
HAL Id: tel-04128670
https://theses.hal.science/tel-04128670

Submitted on 14 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contributing to the Energy Efficiency of Smart Homes :
An Automated Management Framework

Houssam Kanso

To cite this version:
Houssam Kanso. Contributing to the Energy Efficiency of Smart Homes : An Automated Management
Framework. Computation and Language [cs.CL]. Université de Pau et des Pays de l’Adour, 2022.
English. �NNT : 2022PAUU3044�. �tel-04128670�

https://theses.hal.science/tel-04128670
https://hal.archives-ouvertes.fr
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Abstract

In recent years, the power consumption of Cyber-Physical Systems (CPS) has been
increasing due to the increasing number of connected devices (e.g., smart appliances, plug-
and-play IoT devices...), mainly in the residential sector. A large number of devices inte-
grate sensors allowing them to produce data describing the state of a device or the behavior
of a person (e.g., temperature sensor, presence sensor...). In addition, numerous devices
are equipped with actuators capable of accomplishing tasks impacting the environment
(e.g., light control, heating, ventilation, air-conditioning system...). These devices have
the potential of collecting a large amount of data that can be useful for power estimation
and management. However, current energy management approaches are mostly applied to
limited types of devices in specific domains and are difficult to implement in other scenar-
ios. They fail when it comes to their level of autonomy, flexibility, genericity, monitored
metrics, and heterogeneity of studied devices.

To address these shortcomings, we present, in this thesis, an energy management ap-
proach for connected environments based on generating power estimation models, repre-
senting a formal description of energy-related knowledge, and using reinforcement learning
(RL) techniques to accomplish energy-efficient actions. We illustrate our proposal in the
smart home domain. We first present an automated power modeling approach used to gen-
erate accurate real-time power estimation models for any type of devices in heterogeneous
environments. Then, we present an energy-oriented extension for a reference ontology.
The latter aims to represent useful concepts used for energy management purposes in con-
nected environments. Furthermore, we develop algorithms that exploit knowledge from
both the power estimator and the ontology, to generate the corresponding RL agent and
environment. We also present different reward functions based on user preferences and
power consumption. The proposed approach performs well given the low convergence pe-
riod, the high level of user preferences satisfaction, and the significant decrease in energy
consumption.

The main contribution of this thesis is to guarantee autonomic management of energy
consumption. It also provides visibility on energy drains by estimating the power con-
sumption of devices in an automated manner. It lays out a way to represent energy-related
knowledge. Finally, it ensures that energy-efficient actions are executed in heterogeneous
environments.
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Résumé

Ces dernières années, la consommation électrique des systèmes cyber-physiques
(CPS) a augmenté en raison du nombre croissant d’équipements connectés (par exemple,
appareils intelligents, équipements IoT...), principalement dans le secteur résidentiel. Un
grand nombre d’appareils intègrent des capteurs leur permettant de produire des données
décrivant l’état d’un appareil ou le comportement d’une personne (par exemple, capteur
de température, capteur de présence...). En outre, de nombreux appareils sont équipés
d’actionneurs capables d’accomplir des tâches ayant un impact sur l’environnement
(par exemple, le contrôle de la lumière, le système de chauffage, de ventilation, de
climatisation...). Ces dispositifs ont le potentiel de collecter une grande quantité de
données qui peuvent être utiles pour l’estimation et la gestion de l’énergie. Cependant, les
approches actuelles de gestion de l’énergie sont principalement appliquées à des modèles
limités d’appareils dans des domaines spécifiques et sont difficiles à mettre en œuvre dans
d’autres scénarios. Ces approches actuelles présentent des limites en termes de leur niveau
d’autonomie, leur flexibilité, leur généricité, les métriques contrôlées et l’hétérogénéité
des dispositifs étudiés.

Afin de répondre à ces lacunes, nous présentons, dans cette thèse, une approche de
gestion de l’énergie pour les environnements connectés basée sur la génération de modèles
d’estimation de puissance, la représentation d’une description formelle des connaissances
liées à l’énergie et à l’utilisation des techniques d’apprentissage par renforcement (RL)
pour accomplir des actions énergétiques efficaces. Nous illustrons notre proposition dans le
domaine de la maison intelligente. Nous présentons d’abord une approche de modélisation
autonomique de la puissance utilisée pour générer des modèles précis d’estimation de la
puissance en temps réel pour tout type de dispositif dans des environnements hétérogènes.
Ensuite, nous présentons une extension orientée énergie pour une ontologie de référence.
Elle vise à représenter les concepts utiles impliqués dans la gestion de l’énergie dans
les environnements connectés. De plus, nous développons les algorithmes de notre ap-
proche RL qui exploitent les connaissances de l’estimateur de puissance et de l’ontologie
pour générer l’agent RL et des environnements d’apprentissage correspondants. Nous
présentons également différentes fonctions de récompense basées sur les préférences des
utilisateurs et la consommation d’énergie. L’approche proposée donne de bons résultats
compte tenu de la faible période de convergence, du niveau de satisfaction des préférences
des utilisateurs et de la diminution significative de la consommation d’énergie.
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La principale contribution de cette thèse est de garantir une gestion autonome de la
consommation d’énergie. Elle fournit également une visibilité sur les pertes d’énergie en
estimant la consommation d’énergie des dispositifs de manière automatisée. Elle propose
également une manière de représenter les connaissances liées à l’énergie. Enfin, elle garan-
tit que des actions efficaces sur le plan énergétique sont exécutées dans des environnements
hétérogènes.
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Chapter 1
Introduction

Contents
1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Motivating Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 State of the Art of Related Work . . . . . . . . . . . . . . . . . . . . 7

1.5 Proposal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.7 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 14

During the second industrial revolution, electricity was introduced as a practical and
easy way of transmitting power to consumers such as buildings and industries. The process
of electrification that took place during this period was the main driver of the invention of
electrical appliances used in our daily life. The widespread usage of these appliances led to
a continuous increase in energy consumption. Since then, researchers have been interested
in energy optimizations to maximize the efficiency of devices.

Two industrial revolutions followed: (1) the third revolution characterized by the in-
troduction of automation, information technologies, and electronics revolution, and (2) the
ongoing fourth revolution introducing Cyber-Physical Systems (CPS), Internet of Things
(IoT), and networks revolution. Internet is a fundamental technology of these revolutions,
providing a networking infrastructure for transmitting data and communicating between
people and devices. Moreover, electronic devices’ capabilities increased exponentially fol-
lowing Moore’s law and allowed the ability to communicate, stay connected, and perform
complex tasks. These two factors are the base for the design and development of CPS and
IoT.



2 CHAPTER 1. INTRODUCTION

As seen in figure 1.1, a significant increase of connected devices is currently observed
and will continue in the future, in particular, for IoT and smart home devices [1]. Cisco
estimates that 500 billion devices will be connected to the internet by 2030 [2]. With
this increase, the energy consumption of these devices is growing and may challenge the
capacity of energy production. For instance, in 2019, over 25 000 TWh of final energy
consumption was electrical, with the majority being consumed by the industrial and resi-
dential sectors [3]. The energy impact of CPS goes beyond the use phase, with important
energy and resources spent in its entire life cycle (Exploitation of natural resources, pro-
duction, transportation, use, and end-of-life phases) [4]. Our research work focuses on the
energy consumption of CPS in the use phase. These devices consume energy directly from
the electrical grid (e.g. television) or by storing energy in an internal battery (e.g. mobile
phones or laptops). Optimizing a large number of small devices can have a big impact. A
saving of 1.0 Mega-Watt per hour worldwide by saving 0.25 W per device for 4 million
users and these numbers increase as we go to larger scales, as estimated by Hindle in [5].
Energy consumption is also not limited to the energy impact of the device itself, but the en-
tire ecosystem impacted by the usage of CPS (such as networking, servers and data centers,
database storage, etc.).

Figure 1.1: Global number of connected and IoT devices installed base forecast [1]

1.1 Problem Statement

The research community considers energy as one of the major concerns driven by the in-
creasing number of connected devices and appliances. Many studies focused on using
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more green energy sources, while others focused on making changes in the design phase,
scheduling tasks, or encouraging users to accomplish energy-efficient actions through rec-
ommendations. However, we argue that previous literature suffers from certain weaknesses
by being applied in specific scenarios or environments, on a limited number of devices, or
a limited number of metrics. In the following, the different problems identified throughout
this thesis and the motivation to target them are detailed.

Increasing power consumption in CPS

In recent years, the power consumption of CPS has been increasing due to the increas-
ing number of connected devices. In addition, traditional appliances and devices became
”smart” or connected by adding circuits that allowed them to compute, communicate, and
store data. Despite the efforts to reduce the energy consumption of some devices by intro-
ducing energy-conserving modes (e.g. televisions). The savings are minor and limited to
the device itself without considering the full environment on a holistic approach.

Non-consideration of several contextual green metrics in CPS management

A large number of devices in a CPS produces a large amount of metrics that could poten-
tially help to achieve energy efficiency of the entire system. This large amount of data is
produced by Machine-to-machine (M2M) or Machine-to-Human (M2H) interactions. This
data is collected from different layers of a CPS. Contextual data is not only collected from
sensors but also by other layers and components of the system, namely, communication,
processing, control, and application. For example, occupancy detection can be done in
many different ways based on the available data, namely using a presence sensor, camera,
mobile phone location, WiFi network utilization or more than one data source are com-
bined to deduce the information. A variety of the data generated by different smart devices
have the potential to be exploited from an energetic point of view.

Lack of flexible power management approaches for heterogeneous environments

Beside the limited exploitation of contextual green metrics, the computing community does
not share a common approach allowing to consider the heterogeneity of devices in CPS
environments in order to deal with power management. Different types of devices are
deployed in these environments such as sensors, actuators, embedded systems, appliances,
and others. Each of these devices is unique regarding the task it is intended to accomplish.
They use different communication protocols, architectures, and components. In addition,
they are usually provided by different vendors. Flexibility is also an essential characteristic
because new devices are introduced, others are removed, or updated depending on the needs
which can also be variable. In addition, different users could have different behaviors in the
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same environment. Therefore, any considered solution for power management should be
easily extensible to deal with the heterogeneity and flexibility present in CPS environments.

1.2 Research Objectives

The aim of our research work is to develop a power management approach that reduces
the total energy consumption in CPS. We focus in this research on collecting, sharing,
and analyzing data from the system in order to adapt accordingly. The main three research
objectives (RO) addressed throughout this thesis are summarised as follows:

• RO1. Identify metrics affecting energy consumption from different layers of a
CPS environment
In a smart environment, a large variety of connected devices (e.g. Smart appliances,
Information and Communications Technologies (ICT) devices, IoT devices, ventila-
tion systems, lighting systems, networking devices ...) produce a large quantity of
data. These are present in many layers of the environment. For instance, some data
are contextual and others are related to the system. Contextual data are produced as
a result of the interaction of actors with the environment. System data are usually
collected from the system itself (processing, networking, sensing, actuating, applica-
tions running on devices ...). The definition of relationships between these metrics
creates a new level of knowledge for an advanced contextual understanding of the
environment.

• RO2. Estimate real-time power consumption of any device in a connected envi-
ronment accurately
The knowledge of devices’ power consumption is an essential need to quantify en-
ergy leakage and saving. However, heterogeneity of connected environments leads
to a challenging power consumption estimation due to the variety of metrics and en-
ergy concerns per device. Nowadays, the real-time power consumption of a device
in a connected environment is unknown unless a hardware wattmeter has been con-
nected to this device or a power model has been previously generated for it. However,
changes in the environment by the introduction of new devices and changes in ex-
isting devices (such as hardware or software updates) have an impact on the power
of each device. Hardware approaches are costly financially, scale poorly, and require
time-consuming physical setups for each device. Software approaches are quickly
out-of-date due to updates and scale poorly. For these reasons, it is necessary to esti-
mate the real-time power consumption of devices using a method that will be able to
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understand changes in the environment. A such technique will allow the calibration
or generation of power estimation models when necessary.

• RO3. Identify actions that can be applied depending on devices states and met-
rics to optimize the total energy consumption
A large number of devices integrate sensors allowing them to produce data describing
the state of a device or the behavior of a person. In addition, a large number of these
devices are equipped with actuators accomplishing tasks impacting the environment.
These elements could allow the implementation of autonomous feedback control
loops for power management allowing easy integration and understanding between
devices in order to achieve higher energy savings. This approach for power manage-
ment should guarantee the application of flexible adaptations and re-configurations
during run-time to reduce energy consumption at holistic level. It could use the ac-
tions as outputs of a smart agent and data (including states and power measurements)
to be the feedback from the environment.

1.3 Motivating Scenario

1.3.1 Context of a Smart Home

A smart home is a rich environment with different types of energy consuming connected
devices and it represents a suitable motivating scenario for this research work, as seen in
figure 1.2. The focus of this thesis is to pass from local energy optimization to holistic
energy optimization in flexible and heterogeneous environments. In such context, several
heterogeneous devices are connected using different protocols and sharing all kinds of data.
They interact with each other to accomplish specific tasks, in addition to their interactions
with the humans which adds an extra level of complexity to the system. This environment
contains devices that produce various data types ranging from physically measures values
(e.g. temperature) to software-related data (e.g. CPU utilization by a specific software).
The smart home environments are scalable as the number of devices is limited, even if
they can be quite heterogeneous having different types, interfaces, vendors, etc. However,
these environments are dynamic as changes can occur to existing devices such as software
updates, hardware updates, location changes, etc. Within this scenario, each device has its
power consumption that needs to be estimated or measured in order to be able to estimate
global energy consumption and implement the appropriate power management strategies.
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(a) (b)

Figure 1.2: Smart Home Environment (a) local energy optimization, (b) holistic energy
optimization

1.3.2 Smart Home Scenario

The number of possible scenarios and combinations of devices running together in the
smart home environment is unlimited. Therefore, we propose a concrete scenario around
equipment in smart homes : we assume an environments with a variety of connected de-
vices including a smart TV, an media box, LED light bulbs, a home occupant wearing a
smartwatch (such a device can provide significant information mainly about the user activ-
ity), and a light sensor mounted on a Raspberry Pi (RPi). Energy-saving modes are present
in some of these devices. For example, the smartwatch screen turns off unless the user is
looking at his watch or turns his wrist, and the TV turns off or goes to sleep after a period
of inactivity. In such scenario, devices do not exchange data to seek higher energy savings
and the power consumption of these devices is unknown unless connected to a hardware
measuring equipment.

However, we know that power is affected by many metrics (e.g. TV power is affected
by its brightness, LED light bulb power is affected by brightness and color, and a media
box power is affected by decoding high quality streaming videos). In addition, when a
device exchanges data collected from its sensors to the entire system, power can be esti-
mated for each device and more interesting adaptations are accomplished on a fine-grained
level leading to holistic energy optimization. Power management is accomplished while
ensuring user comfort: reducing LED and TV brightness, reducing the streaming qual-
ity, checking user’s behavior and acting accordingly, and estimating and share the power
consumption of a device.
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1.4 State of the Art of Related Work

A large number of existing studies have examined energy management in ICT and CPS.
These studies have been thoroughly reviewed and the detailed state of the art review is
presented in chapter 2. In order to better analyse these proposals, power management
solutions in CPS and ICT have been categorized as follows:

Design and simulations: These techniques are based on reducing energy consumption
during the design phases of a device or system. It can take the form of using newer tech-
nologies, making changes in the architecture or design of the system [6, 7, 8, 9, 10, 11], or
using simulators [12, 13, 14] to study the behavior of a component before putting it on the
market. It aims to raise a device’s efficiency while reducing its power consumption.

Scheduling: That consists of changing the time slot when a specific task is executed. The
change in the time of execution of a task is usually done to benefit from energy production
when it is greener [15], better energy efficient execution time slot [16], or during the ab-
sence of users [17, 18]. In addition, scheduling could have a target of detecting unused de-
vices to change their operating mode [19, 20, 21]. This approach is usually implemented in
data centers [22, 23, 24], Wireless Sensor Network (WSN) [25, 26], smart homes [27, 28],
and IoT [29].

User choice and recommendation: As seen in [27], user behavior has a direct impact on
energy consumption. These approaches are based on encouraging users and recommend-
ing them to take actions that reduce energy consumption. It also includes raising awareness
among users about their consumption by showing them visual information and notifying
them. Most of viewed solutions focus at individual level [30], enterprise level [31], and
community level [32]. In addition, others used games to show users their energy consump-
tion [33, 34, 35].

Adaptation and reconfiguration: These approaches are based on the ability of a system
to change its initial configuration by tuning some parameters allowing it to adapt to changes
that take place during run-time. It’s usually based on a finite number of cases that were
predefined during design time [36] or multiple predefined operating modes [37, 38]. Other
solutions propose autonomous systems that can use machine learning techniques and build
knowledge bases [39].

Power supply/demand: Power demand changes regularly with time, and so does the
power supply, especially with renewable energy such as photovoltaic cells and wind
turbines. Providers need to match their power production with the demand to be as
efficient as possible [40]. Many methods are used such as predicting the power needed
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at a certain time based on historical records [41], balancing available power supply
and demand [42, 43] or storing energy when it is available that is the cape for electric
vehicles [44, 45].

Migration: These techniques are usually used alongside virtualization in large distributed
data centers [46, 47, 48, 49], distributed services in a WSN [50], or even corporate environ-
ments [22]. Virtual environments can be created to migrate easily an application from one
server to another that is less loaded. In short, it is based on changing the place of execution
of a task.

In order to evaluate the previous solutions, several comparison criteria have been de-
fined including the level of autonomy, system flexibility, general-purpose of an approach,
and heterogeneity. These criteria can be defined as follows:

Level of autonomy: The five maturity levels of autonomy defined in the Autonomic Com-
puting framework proposed by IBM [51] will be used to classify related work. Level 1:
Manual level: users perform all the management functions. Level 2: Monitor level: data
from the managed resources is collected helping users to minimize the time needed to col-
lect and understand information. Level 3: Analysis level: technologies are used to provide
a correlation between metrics. It recognizes patterns, predicts the best configuration, and
offers advice about potential actions to the user. Level 4: Closed loop level: environment
can automatically take actions based on the available information and the knowledge about
what is happening in the environment. Level 5: Closed loop with objectives level: high-
level user-oriented business policies control the infrastructure operation in an automated
manner.

System flexibility: System flexibility is the ability of the system to handle a dynamic envi-
ronments. This includes the addition, update, and removal of devices or software/hardware
components changes, as well as in the network topology.

General-purpose: Determines the genericity or specificity of solutions regarding potential
application domains. It provides a glance if the approach can be easily applied to any
domain and if it is still efficient under different circumstances and different devices.

Monitored layers and metrics: The structural levels of the CPS where the solutions are
developed and where the metrics are collected. It provides an understanding of the layers
on which the optimization is achieved and if it is limited to these layers.

Heterogeneity: It is defined by the presence of a variety of hardware and software frame-
works that use different protocols, components, and architectures and that may be provided
by different vendors.
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Table 1.1 compares the state-of-the-art categories using the previously mentioned cri-
teria. As summarized in this table, none of the studied solutions could be classified as
belonging to the 5th level of autonomy and the ones categorized as levels 3 and 4 do not
satisfy all the properties of these levels. Moreover, the flexibility is highly limited to the de-
vices and the environment in which they were developed, therefore, they are mostly domain
specific and seem complex to implement in another domain. Monitored layers seem also
quite limited and plenty of metrics are not considered. Beside the absence of flexibility in
the aforementioned works, implementations were conducted on specific types of devices.
Therefore, a lack of heterogeneity could be observed. These drawbacks motivate the needs
to continue the research in order to find a better approach that can consider the previously
mentioned problems while respecting the defined criteria.

Table 1.1: State of the art categories comparison

Approach
Level of

autonomy
System

flexibility General-purpose
Monitored

layers
Environment
heterogeneity

Modeling 1 None Low Low Low
Scheduling 3-4 Medium Low Low Low

User recommendation 1 Low Low Low Medium
Adaptation 3-4 Medium Medium Low Medium
Migration 3-4 Medium Low Low Low

Supply/demand 2-3 Low Low None Medium

1.5 Proposal

Our proposal intends to facilitate power management in CPS by providing (1) an archi-
tecture based on the MAPE-K (Monitor, Analyse, Plan, Execute, Knowledge base) auto-
nomic computing approach [52], as seen in figure 1.3, (2) an automated approach to em-
pirically generate power estimation models for a large set of devices, and (3) an automated
knowledge-based reinforcement learning agent generator to choose the optimal actions to
be executed. Any changes or updates that occur in the environment are considered leading
to the calibration of estimation models and reinforcement learning agents. Moreover, our
proposal considers all the previously defined criteria. The adoption of a MAPE-K approach
guarantees non-functional capabilities including self-management, self-configuration, self-
optimizing, self-healing, and self-protection. In addition, it guarantees functional capabili-
ties covering the data collection, monitoring, analyzing, planning, executing, and actuating.
Our architecture approach is divided into 5 main components defined as follows:
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Figure 1.3: MAPE-K architecture

Monitor: Collects a collection of useful data from each of the previously enumerated lay-
ers in the CPS, to identify the energy-related leakage. Data can be captured using APIs,
software estimation tools, physical sensors, or other means. In the monitoring component,
data is cleaned, filtered, and aggregated. Collected data could be related to the context,
communication, processing, software, or states of the devices. It selects the significant
features, correlates, and organizes them as symptoms that are sent to the analysis entity.

Analyze: It is the entity responsible for exploiting and processing the collected data re-
ceived from the monitor as symptoms. Furthermore, finds what is making the system con-
sume more and what can be done to reduce this consumption, based on high-level manage-
ment strategies. It classifies symptoms and processes them to deduce a diagnosis.

Plan: Proposes a set of actions that needs to be achieved to accomplish the high-level
goal related to energy consumption. It is responsible for planning what should be changed
to reduce the energy of the system and sending this feedback signal back to the CPS to
execute it. Short-term and long-term plans are elaborated. They are highly based on the
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change request sent by the analyzer and the knowledge repository.

Execute: Will receive the set of actions and sends them to the effectors. Effectors will
accomplish specific tasks in the environment. Actions accomplished on a device can be
either behavioral (e.g. changing the frequency of sharing data) or structural (e.g. changing
the operating mode of a device to sleep).

Knowledge-Base: Exchanges with all the previously cited entities with awareness abili-
ties. It is where most of the contributions of this research work were developed. It includes
models to estimate the energy consumption of the devices, metrics ontology model (which
provides cognitive capabilities that allow finding the relationship between the metrics),
power consumption, and actions. It also included machine learning techniques that find the
most suitable adaptation to minimize energy consumption.

Figure 1.4: Knowledge-base architecture

In particular, our research work focuses on the shared knowledge base of the auto-
nomic computing architecture. Figure 1.4 shows its architecture divided into 4 main com-
ponents:

Power Modeling and Estimation: Automatically estimates the power consumption of a
device based on the collected metrics without the constant need for measurement hardware.
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Knowledge-base: It is used to understand the relationship between metrics from different
devices, power consumption, and actions that can be applied. This model correlates the
metrics and the potential actions to be carried out by any new device introduced to the
environment. The use of an ontology guarantees the inclusion of heterogeneous devices
and the general-purpose of the approach.

Intelligence: It has the central role of identifying the best energy-efficient action that
should be taken and its impact on the entire system while respecting user satisfaction. It is
composed of (1) an agent generator that creates a Reinforcement Learning (RL) agent based
on the knowledge received from the knowledge-base component, and (2) a decision-making
model that receives the metrics and the power consumption to choose the best action that
can be taken to save energy. Together, they guarantee high flexibility and automation levels.

Data Repository: A collection of databases that includes previously collected metrics,
applied actions, power consumption, power estimation models, and potential external data.

The detailed solution proposal and architecture are presented in chapter 3

1.6 Contributions

The following paragraphs summarize the three main contributions of this thesis:

1.6.1 Energy Management Approach Architecture

The first contribution of this thesis is the architectural design of our energy management
approach using a Model-Based Systems Engineering (MBSE) methodology. The proposed
architecture for energy management ensures that our approach is holistic and can manage
a variety of devices in an evolving environment. This contribution allows the definitions of
functional and non-functional requirements in a traceable manner for proper validation at
the end of the development process. It documents all decisions and choices made during
the development, in particular, the logic behind using ontology and reinforcement learning
techniques. We start with an operational analysis defining the needs of different actors
and the system. The system architecture level aims to define the functionalities required
the satisfy the operational needs identified in the previous phase. The third step focuses
on a logical architecture building a detailed component-level architecture of the system.
Finally, the physical architecture aims to pass from an abstract logical architecture to a
representation of how the system will be developed and built on the implementation level.
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1.6.2 Automated Power Estimation of Heterogeneous Devices

The second contribution of this thesis is an automated architecture and approach to em-
pirically generate power estimation models for a large set of devices. This contribution
allows conducting automated benchmarks to collect power data and metrics, generating
or updating accurate power models, and allowing software tools to query and retrieve the
most accurate and up-to-date power model of a specific device configuration. It is divided
into two types of components: clients and servers. The client’s role is to collect software,
hardware, and power metrics of run-time and real-world workloads. The collected data
will then be shared with the server. The latter’s role is to generate (train and validate) ac-
curate and always up-to-date power estimation models using machine learning algorithms.
The proposed approach to generate power estimation models is implemented, tested, and
discussed for multiple device configurations.

1.6.3 Automated Energy Management Framework

The third contribution of this thesis is an automated knowledge-based reinforcement learn-
ing energy management framework. It is based on the extension of the Smart Applications
REFerence (SAREF) ontology to allow the integration of a variety of devices in the rein-
forcement learning loop. It defines metrics, states, actions, power consumption, and other
information needed to apply reinforcement learning. Relations between devices is also
defined to increase the context understanding ability of the system.

In addition, this knowledge is used by the automated reinforcement learning agent
generator to create a compatible decision-making agent. It can adapt to any environment
and uses the ontology to provide the required knowledge to understand what are the metrics,
power consumption models, and actions associated with each device, in addition to the
understanding of the relations between different devices. The generated agent then takes as
an input the metrics of any environment and chooses the best actions to reduce the power
consumption at holistic level based on energy optimization policies and rewards.
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1.7 Structure of the Thesis

The remainder of this thesis manuscript is organized as follows:
Chapter 2: State of the Art: This chapter reviews current research approaches and

directions in energy-aware CPS. A systematic review to analyze and compare state-of-the-
art approaches, based on their architectural design and energy-related factors, is proposed.

Chapter 3: Energy Management Approach Architecture: This chapter presents a
requirement analysis of the proposed problem. The design and architecture of the proposed
approach, aimed to reduce energy in CPS are also presented.

Chapter 4: Automated Power Estimation of Heterogeneous Devices: This chap-
ter presents the second contribution accomplished during this thesis. It presents a study
of power measurement and estimation models in computing devices. It also proposes an
automated architecture and approach to empirically generate up-to-date power models for
a large set of devices.

Chapter 5: Automated Energy Management Framework: This chapter presents
the third contribution accomplished during this thesis. It presents the models used to define
the relationship between devices by defining their metrics, states, actions, and feedback
forms. In addition, a proposal for an automated reinforcement learning agent generation is
presented, having the goal of increasing energy efficiency in an environment with a large
number of heterogeneous devices.

Chapter 6: Validation and Discussions: This chapter validates the proposed ap-
proach with the development of two real-world scenarios. The experimental setup is de-
scribed, then, the results and the validity of the approach are discussed.

