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A b s t r a c t

This thesis is dedicated to the study of various geometric properties of planar Brownian 
motion and the SLE process (also known as stochastic Loewner evolution, or sometimes 
as Schramm’s process).

We prove that, on a typical planar Brownian path, there almost surely exist “pivoting” 
points, i.e. cut-points around which one half of the curve can rotate by a positive angle 
without ever intersecting the other half of the path; the set of all pivoting points of a given 
positive (small enough) angle is then of positive Hausdorff dimension. In fact, for every 
subset A of the complex plane, we describe an exceptional subset E a of the path, defined 
in a geometric fashion. For each such A we define a generalized intersection exponent 
£(i4) and prove that dimH(EA) =  2 -£ (A ), so that EA is non-empty as soon as f(^4) < 2.

About SLE, the main result we obtain in this thesis is the computation of the Hausdorff 
dimension of its trace (i.e. of the curve generating it); that dimension is equal to I + k/8, 
where k is the parameter of the SLE — and this holds for any positive parameter smaller 
than 8 and different from 4 (for k ^  8, the trace is a Peano curve hence has dimension 2). 
In passing we prove the almost sure existence of cut-points on every SLE with parameter 
smaller than 8.

We also study the problem of the generalization of the SLE process to non-simply 
connected domains; we show that the construction is doable for two particular values 
of the parameter (k — 6 and k = 8/3), using in each case specific properties of the 
corresponding SLE (respectively, the restriction property and locality), but the universality 
property of usual SLE is then lost.

Keywords : (Planar) Brownian motion, SLE, conformal invariance, critical exponents, 
Hausdorff dimension.

MSC2000 classification : 60D05, 60G17, 60G51, 60G57, 60G99, 28A80
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1 .1  P o s it io n  d u  p ro b lè m e

Une des principales questions qui se posent en mécanique statistique est celle de la 
détermination de limites d’échelle (scaling limits). D’une façon volontairement informelle, 
le problème est le suivant : on considère un modèle aléatoire discret défini sur un réseau, 
et on cherche à obtenir des informations sur le comportement à grande échelle du système
— ou, ce qui est équivalent dans la plupart des cas, sur son comportement quand on fait 
tendre le pas du réseau vers zéro. Deux phénomènes peuvent alors apparaître :

-  Ou bien le modèle devient déterministe, et on obtient des résultat comme des lois des 
grands nombres et des estimées de grandes déviations qui décrivent la convergence 
vers cet état déterministe ;

-  Ou bien la limite reste aléatoire, ce qui signifie que le système donne naissance à 
un objet aléatoire continu que l’on cherche alors à identifier et à étudier de manière 
intrinsèque ; ses propriétés fournissent alors en retour des informations sur le système 
discret.

En pratique, le problème de l’existence même d’une limite ne semble pas avoir de 
solution générale, la convergence de chaque modèle particulier réclamant une preuve diffé
rente; mais il est parfois possible, en admettant l’existence d’une limite, d’identifier cette 
dernière de manière exacte.

9
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La distinction entre ces deux cas est particulièrement apparente dans l’étude des transi
tions de phase pour des systèmes de particules sur un réseau. Le système physique dépend 
alors d’un paramètre réel qui mesure la force d’interaction entre les particules. Intuitive
ment, si le paramètre est petit, le comportement à grande échelle du système est le même 
que celui de particules indépendantes, alors que s’il est grand, tous les sites vont avoir 
tendance à s’aligner. Dans les deux cas, on observe alors une limite d’échelle détermi
niste, mais pour des raisons différentes (on observe soit un comportement moyen, soit un 
comportement commun).

Pour certains modèles, il existe alors un valeur particulière du paramètre, dite point 
critique, correspondant à la transition entre les deux régimes, et pour lequel aucun de ces 
deux phénomènes ne se produit. La limite d’échelle du système au point critique produit 
alors un objet aléatoire continu.

Dans le cas ou le réseau considéré est de dimension 2, les physiciens ont développé 
des outils particuliers pour décrire le comportement de tels systèmes au point critique, 
comme par exemple les théories de champs conformes ([18]) et la gravitation quantique 
([14]). Le résultat le plus surprenant est que l’objet limite ne dépend pas du choix du 
réseau mais seulement de la dimension du modèle. En particulier, il devient invariant pas 
rotation, et comme il est défini par une limite d’échelle il se transforme de manière simple 
par homothétie.

Cela a amené les physiciens à la notion d’invariance conforme : comme le comportement 
local d’une transformation conforme est essentiellement la composition d'une rotation et 
d’une homothétie, on obtient ainsi des informations sur l’image de l’objet continu par une 
transformation conforme du domaine où il est défini. En particulier, si cet objet est invariant 
par homothétie, ces considérations heuristiques donnent une bonne raison de croire qu’il 
est aussi invariant par transformation conforme.

Remarque : Le lien entre criticalité et invariance par changement d’échelle est parti
culièrement visible dans le cadre des groupes de renormalisation. Le cas le plus simple est 
l’opération de décimation dans Zd, qui consiste à définir le modèle sur Zd, pour un certain 
paramètre A, et ensuite à ne conserver que les sites qui se trouvent sur un sous-réseau 
(aZ)d, ou a un entier supérieur ou égal à 2. Cette opération correspond intuitivement à 
un changement d’échelle de facteur a pour la limite continue (toujours dans le cas où 
celle-ci existe) ; mais il se trouve que souvent le comportement du système discret sur le 
sous-réseau est proche de son comportement sur le réseau initial pour une autre valeur du 
paramètre, disons </>a(A). Il est alors naturel de considérer les paramètres qui sont les points 
fixes de <f>a, car ils seront les seuls à fournir une limite continue invariante par changement 
d’échelle — l’équation <j)a(A) =  A sert alors de définition du point critique. (Cf. par exemple 
[13, ex. 111.38, p. 527] pour un calcul explicite dans le cas du modèle d’Ising.)

En admettant l’existence de la limite d’échelle ainsi que l’invariance de celle-ci par 
transformation conforme, Schramm [43] prouve alors le résultat suivant : la limite est 
décrite par un processus aléatoire qu’il nomme SL E  (pour Stochastic Loewner Evolution), 
et dont la loi ne dépend que d’un seul paramètre réel positif ac. Autrement dit, à tout 
système discret “raisonnable” (au sens où il admet une limite d’échelle qui est invariante 
par transformation conforme) il est possible d’associer une valeur de k, qui joue le même 
rôle que la charge centrale dans le formalisme physique, de telle sorte que la limite d’échelle 
du système soit le processus SLE K.



1.2. LE MOUVEMENT BROWNIEN PLAN 11

La question de la description de la limite se ramène alors à trois problèmes a priori 
mieux posés : prouver qu'il y a effectivement convergence (en un sens à préciser), que le 
système est bien invariant par transformation conforme à la limite, et identifier la valeur 
du paramètre k correspondant.

La majeure partie de cette thèse est consacrée à l’étude du processus SL E  (en français, 
processus de Loewner stochastique ou processus de Schramm). Dans la suite de cette 
introduction, nous introduisons ce processus ainsi que certains objets discrets et continus 
dont les liens avec le SL E  sont soit connus soit conjecturés ; puis nous présentons les 
résultats obtenus ainsi qu’une rapide description des outils mathématiques utilisés. Enfin 
nous donnons un plan général de la thèse et un résumé du contenu de chacun des chapitres.

1 .2  Le  m o u v e m e n t  b ro w n ie n  p la n

1.2.1 Invariance conforme

Le cas le plus simple pour lequel on sait décrire une limite d’échelle continue est celui 
de la marche aléatoire simple. En effet, il est possible de prouver que, si l’on prend une 
marche aléatoire (Sk)o^k^n de longueur n dans le réseau carré Z2, issue de 0, et qu’on 
l’interpole par une fonction de [0,1] dans R2 en posant

S n(t) =
y jn /2 ’

alors la suite de fonctions (Sn)n^0 converge en loi, pour la topologie de Skorohod, vers un 
mouvement brownien plan (Bi)i£[0)i] issu de 0 (i.e. le processus limite s’écrit B t =  (B },B f)  
où (B\) et (B2) sont des mouvements browniens réels standards issus de 0).

C’est ici qu’un miracle se produit : la loi du mouvement brownien plan est invariante par 
rotation (alors que celle de la marche aléatoire ne l’est pas, puisque le réseau lui-même ne 
l’est pas). De plus, l’effet d’un changement d’échelle de facteur À > 0 sur le mouvement 
brownien est le même que celui d’un changement de temps linéaire de facteur A2 — et la 
loi de la courbe à paramétrisation près est donc invariante. On est donc dans le cadre exact 
où l’on peut espérer l’invariance du processus par transformation conforme (en identifiant 
R2 au plan complexe C). C’est effectivement ce qui se produit :

Théorème 1.1 (Invariance conforme du mouvement brownien plan) :

(i). Soit (B t)t^o un mouvement brownien plan issu de 0, et soit $  une fonction 
entière telle que $(0) =  0. Alors, il existe un mouvement brownien plan (Wt)t>o 
issu de 0 tel que

Vi ^  0 $ (B t) =  Wjt |$/(b3)|2 di ;

(ii). Soient fi et fi' deux ouverts bornés simplement connexes de C contenant 0, $  
une application conforme de fi sur fi' fixant 0 et (Bt) un mouvement brownien 
plan issu de 0. Soit r  (resp. r ')  le premier temps de sortie de fi (resp. fi') par
B. Alors,

{$(B t) , i e [ 0 )r ]}(= ) {Bf , i , 6 [0 I/ ] } .
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1.2.2 Points exceptionnels de la courbe brownienne

Il est alors naturel de s’intéresser à des propriétés géométriques de la courbe brow
nienne plane, en en particulier à celles qui sont préservées par transformation conforme. 
Nous reviendrons plus tard à la description de la frontière brownienne, pour donner ici la 
description de quelques sous-ensemble particuliers de la trajectoire. Soient donc à nou
veau Q, un ouvert borné simplement connexe de C contenant 0, et (Bt)t^o un mouvement 
brownien plan ; soit r  son premier temps de sortie de fi. On notera K  =  Z?[0,T] la courbe 
décrite par B. K  est un compact connexe de C, et on sait qu'il est de dimension 2 et de 
mesure nulle.
Définition :

On dit que Bt e  K  est un point de coupure (resp. que t e [0, r] est un temps de 
coupure) de la trajectoire si K  \  {Bt} n’est pas connexe. (En particulier, 0 et r  ne 
sont pas des temps de coupure.)

Il est facile de voir que, pour tout temps t ^  0 fixé, la probabilité que t soit un temps 
de coupure est égale à 0. Le théorème de Fubini nous dit alors que l’ensemble T  des temps 
de coupure est presque sûrement de mesure nulle (on parle d’un ensemble exceptionnel), 
et on peut se demander s’il est vide ou non.

Théorème 1.2 (Burdzy [7] ; Lawler-Schramm-Werner [25, 31, 32]) :
L’ensemble T  est presque sûrement non vide; sa dimension de Hausdorff est 

presque sûrement égale à 3/8.

La preuve initiale du fait que T  soit non vide, due à Burdzy, est très technique et 
ne donne pas d'information sur la dimension de T. Nous décrivons ici celle de Lawler, 
Schramm et Werner, car la méthode générale est proche de celle que nous employons 
pour calculer la dimension du processus de Schramm. L’idée, qui est due à Lawler, est de 
calculer d'abord la dimension de Hausdorff de l’ensemble T, puis de constater qu’elle est 
strictement positive, ce qui implique en particulier que T  est non vide.

De manière générale, la détermination d’une borne supérieure pour la dimension d’un 
ensemble E  (aléatoire ou non) est souvent plus facile que celle d’une minoration ; en effet, 
il suffit d’exhiber, pour tout e > 0, un recouvrement de E  par au plus e~a disques de rayon 
e pour prouver que la dimension de Minkowski (et donc aussi celle de Hausdorff) de E  est 
au plus égale à a. Dans le cas où E  est un compact aléatoire contenu dans le carré [0, l]2, 
on peut procéder de la façon suivante.

Supposons que, pour tous x  G [0, l]2 et e > 0, on ait

(tfi) P ( E n B ( x , s ) ^ 0 ) ^ £ s

(où le signe x  signifie que le rapport des deux expressions est borné inférieurement et 
supérieurement par des constantes indépendantes de x  et e). Pour tout sr > 0 on peut 
fixer un recouvrement du carré par au plus 42e-2 disques de rayon e; chacun de ces 
disques rencontre E  avec une probabilité de l’ordre de es, et par conséquent l’espérance 
du nombre de ces disques qui rencontrent E  est de l’ordre de es~2.

Soit alors Ne(E) le nombre minimal de disques de rayon e nécessaires pour recouvrir 
E  : si (Hi) est réalisée, on a donc, pour une certaine constante C > 0,

E(N e(E)) ^  C.es~2.
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(En fait on pourrait, sous les mêmes hypothèses, obtenir aussi une borne inférieure du 
même ordre —  mais nous n’en aurons pas besoin ici.) Par conséquent, en appliquant 
l’inégalité de Bienaymé-Tchébychev, on obtient pour tout rj > 0 l’estimation suivante :

P(N S(E) > e3- 2-*) ^  C.en.

En choisissant alors une suite de rayons (e*) qui décroisse assez rapidement (par exemple 
£k = 2~k), on peut alors appliquer le théorème de Borel-Cantelli : presque sûrement, pour 
k assez grand, il est possible de recouvrir E  par au plus £sk~2~v disques de rayon ek, et par 
conséquent, la dimension de E  est presque sûrement inférieure ou égale à 2 -  s + r). 

Comme cela est vrai dès que rj > 0, on obtient une borne supérieure de la forme

(iïi) =>• P(dimij(E) ^  2 -  s) — 1

ainsi qu’une bonne indication du fait que la dimension de E  devrait être égale à 2 -  s.

Pour obtenir une borne inférieure, la seule méthode praticable est la construction d’une 
mesure de Frostman portée par E  — /.e., d’une mesure positive n, de masse finie non 
nulle, telle que pour tous x  e [0, l]2 et r > 0, on ait

r )) ^  C.ra

pour une certaine constante C > 0 et un certain exposant a. En effet il est facile de voir 
que s’il existe une telle mesure de support inclus dans E, alors la dimension de Hausdorff 
de E  est au moins égale à a.

L’idée est alors la suivante : on a une famille de mesures "naturelles” ne définies par

d =  e l<i(x,B)̂ e |da;|

(où |dx| est la mesure de Lebesgue sur le carré), qui ont une masse d’ordre 1 par l’hypothèse 
(iïi), et qui satisfont, pour tous x e  [0, l]2 et r  > 2e,

E (» e(B (x,r))\vs(B(x,r)) > 0) x  *  _  *  r * - .

Autrement dit, ¡xe se comporte en moyenne comme une mesure de Frostman d’exposant
2 — s. Le but du jeu sera alors d’extraire de la famille (/xe) une sous-suite qui converge 
faiblement vers une mesure /x de masse totale positive, et de prouver que celle-ci est 
vraiment une mesure de Frostman portée par E.

Pour ce faire, on a besoin d’informations sur le comportement typique de ¿¿£, connais
sant son comportement moyen, autrement dit il nous faut une borne supérieure pour la 
variance de fie(B(x,r)). Celle-ci sera fournie par une hypothèse sur les moments d’ordre 
deux de la loi de E  ; plus précisément, si on a, pour tous x  et y dans le carré et pour tout 
£ > 0,

£2s
(H2) P  (E n  B(x, £) ï  0  et E  n B(y , e) ± 0 )  < C.£s A C .— ,

\x y I

alors on peut prouver que la construction précédente peut être effectuée avec une proba
bilité positive :

(Hu H2) =► P(dim tf(£) =  2 — s) > 0.

d(xe{x) =  £ a

E(uJB(x,r)))
P { E n B ( x ,r ) ¿ 0 )
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On peut alors souvent obtenir un résultat presque sûr en appliquant une loi du zéro-un 
(souvent disponible puisque la définition de la dimension de Hausdorff est essentiellement 
locale).

Dans le cas des temps de coupure de la trajectoire brownienne, on doit en fait modifier 
légèrement la construction, en introduisant des temps de coupure approchés :

Te — {t Ç. [0, t] : B[o,t-e] H B[t+e,r\ =  0}-

L’hypothèse (H i) est alors remplacée par une estimation de la probabilité que t soit dans 
Te, mais le principe général de la preuve est le même. En particulier, la condition (i?2) est 
une conséquence directe de (H i) et de la propriété de Markov, et donc il "suffit” de prouver 
que (Hi) est satisfaite et de calculer la valeur de s.

Par un retournement du temps en t, puis en appliquant le scaling brownien, on obtient 
une définition équivalente de s, qui est la suivante. Soient B 1 et B 2 deux mouvements 
browniens plans indépendants, issus respectivement de 1 et - 1  (ou de points uniformé- 
ments distribués sur le cercle-unité). On note (resp. T |)  le premier temps d’atteinte 
du cercle C(0, R) par B 1 (resp. B 2). Alors,

P (-®[o,ri] n  -®[o,t|] — 0 ) x  -R
2s

(le doublement de l’exposant étant dû au fait que les temps d’arrêt utilisés ici sont définis à 
partir de propriétés spatiales de la trajectoire ; ils sont en effet de l’ordre de R 2). L’exposant 
2s porte le nom d 'exposant d ’intersection brownien, et il est noté ailleurs £(1,1).

D’une manière générale, dans de nombreux modèles de mécanique statistique pris au 
point critique, la décroissance de certaines quantités (fonctions de corrélation, probabilités 
de certains événements) est également gouvernée par de tels exposants, dits exposants 
critiques. Au contraire, pour des systèmes en dehors du point critique, le comportement 
usuel de ces quantités présentera une décroissance exponentielle.

Il est possible, en utilisant un argument de sous-additivité, de prouver l’existence de s 
(la méthode est présentée dans le chapitre 2 de cette thèse dans un cas plus général) ; 
Lawler prouve alors dans [25] que l’on a effectivement, avec probabilité 1,

dim„(T) =  1 -

Comme on peut montrer (cf. par exemple [46]) que s est strictement inférieur à 1 sans le 
calculer explicitement, cela prouve l’existence de points de coupure. Le calcul de la valeur 
exacte de l’exposant (s = 5/8 ici), et donc le calcul exact de la dimension de T, repose sur 
les rapports entre le mouvement brownien plan et le processus SLE, que nous décrivons 
dans la prochaine section.

Par une méthode similaire, il est possible de relier la dimension de la frontière brownienne 
à la valeur d’un exposant de déconnexion tj, défini de la façon suivante : soient toujours

2
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B l et B 2 deux mouvements browniens plans, on note Q(t, t') l’unique composante connexe 
infinie du complémentairre de U B2Qt,y Alors, pour un certain 77 e (0, 2), on a

P (0 £ n (T lR,T 2)) x  R-»

(i.e., l’exposant 77 décrit la décroissance de la probabilité que les deux trajectoires ne sé
parent pas 0 de l’infini). On a alors un expression de la dimension de la frontière brownienne, 
elle aussi due à Lawler ([24]) :

dim# (<9fi(l, 0)) =  2 — 77.

Le calcul de 77 repose alors également sur les liens entre mouvement brownien et SLE, 
qu’il est donc temps de décrire.

1 .3  Le  p ro cessu s  d e  L o e w n e r  s to c h a s tiq u e

1.3.1 Le théorème de Loewner

Fig. 1.1: Exploration d’un modèle de percolation critique

L’intuition qui conduit à la construction du SL E  provient de l’étude de courbes d ’ex
ploration définies à partir d’un système de mécanique statistique. Par exemple, considérons 
un modèle de percolation critique par sites sur une discrétisation du demi-plan supérieur 
par le réseau triangulaire (ce qui revient à considérer un réseau hexagonal et à en colorier

R1V[a ,t]
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chacune des faces, de manière indépendante, en blanc ou en noir avec probabilité 1/2 — 
cf. Fig. 1.1). Si l’on conditionne les hexagones situés le long de l'axe réel positif à être 
blancs et ceux situés le long de l’axe réel négatif à être noirs, ceci définit alors une frontière 
entre les clusters blancs touchant l’axe réel positif et les clusters noirs touchant l’axe réel 
négatifs (en gras sur la figure). Cette frontière est une courbe, dite courbe d’exploration de 
la frontière, et elle constitue un des objets pour lesquels on recherche une limite d’échelle.

On cherche alors un outil servant à décrire une courbe dans le demi-plan supérieur, issue 
de l’origine, et qui n’a pas de croisements (en un sens à préciser). Soit donc 7 une fonction 
continue de R+ dans H =  {2 e C : ^  0}. À chaque instant t ^  0, le complémentaire 
de 7 QO, t]) dans H est un ouvert qui a exactement une composante connexe infinie, Ht \ 
on note K t le remplissage de 7 ([0,i])P qui est défini comme étant l’adhérence de H \ i î t . 
La condition de non-croisement peut alors s’écrire :

V0 < s < t, 7 (t) G Hs

(ce qui signifie que la courbe après le temps s ne pénètre plus dans l’intérieur de K s).
Pour tout t  ^  0, l’ouvert Ht est simplement connexe. Par conséquent, on peut appliquer 

le théorème de Riemann : il existe une unique application conforme gt de Ht dans H ayant 
un développement asymptotique à l’infini de la forme gt(z) =  z + o( 1). Le terme suivant 
du développement asymptotique est alors

g,(z) = z + ‘̂  + 0 ( z - 2),
Z

où a est une fonction continue croissante et positive ou nulle. Dans le cas où a est 
strictement croissante (ce qui se produit par exemple quand 7 est une courbe simple), il est 
alors possible de faire un changement de temps de façon à avoir, pour tout t ^  0, a(t) =  t
— ce que nous supposerons dorénavant. Avec cette normalisation, la famille d’applications 
conformes (gi)t^o satisfait une équation différentielle dite équation de Loewner dans le 
demi-plan ; plus précisément on a le 
Théorème 1.3 (Loewner) :

Il existe une fonction réelle continue /? : K+ —> R, avec /?(0) =  0, telle que (gt) soit 
le flot de l’équation différentielle ordinaire dans le demi-plan supérieur :

(£„) v'(t) =  2y(t) -  0(t) '

On dira que la courbe 7 , ou la fonction ¡3, engendre le flot (gt).

Autrement dit, pour tout z € H on a j 0(z) =  z, et pour tous z , t  tels que l’équation (Lp) 
avec condition initiale y(0) =  2 ait une solution jusqu’au temps t, on a

dt9t(z) =
gt(z) -  0 (t) ‘

Le théorème de Loewner permet donc de décrire un objet bidimensionnel (une courbe dans 
le plan complexe) par deux fonctions réelles, l’une décrivant une paramétrisation naturelle 
de la courbe et l’autre décrivant la croissance de cette courbe suivant cette paramétrisation. 
La plupart du temps on ne s’intéresse en fait à 7 qu’à paramétrisation près, et on aboutit 
alors à une description de la courbe par une fonction réelle.

2 a(t)
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On trouvera par exemple dans [15] un énoncé plus général du théorème de Loewner (où 
l’on part d’une famille croissante de compacts (Kt) satisfaisant une condition technique 
"naturelle” exprimant que la croissance est locale, mais sans supposer l’existence de 7 ) 
ainsi que sa preuve.

Remarque : Il est possible de généraliser la construction précédente à une courbe à 
l’intérieur d’un domaine simplement connexe de C, pour décrire une courbe joignant deux 
points du bord du domaine, en envoyant ce domaine de manière conforme sur le demi-plan 
supérieur (les deux points marqués correspondant alors à 0 et 00). La courbe peut alors 
être décrite par une fonction continue à valeurs dans le bord du domaine.

Il existe également une version radiale de l’équation de Loewner, décrivant une courbe 
joignant un point du bord d’un domaine à un point de l’intérieur (la version précédente est 
dite chordale). Dans le cas du disque unité U, quand le point de l’intérieur est l’origine du 
plan complexe, l’équation différentielle devient alors

(L ') v> (t)= v (t)V Q ztÆ _
i b )  V W  y W y (t) -  0 ( t y .

avec fi : K+ -> dV, et toues les applications conformes gt admettent 0 comme point fixe.

1.3.2 Définition du processus S L E

Admettons pour l’instant que la courbe d’exploration de la percolation critique décrite 
plus haut admette une limite continue qui soit une courbe dans le demi-plan supérieur. 
On peut alors paramétrer cette courbe de manière naturelle, et il existe alors une fonction 
réelle continue (aléatoire) fi qui lui est associée par l’équation de Loewner. L’hypothèse 
d’invariance conforme (cf. par exemple [23]) peut alors s’exprimer de la façon suivante : 
la courbe 7 sur l’intervalle de temps [i,+ 00], conditionnellement à 7 ([0, i]), a la même loi 
que l’image de la courbe dans le demi-plan par l’application conforme de H dans Ht qui 
envoie 0 sur 7 (t).

Mais cette application n’est autre que 2 i-> g ï l {z +  /3(t)). Autrement dit, l'hypothèse 
d'invariance conforme entraîne naturellement la condition suivante :

9t+s ~  + s) ^  [gt -  fi(t)] o |& -  /3(s)] , (1.1)

où la famille (&,) est une copie indépendante de (gt) et où fi est la fonction réelle associée 
à (gs). En considérant le développement asymptotique à l’infini de l’égalité précédente, on 
obtient

fi(t + s) — fi(t) + fi(s),

ce qui implique que fi est stationnaire à accroissements indépendants. Comme de plus on 
sait que fi est continue, et que fi et —fi ont même loi (puisque la situation discrète fournit 
une courbe dont la loi est clairement symétrique), ceci est suffisant pour dire que fi est un 
mouvement brownien réel, à un changement de temps linéaire près.

Ceci fournit une justification heuristique à la définition suivante :
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Définition :
Soit o un mouvement brownien standard issu de 0, et soit « un nombre réel 

positif fixé. On appelle SL E  chordal de paramètre k dans H, ou SL E K dans H, le 
flot associé à l’équation différentielle de Loewner (Z^) avec f3(t) = y/nBt .

La condition (1.1) joue alors le rôle d’une propriété de Markov pour le processus SLE.

Remarque : De manière équivalente, on pourra aussi appeler SL E  la famille croissante 
de compacts (K t) associée à (gt).

Il est également possible de définir un SL E  radial à partir de l’équation de Loewner 
radiale (Z^), en prenant pour (/3(t)) un mouvement brownien sur le cercle-unité — i.e. en 
posant fi(t) = exp(ïy/KWt) où (Wt) est un mouvement brownien réel standard. Nous nous 
concentrerons ici essentiellement sur la version chordale ; les liens entre les deux versions 
sont profonds et encore mal compris (cf. [32]). En particulier, la plupart des propriétés 
géométriques du SL E  chordal que nous décrivons par la suite sont vraies pour le SL E  
radial de même paramètre.

1.3.3 Quelques propriétés du S L E

Nous donnons ici sans démonstrations quelques propriété géométriques satisfaites par 
le SLE  chordal. Les preuves se trouvent essentiellement dans [42] pour k ^  8 et dans [34] 
pour k =  8.

Proposition 1.1 (Existence de la trace) :
Soit k ^  0, et soit (gt) un SL E  chordal de paramètre k. Avec probabilité 1 il existe 

une courbe continue sans croisements 7 : R+ -» H qui engendre le flot (gt), au sens 
du Théorème 1.3. Cette courbe est appelée trace du SLE.

Proposition 1.2 (Transitions de phase pour k =  4 et k, =  8) :
Soit 7 la trace d’un SLE K. Alors, presque sûrement :
-  Si 0 ^  k  ^  4, la courbe 7 est simple ;
-  Si 4 < k  < 8, la courbe 7 a des points doubles mais elle est de mesure nulle ;
-  Si 8 ^  k, la fonction 7 est surjective de JR+ sur H.

Ceci peut également se lire sur les compacts (K t) associés à (gt) : si k ^  4, alors
— 7([0,t]) est lui-même une courbe; si 4 < k < 8, K t est de mesure positive, et 

on a 7 Q0, t]) Ç. K t , i.e. K t est obtenu en prenant la réunion de 7 ([0,i]) et de toutes les 
composantes connexes bornées de son complémentaire (les “bulles” formées par la courbe) ; 
enfin si 8 ^  k on a à nouveau K t =  7 ([0,i]).

Le SL E  a été introduit pour décrire les limites d’échelle de certains modèles de mé
canique statistique en dimension 2 ; et de fait la convergence est connue dans un certain 
nombre de cas. (Toutes les convergences décrites ici sont en loi, dans un espace de courbes 
continues définies à paramétrisation près.)

Proposition 1.3 (Convergences vers le SLE ) :

(i). La courbe d’exploration de la percolation critique par sites sur le réseau tri
angulaire (décrite plus haut) converge vers la trace d'un SL E  dans H pour le 
paramètre k =  6 ;

(ii). La marche à boucles effacées tuée à son premier temps de sortie du disque

(Bt)t
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unité (cf. [34]) converge vers un S L E  radial dans U pour le paramètre k =  2 ;

(iii). La courbe de Peano uniforme, i.e. la courbe d'exploration d’un arbre couvrant 
uniforme (cf. [34] aussi) converge vers la trace d’un SL E  pour le paramètre 
k =  8.

De plus, on conjecture (cf. [35]) que la marche auto-évitante uniforme de longueur 
infinie dans le demi-plan (à supposer qu’elle existe) converge vers un SL E  de paramètre 
k =  8/ 3.

Enfin, il existe un lien profond entre SL E  et mouvement brownien plan. L’expression 
exacte de ce lien nécessite l’introduction de plusieurs notations — mais “moralement” la 
courbe du SL E &/3, la frontière du SLE q et la frontière extérieure du mouvement brownien 
plan ont la même géométrie locale. En particulier, trois modèles discrets a priori très 
différents ont presque la même limite d’échelle : la marche aléatoire simple, la marche 
auto-évitante uniforme et la percolation critique. Ceci n’est en fait pas surprenant du 
point de vue de la physique, puisque tous trois sont dans la même classe d'universalité, 
celle des modèles de charge centrale nulle.

Le lien entre SL E 8/$ et SLE 6 est une instance d’une relation plus générale : on conjec
ture que, pour tout k e  (4,8], la géométrie locale de la frontière d’un SL E K est la même 
que celle de la courbe d’un SL E i6/k. Cela est connu pour k =  6 et pour k =  8 — dans ce 
dernier cas, la preuve passe par la convergence des modèles discrets associés, et on peut 
voir la dualité comme une conséquence de l’algorithme de Wilson.

1 .4  R é s u lta ts  o b te n u s  e t  p la n  g é n é ra l

1.4.1 Sur le mouvement brownien plan

Le chapitre 2 de cette thèse est largement indépendant des autres, il est consacré à 
l’étude de certains points exceptionnels sur la trajectoire d’un mouvement brownien plan, 
qui sont une généralisation de la notion de point de coupure. Pour a > 0, on dit qu’un 
point B t de la trajectoire brownienne (Bs)se[0,i] est un point pivot d'angle a  si l’on a, pour 
tout 9 g [—a/2 , a / 2],

iO
B(t,i] - Bt = 0.

Autrement dit, B t est un point de coupure de la trajectoire, et l’image de l’une des deux 
moitiés par une rotation d’angle 9 autour de Bt reste disjointe de l’autre moitié tant que 
9 € [—a / 2, a/2]. (Cf. Fig. 1.2 pour une image dans le cas a — 7t / 2.)

On prouve alors le résultat suivant :
Théorème 1.4 :

Pour tout a > 0 suffisamment petit, il existe presque sûrement sur la courbe 
brownienne plane des point pivots d’angle a, et ceux-ci forment un ensemble de 
dimension de Hausdorff strictement positive.

Si a 0 désigne le plus grand angle pour lequel de tels points existent, alors on a

(log2)s
27r

B Hefo,i) Bt
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Fig. 1.2 : Un point pivot d’angle 7t/2  
(En gris : l’image d’une moitié de la trajectoire par une rotation d’angle -Hr/2.)

Il semble que l’angle limite soit plutôt de l’ordre de 3n/4, donc beaucoup plus grand 
que la borne obtenue de manière rigoureuse ici. La méthode générale est similaire à celle 
présentée plus haut dans le cas des points pivots, avec plusieurs complications techniques 
essentiellement dues au fait que le centre de la rotation qui intervient dans la définition 
est lui-même aléatoire.

On prouve en fait l’existence, pour tout a, d’un exposant d’intersection généralisé £(a), 
défini de la façon suivante. Soient (B }) et (B42) deux mouvements browniens plans, issus 
de -1  et +1 respectivement, et soit Tr (resp. T%) le premier temps d’atteinte du cercle 
C(0, R) par B 1 (resp. B 2). Par un argument assez technique on prouve que la probabilité

A DPr — P

satisfait une relation de sous-multiplicativité “dans les deux sens”, de la forme

c-PrPr' ^  Prr1 ^  c+PrPb?

avec 0 < c_ < c+ < oo. Il existe par conséquent un exposant £(a) décrivant la décroissance 
de pR quand R  tend vers + 00, i.e. défini par

On a alors à prouver que Ç(a) dépend de a  de manière continue, et à utiliser ceci à deux 
reprises par la suite :

-  Pour prouver que la dimension de l’ensemble des points pivots d’angle a  est égale à
2 — £(a) (c’est la continuité de £ qui permet de prendre en compte l’aspect aléatoire 
du centre de rotation) ;

Pr

B i
;o:<tr

|0|<a
eieB 2

0Tl = 0

R-i(«)/-S

n u
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-  Pour prouver que £(a) est strictement inférieur à 2 pour a  assez petit, en effet 
l’exposant £(0) est l’exposant d'intersection pour deux mouvements browniens plans, 
noté ailleurs £(1,1), et on sait (cf. [32]) qu’il est égal à 5/4.

Puisqu’un point pivot est nécessairement sur la frontière extérieure de la trajectoire, 
et que l’on sait que la frontière brownienne est étroitement reliée à celle du SLE 6 et à 
la trajectoire du SL E S/3, les résultats de ce chapitre s’appliquent également à ces deux 
objets ainsi qu’aux modèles discrets associés. En particulier, si on admet la convergence de 
la marche auto-évitante vers le SL E s/3 et le fait que a0 > n/2, on a prouvé l’existence de 
"beaucoup” de points pivots d’angle ir/2 (donc visibles au niveau discret) sur une marche 
auto-évitante typique.

Fig. 1.3: Une marche auto-évitante uniforme 
(obtenue par la méthode du pivot)

Cela donne alors des informations sur Valgorithme du pivot, qui est le seul algorithme 
efficace pour simuler une telle marche auto-évitante. Il s’agit d’un algorithme de Monte- 
Carlo, où l’on procède de la manière suivante. On part d’un chemin simple (a>fc)0̂ n 
quelconque dans Z2, et à chaque étape on choisit un point uuniformém ent sur ce chemin 
et un angle a  uniformément dans {0,7r/2,7r, 37t/2}. Si, après rotation de {uk, . . .  ,o;n} d’un 
angle a  autour de u!k, le chemin obtenu est encore simple, on le garde, et sinon on annule 
la rotation.

On obtient ainsi une chaîne de Markov dans l’espace ü n des chemins simples de longueur 
n dans Z2. Il est facile de voir que la mesure uniforme sur Çîn est réversible pour cette 
chaîne de Markov; il n’est pas facile de voir que la chaîne est irréductible (et en fait elle 
ne l’est pas si on exclut la rotation d’angle n — cf. [39]) mais c’est bien le cas. Par 
conséquent il y a convergence en loi vers la mesure uniforme. C’est ainsi que la figure 1.3 
a été obtenue.

