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Abstract

Imaging the structure and physical properties of the subsurface is of great interest in earth sciences. To achieve this, several geophysical methods have been implemented over the years, including electrical, electromagnetic, and seismic methods. Seismic methods are particularly appreciated for deep imaging while maintaining good resolution. The problem we address in this work concerns the estimation of the velocity model for seismic imaging. This phase is a key step in the processing chain of reflection seismic data and is essential for accurate interpretation by providing precise localization of geological structures.

One of the most advanced methods for velocity model estimation is Full Waveform Inversion (FWI), proposed by Tarantola in 1984 and Lailly in 1983. FWI was formulated to reduce the different approximations applied to wave propagation physics contained in the ray tracing used in tomographic methods. Thus, greater accuracy of subsurface models is obtained by filling the resolution gap between tomography and migration. However, the majority of inversions that have resulted in such a result are essentially based on highly energetic refracted waves, which limit the inversion to the shallow part of the model. To overcome this problem, Xu and his colleagues proposed a Reflection Waveform Inversion (RWI) method that exploits the information contained in reflected data to update the deep structures of the model. However, RWI converges relatively slowly, making it very computationally expensive. To speed up convergence, Valensi and Baina proposed a new method, called TWIN, which ensures consistency between velocity and reflectivity image in depth by taking into account the dependence of reflectivity on the smooth velocity model. In both methods (RWI and TWIN), the linearized Born equation is used to model reflected data from the current velocity and its associated reflectivity. The use of the full wave equation for Born modeling has two main limitations. First, the resolution of the full wave equation is generally expensive in terms of computational time and memory, which hinders the large-scale application of RWI or TWIN to large 3D real data studies. Furthermore, two-way Born modeling is based on the assumption of a smooth velocity model. When the model is not sufficiently smooth, internal background reflections lead to a noisy sensitivity kernel, which can increase the non-linearity of the inverse problem.

In this work, we propose to use the one-way wave equation during Born modeling in order to generate the reflected data. Solving the wave equation using one-way propagators significantly reduce the computational cost, allowing us to handle inversions at higher frequencies. Moreover, the one-way wave equation permits to relax the assumption of a smooth velocity model, giving us the opportunity to target more detailed velocity models by limiting modeling to primary reflected waves. This leads to an inversion scheme that is more consistent under its underlying assumptions.

In this thesis, we studied the modeling of reflection waves based on the resolution of the parabolic wave equation before formulating the inverse problem and deriving the necessary expressions for constructing the cost function gradient. The method was then tested on different inversions on synthetic models before being generalized to 3D media and applied on real 3D data.

The results produced by our algorithm confirm that it is possible to estimate the velocity model based on one-way wave equations, whose use reduces the excessive computational cost seen in the two-way equation based methods. These results open up the way for testing this technology in more complex and computationally demanding contexts.

Résumé

Imager la structure et les propriétés physiques du sous-sol présente un grand intérêt en sciences de la Terre. Pour cela, plusieurs méthodes géophysiques ont été mises en oeuvre au cours des années notamment les méthodes électriques, électromagnétiques et sismiques. Les méthodes sismiques sont en particulier appréciées pour imager en profondeur tout en gardant une bonne résolution. La problématique que nous abordons dans ce travail concerne l'estimation de modèle de vitesse pour l'imagerie sismique. Cette phase est une étape clé dans la chaine de traitement des données sismiques de réflexion et ce qui permet de bien localiser le positionnement des structures géologiques afin d'assurer une interprétation pertinente.

Une des méthodes les plus avancées pour l'estimation de modèle de vitesse est l'inversion de forme d'onde complète (FWI), proposée par Tarantola en 1984 et Lailly en 1983. La FWI a été formulée afin de réduire les différentes approximations appliquées à la physique de propagation des ondes contenues dans le tracé de rayon utilisé dans les méthodes tomographiques. Ainsi, une plus grande précision des modèles du sous-sol est obtenue en comblant le fossé de résolution entre la tomographie et la migration. Cependant, la majorité des inversions ayant abouti à un tel résultat sont essentiellement basées sur les ondes de réfraction hautement énergétiques, ce qui limite l'inversion à la partie peu profonde du modèle. Pour rémédier à ce problème, Xu et ses collaborateurs ont proposé une méthode d'inversion de forme d'onde de réflexion (RWI) qui exploite les informations contenues dans les données réfléchies dans le but de mettre à jour les structures profondes du modèle. Cependant, la RWI converge relativement lentement ce qui la rend très coûteuse en temps de calcul. Afin d'accélérer la convergence, Valensi et Baina ont proposé une nouvelle méthode, appelée TWIN, qui assure la consistence entre la vitesse et l'image de réflectivité en profondeur en tenant compte de la dépendance de la reflectivité par rapport au modèle de vitesse lisse. Dans les deux méthodes (RWI et TWIN), l'équation linéarisée de Born est utilisée pour modéliser les données réfléchies à partir de vitesse courant et de sa réflectivité associée. L'utilisation de l'équation d'ondes complète pour la modélisation de Born présente deux limitations principales. Tout d'abord, la résolution de l'équation complète est coûteuse en terme de temps de calcul et mémoire ce qui entrave l'application à grande échelle de la RWI ou TWIN pour des larges études de données réelles 3D. Par ailleurs, la modélisation de Born bidirectionnelle repose sur l'hypothèse du modèle de vitesse lisse. Si le modèle n'est pas suffisamment lisse, les réflexions internes d'arrière-plan conduisent à un noyau de sensibilité bruité ce qui peut augmenter la non-linéarité du problème inverse.

Dans ce travail, pour générer les ondes réfléchies, nous proposons d'utiliser l'équation des ondes parabolique (unidirectionnelle) lors de la modélisation de Born. Résoudre l'équation d'onde en utilisant des propagateurs unidirectionnels réduit le coût de calcul, ce qui nous permet de traiter des inversions à des fréquences plus élevées. En outre, l'équa-tion d'onde unidirectionnelle permet de relaxer l'hypothèse du modèle de vitesse lisse ce qui nous donne la possibilité de cibler des modèles de vitesse plus détaillés en limitant la modélisation aux ondes primaires réfléchies. Cela conduit à un schéma d'inversion qui est plus consistent sous ses hypothèses sous-jacentes.

Dans le cadre de cette thèse, nous avons étudié la modélisation des ondes de réflexion basé sur la résolution de l'équation des ondes paraboliques avant de formuler le problème inverse et dériver les expressions nécessaires pour la construction du gradient de la fonction coût. La méthode a ensuite été testée sur différentes inversions sur des modèles synthétiques avant d'être généralisée aux milieux 3D afin d'être appliquée sur des données réelles 3D.

Chapter I Introduction

Getting a direct access inside a medium interior is not always feasible. It is due to a physical impossibility like accessing the earth's core, or to financial limitations in oil and hydraulic exploration for instance, or by obligation to preserve the media for example in the bio-medical field. Imaging the solid interior is proposed as the sole alternative to investigate inside the medium. Although the imaging problems have different scales from nanometers to kilometers, the final purpose is still the characterization of the internal structure. For example, radiologists should provide reliable images of cancer tumors [START_REF] Weissleder | Molecular imaging in cancer[END_REF] or bone fractures [START_REF] Li | Ultrasound imaging of long bone fractures and healing with the split-step fourier imaging method[END_REF]. Material engineering would be interested in the physical properties and crack propagation inside their samples [START_REF] Li | Crack imaging by scanning pulsed laser spot thermography[END_REF]. In geophysics, our domain of interest, we are mostly interested in imaging the geological structures in order to localize hydrocarbons reservoirs [START_REF] Yilmaz | Seismic data analysis: Processing, inversion, and interpretation of seismic data[END_REF], geothermal resources and CO 2 storage sites. To extract information about the earth subsurface, different physical phenomena can be exploited. We can mention different types of wavefields like magnetic, gravitational, electromagnetic or the high energetic particles seen in radioactivity. In the scope of seismic imaging, we will be particularly interested in the mechanical waves. The basic advantage of mechanical waves relies on their ability to propagate for long distance. Contrarily to other physical phenomena, mechanical waves can propagate within the material without being quickly attenuated [START_REF] Radogna | Micro-gravity survey in urban environment: modelling, evaluation and correction of buildings influence[END_REF]. Furthermore, the mechanical properties have been well studied over the past years so they are relatively easy to be simulated, processed and then compared to the observed waves. Imaging using mechanical waves is still a challenge in several fields but it went through a quick progress over the last decades.

I.1 Seismic imaging

The recording of seismic waves coming from an earthquake is at the origin of the discovery of the seismic surveys for the oil and gas exploration. Seismic imaging enables to estimate the characteristics and the physical properties of the earth subsurface. The method is based on the measure of the reflected acoustic energy due to an excitement of a source placed at the surface. Contrast of properties between rock layers lead to reflections and/or refractions of the generated wavefield. Thus, the recorded seismic waves give information about the propagation medium and the contrast inside. By treating this information, seismic imaging provides images of the rock formation and structures a few kilometers beneath the surface. Then, geologists can interpret the seismic images to guess if the structures contain hydrocarbons, minerals or to monitor the gas (CO 2 , H 2 ...) evolution injected inside the reservoir as an example.

I.1.1 Seismic survey

An acquisition survey consists in exciting the subsurface by generating a source at the earth's surface (vibroseis or explosion). The source generates an incident wavefield which propagates inside the earth. Thereafter, the incident wavefield is diffracted or reflected with the presence of discontinuities in the physical properties of the model as illustrated in Figure I.1. Some parts of the diffracted and the reflected wavefields are recorded at the receivers placed at the earth surface. The acquisition datasets is composed of successive seismic shots obtained by moving the seismic source at various positions at the earth's surface in order to gain more information about the subsurface. Creating a source wavefield means sending down seismic energy. That energy generates motion, stress and strain in the subsurface. Thus, the earth behaves like an elastic medium which could be parametrized by its mechanical properties. The response of an elastic medium, in presence of a source wavefield, generates two kind of waves. First, the body waves that propagate in the medium and the surface waves that propagate along the surface. The body waves are also composed of two different types, P-waves as primary waves because they arrive earlier and the shear waves (S-waves) which arrive later. In case of elastic and isotropic media, only three independent parameters are sufficient to characterize the earth model usually chosen as velocity of P-wave (V p ), velocity of S-wave (V s ) and density (ρ) [START_REF] Forgues | Inversion linéarisée multi-paramètres via la théorie des rais (application aux données de sismique réflexion de surface[END_REF]. In the following of the project, we will consider the particular case of the acoustic media where only P-waves can propagate through it. In that case, only two parameters are necessary to describe the model. We generally choose the velocity V p and density ρ. Depending on their propagation mode, the waves can take different paths. First, the direct waves laterally move beneath the surface from the source position to the receiver. Before turning up to the earth surface, the wave may undergo one reflection which (it is then called a primary reflected wave) or several reflections called multiples [START_REF] Aki | Quantitative seismology[END_REF]. The diving waves generally propagate along interfaces. Also, small heterogeneities may lead to diffraction phenomena and diffracted waves. After recording data through a seismic survey, various seismic methods process data in order to transform the information contained inside seismic data into a geological image.

I.2 Conventional seismic methods and their limitations

To image the subsurface properties, different conventional methods were used for several years. All these methods do not generally extract information from the full data. They focus their process in some part of the data (refracted waves, data selection in tomography...) generated from specified physical phenomena (refraction, reflection ...). One of the first active method is the seismic of refraction. It is based on the analysis of the first arrival times of refracted waves only. In its different formulations (see [START_REF] Hawkins | The reciprocal method of routine shallow seismic refraction investigations[END_REF] [START_REF] Palmer | An introduction to the generalized reciprocal method of seismic refraction interpretation[END_REF]), the subsurface is seen as a set of homogeneous layers with increasing velocity in depth. This approximation is not always geologically valid and is a big limitation of the method. The Ray based tomography has softened the stratified model approximation and proposed a method that can handle variable smooth models. The ray propagation is then simulated from the resolution of the Eikonal equation which enables to target different media under a smoothness condition. Thanks to ray tracing, the travel time tomography (see [START_REF] Herman | Image reconstruction from projections. The fundamental of computerized tomography[END_REF] and [START_REF] Worthington | An introduction to geophysical tomography[END_REF]) has become the most used seismic method for velocity building in the industry. The approach is written in an iterative scheme based on the update and refinement of the velocity model by explaining the travel time of the wave. In fact, the travel time is defined as a function of the model slowness along the ray path and it is compared to the travel time of picked events that should be prepared a priori. However, the picking step is time consuming and it can drive the method to biased results if the quality of the picked events is not reliable enough. Furthermore, the conventional methods either tomography of refraction or reflection (travel time tomography) are generally based on specific types of events in the recorded data (reflected or refracted waves). They also reduce the signal to one parameter by extracting only the arrival time. Therefore, it neglects the frequential content of the wave propagation. The reduction of information coming from different part of the data or from its frequency band will obviously lead to a loss of the imaging resolution.

I.3 Full waveform inversion (FWI)

Contrarily to the conventional methods, the Full Waveform Inversion (FWI) is formulated to reduce the different approximations applied to the physics of the wave propagation. [START_REF] Lailly | as a sequence of before stack migrations[END_REF] and [START_REF] Tarantola | Inversion of seismic reflection data in the acoustic approximation[END_REF] proposed to directly model the data by solving the differential equation of wave propagation. In their formulation, the model estimation problem consists in finding the appropriate physical properties (velocity, density,...) that better explain the amplitude and phase of the recorded data. Besides, the differential equation allows to generate data for any complex heterogeneous medium. Thus, from their point of view, the FWI explains all the information contained in the data and does not require any condition on the velocity model. After a considerable theoretical work of [START_REF] Tarantola | Inversion of seismic reflection data in the acoustic approximation[END_REF] and the reformulation of the method in the frequency domain as given in [START_REF] Pratt | Gauss-newton and full newton methods in frequency-space seismic waveform inversion[END_REF], the biggest milestone of FWI was carried out by [START_REF] Sirgue | Thematic set: Full waveform inversion: The next leap forward in imaging at valhall[END_REF]. They successfully demonstrated that the FWI is capable of recovering the smooth velocity and the high frequency migration part. They applied the 3D FWI in frequency domain on the real OBC data acquired from Valhal oil field. In this case study, the FWI not only improved the migrated image but the velocity model in itself revealed different details (like a gas cloud) that could not be detected from the migrated image. Afterwards, [START_REF] Warner | Anisotropic 3d full-waveform inversion[END_REF] have shown a significant uplift of the FWI application in real field data. In their paper, the results provide a better match to well logs and improve the common image gathers. Starting from the latter applications and other successful ones, some researchers claimed that the FWI is the final and ultimate approach for subsurface imaging. Since then, several works have been challenging the FWI in many different benchmarks and its efficiency has started to be questioned. Afterwards, it became commonly known that the conventional FWI in its local optimization formulation suffers from high non linearity issues [START_REF] Virieux | An introduction to full waveform inversion[END_REF]. Therefore, the success of FWI on real data was achieved thanks to many reasons. First, the high quality of the recorded data and the efficient processing applied on the data or the gradient are important ingredients for its success. Second, the application of various steps of regularization and stabilization ensure the robustness of the inversion process. Third, the used inversion strategies prevent the inversion to be trapped into a local minima.

I.3.1 Limitation of FWI for inverting the deep models

In his original work, Tarantola targeted to invert the reflected data since he named his paper "Inversion of seismic reflection data". In contrast to his aim, the FWI approach basically invert the transmitted data and does not efficiently exploit reflected waves. During its inversion process, the FWI mostly explains the highly energetic diving waves coming from the transmission regime. Also, with not sufficient large offsets, the transmission regime is limited to the shallow part and only reflected data can provide information about the deeper part of the model. These reasons lead to shallow updates of the FWI and it dramatically fails to recover the low wave-number component of the velocity in deep regions. In fact, the wave-number resolution can be expressed in terms of the acquisition settings and k 0 = ω v and , where ω is the angular time frequency and v denotes the velocity. To better explain this relation, we illustrate in Figure I.2, the contribution of two scattering points A and B placed at different depths Z A and Z B both of them situated at mid offset. According to the gradient construction, the wave-number K G at Z A and Z B depths depend on their scattering angles θ A and θ B regarding the following expression:

|K G (θ A )| = 2 K 0 cos θ A 2 ; |K G (θ B )| = 2 K 0 cos θ B 2 . (I.1)
Consequently, the update in deep model is dominated by the high frequency component because the scattering angle θ has smaller values in depth. The update of the low frequency component is restrained to the shallow parts where the scattering angle is high which corresponds to a transmission regime. In common real applications, the FWI starts with smooth velocity model that does not contain reflectors. Regarding the relation given in equation (I.1), the FWI constructs, in deep model, the reflectors (high frequency component) without upgrading the background velocity. In general these reflectors remain misplaced and the inversion is not able to recover the low frequency component in deep part of the model. The most direct and efficient technique to solve the shallow update limitation is to improve the acquisition to record larger offsets [START_REF] Virieux | An overview of full-waveform inversion in exploration geophysics[END_REF]. Enlarging offsets leads to bigger scattering angle θ and then lower wave-number component K G . However, the data at large offset risk to be dominated by noise caused by energy attenuation through long wave-path. Besides, with the current acquisition systems only reflected waves can reach the deep model. That leaves us with the obligation to better extract information from reflected waves.

I.4 Reflection waveform inversion

The 

I.4.1 Limitations of RWI

In principle, the RWI aims to solve simultaneously for the high frequency component that we will denote by δm r and the smooth background velocity model denoted by v b . This corresponds to a multi-parameter inversion of two highly coupled unknowns with different scales. To ideally solve this problem, the inversion should be based on the Newton method.

In theory, the Newton approach would converge to the linearized solution because the coupling between the two parameters v b and δm r is taken into account through the offdiagonal terms of the Hessian matrix. However, this algorithm is far from being feasible due to the high computational and memory needs to store and invert the Hessian matrix. Considering these limitations, [START_REF] Xu | Full waveform inversion for reflected seismic data[END_REF] proposed to invert for the two subsurface unknowns sequentially adopting a relaxation scheme by estimating δm r via a migration problem and then inverting for v b while keeping δm r fixed. Unfortunately, this approach suffers from a serious slow convergence issues. Indeed, the cost function of the smooth background v b for a fixed reflectivity δm r shows multi-minima [START_REF] Valensi | Reflection waveform inversion method: solutions to the reflectivity-background coupling problem and consequences on the convergence[END_REF]. This observation leads to severe issues of the RWI relaxation scheme through local optimization methods.

I.5 Time consistent Wave equation INversion (TWIN)

Inspired by the time consistent approach from travel-time reflection tomography (van Trier, 1989), Valensi and Baina (2019a) proposed the Time consistent Wave equation INversion (TWIN). The inversion scheme of TWIN introduces a velocity-depth coupling inside the RWI problem in order to ensure an efficient convergence rate compared to the standard RWI. The main idea behind the TWIN method is to use an auxiliary dataset, namely the zero-offset reflected data d obs zo . This zero-offset data are independent on the background velocity model v b . Therefore, they will be called velocity invariant data and are given as an input of the method such as the observed data and the initial model. Instead of the pre-stack depth migration used for the RWI to estimate the reflectivity δm r , the TWIN migrates the invariant d obs zo via a post-stack zero-offset migration process in order to construct the reflectivity image

δm r (v b ) = M ig Zo (v b )d obs zo (I.2)
where M ig Zo is the zero-offset migration operator. The latter expression enables to formulate the high perturbation component δm r through an explicit linearized expression that is associated to the smooth macro model. This kind of relation allows to transform the multi-parameter inverse problem, seen in RWI algorithm, into a mono-parameter inverse problem. The mono-parameter inversion permits to avoid several multi-parameter issues such as parameter weighting, need of the off-diagonal terms of the Hessian and the multi-modal behavior of the cost function. So, the TWIN algorithm shown in Figure I.4 can be simplified to the following steps:

1. Migration of the zero-offset data using a given initial velocity model in order to construct the reflectivity image δm r (v b ).

2. Data demigration following the two-way Born modeling which is based on the previously constructed image and the smooth background model.

3.

Gradient calculation starting from a comparison between observed data given in input and the data calculated generated during the two-way Born modeling.

4.

Updating the background velocity model following the previously calculated gradient.

Figure I.4: Scheme of the TWIN algorithm

The aforementioned algorithm steps will be described in more details in the following paragraphs.

I.5.1 Migration: zero-offset post-stack migration

This step is an uncommon feature compared to the standard RWI. Instead of using the prestack depth migration/inversion as suggested in the RWI, the TWIN estimates the reflectivity δm r via a zero-offset depth migration. It takes as input the background velocity model v b and the invariant zero-offset data d obs zo in order to reposition the reflectivity δm r after each update of the velocity model v b . It is numerically efficient technique compared to the pre-stack migration approach. It almost needs the same computational cost as migrating one pre-stack migration shot (more details are given in the next chapters).

I.5.2 Demigration: two-way Born modeling

The Born modeling is considered as a common feature between the RWI and TWIN methods. It enables to separate the reflected data from the transmitted ones in the forward modeling step using the reflectivity estimated in the previous step. Compared to other methods like scattering angle filtering [START_REF] Alkhalifah | Scattering-angle based filtering of the waveform inversion gradients[END_REF], the Born modeling can be applied on an arbitrary medium (including anisotropy) and is efficient to isolate the tomography component from its migration one. The Born modeling for the two-way acoustic wave equation can be expressed as

           ∆ + ω 2 v 2 b U 0 = S ∆ + ω 2 v 2 b δU = -ω 2 δm r U 0 (I.3)
where ∆ and ω denote the Laplacian and the angular time frequency, U 0 and δU denote the background and scattered wavefields. The first equation of (I.3) simulates the effect of injecting a source S inside the smooth background model. In other words, it generates the background wavefield that propagates from source to reflector position. The second part of Equation is also a two-way propagation problem with a virtual source that depends on the reflectivity and the background wavefield U 0 . The wavefield δU simulated by the second equation represents the reflected wavefield components which propagates from reflector to the receiver position. In the following, more details will be provided about the mathematical derivation of the equations (I.3) and its physical interpretation. The essential description to retain from this introduction is that the reflectivity plays the role of secondary source to generate the reflected waves.

I.5.3 Gradient calculation

The third step consists in calculating the gradient of the misfit function that is computed based on a comparison between the observed reflected data and the calculated data simulated from the Born modeling. As the initial background model will not perfectly match the true model, the simulated data will not exactly reproduce the recorded data, thus generating a difference called the residue. This residue enables to compute a correction of the model using the adjoint state method [START_REF] Plessix | A review of the adjoint-state method for computing the gradient of a functional with geophysical applications[END_REF]. The gradient can be computed in a similar way as presented in Xu et al. 

I.5.4 Model update

The gradient of the misfit function is then used to improve the initial model based on an iterative strategy of local optimization. Following the chosen line search method (steepest descent, conjugate gradient ...), a search direction is defined during this step. Then, a steplength is estimated to determine the optimal step size which should be used to adjust the model along the defined search direction.

I.5.5 Limitations of TWIN

Despite the success obtained on different synthetic models and real case studies, the TWIN requires high time and memory needs as it solves twice the wave equation (during the Born modeling) compared to the full modeling. Moreover, solving the wave equation using two-way propagators is highly expensive especially in 3D propagation. Therefore, the computational cost hinders the wide application of the TWIN on 3D large real datasets. It also prevents to target higher frequency inversions which is generally preferred to get detailed velocity models.

The second limitation is seen during the two-way Born modeling step. In fact, the principle of the Born modeling is based on the following key point. The background wavefield which propagates in the macro model should not generate reflected waves. For that purpose, the scale separation requires the basic assumption of a smooth background velocity model. If the velocity model is smooth enough, the background wavefield contains the direct arrivals. Therefore, the reflected waves are assumed to be generated from the reflectivity image only. In that case, matching the predicted reflections to the recorded ones requires the application of a simple mute on the direct arrivals of the observed data. To ensure a smooth background velocity, it is recommended to apply a smoothness pre-processing on the gradient to prevent high frequency components from penetrating inside the background velocity. Applying such smoothness strategy is heuristic and is not efficient enough to keep the model smooth. Furthermore, some cases force us to deal with discontinuities inside the background model. For instance, when there is a salt body inside the velocity model, the contrast between the sediment and salt is very high. In that case, the contrast should stay sharp to ensure a good kinematic modeling of the data. From the scale separation point of view, the background wavefield should contain only direct arrivals but in this case it would contain reflections from the salt body and its internal multiples. Thus, the two-way Born modeling produces additional reflected events due to the lack of smoothness of the macro velocity model. These events do not follow the single scattering wave-path (from source to scatter up to receiver) but they follow a longer path: from source to background heterogeneity then to scatter up to receiver (or from source to scatter then to background heterogeneity up to receiver). Therefore, during inversion, the match between recorded and calculated reflection events becomes difficult, especially when these additional events are highly energetic like the salt reflections for example. This issue leads to a noisy and corrupted TWIN sensitivity kernel that increases the non linearity of the inverse problem and threatens the inversion to be stuck into a local minimum.

I.6 Summary

In the aforementioned description, we have seen that the FWI approach basically depends on the high energetic diving waves which make its update mostly focused on the shallow parts. To update deeper, it requires low frequencies data and a long offset acquisition. However, low frequency data are generally corrupted by noise and long offset data are also more sensitive to attenuation issues. In order to get a low wavelength component and deep update, [START_REF] Xu | Full waveform inversion for reflected seismic data[END_REF] proposed the RWI. As the FWI approach, the RWI is based on matching the observed data with the calculated data and then back-propagating the reflecting data residual to construct the velocity gradient. The main difference in the RWI is the scale separation that splits the contribution of the high and low wave-number components and thus better exploits information from reflection data. However, inverting for the two RWI unknowns (the smooth background velocity v b and the reflectivity δm r ) leads to a slow convergence rate when using a relaxation scheme. In order to get an efficient convergence rate, Valensi and Baina (2019a) proposed the TWIN approach that takes into account the coupling between velocity and depth-positioning through its inversion scheme. At every loop of the inversion, the TWIN/RWI forward modeling requires one migration process to estimate the reflectivity and then one demigration to generate the calculated data. Migration/demigration using two-way solvers are computationally expensive and require significant memory storage which complicates the 3D applications. Moreover, the demigration using two-way Born modeling is restricted to sufficient smooth background model. Also, the gradient preconditioning techniques are still heuristic to satisfy this condition and in some cases like in the presence of a salt body, it is preferred to not smooth the model to properly simulate the kinematic of the wave, elsewhere it creates a data fitting issue during the inversion.

I.7 One-way Waveform Inversion (OWI)

In this thesis, we will propose the One-way Waveform Inversion (OWI) method to invert the reflected data based on the one-way wave equation instead of the two-way one in order to get an efficient and consistent inversion scheme. Simulating the one-way wave equation is considered as a promising and practical choice to add consistency to our inversion by relaxing the assumption of sufficient smooth background model. It also enables to reduce the computational time and the memory consumption.

The modeling of the wave propagation based on the one-way wave equation was the subject of several important research studies (see [START_REF] Claerbout | Downward continuation of moveoutcorrected seismograms[END_REF], [START_REF] Berkhout | One-way versions of the kirchhoff integral[END_REF] ...). Claerbout was the first to introduce the one-way wave equation in applied geophysics which is frequently used in depth migration projects. However, few works have adapted it in the context of the reflection waves modeling or inversion (see Hua In this study, we suggest that the one-way wave equation is more appropriate than the conventional two-way wave equation for reflection waveform inversion problems. Thanks to its strict decoupling of the wave into up-or down-going propagation, the one-way wave equation does not allow the generation of the unwanted internal reflections, even in case of a not smooth enough macro-model. Therefore, each event is considered as primary reflection related to the high perturbation component δm r . Consequently, the one-way equation can relax the smooth background approximation in the Born modeling and lead to a consistent inversion scheme.

In addition, the modeling of the propagation plays an important role on the computational cost of the whole method given the large number of data and the dimension of the model. It is therefore necessary to have an efficient propagation simulator with lower computational cost that allows wide applications to three-dimensional industrial case studies. For this reason, the one-way wave equation is considered as a suitable approach for reflection data inversion. Its advantages rely on the ease of implementation and its fast modeling process which enables to tackle higher frequency inversions.

