attack.

4.3 The EVIL Machine Attack

The EVIL machine presented in the previous section produces a representation of
the leakage model assuming that the correct key is known. However, making hy-
potheses on the key allows to convert this tool into a key recovery strategy, denoted
the EVIL Machine Attack (EMA). For any k ∈ K one can run an iteration of the
EVIL machine producing a representation Ek of the leakage model φk representing
the leakage model under the assumption that the correct key is k. All of these mod-
els φk mathematically exist. They are functions representing a hypothetical leakage
model that would be the real one if the processed variable was the wrongly guessed
Zk = g(X, k) instead of Zk∗ . Thus, they satisfy the following property:

φk(Zk) = φk∗(Zk∗) (4.9)

They are therefore, very likely, complicated functions (with a high algebraic de-
gree) due to cryptographic properties of the gk functions2 linking Zk and Zk∗ together

2 Cryptographic algorithms should embed highly non-linear transformations to avoid algebraic
attacks and we assume here that the targeted sensitive variable has undergone this non-linear
transformation, for example, Z = SBOX(X⊕ k∗).

78 Chapter 4. The EVIL Machine: Encode, Visualize and Interpret the Leakage

(A) Correct key (B) Wrong key

FIGURE 4.6: Evolution of the encoders’ output for the correct and a
wrong key guess.

by the relation: Zk = gk(g−1
k∗ (Zk∗)). The main idea of EMA is then to choose among

all the possible representations of the leakage model Ek, the simplest one, imple-
menting a form of Occam’s razor principle. This choosing step involves physical
knowledge on what a leakage model should look like and this is where the adver-
sary’s a priori knowledge comes into play.

To illustrate the point, we repeated the Hamming weight leakage model exper-
iment of section 4.2 but with a wrong key guess k0. The evolution of Ek0 and Ek∗ ,
the one obtained with the correct key guess, are plotted in Figure 4.6 in order to
compare them. One can visually note the difference: Ek∗ is related to the Hamming
weight function while Ek̄ seems unstructured and close to a random output. Such
property can be used to define a distinguisher between key guesses as explained in
subsection 4.3.2.

4.3.1 One Training to Rule them All

Obtaining all the Ek can be done by running |K| times the EVIL machine with differ-
ent key assumptions. However, this may be very long, especially for low-information
scenarios requiring a lot of traces which are precisely the use cases considered in this
work. This section shows that the adversary can in fact make a first guess k0, which
may be wrong, compute Ek0 , and mathematically derive Ek for any k ∈ K from Ek0 .
This method allows running only once the EVIL machine to rule all cases.

As explained in the previous section Ek0 gives a representation of φk0 , the leakage
model if the correct key was k0. For any k ∈ K Equation 4.9 gives:

φk(Zk) = φk∗(Zk∗) (4.10)

which is also true for k0:
φk0(Zk0) = φk∗(Zk∗) (4.11)

4.3. The EVIL Machine Attack 79

So one can deduce from Equations 4.10 and 4.11 that:

φk(Zk) = φk0(Zk0)

φk
(

gk0(g−1
k (Zk))

)
= φk0

(
gk0(g−1

k (Zk0))
)

φk(Zk0) = φk0

(
gk0(g−1

k (Zk0))
) (4.12)

which completely define φk from φk0 . Since Ek stands for a representation of φk, one
has by analogy:

Ek(Zk0) = Ek0

(
gk0(g−1

k (Zk0))
)

(4.13)

And since Zk0 and Z live in the same set Z , one can simplify the previous equation:

Ek(Z) = Ek0

(
gk0(g−1

k (Z))
)

(4.14)

So one can quickly and easily deduce any Ek including Ek∗ from the only knowledge
of Ek0 with k0 arbitrary chosen by the adversary. This reduces by a factor |K| (when
targeting a key byte, |K| = 256) the time complexity of the attack.

Example. In the AES case with gk(P) = SBOX[P⊕ k] where P represents a plaintext byte,
one can deduce Ek from Ek0 with the following formula:

Ek(Z) = Ek0

(
SBOX

[
SBOX−1[Z⊕ k]⊕ k0

])
(4.15)

4.3.2 About the Distinguisher

In a real attack scenario, one does not know the true leakage model so it is impos-
sible to use the visualization technique used in the previous section (where each
sample is colored according to the true leakage model) to discriminate between the
key candidates. Therefore, one would need a distinguisher D scoring each leakage
model representation Ek to rank the key hypotheses. The intuition behind EMA is
that D should give a score reflecting the plausibility of the leakage representation
Ek according to physical a priori on the leakage model and on which properties the
latter should follow.

Assumption on the Degree of Ek∗

We herein give a proposal of distinguisher for the common a priori stating that the
leakage model φk∗ should be a function from Z = F2n → Rp such that the p co-
ordinate functions have a low algebraic degree (bonded by a degree d). This is
the multivariate version of assumption 3 (Leakage Interpolation Degree) followed
in [Dog+12] for the setup of the well-known LRA. For example, a degree d = 1 tra-
duces the fact that, for each time sample, all the bits of the processed variable leak
independently. We propose to extend the assumption on the degree of φk∗ (precisely
of its coordinate functions) to the degree of its representation Ek∗ , produced by the
EVIL machine.

80 Chapter 4. The EVIL Machine: Encode, Visualize and Interpret the Leakage

Distinguisher

If this assumption is true, then one can perform a polynomial regression of order
d to find the polynomial pk of degree d minimizing the quadratic error ||Ek(Zk) −
pk(Zk)||2 for all k. As explained in [Dog+12], such a regression can be seen as a
linear regression by choosing an appropriate basis and is easily solvable using the
least square method. A measure of fitness such as the coefficient of determination
R2 is then used as a score for each key:

D(k) = 1− ||Ek(Zk)− pk(Zk)||2

var
(
Ek(Zk)

) (4.16)

Since the assumption on the degree of Ek is true only for k = k∗, the correct key
should have the highest score leading to a successful attack.

Intuition Behind the Assumption

The justification of the assumption on the degree of Ek∗ is empirical. Indeed two
functions in bijection do not necessarily have the same algebraic degree. However,
we observed in the experiments of section 4.2 that the encoder naturally converges
towards a “smooth” representation of the leakage model. Our intuition is that since
neural networks are composed of a succession of continuous functions it is easier
for it to map two values z1 and z2 that have a close leakage model (φk∗(z1) close to
φk∗(z2)), to close encoding values Ek∗(z1) and Ek∗(z2). Such continuous representa-
tion has more chance of preserving the degree. In addition, in Figure 4.4, it seems
that when dealing with multidimensional leakages, the encoder produces a linear
combination of the representation of univariate leakages. Such additive behavior
would also preserve the degree since by hypothesis all the coordinate functions are
of degree less or equal than d.

Experiments Supporting the Assumption

One may argue that the intuitions shared in the previous paragraph come from sim-
ple experiments and may not scale with high dimensional traces containing much
more leaking samples as well as uninformative samples. Therefore we designed
two experiments to assess the assumption in these harder cases. We have generated
10000 synthetic traces of dimension 1000 for both experiments. They contains 100
informative samples randomly distributed in the traces leaking information about
Z = Sbox[P⊕ k∗] where P represents a plaintext byte uniformly drawn from J0, 255K.
In the first experiments, a linear leakage model is assigned to each sample, thus, the
leakage L of each sample can be expressed as:

L = α0 +
8

∑
i=1

αi · biti(Z) +N (0, 1) (4.17)

4.3. The EVIL Machine Attack 81

(A) Linear leakages (B) Quadratic leakages

FIGURE 4.7: Evolution of the distinguisher D(k) versus epochs for
all the key candidates.

where biti(Z) stands for the ith bit of Z. The αi are random coefficient uniformly
drawn from [−1, 1]. These coefficients are redrawn for each leaking sample. The
second experiment emulates quadratic leakages (with no linear coefficients) such
that for each sample:

L = α0 +
8

∑
i=1

8

∑
j=i+1

αi,j · biti(Z) · bitj(Z) +N (0, 1) (4.18)

In both experiments, the 900 non-informative samples follow a normal distribution
N (0, 1). We ran the EVIL machine assuming k0 ̸= k∗ and derived all the Ek as
explained in subsection 4.3.1. Figure 4.7 reports the evolution of D(k) for each k
computed with linear and quadratic regression respectively for the first and second
experiments. In both cases, the coefficient of determination converges toward 1 for
the correct key. This means that after some epochs, Ek∗ can be perfectly regressed
by a linear/quadratic model. These two results support the assumption on the de-
gree of Ek∗ regarding the maximum degree of the coordinate function of the leakage
model φk∗ . In addition, this is not at all the case of Ek for k ̸= k∗ leading to a high
distinguishability between the correct and the wrong keys.

4.3.3 Attack Description

The steps required to perform the EMA are summarized hereafter.

1. Choose any k0 and run the EVIL machine for ne epochs with k0 as a key as-
sumption. This gives a representation E(e)

k0
for each epoch e.

2. Derive E(e)
k for all e and k using the formula:

E(e)
k (Zk0) = E(e)

k0

(
gk0(g−1

k (Zk0))
)

(4.19)

82 Chapter 4. The EVIL Machine: Encode, Visualize and Interpret the Leakage

3. Compute for all e and k the distinguishing score:

D(e)(k) = 1−
||E(e)

k (Zk)− pk(Zk)||2

var
(
E(e)

k (Zk)
) (4.20)

4. Derive a single score for each key:

D(k) = max
ns≤e≤ne

D(e)(k) (4.21)

5. Rank the keys according to their distinguishing score.

The ns and ne parameters are hyper-parameters set by the adversary. The purpose
of ns is to not take into account potential early fluctuation where the networks might
be not stable yet. This turned out to be useful for very noisy situations (for our
experiments, we used ns = 50 and ne = 100).

4.3.4 Experimental Results

EMA uses the classical LRA distinguisher on the encoder’s output whose purpose
is to encapsulate all the informative components of the traces. The classical LRA
computes the regression directly on the traces in a univariate way (selecting the
maximum score along all samples as a distinguisher). This section provides sim-
ulations and real case experiments aiming at comparing both attacks in order to
assess to what extent the deep learning step is valuable. Both attacks are unsuper-
vised and require very limited knowledge on the leakage model of the target. The
main advantage of EMA over LRA is the multidimensional treatment of the traces.
The latter offers the capability to potentially exploit multiple leakage sources at the
same time while reducing the need of preprocessing techniques thanks to the power
of DL techniques. For example, convolutional layers may handle desynchronized
traces [CDP17]. To confirm that these advantages translate into objective improve-
ments in terms of noise resilience or number of traces required, we present hereafter
two experiments.

Experiments on Synthetic traces

For the first experiment, we generated multidimensional synthetic traces subject to
desynchronization. These traces contains 20 informative samples, leaking informa-
tion about Z = Sbox[P ⊕ k∗] trough linear leakage models, with randomly chosen
coefficients, to which we added Gaussian noise with a standard σ. Traces contains
also 80 uninformative samples and are artificially desynchronized. Each trace is
shifted by a random number sh uniformly drawn from J0, 50K. The precise genera-
tion procedure is depicted in algorithm 3. We ran the classical LRA and the EMA
following the procedure explained in subsection 4.3.3 for each value of 0 ≤ σ ≤ 25.
Results are presented in Figure 4.8a. Each point represents the average rank of the

4.3. The EVIL Machine Attack 83

Algorithm 3: Generate Traces
Input: σ
Output: L, a (10k, 100) array
Output: P, a (10k) array
P← Draw 10k plaintext uniformly from J0, 255K
Z ← Sbox[P⊕ k∗]
L← Draw a (10k, 100) array from a Gaussian N (0, σ2)
R← Draw a (20, 8) array of random coefficients from U[−1, 1]

for 1 ≤ i ≤ 10k do
for 1 ≤ j ≤ 20 // Add leakage one every 5 samples
do

L[i, 5 ∗ j]← L[i, 5 ∗ j] + ∑8
l=1 R[j, l] · bitl(Z[i])

end
end
for 1 ≤ i ≤ 10k do

sh← Draw a random integer uniformly from J0, 50K
L[i]← Roll(L[i], sh) // Apply the jitter (Roll is a function

shifting the array by sh, in a looping way)

end
return L, P

correct key computed over 100 independent experiments realized with a given value
of σ. It appears that the EMA is way more resilient to the noise added to the traces
resulting in successful attacks where the LRA fails. We highlight the fact that with
such leakage models, (linear model with random coefficient from [−1, 1]) it would
be hard to run an effective model-based attack since it would require an explicit
model assumption.

Experiments on Real Traces

In order to validate our methodology on a real case scenario, we have acquired one
million AES traces from a cortex A7-based System-on-Chip (SoC) running a Linux
OS. The AES implementation comes from the OpenSSL library [The03]. We chose
to run the analysis on a very noisy SoC subject to desynchronization, thus, offering
an interesting case. Traces3 are composed of 1500 samples corresponding to the ex-
ecution of the first round Sbox. Guessing entropies of LRA and EMA are presented
in Figure 4.8b. Each point represents the average rank of the correct key computed
over 100 experiments in which traces are chosen randomly from the dataset. It ap-
pears that the EMA converges toward the correct key faster than the LRA ranking it
always at the first position with 40k traces where the LRA does not with 150k traces.

3 For reproducibility reasons and potential use in the SCA community, the dataset with the associ-
ated labels is accessible on this link: removed for blind reviews.

84 Chapter 4. The EVIL Machine: Encode, Visualize and Interpret the Leakage

0 10 20
0

50

100

Av
er

ag
e

k
* r

an
k LRA

EMA

(A) Synthetic traces

50000 100000
Number of Traces

0

50

100

Av
er

ag
e

k
*

ra
nk LRA

EMA

(B) Real traces (A7 based SoC)

FIGURE 4.8: Guessing entropies of EMA and LRA.

This confirms that the EMA may be worth considering in very noisy scenarios, offer-
ing an unsupervised deep learning-based attack requiring only one network training
and very little knowledge on the device leakage model.

4.4 Introduction to Higher-Order Generalization

One of the most widely used countermeasures to prevent instantaneous leakages
and mitigate first-order SCA is to mask the sensitive data using secret sharing tech-
niques [Cha+99]. The idea is to split each sensitive intermediate value z, into d
shares: (zi)1≤i≤d. The d − 1 shares z2, ..., zd are randomly chosen and the last one,
z1 is processed such that:

z1 = z ∗ z2 ∗ · · · ∗ zd (4.22)

for a group operation ∗ of Z . This led to the emergence of the so called higher-order
attacks which combine multiple samples from the same traces leaking information
from each share to deduce information on Z. The EVIL machine is, by nature, mul-
tidimensional and may therefore be extended to masked implementations. Indeed,
we have shown in Chapter 2 that MINE can automatically recombine samples to find
information in masked cases. It would therefore be possible to run straightforwardly
the EVIL machine on masked implementations. However, the main theoretical prob-
lem is that in masked case the leakage model cannot be expressed as a deterministic
function L = φ(Z) with some noise. Thus, there is no equivalent of Equation 4.2 for
masked cases. A natural question is then to ask towards what kind of representation
the encoder typically converge.

4.4.1 Encoder’s Output and Joint Moments

When dealing with masked implementations, the leakage variable is not separable
into a deterministic and a noise part anymore. Instead, traces correspond to real-
izations of a leakage variable L coming from a stochastic process S , Z S−→ L which
encapsulates the random choice of the masks and the leakage model of each share.

4.4. Introduction to Higher-Order Generalization 85

L follows a multivariate probability distribution which, as any distribution, is com-
pletely determined by the list of all its joint moments. First-order SCA exploit infor-
mation in the first-order moment: the leakage model being the mean per class:

φ(z) = E[L | Z = z] (4.23)

For a masked implementation the discriminating information, if it exists, is necessar-
ily hidden in higher-order joint moments since lower-order leakages are prevented
by masking. Therefore, the idea of higher-order attacks [PRB09; DDP13; Cri+22]
is to exploit the lowest-order4 centered joint moment containing information, thus
replacing Equation 4.23 by the joint moment per class. For a d-order masked imple-
mentation and (L1, . . . , Ld) representing one leakage sample for each share, such a
joint moment can be expressed as:

jmL(z) = E

[d

∏
i=1

(Li − µLi | Z = z)
]

(4.24)

where µLi stands for the expectation of Li. For example, the classical second-order
CPA [PRB09] combines samples with the centered product function which happens
to be the covariance, a.k.a. the second order joint moment.

Hypothesis on the Encoder’s Output

By analogy with the unmasked case where the encoder of the EVIL machine con-
verged towards a representation of φ (Equation 4.23) our hypothesis is that, for
masked implementations, the encoders will converge towards a representation of
jmL (Equation 4.24). Our intuition is that jmL(Z) is a sound way to encode Z to keep
information between jmL(Z) and L while limiting the information I

(
jmL(Zk̄), L

)
computed with a wrong key candidate k̄.