Le fait qu’il y ait “beaucoup” de pivots sur la courbe (de l’ordre d’une puissance de n) 
dit alors que la vitesse de convergence de la chaîne est assez rapide ; inversement, les
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estimations de la vitesse de l’algorithme présentées dans [39] suggèrent qu’on a effective
ment a0 > 7t/2 — ce qui est d’ailleurs cohérent avec les simulations présentées à la fin du 
chapitre 2.

1.4.2 Sur le processus de Schramm

Le principal résultat obtenu ici sur le processus SLE concerne la dimension de Hausdorff 
de la courbe 7 . On prouve en effet le théorème suivant :
Théorème 1.5 :

Soit 7 la trace d’un SLEK avec k ^  0, k  ^  4. Presque sûrement, la dimension de 
Hausdorff de l’image 7 (R+) de la courbe est égale à

dim/f7(R+ ) = ( l  +  f )  A2.

On calcule également la dimension du bord du compact K t dans certains cas : 
Théorème 1.6 :

Soit (K t) un SL E k avec k, g {6, 8}. Alors pour tout t > 0, presque sûrement, la 
dimension de Hausdorff du bord de K t est égale à

2
dim/z dKt =  1 H— .

K

Dans le chapitre 3, nous étudions plus particulièrement le cas du processus de Schramm 
pour le paramètre k — 6. Dans ce cas les preuves des conditions (Hx) et (H2) (énoncées 
plus haut) dans le cas de la trace — et donc aussi la preuve du théorème 1.5 — sont rendues 
plus faciles par deux propriétés spécifiques au SLEe, que nous décrivons ici rapidement.

• L’équivalence entre SLEq radial et SLEe chordal : tant que 7 ne sépare pas un 
point marqué de l’intérieur du domaine d’un point marqué sur le bord du domaine, les deux 
versions correspondantes du SLEq ont même loi à changement de temps près. Ceci permet 
de réécrire l’événement présent dans la condition (Hx) (toucher une boule de centre x et 
de rayon e) comme portant sur un SLE radial croissant en direction de x. La probabilité 
de l’événement peut alors s’interpréter comme probabilité de survie pour une diffusion 
dans un intervalle, ce qui se ramène à une détermination de la valeur propre principale du 
générateur associé.

• La propriété de localité du SLE6 : elle exprime en substance que la croissance de 
(Kt) au temps t dans le cas k = 6 ne dépend pas de la forme globale du domaine mais 
seulement de sa géométrie locale au voisinage de 7 (t). Cela permet de dire que les deux 
événements définissant (H2) (toucher respectivement B(x,s) et B (y,e)) sont “moralement 
indépendants", ce qui permet de voir la condition (H2) comme conséquence de la condition

w ) .

Puis nous appliquons les mêmes propriétés du processus SLE6 pour obtenir directement 
la dimension du bord de K t dans ce cas. On a toujours (Hx) =*> (H2) par localité, mais 
le calcul de l’exposant s décrivant la probabilité de toucher un disque de rayon e est ici 
plus problématique. On est en fait amené à étudier un problème annexe portant sur une 
diffusion réelle dans un intervalle, qui est assez naturel dans le cadre présenté ici mais ne 
semble pas avoir été traité indépendamment.
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Le problème est le suivant. Soit (X t) la diffusion sur (—1, 1) définie par

(D) d X t = adBt + f ( X t)dt,

avec a > 0 et /  : (—1,1) —>• R qui fasse de chaque extrémité de l’intervalle une frontière 
absorbante pour X , et satisfasse quelques conditions de régularité (une liste est donnée 
dans la section 3 .1.2 , mais elle est loin d’être optimale). Cette diffusion définit un flot (gt), 
i.e. pour tout t > 0 l’application gt est un difféomorphisme d’une partie I t de I  sur une 
partie Jt de I, de sorte que pour tout x  G I, (gt(x)) soit une solution forte de (D) issue 
de x.

L’estimée usuelle porte sur la probabilité de survie en temps long ; on prouve de manière 
générale que P (0 G It) décroît exponentiellement vite,

P(0 6 It) x  e~xt

où -À  est la valeur propre principale du générateur de la diffusion. On prouve également, 
en utilisant la formule de Feynman-Kac, que pour tout b > 0,

E  ((s!(0))1) x  e - ^ ‘

où cette fois —A(b) est la valeur propre principale de l’opérateur

2
Cb :h  M- ?-h"  +  f(x )h ' -  bf'h

(de sorte que A(0) =  A). On s’intéresse alors à l’image Jt =  gt(It) du flot au temps t. Sa 
longueur lt est égale à l’intégrale de g\ le long de It, donc on peut utiliser l’inégalité de 
Jensen pour relier E(l\) à E(g't(x)b) (on obtient soit une majoration, soit une minoration 
suivant que b est inférieur ou supérieur à 1). En fait, on prouve ici le résultat plus fort 
suivant :
Proposition 1.4 :

Pour tout b > 0, on a l’estimation suivante quand t tend vers +oo :

E ( lbt)x e x p ( -X (b ) .t ) .

La même diffusion que pour le cas de la trace 7 , étudiée sous cet angle avec b — 1/3, 
fournit en fait l’exposant A(6) =  2/3 qui permet d’obtenir la condition (H \ ) dans le cas du 
bord d’un SLE§. On obtient ainsi une preuve plus directe du fait, conjecturé par Mandelbrot 
et prouvé par Lawler, Schramm et Werner, que la dimension de la frontière brownienne (qui 
est égale à celle du bord d’un SLE§) est presque sûrement égale à 4/3 — en particulier, 
on n’utilise pas ici les exposants d’intersection browniens.

Il existe un autre cas où la condition (H{) implique la condition (H2), celui de certains 
ensembles de temps exceptionnels. En effet, la propriété de Markov permet souvent de 
montrer que les deux événements définissant (H2) sont vraiment indépendants, ce qui 
donne une estimation du bon ordre. Nous utilisons cette approche dans deux cas où les 
temps considérés ont une interprétation géométrique sur la courbe. Si 7 est la trace d’un 
SLE k, on dit que t est un temps de frontière pour 7 si 7 (i) G dKi, et que t est un temps 
de coupure pour 7 si ATi \  ( 7 (2)} n’est pas connexe.
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Théorème 1.7
Soit 7 la trace d’un SLE K \ soient V  l’ensemble de ses temps de frontière T  

l’ensemble de ses temps de coupure. Alors, presque sûrement,

dim# (î?) =  — - A l et dim# (T)
8 — AC
— —  A 1 VO.

En particulier, si k < 8, T  est non vide, ce qui prouve que K x a presque sûrement 
des points de coupure.

Une question naturelle est alors la suivante : étant donné un ensemble de temps A c R  
borélien, aléatoire ou non, progressivement mesurable ou non a fortiori, y a-t-il une relation 
simple entre d im ^ ^  et dimff7 (̂ 4)?  Dans le cas du mouvement brownien plan, on sait 
qu’une telle relation existe, et que la dimension de l’image est le double de celle de A 
(cf. [22]). Dans le cas du SLE , il semble qu’il n’existe pas en général de telle relation, car 
le comportement métrique de 7 au temps t dépend fortement de la géométrie de K t.

Il y a cependant un cas où ce problème ne se pose plus, celui où l’ensemble A  est marko- 
vien, au sens suivant : pour tout t, l’ensemble A f)[ t,00) est indépendant de <7(7 (3) , s ^  t) 
et a même loi que {a + 1, a g A}. Dans ce cas, et pour k =  (3, la méthode décrite dans 
le chapitre 3 pour le calcul de la dimension du bord donne une bonne motivation pour la 
conjecture suivante :

j . , f 7 +  8dimff(,4) -  i/49  -  48dim# (A) 
dimH('y{A)) = ---------------------- *-----------------------;

avec les notation précédentes, cela revient à un calcul explicite de \(b) où b serait l’exposant 
permettant de déterminer dirn# A, i.e. :

dimff (7 (A)) = 2 -  A (1 -  d im ^ ^ ) ) .

Dans le chapitre 4, nous achevons la preuve des théorèmes 1.5 et 1.6 dans le cas 
(presque) général k ^  4. Tout ce qui facilitait la preuve dans le cas précédent (k = 6) 
devient faux, et en particulier (H2) n’est plus une conséquence directe de ( # 1). En fait, 
deux preuves séparées de (H2) sont nécessaires, suivant que k est dans (0,4) ou dans (4,8) 
(notons qu’il n’y a rien à démontrer dans le cas k ^  8 puisqu’alors 7 est une courbe de 
Peano, donc de mesure pleine, et donc de dimension 2).

Dans le dernier cas (/« =  4) il n’est pas clair que (H2) soit vraie. Ceci peut être interprété 
en termes de propriétés métriques de l’application conforme gt : on sait en effet (cf. [42]) 
que celle-ci est holdérienne si et seulement si k ^  4, et il est possible de relier cela à 
des propriétés géométriques du bord de K t (absence de “fjords” arbitrairement profonds) 
qui rappellent fortement les estimées servant à prouver (H2). On trouvera en appendice 
une discussion plus formelle de ce lien, qui suggère l’existence d’une preuve plus simple du 
théorème 1.5 — au moins dans le cas k < 4.

Au passage, le cas k = 8/3 est particulièrement intéressant : on obtient en effet di
rectement la dimension 4/3 du SLE 8/3, sans passer ni par le SLE 6 ni par les exposants 
browniens. On peut alors en déduire une troisième preuve, plus directe que les deux précé
dentes, du fait que la frontière brownienne est presque sûrement de dimension 4/ 3.
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Dans le chapitre 5, nous étudions le problème de la généralisation du SLE au cas d’un 
domaine non simplement connexe. Cela pose problème puisque la définition du processus 
initial repose sur le théorème de Riemann — et donc sur l’existence d'un domaine de 
référence (le demi-plan supérieur, le disque-unité) qui pour tout t sera l’image de gt. Cela 
permet alors d’exprimer la propriété de Markov du SLE de manière naturelle, et d’obtenir 
le résultat à'universalité au sens où la famille des processus obtenus est d’écrite par un 
seul paramètre réel k, qui joue le même rôle que la charge centrale dans le formalisme des 
théories de champs conforems.

Nous montrons que quand le domaine fi considéré est un ouvert multiplement connexe, 
il existe un analogue du processus de Schramm dans les cas k =  8/3 et k = 6. La construc
tion utilise dans chacun des cas une propriété spécifique du processus correspondant dans 
un domaine simplement connexe (respectivement, la propriété de restriction et la propriété 
de localité).

Dans le premier cas, le processus est simplement un SLE8/3 usuel dans le domaine 
obtenu en "remplissant les trous” de fi, conditionné à rester dans fi. La propriété de 
restriction montre alors que la courbe obtenue satisfait une propriété markovienne similaire 
à celle du SLE. Dans le second cas, on considère un SLE& dans le domaine rempli, jusqu’au 
premier instant r  (qui est fini presque sûrement) où K t n’est plus contenu dans fi et on 
le prolonge par un SLE dans Ç l\K r . La propriété de localité permet de prouver qu’on a 
également une propriété markovienne dans ce cas.

Il est à noter toutefois que ces deux processus sont "artificiels” puisqu’ils nécessitent de 
considérer le domaine rempli (ils ne sont par définis de manière intrinsèque). En fait, dans 
le cas où fi a la topologie d’un anneau, la famille des lois de courbes aléatoires, entre deux 
points de la même composante de dfi, satisfaisant la propriété de restriction, conserve un 
degré de liberté (alors qu’elle est réduite à SLE&/3 dans le cas simplement connexe) : on 
n’a plus d’universalité dans ce cas.

Il est possible d’adapter la preuve de Smirnov ([44]) au cas d’un domaine non simple
ment connexe, et de prouver que la trace du SLE6 généralisé est encore la limite d’échelle 
d’un modèle de percolation critique sur le domaine (avec les conditions au bord idoines le 
long des "trous” du domaine). Toutefois le problème de Dirichlet-Neumann qui apparaît 
dans la preuve n’est pas bien posé, puisque l’on peut fixer arbitrairement la valeur de la 
solution le long des trous — ce qui correspond encore une fois à un défaut d'universalité 
dans le cas des domaines non simplement connexes : la géométrie locale du modèle à la 
limite (ou, ce qui est équivalent par le théorème 1.5, sa charge centrale) ne détermine 
plus entièrement la loi de la limite d’échelle et on doit prendre en compte des paramètres 
globaux comme (la loi de) la classe d’homotopie de 7 .

Nous décrivons dans ce même chapitre le comportement de SLEK quand le paramètre 
tend vers 0 ou vers + 00. Dans le premier cas, la courbe 7 Q0, 1]) converge (pour la topologie 
de HausdorfF) vers celle d’un SLE0, qui est une courbe déterministe —  un segment vertical 
dans le cas du demi-plan supérieur, une géodésique pour la géométrie hyperbolique dans le 
cas général — et si on la renormalise convenablement, on obtient à la limite une courbe 
d’équation x — f(y), où /  est la convolution de la fonction qui conduit le SLE avec un 
noyau déterministe que nous explicitons.

Le cas « —>■ 00 est plus intéressant. On doit alors renormaliser K x par un facteur a/k 
dans la direction verticale, et par un facteur 1/^/k dans la direction horizontale. Le compact
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renormalisé converge alors, toujours dans la topologie de Hausdorff, vers l’hypographe du 
temps local du mouvement brownien réel qui conduit K . Plus précisément, si (Lf) est une 
version bicontinue de ce temps local, le compact limite est

K  — {x +  iy : x  G R, 0 < Lf, 0 ^  y ^  2irL*} .

Ceci relie la trace du SL E  quand k tend vers +oo à la courbe de Peano du temps local, 
définie par

7 (t) = Bt + 2m .L ft

(qui est bien une courbe continue surjective car L est bicontinu). Il est probable (mais pas 
encore démontré) que la trace 7 du SL E  converge en loi vers 7 .

On présente également un objet amusant qui est une version discrète du SL E  (ou plus 
exactement un SL E  conduit par un processus discret, plus précisément par une interpola
tion constante par morceaux de la marche aléatoire simple dans Z), et qui converge vers 
le SL E  quand le pas de discrétisation tend vers 0. Ce "SLE  discret" présente lui aussi 
une transition de phase (ou du moins un changement d’aspect) pour le paramètre k — 4, 
qui semble similaire à la transition de phase du SL E  usuel : on passe de “quelque chose 
qui ressemble à une courbe simple” à “quelque chose qui ne ressemble pas à une courbe 
simple”.

Cet aspect de la géométrie de l’objet discret ne suffit pas à obtenir la transition de l’ob
jet continu — ce qui est bien dommage, car l’idée d’obtenir des informations topologiques 
sur K t à partir de propriétés algébriques issues du cadre discret était plutôt attirante. Tou
tefois, une telle reconstruction du S L E  à partir de la composition aléatoire de déformations 
infinitésimales simples (ici de la forme \Jz2 + 4e) pourrait être plus facile à généraliser.

L’annexe A regroupe les preuves de quelques résultats techniques ainsi que deux lemmes 
sur les domaines hôldériens qui pourraient constituer une part significative de la “vraie 
preuve” du résultat du chapitre 4 — mais qui ne sont pas utilisés dans cette thèse.

Enfin, l’annexe B contient la description d’un algorithme de simulation du SL E  et les 
images obtenues pour différentes valeurs de k, ainsi que le code source du programme 
utilisé et quelques images des processus discrets associés (marche à boucles effacées, 
marche auto-évitante uniforme, et différents clusters de percolation critique).
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In t r o d u c t io n

Theoretical physicists have conjectured for more than twenty years that conformal invari
ance plays an important role in understanding the behaviour of critical two-dimensional 
models of statistical physics. They justify by a mathematically non-rigorous argument
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involving renormalization, that in the scaling limit these models behave in a conformally 
invariant way; they have then been able to classify them via a real-valued parameter corre
sponding to the central charge of the associated Virasoro algebra, and to predict the exact 
value of critical exponents that describe the behaviour of these systems. Different models 
(for instance, self-avoiding walks and percolation) with the same central charge have the 
same exponents.

Recently, Schramm ([43]) introduced a family of new mathematical objects that give 
insight into these conjectures. These are random, set-valued, increasing processes (Kt)t^o 
which he named Stochastic Loewner Evolution processes. For each positive number k, 
there exists one such process of parameter k, denoted SL E K. He proved that for various 
models, if they have a conformally invariant scaling limit, then this limit can be interpreted 
in terms of one of the SLE K’s — the parameter k would then be related to the central 
charge of the model. One can then interpret the conjectures of the theoretical physicists 
in terms of properties of SLE.

In particular, Lawler, Schramm and Werner ([31, 32]) showed that for one specific value 
of the parameter k (namely k — 6) which conjecturally corresponded to the scaling limit 
of percolation cluster interfaces, the SLEe has the remarkable restriction property which 
relates its critical exponents to the so-called intersection exponents of planar Brownian 
motions. This led ([31, 32, 33, 36]) to the derivation of the exact value of the intersection 
exponents between planar Brownian paths. Furthermore, it was later shown ([48]) that, 
in fact, the outer boundary of a planar Brownian curve has exactly the same law as that 
of an SL E q. In other words, the geometry of critical two-dimensional percolation clusters 
in their scaling limit should be exactly that of a planar Brownian outer frontier.

In a very recent paper, Smirnov ([44]) showed that critical site percolation in the 
triangular lattice is conformally invariant in the scaling limit, so that the geometry of 
critical two-dimensional percolation cluster boundaries, in their scaling limit, is identical to 
that of a planar Brownian outer frontier.

Before all these recent developments, geometric properties of planar Brownian paths 
had already been the subject of numerous studies (see e.g. [38] for references). In par
ticular, the Hausdorff dimension of various geometrically defined subsets of the planar 
Brownian curve had been determined. For instance, Evans ([16]) showed that the Haus
dorff dimension of the set of two-sided cone points of angle 6 (i.e. points Bt such that 
both and are contained in the same cone of angle 9 with endpoint at B t) is 
2 -2 7 t/9. In a series of papers (see e.g. the review in [27]), Lawler proved that the dimen
sion of various important subsets of the planar Brownian curve can be related to Brownian 
intersection exponents. In particular ([25]), he showed that the dimension of the set C of 
cut points (i.e. points B t such that 2?[0,i] \  {Bt} is not connected) is 2 — ^ where £ is the 
Brownian intersection exponent defined by

p„ = P(B[0Xil n  , =  0) = (2.1)

(for independent Brownian paths B 1 and B 2 starting respectively from 1 and —1, and 
7# standing for their respective hitting times of the circle C(0, R)).

In order to derive such results, and in particular the more difficult lower bound d ^  2 -£ , 
the strategy is first to refine the estimate (2.1) to pR x  R~$ (we shall use this notation 
to denote the existence of two positive constants c and d  such that cR~f ^  pr ^  c'R~t),

R-Z+o( 1)=  0 ) =d2
[O.Tr]

BB[0,t]

n

:u¡



29

then to derive second-moment estimates and finally to use these estimates to construct a 
random measure of finite r-energy supported on C, for all r < 2 — £. The determination 
of the values of the critical exponents via SL E & ([31, 32]) then implies that the dimension 
of C  is 3/4. Similarly ([24]), the Hausdorff dimension of the outer frontier of a Brownian 
path can be interpreted in terms of another critical exponent, and the determination of 
this exponent using SLE 6 then implies (see [30] for a review) that this dimension is 4/3 
as conjectured by Mandelbrot.

In the present paper we define and study a family of generalizations of the Brownian 
intersection exponent £ parameterized by subsets of the complex plane. For each 4 c C ,  
we define an exponent £(A) as follows. Let B 1 and B 2 be two independent planar Brownian 
paths starting from uniformly distributed points on the unit circle. Then £(.A) is defined 
by

V r(A) =  P ( B } ^  n  A . B = 0 ) =  (2.2)

(with the notation E i.E 2 — {xy : x e E x,y  e E2}). Note that the case A — {1} 
corresponds to the usual intersection exponent. In Section 2.1 we first show that for a 
wide class of sets A

pR(A) x  R - M .  (2.3)

In Section 2.2 we study regularity properties of the mapping A  £(^4). In particular 
we prove its uniform continuity (with respect to the Hausdorff metric) on certain families 
of sets. One important tool for this result is the fact that the constants implicit in (2.3) 
can in fact be taken uniform over these families of sets.

In Section 2.3 we associate to each set A  a geometrically defined subset £a of the 
planar Brownian curve:

£a =  {-S«: > 0, (B[t- S,t] — B t) n  A.(B(t,t+e] ~  Bt) =  01-

Using the strong approximation and continuity of the mapping A  £(A), we then show 
that the Hausdorff dimension of this subset of the planar Brownian curve is almost surely 
2—£(A) when £(^4) < 2 (and is 0 when £(^4) > 2). For example, when A  =  {ez0, 0 ^  6 ^  a} 
the corresponding subset Ca of the Brownian curve is the set of (local) pivoting points, i.e. 
points around which one half of the path can rotate by any angle smaller than a  without 
intersecting the other half.

When A  c  A', then £A> c  £a ■ In particular, if A contains 1, then £A is a subset of the 
set of (local) cut points and therefore the shape of the path in a neighbourhood of such 
a point is the same as that of the Brownian frontier in the neighbourhood of a cut-point. 
This shows in particular that (at least some of) the exponents £(A) also describe the 
Hausdorff dimension of sets of exceptional points of the scaling limit of critical percolation 
clusters.

In Section 2.4 we derive some bounds on the exponents £(i4) for small sets A, by 
a technique similar to that used by Werner ([47]) to estimate disconnection exponents. 
In particular, for small a, we show that the exponent £(Ca) is strictly smaller than 2, 
which implies the existence of pivoting points of any angle less than a0 > 0 on the planar 
Brownian curve. We then briefly present results of simulations which suggest that the 
maximal angle a 0 is close to 37t/4.

R

i—y

3s

;-{(A +o(l)
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It is actually easy to define other “generalized" exponents in a similar fashion, by studying 
non-intersection properties between Brownian motions and some of their images under 
isometries and scalings, i.e. one can view A as a subset of the linear group GL2(®)- One 
can also consider non-intersection properties between B  and its image f(B )  by a conformal 
map. For instance it is easy to see using the function z z2 that the exponent describing 
the non-intersection between B  and — B  is in fact twice the disconnection exponent. The 
methods of the present paper can then be adapted to such situations.

Similarly, one could extend the definitions to higher dimensions (the cases d ^  4 can 
also be interesting if the set A is sufficiently large), but conformal invariance then cannot 
be used, so that some of the tools in the present paper do not apply.
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Notations

Throughout this paper, we will use the following notations for the asymptotic behaviour 
of positive functions (and sequences, with the same meaning):

f
• /  ~  9 if lim —t t  — 1 — and /  and g are said to be equivalent;t-*oo g(t)

log f  (t\
§ j~ ^  Q if log /  logg, i.e. if lim ------ =  1 — /  and g are then logarithmically

t-*oo log g(t)
equivalent;

• f  x  g if f / g  is bounded above and below, i.e. if there exist two positive finite 
constants c and C  such that for all t, cg(t) ^  f ( t ) ^  Cg(t) — which we call strong 
approximation of /  by g.

2 .1  G e n e ra liz e d  in te rs e c tio n  e x p o n e n ts

2.1.1 Definition of the exponents

Proposition and Definition :
Let A  be a non-empty subset of the complex plane and B 1, B 2 be two independent 

Brownian paths starting uniformly on the unit circle C(0,1); define the hitting time 
Tk of C(0,R) by B i and let r*n = T;xp{n),

En =  En(A) — {-B[ojTi] n  A.Bf0r2j = 0 },

qn(A) = P(En) and pR(A) =  P (E lozR).

Then, assuming the existence of positive constants c and C such thatp/i(,4) ^  cR~c ,
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H This is a standard sub-multiplicativity argument. If B  is a Brownian path 
starting on C(0,1) with any law ¡1, then the law of on the circle C(0, e) 
has a density (relative to the Lebesgue measure) bounded and bounded away 
from zero by universal constants (i.e. independently of fi). Combining this 
remark with the Markov property at the hitting times of the circle of radius 
e™ shows that:

Vm, Tl ^  1 9m+n ^  CQnQm—1-

Remarks: For some choices of A  there is an easy geometric interpretation of the event 
En(A): £({1}) is the classical intersection exponent; if A = (0, oo), the En(A) is the event 
that the paths stay in different wedges.

If A  is such that no lower bound pR(A) ^  cR~c  holds, we let £(A) =  oo. However, in 
most of the results presented here, we will restrict ourselves to a class of sets A  for which 
it is easy to derive such lower bounds:
Definition :

A non-empty subset A  of the complex plane is said to be nice if it is contained in 
the intersection of an annulus {r < \z\ < R } (with 0 < r  < R  < oo) with a wedge of 
angle strictly less than 2w and vertex at 0.

Indeed, let A  be such a set and let a < 2-n be the angle of a wedge containing A: B 1 
and A B 2 will not intersect provided each path remains in a well-chosen wedge of angle 
(2-n — a ) /2, and then it is standard to derive the following bound:

The fact that A  be contained in an annulus will be needed in the following proof. The only 
usual case where this does not hold is when A is a wedge itself; but in this case a direct 
study is possible, based on the derivation of cone exponents in [16] and the exact value of 
£ is then known (cf. next section for details).

We will often consider the case where A  is a subset of the unit circle. For such sets, 
A  is nice if and only if A £  dU (it is in fact easy to prove that for A  c  <9U, f(j4) =  oo if 
and only if A = 5U).

2.1 .2  Strong approximation

This whole subsection will be dedicated to the refinement of pR «  R~* into pR x  
This is not anecdotal, since this "strong” approximation will be needed on several occasions 
later.

Hence the family (cqn- i ) is sub-multiplicative, and using Proposition 2.7 we 
have qn m e~tn, with £ e  (0, oo), as well as a lower bound qn ^  c~2e~^n+1\  II

pR(A) > cR~4ir/{2*-a). (2.4)

there exists a real number £(A) such that, when R  —> oo,

Pr A Os*»R- f

R~t.

A

Bn (B)
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Theorem 2.1 :
For every nice A, Pr(A) x  R~^a\  i.e. there exist positive constants c(A) < C(A) 

such that
cR~^a) ^ pR{A) ^ CR-SW.

Moreover, the constants c{A) and C{A) can be taken uniformly on a collection A  of 
subsets of the plane, provided the elements of A  are contained in the same nice set.

H  Note that since A e A  is nice, the exponents £(A) exist and are uni
formly bounded for A  G A. The sub-additivity argument showed that 
qn ^  ce-^(A)-(n+1)> which implies readily the lower bound in the theorem. 
It is more difficult to derive the upper bound. By Proposition 2.7, it will be 
sufficient to find a finite constant c -(A ) (that can be bounded uniformly for 
A z  A) such that

In order to make the proof more readable, it is carried out here for a fixed 
A\ however it is easy to see that, at each step, the constants can be taken 
uniformly for all A contained in some fixed nice set A0. Moreover, we shall 
first assume that A0 is a subset of the unit circle: We briefly indicate at the 
end of the proof what are the few modifications needed to adapt it to the 
general case.

The basic method is adapted from Lawler’s proof for non-intersection 
exponents in [26], with some technical simplifications made possible using the 
absence of the A exponent. The main idea is to obtain a weak independence 
between the behaviour of the paths before and after they reach radius en. 
The first step is an estimate concerning the probability that the paths are 
“well separated” when they reach radius en (more precisely, that they remain 
in two separated wedges between radius en_1 and radius en). Let T n stands 
for the cr-field generated by both paths up to radius en (so that for instance 
En is in Fn).
Lemma (Technical) :

Let tj 0 and ol 27t — 77 such that A  is contained in a wedge of 
angle less than a. Define

Viz, 71 qn+n' ^ 9n9n'. (2.5)

Wa =  {re1" : r > 0, |0| < | }  ,

tin =  e_n[d(J3ji, AB^ra]) Ad(ABja,Bj,,Ti])] and the f°llowing events:

U\ =  { b } ,^  n {|z| > e“- 1} C ,

U2„ = {ABf0ir,i n { \z \2 e ',- l } c W a} ,

and Un = U \n U l.  Then:

3c, ^  > 0 Ve > 0 Vr e 3 P (E n+r, Un+r\Tn, En, Sn ^ e ) ^  csp.
'3
2’

-Wfcr. -a—7}
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HI The proof is easy and uses only simple estimates on Brownian Motion in 
a wedge, we omit the details, jjj

we now prove that paths conditioned not to intersect up to radius en+2 
have a good chance to be well separated at this radius, uniformly with respect 
to their behaviour up to radius en:
Lemma (End-separation) :

There exists c > 0 such that, for every n > 0:

P(Un+2\En+2, 3"n) ^  c

(in other words, the essential lower bound of P(Un+2\En+2,!Fn), as an 
^„-measurable function, is not less than c).

Ill The technical lemma states that start-separation occurs if the starting 
points are sufficiently far from each other; more precisely, applying it for 
r  =  2, we obtain for all e > 0:

P(Un+2\En+2, T n, 8n ^ e ) >  ce1*. (2.6)

Hence, what is to be proved is that two paths conditioned not to intersect 
have a positive probability to be far from each other after a relatively short 
time. To prove this fact, one has to use conditioning on the value of Sn.

Fix k > 0, and assume that 2- (fe+1) ^  5n < 2~fc; let rk be the smallest 
r such that one of the following happens: either 6n+r ^  2~k, or En+r does 
not hoid. It is easy to use scaling to prove that for some A > 0,

P (n  > 2~k) < 2 ~ \

meaning that with positive probability (independent of k and n) the paths 
separate or meet before reaching radius en+2~k. Hence, by the strong Markov 
property applied k2 times, this leads to

P (tk > k22-*|2-(fc+1) ^  8n < 2~k) ^  2~Xk\  (2.7)

The technical lemma states that P(En+2\5n ^  2_^ +1 )̂ ^  c2~^k: combining 
both estimates then leads to

P(rk ^  k22~k\En+2, Sn ^  2-(k+V) ^  c 2 ^ xk\  (2.8)

Consider now a generic starting configuration at radius en, satisfying En 
and hence 5n > 0. Fix also k0 > 0 and introduce the radii rk (for k0 ^  k < oo) 
defined by

rk =  Inf{r : 5n+r ^ 2~k}

(so that rk =  0 as long as 2~k ^  6). Equation (2.8) can be rewritten (using 
the fact that the technical lemma is valid for all r  ^  3/2) as

P (n  -  n +1 2  k22-l \En+2, ri+1 i  i )  ^  (2.9)c2ßk-A k2

2.1.
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Fix k0 such that

£  f * - *  < 5.
k—ko

and sum this estimate for k0 ^  k < 00: this leads to

OO
P(Vk ^  ko, Tk -  Tk+1 ^  k22-k\En+2) > 1 -  c Y ,  2^k~Xk\

k~ko

In particular, if k0 is taken large enough, this probability is greater than 1/2, 
and we obtain

P (n 0 ^  - \E n+2) —•

It is then sufficient to combine this and Equation (2.6) to get

P(Un+2\En+2) > c2-^° > 0,

and is can be seen that the obtained constant does not depend on the 
configuration at radius en — provided En is satisfied. Hj

The first consequence of the end-separation lemma is P(En,Un) x  qn\ 
but it is easy to see, using estimates on Brownian motion in wedges again 
and the strong Markov property, that

P(En+i\En, Un) ^  c > 0

(with c independent of n), and combining both estimates leads to qn+i ^  cqn, 
i.e. qn+i x  qn. Now if qn stands for the upper bound for the non-intersection 
probabilities, namely

9n=  Sup P(En\B l,B 20),

the previous remark concerning the law of WTi(wq can be used to prove that 
qn ^  cgra_i: hence,

Qn ^  Qn-

Now that we know that paths conditioned not to intersect have a good 
chance to exit a disk at a large distance from each other, what remains to 
be proved is that paths starting from distant points on C(0, e") remain well 
separated for a sufficiently long time and become (in a sense to be specified 
later) independent from their behaviour before radius en.
Lemma (Start-separation) :

| Let a  and 77 be as in the technical lemma, rf = rj/2 and a' = (2-k +

34
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o¡)/2; introduce

Jk = { b J ^ ,  n  5(0,2) c  -W 2, ^ w  \  B(0,1 -  7?')} ,

J i  =  { A B lJ}] n  0(0,2) C W j \  B (0,1 -  r?')} ,

and Én =  En n  n J%. Define qn as

Qn(x, y) = P (É n\Bl = x, B 2o = y).

Then there exists c > 0 such that, for all n ^  2 and uniformly on all 
pairs (x,y) satisfying U0 (i.e., both having modulus 1 and such that U0 
holds when B * = x and B 2 = y):

qn(x ,y )> c q n.

Ill Introduce the following (“forbidden") sets:

K 1 = (13(0,2) \  -W 27r_a W ) U B(0,1 -  rf);

K 2 = (B(0,2) \  Waf) U #(0,1 — if).

For all n we have n K l = 0 }  and J 2 {ABf0¡rñ] n K 2 = 0}.
For the rest of the proof we shall fix n, and condition the paths by their 
starting points; introduce the following stopping times (for positive values of 
*):

T¡ =  Inf{f > 0 : B\oa n  C(0, 3) 5Í 0},

S\ =  Inf{< > T l ,  : O K 1 #  0},

T¡ = Inf {< > S i : B¡slt¡ n  C(0,3) #  0},

and S%, Tk similarly, replacing all occurrences of B 1 by A B 2 and K l by K 2. 
We shall also use the notation N % for the number o f crossings by B 1 (resp. 
A B 2) between K * and C(0,3), defined as

N* =  Max{& : S*k <  r*}.

With those notations, J* =  J\ D {N l — 0} and a.s. N 1 < oo. Moreover, 
uniformly on the starting points considered here (satisfying the condition 
U0), we have P(J[) ^  c > 0 by the technical lemma, where c depends only 
on 77.

First, we split the event En according to the value of, say, N 2: we write 
P (E n) =  ET=op (En ,N 2 =  k). By the Beurling estimate, on {N 2 ^  k}, 
the probability that B^  rlj and AB^s2 r2] do not intersect is bounded by some

universal constant A < 1 (which can even be chosen independent of A), 
independently of B 1 and the two remaining parts of B 2. By the strong 
Markov property at time , when N 2 = k the probability that A B 2 after T | 
does not intersect B 1 is bounded by P (B l n  A B 2t ^ t^  =  0 , N 2 = 0) (i.e. the
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path after T% when N 2 = k \s  the same as the entire path when N 2 =  0). 
Introducing those two estimates in the sum leads to

°o i
P (E n) ^  £  AkP (E n, N 2 = 0) =  Y Z ^ P(<En> N 2 =  0). 

ik=0

Doing this decomposition again according to N 1 (with the same constant 
A < 1) we then obtain

i.e. P (N X = N 2 — Q\En) ^  (1 — A)2 > 0. This, and the previous remark that 
P(j£|iVi — 0) is bounded below by a constant provided that the starting 
points satisfy U0, gives:

is harmonic and does not vanish on the complement of A. Moreover, its 
supremum on the unit circle is equal to qn by definition: Applying the Harnack 
principle then proves that /  is bounded below by cqn on the set of a; satisfying 
U0, which completes the proof. Ill

Another estimate can be obtained using the very same proof: Only keep
ing the conditions involving disks and relaxing those involving wedges, we 
obtain

P  n  B{ 0 ,1-T]) = 0 , ABf0r2] n  B( 0, l - r , )  = 0 ^ ,  B 20, En) > c >  0, (2.12)

where c does not depend on the initial positions B l and B 2, nor on n (it 
clearly depends on 77, though, and a closer look at the proof shows that we 
can ensure c > 77̂  as rj 0, for some ¡3 > 0). This estimate will be needed 
in the derivation of Hausdorff dimensions, cf. Section 2.3.

