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• Slow propagation speed (around 340 m/s);

• Limited influence of the surroundings and good penetration of walls.

• Multipath effects and attenuation.

Wi-Fi [START_REF] Liu | Survey on wifi-based indoor positioning techniques[END_REF] ⇠35 m 5 m⇠15 m

• Widely distributed hot spots;

• Low access conditions;

• High flexibility.

• High fingerprint collection effort;

• Vulnerable to access point changes;

• Fluctuation of Wi-Fi signal;

• Radio mismatch problems;

• Heterogeneity of Wi-Fi devices;

• Noise and multipath distortion.

Bluetooth [START_REF] Mainetti | A survey on indoor positioning systems[END_REF] ⇠10 m 1⇠5m • Low reception range;

• Low energy consumption.

• Low positioning accuracy;

• Prone to noise.

UWB [START_REF] Mazhar | Precise indoor positioning using uwb: A review of methods, algorithms and implementations[END_REF] Few meters 10⇠30 cm

• Immune to interference;

• High accuracy;

• High multipath resolution;

• Large bandwidth.

• Shorter range;

• Extra infrastructure requirement;

• High cost for users.

Visible light [START_REF] Singh | Passive visible light positioning systems: An overview[END_REF] Line of sight condition 10 cm ⇠2m

• Device-free; Security;

• Less infrastructure changes in passive devices;

• Energy efficiency.

• High infrastructure changes on the transmitter side;

• The burden on the user;

• Complex infrastructure.

Vision (camera) [START_REF] Koyuncu | A survey of indoor positioning and object locating systems[END_REF] Line of sight condition 0.01⇠1m

• High positioning accuracy;

• Unaffected by the external environment;

• Strong anti-interference capability.

• Complex algorithms;

• High power consumption;

• Sensitive to light conditions;

• Expensive and lacks wide applications.

Inertial navigation [START_REF] Wu | A survey of the research status of pedestrian dead reckoning systems based on inertial sensors[END_REF] Hundreds of meters 2m • Low cost;

• Easy to deploy.

• Subject to the accuracy of inertial sensors;

• Accumulation of drift and deviation errors.

Magnetic field [START_REF] Ouyang | A survey of magnetic-field-based indoor localization[END_REF] ⇠ 1⇠5m

• Infrastructure-free;

• Temporal stability;

• Uniqueness due to ferromagnetic disturbance;

• Tolerance to moving objects.

• Low discernibility;

• Need for frame transformation;

• Heterogeneous device.

accuracy of typically 1 to 5 m. It has the advantage of low reception range and low energy consumption. However, BLE is expensive as it requires the intensive deployment of BLE beacons to improve positioning accuracy. It also has inherent limitations in radio signal propagation, such as shadowing, signal absorption, and multipath.

UWB [START_REF] Mazhar | Precise indoor positioning using uwb: A review of methods, algorithms and implementations[END_REF] has the advantages of high accuracy (10⇠30 cm), high multipath resolution, large bandwidth, low latency, high penetration, and freedom from interference. The constraints of UWB include high infrastructure requirements, high energy consumption, 1.1. GENERAL CONTEXT and high user costs.

Visible light [START_REF] Singh | Passive visible light positioning systems: An overview[END_REF] has the advantages of being device-free, security, and energy efficiency and fewer infrastructure changes in passive devices. The main drawback is the high infrastructure changes on the transmitter side, the burden on the user, and the complex infrastructure.

Camera [START_REF] Koyuncu | A survey of indoor positioning and object locating systems[END_REF] has the advantage of high positioning accuracy, unaffected by the external environment, and strong anti-interference capability. The disadvantage is that the camera is expensive, and the complex algorithms are complex and highly energy-consuming. The camera also depends on light conditions and lacks wide applications.

Inertial navigation [START_REF] Wu | A survey of the research status of pedestrian dead reckoning systems based on inertial sensors[END_REF] is advantageous due to its low cost and ease of deployment, and its disadvantage is that it is restricted by the accuracy of inertial sensors and the accumulation of drift and deviation errors.

Magnetic field-based indoor positioning [START_REF] Ouyang | Analysis of magnetic field measurements for indoor positioning[END_REF] is an attractive candidate for indoor positioning solutions due to the prevalence of magnetic fields. The advantages of magnetic fields are infrastructure-free, temporal stability, and tolerance to moving objects.

There are also some disadvantages, such as low discernibility (i.e., identical magnetic field measurement can be found elsewhere), heterogeneity of devices (i.e., heterogeneous smartphones have different magnetic field measurements at the same location), and susceptibility to interference from the presence of ferromagnetic materials in the surrounding environment.

Magnetic-based positioning technology has attracted continued interest in academia [START_REF] Haverinen | A global self-localization technique utilizing local anomalies of the ambient magnetic field[END_REF][START_REF] Xie | Maloc: A practical magnetic fingerprinting approach to indoor localization using smartphones[END_REF] and industry [START_REF]IndoorAtlas[END_REF][START_REF]Find & Order[END_REF] due to the popularity of smartphones, tablets, and personal digital agents (PDAs) with embedded magnetometers. As an emerging indoor positioning method, magnetic-based positioning uses the Earth and the local magnetic field disturbance to achieve the goal of indoor positioning, which has the advantage of safety, reliability, low cost, and being infrastructure-free.

This thesis aim to propose solutions for magnetic field-based indoor positioning, addressing challenges such as low discernibility, heterogeneous devices, and ferromagnetic materials disturbance.

1.2. THESIS DESCRIPTION

Thesis description

Thesis outline and Contributions

The rest of the thesis is organized as follows:

In Chapter 2,W efi r s ti n t r o d u c e dt h ec h a r a c t e r i s t i c so ft h em a g n e t i cfi e l da n dd i scussed its advantages and challenges. We then described the magnetometer model and the effects of ferromagnetic interference. The magnetometer, device, and world coordinate systems commonly used for magnetic field positioning were summarised, and their transformation relationships were presented. Existing magnetic field benchmark databases were reviewed to select suitable datasets to test algorithms. We describe traditional labor-intensive methods of constructing magnetic field maps and review crowdsourcing and Simultaneous Localization and Mapping methods for the efficient construction of magnetic field maps.

State-of-the-art methods such as magnetic landmarks, dynamic time warping, magnetic fingerprinting, filterings, simultaneous localisation and mapping and neural networks are reviewed and their usage scenarios and positioning performance are summarised.

The combination of magnetic field and PDR is a commonly used hybrid positioning system, so we also review the smartphone-based PDR algorithm for step detection, step length estimation, and step orientation estimation.

We compared the advantages and disadvantages of magnetic fields to other p ositioning technologies, including Wi-Fi, Bluetooth, GSM, FM, cameras, acoustics, and inertial sensors. We reviewed the industry application trends for these positioning technologies.

Finally, the applications, challenges and prospects of magnetic field-based indoor positioning are summarised.

Chapter 3 addressed the challenges of low discernibility, heterogeneous devices, and ferromagnetic materials interference of magnetic field positioning and designed a series of experiments to analyze the feasibility of using magnetic field measurements alone for indoor positioning.

The statistical characteristics of the magnetic field measurements were studied through static experiments with heterogeneous smartphones and magnetometers. Trajectory experiments verified that magnetic field measurement trajectories of heterogeneous smartphones exhibit similar patterns, which can be used for area positioning and determining 1.2. THESIS DESCRIPTION the initial position.

Rotation experiments showed that the magnetic field's X and Y axes are directiondependent, while the Z-axis reading is direction-independent. The calibration experiments prove that the hard-iron and soft-iron magnetic field measurements depend only on the smartphone hardware and are independent of the environment.

The classification experiments evaluated the performance of homogeneous and heterogeneous devices' magnetic field positioning using various machine-learning techniques.

Through these experiments, we have concluded the feasibility and limitations of magnetic field positioning.

Chapter 4 presented an ADMM-based magnetometer calibration algorithm to calibrate triaxial magnetometers with outliers and spurious measurements.