Chapter 7: Conclusion and Perspectives: This chapter summarizes and concludes
the thesis work and contributions previously presented. Finally, the vision for upcoming
research directions is shared.

Figure 1.5: Structure of the thesis
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Chapter 2
State of the Art
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2.1 Introduction

Recently, research interest in IoT and CPS approaches aiming to satisfy non-functional
properties is increasing, in particular around energy consumption and sustainability of de-
vices usages. More sustainable solutions are proposed lately (such as recycled appliances,
using renewable energy sources, or promoting energy efficiency standards [53]). Even
though sustainable and renewable energy sources are more and more used, such as wind,
solar, and ocean energies, the resulting total consumption is continuously increasing. This
is causing a significant ecological impact mainly due to its carbon emissions. Meanwhile,
some connected objects could have the potential to monitor and control the appliances
through a variety of manual and automated approaches, allowing the control and optimiza-
tion of their energy consumption. As CPS integrate computing devices (such as sensors and
actuators, IoT devices, mobile, and connected devices and appliances), and interact with
the physical environment (such as homes and buildings, human end-users, animals, and
natural phenomenons), the assessment of their energy consumption and its optimization is
a challenging task. Our understanding of energy consumption in CPS is limited to electrical
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devices, and their efficiency is mostly studied independently of their usage and interaction
with the environment. However, these devices could be considered smart as they could take
decisions based on the knowledge they have of the CPS itself and its environment. This
knowledge can be pre-configured by users, administrators, or manufacturers, and can be
acquired and improved using machine learning techniques such as reinforcement learning.
In such environments, the energy consumption of devices is, therefore, more complex to
manage because of the interactions between different components. This complexity is due
to additional layers of information that need to be addressed and taken into consideration
when applying energy optimization techniques. A lot of data can be collected from these
extra layers of the system. Thus, a higher understanding of the environment and potential
for energy optimization per layer is required. Different layers and architectures of CPS are
reviewed in the next section.

2.2 Cyber-Physical Systems

In this next section, we provide a definition of the Cyber-Physical Systems (CPS). Then,
we identify different architectures and layers that compose a CPS. After that, we identify
the impact of energy in ICT and CPS. Finally, we summarize some limitations of existing
CPS architectures.

2.2.1 Cyber-Physical Systems Definition

A CPS is defined as a smart system composed of interconnected devices defined by com-
puting and physical processes [54]. These processes run over physical components, and
over systems with limited resources in variable temporal and spatial conditions [55]. Com-
putational systems main objective is to control and interact with physical processes via
touch-points (sensors and actuators). CPS are characterized by the significant interaction
between networks of physical and computational components. In addition, human interac-
tion and behavior in such environments have an important impact on the system. It is seen
as an intelligent, real-time, adaptive, predictive, and distributed feedback system. It is char-
acterized by its interoperability and scalability because it is implemented in heterogeneous
environments as seen in figure 2.1. A CPS can be considered as a system of systems. These
systems are usually self-managing and self-optimizing systems [56]. This kind of systems
are cross-domain oriented applications, such as in the fields of healthcare, smart homes, au-
tonomous automobiles, industry, and many more [57, 58, 59, 60]. An example of this kind
of systems could be autonomous vehicles, equipped with sensors and actuators. In order to
sense and understand its environment, make its own decisions, and execute these decisions
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using the actuators. Healthcare robots, medical monitoring devices, industrial robots with
the monitoring IoT devices in factories, and smart home management systems are all good
examples of CPS. A CPS does not only have great economic and social impacts, but it can
have an important energy footprint, and could be optimized in order to reduce the global
consumption.

Figure 2.1: Example of devices found in a CPS

2.2.2 Cyber-Physical System Architecture Review

ICT are the different components and infrastructure that make modern computing possible,
it includes hardware devices, communication technologies, applications and systems that
shape the digital world [61]. ICT have been modeled and specified with standards to de-
scribe their functions such as the Open Systems Interconnection (OSI) model that provides
an abstract framework to describe the communication functions of a computer system [62].
However, these standards do not cover all the specificities of heterogeneous physical and
logical components of CPS. We believe that there is a need to provide a standardized refer-
ential model for CPS, in order to specify their functional and non functional properties and
in particular integrating the energy dimension. In this section, we present previous research
work offering architecture proposal for CPS from a structural point of view.

In [63], the authors presented a survey of system integration in the context of Industry
4.0 using the 5 C integration levels (Connection, Communication, Coordination, Coopera-
tion, and Collaboration). They also identified the most common challenges around Industry
4.0 as follows: the complexity of planning, standardization, security, privacy, heterogene-
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ity, and integration. Creating standardized CPS architecture may solve these challenges by
allowing all entities to apply the 5 C easily.

The authors in [64] identified challenges facing the CPS. They mentioned the chal-
lenges of interoperability, system distribution, real-time concern, component modeling,
testing, optimization algorithms, safety concern, and heterogeneous data. One of which
is the need to develop standardized architectures while taking into consideration the high
dependency between the software and hardware components. Any proposed architecture
should respect the three abstract layers of a CPS: Computation, communication, and con-
trol (3C). The abstraction of these layers grants the integration and interoperability of het-
erogeneous systems together. The authors in [65, 66, 67] also considered CPS as an inte-
gration of computation, communication, and control (3C) technologies. The concept of 3C
is considered by some researchers as the backbone architecture of CPS. In [65] a CPS is
defined by three main components: a physical, network, and a distributed cyber systems,
in addition, it operates on perception, transmission, and application layers. [68] proposed a
service-based CPS to deal with the challenge of difficult computation capabilities on con-
nected devices with limited resources. Three tiers architecture was essential to build this
system. An environmental tier collects the information gathered from the physical world to
the control tier that manages the physical components and services. It identifies the appro-
priate services, and ensures the dynamic composition of new real-time services based on
the need. Finally, the service tier provides reusable functionality as cloud computing and
micro-services. In [69], the authors presented an environmental monitoring CPS based on a
three-layer architecture. The bottom layer is composed of several connected sensor nodes
distributed over a wide area. The middle layer of the CPS receives data from the lower
layer and stores it, analyzes and takes decisions. The top layer provides web-services for
clients in the form of Software-as-a-Service to interact with the system. A framework for
analyzing cyberattacks against CPS is presented in [70]. Vulnerabilities such as taking
complete control, damaging, stopping the functionality, disrupting, and degrading the sys-
tem are divided into three logical layers. Physical layer (Sensors, actuators, and system
dynamics), control layer (Signals from physical layer and control algorithms) and cyber
layer (traditional ICT components like bus, processor, memory ...)

The authors in [57] reviewed previous models and proposed a four layers architec-
ture based on Service Oriented Architecture (SOA) that respects real-time control, secu-
rity, and integrability characteristics. Perceive tier includes environment awareness and
pre-processing, data tier stores and processes the data to make it homogeneous. Service
tier controls the whole system by scheduling tasks, making decisions, and provide API for
consumption. Finally, execution tier interacts with the environment directly using physical
actuators or with the system itself. Intelligent transportation, agriculture, and medical ap-
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plications were introduced as potential domains for this architecture. In [18], a distributed
public street light adaptation system was proposed to save energy and took into consider-
ation new performance indicators as power reduction, CO2 emission reduction, and ser-
vice usefulness. This system was based on the following layers: Capillary networks layer
includes heterogeneous wireless sensors and actuators. Network backbone layer assures
homogenization, reliability and data transformation. Enabling technologies layer provides
data mining and infrastructure management. Services and applications layer exploits the
information gathered with an abstraction level to reuse these services. The authors in [71]
defined a general architecture of a medical CPS and discussed vulnerabilities regarding
secure storage, networking, and computation. Data acquisition layer composed of battery-
powered wireless wearable sensors for the collection of patients data. Data aggregation
layer acts as a gateway that collects the data from the previous layer, aggregates them, and
sends them to remote locations for further processing. Cloud processing and storage layer
achieves storage, processing, and analytics for decision making and predictions. Action
layer executes the decisions actively or passively (With or without physical interaction).
The authors in [72] proposed an agricultural management system architecture based on
their findings of the four major layers. The physical layer interacts with the environment
and collects data. The networking layer ensure the transition of data throw wireless com-
munication. The decision layer stores, and analyses the data to provide decision-making
graphical tools in the application layer. This provides the knowledge to the experts throw
dedicated applications and web services. This CPS is not autonomous, its functionality is
highly dependent on the farmers’ interpretations and interventions.

Table 2.1: Comparative table of distinct CPS layers

S:Sensing, C:Communication, A:Actuating, P:Processing, Se:Services, Co:Control, SA:Sensing and Actuating

Article Domain Layers S C A P Se Co SA

[64] General 3 x x x
[68] General 3 x x x
[69] General 3 x x x
[66] General 3 x x x
[65] General 3 x x x
[70] Security 3 x x x
[57] General 4 x x x x
[18] Smart city 4 x x x x
[71] Security 4 x x x x
[72] Agriculture 4 x x x x

We identify the distinct layers of a CPS for each of the literature architectures. The
main identified layers in CPS are: Sensing, Communication, Actuating, Processing, Ser-
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vices, and Control. In some architectures sensing and actuating are combined into the same
layer. Table 2.1 summarizes our layer categorization per approach, the domain in which
the architecture was proposed, and the number of considered layers.

This section showed that many researchers created architectural models of CPS by
dividing them into layers especially in the domain of security and attack protection [70, 71,
73]. Some adopt the approach of physical architecture separation of layers as in [71] where
each layer is identified by one or many components that are physically independent. Most
approaches adopt a higher abstraction with the separation of functionalities to identify the
layers remarkably found in [18, 64] where the function accomplished on each layer makes
it identifiable, thus, two tasks operated by the same component can lead to the identification
of two layers.

As seen in figure 2.2, the most common layers of CPS are communication, processing,
services, control, sensing, and actuating in most architectures. These layers are not fixed
and can be changed or redefined as more granular layers, such as separating the software
from the hardware it is running on in the processing layer. For example, the sensing layer
is referred sometimes as perception layer.

Figure 2.2: Identified CPS layers

The analysis of these works allows us to conclude that from a structural point of view,
there is no unique architecture to identify a CPS. Moreover, previous research papers do
not consider energy as a relevant property to be specified and taken into account. Similar to
security concerns, we can identify energy properties by layer. We believe that this kind of
non functional property needs to be considered in order to be able to optimize the structure
and behavior of CPS in an effort to cope with energy consumption reduction goals.
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2.2.3 Energy in ICT and CPS

Although developers do not usually think about energy while designing a system, energy
management has always been a concern in ICT. Power saving solutions are found on in-
dividual devices such as smartphones and laptops notably since they run over batteries.
In these devices, energy affect directly user experience but when users are not directly
impacted, energy is seen as a non-relevant concern. Most of these solutions are based
on making devices more efficient and reducing idle power consumption by using various
power plans that make actions as turning off their screen, CPU frequency modification, and
others. They also include different operating modes such as active, sleep, hibernate, and
off. Energy management is also found in data centers due to the rapid growth of cloud
computing and micro-services especially with the increasing need for new infrastructure,
higher storage, and networking capabilities. For instance, in some countries such as Den-
mark, data center electricity consumption is expected to increase to 15% of total electricity
consumption by 2030 [74].

The increasing number of ICT and CPS devices used by a person in everyday life leads
to concerns about saving the energy on each system that can lead to better performance and
reduce energy on a large scale. At the same time, this could offer an opportunity to gather
information and use it for automating energy management. In ICT, energy optimization is
limited to a certain type of devices, such as computers and smart phones, that usually have
a power manager acting locally. Their adaptations are logical and do not directly impact the
physical world and are not directly impacted by the physical world. With the integration
of the CPS in our daily life, physical activities can be detected and predicted uncovering
potentials of energy optimization in CPS. Energy management in CPS could be even more
efficient than traditional ICT due to the understanding of the environment where they are
implemented. Processing collected data allows them to reduce the consumption of devices
that used unnecessary energy. It is important to note that the energy needed for accomplish-
ing a task in the physical world needs usually significant amounts of energy. ICT and CPS
can also work accordingly to ensure the best energy optimization. For example, mining the
data produced by a user’s laptop or phone leads to the knowledge of his geolocation, hence,
turning off his home lights when he is away.

In the previous section, we defined CPS and reviewed the state of art of different
architectures of CPS. We found that many papers defined the CPS layers, but until today
there is no general unified architecture or standard framework to define it. Therefore, we
consider processing, services, communication, control, sensing, and actuating as the main
layers of CPS.

The remainder of this chapter presents the research protocol and summarizes different
energy optimization approaches in CPS. Some of them optimize the energy consumed by
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the CPS itself, while others use the CPS to reduce the energy of a wider entity such as
buildings. We include both design-time and run-time approaches. We also include some
potential software solutions that are already applied in ICT but not yet widely used in CPS,
as we believe they have an impact on its overall energy consumption.

2.3 Energy-aware Cyber-Physical System Approaches

2.3.1 Survey Protocol

The research method adopted in this survey follows the process defined in [75]. First,
we identify the research questions. Then, we perform a manual and an automated search.
Next, we remove the duplicates and apply inclusion and exclusion criteria. After that,
we make our analysis and comparison based on the CPS layers and defined comparison
criteria. Finally, we discuss the found results. The research method process is presented in
figure 2.3.

Figure 2.3: Survey protocol process

Research Questions: The main objective of our review is to identify the existing
research approaches dealing with energy concerns in CPS. In order to achieve this goal, we
first formulated the following research questions:
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• RQ1: What type of approaches is used to deal with energy in CPS?

• RQ2: What are the studied metrics that have an impact on energy consumption?

• RQ3: Studied metrics belong to which CPS layer?

Search Strategy: The search strategy is based on an automated search using a search
string and a manual one in order to include relevant research papers in our survey.

• Automated search: We used SCOPUS, one of the world’s largest and most com-
prehensive scientific databases, to conduct automated searches using the Harzing
Publish or Perish Tool1. To accomplish that we used the following search string:

(cps OR cyber physical system OR cyber physical

systems) AND (green OR energy OR ((energy OR power)

AND (efficient OR consumption OR saving OR management)))

We have limited the number of studied papers to the first 100 found articles while
doing the search query2.

• Manual search: We manually choose research papers published in relevant journals,
conference proceedings, and cited in prior thematic related surveys.

The output of this stage was 128 articles.

Figure 2.4: Article sources and the number of articles found

Study Selection: A study selection was conducted to ensure that the findings are
reliable and informative regarding our research questions. The following describes the
selection process:

• Combination and duplicates removal

1Harzing, A.W. (2007) Publish or Perish, available from https://harzing.com/resources/publish-or-perish
2The search was executed on October 20, 2021.

https://harzing.com/resources/publish-or-perish
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• Inclusion Criteria: i) studies proposing an approach for reducing energy consumption
in CPS, ii) studies published after 2010, iii) studies cited at least one time (except
studies published between 2018 and 2021)

• Exclusion Criteria: i) studies that propose the use of CPS without providing a energy
reduction approach in the CPS itself (especially in power plants), ii) studies that
were not available in full-text or we could not access, iii) studies written in language
different than English.

Inclusion and exclusion criteria can be formulated in as follows:

[(YEAR >= 2010 AND CITATIONS >= 1) OR (YEAR >= 2018

AND CITATIONS = 0)] AND DUPLICATION = FALSE AND LANGUAGE =

"ENGLISH" AND AVAILABLE IN FULL TEXT = TRUE AND SUITABLE TITLE

= TRUE AND SUITABLE ABSTRACT = TRUE

The last stage resulted in 52 primary studies, which we have used for our analysis. The
average number of citations per research paper is equal to 48,5. This list of studies can be
found online3.

Figure 2.5 shows that in recent years there have been an increasing interest in energy
optimization in CPS. Figure 2.4 shows the trend and statistics regarding the sources of the
reviewed publications on energy CPS. Figure 2.6 shows the papers application domains
frequencies. Chosen research papers belong to a variety of domains.

Figure 2.5: The number of articles found by year

3The list of the studies: https://t.ly/rbKe

https://t.ly/rbKe
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Figure 2.6: Studied papers application domains

2.3.2 Energy-aware Cyber-Physical System Review

In this section, we present a literature review of existing research approaches aiming to
optimize and reduce the energy consumption in CPS. During our examination, we could
identify the most common concepts of energy optimization in CPS. The section is di-
vided into sub-sections based on the behavior of a CPS regarding the energy concern. In
each sub-section, we define the concept and cite previous efforts based on it. The most
common approaches in CPS found in the literature review are scheduling, reconfiguration,
contextual-awareness, and user recommendation. Some of these solutions are related to the
general ICT domain but have potential benefits in the CPS environment, in particular those
related to migration, profiling, and software.

Scheduling

Scheduling is one of the solutions to optimize energy consumption in CPS. It consists
of changing the time slot during which a specific task is executed [15]. The change of
time is usually done to benefit from the energy when it is more green, for example, solar
energy during the day. In addition, scheduling has a target of detecting unused devices and
changing their mode between active, idle, sleep, off, and other modes.

IoT devices are usually powered by limited capacity batteries wherefore many ideas
were developed to allow these devices to last longer. The authors in [29] propose that activ-
ity scheduling can increase energy efficiency while maintaining the reliability in addition to
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the transmission protocol choice and the transmission power in an IoT environment. Each
node can choose to switch between standby or active mode as long as it will not affect
the efficiency of the whole system and that it will inform the other nodes. This solution is
based on optimizing energy at the communication layer and at the entire device level while
maintaining sensing.

With the increasing number of connected appliances in homes, the evolution of smart
homes and smart cities, Home Energy Management System (HEMS) were introduced. A
HEMS using ZigBee communication, smart outlets, and lights is proposed in [19]. The
proposed approach minimizes the energy consumed by home appliances during standby
mode, where the smart outlet cuts-off the current from a device consuming below a cer-
tain threshold. Their solution is simultaneous and the waiting time usually needed before
turning off the outlet was eliminated.

The authors in [20] present an architecture for energy monitoring and saving functions
that will encourage users to save electric energy by themselves and also will reduce standby
power automatically. The home energy-saving system is divided into clients that measure
electrical power and powers-off the devices connected to them if necessary and a server
that has the role of monitoring and controlling these clients. This solution operates on the
entire device by cutting-off electricity for unused devices.

Scheduling solutions also exist in ICT environments due to the high amount of re-
sources compared to variable demand. They are proposed to solve the problems of effi-
ciency and availability. SleepServers [22] is a software-based solution that creates virtual
instances of hosts in a work environment. It allows hosts to run in a low power sleep mode
but still be able to respond on the network and even run some applications. This approach
allows to raise the availability and increase usability in sleep states. It is implemented in an
ICT environment and acts on the service and communication layers.

The authors in [23, 16], proposed three control strategies for data centers depend-
ing on the level of coordination between the cyber (computational) and physical (thermal)
components of the environment. They criticize that thermal properties are managed as pure
physical, however, they have cyber and physical characteristics. A baseline, uncoordinated
(divided into two separate optimizing problems one for the cyber component and one for
the physical one), and coordinated (one optimizing problem) strategies are compared. It
also introduced a cyber-physical index (CPI) that helps to choose a coordinated or an unco-
ordinated strategy depending on the amount of workload, servers, and cooling distribution
in the data center. The data center was divided into server, zone, and data center levels.

In [24], a QoS-aware virtual machine scheduling method in a cloud environment
named QVMS. The scheduling problem was defined as a multi-objective optimization
problem: (1) minimize energy consumption, (2) minimize downtime, and (3) maximize
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the resource utilization rate. QVMS uses a Non-dominated Sorting Genetic Algorithm III
(NSGA-III) is used to find the optimal scheduling policy however their optimization re-
sulted in slightly better resource utilization and downtime but the energy was almost not
affected compared to other scheduling methods such as: (1) Benchmarking: move the ap-
plication to the closest physical server using the shortest path algorithm, (2) Energy-aware
virtual machine (VM) scheduling method: move the application to a server that has a higher
performance or lower energy consumption [76].

In [77], an energy optimization approach for manufacturing environments was pro-
posed. It was based on collecting real-time data. This data was used by an energy mod-
eling artificial neural network and a monitoring one the output of these two modules are
compared for scheduling and rescheduling tasks.

The authors in [25] proposed an agent-based routing approach for WSN. It achieved
data aggregation and processing locally, in addition to the selection of the best routing
path for mobile nodes to reduce unnecessary flows between the nodes and optimize energy.
[26] also proposed an approach for reducing energy consumption by considering a data
cleansing algorithm, an energy-saving scheduling algorithm, and a low-power protocol for
communication in a WSN.

In [21], an approach that consists of compromising between the energy efficiency and
the reliability of a system in both shutdown and scale-down scheduling techniques was
proposed. It was divided into two techniques reducing the energy consumption of CPUs:
(1) make a copy of the scaled-down task as a non-scaled task to recover it if necessary, (2)
Specify minimum reliability constant for each task and make sure this value is respected.

Financial cost-effectiveness is the main concern in [28]. A problem of controlling a
pump and scheduling a dishwasher and a clothes washer to minimize the energy cost, while
preserving the desired water level, was solved using a Particle Swarm Optimization (PSO).
It creates models for water and energy demands, water tank, energy production, and prices.
It takes into consideration different variables (like the water need in an average household
and the energy cost in the USA). Finally, it tuned the parameters using PSO to find the
optimal time slot for running each of the appliances.

In [27], an energy management system that creates profiles for the home residents by
taking into consideration factors like their gender, the number of occupants. It also takes
into consideration the human behavior, flexibility region for each task in addition to the
acceptance for the scheduling of each task. The goals of this research were electricity
cost and peak power minimization while satisfying the comfort of the home residents.
In [28, 27, 20, 19] scheduling is done on the entire device as one entity where they are
changing the operating mode of each device based on its usage.

The authors in [17] proposed an occupancy detection and prediction framework using
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a WiFi probe-based ensemble classifier in energy-CPS to minimize the energy consumed by
the cooling and ventilation demands. This system can detect the presence of individuals in
a room or even predict occupancy patterns.Devices schedules followed and were influenced
by the schedules predicted for occupants. Their solution acts mainly on the communication
layer of a CPS.

Occupancy is an important factor in human interaction with the heating, ventilation,
and air conditioning (HVAC) systems because it determines directly the desired mode of
the system as a real-time scheduling. It could affect also other CPS environments like
the city infrastructure as in [18]. IoT devices were implemented to sense the environment
and make smarter decisions by detecting the presence of people or cars and controlling an
infrastructure of street lighting.

Reconfiguration

Reconfiguration is the ability of a system to change its initial configuration by tuning some
parameters allowing it to adapt to changes that take place during run-time [78]. It is usually
based on a finite number of states predefined during design time in contrast to autonomous
systems that can accumulate knowledge with time.

The authors in [37] proposed multi-operating modes for each layer of the system to
increases energy efficiency (33% energy gain). In this approach, the optimization of each
layer is done by the layer itself and there is no interaction with the other layers to share
information about their modes. Sensing layer optimization is done by having active mode
and sensing mode where sensors are still detecting events but the transceiver that sends
data is turned off. They found that the power consumption of the communication layer is
high and can be divided into two ranges of transmission speed. For a speed lower than 10
Gbps, active and low power idle modes (Unable to transmit or receive data) are used. If
the speed is higher than 10 Gbps, the energy cost of transition between modes is high. A
fast wake intermediary mode was introduced to solve this issue (able to transmit but unable
to receive data). Computation and control unit changes its frequency to create 4 operating
modes: high-performance (highest frequency), low-performance, idle, and napping modes
(Lowest frequency). Their paper did not include the used frequency values. Actuators are in
sleep mode by default, they switch temporarily to active for accomplishing an action. Their
proposed solution optimized the energy on the sensing, communication, computation, and
actuating layers individually.

The authors in [36] present an energy-efficient reconfiguration tool built on Raspberry
Pi in an intelligent transportation scenario. They identify energy-consuming concerns at
design time, analyze configurations and variants, create a file containing all the possible
configurations and the consumption of each of them, selecting initial configuration, and
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reconfigure at run-time according to the context. It is based on the aspect-oriented pro-
gramming by using the separation of concerns and adapting the configuration of each con-
cern. For example, the compression algorithm can change during the run-time based on
the size of the message that needs to be sent. In this solution, energy can be optimized on
many layers by changing parameters based on the concerns mainly on the sensing layer
(monitoring concern) such as sampling frequency. Other parameters also affect the power
consumption on the services layer (software concern) such as compression protocols and
on the communication layer (networking concern) such as exchange protocols.

The authors in [38] ensured energy optimization while satisfying the user comfort by
proposing a smart zoning multiple-mode feedback system in a smart building based on the
usage of each room, its orientation, and its occupancy. Each zone can be in normal, pre-
cooling, or power off mode. The HVAC set points are configured dynamically in each room
considering the indoor state (temperatures, occupancy schedule, availability of renewable
energy) and outdoor state (weather conditions, weather forecasts). Their solution was able
to save 15% of the energy while testing it on EnergyPlus [79].

In [80], an energy-efficient large-scale data collection and correlation technique was
proposed. Their approach is used in an environment having sinks and correlation regions,
it consists of changing the size of the region based on the distance between the latter and
the sink based on the residual energy of the node. If the region is close to the sink then
the region is increased, on the contrary, if the distance is far, the region is decreased. The
authors focused on the energy used by the network layer in large data exchange systems.

The authors in [81] proposed a cloud-terminal-based CPS to reduce energy consump-
tion in machining processes. The proposed architecture contains 4 layers that summarize
the functionalities of the approach: machine level (raw data is collected using sensors),
data level (data storage/management and prediction analysis is done), decision support
level (contains optimization services), and control level (data presentation and on-board
physical execution using controllers). The decision-making process was based on the PSO
using GPU.

In [39], a machine learning energy manager for hybrid electrical vehicles (has an inter-
nal combustion engine and an electric motor) was proposed. A nested reinforcement learn-
ing approach was adopted where an inner-loop was responsible of choosing the electric
and fuel engines to minimized the fuel usage, while the outer loop was in charge of mod-
ulating the battery health degradation. However, the impact of the reinforcement learning
technique used was not considered.
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Migration

Large distributed data centers also tackled the problem of energy efficiency by the use of
VMs alongside with migration techniques [46].

The authors in [47] proposed the use of workload consolidation and VM migration as
a way to minimize the energy of ICT equipment in a smart building. Migration is usually
done for the processing and storage layer. Alongside their solution, they also proposed the
necessity to use sustainable equipment like new lighting technologies by using LED lights,
and the energy source using Solar PhotoVoltaics.

In [48], VM resource utilization (CPU, memory, and network) are monitored and es-
timated, overloads and underloads situations are detected, and dynamic VM consolidation
through live migration is performed.

In [22], a light image of a computer plays its role on the network and maintains the
functionality as if it is awake but consumes as much as if the PC is on sleep mode. This
showed that 60% of the energy used by PCs in enterprise environments could be saved
while maintaining user experience and computers’ availability. Migration and resource
sharing solutions may have potentials in CPS.

[49], proposed a live virtual machine scheduling in data centers in the form of a trade-
off between performance and energy. A joint model for energy consumption and perfor-
mance degradation of VM migrations was formulated. The method can be divided into
three steps, (1) Identify the physical machine that has idle space for migration, (2) migra-
tion strategy searching to identify which VM to be migrated and to which machine, (3)
identify the global scheduling strategy for all running VMs.

