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INTRODUCTION PART I

Contexte

Ovarian cancer is the most frequent pathology among gynecological cancers and the 5th
cause of death in women worldwide [Cai+21]. In France, it ranks 8th in terms of frequency
and 4th in terms of cancer mortality in women. For the year 2018, the estimated number
of new cases of ovarian cancer in France was 5,193 and the estimated number of ovarian
cancer deaths was 3,479 [Tré+20]. For comparison, its incidence was approximately 4,600
new cases in France in 2015 with 3,100 annual deaths. The prognosis for this disease
remains poor, with net survival estimated at 43%, all stages combined, and the majority
of deaths occur within the first two years after diagnosis.

More than 90% of adult ovarian cancers are epithelial cancers (adenocarcinomas) of
which the 5 main subtypes are: high grade serous, endometrioid, clear cell, mucinous and
low grade serous. Three quarters of patients are diagnosed at the advanced stage (stages
IIIC and IV of International Federation of Gynecology and Obstetrics (FIGO)), i.e., the
disease has spread beyond the ovaries to the entire surface of the peritoneum or at a
distance.

Motivation

Despite advances in understanding the biology of ovarian cancer, patients with stage IIIC-
IV disease have an overall 5-year survival of less than 20% [Pok+19]. Since the 1990s, the
standard management of ovarian cancer has included cytoreduction followed by systemic
treatment with paclitaxel and carboplatin. In fact, 80% of patients have a good initial
response to the proposed treatments (surgery and chemotherapy), however 70% of them
will present a recurrence within two years. When the recurrence occurs less than one
year after the end of chemotherapy, the disease is considered "platinum-resistant", it is
therefore important to understand the mechanisms of chemotherapy resistance and tumor
recurrence in order to improve patient survival.

On the other hand, there is a proportion of patients who develop chronic disease with a
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survival of 5 years and more. This observation allows us to imagine that there are at least
2 biological forms of the disease: a rather aggressive one and another one which would
evolve in a slower way. Therefore, it is urgent to develop classifiers to separate patients
into therapeutic groups and to detect new therapeutic targets. It has been shown that it
is possible to identify the difference in expression from transcriptomic data and to deduce
signatures in various biological processes including ovarian cancer [FSA19].

Some recent work has made it possible to stratify patients into good and poor prog-
nosis groups according to their transcriptomic profile [Bon+08; Tot+08; Cri+09]. The
availability of omics data from The Cancer Genome Atlas (TCGA) project has marked a
new step in the field of cancer research. This initiative has resulted in several papers that
have led to a better characterization of ovarian cancer [Bel+11; Ver+12; Way+16].

Another technological advance that has proven to be successful in different fields, deep
learning, is being applied in the medical field in general, and in the use of omics data. For
example, the recent work [Chi+18] has demonstrated the interest in using artificial neural
networks to predict survival from the transcriptome, however not all cancer types tested
among the TCGA data yield satisfactory results, in particular ovarian cancer is among
the types that need further investigation [CZG18].
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Chapter 1

TRANSCRIPTOMIC DATA

In this chapter we will give the few key notions important for the reading of the fol-
lowing chapters. Section 1.1 briefly introduces the concept of the transcriptome, section
1.2 discusses sequencing technologies that allow the quantification of transcriptome data.
Finally, section 1.3 describes the bioinformatic pre-processing steps that precede gene
expression analysis.

1.1 Transcriptome

The cell, the smallest independently reproducible living unit, is composed of lipids, carbo-
hydrates, proteins and nucleic acids. Among the nucleic acids, we distinguish deoxyribonu-
cleic acids (DNA) and ribonucleic acids (RNA). The DNA constitutes the genome of the
cell in which are encoded all the information necessary for the functioning of the cell. This
molecule is made up of two strands or polynucleotides, composed of 4 deoxynucleotides
linked by phosphodiester bonds. These deoxynucleotides are composed of a phosphate, a
deoxyribose and a heterocyclic base that differentiates them. In DNA, the bases present
are Adenine (A), Cytosine (C), Guanine (G) and Thymine (T). The two strands of DNA
are paired in an inversely complementary manner by hydrogen bonds. The pairing is car-
ried out by two hydrogen bonds between A and T and three hydrogen bonds between G
and C. Thus, between the two strands the pairs A and T are complementary as the pairs
G and C and the two strands encode the same information (cf Fig.1.1).

In the genome, information is structured in the form of genes that code for proteins,
each gene representing several thousand deoxynucleotides. The production of a protein
coded by a gene requires an intermediate molecule or RNA which will then be translated
into protein. Thus, the genes are copied in a complementary way in RNA during a process
called transcription. In the same way as DNA, RNA contains the genetic information,
but encoded in a single strand using the alphabet of four ribonucleotides composed of a
phosphate, a ribose and four bases, where the Thymine (T) is replaced by the Uracile (U)

13



Part I, Chapter 1 – Transcriptomic data

Figure 1.1: DNA and RNA alphabet bases, [Mar18].

which is paired by two hydrogen bonds with A (cf Fig.1.1). The messenger RNAs obtained
in the cell by transcription are inversely complementary to the DNA strand coding for a
gene. The set of expressed RNAs is called transcriptome and by extension the set of of
proteins translated by the transcriptome constitutes the proteome. There are about 20,000
genes in the human genome and not all genes are transcribed at the same frequency in
different cells or in a cell at a given time. Thus, each cell or homogeneous group of
cells can be characterized by a transcriptome which corresponds to the identification and
quantification of each expressed RNA.

The transcripts generated during transcription are called primary transcripts (pre-
mRNA), they undergo a certain number of transformations to become mature transcripts.
In fact, in eukaryotes, there is no genetic colinearity. In other words, the sequence informa-
tion of messenger RNAs is fragmented in the genome into two sequence elements: introns
and exons that are transcribed into pre-mRNAs. The most important maturation event
is splicing, which keeps the exons and eliminates the introns to form the mature mRNA.
From identical primary transcripts it is possible to obtain different mature transcripts

14



1.1. Transcriptome

(isoforms) with different combinations of exons, this phenomenon is called alternative
splicing and multiplies the number of mRNAs encoded by the genome.

The mRNAs, are recruited to be translated into proteins. The translation of mRNA
or coding RNA allows the synthesis of proteins. The processes of transcription and trans-
lation are presented schematically in Fig.1.2. These RNAs carry codons, i.e. triplets of
nucleotides coding for amino acids or stop codons which are signals to stop protein syn-
thesis. There are thus 64 possible codons which code for 20 standard amino acids and 3
stop codons. There can be several codons for the same amino acid, the code is said to
be degenerate. Like transcripts, proteins can undergo numerous post-translational modi-
fications before they can perform their biological functions in the cell. This passage from
DNA to protein is the basis of the fundamental theory or dogma of molecular biology.
Currently it is impossible to access the exhaustive proteome with sufficient sensitivity, but
the various technological breakthroughs in molecular biology in recent years have made
it possible to access the transcriptome.

Figure 1.2: Modern molecular biology dogma, [Aud17].

In order to better understand the biology of cancers, the study of the transcriptome
is essential. Indeed, investigating the transcriptome of malfunctioning cells gives the pos-
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Part I, Chapter 1 – Transcriptomic data

sibility to detect the mechanisms put in place by these tumor cells by which they bypass
the various protections of our organism in order to proliferate in an uncontrolled way.

1.2 Sequencing technologies

1.2.1 Microarrays

The arrival of DNA chips or "microarrays" in the 90’s and then the technological break-
through access to "high throughput" sequencing methods have made it possible to establish
the expression profiles of numerous tumors at the transcriptome level. The study of the
transcriptome in oncology has proven to be a powerful diagnostic and prognostic tool.

DNA chips allow sequencing based on the principle of hybridization where two com-
plementary nucleic acid fragments can associate by hydrogen bonding and dissociate in a
reversible way under the action of heat and the saline concentration of the medium. They
are presented in the form of a glass slide on which short DNA sequences (probes) have
been deposited or synthesized. The probes have the particularity of having been chosen
to be specific to a single gene.

The RNA to be analyzed, retrotranscribed into complementary DNA (cDNA) that
can be visualized by incorporation of fluorochromes, are put in contact with the DNA
chips where they will hybridize with the probes of which they are complementary. The
reading of the chip allows to obtain the sequence spectrum of the cDNA or RNA from
which they originate. We thus obtain the composition of the sample in sub-sequences of n
nucleotides, where n is the size of the probes on the chip used. The computer processing
of the spectrum then allows to quantitatively reconstruct the entire sequence and thus to
characterize the initial transcriptome studied.

The error rate of the reading is quite low for this technology (less than 0.1%), Its main
drawback is its relatively low throughput. The principle of transcriptome sequencing by
DNA chips is presented in Fig.1.3.

1.2.2 Next generation sequencing and RNA-seq

Born in 2008, the technological breakthrough brought by Next Generation Sequencing
(NGS) allows the digitization of the complete transcriptome by random sequencing of
cDNAs and RNA copies using the RNA-seq method. The method, called sequencing
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1.2. Sequencing technologies

Figure 1.3: DNA chips or microarrays transcriptome sequencing principle, [Pla].
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Part I, Chapter 1 – Transcriptomic data

by synthesis, proposed by the company Illumina is currently the main high-throughput
sequencing technology used for the transcriptome.

In RNA-seq protocols, once the RNA of interest is extracted, it is fragmented into
sequences of a few hundreds of base pairs. The second step is reverse transcription (RT),
which converts the RNA into complementary DNA (cDNA) and then into double-stranded
cDNA that can be sequenced. The adapters represented by known short synthetic DNA
sequences are linked to each end of the double-stranded cDNA fragments of unknown
sequence, this preparation is called the library. The library is then deposited on a solid
support, the flowcell. This flowcell is a glass surface on which complementary DNA se-
quences adapters are randomly arranged and allows the immobilization of the sequences
present in the library. An amplification step of the hybridized sequences on the flowcell
allows to increase the number of copies of each fragment, in order to form clusters of
identical molecules.

A single-stranded DNA primer complementary to the adapters is added to initiate
the synthesis of the DNA complementary to the single strand fixed on the flowcell. From
this point on, the actual sequencing can begin. We distribute the 4 deoxyribonucleotides
triphosphate each coupled to a different fluorochome on the flowcell, a complementary
deoxyribonucleotide is attached to each fragment. An image capture is taken and a base
is read for each cluster using specialized image processing programs. After the reading,
the fluorochrome is photolyzed and a new deoxyribonucleotide is bound. Fixation, image
capture and photolysis constitute a cycle of sequence by synthesis. The number of cycles
is limited to 100-200 cycles depending on the speed of the sequencer and its error rate
which increases with each cycle. The complete digitization of the fragments is therefore
impossible and because of this limitation, we use pair-end sequencing. It allows to increase
the size of the sequences read by sequencing successively the 2 ends of the fragments. The
workflow of RNA-seq analysis is presented in Fig.1.4.

1.2.3 Third generation sequencing

One of the major limitations of RNA-seq technology is the fragmentation of DNA molecules,
because the assembly of the read sequences is a complex problem. This limitation is even
stronger for the transcript as the isoforms of a gene share large common portions. To
solve this problem, another major technological revolution of sequencing is the develop-
ment of third generation sequencing (TGS). It includes several technologies such as Pacific
Bioscience (PacBio) single-molecule real-time (SMRT) or Oxford Nanopore Technologies
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1.2. Sequencing technologies

Figure 1.4: RNA-seq analysis workflow, [MN22].

(ONT) which allow direct sequencing of cDNA, without amplifications, without fragmen-
tation and are able to digitize entire transcripts. The Oxford Nanopore technology is
also the first to offer direct sequencing of RNA molecules, eliminating many of the biases
associated with reverse transcription into cDNA.

The sequencing of long reads, however, poses new problems, as the error rate is higher
than in the case of NGS. The combination of the two generations of sequencing should
make it possible to overcome the above limitations [Aud17; Mar18; Ngu20]. The compar-
ison of NGS and TGS technologies is presented in Fig.1.5.

Figure 1.5: NGS (A) and TGS (B) technologies comparison, [CH21].
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Part I, Chapter 1 – Transcriptomic data

1.3 Bioinformatics analysis steps

The transcriptomic data used in this thesis were derived from RNA-seq technology. There-
fore, we describe here the different steps of bioinformatics pre-processing and bioinformat-
ics analysis required for this type of data (cf. Fig.1.6).

The sequences produced during RNA-seq sequencing are usually stored in the FASTQ
format. This is a text file format that stores each read on four lines:

1. the unique sequence identifier;

2. the sequence read in the alphabet A, T, G, C or N (the base that could not be
determined);

3. empty;

4. the quality code for each base read.

The sequencing file contains reads without any genomic or transcriptomic context. One
of the steps in the analysis of RNA-seq data is therefore the alignment of the reads to the
reference genome. Very greedy in computational resources, these methods are however very
powerful, they allow the discovery of new genes or new transcripts, variants transcripts,
splice variants, etc. Among the most used or recent genome alignment tools, we note
STAR [Dob+13] ou HISAT2 [Kim+19].

An alternative to alignment to the reference genome is the strategy using the reference
transcriptome. These methods have proven to be faster and more efficient, they allow the
estimation of transcript and gene expression from reads in a few minutes on a desktop
computer.

Finally, when a reference genome is not available or when one wishes not to introduce
any bias with respect to our current knowledge of the genome or transcriptome, the so-
called "de novo" approaches can be considered.

The alignment results are then used to quantify the expression of genes or transcripts.
Quantification is the estimation of the abundance of transcripts using algorithms, the
simplest being the counting of reads overlapping annotations like featuresCounts [LSS14]
ou HTSeq-counts [APH15].

This raw read count does not accurately reflect gene expression, which makes it difficult
to compare different conditions. Indeed, these values are impacted by the length of the
transcripts, the total number of reads and the sequencing depth. For example, deeper
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1.3. Bioinformatics analysis steps

sequencing will produce more reads associated to each gene, to solve this problem several
normalization strategies to correct this bias have been proposed, among the recent ones
are DESeq2 [LHA14] ou TCGABiolinks [Col+16].

To study RNA-seq data, one of the most frequent analyses is the differential expression
(DE) of genes. For example, it is important to find genes that are over-expressed or under-
expressed in the group of patients with a treatment of interest compared to the control
group. Another way to explore these large data is clustering, in this approach, we try
to identify groups of patients or genes that are similar. This technique has in particular
allowed the detection of several transcriptomic subtypes of ovarian cancer from the TCGA
RNA-seq data [Bel+11].

Finally, this type of data also makes it possible to analyze patient survival [CZG18],
in the framework of this approach we seek to discover prognostic genes and ultimately
new therapeutic targets.

Figure 1.6: Transcriptomic data analysis pipeline, [Ngu20]. The micoriarrays and RNA-seq data are
processed in 2 stages. A. Pre-processing, B. Analysis itself: differential expression, survival analysis and
clusterint.
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Chapter 2

SURVIVAL ANALYSIS

Survival analysis is a branch of statistics which deals with the data where the outcome
is the time until the occurrence of an event of interest. One of the main challenges in
this context is the presence of instances that do not experience any event during the
observation period. Such a phenomenon is called censoring, the types of censoring include:

1. right-censoring, for which the observed survival time is less than or equal to the true
survival time;

2. left-censoring, for which the observed survival time is greater than or equal to the
true survival time;

3. interval censoring, for which we only know that the event occurs during a given time
interval.

Among them, right-censoring is the most common scenario that arises in many prac-
tical problems. The applications of survival analysis in various domains are numerous,
to cite a few: in healthcare to predict the disease recurrence or re-hospitalization, in re-
liability to prognosticate the device failure, in customer lifetime to model the purchase
behavior, etc. In spite of the importance of these problems and relevance to various real-
world applications, this research topic is scattered across different disciplines.

We introduce here some notations that will be necessary to describe the survival
analysis methodology.

1. P - the number of input prediction features;

2. N - the number of instances or individuals;

3. X - feature matrix of size N x P

4. Xi - feature vector of individual i of size 1 x P
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5. ti - time to the event of interest for individual i

6. δi - event (value 1) or censoring (value 0) indicator for individual i

The survival function is the probability that the time to the event of interest is not
earlier than a specified time t:

S(t) = Pr(T ≥ t) (2.1)

Given the input prediction features X, the goal of survival analysis is to estimate the
survival time ti, i.e. time to the event of interest for a new instance i, and to estimate the
survival probability Ŝ(ti) at the estimated survival time ti.

On the contrary, the cumulative distribution function F (t), which represents the prob-
ability that the event of interest occurs earlier than t, is defined as F (t) = 1 − S(t), and
probability density function can be obtained as f(t) = d

dt
F (t).

In survival analysis, another commonly used function is the hazard function h(t), it is
the rate of event at time t given that no event occurred before time t:

h(t) = f(t)
S(t) (2.2)

The survival function defined in 2.1 can be rewritten as:

S(t) = exp(−H(t)), (2.3)

where H(t) is the cumulative hazard function (CHF).
The authors of [WLR17] reviewed the literature and created a taxonomy of the sur-

vival analysis approaches. According to this work, the survival analysis methods can be
classified into two main categories: traditional statistical methods and machine learning
based methods:

... they [statistical methods] focus more on characterizing both the distri-
butions of the event times and the statistical properties of the parameter
estimation by estimating the survival curves, while machine learning meth-
ods focus more on the prediction of event occurrence at a given time point
by incorporating the traditional survival analysis methods with various ma-
chine learning techniques. Machine learning methods are usually applied to
the high-dimensional problems, while statistical methods are generally devel-
oped for the low-dimensional data. In addition, machine learning methods
for survival analysis offer more effective algorithms by incorporating survival
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problems with both statistical methods and machine learning methods and
taking advantages of the recent developments in machine learning and opti-
mization to learn the dependencies between covariates and survival times in
different ways [WLR17].

2.1 Statistical methods

The statistical methods in their turn can be divided into three groups:

1. non-parametric;

2. parametric.

3. semi-parametric;

2.1.1 Non-parametric methods

Non-parametric methods are more efficient when there is no underlying distribution for
the event time or the proportional hazard assumption does not hold. In nonparametric
methods, an empirical estimate of the survival function is obtained using Kaplan-Meier
(KM) method or Nelson-Aalen estimator (NA).

The KM [KM58] is the most widely used method for estimating survival function.
If t1 < t2 < ... < tK is a set of distinct ordered event times observed for N(K ≤ N)
instances, for each specific event time tj(j = 1; 2; ...;K) the number of observed events is
dj ≥ 1. The number of instances "at risk" (their event time or censored time is greater or
equal to tj) is rj = rj−1−dj−1−cj−1, where cj−1 is the number of censored instances during
the time period between tj−1 and tj. The conditional probability of surviving beyond time
tj is:

P (tj) = rj − dj

rj

(2.4)

Based on this conditional probability, the product-limit estimate of survival function
2.1 is:

Ŝ(t) =
∏

j:tj<t

P (tj) =
∏

j:tj<t

(1 − dj

rj

) (2.5)
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Among all functions, the survival function or its graphical presentation is the most
widely used one (Kaplan-Meier curves, Fig.2.1).