Truncation and compression metho ds are prop osed to pre-pro cess outliers and transform the magnetometer calibration problem into an ellipse fitting problem, which is then solved using the ADMM method. The algorithm was evaluated with synthetic magnetic field data and compared with state-of-the-art methods, demonstrating the robustness and accuracy of the proposed algorithm.

In Chapter 5,w ep r o p o s e dat e m p o r a lc o n v o l u t i o n a ln e t w o r k s -b a s e dm a g n e t i cfi e l d positioning system. This algorithm uses a unique pattern of magnetic field sequences to improve the accuracy of the positioning system. In contrast to traditional fingerprint positioning methods, the proposed method does not require the traversal of the entire magnetic field database. It also avoids the degradation problem as the number of stack layers increases.

We designed three pre-pro cessing metho ds: co ordinate transformation, smo othing filtering, and first-order differencing to extract magnetic field sequence features. Extensive experiments are carried out on an extensive magnetic field database collected indoors to demonstrate the effectiveness of the proposed algorithm compared to state-of-the-art deep learning algorithms.

Chapter 6 draws the conclusions and addresses the possible perspectives for future work.
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Introduction

The global indoor positioning market size is expected to grow at a Compound Annual Growth Rate of 22.5% from USD 6.1 billion in 2020 to USD 17 billion by 2025. Major indoor positioning market vendors such as Zebra Technologies, Inpixon, Mist Systems, HID Global, Google, Microsoft, Apple, Cisco, and others are expanding their growth strategies through new product launches, partnerships and collaborations, and mergers and acquisitions for their presence in the global indoor positioning market [1].

While GNSS is challenging to meet indoor positioning requirements due to signal attenuation and obstacles, many alternative technologies and devices are used for indoor positioning, such as WiFi [START_REF] He | Wi-fi fingerprint-based indoor positioning: Recent advances and comparisons[END_REF], Bluetooth [5,[START_REF] Zhao | Does btle measure up against wifi? a comparison of indoor location performance[END_REF], ultrasound or sound [START_REF] Sun | Pandaa: physical arrangement detection of networked devices through ambient-sound awareness[END_REF][START_REF] Huang | Shake and walk: Acoustic direction finding and fine-grained indoor localization using smartphones[END_REF], visible light [START_REF] Kuo | Luxapose: Indoor positioning with mobile phones and visible light[END_REF][START_REF] Yang | Wearables can afford: Light-weight indoor positioning with visible light[END_REF],

and magnetic field [START_REF] Chung | Indoor location sensing using geo-magnetism[END_REF][START_REF] He | Geomagnetism for smartphone-based indoor localization: Challenges, advances, and comparisons[END_REF].

These indoor positioning technologies can obtain accurate location information and provide consumers with reliable location-based services and information. Common examples of location-based services include indoor navigation and tracking, marketing (shopping advertisements, proximity-based coupon sharing), entertainment (location-based social networking, location-based gaming), location-based information retrieval (e.g., pavilion tours, underground real-time information), and emergency and safety applications (e.g., emergency call, automotive assistance) [2,[START_REF] Basiri | Indo or lo cation based services challenges, requirements and usability of current solutions[END_REF]. In particular, the use of geomagnetic positioning technology has attracted continued interest in academia [START_REF] Haverinen | A global self-localization technique utilizing local anomalies of the ambient magnetic field[END_REF][START_REF] Xie | Maloc: A practical magnetic fingerprinting approach to indoor localization using smartphones[END_REF] and industry [START_REF]IndoorAtlas[END_REF][START_REF]Find & Order[END_REF] due to the popularity of smartphones, tablets, and personal digital agents (PDAs) with embedded magnetometers. As an emerging indoor positioning method, geomagnetic positioning uses the characteristics of the earth as well as local magnetic fields to achieve the goal of positioning with the advantages of achieving safety, reliability, and low cost without additional infrastructure requirement.

There are few surveys dedicated to magnetic field indoor localization technologies that focus on the challenges and advancement of geomagnetism-based indoor localization for smartphones [START_REF] He | Geomagnetism for smartphone-based indoor localization: Challenges, advances, and comparisons[END_REF][START_REF] Ashraf | A comprehensive analysis of magnetic field based indoor positioning with smartphones: Opportunities, challenges and practical limitations[END_REF] and the magnetic field matching algorithms [START_REF] Dawes | A comparison of deterministic and probabilistic methods for indoor localization[END_REF]. In addition, some significant advances in magnetic field localization techniques [START_REF] Ashraf | mpilot-magnetic field strength based pedestrian indoor localization[END_REF][START_REF] Ashraf | Guide: Smartphone sensorsbased pedestrian indoor localization with heterogeneous devices[END_REF] have been proposed recently and have not yet been properly reviewed or recorded in these overview papers.

Hence, the purpose of this survey is to provide a timely and comprehensive overview and comparison of magnetic field localization techniques so that the reader can quickly gain an understanding of this research field. In addition to discussing the advantages and disadvantages of the various state-of-the-art methods, we also discuss the transfor-2.2. OVERVIEW OF THE GEOMAGNETIC FIELD mation of magnetic field coordinate systems related to earth, smartphone, and sensor coordinate systems.

To summarize, the main contributions of this paper are as follows:

• An overview of the advantages and challenges of magnetic-field-based indoor localization;

• Representations and transformations of magnetic fields in different coordinate systems;

• Ar e v i e wo fm a g n e t o m e t e rc a l i b r a t i o na l g o r i t h m sa n dm a g n e t i cm a pc o n s t r u c t i o n s ;

• State-of-the-art indoor localization systems based on magnetic fingerprinting; Finally, Section 2.11 concludes the survey of magnetic-field-based indoor localization.

•

Overview of the Geomagnetic Field

The geomagnetic field refers to the magnetic field that extends from the Earth's interior into space and has the effect of a barrier against the charged particles carried by the solar follows:

F = q m 2 x + m 2 y + m 2 z (2.1) H = q m 2 x + m 2 y (2.2) I =arctan m z H (2.3) D =arctan m y m x (2.4)
For decades, researchers have known that homing pigeons, migrating birds, sea turtles, lobsters, and other species can somehow sense the Earth's magnetic field to determine the direction they are traveling [START_REF] Lohmann | Geomagnetic map used in sea-turtle navigation[END_REF][START_REF] Maugh | Magnetic navigation an attractive possibility[END_REF][START_REF] Alerstam | The lobster navigators[END_REF][START_REF] Mora | Magnetoreception and its trigeminal mediation in the homing pigeon[END_REF]. Spatial discrimination and temporal stability are two key characteristics that make up a good fingerprint [START_REF] Haverinen | A global self-localization technique utilizing local anomalies of the ambient magnetic field[END_REF][START_REF] Angermann | Characterization of the indoor magnetic field for applications in localization and mapping[END_REF][START_REF] Frassl | Magnetic maps of indoor environments for precise localization of legged and non-legged locomotion[END_REF]. In this section, we describe the geomagnetic field and summarize some of the characteristics of indoor 2.2. OVERVIEW OF THE GEOMAGNETIC FIELD magnetic field measurements-some of which are beneficial for indoor positioning, while others pose challenges for practical applications.

Advantages of Using Magnetic Field Measurement

Compared with WiFi [START_REF] He | Wi-fi fingerprint-based indoor positioning: Recent advances and comparisons[END_REF], Bluetooth [5,[START_REF] Zhao | Does btle measure up against wifi? a comparison of indoor location performance[END_REF], ultrasound or sound [START_REF] Sun | Pandaa: physical arrangement detection of networked devices through ambient-sound awareness[END_REF][START_REF] Huang | Shake and walk: Acoustic direction finding and fine-grained indoor localization using smartphones[END_REF], and visible light [START_REF] Kuo | Luxapose: Indoor positioning with mobile phones and visible light[END_REF][START_REF] Yang | Wearables can afford: Light-weight indoor positioning with visible light[END_REF],

magnetic field positioning has the advantages of temporal stability, uniqueness due to ferromagnetic disturbance, and tolerance to moving objects.