The authors in [50] proposed a relaxation-based algorithm for services replication
in different nodes based on the stream flows and their occurrence rate aiming to reduce
the communication energy between nodes in a WSN environment. The problem was for-
mulated in the form of mixed-integer linear programming. Their algorithm chose which
services should be deployed on which node and scheduled the flow in an optimal way.

Modeling and Simulation

System modeling is the process of conceptualizing abstract models and designs of a system.
It allows respecting several requirements and dimensions of a system. It defines entities and
the relations between them that give a comprehensible understanding of the functionality
of the whole. System models aim to support analysis, specification, design, verification,
and validation of a system [82]. A simulation is a method for implementing a model for
validation, integration, verification, and limitations detection purposes [83]. Therefore,
some studies aim to raise a device’s efficiency while reducing its power consumption by
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making changes in the design phase by modeling and simulating a system.

[84] showed that software engineers care about energy however, they are not success-
ful due to lack of necessary information. It also proposed that the energy concern exists
during different stages of software development. For instance, during the requirements
specification, energy optimization is often seen as a threat to performance. During the de-
sign, developers do not consider energy scenarios due to the lack of scenario-aware tools.
Ignorance of new energy techniques, the need for fine-grained tools for the whole system
are the main reasons energy is forgotten during the construction of the software. Finally,
when finding issues and making the maintenance of the application, developers are not con-
cerned by the energy consumption unless it has a big impact, for example, battery drain.

[6] presented an energy-aware model-based approach to the development of a wear-
able medical device. It is based on the different layers compatible with this CPS. Design
decisions were made after evaluating and redesigning different mechanical principles in the
mechanical layer, evaluating different regulation algorithms (periodic and event-driven) in
the computation layer, and evaluating the energy during different communication scenarios
in the communication layer.

Authors in [12] presented a generic co-simulator for ICT and its power consump-
tion. This simulator is distinguished by its architecture, modeling, and time management
capabilities. They showed the important impact of ICT on the power consumption of a
CPS (especially the networking layer). They also showed that energy-efficient choices of
networking could result in lower functional efficiency.

In [7], a model-based design methodology for residential micro-grid was proposed.
In addition to a simulation presenting the structural and behavioral parts of a residential
micro-grid system. The model-based design was divided into four parts: (1) modeling
the power grid, (2) modeling the grid management algorithms, (3) developing the cyber-
physical co-simulator, and (4) verification and validation. Their simulator made possible
the experimentation and comparison of electrical vehicle demand algorithms, residential
demand response, and grid reliability.

In [8], an energy management framework used for autonomous electric vehicles in the
smart grid was proposed. It is able to collect the real-time power consumption status and
demand from autonomous electric vehicles and charging stations. Energy saving in this
system was done during design (architecture and communication protocol). For the archi-
tecture part, path planning was made with respect to energy saving. For the communication
protocol, an event-based control was used to reduce the communication between sensors,
controllers, and actuators. This technique acts like the continuous state-feedback controller
by establishing a communication between components after the occurrence of an event,
therefore it reduced CPU and network bandwidth, thus energy reduction is guaranteed.
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[85] proposed a domain-specific language for energy-efficient building modeling.
It was based on the following elements: location, facility, sensor (including its unit and
measured value), and rules. However, their modeling approach was missing actuators,
energy feedback, and a more fine-grained description of the system.

In [13], a statistical model for simulating and validating different energy strategies in
CPS in the railway CPS domain was presented. It was adopted to choose the most energy-
efficient and reliable policies in such stochastic and critical environments.

The authors in [14] presented a framework to monitor, simulate, and analyze data
center thermal performance and energy efficiency. It is based on the integration of WSN,
building information modeling, and building management system. However, their proposed
framework was not tested or detailed regarding the collected metrics and potential actions.

In [9], a multi-agent architecture for building energy management in CPS was pro-
posed. It is based on 4 main layers: field layer, data acquisition, autonomic computing, and
management. Collected data are contextual ones such as temperature, humidity, and light
brightness. Actuators include switches, HVAC, and computers.

The authors in [10, 86] showed the impact of CPS workloads on its design and opti-
mization. First, they identified the main complex characteristics of CPS workloads (such as
self-similarity and nonstationarity), then, they proposed statistical equations for modeling
these workloads. They also showed that better design optimization for some cost functions
can be reached using the mathematical description of workloads such as resource allocation
and power.

The authors in [11] proposed an energy cyber-physical model for cleaner manufac-
turing. Their architecture was divided into a physical-energy layer (IoT devices capturing
energy-related data during the whole process of production), a cyber-energy layer (included
data cleaning and data mining processes), and a data and knowledge-driven system layer
(seen as the top-level layer that monitors, alarm, assess, and optimizes parameters). Their
approach ensured not only the monitoring of electrical energy flow but also water and ma-
terials.

In [87], contextual collected data and machine learning techniques were used in the
context of a cloth dyeing factory. Their goal was to identify and predict the process inef-
ficiency from the functional point of view, therefore, lowering the possibility of repeating
the dyeing process and energy waste. The process was adapted, parameters were tuned,
and the laboratory pre-production phase was replaced by the real-time monitored data.

User Recommendation and Behavior

The human is a major component in the CPS. On one hand, he has continuous direct and
indirect interaction with the environment where the system is implemented [88]. Some
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researchers [89] include the human in the CPS loop as a service capability description
model. They associated properties describing the role for each person, his capabilities,
knowledge, availability, reliability, and interaction endpoints with the system for the CPS.
On the other hand, user choices can be critical in the energy used by the CPS. For example,
different applications performing the same task consume differently because of facts like
synchronization with cloud, web-based energy inefficiency, heavy applications on startup
before performing the task, continuous events are expensive (Spellchecker), user inter-
face [30]. [27] showed that human behavior has a direct impact on energy consumption in
residential CPS.

Encouraging users to change behaviors in a CPS is a new trend. CairnFORM aims
at creating and encouraging new socially-shared practices by displaying energy data in
collective and public spaces in the form of stackable interactive rings, where each ring
corresponds to a defined time during the day. It is based on the current consumption of the
tested area and the amount of renewable available energy [31].

[32] designed a community-scale energy feedback system having three main features:
spatial, energy supply, and energy consumption. It is based on building power meters. It
increased the visibility of building energy consumption using augmented reality for real-
time and for historical data, in addition to the improvement of the power consumption over
the years and the energy source for each building. This framework is considered as an
open urban energy data because all these data can be shared from all the buildings to all
the citizens of the community. The main drawback of this approach is the total lack of
granularity.

A gamification approach that motivates the occupants of an apartment to take action
and reduces their energy consumption by rewarding them by points was proposed in [33].
In addition to a framework that learns, models based on the players’ decisions. An eco-
feedback is proposed in [34]. It consists of mapping between the physical and virtual
environment to motivate the user to take energy-efficient actions in a smart home. This is
done by tracking the user in the house using sensors and knowing what are the activities
of the user. Then, transforming the home to the form of a game and the energy-consuming
appliances to enemies in this user interface. The authors in [35] presented a virtual pet
game by reducing plug-loads in mid-size commercial offices. It showed that by using
the game the workers reduced the energy consumption by 13% and even after using this
game the workers had better energy-saving habits. Besides, findings showed that there
was no rebound effect by the users of the game after they stopped playing it but it helped
them build energy-oriented habits. This shows that this kind of solution could be useful
for raising energy awareness regarding energy-aware behaviors. However, they are not a
reliable solution because it takes a lot of effort and time to implement especially regarding
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graphics and user interfaces.

Power Supply and Demand

Many approaches deal with the energy efficiency problem in CPS by changing the power
supply source to renewable ones or matching demand to the supply in order to use the
generated energy more efficiently [40].

In [41], a framework (called SG-CPS) capable of collecting ambient sensors values
in order to predict the user demand and power supplied from renewable energy sources is
proposed. It collects temperature, humidity, sunlight, and wind speed. It includes also two
optimizers for purchasing energy decision-making (one uses linear programming and the
other multi-stage stochastic programming). These two optimizers resulted in lower energy
consumption but are computationally intensive. More investigations should be done on
more metrics for prediction and lower resource-intensive optimizers.

The authors in [42] presented a framework for energy management in a building by
considering different energy resources (especially renewable ones). They discussed also
user choice and the use of a decentralized management system. However, their approach
was based on production and demand and did not take into consideration a fine-grained
view of the systems inside a building and its data.

In [43], an energy balancing system between different houses having solar panels
and connected to the grid is proposed. This problem was solved using the minority game
algorithm that deals with limited resources multi-suppliers issues. A multiple customer
model is also proposed where a task that is done by the user can be inactive, active but
unassigned to a supplier, active and assigned to the grid, active and assigned to battery or
solar. It reduces the use of the grid and maximizes the use of green sources, however, the
high ecological impact of batteries in the long term was not taken into consideration.

In the past few years, there has been an increasing interest in the research and de-
velopment of Electric Vehicles (EVs) that are charged by connecting them to the grid to
store energy. The essential advantage of these EVs is that the transition of electricity can
be done in both directions, therefore a vehicle can push back electricity to power the grid
from its battery. Their storage capabilities enable them to store electricity from renewable
energy sources such as wind or solar and discharge when needed. This kind of vehicle is
sometimes referred to as Gridable EV (GEV). They are considered as a distributed energy
storage system. Vehicle-to-everything (V2X) is also a common research track. V2X covers
a wide range of use cases, including vehicle-to-home (V2H), vehicle-to-building (V2B), as
well as vehicle-to-grid (V2G) services.

[44] proposed the use of gridable vehicles in cyber-physical energy systems by storing
the energy in these vehicles during off-peak and using it when needed. This approach was
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intended to guarantee the minimization of cost and emissions using the PSO. Three cases
where studies: (1) the vehicles charge and discharge randomly, (2) vehicles are charged
from the conventional energy generation using load leveling, (3) vehicles are charged from
renewable energy sources during off-peak hours and discharged during peak hours. Results
showed that the smart grid model (using renewable energy) was the most convenient and
resulted in lower costs and emissions.

[45] proposed the use of bidirectional energy exchange between vehicles and the grid
in order to fill the gap between demand and supply. Their main contribution is the use of
blockchain, contract theory, and edge computing to accomplish this task.

Software Related

Without any doubt, software has an impact on the power consumption of any system. Many
research articles presented the importance of software development and the main issues
faced by developers producing their low interest when it comes to energy [90].

The algorithm and complexity are the main factors that affect the energy drained be-
cause of the software. This kind of energy loss is due to the choices made by the developers
while writing their code. [91], propose a model to estimate the energy consumption of a
JAVA application during execution. The developed tool (TEEC) was tested on an optimized
and un-optimized Java code and the results were validated by the Watts Up Pro Portable
Power Meter. If found that memory should not always be neglected when compared to the
CPU power consumption, whereas power consumption of hard disk could be neglected.

Another important choice while writing code is the choice of programming language.
It is not only essential to develop in the most efficient, scalable, and compatible way, re-
search shows that it also affects the power. [92], compare the energy efficiency and perfor-
mance of the most commonly used approaches to develop applications (Java, JavaScript,
C/C++) in Android mobile applications. It found that JavaScript saves more energy and is
slower than the other approaches for benchmarks and that application hybridization may be
a solution for application optimization, both in performance and energy consumption. For
example, the difference between the most energy-consuming (Perl) and the most energy-
efficient (C++ with O3) is equal to 25 463 joules which are considered quite high. An
identical algorithm can have various energy consumption based on the language used to
develop, based on the optimization level and the adopted design (recursive or iterative) [93].

In addition to the algorithms and the languages, it is possible by running the same soft-
ware on different hardware to get different power consumption results [94]. This shows that
the architecture on which the software is implemented also affects energy. For example,
running an identical code on a micro-controller like Raspberry Pi consumes remarkably
lower energy than on a laptop. [95] measured the power consumption of an application by
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using different frequencies and changing the number of cores and found that using all the
available cores with the highest frequency is the most efficient regarding energy consump-
tion.

In the next section, we analyze and compare the reviewed approaches, and draw our
observations of the current state of the art in energy-aware CPS.

2.4 Analysis and Discussions

In this section, we first introduce our comparison methodology, then compare and discuss
the reviewed state-of-the-art approaches in two main categories: single-layer and cross-
layer approaches.

2.4.1 Comparative Study

We define a list of comparative criteria that we use in table 2.2 to compare the reviewed
CPS approaches:

Applied domain: CPS can be implemented in a variety of domains. It has applications in
healthcare, transportation, smart cities, and many others. Most of the domains, where CPS
are present, are highly dependent on electric energy to run and are essential to our daily life
making us interested to identify in which domains researchers are thinking about energy as
a concern.

General-purpose (GP): Determines the genericity or specificity of solutions regarding
potential application domains. It provides a glance if the approach can be easily applied
to any domain and if it is still efficient under different circumstances and different devices.
Although most approaches are developed in a specific domain, some are easy to implement
in another scenario.

Studied parameters: A set of energy consuming related metrics of each solution that re-
searchers found significant and changing them leads to energy optimization. They can be
found in all phases of building a system during modeling, developing, or operating phases.
These metrics were studied by each of the research papers and it was found that they have
an impact on the consumed energy.

Monitored layers: One of the most important comparison criteria because they show the
levels of the CPS where these approaches were developed. It allows an understanding of
which layers the optimization was done and if it is limited to it. Monitored layers can be
any of the CPS layers defined in section 2.2.2. It can also be the entire device for solutions
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that take all the layers of a device as one entity, entire system for the ones that consider
the whole system as one entity, or contextual layer where the solution monitors only the
changes in the environment.

Environment Heterogeneity (EH): It is defined by the presence of a variety of hardware
and software frameworks that use different protocols, components, and architectures and
that may be provided by different vendors. A heterogeneous computing system refers to
a system that contains different types of computational units. In a CPS, the heterogeneity
include but are not limited to architecture, functionality, components, vendor, protocol, and
location.

System Flexibility (SF): System flexibility is the ability of the system to handle a dynamic
environments. This includes the addition, update, and removal of devices or software/hard-
ware components changes, as well as in the network topology. A flexible system is designed
to adapt easily to changes and evolutions.

Level of Autonomy (LA): Autonomous systems are devices aware of their surroundings
and can accomplish their tasks on their own without any intervention of the human. They
can perceive, make decisions, and actuate a process in their environment using a control
loop. We are also interested to know if the solutions are autonomous or not due to their
adaptability with the changing surrounding. For the purpose of standardizing the compar-
ison, we adopt the five maturity levels of autonomy defined in the Autonomic Computing
framework proposed by IBM [51] will be used to classify related work. Level 1: Manual
level: users perform all the management functions. Level 2: Monitor level: data from the
managed resources is collected helping users to minimize the time needed to collect and
understand information. Level 3: Analysis level: technologies are used to provide a cor-
relation between metrics. It recognizes patterns, predicts the best configuration, and offers
advice about potential actions to the user. Level 4: Closed loop level: environment can au-
tomatically take actions based on the available information and the knowledge about what
is happening in the environment. Level 5: Closed loop with objectives level: high-level
user-oriented business policies control the infrastructure operation in an automated man-
ner. For example, non-autonomous solutions are usually predefined rule-based, need the
intervention of the user, or are findings that can be implemented on the design time to make
more power efficient CPS.
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Figure 2.7: Quantitative comparison of monitored layers

Figure 2.8: Quantitative comparison of level of autonomy
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Table 2.2: Comparative study of energy CPS

GP: General Purpose, EH: Environment Heterogeneity, SF: System Flexibility, LA: Level of
Autonomy (H=High, M=Medium, and L=Low)

Paper ID Applied domain GP Studied parameters Monitored layers EH SF LA

[19] Smart Home M Stand-by power Entire device M M 3
[27] Smart Home L Task schedule Entire device M L 2

[22] ICT L Entire system
- Communication
- Service L M 1

[37] N/A H
- Operating Modes
- CPU frequency
- Networking speed

- Sensing
- Actuating
- Communication
- Processing

M L 3

[36] Transportation L
- Sampling frequency
- Compression type
- Archiving need

Entire Device
(per concerns) L L 3

[96] ICT L Software (Algorithm)
- Processing
- Memory L L 1

[38] Smart Home L Human presence Entire System L M 3
[18] Smart City H Human presence Entire Device H L 3

[6] Smart Home H
Event-driven
communication

- Processing
- Communication H L 1

[32] Smart City M Human behavior Entire system H M 2
[33] Smart City M Human behavior Contextual H M 1
[34] Smart Home M Human behavior Contextual H M 2
[35] Smart Office M Human behavior Entire device L M 1

[29] IoT H
- Transmission protocol
- Device state Communication M M 4

[28] Smart Home L Task schedule Entire device L M 3
[17] Smart Home M Wifi exchange Communication M M 1

[47] Smart Office L Task migration
- Processing
- Storage L H 3

[48] ICT L Task migration
- Processing
- Storage
- Communication

M H 3

[86, 10] N/A H Workload
- Processing
- Communication
- Control

H H 1

[31] Smart City M Data visualization Contextual M H 2
[44] Transportation H Energy sources Entire device M M 3

[23, 16] ICT M
- CPU
- Temperature

- Processing
- Contextual L M 2

[24] ICT L Task scheduling Entire device L H 4
[45] Transportation H Energy storage Entire device M M N/A

[12] ICT H
- Load
- Communication protocol Communication H L 1

[77] Industry H Task schedule Contextual H L 3
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GP:General Purpose, EH:Environment Heterogeneity, SF:System Flexibility, LA: Level of
Autonomy (H=High, M=Medium, and L=Low)

Paper ID Applied domain GP Studied parameters Monitored layers EH SF LA

[8] Transportation M Communication protocol - Communication L L 1

[41] Smart City H
- Contextual data
- Energy source Contextual H M 4

[7] N/A M Simulation Entire system L L 1
[11] Industry M Energy sources Contextual M L 3

[80] ICT H
- Data correlation
- Nodes distance
- Residual energy

Communication L H 4

[49] ICT L Task migration Entire device M L 4

[21] ICT L
- CPU frequency
- Task scheduling Processing M M 4

[50] IoT M Location
- Processing
- Communication L M 3

[42] Smart City H Production/Demand Entire system L M 1

[26] Healthcare H Data cleansing
- Communication
- Processing L M 3

[87] Industry H
Contextual data
(not mentioned) Entire system M M 3

[14] ICT H Temperature Entire device L L 1
[85] Smart City M Modeling Sensing L L 1
[13] Transportation L Modeling Entire device L L 1

[25] IoT L
- Routing protocol
- Task scheduling Communication M H 3

[9] Smart Home M Contextual data
- Sensing
- Contextual H M N/A

[43] Smart City H Energy sources Entire system M M 3

[81] Industry H
Contextual data
(not mentioned) Entire system L M 4

[39] Transportation L
Contextual data
(not mentioned) Contextual L L 4

[91] ICT L Code Optimization Service L L 1

[95] ICT L
- Frequency
- CPU cores Processing M L 1

[92, 93] ICT L Prog. Language Processing M L 1
[94] ICT L Processor Arch. Processing M L 1
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The following two section analyze energy-related solutions, first, by identifying what
are the solutions proposed to optimize the energy consumption of each layer, as seen in
figure 2.7. Then, by finding cross-layer exchange potential to adapt and optimize the sys-
tem from a holistic manner, in the next section. In both cases, we found that autonomous
solutions are rare and that most solutions proposed for CPS are based on scheduling tech-
niques, acting mainly on the entire device or system by changing its mode between active,
sleep, and power off to minimize the energy [19, 20].

2.4.2 Independent Layer Approaches

A high number of recent research papers are based on user feedback but they are not au-
tonomous. However, we find that most of the proposed approaches in the literature deal
with energy issues on a limited number of layers. For each of these layers, we identify the
potential energy hotspots and the applied energy optimization solutions, based on the com-
parative study in table 2.2. In this section, we discuss the energy management approaches
by dividing them based on the previously identified CPS layers.

Entire device

Most solutions propose reducing the energy of an entire device, these solutions are based
on scheduling and switching between various operating modes. Even if a high percentage
of energy is consumed by devices in idle modes, these solutions optimize energy only when
a device is unused. However, no optimizations are applied during its active state, making
such approaches less than ideal. In [19, 20] no optimizations are being done while a device
is running for example it is impossible to maintain the sensors of a device running while it
is in a low power mode. A lack of autonomous flexibility is present in the last two solutions,
due to the need for the user to change the configuration of the system each time a device
gets connected to a different outlet. They also use hardware measurement tools which
allows them to measure the whole device with high precision, however, making them more
expensive and difficult to deploy. The main drawback in [27] is that not all tasks can be
rescheduled automatically due to their diversity and the inconvenience for users to perform
the tasks at an involuntary precise schedule. In [42], the entire system is considered as one
entity, production and demand and did not take into consideration a fine-grained view of
the systems. In other papers such as in [43, 45, 44], the long-term impact of batteries is not
considered.
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Services layer

The software can include potential parameters related to the code, for example, the com-
plexity or the number of bugs and violations by the developers. On this layer, many research
papers highlight the lack of tools and knowledge of the developers about the impact of their
code [84]. Some real-time energy bugs scanners exist but are not commonly used across
the community. We argue that energy awareness concerns should be introduced to would-
be developers in their education curriculum. We also find that another energy concern is
the choice of algorithms in software, as some algorithms are more optimized than others
(for the same workload), thus leading to energy reductions [91]. The choice of the pro-
gramming language also has an impact on the power [92, 93]. In [93] the same application
developed using Perl programming language consumes more energy than developing it us-
ing C++. This kind of decision needs to be done during the design and the development of
the applications running on a CPS but will have their impact during the run-time.

Processing layer

A collection of applications and services usually run over the processing layer. The pro-
cessing layer is one of the main layers of a CPS, responsible for analyzing data captured
by sensors and running the applications on the system. Many research shows that running
the same application using different processors leads to different energy consumption due
to various reasons processor architecture being the main one as in [94]. By changing the
frequency [37, 21], the number of active cores [95] in a CPU, the algorithm [96], the work-
load [86, 10, 16] or the data cleansing [26], energy minimization can be reached. Generally,
this is possible due to lower the time needed to accomplish a task, but this is not always the
case because this can lead to a power increase even if the time decreased. Another impor-
tant factor for software is the hardware on which it is running [48, 47]. Hence, making us
think about the optimal device to run the analysis, in the case of a system-of-systems most
of the processing is either done locally or remotely on a cloud. We believe that running the
analysis can also be done in nearby devices in the same CPS if these devices consume less.
Most software solutions are done on computers or servers in the domain of ICT. We argue
that more research should be done in CPS due to the high potential of using software layer
energy optimization for more energy-efficient systems.

Storage layer

The storage layer consists of the equipment responsible for storing the data and keeping
them available in order to be processed. Data can be locally stored in SD cards and hard
disks or remotely in the cloud. On one hand, storing data on the cloud creates sometimes
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an illusion of zero energy but it is essential to mention that sending the data to the cloud
may result in a more significant energy usage. Firstly, by using the networking medium,
secondly, by keeping the data centers that host the cloud servers operational. On the other
hand, green data centers use energy-efficient technologies such as low-power servers, mod-
ular data centers, free air cooling, renewable energy sources, and other sustainable tech-
nologies. Hence, it is essential for each piece of data to choose ether to store it locally or
on the cloud.

Communication layer

The communication layer is the medium to exchange data and events between devices
of the same system, between IoT devices (used as sensors or actuators), or between the
system and external sources such as the cloud or web services. Reducing energy in the
communication layer is also limited to a variety of operating modes based on the used
bandwidth. We think scheduling should not only be used to change modes but also to
accomplish tasks during the optimal time. For example, if a device needs to download
or upload data through the network, it would be more convenient to perform the network
transmission when the device is plugged in to an outlet, and the electricity produced is
from renewable sources. Communication frequency and protocols are also found to have
energy impacts. In [17], occupancy detection using the communication layer has one major
advantage because there is no need to implement new sensors in the environment for the
system to understand the context.

Sensing and actuating layer

The sensing layer monitors the environment of the CPS using physical and virtual sensors.
The actuating layer is the medium used to execute the changes planned by the system. This
layer can either be physical (e.g., a hardware sensor) or virtual (e.g., a logical or software
sensor). The main concern on these layers is the optimization of idle power consumption.
In [37], the authors proposed to have multiple operating modes where the transceiver is
turned off because this part of the sensor consumes the most. This approach can be con-
sidered efficient if the sensor has a transceiver, but in many cases, the sensor is part of a
connected object having one transceiver for its entire operations. Having flexible sampling
frequencies is another solution [36]. However it is trickier to use as it needs to be well
understood in order to increase or decrease the frequency, with some situations where a
high sampling rate is necessary to obtain reliable information [97].
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Contextual layer

The contextual layer is the knowledge and understanding of what is happening in the en-
vironment of the system. It is usually built upon the observations of the sensing layer, and
also includes human activities and behavior [33, 34]. Others use contextual data such as
power sources [41, 11]. During our literature review, we first found that the main contextual
information collected for energy optimization is the detection or prediction of the presence
of the user, also called occupancy. However, studying user behavior should not be limited
to presence detection. To reach higher energy-saving it is essential to understand all the
human actions in the environment (such as the time they use each device, their presence,
their sleeping schedules, and others factors). This leads to an efficient reduction in CPS idle
mode power. In [38], one drawback is that their solution takes into consideration occupancy
but does not consider users’ interactions with the building like opening a door or window.
The environment where CPS are implemented is heterogeneous and rich with information
that can be collected [39, 81, 9], however, it only focuses on the functioning loop of the
system through its touch-points (sensors and actuators). For example, information such as:
what is the user doing and what devices being used. This can be solved by a cognitive
system that understands the holistic view of the system and all the aspects of the environ-
ment. Second, most solutions that consider the user focus on user recommendations and
are not fully autonomous as seen in figure 2.8. Autonomous systems are needed as these
solutions optimize energy automatically and in real-time without the need for continuous
human intervention. Sharing all these user behavioral information raises a critical concern
of security and privacy. Secure and encrypted communication should be used to share this
information, with a priority to limit data sharing to local devices.

2.4.3 Cross-layer Approaches

Layered communication has a strong separation in the definition of each layer where the
interaction between them is strictly controlled and limited to the necessary data to operate
the system. In contrast, cross-layer approaches are protocols or architectures where the in-
formation of each layer is highly shareable with others. This way the information becomes
more valuable and useful to accomplish better performances [98], in our case, lower en-
ergy consumption. CPS have a variety of energy-consuming concerns due to their various
functionalities. These concerns can be found on an individual layer as seen in section 2.4.2
as well as on a combination of more than one layer .

First, the review of previously proposed CPS architectures showed a lack of energy
concerns while defining the layers of the system. In particular, the optimization of software
and contextual layers are not energy-aware. Many layers are used in a CPS and can be
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energy-consuming. We argue that the way researchers and practitioners model a system
without taking energy into consideration, is a major limitation for sustainable CPS. This
might be due to a lack of understanding of energy in CPS. Hence, there is a need for an
energy-aware CPS architecture able to identify all potential energy-consuming layers.

Second, as discussed in the previous section, solutions to optimize energy consump-
tion mostly target single layers. We observe a lack of cross-layer energy optimizations.
In [37], each layer has its operating modes but no data exchange between the layers to
share their modes. The system does not exchange data between layers but optimizes each
layer independently regardless of what is happening in the other layers. In [36], a huge
amount of efforts is needed from developers to specify each of the energy potential con-
suming concerns, making it complex to implement. Then, they create a file containing a
series of configurations and their energy consumption. These approaches are limited be-
cause they are not flexible if a new functionality is added to the system or if a new device
joins the CPS. They are also limited by the managed or collected metrics and can not
change on run-time.

