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Introduction

A few words on graph coloring and graph recoloring

This thesis falls within the field of graph theory, and focuses more particularly
on graph coloring and graph recoloring. Graphs are combinatorial objects which
consist of a set of vertices that may be pairwise connected by some edges. Graphs
can essentially model any binary relation on a set, and thus have various appli-
cations in many other fields, from timetable scheduling to modeling interactions
between elementary particles, including jobs allocation on a CPU, path finding
in a network, Sudoku grid solving etc.

In this thesis, we particularly study the problem of graph coloring. This prob-
lem consists in giving a color to the vertices (or the edges) of a graph in such a
way that the colors verify some given constraint. In the usual version of the
problem, one needs to color the vertices of a graph such that no pair of adjacent
vertices (i.e. vertices that are connected by an edge) receives the same color. Since
one can always give to each vertex a different color, and thus obtain a n-coloring
of a graph with n vertices, the usual question regarding graph coloring is the
following: what is the minimum number of colors needed to color the vertices
of a graph?

This problem originally comes from an observation made by Francis Guthrie
in the 19th century. He observed that 4 colors were always sufficient to color
the map of the English counties in such a way that no counties sharing a border
receive the same color. This observation became one of the most famous and
studied conjecture in graph theory: every planar graph is 4-colorable. Indeed to
model this problem with graphs, it suffices to represent each county’s capital by
a vertex, and to connect two vertices if their respective counties share a border.
Albeit very simple to state, this conjecture remained unsolved for decades. Alfred
Kempe was the first to claim having a proof of this conjecture. His idea is simple
yet ingenious. When coloring the vertices of a graph, it may not be possible to
directly give to each vertex its definitive color. During the coloring process, a
vertex v may be at first given the color red, only to be later on colored green as
it turns out to be more convenient.

It turns out that Kempe’s proof of the four-color conjecture was false, but the
recoloring operation he introduced, the Kempe changes, became a fruitful tech-
nical tool regarding graph coloring. The crucial part of these Kempe changes is
that a good partial coloring (with no monochromatic pair of adjacent vertices) is
guaranteed to remain a good partial coloring after the change. Almost a century
after Kempe’s attempt, a correct proof of the four-color conjecture was finally
found by Appel and Haken [AH76] in 1976, and one of the two key ideas of
their proof is Kempe change (the other one being the discharging method which
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has also became a standard tool in graph coloring, but will not be discussed in
this thesis see [CW17] for a nice introduction to the discharging method). Since
then, many results on graph coloring were found using this recoloring technique,
which is one of the central concepts studied in this thesis.

However, if we can recolor the vertices in a partial coloring to bound the
number of colors needed, we can also recolor a (complete) coloring to transform
it into another coloring. If trying to color the vertices of a graph with a limited
amount of colors can be seen as solving a Sudoku grid, trying to transform an
existing coloring into another coloring using simple modifications can be seen
as solving a Rubik’s cube. This kind of question falls within the more general
field of combinatorial reconfiguration which this thesis largely focuses on. More
formally, given a set S of solutions to a given problem (here colorings), and an
elementary operation to “locally” modify the solutions: is it always possible to
change a solutionA into a target solutionB only using the elementary operation
and such that each intermediate step is also a solution in S?

Layout of the manuscript

In this thesis, we are only interested in graph coloring and recoloring problems,
with a focus on edge-coloring. In Chapter 1, we first introduce some basic defini-
tions and notations related to graph theory and graph coloring used throughout
this manuscript. In Section 1.3, we give a more detailed introduction to graph
coloring: we present the problem, give some known results and introduce some
notions connected to the graphs coloring questions. In Section 1.4, we introduce
a concept central in this thesis: Kempe chains. This concept is the base idea of
graph coloring reconfiguration (or graph recoloring), and is one of the technical
tools that were intensively studied during this thesis. We thus give an overview
of the history of this tool, and present some classical proof techniques that use
this tool. Since edge-coloring is of special interest, we discuss Kempe chains in
that context. We present Vizing’s fans, one of the key tools towards the seminal
result of Vizing on edge-coloring. They will prove to be crucial in the following
section.

In Chapter 2, we solve a 1965 conjecture of Vizing in edge-recoloring. He
conjectured that any non-optimal edge-coloring can be reconfigured (using ex-
clusively Kempe changes) into some optimal edge-coloring. We prove this to be
true; we prove in fact that the target optimal edge-coloring can be chosen arbi-
trarily. We present the progress in a chronological order. In Section 2.2, we show
how to handle the case of triangle-free graphs, which is joint work with Marthe
Bonamy, Oscar Defrain, Tereza Klimošová, and Aurelie Lagoutte [BDK+21], and
discuss the limitations in removing the triangle-free hypothesis. In Section 2.3,
we then show how to bypass those limitations, which is a single author paper in
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preparation.
In Chapter 4, we present our work on some graph coloring of planar graphs.

In Section 4.1, we present joint work with František Kardoš [KN21]. We disprove
a conjecture of Máčajová, Raspaud and Škoviera that generalizes the four-color
theorem. They conjectured that all signed planar graphs are 4-signed colorable.
We generalize to signed planar graphs the reduction of vertex-coloring of a tri-
angulation to edge-coloring of the dual graph used in the proof of the four-color
theorem, and present a counter-example to the conjecture.

In Section 4.2, we present joint work with František Kardoš towards the fol-
lowing conjecture of Vizing on edge-coloring of planar graphs: all triangle-free
planar graphs of maximum degree 4 are 4-edge-colorable. The case of triangle-
free planar graphs of maximum degree 4 is one of the last open cases regard-
ing the chromatic index of planar graphs. During this PhD, we could not prove
nor disprove the conjecture. Nevertheless, we present our partial results and
the general approach that we use towards this question. Both these works have
a common approach: reducing the original coloring question to a question of
edge-labeling of an auxiliary graph.

Graph Coloring and Recoloring 5
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Chapter 1

Preliminaries

In this chapter we recall all the definitions used in this thesis, and present the
main concepts studied in this manuscript. In Section 1.1 we give the definitions,
recall some basic properties, and introduce the notations that we will use in this
thesis, in Section 1.2, we present some of the main graph classes we study in this
thesis, in Section 1.3 we give an illustrated introduction to graph coloring, and
in Section 1.4 we present the central notions of this thesis: Kempe chains and
recoloring.

1.1 Definitions, basic properties and notation

1.1.1 Definitions and general properties of graphs

Agraph is essentially a set of points connected by some lines. Formally, a graphG
is an ordered pair (V,E)where V is a finite set (we only consider infinite graphs
in one context in this thesis, and will explicitly mention it there) and E ⊆

(
V
2

)
(where

(
V
2

)
is the set of subsets of V of size 2). In the literature, a more general

definition of graphs can be found (where E is a multiset, and where elements
of E are also multisets), the definition given above corresponds to the definition

Figure 1.1: An example of a graph depicted in the standard way.
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1.1. Definitions, basic properties and notation

Figure 1.2: On the left-hand side an example of a multigraph with a multiedge,
on the right-hand side, an example of a multigraph with a loop .

of simple graphs. In this thesis, we generally only consider simple graphs, thus
wewill usually drop the “simple”, andwill explicitly writemultigraphs otherwise.
Moreover, when considering multigraphs, we almost never consider graphs with
loops, i.e., where elements ofE are multisets, thus we will always explicitly men-
tion it when it is the case. We usually call a set of graphs satisfying a certain
property a graph class.

For a graph G = (V,E), the elements of V are called the vertices of G, and
the elements ofE are called the edges ofG; V (G) denotes the set of vertices ofG,
and E(G) denotes the set of edges of G. We usually picture graphs using points
to depict the vertices and lines (or curves) between these points to represent the
edges. The graph with no vertex is called the empty graph. The complement of
G, denoted by G, is the graph with vertex set V (G), and edge set

(
V
2

)
\ E(G).

The line graph of a graphG, denoted by L(G), is the graph with vertex setE(G),
and where there is an edge between two vertices of L(G) if the corresponding
edges in G share a vertex.

Figure 1.3: In the center, an example of a graph, on the left-hand side, the com-
plement of this graph, and on the right-hand side, the line graph of this graph.

The order of G is the cardinality of V (G) and is often denoted by n(G) (or
simply nwhen there is no ambiguity); the size ofG is the cardinality ofE(G), and
is often denoted by m(G) (or simply m when there is no ambiguity). Note that
asE(G) ⊆

(
V (G)
2

)
. So given a vertex set, there is a maximum number of edges in

8 J. Narboni



1. Preliminaries

the graph: m ⩽
(
n
2

)
= O(n2). A graphH is called isomorphic toG if there exists

a bijection φ : V (G) → V (H) such that uv ∈ E(G) ⇔ φ(u)φ(v) ∈ E(H);
we generally do not distinguish isomorphic graphs and write directly H = G if
G and H are isomorphic. A graph H is a subgraph of G (denoted by H ⊆ G)
if V (H) ⊆ V (G) and E(H) ⊆ E(G); if V (H) = V (G), then H is a spanning
subgraph of G. If H is a subgraph of G and contains all the edges uv ∈ E with
u, v ∈ V (H), then H is called an induced subgraph of G, and we write H ⊆

ind
G.

If S ⊆ V (G) is a subset of vertices of a graphG, the subgraph ofG induced by S
is denoted byG[S], and the subgraph ofG induced by V \S is denoted byG\S.

Figure 1.4: In the center, an example of a graph, on the left-hand side, a subgraph
of this graph, and on the right-hand side, an induced subgraph of this graph.

1.1.2 Adjacency and neighborhood
Let u and v be two vertices of G, if e = {u, v} ∈ E(G), then the edge e connects
the vertex u and the vertex v; u is called a neighbor of v (and vice versa), u and
v are called adjacent vertices, and are the end-vertices (or simply the ends) of e.
The edge e is incident with u and v, and is often simply denoted by uv when
there is no ambiguity. If two edges share a common vertex, we say that the
edges are adjacent (equivalently their corresponding vertices in the line graph
are adjacent). The set of neighbors of v is called the open neighborhood of v (or
simply the neighborhood of v) and is denoted by N(v); the set N(v) ∪ {v} is
called the closed neighborhood of v and is denoted by N [v].

The number of neighbors of a vertex v in V (G) is called its degree, and is
denoted by d(v). If the vertex v has no neighbor, then v is called an isolated
vertex. The maximum degree (respectively the minimum degree) of G, denoted
by ∆(G), (respectively δ(G)) is the maximum (respectively the minimum) over
all the degrees of G. More formally, we have,

∆(G) = max
v∈V (G)

(d(v)) and δ(G) = min
v∈V (G)

(d(v)).

Graph Coloring and Recoloring 9



1.1. Definitions, basic properties and notation

The graphG is k-regular, if every vertex ofG has degree k; ifG has only vertices
of degree 3, G is cubic. A graph is k-degenerate if for any non-empty subgraph
of G there exists a vertex v of degree at most k. Note that if a graph G is not
∆(G)-regular, then G is ∆(G)-degenerate. A k-degenerate graph G yields a
natural ordering on its vertices (v1, · · · , vn) in the following way: the vertex v1
is a vertex of degree at most k in G, and each vi is a vertex of degree at most k
in G \

⋃
j<i

vj ; this order is the order induced by the degeneracy of G (or simply

the degeneracy order of G).

Figure 1.5: On the left-hand side an example of a cubic graph: the triangular
prism; on the right-hand side, an example of a 2-degenerate graph with the ver-
tices labeled according to the degeneracy order.

A set of pairwise non-adjacent vertices of G is a stable set (or an independent
set) of G; the maximum size of a stable set of G is the independence number
and is denoted by α(G). A set of pairwise non-adjacent edges is a matching;
equivalently a matching is an independent set of the line graph. On the other
hand, a set of pairwise adjacent vertices of G is called a clique of G; the size
of a maximum clique of G is called the clique number of G and is denoted by
ω(G). Clearly, α(G) = ω(G) for any graph G. If G consists only of a clique on
k vertices, then G is called the complete graph on k vertices, and is denoted by
Kk. Recall that we only consider graphs up to isomorphism, so there is a unique
complete graph on k vertices. Subdividing an edge uv of a graph G consists
in replacing uv by a vertex w of degree 2 connected to u and v; the graph G′

obtained is called a subdivision of G.

10 J. Narboni



1. Preliminaries

Figure 1.6: The complete graph on 8 vertices.

1.1.3 Walks, paths and cycles
A walk W (of length k) is a sequence (v0, v1, · · · , vk) where each vi is a vertex
of G, and each vivi+1 is an edge of G. If v0 = vi, thenW is called a closed walk,
otherwise it is called an open walk. An open walk with no repeated vertex is
called a path; a path on k edges is denoted by Pk, and k is the length of the path.
A closed walk with no repeated vertex (except the first one and the last one) is
called a cycle; a cycle on k edges is denoted by Ck (similarly to paths, k is called
the length of the cycle). The cycle on three vertices is denoted by C3 or K3 and
is also called a triangle.

Figure 1.7: Three examples of walks: in red a cycle of length 5, in blue a path of
length 3, and in green an open walk of length 8 with a repeated vertex.

IfC1 andC2 are two cycles ofG, the binary sum ofC1 andC2 is the subgraph
of G with vertex set V (C1) ∪ V (C2) and edge set E(C1) ∪ E(C2) \ (E(C1) ∩
E(C2)). A cycle base of a graph G is a minimum set S of cycles of G such that
any cycle ofG can be obtained as the binary sum of cycles of S. If a graphG has
a spanning cycle C as subgraph, then C is called an Hamiltonian cycle of G, and
G is called Hamiltonian. Similarly, a path that spans all the vertices of a graphG
is called an Hamiltonian path of G. A subgraph of a graph G which consists of

Graph Coloring and Recoloring 11



1.1. Definitions, basic properties and notation

a union of cycles is a 2-factor, note that a Hamiltonian cycle is a special case of
2-factor. The minimum size of a cycle of a graph G is called the girth of G, and
is denoted by g(G).

A graph G is called connected if for any pair of vertices u and v of G, there is
a path between u and v, otherwise it is called disconnected. A maximal connected
subgraph ofG is called a connected component; ifG is connected, then, it only has
one connected component. Let u and v be two vertices of a graphG, the distance
between u and v is the minimum length of a path between these two vertices;
the diameter ofG is the maximum distance between a pair of vertices ofG. A set
of vertices S ⊆ V (G) such that the graph induced by V (G) \ S is disconnected
is called a separator. The vertex-connectivity of G (or simply the connectivity of
G), if G is not a complete graph, denoted by κ(G), is the minimum size of a
separator. The edge-connectivity ofG, denoted by λ(G), is the minimum number
of edges to delete from G to obtain a disconnected graph (i.e. the minimum size
of a separator of the line graph). Note that if a graph is at least 2-edge-connected,
each vertex belongs to a cycle of the graph.

Figure 1.8: The two red vertices form a vertex separator of size 2, and the two
blue edges form an edge separator of size 2: this graph is both 2-connected and
2-edge connected.

1.1.4 Directed graphs
Directed graphs (or digraphs) are basically graphswith an orientation of the edges,
i.e. the edges are not 2-subsets of the set of vertices but ordered pairs. Formally, a
simple graphwhose edges are given an orientation is called an oriented graph. Di-
graphs are not central in this thesis, and we mainly use them as auxiliary graphs,
thus we will not give a extensive introduction to them, but just some basic defini-
tions of concepts related to digraphs needed to understand this manuscript. For
an edge uv of a digraphG, u is called the tail of uv and v is called the head of the
edge. We naturally depict the digraph with arrows to represent their edges. Most
of the definitions mentioned in the previous section can easily be generalized to
digraphs.

Let G be a digraph, and v be a vertex of G. The indegree of v is the num-
ber of edges incident with v such that v is the head of these edges, conversely,
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the outdegree of v is the number of edges incident with v such that v is the tail
of these edges. Similarly to non-directed graphs, we can define the notions of
outneighborhood (respectively inneighborhood) of a vertex v, denoted by N+(v),
(respectively by N−(v)) as the set of inneighbors (respectively outneighbors) of
v. The notions of walks, paths, and cycles can also be generalized to digraphs:
an directed walkW = (v1, v2, · · · , vk) only requires that each edge vivi+1 where
vi is the tail and vi+1 is the head. In a directed path P , the vertex with indegree
0 is called the source of P , and the vertex of outdegree 0 is called the sink of P .

Graph Coloring and Recoloring 13
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1.2 Several important graph classes
In this section, we present some classical graph classes that we will consider in
the next sections of this thesis.

1.2.1 Forests
A graph G that does not contain any cycle is called a forest; if G is acyclic and
connected, then G is called a tree. It is easy to see that a tree has at least one
vertex of degree at most 1 (if a tree has at least 2 vertices, then it has at least
one vertex of degree 1). The vertices of degree 1 of a tree are called the leaves.
Given a tree T , a vertex can be distinguished as the root of the T , the tree T
is then called a rooted tree. From an algorithmic point of view, rooted trees are
particularly important since they induce a partial ordering on the vertices: each
vertex v of a rooted tree (except the root) has a unique parent which is the first
vertex of a shortest path from v to the root. Given a rooted tree T , one can hence
design an algorithm that starts from the leaves of T and continue by decreasing
distance to the root of T .

Figure 1.9: On the left-hand side, a tree with 4 leaves; on the right-hand side a
graph which is not a tree as it contains a C5.

In a tree, there is a simple relation between the number of vertices, and the
number of edges.

Proposition 1.2.1. Let T be a tree. Then n(T ) = m(T ) + 1.

Since a non-empty forest always has a vertex of degree at most 1, and as any
subgraph of a forest is also a forest, we directly have that a forest is 1-degenerate.
In fact, this is a characterization of the class of forests. It is easy to see that if all
the vertices of a graph G have degree at least two, then G contains a cycle. Note
that any connected graphG has a spanning tree, i.e., a tree with the same vertex
set of G. Again, from an algorithmic point of view, it is often convenient to first
consider a spanning tree of a graph to extract a partial ordering on the vertices.
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1.2.2 Embeddings, drawings and planar graphs
In this section, we introduce one of the most famous, and thus studied class of
graphs: planar graphs. We first need some elementary geometrical and topolog-
ical notion to define this class of graphs. As it is irrelevant for this thesis, we will
not present here the details needed to formally define this class of graph from a
non-combinatorial point of view.

A curve is the image of the unit interval [0, 1] by a continuous mapping ψ
to the Euclidean plane R2 injective on ]0, 1[; it is intuitively a line drawn in the
plane between two points “without lifting the pen” such that the line does not
intersect itself. If C is a curve between two points x and y, the set C \ {x, y} is
called the interior of C , and x and y are the endpoints of C . A plane graph is an
ordered pair (V,E) where V is a set of points of R2 called the vertices, and E
is a set of curves connecting pairs of vertices of V such that the interiors of the
curves are pairwise disjoint (i.e. the curves are not crossing), and each curve does
not contain any vertex except its endvertices. A plane graph Ĝ = (V̂ , Ê) yields
naturally a graph G = (V,E), and a bijective mapping φ that maps the vertices
(respectively the edges) of Ĝ to the vertices (respectively the edges) of G. Such
a graph G is called a planar graph, and φ is a planar embedding of G, while Ĝ
is a drawing of G. When there is no ambiguity, we will use G to denote both
the graph and the plane graph. Note that a planar graph may admit different
embeddings.

Figure 1.10: On the right-hand side, a planar graph with a planar embedding; on
the left-hand side, the same planar graph with a non-planar embedding.

Let Ĝ = (V̂ , Ê) be a plane graph, the set R2 \ (V̂ ∪ Ê) is composed of one
or more maximal connected regions, each of these regions is called a face of Ĝ.
Since Ĝ is bounded, there is a unique face of Ĝ which is unbounded, this face
is called the outerface of Ĝ, all the other faces of G are called its innerfaces. We
denote by F (G) the set of the faces ofG, and by f(G) (or simply f when there is
no ambiguity) the cardinality of this set. Note that F (G) is a natural cycle base
of G. The set of vertices and edges which are in contact with some face f0 of a
planar graphG is called the boundary of f0 (we say that f0 is bounded by this set).
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Two faces are called adjacent if they share at least one edge on their boundary.
Note that if G is a plane graph, any cycle is a closed curve that separates the
plane into two parts. If a cycle is also a separator of the planar graph, the cycle
is called a separating cycle. Note that a forest, regardless of its embedding, only
has one face, its outerface. If G is a 2-connected planar graph, then each face is
bounded by a cycle of G.

A planar graphG is called outerplanar if it admits a planar embedding where
each vertex lies on the outerface. A graph G is called a triangulation if each of
its faces is bounded by a triangle; if all the faces but the outerface are bounded
by triangles, then G is called a near-triangulation. A planar graph G is maximal
if adding any new edge to G makes it non-planar. Note that a maximal planar
graph on 3 vertices or more is a triangulation.

Let G be a planar graph with a given planar embedding. The dual graph of
G is a (multi)graphG∗ (with possibly loops) with vertex set V (G∗) = F (G), and
such that two vertices of G∗ are connected if the two corresponding faces of G
in the given embedding are adjacent. Depending on the embedding of G, the
graph can have different non-isomorphic dual graph. However, if a graph G if
sufficiently connected, then a result of Whitney [Whi33] guarantees that all the
drawings of G are isomorphic up to the choice of the outerface.

Figure 1.11: The blue graph is a 3-connected planar graph, and the red graph is
its dual graph.

Theorem 1.2.2 ([Whi33]). A 3-connected planar graph admits a unique embed-
ding in the plane up to equivalence.

A simpler proof translated in the language of modern graph theory was also
recently given by Brinkmann[Bri20]. From this result, we hence also have the
unicity of the dual graph of a 3-connected planar graph.
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Let G be a 3-connected planar graph. The dual graph G∗ is also planar, and
the graph G is called the primal graph of G∗. Note that the dual of G∗ is the
graph G itself, and that if G is a simple 3-connected planar graph, then G∗ is
also a simple graph.

As mentioned above, planar graphs were originally defined using geometric
properties. However, Kuratowski found a purely combinatorial way to charac-
terize planar graphs as a class of graphs forbidding some subdivisions of a set of
graphs.

Theorem 1.2.3 (Kuratowski). Les G be a graph. Then G is planar if and only if
it does not contain K5 nor K3,3 as a subdivision.

Figure 1.12: The two graphs whose subdivisions are obstruction to planarity.

Euler proved in the 18th century a fundamental relation between the number
of vertices, edges and faces in a planar graph.

Theorem 1.2.4 (Euler’s formula). Let G be a connected planar graph. Then,
n(G)−m(G) + f(G) = 1.

To prove this formula, it suffices to consider a spanning tree T of a planar
graph G. From Observation 1.2.1, we have that n(T )−m(T ) = 1. We then add
the edges of G \ T to T one by one: each edge added increases the number of
faces by one. From this formula, we can directly conclude that planar graphs are
5-degenerate.

Observation 1.2.5. Any planar graph is 5-degenerate.

Indeed, let G be a planar graph with all the vertices having degree at least 6.
We have that 6 ·n(G) ⩽ 2 ·m(G), thusm(G)−3 ·n(G) ⩾ 0. Since the faces have
a size of at least 3, we also have that 3 · f(G) ⩽ 2 ·m. By Euler’s formula, we
have that f(G) = m(G)− n(G) + 1, hence, 3 · (m(G)− n(G) + 1) ⩽ 2 ·m(G),
som(G)− 3 · n(G) + 3 ⩽ 0, which leads to a contradiction asm(G)− 3 · n(G)
is non-negative.
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1.3 Graph coloring
In this section we present one of the most common problems in graph theory:
graph coloring.

1.3.1 Definitions and basic properties
Given a graph G, a k-coloring is a partition of the vertex set V of G into k sets
V1, · · · , Vk, such that each Vi is a stable set.

Equivalently, a k-coloring ofG is a mapping φ that maps the vertices ofG to
the set of integer {1, · · · , k} such that for any edge uv of G, φ(u) ̸= φ(v). Each
integer i is called a color, and the set of vertices φ−1(i) is called a color class. Any
graphG has an n-coloring (each vertex receives a different color), thus the usual
goal is to find the minimum integer k such that G admits a k-coloring – such an
integer is called the chromatic number of G and is denoted by χ(G).

A trivial lower bound for the chromatic number is the clique number. If G is
a graph with ω(G) = k, then χ(G) ⩾ k as we have to give to each vertex of the
clique of size k inG a different color. Moreover, as each color class is a stable, we
also have that χ(G) ⩾ |V (G)|

α(G)
. There is also a natural relation between the maxi-

Figure 1.13: A C5 with a proper vertex-coloring.

mum degree of a graphG and its chromatic number. A simple coloring algorithm
would consist in taking an ordering on the vertices (v1, · · · , vn), and coloring the
vertices one by one, following this ordering, with the smallest available color. A
color c is available for a vertex v if no neighbor of v is already colored c. This
algorithm is called a greedy algorithm, and yields an upper bound on the chro-
matic number of a graph. Given a graph G, since each vertex of G has only at
most∆(G) neighbors, at most∆(G)+1 colors are needed to guarantee an avail-
able color for each vertex. If G is a k-degenerate graph, and (v1, · · · , vk) is the
degeneracy order of G, we can color the vertices in the reverse order to obtain a
(k + 1)-coloring of G. Indeed, each vertex vi has degree at most k in G \

⋃
j<i

vj ,

so it has at most k neighbors already colored when following the reverse of the
degeneracy order. Note that the degeneracy bound is far from optimal in most of
the cases. When k is at least 3, it is however NP-Hard to compute the chromatic
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number of a graph, and thus there is little hope to find a polynomial algorithm
that computes the chromatic number in the general case.

The definition of coloring given above is actually the definition of proper
coloring. Some other variants of coloring also exists, it may not be required to
partition the vertices into stable sets. For instance the vertices can be partitioned
into trees, or k-degenerate graphs. However, in this thesis, we only consider
proper colorings, and thus we will drop the “proper” most of the time.

1.3.2 Coloring the edges
The problem of graph coloring can be naturally generalized to the edges of a
graph G: we color the edges such that no two adjacent edges receive the same
color. Equivalently, coloring the edges of G corresponds to coloring the vertices
of L(G). The minimum number of colors needed to color the edges of a graphG
is called the chromatic index of G, and is denoted by χ′(G).

Let G be a graph, the structure of line graphs guarantees that ω(L(G)) =
∆(G), and thus that χ′(G) ⩾ ∆(G). Moreover, we also have that ∆(L(G)) =
2 · (∆(G)−1). This directly implies that, using a greedy algorithm, we can color
the edges of G with at most ∆(L(G)) + 1 = 2 · ∆(G) − 1 colors. So we have
that χ′(G) ⩽ 2 ·∆(G)− 1, but this bound is pretty far from the optimal. Vizing
proved in [Viz64] in his seminal paper on edge-coloring that one can color the
edges of a graph with at most one more color than the lower bound. This leaves
only two possibilities for χ′(G): ∆(G) or ∆(G) + 1.
Theorem 1.3.1 ([Viz64]). Let G be a graph, then χ′(G) ⩽ ∆(G) + 1.

The class of line graphs, denoted by L(G), is the class of graphs that are the
line graph of a graph. The structure of line graphs is significantly constrained:
around each vertex, the edges containing this vertex are all pairwise adjacent,
thus, a line graph consists of a set of cliques pairwise sharing at most a vertex.
Beineke proved [Bei70] that the class of line graphs can equivalently be charac-
terized by a set of forbidden induced subgraphs.
Theorem 1.3.2 ([Bei70]). A graph G is a line graph if and only if G does not
contain as induced subgraph one of the following 9 graphs.

Despite the fact that only two values are possible for the chromatic index of
a graph, similarly to vertex-coloring, it is NP-Hard to compute it, even for cubic
graphs [Hol81].

1.3.3 Basic results
As mentioned in the Section 1.3.1, computing the chromatic number of a graph
is NP-Hard, thus we often focus on some specific classes of graphs. One of the
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Figure 1.14: The 9 minimum graphs that cannot be induced subgraphs of a line
graph.

most basic class of graph to consider when coloring a graph is the class of forests
(or simply the class of trees as coloring can be handled componentwise). It is
easy to see that a tree T is 2-colorable, it suffices to color the root of T with color
1 and its children with color 2 and so on until we have colored all the vertices of
T .

A graph which is 2-colorable is a bipartite graph (recall that a 2-coloring is
equivalent to a partition of the vertices into 2 stable sets). The complete bipartite
graph (or biclique) with vertex set X ∪ Y (where X and Y partition the set of
vertices) is the graph where every vertex of X is connected to all the vertices of
Y and vice versa; it is denoted byK|X|,|Y |. There is a characterization of bipartite
graphs based on the length of the cycles in the graph.
Proposition 1.3.3. A graph G is bipartite if and only if G does not contain any
odd cycle.

Proof. Since an odd cycle cannot be 2-colored, it is clear that G cannot contain
any odd cycle. Conversely, ifG does not contain any odd cycle, then we consider
a spanning tree T of G that we root at a vertex r of G. We consider a 2-coloring
φ of T , and we show that φ is also a proper 2-coloring of G. If it is not the case,
then there is a monochromatic edge uv in G (which is not in T ). Let Puv be a
shortest path in T from u to v, as u and v have the same color, the length of Puv

is even, but this means that Puv ∪{uv} is an odd cycle inG, a contradiction.

It is easy to see that one needs at least 3 colors to color any odd cycle, and
at least k colors to color Kk. One of the most fundamental theorems on graph
coloring is undoubtedly Brooks theorem published in 1941; he proved that these
are the only cases where a graph G is not ∆(G)-colorable.
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Theorem 1.3.4 (Brooks theorem [Bro41]). Let G be a connected graph. If G is
not a complete graph or an odd cycle, then χ(G) ⩽ ∆(G).

Note that from now on, when considering graph coloring, we only consider
connected graphs since coloring can be handled componentwise. There are mul-
tiple proofs of this theorem in the literature (see [CR15] for a nice and survey of
Brooks theorem proofs), but Vizing and Melnikov [MV69] published a proof in
1969 based on a key concept in graph coloring: Kempe chains (we present this
notion, central in this thesis, in Section 1.4: Kempe chains are essentially used
to modify a partial coloring by recoloring some vertices in order to make a color
available for a vertex).

As mentioned in the previous section, Vizing also proved, four years before,
an upper bound for line graphs, or, equivalently, an upper bound for the chro-
matic index of a graph: for any graph χ′(G) ⩽ ∆(G) + 1. Vizing generalized
one year later this result to multigraphs. Given a graph G, we denote by µ(G)
the maximum multiplicity of an edge of G, i.e., the maximum number of edge
between a pair of vertices.

Theorem 1.3.5 ([Viz65a]). Let G be a multigraph. Then χ′(G) ⩽ ∆(G) + µ(G).

The proof of this last result essentially relies on the same arguments as the
proof for simple graphs. The key tool of the proof is again Kempe chain, and
since this thesis has a focus on edge-coloring, we will present the proof (for
simple graphs) in Section 1.4.

1.3.4 Coloring planar graphs
The results presented in the previous section are all based on Kempe chains. This
is also the case of the celebrated four-color theorem. This theorem states that any
planar graph can be properly colored with only four colors. The real interest of
this theorem lies less in its statement than in the fact that its proof required
new and innovative tools, in particular the Kempe chains, and the discharging
argument. Both these concepts became fruitful tools in graph coloring, and in
graph theory in general. We will not discuss the later, and we refer the reader
to [CW17] for a nice guide on the discharging method. We will however discuss
the concept of Kempe chains more in detail in Section 1.4.

Theorem 1.3.6 (four-color theorem,[AH76]). Every planar graph is 4-colorable.

As mentioned in Section 1.2.2, since planar graphs are 5-degenerate, planar
graphs are 6-colorable using a greedy algorithm following the degeneracy order.
It is also quite easy to prove that 5 colors are sufficient to color the vertices of a
planar graph; however filling the gap between 5 and 4 remained one of the most
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challenging questions in graph theory for decades. We describe in detail the story
and one of the key arguments of the proof of this theorem in Section 1.4. This
proof was the first use of Kempe chains to bound the number of colors needed
to color the vertices of a graph.

Note that not all results on graph colorings are based on Kempe chains. List-
coloring is a variant of proper coloring where each vertex of the graph is a priori
given a list of available colors called a list assignment. Given a list assignment
L of the vertices of a graph G, G is called L-colorable if it is properly colorable
such that each vertex is given a color in its own list of available colors. A graph
is called k-choosable if it is L-choosable for any list assignment L where the lists
have size at least k. It is clear that if a graph G is k-choosable, then it is also
k-colorable as it suffices to assign to each vertex the same list of available colors.

One of the first results on vertex-coloring of planar graphs was that planar
graphs are 5-colorable, and this proof relies on Kempe chains. An independent
proof of this result (which does not use Kempe chains) was given by Thomassen
in [Tho94], as he proved that planar graphs are 5-choosable.

Theorem 1.3.7 ([Tho94]). Let G be a planar graph, then G is 5-choosable.

The proof of this theorem is particularly interesting as it is one of the first
results on coloring of planar graphs that does not rely on Kempe chains nor the
degeneracy order of the graph. The proof is a simple and elegant induction on
the number of vertices, and the key argument is based on the embedding of the
graph in the plane.

To color planar graphs, it is sometimesmore convenient to translate the prob-
lem of vertex-coloring to a problem of edge-coloring of the dual graph. This is
the first step of the proof of the four-color theorem. We present here the reduc-
tion from a 4-vertex-coloring of a triangulationG to a 3-edge-coloring of its dual
graph G∗. We generalize this reduction in Section 4.1.

We omit the details here, but we can actually prove that it suffices to prove
the 4-color theorem for 3-connected planar graphs. This is convenient since by
Theorem 1.2.2, ifG is a 3-connected planar graph, then it has a unique dual graph.
Moreover, it is also easy to see that it suffices to prove it for triangulations. Indeed
if G is a planar graph, we can add edges to G until we obtain a triangulation G′:
if φ is a 4-coloring of G′, then φ is also a 4-coloring of G. Note that as G′ only
contains triangles, its dual graph G′∗ is cubic.

Proposition 1.3.8. Let G be a 3-connected triangulation. Finding a 4-vertex col-
oring of G is equivalent to finding a 3-edge coloring of G∗.

Proof. Let φ be a 4-vertex-coloring of G with color set {1, 2, 3, 4}, we show that
φ yields a 3-edge-coloring of G∗. We will partition the edges of G into 3 sets A,
B, C in the following way: For any edge uv of G,
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• we put uv in A if {φ(u), φ(v)} ⊆ {{1, 2}, {3, 4}},

• in B if {φ(u), φ(v)} ⊆ {{1, 3}, {2, 4}}, and

• in C if {φ(u), φ(v)} ⊆ {{1, 4}, {2, 3}}.

Each edge e of G corresponds to an edge e∗ of G∗, and we consider the edge
coloring φ∗ with color set {a, b, c} ofG in the following way: For any edge e∗ of
G∗ corresponding to an edge e of G:

• φ∗(e∗) = a if e ∈ A,

• φ∗(e∗) = b if e ∈ B, and (∗)

• φ∗(e∗) = c if e ∈ C .

It remains to prove that φ∗ is a proper edge-coloring of G∗. As G is a triangu-
lation, the graph G∗ is cubic, and each vertex of G∗ correspond to a triangle in
G. Let f = u1u2u3 be a triangle of G that corresponds to a vertex f ∗ of G∗. By
definition of φ, the 3 vertices u1, u2, u3 have a different color, and without loss
of generality, we may assume that φ(ui) = i for any i. The edge u1u2 is inA, the
edge u2u3 is in C and the edge u1u3 is in B, thus the corresponding edges in G∗

are respectively colored a, c, and b.
Conversely, let φ∗ be a 3-edge-coloring ofG∗ with color set {a, b, c}. Let v be

a vertex ofG and T a spanning tree ofG rooted in v. We build a vertex-coloring
φ of G in the following way:

• we first give the color 1 to the vertex v,

• then we traverse the tree from the root to the leaves, and we give to each
vertex v a color depending on the color of its parent v′ and the color of the
edge vv′ using the reciprocal of the rules described in (∗).

It is easy to see that the vertex-coloring φ is a proper vertex coloring of G.

Following from this reduction, Tait [Tai80] conjectured the following conjec-
ture.

Conjecture 1.3.9. Every cubic 3-connected planar graph has a Hamiltonian cycle.

If true, this conjecture would directly imply the four color theorem. This con-
jecture essentially says that if a graph is the dual of a 3-connected triangulation
(i.e. a cubic 3-connected planar graph), then we can build a 4-vertex coloring of
the dual of this graph. Let G be a 3-connected triangulation, since every face of
G has an odd number of edges, we can easily prove by a counting argument that

Graph Coloring and Recoloring 23



1.3. Graph coloring

G has an even number of faces, and thus thatG∗ has an even number of vertices.
If G∗ has an Hamiltonian cycle C , then we can build a 3-edge coloring of G∗ in
the following way: we color alternatively the edges of C with the colors a and b
(since C is even, this coloring is proper). We color the remaining matching with
color c, by Proposition 1.3.8 this edge-coloring yields a 4-vertex coloring of G.

Nevertheless this conjecture was disproved by Tutte who built a cubic 3-
connected planar graph with no Hamiltonian cycle. This graph is build by taking
a K4 and replacing 3 of the vertices by the Tutte’s fragment such that each top
edge of the fragments are incident with the remaining vertex of the K4. The
fundamental property of this fragment is that if there is a path entering the frag-
ment, spanning all the vertices of the fragment and leaving the fragment, then it
has to contain the top edge. If Tutte’s graph has an Hamiltonian cycle, then each
fragment has a spanning path entering and exiting the fragment. This would im-
ply that all the edges incident with the central vertex belong to the Hamiltonian
cycle, a contradiction.

Figure 1.15: The Tutte’s fragment and the Tutte’s graph.

1.3.5 Graph minors and coloring

An important tool to study the structure of graphs is graph minors. This notion
was introduced in the eighties by Seymour et al. in a sequence of seminal papers
on the structure of perfect graphs published between 1983 and 2012 (see [RS83,
RS86a, RS84, RS90a, RS86b, RS86c, RS88, RS90c, RS90b, RS91, RS94, RS95a, RS95b,
RS95c, RS96, RS03a, RS99, RS03b, RS04a, RS04b, RS09, RS12, RS10] for a complete
list of this series). This notion has lead to fundamental results on the structural
properties of graphs. A graph H is called a minor of a graph G if H can be
obtained from G by:
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• deleting edges,
• contracting edges or
• deleting isolated vertices.

Here, contracting an edge uv means merging the vertices u and v into a vertex
x where N(x) = N(u) ∪ N(v) \ {u, v}. Equivalently, a graph H is a minor of
a graph G if one can find |V (H)| disjoint sets of vertices V1, · · · , V|V (H)|, such
that for each i, G[Vi] is connected, and such that the graph G′ obtained from G
by merging each G[Vi] into a vertex vi admits H as a subgraph.

Figure 1.16: By merging the vertices in each red bag in the graph G, we obtain a
graph such that H is a subgraph of G: H is a minor of G.

Robertson and Seymour proved in their series of papers that any class of
graphs that is closed under minors (i.e. if a graph belongs to the class, then all its
minors also belong to the class) can be characterized by a finite set of forbidden
minors. This theorem is a direct consequence of the following theorem.

Theorem 1.3.10. Graphs are well-quasi ordered for the minor relationship.

There exists a strong relationship between the minors of a graph and its chro-
matic number. As mentioned in the previous section, planar graphs are exactly
the graphs with no K5 nor K3,3 as minors. By the four-color theorem, planar
graphs are all 4-colorable. The current proof of the four-color theorem is not sat-
isfying as it needs a computer assistance to be checked. Several approaches were
explored to have a better understanding of the link between planarity and the
fact that 4 colors suffice, and graphs minors seem to be a particularly promising
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one. It seems natural to exclude K5 as minor for 4-colorable graphs as K5 itself
is not 4-colorable, however, what about K3,3? What if we drop the K3,3-minor-
free assumption? Are all K5-minor-free graphs 4-colorable? Can we generalize
it for the class of Kt-minor-free graphs for any value of t? Hadwiger proposed
the following conjecture in 1943.

Conjecture 1.3.11 (Hadwiger’s conjecture). Let G be a Kt-minor-free-graph.
Then G is (t− 1)-colorable.

Hadwiger proved in the same paper that the conjecture holds for the case
t = 3, 4 [Had43]. Nevertheless, this conjecture is still open for the cases t > 6,
and is one of the most famous and studied conjecture in graph theory to this day.
Wagner [Wag37] actually proved that the case t = 5 is equivalent to the four-
color theorem, and thus the case t = 5 was finally proved when the four-color
theorem was proved in 1976 by Appel and Haken. The case t = 6 was proved
by Robertson, Seymour and Thomas [RST93], but unfortunately their proof still
relies on the four-color theorem. Asymptotically, the best known bound for
decades was a result of Kostochka [Kos82], [Kos84], and independently Thoma-
son [Tho84].

Theorem 1.3.12. Every graph with no Kt minor is O(t
√
log(t))-colorable.

They actually prove a bound on the degeneracy of Kt-minor free graphs
which implies Theorem 1.3.12.

Theorem 1.3.13. Every graph with no Kt-minor is O(t
√
log(t))-degenerate.

As mentioned in Section 1.3.1, any k-degenerate graph is (k + 1)-colorable.
Moreover, Kostochka [Kos82], [Kos84] and de la Vega [DLV83] proved that this
bound on the degeneracy is tight, as they showed that there exist graphs with no
Kt minor and with minimum degreeΩ(t

√
log(t)). Recently, Delcourt and Postle

[DP21] improved this bound; this is the current best known bound.

Theorem 1.3.14. Every Kt-minor free graph is O(t log log(t))-colorable.

1.3.6 Signed graphs and signed coloring
Signed graphs were invented in the context of socio-psychology to model rela-
tionships between people, however it turns out that it became an concept of its
own interest from a graph theory point of view.

A signed graph Ĝ is a pair (G, σ) where G is a graph called the underlying
graph, and σ is a mapping, called the signature of Ĝ, which maps the edges of
G to the set {−1, 1}. The edges that are mapped to 1 are called the positive
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edges, and the edges mapped to −1 are called the negative edges. Let (G, σ) be a
signed graph. There is a special operation allowed on each vertex of (G, σ)which
changes σ: the switching operation. Switching a vertex v in (G, σ) consists in
switching the sign of every edge incident with v. Note that when switching the
vertex v twice, we obtain the original signature σ. Moreover, if u and v are two
vertices ofG, switching u before v or v before u gives the exact same signature in
the end. Thus the switching operation induces an equivalence relation on signed
graphs having the same underlying graph. Two signed graphs (G, σ1), (G, σ2)
are called equivalent if one can find a set of vertices to switch such that switching
these vertices transform the signature σ1 into the signature σ2. In this thesis, we
will not distinguish between signed graphs that are equivalent, and we consider
that two signed graphs are equal if they have the same underlying graph and if
their respective signature are equivalent.

When considering signed graphs, cycles have a particular importance. If C
is a cycle of a signed graph Ĝ = (G, σ), we define the sign of C as the product
of the sign of its edges, and we denote it by σ(C). The sign of a cycle C is
thus entirely determined by the number of its negative edges. If C has an even
number of negative edges, then σ(C) = 1, and C is called a balanced cycle (or
a positive cycle), and if C contains an odd number of negative edges, then C
is called a unbalanced cycles (or negative cycle). Note that if a signed graph Ĝ
only has positive edges, we call Ĝ a balanced signed graph. Zaslavsky proved
[Zas82b] that the signature of a signed graph Ĝ is entirely determined by the set
of negative cycles in Ĝ.

Proposition 1.3.15 ([Zas82b]). Let Ĝ = (G, σ) and Ĝ′ = (G, σ′) be two signed
graphs with the same underlying graph. The signatures σ and σ′ are equivalent if
and only if the set of negative cycles in Ĝ is the same as the set of negative cycles
in Ĝ′.

This proposition is a direct consequence of the following proposition.

Proposition 1.3.16. Let Ĝ = (G, σ) be a connected signed graph, and T a span-
ning tree of G. The signature σ is equivalent to a signature σ′ where for any edge e
in T , σ′(e) = 1.