• Temporal stability: The temporal stability of the magnetic field measurement is an important characteristics. A lot of studies are reported in the literature on the temporal stability of magnetic field measurement [START_REF] Ashraf | A comprehensive analysis of magnetic field based indoor positioning with smartphones: Opportunities, challenges and practical limitations[END_REF][START_REF] Ashraf | mpilot-magnetic field strength based pedestrian indoor localization[END_REF][START_REF] Ashraf | Guide: Smartphone sensorsbased pedestrian indoor localization with heterogeneous devices[END_REF][START_REF] Shu | Magicol: Indoor localization using pervasive magnetic field and opportunistic wifi sensing[END_REF][START_REF] Li | How feasible is the use of magnetic field alone for indoor positioning[END_REF][START_REF] Subbu | Locateme: Magnetic-fields-based indoor localization using smartphones[END_REF]. The results of the current study show that magnetic field measurements are stable over time or vary slowly when no significant infrastructural changes are introduced in a given indoor environment.

• Uniqueness due to ferromagnetic disturbance:: The ubiquitous magnetic field is disturbed by the ferromagnetic materials, such as steel or iron used in buildings, which distort the magnetic field measurements [START_REF] Ashraf | A comprehensive analysis of magnetic field based indoor positioning with smartphones: Opportunities, challenges and practical limitations[END_REF]. These disturbances cause the compass heading to fluctuate, resulting in incorrect direction and position information [START_REF] Fan | How magnetic disturbance influences the attitude and heading in magnetic and inertial sensor-based orientation estimation[END_REF].

Haverinen et al. [START_REF] Haverinen | A global self-localization technique utilizing local anomalies of the ambient magnetic field[END_REF] collected indoor magnetic fields through the robot with embedded sensors indicating the presence of pillars, doors, and elevators in the room, making the magnetic field measurements more unique, so they can be utilized as a solution for indoor positioning. Subbu et al. [START_REF] Subbu | Locateme: Magnetic-fields-based indoor localization using smartphones[END_REF] analyzed the cause for this uniqueness and then proposed a solution for indoor positioning by classifying the patterns of magnetic field measurements. Ashraf et al. [START_REF] Ashraf | A comprehensive analysis of magnetic field based indoor positioning with smartphones: Opportunities, challenges and practical limitations[END_REF] studied the effect of building materials on magnetic field data, provided a comprehensive analysis of the nature of the building, and discussed the variation of magnetic field disturbances.

• Tolerance to moving objects: The effect of moving objects, such as people or cabin, on the magnetic field is very limited and almost non-existent at a distance of 1 m. The authors of [START_REF] Shu | Magicol: Indoor localization using pervasive magnetic field and opportunistic wifi sensing[END_REF] studied the influence of moving objects, such as people, cabin, elevator, and electrical appliances, on the magnetic field in typical situations and showed that elevator infrastructure had a significant influence on the magnetic field measurement, whereas the moving cabin had little impact. Experiments given in [START_REF] Ashraf | A comprehensive analysis of magnetic field based indoor positioning with smartphones: Opportunities, challenges and practical limitations[END_REF] show that human mobility has no or a small effect on magnetic field measurements, and the addition of furniture in the indoor environment that does not 2.2. OVERVIEW OF THE GEOMAGNETIC FIELD contain ferromagnetic materials has no substantial impact on the magnetic field local signature. Since the signals in indoor environments are more complex than in outdoor environments. The reflection, diffraction, and scattering effects of wireless signals in media with different propagation characteristics (such as walls, floors, pedestrians, and other objects) can cause the attenuation of Wi-Fi signals [START_REF] Liu | Survey of wireless indoor positioning techniques and systems[END_REF][START_REF] Wang | Ca2t: Cooperative antenna arrays technique for pinpoint indoor localization[END_REF][START_REF] Kim Geok | Review of indoor positioning: Radio wave technology[END_REF].

This highlights the huge advantages of magnetic positioning.

Challenges of Using Magnetic Field Measurement

The challenges of using magnetic fields for indoor localization mainly include the effects of low discernibility and smartphone heterogeneity, which affect the performance of localization.

• Low discernibility of magnetic field measurement: The magnetic field intensity at the Earth's surface smoothly varies between 25 µTa n d6 5µT [ 3 5 ] . I nag i v e ni ndoor environment, the MF is affected by the local environment, leading to slight differences in the MF signature (measurement) at different indoor locations. However, almost identical magnetic field measurements might occur at different indoor locations, which leads to a low discernibility problem when using MF maps for the indoor location.

• Need for frame transformation : The geomagnetic vectors in the navigation frame and the smartphone frame are denoted as m n 2 R 3⇥1 and m b 2 R 3⇥1 ,r e s p e c t i v e l y .

As the heading of the smartphone may be random in the coordinate navigation system, readings must be measured in different directions at each location [START_REF] Xie | Maloc: A practical magnetic fingerprinting approach to indoor localization using smartphones[END_REF],

which is costly in terms of time and labor and prone to noise. In order to make the magnetic field measurements of the smartphones consistent, it is necessary to transform m b in the smartphone framework to m n in the navigation framework.

However, the frame transformation process requires information from the gyroscope and accelerometer to obtain the rotation matrix, and it is a challenge to calculate the accurate rotation matrix.

Suppose tilt information is available for the smartphone, we can use the T RIAD [START_REF] Black | A passive system for determining the attitude of a satellite[END_REF] method to transform the geomagnetic field on the smartphone's frame into the horizontal (denoted as m h )a n dv e r t i c a l( d e n o t e da sm v )c o m p o n e n t s [ 4 6 ] . A f t e r the transformation, the horizontal and vertical components are 'ideally' independent of the user's direction. Unfortunately, in practice, this is not the case because 2.2. OVERVIEW OF THE GEOMAGNETIC FIELD the accelerometer measurements (and hence the frame transformation) are affected during walking.

• Challenge with the use of MF intensity only:N o t et h a t ,a l t h o u g ht h et h r e e -d i m e n s i o n a l magnetic field measurements will be inconsistent when the smartphone is oriented differently, the magnetic field intensity m b is the same [START_REF] Subbu | Locateme: Magnetic-fields-based indoor localization using smartphones[END_REF]. However, compared to using the MF vector m b ,themagneticfieldin tensit y m b is a scalar, which loses al a r g ea m o u n to fi n f o r m a t i o na n dc a nl e a dt oad e c r e a s ei nl oc a l i z a t i o na c c u r a c y .

Recent methods such as MaLoc [START_REF] Xie | Maloc: A practical magnetic fingerprinting approach to indoor localization using smartphones[END_REF] combine |m b |, m h ,andm v to form a 3D vector for indoor localization. However, due to the m b = p m 2 h + m 2 v ,t h e3 Dv e c t o r does not provide more information than the 2D measurement and therefore does not increase the localization performance.

• Heterogeneous Device:I ti si m p o r t a n tt od e s i g nap o s i t i o n i n gm e t h o dt h a tc a n seamlessly integrate with the magnetic field of various smartphones. The major smartphone companies such as Apple, Samsung, Huawei, Xiaomi, etc., use embedded magnetometers from various manufacturers. There is no one standard for selecting embedded magnetometers for smartphones. The embedded magnetometer models used by the various smartphone companies have specific sensitivities and noise tolerances, resulting in their magnetic field measurements also varying. Table 2.1 shows the names and descriptions of the various magnetometers added to smartphones. Several major smartphone manufacturers have chosen different magnetometer models, and the sensitivity and operating temperature characteristics of these magnetometers are not exactly the same, resulting in different magnetic field measurement readings. Therefore, calibration is required before using the magnetometer. According to the Android documentation, rotating your smartphone in figure-of-eight swings calibrates the magnetometer measurement [START_REF]Magnetometers, accelerometers, and the calibration procedure for your Android device android documentation[END_REF]. However, this simple calibration method does not meet the needs of magnetic field localization.