We observe a lack of holistic solutions at the levels of the device and the entire system,
which we argue is needed to build sustainable CPS. For example, each layer on a device can
be optimized individually and then exchanging knowledge and information between differ-
ent devices of the system leads to a holistic energy-efficient management and a decrease
in energy consumption. This leads to a scalable solution in complex system-of-systems.
For example, in the context of a smart home, bulbs can minimize their energy by detecting
occupancy and the time of day. They can then share their status with the refrigerator con-
stantly opened by the user. This is done in order to know if the fridge needs to to turn its
light on or whether the light in the room is enough to illuminate the content of the fridge.
In fact, a cross-layer exchange is already present in all CPS, as a CPS includes sensing,
actuating, communication, storage, processing, and application/services layers. Most CPS
sense information from the environment, analyze the data, the apply actions through actu-
ators to the same environment. This is achieved in one direction and is oriented to satisfy
the functionality of devices. Current shared data are limited and are not related to energy.
Sharing energy-related data in addition to the operational one leads to a higher understand-
ing of the environment and raises the ability of decision making. Shared information would
include data captured from sensors, in addition to the state of each layer in a device, and
contextual information.
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2.4.4 Recommendations

Energy optimization in CPS is not yet fully mature, notably due to the lack of holistic
and autonomous solutions. Therefore, we draw the following recommendations that we
consider essential for energy-aware CPS solutions:

• Researchers should address the energy from a holistic point of view by studying the
possibility of optimizing energy by collecting various data from different layers in a
CPS. They should also investigate if collected data from a layer can help having an
impact on reducing the energy of other layers.

• Large scale distributed CPS with hundreds of heterogeneous devices that can contain
each tens of processors, in contrast with the simple ones with one processor, have a
significantly bigger complexity, and need to be better studied. Especially that in this
kind of constantly changing environment scalability is a major concern.

• The energy management in modern CPS needs to be fully automated or autonomous,
and be able to adapt to changes in the environment with little or no human inter-
vention. These autonomous adaptations also need to respect users’ preferences and
comfort levels, in order to avoid being ignored in favor of more energy-hungry so-
lutions. Autonomous approaches can use artificial intelligence, machine learning
techniques, or adaptive control systems in order to achieve their goals.

• CPS architectures need to take into consideration the contextual data and activities
in its surrounding environment, in order to efficiently optimize energy consumption.
The goal is to build a comprehensive and holistic approach that collects information
from multiple layers of the system and apply cross-layer adaptations to reach optimal
energy consumption.

• Researchers could improve the energy consumption of idle devices, either by reduc-
ing their energy to the minimum or by reusing their unused capabilities to lower the
energy costs of other devices.
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2.5 Summary

As CPS are gaining an increasing role in our daily activities, their energy impact is also
rising and becoming a major concern for their sustainability. In this chapter, we reviewed
the state-of-the-art energy-aware CPS approaches and compared them according to several
criteria aimed at the studied parameters, monitored layers, and the level of autonomy of
each of the approaches. We found that the most common layers of CPS are sensing, com-
munication, actuating, processing, services, and control. We presented a literature review
of the previously proposed solutions that deal with the issue of energy optimization in CPS
and categorized them. Then, we explored energy approaches for each of the application,
processing, storing, communication, contextual, sensing, and actuating layers. We also
identified the approaches covering more than one layer and discussed cross-layer solutions
and their advantages in order to build a holistic energy-efficient system.

In short, our findings are the following: 1) We have detected a lack of the studied
metrics not covering all potential energy drain sources in a system. 2) Solutions deal with
limited layers in a restricted number of devices mainly due to the challenges of exchanging
data in a heterogeneous environment. 3) Most solutions are not autonomous. However,
some could be considered to have a limited degree of autonomy. 4) Flexibility is highly
limited to the devices and the environment in which they were developed, therefore, they
are mostly domain specific.

These drawbacks motivate the needs to continue the research in order to find a bet-
ter approach that can fill the previously mentioned gaps of state of the art. Therefore, in
the next chapter, we present the architecture of our automated energy management frame-
work based on power estimation, knowledge representation, and reinforcement learning
techniques. Our contributions are detailed in the next part of this thesis in Chapters 3, 4,
and 5.
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3.1 Introduction

The results of the literature review on energy management in CPS reveal a number of
shortcomings. Current approaches and commercial products fail when it comes to flex-
ibility, level of autonomy, heterogeneity of devices, number of considered metrics, and
genericity of the solutions. To fill this gap, we present in this chapter an automated energy
management framework based on power estimation, knowledge representation, and rein-
forcement learning techniques. This chapter focuses on the design of a framework aimed at
being deployed in CPS deployed in connected environments. Such a framework contains
all the necessary elements to achieve higher energy management and has been designed to
be easily enhanced in order to implement advanced and specialized management features.
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In order to formally define the requirements of the system, we follow the Model-Based
System Engineering (MBSE) methodology proposed by ARCADIA and develop the ar-
chitecture of our approach using the open-source tool named Capella. This methodology
allows to specify the various actors and stakeholders, as well as, to specify and analyse the
requirements. It helps identifying well-adapted cyber-physical solutions in order to cope
with our research goals.

In the remainder of this chapter, we take a look at the Architecture Analysis and De-
sign Integrated Approach (ARCADIA) methodology. Then, we define functional and non-
functional requirements. We also use Capella to formally model different components of
our proposed approach on the operational, system, and logical levels. The physical archi-
tecture and implementation will be presented in chapters 4 and 5. Finally, we present some
of the development choices that we made during the modeling of the system.

3.2 ARCADIA Method

ARCADIA is a structured model-based engineering method that aims to define and val-
idate the architecture of complex systems [99]. Figure 3.1 shows the four different yet
interconnected modeling levels of ARCADIA. The first two levels (operational and sys-
tem analysis) ensure the needs understanding and the following two (logical and physical
analysis) model the solution.

Figure 3.1: ARCADIA modeling levels
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The operational analysis allows to specify actors and business processes, and to iden-
tify the needs of a system. The system analysis models the system as one component and
the functions to be implemented in order to fulfill the operational needs. The logical anal-
ysis defines the logical components (independently from the physical technology that will
implement the required system functionalities). It is considered the first level of internal
components architecture and is unrestricted to one specific implementation. The physical
architecture defines the concrete components of the system (e.g., hardware, software, in-
terfaces, and connections). Different diagrams are used to model the system on each of
these levels. Capella is a MBSE open-source solution that follows principles defined by
the ARCADIA method. It is based on a graphical modeling workbench that provides rich
methodological guidance for system architecture design.

3.3 Requirements Analysis

Requirement analysis represents the process of determining actors’ expectations from a
system. Requirements must be quantifiable, relevant and detailed. Based on the problem
statement, functional and non-functional requirements are identified and will be respected
during all modeling phases.

3.3.1 Functional Requirements

Functional requirements define what a system should be able to do. Each of these re-
quirements should describe a function of the system or its components. The definition of
functional requirements aims to make modeling choices during the modeling phase and to
ensure the proper functionality of a system during the validation phase. In the following,
the different functional requirements of our proposal are detailed:

• The system shall manage devices in a way that reduces power consumption of the
environment on a holistic level. It is able to choose and execute proper actions in
order to achieve this goal.

• The system shall be able to deal with a high variability of data types and formats
collected from multiple heterogeneous systems and devices.

• The system shall represent and manage energy-related knowledge in a flexible and
scalable environment. It is able to understand and exploit definitions and relations
between devices, metrics, actions, and power consumption.



52 CHAPTER 3. ENERGY MANAGEMENT APPROACH ARCHITECTURE

• Users shall be able to express their preferences and the system should respect these
preferences in order to reach higher user satisfaction. It is also able to adapt to
changes in the behavior of users with time.

• The system shall be able to estimate power consumption per device and generate
power estimation models for new devices whenever existing ones are not accurate. It
also stores and manages power estimation models for each collection of devices.

• The system shall share knowledge about power estimation models with other systems
and actors. It also ensures higher visibility of power consumption per device.

3.3.2 Non-Functional Requirements

Non-functional requirements define desired properties and qualities of the system. The
definition of non-functional requirements allows to specify the performance expected of a
system. Figure 3.2 shows the systems’ non-functional requirements. In the following, the
different non-functional requirements of our approach are detailed:

• Efficiency: The system can execute a task successfully and accomplish its goals with-
out wasting time or energy. The power consumption of an environment integrating
our solution should be significantly lower than traditional solutions. The system also
provides correct and real-time responses to occurring events.

• Reliability: The system performs accurately during the functioning period. It also
ensures consistency under normal and abnormal circumstances. It responds intelli-
gently to unexpected changes in the environment.

• Flexibility: The system is able to adapt to changes that take place in the environment,
whether modifications occur in human behavior, environment topology, or device
hardware/software updates.

• Genericity: The system is not limited in terms of potential application domains. It
should be easily applied to any domain and maintain its efficiency under different
circumstances.

• Re-usability: The system should be modular and machine-independent. Each com-
ponent of the system should be reusable. Changes that occur to each component have
a limited impact on the functioning of the rest of the system.

• Scalability: The system is not limited in terms of the number of devices. It can scale
up or down with devices joining or leaving the environment. The system is also able
to improve by adding new functionalities without disrupting existing ones.
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• Autonomy: The system has self-managing capabilities allowing it to operate in com-
plex, open-ended environments with a high level of freedom. It can perceive, learn
and act with self-awareness of its surrounding.

Figure 3.2: Non-functional requirements

3.4 Operational Analysis

The operational analysis focuses on defining the needs and goals that actors want to accom-
plish. It helps defining the problem. First, we defined the operational entities and actors
used in all modeling phases. The composition of each of them is also defined. Actors and
entities are external to the system and interact with each other as well as with the system.
At the end of this phase, we describe the needs of actors and entities, their operational
capabilities, and their activities.

Users are also actors and represent the main actors that interact with the system. A
user is an individual that performs tasks affecting the environment. E.g., a home occupant
in the case of a smart home scenario or a company worker in the case of an enterprise
environment. Tasks are either applied directly to a device (e.g., a user changes the state of
a device) or have consequences that are captured by sensors (e.g., a user leaves the room).

Devices are the main entities operating in the environment. All types of devices are
modeled as devices. However, devices can have many types: sensors, actuators, appliances,
HVAC, subsystems, meters, and intermediary devices. Figure 3.3 shows the different types
of devices through an operational entity breakdown diagram. Sensors have sensing capa-
bilities (e.g., temperature sensor, door sensor, and presence sensor). Sensors are not only
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Figure 3.3: Operational entity breakdown diagram

hardware components, they can be software sensors (e.g., CPU utilization sensor, Wifi uti-
lization collector). Actuators are devices that execute actions in the environment (e.g., light
control, curtain control, and speakers). Heating, Ventilation, and Air Conditioning (HVAC)
are systems used to control the temperature in a residential, industry, or corporate envi-
ronment. Appliances are pieces of equipment designed to perform a specific task (e.g.,
refrigerator, washing machine, and vacuum cleaner). Meters are similar to sensors but are
used to measure the power consumption of any device (e.g., watt-meters). Intermediary
devices are used to transform a traditional device into a smart one. It does not provide all
the functionality of smart devices. However, it guarantees a certain level of observation and
control on the device (e.g., a smart plug that allows turning on and off an appliance).

Figure 3.4: Operational architecture diagram

Figure 3.4 shows the operational architecture diagram that aims to identify the opera-
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tional activities of actors and entities. In this analysis, we have specified the most relevant
features related to our proposal. Users perform three main operational activities: (a) ex-
press preferences, (b) change device parameters according to preferences, and (c) change
the states of devices. A device’s main activity is to accomplish a particular task. They
are also able to collect data internally or from their surrounding, share this data with other
devices depending on their communication protocol, execute actions internally or on their
surrounding, consume energy, and undergo state changes (e.g., turn ON/OFF) or parame-
ter configuration (e.g., change the temperature of a heater). In addition, some devices are
smart enough to estimate their power consumption.

3.5 System Analysis

System analysis focuses on the system itself and what it has to accomplish for the users.
It consists of a functional analysis that begins by identifying the system’s missions and
capabilities in response to the needs of actors/entities based on the operational analysis. At
the end of this phase, we describe functions, functional chains, and scenarios. In addition,
it details the interactions with the users and external systems. Throughout this phase, the
system is modeled as one entity (internal subsystems/components are not identified at this
stage).

Figure 3.5: System missions and capabilities diagram

The main capabilities and missions of our system are illustrated in Figure 3.5. The
principal missions of the framework are the ability to manage knowledge about power con-
sumption per device, reduce this power consumption, respect user preferences, and adapt to
environment changes. These four missions are mapped to two main capabilities: (1) model
and estimate power consumption and (2) manage power consumption. The system should
be capable of generating models and estimating the power consumption per device based
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on collected data. It should also be capable of ensuring a power management functionality
that respects user preferences.

Capella provides several scenario diagrams at each level of the ARCADIA method.
One of the most important scenario diagrams is the system exchange scenario. It focuses
on the lifelines of actors, entities, and the system that exchange messages and perform
functions. Each exchange scenario defines a functional chain. In the following, we detail
and model each of the aforementioned system capabilities using system exchange scenarios
and system architecture diagrams.

3.5.1 Model and Estimate Power Consumption Capability

Figure 3.6: System exchange scenario diagram - Model and estimate power consumption capability
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Accurate power measurement is the key to energy efficiency because it provides reliable
quantification methods for power consumption. Measurement technologies should be reli-
able over the long term and adaptable to heterogeneous devices. However, current measure-
ment and estimation methods are limited in terms of adaptability to changes. Therefore, the
first capability of the system is to model and estimate power consumption for a large num-
ber of devices in an automated manner. In addition, share these energy estimation models
across users and devices.

Figure 3.7: System architecture diagram - Power estimation model generation functional chain

Figure 3.6 shows the exchange scenario of the power consumption modeling and esti-
mation capability. First, the device collects data and shares it with our system. Our system
receives the raw data, modifies, and removes incorrect, incomplete, irrelevant, corrupted,
and duplicated data. It generates a power estimation model using the cleaned data. Then,
the system checks if the generated model is valid and that its error rate is under a certain
threshold. If the model is valid, it is saved and used later. Otherwise, it will be discarded.
The system can estimate the power consumption by itself or share the model with other de-
vices/systems in order to estimate the power consumption of a specific device. The latter is
an optional functionality for devices that are smart enough to exploit it. Capella generates
automatically the functions defined in the scenario diagram in each corresponding actor,
entity, and system. Figure 3.7 shows the generated functions and the functional chain of
the power consumption modeling and estimation capability.
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3.5.2 Manage Power Consumption Capability

Power management aims to reduce power consumption. This not only reduces the amount
of electricity used, but also reduces the effort and concern of end-users around controlling
devices. Reducing power consumption also extends the usefulness and the average lifespan
of devices. The central goal of our approach is power management, therefore, we model
this functionality by identifying exchanges between devices, users, and the system.

Figure 3.8: System exchange scenario diagram - Manage power consumption capability
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Figure 3.8 shows the exchange scenario of the second system capability: manage
power consumption. First, devices collect and share data with the system. The system
receives data that will allow it to estimate the power consumption per device and calcu-
late the reward for each accomplished action. It also collects knowledge and generates a
reinforcement learning environment based on this knowledge. Then, user preferences are
gathered. Finally, the system uses all of the above functions in order to take decisions and
send the execution commands back to the devices.

Figure 3.9 shows the functions generated by Capella for the second system capability,
power consumption management, in the form of a functional chain.

Figure 3.9: System architecture diagram - Power management functional chain

3.6 Logical Analysis

The logical analysis focuses on the decomposition of the system for development, integra-
tion, reuse, product, and configuration management. It defines how the system will operate
to fulfill expectations. At the end of this phase, a logical architecture details functional,
components, and interface descriptions, along with a formalization of the way they are
integrated into the design of each component.
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Figure 3.10: Logical component breakdown diagram

Figure 3.11: Logical architecture diagram

Figure 3.10 shows the logical component breakdown diagram. The four main compo-
nents that constitute the system are defined as follows:

• A power modeling and estimation component aims to empirically generate power
models for a large number of devices and configurations.

• A knowledge management component aims to provide a common representation and
definition of concepts and the relations between them. In addition to the focus on
power consumption while representing the knowledge.
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• An intelligence management component aims to collect intelligence from the knowl-
edge management component and create a virtual environment and a reinforcement
learning agent based on the devices present in the environment and the relations be-
tween them. The virtual environment is used to train the agent to accomplish power
optimizing action.

• A data repository component is formed by a collection of databases that include
previously collected metrics, states, applied actions, rewards, power consumption,
power estimation models, and potential external data.

Figure 3.11 shows the final logical architecture diagram that describes the system and
its components. Each of the previously defined functionalities is divided into functions and
allocated to their respective components. Exchanges between each of these functions is
also identified.

3.7 Implementation Choices

Different development choices exist to conceive a physical implementation of our solution.
Decisions are highly influenced by the requirements, needs, and goals of the system defined
above. In this section, we propose the use of an ontology for knowledge representation as
well as reinforcement learning algorithms for intelligence power management.

3.7.1 Knowledge Management Implementation Choices

We decided to use an ontology aiming to implement the knowledge representation of the
environment. Ontologies are considered very well-adapted for knowledge modeling and
information retrieval. They provide a common representation and definition of the concepts
and the relationship between them. In addition, ontologies support inference to discover
new relationships and knowledge. They are scalable, reusable, and extensible. While a
database is used for the data repository because it is adequate and effective for storing large
data sets (historical data and power estimation models).

Firstly, it would be interesting to define each of the following two concepts: a database
and an ontology. On the one hand, an ontology is a defined set of concepts and relation-
ships used to represent the meanings and a shared understanding in a certain domain [100].
On the other hand, a database is an organized collection of structured information defined
by a database schema. It is used to store data without concerns about the meaning of this
data [101]. Therefore, ontologies and databases have different purposes. The former aims
to represent and define concepts and the relations between them. The latter goal is the
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storage of data without the interest of their meaning. A database does not use taxonomy,
which nevertheless constitutes the backbone for an ontology [102]. The differences be-
tween a database and an ontology have been explored in prior studies by [103, 104, 105].
A summary of these differences is outlined in Table 3.1.

Table 3.1: Differences between a database and an ontology

Criteria Database Ontology

World Assumption Close Open
Name Assumption Unique Not Unique
Implicit Information Unavailable Available
Represents Data Knowledge
Scalability Low High
Need of complete information Yes No
Focus on semantics Minimal Strong
Starting point Scratch Reuse is possible

Secondly, we justify our choice of using an ontology as our knowledge management
component with the following arguments and advantages [102, 100, 106]:

• Allows the definition of a semantic model of the data combined with associated do-
main knowledge and defines links between different types of semantic knowledge.
Therefore, advanced search strategies can be formulated.

• Shares common understanding of the information structure between heterogeneous
components of the system allowing knowledge sharing. The resolution and preven-
tion of communication issues between heterogeneous systems are guaranteed.

• Analyze the domain knowledge by using inference to discover deduced answers such
as new relationships and new knowledge. Reasoners are also used to validate the
logic and the consistency of the defined concepts and to endorse their structure.

• Facilitates information interoperability and integration between different knowledge
and information sources while preserving a high level of abstraction and information
fusion.

• Enables the reuse of the domain knowledge in different applications because of the
separation between the domain knowledge and the operational knowledge.

• The world that we need to represent is significantly large and complex, in addition,
it is impossible to assume the information about the domain is complete.
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3.7.2 Machine Learning Implementation Choices

An intelligent system is a machine that incorporates a computer connected to its environ-
ment; that can collect and analyze data and communicate with other systems. It can analyze
data using four different types of analytics, including descriptive, diagnostic, predictive,
and prescriptive [107]. Furthermore, machine learning can provide cognitive capabilities
to understand such large amounts of data [108]. There are three different machine learn-
ing techniques: supervised learning, unsupervised learning, and reinforcement learning.
Supervised learning adapted to problems where each input is labeled or belongs to a cat-
egory (e.g., classification and regression). Unsupervised learning is useful for problems
where each data is not labeled and does not belong to a category. This technique is good
for grouping complex data into classes (e.g., clustering) [109]. Reinforcement learning is
useful when future actions are based on the outcome of the current responses of the envi-
ronment. A summary of the differences between machine learning techniques is outlined
in Table 3.2.

Table 3.2: Differences between machine learning techniques

Criteria Supervised Unsupervised Reinforcement

Aim Predict outcome Discover patterns Learn from actions
Type of data Labeled Unlabeled No predefined data
Supervision Yes No No
Feedback Yes No Yes
Flexibility Low Medium High
Learning Type Passive Passive Active

The use of supervised learning techniques for power modeling and estimation has
many advantages: Power is a measurable value that is usually directly linked to other met-
rics values. Therefore, collecting and labeling this data (with the real-time power con-
sumption) allows the easy creation of power estimation models using supervised learning
algorithms.

The use of reinforcement learning for power management has many advantages: It
does not require large labeled datasets, therefore, providing an advantage in terms of scal-
ability and flexibility. It is adaptable, in contrast with supervised learning algorithms, RL
can adapt to changes in the environments automatically. It is goal-oriented by defining the
policies such as energy optimization, user comfort, etc. The agent will then try to find the
sequence of actions based on collected metrics to satisfy the required objectives, in our case
energy optimization and users satisfaction.

Based on the previous comparison, we chose to use supervised learning regression
algorithms to generate power estimation models and reinforcement learning techniques for
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power management functionality for the remainder of this thesis.

3.8 Summary

In this chapter, we present the design of our automated power management system for con-
nected environments and CPS. We follow a MBSE methodology to specify the functional
and non-functional requirements and to design structural and behavioral dimensions of our
solution. We start by specifying and analysing the needs of actors/entities. Furthermore, we
present the functionalities of systems and how to fulfill these needs. Finally, we identified
components where each function will be developed.

We designed different architectures based on the layers defined in the ARCADIA
methodology. An operational, system, and logical analysis are accomplished using the
Capella open-source tool. Throughout these different modeling phases, we took architec-
tural and development decisions impacting the implementation of the approach. The two
identified system capabilities are: (1) model and estimate power consumption and (2) man-
age power consumption.

The four main components of the system are defined, as follows:

• A power modeling and estimation component responsible for creating power estima-
tion models for a variety of devices.

• A knowledge management component aims to represent knowledge in extensible,
reusable, and scalable ways.

• An intelligence management component aims to create reinforcement learning en-
vironments and models based on the devices present in the environment. It takes
energy-oriented actions to manage these devices while respecting user comfort.

• A data repository component aims to save historical data and models for future use
and analysis.

In the next chapter, we fulfill the first system capability that consists of modeling and
estimation of power consumption for different devices by implementing one component
of the modeled solution. It will be supported by scientific and experimental results for
validation.
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4.1 Introduction

With the explosion of smart and connected devices, there is a need to measure and monitor
the power consumption of these devices. The impact of all these devices on ICT power
consumption and carbon footprint is undeniably rising, therefore, need to be measured .
There is a rise in popularity and usage of alternative architectures on connected devices
that have a huge variety of hardware and software configurations (i.e., ARM/RISC due to
its lower power consumption than x86/CISC). External power meters can provide accurate
power measurements for specific workloads and environments (such as in [110]). However,
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these meters are costly financially, scale poorly for a large park of devices, have a time-
consuming setup, and require physical access to each device. Therefore, it is important
to provide software-based power models for these devices. However, without embedded
power sensors or constructors’ power models and API, it is challenging to provide accurate
power models for this variety of device configurations. In addition, monitoring the power
consumption at run-time (in addition to other performance metrics) helps software devel-
opers to detect misbehaving software, or specific power drains due to a particular hardware
configuration.

Current power estimation techniques are either based on mathematical formulas (such
as in [111]), or on a static data set used to generate an empirical model (such as in [112]). In
addition, such models target a single device release with no way to estimate other revisions
or variations of the device without manually conducting the experiments again.

Our main motivation is to provide an automated approach to model the power con-
sumption of various devices, while allowing the models to be updated, extended, improved,
and shared. We argue that such an approach leads to democratizing power comprehension
of hardware and software in different devices and environments.

Providing an accurate and automated approach to solve these questions is challenging,
and in particular regrading the heterogeneity of the environment, the empirical validity,
and the automated power modeling. The detailed specification of the functional and non-
functional requirements have already been detailed in the previous chapter.

In this chapter, we present an automated approach and architecture to empirically gen-
erate power models for, potentially, unlimited devices and configurations. Our approach
provides always up-to-date and accurate power models with low error rates. The approach
follows a crowd-sourcing architecture where benchmarking components can run on any
device, generate empirical data, and lastly, our power model generator component will
generate an accurate power model for the specific device, or improve the model if a previ-
ous one already exists. Monitoring software can connect to our architecture to query and
retrieve the most accurate and up-to-date power model for their devices. The data collec-
tion and model generation phases are relatively fast as they only take a few minutes. Once
the model is generated, power consumption can be estimated with negligible overhead in
real-time. With time, the accuracy of the model can be improved as more data are col-
lected and fed to generate more accurate regression models. This architecture follows the
logical architecture presented in chapter 3 and represents its implementation of the power
modeling and estimation component on the physical level.

The main contributions of this chapter can be summarized as follows: (i) energy es-
timation models are always up-to-date due to the continuous data benchmarking as new
models are automatically generated when necessary, (ii) model generation is done in an
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automated manner from the data collection to the testing (with human intervention needed
only to start the benchmarking process, and (iii) our proposed approach is a collabora-
tive one where benchmarks can also be crowd-sourced, and energy estimation models are
shared across users and devices.

We provide a proof-of-concept implementation for automated power modeling of the
entire current set of Raspberry Pi devices. A comprehensive experiment validates our ap-
proach, implementation, and power models. We generate various and accurate power mod-
els, using two regression models, with very low error rates as low as 0.3%. Our models are
vastly more accurate than existing models with as much as 10 times lower error rates. We
also discuss and analyze the impact of multiple hardware and operating system configura-
tions, and discuss a use-case scenario in remote power monitoring.

4.2 Related Work of Power Measurement and Estimation

Several approaches and tools have been proposed to measure or estimate the power con-
sumption of computing devices. Some focus on hardware meters while others use software-
based approaches. In this section, we review the related approaches to monitoring and es-
timating power in computers and IoT devices, and discuss the relevant work around power
and regression benchmarks.

In [113], the authors studied the energy impact of users’ operations in Raspberry Pi
compared to other computing devices. Measurements were carried out using hardware
meters due to the lack of accurate software approaches. In [114], a method for energy
estimation of Zolertia RE-Mote devices was proposed. It combines offline profiling with
online energy estimation, using both a software-based mode and a hardware-based one.
The former uses theoretical energy for each operating state, taken from the datasheet, and
captures the time spent in each state, and provide energy estimations with an error margin
of 53% The latter uses an integrated circuit to measure accurately the power consumption
of each state in real-time. A hybrid (hardware and software) power measurement platform
for wireless IoT devices called EMPIOT was proposed in [115]. It mainly targets the issue
of the power consumption measurement for peripherals. It studied the impact of various
design parameters on precision and overhead. It was evaluated by running sleep, encryp-
tion, and communication workloads on five different computing devices. SMARTWATTS
[116] is a power monitoring platform that increases the accuracy of its CPU and DRAM
power models by using an online calibration technique for containers. The authors argue
that this approach can be implemented on various machines because it does not need any
training phase or pre-configuration. Since 2014, many systems use the Running Average
Power Limit (RAPL) feature for power consumption measurements. This feature became
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available on most Intel CPUs. Yet many devices having ARM or AMD processors do not
support RAPL.