Figure 2.1: KM curve of the ovarian cancer (TCGA-OV) survival data.

The Nelson-Aalen estimator [Nel72; Aal78] is another non-parametric method. It is
based on counting process approach and differs from the KM in that it estimates the CHF
H for censored data and not the survival function:

Ĥ(t) =
∑

j:tj<t

dj

rj

(2.6)

2.1.2 Parametric methods

The parametric censored regression models assume that the survival times or the logarithm
of the survival times of all instances in the data follow a particular theoretical distribution.
The commonly used distributions in parametric censored regression models are: normal,
exponential, Weibull, logistic, log-logistic and log-normal [WLR17]. These methods were
not used in this work as we preferred to focus on the survival models based on the artificial
neural networks explained later in 2.2.3.
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2.1.3 Semi-parametric method: Cox model

Semi-parametric models are a hybrid of the parametric and non-parametric approaches,
they can obtain a more precise estimator than the non-parametric methods and more
flexible estimator compared to the parametric models. Cox proportional hazards (PH)
model [Cox72] is the most commonly used survival analysis method in this category.
Unlike parametric methods, the knowledge of the underlying distribution of time to event
of interest is not required, but the attributes are assumed to have an exponential influence
on the outcome:

h(t,Xi) = h0(t)exp(Xiβ) (2.7)

where h0(t) is the baseline hazard function (an arbitrary nonnegative function of time),
and βT = (β1, β2, ..., βP ) is the coefficient vector. The hazard ratio between two instances:

h(t,Xi)
h(t,Xj)

= exp [(Xi −Xj)β] (2.8)

This hazard ratio is a constant, it is independent of the baseline hazard function
h0(t) but all the subjects share the same h0(t). Because this baseline hazard function
is unspecified in Cox model, it is impossible to fit the model using standard likelihood
function, instead the partial likelihood is used:

L(β) =
N∏

j=1

[
exp(Xjβ)∑

i∈Rj
exp(Xiβ)

]δj

(2.9)

where Rj is the set of indices, i, with ti ≥ tj (those "at risk" at time tj). The coefficient
vector is estimated by maximizing this partial likelihood, or equivalently, minimizing the
negative log-partial likelihood for improving efficiency:

LL(β) = −
N∑

j=1
δj

Xjβ − log

∑
i∈Rj

exp(Xiβ)
 (2.10)

With the development of data collection and detection techniques, most real-world
domains tend to encounter high-dimensional data. In some cases, the number of variables
P in the given data is almost equal to or even exceeds the number of instances N . It is
challenging to build the prediction model with all the features and the model might provide
inaccurate results because of the overfitting problem. This motivates using sparsity norms
to select vital features in high-dimension under the assumption that most of the features
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are not significant [FHT10].
For the purpose of identifying the most relevant features to the outcome variable

among tens of thousands of features, different penalty functions can be applied to a Cox
model resulting in a regularized Cox models, including lasso l1-norm, ridge l2-norm or a
combination of two (elastic net), etc. One of the examples of regularized Cox models is
Coxnet proposed by [Sim+11] and integrated in a generic R package glmnet. The lasso
penalty tends to choose only a few nonzero coefficients. While often desirable, this can
cause problems. If two predictors are very correlated, the lasso will pick one and entirely
ignore the other. On the other hand, ridge regression scales all the coefficients towards 0,
but sets none to exactly zero. This helps to regularize in problems with P > N , but does
not give a sparse solution. However, ridge regression better handles correlated predictors.
If two predictors are very correlated, ridge regression will tend to give them equal weight.

The regularizer in Lasso-Cox is of the form: λ∑P
p=1 |βp|, in Ridge-Cox: λ

2
∑P

p=1 β
2
p and

elastic net Cox: λ
(
α
∑P

p=1 |βp| + 1
2(1 − α)∑P

p=1 β
2
p

)
.

Another modification of Cox model is Cox-Boost [Bin+13]. It proposes the possibility
to incorporate the mandatory features into the final model while fitting the sparse survival
models on the high dimensional data. This approach estimates the coefficients of the Cox
model by creating partitions, it considers one partition of candidate variables for updating
in each boosting step. The partition that leads to the largest improvement in the penalized
partial log likelihood is selected and in subsequent iterations, the model selects another
partition and refits those variables by maximizing the penalized partial log likelihood.

2.2 Machine learning methods

This section introduces some of the machine learning concepts as well as the machine
learning survival methods necessary for further explanation in Chapter 3, where the com-
parison of the approaches of the gene expression based survival analysis found in literature
is presented. A more exhaustive list of the machine learning methods in survival analysis
can be found in [WLR17].

2.2.1 Machine learning paradigm

The advantages of machine learning, such as its ability to model the non-linear relation-
ships and the quality of their overall predictions made, have resulted in the achievement
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of significant success in various practical domains in the past several years. The main chal-
lenge of the machine learning methods in survival analysis is the difficulty to appropriately
deal with censoring and the time estimation of the model [WLR17].

Machine Learning (ML) is a branch of Artificial Intelligence (AI), it relates the problem
of learning from data samples to the general concept of inference. There are two phases
in every learning process:

1. estimation of unknown dependencies in a system from a given dataset, i.e. training
phase;

2. use of estimated dependencies to predict new outputs of the system, i.e. test or
validation phase.

In biomedical research, ML has turned out to be a very promising area with many
applications where, using different techniques and algorithms and by searching over a
P -dimensional space of biological data, an acceptable generalization is obtained. Two
main common types of ML methods can be distinguished: (i) supervised learning and (ii)
unsupervised learning.

In supervised learning, the training dataset has labels which are used to map the input
data to the desired output. On the contrary, the unsupervised learning methods try to
find the patterns or to discover the hidden groups structure in the input data without
any notion of the output or labels.

The most common example of the supervised learning is a classification problem. In
the classification task, a learning process categorizes the data into a set of finite classes.
Two other common ML tasks are regression (supervised) and clustering (unsupervised).
In the regression task, a learning function maps the data into a real-value variable. As
for clustering, it tries to find the groups or clusters in order to describe the data samples.
Once the training phase is finished, in the validation or test phase, the new sample can
be assigned a class (classification task) or a cluster (clustering) or used to estimate the
predictive variable (regression task).

A combination of supervised and unsupervised learning has been widely applied, giving
birth to another type of ML methods, i.e. semi-supervised learning. It combines labeled
and unlabeled data in order to construct an accurate learning model. Usually, this type
of learning is used when there are more unlabeled datasets than labeled ones [Kou+15].

Once a ML model is obtained, the training and generalization errors can be estimated
on the training data and test data respectively. For example, a good classification model
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should fit the training set well and accurately classify the test instances. If the test error
rates of a model begin to increase even though the training error rates decrease then the
phenomenon of model overfitting occurs.

When a ML model is developed by means of different ML techniques, it is crucial to
evaluate its performance. In general the performance analysis of each proposed model is
measured in terms of sensitivity, specificity, accuracy and area under the curve (AUC).
The confusion matrix presented in Tab.2.1 is a table with 4 different combinations of
predicted and actual values of a classification model:

Actual values

Predicted values True Positive False Positive
True Negative False Negative

Table 2.1: Confusion matrix.

Sensitivity or recall or True Positive Rate (TPR) is a proportion of true positives that
are correctly observed by the classifier:

Sensitivity = True Positive/(True Positive+ False Negative) (2.11)

The specificity is given by the proportion of true negatives that are correctly identified:

Specificity = True Negative/(True Negative+ False Positive) (2.12)

The quantitative metrics of accuracy and AUC are used for assessing the overall per-
formance of a classifier. Specifically, accuracy is a measure related to the total number of
correct predictions. On the contrary, AUC is a measure of the model’s performance which
is based on the Receiver Operating Characteristics (ROC) curve that plots the tradeoffs
between sensitivity and 1-specificity (False Positive Rate or FPR) when model parameters
vary. An excellent model has AUC near to 1, a poor model has an AUC near 0 and when
AUC is 0.5, it means the model has no class separation capacity whatsoever.

The predictive accuracy of the model is computed from the test set which provides
an estimation of the generalization errors. The training and test sets with known labels
should be independent and sufficiently large in order to obtain reliable estimation of the
predictive performance of a model. The initial labeled data are generally split into training
and test subset using the following sampling methods: (i) Holdout Method, (ii) Random
Sampling, (iii) Cross-Validation and (iv) Bootstrap [Kou+15]. The comparison of the
Holdout, Cross-Validation and Bootstrap sampling is presented in Fig.2.2
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Figure 2.2: Comparison of Holdout validation, k-fold Cross-Validation, and Bootstrap sampling [Vik18].

In the Holdout method, the data samples are simply split into two separate datasets:
the training and the validation or test. A classification model is then obtained from the
training set while its performance is estimated on the test set. Random sampling is a
similar approach to the Holdout method. In this case, for the sake of a more accurate
estimation, the Holdout method is repeated several times, choosing the training and test
instances randomly (cf. Fig.2.3).

Figure 2.3: Random sampling technique [Vik18].

In the Cross-Validation approach, the original data are split into k folds, k − 1 folds
are used for training a model and 1 fold for testing (cf. Fig.2.4). As a result, the original
dataset is covered successfully both in the training and in the test set. The overall accuracy
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results are calculated as the average of all different validation cycles.

Figure 2.4: K-fold Cross-Validation sampling technique [Vik18].

In the last bootstrap approach presented in Fig.2.5, the training samples are randomly
selected with replacement from the original complete dataset. The remaining examples
that were not selected for training are used for testing. Unlike K-fold cross-validation,
the value is likely to change from fold-to-fold and the overall error rate of the model is
calculated by averaging the error rates of all the experiments.

Figure 2.5: Bootstrap sampling technique [Vik18].
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2.2.2 Survival trees and random survival forests

The decision tree models recursively partition the data on the basis of some splitting
criterion, thus the nodes are formed by the objects similar to each other based on the
event of interest. Survival trees are tailored to handle censored data and have particular
splitting criteria which can be grouped into two categories: (i) maximizing between-node
heterogeneity and (ii) minimizing within-node homogeneity. Another important aspect of
building a survival tree is the selection of the final tree. Procedures such as backward
selection or forward selection can be followed for choosing the optimal tree. However, an
ensemble of trees, for example, random survival forest can avoid the problem of final tree
selection with better performance compared to a single tree.

Random Survival Forests (RSF) are a tree-based, non-linear, ensemble method [Ish+08].
The graphical representation of the RSF algorithm is given in Fig.2.6. The steps in the
RSF algorithm are as follows:
(i) Draw B bootstrap samples randomly from the given dataset, they will serve as training
sets to grow trees. The remaining samples of the original dataset are called out-of-bag
(OOB) data, they represent approximately one third of the original data and will serve
as test sets to evaluate performance.
(ii) For each bootstrap sample, grow a survival tree. Select randomly a subset of features
at each node, split the node by using the feature with the largest survival difference be-
tween the daughter nodes.
(iii) Grow the tree until the terminal node contains not less than a predefined positive
number of uniques events.
(iv) Calculate the cumulative hazard function (CHF) H using NA estimator for each
tree (cf. 2.1.1) and the ensemble CHF by averging over the trees, use the OOB data to
calculate the ensemble CHF and prediction error.

2.2.3 Artificial neural networks and survival analysis

The extension of Cox regression with artificial neural networks was first proposed by
Faraggi and Simon [FS95], who replaced the linear predictor of the Cox regression model,
by a one hidden layer multilayer perceptron (MLP). The schema of an MLP with one hid-
den layer is given in Fig.2.7. It is a fully connected feedforward Artificial Neural Network
(ANN), which can have multiple hidden layers. The layers are composed of neurons and
the neurons implement the non-linearity, i.e. they apply the non-linear activation function
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Figure 2.6: Graphical presentation of the Random Survival Forest (RSF) algorithm, [Zut+21]. OOB,
out-of-bag data.

to their input. There exists various activation functions, to cite the most used ones: hy-
perbolic tangent (tanh), sigmoid, rectified linear unit (ReLU) [NH10], Scaled Exponential
Linear Unit (SELU) [Kla+17].

The training of the MLP is done by adjusting the weights of the neurons after all
input data is processed. The adjustment is based on the error between the output and
the expected result and is carried out through backpropagation. This error or the loss
function in the neural survival networks is generally a negative log likelihood. We give a
detailed description of the survival loss functions based on the negative log likelihood and
the comparison of their main characteristics in Part II, chapter 1 of this work.

Here we just introduce the reviewed survival neural network models and discuss their
structure:

• Cox-nnet [CZG18];

• DeepSurv [Kat+18];

• SurvivalNet [You+17];

• Cox Case Control [KBS19];

• Cox Time [KBS19];
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Figure 2.7: A multilayer perceptron (MLP) with 1 hidden layer, [Kou+15].

• Piecewise Constant hazard [KB19];

• Logistic Hazard [KB19];

• Nnet-survival [GN18];

• PMF [KB19];

• N-MTLR [Fot18].

The output of the reviewed networks is the survival or hazard probability, one neuron
output for time-independent models and multiple neurons for time-dependent models. The
schematic representation of the Cox-nnet architecture as an example of survival ANN with
one neuron output and one hidden layer is given in Fig.2.8. The example of architecture
with multiple neurons in output layer is N-MTLR (cf. Fig.2.9).
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Figure 2.8: Cox-nnet architecture, representation of a 1-hidden layer transformation, [CZG18].

A more complex loss function and structure are used by following models: DeepHit
[LZY18] and RNN-Surv [GNS18].

DeepHit was designed to account for competing risks (see the subnetworks in (Fig.2.10).
For one competing risk, this model resembles PMF of [KBS19], but with the major differ-
ence in the loss function. Indeed, the loss function of DeepHit is composed of two parts:
one based on the discrete time log likelihood (as PMF in case of one competing risk) and
the second - on the ranking ability of the network which penalizes the incorrect ordering
of events. We will discuss it in details in Part II, chapter 3.

RNN-Surv is based on the Long Short-Term Memory (LSTM) [HS97] cells which
exploit the sequential nature of the problem (Fig.2.11). The loss function of this model is
composed of two parts as well: the first one is a modified cross-entropy function able to
take into account the censored data (it is in fact the negative log likelihood for Bernoulli
data [Bro75; KB19]) and the second one based on the C-index (discussed in the next
section).
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Figure 2.9: N-MTLR architecture, representation of a 2-hidden layer transformation, [Fot18].

Figure 2.10: DeepHit architecture, [LZY18].
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Figure 2.11: RNN-Surv architecture, [GNS18].

2.3 Evaluation criteria

Because of the presence of the censored data, the standard evaluation metrics are not
applicable for measuring the performance of the survival models. The prediction perfor-
mance is computed using more specialized evaluation criteria.

2.3.1 Concordance index

The Concordance index (C-index) or Harrell’s index [Har+84] is widely used in survival
analysis. It calculates the proportion of the concordant pairs of observations in all the
comparable pairs. In other words, it estimates the probability that for a random pair of
individuals, the one experiencing the event first had a worse predicted outcome.

Since the ordering of the predictions in the proportional hazards models does not
change over time, the C-index is well suited for evaluation of these models. However, it
is not the case of the time-dependent methods, where rather time-dependent C-index by
Antolini [ABB05] is used. It still estimates the probability that observations i and j are
concordant given that they are comparable but summarizes it over the observed time.
The time-dependent Antolini C-index was modified by [KBS19] to account for tied event
times and survival estimates, we will refer to it as adjusted Antolini C-index:
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Ctd = P
{
Ŝ(ti|Xi) < Ŝ(ti|Xj)|ti < tj, δi = 1

}
(2.13)

where Ŝ(t) is the estimated survival function as in 2.3 S(t) = exp
(
−
∫ t

0 h(s)ds
)
.

Hereafter we give the pseudo-code for the adjusted time-dependent Antolini C-index
computation:
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Algorithme for the adjusted time-dependent C-index

For each ti do
For each tj do

If i! = j Then
If (ti < tj and δi == 1) or (ti == tj and (δi == 1 or δj == 1)) Then
sum_comparable = sum_comparable+ 1
If (ti < tj) Then

If (Ŝi < Ŝj) Then
sum_concordant = sum_concordant+ 1

Else If (Ŝi == Ŝj) Then
sum_concordant = sum_concordant+ 0.5

End If
Else If (ti == tj) Then

If (δi == 1 and δj == 1) Then
If (Ŝi! = Ŝj) Then
sum_concordant = sum_concordant+ 1

Else If (Ŝi == Ŝj) Then
sum_concordant = sum_concordant+ 0.5

End If
Else If (δi == 1) Then

If (Ŝi < Ŝj) Then
sum_concordant = sum_concordant+ 1

Else If (Ŝi == Ŝj) Then
sum_concordant = sum_concordant+ 0.5

Else If
Else If (δj == 1) Then

If (Ŝi > Ŝj) Then
sum_concordant = sum_concordant+ 1

Else If (Ŝi == Ŝj) Then
sum_concordant = sum_concordant+ 0.5

Cindex_td = sum_concordant/sum_comparable
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C-index in general is similar to the AUC and the classification accuracy [WLR17],
the C-index of 1 corresponds to the best possible model. To note as well that for the
proportional hazards models the time-dependent Antolini C-index is equivalent to the
regular C-index.

2.3.2 Brier score

The Brier score (BS) developed by [Bri50] is designed to calculate the mean squared
error of the probability estimates for binary classification problems. It was extended to
the survival problems with censoring by [Gra+99] by weighting the scores by the inverse
censoring distribution. The BS formula is given in [KBS19]:

BS(t) = 1
N

N∑
i=1

[
Ŝ(ti|Xi)21 {ti ≤ t, δi = 1}

Ĝ(ti)
+ (1 − Ŝ(ti|Xi))21 {ti > t}

Ĝ(t)

]
(2.14)

where Ĝ(t) = P {ti > t, δi = 0} is the Kaplan-Meier estimate of the censoring survival
function.

The BS can be extended to a time interval, giving the integrated Brier score (IBS)
[KBS19]:

IBS = 1
Max(ti)

∫ Max(ti)

0
BS(t)dt (2.15)

In practice, this metric is approximated by the numerical integration over a predefined
number of grid points, the smaller the IBS values, the better is the performance of the
evaluated model.