Experiment Supporting the Hypothesis

To validate this hypothesis, we present experiments on masked synthetic traces for
three different second-order masking schemes: Boolean, arithmetic and multiplica-
tive. The group operations are respectively the xor ⊕, the addition over Z/nZ +[n]
and the multiplication over the Galois field ⊗. The multiplication by m being re-
versible for m ̸= 0 the multiplicative mask has to be chosen in F∗2n . In addition, the
multiplicative scheme is biased since Z = 0 implies Z ⊗ m = 0 which induces a
first-order leakage. For each masking scheme, we have generated 50k traces con-
taining two samples representing the leakage of each share, Z1 and Z2, through a

4 Higher-order moments being harder to estimate due to noise amplification.

86 Chapter 4. The EVIL Machine: Encode, Visualize and Interpret the Leakage

(A) Boolean (B) Arithmetic

(C) Multiplicative

FIGURE 4.9: Evolution of the encoder’s output: E(z), ∀z ∈ Z on
masked synthetic traces (linear leakage model of the shares).

linear model. The leakage L can be expressed as:

L =

[8

∑
i=1

αibiti(Z1) +N (0, 1),
8

∑
i=1

βibiti(Z2) +N (0, 1)
]

(4.25)

where the αi and βi coefficients are uniformly drawn from [−1, 1]. We have run the
EVIL machine as explained in section 4.2 and present the result in Figure 4.9. For the
Boolean and arithmetic schemes, each point is colored according to the theoretical
covariance per class: cov(L | Z = z) which is computable knowing the αi and βi. It
appears that the encoder is converging towards a smooth representation of covari-
ance per class (the second-order joint moment), thus, supporting the hypothesis. For
the multiplicative scheme, it seems that the encoder learned to distinguish the class
Z = 0 from the others, confirming that it is focusing on lower-order leakages, if it
exists, in priority.

About the Distinguisher

Stochastic attacks (with flexible a priori) have been extended to masked implemen-
tations [DDP13]. Authors presents a higher-order version of the LRA, the HO-LRA,
by proposing to perform the LRA on the estimated joint moment per class instead
of the raw traces. In Chapter 5, we highlight some limitations of the previous works
and propose a new strategy which directly regresses the leakage model of each share
with the Joint Moment Regression (JMR) strategy. Both attacks use an estimation of
the jmL function calculated under a key assumption as input to the method. There-
fore we argue that these attacks could be conducted on the output of the encoders

4.4. Introduction to Higher-Order Generalization 87

of the EVIL machine. Indeed, as suggested in the previous section, Ek∗(Z) could be
seen as a representation of the jmL function under the correct key assumption. The
trick introduced in subsection 4.3.1 still apply and all the Ek can be derived from
only one network training.

Again, the main advantage of the EMA is that these representations benefit from
all the deep learning techniques. In addition, in classical d-variate attacks, the ad-
versary should select the d samples from the traces to combine and perform the joint
moment estimation. In a complete black-box setting, with no information on the
point of interests, the latter has to enumerate all the possible d-(upplet) samples and
select the best one which can be very long and scale exponentially with d. The EMA
does not suffer from the same problem since the whole (or at least a big part of)
traces can be fed to the network.

4.4.2 A Practical Case on ASCAD

As a proof of concept of the higher-order version of the EMA, this section presents
an attack on the public ASCAD dataset [Ben+18]. It is a common set of side-channel
traces, introduced for research purposes on deep learning-based side-channel at-
tacks. The targeted implementation is a software AES, protected with a first-order
Boolean masking, running on an 8-bit ATMega8515 board. Since JMR and the HO-
LRA are equivalent for the second-order Boolean case, as shown in the next chapter,
we adopt the HO-LRA strategy which is simpler. It just consists in conducting an
LRA on the estimated covariance or on Ek for the EMA case. It is therefore the ex-
act same attack as for the first-order case described in subsection 4.3.3. We ran the
EMA on 10k of the training traces which consist of 700 samples targeting the first
Sbox. Results are presented in Figure 4.10a. The attack is successful with a clear
distinguishability for the correct key.

In order to identify which features of the traces has been exploited by the EVIL
machine (with the correct key assumption) we plotted the evolution of the encoder’s
output in Figure 4.10b and colored each point of according to the value of the LSB.
Indeed, we showed in Chapter 3 that the higher-order leakage of ASCAD traces is
mostly related to the value of the LSB of Z. It appears that after 200 epochs (when the
attack begins to work) the encoder actually learned to split the two classes related to
the LSB illustrating the interpretability of the encoder’s output.

To give an order of magnitude, running the full attack (with the 500 epochs) took
approximately 5 minutes on a workstation embedding a Tesla V100.

88 Chapter 4. The EVIL Machine: Encode, Visualize and Interpret the Leakage

(A) Evolution of the distinguisher D(k) versus
epochs for all the key candidates.

(B) Evolution of the encoder’s output:
E(z), ∀z ∈ Z colored according to the LSB of z.

FIGURE 4.10: Attack results on ASCAD with 10k traces.

4.5 Conclusion

This chapter presents a new unsupervised side-channel key recovery strategy de-
noted the EVIL Machine Attack (EMA). It is built on a GAN-like structure that aims
at converging towards a representation of the leakage model of the device under a
key assumption. Occam’s razor’s principle allows to derive from this tool an actual
attack enabling the utilization of deep learning’s potential while requiring very few
knowledge on the leakage model. For example, a simple linear leakage assumption
is enough as in a classical LRA. It requires only one network training where classi-
cal unsupervised deep learning strategies require as many trainings as key guesses
(256 when targeting a key byte). Thus EMA reduces significantly the time com-
plexity while being more flexible in the leakage model a priori than unsupervised
DL based attack. This may lower the barrier for conducting such kind of attacks in
practice. Simulations and real cases experiments suggest that the additional infor-
mation brought by the multidimensional treatment of traces is beneficial and trans-
lates into more data-efficient attacks than the classical LRA. For example, it lower by
more than 400% the number of required traces in the real case scenario targeting the
openSLL implementation of the AES running on a SoC.

Eventually, the last part of the chapter is dedicated to an introduction of higher-
order generalizations of the strategy, replacing the leakage model estimation with
the joint moment estimation. It raises the question of how to conduct an optimal
attack considering that the adversary is granted an estimation of the joint moments
per class of the leakage. The following chapter precisely tackle this question offering
a new unsupervised strategy working as a stand alone attack but which combines
nicely with EMA to serve as a distinguisher in the higher-order case.

89

Chapter 5

Fit the Joint Moments
How to Attack any Masking Scheme

“No one can wear a mask for very long"

Seneca the Younger

One of the main countermeasure against SCA is to use secret sharing technique to mask
the sensitive variables. Supervised attack can straightforwardly be extended to masked imple-
mentations even if the profiling phase may require more traces. However, defeating masking
is less trivial when it comes to unsupervised attacks. While classical strategies such as CPA
or LRA have been extended to masked implementations, we show in this chapter that these
extensions only hold for Boolean and arithmetic schemes. Therefore, we propose a new unsu-
pervised strategy, the Joint Moments Regression (JMR), able to defeat any masking schemes
(multiplicative, affine, polynomial, inner product...), which are gaining popularity in real
implementations. The starting point of JMR is an estimation of the joint moment per class.
In this chapter this estimation is assumed to be computed in a classical way combining sam-
ples from traces. However as shown in the previous chapter the EVIL machine could be used
to replace this joint moment estimation and benefits from all the deep learning’s advantage.
The main idea behind JMR is to directly regress the leakage model of the shares by fitting
a system based on higher-order joint moments conditions. We show that this idea can be
seen as part of a more general framework known as the Generalized Method of Moments
(GMM). This offers mathematical foundations on which we rely to derive optimizations of
JMR. Simulations results confirm the interest of JMR over state-of-the-art attacks, even in
the case of Boolean and arithmetic masking. Eventually, we apply this strategy to real traces
and provide, to the best of our knowledge, the first unsupervised attack on the protected AES
implementation proposed by the ANSSI for SCA research, which embeds an affine masking
and shuffling counter-measures.

90 Chapter 5. Fit the Joint Moments: How to Attack any Masking Scheme

5.1 Introduction

5.1.1 Context

To prevent instantaneous leakage of the sensitive variables, a classical strategy is to
protect implementations using masking techniques. It consists in splitting the in-
ternal state of the processing into multiple random shares following secret sharing
ideas [BLA79]. SCA against masked implementations is still possible through the so
called higher-order attacks which combine multiple leakage samples corresponding
to each share. However, these attacks are harder to conduct since the impact of the
noise is amplified exponentially with the masking order [PR13]. Among unsuper-
vised attacks, the multivariate CPA described in [PRB09] has often proved to be an
efficient strategy in practice. However, it relies on a Hamming weight leakage as-
sumption (of the shares) that may not be correct especially when it comes to local EM
measurements. Indeed, each bit of the intermediate variable can have very different
leakage behavior and even sign inversions of their coefficients as shown in [CLH20].
To deal with such situations [DDP13] proposed a generalization of the LRA whose
main strength is to offer flexibility on the a priori without constraining each bit to
have the same impact on the leakage.

This method exploits information hidden in the covariance, i.e., the second or-
der joint moment of the distribution since the first order moments (the means) are
leakage-free thanks to masking. However, we argue that this method is not generic
enough because it is based on the assumption that the covariance per class could be
expressed as a low algebraic function, assumption that only holds for Boolean and
low order arithmetic masking as shown in this chapter. Indeed, the proposed attack
fails even in theory (on synthetic traces with zero noise) when dealing with other
masking schemes such as the multiplicative or affine ones. These masking schemes
along with the polynomial and inner product masking are getting more and more
studied recently and begin to be used in modern implementations. This trend may
continue in the future since these schemes seem to offer better resistance against
side-channel attacks [Bal+12]. Mutual information-based attacks have also been ex-
tended to masked implementations but have not either proven to be valid strategies
for any kind of masking and their applicability is mainly related to the open ques-
tions, raised in Chapter 3, about the choice of the partitioning function. This leads
us to the following observation:

To the best of our knowledge, no generic unsupervised strategy able to defeat any kind of
masking outside of the Hamming weight leakage assumption emerges from the state-of-the-
art.

We propose such a strategy in this chapter: the Joint Moment Regression (JMR).

5.1. Introduction 91

The latter is built on the idea that the discriminating information, if it exists, is nec-
essarily hidden in higher-order joint moments since lower-order leakages are pre-
vented by masking (at least when not considering glitches from the physical imple-
mentation [MPG05]). Intuitively, joint moments encapsulate information about the
corresponding distribution. The idea is to make a leakage assumption on each share
(for example a linear leakage) and try to directly regress the leakage model of each
share, using joint moments conditions, instead of trying to regress the joint moment
itself as it is done in [DDP13]. This comes at the cost of the loss of linearity since
the joint moment conditions involve a multiplication between the leakage param-
eters of the different shares which gives rise to a non-linear system of equations.
However, we show that numerical optimization algorithms can be used to find an
estimation of the solution that best fits the conditions. A measure of fitness is used
as a distinguisher between key candidates. The joint moment conditions depend on
the underlying masking scheme which allows to embed knowledge of the latter into
the system and, therefore, makes the attack generic.

5.1.2 Contributions

• The first contribution of the chapter is to present the state-of-the-art on the
stochastic higher-order attacks, especially focusing on the method proposed
in [DDP13] to understand its strengths and limitations. This analysis can be
found in section 5.2.

• As a second contribution, we introduce a new attack strategy: the Joint Mo-
ment Regression (JMR) in section 5.3. It is built to circumvent the issues found
in the state-of-the-art and proposes a method which is agnostic to the underly-
ing masking scheme.

• We then draw a parallel between the core of JMR and a more general frame-
work: the Generalized Method of Moment (GMM) [Han82] which is a well-
studied paradigm in statistics and economics. This allows to improve our
attack in the case of biased masking schemes such as the multiplicative and
affine ones. This analysis can be found in section 5.4.

• Finally, section 5.5.2 presents applications of JMR to real traces and provides at
the same time, to the best of our knowledge, the first unsupervised attack on
the secured AES implementation of the ANSSI, protected by an affine masking
scheme. Attacks that do and do not exploit the lower-order leakage are both
presented.

92 Chapter 5. Fit the Joint Moments: How to Attack any Masking Scheme

5.2 Related Work and Limitations

5.2.1 General Attack Framework

We recall the notation and attack framework used in this chapter. We consider that
an adversary targets the manipulation of a sensitive variable Z ∈ Z = Fn

2 , for a
given n ∈N. This variable is supposed to functionally depends on a public variable
X ∈ X = Fm

2 , for a given m ∈ N, and a secret key k∗ ∈ K = Fm
2 through the

relation: Z = f (X, k∗) where f : X × K → Z is a known function depending
on the underlying cryptographic algorithm. The adversary is supposed to own a
set {(ℓi, xi), 1 ≤ i ≤ N} of N side channel traces labeled with the corresponding
public value of X. Traces correspond to realizations of a leakage variable L ∈ L
coming from a stochastic process S , Z S−→ L (often separable into a deterministic and
a noise part). The leakage variable L is supposed to contain information about Z. The
general idea of an unsupervised side-channel attack is to make a series of hypotheses
ki on the key, and to use the dependency between Z and L to build a distinguisher
D : K → R to rank the different key candidates. One of these distinguishers, the
LRA, is described in the next section.

5.2.2 Linear Regression Analysis

The following procedure recalls the steps required to perform an LRA such as sug-
gested in [LPR13]. Traces are assumed to feature one sample. In a real-life scenario,
the same procedure would be repeated for each sample and the final distinguisher
keeps the best value along all samples according to a chosen policy (often being the
minimum/maximum value of the distinguisher).

1. Partitioning. Partition the traces into |X | classes: Lx = {ℓi, xi = x}.

2. Averaging. Compute the average trace for each class L̄ = (ℓ̄x)x∈X with

ℓ̄x =
1
|Lx| ∑

ℓ∈Lx

ℓ

3. Basis choice. Choose a basis of functions (bi)1≤i≤r such that bi : Z → R.

4. Making hypotheses. For k ∈ K compute the hypotheses matrix:

Hk =

(
bi ◦ f (x, k)

)
x∈X ,

1≤i≤r

5. Linear regression. For k ∈ K find the parameter vector θk = (θk,1, . . . , θk,r)
T

minimizing the euclidean norm of the error vector:

θk = argmin
θ

||Hk · θ − L̄||2

5.2. Related Work and Limitations 93

6. Ranking. Rank the keys according to their distinguisher value (from low to
high)1:

D(k) = ||Hk · θk − L̄||2

Since step 5 corresponds to a linear regression it has a closed-form solution:

θk = (Hk
T · Hk)

−1 · Hk
T · L̄

However, to highlight similarities with JMR later in the chapter, we decided to keep
the generic formulation of the optimization problem.

The choice of the basis is important since it should be large enough for the leak-
age to be representable as a linear combination with the bi ◦ f functions when k = k∗

but small enough so that it is not the case for wrong hypotheses. The adversary uses
his a priori on the leakage model, often related to physical assumptions, to choose
the basis.

A common example is to assume that each bit of the sensitive variable con-
tributes to the leakage independently from the others. If this assumption holds there
exists α = (α0, . . . , αn) such that ℓi = α0 + ∑ αj · bitj(zi) + ϵ with bitj denoting the
projection on the jth bit and ϵ being sampled from a noise distribution. In such a
case, the basis would be {1, bit1, . . . , bitn} and θk∗ should be close to α.

Another example is to assume that the leakage is depending on the Hamming
Weight (HW) of the sensitive variable so that ℓi = α1HW(zi) + α0 + ϵ. The basis is
then reduced to {1, HW} and the attack corresponds to the classical CPA.

5.2.3 Masking

To prevent instantaneous leakages and mitigate the first-order attacks presented
above, one of the most widely used countermeasures is masking [Cha+99]. The idea
is to split each sensitive intermediate value Z, into d shares: (Zi)1≤i≤d. The d − 1
shares Z2, ..., Zd are randomly chosen and the last one, Z1 is processed such that:

Z1 = Z ∗ Z2 ∗ · · · ∗ Zd (5.1)

for a group operation ∗ of Z . This has the effect of complexifying the stochastic
process S generating L from Z, rendering it no longer separable into a deterministic
and a noise part. Assuming the masks are uniformly distributed, the knowledge of
d− 1 shares does not tell anything about Z (this is why such masking is said to be
of order d− 1). Therefore, any sound SCA strategy has to combine leakage samples
from the d shares to perform an attack (which corresponds to at least d samples if
the leakages are disjoint). Such attacks are called dth order attacks. One of them, the
second-order LRA is presented in the next section.

1 Sometimes the coefficient of determination R2 is used instead but the ranking is strictly equivalent
except that one ranks from high to low values of the distinguisher.

94 Chapter 5. Fit the Joint Moments: How to Attack any Masking Scheme

Group operation Masked Variable (Z1) Uniform Reference
Boolean ⊕ Z⊕ Z2 ⊕ · · · ⊕ Zd Yes [Cha+99]

Arithmetic + mod 2n Z + Z2 + · · ·+ Zd [2n] Yes [CG00]
Multiplicative ⊗ Z⊗ Z2 ⊗ · · · ⊗ Zd No [GPQ11]

Affine ⊕,⊗ Z⊗ Z2 ⊕ Z3 No [Fum+11]

TABLE 5.1: Masking schemes studied in this work

The uniform assumption is sometimes not strictly realized in practice depending
on the masking scheme being used. Four of the most common masking schemes that
will be studied in this chapter are listed in Table 5.1. The⊕ and⊗ respectively stand
for the addition and the multiplication operation in Fn

2 . Since the multiplication by
0 is not invertible the "multiplicative shares" have to be chosen in Fn

2 \ {0}. As Z
itself can take the value 0, the multiplicative and affine schemes are then slightly
biased, and therefore, do not guarantee in theory, SCA resilience to all the (d− 1)th

and lower order attacks. Such attacks will be discussed in section 5.4.