We now have all the needed estimates to derive the lower bound in the 
sub-additivity condition, and hence the conclusion of the theorem. Take 
two paths with independent starting points uniformly distributed on the unit 
circle and killed at radius em+n, conditioned not to intersect between radii 1 
and en. This happens with probability qn. With large probability (i.e. with a 
positive probability, independent of m  and n) the paths up to radius en end 
up “well separated” in the sense of the end-separation lemma. In particular, 
the points where they reach radius en, after suitable rescaling, satisfy the 
hypothesis of the start-separation lemma: Hence with probability greater 
that cqm, the paths between radii en and em+n remain separated up to radius 
en+1, do not reach radius (1 — rj)en anymore and do not intersect up to radius

p (En) < = N 2 =  0),

P(En\Bl =  x, B l = v )>  cP(E„\Bl = x, B l  =  y). 

Conditioning on B 2 shows that the map 

/ : «  P(E„\Bl = x ,B l = 1) (2 .11)

(2.10)

2P1 - A
1

E ^ N 1

B [o,nil



2.2. PROPERTIES OF THE FUNCTION A h-> £(A) 37

em+n. Under those conditions, it is easy to see that the paths do not meet 
at all. So qm+n ^  cqmqn for some positive c, and we get the conclusion.

Some adaptations are needed if A  is included in an annulus, say {r < 
\z\ < R} with r < 1 < R. First, replace all occurrences of e by e0, with 
e0 chosen larger than 10R /r , and in the start-separation lemma, replace 
B(0,1 -  rj) by 5(0, r/2R) in the definition of the Jn. As long as r  and R  are 
fixed, this changes nothing to the proof, except that the constants we obtain 
will then depend on R /r  — which itself is bounded provided A remains a 
subset of some fixed nice set.

A more serious problem arises if the complement of A  is not connected 
(i.e., if A  has holes), since the natural domain of the function /  (as defined 
by Equation (2.11)) is itself not connected. However, since A  is nice, its 
complement has exactly one unbounded component, and it is easy to see 
that if x  is not in this component then f(x )  vanishes for n ^  1. Hence, 
nothing changes (as far as non-intersection properties are concerned) when 
A  is replaced by the complement of the infinite component of its complement 
(i.e. when filling the holes in A), j j

In fact, a stronger result can be derived: If the starting points B * and B 2 are fixed, 
then P(En\B l, B 2) is equivalent to where c is a function of E* and B 2 satisfying
c ^  c0d(B^, A B f f i . This estimate is related to a strong convergence result on the law of 
paths conditioned by B 1 n  A B 2 =  0 . However, proving this result would be much more 
involved (cf. [37] for the proof in the case A — {1}).

2 .2  P ro p e r t ie s  o f  th e  fu n c t io n  A  £ (A )

We first list a few simple properties of the function A i-> £(A). For p € Z and A  c  C, 
introduce Ap =  {zp, z e A} and let A* =  {z, z e A}.
Proposition 2.1 :

Is these statements, all sets are assumed to be non-empty but do not need to be 
nice:

(i). £ is non-decreasing: if A  c  A! then £(A) ^  £(A')',

(ii). £ is homogeneous: if A e C* then £(AA) = f(A);

(iii). £ is symmetric: £(A-1) =  £(A*) =  £(A);

(iv). £ has the following property: if n ^  1 then

£ ( I J  e?**/nA) = n£(An).

II 0 ) : This is a trivial consequence of p r (A) ^ p r (A').
(ii): Applying the scaling property with factor |A| to B 2 proves that one 

can suppose |A| =  1; in which case we have pr (A) =  pr(XA) (because the 
starting points are uniformly distributed on the unit circle).

ce n£:(A)
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(in): Simply exchange B 1 and B 2 for A~l , and say that the complex 
conjugate of a Brownian path is still a Brownian path to get A*.

(iv): This is a consequence of the analyticity of the mapping z zn 
(hence the fact that ((Wt)n) is a Brownian path if W  is one) together with 
the remark that the existence of s, t > 0 and z G An with (B \)n =  z(B 2)n is 
equivalent to the existence of z' in \Je2%k*lnA  with BI = z 'B 2 — note that 
the mapping also has an influence on R, hence the factor n. j j

We now turn our attention toward regularity properties of the function A f  (A) — 
the following result being a key step toward the derivation of dimensions in the next section. 
Introduce the Hausdorff distance between compact subsets of the plane (cf. Section 2.5 for 
details). It will be convenient here to define neighbourhoods by Vr(A) = {xez,x  e  A, \z\ < 
r} instead of the usual A + B(0,r) — leading to the logarithmic Hausdorff distance. The 
(logarithmic) Hausdorff topology is the metric topology derived from this distance. 
Proposition 2.2 :

£ is continuous on the collection of nice sets, endowed with the logarithmic Haus
dorff topology. For any nice set A0, £ is uniformly continuous in {A : A c  4̂0}-

H The proof relies on the uniformity of the strong approximation in Theo
rem 2.1: fix a nice set A0 and assume all sets considered here are subsets of 
A0. The constants c, c_ and c+ appearing during the proof may only depend 
on A 0.

First, fix R > 1 and condition all events by B?0T2 , — i.e. fix the second 
path. For all A c  A0, let ’ S+1

d/i(A) =  djfy(5j10 Inj, A B 2Q T2̂ ) ;

for all e > 0 introduce the stopping time

Se -  Inf{£ : dH(B}, A B ^ ^ )  < e}.

Note that {dft(A) < e} =  {Se < 7^}. On this event, the strong Markov 
property shows that Bge+. is a Brownian path starting e-close to A B 2. By 
Beurling’s theorem, the probability that they do not meet before radius i? + l 
is smaller than the corresponding probability for a path near a half line; hence,

^  A B 20jT2+i] =  0|da(^4) < e) ^  V i,

so that, considering the whole path, P (E R+i\dR(A) < e) ^  y/e. Apply the 
Bayes formula:

P(dR(A) < E\£s+1) =  < e);

since we know that P (E R+1) ^  c-(R  + l) - i(A) with ((A) ^  £(^40) we finally 
obtain

P(da(A) < £\ER+l) ^  cR ^ ao)y/i.

P (B i
ISr.TÌ
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From now on, we shall assume that e is sufficiently small to make the 
obtained bound smaller that 1. Taking the complement leads to

P(dR{A) > e\ER+1) ^  1 -  cR ^ ao>Ve.

Now, remark that when dfl(A) ^  e and dH(A,A') < e/R , we have B}nrrU n  

A'B[0T2] =  0 : from this and the previous equation it follows that, as long 
as A  and A1 remain subsets of A 0,

dh{A,A') < — => Pr (A') ^  (l -  cR^A°^y/e) pR+i(A).

We can apply the estimates on pR we derived in Theorem 2.1 — i.e. 
Pr{A) x  pR+x(A) x  R ~ ^ :  still for dh(A ,A ') < z /R  and A, A' inside A 0 
we get

c+R - t{A,) ^  (1 -  cRt{Ao) Vi) c-R~ttA\  

and taking the logarithm of each side of the inequality leads to 

logc+ — £(A') log R  ^  logc_ +  log (l — cR ^ a°^y/e) — £(A) logi?, 

hence after suitable transformations:

Fix 77 > 0, and choose R  such that c/log-R < 77/ 2. It is then possible 
to take s sufficiently small so that |log(l -  cR^Ao)^/e)\ < (77logi?)/2; for 
dh (A,A') < e//2wethen have£(A') < £(A)+r], hence by symmetry |£(A ')- 
£(A)| ^  7], This proves that £ is uniformly continuous on VC(A0), for all A0, 
hence continuous on the family of nice sets, j j

Remark 1: Equation (2.13) allows the derivation of an explicit modulus of continuity 
for £ inside A 0, of the form

- ? (y l )K  C(Ao)I log d// (¿4, A1) j

(take R  =  d-1/2̂ ) ) .  But since C(A0) is not known, this does not provide numerical 
bounds for £.

Remark 2: Inside a nice set, the usual and logarithmic Hausdorff topologies are equiv
alent, so the introduction of "exponential neighbourhoods” in Proposition 2.2 can seem 
artificial; however, it leads to constants that do not vary when A  is multiplied by some 
constant (as in Proposition 2.1, point (ii)), hence uniform continuity holds on the collec
tion of nice sets contained in a fixed wedge and in some annulus {r < \z\ < cr} for fixed c
— which is wrong for the usual Hausdorff topology, as a consequence of the homogeneity 
of £ applied for small |A|.

Note that uniform continuity cannot hold on the family of nice sets contained in a 
given annulus since £ would then be bounded (by a compactness argument), which it is 
not: the exponent associated to a circle is infinite.

A' A] log R

1 - c .

log R

’Ao).Rtt'

le

log

A1

c
e (2.13)
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2 .3  H a u s d o r ff  d im e n s io n  o f  th e  c o rre s p o n d in g  s u b se ts  o f  

th e  p a th

2.3 .1 Conformally invariant subsets of the Brownian path

It is well-known that the Brownian path is invariant in law under conformal transformations; 
in this section, we study subsets of the Brownian curve that are also invariant under 
conformal maps. A first example is the set of so-called Brownian cut-points, i.e. points 
B t such that and B(t,i] are disjoint; these points form a set of Hausdorff dimension
2 -  £({1}) =  3/4. Related to those are local cut-points, i.e. points such that there exists 
s > 0 satisfying B ^ ^ D B ^ t+ s]  =  0  — the dimension is the same as for global cut-points. 
Other examples are given by Lawler in [27]: in particular the set of pioneer points (such 
that Bt lies on the frontier of the infinite component of the complement of -B[o,t]), related 
to the disconnection exponent 771; frontier points (points of the boundary of the infinite 
component of the complement of £[0,1]), related to the disconnection exponent for two 
paths in the plane. Another exceptional subset of the path is the set of cone points (such 
that is contained in a cone of endpoint B t), related to the cone exponents (studied 
in [38] for example).

We will use the exponents introduced in the previous sections to describe a family of 
exceptional sets, indexed by a subset A  of the complex plane, having dimension 2 -£ (A ) ,  
and that are invariant under conformal transformations, as follows. Fix a Brownian path 

a subset A  of the complex plane, and introduce the following times for all t e (0,1) 
and r > 0:

Tr(t) =  Inf{s > t : |B s — Bt \ = r}, Sr(t) =  Sup{s < t : |B s — B t \ =  r}.

Definition :
If 0 < £ < R  and t £ (0,1), let

zi*'RI(B) =  : * 6 [T,(i),T«(t)],S' € [S *(i),S .(t)]};

and introduce =  {B t : n A  = 0 } .  Then, letting e go to 0:

Z?  =  l j |  Zt =  (I) 2 Zt = fi] W .
e>0 R> 0 ii>0

define SA , Sa and SA accordingly.
We shall also use the notation Ta — {t : B t e  £a}, for the set of A-exceptional 

times, and TA =  {£: B t e  ¿A], for the set of A-strongly exceptional times.

Note that, since 0 is polar for planar Brownian motion, Z  is well-defined for almost any 
t. For A = {1}, Sa is the set of local cut-points; more generally, B t is in Sa if, and only 
if, for some £ > 0, we have

[B{t,t+e\ — Bt) n A.(B[t- Sit) — Bt) =  0 ,

so the setup looks similar to the definition of the exponent £(.A). It is easy to see that for 
all fixed t > 0, a.s. Zt — C* and Zt — C, so that for A  ^  0 , P (t e  Ta ) =  0, leading to 
E (h(Ta)) =  0 i.e. ¡¿(Ta) = 0 almost surely — hence the term "exceptional points”.

0,tE

£[0,1]

Bs — Bt
Bs' — Bt

SA
£,R Z e,R

z t
■le
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The set £A of A-exceptional points is generally not conformally invariant. However, it 
is the case for strongly exceptional points:
Proposition 2.3 :

Let $  be a conformal map on a neighbourhood of 0, with $(0) =  0, and let B n 
be B  stopped at its first hitting of dQ,. By conformal invariance of planar Brownian 
motion, $(.Bn) is a Brownian path stopped at its first hitting of d$(f2). Moreover, 
we have

£A($ (B n)) =  $(£A(BQ)).

H  We prove that Z  is invariant. It is sufficient to prove the following char
acterization:

2 £ Z,(B) <=>■ 3(s„) 4 0, (s'J I  0 : B'+"‘r  BJ  -> z,

as conformal maps conserve the limits of such quotients. Such a sequence 
is easily constructed using the very definition of Z. j j

Note that nothing in the preceding uses the fact that B  be a Brownian path, except 
for the remark about P(t e TA). The remaining of the present section is dedicated to 
deriving the Hausdorff dimension of £A and £A. It will be more convenient to work in the 
time set, so introduce

7t'*' =  {* e [0, l ] : -  B,) n  A (B [1+«,1+K] -  B t) = 0 ).

The scaling property of Brownian motion can then be used to show, as in [25, lemmas 
3.14-3.16], that Theorem 2.1 implies the following, provided A is nice:

P ( t e T i ’’R,) x ^ y W ' 2. (2.14)

If t < t' are two times, introduce the “mesoscopic" scale d =  \f  - t \ ,  and separate the 
following three cases:

If d > 2R (long-range interaction), the events Et =  {t € and E v are inde
pendent, leading to the right second-order moment;

If R /2  ^  d ^  2R (medium-range interaction), the trivial bound P(Ex,E y) ^  
C (2e/d)^A  ̂ (obtained by forgetting what happens after radius d/2) gives the needed 
contribution.

Í2

[e,i£] 'ir [£'A

B \t-

2.3.2 Second moments

Fix R > 0. The purpose of this subsection is to give an estimate of the probability that 
two times t and t' are ^-exceptional times, i.e. are both in T ^ ’R\  To get an upper bound 
on this probability, the idea will be to dissociate the microscopic and macroscopic scales, 
giving respectively the first and second factor in the following estimate:

P{t, ? e  r i SiR]) ^  c [ |j ]  ̂  [1 V \t -  t’\- ^ A)/2] .

R,t-e]
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• If d < R /2  (short-range interaction), a little more work is required. Introduce the 
following times:

Tr{x) = Min(:r +  r, Inf{a/ > x : \BX — B x>\ = r 1̂ 2}),

Sr(x) = Max(rr — r, Sup{x' < x : \BX — B x>\ =  r 1//2}).

First, Et and Et> imply two independent events:

El 1 (B[t+e,fd/2(t)} ~ Bt) n A- (B[Sd/2(t),t-e] ~ Bt) =

E2 : (B[V+e,td/3p)] ~ B't) n A■ (B[Sd/2(t’),t>-e] ~ Bt) = 0  5

as in [25], it can be proved that Pi-Ei) x  P(t e  x  (e/cl)^A^ 2. Let

tf =  Max l-»iv,(*')l) •

<5 is stochastically dominated by the sum of (d/2)1!2 and a Gaussian variable N ( 0, d) 
(accounting for the behaviour of B  between the times Td/2(i) and Sd/2{t')). More
over, conditionally to the value of 5, the joint distribution of B  at times S2s(t) and

T' = Inf {a: > t ' : \BX - t \  = 25}

is absolutely continuous with respect to the Lebesgue measure on C(0,2S)2, and its 
density is bounded above and below by absolute constants. Lastly, Et and Et> imply 
that

{B[T\t+R] ~  Bt) H A. (B[t_R!s2S(t)] -  B t)  = 0 ,

and (still conditionally on 5) the probability of this event is bounded above by
0 . ( 2 6 ) ^  by Theorem 2.1. But the previous remark on the law of 5 shows that

E(S^a)) ^  C di(A)/2,

hence finally the correct estimate:

P(E‘’Er) i C . ( ^ A)̂  = C ¥ ^ m .

So in the case of exceptional points defined locally, bounds on second moments are not 
difficult to derive (and this "scale separation” construction can be used in various setups). 
In contrast, if the whole path was to influence every single point, interactions would not 
be that easy to classify.

2.3 .3  HausdorfF dimensions

The main result of this section is the following:

1/2

z
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Theorem 2.2 :
Let (£ t)ie[0,i] be a planar Brownian path. If A  is any nice subset of the complex 

plane such that £(A) < 2, then almost surely

dimH{£A(B)) =  dimH(£A(B)) =  2 -  £(A).

In particular, both subsets are a.s. non-empty and dense in the path if £(A) < 2. If 
£(A) > 2, £a (B) = £a {B) = 0  almost surely.

H  The first step in the proof is the statement of a zero-one law:
Lemma 2.1 :

The dimension of the set of all ^-exceptional points (resp. of A- 
strong exceptional points) has an almost sure value. More precisely, 
there exist 8A and SA in [0,2] such that

P(dimH(£A) -  SA) -  P(dim H(£4) =  5A) =  1.

Moreover, the following holds with probability 1 (and the same for £A 
also):

Vs < t dimh (£a (B[sj})) =  5A.

III The proof is the same in both cases; we perform it here for 5A.
Introduce the following random variables in [0,2]:

Z  =  diniff(£,4), Z -  =  dini«-(^i4(-B[o,i/3])), %+ =  dim# (¿’¿(.Bp/a,!])).

The scaling property, associated with the Markov property, shows that these 
three variables have the same law; basic properties of the Hausdorff dimen
sion imply that Z  ^  V Z+\ and locality proves that and Z+ are 
independent.

0 ^  Z -  ^  Z  < 2 with the same mean value: from here follows that 
P(Z_ — Z) = 1. By the same argument P (Z + =  Z) = 1, hence P(Z_ =  
Z+) =  1; Z_ and Z+ being independent, this is only possible if they are 
deterministic: thus giving the existence of 5A as their common almost sure 
value.

Now i f O ^ s c i ^ l  the dimension of £A(B[Sit]) is (almost surely) SA. 
This holds at the same time for all rational s, i; then it suffices to note that 
dimh(£A(Bi)) is increasing in I  to extend the equality to all s < t. jjj

From this lemma follows that as soon as £A has positive dimension it is 
dense in the path.

For convenience we will prove the result in the time set, i.e. we shall 
compute the dimension of TA, it is known that planar Brownian motion dou
bles Hausdorff dimensions (i.e. with probability 1, for any Borel subset I  of 
[0,1], dimh {Bi ) =  2dimH(I) — cf. [22]), whence dim#(£4) =  2dimH(TA). 
Moreover, to avoid problems near 0 and 1 we shall suppose that B  is defined 
for t € R — this will not change TA since the definition is local.

First step: lower bound. Fix R > 0 and let An be the following set:

An — {£ : (B[t-R:t-2~n] ~ Bt) n A(B{t+2~n,t+R] ~ Bt) =  0 }-



For shorter notations, let s = £(A )/2; moreover, assume from now on that 
s € (0,1) (if O  1 there is nothing to prove, and since A ^  0  we have s > 0 
anyway). From the previous estimates for first- and second-moments, we 
obtain

Introduce the (random) measure nn having density 2snt An with respect to 
the Lebesgue measure. It is not hard to derive the following estimates:

£ ( |K | | ) =  [  2snE ( l An(x)) dx x  1, (2.15)

E(U n\\2) =  [ [  22snE ( lAn(x) l ^ y ) )  dxdy  
JJ{ 0,l]a

f l  px+2~n pl—2~n pi 2~sndv
^  c2sn I  dx I  d y +  dx y-

Jo Jx Jo Jx+2~n \y x )

< c2< - ) - + c r '
Jo V  1  -  s  1  -  s )

^  c +  c2(s_1)n +  c2(s~2)n ^  c. (2.16)

Hence, | |/X n || has finite expectation and finite variance, independent of n: 
there exists e > 0 satisfying P(||//„|| > e) > e for all positive n. Con
sequently, it is possible, with positive probability, to extract a subsequence 
(nnk) such that, for all k, ||/inj| ^  By a compactness argument, another 
extraction leads to a converging subsequence, the limit of which satisfies 
IHI ^  e. ¡jf is supported on the intersection of the A n, this intersection is 
non-empty: hence P ( f\A n /  0) > 0.

Introduce then the notion of r-energy of a measure: if v is some mass 
measure supported on a metric space X , let

a f f  du(x) du{y)

r( j JJx* d (x ,yY  '

It is known that if X  supports a mass measure of finite r-energy, then its 
Hausdorff dimension is not less than r (cf. [21]). Let then r e (0,1 — s): a 
calculation analogous to the derivation of (2.16) leads to

E (er(jxn)) ^  c +  c2(r+s_1)n + c2(»-+-2)" ^  c. (2.17)

Performing another subsequence extraction, it is possible to obtain // sup
ported on f]A n and having finite r-energy: hence

Vr < 1 — 5 P(dimff(P |A „) ^  r) > 0.

By definition Ta is the increasing union, for R going to 0, ofP|n Ai(-ft): hence 
for all r < 1—s we have P(dim# (7a) ^  r) > 0. Combining this and the zero- 
one result (Lemma 2.1) then proves that almost surely d im # ^ )  > 1 — s.
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It is easy to see that under the previous conditions, if t e  Tam, then every 
t' e  [i — An2_n,t  +  An2~n] is in An, as soon as r)n > 18An/( l-£ r) . From now 
on we shall assume that this holds, and that r]n -> 0. Putting these estimates 
together, we obtain the following (where I is the Lebesgue measure on R): 
for all interval I,

P (l(An fl I) > Xn2~n\An H 1 ^ 0 ) ^  c.2-nf ^ ,'n) -^ ) ] /2. (2.19)

The Markov inequality then states that

E(i(An n  /))
P(i{An n  /)  > An2~n) ^

Xn2~n

and E (l(A n H i))  x  2~n̂ A^H(I). From this and (2.19) follows that

P(A . n /  #  0) < C 2~ ^ y ] . (2.20)

By continuity of £, for large n we have |£(A,Jn)-£ (A )| < e\ by the hypothesis 
on An, still for large n we have An ^  2~sn¡2. Hence for large n:

P(An n  I  ^  0 ) ^  C 2en 2"n̂ )/2 (2.21)

1

2~n [AVn)-^A*

lM
2-n

'2

Second step: upper bound. This step is usually the easier one, but 
in the present case a complication arises due to the fact that the "non- 
intersection” event we consider at B t depends on the position of Bt — which 
is not the case for instance in the case of cut-points [27], This explains why 
we need one more argument, namely the continuity of f  : A  £(^4).

Fix a nice set A, e > 0, R  > 0 and a sequence (An)„^0 of positive 
numbers, tending slowly to 0 (in the following sense: for all positive rj, 
2~m = 0(Xn) — for instance, take An =  1/n). Now suppose some time t is 
in An. With positive probability, the following happens:

( B[t-\n2~n,t+A„2-n] C B(Bt, \ J  2 n/2)
I \Bt^ - n - B t \Z 2 ~ n/2
|  \Bt+2- n - B t \ > 2 - nV
I (B[t-R,t-2-"] U B[t+2~n,t+R]) n  B(Bt, (1 — e)2-n/2) =  0

(the first three conditions are a consequence of scaling, and the fourth one 
is the start-separation lemma, more precisely the weakened version of it as 
stated in equation (2.12)). Introduce AVn =  {az : a e A ,z  e 8 (1 ,r]n): we 
have

P(B[t-R,t-2-n] — Bt) n A*1™ (B[t+2-njt+R] — Bt) =  0  11 € An)

9-nf(i4’>»)/2
w t __________ 2-nK(^")-eW]/2 (2 ia \
~  2-ni(A)/2 ’
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Cover the interval [0,1] with the I% = [k2 n, (k +  1)2 "], and let X n be the 
number of such intervals intersecting An. Then

l(In)
E {X n) =  Y ] P (Ik  r\TA ^ 0 ) ^ 2 n C 2en2~n̂ A)/2 ^  C 2sn2n[1~t(A)/2]. 

k 2 "

By another application of the Markov inequality,

P{Xn > 2n[1- ^ ) / 2+2£]) ^  C 2~en.

Hence by the Borel-Cantelli theorem, for sufficiently large n, An is covered 
by at most 2n(1~^A)/2+2£] intervals of length 2~n — and this implies that 
dimtf(p| AO ^  1 -  £(^4)/2 +  2e. Letting e tend to 0 then leads to (a.s.) 
dimff(P| AO ^  1 _ £(-4)/2- This is true for all R > 0, hence remains true in 
the limit R  ->■ 0: together with the first step of the proof this gives (a.s.) 
dim(7A) =  1 -  £{A)/2 hence d im (^ ) =  2 -  £(A).

Then, SA is contained in SA and besides it contains every SAn for positive 
ri (with the previous notations): another use of the continuity of £ then gives 
dim#(£4) =  dim#(£4) = 2 -  £(A). j j

As a consequence, we get a second result:
Theorem 2.3 :

If A is any nice subset of the complex plane, then the set of globally A-exceptional 
points, i.e. points Bt satisfying

(B[o,t) — Bt) H A (£ (tii] — Bt) — 0 ,

has Hausdorff dimension 2-£(A ) — and in particular it is a.s. non-empty for £(A) < 2, 
and a.s. empty for £(.A) > 2.

H Again, extend B  to {Bt)tm  defined on the entire real line. The set T\ 
of A-exceptional times up to the scale R  =  1 (as was introduced previously) 
in [0, 1] is exactly the set of globally exceptional points. Therefore, the 
previous proof can be applied directly. The upper bound is immediate: since 
every globally exceptional point is locally exceptional we have d im ^T ^) ^  
dim#(7x) ^  1 -  f  (A)/2 a.s.

The lower bound requires a little more work, indeed we do not have a zero- 
one law for the dimension of TA. It can be seen that in fact Equation (2.17) 
can be refined, the proof being exactly the same, into the following (with 
the same notations as previously):

3 0  0 Vr 6 ( 0 ,1 - » )  Vn > 0 E(£r(/i„)) v,
1 — (r + s)

where C may only depend on A. Hence, with the same constant and for all 
A> 1:

P  ( i r W  ^  1 — (r +  s ))  5  1 “  X

c

B(t, 1]A.

A C 1
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one can then perform the subsequence extraction (cf. proof of Theorem 2.2) 
in a way which ensures that, for all r,

P  > 0 and Er(fi) ^  f  ^  c, (2.22)

with c > 0 and A > 1 independent of r. Moreover, £r (/i) being a non
decreasing function of r (since the set [0,1] is of diameter 1), we finally 
obtain, with positive probability, a mass measure ¡x supported on Ta satisfying

\C
Vr < 1 — s ST(fj) ^  ----- ------- - < oo.

1 -  (r +  s)

Hence, with positive probability, dim ^T^) ^  1 -  s = 1 -  £(A)/2, and 
combining this to the previous paragraph leads to

P  ^dimff(X4) = 1 -  > 0.

It is then possible to conclude using the same method as in [25, pp. 8-9].

2.3 .4  A remark about critical cases

In cases where £(A) =  2, the previous theorem is not sufficient to decide whether A- 
exceptional points exist. We shall see in the next paragraph that £((—oo, 0)) =  £((0, oo)) =
2. In fact these two cases are very different:
Proposition 2.4 :

Almost surely, £a is empty for A — (0, oo) and non-empty (with Hausdorff dimen
sion 0 though) for A  =  (-oo,0).

H  The second point is easier: if t is such that K(i?t) is maximal in the path, 
then 5[0)i] lies inside a half-plane whose border goes through Bt. Since a.s. 
B t is the only point having this real part, this proves that (Bs — B t) j(B s> — Bt) 
is never in (—oo,0), which is precisely what we wanted.

The first point is more problematic. The method used to derive the value 
of £ for a wedge with end-point at the origin (cf. next paragraph) allows to 
prove the following: Let a  and (5 be in (Q,2ir), then the probability that, 
given independent paths B 1 and B 2 starting from the unit circle, there exist 
two wedges of angles a  and /?, and containing respectively B l and B 2 up to 
radius R, decreases as

pR(a,P) «

Hence, as soon as 7r /a  +  7r//? is greater than 2, there is a.s. no point Bt on 
the path such that B ^ t\ lies in a wedge of angle a  and lies in a wedge 
of angle ¡3 (there is no "asymmetric two-sided cone point” of those angles 
on the path).

1 — (r +  s)ß

B

m

££-(■*/a+ir/ß)

2

A C

t, i
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For all a e (0,7r), introduce a.\ = 2w -  a  and a2 as the biggest angle in 
(0,27r] satisfying 7r/a  + 7r/a2 ^  2. Note that a2 > ol\. denote then

«1 +  a2 
/>(<*) =  — 2—

Note that w/a  +  it//3(a) > 2 and ¡5(a) + a > 2tc for all a £ (0,7r). From 
this follows that, almost surely, for all a  6 (0,7r)nQ, there is no asymmetric 
cone point with angles a  and (3(a).

Let now A = (0,00) and suppose there is a point Bt in £A■ That is, there 
exist two half-lines starting from B t whose reunion separates B[0it] from B ^ .  
Then we are in one of two cases:

• Either these half-lines form a straight line, i.e. there is a straight line 
cutting the path. This cannot happen, as recently proved by Bass and 
Burdzy [3] — and the proof is very difficult.

• Or there are disjoint wedges of angles a  € (0,tt) and 27r — a, each 
containing one part of the path. Then, there exists « 0 g Q  such that 
a 0 > a  and f3(a0) > 2tt -  a, and B t is an asymmetric cone point with 
angles a0 and /3(a0). We just saw that such a point cannot exist.

Hence £A = 0 . j j

2 .4  B o u n d s  a n d  c o n je c tu re s  o n  th e  e x p o n e n t  fu n c t io n

2.4.1 Known exact values of £

Proposition 2.5 :

(i). £({1}) =  5/4, hence for all 0 ^  0 and n > 0:

(ii). Letting Wa be a wedge of angle 0 ^  a < 2ir:

47T
a w a) =

ztt — a

in particular £((0,00)) =  £ ( ( -00,0)) =  2;

I I  (¡): The value of £({1}) =  5/4 has recently been derived by Lawler, 
Schramm and Werner [32], and the proof is far beyond the scope of this 
paper. The result for all n is then a straightforward consequence of Propo
sition 2.1, point (iv).

(ii): Suppose A  =  Wa is centered around the positive axis, so that 
A  =  {rel0,r  > 0, \9\ < a/2}; introduce the symmetrical wedges W = 
{rel9,r  > 0, \9 — 7r| < 13/2}. If B l stays in Wv- a/2 and B 2 remains in

£ ({ze2tk*!n, k =  1 ,... , n}) =  5n/4;
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W1'r_a/2< then B l n AB2 =  0: The probability of staying in a wedge of angle 
P until radius R  being strongly approximated by R~n̂  (the exponent is 
obtained through the gambler’s ruin estimate combined with the analyticity 
of the exponential function; the strong approximation is true but in fact not 
needed here, cf. [16]), we get a lower bound;

pR{Wa) ^ c ( R - ^ ~ a^ ) 2 ,

hence £(Wq,) ^ 47r/(27r — a).
Now remark that the condition B l n AB2 =  0  means that the com

plement of the paths contains an “hourglass", i.e. the union of two disjoint 
wedges of angle a/2. So introduce 77 > 0 and a (finite) family ( S i ) i^ N 
of hourglasses with angles a/2  — 77, such that any hourglass with angle a/2  
contains one of the Si. If qR(i) is the probability that the paths are sepa
rated from each other by Si, then p*(Wa) ^ Z) ?«(*)• Noticing that if Pi 
and p\ are the angles of the wedges forming the complement of Si, we obtain 
as previously qR(i) x  t and optimizing this under the constraint
Pi +  Pi — 2it — (a — 2rj) — where the greatest value is for P =  p' — we 
finally get the following estimate:

PR(Wa) ^ CN R -2*/('*+T>-a/2) _

From this follows that ^(Wa) ^ 471-/(2  ̂+  277-0;), and letting 77 go to 0 then 
gives the conclusion — at least for a > 0. But in fact the same method still 
applies for a  ^ 0: simply inflate the complement of the hourglass instead of 
introducing angle a/2  — 77, the fact that the wedges to consider may overlap 
does not change anything to the proof, j j

Remark: If we denote Aa =  {zet9,z  € A, \9\ ^ a / 2} (that is, A “thickened” by an angle 
a), then it can easily be proved that

(2.23)
In — a

where hA is continuous (until the angle aQ ^ 2tt when £(A“) tends to infinity), non
decreasing, and satisfies hA(0) =  2ir£(A)] in the wedge case, h is constant.

2.4 .2 An upper bound for the exponent

From continuity of £ and the exact value £({1}) =  5/4 < 2, one can deduce that there 
are “pivoting points” of any sufficiently small angle on the Brownian path (that is, points 
around which one half of the path can rotate of a small angle without intersecting the 
other half — the associated A  being Ca -  {ei6,0  6 [0,a]}). The following proposition 
gives a (bad but) quantitative bound for such values of a  — without usage of the exact 
value for a  — 0:
Proposition 2.6 :

For all positive a, we have the following upper bound:

R >ßi-ÎT,

£M a)
hA(a)

'ß'i

e
4w

27T — a
1 -

log 2
2
!i2

4n
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H The proof is adapted from [46], where an upper bound for the classical 
disconnection exponent for one path, i.e. £(1,0), was obtained. The method 
is the following: First, estimate the extremal length of a strip bounded by 
Lipschitz functions: then describe a sufficiently large subset of E R, using 
such strips, and use the previous estimate to derive a bound for P (E R). 
Lemma :

Let /  be a continuous, M-Lipschitz function on E, satisfying f(x )  + 
f ( —x) =  2/(0) for all x, and let /3 > 0. Introduce the strip of width /? 
and length 2r around /  as

Bf(r ) =  | x +  iy : M < r, |y -  f (x )I < ^  J ;

let ^  be a planar Brownian path starting at */(0), and denote Aj(r) 
the event that the point x + iy where W  first reaches dBj(r) satisfies 
|x| =  r (i.e. W  exits B by one of the vertical parts of its boundary). 
Then

P (A j(r)) ^  -  exp 
J 7r

- j ( l  + M 2)

¡11 This is an easy consequence of the following estimate, which can be 
found in [1] and is a consequence of Proposition 2.9: If L  is the extremal 
distance between both vertical parts of dB in B, then

L < j ( l  +  M 2);

using this together with the classical estimate for Brownian motion in a strip 
provides the right estimate. ^

For the rest of this proof, we shall consider paths in the logarithmic 
space, denoted by the letter W; the actual path B  is obtained from W  by 
applying the exponential map — conformal invariance of Brownian motion 
then proves that B  is a Brownian path. Let /  be a function such as in the 
lemma: it is dear that if W 1 remains in BJ(r) and W 2 stays in BJ+n(r), 
then B 1 and B 2 do not intersect up to the first time they reach radius er 
or e~r. Together with the fact that P(A1j(r )) =  P(A^+Jr(r)), this leads to 
P(£'ii({l})) ^  (P(A j(\ogR))/2)2, hence using the lemma:

/ W { 1 } ) )  ^  c iT 2<1+M2>. (2.24)

Doing the same with strips of width (3 = it -  a /2  (for which it can be 
seen that B 1 and B 2 can rotate around 0 by an angle at least a/2  in each 
direction) leads to

cexp
A'jr

■(1 + M 2) log R
2it — a

hence, letting /  — 0, a first bound on the exponent:

\ 47T 
£(£<*) ^  —

¿tt — a

(2.25)P 'ER ))>Ca,
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which is precisely what we wanted, j j

Remark: The same proof gives a bound on £(A) if A  is included in a small ball centered 
at 1, as a function of the radius. But since it does not make use of the value of £({1}), 
no modulus of continuity for £ can be obtained this way. Cf. however equation (2.23) for 
another bound, which does provide such a modulus but is not quantitative.