2.3.3 Kaplan-Meier curves

Another common approach in evaluating the performance of a survival model is to define
two or more groups of individuals based on the output of the survival model and to
visualize the Kaplan-Meier curves of these groups (section 2.1.1). The comparison of
the curves is usually done with a log-rank test, the null hypothesis being that there is
no difference in survival between the groups. It is a non-parametric test, since it does
not make any assumptions about the survival distributions. Essentially, the log-rank test
compares the observed number of events in each group to what would be expected if the
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null hypothesis were true (i.e., if the survival curves were identical) [Kas]:

χ2 =
n∑
i

(Oi − Ei)2

Ei

, (2.16)

Where Oi is the number of observed events in group i, Ei is the number for expected
events in group i and n is the number of groups. Usually, the threshold of 0.05 of the
log-rank test p-value is considered as significant. The better visual separation of the
Kaplan-Meier curves as well as the significance of the log-rank test can be interpreted as
better survival model performance.
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Chapter 3

SURVIVAL ANALYSIS AND GENE

EXPRESSION

An obvious trend in the field of survival analysis includes the integration of mixed data,
such as clinical and genomic data. It is clear that the application of ML methods could
improve the accuracy of cancer susceptibility, recurrence and survival prediction. Based
on the literature reviewed by [Kou+15], the accuracy of cancer prediction outcome has
significantly improved by 15%–20% the last years, with the application of ML techniques.

3.1 Dimensionality reduction

Feeding the raw high-dimensional gene expression data to the ML model, might not
result in a satisfactory performance because of the so called "curse of dimensionality",
where P >> N . Therefore, a number of different techniques and strategies are used
as a preprocessing stage to extract the useful information concealed in the input data in
order to eliminate irrelevant features, to reduce noise and to produce more robust learning
models due to the involvement of fewer features. There are two main categories of methods
for this goal, i.e., feature selection and feature extraction. We present hereafter some of
the dimensionality reduction techniques which were used with gene expression data in the
purpose of further survival analysis.

3.1.1 Feature selection

In feature selection, the goal is to find an inclusive subset of original features which usually
either improves or maintains the accuracy or simplifies the model complexity. When there
are P number of features, the total number of possible subsets are 2P . The main idea is to
come up with a reduction criterion instead of testing the exponential number of subsets.
The evaluation of the subsets based on some criterion can be categorized into: (i) the
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filters, (ii) the wrappers and (iii) the embedded techniques [HG15].

Filter methods

Filter methods work without taking the ML model into consideration. This makes them
very computationally efficient, they can be multivariate (able to find relationships among
the features) and univariate (consider each feature separately) [HG15]. In these methods
various ranking mechanisms are used to grade the features (variables) and the features
are then removed by setting a threshold. They are categorized as filter methods because
they filter the features before feeding to a learning model. Filter methods are based on
two concepts “relevance” and “redundancy”, where the former is dependence (correlation)
of feature with target and the latter addresses whether the features share redundant in-
formation. Correlation Criteria (CC), also known as Dependence Measure (DM), is based
on the relevance (predictive power) of each feature. The predictive power is computed
by finding the correlation between the independent feature Xj and the target (label).
The feature with the highest correlation value will have the highest predictive power and
hence will be most useful. The features are then ranked according to some correlation
based heuristic evaluation function.

The majority of the reviewed papers use the univariate Cox regression analysis (section
2.1.3) to filter the survival related genes before applying further ML models [Bel+11;
Kim+15; Wan+18; PCG18; Cha+18]. Each gene is used in the Cox Proportional Hazards
analysis and usually a log-rank test threshold of 0.05 is applied to filter the genes with
the prognostic power.

The chi-square statistic method can be used to measure the relevance of the feature to
the target. The authors of [Che+15] used the chi-square value to select 10 genes related
to the adjuvant chemotherapy treatment outcome in lung cancer patients.

The minimal Redundancy Maximal Revelvance (mRMR) is used in the work of [Zha+16]
to diminish the number of gene expression features. This method is based on maximizing
the relevance and minimizing redundancy of features. The authors obtained 130 features,
consisting of 71 gene expression variables, 50 gene methylation variables, 3 miRNA ex-
pression variables and 4 gene copy numbers.

Another way to filter the genes is to use the Gene Coexpression Network (GCN)
analysis. The authors of [Hua+19a] selected the genes of the calculated gene co-expression
modules, they used local maximal Quasi-Clique Merger (lmQCM) algorithm [Hua+19b]
which can discover densely connected gene modules across samples/patients.
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Generally, a GCN is constructed by considering each gene as a node and the correlation
between the expression profiles of two genes is often used to annotate the edge between
them. In order to define the GCN a threshold can be applied to the correlation coefficient
values to determine if there is an edge linking the nodes. If the correlation between two
nodes is higher than the threshold, an edge exists between the two nodes; otherwise the
two nodes are not connected. The disadvantage of this approach, is that the resulting
unweighted GCN is often sensitive to the choice of the threshold. The alternative is to
define a weight for each edge based on the correlation values thus constructing a weighted
GCN (WGCN).

There are many ways to calculate the correlation or otherwise known Dependence
Measure (DM). The commonly used Pearson correlation coefficient (PCC) is based on a
linear model [Gho+19]:

ρij = cov(X i, Xj)√
var(X i)var(Xj)

, (3.1)

where cov(., .) and var(., .) denote covariance and variance respectively, X i and Xj

are the genes expression profiles i and j.
Nonlinear metrics such as Spearman rank correlation and mutual information (MI)

can also be used. Spearman correlation coefficient is defined as the PCC between the
rank variables [Dow15]:

rij = cov(R(X i), R(Xj))√
var(R(X i))var(R(Xj))

, (3.2)

where R(X i) and R(X i) are the ranks of the genes X i and Xj.
In network analysis, the dense subnetwork modules could be of different types: cliques

(fully connected), quasi-cliques (densely connected) and k-core (each node has at least k
edges). One of the widely used WGCN analysis tools is the WGCNA package developed
by Horvath’s group [LH08]. It uses the hierarchical clustering to identify the densely
connected subnetworks. While it is an effective method, hierarchical clustering prevents
overlaps between subnetworks even though a gene may participate in different functions
and thus appear in multiple subnetworks. An alternative lmQCM algorithm was proposed
by [ZH14] for mining the locally dense structures with the network weight normalization
process inspired by the spectral clustering in machine learning. lmQCM is a revision of
the edge-covering quasi-clique merger (eQCM) algorithm for directly mining weighted
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networks based on a greedy algorithm called QCM.

Wrapper methods

Wrapper methods integrate the model within the feature subset search, while filter meth-
ods select the optimal features to be passed to the learning model, i.e., classifier, regression,
etc. In this way, different subsets of features are found or generated and evaluated through
the model. The fitness of a feature subset is evaluated by training and testing it on the
model. Thus in this sense, the algorithm for the search of the best suboptimal subset of
the feature set is essentially “wrapped” around the model. The search for the best subset
of the feature set, however, is an NP -hard problem. Therefore, heuristic search methods
are used to guide the search. These search methods can be divided in two categories:
Sequential and Metaheurisitc algorithms [Gho+19].

Sequential feature selection algorithms access the features from the given feature space
in a sequential manner. These algorithms are called sequential due to the iterative nature
of the algorithms. We haven’t found studies which use the sequential feature selection for
the survival analysis.

The metaheuristic algorithms, also referred to as evolutionary algorithms, have low
implementation complexity and can adapt to a multitude of problems. They are also less
prone to get stuck in a local optima as compared to sequential methods. As examples
of heuristic methods for gene expression feature selection, Genetic Algorithms (GA) are
explained here. In GA, the potential solutions are represented by chromosomes, a sequence
of 1 or 0. For feature selection, the genes in the GA chromosome correspond to features and
can take values 1 or 0 for selection or not selection of feature, respectively. The generations
of chromosomes improve by crossovers and mutations until an optimal solution is found
[Whi94].

The authors of [Kim+15] used grammatical evolution (GE) for the feature selection
"wrapped" into a neural network (GENN [Mot+08]). GE is a variation on Genetic Pro-
gramming (GP) and is an evolutionary search algorithm, a flexible type of GP. GE uses a
Backus-Naur form (BNF) grammar which is simply a set of rules for translating the array
of bits (chromosome) into a NN, much like DNA is transcribed into RNA. GENN uses a
GA to evolve the binary string which represents the chromosome encoding for NN struc-
ture (the input features, the weights, the activation functions, etc.). The fitness of the NN
can then be evaluated, and the fittest individuals are most likely to “reproduce” in this
evolutionary process. Thus, the algorithm automatically selects the appropriate network
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architecture for any dataset and automatically select the appropriate input features.

Embedded methods

Embedded methods "embed" the feature selection in the learning algorithm and use its
properties to guide feature evaluation. Because the embedded methods avoid the repet-
itive execution of the learning algorithm and examination of every feature subset, they
tend to be more efficient and computationally more tractable than wrapper methods
while maintaining similar performance. Like wrapper, embedded methods take into ac-
count the dependencies among features, but at the expense of making the ML model
dependent selections that might not work with any other ML model. They have lower
risk to overfitting compared to wrapper methods, however their performance is hindered
by the computational complexity, especially in high-dimensional data [HG15].

One of the examples of the embedded methods is the lasso component in the elastic
net penalty. The authors of [HB15] used the elastic net penalty with the microarray
gene expression data to distinguish four lung cancer subtypes. Their classification model
embedded the gene selection step into a training step.

We can cite as well the Cox proportional hazards model with an elastic net penalty used
with gene expression data. Indeed, in case if the Lasso-Cox penalty (cf. section 2.1.3), this
model tends to select the most prognostic features. It was used by the authors of [Wan+18]
to identify 23 groups of genes after 1000 iterations. As a result, they constructed 15 genes
immune related risk signature.

3.1.2 Feature extraction

In feature selection, many algorithms apply correlation metrics to find which feature
correlates most to the target. These algorithms single out features and do not consider
the combined effect of two or more features with the target. In other words, some features
might not have individual effect but alongside other features they give high correlation
to the target and increase ML algorithm performance. In the case of feature extraction,
a new set of features can be created as a combination of the initial features.

The basis for this technique is the manifold hypothesis stating that the data points
exist on a lower dimensional sub-manifold or subspace. This subspace is referred to as
feature space (i.e., feature extraction), embedded space (i.e., embedding), encoded space
(i.e., encoding), subspace (i.e., subspace learning), lower dimensional space (i.e., dimen-
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sionality reduction), submanifold (i.e., manifold learning), or representation space (i.e.,
representation learning) in the literature [Gho+19].

The feature extraction methods can be divided into two main categories, i.e., super-
vised and unsupervised methods. Supervised methods take into account the labels and
classes of data samples while the unsupervised methods are based on the variation and
pattern of data. Another categorization of feature extraction is dividing methods into
linear and non-linear. The former assumes that the data falls on a linear subspace or
classes of data can be distinguished linearly, while the latter supposes that the pattern of
data is more complex and exists on a non-linear sub-manifold. Hereafter, we present the
unsupervised feature extraction methods used with gene expression data for the purpose
of further survival analysis.

Clustering

Early methods of machine learning applied to microarray data included simple clustering
methods. For example, a widely used method was hierarchical clustering, due to the flex-
ibility of the clustering methods they became very popular among the biologists [HG15].
However, hierarchical clustering imposes a strict tree structure on the data, is highly sen-
sitive to the metric used to assess similarity, and typically requires subjective evaluation
to define clusters.

Non-negative Matrix Factorization (NMF) clustering was proposed by [Bru+04] is a
natural way to cluster genes and samples, because it involves factorization into matrices
with nonnegative entries. The goal of NMF is to find a small number of metagenes, each
defined as a positive linear combination of the P genes. The gene expression pattern of
samples is then approximated as positive linear combinations of these metagenes. Mathe-
matically, this corresponds to factoring matrix X into two matrices with positive entries,
X ≈ WH. Matrix W represents the metagenes and matrix H is the metagenes expression
patterns of the samples. Each sample is placed into a cluster corresponding to the most
highly expressed metagene in the sample. NMF metagenes can overlap and thus expose
the participation of a single gene in multiple pathways or processes. We found that the
authors of [Bel+11] used NMF clustering of the TCGA-OV transcriptomic data obtained
4 clusters to further analyse their possible prognostic ability.
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Principal Component Analysis

Principal Component Analysis (PCA) is the most well-known dimensionality reduction
algorithm. It is a linear unsupervised method which tries to find the orthogonal directions
which represent the variation of data the best. If uTX is a projection of data onto direction
u, then the variance of this projection is uT cov(X,X)u. The desired directions (columns
of matrix U) are the eigenvectors of the covariance matrix of data. Using the covariance
matrix and its eigenvalues and eigenvectors, PCA finds the “principal components” in the
data which are uncorrelated eigenvectors each representing some proportion of variance in
the data. PCA was applied as a way of reducing the dimensionality of the data in cancer
gene expression data by the studies [Tan+15; Zha+18; Cha+18; PCG18].

Single Value Decomposition

Single Value Decomposition (SVD) is an alternative way to eigenvalue decomposition in
PCA. The algorithm called SALMON adopts this technique to calculate the eigengene
matrix derived from co-expression network analysis as input to the learning algorithm. The
eigengene matrix is the expression values of each gene co-expression module summarized
into the first principal component using SVD. With the first right-singular vector of each
module as the summarized expression values, it projects co-expressed genes to 1-D space
and thus can be treated as the “super gene.” In their experiment with breast invasive
carcinoma, an eigengene matrix with 57 dimensions was derived from mRNA-seq data
[Hua+19a].

Among the three linear dimenionality reduction techniques presented above, PCA pro-
vides a simple way to reduce dimensionality but requires that the matrices be orthogonal,
which typically requires linear combination of components with arbitrary signs. NMF is
more difficult algorithmically because of the nonnegativity requirement but provides a
more intuitive decomposition of the gene expression data. At the end, when using the
NMF, the metagene profiles are positive, sparse, localized, and relatively independent,
which makes a natural compact decomposition for interpretation.

In contrast, spectral decomposition (PCA or SVD) of expression data produces eigen-
gene profiles that are completely independent but complex, dense, and globally supported.
Despite its promising features, NMF has the limitation of somewhat greater algorith-
mic complexity, especially compared with the simplicity of hierarchical clustering. The
challenge that remains is to provide a meaningful biological interpretation to the NMF
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discovered classes when the class labels and substructure of the data set are unknown
[Bru+04].

Autoencoders

Autoencoders (AEs) are a variant of ANNs, the goal of AEs is to learn compact and
efficient non-linear representations from input data. Compared with commonly used fea-
ture extraction approaches such as PCA, AEs extract features in the non-linear space. It
is an unsupervised model that learn the generally lower dimension representation of the
original features with the minimal loss of information. It is composed of an encoder and
a decoder: one to transform the input into a latent, smaller dimension representation and
the other one to reconstruct the representations into output.

Denoising Autoencoders (DAE) [Vin+08] improve upon the classic autoencoder by
incorporating noise during training, a procedure which generates robust features. The
training objective for DAEs is to build features that reconstruct initial input data from
corrupted data, i.e. input data with random noise added. Authors of [Tan+15] have eval-
uated the ability of DAEs applied to transcriptomic breast cancer data to extract useful
latent features. A series of papers applied as well the DAEs on the survival related genes
filtered based on the univariate Cox PH analysis [PCG18; Cha+18; Zha+18].

The AEs can form multiple layers resulting in the Stacked Auto-Encoder (SAE). It is
trained layer by layer and the final SAE is fine-tuned afterwards. [GSL19] have integrated
gene expression and transcriptome alternative splicing profiles data to identify breast
cancer subtypes. They have adopted the SAE neural network to learn lower dimension
features in each data type and have integrated them into another hierarchical level to
learn complex representations.

Authors of [Xia+18] present a semi-supervised deep learning strategy, the Stacked
Sparse Auto-Encoder (SSAE) based classification, for cancer prediction using RNA-seq
data. Datasets include three types of cancers, Lung Adenocarcinoma (LUAD), Stom-
ach Adenocarcinoma (STAD) and Breast Invasive Carcinoma (BRCA) from the TCGA
project.

Variational Auto-Encoders (VAEs) first proposed by [KW14] are another deep neural
network approach generating latent representations for image and text. The traditional
AEs are deterministic, in contrast, VAEs are stochastic and learn the distribution of
explanatory features over samples. VAEs learn two distinct latent representations, a mean
and a standard deviation vector, which are reparametrized into a single vector that can be
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back-propagated (cf. Fig.3.1). VAEs harness, as other types of AEs, the modeling power of
deep learning without the need for accurate labels, but they are generative models, which
means they learn to approximate a data generating distribution. The work in [WG17;
WG18] explores the possibility to determine if VAEs can be used on gene expression data
and if they can capture biologically relevant features. Authors used the TCGA pan-cancer
RNA-seq data (High Grade Serous Ovarian Carcinoma, HGSOC included) to identify the
patterns in the VAE learnt features and discussed the potential merits of this approach.
VAE can capture signals that are able to predict gene inactivation comparably to other
algorithms of dimensionality reduction (PCA and NMF).

Figure 3.1: VAE schema, [WG18].

The Table 3.1 summarizes the different types of the AEs used with gene expression
data for survival analysis found in the literature.
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AE type Tumour type Input size Hidden lay-
ers

Activation func-
tion

Loss function

DAE
[Tan+15]

BRCA 2,520 100 Sigmoid Cross-
entropy

DAE
[Cha+18]

HCC 15,629 500->100 Sigmoid Logloss

DAE
[PCG18]

BC NS* 500->100 Tanh Logloss

DAE
[Zha+18]

Neuroblastoma 2,218 500->100 Tanh Pseudo-
Huber loss

VAE
[WG17]

HGSOC 5,000 100 ReLU (encoder),
Sigmoid (de-
coder)

Binary cross-
entropy +
KL diver-
gence**

Table 3.1: Comparison of the AEs used with gene expression data for survival analysis.
*Not specified, **Kullback–Leibler divergence

3.1.3 Prior knowledge integration

Adding prior knowledge reduces the complexity of the model and the number of pa-
rameters making analysis easier, it can be seen as a separate dimensionality reduction
mechanism. Many sources of external biological information are available and can be in-
tegrated with machine learning and/or dimensionality reduction methods providing the
advantage of biological connection with the output. Adding external information in gene
expression data can give an insight on the functional annotation of the genes and the role
they play in a disease, such as cancer.

Manual curation of the genes of interest appears as an obvious approach resembling
feature filtering methods. The literature review is widely used to pre-select the genes, for
example, the immune related genes as in [Kim+15]. The authors used the Immunology
Database and Analysis Portal (ImmPort) [Bha+18] and pre-selected 1534 immune related
genes as as candidates for signature construction.

Another example of manual genes filtering is the study of [Che+15]. It describes the
usage of the Online Mendelian Inheritance in Man (OMIM) database, a comprehensive,
authoritative compendium of human genes and genetic phenotypes that contain informa-
tion on all known Mendelian disorders and over 12,000 genes. The authors selected the
genes related to the Non-Small Cell Lung Cancer (NSCLC).

The main disadvantage of the manual gene curation is its difficulty to generalize to
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other cancer types or to connect to the biological output other than pre-selected in ad-
vance.