In [117], a micro-benchmark-based modeling approach for heterogeneous processors
was proposed, in which the authors state that statistical modeling has a significant initial
cost during the model training. In [118], the authors propose a technique to generate CPU
power models without having a profound knowledge of the CPU architecture. It automati-
cally detects the hardware performance counters correlated to the power consumption and
generates the power model from the selected features. Their approach supports changing
the learning approach according to the need and software-defined power metering. In [119],
a power prediction by applying linear regression to on-chip performance monitoring coun-
ters, in particular for the number of micro-operations that are fetched, completed, and re-
tired in each monitoring cycle. In [120], a piece-wise linear function was proposed to
estimate the power consumption of an AMD processor. The result of this approach showed
a better fit to the collected data when compared with linear and exponential functions.
The micro-benchmark data was collected by stressing four AMD performance counters.
In [121], the authors reviewed direct measurement and estimation models. Most of the
reviewed models apply linear regression techniques on hardware performance counters.
They showed that previous studies were limited regarding the considered workloads and
the impact of the complexity for each model. In [122], the authors proposed an approach
based on statistical power modeling by applying regression analysis on high-level activity
metrics. For example, they collected the time spent in each state and the occurrence of
certain events and focused mainly on the interaction between the processor and the mem-
ory. In [123], the authors surveyed the literature approaches used for energy consumption
modeling and prediction for data centers. They noticed a linear relationship between power
consumption and CPU utilization.

PowerPi [124] and EMM [125] proposed power models for a particular Raspberry Pi
version (RPi 2B and RPi 3B+, respectively). In both approaches, they empirically created
a data set correlating power consumption from a power meter to CPU utilization. A lin-
ear regression analysis was then applied to generate a power model. However, two main
limitations of their approach: first, the model targets only one particular device version
and cannot be used on other models due to the distinct power consumption of each RPi
model [126]. And second, improving the accuracy of the regression requires manually
conducting the experiments again with additional data. In [127], the authors proposed five
different power modeling techniques by correlating software metrics with physical power
measurements using Mantis [128]. The latter generates a power model using a one-time
model fitting technique by collecting software metrics and correlating them to the measured
power. It collects metrics from the main system components, namely CPU, memory, and
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disk. In the paper [127], the authors found that the CPU is the major energy consumer in a
computer, but the relation between power and utilization is not always linear.

In [129], the authors proposed a deep neural network (DNN) that predicts the remain-
ing battery of IoT devices. This approach is based on pre-processing the data (eliminate
missing values, convert them to numerical format, and normalize data). Then, a Moth
Flame Optimization is used to select the optimal features that are input for a DNN model.
It provided advantages regarding the feature selection and the battery life estimation accu-
racy. However, overload of the approach was not calculated and tends to be high due to
the significant processing needed. In [130], the authors have gone beyond only predicting
battery life using machine learning models to propose a DNN alongside a blockchain. The
use of blockchain, as a secure and trustworthy prediction storage, improved the authenticity
of the prediction from a security point of view. The DNN predicted the remaining battery
with an average accuracy of 90%.

Table 4.1: Summary of related work.

Paper Suitability Error (%) Description

[113] Any N/A Hardware solution
[114] IoT 4-18 Hardware/Software
[115] IoT 3.5 Hardware/Software
[116] Containers N/A RAPL
[118] CPU 1.5 Performance counters
[120] CPU 3-7 Performance counters
[127] CPU 10 Performance counters
[117] AMD APU 3-7 Regression
[119] CPU 2.6 Regression
[122] ARM SoC 5 Regression
[129, 130] IoT 5.17 DNN

Most comparable related work

[124] RPi 2B 14.56 Regression
[125] RPi 3B+ 40.76 Regression

The related work is summarized in Table 4.1. Although some results appear consis-
tent with prior research, the existing research has multiple limitations: i) Proposed energy
estimation models are quickly out-of-date due to software or kernel updates, or new revi-
sions. Such updates are becoming more frequent in modern software, therefore reducing
the efficiency of a model generated from a particular software version or hardware revision,
ii) The process of model generation is not fully automated and requires human interven-
tion for different tasks (running the benchmark, collecting data, generating, and validating
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the energy model), and iii) Estimation models are not easily and automatically shared in
an effective way between different devices and users. Users need to manually acquire the
appropriate energy model for their devices.

To the best of our knowledge, none of the power estimation model generation ap-
proaches is based on a continuous improvement method or proposed a technique to auto-
mate model generation on a large scale.

4.3 Automated Power Modeling Architecture

In this section, we present our automated power modeling architecture where we describe
the physical architecture of both our client and server components, along with the automatic
generation of power models.

The architecture aims to generate an always up-to-date and accurate power model for
various computing devices, such as servers, PCs, single-board computers, or embedded and
IoT devices. We achieve this automatic generation with a multi-component architecture
aimed to collect and process power data and metrics, apply machine learning algorithms,
and generate an updated, more accurate, power model.

Figure 4.1: An overview of our automated power modeling physical architecture

Concretely, our architecture, in Figure 4.1, is composed of three distinct but comple-
mentary components: a data collection and benchmarking client, a machine learning and
power modeling server, and a power estimator client. Simply put, our benchmarking client
will collect run-time software, hardware, and power metrics, which are then sent to the
power modeling server. The latter will then generate empirical power models based on the
current and previously collected metrics, using machine learning techniques. Finally, the
power estimator client will query the server for the most up-to-date and accurate model for
the device it’s running on, and use that model to estimate the power consumption of the
device.
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Each component of our architecture can be independently implemented as we aim
to provide a decentralized and decoupled architecture. For instance, our generated power
models can be used by third-party power estimator clients to provide run-time and live
power estimations, or used by hardware management software to supervise the power con-
sumption of a set of devices.

In addition, the architecture is designed to maintain a high level of flexibility to man-
age: new devices introduced to the environment, changes occurring to the existing ones
(such as OS or kernel updates), new metrics to consider and collect, or changing the model
generation algorithm.

4.3.1 Data Collection and Benchmarking Client Architecture

Figure 4.2 presents the physical architecture of our data collection and benchmarking client.
Its main role is to collect software, hardware, and power metrics of run-time and real-world
workloads. The collected data will then be used as a training and validation data set for the
machine learning algorithms in our server.

Figure 4.2: Benchmarking client physical architecture

Our benchmarking client first needs to collect the power consumption of the workload.
This first step requires an accurate power measurement component, as this metric will be
used as the truth for this power metric. Therefore, we recommend using a physical power
device, such as an external power meter, or an integrated physical power sensor.
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The main components of our architecture are the following:

Power Collector : this component connects to the power measurement sensor and col-
lects run-time power metrics (such as the power consumption in watts, the current,
the voltage, or any other power-related metrics), and associates each measure to a
timestamp.

Metrics Collector : this component collects various metrics from the operating system,
hardware (through the OS), and software. For example, it can collect the number
of CPU cycles, the transmitted data packets in a network, the number of storage ac-
cess requests, or more complex metrics and data (such as software running, network
throughput, quality of service, or metadata about the operating system or the software
workload).

Controller : this component orchestrates the data collection from the energy and metrics
collectors. It controls the frequency of data collection and sharing with the server. It
also makes sure that the metric collector is running simultaneously with the power
collector.

Sharing Interface : this component’s role is to share the collected data to the power mod-
eling server. It can be implemented as a web service API, or through a file-sharing
mechanism (on a local network, over FTP, etc.), or any other sharing method under-
stood by the server.

4.3.2 Power Modeling Server Architecture

Figure 4.3 presents our power modeling server physical architecture. Its main role is to
receive generate accurate and always up-to-date power models using the data collected
from the benchmarking client. The server acts as a centralized entity towards multiple
benchmarking clients, receiving data from multiple similar or different devices.

For example, benchmarking clients can collect data from workloads running on mul-
tiple instances of a same-type device. This data collection can also spread across time, and
the server will regenerate a new updated power model each time a new data set of metrics
is received from a benchmarking client.

The main components of our architecture are the following:

Collector Interface : this component receives the data collected by the benchmarking
clients. At this point, the data is received as is, and further processing is handled in
the next components.
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Figure 4.3: Power modeling server physical architecture

Data Synchronizer : this component processes the received data (which might be in mul-
tiple formats or files), synchronize timestamps between the metric and power data,
verifies and synchronizes clock diversion between the timestamp of the computing
device and the one from the physical power sensors or meters.

Data Cleaner : this component cleans the synchronized data by identifying and eliminat-
ing redundant, erroneous, or out-of-context data. For example, the cleaner tries to
identify when the useful workload started and ended, and discards data points out-
side this range. The cleaner also verifies that the received data is valid, such as if
the provided power values are within the power range of the device it was run on, or
whether bogus or spamming data are present.

Model Generator : this component generates a power estimation model based on empir-
ical machine learning techniques, using the newly received data along with the data
already stored in the server about the particular device. For example, the estimation
models can be based on any prediction algorithm (such as regressions, decision trees,
neural networks, etc.).

Model Validator : this component validates that the new model is more accurate than the
current model stored in the server for the device. For example, using all available
data sets (including the newly received ones), it can compare the average error of the
new model to the currently stored one, and then keep the more accurate one.

Historical Data Repository : this database contains all the collected data of all devices,
benchmarks, metrics, and workloads. The newly received, cleaned and validated
data are added to this repository, and therefore contributing to building big data set
associating various metrics and data to power consumption, and gradually improving
the accuracy of our model generator.
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Power Models Repository : this component contains all the generated power models for
all devices. Only the most accurate power model is saved to this repository, along
with the model and estimation parameters, and the average error of the model. The
repository distinguishes between devices, but also between revisions of devices (for
example, Raspberry Pi 4B revision 1 and revision 2), between operating systems
architectures (32 or 64 bits), etc.

Sharing Interface : this component provides a sharing mechanism for power estimator
clients to retrieve the latest up-to-date power model of their device. As with our other
sharing interfaces, it might be implemented as a web service API, a format-specific
file, or any other sharing mechanism and format.

4.4 Implementation for Raspberry Pi Power Models

In this section, we present a specific implementation of our architecture aimed to generate
accurate power models for single-board computers in general and Raspberry Pi devices
in particular. To the best of our knowledge, our implementation is the first to provide a
comprehensive set of benchmarks and power models for the entire current set of Raspberry
Pi devices.

4.4.1 Data Collection and Benchmarking Client

Our implementation of the benchmarking client consists of two main components: a work-
load generating benchmark and a data collector. Our architecture supports multiple types of
data collections and can generate power models for multiple hardware components. How-
ever, in our proof-of-concept implementation, we focus on generating an accurate power
model for the ARM processor of Raspberry Pi devices by collecting CPU metrics.

The workload generated by the benchmark consists of applying variable loads on the
device’s processor. We decide to apply a stress load on the CPU covering the entirety of
the load range, i.e., we stress the CPU from 0% all up to 100%, with an incremental step
of 5%. The load is applied for 60 seconds for each percentage step. We also saved the
workload timestamp and store everything in a CSV file.

The data collector component is a program collecting CPU metrics. In particular, we
collect CPU cycles from the Linux proc interface (/proc/stat). Then we calculate the
CPU utilization (ranging from 0 to 1) and save this data to another CSV file.

We calculate the CPU utilization by calculating the ratio of the busy cycles (CPU
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cycles in user and kernel mode) with the total cycles which includes idle ones:

u[t] =
cbusy[t]− cbusy[t− 1]

ctotal[t]− ctotal[t− 1]
(4.1)

where:

• cbusy[t] is the total number of busy cycles up to time t (busy is here equal to: user +
nice + system from /proc/stat).

• and ctotal[t] is the sum of cbusy[t] and the number of idle cycles cidle[t].

In addition, we collect the actual power usage using a power meter and store the power
data in a third separate CSV file. The power data is collected from another device to reduce
the impact on the workload and accuracy of the benchmark. The controller makes sure the
collection of metrics and power is done with the same frequency and at the same time. It
gathers the three CSV files and prepares them to be shared with the power modeling server.

4.4.2 Power Modeling Server

We build our power modeling server following a decision algorithm presented in Figure 4.4.
We first collect the three generated CSV files from the client (in our implementation,

sharing the CSV file from a common storage location). We then normalize and clean the
data:

• Remove irrelevant data points (the ones from before, after, and separating the work-
loads),

• Synchronize timestamps of the three CSV files,

• Synchronize the clock diversion between the Raspberry Pi timestamp and the power
meter,

• Aggregate the three CSV files into one containing the label power, the CPU utiliza-
tion, and the timestamp,

• Remove the inconsistency in the data that results in anomalies (peaks and troughs
present at the beginning and end of workloads).

We then proceed with the generation and validation of our power model. First, we
check if an estimation model already exists on the server for the specific Raspberry Pi
device and version. If no model exists, then we proceed to generate a new power model
(M ′(n)) using the collected data, calculate its average error E ′(n). Furthermore, we save
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Figure 4.4: Our implementation approach for power modeling

the new power model to the model repository and the collected data to the historical data
repository.

However, if a current power model exists (M(n − 1) along with its average error
E(n− 1)), then we proceed with the following process:

• We first read all the data saved in the historical data repository of the specific device,
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and temporally add the newly collected data to form a new data set. This data set is
then used to generate a new power model M ′(n), and the average error for this new
model is also calculated E ′(n).

• If the error rate of this new model E ′(n) is outside of an accepted predefined range
compared to the previous model E(n − 1), then we discard the collected data (as
we consider it is not valid), and the server keeps its data and power model. In our
implementation, we consider a 5% range around the error rate as a good indicator of
whether the data is valid or has been trafficked. The latter can happen if the power
data of a device has been mixed with the collected metrics of another, or fake data
has been sent, or an error in converting numbers happens in the client.

• If the error rate is within the predefined range, then we calculate the error rate E(n)
of the existing model M(n − 1) using all the data (historical and new ones). We do
this additional calculation because the current error rateE(n−1) has been calculated
using the historical data only.

• We then compare the new error rate E(n) of the current model M(n − 1), with the
error rate E ′(n) of the new model M ′(n). The model with the lowest error rate will
then be stored in the models repository as the new up-to-date and accurate power
model of the specific device. And lastly, we store the newly collected data in the
historical data repository.

At the end of this process, the server will contain additional data points which will,
over time, improve the accuracy of our empirical power model generation.

In our implementation, we use linear and polynomial regression algorithms to gen-
erate power models, as a correlation was observed between CPU utilization and power
consumption in Raspberry Pi devices.

In the next section, we detail the empirical experimentation to validate our implemen-
tation and power models.

4.5 Empirical Validation and Discussions

In this section, we detail the empirical experimentations that validate our approach, imple-
mentation, and generated power models.

4.5.1 Experimental Setup

Our experimental setup consists of 8 Raspberry Pi devices from different generations and
revisions as detailed in Table 4.2, dating back from 2012 until the latest current model.
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We run our workload on both 32 bits (armv7l) and 64 bits (aarch64) operating systems for
model 4B (for each of the 2 revisions we used).

We used the same SD card to boot Raspberry OS on all devices, switching operating
systems and ARM architecture accordingly. We also automated the benchmark experimen-
tation by adding a boot script to /etc/rc.local.

Table 4.2: The variety of Raspberry Pis used during experiments

Model Rev. OS CPU Architecture Cores Released

Zero W 1.1 32 armv6l 1 2017
1B 2 32 armv6l 1 2012
1B+ 1.2 32 armv6l 1 2014
2B 1.1 32 armv7l 4 2015
3B 1.2 32 armv7l 4 2016
3B+ 1.3 32 armv7l 4 2018
4B 1.1 32/64 armv7l/aarch64 4 2019
4B 1.2 32/64 armv7l/aarch64 4 2019

To collect power consumption, we use the PowerSpy2 power meter 1. PowerSpy2 is
a Bluetooth power meter used for advanced and accurate analysis. To reduce interference
in the experiments, we use a separate computer to connect to the meter and collect power
metrics.

We run all our experiments on Raspberry Pi OS (version based on Debian 9 stretch),
with Linux kernel 4.14. Our components and tools are written in Python and run with
version 2.8, and in C compiled with GCC 6.3.0. For Raspberry Pi 4B, we the supported
version of the OS based on Debian 10 buster with Linux Kernel 5.4, and GCC 8.3.0.

To further reduce interference on the accuracy of our experiments, and as we aim to
generate a CPU power model, we disconnected all external peripherals during the work-
load (including the monitor through HDMI, keyboard, and mouse through USB ports and
the network through the Ethernet interface). We also disabled from the operating system
all network interface cards (i.e., WiFi and Bluetooth). We also limited the running applica-
tions to the minimum as to only monitor the power impact of the workload. Furthermore,
we made sure that every device was cooled down before running the experiments, as over-
heating can have an impact on power consumption. Specifically, each Raspberry Pi was
disconnected from its power supply until the device was cooled down.

1https://www.alciom.com/en/our-trades/products/powerspy2/
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4.5.2 Benchmark Data Collection

To collect our CPU metrics, we wrote a minimal C program that read the /proc/stat
file every second and calculated the CPU utilization. The latter was then saved into a CSV
file.

As described in our implementation in Section 4.4.1, we stressed the CPU from 0% to
100% with a 5% increment.

(a) (b)

Figure 4.5: CPU theoretical load compared to the load generated by (a) the stress-ng com-
mand and (b) the CPULoadGenerator

We initially used the same stress command (or stress-ng) used in the literature [125] to
specify a percentage CPU load. However, we noticed that the CPU load was inconsistent,
with the actual CPU load altering between 0% or 100% in various time duration, rather
than consistently stabilizing at the asked percentage load. Instead, we used a Python script,
CPULoadGenerator 2, which consistently stressed the CPU at the asked percentage with
a small degree of variation. Figure 4.5 outlines the differences in CPU load consistency
between the two tools.

For each experiment, we stressed the CPU for 60 seconds for each CPU load step and
is followed by a 10-second pause. A 60-second pause precedes each experiment in order to
reduce the impact of our script on the results. In total, each experimental benchmark runs
on average for about 25 minutes (24 min and 20 sec).

Each benchmark generates a total of 1460 data points. After the cleaning phase, we
end up with more than a thousand data points. These are then used to generate our empirical
power models. For the purpose of our experiments, we run our benchmark a few times for
the Raspberry Pi 3B+ and Raspberry Pi 4B rev 1.2 (64 bits) and ended up with around
5400 data points for the former, and around 2000 data points for the latter. In total, RPi
Zero has 666 data points, 1B has 1034, 1B+ has 954, 2B has 1137, 3B has 1105, 3B+

2https://github.com/GaetanoCarlucci/CPULoadGenerator
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has 5383, 4B 1.1 (32 bits) has 1089 and its 64 bits version has 998, 4B 1.2 (32 bits) has
1017 and its 64 bits has 2014 data points. The difference in the number of data points for
each device type is due to our additional experiments (in particular for the 3B+ and 4B,
for instance, to compare 32 bits vs 64 bits, or the validation of the power model generator).
Additionally, our cleaning script strips the waiting time between each experiment run of the
stress benchmark. As the stress command is not precisely perfect in its timing, the duration
of each test might vary by a few seconds, hence the additional data points.

4.5.3 Regression Power Models

For our experiment, we used two regression algorithms in our server to generate the power
models: linear and polynomial regression. We choose these two regression algorithms
because of the visible correlation between power and CPU utilization. However, other
machine learning techniques and algorithms can be applied to generate different regression
models.

Table 4.3: RPi generated power models using polynomial regression algorithms

Raspberry Pi y-intercept Degree
1 2 3 4 5 6 7 8 9

RPi Zero W Rev 1.1 0.85 7.21 -135.52 1254.81 -6329.45 18502.37 -32098.03 32554.68 -17824.35 4069.18
RPi 1B Rev 2 2.826 3.54 -43.59 282.49 -1074.12 2537.68 -3761.78 3391.05 -1692.84 357.80
RPi 1B+ Rev 1.2 1.251 1.86 -18.11 101.53 -346.39 749.56 -1028.80 863.88 -403.27 79.93
RPi 2B Rev 1.1 1.36 5.14 -103.3 1027.17 -5323.64 15592.04 -26675.60 26412.96 -14023.47 3089.79
RPi 3B Rev 1.2 1.52 10.05 -234.19 2516.32 -13733.56 41739.92 -73342.79 74062.65 -39909.43 8894.11
RPi 3B+ Rev 1.3 2.48 2.93 -150.40 2278.69 -15008.56 51537.32 -98756.89 106478.93 -60432.91 14053.68
RPi 4B Rev 1.1 2.57 2.79 -58.95 838.88 -5371.43 18168.84 -34369.58 36585.68 -20501.31 4708.33
RPi 4B Rev 1.1 (64 bits) 3.41 -11.83 137.31 -775.89 2563.40 -4783.02 4974.96 -2691.92 590.36
RPi 4B Rev 1.2 2.59 12.34 -248.01 2379.83 -11962.42 34444.27 -58455.27 57698.69 -30618.56 6752.27
RPi 4B Rev 1.1 (64 bits) 3.41 -3.07 47.75 -271.97 879.97 -1437.47 1133.33 -345.13

Our power modeling server is implemented in Python scripts, automating the data
cleaning, synchronization, power modeling, and storing data into the repositories. We,
then, generated power models for all different Raspberry Pi models.

Table 4.4 outlines the generated power models using linear regression algorithms, and
Table 4.3 outlines the models generated with polynomial regression models.

4.5.4 Validation of Power Models

To validate the accuracy of our power models, we compare the power consumption cal-
culated by our models to the power consumption measured from the power meter. This
allows us to calculate the absolute difference between these two values for every data point
in the collected metrics. We then calculate an average error using all measurements from
all devices with different regression models.
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Table 4.4: RPi generated power models using linear regression algorithms

Raspberry Pi Estimation Model

RPi Zero W Rev 1.1 P = 0.4733× U + 0.9201
RPi 1B Rev 2 P = 0.1424× U + 2.9117
RPi 1B+ Rev 1.2 P = 0.1220× U + 1.3143
RPi 2B Rev 1.1 P = 1.1488× U + 1.2903
RPi 3B Rev 1.2 P = 3.4774× U + 1.0782
RPi 3B+ Rev 1.3 P = 3.2983× U + 2.0022
RPi 4B Rev 1.1 P = 3.7121× U + 2.2058
RPi 4B Rev 1.1 (64 bits) P = 4.4958× U + 2.3073
RPi 4B Rev 1.2 P = 3.4842× U + 2.2434
RPi 4B Rev 1.2 (64 bits) P = 4.5344× U + 2.2857

Figure 4.7 presents the measured correlation between CPU load (in percentage), and
the power consumption (in watts) for our two regression models (linear and polynomial)
and the actual measurements from the power meter. Except for Raspberry Pi 1B and 1B+,
our empirical benchmarks show a better fit for the polynomial regression.

This translates into a lower average error for the polynomial model as compared to
the linear model for all experiments and Raspberry Pi devices, as seen in Figure 4.6. The
average error for the linear models varies from as low as 0.34% for RPi 1B+, to 7.81% for
RPi 3B. In contrast, the highest average error for the polynomial model is 3.83% to the RPi
3B+.

Figure 4.6: Average Error percentage for linear and polynomial regression algorithms per
Raspberry Pi
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(e) (f)

(g) (h)

(i) (j)

Figure 4.7: Linear vs polynomial regression power estimation models of the (a) RPi Zero
W (b) RPi 1B (c) RPi 1B+ (d) RPi 2B (e) RPi 3B (f) RPi 3B+ (g) RPi 4B 1.1 (h) RPi 4B
1.1 (64 bits) (i) RPi 4B 1.2 (j) RPi 4B 1.2 (64 bits)
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4.5.5 Impact of Raspberry Pi Revisions

The Raspberry Pi Foundation often revises its current offering of devices, with modifica-
tions to various hardware components. As our implementation focuses on generating power
models for the CPU, we suspect that revisions on the USB port or other minor modifications
will only have a small impact on the average error of our models.

We proceed to run our benchmarking client and generate power models for the Rasp-
berry Pi 4B revisions 1.1 and 1.2, as seen in the previous Tables 4.4 and 4.3. For this
particular device, the differences between revisions 1.1 and 1.2 are minimal and related to
the USB-C connector as some electronic components were added and reallocated to fix a
fault regarding the connector.

Table 4.5 shows minor differences in the average error between the rev 1.1 and 1.2
for the same OS architecture (32 or 64 bits). This difference is not negligible for accurate
power measurements as an increase of up to 56% was observed for using the power model
of another revision. However, the average error compared to the power meter is still low in
both power models when switching revisions (i.e., around 3% to 4% for rev 1.1). There-
fore, we recommend generating and using power models for specific revisions, while still
allowing estimator clients to use another revision power model if one isn’t provided for the
specific revision.

4.5.6 Impact of 32 and 64 bits Raspberry Pi Versions

Newer Raspberry Pi devices have a 64 bit supported ARM architecture, where users can
run either a 32 or a 64 bits operating system. As a stable 64 bits version of Raspberry OS
hadn’t been released during our experiments, we use its latest beta version (arm64-2020-
08-24). Recent experiments had shown that a 64 bits OS on a Raspberry Pi 4 provides a
much higher performance compared to a 32 bits OS, up to doubling the performances in
benchmarks [131]. Therefore, we suspect that our power models generated in a 32 bits OS
would not provide a similar accuracy on a 64 bits OS.

Table 4.5: Comparison of the average error of the linear models for 32 bits and 64 bits OS,
for both revisions of Raspberry Pi 4B

RPi / Power model
RPi 4 B 1.1 RPi 4 B 1.1 RPi 4 B 1.2 RPi 4 B 1.2
32 bits 64 bits 32 bits 64 bits

RPi 4 B 1.1 32 bits 3.86 12.47 4.64 12.47
RPi 4 B 1.1 64 bits 10.68 2.99 12.22 2.97
RPi 4 B 1.2 32 bits 3.70 14.65 2.97 14.63
RPi 4 B 1.2 64 bits 10.60 3.97 12.09 3.92
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For both Raspberry Pi 4B revisions, we generate power models running our bench-
marks on a 64 bits OS, as seen in the previous Tables 4.4 and 4.3. As we suspected, our
benchmarks running on a 64 bits OS have, on average, higher power consumption than the
same device running the same benchmarks on a 32 bit OS.

Table 4.5 presents the average error of each generated power model when applied to
the benchmark data of every experiment. We observe, consistently, that a different architec-
ture highly impacts the accuracy of the generated power models, up to more than 5 times.
For instance, RPi 4B rev 1.2 32 bits power models are nearly 5 times less accurate when
used on the same revision but with a 64 bits OS. These results confirm our hypothesis and
the higher performance of a 64 bits OS on supported devices as seen in the literature [131].

Consequently, we recommend using power models generated specifically for the de-
vice’s architecture.

4.5.7 Impact of Connected Peripherals

Raspberry Pi devices are designed to be easily connected to external peripherals via a vari-
ety of physical interfaces. To assess the impact of connected peripherals on the validity of
our energy models, we conduct the same benchmark experience in two different scenarios
on a Raspberry Pi 4B, revision 1.2. In the first scenario, we disconnect all peripherals and
follow the procedure mentioned in Section 4.5.1. In the second scenario, we launch the
benchmark after connecting the Raspberry Pi to a screen using the mini HDMI interface, a
USB wired keyboard, and a wireless mouse, and we activate WiFi.