As a consequence of this bound, we obtain the following 
Theorem 2.4 :

For all a < log22/27r, the following holds: With probability 1, the set of local 
pivoting points of angle a  on a planar Brownian path is non-empty and has a positive 
Hausdorff dimension.

Remark: The bound given in the theorem (log22/27r ~  0.076) is certainly not the best 
one; simulations suggest that there are pivoting points of any angle less than 37t/4 ~  2.356
— cf. next subsection for details and figure 2.1 for a picture of a pivot of angle 7t/ 2. In 
particular, the maximal angle is conjectured to be greater than 27r/3, and this seems to 
indicate that a discrete analogue of (local) pivoting points will appear on the exploration 
process of a critical percolation cluster on the triangular lattice [43, 44],

(this is also a direct consequence of Ca c  Wa and the exact value of f(WQ), 
which happens to be precisely the upper bound we just obtained). Note that 
the bound is never less than 2, hence we proved nothing useful yet.

We now want to consider families of strips. Keep /? =  t  — a /2  and fix 
7 > 0; let UN =  {±1}^ and for u e U n  let f u be constructed as follows:

• fu(o) =  o, and for 1 ^  n ^  N, f u(nj) =
k=1

• /  is affine on each [717, (n +  1)7], satisfies f u(x) =  f u(N j)  for all 
x  > N j  and f u(—x) = —f u(x) for all x.

Then for u ^  v! the intersection of and is not connected, henceA n n I'M Juf
and A f ; are disjoint. This leads to

, O rrr
P (E R(Ca )) ^  c ^ 2  exp —j ( x +  (P /2J)2) log J?

ueuN l ^

for all N, where R = eN j. Then using P (E R(Ca)) x  R~^Ca\  noticing that 
all the terms of the sum are equal (there are 2N of them) and applying a 
logarithm:

2tt
^(Ca)N'y + (P/27)2)N y - N  log 2 -  log c. (2.26)

Divide by N y  and let N  go to infinity to obtain

« c“^ T 0 2 - lo g 2 ( S + T  (2'27)

This is true for all 7 > 0; the optimal value is 7 =  7r/?/log2, leading to

Í(C„
47T

2x — a
'loe2)2

47T2
1 -

(2.27)

ß
2
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Figure 2.1: A pivoting point of angle ir/2 
(in gray is the image of one half of the path by a rotation of angle + 7t / 2)

2.4 .3 Conjectured and experimental values

Some exact values of £(A) are known, cf. subsection 2.2. However, heuristic arguments 
seem to indicate that the formula giving the exponent for wedges is close to apply in other 
cases such as notably the “weak pivot” exponent, namely:

for all 9 € [0,7r] — corresponding to a continuous version of Proposition 2.1, point (iv). 
This is confirmed by simulations, at least for 9 = n/2  and 9 =  arctg(3/4) (cf. table 2.1), 
based on the following 
Conjecture

Let A  be a bounded, non-empty subset of Z2\{0}; let B 1 and B 2 be independent 
Brownian paths starting respectively from 0 and 1, and S 1 and S 2 be independent 
standard random walks starting respectively from 0 and (a, 0) with a sufficiently large 
(so as not to make the probability in the formula equal to 0). Then,

P(B[ii31 n  ABf„iTI =  0 ) x  p ( s ^ „  n  A S fa  = 0) ~  T ~ ^ \

H  There is no known direct proof of the existence of a non-intersection 
exponent for random walks, the only way to obtain the desired behaviour 
is coupling with Brownian motion — cf. [28]. The present generalization 
can certainly be obtained in a similar way, note however that walks appear 
that are not standard simple random walks but take steps in {a, ia, -a , - ia}

5tt/2
i l

2tT -e
, e'
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for some a e C f l Z 2; exponents for such walks are the same as for SRW’s 
(cf. [11]), but strong approximation in not yet proved, j j

The most severe restriction is the assumption that A c Z 2 \  {0}, in particular simula
tions cannot (yet) be performed if A  is connected, except for very special cases such as 
wedges (where the exact exponent is known). However homogeneity can sometimes be 
used when A e  <QP (as for A — {5,4 +  3z} which has the same exponent as { l ,e ie} for
6 = arctg(3/4)).

conjectured number computed relative
A  exponent of samples exponent error

{±1} ~  2.5 2.6 109 2.501293 +0.05%
{ 1 ,4  ~  5/3 3.0 108 1.662239 -0.27%

1.668242* +0.09%
{5,4 +  3*} ~  1.392679 1.2 106 1.382311 -0.74%

1.394610* +0.14%
{5,4 + 3i,5i} ~  5/3 1.6107 1.662964 -0.22% 

_____________ I___________ _̂_________  1.665650* [ -0.06%

Table 2.1: Some simulated values of £ 
(100000-step walks — exponents marked with a star 

are obtained after a non-rigorous correction)

2 .5  A p p e n d ix

2.5.1 Sub-additivity

The following proposition is well known and included here only for completeness (note 
however that the bounds are not asymptotic and that the constants are exactly known, 
which is needed to derive continuity of f). A proof can be found e.g. in [12, Lemma 
6.1.11].
Proposition 2.7 (Sub-additivity) :

Let /  : [1, oo) —> (0, oo) be some function such that:

•  /  is bounded and bounded away from 0 on any [0,1], I > 0;

• There exist e, A, c and C  in (0, oo) such that for all t ^  1, ct~A ^  f( t)  ^  Ct~e\

•  There exist 0 ^  c_ ^  c+ ^  oo, at least one of which finite and positive, such 
that

Vi, i' € [1, oo) ^  f(U ') ^  c+f(t)f(tf).

Then, there is a £ > 0 such that f( t)  «  t~S. Moreover, for all t ^  1,

c+H-f ^  f( t)  ^

In particular, if both c_ and c+ are in (0, oo) we get strong approximation: f( t)  x  t~t.

fm

:4 _í.

C -f

c.
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2.5 .2 Extremal distance

Many of the known estimates for exponents (apart from cases where the exact value in 
known — such as the exponent of a cone here, and the intersection exponents in the half
plane in [31]) come from the corresponding estimates for Brownian paths in rectangles, 
using conformal invariance. The introduction of extremal distance generalizes the notion 
of aspect ratio of a rectangle and hence provides a natural parameter in this process. 
Theorem and Definition :

Let Q be an open, bounded, simply connected subset of C, the frontier of which 
(oriented in the usual direct sense) is a Jordan curve j  : [0, 1] -» <9fi; fix four real 
numbers 0 < a < 6 < c < d < l .  Then there exist a unique positive real number L 
and a unique conformal map $  : ->■ (0, L) x (0, 1), with natural extension to f2, 
such that $(7(0)) =  i, $(7(6)) =  0, $(7(0)) =  L and $ (7 (d)) =  L +  i.

L is called extremal distance between d\ =  7([a, b}) and d2 =  7([c, d\) in it is 
denoted d n ^ ,^ ) .

H For the proof of this result, and much more about conformal maps and 
related topics (including the proofs of Propositions 2.8 and 2.9), cf. [1]. j j

Examples: The extremal distance between both sides of length a in an ax  b rectangle is 
6/a. By the analyticity of the logarithm in C \(-o o ,0], iff] =  {peie : r < p <  R,0 < 6 < a} 
with 0 < r < R < 00 and 0 < a < 2n, then the extremal distance in il between both circle 
arcs is a -1 log(i?/r). Finally, if L is the extremal distance in Q between two connected parts 
d\ and d2 of dQ, then the extremal distance between the two components of d fl\ (d\ Ud2) 
is L ~\
Proposition 2.8 :

Let p : Q -» [0,00) be a continuous function, and denote AP(Q.) =  J[fn p2 and for 
any continuous arc 7 in i), Lp(7) =  Ji p(z)\àz\ (this defines the Riemannian metric 
associated with p). Then we have, thus giving a justification to the term extremal 
length, the following characterization of d :̂

L (VI2
dn(ft,% )= S u p  Inf - f f r -  

p r.di â2 Ap(^)

(where 7 : d\ d2 means that 7 is a continuous path in f2 with first and second 
endpoints respectively in d\ and $2).

In many cases, it is sufficient to apply this with a finite family of p’s to obtain a 
fairly good lower bound for dn — usually even p =  1, i.e. taking the Euclidean metric, is 
sufficient. Another estimate for d  ̂ is the following:
Proposition 2.9 :

Let L be a positive real number and f it f 2 : [0, X] ->• ffi. be two continuous functions 
such that for all t in [0,L] we have fi(t) < f 2(t). Introduce Q =  {x + iy : 0 < x < 
L ,fi(x )  < y < f 2(x)}, and let d\ and d2 stand for the vertical components of di2. 
Then:

f a r m -
A d2

fih [t]it)

d t• L

f0
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Moreover, if f i  has a continuous derivative and / 2 =  / i  +  a, then

Lb

2.5.3 Some topological tools

In this section, all sets considered will be assumed non-empty.
Definition :

If A  is a subset of the set C of complex numbers (or of any Banach space), note

Vr(A) =  {x € C : d(:r, 4̂) < r} =  A  +  ¿3(0, r);

if A and B  are two bounded subsets of C, introduce the Hausdorff distance between 
A  and B  as

dH{A, B) =  Inf{r : A  C Vr{B), B  C Vr(A)}.

It is easy to see that d# is nonnegative and satisfies the triangle inequality (namely 
dh (A ,B )  ^  dH{A, C) +  dh (C,B) for any A, B, C); moreover dH(A, B) =  0 if and 
only if A =  B. Hence, d# defines a metric topology on the set of compact subsets 
of C, known as the Hausdorfi topology.

We will need the following standard property about the Hausdorff topology on the 
subsets of some fixed set, describing the compact case:
Proposition 2.10 :

Let K  be a compact subset of C. Then the set VC(K) of all (non-empty) closed 
subsets of K , equipped with the topology induced by the Hausdorff distance, is 
compact.

Remark: It is still true (and the proof is basically the same) that for any complete space 
E  the set VC(E) is complete. Moreover, if E  is locally compact, so is VC(E). However, it 
is generally not bounded, hence not compact.

'$1,02
L
a fíi +  ii

2
oodn
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In t r o d u c t io n

It has been conjectured by theoretical physicists that various lattice models in statistical 
physics (such as percolation, Potts model, Ising, uniform spanning trees), taken at their 
critical point, have a continuous conformally invariant scaling limit when the mesh of the 
lattice tends to 0. Recently, Oded Schramm [43] introduced a family of random processes 
called Stochastic Loewner Evolutions (or SLE ) which are the only possible conformally
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invariant scaling limits of random cluster interfaces (which are very closely related to all 
above-mentioned models).

An SL E  process is defined using the usual Loewner equation, where the driving function 
is a time-changed Brownian motion: More specifically, in the present paper we will be 
mainly concerned with SLE  in the upper-half plane (sometimes called chordal SLE), 
defined by the following PDE:

dt9t^  = gt{z )-y /Z B t’ 9ô  =   ̂ ^

where (B t) is a standard Brownian motion on the real line and /c is a positive parameter. It 
can be shown that this equation defines a family (gt) of conformal mappings from simply 
connected domains (Ht) contained in the upper-half plane, onto EL We shall denote by 
K t the complement of Ht in H: then for all t > 0, K t is a compact subset of H and the 
family (K t) is increasing. For each value k > 0, this defines a random process denoted by 
SL E k (see e.g. [42] for more details on SLE).

In three cases, it has now been proved that SLE K is the scaling limit of a discrete 
model. Smirnov [44] proved that SLE 6 (which is one of the processes we will focus 
on in the present paper) is the scaling limit of critical site percolation interfaces on the 
triangular grid, and Lawler-Schramm-Werner [34] have proved that SLE 2 and SLE 8 are 
the respective scaling limits of planar loop-erased random walks and uniform Peano curves. 
In fact, we will use Smirnov’s result as a key argument in the present paper.

It is natural to study the geometry of SLE K, and in particular, its dependence on k. It 
is now known (see Rohde and Schramm [42] for k ^  8 and Lawler-Schramm-Werner [34] 
for k = 8) that there almost surely exists a continuous curve y : [0, oo) —>• H (called the 
trace of the SLE ) that generates K t, in the following sense: Ht is the infinite component 
of H \  7 ([0,i]). Furthermore (see [42]), 7 is a simple curve when k < 4, and it is a 
space-filling curve when k >8.

It is possible, for each x e H, to evaluate the asymptotics when e -» 0 of the probability 
that 7 intersects the disk of radius e around x. When k < 8, this probability decays like 
ea for some a =  a(n) > 0. This (loosely speaking) shows that the expected number of 
balls of radius e needed to cover 7 [0, 1] (say) is of the order of e~2+a, and implies that 
the Hausdorff dimension of 7 is not larger than 2 — a. Rohde and Schramm [42] used 
this strategy to show that almost surely the Hausdorff dimension of the SL E K trace is not 
larger than 1 +  /c/8  when k < 8 .

This exponent a  and various other exponents describing exceptional subsets of 7 are 
closely related to critical exponents that describe the behaviour near the critical point of 
some functionals of the related statistical physics model. Actually, in the physics litera
ture, the derivation of the exponent is often announced in terms of (almost sure) fractal 
dimension, thereby omitting to prove the lower bound on the dimension. Indeed, it may 
a priori be the case that the value e~2+a is due to exceptional realizations of SLE K with 
exceptionally many visited balls of radius e, while "typical” realizations of SLE K meet much 
less disks. One usual way to exclude such a possibility and to prove that 2 —a  corresponds 
to the almost sure dimension of a random fractal is to estimate second-moments, i.e. 
given two balls of radius e, to estimate the probability that the SL E  trace intersects both 
of them.
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It is conjectured that for all k e [0, 8], the Hausdorff dimension of the trace of SL E K is 
indeed almost surely 1 +  k/8. Up to the present paper, this is known to hold for k = 8/3 
for reasons that will be described below. We prove that it is the case for k =  6:
Theorem 3.1 :

| Almost surely, the dimension of the SL E q trace is 7/4.

Note that the discrete analog of this Theorem in terms of percolation is an open 
problem, while it is known that the expected number of steps of a discrete exploration 
process is N 7/4 (cf. [45] for further reference).

Another natural object is the boundary of an SLE , namely dKt DM. For k ^  4, since
7 is a simple curve, the boundary of the S L E  is the S L E  itself; for k > 4, it is a strict 
subset of the trace, and its dimension is conjectured to have dimension 1 +  2 /k. Again, 
the first moment estimate is known to hold for all k , but the only value of k > 4 for which 
the dimension is known rigorously is k = 6;
Theorem 3.2 (Lawler-Schramm-Werner [30]) :

| Almost surely, the dimension of the SL E q boundary is 4/3.

It is known that SL E 6 is closely related to planar Brownian motion, so that this theorem 
is equivalent to the same statement for the exterior boundary of a Brownian path. It was 
first conjectured by Mandelbrot that the fractal dimension of the boundary should be 4/3; 
the first mathematical proof is due to Lawler, Schramm and Werner (cf. [30] for a review) 
and goes as follows.

First, note that to each point of the Brownian path, two independent Brownian motions 
can be associated (the past and the future), and that this point is on the boundary of the 
complete path iff the union of these two processes does not disconnect it from infinity. 
This remark provides a relation between the dimension of the boundary and the non
disconnection exponent for two paths. It is then necessary to compute the value of this 
exponent, and this requires a long and very technical proof. In particular, it uses the 
fact that the Brownian intersection exponents are analytic [33] and sharp estimates for 
the probabilities of non-disconnection events (these estimates, up to the value of the 
exponents, were obtained earlier by Lawler in a series of clever and technical papers).

It is conjectured (see [42] for a discussion) that the boundary of SLE K, k > 4 is 
very similar to the trace of SLE i6/K, and a precise statement of this duality is known 
for k — 6 [29]: this and Theorem 3.2 provide the dimension of SLE 8/3, namely: With 
probability 1, the dimension of the SLE s/3 trace is 4/3.

In the present paper, we will reprove, without using the relation to planar Brownian 
motion, that the dimension of the outer frontier of SL E & is almost surely 4/3. Combin
ing this with the previously mentioned universality arguments, this implies also that the 
dimension of the SL E 8/s trace and that of the outer frontier of planar Brownian motion 
are almost surely 4/3 and gives a shorter proof of these results. We should also mention 
here that SLE 8/z is the natural candidate for the scaling limit of self-avoiding walks [35] 
and therefore also an interesting object.

Theorem 3.1 can be related to the dimension of pioneer points on a Brownian path 
(i.e. points Bt that are on the boundary at time t ): It is known [32] that the set of pioneer 
points has dimension 7/4, the same as the SL E 6 trace, and this is not surprising since 
they play similar roles. However, it can be proved that they are different (note for instance 
that Brownian motion can enter its past hull and the SL E  trace cannot).
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The method described here cannot be extended directly to other values of k. Indeed, 
two properties that are specific to SL E 6 are used, namely the chordal/radial equivalence 
(in the computation of the hitting probabilities) and the locality property (in the derivation 
of second moments). It should be possible to obtain second moments using only the 
Markov property (at the cost of a more technical proof); however, the derivation of the 
hitting probabilities will need a different approach.

It is also possible to compute the dimension of exceptional time-sets. This is in fact 
easier than for subsets of the upper-half plane, since the distortion of space due to the 
past does not influence the probability estimates — and this makes it possible to compute 
dimensions for every k ^  0. In the last section we compute the dimension of the set of 
boundary times and that of the set of cut-times (i.e. times t such that 7 (t) is, respectively, 
a boundary point or a cut-point of K ). In particular, we prove the following 
Theorem 3.3 :

I Let (K t) be an SLE K for k < 8. Then, almost surely, K\ has cut-points.
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3 .1  In g re d ie n ts

We provide in this section several estimates and tools which will be needed in the subse
quent proofs, but are also (maybe) of more general interest.

3.1.1 Hausdorff dimension of random sets

We will use the following result to derive the value of Hausdorff dimensions from the values 
of exponents. It is stated here in dimension d > 1, but we will use it only for d = 1 (for 
time sets) or d — 2 (for subsets of the complex plane).

Suppose that A denotes the Lebesgue measure in [0, l]d. Let (Ce)e>o be a family of 
random Borelian subsets of the cube [0, l]di Assume that for e < e' we have Ce c  Ce>, 
and let C  =  Define the following conditions (where /  x  g means that there exist
positive numbers c_ and c+ such that c_g ^  ^  c+g, and where the constants do not 
depend on s, x  nor y ):

1. For all x e  [0, l]rf,
P{x e Ce) x  es ;

2. There exists c > 0 such that for all x € [0, l]d and s,

P(X(CS n  B (x,s)) > csd\x € Cs) ^  c > 0 ;

3. There exists 0  0 such that for all x, y e [0, l]d and e,

P { { x ,y } c .C e) ^ c e 2a\ x - y \ - s.

Ce-
f
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Proposition 3.1 :

(i). If conditions 1. and 2 . hold, then a.s. dimii(C') ^  d — s ;

(ii). If conditions 1. and 3. hold, then with positive probability dimff(C') ^  d -  s.

H A detailed proof of this Proposition can be found in [5] (Theorem 2). 
The outline goes as follows. First, if conditions 1. and 2 . hold, they provide 
an upper bound on the expected number of balls of radius e needed to cover 
Cs, hence C. By Borel-Cantelli, this gives an upper bound on the Minkowski 
dimension of C, which is valid with probability 1.

To derive a lower bound one introduces the random measures /x6 having 
density £~stc e with respect to the Lebesgue measure in [0, l]d. If 1. and
3. hold, with positive probability it is possible to extract a sub-sequence 
fj,ek converging to some measure ¡x supported on C, and to prove that with 
positive probability n is a Frostman measure with dimension d -  s, which 
implies that the Hausdorff dimension of the support of /1 is at least d — s . j j

Each time we will derive almost sure Hausdorff dimension, we will in fact check these 
three conditions and use a zero-one law to conclude.

Remark: A similar proposition can be found in [27], stated in a discrete setup in which 
condition 2 . does not appear. Indeed, in most cases, this condition is a direct consequence 
of condition 1. and the definition of Cs (for instance, if Cs is a union of balls of radius e).

3.1 .2 An estimate for diffusions

We will need estimates for stochastic flows in an interval, that we now state and prove. 
For background on this topic cf. for instance [2].

Let (X t) be the diffusion process on the interval I  = [—1,1] defined by the following 
stochastic differential equation:

dX t = adBt + f ( X t)dt, (3.2)

where a > 0 and /  is a given smooth function satisfying / '  <  —a < 0 and:

-  / ( - I  + * ) ~  / ( I  - x )  ~  ~CQ.x~ \  (3.3)
/ ' ( - I  +  x) ~  / ' ( l  -  x) ~  - C x. x - \  (3.4)

-  / " ( - I  +  x) ~  / " ( l  -  x) ~  - C 2.x~z (3.5)

as x -» 0+ for some positive constants C\, C2, C3.
Let (gt) be the stochastic flow associated to this stochastic differential equation, i.e. 

(<?t)î o is the family of random functions from I  to itself such that gt(x) is the value at 
time t of the solution of (3.2) starting from x at t = 0. Note that X  is absorbed on the 
points 1 and - 1. This implies that, with probability 1, for all t > 0, there is an interval 
It C I  such that

9t{I) =  {—1> 1} U It-
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We want to estimate the length lt of I t. Consider the following family of partial 
differential equations, indexed by b ^  0:

Assume that for each b > 0, (Eb) has a positive solution hb(t,x) satisfying

It is then possible, using the Feynman-Kac formula (following exactly [32]), to prove that 
if b > 0,

Note that this type of result does not seem to be standard in the literature on diffusions. 
The natural way to obtain estimates on the length of I t is to use Jensen's inequality, and 
depending on the value of b it can give a lower bound (if b < 1) or an upper bound (if b > 1) 
of the right form. Another way to obtain a lower bound is given in [32], and consists in 
computing the length of the image of a small interval around 0, thus giving a lower bound 
in terms of #'(0) which is valid for all b > 0. Hence, all that needs to be done to complete 
the proof is to derive the upper bound in the case b < 1.

H The idea is to write the length lt as the integral of g't over I  and to obtain 
an upper bound on g't(x). Two cases contribute to the estimate:

• If gs(x) stays away from the boundary for s < t, then g"(x) is bounded 
by above and it will be possible to compare g[(x) to g't(0) and use (3.7);

• If gs(x) comes close to the boundary for s < t, then g't(x) becomes 
very small and does not contribute to lt anymore.

The definition of g implies that for all x e I,

g't(x) = exp f  f ( g s(x)) ds , (3.8)
Jo

and differentiating this with respect to x  leads to

= Jq 9's(x ) f(9 s (x ))  ds. (3.9)

2
(.Eb) hit, X) =  y  x) + f(x)h'(t, x) -  bf'(h)h(t, x).

h jt .x )  x  [(1 + i ) ( l (3.6)

£ (« (* ))* ) x e - ^ ( l + I ) ( l -*)]•<« (3.7)

(where as usual we let g't(x) — 0 if the path starting from x is absorbed by the boundary 
before time t). For all x, let

tx =  Inf{i : gt (x) E {-1,1}} =  Inf{i : g't(x) = 0}.

Lemma 3.1 :
In the previous setup,

Vf> > 0 E(l\ !„,>,) x  c-«*” .

g” (x)

g'(x)

— X] e-m t

(t,Xh"
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Moreover, since / '  is bounded by —a < 0, Equation (3.8) also proves that 
almost surely, for all t > 0 and for all x e I,

g't{x) ^  e~at (3.10)

and in particular lt ^  2e~oi.
Let a  > 0 and Js =  [—l+ ae~ as/4, 1—ae~aal4}: If for all s > 0, gs(x) £ Js, 

then condition (3.5) leads to \f"(gs(x))\ < C2a~ze3as/4, hence

4 t t I  < [  C2e~ase3as/4 ds ^  \C 2a xa~3.
9t\x) I Jo

Assume that for all s € [0, i], <7S(0) e Js (so that the previous estimate 
applies for x = 0). For all x  e  (—1,0) such that rx > t, write

[  f '{ 9»{x))ds= [  f ( g s(x )) lga{x)eJsds+  [  f'{gs(x )) lgs{xHJsds.
Jo Jo Jo

In the first integral, integrating / "  over [&,(£), #s(0)] (which is a subset of 
Js) and using (3.5) shows that

| f ( g s(x)) -  f ( g s( 0))| <  C e-as(ae-as'4) - 3 = C c r V “5/4. (3.11)

In the second one, since gs is monotone, gs(x) can only be in [ - 1 ,- 1  +  
ae~as!% on which / '  is negative and increasing. Hence, f{9s(x)) ^  / '( - 1  + 
ae~a3/4), and integrating f"  between -1  +  ae_as 4̂ and gs(0) as previously 
leads to

| / ' ( - i  +  ae~as/4) -  f ( g s(0))| ^ C o t V “*/4.

In both cases we finally obtain

/ U M )  « +  Ce—  (ae- “ /“ ) -3

and integrating over s e  [0, i] then proves that

g't (x) ^  exp Ca~3 + f  f '(g s(0))ds ^  Kg't (0).
Jo

A similar computation shows that this also holds for x  € (0,1). Integrating 
this inequality leads to lt ^  2Kg't(0), hence to the desired conclusion — on 
the event {Vs G [0, t],#s(0) € Js}.

The very same argument can be applied on the interval [ti,t2], starting 
from gtl(0) instead of 0 (but the estimate remains valid). It shows that 
conditionally to the fact that ^s(0) stays in Js for all s in this interval, we 
have

< K ltl (gb o (0)) =  K lt, = | | | .  (3.12)It, 9
9'tl

f ( g . m

l) \ 9 n mti

>0;e-as/4[—1+ae
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Besides, the Markov property at time t x shows that the quotient g't2(0) /  g'tl(0) 
is independent of T tx given the value of ^ (0 ) .  Moreover, choosing a  large 
enough can make K  arbitrarily close to 1.

We now have to consider the “bad” case where <?s(0) exits Js (and this will 
happen in particular for small values of s, for which Js can even be empty if a  
is large enough). For this, we shall count the number of times it does it and 
use the previous estimate (3.12) between those times. More precisely, let 
tn = logn. Scaling shows that if #s(0) is outside Js for some s0 e [in,in+i]> 
then with positive probability (independent of n and a) it stays outside of 
[-1  +  a 1/2e-aso/8, 1 — o;1/2e- aso/8] longer than t ri+i — tn. If this is the case, 
using the condition (3.4) together with (3.10), we obtain ltn+2 ^  c.ltn with 
positive probability, for some constant c < 1 (still independent of a). Hence, 
since we know a priori that lb is decreasing (e.g. by (3.10)), its expected 
value also decreases by a factor c0 < 1.

Now let ri! < . . .  < riNt be the integers n such that <js(0) exits Js in 
[in,in+i]> and satisfying tn ^  t. At each tn the expectation of lb decreases 
by a factor c0; and between two such times the previous method can be 
applied, providing a factor K.e~û in'‘+i~tn*+2\  Putting all the slices together, 
we obtain

E(l\\Nu n u . . .  ,n Nt) ^  ( c . K ^ e ^ - ^  

where Lt is the total length of the "bad intervals”, i.e.

Nt
Lt =  ^ (̂¿nfc+2 ~~ tnk)- 

k= 1

But the sequence (in+i -  tn) is decreasing: Hence Lt ^  t2Nt, whatever the 
exact values of the nk's. Hence for all N  we obtain

E(lbt \Nt = N) ^  N 0(coK )Ne~,/(b)t.

Since c0 < 1 it is now possible to choose a  so as to ensure that c0K  < 1, in 
which case we can sum the previous estimate over all possible values of N  
to finally obtain the correct upper bound on E (lb).

Lemma 3.2 :
In the same setup, the probability that a given point x  survives up to time t > 0 is

P (r* > t) =  P(g't(x) > 0) x

II We know that E(ho(0,gt(x))) ~  h0(t,x) x  e"A(0,i. On the other hand, 
since h0 is bounded, we have E(ho(0,gt(x))) ^  ||/io(0, OHoo-P^ > t)\ hence

ce-A(°)i 
p (tx > t ) ^  Trr ' /n mi •

IÎ O •) 11 oo

Conversely, consider the distribution of gx(x). It is easy to see that, except 
for Dirac masses at -1  and 1, it has a bounded density px with respect

e-A(0)¿
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to the Lebesgue measure. Since h is positive, we know that — A(0) is the 
largest eigenvalue of the generator of the diffusion, and that it is simple; 
hence, ||pt ||2 < ||pi||2ex p (-(i-l)A (0 )). It is then a direct application of the 
Cauchy-Schwarz inequality to see that ||pt ||i ^  C . e and since we have 
llPtlli =  P {tx > t) this completes the proof of the Lemma. II

3 .2  D im e n s io n  o f  th e  t r a c e  o f  S L E q

3.2 .1 Construction of the trace

Let K  be a chordal SL E  in the upper-half plane and C be the intersection of its trace 
with the square [—1,1] x [1,3]. In order to apply Proposition 3.1, introduce

Cs = {z € [—1,1] x [1,3] : d(z, C) ^  e}.

Since C  is a compact set, we have C — f]C e. Moreover, we make the following remark: 
Let z be some point in [-1,1] x [1,3], e > 0, and assume that z is at distance greater than 
e from the boundary of the square. Let TB(2)£) be the hitting time defined as usual as

Tb(z,e) =  In f{ t: K t D B(z,e) ^  0}.

Then, we have the following equivalence:

z e C £ <=> B(z,e) <£ K Tb(ze). (3.13)

We call the second part of the equivalence non-disconnection: Indeed, the condition is 
equivalent to the fact that K Tb(z c) does not disconnect 2 from 00. Note the similarity with 
the definition of Brownian pioneer points [27].

3.2 .2  The (non-)disconnection exponent

The proofs in this section rely on the equivalence between chordal and radial S L E  for 
k = 6 that have been proved in [32], More precisely, there are two versions of SL E  in the 
unit disk. The first one (chordal SL E  in the disk) is obtained by mapping chordal SL E  in 
the upper-half plane to the disk by a conformal map — so that it grows toward a point on 
the unit circle. The second version is called radial SLE , and it corresponds to the case 
where K  grows toward 0 instead of a point on the boundary. It is defined by the following 
PDE (if (gt) is the corresponding family of conformal maps):

« - / x ~ / s9t(z)+ P t

where (3t = ei'^it is a time-scaled Brownian motion on the unit circle.
Chordal/radial equivalence is stated as follows. Let (K t) be a chordal SLE G in the unit 

disk, starting at 1 and aiming at -1 , and (Kt) be a radial SLE 6 in the unit disk, starting 
from 1 and aiming at 0. Let T  (resp. T) be the first time when K  (resp. K ) separates -1  
from 0. Then, K T- and K f _ have the same law, and so do (ATiAr) t>0 and (KtAf ) t>0 up

dt 9t{z) =  9t(z)
9t(z) ßt
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to a (random) time change. For complete references about this, cf. [32]. Note that this 
is specific to the case k =  6.
Proposition 3.2 :

Let (K t) be a chordal SLE 6 in the unit disk, starting from 1 and growing toward 
- 1, and Tr the first time when K t hits the ball with radius r centered at 0. Then 
KTt disconnects this disk from the unit circle if and only if ¿3(0, r ) c  K Tt, and as r 
tends to 0,

H This estimate is similar to theorem 3.1 in [32], of which it is the natural 
counterpart in the case b = 0. Let K ' be a radial SLE 6 in the unit disk, aim
ing at 0, and T'r be the first time when it reaches B(0,r). The chordal/radial 
equivalence shows that p(r) is equal to the probability that K'T, does not 
disconnect ¿3(0, r) from -1  — i.e. the probability that -1  ^ K'Ty

Let Wt — eiŝ Bi be the (time-scaled) Brownian motion on dU driving 
(K't) (where (B t) is a standard Brownian motion on R), and Yt be the con
tinuous determination of the argument of g t( - l) /W t starting at 7r. Yt is well 
defined as long as K ' does not reach —1. Loewner’s differential equation 
and Ito’s formula show that

dYt = V 6dB t + cotg(Yt/2 )d t,

i.e. (It) is a diffusion process with diffusion \/6  and drift cotg(-/2), absorbed 
by {0,27t} when -1  is absorbed by K't . Straightforward calculations prove 
that f t (x) =  e_t/4(sin?//2)1/3 satisfies dtft =  L ft =  —\ft .  we can now apply 
Lemma 3.2 and obtain

P i - l ^ ^ x e - 1/4. (3.14)

But Kobe’s distortion theorem [41] states that, if r(t) =  d(0, K t), then

X  < < e_i’

which, combined with estimate (3.14), proves the Proposition (details of the 
last step are the same as in [32]). j j

Corollary 3.1 :
Fix t] > 0, and let B — B(z,r) be some disk contained in U, where \z\ < 1 — 2t] 

and r < 77; let (K t) be a chordal SLE6 in the unit disk, starting from 1 and aiming at 
- 1. If Ts denotes the first time when K t reaches B, then the probability p(B) that 
K Tb does not disconnect B from -1  satisfies

p(B) x  r 1' 4,

where the implicit constants depend only on rj.

H There exists exactly one Mobius transform $  : U —> U mapping 1 to 
itself and B to a disk centered at 0. The radius of $(5) is then

(1 +  r2 -  \z\2) -  J {1  +  r 2 -  |^|2)2 -  4r2 
p(z,r) = ---------------------- ^ --------- r.

p(r) 1/4.=  P(B(0,r) t K Tr) x  r

r{t)
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<&{K) is then a chordal S L E  in the disk starting from 1 and aiming at $ (-1 ). 
Moreover, |$ (—1) -  1[ is bounded away from 0 by a constant. The proof of 
Proposition 3.2 can then be adapted (only changing the position of the end 
point) to show that

p(B) x  p(p(z, r)) x  p(r) x  r_1/4,

with constants depending only on 77. j j

It is then easy, by mapping the disk to the upper half-plane and using (3.13), to turn 
this corollary into the first condition of Proposition 3.1, i.e.:

M ze [-1,1] X [1,3] P (z e Ce) x  e1/4. (3.15)

It then follows from the definition of Ce that condition 2. holds: If z e  Cs, let z' e C  such 
that |z -  z'\ =  s (which exists by a compactness argument), then the disk with diameter 
[zz'\ is contained in B(z ,£) n  Ce and it has area 7r£2/ 4.

3.2.3 Percolation and second moments

We now turn our attention to the derivation of second moments for the hitting probability 
of disks by the SLE$ trace, namely condition 3. in Proposition 3.1. Again we will make 
strong use of the fact that we are in the case k =  6, and in fact the decay of correlations 
we obtain is a consequence of the locality property of SL E &. It has been proved [44, 45] 
that the exploration process of critical percolation on the triangular lattice converges to 
the SLE e trace: in particular, consider critical percolation on a discretization of the upper- 
half plane with mesh <5 > 0 and the usual boundary conditions (i.e. wired on [0,+00) and 
free on (—cxd, 0)): Then the probability that the discrete exploration process 7g hits the 
ball B(i, e) satisfies:

P ( 7j n 6 ( i , ^ 0 ) — > P(i € Ce) x  e1//4. (3.16)
6—>Q

But the fact that the discrete exploration process touches this disk is equivalent to the 
existence of both a closed path connecting the disk to [0, + 00) and an open path connecting 
the disk to ( - 00,0). Applying the results in [45], this leads to the following 
Corollary 3.2 :

Let As be the annulus centered at 0, with radii e and 1. For all 5 > 0, consider 
critical site-percolation on the intersection of Ae with the triangular lattice of mesh 
8. Let p(£,S) be the probability that C(0,e) is connected to C(0, 1) both by a path 
of open vertices and a path of closed vertices in Ae. Then, as S tends to 0, p(e, <5) 
converges to some p(£) satisfying

p(£) X £X/4.