5.2.4 Second-Order LRA

This section describes the generalization of the LRA introduced in [DDP13] which
aims at defeating a first-order masked implementation (d = 2). Traces are consid-
ered to be composed of 2 samples: L = (L1, L2) where L1 and L2 represent respec-
tively the leakage of the first and second share. In a real-life scenario, the attack
would be repeated with all the combinations of two samples from the raw traces.
To perform a second-order LRA the adversary is supposed to own a set of N traces
{(ℓi

1, ℓi
2), 1 ≤ i ≤ N}. The idea is to replace the estimated mean per class by the

estimated covariance per class in the classical LRA which naturally combines infor-
mation from the two samples. Indeed the covariance Y = cov(L1, L2) involves the
product of the centered variable L1 − µ1 and L2 − µ2, with (µ1, µ2) = E[L], which
has been shown to be a good combining function for second-order SCA [PRB09].
The steps to perform a second-order LRA are depicted hereafter.

1. Partitioning. Partition the traces into |X | classes: Lx = {(ℓi
1, ℓi

2), xi = x}.

2. Estimating covariances. Compute the estimated covariance for each class Ȳ =

(ȳx)x∈X with

ȳx =
1
|Lx| ∑

ℓ∈Lx

(ℓ1 − µ̄1)(ℓ2 − µ̄2)

where (µ̄1, µ̄2) stands for the estimated mean of L.

3. Basis choice. Choose a basis of functions (bi)1≤i≤r such that bi : Z → R.

4. Making hypotheses. For k ∈ K compute the hypotheses matrix:

Hk =

(
bi ◦ f (x, k)

)
x∈X ,

1≤i≤r

5.2. Related Work and Limitations 95

5. Linear regression. For k ∈ K find the parameter vector θk = (θk,1, . . . , θk,r)
T

minimizing the euclidean norm of the error vector:

θk = argmin
θ

||Hk · θ − Ȳ||2

6. Ranking. Rank the keys according to their distinguisher value (from low to
high):

D(k) = ||Hk · θk − Ȳ||2

The attack may seem very similar to a first-order LRA except that it is performed
on the covariance instead of the mean (the change happens in step 2). However, the
choice of the basis is much more delicate. The link between the adversary a priori and
a basis leading to a successful attack is not trivial anymore. Indeed, the hypotheses
matrix is constructed using the unmasked variable Z(k) = f (X, k) while the leakage
a priori concerns the shares. The choice of the basis proposed in [DDP13] is based on
an assumption that is recalled hereafter.

Let us define the set of functions (φk)k∈K : Z = Fn
2 → R such that:

φk(z) = cov(L1, L2 | Z(k) = z) (5.2)

Since all the Boolean functions in Fn
2 can be represented by a multivariate polyno-

mial in R[z1, . . . , zn]/(z2
1 − z1, . . . , z2

n − zn) (i.e. the degree of every zi in every mono-
mial is at most 1) [Car07], there exists, for any k, a unique set of coefficients (αk,u)u∈Fn

2

such that:
φk(z) = ∑

u=(u1,...,un)∈Fn
2

αk,u · zu (5.3)

where each term zu denotes the monomial (function) z→ zu1
1 zu2

2 . . . zun
n with zui

i ∈ F2.
Let deg(φk) stands for the degree of the polynomial representing φk. The assumption
on which the attack from [DDP13] relies is the following:

Assumption 1. ∀k ̸= k∗, deg(φk∗) < deg(φk).

The intuition behind this assumption is that since φk = φk∗ ◦ fk ◦ f−1
k∗ (where

fk = f (·, k)), φk is expected to have a high degree (close to n) if k ̸= k∗, due to cryp-
tographic properties of f which often embeds highly non-linear S-boxes to prevent
algebraic attacks. Note that this reasoning only holds if φk∗ itself has a low degree
which is implicitly assumed in [DDP13]. This point will be discussed later.

If Assumption 1 holds, the basis: (bi)i = {zu, u ∈ Fn
2 , HW(u) ≤ deg(φk∗)} is

a valid basis for the second-order LRA. Indeed, it spans all the functions of degree
less or equal deg(φk∗). Therefore there exists a decomposition of φk∗ in this basis
while it is not the case for other φk, by hypothesis, which guarantees the success of
the attack (provided that the number of traces allows for a fair approximation of the
covariances per class).

96 Chapter 5. Fit the Joint Moments: How to Attack any Masking Scheme

5.2.5 Limitations

The first observation is that even if Assumption 1 holds, the attack may fail in prac-
tice if deg(φk∗) is not low enough. Indeed, the cardinal of the basis, and therefore
the number of parameters to estimate, increases quickly with deg(φk∗) offering a big
capacity to the statistical model to fit the data whatever the considered value of k. If
the noise is not negligible, this often means that the wrong hypotheses can reach sim-
ilar scores to the correct one which reduces the distinguishability and therefore the
effectiveness of the attack. For example, with n = 8 and deg(φk∗) ∈ {1, 2, 3} the car-
dinal of the basis is respectively equal to 9, 37 and 93. In practice authors of [DDP13]
run their attack with the following basis: (bi)i = {zu, u ∈ Fn

2 , HW(u) ≤ dmax} where
dmax ∈ {1, 2, 3}. Choosing dmax = 3 never led to the best attack even in cases where
deg(φk∗) was strictly greater than 2 (due to the high model capacity and lack of dis-
tinguishability).

Then, one may ask if Assumption 1 holds at all. Since φk∗(z) = cov(L1, L2|Z(k∗) =

z) it is obviously related to the nature of the leakage L1 and L2. These variables can
be assumed to be separable into a deterministic and a noise part with respect to the
shares:

Li = li(Zi) + ϵi (5.4)

with li : Z → R representing the leakage of share i and ϵi being an independent
random noise variable. By bilinearity of the covariance and independence of ϵi:

φk∗(z) = cov
(
l1(Z1), l2(Z2) | Z(k∗) = z

)
= cov

(
l1(z ∗ Z2), l2(Z2)

) (5.5)

since Z1 = Z(k∗) ∗ Z2. Both l1 and l2 can be assumed of low degree (through a phys-
ical a priori on the leakage). For example, it is realistic to assume that both shares
follow a linear leakage. But we argue that this is not enough to guarantee Assump-
tion 1 and that it is still depending on the underlying masking scheme, especially on
the nature of the ∗ operation.

Then, a natural question arises: why does the attack presented in [DDP13] work?
We argue that it is related to the studied masking schemes in their paper. Indeed, the
latter one focuses on the Boolean and arithmetic masking schemes which are both
exceptions as far as Assumption 1 is concerned. This claim is justified by the two
following propositions.

Proposition 5. (Boolean masking) Let ∗ = ⊕. Let l1 : Z → R and l2 : Z → R be two
leakage functions of degree 1. Let φBool(z) = cov

(
l1(z⊕ Z2), l2(Z2)

)
. Then,

deg(φBool) ≤ 1 (5.6)

Proof can be found in Appendix D.

5.3. Joint Moments Regression 97

Proposition 6. (Arithmetic masking) Let ∗ = + mod 2n. Let l1 : Z → R and l2 : Z → R

be two leakage functions of degree 1. Let φArith(z) = cov
(
l1(z + Z2 [2n]), l2(Z2)

)
. Then,

deg(φArith) ≤ 2 (5.7)

Proof can be found in Appendix D.

These two propositions explain the success of the attacks presented in [DDP13].
However, we could not find equivalent propositions for other masking schemes,
suggesting that Boolean and arithmetic masking are, in fact, exceptions. This will be
empirically confirmed in subsection 5.3.4 where it is shown that even without noise,
the higher-order LRA fails against multiplicative or affine masking with a linear
leakage of the shares. Therefore, to the best of our knowledge, there is no strategy in
the literature able to defeat a generic masking scheme in an unsupervised context,
with a simple linear leakage assumption of the shares. We introduce such a strategy
in the next section.

5.3 Joint Moments Regression

We first introduce the concept of Joint Moment (JM) which generalizes to any mask-
ing order the idea of the covariance, found in the previous section.

5.3.1 Joint Moments

Moments of probability distributions are quantitative measures related to the shape
of the distribution. The moment of order d, denoted µd, of the variable X is defined
as:

µ
(d)
X = E[Xd] (5.8)

For second and higher orders, the centered moments µ̌d of order d are often used
instead and are defined as:

µ̌
(d)
X = E[(X− µ

(1)
X)d] (5.9)

Joint moments are the generalization of moments to multivariate variables. Let
X = (X1, . . . , Xn) ∈ Rn be a multivariate random variable. Let u = (u1, . . . , uk) ∈
Nn be a vector of positive integers such that ∑ ui = d. The JM of order d with respect
to vector u, denoted jmu, is defined as:

jm(u)
X = E

[n

∏
i=1

Xui
i

]
(5.10)

Centered JM are also defined as:

ˇjm
(u)
X = E

[n

∏
i=1

(Xi − µ
(i)
Xi
)ui

]
(5.11)

98 Chapter 5. Fit the Joint Moments: How to Attack any Masking Scheme

One important property of JM (and of simple moments) is that, for distributions
defined on a compact set of Rn, the distribution is fully defined by the list (maybe
infinite) of all its JM. This is also true for the centered JM provided that the first order
JM are also given.

The effect of a d-order masking is that no information related to the sensitive
variable can be found in the d− 1 and lower JM. That is why the second-order LRA
performed a regression on the second-order centered JM with u = (1, 1) which hap-
pens to be the covariance. Indeed it is the lowest order JM bringing information on
the sensitive variable. Information could also be found in higher-order JM but they
are harder to estimate. Indeed, more terms are involved in the product and the noise
in each one of them is amplified through the multiplication. One typically wants to
take the JM with the lowest standard error (the standard deviation of its estimator).
This also explains why centered JM are preferred: as shown in [PRB09], they have a
lower standard error than their uncentered counterpart.

5.3.2 Attack Description

Let an adversary own a set of N traces {ℓi, 1 ≤ i ≤ N} of a d order masked imple-
mentation. Traces are considered to be composed of d samples: ℓi = {(ℓi

1, . . . , ℓi
d).

In a real-life scenario, the attack would be repeated on combinations of d samples
from the raw traces depending on the attacker a priori on the points of interest. To
defeat this implementation a naive solution would be to extend the attack proposed
in [DDP13] using centered JM instead of covariance but as stated in section 5.2.5:
there is no obvious link between the physical a priori, which happens to be on the
shares, and the basis that has to be chosen and applied to the unmasked sensitive
variable.

That is why we propose a new strategy where the adversary chooses d basis, one
for each share (in practice they will often be the same basis), and directly regresses
the leakage of each share using information from the estimated d order centered JM.
The steps of what we call the Joint Moment Regression (JMR) are depicted hereafter.

JMR Procedure

1. Partitioning. Partition the traces into |X | classes: Lx = {(ℓi
1, . . . , ℓi

d), xi = x}.

2. Estimating JM. Compute the estimated centered d order joint moments matrix
¯JM. Each row represents the estimation for one class:

JM =

1
|L0| ∑

ℓ∈L0

d

∏
j=1

(ℓj − µ̄j)

...

1
|L2m−1| ∑

ℓ∈L2m−1

d

∏
j=1

(ℓj − µ̄j)

5.3. Joint Moments Regression 99

where (µ̄1, . . . , µ̄d) stands for the estimated mean of L.

3. Basis choice. For j ∈ [1, d], choose a basis of functions (b(j)
i)1≤i≤r such that

b(j)
i : Z → R. Intuitively, if lj corresponds to the leakage of share j, the ad-

versary wants to choose a basis such that lj(zj) = ∑r
i=1 θj,i · b

(j)
i (zj) + ϵj for

some coefficient θj ∈ Rr, with ϵj representing an independent random noise
variable.

4. Making hypotheses. Let l̃j(zj) stand for the leakage prediction of share j ac-
cording to the chosen basis:

l̃j(zj) =
r

∑
i=1

θj,i · b
(j)
i (zj) (5.12)

For k ∈ K, define the theoretical JM vector JMk(θ) with respect to θ ∈ Rd×r,
that traduces the leakage assumption of step 3 into |X | = 2m JM per class
expressions:

JMk(θ) =

a0 ∑
(z1,...,zd)∈A0

d

∏
j=1

(
l̃j(zj)− µθj

)
...

a2m−1 ∑
(z1,...,zd)∈A2m−1

d

∏
j=1

(
l̃j(zj)− µθj

)

with Ax = {(z1, . . . , zd)|Z = f (x, k)} and ax = 1

|Ax | . Here, µθj stands for the
theoretical mean of the leakage of share j under the assumption of θj:

µθj = EZj

[r

∑
i=1

θj,i · b(1)i (Zj)

]

5. Non-linear regression. For k ∈ K, find through numerical optimization tech-
niques (see subsection 5.3.3), the parameter vector θ(k) ∈ Rd ×Rr minimizing
the euclidean norm of the error vector:

θ(k) = argmin
θ

||JMk(θ)− JM||2

6. Ranking. Rank the keys according to their distinguisher value (from low to
high):

D(k) = ||JMk(θ
(k))− JM||2

5.3.3 Attack Soundness

The general attack structure of JMR is very similar to the LRA and second-order
LRA. The main difference with the latter one is that the assumption is done on the

100 Chapter 5. Fit the Joint Moments: How to Attack any Masking Scheme

leakage of the shares and is therefore directly related to the physical a priori. These
assumptions are then combined to build a parameterized system of unknown θ ∈
Rd×r:

JMk(θ)− JM = 0 (5.13)

where each line represents a condition on the JM knowing that X = x. Note that by
the independence assumption, the noise terms ϵj are canceled from the theoretical
equations of the JM per class, listed in the JMk(θ) vectors. The goal is then to find the
solution θ(k) that fits the most the system and to use a measure of fitness as distin-
guisher. Note that the knowledge of the underlying masking scheme is embedded
in the system through the Ax sets which describe the possible values (z1, . . . , zd) of
the shares given the value of Z. This is what ensures the genericity of JMR regarding
the masking scheme.

When the number of traces N tends towards infinity, the estimated JM per class
JM tends towards the true JM per class. If the leakage assumptions are correct there
exists θ(k

∗) ∈ Rd×r such that JMk∗(θ
(k∗)) is equal to the true JM per class. Therefore:

lim
N→∞

D(k∗) = 0 (5.14)

while it is unlikely to be the case for k ̸= k∗ due to cryptographic property of f ,
which assures the soundness of the attack.

However, this multi-shares assumption comes at the cost of linearity. Indeed,
even if all the shares are assumed to leak linearly, the system that JMR regresses is
not linear anymore: it is of degree d. Therefore there is no closed-form solution and
one has to use numerical optimization tools to find an approximation of the solution.
Numerical optimization is a research field in itself and is out of the scope of this
paper. There exist multiple ready-to-use implementations in different programming
languages, which is enough for our concern. Note that since the system is of degree
d, the uniqueness of the solution of step 5 is not guaranteed. This is not a problem
for the attack: as long as one solution can be found and that equation 5.14 holds
only for the correct key hypothesis, the attack will succeed for a sufficient number
of traces.

5.3.4 Simulation Experiments

This section provides simulation experiments to assess the feasibility of JMR in prac-
tice against the masking schemes presented in table 5.1. Its efficiency is compared
with state-of-the-art attacks at second and third order.

Implementation

We implemented the core of the JMR attack using the least_squares function from
the python scipy.optimize package [Vir+20]. It solves a non-linear least-squares fit-
ting problem using the Levenberg-Marquardt (LM) algorithm [Lev44; Mar63] which

5.3. Joint Moments Regression 101

is itself based on the Gauss-Newton algorithm and the method of gradient descent.
The attack time or complexity is mostly constant regarding the number of traces
because the latter does not affect the number of parameters nor equations in the
system. The only part that scales with the number of traces is the estimation of
the JM per class which is just a product and a sum and that can be handled with
numpy [Har+20] array manipulations.

Since the least-squares problems related to the different key hypotheses are in-
dependent, the implementation is highly parallelizable. We exploited this using a 48
cores Xeon Platinium 8168 processor which speeded up the attack by a significant
factor since the implementation of the least_squares function is not parallelized in
itself. Other implementation optimization could be explored such as using the fast
GPU version of the LM algorithm proposed in [Prz+17] but this is not in the scope
of this paper. To give an order of magnitude, with our setup, running the full JMR
procedure as described in subsection 5.3.2 for a d−tuple of time samples, requires
around 10 and 15 seconds for respectively a second and third-order attack (assuming
one trace for each possible values of the shares: 216 and 224 respectively).

Generating Datasets

To assess the JMR method and to compare it with state-of-the-art attacks, synthetic
trace datasets with linear leakage of the shares have been generated for first and
second-order masking (d ∈ {2, 3}). Boolean, arithmetic, multiplicative and affine
(only with d = 3) schemes are used to mask the classical sensitive variable of an
AES: Z = Sbox[k∗ ⊕ P] (k∗ and P are both supposed to be 8 bits long). To be able
to average the results of 100 different attacks, performed with 100 different linear
leakage models, we have generated a matrix of random coefficients Ci for each share
(1 ≤ i ≤ d):

Ci =
(

αa,b

)
0≤a≤99
0≤b≤8

(5.15)

where all the αa,b are uniformly drawn from [−1, 1]. Each row represents a different
linear leakage model.