I.8 Thesis plan

The thesis study concerns the definition and the numerical development of the OWI method. This work inherits from the research already carried out on the TWIN algorithm developed at Organisme PEtrolier de Recherche Appliquée (OPERA). We have particularly focused our work on the introduction of the one-way wave equation inside the inversion scheme in order to benefit from its advantages discussed before. Although the OWI method is based on the same architecture as the TWIN algorithm shown in Figure I.4, the migration, demigration and the gradient calculation steps are completely modified to be adapted to the one-way propagation. Only the optimization tools in the model update algorithm will not be impacted as they are independent of the strategy of the forward modeling.

In this thesis, we will take a closer look at the details of the inversion of reflection data based on the resolution of the one-way wave equation. In order to develop the one-way waveform inversion, three main objectives will be formulated. The first objective is to establish a forward modeling based on one-way wave equation capable to properly generate reflection data. After that, the second objective is to develop the necessary elements for the inverse problem. Finally, the efficiency of the approach is evaluated in synthetic and real 3D case studies.

The first part will be devoted to the general theory of the method where we will focus on the mathematical developments of every step of the algorithm. Therefore, the first part is divided as the following:

• Chapter II will be dedicated to answer the question: how can we accurately separate the full wavefield into an up and a down-going part within the framework of the one-way approximation? (see Figure I.6). The mathematical formulation and the introduced approximation will be discussed before assessing the accuracy of the oneway propagation through different canonical modeling tests. • After presenting the formulation of the transmission data propagation using the one-way equation, Chapter III shows an alternative reflection data modeling using one-way instead of the two-way Born modeling. In this chapter, we will see how starting from a smooth background velocity model and a given reflectivity, the oneway Born modeling can produce reflected data that will be evaluated by the end of this section using some numerical tests.

• In Chapter IV, we will focus on the migration part of the algorithm and how to construct the reflectivity image. Thus, we will formulate the post-stack zero-offset migration and demigration operators within the framework of the one-way propagation.

• Through Chapter V, we will discuss the inverse problem and the gradient derivation. We will develop a detailed mathematical derivation of the misfit function based on the defined forward modeling operator. We will also provide a physical interpretation and numerical tests to validate the gradient expressions.

The second part will be basically devoted to the application and the generalization of the approach to 3D media. This part will show and analyze the performance of the OWI method on different synthetic and real datasets in 2D and 3D domain. Thus, the second part will be divided as the following:

• Based on the formulation shown in the first part, Chapter VI contains numerical examples of the method on 2D synthetic benchmarks. The first test will be a simple inverse crime on Marmousi model to evaluate the method under perfect conditions. Then, two blind tests (one in sediment and one in a salt context) will be considered to evaluate the method in more realistic synthetic benchmarks.

• Through Chapter VII, we will show a brief recall of the formulation and the extension of the method to passive anisotropic inversion in 2D domain. Then, an inversion of 2D line of a real 3D seismic survey will be carried out. This chapter is written in the form of an article.

• With the confidence gained from the performance of the method on 2D models, we will study in Chapter VIII the generalization of the method to 3D media. After that, the work will be concluded by an application of the method on a 3D survey of narrow azimuth real marine data.

• Finally, we will conclude this manuscript by drawing a conclusion and propose some perspectives for future works.

Chapter II

One-way wave equation

The classical method of propagation using two-way wave equation enables to simulate precisely the kinematic and the dynamic of the waves. Based on the full wave equation, the modeling can easily propagate all kind of waves like down-going and up-going waves and especially the more complex of them like refracted waves and multiples. A finite difference approximation on the full modeling provides a robust and accurate solution as long as we choose a good space and time stepping to avoid any dispersion issues. However, the twoway full modeling is time and memory consuming especially in large 3D real applications. This issue is even more important in a velocity model building context, when we need to compute this full modeling several times along the iterations. One possible approximation consists in assuming that the full wavefield could be split into two independent wavefields. Each wavefield propagates along a privileged direction typically chosen the vertical direction. The equation describing the propagation is called the one-way wave equation and depends on whether the wave propagates in the upward or downward direction.

One-way approximation is very often used in several domains such as ocean acoustics (Collins and Siegmann, 2019), electromagnetic [START_REF] Kuttler | Theoretical description of the parabolic approximation/fourier split-step method of representing electromagnetic propagation in the troposphere[END_REF] and propagation of seismic waves. This kind of equation first appeared in the electromagnetism researches to simulate the wave above the earth surface [START_REF] Leontovich | Solution of the problem of propagation of electromagnetic waves along the earths surface by the method of parabolic equation[END_REF]. The motivation behind the large use of one-way approximation in different domains is its ease of solving the equation and its ability to model wave in relatively complex medium.

In seismic imaging, pioneer works have emerged in the mid-eighties (among the first of them are [START_REF] Claerbout | Fundamentals of geophysical data processing[END_REF], [START_REF] Wapenaar | Wave field extrapolation techniques for inhomogeneous media which include critical angle events. part i: Methods using the one-way wave equations[END_REF] and [START_REF] Berkhout | Applied seismic wave theory[END_REF]). In [START_REF] Claerbout | Fundamentals of geophysical data processing[END_REF], the author wrote down the decomposition of the standard two-way wave equation in the form of two separated equations, each composed of a first order derivative along the vertical axis and a square root operator in the spatial frequency domain. From there, we can highlight that one basic difference between two-way and one-way propagation is that the former is a time extrapolation while the latter is a depth extrapolation. Then, Claerbout introduced a one-way approximation by making a low order Taylor expansion of the square root operator that was only able to handle dip angle up to 15 • with sufficient precision. Later on, Claerbout continued fraction expansions of the square root to get a steep dip approximation which can support 45 • angles.

In a homogeneous model, the full wavefield decomposition into up-going and downgoing waves is mathematically justified. However, when the velocity model contains heterogeneities this decomposition is no more rigorously possible. But if the velocity variation CHAPTER II. ONE-WAY WAVE EQUATION is sufficiently slow (smooth), a one-way approximation could be possible to ensure the decoupled form of the full wave equation. The interest behind introducing the one-way approximation is the ease of solving a differential equation of order one than the original wave equation of order two. Other benefits have also been demonstrated like the simple implementation and the attractive computational cost. By, using the one-way approximation along with the growing field of the high performance computing, we may be able to target some inversion techniques considered today unfeasible due to their computational requirements.

In this chapter, we will discuss the wave propagation in transmission model using the one-way wave equation. To do that, we will start by recalling the mathematical development to reach the one-way equation starting from the conventional two-way wave equation. That will bring us to the details of the discretization using the adapted depth extrapolation technique and its limitations. By the end of this chapter, a few canonical numerical tests will be shown and analyzed to give an idea about the accuracy of the one-way propagation.

II.1 One-way derivation from two-way equation

The following derivation of the one-way equation has been already done in Opt Root and Stolk (2010) and the next paragraphs aim to recall the mathematical development. The expressions will be shown in 2D domain for the sake of simple understanding and clear analysis. The generalization to 3D domain will be discussed later in Chapter VIII.

II.1.1 Acoustic two-way wave equation

Let us start by introducing the isotropic acoustic two-way wave equation in 2D dimension with constant density

                 ∆u (t, x) - 1 v 2 (x) ∂ 2 u (t, x) ∂t 2 = -S(t)δ(x -s) u (t = 0, x) = ∂ t u (t = 0, x) = 0 lim R→∞ ∂ R u (t, x) + 1 v (x) ∂u (t, x) ∂t = 0 where R = ||x -s|| (II.1a) (II.1b) (II.1c)
where u is the pressure wavefield, x = (x, z) denotes the spatial position in 2D Cartesian coordinates, S(t) refers to the source term injected at spatial point s = (x s , z s ), v(x) is the velocity and ∆ = ∂ 2 x + ∂ 2 z stands for the Laplacian operator. u satisfies the Sommerfield radiation condition (see equation (II.1c)) which ensures that "The energy which is radiated from the sources must scatter to infinity; no energy may be radiated from infinity into ... the field." [START_REF] Sommerfeld | Partial differential equations in physics[END_REF]. The Equation (II.1) could be solved in time domain by propagating the wavefield from time zero to later time or in frequency domain, known as the Helmholtz equation written as follows

         ∆U (ω, x) + ω 2 v 2 (x) U (ω, x) = -S(ω)δ(x -s) lim R→∞ ∂ R U (ω, x) -i ω v (x) U (ω, x) = 0 where R = ||x -s|| (II.2)
where U (ω, x) is the two-way wavefield solution of the wave Equation (II.2) for a temporal frequency ω observed at the space position x. U corresponds to the Fourier transform of the wavefield u in the time domain

U (ω, x) = dt u (t, x) e -iwt . (II.3)
It is commonly clear that the standard two-way wave equation allows to model simultaneously the full-wave in increasing z direction and decreasing z direction. In the following we will recall how the full wavefield could be separated into down and up-propagating wavefields based on the work of Opt Root and Stolk (2010). In fact, the formalism of decoupling the wavefield is called the one-way wave decomposition and it is considered as a mathematical result and does not require any approximation. Therefore, through the next paragraphs, we will highlight the difference between one-way decomposition (no approximation) and one-way approximation (that will be discussed in II.1.3).

II.1.2 One-way wave decomposition

In a mathematical point of view, Opt Root and Stolk (2010) showed through an eigenvalue decomposition of the Helmholtz Equation (II.2) that the full wavefield could be seen as a sum of two propagated wavefields, the first from the source depth position to the upper region and the second from the source position to the lower depth. In order to formulate the decomposition, the wave equation can be rewritten as a system linking the pressure wavefield U to the longitudinal component of its gradient

∂ z U ∂ z U ∂ z U = 0 1 -λ 2 (x) 0 U ∂ z U - 0 S (II.4)
where S = S(ω)δ(x -s) and the λ is given by

λ(x) = ω 2 v 2 (x) + ∂ 2 x 1 2
.

(II.5)

In one-way literature, λ is often called the square root operator. Let us now define the matrix A as

A = 0 1 -λ 2 (x) 0 (II.6)
The eigenvalue decomposition of matrix A is given by

A = M DM -1 (II.7)
where D is a diagonal matrix whose diagonal elements are the eigenvalues of A. M is the matrix composed by the corresponding eigenvectors and is not unique, as usual. Here, we define the following matrices

M = 1 1 iλ(x) -iλ(x) , D = iλ(x) 0 0 -iλ(x) . (II.8)
Hence M -1 is given by

M -1 = 1 2 1 -i/λ(x) 1 i/λ(x) .
(II.9)

The matrix M -1 , called the splitting matrix, allows to link the down-going component of the pressure wavefield (denoted by U + ) and the up-going component (denoted by U -) to the full wavefield U and its gradient ∂ z U .

U + U - = M -1 U ∂ z U (II.10)
Further details about the splitting matrix are given in the appendix shown in A.1). Injecting the previous relation into Equation (II.4), we get

∂ z M U + U - = AM U + U -- 0 S (II.11)
which leads to

∂ z M U + U -+ M ∂ z U + U - = AM U + U -- 0 S . (II.12)
Using the eigenvalue decomposition of matrix A given in Equation (II.7), we have

M ∂ z U + U - = [M D -∂ z M ] U + U -- 0 S . (II.13)
Multiplying the last equation by the inverse of M matrix, we finally obtain

∂ z U + U - = D -M -1 ∂ z M U + U --M -1 0 S . (II.14)
Substituting matrices by their values and developing the right hand side (RHS) term allows to write the decomposition of the wave equation in the given form

∂ z U + U -= iλ(x) 0 0 -iλ(x) - 1 2 
∂ z λ(x) λ(x) 1 -1 -1 1 U + U -- 1 2     i λ(x) -i λ(x)     S.
(II.15) Thus, based on the eigenvalue decomposition, we have shown that the two-way wave equation can be split into a system of two coupled differential equations of order one. This system enables to describe the propagation of the up-going and down-going wavefields without introducing any approximation. Moreover, solving it is in the same complexity order as solving the two-way wave equation. A physical interpretation of Equation (II.15) is that the diagonal matrix is responsible of the propagation while the full matrix, that ensures the coupling, handles the scattering effect. In fact, the off-diagonal terms explain the scattering effect in the reflection mode whereas the diagonal terms handle the transmission scattering effect. In the next paragraph we will decouple the system (II.15) and highlight the approximation done during this step.

II.1.3 Wave equation decoupling using the one-way approximation

The one-way approximation of the two-way wave equation consists in decoupling the system shown in Equation (II.15) which basically means neglecting the coupling terms. Dropping the off-diagonal terms leads to ignoring the scattering in the reflection mode and limits the propagation in only transmission mode. Thus, this approximation conducts to the following equations

             ∂ z P + = [iλ(x) + γ(x)] P + - i 2λ(x) S ∂ z P -= [-iλ(x) + γ(x)] P -+ i 2λ(x) S (II.16)
where the P + and P -wavefields denote the approximation of the wavefields U + and U - through the one-way approximation framework and γ is given by

γ(x) = - 1 2 
∂ z λ(x) λ(x) = 1 2v(x) ∂ z v(x) 1 - v 2 (x)∂ 2 x ω 2 + v 2 (x)∂ 2 x .
(II.17)

Following a high frequency approximation (a different approach from the eigen-value decomposition), Zhang et 

       ∂ z P + = iλ(x)P + -S ∂ z P -= -iλ(x)P -+ S (II.18)
miss two extra terms to match the true amplitude one-way equations: the true-amplitude γ term which is based on the vertical variation of the square root operator and the source correction term that must be added in order to restore the phase and amplitude while injecting the source. The implementation of the additional true-amplitude term increases the computational cost of the one-way operator. To limit this extra computational cost, we can perform one more approximation by assuming that the vertical variation of the velocity model is sufficiently smooth so that the contribution of ∂ z v and thus γ can be neglected. Under this assumption, the one-way wave equations can then be described by the following system

             ∂ z P + = iλ(x)P + - i 2λ(x) S ∂ z P -= -iλ(x)P -+ i 2λ(x) S.
(II. [START_REF] Claerbout | Downward continuation of moveoutcorrected seismograms[END_REF] This decoupling and the added approximation may conduct to an error in the amplitude accuracy but it has no effect on the travel-time (modeling). Furthermore, one can remark that in case of a constant velocity model, the system in Equation (II.15) is already decoupled (∂ z λ = 0 in that case) and is rigorously equal to the system written in (II. [START_REF] Claerbout | Downward continuation of moveoutcorrected seismograms[END_REF]). Thus, in an homogeneous case, the one-way wave equation is not an approximation and must give the same results as the classical two-way equation when we add the source correction term to the original Claerbout equations (II.18). For this reason we will show in the following paragraph, the adapted technique to inject the source term for the one-way equation.

II.2 One-way equation and source term

In the previous part, we highlighted that the one-way wave equation has a different source term compared to its two-way version. [START_REF] Duquet | Amelioration de l'imagerie sismique de structures geologiques complexes[END_REF] and [START_REF] Collino | Peut-on obtenir des amplitudes correctes avec les equations paraxiales?[END_REF] showed that injecting the source term in its naive form leads to amplitude and phase difference compared to the two-way data even in homogeneous media. In this section, we will define the appropriate one-way source term in order to match the full wavefield. The adapted approach is inspired from the phd thesis of [START_REF] Collino | Peut-on obtenir des amplitudes correctes avec les equations paraxiales?[END_REF] and it allows to handle models with lateral variations. From Equation (II. [START_REF] Claerbout | Downward continuation of moveoutcorrected seismograms[END_REF]), we define a new source term S o for the one-way wave equation as

S o = i 2λ(x)
S.

(II.20)

The direct implementation of the previous relation is difficult because it requires the computation of the inverse of the square root operator λ. In order to avoid the inverse computation, we rewrite Equation (II.20) in another form by multiplying each side by λ 2

ω 2 v 2 (x) + ∂ 2 x S o = i 2 ω 2 v 2 (x) + ∂ 2 x 1 2

S. (II.21)

Using a first order Padé approximation on λ, we get

ω 2 v 2 (x) + ∂ 2 x S o = i 2 ω v(x)     1 - β ∂ 2 x v 2 (x) ω 2 1 -α ∂ 2 x v 2 (x) ω 2     S (II.22)
where α and β are given by

       β = cos 2 π 3 α = 2 3 sin 2 π 3 .
(II.23)

The source term correction can be seen as a two steps process, first the application of the right hand side operator on the given source term and then using its result as a source term of the 1D Helmholtz equation. This process can be described mathematically by

                   S = i 2 ω v(x)      1 - β ∂ 2 x v 2 (x) ω 2 1 -α ∂ 2 x v 2 (x) ω 2      S ω 2 v 2 (x) + ∂ 2 x S o = S .
(II. [START_REF] Collins | Parabolic Wave Equations with Applications[END_REF] In fact, several other works have investigated the problem of the source term correction in one-way wave Equation (see [START_REF] Wapenaar | Representation of seismic sources in the one-way wave equations[END_REF], [START_REF] Charara | Boundary conditions and the source term for one-way acoustic depth extrapolation[END_REF]). Therefore, we may find the same expressions in the formulation of the source term in one-way equation but the techniques of approximating the operator may differ. From our experience, we find that the first order Padé approximation is appropriate to this kind of problem because it is able to handle lateral velocity variation. After discussing the source correction term, we will see in the next paragraph the different way of solving the first order differential equation represented in the decoupled system.

II.3 One-way depth extrapolation methods

Many works and papers have proposed a variation of different one-way extrapolators. In this paragraph, we will describe some of them. We classify these strategies according to their application either in spectral or spatial domain or if they mix both domains.

In the following, we will focus on studying the down-going one-way wave equation without any loss of generality since the downward and upward extrapolation only differ by a minus sign. Let us recall the down-going one-way wave equation in arbitrary x = (x, z) position different from the source position

∂ z P + (ω, x, z) = iλ (ω, x, z) P + (ω, x, z) (II.25)
where λ is given by

λ (ω, x, z) = ω 2 v 2 (x, z) + ∂ 2 x 1 2 . (II.26)
It is obvious that the previous relation is not polynomial so it does not correspond to a differential equation. The main idea behind the one-way methods vary from the way we approximate this square root operator.

II.3.1 Spectral methods

Spectral extrapolators are based on an operator application on the Fourier transform of the wavefield in the spectral domain. It merely requires a multiplication and Fourier transform which make it relatively cheap. However, these methods are developed for velocity models that do not contain lateral variations.

Phase shift

In case of a model without any lateral depth variation v(x, z) = c(z), Equation (II.25) has an analytic solution in the frequency-wave number domain written as

P + (ω, k x , z + ∆z) = e i∆zλ P + (ω, k x , z) (II.27)
where ∆z is the spatial step in the vertical axis, k x is the spatial frequency in x domain and P + is the Fourier transform of P + in the spatial x domain

P + (ω, k x , z) = dx P + (ω, x, z) e -ikxx (II.28)
By supposing that the velocity is reduced to one value by depth layer, [START_REF] Gazdag | Wave equation migration with the phase-shift method[END_REF] formulated the analytic solution of the one-way equation by writing λ as a spatial filter in the spectral domain (k x domain). It consists in a depth extrapolation of the wavefield from the source surface to the deep model region layer by layer. This method is considered stable and it can propagate wavefield with low computational cost (only a multiplication in the Fourier domain). It can also handle propagation angle up to 90 • but its formulation is only limited to a particular case of model without any lateral variation. However, such an assumption cannot be justified in the majority of seismic imaging cases. Thus, these methods are not considered precise enough to carry out a reasonable propagation. The following approaches propose different solutions to relax the latter limitation.

Phase shift plus interpolation (PSPI)

In case of lateral variations, the wavefield representation in frequency wave-number domain is meaningless and there is no straightforward representation of the solution. In 1984, [START_REF] Gazdag | Migration of seismic data by phase shift plus interpolation[END_REF] proposed a new improvement of the phase shift to take into account the velocity lateral variations. The main idea is that the wavefield can be computed based on an interpolation among wavefields that were extrapolated by the phase shift using two or more reference velocities. Here, we will talk about the case of two reference velocities v 1 and v 2 generally chosen as the minimum and maximum value in a given velocity layer. The first step is a downward propagation of two wavefields P + 1 and P + 2 by applying the phase shift operator using the two reference velocities v 1 and v 2

P1 + (ω, k x , z + ∆z) = e i∆zλ 1 P1 + (ω, k x , z) (II.29) and P2 + (ω, k x , z + ∆z) = e i∆zλ 2 P2 + (ω, k x , z) (II.30)
where λ 1 and λ 2 refer to the square root operator expressed in the reference velocities

λ 1 = ω 2 v 2 1 -k 2 x 1 2 ; λ 2 = ω 2 v 2 2 -k 2 x 1 2
.

(II.31)

The second step consists in applying the spatial inverse Fourier transform and writing the wavefields P 1 and P 2 in the following form Finally, the extrapolated depth wavefield can be written as

P + 1 (ω, x, z + ∆z) = A 1 exp(iθ
P + (ω, x, z + ∆z) = A(x) exp(iθ(x)) (II.34)
where the amplitude A and the phase θ are respectively obtained through a linear interpolation of A 1 ,A 2 and θ 1 ,θ 2 respectively

A(x) = A 1 (v(x) -v 1 ) + A 2 (v 2 -v(x)) v 2 -v 1 (II.35)
and

θ(x) = θ 1 (v(x) -v 1 ) + θ 2 (v 2 -v(x)) v 2 -v 1 . (II.36)
The precision of this method basically depends on the difference between the reference model and the total lateral variation. The use of the phase shift formulation makes the first term stable but the finite difference term, in some rare cases, generates some instabilities. For this purpose it is recommended to use more reference velocities in case of big lateral variations.

II.3.2 Finite difference based methods

In the second category and contrarily to spectral methods, the finite difference method can handle lateral variations. The first finite difference operator is given by [START_REF] Claerbout | Fundamentals of geophysical data processing[END_REF] by doing a first order Taylor expansion of the square root operator to develop a 15 • operator which means that it is able to model waves accurately up to 15 • angle. He then proposed to use a second order Taylor expansion in order to reach 45 • angle. Further finite difference techniques were proposed to reach 60 • -70 • (Kern, 1992a) using the paraxial approximation that we will describe in the next paragraph.

Paraxial approximation

The paraxial approximation enables to describe the wave propagation in a privileged direction [START_REF] Duquet | Amelioration de l'imagerie sismique de structures geologiques complexes[END_REF]. It transforms the square root operator into a polynomial form to construct a partial differential equation. This approach is essentially based on the approximation of the one-way dispersion relation by Padé approximations [START_REF] Bamberger | Higher order paraxial wave equation approximations in heterogeneous media[END_REF]. This approximation is characterized by its order N and the higher the order is, the more precise the solution is. Therefore, the operator λ in a homogeneous model can be written as

λ (ω, k x , z) ≈ ω c     1 - N n=1 β N n k 2 x c 2 ω 1 -α N n k 2 x c 2 ω     (II.37)
where α, β are defined by

       β N n = cos 2 nπ 2N + 1 α N n = 2 2N + 1 sin 2 nπ 2N + 1 . (II.38)
The generalization in case of a heterogeneous model is deduced from the relation between the second derivative in the wave number and space domain

-k 2 x ⇔ ∂ 2 ∂x 2 . (II.39)
Then, λ is approximated in the frequency-space domain as

λ (ω, x, z) ≈ ω c     1 - N n=1 β N n v 2 (x, z) ∂ 2 x ω 2 1 -α N n v 2 (x, z) ∂ 2 x ω 2     (II.40)
As we mentioned before, the paraxial approximation is able to support high lateral velocity variation. However, it cannot handle large angle which requires a bigger approximation order. The dispersion issue which is commonly observed for the finite difference methods presents also a problem for the paraxial approximation.

II.3.3 Mixed methods

To benefit from characteristics of both spectral and space domain, some mixed methods were proposed to ensure a good compromise between handling lateral variations and supporting large propagation angles. In the following, we will present the most known two techniques in this category: Split Step Fourier (SSF) [START_REF] Stoffa | Split-step fourier migration[END_REF] and Fourier Finite Difference (FFD) [START_REF] Ristow | Fourier finite-difference migration[END_REF])

Split step Fourier (SSF)

To reduce the limitation of the spectral methods on lateral variations in the velocity model, [START_REF] Stoffa | Split-step fourier migration[END_REF] introduced the Split Step Fourier technique (SSF). They proposed to split the velocity into a reference term c and a perturbation δv such that v (x, z) = c(z) + δv(x, z).

(II.41)

The application of SSF is then carried out in two steps.

• First a phase shift based operator is applied in frequency-wave number domain using the reference velocity c(z)

P + 1 (ω, k x , z + ∆z) = e iλ∆z P + (ω, k x , z) (II.42) with λ (ω, k x , z) = ω 2 c(z) 2 -k 2 x 1 2
(II.43)

• Then a correction term is applied on the frequency-space domain

P + (ω, x, z + ∆z) = e i ω v(x, z) - ω c ∆z P + 1 (ω, x, z + ∆z) (II.44)
This method is considered robust and precise if the velocity does not vary too much laterally and the propagation angle is close to the vertical. Nevertheless, the split-step approach still suffer from a lack of precision in wide angle propagation.

Fourier Finite difference (FFD)

In 1994, Ristow and Ruhl [START_REF] Ristow | Fourier finite-difference migration[END_REF]) introduced a mixed technique for seismic wave extrapolation in depth. This technique called Fourier Finite Difference (FFD) involves cascading a spectral based operator and a finite difference operator to form a chain of operators. FFD was applied to enhance the accuracy and stability of wave propagation in complex medium. In the following, we will describe the method in more details compared to the above methods because it is our chosen extrapolator for this project. Our choice is based on first the availability of a modified FFD code devoloped inside TotalEnergies R&D branch by Hua [START_REF] Hua | 3d tti implicit finite difference migration with nonlinear optimized four-direction splitting expansion[END_REF]. The code has been used in production and it is well tested and tuned. It is considered as a good start for the one-way propagators. Previously, the FFD method has proven its accuracy in several complex geology structures and was applied in different works. The basic idea behind the FFD approach is to define a reference spectral operator based on a background velocity c and to evaluate the difference between the true square root operator and the reference operator

= w 2 v (x) 2 + ∂ 2 x 1 2 - w 2 c 2 + ∂ 2 x 1 2
.

(II.45)

In the (ω, k x ) domain, we can write it like

= ω v (x) 1 - k 2 x v (x) 2 ω 2 1 2 - ω c 1 - k 2 x c 2 ω 2 1 2 . (II.46)
Then, can be transformed into an infinite series by a Taylor expansion of the first and second terms of Equation (II.46). Applying a Taylor expansion of the first term we get

ω v (x) 1 - k 2 x v (x) 2 ω 2 1 2 ≈ ω v (x) 1 - 1 2 k x v (x) ω 2 + ∞ n=2 (-1) n C m n k x v (x) ω 2n (II.47)
where m = 1 2 and C m n is defined as

C m n = m(m -1)...(m -n + 1) n! . (II.48)
Similarly, the Taylor expansion of the second term gives

ω c 1 - k 2 x c 2 ω 2 1 2 ≈ ω c 1 - 1 2 k x c ω 2 + ∞ n=2 (-1) n C m n k x c ω 2n . (II.49)
The FFD approach consists in truncating the infinite series to its second approximation order

≈ ω v (x) - ω c + ω v (x) 1 - c v (x) v (x) 2 ∂ 2 x ω 2 a v (x) + b v (x) v (x) 2 ∂ 2 x ω 2 . (II.50)
The constant background c has to be chosen in such a way that the velocity (c is better than) to make sure that the term 1 -c v (x)

does not change its sign. a and b are the wide angle coefficients. They depend on the velocity model which makes the FFD approach more adapted to add a better correction to the reference operator at high propagation angle. These coefficients are estimated from the Taylor expansion as shown in [START_REF] Ristow | Fourier finite-difference migration[END_REF]. Using this last approximation of the difference, we can write the final approximation of the operator like

ω 2 v (x) 2 + ∂ 2 x 1 2 ≈ ω 2 c 2 + ∂ 2 x 1 2 I + ω v (x) - ω c II + ω v (x) 1 - c v (x) v (x) 2 ∂ 2 x ω 2 a v (x) + b v (x) v (x) 2 ∂ 2 x ω 2 III .
(II.51) The final operator now is split into a cascade of three different operators. The first term I of the right hand side simulates the action of the phase shift operator which is applied in spectral domain using a background velocity model. The second term II is a first order correction of the choice of a velocity c, different from the actual velocity v. It corresponds to the same correction of the split step method (SSF). The third operator is a second order correction of the difference between c and v. The latter finite difference operator is commonly called the wide angle operator. It allows to precisely handle bigger propagation angles compared to the split-step approach.