The two main calibration methods mentioned in recent literature are ellipsoid fitting [START_REF] V. Renaudin | Complete triaxis magnetometer calibration in the magnetic domain[END_REF] and maximum likelihood estimation [START_REF] Kok | Magnetometer calibration using inertial sensors[END_REF]. When the user walks indoors, the smartphone can obtain a geomagnetic measurement sequence, and the geomagnetic measurement sequence can improve the accuracy of positioning more than a single measurement [START_REF] Shu | Last-mile navigation using smartphones[END_REF][START_REF] Rallapalli | Waveloc: Wavelet signatures for ubiquitous localization[END_REF]. Magnetic field sequence measurements show similarity between heterogeneous smartphones [START_REF] Ashraf | A comprehensive analysis of magnetic field based indoor positioning with smartphones: Opportunities, challenges and practical limitations[END_REF]. Using the Dynamic Time Warping (DTW) method, finding the minimum in the adjacent cumulative differences and calculating the cumulative distance is possible [START_REF] Subbu | Indoor localization through dynamic time warping[END_REF]. Variations in magnetic field data are caused by magnetic materials in the surrounding environment [START_REF] He | Geomagnetism for smartphone-based indoor localization: Challenges, advances, and comparisons[END_REF]. Smartphone calibration is required for each indoor environment in which positioning is performed.

Magnetometer Measurement Model

In outdoor environment, the local geomagnetic field is equal to the local Earth's magnetic field. In the absence of any magnetic interference, rotating the magnetometer in all possible directions, the magnetic field measurements in body coordinates are located on a sphere with a radius of the magnetic field intensity

m b = R bn m n , (2.5) 
where m n 2 R 3⇥1 is the geomagnetic vector in navigation frame n aligned with the Earth's gravity and the local magnetic field, m b 2 R 3⇥1 is the local magnetic field in the sensor frame b, R bn 2 R 3⇥3 is a rotation matrix that transforms m n from the navigation frame n to body frame b.

However, the presence of ferromagnetic materials and electronic devices of the smartphone can interfere with magnetic field measurements. Environmental disturbances can cause soft-iron and hard-iron effect. Metals such as nickel and iron could cause a soft iron effect, which can be modeled as a linear transform with matrix A si 2 R 3⇥3 . As shown in Fig. 2.3(a), soft iron effect distorts the sphere into an ellipsoid. The hard iron effect b hi 2 R 3⇥3 is produced by materials that exhibit a constant additional field to the Earth's magnetic field, it shifts the origin of the ideal magnetic sphere as shown in Fig. 2.3(b).

COORDINATE SYSTEMS AND TRANSFORMATIONS

Thus, the complete magnetometer measurement model can be expressed as follows:

m b = SM A si R bn m n + b h i + b so + ε, (2.10) 
where ε is an i.i.d Gaussian noise from N (0,σ 2 ε I).I t i s n o t r e q u i r e d t o i d e n t i f y e a c h component of (2.10). The scale factor, misalignment, and soft iron distortion can be combined into a distortion matrix A 2 R 3⇥3 , and the hard iron effect and sensor bias can be combined into an offset vector b 2 R 3⇥1 ,n a m e l y

A = SMA si , (2.11) b = SMb hi + b so . (2.12)
The magnetometer measurement model is as follows:

m b = AR bn m n + b + ε. (2.13)

Coordinate Systems and Transformations

There are several common coordinate systems used in inertial navigation. We summarize the coordinate systems in this section:

• The earth-centered earth-fixed (ECEF) coordinate system;

• The geodetic coordinate system;

• The local East-North-Up (ENU) coordinate system;

• The smartphone coordinate system;

• The 9 degrees of freedom sensor coordinate system.

The relationships among these coordinate systems and the coordinate transformations are also introduced.

Earth-Centered Earth-Fixed

The Earth-Centered Earth-Fixed (ECEF) coordinate system is a Cartesian coordinate system with the center of the earth as its origin, as shown in Fig. 2.4. The X axis passes

COORDINATE SYSTEMS AND TRANSFORMATIONS

The WGS 84 (World Geodetic System 1984) datum defines the Earth's surface as an oblate ellipsoid with an equatorial radius a.A ne l l i p s o i di sat h r e e -d i m e n s i o n a ls u r f a c e created by the rotation of an ellipse around its short axis. The shape of the ellipsoid can be described by the equatorial radius or semi-major axis a,thepolarradiusorsemi-major axis b,t h efl a t t e n i n gf ,a n dt h efi r s te c c e n t r i c i t ys q u a r e de.

• Equatorial semi-major axis:

a =6378137m (2.15)
• Flattening:

f =1/298.257223563 (2.16)
• Polar semi-minor axis:

b = a ⇥ (1 f )=6356752.3142 m (2.17) 
• First eccentricity squared:

e 2 = a 2 b 2 a 2 =6.69437999014 ⇥ 10 3 (2.18)
the position vector in Geodetic coordinates could be denoted by

P geo =[φ, λ, h] > (2.19)
where φ represents the geodetic latitude, λ represents longitude, and h represents the ellipsoidal height, which can be converted into ECEF coordinates using the following Equation [START_REF] Hofmann-Wellenhof | Global positioning system: theory and practice[END_REF]:

P ecef = 0 B B B @ X ecef Y ecef Z ecef 1 C C C A = 0 B B B @ (N (φ)+h)cosφ cos λ (N (φ)+h)cosφ sin λ ⇣ b 2 a 2 N (φ)+h ⌘ sin φ 1 C C C A (2.20)
where N (φ) is the prime vertical radius of curvature defines as:

N (φ)= a 2 p a 2 cos 2 φ + b 2 sin 2 φ = a p 1 e 2 sin 2 φ (2.21)
a and b are the equatorial radius (semi-major axis) and the polar radius (semi-minor axis), respectively. e 2 =1 b 2 a 2 is the square of the first numerical eccentricity of the ellipsoid. The prime vertical radius of curvature N(φ )isthedistancefromthesurfacetotheZ-axis along the ellipsoid normal.

Local East-North-Up Coordinate System

The local ENU coordinate system is a coordinate frame fixed to the earth's surface. Based on the WGS 84 ellipsoid model, its origin and axes are defined as shown in Fig. 2.4: For a position vector that is given in ECEF coordinates, ENU coordinates can be transformed by multiplication with a rotation matrix. 

Smartphone Coordinate System

A standard smartphone coordinate system is shown on the right-hand side of Fig. 2.5.

Xa x i si sh o r i z o n t a la n dp o i n t st ot h er i g h t . Ya x i si sv e r t i c a l ,a n dZa x i sp o i n t st ot h e sky. Using a smartphone for mapping and real-time positioning usually does not require considering the transformation between sensor frames and device frames, but if you use an embedded robot for mapping and then use a smartphone for positioning, you need to consider the transformation relationship between the sensor frames and device frame. Fig. 2.5 shows the transformation of the sensor frame to the smartphone frame.

Nine-DOF Sensor Coordinate System

A sensor with nine degrees of freedom (9DOF) is often used in navigation robots (e.g.,

LSM9DS1

), which contains a three-axis accelerometer, three-axis gyroscope, and threeaxis magnetometer, but the coordinate systems of the accelerometer, gyroscope, and 2.5. MAGNETIC FIELD BENCHMARK DATASETS state-of-the-art algorithms. However, there are some public magnetic field datasets for which the links are no longer available due to a lack of maintenance by the authors. This section presents several magnetic field datasets that are still accessible as of March 2022 and serve as a benchmark for many research papers.

1. MagWi: MagWi (accessed date: 07 March 2022) dataset was presented by [START_REF] Ashraf | Magwi: Benchmark dataset for long term magnetic field and wi-fi data involving heterogeneous smartphones, multiple orientations, spatial diversity and multi-floor buildings[END_REF] in 2021 It provides essential features of Wi-Fi and magnetic field data. Besides Wi-Fi and magnetic field, inertial measurement unit (IMU) data are provided from the accelerometer, motion sensors, and barometer involving four users, both male and female. The dataset can be used to study the effects of device heterogeneity, spatial diversity, smartphone orientation, walking speed, time-related mutations, and the impact of human movement on Wi-Fi and magnetic field measurements.

Over nearly five years, the dataset was collected using five different smartphones, including Galaxy S8, LG G6, Galaxy A8, LG 7, and Galaxy S9+. 