Integrating prior knowledge can act as an embedded feature selection. Consider the us-
age of the biological pathways obtained from the Molecular Signatures Database (MSigDB)
[Lib+15]. The authors of [Hao+19] selected the KEGG and Reactome databases pathways
by excluding small pathways (i.e., less than 15 genes) and large pathways (i.e., over 300
genes), since small pathways are often redundant with other larger pathways, and large
pathways are related to general biological pathways, rather than specific to a certain dis-
ease. Afterwards they investigated only the genes that were included in at least one of
these pathways resulting in 5,404 genes and 659 pathways for 523 TCGA glioblastoma
(TCGA-GBM) patients and 532 TCGA ovarian cancer (TCGA-OV) patients. The addi-
tional sparcity was implemented by a pathway layer in their ANN called Cox-PASNet.
This pathway layer was not fully connected but only the genes in the pathway had con-
nection to the pathway node in the pathway layer.

3.2 Survival analysis strategies

Several strategies can be observed in the recent works which deal with the gene expression
data and try to detect the prognostic features within. The simpliest approach is a univari-
ate Cox regression analysis, where each gene is tested for correlation with poor or good
survival as in [Bel+11]. Having filtered the genes of interest from 489 HGSOC microarray
data from the TCGA-OV project, the authors obtained a 193-gene transcriptional signa-
ture predictive of overall survival (Fig.3.2). An obvious shortcoming of this approach is
the assumption that the input features are independent, which is not the case with the
gene expression data.

Figure 3.2: Survival analysis of TCGA-OV gene expression data by Bell et al. MAD here is Median
Absolute Deviation, its purpose is the detection of intrinsically variable genes.

Another way to deal with survival analysis is to transform a survival prediction prob-
lem to a binary classification task. For example, in the study [Che+15], the authors split
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the 280 lung cancer patients by the median survival of 40 months into good and poor
survivors and used the ANN for classification into 2 groups based on the 10 pre-selected
microarray probes (Fig.3.3). The authors of [Zha+16] followed the same strategy and di-
vided 211 TCGA-GBM patients into short term survivors (less than 2 years survival) and
long term survivors and used the algorithm called SimpleMKL (Multi Kernel Learning)
for classification (Fig.3.4). The main obstacles in this kind of approaches is defining the
threshold for dividing patients into groups and the censoring, indeed, the cohorts which
present a large proportion of individuals lost to followup are not well suited for this type
of analysis.

Figure 3.3: Survival analysis of NSCLC gene expression data by Chen et al. NSCLC is Non Small Cell
Lung Carcinoma.

Figure 3.4: Survival analysis of TCGA-GBM gene expression data by Zhang et al.

The authors of [Kim+15] used genome, transcriptome, epigenome and proteome data
to predict survival of the TCGA-BRCA patients. Their cohort was composed of 472 cases
and in order to deal with the censored survival time as regression problem, the martingale
residuals [TGF90] were calculated as a new continuous outcome:

Mi = δi −H(ti) (3.3)

Since the martingale residuals have an exponential distribution between negative in-
finity and 1, the assumption of normally distributed residuals is not satisfied, thus a new
fitness function based on mean absolute difference (MAD) between observed and pre-
dicted of martingale residuals was implemented and used in grammatical evolution neural
network (GENN):
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MAD =
∑N

i |Mi − M̂i|∑N
i |Mi|

(3.4)

Thus, the survival prediction problem is transformed into a regression task, the whole
processed is shown in Fig.3.5.

Figure 3.5: Survival analysis of TCGA-BRCA gene expression data by Kim et al.

Several studies tried to stratify the patients into the molecular subtypes without re-
lying on survival during the process of defining subtypes. Instead, survival information
was used post hoc to evaluate the clinical significance of these subtypes. The authors of
[Bel+11] used the consensus NMF clustering and obtained 4 clusters, which they termed
immunoreactive, differentiated, proliferative and mesenchymal on the basis of gene con-
tent in the clusters and previous observations, and they tested if the obtained clusters
are related to survival afterwards (Fig.3.6). As a result, some molecular subtypes showed
converging and similar survival profiles, making them redundant subtypes in terms of
survival differences.

Figure 3.6: Clustering and survival analysis of TCGA-OV gene expression data by Bell et al.

Similar approach was adopted by [Tan+15] for the survival analysis of breast cancer
patients from METABRIC database (2136 samples) and TCGA database (547 samples).
Both datasets contained tumour and normal tissues RNA-seq data. After the DAE feature
extraction step, because the distribution of activity values for each node is bimodal with
one peak close to 0 and another close to 1, they separated patients into two groups
based on their hidden node activity using a cutoff of 0.5. They assessed afterwards the
differences of these groups for each node by Kaplan-Meier curves and the non-parametric
log-rank test thus obtaining one node with the most prognostic power. To evaluate the
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importance of this constructed feature, they further compared this feature with frequently
used clinical markers of survival including tumor grade, molecular subtype and ER status
(Fig.3.7).

Figure 3.7: Survival analysis of METABRIC and TCGA-BRCA gene expression data by Tan et al.

Another effort in this direction is the study [WG17; WG18] in which the authors
used the VAEs to extract latent features. They used the HGSOC subtypes definition
of [Bel+11; Ver+12] for 490 samples to calculate the mean latent features per subtype.
The prognostic difference in mesenchymal (poorer survival) and immunoreactive (better
survival) histologic subtypes of HGSOC provides indirectly the survival analysis possiblity
(Fig.3.8). Their results indicate as well that differential activation of glucuronidation is a
strong signal distinguishing HGSOC subtypes. This observation may also help to explain
increased survival in HGSOC patients with differentiated tumors.

Figure 3.8: Survival analysis of TCGA-OV gene expression data by Way et Greene.

Recently, a series of 3 papers below tried to incorporate the survival information into
the AEs based feature extraction. We present the description and schemas of their ap-
proaches. The authors of [Cha+18] downloaded the RNA-Seq, miRNAs and DNA methy-
lation data of 360 TCGA hepatocellular carcinoma patients (HCC) as input features.
They used the activity of the 100 nodes from the bottleneck hidden layer as new features
and then conducted univariate Cox-PH regression analysis on each of the 100 features and
identified 37 features significantly (log-rank P < 0.05) associated with survival. These 37
features were subjective to K-means clustering, with cluster number ranging from 2 to
6. Using silhouette index and the Calinski–Harabasz criterion, they found that 2 was the
optimum number of clusters with the best scores for both metric. They built a supervised
classification model using the SVM algorithm able to distinguish patients in 2 clusters
(Fig.3.9).
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Figure 3.9: Survival analysis of TCGA-HCC gene expression data by Chaudhary et al.

Quite similar approach is adopted by [PCG18], they performed the survival analysis
of the 402 bladder cancer (BC) patients based on the TCGA mRNA, miRNA and methy-
lation data. The main difference is that they trained separate AEs for each type of omics
data rather than combining all the input features together as in [Cha+18]. The outline of
the processing the gene expression data is presented in Fig.3.10.

Figure 3.10: Survival analysis of TCGA-HCC gene expression data by Poirion et al.

The authors of [Zha+18] used the data of neurobalstoma patients from TARGET
project (190 with gene expression and copy number alteration data) and added an extra
feature selection step by filtering genes related to survival with univariate Cox regression
analysis. Their results suggest that AE-based feature extraction step performs the best
comparing to PCA (Fig.3.11).

Figure 3.11: Survival analysis of neuroblastoma gene expression data by Zhang et al.

Most of the above cited approaches select genes based on a univariate summary statis-
tics, such as p-value of log-rank test of survival groups defined by the univariate Cox
PH regression analysis. As a result, these methods do not guarantee to select genes that
each contribute non-redundant information, they are also difficult to generalize in order
to account for additional variables, such as histological findings or patient characteristics.
The elastic net was proposed by [HB15] as particularly well suited for survival analy-
sis of the genome-scale data, which typically has many more features than observations.
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The attempt to implement the multivariate Cox proportional hazards model with elastic
net penalty was done by [Wan+18]. This study used the RNA-seq data of the the 285
TCGA-KIRP patients (Kidney renal papillary cell carcinoma), the authors pre-selected
1534 immune related genes from ImmPort database and, after the univariate Cox analy-
sis, found 272 immune-related genes with predicting prognostic ability. They constructed
the survival predictive model with regularized Cox model, Coxnet (the Cox proportional
hazards model with an elastic net penalty [Sim+11]) and identified 15 genes stable model
for construction of the immune-related risk signature (Fig.3.12).

Figure 3.12: Survival analysis of TCGA-KIRP gene expression data by Wang et al.

The main drawback of the regularized Cox model is that it is an additive model. Thus,
it is difficult to capture non-linear interactions between genomic features, which might
play important roles associated with survival. Deep Learning-based neural networks offer
a potential solution for this problem because they are highly flexible and account for
data complexity in a non-linear fashion. The advantages of learning nonlinear functions
and retrieving lower dimensional representation at the same time was experimented by
[You+17; CZG18]. The authors of [You+17] compared the performance of the models
such as regularized Cox model (elastic net), RSF and Cox ANN (SurvivalNet) to predict
the survival of the TCGA transcriptomic pan-glioma (LGG/GBM), breast (BRCA), and
pan-kidney (KIPAN, consisting of chromophobe, clear cell, and papillary carcinomas)
(Fig.3.13). In their experiments both Cox ANN and regularized Cox outperformed RSF
models, and Cox ANN had a slight advantage over regularized Cox in LGG/GBM and
KIPAN.

To note that the authors of [CZG18] used similar approach as in [You+17], a model
based on the Cox ANN and compared the performance of the regularized Cox, RSF,
CoxBoost and Cox ANN and revealed the advances of Deep Learning models (Cox-nnet).
They analyzed 10 TCGA RNA-seq datasets with more than 300 samples: Bladder Urothe-
lial Carcinoma (BLCA, 406 samples), Breast invasive carcinoma (BRCA, 1077 samples),
Head and Neck squamous cell carcinoma (HNSC, 519 samples), Kidney renal clear cell car-
cinoma (KIRC, 531 samples), Brain Lower Grade Glioma (LGG, 512 samples), Liver hep-
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atocellular carcinoma (LIHC, 358 samples), Lung adenocarcinoma (LUAD, 490 samples),
Lung squamous cell carcinoma (LUSC, 487 samples), Ovarian serous cystadenocarcinoma
(OV, 302 samples) and Stomach adenocarcinoma (STAD, 349 samples). Interestingly, the
Cox ANN method worked better for some datasets (for example, KIRC) and worse for
the others (OV).

Figure 3.13: Survival analysis of TCGA pan-cancer gene expression data by Yousefi et al and Ching et
al.

Two studies hereafter employed the dimensionality reduction techniques to reduce
the dimension of the input transcriptomic data to improve the performance of the Cox
ANNs. [Hua+19a] constructed a neural network with Cox partial log likelihood as loss
function. The authors implemented Deep Learning-based networks to determine how gene
expression data predicts Cox regression survival in breast cancer for 583 TCGA-BRCA
patients. Rather than use raw gene expression values as model inputs, they calculated
the eigengene modules from the result of gene co-expression network analysis acting as
feature selection and feature extraction respectively, it greatly reduced the dimension of
the original feature space. They called their algorithm SALMON for Survival Analysis
Learning with Multi-Omics Neural Networks, the workflow is presented in Fig.3.14. To
note that, between SALMON and the modified Cox-nnet the performance discrepancy is
insignificant suggesting these two methods are comparable, the difference is that from the
neural network structure perspective, SALMON enables a scalable integration of multi-
omics data.

Figure 3.14: Survival analysis of TCGA-BRCA gene expression data by Huang et al.

The authors of [Hao+19] used the pathway databases (e.g., KEGG and Reactome)
which contain a set of genes that are involved in a pathway, and each pathway characterizes
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a biological process. The genes without pathway annotations were not considered in the
analysis and the pathways were embedded into a Cox ANN based network (Cox-PASNet)
by implementing the sparse connections between the gene layer and the pathway layer
rather than fully-connected layers (Fig.3.15). According to the results reported for TCGA-
GBM (523 patients) and TCGA-OV (532 patients) transcriptomic datasets, the authors
obtained an imporved performance with their method Cox-PASNet in comparison to
SurvivalNet and Cox-nnet.

Figure 3.15: Survival analysis of TCGA-GBM and TCGA-OV gene expression data by Hao et al.

3.2.1 Validation aspects

The most present metric in evaluating the performance of the survival analysis with gene
expression data was the KM curve with the log-rank test p-value (all the above cited
studies except for Tan et al). C-index in its turn was reported by [You+17; CZG18;
Cha+18; Zha+18; Hua+19a; Hao+19] and the Brier score was used as a metric only by
Ching et al and Chaudhary et al.

The C-index and IBS comparison of the Cox-nnet, Cox PH, CoxBoost and RSF models
trained with different TCGA datasets can be seen in Fig.3.16 and Fig.3.17. Cox-nnet
clearly outperforms the other 3 models for the TCGA-OV dataset, but on the other hand,
while having similar performance in terms of IBS, its C-index is still significantly lower
that the TCGA-KIRC one, highlighting the need for more performant survival prediction
models for ovarian cancer.

Another interesting aspect demonstrated by [HB15] is that training a classifier on mul-
tiple studies improved prediction when compared to training a classifier on only one study.
Furthermore, data partitioning and robustness assessment was addressed by the major-
ity of the reviewed studies: 5-fold CV in [Kim+15; Way+16; You+17; CZG18; PCG18;
Cha+18; Hua+19a; Hao+19] or 10-fold in [Che+15; Tan+15; Zha+16], only [Bel+11] used
the unique 50% Holdout validation. Surprisingly, none of the studies used the stratification
by survival time and survival status in the training and test splitting procedure.
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Figure 3.16: Boxplot of the C-index of the 10 TCGA datasets using the survival models Cox-nnet, Cox
PH, CoxBoost and RSF, [CZG18].
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Figure 3.17: Boxplot of the IBS of the 10 TCGA datasets using the survival models Cox-nnet, Cox PH,
CoxBoost and RSF, [CZG18].
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3.2. Survival analysis strategies

However, a common problem in several works was the lack of external validation or
testing regarding the predictive performance of their models. We note that the authors
of [Cha+18] used 5 external independent datasets, [Bel+11] - 3 independent expression
datasets, [Zha+18] - 2 independent datasets, [PCG18] - 1 dataset, [Zha+16] tested their
model on the 22 new unseen TCGA patients, [Tan+15] used METABRIC for construction
and TCGA for validation.

The importance of the survival models interpretation was adressed by the functional
analysis provided in the reviewed papers. It included the following main categories:

• manual interpretation as in [Bel+11]

• Over-Representation Analysis (ORA) as in [Way+16]

• Gene Set Enrichment Analysis (GSEA) as in [Tan+15]
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CONCLUSION PART I

The rapid development of high throughput sequencing technologies nowadays has pro-
duced huge amounts of cancer data that are collected and are available to the medical
research community. By exploiting these data, the oncology research has made a great
progress and has discovered separate subgroups within the same cancer type based on
specific genetic defects that have different treatment approaches and options as well as dif-
ferent clinical outcomes. This is the foundation of the individualized treatment approach,
in which computational techniques such as machine learning could help by identifying less
costly and effectively such small groups of patients.

Ovarian cancer is a highly heterogeneous genetic disease and despite the advances
already made, it still lacks successful treatment strategies. Because of the high risk of
recurrence in high-grade serous ovarian carcinoma, the development of outcome predictors
is important not only for patient stratification but to recognize categories of patients that
are more likely to respond to particular therapies [Ver+12].

The genomic features measured at the transcriptome dimension are established to
affect survival more directly than those measured at the genome or epigenome dimension
[Kim+15]. Moreover, the clinical characteristics such as patient sex, age, stage and grade
are now thought to be already encoded in the gene expression data [HB15; PCG18]. Thus,
the survival analysis of ovarian cancer based on the gene expression data occurs to be a
subject of great importance since it allows patient stratification.

In order to deal with high dimensional gene expression data and the task of survival
prediction, many recent studies used the various feature selection techniques which may
result in specific fluctuations concerning the creation of predictive feature lists. The filter
algorithms single out features and do not consider the combined effect of two or more
features with the target. The wrapper methods suffer from the size of the searched space
and are relatively less used with gene expression data. The main disadvantage of the
manual gene curation is its difficulty to generalize to other cancer types or to connect to
the biological output other than pre-selected in advance. The database prior knowledge
integration does not permit the new dependency discovery. As for the feature extraction,
being a non-supervised approach, it does not integrate the survival information during

62



the process of defining new dimensions.
The embedded methods appear to overcome all the above cited shortcomings by dis-

criminating the prognostic features at the same time as learning to predict the survival.
The main limitation for these methods when used with traditional statistical survival
models, such as penalized Cox regression, is its inability to capture non-linear interactions
between genomic features, which might play important roles associated with survival.

ANN based survival networks offer a potential solution for this problem because they
are highly flexible and account for data complexity in a non-linear fashion. The main draw-
back of this solution is its "black-box" nature, which could hamper model interpretability
and further functional analysis to discover the input prognostic features and new therapy
targets.
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Contributions
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INTRODUCTION PART II

This part presents our contributions and gives the necessary explanations and supplemen-
tal material for better understanding the reasoning we followed as well as the dependencies
between the different chapters. It is organized as follows:

1. Introduction part II

2. Chapter 1 "Comparative study"

3. Chapter 2 "Transfer learning experiments"

4. Chapter 3 "Proposed method N-MTLR-Rank"

5. Conclusion part II

A brief chapters description

Chapter 1 "Comparative study" is the conference paper [Men+21a], its primary objective
was to present an overview of the recent neural network survival analysis techniques, apply
them to the high-dimensional gene expression data and to compare their performance to
predict outcome computed on high-grade serous ovarian carcinoma transcriptomic data
from the TCGA project.

Indeed, the neural network based survival analysis models appeared to be an interest-
ing research direction, and by the time of our first experiments, only one model, named
Cox-nnet [CZG18], was evaluated on the TCGA ovarian cancer transcriptomic data and
it outperformed other more traditional approaches. So, naturally, the idea of the compar-
ative study of the existing neural network survival models came up. This work resulted in
the best model designation: N-MTLR [Fot18]. To note that other reviewed and tested sur-
vival neural networks included DeepSurv [Kat+18], Cox CC [KBS19], Cox Time [KBS19],
PC Hazard [KB19], Logistic Hazard [KB19] or Nnet-Survival [GN18], and PMF [KB19].

Chapter 2 "Transfer learning experiments" is another conference paper [Men+21b]
which aimed to extend the transfer learning framework to “pan-gyn” cancers as these
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gynecologic and breast cancers share a variety of characteristics being female hormone-
driven cancers and could therefore share common mechanisms of progression.

We were inspired by the authors of [You+17] who used 2 additional datasets in order
to augment the TCGA breast cancer dataset. Their goal was to check if this transfer
learning technique could improve the performance of the proposed survival network called
NetSurvival (quite similar to Cox-nnet [CZG18] and DeepSurv [Kat+18]).