Note that this says nothing about the speed of convergence, and hence does not provide 
useful estimates for the probability of the discrete event itself— but it is sufficient for our 
purpose here.

Now fix 2, z' € [-1,1] x [1,3] and s < \z — z'\/2. Again, the probability that the SLE 6 
trace touches both B (z,e ) and B(z',e) can be written as the limit, as 6 goes to 0, of the 
corresponding probability for critical site-percolation on the triangular lattice with mesh S. 
But this implies the following:
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• There exist a path of open vertices and a path of closed vertices, both connecting
C(z,s) to C(z, |z — z ' |/2) inside B(z, \z — z ' |/2);

• There exist a path of open vertices and a path of closed vertices, both connecting
C(z',e) to C(z', \z — z ' |/2) inside B (z', \z — z ' |/2);

• There exist a path of open vertices and a path of closed vertices, both connecting 
C((z +  z')/2, \z — z’|) to the real axis outside B((z + z')/2, jz -  z'\).

Those three events are independent, since they describe the behaviour of pairwise disjoint 
sets of vertices; besides, the probability of each of them can be estimated using Corol
lary 3.2 and converges, as 8 -» 0 and up to universal multiplicative constants, respectively 
to (e/d)1/4, (e/rf)1/4 and d1/4, with d =  \z -  z'\. Hence, letting S go to 0, we obtain the 
following estimate:

/  p \  V2 p
| z - z ' | 1/4 =  C p — (3 .17)

which is exactly condition 3. in Proposition 3.1 with s =  1/4, as we wanted.

3.2 .4  Conclusion

It is now possible to apply Proposition 3.1 with s =  1/4: We obtain

P(dimH{C) ^  7/4) =  1, P(dimH(C') =  7/4) > 0.

Now let Hoo be the complete trace of K . Since C c  we obtain the same results for 
Woo- Theorem 3.1 is then a consequence of the following 
Lemma 3.3 (0-1 law for the trace) :

For all d e  [0,2], we have

Ptdim H^oo) = d )e  {0,1}.

H For all n e  Z, let Dn =  d i m F o r  all n, we then have Dn+i ^  Dn 
(because (Ht) is increasing) and besides Dn and Dn+1 have the same law (by 
the scaling property). Hence, almost surely, for all m, n, we have Dn — Dm. 
Taking this to the limit gives P(dimH('H00) =  Dn) — 1, hence the random 
variable dimH^oo) is ^„-measurable for all n. Hence it is .^-m easurable, 
and we know by Blumenthal’s zero-one law that this a-field is trivial. II

3 .3  D im e n s io n  o f  th e  b o u n d a ry  o f  S L E q

In this section we adapt the previous proof to compute the Hausdorff dimension of the 
boundary of K  at some fixed time.

z — z'
e ) £ C .C C -z'P (iz .

'Hoa,
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3.3:1 The escape probability 

Proposition 3.3 :
Let (K 't) be an SLE$ in the half-plane, and T'R be the first time it reaches radius 

R. Then, as R  goes to infinity,

P(i t  % )  x  R -U \

Note that the corresponding result for P( 1 ^ K'T, ) has been derived in [32],

H We shall suppose that K ' starts at 3 instead of 0 — it is easy to see 
that this only changes the estimates up to a fixed constant. For each 0 
such that 0 ^ K t, the intersection of C(0,2) with Ht is an at most countable 
union of open arcs, one of which covers the angles from some at e (0, n) 
up to 7r (the “leftmost arc”). Introduce the following stopping times (where 
S0 — T0 = 0), for all n > 0:

Sn = Inf{ t > Tn_! : at > a ^ - i} ,

Tn -  Inf{ t > S n : K ’n  C(0,3) ^  K'Sn n C(0,3) }.

(Loosely speaking, Sn is the first time after Tn_i when the process "touches” 
the circle of radius 2 and Tn the first time after Sn when it returns to the 
circle of radius 3.) Moreover, let T =  Inf{£ : K't nC(0, R) ^  0}. Then, 
almost surely, the integer N  =  Sup{n : Tn < T}  is finite and we have

0 =  T0 < S\ < Ti < . . .  < SN < Tjv < T  < oo

(i.e. K ' crosses the annulus between radii 2 and 3 only finitely many times 
before reaching radius R). In the Brownian case, N  would be exponential 
with parameter log(3/2)/log(i?/2). Let E R and E'R be defined as

Er =  {%i K t } E'r 4  {[o,i] n K T =  0}.

We have to estimate P (E R)\ from Theorem 3.1 in [31], P(E'R) x  R~l!z, 
and we have P (E R) ^  P(E'R).

We shall decompose ER according to the value of N: we can write 
P (E r ) =  YlnLoP(ER’N  = n)• F°r fixed n, make the following remark: 
if there is not disconnection before T, then there is not disconnection for 
t inside any for all k ^  n. Applying the strong Markov property
at time Sk and the locality property of SLE 6, we see that the conditional 
probability of non-disconnexion between [,Sk,Tk] is a decreasing function of 
the extremal length between C(0, R) and the boundary component spanning 
from 0 to 2e“*5*, in the domain Hsk H B(0, R).

But Beurling’s inequality shows that, as soon as R  ^  4 (say), this ex
tremal length is bounded below by an absolute constant (namely log(2)/7r 
but this is unimportant), for which the disconnexion probability is strictly 
positive (because k > 4). Thus, for all k, the probability that there is no 
disconnection between times Sk and Tk is bounded by some A < 1, indepen
dent of K Th. x and R\ moreover, for the last part of the path, the probability

'Sk,Tk
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that no disconnection occurs after time TN is bounded by P (E R, N  = 0) (by 
the strong Markov property at time Tjv and the Beurling inequality). Hence,

GO 1 1
P(Er ) ^  ] T  AkP (E R, N  = 0) < N  =  °) ^  T ^ X P {E r)-

k=0

Written more synthetically, this becomes

P (E r) x P (E r ,N  = 0),

i.e. knowing that K ' does not disconnect i there is a positive probability that 
it does not even touch the disk of radius 2. The very same proof applied this 
time to E' leads to P(ER) x  P (E R, N  — 0).

Now, it is easy to see that {ER,N  = 0} =  {ER,N  =  0}, meaning that 
if K't  does not intersect B(0,2), the conditions i £ KT and [0, i] D K T — 0  
are equivalent. Hence P(ER,N  = 0) — P (E R,N  = 0), from which we can 
conclude that

P(E'r ) x  P (E r ) x  R -W .  //

3.3.2 Exponent for b =  1 /3  

Proposition 3.4 :
Let (K t) be a chordal SLE 6 in the unit disk, starting from 1 and growing toward 

—1, and Tr the first time when K t hits the ball with radius r centered at 0. Let LTr 
be 7T times the extremal distance in U \  K Tr between C(0,r) and dV. Then, as r 
tends to 0,

E(e~LT̂ z) x  r 2/3.

H  As previously, let K ' be a radial SL E 6 in U, starting from 1 and aimed 
at 0. Then, since all the involved events satisfy non-disconnection between 
C(0, r) and —1 (LTr =  oo iff there is disconnection), we have:

q(r) = E  (e-£^ / 3) =  E  {e~L̂  1Ltt<oq) =  E  ( e ^ /3 l - i ^ )  • (3.18)

We shall estimate the third term, again following the steps of the proof of 
Theorem 3.1 in [32]. From now on, fix 6 =  1/3 and v = u(k, b) = 2/3: since 
b < 1, we need a separate proof here. Let lt be the Euclidean length of the 
arc </i(dU\ K[). The only place in [32] where 6 ^ 1  was needed was in the 
derivation of

E(lt) ^  exp (—vt) ■ (3.19)

But this is exactly what Lemma 3.1 shows, after suitable rescaling. II

p (e r , n = o:
1 -  A
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3.3 .3 Construction of the boundary

Again we describe the studied set as the decreasing intersection of a family B s of subsets 
of the plane. Here, let

B ^ i z t K r - . d & K j K e } .

In order for z to be in Bs the following must happen: First there is some point in % at a 
distance less than e from z; letting T (z,e) — Inf{i : d (z ,K t) < e}, and introducing the 
extremal distance L(z,e) between B (z,e ) and dV  in HJ\i£r(*,e). this condition is equivalent 
to

L(z,e) < oo.

Then, the S L E  after T(z,e) and up to time 1 must not disconnect z  from “infinity" (i.e. 
from <9U), and conditionally to -Kr(z,e) this happens with probability of order

e~L(z,e)/Z'

Proposition 3.4 then states that P (z  € Bs) x  e2/3. Second moments can be obtained 
in the same fashion as for the trace; in this case, the relevant estimate (describing in 
which conditions a disk intersects the boundary of the discrete exploration process) is the 
following: First, two crossings of different colors must ensure that the exploration process 
touches the disk; then a third path, disjoint of the first two, will prevent it from closing a 
loop around it. Hence the following consequence of Proposition 3.4:
Corollary 3.3 :

Let Ae be the annulus centered at 0, with radii s and 1. For all 8 > 0, consider 
critical site-percolation on the intersection of Ae with the triangular lattice of mesh 
5. Let p(e, 8) be the probability that C(0,e) is connected to C(0, 1) both by a path 
of open vertices and two disjoint paths of closed vertices in Ae. Then, as 8 tends to
0, p(s, 8) converges to some p(e) satisfying

p(e) x  e2̂ 3.

The rest of the construction is the same, and we obtain sufficient estimates to apply 
Proposition 3.1, this time with s =  2/3. We obtain

P(dimff(dK i) ^  ^) =  1, Pidim ffidKi) = ^) > 0,

and once more we need a zero-one law:
Lemma 3.4 (0—1 law for the boundary) :

For all d G [0, 2], we have

P(dimH(dKl) = d ) e { 0 , l } .

H  Let Dt = dimH(dKt). As previously in the case of the trace, scaling 
shows that the law of Dt does not depend on t > 0. However here (dK t) 
is not increasing anymore, so we need another argument. Let t, t1 > 0 and 
consider the boundary of K t+t>. It has two parts, namely the “new” part 
d\ =  dKt+t' \ K t, and the “old” part d2 =  dKt+t> n  K t c  dK t. It is clear that

Dt+V =  dimff(di) V dimH(d2),
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hence in particular dim#(3i) ^  Dt+t>. Besides, conformal mapping shows 
that dimtf(<9i) has the same law as Dt>, hence the same law as Dt+t<. Hence, 
with probability 1, Dt+t> = dimff(d2).

Moreover, conformal mapping also shows that dim#(d2) is independent 
of T f  This proves that for all t, if > 0 the dimension of dKt+t> is independent 
of T f  ^ is then a direct application of Blumenthal’s zero-one law that Dt 
has an almost sure value, j j

This concludes the proof of Theorem 3.1.

3.3 .4  Dimension of S L E 8/s

It should be theoretically possible to apply the previous construction to other values of 
k , but some of the main tools that we used (namely, the radial/chordal equivalence and 
the restriction property) do hold only for k =  6 so that additional arguments would be 
required.

For the special value k = 8/3, the result on the frontier of SLE 6 makes it possible to 
show that the dimension of SL E &/3 is almost surely 4/3. More precisely, Lawler-Schramm- 
Werner [29] have shown that the outer boundary of the union of 8 SLE s/3's has the same 
law as that of the union of 5 Brownian excursions. The zero-one laws previously proved for 
both the trace and the boundary of SL E  extends to this object: Its boundary has a.s. the 
same dimension as the boundary of SLE 6 and also a.s. the same dimension as SLE 8/3. 
Hence these dimensions are equal, and the result follows.

3 .4  T im e -s e ts  fo r  S L E K

We now turn our attention to the dimension of sets of exceptional times. Note that 
time corresponds to the Loewner parameterization of the trace, which is in a way not the 
most canonical: It is not clear for instance whether it behaves nicely under time-reversal. 
More precisely, how smoothly does the Riemann map from H \  7 ([t, oo)) to H evolve as t 
increases?

A natural question that also arises is the following. Let A  be some (random) subset of 
[0, oo], and 7 ^4) be its image by the trace of a chordal SL E  in the upper-half plane. Is it 
possible, knowing the Hausdorff dimension of A, to obtain that of 'y(A)? Such a relation 
holds for Brownian motion [22], namely the dimension of the image is a.s. equal to twice 
the dimension of A. It is expected that such a relation cannot hold for SL E  without 
additional requirements on A, however a few cases can be treated entirely (in the sense 
that both the time and space dimensions can be computed in independent ways), at least 
for k =  6: the trace itself, cut-points, and the boundary.

3.4.1 Boundary times

In the previous section, we derived the dimension of the boundary of SLE6. The dimension 
of the corresponding time-set can also be computed (and it should be noted that the 
following is true even for k ^  6):
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Theorem 3.4 :
Let K  be an SL E  in the upper-half plane, with k > 4, and let D be the set of 

boundary times in [0,1] — i.e. the set of times t such that 7 (t) 6 dK t . Then, with 
probability 1,

dim h (D) =

H It is clearly sufficient to compute the dimension of left-boundary times, 
namely times t such that #i(7 (i)) G ( - 00, /?t) where ¡3 is the process driving 
K . Introduce the sets of approximate left-boundary times between e and a, 
defined by

DSya =  { t : Inf(R n gt(Kt+e)) = Inf(R n  gt(K t+a))}

(i.e., 7 may touch the real line on the right side of K  but not on the left 
side). Let Da be the intersection of the De>a when e —»• 0. Scaling and the 
Markov property show that P(t e  De>a) depends only on e/a. Hence, to 
obtain condition 1. in Proposition 3.1, with s — (k -  A)/2k, it is sufficient 
to obtain the following estimate:
Lemma :

Let (K t) be a chordal SLE K (k > 4) in the upper-half plane: then as 
t goes to infinity,

pt =  P(Inf(R n  K t) =  Inf(R D K ^) x  i(4-«)/2«.

¡H First, apply the Markov property of SL E  at time 1 and map the picture to 
the upper-half plane by $  =  g \-(3 \. Let Y0 < 0 be the image of Inf(Rfi-ftTi) 
by $. The process (K u) =  ^ (ifi+ u)) is an SL E K, and the probability we 
are interested in is then given by

pt = P(Y0 £ k ^ .

Let (/3U) and gu : H \  K u —> H be respectively the process driving K  and 
the associated conformal maps; let Yu =  gu(Y0) — ¡3U. It is easy to see, 
using It6’s formula and the definition of chordal SLE , that Y  satisfies the 
following SDE (where B  is a standard Brownian motion):

dYu = y /^ d B u + ^  dw, (3.20)
it

i.e., up to a linear time change, Y  is a Bessel process of dimension b =
1 +  4/k < 2 starting from Y0. Hence, it is known that the probability that it 
does not hit 0 up to time u behaves like (u /Y 2)~u where v =  (k — 4)/2k > 0 
is the index of the process. Hence,

p, X t - B f O  x  r \

as we wanted, ffl

4 + K

2k
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where the implicit constants depend only on k. Notice that if ¿-he is in DSA, 
then t G D2e,a (because K t c  K t+e) and even [t,t + e] c  D2e,a■ This and 
the previous estimate provide

P  ([<, t + e] c  D2,,a\t 6 B 2«,a) > > c > 0 ’
r \ t  E JJ2s,a)

which is condition 2. It remains to obtain second moments, and these are 
given by the Markov property, as follows.

Let x < y be two times in [0,1]. If a? and y are in De,a with a > y -  x, 
then in particular x  G De,y-x and y G De>a. By the Markov property of SLE, 
applied at time y, those two events are independent. Hence we obtain

P {x,y  G D£ia) ^  P(x  G De^ x)P(y G De,a)

r  s i s  r  £  i s  £?s 
< c  —  £y — x a (y — x)s

still with s = (k -  4)/2k. This is exactly condition 3. If a ^  y — x then 
the events x  e Dgja and y e De,a are themselves independent and the same 
method applies. Hence, everything is ready to apply Proposition 3.1: For all 
a > 0, with positive probability,

dimH(Da) =  1 -  =  2 -  £.

Noticing then that D 1 c  D c  D2 hence provides

P  (dimh (D) = 2 -  0  > 0.

It is then easy to apply the same proof as that of Lemma 3.4 and obtain a 
zero-one law for dimh {D), thus completing the proof, j j

Remark: In particular, the dimension of boundary-times is never less than 1/2, even 
when k —> oo. Note that in this case, the dimension of the Bessel process appearing in the 
proof tends to 1, so the exponent 1/2 is the same as in the usual gambler’s ruin estimate.

This is not surprising since, when k tends to oo, the trace of an SL E K converges, after 
suitable rescaling, to

7co (Bt, LBt),

where B  is standard Brownian motion and (Lf) denotes its local time at point x  (cf. [6]). 
In the limit, the boundary times correspond to last-passage times, which have dimension 
1/2 by a reflection argument.

This provides the right estimate:

P it G De,a) x  [-]*  
LaJ

P (t + e G De%a)

k - A
4
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3.4 .2  Cut-tim es and the existence of cut-points

We saw in the previous sections how the dimension of the trace of S L E  was related to non
disconnection exponents: Here, we follow the analogy with Brownian motion to describe 
cut-points on the SL E  trace. Let K  be a chordal SLE K and C be the set of cut-points 
of K 2 in Ki (i.e., the set of points z e K x such that K 2 \  {z} is not connected). Such a 
point is on the boundary of K\, hence if 7 is the trace of K  every cut-point is on 7 ([0, 1]). 
We say that t is a cut-time if 7 (t) is a cut-point, and note C  the set of cut-times. 
Theorem 3.5 :

(i). If 0 ^  k ^  4, then C — [0, 1] and C = K\\

(ii). If 4 < k < 8, then with positive probability C has Hausdorff dimension (8—/c)/4, 
in particular it is non-empty, hence C ^ 0 ;

(iii). If k > 8 then a.s. C = 0  and Ki has no cut-point.

H (0 ¡s a direct consequence of the fact that 7 be a simple path [42], and
(iii) is proved exactly like (ii) with the usual convention that a set of negative 
dimension is empty. Hence, we may assume that 4 < k < 8. Again we are 
going to apply Proposition 3.1, and the proof will be very similar to that of 
Theorem 3.4.

Introduce the set of approximate cut-times between e and a defined as

Cs â =  {i G [0,1] : 7 ([i +  £, t +  a]) D (Kt UR) =  0} .

Define Ca as the (indeed non-increasing) intersection of the CeA. By the 
Markov property at time t, follows that P(t e  CSA) does not depend on 
t. Moreover, scaling shows that it is a function of s/a . Hence, to obtain 
condition 1. in Proposition 3.1 with s =  (k — 4)/4, it suffices to prove the 
following:
Lemma :

Let K  be an SL E K in the upper-half plane, starting at x e  (0,1), 
with k, > 4. Then, when t->  00,

P{{0, 1} n K t = 0 )  x  t (4~K)/4.

$  The proof of this Lemma is very similar to that of Theorem 3.1 in [36]. 
Two things have to be done: First, extend this theorem to the (easier) 
case where tui — w2 = 0; second, to translate it back to an estimate for 
SL E  at a fixed time. Introduce the following processes: X t = gt( 1) -  A- 
Yt = gt(0) -  Pt. where (pt) is the time-scaled Brownian motion driving K. 
As was seen previously, X  and Y  satisfy the following SDE’s:

d X t = -^rdt + \/Kd.Bt, d Yt — Jrd  t +  y/HdBt,
X t Yt

where B  is a standard real Brownian motion. Let Lt = X t -  Yt be the 
length of the image interval, and let Rt = X t/L t . Tedious application of



76 CHAPTER 3. HAUSDORFF DIMENSIONS FOR SLE6

then the previous system reduces to dLt(s) — Lt(s)ds, i.e. almost surely 
Lt{s) = es, and, letting Zs =  R ^ ,

(3.21)dZ. =  (1 -  2Z.)Aa + - J kZ,(12 Z ,)dB.

as in [36]. Now introduce the following stopping times:

S =  Inf { s : Z s e {0 ,1}}, T =  t(S) =  Inf { t : Rt € {0,1}} .

The counterpart of Theorem 3.1 in [36] for the case wi — w2 =  0 is obtained 
as Lemma 3.2 in the present paper, it gives the following estimate:

P(S > s) x  exp(—A(0,0)s) =  exp (3.22)

It remains to transfer this estimate to deterministic values of t. Recall 
that we have 2di(s) =  e2sZs( 1 -  Zs)ds. This already proves that dt(s) ^  
e2s/8ds i.e. t(s) ^  e2s/16 or s ^  log(16i(s))/2. Hence,

P (T  > t ) ^ p ( s >  log 1̂6^  x  r (K- 4)/4.

To obtain the lower bound, note that the proof of Theorem 3.1 in [36] also 
gives the distribution of Rs knowing that S  > s — which is the eigenfunction 
associated to the eigenvalue A(0,0) for the generator of R, namely

c.[x( 1 -  x)]{K- ^ / K.

In particular, conditionally to the fact that S  > s, there is a positive prob
ability that Zs e [1/4,3/4], Comparison with Brownian motion then shows 
that

P  ( Vs 6 [s0, s0 -I-1], Zs € _1 71 Z G \ l  ?' 
_8’ 8J s° .4’ 4.

and combining this with (3.22) provides, for all s0 > 42: 

p f v s e  [s0 — 1, s0], Zs €
1 7 
8 ’ 8

S > s0 ] ^ c > 0.

Ito’s formula leads to

2dt a» _ 2(l-2Rt) u , V ^ D
4 LtR t( l - R ty  1 L2t R t(l -  R t) Lt 4‘

Introduce the following random time-change:

A*{ \ L\s)Rt(s) (-*■ —  -^<00) A d t(s) =  —^ --------------------ds,

k - 4
2
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Now on this event, we obtain

r °  e2s
 ̂128ds ^  co-e >

from which the lower bound follows:

P (T  > t ) > c . p ( s >  log^Jc°A  ^ c . r (K_4)/4. ...
\  2 )  m

The end of the proof is exactly the same as that of the previous theorem, 
so we do not repeat it here, j j

Remarks: For k = 8 (where the obtained dimension is 0), to our knowledge the question 
of existence is open. Oded Schramm conjectures that there is no cut-point on SLE&. Note 
that in this case the existence of the trace requires a separate proof [34]; the trace is then 
the scaling limit of the UST Peano curve, hence it is itself a Peano curve, but this is not 
sufficient to prove that there is no cut-point on K.

If k =  6, we get that the dimension of cut-times is 1/2. It is known in this case (using 
Brownian exponents) that the dimension of cut-points is 2 — 5/4 =  3/4 (cf. [32]). For the 
other values of k g (4,8), the dimension of C is not known.

t(s0)
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In t r o d u c t io n

In this chapter we derive the dimension of the SLE  trace in the general case, i.e. we prove 
the following theorem, which was conjectured in [42]:
Theorem 4.1 :

Let 7 be the trace of an SL E K, where k e (0,8), « ^  4. Then, almost surely, the 
path 7 ([0, +oo]) has Hausdorff dimension 1 +  k/8.

Not surprisingly, we are going to follow the steps of the previous proof (which was 
specific to the case n =  6), and in particular our main tool will still be Proposition 3.1. 
Note that the zero-one laws stated in the previous chapter still hold here, so it will be 
sufficient to obtain Hausdorff dimensions with positive probability.

We will keep the notation % for the complete trace of the process and

C£ = { z e  [ - 1, 1] x [1,3]: d(z, U) < e } .

Then again, H ft [-1,1] x [1,3] is the non-increasing intersection of the Ce as e goes to
0, and the setup is exactly the same as in the previous chapter; the event {z e Ce} is can

79
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still be written in terms of non-disconnection, and Condition 2 . in Proposition 3.1 is still 
an automatic consequence of the definition of Ce.

However, we cannot use the chordal/radial equivalence anymore, nor apply the relation 
between SLE 6 and percolation to obtain the correct decay of correlations, hence we need 
a different approach to obtain conditions 1. and 3. The general principle leading to the 
first moment estimate is the same, namely we will look at the growing compact K t from 
the point of view of a fixed point in the upper-half plane; but the proof of Condition 3. is 
a pain in the neck.

4 .1  T h e  f irs t  m o m e n t  e s t im a te

Fix k > 0 and zQ e  H; let 7 be the trace of a chordal SLE K in H, and let H  =  7 QO, 00)) 
be the image of 7 . We want to compute the probability that H touches the disk B(z0,e) 
for e > 0.
Proposition 4.1 :

Let a(z0) £ (0, tx) be the argument of z0. Then, if k e  (0,8), we have the following 
estimate:

(
\ 1—k/S

(sina(z0))8//c_1.

If k ^  8, then this probability is equal to 1 for all £ > 0.

Remark: We know that % is a closed subset of i t  (indeed, this is a consequence of the 
transience of 7 — cf. [42]). For k ^  8, this proves that for all z e f i ,  P(z £% ) = !, hence 
H almost surely has full measure. And since it is closed, this implies that with probability
1, 7 is space-filling, as was already proved by Rohde and Schramm ([42]) for k > 8 and by 
Lawler, Schramm and Werner ([34]) for k = 8 (for which a separate proof is needed for 
the existence of 7 ).

H  The idea of the following proof is originally due to Oded Schramm. Let 
5t be the Euclidean distance between z0 and K t. (St) is then a non-increasing 
process, and its limit when t goes to +00 is the distance between z0 and %. 
Besides, we can apply the Kobe 1/4 theorem to the map gt \ this leads to 
the estimate

(where the implicit constants are universal — namely, 1/4 and 4).
It will be more convenient to fix the image of z0 under the random con

formai map. Hence, introduce the following map:

= . . . .  ftW  -  f t W
9 t{z )-9 t{ z0)

It is easy to see that gt maps H \  K t conformally onto the unit disk U, and 
maps infinity to 1 and z0 to 0. In other words, the map

W^ g t ( j 9^ - ^ Z o ) j

c _  %(9t(z0)) 

\9't(z0)\
(4.1)

P (B (z „ e )n H íe > )



4.1. THE FIRST MOMENT ESTIMATE 81

and introduce hs = gt{s).
Then Equation (4.3) becomes similar to a radial Loewner equation, i.e. 

it can be written as

d,h,(z)=X(0H*),h.(z)), (4.4)

where X  is the vector field in U defined as

The only missing part is now the description of the driving process ¡3. 
Applying Ito’s formula (now this is an ugly computation) and then the pre
vious time-change, we see that ¡3^  can be written as exp(io;s) where (o;s) 
is a diffusion process on the interval (0,27r) satisfying the equation

das =  d £ s +  cotg y  ds (4.6)

with the initial condition a0 =  2a(z0).

maps the complement of some compact K t in U onto U, fixing 0 and 1 (in 
all this proof, z will stand for an element of H and w for an element of U). 
Moreover, in this setup Equation 4.1 becomes simpler (because the distance 
between 0 and the unit circle is fixed): Namely,

m  (4-2)

Now the structure of the expression for dtgt(z) (Equation (4.3)) is quite nice: 
The first factor does not depend on z  and the second one only depends on 
z0 through ¡3. Hence, let us define a (random) time change by taking the 
real part of the first factor; namely let

ds = -------A " 1)4 9 dt,
9t(z0) -  gt{z0) A2

Differentiating gt(z) with respect to t (which is a little messy and error- 
prone, but straightforward) leads to the following differential equation:

/} s M  -  ~  : )3 h~9t{z){9t{z) ~ 1) ( 
dt9t{z) -  ------------------ \ 2 . ----------TT-T— ~----- , (4.3)

( « . W - f t f e ) )  01 f t W - A

where (¡3t) is the process on the unit circle defined by

q = Pt ~  9t{z0)

Pt ~ 9t(z0)

X ((,w )
2 Cw(w — 1)

( i - O ( w - C ) '

2
/c — 4

(4.5)
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The above construction is licit as long as z0 remains inside the domain of 
gt. While this holds, differentiating (4.4) with respect to z  at z =  z0 yields

s x w  =
-*■ Hs

so that dividing by h's(z0) ^  0 and taking the real parts of both sides we get

ds log |/is(-20)| =  1,

i.e. almost surely, for all s > 0, \h's(z0)\ = \h'Q(z0)\es. Combining this 
with (4.2) shows that

5t(s) x  S0e~s x  9f(z0) e~s.

Finally, let us look at what happens at the stopping time

tZq =  Inf{i : 20 € K t}.

We are in one out of two situations: Either z0 is on the trace: in this case 5t 
goes to 0, meaning that s goes to oo, and the diffusion (c*s) does not touch 
{0, 27t}. Or, z0 is not on the trace: then 6t tends to d(z0,'H) > 0, and the 
diffusion (as) reaches the boundary of the interval (0, 2tt) at time

s0 =  log$> “  log d(^o^) + 0 (!)-

Let S  be the surviving time of (as)\ the previous construction then shows 
that

d(z0,H) x  60 e~s ,

and estimating the probability that z0 is e-close to the trace becomes equiv
alent to estimating the probability that (as) survives up to time log(¿0/e).

Assume for a moment that k > 4. The behaviour of cotgo;/2 when a  is 
close to 0 shows that (a s) can be compared to the diffusion (as) generated 
by

ds
das =  \ / k dBs + (k — 4) — ,

Ois
which (up to a linear time-change) is a Bessel process of dimension

, 3k — 8 
a =

8

More precisely: (<5S) survives almost surely, if and only if (a,,) survives almost 
surely. But it is known that a Bessel process of dimension d survives almost 
surely if d ^  2, and dies almost surely if d < 2. Hence, we already obtain 
the phase transition at k =  8:

• If k ^  8, then d ^  2, and (as) survives almost surely. Hence, almost 
surely d (z0,7i) = 0, and for all e > 0 the trace will almost surely touch 
B(z0ie)\

2h’ (z0)
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• If k < 8, then d < 2 and (as) dies almost surely in finite time. Hence, 
almost surely d[z0,'H) > 0.

So, there is nothing left to prove for k ^  8. From now on, we shall then 
suppose that k £ (0,8). If k ^  4 then the drift of (a^) is toward the boundary, 
hence comparing it to standard Brownian motion shows that it dies almost 
surely in finite time as for k e (4,8). We want to apply Lemma 3.2 to (as) 
and for that we need to know the principal eigenvalue of the generator LK 
of the diffusion. It can be seen that the function

(sin(a;/2))8/'c- 1

is a positive eigenfunction of LK, with eigenvalue 1 -  k / 8: hence we already 
obtain that, if a0 is far from the boundary, P (S  > s) x  exp(—(1 -  k/8)s) 
i.e.

P{d(z0, n ) ^  e) x  ed-*/8)iog(e/i0) ~  ^  ; (4.7)

which is the correct estimate. It remains to take the value of aQ into account. 
Introduce the following process:

X, e(1~K/8)s

(and X s =  0 if s ^  S). Applying the Ito formula shows that (.X̂ ) is a local 
martingale (in fact this is the same statement as saying that sin(a;/2)8//t~1 is 
an eigenfunction of the generator), and it is bounded on any bounded time 
interval. Hence, taking the expected value of X  at times 0 and s shows that

sin ( y ) 87*"1 =  P{S > s ) E  jsin ( y ) ^ " 1 S  > s . (4.8)

The same proof as that of Lemma 3.2 shows that, for all s ^  1,

P (as € [7t / 2, 37t / 2]|5 ^  s) > 0 

with constants depending only on /c; combining this with (4.8) then provides

P (S  ^  s) x  e - ^ - ^ s i n  ( y ) ^ ' 1,

again with constants depending only on k. Applying the same computation 
as for Equation (4.7) ends the proof. II

Corollary 4.1 :
Let D £  C be a simply connected domain, a and b be two points on the boundary 

of D, and 7 be the path of a chordal SLE K in D from a to b, with k e (0,8). Then, 
for all z e  D and e < d (z, d D )/2, we have

P  (7 fl B(z, e) ± 0 )  x  M a6) A uz(ba)f ' K~l ,

where uz is the harmonic measure on dD seen from 2 and ab is the positively oriented 
arc from a to 6 along dD.

£
d (z, dD)

1—/c/8

e

8//C-1

1—/c/8

. /Q!SN
sm V 2 >

i

1—k/S)s



84 CHAPTER 4. HAUSDORFF DIMENSIONS IN THE GENERAL CASE

H  This is easily seen by considering a conformal map $ mapping D to the 
upper-half plane, a to 0 and b to oo: Since the harmonic measure from 2 
in D is mapped to the harmonic measure from $(z) in H, it is sufficient to 
prove that for all z e E

u^R-f) Awz(E_) x  sin(arg2:) ;

and a;a(R+) can be explicitly computed, because ujz is a Cauchy distribution 
on the real line:

/«  x 1 P  duly  1 1  , . ,
0 V H ,(!M = -_ /o 1 +  (M— =  3 +

When x tends to -00, this behaves like —y/ttx  which is equivalent to 
sin(arg(a: + iy))/n. j j

This “intrinsic” formulation of the hitting probability will make the derivation of the 
second moment estimate more readable.

4 .2  T h e  s e c o n d  m o m e n t  e s t im a te

We still have to derive condition 3. in Proposition 3.1. For k — 6 it was obtained using 
the locality property, but this does not hold for other values of k, so we can rely only on 
the Markov property. The general idea is as follows. Fix two points 2 and z' in the upper 
half plane, and e < \z' -  z\/2. We want to estimate the probability that the trace 7 visits 
both B(z,e) and B(z',e). Assume that it touches, say, the first one (and this happens 
with probability of order e1-*/8), and that it does so before touching the other.

Apply the Markov property at the first hitting time Ts(z) of B(z,e): If everything is 
going fine and we are lucky, the distance between z' and K ts(z) will still be of order \z' — z\. 
Hence, applying the first moment estimate to this situation shows that the conditional 
probability that 7 hits B(z',e) is not greater than C.(e/\z' — z|)1-K/8 (it might actually be 
much smaller, if the real part of gTe{z){z') ¡s large, but this is not a problem since we only 
need an upper bound), and this gives the right estimate for the second moments:

£2-/t/4

^  |z' — ,z|1-K;/8 ’

The whole point is then to prove that this is the main contribution to the second moment 
probability.

Small print: You probably don’t want to read the rest of this section. It is full of ugly notations and 
rather dull. You can jump directly to Section 4.3.

4.2.1 The setup

Let 2; and z' be two points in the upper-half plane, and let S =  d (z ,z ')/2. Let 

£ — C Z , 2<  ̂ U {w £ H : d(w, z) =  d(tu, z') ^ 5y/5}25
2

z +  z’
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/ s  \
z 5 z’ \• - —  ■

Figure 4.1: Second moments: the setup

be a “separator set" between z and z' (cf. Figure 4.1).
Introduce a small constant a e  (0,1) (to be determined later), and let rn =  S.an. We 

will condition the path with respect to the order in which it visits the circles Cn =  C(z,rn) 
and C'n =  C(z',rn), so introduce the following families of stopping times:

Tn =  Inf{i : 7 (t) G Cn};

Tn = Inf{i > Tn : 7 (t) e £};

T'n = Inf{* : 7 (t) € <£};

Tn = Inf{t > T'n : 7 (f) 6  £}.

