
HAL Id: tel-04064287
https://theses.hal.science/tel-04064287v2

Submitted on 12 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Enhancing and solving linear programs with conjunctive
queries

Nicolas Crosetti

To cite this version:
Nicolas Crosetti. Enhancing and solving linear programs with conjunctive queries. Databases [cs.DB].
Université de Lille, 2023. English. �NNT : 2023ULILB003�. �tel-04064287v2�

https://theses.hal.science/tel-04064287v2
https://hal.archives-ouvertes.fr

Enhancing and solving linear
programs with conjunctive queries

Thesis
to obtain the title of PhD of Science of the Université de Lille

Specialty : Computer Science

Defended on 27/02/2023 by

Nicolas Crosetti

Thesis Supervisors: Joachim Niehren, Sophie Tison
Thesis Advisors: Florent Capelli, Jan Ramon

Jury :

Reviewers : Pierre Senellart Professor ENS Université PSL
Bruno Zanuttini Professor Université de Caen Normandie

Supervisors : Joachim Niehren Research Director Inria Université de Lille
Sophie Tison Professor Emeritus Université de Lille

President : Pierre Marquis Professor Université d’Artois
Examiner : Luce Brotcorne Research Director Inria Université de Lille
Invited : Florent Capelli Assistant Professor Université de Lille

Jan Ramon Research Director Inria Université de Lille

Enrichir et résoudre des
programmes linéaires avec des

requêtes conjonctives

Thèse
pour obtenir le titre de docteur de l’ Université de Lille

Spécialité : Informatique

Soutenue le 27/02/2023 par

Nicolas Crosetti

Directeur·rice de thèse : Joachim Niehren, Sophie Tison
Encadrants de thèse : Florent Capelli, Jan Ramon

Jury :

Rapporteurs : Pierre Senellart Professeur ENS Université PSL
Bruno Zanuttini Professeur Université de Caen Normandie

Co-directeur : Joachim Niehren Directeur de recherche Inria Université de Lille
Co-directrice : Sophie Tison Professeure émerite Université de Lille
Président : Pierre Marquis Professeur Université d’Artois
Examinatrice : Luce Brotcorne Directrice de recherche Inria Université de Lille
Invités : Florent Capelli Maître de conférences Université de Lille

Jan Ramon Directeur de recherche Inria Université de Lille

Abstract

Mathematical optimization and data management are two major fields of com-
puter science that are widely studied by mostly separate communities. However
complex optimization problems often depend on large datasets that may be cum-
bersome to manage, while managing large amounts of data is only useful insofar as
one analyzes this data to extract some knowledge in order to solve some practical
problem, so these fields are often actually intertwined in practice. This thesis places
itself at the crossroads between these two fields by studying linear programs that
reason about the answers of database queries.

The first contribution of this thesis is the definition of the so-called language of
linear programs with conjunctive queries, or LP(CQ) for short. It is a language to
model linear programs with constructs that allow one to express linear constraints
and linear sums that reason over the answer sets of database queries in the form
of conjunctive queries. We then describe the natural semantics of the language by
showing how such models can be interpreted, in conjunction with a database, into
actual linear programs that can then be solved by any standard linear program
solver and discuss the hardness of solving LP(CQ) models.

Motivated by the hardness of solving LP(CQ) models in general, we then intro-
duce a process based on the so-called T-factorized interpretation to solve such mod-
els more efficiently. This approach is based on classical techniques from database
theory to exploit the structure of the queries using hypertree decompositions of
small width. The T-factorized interpretation yields a linear program that has the
same optimal value as the natural semantics of the model but fewer variables which
can thus be used to solve the model more efficiently.

The third contribution is a generalization of the previous result to the framework
of factorized databases. We introduce a specific circuit data-structure to succintly
encode relations. We the define the so-called C-factorized interpretation that lever-
ages the succintness of these circuits to yield a linear program that has the same
optimal value as the natural semantics of the model but fewer variables similarly
to the T-factorized interpretation. Finally we show that we can explicitly compile
the answer sets of conjunctive queries with small fractional hypertreewidth into
succinct circuits, thus allowing us to recapture the T-factorized interpretation.

Keywords: Database theory, Linear programing, Conjunctive Queries, Fac-
torized databases, Knowledge compilation

Résumé

L’optimisation mathématique et la gestion des données sont deux domaines
majeurs de l’informatique qui sont largement étudiés par des communautés essen-
tiellement distinctes. Cependant, les problèmes d’optimisation complexes dépen-
dent souvent de grands jeux de données qui peuvent être difficiles à gérer, alors
que la gestion de grandes quantités de données n’est utile que dans la mesure où
l’on analyse ces données pour en extraire des connaissances afin de résoudre un
problème pratique, de sorte que ces domaines sont souvent entremêlés en pratique.
Cette thèse se place à la croisée de ces deux domaines en étudiant les programmes
linéaires qui raisonnent sur les réponses de requêtes de bases de données.

La première contribution de cette thèse est la définition de ce que nous appelons
le langage des programmes linéaires avec requêtes conjonctives (que nous noterons
LP(CQ)). Il s’agit d’un langage de modélisation de programmes linéaires avec
des constructions permettant d’exprimer des contraintes et sommes linéaires qui
raisonnent sur les ensembles de réponses de requêtes de bases de données sous
forme conjonctive. Nous décrivons ensuite la sémantique naturelle du langage en
montrant comment de tels modèles peuvent être interprétés, en conjonction avec
une base de données, en de vrais programmes linéaires qui peuvent ensuite être
résolus par tout solveur de programmes linéaires standard et nous discutons de la
difficulté de résoudre les modèles LP(CQ).

Motivés par la difficulté de résoudre les modèles LP(CQ) en général, nous in-
troduisons ensuite un processus basé sur ce que nous appelons l’interprétation T-
factorisée pour résoudre de tels modèles plus efficacement. Cette approche est basée
sur des techniques classiques en théorie des bases de données pour exploiter la struc-
ture des requêtes en utilisant des décompositions arborescentes de petite largeur.
L’interprétation T-factorisée produit un programme linéaire qui a la même valeur
optimale que la sémantique naturelle du modèle mais moins de variables et qui peut
donc être utilisé pour résoudre le modèle plus efficacement.

La troisième contribution est une généralisation du résultat précédent au cadre
des bases de données factorisées. Nous introduisons une structure de données spéci-
fique pour coder succinctement les relations sous forme de circuit. Nous définissons
ensuite l’interprétation dite C-factorisée qui exploite le caractère succinct de ces
circuits pour produire un programme linéaire qui a la même valeur optimale que la
sémantique naturelle du modèle mais avec moins de variables de manière similaire à
l’interprétation T-factorisée. Enfin, nous montrons que nous pouvons explicitement
compiler les ensembles de réponses de requêtes conjonctives admettant une décom-
position de petite largeur en circuits succincts, ce qui nous permet de récapturer
l’interprétation T-factorisée.

Mots-clés: Théorie des bases de données, Programmation linéaire, Requêtes
conjonctives, Bases de données factorisées, Compilation de connaissances

iii

Acknowledgments

Je remercie mes rapporteurs, Pierre Senellart et Bruno Zanuttini, pour avoir
accepté de relire ce manuscrit. Je remercie également Luce Brotcorne et Pierre
Marquis d’avoir accepté de faire partie de mon jury.

Je remercie mes encadrants pour leur soutien indéfectible malgré les revers et
les difficultés. Je remercie les membres de l’équipe Links pour leur soutien et leurs
conseils. Je remercie plus particulièrement les doctorants, présents et passés, de
l’équipe avec qui nous avons perpétué une ambiance éminemment studieuse dans
notre bureau afin de mener nos thèses à bien.

Je remercie finalement ma famille et mes amis pour m’avoir soutenu dans les
moments difficiles et sans qui je ne serai pas arrivé jusque là.

Funding

Cette thèse a été cofinancée par l’ANR Headwork et par le conseil régional
Hauts-de-France.

Contents

1 Introduction 1

2 Preliminaries 7
2.1 General notations . 7

2.1.1 Sets, Functions and Relations 7
2.1.2 Rooted trees . 7
2.1.3 Variable assignments . 8

2.2 Conjunctive queries . 8
2.2.1 Relational Databases . 8
2.2.2 Conjunctive Queries . 8
2.2.3 Tree decompositions . 9
2.2.4 Width of tree decompositions 10
2.2.5 Normalizing tree decompositions 12

2.3 Linear programming . 12

3 Linear programs on conjunctive queries 15
3.1 Introduction . 15
3.2 Overview of the language . 17

3.2.1 Weighting subsets of answers 18
3.2.2 Quantifying contraints . 18
3.2.3 Retrieving values from the database 19
3.2.4 Summing linear expressions 20
3.2.5 Full linear program model . 20

3.3 Full syntax of LP (CQ) . 21
3.4 Semantics . 22

3.4.1 Instantiating closed weight operators 22
3.4.2 Closing the model . 24
3.4.3 Semantics of LP (CQ) models 31
3.4.4 Intricacies of the semantics 33

3.5 Solving LP (CQ) programs . 35
3.5.1 Solving closed LP (CQ) models 35
3.5.2 Solving open LP (CQ) models 36

3.6 Alternate interpretations . 37
3.6.1 Definitions . 37
3.6.2 Equivalence of LP (CQ) interpretations 38

3.7 Conclusion . 40

vi Contents

4 Tractable fragment of LP (CQ) 41
4.1 Introduction . 41
4.2 A tractable interpretation of LP (CQ) models 43

4.2.1 Characterizing tractable LP (CQ) models and their width . . 43
4.2.2 Tree decomposition-based factorized interpretation 44
4.2.3 Example . 47

4.3 Solving LP (CQ) models efficiently 49
4.3.1 Computing the optimal value of a LP (CQ) model 49
4.3.2 Computing a full solution of the natural interpretation 50
4.3.3 Handling conjunctive queries with existential quantifiers . . . 52

4.4 Proof of equivalence between the T-factorized and natural interpre-
tations . 52
4.4.1 Weighting correspondence . 52
4.4.2 Reconstructing a weighting collection on T of A 53
4.4.3 Reconstructing a weighting of A 54
4.4.4 Proof of the equivalence of the natural and T-factorized in-

terpetations . 59
4.5 Conclusion . 60

5 Linear programs on relational circuits 63
5.1 Introduction . 63
5.2 Relational circuits . 65

5.2.1 Relational circuits . 65
5.2.2 {⊎, ×}-Circuits . 66
5.2.3 Proof trees . 67

5.3 Circuit-based factorized interpretation 68
5.3.1 Caracterizing informed circuits 68
5.3.2 Circuit-based factorized interpretation 69
5.3.3 Computing a full solution of the natural interpretation 71

5.4 Correctness . 72
5.4.1 Proof trees properties . 72
5.4.2 Weighting correspondence . 73
5.4.3 Proof of the equivalence theorem 79

5.5 Recapturing the T-factorized interpretation 80
5.5.1 Compiling a conjunctive query with a tree decomposition . . 80
5.5.2 Correctness of the compilation 81
5.5.3 Link to the T-factorized compilation 87

5.6 Conclusion . 89

6 Extensions and limitations 91
6.1 Going beyond linear programs . 91

6.1.1 Allowing variables to take negative values 91
6.1.2 Solving programs on integer values 93
6.1.3 Relaxing linearity . 93

Contents vii

6.2 Going beyond conjunctive queries . 94

7 Conclusion 97

Bibliography 99

Chapter 1

Introduction

Mathematical optimization and data management are two major fields of com-
puter science that are widely studied by mostly separate communities. However
complex optimization problems often depend on large datasets that may be cum-
bersome to manage, while managing large amounts of data is only useful insofar as
one analyzes this data to extract some information(s) to solve some practical prob-
lem, so these fields are often actually intertwined in practice. This thesis places
itself at the crossroads between these two fields by studying linear programs that
reason about the answers of database queries. In this introduction we will gradually
introduce notions from both fields to motivate and contextualize our contributions.

We will begin by giving some short context about linear programming. We
will then discuss how linear programs are usually modeled. This then brings us to
discussing some existing links between linear programs and databases to motivate
the introduction of the LP(CQ) language as the first contribution of this thesis in
order to model linear programs that reason about the answers of database queries.
We then briefly discuss the complexity of solving linear programs based on databases
to motivate our second contribution which is a process based on the so-called T-
factorized interpretation to solve such models more efficiently. Finally the third
contribution is a generalization of the second result using so-called {⊎, ×}-circuits
to succinctly encode the answer sets of queries.

Linear programming and modelization

Linear programming is a subfield of mathematical optimization that aims at
maximizing (or minimizing) a linear function under a system of linear constraints.
This term was coined by George Dantzig in 1947 but linear programming had been
independently studied by Leonid Kantorovitch since 1939. In both cases linear pro-
graming was motivated by logistical problems encountered by armed forces. From
then on linear programing has been widely used in economics, logistics, scheduling
etc...

An interesting property of optimization problems is that it is often possible to
describe the logical constraints of the system independently from the underlying
data. We illustrate this with a very simplistic example. Consider an unspecified
firm that wants to optimize its production to maximize its commercial revenue while
accounting for its storage capacity. We assume for brevity that every product is
equivalent in terms of required storage even though this makes the problem trivial

2 Chapter 1. Introduction

to solve. This problem can be expressed by a simple model without any specific
prior knowledge about the products:

maximize
∑

p∈products

quantity(p) × price(p)

subject to
∑

p∈products

quantity(p) ≤ max_quantity

Note that in this case we would consider the price of each product p to be a
parameter of the problem to be provided as part of the input dataset. On the other
hand the quantity of produced p would be an unknown variable that should be
optimized to maximize the revenue. Observe that this sum is indeed linear under
these assumptions.

An advantage of modelling problems this way is that such a model can then
easily be reused with different datasets. This idea is at the core of modelling
languages for linear programming such as AMPL [FGK90] and GNU Mathprog
and more general languages for constraint programming such as MiniZinc [NSB+07].
Using GNU Mathprog we can write our partial linear program model very similarly
to the formula we used previously:

set Products ;
param Pr ice {p in Products } ;
param Max_quantity ;
var quant i ty {p in Products } >= 0 ;

maximize revenue :
sum{p in Products } quant i ty [p] ∗ Pr ice [p] ;

s . t . max_production :
sum{p in Products } quant i ty [p] <= Max_quantity ;

The dataset can then be provided in a data section that follows the model. For
example, we might provide a simple dataset inline as follows:

set Products := Baguette Cro i s sant ;

param Pr ice :=
Baguette 1 . 1
Cro i s sant 0 . 9 ;

param Max_quantity := 100 ;

Observe that specifying a large dataset in this manner would be impractical.
To avoid this issue, modeling languages propose bindings to CSV files or databases.
We will now discuss the links betweeen linear programs and databases.

3

Linear programming and databases

Linear programming has been used in the context of database research, when
using integer linear programming for finding optimal database repairs as proposed
by Kolaitis, Pema and Tan [KPT13], or when using linear optimization to explain
the result of a database query to the user as proposed by Meliou and Suciu [MS12].

In general, given the common separation between the logical model of a linear
program and its dataset, it seems natural to be able to store this data in a database.
Thus, being able to bind a table of parameters or a set of variables to the answer
of an SQL query is a feature of linear programming modeling languages such as
AMPL or GNU Mathprog.

t ab l e products IN "ODBC" " Driver=SQLITE3 ; Database=bakery . s q l i t e "
"SELECT name , p r i c e FROM Products " :

Products <− [name] , Pr i ce ~ p r i c e ;

Better integration of optimization problems directly into DBMS has also already
been investigated. Cadoli and Mancini [CM07] introduced an extension of SQL called
ConSQL that allows to select optimal solutions to constraint problems directly in SQL-
like queries. Šikšnys and Pedersen introduced SolveDB in [ŠP16] which is also an
extension of SQL that allows to solve optimization problems directly in the querying
language thus simplifying the usual workflow of feeding an AMPL programs with data
extracted from a database.

Both languages proposed in these works are extensions of SQL that aim to
integrate optimization problems into queries. In this thesis we follow a different
philosophy by introducing the LP(CQ) language which aims to integrate queries
into LP models. At its core the LP(CQ) language is a formalization of the math-
ematical notations one could use to model an optimization problem, similar to the
AMPL and GNU Mathprog languages. A key difference between our language and
existing LP modeling languages is in the way we connect sets of variables of the
linear program with the database through queries. Models expressed in existing lan-
guages are based on sets variables and parameters that can then be populated by
in-line values, the content of CSV files or the answers of SQL queries on a database.
We instead limit ourselves to populating our sets of variables using only queries but
we also offer a way to reason about the answers of these queries inside the model
while still separating it from the database. In order to make use of known theo-
retical results we use Conjunctive Queries rather than SQL queries without losing
much expressivity1.

This is possible by writing linear sums with the weight operator that allows
one to refer to a specific subset of the variables bound to the answer of a query. Our
previous partial LP example can be expressed in the LP(CQ) language as follows:

1Indeed conjunctive queries cover simple SELECT . . . FROM . . . WHERE . . . queries

4 Chapter 1. Introduction

maximize
∑

(n′,p′):Q′
num(p′) weight(n):n .=n′(Q)

subject to weight(n):true(Q) ≤ Max_quantity

where Q(n) = ∃p.Products(n, p)
and Q′(n′, p′) = Products(n′, p′)

Intuitively, the query Q(n) selects the names of all the products and a
weight(n):q(Q) operator then refers to the combined produced quantity of every
product that satisfies the restriction expressed with q. Thus each occurrence
of weight(n):n .=n′(Q) in the sum captures one specific product named n′ while
weight(n):true(Q) captures every product. The LP(CQ) language is the first con-
tribution of this thesis and we will describe its semantics in details in Chapter 3.

Now while it may appear at first glance that we have simply duplicated2 and
moved our query to the model, this change actually allows us to exploit the struc-
ture of the queries to get some interesting efficiency results when solving LP(CQ)
models.

Tractable results on conjunctive queries

It is well known that solving a linear program is polynomial in its number of
variables [Kar84]. Thus the complexity of solving an LP model actually depends on
the size of the dataset it is solved with. This issue is further intensified when the
dataset is described by a database query as it is well known that answering queries
is NP-hard in general which impacts the linear program. However it is known that
some classes of queries are tractable and the LP(CQ) language allows us to to
exploit the structure of the queries. In this thesis we will present a technique to
solve some LP(CQ) models more efficiently as a second contribution. These first
two contributions were previously published in [CCNR22]. This technique builds
on well-known techniques using dynamic programming on tree decompositions of
the hypergraph of conjunctive queries.

These techniques were first introduced by Yannakakis [Yan81] who observed
that so-called acyclic conjunctive queries could be answered in linear time using
dynamic programming on a tree whose nodes are in correspondence with the atoms
of the query. Generalizations have followed in two directions: on the one hand,
generalizations of acyclicity such as notions of hypertree width [GLS02, GLS99,
Gro06] have been introduced and on the other hand enumeration and aggregation
problems have been shown to be tractable on these families of queries such as finding
the size of the answer set [PS13] or enumerating it with small delay [BDG07]. The
T-factorized interpretation mentioned above heavily draws inspiration from this
approach as we use bottom up dynamic programming on a hypertree decomposition
of each input query Q to construct a partial representation of the answers set of

2The queries Q and Q′ are equivalent to "SELECT name FROM Products" and "SELECT
name, price FROM Products" in SQL.

5

Q on database D that we then use to construct the more succinct T-factorized
interpretation of the linear program that can thus be solved more efficiently.

We have seen that to exploit the structure of queries through their decomposition
is general enough that it can be adapted to various problems. However, in practice,
each of these algorithms reimplements the same common dynamic programming
framework with only a few differences to handle the specific problem at hand. This
idea has thus been generalized with factorized databases which allows on to abstract
away this cumbersome framework to a sort of precomputation phase.

Generalization to factorized databases

The tractability results presented previously can be obtained in a unified
and generalized manner by using factorized databases introduced by Olteanu and
Závodný [OZ12, OZ15a], from which our third contribution is inspired. Factorized
databases provide succinct representations for answer sets of queries on databases.
The representation enjoys interesting syntactic properties allowing to efficiently
solve numerous aggregation problems on answer sets in polynomial time in the size
of the representation. Olteanu and Závodný [OZ15a] have shown that when the
fractional hypertree width of a query Q is bounded, then one can construct, given a
hypertree decomposition of Q and a database D, a factorized databases representing
the answers of Q on D of polynomial size. They also give a O(1) delay enumeration
algorithm on factorized databases. Combining both results gives a generalization
of the result of Bagan, Durand and Grandjean [BDG07] on the complexity of enu-
merating the answers of conjunctive queries.

Our third contribution is thus a generalization of the T-factorized interpretation
(dubbed the C-factorized interpretation) that leverages a factorized representation
of the answer sets of the queries to avoid repeating the reoccuring dynamic pro-
gramming framework. However, rather than using factorized representations as
defined by Olteanu and Závodný [OZ15a], we instead introduce our own factorized
representation, the so-called {⊎, ×}-circuits after which the circuit-based factorized
interpretation takes its name. While {⊎, ×}-circuits are very similar to these factor-
ized representations, they are slightly more general. More importantly, they are the
target of a specific compilation algorithm that allows us to encode some additional
informations that are necessary to solve some LP(CQ) models. This allows us to
recapture the result of the T-factorized interpretation.

Outline of the thesis

We now outline the contents of this thesis.
Chapter 2 introduces the basic notions we will use throughout this thesis, namely

conjunctive queries and linear programs.
Chapter 3 is dedicated to the first contribution of this thesis, the LP(CQ)

language. We present the syntax and semantics of this language in details. We also

6 Chapter 1. Introduction

formally study the complexity and hardness of solving LP(CQ) models. Finally
we formally introduce the notion of alternate interpretations of LP(CQ) models to
prepare the following chapters.

Motivated by the general hardness of solving LP(CQ) language, we characterize
a tractable a fragment of LP(CQ) models in Chapter 4. We then present the so-
called T-factorized interpretation as the second contribution of this thesis. This
interpretation leverages the tree-decomposition of conjunctive queries to build a
linear program that is smaller than the semantics of the model while having the
same optimal value thus providing a way to solve the model more efficiently. We
also show that we can then efficiently compute a solution of the semantics of the
model.

In Chapter 5 we introduce the so-called {⊎, ×}-circuits as a succinct structure
to encode relations (and in particular the answer sets of conjunctive queries with
bounded width). We then use the {⊎, ×}-circuits to define the so-called C-factorized
interpretation as the third main contribution of this thesis. Finally we show that
the C-factorized interpretation generalizes the T-factorized interpretation of the
previous chapter.

Finally in Chapter 6 we present a few ways in which our three main contributions
can be taken further by relaxing or lifting some of the restrictions we worked with
in the previous chapters.

Chapter 2

Preliminaries

Contents
2.1 General notations . 7

2.1.1 Sets, Functions and Relations 7
2.1.2 Rooted trees . 7
2.1.3 Variable assignments . 8

2.2 Conjunctive queries . 8
2.2.1 Relational Databases . 8
2.2.2 Conjunctive Queries . 8
2.2.3 Tree decompositions . 9
2.2.4 Width of tree decompositions 10
2.2.5 Normalizing tree decompositions 12

2.3 Linear programming . 12

2.1 General notations

2.1.1 Sets, Functions and Relations

Let B = {0, 1} be the set of Booleans, N the set of natural numbers including
0 and Z the set of integers. Let R+ be the set of positive reals including 0 and
subsuming N and R the set of all reals.

Given any set S and n ∈ N we denote by Sn the set of all n-tuples over S and
by S∗ = ∪n∈NSn the set of all words over S. A weighting on S is a (total) function
f : S → R+.

Given a set of (total) functions A ⊆ DS = {f | f : S → D} and a subset
S′ ⊆ S, we define the set of restrictions A|S′ = {f|S′ | f ∈ A}. For any binary
relation R ⊆ S ×S, we denote its transitive closure by R+ ⊆ S ×S and the reflexive
transitive closure by R∗ = R+ ∪ {(s, s) | s ∈ S}.

2.1.2 Rooted trees

A digraph is a pair (V, E) with node set V and edge sets E ⊆ V × V. A digraph
is acyclic if there is no v ∈ V for which (v, v) ∈ E+. For any node u ∈ V, we denote
by ↓ u = {v ∈ V | (u, v) ∈ E∗} the set of nodes in V reachable over some downwards

8 Chapter 2. Preliminaries

path from u, and by ↑ u = (V\ ↓ u) ∪ {u} the context of u. A rooted tree is an
acyclic digraph where (u, v), (u′, v) ∈ E implies u = u′, and there exists a node
r ∈ V such that V =↓ r. In this case, r is unique and called the root of the tree.
Observe that in this tree, the paths are oriented from the root to the leaves of the
tree.

2.1.3 Variable assignments

We fix a countably infinite set of variables X . For any domain dom, an
assignment of variables to domain elements is a function α : X → dom that
maps elements of a finite subset of variables X ⊆ X to values of dom. We
denote the empty assignment by ϵ (that is ϵ : ∅ → dom). For any two sets
of variable assignments A1 ⊆ domX1 and A2 ⊆ domX2 we define their join
A1 ▷◁ A2 = {α1 ∪ α2 | α1 ∈ A1, α2 ∈ A2, α1|I = α2|I} where I = X1 ∩ X2.

Let A ⊆ domX = {α | α : X → dom} be a set of variable assignments on a
finite set of variables X. Let X ′ ⊆ X ⊆ X . For any α′ : X ′ → dom we define the
set of its extensions into A by A[α′] = {α ∈ A | α|X′ = α′}. Moreover, given a
weighting ω : A → R+ of A, we define its projection on X ′ as πX′(ω) : A|X′ → R+

such that for all α′ ∈ A|X′ : πX′(ω)(α′) = ∑
α∈A[α′] ω(α).

We also use a few vector notations. Given a vector of variables x =
(x1, . . . , xn) ∈ X n we denote by set(x) = {x1, . . . , xn} the set of the elements
of x. For any variable assignment α : X → dom with set(x) ⊆ X we denote the
application of the assignment α on x by α(x) = (α(x1), . . . , α(xn)).

2.2 Conjunctive queries

2.2.1 Relational Databases

A database schema is a pair Σ = (R, C) where C is a finite set of constants and
R ⊂ ∪n∈NR(n) is a finite set of relation symbols. The elements r ∈ R(n) are called
relation symbols of arity n ∈ N.

A database D ∈ dbΣ is a tuple D = (Σ, D, ·D), where Σ is a schema, D a finite set
of database elements, and rD ⊆ Dn a relation for any relation symbol r ∈ R(n) and
aD ∈ D a database element for any constant a ∈ C. We also define the database’s
domain dom(D) = D.

A database with real numbers is a tuple D = (Σ, D, ·D, numD) such that D =
(Σ, D, ·D) is a relational database and numD a partial function from D to R.

2.2.2 Conjunctive Queries

In Figure 2.1 we recall the notion of conjunctive queries on relational databases.
An expression E ∈ ExC is either a (query) variable x ∈ X or a constant a ∈ C.
The set of conjunctive queries Q ∈ CQΣ is built from equations E1

.=E2, atoms
r(E1, . . . , En), the logical operators of conjunction Q∧Q′, existential quantification

2.2. Conjunctive queries 9

Expressions E1, . . . , En ∈ ExC ::= x | a

Conjunctive queries Q, Q′ ∈ CQΣ ::= E1
.=E2 | r(E1, . . . , En)

| Q ∧ Q′ | ∃x.Q | true

Figure 2.1: The set of conjunctive queries CQΣ with schema Σ = ((R(n))n∈N, C)
where x ∈ X , a ∈ C, and r ∈ R(n).

evalD,α(x) = α(x)
evalD,α(a) = aD

ansDX(E1
.=E2) = {α : X → D | evalD,α(E1) = evalD,α(E2)}

ansDX(r(E1, . . . , En)) = {α : X → D | (evalD,α(E1), . . . , evalD,α(En)) ∈ rD}
ansDX(Q1 ∧ Q2) = ansDX(Q1) ∩ ansDX(Q2)

ansDX(∃x.Q) =

{α|X | α ∈ ansDX∪{x}(Q)} if x ̸∈ X

undefined otherwise
ansDX(true) = dom(D)X

Figure 2.2: Answer sets of conjunctive queries.

∃x.Q and the tautology true. Given a vector x = (x1, . . . , xn) ∈ X n and a query
Q, we write ∃x.Q instead of ∃x1.∃xn.Q.

The set of free variables fv(Q) ⊆ X are those variables that occur in Q outside
the scope of an existential quantifier. A conjunctive query Q is said to be quantifier
free if it does not contain any existential quantifier.

For any conjunctive query Q ∈ CQΣ, set X ⊇ fv(Q) and database D ∈ dbΣ
we define the answer set ansDX(Q) in Figure 2.2. It contains all those assignments
α : X → dom(D) for which Q becomes true on D. We also write ansD(Q) instead
of ansDfv(Q)(D)(Q). Observe that ansD(∃x.Q) = ansD(Q)|fv(Q)\set(x).

2.2.3 Tree decompositions

In this section we define hypertree decompositions of conjunctive queries which
are a way of laying out the structure of a conjunctive query in a tree. They allow one
to solve many aggregation problems (such as checking the existence of a solution,
counting or enumerating the solutions etc.) on quantifier free conjunctive queries
in polynomial time where the degree of the polynomial is given by the width of the
decomposition which we will define in the following section.