Another interesting hypothesis came from the study [Ber+18] in which the authors
refer to the following TCGA multi-cancer group as “pan-gyn”: high-grade serous ovarian
cystadenocarcinoma (OV), uterine corpus endometrial carcinoma (UCEC), cervical squa-
mous cell carcinoma and endocervical adenocarcinoma (CESC), uterine carcinosarcoma
(UCS), and invasive breast carcinoma (BRCA). They found molecular features that dif-
fered in the “pan-gyn” group and the TCGA non-gynecologic tumor types which let us
hypothesize that training with this augmented "pan-gyn" group could benefit the ovarian
cancer prognostication with neural networks. Interestingly, the original paper [You+17]
did not report any significant improvement for the breast cancer outcome prediction, on
the contrary, our study let to conclude that the whole "pan-gyn" group could be profitable
for ovarian cancer survival prediction.

Lastly, Chapter 3 "Proposed method N-MTLR-Rank" is the paper which is currently
in the process of submission. It exploits the results of Chapters 1 and 2. It proposes
a new deep learning survival model which we called N-MTLR-Rank and trained using
ovarian cancer clinical and molecular data from TCGA project. We used transfer learning
to overcome over-fitting and generalization issues and we sought to validate our deep
learning survival model on an independent clinical and molecular datatset. We illustrated
as well the way our model can be interpreted, by calculating the contributions of the input
features to the network outputs. We demonstrated how these contributions can be related
to the molecular pathways to uncover biological processes associated with ovarian cancer
patients survival.

Supplemental material

Folds generation

As mentioned in Part I, none of the reviewed gene expression based survival analysis
studies used the stratification by survival time and survival status in the training and test

67



Part II, Introduction

splitting procedure. For our tests, we split our TCGA-OV dataset into 5 folds using R
package MTLR [Yu+11] thus constructing 5 different splits into training and test sets with
respectively 80% and 20% of samples. The split was done using the stratification in order
to have similar distributions of survival times and censoring in training and test sets. To
compare the survival of training and test set splits, we plotted Kaplan-Meier curves and
calculated the log-rank test p-value and concluded that the difference of survival between
our generated training and test sets was not significant. In Fig.1, Fig.2, Fig.3, Fig.4 and
Fig.5 we present the generated graphics which were not included in the chapters below.

Figure 1: KM curves for training/test sets, fold 1.

Dimensionality reduction results

Another part of our results which was not included in the chapters below is the dimen-
sionality reduction experimets.

In order to evaluate the impact of reducing data dimension, we employed a popu-
lar feature extraction method, the Principal Component Analysis (PCA). We kept 256
principal components for training the neural networks as they explain more than 97% of
variability of the training sets.

Other dimensionality reduction techniques tested were the DAE as described in [Tan+15]
and VAE used in [WG18] which aim to learn high-level latent features from the input data.
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We used the best hyperparameters found in the original studies and tested 100, 256, 512
and 1024 hidden units. Extracted features were then used to train the survival neural
network models.

The obtained C-index and IBS metrics for different dimensionality reduction tech-
niques with survival neural networks are presented in Fig.6 and Fig.7. We did not observe
any substantial gain of performance when using the feature extraction. Plus, for the sake
of interpretability of the model, we made a choice of keeping the trained survival networks
simple and left dimensionality reduction option aside.
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Figure 2: KM curves for training/test sets, fold 2.

Figure 3: KM curves for training/test sets, fold 3.
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Figure 4: KM curves for training/test sets, fold 4.

Figure 5: KM curves for training/test sets, fold 5.
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Figure 6: From left to right are the boxplots of the obtained 5-fold cross validation C-index for the
dimensionality reduction experiments. The horizontal bars in the boxes represent the median values, the
boundaries of the boxes delimite lower and upper quartiles, the values outside the boxes are the lowest
and the highest observations and the red circles represent the mean values.
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Figure 7: From left to right are the boxplots of the obtained 5-fold cross validation IBS for the di-
mensionality reduction experiments. The horizontal bars in the boxes represent the median values, the
boundaries of the boxes delimite lower and upper quartiles, the values outside the boxes are the lowest
and the highest observations and the red circles represent the mean values.
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Chapter 1

COMPARATIVE STUDY

Survival analysis of ovarian cancer is a subject of great importance since it allows patient
stratification. The objective of this paper is to present an overview of the recent neural
network survival analysis techniques, apply them to high-dimensional gene expression data
and to compare their performance to predict outcome computed on high-grade serous
ovarian carcinoma transcriptomic data. The Cancer Genome Atlas (TCGA) data were
used to evaluate different methods. The obtained results were promising.

1.1 Introduction

Over the past few decades, with the high throughput sequencing technology development
and the different machine learning techniques application, the oncology research has made
a great progress based on genomic profiles. At the same time, while the high-dimensional
data generated, such as RNA-seq, keep growing, a real need for appropriate machine
learning techniques has appeared. These techniques should be able to effectively deal
with mass data in order to make accurate medical decisions.

Ovarian cancer is a complex, heterogeneous genetic disease. Because of the high risk
of recurrence in high-grade serous ovarian carcinoma (HGS-OvCa), the development of
outcome predictors is important for patient stratification. In addition to predicting sur-
vival, the potential of prognostic classifiers lies in the ability to recognize categories of
patients that are more likely to respond to particular therapies [Ver+12].

The lack of successful treatment strategies for ovarian cancer led The Cancer Genome
Atlas (TCGA) researchers to analyze 489 cases of HGS-OvCa using copy number, expres-
sion and methylation arrays, and exonic sequencing data. Their work aimed to identify
molecular abnormalities that influence pathophysiology, affect outcome and constitute
therapeutic targets [Bel+11].

Gene expression profiles are considered to reflect the cancer progression driven by
mutations and epigenetic modifications. The comprehension of these gene expression pat-
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1.2. Overview

terns can serve to distinguish between normal and cancer tissue, classify cancer subtypes
and stages. These profiles have been established to be associated with overall survival and
the study [Bel+11] developed the prognostic signatures for ovarian cancer based on the
TCGA microarray gene expression profiles using a univariate Cox regression analysis, and
validated them on external datasets.

Recently, artificial neural networks (ANN) caught attention to solve problems with
genomic profiles. Singh, Bapi, et Vinod [SBV18] used ANN to classify early and late
stage of Papillary Renal Cell Carcinoma (PRCC). Chen et al [Che+15] described the use
of ANNs to classify the patients with non-small cell lung cancer (NSCLC) for Adjuvant
Chemotherapy (ACT) benefit strategy.

The objective of this work is first to make a survey of the existing ANN based tech-
niques for survival analysis. Second, we seek to compare these techniques and evaluate
them on the up-to-date harmonized (aligned to hg38) RNA-sequencing (RNA-seq) data
from the TCGA-OV project in order to detect prognostic features. The outline of the
paper will be as follows: section 1.2 presents the recent survival analysis techniques based
on neural networks and the possibility to use them with gene expression data, section 1.3
describes materials, methods and results and section 1.4 discusses the future work.

1.2 Overview

1.2.1 Survival analysis

Survival analysis is a subfield of statistics modeling the data where the outcome is the
time-to-event. One of the major difficulties in this context is censoring, i.e. the outcome
is unobservable after a certain time period. Wang et al [WLR17] created a taxonomy
of different approaches for survival analysis. They distinguish the traditional statistical
and machine learning methods. One of the commonly used statistical method is a semi-
parametric Cox regression or Cox proportional hazards. Each data instance is described
by a triplet (Xi, ti, δi), where Xi = (xi1, xi2, ..., xiP ) is the feature vector for instance i, ti
is the observed time, time of failure if δi is 1 or right-censoring if δi is 0. We note here
the number of observations N and the number of features P. In this framework the rate
of event at time t given that no event occurred before time t, i.e. the hazard function is:

h(t,Xi) = h0(t)exp(Xiβ) (2.7)
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where h0(t) is the baseline hazard function (an arbitrary nonnegative function of time),
and βT = (β1, β2, ..., βP ) is the coefficient vector. The Cox model is a semi-parametric
algorithm since the features are assumed to have an exponential influence on the outcome
but the baseline hazard function, h0(t), is unspecified which makes it impossible to fit the
model using standard likelihood function, instead the partial likelihood is used:

L(β) =
N∏

j=1

[
exp(Xjβ)∑

i∈Rj
exp(Xiβ)

]δj

(2.9)

where Rj is the set of indices, i, with yi ≥ tj (those at risk at time tj). The coefficient
vector is estimated by maximizing this partial likelihood, or equivalently, minimizing the
negative log-partial likelihood for improving efficiency:

LL(β) = −
N∑

j=1
δj

Xjβ − log

∑
i∈Rj

exp(Xiβ)
 (2.10)

The extension of Cox regression with artificial neural networks was first proposed by
Faraggi and Simon [FS95], who replaced the linear predictor of the Cox regression model,
by a one hidden layer multilayer perceptron (MLP). This work was further explored by
Ching et al [CZG18] (Cox-nnet) and Katzman et al [Kat+18] (DeepSurv) who proposed to
incorporate the advances of deep learning framework and demonstrated that their methods
outperform the classical Cox method. The linear predictors in their models become:

θi = G(WXi + b)Tβ (1.1)

where W is the coefficient weight matrix between the input and hidden layer of size
H x P, H is the number of neurons in the hidden layer, b is the bias vector of size H and
G is the activation function. In the paper [CZG18] the partial log likelihood is written as:

PL(β,W ) =
∑
δj=1

θj − log

∑
i∈Rj

exp(θi)
 (1.2)

And the ridge regularization term with the partial log likelihood gives the following
cost function:

cost(β,W ) = PL(β,W ) + λ(||W ||2 + ||β||2) (1.3)

where ||.||2 designates L2-norm penalty function and λ is a regularization coefficient.
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Ching et al [CZG18] experimented only hyperbolic tangent (tanh) activation function,
whereas Katzman et al [Kat+18] proposed rectified linear unit (ReLU) [NH10] and Scaled
Exponential Linear Unit (SELU) [Kla+17] activation functions.

More recently, [KBS19] have proposed 2 new extensions to Cox model with neural nets,
namely Cox Case Control (Cox CC) and Cox Time. Cox CC is based on the nested case
control methodology and uses the simplified partial log-likelihood as the loss function. For
neural net implementation the loss is:

loss = 1
N

∑
i:δi=1

log (1 + exp [θ(Xj) − θ(Xi)]) , j ∈ Ri \ {i} (1.4)

where N is the number of events in the dataset, j is one sampled individual from the
risk set Ri.

The authors of [KBS19] demonstrated that the loss 1.4 is a good approximation of the
Cox partial log likelihood.

Cox Time is a non-proportional hazards extension, it integrates time as a parameter
into a loss function in order to overcome the proportionality assumption constraint of the
Cox model. The loss function for this model with neural net implementation is:

loss = 1
N

∑
i:δi=1

log

∑
j∈R̃i

[θ(ti, Xj) − θ(ti, Xi)]
 (1.5)

where R̃i is a subset of the patients at risk Ri.
The piecewise constant (PC-Hazard) method proposed by [KB19] recently is a continuous-

time method as well, it parametrizes the hazard in the loss function, but requires defined
intervals in which the hazard is constant:

loss = − 1
N

N∑
i=1

δilogη̃k(ti)(Xi) − η̃k(ti)(Xi)p(ti) −
k(ti)−1∑

j=1
η̃j(Xi)

 (1.6)

where time intervals are modeled as 0 = τ0 < τ1 < τ2 < ...τm, m is the number of
intervals, k(ti) denotes the duration index of individual i’s event time, i.e. ti = τk(ti),
η̃j = ηj∆τk, ∆τk = τk − τk−1, p(t) = t−τk(t)−1

∆τk(t)

h(t) = ηk(t) (1.7)

for set of non-negative constants η1, ..., ηm.
The above cited methods work with continuous time. There are other models con-
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structed for the discrete time. The authors of [KB19] explore the possibility to create
time intervals for the continuous time observations and compare hazard rate or probabil-
ity mass function (PMF) parametrization of the loss function.

According to [KB19], Lee et al. [LZY18] were the 1st to apply neural networks to
the discrete-time likelihood for right-censored time-to-event data. The proposed method,
denoted DeepHit, estimates the probability mass function with a neural net and combines
the log-likelihood with a ranking loss. The authors of [KB19] used essentially the same
negative log-likelihood but for one type of event to implement the method they called
PMF:

loss = − 1
N

N∑
i=1

δilog
[
σk(ti)(ϕ(Xi))

]
− (1 − δi)log

 m+1∑
k=k(ti)+1

σk(ϕ(X))
 (1.8)

where σj (ϕ(X)) = exp[ϕj(X)]
1+
∑m

k=1 exp[ϕk(X)] is the softmax function and ϕ(X) is the neural
network.

Yu et al. [Yu+11] proposed the multi-task logistic regression (MTLR), which is a
generalization of the binomial log-likelihood, to jointly model a sequence of binary labels
representing event indicators. Fotso et al. [Fot18] later applied this framework to neural
networks and called their method neural multi-task logistic regression (N-MTLR). As
shown by [KB19] N-MTLR is equivalent to PMF method in 1.8 but where ϕj(X) is the
(reverse) cumulative sum of the output of the network ψ(X).

In statistical survival analysis, it is, however, more common to express the likelihood
by the discrete-time hazard rate. Gensheimer and Narasimhan [GN18] used this form of
the likelihood and parameterized the hazard rates with a neural network:

loss = − 1
N

N∑
i=1

k(ti)∑
j=1

(yijlog [h(τj|Xi)] + (1 − yij)log [1 − h(τj|Xi)]) (1.9)

where yij = 1 {τj = ti, δi = 1} and the parametrized discrete hazard rate:

h(τj|Xi) = 1
1 + exp(−ϕj(X)) (1.10)

For a better readability the comparison of the main characteristics of the above cited
loss functions is given in the Table 1.1.
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Characteristics
Technique Time Parametri-

zation
PH* Particularity

Cox-nnet, Deep-
Surv

Continuous Hazard
function

Yes Cox partial log-likelihood used

Cox CC Continuous Hazard
function

Yes Simplified loss function based
on the nested case control

Cox Time Continuous Hazard
function

No Time dependent Cox CC loss
function

PC Hazard Continuous Hazard
function

No Hazard function is constant in
predefined intervals

Logistic Hazard Discrete Hazard
function

No Discrete partial log-likelihood
used

PMF Discrete PMF No Equivalent to DeepHit with one
type of event

N-MTLR Discrete PMF No Reverse cumulative sum of the
output of the network is used

Table 1.1: Comparison of ANN based survival analysis loss functions. *Proportional haz-
ards assumption.

1.2.2 Gene expression and survival analysis

In the field of medical research there are different definitions of survival [Liu+18]. Liu
et al underlined the necessity to have sufficient observation period in order to catch
enough events and thus to provide enough power for statistical tests. They analyzed all
TCGA clinical data and stated that Overall Survival (OS) and Progression Free Interval
(PFI) could be relatively accurately calculated from available data. They have also derived
Disease Free Interval (DFI) and have judged it reasonably accurate. As for Disease Specific
Survival (DSS), they have concluded that it could only be estimated for most cases. Even
if the primary goal of the TCGA program was not the survival analysis, the study [Liu+18]
demonstrated that the survival plots are similar to previous independent studies for most
cancer types. One of the best examples is TCGA outcomes for Ovarian Cancer (OV).

The authors of [HB15] proposed to use the elastic net for a meta-analysis of lung cancer
gene expression. Their primary purpose was to distinguish between lung cancer subtypes
but the approach can also be applied to survival analysis by using the regularized Cox
model.

The authors of [CZG18] used the high-throughput transcriptomic data of different
cancer types from TCGA and compared survival methods such as regularized Cox model,
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Random Survival Forests, CoxBoost and the proposed Cox-nnet method. They discussed
as well that it is possible to use the weights of the hidden units of the trained neural
network in order to interpret biological meaning of the received results. Their suggested
approach Cox-nnet gave satisfactory results for some cancer types, especially for TCGA
Kidney Renal Cell Carcinoma (KIRC), and insufficient results for other types, for exam-
ple, in the OV dataset. These two datasets are comparable in terms of data available,
regularized Cox model and Cox-nnet results are much worse in the TCGA-OV dataset
than in TCGA-KIRC. This confirms the need of new machine learning approaches for
survival analysis in ovarian cancer. To our knowledge, other survival analysis methods
based on neural networks presented in this paper were not tested on the high-dimensional
transcriptomic data.

1.3 Materials and Methods

1.3.1 Gene expression and clinical data

TCGA RNA-sequencing data and clinical data were downloaded from Genomics Data
Commons (GDC) portal (https://portal.gdc.cancer.gov/) using the pipeline of the R/
Bioconductor package TCGAbiolinks [Col+16]. The harmonized RNA-seq data (HTSeq-
counts) were normalized using the existing TCGAbiolinks normalization function which
is recommended for differential expression analysis.

Supplemental survival data were downloaded from the standardized dataset named
the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR) [Liu+18]. We merged the
OV survival data from TCGA-CDR with the GDC clinical data. We made a choice to
perform our tests on OS endpoint. The corresponding TCGA-CDR columns included OS
for status and OS.time for time-to-event data. OS column contained the value 0 encoding
for alive (censored) status and 1 for deceased (failure) and OS.time contained numbers of
days from the date of diagnosis to either the date of last follow up if OS was 0 or time to
death if OS was 1.

A total number of 379 RNA-seq samples were obtained for OV (TCGA-OV project),
5 of which were recurrent tumors and 374 primary tumor samples. After merging RNA-
seq and clinical data, we obtained 374 cases among which we discarded 2 cases without
survival data. As a result, our complete dataset included normalized expression with P =
17401 genes and N = 372 samples.
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1.3.2 Evaluation criteria

The widely used in survival analysis Concordance-index (C-index) measures the concor-
dance between predicted risk score and observed survival time. This measure is computed
for all comparable pairs in the test set and the number of times the predictions are con-
cordant is summarized.

As the C-index only depends on the ordering of the predictions, it is very useful for
evaluating proportional hazards models. Another metric for the time-dependent methods
is C-index by Antolini et al. [ABB05], which estimates the probability that observations
i and j are concordant given that they are comparable. It was modified by [KBS19] to
account for tied event times and survival estimates, we will refer to it as adjusted Antolini
C-index:

Ctd = P
{
Ŝ(ti|Xi) < Ŝ(ti|Xj)|ti < tj, δi = 1

}
(2.13)

where Ŝ(t) is the estimated survival function Ŝ(t) = exp
(
−
∫ t

0 h(s)ds
)
.

The C-index value of 0.5 is equivalent to random guess and 1 is the perfect concordance,
so higher C-index means better model performance. To note that this metric has a close
relationship to classification accuracy and AUC [Ish+08] and, for the proportional hazards
models, it is equivalent to the regular C-index.