Coloring of signed graphs was first introduced by Zaslavsky in the early
eighties in three seminal papers [Zas82b], [Zas82a], and [Zas84]. A proper signed
k-coloring of a signed graph Ĝ is a mapping from the set of vertices of Ĝ to a set
of k colors. Contrary to coloring of non-signed graph where colors can be any
set of integers, when coloring a signed graph, the set of colors matters. Depend-
ing on the parity of k, the set of color will be {−⌊k

2
⌋, · · · , ⌊k

2
⌋} if k is even, and

{−⌊k
2
⌋, · · · , 0, · · · , ⌊k

2
⌋} if k is odd. A coloring φ is a proper signed coloring φ of
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a signed graph Ĝ = (G, σ) if for any edge uv of G, φ(u) ̸= σ(uv) · φ(v). Hence,
contrary to coloring non-signed graph, a negative edge can be monochromatic
in a signed coloring.

Mačájová, Raspaud and Skoviera [MRŠ16] continued the work of Zaslavsky
and defined the chromatic number of a signed graph Ĝ as the natural generaliza-
tion of the chromatic number of non-signed graphs, i.e. as the minimum k such
that Ĝ admits a proper signed k-coloring. Hence, coloring a balanced signed
graph is equivalent to non-signed proper coloring.

Interestingly, several results on coloring non-signed graphs can be gener-
alized to signed graphs in a pretty natural way. In particular, for the case of
planar signed graphs (in this thesis, we only focus on planar signed graphs and
we will not detail results on non-planar signed graphs), Mačájová, Raspaud and
Skoviera [MRŠ16] proved that planar signed graphs are 5-signed colorable (the
proof of Thomassen of 5-choosability of planar graphs can even easily be adapted
to signed graphs); they also proved that triangle-free planar signed graphs are
3-colorable, thus generalizing to signed graphs Grötzsch’s theorem. They con-
jectured that the four-color theorem could also be generalized to signed graphs.
If true, this would have given a new approach for proving the four-color theo-
rem: a key concept of the proof of the four-color theorem, namely Kempe chains,
cannot be easily adapted to signed graphs due to the existence of monochromatic
edges in signed coloring. However, we disprove this conjecture in Section 4.1.
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1.4 Graph coloring reconfiguration:
Kempe chains

In this section we discuss one fruitful tool in graph coloring: Kempe chains.

1.4.1 Preliminaries

As seen in Section 1.3.1, greedily coloring a graph yields a coloring with at most
∆ + 1 colors. However, in most of the cases, this is far from optimal: Brook’s
theorem guarantees that only cliques and odd cycles need that many colors. Fur-
thermore, there exist very simple classes of graphs with unbounded degree, and
constant chromatic number. A basic example is the class of stars. A star consists
of an independent set of vertices, all connected to a central vertex. Any star can
have an arbitrary high maximum degree, but is trivially 2-colorable. It suffices
to give color 1 to the independent set, and color 2 to the central vertex; this does
not depend on the number of vertices in the independent set, and thus does not
depend on the degree of the central vertex, which is also the maximum degree
of the star.

However, given an optimal coloring φ, it is easy to find an optimal coloring
φ′ that yields an ordering on the vertices such that greedily coloring the vertices
following this ordering gives the optimal coloringφ′. The coloringφ′ must verify
the following property: if a vertex v is colored with color k, then for any color
i smaller than k, v must be adjacent to a vertex colored i. Starting from the
coloring φ, the coloring φ′ can be built by successively decreasing the color of
the vertices to the smallest color not in their neighborhood, starting with the
vertices colored with color 2, then the vertices colored with color 3 and so on.
The ordering emerges then naturally fromφ′: we first take all the vertices colored
1, then all the vertices colored 2 ... etc.

Nevertheless, trying to find an optimal ordering on the vertices is not a viable
approach to find an optimal coloring. Another way to find an optimal coloring
is to greedily color the vertices of the graph (following the ordering induced by
its degeneracy for instance), and “locally” transform the partial coloring when
encountering a deadlock in the greedy algorithm (i.e. trying to color a vertex that
is already adjacent to all the available colors). The aim of the modification is to
make a color available for the vertex to be colored by recoloring one or several
of its neighbors in such a way that, after the modification, the partial coloring is
still a proper partial coloring of the graph.

The concept of Kempe chains was invented by Alfred Kempe in the 19th cen-
tury when attempting to prove the four-color theorem. The journey of this the-
orem is central in the history of graph coloring. Everything starts in 1852 when
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Francis Guthrie realized that four colors suffice to properly color a map of the
counties of England (i.e. two counties sharing a border do not receive the same
color). Guthrie conjectured that for any map, 4 colors were always sufficient,
and his brother, Peter Guthrie, went to his former advisor, Augustus De Morgan,
and asked if he can find a proof of this fact.

By representing each county by a vertex, and connecting two vertices with
an edge if the two corresponding counties share a border, this conjecture can be
translated in the modern language of graph theory as follows:

Conjecture 1.4.1. Every planar graph is 4-colorable.

This conjecture remained unproved until 1879 when Alfred Kempe proposes
a proof of the four-color theorem [Kem79]. However it turned out that his proof
was false. Eleven years later, Heawood builds a counter-example to Kempe’s
proof [Hea90], but was able to prove that 5 colors are always sufficient to prop-
erly color the vertices of a planar graph using the central tool used in Kempe’s
proof: Kempe chains. The first correct proof of the four-color theorem was given
in 1976 by Appel and Haken [AH76], the proof is a computer-assisted proof that
heavily relies on the use of Kempe chains. Note that a more recent proof of the
four-color theorem was published in 1997 by Robertson, Seymour, Sanders and
Thomas. This new proof relies on the same principles as the proof of 1976, but
is much simpler and accessible, the authors even give the source code of the
program needed to check it.

1.4.2 Kempe chains and Kempe swaps
As mentioned above, one of the central concept of these proof is Kempe chain.
Kempe chains are a tool to “locally” change a coloring to make a color available
for a vertex. Given a graph G, a k-coloring φ, and a pair of colors a and b, we
consider the graph K(a, b) induced by the set of vertices of G colored a or b. A
Kempe chain is a connected component of K(a, b). Equivalently, a Kempe chain
is a maximal bichromatic component of G. Note that the term “chain” can be
misleading as a Kempe chain can be any connected bipartite graph. Let K be
a Kempe chain of G involving the colors a and b, applying a Kempe swap (in
the literature, the terms Kempe change or Kempe exchange are also used) on K
consists in switching the colors of the vertices inK (i.e. all the vertices colored a
are recolored b and vice versa). Note that, since the componentK is maximal, the
coloring φ′ obtained after the swap is still a proper coloring. If the component
K does not span all the vertices colored a or b in G, then the coloring φ′ is
different from the coloring φ in the sense that the partition of the vertices of G
is different; otherwise, swapping the component only consists in renaming the
colors. Note that swapping twice the same Kempe chain does not change the
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Figure 1.17: Different Kempe swaps applied on a 3-coloring of a C5.

coloring. Moreover, a Kempe swap can also be applied on a partial coloring, and
thus transform a proper partial coloring into another proper partial coloring.

Given a partial coloring, one can thus apply Kempe swaps on this coloring to
make a color c available for a vertex v (i.e. to change the coloring in such a way
that no neighbor of v is colored with c). To illustrate this principle, we present
here the proof of the five-color theorem.

Theorem 1.4.2 (Heawood, [Hea90]). Every planar graph is 5-colorable.

Proof. Let G be a planar graph given with a planar embedding. By Observa-
tion 1.2.5, the graph G is 5-degenerate, so there exists an ordering (v1, · · · , vn)
on the vertices of G such that if we color the vertices of G following this or-
dering, each uncolored vertex has at most 5 neighbors that are already colored.
Assume that we have already colored all the vertices up to vi−1, we now want
to give a color to vi. If some color does not appear in the neighborhood of vi,
then we can color vi with that color. Otherwise, it means that all the five colors
appear in the neighborhood of vi, up to renaming the colors, we assume that
the already colored vertices u1, · · · , u5 around vi are respectively colored with
colors 1, · · · , 5 in the clockwise order.

Our goal is now to use Kempe swaps on the Kempe chains containing the
vertices uj to free a color for vi. We first consider the component of K(1, 3)
containing u1. If u3 does not belong to the same Kempe chain, then we can
swap the component containing u1 to obtain a coloring where both u3 and u1
are colored 3, we can now color vi with color 1. So u3 and u1 are in the same
component ofK(1, 3), hence there is a path P1,3 between these two vertices, and
this path only contains vertices colored 1 or 3. We now consider the component
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ofK(2, 4) containing the vertex u2; with the same reasoning there is a path P2,4

in G between u2 and u4 which only consists of vertices colored 2 or 4.
This means that the paths P1,3 and P2,4 cross. As they do not share any color,

they cannot have a vertex in common, and since G is planar, the edges do not
cross either; a contradiction.

Figure 1.18: P1,3 and P2,4 cannot share a vertex, so there is an edge crossing; a
contradiction since G is planar.

Unfortunately, this argument cannot be straightforwardly generalized to the
case with only 4 colors. We give here one of the two smallest planar graphs
with a partial 4-coloring such that no single Kempe swap can free a color for the
only uncolored vertex. This graph, and the failing partial coloring was found by
Fritsche [Koc99]. Note that the failing partial coloring is not unique.

1.4.3 Kempe chains and edge-coloring
The concept of Kempe chains was invented in the context of vertex-coloring,
however, it can be naturally generalized to edge-coloring as any edge-coloring of
a graph G correspond to a vertex-coloring of L(G). Furthermore, when consid-
ering edge-coloring, the Kempe chains have a much more constrained structure.
Let G be a graph, and φ be an edge-coloring of G. Any edge of G is adjacent
to at most 2 edges of a given color. A Kempe chain in an edge-coloring is thus
a bipartite graph with maximum degree 2, which leads to only two possibilities:
either the chain is a path, or the chain is an even cycle.

Hence Kempe swaps in edge-colorings are much more tractable than in ver-
tex-coloring. In Section 1.3.3 we have seen that Vizing’s theorem guarantees that
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Figure 1.19: The Fritsche graph with a partial coloring such that it is not possible
to free a color for the white vertex using a single Kempe swap: a counter example
to Kempe’s proof.

only∆(G)+1 colors are needed to properly color the edges ofG. Vizing’s proof
also heavily relies on Kempe swaps, and the key idea of the proof is some kind
of overlay of Kempe swaps that allows very local and controlled changes in the
coloring: Vizing’s fans. Two of the main results in this thesis are based on a deep
analysis of these Vizing’s fan (see Chapter 2), thus we will here introduce this
notion and present the proof of Vizing’s theorem.

Let G be a graph and φ a k-edge-coloring of G with k > ∆(G). As k is
strictly bigger than the maximum degree of G, each vertex of G misses at least
one color (i.e. for each vertex v, there is at least one color c such that no edge
incident with v is colored c). For each vertex v ofG, we define the directed graph
Dv as follows:

• the vertices of Dv are the edges of G incident with v,

• we put an arc from a vertex vv1 to a vertex vv2 of Dv if the vertex v1 of G
misses the color of vv2 in φ.

If v1 is a neighbor of v, a fan around v starting at the edge vv1 is a maximal
subgraph of Dv of maximum outdegree 1 reachable from vv1. The principle of
Vizing’s fans is to allow a very local propagation of the changes in the coloring
to free a color for an edge, and the proof of Vizing’s theorem nicely illustrate this
principle.

Proof. Toward contradiction, assume that there exists a graphG that needs more
than ∆(G) + 1 colors to be properly edge-colored. By a greedy argument, at
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most 2 ·∆(G)− 1 are needed to color the edges of G. Let φ be a (2 ·∆(G)− 1)-
edge-coloring ofG that minimizes the number of edges colored with the color of
maximum index among the edge-colorings that minimize the number of colors
used, and let c be the color with the maximum index in φ. By assumption, c >
∆(G) + 1, otherwise, G is (∆(G) + 1)-colorable, so each vertex of G misses at
least 2 different colors (i.e. around a vertex v, at least 2 colors are not used to color
the edges incident with v). Let e = vv1 be an edge colored c in φ. Our goal is
to use Kempe swaps to recolor this edge with a smaller color without increasing
the total number of edges colored c in G \ {e}.

We now consider a fanX = (vv1, vv2, · · · , vvk) around v starting at the edge
vv1 such that no vi is missing the color c (such a fan exists as each vertex misses
at least 2 colors). Since X is maximal, there are only two possibilities:

• either vk misses a color that is also missing at v, or
• vk misses the color of an edge vvj for some j < k.
We first handle the first case. So vk is missing a color c′ < c which is also

missing at the vertex v. This means that the component of K(c′, φ(vvk)) con-
taining the edge vvk only consists of the edge vvk, thus we can swap this com-
ponent to obtain a coloring φ′ where the edge vvk is colored c′ and where the
vertex v is now missing the color φ(vvk). By definition of the fan X , the ver-
tex vk−1 is missing the color φ(vvk), thus in the coloring φ′, the component of
K(φ(vvk−1, φ(vvk)) containing the edge vvk−1 consists only of the edge vvk−1,
hence we can swap it and obtain a coloring where the vertex v is missing the
color φ(vvk−1) which is also a missing color at the vertex vk−2. Therefore, we
can apply a sequence of single-edge Kempe swaps on the edges ofX to obtain a
coloring where v and v1 are missing a common color c′′ < c which can be used
to color the edge vv1. In the final coloring, the number of edges colored c has
decreased by one which is a contradiction with the minimality of φ.

We now show that the second case can be reduced to the first one. So there
exists some j < k such that the vertices vk and vj are missing the same color c′ <
c. We now consider a missing color c′′ < c at the vertex v, and the component C
ofK(c′, c′′) containing v. As the vertex v is missing the color c′′, the component
C cannot be a cycle, thus it is a path. As C is a path that contains the vertex v,
it cannot contain both the vertices vk and vj as both these vertices are missing
the color c′. If vj does not belong to C , then we can swap the component of
K(c′, c′′) containing vj to obtain a coloring where (vv1, · · · , vvj) is a fan around
v starting at vv1 with vj and v missing the same color c′′ which corresponds
to the previous case. Similarly, if vk does not belong to C , we can swap the
component ofK(c′, c′′) containing vk to obtain a coloring where (vv1, · · · , vvk)
is a fan around v starting at vv1 where c′′ is missing at both v and vk, this coloring
also corresponds to the previous case, hence we are done.
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1.4.4 Reconfiguration questions: Kempe equivalence
Kempe chains were invented as a technical tool to bound the number of colors
needed in a proper coloring? Their original purpose was to build an optimal
solution to the problem of k-coloring. However, given a proper k-coloring φ,
applying a Kempe swap on φ also gives a proper coloring φ′, so one can ask the
following question: what are the colorings that can be obtained from φ using
only Kempe swaps. This question falls in the more general field of combinatorial
reconfiguration. Given a set of solution S, here the set of k-colorings, and a
reconfiguration step, here the Kempe swaps, is it always possible to transform a
solution s1 into a solution s2 using only the reconfiguration step such that all the
intermediate steps are also in the setS? In the case of coloring, we say that two k-
colorings are Kempe equivalent (or simply equivalent) if one can find a sequence
of Kempe swaps to transform the first coloring into the second coloring. By
definition of a Kempe swap, all the intermediate colorings are guaranteed to be
also proper.

Equivalently, we can define the reconfiguration graph Gk(G) whose vertex
set is the set of k-colorings of G, and where two colorings are adjacent if one
can transform the first one into the other with a unique Kempe swap. The col-
orings φ1 and φ2 are hence equivalent if their corresponding vertices lie in the
same connected component of Gk(G). Much work on these graphs has actually
focused on a stricter version of the reconfiguration step: trivial Kempe swaps. A
Kempe swap is trivial if it only consists in changing the color of a single vertex
(or a single edge in the case of edge-coloring). In this context, two questions are
mainly studied: given two colorings, what is the complexity of deciding whether
or not they lie in the same component of Gk(G)? And if it is the case, what is the
diameter of this component (the diameter of the component thus corresponds
to the length of a maximum reconfiguration sequence); see [BB18], [BJL+14],
[BC09], and [BMNR14] for instance.

In the case of non-trivial Kempe swaps, the same type of question were stud-
ied (see e.g. [Moh06] for a comprehensive overview or [BBFJ19] for a recent re-
sult on general graphs). Fisk [Fis77] showed that all the 4-colorings of Eulerian
triangulations are equivalent (an Eulerian triangulation is 3-colorable, so only
one more color than the optimal is sufficient for all the colorings to be equiva-
lent). Meyniel generalized this result to 4-chromatic planar graphs by showing
that all the 5-colorings of a planar graph are equivalent and Mohar settled the
case of planar graphs [Moh06] by showing that all k-colorings of a planar graph
G are Kempe equivalent when k > χ(G). In Section 1.2.2 we have seen that
planar graphs can be characterized as graphs with no K5 and no K3,3 as minor;
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the result of Meyniel was generalized to K5-minor graphs by Meyniel and Las
Vergnas, they showed that all 5-colorings of a K5-minor free graphs are Kempe
equivalent.

Meyniel and Las Vergnas also conjectured a “reconfiguration version” of the
Hadwiger Conjecture.

Conjecture 1.4.3. For all k, all the k-colorings of aKk-minor free graph are Kempe
equivalent.

If Hadwiger’s conjecture, and this conjecture was true, it would mean that
any coloring of a graph G can be transformed, via Kempe swaps, into any other
coloring with just one additional spare color used for the swaps. Hadwiger con-
jecture is still widely open, and in this thesis, we disprove the second conjecture
(see Section 3.1).

In [Mey78], Meyniel also show (implicitly) the following Lemma on k-degen-
erate graphs which is of its own interest.

Lemma 1.4.4. If a graphG is k-degenerate, then all its (k+1)-colorings are equiv-
alent.

Many results on Kempe equivalence that we will present in the next section
heavily rely on this seminal lemma. Showing that a reconfiguration graph is
connected consists in building a reconfiguration sequence. However, to show
that a reconfiguration graph is not connected, the only known method relies
on the concept of frozen coloring. A coloring is frozen if for any pair of colors
a, b, the induced subgraphK(a, b) has a unique component. This means that all
the vertices colored a or b in the graph are in the same Kempe chain, and thus,
swapping this chain only consists in renaming the colors and does not change
the vertex partition corresponding to the coloring. A frozen k-coloring φ of a
graphG and the equivalent colorings form a connected component of the recon-
figuration graph Gk(G), and thus, if one can find a coloring different from φ (in
the sense that the vertex partition is different), then we are guaranteed to have
at least two components in Gk(G).

Regarding (non-trivial) Kempe equivalence of vertex colorings, Feghali,
Jonhson and Paulusma showed that 4-colorings of cubic graphs are equivalent
unless the graph is a triangular prism (recall that by Brooks theorem (Theo-
rem 1.3.4), a k-regular graph is k-colorable unless it is a clique), see Figure 1.20
for the two non-equivalent coloring of the prism. Bonamy, Bousquet, Feghali
and Jonhson [BBFJ19] generalized this result to k-regular graphs.

Theorem 1.4.5 ([BBFJ19]). Let G be a connected k-regular graph. If G is not the
triangular prism, all the k-colorings of G are Kempe equivalent.
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Figure 1.20: Two non equivalent coloring of the triangular prism, each of these
colorings is frozen.

The length of the reconfiguration sequence has also received a particular
attention. For instance Bonamy, Delecroix and Legrand-Duchesne [BDLD21]
proved that the diameter of the reconfiguration graph of the ∆(G)-colorings of
a graph G is a polynomial in the number of vertices G.

Theorem 1.4.6 ([BDLD21]). Let G be a connected graph, then G∆(G)(G) has di-
ameter at most O(n2) unless G is the triangular prism.

The problem of coloring reconfiguration can also be generalized to
list-coloring: a (a, b)-Kempe swap is only possible if all the vertices of the consid-
ered Kempe chain have the colors a and b in their respective lists. Cranston and
Mahmoud [CM21] recently proved that, except a few exceptions, given a graph
G and a list assignment L of the vertices of G where all lists have size at least
∆(G), then all the L-colorings are equivalent.

Theorem 1.4.7 ([CM21]). LetG be a connected graph of maximum degree at least
3, which is not a complete graph nor the triangular prism, andL a list-assignment of
the vertices where each list has size at least∆(G), all theL-colorings are equivalent.

Whilst irrelevant for this thesis, it should be noted that coloring reconfigu-
ration and coloring sampling are closely related (see e.g. [Sok00, MS09] for nice
overviews). Sampling a coloring consists in picking a coloring uniformly at ran-
dom from the set of all possible colorings. Due to combinatorial explosion, it is
usually unfeasible to generate all the possible colorings. Hence to build a col-
oring that “resembles” a coloring picked at random, an efficient way consists in
starting from an arbitrary coloring and reconfiguring it randomly for a sufficient
amount of time (see [Vig00] for instance). Results on graph coloring reconfigu-
ration are hence also used in statistical physic.
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A set of particles that can have different states can be modeled by colored
vertices of a graph: each color correspond to a specific state of a particle. In
some specific context, the state of a particle cannot be the identical to the states
of its closest neighbors, and thus when a particle has its state changed, it propa-
gates the change to its neighboring particles such that no particle with the exact
same state are too close from each other. It is thus natural to model these prob-
lems as Kempe swaps on vertex-coloring. TheWang–Swendsen–Kotecký (WSK)
relies on this principle (see [WSK89] and [WSK90] for more about the antiferro-
magnetic Potts model and the WSK algorithm), and for instance Mohar [MS10]
proved that some instances of graphs modeling statistical mechanic problems
have disconnected reconfiguration graphs, which implies that not all colorings
can be obtained by taking a random walk on the reconfiguration graph.
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Chapter 2

Vizing’s edge-coloring conjecture

In this chapter, we present our work on Vizing’s edge-coloring conjecture. We
first present joint work with Marthe Bonamy, Oscar Defrain, Tereza Klimošová,
and Aurellie Lagoutte on the triangle-free case [BDK+21]. This work has been
submitted to the Journal of Combinatorial Theory Series B, and is still under
revision. The authors of this work would like to thank Caroline Brosse, Vincent
Limouzy, Carole Muller and Lucas Pastor for extensive discussions around this
topic. We then present a personal work on the general case where we prove the
conjecture, this work is still in preparation and has not been submitted yet.

2.1 Introduction

As discussed in Section 1.3.3, Vizing proved in 1964 [Viz64] that to properly color
the edges of a simple graph, it suffices to have one more color than the maximum
number of neighbors.

Theorem 2.1.1 ([Viz64]). Any simple graph G satisfies χ′(G) ⩽ ∆(G) + 1.

As mentioned in Section 1.4.3, Vizing actually proves a result on edge-colo-
ring reconfiguration.

Theorem2.1.2 ([Viz64]). For every simple graphG, for any integer k > ∆(G)+1,
for any k-edge-coloring α, there is a (∆(G)+ 1)-edge-coloring that can be reached
from α through a series of Kempe changes.

In the follow-up paper extending the result to multigraphs [Viz65a], and later
in a more publicly available survey paper [Viz68], Vizing asks whether an opti-
mal coloring can always be reached through a series of Kempe changes, as fol-
lows.
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Question 2.1.3 ([Viz65a]). For every simple graph G, for any integer k > χ′(G),
for any k-edge-coloring α, is there a χ′(G)-edge-coloring that can be reached
from α through a series of Kempe changes?

Question 2.1.3 is in fact stated in the more general context of multigraphs.
Note that neither Theorem 2.1.2 nor Question 2.1.3 implies that all colorings

with fewer colors are reachable, i.e., there is no choice regarding the target col-
oring. We say two k-edge-colorings are Kempe-equivalent if one can be reached
from the other through a series of Kempe changes using colors from {1, . . . , k}.
Question 2.1.3, if true, would imply [AC16] and the following conjecture of Mo-
har [Moh06], using the target χ′(G)-coloring as an intermediate coloring.

Conjecture 2.1.4 ([Moh06]). For every simple graph G, all (∆(G) + 2)-edge-
colorings are Kempe-equivalent.

Mohar proved the weaker case where (χ′(G) + 2) colors are allowed.

Theorem2.1.5 ([Moh06]). For every simple graphG, all (χ′(G)+2)-edge-colorings
are Kempe-equivalent.

As noted in [MMS12], Theorem 2.1.5 is not true when replacing (χ′(G) + 2)
with χ′(G), regardless of whether χ′(G) = ∆(G) (consider the graph K5,5) or
χ′(G) = ∆(G) + 1 (consider the graph K5). As noted in [Moh06], it could
however be true with (χ′(G) + 1).

Not much is known towards Question 2.1.3 or Conjecture 2.1.4. In 2012, Mc-
Donald, Mohar and Scheide [MMS12] proved the case ∆(G) = 3 of the former
(hence the case∆(G) = 4 of the latter). In 2016, Asratian and Casselgren [AC16]
proved the case∆(G) = 4 of the former (hence the case∆(G) = 5 of the latter).
We answered both questions affirmatively, regardless of the value of ∆(G).

Theorem 2.1.6. For every graph G, for any integer k > χ′(G), any given χ′(G)-
edge-coloring can be reached from any k-edge-coloring through a series of Kempe
changes.

The following corollary is a direct consequence of this theorem.

Corollary 2.1.7. For every graph G, all (χ′(G) + 1)-edge-colorings are Kempe
equivalent.

While the above is sole author, the case of triangle-free graphs were han-
dled in a joint work with Marthe Bonamy, Oscar Defrain, Tereza Klimošová and
Aurellie Lagoutte [BDK+21].

The general approach toward Theorem 2.1.6 follows that of [AC16], which
itself follows that of [Moh06]. From a k-edge-coloring with k > χ′(G), say
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2. Vizing’s edge-coloring conjecture

we aim to reach a given χ′(G)-coloring α. We select a color class M of α, and
seek through a series of Kempe changes to reach a k-edge-coloring whereM is
monochromatic and its color appears on no other edge. We can then delete M
and apply induction on χ′(G).

Complexity implications

As is often mentioned, Vizing’s original argument can be turned into a poly-
nomial-time algorithm—this was formally noted by Misra and Gries [MG92].
However, deciding whether a graphG is∆(G)-edge-colorable is an NP-complete
problem [Hol81], even in the case of triangle-free graphs [Kor97]. This leaves
little hope for extracting a polynomial-time algorithm from the proof of The-
orem 2.1.6. There is however no difficulty in detecting the difference between
Vizing’s argument and ours: we start by assuming full access to a ∆(G)-edge-
coloring, which is crucial in the proof.

2.1.1 General setting of the proof

Let us argue that it suffices to handle the case of a χ′(G)-regular graph. In-
deed, any graph G is the induced subgraph of a χ′(G)-regular graph that is also
χ′(G)-edge-colorable. To see this, we decrease step-by-step the difference be-
tween χ′(G) and the smallest degree of a vertex in G. Let β be a χ′(G)-edge-
coloring of G, and consider two copies of G, each colored β. We add an edge
between both copies of every vertex of smallest degree: since both copies of G
are colored the same, there is a color available for the new edge. Note that this
construction does not create any triangle. See Figure 2.1 for an example.

2

1

3

(a) Graph G

2

1

3
3 2

12

31

(b) Step 1 : minimum
degree increases to 2

2

1

3
3 2

12

31
2

1

3
3 2

12

31

3 3

1 1

2 2

(c) Step 2 (final): a 3-regular graph

Figure 2.1: Construction of a 3-regular 3-edge colourable graph from a 3-edge
colourable graph
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Additionally, note that any series of Kempe changes in a graph has a natural
transposition to any induced subgraph of it. Indeed, if a Kempe chain in the
graph corresponds to more than one Kempe chain in the induced subgraph, it
suffices to operate the swap in every such Kempe chain.

This allows us to restrict our attention to the case where ∆(G) = χ′(G)
and the color classM is a perfect matching, which will prove to be convenient.
Theorem 2.1.6 was already proved in [Moh06] when k ⩾ χ′(G) + 2. Therefore,
we focus on the case k = χ′(G) + 1, though the reader can convince themself
that the proof could be adapted for higher k with a loss in simplicity.

From now on, we consider only (∆(G)+1)-edge-colorings of a∆(G)-regular
graph G. Therefore, for every such coloring α, and for every vertex u, there is a
unique color mα(u) in {1, . . . ,∆+ 1} \ {α(uv) | v ∈ N(u)}, referred to as the
missing color of α at u.

We defined the notion of Kempe changes in the introduction: let us introduce
some helpful notation around them. For any coloring α, for any two (distinct)
colors c, d, we denote byKα(c, d) the subgraph ofG induced by the edges colored
c or d. The notion of a component ofKα(c, d) containing an edge e is straightfor-
ward. We extend this notion to that of a component containing a vertex u. To de-
scribe a Kempe change, we will indicate that we swap the component ofKα(c, d)
containing this edge or that vertex, for some given c and d. We will write α ↭ β
to indicate that two k-edge-colorings α and β are Kempe-equivalent. Formally,
we should indicate the bound on the number of colors involved in an intermedi-
ary coloring in the sequence of Kempe changes. However, we believe that there
is no ambiguity anywhere regarding this. In particular, throughout the proof we
only involve colors in {1, . . . ,∆(G) + 1}.

2.1.2 Fan-like tools
Let α be a (∆ + 1)-edge-coloring of a ∆-regular graph G. Consider an edge uv,
and say we want to recolor it. If m(u) = m(v), this can be done immediately
without impacting the rest of the coloring. Therefore, let us consider m(v) ̸=
m(u), and look at the obstacles around u. There is an edge uw colored m(v).
Again, if we can recolor it without impacting the rest of the coloring, we can
then recolor uv intom(v). This prompts us to define a directed graphDu(α) on
vertex set {uw | w ∈ N(u)}, where a vertex uw has a directed edge to ux if
m(w) = α(ux) (see Figure 2.2). Note that by definition, every vertex in Du(α)
has out-degree 0 or 1, and arbitrarily large in-degree. Consider the sequence
Xu(α, v) of vertices than can be reached from uv inDu(α). For bothDu(α) and
Xu(α, v), we drop α from the notation when it is clear from context.

We have three possible scenarios, by increasing difficulty (see Figure 2.2 for
an illustration):
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2. Vizing’s edge-coloring conjecture

1. Xu(v) induces a path in Du.

2. Xu(v) induces a cycle in Du.

3. Xu(v) induces a comet in Du, where a comet is obtained from a directed
path by adding an edge from the sink to a vertex that is neither the source
nor the sink.

1
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3
x0

2

4
x1

35
x2

4

1
x3 5

1
u

3
x0

2

4
x1

35
x2

4

2
x3 5

1
u

3
x0

2

4
x1

35
x2

4

3
x3 5

ux0

ux1ux2

ux3 ux0

ux1ux2

ux3 ux0

ux1ux2

ux3

Figure 2.2: From left to right, the three possible scenarios for a sequence
Xu(α, x0) in the digraphDu(α): a path, a cycle or a comet. (Vertices are labeled
by the missing colors.)

For any edge uv, if Xu(α, v) induces a path or cycle in Du, we denote by
X−1

u (α, v) the coloring obtained from α by assigning the color m(w) to ev-
ery edge uw ∈ Xu(α, v). Note that for every edge uw ∈ Xu(α, v), we have
mX−1

u (α,v)(w) = α(uw). We refer to this operation on α as inverting Xu(α, v).
Figure 2.3 illustrates the result of inverting a path. We drop v from the notation
when there is no ambiguity.

In order to have an overview of the key ingredients in the proof, let us now
state an Observation and some Lemmas, the proof of which are postponed to the
following subsections.

Observation 2.1.8. For any vertex u and path Xu(α) in Du(α), α ↭ X−1
u (α).

Definition 2.1.9. For any vertex u and cycle Xu(α) = (ux0, . . . , uxp) in Du(α),
we say that Xu(α) is saturated if for every 0 ⩽ i ⩽ p, the component of
K(α(uxi),m(u)) containing u also contains xi−1 (resp. xp if i = 0).

The same conclusion holds for cycles unless the sequence is saturated:
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Figure 2.3: Coloring α (left) and X−1
u (α, x0) (right) when Xu(α, x0) is a path.

Lemma 2.1.10. For any vertex u and non-saturated cycleXu(α) inDu(α), α ↭
X−1

u (α).

For comets, it suffices to allow one Kempe change outside of Xu(α):

Lemma 2.1.11. For any vertex u and comet Xu(α) = (ux0, . . . , uxp) in Du(α),
we have α ↭ α′, where α′ satisfies mα′(u) = α(ux0) and is obtained from α by
changing the color of some edges inXu(α) and possibly swapping one componentC
inK(m(u), α(uxq)), where uxq is the endpoint of the out-edge from uxp inDu(α).

In the coloring α′ obtained from Lemma 2.1.11, we stress the fact that the
number of edges colored α(ux0) strictly decreases as the swapped component C
does not contain such a color, and mα′(u) = α(ux0), i.e., no edge incident to u
has color α(ux0) in α′.

We prove the lemmas by increasing difficulty in the following subsections.

2.1.3 Gentle introduction: a proof of Observation 2.1.8

Proof of Observation 2.1.8. Let Xu(α) = (ux0, . . . , uxp) be a path in Du(α). In-
tuitively, we will start recoloring edges from the end of the path to its beginning.
Observe that sinceXu(α) is a path, by construction ofDu(α) there is no edge in-
cident to u that has colorm(xp), hencem(u) = m(xp). We proceed by induction
on p. When p = 0, we havem(x0) = m(u), thus swapping the single-edge com-
ponent of K(α(ux0),m(u)) containing ux0 yields the desired coloring X−1

u (α).
Similarly, for p > 0, we swap the (single-edge) component of

K(α(uxp),m(u)) containing uxp, and denote by α′ the resulting coloring. We
note that inDu(α

′), the sequenceXu(α
′, x0) is exactly the path (ux0, . . . , uxp−1).

Moreover,
Xu(α

′, x0) = X−1
u (α). By induction we derive α′ ↭ X−1

u (α), hence α ↭
X−1

u (α).
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2. Vizing’s edge-coloring conjecture

2.1.4 Comets: a proof of Lemma 2.1.11

Proof of Lemma 2.1.11. Let Xu(α) = (ux0, . . . , uxp) be a comet in Du(α), with
xq the endpoint of the out-edge from uxp in Du(α). Since Xu(α) is a comet,
0 < q < p. We swap the component C of K(m(u), α(uxq)) containing the
edge uxq, and denote by α′ the resulting coloring. In α, we have mα(xp) =
mα(xq−1) = α(uxq). Since C must be a path, it contains at most two vertices (its
endpoints) whose missing color in α belongs to {m(u), α(uxq)}. We know that
C already contains u, so at least one of xp and xq−1 has the same missing color
in α and α′. We distinguish the two cases.

• Assume mα′(xq−1) = α(uxq). Since mα′(u) = α(uxq), it follows that
in Du(α

′), the sequence Xu(α
′, x0) is exactly (ux0, . . . , uxq−1), which in-

duces a path. We then conclude by Observation 2.1.8.

• If not, mα′(xq−1) = α′(uxq), and mα′(xp) = α(uxq). Since mα′(u) =
α(uxq), it follows that in Du(α

′), the sequence Xu(α
′, x0) is exactly

(ux0, . . . , uxp), which induces a path. We then conclude by
Observation 2.1.8.

2.1.5 Non-saturated cycles: a proof of Lemma 2.1.10

Proof of Lemma 2.1.10. Let Xu(α) = (ux0, . . . , uxp) be a non-saturated cycle in
Du(α). Without loss of generality since Xu(α) induces a cycle that is not sat-
urated, we can assume that the component of K(α(ux0),m(u)) containing u
does not contain an edge incident with xp. By definition of Du(α), we have
m(xi) = α(uxi+1) for every 0 ⩽ i < p, and as illustrated on Figure 2.4(a)
m(xp) = α(ux0). We consider the coloring α′ obtained from α by swapping
the component C of K(α(ux0),m(u)) containing xp (C is referred to as a 1-
2 chain on Figure 2.4(a), see Figure 2.4(b) for the resulting coloring). By as-
sumption, this has no impact on the colors of the edges incident with u, and
mα(xi) = mα′(xi) for every 0 ⩽ i < p, as well as mα(u) = mα′(u). Note how-
ever that mα′(xp) = mα(u). In the coloring α′, Xu(α

′, x0) = (ux0, ..., uxp) is
a path, thus by Observation 2.1.8, α′ ↭ X−1

u (α′, x0); we denote this resulting
coloring by α′′ (see Figure 2.4(c)). In the coloring α′′, let C ′ be the component
of K(α(ux0),mα(u)) containing xp. We have that C ′ = C ∪ {uxp}, and that
mα′′(u) = α(ux0), so it suffices to swap C ′ to obtain X−1

u (α) as illustrated on
Figure 2.4(d). Hence α ↭ α′ ↭ X−1

u (α′, x0) ↭ X−1
u (α), as desired.
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Figure 2.4: Colorings α ↭ α′ ↭ X−1
u (α′, x0) ↭ X−1

u (α, x0).

2.2 Vizing’s edge-coloring conjecture for
triangle-free graphs

In this section, we prove that the conjecture holds for triangle-free graphs.
Namely, we prove the following theorem:

Theorem 2.2.1. For every triangle-free graph G, for any integer k > χ′(G), any
givenχ′(G)-edge-coloring can be reached from any k-edge-coloring through a series
of Kempe changes.

Theorem 2.2.1 improves upon an earlier theorem concerning bipartite
graphs [Asr09]. We prove it in Section 2.2.2, but before that we need some further
result on saturated cycles.

2.2.1 Double cycles

As mentioned above, to prove Theorem 2.2.1, we need to handle the case of satu-
rated cycles. We show that if the graph is triangle-free, a saturated cycle adjacent
to another cycle is invertible.
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Figure 2.5: Double cycles: Illustration of the beginning of the proof of
Lemma 2.2.2: In colouring α, the vertex yq is in a different component of
K(α(uv),m(u)) than u and xp.

Lemma 2.2.2. For any vertex u and saturated cycle Xu(α, v) in Du(α), if G is
triangle-free, and if the sequence Yv(α, u) of vertices ofDv(α) induces a cycle, then
α ↭ X−1

u (α, v).

Proof. Let Xu = (uv, ux1, . . . , uxp) be a saturated cycle in Du(α), and Yv =
(vu, vy1, . . . , vyq) be a cycle in Dv(α). Observe that m(v) ̸= m(u), otherwise
Xv and Yu contain only the edge uv and thus do not induce cycles. Note that
m(xp) = m(yq) = α(uv) and by triangle-freeness xp ̸= yq.

Figure 2.5 illustrates the following argument. SinceXu is saturated, the com-
ponent ofK(α(uv),m(u)) containing u also contains xp, and thus does not con-
tain yq. In particular, it follows that q ⩾ 2, since by definition α(vy1) = m(u)
and thus y1 is in the same component of K(α(uv),m(u)) as u and xp, while
m(yq) = α(uv).

Let C be the component of K(α(uv),m(u)) containing yq. We note that
C and Xu ∪ Yv are disjoint, and that neither endpoint of C is incident to an
edge of Xu ∪ Yv \ {vyq}, as the only vertices missing colors α(uv) or mα(u)
in Xu ∪ Yv are by definition u, xp, and yp, since Xu and Yv induce cycles. We
consider the coloring α1 obtained from α by swapping C (see Figure 2.6 for all
the intermediate colorings used in this proof). For every xi, we have α(uxi) =
α1(uxi) andmα(xi) = mα1(xi); similarly for u, v, and every yj with 1 ⩽ j < q.

The sequence Xu is also a cycle-inducing sequence of vertices that can be
reached from uv in Du(α1). However, Xu may not saturated in α1. We distin-
guish the two cases.
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Figure 2.6: Double cycles : illustration of the intermediate colouring in the proof
of Lemma 2.2.2.
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• Assume that Xu is not saturated in α1. By Lemma 2.1.10, we have α1 ↭
X−1

u (α1). By swapping C for the second time (remember that C and Xu

are disjoint, and that neither endpoint of C is incident to an edge of Xu),
we obtain X−1

u (α), hence the conclusion.

• Assume now that Xu is saturated in α1. Hence the component of
K(mα1(u),mα1(v)) containing u also contains v thus does not contain yq,
sincemα1(yq) = mα1(u).
Let C ′ be the component of K(mα1(u),mα1(v)) containing yq. Similarly
as for C , we note that C ′ and Xu ∪ Yv are disjoint, and that neither end-
point of C ′ is incident to an edge of Xu ∪ Yv \ {vyq}. We consider the
coloring α2 obtained from α1 by swapping C ′. In Dv(α2), the sequence
(vu, vy1, . . . , vyq) is the sequence of vertices ofDv(α2) that can be reached
from uv, and it induces a path. Let α3 = (uv, vy1, . . . , vyq)

−1(α2). By Ob-
servation 2.1.8, we have α2 ↭ α3. Note that α3 assigns the color α(uv)
to no edge in Xu ∪ Yv. In Du(α3), the sequence (ux1, . . . , uxp) is the se-
quence of vertices that can be reached from ux1, and it induces a path. Let
α4 be the coloring (ux1, . . . , uxp)

−1(α3). By Observation 2.1.8, we have
α3 ↭ α4. Note that inα4, we havemα4(v) = α(uv) andmα4(u) = mα(v),
with α4(uv) = mα(u). Note that there is a unique connected compo-
nent of K(mα(u),mα(v)) containing vertices of C ′, which is precisely
C ′ ∪ {uv, vyq}.
In the coloring α5 obtained from α4 by swapping C ′∪{uv, vyq}, there is a
unique component ofK(α(uv),mα(u)) containing vertices of C , which is
precisely C ∪ {vyq}. Moreover, in the coloring α5, the sequence
(vy1, vyq, vyq−1, . . . , vy2) induces a cycle inDv. The cycle is not saturated
since the component of K(α(uv),mα(u)) containing vertices of C is pre-
cisely C ∪ {vyq}: since q ⩾ 2, it does not contain y1. We consider the
coloring α6 obtained from α5 by inverting (vy1, vyq, vyq−1, . . . , vy2). By
Lemma 2.1.10, we obtain α5 ↭ α6. Note that in α6, the component of
K(α(uv),mα(u)) containing vertices of C is precisely C : we swap it and
obtain α ↭ X−1

u (α), as desired.

We are now ready to prove the main result of this section.

2.2.2 The good, the bad and the ugly (edges)
In this section, we prove Theorem 2.2.1. We essentially follow the outline
of [AC16], and proceed by induction on∆. Given a∆-regular triangle-free graph
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G that is ∆-edge-colorable, we consider a (∆ + 1)-edge-coloring α and a target
∆-edge coloring γ. Let M be a color class of γ, and note that M is a perfect
matching. We fix a color out of {1, 2, . . . ,∆+1}, say 1, and try, through Kempe
changes from α, to assign the color 1 to every edge inM . If we succeed, we can
deleteM and proceed by induction onG\M with colors {2, . . . ,∆+1}, noting
that γ restricted to G \M uses only (∆(G) − 1) colors. Let us introduce some
terminology to quantify how close we are to this goal of assigning the color 1 to
every edge inM .

In a given coloring, we say an edge is:

• good if it belongs toM and is colored 1.

• bad if it belongs toM but is not colored 1.

• ugly if it does not belong toM but is colored 1.

Throughout the proof, we consider exclusively (∆ + 1)-colorings that can
be reached from α through a series of Kempe changes: let us denote by C all
such colorings. We define an order on C and we will prove that, in any minimal
coloring, all edges of the perfect matchingM are colored 1.

Definition 2.2.3. A coloring in C is minimal if it has the fewest bad edges among
all colorings in C, and among those with the fewest bad edges, has the fewest ugly
edges.

Note that there may be many minimal colorings. If m(u) = 1, we say the
vertex u is free.

Lemma 2.2.4. In a minimal coloring, every ugly edge vw is such that the sequence
of vertices of Dv reached from vw induces a cycle.

Proof. We consider a minimal coloring β, and denote by
Xv(w) = (vw, vx1, . . . , vxp) the sequence of vertices of Dv(β) reached from
vw. Suppose by contradiction that Xv(w) does not induce a cycle. The simple
yet key observation is that for every i,m(xi) ̸= 1.

If Xv(w) induces a path, we conclude immediately using Observation 2.1.8,
as X−1

v (β, w) has the same number of bad edge as β, and one fewer ugly edge.
Therefore, it suffices to consider the case where Xv(w) induces a comet. We

let q be such that vxp has an out-edge to vxq inDv. In addition tom(xi) ̸= 1 for
every 1 ⩽ i ⩽ p, note that m(v) ̸= 1, as β(vw) = 1. The coloring β′ obtained
from Lemma 2.1.11 has therefore the same number of bad edges as β, and fewer
ugly edges. Since β′ ↭ β, this contradicts the minimality of β.
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By considering the last element of a sequence reached from an ugly edge,
Lemma 2.2.4 yields the following statement, whose proof appeared in [AC16]
but which we state somewhat differently.