Relative error with respect to the propagation angle:

The basic idea of FFD is that the true square root operator using the real velocity is approximated by another phase shift operator using a reference velocity c that does not have lateral variations. Then two other correction operators are added to compensate the difference between the chosen velocity c and the true velocity v. Here, we will try to evaluate the accuracy of the approximated operator compared to the true one with respect to the dip angle. The difference between the operator and its approximation could be written as

= ω v 1 -u 2 - ω c 1 - c 2 v 2 u 2 + ω c c v -1 - ω c c v au 2 1 -bu 2 .
(II.52)

Then, the relative error is defined by

ρ(u) = ρ (sin(θ)) = | | c v 1 -u 2 (II.53)
By making θ vary, we can compute the relative error and thus estimate the maximum supported dip angle for a given allowed error. 2, we may conclude that the lower the propagation angle is the better the accuracy of the one-way operator is. For this reason, at far offset, it is commonly known that the one-way modeling losses precision at large propagation angles where it is difficult to distinguish between up or down propagation. In order to ensure a better propagation at large angles, Hua et al.

(2010) suggested a slightly modified FFD approximation of the square root operator given by

ω 2 v (x) 2 + ∂ 2 x 1 2 ≈ ω 2 c 2 + ∂ 2 x 1 2 I + ω v (x) - ω c II + ω v (x) a v (x) v (x) 2 ∂ 2 x ω 2 1 + b v (x) v (x) 2 ∂ 2 x ω 2 III (II.54)
where the coefficients a and b of the wide angle are estimated through a least squares optimization technique in order to refine them for larger propagation angles. The details of the coefficients optimization are provided in appendix A.2. Usually, these coefficients should be calculated in advance for a range of velocities because it is not affordable to estimate them at each depth extrapolation. However, the obtained table can be too large and cannot be loaded in memory during the propagation. In order to overcome the latter issue, [START_REF] Hua | 3d tti implicit finite difference migration with nonlinear optimized four-direction splitting expansion[END_REF] proposed to compress a and b coefficients by writing them as a smooth function with respect to c/v such that

a v (x) = N f it i=1 µ i c v(x) i-1 b v (x) = N f it i=1 η i c v(x) i-1 (II.55)
where N f it is the degree of the polynomial fit and the coefficients µ and η are the compression coefficients estimated from the pre-calculated table generated by the least squares optimization.

II.3.4 Summary about wavefield extrapolation methods

We have sorted the one-way extrapolators into three categories. First, phase shift based methods were presented. They can handle large angles but are not accurate facing velocity lateral variations. On the other hand, the finite difference based category are particularly adapted to velocity lateral variations but they are vulnerable to dispersion issue and cannot propagate at large dip angles. We have also presented the mixed methods that were proposed to benefit from the advantages of the aforementioned two types of extrapolators. Finally, we discussed in more details the FFD method since it is the method we have decided to use for the rest of this work. In the following, we will show a discretization formulation of the one-way wave equation using the FFD depth extrapolation method in order to give more details about its implementation. Although the one-way propagators are not developed during this work, the implementation details discussed below will help us formulating the next bricks of the project (Born modeling, inverse problem ...).

II.4 Discrete formulation of the one-way equation using FFD method

According to the Fourier finite difference (FFD) approach detailed in the previous paragraph, the down-going one-way wave equation written in x (different from the source position) is given by

∂ z P + (ω, x, z) = i      ω 2 c 2 + ∂ 2 x 1 2 + ω v (x) - ω c + ω v (x) a v (x) v (x) 2 ∂ 2 x ω 2 1 + b v (x) v (x) 2 ∂ 2 x ω 2      P + (ω, x, z)
(II.56) where c is the reference homogeneous layered velocity model calculated from the velocity model v and a, b are the coefficients of the wide angle operator. Equation (II.56) can be solved by cascading the following equations

∂ z P + (ω, x, z) = i ω 2 c 2 + ∂ 2 x 1 2 P + (ω, x, z) ∂ z P + (ω, x, z) = i ω v (x) - ω c P + (ω, x, z) ∂ z P + (ω, x, z) = i ω v (x) a v (x) v (x) 2 ∂ 2 x ω 2 1 + b v (x) v (x) 2 ∂ 2 x ω 2 P + (ω, x, z) .
(II.57a)

(II.57b) (II.57c)
In the following, we will show the discretization of every operator separately. For this purpose, we denote by # P + the down-going wavefield on a whole x-plane as vector of n x elements depending on frequency ω and the depth z j such that

# P + (ω, z j ) =    P + (ω, x 1 , z j )
. . .

P + (ω, x nx , z j )    (II.58)
where x i = i∆x and z j = j∆z, knowing that ∆x and ∆z are the grid size respectively in the x and z axis.

Phase shift operator

The discretization of Equation (II.57a) gives the following formula

# P + (ω, z j+1 ) = P s [z j ] # P + (ω, z j ) (II.59)
where P s corresponds to the discretized phase shift operator and is formulated as

P s [z j ] = IF F T x           e i∆zζ 1 0 0 . . . 0 0 e i∆zζ 2 0 . . . 0 0 0 e i∆zζ 3 . . . 0 . . . . . . . . . . . . 0 0 0 0 . . . e i∆zζ n           F F T x (II.60)
where

• ζ l = ω 2 c 2 (z j ) -k l x 2 1 2
• k x is the spatial frequency.

• ∆k x is the spatial frequency step and k l x = l∆k x . • F F T x corresponds to a matrix representation of the spatial Fourier transform operator

F F T x =      e -iωx 1 k 1 x . . . e -iωx 1 k nx x . . . . . . . . . e -iωx nx k 1 x . . . e -iωx n k nx x      . (II.61)
• IF F T x represents the inverse Fourier transform

IF F T x =      e iωx 1 k 1 x . . . e iωx 1 k nx x . . . . . . . . . e iωx nx k 1 x . . . e iωx n k nx x      . (II.62)

Split step operator

The discretization of Equation (II.57b) implies to solve the following equation

# P + (ω, z j+1 ) = S s [z j ] # P + (ω, z j ) (II.63)
where S s denotes the split step operator represented by the following diagonal matrix

S s [z j ] =           e i∆zξ 1 0 0 . . . 0 0 e i∆zξ 2 0 . . . 0 0 0 e i∆zξ 3 . . . 0 . . . . . . . . . . . . 0 0 0 0 . . . e i∆zξ n           (II.64)
where

ξ l = ω c(z j ) - ω v(x l , z j )
.

Wide angle operator

Contrarily to the previous operators, the discretization of Equation (II.57c) is not straightforward. That is why, we will develop the finite difference scheme and by the end of this paragraph we will write the wide angle operator in its matrix representation. Applying a Crank-Nicolson scheme to discretize Equation (II.57c) in z axis provides

P + (ω, x, z j+1 ) -P + (ω, x, z j ) ∆z = -i ω v a v 2 ∂ 2 x ω 2 1 + b v 2 ∂ 2 x ω 2 1 2 P + (ω, x, z j+1 ) + P + (ω, x, z j )
(II.65) where we have dropped the dependance of the velocity on x to ease the reading and writing. Thus,

2P + (ω, x, z j+1 ) -2P + (ω, x, z j ) = -i∆z a v∂ 2 x ω 1 + b v 2 ∂ 2 x ω 2 P + (ω, x, z j+1 ) + P + (ω, x, z j ) (II.66) which leads to 2P + (ω, x, z j+1 ) + 2b v 2 ∂ 2 x ω 2 P + (ω, x, z j+1 ) -2P + (ω, x, z j ) -2b v 2 ∂ 2 x ω 2 P + (ω, x, z j ) = -i∆za v 2 ∂ 2 x ω 2 P + (ω, x, z j+1 ) + P + (ω, x, z j ) .
(II.67) The discretization of the second derivative in x through a second order finite difference approximation implies

2P + (ω, x i , z j+1 ) + 2b v 2 ω 2 ∆x 2 P + (ω, x i-1 , z j+1 ) -2P + (ω, x i , z j+1 ) + P + (ω, x i+1 , z j+1 ) -2P + (ω, x i , z j ) -2b v 2 ω 2 ∆x 2 P + (ω, x i-1 , z j ) -2P + (ω, x i , z j ) + P + (ω, x i+1 , z j ) = -i∆za v ω∆x 2 P + (ω, x i-1 , z j+1 ) -2P + (ω, x i , z j+1 ) + P + (ω, x i+1 , z j+1 ) -i∆za v ω∆x 2 P + (ω, x i-1 , z j ) -2P + (ω, x i , z j ) + P + (ω, x i+1 , z j ) .
(II.68) We can then derive the following finite difference equation

W lhs [z j ] # P + (ω, z j+1 ) = W rhs [z j ] # P + (ω, z j ) (II.69)
where

• the left hand side operator W lhs takes the following matrix form

W rhs [z j ] =                2 -2α(x 1 , z j ) α(x 1 , z j ) 0 . . . 0 α(x 2 , z j ) 2 -2α(x 2 , z j ) α(x 2 , z j ) . . . 0 0 α(x 3 , z j ) 2 -2α(x 3 , z j ) . . . 0 . . . . . . . . . . . . 0 0 0 0 α(x nx , z j ) 2 -2α(x nx , z j )               
• and the right hand side operator W rhs takes the following matrix form

W rhs [z j ] =                2 -2β(x 1 , z j ) β(x 1 , z j ) 0 . . . 0 β(x 2 , z j ) 2 -2β(x 2 , z j ) β(x 2 , z j ) . . . 0 0 β(x 3 , z j ) 2 -2β(x 3 , z j ) . . . 0 . . . . . . . . . . . . 0 0 0 0 β(x nx , z j ) 2 -2β(x nx , z j )                where α = 2b v 2 ω 2 ∆x 2 + i∆za v ω∆x 2 and β = 2b v 2 ω 2 ∆x 2 -i∆za v ω∆x 2
Finally, the wide angle operator W a can then be written as the matrix product between the inverse of the LHS operator by the RHS one

W a [z j ] = W lhs [z j ] -1 W rhs [z j ] .
(II.70)

One step depth extrapolation

To conclude, one step down-going depth extrapolation consists in applying the cascade of the previously described three operators in a depth slice to get the wavefield at the next depth slice

# P + (ω, z j+1 ) = P down [z j ] # P + (ω, z j ) (II.71)
where the down-going operator P down is given by

P down [z j ] = W a [z j ] S s [z j ] P s [z j ] . (II.72)
By the same process, we could write the up-going one-way depth extrapolation using the following expression

# P -(ω, z j-1 ) = P up [z j ] # P -(ω, z j ) (II.73)
where the up-going operator P up is given by

P up [z j ] = W * a [z j ] S * s [z j ] P * s [z j ] (II.74)
where * denotes the adjoint.

To summarize, we have presented the derivation of the one-way wave equations from the classical two-way equation using the eigenvalue decomposition. Then, we have seen that decoupling the two modes of propagation (up and down-going waves) consists in introducing the one-way approximation. This decoupling leads to the true amplitude oneway equation that is mainly composed of the square root operator shown in the original equations of Claerbout and two other extra operators: first the source correction operator which allows to restore the amplitude and phase of the injected source term and second the true amplitude operator that affects only the amplitude of the modeled data. Finally, we have provided the implementation details and the discretization of the depth extrapolation operator. In the next paragraph, we will show in relatively simple models the comparison between the two way modeling, the transmission modeling using the original Claerbout equations and the true amplitude equations.

II.5 Numerical tests

In this section, we will test the accuracy of the one-way propagation and focus on the effect of the source correction and the true amplitude term. To do so, we will consider progressively complex models and compared the modeled data to synthetic data generated using a two-way full modeling. In all our tests, the propagation grid is fixed at a 5m step in both directions. Moreover, the acquisition is kept the same where the source is set at 5000m in the x-direction and at 20m depth. As for the receivers, since we are only interested in the transmission mode, they are set at 5km depth and cover all the x-direction.

II.5.1 Source correction

In the current test, we will focus on the importance of including the source correction in the one-way equation. For this purpose, a constant velocity model (see Figure II.3 left) is chosen to avoid the contribution of true amplitude operator γ (γ = 0 if v is constant). Therefore, the comparison will be limited to one-way data without source correction as described by Equation (II.18) and with source correction following Equation (II. [START_REF] Claerbout | Downward continuation of moveoutcorrected seismograms[END_REF]). Since the one-way decomposition is exact in homogeneous model, one-way data should match perfectly two-way data. Thus, we will use data obtained after a two-way modeling as a reference.

The middle and the right panels of Figure II.3 show the data modeling at respectively zero offset and 5km offset. The blue curve plots the two-way data, the green curve depicts the one-way data without source correction term and the red curve plots the one-way data including the source correction term. We clearly see an important mismatch between the two-way data (blue curve) and the one-way data generated without source correction (green curve). The mismatch between two-way data and one-way data (green curve) is not limited to amplitude or phase difference but it also affects the waveform. Nevertheless, the good match to the two-way data (blue curve) observed by the one-way data with source correction (red curve) proves the efficiency of the source correction to restitute the amplitude and the waveform. Henceforth, all the next tests will be carried out with applying the source correction term even if it is not explicitly mentioned. 

II.5.2 True amplitude one-way

The purpose of this paragraph is to study the effect of the true amplitude term on the one-way modeling. To avoid confusion by mixing the contribution of different operators, we will first start with a ramp model and then we will show the modeling results on Marmousi model.

Ramp model

The 

Marmousi model

In the Marmousi model test (see left panel of Figure II.5), we would like to assess the quality of the one-way modeling in a more general configuration (including lateral variations). The middle panel of Figure II.5 shows a good match between the modeled zero offset oneway data based on the true amplitude equation (red curve) and the zero offset two-way data (blue curve). We have to mention that the zero offset data is generally related to small propagation angles where the approximation of the square root operator is quite accurate. That explains the good observed match between the data. The comparison between the red curve (with true amplitude one-way) and the green curve (without true amplitude one-way) shows the necessity of the true amplitude term to restore amplitude as it was observed in the previous test. However, at 5km offset (see left panel of Figure II.5)) which corresponds to large propagation angles, we start to see an amplitude difference between true amplitude one-way data (red curve) and two-way data (blue curve). This mismatch is due to the presence of velocity lateral variations that makes the approximation of the square root operator based on FFD method not accurate enough for large propagation angle. In fact, from this test and other several tests that are not presented in the manuscript, we may conclude that the one-way propagation at near offset usually show a good modeling quality. However, at far offset we start to see a data mismatch compared to the two-way data which is generally limited to an amplitude difference. 

II.6 Conclusion about one-way wave equation

The one-way wave equation offers an alternative to the conventional two-way wave equation. The derivation of the one-way approximation from the two-way equation requires to drop the coupling terms between up and down-going propagation modes (see equations (II.15)). In this chapter, we have presented that the first approximation for the decoupling leads to the true amplitude one-way wave equations (II.16). Further approximations can be made if assuming that the velocity model is slowly varying in the privileged axis. The latter approximation (see equations (II. [START_REF] Claerbout | Downward continuation of moveoutcorrected seismograms[END_REF])) enables to drop the true amplitude operator but it affects the amplitude of the transmission data modeling. Results shown in Figure II.4 confirms the need of the true amplitude operator to match the two-way data in transmission mode. Furthermore and unlike the original equations of Claerbout (II.18), we have seen that the one-way wave equation (with or without the true amplitude term) requires an additional source correction term to restitute phase and data amplitude. The need of this correction is clearly observed in the homogeneous velocity test displayed in Figure II.3. Finally, we have discussed the various depth extrapolation methods presented in the literature and we have especially focused on the adapted Fourier Finite Difference (FFD) method. We note that since the FFD method is based on a Taylor expansion of the square operator, the one-way propagation suffers from a lack of precision for large propagation angles (see Figures II.2, II.5). Therefore, the limitations of the one-way wave equation are observed at large dip angles and especially in case of high laterally variable velocity model.

Chapter III

Born modeling

In the previous chapter, we have shown the mathematical derivation of the one-way wave equation from the two-way classical wave equation. Through a few numerical tests, we have shown the accuracy and limitations of the one-way data modeling in the transmission mode. In our research work, we are rather interested in the reflected data that can provide information about the deep subsurface model. Therefore, we aim to separate the reflected data from other wave propagation modes. For this purpose, [START_REF] Xu | Full waveform inversion for reflected seismic data[END_REF] suggested to use the two-way based Born modeling to generate data from the prior depth reflectivity image. In the following, we will start by describing the mathematical formulation of the two-way Born modeling and its limitations. Then starting from the two-way Born modeling, we will derive and illustrate the expression of the one-way based Born modeling discussed also for a different context by [START_REF] Collino | Peut-on obtenir des amplitudes correctes avec les equations paraxiales?[END_REF]. At the end of this part, we will study the accuracy of reflected data obtained after a one-way Born modeling on progressively complex models.

III.1 Full wavefield perturbation linearization

Green function of the two-way wave equation in an isotropic acoustic medium in the frequency domain is the solution of

         ∆ + ω 2 v 2 (x) G (ω, x, s, v) = -δ (x -s) lim r→∞ ∂ r G (ω, x, s, v) -i ω v (x) G (ω, x, s, v) = 0 where r = ||x -s|| (III.1)
We recall that ∆ denotes the Laplacian operator, G stands for the two-way Green function of the wave equation observed at the position x ( x = (x, z) ) coming from a source s (s = (x s , z s )) and the second equation of (III.1) describes the Sommerfield radiation condition.

The wave equation given in (III.1) governs the relation between the subsurface parameters and the wave propagation. This relation is not linear and it could be linearized around a reference velocity using different perturbation techniques such as Born, Kirchhoff or Rytov approximation. In the following paragraph, we will mainly focus on the Born approximation which is the most widely used among the linearization methods (see [START_REF] Clayton | A born-wkbj inversion method for acoustic reflection data[END_REF], [START_REF] Coates | Ray perturbation theory and the born approximation[END_REF])). To describe the relation between the wave perturbation and the model perturbation, we apply the scale separation approach where the contribution of the velocity model v is split into two parts: a low wavenumber component and a long wavenumber such that

1 v 2 = 1 v 2 b + δm r (III.2)
where v b stands for the background velocity model and δm r is the high frequency perturbation of the slowness squared model. As mentioned before, δm r is also called reflectivity or image. By the same way, we represent the Green function G as the sum of the solution of the wave equation in the reference background slowness model G b and a perturbation δG such as

G (ω, x, s, v) = G b (ω, x, s, v b ) + δG (ω, x, s, v) (III.3)
where G b is the solution of

∆ + ω 2 v 2 b (x) G b (ω, x, s, v b ) = -δ (x -s) . (III.4)
After injecting the scale separation relation (III.2) into Equation (III.1), we get:

∆ + ω 2 v 2 b (x) G (ω, x, s, v) + ω 2 δm r (x)G (ω, x, s, v) = -δ (x -s) . (III.5)
Using Equation (III.3), we obtain

∆ + ω 2 v 2 b (x) G b (ω, x, s, v b ) + δG (ω, x, s, v) + ω 2 δm r (x)G (ω, x, s, v) = -δ (x -s) .
(III.6) Subtracting Equation (III.4) from the last equation leads to

∆ + ω 2 v 2 b (x) δG (ω, x, s, v) = -ω 2 δm r (x)G (ω, x, s, v) . (III.7)
Equation (III.7) describes the propagation of the scattered wavefield δG. However this expression is not linear because of the presence of the full Green function in the right hand side. For this purpose, we will try to linearize the previous equation by adding some approximations. Let us now introduce the Green function in the background model but observed in position x and coming from the spatial position g

∆ + ω 2 v 2 b (x) G b (ω, x, g, v b ) = -δ (x -g) . (III.8) We multiply Equation (III.7) by G b (ω, x, g, v b ), we get ∆ + ω 2 v 2 b (x) δG (ω, x, s, v) G b (ω, x, g, v b ) = -ω 2 δm r (x)G (ω, x, s, v b ) G b (ω, x, g, v b ) .
(III.9) Multiplying also Equation (III.8) by δG (ω, x, s, v) leads to

∆ + ω 2 v 2 b (x) G b (ω, x, g, v b ) δG (ω, x, s, v) = -δ (x -g) δG (ω, x, s, v) (III.10)
Finally, we subtract Equation (III.10) from Equation (III.9) and we integrate now over a closed compact volume V with the boundary δV . We get

V dx G b (ω, x, g, v b ) ∆δG (ω, x, s, v) -δG (ω, x, s, v) ∆G b (ω, x, g, v b ) = - V dx ω 2 δm r (x)G b (ω, x, s, v b ) G b (ω, x, g, v b ) + V dx δ (x -g) δG (ω, x, s, v) .
(III.11) Clearly the final term in the last equation gives

V dx δ (x -g) δG (ω, x, s, v) = δG (ω, g, s, v) .
(III.12)

The left hand side term could be rewritten using Green's theorem as

V dx G b (ω, x, g, v b ) ∆δG (ω, x, s, v) -δG (ω, x, s, v) ∆G b (ω, x, g, v b ) = δV dx n. G b (ω, x, g, v b ) ∇δG (ω, x, s, v) -δG (ω, x, s, v) ∇G b (ω, x, g, v b ) (III.

13) Taking into account the absorbing boundary conditions

δV dx n. G b (ω, x, g, v b ) ∇δG (ω, x, s, v) -δG (ω, x, s, v) ∇G b (ω, x, g, v b ) = 0.
(III.14) δG is then expressed as the solution of a non-linear integral equation

δG (ω, g, s, v) = V dx ω 2 G (ω, x, s, v b ) G b (ω, x, g, v b ) δm r (x).
(III.15) Expression (III.15) is known as the equation of Lipmann-Schwinger [START_REF] Morse | Methods of theoretical physics[END_REF]. It is the exact integral equivalent form of the partial differential wave equation described in (III.7). In (III.15), we can again decompose G into G b + δG which, by recurrence, will lead to an infinite scattering series. If we truncate this series to its first leading term, we get the first order Born approximation. Therefore, the calculated reflected data d T W from the two-way Born modeling are given by

d T W (ω, g, s, v b ) = V dx ω 2 G b (ω, g, x, v b ) G b (ω, x, s, v b ) δm r (x) (III.16)
where the subscript T W refers to the two-way Born modeling.

III.2 Two-way Born modeling interpretation

We have presented the mathematical formulation of the two-way Born modeling in order to generate the reflected data d T W . In this section, we will give a simple illustration of the reflection two-way data modeling Only linear scattering is accounted for in this formulation since we stop the approximation at its first order. Truncating the Born approximation at the first order provides kinematically accurate modeling results for reflection and diffraction. However, the first order Born approximation is not dynamically correct. To correct amplitude, we should continue the approximation for high order terms. Doing so, we model multiple reflection and diffraction which are not in our scope of interest for the proposed inversion method. The last remarks show that the two-way Born modeling over-simulates the wave-equation in some regions that will not be exploited by model building algorithms in seismic imaging configuration. Without affecting the results, restraining the propagation of the incident wavefield in only its down-going part will reduce the computational cost and it is the same for the up-going reflected wavefield.

III.3 One-way Born modeling

In this study, we propose the use of the one-way Born modeling for reflection waveform modeling instead of its two-way version. The expression of the one-way calculated data has the same form as described for the two-way in Equation (III.16):

d OW (ω, g, s, v b ) = V dx ω 2 G -(ω, g, x, v b ) G + (ω, x, s, v b ) δm r (x) (III.17)
where the subscript OW stands for One-Way. The "+" subscript (respectively -) refers to the propagation in the increasing (respectively decreasing) z-direction (remember that z is oriented downward). Hence G + (respectively G -) denotes the down-going (respectively up-going) one-way Green function solution of the following one-way wave equation with a Dirac source term

             ∂ z G + (ω, x, s, v b ) = iλ(x) + γ(x) G + (ω, x, s, v b ) + i 2λ(x) δ (x -s) ∂ z G -ω, x , x, v b = -iλ(x ) + γ(x ) G -ω, x , x, v b - i 2λ(x ) δ x -x .
(III.18) An illustration of the one-way Born modeling is given in Figure III.2. Compared to Figure III.1, the one-way Born modeling simulates the wave propagation in the regions of interest with respect to the geophysical acquisition configuration. However, the challenges for generating the reflection data using the one-way Born modeling are not the same as its two-way version. In fact, the one-way approximation could be not accurate enough especially for large propagation angles as discussed in previous chapter. Therefore, it is important to evaluate how well such an approach actually models the reflected wavefield. 

One-way Born modeling and the true amplitude operator

In the context of transmission data modeling, we have shown in Section II.5.2 that the true amplitude operator γ is necessary to accurately recover the amplitude of the two-way wave equation. Nevertheless, we can raise again the question of the necessity of this operator in the reflection data modeling context. Indeed, the true amplitude term enables to correct the wrong amplitude modeling due to the variations of the velocity in the vertical axis. During a Born modeling, we simulate the wavefield from source to reflector then back up to the surface. Thus, a compensation could occur and correct the amplitude mismatch. To be able to answer this question, we need to write the one-way Born modeling without the true amplitude operator γ

             ∂ z G + (ω, x, s, v b ) = iλ(x)G + (ω, x, s, v b ) + i 2λ(x) δ (x -s) ∂ z G -ω, x , x, v b = -iλ(x )G -ω, x , x, v b - i 2λ(x ) δ x -x . (III.19)
Therefore, in the following numerical part, we will show, using different velocity models, the modeling results in case of applying the true amplitude term following Equations (III.18) and without true amplitude term governed by Equations (III. [START_REF] Claerbout | Downward continuation of moveoutcorrected seismograms[END_REF]). Next, an evaluation of the contribution of the true amplitude term will be discussed by the end of this chapter.

III.4 Numerical tests

In this paragraph, we will evaluate the quality of the reflected data modeling using the one-way Born modeling in progressively increasing complex media. The evaluation quality control will be based on the reference solution of the conventional two-way Born modeling.

A comparison between the one-way Born modeling using Equations (III.18) and (III. [START_REF] Claerbout | Downward continuation of moveoutcorrected seismograms[END_REF]) will be carried out in order to assess the need of the true amplitude operator. The acquisition geometry consists of one source placed at 5km in lateral direction and 20m depth. The receivers are placed in both sides from 0 to 10km with spatial spacing of 5m and at 20m depth (same as the source) 3 that both at zero-offset or at far offset, the one-way Born modeling plotted in red fits well the two-way data displayed in blue. This result confirms that in homogeneous models the one-way Born modeling, similarly to transmission modeling, is not an approximation to the two-way Born modeling and should always provide the same modeling results.

III.4.1 Homogeneous model

III.4.2 Ramp model

Here, we will generate Born modeling data using a ramp velocity model which is a 1D gradient varying from V p = 1500m/s at the surface to V p = 3500m/s at 5km depth. We also put one reflector located at 2500m depth as displayed in the left panel of 

III.4.3 Refcurve model

In this part, we will investigate the accuracy of the one-way Born modeling in RefCurve model which is a relatively complex media with presence of velocity lateral variations perfectly match the two-way Born data (blue curve). However, at 5km offset (right panel), we observe a mismatch between the two signals related to the lateral variations of the velocity model. As discussed before, we expect a good match at zero-offset modeling that gradually degrades at the farther offsets depending on the angle of propagation. Moreover, the true amplitude one-way Born modeling represented by the red dashed line is always superimposed over the one-way Born data plotted in green curve, at both far and zerooffset. Therefore, we do not observe any considerable uplift from the application of the true amplitude operator in the Born modeling context.