Kvamme et al. [KB19] showed that, by only considering concordance, DeepHit, for
example, has excellent discriminating performance at the cost of poorly calibrated survival
estimates. In this perspective, it is important to calculate another metric, the Brier score
(BS), the mean squared error of the probability estimates. In order to calculate it, we
get the binary outcomes from time-to-event data, choose a fixed time t and label data
according to whether or not an individual’s event time is shorter or longer than t. This
score can be generalized to account for censoring by weighting the scores by the inverse
censoring distribution:

BS(t) = 1
N

N∑
i=1

[
Ŝ(t|Xi)21 {ti ≤ t, δi = 1}

Ĝ(ti)
+ (1 − Ŝ(t|Xi))21 {ti > t}

Ĝ(t)

]
(2.14)

where Ĝ(t) = P {ti > t, δi = 0} is the Kaplan-Meier estimate of the censoring survival
function.

The BS can be extended from a single duration t to an interval by computing the
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integrated Brier score (IBS) [KBS19], for this metric, smaller values signify better perfor-
mance:

IBS = 1
Max(ti)

∫ Max(ti)

0
BS(t)dt (2.15)

1.3.3 Algorithms and implementation

For our tests, we (log2+1) transformed the normalized values and split our dataset into
5 folds using R package MTLR [Yu+11] thus constructing 5 different splits into training
and test sets with respectively 80% and 20% of samples. The split was done using the
stratification by the OS.time and OS features in order to have similar distributions of
survival times and censoring in training and test sets. To compare the survival of training
and test set splits, we plotted Kaplan-Meier curves and calculated the log-rank test p-
value and concluded that the difference of survival between our generated training and
test sets was not significant.

In order to facilitate the training procedure, the training data were standardized to
zero-mean and unit-variance to comply with best practices for training deep learning
algorithms.

We used the Cox-nnet implementation by [CZG18] but corrected the C-index com-
putation to account for tied events. The methods DeepSurv, Cox CC, Cox Time, PC
Hazard, Logistic Hazard or Nnet-Survival, PMF and N-MTLR were tested with help of
pycox Python package [KB19].

For discrete time methods, the quantile discretization scheme and constant density
interpolation were used as recommended in [KB19] for smaller datasets.

Hyperparameter search was performed with C-index evaluation criterion for Cox-nnet
and adjusted Antolini C-index for all the other methods. The hyperparameter search space
is given in the Table 1.2. We did not use dropout [Sri+14] for Cox-nnet as the authors did
not report any benefit from this technique for Cox-nnet. Only 1 hidden layer was used in
the tested neural net architectures for all the methods.

Each training set was further split into 5 different combinations of optimization and
validation datasets following the same stratification strategy as for training/test split. The
hyperparameter grid search was done by training the optimization datasets separately;
for each training set the best hyperparameter combination was selected on the highest
mean validation test C-index, i.e. nested 5-fold cross-validation for hyperparameter opti-
mization.
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Hyperparameter Values
Layers 1
Nodes per layer 32, 64, 132, 256, 512, 1024
Dropout (except Cox-nnet) 0., 0.1
Cox-nnet L2 -3., -2.67, -2.34, -2.01, -1.68, -1.35, -1.02, -

0.69, -0.36, -0.03, 0.3, 0.63, 0.96, 1.29, 1.62
Weight decay (except Cox-nnet) 0.1, 0.01, 0.
Batch size (except Cox-nnet) 128, 256
L1 (CoxCC and CoxTime) 0.1, 0.01, 0.001, 0.
Num. durations (discrete time
methods)

2, 5, 10, 20

Table 1.2: Hyperparameter search space.

Afterwards, each best model was trained on the training dataset and test datasets
evaluation metrics are reported resulting in a 5-fold cross validation on test datasets.
The IBS was computed over 100 equidistant points between the minimum and maximum
observed times in the test sets.

For the DeepSurv, Cox CC, Cox Time, PC Hazard, Logistic Hazard or Nnet-Survival,
PMF, and N-MTLR methods the best hyperparameter configuration on each fold was
fitted 10 times, and we report all the C-index and IBS values of the 10 repetitions.

1.3.4 Results

Results of the algorithms, each applied to TCGA-OV transcriptomic data are reported in
figure 1.1 for C-index and in figure 1.2 for IBS.

Cox-nnet for ovarian cancer was reported by [CZG18] and it serves us the baseline for
comparison, we evaluate this technique on the up-to-date TCGA gene expression data
for ovarian cancer (302 samples versus 372 in our study). Our corrected version of C-
index computation was used, we demonstrated that it affects the training procedure and
the overall accuracy evaluation and thus gives better results on our dataset. Even if the
authors of [CZG18] did not report any improvements for dropout with tanh activation
function, we notice that DeepSurv method with ReLU activation function [NH10] and
dropout [Sri+14] works slightly better than Cox-nnet; it is more evident on IBS metric.
The performance of DeepSurv, in its turn, is comparable to Cox CC method which proves
that the proposed simplified loss function 1.4 is a good approximation of the classical
Cox partial log-likelihood and Cox CC even outperforms DeepSurv in terms of IBS. We
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Figure 1.1: C-index comparison of different deep survival models. From left to right are the boxplots
of the obtained 5-fold cross validation C-index on the test datasets. Higher C-index means better model
performance. The horizontal bars in the boxes represent the median values, the boundaries of the boxes
delimit lower and upper quartiles, the values outside the boxes are the lowest and the highest observations
and the red circles represent the mean values.
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Figure 1.2: IBS comparison of different survival models. From left to right are the boxplots of the
obtained 5-fold cross validation IBS on the test datasets. For this metric, smaller values signify better
performance. The horizontal bars in the boxes represent the median values, the boundaries of the boxes
delimit lower and upper quartiles, the values outside the boxes are the lowest and the highest observations
and the red circles represent the mean values.
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note as well that Cox Time, which overcomes proportional hazards assumption, gives the
best results for continuous time methods, PC Hazard not resulting in any substantial
improvements over Cox Time. As for the discrete time methods, the authors of [KB19]
underlined that hazard parametrization works better than PMF parametrization. We
do not observe any important difference for PMF and Logistic Hazard methods, the
only noticeable advantage of the hazard parametrization being robustness on the C-index
criterion. The overall best performance was obtained with N-MTLR for C-index and IBS
as well as for 5-fold cross-validation robustness, even if this method is in fact a PMF
parametrization as shown by [KB19].

1.4 Conclusion

In this paper, we have discussed ANN based survival analysis techniques adaptable to deal
with the high-dimensional gene expression data. We have explored the survival method-
ology built on neural networks for continuous and discrete time data, in particular Cox-
nnet, DeepSurv, Cox CC, Cox Time, PC-Hazard, Logistic Hazard or Nnet-Survival, PMF,
N-MTLR. Since neither traditional regularized Cox model nor Cox-nnet produced satis-
factory results in transcriptomic TCGA-OV dataset, it was important to search for other
survival analysis techniques capable to deal with ovarian RNA-seq data. According to
our experiments, the N-MTLR model appears as the most effective and promising one
outperforming all the other ANN based techniques found in literature.

As a future work, we plan to integrate multiple data types (other omics data, whole-
slide images, etc.) to construct performant models for survival prediction based on the
N-MTLR model. There is as well a strong need to interpret the obtained results and link
them to the information with the biological meaning to be applicable in clinical decision-
making.
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Chapter 2

TRANSFER LEARNING EXPERIMENTS

With the advent of high-throughput sequencing technologies, the genomic platforms gener-
ate a vast amount of high dimensional genomic profiles. One of the fundamental challenges
of genomic medicine is the accurate prediction of clinical outcomes from these data. Gene
expression profiles are established to be associated with overall survival in cancer patients,
and this perspective the univariate Cox regression analysis was widely used as primary
approach to develop the outcome predictors from high dimensional transcriptomic data
for ovarian cancer patient stratification.

Recently, the classical Cox proportional hazards model was adapted to the artificial
neural network implementation and was tested with The Cancer Genome Atlas (TCGA)
ovarian cancer transcriptomic data but did not result in satisfactory improvement, pos-
sibly due to the lack of datasets of sufficient size. Nevertheless, this methodology still
outperforms more traditional approaches, like regularized Cox model, moreover, deep
survival models could successfully transfer information across diseases to improve prog-
nostic accuracy. We aim to extend the transfer learning framework to “pan-gyn” cancers
as these gynecologic and breast cancers share a variety of characteristics being female
hormone-driven cancers and could therefore share common mechanisms of progression.

Our first results using transfer learning show that deep survival models could benefit
from training with multi-cancer datasets in the high-dimensional transcriptomic profiles.

2.1 Introduction

The recent development of high-throughput sequencing technology and machine learning
methodology resulted in a great progress in the field of oncology research based on genomic
profiles. However, while the high-dimensional data generated, such as RNA-seq, keep
growing, a real need for appropriate machine learning techniques, capable of dealing with
mass data, has appeared.

Ovarian cancer is a complex, heterogeneous genetic disease. Because of the high risk

87



Part II, Chapter 2 – Transfer learning experiments

of recurrence in high-grade serous ovarian carcinoma (HGS-OvCa), the development of
outcome predictors is important not only for patient stratification but also to recognize
categories of patients that are more likely to respond to particular therapies [Ver+12].
The lack of successful treatment strategies for ovarian cancer led The Cancer Genome
Atlas (TCGA) researchers to gather the HGS-OvCa genomic profiles in order to identify
molecular abnormalities that influence pathophysiology, affect outcome and constitute
therapeutic targets [Bel+11].

Gene expression profiles are considered to reflect the cancer progression driven by mu-
tations and epigenetic modifications. These profiles were established to be associated with
overall survival and the study [Bel+11] developed the prognostic signatures for ovarian
cancer based on the TCGA microarray gene expression profiles using a univariate Cox
regression analysis, and validated them on external datasets.

Recently, artificial neural networks (ANN) caught attention to solve problems with ge-
nomic profiles. [You+17; CZG18] used ANN to construct survival models using the TCGA
gene expression data. The authors of [CZG18] used the high-throughput transcriptomic
data of the different TCGA cancer types and compared survival methods such as regular-
ized Cox model, Random Survival Forests, CoxBoost and the proposed Cox-nnet method.
Their approach Cox-nnet gave satisfactory results for some cancer types, especially for
TCGA Kidney Renal Cell Carcinoma (KIRC), and insufficient results for other types,
for example, in the OV dataset. The study of [You+17] applied the ANN to the survival
analysis of the TCGA-BRCA transcriptional and integrated features datasets, exploring
at the same time the benefits of transfer learning with multi-cancer datasets.

The objective of this work is to experiment the transfer learning strategy in the task of
ovarian cancer prognostication with the up-to-date harmonized (aligned to hg38) RNA-
sequencing (RNA-seq) data from the TCGA-OV project in order to detect significant
prognostic features. The outline of the paper is as follows: section 2.2 presents the Cox
survival analysis technique based on neural networks and the different aspects of deep
learning, section 2.3 describes materials and methods and section 2.4 present the results
and discusses the future work.
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2.2 Survival analysis and deep learning

2.2.1 Cox proportional hazards and neural networks

Survival analysis, one of the statistics subfields, deals with the time-to-event as outcome.
When the outcome is unknown during the observation period, it is called censoring and
it is one of the major difficulties in survival analysis. Recently Wang et al [WLR17] have
created a taxonomy of different approaches in this branch of statistics, distinguishing the
traditional statistical and machine learning methods. One of the commonly used statistical
method is a semi-parametric Cox regression or Cox proportional hazards. In this model
each data instance is described by a triplet (Xi, ti, δi), where Xi = (xi1, xi2, ..., xiP ) is
the feature vector for instance i, ti is the observed time, time of failure if δi is 1 or right-
censoring if δi is 0. We note here the number of observations N and the number of features
P. In this framework the rate of event at time t given that no event occurred before time
t, i.e. the hazard function (recall equation 2.7).

h(t,Xi) = h0(t)exp(Xiβ) (2.7)

where h0(t) is the baseline hazard function (an arbitrary nonnegative function of time),
and βT = (β1, β2, ..., βP ) is the coefficient vector. To note that the features are assumed
to have an exponential influence on the outcome but the baseline hazard function, h0(t),
is unspecified, thus resulting in a semi-parametric model. This makes it impossible to fit
the model using standard likelihood function, instead the partial likelihood is used (recall
equation 2.9):

L(β) =
N∏

j=1

[
exp(Xjβ)∑

i∈Rj
exp(Xiβ)

]δi

(2.9)

where Rj is the set of indices, i, with yi ≥ tj (those at risk at time tj). The coefficient
vector is estimated by maximizing this partial likelihood, or equivalently, minimizing the
negative log-partial likelihood for improving efficiency (recall equation 2.10):

LL(β) = −
N∑

j=1
δj

Xjβ − log

∑
i∈Rj

exp(Xiβ)
 (2.10)

The extension of Cox regression with artificial neural networks was first proposed by
[FS95], who replaced the linear predictor of the Cox regression model, by a one hidden
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layer multilayer perceptron (MLP). This work was further explored by [You+17] (Sur-
vivalNet), [CZG18] (Cox-nnet), [Kat+18] (DeepSurv) and who proposed to incorporate
the advances of deep learning framework and demonstrated that their methods outperform
the classical Cox method. The linear predictors in their models become (recall equation
1.1):

θi = G(WXi + b)Tβ (1.1)

where W is the coefficient weight matrix between the input and hidden layer of size
H x P , H is the number of neurons in the hidden layer, b is the bias vector of size H and
G is the nonlinear activation function. The partial log likelihood 2.10 can be written as
(recall equation 1.2):

PL(β,W ) =
∑
δj=1

θj − log

∑
i∈Rj

exp(θi)
 (1.2)

2.2.2 Regularization

When applied to high-dimensional transcriptomic data, the major issue of this model is
overfitting which can be overcome with the help of different regularization techniques such
as ridge regularization, dropout, early stopping and to a lesser extent batch normalization.
Adding the ridge regularization term to the partial log likelihood 1.2 gives the following
cost function (recall equation 1.3):

cost(β,W ) = PL(β,W ) + λ(||W ||2 + ||β||2) (1.3)

where ||.||2 designates L2 norm penalty function and λ is a regularization coefficient
leading to a weight decay.

In addition to ridge regularization, when using ANN it is common to employ dropout
regularization [Sri+14]. During training, this approach randomly zeroes some of the ele-
ments of the input with probability p (dropout rate or fraction). This has proven to be
an effective technique for regularization and preventing the co-adaptation of neurons as
described in the paper [Hin+12].

Early stopping means stopping the training as soon as performance on a validation
set starts to get worse. If regularization methods like weight decay that update the loss
function to encourage less complex models are considered “explicit” regularization, then
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early stopping may be thought of as a type of “implicit” regularization, much like using
a smaller network that has less capacity [Zha+17].

Batch normalization (also known as batch norm) is a method used to accelerate the
training of artificial neural networks. It draws its power from normalizing activations, and
from incorporating this normalization in the network architecture itself. It was proposed
by [IS15] and offers small regularization effect as well.

2.2.3 More data and transfer learning

Another possibility to deal with a substantial generalization error is to get more data and
apply transfer learning strategy as in the study of [You+17]. Indeed, gynecologic cancers
share a variety of characteristics, their development is influenced by female hormones, and
they are managed by a particular medical specialty, gynecologic oncology as underlined
by [Ber+18]. In this study, the authors refer to the following multi-cancer group as “pan-
gyn” and focus on five TCGA tumor types: high-grade serous ovarian cystadenocarcinoma
(OV), uterine corpus endometrial carcinoma (UCEC), cervical squamous cell carcinoma
and endocervical adenocarcinoma (CESC), uterine carcinosarcoma (UCS), and invasive
breast carcinoma (BRCA). They found molecular features that differed in the “pan-gyn”
group and the TCGA non-gynecologic tumor types.

This lets us hypothesize that augmenting OV training data with other datasets from
the “pan-gyn” group could improve OV prognostication. The transfer learning rule of
thumb being that while adding more training data, the validation and test sets should
still come from the same target distribution, OV cancer in our case.

2.2.4 Automated hyperparameter optimization

Deep neural networks’ prediction accuracy is highly dependable on many hyperparameters
(number of layers, number and type of activation functions in each layer, and choices for
optimization/regularization techniques). These details of algorithm tuning are crucial to
judging whether a given technique is genuinely better, or simply better tuned.

The naïve approach of the exhaustive grid search of the hyperparameters space is
time consuming, so other, more intelligent strategies have appeared recently for auto-
mated hyperparameter optimization using Bayesian optimization supported by Sequential
Model-Based Global Optimization (SMBO) methodology [BYC13; Mar14].

SMBO algorithms have been used in many applications where evaluation of the fitness
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function is expensive. In an application where the true fitness function, as PL in our
case, is costly to evaluate, model-based algorithms approximate it with a surrogate that
is cheaper to evaluate. A point that maximizes the surrogate becomes the proposal for
where the true function PL should be evaluated, thus resulting in a fewer fitness function
evaluations and a faster hyperparameter optimization [BYC13].

2.3 Materials and methods

2.3.1 Gene expression and clinical data

TCGA RNA-sequencing data and clinical data were downloaded from Genomics Data
Commons (GDC) portal (https://portal.gdc.cancer.gov/) using the pipeline of the R/
Bioconductor package TCGAbiolinks [Col+16]. The harmonized RNA-seq data (HTSeq-
counts) were normalized using the existing TCGAbiolinks normalization function which
is recommended for differential expression analysis.

Supplemental survival data were downloaded from the standardized dataset named
the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR) [Liu+18]. We merged the
OV survival data from TCGA-CDR with the GDC clinical data. We made a choice to
perform our tests on OS endpoint. The corresponding TCGA-CDR columns included OS
for status and OS.time for time-to-event data. OS column contained the value 0 encoding
for alive (censored) status and 1 for deceased (failure) and OS.time contained numbers of
days from the date of diagnosis to either the date of last follow up if OS was 0 or time to
death if OS was 1.

We downloaded the RNA-seq data for the following TCGA projects: TCGA-OV,
TCGA-BRCA, TCGA-UCEC, TCGA-CESC, TCGA-UCS. After merging RNA-seq and
clinical data and discarding cases without survival information, we obtained 372 samples
for OV, 1076 for BRCA, 541 for UCEC, 291 for CESC, 55 for UCS. All the datasets
contained 17,000 + gene expression features in common.

2.3.2 Performance metric

The widely used in survival analysis Concordance-index (C-index) measures the concor-
dance between predicted risk score and observed survival time. This measure is computed
for all comparable pairs in the test set and the number of times the predictions are con-
cordant is summarized. The C-index value of 0.5 is equivalent to random guess and 1 is
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the perfect concordance, so higher C-index means better model performance.