Magnetometer Calibration

Magnetometers are necessary auxiliary sensors for attitude estimation in low-cost, highperformance inertial navigation systems. The inexpensive, low-power magnetometers allow accurate attitude estimation by comparing magnetic field vector observations in body coordinates with magnetic field measurements in the Earth coordinate. The fusion of magnetometer and inertial sensor information leads to accurate 3D attitude estimation [START_REF] Wu | Fast complementary filter for attitude estimation using low-cost marg sensors[END_REF][START_REF] Ahmed | Accurate attitude estimation of a moving land vehicle using low-cost mems imu sensors[END_REF]. The accuracy of 3D attitude estimation is closely related to the calibration of the sensor measurements and the interference [START_REF] Zhang | Calibration of miniature inertial and magnetic sensor units for robust attitude estimation[END_REF]. Magnetometers are more sensitive to environmental changes than inertial sensors and require more frequent recalibration [START_REF] Kok | Magnetometer calibration using inertial sensors[END_REF].

The calibration of magnetometers could be divided into two methods: attitude-dependent and attitude-independent.

The classical compass swing calibration method presented in [START_REF] Gebre-Egziabher | Calibration of strapdown magnetometers in magnetic field domain[END_REF] is a heading calibration algorithm that requires leveling and an external known heading source and keeps the magnetometer plane level. This method is attitude-dependent.

In recent years, attitude-independent calibration methods have been explored in the literature. The TWOSTEP batch method was proposed in [START_REF] Alonso | Twostep: A fast robust algorithm for attitudeindependent magnetometer-bias determination[END_REF] to estimate magnetometers' bias with an unknown attitude. In the first step of the algorithm, the initial predictions of the calibration parameters are obtained by a centering approximation method to solve the resulting quadratic objective function. The second step estimates the parameters by a batch Gaussian-Newton iterative estimation method system. Crassidis et al. [START_REF] Crassidis | Real-time attitude-independent three-axis magnetometer calibration[END_REF] compared three recursive magnetometer calibration algorithms: the sequential centering algorithm, the extended Kalman filter (EKF), and the Unscented filter (UF). Among them, the sequential centering algorithm is a linear least-squares method based on the centering approximation. The experimental results show that the EKF and UF algorithms have smaller residual magnitudes and mean residuals closer to zero than the sequential centering algorithm. The UF algorithm is more robust than the other two algorithms in terms of accuracy and convergence properties.

The goal of the calibration method is to estimate the calibration parameters A and b in Eq. (2.13). The batch magnetometer calibration method uses the entire set of magnetic field measurements to estimate the unknown calibration parameters [START_REF] Soken | A survey of calibration algorithms for small satellite magnetometers[END_REF], using an attitude-independent observation to estimate the magnetometer error term. This observation is derived from the fact that the magnetometer measurements are constant and independent of the attitude of the local measurement position [START_REF] Wu | On calibration of three-axis magnetometer[END_REF]. The cost function is constructed from the difference between the measurement model of the magnetometer 2.6. MAGNETOMETER CALIBRATION and the true geomagnetic measurements. The calibration parameters are estimated with the maximum likelihood method. In [START_REF] Vasconcelos | Geometric approach to strapdown magnetometer calibration in sensor frame[END_REF], the calibration is considered a parametric optimization problem formulated through maximum likelihood estimation (MLE), and the optimization algorithm is derived using the gradient and Newton descent method. The sensor alignment matrix is obtained through the solution of the orthogonal Procrustes problem. The initial conditions of the iterative algorithm are obtained with suboptimal batch least-squares calculations. Approximate MLEs are sensitive to initial errors, and inaccurate initial estimates can lead to magnetometer calibration failure. Wu et al. [START_REF] Wu | On calibration of three-axis magnetometer[END_REF] proposed an optimal MLE magnetometer calibration algorithm based on a quadratic method. Compared with the approximate MLE method, the optimal MLE calibration has advantages in terms of accuracy and stability, but the computational cost of the optimal MLE calibration is relatively high. Kok and Schön in [START_REF] Kok | Magnetometer calibration using inertial sensors[END_REF] transformed the calibration algorithm into a maximum likelihood problem by using ellipsoid fitting to obtain the initial values of the calibration parameters, then using the extended Kalman filter (EKF)

to calculate the rotation matrix and the accumulated errors, and finally constructing the cost function. References [START_REF] Wu | Calibration of three-axis strapdown magnetometers using particle swarm optimization algorithm[END_REF][START_REF] Riwanto | Particle swarm optimization with rotation axis fitting for magnetometer calibration[END_REF] to the PSO-based method but with much less computational complexity. These methods were implemented by minimizing the difference between the measured magnetic field and the local reference magnetic field [START_REF] Wertz | S p r i n g e r S c i e n c e & Business Media[END_REF], which was denoted as scalar checking. The scalar checking methods assume that the local magnetic field is stable during calibration and rotate the measured magnetic field to an arbitrary direction to minimize a certain scalar cost function. However, the scalar checking method for magnetometer calibration has the problem of rotational ambiguity. The calibration model in Eq. (2.13) conforms to the ellipsoidal limit, and the calibration matrix cannot be fully determined because the ellipsoidal parameters are fewer than the calibration model parameters. To explain the rotational ambiguity problem from mathematical principles, the calibration matrices derived from the ellipsoid coefficient matrix by different matrix decomposition methods are not unique, and there exists an unknown rotation matrix R 2 R 3⇥3 between them [START_REF] Liu | Novel calibration algorithm for a three-axis strapdown magnetometer[END_REF]. The deployment of magnetometer calibration algorithms needs to consider device dependencies, smartphone heading, and the effects of environmental noise. Smartphone battery consumption is closely related to the complexity of the magnetometer calibration algorithm.

Magnetic Field Map Construction

Indoor maps are a prerequisite for indoor positioning systems. Hiring experts to build indoor maps and update them regularly is an expensive and time-consuming method that cannot be applied to large-scale indoor coverage. In recent years, researchers have proposed some crowdsourcing and SLAM-based methods to construct indoor floor plans [START_REF] Luo | Constructing an indoor floor plan using crowdsourcing based on magnetic fingerprinting[END_REF].

Unlike traditional expert site surveys, crowdsourcing is an approach that uses crowd contributions to achieve complex tasks and is well suited for fingerprint-based indoor locations [START_REF] Pei | A survey of crowd sensing opportunistic signals for indoor localization[END_REF].

Traditional Map Survey

He et al. [START_REF] Shu | Magicol: Indoor localization using pervasive magnetic field and opportunistic wifi sensing[END_REF] proposed a compliant-walking-based site survey method: the surveyor places the smartphone in a fixed body position and walks along a pre-planned measurement path • Accelerometer

• Gyroscope

• Magnetometer

• Sony Xperia series (Z4 Tablet, XP e r f o r m a n c e and X Compact)

• 3920 m 2 • Magnitude • Inclination • Azimuth • 0.48 m
When building fingerprint databases using crowdsourcing approaches, location estimates from the PDR method are often used as the location labels for the measurement data [START_REF] Wang | Indoor smartphone localization via fingerprint crowdsourcing: Challenges and approaches[END_REF]. MeshMap is an indoor positioning system based on magnetic fields and crowdsourcing [START_REF] Chen | Meshmap: A magnetic field-based indoor navigation system with crowdsourcing support[END_REF]. A magnetic fingerprint database is constructed by merging sensor data from different paths of multiple users using a crowdsourcing approach. In order to combine 

Mapping with Simultaneous Localization and Mapping

PFSurvey was proposed in [START_REF] Gao | Semi-automated signal surveying using smartphones and floorplans[END_REF] for the rapid creation of signal maps that could be used to survey an entire building in a matter of minutes. The method uses accelerometer, gyroscope, and magnetometer data to estimate the surveyor's trajectory and uses SLAM and particle filters to incorporate a floor plan of the building, achieving trajectories within 1.1 m of ground truth in 90% of the time. Compared to maps generated by traditional timeconsuming manual surveys, PFSurvey's data collection costs are lower, but it achieves similar accuracy.