First we define decomposition trees of finite sets of variables that we will then
lift to conjunctive queries.

Definition 2.1.
Let X ⊆ X be a finite set of variables. A decomposition tree T of X is a tuple
(V, E , B) such that:

10 Chapter 2. Preliminaries

- (V, E) is a finite directed rooted tree with edges from the root to the leaves,

- the bag function B : V → 2X maps nodes to subsets of variables in X,

- for all x ∈ X the subset of nodes {u ∈ V | x ∈ B(u)} is connected in the tree
(V, E),

- each variable of X appears in some bag, that is ⋃
u∈V B(u) = X.

Let T = (V, E , B) be a decomposition tree for a finite set of variables X. Given
two nodes u, v ∈ V we denote the intersection of their bags by Buv = B(u) ∩ B(v).
For any decomposition tree T = (V, E , B) and subset V ⊆ V we define the set of
variables:

Attr(V) =
⋃

v∈V

B(v)

In particular, this defines for any v ∈ V the union Attr(↑ v) of bags of vertices
in-the-context-or-equal-to v, and the union Attr(↓ v) of bags of vertices that are
descendants-or-equal-to v.

We now lift the notion of decomposition trees to conjunctive queries. A hyper-
tree decomposition of a quantifier free conjunctive query is a decomposition tree
where for each atom of the query there is at least one bag that covers its variables.

Definition 2.2 (Hypertree decompositions of quantifier free conjunctive queries).
Let Q ∈ CQΣ be a quantifier free conjunctive query.

A generalized hypertree decomposition of Q is a decomposition tree T =
(V, E , B) of fv(Q) such that for each atom r(x) of Q there is a vertex u ∈ V such
that set(x) ⊆ B(u).

2.2.4 Width of tree decompositions

In this section we define the width of a query and discuss its influence on the
complexity of query answering. We begin by defining the generalized hypertree
width of a quantifier free query.

Definition 2.3 (Generalized hypertree width of quantifier free conjunctive queries).
Let Q ∈ CQΣ be a quantifier free conjunctive query and T = (V, E , B) be a hypertree
decomposition of Q.

The generalized hypertree width of T with respect to Q is the minimal number
k such that every bag of T can be covered by the variables of k atoms of Q.

The generalized hypertree width of a query Q is the minimal width of a tree
decomposition of Q.

We call a conjunctive query α-acyclic if it has generalized hypertree width 1.
The query r(x, y) ∧ r(y, z) has a generalized hypertree decomposition (V, E , B) with
V = {1, 2, 3}, E = {(1, 2), (1, 3)}, and B = [1/{y}, 2/{x, y}, 3/{y, z}] of width 1, so
it is α-acyclic.

2.2. Conjunctive queries 11

While generalized hypertree width allows to obtain efficient algorithms on con-
junctive queries, it can be generalized to fractional hypertree width, which consists in
a fractional relaxation of the generalized hypertree width, to obtain better bounds
in some cases. Let Q ∈ CQΣ be a quantifier free conjunctive query, A be the atoms
of Q and let X ⊆ fv(Q). A fractional cover of X is a function c : A → R+ assigning
positive weights to the atoms of Q such that for every x ∈ X, ∑

R∈A,x∈fv(R) c(R) ≥ 1.
The value of a fractional cover c is defined as ∑

R∈A c(R).
For example, consider the query Triangle = R(x, y) ∧ S(y, z) ∧ T (z, x) and

X = {x, y, z}. The function c such that c(R) = c(S) = c(T) = 1/2 is a fractional
cover of X of value 3/2.

Definition 2.4 (Fractional hypertree width of quantifier free conjunctive queries).
Let Q be a quantifier-free conjunctive query and T = (V, E , B) be a generalized
hypertree decomposition of Q.

The fractional hypertree width of T is the smallest k such that for every u ∈ V,
there exists a fractional cover of B(u) of value smaller than k. The fractional
hypertree width of Q, denoted by fhtw(Q), is the smallest k such that Q has a
generalized hypertree decomposition of fractional hypertree width k.

Observe that the fractional hypertree width of a query is never larger and some-
times smaller than its generalized hypertree width. Indeed the generalized hypertree
width of Triangle is 2 while its previously mentioned fractional cover had a value
of 3/2.

In the rest of this thesis we will simply refer to the fractional hypertree width
of T (or Q) as the width of T (or Q).

The key observation making fractional hypertree width suitable for algorithmic
purposes is due to Grohe and Marx [GM14] who proved that if the free variables
of a quantifier free conjunctive query Q has a fractional cover of value k then
|ansD(Q)| ≤ |D|k. Hence, if T = (V, E , B) is a tree decomposition of Q of width
k, then ansD(Q)|B(u) is of size at most |D|k for any u ∈ V. Moreover, it can be
computed efficiently:

Lemma 2.5.
Given a tree decomposition T = (V, E , B) of a quantifier free conjunctive query
Q ∈ CQΣ of width k and a database D ∈ dbΣ, one can compute the collection of bag
projections (ansD(Q)|B(u))u∈V in time O((|D|k log(|D|)) · |T |).

Moreover, for every u ∈ V, ansD(Q)|B(u) is of size at most |D|k.

Lemma 2.5 is folklore: it can be proven by computing the semi-join of every
bag in a subtree in a bottom-up fashion, as it is done in [Lib13, Theorem 6.25] and
using a worst-case optimal join algorithm such as Triejoin [Vel14] for computing
the relation at each bag. This yields a superset Su of ansD(Q)|B(u) for every u.
Then, with a second top-down phase, one can remove tuples from Su that cannot
be extended to a solution of ansD(Q).

Given a query Q, we define AGM(Q) as min({v(c) | c is a fractional cover of Q})
where v(c) is the value of c. By the previously mentioned upper bound of [GM14],

12 Chapter 2. Preliminaries

we have ansD(Q) ≤ |D|AGM(Q). Interestingly Asterias, Grohe and Marx later proved
in [AGM13] that this upper bound, now usually referred to as the AGM bound,
is tight (up to polynomial factors). More precisely, they prove that there exists a
database D∗ such that ansD∗(Q) is of size greater than |D∗|AGM(Q)

poly(|Q|) .
Lemma 2.5 is then particularly interesting as it gives a way of describing the

set of solutions of Q that is of size |D|k that can be order of magnitudes more
succinct than representing ansD(Q) explicitly when k < AGM(Q). We will exploit
this succinctness to design efficient algorithms in this thesis.

2.2.5 Normalizing tree decompositions

In order to simplify the future proofs we will require the tree decompositions to
be so-called normalized decomposition trees:

Definition 2.6.
Let T = (V, E , B) be a decomposition tree. We call a node u ∈ V of T :

- an extend node if it has a single child u′ and B(u) = B(u′) ∪ {x} for some
x ∈ X \ B(u′),

- a project node if it has a single child u′ and B(u) = B(u′) \ {x} for some
x ∈ X \ B(u),

- a join node if it has k ≥ 1 children u1, ..., uk with B(u) = B(u1) = ... = B(uk).

We call T normalized1 if all its nodes in V are either extend nodes, project
nodes, join nodes, or leaves.

It is well-known that tree decompositions can always be normalized without
changing their width. Thus this requirement will not negatively impact the asymp-
totic complexity of the algorithms.

Lemma 2.7 (Lemma 13.1.2 of [Klo94]).
For every tree decomposition of T = (V, E , B) of Q of width k, there exists a nor-
malized tree decomposition T ′ = (V ′, E ′, B′) of width k. Moreover, one can compute
T ′ from T in polynomial time.

2.3 Linear programming

Let Ξ be a set of linear program variables. In Figure 2.3, we recall the definition
of the sets of linear expressions Le, linear constraints Lc and linear programs Lp
with variables in Ξ.

We consider the usual linear equations S
.=S′ as syntactic sugar for the con-

straints S ≤ S′ ∧ S′ ≤ S. Similarly S ≥ S′ is syntactic sugar for the constraint
−S ≤ −S′. For any linear program L = minimize S subject to C we call S the

1In the literature this property is referred to as “nice” tree decompositions.

2.3. Linear programming 13

Linear expressions S, S′ ∈ LeΞ ::= c | ξ | cS | S + S′

Linear constraints C, C ′ ∈ LcΞ ::= S ≤ S′ | C ∧ C ′ | true
Linear programs L ∈ LpΞ ::= minimize S subject to C

Figure 2.3: The set of linear programs Lp with variables ξ ∈ Ξ and constants c ∈ R.

objective function of L and C the constraint of L. Note that the linear program
maximize S subject to C can be expressed by minimize (−1) S subject to C.

The formal semantics of linear programs is recalled in Figure 2.4. Since we will
only be interested in variables for positive real numbers – and do not want to impose
positivity constraints all over – we will always implicitly consider the variables of
linear programs to take values over R+.

For any weighting ω : Ξ → R+, the value of a sum S ∈ Le is the real number
JSKω ∈ R, and the value of a constraint C ∈ Lc is the truth value JCKω ∈ B. We
denote the variables of a linear expression, constraint or program E by var(E).
We define the (feasible) solutions of a linear program L with objective function S

and constraint C as sol(L) = {ω : var(L) → R+ | JCKω = 1}. Its optimal value
opt(L) ∈ R is opt(L) = min({JSKω | ω ∈ sol(L)}).

In practice the optimal solution of a linear program is computed via the ex-
ponential time Simplex method (Dantzig, 47) or a polynomial time interior point
method [Kar84]. However the best theoretical complexity that we can get follows
from combining [CLS21] and [AW21] which allows to prove the following theorem:

Theorem 2.8.
A linear program L can be solved in time O(|L|b · nℓ) where |L|b is the size in bits
of the encoding of L and ℓ = 2.37286.

More accurately, [CLS21] states that a linear program can be solved in time
O(|L|b · ne) for e > max(2 + 1/6, ω) where ω is the best known exponent of matrix
multiplication complexity, which is known to be greater than 2.37286 by [AW21].

14 Chapter 2. Preliminaries

JcKω = c

JξKω = ω(ξ)
JcSKω = c · JSKω

JS + S′Kω = JSKω + JS′Kω

JtrueKω = 1

JS ≤ S′Kω =

1 if JSKω ≤ JS′Kω

0 otherwise.
JC ∧ C ′Kω = JCKω ∧ JC ′Kω

Jminimize S subject to CK = min({JSKω | ω : Ξ → R+, JCKω
.=1})

Figure 2.4: Evaluation of linear expressions, constraints and programs.

Chapter 3

Linear programs on conjunctive
queries

Contents
3.1 Introduction . 15
3.2 Overview of the language . 17

3.2.1 Weighting subsets of answers 18
3.2.2 Quantifying contraints . 18
3.2.3 Retrieving values from the database 19
3.2.4 Summing linear expressions 20
3.2.5 Full linear program model . 20

3.3 Full syntax of LP (CQ) . 21
3.4 Semantics . 22

3.4.1 Instantiating closed weight operators 22
3.4.2 Closing the model . 24
3.4.3 Semantics of LP (CQ) models 31
3.4.4 Intricacies of the semantics 33

3.5 Solving LP (CQ) programs . 35
3.5.1 Solving closed LP (CQ) models 35
3.5.2 Solving open LP (CQ) models 36

3.6 Alternate interpretations . 37
3.6.1 Definitions . 37
3.6.2 Equivalence of LP (CQ) interpretations 38

3.7 Conclusion . 40

3.1 Introduction

In this chapter we introduce the so-called LP(CQ) language that allows one to
describe a linear program model that can then be automatically instatiated using
a database. We first consider a task assignment problem to illustrate this notion.
This problem will also serve as a running example throughout the chapter.

Consider a situation where an organization has to see some tasks to completion
by assigning employees to work on them. Each task requires a specific skill and

16 Chapter 3. Linear programs on conjunctive queries

Tasks tid skill duration
T1 Python 45
T2 C 10
T3 SQL 20

Skills eid skill
Alice Python
Alice C
Bob SQL
Bob Python

Figure 3.1: Example for the Tasks and Skills tables.

Qassign t s e d var
T1 Python Alice 45 θ1
T1 Python Bob 45 θ2
T2 C Alice 10 θ3
T3 SQL Bob 20 θ4

Figure 3.2: Answers to the Qassign query on the example database with the associ-
ated variables

takes a set amount of time to be completed. For example the task "Update the
website" might take 20 hours of combined work from one or several HTML develop-
ers. Furthermore we need to account for the fact that employees cannot work over
the legal limit.

We can store the information about the tasks and employees in two tables
as follows: The first table Skills(eid, skill) represents the skills possessed by the
employees. The second table Tasks(tid, skill, duration) represents the skill and
time required for each task. An example database is given in Figure 3.1.

Now in order to find out how to assign the employees to the tasks we can model
this problem as a linear program. First we need to list every valid assignment by
joining these tables as follows:

Qassign = Tasks(t, s, d) ∧ Skills(e, s).

Then we create a variable for each assignment that will represent the duration
of the assignment. The answers of Qassign and associated variables are listed in
Figure 3.2. For example the value of θ3 will represent the time Alice will spend
working on the task T2.

We can now use these variables to express the constraints of the problem. First
we want to ensure that the total time assigned to each task is sufficient. For example
to make sure that task T1 is worked on for at least 45 hours we can enforce the
following constraint:

θ1 + θ2 ≥ 45.

Then we also need to make sure no employee is overworked. For example to
make sure that Alice doesn’t work for more than 40 hours a week we can enforce
the following constraint:

3.2. Overview of the language 17

θ1 + θ3 ≤ 40.

Finally we will minimize the total time spent by employees. The problem can
thus be modelled as follows:

Example 3.1 (Task assignment linear program).

minimize θ1 + θ2 + θ3 + θ4
subject to θ1 + θ3 ≤ 40

θ2 + θ4 ≤ 40
θ1 + θ2 ≥ 45
θ3 ≥ 10
θ4 ≥ 20.

One possible answer to this linear program would be θ1 = 25, θ2 = 20, θ3 = 10
and θ4 = 20 which amounts to an objective value of 75. This solution means that
Alice would work 25 hours on task T1 and 10 hours on T2 while Bob would work
20 hours on T1 and 20 hours on T3.

Suppose now that the database was updated with new tasks and employees. We
would need to write a new linear program from scratch even though it would share
the same structure as the underlying problem stays the same. To avoid repeating
this process every time the input database changes, the natural approach is to write
a linear program model that describes a linear program once it is combined with
the input data. We thus introduce the LP(CQ) language in this chapter to model
linear programs with conjunctive queries.

Outline of the chapter

In Section 3.2 we give an overview of the features of the LP(CQ) language.
We then formally present its syntax in Section 3.3. In Section 3.4 we explain its
semantics in details. In Section 3.5 we study the complexity of solving LP(CQ)
models. Finally in Section 3.6 we introduce a notion of alternate interpretations of
LP(CQ) models that we will use in the following chapters.

3.2 Overview of the language

We want to model linear programs that assign weights to the answers of con-
junctive queries on a database. For this, we introduce the language LP(CQ) of
linear programs with conjunctive queries. This language is based on the standard
linear program syntax and has some additional constructs to access data from a
database. Namely it allows one to:

• assign weights to select subsets of query answers,

• universally quantify constraints,

18 Chapter 3. Linear programs on conjunctive queries

• sum linear expressions,

• retrieve constants from the database.

We will give some intuition about these features of our language using our task
assignment example.

3.2.1 Weighting subsets of answers

In our task assignment example the first constraint in Example 3.1 ensured that
Alice worked at most 40 hours in total. It was written as θ1 + θ3 ≤ 40 where θ1 and
θ3 correspond to both answers of Qassign such that e

.=Alice.
In order to describe the weight of subset of answers without having to explicitly

answer the query we introduce the weight construct. The previous constraint can
then be rewritten as follows:

weight(t,s,e,d):e .=Alice(Qassign) ≤ 40.

Here the weight expression means that among all the answers of Qassign on
variables (t, s, e, d) we select only the tuples that satisfy e

.=Alice. The constraint
then means that the total weight of these tuples should be lesser than or equal to
40 and it can interpreted back to our initial constraint θ1 + θ3 ≤ 40.

Similarly the second constraint can be expressed as

weight(t,s,e,d):e .=Bob(Qassign) ≤ 40

which means that the assignments of Bob should amount to at most 40 hours.
Observe that these three constraints are very similar, only differing on the value

that the variable e should be equal to.

3.2.2 Quantifying contraints

Observe that when we defined the two constraints mentioned earlier we defined
one constraint for each employee. We can obtain these values from the database
with the query ∃s′.Skills(e′, s′) which gives the answer

∃s′.Skills(e′, s′) e’
Alice
Bob

In order to describe such groups of constraints we introduce a ∀ construct that
will iterate over the answers of the query to produce a constraint for each answer.

The two constraints mentioned earlier can be expressed as follows:

∀(e′):∃s′.Skills(e′, s′).weight(t,s,e,d):e .=e′(Qassign) ≤ 40.

3.2. Overview of the language 19

This means that for each value e′ taken by eid in Skills the total weight of the
answers of Qassign such that e

.=e′ should be at most 40. This can then be partially
interpreted as

weight(t,s,e,d):e .=Alice(Qassign) ≤ 40
∧ weight(t,s,e,d):e .=Bob(Qassign) ≤ 40

and then further interpreted as

θ1 + θ3 ≤ 40
∧ θ2 + θ4 ≤ 40.

Now we will look at the other three constraints that ensured enough time was
assigned to each task:

θ1 + θ2 ≥ 45
∧ θ3 ≥ 10
∧ θ4 ≥ 20.

Observe that we have one such constraint for each task while accounting for
the duration of the task in the right-hand side. We can obtain the tuples we are
interested in with the query ∃s′.Tasks(t′, s′, d′) which gives the following answers:

∃s′.Tasks(t′, s′, d′) tid duration
T1 45
T2 10
T3 20

We can then use this query and a ∀ construct to iterate over each task. Finally
we are interested in bounding the total time assigned to the task which we can
represent using a weight construct. We obtain a constraint that would look like
this:

∀(t′, d′):∃s′.Tasks(t′, s′, d′).weight(t,s,e,d):t .=t′(Qassign) ≥ d’.

However the right-hand side constant depends on the value of the database
variable d′ but we cannot use it directly so we introduce a new operator to retrieve
its value.

3.2.3 Retrieving values from the database

In order to retrieve a value from the database and use it in the linear program
we simply introduce the num keyword. This operator takes a database variable
(that was bound by a ∀ for instance) and converts it to a numerical value.

20 Chapter 3. Linear programs on conjunctive queries

We can thus express the last three constraints of the task assignment problem
as follows:

∀(t′, d′):∃s′.Tasks(t′, s′, d′).weight(t,s,e,d):t .=t′(Qassign) ≥ num(d′).
This means that we iterate over each pair of values (t′, d′) taken by tid and

duration in Tasks. We then ensure that for each such pair that the total weight of
the answers of Qassign such that t

.=t′ should be at least the numerical value of d′.
Using our database, this constraint will thus be interpreted as

θ1 + θ2 ≥ 45
∧ θ3 ≥ 10
∧ θ4 ≥ 20.

3.2.4 Summing linear expressions

We will now look at the objective function of our example. For the sake of
demonstration we will consider that the objective function should be written as the
sum of the workloads of the employees1.

To do so we introduce the ∑∑∑ operators which we can use to write the objective
function as follows:

∑∑∑
(e′):∃s′.Skills(e′,s′)

weight(t,s,e,d):e .=e′(Qassign).

This expression represents the sum over all the values e′ taken by eid of the
total weight of the answers of Qassign such that e

.=e′. It will be interpreted as
θ1 + θ2 + θ3 + θ4 using our database like we explicitly defined in the introduction.

3.2.5 Full linear program model

Finally we get with the following linear program model:
Example 3.2 (Task assignment LP(CQ) model).

minimize
∑∑∑

(e′):∃s′.Skills(e′,s′)
weight(t,s,e,d):e .=e′(Qassign)

subject to ∀(t′, d′):∃s′.Tasks(t′, s′, d′).weight(t,s,e,d):t .=t′(Qassign) ≥ num(d′)
∧ ∀(e′):∃s′.Skills(e′, s′).weight(t,s,e,d):e .=e′(Qassign) ≤ 40.

In Section 3.4 we will define the semantics of LP(CQ) models. Interpreting
the semantics of this model using our initial database will yield our original linear
program of Example 3.1.

1Even though we may notice that the objective function could also be written as
weight(t,s,e,d):true(Qassign) (i.e., the total weight of all the answers of Qassign).

3.3. Full syntax of LP (CQ) 21

3.3 Full syntax of LP (CQ)

Constant numbers N ∈ Num(CQ) ::= c | num(E)
LP(CQ) expressions S, S′ ∈ Le(CQ) ::= N × S | S + S′ | N

| weightx:Q′(Q) |
∑

x:Q S
LP(CQ) constraints C, C ′ ∈ Lc(CQ) ::= S ≤ S′ | C ∧ C ′ | true | ∀x:Q.C
LP(CQ) models L ∈ LP(CQ) ::= minimize S subject to C

Figure 3.3: The syntax of LP(CQ) models where c ∈ R, E ∈ ExC , x ∈ X ∗ and
Q, Q′ ∈ CQΣ.

We now formally define the syntax of the LP(CQ) language by adding the
additional features we saw previously to the standard definition of linear programs.
Let c ∈ R be a constant, E ∈ ExC be an expression as defined in Figure 2.1,
x ∈ X ∗ be a tuple of variables and Q, Q′ ∈ CQΣ be conjunctive queries. We define
constant numbers N ∈ Num(CQ), LP(CQ) expressions S, S′ ∈ Le(CQ), LP(CQ)
constraints C, C ′ ∈ Lc(CQ) and LP(CQ) models L ∈ LP(CQ) in Figure 3.3. The
specific features of the LP(CQ) language are highlighted in red.

As it was hinted at in the previous section, weight operators may contain free
variables that can then be bound in the context by ∀ or ∑∑∑ operators. For instance
in the objective function of Example 3.2 we had∑∑∑

(e′):∃s′.Skills(e′,s′)
weight(t,s,e,d):e .=e′(Tasks(t, s, d) ∧ Skills(e, s))

where the free variable e′ of the weight is bound to the variable e′ quantified by
the ∀. However the variable t, s, e and d are not free in the weight operator because
they are guarded by the tuple (t, s, e, d). In general we define the free variables of
a weight operator fv(weightx:Q′(Q)) = fv(Q) ∪ fv(Q′) \ set(x).

Similarly ∀ and ∑∑∑ operators may also have free variables. For instance consider
the constraint

∀(z):r(z).
∑∑∑

(x,y):r′(x,y,z)
S ≤ C

where z is a free variable of the ∑∑∑ operator that is bound to the z variable
quantified by the ∀ operator. Similarly to the weight operators, the free variables
of ∑∑∑ and ∀ operators are defined as fv(∑∑∑x:Q S) = fv(S) ∪ fv(Q) \ set(x) and
fv(∀x:Q.C) = fv(Q) ∪ fv(C) \ set(x).

The free variables of the other elements of the LP(CQ) language are straight-
forward and are given in the full definition in Figure 3.4.

Overall we say that a LP(CQ) model L is interpretable and thus well-formed iff
fv(L) = ∅. In this thesis we will only consider well-formed LP(CQ) models.

22 Chapter 3. Linear programs on conjunctive queries

fv(c) = ∅ fv(num(E)) = fv(E)
fv(weightx:Q′(Q)) = (fv(Q) ∪ fv(Q′)) \ set(x) fv(∑∑∑x:Q S) = (fv(S) ∪ fv(Q)) \ set(x)
fv(N × S) = fv(N) ∪ fv(S) fv(S ≤ S′) = fv(S) ∪ fv(S′)
fv(S + S′) = fv(S) ∪ fv(S′) fv(C ∧ C ′) = fv(C) ∪ fv(C ′)
fv(∀x:Q.C) = (fv(C) ∪ fv(Q)) \ set(x) fv(true) = ∅
fv(maximize S subject to C) = fv(S) ∪ fv(C)

Figure 3.4: Free variables of LP(CQ) expressions, constraints, and programs.

3.4 Semantics

We now define the semantics of an LP(CQ) model L ∈ LP(CQ) with respect
to a database D ∈ dbΣ with real numbers by an interpretation to a linear program
⟨L⟩D ∈ Lp. We first look at a smaller subclass of LP(CQ) models called closed
LP(CQ) models and defined as follows:

Definition 3.3.
An LP(CQ) model L, constraint C ∈ Lc(CQ) or expression S ∈ Le(CQ) is closed
iff

• no ∀ or ∑∑∑ quantifiers appear in it,

• no num operators appear in it,

• every weightx:Q′(Q) operator that appears in it is closed i.e., fv(Q)∪fv(Q′) ⊆
set(x).

Oberve that closed LP(CQ) models are actually quite similar to linear programs
as all their constraints are inequalities of linear combinations of closed weight
operators. Thus to interpret such models we only need to give a semantic to the
weight operators which we will do by instantiating them into linear sums of linear
program variables.

3.4.1 Instantiating closed weight operators

In this section we will consider a simple closed LP(CQ) model to demonstrate
the instantiation of weight operators. Let Q = R(x)∧R(y) be a conjunctive query
and D be a database with the following table R:

RD x
0
1

We then consider the following closed LP(CQ) program L:

3.4. Semantics 23

maximize weight(x,y):true(Q)
subject to weight(x,y):x .=0(Q) ≤ 1

∧ weight(x,y):x .=1(Q) ≤ 1.

As we saw earlier when we use an expression weightx:Q′(Q) our intent is to
describe the weight of the answers of Q on set(x) that also satisfy Q′. Thus we
need to introduce variables to refer to the weight of these answers. However rather
than arbitrarily numbering our variables as we did in Section 3.2 we will instead
index our variables with the query and an answer of the query.

Here the set of answers of Q and their associated variables is as follows

Q x y var
0 0 θ

[x/0,y/0]
Q

0 1 θ
[x/0,y/1]
Q

1 0 θ
[x/1,y/0]
Q

1 1 θ
[x/1,y/1]
Q

The expression weight(x,y):true(Q) in the objective function of the model rep-
resents the total weight of the answers of Q on variables (x, y) that also satisfy
the query true, that is every answer of Q. Thus this expression is instantiated as
follows:

θ
[x/0,y/0]
Q + θ

[x/0,y/1]
Q + θ

[x/1,y/0]
Q + θ

[x/1,y/1]
Q .

The expression weight(x,y):x .=0(Q) in the first constraint represents the total
weight of the answers of Q on variables (x, y) that also satisfy the query x = 0, that
is [x/0, y/0] and [x/0, y/1]. Thus the constraint is instantiated as follows:

θ
[x/0,y/0]
Q + θ

[x/0,y/1]
Q ≤ 1.

Observe that these sums share the linear program variables θ
[x/0,y/0]
Q and

θ
[x/0,y/1]
Q , so these two weight expressions of L are semantically related.

Similarly the second constraint can instantiated as follows:

θ
[x/1,y/0]
Q + θ

[x/1,y/1]
Q ≤ 1.

Finally the instantiation of L is

maximize θ
[x/0,y/0]
Q + θ

[x/0,y/1]
Q + θ

[x/1,y/0]
Q + θ

[x/1,y/1]
Q

subject to θ
[x/0,y/0]
Q + θ

[x/0,y/1]
Q ≤ 1

∧ θ
[x/1,y/0]
Q + θ

[x/1,y/1]
Q ≤ 1.

Formally, given a conjunctive query Q, the set of variables it can describe is

ΘD
Q = {θα

Q | α ∈ ansDx(Q)}.

24 Chapter 3. Linear programs on conjunctive queries

We can then define the instantiation of closed weight operators with D as the
function InstD that maps any weight operator to the total weight of the variables
it represents.

InstD(weightx:Q′(Q)) =
∑

τ∈ansDx(Q∧Q′)
θτ

Q.

Observe that Q defines the set ΘD
Q from which this instantiation pulls its

variables while Q′ selects a subset of ΘD
Q. Thus InstD(weightx:Q′(Q)) and

InstD(weightx:Q′′(Q)) can share variables independently of whether Q′ and Q′′

are equal, as was evidenced in the above example.
Let cq(L) be the set of base queries that appear in L i.e., the set of queries Q

such that there is a weightx:Q′(Q) in L. Note that we consider queries to be equal
if and only if they are syntactically identical so cq(L) could contain two queries
Q = true and Q′ = true ∧ true for instance. In general the set of variables of a
LP(CQ) model L are defined as follows:

ΘD
L =

⊎
Q∈cq(L)

ΘD
Q.

Finally we lift the notion of instantiation to closed LP(CQ) models.

Definition 3.4.
Given a closed LP(CQ) model L and database D, we denote the instantiation of L

with D by InstD(L).
It is the linear program obtained by replacing every weightx:Q′(Q) in L with

InstD(weightx:Q′(Q)) defined as ∑
τ∈ansDx(Q∧Q′) θτ

Q.

Observe that var(InstD(L)) ⊆ ΘD
L.

3.4.2 Closing the model

In order to provide the semantics of LP(CQ) models we define a semantics of
the quantifiers of the language that allows us to close any2 LP(CQ) model.

To get some intuition about this closure, let us isolate the following constraint
from Example 3.2:

∀(e′):∃s′.Skills(e′, s′).weight(t,s,e,d):e .=e′(Qassign) ≤ 40.