2.3.3 Data pre-processing

For our tests, we (log2+1) transformed the normalized values and split our dataset into 5
folds using R package MTLR [Yu+11] thus constructing 5 different splits into training and
test sets with respectively 80% and 20% of samples for a further 5-fold cross-validation. As
the accuracy obtained on one test set could be very different from the accuracy obtained
for a different test set, the widely used K-fold cross-validation technique ensures that each
fold is used as a test set at some point and provides the solution to the reliability problem.
The split was done using the stratification by the OS.time and OS features in order to
have similar distributions of survival times and censoring in training and test sets. To
compare the survival of training and test set splits, we plotted Kaplan-Meier curves and
calculated the log-rank test p-value and concluded that the difference of survival between
our generated training and test sets was not significant. In order to facilitate the training
procedure, the training data were standardized to zero-mean and unit-variance to comply
with best practices for training deep learning algorithms. The training data included the
samples from OV-only and different combinations of OV and the datasets among BRCA,
UCEC, CESC and UCS. For our tests we used the DeepSurv implementation of the
Python package pycox [KB19].

2.3.4 Bayesian optimization

For each of the 5 training sets, we performed 4-fold cross-validation for hyperparameter
automated search, only the OV dataset samples were used in the validation sets and 16 dif-
ferent combinations of cancer types as optimization sets. We used python library hyperopt
[BYC13] for Bayesian optimization with adaptive Tree of Parzen Estimators algorithm
and the following search space: number of layers (1–8), layer width (8–2048), dropout
rate (0–0.6), weight decay (0-0.9), learning rate for Adam optimizer [KB17] (0.00001-0.1)
and activation function among ReLU [NH10], SELU [Kla+17], hyperbolic tangent (tanh),
sigmoid function and a maximum of 200 trials. The best network design was then used
to re-train a deep survival model using the optimization and validation samples, and the
C-index of this best model is reported using the held-out OV testing samples. We repeated
this procedure 10 times for each test dataset. To compare the C-index values in different
experiments, we performed Wilcoxon rank-sum tests and report the significant (<0.05)
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p-values.

2.4 Results

Transfer learning experiments showed that ANN survival models could benefit from train-
ing with multi-cancer datasets in the high-dimensional transcriptional data. The results
of our tests are presented in the figure 2.1. Training with four combined datasets OV +
BRCA+UCS, OV +CESC+UCS, OV +BRCA+UCEC+UCS, and OV +BRCA+
UCEC+CESC+UCS resulted in the small but significant improvements to the ANN sur-
vival model (Wilcoxon rank-sum p-values respectively of 0.018, 0.02, 0.0033 and 0.0045).
Among these results, the best C-index gain of 2.1% was with OV+BRCA+UCEC+UCS
combined dataset.

Figure 2.1: C-index comparison of transfer learning experiments. From left to right are the boxplots
of the obtained 5-fold cross validation C-index on the OV test datasets. Higher C-index means better
model performance. The horizontal bars in the boxes represent the median values, the boundaries of
the boxes delimit lower and upper quartiles, the values outside the boxes are the lowest and the highest
observations. The brackets show the significant Wilcoxon rank-sum test p-values.
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The authors [You+17] noticed that prediction accuracy generally decreases as the pro-
portion of right-censored samples in a dataset increases. We measured the censoring pro-
portion in our datasets: OV (38.44%), BRCA (85.97%), UCEC (83.18%), CESC (75.26%)
and UCS (38.18%). Interestingly, the UCS dataset with the smallest right-censoring pro-
portion being present in all the four combined datasets with improved C-index, the best
or the most significant gains are still obtained with the datasets with bigger censoring
proportions than the target OV dataset itself. We hypothesize that although genetic al-
terations and expression patterns are often strongly associated with primary disease site,
the “pan-gyn” group is likely to share common mechanisms of progression and the im-
proved performance of the deep survival models with augmented datasets could provide
additional evidence of these mechanisms.

As a future work, there is as a strong need to interpret the biological meaning of the
transcriptional features contributing to the survival patient stratification. However, it is
important to understand, as underlined by [Ber+18], that the “pan-gyn” project possibil-
ities should be considered as hypothesis-generators and are to be tested and validated in
the follow-up studies.

2.5 Conclusion

In this paper, we have presented the Cox proportional hazards methodology and its im-
plementation with the artificial neural networks. We have discussed the different deep
learning techniques such as regularization, automated optimization, meant to overcome
the obstacles when dealing with the high-dimensional gene expression data and survival
analysis. Since more data is another option to prevent the neural networks from over-
fitting, we have explored the transfer learning framework applied to the deep survival
analysis with the TCGA ovarian RNA-seq data. According to our experiments, the deep
survival models could benefit from training with the augmented multi-cancer datatsets,
and more data could further improve the survival network performance.
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PROPOSED METHOD N-MTLR-RANK

3.1 Introduction

Ovarian cancer is one of the most common female malignant tumours and the fifth lead-
ing cause of cancer-related mortality in women worldwide [SMJ20]. Because it is usually
diagnosed at a late stage and currently lacks effective treatment options, the five-year
survival rate for advanced stage is as low as 30% [SMJ20]. The first-line therapy of ovar-
ian cancer patients consists of cytoreductive surgery and platinum-based chemotherapy,
although 80% of newly diagnosed patients respond to the first-line therapy, approximately
75% with advanced stages experience disease relapse [Pok+19].

Currently, the additional major therapeutic regimen is a targeted Poly(ADP-ribose)
polymerase (PARP) inhibitor. It is a maintenance therapy in first line for BRCA mutated
high grade serous ovarian cancer (HGSOC) stages III and IV after partial or complete
response to platinum salts. Additionally, in second line and onward for platinum sensitive
relapsed high grade serous or endometrioid ovarian cancer [Tur+21]. Unfortunately, it is
either restricted to 10% of patients who have BRCA mutations and/or hampered by the
resistance phenomenon [Lu+22]. Hence, there is an urgent need to identify and validate
novel, highly sensitive, and specific molecular biomarkers for prognosis, monitoring, and
therapy improvement.

The development of outcome predictors is important not only for patient stratification
but also to recognize categories of patients that are more likely to respond to particular
therapies [Ver+12]. Multiple studies have attempted to establish molecular signatures
based on gene expression to predict survival of ovarian cancer patients [Bel+11; CZG18].
However, only a small number of prognostic signatures have been developed, and none
have been directly applied in clinical practice [ZH20].

The recent advances in neural networks have led to the development of the deep learn-
ing survival models [You+17; CZG18; KB19; KBS19]. These models are feed-forward
artificial neural networks of the densely connected layers which transform the inputs into
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more predictive lower dimension disease or biological features. A fundamental challenge
in deep learning is to find the best network hyperparameters, i.e. the network design that
provides the best prediction accuracy. Other common issues of the deep learning tech-
niques are the over-fitting and generalization failure. When applied to high-dimensional
transcriptomic data, the deep learning survival models show good performance on the
traininig datasets and fail to generalize well on the test datasets or transfer the learned
features to the independent dataset. Finally, the difficulty of deconstructing these black-
box models into explainable biological processes is a big obstacle on the way of their
adoption.

This paper extends our preliminary studies exploring deep learning for solving prognos-
tic problems with high-dimensional ovarian cancer genomic profiles [Men+21a; Men+21b].
We propose a new deep learning survival model which we called N-MTLR-Rank and
trained using ovarian cancer clinical and molecular data from The Cancer Genome Atlas
(TCGA). We use the Bayesian optimization techniques [Ber+15] to automatically search
the hyperparameter space, the different regularization techniques and transfer learning
to overcome over-fitting and generalization issues. We seek to validate our deep learning
survival model on an independent clinical and molecular datatset. We illustrate as well
the way our model can be interpreted, by calculating the contributions of the input fea-
tures to the network outputs. We demonstrate how these contributions can be related
to the molecular pathways to uncover biological processes associated with ovarian cancer
patients survival.

3.2 Results

3.2.1 Training and comparing deep survival networks

Our previous experiments [Men+21b] let us demonstrate the ability of deep survival
models to benefit from training with data from multiple cancer types. In this work the
survival models have been trained using all five TCGA datasets of the "pan-gyn" group
[Ber+18]: high-grade serous ovarian cystadenocarcinoma (OV), uterine corpus endome-
trial carcinoma (UCEC), cervical squamous cell carcinoma and endocervical adenocarci-
noma (CESC), uterine carcinosarcoma (UCS), and invasive breast carcinoma (BRCA).
The survival networks were evaluated for their accuracy in predicting OV outcomes and
the transfer learning strategy used is shown in Fig.3.1.
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The deep survival models use the negative log-likelihood to adapt the weights of the
neural network to transform molecular features into lower dimension latent variables to
explain survival. We compared the performance of the survival network called DeepHit
[LZY18] which combines the negative discrete log-likelihood with a ranking loss and our
proposed method. Our recent experiments [Men+21a] showed the promising results of the
survival model N-MTLR (Neural Multi-Task Logistic Regression) [Fot18] when predicting
the survival with ovarian high dimensional gene expression profiles. As in DeepHit, we add
the ranking loss to the N-MTLR model and name our proposed model N-MTLR-Rank.
The schema of the N-MTLR-Rank model is presented in Fig.3.2.

The obtained results (see in Fig.3.3 and 3.4) confirm that DeepHit provides good per-
formance in terms of Concordance index (C-index) but at the cost of poorly calibrated
survival estimates [KBS19]. Indeed, ranking ability of the DeepHit given by the C-index
is slightly better than N-MTLR-Rank one (Wilcoxon rank-sum p=0.036), nevertheless
N-MTLR-Rank provides much greater improvements of the Integrated Brier Score (IBS)
(Wilcoxon rank-sum p=1.4e-07) thus overcoming the survival estimates calibration prob-
lem of DeepHit.

3.2.2 Validating with the external dataset

We explored further the prognostic accuracy of our proposed model N-MTLR-Rank on
the external independent dataset. For this purpose, we selected twelve High Grade Serous
Ovarian Carcinoma (HGSOC) patients treated within the Institut de Cancérologie de
l’Ouest (ICO), we will refer to this dataset as ICO-OV. The results of this comparison
is presented in Fig.3.5 and Fig.3.6. We observed that our model N-MTLR-Rank can
generalize rather well on the new unseen data as the resulting performance on the ICO-OV
dataset stays acceptable, especially for C-index metric. We hypothesize as well that poorer
IBS results could be due to the small dataset size of ICO-OV. In order to compare the
clinical characteristics of TCGA-OV and ICO-OV datasets we generated the descriptive
statistics (see Table 3.1 and Table 3.2).

3.2.3 Interpreting N-MTLR-Rank with PatternAttribution

The machine-learning methods apply complex transformations to input features thus mak-
ing the interpretation of these models difficult. Among the machine learning methods, the
deep neural networks are especially seen as "black-box" since the input features in them
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Figure 3.1: Transfer learning strategy. The target disease being ovarian cancer, the validation and
test datasets from the TCGA-OV split serve to select the best model hyperparameters and evaluate the
performance respectively. The combined training dataset is composed of the training TCGA-OV and
the four other "pan-gyn" datasets: TCGA-BRCA, TCGA-CESC, TCGA-UCEC and TCGA-UCS. The
external validation is performed on the ICO-OV dataset.
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Figure 3.2: Proposed N-MTLR-Rank model architecture. The particularity of the network is that the
last layer is not fully connected, instead, the reverse cumulative sum is implemented as in N-MTLR
model, plus, the loss function is composed of two parts: N-MTLR loss and ranking loss, similar to PMF
model.
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Figure 3.3: C-index comparison of DeepHit and our N-MTLR-Rank models. The boxplots of the ob-
tained 5-fold cross validation C-index on the test TCGA-OV dataset. Higher C-index means better model
performance. The horizontal bars in the boxes represent the median values, the boundaries of the boxes
delimit lower and upper quartiles, the values outside the boxes are the lowest and the highest observa-
tions.

Figure 3.4: IBS comparison of DeepHit and our N-MTLR-Rank models. The boxplots of the obtained
5-fold cross validation IBS on the test TCGA-OV dataset. For this metric, smaller values signify better
performance. The horizontal bars in the boxes represent the median values, the boundaries of the boxes
delimit lower and upper quartiles, the values outside the boxes are the lowest and the highest observations.
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Figure 3.5: C-index comparison of our N-MTLR-Rank model generalization behavior. The boxplots
of the obtained 5-fold cross validation C-index on the test TCGA-OV and ICO-OV datasets. Higher
C-index means better model performance. The horizontal bars in the boxes represent the median values,
the boundaries of the boxes delimit lower and upper quartiles, the values outside the boxes are the lowest
and the highest observations.

Figure 3.6: IBS comparison of our N-MTLR-Rank model generalization behavior. The boxplots of
the obtained 5-fold cross validation IBS on the test TCGA-OV and ICO-OV datasets. For this metric,
smaller values signify better performance. The horizontal bars in the boxes represent the median values,
the boundaries of the boxes delimit lower and upper quartiles, the values outside the boxes are the lowest
and the highest observations.
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undergo numerous nonlinear transformations. In order to provide a clear interpretation
of the prognostic significance of individual features, we used the method called Patter-
nAttribution [Kin+17]. The authors of this method demonstrated that the direction of
the model gradients does not necessarily provide an estimate for the signal in the data.
Instead it reflects the relation between the signal direction and the distracting noise con-
tributions and proposed a new decomposition method PatternAttribution by taking the
data distribution into account. The measure of how much the input dimensions contribute
to the output through the layers in this method is referred to as the attribution. We gener-
ated the attributions for all the input gene expressions for each patient in the TCGA-OV
and ICO-OV datasets in order to measure how the input features contribute to different
outputs of our networks, i.e. survival probability mass function predictions.

To investigate the molecular pathways related to ovarian prognosis, we performed
the attributions Gene-Set Enrichment Analysis (GSEA) [Sub+05] of our N-MTLR-Rank
model using the Molecular Signatures Database (MSigDB) [Lib+15]. The GSEA focuses
on coordinated differential expression of annotated groups of genes, or gene-sets, and
produces results that can more easily be interpreted in terms of the relevant biological
processes. We analyzed the attributions obtained for the endpoints close to 1 year (372
days) and close to 5 years (1919 days) and run the GSEA for all the patients in TCGA-OV
and ICO-OV datasets. The hallmark collections (H) used for GSEA contains 50 gene-sets
and the oncogenic signature collection (C6) - 189 gene-sets, the Table 3.3 presents the
overall number of significantly enriched pathways (p-value < 0.05) found for each collection
in different datasets. We report as well the most frequent pathways found for patients of
the TCGA-OV (> 5% at 5 years endpoint) and the presence of the corresponding pathways
in ICO-OV dataset (see Table 3.4 and Table 3.5). We noted that 4 pathways out of 6 most
frequent pathways in TCGA-OV are also detected in ICO-OV dataset.

Finally, these molecular pathways can be used to identify the high-risk or low-risk
individuals based on their molecular pathway attribution enrichment scores. We con-
structed the Kaplain-Meier curves for the significantly enriched pathways of TCGA-OV
cases (see Fig.3.7) separating patients into 2 groups based on the enriched or not en-
riched criterium. Among the 6 tested pathways IL2 STAT5 SIGNALING, ALLOGRAFT
REJECTION, EG2F TARGETS, G2M CHECKPOINT, MTORC1 SIGNALING AND
STK33 DN result in significant survival stratification of TCGA-OV patients.
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3.3 Discussion

We proposed a new deep survival model and evaluated its ability to learn from the high
dimensional transcriptomic profiles to predict the clinical outcomes. Our model N-MTLR-
Rank overcomes the time-invariant covariates effect requirement of the Cox Proportional
Hazards models [KBS19] providing the survival estimates for multiple time endpoints. It
uses as well the censored and uncensored data during the training to adapt the neural
network weights which helps to defeat the uncensored proportion drawback of the simpler
models [You+17; CZG18]. We argue that its predicting accuracy performance comes from
the fact that its probability estimate at time t is a function of the probability estimates
at times t’>t. Interestingly, it is the opposite of the RNN-Surv method proposed by
[GNS18] and based on the Long Short-Term Memory (LSTM) [HS97] cells which exploit
the sequential nature of the problem but nevertheless N-MTLR-Rank still performs well.

N-MTLR-Rank model gave slightly worse results in terms of C-index in comparison
to the similar DeepHit model, but provides significant improvements in terms of IBS
criterium. We demonstrated that it is capable as well to generalize on the new unseen
data, coming from RNA-sequencing of the archival Formalin Fixed Paraffin Embedded
(FFPE) samples opening the possibility to exploit other retrospective cohorts.

We also experimented the new method for model interpretation, e.g. PatternAttribu-
tion [Kin+17]. This methodology let us calculate the gene expression attributions that
the best trained neural network model uses to predict the outcomes. We performed the
GSEA analysis using these input feature attributions and reported the most frequent en-
riched pathways of the MSigDB hallmark (H) and oncogenic signatures collections (C6).
Among these pathways IL2 STAT5 SIGNALING, ESTROGEN RESPONSE EARLY,
G2M CHECKPOINT, MTORC1 SIGNALING were already reported as prognostically
enriched by the authors [You+17].

The generated Kaplan-Meier curves showed that the immune activation pathways,
such as ALLOGRAFT REJECTION (p=1e-22) and IL2 STAT5 SIGNALING (p=6e-16)
are strongly associated with better survival. This observation agrees with the results of
another study where the authors clustered the TCGA-OV patients into immune subtypes
[Lu+22] based on the manually curated immune-related genes and reported that these
pathways had higher activation in immune subtype 1 associated with better survival.

The ESTROGEN RESPONSE EARLY pathway was not reported significantly prog-
nostic (p=0.23), it is a set of genes defining an early response to estrogen. Given that
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the estrogen receptor alpha (ER-alpha, ESR1) is known to be the major mediator of the
estrogen response [Lan+20], we hypothesize that the TCGA-OV subpopulation detected
as enriched with this pathway by our survival model could serve a plausible foundation
for a future anti-estrogen therapies biomarker study.

Our findings that the proliferation pathways G2M CHECKPOINT (p=1e-04) and E2F
TARGETS (p=8e-07) were associated with poorer survival, are in line with the study
[ZH20] where the authors found these pathways significantly enriched in ovarian cancer
suggesting that they might play a critical role in the development of ovarian cancer.
The prior findings in the literature reviewed by [ZH20] suggest that the E2F family is
crucial for cancer initiation, progression, and resistance to therapy. The signalling pathway
MTORC1 SIGNALING (p=0.11), while not significantly prognostic, is often activated in
ovarian tumors and plays an important role in tumor metabolism [Plo+21] and in the
differentiation and function of immune cells [Zou+20]. Therefore, the mTOR signaling
pathway is a hot target in anti-tumor therapy research.

Among the detected significantly enriched C6 gene-sets, only STK33 DN was sig-
nificantly associated with the overall survival (p=4e-53). This gene- set consists of the
genes downregulated in KRAS mutant cells after knockdown of STK33. Indeed, the study
[Sch+09] demonstrated that STK33 is preferentially required by cells that rely on mutant
KRAS for their survival and proliferation, this suggests that upregulated genes of this
pathway might lead to a poorer survival which agrees with our results: the TCGA-OV
patients with negatively enriched STK33 DN pathway were found to be in a high-risk
group.