III.4.5 Conclusion about one-way Born modeling

In this chapter, an approximation of the two-way Born modeling has been developed in the framework of the one-way approximation. Despite some minor amplitude mismatch with large propagation angles, the one-way Born modeling has shown a good match with the reference two-way Born modeling data. On the other hand, the previous canonical tests have clearly highlighted that the reflected wavefield using the true amplitude operator (governed by Equations (III.18)) does not provide any additional contribution compared to the one-way Born modeling without the true amplitude operator (governed by Equations (III.19)). However, the implementation of the true amplitude operator is computationally expensive as it requires at least 30% of the computational needs of the propagation. Therefore, the true amplitude operator will be dropped and in the remaining part of this study, we will only use the one-way Born modeling described by Equations (III. [START_REF] Claerbout | Downward continuation of moveoutcorrected seismograms[END_REF]). Chapter IV

Zero-offset Reflectivity image

As mentioned in the introduction, each iteration of the OWI method will start by repositioning the reflectors in order to ensure the consistency between the reflectivity image and its associated background velocity model. This process is also called migration and should be carried out at the beginning of each OWI iteration. However, the OWI method needs several iterations (generally big) depending on the quality of the initial model. Therefore, the migration should satisfy the rapidity condition while ensuring a good accuracy. Nevertheless, despite the considerable progress of HPC over the last years, the pre-stack depth migration inversion (LSRTM) is still too expensive especially when it is embedded inside an iterative inversion scheme. Following the same idea proposed in TWIN technique (Valensi and Baina, 2021), we will handle the coupling by mapping the invariant zero-offset data in space in order to construct the zero-offset image. For this purpose, the migration step of the OWI approach is basically conceived based on the explodingreflector algorithm (see [START_REF] Claerbout | Downward continuation of moveoutcorrected seismograms[END_REF], [START_REF] Kjartansson | The exploding reflector model and laterally variable media[END_REF]).

The exploding-reflector is considered as an appropriate technique for the OWI method thanks to two factors. First, the exploding reflector is well studied in the geophysics field, and is easy to be formulated with the one-way wave equation. Second, it is an affordable post-stack approach compared to the pre-stack depth migration methods. However, one limitation of such approach that it is not an amplitude friendly algorithm due to some introduced approximations that will be described in details later.

The following section will be devoted to the formulation of the zero-offset demigration and migration operators. During this first part, we will describe the forward modeling that permits to generate the zero-offset reflected data. After the demigration operator is well defined, we will develop the mathematical expression to construct its inverse (zero-offset migration). By the end of this section, implementation details and validation tests will be shown and analyzed. The whole formulation is quite similar to the TWIN method except that it will be adapted to one-way propagators.

IV.1 Zero-offset demigration

The demigration enables to transform the depth reflectivity image δm r into time domain data using a given smooth background velocity v b . In the following, we will be mainly interested in the formulation of the zero-offset modeling operator starting from the previously discussed one-way Born modeling. To do so, we will use high frequency approximations to develop new expressions of the Born modeling operator in the high frequency domain. Then, we will switch from the pre-stack Born modeling to the post-stack zero-offset modeling where the source and receiver share the same spatial position. Finally, some approximations will be introduced to move from the Born modeling demigration to the exploding-reflector principle.

IV.1.1 One-way Born modeling

By splitting the velocity model v into a high frequency perturbation δm r and a smooth background model v b , we have shown in the previous chapter that the reflected waves could be calculated in a Born modeling formalism based on the one-way wave equation through:

d cal (ω, g, s, v b , δm r ) = V dx ω 2 G + (ω, x, s, v b ) G -(ω, g, x, v b ) δm r (x, v b ) (IV.1)
where the Green functions G + and G -are governed by Equations (III. [START_REF] Claerbout | Downward continuation of moveoutcorrected seismograms[END_REF]). Compared to the expression (III.17), we highlight the fact that the reflectivity depends on the background velocity model.

IV.1.2 High frequency analysis

In the context of high frequency approximations, the down-going one-way Green function takes the form

G + (ω, x, s, v b ) = A + (ω, x, s, v b ) exp iωT + (ω, x, s, v b ) (IV.2)
where A + and T + respectively stand for the amplitude and travel-time of the down-going seismic wave. To avoid redundancy of the mathematical development, we will focus only on the down-going Green function G + which gives similar results as its up-going version G -. Injecting this solution into the one-way wave Equation (III. [START_REF] Claerbout | Downward continuation of moveoutcorrected seismograms[END_REF]) without the source term, we obtain :

∂ z A + exp iωT + + A + iω∂ z T + exp iωT + = iλ(x)A + exp iωT + . (IV.3)
The expression of λ is defined within the FFD approximation in Equation (II.54)

∂ z A + exp iωT + + A + iω∂ z T + exp iωT + = i      ωψ + ω v a v 2 ∂ 2 x ω 2 1 + b v 2 ∂ 2 x ω 2      A + exp iωT + .
(IV.4) For simplicity of calculation, we define ψ variable as the sum of the split step and the phase shift operators. The last equation could be rewritten as

1 + b v 2 ∂ 2 x ω 2 ∂ z A + + A + iω∂ z T + -iωψA + exp iωT + = ia v∂ 2 x ω A + exp iωT + .
(IV.5) After doing calculations and selecting the terms of the higher order of ω, we get the eikonal equation given by

∂ z T + = 1 v -av ∂ x T + 2 (IV.6) ∂ z T + (ω, x, s, v b ) = λ(x) ω . (IV.7)
Equation (IV.6) is known as the transport equation while Equation (IV.7) is the hypereikonal equation. Under high frequency approximations, the hypereikonal equation can be simplified to

∂ z T + (ω, x, s, v b ) = lim ω→+∞ ω 2 v 2 b (x) + ∂ 2 x 1 2 ω = 1 v b (x) . (IV.8)
Consequently, through high frequency assumptions, we can prove that the travel-time and amplitude have no more dependency on the frequency and the Green function could be written as

G + (ω, x, s, v b ) = K(ω)A + (x, s, v b ) exp iωT + (x, s, v b ) . (IV.9)
where K(ω) is written as

K(ω) = 1 √ -iω (IV.10)
By repeating the same development for the up-going one-way Green function G -, we get

G -(ω, g, x, v b ) = K(ω)A -(g, x, v b ) exp iωT -(g, x, v b ) . (IV.11)
Thus, the expression of the scattered Born wavefield under the high frequency approximation could be written as

d cal (ω, g, s, v b , δm r ) = dx K(ω)A (g, x, s, v b ) exp (iωT (g, x, s, v b )) δm r (x, v b ) (IV.12) where A (g, x, s, v b ) = A + (x, s, v b ) A -(g, x, v b ) , T (g, x, s, v b ) = T + (x, s, v b )+T -(g, x, v b ) and K(ω) = ω 2 K 2 (ω).

IV.1.3 Restriction to zero-offset configuration

To get a zero-offset demigration, we will restrict the formulation of the modeling operator to the zero-offset acquisition. The calculated data expressed above can be then rewritten at the source-receiver position r (r = s = g) as

d cal zo (ω, r, v b , δm r ) = dx K(ω)A (r, x, v b ) exp (iωT (r, x, v b )) δm r (x, v b ) (IV.13)
where the travel-time T and amplitude term A in the zero-offset configuration can be expressed as

T (r, x, v b ) = T + (r, x, v b ) + T -(r, x, v b ) A (r, x, v b ) = A + (r, x, v b ) A -(r, x, v b ) . (IV.14)
The reciprocity principle states that the wave pressure generated from a source placed at the position r and is recorded at the position x is the same as the one that would be produced from a source position x and recorded in r. Thus, the wave takes the same travel-time in its down-going propagation from r to x as its up-going travel from x to r. We define then the travel-time

T T (r, x, v b ) = T + (r, x, v b ) = T -(x, r, v b ) . (IV.15)
By the same way, we can write the following relation about the amplitudes

A (r, x, v b ) = A + (x, r, v b ) = A -(r, x, v b ) . (IV.16)
Then, the zero-offset Born modeling operator can be written as

d cal zo (ω, r, v b , δm r ) = dx K(ω)A 2 (r, x, v b ) exp (iω2T (r, x, v b )) δm r (x, v b ).
(IV.17) At this stage of formulation, we have shown a different expression of the zero-offset Born modeling through high frequency approximations. However, this expression is still expensive in term of computational cost as it requires a pre-stack modeling using all the shot volume and then extracting only the zero-offset trace. Therefore, in the following paragraph, we will introduce the exploding-reflector approximation in order to get an efficient (also approximated) zero-offset modeling engine.

IV.1.4 Exploding Reflector

Expression (IV.17) describes the wave propagation from source-receiver position r to a scattering point located in x and then back to the source-receiver position. Moreover, we already know from the reciprocity principle that the wavefield goes through the same path when traveling downward or upward. Intuitively, we can guess that the travel-time of the round trip ( r → x → r ) is equal to the travel-time of the upward trip from x to r in a model where the velocity is divided by two. To check our intuition, let us first rewrite the asymptotic expressions G 

   ∂ z A ± r, x, v b = 0 ∂ z 1 2 T ± r, x, v b = 1 v b (x) . (IV.18)
We observe from equations (IV.18) that A ± r, x, v b and 1 2 T ± r, x, v b satisfy the same hypereikonal and transport equation as the reference model v b and taking into account the same initial conditions for propagation either in v b or v b . We can then deduce the following two equations

A ± (r, x, v b ) = A ± r, x, v b 2 2T ± (r, x, v b ) = T ± r, x, v b 2 . (IV.19)
Therefore, the demigration can be rewritten as

d cal zo (ω, r, v b , δm r )= dx K(ω)A + x, r, v b 2 A -r, x, v b 2 exp iωT -r, x, v b 2 δm r (x, v b ).
(IV.20) The previous equation can be also rewritten with respect to the up-going Green function in v b model as

d cal zo (ω, r, v b , δm r ) = dx K(ω)A + x, r, v b 2 G -ω, r, x, v b 2 . (IV.21)
We obtained then a zero offset demigration written as almost one propagation in the v b except that the amplitude term A + is still problematic. In fact, the amplitude depends on every source separately so a forward modeling for each source is still to be carried out. This is expected to be extremely time-consuming knowing that the influence of the amplitude term will only generate an additional scaling factor and will not change the waveform or the arrival time. Dropping the term A + r, x, v b 2 brings us to the exploding-reflector approach where we suppose that the reflectivity acts suddenly like a source. The round trip propagation of the wave is then formulated within the exploding-reflector technique as a one propagation from scatterer to source-receiver position in the up-going direction. Thus, the exploding reflector modeling can be expressed as

d cal zo (ω, r, v b , δm r ) = dx L Zo (ω, r, x, v b )δm r (x, v b ). (IV.22)
where L Zo denotes the exploding reflector operator defined as

L Zo (ω, r, x, v b ) = G -ω, r, x, v b 2 . (IV.23)
Contrarily to the Born modeling where two propagation should be simulated to generate the reflected data, the exploding-reflector approach consists in only one up-going propagation direction where the reflectivity plays the role of the source. The exploding reflector (Equation (IV.22)) will generate different data modeling results compared to the zerooffset Born modeling (seen in Equation (IV.13)) since we have an amplitude bias due to dropping part of the geometrical divergence A + term but the arrival time should stay the same.

IV.2 Zero-offset migration

In the previous paragraph, we have described the forward modeling which consists in generating the zero-offset data from a given reflectivity image δm r . In the following, we will focus on the inverse problem where we aim to recover the image δm r from an observed zero-offset dataset d obs zo . To do so, we formulate the inverse problem as a least squares minimization problem as suggested by [START_REF] Tarantola | Inversion of seismic reflection data in the acoustic approximation[END_REF]. In essence, we want to find the reflectivity such that the misfit between calculated and observed zero-offset data is minimum. The misfit function E that we wish to minimize is

E (δm r ) = 1 2 dr dω d obs zo (ω, r) -d cal zo (ω, r, v b , δm r ) 2 (IV.24)
where d obs zo stands for the observed zero-offset data and d cal zo are the generated zero-offset data from the exploding reflector described in Equation (IV.22). As the modeling is linear with respect to the unknown (see Equation (IV.22)), the solution can be formulated using the Newton method as the following

δm r = -H -1 Γ (IV.25)
where Γ refers to the gradient of the misfit function with respect to the unknown δm r Γ = ∂E ∂δm r δmr=0 (IV.26) and H denotes the Hessian matrix which is expressed as

H = ∂ 2 E ∂δm 2 r δmr=0
.

(IV.27)

As we are performing a linearized inversion, the gradient provides the direction in which to update the model δm r and the Hessian gives the curvature of the update. The expressions of the gradient and the Hessian are derived in the following paragraph.

IV.2.1 The gradient expression

Starting from Equation (IV.26), we can write the gradient as the following

Γ(x) = ∂ ∂δm r (x, v b ) 1 2 dr dω d obs zo (ω, r) -d cal zo (ω, r, v b , δm r ) 2 .
(IV.28)

The derivation of the cost function with respect to the unknown δm r and evaluated at the starting model δm r = 0 is given by where the adjoint of L Zo operator could be written as

Γ(x) = -dr dω ∂d cal zo (ω,
L * Zo (ω, r, x, v b ) = A -x, r, v b 2 exp -iωT -r, x, v b 2 .
(IV.32)

In a matrix vector notation, we could write the gradient as

Γ = -L * Zo d obs zo . (IV.33)
The gradient expression can be simply seen as the back-propagation of the zero-offset recorded data d obs zo using the adjoint of the zero-offset modeling operator. However, in addition to the gradient expression, the formulation of the zero-offset image requires the Hessian derivation that is discussed in the next paragraph.

IV.2.2 The Hessian expression

The Hessian is expressed as the second derivative of the cost function with respect to δm r . It is given by

H(x, x 0 ) = dr dω ∂d cal zo (ω, r, v b , δm r ) ∂δm r (x, v b ) * ∂d cal zo (ω, r, v b , δm r ) ∂δm r (x 0 , v b ) (IV.34)
Therefore, its expression can be reduced to

H(x, x 0 ) = dr dω L * Zo (ω, r, x, v b )L Zo (ω, r, x 0 , v b ) (IV.35)
Consequently, the solution of the inverse problem is given by

δm r = H -1 Γ = -(L * Zo L Zo ) -1 L * Zo d obs zo . (IV.36)
Despite the HPC progress, the direct implementation of this solution is not feasible. Indeed, the size of the Hessian matrix constituted of n 2 m entries (with n m the model dimension) makes its storage or even its computation impossible. Hence, in the following paragraph, we are going to introduce a preconditioner in order to estimate accurately the reflectivity image δm r without having to store or compute the Hessian matrix.

IV.2.3 The gradient preconditioner

We introduce a preconditioning operator Q that enables to approximate the Hessian with a new H Q matrix such that

H Q (x, x 0 ) = dr dω L * Zo (ω, r, x, v b )QL Zo (ω, r, x 0 , v b ). (IV.37)
The additional term is then compensated in the final solution by adding it as a preconditioner on the gradient. Thus, the solution is

δm r = -H -1 Q QΓ = -H -1 Q QL * Zo d obs zo . (IV.38)
We choose the operator Q so that H Q is approximately the identity

H Q ≈ I d . (IV.39)
Consequently, the solution of the inverse problem is approximated by

δm r = -QL * Zo d obs zo .
(IV.40)

In the following, we will describe the choice of the preconditioner that can approximate H Q by the identity matrix. To achieve that, we will follow the work of [START_REF] Duprat | Prestack true amplitude imaging condition[END_REF] 

H Q (x, x 0 ) = dr dω L * Zo (ω, r, x, v b )QL Zo (ω, r, x, v b ). (IV.41)
Injecting the expressions of L Zo and L * Zo , we get

H Q (x, x 0 ) = dr dω QA r, x, x 0 , v b 2 exp -iω∆T r, x, x o , v b 2 (IV.42)
where A and ∆T are equal to

A r, x, x 0 , v b 2 = A -x, r, v b 2 A -x 0 , r, v b 2 ∆T r, x, x o , v b 2 = T -r, x, v b 2 -T -r, x 0 , v b 2 .
(IV.43)

On the other hand, we know that the identity matrix can be seen as a Kronecker delta which integral representation is

δ(x -x 0 ) = 1 (2π) 2 R dk exp (-ik.(x -x 0 )) .
(IV.44)

Still under high frequency approximations, we make Taylor expansion in the neighborhood of x 0 in order to write H Q in a form close to Equation (IV.44). We have

A -x, r, v b 2 ≈ A -x 0 , r, v b 2 T -r, x, v b 2 ≈ T -r, x 0 , v b 2 + ∇ x 0 T -r, x 0 , v b 2 .(x -x 0 ). (IV.45) Thus, A r, x, x 0 , v b 2 ≈ A -x 0 , r, v b 2 2 ∆T r, x, x o , v b 2 ≈ ∇ x 0 T -r, x 0 , v b 2 .(x -x 0 ). (IV.46)
We define the slowness vector associated to source-receiver position p r = ∇ x 0 T -r, x 0 , v b 2 and k = ωp r . Now, the Hessian is equal to

H Q (x, x 0 ) ≈ dr dω QA -x 0 , r, v b 2 2 exp (-ik.(x -x 0 )) . (IV.47)
If we apply a change of variable (r, ω) → k, we obtain

H Q (x, x 0 ) ≈ dk Q det ∂(r, ω) ∂k A -r, x 0 , v b 2 2 exp (-iωk.(x -x 0 )) . (IV.48) Now if we choose the quantity Q such that Q r, x 0 , v b 2 = det ∂k ∂(r, ω) 1 (2π) 2 A -x 0 , r, v b 2 2 (IV.49)
H Q could be finally written as

H Q (x, x 0 ) ≈ 1 (2π) 2 dk exp (-iωk.(x -x 0 )) = δ(x -x 0 ). (IV.50)
The expression of the preconditioner Q given in Equation (IV.49) enables to transform H Q into an identity matrix. Now, the preconditioner needs to be injected into the expression written in Equation (IV.40) which will be addressed in the next paragraph.

IV.2.4 Preconditioned zero-offset migration

By integrating the expression of the preconditioner from last paragraph in Equation (IV.40), we formulate the zero-offset reflectivity as

δm r (x, v b ) = 1 (2π) 2 dr dω det ∂k ∂(r, ω) exp -iωT -r, x 0 , v b 2 d obs zo (ω, r) A -x 0 , r, v b 2 .
(IV.51) Before moving to the description of the implementation of the previous formula, we need to develop the expression of the determinant of the Jacobian matrix. The Jacobian of the variable change from (r, ω) to k could be written as

∂k ∂(r, ω) =      ∂k ∂r ∂k ∂ω      =     ω ∂p r ∂r p r     .
(IV.52)

In addition, the slowness vector p r can be parametrized by its norm and its angle α with the vertical direction

p r (x) = 2 v b (x)    sin α cos α    .
(IV.53)

We can then rewrite the Jacobian in the following form

∂k ∂(r, ω) =       2 v b (x) ω cos α ∂α ∂r - 2 v b (x) ω sin α ∂α ∂r 2 v b (x) sin α 2 v b (x) cos α       . (IV.54)
Therefore the determinant of the Jacobian is given by

det ∂k ∂(r, ω) = 4ω v 2 b (x) ∂α ∂r .
(IV.55)

Here, we will use the relation adapted from Bleistein et al. ( 2001) that says

∂α ∂r = 8π v b (x 0 ) 2 3 A -x 0 , r, v b 2 ∂ z T -r, x 0 , v b 2 . (IV.56)
Thus, in this particular case of zero-offset acquisition, the determinant of the Jacobian is equal to

det ∂k ∂(r, ω) = 4πωv b (x 0 )A -x 0 , r, v b 2 2 ∂ z T -r, x 0 , v b 2 . (IV.57)
According to the hypereikonal Equation (IV.7), we can rewrite the Jacobian expression like

det ∂k ∂(r, ω) = 4πωA -x 0 , r, v b 2 2 (IV.58)
Therefore, the zero-offset image can be expressed by the following formula

δm r (x, v b ) = dr dω G - * ω, r, x, v b 2 h(ω)d obs zo (ω, r) (IV.59)
where h is a function that only depends on the frequency

h(ω) = |ω| π . (IV.60)
From the last expression, we can introduce a new pre-processed zero-offset data denoted by d obs † zo that has the following form

d obs † zo (ω, r) = h(ω)d obs zo (ω, r). (IV.61)
Finally, the zero-offset image can be formulated as

δm r (x, v b ) = dr dω G - * ω, r, x, v b 2 d obs † zo (ω, r).
(IV.62)

IV.3 Implementation details of the zero-offset operators

In the following paragraphs, we will describe the basic implementation details of the previously formulated zero-offset demigration operator and its inverse, the zero-offset migration.

IV.3.1 Zero-offset demigration

The exploding reflector modeling described in Equation (IV.22) considers every reflectivity point as a source position. In fact, at the starting propagation time, all the sources placed at reflectors' positions start to radiate through a velocity model that has half the value of the background velocity. As we have seen through the zero-offset modeling formulation, the travel-time modeled at the zero-offset surface of acquisition corresponds to the same travel-time of a wave propagating in a round trip from source to scatterer and then from scatterer to receiver (source and receiver are at the same position). Therefore, the zero-offset data should kinematically match the zero-offset data generated from the pre-stack Born modeling (more discussion provided in validation tests). However, in term of amplitudes, the exploding reflector is biased because we dropped part of the geometrical spreading term. At the end of the propagation, it is recommended to taper the data at its time interval extremities to avoid the wrap around issue in the migration process discussed later.

IV.3.2 Zero-offset migration

The zero-offset migration is formulated as the inverse operator of the exploding reflector modeling. This operator allows to construct the reflectivity image by migrating the zero-offset data generated from the demigration operator. It consists in propagating in down-going direction the wavefield recorded at the acquisition surface until reaching the bottom of the model. This propagation is governed by Equation (IV.62) and is basically a backward propagation of the up-going one-way propagation. The resulted zero-offset reflectivity could be seen as the sum of all propagated frequencies of the depth extrapolated wavefeld. For an analogy to the time propagation, the reflectivity corresponds to the value of the wavefield at propagation time t=0.

IV.4 Validation tests

In the following, we will first investigate the accuracy of the proposed zero-offset modeling compared to the pre-stack Born. In fact, the comparison will be focused only on the kinematic behavior of the data because the amplitudes are known to be unreliable using the exploding-reflector approximation. In the second paragraph, we will verify if the developed zero-offset migration is a good approximation of the inverse of the zero-offset modeling operator. To do so, we will cascade the zero-offset modeling and migration on a given reflectivity image and see if we can find back the same image after the cascade.

IV.4.1 Test of the zero-offset demigration

The 

IV.5 Conclusion about the zero-offset operators

In this section, we have reviewed the exploding reflector concept within the framework of high frequency assumptions. From theoretical and numerical point of view, the demigration operator is able to generate data that fit well the kinematic and the waveform of the zero-offset Born modeling. The computational cost is almost reduced by a factor equal to the number of shots when we switch from pre-stack to post-stack migration. However, due to dropping part of the geometrical divergence term, the zero-offset modeled data are characterized by an amplitude misfit compared to Born data. After having defined and given an interpretation of the demigration operator, we have formulated the zero-offset migration based on the gradient preconditioner. Throughout numerical tests on Marmousi model, we have demonstrated that the latter operator corresponds to the inverse of the exploding reflector modeling. In our inversion work-flow, the invariant zero-offset data will be always a result of post-stack demigration (because zero-offset data are generally not available in real survey). Then, the demigration and migration will be applied in a cascaded way. Therefore, the amplitude error factor created in the demigration is canceled after the application of migration as the two operators are mutually inverse. In other words, the lack of the true amplitude modeling in the exploding reflector does not have an important effect on our inversion scheme as the two operators will be applied sequentially. On the other hand, the use of zero-offset migration does not hide the fact that the resolution of the pre-stack migration is always higher than the poststack one where the illumination is generally not good enough in zero-offset configuration. Moreover, in some cases, the near offset data are more sensitive to multiple effects which leads to low focusing and amplitude issues. However, the main objective of the OWI approach is to add a significant update to the background model by explaining the kinematic of the data. That is why we suppose that the kinematic resolution of zero-offset images is sufficient to invert the velocity model. For characterization or interpretation, pre-stack tools are always recommended thanks to their high quality images.

IV.6 Partial conclusion on the forward problem

To conclude, we recap the essential elements of the OWI forward modeling according to the algorithm order (see Figure I.4). First, in Chapter II, we have described how the one-way wave equations can be decoupled from the system of the full wave equation based on the one-way approximation. We have also seen the main differences between the followed decoupling equation and the original equations of Claerbout. To finely describe the one-way propagation, we have adapted the FFD method that is known as a reasonable approximation of the square root operator especially in presence of lateral velocity variations.

Based on the reviewed one-way equations, we have developed during this chapter the zerooffset migration operator that enables to define the reflectivity image starting from the zero-offset data and the smooth background velocity model. The latter operator permits to accomplish the first part of the algorithm which consists in estimating the reflectivity image.

Then in Chapter III, we have used the previously defined reflectivity to generate the reflected waves according to one-way Born modeling process which consists the second step of the algorithm. Simulating the reflected data by one-way wave equations instead of its conventional two-way version enables to use a detailed background velocity model to better model the data kinematics. It also allows to considerably reduce the computational time and save the memory consumption in order to tackle higher frequency inversions.

Until now, we have looked over all the necessary expressions to describe the forward modeling (migration and demigration). It remains then to establish the inverse problem to complete the last brick of the OWI approach.

Chapter V

Inverse problem

The goal of the One-way Waveform Inversion method is to determine the properties of the background velocity model v b using measurements of the pressure wavefield at the surface of acquisition. For this purpose, we must provide a relationship between calculated data and velocity model. That has been done in the previous chapters where we have described the expression of the calculated data for a given velocity model. This step is called the forward modeling. The knowledge of the forward modeling enables to formulate the inverse algorithm either in local or global optimization methods. Global methods have been recently applied in several works [START_REF] Sen | Global optimization methods in geophysical inversion[END_REF]. However, for the majority of the seismic imaging applications, the searching space is extremely huge to locate the best model-fit. Therefore, the use of global optimization method in its pure form (Monte Carlo method) is still impractical despite the rapid evolution of the computational capacities. For this reason, some techniques aim to add different approximations to the inverse problem in order to reduce the research model space (Datta and Sen, 2016), or by combining local and global optimization method for the purpose to get hybrid methods that are relatively affordable in term of computational waiting [START_REF] Gebraad | Bayesian elastic full-waveform inversion using hamiltonian monte carlo[END_REF]. Regarding the computational requirements of the global methods, we will formulate the inverse theory of the one-way waveform inversion within the framework of the local optimization methods.

In this part, we will focus on the derivation of the misfit function in order to develop the gradient expression. Through this development, illustrations and physical interpretation will be given to simplify the understanding of each component of the gradient. Finally, all the mathematical development will be validated through numerical experiment before targeting numerical inversions.