To avoid any kind of estimation error (the error coming from sampling), each
dataset contains one trace for each of the possible values of the shares (z1, . . . , zd) ∈
Zd (for multiplicative and affine schemes the multiplicative shares can not be 0 so
we take them from J1, 255K instead). The trace ℓ

(a)
(z1,...,zd)

corresponding to the d-tuple
(z1, . . . , zd) is generated by concatenating the leakage of each shares (represented by
the ath row of the Ci matrices) as follows:

ℓ
(a)
(z1,...,zd)

=

[
l(a)
1 (z1), · · · , l(a)

d (zd)

]
(5.16)

102 Chapter 5. Fit the Joint Moments: How to Attack any Masking Scheme

Algorithm 4: Generate Traces
Input: k∗, The correct key byte
Input: a, representing a row in the matrices Ci
Input: d, the masking order
Input: ⋆, a group operation with / the associated division
Input: σ, the value of the noise
Output: L, a (28∗d, d) array
Output: P, a (28∗d) array
L← empty list
P← empty list
for (z, z2, . . . , zd) ∈ Zd do

z1 ← z ⋆ · · · ⋆ zd

l ← ℓ
(a)
(z1,...,zd)

(Equation 5.16)

p← Sbox−1[z]⊕ k∗

Append l to L
Append p to P

end
R← Draw a (28∗d, d) array from N (0, σ2)
L← L + R
return L, P

with

l(a)
i (zi) = Ci[i, 0] +

8

∑
b=1

Ci[a, b] · zi[b] + ϵi(σ) (5.17)

where zi[b] corresponds to the bth bit of zi and ϵi is drawn from a normal distribu-
tion N (0, σ2). The exact procedure that generates the traces considering the the ath

leakage model is depicted in algorithm 4.

Results

Second-order attacks results are presented in Figure 3.1. Each point represents the
average rank of k∗ over the 100 datasets for a given value of σ. We recall that we are
using exhaustive datasets, therefore, a failed attack for a given value of σ does not
mean that the attack is impossible but rather that the adversary would need more
traces than one per possible value of the shares. We compare JMR with

• A higher-order CPA, denoted HO-CPA, computed with a Hamming weight
prediction model and using the JM of order d as combining function which
happens to be the same as the centered product described in [PRB09].

• Higher order LRA, denoted HO-LRA-dmax where dmax is the assumed degree
of φk∗ as defined in Equation 5.5. Therefore the basis used in HO-LRA-dmax is
(bi)i = {zu, u ∈ Fn

2 , HW(u) ≤ dmax}. The combining function is also the JM
of order d which for d = 3 is a straightforward extension of the second order
attack described in [DDP13].

5.3. Joint Moments Regression 103

(A) Boolean

0 2 4 6
0

50

100

Av
er

ag
e

k
* r

an
k

(B) Arithmetic

0 2 4 6
0

50

100

Av
er

ag
e

k
* r

an
k

(C) Multiplicative

0 2 4 6
0

50

100

150

Av
er

ag
e

k
* r

an
k HO-CPA

HO-LRA-1
HO-LRA-2
HO-LRA-3
MIA-MSB
MIA-7B
JMR

FIGURE 5.1: Guessing entropies versus standard deviation of the noise for the considered
second-order attacks after the processing of A) 216, B) 216, C) 28 × 255 traces.

• Mutual Information Analysis, denoted MIA- f , where the distinguisher used is
MI(f (Zk), L). MIA requires the use of a non-injective function f to create dis-
tinguishability for the correct hypothesis. Since the leakage model is unknown
we used very generic models: f = MSB and f = 7B, where MSB stands for
the most significant bit of Zk and 7B stands for the 7 most significant bits of Zk.
The MI has been estimated using the histogram method described in [PR09].

(a) For the Boolean case, JMR and HO-LRA-1 performs approximately the same
which is not surprising since, by Proposition 5, Assumption 1 holds for HO-
LRA1. It also holds for HO-LRA-2/3 but HO-LRA-1 perfectly explains the data
with fewer parameters, and thus, performs better. One can notice that even
without noise the HO-CPA is not converging towards 0 which confirms that it
relies on the Hamming weight leakage assumption. Also, MIA strategies do
not perform well which is not surprising since the underlying leakage model
is unknown and it is, therefore, hard to select a good non-injective function.

(b) For the arithmetic scheme, JMR outperforms all the other attacks even, HO-
LRA-2 in which Assumption 1 holds by Proposition 6. Again this is explained
by the fact that JMR only needs (9× 2) parameters to predict the data while
HO-LRA-2 needs 37 parameters. Even without noise, the data can not be per-
fectly explained in an HO-CPA or HO-LRA-1 model since their curves do not
converge towards 0.

104 Chapter 5. Fit the Joint Moments: How to Attack any Masking Scheme

(c) For the multiplicative scheme, as predicted, none of the state-of-the-art attacks
perform better than random even without noise which confirms that Assump-
tion 1 does not hold at all for such masking scheme. JMR is the only sound
attack in this case.

Results for third-order attacks are presented in Figure 3.2. In this case, HO-LRA-
dmax represents the generalization of the second-order LRA replacing the covariance
by the third-order joint moment. Conclusions are the same than for the second-
order attacks. Among the considered attack strategies, one can observe that, as for
the multiplicative case, JMR is the only sound option to attack affine masking under
a linear leakage of the shares.

About the Biased Schemes

Both multiplicative and affine schemes are slightly biased which can induce lower-
order leakage. We argue that such leakage has not been exploited in this section since
the estimated JM were computed with the leakage of all the shares (thus, the variance
of the estimation result from d multiplications of noisy leakages). To confirm this
statement, we repeated the previous experiments for the biased schemes removing
Z = 0 from the possible values, thus, simulating non-biased schemes. The results
being essentially the same than those presented in Figures 3.1c, 5.2c and 5.2d so
we do not plot them. Since the multiplicative and affine masking do not seem to
have special algebraic properties like the Boolean and arithmetic scheme as shown
in propositions 5 and 6, we argue that these results could be extended to any other
masking scheme. Indeed, the real added value of JMR is its ability to encode the
scheme knowledge in the system’s equation making it generic and able to work even
for non-biased schemes with a high algebraic degree2 where other attacks would not.

However, in the specific case of biased schemes, lower-order leakage could be ex-
ploited with simpler attacks such as a classical CPA with a zero-valued based power
model. One could also perform more advanced attacks taking advantage of leak-
ages at multiple orders at the same time. All these attacks are discussed in the next
section where we introduce the generalized method of moment paradigm.

2 Formally, we refer to the degree of the function f representing the joint moments per class f (z) =
JM(l1(Z1), . . . , ld(Zd) | Z = z according to the degree of the leakage function li.

5.4. Generalized Method of Moments Paradigm 105

(A) Boolean

0 1 2 3 4 5
0

50

100

Av
er

ag
e

k
* r

an
k

(B) Arithmetic

0 1 2 3 4 5
0

50

100

Av
er

ag
e

k
* r

an
k

(C) Multiplicative

0 1 2 3 4 5
0

50

100

Av
er

ag
e

k
* r

an
k HO-CPA

HO-LRA-1
HO-LRA-2
HO-LRA-3
MIA-MSB
MIA-7B
JMR

(D) Affine

0 1 2 3 4 5
0

50

100

150

Av
er

ag
e

k
* r

an
k

FIGURE 5.2: Guessing entropies versus standard deviation of the noise for the considered
third-order attacks after the processing of A) 224, B) 224, C) 28 × 2552, D) 216 × 255 traces.

5.4 Generalized Method of Moments Paradigm

Looking from a broader perspective, it appears that the core of the JMR attack can be
seen as part of a more general framework known as the Generalized Method of Mo-
ments (GMM) [Han82]. This method comes from the field of statistics and economy
and its main purpose is to estimate parameters in a statistical model. Embracing
this paradigm requires to gain a level of abstraction but it allows to use the pow-
erful mathematical foundations behind it. In particular, it will tell us how to opti-
mally combine information from different orders, which is useful when the masking
scheme is biased.

5.4.1 Background on GMM

Let suppose that the available data consists of N observations (Li)1≤i≤N of a random
variable L ∈ Rn. This data is assumed to come from a stochastic process defined up
to an unknown parameter vector θ ∈ Rp. The goal is to find the true value θ0 of this
parameter or at least a reasonably close estimate.

In order to apply GMM the data must come from a weakly stationary ergodic
stochastic process (independent and identically distributed (iid) variables are a spe-
cial case of these conditions). Then one needs to have c “moment conditions” de-
fined as a function g(ℓ, θ) : Rn ×Rp → Rc such that:

E[g(L, θ0)] = 0 (5.18)

106 Chapter 5. Fit the Joint Moments: How to Attack any Masking Scheme

The idea is then to replace the theoretical expectation with its empirical analog:

m(θ) =
1
N

N

∑
i=1

g(ℓi, θ) (5.19)

and to minimize the norm of m(θ) with respect to θ. The properties of the GMM
estimator depend on the chosen norm and therefore the theory considers the entire
family of norms defined up to a positive-definite weighting matrix W ∈ Mc(R):

||m(θ)||W =
√

m(θ)TWm(θ) (5.20)

The GMM estimator is then defined as:

θ̂ = argmin
θ

||m(θ)||W (5.21)

The way of solving this optimization problem is not specified in the GMM theory. It
is left to the numerical optimization field.

The purpose of W is to weigh the different conditions. Choosing W = Idc leads
to consider the classical euclidean norm and is equivalent to considering that all
conditions should weigh the same. The intuition behind the fact that one may pre-
fer another norm is that some conditions may be less informative, redundant, or
more volatile in their empirical estimation. One typically wants to use the norm
minimizing the asymptotic variance of the resulting estimator. This problem has a
closed-form solution with the following theorem:

Theorem 6. (Hansen 1982) Let θ̂N be the random variable representing the output of the
GMM estimator with N data observations. Let also define Ω as the covariance matrix of the
conditions function g evaluated at θ0: Ω = cov-mat

(
g(L, θ0)

)
. Then,

argmin
W

lim
N→∞

var(θ̂N) = Ω−1 (5.22)

In the particular case where conditions are independent the matrix Ω−1 is diag-
onal and choosing W = Ω−1 simply means that the moments’ condition should be
weighted inversely proportionally to their underlying variance. This is in line with
the intuition that conditions with high variance are less informative.

5.4.2 Parallel with the JMR Attack

This section exhibits the similarities between the GMM and JMR. The core of the
JMR attack relies on an estimation of the true parameters θ0 ∈ Θ = Rd ×Rr of a
chosen statistical model (encoded in the choice of the basis) in order to explain the
leakage of each share. Let L = (L1, . . . , Ld) represents the observed leakage variable
and Lθ the predicted leakage variable under the assumption of θ so that, under the
assumption that the chosen model is correct, L = Lθ0 .

5.4. Generalized Method of Moments Paradigm 107

Since the moment conditions in JMR depend on the value of another public vari-
able X, let define, for each key hypothesis k, a condition function gk : Rd×X ×Θ→
R|X | as:

gk(ℓ, x, θ) = ex ·
(

ˇjm
(1d)
Lθ |Z= f (x,k) −

d

∏
i=1

(ℓi − µ̄i)

)
(5.23)

where ex = (0, . . . , 1, . . . , 0) ∈ R|X | stands for a vector of 0 with one 1 at position3

x, 1d stands for a vector of d ones : 1d = (1, . . . , 1) and ˇjm
(u)
L is defined as in Equa-

tion 5.11. This definition of gk may seem very artificial but it is designed so that
Equation 5.18 holds for the correct hypothesis k = k∗ (under the assumption that
L = Lθ0):

E[gk∗(L, X, θ0)] =
1
|X |

(
ˇjm
(1d)
Lθ0 |Z= f (x,k∗) − ˇjm

(1d)
L|X=x

)
x∈X

= 0
(5.24)

Therefore applying GMM with gk∗ as condition function is sound while it is not for
wrong key hypotheses. In fact this property is the one exploited by JMR since step 1
to 5 of JMR are equivalent to apply |K| GMM estimations, one for each of the gk

condition functions, with W = Id|X |.

5.4.3 Improving JMR Using GMM Theory

This section describes two ways of improving JMR using the GMM theory. The first
one is generic and the second one focuses on the unbalanced masking schemes.

Using the Optimal Weighting Matrix

Since the GMM theory recommends to use Ω−1 as weighting matrix, one could ask
if using the identity matrix was optimal. Indeed, the adversary typically wants to
minimize the variance of the GMM estimator for the correct key k = k∗. Therefore it
would be natural to replace the identity matrix with Ω−1 where Ω = cov-mat

(
gk∗(L, X, θ0)

)
.

The problem is that Ω is hard to estimate with data since θ0 is unknown. The solu-
tion to this problem is usually to apply the so-called two-step estimator where an
estimation of θ0 is first computed with JMR with a sub-optimal weighting matrix
(for example the identity) which allows estimating Ω and eventually apply GMM
with the latter estimation as weighting matrix. However, in our case, Ω does not de-
pend on θ0 which makes the process easier. Indeed, the variance of the components
of gk∗ (and therefore the covariance matrix) only comes from the right term of Equa-
tion 5.23 which does not depend on θ. Therefore the equation of Ω can be re-written
as:

Ω = cov-mat
[

eX

(d

∏
i=1

(Li − µ̄i)

)]
(5.25)

3 Here x ∈ X = Fm
2 is seen as an element of Z/2mZ.

108 Chapter 5. Fit the Joint Moments: How to Attack any Masking Scheme

(A) Boolean (2nd order)

0 2 4 6
0

50

100
Av

er
ag

e
k

* r
an

k JMR
JMR+ +

(B) Arithmetic (2nd order)

0 2 4 6
0

50

100

Av
er

ag
e

k
* r

an
k JMR

JMR+ +

(C) Multiplicative (2nd order)

0 2 4 6
0

50

100

Av
er

ag
e

k
* r

an
k JMR

CPA-0
JMRLower
JMRFull
JMR+ + Full

(D) Affine (3rd order)

0 2 4
0

50

100

Av
er

ag
e

k
* r

an
k JMR

HOCPA-0
JMRLower
JMRFull
JMR+ + Full

FIGURE 5.3: Guessing entropies for the improved JMR attacks, using the GMM theory,
and for (HO)CPA-0 after the processing of A) 216, B) 216, C) 28 × 255, D) 216 × 255 traces.

In addition, since for a fixed x, only one component of gk∗(ℓ, x, θ) is non-zero, Ω is
diagonal. Then, one can estimate the diagonal terms of Ω using the observed data
and then apply GMM. We denote by JMR++ the JMR attack with W = Ω−1 where
Ω is an estimation of the optimal weighting matrix.

To confirm the soundness of this approach, we performed the same experiments
as those described in subsection 5.3.4 to compare JMR and JMR++. Figures 3.3a
and 3.3b show the results for the second-order Boolean and arithmetic masking and,
according to the theory, JMR++ performs a little better than JMR. It can be noticed
that in the case of Boolean masking JMR++ also outperforms HO-LRA-1, which has
approximately the same performance as JMR, despite having more parameters to
estimate.

The Case of Biased Schemes

Some masking schemes, such as the multiplicative or the affine one, violate the as-
sumption of shares uniformity. Therefore the resilience to (d − 1)th-order attack is
not guaranteed anymore. For example, Z = 0 implies Z1 = 0 in a multiplicative
scheme inducing a first-order leakage. As well, when Z = 0, the affine scheme be-
comes a Boolean scheme of order 2 inducing second-order leakages. Since lower
order JM are informative in these cases, a first idea to exploit this weakness is to
apply JMR but at a lower-order. This means that the considered conditions concern
only the first-order moments for a multiplicative scheme and the second-order JM

5.5. Experiments on Real Traces 109

for an affine scheme. Such an attack is denoted JMRLower. Since this would only
exploit the difference between the class Z = 0 and Z ̸= 0 this attack would be very
close to a CPA computed with a zero-valued model considering only two classes:
Z = 0 and Z ̸= 0, denoted CPA-0 (or HOCPA-0 in the affine case) afterward.

Figures 5.3c and 5.3d confirm this intuition by showing that both CPA-0 and
JMRLower behave very similarly and have better results than JMR for high noise val-
ues but worse results for low noise values. Indeed, since the main advantage of
masking is to amplify the impact of the noise exponentially with the order of the
mask [PR13] or more accurately, with the order of the attack required to defeat it.
For low values of σ the JM conditions used in JMRLower are less informative than
the one used by JMR (they only exploit a difference between the class Z = 0 and
the other classes) but the impact of the noise is amplified by a lower order which
explains the better results of JMRLower for high σ.

A natural challenge is to design an attack benefiting from the best of both worlds:
JMR and JMRLower. To this aim, we propose to use the flexibility of the GMM
paradigm to develop an attack with conditions from both informative orders at the
same time. This corresponds to building a system with 512 conditions instead of
256 when attacking a key byte. In this case, the weighting matrix is very important
since each half of the system concerns conditions with very different variances (es-
timating joint moments is exponentially hard with the order). To highlight this fact
we denote by JMRFull and JMR++Full the version of JMR with both order conditions
respectively with W = Id512 and W = Ω−1.

Results are presented in figures 5.3c and 5.3d. As expected, JMRFull outperforms
JMR but is impacted by the variance of the d-order conditions and therefore per-
forms worse than JMRLower for high values of σ. However, JMR++Full benefits from
the advantage of exploiting the d-order conditions for low values of σ but still con-
verges towards JMRLower for high noise values thanks to the well-chosen weighting
of these conditions. Indeed, it is proven in [Han82] that adding more moments con-
ditions can only improve the performance of the GMM estimator (by lowering its
variance) when using the optimal weighting matrix Ω−1.

We highlight the fact that for the multiplicative scheme, there is an interest in
using JMR++Full over CPA-0 since for example it would give a successful attack
at σ = 1 where CPA-0 would rank the correct key at the 20th position which is
not enumerable considering the full 16 bytes key. However, for the affine case, the
curves look very similar and we argue that the overhead in time complexity of using
JMR++Full (or JMRLower) over CPA-0 is not worth it.