Moreover, define inductively N0 =  N'0 = 0 and

Ni+i = Min{A; : 7* > T^},

Nl+1 = Min{k : % > f'N.}

(so that the (Ni+i — Ni) are the successive numbers of circles around z that 7  crosses for 
the first time between returns on £). Lastly, let K  be the number of times 7  returns on £ 
before touching B(z,e) (that is, Max{A;: rNk > e}) and K' accordingly around z'.

Splitting the event that 7  touches both B(z,e) and B(z',e) according to the values of 
K,  and then according to the values of the (iVi+1 -  Ni) for 0 ^  i < K  and (Nj+1 -  Nj) 
for 0 ^  j  < K', we have

P(7  fl B(z, e) 7̂  0 , 7  fl B(z', e) ^  0 ) =

OO OO /  j n B ( z , s )  ^ 0 , j n B ( z ' ,£ )  ^ 0 \
EE E E P K = k,Nl - N a = n l ........JVt -JVM = n t . (4.9)
k=0 k'=0ni,...,nk>0n'l,...,n,k,>0 \K ' = k', N[ -  N'Q = Tl[, . . . , N'k, -  =  n'k,J

Note that we say nothing about the order in which the sequences TNi and T'm are 

intertwined, all we know is that they are both increasing. So each term in the summation 
can in turn be written as a sum of “elementary probabilities” over all possible such orderings. 
There are

k
2lk-

k + k1 -k'
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of them; so if we obtain an estimate for each term of the sum restricted to a given ordering, 
which does not depend on this ordering, we only get an additional factor 2k+k' in front of 
each term in (4.9).

We write each of the elementary probabilities as a chain of telescopic conditional 
probabilities, conditioning first on the fact that j  hits £ and then using the strong Markov 
property at the times f Ni and f 'N, , in increasing order: This leads to a product of conditional 
probabilities that Ni -  =  rii for all 1 ^  i < k, and corresponding terms around z' (we 
do not write this product explicitly because it would require even more tedious notations).

Each of these factors is smaller that the probability that Ni -  ^  n ,̂ which in turn 
is smaller than the conditional probability to ever touch the circle C(z, rNi_1+ni) — and this 
is exactly the kind of probability which we estimated in the previous section. We already 
know that the first term will be

P  6 C i)  X

so we will estimate the other factors separately, using Corollary 4.1, and see what happens.
We will have to distinguish between two cases, depending on whether k < 4 or k > 4, 

because the reason why the sum in (4.9) converges is different in both situations. If 
k =  4, the method does not seem to work directly — cf. the end of the section for some 
discussion about this problem.

4.2.2 First case: k <  4

In this whole subsection, we assume that k e  (0,4) — i.e. that 7 is a simple curve. 
Conditionally on the whole process up to time it is clear that d (z, K fN ) is at least 
a.rr Introduce the following notation for the harmonic measures appearing in the 
statement of Corollary 4.1:

0Ji = ̂ z{9f lNi t ((&*._!, 00))) A wg{gfN̂  ((-00, /?TJV._1)))

(i.e., at time TNi_lt the smaller of the harmonic measures of the two "sides” of the curve, 
seen from z), and a;'- similarly around z '. The first moment estimate then provides a factor 
not greater than

z + z'

Nt-1

2

c { - £ t ) ’ wl = Ca‘i'u'l)w'! (4'10)

(where we let s =  1 -  k/8  and rj =  8 /k — 1). The last such term will correspond to the 
probability of touching B(z,e) in the end; it will not be greater than

c  ( ¿ - ) * < .  =  (4.11)

So taking everything into account we see that the asni will cancel out, and we get the 
estimate:

2s / si \k-\-k'+2 k-(-1 kr+1
2*r f  ( - )  n ^ ) "  n K r  (4.12)

L V J 2=1 j=1

C(£/ô)sa -s{ni+- +nk+l^ l +v

P(z, z ' 6 C.)
e2s

c i rös
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(the summation here ranges on the same set as in the huge sum (4.9), and the expectation 
is understood as a conditional expectation knowing the values of K , K ' , the n, and n '). 
Since C is a generic constant, we can multiply it by 2 to take care of the factor 2k+k' , 
which we shall not write down anymore.

Next, we shall estimate the (u>i). At time TNi, the intersection of 7 with the disc 
B(z, a.rjv^J is at distance at most rNi of z and hence, by the Beurling estimate, it has 
harmonic measure (seen from z) at least 1 -  c.a(n<_1)/2; and this lower bound actually 
holds for the harmonic measure of one of the sides of the curve. Hence an upper bound 
on uji+1, which is not greater than c.a(n<_1)/2. So, picking any rf < 77/ 2, we get a factor 
in (4.12) which is not greater than C0.an'ni, as soon as

. - Vr ii^ n  = -----— .
r) — 2 rf

The only “bad case" in the previous computation is therefore the case when n* ^  n and 
the harmonic measure from z charges the two sides of 7 (0, Tat,] with about the same mass. 
Assume i satisfies this. We may assume that n = 1 (it is fixed anyway) as well as continue 
7 until the first time r  ^  TNi when it touches the intersection of 8  with the boundary of 
the connected component of z' in H \  (8 U 7 (0, TNi\) — quite often this corresponds to 
doing nothing at all; and it has to happen if 7 is to eventually hit B(z',e). Assume that 
we still are in a bad situation, namely that each of the sides of 7 has harmonic measure 
greater than C0.an'ni (with the same constant C0 as in the previous paragraph). The only 
possibility for this to happen is when 7 (0, TNi]U B (z ,rNia n) separates z' from infinity.

Assuming that we are in this case, we can refine our estimate of the harmonic measures 
of the two sides of 7 [0,T/vJ seen from z'\ Indeed, at least one of them is smaller than 
that of B (z,rNia~n) in the domain Q enclosed by 7 [0,TJyj] U B (z ,rNia~n). Consider a 
planar Brownian motion W  started at z', and estimate the probability that it exits Q, on 
B(z, rjViO- ”)- First it has to reach £: by the Beurling estimate, this happens with probability 
not greater than c(d(z', d i¿)/<5)1/2 < c.a(iVji-1)/2, where j  is the number of crossings toward 
z' so far. Then the Brownian motion has to touch B(z,rNia~n) before the other parts of 

and this too, conditionally on the point at which W  touches 8, has a probability that 
can be bounded by Beurling’s estimate: this conditional probability is not greater than 
c.(rNia~n/5 )1/2. Hence we can replace the estimate of u)̂  in this case by the following:

cjj ^

But we know that ^  rii +  i -  1 and iVj ^  n ': So, as soon as i ^  n +  2, this term is 

smaller than C'.a(ni+n^'/2, and up to an additional factor in (4.9) which depends only on a 
and k , we may assume that it is the case for all i : So, in the case rii ^  n, we also obtain 
the factor C.aT,'Tli in (4.9).

Collecting all the terms we obtained, the upper bound on the probability that 7 hits

u/ c.o! Ni+N'j-ñ-1)/2_
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both B (z,e) and B(z',£) becomes

2s oo / /i \ k+k/+2
£  £  ( £ )

A;=0 /c'=0 ni,... ,n&>0 n̂ ,... ,n̂ ,>0

2s /  °° r 00 ik\ 2 2s ( 00 r r '^ '-s i* \ 2

y/c=o L 71=1 J J  \fc=o *- /

Remember that we are in the case k < 4: this implies that

V „ 1 ^ 8  ^  ^  (8 - /c ) (4 -/c )
2 — 2 \k  _  _  V 8 / = ------- 8 i------- > 0 '

Hence, by choosing rj1 close enough to 77/2, we may assume that rf -  s > 0; then picking 
a small enough, we may assume that C.aP’~s < 1 — a t , and in this case the sum in the 
last term converges, and this leads to

P (z,z' G Ce) ^ <7 ^ - ,  

which is exactly Condition 3. in Proposition 3.1.

4.2 .3  Second case: k  >  4

Assume now that k e (4, 8). The previous proof does not work anymore, but we know 
that 7 will not be a simple curve. It is actually easy to see that the following holds: Let
0 < ri < r2, t ^ 0, and let An (t) be the connected component of #(7*,n ) \  K t which 
contains 7* on its boundary. Then the conditional probability, knowing 7 up to time t, that 
7 separates Ari(i) from infinity before it reaches the circle C(jt,r2) is bounded below by
1 — c.(ri/r2)a for some c, a > 0 depending only on k .

Consider the same decomposition of the event {z ,z' e Ce} as in the previous case. 
We may add another condition, which is that for each i > 0, z £ K fN (i.e., 7 does not 
separate z from 00 while heading out towards £). Indeed, if this is not the case, then 
there is no way for 7 to ever reach B (z,e). And the conditional probability, knowing 7 up 
to TNi, that -z £ K fN , is not greater than c.r%. So the previous decomposition leads this 
time to

_2s 00 00 /  n \  k+k'+2

P(z,z' € Ce) $ 0 - ^ 5 2 1 1  E  E  b )
k=0 k'=0 rai,... ,rifc>0 n'j,... ,n'k,>0 

2s 00 00 /  r>\ k+k>+2

= ^ E E  E  E
 ̂ k=0 k'=0ni,... ,nfc>0n/1,... ,^,>0

r2s (  00 k 00 \  2 -.2s (  00 k fynla—s \  2

^ U e ^ - i i e * *  =c t ,  E i f e  •
\k=0 1=1 n= 1 /  \fc=0 /

P(z,z'<ECs)
OO OO

a»'En.a-/E"i
Ar—|—Ar/ —J—2

1 -  a7»'
C a-2s:

-2s
C a-2s —

aaEATiflo E ^

aaE [k-i+l )niaa yE

p2s

, as

C
6s

—i'fi)-
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Since a < 1, the product f j ( l  — ala) is convergent, hence the previous expression can 
be written as

This last sum is convergent, so in this case too we obtain the right estimate for P (z ,z ' € 
Ce). This concludes the proof of the theorem for all k ^  4.

4.2 .4  Comments about the case k  =  4

The proof for k > 4 does not work when k = 4 because SLE 4 is a simple curve and does 
not close any loops.

Our proof in the case k < 4 has to do with the fact the domain Ht is Holder for all 
t > 0 ([42]). Indeed, this implies (cf. for instance [10]) that, intuitively, 7 cannot go back 
and forth too many times between two given points, and cannot create too many deep 
fjords — which is exactly what we proved here. However, it is not clear how to use this 
fact directly to obtain second moments, because it would require a quantitative version of 
this intuition, which is not known (yet). Still, it is an indication about the reason why this 
proof does not extend to the case k =  4, for which Ht is not a Holder domain anymore 
(cf. [42]). Equivalently, the "boundary exponent” 8/ k -  1 is not large enough compared 
to the “bulk exponent” 1 — k/8. In fact, it is not even clear whether condition 3. holds 
for k =  4 (note that the value of the constant in the upper bound on the second moment 
depends on k and seems to explode when k tends to 4). There might be a logarithmic 
correction term.

The right way to prove that dim#(7 ) =  3/2 here might be to use the case k < 4 and 
let k increase 4, but it is not sure whether this can be done in a simple way. Anyway, it is 
a posteriori not so surprising that we need something more, since the existence of 7 itself 
requires a separate proof in the case k = 4 (see [42]).

4 .3  T h e  o c c u p a t io n  d e n s ity  m e a s u re

As a side remark, let us consider the proof of the lower bound for the dimension (cf. 
Section A.l). It is based on the construction of a Frostman measure /u supported on the 
path, constructed as a subsequential limit of the family (//e) defined by their densities with 
respect to the Lebesgue measure on the upper-half plane:

2s (  oo k \  2
£ n C a '° - >

\k=0 ¿=1 /

< c C  ( y ' c t or‘‘‘o“l , t r "l-'\ 
5’ \ Ü  )

^ c Ç ( ± a ^ A \
\k =0 /

d{i£(z )= e  sl Z£cs\dz

Then, n is a random measure with correlations between ¡jl(A) and ¡.i(B), for disjoint com
pact sets A  and B, decaying as a power of their inverse distance. So, at least formally,

P(Z, z' 6 C.)
6*

~2s

OO

E
>k=0

2

« 4
\k=0 J

(*+1)/2—skgCtkCka
£2s

~ô*
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it behaves in this respect like a conformal field: the one-point function (corresponding to 
the density of fx) is not well-defined, because fx is singular to the Lebesgue measure, but 
the two-point correlation

lim 6~4 Cov (/x(B(z, 5)),fx(B(z', 5)))
S~>0

behaves like d(z, z')~l+K̂ .
A little more can be said about this measure, or about its expectation. The proof of 

the estimate for P (7 n B(z,s) /  0) can be refined in the following way: When we apply 
the stopping theorem (4.8), saying that the diffusion conditioned to survive has a limiting 
distribution shows that

E ĵ sin ( y ) 8/K_1 S > s

has a limit A when s —>■ 00, and that this limit depends only on k. So what we get out of 
the construction in Section 4.1 is

P (a t > 0 : \g't{z)\ ^  e~ 0A(K) ( ¿ )  7 (sin(arg(2)))8/K“1.

This lead us to an estimate on P(d(z, 7) < s) by the Kobe 1/4 Theorem; but it is also 
natural to measure the distance to 7 by the modulus of g'. We can now define

<f>i(z) = lim £kI*-1P ( i t  > 0 : \g't(z)\ ^  :

the previous estimate boils down to

<j>i(z) =  A(/i)S(z)/C//8_1 sin(arg2)8/,K_1,

and by the construction of ¿¿, we obtain that for every Borel subset A  of the upper-half 
plane,

E(n(A)) x  f  ^ ( z )  |d*|
Ja

with universal constants.

It is then possible to do this construction for several points; note first that the second 
moment estimate can actually be written as

2(1—k/8)
P({z,z'} c c y

IZ — 2/|1- 'c/8$5((z +  z ') /2)1-*/8

as long as both 5s(z) and 5(^') are bounded below by \z -  z '\/M  for some fixed M  > 0. 
Indeed, the upper bound is exactly what we derived in the previous section, and the lower 
bound is provided by the term k =  k' = 0 in (4.9). Hence, any subsequential limit ip(z,z'), 
as e vanishes, of

£2(K/8-l)P {{Z,Z'} C C e)

satisfies ift(z,z') x  (j)2(z,z') for some fixed function (j>2, with constants depending only on 
k . The second moment estimate then shows that

A i >\ w M Z)

S(zV

9(£)
£

P

z'-+z \z — Z1 \l~K/8 ’<h(z,z)
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i.e. <f>2 behaves like a correlation function when z and z' are close to each other.

The general case of n points, n ^  2, can be treated in the same fashion. First, the 
derivation of second moments admits a generalization to n points, as follows. Let ( z i ) i ^ n 
be n distinct points in HE, such that their imaginary parts are large enough (bigger than, 
say, I 871 times the maximal distance between two of them). We use them to construct 
a Voronoi tessellation of the plane; denote by Q  the face containing zit and by Si the 
(Euclidean) distance between z{ and dQ . Let C(z0,60) be the smallest circle containing 
all the discs B(zi,Si). Lastly, let £ be the “separator set” between the Z{’s, defined as

£ = c(z0, i 0) u i U 5c. j  n B (z „A ) .

It is the same as defined previously in the case n =  2.
The previous proof can then be adapted to show that

/  8 sn \  1_k/8
p({2„ . . . , z, } c c « ) , y

(using radii ¿¿a* for the circles around zi). In the case n =  2, we have =  82 =  80 /2, so 
this estimate is exactly the same as previously. So, it makes sense to take a (subsequential) 
limit, as s tends to 0, of

£n(K/S-l )P ({ZU" . iZn} c C e ),

and all possible subsequential limits are comparable to a fixed symmetric function <j)n.

The behaviour of (j>n(zi, . . .  ,zn) when zn approaches the boundary is then given by the 
boundary term in Proposition 4.1, i.e. 0 behaves like (Szn)8/'c~1 there. Lastly, it is easy 
to see that, when zn tends to z\, <j)n{z\ , . . .  ,z n) has a singularity which is comparable to 
\zn — zil"78-1; in other words, we have a recursive relation between all the <j)n's, given by

i / \ 0n—1 Ĉ l j * ■ ■ ) %n—l) / jê i o\
<j>n(zX, ...,Z n )  ^  | ^ _ ^ | W 8  ’ (4' 13)

<j>n(z i , . . .  , zn) 0n_ i(z i,... ,zn_ i ) . ( ^ n)8/,i_1. (4.14)

These relations are very similar to some of those satisfied by the correlation functions 
in conformai field theory. In fact it is possible to push the relation further, in two ways. 
First, we can look at the evolution of the system in time. This corresponds to mapping 
the whole picture by the map gt -  fit, and this map acts on the discs of small radius around 
the Zi s like a multiplication of factor \g't{zi)\ (as long as K t remains far away from the 
Zi s, which we may assume if t is small enough). Hence, the process

Ytn = ( I I  M 9t{zi) - & , ■ ■ ■ ,  9t{zn) ~ Pt)

(defined as long as all the ^ ’s remain outside K t) is a local martingale. We can apply Itô’s 
formula to compute dl^n, and write that the drift term has to be 0 at time 0 to obtain a 
PDE satisfied by <j>n.

Wt(Zi) I
1—k/8

9f̂ n->0

P ({ z i , . . .  , Zn} C C7e)
1—k/S
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Note though that the formula involves the modulus of g't , meaning that the equation 
we would obtain cannot be expressed in terms of complex derivatives of gt only, and that 
we have to introduce derivatives with respect to the coordinates. This is also the case for 
the second-order term in ItQ’s formula: Since /? is a real process, we would obtain terms 
involving second derivatives of <j>n with respect to the re-coordinates of the arguments. To 
sum it up, it would be an ugly formula without the correct formalism — which is why we 
do not put it here. The formula is much nicer when considering points on the boundary 
of the domain — cf. [17].

The last thing we can do is study what happens if we add one point zn+1 to the 
picture. This will add one multiplicative factor, corresponding (at least intuitively) to the 
conditional probability to hit zn+i knowing that we touch the first n points already. In the 
case k — 8/3 and for points on the boundary of the domain, this can be computed using 
the restriction property, and it leads to Ward’s equations (cf. [17]). In the “bulk” (i.e. for 
points inside the domain), or for other values of k, it is not clear yet how to do it.

4 .4  T h e  b o u n d a ry

A natural question is the determination of the dimension of the boundary of K t for some 
fixed t, in the case k > 4. The conjectured value is

dim H(dKt) =  1 -h —,
K

and this can now be proved for a few values of k for which the boundary of K  can be 
related to the path of an SL E K> with k' = 16/ k . In fact, this relation is only known in the 
cases where convergence of a discrete model to SL E  is known, namely:

• k — 6, where actually both dK t and the path of the SLE K> are closely related to 
the Brownian frontier. Hence we obtain a third derivation of the dimension of the 
Brownian frontier, this time through SLE s/3.

•  k =  8: Here, SLE8 is known to be the scaling limit of the uniform Peano curve 
and SLE 2 that of the loop-erased random walk (cf. [34]). Since these two discrete 
objects are closely related through Wilson’s algorithm, this shows that the local 
structure of the SLE2 curve and the SLE s boundary are the same, and in particular 
they have the same dimension.

So we obtain one additional result here:
Corollary 4.2 :

Let (K t) be a chordal SLEs in the upper-half plane: Then, for all t > 0, the 
boundary of K t almost surely has Hausdorff dimension 5/4.

It would be nice to have a direct derivation of the general result, without using the 
"duality” between SLE K and SL E i6/k. All that is needed is probably a precise estimate of 
the probability that a given ball intersects the boundary of K \. The previous proof in the 
case k < 4 can be applied directly if we know that, for all z e H, we have

P (B(z, e) n  dKi ± 0 )  x  f £ - )  / sin(arg z)v
\ -vS* Z '

1-2 ¡K
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with 77/2 > 1 — 2/ k . The argument we used in the case n >  4 cannot work though, because 
the fact that 7 closes loops is exactly what will provide the difference between dim 7 and 
dim dK.



CHAPTER 4. HAUSDORFF DIMENSIONS IN THE GENERAL CASE94



C h a p t e r  5  

V a r i a t i o n s  a r o u n d  S L E
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5 .1  S L E  in  a  n o n -s im p ly  c o n n e c te d  d o m a in

One of the first questions that arise when trying to extend the definition of SLE, especially 
when it is seen as the (conjectured) scaling limit of a discrete model, is whether there is a 
natural definition of it in a more general domain of the complex plane. Indeed, it is easy to 
define e.g. a percolation model or a loop-erased random walk in a discrete approximation 
of, say, a multiply connected open subset of C, and the scaling limits of these models, if 
any, will share many properties with the corresponding usual SLE's.

For instance, the locality property of SLE 6 (corresponding to that of the percolation 
exploration process) basically states that, locally, the process does not “see" the shape of 
the domain; in particular, the local geometry of the curve should not be affected by the 
connectivity of the domain, and we would expect locality to hold for the corresponding 
process in a multiply connected domain.

A fair amount of the arguments used to prove convergence in the simply connected 
case actually do not use the fact that the domain is simply connected. For instance, 
the “reversed Markov property” of loop-erased random walks and Wilson’s algorithm (used 
in [34]) are valid in any connected graph, in particular they apply in the case of the 
discretization of a multiply connected subset of the complex plane. It is therefore natural 
to expect some sort of Markov property, similar to .S L E ’s, in the scaling limit. Besides,

95
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the close relation between loop-erased walks and Brownian motion (through the simple 
random walk) gives an intuition that the scaling limit should also exhibit some kind of 
conformal invariance.

5.1.1 S L E  in the annulus

The construction of SLE relies heavily on Riemann’s Theorem, i.e. on the existence of 
a reference domain: There is a natural statement of the Markov property if we can map 
H \ K t conformally onto H, by saying that

9t+s ~ Pt+s (l= '* (gs ~ Ps) o (gt -  fa),

where (gs) is an independent copy of (gt) with driving process (ps). In other words, the 
natural setup is that of a semi-group of conformal maps, in which SLE can be written as 
an infinitely divisible process.

Suppose now that we want to construct a simple random curve (%) in an annulus. 
More precisely, for all r e (0,1), let

Ar — {z G C : r < \z\ < 1} ,

then for all such r and all a, b e <9U, we want a law on curves from a to 6 in Ar . Assume 
that we have such a curve, and pick t > 0 such that 7« is defined and different from b. 
Consider the domain Ar (t) =  Ar \  7 ([0, i]). Is is easy to see that its modulus is strictly 
smaller than that of Ar (i.e. - lo g r ) . Writing this modulus as -log(r(£)), there exists 
exactly one conformal map gt from Ar (t) to Ar^ ,  fixing b\ and, when the curve reaches 
b (which can happen in finite and infinite time), r(t) converges to a limiting value r ' such 
that -  logr7 is the modulus of the complement of the whole curve in Ar-

Up to reparameterization of 7 , we may suppose that for all t ^ log(r'/V), r(t) — re*: 
Then, the situation is comparable to the simply connected case, i.e. 7 is characterized 
by the function t (->• f3t — gt(it) € <9U and (gt(z)) satisfies a differential equation similar 
to Loewner’s evolution, with a vector field on each Ar(t) depending only on b and f3t and 
related to Villat’s kernel ([49]). So it is tempting construct a natural law on (j3t) and then 
run the differential equation to obtain (gt), and hopefully ( j t), as it is done in the usual 
simply connected setup.

If a Markov property is to be looked for, we have to construct the law of (flt) simulta
neously for all values of a, b and r. Let C(a,b,r) be this law: It is supported on

Ca,r =  {7 € C([0, log r'/r), dU) : r' e (r, 1 ) ,p 0 =  a }.

With these notations, the Markov property can be seen as a compatibility relation between 
these laws: If (3 it a random function distributed according to C(a,b,r), defined on the 
time range [0, t((3)), and if t e (0, -  logr), then, conditionally to the fact that t((3) at least 
t and to (3 up to time t, we have

(/3t+*)*=[o,) ~ £ (/M ,re * )

In other words, (re1, 0t) should be a continuous Markov process.

(5.1)
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This is the point where a miracle occurred in the simply connected case: r did not 
appear because we had a common domain, and a few heuristic considerations were suffi
cient to obtain enough information on ¡3 (namely, in the upper-half plane, that it had to 
be continuous with independent increments and symmetric) to conclude that it had to be 
a Brownian motion with a linear time-change. Hence, we obtained "universality”, in the 
sense that there is only a one-parameter family of laws, described by the parameter k.

Here, we might write (3t = beiat where a t is a continuous diffusion on (0,27r) generated
by

da t = a (re \ a t) dB t +  v(re\ a t) dt,

and tailor a and v so that, locally around a, (gt) looks like a (time-changed) chordal SLE K 
from a to b in the whole disk. However, there seems to be no simple reason why k should 
not depend on r, or why the drift of a (if any) should be the same.

Actually there is one case where we do have a fixed reference domain, namely the 
disk punctured at 0 (corresponding to the case r =  0 in the previous setup). In this 
case, we need conformal maps from the punctured disk minus a compact set touching 
the boundary, onto the punctured disk. But it is easy to see that such a map can be 
continued at the puncture, and that this implies that the continued map will be conformal 
on a neighborhood of the origin. Hence, what we are interested in is conformal maps fixing 
the origin and one marked point on the boundary (the target of the process, i.e. b with 
the previous notations). And this is exactly sufficient to ensure existence and uniqueness 
of the maps involved in the construction.

With this normalisation, the vector field defining the Loewner equation toward b, grow
ing at Wt, is the one we used in the proof of Proposition 4.1, when we looked at the growing 
compact set from a fixed point in the domain; namely, the family of conformal maps (gt) 
satisfies the equation

o M  _  2w tgt(z){gt(z) -  b) 
dt9t{Z) (b — Wt)(gt(z) — WtQ

(this is exactly Equation (4.4)). The time parameterization given by r(t) = re4 becomes 
j^'(0)| =  e* in this case, i.e. the time parameterization is similar to that of a radial SLE.

In other words, for k ^  4, it is possible to define a law on random curves from a to 6 
in the punctured disk by simply taking the curve of an SL E  from a to b in the unit disk, 
and saying that it almost surely does not go through 0. Then the driving process for the 
growing curve is the diffusion on the circle which we described in the previous chapter, 
generated by the following SDE:

r-  ̂t-. K ~  4 Oit , 
d a t =  V« &Bt -I---- —  cotg — di.

The Markov property in the punctured disk is a direct consequence of the usual Markov 
property for chordal SLE.

The stochastic differential equation giving a  and the ODE satisfied by gt still make 
sense in the case « € (4,8) (for which the diffusion a.s. touches b in finite time); but the 
construction stops in finite (ST.E'-)time, when the SLE  curve closes a bubble around 0
— which it does with probability 1. Then we obtain a curve in the punctured disk that 
separates the puncture from b. It is perfectly possible to continue it by appending to it a
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standard SLE K from the point where the loop was closed to b, in which case the complete 
curve is that of a standard SLE K from a to b in U; but the nature of the process changes 
when the bubble is closed, the statement of the Markov property is different, and so is the 
time parameterization.

This will certainly happen in the more general setup of a domain with finitely many 
punctures (or holes — or even in the case of a Riemann surface of positive genus): If 
we manage to define a counterpart to SLE K with 4 < k < 8, it will close loops around 
the punctures and the "relevant domain” at time t (the connected component of the 
complement of 7 ([0, t]) that has b on its boundary) will have a non-increasing genus h(t) 
which will go down each time such a bubble is closed. But in any case, as long as 
h(t) = h(0), the “natural" curve is exactly the trace of a usual SL E  in the filled-in domain.

Going back to the case of the annulus with r > 0, there are a few cases where a 
natural measure on curves can be described, using known properties of usual chordal SLE  
for specific values of the parameter k.

5.1.2 Using the restriction property : S L E 8/3 in the annulus

The first working approach is to view SL E  for k =  8/3 as a restriction measure ([29]), 
and study whether it makes sense to generalize the definition to an annulus. So, define the 
random curve 7 from a to 6 in Ar as a chordal SL E  fro a to b in the unit disk, conditioned 
not to touch the disk of radius r centered at 0. (Note that this happens with positive 
probability.) We want to prove that it satisfies the compatibility relation (5.1).

Let 8 =  7QO,r]), where r > 0 is some finite stopping time; Let r' be such that the 
modulus of Ar \  7Q0, r]) is equal to -  log r'. Let 7 be the image of 7 \  8 by the conformal 
map $  from Ar \  8 to A r< fixing b. And let 7 be a chordal SLE 8/3 from $(7T) to b in U, 
conditioned not to touch B(0,r'). What we have to show is that, conditionally on 8, 7 
and 7 have the same law.

This is a consequence of the restriction property, as follows. Let B  be a crossing of 
Ar (i.e. a locally compact subset of Ar such that Ar \ B  is simply connected), containing 
neither a nor b in its closure. Then we know that SLEs/3 conditioned not to hit B  is an 
SLEs/3 in U \ B ,  and the same happens if we replace B  by B  U B(0,r). In particular, 7 
conditioned not to touch B  is a plain old chordal SLES/3 in A r \  B.

Now apply the Markov property to the unconditioned SL E  at time r. It states that 
conditionally to 8, 7 \  5 is a chordal SLEs/3 in U \  <5. Combining this and the restriction 
property shows that, conditionally to 8f)B  = 0 , j \8  conditioned not to hit B  is a chordal 
SLE  in Ar \  B.

Notice then that $  induces a conformal map from Ar \ B  to AT> \  $ (5 ), and apply 
the conformal invariance of SLE: Conditionally to 8 n B  =  0 ,  7 conditioned not to touch 
$(B) is an SLEs/3 in Ar> \  §(B). But, conditionally to 8, $  maps crossings of Ar not 
intersecting <5 to crossings of Ar>, so that 7 satisfies the following condition: For every 
crossing B  of Ar>, 7 conditioned not to touch B  is a chordal SLEs/3 from <3>(a) to b in 
Ar> \  B. But the previous proof shows that this is exactly the law of 7 conditioned not to 
touch B: What we finally obtain is that, for every crossing B  of Ar/, 7 conditioned not to 
touch B  and 7 conditioned not to touch B  have the same law.
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From now on, for every crossing B, let p(B ) be the probability that 7 does not hit B 
and similarly p for 7. If Bi and B2 are two crossings, we denote by B x U B2 the smallest 
crossing containing both of them, or Ar> if such a crossing does not exist. We just proved 
that

P( 7 DB2 =  0I7 n Bi =  0 ) =  P( 7 n B2 =  0 |7  tlB i =  0 ), 

and this can be written as
p(B  1 U B2) _  p(Bi U B2) 

p(Bx) ~  P{B\)

So, for all Bi and B2 such that Bx U B2 is a crossing, conditioning first on B2 instead of 
Bi and dividing, we obtain

P(Bi)/p(B2) = p (B i)/p (B 2), (5.2)

so on any collection of crossings that is stable by union, p and p are proportional.
Let 1Z be the collection of all crossings on the right (i.e. the ones which touch 5U on 

the arc that goes from $(74) to b in trigonometric orientation). The previous derivation 
shows that p and p are proportional on 1Z. But the event that 7 goes to the left of the 
hole 23(0, r') is the union of the events that 7 does not meet B, over all B e 11: Using 
an inclusion-exclusion decomposition, this shows that the proportionality ratio between p 
and p on 1Z is the ratio between the probability that 7 passes to the left, and that that 7 
passes to the left. So, we now know that 7 and 7 have the same law when conditioned 
to pass on the left of B(0, r'). All that remains to do is prove that they have the same 
probability to pass to the left of the hole.

Restate the problem as follows. Let K  and K' be two simply connected compact 
subsets of the upper-half plane H, such that H \  K  and H \  K' have the same modulus; 
and let be the unique conformal map from H \ K  to H \  K' tending to infinity at 
infinity; let A > 0 be such that \&(2) ~  Xz at infinity. We will use the usual convention 

r̂'(oo) =  1/A. Up to a translation of K' in the horizontal direction, we may assume that 
^ sends 0 to itself. Let 7 be the curve of a chordal SLE%/3 in H: The only thing we have 
left to prove is that we have

P (7 left of K \j  D K  =  0 ) =  P ( j  left of K '|7 n K ' =  0 ). (5.3)

Again, let B be a crossing from K  to R+ in H \  K\ and let be the conformal map 
from H \  (K  U B) to H fixing 0 and satisfying $1(2:) ~  -z at infinity. Then, we know that

P(7 n (K  U B) =  0 ) =  |^ i(0)|5/8- 

If $ 2 is the conformal map from H \  (K' U ^ (B )) with the same normalization:

P ('j< l(K , U ^ (B ) )= 0 ) =  |$2(0)|5/8.

Last, the uniqueness of all the maps involved here shows that

=  A_1$2 0 ^  :

hence, taking derivatives at 0, we obtain

*1(0) = ^ P ^ ( O ) .
9 '(0)

A
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Remark that the factor ^'(0)/A does not depend on the choice of B, so the same 
considerations as previously, using the fact that 7 passes to the left of K  if and only if 
there is such a crossing and writing an inclusion-exclusion decomposition of this event, 
prove the following 
Proposition 5.1 :

Let K  and K' be compact subsets of the upper-half plane, such that there is a 
conformal map ^ from H \ K  to H \  K' fixing 0 and 00; and let 7 be the curve of a 
chordal SLE8/3 in H. Then, we have

P (7 left of K ) W o m o o ) ) 5/8 
P (y  left of K ') ' "  ■

Remark: If ^ could be extended to the whole upper-half plane (this is the case for 
instance if both K  and K' are disks, in which case is a Mobius transform), then we 
would have 'J'(.z) =  A2: so the product \I'/(0)1if'(oo) would be equal to 1, concluding the 
proof — but the result was clear in this case, due to the scale invariance of chordal SLE.

Conditioning 7 not to touch K  (resp. K'), we can rewrite the conclusion of Proposi
tion 5.1 as

P(7 left of K \j  n K  =  0|  _  c^//q-\^/00u5/8^(7 n K  =  0 )  
P (7 le fto fX '|7 n ii:/ =  0 )  ̂ U  1 }) P ('yD K  =  0 )' [ )

Notice that we could do exactly the same construction to compute the probability that 7 
goes to the right of K  (resp. K'), and that the right-hand term in the last equation would 
be the same; hence,

P(7 left of üf|7 D K  =  0 ) _  P(7 right of K\^ D K  — 0 )
P( 7 left of K'\7 n K' =  0 ) ~  P{ 7 right of K'l'j n K ' =  0 ) ’

And since in any case 7 conditioned not to hit K  passes either to the left, or to the right 
of K , we have

P (7 left of K I7 n K  =  0) +  P(7 right of i f  I7 n K  =  0 ) =  1

and the same around K': The only case where (5.5) can hold is then when both ratios 
are equal to 1, and in particular we obtain (5.3), concluding the proof. As a side-result, 
we also obtain the following corollary:
Proposition 5.2 :

With the same hypotheses and notations as in Proposition 5.1,

(5.5)

(5.4)

P ^ n K ' l t  = (« '« W o o » * * .

This could be used to study the behaviour of the n-point correlation function described 
in the previous chapter when a point is added (which in the case of points on the boundary 
corresponds to a conditioning, by the restriction property of SLE 8/3, as is shown in [17]);
i.e., it could be the first step of the derivation of Ward’s equations in the bulk for SLE 8/3.