V.1 Derivation of the misfit function

The inverse problem can be reduced to a set of linear equations in case of a linear forward modeling (the perturbation of the data is linearly related to the perturbation of the model parameters). In such a case, the model estimation can be easily computed. Nevertheless, the forward modeling of our approach is not linear and the cost function C of our non linear inverse problem can be written as follows

C(v b ) = 1 2 ds dg dω d cal (ω, g, s, v b ) -d obs (ω, g, s) 2 (V.1)
where the data calculated is given by the one-way Born modeling as

d cal (ω, g, s, v b ) = dx ω 2 G + (ω, x, s, v b ) G -(ω, g, x, v b ) δm r (x, v b ). (V.2)
We also recall the expression of δm r given in previous chapter

δm r (x, v b ) = dr dω G - * ω, r, x, v b 2 d obs † zo (ω, r) (V.3)
Our main interest is finding the optimal background model parameters v b where the objective function C reaches its minimum. By a linearization of the inverse problem around the starting model, the local optimization method aims to reach the minimum by iteratively computing the model updates and matching the data. Therefore, finding the global minimum is highly sensitive to the choice of the starting model. The minimization of the cost function C is based on iterative inversion scheme that makes use of the slope (gradient) and curvature (hessian) of the cost function to estimate an update of the current velocity model. However, the computation of the hessian matrix and its inverse is far from being affordable regarding the huge number of the model parameters. Therefore, a variety of descent optimization methods (Conjugate Gradient (CG), LBFGS ...) are preferred in the OWI context to linearly approximate the cost function around the starting model. For instance the inverse problem could be written following the steepest descent which is based on the gradient to describe the local slope. This method iteratively decreases the misfit function until converging to a local minimum. Thus, starting from an initial velocity model v 0 b , the steepest descent creates a sequence of models v k b according to the following relation

v k+1 b = v k b -α k J k (V.4)
where the subscript k refers to the k th iteration, J and α denote respectively the misfit gradient and the optimum step also called step-length. The gradient of the cost function J can be written in an arbitrary spatial position x 0 as

J (x 0 ) = ∂C(v b ) ∂v b (x 0 ) = ds dg dω ∂d cal (ω, g, s, v b ) ∂v b (x 0 ) * δd(ω, g, s, v b ). (V.5)
where δd = d cal -d obs refers to the data residual. From Equation (V.2), the Fréchet derivative of the calculated data reads as

∂d cal (ω, g, s, v b ) ∂v b (x 0 ) = dx ω 2 ∂G + (ω, x, s, v b ) ∂v b (x 0 ) G -(ω, g, x, v b ) δm r (x, v b ) + dx ω 2 G + (ω, x, s, v b ) ∂G -(ω, g, x, v b ) ∂v b (x 0 ) δm r (x, v b ) + dx ω 2 G + (ω, x, s, v b ) G -(ω, g, x, v b ) ∂δm r (x, v b ) ∂v b (x 0 ) . (V.6)
Therefore the gradient misfit function can be then seen as the contribution of three terms:

J (x 0 ) = J 1 (x 0 ) + J 2 (x 0 ) + J 3 (x 0 ). (V.7)
In fact, the first two terms J 1 and J 2 describe the effect on respectively the down-and up-going propagation due to a perturbation of the background velocity model. They are expected to construct the same shape as as the well known RWI rabbit ear sensitivity kernel (see [START_REF] Xu | Full waveform inversion for reflected seismic data[END_REF]). They are basically seen as the derivation of the Born modeling operator with respect to the velocity. However, the third term J 3 explains the effect of the perturbation of the velocity model on the reflectivity image positioning. Therefore, for clear and detailed description, we will split the development into two parts: first the Born gradient terms J 1 and J 2 before the velocity-depth coupling gradient term J 3 .

V.2 The Born gradient terms

In this section, we will study the derivation of the two Born gradient terms J 1 and J 2 . In a first part, all the development of the first term J 1 will be described in details. Then, to avoid redundancy, the expression of J 2 will be directly deduced because it shares the same development as J 1 .

V.2.1 Development of J 1 and J 2

The first term of the misfit gradient is written as

J 1 (x 0 ) = ds dg dω dx ω 2 ∂G + (ω, x, s, v b ) ∂v b (x 0 ) G -(ω, g, x, v b ) δm r (x, v b ) * δd(ω, g, s, v b ).
(V.8) According to Equation (V.8), we need to evaluate the derivative of the down-going Green function with respect to the background velocity model

∂G + ∂v b (x 0 )
. Therefore, we will start by recalling the governing equation of the Green function G + :

∂ z -iλ (v b (x)) G + (ω, x, s, v b ) = i 2λ (v b (x)) δ (x -s) (V.9)
where the λ operator is expressed using the FFD method as (see Equation (II.54)):

λ (v b (x)) = ω 2 c 2 + ∂ 2 x 1 2 + ω v b (x) - ω c + ω v b (x) B -1 (v b (x))A(v b (x)) (V.10)
with A and B given by

A(v b (x)) = a v b (x) v b (x) 2 ∂ 2 x ω 2 B(v b (x)) = 1 + b v b (x) v b (x) 2 ∂ 2 x ω 2 (V.11)
(a and b are defined in Equation (II.55)). In order to evaluate the partial derivative of the Green function, we will use the classical perturbation approach to be able to formulate the problem in a linearized form. We define a perturbed model v b = v b + δv b where the Green function in the latter model is written as

G + ω, x, s, v b = G + (ω, x, s, v b ) + δG + (ω, x, s, v b ) . (V.12)
Thus, the acoustic 2D down-going one-way wave equation in the perturbed model v b gives

∂ z -iλ (v b (x) + δv b (x)) G + (ω, x, s, v b ) + δG + (ω, x, s, v b ) = iδ (x -s) 2λ (v b (x) + δv b (x)))
.

(V.13) The linearization of the square root operator is written as

λ (v b (x) + δv b (x)) = λ (v b (x)) + λ (v b (x)) δv b (x). (V.14)
According to the expression of the square root operator shown in Equation (V.11), λ := ∂λ ∂v b can be expressed as

λ = - ω v 2 b - ω v 2 b B -1 A + ω v b ∂ ∂v b B -1 A = - ω v 2 b - ω v 2 b B -1 A + ω v b ∂B -1 ∂v b A + ω v b B -1 ∂A ∂v b . (V.15)
To avoid direct calculation of the derivative of the inverse of B operator, we will use the relation

B -1 B = I d to obtain ∂ ∂v b B -1 B = 0 (V.16) which leads to ∂B -1 ∂v b B + B -1 ∂B ∂v b = 0 (V.17)
and then

∂B -1 ∂v b = -B -1 ∂B ∂v b B -1 . (V.18)
Therefore, the derivative of the square root operator is given by

λ = - ω v 2 b - ω v 2 b B -1 A - ω v b B -1 ∂B ∂v b B -1 A + ω v b B -1 ∂A ∂v b . (V.19)
Now that we have established the expression of λ , we can continue our development to find ∂G + ∂v b . Using (V.14), Equation (V.13) can be written as

∂ z -iλ -iλ δv b (x) G + (ω, x, s, v b ) + δG + (ω, x, s, v b ) = i 2λ - iλ 2λ 2 δv b (x) δ (x -s) .
(V.20) Subtracting Equation (V.9) from Equation (V.20), we obtain

∂ z -iλ δG + (ω, x, s, v b ) = iλ G + (ω, x, s, v b ) δv b (x)- iλ 2λ 2 δ (x -s) δv b (x)+O(δv b (x) 2
). (V.21) Using the Green function, the solution of Equation (V.21) is given by

δG + (ω, x, s, v b ) = dx iλ G + ω, x, x , v b G + ω, x , s, v b - iλ 2λ 2 G + ω, x, x , v b δ x -s δv b (x ). (V.22)
The second term of the right hand side is a result of the velocity perturbation at the source position which generates a perturbation of the source correction term (that depends on the velocity model). However, there is no interest in inverting the velocity model at the acquisition surface, thus the second term of the right hand side can be neglected. Thus, the perturbation of the incident down-going Green function with respect to the background velocity model can be written as:

δG + (ω, x, s, v b ) = dx iλ v b (x ) G + ω, x, x , v b G + ω, x , s, v b δv b (x ). (V.23)
Thereby, the partial derivative of the down-going Green function with respect to the background velocity model has the following form

∂G + (ω, x, s, v b ) ∂v b (x 0 ) = iλ (v b (x 0 )) G + (ω, x, x 0 , v b ) G + (ω, x 0 , s, v b ) . (V.24)
Injecting the previous result inside the Equation (V.8), the first term of the gradient of the misfit function J 1 reads

J 1 (x 0 ) = ds dg dω -iλ (v b (x 0 )) G + * (ω, x 0 , s, v b ) ω 2 dx G + * (ω, x, x 0 , v b ) G - * (ω, g, x, v b ) δd(ω, g, s, v b )δm r (x, v b ) .
(V.25) Similarly, we can write the second term J 2 of the gradient of the misfit function as

J 2 (x 0 ) = ds dg dω iλ (v b (x 0 )) ω 2 dx G + (ω, x, s, v b ) G -(ω, x 0 , x, v b ) δm r (x, v b ) * G - * (ω, g, x 0 , v b ) δd(ω, g, s, v b ). (V.26)
Each developed term has a different physical interpretation in term of wavefield propagation. For this reason, we will focus on the illustration of each term separately in the two following paragraphs.

V.2.2 The source side gradient illustration J 1

To explain the expression of the source-side gradient J 1 and simplify the illustration, we introduce new wavefield variables. First we will refer to the forward background wavefield F wd b defined by

F wd b (ω, x 0 , s, v b ) = G + (ω, x 0 , s, v b ) . (V.27)
where the subscript b denotes the background propagation. The latter wavefield propagates in down-going direction from source s to spatial position x 0 and it is depicted in Figure V.1.a. Furthermore, the first gradient term requires the simulation of the backward reflected wavefield Bwd r defined by

Bwd r (ω, x 0 , g, v b ) = ω 2 dx G + * (ω, x, x 0 , v b ) G - * (ω, g, x, v b ) δd(ω, g, s, v b )δm r (x, v b ) (V.28)
where the subscript r refers to the reflected waves. The backward reflected wavefield corresponds to the back-propagation through the smooth velocity model of the residual data δd from receiver location g to the reflector x and then toward the spatial position x 0 (see Figure V.1.b). The source side gradient can be then written in a more simple form as

J 1 (x 0 ) = ds dg dω -iλ (v b (x 0 )) F wd b (ω, x 0 , s, v b )Bwd r (ω, x 0 , g, v b ).
(V.29) • To obtain a precise estimation of the gradient, the simple correlation of the two wavefields is not enough and it is necessary to apply the square root derivative operator λ on the forward wavefield before correlation.

• The expression of λ depends on the chosen one-way depth extrapolation method. The expression provided in Equation (V. [START_REF] Claerbout | Downward continuation of moveoutcorrected seismograms[END_REF]) is only valid for the FFD technique and should be adapted if we want to use a different extrapolation methods (split-step, Padé,...).

V.2.3 The receiver side gradient illustration J 2

The explanation of this term can be also simplified if we introduce two intermediate wavefields. The first is the forward reflected wavefield F wd r which is also called Born forward wavefield and is written as

F wd r (ω, x 0 , s, v b ) = ω 2 dx G + (ω, x, s, v b ) G -(ω, x 0 , x, v b ) δm r (x, v b ). (V.30)
This field is the scattered wavefield due to presence of the scatterer and is plotted in 

V.2.4 Illustration of Born gradient term

Similarly to the RWI (Xu et al., 2012), the OWI approach is able to construct the "rabbit ear" shape sensitivity kernel by summing the source and receiver side gradient terms (see Figure V.3). The Born sensitivity kernel describes the effect of background velocity perturbation where data residuals are smeared along the wave path from source to reflector and then reflector to receiver location. The gradient construction is formulated within the single scattering approximation. Thus, internal and surface multiples should be removed 'a priori' from the observed data. From expression (V.7), the global misfit gradient should be interpreted as the total derivative generated from Born propagation and the depth reflectivity dependency on v b while the RWI supposes a fixed high frequency perturbation. Therefore, in the following, we will develop the third component of the gradient which imposes the velocity-depth coupling constraint. Let us start by rewriting the third term of the gradient of the misfit function

J 3 (x 0 ) = ds dg dω dx ω 2 G + (ω, x, s, v b ) G -(ω, g, x, v b ) ∂δm r (x, v b ) ∂v b (x 0 ) * δd(ω, g, s, v b ).
(V.33) According to Equation (IV.62) provided in the zero-offset migration part, the previous equation can be rewritten as

J 3 (x 0 ) = ds dg dω dx ω 2 G + (ω, x, s, v b ) G -(ω, g, x, v b ) dr dω ∂G - * ω , r, x, v b 2 ∂v b (x 0 ) d obs † zo (ω , r) * δd(ω, g, s, v b ).
(V.34) Through the same mathematical development made to reach Equation (V.24), we deduce that

∂G -ω , r, x, v b 2 ∂v b (x 0 ) = -i 2 λ v b (x 0 ) 2 G -ω , r, x 0 , v b 2 G -ω , x 0 , x, v b 2 . (V.35)
Injecting the last expression into Equation (V.34), we obtain

J 3 (x 0 ) = dx dr dω -i 2 λ v b (x 0 ) 2 G - * ω , r, x 0 , v b 2 G - * ω , x 0 , x, v b 2 d obs † zo (ω , r) * I(x) (V. 36 
)
where I is defined as

I(x) = ds dg dω ω 2 G + * (ω, x, s, v b ) G - * (ω, g, x, v b ) δd(ω, g, s, v b ). (V.37)
In the following, we will call I the residual image. Further details will be provided in the next section to explain this quantity. Using the expression of I, Equation (V.34) could be rewritten as

J 3 (x 0 ) = dr dω -i 2 λ v b (x 0 ) 2 G - * ω , r, x 0 , v b 2 d obs † zo (ω , r) * dx G -ω , x 0 , x, v b 2 I(x) . (V.38)
Regarding the mathematical development, we can deduce that the construction of the velocity-depth coupling gradient can be split into two steps. The first is the computation of the residual image denoted by I. Then, the resulted I image is injected inside Equation (V.38) to get the final expression of the third term. Therefore, the illustration will be divided into two paragraphs to simplify the explanation.

V.3.2 Illustration of the residual reflectivity image I

The As the two wavefields do not share the same wave path, the result of their correlation is a high frequency component that we call the residual reflectivity. Its construction process can be seen as a pre-stack depth migration in order to map the OWI residual from prestack time domain to depth domain. As we are treating a single source receiver couple and single seismic reflection, the residual image (shown in Figure V.4.c) has the elliptic high frequency component described by its two focal points: receiver and source locations.

V.3.3 Illustration of the velocity-depth coupling term

The expression of the third term gradient (V.38) is not intuitive enough to easily describe it. That is why, we define a new wavefield called Exp Zo that describes the generated field after exploding the residual reflectivity by the zero-offset de-migration operator described in the migration part (see Equation (IV.23))

Exp Zo (ω , x 0 , x, v b ) = dx G -ω , x 0 , x, v b 2 I(x). (V.39)
In the context of the exploding reflector concept, the wavefield Exp Zo is constituted from the up-going waves propagating from the residual reflector points towards the zero-offset acquisition surface. The illustration of the latter wavefield is plotted in Figure V.5.a. Furthermore, we define the wavefield simulated during the zero-offset migration M ig Zo defined as

M ig Zo (ω , x 0 , r, v b ) = h(ω )G - * ω , r, x 0 , v b 2 d obs zo (ω , r). (V.40)
The migrated wavefield M ig Zo (displayed in Figure V.5.b) is a result of propagating the zero-offset observed data in the post-stack (zero-offset configuration) context. Using the previous wavefield definitions, the third term gradient expression could be written in a more simplified form as

J 3 (x 0 ) = dr dω 1 2 iλ v b (x 0 ) 2 M ig Zo (ω , x 0 , r, v b )Exp Zo (ω , x 0 , x, v b ).
(V.41) Finally, the correlation between the exploded and migrated wavefields provides a low frequency update along the zero-offset wave path (see Figure V.5.c). This extra "banana" enables to connect the reflection point to the zero-offset position at the acquisition surface. Therefore, it keeps a good match between zero-offset recorded and calculated data by canceling the update related to the contribution of zero-offset data in the Born gradient term.

V.4 Illustration of OWI sensitivity kernel

The sensitivity kernel of the OWI approach is composed of three components, two of them are following the wave path: source to reflection point and back to receiver. This is called the Born gradient terms which are deduced from a perturbation of the one-way Born modeling operator (see 

V.5 Gradient Validation

The gradient is an essential ingredient in the process of the minimization of the OWI misfit function. Thus, it is important to validate its developed mathematical expressions and the accuracy of the implemented code. The gradient should be exact enough to ensure the convergence toward the minimum of the cost function. For this purpose, in the following we will show a validation test using finite difference technique. Before discussing the details about the validation techniques, let us first start by presenting the test configurations.

V.5.1 Description of the test

We consider a homogeneous media (v=2000 m/s) of 1km depth and 2km width. The chosen model is relatively small to avoid huge computational cost during the validation. The acquisition is limited to one single source receiver couple where the source is located at a lateral position of 500m and the receiver is located at a lateral position of 1500m. Both receiver are placed on the surface of acquisition (0m depth). The observed data are generated from a one-way Born modeling using one reflector position at 750m depth. 

V.5.2 Finite difference validation

For this validation test, we compare the calculated gradient by the previous analytic expressions to the gradient estimated through a finite difference approximation which is written in arbitrarily spatial position x i as the following

J(x i ) = C(v pert b i ) -C(v b ) i (V.42)
where the perturbed velocity model v pert b i is a result of the perturbation of the background velocity model v b at the position x i such that

     v pert b i (x) = v b (x) if x = x i v pert b i (x) = v b (x) + i if x = x i . (V.43)
The main issue of such an approach is the heuristic choice of the perturbation . If is too large, the assumption of linearity of the cost function may not hold. If is too small, the estimation risks to be dominated by noise because derivation amplifies noise. In order to get a robust validation, we carried out tests with equals to 10%, 1% and 0.1% of the given velocity value and we observed that 1% perturbation is considered stable enough for the following tests. Figure V.8 depicts the gradient results using the finite difference (left) and the analytic expressions (right). From these results, we observe that the two gradients perfectly match each other. For better assessment of the validation test, we extract in Figure V.9 an horizontal profile (dashed line in Figure V.8 of the two gradients at 400m depth. The finite difference gradient plotted in blue curve and the analytic gradient drawn in dashed red curve show a good match in terms of both amplitude and polarity. The generation of the gradient using the finite difference approach is simpler than going through mathematical derivation and its implementation. However, using the same computational resources, the analytic gradient has been generated in a few seconds while the finite difference took almost 15 hours of computations. 

V.6 Conclusion

In this chapter, we have presented the principles and characteristics of the inverse problem.

Regarding the huge number of parameters, the inverse problem was formulated as a least square minimization using local optimization techniques. The main ingredient of such methods is the gradient of the misfit function that we have formulated based on the classical perturbation procedure. The study of the gradient expression shows two main parts: first, the Born gradient terms that form the "rabbit ears" shape, second, an additional gradient term created along the zero-offset wave path generated from the velocity-depth coupling. The provided illustration of each term allows to easily describe the process of the gradient construction. Finally, we have validated the mathematical expressions and the implemented code by the use of the finite difference approach.

• Generation of offset gathers using the single shot images following the idea of Giboli et al. ( 2012) paper.

• Residual move-out correction to reduce the move-out effect due to the use of initial (wrong) velocity model.

• Stack of the corrected offset gathers.

• Generation of the zero-offset data by applying the exploding-reflector modeling on the stacked image following Equation (IV.22) .

Therefore, the output of the latter workflow is a zero-offset dataset generated from the exploding-reflector modeling. That is why the amplitude mismatch discussed in Chapter IV is not an issue as the demigration and migration are applied sequentially (mutually inverse). The previous workflow is applied once and is not repeated during the OWI algorithm. At each iteration the zero-offset migration takes the zero-offset the following form: • Back-propagate the zero-offset data from acquisition surface to deep model.

Algorithm: Zero-
• Stack the wavefield frequencies (could be seen as the wavefield at time t=0 in time domain).

Output: reflectivity image δm r .

One-way Born modeling

The one-way Born modeling is the second step of the forward modeling, in which the previously calculated reflectivity image δm r and the background velocity model v b are given as input. The reflected data calculated d cal are generated as an output. The outline components of the one-way Born modeling are • Forward propagation of the source to generate background wavefield F wd bg .

• Save in memory the forward background wavefield F wd bg at each depth level.

• Calculate the secondary source (ω 2 F wd bg δm r ) for next reflected wavefield modeling.

b) Up-going propagation from the model bottom to the receivers' depth.

• Forward propagation of the secondary source to model the reflected wavefield

F wd r .
• Store in memory the forward reflected wavefield F wd r for a future use during the gradient calculation step (not needed for forward modeling).

• Extract the data calculated d cal from the reflected wavefield F wd r .

Output: Calculated data d cal (also F wd bg and F wd r saved in memory for next gradient calculation).

Gradient calculation

We have seen that the computation of the gradient of the misfit function requires the simulation of different additional wavefields either in pre-stack or post-stack configurations. Therefore, the gradient can be obtained by sequentially propagate in pre-stack and then post-stack mode. ⇒ output : Born gradient (J 1 +J 2 ) and the residual image I.

Algorithm: Gradient calculation

2) Propagation in post-stack mode to get the velocity-depth coupling term J 3 and then the total OWI gradient J .

a) Down-going propagation from zero-offset acquisition the model bottom.

• Back-propagate the zero-offset observed data in order to model the migrated zero-offset wavefield M ig Zo and save it in memory.

b) Up-going propagation from model bottom up to zero-offset acquisition.

• Carry out the exploding reflector on the residual image I to produce the exploding wavefield Exp Zo .

• Apply

1 2 iλ ( v b 2
) on the Exp Zo wavefield and correlate it with the migrated wavefield M ig Zo saved in memory in order to generate the velocity-depth coupling gradient term J 3 .

• Stack the Born gradient terms (J 1 + J 2 ) and velocity-depth term (J 3 ).

Output: OWI final gradient J .

Conclusion

In this part, we have discussed briefly the OWI algorithm to give practical insight on the implementation details. At this stage of discussion, we have all the bricks of the algorithm ready and linked between them. Therefore in the next part, we will analyze in more details the inversion behavior of the OWI method on various synthetic benchmarks and real dataset. We will also present the workflow of the inversion in order to mitigate some common issues (cycle-skipping ...) that will be discussed later.

Part II

Applications and 3D generalization

Chapter VI

Synthetic examples

The main objective of this project is to propose a robust velocity model building method capable of handling large 3D industrial scale studies in an efficient computational time.

In this chapter, we will apply our proposed OWI method to see if it is able to fit the predefined requirements. Thus, the following sections will investigate the capabilities of the OWI method and its inversion workflow to recover a satisfactory estimation of the velocity model.

The first section will be dedicated to the inversion of Marmousi model in which the data are generated from a one-way Born modeling. This test is relatively simple as it is designed in an inverse crime mode but we set it up to validate the algorithm in perfect conditions. For the subsequent two examples, we will process two blind tests where the velocity model is unknown and the observed data are generated from realistic modeling (full, finite difference two-way wave equation, variable density ...). The first blind benchmark was provided by Chevron company at the SEG conference in 2014. It is considered as a good validation test of the method in complex sediment context. Finally, the third test is a very challenging test to tackle salt context. The true model was created by TotalEnergies to mimic the complexity and the geology of the Gulf of Mexico (GOM) region. Besides the challenge of the sparse acquisition, the crude initial model makes the inversion task particularly difficult.

VI.1 Marmousi model

Throughout this section, we will give the details of the reconstruction of Marmousi model (see Figure VI.1b) starting from an initial guess obtained from a simple 1D vertical velocity gradient as shown in Figure VI.1a. For the current inverse crime test, we perform a one-way Born modeling on the true velocity model in order to generate the observed data. Following the results on the TWIN method (Valensi and Baina, 2019a), we adopt, for this test and all the next benchmarks, a multi-scale smoothing approach during the OWI inversion. The concept consists in starting the inversion with a strong smoothing on the gradient (for example using a 4km radius of Gaussian filter in the x-direction in the next test) and progressively decrease the smoothing length in order to catch smaller details (300m radius of the Gaussian function for the next test). For this inversion, we state the following configuration:

• Gradient smoothing: 5 scales: 4000m, 2000m, 1000m, 500m, 300m in the xdirection and fixed 200m smoothing in the z-direction;

• Number of sources: 621;

• Offset: from 0 to 6km offset with 10m spacing;

• Frequency bandwidth: 3Hz to 12Hz;

• Source type: Bandpass from 3Hz to 12Hz;

• Optimizer: steepest descent;

• Number of iterations per scale: 50;

• Cost function type: Classical L2 cost function; We recall that the OWI inversion is based on a gradient method that minimizes the misfit between observed and calculated data. Figure VI.2 shows the cost function curve (normalized to start with 1) with respect to the iteration number. During this inverse crime test, the algorithm was able to explain a satisfactory part of the data misfit since it has reduced the difference below 1% of its starting value. Furthermore, the inversion is performed from high to low smoothing preconditioning on the gradient allowing to introduce progressively higher wavelength updates. This conducts to significant reduction of the misfit function when we relax the smoothing and we start a new inversion scale. It is clearly visible for example at iteration 100. • Gradient smoothing: 6 scales: 8000m, 4000m, 2000m, 1000m, 500m, 300m in the x-direction and fixed 200m smoothing in the z-direction;

• Number of sources: 1600 with 25m spacing (we only use half of the original shots);

• Offset: from 0 to 8km offset with 25m spacing;

• Frequency bandwidth: 1Hz to 20Hz;

• Source type: Bandpass from 1Hz to 20Hz;

• Optimizer: steepest descent;

• Number of iterations per scale: 20;

• Cost function type: Normalized L2 cost function which is based on a trace by trace normalization of calculated and observed data. The layer stripping approach consists in inverting the velocity layer after layer recursively from top to bottom (Wang and Rao, 2009). In the following, we give the configuration parameters of the inversion

• Layer stripping: 5 depth layers: (4km to 5km), (5km to 6km), (6km to 7km), (7km to 8km), (8km to 9km)

• Gradient smoothing: 3 scales: 4000m, 3000m, 2000m in the x-direction and fixed 500m smoothing in the z-direction;

• Number of sources: 490 with 150m spacing;

• Offset: from 400m to 8km offset with 12.5m spacing;

• Frequency bandwidth: 2Hz to 8Hz;

• Source type: Bandpass from 2Hz to 8Hz;

• Optimizer: conjugate gradient;

• Number of iterations per scale: 30;

• Cost function type: Normalized L2 cost function; shows that the starting gathers have a low signal to noise ratio and the seismic reflections are distorted. After inversion, the reflections are cleaner and the flatness of the gathers is significantly improved especially around the corrected base of salt. Even if we may be able to further improve the OWI final results with a more appropriated methodology to this particular geology, the final OWI model shows that the method could be well suited for building velocity models in a salt context.

VI.4 Conclusion

In this chapter, we have discussed the OWI workflow. We have seen that it is possible to facilitate the convergence process by adapting the multi-scale technique. The latter consists in reconstructing the model using progressively smoothing perturbation. This strategy permits to first define the large structures of the model and thus helps the convergence to reach a "global minima". The second key point discussed in our workflow is the use of a first FWI pass in order to explain diving and direct waves. Taking profit of the information included in diving and direct waves, we can start from a reliable model in the shallow region to ensure a better inversion in the deep model. Following the described workflow, we have shown the inversion results on progressively complex synthetic models. The first test has been performed on the reconstruction of Marmousi wave-velocity through an inverse crime design. This first test allowed to validate the mathematical development and the implemented codes. We have also performed inversions on two blind tests when physical parameters of the true models are not known.

Although the observed data in the first sediment are generated from realistic forward modeling, the one-way based modeling was able to well explain the wave propagation and the has been able to converge to a satisfactory result. Furthermore, in the salt context test, we have seen that the strict scale separation introduced thanks to the one-way wave equation could be a considerable asset to mitigate issues coming from strong contrast of salt bodies.

In general, the OWI method succeeds to some extent to retrieve the long to intermediate wavelength of the deep region of the previous synthetic benchmarks. Thus, based on those promising results, we will look in next chapters at the application of OWI on real datasets. 

Real data application

Encouraged by the promising results of the OWI in different synthetic benchmarks, we assess in this chapter the performance of the approach in a real case study. The capability of the method to determine a sufficient correct background velocity model is challenged. Thus, new scope of improvements or limitations would be revealed faced to the complexity of the real data inversion.

In order to reach this new milestone of the project, we have applied the OWI method on a marine narrow azimuth dataset collected from an area known by its potential of the gas reservoirs. The inversion of the following real dataset using the classical FWI is considered as a complicated task due to the lack of far offsets (maximum available offset 6km) and the presence of relatively deep water. In fact, the OWI algorithm may overcome these obstacles as it is basically designed to image deep model by explaining the reflected data. However, this application is still particularity challenging due to the amplitude discrepancy, elastic effect, noise, attenuation and more other common challenges always observed in real data.

In this study, we investigate the 2D OWI inversion through the application on a real seismic line extracted from a 3D available acquisition. The choice of this line was decided after observing an interesting underneath structure with significant dipping reflectors. To avoid any showing rights, the area of the data and its location will be kept anonymous. This chapter is written as an article that will be submitted soon. Therefore, some part of this article have already been addressed in the previous chapters.

One-way Waveform Inversion (OWI): Real marine data application

Aimen Ben-hassine, Véronique Duprat, Reda Baina and Daniel Brito.