5.5 Experiments on Real Traces

To assess the performance of JMR on real traces, we decided to attack two open
source protected AES implementations. The first one is protected by a first-order

110 Chapter 5. Fit the Joint Moments: How to Attack any Masking Scheme

Boolean masking scheme (ASCAD) [Ben+18]. The second one embeds an affine
scheme and a shuffling countermeasure (ASCADv2) [Ben+19]).

5.5.1 Attack on a First-Order Boolean Masked AES (ASCAD)

As a first experiment, we performed the different stochastic attacks discussed in this
paper on the public dataset of ASCAD. It is a common set of side-channel traces, in-
troduced for research purposes on deep learning-based side-channel attacks. The
targeted implementation is a software AES, protected with a first-order Boolean
masking, running on an 8-bit ATMega8515 board.

We performed guessing entropies for the different attacks, using the training
dataset containing 50k traces. We extracted from the dataset, the two Point-of-
Interests (PoI) corresponding to the highest signal-to-noise ratio, one for each share.
This step requires the knowledge of the shares and would not be feasible by a non-
profiled adversary. In a real scenario, a visual analysis of the trace combined with
knowledge on the implementation can be used to perform a PoI selection to reduce
the number of sample combinations to be tested. Our goal here is to assess the se-
curity supposing that the adversary is able to apply the methodology on the best
sample combination.

Results

Results are depicted in Figure 5.4. We observe similar outcomes than in the first-
order Boolean simulations. As expected the results of JMR++ and HO-LRA-1 are
very close since it is a Boolean masking (and thus, Assumption 1 holds). Similarly
to Figure 3.3a, the slight advantage of JMR++ may be explained by the use of the
optimal weighting matrix. One may notice that the HO-CPA performs better than in
the simulations. It outperforms all the other attacks for low numbers of traces even
though attacks with an average correct key rank higher than 25 does not allow for a
successful enumeration in a reasonable time. The better performance of HO-CPA can
be explained by the fact that the leakage model of the ASCAD traces is much closer
to a Hamming weight leakage model than those used in the simulated experiments.
In such cases, regression-based attacks benefits less from their genericity. As the
execution time has a low dependency to the number of traces, running JMR++ took
approximately 10 seconds as in the simulations.

5.5.2 Attack of an open source Hardened AES implementation (ASCADv2)

As a second experiment, we decided to attack the second protected AES imple-
mentation proposed by the Agence Nationale de la Sécurité des Systèmes d’Information
(ANSSI) [Ben+19]. They published a library implementing an AES-128 on an ARM
Cortex-M4 architecture using state-of-the-art counter-measures. Indeed, this im-
plementation uses an affine masking as well as random shuffling of independent

5.5. Experiments on Real Traces 111

250 500 750 1000 1250
Number of traces

0

25

50

75

100

125

Av
er

ag
e

k
* r

an
k

HO-CPA
HO-LRA-1
HO-LRA-2
HO-LRA-3
JMR+ +

FIGURE 5.4: Comparison of different attacks’ guessing entropies on
ASCAD

operations [VC+12]. It is accompanied by a publicly available dataset called AS-
CADv2 providing 800,000 traces acquired on an STM32F303 microcontroller running
this protected AES. A detailed leakage analysis of this dataset has been published
in [MS21]. Following their terminology we tried to attack the unmasked variable
Z = Sbox[k∗ ⊕ P] using the leakage of the three shares:

Z1 = Z⊗ rmul ⊕ rout

Z2 = rmul

Z3 = rout

(5.26)

Unfortunately, the number of traces turned out to be too low to analyze the unsuper-
vised attacks discussed in this paper. Thus, we reproduced a similar experimental
setup, described in the next section, in order to collect significantly more traces.

Acquisition Setup

Our setup has the following features:

• The acquisitions have been performed on a NUCLEO-F303RE board, which
embeds the same STM32F303 micro-controller as used in ASCADv2.

• The device is clocked at 8MHz, while ASCADv2 device is clocked a 4 MHz.
This allows faster acquisitions without altering the execution behavior (e.g.,
introducing FLASH wait cycles). Being in an evaluation setup, we had the
labels of the shares and validated that it did not affect the signal-to-noise ratio
of these intermediate variables.

• We measured the magnetic field produced by the circuit with a Langer H-field
probe (RF-U 5-2). This differs from ASCADv2 setup, which measures the cur-
rent of the device through a ChipWhisperer [OC14]. However, we observed

112 Chapter 5. Fit the Joint Moments: How to Attack any Masking Scheme

better signal to noise ratios on the EM field. The probe covers a large portion
of the CPU and no specific tuning of the probe placement was performed.

• The scope was configured at 3.125 GS/s and acquired a window of 8µs, which
represents 25,000 time samples.

• The masked AES implementation was taken “as-is” from the SecAESSTM32
repository [Ben+19]. We only made the following changes to the assembly
code:

– a GPIO is raised in the Load_random function, which manipulates rmul and
rout.

– a GPIO is raised in the first round of the AES, just after the Xor_Word

operation.

To further speed up the acquisitions, we do not transfer the plaintext and mask-
ing inputs through the serial port. Indeed, this represents 54 bytes (16 + 19 × 2)
per encryption, which quickly becomes a bottleneck for acquisitions. Instead, the
device runs a PCG32 Pseudo-Random Number Generator (PRNG) [O’N14] to gen-
erate those data on the fly. This PRNG is re-seeded randomly (by sending 8 bytes
on the serial port) every 250 acquisitions. This allows to regenerate (from the stored
seeds) the plaintexts and random masks offline, to label the dataset.

For each encryption, the scope triggers twice and acquires 50,000 samples. The
final dataset contains 100M traces and took 14 days to acquire. In summary, we used
the same AES implementation and micro-controller as in the ASCADv2 setup. We
only made some changes in the instrumentation and measurement chain to reduce
the number of traces needed and improve the speed of acquisition.

Simulating an Unshuffled Version

The implementation uses random permutation of the 16 Sboxes applications. How-
ever, using the same idea as developed in technical analysis of the ANSSI reposi-
tory [Ben+19], one can simulate (through the knowledge of the key and the permu-
tation Sh being used) an attack on an unshuffled version even if the acquired traces
are shuffled. Instead of targeting the first byte Z = Sbox[k∗[0]⊕ P[0]] one may target:

Z = Sbox[k∗[Sh−1(0)]⊕ P[Sh−1(0)]] (5.27)

where Sh−1(0) denotes the index of the byte that is computed first through the
permutation Sh. Then such an attack would uses Z(k̄) = Sbox[k̄ ⊕ k∗[Sh−1(0)] ⊕
P[Sh−1(0)]] as hypothesis intermediate variable, the attack being successful if the
best hypothesis is 0.

5.5. Experiments on Real Traces 113

Results

In a similar way to the first experiment from subsection 5.5.1, we extracted from the
dataset described in section 5.5.2, the three Point-of-Interests (PoI) corresponding to
the highest signal-to-noise ratio, one for each share. We performed the attacks on
both the shuffled and unshuffled versions. The attacks on the shuffled version only
use the leakage of the first Sbox computation. Shuffling adds a lot of noise since even
for the correct key hypothesis the predicted value of Z is only correct once out of 16
in average.

Results are presented in Figure 3.4. Each point represents the mean ranking of
the correct key over 100 attacks performed with the corresponding number of traces.
For each attack, traces are randomly drawn among the 100M dataset. Both JMR++Full

and JMR++ converge towards a guessing entropy of 0 which provides by the same
token, the first unsupervised attack on the secured ANSSI’s AES implementation.

Using the scheme bias. Not surprisingly, JMR++Full and HOCPA-0, which ex-
ploits the bias in the masking scheme, gives the best results. These attacks require
30k4 and 15M traces to converge towards 0 for the unshuffled and shuffled version
respectively. This confirms that for high noise value, a lower-order leakage induces
attacks with at least one order of magnitude smaller data complexity. Thus, it con-
firms that even though d shares are used to mask the sensitive value, a biased d-order
masking should not be considered of order d as far as security is concerned.

Not using the scheme bias. When this lower-order leakage is not considered
in the attack, JMR++ outperforms the other state-of-the-art attacks and is the only
attack able to converge toward a guessing entropy of 0 with the considered number
of traces. As in the simulations, the amount of time required to run this attack is
approximately 15 seconds.

For biased masking schemes, there is no interest to perform this attack over CPA-
0. However, we argue that this result is interesting since it shows how JMR would
perform on a generic (with a high algebraic degree) unbiased second-order masking
schemes.

5.5.3 Discussion

Results obtained on the real traces collected on AES implementations (proposed by
the ANSSI) protected with boolean and affine masking are in line with the simu-
lation results. It confirms that JMR gives a sound methodology, able to work with
flexible leakage model assumptions (linear, quadratic...), which is applicable to any

4 It should be noted that even if some of the presented attacks require less than 800k traces, they
have not been successful on the original ASCADv2 dataset. We have confirmed that our traces
have a better SNR on the leakage of each of the shares which could explain this difference.

114 Chapter 5. Fit the Joint Moments: How to Attack any Masking Scheme

(A) Unshuffled Version

1 100 200 300 400 500
Number of traces

0

50

100
A
ve

ra
g
e
k

*
ra

n
k

×103

(B) Shuffled Version

1 10 20 30 40 50 60 70
Number of traces

0

50

100

A
ve

ra
g
e
k

*
ra

n
k

×106

HO-CPA
HO-LRA-1
HO-LRA-2
HO-LRA-3
JMR+ +

JMR+ + Full

HOCPA-0
Attacks using bias

FIGURE 5.5: Comparison of different attacks’ guessing entropies on
the secured ANSSI’s AES

masking scheme, even newly invented ones. Such strategy widens the state-of-the-
art5.

5.6 Conclusion

This chapter introduced a new unsupervised strategy, JMR, which embeds the mask-
ing structure within it, allowing it to defeat arbitrary masking schemes. It is based
on a non-linear system regression which allows to derive the leakage model of each
share by carefully exploiting higher-order joint moments conditions. JMR outper-
forms state-of-the-art attacks which are limited to Boolean and arithmetic masking,
especially when the Hamming weight leakage assumption does not hold. We re-
duced the core of JMR into a more general framework: the generalized method of
moments and derived optimizations of JMR from it. Experiments performed on
synthetic data confirmed the effectiveness of the proposed attack, especially against
multiplicative and affine masking schemes. Eventually, this new strategy has been
confirmed on real traces, allowing a fully unsupervised attack of the ANSSI’s pro-
tected AES implementation which embeds an affine masking and shuffling counter-
measures.

The JMR method described in this chapter is not highly multi-dimensional in the
sense that it only exploits d times sample when applied on a dth-order masking. It
is well known that sensitive variables can leak several times in a single trace. Sec-
tion 4.4.1 suggests that the EVIL machine produce an estimation of the joint moment
per class under a key hypothesis. It is therefore possible in theory to bridge the two
strategies to mount an unsupervised attack, able to work with a flexible a priori, ag-
nostic to the masking scheme and which benefits from the advantage of deep learn-
ing techniques. Such a strategy would deserve a full analysis in a dedicated work
which constitutes an interesting and stimulating line of research for future works.

5 One may notice that the other attacks perform better than in the simulated experiments. We ex-
plain this by the fact that in this case, the leakage model is fixed and may be closer to a Hamming
weight model.

115

Chapter 6

General Conclusion

This thesis investigated new unsupervised methods for side-channel analysis based
on mutual information estimated in a high dimensional way. The starting point is
that the mutual information between the full traces and the secret is a key quantity
for SCA since it provides an absolute leakage quantification. Such a quantity has not
really been studied before due to its computational intractability in high dimensional
spaces: traces usually contains too many time samples for classical MI estimators
to stay sound. However recent works from the pure machine learning community
proposed a new MI estimator (MINE), based on deep learning techniques, that is
supposed to scale with high dimensional variables.

The first contribution of this thesis, from Chapter 2, is to provide an analysis of
MINE in an SCA context. We showed that with the correct representation of the in-
put variable MINE is effectively able to estimate the MI between sensitive variables
and full (or a significant portion of) traces. It is therefore able to automatically com-
bines samples making the tool sound for masked implementations or for low signal
cases where multiple sources have to be accumulated to detect a significant leakage.
MINE appears to be a generic tool allowing to have an objective leakage evaluation
from traces. As a result, it could be used by designers/evaluators as a sound leakage
metric during their development/evaluation process.

As a second contribution, Chapter 3 presents NEMIA which is an extension of
this new tool to the context of unsupervised attacks, aiming at recovering a cryp-
tographic key. It revisits the classical mutual information analysis, in a multidi-
mensional paradigm. It provides rigorous proofs whose goal are to derive the op-
timal MI-based attacks that deal with high-dimensional traces. NEMIA is the first
unsupervised attack able to benefit at the same time from the framework of infor-
mation theory and the potential of deep learning (multidimensional treatment of
traces, reduces the need for preprocessing, adaptable architectures...). Being able to
combine information from multiple sources, NEMIA outperforms classical strategies
and may be worth considering especially in low information/high noise scenarios,
where all (or most) of the available information contained in the trace needs to be
exploited to conduct a successful attack.

116 Chapter 6. General Conclusion

From a practical point of view, the two main drawbacks of NEMIA are: its com-
putational complexity, requiring as many network trainings as there are key candi-
dates, and its requirement for a strong leakage model a priori. Chapter 4 proposes, as
a third contribution, a new attack strategy, the EVIL Machine Attack (EMA), which
is built to overcome these two problems. The EVIL machine is a network architec-
ture, inspired by generative adversarial networks, whose aim is to produce a rep-
resentation of the leakage model of the device. It is derived as an unsupervised
attack combining techniques from the stochastic attacks which allows for a more
flexible a priori. In addition, EMA requires only one network training, which may be
a game changer regarding unsupervised deep learning-based attacks. Simulations
and real case experiments confirmed its practicable applicability showing significant
improvement compared to classical stochastic attacks.

EMA applied in the context of masking raised questions about higher-order gen-
eralizations of stochastic attacks. The last contribution, provided by Chapter 5, is
an analysis of such generalizations along with a new proposal based on non-linear
regressions of the joint moments of the leakage distribution (JMR). Its main advan-
tage is to be agnostic to the masking scheme. We showed that state-of-the-art attack
exploits specificities of the Boolean and arithmetic scheme and do not provide a
generic strategy. JMR is based on an estimation of the joint moment per class. We
showed that EMA applied on masked traces produces a representation of such joint
moment per class while benefiting from the deep learning advantages. Therefore,
EMA and JMR can be combined in an unsupervised attack strategy able to use the
potential of deep learning with a flexible leakage model a priori and whatever the
type of masking scheme. We provided a proof of concept of such a combination.
However, such a combination deserves a more in-depth characterization and may
constitute an interesting and challenging path for future research.

One of the main objectives of this thesis was to provide theoretical bases as well
as new unsupervised attack propositions which satisfied certain properties (aka.
multidimensional treatment of the traces, deep-learning potential, flexibility on the
leakage model a priori, genericity regarding the masking scheme...). Throughout
this thesis, neural networks have been seen mostly as a black box that accomplishes
the task encoded in their loss function. We have kept the network architectures as
simple as possible and did not dive into fine parameters tuning or analysis of the
different architectures related to the latest deep-learning progress. A more practical
study, focused on the DL side, would be valuable and may improve the real case per-
formances. Indeed such techniques help the networks to converge better and faster
towards their objectives, reducing the so called optimization error in the learning
process.

117

Appendix A

Proofs for chapter 3

A.1 Proofs of Lemma 1

Lemma 1. Let f : Z → Rn be any function. For any leakage model φ: Z → Rn there exists
a decomposition of f into f = f2 ◦ f1, with f1 : Z → N, f2 : N → Rn, satisfying the two
following properties:

1) ∃ f3 : Im f1 → Rn such that f3 ◦ f1 = φ

2) ∀z ∈ Z , f2| f1

(
φ−1({φ(z)})

) is bijective of reciprocal f−1
2 | f2◦ f1

(
φ−1({φ(z)})

)
Proof. Let us create a partition of Z = ⊔n

i=1Pi where two elements z1, z2 ∈ Z are in
the same Pi if and only if:

• φ(z1) = φ(z2)

• f (z1) = f (z2)

Then, one may define f1 as f1(z) = i, ∀z ∈ Pi. Since f1 only collides for z that already
collides through φ, there exists f3 such that f3 ◦ f1 = φ. As f is constant on Pi, let
us denote by vi its output on elements of Pi. Then f2 can be defined as f2(i) = vi so
that f2 ◦ f1 = f . Now let us prove 2). Let z ∈ Z and a, b ∈ f1(φ−1({φ(z)})) such
that f2(a) = f2(b). There exists za and zb such that a = f1(za) and b = f1(zb) with
φ(za) = φ(zb) = φ(z). So:

• φ(za) = φ(zb)

• f2(f1(za)) = f2(f1(zb)) ⇐⇒ f (za) = f (zb)

which means that za and zb are in the same Pi and thus collides through f1. So a = b
which proves that f2| f1(φ−1({φ(z)})) is injective. Then, considering its set of destination
being its image, one can say that this function is bijective with reciprocal function:
f−1
2 | f2◦ f1(φ−1({φ(z)})).

A.2 Proof of Corollary 1

Definition 1. A function f is said wider- than g if there exists another function h such that:
h ◦ f = g.