The central part of this transformation is the substitution of the free variable e′

of the weight expression with a value provided by the ∀ quantifier it is bound to.
Thus, as a prerequisite to this substitution, we need to iterate over the answers of
∃s′.Skills(e′, s′) and unfold the quantifier into a conjunction of subconstraints while
passing the corresponding answer to each subconstraint. In this case, the query has
two answers [e′/Alice] and [e′/Bob] so we will generate two subconstraints while
propagating these two answers as follows:

2Recall that we consider only well-formed LP(CQ) models with no free variables.

3.4. Semantics 25

weight(t,s,e,d):e .=e′(Qassign) ≤ 40 (with [e′/Alice])
∧ weight(t,s,e,d):e .=e′(Qassign) ≤ 40 (with [e′/Bob]).

In general multiple quantifiers might be nested so we pass the variable assign-
ments as an argument of the closure, which we will call an environment, that can
be enriched as we traverse quantifiers. Given a database D and an environment
γ : Y → dom(D) with fv(C) ⊆ Y , we denote the closure of a constraint C ∈ Lc(CQ)
by closeD,γ(C). Formally we thus define the closure of this constraint (with an
empty initial environment as it is a top-level constraint in the model) as follows:

closeD,∅(∀(e′):∃s′.Skills(e′, s′).weight(t,s,e,d):e .=e′(Qassign) ≤ 40)

= closeD,[e′/Alice](weight(t,s,e,d):e .=e′(Qassign) ≤ 40)

∧ closeD,[e′/Bob](weight(t,s,e,d):e .=e′(Qassign) ≤ 40).

Then the next step of unfolding the inequality is straightforward:

closeD,[e′/Alice](weight(t,s,e,d):e .=e′(Qassign)) ≤ closeD,[e′/Alice](40)

∧ closeD,[e′/Bob](weight(t,s,e,d):e .=e′(Qassign)) ≤ closeD,[e′/Bob](40).

Finally we handle the weight operators by substituting their free variable e′

with the value provided by the environment while the right-hand side constants are
already closed:

weight(t,s,e,d):e .=Alice(Qassign) ≤ 40
∧ weight(t,s,e,d):e .=Bob(Qassign) ≤ 40.

In general we define for any conjunctive query Q and variable assignment γ :
Y → dom a conjunctive query subsγ(Q) by replacing all free occurrences of variables
y ∈ Y in Q by γ(y). The formal definition is given in Figure 3.5.

As we saw earlier the closure of a constraint ∀x:Q.C given a prior environment
γ : Y → dom is defined as a conjunction over the answers of Q of the closures of C

with updated environments.
To build this new environment we first consider a restriction of γ that does not

assign values to variables in x, γ̃ = γ|Y \set(x), in order to avoid ambiguities when
multiple quantifiers refer to the same variable(s)3. The second part of our updated

3See Section 3.4.4 for more details.

26 Chapter 3. Linear programs on conjunctive queries

environments is the answer of Q being iterated upon by the quantifier. However
Q might have free variables that are not covered by x and are thus bound to the
context therefore we substitute γ̃ in Q before enumerating its answers. Finally our
updated environments are γ̃ ∪γ′ with γ′ ∈ ansDx(subsγ̃(Q)). Thus the closure of this
constraint in environment γ can be formally defined as follows:

closeD,γ(∀x:Q.C) =
∧

γ′∈ansDset(x)(subsγ̃(Q))

closeD,γ̃∪γ′(C).

The closure of an expression ∑∑∑
x:Q S is very similar to the closure of a ∀ con-

straint with the only difference being that it generates a sum of closures of the
subexpression S. It is defined formally as follows:

closeD,γ(
∑∑∑
x:Q

S) =
∑

γ′∈ansDset(x)(subsγ̃(Q))

closeD,γ̃∪γ′(S).

To define the closure of an expression num(E) we first need to substitute γ in
E to change it to a database constant a ∈ dom if it was a query variable x ∈ X .
We can then apply the numD operator to retrieve the value numD(a) ∈ R of the
database constant a. It is defined formally as follows:

closeD,γ(num(E)) = numD(subsγ(E)).

The rest of the inductive definition of the closure of LP(CQ) models is straight-
forward and is given in Figure 3.6. As an example the closure of the LP(CQ) model
from Example 3.2 is given in Example 3.5.

Example 3.5 (Closure of the task assignment LP(CQ) model on D).

minimize weight(t,s,e,d):e .=Alice(Qassign)
+ weight(t,s,e,d):e .=Bob(Qassign)

subject to weight(t,s,e,d):t .=T1
(Qassign) ≥ 45

∧ weight(t,s,e,d):t .=T2
(Qassign) ≥ 10

∧ weight(t,s,e,d):t .=T3
(Qassign) ≥ 20

∧ weight(t,s,e,d):e .=Alice(Qassign) ≤ 40
∧ weight(t,s,e,d):e .=Bob(Qassign) ≤ 40

We now show that our closure operation is indeed a closure by showing that the
closure of any LP(CQ) model is indeed closed in Proposition 3.8 and by showing
that it is the identity when applied to a closed model in Proposition 3.11.

We begin by showing that the closure of a well-formed LP(CQ) produces a closed
LP(CQ) model as defined in Definition 3.3, that is a LP(CQ) model that contains

3.4. Semantics 27

subsγ(Q ∧ Q′) = subsγ(Q) ∧ subsγ(Q′)
subsγ(∃x.Q) = ∃x.subsγ|dom(γ)\{x}(Q)

subsγ(r(t1, . . . , tn)) = r(subsγ(t1), . . . , subsγ(tn))
subsγ(t = t′) = subsγ(t) .=subsγ(t′)

subsγ(x) =
{

γ(x) if x ∈ dom(γ)
x otherwise

subsγ(a) = a

Figure 3.5: Lifting substitutions γ : fv(Q) → C to queries Q.

no ∀, ∑∑∑ or num operators and whose every weight expression is closed. Observe
that by definition the closure removes any ∀, ∑∑∑ or num operators it encounters so
the proof will mostly focus on making sure the model is traversed properly as well as
on checking the free variables of weight expressions. For clarity we first prove this
property on LP(CQ) expressions and LP(CQ) constraints in the following lemmas.

Lemma 3.6.
Let S ∈ Le(CQ) be an LP(CQ) expression and D be a database. Given an envi-
ronment γ such that fv(S) ⊆ var(γ), closeD,γ(S) is closed.

Proof. We show this by bottom-up induction on the structure of S. Observe that
the case S = N can be split into two cases S = c and S = num(E).

Base case 1: S = c ∈ R

By definition closeD,γ(S) = c so it is closed.

Base case 2: S = num(E)
By definition closeD,γ(S) = numD(subsγ(E)) which returns a real c ∈ R so
closeD,γ(S) is closed.

Base case 3: S = weightx:Q′(Q)
By definition closeD,γ(weightx:Q′(Q)) = weightx:subsγ̃(Q′)(subsγ̃(Q)).
Recall that γ : Y → dom(D) such that fv(S) ⊆ Y so fv(Q) \ set(x) ⊆ Y .
Observe that when we consider γ̃ = γ|Y \set(x) it still covers every variable in
fv(Q) \ set(x). Thus when we compute subsγ̃(Q) we replace every variable in
fv(Q) \ set(x) with a database constant so fv(subsγ̃(Q)) \ set(x) = ∅. Sim-
ilarly fv(subsγ̃(Q′)) \ set(x) = ∅ so fv(weightx:subsγ̃(Q′)(subsγ̃(Q))) = ∅ thus
weightx:subsγ̃(Q′)(subsγ̃(Q)) is closed.

Inductive case 1: S = ∑∑∑
x:Q S′.

By definition closeD,γ(∑∑∑x:Q S′) = ∑
γ′∈ansDset(x)(subsγ̃(Q)) closeD,γ̃∪γ′(S′)

Recall that by definition fv(S) = fv(S′) ∪ fv(Q) \ set(x) and by hypothesis
fv(S) ⊆ var(γ) so fv(S′) \ set(x) ⊆ var(γ). Observe that var(γ̃) = var(γ) \

28 Chapter 3. Linear programs on conjunctive queries

closeD,γ(num(E)) =

numD(subsγ(E)) if defined,
0 otherwise

closeD,γ(c) = c

closeD,γ(weightx:Q′(Q)) = weightx:subsγ̃(Q′)(subsγ̃(Q))
closeD,γ(S1 + S2) = closeD,γ(S1) + closeD,γ(S2)
closeD,γ(N × S) = closeD,γ(N)closeD,γ(S)
closeD,γ(N) = N

closeD,γ(true) = true

closeD,γ(∑∑∑x:Q S) = ∑
γ′∈ansDset(x)(subsγ̃(Q)) closeD,γ̃∪γ′(S)

closeD,γ(∀x:Q.C) = ∧
γ′∈ansDset(x)(subsγ̃(Q)) closeD,γ̃∪γ′(C)

closeD,γ(S1 ≤ S2) = closeD,γ(S1) ≤ closeD,γ(S2)
closeD,γ(C1 ∧ C2) = closeD,γ(C1) ∧ closeD,γ(C2)

closeD(maximize S subject to C) = maximize closeD,∅(S) subject to closeD,∅(C)

Figure 3.6: Closure of linear expressions (constraints and programs) with conjunc-
tive queries F over database D as closed linear expression (constraints and pro-
grams respectively) closeD,γ(F), where γ : Y → dom(D) and fv(F) ⊆ Y ⊆ X and
γ̃ = γ|Y \set(x).

3.4. Semantics 29

set(x) so fv(S′) \ set(x) ⊆ var(γ̃). Finally var(γ′) = set(x) so fv(S′) ⊆
var(γ̃) ∪ var(γ′) so by induction closeD,γ̃∪γ′(S′) is closed.
Thus closeD,γ(S) is closed as it is a sum of closed expressions.

Inductive case 2: S = N × S′

By definition closeD,γ(N × S) = closeD,γ(N)closeD,γ(S).
Recall that by definition fv(S) = fv(N) ∪ fv(S′) and by hypothesis fv(S) ⊆
var(γ) so fv(N) ⊆ var(γ) and fv(S′) ⊆ var(γ).
Thus by induction closeD,γ(N) and closeD,γ(S′) are closed so closeD,γ(S) is
closed.

Inductive case 3: S = S′ + S′′

By definition closeD,γ(S′ + S′′) = closeD,γ(S′) + closeD,γ(S′′).
Recall that by definition fv(S) = fv(S′) ∪ fv(S′′) and by hypothesis fv(S) ⊆
var(γ) so fv(S′) ⊆ var(γ) and fv(S′′) ⊆ var(γ).
Thus by induction closeD,γ(S′) and closeD,γ(S′′) are closed so closeD,γ(S) is
closed.

Lemma 3.7.
Let C ∈ Lc(CQ) be an LP(CQ) constraint and D be a database. Given an envi-
ronment γ such that fv(C) ⊆ var(γ), closeD,γ(S) is closed.

Proof. We show this by bottom-up induction on the structure of S.

Base case 1: C = true
By definition closeD,γ(C) = true which is closed.

Base case 2: C = S ≤ S′

By definition closeD,γ(S ≤ S′) = closeD,γ(S) ≤ closeD,γ(S′).
Recall that by definition fv(C) = fv(S) ∪ fv(S′) and by hypothesis fv(S) ⊆
var(γ) so fv(S) ⊆ var(γ) and fv(S′) ⊆ var(γ).
Thus by Lemma 3.6 closeD,γ(S) and closeD,γ(S′) are closed so closeD,γ(C) is
closed.

Inductive case 1: ∀x:Q.C ′

By definition closeD,γ(∀x:Q.C ′) = ∧
γ′∈ansDset(x)(subsγ̃(Q)) closeD,γ̃∪γ′(C ′).

Recall that by definition fv(C) = fv(C ′) ∪ fv(Q) \ set(x) and by hypothesis
fv(C) ⊆ var(γ) so fv(C ′) \ set(x) ⊆ var(γ). Observe that var(γ̃) = var(γ) \
set(x) so fv(C ′) \ set(x) ⊆ var(γ̃). Finally var(γ′) = set(x) so fv(C ′) ⊆
var(γ̃) ∪ var(γ′) so by induction closeD,γ̃∪γ′(C ′) is closed.
Thus closeD,γ(S) is closed as it is a conjunction of closed constraints.

30 Chapter 3. Linear programs on conjunctive queries

Inductive case 2: C = C ′ ∧ C ′′

By definition closeD,γ(C ′ ∧ C ′′) = closeD,γ(C ′) ∧ closeD,γ(C ′′).

Recall that by definition fv(C) = fv(C ′) ∪ fv(C ′′) and by hypothesis fv(C) ⊆
var(γ) so fv(C ′) ⊆ var(γ) and fv(C ′′) ⊆ var(γ).

Thus by induction closeD,γ(C ′) and closeD,γ(C ′′) are closed so closeD,γ(C) is
closed.

Proposition 3.8.
Let L = maximize S subject to C be an LP(CQ) model and D be a database then
closeD(L) is closed.

Proof. By definition closeD(maximize S subject to C) =
maximize closeD,∅(S) subject to closeD,∅(C). Observe that fv(S) = ∅ be-
cause L is well-formed. Thus by Lemma 3.6, closeD,∅(S) is closed. Similarly
fv(C) = ∅ so by Lemma 3.7 closeD,∅(S) is closed. Thus closeD(L) is closed.

We now show that the LP(CQ) closure is the identity when applied to a closed
model. Observe that by definition the environment of a closure only changes when
encoutering a ∀ or ∑∑∑ which will not happen in a closed LP(CQ) model so we will
only consider closures with an empty environment. For clarity we begin by proving
this property on LP(CQ) expressions and constraints in the following lemmas.

Lemma 3.9.
Let S ∈ Le(CQ) be a closed LP(CQ) expression. Given a database D, closeD,∅(S) =
S.

Proof. We show this by induction on the structure of S. Observe that because S is
closed there are no cases where S = num(E) or S = ∑∑∑

x:Q S′.
Base case 1: S = N ∈ Num(CQ).
Observe that because S is closed then S is necessarily a constant c ∈ R. Then

by definition closeD,∅(S) = S.
Base case 2: S = weightx:Q′(Q).
By definition closeD,γ(S) = weightx:subsγ̃(Q′)(subsγ̃(Q)) with γ = ∅ and γ̃ =

γ|var(γ)\set(x) = ∅. Thus closeD,∅(S) = weightx:subs∅(Q′)(subs∅(Q)) = S.
Inductive case: S = N × S′ or S = S′ + S′′.
Observe that because S then N, S′ and S′′ are also closed thus by induction

closeD,∅(N) = N , closeD,∅(S′) = S′ and closeD,∅(S′′) = S′′. Then closeD,∅(N ×S′) =
N × S′ and closeD,∅(S′ + S′′) = S′ + S′′

Lemma 3.10.
Let C be a closed LP(CQ) constraint. Given a database D, closeD,∅(C) = C.

3.4. Semantics 31

Proof. We show this by induction on the structure of C.
Observe that because C is closed there are no cases where C = ∀x:Q.C ′.
Base case 1: C = true.
By definition closeD,∅(true) = true.
Base case 2: C = S ≤ S′.
By definition closeD,∅(S ≤ S′) = closeD,∅(S) ≤ closeD,∅(S′). However C is

closed so S and S′ are also closed. Thus by Lemma 3.9 closeD,∅(S) = S and
closeD,∅(S′) = S′ so closeD,∅(S ≤ S′) = S ≤ S′.

Inductive case: C = C ′ ∧ C ′′.
Observe that because C then C ′ and C ′′ are also closed thus by induction

closeD,∅(C ′) = C ′, closeD,∅(C ′′) = C ′′. Then closeD,∅(C ′ ∧ C ′′) = C ′ ∧ C ′′.

Proposition 3.11.
Let L be a closed LP(CQ) model. Given a database D, closeD(L) = L.

Proof. Let S be a LP(CQ) expression and C be a LP(CQ) constraint such that
L = maximize S subject to C.

By defintion closeD(L) = maximize closeD,∅(S) subject to closeD,∅(C).
Observe that because L is closed then S and C are also closed so by Lemma 3.9

closeD,∅(S) = S and by Lemma 3.10 closeD,∅(C) = C. Thus it follows that
closeD(L) = closeD(maximize S subject to C) = maximize S subject to C =
L.

3.4.3 Semantics of LP (CQ) models

As we saw in the two previous sections, the semantic of a LP(CQ) model is
defined by a two-step process. The model must first be closed before so that its
weight expressions can be instantiated as linear program variables. Thus the se-
mantic of a LP(CQ) model L is formally defined as:

⟨L⟩D = InstD(closeD(L))

We let the reader check that the semantics of the model in Example 3.2 with
the database from Figure 3.1 is indeed the linear program seen in Example 3.1.
Instead we will look at the semantic of this model on a different database given in
Figure 3.7.

32 Chapter 3. Linear programs on conjunctive queries

Tasks tid skill duration
T1 Python 45
T2 C 10
T3 SQL 20
T4 Java 30

Skills eid skill
Alice Python
Alice C
Bob SQL
Bob Python

Carol Python
Carol Java

Qassign t s e d var
T1 Python Alice 45 θ

(T1,Alice)
Qassign

T1 Python Bob 45 θ
(T1,Bob)
Qassign

T1 Python Carol 20 θ
(T1,Carol)
Qassign

T2 C Alice 10 θ
(T2,Alice)
Qassign

T3 SQL Bob 20 θ
(T3,Bob)
Qassign

T4 Java Carol 30 θ
(T4,Carol)
Qassign

Figure 3.7: Example for the Tasks and Skills tables. Answers of Qassign query.

Observe that the answers of ∃s′.Skills(e′, s′) and ∃s′.Tasks(t′, d′) are as follows:

∃s′.Skills(e′, s′) e’
Alice
Bob

Carol

∃s′.Tasks(t′, s′, d′) tid duration
T1 45
T2 10
T3 20
T4 30

Thus the closure closeD(L) of L on D is:

minimize weight(t,s,e,d):e .=Alice(Qassign) + weight(t,s,e,d):e .=Bob(Qassign)
+ weight(t,s,e,d):e .=Carol(Qassign)

subject to weight(t,s,e,d):t .=T1
(Qassign) ≥ 45

∧ weight(t,s,e,d):t .=T2
(Qassign) ≥ 10

∧ weight(t,s,e,d):t .=T3
(Qassign) ≥ 20

∧ weight(t,s,e,d):t .=T4
(Qassign) ≥ 30

∧ weight(t,s,e,d):e .=Alice(Qassign) ≤ 40
∧ weight(t,s,e,d):e .=Bob(Qassign) ≤ 40
∧ weight(t,s,e,d):e .=Carol(Qassign) ≤ 40.

Finally we instantiate the weight operators to obtain the semantics of L.
For brevity we denote any variable θ

[t/t′,s/s′,e/e′,d/d′]
Qassign

by θ
(t′,e′)
Qassign

(for example
θ

[t/T1,s/P ython,e/Alice,d/45]
Qassign

is written θ
(T1,Alice)
Qassign

).

3.4. Semantics 33

minimize θ
(T1,Alice)
Qassign

+ θ
(T2,Alice)
Qassign

+ θ
(T1,Bob)
Qassign

+ θ
(T3,Bob)
Qassign

+ θ
(T1,Carol)
Qassign

+ θ
(T4,Carol)
Qassign

subject to θ
(T1,Alice)
Qassign

+ θ
(T1,Bob)
Qassign

+ θ
(T1,Carol)
Qassign

≥ 45

∧ θ
(T2,Alice)
Qassign

≥ 10

∧ θ
(T3,Bob)
Qassign

≥ 20

∧ θ
(T4,Carol)
Qassign

≥ 30

∧ θ
(T1,Alice)
Qassign

+ θ
(T2,Alice)
Qassign

≤ 40

∧ θ
(T1,Bob)
Qassign

+ θ
(T3,Bob)
Qassign

≤ 40

∧ θ
(T1,Carol)
Qassign

+ θ
(T4,Carol)
Qassign

≤ 40.

The optimal value of this linear program is 105 which can be achieved with the
following assignments:

Alice Bob Carol
T1 15 20 10
T2 10 - -
T3 - 20 -
T4 - - 30

3.4.4 Intricacies of the semantics

Scope of database variables

We now explain the use of γ̃ = γ|var(γ)\x when defining the closure of ∀ and ∑∑∑
quantifiers.

Let C be the following LP(CQ) constraint:

∀(x′):r(x′.)
∑∑∑

(x′):r′(x′)
weight(x,y):x .=x′(q(x, y)) ≤ num(x′).

Observe that there are two instances of the variable x′ in weight expressions
but that, as indicated by the highlighting, they are bound to different quantifiers.
Indeed the occurence of x′ in the weight operator is bound to the ∑∑∑ quantifier as it
is its closest quantifier. Similarly the second occurrence of x′ in the num operator
is bound to its own closest quantifier which is the ∀. We will show on an example
that the use of γ̃ in the closure operation allows us to properly handle such cases.

We consider a very simple database D:
r x

13
37

r’ x
0
1

If we close the top-level ∀ quantifier of C with D and an empty prior environment
we obtain the following:

34 Chapter 3. Linear programs on conjunctive queries

closeD,[x′/13](
∑∑∑

(x′):r′(x′)
weight(x,y):x .=x′(q(x, y)) ≤ num(x′))

∧ closeD,[x′/37](
∑∑∑

(x′):r′(x′)
weight(x,y):x .=x′(q(x, y)) ≤ num(x′)).

Then closing the inequalities yields:

closeD,[x′/13](
∑∑∑

(x′):r′(x′)
weight(x,y):x .=x′(q(x, y))) ≤ closeD,[x′/13](num(x′))

∧ closeD,[x′/37](
∑∑∑

(x′):r′(x′)
weight(x,y):x .=x′(q(x, y))) ≤ closeD,[x′/37](num(x′)).

Finally we close both operands of the inequality. In the right-hand operands we
will simply substitute the values of x′ (here 13 and 37) provided by the environment.
However for the left-hand side, the values of x′ will be overriden by new values
yielded by the ∑∑∑ operator which we will then substitute into the weight operators
as follows:

weight(x,y):x .=1(q(x, y)) + weight(x,y):x .=2(q(x, y)) ≤ 13
∧ weight(x,y):x .=1(q(x, y)) + weight(x,y):x .=2(q(x, y)) ≤ 37.

α-Renaming may change the semantics of LP(CQ) programs.

We note that α-renaming the bound variables in weight expressions does not
always preserve the semantics of LP(CQ) programs. It may make previously equal
queries different, so that different weights may be assigned to their answer sets.

To illustrate this let x = (x1, x2) and L be the following LP(CQ) program:

maximize weightx:x2
.=1(r(x)) subject to weightx:true(r(x)) ≤ 1.

Let D be a database with signature Σ = {r(2)} and interpretation rD =
{(0, 0), (0, 1)}. If Q is the query r(x) then the semantics of this LP(CQ) program
⟨L⟩D is the linear program:

maximize θ
(0,1)
Q subject to θ

(0,0)
Q + θ

(0,1)
Q ≤ 1.

The optimal value of ⟨L⟩D is J⟨L⟩DKD = 1 since θ
(0,0)
Q + θ

(0,1)
Q ≤ 1 and θ

(0,0)
Q ≥ 0.

Now let us α-rename the second occurrence of x in L to x′ = (x′
1, x′

2) yielding the
following LP(CQ) program L′:

maximize weightx:x2
.=1(r(x)) subject to weightx′:true(r(x′)) ≤ 1.

3.5. Solving LP (CQ) programs 35

The semantics ⟨L′⟩D is the following linear program where Q is r(x) and Q′ is
r(x′):

maximize θ
(0,1)
Q subject to θ

(0,0)
Q′ + θ

(0,1)
Q′ ≤ 1.

The optimal value of ⟨L′⟩D is ∞ since θ
(0,1)
Q is no longer constrained. Indeed

the queries r(x) and r(x′) are syntactically different so we consider them to be
different and to have distinct answer sets. Therefore the two weight operators are
instantiated with distinct sets of LP variables.

3.5 Solving LP (CQ) programs

In this section we discuss the combined complexity then the data complexity of
computing the optimal value of closed LP(CQ) models. Finally we briefly discuss
the more general case of solving open LP(CQ) models.

3.5.1 Solving closed LP (CQ) models

Solving a closed LP(CQ) model with a database D is quite straightforward.
Indeed, the natural interpretation of L with D yields a linear program L′ = ⟨L⟩D
which can then be handed to a linear program solver to obtain its optimal value
opt(L′) and an optimal solution w : var(L′) → R+.

3.5.1.1 Combined complexity

We formally define the problem of solving a LP(CQ) model L on a database D.
We consider both L and D to be a part of the input in order to study the combined
complexity of this problem.

Definition 3.12 (SOLVE(LP(CQ)) problem).
Input: A LP(CQ) model L and database D.
Output: The optimal value of L on D, opt(JLKD).

Intuitively this problem is NP-hard as instantiating L requires computing the
answer sets of the base queries cq(L). In order to formally study the hardness of
this problem, we introduce the following associated decision problem:

Definition 3.13 (DECIDE̸=0(LP(CQ)) problem).
Input: A LP(CQ) model L and database D.
Output: True if opt(JLKD) ̸= 0, false otherwise..

We now show that this problem is NP-hard by reduction from query satisfiability.

Theorem 3.14.
The DECIDE̸=0(LP(CQ)) problem is NP-hard.

Proof. The proof follows by reduction from the problem of deciding
whether ansD(Q) ̸= ∅ given a conjunctive query Q and a database D

36 Chapter 3. Linear programs on conjunctive queries

in the input, which is known to be NP-complete [CM77]. We con-
sider, given a conjunctive query Q, the following LP(CQ): LQ :=
maximize weightx:true(Q) subject to weightx:true(Q) ≤ 1.

The hardness now follows from the fact that for every Q and D, ⟨LQ⟩D ̸=
0 if and only if ansD(Q) ̸= ∅. Indeed, if ansD(Q) = ∅, then ⟨LQ⟩D =
maximize 0 subject to 0 ≤ 1. The optimal value of ⟨LQ⟩D is thus 0. How-
ever, if ansD(Q) ̸= ∅, we have ⟨LQ⟩D = maximize ϕ subject to ϕ ≤ 1 where
ϕ = ∑

α∈ansD(Q) θα
Q. Let α ∈ ansD(Q) and consider the weighting ωα such that

ωα(θα
Q) := 1 and for every α′ ∈ ansD(Q) such that α′ ̸= α, ωα(θα′

Q) := 0. This
weighting clearly respects the constraints of ⟨LQ⟩D and has value 1, showing that
the optimal value of ⟨LQ⟩D ≥ 1.

3.5.1.2 Data complexity

The hardness from Theorem 3.14 mainly stems from the hardness of answering
conjunctive queries that is only relevant in the context of combined complexity.

It is often assumed however that the size of the query is small with respect to
the size of the data, hence one can study the data complexity of the problem, that
is, the complexity of the problem when we the query is fixed. We lift this notion to
our problem by fixing the linear program L. In this case, computing opt(⟨L⟩D) can
be done in time polynomial in |D| using the following procedure:

1. Explicitly compute ansD(Q) for every Q appearing in cq(L),

2. Compute L′ = ⟨L⟩D,

3. Solve L′ in time polynomial in |L′| using an LP-solver.

The exact complexity of this procedure is however dependent on the size of
⟨L⟩D whose number of variables is bounded by the sum of |ansD(Q)| for every
Q ∈ cq(L). We lift the AGM bound presented in Section 2.2.4 to closed LP(CQ)
models by defining AGM(L) to be the maximum of AGM(Q) for every query
Q ∈ cq(L). Observe that any weightx:Q′(Q) can be instantiated with |ansD(Q)|
variables at most so the size of the encoding of ⟨L⟩D can now be upper bounded by
O(|L| · |D|AGM(L) · log(|D|AGM(L))). Using a worst-case optimal join algorithm such
as Triejoin [Vel14] to compute ansD(Q) in time O(|D|AGM(Q)) and Theorem 2.8,
we conclude that one can compute opt(⟨L⟩D) in time O(|⟨L⟩D|b · |D|AGM(L)·ℓ) where
|⟨L⟩D|b = O((|L| · |D|AGM(L) · log(|D|AGM(L))).

In data complexity this corresponds to O(|D|AGM(L) · log(|D|AGM(L)) ·
|D|AGM(L)·ℓ) = O(|D|AGM(L)·(ℓ+1) · log(D)).

3.5.2 Solving open LP (CQ) models

We now discuss the problem of solving an open LP(CQ) program K. To do
so we can simply close K yielding a closed LP(CQ) program L = closeD(K). The
procedure described previously can then be applied to solve L.

3.6. Alternate interpretations 37

Thus it follows that one can compute the optimal value of K in O(|⟨L⟩D|b ·
|D|AGM(L)·ℓ). Recall that when computing L, closing a constraint ∀x:Q.C generates
|ansD(Q)| constraints closeD,γ(C) which can be further compounded if C contains
more ∀ quantifiers. Thus L can be quickly grow much bigger than K depending on
the number and nesting depth of quantifiers in K as well as the number of answers
of the queries that appear in these quantifiers.

There are thus two levers that could be considered when trying to optimize the
solving time of an open LP(CQ) model: the closing phase and the instantiation
phase. Optimizing the closing phase falls out of the scope of this thesis and we will
instead focus on improving the instantiation phase to generate linear programs with
fewer variables. Thus, throughout this thesis we will study the problem of solving
closed LP(CQ) models and consider the closing phase to be a form of implicit
pre-computation.