Article to be submitted

VII.1 Abstract

The Reflection Waveform Inversion (RWI) is a powerful technique to build a large scale velocity model of the subsurface by fitting the reflected recorded seismic waves. The RWI is designed based on the pillar concept of model and data scale separation. Therefore, its success is related to the ability of its forward modeling engine to separate reflected events distinctly from other propagation modes (diving waves, multiples...). However, the standard Born modeling based on the two-way wave equation may generate internal multiples in case of insufficient smooth background model. These internal multiples may lead to a distorted sensitivity kernel which adds more non linearity to the inverse problem. In addition, simulating the wave equation using two-way propagators is still an overburden step of the algorithm especially in large 3D real surveys. In this proposal, we introduce an alternative to the two-way wave equation by using a one-way approach for the reflection waveform inversion. The Born modeling based on one-way propagators significantly reduces the computational cost and allows to relax the smooth background velocity model assumption by restricting the forward modeling to primary reflected waves. After a brief theoretical description of the One-way Waveform Inversion (OWI), we present an application of the algorithm to a line of real marine dataset to review its promises and pitfalls. Our approach produces an acceptable large scale velocity model whose accuracy is confirmed on the migrated image and the offset gathers.

VII.2 Introduction

Full Waveform Inversion (FWI) [START_REF] Tarantola | Inversion of seismic reflection data in the acoustic approximation[END_REF], [START_REF] Lailly | as a sequence of before stack migrations[END_REF]) has demonstrated its capability to invert for a subsurface velocity model based on minimizing the misfit between the recorded data and the predicted data generated from a simulation of the wave equation. Although it was proposed to explain the whole information of the seismogram, the FWI is basically driven by the high energetic diving waves which limits the update on the shallow model part. On the other hand, the Reflection Waveform Inversion (RWI) is a promising tool to update the deep model structures positioned beyond the depth penetration of the diving waves. However, the application of the latter approach following the non-linear relaxation strategy suffers from a slow convergence issue. By taking into account the coupling between the velocity and the reflectivity depth positioning, the Timeconsistent Wave equation INversion (TWIN) has been recently proposed by [START_REF] Valensi | Reflection waveform inversion method: solutions to the reflectivity-background coupling problem and consequences on the convergence[END_REF] to ensure the consistency between the background and the perturbation model. In the forward modeling step, both RWI/TWIN simulates reflected data using the twoway Born modeling. Although it can be efficiently applied to different media including anisotropy, the two-way Born modeling has two main limitations. First, solving the wave equation using two-way propagators represents an overburden step because of its high computational and memory requirements. Second, the separation of the reflected waves from other propagation modes relies on the assumption of a smooth background velocity model. If the model is not sufficiently smooth, the background internal reflections will be difficult to match the observed reflected data which induces a corrupted sensitivity kernel and inconsistent inversion scheme.

In order to mitigate these issues, we have recently proposed the One-way Waveform Inversion (OWI) algorithm (see [START_REF] Hassine | One-way waveform inversion (owi)[END_REF]) that is based on two main key ingredients. First a velocity-depth coupling [START_REF] Valensi | Reflection waveform inversion method: solutions to the reflectivity-background coupling problem and consequences on the convergence[END_REF]) is used to have a consistent inversion scheme. Second, we solve the wave equation using one-way propagators in order to relax the smooth background assumption and to reduce the computational cost. The first applications of the one-way wave equation in the seismic imaging field have been introduced by [START_REF] Claerbout | Toward a unified theory of reflector mapping[END_REF]. The one-way approximation also called the paraxial approximation was also proposed for absorbing boundary condition in finite difference propagator (Engquist and Majda, 1977). Based on a preferred direction, generally chosen the vertical axis, the one-way approximation allows to split the wave equation into two terms [START_REF] Ristow | Fourier finite-difference migration[END_REF]. One term represents the down-going traveling wave and the other term for the up-going waves. Therefore, within the scale separation approach, the one-way wave equation is better appropriated to establish a strict separation in an arbitrary model. This paper describes the extension of the OWI method in anisotropic media using high order Fourier finite difference one-way propagator [START_REF] Hua | High-order and high-accuracy 3D Fourier finite difference depth migration with an optimally reduced coefficient table for tilted transversely isotropic media[END_REF]. After a brief description of the forward modeling in anisotropic media, we will study theoretically the associated Fréchet derivatives and the gradient that have a quite different formulation compared to the two-way wave equation. Finally, we will demonstrate the effectiveness of the algorithm on the inversion of a line of real marine data.

VII.2.1 General recall on TWIN method

The FWI is formulated to find the optimum velocity model that better minimized the misfit between the observed and the calculated data

v * = min v 1 2 dω dg ds d(ω, g, s, v) -u(ω, g, s) 2 (VII.1)
where ω is the angular time frequency, s and g denote respectively the source and receiver positions. u represents the observed data while d stands for the calculated data. Tarantola (1984) aimed to invert the full data including diving and multiples so he proposed to simulate the data calculated using the full two-way wave equation. To include the anisotropic effects, we have chosen the two-way wave equation derived using the acoustic medium assumption for P-waves in transversely isotropic (TI) with a vertical symmetry axis [START_REF] Alkhalifah | An acoustic wave equation for anisotropic media[END_REF])

∂ 2 z + (1 + 2δ)∂ 2 x + (1 + 2δ)∂ 2 x 2v 2 b (y )( -δ)∂ 2 x ω 2 -2v 2 b (y )( -δ)∂ 2 x + ω 2 v 2 b (y ) G(ω, y , y, v b ) = -δ(y -y). (VII.2)
where and δ are the Thomsen parameters [START_REF] Thomsen | Weak elastic anisotropy[END_REF].For more general TTI media, we need to apply a rotation of the coordinate system on the partial derivative operators with respect to the tilt angle θ. Instead of explaining the full data as seen in the FWI, the RWI is limited to the reflected wave inversion. Thus, the forward engine should ensure a modeling of only reflected data. For this purpose, [START_REF] Xu | Full waveform inversion for reflected seismic data[END_REF] proposed the two-way Born modeling to generate calculated

d(ω, g, s, v b ) = ω 2 dx G(ω, g, x, v b )G(ω, x, s, v b )δm r (x) (VII.5)
The RWI inversion scheme is designed to invert for the two unknowns sequentially adopting a relaxation scheme by estimating δm r via a migration problem using a fixed v b and then inverting for v b while keeping δm r fixed.

Unfortunately, this approach suffers from a slow convergence issue using local optimization methods [START_REF] Valensi | Reflection waveform inversion method: solutions to the reflectivity-background coupling problem and consequences on the convergence[END_REF]. In order to mitigate this issue and inspired from zero-offset time consistent reflection tomography (van Trier (1989)), [START_REF] Valensi | Reflection waveform inversion method: solutions to the reflectivity-background coupling problem and consequences on the convergence[END_REF] proposed the TWIN approach that considers the coupling through the zero offset migration defined by

δm r (x, v b ) ≈ dr dω ω 2 G * (ω, r, x, v b 2 )u † zo (ω, r). (VII.6)
where u † zo is a pre-processed version of the zero offset data u obs zo and r describes the sourcereceiver position (r = s = g). The zero offset migration enables to reposition the reflectivity during each iteration (further details will be provided later). [START_REF] Valensi | Reflection waveform inversion method: solutions to the reflectivity-background coupling problem and consequences on the convergence[END_REF] highlights the fact that the reflectivity image is an intermediate variable and could be constructed from the background velocity model. Thus, the TWIN approach transforms the RWI multi-parameter problem into a mono-parameter inversion with a unique unknown

v b v * b = min v b 1 2 dω dg ds d(ω, g, s, v b ) -u(ω, g, s) 2 (VII.7)
Therefore, the TWIN algorithm can be basically seen as the cascade of four steps as it is depicted by Figure VII.1. The forward modeling in the TWIN approach contains two steps. A migration step estimates the reflectivity starting from the background velocity model and the invariant zero offset data as described by Equation (VII.6). Second, the calculated data are generated following a demigration process (Born modeling) based on the previously computed reflectivity image and the background model, is given by

d(ω, g, s, v b ) = ω 2 dx G(ω, g, x, v b )G(ω, x, s, v b )δm r (x, v b ) (VII.8)
where the sole difference from the previous Born Equation (VII.5) is the dependency of the reflectivity on the background velocity model. After the forward modeling, the inverse problem consists in constructing the gradient and updating the velocity model following an iterative strategy of local optimization.

As explained in the introduction, our proposed method is derived from the existing TWIN method. Thus, we will follow the same inversion scheme as the TWIN but based on a simulation of the wave equation using one-way instead of two-way propagators. 

VII.3 Methodology

During the methodology description, we will explain all the steps of the described algorithm of Figure VII.1 using the one-way wave equation. The forward modeling (migration and demigration) and the gradient calculation will be modified by the introduction of the one-way wave equation. However, the final process of updating the model will not be discussed because it will not be impacted by the propagator choice.

VII.3.1 Forward modeling

According to the velocity-depth coupling framework, the reflectivity is updated at the beginning of every iteration of the inversion in order to ensure the consistency between the background model and the depth positioning. Therefore, the forward modeling is composed from a first step of migration which is followed by a demigration process to compute the reflected data. For simplicity purpose, we will start the explanation by the demigration before addressing the zero-offset migration.

Demigration

Following the Born modeling approach, the reflected waves are generated due to the scattering of the incident wavefield with the presence of the high frequency perturbation reflectivity. The separation between propagation and reflection effects are assumed if the background model does not contain any high wavelength that may generate reflections (sufficiently smooth model). This assumption is generally difficult to respect especially in models that contain salt bodies. In order to remedy for not complying with a strict model scale separation in an arbitrary velocity model, we propose to use the one-way wave equation [START_REF] Wapenaar | Wave field extrapolation techniques for inhomogeneous media which include critical angle events. part i: Methods using the one-way wave equations[END_REF]. The one-way approximation consists in decomposing the solution of the two-way equation into two independent wavefields that propagate along the vertical privileged direction. Thus, the one-way Born modeling takes the following form

d(ω, g, s, v b ) = ω 2 dx G + (ω, x, s, v b )G -(ω, g, x, v b )δm r (x, v b ).
(VII.9)

G + (resp. G -) denotes the down-going (resp. up-going) one-way Green function propagating in the increasing (resp. decreasing) depth, solution of

∂ z + iΛ [v b (x)] G + (ω, x, s, v b ) = -δ(x -s); ∂ z -iΛ v b (x ) G -(ω, x , x, v b ) = -δ(x -x) (VII.10)
where Λ refers to the square root operator of the one-way wave equation [START_REF] Ristow | Fourier finite-difference migration[END_REF]). In the following, we will adopt the one-way wave propagator as defined by [START_REF] Hua | High-order and high-accuracy 3D Fourier finite difference depth migration with an optimally reduced coefficient table for tilted transversely isotropic media[END_REF]. Therefore, the square root operator Λ is approximated by

Λ [v b (x)] ≈ ω 2 c 2 + ∂ 2 x + ω v b (x) - ω c + ω v b (x) B -1 [v b (x)] A [v b (x)] (VII.11)
where c is a reference lateral velocity model. A and B define the wide angle term and they, which are given by

A [v b (x)] = 3 j=1 a j [v b (x)] S x [v b (x)] j B [v b (x)] = 1 - 3 j=1 b j [v b (x)] S x [v b (x)] j (VII .12) 
where S x = -i(v b /ω)∂ x and a i and b i denote the optimized coefficients of the one-way propagator. In fact, these coefficients are estimated with respect to the model parameters (v b , c, , δ, θ) but we kept only the dependency on v b because we will proceed with a passive anisotropy inversion where we will only focus on the estimation of v b . Another key point is that the typical coefficient table-driven approach as proposed by [START_REF] Shan | Optimized implicit finite-difference migration for VTI media[END_REF] could be problematic for the inverse problem as the pre-calculated coefficients are tabulated and are not written in a form of continuous and derivable function with respect to v b . For this purpose, we have followed the optimally reduced coefficient table suggested by [START_REF] Hua | High-order and high-accuracy 3D Fourier finite difference depth migration with an optimally reduced coefficient table for tilted transversely isotropic media[END_REF]. Thus, each coefficient is assumed as a smooth function obtained by regression curve fitting

a j [v b (x)] = M k=1 α j,k c v b (x) k ; b j [v b (x)] = M k=1 β j,k c v b (x) k (VII.13)
where α and β are the pre-optimized coefficients that have no dependency on the velocity model and M denotes the order of the polynomial function.

Migration

Repositioning the depth image can be performed by remigrating data using pre-stack depth migration in the smooth model v b as proposed by [START_REF] Xu | Full waveform inversion for reflected seismic data[END_REF]. Despite the progress of the HPC over the last years, the pre-stack process is still too expensive especially when it is embedded inside an inversion scheme. To mitigate this issue and inspired from the travel time tomography (van Trier, 1989), [START_REF] Valensi | A time consistent waveform inversion (TWIN) method[END_REF] proposed to use the invariant zero offset data in order to adjust the depth image in each inversion step. Thus, we will switch in this part from pre-stack Born modeling as expressed in Equation (VII.9) to only zero offset configuration

d Born zo (ω, r) = ω 2 dx G + (ω, x, r, v b )G -(ω, r, x, v b )δm r (x, v b ) (VII.14)
where d Born zo are the Born data limited to zero offset acquisition. The expression VII.14 describes the wave propagation from source-receiver position r to the scatterer δm r and then from scatterer to source-receiver position. Therefore, the wave pass through the same path in its down-going and up-going travel. Thus, based on the exploding reflector concept [START_REF] Kjartansson | The exploding reflector model and laterally variable media[END_REF], we can suppose that the travel time of the round trip ( r → x → r ) of the propagation can be substituted by a travel time of a oneway propagation from scatterer to source-receiver position (x → r) but with half the used velocity model. In fact this substitution is not enough to get an efficient migration process. It is still require a pre-stack modeling to simulate the amplitude term of the Green function (Kjartansson and Rocca, 1979). However, we need to drop a part of the geometrical divergence amplitude term in post-stack (zero offset configuration) modeling [START_REF] Kjartansson | The exploding reflector model and laterally variable media[END_REF]. Therefore, the zero offset data can be approximated by

d zo (ω, r) ≈ ω 2 dx G -(ω, r, x, v b 2 )δm r (x, v b ). (VII.15)
In fact this approximation is fairly acceptable in term of kinematic but the amplitude modeling is biased by the fact of dropping the geometric divergence. For this reason, we use instead of the real zero offset data u zo a pseudo zero offset data u † zo that is preprocessed in prior to compensate the amplitude mismatch. Thus, the reflectivity image can be constructed by the post-stack zero offset migration that is written as

δm r (x, v b ) ≈ dr dω ω 2 G - * (ω, r, x, v b 2 )u † zo (ω, r). (VII.16)
The post-stack zero offset migration can be seen as a depth extrapolation of the zero offset data in order to be mapped in depth space. The computational cost following the latter approximation is significantly reduced as it merely costs the equivalent of one shot compared to the pre-stack migration.

At this stage, we discussed the forward modeling which is composed from a first step of zero-offset migration that enables to generate the reflectivity δm r following Equation (VII.16). Then, the second demigration step generates reflected data based on the one-way Born modeling as described by Equation VII.9. In the next paragraph, we will express the inverse following the defined forward modeling.

VII.3.2 Inverse problem

In the remainder of the methodological part, we will focus on the derivation of the sensitivity kernel corresponding to the forward modeling expressed above. The OWI method is formulated as an optimization method of the following cost function

C (v b ) = 1 2 dω dg ds d(ω, g, s, v b ) -u(ω, g, s) 2 (VII.17)
The minimization of the cost function C is based on iterative local optimization methods using the gradient of the misfit function given in an arbitrary spatial position x 0 by

J (x 0 ) = dω dg ds ∂d(ω, g, s, v b ) ∂v b (x 0 ) * δR(ω, g, s, v b ) (VII.18)
where the residual data are denoted by δR := d -u. According to Equation (VII.9), the gradient can be written as the sum of three terms

J (x 0 ) = J 1 (x 0 ) + J 2 (x 0 ) + J 3 (x 0 ) (VII.19)
where the first two terms obtained from the derivation of the two Green functions present in the Born operator (see Equation (VII.9)) and the third term is coming from taking into account the dependency of the depth positioning on the background velocity model:

J 1 (x 0 )= dω dg ds ω 2 dx ∂G + (ω, x, s, v b ) ∂v b (x 0 ) G -(ω, g, x, v b )δm r (x, v b ) * δR(ω, g, s, v b ) J 2 (x 0 )= dω dg ds ω 2 dx G + (ω, x, s, v b ) ∂G -(ω, g, x, v b ) ∂v b (x 0 ) δm r (x, v b ) * δR(ω, g, s, v b ) J 3 (x 0 )= dω dg ds ω 2 dx G + (ω, x, s, v b )G -(ω, g, x, v b ) ∂δm r (x, v b ) ∂v b (x 0 ) * δR(ω, g, s, v b ).
(VII.20) Therefore, the calculation of these terms require the derivative of G + and G -with respect to v b . After linearization of the one-way equation, the derivation of the Green function with respect to v b is given by

∂G ∓ (ω, x, x , v b ) ∂v b (x 0 ) = ∓iΛ [v b (x 0 )] G ∓ (ω, x, x 0 , v b )G ∓ (ω, x 0 , x , v b ) (VII.21)
where Λ denotes the derivative of the square root operator Λ with respect to the background velocity model

v b Λ = - ω v 2 b - ω v 2 b + ω v b B -1 ∂B ∂v b B -1 A + ω v b B -1 ∂A ∂v b . (VII.22)
The derivative of A and B with respect to v b are

∂A ∂v b = 3 j=1 a j S j x + j a j S x S j-1 x ; ∂B ∂v b = - 3 j=1 b j S j x + j b j S x S j-1 x (VII.23)
where a j , b j and S x are given by

a j = M k=1 -α j,k k v b c v b k ; b j = M k=1 -β j,k k v b c v b k ; S x = i ω ∂ x . (VII.24)
For the sake of clear interpretation, we will split the formulation into three parts where we will discuss about every term of Equation (VII.20) separately.

Source side gradient term J 1

Based on Equations (VII.20) and (VII.21), the source side gradient can be written as

J 1 (x 0 ) = dω dg ds -iΛ [v b (x 0 )] G + * (ω, x 0 , s, v b ) ω 2 dx G + * (ω, x, x 0 , v b )G - * (ω, g, x, v b )δR(ω, g, s, v b )δm r (x, v b ) .
(VII.25) To explain the expression of the source-side gradient J 1 , we prefer to introduce new wavefield to simplify the illustration. First, we will refer to the forward background wavefield by

F wd b F wd b (ω, x 0 , s, v b ) = G + (ω, x 0 , s, v b ) (VII.26)
where the subscript b denotes the background propagation. The latter wave-filed propagates in down-going direction from the source s to a spatial position x 0 as depicted in From Expression (VII.20), the global misfit gradient should be interpreted as the total derivative generated from Born propagation and the depth reflectivity dependency on v b . Therefore, in the following, we will develop the third component of the gradient which imposes the velocity-depth coupling constraint.

The velocity-depth coupling gradient term

Let us start by rewriting the third term of the gradient of the misfit function

J 3 (x 0 )= ds dg dω dx ω 2 G + (ω, x, s, v b ) G -(ω, g, x, v b ) ∂δm r (x, v b ) ∂v b (x 0 ) * δR(ω, g, s, v b ).
(VII.32) According to Equation (VII.16) provided in the zero offset migration part, the derivative of the reflectivity image δm r with respect to the background model v b is given by

∂δm r (x, v b ) ∂v b (x 0 ) = dr dω ∂G - * ω , r, x, v b 2 ∂v b (x 0 ) u † zo (ω , r) (VII.33)
Through the same mathematical development made for Equation (VII.21), we deduce that

∂G -ω , r, x, v b 2 ∂v b (x 0 ) = - 1 2 iΛ v b (x 0 ) 2 G -ω , r, x 0 , v b 2 G -ω , x 0 , x, v b 2 . (VII.34)
Injecting the last two Equations into (VII.32), we obtain Rearranging Equation (VII.35) leads to

J 3 (x 0 ) = dx dr dω 1 2 iΛ v b (x 0 ) 2 G - * ω , r, x 0 , v b 2 G - * ω , x 0 , x, v b 2 u † zo (ω , r) * I(x) (VII.
J 3 (x 0 ) = dr dω - 1 2 iΛ v b (x 0 ) 2 G - * ω , r, x 0 , v b 2 u † zo (ω , r) * dx G -ω , x 0 , x, v b 2 I(x) .
(VII.38) Regarding the mathematical development, we can deduce that the construction of the velocity-depth coupling gradient can be split into two steps. The first is the computation of the residual image denoted by I. Then, the resulted I image is injected inside Equation (VII.38) to get the final expression of the third term.

During the construction of the residual image I, we use the same concept as the WEM algorithm (or RTM if using two-way propagator). To produce the image, a correlation is made between the forward background wavefield The expression of the third term gradient (VII.38) is not intuitive enough to easily describe it. That is why, we define a new wavefield called Exp Zo that describes the generated field after exploding the residual reflectivity by the zero offset demigration operator described in Equation (VII.15)

Exp Zo (ω , x 0 , x, v b 2 ) = dx G -ω , x 0 , x, v b 2 I(x). (VII.39)
In the context of the exploding reflector concept, the wavefield Exp Zo is constituted from the up-going waves propagating from the residual reflector points towards the zero offset acquisition surface. The illustration of the latter wavefield is plotted in Figure VII.7.a. Furthermore, we define the wavefield simulated during the zero offset migration M ig Zo is written as

M ig Zo (ω , x 0 , r, v b 2 ) = G - * ω , r, x 0 , v b 2 u † zo (ω , r). (VII.40)
The migrated wavefield M ig Zo (displayed in Figure VII.7(b)) is the result of propagating the zero offset observed data in a post-stack context. Using the previous wavefield definitions, the third term gradient expression could be written in a more simplified form as

J 3 (x 0 ) = dr dω 1 2 iΛ v b (x 0 ) 2 M ig Zo (ω , x 0 , r, v b )Exp Zo (ω , x 0 , x, v b ).
(VII.41) Finally, the correlation between the exploded and migrated wavefields provides a low frequency update along the zero offset wave path. This extra term enables to connect the reflection point to the zero offset position at the acquisition surface. Therefore, it keeps a good match between zero offset recorded and calculated data by canceling the update related to the contribution of zero offset data in the Born gradient term.

Illustration of OWI sensitivity kernel

The sensitivity kernel of the OWI approach is composed from three components, two of them are following the 

Numerical validation of the gradient of the misfit function

In order to validate the previous mathematical derivation, we carried out the calculation of the gradient of the OWI misfit function using the finite difference approach. The test consists of a local perturbation of the background velocity model v b : The finite difference gradient plotted in blue curve and the analytic gradient drawn in dashed red curve show a good match both in terms of amplitude and polarity. The generation of the gradient using the finite difference approach is simpler than going through the mathematical derivation. However, using the same computational resources, the analytic gradient has been generated in a few seconds while the finite difference took huge a computational time. The sources and receivers show deviation in the y-direction which is slightly important in some positions. This deviation may imply the 3D effect that cannot be corrected by our 2D algorithm. For this reason, we have applied a pre-processing on the data in order to map the 3D data into 2D data. The waveform adaptation from 3D to 2D domain is also taken into account during the mapping process. The provided data are pre-processed for pre-migration application. We have also added a bandpass filter where the frequency content below 2Hz and above 12Hz is removed with slight damping to avoid harsh cutting in the frequency spectrum. An example of a shot difference between the pre-processed and the raw data is displayed in These models are slightly smoothed to avoid scattering effect during wave propagation. In a first test, we will start by inverting the model using only VTI parameters. Afterwards a tilt model will be calculated from the migrated image and another TTI inversion will be presented. The OWI workflow is basically designed following the multi-scale approach on gradient preconditioning. Starting from our experience on synthetic data, the role of the gradient preconditioning is important especially for complicated models. The multi-scale technique consists in starting the inversion with a strong smoothing on the gradient and progressively reducing the scale-length to recover model details. Four successive scales were carried out using different length of the lateral Gaussian radius function [6km,4km,2km,1km]. Within each sequence, the number of iteration is kept fixed to 20 iterations. However, this number could be optimized especially for small scales where the inversion stops to really upgrade the model many iterations before the maximum fixed number. According to our observation of the inversion either with OWI or TWIN [START_REF] Valensi | A time consistent waveform inversion (TWIN) method[END_REF], we prefer to use the normalized L2 cost function because it is better appropriated to the velocity building inversion as it is less sensitive to amplitude mismatch compared to the classical L2 cost function.

J (x 0 ) ≈ C v b -C v b (VII.

VII.4.2 Inversion results

During the multi-scale process, the inversion makes significant changes on the velocity model as depicted in 

VII.5 Discussion

Through the multi-scale based workflow, we have seen that the OWI was able to construct a reasonably good velocity model corresponding to a good data fit. Different quality control tools such as the migrated image and the offset gathers confirm the accuracy of the final model. Therefore, this successful inversion of a real dataset shows that it is possible to invert the reflected data using one-way propagators. In fact, this study and different synthetic benchmarks [START_REF] Hassine | One-way waveform inversion (owi)[END_REF]) prove that the OWI method could be an interesting technology for inverting large models in an efficient computational cost.

As it was argued in many other investigations [START_REF] Mulder | One-way and two-way wave-equation migration[END_REF], the one-way Born modeling shows an amplitude difference at large propagation angles (far offset) compared to its two-way version. Nevertheless, for reflected waves that generally comes from small to mid propagation angles, the one-way modeling provides a good kinematic of the data. Furthermore, in the context of the reflected data inversion, we are more interested by deep model structures which generally corresponds to small propagation angles. In this case, the one-way Born modeling is able to give similar simulation results as the two-way modeling. Moreover, in difficult geology (e.g when there are steep reflectors in shallow parts) the amplitude loss generated from solving the one-way wave equation could be widely accepted compared to the gain from the computational and memory savings.

Especially that the amplitude is not a trustful attribute to invert because many physics phenomena that are not included during wave simulation (elastic effect, attenuation, ...).

VII.6 Conclusion

In this work, we have developed a reflection waveform inversion approach based on the one-way wave equation. Two main ingredients have been highlighted during this study. First, the formulation is basically developed following the velocity-depth coupling concept in order to establish the consistency between velocity and depth-positioning all along the process. As it was proposed by [START_REF] Valensi | A time consistent waveform inversion (TWIN) method[END_REF], the coupling is an essential element to ensure a robust inversion in an efficient convergence rate. Second, the theoretical development of the inverse problem using the Green functions offers an easy and explicit understanding of the gradient terms that allows to simplify its physical interpretation. All of this has been validated through numerical experiments which confirms the accuracy of the developed gradient expressions. The inversion of the 2D real dataset has confirmed the effectiveness of the method already observed in synthetic benchmarks. The proposal formulation were presented and tested in 2D in this paper but the 3D extension is in progress.

Chapter VIII

Method extension to 3D media

Although our method has been widely applied in 2D model for proof of concept validations, it is still insufficient for good geological interpretation. For example, imaging a 2D plane does not permit to get a precise localization of the reservoir, its size and its spatial expansion. Generally, all the targeted structures that are in our imaging scope (reservoir, reflector, fault ...) are tri-dimensional. Thanks to the development of super-calculators in the last decades, the application of 3D methods for seismic imaging is more and more affordable. However, the transition to 3D methods for velocity model building is still very costly especially when we need several modeling and inversion loops until converging to a satisfactory model. Accordingly, the one-way wave equation could relax this limitation and provide the possibility to invert large velocity models with an efficient computational cost. Encouraged by the obtained realization of the method in 2D media, the application of the OWI is then considered for the estimation of 3D velocity model of the subsurface. This chapter aims to describe the extension of the method in 3D medium before consider a real data application.

First of all, we will start presenting the main changes in the forward modeling in the 3D case. In the beginning, we will discuss the one-way wave equation extension in 3D and we will be particularly focused on the wide angle term of the propagation as the other terms (phase and split step) do not show any major change compared to the 2D case. Then, we will address the fundamentals of different methods commonly used for solving the wide angle term. This quick review of the existent methods aims to justify our choice of adapting the splitting method for the wide angle term [START_REF] Collino | Splitting of operators, alternate directions, and paraxial approximations for the three-dimensional wave equation[END_REF] and therefore using the theory and code available inside TotalEnergies platform [START_REF] Hua | 3d tti implicit finite difference migration with nonlinear optimized four-direction splitting expansion[END_REF]. Afterwards, we will briefly discuss the source correction term and the final expression of the Born modeling. In the second part, we will tackle the inversion problem according to the described forward modeling in 3D model. Thanks to our choice of notation in 2D (the use of Green functions), we will see that the gradient of the misfit function will keep almost the same structure except that the modification of the wide angle term will conduct to subtle changes that we will focus on with more details.