118 Appendix A. Proofs for chapter 3

Corollary 1. Let L be defined as in Equation 3.43. Then, for any function h̄ wider than
HW, SHW ≥ Sh̄.

Proof. There exists h such that h ◦ h̄ = HW. So:

SHW = I
(

HW(Zk∗), L
)
−max

k ̸=k∗

[
I
(

HW(Zk), L
)]

= I
(
h ◦ h̄(Zk∗), L

)
−max

k ̸=k∗

[
I
(
h ◦ h̄(Zk), L

)] (A.1)

Since removing h in the second term can only increase the information:

SHW ≥ I
(
h ◦ h̄(Zk∗), L

)
−max

k ̸=k∗

[
I
(
h̄(Zk), L

)]
(A.2)

By Theorem 5, HW maximizes over g the quantity: I
(

g(Zk∗), L
)
, so removing h in

the first term cannot increase the information:

SHW ≥ I
(
h̄(Zk∗), L

)
−max

k ̸=k∗

[
I
(
h̄(Zk), L

)]
SHW ≥ Sh̄

(A.3)

A.3 Complementary material on the entropy

Lemma 2. Let A and B be a two discrete random variables. Let f : A → Rn be any function.
Then:

H
(

f (A) | B
)
≤ H(A | B) (A.4)

Proof. The data processing inequality [BR12] ensures that applying f to any vari-
ables can not increase its mutual information with another variable so:

I
(

f (A), f (A) | B
)
≤ I(A, A | B)

H
(

f (A) | B
)
≤ H(A | B)

(A.5)

Lemma 3. Let A and B be a two discrete random variables. Let f : A → Rn be any function.
Then:

H
(

A | f (B)
)
≥ H(A | B) (A.6)

Proof. Again, using the data processing inequality [BR12]:

I
(

A, f (B)
)
≤ I(A, B)

H(A)−H
(

A | f (B)
)
≤ H(A)−H(A | B)

H
(

A | f (B)
)
≥ H(A | B)

(A.7)

A.4. Proof of Theorem 5 at Order n 119

A.4 Proof of Theorem 5 at Order n

Theorem 7. Let L represent the leakage of an intermediate variable Zk∗ protected by a
boolean masking of order n. Let all shares follow any bijection b0, . . . , bn of a Hamming
weight leakage such that:

L = [b0
(

HW(Z∗k ⊕M1 ⊕ · · · ⊕Mn)
)
, b1

(
HW(M1)

)
, . . . , bn

(
HW(Mn)

)
] (A.8)

Then, I
(

HW(Zk∗), L
)
= I

(
Zk∗ , L

)
.

Proof. Since bijective transformations do not impact mutual information, one can
consider without loss of generality that:

L = L = [HW(Z∗k ⊕M1 ⊕ · · · ⊕Mn), HW(M1), . . . , HW(Mn)] (A.9)

Now let us evaluate I
(

f (Zk∗), L
)
:

I
(

f (Zk∗), L
)
= ∑

f̄∈ f (Z)
∑
l∈L

P(f̄ , l) · log
(

P(f̄ , l)
P(f̄) · P(l)

)
(A.10)

One can split the first sum by summing on z instead of f̄ :

I
(

f (Zk∗), L
)
= ∑

z∈Z
∑
l∈L

P(z, l) · log
(

P(l | f (z))
P(l)

)
= ∑

z∈Z
∑
l∈L

P(z) · P(l | z) · log
(

P(l | f (z))
P(l)

) (A.11)

Since the identity function is bijective and maximizes this quantity, it would be
enough to show that P(l | HW(z)) = P(l | z).

Let define the following propositions Pn for n ≥ 1:

Pn :
∀ z, m1, . . . , mn ∈ Z , let

l = [HW(z⊕m1 ⊕ · · · ⊕mn), HW(m1), . . . , HW(mn)]

P(l | HW(z)) = P(l | z)

(A.12)

Let us prove Pn for any n by induction. P1 is true by Th.2. Let suppose that Pn

is true for a given n. Now, ∀z, m1, . . . , mn+1 ∈ Z let us define l:

l = [HW(z⊕m1 ⊕ · · · ⊕mn+1), HW(m1), . . . , HW(mn+1)] (A.13)

120 Appendix A. Proofs for chapter 3

Now by independence of the shares:

P(l | z) =
n+1

∏
i

[
P(HW(mi)

]
·P
(

HW(

z̄︷ ︸︸ ︷
z⊕m1 ⊕ · · · ⊕mn−1⊕

m̄︷ ︸︸ ︷
mn ⊕mn+1) |

K1︷ ︸︸ ︷
z, HW(m1), . . . HW(mn−1),

K2︷ ︸︸ ︷
HW(mn), HW(mn+1)

)
(A.14)

let us evaluate the right term by summing over all the possible value of HW(m̄):

P
(

HW(z̄⊕ m̄) | K1, K2
)
= ∑

HW(m̄)

P
(

HW(m̄) | K2
)
·

A︷ ︸︸ ︷
P
(

HW(z̄⊕ m̄) | K1, K2, HW(m̄)
)

(A.15)

One can remove K2 in A since K2 does not add any information when HW(m̄) is
known:

A = P
(

HW(z̄⊕ m̄) | K1, HW(m̄)
)

= P
(

HW(z⊕ · · · ⊕mn−1 ⊕ m̄) | z, HW(m1), . . . , HW(mn−1,), HW(m̄)
)

= P
(

HW(z⊕ · · · ⊕mn−1 ⊕ m̄) | HW(z), HW(m1), . . . , HW(mn−1,), HW(m̄)
)

(A.16)

by induction property Pn. Plug-in this into eq. A.15 and then in eq. A.14 gives:

P(l | z) = P(l | HW(z)) (A.17)

which concludes the proof.

121

Appendix B

Networks Architecture for
chapter 3

Figure B.1 and Figure B.2 show the network architectures used for the experiments
performed respectfully with MINE and classifiers (supervised and DDLA). For fair-
ness, we tried to keep the two architectures as close as possible. The optimizer used
in both cases is Adam [KB14] with default parameters. The loss function used for the
classifiers is the categorical cross-entropy. Note that when using convolutional lay-
ers with MINE, the convolutional layers should only be applied to the trace variable
and not to f (Zk) which would not make sense.

T
races

C
on

volu
tion

C
on

volu
tion

Flatten

A
verag

e
Pollin

g

O
u
tp

u
t

B
atch

n
orm

alization

D
rop

ou
t

(p
=

0
.2

5
)

D
rop

ou
t

(p
=

0
.2

5
)

D
rop

ou
t

(p
=

0
.2

5
)Fu

lly
con

n
n
ected

Fu
lly

con
n
n
ected

A
verag

e
Pollin

g
A
verag

e
Pollin

g

(200) (200, 10)

(20, 10) (20, 10)

(3, 10)

(30+1)

(20) (20)

(1)

FIGURE B.1: Network architecture for MINE

122 Appendix B. Networks Architecture for chapter 3

T
races

C
on

volu
tion

C
on

volu
tion

Flatten

A
verag

e
Pollin

g

O
u
tp

u
t

B
atch

n
orm

alization

D
rop

ou
t

(p
=

0
.2

5
)

D
rop

ou
t

(p
=

0
.2

5
)

D
rop

ou
t

(p
=

0
.2

5
)Fu

lly
con

n
n
ected

Fu
lly

con
n
n
ected

S
oftm

ax

A
verag

e
Pollin

g
A
verag

e
Pollin

g

(200) (200, 10)

(20, 10) (20, 10)

(3, 10)

(30)

(20) (20)

FIGURE B.2: Network architecture for the classifiers (Supervised and
DDLA)

123

Appendix C

Networks Architecture for
chapter 4

Figure C.1 and Figure C.2 show the network architectures used for all the the exper-
iments of this paper. The optimizer used is Adam [KB14] with default parameters.
The convolutional and fully connected layers use the exponential linear unit (ELU)
as activation function.

Z
 (O

H
E
)

O
u
tp

u
tFu

lly
con

n
n
ected

Fu
lly

con
n
n
ected

(256)

(20) (20)

(1)

FIGURE C.1: Architecture of the encoder E
T
races

C
on

volu
tion

C
on

volu
tion

Flatten

A
verag

e
Pollin

g

O
u
tp

u
t

B
atch

n
orm

alization

D
rop

ou
t

(p
=

0
.2

5
)

D
rop

ou
t

(p
=

0
.2

5
)

D
rop

ou
t

(p
=

0
.2

5
)Fu

lly
con

n
n
ected

Fu
lly

con
n
n
ected

A
verag

e
Pollin

g
A
verag

e
Pollin

g

(# samples) (200, 10)

(20, 10) (20, 10)

(3, 10)

(30+1)

(20) (20)

(1)

Mine A Mine B

FIGURE C.2: Architecture of MINE A and B

125

Appendix D

Proofs for chapter 5

D.1 Proof of Proposition 5

Proposition 5. (Boolean masking) Let ∗ = ⊕. Let l1 : Z → R and l2 : Z → R be two
leakage functions of degree 1. Let φBool(z) = cov

(
l1(z⊕ Z2), l2(Z2)

)
. Then,

deg(φBool) ≤ 1 (D.1)

Proof. Since both l1 and l2 are of degree 1, there exist two unique sets of coefficients
(α

(1)
i)0≤i≤n ∈ R and (α

(2)
i)1≤i≤n ∈ R such that:

lj(z) = α
(j)
0 +

n

∑
i=1

α
(j)
i · z[i] (D.2)

where z[i] stands for the ith bit of z. Since the covariance involves a centered product,
one can suppose without loss of generality that α

(j)
0 = 0 (we removed α

(j)
0 for read-

ability reasons but it does not change anything to the proof). Injecting Equation D.2
into the expression of φBool :

φBool(z) =
1
|Z| ∑

z2∈Z

(n

∑
i=1

α
(1)
i · (z⊕ z2)[i]− µ1

)
·
(n

∑
i=1

α
(2)
i · z2[i]− µ2

)
=

1
|Z| ∑

z2∈Z

(n

∑
i=1

α
(1)
i · (z[i]⊕ z2[i])− µ1

)
·
(n

∑
i=1

α
(2)
i · z2[i]− µ2

) (D.3)

126 Appendix D. Proofs for chapter 5

Using the identity : z[i]⊕ z2[i] = z[i] + z2[i]− 2 · (z[i] ∧ z2[i]) where ∧ stands for the
Boolean AND:

φBool(z) =
1
|Z| ∑

z2∈Z

(n

∑
i=1

α
(1)
i · (z[i] + z2[i]− 2(z[i] ∧ z2[i]))− µ1

)
·
(n

∑
i=1

α
(2)
i · z2[i]− µ2

)
=

1
|Z| ∑

z2∈Z

n

∑
i=1

(
α
(1)
i · (z[i] + z2[i]− 2(z[i] ∧ z2[i]))− µ1

)
·
(n

∑
i=1

α
(2)
i · z2[i]− µ2

)
=

1
|Z|

n

∑
i=1

∑
z2∈Z

(
α
(1)
i · (z[i] + z2[i]− 2(z[i] ∧ z2[i]))− µ1

)
·
(n

∑
i=1

α
(2)
i · z2[i]− µ2

)
=

1
|Z|

n

∑
i=1

∑
z2∈Z

z2[i]=0

(
α
(1)
i · (z[i] + z2[i])− µ1

)
·
(n

∑
i=1

α
(2)
i · z2[i]− µ2

)
+

n

∑
i=1

∑
z2∈Z

z2[i]=1

(
α
(1)
i · (−z[i] + z2[i])− µ1

)
·
(n

∑
i=1

α
(2)
i · z2[i]− µ2

)

=
1
|Z|

n

∑
i=1

z[i] ·
[

∑
z2∈Z

z2[i]=1

(
α
(1)
i · z2[i]− µ1

)
·
(n

∑
i=1

α
(2)
i · z2[i]− µ2

)
−

n

∑
i=1

∑
z2∈Z

z2[i]=1

(
α
(1)
i · z2[i]− µ1

)
·
(n

∑
i=1

α
(2)
i · z2[i]− µ2

)]

(D.4)

which is of degree at most 1 since the z[i] terms are not mixed.

D.2 Proof of Proposition 6

Proposition 6. (Arithmetic masking) Let ∗ = + mod 2n. Let l1 : Z → R and l2 : Z → R

be two leakage functions of degree 1. Let φArith(z) = cov
(
l1(z + Z2 [2n]), l2(Z2)

)
. Then,

deg(φArith) ≤ 2 (D.5)

Proof. We give a proof by induction. Let define the property Pn:

Pn : For any l1 and l2 of degree 1, deg(φn) ≤ 2, where for z ∈ Z = Fn
2 :

φn(z) = cov
(
l1(z + Z2 [2n]), l2(Z2)

)
Initialisation. The case n = 1 is trivial since deg(φArith) is at most 1 in this case.

Induction. Let suppose that Pn holds. We are going to prove that Pn+1 also
holds. Since both l1 and l2 are of degree 1, there exists two unique sets of coefficients
(α

(1)
i)0≤i≤n+1 ∈ R and (α

(2)
i)0≤i≤n+1 ∈ R such that:

lj(z) = α
(j)
0 +

n+1

∑
i=1

α
(j)
i · z[i] (D.6)

D.2. Proof of Proposition 6 127

where z[i] stands for the ith bit of z. Since the covariance involves a centered prod-
uct, one can suppose without loss of generality that α

(j)
0 = 0 (we removed α

(j)
0 for

readability reasons but it does not change anything to the proof). Injecting this into
the expression of φn+1 one has:

φn+1(z) =
2n+1−1

∑
z2=0

(n+1

∑
i=1

α
(1)
i · (z + z2 [2n+1])[i]− µ1

)
·
(n+1

∑
i=1

α
(2)
i · z2[i]− µ2

)
(D.7)

for i ∈ J1, n+ 1K, the following identity holds: (z+ z2 [2n+1])[i] = (z+ z2)[i]. Indeed,
the modulo corresponds to either doing nothing or subtracting 2n+1 when z + z2 ≥
2n+1. Then:

φn+1(z) =
2n+1−1

∑
z2=0

(n+1

∑
i=1

α
(1)
i · (z + z2)[i]− µ1

)
·
(n+1

∑
i=1

α
(2)
i · z2[i]− µ2

)
=

2n−1

∑
z2=0

(n+1

∑
i=1

α
(1)
i · (z + z2)[i]− µ1

)
·
(n+1

∑
i=1

α
(2)
i · z2[i]− µ2

)
+

2n+1−1

∑
z2=2n

(n+1

∑
i=1

α
(1)
i · (z + z2)[i]− µ1

)
·
(n+1

∑
i=1

α
(2)
i · z2[i]− µ2

)
=

2n−1

∑
z2=0

(n

∑
i=1

α
(1)
i · (z + z2)[i] + α

(1)
n+1 · (z + z2)[n + 1]− µ1

)
·

(n

∑
i=1

α
(2)
i · z2[i] + α

(2)
n+1 · z2[n + 1]− µ2

)
+

2n+1−1

∑
z2=2n

(n

∑
i=1

α
(1)
i · (z + z2)[i] + α

(1)
n+1 · (z + z2)[n + 1]− µ1

)
·

(n

∑
i=1

α
(2)
i · z2[i] + α

(2)
n+1 · z2[n + 1]− µ2

)

(D.8)

Again, one can add a [2n] in the (z + z2)[i] terms since it does not change anything
for i ∈ J1, nK. Then:

φn+1(z) =
2n−1

∑
z2=0

(n

∑
i=1

α
(1)
i · (z + z2 [2n])[i]− µ1

)
·
(n

∑
i=1

α
(2)
i · z2[i] − µ2

)
+

2n+1−1

∑
z2=2n

(n

∑
i=1

α
(1)
i · (z + z2 [2n])[i]− µ1

)
·
(n

∑
i=1

α
(2)
i · z2[i]− µ2

)
+

2n+1−1

∑
z2=0

(
α
(1)
n+1 · (z + z2)[n + 1]

)
·
(
α
(2)
n+1 · z2[n + 1]

)
(D.9)

The second line of Equation D.9 can be re-indexed summing from 0 to 2n − 1. Then,
by Pn, the first two line of Equation D.9 are of degree at most 2. So let us focus on

128 Appendix D. Proofs for chapter 5

the last term denoted A and prove that it is also of degree at most 2:

A =
2n+1−1

∑
z2=0

(
α
(1)
n+1 · (z + z2)[n + 1]

)
·
(
α
(2)
n+1 · z2[n + 1]

)
= α

(1)
n+1 · α

(2)
n+1 ·

2n+1−1

∑
z2=2n

(z + z2)[n + 1]

(D.10)

since z2[n + 1] = 0 implies that all the term in the sum are equal to 0.
One can notice that the latter sum has two expression depending on the (n + 1)th bit
of z:

2n+1−1

∑
z2=2n

(z + z2)[n + 1] =

2n − z if z[n + 1] = 0

z− 2n if z[n + 1] = 1
(D.11)

Therefore:

A = α
(1)
n+1 · α

(2)
n+1 · (z− 2n) · (2 · z[n + 1]− 1)

= α
(1)
n+1 · α

(2)
n+1 · (

n+1

∑
k=1

2k−1 · z[k]− 2n) · (2 · z[n + 1]− 1)
(D.12)

which is of degree at most 2 since developing the latter sum involves product of at
most 2 bits of z together.

Injecting this into Equation D.9 show that deg(φn+1) ≤ 2 and therefore that Pn+1

holds. This concludes the induction and therefore the proof of Proposition 6.