Corollary 2.2.5 ([AC16]). In a minimal coloring, both endpoints of an ugly edge
have a free neighbor.

As we shall see, a consequence of Corollary 2.2.5 together with the regularity
assumption is that, in a minimal coloring, there are bad edges with a free end-
point (unless there is no bad edge at all). These are central to the argument1. Let
us now prove a small observation and then proceed with the core of the proof.

Observation 2.2.6. In any minimal coloring β, every bad edge is incident to an
ugly edge.

Proof. Let xy be a bad edge. If m(x) = m(y) = 1, we can swap the (single-
edge) component of K(1, β(xy)) containing xy and have one fewer bad edges,
a contradiction to the minimality of β. We derive that xy is incident to some
edge e satisfying β(e) = 1. Then e is necessarily ugly, as xy ∈ M and M is a
matching.

Proof of Theorem 2.2.1. Let β be a minimal coloring. If there is no bad edge, then
M is monochromatically colored, as desired. Therefore, we assume that there is
a bad edge which, by Observation 2.2.6, is incident to an ugly edge e. By Corol-
lary 2.2.5 applied to e, there exists some free vertex u (adjacent to an endpoint of
e).

Let v be such that uv ∈ M , note that since u free, uv is bad, and is thus
incident to an ugly edge by Observation 2.2.6. Since u cannot be incident to an
ugly edge (it is free), there is some vertex w ∈ N(v) such that vw is ugly. We
denote by Xv the sequence of vertices of Dv reached from vw, and by Yw the
sequence of vertices of Dw reached from vw.

By Lemma 2.2.4, we obtain immediately thatXv induces a cycle inDv, and Yw
induces a cycle in Dw. By Lemmas 2.1.10 or 2.2.2, we derive that β ↭ Y −1

w (β).
Note that Y −1

w (β) has at most as many bad and ugly edges as β.
By triangle-freeness, u and w are not adjacent and so uw does not appear in

Yw. Thus mY −1
w (β)(v) = 1 = mY −1

w (β)(u). We swap the (single-edge) component
of K(1, β(uv)) containing the edge uv, and obtain a coloring with fewer bad
edges, a contradiction.

In the next section, we prove the general case of the conjecture (Theorem 2.1.6),
the key argument of the proof is to show that for any (χ′(G) + 1)-coloring β of
G, and for any cycle X , β and X−1(β) are equivalent.

1In [AC16], this allows us to assume case A happens, avoiding case B entirely.
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2.3 Vizing’s edge-coloring conjecture:
the general case

As mentioned in the end of the previous section, the main concept of this sec-
tion is fans that induce cycles. Before going further, we need to introduce some
notations and terminology. For legibility, when a fan X induces a path (respec-
tively a comet or a cycle), we often say that X is a path (respectively a cycle or
a comet). Let G be a χ′(G)-regular graph, α be a (χ′(G) + 1)-coloring of G, v
be a vertex of G, e be an edge incident with v. The fan around v starting at the
edge e is denoted by Xα

v (e) (or Xα
v (α(e)) when it is more convenient to speak

about the color of the first edge of the fan), when the coloring is clear from the
context, we drop the α. Note that the notion of fan as defined in the previous
section is only relevant when considering (χ′(G) + 1)-colorings of G, so from
now on, unless stated otherwise, we only consider (χ′(G) + 1)-colorings of G.
If X = (vv1, · · · , vvk) is a fan, v is called the central vertex of the fan, and vv1
and vvk are respectively called the first and the last edge of the fan (similarly, v1
and vk are the first and last vertex of X respectively).

Given a (∆(G) + 1)-coloring β of G, and fan X = (vv1, · · · , vvk) which is
a cycle around a vertex v, where each vertex vi misses the color i (and so each
edge vvi is colored (i− 1)), we can define the coloring β′ = X−1(β) as follows:

• for any edge vvi not in X , β′(vvi) = β(vvi), and

• for any edge vvi in X , β′(vvi) = i andm(vi) = i− 1

The coloring X−1(β) is called the invert of X , and we say thatX is invertible
if X and X−1(β) are equivalent.

Note that if X is a cycle, the missing color at the central vertex is the same
in α and in X−1(α). If X = (vv1, · · · , vvk) is an invertible path in a coloring α
invertingX means applying a sequence of single-edge Kempe swaps. Moreover,
each fan Yi = (vvi, · · · , vvk) is also an invertible path, and when inverting a
path Yi, we simply say that we invert the path X until we reach a coloring α′

wheremα′(v) = α(vvi).

Lemma 2.3.1. In any (χ′(G)+ 1)-coloring of a χ′(G)-regular graphG, any cycle
is invertible.

We prove Lemma 2.3.1 in Section 2.3.1 and prove here Theorem 2.1.6. The
proof of Theorem 2.1.6 is derived from the proof of Theorem 2.2.1, we first prove
the following lemma which is also derived from the proof of Theorem 2.2.1.

Lemma 2.3.2. In a minimal coloring, there exists a bad edge adjacent to an ugly
edge, and incident with a free vertex.
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Proof. Let β be a minimal coloring, if there is no bad edge in β, then all the
edges ofM are colored 1 in β as desired. So there exists a bad edge e in β, and
by Observation 2.2.6, e is adjacent to an ugly edge e′. By Corollary 2.2.5, there
exists a free vertex u adjacent to an end of e′. As u is a free vertex, u is incident
with a bad edge, we denote by v the neighbor of u such that the edge uv is bad.
If v is a free vertex, then we swap the single edge uv to obtain a coloring with
fewer bad edges, so v is not free, and thus uv is adjacent to an ugly edge; this
concludes the proof.

We are now ready to prove Theorem 2.1.6, but we first introduce some nota-
tions. Given a coloring α, for any pair of colors a,b, the Kempe chain involving
these two colors and containing the element x ∈ V (G) ∪ E(G) is denoted by
Kα

x (a, b) (we often drop the α when the coloring is clear form the context). It
is important to note that if a, b, c and d are 4 different colors, then swapping a
component ofK(a, b) before or after swapping a component ofK(c, d) does not
change the coloring obtained after the two swaps.

Note also that in any coloring, a Kempe chain ofK(a, b) is a connected bipar-
tite subgraph of maximum degree 2, hence it is either a path, or an even cycle.
If u is a vertex missing the color a, then Ku(a, b) is a path whose ends are u
and another vertex missing either a or b. The proof of Theorem 2.1.6 is a direct
consequence of the following Lemma.

Lemma 2.3.3. Let G be a regular graph, β a (∆(G) + 1)-coloring of G, α be a
∆(G)-coloring of G, and let c be a color of α. Then the coloring β is equivalent to
a (∆(G) + 1)-coloring β′ where for any edge e we have β′(e) = c⇔ α(e) = c.

Proof. Let β be a minimal coloring. By Lemma 2.3.2, there exists a bad edge uv
such that u is free and v is incident with an ugly edge vw. By Lemma 2.2.2,
the fans Xv(vw) and Xw(vw) are both cycles. The vertex u does not belong
to Xv(vw), otherwise, by Lemma 2.3.1 we invert Xv(vw) and obtain a coloring
with strictly fewer bad edges. Hence, the vertex w is missing a color c′ different
from c = β(uv) (otherwise, Xv(vw) is a cycle of size 2 containing u). Consider
the component C = Kw(c, c

′). Note that since w is missing the color c′, this
component is a (c, c′)-bichromatic path. If the component C does not contain
the vertex v, then we swap it to obtain a coloring where w is missing the color
of the edge uv and we are done. Thus, C contains v and we have to distinguish
whether v is between u and w in C or u is between w and v.
Case 1 (u is between w and v in C).
In this case, by Lemma 2.3.1 we can invert Xv(vw) to obtain a coloring where
the component Kw(c, c

′) is now a (c, c′)-bichromatic cycle that we swap. In the
coloring obtained after the swap, Xv(uv) is a cycle, and so by Lemma 2.3.1 we
can invert it to obtain a coloring with strictly fewer bad edges; a contradiction.
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Case 2 (v is between w and u in C).
In this case, we consider the cycle Xw(vw). If it does not contain the vertex u,
we invert it by Lemma 2.3.1 and obtain a coloring where u and v are free, so it
suffices to swap the edge uv to obtain a coloring with strictly fewer bad edges.
Hence the vertex u belongs to Xw(vw). After inverting this cycle, we obtain a
minimal coloring where uv is still bad, v is free, and uw is ugly (the edge vw is
not ugly anymore in this coloring). By Lemma 2.2.2, the fan Xu(uw) is a cycle.
The situation is now similar to the previous case: we invert the cycleXu(uw) to
obtain a coloring where the component Kw(c, c

′) is a (c, c′)-bichromatic cycle.
After swapping this cycle we obtain a minimal coloring where Xu(uv) is a cy-
cle. After inverting this cycle, we obtain a coloring with one fewer bad edge; a
contradiction.

The rest of this section is dedicated to the proof of Lemma 2.3.1. So from now
on, we do not consider anymore a minimal coloring as defined in the previous
section, and thus, in the colorings considered in the rest of the paper, the notion
of good, bad and ugly edge is irrelevant.

2.3.1 General outline and notations
It now suffices to prove Lemma 2.3.1. The proof is an induction on the size of the
cycles. Towards contradiction, assume that there exist non-invertible cycles. A
minimum cycle V is a non-invertible cycle of minimum size (i.e., in any coloring,
any smaller cycle is invertible).

A cycle of size 2 is clearly invertible as it only consists of a single Kempe
chain composed of exactly two edges: to invert the cycle, it suffices to apply a
Kempe swap on this component; so the size of a minimum cycle is at least 3.

We now need some more notations. For any fan V = (vv1, · · · , vvk), V (V)
denotes the set of vertices {v1, · · · vk}, andE(V) denotes the set of edges {vv1, · · · vvk}.
We denote by β(V) the set of colors involved in V (i.e. β(V) = β(E(V)) ∪
m(V (V))∪m(v)); if V involves the color c,M(X, c) denotes the vertex of V (V)
missing the color c. There is a natural order induced by a fan on its vertices (re-
spectively on its edges), and if i < j we say that the vertex vi (respectively the
edge vvi) is before the vertex vj (respectively the edge vvj). For two vertices vi
and vj of V we define the subfan V[v1,vj ] as the subsequence (vvi, vvi+1, · · · vvj).
We often write V⩾vi , V>vi , V⩽vi and V<vi to respectively denote the subfans
(vi, · · · vk), (vi+1, · · · vk),(v1, · · · , vi), and (v1, · · · vi−1).

If the fan V is a cycle in a coloring β, inverting V means applying a sequence
of Kempe swaps to obtain the coloring X−1(β). If V is a fan which is a path,
invertingV means applying a sequence of single-edge Kempe swaps on the edges
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of V such that the ends of the first edge of V are missing the same color β(vv1).
Note that we often only partially invert paths, i.e. we apply a sequence of single-
edge Kempe swaps on the edges of the paths until we reach a coloring with a
specific missing color at the central vertex.

Recall that a cycle V = (vv1, · · · , vvk) is called saturated if for any i, vi ∈
Kv(m(v),m(vi)). Lemma 2.3 of [BDK+21], which we restate here, guarantees
that if a cycle is not invertible, then it is saturated.

Lemma 2.1.10 directly implies the following result for any minimum cycle.

Lemma 2.3.4. Any minimum cycle is saturated.

Let X ⊆ E(G) ∪ V (G), β a coloring and β′ a coloring obtained from β by
swapping a component C . The component is called X-stable if :

• for any v ∈ X ,mβ(v) = mβ′
(v), and

• for any e ∈ X , β(e) = β′(e).

In this case, the coloring β′ is called X-identical to β.
If S = (C1, · · · , Ck) is a sequence of swaps to transform a coloring β into a

coloring β′ where each Cj is a Kempe component. The sequence S−1 is defined
a the sequence of swaps (Ck, · · · , C1). Such a sequence is calledX-stable is each
Cj is X-stable.

Observation 2.3.5. Let X ⊆ V (G) ∪ E(G), and S a sequence of swaps that is
X-stable. Then the sequence S−1 is also X-stable.

If a sequence S is X-stable, then the coloring obtained after apply S to β is
calledX-equivalent to β. Note that the notion ofX-equivalence is stronger than
the notion of X-identity. Since two colorings β and β′ may be X-identical but
not X-equivalent if there exists a coloring β′′ in the sequence between β and β′

that is notX-identical to β. We first have the following obsevration that we will
often use in this paper.

Observation 2.3.6. Let X be a subfan in a coloring β0, v be a vertex which is not
in V (X ), and S = (C1, · · · , Ck) be a sequence of trivial swaps of edges incident
with v, (β1, · · · , βk) be the colorings obtained after each swap of S. If for any
i ∈ {0, · · · , k},mβi(v) ̸∈ β0(X ), then the sequence S is (X )-stable.

Proof. Otherwise, assume that S is not X -stable. Since the vertex v is not in
V (X ), then no edge of X has been changed during the sequence of swap. Thus
the missing color of a vertex of X has been changed during the sequence of
swaps, we denote by x the first such vertex. Let si be the swap that change the
color of the edge vx, it means that in the coloring βi−1 the vertices v and x are
missing the same color, somβi−1 ∈ β0(X ); a contradiction.
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The following observation gives a relation betweenX-equivalence and (G \
X)-identity between colorings.

Observation 2.3.7. Let β be a coloring, X ⊆ V (G) ∪ E(G), β1 a coloring X-
equivalent to β, and β2 a coloring (G \ X)-identical to β1. Then, there exists a
coloring β3 equivalent to β2 that is X-identical to β2 and (G \X)-identical to β.

Proof. Let S be the sequence of swaps that transforms β into β1. Since β1 is X-
equivalent to β, the sequence S is X-stable and thus E(S) ∩ E(X) = V (S) ∩
V (X) = ∅. Since β2 is (G\X)-identical to β1, it is S-identical to β1. So applying
S−1 to β2 is well-defined and gives a coloring β3 S-identical to β. We first prove
that β3 is (G \ X)-identical to β. The coloring β1 is (G \ S)-identical to the
coloring β by definition of S, and the coloring β2 is (G \ X)-identical to β1, so
the coloring β2 is (G \ (X ∪ S))-identical to β. Again by definition of S−1 the
coloring β3 is (G \ S)-identical to β2, so it is (G \ (S ∪X))-identical to β. Since
the coloring β3 is also S-identical to β, in total, it is (G \X)-identical to β.

We now prove that β3 is X-identical to β2. Since E(S) ∩ E(X) = V (S) ∩
V (X) = ∅, we have that E(X) ⊆ E(G) \ E(S) and V (X) ⊆ V (G) \ V (S).
Moreover, the coloring β3 is (G \ S)-identical to β2 by definition of S, so the
coloring β3 is X-identical to β2 as desired.

If X is a fan, when two colorings are (V (X )∪E(X ))-identical (respectively
(V (X ) ∪ E(X ))-equivalent), we simply write that the two colorings are X -
identical (respectively X -equivalent). Similarly, if two colorings are ((V (G) ∪
E(G)) \ X)-identical (respectively ((V (G) ∪ E(G)) \ X)-equivalent), we sim-
ply write that the two colorings are (G \ X)-identical (respectively (G \ X)-
equivalent).

Remark that ifV is a cycle in a coloring β, then the coloringV−1(β) is (G\V)-
identical to β. So from the previous observation we have the following corollary.

Corollary 2.3.8. Let V be a cycle in a coloring β. If there exists a coloring β′

V-equivalent to β where V is invertible, then V is invertible in β.

Proof. Let β′′ = V−1(β′). The coloring β′ is V-equivalent to β and β′′ is (G \
V)-identical to β′. So by Observation 2.3.7 there exists a coloring β3 that is V-
identical to β′′ and (G \ V)-identical to β. So the coloring β3 is (G \ V)-identical
to V−1(β).

Moreover, the coloring β′′ is V-identical to V−1(β), so the coloring β3 is also
V-identical to V−1(β). Therefore we have β3 = V−1(β) as desired.

From the previous corollary, we have the following observation.
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Observation 2.3.9. Let V be a minimum cycle in coloring β, and β′ a coloring V-
equivalent to β. Then in the coloring β′, the sequenceV is also aminimum cycle such
that for any e ∈ E(V), β(e) = β′(e), and for any v ∈ V (V),mβ(v) = mβ′

(v).

We often simply say that the cycle V is the same minimum cycle in the col-
oring β′.

A cycleV = (vv1, · · · , vvk) is called tight if for every i vi ∈ Kvi−1
(m(vi),m(vi−1)).

A simple observation is that any minimum cycle V is tight.

Observation 2.3.10. Let V = (vv1, · · · , vvk) be a minimum cycle in a coloring
β. Then the cycle V is tight.

Proof. Assume thatV is not tight, so there exists i such that vi ̸∈ Kvi−1
(m(vi),mvi−1).

Without loss of generality, we assume that i = 2 and that each vj is missing the
color j. Note that this means that β(vv2) = 1, β(vv3) = 2 and β(vv1) = k.

We swap the component C1,2 = Kv1(1, 2) to obtain a coloring β′ that is
(V \ {v1})-equivalent to the coloring β. Thus each vj is missing the color j
except v1 which is now missing the color 2. So now the fan V ′ = Xv(k) is
equal to (vv1, vv3, · · · , vvk), and thus is a cycle strictly smaller than V . Since V
is minimum, this cycle is invertible, and we denote by β′′ the coloring obtained
after its inversion.

The coloring β′′ is (G \ V ′)-identical to the coloring β′, so in particular it is
C1,2-identical to the coloring β′. Moreover, the coloring β′′ is (V\{vv1, vv2, v2})-
identical to the coloring V−1(β), and we have β′′(vv1) = 2, β′′(vv2) = 1, and
mβ′′

(v2) = 2.
So now in this coloring the componentKv1(1, 2) is exactly C1,2 ∪{vv1, vv2},

and we swap back this component to obtain a coloring β′′′. The coloring β′′′

is now C1,2-identical to β, and thus it is (G \ V)-identical to β. Moreover, it
is (V \ {vv1, vv2, v2})-identical to β′′, so it is (V \ {vv1, vv2, v2})-identical to
V−1(β). Finally, we have β′′′(vv1) = 1 = mβ(v1), β′′′(vv2) = 2 = mβ(v2), and
mβ′′′

(v2) = 1 = β(vv2), so the coloring β′′′ is V-identical to V−1(β). Since it is
also (G \ V)-identical to β, we have β′′′ = V−1(β) as desired.

The proof of Lemma 2.3.1, is a consequence of the two following Lemmas.

Lemma 2.3.11. Let V be a minimum cycle. For any color c different from m(v),
the fan Xv(c) is a cycle.

Lemma 2.3.12. Let X and Y be two cycles around a vertex v. For any pair of
vertices (z, z′) in (V ∪ X ∪ Y)2, the fan Z = Xz(cz′) is a cycle containing z′.

We prove Lemma 2.3.11 in section 2.3.2, and Lemma 2.3.12 in section 2.6, and
prove here Lemma 2.3.1.
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Proof of Lemma 2.3.1. To prove the Lemma, we prove that the graphG only con-
sists of an even clique where each vertex misses a different color. This is a con-
tradiction since in any (∆(G)+1)-coloring of an even clique, for any color c, the
number of vertices missing the color c is always even. By Lemma 2.3.11, all the
fans around v are cycles, so each neighbor of v misses a different color. More-
over, by Lemma 2.3.12, there is an edge between each pair of neighbors of v, so
G = N [v] = K∆(G)+1. By construction, G is ∆(G)-colorable, so G is an even
clique and each vertex misses a different color, this concludes the proof.

2.3.2 Only cycles around v: a proof of lemma 2.3.11

In this section, we prove Lemma 2.3.11. If X and X ′ are two fans, then X and
X ′ are called entangled if for any c ∈ β(X ) ∩ β(X ′), M(X, c) = M(X ′, c). To
prove Lemma 2.3.11 we need the two following lemmas.

Lemma 2.3.13. Let V be a minimum cycle in a coloring β and let u and u′ be two
vertices of V . Then fan U = Xu(m(u′)) = (uu1, · · · , uul) is a cycle entangled
with V .

Lemma 2.3.14. Let V be a minimum cycle in a coloring β, u and u′ be two ver-
tices of V , and U = Xu(m(u′)) = (uu1, · · · , uul). Then for any j ⩽ l, the fan
Xv(β(uuj)) is a cycle.

Note that by Lemma 2.3.13, we can directly conclude that N [v] is a clique.
Moreover, we directly have the following corollary.

Corollary 2.3.15. Let V = (vv1, · · · , vvk) be a minimum cycle in a coloring β.
Then for any j ⩽ k, the fan Xu(m(v)) is a cycle entangled with V .

Proof. Let j ⩽ k and U = Xvj(m(vj−1)) = Xvj(β(vvj)). Then the first edge of
U is vvj , and since v is missing the color m(v), the second edge of U is colored
m(v). By Lemma 2.3.13, U is a cycle entanlged with V , so since Xu(m(v)) = U ,
the fan Xu(m(v)) is a cycle entangled with V as desired.

We prove Lemma 2.3.13 in Section 2.4, Lemma 2.3.14 in Section 2.5, and prove
here Lemma 2.3.11.

Proof of Lemma 2.3.11. Assume that there exists a fan W = (vw1, · · · , vwt)
around v which does not induce a cycle, we first prove that W is not a path.

Claim 1. The fan W cannot induce a path.
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Proof. Without loss of generality, we assume that the vertex v is missing the
color 1. Assume that W induces a path, so m(v) = m(wt) = 1. Let v′ ∈ V ,
by Corollary 2.3.15, we have that U = Xv′(1) is a cycle containing v in β. If
we apply a single-edge Kempe swap on vwt, then we obtain a coloring where
m(wt) = m(v) = β(vwt); we denote by β′ this coloring, and without loss of
generality, we assume that β(vwt) = 2. Again, by Corolloary 2.3.15, we also
have that U ′ = Xv′(2) is a cycle containing v in the coloring β′, so U ∩ U ′ ̸= ∅,
let v′w′′ be the first edge they have in common, and let w =M(U , β(v′w′′)) and
w′ =M(U ′, β(v′w′′)). We now have to distinguish whether v ∈ {w,w′} or not.
Case 3 (v ̸∈ {w,w′}).
In this case, mβ(w) = mβ′(w) = mβ(w

′) = mβ′(w′); we denote by c this color.
By Lemma 2.3.14, Xv(c) is a cycle containing w in β, and Xv(c) is a cycle con-
taining w′ in β′, so w = w′; a contradiction.
Case 4 (v ∈ {w,w′}).
The case v = w and v = w′ being symmetrical, we can assume that v = w. In this
case, in the coloring β′, w′ is missing the color cv, but by Lemma 2.3.14Xv(1) is a
cycle containing w or V is invertible, however, in the coloring β′,Xv(1) induces
a path which is a single edge; a contradiction.

Thus the fan W is not a path. Now assume that W is a comet, then there
exists w and w′ inW which are missing the same color c. At least one of them is
not inKv(1, c), the two cases being symmetrical, we can assume without loss of
generality that w is not in Kv(1, c). So if we swap the component Kw(1, c), we
obtain a coloring where the fanXv(β(vw1)) is a path; a contradiction, soW is a
cycle.

2.4 Fans around V : a proof of Lemma 2.3.13
In this section, we prove Lemma 2.3.13 which will be often used in the proof of
Lemma 2.3.14.

Proof of Lemma 2.3.13. We first prove that the fan U cannot induce a path.

Claim 2. The fan U cannot induce a path.

Proof. Otherwise, assume that the fan U is a path, without loss of generality, we
can assume that U is of minimal length (if U is not minimal, since it is a path, it
contains a strictly smaller path). Thus U contains only one edge colored with a
color in β(V)\{cv}: its first edge. We now need to distinguish whether j′ = j−1
or not (i.e. whether u = vj and u′ = vj′ are consecutive or not in V).
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Case 1 (j′ = j − 1).
In this case, U = Xu(uv), and the edge colored cv incident with u is just after uv
in U . As U is a path, we can invert it until we reach a coloring where m(u) =
m(v) = cv. Since U is minimal, no edge incident with a vertex of V different
from u has been recolored during the inversion. In the coloring obtained after
the inversion, the fan (vvj+1, · · · , vvj = vu) is a path that we can invert until we
reach a coloringwherem(v) = m(vj+1) = j, we denote by β′ this coloring. Since
V was tight in the coloring β, in the coloring β′ we have C = Kβ′

vj−1
(j, j − 1) =

Kβ
vj−1

(j, j − 1) ∪ {vvj−1} \ {vvj+1, vvj = vu}, so we swap this component to
obtain a coloring where m(v) = m(u) = j − 1, then we swap the edge uv
and obtain a coloring where (uul−1, · · · , uu0) is a path that we invert. In the
coloring obtained after the inversion, we have that the componentKvj−1

(j, j−1)
is exactly C ∪{vvj}, if we swap this component back we obtain exactly V−1(β).
Case 2 (j′ ̸= j − 1).
In this case, since U is a path, we can invert it until we reach a coloring β′ where
m(u) = cu′ = j′. Note that, similarly to the previous case, this inversion has
not changed the colors of the edges incident with the vertices of V , except those
incident with u. We now consider the component Kv(j

′, cv) (which can have
changed during the inversion of U as we swapped an edge colored j′), and we
need to distinguish whether or not the vertices u′ and u belong to this compo-
nent; clearly these vertices does not both belong to this component.
Subcase 2.1 (u′ ̸∈ Kv(j

′, cu)).
In this case, we swap the component C = Ku′(j′, cv) to obtain a coloring where
(vvj+1, · · · , vvj′) is a path that we invert until we reach a coloring where
m(v) = m(vj+1) = cu, we denote by β′ this coloring. As V was tight in β, we
have thatCj = Kβ′

vj−1
(j, j−1) = Kβ

vj−1
(j, j−1)\{vvj+1, vvj = vu}, so we swap

this component to obtain a coloring where (vvj′+1, · · · , vvj−1) is a path that we
invert until we reach a coloring where m(v) = m(vj′+1) = j′. In the coloring
obtained after the inversion, the componentKu′(j′, cv) is exactlyC∪{vu′}, thus
we swap it back. Note that as |{cu′ , cv, j, j−1}| = 4, we can swap back C before
Cj . In the coloring obtained after swapping back the component, we have that
the fan (uul−1, · · · , uu0) is a path that we invert. In the coloring obtained after
the inversion, the component Kvj−1

(j, j − 1) is exactly C ∪ {vvj−1, vvj = vu},
thus we swap back this component and obtain exactly V−1(β).
So u′ belongs to the component Kv(j

′, cu).
Subcase 2.2 (u ̸∈ Kv(cu′ , cu)).
In this case, we swap the componentC = Ku(j

′, cv), note that, from the previous
case, neither v nor u′ belong to this component. In the coloring obtained after the
swap, the fan (vvj+1, · · · , vvj) is a path that we invert until we reach a coloring
wherem(v) = m(vj+1) = cu; we denote by β′ this coloring. As V was tight in β,
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we have that Cj = Kβ′
vj−1

(j, j − 1) = Kβ
vj−1

(j, j − 1) ∪ {vvj−1} \ {vvj+1, vvj =
vu}, so we swap this component to obtain a coloring where m(v) = m(u) =
j−1, then we swap the edge uv to obtain a coloring whereKu(cu′ , cv) is exactly
C . Hence we swap back this component, and in the coloring obtained after the
swap, the fan (uul−1, · · · , uu0) is a path that we invert until we reach a coloring
where m(u) = j. In this coloring, the component Kvj−1

(j, j − 1) is exactly
Cj ∪ {vvj−1, vvj = vu}, thus we swap back this component to obtain exactly
V−1(β).

Before proving that the fanU is not a comet, we prove thatU andV are entangled.

Claim 3. The fans U and V are entangled.

Proof. Assume that U and V are not entangled, then there exist w = vs ∈ V and
w′ = us′ ∈ U distinct from w with m(w) = m(w′) = c. If m(w) = m(v) = cv,
then, since V is saturated, w ∈ Kv(cv, c), so we swap Kw′(cv, c) to obtain a
coloring where V is still a cycle of the same size, but whereXu(cu′) is a path, by
the previous claim, this is a contradiction.

So m(w) ̸= m(v), and therefore, we successively swap the components
Kw′(t, t + 1) with t ∈ (s, · · · , j). Note that this sequence of swaps has not
changed the colors of the edges incident with a vertex of V ; it can though have
changed the colors of the edges of U . However, it is guaranteed that in the col-
oring obtained after the swaps, there exists a color c′ ∈ β(V) such thatXu(c

′) is
a path, which is a contradiction by the previous claim.

We now prove that U is not a comet.

Claim 4. The fan U is not a comet.

Proof. Assume that U is a comet, then there exist w and w′ in U with m(w) =
m(w′) = c and where w′ is after w in the sequence. By the previous claim, as
U and V are entangled, we have that c ̸∈ β(V). We now consider the com-
ponent Cv = Kv(c, cv). If w′ is not in Cv, then we swap Cw′ = Kw′(c, cv) to
obtain a coloring where w′ belongs to the fan Xu(cu′) with m(w′) = m(v); this
contradicts the fact thatXu(cu′) and V are entangled. Note that if u is in C ′, and
m(v) ∈ β(U), after swappingC ′ the sequenceXu(cu′) now starts at the edge col-
ored c in β, but this does not change the reasoning. So the vertex w′ belongs to
C , and thus the vertex w does not belong to Cv, so we can swap Cw = Kw(c, cv)
to obtain a coloring where the sequenceXu(m(u′)) contains w which is missing
the color m(v), a contradiction. Note that if u ∈ Cw, then after swapping Cw,
we obtain a coloring where w′ comes before w in the fan Xu(m(u′)). Similarly
to the previous case, this does not change the reasoning.
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From the previous claims, the fan U is a cycle entangled with V as desired.

2.5 Cycles around v starting with u: a proof of
Lemma 2.3.14

In this section we prove Lemma 2.3.14. To prove the lemma we actually prove a
stronger statement, but we need first some definitions.

Definition 2.5.1. Let i ⩾ 0, we define the property Pweak(i) as the following: For
any minimum cycle V in a coloring β, for any pair of vertices u and u′ of V , let
U = Xu(m(u′)) = (uu1, · · · , uul). If β(uul−i) ̸= m(v), then Xv(β(uul−i) is not
a path.

Definition 2.5.2. Let i ⩾ 0, we define the property P (i) as follows:
For any minimum cycle V in a coloring β, for any pair of vertices u and u′

of V , let U = Xu(m(u′)) = (uu1, · · · , uul). If β(uul−i) ̸= m(v), then the fan
Xv(β(uul−i) is a saturated cycle containing ul−i−1,

Lemma 2.3.14 is a direct consequence of the following lemma.

Lemma 2.5.3. The property P (i) is true for all i.

The proof of the lemma is an induction on i. However, before starting to
prove the lemma, we need to introduce the notion of (V , u)-independent fan for
a vertex u of a cycle V .

2.5.1 (V , u)-independent fans
Let V be a minimum cycle in a coloring β, and u a vertex of V . A (V , u)-
independent subfanX is a subfan around v such that β(V)∩β(X ) = {β(u)}. We
naturally define a (V , u)-independent path (respectively a (V , u)-independent
cycle) as a (V , u)-independent subfan that is also a path (respectively a cycle). If
v is a vertex not in X missing a color c, we say that X avoids v if the last vertex
of X is also missing the color c.

We first prove the following.

Lemma 2.5.4. Let V be a minimum cycle in a coloring β, u a vertex of V , Y =
(uy1, · · · , uyr) a (V , u)-independent subfan avoiding v and x the extremity of
Kys(m(u),m(v)) which is not yr. Then the fanXv(β(uy1)) is a path containing x
which is missing the colorm(v).

We decompose the proof into five separate lemmas.
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Proof of Lemma 2.5.4. Without loss of generality, we assume that the vertices v
and u are respectively missing the colors 1 and 2, and that β(uy1) = 4. Since the
fan V is a minimum cycle in the coloring β, it is saturated by Lemma 2.3.4, so u ∈
Kv(1, 2) and thus yr ̸∈ Kv(1, 2). We now swap the component C1,2 = Kyr(1, 2)
to obtain a coloring V-equivalent to β, where Y is now a (V , u)-independent
path. By Lemma 2.5.9, the fan Xv(4) is a comet containing the other extremity
of Kyr(1, 2) which is x. In this coloring, the vertex x is missing the color 2,
therefore in the coloring β, the fanXv(4) is a path containing xwhich is missing
the color 1 as desired.

Lemma2.5.5. LetX = (vv1, · · · , vvk) be a path of length at least 3 in a coloring β,
u = vi for some i ∈ [3, k], u′′ = vi−1, u′ = v1, and C a (β(vu),m(u))-bichromatic
path between u′′ and u′ that does not contain v. Then β is equivalent to a coloring
β′ such that:

• β′ is (G \ (C ∪ X ))-identical to β,

• β′ is (X⩾u)-identical to β,

• for any edge j ∈ [2, i− 1],mβ′
(vj) = β(vvj),

• mβ′
(u′) = β(vu),

• for any edge j ∈ [1, i− 2], β′(vvj) = mβ(vj),

• β′(vu′′) = β(vu′),

• for any edge e ∈ C :

– if β(e) = β(vu), then β′(e) = mβ(u), and

– if β(e) = mβ(u), then β′(e) = β(vu).

Proof. Without loss of generality, we assume that the vertices v is missing the
color 1, that the edge vu′ is colored 2, and that the edge vu is colored 3. Note that
thismeans thatm(u′′) = 3. In the coloring β, the fanX is a path, sowe invert this
path, and denote by β2 the coloring obtained after the inversion. The coloring
β2 is (G \ X )-identical to the coloring β so C is still a (2, 3)-bichromatic path
between u′ and u′′ that does not contain v. Moreover, for any edge j ∈ [1, i],
β2(vvj) = mβ(vj) and mβ2(vj) = β(vvj). So the coloring β2 is (X[v2,vi−2] ∪
{u′′, vu′})-identical to β′. The vertex u′ is now missing the color 2, and the edge
vu′′ is now colored 3. Moreover, the vertex v is now missing the color 2, so
Kv(2, 3) = C ∪ {vu′′}. We now swap this component and denote by β3 the
coloring obtained after the swap.

The coloring β3 is (G\ (C ∪X ))-identical to the coloring β, so it is (G\ (C ∪
X ))-identical to β′. Moreover, for any edge e ∈ C :

Graph Coloring and Recoloring 63



2.5. Cycles around v starting with u: a proof of Lemma 2.3.14

• if β(e) = 2, then β3(e) = 3, and

• if β(e) = 3, then β3(e) = 2.

So the coloring β3 is also C-identical to β′; thus it is (G \ X )-identical to β′.
The coloring β3 is (X[v2,vi−2] ∪ {u′′, vu′})-identical to β2, so it is (X[v2,vi−2] ∪

{u′′, vu′})-identical to β′. In the coloring β3, the edge vu′′ is now colored 2, and
the vertex u′ is now missing the color 3. So the coloring β3 is also ({vu′′, u′})-
identical to β′, and thus it is X<u-identical to β′. In total, the coloring β3 is
(G \ X⩾u)-identical to the coloring β′.

Finally, the coloring β3 is X⩾u-identical to the coloring β2 and the verices
v and u are both missing the color 3. So in the coloring β3 the fan Xv(1) is
now a path. We invert this path and denote by β4 the coloring obtained after
the inversion. The coloring β4 is X⩾u-identical to the coloring β, so it is X⩾u-
identical to the coloring β′. Moreover, the coloring β4 is also (G \X⩾u)-identical
to the coloring β3, so it is (G \ X⩾u)-identical to the coloring β′. In total the
coloring β4 is identical to the coloring β′ as desired.

Lemma 2.5.6. Let V = (vv1, · · · , vvk) a cycle of length at least 3 in a color-
ing β, u = vi, u′ = vi+1 and u′′ = vi−1 three consecutive vertices of V , Y =
(uy1, · · · , uyl) a (V , u)-independent path, βY = Y−1(β), C a (β(vu),m(u′))-
bichromatic path in the coloring βY between u′′ and u′ that does not contain v nor
u, X = E(C) ∪ E(V) ∪ (V (V) ∪ {v} \ {u}), and β′

Y a coloring X-equivalent to
βY . If there exists a coloring β′ equivalent to β′

Y such that:

• β′ is (G \X)-identical to β′
Y ,

• β′ is (V \ {u′, vu′′, u, vu})-identical to V−1(β),

• β′(vu′′) = β′
Y(vu

′),

• β′(vu) = mβ′
Y (u′′), and

• mβ′
(u′) = β′

Y(vu),

• for any edge e ∈ C :

– if β′
Y(e) = β(vu), then β′(e) = m(u′), and

– if β′
Y(e) = m(u′), then β′(e) = β(vu).

Then the cycle V is invertible.
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Proof. Let γ = V−1(β). Without loss of generality, we assume that the vertex
v and u are respectively missing the colors 1 and 2 in the coloring β, and that
β(vu) = 3. This means that β′(vu′′) = β′

Y(vu
′) = β(vu′) = mβ(u) = 2 and

mβ′
(u′) = β′

Y(vu) = β(vu) = mβ(u′′) = 3. By definition the coloring βY is
(G \ (Y ∪ {u}))-identical to β. Since Y is a (V , u)-independent path, we have
E(Y)∩E(V) = ∅, and V (Y)∩V (V) = ∅. So, in particular βY(vu) = β(vu) = 3.
The coloring β′ is ({vu})-identical to β′

Y , so β′(vu) = 3.
Since the coloring β′ is (G\X)-identical to β′

Y and β′
Y isX-equivalent to βY ,

by Observation 2.3.7, there exists a coloring β′′ which is X-identical to β′ and
(G \X)-identical to βY .

The coloring β′′ is (G \ X)-identical to βY , so it is (G \ (X ∪ Y ∪ {u}))-
identical to β. This means that β′′ is (G \ (V ∪ Y ∪ C))-identical to β, and thus
it is (G \ (V ∪ Y ∪ C))-identical to γ. Moreover, β′′ is X-identical to β′, and β′

is (V \ ({u′, vu′′, u, vu})-identical to γ, so β′′ is (V \ ({u′, vu′′, u, vu})-identical
to γ. In total, the coloring β′′ is (G \ (C ∪ Y ∪ {u′, vu′′, u, vu}))-identical to γ.

In the coloring βY , the fan Xu(2) is now a path, and we have E(Xu(2)) =
E(Y) and V (Xu(2)) = V (Y). So in any coloring (Y ∪ {u})-identical to βY , the
fan Xu(2) is a path. The β′′ is (G \ X)-identical to βY , E(X) ∩ E(Y) = ∅ and
V (X) ∩ (V (Y) ∪ {u}) = ∅, so β′′ is (Y ∪ {u})-identical to βY , and thusXβ′′

u (2)
is a path that we invert. Let β3 be the coloring obtained after the inversion.

By definition of Y , the coloring β3 is (Y∪{u})-identical to the coloring β. So
it is Y-identical to the coloring γ, and u is now missing the color 2. The coloring
β3 is also (G \ (Y ∪ {u}))-identical to β′′, so it is (G \ (C ∪ {u′, vu′′, u, vu}))-
identical to γ, and we have β3(vu′′) = β′′(vu′′) = 2, β3(vu) = β′′(vu) = 3 and
mβ3(u′) = mβ′′

(u′) = 3. Note that the coloring β3 is also C-identical to the
coloring β′′.

The path C is a (2, 3)-bichromatic path between u′′ and u′ and does not con-
tain v nor u, so, in the coloring β3, we haveKu′(2, 3) = C ∪ {vu′′, vu}. We now
swap this component and denote by βf the coloring obtained after the swap.
The coloring βf is (G \ (C ∪ {u′, vu′′, u, vu}))-identical to the coloring β3, so it
is (G \ (C ∪{u′, vu′′, u, vu}))-identical to γ. Moreover, since β3 is C-identical to
β′′, for any edge e ∈ C :

• if β′′(e) = β3(e) = 2, then βf (e) = 3, and

• if β′′(e) = β3(e) = 3, then βf (e) = 2.

So the coloring βf is C-identical to the coloring βY , and thus it is C-identical
to the coloring γ. Finally, we have:

• mβf (u) = 3 = β(vu) = mγ(u),

• βf (vu) = 2 = mβ(u) = γ(vu),
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• mβf (u′) = 2 = β(vu′) = mγ(u′), and

• βf (vu′′) = 3 = mβ(u′′) = γ(vu′′).

Finally we have that βf is (C∪{u′, vu′′, u, vu})-identical to γ, so it is identical
to γ, and V is invertible as desired.

Lemma 2.5.7. Let V = (vv1, · · · , vvi) a minimum cycle in a coloring β, u = vi,
u′ = v1 and u′′ = vi−1 three consecutive vertices of V , and Y = (uy1, · · · , uyl)
a (V , u)-independent path, C = Ku′′(m(u),m(u′′)) \ {vu, vu′}, and X = C ∪
E(V)∪(V (V)∪{v}\{u}). In any coloring β′

Y that isX-equivalent to the coloring
βY = Y−1(β), the fan Xv(m

β(u)) is not a path.

Proof. Without loss of generality, we assume that the vertices v and u are re-
spectively missing the colors 1 and 2, and that β(vu) = 3. This means that
β(vu′) = mβ(vu) = 2, mβ(u′′) = β(vu) = 3, and mβY (u) = 4. Assume that
X = X

β′
Y

v (2) is a path. The vertex v is still missing the color 1 in the coloring βY
and thus it is still missing 1 in β′

Y . The coloring βY is (V \ {u})-identical to the
coloring β and so is the coloring β′

Y . So {u′, u′′} ⊆ V (X ) and β′
Y(vu) = β(vu),

so u ∈ V (X ), and thus the size of X is at least 3. Note that this means that
V (V) = V (X⩽u).

The cycle V is a minimum cycle in β, so by Observation 2.3.10, it is tight, and
in particular, u ∈ Ku′′(2, 3). So the C is a (2, 3)-bichromatic path between u′′
and u′ that does not contain u nor v. Since Y is a (V , u)-independent path, the
coloring βY is C-identical to β. The coloring β′

Y is C-equivalent to βY so C is
still the same bichromatic path in the coloring β′

Y .
Since X is a path of path of length at least 3, by Lemma 2.5.5 there exists a

coloring β′ such that:

• β′ is (G \ (C ∪ X ))-identical to β′
Y ,

• β′ is (X⩾u)-identical to β′
Y ,

• for any edge j ∈ [2, i− 1],mβ′
(vj) = β′

Y(vvj),

• mβ′
(u′) = β′

Y(vu) = 3,

• for any edge j ∈ [1, i− 2], β′(vvj) = mβ′
Y (vvj),

• β′(vu′′) = β′
Y(vu

′) = 2,

• for any edge e ∈ C :

– if β(e) = β′
Y(vu) = 3, then β′(e) = mβ′

Y (u) = 2, and
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– if β(e) = mβ′
Y (u) = 2, then β′(e) = β′

Y(vu) = 3.

The coloring β′ is (G \ (C ∪ X ))-identical to β′
Y , and is X⩾u-identical to β′

Y .
So the coloring β′ is (G \X)-identical to β′

Y .
Let γ = V−1(β). For any j ∈ [2, i − 2], we have β′(vvj) = mβ′

Y (vj) =
mβ(vj) = γ(vvj), and mβ′

(vj) = β′
Y(vvj) = β(vvj) = mγ(vj), so the coloring

β′ is (V \{u′, vu′, u′′, vu′′, u, vu})-identical to γ. Moreover, β′(vu) = mβY (u′) =
mβ(u′) = γ(vu′) and mβ′

(u′′) = βY(vu
′′) = β(vu′′) = mγ(u′′). So in total the

coloring β′ is (V \ {u′, vu′′, u, vu})-identical to the coloring γ.
The coloring β′ is X⩾u-identical to β′

Y , so in particular, β′(vu) = β′
Y(vu) =

mβ′
Y (u′′). We also have that β′(vu′′) = 2 = β′

Y(vu
′), andmβ′

(u′) = 3 = β′
Y(vu).