3.6 Alternate interpretations

As we saw in Section 3.5 the natural semantics of a LP(CQ) model on a database
can be exponentially larger than the model and input database which makes the
resulting linear program hard to solve. More specifically recall that, even when
considering a closed LP(CQ) model, the instantiation step alone causes a blow up
in the number of variables.

In the following chapters we will show that we can solve some LP(CQ) mod-
els more efficiently by defining alternate interpretations of closed models that are
equivalent to their natural semantics.

In Section 3.6.1 we formalize the notions of LP(CQ) interpretations and instan-
tiations. Then, in Section 3.6.2, we provide a general framework to prove that two
interpretations are equivalent i.e., that they have the same optimal value.

3.6.1 Definitions

Recall that we defined the natural instantiation in Section 3.4.1 as a function
that maps weight operators to sums of linear program variables so we begin by
introducing a few notations to refer to weight operators more easily. Given a closed
LP(CQ) model L we denote by W(L) the set of all the closed weight operators
that appear in L. Additionally we define WQ(L) = {weightx:Q′′(Q′) ∈ W(L) |
Q = Q′} the set of all the closed weight operators of L that refer to Q. We extend
these notations to closed linear sums in Le(CQ) and linear constraints in Lc(CQ)
in a straightforward manner. We sometimes refer to weight operators of L by
w ∈ W(L) for short.

Let W be a set of closed weight operators and Ξ be a set of linear program
variables. We call a function Inst : W → LeΞ an instantiation function. Such a
function can then be applied to LP(CQ) sums, constraints and models to define
an interpretation of LP(CQ) models. Observe that the function InstD we defined

38 Chapter 3. Linear programs on conjunctive queries

in Section 3.4.1 to describe the natural semantics of LP(CQ) models is indeed an
instantiation function.

Finally we formalize what it means to interpret a LP(CQ) model as a linear
program. When we define more efficient interpretations in the following they will
include additional constraints to ensure their equivalence with the natural seman-
tics. Thus we define the interpretation of a LP(CQ) model L given an instantiation
function Inst and additional constraint ac as

⟨L⟩Inst,ac = Inst(L) ∧ ac.

Observe that the natural semantics is indeed an interpretation with instantiation
InstD and additional constraint true. In the rest of this thesis we will sometimes
refer to it as the natural interpretation.

3.6.2 Equivalence of LP (CQ) interpretations

We now show how to prove that two interpretations are equivalent i.e., that
they have the same optimal values. We consider a closed LP(CQ) model L and
two interpretations ρ1(L) = ⟨L⟩Inst1,ac1 and ρ2(L) = ⟨L⟩Inst2,ac2 . Intuitively the
equivalence of ρ1(L) and ρ2(L) will follow from linking pairs of weightings w1 and
w2 of ρ1(L) and ρ2(L) respectively such that

w1(Inst1(w)) = w2(Inst2(w))

for any w ∈ W(L).
We fix two sets of linear program variables Ξ1 and Ξ2, two instantiations Inst1 :

W(S) → LeΞ1 and Inst2 : W(S) → LeΞ2 and two weightings w1 : Ξ1 → R+ and
w2 : Ξ2 → R+.

We can then easily extend this correspondence to linear sums and linear con-
straints in the two following lemmas.

Lemma 3.15.
Let S be a closed Le(CQ) expression.

If w1(Inst1(w)) = w2(Inst2(w)) for any w ∈ W(S) then JInst1(S)Kw1 =
JInst2(S)Kw2.

Proof. We show this by induction on the structure of S.

Base case 1 S = weightx:Q′(Q)

JInst1(S)Kw1 = w1(Inst1(S))
= w2(Inst2(S)) by hypothesis
= JInst2(S)Kw2

Base case 2 S = N

Observe that because S is closed then N is a constant c. Thus it is obvious
that JInst1(S)Kw1 = JInst2(S)Kw2 .

3.6. Alternate interpretations 39

Inductive cases S = N × S′ or S = S′ + S′′.
These are straightforward by induction.

Lemma 3.16.
Let C be a closed Lc(CQ) expression.

If wQ
1 (Inst1(w)) = wQ

2 (Inst2(w)) for any w ∈ W(S) then JInst1(C)Kw1 =
JInst2(C)Kw2.

Proof. By induction on the structure of C.

Base case 1 C = true
Obvious.

Base case 2 C = S ≤ S′

This follows directly from Lemma 3.15.

Induction step C = C ′ ∧ C ′′

This is straightforward by induction.

Finally, in order to simplify future proofs, we show that we can deduce a re-
lationship between opt(ρ1(L)) and opt(ρ2(L)) from a correspondence on partial
weightings of these linear programs by considering each Q ∈ cq(L) independently.

We denote the set of variables of the interpretation ρ1(L) related to a query
Q ∈ cq(L) by varQ(ρ1(L)) = ⋃

w∈WQ(ρ1(L)) var(Inst1(w)). Observe that given two
distinct queries Q and Q′, the domains of wQ

1 and wQ′

1 are disjoint by definition.

Proposition 3.17.
Let L be a closed LP(CQ) model.

Let ρ1(L) = ⟨L⟩Inst1,ac1 and ρ2(L) = ⟨L⟩Inst2,ac2.
If it holds for any Q ∈ cq(L) and weighting wQ

1 of varQ(ρ1(L)) such that
Jac1KwQ

1
= 1 that there exists a weighting wQ

2 of varQ(ρ2(L)) such that

• Jac2KwQ
2

= 1,

• ∀w ∈ WQ(L), JInst1(w)K
wQ

1
= JInst2(w)K

wQ
2

then opt(L1) ≤ opt(L2).

Proof. For any Q ∈ cq(L), let wQ
1 be a weighting of varQ(ρ1(L)) such that Jac1KwQ

1
=

1 It follows by hypothesis that there is a weighting wQ
2 of varQ(ρ2(L)) such that

Jac2KwQ
2

= 1 and JInst1(w)K
wQ

1
= JInst2(w)K

wQ
2

for any w ∈ WQ(L).

40 Chapter 3. Linear programs on conjunctive queries

Let w1 : Ξ1 → R+ be the weighting defined such that w1(w) = wQ
1 (w) for any

Q ∈ cq(L) and w ∈ WQ(L).
Let w2 : Ξ2 → R+ be the weighting defined such that w2(w) = wQ

2 (w) for any
Q ∈ cq(L) and w ∈ WQ(L).

Observe that Jac1(Q)Kw1 = 1, Jac2(Q)Kw2 = 1 and for any w ∈ W(L),
JInst1(w)K

wQ
1

= JInst2(w)K
wQ

2
.

Suppose now that w1 also satisfies Inst1(C) (making it a solution of L1) then by
Lemma 3.16 w2 satisfies Inst2(C) and is a solution of L2. Moreover by Lemma 3.15
it follows that JInst1(S)Kw1 = JInst2(S)Kw2 . Thus for any optimal solution of L1
there is a solution of L2 with the same objective value so opt(L1) ≤ opt(L2).

Observe that if opt(L1) ≤ opt(L2) and opt(L2) ≤ opt(L1) then it follows that
opt(L1) = opt(L2).

3.7 Conclusion

In this chapter we have extensively discussed the syntax and semantics of the
LP(CQ) language that allows one to model linear programs whose underlying data
is represented by conjunctive queries. We then studied the complexity of solving
LP(CQ) models and remarked that this problem is NP-hard in general. Finally we
introduced the notion of alternate interpretations of LP(CQ) models to pave the
way for more efficient interpretations that we will present in the following chapters.

Chapter 4

Tractable fragment of LP (CQ)

Contents
4.1 Introduction . 41
4.2 A tractable interpretation of LP (CQ) models 43

4.2.1 Characterizing tractable LP (CQ) models and their width . . 43
4.2.2 Tree decomposition-based factorized interpretation 44
4.2.3 Example . 47

4.3 Solving LP (CQ) models efficiently 49
4.3.1 Computing the optimal value of a LP (CQ) model 49
4.3.2 Computing a full solution of the natural interpretation 50
4.3.3 Handling conjunctive queries with existential quantifiers . . . 52

4.4 Proof of equivalence between the T-factorized and natural
interpretations . 52

4.4.1 Weighting correspondence . 52
4.4.2 Reconstructing a weighting collection on T of A 53
4.4.3 Reconstructing a weighting of A 54
4.4.4 Proof of the equivalence of the natural and T-factorized inter-

petations . 59
4.5 Conclusion . 60

4.1 Introduction

In this chapter we introduce an alternate tractable interpretation based on hy-
pertree decompositions to solve some closed LP(CQ) models more efficiently.

Recall that we remarked in Section 3.5 that the complexity of solving LP(CQ)
models stems from answering the query Q for each weightx:Q′(Q) term. Classi-
cally, from Yannakakis’ algorithm [Yan81] to factorized databases [OZ12, Olt16],
tractable results for various operations1 on conjunctive queries rely on hypertree
decompositions. In line with these results we will lift the notions of hypertree de-
composition and hypertree width to closed LP(CQ) models. We will then show
that we can exploit the decomposition of a closed LP(CQ) model to construct a
linear program with fewer variables than its natural semantics.

1Satisfiability, enumeration, counting, . . .

42 Chapter 4. Tractable fragment of LP (CQ)

Intuitively we reduce the number of variables in the linear program by instanti-
ating each weight operator in a closed LP(CQ) model with a single variable. We
give a broad intuition of this approach on a very basic example.

Intuition of the tractable interpretation

Consider a conjunctive query Q = R(x) ∧ R(y) and a database D with a single
table RD = {(0), (1)}. We then consider the following closed LP(CQ) program L:

maximize weight(x,y):y .=0(Q) + weight(x,y):y .=1(Q)
subject to weight(x,y):x .=0(Q) ≤ 1

∧ weight(x,y):x .=1(Q) ≤ 1

The answer set of Q is ansD(Q) = {α | α : {x, y} → {0, 1}}. The natural
interpretation ⟨L⟩D is thus the following linear program with variables in ΘD

L, where
we denote any query answer α ∈ ansD(Q) by a pair (α(x′), α(y′)) in the Cartesian
product {0, 1}2 for brevity:

maximize θ
(0,0)
Q + θ

(0,1)
Q + θ

(1,0)
Q + θ

(1,1)
Q

subject to θ
(0,0)
Q + θ

(0,1)
Q ≤ 1

∧ θ
(1,0)
Q + θ

(1,1)
Q ≤ 1

Observe that this linear program has an optimal value of 2.
The main idea of the tractable interpretation is to instantiate each

weightx:v .=d(Q) with a single variable ξ[v/d]. In this case this yields the follow-
ing:

maximize ξ[y/0] + ξ[y/1]
subject to ξ[x/0] ≤ 1

∧ ξ[x/1] ≤ 1

However observe that this new linear program is now unbounded as its con-
straints are now independent from its objective function. In this case we can restore
the link between the variables by adding the following linear constraint to the LP:

ξ[y/0] + ξ[y/1] = ξ[x/0] + ξ[x/1]

Note that while this linear program is simple enough that fixing it only required
adding a single so-called soundness constraint, their general construction is more
complex. Intuitively we rely on the fact that the projections of the answers of Q

are a succinct representation of the answer set of Q (see Lemma 2.5) to bound
the number of variables of the T-factorized interpretation. We then exploit the
structure exposed by the tree decomposition of the query to reconstruct the link
between the variables through the soundness constraints mentioned above.

4.2. A tractable interpretation of LP (CQ) models 43

Overview of the tractable interpretation

We have seen in Section 3.5 that using the natural interpretation to solve closed
LP(CQ) models is inefficient as instantiating models can generate a large amount of
variables related to the answers of the queries that appear in the model. Indeed, the
number of variables of ⟨L⟩D may contain up to DAGM(L) variables. In this chapter,
we propose the so-called T-factorized interpretation that, for a fragment of closed
LP(CQ) models, yields a linear program equivalent to their natural interpretation
(i.e., that has the same optimal value) but only Dk variables where k is a general-
ization of hypertree-width to closed LP(CQ) models that may possibly be smaller
than AGM(Q) leading to a more efficient method for solving LP(CQ) models.

Outline of the chapter

In Section 4.2 we define the so-called LP(CQ)proj fragment and lift the notion of
fractional hypertree width to models in this fragment, we then define the so-called
T-factorized interpretation. Then in Section 4.3 we describe how the T-factorized
interpretation can be used to solve LP(CQ)proj models. Finally Section 4.4 is
dedicated to proving that this approach is correct.

4.2 A tractable interpretation of LP (CQ) models

In this section we formally define the tree decomposition-based factorized inter-
pretation or T-factorized interpretation for short that will allow us to solve closed
LP(CQ) models more efficiently.

4.2.1 Characterizing tractable LP (CQ) models and their width

We start by defining the fragment of projecting LP(CQ) programs, whose main
restriction resides on how the weight operators can select subset of answers of their
queries. This restriction will allow us to apply the T-factorized interpretation and
bound the number of its variables.

Definition 4.1.
The fragment LP(CQ)proj is the set of closed LP(CQ) programs L such that every
one of its weightx:Q′(Q) satisfies the following:

- fv(Q) = set(x),

- Q′ is of the form x′ .=d with fv(Q′) = set(x′) ⊆ set(x) and set(d) ⊂ dom.

Additionally we denote by LP(CQqf)proj the subset of LP(CQ)proj where every
conjunctive query Q ∈ cq(L) is quantifier free.

We now lift the notions of tree decompositions and (fractional hypertree) width
to closed LP(CQqf)proj programs.

44 Chapter 4. Tractable fragment of LP (CQ)

The T-factorized interpretation of a closed LP(CQ) model L will exploit tree
decompositions of the queries in cq(L) that have some additional structure. The
complexity of this new approach will be tied to the width of these decompositions.
Hence, to present our algorithm, we first need to lift the concept of tree decomposi-
tions of queries to LP(CQ) models to integrate this additional structure. Moreover
we also lift the notion of width in order to analyze its complexity.

Definition 4.2.
Let L be an LP(CQqf)proj program and T = (TQ)Q∈cq(L) a collection of decomposi-
tion trees.

We call T a tree decomposition of L if for any expression weightx:x′ .=y(Q) in
L, TQ = (VQ, EQ, BQ) is a tree decomposition of Q and there is a node u of TQ such
that BQ(u) = set(x′).

We define the width of T to be the maximal (fractional hypertree) width of TQ

for Q ∈ cq(L). The size of T is defined to be |T| = ∑
Q∈cq(L) |VQ|.

Observe that the width of the decompositions in T may be greater than the
minimal width of the queries in cq(L) as they might require bigger bags in some
places in order to cover the weight expressions in L. We show a tree decomposition
as part of an example in Section 4.2.3.

4.2.2 Tree decomposition-based factorized interpretation

In this section we define a more succinct interpretation – the so-called tree
decomposition-based interpretation or T-factorized interpretation for short – that
leverages the efficiency afforded by the tree decompositions of the base queries in
the LP(CQ) model. As we saw in the introduction of this chapter, the general idea
is to instantiate each weight operator with (at most) one variable then add some
soundness constraints to restore the semantical link between the new variables.

Recall that in Section 3.6 we defined interpretations of closed LP(CQ) models
as pairs of instantiations and additional constraints.

4.2.2.1 T-factorized instantiation

We begin by defining the T-factorized instantiation. Intuitively this instantia-
tion maps every weightx:Q′(Q) ∈ W(L) to a variable associated to a tuple in the
projection of ansD(Q) on the bag of some node of the decomposition of Q. For-
mally the set of variables of the T-factorized instantiation is ΞL = ⊎

Q∈cq(L) ΞL,Q

where ΞL,Q = ⊎
u∈VQ

{ξQ,u,β | β ∈ ansDx(Q)|BQ(u)}. Observe that every ΞL,Q can be
computed efficiently:

Lemma 4.3.
Let k be the width of T .

The size of ΞL,Q is at most |V| · |D|k and one can compute ΞL,Q in time O(|T | ·
|D|k log(|D|)).

4.2. A tractable interpretation of LP (CQ) models 45

Proof. It follows directly by Lemma 2.5 in Section 2.2.4.

We now define the T-factorized instantiation:

Definition 4.4 (T-factorized instantiation).
Given a closed LP(CQqf)proj model L, database D and decomposition T of L, we
denote the instantiation of L with D and T by FInstD,T(L).

It is the linear program obtained by replacing every weightx:x′ .=y(Q) in L

with FInstT,D(weightx:x′ .=y(Q)) where FInstT,D is the function that maps any
weightx:x′ .=y(Q) to ξQ,u,β with u the vertex of TQ such that BQ(u) = fv(Q′) and
β = [x′/y] if β ∈ ansD(Q)|B(u) or 0 otherwise.

Observe that β /∈ ansD(Q)|B(u) iff ansDx(Q ∧ x′ .=y) = ∅ so the factorized instan-
tiation of weightx:x′ .=y(Q) is 0 iff its natural instantiation is also 0.

Observe that each operator w in L is instantiated with one variable at most so
it can be encoded in log(|D|k) bits from which the following lemma follows:

Lemma 4.5.
Given a closed LP(CQqf)proj model L, database D and decomposition T of L of
width k, FInstD,T(L) can be encoded in O(|L| · log(|D|k)) bits.

4.2.2.2 Local soundness constraints

While the T-factorized interpretation yields a more concise linear program, it
is not yet sufficient to solve LP(CQ) models efficiently as this new linear program
does not necessarily have the same objective value as the natural interpretation of
the model2.

Thus we need to add additional constraints to link our new variables together.
Given a query Q and its tree decomposition TQ ∈ T, we define the so-called local
soundness constraints on an edge (u, v) of TQ.

Definition 4.6 (Local soundness).
Given a query Q, its tree decomposition TQ and database D.

Let A = ansDx(Q) and e = (u, v) be an edge of TQ.

lscTQ,D(e) =
∧

γ∈A|BQ(u)∩BQ(v)

∑
β∈A|BQ(u)[γ]

ξQ,u,β
.=

∑
β′∈A|BQ(v)[γ]

ξQ,v,β′

We denote the local soundness constraint for a query Q by lsc(Q) =∧
e∈TQ

lscTQ,D(e). It can also be computed efficienctly with respect to the width
of its decomposition:

Lemma 4.7.
Let k be the width of T .

The constraint lsc(Q) can be encoded in O(|T | · |D|k · log(|D|k)) bits and it can
be computed in time O(|Q| · |T | · |D|k log(|D|)).

2We observed this in the example of the introduction of this chapter.

46 Chapter 4. Tractable fragment of LP (CQ)

Proof. In order to compute lsc(Q), we start by computing (ansD(Q)|B(u))u∈V using
Lemma 2.5. Then for each edge e = (u, v) of T , we construct lscTQ,D(e) as follows:
We begin by iterating over the tuples β ∈ ansD(Q)|B(u). Let γ = β|B(v), we create a
linear sum Sγ

u = ξQ,u,β if it does not already exist or we append +ξQ,u,β if it does.
Similarly we construct sums Sγ

v by iterating over the tuples β′ ∈ ansD(Q)|B(v).
Finally, we obtain lscTQ,D(e) = ∧

γ∈A|BQ(u)∩BQ(v)
Sγ

u
.=Sγ

v by pairing each Sγ
u with

the corresponding Sγ
v . Observe that each sum Sγ

u (resp. Sγ
v) has a counterpart Sγ

u

(resp. Sγ
u) because the β and β′ are projections of the tuples of ansD(Q).

Observe that each β ∈ ansD(Q)|B(u) and β′ ∈ ansD(Q)|B(v) is listed at most once
for each edge of T so lscTQ,D(e) can be encoded in O(2 · |D|k · log(|D|k)) bits from
which it follows that lsc(Q) can be encoded in O(|T | · |D|k · log(|D|k)) bits.

Moreover observe that the projection γ can be constructed in time O(|Q|) so
the total time required to construct lsc(Q) is O(|Q| · |T | · |D|k log(|D|)).

4.2.2.3 T-factorized interpretation

Finally we define the factorized interpretation of a closed LP(CQqf)proj L with
a tree decomposition T and database D denoted by ρT,D(L). It is obtained by
combining the local soudness constraint of any edge e in any decomposition TQ ∈ T
with the factorized instantiation of L as follows:

Definition 4.8 (Factorized interpretation).
Given a closed LP(CQqf)proj model L, database D and decomposition T of L,

ρT,D(L) = ⟨L⟩FInstT,D,C

with C = ∧
TQ∈T

∧
e∈EQ

lscTQ,D(e).

The factorized interpretation ρT,D(L) is interesting because it is smaller than
the natural interpretation ⟨L⟩D. Indeed, while ⟨L⟩D may have up to O(|D|AGM(L))
variables and O(|L|) constraints (see Section 2.2.4), one can show that if k is the
width of T then the size of ρT,D(L) is O(|D|k) in the data complexity model (where
L is considered constant). It follows from the following, more precise, combined
complexity analysis:

Theorem 4.9.
Given L ∈ LP(CQqf)proj , its tree decomposition T of width k and a database D, Let
q be the sum of the sizes of the queries in cq(L).

The T-factorized interpretation ρT,D(L) can be encoded in O((|L| + |T| · |D|k) ·
log(|D|k)) bits and it can be computed in time O(|L| + q|T| · |D|k log |D|).

Proof. This is a direct consequence of applying Lemma 4.3 and Lemma 4.7 to each
query in cq(L) as well as Lemma 4.5.

We will show in Section 4.3 that the T-factorized interpretation can indeed be
used to efficiently solve closed LP(CQqf)proj models.

4.2. A tractable interpretation of LP (CQ) models 47

t t, s, d s e, s e

Figure 4.1: Tree decomposition for the task assignment LP(CQ) model

t var

T1 X1
T2 X2
T3 X3

t s d var

T1 Python 45 X4
T2 C 10 X5
T3 SQL 20 X6

s var

C X7
Python X8
SQL X9

e s var

Alice C X10
Alice Python X11
Bob Python X12
Bob SQL X13

e var

Alice X14
Bob X15

Figure 4.2: Variables for the factorized interpretation of L.

4.2.3 Example

We now demonstrate the T-factorized interpretation on the task assignment
problem from Chapter 3. We consider the closed LP(CQ) model L from Exam-
ple 3.5 and we give its tree decomposition in Figure 4.1. Observe that it is indeed
a decomposition of L as the three middle nodes are a normalized3 decomposition
of the query Qassign = Tasks(t, s, d) ∧ Skills(e, s) and the additional t and e bags
cover all the weight operators of L.

Now, in order to compute the factorized instantiation of L and its soundness
constraints, we first need to define its variables. For brevity we use shortened names
detailed in Figure 4.2.

Applying the factorized instantiation to the model yields the following:

minimize X14 + X15

subject to X1 ≥ 45
∧ X2 ≥ 10
∧ X3 ≥ 20
∧ X14 ≤ 40
∧ X15 ≤ 40

3For brevity we consider a relaxation of normalized tree decompositions where we allow the
extension and projection of multiple variables at once under which our result is still correct.

48 Chapter 4. Tractable fragment of LP (CQ)

t var W

T1 X1 45

T2 X2 10

T3 X3 20

t s d var W

T1 Python 45 X4 45

T2 C 10 X5 10

T3 SQL 20 X6 20

s var W

C X7 10

Python X8 45

SQL X9 20

e s var W

Alice C X10 10

Alice Python X11 25

Bob Python X12 20

Bob SQL X13 20

e var W

Alice X14 35

Bob X15 40

Figure 4.3: Solution W of the factorized interpretation of L.

We can then construct the local soundness constraints on the decomposition
tree as follows:

X1 = X4 ∧ X2 = X5 ∧ X3 = X6

∧ X5 = X7 ∧ X4 = X8 ∧ X6 = X9

∧ X7 = X10 ∧ X8 = X11 + X12 ∧ X9 = X13

∧ X10 + X11 = X14 ∧ X12 + X13 = X15

Finally this yields the following linear program:

minimize X14 + X15

subject to X1 ≥ 45
∧ X2 ≥ 10
∧ X3 ≥ 20
∧ X14 ≤ 40
∧ X15 ≤ 40
∧ X1 = X4 ∧ X2 = X5 ∧ X3 = X6

∧ X5 = X7 ∧ X4 = X8 ∧ X6 = X9

∧ X7 = X10 ∧ X8 = X11 + X12 ∧ X9 = X13

∧ X10 + X11 = X14 ∧ X12 + X13 = X15

This program has an optimal value of 75, which is the same value we obtained
in Section 3.1, with a weighting W given in Figure 4.3.

In the next section we will formally show that the T-factorized can be used to
solve closed LP(CQ) models.

4.3. Solving LP (CQ) models efficiently 49

4.3 Solving LP (CQ) models efficiently

4.3.1 Computing the optimal value of a LP (CQ) model

The minimum expectation when solving a linear program is to get its optimal
value. Thanks to the following theorem we can do so directly by solving the T-
factorized interpretation of a closed LP(CQqf)proj model which has the same optimal
value as its natural interpretation.

The correctness of this approach is expressed by the following theorem:

Theorem 4.10 (Equivalence of factorized interpretation and natural semantics).
Let L be a LP(CQqf)proj program, T a decomposition of L of width k and D a
database.

The T-factorized interpretation ρT,D(L) has the same optimal value as its natural
semantics ⟨L⟩D.

Moreover opt(ρT,D(L)) can be computed in O(|ρT,D(L)|b · |T| · |D|k·ℓ) where
|ρT,D(L)|b = O((|L| + |T| · |D|k) · log(|D|k)) in combined complexity which corre-
sponds to O(|D|k·(ℓ+1) · log(D)) in data complexity.

The complexity of solving ρT,D(L) follows from Theorem 4.9 and Theorem 2.8.
Observe that it does indeed improve on the complexity stated in Section 3.5.1.2.

We will prove the correctness of this theorem in Section 4.4 using the framework
introduced in Section 3.6.2. We give an overview of this proof here. Recall that in
order to use Proposition 3.17 we fix query Q and need to reconstruct a weighting wQ

1
of the variables of the natural interpretation from a weighting wQ

2 of the variables of
the T-factorized interpretation and vice-versa. The key point of these constructions
is that the following correspondence must hold:

∀w ∈ WQ(L).wQ
1 (InstD(w)) = wQ

2 (FInstT,D(w)).

Recall that we only consider LP(CQqf)proj models whose weight operators are
of the form weightx:x′ .=d(Q). The factorized instantiation of such a weight is a
variable ξQ,u,β with β = [x′/d]. The natural instantiation of this weight is the sum∑

α∈ansD(Q∧x′=d) θα
Q which can be alternatively described as ∑

α∈ansD(Q)
α|x′ =β

θα
Q.

In order to simplify the constructions and proofs, we further decompose wQ
1 into

a family of weightings for each node u in the tree decomposition T of Q:

Definition 4.11.
A family W = (Wv)v ∈V is a weighting collection on T of ansD(Q) if it satisfies the
following conditions for any edge (u, v) ∈ E:

- Wu is a weighting of ansD(Q)|B(u), i.e., Wu : ansD(Q)|B(u) → R+.

- Wu is sound for T at (u, v), i.e., πBuv (Wu) = πBuv (Wv).

50 Chapter 4. Tractable fragment of LP (CQ)

Observe that the soundness property of a TWD of ansD(Q) corresponds to
satisfying the soundness constraints lsc(Q) which will allow us to seamlessly convert
it to a weighting wQ

1 of ΞL,Q that satisfies lsc(Q) in the later parts of the proof.
Given a query Q, the value assigned by W for a given bag u and tuple β is simply

Wu(β) = wQ
2 (ξQ,u,β). Similarly for the natural interpretation we consider weightings

ω : ansD(Q) → R+ with ω(α) = wQ
1 (θα

Q). Observe that the value of the natural
instantiation is now ∑

α∈ansD(Q)
α|x′ =β

ω(α) = πB(u)(ω)(β). Thus the correspondence we

need to upkeep while reconstructing weightings back and forth is

πB(u)(ω)(β) = Wu(β).
Observe that this correspondence gives us an obvious way to reconstruct a

weighting collection on T W from a weighting ω by projecting it on every bag
of u. The inverse construction is a bit more complex however. We present it in
the next section as a minor contribution whose uses go further than the proof of
Theorem 4.10.

4.3.2 Computing a full solution of the natural interpretation

While computing the T-factorized interpretation of a closed LP(CQqf)proj model
yields a smaller linear program with the same optimal value as its natural semantics,
this comes at the cost of losing some information on the weights of the individual
θτ

Q variables of the natural semantics. However one might still be interested in the
values of these individual variables. Fortunately, as we mentioned before, we have
to reconstruct a weighting of the variables of the natural semantics of L given a
solution of its T-factorized interpretation as part of the proof of its correctness.

For simplicity we construct weightings restricted to a single query that we can
then recombine into a full weighting of the interpretation.

Definition 4.12.
Let Q be a conjunctive query, T = (V, E , B) be a normalized decomposition tree of
fv(Q) and W = (Wu)u∈V be a weighting collection on T for ansD(Q). Let r be the
root of T .

We construct a weighting Π(W) : ΘD
Q → R+ such that Π(W)(θα

Q) = ωr(α) for
any θα

Q ∈ ΘD
Q where ωu : ansD(Q)|Attr(↓u) → R+ is constructed through bottom-up

induction on the nodes u ∈ V:

If u is a leaf of T , we define ωu such that for all α ∈ ansD(Q)|Attr(↓u), ωu(α) :=
Wu(α).