Geomagnetic Field Interpolation

Interpolation is a technique for adding new data points to a set of known data points and is commonly used to fill in missing magnetic field data in indoor positioning algorithms based on magnetic field positioning. Suppose the user's location is within the localization area, but the magnetic field data are missing at that point. The magnetic field measurement can be computed using the magnetic field data points close to the query point.

The Gaussian Process (GP) is a powerful nonlinear interpolation method, and many 2.7. MAGNETIC FIELD MAP CONSTRUCTION standard interpolation methods are equivalent to a specific Gaussian process. Assume that the geomagnetic field m 2 R 3⇥1 can be modeled by three independent Gaussian processes [START_REF] Rasmussen | Gaussian processes in machine learning[END_REF], and then the model is generalized as a multivariate normal distribution given by

m(x) ⇠GP(µ(x), K(x, x 0 )) (2.23)
where µ 2 R 3⇥1 is the mean vector, and K 2 R 3⇥3 is the covariance function given by

K(x, x 0 )=σ 2 m • exp kx x 0 k 2 l 2 ! (2.24)
where σ 2 i is a variance hyperparameter, and l 2 is a length scale hyperparameter. x and x 0 represent two different points on the continuous domain of the Gaussian process; kx x 0 k 2 is the distance between x and x 0 ;theoutputoffunctionK represents the covariance value between the Gaussian distribution represented by x and x 0 -the larger the distance, the smaller the correlation between the two distributions.

Vallivaara et al. [START_REF] Vallivaara | Simultaneous localization and mapping using ambient magnetic field[END_REF] proposed a simultaneous localization and mapping (SLAM) method based on local anomalies of an ambient magnetic field using a Rao-Blackwellized particle filter to estimate the pose distribution of the robot and a Gaussian process regression to simulate the magnetic field map. This method demonstrated that geometrically consistent magnetic field maps can be generated using odometer and magnetic field measurements. However, this work was only tested in a small area, and based on this, Akai and Ozaki [START_REF] Akai | Gaussian processes for magnetic map-based localization in large-scale indoor environments[END_REF] used a mobile robot to collect magnetic data and efficiently built large-scale magnetic maps using GP. Wahlström et al. [START_REF] Wahlström | Modeling magnetic fields using gaussian processes[END_REF] introduced a Bayesian nonparametric model based on a vector-valued stationary Gaussian process to estimate the magnetic field and the magnetic source jointly. The divergence and curl-free properties of the magnetic field from electromagnetic theory were exploited to calculate its covariance function. Solin et al. [START_REF] Solin | Modeling and interpolation of the ambient magnetic field by gaussian processes[END_REF] presented a Bayesian nonparametric probabilistic modeling approach for the interpolation and extrapolation of magnetic fields. By imposing a GP on the potential scalar of the magnetic field, the magnetic field components are jointly modeled using Maxwell's equations, providing a model for the ambient magnetic field that allows continuously updating the estimates and the time variation of the magnetic field. Kok et al. [START_REF] Kok | Scalable magnetic field slam in 3d using gaussian process maps[END_REF] combined the physical properties of the magnetic field with a Gaussian process model to represent the magnetic field map and uses three-dimensional hexagonal block maps to create local maps. Reduced-grade Gaussian process regression combined with Rao-Blackwellized par-2.8. INDOOR LOCALIZATION METHODS USING MAGNETIC FINGERPRINTS ticle filters make the computation tractable. The approach provides a scalable magnetic field SLAM algorithm for computational complexity and map storage.

Indoor Localization Methods Using Magnetic Fingerprints

Fingerprinting is a common location method that works by matching fingerprint measurements to fingerprints in a database to estimate the location of an object. The accuracy of magnetic fingerprint localization can be affected by smartphone orientation and environmental changes. In addition, magnetic field localization accuracy depends on fingerprint density, and the acquisition and maintenance of high-quality magnetic maps is a time-consuming and labor-intensive process [START_REF] Wang | Pedestrian dead reckoning based on walking pattern recognition and online magnetic fingerprint trajectory calibration[END_REF]. Compared with other methods, it has relatively low complexity and high applicability in complex indoor environments [START_REF] He | Wi-fi fingerprint-based indoor positioning: Recent advances and comparisons[END_REF].

Fingerprinting consists of two phases: training and offline [START_REF] Davidson | A survey of selected indoor positioning methods for smartphones[END_REF]. In the training phase, a fingerprint database of a certain granularity is built in the region of interest. The finer the granularity, the higher the accuracy, while the time and labor costs increase. In the offline phase, the collected measurements are matched with the fingerprints in the database using deterministic algorithms or probabilistic algorithms [START_REF] Dawes | A comparison of deterministic and probabilistic methods for indoor localization[END_REF] to calculate the location of the object. There are some popular magnetic fingerprinting-based positioning algorithms using pattern recognition techniques. Fig. 2.7 summarizes the research on indoor localization based on magnetic field fingerprinting, and we will follow this scheme to discuss magnetic-field-based localization methods. This section will first discuss how local geomagnetic anomalies of landmarks can be used to determine target locations in subsection 2.8.1. We then discuss how to use dynamic time warping for position matching in subsection2.8.2. We next examine machine-learningbased magnetic fingerprinting methods in subsection 2.8.3. Then, we discuss filter-based methods for magnetic field localization in subsection 2.8.4. We then discuss the magnetic field localization with Simultaneous Localization and Mapping in subsection 2.8.5. Finally, we discuss the application of (deep) neural networks to magnetic field localization in subsection 2.8.6.

INDOOR LOCALIZATION METHODS USING MAGNETIC FINGERPRINTS

Seed landmarks correspond to landmarks at physical points in the environment, including stairs, lifts, escalators, etc. Seed landmarks have a unique impact on one or more mobile phone sensors and can be uniquely detected. Organic landmarks (such as WiFi landmarks, magnetic landmarks, and inertial sensor landmarks) do not correspond to specific objects and are usually detected based on their unique signature on the sensor [START_REF] Abdelnasser | Semanticslam: Using environment landmarks for unsupervised indoor localization[END_REF].

Devices, such as fridges, lifts, metal doors, etc., can make the magnetometer readings show prominent variations and be used as magnetic landmarks. Magnetic landmarks can be used to enhance indoor positioning and mapping [START_REF] Wang | No need to war-drive: Unsupervised indoor localization[END_REF][START_REF] Abdelnasser | Semanticslam: Using environment landmarks for unsupervised indoor localization[END_REF][START_REF] Shang | Apfiloc: An infrastructure-free indoor localization method fusing smartphone inertial sensors, landmarks and map information[END_REF], to detect indoor/outdoor environments [START_REF] Zhou | Iodetector: A generic service for indoor outdoor detection[END_REF], and to label the semantics of indoor environments [START_REF] Elhamshary | Transitlabel: A crowd-sensing system for automatic labeling of transit stations semantics[END_REF].