Finally, for any edge e in C :
• if βY(e) = β(e) = 2, then β′(e) = 3, and

• if βY(e) = β(e) = 3, then β′(e) = 2.
So by Lemma 2.5.6, the cycle V is invertible; a contradiction.
Lemma 2.5.8. Let V = (vv1, · · · , vvk) be a minimum cycle in a coloring β, u =
vj , u′ = vj+1, and u′′ = vj−1 three consecutive vertices of V and Y a (V , u)-
independent path. Then in the coloring βY = Y−1(β), the fan X = Xv(m

β(u)) =
(vx1, · · · , vxs) is a cycle.
Proof. By Lemma 2.5.7, the fan X is not a path. To show that it is a cycle, we
prove that X is not a comet. Otherwise, assume that X is a comet, then there
exists i < s such that m(xi) = m(xs). Without loss of generality, we assume
that mβ(v) = 1, mβ(u) = β(vu′) = 2, β(vu) = mβ(u′′) = 3 and mβY (xi) =
mβY (xs) = 4. We now have to distinguish the cases.
Case 3 (4 ̸∈ β(V)).
In the coloring β, the fan V is a minimum cycle, so by Observation 2.3.10, it
is tight and in particular, u ∈ Ku′′(2, 3). Let C = Ku′′(2, 3) \ {vu′, vu}. The
path C is a (2, 3)-bichromatic path between u′′ and u′ which does not contain v
nor u. Since Y is a (V , u)-independent path, the coloring βY is C-identical to β,
and thus C is still a (2, 3)-bichromatic path between u′′ and u′ which does not
contain u nor v. Let X = C ∪ E(V) ∪ (V (V) ∪ {v} \ {u}). We now consider
the components of K(1, 4) in the coloring βY . The vertices xi and xs are not
both part of Kv(1, 4). Note that we may have xi = u. If xi does not belong to
Kv(1, 4), then we swap the component C1,4 = Kxi

(1, 4) to obtain a coloring β′

X-equivalent to βY where the fan Xv(2) is now a path. By Lemma 2.5.7; this is
a contradiction.

So xi ∈ Kv(1, 4), and thus xs ̸∈ Kv(1, 4). Similarly to the previous case, we
now swap the component Kxs(1, 4) and obtain a coloring X-equivalent to βY
where Xv(2) is a path. By Lemma 2.5.7 this is again a contradiction.
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Case 4 (4 ∈ β(V)).
In this case, we have that xi ∈ V (V). Since Y is a (V , u)-independent path, it
does not contain any vertex missing the color 4 so β is {xs}-identical to βY , and
this vertex is still missing the color 4 in the coloring β. Since V is a minimum
cycle in the coloring β, by Lemma 2.3.4 it is saturated, so xi ∈ Kv(1, 4), and thus
xs ̸∈ Kv(1, 4). We now swap the component C1,4 = Kxs(1, 4), and denote by β′

the coloring obtained after the swap. The fan Y was a (V , u)-independent path
in the coloring β, so the coloring β′ is Y-equivalent to β, and Y is still a (V , u)-
independent path in this coloring. We now invert Y and obtain a coloring β′

Y
which is (XβY

v (2) \ {xs})-equivalent to the coloring βY . So now, in the coloring
β′
Y , the fan Xv(2) is a path, by Lemma 2.5.7 this is a contradiction.

Lemma 2.5.9. Let V = (vv1, · · · , vvk) a minimum cycle in a coloring β, u =
vj and u′ = vj+1 two consecutive vertices of V , Y = (uy1, · · · , uyr) a (V , u)-
independent path, and x the extremity of Kyr(m(u),m(v)) which is not yr. Then
the fan Xv(β(uy1)) is a comet containing x which is missing the colorm(u).

Proof. We assume that Y is of minimum size such that X = Xv(β(uy1)) is not
a comet containing x missing the color m(u). Without loss of generality, we
assume thatm(v) = 1,m(u) = β(vu′) = 2, β(uv) = mβ(u′′) = 3, and β(uy1) =
4.

If |Y| = 1, then Y consists of a single edge. We swap this edge, and denote
by β′ the coloring obtained after the swap. In the coloring β′, by Lemma 2.5.8,
the fan Xv(2) is a cycle. In this coloring, the vertex u is missing the color 4,
so 4 ∈ β′(Xv(2)). Let X ′ = (vx1, · · · , vxs) be the maximal subfan of Xv(2)
starting with an edge colored 4, and not containing any edge of V . Note that
E(X ′) = E(X ) and V (X ′) = V (X ). Note also that we have mβ′

(xs) = 2.
The subfan X ′ does not contain any edge of V , thus is does not contain the ver-
tex u, and so it does not contain any vertex missing the color 4. So the col-
oring β is X -equivalent to the coloring β′, and thus in the coloring β, the fan
Xv(4) = (vx1, · · · , vxs, vu′, · · · , vu) is a comet where xs and u are both miss-
ing the color 2. In the coloring β, the cycle V is a minimum cycle, so it is sat-
urated by Lemma 2.3.4, and thus u ∈ Kv(1, 2) and xs ̸∈ Kv(1, 2). If xs is not
in Kyr(1, 2), then we swap C1,2 = Kxs(1, 2), to obtain a coloring β′′ which is
((X ∪ V ∪ Y) \ {xs})-equivalent to β. We now invert the path Y , and obtain a
coloring where Xv(2) is a path, by Lemma 2.5.8 this is a contradiction.

So |Y| > 1. The size of Y is minimum, so for any subpath Xu(β(uyj)) of
Y with j > 1, the fan Xv(β(uyj)) is a comet containing x. So the fan Xv(4)
does not contain any vertex missing a color in β(Y), otherwise it would be a
comet containing x. Hence the coloring βY = Y−1(β) is X -equivalent to β. In
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the coloring βY , the fan Xv(2) is a cycle by Lemma 2.5.8. Moreover, it contains
the fan X since u is missing the color 4 in the coloring βY . Therefore, in the
coloring β, the fan X = (vx1, · · · , vxs, vu′, · · · , vu) is a comet containing V
where xs and u are both missing the color 2. Similarly to the previous case,
since V is a minimum, it is saturated by Lemma 2.3.4, so u ∈ Kv(1, 2), and thus
xs ̸∈ Kv(1, 2). If xs ̸∈ Kv(1, 2), then we swap C1,2 = Kxs(1, 2), and obtain
a coloring where Xv(4) is a path. This coloring is Y-equivalent to β, and thus
if we invert Y we obtain a coloring where Xv(2) is a path, a contradiction by
Lemma 2.5.8.

In the following section we prove the property P (0).

2.5.2 Proof of P (0)
In this section we prove the following lemma.

Lemma 2.5.10. The property P (0) is true.

To prove that P (0) is true, we need the following lemma.

Lemma 2.5.11. Let V = (vv1, · · · , vvk) be a minimum cycle in a coloring β,
u = vj and u′ = vj′ two vertices of V . If uu′ ∈ E(G)∩, and β(uu′) ̸= m(v), then
the fan X = Xv(β(uu

′)) is a saturated cycle.

The following lemma is the first step of the proof of Lemma 2.5.11.

Lemma 2.5.12. Let V = (vv1, · · · , vvk) be a minimum cycle in a coloring β,
u = vj and u′ = vj′ two vertices of V . If uu′ ∈ E(G) and β(uu′) ̸= m(v), then
the fan X = Xv(β(uu

′)) is not a path.

Proof. Otherwise, assume thatX is a path. Without loss of generality, we assume
that the vertices v, u and u′ are respectively missing the colors 1, 2 and 3. Since
β(uu′) ̸∈ {1, 2, 3}, we also assume that β(uu′) = 4. Finally, we assume that X
is of length one, indeed if the length of X is more than one, we invert it until we
reach a coloring β′ V-equivalent to β where it has length one without changing
the color of uu′.

We denote by x the only vertex of X , and by β2 the coloring obtained after
swapping the edge vx. The coloring β2 is V-equivalent to β′, so V is the same
minimum cycle in the coloring β2 byObservation 2.3.9. By Lemma 2.3.13, the fans
U = Xβ′

u (3) = (uu1, · · · , uul) andU ′ = Xβ2

u′ (3) are both cycles and uu′ is the last
edge of both of these cycles; we denote by w the vertex missing 4 in U . Note that
since β(uu′) = 4, the vertex w is the vertex ul−1, and U = (uu1, · · · , uw, uu′).
We first remark that 4 ̸∈ β(V), otherwise the fan E(X ) = E(V), and the fan X
is a cycle and thus is not a path, as desired.

We first prove some basic properties on the fan U .
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Proposition 2.5.13. The fan U contains an edge colored 1, and there is no edge
colored with a color in β(V) between the edge colored 1 and the edge colored 4 in
U .

Proof. We first prove that there is an edge colored 1 in the fan U . Assume that
U does not contain any edge colored 1 in the coloring β′. Since the fan U is a
cycle, it means that it does not contains any vertex missing the color 1, and in
particular it does not contain v. So the coloring β2 is also U-equivalent to the
coloring β′. Therefore, U = U ′ and U ′ contains the vertex w that is still missing
the color 4. The fan U ′ is thus not entangled with V , by Lemma 2.3.13 we have a
contradiction.

So the fan U contains an edge colored 1. Since by Lemma 2.3.13, the fan U is
a cycle entangled with V , it contains the vertex v which is missing the color 1,
and thus it contains the edge uv, and also the edge vvj−1 (recall that vvj−1 is the
edge just before vu = vvj in the sequence V). Note that the vertex u′ and vj−1

may be the same vertex.
We now prove that, in the sequenceU , there is no edge colored with a color in

β(V) between the edge colored 1 and the edge colored 4. Assume on the contrary
that there exists such an edge uut colored with a color c ∈ β(V). Similarly to the
previous proof, this means that in the coloring β2, the fanXu(c) is the sequence
(uut, uut+1, · · · , uw, uu′) with m(w) = m(v) = 4. So this fan is not entangled
with V and by Lemma 2.3.13 we again get a contradiction.

Let y1 be the neighbor of u connected to u by the edge colored 1, and y2 the
vertex just after y1 in the sequence U . Note that since β′(uu′) ̸= 1, the vertex y1
is different from the vertex u′ but may be equal to the vertex w. In this case, the
vertices y2 and u′ are the same vertex.

Proposition 2.5.14. The edge uy1 belongs to the component Kv(1, β(vu
′)).

Proof. Assume that uy1 does not belong to Kv(1, β(vu
′)). If the edge vu′ is just

after the edge vu in the fanV (i.e. if j′ = j+1), then it means that β(vu′) = 3, and
since β(uy1) = 1, we have that the vertex u does not belong to the component
Kv(1, 3). So the fan V is not saturated, by Lemma 2.3.4 we have a contradiction.
So the edge vu′ is not the edge just after the edge vu in the fan V , and without
loss of generality, we assume that β(vu′) = 5.

Let C1,5 = Ky1(1, 5), we first prove that the vertex x belongs to this com-
ponent. Since the vertex y1 is not in Kv(1, 5), we have that Kv(1, 5) ̸= C1,5.
The fan V is a minimum cycle, it is saturated by Lemma 2.3.4, so after swapping
C1,5, we obtain a coloring β′′ V-equivalent to β′. By Observation 2.3.9 the cy-
cle V is the same minimum cycle in this coloring. In the coloring β′′ the edge
uuy1 is now colored 5, and the fan Xu(5) still contains the vertex w missing the
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color 4. Moreover, the vertex x is still missing the color 1, so we swap the edge
vu to obtain a coloring V-equivalent to β′′ where Xu(5) contains the vertex w
which is missing the color m(v) = 4. So Xu(5) is not entangled with V , and by
Lemma 2.3.13 we have a contradiction.

Therefore, the vertex x belongs to the component C1,5. We first swap the
component C1,5 and obtain a coloring β′′ V-equivalent to β′. In the coloring β′′,
the fan Xu(5) now contains the vertex w that is still missing 4. So the vertex
Xv(5) contains the vertex u′ and we have Xv(5) = Xv(3).

Since the cycle V is minimum, by Observation 2.3.10, it is tight. In the col-
oring β′′, the vertex x is now missing the color 5, we now apply a sequence a of
Kempe swaps of the formKx(m(vt−1),m(vt)) for t ∈ (j′ − 1, j′ − 2, · · · , j + 1)
to obtain a coloring β3 where m(x) = m(vj−1) = 2. Note that each of these
swaps is V-stable since after each swap the fan V is a minimum cycle and thus is
tight. Moreover, since no edge of U between uy2 and uu′ is colored with a color
in β′(V), the coloring β3 is U[y2,w]-equivalent to β′′.

Hence we have Xu(β3(uy1))⩽w = (uy1, uy2, · · · , uw). The edge uy1 may
have been recolored during the sequence of swaps, but in the coloring β3, uy1 is
guaranteed to be colored with a color in β3(V). In the coloring β3, the vertices
x and u are missing the same color 2 and the vertex v is still missing the color
1. the cycle V is minimum, so it is saturated by Lemma 2.3.4, and therefore
x ̸∈ Kv(1, 2).

We swap the component C1,2 = Kx(1, 2) to obtain a coloring where v and x
are missing the same color 1 and where the edge vx is colored 4. We now swap
the edge vx, and denote by β4 the coloring obtained after theses swaps. The
coloring β4 is V-equivalent to β3, and is alsoXu(β4(uy1))[y2,w]-equivalent to the
coloring β3. The vertices v and w are missing the same color 4, so Xu(β4(uy1))
and V are not entangled in this coloring, and thus by Lemma 2.3.13 we have a
contradiction.

Proposition 2.5.15. In the coloring β2, the vertex x belongs to Kx(2, 4).

Proof. Otherwise, assume that it is not the case. In the coloring β2, the fan V
is a minimum cycle, so it is saturated by Lemma 2.3.4. Therefore the vertex u
belongs to Kv(2, 4) and the vertex w does not belong to this component. By
Proposition 2.5.13Xu(1) contains the vertex w. We swap the component C2,4 =
Kw(2, 4), and obtain a coloring β′′ V-equivalent to β′. By Observation 2.3.9, the
cycle V is still the same minimum cycle in the coloring β′′, and now the vertex w
is missing the color 2. The coloring β′′ is alsoXu(1)<w-equivalent to the coloring
β′, so where Xu(1) still contains the vertex w. The vertex x is still missing the
color 4, so we swap the edge vu to obtain a coloring β3 where Xu(1) contains
the vertex w missing the color 2, and thus Xu(1) is a path. By Lemma 2.3.13 we
have a contradiction.
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We are now ready to prove the lemma. We need to distinguish whether or
not j = j′ + 1.
Case 5 (j = j′ + 1).
In this case, we have β′(vu) = mβ′

(u′) = 3. In the coloring β′, the fan V is
saturated, so u′ ∈ Kv(1, 3) and thus uy1 ∈ Ku′(1, 3). Let C1,3 = Ku′(1, 3) \
{uy1, vu}, C1,3 is a (1, 3)-bichromatic path between u′ and y1. In the coloring
β2, we consider the component C2,4 = Kw(2, 4); this component contains the
vertex x by Proposition 2.5.15. After swapping C2,4 we obtain a coloring β3 V-
equivalent to V where the fan Xu(1) is a path. By Observation 2.3.9 the fan V
is still the same minimum cycle in the coloring β3. Moreover, the coloring β3 is
C1,3-equivalent to the coloring β2, and thus C1,3-equivalent to the coloring β′, so
C1,3 is still a (1, 3)-bichromatic path between u′ and y1.

By Proposition 2.5.13 there is no edge in E(Xu(1)) colored with a color in
β4(V), so we invert Xu(1) to obtain a coloring β5 that is (C1,3 ∪ (V \ {u}))-
equivalent to β4. In the coloring β4, the vertex y1 is missing the color 1, so
Ku′(1, 3) = C1,3, and we swap this component; we denote by β5 the coloring
obtained after the swap.

In the coloring β5, the vertices u and u′ a both missing the color 1, so we swap
the edge uu′ to obtain a coloring where u and u′ are missing the color 4. In the
coloring β5, the fan Xv(2) is now a path that we invert to obtain a coloring β6.
In the coloring β6, the edge uw is colored 2, and the vertex u is now missing the
color 4, soKu(2, 4) = C2,4∪{uw}, and we swap back this component, we denote
by β7 the coloring obtained after this swap. Note that since |{1, 2, 3, 4}| = 4, we
can swap back C2,4 before C1,3.

In the coloring β7, the vertices u and v are both missing the color 2, and the
edge vu is colored 3, so we swap the edge vu to obtain a coloring where u and v
are both missing the color 4. In the coloring obtained after the swap, the vertices
u and y1 are both missing the color 3, so the fan Xu(4) is now a path that we
invert. We denote by β8 the coloring obtained after the swap.

In the coloring β8, the edge uu′ is colored 1, and the edge uy1 is colored
3, so Ku(1, 3) = C1,3 ∪ {uu′, uy1} and this component is a (1, 3)-bichromatic
cycle that we swap. In the coloring obtained after the swap, the component
Kv(3, 4) = {uu′, u′}, and it suffices to swap this component to obtain exactly
V−1(β′). Since V is a minimum cycle, this is a contradiction.

So j ̸= j + 1, and since the role of u and u′ is symmetric, we also have
that j′ ̸= j + 1. Therefore, inn the cycle V , there exists a vertex vj+1 and vj−1

such that |{u, u′, vj−1, vj′−1}| = 4. Without loss of generality, we assume that
β′(vu′) = mβ′

(vj′−1) = 5, and that β′(vu) = mβ′
(vj−1) = 6.

Case 6 (j ̸= j′ + 1).
For this case, we need to distinguish the cases based on the shape of
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C1,5 = Kuy1(1, 5). Since V is saturated in the coloring β′, by Proposition 2.5.14,
C1,5 also contains v and vj′−1, and therefore this component is a (1, 5)-path in
this coloring. Moreover, the fan V is tight by Observation 2.3.10, so Kvj−1

(2, 6)
contains vvj+1, and vu. Let C2,6 = Kvj−1

(2, 6) \ {vu, vvj+1}. The path C2,6 is a
(2, 6)-bichromatic path between vj+1 and vj−1.

There are two cases, in the coloring β′, either C1,5 is such that u is between
vj′−1 and y1, or y1 is between vj′−1 and u. We start both cases by swapping
C2,4 = Kw(2, 4) in the coloring β2, by Proposition 2.5.15 the vertex w belongs
to this component, and after the swap we have m(w) = m(x) = m(u) = 2. By
Proposition 2.5.13Xu(1) is a path that we invert to obtain a coloring β3 ({uu′}∪
(V \ {u}))-equivalent to β2.

In the coloring β3, depending on the shape ofC1,5, eitheru is inC = Kvj′−1
(1, 5),

or y1 belongs to this component. We now have to distinguish the cases. Both
cases are pretty similar, their proofs rely on the same principle: apply Kempe
swaps to reach a coloring where the edges of E(V)∪{vw′} induce two fans that
are cycles smaller than V (and that are invertible since V is minimum).

Subcase 6.1 (u belongs to C).
In this case, C = Kvj′−1

(1, 5) is a (1, 5)-bichromatic path between vj′−1 and u
and there is a (1, 5)-bichromatic path C ′ between y1 and u′.

From the coloring β3, we swap the component C to obtain a coloring β4
where the fanXv(5) = (vu′, vvj′+1, · · · , vvj−1, vu) is a cycle strictly smaller that
V , so since V is minimum, this cycle is invertible. Moreover, the fan Xv(1) =
(vx, vvj+1, · · · , vvj′−1) is also a cycle strictly smaller than V , and so it is also
invertible.

After inverting these two cycles, we obtain a coloring where the component
Kvj′−1

(1, 5) = C∪{vvj′−1, vu} is (1, 5)-bichromatic cycle that we swap back; we
denote by β5 the coloring obtained after the swap. Now the componentKy1(1, 5)
is exactly C ′ and we swap it to obtain a coloring β6.

In the coloring β6, the fan Xv(3) = (vu′, vu, vvj−1 · · · , vvj′+1) is now a
cycle strictly smaller than V , so we invert it. In the coloring obtained after
this inversion, the (2, 6)-bichromatic path C2,6 is still a path between vj+1 and
vj−1, but now vj−1 is missing the color 6, and vj+1 is missing the color 2. So
Kvj+1

(2, 6) = C2,6, and we swap this component. Let β7 be the coloring ob-
tained after the swap.

In the coloring β7, the fan Xv(1) = (vu′, vvj′+1, · · · , vvj−1, vx) is now a
cycle strictly smaller than V and we invert it. In the coloring obtained after the
inversion, Ky1(1, 5) is now exactly C ′, and we swap back this component adn
denote by β8 the coloring obtained after the swap.

In the coloring β8, the vertices y1 and u are both missing the color 1, so the
fan Xu(2) is now a path that we invert to obtain a coloring where u and w are
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missing the color 2. In the coloring obtained after the inversion, the component
Kvj+1

(2, 6) is exactly C2,6 ∪ {vvj−1, vu} and we swap back this component. In
the coloring obtained after the swap, the componentKw(2, 4) is exactlyC2,4, and
thus after swapping back this component, we obtain exactly V−1(β′); a contra-
diction.
Subcase 6.2 (y1 belongs to C).
In this case, C = Kvj′−1

(1, 5) is a (1, 5)-bichromatic path between vj′−1 and y1
and there is a (1, 5)-bichromatic path C ′ between u and u′. From the coloring β3,
we swap the componentC to obtain a coloringwhereXv(2) = (vvj+1, · · · , vvj′−1, vx)
is a cycle strictly smaller than V , so it is invertible. After inverting it, we obtain
a coloring where the component Kvj−1

(2, 6) is exactly C2,6. We swap this com-
ponent and denote by β4 the coloring obtained after the swap.

In the coloring β4, the fan Xv(1) = (vvj′−1, · · · , vvj+1, vu) is now a cy-
cle stricly smaller than V , so it is invertible. After inverting it, the component
Ku′(1, 5) is now exactlyC ′∪{vu′, vu} and so it is a (1, 5)-bichromatic cycle con-
taining vu and vu′. After swapping this component, we obtain a coloring where
the fan Xv(1) = (vu′, vvj′+1, · · · , vvj−1, vx) is now a cycle strictly smaller than
V , and we invert it. We denote by β5 the coloring obtained after the inversion.

In the coloring β5, the componentKvj′−1
(1, 5) is exactlyC , and we swap back

this component. After the swap we obtain a coloring where the fan Xv(5) =
(vu, vvj+1, · · · , vvj′−1) is now a cycle strictly smaller than V , and so we invert it
and denote by β6 the coloring obtained after the swap.

In the coloring β6, the component Ku′(1, 5) is now exactly C ′ and we swap
back this component. After the swap we obatin a coloring where u and y1 are
both missing the color 1, so the fan Xu(2) is now a path that we invert. We
denote by β7 the coloring obtained after the swap.

In the coloring β7 the component Kvj−1
(2, 6) is exactly C2,6 ∪ {vvj−1, vu}

and we swap it back. After the swap of this component, we obtain a coloring
where Kw(2, 4) is exactly C2,4. After swapping back this component, we obtain
exactly V−1(β′). This is a contradiction.

From the previous lemma we derive the following corollary.

Corollary 2.5.16. Let V = (vv1, · · · , vvk) be a minimum cycle in a coloring β,
u = vj and u′ = vj′ two vertices of V . If uu′ ∈ E(G) and β(uu′) = m(v), then no
fan around v is a path.

Proof. Assume that there exists a fan X around v which is a path. It suffices to
swap the last edge vx of X to obtain a coloring β2 (V ∪ {uu′})-equivalent to
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β such that Xv(β2(uu
′)) = {vx} is now a path (of length one). By Observa-

tion 2.3.9, the fan V is a minimum cycle in the coloring β2, so by Lemma 2.5.12,
we get a contradiction.

We are now ready to prove Lemma 2.5.11

Proof of Lemma 2.5.11. Without loss of generality, we assume that the vertices v,
u and u′ are respectively missing the colors 1, 2 and 3. By Lemma 2.3.13, the fan
U = Xu(m(u′)) is a cycle entangled with V , so the edge uu′ is in E(G). Assume
the β(uu′) ̸= 1.

We first prove that Xv(β(uu
′)) is a saturated cycle. If β(uu′) ∈ β(V), then

Xv(β(uu
′)) is exactly the fan V . Since V is minimum, by Lemma 2.3.4, it is satu-

rated, so Xv(β(uu
′)) is a saturated cycle as desired.

Hence assume that β(uu′) ̸∈ β(V), andwithout loss of generality, say β(uu′) =
4. By Lemma 2.5.12, then fan Xv(4) is not a path.

We nowprove thatXv(4) is not a comet. Suppose thatXv(4) = (vw1, · · · , vwt)
is a comet. So there exists i < t withm(wi) = m(wt), we denote by c this color.
If c ∈ β(V), the cycle V is a subfan of the fan Xv(4), and thus wt = M(V , c) ∈
V (V) and wi ̸∈ V (V). Since V is minimum, it is saturated by Lemma 2.3.4, so
wt ∈ Kv(1, c), and thus wi ̸∈ Kv(1, c). We now swap the component Kwi

(1, c)
and obtain a coloring β2 (V ∪ {uu′})-equivalent to β, so the cycle V is also a
minimum cycle in the coloring β2 by Observation 2.3.9. In the coloring β2, the
fanXv(β2(uu

′)) = Xv(4) is a now path, by Lemma 2.5.12 this is a contradiction.
So c ̸∈ β(V). The vertices wi and wt are not both part ofKv(1, c). If wi is not

inKv(1, c), we swapKwi
(1, c) and obtain a coloring β2, (V ∪ {uu′})-equivalent

to β. So the coloring β2, by Observation 2.3.9, the fan V is a minimum cycle. But
the fan Xv(4) = Xv(β2(uu

′)) is now a path, a contradiction by Lemma 2.5.12.
So the vertex wi belongs to the component Kv(1, c) and thus wt does not

belong to this component. We now swap Kwt(1, c) and obtain a coloring β2
which is (V ∪ {uu′})-equivalent to β. So by Observation 2.3.9, the fan V is still
the same minimum cycle in β2, but the fan Xv(4) = Xv(β2(uu

′)) is now a path,
again a contradiction by Lemma 2.5.12.

Therefore the fan Xv(4) is a cycle. We now prove that is it saturated. Note
that since Xv(4) is a cycle, β(Xv(4)) ∩ β(V) = {1}. Assume that Xv(4) =
(vw1, · · · , vwt) is not saturated, so there exists i such that wi ̸∈ Kv(1,m(wi)).
We now have to distinguish whether wi = wt or not.
Case 7 (wi ̸= wt).
This case is similar to the case where Xv(4) is a comet. In this case, the vertex
wi is missing a color which is not in {1, 2, 3, 4}, and we can assume without loss
of generality thatm(wi) = 5. Since wi does not belong toKv(1, 5), we swap the
componentKwi

(1, 5) to obtain a coloring β2 (V ∪ {uu′})-equivalent to β. In the

Graph Coloring and Recoloring 75



2.5. Cycles around v starting with u: a proof of Lemma 2.3.14

coloring β2, by Observation 2.3.9, the fan V is the same minimum cycle, but the
fan Xv(4) = (w1, · · · , wi) is now a path, a contradiction by Lemma 2.5.12.
Case 8 (wi = wt).
In this case, wt does not belong toKv(1, 4). We first swap the component C1,4 =
Kwt(1, 4). If uu′ ̸∈ C1,4, then we obtain a coloring β2 (V∪{uu′}) equivalent to β.
So by Observation 2.3.9, the fan V is a minimum cycle in the coloring β2, but now
the fan Xv(4) = Xv(β2(uu

′)) = (vw1, · · · , vwt) is now a path; a contradiction
by Lemma 2.5.12.

So the edge uu′ is in C1,4. After swapping C1,4, we obtain a coloring β2 (V)-
equivalent to β, so V is still a minimum cycle. But now β2(uu

′) = 1, and Xv(4)
is a path, so by Corollary 2.5.16, we have a contradiction.

Hence Xv(4) is a saturated cycle as desired.

The proof of P (0) is a direct consequence of the two previous lemmas.

Proof of Lemma 2.5.10. Let V be a minimum cycle around a vertex v in a coloring
β, u and u′ two vertices of V , U = Xu(m(u′)) = (uu1, · · · , uul), assume that
β(uu′) ̸= m(v) and let W = Xv(β(uul)) = (vw1, · · · , vws). Without loss of
generality, we assume that the vertices v, u and u′ are respectively missing the
colors 1, 2, and 3, and that the edge uu′ is colored 4.

We first prove thatW is a saturated cycle containing ul−1. By Lemma 2.5.11,
the fanW is a saturated cycle, and thus ws is missing the color 4. We now prove
that the fanW contains the vertex ul−1.

If 4 ∈ β(V), thenW = V , and since U is entanlged with V by Lemma 2.3.13,
we have that ul−1 = ws ∈ V = W . So the color 4 is not in β(V).

Assume that the fan W does not contain ul−1, so in particular, ul−1 ̸= ws.
The cycle W is saturated, so ws ∈ Kv(1, 4), and thus ul−1 ̸∈ Kv(1, 4). By
Lemma 2.5.19

• u ∈ Kul−1
(1, 4),

• there exists j ⩽ l − 1 such that β(uuj) = 1, and

• the subfan (uuj+1, · · · , uul−1) is a (V , u)-independent subfan.

We now consider the coloring β′ obtained from β after swapping the com-
ponent C1,4 = Kul−1

(1, 4). Let X = (uuj+1, · · · , uul−1). The coloring β′ is
(V ∪W∪(X \{ul−1}))-equivalent to β, so V is a minimum by Observation 2.3.9,
and W = Xv(4) is still a cycle. The vertex v is still missing the color 1, but now
the vertex ul−1 is missing the color 1, the edge uuj is colored 4, and the edge
uul is colored 1. So now Xu(4) = X ′ = (uuj, · · · , uui) is a (V , u)-independent
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subfan avoiding the vertex v. By Lemma 2.5.4 the fan Xv(4) is a path; a contra-
diction.

We now prove some properties of the fans around a vertex of a minimum
cycle.

2.5.3 Fans around the vertices of a minimum cycle

We first prove that some fans around a vertex of a minimum cycle are not paths.

Proposition 2.5.17. Let V = (v1, · · · , vk) be a minimum cycle in a coloring β,
u = vj and u′ = vj′ two vertices of V , and U = Xu(m(u′)) = (uu1, · · · , uul),
and w = us a vertex of U . Then for any color c ∈ β(V), the fan W = Xw(c) =
(ww1, · · · , wwt) is not a path.

Proof. Otherwise assume that the fan W is a path. The vertex w is not a vertex
of V (V), otherwise sinceW is a path, by Lemma 2.3.13 we have a contradiction.
So the vertex w is not in V (V).

We invert it until we reach a coloring β2 where mβ2(w) ∈ β(V ∪ U<s), we
denote by c′ this new missing color. Since c ∈ β(W), the color c′ is well defined.
The coloring β2 is (V ∪ U<s)-equivalent to β. Thus by Observation 2.3.9, the
sequence V is still a minimum cycle in the coloring β2. Let U ′ = Xu(m

β2(u′)) =
(uu′1, · · · , uu′l′). Since β2 is (U<s)-equivalent to β, we have that U<s = U ′

<s, so
the edge uw is also in E(U ′), it is exactly the edge uu′s. If c′ ∈ β(V), then U ′

is not entangled with V in the coloring β2, a contradiction by Lemma 2.3.13. If
c′ ∈ βU<s, then U ′ is now a comet in the coloring β2, again, by Lemma 2.3.13 we
have a contradiction.

Lemma 2.5.18. Let i ⩾ 0, V be a minimum cycle in a coloring β, u and u′ two
vertices of V , U = Xu(m(u′)) = (uu1, · · · , uul), and c ∈ β(V) ∪ β(U<ui

). If
ui ̸∈ V (V) ∪ {v}. Then the fan X = Xui

(c) = (uix1, · · · , uixs) is not a path.

Proof. Assume ui ̸∈ V (V) and that X is a path. Without loss of generality, we
assume that there is no edge in X[x2,xs] colored with a color in β(V) ∪ β(U<ui

),
otherwise, it suffices to consider the subfan of X starting with this edge, this fan
is also a path. We now invert X and obtain a coloring β′ where m(ui) = c. The
coloring β′ is (V ∪ U<ui

)-equivalent to β. So by Observation 2.3.9, the fan V is a
minimum cycle in the coloring β′. If c ∈ β(V), now the fan Xu(m(u′)) contains
the vertex ui which is missing the color c ∈ β(V), soXu(m(u′)) is not entangled
with V . Ifm(ui) ∈ β(U<ui

, let u′′ =M(U<ui
, c). ThenXu(m(u′)) is now a comet

since it contains the vertices ui and u′′ both missing the color c. In both cases,
by Lemma 2.3.13 we have a contradiction.
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We now prove a sufficient condition for a fan around a vertex of a minimum
to contain an edge colored with the color missing at the central vertex of the
minimum cycle.

Lemma 2.5.19. Let V be a minimum cycle in a coloring β, u and u′ two vertices of
V , U = Xu(m(u′)) = (uu1, · · · , uul) and i ⩽ l. If β(uui) ̸= m(v),m(ui) ̸∈ β(V)
and ui ̸∈ Kv(m(v),m(ui)), then:

• u ∈ Kui
(m(v),m(ui)),

• there exists j < i such that β(uuj) = m(v), and

• the subfan (uuj+1, · · · , uui) is a (V , u)-independent subfan.

Proof. Without loss of generality, we assume that the vertices v, u, and u′ are
respectively missing the colors 1, 2 and 3. Assume that ui ̸∈ Kv(1,m(ui)). Since
the cycle V is minimum, by Lemma 2.3.4 it is saturated, so for any u′′ ∈ V (V),
u′′ ∈ Kv(m(v),m(u′′)), thus ui ̸∈ V (V), so without loss of generality, we may
assume that ui is missing the color 4. We first consider the component C1,4 =
Kui

(1, 4). In the coloring β, by Lemma 2.3.13, U is a cycle entangled with V , so
it does not contain any other vertex missing 4. Since v ̸∈ C1,4, then V (C1,4) ∩
V (U) = {ui}. After swapping C1,4, we obtain a coloring β′ (V (U) \ {ui})-
identical to β where ui is now missing the color 1. Note that the coloring β′ is
also V-equivalent to β, and thus V is still a minimum cycle in β′. Moreover the
vertex v is still missing the color 1 in β′.

We first prove that the vertex u belongs to C1,4 and that there is an edge
colored 1 in {uu1, · · · , uui−1}. If u ̸∈ C1,4, or if there is no edge colored 1 in
{uu1, · · · , uui−1}, then the coloring β′ is also (E(U[uu1,uui]))-identical to β, and
soXu(3) now contains the vertex ui which is missing the color 1, soXu(3) is not
a cycle entangled with V . Since the cycle V is minimum, we have a contradiction
by Lemma 2.3.13. So u ∈ C1,4 and there is an edge uuj with j < i colored 1.

We now prove that (uuj+1, · · · , uui) is a (V , u)-idenpendent subfan. Note
that we have have j + 1 = i (i.e. the subfan is of length 1). Since β′ is (V (U) \
{ui})-identical to β, the sequence (uuj+1, · · · , uui) is a subfan. Assume that
there exists s ∈ {j + 1, · · · , i} such that β(uus) ∈ β(V). Then, in the coloring
β′, Xu(β(uus)) contains the vertex ui that is missing the color 1, thus it is not a
cycle entangled with V , by Lemma 2.3.13, this is a contradiction.

Lemma 2.5.20. Let V be a minimum cycle in a coloring β, u and u′ two vertices
of V , U = Xu(m(u′)) = (uu1, · · · , uul) and i ⩽ l such that m(ui) ̸∈ β(V). Let
β′ be a coloring obtained from β by swapping a (m(v), c)-component C that does
not contain v for some color c ̸∈ (β(U<ui

) ∪ {m(v)}). If there exists a coloring β′′

such that:
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• β′′ is (V ∪ U<ui
)-equivalent to β′, and

• mβ′′
(ui) ∈ β′′(V) ∪ β′′(U<ui

).

Then

• u ∈ C ,

• there exists j < i such that β(uuj) = m(v), and

• the subfan (uuj+1, · · · , uui) is a (V , u)-independent subfan in β.

Proof. Without loss of generality, we assume that the vertices v, u, and u′ are re-
spectively missing the colors 1, 2 and 3. Assume that there exists such a coloring
β′′. Note that since m(ui) ̸∈ β(V), the vertex ui is not in V . The cycle V is a
minimum cycle in β, so it is saturated by Lemma 2.3.4. Therefore, if c ∈ β(V),
then M(V , c) ∈ Kv(1, c), and thus M(V , c) ̸∈ C . So β′ is V (V)-equivalent to
β. Moreover, v ̸∈ C so β′ is also (E(V) ∪ {v})-equivalent to β. Therefore, the
coloring β′ is (V ∪ {v})-equivalent to β.

We first prove that the vertex u belongs to C and that there exists an edge
colored 1 in U<ui

. Assume that u does not belong to C , or that there is no edge
colored 1 in U<ui

in β. We show that β′′ is (V ∪ U<ui
)-equivalent to β. To prove

it, it suffices to prove that β′ is U<ui
-equivalent to β. The swap between β and β′

only changes the colors of edges colored 1 or c. Since {1, c} ∩ β(U<ui
) = ∅ this

means that the coloring β′ is U<ui
-equivalent to β. Since β′ is also (V ∪ {v})-

equivalent to β , in total it is (V ∪ U<ui
)-equivalent to β. Note that the missing

color of v may be different in β′ and β′′. Since β′′ is (V ∪ U<ui
)-equivalent to β′,

the coloring β′′ is (V ∪ U<ui
)-equivalent to β. Note that the missing color of v

may be different in β′ and β′′. Hence, in the coloring β′′, by Observation 2.3.9, the
cycle V is a minimum cycle and we have thatXu(m(u′)) now contains the vertex
ui which is missing a color in (β′′(V) ∪ β′′(U<ui

)). Let c′ be this color. Since the
cycle V is minimum in β′′, by Lemma 2.3.13,Xu(m(u′)) is a cycle entangled with
V . If c′ ∈ β′′(V), then Xu(m(u′)) is not entangled with V , and if c′ ∈ β′′(U<ui

)
then Xu(m(u′)) is a comet. In both cases, we have a contradiction. So u ∈ C ,
and there exists j < i such that β(uuj) = 1.

We now prove that the subfanX = (uuj+1, · · · , uui) is a (V , u)-independent
subfan in β. Note that we have have j + 1 = i (i.e. the subfan is of length 1). If
X is not a (V , u)-independent subfan, then there exists s ∈ {j + 1, · · · , i} such
that c′ ∈ β(uus) ∈ β(V). Recall that the coloring β′ is (V ∪ {v})-equivalent
to β, and thus that β′′ is also (V ∪ {v})-equivalent to β. In the coloring β′, the
edge uuj is now colored c, and this is the only edge in E(U<ui

) that has been
recolored during the swap of C . Moreover, the cycle V is minimum in β, and
thus by Lemma 2.3.13, then fan U is a cycle, and does not contain any vertex
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missing the color 1 in V (U[uj, ui]). Since c ̸∈ β(U<ui
), the coloring β′ is also

V (U[uj, ui])-equivalent to the coloring β, and so it is X -equivalent to β. The
coloring β′′ is U<ui

-equivalent to β′, so it is (X \ {ui}-equivalent to β and thus
the fan Xu(c

′) now starts with the edge uus and contains the vertex ui ̸∈ V (V)
which is missing a color in β(V) = β′′(V). Since V is also a minimum cycle in β′′,
by Lemma 2.3.13, Xv(c

′) is a cycle entangled with V ; this is a contradiction.

In the following section we prove some properties that are guaranteed if the
property P is true up to some i.

2.5.4 Properties guaranteed by P (i)
The following lemma guarantees that the last vertices of two cycles will be the
same.

Lemma 2.5.21. Let i ⩾ 0, V be a minimum cycle around a vertex v in a coloring β,
u and u′′ two vertices of V , U = Xβ

u (m
β(u′′)) = (uu1, · · · , uul), β′ a coloring (V∪

U[ul−(i−1)),ul] ∪
⋃

j∈[0,i−1]

Xv(β(uul−j))-equivalent to β and U ′ = Xβ′
u (mβ′

(u′′)) =

(uu′1, · · · , uu′s). If

• for any j < i P (j) is true, and

• {mβ(v),mβ′
(v)} ∩ β(U[ul−(i−1),ul])) = ∅

then for any t ⩽ i, ul−t = u′s−t.

Proof. Assume thatP (j) is true for all j < i, that {mβ(v),mβ′
(v)}∩β(U[ul−(i−1),ul])) =

∅ and that there exists t ⩽ i such that ul−t ̸= us−t, without loss of generality,
we may assume that such a t is minimum. The cycle V is a minimum cycle in
β, and β′ is V-equivalent to β, so by Observation 2.3.9, the cycle V is also a
minimum cycle in the coloring β′. Therefore by Lemma 2.3.13, the fans U and
U ′ are both cycles entangled with V respectively in β and β′. Note that since
mβ(v) ̸∈ β(U[ul−(i−1),ul])), and that P (j) is true for all j < i, for all j < i, the
fan Xv(β(uul−j) is a cycle containing ul−j−1. Moreover, this also means that
no vertex in V (U[ul−i,ul]) is missing the color m(v), and thus none of them is v.
Therefore the vertex v may be missing a different color in β and in β′. Note also
that, in the coloring β, the edge uul−i may be coloredmβ(v) ormβ′

(v).
We first show that t ̸= 0. Since the fans U and U ′ are both cycles we have

mβ(ul) = mβ′
(us) = mβ(u′′), and moreover, U and U ′ are entangled with V so

ul = u′′ = u′s, and thus t ̸= 0.
Since t isminimum, ul−(t−1) = u′s−(t−1). Moreover, β′ isU[ul−(i−1),ul]-equivalent

to β, so in particular β(uul−(t−1)) = β′(uul−(t−1)) = β′(uu′s−(t−1)), without
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loss of generality, we assume that this color is 1. This means that both the
vertices ul−t and u′s−t are missing the color 1. To reach a contradiction we
show that both these vertices belong to a same cycle. Since 1 ̸= mβ(v) and
P (t − 1) is true, then Xβ(1) is a cycle containing ul−t. Similarly 1 ̸= mβ′

(v)
and P (t − 1) is true so Xβ′

v (1) is a cycle containing u′s−t. However, the col-
oring β′ is (

⋃
j∈[0,i−1]

Xv(β(uul−j))-equivalent to the coloring β, so in particular

Xβ
v (1) = Xβ′

v (1); we denote byX this fan. The fanX is a cycle and contains two
vertices ul−t and us−t that are both missing the color 1, this is a contradiction.

Now we prove that we can guarantee that there is no path around the central
vertex of a minimum cycle

Lemma 2.5.22. Let i ⩾ 0, V be a minimum cycle around a vertex v in a coloring
β, u and u′′ two vertices of V , U = Xβ

u (m(u′′)) = (uu1, · · · , uul), and X =
(vx1, · · · , vxs) a fan around v. If

• for any j < i P (j) is true,

• Pweak(i) is true, and

• β(uul−i) = m(v),

then X is not a path.

Proof. Without loss of generality we assume that m(v) = 1. Assume that for
any j < i P (j) is true, that Pweak(i) is true, that β(uul−i) = m(v) and that X is
a path. The fan X is a path so the vertex xs is also missing the color 1, without
loss of generality, we assume that β(vxs) = 2. Note that this means that Xv(2)
is also a path (of length 1). The cycle V is minimum and by Lemma 2.3.13 the fan
U is a cycle entangled with V . Since β(uul−i) = 1, no edge in E(U[ul−(i−1),ul]) is
colored 1. Since P (j) is true for all j < i, Xv(β(uul−j) is a cycle for all j < i;
since Xv(2) is a path, no edge in E(U[ul−(i−1),ul]) is colored 2 either.

We now consider the coloring β′ obtained from β by swapping the edge vxs.
Note that in the coloring β′, the vertex v is now missing the color 2, and the fan
Xβ′

v (1) is now a path (of length 1). The coloring β′ is clearly V-equivalent to β
so by Observation 2.3.9, the fan V is a minimum cycle in the coloring β′. Let
U ′ = Xβ′

u (m(u′′)) = (uu′1, · · · , uu′s)). No edge in E(U[ul−(i−1),ul]) is colored 1, so
no vertex in V (U[ul−i,ul]) is missing the color 1, and thus β′ is also U[ul−(i−1)),ul]-
equivalent to β. Finally since no edge in E(U[ul−(i−1),ul]) is colored 1 and P (j)
is true for all j < i, the fans Xv(β(uul−j)) are cycles for all j < i. Therefore
the coloring β′ is also (

⋃
j∈[0,i−1]

Xv(β(uul−j))-equivalent to β. By Lemma 2.5.21,
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for any t ⩽ i ul−t = u′s−t, so in particular ul−i = u′s−i. In the coloring β′ the
edge uus−i is still colored 1, and now the vertex v is missing the color 2. Since
Pweak(i) is true the fan Xβ′

v (1) is not a path, this is a contradiction.