For the interested reader, we give as a bonus the coefficients of φArith in terms of
α
(j)
i :

φArith = α0 +
n

∑
i=1

αi · z[i] +
n

∑
i=1

n

∑
j=i+1

αi,j · z[i]z[j] (D.13)

With:

α0 =
1
4
·

n

∑
k=1

α
(1)
k α

(2)
k

αi = −
i

∑
k=1

α
(1)
k α

(2)
k

2i−k , for 1 ≤ i ≤ n

αi,j =
α
(1)
i α

(2)
i

2j−i , for 1 ≤ i < j ≤ n

(D.14)

129

Bibliography

[al.15] Martín Abadi et al. TensorFlow: Large-Scale Machine Learning on Heteroge-
neous Systems. Software available from tensorflow.org. 2015. URL: https:
//www.tensorflow.org/.

[Bal+12] Josep Balasch et al. “Theory and Practice of a Leakage Resilient Masking
Scheme”. In: ASIACRYPT. Vol. 7658. Springer, 2012, pp. 758–775. DOI:
10.1007/978- 3- 642- 34961- 4_45. URL: https://www.iacr.org/
archive/asiacrypt2012/76580746/76580746.pdf.

[Bat+11] Lejla Batina et al. “Mutual Information Analysis: A Comprehensive Study”.
In: J. Cryptol. 24.2 (Apr. 2011), 269–291. ISSN: 0933-2790. DOI: 10.1007/
s00145-010-9084-8. URL: https://doi.org/10.1007/s00145-010-
9084-8.

[BCO04] Eric Brier, Christophe Clavier, and Francis Olivier. “Correlation Power
Analysis with a Leakage Model”. In: Cryptographic Hardware and Embed-
ded Systems - CHES 2004. Ed. by Marc Joye and Jean-Jacques Quisquater.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2004.

[Bel+18a] Mohamed Ishmael Belghazi et al. MINE: Mutual Information Neural Es-
timation. 2018. arXiv: 1801.04062 [cs.LG].

[Bel+18b] Nicolas Belleville et al. “Automated Software Protection for the Masses
Against Side-Channel Attacks”. In: ACM Transactions on Architecture and
Code Optimization 15.4 (Dec. 2018), 47:1–47:27. DOI: 10.1145/3281662.
URL: https://hal.sorbonne-universite.fr/hal-01927625.

[Ben+18] Ryad Benadjila et al. “Study of deep learning techniques for side-channel
analysis and introduction to ASCAD database”. In: ANSSI, France &
CEA, LETI, MINATEC Campus, France. (2018).

[Ben+19] Ryad Benadjila et al. Hardened library for aes-128 encryption/decryption on
arm cortex m4 achitecture. https://github.com/ANSSI-FR/SecAESSTM32.
2019.

[Bha+14] Shivam Bhasin et al. “NICV: Normalized inter-class variance for detec-
tion of side-channel leakage”. In: 2014 International Symposium on Elec-
tromagnetic Compatibility, Tokyo. 2014, pp. 310–313.

[BLA79] G. R. BLAKLEY. “Safeguarding cryptographic keys”. In: 1979 Interna-
tional Workshop on Managing Requirements Knowledge (MARK). 1979, pp. 313–
318. DOI: 10.1109/MARK.1979.8817296.

https://www.tensorflow.org/
https://www.tensorflow.org/
https://doi.org/10.1007/978-3-642-34961-4_45
https://www.iacr.org/archive/asiacrypt2012/76580746/76580746.pdf
https://www.iacr.org/archive/asiacrypt2012/76580746/76580746.pdf
https://doi.org/10.1007/s00145-010-9084-8
https://doi.org/10.1007/s00145-010-9084-8
https://doi.org/10.1007/s00145-010-9084-8
https://doi.org/10.1007/s00145-010-9084-8
https://arxiv.org/abs/1801.04062
https://doi.org/10.1145/3281662
https://hal.sorbonne-universite.fr/hal-01927625
https://github.com/ANSSI-FR/SecAESSTM32
https://doi.org/10.1109/MARK.1979.8817296

130 Bibliography

[BR12] Normand J. Beaudry and Renato Renner. An intuitive proof of the data
processing inequality. 2012. arXiv: 1107.0740 [quant-ph].

[Bro+19] Olivier Bronchain et al. Leakage Certification Revisited: Bounding Model
Errors in Side-Channel Security Evaluations. Cryptology ePrint Archive,
Report 2019/132. https://eprint.iacr.org/2019/132. 2019.

[BS19] Olivier Bronchain and François-Xavier Standaert. Side-Channel Counter-
measures’ Dissection and the Limits of Closed Source Security Evaluations.
Cryptology ePrint Archive. https://eprint.iacr.org/2019/1008.
2019.

[BT11] Billy Bob Brumley and Nicola Tuveri. “Remote Timing Attacks Are Still
Practical”. In: Computer Security – ESORICS 2011. Ed. by Vijay Atluri
and Claudia Diaz. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011,
pp. 355–371.

[Car07] Claude Carlet. “Boolean Functions for Cryptography and Error Correct-
ing Codes”. In: (Nov. 2007).

[CDP17] Eleonora Cagli, Cécile Dumas, and Emmanuel Prouff. “Convolutional
Neural Networks with Data Augmentation Against Jitter-Based Coun-
termeasures”. In: Cryptographic Hardware and Embedded Systems – CHES
2017. Ed. by Wieland Fischer and Naofumi Homma. Cham: Springer
International Publishing, 2017, pp. 45–68.

[CG00] Jean-Sébastien Coron and Louis Goubin. “On Boolean and Arithmetic
Masking against Differential Power Analysis”. In: Cryptographic Hard-
ware and Embedded Systems — CHES 2000. Ed. by Çetin K. Koç and
Christof Paar. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000, pp. 231–
237. ISBN: 978-3-540-44499-2.

[Cha+19] Chung Chan et al. Neural Entropic Estimation: A faster path to mutual in-
formation estimation. 2019. arXiv: 1905.12957 [cs.IT].

[Cha+99] Suresh Chari et al. “Towards Sound Approaches to Counteract Power-
Analysis Attacks”. In: Advances in Cryptology — CRYPTO’ 99. Ed. by
Michael Wiener. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999,
pp. 398–412. ISBN: 978-3-540-48405-9.

[CK09] Jean-Sébastien Coron and Ilya Kizhvatov. “An Efficient Method for Ran-
dom Delay Generation in Embedded Software”. In: Cryptographic Hard-
ware and Embedded Systems - CHES 2009. Ed. by Christophe Clavier and
Kris Gaj. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 156–
170. ISBN: 978-3-642-04138-9.

[CK10] Jean-Sébastien Coron and Ilya Kizhvatov. “Analysis and Improvement
of the Random Delay Countermeasure of CHES 2009”. In: Cryptographic
Hardware and Embedded Systems, CHES 2010. Ed. by Stefan Mangard and

https://arxiv.org/abs/1107.0740
https://eprint.iacr.org/2019/132
https://eprint.iacr.org/2019/1008
https://arxiv.org/abs/1905.12957

Bibliography 131

François-Xavier Standaert. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2010, pp. 95–109. ISBN: 978-3-642-15031-9.

[CL20] Kwanghee Choi and Siyeong Lee. Regularized Mutual Information Neural
Estimation. 2020. arXiv: 2011.07932 [cs.LG].

[CLH20] Valence Cristiani, Maxime Lecomte, and Thomas Hiscock. “A Bit-Level
Approach to Side Channel Based Disassembling”. In: Smart Card Re-
search and Advanced Applications. Ed. by Sonia Belaïd and Tim Güneysu.
Cham: Springer International Publishing, 2020, pp. 143–158. ISBN: 978-
3-030-42068-0.

[Cri+22] Valence Cristiani et al. Fit The Joint Moments - How to Attack any Masking
Schemes. Cryptology ePrint Archive, Paper 2022/927. https://eprint.
iacr.org/2022/927. 2022. URL: https://eprint.iacr.org/2022/927.

[CRR02] Suresh Chari, Josyula R Rao, and Pankaj Rohatgi. “Template attacks”.
In: International Workshop on Cryptographic Hardware and Embedded Sys-
tems. 2002.

[DDP13] Guillaume Dabosville, Julien Doget, and Emmanuel Prouff. “A New
Second-Order Side Channel Attack Based on Linear Regression”. In:
IEEE Transactions on Computers 62.8 (2013), pp. 1629–1640. DOI: 10.1109/
TC.2012.112.

[Dog+12] Julien Doget et al. “Univariate side channel attacks and leakage model-
ing”. In: Journal of Cryptographic Engineering 1 (Apr. 2012), pp. 123–144.
DOI: 10.1007/s13389-011-0010-2.

[EG12a] M. Elaabid and Sylvain Guilley. “Portability of templates”. In: Journal
of Cryptographic Engineering 2 (May 2012). DOI: 10.1007/s13389-012-
0030-6.

[EG12b] M. Abdelaziz Elaabid and Sylvain Guilley. “Portability of templates”.
In: Journal of Cryptographic Engineering 2 (2012), pp. 63–74.

[EPW10] Thomas Eisenbarth, Christof Paar, and Björn Weghenkel. “Building a
side channel based disassembler”. In: Transactions on computational sci-
ence. 2010.

[Fum+11] Guillaume Fumaroli et al. “Affine Masking against Higher-Order Side
Channel Analysis”. In: Selected Areas in Cryptography. Ed. by Alex Biryukov,
Guang Gong, and Douglas R. Stinson. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011, pp. 262–280.

[Gie+08] Benedikt Gierlichs et al. “Mutual Information Analysis”. In: Cryptographic
Hardware and Embedded Systems – CHES 2008. Ed. by Elisabeth Oswald
and Pankaj Rohatgi. Springer Berlin Heidelberg, 2008.

https://arxiv.org/abs/2011.07932
https://eprint.iacr.org/2022/927
https://eprint.iacr.org/2022/927
https://eprint.iacr.org/2022/927
https://doi.org/10.1109/TC.2012.112
https://doi.org/10.1109/TC.2012.112
https://doi.org/10.1007/s13389-011-0010-2
https://doi.org/10.1007/s13389-012-0030-6
https://doi.org/10.1007/s13389-012-0030-6

132 Bibliography

[GLRP06] Benedikt Gierlichs, Kerstin Lemke-Rust, and Christof Paar. “Templates
vs. Stochastic Methods”. In: Cryptographic Hardware and Embedded Sys-
tems - CHES 2006. Ed. by Louis Goubin and Mitsuru Matsui. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2006, pp. 15–29. ISBN: 978-3-
540-46561-4.

[Goo+14] Ian J. Goodfellow et al. Generative Adversarial Networks. 2014. DOI: 10.
48550/ARXIV.1406.2661. URL: https://arxiv.org/abs/1406.2661.

[GP08] Martin Goldack and Ing Christof Paar. “Side-channel based reverse en-
gineering for microcontrollers”. In: Master’s thesis, Ruhr-Universität Bochum,
Germany (2008).

[GPQ11] Laurie Genelle, Emmanuel Prouff, and Michaël Quisquater. “Thwarting
Higher-Order Side Channel Analysis with Additive and Multiplicative
Maskings”. In: Cryptographic Hardware and Embedded Systems – CHES
2011. Ed. by Bart Preneel and Tsuyoshi Takagi. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2011, pp. 240–255.

[Han82] Lars Peter Hansen. “Large Sample Properties of Generalized Method of
Moments Estimators”. In: Econometrica 50.4 (1982), pp. 1029–1054. ISSN:
00129682, 14680262. URL: http://www.jstor.org/stable/1912775
(visited on 04/10/2022).

[Har+20] Charles R. Harris et al. “Array programming with NumPy”. In: Nature
585.7825 (Sept. 2020), pp. 357–362. DOI: 10.1038/s41586-020-2649-2.
URL: https://doi.org/10.1038/s41586-020-2649-2.

[HSW89] K. Hornik, M. Stinchcombe, and H. White. “Multilayer feedforward
networks are universal approximators”. In: Neural Networks 2.5 (1989),
pp. 359–366.

[IPS02] J. Irwin, D. Page, and N.P. Smart. “Instruction stream mutation for non-
deterministic processors”. In: Proceedings IEEE International Conference
on Application- Specific Systems, Architectures, and Processors. 2002, pp. 286–
295. DOI: 10.1109/ASAP.2002.1030727.

[KB14] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Opti-
mization. 2014. DOI: 10.48550/ARXIV.1412.6980. URL: https://arxiv.
org/abs/1412.6980.

[Kel60] Henry J Kelley. “Gradient theory of optimal flight paths”. In: Ars Journal
30.10 (1960), pp. 947–954.

[KJJ99] Paul Kocher, Joshua Jaffe, and Benjamin Jun. “Differential power anal-
ysis”. In: Annual International Cryptology Conference. 1999.

[Koc96] Paul C Kocher. “Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems”. In: Annual International Cryptology Con-
ference. 1996.

https://doi.org/10.48550/ARXIV.1406.2661
https://doi.org/10.48550/ARXIV.1406.2661
https://arxiv.org/abs/1406.2661
http://www.jstor.org/stable/1912775
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1109/ASAP.2002.1030727
https://doi.org/10.48550/ARXIV.1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980

Bibliography 133

[KSG04] Alexander Kraskov, Harald Stögbauer, and Peter Grassberger. “Esti-
mating mutual information”. In: Physical Review (2004). URL: http://
dx.doi.org/10.1103/PhysRevE.69.066138.

[Lev44] Kenneth Levenberg. “A METHOD FOR THE SOLUTION OF CERTAIN
NON-LINEAR PROBLEMS IN LEAST SQUARES”. In: Quarterly of Ap-
plied Mathematics 2.2 (1944), pp. 164–168. ISSN: 0033569X, 15524485. URL:
http://www.jstor.org/stable/43633451 (visited on 04/06/2022).

[Lin+19] Xiao Lin et al. Data-Efficient Mutual Information Neural Estimator. 2019.
arXiv: 1905.03319 [cs.LG].

[LPR13] Victor Lomné, Emmanuel Prouff, and Thomas Roche. “Behind the Scene
of Side Channel Attacks”. In: Advances in Cryptology - ASIACRYPT 2013.
Ed. by Kazue Sako and Palash Sarkar. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 506–525. ISBN: 978-3-642-42033-7.

[Man04] Stefan Mangard. “Hardware Countermeasures against DPA – A Statis-
tical Analysis of Their Effectiveness”. In: Topics in Cryptology – CT-RSA
2004. Ed. by Tatsuaki Okamoto. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2004, pp. 222–235. ISBN: 978-3-540-24660-2.

[Mar63] Donald W. Marquardt. “An Algorithm for Least-Squares Estimation of
Nonlinear Parameters”. In: Journal of the Society for Industrial and Applied
Mathematics 11.2 (1963), pp. 431–441. ISSN: 03684245. URL: http://www.
jstor.org/stable/2098941 (visited on 04/06/2022).

[MDP19] Loïc Masure, Cécile Dumas, and Emmanuel Prouff. “A Comprehensive
Study of Deep Learning for Side-Channel Analysis”. In: IACR Transac-
tions on Cryptographic Hardware and Embedded Systems 2020 (2019).

[Mes00] Thomas S. Messerges. “Using Second-Order Power Analysis to Attack
DPA Resistant Software”. In: Cryptographic Hardware and Embedded Sys-
tems — CHES 2000. Ed. by Çetin K. Koç and Christof Paar. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2000, pp. 238–251. ISBN: 978-3-540-
44499-2.

[MMS01] David May, Henk L. Muller, and Nigel P. Smart. “Non-deterministic
Processors”. In: Information Security and Privacy. Ed. by Vijay Varadhara-
jan and Yi Mu. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001,
pp. 115–129. ISBN: 978-3-540-47719-8.

[Moo+02] S. Moore et al. “Improving smart card security using self-timed cir-
cuits”. In: Proceedings Eighth International Symposium on Asynchronous
Circuits and Systems. 2002, pp. 211–218. DOI: 10.1109/ASYNC.2002.
1000311.

[Moo+04] Simon Moore et al. “Balanced Self-Checking Asynchronous Logic for
Smart Card Applications”. In: Microprocessors and Microsystems 27 (Aug.
2004), pp. 421–430. DOI: 10.1016/S0141-9331(03)00092-9.

http://dx.doi.org/10.1103/PhysRevE.69.066138
http://dx.doi.org/10.1103/PhysRevE.69.066138
http://www.jstor.org/stable/43633451
https://arxiv.org/abs/1905.03319
http://www.jstor.org/stable/2098941
http://www.jstor.org/stable/2098941
https://doi.org/10.1109/ASYNC.2002.1000311
https://doi.org/10.1109/ASYNC.2002.1000311
https://doi.org/10.1016/S0141-9331(03)00092-9

134 Bibliography

[MOP10] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power Analy-
sis Attacks: Revealing the Secrets of Smart Cards. 1st. Springer Publishing
Company, Incorporated, 2010. ISBN: 1441940391.

[Mor+08] Amir Moradi et al. “Information Leakage of Flip-Flops in DPA-Resistant
Logic Styles.” In: IACR Cryptology ePrint Archive 2008 (Jan. 2008), p. 188.

[MPG05] Stefan Mangard, Thomas Popp, and Berndt M. Gammel. “Side-Channel
Leakage of Masked CMOS Gates”. In: Topics in Cryptology – CT-RSA
2005. Ed. by Alfred Menezes. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2005, pp. 351–365. ISBN: 978-3-540-30574-3.