There are several research works that utilize landmarks to enhance indoor localization. An early system using landmarks for indoor localization is UnLoc [START_REF] Wang | No need to war-drive: Unsupervised indoor localization[END_REF], which achieves a median localization error of 1.69 m by combining PDR with landmarks. SemanticSLAM [START_REF] Abdelnasser | Semanticslam: Using environment landmarks for unsupervised indoor localization[END_REF] further extends the UnLoc system using the SLAM technique, which decreases the median localization error to 0.53 m. An activity landmark-based indoor mapping system is presented in [START_REF] Zhou | Activity sequence-based indoor pedestrian localization using smartphones[END_REF], which is called ALIMC. By detecting the activity landmarks, ALIMC achieves a mapping accuracy of about 0.8-1.5 m within the 80th percentile. APFiLoc [START_REF] Shang | Apfiloc: An infrastructure-free indoor localization method fusing smartphone inertial sensors, landmarks and map information[END_REF] uses a particle filter to fuse PDR, landmarks, and a floor plan, which achieves a localization accuracy of less than 2 m with 80% confidence. Specific methods for identifying seed landmarks are presented in [START_REF] Chen | Fusion of wifi, smartphone sensors and landmarks using the kalman filter for indoor localization[END_REF]. For example, turns can be identified using angleor direction-dependent sensors. Lifts can be easily identified based on unique patterns of vertical acceleration data. The acceleration pattern of taking the escalator is similar to a stationary state. The acceleration pattern for going up or down the stairs is similar to regular walking. The door landmarks contain two phases of acceleration: the low value of opening the door and the periodic pattern of walking out. Subbu et al. [START_REF] Subbu | Locateme: Magnetic-fields-based indoor localization using smartphones[END_REF] distinguished corridors with success using magnetic signatures resulting from different components or sources of interference in the room, such as pillars, doors, and lifts. Landmark-based localization also has some limitations. Firstly, landmark detection. Existing work typically involves manually designing detection features and setting thresholds for detecting different landmarks through empirical analysis, which may vary from scene to scene. There is no general method to learn useful landmark detection features automatically. Secondly, the problem of data association is to be considered, i.e., determining the correct landmark when there are multiple landmarks nearby. Thirdly, the omission problem, i.e., certain landmarks, may be missed in some cases. For example, a door landmark can be missed if the door is open because most door detection methods assume that the user performs a series of activities while passing through the door (e.g., walking-standing and opening 2.8. INDOOR LOCALIZATION METHODS USING MAGNETIC FINGERPRINTS that the synthetic backward magnetic trajectories were similar to the actual backward magnetic observations. In this way, we can obtain more magnetic trajectories for localization. Li et al. [START_REF] Li | Smartphone-based indo or lo calization with integrated fingerprint signal[END_REF] proposed a localization method (CSMS) that integrates channel state information (CSI) and magnetic field strength (MFS). The CSMS constructs an integrated fingerprint map of CSI and MFS. The initial localization coordinates are first obtained according to the M-KNN algorithm in the localization phase. Then, the Local Dynamic Time Warping algorithm is applied to match the geomagnetic sequence during the motion for tracking. Finally, according to the tracking position, the Multi-Module Data k-Nearest Neighbor algorithm dynamically weighs the multi-module data to narrow down the localization range and perform fingerprint matching to obtain more accurate localization results. DTW usually calculates the distance between the measured magnetic field and the magnetic fingerprint in the database. Based on the traditional DTW, Chen et al. [START_REF] Chen | A hybrid dead reckon system based on 3-dimensional dynamic time warping[END_REF] proposed an improved DTW (3DDTW) that extends the one-dimensional input signal into a two-dimensional one. Then, 3DDTW was used to calculate the distance between the measured magnetic field and the magnetic fingerprint, thus reducing the mismatch of the magnetic fingerprint. Finally, weighted least squares were used to reduce indoor positioning errors with a hybrid positioning accuracy of approximately 3.3 m.

Machine Learning Approaches

With the development of artificial intelligence, machine-learning-based indoor positioning is becoming a trend, and machine learning algorithms can effectively address many of the limitations of traditional positioning techniques for indoor environments. The most important advantage of the machine learning approach is its ability to learn helpful information from input data with known or unknown statistics [START_REF] Nessa | A survey of machine learning for indoor positioning[END_REF].

In machine-learning-based localization, classifier algorithms such as K-NN [START_REF] Hoang | A soft range limited k-nearest neighbors algorithm for indoor localization enhancement[END_REF], support vector machines (SVM) [START_REF] Bottou | Support vector machine solvers[END_REF], naive Bayes [START_REF] Wu | Passive indoor localization based on csi and naive bayes classification[END_REF], decision trees [START_REF] Loh | Classification and regression trees[END_REF], and discriminant analysis [START_REF] Fisher | The use of multiple measurements in taxonomic problems[END_REF] are widely used to extract the core features of a signal. Localization methods need to consider accuracy and computational complexity, and acquiring highdimensional data through feature engineering to improve accuracy can introduce high computational complexity. Dimensionality reduction techniques such as principal component analysis (PCA) [START_REF] Salamah | An enhanced wifi indoor localization system based on machine learning[END_REF] and singular value decomposition (SVD) [START_REF] Chan | An improved algorithm for computing the singular value decomposition[END_REF] techniques can transform high-dimensional features into low-dimensional ones, significantly reducing the storage space and computational complexity of magnetic fingerprint-based localization.

INDOOR LOCALIZATION METHODS USING MAGNETIC FINGERPRINTS ond magnetic test set contains,

Z = {z 1 , z 2 ...z n | z i 2 R m } from n points. We compute the metric µ i (X)= 1/ kX z i k 2/(m 1) P k j=1 ⇣ 1/ kX z j k 2/(m 1)
⌘ .

(2.25)

where j =1 , 2 ...,k, in which k is number of nearest neighbors, and i =1 , 2 ...,n,i n which n is the number of points. The fuzzy parameter m is used to determine the weights of the distances. Here, we set m =2.

Decision tree:Ad e c i s i o nt r e ei san o n -p a r a m e t r i cs u p e r v i s e dl e a r n i n gt e c h n i q u ec o nsisting of multiple decision rules, all of which are derived from data features. In a decision tree, we call the whole sample the root node, and the process of dividing a node into two or more sub-nodes is called splitting. When a sub-node splits into more sub-nodes, it is called a decision node. Nodes that do not split are called leaves. The process of deleting the sub-nodes of a decision node is called pruning. The decision tree algorithm splits the training set (root node) into subsets, recursively splitting until no pure sub-nodes (leaf nodes) are obtained. The decision tree algorithm requires optimal attributes and thresholds that maximize the splitting criteria (e.g., CART Tree), and the resulting set of splits is optimal. Commonly used decision tree models such as the CART algorithm use Gini's impurity index, the ID3 algorithm uses Information Gain, and the C4.5 algorithm uses Gain Ratio [START_REF] Loh | Classification and regression trees[END_REF].

Naive Bayes: The Naive Bayes classifier is based on Bayes' theorem. Suppose X =

{x 1 , x 2 ...x n | x i 2 R m } has n samples with m features, class labels y = {y 1 ,y 2 ...y k }.
According to Bayes' rule, P (y i | x) can be expressed as

P (y i | x)= P (x | y i ) • P (y i ) P (x) , (2.26) 
where P (y i ) and P (x) are known. To estimate the location, we need to find the corresponding location y i that maximizes P (x | y i ).S i n c et h em a g n e t i cv a l u e so b e yaG a u s s i a n distribution, i.e., P (x | y i ) ⇠N(µ, σ 2 ), µ and σ are derived from the training set [START_REF] Wu | Passive indoor localization based on csi and naive bayes classification[END_REF].

Discriminant analysis: Discriminant analysis methods are well known for learning discriminative feature transformations and can be easily extended to multiple class cases [START_REF] Li | Using discriminant analysis for multi-class classification: an experimental investigation[END_REF].

Suppose we have training data

X = {x 1 , x 2 ...x n | x i 2 R m } , n samples with m features,
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class labels y = {y 1 ,y 2 ...y k }. The within-class scatter matrix given as:

Σw = n X i=1 X x2y i (x µ i )(x µ i ) > (2.27)
where µ i = 1 l i P x2y i x and l i is the number of samples in y i . The between-class scatter matrix equation is defined as

Σb = n X i=1 l i (µ i µ)(µ i µ) > (2.28)
where l i is the number of training samples for each class, µ i is the mean for each class, and µ is total mean vector given by µ = 1 l P n i=1 l i µ i . The Fisher criterion suggests that the linear transformation w maximizes the ratio of the determinant of the between-class scatter matrix of the projected samples to the within-class scatter matrix of the projected samples [START_REF] Fisher | The use of multiple measurements in taxonomic problems[END_REF].

J (w)= w > Σb w w > Σw w (2.29) 
The transformation w can be obtained by solving the generalized eigenvalue problem [START_REF] Li | Using discriminant analysis for multi-class classification: an experimental investigation[END_REF]:

Σb w = λ Σw w (2.30)
Support vector machine:S u p p o r tv e c t o rm a c h i n ec l a s s i fi e sd a t ab yfi n d i n gt h eb e s t hyperplane, which is the hyperplane with the maximum distance between two classes.