Now, assume ωu′ is defined for all children u′ of u. Let α ∈ ansD(Q)|Attr(↓u) and
β = α|B(u).

We define ωu(α) as follows:

If u is an extend node with a single child v then ωu(α) = Wu(β)
Wv(α|B(v))ωv(α|Attr(↓v))

if Wv(α|B(v)) > 0 and ωu(α) = 0 otherwise.

4.3. Solving LP (CQ) models efficiently 51

If u is a project node with a single child v then ωu(α) = ωv(α)4.

If u is a join node with children v1, . . . , vk then ωu(α) =
∏k

i=1 ωvi (α|Attr(↓vi))
Wu(β)k−1 if

Wu(β) > 0 and ωu(α) = 0 otherwise.

Finally, given a solution w2 of Lfact, we obtain a solution w1 of Lnat by simply
defining w1(θα

Q) = Π(W Q)(θα
Q) where W Q is a weighting collection on T of ansD(Q)

with W Q
u (β) = w2(ξQ,u,β).

We will prove that this reconstruction is correct in Section 4.3.2 as a simple
byproduct of the proof of Theorem 4.10:

Lemma 4.13.
Let L be a LP(CQqf)proj program, T a decomposition of L of width k and D a
database. Let S be the objective function of L and w2 be an optimal solution of
ρT,D(L).

We can construct a solution w1 of ⟨L⟩D in O(|w1|) such that JInstD(S)Kw1 =
JFInstT,D(S)Kw2.

Observe that given a query Q and node u ∈ TQ, |ansD(Q)|Attr(↓u)| ≤ |ansD(Q)|
so we can compute Π(W) in O(|TQ| · |D|AGM(Q)) and w1 in O(|T| · |D|AGM(L)). While
this is slower than simply computing opt(ρT,D(L)), this is still more efficient than
explicitly solving ⟨L⟩D in O((|L| · |D|AGM(L))ℓ).

Moreover, if we sort the tuples in (ansD(Q)|B(u))u∈V , then w2 can be seen as a
succinct encoding of w1 that allows one to compute a specific w1(θθ

Q) in O(|TQ| ·
log(|D|k)). This could be useful in applications where one might want to provide
users with access to the value of a few variables θθ

Q without materializing the whole
solution at once.

Example We illustrate this process using the example from Section 4.2.3 and the
solution W of Figure 4.3 in particular.

We will compute the value taken by the answer [T1, Python, Alice, 45]5of Q =
Qassign.

We denote each node of the decomposition of Q by the variables of its bag and
we consider the left-most node t in Figure 4.1 to be the root of the decomposition.

We begin with the leaf e where we have ωe([Alice]) = We([Alice]) = 35.
We then have ωes([Alice, Python]) = Wes([Alice,P ython])

We([Alice]) ωe([Alice]) = 25
35 · 35 = 25

since es is an extend node.
At the project node s we simply have ωs([Alice, Python]) =

ωes([Alice, Python]) = 25.
The next node tsd is an extend node so we have ωtsd([T1, Python, Alice, 45]) =

Wtsd([T1,P ython,45])
Ws([P ython]) ωs([Alice, Python]) = 45

45 · 25 = 25

4Observe that in this case Attr(↓ u) = Attr(↓ v).
5We omit the variables for brevity since the values are not ambiguous.

52 Chapter 4. Tractable fragment of LP (CQ)

Finally the root s is a project node so we simply obtain
ωs([T1, Python, Alice, 45]) = ωtsd([T1, Python, Alice, 45]) = 25. Thus we
know that Alice should be assigned to work 25 hours on the task T1.

4.3.3 Handling conjunctive queries with existential quantifiers

The previous method of factorized interpretation only works for the
LP(CQqf)proj fragment, where conjunctive queries are supposed to be quantifier
free. It turns out that one can similarly solve linear programs of LP(CQ)proj pro-
grams by applying a simple transformation.

For any LP(CQ)proj program L we can move the existential quantifiers of the
conjunctive query into the weight expression as follows, yielding an LP(CQqf)proj
program mvq(L): we replace every subexpression weightx:Q′(∃z.Q) of L, where Q

is quantifier free, by weightxz:Q′(Q) where xz is the concatenation of vectors x and
z. We have:

Theorem 4.14 (Removing Existential Quantifiers).
For any projecting LP(CQ) program, the LP(CQqf)proj program mvq(L) has the
same optimal value as L.

Proof (Sketch). It is clear that every Q appearing in a subexpression
weightxz:Q′(Q) of mvq(L) is quantifier free by definition. Now, since L is in
LP(CQ)proj , Q′ is of the form x′ = y where x′ only contains free variables of
∃z.Q. Since fv(∃z.Q) ⊆ fv(Q), we have that x′ only contains free variables of Q.
Moreover, the other condition of LP(CQ)proj concerning the sum and universal
quantification are still respected in mvq(L), thus L is in LP(CQqf)proj .

Now, let w1 : ΘD
L → R+ be a solution of L. We define w′

1 : ΘD
mvq(L) → R+ as

follows: w′
1(θα

Q) = 1
N w1(θα|U

∃z.Q) where U = fv(∃z.Q) and N = #{β : z → dom |
α ∪ β ∈ ansD(Q)}. It is readily verified that the value Jweightx:Q′(∃z.Q)Kw1 is
the same as Jweightx,z:Q′(Q)Kw′

1
and thus that w′

1 is a solution of mvq(L) and
JLKw1 = Jmvq(L)Kw′

1
.

For the other way around, given w′
1 : ΘD

mvq(L) → R+ a solution of mvq(L), we
construct w1 : ΘD

L → R+ as w1(θα
∃z.Q) = ∑

β|α∪β∈ansD(Q) w′
1(θα∪β

Q). Again, it is read-
ily verified that the value Jweightx:Q′(∃z.Q)Kw1 is the same as Jweightx,z:Q′(Q)Kw′

1
and thus that w1 is a solution of L and JLKw1 = Jmvq(L)Kw′

1
.

4.4 Proof of equivalence between the T-factorized and
natural interpretations

4.4.1 Weighting correspondence

We will actually show a slightly more general correspondence by generalizing it
from ansD(Q) to so-called conjunctively decomposed sets of variables assignments.

4.4. Proof of equivalence between the T-factorized and natural
interpretations 53

As we mentioned in Section 4.3.1 we will consider a fixed conjunctively decomposed
set A as a stand-in for the answer set of a fixed query Q.

We now define what it means for a set of variable assignments to be conjunc-
tively decomposed. Note that the answer set of a query ansD(Q) is a conjunctively
decomposed set of variable assignments as we will show later in Proposition 4.27.

Definition 4.15.
Let T = (V, E , B) be a decomposition tree of X ⊆ X . We call a subset of variable
assignments A ⊆ DX conjunctively decomposed by T iff for any u ∈ V and β ∈
A|B(u):

{α1 ∪ α2 | α1 ∈ A|Attr(↑u)[β], α2 ∈ A|Attr(↓u)[β]} = A[β].

Finally we fix a set of variable assignments A (which can be seen as fixing a
query Q) and reason about weightings ω : A → R+ for the natural interpretation.
For the T-factorized interpretation we will use weighting collections of A6.

The correspondence theorem is then expressed as follows:

Theorem 4.16 (Correspondence).
Let T = (V, E , B) be a normalized decomposition tree of X ⊆ X and A ⊆ DX be a
set of variable assignments that is conjunctively decomposed by T .

1. For every weighting ω of A, (πB(u)(ω))u∈V is a weighting collection on T for
A.

2. For any weighting collection W on T for A there exists a weighting ω = Π(W)
such that ∀u : Wu = πB(u)(ω).

We will prove Theorem 4.16 1 in Section 4.4.2 by projecting ω on every bag of
T . We will then prove Theorem 4.16 2 in Section 4.4.3 using the reconstruction of
Definition 4.12. Finally we will show that Theorem 4.10 follows from Theorem 4.16
and Proposition 3.17 in Section 4.4.4.

4.4.2 Reconstructing a weighting collection on T of A

The first item of the correspondence theorem directly follows from the following
proposition.

Proposition 4.17.
Let A ⊆ DX and let T = (V, E , B) be a decomposition tree for X. For any weigthing
ω : A → R+, the family (πB(v)(ω))v∈V is a weighting collection on T for A.

Proof. For any u ∈ V let Wu = πB(u)(ω). The first condition on weighting projec-
tions holds trivially so we only have to show that the soundness constraint holds.
By definition of Wu, πBuv (Wu) = πBuv (πB(u)(ω)). Observe that Buv ⊆ B(u) so by
Proposition 4.20 πBuv (Wu) = πBuv (ω). Similarly πBuv (Wv) = πBuv (ω).

6We generalize the notion from Definition 4.11 to weighting collections of A in a straightforward
manner

54 Chapter 4. Tractable fragment of LP (CQ)

If T is normalized then the local soundness constraint (4.11) of W at (u, v) ∈ E
can be rewritten equivalently into a simpler form as follows:

• if u is an extend node with unique child v then: ∀β ∈ A|B(v) :∑
β′∈A|B(u)[β] Wu(β′) = Wv(β),

• if u is a project node with unique child v then ∀β ∈ A|B(u) : Wu(β) =∑
β′∈A|B(v)[β] Wv(β′),

• if u is a join node with child v then ∀β ∈ A|B(u) : Wu(β) = Wv(β).

4.4.3 Reconstructing a weighting of A

In this section we prove the second item of Theorem 4.16 by reconstructing a
weighting of A by Definition 4.12 generalised to A in a straight-forward manner.
Observe that this also implies that the reconstruction is indeed correct.

The proof that ∀u : Wu = πB(u)(ω) is done via two inductions. The first one is
a bottom-up induction to prove that Wu = πB(u)(ωu) for every node u in the tree
decomposition. Then, by top-down induction, one can prove that ωu = πAttr(↓u)(ωr).
The proof is tedious and mainly relies on calculations and careful analysis on how
A is decomposed along T . We begin by showing a few lemmas on weightings and
set of tuples.

First we show that the extensions of two different tuples are distinct:

Lemma 4.18.
For any two α1, α2 ∈ A|X′, if α1 ̸= α2 then A[α1] ∩ A[α2] = ∅.

Proof. If α1 ̸= α2 ∈ A|X′ , then there exists x′ ∈ X ′ such that α1(x′) ̸= α2(x′), so if
γ1 ∈ A[α1] and γ2 ∈ A[α2] then γ1(x′) = α1(x′) ̸= α2(x′) = γ2(x′).

Lemma 4.19.
For A ⊆ DX , X ′′ ⊆ X ′ ⊆ X, α′′ ∈ A|X′′:

A[α′′] =
⊎

α′∈A|X′ [α′′]
A[α′].

Proof. First note that the union on the right is disjoint by Lemma 4.18.
For left-to-right inclusion, let α ∈ A[α′′] and α′ = α|X′ . By definition, α′ ∈ A|X′

so α ∈ A[α′]. Furthermore, α′ ∈ A|X′ [α′′] so α ∈
⊎

α̃′∈A|X′ [α′′] A[α̃′].
For right-to-left inclusion, let α ∈

⊎
α′∈A|X′ [α′′] A[α′] and let α′ ∈ A|X′ [α′′] be

such that α ∈ A[α′]. By definition, α|X′ = α′ and α′
|X′′ = α′′. Since X ′′ ⊆ X ′,

α|X′′ = α′
|X′′ = α′′. Thus α ∈ A[α′′].

Proposition 4.20.
For A ∈ DX , ω : A → R+, X ′′ ⊆ X ′ ⊆ X:

πX′′(ω) = πX′′(πX′(ω)).

4.4. Proof of equivalence between the T-factorized and natural
interpretations 55

Proof. Indeed, let α′′ ∈ A|X′′ . We have:

πX′′(ω)(α′′) =
∑

α∈A[α′′]
ω(α) by definition

=
∑

α′∈A|X′ [α′′]

∑
α∈A[α′]

ω(α) by Lemma 4.19

=
∑

α′∈A|X′ [α′′]
πX′(ω)(α′) by definition of πX′(ω)

= πX′′(πX′(ω))(α′′) by definition of πX′′(πX′(ω)).

The last equality is well defined since α′′ ∈ A|X′′ = (A|X′)|X′′ .

Lemma 4.21.
Let T be a decomposition tree of X, u an extend node of T with child v, and A ⊆ DX

a subset of variable assignments. If A is conjunctively decomposed by T then any
assignment β ∈ A|B(u) satisfies:

A|Attr(↓u)[β]|Attr(↓v) = A|Attr(↓v)[β|B(v)]

Proof. For left-to-right inclusion, let α ∈ A|Attr(↓u)[β]|Attr(↓v). Since α ∈ A|Attr(↓v)
and α|B(v) = β|B(v) it follows that α ∈ A|Attr(↓v)[β|B(v)].

For right-to-left inclusion, let α ∈ A|Attr(↓v)[β|B(v)]. Let γ ∈ A|Attr(↑v)[β] be
arbitrary and τ = γ ∪ α.

Note that (τ|Attr(↓u))|Attr(↓v) = α, so it is sufficient to show τ|Attr(↓u) ∈ A|Attr(↓u)[β].
Since u is an extend node with child v it follows that Attr(↑ u) = Attr(↑ v),

and thus γ ∈ A|Attr(↑v)[β]. By conjunctive decomposition of A by T it follows that
τ ∈ A[β]. Hence, τ|Attr(↓u) ∈ A|Attr(↓u)[β] as required.

Lemma 4.22.
Let T be a decomposition tree of X, u a join node of T with children v1, . . . , vk

where k ≥ 1, and A ⊆ DX a subset of variable assignments. If A is conjunctively
decomposed by T then any β ∈ A|B(u) satisfies:

A|Attr(↓u)[β] = A|Attr(↓v1)[β] ▷◁ . . . ▷◁ A|Attr(↓vk)[β]

Proof. The inclusion from the left to the right is obvious by projecting an element
of A|Attr(↓u)[β] to Attr(↓ v1) . . . Attr(↓ vk).

For the inclusion from the right to the left let α1 ∈ A|Attr(↓v1)[β], . . . αk ∈
A|Attr(↓vk)[β]. We show by induction that ∀p ∈ [1, k], τp = α1 ▷◁ . . . ▷◁ αp ∈ A|Yp

[β]
where Yp = ⋃p

i=1 Attr(↓ vi).

Base case p = 1: Obvious.

56 Chapter 4. Tractable fragment of LP (CQ)

Inductive case: Recall that by induction τp ∈ A|Yp
[β] and observe that Yp ⊆

Attr(↑ vp+1) so there exists γ ∈ Attr(↑ vp+1)[β] such that γ|Yp
= τp.

By conjunctive decomposition on vp+1, α = γ ▷◁ αp+1 ∈ A. Finally we have
α|Yp+1 = (γ ▷◁ αp+1)|Yp∪Attr(↓vp+1) = γ|Yp

▷◁ αp+1|Attr(↓vp+1) = τp ▷◁ αp+1 =
τp+1 so τp+1 ∈ A|Yp+1 . Thus τp+1 ∈ Yp[β] because τp+1|B(u) = β.

Proposition 4.23.
For all u ∈ V, Wu = πB(u)(ωu).

Proof. We show by bottom-up induction on the nodes of T that for all u ∈ V and
β ∈ A|B(u),

∑
α∈A|Attr(↓u)[β] ωu(α) = Wu(β).

The base case is clearly true by the definition of ωu when u is a leaf.

Case 1 u is an extend node with v its only child.
Let β ∈ A|B(u) and β′ = β|B(v).

Case 1.1 Wv(β′) = 0.
By definition ∀α ∈ A|Attr(↓u)[β], ωu(α) = 0.
Recall that by soundness ∑

β′′∈A|B(u)[β′] Wu(β′′) = Wv(β′) = 0. Observe
that β ∈ A|B(u)[β′] so Wu(β) = 0 = ∑

α∈A|Attr(↓u)[β] ωu(α).

Case 1.2 Wv(β′) > 0.

∑
α∈A|Attr(↓u)[β] ωu(α)
= ∑

α∈A|Attr(↓u)[β]
Wu(β)
Wv(β′)ωv(α|Attr(↓v)) by definition

= Wu(β)
Wv(β′)

∑
α∈A|Attr(↓u)[β] ωv(α|Attr(↓v))

= Wu(β)
Wv(β′)

∑
α′∈A|Attr(↓u)[β]|Attr(↓v)

ωv(α′)
because every α is equal to β(x) ▷◁ α|Attr(↓v) with x = B(u) \ B(v)

= Wu(β)
Wv(β′)

∑
α′∈A|Attr(↓v)[β′] ωv(α′) by Lemma 4.21

= Wu(β)
Wv(β′)Wv(β′) by induction

= Wu(β)

Case 2 u is a project node with only child v.

∑
α∈A|Attr(↓u)[β] ωu(α)
= ∑

α∈A|Attr(↓u)[β] ωu(α) by definition
= ∑

β′∈A|B(v)[β]
∑

α′∈A|Attr(↓u)[β′] ωv(α) by Proposition 4.20 and B(v) ⊆ Attr(↓ u)
= ∑

β′∈A|B(v)[β] Wv(β′) by induction and Attr(↓ u) = Attr(↓ v)
= Wu(β) by soundness at (u, v)

4.4. Proof of equivalence between the T-factorized and natural
interpretations 57

Case 3 u is a join node with children v1, . . . , vk.

Let β ∈ A|B(u).

Case 3.1 Wu(β) = 0.
By definition ∀α ∈ A|Attr(↓u)[β], ωu(α) = 0.
Thus ∑

α∈A|Attr(↓u)[β] ωu(α) = 0 = Wu(β).
Case 3.2 Wu(β) > 0.

∑
α∈A|Attr(↓u)[β] ωu(α)

= ∑
α∈A|Attr(↓u)[β]

∏k

i=1 ωvi (α|Attr(↓vi))
Wu(β)k−1 by definition

= ∑
α1∈A|Attr(↓v1)[β] · · ·

∑
αk∈A|Attr(↓vk)[β]

∏k

i=1 ωvi (αi)
Wu(β)k−1 by Lemma 4.22

=
∏k

i=1

∑
αi∈A|Attr(↓vi)[β] ωvi (αi)

Wu(β)k−1

=
∏k

i=1 Wvi (β)
Wu(β)k−1 by induction

= Wu(β)k

Wu(β)k−1 by soundness at (u, vi)
= Wu(β)

Lemma 4.24.
Let v be the child of an extend node u, ∀α ∈ A|Attr(↓v) with β = α|B(v):

A[α] =
⊎

β′∈A|B(u)[β]
A[α ∪ β′]

Proof. For left-to-right inclusion, let τ ∈ A[α] and β′ = τ|B(u). Observe that β′ ∈
A|B(u)[β]. Moreover Attr(↓ u) = Attr(↓ v)∪B(u) so τ|Attr(↓u) = α∪β′ so τ ∈ A[α∪β′].

For right-to-left inclusion, let τ ∈
⊎

β′∈A|B(u)[β] A[α ∪ β′]. By definition τ ∈ A

and τ|Attr(↓v) = α so τ ∈ A[α].

Lemma 4.25.
Given a join node u and its children v1, . . . , vk, let α ∈ A|Attr(↓v1) and β = α|B(u).

A|Attr(↓u)[α] = {α} ▷◁ A|Attr(↓v2)[β] ▷◁ . . . ▷◁ A|Attr(↓vk)[β]

Proof. Clearly A|Attr(↓u)[α] = {τ ∈ A|Attr(↓u)[β] | τ|Attr(↓v1) = α} because β = α|B(u).
Thus by Lemma 4.22, A|Attr(↓u)[α] = {τ ∈ A|Attr(↓v1)[β] ▷◁ . . . ▷◁ A|Attr(↓vk)[β] |

τ|Attr(↓u) = α} = {α} ▷◁ A|Attr(↓v2)[β] ▷◁ . . . ▷◁ A|Attr(↓vk)[β]

Proposition 4.26.
For all u ∈ V, ωu = πAttr(↓u)(ωr).

58 Chapter 4. Tractable fragment of LP (CQ)

Proof. We show by top-down induction on the nodes of T that for all v ∈ V and
α ∈ A|Attr(↓v),

∑
τ∈A[α] ωr(τ) = ωv(α).

The base case is clearly true when v is the root r of T .
In the following we consider a given α ∈ A|Attr(↓v). and we let β = α|B(v)

Case 1 v is the only child of an extend node u.
By Lemma 4.24, ∑

τ∈A[α] ωr(τ) = ∑
β′∈A|B(u)[β]

∑
τ∈A[α∪β′] ωr(τ). By induc-

tion this is equal to ∑
β′∈A|B(u)[β] ωu(α ▷◁ β′).

Case 1.1 Wv(β) = 0.
By definition of ωu, ∑

β′∈A|B(u)[β] ωu(α ▷◁ β′) = 0.
Observe that by Proposition 4.23, ∑

α′∈A|Attr(↓u)[β] ωv(α′) = Wv(β) = 0.
However ωv is non-negative so ωv(α) = 0 = ∑

τ∈A[α] ωr(τ).
Case 1.2 Wv(β) > 0.

∑
β′∈A|B(u)[β] ωu(α ▷◁ β′)
= ∑

β′∈A|B(u)[β]
Wu(β′)
Wv(β) ωv((α ▷◁ β′)|Attr(↓v)) by definition

=
∑

β′∈A|B(u)[β] Wu(β′)

Wv(β) ωv(α)
= ωv(α) by soundness at (u, v)

Case 2 v is the only child of a project node u.
By induction ∑

τ∈A[α] ωr(τ) = ωu(α) so it follows by definition of ωu that∑
τ∈A[α] ωr(τ) = ωv(α).

Case 3 v is the child of a join node u.
Let v1, . . . , vn be the children of u, we assume wlog that v is v1.
By Proposition 4.20, ∑

τ∈A[α] ωr(τ) = ∑
α′∈A|Attr(↓u)[α]

∑
τ∈A[α′] ωr(τ).

By induction we obtain ∑
α′∈A|Attr(↓u)[α] ωu(α′).

Case 3.1 Wu(β) = 0.
By definition of ωu, ∑

α′∈A|Attr(↓u)[α] ωu(α′) = 0.
Recall that because u is a join node, Wv(β) = Wu(β) = 0 so similarly to
Case 1.2, ωv(α) = 0 = ∑

τ∈A[α] ωr(τ).
Case 3.2 Wv(β) > 0.

By definition of ωu, ∑
α′∈A|Attr(↓u)[α] ωu(α′) =∑

α′∈A|Attr(↓u)[α]

∏k

i=1 ωvi (α′
|Attr(↓vi))

Wu(β)k−1 . Moreover by Lemma 4.25 we
can split α′ into α × α2 × · · · × αk and the sum into∑

α2∈A|Attr(↓v2)[β] · · ·
∑

αk∈A|Attr(↓vk)[β]

∏k

i=1 ωvi (α′
|Attr(↓vi))

Wu(β)k−1 . Observe that each
term in the product only depends on αi (or α for i = 1) and that

4.4. Proof of equivalence between the T-factorized and natural
interpretations 59

the denominator only depends on the fixed β so we can rewrite the

formula into the following ωv(α) ·
∏k

i=2

∑
αi∈A|Attr(↓vi)[β] ωvi (αi)

Wu(β)k−1 which is

equal to ωv(α) ·
∏k

i=2 Wvi (β)
Wu(β)k−1 by Proposition 4.23. Finally observe that by

soundness, ∏k
i=2 Wvi(β) = Wu(β)k−1.

Thus ∑
τ∈A[α] ωr(τ) = ωv(α).

Finally we are ready to prove the second item of Theorem 4.16. We know
by Proposition 4.23 that Wu = πB(u)(ωu) which is equal to πB(u)(πAttr(↓u)(ωr)) by
Proposition 4.26. Thus Wu = πB(u)(ωr) by Proposition 4.20.

4.4.4 Proof of the equivalence of the natural and T-factorized in-
terpetations

Now armed with Theorem 4.16 and Proposition 3.17 we are ready to prove
Theorem 4.10. First we need to verify that the answer set of a conjunctive query is
indeed conjunctively decomposed by its decomposition T thus allowing us to apply
the correspondence theorem.

Proposition 4.27.
For any tree decomposition T of a quantifier free conjunctive query Q ∈ CQΣ and
database D ∈ dbΣ, the answer set ansD(Q) is conjunctively decomposed by T .

Proof. Let u be a node of T . Let R(x) be an atom of Q, observe that there exists
v in T such that x ⊆ B(v) by definition. Thus we either have x ⊆ Attr(↓ u) or
x ⊆ Attr(↑ u) (or both).

Moreover, recall that B(u) = Attr(↓ u) ∩ Attr(↑ u) by the connectedness of
tree decompositions. Let β ∈ ansD(Q)|B(u), α1 ∈ ansD(Q)|Attr(↓u)[β] and α2 ∈
ansD(Q)|Attr(↑u)[β]. We have to show that α = α1 ∪ α2 ∈ ansD(Q)[β]. Clearly,
α|B(u) = β by construction so it remains to show that α ∈ ansD(Q). To do so, we
fix an atom R(x) of Q and suppose by our earlier observation that x ∈ Attr(↓ u) (the
other case is symmetric). Observe that by definition there is some α′ ∈ ansD(Q)
such that α1 = α′

|Attr(↓u) so α1 and by extensions α satisfies R(x). Thus it follows
that α satisfies every atom of Q so α ∈ ansD(Q).

Proposition 4.27 does not hold when Q is not quantifier free thus the equivalence
theorem is restricted to the fragment LP(CQqf)proj . We however explained how
to extend it to LP(CQ)proj in Section 4.3.3.

We are now ready to prove Theorem 4.10.
Let L1 = ⟨L⟩D = ⟨L⟩InstD,C1 with C1 = ∧

Q∈cq(L) true. Let L2 = ρT,D(L) =
⟨L⟩FInstT,D,C2 with C2 = ∧

Q∈cq(L) lscT,D(Q).
Fix a query Q ∈ cq(L).

60 Chapter 4. Tractable fragment of LP (CQ)

For any weighting wQ
1 of varQ(L1) (that obviously satisfies true), we define

a weighting ω of ansD(Q) such that for any τ ∈ ansD(Q), ω(τ) = wQ
1 (θτ

Q).
By Proposition 4.27 and Theorem 4.16, (πB(u)(ω))u∈V is sound. Thus the
weighting wQ

2 defined as wQ
2 (ξQ,u,β) = πB(u)(ω)(β) for any u ∈ TQ and β ∈

ansD(Q)|B(u) satisfies lscT,D(Q). Moreover by definition it follows that for any
w ∈ WQ(L), JFInstT,D(w)K

wQ
2

= wQ
2 (ξQ,u,β) = πB(u)(ω)(β) = ∑

α∈ansD(Q)[β] ω(α) =∑
α∈ansD(Q)[β] wQ

1 (θα
Q) = JInstD(w)K

wQ
1

Thus by Proposition 3.17, opt(L1) ≤ opt(L2).
For any weighting wQ

2 of varQ(L2) that satisfies lscT,D(Q) we define a weight-
ing W = (Wv)v ∈V such that for any u ∈ TQ and β ∈ ansD(Q)|B(u), Wu(β) =
wQ

2 (ξQ,u,β). Observe that W is sound so by Theorem 4.16 there exists a weighting
ω : ansD(Q) → R+ such that W = (πB(u)(ω))u∈V . We define a weighting wQ

1 such
that wQ

1 (θτ
Q) = ω(τ) for any τ ∈ ansD(Q) that obviously satisfies true. Similarly to

the above it follows that for any w ∈ WQ(L), JInstD(w)K
wQ

1
= JFInstT,D(w)K

wQ
2

.
Thus by Proposition 3.17, opt(L2) ≤ opt(L1). Additionally Lemma 4.13 holds by
Lemma 3.15.

Finally opt(L1) = opt(L2) and Theorem 4.10 holds.

4.5 Conclusion

In this chapter we have characterized the fragment of closed LP(CQ)proj models
and lifted the notion of fractional hypertree width to these models. We then de-
fined a more succinct interpretation of LP(CQ)proj models called the T-factorized
interpretation. Finally we have showed that the T-factorized interpretation can be
used to efficiently compute the optimal value and an optimal solution of LP(CQ)proj
models.

In Figure 4.4, we give a summary of the solving process with both interpretations
as well as their compared performances in data complexity by considering |L| and
|T| to be constants. On the left-hand side we sum up how a closed LP(CQ) model
can be naturally interpreted to a linear progral Ln which can be solved to obtain
its optimal value and an optimal solution wn. On the right-hand side we represent
the T-factorized interpretation of L to Lt using a collection of tree decompositions
T of width k that then yields the optimal value and an optimal solution wt of Lt

from which we can reconstruct an optimal solution wn of Ln.