The next lemma deals with (V , u)-independent cycles.

Lemma 2.5.23. Let i ⩾ 0, V be a minimum cycle in a coloring β, u and u′ two
vertices of V , U = Xu(m(u′) = (uu1, · · · , uul), h ⩽ i such that β(uul−h) =
m(v), c′ a color not in β(V) such that Y = Xu(c

′) = (uy1, · · · , uyr) is a (V , u)-
independent cycle different from U and X = Xv(c

′) = (vx1, · · · , vxs) is a cycle
different from V with yr = xs = z, and c′′ a color in β(V). If P (j) is true for all
j ⩽ i, then Z = Xz(c

′′) is not a path.

Proof. Without loss of generality, we assume that the vertices v, u and u′ are re-
spectively missing the colors 1, 2, and 3; we also assume that c′ = 4. Note that
since U and Y are different cycles, we have β(U) ∩ β(Y) = {m(u)} = {2}, and
sinceX and V are different cycles, we have that β(V)∩β(X ) = {m(v)} = 1. As-
sume that the fanZ is a path. The fan V is a minimum cycle, so by Lemma 2.3.13,
the fan U is a cycle entangled with V , and thus ul = u′.

We first invert Z until we reach a coloring β′ where m(z) = c ∈ (β(V) ∪
β(X )∪β(Y))\{4}. The coloring β′ is V-equivalent to β, so by Observation 2.3.9,
the cycle V is the same minimum cycle in the coloring β′. The coloring β′ is also
U-equivalent to β, so, in the coloring β′, the fan Xu(3) is exactly U . Since the
property P (j) is true for all j ⩽ h, for any j ⩽ h such that β(uul−j) ̸= 1, the
fan Xv(β(uul−j)) is a saturated cycle containing ul−j−1.

We first show that c ̸∈ β(V). Otherwise, assume that c ∈ β(V), then c ̸∈
β(Y) since Y is a (V , u)-independent cycle, and c ̸ β(X ) since X is different
from V . So the coloring β′ is (X ∪ Y \ {z})-equivalent to β. Hence, in the
coloring β′, the fans Xu(4) and Xv(4) still contain the vertex z. If c = 1, then
in the coloring β′, since the fan Xu(4) still contains the vertex z, we have that
Xu(4)⩽z is a (V , u)-independent subfan avoiding v. However, the fan Xv(4) is
now a path containing z, by Lemma 2.5.4, we have a contradiction. So c ̸ 1. Since
the fan V is a minimum cycle in the coloring β′, it is saturated by Lemma 2.3.4,
thus z ̸∈ Kv(1, c). We now swap the component C1,c = Kz(1, c), and denote by
β′′ the coloring obtained after the swap. The coloring β′′ is V-equivalent to β′, so
V is still a minimum cycle in the coloring β′′ by Observation 2.3.9. The coloring
β′′ is also (Xu(4)⩽z) ∪ Xv(4))-equivalent to β′, so the fan Xu(4) still contains
the vertex z which is now missing the color 1. Similarly to the previous case,
the subfan Xu(4)⩽z is now a (V , u)-independent subfan avoiding v, and Xv(4)
is now a path; again by Lemma 2.5.4, we have a contradiction. Without loss of
generality, we assume that c = 5.
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Case 9 (5 ̸∈ β(X )).
In this case, the coloring β′ is (X \ {z})-equivalent to β, and so in the coloring
β′, the fan Xv(4) still contains the vertex z which is now missing the color 5.
Subcase 9.1 (5 ∈ β(U<ul−h

)).
Let z′ be the vertex of U<ul−h

missing the color 5. If the vertex z′ does not belong
to Kv(1, 5), then we swap the component C1,5 = Kz′(1, 5), and denote by β′′

the coloring obtained after the swap. The coloring β′′ is clearly V-equivalent to
β′, so by Observation 2.3.9, the cycle V is still the same minimum cycle in the
coloring β′′. Since in the coloring β′, there is no edge colored 1 or 5 in U<ul−h

, the
coloring β′′ is also U<ul−h

-equivalent to β′. So in the coloring β′′, the fan Xu(3)
still contains the vertex z′ which is now missing the color 1, and thus Xu(3) is
not entangled with V . By Lemma 2.3.13, we have a contradiction. So the vertex
z′ belongs toKv(1, 5), and thus the vertex z does not belong toKv(1, 5). We now
swap the component C1,5 = Kz(1, 5), and denote by β′′ the coloring obtained
after the swap. The coloring β′′ is also V-equivalent to β′, so the fan V is a
minimum cycle in the coloring β′′. Moreover, since 5 ∈ β(U<ul−h

), 5 ̸∈ β(Y). We
also have that 5 ̸∈ β(X ), so in total, the coloring β′′ is (Y ∪X \ {z})-equivalent
to the coloring β′. This means that in the coloring β′′, the fanXu(4) still contains
the vertex z which is nowmissing the color 1, soXu(4)⩽z is a (V , u)-independent
subfan avoiding v. We also have that the fanXv(4) is now a path containing the
vertex z, so by Lemma 2.5.4 we have a contradiction.
Subcase 9.2 (5 ∈ β(U⩾ul−h

)).
Let s be such that m(ul−s) = 5. The fan Xv(5) is a saturated cycle containing
ul−s, so the vertex ul−s belongs to the componentKv(1, 5), and the vertex z does
not belong to this component. We now swap the componentKz(1, 5) and denote
by β′′ the coloring obtained after the swap. Since the color 5 is not in β(Xv(4)),
the coloring β′′ is (Xv(4) \ {z})-equivalent to β′. So in the coloring β′′, the
fan Xv(4) still contains the vertex z which is missing the color 1, so it is now
a path. Since the color 5 is in β(U>ul−h

), it is not in β(Y), so the coloring β′′ is
(Xu(4) \ {z})-equivalent to β′, and thusXu(4) still contains the vertex z. So the
subfanXu(4)⩽z is now a (V , u)-independent subfan avoiding v. By Lemma 2.5.4,
the fan Xv(4) is a path not containing z; a contradiction.
Subcase 9.3 (5 ∈ β(Y)).
Let z′ be the vertex of Y missing the color 5 in the coloring β. The vertices z
and z′ are both missing the color 5 in the coloring β′, so at least one of them is
not in Kv(1, 5). If the vertex z is not in Kv(1, 5), then we swap the component
C1,5 = Kz(1, 5), and denote by β′′ the coloring obtained after the swap. The
coloring β′′ is V-equivalent to β′, so the cycle V is the same minimum cycle in
the coloring β′′ by Observation 2.3.9.

If the vertex u does not belong to C1,5, then the fan Xu(5) now contains the
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vertex z which is missing the color 1. ThusXu(5)⩽z is now a (V , u)-independent
subfan avoiding v, and by Lemma 2.5.4, the fanXv(5) is a path. However, β′′(uul−h) =
β(uul−h) = 1, and the property P (j) is true for all j ⩽ h, so by Lemma 2.5.22,
there is no path around v. This is a contradiction.

So the vertex u belogns to C1,5, and now Xu(1) contains the vertex z which
is missing the color 1. So Xu(1) is not entangled with V , and by Lemma 2.3.13,
we also have a contradiction.
Case 10 (5 ∈ β(X )). Let z′ be the vertex of X missing the color 5 in the coloring
β.
Subcase 10.1 (5 ∈ β(U<ul−h

)).
Let z′′ be the vertex of U<ul−h

missing the color 5 in the coloring β. Note that
we may have z′′ = z′. The vertices z and z′′ are both missing the color 5 in
the coloring β′, so they are not both part of Kv(1, 5). If z′′ is not in Kv(1, 5),
then we swap Kz′′(1, 5), and denote by β′′ the coloring obtained after the swap.
The coloring β′′ is V-equivalent to β′, so by Observation 2.3.9, the cycle V is the
same minimum cycle in the coloring β′′. Since there is no edge colored 1 or 5 in
E(U⩽z′′), the coloring β′′ is also U⩽z′′-equivalent to the coloring β′, soXu(3) still
contains the vertex z′′ which is now missing the color 1, so it is not entangled
with V , by Lemma 2.3.13, this is a contradiction.

So the vertex z′′ belongs toKv(1, 5), and thus the vertex z does not belong to
this component. We swap the component C1,5 = Kz1, 5, and denote by β′′ the
coloring obtained after the swap. In the coloring β′′, the fan Xv(5) still contains
the vertex z which is missing the color 1, so this fan is now a path. If the vertex u
does not belong to C1,5, then β′′(uul−h) = 1. Since the property P (j) is true for
all j ⩽ h, there is no path around v, a contradiction. So the vertex u belongs to
C1,5. Now in the coloring β′′, the fan U ′ = Xu(3) = (uu′1, · · · , uu′l′) is smaller,
but for any j ⩽ h, we still have that ul−j = u′l′−j ∈ V (U ′). Note that we have
z′′ = u′l′−h−1. So we have U ′ = (uu′1, · · · , uu′l−h−1 = uz′′, uul−h, · · · , uul). Since
the property P (j) is true for all j ⩽ h, the fanXv(β(uul−h)) = Xv(5) is a cycle,
a contradiction.
Subcase 10.2 (5 ∈ β(U>ul−h

)).
Let s be such that mβ(ul−s) = 5. In the coloring β, since the property P (s) is
true, the fan Xv(5) is a saturated cycle containing us. But the color 5 is in X , so
the fanXv(5) also contains the vertex z, and thusXv(5) = X . In the coloring β′,
the fan Xv(5) still contains the vertex z which is now missing the color 5. Since
the property P (s) is true, the cycleXv(5) is a a cycle containing the vertex ul−s,
so we have a contradiction.
Subcase 10.3 (5 ∈ β(Y)).
Let z′′ be the vertex of Y missing the color 5 in the coloring β. Note that we
may have z′′ = z′. Since the vertices z and z′′ are both missing the color 5 in
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the coloring β′, they are not both part of Kv(1, 5). If z is not in Kv(1, 5), then
we swap the componentKz(1, 5) = C1,5 and denote by β′′ the coloring obtained
after the swap. The coloring β′′ is V-equivalent to β′, so by Observation 2.3.9, the
cycle V is the same minimum cycle in the coloring β′′. Moreover, the coloring
β′′ is also (Xv(5) \ {z})-equivalent to β′, so this fan is now a path containing z.

If the vertex u does not belong to C1,5, then the coloring β′′ is (Xu(5) \ {z})-
equivalent to β′, and thusXu(5) still contains the vertex z which is now missing
the color 1. So the subfanXu(<)⩽z is now a (V , u)-independent subfan avoiding
v, and it also contains z, by Lemma 2.5.4, the fan Xv(5) is a path that does not
contain z, a contradiction.

So the vertex u belogns to C1,5, and now in the coloring β′′, the fan Xu(1)
contains the vertex z which is missing the color 1. So this fan is not entangled
with V , by Lemma 2.3.13, we also have a contradiction.
Subcase 10.4 (5 ̸∈ (β(Y) ∪ β(U))).
The vertices z and z′ are both missing the color 5, so at least one of them is not
in Kv(1, 5).

If the vertex z is not in Kv(1, 5), since P (j) is true for all j ⩽ h, then for
all j ⩽ h, the vertex z is not in Xv(β(uul−j)). We now swap the component
C1,5 = Kz(1, 5) to obtain a coloring β′′ where the subfanXu(4) is now a (V , u)-
independent subfan avoiding v. The coloring β′′ is V-equivalent to β′, so by
Observation 2.3.9 the cycle V is the same minimum cycle in the coloring β′. By
Lemma 2.5.4, the fan Xv(4) is now a path that does not contain z. Since for all
j ⩽ h, P (j) is true and z does not belong toXv(β(uul−j), the coloring β′′ is also
(

⋃
j∈[0,h]

Xv(β(uul−j)))-equivalent to the coloring β′.

If the vertex u does not belong to C1,5, then the coloring β′′ is also U equiva-
lent to the coloring β′. The edge uul−h is still colored 1, and the property P (j) is
true for all j ⩽ h. By Lemma 2.5.22 there is no path around v, a contradiction. So
the vertex u belongs to the component C1,5, and the edge uul−h is now colored
5. Let U ′ = Xβ′′

u (3) = (uu′1, · · · , uu′l′). Since z ̸∈ Xv(β(uul−j)) for all j ⩽ h, the
coloring β′′ is (

⋃
j∈[0,h]

Xv(β(uul−j)))-equivalent to the coloring β′, and it is also

U>ul−h
-equivalent to the coloring β′, so by Lemma 2.5.21, for all j ⩽ h, we have

u′l−j = ul−j . In particular, u′l−h = ul−h. The coloring β′′ is Xu(5)<z-equivalent
to the coloring β′, so in the coloring β′′, the fanXu(5) still contains the vertex z
which is now missing the color 1, therefore the fan Xu(5) is a path. Since P (h)
is true, we have a contradiction.

So the vertex z belongs to Kv(1, 5), and the vertex z′ does not belong to
this component. We now swap the component C1,5 = Kz′(1, 5), and obtain a
coloring β′′ that is V-equivalent to β′. By Observation 2.3.9, the fan V is the same
minimum cycle in the coloring β′′. Since the property P (j) is true for all j ⩽ h,
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and z′ is not inKv(1, 5), then for all j ⩽ h, the vertex z′ is not in Xv(β(uul−j)),
and the coloring β′′ is (

⋃
j∈[0,h]

Xv(β(uul−j)))-equivalent to the coloring β′. In the

coloring β′′, the fan Xv(4) is now a path, so similarly to the previous case, the
vertex u belongs to the component C1,5. Therefore, in the coloring β′′, the edge
uul−h is colored 5.

Let U ′ = (uu′1, · · · , uu′l′). Since the coloring β′′ is (
⋃

j∈[0,h]
Xv(β(uul−j)))-

equivalent to the coloring β′, by Lemma 2.5.21, for any j ⩽ h we have u′l′−j =
ul−j . The coloring β′′ is U⩽v equivalent to β′, so v is in U ′′, and thus we have
Xu(1) = Xu(5) = U ′. So there exists a vertex z′′ missing the color 5 in the fan
Xu(1). Note that since m(z′) = 1 and m(z′′) = 5 we have z ̸= z′′, however, we
may have z′′ = z, and in this case there exists a vertex in Xu(1) missing a color
in β(Xu(4)⩽z). We now have to distinguish the cases.
Subsubcase 10.4.1 (z′′ ̸= z).
We consider the coloring β′. In this coloring, the vertex z′′ is in Xu(5) since u
is in C1,5. If the vertex z′′ also belongs to C1,5, then now Xu(5)⩽z′′ is a subfan
avoiding v. If there is en edge uu′′ in E(Xu(5)⩽z′′) colored with a color in β′(V)
then the fanXu(β

′(uu′′))) is not entangled with V , and by Lemma 2.3.13 we have
a contradiction. So the subfanXu(5)⩽z′′ is a (V , u)-independent subfan avoiding
v. By Lemma 2.5.4 the fan Xv(5) is a path, however, in the coloring β′ the fan
Xv(5) still contains the vertex z that is misisng the color 5, soXv(5) is a cycle, a
contradiction.

So the vertex z′′ does not belong to C1,5, and thus is still missing the color 5
in the coloring β′. We now swap the component Kz′′(1, 5) to obtain a coloring
βf whereXu(5)⩽z′′ is a (V , u)-independent subfan avoiding v, and whereXu(5)
is a cycle. Again by Lemma 2.5.4 we have a contradiction.
Subsubcase 10.4.2 (z′′ = z′).
So there exists a vertex w in Xu(5) such that m(w) ∈ β′(Xu(4)⩽z) and w ̸∈
V (Xu(4)⩽z). We now need to distinguish whether or notm(w) = 4.
Subsubsubcase 10.4.1 (m(w) ̸= 4).
In this case, without loss of generality, assume thatm(w) = 6, and let w′ be the
vertex of Xv(4)⩽z missing the color 6. The vertices w and w′ are both misisng
the color 6, so they are not both part of Kv(1, 6).

If w′ is not in Kv(1, 6), then we swap C1,6 = Kw′(1, 6) to obtain a coloring
β′′ where Xu(4)⩽w′ is a (V , u)-independent subfan avoiding v. The coloring β′′

is V-equivalent to V , so the fan V is still the same minimum cycle in the coloring
β′ by Observation 2.3.9. So by Lemma 2.5.4 the fan Xv(4) is a path that does
not contain w′. If the vertex u does not belong to C1,6, then the coloring β′′ is
U-equivalent to β′, the property P (j) is true for all j ⩽ h and β′′(uul−h) = 1 so
by Lemma 2.5.22 there is no path around v, a contradiction.
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So the vertex u belongs to C1,6, and we have β′′(uul−h) = 6. Let U ′ =
Xβ′′

u (3) = (uu′1, · · · , uu′l′). The coloring β′′ is (
⋃

j∈[0,h]
Xv(β(uul−j)))-equivalent

to the coloring β′ and is U>ul−h
-equivalent to the coloring β′ so by Lemma 2.5.21,

for all j ⩽ h we have u′l′−j = ul−j . In the coloring β′, the fanXv(4) contains the
vertex z′ missing the color 5, and the fanXv(5) is a cycle that contains the vertex
z, and in the coloring β′′, the fan Xu(4) is a path. So there exists a vertex w′′ in
Xv(4) that is missing the color 6 in the coloring β′ and that belongs to C1,6. this
vertex is now missing the color 1 in the coloring β′′. If w′′ is in Xβ′

v (4)⩽z′ , then
the fan Xβ′′

v (6) is now a comet containing two vertices (z and z′) missing the
color 5. Since the property P (h) is true, we have a contradiction. So the vertex
w′′ si in Xβ′

v (5). But now, in the coloring β′′, the fan Xv(6) contains the vertex
z which is still missing the color 5, and the fanXv(5) is a path, so the fanXv(6)
is a path. Again since P (h) is true, we have a contradiction. So the vertex w′

belongs to Kv(1, 6).
Therefore, the vertexw does not belong toKv(1, 6), and we swap the compo-

nentC1,6 = Kw(1, 6) to obtain a coloring β′′ whereXu(5)⩽w is a subfan avoiding
v. The coloring β′′ is V-equivalent to the coloring β′, so by Observation 2.3.9, the
fan V is the same minimum cycle in the coloring β′′. Similarly to the previous
case, the subfanXu(5)⩽w is a (V , u)-independent subfan avoiding v, soXv(5) is
a path, and the vertex u belongs to C1,6. Since the vertex z is still missing the
color 5, it means that in the coloring β′′ the fanXu(1) now contains the vertex w
which is missing the color 1, and so it is not entangled with V . By Lemma 2.3.13
we have a contradiction.
Subsubsubcase 10.4.2 (m(w) = 4).
Since the fan Y = Xz(5) is a path in the coloring β, the fan Xz(4) is a path
in the coloring β′. In the coloring β′ we invert the path Xz(5) until we reach
a coloring where m(z) ∈ β′(Xu(5)⩽w) and denote by β′′ the coloring obtained
after the inversion. Note that since 4 ∈ β′(Xz(5)) ∩ β(Xu(5)⩽w) the inversion
is well defined. The coloring β′′ is V-equivalent to β′ so the fan V is the same
minimum cycle in the coloring β′′. The coloring β′′ is also U-equivalent to β′,
so Xβ′′

u (3) = U and since P (j) is true for all j ⩽ h, the fan Xv(β
′′(uul−j)) is a

saturated cycle if β′′(uul−j) ̸= 1. The coloring β′′ is (Xv(4) \ {z})-equivalent to
β′, so the fanXv(4) still contains the vertex z′ which is missing 5, and the vertex
z. Finally, the coloring β′′ isXu(5)⩽w-equivalent to the coloring β′. Let cz be the
missing color of z in β′′, and let w′ be the vertex of Xu(5)⩽w missing the color
cz . Note that is cz = 4, then we have w′ = w.

The proof is similar to the previous case, and we now consider the compo-
nents of K(1, cz). The vertices z and w′ are both missing the color cz so at least
of them is not in Kv(1, cz). If the vertex z is not in Kv(1, cz), then we swap
the component C1,cz = Kz(1, cz) to obtain a coloring βf that is V-equivalent
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to β′′. By Observation 2.3.7 the fan V is the same minimum cycle in the col-
oring βf , and now Xu(4)⩽z is a (V , u)-independent subfan avoiding v, so by
Lemma 2.5.4 the fan Xv(4) is now a path not containing z. Note that the color-
ing βf is also (

⋃
j∈[0,h]

Xv(β(uul−j)))-equivalent to the coloring β′′. If the vertex

u does not belong to C1,cz , then the coloring βf is U-equivalent to β′′, and in
particular βf (uul−h) = 1. Since P (j) is true for all j ⩽ h, by Lemma 2.5.22 there
is no path around v, a contradiction.

So the vertex u belongs toC1,cz , and now βf (uul−h) = 6. Since the fanXv(4)
is now a path that does not contain z, it means that in the coloring β′′ there is
a vertex w′′ in Xv(4) which is missing the color cz and which also belongs to
C1,cz . It means that in the coloring βf , the fan Xv(cz) is now a path containing
z. Let U ′ = X

βf
u (3) = (uu′1, · · · , uu′l′). The coloring βf is U>ul−h

-equivalent to
β′′ and is also (

⋃
j∈[0,h]

Xv(β(uul−j)))-equivalent to β′′, so for all j ⩽ h, we have

u′l′−j = ul−j by Lemma 2.5.21. In particular u′l−h = ul−h. Since P (h) is true, and
βf (uu

′
l′−h) = cz , the fan Xv(cz) is a cycle, a contradiction.

So the vertex z belongs toKv(1, cz) and the vertex w′ does not belong to this
component. We now swap the component C1,cz = Kw(1, cz) and denote by βf
the coloring obtained after the swap. The coloring βf is V-equivalent to β′′ so
by Observation 2.3.7 the fan V is the same minimum cycle in the coloring βf .
The coloring βf is also (

⋃
j∈[0,h]

Xv(β(uul−j)))-equivalent to the coloring β′′. In

the coloring βf the subfan Xu(5)⩽w′ is now a subfan avoiding v. If there is an
edge uu′′ inE(Xu(5)⩽w′) colored with a color in βf (V), thenXu(βf (uu

′′)) is not
entangled with V and by Lemma 2.3.13 we have a contradiction. So the subfan
Xu(5)⩽w′ is a (V , u)-independent subfan avoiding v and thus by Lemma 2.5.4
the fan Xv(5) is now a path that does not contain w′. Similarly to the previous
case, this means that the vertex u belongs to the component C1,cz , and thus that
βf (uul−h) = cz . The fan Xv(5) still contains the vertex z which is missing the
color cz , and the fan Xv(5) is a path, so the fan Xv(cz) is a path. Let U ′ =

X
βf
u (3) = (uu′1, · · · , uu′l′). Since P (j) is true for all j ⩽ h and since the coloring

βf is (
⋃

j∈[0,h]
Xv(β(uul−j)))-equivalent to the coloring β′′, by Lemma 2.5.21 for

j ⩽ h, we have u′l′−j = ul−j . In particular, u′l−h = ul−h. The edge uu′l′−h is now
colored cz and the property P (h) is true, so the fan Xv(cz) is a cycle. This is a
contradiction.

Before proving the induction step of the proof we need to introduce a new
property implied by P (i).
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2.5.5 The property Q(i)

Definition 2.5.24. Let i ⩾ 0, we define the property Q(i) as follows:
For any minimum cycle V in a coloring β, for any pair of vertices u and u′ of

V , let U = Xu(m(u′)) = (uu1, · · · , uul). If β(uul−i) ̸= m(v), then for any color
c ∈ β(V), the fan Xul−i−1

(c) is a cycle entangled with V and U⩾ul−i−2
.

We now prove that the property Q(i) is implied by the property P (i). And
we first prove th following lemma concerning saturated cycles around the centrel
vertex of a minimum cycle.

Lemma 2.5.25. Let V = (vv1, · · · , vvk) be a minimum cycle in a coloring β,
u = vj and u′ = vj′ two vertices of V and W = (vw1, · · · , vwt) a saturated cycle
around v. Then the fansW and U = Xu(m(u′)) are entangled.

Proof. By Lemma 2.3.13, the fan U is a cycle entangled with V , so ifW = V , the
fans W and U are entangled as desired. So assume that W ̸= V and that W is
not entangled with U . Without loss of generality, we assume that the vertices
v, u and u′ are respectively missing the colors 1, 2, and 3. Since W ≠ V and
W is centered at v, we have that β(W) ∩ β(V) = {1}. Since W and U are
not entangled, there exists c ∈ β(U) ∩ β(W) such that M(U , c) ̸= M(W , c).
Without loss of generality, since c ̸∈ {1, 2, 3}, we assume that c = 4 and that
ui = M(U , 4) is the first such vertex in U ; up to shifting the indices in W , we
also assume thatm(wt) = 4, and thus that W = Xv(4).

Since the cycleW is saturated, the vertexwt belongs toKv(1, 4), so the vertex
z does not belong to Kv(1, 4). We swap the component C1,4 = Kz(1, 4) and
denote by β2 the coloring obtained after the swap.

If u ̸∈ C1,4, or there is no edge colored 1 in U<i, then the coloring β2 is
(V∪W∪U<i)-equivalent to β. Hence, in the coloring β2, the fan V is a minimum
cycle by Observation 2.3.9, but now the fan Xu(m(u′) = (uu1, ·, uui) is now a
path, by Lemma 2.3.13, this is a contradiction.

So u ∈ C1,4, and there is an edge colored 1 in U<i. Since by Lemma 2.3.13,
the cycle U is entangled with V , the edge uvj−1 and the edge uv are inE(U). We
denote by x the vertex connected to u y the edge colored 1 and by cj−1 themissing
color of vj−1 in β. Note that we may have vj−1 = u′, and thus cj−1 = 2. The fan
U is of the form (uu1, · · · , uvj−1, uv, ux, · · · , uui, · · · , uu′). The coloring β2 is
(V)- equivalent to β, so by Observation 2.3.9, the cycle V is a minimum cycle in
β2. But now the fanXu(4) is a comet where v and ui are missing the same color 1,
more precisely, Xu(4) = (ux, · · · , uui, · · · , uu′, uu1, · · · , uvj−1, uv). Note that
Xu(3) is a cycle which is a subsequence ofXu(4). If there is an edge colored with
a color c ∈ β(V) in Xu(4) between the edges ux and uui, then the fan Xv(c) is
a comet, which is a contradiction by Lemma 2.3.13.
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So there is no edge colored with a color c ∈ β(V) inXu(4) between the edges
ux and uui. Since the fan V is a minimum cycle, it is saturated by Lemma 2.3.4,
so u ∈ Kv(1, 2), and thus ui ̸∈ Kv(1, 2). We now swap the componentKui

(1, 2)
to obtain a coloring β3. The coloring β3 is (V ∪W)-equivalent to β2, so the fan
V is a minimum cycle in β3 by Observation 2.3.9.

We now show that V is invertible in the coloring β3. The cycle V is tight by
Observation 2.3.10, so the vertexu belongs to the componentC2,j−1 = Kvj−1

(2, cj−1),
thus the edges vu and vvj+1 also belong to C2,j−1. In the coloring β3, the fan
Xu(4) is now a path that we invert until we reach a coloring β4 where m(u) ∈
β(W). Note that since 4 ∈ β(W), the inversion is well-defined and moreover,
since β3 is also (W)-equivalent to β, we have β3(W) = β(W). Since u ̸∈ W ,
by Observation 2.3.6, the coloring β4 is (W)-equivalent to β3, so W is still the
same cycle in β4. Moreover, since β3(Xu(4)) ∩ β3(V) = {2}, the coloring β4 is
(V \ {u} ∪ C2,j−1)-equivalent to β3.

We denote by ws the vertex of W such that mβ4(u) = mβ4(ws), and we
denote by cs this missing color. Note that we may have that wt = ws, and thus
cs = 4. The vertices u and ws are missing the same color cs, so they are not both
part of the component Kv(1, cs) and we now have to distinguish the cases.

Case 11 (u ̸∈ Kv(1, cs)). In this case, we swap the component C1,cs = Ku(1, cs)
and obtain a coloring that we denote by β5. Since {1, cs, 2, cj−1} = 4, the col-
oring β5 is (C2,j−1)-equivalent to β4, so it is (C2,j−1)-equivalent to β3. In the
coloring β5, the vertex u is now missing the color 1, so the fan Xv(m(u)) =
(vvj+1, · · · , vvj−1, vu) is now a path that we invert, we denote by β6 the color-
ing obtained after the inversion. In the coloring β6, the vertices vj+1 and v are
missing the color 2, and the vertex u is missing the color cj−1. So now the com-
ponent C ′

2,j−1 = Kvj′−1
is exactly C2,j−1 ∪ {vvj−1} \ {vu, vvj+1} and we swap

it. After this swap, the vertices v and u are missing the same color cj−1, and
the edge uv is colroed 1; we swap this edge and we denote by β7 the coloring
obtained after the swap. In the coloring β7, the vertex u is missing the color 1, so
the componentKu(1, cs) is now exactly C1,cs , so we swap back this component.
Note that since {1, 2, cs, cj−1} = 4, we can swap back C1,cs before C ′

2,j−1. In the
coloring obtained after the swap, the fanXu(2) is now a path that we invert, and
we denote by β8 the coloring obtained after the inversion. In the coloring β8,
the vertex u is now missing the color 2, so the componentKvj−1

(2, cj−1) is now
exactly C ′

2,j−1 ∪ {uv}. After swapping back this component we obtain exactly
V−1(β3), a contradiction.

Case 12 (u ∈ Kv(1, cs)). The principle in the same as in the previous case, but
instead of changing the missing color of u, we will change the missing of of
v using the fan Xv(cs) to transform V into a path. As u belongs to Kv(1, cs),
the vertex ws does not belong to this component. So we swap the component
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C1,cs = Kws(1, cs) to obtain a coloring where Xv(cs) is now a path that we
invert; we denote by β5 the coloring obtained after the inversion. Note that since
Xv(cs) was a cycle in β4, we have β4(Xv(cs)) ∩ β4(V) = {1},and so {2, cj−1} ∩
β4(Xv(cs)) = ∅. Hence the coloring β5 is (C2,j−1)-equivalent to the coloring
β4. In the coloring β5, the fan Xv(2) = (vvj+1, · · · , vu) is now a path that we
invert, and we denote by β6 the coloring obtained after the swap. Similarly to
the previous case, in the coloring β6, the vertices v and vj+1 are missing the
color 2, and the vertex u is missing the color cj−1. So in the coloring β6, the
component C ′

2,j−1 = Kvj−1
(2, cj−1) is exactly C2,j−1 ∪ {vvj−1} \ {vvj′+1, vu},

and we swap it to obtain a coloring where the vertices u and v are missing the
color cj−1 and where the edge uv is colored cs. After swapping the edge uv, we
obtain a coloring where, the fanXv(1) is now a path that we invert, we denote by
β7 the coloring obtained after the inversion. In the coloring β7, the component
Kws(1, cs) is exactly C1,cs and we swap back this component. Note that since
|{1, 2, cs, cj−1}| = 4, we can swap back this component before C ′

2,j−1. In the
coloring obtained after the swap, the fanXu(2) is now a path that we invert, we
denote by β8 the coloring obtained after the swap. In the coloring β8, the vertex
u is now missing the color 2, so the component Kvj−1

(2, cj−1) is now exactly
C ′

2,j−1 ∪ {vu} and we swap back this component to obtain V−1(β3) as desired.

Lemma 2.5.26. Let i ⩾ 0, if P (i) is true for all j ⩽ i, then Q(j) is true for all
j ⩽ i.

Proof. Let i ⩾ 0, V be a minimum cycle in a coloring β, u and u′ two vertices
of V , U = Xu(m(u′)) = (uu1, · · · , uul), and assume that P (j) is true for all
j ⩽ i. Without loss of generality, we assume that the vertices v, u and u′ are
respectively missing the colors 1, 2, and 3. Let t ⩽ i, and z = ul−t−1. We prove
that Q(t) is true.

Claim 5. The vertex z is not missing a color in β(V).

Proof. Otherwise, assume thatm(z) ∈ β(V). The fan V is a minimum cycle in β
so by Lemma 2.3.13, then fan U is a cycle entangled with V .

If m(z) ̸= 1, then since U is a cycle entangled with V by Lemma 2.3.13, we
have z ∈ V (V) so by Lemma 2.3.13 for any color c ∈ β(V), Xz(c) is a cycle
entangled with V . Moreover, since the property P (t) is true, so Xv(β(uz)) =
(vw1, · · · , wx) is a saturated cycle, and by Lemma 2.5.25 is is entangled with
U = Xu(m(u′)) and Xz(m(u)) = (zz1, · · · , zzr), and thus ul−t−2 = wx = zr−1,
so Q(t) is true.

If m(z) = 1, then since U is entangled with V , we have z = v. So for any
c ∈ β(V),Xz(c) = V and thus is a cycle entangled with V . Moreover, this means
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that β(uz) = β(uv) and thus m(ul−t−2) = β(uv), so ul−t−2 is the vertex just
before u in the cycle V . By definition of V , the fanXz(m(u) contains this vertex,
and thus Q(t) is true. In both cases, we have a contradiction.

Claim 6. There is no edge in E(U>z) colored with a color beta(V).

Proof. We first prove that there is no vertex in V (U>z) \ {u′} missing a color
c ∈ β(V). Otherwise, assume that there exists such a vertex z′. The cycle V is
minimum in β(V), so by Lemma 2.3.13, the fan U is entangled with V . If c ̸= 1,
then z′ ∈ V (V). By Lemma 2.3.13, the fan U ′ = Xu(m(z′)) = (uu′1, · · · , uu′l′)
is a cycle entangled with V , so u′l′ = z′ and V (U) = V (U ′). Thus there exists
t′ < t such that z = ul′ − t′ − 1. Since t is minimum,Q(t′) is true, and thusQ(t)
is true.

If c = 1, then z′ = v since U is entangled with V , and β(uz′) = β(uv). Let z′′
be the vertex just before z′ in U . Since β(uz′) = β(uv), then m(z′′) = β(uv) ∈
β(V). Since m(z) ̸∈ β(V), we have that z′′ ̸= z. This means that z′′ is a vertex
in V (U>z) \ {u′} missing a color in β(V), this is a contradiction.

Let c ∈ β(V), we prove that Z = Xz(c) = (zz1, · · · , zzr) is a cycle entangled
with V and U⩾z .
By Claim 5 m(z) ̸∈ β(V), so without loss of generality, we assume that z is
missing the color 4. By Lemma 2.5.18 the fan Z is not a path. Before proving
that Z is not a comet, we first prove that is it entangled with V and U⩾ul−t−2

.

Proposition 2.5.27. The fan Z is entangled with V and U⩾ul−t−2
.

Proof. Otherwise, assume that there exists s such that m(zs) ∈ β(V) ∪ β(U⩾z)
and zs ̸∈ V (V) ∪ V (U⩾z). Without loss of generality, we assume that such an s
is minimum. We also assume that there is no edge colored with a color in β(V)
in E(Z[z2,zs−1]). Otherwise, if such an edge zzx exists, is suffices to consider the
fan Xz(β(zzx)) = (zzx, · · · , zzs). We now have to distinguish the cases.
Case 13 (m(zs) = 1).
In this case, since, P (t) is true, Xv(4) is a saturated cycle containing z, so v ∈
Kz(1, 4), and thus zs ̸∈ Kz(1, 4). We now swap the componentC1,4 = Kzs(1, 4),
and denote by β′ the coloring obtained after the swap. In the coloring β′, the fan
Xz(c) is now a path. The coloring β′ is V-equivalent to β, so V is still a minimum
cycle in β′. If the coloring β′ is alsoU⩽z-equivalent to β (i.e.,C1,4 does not contain
u or there is no edge colored 1 in U⩽z), then z is still a vertex of U = Xu(3), and
the fanXz(c) is now a path, by Lemma 2.5.18 this is a contradiction. So the vertex
u belongs to C1,4, and there is an edge uuh colored 1 in U<z . So in the coloring
β′, the edge uuh is now colored 4, and the edge ul−t is now colored 1. The fan
Xv(4) is still a saturated cycle containing z, but now the fanXu(4) is also a cycle
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containing z. In this coloring the fan Xz(c) is a path, so by Lemma 2.5.23, we
have a contradiction.
Case 14 (m(zs) = c′ ∈ β(V) \ {1}).
In this case, since V is minimum, it is saturated by Lemma 2.3.4, thus zs ̸∈
Kv(1, c

′). We now swap the component C1,c′ = Kzs(1, c
′), and denote by β′

the coloring obtained after the swap. This coloring is V-equivalent to β, so V
is still a minimum cycle in the coloring β′. By Claim 6, there is no edge with a
color in β(V) in U>z , so β′ is U>z-equivalent to β. Moreover, let U ′ = Xβ′

u (3) =
(uu′1, · · · , uu′l′); the coloring β′ is also (

⋃
j∈[0,t]

Xv(β(uuj)))-equivalent to β since

each of these fans are saturated cycles, and the vertex zs does not belong to any
of them. So by Lemma 2.5.21, in the coloring β′, for any j ⩽ (t+1), u′l′−j = ul−j .
In particular, u′l′−t−1 = ul−t−1 = z. But now Xz(c) is not entangled with {v}
since it contains the vertex zs which is missing the color 1. This case is similar
to the previous one.
Case 15 (m(zs) = c′ ∈ β(U>z)).
Let ul−h be the vertex of U>z missing the color c′. In this case, since P (j) is
true for all j ⩽ t, the fan Xv(β(uul−j)) is a saturated cycle. In particular, the
vertex ul−h belongs to the componentKv(1, c

′), and so zs does not belong to this
component. We now swap the component C1,c′ = Kzs(1, c

′), and denote by β′

the coloring obtained after the swap. Let U ′ = Xβ′
u (3) = (uu′1, · · · , uu′l′). If the

coloring β′ is U>z-equivalent to β, then for the same reason as in the previous
case, z is exactly the vertex u′l′−t−1, and Xz(c

′) is now not entangled with {v}
since it contains the vertex zs that is missing the color 1. This case is similar to the
first one. So β′ is not U>z-equivalent to β, and thus since it is {ul−h}-equivalent
to β, the component C1,c′ contains the vertex u. We now have to distinguish
whether or not, in the coloring β there is an edge uup colored 1 in U<z .
Subcase 15.1 (There an edge uup colored 1 in U<z).
In this case, in the coloring β′, the edge uup is now colored c′, and the edge
uul−h+1 is now colored 1. In the coloring β′, the fan Xu(4) is now a cycle since
it contains the vertex ul−h which is still missing the color c′, and Xv(c

′) now
contains the vertex z which is still missing the color 4. The fan Xv(4) is still a
cycle containing also the vertex z, and the fan U ′ now contains an edge uul−p

colored 1 such that p ⩽ t.
We now consider the components ofK(1, 4). If the vertex z does not belong

to the componentKv(1, 4), then we swap it to obtain a coloring β′′ whereXv(4)
is now a path. Let U ′′ = Xβ′′

u (3) = (uu′′1, · · · , uu′′l′′). If u ̸∈ Kv(1, 4), then
β′′(uul−p) = β′′(uu′′l′′−t) = 1, but p ⩽ t, and P (j) is true for all j ⩽ t, so
by Lemma 2.5.22 we have a contradiction. Similarly, if u ∈ Kv(1, 4), then now
β′′(uul−t) = 1. Since β′′ is

⋃
j∈[0,t−1]

Xv(β(uuj))-equivalent to β′, by Lemma 2.5.21,
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for any j ⩽ t, u′′l′′−j = u′l′−t. So the edge uul−t is exactly the edge uu′′l′′−t. This
edge is colored 1, and P (j) is true for all j ⩽ t, so by Lemma 2.5.22, we have a
contradiction.

So the vertex z belongs to Kv(1, 4), and therefore the vertex zs does not
belong to this component. We now swap the component C1,4 = Kzs(1, 4),
and denote by β′′ the coloring obtained after the swap. Let U ′′ = Xβ′′

u (3) =
(uu′′1, · · · , uu′′l′′). Whether or not the vertex u belongs to the component C1,4,
the fan Xu(3) contains an edge uu′′l′′−j colored 1 where j ⩽ t (if u belongs to
the component, β′′(uu′′l′′ − t) = 1, and β′′(uu′′l′′−p) = 1). Moreover, we have
that the fan Xu(4) is a cycle containing z, the fan Xv(4) is a cycle containing z,
the fan Xz(c) is a path, and , and the property P (j) is true for all j ⩽ t, so by
Lemma 2.5.23, we have a contradiction.
Subcase 15.2 (There is no edge colored 1 in U<z).
In this case, the coloring β′ is U⩽z-equivalent to β. We now consider the compo-
nents of K(1, 4). If z does not belong to Kv(1, 4), then we swap the component
Kz(1, 4) and obtain a coloring where Xu(3) still contains the vertex z which is
now missing the color 1. In the coloring, the cycle V is still a minimum cycle
since β′ is V-equivalent to β, so by Lemma 2.3.13, we have a contradiction.

So the vertex z belongs toKv(1, 4), and thus zs does not belong to this com-
ponent. We now swap the component C1,4 = Kzs(1, 4), and denote by β′′ the
coloring obtained after the swap. The coloring β′′ is U⩽z-equivalent to β′, so
z ∈ Xu(3). However, now the fan Xz(c) is a path, by Lemma 2.5.18, we have a
contradiction.
Case 16 (m(zs) = c′ = m(ul−t−2)).
In this case, since c′ ̸∈ β(V), without loss of generality, we assume that c′ =
5. We now consider the components of K(1, 5). If ul−t−2 does not belong to
Kz(4, 5), then we swap the component C4,5 = Kul−t−2

(4, 5), and denote by β′

the coloring obtained after the swap. Let U ′ = Xβ′
(3) = (uu′1, · · · , uu′l′). The

coloring β′ is (V ∪ U>z)-equivalent to β, and for any j ⩽ t, u′l′−j = ul−j , and
u′l′−j = ul−j−1 otherwise. Note that this means that l′ = l−1, i.e. |U ′| = |U|−1.
If the color 5 is not inXβ

v (4), thenXv(4) is still a cycle containing z, and thus it
does not contain ul−t−2 =M(Xu(3), 4), since the property P (t) is true, we have
a contradiction.

So the color 5 is inXβ
v (4). If v belongs toC4,5, then we are a in case similar to

the previous one where Xβ′
v (4) is a cycle containing z, and thus which does not

contain ul−t−2 = M(Xu(3), 4). Since P (t) is true, we have a contradiction. So
v does not belong to C4,5, and now, in the coloring β′, the fan Xv(5) is a comet
containing the vertices z and ul−t−2 that are both missing the color 4. We now
consider the components of K(1, 4). Since the property P (t) is true, Xv(4) is
a saturated cycle, to ul−t−2 belongs to Kv(1, 4), and thus z does not belong to
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this component. We now swap the component Kz(1, 4), and obtain a coloring
where {uz} is a (V , u)-independent subfan avoiding v, and whereXv(5) is a path
containing z, by Lemma 2.5.4 we have a contradiction.

So the vertex ul−t−2 belongs to the component Kz(4, 5), and therefore, the
vertex xs does not belong to this component. We now swap the component
Kzs(4, 5), to obtain a coloring (V ∪ U)-equivalent to β, where Xz(c) is now a
path, by Lemma 2.5.18, we again get a contradiction.

So the fan Z is entangled with V and U⩽ul−t−2
. We now prove that it is

not a comet. Assume that Z is a comet, then there exists h < r such that
m(zh) = m(zr) = c. By Proposition 2.5.27, c ̸∈ β(V) ∪ β(U⩾ul−2−t

. Without
loss of generality, we assume that c = 5, and we now consider the components
of K(1, 5). The vertices zh and zr are not both part of Kv(1, 5).