[MPP16] Houssem Maghrebi, Thibault Portigliatti, and Emmanuel Prouff. “Break-
ing Cryptographic Implementations Using Deep Learning Techniques”.
In: Security, Privacy, and Applied Cryptography Engineering. Ed. by Claude
Carlet, M. Anwar Hasan, and Vishal Saraswat. Cham: Springer Interna-
tional Publishing, 2016, pp. 3–26. ISBN: 978-3-319-49445-6.

[MS21] Loïc Masure and Rémi Strullu. Side Channel Analysis against the ANSSI’s
protected AES implementation on ARM. Cryptology ePrint Archive, Re-
port 2021/592. 2021.

[MSQ08] François Macé, François-Xavier Standaert, and Jean-Jacques Quisquater.
“Information Theoretic Evaluation of Side-Channel Resistant Logic Styles”.
In: vol. 2008. Jan. 2008, p. 5.

[MWM21] Thorben Moos, Felix Wegener, and Amir Moradi. “DL-LA: Deep Learn-
ing Leakage Assessment: A modern roadmap for SCA evaluations”.
In: IACR Transactions on Cryptographic Hardware and Embedded Systems
2021.3 (2021), 552–598. DOI: 10.46586/tches.v2021.i3.552-598. URL:
https://tches.iacr.org/index.php/TCHES/article/view/8986.

[Nag+07] Sei Nagashima et al. “DPA Using Phase-Based Waveform Matching against
Random-Delay Countermeasure”. In: 2007 IEEE International Symposium
on Circuits and Systems. 2007, pp. 1807–1810. DOI: 10.1109/ISCAS.2007.
378024.

[OC14] Colin O’Flynn and Zhizhang (David) Chen. “ChipWhisperer: An Open-
Source Platform for Hardware Embedded Security Research”. In: Con-
structive Side-Channel Analysis and Secure Design. Ed. by Emmanuel Prouff.
Cham: Springer International Publishing, 2014, pp. 243–260. ISBN: 978-
3-319-10175-0.

[OM06] Elisabeth Oswald and Stefan Mangard. “Template Attacks on Masking—
Resistance Is Futile”. In: Topics in Cryptology – CT-RSA 2007. Ed. by
Masayuki Abe. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006,
pp. 243–256. ISBN: 978-3-540-69328-4.

https://doi.org/10.46586/tches.v2021.i3.552-598
https://tches.iacr.org/index.php/TCHES/article/view/8986
https://doi.org/10.1109/ISCAS.2007.378024
https://doi.org/10.1109/ISCAS.2007.378024

Bibliography 135

[O’N14] Melissa E. O’Neill. PCG: A Family of Simple Fast Space-Efficient Statisti-
cally Good Algorithms for Random Number Generation. Tech. rep. HMC-
CS-2014-0905. Claremont, CA: Harvey Mudd College, Sept. 2014.

[Per05] Colin Percival. “Cache Missing for Fun and Profit”. In: In Proc. of BSD-
Can 2005. 2005.

[PR09] Emmanuel Prouff and Matthieu Rivain. “Theoretical and Practical As-
pects of Mutual Information Based Side Channel Analysis.” In: Jan.
2009, pp. 499–518.

[PR13] Emmanuel Prouff and Matthieu Rivain. “Masking against Side-Channel
Attacks: A Formal Security Proof”. In: Advances in Cryptology – EURO-
CRYPT 2013. Ed. by Thomas Johansson and Phong Q. Nguyen. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 142–159. ISBN: 978-3-
642-38348-9.

[PRB09] E. Prouff, M. Rivain, and R. Bevan. “Statistical Analysis of Second Order
Differential Power Analysis”. In: IEEE Transactions on Computers 58.6
(2009), pp. 799–811. DOI: 10.1109/TC.2009.15.

[Prz+17] Adrian Przybylski et al. “Gpufit: An open-source toolkit for GPU-accelerated
curve fitting”. In: (2017). DOI: 10.1101/174110.

[PSG16] Romain Poussier, François-Xavier Standaert, and Vincent Grosso. “Sim-
ple Key Enumeration (and Rank Estimation) Using Histograms: An In-
tegrated Approach”. In: Cryptographic Hardware and Embedded Systems –
CHES 2016. Ed. by Benedikt Gierlichs and Axel Y. Poschmann. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2016, pp. 61–81. ISBN: 978-3-
662-53140-2.

[QS01] Jean-Jacques Quisquater and David Samyde. “Electromagnetic analy-
sis: Measures and counter-measures for smart cards”. In: 2001.

[RGV14a] Oscar Reparaz, Benedikt Gierlichs, and Ingrid Verbauwhede. “A Note
on the Use of Margins to Compare Distinguishers”. In: Constructive Side-
Channel Analysis and Secure Design. Ed. by Emmanuel Prouff. Cham:
Springer International Publishing, 2014, pp. 1–8.

[RGV14b] Oscar Reparaz, Benedikt Gierlichs, and Ingrid Verbauwhede. “Generic
DPA Attacks: Curse or Blessing?” In: Constructive Side-Channel Analysis
and Secure Design. Ed. by Emmanuel Prouff. Cham: Springer Interna-
tional Publishing, 2014, pp. 98–111. ISBN: 978-3-319-10175-0.

[RO05] Christian Rechberger and Elisabeth Oswald. “Practical Template At-
tacks”. In: Information Security Applications. Ed. by Chae Hoon Lim and
Moti Yung. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 440–
456. ISBN: 978-3-540-31815-6.

[San+18] Shibani Santurkar et al. How Does Batch Normalization Help Optimization?
2018. arXiv: 1805.11604 [stat.ML].

https://doi.org/10.1109/TC.2009.15
https://doi.org/10.1101/174110
https://arxiv.org/abs/1805.11604

136 Bibliography

[Sch+14] Alexander Schaub et al. “Attacking Suggest Boxes in Web Applications
Over HTTPS Using Side-Channel Stochastic Algorithms”. In: vol. 8924.
Aug. 2014, pp. 116–130. DOI: 10.1007/978-3-319-17127-2_8.

[Sha48] Claude E. Shannon. “A mathematical theory of communication.” In:
Bell Syst. Tech. J. 27.3 (1948), pp. 379–423.

[SM15] Tobias Schneider and Amir Moradi. “Leakage assessment methodol-
ogy”. In: International Workshop on Cryptographic Hardware and Embedded
Systems. 2015.

[Sri+14] Nitish Srivastava et al. “Dropout: A Simple Way to Prevent Neural Net-
works from Overfitting”. In: Journal of Machine Learning Research 15.56
(2014), pp. 1929–1958.

[Ste14] Greg Ver Steeg. Non-parametric Entropy Estimation Toolbox. 2014. URL:
https://github.com/gregversteeg/NPEET.

[Str+15] Daehyun Strobel et al. “Scandalee: a side-channel-based disassembler
using local electromagnetic emanations”. In: Proceedings of the Design,
Automation & Test in Europe Conference & Exhibition. 2015.

[The03] The OpenSSL Project. “OpenSSL: The Open Source toolkit for SSL/TLS”.
www.openssl.org. 2003.

[Thi+18] Hugues Thiebeauld et al. “SCATTER: A New Dimension in Side-Channel”.
In: Constructive Side-Channel Analysis and Secure Design. Ed. by Junfeng
Fan and Benedikt Gierlichs. Cham: Springer International Publishing,
2018, pp. 135–152. ISBN: 978-3-319-89641-0.

[Tim19] Benjamin Timon. “Non-Profiled Deep Learning-based Side-Channel at-
tacks with Sensitivity Analysis”. In: IACR Transactions on Cryptographic
Hardware and Embedded Systems 2019.2 (2019), pp. 107–131. DOI: 10 .
13154/tches.v2019.i2.107-131. URL: https://tches.iacr.org/
index.php/TCHES/article/view/7387.

[VC+12] Nicolas Veyrat-Charvillon et al. “Shuffling against Side-Channel At-
tacks: A Comprehensive Study with Cautionary Note”. In: Advances in
Cryptology – ASIACRYPT 2012. Ed. by Xiaoyun Wang and Kazue Sako.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 740–757. ISBN:
978-3-642-34961-4.

[VC+13] Nicolas Veyrat-Charvillon et al. “An Optimal Key Enumeration Algo-
rithm and Its Application to Side-Channel Attacks”. In: Selected Areas in
Cryptography. Ed. by Lars R. Knudsen and Huapeng Wu. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2013, pp. 390–406. ISBN: 978-3-642-
35999-6.

https://doi.org/10.1007/978-3-319-17127-2_8
https://github.com/gregversteeg/NPEET
www.openssl.org
https://doi.org/10.13154/tches.v2019.i2.107-131
https://doi.org/10.13154/tches.v2019.i2.107-131
https://tches.iacr.org/index.php/TCHES/article/view/7387
https://tches.iacr.org/index.php/TCHES/article/view/7387

Bibliography 137

[VCS09] Nicolas Veyrat-Charvillon and François-Xavier Standaert. “Mutual In-
formation Analysis: How, When and Why?” In: Cryptographic Hardware
and Embedded Systems - CHES 2009. Ed. by Christophe Clavier and Kris
Gaj. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 429–443.
ISBN: 978-3-642-04138-9.

[VEB10] Nguyen Xuan Vinh, Julien Epps, and James Bailey. “Information The-
oretic Measures for Clusterings Comparison: Variants, Properties, Nor-
malization and Correction for Chance”. In: Journal of Machine Learning
Research 11.95 (2010), pp. 2837–2854. URL: http://jmlr.org/papers/
v11/vinh10a.html.

[Vir+20] Pauli Virtanen et al. “SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python”. In: Nature Methods 17 (2020), pp. 261–272. DOI:
10.1038/s41592-019-0686-2.

[WO11] Carolyn Whitnall and Elisabeth Oswald. “A Comprehensive Evalua-
tion of Mutual Information Analysis Using a Fair Evaluation Frame-
work”. In: Advances in Cryptology – CRYPTO 2011. Ed. by Phillip Ro-
gaway. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 316–
334.

[WOS14] Carolyn Whitnall, Elisabeth Oswald, and François-Xavier Standaert. “The
Myth of Generic DPA. . . and the Magic of Learning”. In: Topics in Cryp-
tology – CT-RSA 2014. Ed. by Josh Benaloh. Cham: Springer Interna-
tional Publishing, 2014, pp. 183–205. ISBN: 978-3-319-04852-9.

[ZLG21] Chi Zhang, Xiangjun Lu, and Dawu Gu. “Binary Classification-Based
Side-Channel Analysis”. In: 2021 Asian Hardware Oriented Security and
Trust Symposium (AsianHOST). 2021, pp. 1–6. DOI: 10.1109/AsianHOST53231.
2021.9699563.

http://jmlr.org/papers/v11/vinh10a.html
http://jmlr.org/papers/v11/vinh10a.html
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1109/AsianHOST53231.2021.9699563
https://doi.org/10.1109/AsianHOST53231.2021.9699563

Bibliography 139

Abstract
Side-Channel Analysis (SCA) is defined as the process of gaining information on

a device holding a secret through its physical leakage such as power consumption or
Electromagnetic (EM) emanations. Whatever the utilized strategy, the amount of in-
formation one could gain from a side-channel data, called a trace, is always bounded
by the Mutual Information (MI) between the secret and the trace. This makes it, all
punning aside, a key quantity for leakage evaluation. Unfortunately, traces are usu-
ally of too high dimension for classical statistical estimators to stay sound when
computing the MI over full traces. However, recent works from the machine learn-
ing community have shown that it is possible to evaluate the MI in high dimensional
space thanks to newest deep learning techniques. This thesis explores how this new
estimator impacts the side-channel domain.

The first part is dedicated to an analysis of the Mutual Information Neural Esti-
mation (MINE) technique in a side-channel context which aim is to derive the best
way of using such tool in practice. It shows that the intrinsic multi-dimensional
aspect of the technique is highly valuable for SCA since there are often multiple
leakage sources in side-channel traces. The method is derived as a generic leakage
assessment tool that can be used whatever the type of data, device or implementa-
tion.

Knowing how much information is contained in the traces is different from know-
ing how to exploit it optimally to recover a secret such as a cryptographic key,
especially in an unsupervised context when no profiling of the target is allowed.
Therefore, the second part of this thesis presents a new mathematical framework,
designed to bridge classical Mutual Information Attacks (MIA) and the multidi-
mensional aspect of neural-based estimators. This allows to derive, to the best of
our knowledge, the first unsupervised attack able to benefit from both the power
of deep learning techniques and the valuable theoretical properties of MI. In prac-
tice this attack suffers from two drawbacks : the time complexity, since it requires
as many network trainings as there are key hypotheses (often 256), and a strong a
priori on the leakage model of the target device.

The third part of the thesis makes use of the previously introduced mathematical
framework to build a deep learning architecture able to recover by itself such a leak-
age model. It allows to derive a new unsupervised attack, the EVIL Machine Attack,
with only one network training solving the two precedent issues at the same time.

The analysis of the EVIL machine in the context of masked implementations gave
rise to questions about stochastic attacks and their generalization to higher-order
versions. The last part of this thesis is dedicated to an analysis followed by a new
unsupervised attack proposition, the Joint Moment Regression, which is agnostic to
the underlying masking scheme as opposed to state-of-the-art techniques.

	Abstract
	Acknowledgements
	Context and motivations
	Introduction to Cryptography
	Side-Channel Analysis
	Notations
	Probabilistic notations
	SCA framework

	Leakage Assessment
	Higher-Order Detection

	Side-Channel Attacks
	Supervised Attacks
	Unsupervised Attacks

	Side-Channel Countermeasures
	Hiding
	Masking

	Emergence of Deep Learning in SCA
	General Concept of Deep Learning
	Deep Learning-based SCA

	Information Theory
	Thesis Motivations and Outline

	Leakage Assessment through Neural Estimation of the Mutual Information
	Introduction
	Context
	Chapter Organization

	Mutual Information Neural Estimation
	Analysis of MINE in a Side-Channel Context
	Simulated Traces Environment
	Input Decompression
	Learning Random Permutations

	MINE in Higher Dimension
	Analysis of the Overfitting Problem
	Validation Loss Function
	Fill the Holes

	Application of MINE in an Evaluation Context
	Leakage Evaluation of an Unprotected AES
	ADC Comparison

	Leakage Evaluation of a Masked AES from the ASCAD Database
	Instructions Leakage
	Coil Comparison

	Conclusion

	Revisiting Mutual Information Analysis: Multidimensionality, Neural Estimation and Optimality Proofs
	Introduction
	Context
	Contributions

	Mutual Information Analysis
	Unsupervised attacks
	State of the Art
	MIA Version 1 (Leakage model a priori free)
	MIA Version 2 (Leakage model a priori dependent)

	About the Distinguishability
	Towards an Optimal Partition Function
	Analytical Resolution
	Selecting Leakage Model a Priori
	Leakage Model Uncertainty and Noise

	MIA Against Masked Implementations
	MIA, a Natural Choice Against Masking
	About the Partition Function in the Presence of Masking
	Noise and Multidimensionality

	Neural Estimated Mutual Information Analysis (NEMIA)
	Multidimensional Paradigm
	Attack Description

	Simulation Experiments
	About the Network's Architecture
	On the Importance of the a Priori
	The Potential of Multidimensionality
	Traces Generation
	Compared Strategies

	Empirical Validation of Theorem 5

	A practical Case: Attack on ASCAD
	Conclusion and Perspectives

	The EVIL Machine: Encode, Visualize and Interpret the Leakage
	Introduction
	Context
	Contributions

	Learning a Leakage Model Representation
	Notations and SCA framework
	Building the Network's Architecture
	Simulation Experiments
	Hamming Weight Leakage Model
	Linear Leakage Model
	Multidimensional Leakage Model
	Non-Linear Leakage Model

	The EVIL Machine Attack
	One Training to Rule them All
	About the Distinguisher
	Assumption on the Degree of Ek*
	Distinguisher
	Intuition Behind the Assumption
	Experiments Supporting the Assumption

	Attack Description
	Experimental Results
	Experiments on Synthetic traces
	Experiments on Real Traces

	Introduction to Higher-Order Generalization
	Encoder's Output and Joint Moments
	Hypothesis on the Encoder's Output
	Experiment Supporting the Hypothesis
	About the Distinguisher

	A Practical Case on ASCAD

	Conclusion

	Fit the Joint Moments: How to Attack any Masking Scheme
	Introduction
	Context
	Contributions

	Related Work and Limitations
	General Attack Framework
	Linear Regression Analysis
	Masking
	Second-Order LRA
	Limitations

	Joint Moments Regression
	Joint Moments
	Attack Description
	Attack Soundness
	Simulation Experiments
	Implementation
	Generating Datasets
	Results
	About the Biased Schemes

	Generalized Method of Moments Paradigm
	Background on GMM
	Parallel with the JMR Attack
	Improving JMR Using GMM Theory
	Using the Optimal Weighting Matrix
	The Case of Biased Schemes

	Experiments on Real Traces
	Attack on a First-Order Boolean Masked AES (ASCAD)
	Results

	Attack of an open source Hardened AES implementation (ASCADv2)
	Acquisition Setup
	Simulating an Unshuffled Version
	Results

	Discussion

	Conclusion

	General Conclusion
	Proofs for chapter 3
	Proofs of Lemma 1
	Proof of Corollary 1
	Complementary material on the entropy
	Proof of Theorem 5 at Order n

	Networks Architecture for chapter 3
	Networks Architecture for chapter 4
	Proofs for chapter 5
	Proof of Proposition 5
	Proof of Proposition 6

	Bibliography