4.5. Conclusion 61

L

Natural interpretation T-factorized interpretation

𝓣

Ln

 O(|𝔻|AGM(L))

Lt

 O(|𝔻|k)

LP solver

 O(|𝔻|AGM(L)·(ℓ+1) · log(|𝔻|))

opt(Ln) wn

LP solver

 O(|𝔻|k·(ℓ+1) · log(|𝔻|))

opt(Ln) wt

wn

 O(|𝔻|AGM(L))

Figure 4.4: Summary and data complexity of the solving process of a closed LP(CQ)
model L

Chapter 5

Linear programs on relational
circuits

Contents
5.1 Introduction . 63
5.2 Relational circuits . 65

5.2.1 Relational circuits . 65
5.2.2 {⊎, ×}-Circuits . 66
5.2.3 Proof trees . 67

5.3 Circuit-based factorized interpretation 68
5.3.1 Caracterizing informed circuits 68
5.3.2 Circuit-based factorized interpretation 69
5.3.3 Computing a full solution of the natural interpretation 71

5.4 Correctness . 72
5.4.1 Proof trees properties . 72
5.4.2 Weighting correspondence . 73
5.4.3 Proof of the equivalence theorem 79

5.5 Recapturing the T-factorized interpretation 80
5.5.1 Compiling a conjunctive query with a tree decomposition . . 80
5.5.2 Correctness of the compilation 81
5.5.3 Link to the T-factorized compilation 87

5.6 Conclusion . 89

5.1 Introduction

In this chapter we introduce the circuit-based factorized interpretation (or C-
factorized interpretation for short) as a more general alternate interpretation to
solve LP(CQ) models efficiently.

This interpretation is based on so-called {⊎, ×}-circuits that succinctly encode
relations with additional decomposability and determinism properties that we will
define in this chapter. In our case we will consider circuits that encode the relations
represented by the queries of a LP(CQ) model.

64 Chapter 5. Linear programs on relational circuits

This approach is very similar to the T-factorized interpretation of the previ-
ous chapter and can be summed up as instantiating to a smaller set of variables
then restoring the semantical link between those variables with some soundness
constraints. In this case we reduce the number of variables by exploiting the suc-
cinctness of the {⊎, ×}-circuits and using the edges of the circuits as the variables
of the C-factorized interpretation. We then define soundness constraints using the
structure of the gates of the circuits.

We will then show that these similarities are not a coincindence by explicitly
recapturing the result from the previous chapter with {⊎, ×}-circuits by showing
that the answer sets of the queries of any LP(CQ)proj model can be compiled to a
{⊎, ×}-circuit. Recall that in the previous chapter we took advantage of the oft-
used fact that, given a query Q, it was possible to efficiently compute the projection
of its answer set on the bags of its decomposition then reconstruct the full answer
set through a bottom-up induction on the decomposition. In this case the compiled
circuit acts both as a succinct encoding of the answers of Q and as a materialization
of the generic bottom-up induction that is at the core of every algorithm that lever-
ages the strucuture of tree decompositions to efficiently reason about conjunctive
queries.

The relation between the T-factorized and C-factorized interpretations follows
from a well-known connection between bounded width queries and the existence
of small and tractable datastructures representing the answers of said queries on a
given database.

It has indeed been proven in [OZ12, OZ15b] that the answer set of a conjunc-
tive query Q on a database D can be represented as a d-representation of size
O(|D|fhtw(Q)), where d-representations is a restricted family of the {⊎, ×}-circuits
we use in this thesis. Such circuits are tractable in the sense that many aggregation
operations on the relation they represent can be solved in polynomial time in the
size of the circuits. For example, given a {⊎, ×}-circuit G, one can compute the size
of the relation it represents in time linear in the size of G1. The well-known results
by Skritek and Pichler [PS13] on the tractability of counting the number of answers
of a conjunctive query Q when its width is bounded can be recovered by computing
a {⊎, ×}-circuit C representing ansD(Q) then using the aforementioned algorithm
on C. Many more known tractability results can be recovered with this approach,
such as enumerating the answers of a query with a linear time preprocessing and a
constant delay [BDG07]. This approach also led to the discovery of new interest-
ing tractable operations on conjunctive queries such as efficiently performing linear
regression [SOC16].

Using circuits (or factorized representations) is akin to the approach used in the
area of knowledge compilation, where one is interested in transforming – in an offline
phase – an intractable input into a more tractable representation. Traditionally,
knowledge compilation has been mostly oriented toward compiling knowledge bases
encoded as CNFs and has thus been more focused on data structures in the Boolean

1See the end of Section 5.2.2 for a short description of this algorithm.

5.2. Relational circuits 65

domain. The relation between relational circuits and these data structures have
been made formal in [Olt16], where it is shown that {⊎, ×}-circuits can be seen as
a generalization to non-binary domains of d-DNNF [Dar01, DM02, PD08] and it is
not hard to see that {⊎, ×}-circuits on the Boolean domain are exactly the same
as d-DNNFs. Thus the C-factorized interpretation follows the usual approach of
knowledge compilation in the sense that we show the tractability of an optimization
problems on a restricted family of circuits. As a byproduct the results presented
in this chapter can be directly generalized to solve linear programs whose variables
are the solution sets of d-DNNF.

Outline of the chapter

In Section 5.2 we define Relational circuits and {⊎, ×}-circuits. We then define
the circuit-based factorized interpretation in Section 5.3. Section 5.4 is dedicated
to proving that the C-factorized interpretation can indeed be used to solve LP(CQ)
models. Finally in Section 5.5 we show that the T-factorized interpretation can be
captured by the C-factorized interpretation.

5.2 Relational circuits

5.2.1 Relational circuits

We start by defining a basic circuit structure to encode relations which we will
enhance with additional properties in the following section.

Definition 5.1.
A relational circuit with variable set X and domain dom is a tuple G = (V, E, ρ, o)
such that (V, E, ρ) is a directed acyclic graph rooted by ρ ∈ V and o : V → {▷◁, ∪} ∪
{[x/d] | x ∈ X , d ∈ dom}∪{[]} is a function mapping nodes to operators or constants
of the relational algebra.

We define the type of a gate g ∈ V with children g1, . . . , gn ∈ V as follows:

• if o(g) = ▷◁ or o(g) = ∪ then Attr(g) = Attr(g1) ∪ . . . ∪ Attr(gn).

• if o(g) = [x/d] then Attr(g) = {x} and n = 0.

• if o(g) = [] then Attr(g) = ∅ and n = 0.

We assume that G is well-typed i.e., for any ∪-gate g ∈ V with children
g1, . . . , gn, Attr(g) = Attr(g1) = . . . = Attr(gn).

The size |G| of G is the cardinality of its edge set E.

The nodes of a relational circuit are also called gates. An ▷◁-gate is a node g

with o(g) = ▷◁ and an ∪-gate a node with o(g) = ∪.
For each node g of a circuit G = (V, E, ρ, o) we can define a database relation

rel(Gg) ⊆ {α | α : Attr(g) → dom} inductively as follows:

66 Chapter 5. Linear programs on relational circuits

∪

⨝ ⨝ ⨝

[y/0] [x/1] ∪ [y/1] [x/0]

[z/1] [z/0]

x y z

0 1 0
0 1 1
1 0 1
1 1 0
1 1 1

Figure 5.1: Example of a relational circuit with its database relation.

• if o(g) = ▷◁ then rel(Gg) = rel(Gg1) ▷◁ . . . ▷◁ rel(Ggn).

• if o(g) = ∪ then rel(Gg) = rel(Gg1) ∪ . . . ∪ rel(Ggn).

• if o(g) = [x/d] then rel(Gg) = {[x/d]} and n = 0.

• if o(g) = [] then rel(Gg) = {[]} and n = 0.

Finally we define the relation represented by G as rel(G) = rel(Gρ).
An example for a relational circuit G is given in Figure 5.1. The domain of

this circuit is dom = {0, 1}. The attributes of this circuit are Attr(ρ) = {x, y, z}.
The nodes g with operator o(g) = ▷◁ all have Attr(g) = {x, y, z}. Figure 5.1 also
contains the database relation rel(G).

If the circuit G is not clear from the context, we will write AttrG for the typing
function of G. For any gate g of a circuit G, we denote by Gg the subcircuit of G

that is rooted in g, i.e., the restriction of G to descendant-or-self nodes of g.

5.2.2 {⊎, ×}-Circuits

Unfortunately aribtrary relational circuits are not tractable for anything, even
deciding whether their relation is non-empty, so we enhance them with additional
properties which allow for tractable operations such as counting the answers of their
induced relation which we will show as a short example at the end of this section.

We restrict relational circuits to {⊎, ×}-circuits by imposing the restrictions of
determinism and decomposability. These properties are well-known from d-DNNFs
in the domain of knowledge compilation and our notion of {⊎, ×}-circuits can be
identified with multi-valued d-DNNFs [KLMT15, Olt16, Dar01, DM02].

Definition 5.2.
A {⊎, ×}-circuit is a relational circuit G = (V, E, ρ, o) such that for any node g ∈ V

with children g1, . . . , gn:

decomposability if o(g) = ▷◁ then Attr(gi) ∩ Attr(gj) = ∅ for any 1 ≤ i < j ≤ n.

5.2. Relational circuits 67

determinism if o(g) = ∪ then rel(Ggi) ∩ rel(Ggj) = ∅ for any 1 ≤ i < j ≤ n.

For {⊎, ×}-circuits, the semantics of the join operation ▷◁ is a simple Cartesian
product by decomposability and the semantics of the union operation ∪ is a disjoint
union by determinism. Therefore, when considering {⊎, ×}-circuits, we will freely
identify the relation symbols ▷◁ with × and ∪ with ⊎.

Observe that the relational circuit in Figure 5.1 is a {⊎, ×}-circuit.
Determinism is a semantical condition and it is coNP-hard to check the deter-

minism of a gate given a relational circuit. In practice however, agorithms producing
{⊎, ×}-circuits, such as the one presented in Section 5.5.1, often ensure the deter-
minism of all ∪ gates. This is usually achieved by building ∪ gates of the form:⊎

d∈dom(Gd)× [x/d], so that the different values d assigned to x ensure determinism.
Observe that for any node v in a {⊎, ×}-circuit G we can compute the cardinality

of its relation |rel(Gv)| in time linear in the size of G by a simple inductive agorithm
that adds the sizes of the children of an ⊎ gates, multiplies the sizes of the children
of the × gates and returning a size of 1 (resp. 0) for leaves labelled with [x/d]
(resp. []). It is easy to see that the correctness of this algorithm follows from the
semantics of the nodes of G.

5.2.3 Proof trees

From now on we will only consider circuits that are decomposable and deter-
ministic.

Let G = (V, E, ρ, o) be a {⊎, ×}-circuit and τ ∈ rel(G) be an assignment in the
database relation of G.

The proof-tree of τ , denoted ptG(τ), is a subcircuit of G participating in the
computation of τ . More formally, ptG(τ) is defined inductively by starting from
the output as follows: the output of G is in ptG(τ). Now if g is a gate in ptG(τ)
and g′ is a child of g, then we add g′ in ptG(τ) if and only if τ|Attr(G′

g) ∈ rel(Gg′).
A proof-tree may be seen as the only witness that a tuple belongs to rel(G). An
example of a proof-tree is depicted in blue in Figure 5.1.

We define the relation induced by an edge e as the set of tuples of rel(G) such
that their proof-tree contains the edge e, that is rel(G, e) := {τ ∈ rel(G) | e ∈
ptG(τ)}.

In the rest of this chapter, to simplify the proofs, we assume wlog that every
internal gate of a {⊎, ×}-circuit has fan-in two. It is easy to see that, by associativity,
×-gates and ⊎-gates of fan-in k > 2 can be rewritten with k − 1 gates of fan-in 2
which is a polynomial size transformation of the circuit. We also assume that for
every x ∈ Attr(G) and d ∈ D, we have at most one input labeled with x/d. This
can be easily achieved by merging all such inputs. For the rest of this section, we
fix a {⊎, ×}-circuit G on attributes X and domain dom.

We now show that decomposability enforces that the underlying graph of every
proof tree is indeed a tree while determinism ensures that every τ ∈ rel(G) has
exactly one corresponding proof tree.

68 Chapter 5. Linear programs on relational circuits

Proposition 5.3.
Given a {⊎, ×}-circuit G and τ ∈ rel(G), P := ptG(τ), the following holds:

• every ×-gate of P has all its children in P ,

• every ⊎-gate of P has exactly one of its children in P ,

• P is connected and every gate of P has out-degree at most 1 in P ,

• for any x ∈ Attr(G), P contains exactly one input labeled with x/τ(x).

Proof. By induction, it is clear that for every gate g of P , τ|Attr(Gg) ∈ rel(Gg). Thus,
if g is a ⊎-gate of P , as g is disjoint, exactly one of it child v has τ|Attr(Gg) ∈ rel(Gg).

If g is a ×-gate with children g1, g2, then by definition, τ|Attr(Gg) ∈ rel(Gg) if
and only if τ|Attr(Gg1) ∈ rel(Gg1) and τ|Attr(Gg2) ∈ rel(Gg2). Thus both g1 and g2
are in P .

It is clear from definition that P is connected since P is constructed by induc-
tively adding children of gates that are already in P . Now assume that P has a gate
g of out-degree greater than 1 in P . Let g1, g2 be two of its parents. By definition
they are both connected to the root of P so the output of G is their common ances-
tor. Now let v be their least common ancestor in P . By definition, v has in-degree
2 and so is necessarily a ×-gates with children v1, v2. Thus g is both in Gv1 and
Gv2 , which is impossible since they are disjoint subcircuits by determinism of v.

Finally, let x ∈ Attr(G). Observe that if P has an input labeled g with x/d then
d = τ(x) since τ|Attr(Gg) ∈ rel(Gg). Thus, if P contains two inputs v1 and v2 on
attribute x, they are both labeled with x/τ(x) and are thus the same input.

We present additional properties of proof-trees in 5.4.1 as part of the proof of
the correctness of the C-factorized interpretation.

5.3 Circuit-based factorized interpretation

We now introduce a so-called circuit-factorized interpretation to solve closed
LP(CQ) models more efficiently by leveraging the conciseness of {⊎, ×}-circuits
representing the answer sets of the queries of the model. Intuitively this approach
relies on the fact that each tuple in the relation described by a {⊎, ×}-circuit is
represented by a unique proof-tree in the circuit. Intuitively we will reduce the
number of variables by taking advantage of the fact that each edge of the circuit
can represent a subset of tuples of the relation whose proof-trees contain said edge.

5.3.1 Caracterizing informed circuits

We now introduce an additional property that we will require of our {⊎, ×}-
circuits called informedness. Recall that for the T-factorized interpretation we
required our tree decompositions to also cover the weight operators of the model

5.3. Circuit-based factorized interpretation 69

which allowed us to link each one to a variable ξQ,u,β. In a similar vein, the in-
formedness property will allow us to link weight operators of LP(CQqf)proj models
with subsets of edges of the circuits.

Definition 5.4 (Informed circuit).
Let G = (V, E, ρ, o) be a {⊎, ×}-circuit and X ⊆ Attr(G).

We call G informed on X if there exists a function edgsX mapping any assign-
ment β ∈ rel(G)|X to a subset edgsX(β) ⊆ E such that:

rel(G)[β] =
⊎

e∈edgsX(β)
rel(G, e).

Observe that a circuit is always informed on sets of a single variable as we can
then simply define edgs{x}(β) to be the outgoing edges of the inputs labelled with
[x/β(x)].

We then lift this definition to linear programs.

Definition 5.5 (Informed circuit).
Let G be a collection of {⊎, ×}-circuits and L a LP(CQqf)proj model.

We say that G is informed on L iff for any Q ∈ cq(L):

• there is a circuit GQ ∈ G such that rel(G) = ansD(Q),

• for any weightx:x′ .=y(Q) in WQ(L), GQ is informed on x′.

5.3.2 Circuit-based factorized interpretation

Intuitively the circuit-based factorized interpretation relies on having each edge
of the circuits in G carry the weight of its induced relation. Thus, given a
LP(CQqf)proj model L, an informed collection of circuits G and a query Q ∈ cq(L)
we define a set of variables associated with the edges of the circuit that GQ ∈ G as
follows:

ΞL,Q = {ξQ
e | e ∈ EGQ

}.

The variables of the full C-factorized interpretation are then ΞL = ⊎
Q∈cq(L) ΞL,Q.

We now formally define the C-factorized instantiation as follows:

Definition 5.6 (Factorized instantiation).
Given a closed LP(CQqf)proj model L, database D and a collection of circuits G that
is informed on L, we denote the instantiation of L with G by CinstG(L).

It is the linear program obtained by replacing every weightx:x′ .=y(Q) in
L with CinstG(weightx:x′ .=y(Q)) where CinstG is the function that maps any
weightx:x′ .=y(Q) to ∑

e∈edgsG([x′/y]) ξQ
e if [x′/y] ∈ rel(GQ) or 0 otherwise.

Given a query Q and its circuit GQ ∈ G we then define the so-called circuit
soundness constraints on a gate g of GQ.

70 Chapter 5. Linear programs on relational circuits

Definition 5.7 (Circuit soundness).
Given a query Q, its circuit GQ and an internal gate g of GQ.

cscGQ(g) =

∑

i∈In(g) ξQ
i = ∑

o∈Out(g) ξQ
o if o(g) = ⊎∧

i∈In(g) ξQ
i = ∑

o∈Out(g) ξQ
o if o(g) = ×.

Observe that any internal gate in a {⊎, ×}-circuit is either a ⊎-gate or a ×-gate
so the definition is complete.

Finally we define the factorized interpretation of a closed LP(CQqf)proj L with
informed circuits G which we denote by ρG(L). It is obtained by adding the local
soudness constraint at any internal gate g in any decomposition TQ ∈ T to the
factorized instantiation of L as follows:

Definition 5.8 (Circuit-factorized interpretation).
Given a closed LP(CQqf)proj model L and informed circuits G.

ρG(L) = CinstG(L) ∧
∧

GQ∈G
∧

g∈VGQ
cscGQ(g)

The C-factorized interpretation can then be used in the exact same way as the
T-factorized interpretation.

We now show how the size of ρG(L) depends on the size of G.

Lemma 5.9.
Given a closed LP(CQqf)proj model L and circuits G informed on L, ρG(L) can be
encoded in |ρG(L)|b = O((|L| ·IG + |G|) · log(|G|)) bits where |G| = |ΞL| is the number
of edges of G and IG = maxβ∈rel(G)|X

|edgsX(β)| for any G ∈ G and X on which G

is informed.

Proof. First we consider the size of the encoding of CinstG(L). Observe that each
weightx:Q′(Q) in L can be instantiated with |edgsset(x)(β)| variables at most so
|CinstG(L)|b = O(|L| · IG · log(|G|).

For the soundness constraints, observe that we can use transitivity to write
cscG(g) = (ξQ

i1
= ξQ

i2
) ∧ (ξQ

i2
= ξQ

i3
) ∧ · · · ∧ (ξQ

in
= ∑

o∈Out(g) ξQ
o) for a ×-gate g with

ingoing edges i1, . . . , in. Hence each variable ξQ
e can appear at most 3 times in the

soudness constraints, twice as an ingoing edge of a ×-gate and once as an outgoing
edge of any gate. Thus it follows that the soundess constraints of ρG(L) can be
encoded in O(|G| · log(G)) bits

The correctness of the C-based interpretation is expressed in the following the-
orem wich we prove in Section 5.4.

Theorem 5.10 (Equivalence of C-factorized interpretation and natural semantics).
Let L be a LP(CQqf)proj program and G be circuits informed on L.

The C-factorized interpretation ρG(L) has the same optimal value as its natural
semantics ⟨L⟩D.

Moreover opt(ρL(G)) can be computed in O(|ρL(G)|b · |G|ℓ) where |ρL(G)|b =
(|L| · IG + |G|) · log(|G|) in combined complexity.

5.3. Circuit-based factorized interpretation 71

We prove this theorem in Section 5.4 using the framework introduced in Sec-
tion 3.6.2. The complexity of solving ρL(G) follows from Lemma 5.9 and Theo-
rem 2.8.

In order to easily reason about weightings of the C-factorized interpretation that
concern a fixed query Q, we will consider sound edge-weightings W of GQ by lifting
the soundness constraints as follows:

Definition 5.11.
Let G = (V, E, ρ, o) be a {⊎, ×}-circuit.

An edge-weighting W : E → R+ of G is sound if it holds for any g ∈ V that:

• if o(g) = ⊎,
∑

i∈In(g) W (i) = ∑
o∈Out(g) W (o),

• if o(g) = ×, ∀i ∈ In(g).W (i) = ∑
o∈Out(g) W (o).

5.3.3 Computing a full solution of the natural interpretation

Similarly to the T-factorized interpretation, we provide a way to compute a
solution of the natural interpretation from a solution of the C-factorized interpre-
tation.

For simplicity we construct weightings restricted to a single query that we can
then recombine into a full weighting of the interpretation.

Definition 5.12.
Let Q be a conjunctive query, G = (V, E, ρ, o) be a {⊎, ×}-circuit with rel(G) =
ansD(Q) and W be a sound edge-weighting of G. We assume wlog that the root r

of G has a single ingoing edge which we call the output edge or.
We construct a weighting Π(W) : ΘD

Q → R+ such that Π(W)(θα
Q) = ωor (α) for

any θα
Q ∈ ΘD

Q where ωe : rel(Gg) → R+ is constructed through bottom-up induction
on the edges e = (g, g′) ∈ E. We distinguish the cases based on the type of g.

• Case 1: g is an input labeled with x/d (resp. []): Observe that rel(Gg)
contains only the tuple τ = [x/d] (resp. τ = []).

We define ωe(τ) := W (e).

• Case 2: g is a ⊎-gate with children g1, g2.

Let e1 = ⟨g1, g⟩ and e2 = ⟨g2, g⟩. In this case, given τ ∈ rel(Gg), we have by
definition that τ ∈ rel(Ggi) with i ∈ {1, 2}, and we then define:

ωe(τ) =

W (e) ωe1 (τ)
W (e1)+W (e2) if ∑

f∈Out(g) W (f) ̸= 0
0 otherwise.

Observe that since W is sound, W (e1) + W (e2) = ∑
f∈Out(g) W (f) ̸= 0, so we

never divide by 0.

72 Chapter 5. Linear programs on relational circuits

• Case 3: g is a ×-gate with children g1, g2.
Let e1 = ⟨g1, g⟩ and e2 = ⟨g2, g⟩. In this case, given τ ∈ rel(Gg), we have by
definition that τ = τ1 × τ2 with τ1 ∈ rel(Gg1) and τ2 ∈ rel(Gg2). We define:

ωe(τ) =

W (e)ωe1 (τ1)
W (e1)

ωe2 (τ2)
W (e2) if W (e1) ̸= 0 and W (e2) ̸= 0,

0 otherwise.

Finally, given a solution w2 of ρG(L), we obtain a solution w1 of ⟨L⟩D by simply
defining w1(θα

Q) = Π(W Q)(θα
Q) where W Q is a weighting of the edges of GQ with

W Q(e) = w2(ξQ
e).

We will prove that this reconstruction is correct in Section 5.4 as a simple
byproduct of the proof of Theorem 5.10:

Lemma 5.13.
Let L be a LP(CQqf)proj program and G be a collection of circuits informed on L.
Let S be the objective function of L and w2 be an optimal solution of ρG(L).

We can construct a solution w1 of ⟨L⟩D in O(|w1|) such that JInstD(S)Kw1 =
JCinstG(S)Kw2.

5.4 Correctness

5.4.1 Proof trees properties

In this section we show a few properties of proof-trees that will be useful later.

Proposition 5.14.
Let u be a gate of G and e1, e2 ∈ Out(u) with e1 ̸= e2. Then rel(G, e1)∩rel(G, e2) =
∅.

Proof. Assume that τ ∈ rel(G, e1) and τ ∈ rel(G, e2) for e1, e2 ∈ Out(u) with
e1 ̸= e2. By definition, it means that both e1 and e2 are in ptG(τ) which is a
contradiction as ptG(τ) has out-degree 1 by Proposition 5.3.

Next we show that the disjoint union of the relations induced by each ingoing
edge of a ⊎-gate is equal to the disjoint union of the relations induced by each
outgoing edge of this gate.

Proposition 5.15.
Let u be an internal ⊎-gate of G,

⊎
i∈In(u)

rel(G, i) =
⊎

o∈Out(u)
rel(G, o).

Proof. Let Su := {τ | u ∈ ptG(τ)} and τ ∈ Su. It is clear from Proposition 5.3 that
a proof tree contains u if and only if it contains at least an edge of In(u) and at
least an edge of Out(u). Thus, both unions are equal to Su.

5.4. Correctness 73

The disjointness of the first union directly follows from the second item of Propo-
sition 5.3 and the disjointness of the second union from Proposition 5.14.

Finally we show that the disjoint union of the relations induced by the outgoing
edges of a ×-gate is equal to the relation induced by each ingoing edge of this gate.

Proposition 5.16.
Let u be an internal ×-gate of G,

∀i ∈ In(u) : rel(G, i) =
⊎

o∈Out(u)
rel(G, o)

Proof. Let Su := {τ | u ∈ ptG(τ)}. By Proposition 5.3, it is clear that if u is in a
proof tree P , then every edge of In(u) is also in P and exactly one edge of Out(u)
is in P . Thus, both sets in the statement are equal to Su. The disjointness of the
union follows directly from Proposition 5.14.

5.4.2 Weighting correspondence

This section is dedicated to showing a weighting correspondence between weight-
ings of the relation represented by a circuit and weightings of the edges of this circuit
as expressed in Theorem 5.17. Similarly to the previous chapter, we will use The-
orem 5.17 in combination with Proposition 3.17 in Section 5.4.3 in order to prove
Theorem 5.10.

Given a circuit G and a weighting ω : rel(G) → R+ we define its projection on
G as πG(ω) : EG → R+ such that for any e ∈ EG, πG(ω)(e) = ∑

τ∈rel(G,e) ω(τ).

Theorem 5.17.
Let G be a {⊎, ×}-circuit G.

1. For every weighting ω of rel(G), πG(ω) is sound.

2. Given a sound edge-weighting W of G, there exists a weighting ω = Π(W) of
rel(G) such that W = πG(ω).

5.4.2.1 Proof ω to W

This section is dedicated to the proof of Theorem 5.17(1), namely that, given a
{⊎, ×}-circuit G and a tuple-weighting ω of G, the edge-weighting W of G induced
by ω defined as W (e) := ∑

τ∈rel(G,e) ω(τ) is sound.
We will see that the soundness of W follows naturally from the properties of

proof-trees of the previous section. We prove that W is sound by checking the case
of ⊎-gates and ×-gates separately.

• We first have to show that for every ⊎-gate u of G, it holds that∑
e∈Out(u) W (e) = ∑

e∈In(u) W (e). This is a consequence of Proposition 5.15.
Let u be a ⊎-gate of G.

74 Chapter 5. Linear programs on relational circuits

∑
e∈Out(u)

W (e) =
∑

e∈Out(u)

∑
τ∈rel(G,e)

ω(τ) (by definition of W)

=
∑
τ∈R

ω(τ) (where R =
⊎

e∈Out(u)
rel(G, e))

The disjointness of the union in R has been proven in Proposition 5.15, which
also states that R = ⊎

e∈In(u) rel(G, e). Thus, the last term in the sum can be
rewritten as ∑

τ∈R

ω(τ) =
∑

e∈In(u)

∑
τ∈rel(G,e)

ω(τ)

=
∑

e∈In(u)
W (e) (by definition of W)

• We now show that for every ×-gate u of G and for every edge i ∈ In(u) going
in u, it holds that ∑

e∈Out(u) W (e) = W (i). Let u be a ×-gate and i ∈ In(u).
The proof is very similar to the previous case but is now a consequence of
Proposition 5.16. As before, we have ∑

e∈Out(u) W (e) = ∑
τ∈R ω(τ) where

R = ⊎
e∈Out(u) rel(G, e). The disjointness of the union in R has been proven

in Proposition 5.16, which also implies that R = rel(G, i). Thus, we have:

∑
e∈Out(u)

W (e) =
∑

τ∈rel(G,i)
ω(τ)

= W (i) (by definition of W)

5.4.2.2 Proof W to ω

This section is dedicated to the proof of Theorem 5.17(2), namely that, given a
circuit W and a sound edge-weighting W of G, there exists a tuple-weighting ω of
G such that, for every edge e of G, ∑

τ∈rel(G,e) ω(τ) = W (e).
In this section, we fix a {⊎, ×}-circuit G = (V, E, ρ, o) and a sound edge-

weighting W of its edges. We then construct weightings ωe for the edges of G

with Definition 5.12.
The following lemma which follows the inductive construction of ωe is the first

step of our proof and establishes the relation between ωe and W (e).

Lemma 5.18.
For every gate u of G and e = ⟨u, v⟩ ∈ E,

W (e) =
∑

τ∈rel(Gu)
ωe(τ).

5.4. Correctness 75

Proof. Let e = ⟨u, v⟩ be an edge of G. Observe that when ∑
o∈Out(u) W (o) = 0, then

W (e) = 0 since e ∈ Out(u) and W has non-negative value. Moreover, by definition
of ωe, for every τ ∈ rel(Gu), ωe(τ) = 0. In particular, ∑

τ∈rel(Gu) ωe(τ) = 0 = W (e).
In this case then, the lemma holds.

In the rest of the proof, we now assume that ∑
o∈Out(u) W (o) ̸= 0. We show the

lemma by induction on the nodes of G from the leaves to the root.

Base case : u is a leaf labeled with τ = x/d or [].

Let e be an outgoing edge of u. By definition of ωe, ωe(τ) = W (e).

Moreover, observe that rel(Gu) = {τ} thus W (e) = ∑
τ∈rel(Gu) ωe(τ).

Inductive case Now let u be an internal gate of G with children u1, u2 and let
e1 = ⟨u1, u⟩ and e2 = ⟨u2, u⟩, as depicted in Figure 5.2.

... v ...

u

e

u1

 e1

u2

 e2

Figure 5.2: Inductive step notations.