We generate two power models, one for each scenario, and calculate its average error.
As seen in Table 4.6, both CPU linear and polynomial models have a lower error when
disconnecting the peripherals. However, the models generated with the peripherals are
still within an acceptable margin below 8%. This proves that our approach can generate
CPU power models with an acceptable accuracy even with interference from connected
peripherals.

Table 4.6 also shows the average error when using the power model of one scenario
onto the data of the other scenario, i.e., using the power model generated with the periph-
erals on benchmarking data generated without the peripherals, and vice versa. The average
error shows a lower accuracy of the model, but still within a range below 8%. This means
our CPU power models generated in an ideal benchmark setup (with peripherals discon-
nected), are still accurate enough to, not only estimate the power of the CPU, but to estimate
the power of the Raspberry Pi device (as the CPU is shown to be the most power-consuming
component).

Raspberry Pi devices are often used in a headless server setup (such as to control
industrial machines, control heating or lightning in a smart home or city, a web or NAS
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server, etc.). In these situations, our approach generates accurate CPU power models with-
out interference from peripherals.

Table 4.6: Comparison of the average error of the linear and polynomial models with and
without peripherals on a Raspberry Pi 4B, rev. 1.2

Power Model
Data

with without

Linear with 4.19% 7.83%
Linear without 7.34% 2.92%
Polynomial with 3.73% 7.72%
Polynomial without 6.91% 1.64%

4.5.8 Comparison to the State of the Art Models

To assess the validity of our models and our automated approach in generating up-to-date
models, we compare our generated power models to the ones provided by the state of the
art. In particular, we tested and compared our models to two models: PowerPi [124] and
EMM [125].

PowerPi provided linear power models for the Raspberry Pi 2B and used a custom
tool to stress the CPU using an infinite loop doing two additions of two integer variables.
cpulimit was used to limit the CPU utilization which was stressed with a 10% step.

EMM provided linear power models for the Raspberry Pi 3B+ and used the
stress-ng command to stress the CPU for a particular load. As we explained in
Section 4.5.2, we found that using this command generates an inconsistent CPU load. In
comparison, we use a more random CPU load generator (compared to PowerPi), and a
more consistent CPU load tool (compared to EMM). We also stressed the CPU with a
5% step, collecting more data points at more CPU load percentages. Therefore, we have
a more comprehensive and complete data set to generate more accurate power models.
Our architecture also follows a crowd-sourced approach allowing adding additional
benchmarks and data to constantly improve the generate power models.

PowerPi announces an average error of 1.2%, while EMM announces an average er-
ror of 1.25% with a maximum of 3%. However, in our experiments, we found that both
models have a much higher error rate: 14.56% for PowerPi and 40.76% for EMM (cf.
Figure 4.8). In contrast, our linear models provide an error rate of 3% for RPi 2B, and
6.71% for RPi 3B+, and even much lower error rates for our polynomial models (1.53%
and 3.83%, respectively).

In addition, our approach is based on a dynamic model generation that deals with
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dynamic workloads. It is validated on a large variety of Raspberry Pi devices in compari-
son with state-of-the-art methods (which are tested on a single device). It also allows the
collection of a large data set due to its decentralized data collection technique. Another
advantage of our approach is its flexibility: new models can be added or modified as the
system evolves. As such, it can integrate into complex and moving environments (such as
when new devices are often introduced or updated).

Figure 4.8: Average error percentage for linear and polynomial regression algorithms for
our approach compared to the literature

4.5.9 Overhead of Regression Models

Most of our generated polynomial models have a degree of 9, requiring calculations up
to the power of 9. In our analysis, we found that polynomial models with a higher degree
than 9 have negligible accuracy improvements but with a higher calculation complexity. As
these models have a much higher accuracy than the linear ones, we compared the overhead
of running both models in our implementation of the power estimator client.

Our client is a minimal C program reading CPU cycles, calculating CPU utilization,
and applying the power models. The client monitors power consumption at run-time and
provides a power value every second. We compare the power overhead of running the client
with both power models, and also in comparison to the base power consumption without
our client. We conduct our experiment on two Raspberry Pi models: RPi Zero W for a
low-power device, and the 3B+ for a more recent higher-power one.
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(a) (b)

Figure 4.9: Power overhead of the (a) RPi Zero W and the (b) RPi 3B+

Figure 4.9 outlines the absolute differences in Watts between both our implementa-
tions: linear and polynomial models. For both devices, although we observe some rare
data points of higher diversion, the overall difference is quite low with an absolute average
difference of 0.084 watts (corresponds to a relative difference of 1.32%) for the RPi Zero
W, and only 0.109 watts (corresponds to a relative difference of 0.72%) for the RPi 3B+.
These numbers show a negligible overhead for using our polynomial models over the linear
ones, even on low-power devices. We, therefore, recommend using the polynomial power
models even for run-time power monitoring.

4.5.10 Validation of the Power Model Generator

The core idea of our power modeling generator, described in Section 4.4.2, is to allow
third-party benchmarking clients to send new benchmark metrics to further improve the
accuracy of the generated power models. In this section, we validate our approach with a
breakdown of a step-by-step experiment of the linear power model in a Raspberry Pi 3B+
device.

We run our experiment 10 times, emulating 7 benchmarks sending data incrementally
one after the other for one particular device (Raspberry Pi 3B+). Our server implementation
then runs our model generator algorithms and keeps the best accurate power model in every
step.

The result of this breakdown is outlined in Table 4.7 for the linear model, and Ta-
ble 4.8 for the polynomial model. Each row of the table represents a new server iteration
(receiving new data, data normalization and cleaning, validation, power model generation,
and comparison, etc.). M ′(n) indicates the newly generated power model in the server,
along with its error rate E ′(n). E(n) is the error rate of the currently saved power model
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using all the data. And M(Server) or M(S) is the power model that is saved after the
current iteration.

Table 4.7: Breakdown of our Power Model Approach (linear model on RPi 3B+, bold for
the selected model)

Step M’(n) E’(n) E(n) M(Server)

S1 P = 3.357× U + 2.024 7.64% - S1
S2 P = 3.271× U + 2.032 6.61% 7.07% S2
S3 P = 3.272× U + 2.011 6.13% 6.23% S3
S4 P = 3.285× U + 2.014 6.58% 6.51% S3
S5 P = 3.296× U + 2.004 6.72% 6.66% S3
S6 P = 3.294× U + 1.997 6.45% 6.43% S3
S7 P = 3.292× U + 1.992 6.25% 6.27% S7

Table 4.8: Breakdown of our Power Model Approach (polynomial model on RPi 3B+, bold
for the selected model)

Step P[0] Degree of M’(n) E’(n) E(n) M(S)
1 2 3 4 5 6 7 8 9

S1 2.34 11.95 -334.15 3997.0 -23579.71 76091.11 -140313.95 147466.42 -82193.81 18858.15 3.68 - S1
S2 2.45 5.33 -186.67 2534.97 -15983.94 53687.34 -101595.06 108702.03 -61390.2 14229.05 3.73 4.15 S2
S3 2.49 2.66 -129.57 1976.33 -13076.81 45047.92 -86526.32 93476.51 -53148.84 12380.92 3.63 3.79 S3
S4 2.48 3.07 -146.99 2215.22 -14580.93 50066.17 -95944.1 103459.96 -58730.58 13660.99 3.8 3.71 S3
S5 2.49 2.96 -151.39 2289.23 -15064.96 51709.94 -99070.29 106810.86 -60621.69 14098.12 3.82 3.73 S3
S6 2.51 1.69 -123.33 2010.51 -13596.98 47304.09 -91325.7 98938.95 -56341.33 13134.87 3.78 3.71 S3
S7 2.52 0.74 -102.99 1810.06 -12545.46 44155.31 -85798.75 93326.76 -53291.99 12449.07 3.74 3.69 S3

As we can observe in this breakdown, the newly generated model is not always the
most accurate. For instance, for the linear model, at step 4, the new model has a worst aver-
age error (6.58%) compared to the current model (6.51% calculated with all data including
the new ones). This also happens in steps 5 and 6. However, across multiple iterations, we
observe a decrease in the average error, which started at 7.64%, then gradually went down
up to 6.25% after only 7 benchmarks and model iterations. We observe a similar break-
down for the polynomial model with an improvement of the error rate and our approach
uses the most accurate power model on every step.

We argue that the more benchmark data we have, the more our architecture and ap-
proach will provide empirical power models with better accuracy.
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4.6 Use Cases

4.6.1 Use Case of Remote Power Monitoring

A use case illustrating the advantages of our approach is remote power monitoring of a
park of deployed Raspberry Pi devices. Examples of such use cases vary from monitoring
environmental metrics [132, 133], smart management [134], or health [135]. In particular,
smart devices, such as Raspberry Pis, send collected metrics and their status (including
CPU statistics) to a central monitoring service.

An example of the latter is Zabbix 3, an open-source server used for real-time moni-
toring of a large number of clients. In each Raspberry Pi client, a Zabbix agent is installed
to allow remote monitoring and management. It can send CPU utilization and many other
metrics for the device in real-time. We developed a prototype plugin for Zabbix to in-
tegrate our power models and architecture into its web interface. Our plugin updates the
power models of the monitored devices by connecting to our power modeling server. It also
tweaks the Zabbix web interface to calculate the power consumption of monitored devices,
in real-time, and displays them along with the CPU utilization, as seen in Figure 4.10.

With our approach and power models, remote management tools can efficiently, ac-
curately and with no overhead on the monitored devices, monitor the power consumption
in real-time. It also allows these tools to always have updated and accurate power models,
and to support new device power models easily by just calling our sharing interface.

Figure 4.10: Power consumption of a RPi displayed on a Zabbix server web interface

3https://www.zabbix.com/
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4.6.2 Use Case of LED Bulb Power Estimation

A use case of a smart LED bulb is experimented in order to evaluate the approach of power
estimation models generating and its suitability with devices different than RPi. LED bulbs
are considered one of the basic devices to have in a smart home, thus, the importance to
test our approach on them.

To collect power consumption, we use the PowerSpy2 power meter described in 4.5.1.
We run all our experiments on a smart RGB multi-color LED bulb [136] manufactured
by LSC Smart Connect (Ref. 2578539 , 9 watts, 806 lumens), that communicates using
2,4 GHz Wi-Fi. For each of the experiments a total of approximately 800 data points is
collected. We exclude the data when the brightness is equal to 0 because at that level
of brightness none of the single led lights that consists the LED bulb is turned on so the
only component consuming energy is the Wi-Fi circuit. The power consumption in this
particular condition is 0.62919 W.

The first experiment is conducted on the white color setting, and the parameter that we
change is the brightness from 0 to 100% with a 10% step. The collected data is analysed
and a power estimation model is generated. Figure 4.11 presents the measured correlation
between brightness (in percentage), and the power consumption (in watts) for our linear
regression model and the actual measurements from the power meter.

Figure 4.11: Linear regression power estimation model of the white LED bulb

The second experiment shows the different power consumption of different colors on
a 100% brightness level, as seen in figure 4.12. We choose 6 basic colors (blue, cyan, green,
magenta, red, and yellow) but the power consumption of any color can be measured.
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Figure 4.12: Power consumption of the LED bulb for different colors

The third experiment combines the two previous ones. We change the colors and for
each of the colors we vary the brightness level of the light, as seen in Figure 4.13. For each
color a new estimation model is generated to maintain the high accuracy of the models.

Table 4.9 presents the generated LED bulb power estimation models using linear re-
gression algorithms for each of the chosen colors and their error percentages. Our approach
proves its compatibility with different smart home environment devices when data of the
device are available. In particular, it provides high accuracy with low error rates.

Table 4.9: LED bulb generated power models using linear regression algorithms

Color Estimation Model Error (%)

White P = 8.26923×Brightness+ 1.51994 0.5000
Red P = 0.84307×Brightness+ 0.76452 1.2983
Green P = 0.61603×Brightness+ 0.67526 2.3818
Blue P = 0.67791×Brightness+ 0.66825 2.8333
Cyan P = 1.30569×Brightness+ 0.65592 4.0611
Magenta P = 1.49404×Brightness+ 0.75228 2.7146
Yellow P = 1.47088×Brightness+ 0.75325 2.5741
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Figure 4.13: Linear regression power estimation model of the LED bulb for different colors

4.7 Threats to Validity

Our approach and experimentation suffer from the following threats to validity:

• Our implementation is limited to one type of single-board computers, i.e., Raspberry
Pi devices and one type of home devices, i.e., led bulb. We run our experiments on
a wide variety of RPi device models from each generation, but some devices and
revision models were not modeled.

• Our implementation only uses few metrics to correlate to the power consumption,
i.e., CPU utilization, LED brightness, LED color. Even though our results show a
strong correlation, and allow us to generate very accurate power models (that can
have an average error as low as 0.3%), we did not investigate additional metrics or
other hardware components (such as the WiFi or Bluetooth).

• Although we made sure no interference happened to our experiments and data col-
lection, we could not formally discard that no external factors impacted the results.
In particular, the experiments spanned over 4 months in different weather condi-
tions (winter and spring) and therefore different room temperatures. Additionally,
the power overhead of the benchmarking client was not subtracted from the collected
data because we wished to emulate real usage of the client (where it is difficult to
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automatically deduce a variable overhead. This deduction process might require ad-
ditional data collection, such as the CPU cycles of the client process, and therefore
adds an additional overhead itself).

4.8 Summary

In this chapter, we presented an architecture to automate the generation of always up-to-
date and accurate power models for a variety of devices. Our approach allows crowd-
sourced benchmarking of devices, the collection of various metrics, and the generation
of specific power models based on the collected data. A sharing interface allows power
estimator client devices to query and retrieve the most accurate power model available for
the client’s device.

We implemented a proof-of-concept client and server to automate the generation of
power models for Raspberry Pi devices and home devices i.e, LED bulbs. We also con-
ducted a comprehensive experiment validating our approach, algorithms, and power mod-
els. The latter provides high accuracy with error rates as low as 0.33% and up to 7.81% for
linear models, and 0.3% up to 3.83% for polynomial models. Furthermore, we analyzed
and discussed the impact of device revisions, CPU and OS architectures, and the overhead
of both generated power model types. Finally, we validated our approach in the power
model generator and provided an example of a use-case scenario of our models in remote
power monitoring.

We present the implementation of the power modeling and estimation component pre-
viously introduced in chapter 3. It can generate and share power models with other system
components, namely the intelligence management component. It aims to have a vision of
power consumption for management purposes.

In the next chapter, we present the remaining contributions, namely, the knowledge
component and the reinforcement learning agent generator. In addition to the experiments
conducted to validate our approach.



94
CHAPTER 4. AUTOMATED POWER ESTIMATION OF HETEROGENEOUS

DEVICES



95

Chapter 5
Automated Energy Management
Framework

Contents
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2 Automated Energy Management Architecture . . . . . . . . . . . . 96

5.3 Knowledge Management . . . . . . . . . . . . . . . . . . . . . . . . 97

5.4 Intelligence Management . . . . . . . . . . . . . . . . . . . . . . . . 104

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.1 Introduction

Power consumption is increasing in recent years, especially in the residential sector. There-
fore, estimating the power consumption of devices is an essential step into managing energy
in connected environments. In the previous chapter, we presented our approach for model-
ing and estimating power for heterogeneous devices. Once the power consumption of each
device is known, we get a better visibility on energy drains that enables us to accomplish
energy management actions, and taking appropriate actions to reduce energy consumption
is necessary. However, users taking energy optimizing decisions are not always satisfy-
ing energy-efficient decisions due to a lack of knowledge (e.g., right timing, appropriate
actions to take, and parameters to set). In addition, the consideration of all possible scenar-
ios through a rule-based reasoning, used widely these days, becomes impossible with all
potential devices and choices. Therefore, we believe it is necessary to develop a decision-
making framework that operates as Energy Management Systems (EMS) in complex and
heterogeneous environments.
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Based on the state of the art of potential approaches and technologies to develop this
EMS, two well-adapted solutions have been selected: (a) ontologies and (b) Reinforcement
Learning (RL). On the one hand, ontologies can be used as a reliable knowledge represen-
tation technique. On the other hand, reinforcement learning has emerged as a powerful ma-
chine learning technique for dynamic environments, characterized by changing situations
and needs for personalizations, where actions can have positive or negative consequences.
It enables the development of a behavior by taking actions and getting feedback from an
environment through a trial and error process. In addition, users interact directly with de-
vices and any actions accomplished on a device will impact the user comfort. Thus, user
preferences are highly considered in order to ensure the greatest user satisfaction.

In this chapter, we present our framework for automated energy management in sec-
tion 5.2. We propose our approach of representing energy related knowledge in CPS
through an energy-oriented ontology extension in section 5.3. Then, we describe our auto-
mated reinforcement learning agent and environment generation algorithm in section 5.4.
Results and discussions will be presented in the next chapter.

5.2 Automated Energy Management Architecture

In order to solve the problem of energy management in smart and connected systems (i.e.,
smart homes and CPS), we propose using an automated approach to generate the character-
istics of the environment and the decision agent that accomplishes energy-efficient actions
based on RL algorithms. In the following, we use the previously presented contribution
that generates power estimation models (Chapter 4). In addition, we detail our knowledge
management component. To do so, we propose an energy-oriented ontology extension by
adding the power consumption concern and other necessary concerns to the ontology. The
extension allows proper representation of the relationship between power consumption,
properties, and devices. We also detail our intelligence management component that uses
this knowledge to generate RL agents and environments based on the present devices and
their interactions with each other. Then, we train our agent with the generated virtual envi-
ronment and show that energy optimization can be done while respecting user preferences.

Concretely, Figure 5.1 presents our automated energy management physical architec-
ture. It is composed of three distinct but complementary components: knowledge sources
(power modeler, ontology, and user preferences), environment generator, and RL environ-
ment (agent, virtual environment, and interpreter). We detail the main components of our
architecture in the following:

Power Estimation Model Repository. It aims to save and share generated power estima-
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tion models for different devices. At this stage, we extract power estimation models
for devices present in the environment.

Environment Generator. This component generates RL environments by collecting
knowledge from the ontology and the power modeling component.

ECPS Ontology. This component contains information representing the environment and
aims to provide a knowledge base for the environment generator.

User Preferences. This component contains the user preferences that can be an exact value
(e.g., binary state of a device) or min/max value (e.g., light brightness).

RL environment. This component is composed of three sub-components: agent, virtual
environment, and interpreter. The agent applies action to the virtual environment
based on the states and rewards.

Figure 5.1: Knowledge and intelligence management physical architecture

5.3 Knowledge Management

An ontology is a defined set of concepts and relationships used to represent the mean-
ings and a shared understanding in a certain domain [100]. Ontologies are considered
highly effective for knowledge modeling and information retrieval. They provide a com-
mon representation and definition of the concepts and the relationship between them. In
addition, ontologies support inference to discover new relationships and knowledge. They
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are scalable and their reuse is possible. Therefore, an ontology is used to formally represent
knowledge that is found in an environment. In the following, we compare state-of-the-art
ontologies for connected environments then we present our energy-oriented ontology ex-
tension applied on the SAREF ontology.

5.3.1 Related Work of Ontologies for Connected Environments

There has been numerous studies that proposed ontologies defining the entities and prop-
erties of connected devices and appliances. In the following, we focus on the most broadly
used ontologies in the domain of smart homes, especially the ones that aim to optimize
energy:

DesMaHo [137] is an energy ontology focusing on demand side management in smart
home. The goal of this ontology is to use produced power (local or external) for running
appliances with respect to user preferences. DesMaHo divided devices based on their loads
and their ability to produce or store energy. Loads are defined as shiftable, not shiftable,
and program dependently shiftable. It does not consider data generated by devices in a
fine-grained manner.

DIMMER [138] is an ontology that exploit information about energy performance
indicators on the city, district, and building level. Its implementation allowed access and
visualization of energy related information, cost analysis, and user behavior. However,
the devices in the building were not modeled leading to a lack of accurate knowledge of
contextual changes and data collected by sensors.

SARGON [139] is a smart energy domain ontology that extends SAREF with domain-
specific information representing energy in buildings and electrical grids. However, it con-
siders energy on a high level of the environment such as building and grid instead of the
energy used per device leading to a lack of correlations between the measurements and
power consumption. In addition, devices already present in the environment that have
sensing and actuation capabilities are not considered as control devices.

Web-of-Objects (WoO) [140] defines a systematic description of smart distributed
applications enabling the integration of any connected device. It considers some contextual
data (e.g. weather and location), however, it does not consider all potential layers of the
system and the real time power consumption per device.

RealEstateCore (REC) [141] is an ontology aiming to allow data integration for smart
buildings. It is developed to support two specific use cases: Energy usage analysis and pres-
ence analysis. It defines devices as part of a building with sensing and actuating capabilities
without a visibility on power consumption per device.

ThinkHome [142] introduces semantic context and artificial intelligence to achieve a
smart home. It is based on an ontology for knowledge representation. ThinkHome con-
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siders mainly user comfort, user behavior, contextual information (e.g. weather), building
information (e.g. spaces and walls), and energy information (e.g. environmental impact
and energy sources). Lack of heterogeneity is the main drawback of this approach because
it focused on HVAC without studying other types of devices.

Semantic Sensor Network Ontology (SSN) [143] includes a core light weight ontol-
ogy called SOSA (Sensor, Observation, Sample, and Actuator). It was strongly influenced
by SSNX ontology. SSN/SOSA describes sensors (e.g. observations, features of interest,
samples, and observed properties) and actuators. Both Semantic Sensor Network (SSN)
and SOSA can support different use-cases and applications including IoT, industrial and
household infrastructure, and large scale scientific monitoring. However, they do not con-
sider state of devices and energy information per device.

Smart Applications REFerence Ontology (SAREF) [144] focuses on the concept of
device as a central concern and defines its properties that be measurable, controllable, or
both. In addition, it defines the state of the device that can be appliances, sensors, actuators,
meters, and HVAC.

Table 5.1 compares different ontologies for smart homes and connected environments.
We compare these ontologies, based on their degree of representation of concerns by using
four comparison levels: an ontology fully represents a concern (High), it represents a con-
cern in a limited manner (Medium), it represents a concern minimally (Low ), or it does not
represent a concern (None). We compare ontologies based on the following criteria:

• Power consumption per device. It shows the ability of an ontology to represent the
manufacturer typical power consumption and the real-time power consumption per
device.

• Sensor/Actuator data. It shows the possibility to collect data from sensors and actu-
ators on different devices.

• Contextual data. Different types of data other than the measured ones can be repre-
sented (e.g., outside temperature, user presence, and user activities).

• Fine-grained data. Determines the ability of an ontology to represent specific con-
cerns involving great attention to details.

• Ease of implementation with RL. An ontology can be implemented easier with a RL
technique if it represents the three main concepts of RL: actions, states (controllable
and uncontrollable), and metrics.
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Table 5.1: Comparative table of potential ontologies for energy management in connected
environments

Reference
Power

Consumption
per device

Sensor/Actuator
data

Contextual
data

Fine-grained
data

Ease of
implementation

with RL
DeSMaHo

[137] Low Low None None Medium

DIMMER
[138] Low None None Low Low

SARGON
[139] None Low Low Low Low

WoO
[140] Low Medium Medium Low Medium

REC
[141] Low Medium Medium Low Medium

ThinkHome
[142] Low Medium High Low High

SSN
[144] Low High High Medium Medium

SAREF
[143] Low High High Medium High

Table 5.1 shows that the most two suitable ontologies based on our defined criteria
are SSN and SAREF. The main problem is that ontologies do not usually consider power
estimation and measurement. They lack of representation of different layers of a system and
location of devices. Therefore, it is necessary to extend one of these ontologies to represent
these concepts. The way these concepts are defined in SAREF provides a compatible and
easy way to represent the knowledge base for reinforcement learning model generation.

5.3.2 SAREF Ontology

SAREF [144] is a well-known and adopted ontology in research. It focuses on the concept
of a device as a central concern and defines its properties. These properties can be measur-
able, controllable, or both. The main entities of the SAREF architecture are the following:
A device is the main focus and center of all entities. It defines the type of the device (i.e.,
appliance, sensor, actuator, meter, or HVAC). A task is the goal for which a device is de-
signed from a functional viewpoint. Each device is specified by a profile. Properties are
quality of a feature of interest that can be measured or controlled. Measurements are mea-
sured values made over properties. Functions are series of commands that work together
and complete each other to accomplish a task. Services are the representation of functions
to a network. It allows the function to be accessible over the network. Commands are low
level orders used to change the state of a device. States are operating modes in which a
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device is running. Commodity is an economic resource from which a device consumes,
e.g., electricity, gas, coal, and oil. Energy and power consumption of a device are the ones
typically provided by the manufacturer, therefore, it can be useful in cases where it is im-
possible to measure or estimate the real-time power consumption of a device. In the next
section, we detail the energy-oriented extension proposed for SAREF.

5.3.3 Energy-Oriented Ontology Extension

Different widely used ontologies were proposed in the literature. However, they did not
consider real-time power estimation and management, the spacial location of devices, or
various metrics from different layers of a system. In order to include the real-time power
and different layers of a device into the knowledge base, we propose the extension of the
SAREF ontology with the following classes, attributes, and relations:

• ecps:Location is the geographic space in which a device is deployed. It helps build
a contextual understanding of the environment and identify devices that share the
same location. In our case, we used an identifier to describe the location of a device,
however, locations can be defined using the alignment with other ontologies such as
the Building Topology Ontology (BOT) [145].

• ecps:Layer is the structural level of the system to which a property belongs. It can be
one of the following layers of a CPS identified in chapter 2: processing, communica-
tion, services, control, sensing, and actuating. In addition, we consider the contextual
layer that contains external properties that a device can measure.

• ecps:LayerState is the state in which a specific layer is running (e.g., communica-
tion layer is running on a low power consumption mode when there is no need for
exchanges). All layer states combined compose the state of the device.

• ecps:Power Estimation Model is the mathematical model that takes as input the prop-
erties of a device and returns the real time power consumption. Power estimation
models for different types of RPi is presented in chapter 4. Power estimation models
are not limited to the ones previously generated, any model can be adopted.

• ecps:Real Power is the real-time power consumption of a device. It can be mea-
sured directly by a hardware wattmeter or estimated using an estimation model. The
ecps:Real Power concept represents the real time power consumption, in contrast
with saref:Power that is the typical power consumption defined by the factory during
the manufacturing process.
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• ecps:hasRange represents the accepted values for each property. It takes one of
the following forms: (i) a list of accepted values (e.g., light color [red, green, blue,
white]); (ii) a range with a minimum and maximum accepted values (e.g., humidity
[0,100]); and (iii) ranges specified with a minimum and maximum accepted values
that includes a step that defines a fixed value increased or decreased from a property
measurement (e.g., light brightness [0,100,1%]). We define ecps:hasRange to specify
the boundaries and our maneuver intervals for each variable.

• ecps:deviceId, ecps:deviceName, ecps:propertyId, ecps:propertyName represent re-
spectively the id and name of a device used to identify a device from another. In
addition to the id and name of a property used to identify to which device belongs
each property. These definitions are used to generate the source code of the RL agent
and name the variable corresponding to each property.

• Relations between the classes and the data properties are defined by the fol-
lowing predicates: ecps:belongsTo, ecps:consumes, ecps:contains, ecps:affects,
ecps:estimates, ecps:hasState, ecps:isAppliedTo, ecps:isComposedOf, and
ecps:isInside.