If zh does not belong to Kv(1, 5), then we swap C1,5 = Kv(1, 5), and denote
by β′ the coloring obtained after the swap. Let U ′ = Xβ′

u (3) = (uu′1, · · · , uu′l′).
The propertyP (j) is true for all j ⩽ t, so the coloring β′ is (

⋃
j∈[0,p]

Xv(β(uul−j)))-

equivalent to β since each of these fans are saturated cycle. Hence by Lemma 2.5.21,
for any j ⩽ (t + 1), u′l′−j = ul−j . In particular, z = u′l′−t−1. If the vertex z does
not belong to C1,5 or c ̸= 1, then the coloring β′ is Z<zh equivalent to β. The
fan Xz(c) now contains the vertex zh which is missing the color 1, by Proposi-
tion 2.5.27 we have a contradiction. So the vertex z belongs to C1,5, and c = 1.
Thus, in the coloring β′, the edge zz1 is now colored 5, and the edge zzs+1 is now
colored 1. If the vertex zr belongs to the component C1,5, it is now missing the
color 1 in the coloring β′, andXz(1) is now a fan that contains this vertex. So the
fan Xv(1) is not entangled with V , a contradiction by Proposition 2.5.27. If the
vertex zr does not belong to the component, then the fan Xz(1) now contains
the vertex zs which is missing the color 1, again, a contradiction by Proposi-
tion 2.5.27.

So the vertex zh belongs toKv(1, 5), and thus the vertex zr does not belong to
the component. We now swap the component C1,5 = Kzs(1, 5) and denote by β′

the coloring obtained after the swap. Similarly to the previous case, If the vertex
z does not belong to C1,5, or if c ̸= 1, then the coloring β′ is Z<zr-equivalent
to the coloring β, and now Xz(c) contains the vertex zr missing the color 1, by
Proposition 2.5.27 this is a contradiction. So the vertex z belongs to C1,5, and
c = 1. In this case, the fan Xz(1) stills contains the vertex zr which is missing
the color 1. Again by Proposition 2.5.27, this is a contradiction.

Therefore, the fan Z is a cycle entangled with V and U⩾ul−t−2
and thus Q(t)

is true as desired.

We are now ready to prove that P (i) is true for all i.
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2.5.6 Proof of P (i)
Proof of Lemma 2.5.3. Let i ⩾ 0, V be a minimum cycle in a coloring β, u and u′
two vertices of V , U = Xu(m(u′)) = (uu1, · · · , uul), and assume that P (i) not
verified. Without loss of generality, we assume that i is minimum, ans that the
vertices v, u andu′ are respectivelymissing the colors 1, 2 and 3. By Lemma 2.5.10,
the property P (0) is true, so i > 0. Assume that β(uul−i) ̸= 1 and let X =
Xv(β(uul−i)).

Claim 7. There is no edge in E(U>ul−i
) colored with a color in β(V)

Proof. The proof is similar to the proof of Claim 6 of Lemma 2.5.26.

We first prove that Pweak(i) is true (i.e. that X is not a path).

Claim 8. The property Pweak(i) is true.

Proof. Assume that β′(uul−i) ̸= 1 and that X = Xv(β(uul−i)) is a path. Then
we have that β(uul−i) ̸∈ β(V). Without loss of generality, we assume that
β(uul−i) = 4. Moreover, we have that m(ul−i) ̸= 1. Since P (j) is true for
all j < i, for all j < i, if β(uul−j) ̸= 1, then Xu(β(uul−j) is a saturated cycle.
We now invertX until we reach a coloring whereXv(4) is a path of length 1; we
denote by z the only vertex of this coloring. Up to a relabeling of the colors, we
assume that v is also missing the color 1 in β′. The coloring β′ is V-equivalent
to the coloring β, so V is the same minimum cycle in the coloring β. So by
Lemma 2.3.13 the fan U ′ = Xu(m(u′)) = (uu′1, · · · , uu′l′) is a cycle entangled
with V . Moreover, the coloring β′ is (

⋃
j<i

Xv(β(uul−j)))-equivalent to β, so by

Lemma 2.5.21, for any j ⩽ i, u′l′−j = ul−j , the fan Xv(β
′(uu′l′−j)) is a saturated

cycle containing u′l′−j−1. So in particular, uu′l′−i ∈ E(U ′), and there is a vertex
missing the color 4 in U ′. Let z′ be this vertex. Note that since Xv(4) is a path,
for all j < i, Xv(β

′(uu′l−j)) does not contain the vertex z′.
We now swap the edge vz, and denote by β′′ the coloring obtained after the

swap. If the coloring β′′ is U ′-equivalent to β′, then it means that v ̸∈ V (U ′).
So in the coloring β′′ the fan Xu(3) = U ′ contains the vertex z′ which is still
missing the color 4. This color is also the missing color of the vertex v. Thus, U ′

is not entangled with V , and by Lemma 2.3.13, we have a contradiction.
So the vertex v belongs to V (U ′), and in the coloring β′, the fan Xu(1)

contains the vertex z′ which is missing the color 4. If there is an edge uu′′
of E(Vu(1)⩽z′) colored with a color of β′′, then Xu(β

′′(uu′′)) is not entangled
with V , so by Lemma 2.3.13, we have a contradiction. Therefore, the subfan
Xu(1)⩽z′ is a (V , u)-independent subfan avoiding v. The coloring β′′ is U ′

⩽v-
equivalent to the coloring β′, so in the coloring β′′, the fan U ′′ = Xu(3) is equal
to (uu′1, · · · , uv, uu′l′−i), · · · , uu′l′ = uu′).
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Since P (j) is true for all j < i, for all j < i the fan Xv(β
′′(uu′l′−j)) is

a saturated cycle containing u′l′−j−1. In particular, the fan Xv(β
′′(uu′l′−(i−1))

is a saturated cycle containing u′l′−i. Without loss of generality, we assume
that m(u′l′−i) = 5. The vertex u′l′−i belongs to the component Kv(4, 5), so
the vertex z′ does not belong to this component. We now swap the component
C4,5 = Kz′(4, 5), and denote by β3 the coloring obtained after the swap. Note
that β3 is V-equivalent to β′′, so by Observation 2.3.9 the cycle V is the same
minimum cycle in the coloring β3. The coloring β3 is also U ′′-equivalent to β′′,
so we still have that Xu(3) = (uu′1, · · · , uv, uu′l′−i, · · · , uu′l′ = uu′).

If the vertex z does not belong to C4,5, then we can swap back the edge vz.
The fan Xu(3) = Xu(1) still contains the vertex z′ which is missing the color 5,
and Xv(β

′′(uu′l′−i−1)) is still a saturated cycle containing the vertex u′l′−i. Since
P (i− 1) is true, we have a contradiction. So the vertex z belongs to C4,5, and in
the coloring β3 the vertex z is missing the color 5.

Since the property P (j) is true for all j < i, by Lemma 2.5.26, the property
Q(i − 1) is true, and so the fan Xu′

l−i
(2) is a cycle containing z′, and therefore

there is an edge u′l′−iz. We denote by c′ the color of this edge. We now swap this
edge, and denote by β4 the coloring obtained after the swap. The coloring β4 is
V-equivalent to β3, so the fan V is the same minimum cycle in the coloring β4 by
Observation 2.3.9. The coloring β4 is also Xu(3)<u′

l′−i
, so the vertex u′l′−i is still

inXu(3). Note that now the vertex u′l′−i and z′ are both missing the color c′. We
now have to distinguish the case.
Case 17 (c′ = 1).
In this case, the fan Xu(1) contains the vertex z′ missing the color 1, and the
fan Xu(3) contains the vertex u′l′−i missing the color 1. So the fan Xu(3) is a
comet containing two vertices missing the color 1, so by Lemma 2.3.13, we have
a contradiction.
Case 18 (c′ ∈ β3(V)).
In this case, since u′l′−i ∈ V (Xu(3)), the fan Xu(3) is not entangled with V , so
by Lemma 2.3.13, we have a contradiction.

Without loss of generality, we now assume that c′ = 6.
Case 19 (6 ∈ β3(Xu(3)<u′

l′−i
)).

In this case, the fan Xu(3) is now a comet where two vertices are missing the
color 6, thus by Lemma 2.3.13, we also have a contradiction.
Case 20 (6 ∈ β3(Xu(3)>u′

l′−i
)).

Let t < i such thatmβ3(u′l′−t) = 6. Since P (t− 1) is true, in the coloring β3, the
fanXv(6) is a cycle containing u′l′−t. SinceP (i−1) is true, the fanXv(5) is a cycle
containing u′l′−i. We first prove that in the coloring β3, we haveXv(5) = Xv(6).
In the coloring β4, the vertex u′l′−i is missing the color 6, so the fan Xu(3) is

Graph Coloring and Recoloring 97



2.5. Cycles around v starting with u: a proof of Lemma 2.3.14

equal to (uu′1, · · · , uv, uu′l′−i, uu
′
l′−(t−1), · · · , uu′l′ = uu′), and u′l′−i is now the

vertex missing the color 6 in this cycle. Since P (t − 1) is true, the fan Xv(6) is
now a cycle containing u′l′−i. The only vertices whose missing color is different
in β3 and β4 are the vertices u′l′−i and z′. In the coloring β3, since z′ ̸∈ Xv(6),
if u′l′−i ̸∈ V (Xv(6)) the coloring β4 is Xv(6)-equivalent to the coloring β3. This
means that in the coloring β4, the fanXv(6) is a cycle containing the vertex u′l′−t,
and not containing u′l′−i, a contradiction. So in the coloring β3, the vertex u′l′−i

belongs to Xv(6), and thus Xv(5) = Xv(6) as desired.
So, in the coloring β3, the cycleXv(5) contains the vertex u′l′−t which is miss-

ing the color 6. We now consider the coloring β4. The fan Xv(5) still contains
the vertex u′l′−t which is still missing the color 6. The fan Xv(6) is a saturated
cycle containing the vertex u′l′−i, so the fna Xv(5) is a comet containing Xv(6)
as a subfan. The cycle Xv(6) is saturated, so u′l′−i belongs to Kv(4, 6), and thus
z′ does not belong to this component.

We now swap the componentC4,6 = Kz′(4, 6), and denote by β5 the coloring
obtained after the swap. The coloring β5 is V-equivalent to β4, so the fan V is
the same minimum cycle in the coloring β5. Since the vertex u′l′−i ̸∈ C4,6, and
β4(uu

′
l′−) = 4, the vertex u does not belong either to C4,6, and therefore the

coloring β5 is Xu(3)-equivalent to the coloring β4. The fan Xu(1) still contains
the vertex z′ which is nowmissing the color 4, so the subfanXu(1)⩽z′ is a (V , u)-
independent subfan avoiding v. By Lemma 2.5.4, the fanXv(1) is a path that does
not contain z′. In the coloring β5, the vertex z is still missing the color 5, and we
still have β5(vz) = 1. If the vertex u′l′−t does to belong to C4,6, then the coloring
β5 is Xv(5)-equivalent to β4, and therefore the fan Xv(1) is a comet containing
Xv(6) as a subfan. So the vertex u′l′−t belongs to the component C4,6, and it is
now missing the color 4.

In the coloring β5, the fan Xu(5) still contains the vertex u′l′−t which is now
missing the color 4. So there is no edge uu′′ in E(Xu(5)⩽u′

l′−t
)) colroed with a

color in β5(V), otherwise,Xu(β5(uu
′′)) is not entangledwithV , and by Lemma 2.3.13

we have a contradiction. So the subfan Xu(5)⩽u′
l′−t

is a (V , u)-independent sub-
fan avoiding v. By Lemma 2.5.4, the fan Xv(5) is a path that does not contain
u′l′−t, a contradiction.
Case 21 (6 ̸∈ β3(Xu(3)) ∩ β3(V) ∪ {1}).
In the coloring β4, the vertex u′l′−i is missing the color 6, and uu′l′−i ∈ E(Xu(3)).
So we have Xu(6) = Xu(3). Since the fan Xu(5) also contains the vertex u′,
either Xu(5) = Xu(6) = Xu(3), or Xu(5) is a comet which contains Xu(3) as a
subfan.
Subcase 21.1 (Xu(5) = Xu(3)).
Let z′′ be the vertex ofXu(3)missing the color 5. Note that we may have z′′ = z.
Since P (i − 1) is true, the fan Xv(5) is now a cycle containing z′′. But u′l′−i is
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the only vertex whose missing color is different in β3 and β4, so in the coloring
β4, the fan Xv(5) still contains the vertex u′l′−i which is now missing the color
6. Therefore, the fan Xv(6) is equal to the fan Xv(5) and is a saturated cycle
containing z′′ and u′l′−i. The vertex z is still missing the color 5, so the fanXv(1)
is now a comet containing Xv(5) as a subfan.

Since the fan Xv(6) is saturated, the vertex u′l′−i belongs to the component
Kv4, 6, and thus the vertex z′ does not belong to this component. We now swap
the componentC4,6 = Kz′(4, 6), and denote by β5 the coloring obtained after the
swap. The coloring β5 is V-equivalent to β4, so the fan V is a minimum cycle in
this coloring. Now the fanXu(1) still contains the vertex z′ which is nowmissing
the color 4, so it is a (V , u)-independent subfan avoiding v so by Lemma 2.5.4, the
fan Xv(1) is a path. But the coloring β5 is also Xv(1)-equivalent to the coloring
β4, so the fan Xv(1) is a comet. This is a contradiction.

Subcase 21.2 (Xu(5) is a comet containing Xu(3)).
Let u′l′−t be the first vertex ofXu(5)which is not inXu(3), and let z′′ be the vertex
of Xu(3) missing the color ct = m(u′l′−t). In the coloring β3, since P (t − 1) is
true, the fan Xv(ct) is a saturated cycle containing u′l′−t. If the coloring β4 is
Xv(ct)-equivalent to the coloring β3, then in the coloring β4 the fan Xv(ct) still
contains the vertex u′l′−t, and thus does not contain the vertex z′′. Since P (t− 1)
is true, we have a contradiction.

So the coloring β4 is not Xv(ct)-equivalent to the coloring β3. Since u′l′−i

and z′ are the only vertices whose missing color are different in β3 and β4, and
z′ ̸∈ V (Xv(ct)), we have that u′l′−i ∈ V (Xv(ct)). In the coloring β3 the vertex
u′l′−i is also inXv(5), so in this coloring we haveXv(5) = Xv(ct). Therefore, the
vertex u′l′−t also belongs to Xv(5) in the coloring β4.

In the coloring β4, the vertex u′l′−i is nowmissing the color 6, and since P (t−
1) is true, the fan Xv(ct) is a saturated cycle containing the vertex z′′. So in this
coloring, we have Xv(ct) = Xv(6). However, in this coloring, the vertex u′l′−t

still belongs toXv(5), it also belongs toXu(5) and is still missing hte color ct. The
cycle Xv(ct) is saturated, so the vertex z′′ belongs to the component Kv(4, ct),
and thus the vertex u′l′−t does not belong to this component. We now swap the
component Ku′

l′−t
(4, ct) and denote by β5 the coloring obtained after the swap.

The coloring β5 is V-equivalent to β4, so by Observation 2.3.9, the fan V is
a minimum cycle in the coloring β5. The coloring β5 is also ((Xu(5) ∪Xv(5)) \
{u′l′−t})-equivalent to the coloring β4, so the vertex u′l′−t still belongs to both
Xu(5) and Xv(5). So the subfan Xu(5)⩽u′

l′−t
is a (V , u)-independent subfan

avoiding v, by Lemma 2.5.4, the fan Xv(5) is a path that does not contain u′l′−t.
Again we have a contradiction.
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By the previous claim, we have that X is not a path, we now prove that it is
not a comet. Assume that X = (vx1, · · · , vxt) is a comet where xs and xt are
missing the same color cs. Since xs and xt are both missing the color cs at least
one of them is not in Kv(1, cs). Since P (j) is true for all j < i, for all j < i, if
β(uul−j) ̸= 1, thenXv(β(uul−j)) is a cycle, so β(X )∩ (

⋃
j∈[0,i−1]

Xv(β(uul−j))) =

∅.

Case 22 (cs ̸∈ β(Uu>l−1
)).

If xs is not in Kv(1, cs), then we swap the component C1,cs = Kxs(1, cs) and
obtain a coloring β′ which isV-equivalent to β, so the fanV is the sameminimum
cycle in the coloring β′. In the coloring β′, the fanXv(4) is now a path. Moreover,
cs ̸∈ β(U⩾ul−i

), and by Claim 7, so 1 ̸∈ β(U⩾ul−i
). Therefore, the coloring β′ is

U⩾ul−i
-equivalent to the coloring β. Let U ′ = Xβ′

u (3) = (uu′1, · · · , uu′l′). Since
β(X ) ∩ (

⋃
j∈[0,i−1]

Xv(β(uul−j))) = ∅, the coloring β′ is (
⋃

j∈[0,i−1]

Xv(β(uul−j))-

equivalent to β. So by Lemma 2.5.21, for all j ⩽ i, we have u′l′−i = ul−i. In
particular u′l′−i = ul−i. Since β′(uu′l′−i) = 4, and Pweak(i) is true, the fan
Xv(4) is not a path.

Similarly, if xt ̸∈ Kv(1, cs), we swap the component C1,cs = Kxt(1, cs). Note
that V is a minimum cycle, so it is saturated by Lemma 2.3.4, and thus xt ̸∈
V (V). The coloring β′ is therefore V-equivalent to V , so the fan V is the same
minimum cycle in this coloring. The fan Xv(4) is now a path the coloring β′.
Let U ′ = Xβ′

u (3) = (uu′1, · · · , uu′l′). Similarly to the previous case, the coloring
β′ is U>ul−i

-equivalent to β and (
⋃

j∈[0,i−1]

Xv(β(uul−j))-equivalent to β. So by

Lemma 2.5.21, for all j ⩽ i, we have u′l′−j = ul−j . In particular, u′l′−i = ul−i, and
β′(uu′l′−i) = 4. Since Pweak(i) is true, the fanXv(4) is not a path, a contradiction.

Case 23 (cs ∈ β(U>ul−1
)).

Let t′ be such that m(ul−t′) = cs. Since P (j) is true for all j < i, the fan Xv(cs)
is saturated cycle containing ul−t′ = xt. So the vertex xs does not belong to
Kv(1, cs). We now swap the component C1,cs = Kxs(1, cs) to obtain a coloring
β′ where Xv(4) is now a path. The coloring β′ is V-equivalent to β, so by Ob-
servation 2.3.9, the cycle V is the dame minimum cycle in the coloring β′. If the
vertex u does not belong to C1,cs , then the coloring β′ is also U-equivalent to β,
and thus Xu(3) = U . Since β′(uul−i) = 4, and Pweak(i) is true, the fan Xv(4) is
not a path. this is a contradiction.

So the vertex u belongs to C1,cs , and in the coloring β′, the edge uul−(t′−1) is
now colored 1. Let U ′ = Xβ′

u (3). The coloring β′ is U>ul−t′
-equivalent to β. The

coloring β′ is also (
⋃

j∈[0,t′−1]

Xv(β(uul−j))-equivalent to β, so by Lemma 2.5.21,

for any j ⩽ t′ we have u′l′−j = ul−j . In particular, u′l′−(t′−1) = ul−(t′−1). Now the
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edge uu′l′−(t′−1) is colored 1, and the fan Xv(4) is a path. Since P (j) is true for
all j ⩽ t′, by Lemma 2.5.22 there is not path around v, a contradiction.

So the fan X = (vx1, · · · , vxt) is a cycle, we now prove that it is saturated.
Otherwise, there exists xs such that xs ̸∈ Kv(1,m(xs)). Note that since P (j)
is true for all j < i, for all j < i, the fan Xv(β(uul−j)) is a saturated cycle, so
Xv(β(uul−j)) ∩ β(X ) = ∅, and in particular xs ̸∈ β(U>ul−i

).

Case 24 (m(xs) ̸= 4).
Without loss of generality, assume that m(xs) = 5. Since xs does not belong
to Kv(1, 5), we swap the component C1,5 = Kxs(1, 5) and obtain a coloring β′

where Xv(4) is a path. The coloring β′ is V-equivalent to β, so by Observa-
tion 2.3.9, the cycle V is the same minimum cycle in the coloring β′. Let U ′ =
Xβ′

u (3) = (uu′1, · · · , uu′l′). Moreover, 5 ̸∈ β(U⩾ul−i
), and by Claim 7, the color 1

does not appear either in U>ul−i
. The coloring β′ is also (

⋃
j∈[0,i−1]

Xv(β(uul−j))-

equivalent to β, so by Lemma 2.5.21, for any j ⩽ i, we have u′l′−j = ul−j . In
particular, u′l′−i = ul−i. The edge uu′l′−i is still colored 4 in the coloring β′ and
the property Pweak(i) is true, so Xv(4) is not a path, a contradiction.

Case 25 (m(xs) = 4).
In this case, we swap the component C1,4 = Kxs(1, 4) and denote by β′ the col-
oring obtained after the swap. If the vertex u does not belong to this component,
then we are in a coloring similar to the previous case. So the vertex u belongs to
C1,4, and we have β′(uul−i) = 1. In the coloring β′ is V-equivalent to β, so by
Observation 2.3.9, the cycle V is the same minimum cycle in this coloring. The
fan Xv(4) is now a path in the coloring β′. Let U ′ = Xβ′

u (3) = (uu′1, · · · , uu′l′).
The coloring β′ is U>ul−i

-equivalent to β, and is also (
⋃

j∈[0,i−1]

Xv(β(uul−j))-

equivalent to β. So by Lemma 2.5.21 for all j ⩽ i, we have u′l′−j = ul−j . In
particular u′l′−i = ul−i. The property P (j) is true for all j < i,a nd Pweak(i) is
also true, so by Lemma 2.5.22 there is no path around v. This is a contradiction.

So the fan X = (vx1, · · · , vxt) is a saturated cycle, and thus xt ∈ Kv(1, 4).
Since P (i) is false, we have xt ̸= ul−i−1. So the vertex ul−i−1 which is also
missing the color 4 does not belong to Kv(1, 4). We now swap the component
C1,4 = Kul−i−1

(1, 4) and denote by β′ the coloring obtained after the swap. Be
Lemma 2.5.20, the vertex u belongs to C1,4, there is an edge uu′′ colored 1 in
U<ul−i

, and the subfan Xu(1)⩽ul−i
is a (V , u)-independent subfan. So in the col-

oring β′, the vertex ul−i is now missing the color 1, the edge uu′′ is now col-
ored 4, and the subfan Xu(4)⩽ul−i

is a (V , u)-independent subfan avoiding v.
By Lemma 2.5.4, the fan Xv(4) is a path. However, the coloring β′ is Xv(4)-
equivalent to the coloring β, so the fan Xv(4) is a cycle, a contradiction.
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2.6 Cycles interactions

In this section we prove Lemma 2.3.12.

Proof. We first prove that all the three cycles are tight and saturated.

Claim 9. The cycles V , X , and Y are saturated and tight.

Proof. As the fan V is not invertible, it is saturated by Lemma 2.1.10. If X or Y is
not saturated, without loss of generality, we assume thatX is not saturated. Then
we swap a componentKu(cv, cu) with u in X and u ̸∈ Kv(cv, cu) to transform β
into a coloringwhereV is still a cycle of the same size, andwhere a fan around v is
a path, by Lemma 2.3.11, V is invertible in this coloring, and so it is in the original
coloring. Similarly, assume that X or Y is not tight, without loss of generality,
we can assume that X is not tight. Then we can find two consecutive vertices of
X , ui, and ui−1 such that the componentKui−1

(m(ui),m(ui−1)) does not contain
ui. If we swap this component, we obtain a coloring where V is still a cycle of
the same size, and where a fan around v is a comet, again by Lemma 2.3.11, V is
invertible in this coloring, and so it is in the coloring β.

By Lemma 2.3.13, we already have that if (z, z′) ∈ V2, thenXz(cz′) is a cycle
containing z′, so we now assume that (z, z′) is not in V2.

Claim 10. The fan Z is not a path.

Proof. As Z is a path, we invert it until we reach a coloring where m(z) ∈
(β(V) ∪ β(X ) ∪ β(Y)) \ {mβ(z)}. In this coloring, the fan V is still a cycle
of the same size, and, there is a fan around v which is either a path or a comet,
by Lemma 2.3.11, this is a contradiction.

Claim 11. The fan Z is entangled with V , X , and Y .

Proof. Let us assume that there exists z′′ ∈ Z \ (V ∪ Y ∪ X ) with m(z′′) ∈
(β(V) ∪ β(Y) ∪ β(X )) \ {cz}. If m(z′′) = cv, since the cycles are saturated
by Claim 9, Kz′′(cz, cv) does not contain any vertex of (V ∪ Y ∪ X ), and after
swapping it, we obtain a coloring where V is still a cycle of the same size and
where Z is a path, by Claim 10, this is a contradiction. Ifm(z′′) ̸= cv, then, since
the cycles are saturated, the component Kz′′(cv,m(z′′)) does not contain any
vertex of (V ∪Y ∪X ), so if we swap it, we obtain a coloring which corresponds
to the previous case.

Claim 12. The fan Z is not a comet.
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Proof. Assume thatZ is a comet, then there exist z1 and z2withm(z1) = m(z2) =
c. By the previous claim, we have that c ̸∈ (β(V) ∪ β(X ) ∪ β(Y)), otherwise,
Z is not entangled with one of these cycles. Hence, the componentKz(c,m(z))
either contains z1 or z2, and without loss of generality we can assume that z1 ̸∈
Kz(c,m(z)). If we swap Kz1(c,m(z)) we obtain a coloring where no edge of
(V ∪X ∪Y) has changed and where Z is a path, by Claim 10 this is a contradic-
tion.

By the previous claims, Z is a cycle, and as it is entangled with the three
other cycles, it contains z′; this concludes the proof.
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Chapter 3

Other reconfiguration problems

In this chapter, we present our work two other reconfiguration problems. The
first one is the reconfiguration version of the Hadwiger’s conjecture discussed in
Section 3.1, this is joint work with Marthe Bonamy, Clément Legrand-Duchesne
and Marc Heinrich [BHLDN21]; this work has been submitted to the Journal of
Combinatorial Theory Series B, and is still under review. The authors of this
work thank Vincent Delecroix for helpful discussions. The second one is about
connected greedy edge-coloring, this is joint work with Marthe Bonamy, Carole
Muller, Jakub Pekarek and Alexandra Wesolek [BGM+21]; this work has been
published in Discrete Applied Mathematics.

3.1 A reconfiguration version of Hadwiger’s con-
jecture

3.1.1 Introduction

As discussed in Section 1.4, in the setting of planar graphs, Meyniel proved in
1978 [Mey78] that all 5-colorings form a unique Kempe equivalence class. The
result was then extended to all K5-minor-free graphs in 1979 by Las Vergnas
and Meyniel [LVM81]. They conjectured the following, which can be seen as a
reconfiguration counterpoint to Hadwiger’s conjecture, though it neither implies
it nor is implied by it.

Conjecture 3.1.1 (Conjecture A in [LVM81]). For every t, all the t-colorings of a
graph with no Kt-minor form a single equivalence class.

They also proposed a related conjecture that is weaker assuming Hadwiger’s
conjecture holds.
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Conjecture 3.1.2 (Conjecture A’ in [LVM81]). For every t and every graph with
noKt-minor, every equivalence class of t-colorings contains some (t− 1)-coloring.

Here, we disprove both Conjectures 3.1.1 and 3.1.2, as follows.

Theorem 3.1.3. For every ε > 0 and for any large enough t, there is a graph with
no Kt-minor, whose (3

2
− ε)t-colorings are not all Kempe equivalent.

In fact, we prove that for every ε > 0 and for any large enough t, there is a
graph that does not admit aKt-minor but admits a (3

2
−ε)t-coloring that is frozen;

Any pair of colors induce a connected component, so that no Kempe change can
modify the color partition. To obtain Theorem 3.1.3, we then argue that the graph
admits a coloring with a different color partition. The notion of frozen k-coloring
is related to the notion of quasi-Kp-minor, introduced in [LVM81]. A graph G
admits a Kp-minor if it admits p non-empty, pairwise disjoint and connected
bags B1, . . . , Bp ⊂ V (G) such that for any i ̸= j, there is an edge between some
vertex in Bi and some vertex in Bj . For the notion of quasi-Kp-minor, we drop
the restriction that eachBi should induce a connected subgraph ofG, and replace
it with the condition that for any i ̸= j, the set Bi ∪ Bj induces a connected
subgraph ofG. If the graphG admits a frozen p-coloring, then it trivially admits
a quasi-Kp-minor1, while the converse may not be true. If all p-colorings of a
graph form a single equivalence class, then either there is no frozen p-coloring
or there is a unique p-coloring of the graph up to color permutation. The latter
situation in a graph with no Kp-minor would disprove Hadwiger’s conjecture,
so Las Vergnas and Meyniel conjectured that there is no frozen p-coloring in that
case. Namely, they conjectured the following.

Conjecture 3.1.4 (Conjecture C in [LVM81]). For any t, any graph that admits
a quasi-Kt-minor admits a Kt-minor.

Conjecture 3.1.4 is known to hold for t ⩽ 10 [Kri21]. As discussed above, we
strongly disprove Conjecture 3.1.4 for large t. It is unclear how large t needs to
be for a counter-example.

Theorem 3.1.5. For every ε > 0 and for any large enough t, there is a graph that
admits a quasi-Kt-minor but does not admit a K( 2

3
+ε)t-minor.

Trivially, every graph that admits a quasi-K2t-minor admits aKt-minor. We
leave the following two open questions, noting that 2

3
⩾ c ⩾ 1

2
and c′ ⩾ 3

2
.

Question 3.1.6. What is the infimum c such that for any large enough t, there is
a graph that admits a quasi-Kt-minor but no Kct-minor?
Question 3.1.7. Is there a constant c′ such that for every t, all the c′ · t-colorings
of a graph with no Kt-minor form a single equivalence class?

1One bag for each color class.

106 J. Narboni



3. Other reconfiguration problems

3.1.2 Construction
Let n ∈ N and let η > 0. We build a random graph Gn on vertex set
{a1, . . . , an, b1, . . . , bn}: for every i ̸= j independently, we select one pair uni-
formly at random among {(ai, aj), (ai, bj), (bi, aj), (bi, bj)} and add the three
other pairs as edges to the graph Gn.

Note that the sets {ai, bi}1⩽i⩽n form a quasi-Kn-minor, as for every i ̸= j,
the set {ai, bi, aj, bj} induces a path on four vertices in Gn, hence is connected.

Our goal is to argue that ifn is sufficiently large thenwith high probability the
graph Gn does not admit any K( 2

3
+η)n-minor. This will yield Theorem 3.1.5. To

additionally obtain Theorem 3.1.3, we need to argue that with high probability,
Gn admits an n-coloring with a different color partition than the natural one,
where the color classes are of the form {ai, bi}. Informally, we can observe that
each of {a1, . . . , an} and {b1, . . . , bn} induces a graph behaving like a graph in
Gn, 3

4
(i.e. each edge exists with probability 3

4
) though the two processes are not

independent. This argument indicates that χ(Gn) = O( n
logn

), but we prefer a
simpler, more pedestrian approach.

Assume that for some i, j, k, ℓ, none of the edges aibj , ajbk, akbℓ and aℓbi exist.
Then the graph Gn admits an n-coloring α where α(ap) = α(bp) = p for every
p ̸∈ {i, j, k, ℓ} and α(ai) = α(bj) = i, α(aj) = α(bk) = j, α(ak) = α(bℓ) = k
and α(aℓ) = α(bi) = ℓ (see Figure 3.1). Since every quadruple (i, j, k, ℓ) has a
positive and constant probability of satisfying this property, Gn contains such a
quadruple with overwhelmingly high probability when n is large.

Figure 3.1: A different n-coloring given an appropriate quadruple.

We are now ready to prove that the probability that Gn admits a K( 2
3
+η)n-
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minor tends to 0 as n grows to infinity. We consider three types of Kp-minors
in G, depending on the size of the bags involved. If every bag is of size 1, we say
that it is a simpleKp-minor – in fact, it is a subgraph. If every bag is of size 2, we
say it is a double Kp-minor. If every bag is of size at least 3, we say it is a triple
Kp-minor. We prove three claims, as follows.

Claim 13. For any ε > 0, P(Gn contains a simple Kεn-minor) → 0 as n→ ∞.

Claim 14. For any ε > 0, P(Gn contains a double Kεn-minor) → 0 as n→ ∞.

Claim 15. Gn does not contain a triple K 2
3
n+1-minor.

Claims 13, 14 and 15 are proved in subsections 3.1.2, 3.1.2 and 3.1.2, respec-
tively. If a graph admits a Kp-minor, then in particular it admits a simple Ka-
minor, a double Kb-minor and a triple Kc-minor such that a+ b+ c ⩾ p. Com-
bining Claims 13, 14 and 15, we derive the desired conclusion.

No large simple minor

Proof of Claim 13. Let S be a subset of k vertices of Gn. The probability that
S induces a clique in Gn is at most

(
3
4

)(k2). Indeed, if {ai, bi} ⊆ S for some i,
then the probability is 0. Otherwise, |S ∩ {ai, bi}| ⩽ 1 for every i, so we have
G[S] ∈ Gk, 3

4
, i.e. edges exist independently with probability 3

4
. Therefore, the

probability that S induces a clique is
(
3
4

)(k2).
By union-bound, the probability that some subset on k vertices induces a

clique is at most
(
2n
k

)
·
(
3
4

)(k2). For any ε > 0, we note that
(
2n
εn

)
⩽ 22n. Therefore,

the probability that Gn contains a simple Kεn-minor is at most 22n ·
(
3
4

)(εn2 ),
which tends to 0 as n grows to infinity.

No large double minor

Proof of Claim 14. Let S ′ be a subset of k pairwise disjoint pairs of vertices inGn

such that for every i, at most one of {ai, bi} is involved in S ′.
We consider the probability that Gn/S′ induces a clique, where Gn/S′ is de-

fined as the graph obtained from Gn by considering only vertices involved in
some pair of S ′ and identifying the vertices in each pair.

We consider two distinct pairs (x1, y1), (x2, y2) of S ′. Without loss of gener-
ality, {x1, x2, y1, y2} = {ai, aj, ak, aℓ} for some i, j, k, ℓ. The probability that
there is an edge between {x1, y1} and {x2, y2} is 1 −

(
1
4

)4. In other words,
P(E((x1, y1), (x2, y2)) = ∅) =

(
1
4

)4 and since at most one of {ai, bi} is involved
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in S ′ for all i, all such events are mutually independent. Therefore, the probabil-

ity that S ′ yields a quasi-K|S′|-minor is
(
1−

(
1
4

)4)(|S′|
2 ).

For any ε′ > 0, the number of candidates for S ′ is at most
(

2n
2ε′n

)
(the number

of choices for a ground set of 2ε′n vertices) times (2ε′n)! (a rough upper bound
on the number of ways to pair them). Note that

(
2n
2ε′n

)
· (2ε′n)! ⩽ (2n)2ε

′n. We
derive that the probability that there is a set S ′ of size ε′n such thatGn/S′ = K|S′|

is at most (2n)2ε′n ·
(
1−

(
1
4

)4)(ε′n2 ), which tends to 0 as n grows large.
Consider a doubleKk-minorS ofGn. Note that no pair inS is equal to {ai, bi}

(for any i), as every bag induces a connected subgraph in Gn. We build greedily
a maximal subset S ′ ⊆ S such that S ′ involves at most one vertex out of every
set of type {ai, bi}. Note that |S ′| ⩾ |S|

3
. By taking ε′ = ε

3
in the above analysis,

we obtain that the probability that there is a set S of εn pairs that induces a
quasi-K|S|-minor tends to 0 as n grows large.

No large triple minor

Proof of Claim 15. The graphGn has 2n vertices, and a tripleKk-minor involves
at least 3k vertices. It follows that if Gn contains a triple Kk-minor then k ⩽
2n
3
.
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3.2 Connected greedy edge-coloring

3.2.1 Introduction

As discussed in Section 1.3.3, a naive way to color the vertices of a graph is to
consider them one by one and to color each vertex with the smallest color that
does not appear on any neighbor of it. More formally, let G be a graph and
O = (v1, · · · , vn) be a linear ordering of its vertices. The greedy coloring of G
followingO is the coloring α ofG obtained by coloring vi with the smallest color
k such that there is no vj ∈ N(vi)with j < i andα(vj) = k, for i from 1 to n. The
maximum number of colors that can be used using a greedy procedure is called
the Grundy number, and computing this value can be a convenient way to bound
any heuristic used to color a graph (see [BFKS18] and [Zak06]). Finding a good
ordering of the vertices can indeed seem like an easier way to find a coloring with
not “too many” colors. However, if we choose a bad ordering then the difference
between the number of colors involved in a greedy coloring and the chromatic
number can be arbitrary large, even for trees.

On the other hand, note that there is always an ordering O of the vertices
of a graph G such that the greedy coloring following O involves the optimal
number of colors, i.e. χ(G). The argument is simple: consider a χ(G)-coloring
α ofG, and put first all the vertices colored 1 in α, then all the vertices colored 2,
etc. The greedy coloring following this ordering might not be exactly the same
as α, but it will use χ(G) colors in total. Nevertheless, finding such an ordering
is equivalent to directly computing an optimal coloring, so this is not a helpful
approach.

A more interesting approach is through connected orderings. A connected
ordering is an ordering where each vertex (except the first one) has one of its
neighbors as predecessor – in other words,G[{v1, . . . , vi}] is connected for every
i. Note that disconnected graphs do not admit a connected ordering: throughout
this section we only consider connected graphs. Indeed, for coloring purposes,
one can simply handle each connected component independently. The minimum
number of colors used by the greedy procedure when following a connected or-
dering is called the connected chromatic number of G and is denoted χc(G). Sur-
prisingly, the connected chromatic number behaves similarly to the chromatic
number. In fact, Benevides, Campos, Dourado, Griffiths, Morris, Sampaio and
Silva [BCD+14] proved that χc(G) ⩽ χ(G) + 1 for every graph G.

As discussed in Section 1.3.2, edge coloring is a special case of vertex coloring
which typically displays significantly meeker behaviour.

Given that edge coloring is a special case of vertex coloring, all the notions
discussed earlier extend naturally. Let us denote by χ′

c(G) the connected greedy
chromatic index of G. The goal of this section is to study this parameter. By
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considering vertex colorings of the line graph ofG, we obtain χ′(G) ⩽ χ′
c(G) ⩽

χ′(G)+1. In the case of vertex coloring, it is NP-hard to decide whether χc(G) =
χ(G) [BCD+14]. To the best of our knowledge it is unknown whether this ex-
tends to edge coloring, and even whether χ′(G) and χ′

c(G) can differ. It is how-
ever known that χ(G) and χc(G) can differ on claw-free graphs [LT18].

Our first contribution is to prove that deciding χ′
c(G) = χ′(G) is NP-hard,

even for graphs of small maximum degree satisfying χ′(G) = ∆(G).

Theorem 3.2.1. For all∆ ⩾ 4, it is NP-hard to decide whether χ′(G) = χ′
c(G) on

the class of graphs with chromatic index ∆.

Our proof also provides an example of a graph G with χ′
c(G) > χ′(G) of

maximum degree 3. When G is a connected graph of maximum degree 2, then
G is a path or a cycle and it is easy to see that χ′

c(G) = χ′(G).
In the vertex case, 2 = χ(G) = χc(G) when G is bipartite [BCD+14]. We

show that for bipartite graphs optimal connected orderings also exist in the edge
case.

Theorem 3.2.2. If G is bipartite, then χ′
c(G) = χ′(G).

In Theorem 3.2.2, we use Kempe changes to reconfigure a k-edge coloring
to a connected greedy k-edge coloring. In order to do this we define the no-
tion of ‘reachability’ which might be of independent interest. Let G′ be the sub-
graph induced by the edges of color < k. Reachability predicts whether we can
‘jump’ between the components of G′ via a connected ordering that assigns the
edges between the components color k; by induction, we can find optimal con-
nected orderings for the components of G′, which we combine to an optimal
connected ordering for G. We can get a similar reachability result for general
graphs (Lemma 3.2.7), of which the following is an easy corollary.

Theorem 3.2.3. If G has maximum degree 3 then χ′
c(G) ⩽ 4.

However, we did not manage to push through the induction argument used
in Theorem 3.2.2 to provide a full answer to the following problem, which we
leave open.

Problem 1 (Question 3 in [MRS20]). Is it true that χ′
c(G) ⩽ ∆+1 for each graph

G of maximum degree ∆?

3.2.2 Proof of NP-hardness
In this subsection, we prove Theorem 3.2.1. We first define some auxiliary con-
structions.
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3.2. Connected greedy edge-coloring

Let ∆ ⩾ 3 be given. The ∆-dimensional hypercube Q∆ with vertex set
{0, 1}∆ is∆-regular and satisfies χ′(Q∆) = ∆. Indeed, we may reserve a differ-
ent color for each ‘direction’ as in Figure 3.2. Pick an edge xy ∈ E(Q∆). Let Q+

∆

be the graph with vertex set V (Q+
∆) = V (Q∆) ∪ {x′, y′} and edge set

E(Q+
∆) = (E(Q∆) \ {xy}) ∪ {xx′, yy′}.

Then χ′(Q+
∆) = ∆. An example is given in Figure 3.2.

x

y

x

y

x′

y′

x

y

x′

y′

u s

Figure 3.2: The graphs Q3, Q+
3 and H3 are depicted with possible 3-edge color-

ings.

Below we consider the situation in which we attempt to extend a coloring
in which one of the edges has been precolored. We assign the lowest available
color to the edges in a connected ordering starting from an edge incident with
the precolored edge.

Lemma 3.2.4. Let ∆ ⩾ 3. Let xx′, yy′ ∈ E(Q+
∆) be the two edges containing a

vertex of degree 1.

• If α is a ∆-edge coloring of Q+
∆, then α(xx

′) = α(yy′).

• If xx′ is precolored with some color i ∈ [∆], then there is a connected ordering
of the edges of Q+

∆ such that the greedy procedure uses ∆ colors.

Proof. To see the first claim, suppose that we assign xx′ and yy′ different colors.
One of the color classes must then cover an odd number of vertices from Q∆

(because it covers an even number of vertices inQ+
∆ as any color class of an edge

coloring ofQ+
∆ forms amatching). Let v ∈ V (Q∆) be a vertex not covered by this

color class. Since v has degree ∆, there are edges of ∆ different colors incident
to it. Hence we have used at least ∆+ 1 colors.
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x
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y x′
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Q∆ − xy

Q∆ − xy

...

∆
−

2

Figure 3.3: The graph H is depicted with a possible edge coloring.

To see the second claim, fix any∆-edge coloringα ofQ+
∆ withα(xx′) = i. Let

z ∈ {x, x′} be the vertex of degree ∆. We can now always create an ordering of
the edges leading to the edge coloring α. Indeed, we first color the edge incident
to z which needs to get color 1, then the edge incident to z that needs to get color
2, etc, until we colored all edges incident to z. We then pick a neighbor of z of
degree∆ and color all edges incident to this one in a similar order. We continue
like this until all edges have been colored.

We will extend Q+
∆ into a gadget H . Let us first explain the case ∆ = 3. We

obtain the graphH3 from the graphQ+
3 by adding a new vertex u adjacent to the

vertices x′ and y′ as well as adding a new vertex s adjacent to u as in Figure 3.2.
Suppose we have a connected greedy 3-edge coloring of H starting from s. By
Lemma 3.2.4, xx′ and yy′ must get the same color. Since x′u and y′u cannot get
the same color, the edges xx′, yy′ and su must all receive the same color. Since
we started from s, some edge from {xx′, yy′} is the first edge to be colored from
Q+

3 . Since x′ and y′ have degree 2, this edge will not get color 3. If we force
the edge su to have color 3, and then continue in a connected greedy fashion,
then this shows we cannot color all the edges using three colors. On the other
hand, if we force it to have color 1 or 2, then we can continue to color x′u, xx′,
the remainder of the hypercube and finally yy′ and y′u using Lemma 3.2.4. This
proves the lemma below in the case ∆ = 3.

Lemma 3.2.5. For any∆ ⩾ 3, there exists a graphH of maximum degree∆ with
a special vertex s of degree 1 with the following properties.

• If the edge incident with s is precolored with color ∆, then there is no con-
nected greedy ∆-edge coloring of H starting from this edge.
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3.2. Connected greedy edge-coloring

• If the edge incident with s is precolored with i ∈ [∆− 1], then there exists a
connected greedy ∆-edge coloring of H starting from this edge.

Proof. We extend ∆ − 2 copies of Q+
∆ to the graph H . We first glue all these

copies on their respective vertices labelled x′ and y′. We then obtain the graph
H by adding a new vertex u adjacent to the (merged) vertices x′ and y′ and a
new vertex s adjacent to u (see Figure 3.3).