Finally, all this work will be concluded by an application of the suggested method on a real narrow azimuth data coming from a relatively large 3D survey. In order to ensure an efficient implementation for this large test, the code is upgraded to one of the latest version of TotalEnergies platform where the industrial parallelization strategies (such as client/server) are included. The selected data are yet in their processing step and an application on operational data is considered as a good way to add value to this project.

VIII.1 Extension of the theory VIII.1.1 One-way wave equation in 3D domain

The generalization of the one-way propagators to 3D domain has been already studied and implemented by [START_REF] Hua | 3d tti implicit finite difference migration with nonlinear optimized four-direction splitting expansion[END_REF]. In the following, we will mainly focus on the principle differences between the theory in 2D and 3D media. Although this part was not done during our project, its description and understanding is mandatory to formulate later the needed operators (Born modeling, gradient expressions ...). After that, another paragraph will be dedicated to discuss the source correction term and its impact on the 3D reflected data modeling. It has been shown in Chapter II that starting from the conventional two-way wave equation, we can write a coupled system of up-going and down-going wavefields (see Equation (II.15)). We have also seen that the coupling terms, related to the derivative along the vertical axis, vanish in case of homogeneous models and the decoupling in this particular case is natural and is not an approximation. In an heterogeneous model, neglecting the off-diagonal terms conducts to the one-way approximation. Generally speaking, the scale separation context and the fact of using a smooth velocity model provides a favorable condition for applying one-way approximation. Therefore, the decoupled wavefields within the one-way approximation could be written as

             ∂ z P + -iλ(x)P + = - i 2λ(x) S ∂ z P -+ iλ(x)P -= i 2λ(x) S (VIII.1)
where x refers to (x, y, z) 3D position and λ(x) is the one-way square root operator in 3D domain given by:

λ(x) = ω 2 v(x) 2 + ∂ 2 x + ∂ 2 y 1 2 . (VIII.2)
The relation above is not polynomial so it does not correspond to a differential equation. Following the same FFD approach described in 2D domain, the one-way operator is approximated by a phase shift operator followed by a first order split step correction and then a higher order (or wide angle) correction. To avoid redundancy to what has already been discussed in the 2D part, we will write directly the expression of the approximated square root operator in 3D model

λ(x) ≈ ω 2 c 2 + ∂ 2 x + ∂ 2 y 1 2 + ω v (x) - ω c + ω v (x) a v (x) v (x) 2 ∂ 2 x + ∂ 2 y ω 2 1 + b v (x) v (x) 2 ∂ 2 x + ∂ 2 y ω 2 (VIII.
3) From an implementation point of view, the application of the operator at each depth level consists on cascading the three terms as it was exhaustively discussed in the Chapter II. Compared to the 2D domain, the phase shift operator only requires an additional Fourier transform in the y-direction and then the application of the square root operator in the spectral domain (k x , k y ). Moreover, the split step operator is quite similar to its 2D version. The only difference is that it is now applied in the spatial (x, y) domain. However, the 3D wide angle term presents several dissimilarities compared to the 2D one. Thus, we will focus on the implementation details of this term in the next paragraph.

Wide angle term in 3D domain

In this section, we focus on the implementation of the application of the wide angle term when computing the down-going wavefield:

∂ z P + = i ω v a v 2 ∆ h ω 2 1 + b v 2 ∆ h ω 2 P + (VIII.4)
where ∆ h = ∂ 2 x + ∂ 2 y and all dependencies are omitted for a sake of simplicity. Based on an implicit Crank-Nicolson scheme in the z direction, we can write

P + (z + ∆z) -P + (z) ∆z = i ω v a v 2 ∆ h ω 2 1 + b v 2 ∆ h ω 2 P + (z + ∆z) + P + (z) 2 . (VIII.5)
After a simple mathematical development, one has to solve the following system:

2 + 2b v 2 ω 2 -i∆ z v ω ∆ h P + (z + ∆z) = 2 + 2b v 2 ω 2 + i∆ z v ω ∆ h P + (z) (VIII.6)
First, we may notice that the LHS matrix does not have an interesting shape for the inversion contrarily to what we had in the 2D case (is not tridiagonal or penta-diagonal). Solving the linear system above can also show some difficulties because of the bad properties of the matrix in the LHS Kern (1992b) (complex, non-Hermitian). Furthermore, the computational cost of the matrix inversion is relatively expensive. For example, if we consider N × N points in x and y directions and using a standard method of inversion, the cost should be in order of O(N 4 ). Kern (1992a) focused on the solver and tried to benefit from the sparsity of the matrix to reduce the computational cost. He proposed to use a Bi-conjugate gradient method and expected to converge toward the inverse in a finite number of iterations so he can reduce the cost from O(N 4 ) to N iterO(N 2 ). However, this idea did not lead to a stable and affordable method. Instead of working on the solver and trying to reduce the computational cost of the matrix inversion, [START_REF] Collino | Splitting of operators, alternate directions, and paraxial approximations for the three-dimensional wave equation[END_REF] proposed to benefit from the splitting method in order to decompose the wide angle term into four operators, each one much less expensive than the whole operator. We will briefly recall the suggested idea and the results they obtained. Equation (VIII.4) can be written in the form of an evolution problem as

               ∂ z P + = AP + A = i ω v a v 2 ∆ h ω 2 1 + b v 2 ∆ h ω 2 . (VIII.7)
The solution is given by

P + (z + ∆z) = exp (A∆z) P + (z) . (VIII.8)
The basic idea is to write the operator A in a form of

A = A 1 + A 2 (VIII.9)
where the inversion of A 1 and A 2 is much simpler than the inversion of A operator. If A 1 and A 2 commute then

P + (z + ∆z) = exp (A 1 ∆z) exp (A 2 ∆z) P + (z) (VIII.10) otherwise, P + (z + ∆z) ≈ exp (A 1 ∆z) exp (A 2 ∆z) P + (z) (VIII.11)
Obviously, the splitting could be generalized to a finite number of operators. One can remark a first decomposition of A in this form:

A = i ω v a v 2 ∂ 2 x ω 2 1 + b v 2 ∆ h ω 2 + i ω v a v 2 ∂ 2 y ω 2 1 + b v 2 ∆ h ω 2 . (VIII.12)
Nevertheless, this decomposition is twice as complicated as inverting the whole operator because the denominator is still containing both lateral variables and so the matrix has the same properties as the previous one. Therefore, there is no exact decomposition that allows to drop the dependency between the lateral variables. For this purpose [START_REF] Collino | Splitting of operators, alternate directions, and paraxial approximations for the three-dimensional wave equation[END_REF] proposed to approximate the equation in order to get an explicit separation between the lateral variables and thus simplify the resolution of the linear system. As an improvement to the idea of 2-way splitting proposed by [START_REF] Brown | Applications of operator separation in reflection seismology[END_REF], [START_REF] Collino | Splitting of operators, alternate directions, and paraxial approximations for the three-dimensional wave equation[END_REF] proposed to split the operator into four alternate directions. They did not consider only the splitting in lateral directions because it conducts to an important loss of accuracy along directions that are not parallel to the axis but they suggested to add extra terms of splitting along the diagonal directions:

A ≈ i ω v φ 1 v 2 ∂ 2 x ω 2 1 + ψ 1 v 2 ∂ 2 x ω 2 + i ω v φ 2 v 2 ∂ 2 y ω 2 1 + ψ 2 v 2 ∂ 2 y ω 2 + i ω v φ 3 v 2 ∂ 2 x+y ω 2 1 + ψ 3 v 2 ∂ 2 x+y ω 2 + i ω v φ 4 v 2 ∂ 2 x-y ω 2 1 + ψ 4 v 2 ∂ 2 x-y ω 2 .
(VIII.13) where φ k and ψ k (k=1,2,3 or 4) are the optimized coefficients estimated from a least square problem based on the same process as described in the 2D part. Following the four way splitting, the large linear system of dimension N 2 is replaced by four families of N independent tridiagonal system. Therefore, the splitting technique enables to reduce the computation cost from O(N 4 ) as discussed in the classical approach to O(N 2 ). At each depth step, the wide angle is applied by cascading each operator separately and a tridiagonal system along each line parallel to the splitting direction should be solved. 

λ ≈ ω 2 c 2 + ∂ 2 x + ∂ 2 y 1 2 + ω v - ω c + ω v φ 1 v 2 ∂ 2 x ω 2 1 + ψ 1 v 2 ∂ 2 x ω 2 + ω v φ 2 v 2 ∂ 2 y ω 2 1 + ψ 2 v 2 ∂ 2 y ω 2 + ω v φ 3 v 2 ∂ 2 x+y ω 2 1 + ψ 3 v 2 ∂ 2 x+y ω 2 + ω v φ 4 v 2 ∂ 2 x-y ω 2 1 + ψ 4 v 2 ∂ 2 x-y ω 2 .
(VIII.14) Due to some memory issues during the depth extrapolation, [START_REF] Hua | 3d tti implicit finite difference migration with nonlinear optimized four-direction splitting expansion[END_REF] proposed to compress the coefficients of the wide angle in order to avoid their tabulation in a huge memory demanding array. Thus, the coefficients could be written in the following form:

φ k v (x) = N f it i=1 µ k i c v(x) i-1 ψ k v (x) = N f it i=1 η k i c v(x) i-1 (VIII.15)
where k ∈ {1..4} denotes the direction of splitting, µ and η are pre-calculated coefficients that have no dependency on the velocity model. In this paragraph, we have discussed the one-way depth extrapolation operator in 3D domain. To summarize, the phase shift and the split step operators do not show a particular difference compared to the 2D domain and their extension is straightforward. However, the classical approach for the extension of the wide angle term requires solving a large linear system. But thanks to the splitting technique the computational cost is significantly reduced by transforming the linear system into a four families of tridiagonal system much simpler to solve. This important cost gain has the price of introducing nonphysical anisotropy in directions that are not parallel to the splitting axis. However, this issue can be easily controlled by an appropriate estimation of the wide angle coefficients. In the following, we will address the source correction term.

Source correction in 3D domain

The one-way wave equations of Claerbout Equation (II.18) are derived for a source free situation. However, injecting the source term in a way as the classical two-way wave equation is not correct for exact one-way extrapolation scheme [START_REF] Wapenaar | Representation of seismic sources in the one-way wave equations[END_REF]. We have seen in the Chapter II that the rigorous derivation of the one-way equations requires a convolution of the inverse square root operator on the source function in order to properly represent the seismic source:

S o = i 2λ(x) S (VIII.16)
where S o denotes the source term after correction. Following the same development made for the 2D case (see Section II.2), we can write the source correction expressions as the following

               S = i 2 ω v(x)   1 - β v 2 (x) ∂ 2 x +∂ 2 y ω 1 -α v 2 (x) ∂ 2 x +∂ 2 y ω    S ω 2 v 2 (x) + ∂ 2 x + ∂ 2 y S o = S (VIII.17)
where α and β refer to the Padé coefficients (see Equation (II.23)). At each depth level z and in the presence of source, the process of source correction can be split into two steps. First, we estimate the intermediate source S starting from the given source S and following a Padé approximation. Then, the latter result is given as a source term for a 2D Helmholtz for a propagation in (x, y) plane at depth level z. Finally, the calculated term S o is provided as an input to the one-way extrapolation. One can remark that the cost of either the Padé approximation or the 2D Helmholtz is in the same order as the classical method for solving the wide angle term (using direct inversion method). However, since we use the splitting method for the propagation, the source correction following this strategy would become the most expensive step at each depth where there is a source to inject.

For the incident wavefield involved in the inversion (background wavefield), it would not be an issue since the source are placed at the surface. However, for the reflected wavefields, the "sources" are spread all over the subsurface (at every depth where the reflectivity is different from 0). In that case, the algorithm would drastically slow down because of the source correction. Thus, we choose to approximate the source correction as the following

S o ≈ i 2 v(x) ω S (VIII.18)
This approximation may be seen as excessive as it is merely a zero order approximation of the inverse of the square root operator. We will analyze its impact on the modeling especially on the amplitude in the next numerical tests. Other ideas are under investigation but for now, we will keep this approximation and adapt our methodology technique to limit its effect on the inversion results.

VIII.1.2 One-way Born modeling in 3D domain

In the context of the scale separation, we have decided to simulate the synthetic data through a Born modeling. The integral formulation of the one-way Born modeling obtained in 2D (see Equation (III.17)) can be directly extended in 3D

d (ω, g, s, v b ) = V dx ω 2 G -(ω, g, x, v b ) G + (ω, x, s, v b ) δm r (x). (VIII.19)
where G + and G -are now the 3D Green functions. This equation leads exactly to the same physical interpretation as in the 2D case. Namely, the incident wavefield G + is transmitted from the source S to every point x in the subsurface. Then, this wavefield constitutes intermediate source at all spatial points where the reflectivity δm r is non-null. These intermediate sources are propagated toward the surface via the up-going Green function G -. In the following, we will focus on testing the Born modeling on different model and reflectivity configurations.

In order to test the one-way Born modeling in 3D domain, we generate synthetic data using a homogeneous model of 3000m/s velocity and four flat reflectors. The model measures 10km in x-direction, 5km in y-direction and 5km deep. The data present a good fit in the near offset region. However, at far offset (see Figure VIII.2b) the one-way data show a considerable amplitude difference compared to the twoway data. It is worth to recall that in homogeneous model the one-way approach is not an approximation and the Born modeling should be quantitatively and qualitatively the same as the two-way Born modeling. In fact, the data discrepancy can be explained by the use of the low approximation of the source correction term. The zero order approximation (see Equation (VIII.18)) is well adapted for near offset which corresponds to small propagation angles. However, at far offset, it generates an error especially in terms of amplitude as expected. As a conclusion from these numerical observations, the kinematic modeling of the oneway data is generally satisfactory both at narrow and far offset. However, in terms of amplitude, the Born modeling is less accurate than what was previously observed in the 2D domain. That is related to the low precision of the source correction approximation. Unfortunately, moving to bigger approximation orders will lead to high computational cost that would only improve the amplitudes which are generally not reliable enough for inversions (due to physical phenomena difficult to simulate). That is why, we will discuss in the next inversion test an additional methodological step of the workflow to reduce the effect of this amplitude inaccuracy. Before addressing this issue, we will present in the next paragraph the extension of the gradient expressions in 3D.

VIII.1.3 Gradient of the misfit function in 3D domain

After establishing the formulation of the forward modeling, we discuss the gradient formulation in 3D before targeting 3D data inversions. In Chapter V, we have developed the expressions of the gradient misfit function in the 2D domain and described all the implementation details. In fact, the expressions of the gradient are easily extended to the 3D domain except for the derivative of the square root operator λ that should be rederived following the new approximation formulation given in Equation (VIII.2). Let us first recall the gradient expression

J (x 0 ) = J 1 (x 0 ) + J 2 (x 0 ) + J 3 (x 0 ). (VIII.20)
where the first two terms construct the Born gradient term written as

J 1 (x 0 ) + J 2 (x 0 ) = ds dg dω iλ (v b (x 0 )) -F wd b (ω, x 0 , s, v b )Bwd r (ω, x 0 , g, v b ) + F wd r (ω, x 0 , s, v b )Bwd b (ω, x 0 , g, v b ) (VIII.21
) and the third term is expressed as

J 3 (x 0 ) = dr dω 1 2 iλ v b (x 0 ) 2 M ig Zo (ω , x 0 , r, v b )Exp Zo (ω , x 0 , x, v b ).
(VIII.22) The wavefields (F wd r , Bwd r , ...) shown in the previous equations are defined and illustrated in Chapter V. The sole remained detail that prevents the implementation of the aforementioned expressions is the λ term. Indeed, λ operator in 3D domain should take into account the new approximation of the square root operator. Let us now rewrite the approximation of the square root operator (VIII.14) in another form:

λ [v b (x 0 )] = ω 2 c 2 + ∂ 2 x + ∂ 2 y 1 2 + ω v b (x 0 ) - ω c + ω v b (x 0 ) k=4 k=1 B -1 k [v b (x 0 )] A k [v b (x 0 )]
(VIII.23) where A k and B k operators are written as

A k [v b (x 0 )] = φ k [v b (x 0 )] v 2 b (x 0 )∂ 2 u k ω 2 B k [v b (x 0 )] = 1 + ψ k [v b (x 0 )] v 2 b (x 0 )∂ 2 u k ω 2 (VIII.24)
with (u 1 , u 2 , u 3 , u 4 ) = (x, y, x + y, x -y). Therefore, the derivative of the square root operator λ = ∂λ ∂v b can be expressed as the following

λ = - ω v 2 b - ω v 2 b k=4 k=1 B -1 k A k + ω v b k=4 k=1 -B -1 k B k B -1 k A k + B -1 k A k (VIII.25)
where the derivatives with respect to the background model of the operators A k and B k are written as

A k [v b (x 0 )] = φ k [v b (x 0 )] v 2 b (x 0 )∂ 2 u k ω 2 + φ k [v b (x 0 )] 2v b (x 0 )∂ 2 u k ω 2 B k [v b (x 0 )] = ψ k [v b (x 0 )] v 2 b (x 0 )∂ 2 u k ω 2 + ψ k [v b (x 0 )] 2v b (x 0 )∂ 2 u k ω 2 .
(VIII.26)

Finally the coefficients φ k and ψ k can be easily derived from Equation (VIII.15)

φ k v b (x 0 ) = - N f it i=1 (i -1) µ k i c v b (x 0 ) c v b (x 0 ) i-1 ψ k v b (x 0 ) = - N f it i=1 (i -1) η k i c v b (x 0 ) c v b (x 0 ) i-1 . (VIII.27)
All the components for the construction of the gradient of the misfit function are now defined. Thus, in the remainder of this paragraph, we will focus on the numerical validation of the gradient expressions. A practical approach for such a validation test is the approximation of the gradient using the finite difference technique. With a perturbation of the model parameters at every point of the spatial discretization, we get a reliable estimation of the gradient without going through the equations of the inverse problem (for further details see the description in Section V.5). The validation test was applied on a homogeneous velocity model with size 2km in x direction, 1km in the y direction and 1km in depth direction. The observed data were generated by a 3D one-way Born modeling using a flat reflector placed at 750m depth. Figure VIII.7 depicts the result of the gradient generated using the finite difference technique (left) and anlytic expressions (right). We observe that the two gradients are quite similar and have the same amplitude. For further validation, we plot an horizontal profile (see Figure VIII.8) extracted at 400m depth. The match between the finite difference curve (blue) and the analytic curve (red dashed) confirms the reliability of the derived expressions. After this validation test, all the components of the algorithm are ready to be evaluated in a real large 3D case study that will be discussed in the next part of the chapter. 

VIII.2 3D Real data application

In this section, we study the one-way waveform inversion on a narrow azimuth offshore real 3D dataset. The followed workflow is quite similar to the previously discussed strategy for synthetic data mainly based on the multi-scale approach. The following inversion is isotropic because the anisotropic version is not yet developed in 3D media but its extension should be straightforward (passive anisotropy). To ensure an efficient computational cost, the code is integrated in the client-server architecture of TotalEnergies platform.

In the next paragraphs, we describe the different input for the inversion and the chosen configuration and parameters of the workflow.

VIII.2.1 Acquisition Survey

The original survey covers an area of 7000km 2 with around 500 000 sources. We have restricted the area of interest to 700km 2 including more or less 16 000 shots with about 50m inline spacing and 700m cross-line spacing. Each single shot contains 10 streamer cables with maximum offset 7500m, with 600 receivers placed on each streamer cable with a spatial step of 12.5m. The geometry of the acquisition is illustrated in Figure VIII.9. 

VIII.2.2 Data processing

Data processing for amplitude correction

As discussed in the theoretical part, the developed one-way forward modeling generates data with amplitude problem especially at large offsets. That is mainly due to the low order approximation of the source correction term. In this paragraph, we will propose a methodological strategy to circumvent the amplitude issue. Instead of improving the source correction to get a precise forward engine, we propose to process the observed data to be appropriated to the available one-way forward operator. The following idea is inspired from seismic data reconstruction principle [START_REF] Stolt | Seismic data mapping and reconstruction[END_REF]. The key concept is that combining an inverse and then forward operators of Born leads to reconstruct the same seismic data given as input using an arbitrary velocity model (illustration is given by Figure VIII.11). Clearly this would work only if the velocity model is sufficiently large and deep to map all the events into reflectors. Despite the substantial difference between the inverse operator and the migration technique (need of iterative migration scheme like LSRTM), the cascade of the two operators generally yields to data close to the input. The used true-amplitude iterative least square migration can be seen as a good approximation of the inverse. To illustrate that, we will focus on the simple 3D test of 4 reflectors and homogeneous model previously discussed in paragraph VIII.1.2. Figure VIII.12 does not contain any one-way data. It simply shows the data from a two-way Born modeling (blue curve) and the resulting data (orange curve) after doing the subsequent single shot migration and demigration starting from the latter data. The match between the two curves confirm that applying a successive migration demigration operators could regenerate the input data. Therefore, we will follow the same approach for the real dataset where the observed data will be migrated based on a two-way migration and then demigrated using a oneway Born modeling. The generated data are then our final observed data that will be inverted by the OWI approach. In Figure VIII.14, we show an example of the proposed process on one shot of the real dataset. Figures VIII.14a and VIII.14b show respectively the observed data and the generated data after migration/demigration process. From a comparison between the two figures, we first observe that the generated data contain less noise especially for late arrival time. In fact, this can be explained by the fact that this noise could not be mapped to coherent reflectors during migration that is why it is removed from the demigrated data. Moreover, we observe that there is only an amplitude impact of this pre-processing on the specular signal and that is verified by the extracted vertical profile at mid offset shown in 

VIII.2.3 OWI workflow

We aim to invert for the background velocity model v b by considering a multi-scale approach. The inversion is based on the reflected waves and a mute depending on the seabed structure is applied to remove diving and direct waves. Through the multi-scale technique, we prefer to start by explaining the long wave-length update and then relax the pre-conditioning on the gradient in order to keep updating the small scale details. We thus design a progressive gradient smoothing to gradually update the velocity model.

• First sequence: smoothing radius (rx=6000,ry=2000,rz=600)

• Second sequence: smoothing radius (rx=4000,ry=2000,rz=500)

• Third sequence: smoothing radius (rx=3000,ry=1800,rz=400)

• Fourth sequence: smoothing radius (rx=2000,ry=1500,rz=300)

During each sequence, 20 iterations are performed using the steepest descent technique and the L2 normalized cost function. Similarly to previous tests, the inversion usually reaches the plateau before the fixed number of iterations. The source wavelet is a bandpass with interval of [1Hz,3Hz,10Hz,12Hz] and is kept unchanged during the inversion process.

The time data recording is 9.5s with a time sampling of 0.004s. As the seismic data are already deghosted, the wave simulation does not take into account the free surface boundary. Finally, we use a 50m cubic grid to discretize the model.

VIII.2.4 Inversion results

For this inversion, we use a starting model coming from a previous reflection tomography displayed in Around the anomaly, the offset gathers are generally improved. Indeed, the reflectors of the gathers using the initial model (illustrated by dashed yellow circle in Figure VIII.16a) are curved up which means that the velocity model has low values compared to the true one. After updating the high velocity anomaly the gathers show better a flattening. On the deep part pinpointed by the green arrow, we clearly see a better flattening of the gathers in the final gathers. However, the left hand side of the shallow part illustrated by the red arrow shows a decline of the quality of the reflectors in this zone. The low velocity layer injected by the inversion seems to be not good enough which is confirmed by the decrease of the quality of the gathers. This may be due to the low energy of reflectors around the area but this needs a deeper analysis to really understand the problem. To verify the effectiveness of the inversion, we plotted the curve of the cost function against the number of iterations (see Figure VIII.18). The fitting of the data shows that the functional value decreases gradually in each iteration. However, the misfit is only reduced by around 20% of its initial value at the final iteration of the multi-scale inversion. This may be due to the fact that the starting model is already accurate enough as it comes from a tomography pass. Nevertheless, more refinements of the workflow are needed to better explain the data and reduce the data residual. 

VIII.2.5 Conclusion

In this study, we have applied the OWI method on a real 3D marine dataset. On top of the complexity of the real data and the significant amount of noise, the shadow zones observed in the data presents an important challenge for the inversion. Despite all these difficulties, we have noticed that the proposed method was able to improve the model quality in several regions of the zone of interest. The better focusing of the reflectivity image and the flatness of reflectors (depicted in the offset gathers figures) confirm the quality enhancement of the inversion. Nevertheless, some regions of the model are not well improved by the inversion and require more refinement of the workflow. As a first application on real dataset, the results are relatively encouraging to carry on the improvement of the OWI approach. In short term perspective, including the anisotropic effect would help to better simulate the seismic waves and enhance the inversion results.

Conclusion and perspectives

Through this thesis, we have proposed a new reflection waveform inversion method called One-way Waveform Inversion (OWI). The approach is based on three essential elements:

• The use of the scale separation technique to ensure a good performance in updating the deep structure.

• The application of the velocity-depth coupling to enhance the convergence rate and avoid instabilities during velocity inversion.

• The use of one-way propagators to guarantee an efficient and consistent inversion scheme.

The formulation of the forward modeling which includes the migration and demigration steps is expressed in Chapters IV and III. We have then numerically tested the modeling engine on different models with increasing complexities. In case of slow lateral velocity variations, the modeling gives almost the same results as the two-way version. However, in presence of important lateral variations, some amplitude mismatch are observed at large propagation angles. In Chapter V, the inverse problem is formulated taking into account the velocity-depth coupling concept and numerical validation tests have validated our developed equations and implemented code. We also highlighted, through this work, that the coupling is essential to ensure a precise and robust inversion which confirms the conclusion given by [START_REF] Valensi | A time consistent waveform inversion (TWIN) method[END_REF] in their previous works on TWIN method.

The tests on synthetic benchmarks (Chapter VI) and on the 2D line of real data (Chapter VII) have demonstrated the effectiveness of the method to fix the background model by extracting the low wave-number component which is crucial to accurately position the reflectors, improve the focusing of the migrated images and flatten the offset gathers. Moreover, the proposed OWI method has been generalized in 3D domain where we have discussed briefly in Chapter VIII the main theoretical differences compared to 2D domain. Finally, the approach is further assessed on a real case study of a large 3D narrow azimuth dataset. The method has shown a promising inversion results in different areas of the model. Nevertheless, few zones contain some issues that require further investigations. In overall, the final results are encouraging and the obtained migrated images show better quality which is associated to satisfactory flattening of the offset gathers. These results, obtained from the application of this technology, demonstrate its potential for use in a wide range of situations. This opens up new possibilities for further research and development of this technology, allowing for its application in more complex and demanding computing environments. Despite its potential, the technology has certain limitations that need to be considered when applying it in practice. The main limitation of the OWI method is that it only models the wave propagation in one privileged direction and is not properly able to model wave at large propagation angles. When the angle of propagation is small, the one-way wave equation can provide a good approximation of the wavefield. In this case, the oneway model can provide a reasonably accurate representation of the wavefield propagation. However, as the angle of propagation increases, the wavefield becomes more susceptible to high angle reflections and even refractions. The one-way wave equation does not account for these phenomena and as a result, the inaccuracies in the modeled wavefield will become more visible. Additionally, it can lead to inaccuracies in the amplitude and phase of the modeled wavefield, which can affect the quality of the final inverted model. However, in the field of reflected data inversion, our primary focus is on deep reflectors that correspond to small propagation angles. In these cases, the one-way modeling approach is considered sufficient as it still provides a good approximation of the wavefield. Even in areas of complex geology, such as steep reflectors in shallow areas, the errors generated from forward modeling can be considered acceptable in light of the computational and memory savings that are achieved. In other words, the benefits of using one-way modeling outweigh the potential inaccuracies caused by this method in complex geologic scenarios.