Figure 5.2 shows the energy-oriented extension applied on the SAREF ontology with
the previously proposed classes and relations.

Figure 5.2: SAREF extension overview
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The ontology is defined using the Web Ontology Language (OWL) [146], a language
of knowledge representation for ontologies in the Protégé ontology editor and knowledge
management system [147]. As seen in Fig. 5.3, a series of classes, data properties (at-
tributes), and object properties (relations) are defined in order to make the ontology suitable
with the environment generator. Newly introduced concepts have names that start with the
prefix ecps.

Figure 5.3: SAREF ontology extension implementation in Protégé

The proposed energy-oriented extension for the SAREF ontology defines the archi-
tecture of a device and the relationship between each device, properties, actions, power
consumption, and the environment in which a device is present. We present, in the next
section, RL environment generation algorithms.



104 CHAPTER 5. AUTOMATED ENERGY MANAGEMENT FRAMEWORK

5.4 Intelligence Management
The intelligence management component aims to collect knowledge from the knowledge
management component and create a virtual training environment and a RL agent based
on the devices present in the environment and the relations between them. The virtual
environment is used to train the agent to accomplish the best power optimizing action.

The developed energy-oriented ontology extension provides the necessary knowledge
to the intelligence management component through SPARQL queries. Deep reinforcement
learning has emerged as an effective approach for solving different sequential decision
making problems (e.g., video games, robot manipulation, and board games). Appropriate
simulation environments are the main drivers of the success and satisfying results of rein-
forcement learning. However, generating RL environments is time consuming, complex,
and oriented to specific scenarios. In the following, we present our intelligence manage-
ment component. First, we compare state-of-the-art reinforcement learning environment
generation approaches. Then, we present our algorithm for environment and agent genera-
tion.

5.4.1 RL Environment Generation Related Work
In the recent years, a large number of existing studies in the broader literature have ex-
amined the use of machine learning, in particular reinforcement learning, to accomplish a
variety of goals. However, few research studies focused on the generation of reinforcement
learning environments. Most studies have created and parameterized environments and
agents manually. In the following, we focused on the reinforcement learning environment
generation:

Environment generation. Few are the literature studies that focused on RL envi-
ronment generation. In [148], authors proposed a solution to automatically build a series
of complex tasks based on a RL agent’s current skill level. However, the latter does not
build an environment from scratch but rather it generated complex tasks from a small set
of basic actions. In [149], authors proposed an approach to modify environments based
on the difficulty of environmental challenges. It pairs the generation of challenges and
the optimization of agents to solve those challenges. It aims to generate the most efficient
agent by continuously copying agents that have best results to be trained with other altered
environments. A solution for exploration problems in RL algorithm is proposed in [150].
It is based on changing the difficulty of the environment using a more complex set of goals
each time the agent reach an equilibrium. In [151], authors proposed generating entire en-
vironments instead of only the actions of a policy. It aims to increase the usability of RL
beyond predefined environment. [149, 150, 151] are efficient to train agents, however, they
all start by mutating an existing environment that has limited changeable parameters.

Automatic scenario generation. In the literature, several techniques have
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been adopted for automatically generating diverse scenarios in a RL environment.
A probabilistic object-oriented programming language for designing, modeling, and
generating scenarios called SCENIC was proposed in [152]. This domain-specific
programming language generates data sets useful for deep learning tasks by assigning
different configurations for objects and agents, as well as imposing constraints with
variable difficulties. SCENIC was used, in [153], to generate a dataset for Google
Research Football environment [154]. In [155], authors formalize automatically generating
scenarios for new difficulty levels using RL. However, generated scenarios were simple and
implemented in the same environment. Many studies used scenarios generation for critical
and extreme situations testing, specially for autonomous vehicles [156, 157, 158, 159].

Reinforcement learning for energy management. Recently, there is a growing
body of work focused on using RL for energy management in smart homes and build-
ings [160, 161]. In [162], authors modeled the energy management system using a Markov
decision process. They described states, actions, transitions, and rewards of the environ-
ment. Their environment is based on a smart energy building connected, an external grid,
a distributed renewable energy source, an energy storage system, and a vehicle-to-grid
station. In their study, actions were limited to {Buying, Charging, Discharging, Selling}
energy, thus, a high-level solution with no impact on individual devices. In [163], authors
proposed a RL algorithm that ensures user satisfaction, followed by energy savings and
load shifting. It focused on houses equipped with renewable energy resources and set-
ting a dynamic indoor temperature setpoint. A multi-agent RL for home-based demand
response was proposed in [164]. Each of the agents was responsible for a type of device
(non-shiftable, power-shiftable, time-shiftable, or electric vehicle). In [165], authors pro-
posed a home energy optimization strategy based on deep Q-learning (DQN) and double
deep Q-learning (DDQN) to perform the scheduling of home appliances tasks. In [166],
authors proposed an intelligent multi-agent system, called Thinkhome. It was responsible
for the execution of control strategies that manage the building state. In [167], authors
proposed a demand response algorithm of the next hour for home energy management sys-
tems. It focused on reducing electricity cost by shifting loads based on historical data.
[168], proposed a deep RL energy management algorithm based on Deep Deterministic
Policy Gradients (DDPG) to control a HVAC system. However, an important issue in the
previously mentioned existing research is that their environments are static and it is difficult
to train agents in new environments.

5.4.2 Environment and Agent Generator
Prior RL environment generation research approaches are inconsistent regarding the het-
erogeneity of potential devices, flexibility in environment generation, and ease of imple-
mentation. We believe that this approach will help us prepare agents for the complexity and
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diversity of real-world tasks without needing to manually specify training environments to
cover this diversity.

The environment and agent generator is responsible for the generation of each section
of the reinforcement learning agent based on TensorFlow and Keras-RL, in addition to an
environment built using OpenAI Gym. Algorithm 1 provides the pseudocode of how the
reinforcement learning environment is generated. First, a series of SPARQL queries are
executed to collect knowledge from the ontology using the request sparql function. Graphs
containing information concerning actions, metrics, states, and power estimation models of
each device corresponding to a unique location are collected. Four main SPARQL requests
provide the agent constructor with the necessary knowledge to build the reinforcement
learning agent. Queries 1, 2, 3, and 4 show respectively the SPARQL queries used to select
actions that can be accomplished in the environment, power consumption models, metrics
that can be collected, and the states each device can have. These four queries are inspired
by the MAPE loop. Query 1 illustrates the execute and plan phases, query 2 illustrates the
analyze and plan phases, and queries 3 and 4 illustrate the monitor and plan phases.

Query 1: Selects the actions that can be accomplished in an environment

SELECT ?Device ?Property ?DataType ?Range
WHERE {

?Device saref:controlsProperty ?Property;
saref:ecps:isInside saref:Room1.
?Property rdf:type ?Class.
?Class rdfs:subClassOf ?SuperClass.
?SuperClass owl:onDataRange ?DataType.
?Property saref:ecps:hasRange ?Range.

}

Query 2: Selects the power consumption models

SELECT DISTINCT ?Power ?DataType ?PEM_value ?State ?Device
WHERE {

?Power rdf:type saref:ecps:RealPower.
?Device saref:ecps:consumes ?Power.
?PEM saref:ecps:estimates ?Power.
?PEM saref:hasValue ?PEM_value.
?device saref:ecps:isInside ?location, saref:Room1.
?Power rdf:type ?Class.
?Class rdfs:subClassOf ?SuperClass.
?SuperClass owl:onDataRange ?DataType.
?Device saref:hasState ?State.

}
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Query 3: Selects the metrics that we can collect from device

SELECT DISTINCT ?Property ?DataType ?Range ?Value

WHERE {

{

?Device saref:controlsProperty ?Property;

saref:ecps:isInside saref:Room1.

?Property rdf:type ?Class.

?Class rdfs:subClassOf ?SuperClass.

?SuperClass owl:onDataRange ?DataType.

?Property saref:hasValue ?Value.

?Property saref:ecps:hasRange ?Range.

}

UNION

{

?Sensor saref:measuresProperty ?Property.

?Device saref:ecps:isInside saref:Room1.

?Property rdf:type ?Class.

?Class rdfs:subClassOf ?SuperClass.

?SuperClass owl:onDataRange ?DataType.

?Property saref:hasValue ?Value.

?Property saref:ecps:hasRange ?Range.

}

}

Query 4: Selects the states that each device can have

SELECT DISTINCT ?Device ?StateType ?Range ?Value ?State

WHERE {

?Device saref:hasState ?State.

?State rdf:type ?StateType.

?StateType rdfs:subClassOf ?SuperClass.

?State saref:hasValue ?Value.

?State saref:ecps:hasRange ?Range.

}

The collected knowledge is used for the creation of the source code of all the functions
that compose the reinforcement learning environment. As seen in algorithm 1, a function
called generate code generates the source code of each of the reinforcement learning en-
vironment sections based on the collected ontology knowledge. It generates the source
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code of six main components: (a) actions, (b) states, (c) rewards, (d) power estimation, (e)
initialization, and (f) reset. A template of the source code of the reinforcement learning en-
vironment is created. It includes the necessary libraries, fixed chunks of code, and variable
parts in the source code. However, the automated source code generator writes the major-
ity of the code by using the write code function. It identifies the blank variable sections of
the source code that change from one environment to another and writes the correspond-
ing code in each section. It can generate the source code of any number of properties and
devices due to its extensible way and ability to request knowledge and use it.

Algorithm 1: Reinforcement learning environment generation algorithm
1: procedure GENERATERLE(ontology)
2: Initialize sparql queries
3: actions,metrics, states, power ← request sparql(ontology, sparql query)
4: actions code = generate code(actions, states)
5: states code = generate code(metrics, states)
6: rewards code = generate code(power,metrics)
7: power estimation code = generate code(power,metrics)
8: init code = generate code(actions,metrics, states, power)
9: reset code = generate code(actions,metrics, states)

10: write code(init code, reset code, actions code, states code,
11: rewards code, power estimation code)
12: end procedure

Once the source code is generated, the reinforcement learning environment is ready
to be launched. Its structure is presented in algorithm 2. The following explains the role of
each of its functions:

• init function defines the observation and the action spaces, i.e., the minimum and
maximum acceptable values for each observed metric or action. In addition to a few
other attributes, i.e., accepted values for each property and the initial state of each
device. This function also initializes states, properties, and power consumption per
device. It also encodes and maps properties and states from their initial format to a
numerical or Boolean format to be accepted by the reinforcement learning algorithm.

• step function executes a step in the environment by applying an action and returns the
new reward, observation, power consumption per device, and other info. It includes
the list of possible actions and the reward calculation based on user preferences and
total power consumption. In this function, randomness and external changes impact-
ing the environment can be applied (e.g., outside temperature changes).
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Algorithm 2: Reinforcement learning environment algorithm
1
2 Procedure init (self):
3 Set controlled properties upper bounds
4 Set controlled properties lower bounds
5 Set measured properties observation space
6 Initialize a set of states
7 Initialize a set of properties
8 Initialize a set of power consumption
9 Map states to integer values

10 Initialize total energy
11
12 Procedure reset(self):
13 Reinitialize states
14 Reinitialize properties
15 Reinitialize power consumption
16 Reinitialize total energy
17
18 Function calculate power(device type, device state, properties[]):
19 if device type ∈ devices then
20 power =

estimate power(device type, device state, properties[])
21 else
22 power =

default manufacturing power(device type, device state)

23 return power
24
25 Function total power(self):
26 total power = 0
27 foreach device di ∈ devices do
28 di.power = calculate power(di.type, di.state, properties[])
29 total power = total power + di.power

30 return total power
31
32 Function step(action):
33 Execute(action)
34 if properties 6= userPreferenes then
35 if userPreferenes.isCountable then

36 reward = −1× count(userPreferences.unsatisfied)

count(userPreferences)
37 else

38 reward = −1× |V i
user − V i

t |
1 + |V i

user − V i
t |

39 else

40 reward = 1− 2× self.total power

MAX POWER
41 cycle length = cycle length− 1
42 if cycle length == 0 then
43 day ended = True
44 daily energy = daily energy + total power(self)
45 else
46 day ended = False
47 daily energy = 0

48 return reward,properties[],power[],states[],total power
49
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• calculate power function contains the power estimation models for each device in
the environment. It returns the value of the power consumption of a specific device
at a particular time.

• total power function returns the total power consumption of all devices in the en-
vironment at a particular time. When collecting knowledge in 2, all devices with
power consumption that can be managed are identified and this particular informa-
tion is transferred to the environment.

• reset function re-initiates the environment to its initial state without changing the
observation and the action spaces. It is used at the end of each set of steps that makes
up an episode.

• log function records events occurring in the environment into a CSV file, in particular,
the value of each property, states of devices, power consumption for each device, total
power consumption, executed action, and reward value. The log function is showed
in algorithm 3.

Algorithm 3: Logging function
1

2 Function log(self):
3 foreach device di ∈ devices do
4 foreach property pi ∈ di.properties do
5 data to save+ = property

6 data to save+ = di.power
7 data to save+ = di.state

8 data to save+ = env.total power consumption
9 data to save+ = env.action

10 write(data to save)
11 return total power
12

Deep RL agent is based on a feedback loop that takes as an input states and rewards.
Therefore, rewards play a critical role in RL by providing a motivation for agents to learn
and explore. We define a set of reward equations based on the user satisfaction and the
power consumption. The reward function is equal to a rational number bounded between
-1 and +1. These three reward equations are presented in (5.1), (5.2), and (5.3).

First, it considers user preferences and makes sure all user preferences are respected.
Doing so guarantees the respect of the user preferences before starting to manage power
consumption. If any preference is not respected, the reward will be negative between 0 and
-1. It is calculated by counting the number of unrespected preferences and dividing it by
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the total number of user preferences, as seen in Eq. (5.1), when the user preferences are not
measurable.

Rt = −1×
count(unsatisfied user preferences)

count(user preferences)
∈ [−1, 0] (5.1)

However, if the user preferences are measurable (i.e., temperature), the reward is cal-
culated based on the difference between the property value V i

t at a specific time t and the
desired value V i

user , as seen in Eq. (5.2).

Rt = −1×
|V i

user − V i
t |

1 + |V i
user − V i

t |
∈ [−1, 0] (5.2)

Once all user basic preferences are respected, Eq. (5.3) is adopted to calculate the
reward and ensure a higher reward for each power-aware action. This equation is bounded
between -1 and 1. Its value is -1 when the current power consumption is equal to the
maximum power consumption and tends to 1 when the power consumption goes down to
0. Reaching 0 as power consumption for the entire environment is difficult due to user
preferences but remains possible in some cases.

Rt = 1− 2× P total
t

P max
∈ [−1, 1] (5.3)

where: Rt is the reward calculated at time t, P total
t is the total power consumption esti-

mated or measured at time t, and P max is the maximum total power consumption of the
environment.

Once the virtual training environment with all its necessary components is generated,
the model and the agent are generated and trained using this virtual environment. Algo-
rithm 4 shows the model and agent generation pseudocode. First, states and actions are
defined based on the previously generated reinforcement learning environment. Then, the
model is built using the build model function. The model is based on a Deep-Q network
that takes as an input layer the set of states and returns possible actions in output nodes. It
has two hidden dense Keras neural network layers along with a ReLU activation, as seen
in figure 5.4. The build agent function specifies the policy and builds the agent based on
the previously built model. The agent and model are compiled using the compile function,
they are later used for training and testing. Finally, the fit function trains the agent given
the environment and the number of training steps.
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Algorithm 4: Deep reinforcement learning model and agent
1: procedure CREATERLAGENT(generated environmentenv)
2: states = env.observation space.shape[0]

3: actions = env.action space.n

4: model = build model(states, actions)

5: agent = build agent(model, actions)

6: agent.compile(model, actions)

7: agent.fit(env, nb steps)

8: end procedure

Figure 5.4: Deep neural network layers

At this stage, knowledge of the connected environment is extracted from the ontology.
A virtual environment is generated and a RL agent is trained using it. In addition, reward
functions are defined in a generic way. Validation of our reasoning will be presented in the
next chapter in a smart home environment.
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5.5 Summary

In this chapter, we presented our automated energy management framework for CPS based
on knowledge and intelligence management components. Our approach allows the repre-
sentation of knowledge and the generation of virtual learning environments with a spotlight
on energy. It aims to help train RL agents in different environments.

First, we reviewed related work of ontologies in connected environments and rein-
forcement learning environment generation. Then, we presented an energy-oriented ex-
tension for ontologies applied to the SAREF ontology. We presented four queries used to
collect knowledge from ontology. Furthermore, we developed the algorithms of our RL
approach used to generate the RL agent and environment. We also presented different re-
ward functions for different scenarios. Different environments can be generated based on
the corresponding knowledge representation.

In the next chapter, we evaluate our approach with two proof-of-concept case studies
in a smart home environment. Comprehensive experiments are conducted to validate the
approach, algorithms, environment, and model generation. Furthermore, we analyze and
discuss the obtained results.
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Chapter 6
Validation and Discussions
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6.1 Introduction

With the exponential increasing number of connected and smart devices, the total energy
consumption of an environment containing these devices is increasing. These environments
are not only composed of devices that interact with each other to accomplish specific tasks,
but also involves humans which adds an extra level of complexity to the system. Therefore,
evaluations of any energy management approach should be done in a context where devices
produce various data types ranging from physically measures values (e.g. humidity) to
cyber data (e.g. CPU utilization) and human needs and preferences must be considered.

Our previously presented approach consists of proposing an automated energy man-
agement framework based on power estimation, knowledge representation, and reinforce-
ment learning techniques. It aims to reduce power consumption at the holistic level. Hav-
ing accurate power estimation models for different devices is the first step in overall energy
management. Our power modeling and estimation component was validated separately in
chapter 4.
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The main objective of this chapter is to ensure the efficiency of applying the previ-
ously proposed energy management framework. More particularly, we aimed at validating
the components related to knowledge and intelligence management (cf. sections 5.3 and
5.4). This chapter aims at guaranteeing that the four components of our approach work
together to facilitate energy management while taking into consideration user satisfaction.
Therefore, we focus on studying energy consumption and reward values during the valida-
tion process. Our approach was evaluated in two separate case studies, both in the context
of a smart home. The first case study was conducted in a living room equipped with a
variety of devices, while the second case study involved a smart home with a heating sys-
tem. These two case studies provide a variety of device types, data types, and customizable
environments.

In this chapter, we focus on evaluating the entire approach, mainly the knowledge and
intelligent management components. In the following, we present the case study descrip-
tions, experimental setup, implementations, and discuss results.

6.2 Case Studies Descriptions

Smart home environments are scalable and contain devices that are quite heterogeneous
having different types, interfaces, vendors, etc. In addition, these environments are dy-
namic as changes can occur to existing devices such as software updates or hardware
updates that lead to a change in power consumption or location changes that impact the
knowledge of the environment. In the following, we detail the description and experimen-
tal setup for each of the two study cases in the context of a smart home.

6.2.1 Living Room (Case Study I)

As seen in Figure 6.1, the first case study is defined as a living room of a smart home with
several devices. A led bulb controls its brightness (LedBrightness) and color (LedColor).
A TV controls its brightness (TVBrightness). A Raspberry Pi measures its CPU utilization
with a mounted light sensor that measures the room brightness. The LED bulb, TV, and
raspberry pi are considered power consumers and each has a power estimation model that
gives their power consumption in real-time. A door sensor checks if the door is opened or
closed without being able to change its state. The door sensor is not considered as a power
consumer because its power consumption is minimal and unchangeable. LedBrightness has
a minimum value of 0 and a maximum value of 100 and can be incremented or decremented
by 1% per minute to ensure a smooth light transition that is not annoying for the users.
LightColor can have one of the following values: red, blue, green, and white. Devices states
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are usually on, off, or sleep. However, they are not limited to these states and can take many
other forms. For the living room scenario, user preferences are generated based on a smart
residential load simulator for energy management presented in [169]. It simulates different
loads of configurable home appliances (i.e., lighting, water heater, stove, refrigerator, and
dishwasher) using mathematical models. They are manually adjusted to add randomness
that may occur from one day to another, between weeks, and during weekends.

Figure 6.1: Devices, properties, and relations representation (case study I)

6.2.2 HVAC (Case Study II)

Another case study is conducted with different devices in a different context. It is based
on a HVAC system in a smart home. The room where the HVAC is mounted is equipped
with an indoor temperature sensor and a presence sensor. In addition, a temperature sensor
is positioned outside the room to capture the outdoor temperature. We model the environ-
ment using the previously proposed extension of the SAREF ontology as done in the living
room case study. Then, we launch the agent generator to build the environment and the re-
inforcement learning agent. To simulate indoor temperature dynamics in the environment,
the exponential decay model in Eq. (6.1) is adopted [170].

T in
t+1 = ε× T in

t + (1− ε)× (T out
t ± ηhvac

A
× et)

(+ : heating,− : cooling)
(6.1)
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where T in
t denotes room internal temperature during time t, T out

t is the real outside tem-
perature during time t, ε ∈ [0, 1] is a thermal time constant, ηhvac is the thermal conversion
efficiency (heating) or the coefficient of performance (cooling), A is the thermal conduc-
tivity that varies based on the insulation of a space, and et ∈ [0, emax] is the electric HVAC
system power input at time t (It ranges between 0 when the HVAC system is turned off
and emax the maximum power consumption of the HVAC system). We consider ε = 0.7,
ηhvac = 2.5, A = 252w/◦C based on the study conducted in [168], et =

Ut

100 × emax

where Ut is the percentage of utilization of the HVAC system, and emax = 2000w .
Eq. (6.1) was widely adopted in previous research such as in [168, 171, 172, 173,

174]. This experiment used the outdoor temperature dataset proposed by USCRN/USR-
CRN [175] due to its accuracy, low error rates, and high quality of collected data. The
dataset is cleaned and filtered mainly to remove missing data indicated by the lowest possi-
ble integer, i.e., −9999, 0. The used dataset was collected in Santa Barbara, California, the
USA in 2021. Occupant temperature preferences are extracted from the study conducted
in [176]. Temperature preferences range between 20◦C and 24◦C during the day. They
range between 18◦C and 22◦C during the night when the home occupant is sleeping.

Figure 6.2 shows the outside temperature of a sample day in January 2021. In addi-
tion, Figure 6.2(a) shows the calculated indoor temperature with the HVAC turned OFF. In
Figure 6.2(b), two conditions are added to guarantee that the inside temperature respects
user preferences. It illustrates a real-life scenario where the HVAC is turned ON and OFF
according to the room temperature.

(a) HVAC turned OFF (b) HVAC turned ON

Figure 6.2: Outdoor and indoor temperature samples

6.3 Implementation
The implementation of these two case studies is divided into two parts. Firstly, the knowl-
edge belonging to each case study is represented as individuals belonging to the extended
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energy-oriented ontology. Secondly, the knowledge is queried and a RL environment is
generated. Then, an agent is trained using the generated environment.

The experiments are conducted on a Dell Precision 7530 workstation equipped with an
Intel i7 8th generation 2.20 GHZ processor (64 bits), 16 GB of RAM, and running Windows
10, Python version 3.7, TensorFlow version 2.7.0, Keras-RL version 2.8.0, OpenAI Gym
version 0.25.2 and version 5.5.0 of protégé.

6.3.1 Knowledge Management Implementation

(a) Living Room Scenario Individuals (b) HVAC Scenario Individuals

Figure 6.3: Knowledge representation as individuals

In order to represent the knowledge found in the environment, we use the extended
energy-oriented ontology presented in section 5.3. We create a set of individuals for each
of the defined case studies. Figure 6.3(a) and figure 6.3(b) define each device, control-
lable property, measurable property, and power estimation model present respectively in
the living room scenario and the HVAC scenario. In addition, the relations between these
concepts are identified and set.
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6.3.2 Intelligence Management Implementation

The data of individuals is collected and a source code is generated for each of the use cases.
First, each of the SPARQL queries (cf. section 5.4.2) is executed resulting in a set of JSON
responses that are transformed into Python Pandas DataFrames for easier handling and
processing. It allows the generator to observe the devices present in the environment and
their corresponding sensors and actuators for future analysis and source code generation.
Tables 6.1,6.2,6.3, and 6.4 present the DataFrames that result from the execution of the
SPARQL queries of case study I. In the following, we present the implementation of case
study I. Appendix A presents an example of a raw SPARQL queriy result regarding case
studies I.

Table 6.1: Actions DataFrame

Device Property DataType Range
0 Led LedBrightness int MinMaxStep:0,100,1
1 Led LedColor string List:Red,Blue,Green,White
2 TV TVBrightness int MinMaxStep:0,100,10
3 TV TVSaturation int MinMaxStep:0,100,5

Table 6.2: Power Estimation Models DataFrame

Power DataType PEM value State Device
0 LedPower float Philips LED 9 LedState Led
1 RPiPower float Raspberry Pi 3 Model B Rev 1.2 RPiState RPi
2 TVPower float SonyTV 32 TVState TV

Table 6.3: Properties DataFrame

Property DataType Range Value
0 LedBrightness int MinMaxStep:0,100,1 50
1 LedColor string List:Red,Blue,Green,White White
2 TVBrightness int MinMaxStep:0,100,10 90
3 TVSaturation int MinMaxStep:0,100,5 50
4 DoorState boolean Bool:True,False true
5 RoomBrightness int MinMaxOnly:0,100 60
6 RPiCpuUtilization float MinMaxOnly:0,100 80.0

Table 6.4: States DataFrame

Device StateType Range Value State
0 Led OnOffState OFF,ON ON LedState
1 TV OnOffState OFF,ON ON TVState
2 RPi MultiLevelState OFF,SLEEP,ON ON RPiState

Then, we copy an empty template of the environment that contains the necessary
libraries, functions, and code structure. Special comments are used as placeholders in the
source code; they are used to indicate the starting and the ending of each dynamic code, as
seen in source code 2 (i.e., #START INIT and #END INIT).



CHAPTER 6. VALIDATION AND DISCUSSIONS 121

1 def __init__(self):
2 le = preprocessing.LabelEncoder()
3 self.firstStep=True
4 #START_INIT
5 self.action_space = Discrete(18)
6 HIGH = np.array([100,3,100,100,True,100,100,1,1,2],

dtype=np.float32)↪→

7 LOW = np.array([0,0,0,0,False,0,0,0,0,0], dtype=np.float32)
8 self.observation_space = Box(LOW, HIGH)
9 self.state = None

10 le.fit(['Red', 'Blue', 'Green', 'White'])
11 LedColorMapping = dict(zip(le.classes_, le.transform(['Red',

'Blue', 'Green', 'White'])))↪→

12 self.LedBrightness=50
13 self.LedColor=3
14 self.TVBrightness=90
15 self.TVSaturation=50
16 self.DoorState=True
17 self.RoomBrightness=60
18 self.RPiCpuUtilization=80.0
19 le.fit(['OFF', 'ON'])
20 LedStateMapping = dict(zip(le.classes_, le.transform(['OFF',

'ON'])))↪→

21 self.LedState=1
22 le.fit(['OFF', 'ON'])
23 TVStateMapping = dict(zip(le.classes_, le.transform(['OFF',

'ON'])))↪→

24 self.TVState=1
25 le.fit(['OFF', 'SLEEP', 'ON'])
26 RPiStateMapping = dict(zip(le.classes_, le.transform(['OFF',

'SLEEP', 'ON'])))↪→

27 self.RPiState=2
28 self.PEM=["LedPower","RPiPower","TVPower"]
29 self.LedPower=0
30 self.RPiPower=0
31 self.TVPower=0
32 self.propertyList=["LedBrightness", "LedColor",

"TVBrightness", "TVSaturation", "DoorState",
"RoomBrightness", "RPiCpuUtilization", "LedState",
"TVState", "RPiState"]

↪→

↪→

↪→

33 #END_INIT
34 # Set episode length
35 self.cycle_length = CYCLE_LENGTH
36 self.episodeEnergy=0

Source Code 1: Initialization generated source code
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1 def __init__(self):
2 le = preprocessing.LabelEncoder()
3 self.firstStep=True
4 #START_INIT
5 #END_INIT
6 # Set episode length
7 self.cycle_length = CYCLE_LENGTH
8 self.episodeEnergy=0

Source Code 2: Placeholders of the RL environment initialization function

The dynamic generated source code of the initialization function of the RL environ-
ment is presented in source code 1. Likewise, the source code sections of the actions,
rewards, states, power consumption, and the reset are generated. The generated source
code for case studies II is available in Appendix B. After the environment is generated, an
agent is also cloned from an agent template. The agent is then trained using the generated
environment. In the next section, we present the results of training the agent using our
generated environment.