Case 1: u is a ⊎-gate.
Let W = W (e1) + W (e2). Since u is disjoint, given τ ∈ rel(Gu), either
τ ∈ rel(Gu1) or τ ∈ rel(Gu2) but not both. It follows that

∑
τ∈rel(Gu)

ωe(τ) =
∑

τ∈rel(Gu1)
ωe(τ) +

∑
τ∈rel(Gu2)

ωe(τ)

=
∑

τ∈rel(Gu1)

W (e)
W

ωe1(τ1) +
∑

τ∈rel(Gu2)

W (e)
W

ωe2(τ2)

by definition of ωe.
Observe that by induction we have W (e1) = ∑

τ∈rel(Gu1) ωe1(τ1) and
W (e2) = ∑

τ∈rel(Gu2) ωe2(τ2). Thus, by taking the constants out and

76 Chapter 5. Linear programs on relational circuits

using this identity, it follows that:

∑
τ∈rel(Gu)

ωe(τ) = W (e)
W

∑
τ∈rel(Gu1)

ωe1(τ1) + W (e)
W

∑
τ∈rel(Gu2)

ωe2(τ2)

= W (e)
W

W (e1) + W (e)
W

W (e2)

= W (e)W (e1) + W (e2)
W

= W (e).

Case 2: u is a ×-gate.
By definition of ωe, we have

∑
τ∈rel(Gu)

ωe(τ) =
∑

τ∈rel(Gu)
W (e)

ωe1(τ|Attr(Gu1))
W (e1)

ωe2(τ|Attr(Gu2))
W (e2) .

Remember that by definition of {⊎, ×}-circuits, rel(Gu) = rel(Gu1) ×
rel(Gu2). That is, τ ∈ rel(Gu) if and only if τ1 = τ|Attr(Gu1) ∈ rel(Gu1)
and τ2 = τ|Attr(Gu2) ∈ rel(Gu2). Thus, we can rewrite the previous sum
yielding

∑
τ∈rel(Gu)

ωe(τ) =
∑

τ1∈rel(Gu1)

∑
τ2∈rel(Gu2)

W (e)ωe1(τ1)
W (e1)

ωe2(τ2)
W (e2) .

By taking the constants W (e), W (e1) and W (e2) out of the sums and
observing that the sum is now separated into two independent terms, we
have:

∑
τ∈rel(Gu)

ωe(τ) = W (e)
∑

τ1∈rel(Gu1) ωe1(τ1)
W (e1)

∑
τ2∈rel(Gu2) ωe2(τ2)

W (e2) .

By induction, W (ei) = ∑
τ∈rel(Gui) ωei(τi) for i = 1, 2. Thus both frac-

tions are equal to 1, from which we conclude that∑
τ∈rel(Gu)

ωe(τ) = W (e).

We choose ω = ωor where or is the output edge. Lemma 5.18 is however not
enough to prove Theorem 5.17 as it only gives the equality W (e) = ∑

τ∈rel(G,e) ω(τ)
for e = or. Fortunately we can show that it holds for every edge e of the circuit.
We actually prove a stronger property, that ωe is, in some sense, a projection of ω.

Given an edge e = ⟨u, v⟩ of G and τ ′ ∈ rel(Gu), we denote by rel(G, e, τ ′) the
set of tuples τ of rel(G, e) such that τ|Attr(Gu) = τ ′. We prove the following:

5.4. Correctness 77

Lemma 5.19.
For every e = ⟨u, v⟩ ∈ E, for every τ ′ ∈ rel(Gu),

ωe(τ ′) =
∑

τ∈rel(G,e,τ ′)
ω(τ).

Proof. We prove this lemma by top-down induction on the edges of G.

Base case We prove the result for e = or = ⟨u, v⟩. Let τ ′ ∈ rel(Gu). Because
u is the output gate, we have Attr(Gu) = Attr(G) and thus rel(G, e, τ ′) =
{τ ′}. Recall that ω = ωor by definition. In other words, ωe(τ ′) = ω(τ ′) =∑

τ∈rel(G,e,τ ′) ω(τ).

Inductive case: Now let e = ⟨u, v⟩ be an internal edge of G. Let o1, . . . , on be
the outgoing edges of v, u′ be the only sibling of u and let e′ = ⟨u′, v⟩. See
Figure 5.3 for a schema of these notations. We fix τ ′ ∈ rel(Gu) and prove the
desired equality.

v

 o1 on

u

e

u'

 e'

Figure 5.3: Notations for the inductive step.

Case 1 : v is a ⊎-gate.
In this case, τ ′ ∈ rel(Gv). We claim that

rel(G, e, τ ′) =
⊎

o∈Out(v)
rel(G, o, τ ′).

For left-to-right inclusion, let τ ∈ rel(G, e, τ ′). By definition, its proof
tree ptG(τ) contains e. Since ptG(τ) is connected by Proposition 5.3,
ptG(τ) has to contain one edge of Out(v). The disjointness of the right-
side union is a direct consequence of Proposition 5.14.
For the right-to-left inclusion, fix o ∈ Out(v) and let τ ∈ rel(G, o, τ ′).
By definition, its proof tree ptG(τ) contains o, thus it also contains the
vertex v. Now recall that τ|Attr(Gu) = τ ′ ∈ rel(Gu). Thus, by definition
of proof trees, u is also in ptG(τ). In other words, τ ∈ rel(G, e, τ ′).

78 Chapter 5. Linear programs on relational circuits

Using this equality, we have∑
τ∈rel(G,e,τ ′)

ω(τ) =
∑

o∈Out(v)

∑
τ∈rel(G,o,τ ′)

ω(τ)

=
∑

o∈Out(v)
ωo(τ ′)

since we know by induction that for every o ∈ Out(v), ωo(τ ′) =∑
τ∈rel(G,o,τ ′) ω(τ).

Assume first that ∑
o∈Out(v) W (o) = 0. In this case, by definition, for

every o, ωo(τ ′) = 0. However, since W is sound, it follows that W (e) = 0,
which implies by Lemma 5.18 that ωe(τ ′) = 0 as well. In this case,∑

τ∈rel(G,e,τ ′) ω(τ) = 0 = ωe(τ ′) which is the induction hypothesis.
Now assume that ∑

o∈Out(v) W (o) ̸= 0. We can thus apply the definition
of ωo(τ ′) = W (o)

W (e)+W (e′)ωe(τ ′) in the last sum. This yields

∑
o∈Out(v)

ωo(τ ′) =
∑

o∈Out(v)

W (o)
W (e) + W (e′)ωe(τ ′)

= ωe(τ ′) 1
W (e) + W (e′)

∑
o∈Out(v)

W (o)

= ωe(τ ′)

where the last equality follows from the fact that W is sound and that
the ratio is thus 1.

Case 2: v is a ×-gate.
Similarly as before, we have:

rel(G, e, τ ′) =
⊎

τ ′′∈rel(Gu′)

⊎
o∈Out(v)

rel(G, o, τ ′ × τ ′′).

For left-to-right inclusion, let τ ∈ rel(G, e, τ ′). By definition, its proof
tree ptG(τ) contains e. Since ptG(τ) is connected by Proposition 5.3,
ptG(τ) has to contain one edge o of Out(v). Thus, τ ∈ rel(G, o, τ ′ ×
τ|Attr(Gu′)).
The disjointness of the right-side union is a direct consequence of Propo-
sition 5.14. For the right-to-left inclusion, we fix o ∈ Out(v) and
τ ′′ ∈ rel(Gu′). Let τ ∈ rel(G, o, τ ′ × τ ′′). By definition, its proof tree
ptG(τ) contains o, thus it also contains the vertex v and by definition of
proof trees, u is also in ptG(τ). Moreover, since τ|Attr(Gu) = τ ′, it follows
that τ ∈ rel(G, e, τ ′). Using this equality, we have∑

τ∈rel(G,e,τ ′)
ω(τ) =

∑
o∈Out(v)

∑
τ ′′∈rel(Gu′)

∑
τ∈rel(G,o,τ ′×τ ′′)

ω(τ)

=
∑

o∈Out(v)

∑
τ ′′∈rel(Gu′)

ωo(τ ′ × τ ′′).

5.4. Correctness 79

since we know by induction that for every o ∈ Out(v), ωo(τ ′ × τ ′′) =∑
τ∈rel(G,o,τ ′×τ ′′) ω(τ).

Assume first that ∑
o∈Out(v) W (o) = 0. In this case, by definition, for

every o and τ ′′, ωo(τ ′ × τ ′′) = 0.
However, since W is sound, we also have W (e) = 0 which implies by
Lemma 5.18 that ωe(τ ′) = 0 as well. In this case, ∑

τ∈rel(G,e,τ ′) ω(τ) =
0 = ωe(τ ′) wich is the induction hypothesis.
Now assume that ∑

o∈Out(v) W (o) ̸= 0. We can then apply the definition
of ωo(τ ′ × τ ′′) = W (o)ωe(τ ′)

W (e)
ωe′ (τ ′′)
W (e′) in the last sum. This yields

∑
o∈Out(v)

∑
τ ′′∈rel(Gu′)

ωo(τ ′ × τ ′′)

=
∑

o∈Out(v)

∑
τ ′′∈rel(Gu′)

W (o)ωe(τ ′)
W (e)

ωe′(τ ′′)
W (e′)

= ωe(τ ′)
W (e)

(∑
o∈Out(v)

W (o)
)∑

τ ′′∈rel(Gu′) ωe′(τ ′′)
W (e′)

Since W is sound, it follows that ∑
o∈Out(v) W (o) = W (e). Moreover, by

Lemma 5.18, ∑
τ ′′∈rel(Gu′) ωe′(τ ′′) = W (e′). Thus, the last sum is equal

to ωe(τ ′) which concludes the proof.

Theorem 5.17 2 is now an easy consequence of Lemma 5.18 and Lemma 5.19:

W (e) =
∑

τ ′∈rel(Gu)
ωe(τ ′) (by Lemma 5.18)

=
∑

τ ′∈rel(Gu)

∑
τ∈rel(G,e,τ ′)

ω(τ) (by Lemma 5.19)

=
∑

τ∈rel(G,e)
ω(τ) (since rel(G, e) =

⊎
τ ′∈rel(Gu)

rel(G, e, τ ′)).

Indeed, rel(G, e) = ⊎
τ ′∈rel(Gu) rel(G, e, τ ′). For the left-to-right inclusion, if

τ ∈ rel(G, e) then by definition τ ′ = τ|Attr(Gu) ∈ rel(Gu) and thus τ ∈ rel(G, e, τ ′).
The other inclusion follows by definition since rel(G, e, τ ′) ⊆ rel(G, e) for every
τ ′ ∈ rel(Gu).

5.4.3 Proof of the equivalence theorem

Now armed with Theorem 5.17 we are ready to prove Theorem 5.10.
Let L1 = ⟨L⟩D = ⟨L⟩InstD,C1 with C1 = ∧

Q∈cq(L) true.
Let L2 = ρG(L) = ⟨L⟩CinstG ,C2 with C2 = ∧

Q∈cq(L) cscG(Q). We fix a query
Q ∈ cq(L).

80 Chapter 5. Linear programs on relational circuits

For any weighting wQ
1 of varQ(L1) (that obviously satisfies true), we define a

weighting ω of ansD(Q) such that for any τ ∈ ansD(Q), ω(τ) = wQ
1 (θτ

Q). By The-
orem 5.17, πG(ω) is sound. Thus the weighting wQ

2 defined as wQ
2 (ξQ

e) = πG(ω)(e)
for any u ∈ TQ and β ∈ ansD(Q)|B(u) satisfies lscT,D(Q).

We now fix weightx:x′ .=d(Q) ∈ WQ(L), let β = [x′/d]. By definition
JCinstG(w)K

wQ
2

= ∑
e∈edgsG(β) ξQ

e = ∑
e∈edgsG(β)

∑
α∈rel(G,e) ω(α). Observe that GQ

is informed on x so rel(G)[β] = ⊎
e∈edgsX(β) rel(G, e) thus it follows that the previous

sum is equal to ∑
α∈ansD(Q)[β] ω(α) = ∑

α∈ansD(Q)[β] wQ
1 (θα

Q) = JInstDK
wQ

1
.

Thus by Proposition 3.17, opt(L1) ≤ opt(L2).
For any weighting wQ

2 of varQ(L2) that satisfies cscG(Q) we define a weighting
W such that for any edge e ∈ GQ, W (e) = wQ

2 (ξQ
e). Observe that W is sound so by

Theorem 5.17 there is a weighting ω = Π(W) such that W = πG(ω). We define a
weighting wQ

1 such that wQ
1 (θτ

Q) = ω(τ) for any τ ∈ ansD(Q) that obviously satisfies
true. Similarly to the above it follows that for any w ∈ WQ(L), JInst1(w)K

wQ
1

=
JInst2(w)K

wQ
2

.
Thus by Proposition 3.17, opt(L2) ≤ opt(L1). Additionally Lemma 5.13 holds

by Lemma 3.15.
Finally opt(L1) = opt(L2) and Theorem 5.10 holds.

5.5 Recapturing the T-factorized interpretation

In this section we will show that the C-factorized interpretation is a generaliza-
tion of the T-factorized interpretation.

First we show that the answer set of any conjunctive query Q with tree decompo-
sition T of width k on the database D can be represented as a {⊎, ×}-circuit of size
O(|T ||D|k) that is informed on every bag of T . Thus, given a closed LP(CQqf)proj
model L and a tree decomposition of L, we are then able to compute an informed
circuit for every Q ∈ cq(L). Finally we can use this family of circuits to compute
the C-factorized interpretation of L which allows us to compute opt(L) with the
same data complexity as computing it through T-factorized interpretation

5.5.1 Compiling a conjunctive query with a tree decomposition

We now describe how to compile a normalized tree decomposition T of a query
Q and database D into a {⊎, ×}-circuit that represents ansD(Q). While a similar
result appears in [OZ15b], we are looking for different properties in our circuits
(particularly the informedness) so we define and prove our own process in this
section to best suit our purposes.

We assume that the bag of the root of T is empty, that is B(r) = ∅, which can
easily be ensured by adding some project nodes on top of the tree. For simplicity we
also assume that we have computed ansD(Q)|B(t) for any t ∈ T which is relatively
easy to do by Lemma 2.5.

5.5. Recapturing the T-factorized interpretation 81

For simplicity we denote by g = l(g1, . . . gn) a gate with o(g) = l and children
g1, . . . , gn and by g = l a gate with o(g) = l and no children.

Definition 5.20.
We compile a query Q with a tree decomposition T and database D into a circuit
compile(Q, T,D) by constructing a gate gt,β inductively for each vertex t ∈ T and
β ∈ ansD(Q)|B(t) as follows:

• if t is a leaf then
gt,β = [],

• if t is a join node with children t′, t′′ then

gt,β = ▷◁(gt′,β, gt′′,β),

• if t is a extend node with child u′ then

gt,β = ∪(gt′,β′)

with β′ = β|B(t′),

• if t is a project node with child t′ and B(t′) \ B(t) = {x} then

gt,β = ∪(gt,β,β1(x), . . . gt,β,βl(x))

with gt,β,βi(x) = ▷◁(gt′,βi
, [x/βi(x)]) for any βi = β ▷◁[x/βi(x)] ∈

ansD(Q)|B(t′)[β].

Finally compile(Q, T,D) is the relational circuit G rooted in gr,[].

The compilation is also illustrated in Figure 5.4. In the next section we will show
that this circuit is a {⊎, ×}-circuit that represents the answers of Q and moreover
that it is informed on any bag of T .

5.5.2 Correctness of the compilation

In this section we will prove that a compiled circuit does indeed represent the
answers of its input query and that it also informed on any bag of the input tree
decomposition.

Throughout this section we fix a query Q, a database D and a tree decomposition
T of Q. For brevity we denote compile(Q, T,D) by G and we use the notations
defined in Defintion 5.20 when referring to the gates of G. We also carry over the
initial assumptions from the previous section. For brevity we denote rel(Gg) by
rel(g).

We begin by proving the following lemma about the typing of the gates of the
compiled circuit.

82 Chapter 5. Linear programs on relational circuits

[]

gt, β

(a) Leaf t

⨝

gt, β

gt', β gt'', β

(b) Join node t with children
t′, t′′

∪

gt, β

gt', β'

(c) Extend node t with child
t′ and β′ = β|B(t′)

∪

gt, β

⨝ ⨝

gt, β, β i(x)

⨝

gt', βi

x/βi(x)

(d) Project node t with child t′ and βi ∈ ansD(Q)|B(t′)[β]

Figure 5.4: Gate created for a node t and β ∈ ansD(Q)|B(t)

5.5. Recapturing the T-factorized interpretation 83

Lemma 5.21.
The circuit G is well-typed and for any t ∈ T and β ∈ ansD(Q)|B(t), Attr(gt,β) =
Attr(↓ t) \ B(t).

Proof. We show this by bottom-up induction on the nodes t ∈ T . In each case we
fix a β ∈ ansD(Q)|B(t).

Base case: t is a leaf.
In this case gt,β is labelled with [] so Attr(gt,β) = ∅. Observe that because t is
a leaf then Attr(↓ t)\B(t) = B(t)\B(t) = ∅. Thus Attr(gt,β) = Attr(↓ t)\B(t).

Inductive case 1: t is a extend node with a child t′.
Observe that gt,β is a ∪-gate with a single child gt,β so Attr(gt,β) =
Attr(gt′,β) = Attr(↓ t′) \ B(t′) by induction. Moreover it is obviously well-
typed.
Recall that t is a extend node so there is a variable x such that B(t) =
B(t′) ⊎ {x} and moreover that x /∈ Attr(↓ t′) by connectivity of T . It follows
that Attr(↓ t)\B(t) = (Attr(↓ t′)⊎{x})\ (B(t′)⊎{x} = Attr(↓ t′)\B(t′). Thus
Attr(gt,β) = Attr(↓ t) \ B(t).

Inductive case 2: t is a project node with a child t′.
Observe that t is a project node so there is a variable x such that B(t′) = B(t)⊎
{x}. Recall that gt,β has a child gt,β,βi(x) for any value βi ∈ ansD(Q)|B(t′)[β].
Observe that Attr(gt,β,βi(x)) = Attr(gt′,β′) ∪ Attr([x/βi(x)]). By induction
Attr(gt′,β′) = Attr(↓ t′) \ B(t′) so Attr(gt,β,βi(x)) = Attr(↓ t′) \ B(t′) ∪ {x} =
Attr(↓ t) \ B(t).
Thus gt,β is well-typed and Attr(gt,β) = Attr(↓ t) \ B(t).

Inductive case 3: t is a join node with children t′ and t′′.
By induction Attr(gt′,β) = Attr(↓ t′)\B(t′) and Attr(gt′′,β) = Attr(↓ t′′)\B(t′′).
By definition Attr(↓ t) = Attr(↓ t′) ∪ Attr(↓ t′′) ∪ B(t). However recall that
B(t′) = B(t′′) = B(t) because T is normalized so B(t) = B(t′) ⊆ Attr(↓ t′) thus
Attr(↓ t) = Attr(↓ t′) ∪ Attr(↓ t′′).
Finally Attr(gt,β) = Attr(gt′,β) ∪ Attr(gt′′,β) = Attr(↓ t′) \ B(t′) ∪ Attr(↓ t′′) \
B(t′′) which we can rearrange as Attr(↓ t′)∪Attr(↓ t′′)⊎B(t). Thus Attr(gt,β) =
Attr(↓ t) \ B(t).

Observe that through this induction we have also checked that any ∪-gate in G

is well-typed so G is well-typed.

We then prove that the gates of G are deterministic and decomposable.

Lemma 5.22.
The circuit G is a {⊎, ×}-circuit.

84 Chapter 5. Linear programs on relational circuits

Proof. We show that we only introduce deterministic ∪-gates and decomposable
▷◁-gates when constructing gt,β for a node t ∈ T and β ∈ ansD(Q)|B(t).

Case 1: t is a leaf
In this case gt,β is also a leaf so there is nothing to verify.

Case 2: t is a extend node with child t′.
It is clear that gt,β is decomposable as it only has a single child.

Case 3: t is a project node with child t′.
Observe that, for any child gt,β,βi(x) of gt,β, any τ ∈ rel(gt,β,βi(x)) satisfies
τ(x) = βi(x) by construction. Thus rel(gt,β,βi(x)) and rel(gt,β,βj(x)) are pair-
wise disjoint for any i ̸= j so gt,β is deterministic.
Now consider a gt,β,βi(x) gate introduced as the child of a ∪-gate gt,β introduced
for a project node. By definition there is a variable x such that B(t′) =
B(t) ⊎ {x}. Thus by Lemma 5.21, x /∈ Attr(gt′,β ▷◁[x/di]) = Attr(↓ t′) \ B(t′) so
gt,β,βi(x) is decomposable.

Case 4: t is a join node with children t′ and t′′.
By Lemma 5.21 we know that Attr(gt′,β) = Attr(↓ t′)\B(t′) and Attr(gt′′,β) =
Attr(↓ t′′) \ B(t′′). Observe that for any variable x if x ∈ Attr(↓ t′) ∩ Attr(↓ t′′)
then x ∈ B(t′) = B(t′′) by connectivity of T . Thus Attr(gt′,β) ∩ Attr(gt′′,β) =
Attr(↓ t′) \ B(t′) ∩ Attr(↓ t′′) \ B(t′′) = ∅ so gt,β is decomposable.

We now prove an intermediate lemma that we will use to tie the next proof to
some properties from Chapter 4.

Lemma 5.23.
Let X and Y ⊆ X be two sets of variables and D be the domain. Given a set of
variable assignments A ⊆ DX and an assignment β : Y → D, A|X [β] = A[β]|X .

Proof. We show this by double inclusion.
For left-to-right inclusion, let α ∈ A|X [β]. By definition there exists an α′ ∈ A[β]

such that α′
|X = α. Thus α′

|X = α ∈ A[β]|X .
For right-to-left inclusion, let α ∈ A[β]|X . Observe that A[β] ⊆ A so α ∈ A|X

Moreover α|Y = β by definition so α ∈ A|X [β].

We now show that G encodes the relation ansD(Q).

Lemma 5.24.
The circuit G represents the answers of Q that is,

rel(G) = ansD(Q).

5.5. Recapturing the T-factorized interpretation 85

Proof. We show by bottom-up induction on the nodes of T that for any t ∈ T and
β ∈ ansD(Q)|B(t), rel(gt,β) = ansD(Q)[β]|Attr(↓t)\B(t).

First of all observe that the lemma follows from applying the induction at the
root of the decomposition tree. Indeed, rel(G) = rel(Ggr,[]) which is equal to
ansD(Q)[[]]|Attr(↓r)\B(r) = ansD(Q) by induction.

Base case: t is a leaf.
By definition rel(gt,β) = {[]}. Observe that since we assumed that ansD(Q) ̸=
∅ then it follows that ansD(Q)[β]|Attr(↓t)\B(t) = ansD(Q)[β]|∅ = {[]}. Thus
rel(gt,β) = ansD(Q)[β]|Attr(↓t)\B(t).

For the inductive case, we will show by induction that rel(gt,β) =
ansD(Q)|Attr(↓t)[β]

|Attr(↓t)\B(t)
in order to be able to use lemmas from Chapter 4.

Observe that the equivalence of this equality with the induction hypothesis easily
follows from Lemma 5.23.

Inductive case 1: t is a extend node with a child t′.
Let β′ = β|B(t′). By definition rel(gt,β) = rel(gt′,β′) so by induc-
tion rel(gt,β) = ansD(Q)|Attr(↓t′)[β′]

|Attr(↓t′)\B(t′)
. By Lemma 4.21

we know that ansD(Q)|Attr(↓t′)[β′] = ansD(Q)|Attr(↓t)[β]
|Attr(↓t′)

from which it follows that ansD(Q)|Attr(↓t′)[β′]
|Attr(↓t′)\B(t′)

=
ansD(Q)|Attr(↓t)[β]

|Attr(↓t′)|Attr(↓t′)\B(t′)
. Observe that Attr(↓ t′) \ B(t′) ⊆ Attr(↓

t′) so ansD(Q)|Attr(↓t)[β]
|Attr(↓t′)|Attr(↓t′)\B(t′)

= ansD(Q)|Attr(↓t)[β]
|Attr(↓t′)\B(t′)

.

Thus it follows from the two previous equalities that rel(gt,β) =
ansD(Q)|Attr(↓t)[β]

|Attr(↓t′)\B(t′)
.

Finally because t is an extend node then Attr(↓ t) \ B(t) = Attr(↓ t′) \ B(t′) so
rel(gt,β) = ansD(Q)|Attr(↓t)[β]

|Attr(↓t)\B(t)
.

Inductive case 2: t is a project node with a child t′.
Let x be the variable such that B(t′) = B(t) ⊎ {x}.
By definition rel(gt,β) = ⊎

β′∈ansD(Q)|B(t′)[β] rel(gβ′(x)) which we can further
expand to ⊎

β′∈ansD(Q)|B(t′)[β] ansD(Q)|Attr(↓t′)[β′]
|Attr(↓t′)\B(t′)

× {[x/β′(x)]}.
Given β′ ∈ ansD(Q)|B(t′)[β], observe that when we compute the
Cartesian product of ansD(Q)|Attr(↓t′)[β′]

|Attr(↓t′)\B(t′)
with {[x/β′(x)]}

we are actually restoring the value of x that was projected
away and so we obtain ansD(Q)|Attr(↓t′)[β′]

|Attr(↓t′)\B(t)
. Moreover,

Attr(↓ t′) = Attr(↓ t) because t is a project node so this disjoint
union is equal to ⊎

β′∈ansD(Q)|B(t′)[β] ansD(Q)|Attr(↓t)[β′]
|Attr(↓t)\B(t)

=
(⊎β′∈ansD(Q)|B(t′)[β] ansD(Q)|Attr(↓t′)[β′])

|Attr(↓t)\B(t)
. Finally by Lemma 4.19,

(⊎β′∈ansD(Q)|B(t′)[β] ansD(Q)|Attr(↓t′)[β′]) = ansD(Q)|Attr(↓t)[β].

86 Chapter 5. Linear programs on relational circuits

Thus rel(gt,β) = ⊎
β′∈ansD(Q)|B(t′)[β] ansD(Q)|Attr(↓β′)[t]|Attr(↓β′)\B(β′)

=
ansD(Q)|Attr(↓β)[t]|Attr(↓β)\B(β)

.

Inductive case 3: t is a join node with children t′ and t′′.

By definition rel(gt,β) = rel(gt′,β) × rel(gt′′,β) so by induction rel(gt,β) =
ansD(Q)|Attr(↓t′)[β]

|Attr(↓t′)\B(t′)
× ansD(Q)|Attr(↓t′′)[β]

|Attr(↓t′′)\B(t′′)
.

By Lemma 4.22 we know that ansD(Q)|Attr(↓t′)[β] ▷◁ ansD(Q)|Attr(↓t′′)[β] =
ansD(Q)|Attr(↓t)[β] from which it follows that ansD(Q)|Attr(↓t′)[β]

|Attr(↓t)\B(t)
▷◁

ansD(Q)|Attr(↓t′′)[β]
|Attr(↓t)\B(t)

= ansD(Q)|Attr(↓t)[β]
|Attr(↓t)\B(t)

.

Thus rel(gt,β) = ansD(Q)|Attr(↓t)[β]
|Attr(↓t)\B(t)

.

Finally we show that G is informed on any bag of T .

Lemma 5.25.
For any node t ∈ T , G is informed on B(t).

Proof. In this proof, given a gate g of G, we denote by rel(G, g) the set of tuples
of rel(G) such that their proof-tree contains g.

We will show by top-down induction on the nodes of T that rel(G, gt,β) =
rel(G)[β] for any β ∈ rel(G)|B(t).

First of all observe that the lemma will indeed follow from this induction. Let
edgsB(t)(β) = Out(gt,β). Observe that rel(G, gt,β) = ⊎

o∈Out(gt,β) rel(G, o) so it fol-
lows by the induction hypothesis that rel(G)[β] = ⊎

o∈edgsB(t)(β) rel(G, o) thus G is
informed on B(t).

Base case: t is the root of T

Recall that B(t) = ∅ so ansD(Q)|B(t) = {[]}. By definition gt,[] is the root of
G so rel(gt,[]) = rel(G) = rel(G)[[]].

For the inductive cases we fix a β ∈ rel(G)|B(t). We distinguish cases based on
the type of the parent of t.

Inductive case 1: t is the child of an extend node t′

By construction, because t′ is an extend node, the parents of gt,β are all the
gates gt′,β′ such that β′ ∈ rel(G)[β] and that gt,β is the only child of each
of these gates as shown in Figure 5.4c. Thus it follows that rel(G, gt,β) =⊎

β′∈rel(G)[β] rel(G, gt′,β′) which is equal to ⊎
β′∈rel(G)[β] rel(G)[β′] by induction.

Finally by Lemma 4.19 rel(G, gt,β) = rel(G)[β].

5.5. Recapturing the T-factorized interpretation 87

Inductive case 2: t is the child of a project node t′

Let β′ = β|B(t′) ∈ rel(G)|B(t′). By construction, because t′ is a project node,
gt,β is a child of gt′,β′,β(x) which is a child of gt′,β′ as shown in Figure 5.4d.
We prove the induction hypothesis by double inclusion.