Let α be a ∆-edge coloring. Since α(x′u) ̸= α(y′u), we find that there exists
aQ+

∆ copy for which α(xx′) = α(yy′) = α(su), where x and y are the vertices in
this copy adjacent to x′ and y′ respectively. If we start the coloring from an edge
incident to u, then one of the edges in {xx′, yy′} is the first edge to be colored
from Q+

∆; since x′ has degree ∆ − 1, this edge will not get color ∆. Combined
with Lemma 3.2.4, this shows that no connected ∆-edge coloring starting from
su can exist in which the edge su is precolored ∆.

On the other hand, if su gets a color strictly smaller than ∆, then we first
may color x′u, then all edges incident to x′, and finally by Lemma 3.2.4 we can
further extend the connected ordering in such a way that all copies of Q+

∆ are
∆-edge colored while no edge incident with y′ receives color ∆. So we have at
least one color leftover for y′u (which will in fact need to get color ∆).

We are now ready to show that it is NP-hard to decide whether χ′(G) =
χ′
c(G) on the class of graphs of maximum degree ∆, for all ∆ ⩾ 4.

Proof of Theorem 3.2.1. Let d = ∆− 1, and let G be an n-vertex d-regular graph.
We transform G into a graph G′ of maximum degree ∆ such that χ′(G) = d if
and only if χ′

c(G
′) = χ′(G′). In fact, χ′(G′) = ∆ and |V (G′)| ⩽ ∆22∆n. This

reduction proves the theorem since deciding whether χ′(G) = d is NP-hard on
d-regular graphs for all d ⩾ 3, as shown by Leven and Galil [LG83].

Let ∆ = d+ 1 and let H be the graph from Lemma 3.2.5 for that value of ∆.
For each v ∈ V (G), we create a graphGv by merging∆−1 copies ofH on their
special vertex s (see Figure 3.4). The graph G′ is obtained from G by connecting
Gv to v via an edge for each v ∈ V (G); for v, v′ distinct vertices ofG, the graphs
Gv andGv′ are disjoint and have no edges between them. Note that χ′(G′) = ∆.

Suppose first that our d-regular graph G can be colored using d colors. Fix
a d-edge coloring α of G. There is a connected ordering of the edges of G that
results in the edge coloring α. Indeed, since G is d-regular, whenever we have
‘reached’ a vertex we can assign the edges incident to this vertex the desired
colors, starting from the edge colored 1, continuing with the edge colored 2 etc.
We may then color the edge from v to Gv with color d + 1 for all v ∈ V (G).
Continuing in the various copies of H , the corresponding edge su gets a color
< d+ 1 = ∆ and hence by Lemma 3.2.5 there is a connected ordering in which
we can edge color these with ∆ colors. So χ′

c(G
′) = χ′(G′).
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...
∆

−
1

u
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H − s

H − s

s v

Gv

Figure 3.4: We create an instance of the depicted graph for each vertex of G.

Suppose now thatG is not d-edge colorable. For contradiction, suppose there
is a ∆-edge coloring α that can be obtained via a connected ordering. Since
G is not d-edge colorable, α(vv′) = d + 1 for some vv′ ∈ E(G). The two
edges between v, v′ and Gv, Gv′ are then not colored ∆. As Gv and Gv′ are not
connected to each other, we may assume that these edge are colored before any
of the edges in Gv are colored. Since s has degree ∆, there is then a copy of H
with vertex u connecting to s inGv for which su has color∆ and this is the first
edge ofH that is colored; this contradicts Lemma 3.2.5. So χ′

c(G
′) > χ′(G′).

To obtain a graph G of maximum degree 3 with χ′
c(G) > χ′(G), we take a

triangle and give each point a pendant vertex, and take three pairs of copies of
the graphH3 (as depicted in Figure 3.2) for which we identify the vertex labelled
s with one of the pendant vertices, as depicted in Figure 3.5. At least two of the
three ‘pendant’ edges incident with the triangle does not have color 3 in a 3-edge
coloring; one of the two su-type edges adjacent to such an edge hence gets color
3. In a connected greedy edge coloring, for at least one of the two corresponding
copies of H3, the edge su is the first to be colored. By Lemma 3.2.5, the coloring
then uses at least 4 colors. Hence χ′

c(G) > 3 = χ′(G).

3.2.3 Bipartite graphs

Theorem 3.2.2 is an immediate consequence of the following lemma.

Lemma 3.2.6. Let G be a connected bipartite graph with χ′(G) ⩽ k. Then for
any vertex v ∈ V (G), there exists a connected ordering starting from v leading to
a k-edge coloring of G.
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H3 − s

u

H3 − s

u

H3 − s

u

H3 − s

u

H3 − s u H3 − su

Figure 3.5: A graph G with maximum degree 3 and χc(G)
′ > χ′(G). For any

3-edge coloring, there are two edges of type su colored 3 ‘entering’ a copy ofH3.

Proof. We prove the lemma by induction on k. If G is a connected graph with
χ′(G) = 1, then G is a single edge. Hence the lemma is true for k = 1. Suppose
now that we have proven the lemma for all k′ < k for some integer k ⩾ 2.

Let α : E(G) → [k] be a k-edge coloring of G and let u, v ∈ V (G). For
u, v distinct, we say u strongly reaches v in the coloring α if uv ∈ E(G) and
either α(uv) < k or the degree of u is k. Each vertex strongly reaches itself. We
now define reachability as the transitive closure of strong reachability: we say u
reaches v in the coloring α if there is a sequence u = v0, v1 . . . , vℓ = v of vertices
in G such that vi−1 strongly reaches vi for all i ∈ [ℓ].

We first show that for every vertex v, there exists a k-edge coloring ofG such
that v reaches all vertices of G in this coloring. Take a k-edge coloring α of G
which maximises the number of vertices that v can reach. Suppose that v cannot
yet reach all vertices. We will strictly increase the set of vertices that v can reach
through a series of Kempe changes.

Let A ⊆ V (G) be the set of vertices that v can reach in α and let B =
V (G) \ A. Note that as v reaches itself, v ∈ A. Since G is connected, there
must be an edge su from some s ∈ A to some u ∈ B. By the definition of strong
reachability, we find that s has degree strictly smaller than k and that α(su) = k.
Hence s misses a color x ∈ [k − 1], that is, it has no edge incident of color x.

Suppose first that u has degree < k. If vertex u misses color x as well, then
the edge su forms a (k, x)-component on its own and a (k, x)-Kempe change
switches the color of su to x. This adds the vertex u to the set of vertices that v
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can reach, increasing the set of vertices v can reach as desired. Hence we may
assume that u misses some color y but does not miss color x. Then y < k and
there is some edge e incident to u colored x. Since all edges betweenA andB are
colored k, the (x, y)-component of e stays within G[B]. Hence we may perform
an (x, y)-Kempe change on this component without affecting the set of vertices
that v can reach. Now we are back in the case in which u and s both miss color
x, which we already handled.

Suppose now that vertex u has degree k. Let e denote the edge colored x
incident to u. Note that the (x, k)-component C of e is a path (of which one
endvertex is s). If it stays within G[B ∪ {s}], then performing an (x, k)-Kempe
change on C recolors su with color x without affecting the colors in G[A] and
hence strictly enlarges the set of vertices that v can reach. So we may assume
that C intersectsA a second time, say s′ ∈ A is the vertex closest to s in the path
C . Since s′ has an edge incident with B, we find that it has degree < k. Hence
it has some color y < k missing. Once we ensure x is missing at s′, we can do
an (x, k)-Kempe change on the component of e and strictly increase the set of
vertices that v can reach.

If s′ has an edge incident with color x, then consider the (x, y)-component of
this edge. This has to stay within A and performing a Kempe change on it will
not affect the set of vertices that v can reach since x, y < k. The only problem
is that this chain C ′ could include the vertex s. Here is where we use that the
graph is bipartite: as can be seen in Figure 3.6, this would create an odd cycle in
the graph, since there is an odd number of edges in C between s and s′ and an
even number of edges in C ′ between s and s′ (since they have different colors
missing). Hence we may perform the (x, y)-Kempe change without affecting the
missing color of s, and can then perform the (x, k)-Kempe change as desired.

This showswe can always strictly increase the set of vertices that v can reach.
This contradicts the maximality of α. Hence there exists a coloring α in which v
can reach all vertices.

Let C1, . . . , Cℓ denote the connected components of G when we remove all
edges ofG colored k in α, where v ∈ C1. We will show that there is a connected
ordering starting from v that leads to a k-edge coloring of G which is a (k − 1)-
edge coloring when restricted to any Ci. Since v can reach everything in α, after
possibly renumbering C2, . . . , Cℓ, we can find vertices

si ∈ C1 ∪ · · · ∪ Ci and vi+1 ∈ Ci+1 ∩NG(si),

for i = 1, . . . , ℓ−1, such that for all i ∈ [ℓ−1], si can strongly reach vi+1 (‘reach
in one step’) and hence dG(si) = k (since we already know α(sivi+1) = k by the
definition of the components).

Since C1 is a connected bipartite graph with χ′(C1) ⩽ k − 1, there exists a
connected ordering starting from v that (k− 1)-edge colors C1 by the induction
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Figure 3.6: If the (x, y)-chain of s′ includes s, then G contains an odd cycle.

hypothesis. By the definition of the components, all edges incident to s1 except
for s1v2 have now been colored. We color the edge s1v2 next; this obtains color
k. Since C2 is a connected bipartite graph with χ′(C2) ⩽ k − 1, there exists a
connected ordering starting from v2 that (k − 1)-edge colors C2 by the induc-
tion hypothesis. We extend our previous ordering by this connected ordering
and continue like this until we have colored all edges within the components.
We then color the edges between the components; since color k will always be
available to them, they will all receive a color at most k.

3.2.4 Subcubic graphs

Let G be a graph, let α be a k-edge coloring of G and let i ∈ [k]. We say that
a vertex v ∈ V (G) can i-reach another vertex w ∈ V (G) in α if there exists a
sequence of vertices v = v1, v2, . . . , vℓ+1 = w of G such that for all j ∈ [ℓ] there
is an edge vjvj+1 ∈ E(G) and one of the following holds:

• α(vjvj+1) < i;

• vj has incident edges in colors 1, 2, . . . , α(vjvj+1).

If k = i = ∆ the maximum degree of G, then this reduces to the notion of
reachability from the proof of Theorem 3.2.2. The proof of Theorem 3.2.3 follows
from the lemma below which might be of independent interest.

Lemma 3.2.7. Suppose G is a graph with maximum degree ∆ and v ∈ V (G).
ThenG has a (∆+1)-edge coloring α such that v can∆-reach all other vertices of
G in α.
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Proof. In this proof, we will omit the ∆ from ∆-reach. By Vizing’s
theorem [Viz64], G has at least one (∆ + 1)-edge coloring α. We choose such a
coloring α that maximises the size of the set A of vertices that v can reach in α.
Let B = V (G) \ A be the set of vertices that v cannot reach.

Suppose that A ̸= V (G). The edges between A and B are of color ∆ or
∆+1. Let C ⊆ B be the neighbors of A via edges colored∆. LetD ⊆ B the set
of vertices adjacent to a vertex in C (which a priori might overlap with C). We
claim that we can obtain an edge coloring in which v can reach a strictly larger
set of vertices than A (contradicting the maximality of A) as soon as one of the
following properties holds.

(1) C is empty, i.e. there is no ∆-edge between A and B.

(2) There is an (x,∆)-Kempe chain with x < ∆ which is a path between a
vertex in A and a vertex in B.

(3) Some c ∈ C has a color x ∈ [∆− 1] missing.

(4) Some d ∈ D misses color ∆ or ∆+ 1.

We will prove the claim after we show that we can assume one of (1)−(4) holds.
We suppose all properties above do not hold. Since (1) fails, we know there is an
edge from some a ∈ A to some c ∈ C (which has color ∆ by definition of C).
Since c is not reachable, there is a color x < ∆ missing at a. Since (3) fails, c is
incident to an edge cd of color x, where d ∈ D. As (4) fails, we know that there
is some color y < ∆ missing at d. Consider a (∆, y)-Kempe chain starting at d.
Since (2) fails, it stays within B. After performing the Kempe change, there is a
vertex in D with no edge colored ∆, contradicting with (4) failing.

To prove the claim in case (1), suppose that there are no edges colored ∆
between A and B. Since G is connected, there exists an edge from some a ∈ A
to some b ∈ B. Then α(ab) = ∆ + 1. Let x < ∆ + 1 be the smallest color
missing at a. Since b has the edge ab incident in color∆+1, bmisses some color
y < ∆+ 1. We do an (x, y)-Kempe change on the component of b (this could be
empty). Since all the edges between A and B are colored∆+ 1, this chain stays
within B. After the applying the Kempe change, both a and b miss the color x.
We may recolor the edge ab with color x, and now the set of vertices that v can
reach has increased (since v can now reach b as well).

To prove the claim in case (2), suppose that some (x,∆)-chain for x < ∆
starts in u ∈ B and contains a vertex s from A. Let a ∈ A and b ∈ B such that
ab is the closest edge between A and B in this chain to s. As x < ∆, we find
α(ab) = ∆. Thus a must have some color y < ∆ missing (since b cannot be
reached). The (x, y)-chain starting at a will stay within A and performing the
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Kempe change does not affect which vertices v can reach. So we may assume
that x is missing at a and the (x,∆)-component of a is a path between a and
u that only intersects A in the vertex a. A Kempe change on this component
strictly increases the set of vertices that v can reach.

We now prove the claim assuming (3). Suppose that c ∈ C has a color x < ∆
missing. Let a ∈ A with α(ac) = ∆ (which exists by the definition of C). Let
y < ∆ be a color missing at a. The (x, y)-chain starting at c stays inB, and hence
we may perform a Kempe change and then recolor ac to y in order to increase
the set of vertices that v can reach.

Finally, we prove the claim from (4). Suppose d ∈ D misses color∆ or∆+1.
Let c ∈ C be the vertex d is adjacent to. By (3) we are done unless c only has the
color ∆+ 1 missing. If ∆+ 1 is missing at d, then we recolor cd to color ∆+ 1
in order to reduce to (3). So ∆ is missing at d. Let a ∈ A with α(ac) = ∆. Let
y = α(cd) < ∆ and let x < ∆ be a missing color at a. We may perform an (x, y)-
Kempe change starting at a to ensure that amisses color y. The only vertices on
the (y,∆)-Kempe chain containing c are then a and d. After we apply a Kempe
change on this chain, the set of vertices that v can reach has strictly increased
again.

We are now ready to prove that any graph ofmaximumdegree∆ ⩽ 3 satisfies
χ′
c(G) ⩽ ∆+ 1.

Proof of Theorem 3.2.3. Let G be a graph of maximum degree 3. Pick a vertex
v ∈ V (G). Let α be a 4-edge coloring of G in which v can 3-reach all other
vertices of G; this exists by the lemma above.

The proof follows the same argument as the last two paragraphs of the proof
of Lemma 3.2.6, now using the fact that any (1, 2)-component can be 2-edge col-
ored in a connected greedy fashion starting from any vertex instead of applying
the induction hypothesis.

Let C1 be the (1, 2)-component of v. After doing a (1, 2)-Kempe change if
needed, we can color C1 in a connected greedy fashion starting from v. If G has
more components, then since v can 3-reach all other vertices, there must be a
(1, 2)-component C2 ̸= C1 and vertices v2 ∈ C2 and s1 ∈ C1 such that s1v2 ∈
E(G), and either α(s1v2) < 3 or s1 has incident edges in colors 1, . . . , α(s1v2)
in α. Since s1 and v2 are in different (1, 2)-components, we conclude the latter
holds. Since G has maximum degree 3, it follows that α(s1v2) = 3. Hence all
edges incident to s1 have been colored apart from s1v2, which we put next in
the connected ordering. After performing a (1, 2)-Kempe change if needed, we
2-edge color the edges of C2 in a connected greedy fashion starting from v2.
(Note that there might be no edges to color in this step, as the component might
consist of only v2.) As long as the edges of some (1, 2)-component have not
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been colored, we can continue the connected ordering in a similar fashion. The
resulting (partial) coloring has the same (1, 2)-components as α and colored an
edge 3 if and only if it has color 3 in α. We finish the connected ordering by first
coloring the edges colored 3 by α and then the edges colored 4 by α; all these
edges receive a color at most 4.

Addendum

Since the work was published, this result has been improved by Laurent Beau-
dou, Caroline Brosse, Oscar Defrain Florent Foucaud, Aurélie Lagoutte, Vincent
Limouzy and Lucas Pastor [BBD+21]. They generalize the argument of the proof
and show in particular that for any perfect graph G, χc(G) = χ(G).
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Chapter 4

From coloring to edge-labeling

In this chapter we present our work on coloring of planar graphs using reduction
to edge-labeling of an auxiliary graph. We first present joint work with František
Kardoš on signed coloring of signed planar graphs [KN21], this work was pub-
lished in the European Journal of Combinatorics. We then present joint work
with František Kardoš towards a conjecture on the chromatic index of triangle-
free planar graphs of maximum degree 4; unfortunately, this work has not lead
a result regarding the conjecture, and we present here our approach and partial
results. For both of these questions, our approach consists in reducing the origi-
nal problem to a problem of edge-labeling of an auxiliary graph, the dual graph
for the first question, and the medial graph for the second one.

4.1 4-signed coloring of signed planar graphs

4.1.1 Introduction

Let G be a graph and σ : E(G) → {−1,+1} be a mapping. As mentioned in
Section 1.3.6, the pair (G, σ) is called a signed graph, σ is called the signature
of the graph, and G the underlying graph. For convenience, when there are no
ambiguities, we only write G to denote the signed graph.

Signed graph is a notion introduced by Harary in 1953 [H+53]. Switching a
vertex v in a signed graph consists of switching the sign of every edge incident
with v. This operation induces equivalence classes on signed graphs having the
same underlying graph.

Because switching a vertex preserves the sign of every cycle in the graph
(i.e., the product of the signs of the edges composing the cycle), the equivalence
classes with respect to switching can be characterized by the sign of the cycles
[Zas82b]: Two signed graphsG1 andG2 are equivalent if and only if every cycle
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of G1 has the same sign as the corresponding cycle of G2.
Zaslavsky [Zas82a] defined a coloring of a signed graph G with k colors (or,

equivalently, a coloring with 2k + 1 signed colors) as a mapping

c : V (G) → {−k,−(k − 1), . . . ,−1, 0, 1, . . . , k − 1, k}

such that for every edge e = uv ∈ E(G), c(u) ̸= σ(e) · c(v).
A signed coloring corresponding to the Zaslavsky’s definition is preserved by

the switching operation: When switching a vertex v in a colored signed graph
G, switching the sign of the color of v preserves the coloring of G.

Máčajová, Raspaud and Škoviera [MRŠ16] introduced the chromatic number
of a signed graph using Zaslavsky’s definition of a coloring in the following way:
A signed graph is called k-colorable for k even (k odd) if there exists a mapping
c : V (G) → {−k/2,−(k/2 − 1), . . . ,−1, 1, . . . , k/2 − 1, k/2} (c : V (G) →
{−(k − 1)/2,−((k − 1)/2 − 1), . . . ,−1, 0, 1, . . . , (k − 1)/2 − 1, (k − 1)/2},
respectively), such that for every edge e = uv ∈ E(G), c(u) ̸= σ(e) · c(v).

Given a signed graph (G, σ), we denote by χ(G, σ) (or χ(G)) the chromatic
number of (G, σ), the smallest integer k such that (G, σ) is k-colorable.

Máčajová, Raspaud and Škoviera conjectured that the four-color theorem
holds for the signed planar graphs as well :

Conjecture 4.1.1. [MRŠ16] Every simple signed planar graph (G, σ) has
(χ(G), σ) ⩽ 4.

Coloring of signed graphs is closely related to list coloring, and Conjecture
4.1.1 would in fact imply a conjecture about a special type of list coloring of
(non-signed) graphs called weak list coloring.

A list assignement L is symmetric if, for every vertex v of G and for every
color i we have i ∈ L(v) if and only if −i ∈ L(v). A graph G is k-weakly
choosable if G is L-colorable for every symmetric list assignement L such that
for every vertex v, |L(v)| ⩾ k. The weak choice number of a graph G is the
smallest k such that G is k-weakly choosable; this number is denoted chw(G).

Kündgen and Ramamurthi [KR02] proposed the following generalization of
the four-color theorem:

Conjecture 4.1.2. [KR02] Let G be a planar graph. Then chw(G) ⩽ 4.

Zhu [Zhu20] showed that Conjecture 4.1.1 implies Conjecture 4.1.2. In this
section, we prove that Conjecture 4.1.1 is false.

4.1.2 Results
Before introducing a counterexample to Conjecture 4.1.1, we translate the prob-
lem of vertex coloring a signed planar graph to a problem of edge labeling its dual.
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As discussed in Section 1.3.4, this translation generalizes the well-known corre-
spondence between 4-colorings of a planar triangulation and 3-edge-colorings
of the dual, used in the proof of the four-color theorem (see [RSST97]).

Let G be a 3-connected signed planar graph. By the classical result of Whit-
ney [Whi33], there is a unique embedding of G in the plane (up to the choice of
the outer face) and the faces ofG are well-defined; moreover, each face boundary
is a cycle. This allows us to speak about the dual graph of G without specifying
the embedding of G in the plane, since it is uniquely determined.

The sign of a face f is defined as the sign of its boundary cycle. In particu-
lar, a face f is positive (negative) if the facial cycle of f contains an even (odd,
respectively) number of negative edges.

Let G∗ be the dual graph of G. We define the sign of a vertex f ∗ of G∗ as the
sign of the corresponding face f of G. Note that the number of negative faces
in G is always even, which implies that the number of negative vertices in G∗ is
always even as well.

Observe that the set of negative faces inG is invariant with respect to switch-
ing, and thus the sign labeling of the vertex set of the dual graph G∗ is the same
for every primal graph G belonging to a same switching class.

In the figures, the positive vertices will be represented by simple dots, and
the negative ones will be represented by circles with a minus sign inside.

Let H be a 3-connected planar graph and let ℓ : E(H) → {0, a, b} be an
edge labeling ofH , where 0, a, and b are arbitrary symbols. We denote dx(v) the
number of edges incident with v labelled x for v ∈ V (H) and x ∈ {0, a, b}.

Definition 4.1.3. Let H be a 3-connected planar graph with an even number of
negative vertices and let ℓ be a {0, a, b}-edge-labeling of H . The labeling ℓ is a
weak edge labeling of H if

(i) d0(v) ≡ dH(v) (mod 2), and

(ii.a) da(v) ≡ db(v) ≡ dH(v) (mod 2) if v is a positive vertex, or

(ii.b) da(v) ≡ db(v) ≡ dH(v) + 1 (mod 2) if v is a negative vertex.

In particular, if H is a cubic planar graph with an even number of negative
vertices, then a weak edge labeling of H is a {0, a, b}-edge-labeling of H such
that

• if v is positive, then it is incident with one edge of each label from {0, a, b},

• if v is negative, then it is incident with one edge labelled 0, and the two
other edges have the same label x ∈ {0, a, b}.
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Conjecture 4.1.4. Every 3-connected planar graph with an even number of nega-
tive vertices has a weak edge labeling.

Theorem 4.1.5. Conjectures 4.1.1 and 4.1.4 are equivalent.

Proof.We first prove that Conjecture 4.1.1 implies Conjecture 4.1.4.
Let G = (V,E) be a graph and T ⊆ V be a set of vertices of even order. A

T -join is a subgraph F of G such that dF (v) is odd if and only if v ∈ T . In order
to build a T -join of G, it suffices to partition the vertices of T into disjoint pairs
(u, v), and for each pair, consider a path from u to v. A binary sum of these paths
forms a T -join of G.

Let H be a 3-connected planar graph with an even number of negative ver-
tices. Let T be the set of negative vertices of H . Then there exists a T -join F of
H .

Let σ be the signature of G = H∗ defined by

σ(e) =

{
1 if e∗ /∈ F ,
−1 if e∗ ∈ F .

By definition, a face f ofG is negative if and only if the corresponding vertex f ∗

of H is negative.
The edges ofH inherit the signs of their dual counterparts. We denote d+x (v)

(d−x (v)) the number of positive (negative, respectively) edges labeled x incident
with v.

Let φ be a 4-coloring of (G, σ) with colors from {−2,−1, 1, 2}. Let e = uv
be an edge ofG and e∗ be the edge ofG∗ corresponding to e. The label φ∗(e∗) of
e∗ is defined depending on the sign of e and the colors of u and v in the following
way:

φ∗(e∗) =


0 if φ(u) = −σ(uv) · φ(v),
a if σ(uv) · φ(u) · φ(v) = 2,
b if σ(uv) · φ(u) · φ(v) = −2.

(4.1)

Observe that if φ(u) ̸= ±σ(uv) ·φ(v), then {|φ(u)|, |φ(v)|} = {1, 2}, and so
φ∗ is well-defined. It suffices to prove that φ∗ is a weak edge labeling.

Let e = uv be an edge of G. When passing from φ(u) to φ(v), the color may
(or may not) change the sign and/or change the absolute value.

Let f be a face of G. Consider the edges of the cycle defining the boundary
of f . The following observations are direct consequences of the definition of φ∗:

1. Each change of the absolute value of the vertex color corresponds to an
a- or b-edge; the number of such changes around f is even. Therefore,
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there is an even number of a- or b-labeled edges incident with f ∗, which
is equivalent to

d0(f
∗) ≡ dH(f

∗) (mod 2),

and so φ∗ satisfies the condition (i) of Definition 4.1.3. In other words,

da(f
∗) ≡ db(f

∗) (mod 2).

In particular, if f is a triangle, then there is an odd number of 0-labeled
edges incident with f ∗.

2. Each change of the sign of the vertex color corresponds either to a positive
0- or b-labeled edge, or to a negative a-labeled edge; the number of such
changes around f has to be even again. Therefore,

d+0 (f
∗) + d+b (f

∗) + d−a (f
∗) ≡ 0 (mod 2),

which is equivalent to

d+0 (f
∗) + d+b (f

∗) + d+a (f
∗) ≡ d−a (f

∗) + d+a (f
∗) (mod 2).

In other words,
d+(f ∗) ≡ da(f

∗) (mod 2),

and so the total number of positive edges incident with f in G has the
same parity as the total number of a-labeled edges incident with f ∗ in G∗.
Hence, the labeling φ∗ satisfies also the condition (ii) of Definition 4.1.3.
In particular, if f is a positive triangle, then there is an odd number of a-
labeled edges (and of b-labeled edges) incident with f ∗; if f is a negative
triangle, then there is an even number of a-labeled edges (and of b-labeled
edges) incident with f ∗.

Conversely, let (G, σ) be a 3-connected signed planar graph. Letφ∗ be a weak
edge labeling of G∗. We define a coloring of G in the following way: Let T be a
spanning tree of G rooted at a vertex r. We set φ(r) = 1. For a vertex u ̸= r of
G, the color of u will depend on the color of its father v in the spanning tree, the
label of the edge e∗ dual to the edge e = uv and the sign of e in the following
way:

φ(u) =


σ(e) · (σ(φ(v)) · 3− φ(v)) if φ∗(e∗) = a,
−σ(e) · (σ(φ(v)) · 3− φ(v)) if φ∗(e∗) = b,
−σ(e) · φ(v) if φ∗(e∗) = 0.

(4.2)
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Here, by σ(φ(v)) we mean the sign (in the classical sense) of the color of v,
and so σ(φ(v)) · 3− φ(v) ∈ {−2, 2,−1, 1}.

We claim that the coloring φ of G defined in this way and the labeling φ∗ of
G∗ satisfy (4.1) for every edge e of G, and so φ is a proper 4-coloring of G.

It is straightforward to verify that the formulae (4.1) and (4.2) are equivalent
for every edge e ∈ T . The edges ofG∗ dual to the edges from E(G)\E(T ) form
a spanning tree ofG∗. We prove that (4.1) is verified for these edges by induction.

Let f ∗ be a vertex of G∗ corresponding to a face f of G such that (4.1) has
already been verified for all the incident edges but one; let that edge be e0 = uv.
Since, for each x ∈ {0, a, b}, the parity of the x-labeled edges incident with f ∗ is
determined by the size and the sign of f , the label of e∗0 is uniquely determined
by the labels of the other edges incident with f ∗ and the sign of e.

Let P ∗ be the set of edges incident with f ∗ distinct from e∗0, let P be the
corresponding path from u to v along f in G. By (4.1), for every edge e ∈ P ,
φ∗(e∗) ∈ {a, b} if and only the colors of the end-vertices of e have different
absolute values. There is an even number of changes of absolute values of the
colors of vertices around f . Therefore, by (i), φ∗(e∗0) ∈ {a, b} if and only if the
colors of u and v have different absolute values.

Similarly, by (4.1), an edge e of P represents a change of the sign of the col-
ors of the vertices if and only if e∗ is a positive 0- or b-labeled edge or a negative
a-labeled edge. Clearly, there is an even number of sign changes around f . More-
over, by (i) and (ii), there is always an even number of such edges incident with
f ∗, including e∗0; therefore, φ(u) and φ(v) have different signs if and only if e∗0 is
a positive 0- or b-labeled edge or a negative a-labeled edge.

The last two paragraphs combined together imply that (4.1) (or, equivalently,
(4.2)) is true for the edge e0 = uv. □

Definition 4.1.6. Let H be a 3-connected planar graph with an even number of
negative vertices and let ℓ be a {0, a, b}-edge-labeling of H . The labeling ℓ is a
strong edge labeling of H if

(i) ℓ is a weak edge labeling of H , and

(ii) d0(v) < dH(v) for every odd-degree vertex v of H .

Observe that d0(v) = dH(v) is possible only if v is a negative vertex of odd
degree.

Conjecture 4.1.7. Every 3-connected planar graph with an even number of nega-
tive vertices has a strong edge labeling.

Theorem 4.1.8. Conjectures 4.1.4 and 4.1.7 are equivalent.
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Figure 4.1: An example of a gadget used to replace an odd negative vertex (here
k = 3).

Proof. Trivially, Conjecture 4.1.7 implies Conjecture 4.1.4.
Let k ⩾ 3 be an odd integer. We define Wk as the graph obtained from an

all-negative cycle of length k by subdividing each edge using a positive vertex
(and thus creating a cycle of length 2k with alternating vertex signs), by adding
a pending edge to every positive vertex, and by adding a positive vertex adjacent
to all negative vertices of the cycle. See Figure 4.1 for an illustration.

We call the edges of the outer 2k-cycle inWk ring edges, and the edges joining
negative vertices of the cycle to the central positive vertex spokes.

Assume that Conjecture 4.1.4 is true. Let H be a 3-connected planar graph
with an even number of negative vertices. Let H ′ be the graph obtained from
H by replacing every odd negative vertex v by a copy ofWd(v). Since the graph
H ′ is planar, 3-connected and has an even number of negative vertices, it has a
weak edge labeling.

We claim that we can reduce this weak edge labeling of H ′ to a strong edge
labeling of H simply by contracting each gadget to a single (negative) vertex,
keeping the labels of the edges.

LetW be a copy ofWk in H ′ for some odd k ⩾ 3.
First observe that not all the edges leaving W are labeled 0. Otherwise, all

the ring edges would be labeled a or b. However, along the ring, a positive vertex
corresponds to a change from a to b (or vice versa), whereas a negative vertex
cannot be incident with an a- and b-labeled edge at the same time. There has
to be an even number of changes, but there is an odd number of positive ring
vertices, a contradiction.

We need yet to prove that the number of edges leaving W labeled a (b, re-
spectively) is even; the fact that the number of edges leavingW labeled 0 is odd
will follow automatically.

Let us count the number of incidences with a-labeled edges. Since the central
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vertex is a positive vertex of odd degree, it is incident with an odd number of a-
labeled edges. There are an odd number of negative vertices on the ring, each
of them is incident with an even number of a-labeled edges. There are an odd
number of positive vertices on the ring, each of them is incident with an odd
number of a-labeled edges.

Therefore, in total, there are an even number of a-labeled edge incidences in
W , and so there are an even number of edges leavingW labeled a. □

LetH be a cubic graph with an even number of negative vertices. A 2-factor
F ofH is said to be consistent if every cycle of F has an even number of positive
vertices.

As a direct consequence of the definition of the strong edge labeling, we get
the following characterization:

Corollary 4.1.9. LetH be a 3-connected cubic planar graph with an even number
of negative vertices. Then H has a strong edge labeling if and only if H has a
consistent 2-factor F .

Proof. If H has a strong edge labeling, then for each v ∈ V (H), da(v) +
db(v) = 2. Hence, the edges labeled a or b form a 2-factor F of H . Moreover, as
for v ∈ V (H), v is a positive vertex if and only if da(v) = db(v) = 1, each cycle
of F must have an even number of positive vertices.

Conversely, assume thatH has a consistent 2-factorF . For each cycleC ∈ F ,
choose an edge e ∈ C , and label e with a. Then, label the other edges of C with
a and b, in such a way that the labels change only at positive vertices. The edges
that are not part of F are labeled 0. It is easy to see that such a labeling is a strong
edge labeling of H . □

Observe that if H is a hamiltonian cubic planar graph with an even number
of negative vertices, then any Hamilton cycle of H is a consistent 2-factor.

We look at the properties of consistent 2-factors of the Tutte fragment (see
Figure 4.2), a building block for creating non-hamiltonian cubic planar graphs.

Lemma 4.1.10. LetH be a 3-connected cubic planar graph with an even number of
negative vertices, containing a copy of the Tutte fragment T0 attached by the edges
e1, e2, e3, as depicted in Figure 4.2. Then every consistent 2-factor F of H contains
the edge e1.

Proof. Assume that e1 is not in of F . Then e4, e5 are in F . Moreover, as there
is an odd number of positive vertices in the fragment, the edges e2 and e3 have
to be in F .

We introduce a sequence of claims, each one being easy to check.

• e21 ∈ F . If not, then e23, e24 ∈ F , and so there would be an odd number of
positive vertices left in the fragment to be covered by F .
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Figure 4.2: A copy of the Tutte fragment with a particular choice of negative
vertices.

• e9 ∈ F . If not, then there would be a 4-cycle in F with three positive
vertices.

• e17 ∈ F . If not, then e11, e12, e16, e18 ∈ F , and so e13, e19 /∈ F , so F is not
a 2-factor.

• e15 ∈ F . If not, then e8, e11, e16, e20 ∈ F , and so e6, e12, e18, e23 /∈ F ,
meaning e7, e13, e19, e24 ∈ F , so F does not cover all the vertices of the
fragment.

• e14 ∈ F . If not, then e10, e13, e19, e22 ∈ F , and so e7, e12, e18, e25 /∈ F ,
meaning e11, e16 ∈ F , so F contains a 4-cycle with three positive vertices.

From the previous claims we infer that if H has a consistent 2-factor F such
that e1 /∈ F , then e2, e3, e4, e5, e9, e14, e15, e17 and e21 are in F , as depicted in
Figure 4.3, left. The remaining edges form a cycle, so we only have two choices
to complete F . Each of these leads to a cycle with an odd number of positive
vertices (see Figure 4.3). □

Theorem 4.1.11. There exists a 3-connected cubic planar graph with an even num-
ber of negative vertices with no consistent 2-factor.

Proof. Let T be the Tutte graph with the set of negative vertices of T as de-
picted in Figure 4.4. Assume that, with this assignment, T has a consistent 2-
factor F .

The graph T can be viewed as a K4 where three of the four vertices were
replaced by copies of the Tutte fragment. By Lemma 4.1.10, all the three edges
incident with the central vertex belong to F , a contradiction. □

Corollary 4.1.12. Conjecture 4.1.1 is false.
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Figure 4.3: In the Tutte fragmentwith the given position of four negative vertices,
for any 2-factor avoiding the edge e1 there is always at least one cycle containing
an odd number of positive vertices.

Figure 4.4: The Tutte graph composed of three Tutte fragments.
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To find a counterexample, it suffices to consider the Tutte graph T with a
choice of negative vertices as depicted in Figure 4.4 and replace every negative
vertex by the graphW3 depicted in Figure 4.1, and then take the dual. This gives
a graph on 61 vertices.

4.1.3 Concluding remarks
The question that naturally arises is the size of a minimum non-4-colorable

signed planar graph, and this question remains open. Clearly, it suffices to search
for a triangulation whose dual is a non-hamiltonian 3-connected cubic planar
graph, and then search for a position of an even number of negative vertices
such that there is no weak edge labeling of the dual graph.

It is known [HM88] that 3-connected cubic planar graphs on at most 36 ver-
tices are all hamiltonian. There are six smallest non-hamiltonian 3-connected
cubic planar graphs on 38 vertices, and for each of them it is possible to choose
a position of eight negative vertices such that the graph does not admit a con-
sistent 2-factor, and therefore it does not admit a strong edge labeling. (We omit
the details).

To guarantee the non-existence of a weak edge labeling, it suffices to replace
four negative vertices by the gadgetW3, which has 7 vertices. The correspond-
ing graph that does not admit a weak edge labeling then has 74 vertices, which
corresponds to a non-4-colorable signed triangulation on 39 vertices, see Fig-
ure 4.5. (Again, we omit the details). Hence a minimum counter-example to the
conjecture has at least 20 vertices and at most 74.

Another interesting question is the complexity of deciding whether or not a
planar signed graph is 4-colorable. It might also be noted that Conjecture 4.1.2
remains a challenging and interesting open question.
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Figure 4.5: The smallest non-4-colorable signed planar graph we have found so
far (dashed red lines stand for negative edges).

4.2 Towards 4-edge-coloring of triangle-free pla-
nar graphs of maximum degree 4

4.2.1 Introduction
As previously mentioned in this thesis, one fundamental result on edge-coloring
is the seminal result of Vizing [Viz64] from 1964 stating that any graph can be
(∆ + 1)-edge-colored, where ∆ is the maximum degree of the graph. Thus,
the chromatic index of a simple graph G is either ∆(G) or ∆(G) + 1. Graphs
satisfying χ′(G) = ∆(G) are called of class I, and those with χ′(G) = ∆ + 1
are called of class II. Regarding planar graphs, Vizing[Viz65b] also proved that
planar graphs of maximum degree at least 8 are of class I. In the same paper,
Vizing also provided constructions of graphs of class II with maximum degree 2,
3, 4, and 5 (see Figure 4.6), and conjectured that all planar graphs of maximum
degree at least 6 are of class I.

Conjecture 4.2.1. Every planar graphG with∆(G) ⩾ 6 is∆(G)-edge-colorable.

Kronk, Radlowski, and Franen [KRF74] generalized the result of Vizing and
proved that planar graphs with maximum degree at least d and girth at least g
are of class I for (g, d) ∈ {(3, 8), (4, 5), (5, 4), (8, 3)} (note that a graph of girth 3
is just a simple graph). On the other hand, examples of class II graphs have been
found for (g, d) ∈ {(3, 5), (3, 4), (3, 3), (4, 3), (5, 3)} (see Figure 4.6), which only
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Figure 4.6: Examples of class II graphs of given maximum degree d can be easily
obtained by taking a d-regular d-edge-colorable graph and subdividing one edge.
For d = 2, 3, 4, and 5, planar examples can be found starting with a digon or a
platonic solid (first row). For d = 3 and given lower bound on girth (4 or 5),
again, platonic solids can do the job; for d = 4 and girth 4,K4,4 can be taken for
instance (second row).

leaves 5 open cases: (3, 7), (3, 6), (4, 4), (6, 3), (7, 3). Sanders and Zhao [SZ01]
and independently Zhang [Zha00] proved that planar graphs of maximum de-
gree 7 are also of class I, settling the first case. Recently, Bonduelle and Kardoš
[BK21] proved that planar graph with maximum degree 3 and girth at least 7 are
also of class I using a computer-assisted method to check the reducibility of con-
figurations, thus leaving only 3 open cases, namely (3, 6), (4, 4), (6, 3). A lot of
attention has been paid to the case (3, 6), see [CCJ+19] for a recent and complete
survey on edge-coloring on planar graphs. In this section we are interested in
the case (4, 4) and tried to prove the following conjecture.

Conjecture 4.2.2. Triangle-free planar graphs of maximum degree 4 are 4-edge-
colorable.

It should be noted that if this conjecture is true, then it is “almost tight” with
respect to the genus of the graph, e.g. there exist class II triangle-free toroidal
graphs with maximum degree 4; for instance, K4,4 with a subdivided edge (see
Figure 4.6). Therefore, generalizing to other surfaces than the projective plane is
hopeless.

Note that throughout this section, whenever we speak about colorings, we
always mean proper 4-edge-coloring with color set {1, 2, 3, 4}.

For the sake of simplicity, wewill disregard vertices of degrees 0, 1 and 2. Ver-
tices of degree 0 or 1 are reducible, and for vertices of degree 2, one can establish
analogous observations and lemmas as for vertices of degree 3.
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4.2.2 General approach

All of the previous results on related questions are obtained using the discharg-
ing method: Configurations of vertices of small degree close to each other are
proved to be reducible with respect to an edge-coloring with a given number
of edges; then a discharging argument is used to prove that in a graph without
any reducible configuration (a potential minimal counterexample) the average
degree of vertices is too large for a planar graph of given girth.

In our case, we only have vertices of degree at most 4, and we can derive from
Euler’s formula that the average degree in a planar graph of girth 4 is less than 4.
This means that there are examples of graphs where the vertices of small degree
(here small means at most 3) can be arbitrarily far away from each other, with
vast areas of the graph filled only with vertices of degree 4.

A computer program was used to search for reducible configurations in this
context [GK]. All known reducible configurations are of limited size (at most 9
vertices) and contain at least two small degree vertices. In particular, there is no
known reducible configuration containing only one vertex of degree 3. There-
fore, there is little hope for a proof of Conjecture 4.2.2 using a discharging argu-
ment.

The general idea is a divide and conquer approach. To prove that all triangle-
free planar graphs of maximum degree four are 4-colorable, we will try to prove
a stronger, Thomassen-like statement, where some edges are already precolored.

Instead of considering planar graphs, we will consider so-called fragments.
A fragment is a triangle-free 2-connected planar graph with maximum degree 4
with eventual half-edges incident to the outerface of the fragment. The outerface
of the fragment H is called the border of H , and is denoted by B(H). Given a
fragment H , our goal is to show that if the half-edges of B(H) are precolored,
and the precoloring satisfies a certain property (∗) (that we will specify later),
then the precoloring of the half-edges of B(H) can be extended to H .

To prove such a statement, we consider three main cases. Let H be a frag-
ment. The first case is whenH has a “bottleneck” (i.e., a small separator, disjoint
from the border, that cuts the graph into at least 2 non-trivial parts). The second
case is when H has a small separator including some border vertices. In both
cases we cut the fragment along a cycle or a path P into two smaller fragments
H1 andH2, color the fragmentH1 by induction (actually we extend the precolor-
ing ofB(H1)\P to the whole fragmentH1) in such a way that the precoloring of
B(H2) satisfy the property (∗); by induction this precoloring is extendable toH2,
and henceforth to the whole fragment H . Finally, the third case is the generic
one, and the approach is to “peel” the fragment face by face starting from the
faces closest to the border of the fragment.

Let C be a cycle in a 2-connected plane graph G inducing a non-self-inter-

136 J. Narboni



4. From coloring to edge-labeling

secting closed curve embedded in the plane. Then the interior and the exterior
of C are well-defined, and there are two fragments of G whose border is C . In
particular, if G is 2-connected, for every inner face f , its facial cycle C defines a
fragment with a single inner face, which we will also denote by f .

4.2.3 Group labelings and lollipops
Let G be a graph and let Γ be a group. We fix an orientation of the edges of G.
Let φ : E(G) → Γ be an edge-labeling of G with elements of Γ. If φ(uv) = x,
then φ(vu) = x−1. We can extend the labeling to walks in G (not necessarily
respecting the orientation of the edges) in the natural way:

Let w = e1e2 . . . ek be a walk in G. The label of w is defined as

φ(w) = φ(e1e2 . . . ek) = φ(e1)φ(e2) . . . φ(ek).

In particular, for a walk w of length 0 (no matter what the starting (and end-
ing) vertex is), the label of w is the neutral element of the group Γ.

Observe that the labeling of walks is compatible with the operations of in-
version and concatenation of walks (i.e. φ(w−1) = (φ(w))−1 and φ(w1w2) =
φ(w1)φ(w2)), and thus φ can be seen formally as a (restriction of a) homomor-
phism from the free group generated by E(G) to Γ.