A second limitation that is not exclusively related to the use of the one-way wave equation is the effect of multiples. In fact multiples are secondary reflections that occur when a primary reflection (or "direct wave") bounces off the subsurface more than once before reaching the surface. They can be caused by the reflection of the direct wave from the subsurface or from the surface. Due to the use of the first order Born approximation which takes into account only primary reflections, the multiples can have a significant impact on the inversion process because they can be indistinguishable from primary reflections in the recorded data. This can lead to inaccuracies in the inversion, particularly in areas with complex geology or near the surface. Therefore, it is essential to use demultiple techniques to remove all the potential multiples in the data before applying the OWI inversion algorithm.

Cycle skipping is also a phenomenon that can occur during the OWI process and this can happen when the inversion algorithm is not able to converge to a global minima and gets trapped into a local minima. It can conduct to a significant deterioration of the inversion results, leading to loss of resolution in the final inverted model. To mitigate this effect, various techniques have been developed such as kinematic cost function inversion [START_REF] Luo | Wave equation inversion of skeletalized geophysical data[END_REF] Hale (2013)), frequency continuation [START_REF] Sirgue | Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies[END_REF], and stochastic inversion methods to improve the convergence of the inversion algorithm and avoid local minima issue [START_REF] Sen | Global optimization methods in geophysical inversion[END_REF].

In a short term future work, the focus should be on developing the operators that are capable of handling anisotropy in 3D media in the passive form. In fact, anisotropy is an important property to consider when performing real data inversion. The presence of anisotropy in the subsurface can cause variations in the amplitude and phase of the wavefield. Therefore, it is necessary to account for anisotropy in the inversion process to achieve accurate and reliable results. To further improve the computational cost of the code, High-Performance Computing (HPC) optimization should be taken into account. Additionally, using GPU programming can also be a path towards a more efficient algorithm, although it may require modifications to the algorithm design. On other hand, one possible perspective of the approach is to incorporate the direct and diving waves, as suggested by Zhou's work [START_REF] Zhou | Full waveform inversion of diving & reflected waves for velocity model building with impedance inversion based on scale separation[END_REF], to be also inverted jointly with the reflected data. This could provide a more accurate representation of the overall wavefield, and potentially lead to improved results. In a one-way approximation this could be achieved by adding an extra propagation taking the horizontal direction as a second privileged direction to model only lateral waves. To do so, an additional modeling will be added to the algorithm but the most important challenge is to define how to combine the inversion of reflections and direct waves in a joint manner as discussed by [START_REF] Zhou | Full waveform inversion of diving & reflected waves for velocity model building with impedance inversion based on scale separation[END_REF].

In the long term, we can profit from the computational savings to start thinking about global optimization techniques for the OWI which may lead to superior results. These techniques are known to be less sensitive to the starting model and could be an efficient solution for the cycle skipping issue. Additionally, it may be worth exploring the possibility of extending the OWI method to include elastic wave propagation. Before starting this investigation, it is imperative to conduct a feasibility evaluation of the potential impact of elastic modeling on velocity model building, with a specific focus on marine data, to ensure that the elastic incorporation will have a net positive effect on the overall performance of the OWI method.

The optimization procedure can be defined as estimating a and b which minimizes the integral and θ min is the minimum optimization angle and θ max is the maximum optimization angle (i.e θ max = 70 • and θ min = -70 • ). Moreover, the optimization given in the last function can be solved by non linear least squares optimization techniques. One can remark that this optimization procedure should be done for each possible value of ρ. Then the optimized coefficients could be tabulated with respect to ρ in a table that contains all the possible range of ρ values. However, if we follow the compression idea of [START_REF] Hua | 3d tti implicit finite difference migration with nonlinear optimized four-direction splitting expansion[END_REF], starting from the optimized a and b in the whole interval of ρ, these coefficients can be expressed in a polynomial representation as shown in Equation (II.55).

Figure I. 1 :

 1 Figure I.1: Seismic survey (figure from Kukreja et al. (2017)): illustration of a marine acquisition with example of geologic formations

Figure I. 2 :

 2 Figure I.2: Illustration of the reconstructed wave-number gradient in FWI: the reflection angles in deep model are lower than in the shallow region which leads to a high wave-number component in deep part (figure from RWI chapter Opera report 2016)

  idea of separating the contribution of reflected waves and incident waves has inspired several velocity model building methods (see Almomin and Biondi (2012), Wang et al. (2013), Alkhalifah (2014a)). This governing idea led also to the creation of the Reflection Waveform Inversion (RWI) (Xu et al., 2012) based on the work of Chavent et al. (1994).In their paper, they aimed to get a velocity background update from the reflected events. They exploited the fact that the tomography component (low frequency) is formed if the residual and the source wavefield share the same trajectory. So, they proposed to use a scale separation to simulate the wave-path of recorded reflected events. The scale separation enables to split the velocity model into a macro velocity model (background) and a high frequency model (also called image or reflectivity). Moreover, the reflected waves travel in transmission regime from source to reflector and then from reflector to receiver. Thus, the kinematic error between observed and calculated reflections is inverted into a background velocity update. Unlike what is observed in FWI, the sensitivity kernel of the RWI does not contain high frequency component as shown in Figure I.3. Thus, it reduces the non-linearity of its inverse problem. By following the scale separation, the RWI update is basically constructed of low to intermediate wave-numbers related to the transmission regime of reflected waves. Thanks to this criteria, the RWI can mitigate the failure of FWI to update low wave-numbers of deep model structures. The work of Zhou et al. (2015) and Yao et al. (2020) give a good review of the reflection waveform inversion method with larger details.

Figure I. 3 :

 3 Figure I.3: FWI and RWI sensitivity kernels: the RWI permits to remove the high frequency component of the FWI sensitivity kernel

  (2012) paper, however Valensi and Baina (2019a) have demonstrated that the depth-velocity coupling introduces an extra term in the expression of the gradient of the misfit function (see Figure I.5).

( a )Figure I. 5 :

 a5 Figure I.5: The sensitivity kernel of the TWIN method: the RWI sensitivity kernel (fixed reflectivity) (a), the additional coupling term (b), TWIN sensitivity kernel (c): sum of (a) and (b). Figures adapted from Valensi and Baina (2021) paper.

  -Min et al. (2014), Lu et al. (2017), Shen and Calandra (2005), Dong et al. (2018)).

(a)Figure I. 6 :

 6 Figure I.6: The full wavefield (a) derived from the two-way wave equation can be split into an up-going wavefield (b) and down-going wavefield (c) using one-way wave equation. The yellow star depicts the source position.

  Let us first start by introducing a new variable u defined by u 2 = sin 2 (θ) = k 2 x v 2 ω , where θ refers to the propagation angle illustrated in Figure II.1.

Figure II. 1 :

 1 Figure II.1: Dip angle

Figure II. 2 :

 2 Figure II.2: Error with respect to dip angle

Figure II. 3 :

 3 Figure II.3: Simple test case with homogeneous velocity, the model vp=2000m/s on the left panel. In the middle panel a vertical profile at zero offset of the following data: two-way data (blue), one-way data without source correction (green) and one-way data with source correction (red). On the right panel a vertical profile of the same data at 5km offset

  ramp model shown in the left panel of Figure II.4 is a 1D increasing velocity in depth and does not contain lateral variations. In this configuration, the approximation of the square root operator should be perfect (see case c v = 1 in Figure II.2). Thus, any modeling inaccuracy is not related to the square root approximation. However, the one-way data plotted in green curve either at near offset (middle panel of Figure II.4) or at 5km offset (right panel of Figure II.4) do not match in amplitude the two-way data plotted in blue curve.We may clearly see that both data have the same phase and waveform but only an amplitude mismatch makes the difference between them. On the other hand, the true amplitude one-way data (red curve) better match in amplitude the full modeled data (blue curve) at both near or far offset.

Figure II. 4 :

 4 Figure II.4: Test case with 1D increasing gradient velocity, the ramp velocity model on the left panel. In the middle panel a vertical profile at zero offset of the following data: two-way data (blue), one-way data without true amplitude term (green) and one-way data with true amplitude term (red). On the right panel a vertical profile of the same data at 5km offset

Figure II. 5 :

 5 Figure II.5: Test case using Marmousi model, the vp Marmousi velocity model on the left panel. In the middle panel a vertical profile at zero offset of the following data: two-way data (blue), one-way data without true amplitude term (green) and one-way data with true amplitude term (red). On the right panel a vertical profile of the same data at 5km offset

  . The Born approximation has a clear physical interpretation in terms of scattering. The first step consists in propagating the incident wavefield denoted by G b (x, s, v b ), through the background medium v b , from the source position s to the scatterer x plotted in green/purple colors in Figure III.1. In the second step, we propagate, through the background v b , the reflected wavefield G b (g, x, v b ) from the scatterer to the receiver position which is drawn in red/blue colors in Figure III.1.

Figure III. 1 :

 1 Figure III.1: Illustration of two-way Born modeling with source (depicted by the star) placed at 500m in lateral direction and 500m depth

Figure III. 2 :

 2 Figure III.2: Illustration of one-way Born modeling with source (depicted by the star) placed at 500m in lateral direction and 500m depth

Figure III. 3 :

 3 Figure III.3: Simple test case with an homogeneous velocity with one reflector, the model vp=2000m/s and the reflector represented by black dashed line in the left panel, in the middle the one-way Born modeling in zero-offset and in the right panel the Born results at far offset (5Km offset)

  Figure III.4.The current model represents a good assessment of the importance of the true amplitude operator. Thus, we will be mainly focused on the comparison of the data generated from Equations (III.18) and (III.[START_REF] Claerbout | Downward continuation of moveoutcorrected seismograms[END_REF]).

Figure III. 4 :

 4 Figure III.4: Test case with 1D vertically variable model, the velocity model and reflector illustration in the left panel, vertical profile at respectively zero-offset and far offset (5km offset) in respectively middle and right panel

  . The velocity model is shown in Figure III.5a and the reflectivity image is displayed in Figure III.5b. From Figure III.6, we can confirm the same observations seen before. The oneway Born modeling well fit the two-way Born data at zero-offset. The mismatch occurs at far offset due to the approximation of the square root operator in presence of lateral variations. Nevertheless, it is really difficult to see if there is any difference between the one-way Born data (green curve) and the true amplitude one-way Born data (red dashed curve). In other words, the contribution of the true amplitude term (Equations (III.18)) does not show any clear uplift and always provide very similar results to one-way Born modeling without it (Equations (III.19)).

Figure III. 5 :

 5 Figure III.5: Test case with RefCurve model, on the left the Vp model and on the right the reflectivity image.

Figure III. 6 :

 6 Figure III.6: Test case with the RefCurve model, on the respectively left and right the Born modeling results at respectively zero and far offset (5km offset).

Figure III. 8 :

 8 Figure III.8: Test case with Marmousi model, on the left (respectively right) the Born modeling results zero (respectively far offset (5km offset)).

2 .

 2 ± ω, x, s, v b solution of the down-going (or up-going) one-way equation in the model v b defined by v b = v b According to Equations (IV.6) and (IV.7), A ± ω, x, s, v b and T ± ω, x, s, v b check respectively the transport and hypereikonal equation in the model v b . Thus

  r, v b , δm r ) ∂δm r (x, v b ) * d obs zo (ω, r). (IV.29) Injecting Equation (IV.22) inside the previous equation, we get Γ(x) = -dr dω ∂ ∂δm r (x, v b ) dx L Zo ω, r, x , v b δm r x , v b * d obs zo (ω, r). (IV.30) Thus the gradient takes the following expression Γ(x) = -dr dω L * Zo (ω, r, x, v b )d obs zo (ω, r) (IV.31)

  zero-offset modeling requires two inputs: the background velocity model and the reflectivity model. In order to model zero-offset data, we have used Marmousi model displayed in Figure IV.1a. In zero-offset demigration, it is recommended to use a filtered reflectivity model in order to avoid inconsistency between the image spectrum in spatial and time domain.
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 a Figure IV.1: Marmousi model

Figure IV. 2 :

 2 Figure IV.2:The zero-offset data computed from the post-stack demigration.

Figure IV. 3 :

 3 Figure IV.3:The zero-offset data computed from the pre-stack Born modeling.
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 45 Figure IV.4: zero-offset data vertical profiles: (a) at 5km, (b) at 15km and (c) at 30km, red curve refers to the exploding reflector data and the blue curve plots the Born data

Figure IV. 6 :

 6 Figure IV.6: Vertical profiles at 5km, 15km and 20km of the migrated image (red curve) and the initial reflectivity (blue curve).

Figure V. 1 :

 1 Figure V.1: Illustration of the source side gradient term: (a) the forward background, (b) the backward background wavefield and (c) the source side gradient

Figure V. 2

 2 .a. Furthermore, the backward background wavefield Bwd b back-propagates the residual error δd from the receiver position g to the spatial position x 0 through the smooth background velocity model and is defined byBwd b (ω, x 0 , g, v b ) = G - * (ω, g, x 0 , v b ) δd(ω, g, s, v b ). (V.31)The backward wavefield which propagates in the background velocity model is depicted in Figure V.2(b). Thanks to the previously introduced wavefields the receiver side gradient term J 2 could be rewritten in a more compact form as J 2 (x 0 ) = ds dg dω iλ (v b (x 0 )) F wd r (ω, x 0 , s, v b )Bwd b (ω, x 0 , g, v b ). (V.32) The Figure V.2.c represents the construction of the receiver side gradient for a one sourcereceiver couple. The correlation is carried out by summing the contribution of every propagated frequency of the two wavefields F wd r and Bwd g . The gradient is an inclined ellipse created between reflector and receiver locations (see Figure V.2.c).
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 2 Figure V.2: Illustration of the receiver side gradient term: (a) the forward reflected wavefield, (b) the backward background wavefield and (c) the receiver side gradient

( a )Figure V. 3 :

 a3 Figure V.3: OWI Born gradient

  expression of the residual image I looks a lot like the expression of an image obtained by Wave Equation Migration (WEM) or Reverse Time Migration (RTM) if we use the two-way Green functions. Indeed, to produce a WEM/RTM image, a correlation is made between the forward background wavefield F wd b (see Figure V.4.a) and the backward background wavefield Bwd b (see Figure V.4.b). The main difference is that during WEM/RTM back-propagation the residual data δd is only composed from observed data as the initial image is generally null (thus d cal = 0) in this case.

Figure V. 4 :

 4 Figure V.4: Illustration of the residual image I: (a) the forward background wavefield, (b) the backward background wavefield and (c) the residual image I

Figure V. 5 :

 5 Figure V.5: Illustration of the velocity-depth coupling gradient: (a) the Exploding of the residual image wavefield, (b) the zero-offset migration wavefield and (c) the velocity-depth coupling gradient

  Figure V.6a). The third term component is constructed following the normal wave path from the depth reflector position up to the acquisition surface. The consideration of the coupling term (see Figure V.6b) ensures a consistency between the background model update and the depth positioning. Finally, the sum of the latter two terms lead to the construction of the OWI sensitivity kernel depicted in Figure V.6c.

( a )Figure V. 6 :

 a6 Figure V.6: OWI sensitivity kernel

Figure V. 7

 7 displays the velocity model where the dashed line plotted at 750m depth depicts the reflector position. The yellow circle and orange triangle in Figure V.7 depict respectively the source and receiver positions.

Figure V. 7 :

 7 Figure V.7: Homogeneous model, the dashed line depicts the reflector position, the yellow start and the triangle depict respectively the source and receiver positions

Figure V. 8 :Figure V. 9 :

 89 Figure V.8: First gradient test on homogeneous model, in the left figure the gradient result from finite difference approach and in the right figure the analytic gradient

  offset migration Input: zero-offset observed data d obs zo and background velocity model v b Propagation in post-stack mode to construct the reflectivity image δm r -Down-going propagation from receivers' depth to the model bottom.

Algorithm:

  One-way Born modeling Input: reflectivity image δm r and background velocity model v b Propagation in pre-stack mode to generate the reflected data d cal a) Down-going propagation from source depth to the model bottom.

Input: δm r , v b , δd, d obs zo 1 )•••••

 1 Propagation in pre-stack mode to construct the Born gradient (J 1 and J 2 ) and the residual image I a) Down-going propagation from receiver depth to the model bottom. Backward propagation of the residual data δd to generate the backward background wavefield Bwd b and store it in memory. Apply iλ on the forward reflected wavefield F wd r (saved in memory during one-way Born modeling) and correlate it with Bwd b to get the receiver side Born gradient per shot. • Apply ω 2 on the forward background wavefield F wd b (saved in memory during one-way Born modeling) and correlate it with Bwd b to obtain the residual image per shot. ⇒ output : receiver side Born gradient per shot and residual image per shot. b) Up-going propagation from the model bottom to the receivers' depth. Generate the backward reflected wavefield Bwd r using the reflectivity δm r and the backward background wavefield Bwd b saved in memory. Apply iλ on the forward background wavefield F wd b and correlate it with Bwd r to get the source side Born gradient per shot. Stack the source and receiver Born gradient components ⇒ output : Born gradient per shot. c) Stack Born gradient term and residual image for all shots .
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 1 Figure VI.1: Marmousi velocity model
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 2 Figure VI.2: Misfit function
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 a345 Figure VI.3: Marmousi inversion results

( a )Figure VI. 6 :

 a6 Figure VI.6: Chevron Initial model for OWI

( a )Figure VI. 7 :

 a7 Figure VI.7: Chevrom model: reflectivity images before OWI inversion

Figure

  Figure VI.8a shows the multi-scale OWI final result in case of not taking into account the velocity-depth coupling term in the calculation of the gradient term (only the conventional two rabbit ears sensitivity kernel (see Figure V.6)). The inversion in the shallow part was able to improve the initial model. However, in deep regions, it generates high velocity vertical instabilities also called "vertical chimneys" as discussed by Valensi and Baina (2021) and Audebert and Cocher (2020). This issue is observed with standard RWI method using two-way propagators and this test proves that the use of one-way propagator does not mitigate this problem. Figure VI.8b shows the inverted model using OWI algorithm including the coupling term. As expressed in theoretical part and verified by this numerical test, the velocity-depth coupling is necessary to get rid of the aforementioned instabilities and ensure a consistent inversion scheme. In this work, we have confirmed the impact of the coupling to get robust reflection waveform inversion as it has already been observed by[START_REF] Valensi | A time consistent waveform inversion (TWIN) method[END_REF] for the TWIN method.
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 a89 Figure VI.8: Chevron model: OWI velocity model results
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 a10 Figure VI.10: Chevron model: Offset gathers using initial and final OWI models
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 a11 Figure VI.11: Chevron model: final pass of FWI using OWI model
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 12 Figure VI.12: Initial salt model

( a )Figure VI. 13 :

 a13 Figure VI.13: Salt model: OWI inversion in salt model

( a )Figure VI. 14 :

 a14 Figure VI.14: Salt model: reflectivity images comparison

( a )Figure VI. 15 :

 a15 Figure VI.15: Salt model: offset gathers using initial and final OWI salt models

2 = 1 v 2 b+

 22 Due to the limitations of FWI discussed in the introduction namely the poor performance in deep model, Xu et al. (2012) suggested to use the scale separation which consists in splitting the velocity model v into a sum of a background velocity model v b and a reflectivity δm r such that 1 v δm r . (VII.3) Xu et al. (2012) reformulated a new inverse problem called RWI that optimizes the two subsurface unknowns v b and δm r that best fit the observed reflected data (v * b , δm r * ) = min v b ,δmr 1 2 dω dg ds d(ω, g, s, v b , δm r ) -u(ω, g, s) 2 (VII.4)
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 1 Figure VII.1: Inversion algorithm scheme
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 2 Figure VII.2: The difference between zero offset Born modeling and the exploding reflector approximation

Figure VII. 3 :

 3 Figure VII.3: Illustration of the source side gradient term: (a) the forward background, (b) the backward background wavefield and (c) the source side gradient

Figure VII. 4 :

 4 Figure VII.4: Illustration of the receiver side gradient term: (a) the forward reflected wavefield, (b) the backward background wavefield and (c) the receiver side gradient

( a )Figure VII. 5 :

 a5 Figure VII.5: OWI Born gradient

  [START_REF] Giboli | Reverse time migration surface offset gathers part 1: a new method to produce classicalcommon image gathers[END_REF] where I is a residual image defined byI(x) = ds dg dω ω 2 G + * (ω, x, s, v b ) G - * (ω, g, x, v b ) δR(ω,g, s, v b ). (VII.36) Using the wavefields F wd b and Bwd b defined respectively in Equations (VII.26) and (VII.31), the variable I could be rewritten as I(x) = ds dg dω ω 2 F wd b (ω, x, s, v b )Bwd b (ω, x, g, v b ). (VII.37)

  F wd b (see Figure VII.6.a) and the backward background wavefield Bwd b (see Figure VII.6.b). The main difference compared to WEM/RTM is instead of back-propagating the recorded data u, we back-propagate the residual data δR that is why it is named the residual image.
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 6 Figure VII.6: Illustration of the residual image I: (a) the forward background wavefield, (b) the backward background wavefield and (c) the residual image

Figure VII. 7 :

 7 Figure VII.7: Illustration of the velocity-depth coupling gradient: (a) the Exploding of the residual image wavefield, (b) the zero offset migration wavefield and (c) the velocity-depth coupling gradient

  wave path: source to reflection point and back to receiver. They are called the Born gradient terms which are deduced from a perturbation of the one-way Born modeling operator (see Figure VII.8a). The third term component is constructed following the normal wave path from the depth reflector position up to the acquisition surface. The consideration of the coupling term (see Figure VII.8b) ensures a consistency between the background model update and the depth positioning.
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 a8 Figure VII.8: OWI sensitivity kernel
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 9 Figure VII.9: First gradient test on homogeneous model, in the left figure the gradient result from finite difference approach and in the right figure the analytic gradient
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 10 Figure VII.10: Horizontal profile at 400m depth
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 11 Figure VII.11: The seabed surface plotted in 3D.
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 12 Figure VII.12: Observed data example
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 13 Figure VII.13: Initial velocity model
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 14 Figure VII.14: Thomsen anisotropic parameters

Figure VII. 15 .

 15 The inversion has decreased the velocity in the shallow part especially in the first two scales. The high velocity layer in the deep model is also observed as another main update of the inversion since the first iterations. To assess the quality of the inverted velocity model, we have generated the reflectivity images (see Figure VII.16) using a Reverse Time Migration (RTM) algorithm based on the initial model shown in Figure VII.13 and the final velocity from the last scale of the inversion displayed in Figure VII.15d.
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 a415 Figure VII.15: Final velocity models
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 16 Figure VII.16: Reflectivity models
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 17 Figure VII.17: Cost function
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 18 Figure VII.18: Data comparison
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 19 Figure VII.19: Data fitting, extracted trace from mid offset
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 20 Figure VII.20: Offset gather generation
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 21 Figure VII.21: Tilt angles in degree
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 a Figure VII.22: TTI inversion: left initial and right final model
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 2324 Figure VII.23: TTI inversion: initial (left) and final (right) reflectivity

Figure VIII. 1

 1 provides a schematic representation of the splitting where the discretization technique of each line is the same as discussed in the 2D part (see equation (II.70)).
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 1 Figure VIII.1: Illustration of the four way splitting (Figure from Collino and Joly (1995) paper.)

  Figure VIII.2a shows a comparison between zero offset one-way Born data (in orange) and two-way data (in blue).
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 a2 Figure VIII.2: 3D Born modeling data using homogeneous model
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 a46 Figure VIII.3: 2.5D Marmousi model for 3D Born modeling
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 a7 Figure VIII.7: Gradient validation test in 3D media
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 9 Figure VIII.9: 3D real data: data geometry
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 10 Figure VIII.10: 3D real data: seabed of the area of interest
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 11 Figure VIII.11: Illustration of migration and demigration process

( a )Figure VIII. 12 :

 a12 Figure VIII.12: Data regeneration by combining migration and demigration process

  Figure VIII.13 illustrates the aforementioned description. The one-way Born data (orange curve) and the two-way Born data (blue curve) show an amplitude mismatch. After going through a migration using two-way data and then demigrating using a one-way Born modeling, we create new data (green curve) that are pretty close to the original one-way data.

( a )Figure VIII. 13 :

 a13 Figure VIII.13: Data regeneration by combining two-way based migration and one-way based demigration

  Figure VIII.14c where the two signals match well in terms of phase.

Figure VIII. 14 :

 14 Figure VIII.14: Example on real data: Combining two-way based migration and one-way based demigration

  Figure VIII.15a (respectively VIII.15b) for a crossline (respectively Inline) profile. This starting model is accurate enough to avoid complicated non linearity issues. The OWI inversion creates significant changes on the velocity model. Figures VIII.15d and VIII.15c show respectively an inline and crossline profile of the final inverted model. The main observed trend is the high velocity increase in the anomaly already existing in the initial velocity model. The inversion also decreases the velocity model in the deep part as highlighted by the green arrow on Figure VIII.15c. Another remarkable change is observed in the left part of the shallow region as illustrated by the red arrow. In fact, all these changes are questionable and should be analyzed by looking at the surface offset gathers. We choose to generate those offset gathers through a Kirchhoff migration instead of RTM to avoid any high computational cost, especially at this frequency (50Hz in this case). The offset gathers obtained after a Kirchhoff migration on the initial model (respectively the final model) are displayed in Figure VIII.16a (respectively Figure VIII.16b).
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 a15 Figure VIII.15: 3D real data: velocity inversion results
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 a Figure VIII.16: 3D real data: offset gathers results
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 a17 Figure VIII.17: 3D real data: reflectivity image comparison
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 18 Figure VIII.18: 3D real data: cost function of the inversion
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 a192021 Figure VIII.19: 3D real data: velocity inversion results (second area)

-ρ 2 - 1 2 2 (

 212 sin 2 (θ) + (1 -ρ) -a sin 2 (θ) 1 -b sin 2 (θ)

  

  

  

  

  

  

  

  

  in the context of true amplitude reverse time migration. The expression of the preconditioner is determined under high frequency approximations as initially proposed by[START_REF] Jin | Two-dimensional asymptotic iterative elastic inversion[END_REF] and[START_REF] Lambaré | Iterative asymptotic inversion in the acoustic approximation[END_REF]. Let us first start by the expression of the approximated Hessian H Q
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Zero-offset migration

The zero-offset migration permits to reposition the reflectivity after each update of the velocity model as described by Equation (IV.59). In the previous discussion in Chapter IV, we supposed that the zero-offset data are available which is not always true. In fact, for modern seismic survey, it is almost impossible to find recorded zero-offset data. That is why before starting the OWI inversion, a prior workflow is generally applied to prepare zero-offset data. This workflow is the same used by the TWIN. It was designed and exhaustively tested by [START_REF] Valensi | Zero-offset migration and demigration based on wave-equation post-satck operators[END_REF]. We can list the 5 basic steps of the workflow as

• True amplitude pre-stack depth migration to generate single shot images using the observed data and the initial model.

Part III

Conclusion

Appendix A

Annex1

A.

Splitting matrix

For the sake of simplicity, we will suppose an homogeneous velocity model and we will verify if the splitting matrix provides the up-going and down-going wavefields. In other words, we will verify that U + and U -defined in Equation (II.10) are really up-going and down-going wavefield. WE first recall Equation (II.10)

where matrix M is given by

Therefore, the left hand side is given by

where U satisfies the two-way wave equation

In the (ω, k x ) domain, equation (A.4) is rewritten as

Thus, any solution of the following equations

is a solution of Equation (A.5). Taking into account the boundary condition at the surface z = z 0 , (which is Û (ω, k x , z = z 0 ) = Û0 (ω, k x )), Equation (A.5) has two possible solutions given by Û = exp (iλ (z -z 0 )) Û0

Applying an inverse Fourier transform, we get

Supposing a constant velocity of the wave means that ±iλ (z -z 0 ) -ωt should stay the same when the wavefield advance in time. Therefore, the first solution of (A.8) corresponds to z > z 0 when t is increasing which is related to the down-going wavefield U + . By the same way, the second solution corresponds to z < z 0 and corresponds to the down-going wave U -. We can then deduce that U + + U -= U and the system of equations described in (A.6) can be rewritten as

Therefore summing the two equations of (A.9), we get

Finally, we can verify the equation

A.2 Wide angle coefficients

The error E due to the truncation of the rational approximation of the square root operator is given in the (ω, k x ) domain by

where k x and k z are expressed as