Let τ ∈ rel(G)[β]. Observe that rel(G)[β] ⊆ rel(G)[β′] so τ ∈ rel(G, gt′,β′)
by induction. Moreover, because τ(x) = β(x), it follows that ptG(τ) contains
the leaf labelled with [x/β(x)] thus τ ∈ rel(G, gt′,β′,β(x)). Finally, because
o(gt′,β′,β(x)) = × it follows that τ ∈ rel(G, gt,β). Thus rel(G)[β] ⊆ rel(G, gt,β).

Now let τ ∈ rel(G, gt,β). Observe that, by the structure of G, τ ∈ rel(G, gt′,β′)
so by induction τ ∈ rel(G)[β′]. Moreover, because o(gt′,β′,β(x)) = ×, it follows
that ptG(τ) contains the leaf labelled with [x/β(x)] so τ(x) = β(x) so τ ∈
rel(G)[β]. Thus rel(G, gt,β) ⊆ rel(G)[β].

Finally rel(G, gt,β) = rel(G)[β] by double inclusion.

Inductive case 3: t is the child of a join node t′

By construction gt,β has a single parent gt′,β as shown in Figure 5.4b. Observe
that, because o(gt′,β) = × then rel(G, gt,β) = rel(G, gt′,β).

Thus rel(G, gt,β) = rel(G)[β] by induction.

Finally the following proposition easily follows frome Lemma 5.24 and
Lemma 5.25.

Proposition 5.26.
Let L be a closed LP(CQqf)proj with tree decomposition T.

The collection of circuits (compile(Q, TQ,D))Q∈cq(L) is informed on L.

5.5.3 Link to the T-factorized compilation

Let L be a closed LP(CQqf)proj model with tree decomposition T. We have
shown in Theorem 4.10 that the T-factorized interpretation of L is equivalent to its
natural interpretation. We can now show that, following the previous sections, we
are able to compile an informed circuit for any Q ∈ cq(L) and that the C-factorized
interpretation of L is equivalent to its natural interpretation. More interestingly,
we will also show that the size of the C-factorized interpretation is similar to that
of the T-factorized interpretation.

We begin by showing that compiling a query Q with a yields a concise circuit.

Lemma 5.27.
Let Q be a conjunctive query with a tree decomposition T of width k and D be a
database.

The circuit G = compile(Q, T,D) has O(|T ||D|k) edges.

88 Chapter 5. Linear programs on relational circuits

Proof. Recall that the construction of G is shown in Figure 5.4.
In order to bound the number of edges of G we consider each type of node t in

T . Observe that, by Lemma 2.5, there are at most |D|k tuples in ansD(Q)|B(t).

Case 1: t is a leaf
By construction no edges are introduced for t.

Case 2: t is a join-node
By construction there are 2 new edges for each β ∈ ansD(Q)|B(t) so there are
2|D|k edges for t.

Case 3: t is a extend-node
By construction there is one new edge for each β ∈ ansD(Q)|B(t) so there are
|D|k edges for t.

Case 4: t is a project-node
Let t′ be the child of t, by construction there are 3 new edges for each β′ ∈
ansD(Q)|B(t′) so there are 3|D|k edges for t.

Theorem 5.28.
Let L be a closed LP(CQqf)proj model with a tree decomposition T of width k and
D be a database.

The C-factorized interpretation ρG(L) with G = (compile(Q, TQ,D))Q∈cq(L) ver-
ifies that:

• opt(ρG(L)) = opt(⟨L⟩D),

• ρG(L) has O(|T| · |D|k) variables,

• opt(ρG(L)) can be computed in O(|ρG(L)|b · |T| · |D|k·ℓ) in combined complexity
with |ρG(L)|b = O((|L| + |T|) · |D|k · log(|D|k)),

• opt(ρG(L)) can be computed in O(|D|k·(ℓ+1) · log(D)) in data complexity.

Proof. We know by Proposition 5.26 that G is informed on L so it follows from
Theorem 5.10 that the first item of this theorem holds.

The second item follows from Lemma 5.27. Indeed the number of variables of
ρG(L) is equal to the number of edges of G by definition.

The combined complexity follows from Theorem 5.10 with |G| = O(|T| · |D|k)
and IG = |D|k. Indeed recall that in this case we defined edgsX(β) to be Out(gt,β).
Observe that Out(gt,β) only contains more than one edge when t is the child of an
extendt′. The gate gt,β has a parent gt′,β′ for each extension β′ of β. There are at
most |D|k such extensions so I = |D|k.

Finally the data complexity easily follows by considering |L| and |T| to be con-
stants.

5.6. Conclusion 89

L

Natural interpretation T-factorized interpretation C-factorized interpretation

𝓣 Compilation 𝒢
 O(|𝔻|k)

Ln

 O(|𝔻|AGM(L))

Lt

 O(|𝔻|k)

Lc

 O(|𝔻|k)

LP solver

 O(|𝔻|AGM(L)·(ℓ+1) · log(|𝔻|))

opt(Ln) wn

LP solver

 O(|𝔻|k·(ℓ+1) · log(|𝔻|))

opt(Ln) wt

wn

 O(|𝔻|AGM(L))

LP solver

 O(|𝔻|k·(ℓ+1) · log(|𝔻|))

opt(Ln) wc

wn

 O(|𝔻|AGM(L))

Figure 5.5: Summary and data complexity of the solving process of a closed LP(CQ)
model L

Observe that it follows from this theorem that the C-factorized interpretation
covers every possible use of the T-factorized interpretation. The C-factorized inter-
pretation is actually more general as it can be applied in wider situations on which
the T-factorized could not be applied, we will see an example of such a situation in
Section 6.2.

5.6 Conclusion

In this chapter we introduced relational circuits and {⊎, ×}-circuits as means
to efficiently encode relations. We then defined a succinct C-factorized interpreta-
tion of informed closed LP(CQ) models based on {⊎, ×}-circuits and proved the
correctness of this interpretation. Finally we recaptured the result of the previous
chapter by showing that we were able to compile the answer sets of the queries of
LP(CQ)proj programs into succinct {⊎, ×}-circuits.

In Figure 5.5, we give a summary of the solving process with the three inter-
pretations we defined in this thesis as well as their compared performances in data
complexity by considering |L| and |T| to be constants. On the left-hand side we
recall the natural and T-factorized interpretation processes we already presented in
Figure 4.4. On the right-hand side we represent the C-factorized interpretation of
L to Lc using a collection of circuits G which may be obtained by a compilation
based on tree decompositions T of width k. It then yields the optimal value and an
optimal solution wc of Lc from which we can reconstruct an optimal solution wn of
the natural interpretation Ln.

Chapter 6

Extensions and limitations

Contents
6.1 Going beyond linear programs 91

6.1.1 Allowing variables to take negative values 91
6.1.2 Solving programs on integer values 93
6.1.3 Relaxing linearity . 93

6.2 Going beyond conjunctive queries 94

In this section we present a few interesting ideas to extend our results in two
different areas as well as their (current) limitations. We first present a few extensions
from an optimization problem point of view, then we consider enriching the query
language on which the LP(CQ) language is based.

6.1 Going beyond linear programs

Throughout this thesis we have specifically targeted linear programs with non
negative real values. In this section we identify three variations of this setting,
namely lifting the restriction to non negative values, solving programs with integer
values and the relaxing the linearity of the programs.

In the following sections, we either describe how our results can be extended to
lift to these variations or leave them as open problems.

6.1.1 Allowing variables to take negative values

A severe restriction throughout this thesis is that we only consider linear pro-
gram variables that take non-negative values. This restriction is necessary to prove
the weighting correspondences from which the equivalence of the factorized inter-
pretations with the natural semantics follows. More specifically, parts of our proofs
rely on the fact that the total weight of a subset of variables is 0 iff the individual
weight of each variable is 0. In this section we will thus discuss the problem of
solving LP(CQ) models in R rather than in R+. For clarity we introduce a new
notation optS(L) to denote the optimal value of L when solved with values in S.
Observe that, while we have implicitly denoted optR+(L) by opt(L) throughout this
thesis, we are now interested in computing optR(L).

In linear programming it is well known that a linear program with real values
can be equivalently rewritten to a standard form with non-negative values. Given

92 Chapter 6. Extensions and limitations

a linear program L, the idea is to introduce two new variables ξ+
x and ξ−

x such that
ξ+

x ≥ 0, ξ−
x ≥ 0 for any variable x of L then replace every occurrence of x with

the difference (ξ+
x − ξ−

x) yielding a new linear program L′. It is well known that
optR(L) = optR+(L′). Moreover, given an optimal solution w′ : var(L′) → R+ it is
easy to reconstruct an optimal solution w : var(L) → R by computing the difference
w(x) = w′(ξ+

x) − w′(ξ−
x).

It turns out that this idea can easily be lifted to LP(CQ) models without losing
the ability to use the factorized interpretations. First we define the standard form
of a LP(CQ) model as follows:

Definition 6.1.
Let L be a closed LP(CQ) model. For each query Q ∈ cq(L) let Q− = Q ∧ true.

We denote the standard form of L by sf(L), it is the closed LP(CQ)
model obtained by replacing every weightx:Q′(Q) in L with weightx:Q′(Q) −
weightx:Q′(Q−).

Observe that in this definition, each Q− is semantically equivalent but syntac-
tically different from its associated query Q.

We now show that solving sf(L) in R+ is equivalent to solving L in R.

Lemma 6.2.
Given a closed LP(CQ) model L, optR+(⟨sf(L)⟩D) = optR(⟨L⟩D).

Sketch of proof. By definition, when computing ⟨sf(L)⟩D, the instantiation of
weightx:Q′(Q) − weightx:Q′(Q−) is ∑

τ∈ansDx(Q∧Q′) θτ
Q −

∑
τ∈ansDx(Q−∧Q′) θτ

Q− which
can be rewritten as ∑

τ∈ansDx(Q∧Q′)(θτ
Q − θτ

Q−) since ansD(Q) = ansD(Q−). Observe
that because Q and Q− are syntactically different then θτ

Q and θτ
Q− are distinct

variables that can take the roles of ξ+
θτ

Q
and ξ−

θτ
Q

.
Thus ⟨sf(L)⟩D is the standard form of ⟨L⟩D so the lemma holds.

Moreover this approach can be used to efficiently solve L on R. We formalize
this for the T-factorized interpretation, it is then straightforward to see that the
C-factorized interpretation can be used for similar results.

Lemma 6.3.
Let L be a LP(CQqf)proj model, T a decomposition of L of width k and D a database.

One can compute optR(⟨L⟩D) in O(|D|ℓ·fhtw(L)) with ℓ < 2.37286.

Proof. Observe that sf(L) is also a LP(CQqf)proj model since we can use the
decomposition TQ ∈ T for each duplicated query Q−. Thus by Theorem 4.10,
optR+(ρT,D(sf(L))) = optR+(⟨sf(L)⟩D). Finally, by Lemma 6.2, optR+(ρT,D(sf(L))) =
optR(⟨L⟩D).

For the complexity, observe that ρT,D(sf(L)) has twice as many variables as
ρT,D(L) so ρT,D(sf(L)) can be solved in O(2|D|ℓ·fhtw(L)).

Observe that Lemma 4.13 can be lifted to this setting by computing the differ-
ences θτ

Q − θτ
Q− .

6.1. Going beyond linear programs 93

6.1.2 Solving programs on integer values

While we have considered linear program variables to take (positive) real values,
in some settings it makes more sense to restrict the variables to integer values in
order to reason about discrete objects. Such programs are know as Integer Linear
Programs (ILPs) or Mixed Integer Programs (MIPs) if there are both integer and
real variables.

Since an ILP only differs from a LP in the domain of its variables, the LP(CQ)
language can directly be used to describe ILPs. Indeed, we can simply compute
⟨L⟩D then hand it to an ILP solver to obtain optN(⟨L⟩D) (the technique from the
previous section can be used if one is interested in optZ(⟨L⟩D)).

Unfortunately the T-factorized and C-factorized interpretations cannot be di-
rectly used to compute optZ(⟨L⟩D) more efficiently. Indeed recall that half of the
proof of the correctness of both these interpretations relies on reconstructing a so-
lution of ⟨L⟩D with the Π(.) function that makes use of divisions and would thus
often yield real values rather than the expected integer values.

We leave finding a succinct interpretation of LP(CQ) models that can be equiv-
alently solved with integer values as an open problem.

6.1.3 Relaxing linearity

Finally, while linear programs cover a wide array of applications, they are only
a subset of optimization problems and it may be useful to relax the linearity of the
programs.

Consider for instance the task assignment example from Example 3.2. We could
minimize the squares of the assignments of the employees in order to obtain more
balance between the workloads of the employees as follows:

Example 6.4 (Updated task assignment model).

minimize
∑∑∑

(e′):∃s′.Skills(e′,s′)
weight(t,s,e,d):e .=e′(Qassign)2

subject to ∀(t′, d′):∃s′.Tasks(t′, s′, d′).weight(t,s,e,d):t .=t′(Qassign) ≥ num(d′)
∧ ∀(e′):∃s′.Skills(e′, s′).weight(t,s,e,d):e .=e′(Qassign) ≤ 40.

It is possible to extend the core idea of the LP(CQ) language to generic opti-
mization problems by considering models of the form

minimize f(x)
subject to

∧m
i=1 gi(yi) ≤ 0∧n
j=1 hj(zj) = 0

where x, yi and zj are vectors of weight operators.
It is easy to see that one can compute the natural interpretation of such models,

and that the only limitation is the existence of an algorithm to solve the resulting
optimization problem.

94 Chapter 6. Extensions and limitations

Moreover it turns out that, if applicable, the T-factorized and C-factorized in-
terpretations of such models are still equivalent with their natural semantics. In-
tuitively the base building blocks of this relaxed language are still the weight
operators so the framework defined in Section 3.6 translates quite easily to this new
setting.

Indeed it is straightforward that we can lift Lemma 3.15 to this setting as follows:

Lemma 6.5.
Let f be a function and w⃗ be a vector of weight operators.

If w1(Inst1(w)) = w2(Inst2(w)) for any w ∈ w⃗ then JInst1(f(w⃗))Kw1 =
JInst2(f(w⃗))Kw2.

It then follows that we can also lift Proposition 3.17 to this setting thus the
T-factorized interpretation and C-factorized interpretation can indeed be used to
solve these models.

For example we remark that the model L of Example 6.4 describes a least
squares problem, so a factorized interpretation could be handed to a solver with
least squares capabilities in order to compute opt(⟨L⟩D) more efficiently by reducing
the number of variables to be handled by the solver.

6.2 Going beyond conjunctive queries

We now discuss how to extend the LP(CQ) language by lifting the restriction to
conjunctive queries. Observe that since we will always consider queries Q that de-
scribe a relation ansD(Q), the natural interpretation will easily be translateable to
these new types of queries. On the other-hand, since the tree decomposition based
algorithms are specifically tied to conjunctive queries, the T-factorized interpreta-
tion will cease working with any of these extensions. Thus we will mostly discuss
the impact of these changes on the C-factorized interpretation and see that the
additional abstraction sometimes allows it to be more general than the T-factorized
interpretation. While there are a lot of different ways to extend conjunctive queries
up to first order queries, we only present two specifically interesting extensions here.

UCQs

First we consider a common extension by adding disjunctions ∨ to the syntax of
CQΣ. This allows us to describe a class of queries commonly referred to as Unions
of Conjunctive Queries (UCQs) from which we can define the LP(UCQ) language
of linear programs with UCQs in a straightforward manner.

Let Q = R(x) ∨ S(y) be a UCQ and D be a database of domain {0, 1, 2} with
the following tables:

RD x
0

SD y
1

6.2. Going beyond conjunctive queries 95

Observe that Q indeed defines a relation ansD(Q) = ansDfv(Q)(R(x)) ∪
ansDfv(Q)(S(y)) as follows so the natural interpretation can be seamlessly ported
to the LP(UCQ) language.

ansD(Q) x y
0 0
0 1
0 2
1 1
2 1

Observe that if we consider a UCQ Q = Q1 ∨ · · · ∨ Qi ∨ · · · ∨ Qn then
ansD(Q) = ansD(Q1) ∪ · · · ∪ ansD(Qi) ∪ · · · ∪ ansD(Qn). Thus a first idea to port
the C-factorized interpretation to the LP(UCQ) language would be to compile each
individual query Qi into a {⊎, ×}-Circuit as presented in Section 5.5.1 then consider
the union of these circuits. However these circuits are not guaranteed to describe
disjoint relations so the full circuit that describes Q would not necessarily be a
{⊎, ×}-Circuit itself. Thus the C-factorized interpretation we presented in this the-
sis would not directly work for UCQs, we leave finding some form of C-factorized
interpretation that doesn’t rely on determinism as an open question.

CQs with negations

We now consider the extension of conjunctive queries to CQs with negations
(CQneg) where we allow atoms to be negated where a negated atom represents the
complement of the relation in the domain.

For example, let Q = R(x) ∧ ¬S(y) be a conjunctive query and D be a database
of domain {0, 1, 2} with the following tables:

RD x
0

SD y
1

The query Q describes the following relation, from which if follows that the
natural interpretation can also be seamlessly ported to the LP(CQneg) language of
linear programs with conjunctive queries with negations.

ansD(Q) x y
0 0
0 2

Interestingly, the result from [Cap17] could be adapted to compile some CQneg

queries to {⊎, ×}-circuits as follows:

Theorem 6.6.
Given a β-acyclic CQneg query Q and database D, there is a {⊎, ×}-circuit G of
size O(|D| · |Q|) such that rel(G) = ansD(Q).

96 Chapter 6. Extensions and limitations

While finding an informed compilation algorithm for CQneg queries would be
more involved, recall that any {⊎, ×}-circuit is necessarily informed on single vari-
ables. Thus the C-factorized interpretation could be applied to LP(CQneg) models
whose weight operators are of the form weightx:x .=d(Q) with x ∈ x and d a domain
value.

Observe that it is possible to rewrite a UCQ into a union of disjoint queries by
using negations to make sure no answer is selected twice. While this opens another
approach to handle UCQs, the rewritten query could grow to be much larger than
the original query which would lead to decreased efficiency. Moreover, this approach
would fall prey to a loss of expressiveness because of the restricted informedness
mentioned above.

Chapter 7

Conclusion

In this thesis we have defined the LP(CQ) language to model linear programs
that reason about the answers of conjunctive queries without materializing the an-
swer sets of these conjunctive queries beforehand. Because solving LP(CQ) models
is hard in general, we presented the T-factorized interpretation to efficiently solve
some closed LP(CQ) models using hypertree decompositions of the queries that
appear in the models. We then generalized this approach with the C-factorized
interpretation that relies on {⊎, ×}-circuits that succinctly encode the answer sets
of the queries of the models. Finally we presented some extensions that take our
results further.

We now list a few open questions that follow from this thesis, some of which
were already mentioned in the previous chapter.

As mentioned in the previous chapter, it would be interesting to investigate
whether it is possible to efficiently compute optZ(⟨L⟩D) for a fragment of LP(CQ)
models L given a database D.

In the previous chapter we discussed the extension of the LP(CQ) language to
the LP(UCQ) language and left the question of efficiently solving LP(UCQ) models
as an open problem. A first lead to solve this question would be to try and adpating
the C-factorized interpretation to work with circuits that are not not deterministic.

While we have focused on efficiently solving closed LP(CQ) models through-
out this thesis, trying to close LP(CQ) models more efficiently would also be an
interesting line of research.

Finally it would be interesting to implement the LP(CQ) language, possibly
as an extension of an existing modeling language, as well as our T-factorized and
C-factorized solving algorithm to see how they would fare on practical problems.

Bibliography
[AGM13] Albert Atserias, Martin Grohe, and Dániel Marx. Size bounds and query

plans for relational joins. SIAM Journal on Computing, 42(4):1737–
1767, 2013. (Cited on page 12.)

[AW21] Josh Alman and Virginia Vassilevska Williams. A refined laser method
and faster matrix multiplication. In Proceedings of the 2021 ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 522–539. SIAM,
2021. (Cited on page 13.)

[BDG07] Guillaume Bagan, Arnaud Durand, and Etienne Grandjean. On acyclic
conjunctive queries and constant delay enumeration. In International
Workshop on Computer Science Logic, pages 208–222. Springer, 2007.
(Cited on pages 4, 5 and 64.)

[Cap17] Florent Capelli. Understanding the complexity of #sat using knowl-
edge compilation. In 32nd Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2017, Reykjavik, Iceland, June 20-23, 2017,
pages 1–10. IEEE Computer Society, 2017. (Cited on page 95.)

[CCNR22] Florent Capelli, Nicolas Crosetti, Joachim Niehren, and Jan Ramon.
Linear programs with conjunctive queries. In Dan Olteanu and Nils
Vortmeier, editors, 25th International Conference on Database Theory,
ICDT 2022, March 29 to April 1, 2022, Edinburgh, UK (Virtual Confer-
ence), volume 220 of LIPIcs, pages 5:1–5:19. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2022. (Cited on page 4.)

[CLS21] Michael B Cohen, Yin Tat Lee, and Zhao Song. Solving linear programs
in the current matrix multiplication time. Journal of the ACM (JACM),
68(1):1–39, 2021. (Cited on page 13.)

[CM77] Ashok K. Chandra and Philip M. Merlin. Optimal implementation of
conjunctive queries in relational data bases. In Proceedings of the Ninth
Annual ACM Symposium on Theory of Computing, STOC ’77, pages
77–90, New York, NY, USA, 1977. ACM. (Cited on page 36.)

[CM07] Marco Cadoli and Toni Mancini. Combining relational algebra, sql,
constraint modelling, and local search. Theory and Practice of Logic
Programming, 7(1-2):37–65, 2007. (Cited on page 3.)

[Dar01] Adnan Darwiche. Decomposable negation normal form. Journal of the
ACM, 48(4):608–647, July 2001. (Cited on pages 65 and 66.)

[DM02] Adnan Darwiche and Pierre Marquis. A Knowledge Compilation Map.
Journal of Artificial Intelligence Research, 17:229–264, 2002. (Cited on
pages 65 and 66.)

100 Bibliography

[FGK90] Robert Fourer, David M Gay, and Brian W Kernighan. A modeling lan-
guage for mathematical programming. Management Science, 36(5):519–
554, 1990. (Cited on page 2.)

[GLS99] Georg Gottlob, Nicola Leone, and Francesco Scarcello. On tractable
queries and constraints. In International Conference on Database and
Expert Systems Applications, pages 1–15. Springer, 1999. (Cited on
page 4.)

[GLS02] G. Gottlob, N. Leone, and F. Scarcello. Hypertree Decompositions
and Tractable Queries. Journal of Computer and System Sciences,
64(3):579–627, May 2002. arXiv: cs/9812022. (Cited on page 4.)

[GM14] Martin Grohe and Dániel Marx. Constraint solving via fractional edge
covers. ACM Transactions on Algorithms (TALG), 11(1):4, 2014. (Cited
on page 11.)

[Gro06] Martin Grohe. The structure of tractable constraint satisfaction prob-
lems. In International Symposium on Mathematical Foundations of
Computer Science, pages 58–72. Springer, 2006. (Cited on page 4.)

[Kar84] Narendra Karmarkar. A new polynomial-time algorithm for linear pro-
gramming. Comb., 4(4):373–396, 1984. (Cited on pages 4 and 13.)

[KLMT15] Frédéric Koriche, Jean-Marie Lagniez, Pierre Marquis, and Samuel
Thomas. Compiling constraint networks into multivalued decompos-
able decision graphs. In Proceedings of the 24th International Confer-
ence on Artificial Intelligence, IJCAI’15, page 332–338. AAAI Press,
2015. (Cited on page 66.)

[Klo94] Ton Kloks. Treewidth: computations and approximations, volume 842.
Springer Science & Business Media, 1994. (Cited on page 12.)

[KPT13] Phokion G. Kolaitis, Enela Pema, and Wang-Chiew Tan. Efficient
querying of inconsistent databases with binary integer programming.
Proceedings of the VLDB Endowment, 6(6):397–408, April 2013. (Cited
on page 3.)

[Lib13] Leonid Libkin. Elements of finite model theory. Springer Science &
Business Media, 2013. (Cited on page 11.)

[MS12] Alexandra Meliou and Dan Suciu. Tiresias: The database oracle for
how-to queries. In Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’12, pages 337–348, New
York, NY, USA, 2012. ACM. (Cited on page 3.)

[NSB+07] Nicholas Nethercote, Peter J Stuckey, Ralph Becket, Sebastian Brand,
Gregory J Duck, and Guido Tack. Minizinc: Towards a standard cp

Bibliography 101

modelling language. In International Conference on Principles and
Practice of Constraint Programming, pages 529–543. Springer, 2007.
(Cited on page 2.)

[Olt16] Dan Olteanu. Factorized databases: A knowledge compilation perspec-
tive. In AAAI Workshop: Beyond NP, 2016. (Cited on pages 41, 65
and 66.)

[OZ12] Dan Olteanu and Jakub Závodnỳ. Factorised representations of query
results: size bounds and readability. In Proceedings of the 15th Inter-
national Conference on Database Theory, pages 285–298. ACM, 2012.
(Cited on pages 5, 41 and 64.)

[OZ15a] Dan Olteanu and Jakub Závodnỳ. Size bounds for factorised repre-
sentations of query results. ACM Transactions on Database Systems
(TODS), 40(1):1–44, 2015. (Cited on page 5.)

[OZ15b] Dan Olteanu and Jakub Závodný. Size Bounds for Factorised Repre-
sentations of Query Results. ACM Transactions on Database Systems,
40(1):1–44, March 2015. (Cited on pages 64 and 80.)

[PD08] Knot Pipatsrisawat and Adnan Darwiche. New compilation languages
based on structured decomposability. In Proceedings of the Twenty-
Third AAAI Conference on Artificial Intelligence, AAAI, pages 517–
522, 2008. (Cited on page 65.)

[PS13] Reinhard Pichler and Sebastian Skritek. Tractable counting of the an-
swers to conjunctive queries. Journal of Computer and System Sciences,
79:984–1001, September 2013. (Cited on pages 4 and 64.)

[SOC16] Maximilian Schleich, Dan Olteanu, and Radu Ciucanu. Learning lin-
ear regression models over factorized joins. In Proceedings of the 2016
International Conference on Management of Data, pages 3–18. ACM,
2016. (Cited on page 64.)

[ŠP16] Laurynas Šikšnys and Torben Bach Pedersen. SolveDB: Integrating
optimization problem solvers into SQL databases. In Proceedings of
the 28th International Conference on Scientific and Statistical Database
Management, page 14. ACM, 2016. (Cited on page 3.)

[Vel14] Todd L. Veldhuizen. Triejoin: A simple, worst-case optimal join al-
gorithm. In Nicole Schweikardt, Vassilis Christophides, and Vincent
Leroy, editors, Proc. 17th International Conference on Database Theory
(ICDT), Athens, Greece, March 24-28, 2014, pages 96–106. OpenPro-
ceedings.org, 2014. (Cited on pages 11 and 36.)

[Yan81] Mihalis Yannakakis. Algorithms for acyclic database schemes. In Pro-
ceedings of the Seventh International Conference on Very Large Data

102 Bibliography

Bases - Volume 7, VLDB ’81, pages 82–94. VLDB Endowment, 1981.
(Cited on pages 4 and 41.)

	Introduction
	Preliminaries
	General notations
	Sets, Functions and Relations
	Rooted trees
	Variable assignments

	Conjunctive queries
	Relational Databases
	Conjunctive Queries
	Tree decompositions
	Width of tree decompositions
	Normalizing tree decompositions

	Linear programming

	Linear programs on conjunctive queries
	Introduction
	Overview of the language
	Weighting subsets of answers
	Quantifying contraints
	Retrieving values from the database
	Summing linear expressions
	Full linear program model

	Full syntax of LP(CQ)
	Semantics
	Instantiating closed weight operators
	Closing the model
	Semantics of LP(CQ) models
	Intricacies of the semantics

	Solving LP(CQ) programs
	Solving closed LP(CQ) models
	Solving open LP(CQ) models

	Alternate interpretations
	Definitions
	Equivalence of LP(CQ) interpretations

	Conclusion

	Tractable fragment of LP(CQ)
	Introduction
	A tractable interpretation of LP(CQ) models
	Characterizing tractable LP(CQ) models and their width
	Tree decomposition-based factorized interpretation
	Example

	Solving LP(CQ) models efficiently
	Computing the optimal value of a LP(CQ) model
	Computing a full solution of the natural interpretation
	Handling conjunctive queries with existential quantifiers

	Proof of equivalence between the T-factorized and natural interpretations
	Weighting correspondence
	Reconstructing a of A
	Reconstructing a weighting of A
	Proof of the equivalence of the natural and T-factorized interpetations

	Conclusion

	Linear programs on relational circuits
	Introduction
	Relational circuits
	[s]
	[s]
	Proof trees

	Circuit-based factorized interpretation
	Caracterizing informed circuits
	Circuit-based factorized interpretation
	Computing a full solution of the natural interpretation

	Correctness
	Proof trees properties
	Weighting correspondence
	Proof of the equivalence theorem

	Recapturing the T-factorized interpretation
	Compiling a conjunctive query with a tree decomposition
	Correctness of the compilation
	Link to the T-factorized compilation

	Conclusion

	Extensions and limitations
	Going beyond linear programs
	Allowing variables to take negative values
	Solving programs on integer values
	Relaxing linearity

	Going beyond conjunctive queries

	Conclusion
	Bibliography