Let G be a plane graph and let H be a fragment in G. Let u be a vertex on
the boundary of H or outside H , and let P be a path from u to a vertex v on
the boundary of H such that the only vertex from H on P is v. (If u is on the
boundary ofH , then P is a trivial path of length 0.) The lollipop ofH from u via
P , denoted by LP

u (H), is the closed walk obtained as a product of three walks:
firstP , then the closedwalk aroundH in the anti-clockwise direction, and finally
P−1. We will omit the path P if there is no ambiguity.

Observe that the facial closed walk around a face f (in the anti-clockwise
direction) is a special case of a lollipop. We will call it a trivial lollipop and denote
it by L0

u(f).

Lemma 4.2.3. Let G be a plane graph and let H be a fragment in G with t inner
faces. Let u be a vertex on the boundary of H or outside H , and let P be a path
from u to a vertex v on the boundary of H such that the only vertex from H on P
is v. Then there exists an ordering f1, f2, . . . , ft of the set of inner faces of H and
there exist paths P1, P2, . . . , Pt such that each Pi starts at u and contains P as a
prefix, moreover, P−1Pi does not leave H , satisfying

LP
u (H) = LP1

u (f1)L
P2
u (f2) . . . L

Pt
u (ft).
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u0

f1

f2

f3

f4

f5

f6

f7

f8

Figure 4.7: The closed walk around a fragment starting and ending at u0 decom-
poses into a sequence of lollipops around the faces of the fragment.

Proof. The statement is easy-to-see and can be proved by induction, cutting the
fragment into two parts. We omit the details. See Figure 4.7 for an illustration.

Corollary 4.2.4 (Lollipop lemma). Let Γ be a group. Let G be a plane graph and
let φ be a Γ-edge-labeling. Let H be a fragment in G with t inner faces. Let u be a
vertex on the boundary of H or outside H , and let P be a path from u to a vertex
v on the boundary of H such that the only vertex from H on P is v. Then there
exists an ordering f1, f2, . . . , ft of the set of inner faces of H and there exist paths
P1, P2, . . . , Pt such that each Pi starts at u and contains P as a prefix, moreover,
P−1Pi does not leave H , satisfying

φ(LP
u (H)) = φ(LP1

u (f1))φ(L
P2
u (f2)) . . . φ(L

Pt
u (ft)).

We will see how the Lollipop lemma can be useful later, when some special
labelings will have been defined.

Medial graph, rotations and reflections

Let G be a plane graph. Its plane embedding induces, for each vertex, a cyclic
ordering of the incident edges. Therefore, for every vertex u and every edge e
incident with u, the next and the previous edge (in anticlockwise direction) are
well-defined.

LetG be a plane graph. The medial graph ofG, denoted byM(G), is defined
in the following way:

• V (M(G)) = {(v, e) ∈ V (G)× E(G) | v ∈ e}, and
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• {(v, e), (v′, e′)} ∈ E(M(G)) ⇐⇒ (e = e′ and v ̸= v′) or
(v = v′ and e and e′ are consecutive around v).

There is a direct geometric interpretation of the medial graph: It can be ob-
tained by truncation of all the vertices if G – replacing each vertex of degree d
by a face of size d.

Observe thatM(G) is always a cubic plane graph. If G contains a vertex of
degree 1, thenM(G) contains a loop. Similarly, if G contains a vertex of degree
2, then M(G) contains a digon. As long as G is of minimum degree at least 3,
M(G) is a simple graph.

Let f be a face ofM(G). Then either f corresponds to a vertex ofG (and then
its size is equal to the degree of the corresponding vertex, we call it a v-face), or f
corresponds to a face ofG (and then its size is twice the size of the corresponding
face, we call it an f-face).

It is easy to see that the edge set ofM(G) contains a perfect matching formed
by the edges of the first kind (those that correspond to the edges of G), each
such edge separates two f-faces of M(G); the remaining edges form a 2-factor
consisting of the facial cycles of the v-faces, each such edge separates a v-face
from an f-face.

Let G be a 3-connected plane graph and let M(G) be its medial graph. We
fix an orientation ofM(G) in the following way: For the edges of the first kind
we choose arbitrarily; for the edges of the second kind we orient the borders of
the f-faces in the anti-clockwise direction. In other words, ((u, e), (u, e′)) is an
oriented edge ofM(G) if and only if e′ is the next edge after e around u in G.

We can now define a labeling ofM(G) using labels from the dihedral group
D4 of order 8. We will denote it φ0 and call it the base labeling ofM(G).

We will representD4 as the group of symmetries of a square abcd, generated
by a rotation ρ : abcd 7→ bcda and a reflection η : abcd 7→ adcb. Let τ = ηρ :
abcd 7→ dcba. (Here the composition of symmetries is defined as (σσ′)(x) =
σ′(σ(x)).) Observe that ρ4 = η2 = τ 2 = 1 and that η = τρ3.

Let φ0 : E(M(G)) → D4 be the labeling defined by

φ0(e) =

{
η if e is an edge of the first kind,
ρ if e is an edge of the second kind.

As a direct consequence of the definition we get the following formulae for
the labels of trivial lollipops.

Lemma 4.2.5. Let f be a v-face ofM(G) of size d. Let d = 4k+ z for k ∈ N0 and
z ∈ {0, 1, 2, 3}. Let u be a vertex incident with f . Then φ0(L

0
u(f)) = ρz .
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Lemma 4.2.6. Let f be an f-face ofM(G) of size 2d. Let d = 2k + z for k ∈ N0

and z ∈ {0, 1}. Let u be a vertex incident with f such that the facial closed walk
around f starts with an edge of the first kind. Then φ0(L

0
u(f)) = τ z .

In particular, the base labels of the trivial lollipops of v-faces corresponding
to vertices of G of degree 4, as well as those of f-faces corresponding to faces
of G of even size, are equal to 1. The base label of a trivial lollipop of a v-face
corresponding to a vertex of G of degree 3 is ρ3, and the base label of a trivial
lollipop (starting with an edge of the first kind) of an f-face corresponding to a
face of G of odd size is τ .

Lemma 4.2.7. Let f be a v-face ofM(G) corresponding to a 4-vertex of G. Then
φ0(L

P
u (f)) = 1 for any lollipop of f .

Lemma 4.2.8. Let f be a f-face ofM(G) corresponding to an even face ofG. Then
φ0(L

P
u (f)) = 1 for any lollipop of f .

Proof of both lemmas. It suffices to observe that

φ0(L
P
u (f)) = φ0(P )φ0(L

0
u(f))φ0(P

−1) = φ0(P ) · 1 · φ0(P )
−1 = 1.

Lemma 4.2.9. Let f be a v-face ofM(G) corresponding to a 3-vertex of G. Then
φ0(L

P
u (f)) = ρ3 if the number of the edges of the first kind in P is even, and

φ0(L
P
u (f)) = ρ if the number of the edges of the first kind in P is odd.

Proof. By induction on the length of the path P . It suffices to observe that the
conjugate of ρ by η is ρ3 and vice versa, and that ρ and ρ3 are invariant when
conjugated by ρ or ρ3, which is a trivial routine.

Lemma 4.2.10. Let f be a f-face ofM(G) corresponding to an odd face ofG. Then
φ0(L

P
u (f)) = τ if the length of P is even, and φ0(L

P
u (f)) = ρ2τ if the length of P

is odd.

Proof. By induction on the length of the path P . It suffices to observe that the
conjugate of τ by ρ, ρ3, or η is ρ2τ and vice versa.

Color-labeling of vertices and swap-labeling of edges

Let G be a 3-connected 4-edge-colorable plane graph with vertices of degrees 3
and 4. We fix a 4-edge-coloring γ of G. We will define another edge-labeling of
M(G), denoted by by φγ , and called swap-labeling ofM(G).

140 J. Narboni



4. From coloring to edge-labeling

As for labels, we will use the elements of the group

Ω = ⟨12, 13, 14, 23, 24, 34 |122 = 132 = 142 = 232 = 242 = 342 = 1,

(12 · 34)2 = (13 · 24)2 = (14 · 23)2 = 1

(12 · 13 · 23)2 = (12 · 14 · 24)2 =
= (13 · 14 · 34)2 = (23 · 24 · 34)2 = 1⟩.

Note that if (xyz)2 = 1, then (zyx)2 = 1 and also (zxy)2 = (yzx)2 = 1.
Just like for the case of walks and the free group over E(G), we will not

necessarily use all the elements ofΩ to label edges, walks, and lollipops inM(G).
In order to define φγ , we need to look at the vertices first. Let us start with a

special vertex-labeling ofM(G), induced by the coloring γ, denoted by ϕγ , with
labels taken from S4, the group of permutations of the colors 1, 2, 3, and 4. We
will interpret values of ϕγ as assignments of colors to the vertices of a square; the
elements of the base groupD4 will then be interpreted as actions on this square.

Let (v, e) ∈ V (M(G)) with dG(v) = 4. Let e = e1, e2, e3, e4 be the cyclic
order of the edges around v in G. Then we set

ϕγ((v, e)) = (γ(e1), γ(e2), γ(e3), γ(e4)).

Let (v, e) ∈ V (M(G)) with dG(v) = 3. Let e = e1, e2, e3 be the cyclic order
of the edges around v in G. Let c be the color missing at v in γ. Then we set

ϕγ((v, e)) = (γ(e1), γ(e2), c, γ(e3)).

One can imagine the label of a vertex (v, e)with dG(v) = 3 as if we inserted a
temporary ghost edge inside the face ofG incident with v but not with e, colored
with the color that is not used at v, and then we read the four colors at v in a
cyclic order, starting from e.

Let ((v, e), (v, e′)) be an oriented edge of M(G) incident to a v-face corre-
sponding to a 4-vertex v in G. (Recall that the edges e and e′ are consecutive in
the cyclic order around v.). Then, by definition, if ϕγ((v, e)) = (a, b, c, d), then
ϕγ((v, e

′)) = (b, c, d, a), and so ϕγ((v, e
′)) = φ0(ϕγ((v, e)). In this case, we set

φγ(((v, e), (v, e
′))) = 1.

Let ((v, e), (v, e′)) be an oriented edge of M(G) incident to a v-face corre-
sponding to a 3-vertex v in G. Then, by definition, if ϕγ((v, e)) = (a, b, c, d),
then we know that c is the missing color at v, and so ϕγ((v, e

′)) = (b, d, c, a),
whereas φ0(ϕγ((v, e)) = (b, c, d, a). In this case, we set

φγ(((v, e), (v, e
′))) = cd
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since a swap of colors c and d is needed to transform φ0(ϕγ((v, e)) into
ϕγ((v, e

′)).
Let ((u, e), (v, e)) be an edge ofM(G) of the second kind, with e = {u, v} ∈

E(G). Without loss of generality we may assume that ϕγ((u, e)) = (1, 2, 3, 4).
Then we set

φγ(((u, e), (v, e))) =



1 if ϕγ((v, e)) = (1, 4, 3, 2),
23 if ϕγ((v, e)) = (1, 4, 2, 3),
34 if ϕγ((v, e)) = (1, 3, 4, 2),
23 · 24 if ϕγ((v, e)) = (1, 2, 4, 3),
34 · 24 if ϕγ((v, e)) = (1, 3, 2, 4),
23 · 24 · 34 = 34 · 24 · 23 if ϕγ((v, e)) = (1, 2, 3, 4).

Here again, if we applied φ0, we would obtain (1, 4, 3, 2); φγ(((u, e), (v, e)))
is a sequence of swaps of cyclically adjacent pairs of colors needed to transform
φ0(ϕγ((u, e)) into ϕγ((v, e)). Observe that φγ(((u, e), (v, e)))

−1 is a sequence of
swaps of cyclically adjacent pairs of colors needed to transform φ0(ϕγ((v, e))
into ϕγ((u, e)), and so the choice of orientation for the edges of the second type
is irrelevant and the labeling is well-defined.

Altogether, for any walk w from u to v in M(G), we can interpret both la-
belings φ0 and φγ as actions on a square with labeled vertices, executed simul-
taneously. The initial labels of the square correspond to ϕγ(u); the final labels of
the square correspond to ϕγ(v). Values of φ0 correspond to geometric transfor-
mation of the square (rotation, reflection), whereas values of φσ correspond to
relabeling of pairs of adjacent vertices of the square.

It is important to observe that for any edge xy ∈M(G), we have

φγ(φ0(ϕγ(x))) = ϕγ(y) = φ0(φγ(ϕγ(x))). (4.3)

Moreover, in general, we obtain the same result if we first perform all the
changes of the labels of the vertices of the square and then apply all the geometric
transformations, and if we first apply all the geometric transformations and then
we perform all the changes of the labels of the vertices. Therefore, we can treat
separately the base labeling φ0 and the swap-labeling φγ , or we can also consider
them simultaneously.

Lemma 4.2.11. Let Lu(H) be a lollipop inM(G). Then φγ(Lu(H)), interpreted
as a sequence of relabeling of adjacent pairs of vertices of a labeled square, is well-
defined. Moreover,

φγ(Lu(H))(ϕγ(u)) · φ0(Lu(H))(ϕγ(u)) = ϕγ(u).

142 J. Narboni



4. From coloring to edge-labeling

Proof. The first part follows from the equation (4.3). The value of ϕγ(u) is both
the initial and the final labeling of the square. In the formula, the first term
should be interpreted as a relabeling of the vertices of a labeled square, whereas
the second is a geometric transformation from D4; the formula says that these
two actions compensate each other.

As a direct consequence of lemma 4.2.11 we get that the effect of φγ(Lu(H))
on a labeled square only depends on the graph H itself, it is invariant and does
not depend on γ. However, we will see in the sequel that it is possible to obtain
the same final position of the labels in substantially different ways, some of them
possibly yielded by a coloring, others surely not.

Swap lines

Wewill now explain how the swap-labeling φγ ofM(G) generated by a coloring
γ of G can be interpreted as a special kind of labeling, resembling a flow, in G.
We will denote it Ωγ and we will call its elements swap words.

Observe that edges carrying non-trivial values of φγ are either edges of the
first kind around a v-face ofM(G) of size three, or edges of the second kind.

For an edge ((u, e), (v, e)) of the second kind, we interpret the values of
φγ(((u, e), (v, e))) directly as a flow on the edge dual to the edge e = {uv}
of G, as in Figure 4.8.

Observe that if φγ is a swap word of length two in Ω (such as 23 · 24 for
instance), then the order of its elements must be respected; for the swap words
of length three (such as 23 · 24 · 34 = 34 · 24 · 23 for instance), we will use any
of the two canonical ways of writing them, such that the pair of colors that are
not cyclically adjacent at either endvertex of the edge comes in the middle of the
triple.

Edges of the first kind carry non-trivial values of φγ only around v-faces
corresponding to the vertices of degree 3 in G. In this case, the three edges are
labeled ab, ac, and ad in a certain order, where a is the color missing at the
corresponding vertex in G. We interpret this in G as if the vertex of degree 3
emitted the flow of ab, ac, and ad into the three incident faces.

Let G□ denote the infinite square grid. There is a canonical coloring of G□

where the vertical edges are alternatively colored 1 and 3, and the horizontal
edges 2 and 4 in such a way that every face is 2-colored. Observe that this kind
of coloring induces no swap lines at all. The graphG□ is bipartite; in a canonical
coloring, the cyclic order of colors around vertices of one part is 1, 2, 3, 4, and it
is 4, 3, 2, 1 in the other.

It is easy to see that if one chooses one vertical color, say 1, and one horizontal
color, say 2, then the Kempe components are simply facial 4-cycles. One can
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Figure 4.8: For an edge of a given color (here 1), if we fix the three remaining
colors at one incident vertex (the left one), there are six possible permutations of
these colors at the other incident vertex: Here we list them all and illustrate the
corresponding swap-labeling inM(G), interpreted here as an Ω-flow in G∗.

choose a set of them and swap the colors 1 and 2 in them. For the new coloring
obtained this way, the labeling Ωγ only contains the value 12, present precisely
on the edges that form an edge-cut separating the swapped components (vertices
where the cyclic order of the colors is 2, 1, 3, 4 and 4, 3, 1, 2, respectivecly) from
the rest of the graph (vertices where the cyclic order of the colors is 1, 2, 3, 4
and 4, 3, 2, 1, respectively). In the dual, such an edge-cut corresponds to an even
subgraph – a collection of cycles. This is where the motivation for the name
’swap lines’ comes from.

It can be proved that any coloring of G□ is Kempe-equivalent to a canonical
one via a countable (not necessarily finite) sequence of Kempe swaps.

Lemma 4.2.12 (Parity lemma). Let f be a face inG, and let a and b be two colors.
Then the parity of the sum of the number of edges around f such thatΩγ(e) contains
ab, and the number of 3-vertices emitting ab into f , is equal to the parity of f .

Proof. For every vertex u around f , we consider the quadruple ξ(v) of the colors
at u in the anti-clockwise order, starting with the edge joining u to the previous
one, and ending with the edge to the next one.

If u is a vertex of degree 3, we insert temporarily the missing color after the
first one or before the last one, just as in ϕγ .

We can partition all the vertices into two sets: Let P be the set of vertices
where a precedes b in ξ(v), let N be the set of vertices where a comes after b in
ξ(v).

For two consecutive vertices u and v, we have u ∈ P and v ∈ N or u ∈ N
and v ∈ P an even number of times. Therefore, the parity of the number of pairs
u, v such that either both u, v ∈ P or both u, v ∈ N is the same as the parity of
f .
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Figure 4.9: An example of the medial graph of a fragment containing one pen-
tagonal face and one vertex of degree 3, with the swap lines interpreted as flow
in the dual graph. Observe that the vertex of degree 3 is a source of three swap
lines, whereas the face of size 5 is a source of six swap lines.

Let uv be such a pair. Then φγ(uv) contains ab, because, in order to swap the
relative position of the colors a and b from φ0(ϕγ((u, e))) to ϕγ((v, e)), a swap
of a and b is necessary.

If v is a vertex of degree 3, then ξ(v) is different when considering v and the
previous vertex, and when considering v and the next vertex, where the differ-
ence is exactly a swap of a and b. This corresponds to the swap line ab emitted
from v.

As a consequence of Lemma 4.2.12, we have that for a face of even (resp. odd)
size, the swap word Ωγ(L

0
u(f)), decomposed into elementary swaps, contains an

even (resp. odd) number of each swap.
Therefore, we can consider each face of odd size as if it emitted one swap

line in each of the six possible pairs of colors. On the other hand, even faces
(just like vertices of degree 4), do not emit any swap lines. See Figure 4.9 for an
illustration.

Graph Coloring and Recoloring 145



4.2. Towards 4-edge-coloring of triangle-free planar graphs of maximum degree 4

1 3

1

24

2

2

1

4 4 2

4

3

431

3

3

1224

23
34

341213

14

Figure 4.10: The border coloring does not extend, since inside the fragment there
are no sources of swap lines, and the border is crossed by an odd number of swap
lines of certain types.

Parity lemma is the first (and trivial) necessary condition for a border coloring
to be extendable inside a fragment. For instance, the border coloring depicted in
Figure 4.10 does not satisfy Parity lemma, and therefore, is not extendable.

On the other hand, Parity lemma is not a sufficient condition: There are ex-
amples of fragments such that there are even number of swap lines of each type
entering into a fragment containing no sources, however, the coloring does not
extend, see Figure 4.11.

Swap words and Evolution

Consider a lollipop LP
u (H) of a fragment H in a 2-connected 4-edge-colorable

plane graph G with a fixed 4-edge-coloring γ. Then, by By Lemma 4.2.11, the
swap word Ωγ(L

P
u (H)) is an element of Ω and can be interpreted as a sequence

of elementary swaps that the square colored ϕγ(u) can undergo, in order to com-
pensate the transformation φ0(L

P
u (H)).

We can look at this sequence more precisely. For a fixed initial cyclic posi-
tion of the colors (determined by ϕγ(u)), each swap of the swap word has the
following property: Before and after its application, the two colors concerned
are cyclically adjacent, and so one of them moves by one step in one direction
and the other one moves by one step in the opposite direction. Therefore, we
can trace the trajectory of each color, regardless of the rotations and reflections
given by φ0, to see the overall global effect of Ωγ on each color.

Let ϵ1 = (1, 0, 0, 0), ϵ2 = (0, 1, 0, 0), ϵ3 = (0, 0, 1, 0), ϵ4 = (0, 0, 0, 1). For a
pair of colors i and j (i ̸= j), let δi,j = ϵi − ϵj .

Definition 4.2.13. Let w be a walk from u to v in a 4-edge-colored graph G. Let
Ωγ(w) be the swap word of the walkw. Let ϕγ(u) be the quadruple of colors around
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Figure 4.11: Even though the Parity lemma holds, the border coloring does not
extend inside the fragment.

u, starting from the first edge of the walk w. The evolution ω of the colors ϕγ(u) is
a quadruple of integers equal to ω(Ωγ(w)), where ω(Ψ) is defined as follows:

ω(Ψ) =

{
(0, 0, 0, 0) if Ψ = 1,
ωγ(Ψ

′) + δij if Ψ = Ψ′ · (ij),

where after applying Ψ′ on ϕγ(u), the color i precedes j in the cyclic order.

Observe that the evolution can also be interpreted as just another group la-
beling of G, this time with the additive group {(a1, a2, a3, a4) ∈ Z4 | a1 + a2 +
a3 + a4 = 0}.

We can now look at the evolution of the swap words of the lollipops of faces
and vertices of a graph, in order to establish a lollipop lemma for evolution.
Lemma 4.2.14. Let G be a 4-edge-colored graph and let v be a vertex of degree
4 in G. Then for every lollipop L(v) (considered as contraction of a lollipop of the
corresponding v-face inM(G)) we have ω(Ωγ(L(v))) = (0, 0, 0, 0).

Proof. It follows from the definition that for a trivial lollipop, Ωγ(L0(v)) is the
empty word. (Observe that also Lemma 4.2.7 says that Ωγ(L(v)) does not shuffle
the corners of the labeled square.). For lollipops with a nontrivial path P the
property can be proved by induction on the length of Ωγ(P ): the effects of P
and P−1 cancel each other.
Lemma 4.2.15. Let G be a 4-edge-colored graph and let v be a vertex of degree 3
in G. Let LP

u (v) be a lollipop of v from u; let t be the length of the path P . Let i be
the color missing at v. Then ω(Ωγ(L

P
u (v))) = (−1)t · ((−1,−1,−1,−1) + 4ϵi).
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Figure 4.12: An example of a calculation of the evolution of a fragment from
Figure 4.11.

i j

k

l

il

ij

ik

j k i l

k i l j

i j k l

+1 −1

+1−1

+1 −1

+3−1−1−1

Figure 4.13: A vertex of degree 3 with the missing color i emits three swap lines
il, ij, and ik (left). The evolution of a trivial lollipop calculated (right).

Proof. Consider first a trivial lollipop of v. Let j, k, l be the colors of the edge
incident with v in the anticlockwise order. Then, by definition, Ωγ(L0(v)) =
il · ij · ik, from which the claim follows immediately, see Figure 4.13 for an
illustration.

For lollipops with a nontrivial path P the property can be proved by induc-
tion, in parallel on the length of P and on the length of Ωγ(P ): When an edge is
added to P (without any swap lines), then the orientation of the cyclic order of
the colors around the initial vertex switches from anticlockwise to clockwise: All
elements of the evolution are multiplied by−1. When a swap line is added, then
two colors are swapped before and after, and these two swaps compensate each
other, so the evolution does not change. See Figure 4.14 for an illustration.
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Figure 4.14: The evolution of a lollipop of a vertex v of degree 3 remains invariant
even when a swap line the starting point u from v: first, two colors are swapped,
then all the colors are rotated, 4ϵi (with i being the color missing at the v) com-
pensating the rotation, and finally the swapped colors are swapped back.

Lemma 4.2.16. Let G be a 4-edge-colored graph and let f be a face of even size.
Then for every lollipop L(f) of f , ω(Ωγ(L(f))) = (0, 0, 0, 0).

Proof. Just like in the lemma about vertices of degree 4, it suffices to prove the
property for trivial lollipops. Let i be one of the colors. We consider its relative
position at the vertices of f , in the anticlockwise order around f . For each pair
of consecutive vertices, we inspect how the evolution of i can be increased or
decreased when passing from a vertex to the next one. All such transitions are
depicted in Figure 4.15. It is crucial to observe that the evolution of the color is
determined uniquely by the parity of the distance and the relative position of the
color at a vertex at this distance. Therefore, since the initial and final position
of a color at a vertex is identical and these two are at even distance along f , the
evolution of i has to be equal to 0, whatever the initial position of i is.

Lemma 4.2.17. Let G be a 4-edge-colored graph and let f be a face of odd size.
Then for every trivial lollipop L(f) of f , ω(Ωγ(L(f))) = (3, 1,−1,−3), where the
colors are taken around a vertex incident with f in the anticlockwise order, starting
and ending with edges incident with f .

Lemma 4.2.18. Let G be a 4-edge-colored graph and let f be a face of odd size.
Then for every lollipop LP

u (f) of f , ω(Ωγ(L
P
u (f))) ≡ (3, 1,−1,−3) (mod 8),

where the colors are taken around u in the anticlockwise order, starting and ending
with edges that would correspond to the edges incident with f if only τ was applied
along P , ignoring the swap lines.
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k k + 1 k + 2 k + 3

even

odd

(i) (ii) (iii) (iv)

(v) (vi) (vii) (viii)

Figure 4.15: A graphical representation of all the possible states of a vertex, with
respect to a fixed color (here blue) and the parity of its order taken anticlock-
wise around a given face (here represented as the grey region). The two rows
represent the vertices in even and odd distance respectively, and the values k up
to k + 3 represent the evolution of the fixed color. All the possible transitions
among the states (when moving from a vertex to the next one) are represented
by arrows.

Proof. By induction, in parallel on the length of P and on the length of Ωγ(P ). If
an edge is added to P , then τ reverses the order of the colors (abcd becomes dcba)
and hence also switches the orientation from anticlockwise to clockwise and vice
versa. However, by reversing the order of (3, 1,−1,−3) we get (−3,−1, 1, 3),
which we should mutliply by−1 to switch the meaning of positive and negative
– we get (3, 1,−1,−3) again.

If a swap line is added, then we distinguish four cases, depending on which
two cyclically consecutive colors are swapped. In three of the four cases, this has
no effect on the evolution, and in the fourth one, one color gains+8 and another
gains −8 of evolution, See Figure 4.16.

We are now ready to explain how to establish a necessary condition on the
boundary coloring to be extendable into the interior of a fragment.

As a direct consequence of Lollipop lemma we have the following

Theorem 4.2.19 (Lollipop lemma for evolution). Let G be a plane graph and let
φ be a Γ-edge-labeling. Let H be a fragment in G with t inner faces. Let u be a
vertex on the boundary of H or outside H , and let P be a path from u to a vertex
v on the boundary of H such that the only vertex from H on P is v. Then there
exists an ordering f1, f2, . . . , ft of the set of inner faces of H and there exist paths
P1, P2, . . . , Pt such that each Pi starts at u and contains P as a subpath, moreover,
P−1Pi does not leave H , satisfying

ω(LP
u (H)) = ω(LP1

u (f1)) + ω(LP2
u (f2)) + · · ·+ ω(LPt

u (ft)). (4.4)
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Figure 4.16: When the evolution of an odd face is conjugated, then either it does
not change at all, or two of its components gain +8 and −8 respectively. We
consider an odd face in such a position that the four colors (read from left to
right) evolve by (3, 1,−1,−3). Observe that these four roles can be played by
various quadruples of colors.
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On the left-hand side of the equality (4.4) we have the evolution of the frag-
ment, which can be calculated given the coloring of the border, without knowing
whether (and how) the coloring extends inside the fragment.

On the other hand, on the right-hand side of the equality (4.4), only evolu-
tions of odd faces and vertices of degree 3 participate in a non-trivial way. The
evolution of an odd face is determined by its position relative to the starting
point, and is known up to modulo 8, regardless of the coloring. The evolution
of a vertex of degree 3 is also determined by its position relative to the starting
point, and has only four possible values, depending on the missing color at that
vertex.

4.2.4 Partial results

We will now expose a few examples where Theorem 4.2.19 can serve as a nec-
essary condition for a border coloring to be extendable into the interior of a
fragment.

The first example is the fragment depicted in Figure 4.11, whose evolution
is calculated in Figure 4.12. It is easy to see that the sum of evolutions on the
right-hand side is equal to (0, 0, 0, 0), whereas the evolution of the fragment is
equal to (0,+8,−8, 0). Therefore, the coloring does not extend.

The second example is the fragment H depicted in Figure 4.17. Let u be the
lower-left corner of H . We have

ω(Lu(H)) = (+3,+1,−1,−3)

– this can be calculated by applying the swapsΩγ(Lu(H)) = 34·12·14·13·24·23
on ϕγ(u) = (1, 2, 3, 4). On the other hand,

ω(LP1
u (f1)) + ω(LP2

u (f2)) + · · ·+ ω(LPt
u (ft)) = (−1,−3,+3,+1) (mod 8)

as the Figure 4.17(right) explains. These two vectors cannot be equal, and so the
coloring does not extend.

The third example is the fragment depicted in Figure 4.18, left. We have

ω(Lu(H)) = (0,+2, 0,−2).

On the right-hand side of the equality (4.4), one odd face and one vertex of degree
3 participate. The sum of their evolutions is

(+1,+1,+1,+1)− 4ϵi + (−1,−3,+3,+1) ≡ (0,−2,+4,+2)− 4ϵi (mod 8).
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Figure 4.17: An example of a fragment containing a single odd face, with a border
coloring (left). A path from the lower-left corner to the odd face, used to calculate
the evolution of the face (right). Shaded are the faces that correspond to the orbit
of the odd face with respect to τ along the path. Hence, the evolution of the
lollipop of the pentagon is a rotation of (+3,+1,−1,−3), where the colors play
these roles in the order 3, 4, 1, 2.
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Figure 4.18: An example of a fragment with one odd face and one vertex of degree
3, and two different border colorings. The one on the left is not extendable,
whereas the one on the right is. Observe that for both of them the Parity lemma
is satisfied.
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It is easy to see that the equality cannot be satisfied for any choice of the color i
missing at the vertex of degree 3.

The fourth example is the fragment depicted in Figure 4.18, right. This time,
we have

ω(Lu(H)) = (0,−2, 0,+2).

On the right-hand side of the equality (4.4), one odd face and one vertex of degree
3 participate again. The sum of their evolutions is

(+1,+1,+1,+1)− 4ϵi + (−1,−3,+3,+1) ≡ (0,−2,+4,+2)− 4ϵi (mod 8).

The equality is only possible if i = 3, we know thus that the color missing at
the vertex of degree 3 must be equal to 3. It is easy to see that the coloring is
extendable.

The final example is the fragment depicted in Figure 4.19. Here we have

ω(Lu(H)) = (+8,+6,−8,−6).

On the right-hand side of the equality (4.4), we have

(+1,+1,+1,+1)− 4ϵi + (−1,−3,+3,+1) ≡ (0,−2,+4,+2)− 4ϵi (mod 8).

The equality is only possible if i = 3, we know thus that the color missing
at the vertex of degree 3 must be equal to 3. Moreover, the evolution of the
pentagonal face must then be equal to (+7,+5,−5,−7) = (−1,−3,+3,+1) +
(+8,+8,−8,−8), and so the evolution of the trivial lollipop is conjugated in a
way that adds +8 and −8 somewhere repeatedly. To do this twice, we need to
permute the colors after the first time in such a way that a different pair occupies
the position which induces this change. Altogether, the starting vertex must be
separated from the pentagon by at least four swap lines. All of this is possible,
see Figure 4.19, right.

There is another coloring of the border of the same fragment, with the same
swap word and thus the same evolution – only the position of two swap lines is
modified, see Figure 4.20. Again, all the reasoning from the previous paragraph
applies. In this case, there is not enough room inside the fragment to make ev-
erything work. We would need to add some ”buffer space“ to reroute the swap
lines in order to make the coloring work.
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Figure 4.19: Another coloring of the border of the fragment from the previous
figure (left). It extends to a coloring of the whole fragment (right).
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Figure 4.20: Yet another coloring of the border of the fragment from the previous
figure. Despite having the same evolution as the previous one, it does not extend
to a coloring of the whole fragment.
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Concluding remarks

In this thesis, we studied some recoloring problems (mainly edge-recoloring
problems), and some other coloring problems using computer assisted techniques
and reduction to edge-labeling. To conclude this work, let us recall our main re-
sults, and discuss some open questions and future work.

Regarding edge-coloring reconfiguration, and in particular regarding greedy
connected edge-coloring, we prove in Section 3.2 that χ′

c(G) = χ′(G) for sub-
cubic graphs using a Kempe recoloring argument. This argument has been gen-
eralized in the context of vertex-coloring to perfect graphs by Beaudou et al.
[BBD+21]. Generalizing it to edge-coloring of graphs with a bigger maximum
degree (and is particular generalizing the “reachability lemma” argument) seems
an interesting question, and there is no obvious obstruction to this generaliza-
tion. Regarding the reconfiguration version of the Hadwiger’s conjecture: every
Kt-minor free graph has all its t-coloring equivalent. We disprove, using a proba-
bilistic argument, the conjecture ofMeyniel and Las Vergas. Asmentioned in this
section, every graph that admits quasi-K2t-minor admits a Kt-minor, however
the infimum value of a constant c such that the existence of a quasi-Kct-minor
guarantees the existence of aKt-minor is still unclear and is an interesting ques-
tion to investigate.

In Chapter 4, we first disprove a conjecture on signed graphs that generalizes
the four-color theorem.

Conjecture ([MRŠ16]). Every signed planar graph is 4-signed-colorable.

Therefore, there remains little hope to generalize the four-color theorem (and
thus, finding a more understandable proof of it) using signed coloring of signed
graphs. However, the weak-choosability conjecture, that states that all planar
graphs are 4-weak-choosable (and which has been proved to be implied by the
conjecture on signed planar graphs by Zhu [Zhu20]) may be a fruitful approach
towards a better understanding of the four-color theorem.

We then present our work toward the 4-edge-colorability of triangle-free pla-
nar graphs with maximum degree 4. During my PhD, we were not able to reach
a conclusion to this question, however, our approach seems promising. We hope
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that using the lollipop decomposition, and strengthening the necessary condition
on the partial coloring of the border of a fragment may be sufficient to prove the
conjecture. Again, a reduction to edge-labeling of an auxiliary graph was used to
reach those partial results and we think that pushing further the method could
lead to some improvement regarding this question.

The main result of this manuscript is obviously our result on Vizing’s edge-
coloring conjecture. In Chapter 2, we prove the conjecture for simple graphs
(first in the case of triangle-free graphs, then in the general case). Vizing’s though
proved that his result can be extended to multigraphs.

Theorem ([Viz65a]). For any multigraph G, χ′(G) ⩽ ∆(G) + µ(G).

Generalizing the reconfiguration result to multigraphs would hence be a nat-
ural question. There is however little hope to adapt the argument of our proof
to this setting. In an edge-coloring of a multigraph, not only cycles can be “en-
tangled with themselves”, but comets can also be. Thus in a multigraph, even
comets can be such that each vertex of the comet is missing a different color,
and our argument to handle the case of the comets for simple graphs completely
collapses.

Furthermore, studying Kempe equivalence of edge-colorings in the context
of list-coloringmay also be an interesting question. Recently, Cranston andMah-
moud [CM21] generalized to vertex-list-coloring the result from Bonamy et al.
[BBFJ19] on the Kempe-equivalence of the ∆(G)-vertex-colorings of a regular
graph G. They literally prove that the argument for vertex-coloring can be gen-
eralized to list-coloring. In the context of edge-coloring, adapting the proof to
list-coloring seems much harder. Indeed, there is a substantial gap in the num-
bers of colors used. If we consider edge-coloring as vertex-coloring of the line
graph, we use roughly ∆

2
colors where ∆ is the maximum degree of the line

graph; in the case of vertex-coloring∆ colors are used. Therefore, any argument
based on the degeneracy of the graph (and in particular the result of Meyniel
and Las Vergnas) does not seem to be of any help in this case. Nevertheless,
studying Kempe swaps in the context of list-edge-coloring may be an interest-
ing approach toward the still widely opened list-edge-coloring conjecture (see
[JT95] for further details on this conjecture).

Conjecture. For any graph G, ch′(G) = χ′(G).
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the Swendsen–Wang–Koteckỳ algorithm on the kagomé lat-
tice. Journal of Statistical Mechanics: Theory and Experiment,
2010(05):P05016, 2010.

[MV69] LS. Melnikov and VG. Vizing. New proof of Brooks’ theorem. Jour-
nal of Combinatorial Theory, 7(4):289–290, 1969.

[RS83] Neil Robertson and Paul D. Seymour. Graph minors. I. Excluding a
forest. Journal of Combinatorial Theory, Series B, 35(1):39–61, 1983.

[RS84] Neil Robertson and Paul D. Seymour. Graphminors. III. Planar tree-
width. Journal of Combinatorial Theory, Series B, 36(1):49–64, 1984.

[RS86a] Neil Robertson and Paul D. Seymour. Graph minors. II. Algorithmic
aspects of tree-width. Journal of algorithms, 7(3):309–322, 1986.

Graph Coloring and Recoloring 163



Bibliography

[RS86b] Neil Robertson and Paul D. Seymour. Graph minors. V. Excluding
a planar graph. Journal of Combinatorial Theory, Series B, 41(1):92–
114, 1986.

[RS86c] Neil Robertson and Paul D. Seymour. Graph minors. VI. Disjoint
paths across a disc. Journal of Combinatorial Theory, Series B,
41(1):115–138, 1986.

[RS88] Neil Robertson and Paul D. Seymour. Graph minors. VII. Dis-
joint paths on a surface. Journal of Combinatorial Theory, Series
B, 45(2):212–254, 1988.

[RS90a] Neil Robertson and Paul D. Seymour. Graph minors. IV. Tree-width
and well-quasi-ordering. Journal of Combinatorial Theory, Series B,
48(2):227–254, 1990.

[RS90b] Neil Robertson and Paul D. Seymour. Graph minors. IX. Disjoint
crossed paths. Journal of Combinatorial Theory, Series B, 49(1):40–
77, 1990.

[RS90c] Neil Robertson and Paul D. Seymour. Graph minors. VIII. A Ku-
ratowski theorem for general surfaces. Journal of Combinatorial
Theory, Series B, 48(2):255–288, 1990.

[RS91] Neil Robertson and Paul D. Seymour. Graph minors. X. Obstruc-
tions to tree-decomposition. Journal of Combinatorial Theory, Series
B, 52(2):153–190, 1991.

[RS94] Neil Robertson and Paul D. Seymour. Graph minors. XI. Circuits on
a surface. Journal of Combinatorial Theory, Series B, 60(1):72–106,
1994.

[RS95a] Neil Robertson and Paul D. Seymour. Graph minors. XII. Distance
on a surface. Journal of Combinatorial Theory, Series B, 64(2):240–
272, 1995.

[RS95b] Neil Robertson and Paul D. Seymour. Graph minors. XIII. The
disjoint paths problem. Journal of combinatorial theory, Series B,
63(1):65–110, 1995.

[RS95c] Neil Robertson and Paul D. Seymour. Graphminors. XIV. Extending
an embedding. Journal of Combinatorial Theory, Series B, 65(1):23–
50, 1995.

164 J. Narboni



Bibliography

[RS96] Neil Robertson and Paul D. Seymour. Graph minors: XV. Giant
steps. journal of combinatorial theory, Series B, 68(1):112–148, 1996.

[RS99] Neil Robertson and Paul D. Seymour. Graph minors: XVII. Taming
a vortex. Journal of Combinatorial Theory, Series B, 77(1):162–210,
1999.

[RS03a] Neil Robertson and Paul D. Seymour. Graph minors. XVI. Exclud-
ing a non-planar graph. Journal of Combinatorial Theory, Series B,
89(1):43–76, 2003.

[RS03b] Neil Robertson and Paul D. Seymour. Graph minors. XVIII. Tree-
decompositions and well-quasi-ordering. Journal of Combinatorial
Theory, Series B, 89(1):77–108, 2003.

[RS04a] Neil Robertson and Paul D. Seymour. Graph minors. XIX. Well-
quasi-ordering on a surface. Journal of Combinatorial Theory, Series
B, 90(2):325–385, 2004.

[RS04b] Neil Robertson and Paul D. Seymour. Graph minors. XX. Wagner’s
conjecture. Journal of Combinatorial Theory, Series B, 92(2):325–357,
2004.

[RS09] Neil Robertson and Paul D. Seymour. Graph minors. XXI. Graphs
with unique linkages. Journal of Combinatorial Theory, Series B,
99(3):583–616, 2009.

[RS10] Neil Robertson and Paul D. Seymour. Graph minors XXIII. Nash-
Williams’ immersion conjecture. J. Comb. Theory, Ser. B, 100(2):181–
205, 2010.

[RS12] Neil Robertson and Paul D. Seymour. Graph minors. XXII. Irrele-
vant vertices in linkage problems. Journal of Combinatorial Theory,
Series B, 102(2):530–563, 2012.

[RSST97] Neil Robertson, Daniel Sanders, Paul D. Seymour, and Robin
Thomas. The four-colour theorem. Journal of Combinatorial The-
ory, Series B, 70(1):2–44, 1997.

[RST93] Neil Robertson, Paul D. Seymour, and Robin Thomas. Hadwiger’s
conjecture fork 6-free graphs. Combinatorica, 13(3):279–361, 1993.

[Sok00] Alan D. Sokal. A personal list of unsolved problems concerning
lattice gases and antiferromagnetic Potts models. arXiv preprint
cond-mat/0004231, 2000.

Graph Coloring and Recoloring 165



Bibliography

[SZ01] Daniel P. Sanders and Yue Zhao. Planar graphs of maximum de-
gree seven are class I. Journal of Combinatorial Theory, Series B,
83(2):201–212, 2001.

[Tai80] Peter Guthrie Tait. Remarks on the colouring of maps. In Proc. Roy.
Soc. Edinburgh, volume 10, pages 501–503, 1880.

[Tho84] Andrew Thomason. An extremal function for contractions of
graphs. In Mathematical Proceedings of the Cambridge Philosophi-
cal Society, volume 95, pages 261–265. Cambridge University Press,
1984.

[Tho94] Carsten Thomassen. Every planar graph is 5-choosable. Journal of
Combinatorial Theory Series B, 62(1):180–181, 1994.

[Vig00] Eric Vigoda. Improved bounds for sampling colorings. Journal of
Mathematical Physics, 41(3):1555–1569, 2000.

[Viz64] VG. Vizing. On an estimate of the chromatic class of a p-graph.
Discret Analiz, 3:25–30, 1964.

[Viz65a] VG. Vizing. The chromatic class of a multigraph. Cybernetics,
1(3):32–41, 1965.

[Viz65b] VG. Vizing. Critical graphs with given chromatic class. Metody
Discret. Analiz., 5:9–17, 1965.

[Viz68] VG. Vizing. Some unsolved problems in graph theory. Russian
Mathematical Surveys, 23(6):125, 1968.

[Wag37] Klaus Wagner. Über eine Eigenschaft der ebenen Komplexe. Math-
ematische Annalen, 114(1):570–590, 1937.

[Whi33] Hassler Whitney. 2-isomorphic graphs. American Journal of Math-
ematics, 55:245–254, 1933.

[WSK89] Jian-Sheng Wang, Robert H. Swendsen, and Roman Koteckỳ. Anti-
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Abstract

This thesis falls within the field of graph theory, and more precisely of graph
coloring with a focus on coloring reconfiguration and edge-coloring. In this the-
sis, we mainly study the Kempe swaps, a tool to locally transform a coloring
into another coloring. This concept is one of the key ideas of the proof of the
four-color theorem. We first give an overview of the history of this tool, present
how it became one of the most fruitful tool regarding graph coloring questions,
and introduce questions that fall within the more general field of combinatorial
reconfiguration that emerged from this concept.

We then present our result on greedy edge-coloring and vertex-coloring re-
configuration of Kt-minor free graphs. Regarding edge-coloring reconfigura-
tion, we prove in particular that all (χ′(G) + 1)-colorings are Kempe equivalent
(i.e. one can transform any coloring into any other coloring using only Kempe
swaps), thus proving a conjecture of Vizing of 1965. We finally present our work
on coloring of signed planar graphs, and on edge-coloring of triangle-free planar
graphs of maximum degree 4.
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