By contrast, the TCGA-OV patients whose attributions were enriched in KRAS.50
UP.V1 DN pathway were not associated with significantly different prognosis (p=0.29),
nevertheless, this pathway includes the downregulated genes in epithelial cells over-expressing
an oncogenic form of KRAS while inhibiting TBK1, KRAS synthetic lethal partner
[Bar+09]. Thus, this pathway could still be an alternative method of targeting oncogenic
KRAS-driven cancers.

Finally, all of the ICO-OV individuals were reported as ALLOGRAFT REJECTION
and IL2 STAT5 SIGNALING enriched at 5 years endpoint, our deep survival network
"see" them as low-risk group, which is in line with the overall better survival in ICO-
OV dataset. The absence of the ICO-OV individuals attributions enriched in MTORC1
SIGNALING, G2M CHECKPOINT and E2F TARGETS is rather consistent as well with
overall survival difference in TCGA-OV and ICO-OV datasets.
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Understanding and advancing the treatment of the ovarian cancer is conditioned by the
identifying the underlying biology and molecular pathogenesis of this disease. Although
our study extends the insights into the use of deep learning for survival modeling, the
found prognostic associated molecular pathways of ovarian cancer patients represent an
interesting point for future research, it is worth underlying that these pathways should be
considered hypothesis generators and more detailed in vitro experiments and follow-up
clinical studies are required.

3.4 Methods

3.4.1 Data

TCGA gene expression and clinical data

TCGA RNA-sequencing and clinical data were downloaded from Genomics Data Com-
mons (GDC) portal using the pipeline of the R/Bioconductor package TCGAbiolinks
[Col+16]. Supplemental survival data were downloaded from the standardized dataset
named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR) [Liu+18]. We merged
the survival data from TCGA-CDR with the GDC clinical data. We performed our tests
on overall (OS) endpoint. The corresponding TCGA-CDR columns included OS for status
and OS.time for time-to-event data. OS column contained the value 0 encoding for alive
(censored) status and 1 for deceased (failure) and OS.time contained numbers of days
from the date of diagnosis to either the date of last follow up if OS was 0 or time to death
if OS was 1.

We downloaded the RNA-seq data for the following TCGA projects: TCGA-OV,
TCGA-BRCA, TCGA-UCEC, TCGA-CESC, TCGA-UCS. The harmonized GRCh38 aligned
RNA-seq data (HTSeq-counts[APH15]) were normalized per TCGA project using the
TCGAbiolinks normalization function which is recommended for differential expression
analysis. After merging RNA-seq and clinical data and discarding cases without survival
information, we obtained 372 samples for OV, 1087 for BRCA, 549 for UCEC, 291 for
CESC, 55 for UCS. All the datasets contained 16673 gene expression features in common.

External validation dataset ICO-OV

We curated 12 ICO patients diagnosed with HGSOC between 2007 and 2016, their retro-
spective electronic records data were collected: date of birth, date of pathologic diagnosis,
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clinical stage, histological grade, date of death or date of last follow-up, the age at patho-
logical diagnosis, OS and OS.time were derived.

We extracted RNA from the corresponding archival FFPE slides with COVARIS
ME220 Focused-ultrasonicator, to allow a high quantity and high quality of RNA ex-
tracted. RNA libraries were prepared with the SureSelect XT HS2 RNA Reagent kit and
the SureSelectXT Human All Exon V6 +UTR probes from Agilent. All libraries were
sequenced on an Illumina NextSeq550 in paired-end mode (2 x 75bp) with a target depth
of 20 million fragments per sample. Sequenced reads were trimmed with fastp v0.20.1 and
mapped to GRCh38 using HISAT2 v2.1.0 both with default parameters. Reads overlap-
ping genomic features were counted with featureCounts v2.0.0 [LSS14] from the Subread
package and Ensembl v99. Only uniquely mapped and not duplicated reads were counted.
Multiple overlaps of unique genomic feature were not counted.

The obtained raw featureCounts [LSS14] of the ICO-OV dataset were further nor-
malized using the TCGAbiolinks normalization function which resulted in 15521 genes in
common between ICO-OV and TCGA "pan-gyn" group. In order to account for “batch
effect”, we used the method ComBat-seq [ZPJ20] particularly suited for RNA-seq data.

Our study was approved by the ethics committee of the university hospital center of
Angers (2021-102) and done in accordance with ethical standards of the 1964 Helsinki
Declaration and its later amendments. Patients provided signed informed consent in ac-
cordance with their respective trial protocols.

3.4.2 Proposed deep survival model

Deep survival models are multi-layer artificial neural networks with different output layers
that use various negative log-likelihood based loss functions. The papers [KBS19; KB19]
give the overview of the different feed forward survival models and their corresponding loss
functions. The authors note that the discrete-time models may be used as approximations
of models in continuous time subdividing time into m intervals. Among the discrete-time
methods they used the following negative log-likelihood and called the method PMF:

lossP MF = − 1
N

N∑
i=1

(
δilog[σk(ti)(ϕ(Xi))] + (1 − δi)log[Ŝ(k(ti)|Xi)]

)
, (3.1)

where Ŝ(k(ti)|X) = 1 −∑i
k=1 σk(ϕ(X)) is the estimated survival function,
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σi(ϕ(X)) = − exp[ϕi(X)]
1+
∑m

k=1 exp[(ϕk(X)] is the softmax function,
ϕ(X) is the neural network,
k(ti) is the duration index of individual time ti among m intervals,
δi is the censoring indicator,
Xi are the features of individual i,
X is a feature matrix of N individuals and P features.
Another discrete-time method reviewed in [KBS19] is the Neural Multi-Task Logistic

Regression (N-MTLR) proposed by Fotso et al [Fot18]. This work is the neural network
adaptation of Multi-Task Logistic Regression (MTLR) by Yu et al [Yu+11] and, as shown
by [KBS19], N-MTLR is equivalent to PMF method in (3.1) but where:

ϕj(X) =
m∑

k=j

ψ(Xk) is the (reverse) cumulative sum of the output of the network ψ(Xk).

According to this work, Lee et al. [LZY18] were the 1st to apply neural networks to
the discrete-time likelihood for right-censored time-to-event data. The proposed method,
denoted DeepHit, estimates the probability mass function (PMF) with a neural net and
combines the log-likelihood with a ranking loss, for one type of event:

lossDeepHit = αlossP MF + (1 − α)lossrank (3.2)

lossrank =
∑
i,j

δi1(ti < tj)exp
(
Ŝ(k(ti)|Xi) − Ŝ(k(ti)|Xj)

β

)
, (3.3)

where α and β are the hyperparameters of the network.
We have recently reported in [Men+21a] that N-MTLR performance is better than

PMF for TCGA-OV transciptome based prognostication. So we propose a new method
which we called N-MTLR-Rank as it combines the discrete-time negative log-likelihood
of N-MTLR and the ranking loss of DeepHit:

lossN−MT LR−Rank = αlossN−MT LR + (1 − α)lossrank (3.4)
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3.4.3 Model training and validation

For our tests, we (log2+1) transformed all the normalized values and split only TCGA-
OV dataset into 5 folds using R package MTLR [Yu+11] thus constructing 5 different
splits into training and test sets with respectively 80% and 20% of samples for a further
5-fold cross-validation. The split was done using the stratification by the OS.time and OS
features in order to have similar distributions of survival times and censoring in training
and test sets. For the sake of facilitating the training procedure, the training data were
standardized to zero-mean and unit-variance to comply with best practices for training
deep learning algorithms. To note that in order to benefit from the multi-cancer transfer
learning strategy, all the training hereafter included BRCA+CESC+UCEC+UCS along
with TCGA-OV samples.

For each of the five 80% TCGA-OV training sets, we performed the best hyperpa-
rameters combination search based on the Bayesian optimization technique. We further
split the 80% training set into 60% optimization and 20% validation with the aim to
train the networks with the optimization set and evaluate on validation set. We used
python library hyperopt [Ber+15] for Bayesian optimization with adaptive Tree of Parzen
Estimators algorithm, the maximum number of trials of 400 and the following search
space:

• number of layers: 1–8

• layer width: 8–2048

• learning rate for Adam optimizer [KB17]: 0.00001-0.1

• weight decay [LH19]: 0-0.9

• dropout rate [Sri+14]: 0–0.6

• activation function: ReLU [NH10], SELU [Kla+17], hyperbolic tangent (tanh), sig-
moid

• discretization scheme: equidistant or Kaplan-Meier quantiles [KB19]

• interpolation scheme: constant density interpolation (CDI) or constant hazard in-
terpolation (CHI) [KB19]

• α, ranking loss parameter in (3.3): 0-1
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• β, ranking loss parameter in (3.3): 0.1-100

The best network design was then used to re-train a deep survival model using the
80% training data and the 20% test set to evaluate C-index and IBS. We repeated this
procedure 10 times for each test set. We reported the time-dependent C-index, which
estimates the probability that observations i and j are concordant given that they are
comparable. The C-index value of 0.5 is equivalent to random guess and 1 is the perfect
concordance. As for IBS, it is an extension of Brier Score (BS) over an interval of time,
where BS is the mean squared error of the probability estimates. For this metric, smaller
values signify better performance, for more details see [KB19]. For our experiments we
used DeepHit implementation in the Python package pycox [KB19]. For N-MTLR-Rank
we used N-MTLR implementation along with the ranking loss implementation of DeepHit
of the same python package.

3.4.4 Model selection and interpretation

The model used for interpretation was created by identifying the best performing model
configuration for TCGA-OV and ICO-OV experiments. This configuration was then used
to re-train a model using all available TCGA-OV samples. Feature attributions were
calculated using the PatternAttribution method [Kin+17] implemented in PyTorch and
available at https://github.com/KnurpsBram/PyTorch-PatternNet.

Feature attributions were analyzed using the R/Bioconductor package clusterProfiler
[Wu+21] for the GSEA using (MSigDB) [Lib+15] hallmark collections (H) and oncogenic
signature collection (C6) gene-sets.
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Variable Overall

Age at pathologic diagnosis
Count 372
Mean (SD) 59.60 (11.38)
Median (IQR) 59.00 (17.00)
Q1, Q3 51.00, 68
Min, Max 30.00, 87
Missing 0

Clinical stage
Count (%) 372

Stage IC 1 ( 0.27%)
Stage IIA 3 ( 0.81%)
Stage IIB 3 ( 0.81%)
Stage IIC 15 ( 4.03%)
Stage IIIA 7 ( 1.88%)
Stage IIIB 13 ( 3.49%)
Stage IIIC 270 (72.58%)
Stage IV 57 (15.32%)
Missing 3 ( 0.81%)

Histological grade
Count (%) 372

G1 1 ( 0.27%)
G2 42 (11.29%)
G3 319 (85.75%)
G4 1 ( 0.27%)
GB 2 ( 0.54%)
GX 5 ( 1.34%)
Missing 2 ( 0.54%)

OS
Count (%) 372

0 143 (38.44%)
1 229 (61.56%)
Missing 0

OS.time
Count 372
Mean (SD) 1187.17 (943.74)
Median (IQR) 1024.00 (1141.75)
Q1, Q3 517.25, 1659
Min, Max 8.00, 5481
Missing 0

Table 3.1: TCGA-OV clinical descriptive statistics.
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Variable Overall

Age at pathologic diagnosis
Count 12
Mean (SD) 63.17 (12.64)
Median (IQR) 67.50 (20.50)
Q1, Q3 50.50, 71
Min, Max 46.00, 86
Missing 0

Clinical stage
Count (%) 12

IB 1 ( 8.33%)
II 1 ( 8.33%)
IIIA 2 ( 16.67%)
IIIC 7 (58.33%)
IV 1 ( 8.33%)
Missing 0

Histological grade
Count (%) 12

G3 319 (100%)
Missing 0

OS
Count (%) 12

0 7 (58.33%)
1 5 (41.67%)
Missing 0

OS.time
Count 12
Mean (SD) 2132.75 (1609.92)
Median (IQR) 1677.50 (2786.50)
Q1, Q3 954.00, 3740.5
Min, Max 8.00, 4646
Missing 0

Table 3.2: ICO-OV clinical descriptive statistics.
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Dataset, collection 1 year 5 years
TCGA-OV, hallmark 6 12
ICO-OV, hallmark 4 6
TCGA-OV, C6 10 10
ICO-OV, C6 8 2

Table 3.3: The overall number of significantly enriched pathways found in hallmark and
C6 MSigDB collections (p-value < 0.05).

Collection TCGA-OV, 1 y. ICO-OV, 1 y. TCGA-OV, 5 y. ICO-OV, 5 y.
HALLMARK_IL2_STAT5_SIGNALING 2.96% 91.67% 20.97% 100%
HALLMARK_ALLOGRAFT_REJECTION 0.54% 91.67% 25.81% 100%
HALLMARK_ESTROGEN_RESPONSE_EARLY 0.81% 50% 6.72% 25%
HALLMARK_E2F_TARGETS - - 13.98% -
HALLMARK_G2M_CHECKPOINT - - 8.33% -
HALLMARK_MTORC1_SIGNALING - - 5.91% -

Table 3.4: The most frequent hallmark pathways found for patients of the TCGA-OV
and the presence of the corresponding pathways in ICO-OV dataset (> 5% at 5 years
endpoint).

Collection TCGA-OV, 1 y. ICO-OV, 1 y. TCGA-OV, 5 y. ICO-OV, 5 y.
KRAS.50_UP.V1_DN 22.04% 25% 1.08% -
STK33_DN 1.34% - 10.22% -

Table 3.5: The most frequent C6 collection pathways found for patients of the TCGA-OV
and the presence of the corresponding pathways in ICO-OV dataset (> 5% at 5 years
endpoint).
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Figure 3.7: KM curves of the high-risk and low-risk TCGA-OV groups. The two groups were defined
on the basis of the individual molecular pathway attribution enrichment scores.
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CONCLUSION PART II

Since neither traditional regularized Cox model nor Cox-nnet produced satisfactory re-
sults in transcriptomic TCGA-OV dataset, it was important to search for other survival
analysis techniques capable to deal with ovarian RNA-seq data. The results obtained in
the Chapter 1 "Comparative study" show that the N-MTLR model appears as the most
effective and promising one outperforming all the other ANN based techniques found
in literature. We have reviewed the neural networks based survival analysis techniques
adaptable to deal with the high-dimensional gene expression data and have benchmarked
the following methods built on the neural networks for continuous and discrete time data:
Cox-nnet, DeepSurv, Cox CC, Cox Time, PC-Hazard, Logistic Hazard or Nnet-Survival,
PMF, N-MTLR.

According to our transfer learning experiments presented in Chapter 2, the deep sur-
vival models could benefit from training with the augmented multi-cancer datatsets, and
more data could further improve the survival network performance. We have discussed
the different deep learning techniques such as regularization, automated optimization,
meant to overcome the obstacles when dealing with the high-dimensional gene expression
data and survival analysis. In order to prevent the neural networks from overfitting, we
have explored the transfer learning framework applied to the deep survival analysis with
the TCGA ovarian RNA-seq data and have showed that the whole "pan-gyn" group is
profitable in the ovarian cancer prognostication task.

Based on the previously obtained results, as explained in Chapter 3, we have proposed
a new deep survival model and evaluated its ability to learn from the high dimensional
transcriptomic profiles to predict the clinical outcomes. Our model N-MTLR-Rank over-
comes the time-invariant covariates effect requirement of the Cox Proportional Hazards
models providing the survival estimates for multiple time endpoints. It is capable as well
to generalize on the new unseen data, coming from RNA-sequencing of the archival FFPE
samples opening the possibility to exploit other retrospective cohorts.

We have also experimented the new method for model interpretation and reported
the found enriched MSigDB pathways: IL2 STAT5 SIGNALING, ALLOGRAFT RE-
JECTION, ESTROGEN RESPONSE EARLY, G2M CHECKPOINT, E2F TARGETS,
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MTORC1 SIGNALING, STK33 DN and KRAS.50 UP.V1 DN. We advocate that these
molecular pathways represent an interesting point for future research with more detailed
in vitro experiments and follow-up clinical studies.

As a future work, the integration of multiple data types (other omics data, whole-slide
images, etc.) to construct performant models for survival prediction based on the N-MTLR
model appear to be an intresting direction. There is as well a strong need to interpret
the obtained results and link them to the information with the biological meaning to be
applicable in clinical decision-making.
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Titre : La recherche de nouveaux bio-marqueurs pour les séquences thérapeutiques des can-
cers "pan-gyn" grâce à l’apprentissage automatique

Mot clés : Cancer de l’ovaire, TCGA, RNA-seq, analyse de survie, réseaux de neurones arti-

ficiels (ANN)

Résumé : L’expression des gènes est connue
pour être associée à la survie globale chez
les patients avec un cancer. L’analyse de sur-
vie pour le cancer de l’ovaire permet po-
tentiellement non seulement la stratification
des patientes mais également la recherche
des nouvelles cibles thérapeutiques. Ce tra-
vail présente l’étude des techniques d’ana-
lyse de survie récentes basées sur des ré-
seaux de neurones artificiels (ANN) et com-
pare la performance des ces modèles sur
la base des données RNA-seq des tumeurs
ovariennes. Il souligne également le fait que
ces modèles d’apprentissage profond sont ca-

pables de transférer la connaissance à tra-
vers le groupe "pan-gyn" dans le but d’amélio-
rer la précision des prédictions au niveau du
cancer de l’ovaire car ce groupe des cancers
gynécologiques et du sein partage de carac-
téristiques communes. Cette thèse propose
un nouveau modèle de survie basé sur l’ap-
prentissage profond, appelé N-MTLR-Rank,
ce dernier a été entrainé avec les données du
TCGA (The Cancer Genome project) et validé
avec un dataset indépendant. De plus, elle dé-
montre comment ce modèle peut être appa-
renté à des voies biologiques en lien avec la
survie des patientes avec le cancer de l’ovaire.

Title: Machine learning based novel biomarkers discovery for therapeutic use in "pan-gyn"
cancers

Keywords: Ovarian cancer, TCGA, RNA-seq, survival analysis, artificial neural networks (ANN)

Abstract: Gene expression is established to
be associated with overall survival in cancer
patients. Survival analysis of ovarian cancer
could allow not only patient stratification but
possible discovery of new therapeutic targets.
This work presents an overview of the recent
artificial neural network (ANN) survival analy-
sis techniques and benchmarks these models
on the basis of ovarian cancer RNA-seq data.
It also highlights that deep survival models
could successfully transfer information across

"pan-gyn" group to improve the ovarian cancer
prognostic accuracy as these gynecologic and
breast cancers share a variety of characteris-
tics. This thesis proposes a new deep learning
survival model called N-MTLR-Rank, trained
using The Cancer Genome project (TCGA)
data and validated on an independent datat-
set. Additionnaly, it demonstrates how this
model can be related to the molecular path-
ways to uncover biological processes associ-
ated with ovarian cancer patients survival.
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