PfrnK = 0)
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Some remarks about the construction

Almost none of the tools we just used is available if k ^  8/3, in particular we do not 
have the restriction property and we cannot compute the probability not to touch a hull 
as a power the derivative of a conformal map. On the other hand, if we try to apply the 
method to the general case of conformal restriction measures as defined in [29], we can 
perform a substantial part of the construction; in particular, everything we stated in the 
upper-half plane is still valid, hence the measures on subsets of conformal annuli defined 
by conditioning restriction measures in the half plane are invariant under conformal maps 
of the annuli, exactly by the same proof — only the value of the exponent 5/8 needs to 
be replaced by the correct one. In particular, Propositions 5.1 and 5.2 still holds. It is 
clear also that the obtained measures satisfy the restriction property, but since removing 
a hull from the domain here changes its modulus, the restriction property does not make 
as much sense as in the simply connected case.

However, it is not clear what the statement of the Markov property should be in this 
case, since in the general case the restriction measures are not supported on simple paths.

The same proof can be applied to the general case of a finitely connected domain: If
O £  C is an open simply connected set, a and b are two points on its boundary and K  is 
a finite union of disjoint simply connected compact subsets of Q,, we can define a law

C(a -> b ,Q \K )

supported on simple curves from a to b in Q, by conditioning an SLE$/3 from a to b in Q 
not to touch K . Then the family of measures we obtain satisfies the same conditions as 
SLE, i.e.\

• Conformal invariance: If 7 is distributed as C(a —» b, \  K ) and $  is a conformal 
map from Q, \  K  to Q,' \  K', then $(7) is distributed as £($(a) —► $(6), Q1 \  K')\

• Restriction property: If A is a hull (i.e. a compact set such that \  A is simply 
connected) containing neither a nor b, then C(a -> b, Q \  K) conditioned not to hit 
A is the same as C(a -»• b, Q, \  (A U K))\

• Markov property: If 6 is an connected subset of 7 containing a and not b, and a' 
is its other end (the intersection of 5 and 7 \  <5), then conditionally on 5, 7 \  S is 
distributed as C(a' b ,Q \ (K U 5)).

Conformal invariance and the restriction property still hold in the general case of restriction 
measures, as well as Proposition 5.2. Note however that the conditions in which it applies 
are very restrictive, because of the number of conformal invariants involved in the multiply 
connected case.

It is possible to define an artificial "twisted” measure on subsets of Q \  K , as follows 
(here we suppose that Q. \  K  is a topological annulus): First, take a restriction measure, 
and condition it not to touch K\ call ^  this measure. Then define jj, by its density with 
respect to ¿¿, where the density is constant (but not 1 a priori) on the collection of sets 
passing to the left (resp. to the right) of K. Equivalently, this corresponds to fixing the 
probability of going to the left of the hole instead of taking that of SLEs/3. For instance, 
we might consider SLEs/3 conditioned to pass to the left of K.
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If the weighing is invariant under conformal map, i.e. if the densities only depend on the 
conformal type of the domain, then clearly the family of laws we obtain is still conformally 
invariant. Moreover, in the case of curves (i.e. if we start with SLE8/3), we can this 
time perform the first part of the previous proof: we still obtain the fact that 7 and 7 
become the same when conditioned to pass to the left of the hole; and actually, it is then 
possible to choose the weights depending on the domain in such a way that they have the 
same probability to pass to the left, in which case the curve we obtain has the Markovian 
property of SLE. There is even nothing left to prove in the case of SLE8/3 conditioned 
to pass to the left of K.

This twisted process is probably not interesting in itself, but it stresses the problem of 
what a generalization of SLE  should be: even if we want the random object to have the 
same local geometry as SLE (i.e. if we solve the "changing /c” question by a geometric 
argument), there is still one global degree of freedom preventing "universality” in this setup.

5.1.3 Using the locality property : S L E q in the annulus

The other case where SLE  exhibits a particularly nice behaviour is when k =  6, where the 
SLE  curve is the scaling limit of the exploration process of critical site-percolation on the 
triangular lattice (and also probably of any “reasonable” critical percolation model). This 
allows us to construct a random curve in a natural way, as follows. Let U stand for the 
unit disk, let r e (0, 1) be fixed and let A =  B(0,r) be the hole of the annulus Ar, and fix 
a, b two points on the unit circle.

We could take 7 to be the curve of an SLEs from a to b in U and condition it not to 
touch A, as we did in the previous section. But this is problematic, for two reasons:

• This conditioning is very global, and this was fine when we wanted to use the re
striction property of SLE8/3, which is global too. But the locality of SLE§, as the 
name indicates, describes the local behaviour of the SLE6 curve. And actually, it 
tends to say that as long as 7 does not touch A, there should be no modification to 
7 whatsoever — this is definitely not the case if the conditioning is not Markovian;

• Seeing the curve as the (conjectured) limit of an exploration process shows that it 
should touch A with positive probability: Indeed, by Russo-Seymour-Welsh we know 
in advance that with positive probability there are crossings between dU and A in 
the annulus.

In the discrete setup, we want to consider the hole as wired (i.e. we discretize the whole 
unit disk with a triangular lattice and we identify all the sites lying inside A). Coloring the 
discretization of the direct arc from a to b in black and the indirect arc in white, we can 
explore the interface between white on the left and black on the right, in the usual way, 
as soon as the hole is given a color.

In the continuous case we do something similar, i.e. we chose the color of the hole, 
either black or white. This can be done either deterministically or randomly, but in any 
case we do the construction conditionally to the chosen color. The morale is that we 
construct an SLE6 that bounces off A as if dA were part of the boundary of a simply 
connected, in a direction that is determined by the color we picked.
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So, let (K t) be an SLE6 in the unit disk, and 7 be its trace. If 7 does not touch A, 
we do nothing and define 7 =  7. If it does, let r be the first time when it happens and let 
Q =  At \  K t . Now is simply connected, so we just construct another SLE6 from 7T to 
b in fi, and let 7 be the concatenation of 7 (0, r] with the trace of the new SLE.

The only problem here is to chose on which side the new SL E  starts. Indeed, Q, n  
B (jT,r) has two connected components, say and £22; 7T corresponds to two prime ends 
in i l  This is where the color of the hole is used. Note that the boundary of K r can be 
divided into two parts, corresponding to the two components of <9U\{W r , b} in the image; 
color in black the one corresponding to the direct arc from Wt to b and in white the one 
corresponding to the indirect arc. Now for i e  {1, 2}, define =  dQ n  fi*. One of the 
di’s is all of the same color, and the other, say di(), has subsets of both colors. Then, the 
starting point of the new SL E  will be the prime end at j T which is in di(j.

The same construction can be done in any conformal annulus with two marked points 
on the same component of its boundary. We call the obtained curve SLEe from a to b 
in the annulus. It is then easy to check that, conditionally to the color of the hole, the 
obtained curve it conformally invariant and has the same locality property as SLE6 in a 
simply connected domain, namely: If B  is a compact set which contains neither a nor b, 
and such that Ar \ B  is either a conformal annulus or a simply connected domain, then 
up to their first hitting time of B, the trace of an SLEe from a to b in Ar and that of an 
SLE& from a to b in Ar \  B  have the same distribution.

Still conditionally to the color of the hole, we can now use the convergence of critical 
site-percolation on the triangular lattice to SLE$ in a simply connected domain, twice, 
and the locality property of both SLE6 and the percolation exploration process to obtain 
the following 
Theorem 5.1 :

Let r e  (0 ,1) and 5 > 0. Let j 5 be the discrete exploration curve of the percolation 
interface from a to b in a discretization of Ar by a triangular lattice of mesh S, as 
described previously, with a wired hole. Then, as 5 -» 0 and conditionally to the color 
of the hole, the law of j 5 converges to that of the trace of an SLE6 from a to b in
Ar.

But the same problem as previously arises here, in that we can still chose the color 
of the hole in any number of ways. In the critical percolation picture it will be natural to 
pick it white or black with the same probability 1/ 2; but in general we will obtain a one 
parameter family of laws on curves that all exhibit the same local geometry and the locality 
property. So, universality does not hold here either.

Remark: The same construction can of course be performed if the domain has finitely 
many holes. The only thing that changes is that each hole has to be colored.

In the case k ^  6, we might want to do the same construction; but since we do not 
have the locality property, the obtained law on curves will not be conformally invariant.

5.1 .4 Percolation in the annulus

There is something else we can do related to critical percolation in an annulus, namely we 
can try to obtain crossing probabilities for rectangles with holes in them. In the simply
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connected case, this was done by Smirnov ([44]), and we will study what his proof can say 
about crossings of an annulus.

So, consider a simply connected bounded domain Q, and let A  be a compact subset of 
such that f i \ i i s a  conformal annulus, and split the boundary of Q into three intervals 

d\ , d2 and d$ (and define d\ = d\, d$ = d2 for easier notations).
Consider critical site-percolation on a discretization of Q, \  A  by a triangular lattice, 

with wired boundary conditions along dA, and as in Smirnov’s paper, if z is the center of 
a face of the lattice, define Hf(z) to be the probability that in this discretization there is 
a closed simple path joining <%+1 to di+2 and separating di from z.

We can apply the same arguments as in the triangle: By the Russo-Seymour-Welsh 
technology (cf. [19]), all the H f can be interpolated into uniformly Holder functions on
A, so they form a relatively compact family and it is sufficient to prove that there is exactly 
one possible subsequential limit to obtain convergence. And besides, any subsequential 
scaling limit (h i,h2,h 3) of the triple as 5 goes to 0 is a “harmonic conjugate
triple” in \  A, by exactly the same proof. We also obtain the same boundary conditions 
along dQ., namely hi is identically 0 along di, and on di+i and di+2 it has Neumann boundary 
conditions with angle 27r/3 away from di.

The new fact here is the behaviour of the H f on the boundary of A. Using the Russo- 
Seymour-Welsh technology, we obtain uniform continuity on the boundary as 6 —> 0; 
and besides, if z and z' are the centers of two adjacent faces on dA, we clearly have 
Hf(z) = Hf(z') for all i and <5. Hence, if (hi, h2,hz) is any subsequential scaling limit of the 
triple (H(,H$,H$), then each of the hi's is constant along dA (this would be "tangential 
Neumann conditions"). Note that the constant here corresponds the probability that there 
is a closed path from di+i to <9i+2 separating A  from dit but none of the arguments we 
used up to now seems to give a way to compute it explicitly.

In short, and stated in the equilateral triangle T  with vertices a = —i, b — (1 -M \/3)/2 
and c =  (—1 +  i\J3)/2, with dx =  [be], d2 — [ca] and d3 =  [a&], h has to be a solution to 
the following problem:

/ix(a) =  1;
hi(z) =  0 for all 2 £ [bc]\ , ,

< dhi/dx  =  0 on [a&] U [ac]; 
hi(z) = hi(z') for all z, z’ £ dA.

But this problem is not well-posed, and in fact it is easy to use the maximum principle to 
show that for every u e R it has exactly one solution taking the value u on dA. So, the 
method is not sufficient to compute crossing probabilities — however, it will suffice if we 
know how to compute the value of the constant by another method, typically using SLE 6 
in the disk.

Actually, it seems that this degree of freedom on the value of hi along dA plays the 
same role as the ones which appeared in the construction of SLEs/3 and SLE& in the 
annulus, and it is related to the absence of universality in the non-simply connected case
—  or, which is equivalent, to the ability to perturb a measure on random curves globally 
according to the side of A  on which it passes.

In the general case of a domain of genus k e  N, if a and b are two points on the exterior 
boundary of the domain, there are exactly 2k homotopy classes of simple curves from a

« i ,  h l  » i:

(5 .6 )
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to b, so the set of probability measures on such curves with the correct Markov property 
should be a simplex of dimension 2k -  1, i.e. we will obtain 2k — 1 degrees of freedom 
instead of 1. There will always be particular cases such as SLE$/3 in the whole domain 
conditioned not to touch the holes, but they all require a way to fill the holes in order to 
retrieve universality from the simply connected case.

5 .2  S L E  as k  te n d s  to  0 o r oo

We investigate in this section the behaviour of SL E  when its parameter tends to 0 or oo, 
at time 1; and since SL E  is defined pathwise with respect to the driving function, we will 
do the same here and consider the Loewner chain driven by y/nB t , letting k tend to 0 or
oo for a fixed B.

It is easy to see that in the first case, K\ converges a.s. to the vertical segment [0,2*] 
in the Hausdorff metric, whereas in the second case it will spread along the real axis. 
Hence, we will have to renormalize it differently in both directions if we want to describe 
a nontrivial limit — and in particular this limit will not be conformally invariant at all. It 
will be more convenient to run the equation backward, i.e. to write it as

dtgt{z) =  , ' 2 /—p
9t(z) -  V ^B t

where B  is a standard Brownian motion. Indeed, this ensures that gt(z) is defined and 
differentiable in all variables on the domain z e  H, t ^  0. Note that, due to the time- 
reversibility of Brownian motion, the conditional distribution of gt knowing ¡3t here is the 
same as that of the reciprocal map in the usual setup, up to a translation by (3t — so any 
information we can obtain on the image of gt will actually hold for standard SLE.

5.2.1 Small values of k

Let us consider first the case k ->■ 0 — which is both easier and less interesting. Let 
e =  ifk , and to make things nicer, map the upper-half plane to the slitted plane by the 
map z !->• z2. Then the conjugate g of g by this application satisfies the following equation 
(SLE  in the slit plane C \  R):

« ( * )  = 1 ' ‘.a, ■ <5J)
-v/jfW

Note that in this case, the solution for a constant driving function (i.e. when e = 0) is 
given by g®(z) = z — 4t\ for small values of e we will obtain a perturbation of this solution.

On the domain z £ [0, +oo), t > 0 the solution is differentiable in all variables; differ
entiating (5.7) with respect to e, at the point e =  0, gives

9 , d , m \ ^  = ^ = § 5 .

Integrating then with respect to t provides the following expansion:

r1 4R
gl(z) = z - 4 t  + e / *— ds +  o(e), (5.8)

Jo v -2 -  4s

- 4
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where the term o(e) can be seen to be uniform in z. Now renormalize by simply multiplying 
the imaginary part by e~l , not touching the real part. All perturbative terms then disappear 
in the limit, except for the imaginary part of the above integral. Focusing on points 
z € [0, oo) (which are mapped to K t U [0, oo) by gt), this imaginary part is non-zero 
only for s > z /4. Hence, in the limit, the renormalized version of K t has the following 
parameterization:

rt 4 r
x = z - 4 t ,  y =  rf  ds, z G [0,it]. (5.9)

Jz/4 v4s -  2

For nicer notations, define the following functions:

bt(s) =  4Bs/4l ^ t, (p(s) =

With these notations, we proved that the renormalized curve converges, in the Hausdorff 
metric, to the curve of equation

y = (bt *ip)(x + 4.t), x e [-At, 0]

where * is the usual convolution operator. In other words, the curve of an SLEK for small 
values of k, when renormalized correctly, converges to the graph of the convolution of its 
driving Brownian motion by a fixed kernel.

In particular, this renormalized SLE  is the graph of a continuous function. An inter
esting question arises here: Under which conditions on the driving function /? does the 
Loewner evolution lead to a graph? The same approach as above shows that, if we let 
/3t = e f(t)  for some fixed continuous function / ,  the rescaled trace converges to the graph 
of the convolution of /  and the same kernel ip. But it is also possible to look at the real 
part of gf(z): If /  is Holder with exponent greater than 1/2, then for small e this real part 
becomes monotonous in x  along horizontal lines {x +  iy} for fixed y. In particular, K t 
itself is a graph for sufficiently small values of e.

In the case of SLE , the opposite happens, because B  is not smooth enough. It is 
actually possible to compute the winding exponent of the curve as a function of k , and to 
prove that for all values of k this exponent is positive. Since it is equal to 0 for a graph, 
this proves that for every k > 0, with probability 1, K t is not a graph.

5.2 .2 Large values of k

When k tends to oo, SLE K tends to spread along the real axis, so that (at fixed time) its 
width is of order ^/k, and its height of order l/y /ii. Let K* be K t renormalized so as to 
cancel this spreading; namely,

$ K(z) =  +  ¿3f(«)V«,
v ^

K i =  <M Kt).

We renormalize gt in the same fashion, i.e.:

v R

9t =  ^ o g t o ^ 1.

S(z)
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Note that the renormalized g£ is not conformal anymore; separating the real and imaginary 
part and writing g£(x + iy) =  X f  + iYtK, then (X?,YtK) is the the unique solution of the 
following system of ODE’s:

- 2  2Y, 
‘ ‘ k (X, - e ,)2 + Y ?/k ' ‘ ‘ tc(Xt — B t)2 + Y 2/ k

with initial conditions X* — x  and YoK = y. The problem here is that we cannot describe 
a solution "at k =  oo” and apply the same perturbative method as in the case k -» 0, so 
we need to do everything by hand.
Proposition 5.3 :

Let (Lf) be a bicontinuous version of the local time of B  at point x  and time t. 
Then, as k tends to infinity, we have almost surely

X t = X Q +  o(l), Yt = Y0 +  2tt L f°  + o(l), 

where the terms o(l) are a.s. uniformly small on all the sets

At0,y0 — {.(x iVit) : t t0,y  ^  y0 > 0}.

H  First, replace the differential system by its integral counterpart, i.e. in
troduce the following operator:

[£«(*, Y%  = ( x ,  - 1  k ( x ^ i  g y  +  yi2/Kdu' Y° + I  K(X . -  Bu)2 +  r 1? /» d“)  •

Then, conditionally to B, (X K,Y K) is the unique fixed point of CK. So we 
need to study the behaviour of CK as the parameter k goes to infinity and 
from that to obtain information on its fixed point.

The morale is then the following: it is very easy to see that if (/*) is a 
sequence of continuous functions on [0,1], each having a unique fixed point 
xk, and if the sequence (/*) converges uniformly to a constant x, then (xk) 
converges to x  also. We lack several of the hypotheses to apply such a result 
directly here, but will prove that indeed the operators CK do converge to a 
constant, and that this is sufficient to conclude.

Fix x  +  iy e  H and a pair (X, Y) of continuous functions with X 0 = x, 
Y0 = y and such that Y  is positive. The first remark is that the second 
coordinate of CK(X, Y) is always increasing, and since we are interested in 
fixed points we shall assume from now on that Y  itself is non-decreasing. In 
particular, for all t ^  0 we can assume Yt ^  y.

We first study the first component of CK(X, Y), which we will denote by 
X . From the definition of C, we know that X  is differentiable with respect 
to t and we first obtain (using the reknowned 2ab ^  a2 + b2 inequality):

^  1 2 (|X, -  (Y./V*) „  1
'S A I  < Yt 4 X , - B , ) 2 + Y 2/ K < y (5'10)

- 2  ( X t - B t)

- B t
(5.10)V«)

2YU
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Hence, X  is Lipschitz with a constant that depends only on y. So from now 
on, we may assume that X  too is (l/y)-Lipschitz. We will need the following 
result:
Lemma 5.1 :

Let (Bt)ter  be a standard real-valued Brownian motion, and let C 
be a fixed positive real number. Then, with probability 1, there exists 
K  > 0 such that, for every C-Lipschitz function /  : [0,1] —> K and 
every e > 0, we have

A {t G [0,1] : | / (t ) — B t | ^  e} ^  K s

(where A is the Lebesgue measure on [0,1]).

Ill This is a direct consequence of a result by Bass and Burdzy on Brownian 
local times along Holder curves. More precisely, they prove in [4] that L{ 
defined for every continuous function /  as the limit, when e vanishes, of

1
L t  ( £ )  =  2 ^  J  Îs s- /(S)I<£

is almost surely bounded on the class Sa of all Holder functions of some fixed 
exponent a > 1/2 from [0,1] to [—1,1], and that it is jointly continuous as 
a function of (t , / )  € [0,1] x Sa. Hence, by a compactness argument, the 
collection of all L{(e) over (i, f , e ) e [0,1] x Sa x (0,1) is also bounded, thus 
proving the Lemma. Hj

Let a e  (0,1), and DK(X) — {t e  [0,1] : \Xt -  B t \ < K~a}. Split the 
integral defining X t -  X 0 into two parts:

~ X J  g  / ‘ K(X {XB y  B+ y V kAu =  /  + f  “ W +  i2)-Jo K(AU--£>U) +  YU/K J[0,t]nDK J[0,t]\DK

The first term can be estimated using the previous computation: it is indeed 
not greater than the integral of 1/y over DK(X), and by Lemma 5.1 we 
obtain

(1) < -A (Dk(X)) < - K ~ a 0.
y y k-> oo

The second integral is also bounded above from the very definition of DK(X):

(2) < /  ( Y dUpt \ ^  °-J[0,t]\DK KKX U -  Bu) /Ĉoo

So, with probability 1, X  — X 0 converges to 0 uniformly in t and X  as k  goes 
to infinity. Hence we get the first part of the announced result in a refined 
version: as k oo, almost surely,

X tK =  X* + 0(«T1/2) (5.11)

by taking a — 1/2 in the previous estimates. Moreover the implied constants 
are uniform in t £ [0,1] and (but they strongly depend on y).x

2 \XU -  Bu\

2 d u
2 i/i“- 1
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We still have to obtain the behaviour of the second component Y  of 
CK(X ,Y ). Look first at what happens when X  and Y  are constant. By the 
occupation times formula, we have almost surely

rt 2 Y  f°° 2 Y
Yt - Y 0 = / —¡—-----p ■ \°2 v2 , du =  ——------ °- L*da;.

« (^ o -  +  *¿7* ^-oo k(x 0 -  x )2 +  y02/«

By the change of variable re =  X 0 + zY0/ k , we obtain

/

OO njr^0^o/K

and by dominated convergence, as k tends to oo, this leads to

v f°° dz v
Y , - Y 0 -> 2L?° — — = 2 xL?‘ .

K̂ °° J-oo 22 +  1

Since we know that Y  is increasing, Dini’s theorem can be applied to show 
that the convergences is almost surely uniform in t.

In fact, the same proof applies to the case when Y  is not constant, 
approximating it by a piecewise constant function and noticing that the 
above limit did not depend on the value of Y0. If X  is not constant, using 
the definitions in [4] and the fact that X  is supposed to be Lipschitz anyway, 
the same computation actually shows that

Y , - Y 0 2ttL?
K—>00

(or, and this is equivalent since we are assuming that X  is Lipschitz, still by 
the results in [4], we can write this limit as the local time at 0 of the process 
(Bu — X u)). It is then a consequence of the continuity of L f  in X  that, if X  
now depends on k in such a way that ||X — arlloo tends to 0 when k tends to 
oo, we obtain the same limit for Yt — Y0 as in the case when X  was constant.

So, combining the convergence of X  to a constant and that of Y  to a 
known function when X  is constant, we obtain the first step of the proof: 
Let X%° =  x  and l^00 = y + 2itL*, then for each pair (X ,Y )  of continuous 
functions with Y  positive and increasing, with probability 1,

[CK o A jp r ,  Y) ->• (x°°, f°°)

as k —y oo, uniformly in i € [0,1].

It is easy to use the same method as when proving that X  is Lipschitz, 
to obtain the following estimate: For all continuous functions X , Y , X  and 
Y  with the usual restrictions and initial conditions, for all t € [0,1], and for 
every norm || • || on R2, we have

II[CK(X ,Y )]t -  [£*(*, r)]t|| ^  [  \\(X, -  X S,YS -  Y.)W dtt,
Jo

Ÿ t - Y 0
z2 +  1

dz,

CK
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where the constant CK depends only on k and y. This shows that the 
operator CK is locally Lipschitz with respect to the supremum norm.

The inequality can then be applied recursively (as when proving the 
Cauchy-Lipschitz theorem): If £" denotes CK composed n times, we ob
tain, for all t > 0 and n e N ,

||[£” (X. y% -  [£” (* ,  50M « ^ \ \ ( X , Y )  -  ( X ,y ) iuI Vm

thus proving that in fact £ ” is Lipschitz with constant C”/n! on the space 
Si/y of pairs (X , Y) of continuous real functions on [0,1] with Y  > Y0. 

Hence, it is possible to chose nK ^  2 for all k in such a way that QK =  
be 2_K-Lipschitz. The same proof as previously then shows that for all 
(X, Y), with probability 1,

gK( x , Y ) ^ ( x , f )

uniformly in t G [0,1].

Recall that (X K,Y K) is the unique fixed point of CK. Then, (X K,Y K) is 
also the unique fixed point of QK (which is contracting because k > 0). So 
we obtain:

| |( x K, y K) -  (x ,y )||oc  =  ||Gk(x k, y k) -  (jr.y )!!»

^  IIgK(x*,Y*) -  gK(x, y)||oo +  IIgK(x,y) -  ( x , y ) i u  

^  2 -K||( x K, y K) -  (*,y)||oo +  II&(*,y) -

< 2—|| (X K,Y*) -  (X ,y ) ||00+ 2 - 't ||(X ,y ) -  (s,y)||oo+ || gK(x ,y )~  (x,y)||oo. 

As soon as 2~K < 1/2, i.e. k ^  1, this leads to

II(X « ,Y K) -  (X ,y ) |U  < 21-«\\(X ,Y) -  {x,y)\\00 + 2\\gK{x,y) -  ( X ,y ) |U

and we know that the right-hand term of this inequality tends almost surely 
to 0 as k  tends to infinity: So we obtain the announced result, that with 
probability 1, (X K,Y K) converges to (X ,y ), uniformly in t G [0,1].

Uniformity in (X, Y ) then follows from the fact that all the estimates we 
used were indeed uniform, and that all the constants depended only on y. j j

Now, let K  be the local time shape of B, defined as

K ± { ( x  + iy ) : L xl > 0 , 0 ^ y ^ L i }

and \et z = x + iy be a given point in El \  if. Let y0 — y — 2nLf. From the previous 
Proposition, we know that there a.s. exists k0 > 0 such that, for each k > k0 and each 
w satisfying ^  y0/2, we have |g*(w) -  w + 27riLfy\ < y0/ 4. In particular, this implies 
that the image of the line of equation $sw = y j 2 under gf passes below z, hence z is not 
in iff . This proves that the limsup of the if f  is contained in K.

To prove that (iff) actually converges to K  in the Hausdorff topology, we still have 
to prove that it fills up K . Here is a brief description of how to do it. Let z G H be

£ ?

(X ,Ÿ)

$sw

(XX. oo?

( * , ñ i u
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such that there exists a sequence («*) tending to infinity satisfying, for all k, z £ K*k. 
This means that we can look at the backward differential equation (i.e., the usual SL E  up 
to a horizontal shift by Pi) starting at z for the parameters Kk, and that this differential 
equation has a solution up to time 1.

So, let (ipz,k) be the backward solution, defined by

<PzAt) =  [9\-t ° (tfi“ )“ 1] (*)

(so that (pZjk{0) =  2; and ^ ( ^ ¿ ( l ) )  =  z). The methods used in the proof of Proposi
tion 5.3 can be adapted (and this is where the details are still a little sketchy) to prove 
that, as k goes to infinity, we have almost surely, for every t e [0,1],

<PzA*) ^ z ~  -  L f l t)

or, in other words, that the backward flow in the limit involves the local time of the time 
reversal of the driving process. Looking at the imaginary part and letting t = 1 then shows 
that ^  2%Lfz, i.e. that z is not in the interior of K . So, the liminf of the K£ contains 
the interior of K , thus completing the proof.

As a side remark, one can look at the time parameterization of the usual SLE. Recall 
that, if K  is a hull in H, (1^) a planar Brownian motion and T  the first hitting time of 
R U K  by Y, we can define

a (K )=  lim I  Eiy (%Yt )
y-++oo 2

(where iy is the starting point of Y), and that SL E  is then parameterized by a(Kt) = t. 
Now, if /  is a nonnegative continuous function with compact support, define the hypograph 
of /  as

K f  = {x + iy € H : f(x )  > 0,0 ^  y ^  f(x )} .

Heuristically, if K  = K f  and the supremum of /  is very small, then the distribution of 
the real part of YT is close to the harmonic measure on M seen from iy, i.e. it is close to 
a Cauchy distribution with density

I X 2/APy(X) =  -Y~---
x2 + y2

This shows that the capacity of K f  can be estimated by

and by dominated convergence this last integral converges, as y goes to oo, to the integral 
of /  against the Lebesgue measure. So, still heuristically, if K f  is a very flat hypograph 
along the real axis, we have

a(Kf) -  h  / I / w  ix  =  r 1 -

In the case of SL E  for a large value of k, we have a(K\) =  1 by definition, and the 
convergence to the hypograph of the local time implies that the area of K x converges to 
the integral of 2ivLf — which is equal to 2ir because the local time is the density of the 
occupation measure.

a(K .)
1

27T

*+oo

—oo
m á x  = ^ M .

-  2tt¡ ( i f  -  i f f , )

y2
x2 +  y2

da;,/(*)
»+oo

27r —oo

1
a(Kf )

^sz
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5 .3  D is c re t iz e d  S L E

We describe in this section a discrete version of the SL E  process. The idea is to approx
imate the driving process (3t by a random walk, interpolating it by constants between the 
jumps (so that in particular the driving function is not continuous anymore). From here 
on, (Sn)nzo will be a standard RW on Z, starting from 0, with steps in {±1}, each with 
probability 1/2.
Definition :

Let e > 0, and define /?e as follows:

Pt =  VeS[t/£l.

Let k > 0, and K e be the Loewner chain with driving function y/K,(3e. We call K s a 
discretized SL E  process with parameter k and scale £.

It is easy to use Gronwall’s Lemma to prove the following approximation result. Let 
(/?") be a sequence of cadlag functions converging uniformly to p, and (g") (resp. (gt)) be 
the Loewner chain with driving function /?n (resp. ¡3). Then for each z 6 H \ K t , g?(z) is 
well defined for n large enough and

9t(z) 9t{z).

Moreover, the convergence is uniform on every compact subset of H \  K t. Hence the 
sequence of domains (H \  K ") converges to H \ K t in the sense of Caratheodory.

Using Skorohod embedding, we can now fix a decreasing sequence (era) tending to 0 
and couple an SLE K and a sequence (K £n) of discretized SLE k's with scales en, in such 
a way that their driving functions converge to that of the SL E  when n tends to infinity, 
a.s. uniformly on any bounded time interval. Then, at each time t > 0, the sequence of 
discretized S L E 's converges to the usual SL E  (still in the sense of Caratheodory).

It is therefore natural to look at the geometry of discretized SL E  and in particular how 
it depends on the value of k. Note first that, by the scaling property of Loewner chains 
in the half-plane, the law of e~xl2K eu does not depend on e — so we shall fix e = 1 in 
what follows, and look at K] for integer values of £; so let K n =  K \  and let gn be the 
corresponding conformal map.

At time 1, we always have gi(z) = y/z2 + 4, i.e. K x is the vertical segment [0,2i]. Then 
K  continues to grow from £ f1(-v/7cS'1). Note that gx maps Ki to the horizontal segment 
[-2,2]: depending on the value of «, y/nSi will either be in or outside of [—2,2], and the 
shape of K 2 will be different in both cases. More precisely:

• If k < 4: ^ ( y / i i S i )  is on K\, hence k 2 looks like a tree with two branches. 
Inductively, K n+i will be obtained from K n by adding a branch on the last branch of 
K n, and K n will look like a broken line with spines. In particular, K n n R  is always 
reduced to the origin.

• If /c =  4: The second branch of k 2 will start from 0, and inductively, so will every 
subsequent branch of K. Hence, K n will be a union of disjoint curves in the upper- 
half plane, all starting from 0.
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• If k > 4: The second branch of K 2 will start from ±y/n — 4, i.e. k 2 consists of two 
disjoint curves, starting from two different points on the real axis. In this case, K n 
will be a forest of (many) disjoint trees in the upper half plane. In particular ^ n n l  
is never a single point for n > 1.

In particular, we observe a change of geometry when k gets bigger than 4, similar to 
the transition between a simple curve and a curve with double points for the trace of a 
standard SLE; it is interesting to notice that they both happen for the same value of k.

However, simply looking at the geometry of the discretized SL E  cannot provide a 
proof of the existence of a transition at k =  4, for the following reason. Let (Xn) be a 
Markov chain in {±1}, with transition matrix

'1/2 + a 1/2 -a'
1 /2 - a  1/2 +  a:

and with initial distribution P (X i =  1) =  P (X i =  -1 )  =  1/2, where a  is a parameter in
(-1 /2 ,1 /2 ), and as previously let Sn =  X \ H-------\-X n. We can define a Loewner chain
with driving function

=  V teS w .  j,

and the geometry of the associated compact will be the same as that of discretized SLE 4 
(i.e. it will be a union of continuous curves in H starting from 0).

But when e vanishes, f3s,a converges in distribution to a time-changed Brownian motion 
(BK(a)t)t>0 with

t \ A ^
K{a) =  4 l ^ ;

so that choosing the parameter a  accordingly, we can obtain any standard SLE K as a limit 
of discrete processes which all have the same structure.

It might still be possible to obtain precise results about standard SL E  starting from 
this discrete model, especially in the iid case; but it would probably be a hidden application 
of ltd’s formula, i.e. a transcription of the usual proof to the discrete setup.

Remark: Another way of seeing this construction is to write the conformal map gn(z) -  
(3n as the composition of n conformal maps, each of which is one of the following two 
elementary maps:

g±(z) = \Jz2 +  4 ±  1/ «  ;

if the maps are chosen independently, the composition converges to an SL E  in the scaling 
limit. However, for the same reason as previously, studying the semi-group generated by 
these two maps is not sufficient to obtain informations on SL E  itself. In particular, it is 
probably not possible to derive locality at k =  6 by just studying the interactions between 
the Which is a pity, because it was a very natural thing to try . . .

(s,a)
ßt
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A p p e n d i x  A  

A l l  t h a t  d i d  n o t  f i t  i n  t h e  m a i n  t e x t .

A . l  H a u s d o r f f  d im e n s io n  o f  ra n d o m  se ts

We give here a self-contained proof of Proposition 3.1. It is easy to extract this proof 
from that of Theorem 2.2, or from the proof of the dyadic analog to be found in [27], 
but the statement of condition 2. used here makes the upper bound easier. This relation 
between exponents and dimensions was first obtained by Lawler.

Suppose that A denotes the Lebesgue measure in [0, l]d. Let (Ce)e>o be a family of 
random Borelian subsets of the cube [0, l]d. Assume that for e < s' we have Ce C Cs>, 
and let C =  f \C e. Define the following conditions (where /  x  g means that there exist 
positive numbers c_ and c+ such that c-g ^  ^  c+g, and where the constants do not 
depend on e, x  nor y ):

1. For all x  € [0, l]d, P (x  € C£) x  es;

2. There exists c > 0 such that for all x £ [0, l]d and e,

P(X(Ce n B(x, s)) > csd\x e C s) ^ c >  0 ;

3. There exists c > 0 such that for all x, y e [0, l]d and s,

P ({x ,y}  c  Ce) ^  ce2s\x -  y\~s.

Proposition 3.1

(i). If conditions 1. and 2. hold, then a.s. d im # ^ )  ^  d — s;

(ii). If conditions 1. and 3. hold, then with positive probability dimtf(C') ^  d — s.

H As usual, the proof of the upper bound is done by giving an explicit 
covering of C by small balls, and the lower bound is obtained by constructing 
a measure supported on C.

(i). Fix e > 0, and a covering (B i) of the cube [0, l]d by 2d£~d balls of 
radius s. Combining conditions 1. and 2. shows that for all i, the probability
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that C£ touches is not greater than C.es. Hence, if Ne is the minimum 
number of balls of radius e needed to cover Ce, we obtain

E(Ne) < C.£-2es.