6.4 Results
A prototype of the proposed power management approach has been developed to reduce
power consumption in smart connected environments. It is based on a continuous process
of monitoring, analyzing, making and executing adaptive decisions. In particular, the fol-
lowing two application case studies have been developed, simulated, and experimented in
a smart home for validation purposes.

6.4.1 Living Room Results (Case Study I)
A first experiment has been conducted for 70 episodes (100k steps). A step represents
one iteration accomplished by the reinforcement learning algorithm until it reaches its final
goal. An episode is composed of a defined series of steps. At the beginning of each episode,
the environment resets to its initial state and the agent’s reward is set to zero. Each episode
lasts for 24 hours and one step is executed per minute (1440 steps per episode). Once
per minute, metrics and states of devices are monitored. Then, the agent analyses them
and chooses adaptive actions to be executed per device. This process is influenced by the
MAPE-K feedback loop but no long-term plans are prepared ahead of time and actions are
spontaneous. However, the agent has the possibility to execute a neutral action that keeps
all devices in their current state. User preferences for the 28 days are defined (i.e., led state,
led brightness, led color, TV brightness, and TV state), in addition, we define the user state
that can be sleeping, awake, and away.
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Figure 6.4: Energy consumption per step (case study I)

(a) Led bulb energy consumption (b) TV energy consumption

(c) Raspberry Pi energy consumption

Figure 6.5: Energy consumption per device per step (case study I)
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Figure 6.4 shows the total energy consumption of the environment per step and the
average per day. Figure 6.5 shows the average energy consumption of the three devices we
are managing (i.e., led, TV, and raspberry pi). It highlights that the energy consumption
of the led bulb and the TV have decreased after a few hundred steps. However, the energy
consumption of the RPi tends to increase because the user preferences require it to stay
turned on. In such scenario, energy has converged after a brief period of time (4 days),
and the reward has passed from a negative value to a positive one meaning that the user
preferences are respected and that the power consumption is at its lower accepted values,
as seen in figure 6.6. This study case shows that the proposed framework can deal with
different types of devices, properties, and actions related to these devices. It validates that
this approach can be used to represent knowledge, generate reinforcement learning envi-
ronments, and train agents. In addition, it confirms the ability to improve energy efficiency
and savings in the long term.

Figure 6.6: Reward point per step (case study I)

6.4.2 HVAC Results (Case Study II)

A second experiment was conducted in the HVAC environment for 596 episodes (100k
steps). Each episode has lasted one week with a frequency of one step executed each hour
(168 steps per episode). User preferences of the minimum and maximum accepted temper-
atures are defined for an entire week. Results show an increase in the reward per episode,
therefore, the user satisfaction and the power consumption, as seen in Figure 6.8. User
preferences vary between the day and the night. However, for the purpose of simplicity,
Figure 6.7 graphs the user comfort zone between the lower and higher accepted values.
Figure 6.7 shows the room temperature per step and the average room temperature per
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episode. Results show that in the first part of the training (before the 20 000th step), the
indoor temperature is under the user preferences and converges with time to respect user
preferences. Therefore, validating the ability of the proposed reward function to lead to a
better user experience. Initial room temperature is randomized for each new episode rang-
ing between 12◦C and 18◦C, and the initial HVAC level is a random value between 30%
and 70%.

Figure 6.7: Indoor temperature evolution (case study II)

Figure 6.8: Reward convergence process (case study II)
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Figure 6.9 highlights that the energy consumption of the HVAC system increases with
time and then stabilizes. This is due to the priority of user preferences over energy con-
sumption. In the following, we compare the total energy consumption of our management
approach with other traditional ones.

Figure 6.9: Energy consumption of the HVAC system (case study II)

To compare the energy consumption of the proposed approach to other control values,
we identify three different baselines:

• Baseline 1: Represents the results of the proposed automated energy management
approach, proposed in this thesis, including the knowledge, environment and model
generation, and training of the agent. It also considers user preferences and presence.

• Baseline 2: Represents an environment where user preference indoor temperature is
set to 21◦C. This value is obtained by calculating the average temperature between
the minimum and maximum accepted values. It was represented previously in Fig-
ure 6.2(b). The HVAC is turned ON whenever the room temperature goes below
21◦C and turned OFF when it outpaces this value. The obtained values are based on
the captured indoor and outdoor temperature readings.

• Baseline 3: Represents an environment with a traditional electric heater that stays
ON all the time without capturing and considering any of the indoor or outdoor tem-
peratures.

Figure 6.10 shows the mean value of energy for each of the previously defined baselines.
The results show that the proposed method has a lower energy consumption compared
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to the other two traditional methods. Baseline 1 energy consumption equals 932,82 wh,
while baselines 2 and 3, respectively, are 1083,3 wh and 2000 wh. We consider that the
model has already converged before step number 40 000 and energy consumption is almost
stable. Therefore, in the 1st baseline, the average energy consumption is calculated with
data corresponding to steps higher than 40 000.

Figure 6.10: Mean value of HVAC energy consumption (case study II)

6.5 Discussion

The results indicate that automated power management is done using the proposed ap-
proach that leads to a reduction in power consumption. In the following, we discuss the
result obtained in each phase of the automated energy management framework implemen-
tation.

6.5.1 Interpretations

The proposed approach in this thesis confirms its capability to answer different
non-functional requirements, in addition to offering an efficient energy management
system as the primary functional requirement.

In the first place, the results presented in section 6.4 highlight a significant decrease
in power consumption while respecting user preferences in both case studies. In addition,
our proposal performs well given the low convergence period (4 days for the case study
I), the high user satisfaction (the temperature is maintained in the comfort zone), and the
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energy consumption decrease. From these results, it is clear that the reward functions are
well adapted as feedback to the agent that has the two main goals of facilitating energy
optimization and user comfort.

The use of ontologies as a knowledge representation guarantees high flexibility and re-
usability because we could easily map a large diversity of real scenarios using the provided
semantics. The knowledge management component also ensures that the framework is ex-
tensible for representing new knowledge concepts. The implementation in two use cases,
with completely different devices, confirms the general purpose of our approach because
the code generation is done in an automated way allowing the adaptation of the scenario to
the framework. It proves the possibility of generating customizable environments with var-
ious devices. A high level of autonomy is also guaranteed because of the set of actions that
are accomplished in real time, based on the changes and states of devices. The approach
also showed the capability of dealing with different metrics that correspond to different
scenarios and layers of CPS, therefore, we conclude that the approach is extensible on the
level of a smart home. In addition, the reliability of the approach can be illustrated by its
adaptation to human behavior to reach the highest levels of user satisfaction. Moreover, the
framework is easy to implement because of well-described knowledge representations and
straightforward intelligence management techniques and algorithms.

Compared to related work, our proposal meets the functional and non-functional re-
quirements defined in chapter 3.

6.5.2 Limitations

Although Our automated energy management framework is established as an efficient way
to manage energy consumption, it is important to acknowledge its limitations.

The proposed framework is based on a Markov decision process where a direct future
action fully depends on the current states of devices and does not require any knowledge of
the past. Moreover, the actions are spontaneous and no long-term plan is prepared ahead
of time.

Another limitation in our energy management framework is that a single agent is re-
sponsible for two distinct purposes (reducing power consumption and increasing user sat-
isfaction). However, multi-agent RL algorithms are emerging as solutions for complex
environments with more than one optimization problem. Multiple learning agents can co-
exist in a shared environment where each agent is motivated by its own reward function,
and accomplishes actions that boost its objectives (e.g., energy efficiency, user comfort,
cost reduction).

In addition, one-room scenarios are identified and evaluated in the previous sections.
However, different rooms constitute a smart home. Therefore, we consider the necessity



CHAPTER 6. VALIDATION AND DISCUSSIONS 129

of imagining and testing the solution with more case studies to evaluate scalability dimen-
sions. Multi-layer metrics are important to optimize some low-power consumption devices.
However, some layer-level optimizations are not significant compared to the energy opti-
mization that can occur on the device level (e.g., reducing the power consumption of a CPU
in a HVAC system is not significant compared to the energy used by the system itself).

Although widely accepted, it suffers from some limitations due to the difficulty of
calculating user comfort to compare it with other solutions.

6.6 Summary

In this chapter, we evaluated the automated energy management framework with two
proofs-of-concept case studies in the context of a smart home: (i) a living room with a
variety of devices and (ii) a smart home with a heating system. We mainly validated
the knowledge management and intelligence management components. Comprehensive
experiments were conducted to validate the approach, algorithms, environment, and model
generation. Finally, we analyzed and discussed the obtained results.

We implemented the two case studies by representing individuals belonging to the ex-
tended energy-oriented ontology. Then, knowledge collection queries were performed and
the source code of the RL environments and agents were generated. The agent was trained
using the generated environments. The results of these experiments highlight a signifi-
cant decrease in power consumption while respecting user preferences in both case studies.
In addition, this proposal performs well given the low convergence period, the high user
satisfaction, and the energy consumption decrease. Discussions show that the previously
identified functional and non-functional requirements (cf. chapter 3) are reached.

In the next chapter, we conclude and summarize the results of our research project,
outline our contributions, and highlight perspectives for future research directions.
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In this chapter, we summarize and outline our proposal in response to the challenges
and research objectives. We also lay out the perspectives and highlight new future research
directions. Finally, the list of our publications produced during this research project are
presented.

7.1 Summary of the Dissertation

In this thesis, we presented a framework for energy management at a holistic level for
Cyber-Physical Systems (CPS). We motivated our work using two scenarios illustrated
in the smart home domain: a living room with a variety of devices (first scenario) and
a smart home with a heating management system (second scenario). Our framework is
automated, flexible, and generic. In addition, it can deal with different devices and metrics.
The proposed solution is developed based on four main components: power modeling and
estimation, knowledge management, intelligence management, and data repository. The
integration of each of these components together met our research objectives and led to
high levels of energy efficiency and user satisfaction.

In Chapter 1, we highlighted the importance of energy management as a topic of in-
terest in the context of CPS. Then, we focus on the objectives of this thesis of (i) identifying
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and representing knowledge and metrics affecting energy consumption; (ii) estimating real-
time power consumption of any device in the environment; and (iii) identifying actions that
can be applied to reduce the total energy consumption. We presented a generic smart home
scenario that illustrates the motivation behind this work and the challenges we addressed.
Finally, we glanced at the state of the art before proposing the basis of our approach.

In Chapter 2, we presented background of the context of our work. We first intro-
duced CPS and gathered different architectural modeling. Then, we presented a systematic
review of the existing energy management approaches and compared them based on sev-
eral criteria. Our findings showed that state-of-the-art research lacks the variety of studied
metrics not covering all potential energy drain sources in a system. Literature solutions
deal with limited layers of the CPS in a restricted number of devices mainly due to the
challenges of exchanging data and heterogeneous environments. In addition, most solu-
tions are not autonomous. However, some could be considered to have a limited degree of
autonomy. Literature solutions are also mostly domain specific. Their flexibility is highly
limited to the devices and the environment in which they were developed. This state of the
art justified our research goals for providing a solution.

In Chapter 3, we presented the requirements analysis and the solution architectural
design, using a formal model-based software engineering methodology, in response to the
lack of such approaches in the literature. First, we defined functional and non-functional
needs, as well as, different architectural levels to model the system (i.e., operational, sys-
tem, and logical). Then, we defined the four components of the system design:

• A power modeling and estimation component as a first step towards having better vis-
ibility on energy drains that enables energy management actions to be accomplished
(in response to the RO1 and RO2);

• A knowledge management component providing a common representation of differ-
ent concepts and the relations between them using an energy-oriented extension for
ontologies (in response to the RO1 and RO3);

• An intelligence management component targeting the energy management issue us-
ing RL techniques and the previous two components (in response to the RO3);

• A data repository allowing the storage of collected metrics, applied actions, power
consumption, and power estimation models.

Finally, we justified some of our development choices such as the use of ontologies and
reinforcement learning algorithms.
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In Chapter 4, we presented the implementation of the power modeling and estima-
tion component. We implemented a proof-of-concept client and server to automate the
generation of power models for various smart home devices (i.e., Raspberry Pi devices
and LED bulbs). It allowed these models to be updated, extended, improved, and shared.
Our component provided up-to-date and accurate power estimation models, compared to
related work, with error rates as low as 0.33% and up to 7.81% for linear models, and 0.3%
up to 3.83% for polynomial models. Furthermore, we found an important impact of device
revisions and OS architectures on power consumption. Therefore, we recommended us-
ing power models generated specifically per device revision and architecture. Finally, we
analyzed the influence of this component on the total consumed energy and found that the
power consumption can be estimated with negligible overhead in real time.

In Chapter 5, we presented the implementation of the knowledge management and
intelligence management components. First, we presented an energy-oriented extension for
ontologies applied to the SAREF ontology. It defined various concepts needed for global
knowledge representation of complex connected environments. Then, we defined four es-
sential queries used by the RL environment generator to collect knowledge from ontology.
In addition, we presented the algorithms used to generate RL agents and environments in
an automated manner and find the best energy-efficient actions. Our solution showed the
possibility to generate various RL environments and agents based on the corresponding
knowledge representation. Finally, we defined generic reward functions that consider both
energy consumption and user preferences.

In Chapter 6, we evaluated the automated energy management framework with two
proofs-of-concept case studies in the context of a smart home. We mainly aimed to validate
the knowledge management and intelligence management components. The implementa-
tion of these case studies showed a convenient RL environment generation based on the
defined knowledge. The results of the accomplished experiments highlighted a significant
decrease in power consumption while respecting user preferences in both case studies. In
addition, this proposal performs well given the low convergence period, the high user sat-
isfaction, and the energy consumption decrease.
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7.2 Perspectives

This thesis opens the doors to a variety of new research directions that we can apply in
the future to further enhance and validate our approach. In the following, we discuss the
most important points to address based on the identified open issues that deserve further
research.

Cover more types of devices in real-world environments

Future research is needed to evaluate the behavior of the proposed method in a real-world
environment with real physical sensors and actuators when dealing with communication
protocol heterogeneity, missing data, and latency. First, we plan to study and model the
power consumption of additional hardware components of connected devices, such as mo-
tors, resistors, networks (e.g., WiFi and Ethernet), and interfaces (e.g., USB). We would
like to study the impact of additional software and hardware metrics on power consump-
tion, as this might help improve the accuracy of the generated power models. In addition,
we plan to expand our implementation to cover more single-board devices (e.g., new em-
bedded devices) and additional smart home devices. The idea is to automatically support
any future device with a universal power manager.

Implement and evaluate our solution in larger scales and more heterogeneous scenarios

In the future, further investigation is needed to evaluate our solution in various spatio-
temporal arrangements. In particular, we plan to study the impact of such an approach over
a longer period and the effect of changes in user behavior with time. Furthermore, it will
be important for future research to investigate extreme cases such as during the COVID-19
pandemic, and all the changes it could bring to user behavior. In addition, we plan to test
our approach with more data collected from different locations that vary from one region to
another (e.g., temperature). We also plan to expand the implementation to cover additional
devices on a larger scale (e.g., include many rooms in the same home, and many homes
in a building). Therefore, the spacial aspect presented in our ontology should be expanded
and aligned with other ontologies such as the Building Topology Ontology [145].

Enrich and personalize reinforcement learning models

In this thesis, we used the same hidden layers for the RL deep neural network and differ-
ent input and output layers. However, we argue that unique neural network layers could
be generated for each environment. In addition, our solution is based on a single agent
responsible for energy optimization and user comfort. Multi-agent RL algorithms can be
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used as solutions for complex environments with more than one optimization problem. It
allows the easy consideration of additional growing concerns such as the cost of electricity.
Therefore, further investigation is needed to integrate multi-agent RL algorithms in such
solutions.

Investigate deeply the user behavior

In this thesis, we considered the preferences fixed by the user ahead of time. More studies
need to address different user behavior, in particular, the potential rebound effect. Environ-
ments can also have many users with different preferences. Therefore, we find it interesting
to study conflict resolutions in response to these scenarios. In addition, we plan to integrate
a visualization and notification component that shows the users their energy consumption
in real time. Besides its informational purposes, it shows users the impact of each action
on the total energy consumption just so they become aware of how to act in environments
with no intelligent energy management systems. Finally, develop methods that quantify
user comfort to compare our approach with other solutions.

Embed the common representation of each device to its firmware

Nowadays, IoT and home automation devices provide limited information about their capa-
bilities in terms of collecting data and accomplishing actions. Home automation companies
need to study low-level exchange frames to integrate each device into their solution (e.g.,
decode LoRaWAN payload). Therefore, adopting the use of the proposed ontology exten-
sion to describe each of the devices allows their integration easily for automation purposes.
Its use is not limited to energy optimization management systems but guarantees higher
levels of flexibility, scalability, and integrability. Therefore, we must develop and embed
lightweight versions of this knowledge model to the firmware devices by default and load it
with appropriate descriptions in terms of touch-points (sensors and actuators). In addition,
different vendors need to agree on standardizing this kind of knowledge representation to
be more beneficial.
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7.3 Publications

Journals

• Houssam Kanso, Adel Noureddine, Ernesto Exposito. An Automated Energy Man-
agement Framework for Smart Homes. Submitted to publication, Journal of Ambient
Intelligence and Smart Environments. Under Review

• Houssam Kanso, Adel Noureddine, Ernesto Exposito. Automated Power
Modeling of Computing Devices: Implementation and Use Case for Raspberry
Pis. Sustainable Computing: Informatics and Systems 37 (2023) 100837.
10.1016/j.suscom.2022.100837. hal-03912723

• Houssam Kanso, Adel Noureddine, Ernesto Exposito. A Review of Energy Aware
Cyber-Physical Systems. ACM Transactions on Cyber-Physical Systems (2023)
1–42. 10.1080/23335777.2022.2163298. hal-03912724

Conferences
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ronments, Jun 2022, Biarritz, France. hal-03635797
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Appendix A
Result of SPARQL Query

SPARQL result of query 1 (list of actions) in case study I:

1 {
2 ” r e s u l t s ” : {
3 ” b i n d i n g s ” : [
4 {
5 ” Device ” : {
6 ” t y p e ” : ” u r i ” ,
7 ” v a l u e ” : ” Led ”
8 } ,
9 ” P r o p e r t y ” : {

10 ” t y p e ” : ” u r i ” ,
11 ” v a l u e ” : ” L e d B r i g h t n e s s ”
12 } ,
13 ” Range ” : {
14 ” t y p e ” : ” l i t e r a l ” ,
15 ” v a l u e ” : ” MinMaxStep : 0 , 1 0 0 , 1 ” ,
16 ” d a t a t y p e ” : ” s t r i n g ”
17 } ,
18 ” DataType ” : {
19 ” t y p e ” : ” u r i ” ,
20 ” v a l u e ” : ” i n t ”
21 }
22 } ,
23 {
24 ” Device ” : {
25 ” t y p e ” : ” u r i ” ,
26 ” v a l u e ” : ” Led ”
27 } ,
28 ” P r o p e r t y ” : {
29 ” t y p e ” : ” u r i ” ,
30 ” v a l u e ” : ” LedColor ”
31 } ,
32 ” Range ” : {
33 ” t y p e ” : ” l i t e r a l ” ,
34 ” v a l u e ” : ” L i s t : Red , Blue , Green , White ” ,
35 ” d a t a t y p e ” : ” s t r i n g ”
36 } ,
37 ” DataType ” : {
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38 ” t y p e ” : ” u r i ” ,
39 ” v a l u e ” : ” s t r i n g ”
40 }
41 } ,
42 {
43 ” Device ” : {
44 ” t y p e ” : ” u r i ” ,
45 ” v a l u e ” : ”TV”
46 } ,
47 ” P r o p e r t y ” : {
48 ” t y p e ” : ” u r i ” ,
49 ” v a l u e ” : ” TVBr igh tnes s ”
50 } ,
51 ” Range ” : {
52 ” t y p e ” : ” l i t e r a l ” ,
53 ” v a l u e ” : ” MinMaxStep : 0 , 1 0 0 , 1 0 ” ,
54 ” d a t a t y p e ” : ” s t r i n g ”
55 } ,
56 ” DataType ” : {
57 ” t y p e ” : ” u r i ” ,
58 ” v a l u e ” : ” i n t ”
59 }
60 } ,
61 {
62 ” Device ” : {
63 ” t y p e ” : ” u r i ” ,
64 ” v a l u e ” : ”TV”
65 } ,
66 ” P r o p e r t y ” : {
67 ” t y p e ” : ” u r i ” ,
68 ” v a l u e ” : ” T V S a t u r a t i o n ”
69 } ,
70 ” Range ” : {
71 ” t y p e ” : ” l i t e r a l ” ,
72 ” v a l u e ” : ” MinMaxStep : 0 , 1 0 0 , 5 ” ,
73 ” d a t a t y p e ” : ” s t r i n g ”
74 } ,
75 ” DataType ” : {
76 ” t y p e ” : ” u r i ” ,
77 ” v a l u e ” : ” i n t ”
78 }
79 }
80 ]
81 } ,
82 ” head ” : {
83 ” v a r s ” : [ ” Device ” , ” P r o p e r t y ” , ” DataType ” , ” Range ” ]
84 }
85 }
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Appendix B
Generated Source Code of Case Study II

Generated initialization function source code:

1 def __init__(self):
2 le = preprocessing.LabelEncoder()
3 self.firstStep=True
4

5 #START_INIT
6 self.action_space = Discrete(5)
7 HIGH = np.array([100,50,50,1],dtype=np.float32)
8 LOW = np.array([0,0,0,0],dtype=np.float32)
9 self.observation_space = Box(LOW, HIGH)

10 self.HVACLevel= 50 + random.choice([-20,20])
11 self.HVACMaxPower=2000.0
12 self.IndoorTemperature=15+ random.randint(-3,3)
13 self.OutdoorTemperature=

USER_PREFERENCE['AverageTemperature'].get(0)↪→

14 le.fit(['OFF', 'ON'])
15 HVACStateMapping = dict(zip(le.classes_, le.transform(['OFF',

'ON'])))↪→

16 self.HVACState=1
17 self.PEM=["HVACPower"]
18 self.HVACPower=0.0
19 self.propertyList=["HVACLevel", "IndoorTemperature",

"OutdoorTemperature", "HVACState"]↪→

20 self.state = (self.HVACLevel, self.IndoorTemperature,
self.OutdoorTemperature, self.HVACState)↪→

21 #END_INIT
22

23 # Set cycle length
24 self.cycle_length = CYCLE_LENGTH
25 self.episodeEnergy=0
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Generated power estimation source code:

1 #START_ENERGY
2 def calculate_power(self,device, HVACLevel, HVACMaxPower,

IndoorTemperature, OutdoorTemperature):↪→

3 if device == "HVACPower":
4 if self.HVACState == 0:
5 power=0
6 else:
7 power= HVACLevel/100*HVACMaxPower
8 return(power)
9

10 def total_power(self):
11 self.HVACPower=self.calculate_power("HVACPower",

self.HVACLevel, self.HVACMaxPower,
self.IndoorTemperature, self.OutdoorTemperature)

↪→

↪→

12 total=self.HVACPower
13 return total
14 #END_ENERGY

Generated actions source code (part of the step function):

1 #START_ACTIONS
2 if action==0:
3 if(self.HVACLevel>=0 and self.HVACLevel<=80):

self.HVACLevel=self.HVACLevel+20↪→

4 if action==1:
5 if(self.HVACLevel>=20 and self.HVACLevel<=100):

self.HVACLevel=self.HVACLevel-20↪→

6 if action==2:
7 self.HVACState=0
8 if action==3:
9 self.HVACState=1

10 if action==4:
11 pass
12 #END_ACTIONS
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Generated reward function source code (part of the step function):

1 #START_REWARD
2 if (USER_PREFERENCE['USER_PRESENCE'].get(CSV_ID)==1):
3 if(self.IndoorTemperature <

USER_PREFERENCE['MIN_TEMPERATURE'].get(CSV_ID)):↪→

4 reward = -1*(USER_PREFERENCE['MIN_TEMPERATURE'].get(CSV_ID) -
self.IndoorTemperature) /
(1+(USER_PREFERENCE['MIN_TEMPERATURE'].get(CSV_ID) -
self.IndoorTemperature))

↪→

↪→

↪→

5 elif(self.IndoorTemperature >
USER_PREFERENCE['MAX_TEMPERATURE'].get(CSV_ID)):↪→

6 reward = -1*(self.IndoorTemperature -
USER_PREFERENCE['MAX_TEMPERATURE'].get(CSV_ID)) /
(1+(self.IndoorTemperature -
USER_PREFERENCE['MAX_TEMPERATURE'].get(CSV_ID)))

↪→

↪→

↪→

7 else:
8 reward=1-2*self.totalEnergy/MAX_POWER_T
9 else:

10 if(self.HVACState==0):
11 reward=1
12 else:
13 reward=-1
14 #END_REWARD

Generated states source code (part of the step function):

1 #START_STATES
2 self.state = (self.HVACLevel, self.IndoorTemperature,

self.OutdoorTemperature, self.HVACState)↪→

3 #END_STATES


	Introduction
	Problem Statement
	Research Objectives
	Motivating Scenario
	State of the Art of Related Work
	Proposal
	Contributions
	Structure of the Thesis

	State of the Art
	Introduction
	Cyber-Physical Systems
	Energy-aware Cyber-Physical System Approaches
	Analysis and Discussions
	Summary

	Energy Management Approach Architecture
	Introduction
	ARCADIA Method
	Requirements Analysis
	Operational Analysis
	System Analysis
	Logical Analysis
	Implementation Choices
	Summary

	Automated Power Estimation of Heterogeneous Devices
	Introduction
	Related Work of Power Measurement and Estimation
	Automated Power Modeling Architecture
	Implementation for Raspberry Pi Power Models
	Empirical Validation and Discussions
	Use Cases
	Threats to Validity
	Summary

	Automated Energy Management Framework
	Introduction
	Automated Energy Management Architecture
	Knowledge Management
	Intelligence Management
	Summary

	Validation and Discussions
	Introduction
	Case Studies Descriptions
	Implementation
	Results
	Discussion
	Summary

	Conclusion and Perspectives
	Summary of the Dissertation
	Perspectives
	Publications

	Bibliography
	Result of SPARQL Query
	Generated Source Code of Case Study II