Applying the Markov inequality proves that, for all 77 > 0,

P(Ne ^ £s- 2~n) ^ Ce1'.

Now, let £ =  2_n for n e N . Since the sequence (2~m,) is summable, we may 
apply Borel-Cantelli: Almost surely, there exists n0 such that, for all n ^ n0, 
we have N2-n ^ 2^~s+^n.

Since we are assuming that the family (Cs) is decreasing, any covering 
of Ce is also a covering of C. Hence, the previous estimate can be expressed 
as follows: Almost surely, for all n large enough, it is possible to cover C 
with at most 2(2~S+T?)n balls of radius 2_n. Hence the box dimension of C is 
a.s. not greater than 2 — s +  77. Letting 77 go to zero, we finally obtain that, 
with probability 1,

dim# C < dimbox C ^ 2 — s.

(ii). This is exactly the same proof as that of the lower bound in The
orem 2.2, so we only state the main steps of the proof. Let (/xe)e>o be 
measures defined by their density with respect to the Lebesgue measure :

d¡ie(x) =  £~st xeCe ddx.

Condition 1. leads to £'(||yu£||) x  1, and it is straightforward to apply condi
tions 1. and 3. to derive

Var(|H |) ^ E(\\fj,e\\2) =  0 {1)

as e goes to 0. Hence, for a  small enough, we have P(||//£|| > a) > a  and 
with probability at least a  we can extract a subsequence (/iSk) converging 
weakly to a measure of mass at least a  supported on C. Hence C is not 
empty (which in itself was not clear).

Now, for each r > 0, define the r-energy of ¡ie as

c t f f  dM v )  
tr[fis)~ j j  \y - x \r  '

Again, condition 3. can be used to show that, for every r < d — s, the 
expectation of Er(fj,e) is bounded when e goes to 0, hence it is smaller than 
C /a  with probability at least 1 — a /2  if C is taken large enough. So with 
probability at least a /2 we can extract a subsequence (fj,Sk) of measures all 
having mass at least a and r-energy at most C /a. Up to an additional 
extraction we can assume that this subsequence converges to a measure ¡j, 
supported on C and having the same characteristics.

But it is known that a set supporting a positive measure of finite r-energy 
has Hausdorff dimension at least r (because such a measure is automatically

dn£(x) dfjie(y)A(¿O
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a Frostman measure of dimension r — cf. for instance [40]): So with prob
ability at least a/2, we have d im ^C ) ^  r, and this holds for each r < d — s: 
hence, still with probability at least a /2  > 0, we have dimff(C') ^  d -  s, as 
we wanted. //

A . 2 S L E  a n d  H o ld e r  d o m a in s

We present in this short section two lemmas about Holder domains, together with a con
struction (essentially due to Peter Jones) of a natural measure supported on the boundary 
of such a domain. It might be possible to exploit this construction to obtain a Frostman 
measure of the correct dimension, and hence to derive the dimention of an SL E  boundary 
in this way — thus providing a better (as in “more natural for an analyst”) proof of Theo
rem 4.1, at least in the case k < 4. The tools presented here are not new, but neither are 
they widely known among probabilists.

A .2.1 W hitney decompositions of Holder domains

Let ft denote a simply connected, open and bounded Holder domain with exponent a  > 0, 
containing the open disk B (0,1) (meaning that the conformal maps from the open unit 
disk onto ft are all Holder with exponent a). A Whitney decomposition of ft is a family 
of dyadic squares

_  kj +  1 x Ij +  1
j [2ni ’ 2 n J J  [ 2 n > ’ 2 n J

whose interiors are pairwise disjoint, whose union is dense in ft, and such that the ratios 
l(Qj)/d(Qj,dCl) are bounded above and below. Note that this implies that the family is 
locally finite in ft, and hence that the union of the Qj is actually equal to ft. We call 2~n> 
the size of Qj and denote it by l(Qj)\ moreover we will introduce the center Zj of Qj, 
defined by

z\ 2 kj -f-1 .21 j -f-1
zi =  2»y+i +  * 2ni+1 ’ 

and for each C > 1 we can now define the enlarging of Qj by a factor C, as

CQj = {zj + C(z -  zj), z e Q j} .

The first Lemma states that we can cover the boundary of ft by enlarging all the Whitney 
cubes of a given approximate size:
Lemma A .l (Jones et al. [20]) :

Let {Qj} be a Whitney decomposition of ft. Then, for all e > 0 there exist C > 0 
and n0 > 0 such that, for all n >  n0,

5ft C ( J  CQj.

H Let ft be a simply connected domain, and for all z € ft, let 5(z) =  
d(z, 9ft) be the (Euclidean) distance between z and the boundary of ft.

2-(l+£)n (̂Qi )^2-n
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Assume without loss of generality that 0 G and <5(0) ^  1. Let G(z) be 
the Green function in with pole at 0. It is a general result [9, Theorem 7] 
that, for all z 0,1/2),

G W < C 0e x p [ - i £ M ]  (A'l)

where is the geodesic from 0 to z in — even if is not Holder.
We prove the Lemma by contradiction; assume that there is s > 0 such 

that, for all B  > 0 and all n0 > 0, there exist n ^  n0 and x  G dQ, satisfying

'iz G 7s, 2-<1+£>" < \z -  x\ ^  2~n = >  6(z) ^ ^ \ z - x | (A.2)

(so that x is not in the Whitney cube at z enlarged by a factor B). Let 
A =  1 +  e and z' G 7* such that \z' -  x\ =  2-An. By (A.l), we have

G ^ K C . e x p i - i  f
 ̂J2~(1+e)n K x\

f B [ 2~n dsl
< C0 exp - -  / —

A J2- (1+e)n ^

= C„exp - | n e l o g 2 = C02"”B'/2. (A.3)

But it is easy to see that, since Q, is a Holder domain,

Vz G 7x, G{z) ^  Clz -  z |1/q (A.4)

(because we know that the Green function in the unit disk decays linearly 
near the boundary, and that it is mapped to G by any conformal map from 
U onto fixing the origin). Applying this at point z' and using (A.3) leads 
to

C 2-An/a ^  C^ 2-nBE/2'

Since this happens for arbitrarily large values of n, it implies that

B i  (A.5)
as

Hence the assumption cannot hold for all B > 0, and this proves the Lemma 
for C = A/as. j j

Remark: The minimal value of C such that the lemma holds is difficult to determine in 
the general case, because the bounds we used in the proof, especially Equation (A.l), are 
far from being optimal in the Holder case. The constant we obtain is of order 1 /sa , and 
this might lead to trouble when we apply the construction to SL E  — because the value 
of a  and then that of the Holder norm (related to C in Equation (A.4)) are unknown. In 
particular, it is not clear how to state the lemma for a random domain; the nicest version 
would be the existence of C > 0 such that the union of the CQj over the same collection 
of cubes covers dQ with probability 1, but this is hoping for too much . . .

fi
fi

z £ fi

fi fi

B|dC

2(1+ e)

IC- 2
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For every subset A of ft, introduce the shadow of A  as

Shadow^) =  {z G f t : 7* D A  7̂  0 }

where 72 is the hyperbolic geodesic from 0 to z in ft. Then the second Lemma says that 
the number of Whitney cubes of given size whose shadow touches a given ball centered 
on 9ft it bounded above:
Lemma A.2 (Jones et al.) :

Let {Qj} be a Whitney decomposition of ft. Then, for all s > 0, there exists C > 0 
such that the following happens: For all x e 9ft and r  > 0, the family T x^ e of all 
the cubes in {Qj} with sizes in [r, r l~e], whose shadow touches i l n S ^ r ) ,  has at 
most r~2e elements.

Moreover, B(x,r) in entirely contained in the union of the shadows the elements
Of J~r.,r,s ■

H Let a; be a point in 9ft. For any 2 € ftflB(a;, r), the construction in the 
proof of the previous Lemma provides a Whitney cube Qj^z) with center in 
B (z ,r l~e) and size in [ r ,r1_£], whose shadow contains 2. Hence the union 
of the Qj(z) contains ft n  B(x,r). Each of these cubes has area at least r 2, 
and they are all contained in B(x, r 1-£) by the triangle inequality. Since they 
are pairwise disjoint, this implies that there are at most r~2e of them, as we 
wanted. II

A .2 .2 Construction o f the Frostman measure

Now let /  be a conformal map from the upper-half plane Et onto ft, and let {Qj} be 
the standard dyadic Whitney decomposition of EL As usual, zj will denote the center of 
Qj. If n > 0 and Qj, Qjo are two Whitney cubes, write j  -<n j 0 if Qj if below Qjo and 
l(Qj) — 2~nl{Qj0) (i.e. Qj is in the n-th generation below Qj0). Introduce the following 
notations: For each cube Qj, let fQ j  be its image under /  (that is, fQ j = f{Q j), but we 
keep the former to agree with the usual notations); and if Qjo is a Whitney square and if 
d>  0,

D (j0, n , d ) ^ 2 - ’'<‘ \ f ( z iJ \ - d £  |! '(z j)\d ^ l U Q , X d £
J“<njo Ĵ njQ

Assume first that for some j 0 and d > 0, D (j0,n, d) tends to 0 when n tends to infinity. 
We can apply the definition of a Whitney cube and Kobe’s 1/4 Theorem to show that the 
diameter of fQ j  is of order 2~n\f'(zj)\, so that Lemma A.l provides us with an explicit 
covering of the shadow of fQ jo on dft by sets (A k) of uniformly small diameter, and 
satisfying

Y diam(Afe)d+s ^  C.D(j0,n ,d).

Letting n go to infinity, and then e to 0, this shows that the Hausdorff dimension of the 
shadow of fQ jo on 9ft is at most equal to d. If this holds for every j 0, we finally obtain 
dim# (dft) ^  d.

b }Q j
d
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We are going to argue that, under some assumptions on / ,  it is possible to prove the 
opposite implication — namely, if D (j0,n ,d ) 0, then dim^i'dO) ^  d. Note that this is 
most certainly false in the general case.

If n is given, the following holds:

D ( i„ 2 n ,d ) = 2 - ™ \ fX z ,X d E  E l^ 'fe ) !"
k-<nj0 j<nk

= 2 - nd\ n ^ X d E  i ^ ) i "  f a - ^ ' i / ' w r ' E  i ^ i “
k<njQ j-<nk

= Y ,  \f'(z t )\dD (k,n ,d).
k~<njo

Assuming that D (j,n ,d ) does not depend on j  (which is quite natural if Cl is a fractal) this 
would imply that D (j,2n,d) = D (j,n ,d )2. In the case of SLE , the natural version of the 
hypothesis would state that the D(j, n, d) have the same law and are not strongly correlated 
(in a sense to be specified eventually, and which will likely be similar to condition 2. in 
Proposition 3.1 with milder requirements). For now, assume that the following holds:

(C) 3d, 3n0, 3j 0, Vn ^  n0, Vj -< j 0, D (j,n ,d )  ^  1.

We then construct a Frostman measure on 9f2, as follows. Fix d, n and j 0 according to 
condition (C ), and let //0 be the Lebesgue measure on fQ j normalized to have mass 1. We 
construct a sequence of measures (fj,k) inductively, as follows. Assume nk is constructed. 
Then fj,k+1 is the unique measure supported on

Supp(//*+i) =  ( J  fQ j,

proportional to the Lebesgue measure on each of the fQ / s  and such that, if j  -<n I -<kn j 0,

Vk+iUQj) =  ^ .w Vk(fQi)-

In particular, for all k, ¡xk has total mass 1, and besides any subsequential limit of (/j,k) is 
supported on 50.
Proposition A .l :

Under condition (C ), the following hold:

(i). For all s > 0 there exist k0 > 0 and C > 0 such that, for all k ^  kQ and all
J ~̂ kn j  »

ftt(iQi) < c  i{}Qj)d~'\

(ii). The Hausdorff dimension of dQ, is not less than d.

H  (i). We prove this by induction on k. Note that the denominator in the

2 r

ßk+l(fQj)
KfQiY

ßkifQi)-

—nd

nJo[k+1)

—d
(■Z30
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l*k+i(fQj) <  1 Hk(fQi) 
l U Q iY  "  D ( l , n , d Y  l i f Q t Y ’

(A.6)

Now we are assuming that D(l,n,d)  ^  1 for all /, and the estimate follows.
(ii). It is then easy to apply Lemma A.2 to prove that any subsequential 

limit of the sequence (/xk) is then a Frostman measure of dimension d -  (3 +  
d)e supported on dQ. But we know in advance, by a compactness argument, 
that such a subsequential limit always exists —  thus proving that there exists 
such a Frostman measure supported on dQ.

Hence, for all e > 0, we have

Remark: With the particular statement of condition (C ) we kept, the first item in this 
proposition also holds for e =  0, and indeed the proof does not even mention e. We present 
it this way to show that this weaker version still gives a correct lower bound on Hausdorff 
dimensions, so that we could replace condition (C ) by a much weaker estimate. Looking 
at Equation (A.6), the factor on which we need an upper bound will in fact be of the form

with j  -<n I, so that l(fQj)  will tend to be much smaller than l(fQi), allowing D(l,n ,d ) 
itself to be smaller than 1.

A.2.3 Application to SLE

(Beware that this last subsection does not contain any real math and is only a loose 
attempt at giving the embryo of the skeletton of the indication of a proof.)

In the case of a random domain, and hence of a random map, the D(l,n ,d ) are 
random variables; and the proof presented above will work assuming that almost all of 
these variables are greater than 1, or even if for “most” chains

jo ^ n  J l  n 32 n ■>

dim# dQ ^ d — (3 +  d)e,

hence d im ^9fi  ^  d, as we wanted.

definition of ¡j,k+i is equal to

E w / ^ - E  \rUi)\dKQi)d
j f j! ~̂nl

«  H Q iY f 'W -  - ndf ' ( z , r i  £
L 3 ' < n l J

x / ( /$ , ) “£(*, n,d) 

so that, dividing by l ( fQ j)d in the definition of ¡j,k+1,

1 ( i ( f Q i ) Y
D (l ,n ,d) \ l{ fQ i)  J

zi)

3 ' < n l

-d
/ '

j ' < n l

E

l U Q f Y

2' - n d  f t

j ' < n l

l Q i ) d

d
(ZJÌ
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the product of the D (ji,n ,d ) tends to + 00. This is typically the case for a random 
snowflake — but then again in the case of snowflakes it is probably easier to attack the 
problem using harmonic measure and symbolic dynamics, cf. for instance [8, 9, 10].

In the specific case of SLE , a good indication that the method might work is given 
in [42, Theorem 8.3], namely it is stated that if /  is the reciprocal of gi in the case of an 
SLE k with k < 4, then the expected value of

j j

is finite if a > S(k) — I + k/8  and infinite if a ^  S(k). The idea is then to express this sum 
(restricted to cubes sitting below a fixed one Qj — call it Sj0) in terms of the D (j0, n, a): 
namely we have

OO

Sj0 (a) ~  If '(z j0) 1“ Y 1  D tio» « ) •
72—1

Now fix n0 and write this sum as

Sj0{a) x \f(zjo)\aY^ D tio>n>a)-
k=l n=k[nQ\

The above considerations then show that each of the n0 sums appearing should behave like 
a geometric sum of ratio D (j0,n 0,a), meaning that, for large values of n0, the expectation 
of D (j0,n 0,a) should be smaller than 1 if a > 5(n) and bigger than 1 if a < S(k).

Assume that we are in the second case. For all e > 0, we can write

-j —e
D (j0,n 0, a -  e) x  l(fQ j0)~(a~e) E  K fQ j)a~e > cD(j0, n0, a) max l(fQ j)

j ,  A LJ^n0J0■>̂n 0J0

The maximum in the last term tends to 0 as nQ goes to infinity, and this proves that 
as soon as E (D (j0,n 0,a )) is bounded below, E (D (j0,n 0,a — e)) goes to infinity with n0. 
With some luck, this will be sufficient to apply the construction of the Frostman measure 
presented in the previous subsection, for d = a -  e (it does not imply condition (C ), 
though).

So if everything worked out, we would obtain dimff K t ^  a — e for each a < l +  /c/8 and 
s > 0 — hence dim# dK t ^  1 + k/8, which was the difficult part of Theorem 4.1. The 
good point here is that the method seems to be more robust, because we do not need to 
work precisely at d = 5(k) and we may add as many shifts by —e as we wish (to make all 
the terms big enough) and still obtain a lower bound of the form S(k) minus many times e, 
which is still very fine. In comparison, the method we used to prove Theorem 4.1 strongly 
relies on the fact that the exponent s is exactly the same in the conditions 1. and 3. of 
Proposition 3.1.

2~ani f'(zj)a
j

KQi)‘
j

S(a)
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We gather in this chapter the results obtained by an SL E  simulation program, which 
we describe briefly. The aim is to provide a picture of the object, and to see whether its 
aspect is what we would expect from comparison with discrete models. So we present, 
close to each other:

• An SLE 2 with a long loop-erased random walk;

•  An SLE s/3 with a long uniform self-avoiding walk (obtained by the pivot algorithm 
as described in [39]);

•  An SLE 6 with various percolation-type pictures (namely, and in order: critical site- 
percolation on the trianular lattice; critical site- and bond-percolation on the square 
lattice; and gradient percolation).

We end it by an S L E  for a value of k bigger than 10 (indeed having a smoother boundary 
and exhibiting no cut point).

The method of simulation is the most stupid one, using a classical Euler scheme and 
discretizing the driving process into a simple random walk with steps of iy '/c?  over time- 
intervalls of length s. The process is stopped at time 1 and constant afterwards (hence 
the “tail” on the pictures); this is a trick used split Ht into two components (the left- and 
right-hand sides of the tail), whose boundaries are then explored to draw the picture. We 
do have convergence to SL E  in the Caratheodory topology, by Gronwall’s lemma, but it 
is not very fast so there are artifacts due to the discretizations (they are especially visible 
on the SLE 8/z picture).

Note that Marshall also produced pictures of SL E  using his “zipper" algorithm (which 
follows the Loewner chain as a composition of infinitesimal deformations of the domain); 
his images are nicer for k < 4, but crappier for k > 4 — because the zipper method always 
produces a slit domain, i.e. a simple curve.
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ç j

Figure B.l: A Loop-Erased Random Walk (LERW)

?

/-bpww-S3

>i
_______________________s - r ________________

Figure B.2: The path of an SLE 2
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B.2. SELF-AVOIDING WALK AND SLE8/3

Figure B.3: A Self-Avoiding Walk (SAW)

J

f i /

/  ____________
____________________ _ . --------------------

Figure B.4: The path of an SLE 8/3
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Figure B.5: A critical percolation exploration process (picture by Oded Schramm)
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Figure B.7: Big critical percolation clusters on the square lattice 

(left: site-percolation, right: bond-percolation)
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Figure B.8: “Gradient-percolation” on the square lattice
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Figure B.9: The path of an SLE \Q

B .5  T h e  c o d e

All the programs used to produced the pictures in this thesis (except for the percolation 
exploration curve on the honeycomb lattice) are available on the web at the address

h ttp : / /vbeffara .fr e e .fr /b ou lo t/

but we include here the code used to generate the SL E  images.

File Schramm.c: the simulation itself

«include <config.h>
•include <stdio.h>
fincluda <stdlib.h>
«include <math.h>
«include <printout.h>
«define C00(a,b) (2*nn*(a)+nn+(b)) 
«define EC fprintf(stderr,".\n")
«defin« DONTKNOU 0
«define INSIDE 1
«define LEFTSIDE 2 
«define RIGHTSIDE 3
int n,nn,jmax.cnt; 
image *img; 
doublé *c; 
doublé kappa;
int time (int *tloc); 
char real_t(int i, int j)
<

double a,b,d; 
int k;
a=i; b=j; d=0; 
fprintf (stderr, " (Xd;Xd) \r", i, j);
for (k=0;(k<n)Wt(b>0);k++) <
d=kappa / ((a-c[k])*(a-c[k]) + b*b); 
a +« (a-c[k])*d; 
b b*d;
>
if (k<n) return INSIDE;
else if (a<c£n-l]) return LEFTSIDE;
else return RIGHTSIDE;

inline char cleverst(int i, int j) 
char tmp;
if (i>=nn) i=nn-l; 
if (i<-nn) i=-nn;

http://vbeffara.free.fr/boulot/
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if (j<0) j=0; 
if (j>=2*nn) j*2*nn-l;

tmp-img->t £2*nn* j+nn+i] ;

if (tmp==0)

PutPoint (img,i+nn,j.tmp^real.t(i,j));

return tmp;

void bord(void)

{
const int dx[4]»{1,0,-1,0}; 
const int dy[4]*{0,1,0,-1}; 
const int blackmagic[27] ={

1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ,
2,2,0, 2,2,0, 0,0,0,
3,0,3, 0,0,0, 3,0,3,

>;
const char tokeep[4] * {1,1,0,0};

int x,y,d,k; 
char tmp,col; 
char self,right,down;

// Follow the left side ...

x*-nn; y»l; d=0; 
while ((clever_t(x,y) !=LEFTSIDE)&4(y<2*nn) ) y++; 
while (y<2*nn) {
x+=dx[d]; y+=dytd3; d=(d+3)*3;
while ( clever.t(x+dx[d],y+dyCd])!»LEFTSIDE) d=(d+l)*3; 
cnt++;

}
// Then follow the right side ... 

x*nn-l; y*l; d*2;
while ((clever_t(x,y) !-RIGHTSIDE) JkJk(y<2*nn)) y++; 
while (y<2*nn) {
x+«dx[dj; y+=dy[d]; d=(d+l)*3;
while (clever_t (x+dx [d] ,y+dy [d] ) ! »RIGHTSIDE) d= (d+3) *3; 
cnt++;

}
// And now for the dark side: Catch the thin parts ie LEFT->RIGHT 
// and RIGST->LEFT in addition to the fat parts (INSIDE).

// First some stupid filling of "UNKNOWN" points :

for (x=0;x<2*nn;x++) 
img->t[xj»INSIDE; 

for (y=l;y<2*nn;y++) { 
tmp=LEFTSIDE; 

for (x=-nn;x<nn;x++) { 
k=2*nn*y+nn+x; 
col*img->t[k];

if (col— DONTKNOW) img->t [k]«tmp; 
else tmp=col;

}
}
// OK, we have a nice picture. Now for the real black magic, Edge 
// Detection (US$0.02 version). 0=added points, (ie: among itself 
// and its right- and down-neighbours lie at least one LEFTSIDE and 

// one RIGHTSIDE)

for (y=2*nn-l;y>0;y— ) { 
for (x*-nn;x<nn-l;x++) { 

self * img->t [2*nn*y+nn+x] ; 
right * img->t[2*nn*y+nn+x+l]; 
down = img->t[2*nn*y-nn+x];
img->t C2*nn*y+nn+x!I * blackmagic C(9*self)+(3*right)+down-13] ;

}
}
// Last sweep

for (x=0; x<4*nn*nn; x++)
img->t[x] = tokeepC(int)img->t[x]3;

int main (int surge, char ** axgv)

{
int i; 
char s[80]; 
double d, cd;

/* arguments -> kappa et n */

if (argc < 3) {
fprintf(stderr, "Syntaxe : Xs <kappa> <sqrt(n)> [seed]\n", 
argvCO]) ; 
exit(1);

}
sscanf (argvtl],"%lf",ftkappa); 
sscanf (argv[2],"%d”,ton);

if (argc>=4) { // Si on donne une initialisation :
sscanf (argv[3] , "%d", to) ; 
srand48(n);

} else { // Sinon, aleatoire :
n - time(0);
fprintf(stderr,"Random seed = Xd\n",n);
srand48(n);

}
sprintf(s,"Schramm's SLE Process (kappa*%f)",kappa);

n=nn*nn; kappa=2/kappa;

img » new_image (2*nn,2*nn,2,s);
if (!img) exit(1);

for (i=0;i<2*nn;i++) img->tCi]*l;

#ifdef HAVE.SDL 
OnScreen (img);

#endif

/* Brownien qui conduit le SLE - kappa n’apparait pas ici*/

c = (double *) malloc (n*sizeof(double));
c[0]=0; cd»0;
for (i*l;i<n;i++) {.

d = 2*sqrt(3)*drand48() - sqrt(3); // E=0, Var=l 
c[i] = cCi-l] + d; 
cd ♦= (d*d);

}
fprintf (stderr,"End value (normalized) = %f\n",cCn-l]/nn);
fprintf (stderr,"Square variation (normalized) * Xf\n",cd/n);

/*
* simulation du SLE : inutile sans strategic siouxe (clever.t est
* malin), sinon au choix longer le bord ou dichotomie. Longer le
* bord est beaucoup plus efficace : sur jade, pour 7 et 100 pts :
* sans strategie : 31.29s
* dichotomie : 4.75s
* suivre le bord : 0.98s 

*/
fprintf (stderr, "Doing the hard work ...\n"); 

bord();

fprintf (stderr, "Estimated boundary dimension = %i (%f)\n", 
log(cnt)/log(2*nn),
(kappa>0.5?1+1/(4*kappa):1+kappa));

fprintf (stderr, "Exporting EPS file.\n");

/* affichage du résultat */

img->dp * 1;
printout.eps (img,0,0,2*nn,2*nn); 

fprintf (stderr, "Good bye, have a nice day.\n"); 

free (img->t); free (img->title); free (img); 

return 0;

// INSIDE 
// LEFTSIDE 
// RIGHTSIDE

File libprintout. c: the eps output

//
// libprintout.c - vl.l - ©  2001 VB - GPL 

//
«include <config.h>
«include <stdio.h>

«include <stdlib.h> 
«include <string.h> 
«include <errno.h> 
«include <printout.h>

«ifdef HAVE.SDL



130 APPENDIX B. SIMULATIONS AND PICTURES

#include <SDL.h>

void DrawPixel (SDL_Surface *screen, int x, int y,

Uint8 R, Uint8 G, Uint8 B)

•c
/«
* Taken directly from the SDL documentation ...

«/
Uint32 color = SDL_MapRGB(screen->format, R, G, B);

if ( SDL_MUSTL0CK(screen) ) {
if ( SDL.LockSurface(screen) < 0 ) { 
return;

>
>
switch (screen->foxmat->BytesPerPixel) { 

case 1: { /* Assuming 8-bpp «/
Uint8 *bufp;

bufp = (Uint8 «)screen->pixels + y«screen->pitch + x;
♦bufp = color;

>
break;

case 2: {. / *  Probably 15-bpp or 16-bpp */
Uintl6 «bufp;

bufp - (Uintl6 *)screen->pixels + y*screen->pitch/2 + x; 
♦bufp = color;

>
break;

case 3: { /* Slow 24-bpp mode, usually not used «/
Uint8 «bufp;

bufp * (Uint8 «)screen->pixels + y«screen->pitch + x * 3; 
if(SDL.BYTEORDER =* SDL_LIL_ENDIAN) < 
bufp[0] * color; 

bufpCH = color »  8; 
bufp[2] = color »  16;

> else {
bufp[2] »* color; 
bufp[l] “ color »  8; 

bufpCO] * color »  16;

>
>
break;

case 4: *C /* Probably 32-bpp «/
Uint32 «bufp;

bufp = (Uint32 *)screen->pixels + y*screen->pitch/4 + x; 
♦bufp * color;

>
break;

>
if ( SDL.MUSTLOCK(screen) ) {
SDL.UnlockSurface(screen);

>
>
»endif

int PutPoint (image ♦img, int x, int y, int c) { 
if (x<0) return -1; 
if (y<0) return -1; 
if (x>*img->wd) return -1; 
if (y>=ixng->ht) return -1;

img -> t[x+y«img->wd] * c4255;

tifdef HAVE.SDL 
if (img->screen) {
DrawPixel (img->screen,x,y, img->paletteCc4255][0], 

img->palette [cA255] [1] , img->palette [c*255] [2]); 
if (ciPRINTOUT.FULL.UPDATE)

SDL.UpdateRect(img->screen,0,0,img->wd,img->ht); 
else if (!(cAPRINTOUT.NQ.UPDATE))

SDL.Updat eRect( img->screen,x,y,l,l);

>
#endif

return c;

>
image *new_ image (int wd, int ht, int dp, char «title) 

image «img;

if ((dp!=l)Wk(dp!=2)**(dp!=4)) {
fprintf (stderr, "printout library error : invalid depth"); 
fprintf (stderr, " (only 1, 2 and 4 bpp allowed) An"); 
return NULL;

>
img = (image *) malloc(sizeof(image));

img->title = (char*) calloc(80,sizeof(char));
strncpy(img->title,title,80);
img->wd=wd;
img->ht=ht;
img->dp=dp;
img->t*(char*) calloc (wd«ht,sizeof(char));

if (!(img->t)) {
fprintf (stderr,"printout library error : image too large.\n"); 

free (img->title); 
free (img); 
return NULL;

>
tifdef HAVE.SDL 

{ int i,pstep; 
pstep » 255 / ((l«dp)-l); 
for (i=0;i<(l«dp) ;i++)

img->palette[i] [0] =* i*pstep; 
img->palette[i][1] = i«pstep; 
img->palette[i] [2] = i*pstep;

»
#endif

img->cropped-0; 

return img;

>
int OnScreen (image «img)

#ifdef HAVE.SDL 
int i,j;

fprintf(stderr,"printout library : Mapping SDL window ...\n");

SDL.Init(SDL.INIT.VIDEO); 
atexit(SDL.Quit);

img->screen=SDL_SetVideoKode(img->wd,img->ht ,0,SDL.SWSURFACE); 
if (!img->screen) {
fprintf (stderr,"printout library error :");
fprintf (stderr,"Couldn’t map it ! Continuing without.\n");
return 0;

>
SDL.WM.SetCaption (img->title,"Simulation");

for (i=0;i<img->wd;i++) 
for (j=0;j<img->ht;j++)
DrawPixel (img->screen,i,j,

img->palette[(int)img->tCi+j«img->wd]][0],

img->palette[(int)img->t[i+j*img->wd]][1], 
img->palette[(int)img->t[i+j*img->wd]][2]);

SDL.UpdateRect (img->screen,0f0,img->wd,img->ht); 

return 1;
«else
fprintf (stderr,"printout library : I can’t do that, Dave.\n"); 
return 0;

«endif

>
inline char trans (int i)

static char «trans = "0123456789ABCDEF";

if (i<0) i=0; 
if (i>15) i-15; 
return trans[i];

>
int range.check (int wd, int ht, int x, int y, int dx, int dy)

if ((wd<0) || (ht<0) ||

(x<0) I I (x>=wd) 11 (y<0) | | (y>=ht) I |
(dx<=0) || (x+dx>wd) || (dy<0) II (y+dy>ht)) { 

fprintf (stderr,"printout library error : invalid range.\n"); 
return 1;

>
return 0;

>
int printout.eps (image «img, int x, int y, int dx, int dy)

{
int acc,dec,i,j,bits; 
int xmin,xmax,ymin,ymax;

if (range_check(img->wd,img->ht,x,y,dx,dy)) return 1; 

if ((img->dp!=l)fc&(img->dp!s2)&fc(img->dp!-4)) {
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fprintf (stderr,"printout library error : invalid depth"); 
fprintf (stderr," (only 1, 2 and 4 bpp allowed).\n"); 
return 1;

>
if (img->cropped != 0) •{
xmin=x+dx-l; ymin=y+dy-l; xmax=x; ymax=y; 
for (i=x;i<x+dx;i++) 
for (j=y;j<y+dy;j++) 

if ((img->t[i+iing->wd*j]fcl5) != 0) •( 
if (i<xmin) xmin*i; 
if (i>xmax) xmax*i; 
if (j<ymin) ymin=j; 
if (j>ymax) ymax*j;

>
x*xmin; dx=xmax-xinin+l; y-ymin; dŷymax-ymin+l;

>
bits = dx * img->dp;

// EPS header

printf ("XX!PS-Adobe-2.0 EPSF-2.0\n");
// printf ("XXXXTitle: Xs\n",img->title);
// printf ("XXXXCreator: libprintout - vXs - © 2001 VB - GPL\n", 
// VERSION);
printf ("XXXXCreator: Nail: Vincent.Beffara<hnath.u-psud.fr\n"); 
printf ("XXXXCreator: Web: <http://vbeffara.free.fr/>\n"); 
printf ("XXXXBoundingBox: 0 0 Xd Xd\n\n", dx, dy);

// Commands

printf ("save 20 diet begin /xpixels Xd def /ypixels Xd def\n", 
dx, dy);
printf ("/pix Xd string def xpixels ypixels scale\n", (bits+7)/8 ); 
printf ("xpixels ypixels Xd [xpixels 0 0 ypixels 0 0]\n",img->dp); 
printf ("{currentfile pix readhexstring pop} image\n");

// Image

for (jay;j<y+dy;j++) < 
acc=15; dec=16»img->dp; 
for (i=x; i<x+dx; i++) {
acc -= dec*(in»g->t[i+img->vd*j]ftl5); 
if (dec**l) -C 

printf ("Xc",trans(acc)); 
acc=15; dec»16>>img->dp;

> else dec >>= img->dp;
if (! ((i-x+l)X(512»img->dp))) printf ("\n");

>
if ((dx«ixog->dp)X8) printf ("Xc" ,trans(acc)) ; 
if ( ((dx«img->dp)Xi6)tt ( ((dx«img->dp)Xl6) <*8)) printf ("F") ; 
if (dxX(512»img->dp)) 
printf ("\n");

// End of file

printf ("end restore\n") ; 
return 0;

>
int printout.path (char *p, int 1, char *title)

const char *dirs = "ENWS"; 
const int dx[4] = {1,0,-1,0}; 
const int dy[43 ® {0,1,0,-1};

int i, inin.imax, jmin,jmax, x,y;

/* Step 1 = cropping */

imin=0; imax=0; jmin=0; jmax-0; x=0; y=0; 
for (ias0;i<l;i-M‘) { 
x+=dx[(int)pC(int)i]]; 
y+=dy[(int)p[(int)i]]; 
if (x<imin) imin*x; 
if (x>imax) imaxsx; 
if (y<jmin) jmin=y; 
if (y>jmax) jmax=y;

>
/* Step 2 * printing */

11 Header
printf ("XX!PS-Adobe-2.0 EPSF-2.0\nM); 
printf ("XXXXTitle: Xs\n",title);
printf ("XXXXCreator: libprintout - vXs - © 2001 VB - GPL\n", 
VERSION);
printf ("XXXXCreator: Hail: Vincent.Beffarataath.u-psud.fr\n"); 
printf ("XXXXCreator: Web: <http://vbeffara.free.fr/>\n"); 
printf ("XXXXBoundingBox: 0 0 Xd Xd\n\n",
3*(imax-imin)+6, 3*(jmax-jmin)+6);

// "Code" ;-)

printf ("save 20 diet begin\n");
printf ("/E <3 0 rlineto} bind def /W <-3 0 rlineto> bind def\n"); 
printf ("/N "(0 3 rlineto} bind def /S {0 -3 rlineto} bind def\n"); 
printf ("newpath Xd Xd moveto\n", 3-3*imin, 3-3*jmin);

for (i=0;i<l;) {
printf ("Xc", dirs[(int)p[(int)i]]); 
if (!(++iX40)) printf ("\n"); 
else printf (" ");

}
if (iX40) printf ("\n");

printf ("stroke end restore\n"); 
return 0;

}

http://vbeffara.free.fr/
http://vbeffara.free.fr/
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