Given n samples of training data

X = {x 1 , x 2 ...x n | x i 2 R m } with m features, labels y = {y 1 ,y 2 ...y k }.
The i-th SVM is trained using all examples with positive labels in the i-th class and all other examples with negative labels, and the i-th SVM is formulated as follows:

min w i ,b i ,ξ i 1 2 w i > w i + C l X j=1 ξ i j w i > (2.31) w i > f (x j )+b i 1 ξ i j , if y j = i w i > f (x j )+b i  1+ξ i j , if y j 6 = i ξ i j 0,j =1,...,l
where the training data x i are mapped to a higher dimensional space by a function f , w 2 R m is a vector representing the direction of the separated hyperplane, b 2 R is a constant representing the position of the hyperplane, C is the penalty parameter that defines the trade-off between large separation regions and misclassification errors, and ξ i j is slack variable that allows some samples to be on the wrong side of the separation hyperplane [START_REF] Hastie | The elements of statistical learning: data mining, inference, and prediction[END_REF][START_REF] Zhou | Device-free presence detection and localization with svm and csi fingerprinting[END_REF][START_REF] Hsu | A comparison of methods for multiclass support vector machines[END_REF].

After solving Eq. (2.31), there are the decision functions:

w 1 > f (x)+b 1 . . . w k > f (x)+b k
x belongs to the class with the largest value of the decision function.

class of x ⌘ arg max i=1,...,k ⇣ w i T f (x)+b i ⌘ (2.32)
K-NN is widely used for pattern-matching magnetic fingerprinting. However, K-NN has poor performance in handling large datasets and high-dimensional datasets. Fingerprinting approaches such as support vector machines [START_REF] Wu | Wlan location determination in e-home via support vector classification[END_REF] and linear discriminant analysis [START_REF] Nuno-Barrau | A new location estimation system for wireless networks based on linear discriminant functions and hidden markov models[END_REF] have been shown to improve localization accuracy while increasing the computational cost. The main challenge of deterministic methods is that although some sampling points are spatially close, their magnetic field similarities are farther apart, leading to significant localization errors. Huang et al. address this problem using the multidimensional scaling (MDS) method in [START_REF] Huang | A fine-grained indoor fingerprinting localization based on magnetic field strength and channel state information[END_REF]. Support vector machine employs a kernel mechanism to find the differences between two classes, modeling linear and nonlinear relationships with better generalization and effectively handling large datasets and highdimensional datasets [START_REF] Marano | Nlos identification and mitigation for localization based on uwb experimental data[END_REF]. However, SVM-based methods are computationally complex and require significant time and memory when the number of support vectors becomes large. Decision-tree-based indoor localization has shown good performance in improving localization accuracy [START_REF] Yim | Introducing a decision tree-based indoor positioning technique[END_REF]. The disadvantage of decision trees is the possibility of missing information when processing and classifying continuous numerical data.

Filter-Based Approaches

Filter-based methods are usually applied to fuse data from multiple sensors to provide high accuracy for indoor solutions. The localization system state is often not directly available, 40 2.8. INDOOR LOCALIZATION METHODS USING MAGNETIC FINGERPRINTS and the localization system state is usually estimated from a system measurement model and a motion model. Mathematically, these two models can be represented as follows:

x k+1 = f (x k , w k ) (2.33)
y k = h (x k , v k ) (2.34)
where k is the timestamp, x k is the system state for time k, f

(x k , w k ) is the state- dependent equation of motion, h (x k , v k ) is the state-dependent equation of measurement,
y k is the measurement (i.e., magnetic field), and w k and v k represent process noise and measurement noise, respectively.

Hidden Markov Model : A Hidden Markov Model (HMM) is a statistical Markov model in which the system x (hidden state) is assumed to be a Markov process. The HMM assumes the existence of another process y that depends on x and can be learned by observing y.

As shown in Fig. 2.11, a typical Hidden Markov Model is described by a state-space model. Formally, the HMM model is characterized by five parameters:

• X = {x 1 , x 2 ,...,x N }2R N ⇥1
is a set of N hidden states. The state at time i is denoted by x i =[p xi ,p yi ],r e p r e s e n t i n gt h ek-th real position;

• Y = {y 1 , y 2 ,...,y M }2R M ⇥1 is a set of M observations. Magnetic signal observation sequences at time i are denoted by y i ;

• A 2 R N ⇥N is the transition probability matrix, where A ij denotes the transition probability from state x i to state x j ,

A ij = P (x j | x i ) , 1  i, j  N ; (2.35)
• B 2 R N ⇥M is the emission probability matrix, where B ij indicates the emission probability at time j from state x i ,

B ij = P (y j | x i ) , 1  i  N, 1  k  M ; (2.36) • π 2 R N ⇥1
is the initial state distribution. If there is no prior knowledge about the

x 1 x i x j x t y 1 y i y j y t

Evolution of states

Emission probabilities

Observables Time initial state of smartphone, the vector π = 1 N ,..., 1 N , Learning problem : Model parameters λ =( A, B,π) is not known , inferring model parameters.

B ij B ij = P ( y j x i ) T 1 T i T j T t A ij = P ( x j x i ) Transitional probabilities
π i = P (x i ) , 1  i  N. (2.37) 
In magnetic field positioning, we use the k-th hidden state x k of the HMM to denote the user's position after step k. There is a special conditional probability distribution for geomagnetic field intensity observations called the emission probability distribution.

A complete HMM consists of the initial probability, the transition probabilities, and the emission probabilities. Usually, the initial probability P(x 0 ) is known. The transition probability P(x k | x k 1 ) is calculated by pedestrian dead reckoning (PDR). The emission probability P(y k | x k ) is the probability of observing the geomagnetic intensity y k in state 42
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x k . The HMM then generates observations at each state through the emission probabilities. Ma et al. [START_REF] Ma | Basmag: An optimized hmm-based localization system using backward sequences matching algorithm exploiting geomagnetic information[END_REF] proposed Basmag, a HMM-based indoor localization system using a Backward Sequence Matching Algorithm (BSMA) to optimize the HMM and improve the low discriminability of the geomagnetic signal with the help of PDR. Kwak et al. [START_REF] Kwak | Magnetic field based indoor localization system: A crowdsourcing approach[END_REF] presented an unsupervised learning algorithm based on HMM and designed a lightweight algorithm to compare the similarity of magnetic fingerprints. It is reported that the matching learning accuracy is 96.47%, and the positioning median error is 0.25 m.

The Kalman filter or extended Kalman filter applies to Gaussian distributions and cannot be applied to non-Gaussian signals. HMM is more computationally efficient than particle filters of high complexity. Compared to other Bayesian filtering techniques, HMM is more suitable for representing the complex motion of indoor targets [START_REF] Seitz | A hidden markov model for pedestrian navigation[END_REF][START_REF] Liu | A hybrid smartphone indoor positioning solution for mobile lbs[END_REF].

Kalman filter : Kalman filter principle is well described in [START_REF] Arulampalam | A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking[END_REF][START_REF] Konatowski | Comparison of estimation accuracy of ekf, ukf and pf filters[END_REF][START_REF] Fang | Nonlinear bayesian estimation: From kalman filtering to a broader horizon[END_REF]. Assume that f is a linear function with respect to x k and w k and h is a linear function with respect to x k and v k , then Equation (2.33) can be rewritten as:

x k+1 = A k x k + w k (2.38) 
y k = H k x k + v k (2.39)
where w k ⇠N (0, Q k ) and v k ⇠N (0, R k ) are zero-mean white Gaussian noise and independent of each other.

The covariances of w k and v k are, respectively, Q k and R k . The process and measurement matrices A k and H k ,a n dt h en o i s ep a r a m e t e r sQ k , R k are time variables. The covariance matrix P is updated between measurement steps:

P k+1|k = A k P k|k A > k + Q k (2.40)
x k ⇠N(µ k , P k ), where µ k and P k are the mean and covariance matrix of x k ,respectiv ely , the correction equation for the measurement update is:

x k+1|k+1 = x k+1|k + K k y k H k x k+1|k
(2.41)

P k+1|k+1 =(I K k H k ) P k+1|k (2.42)
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The Kalman gain matrix K k is calculated for each update:

K k = P k|k 1 H > k ⇥ H k P k|k 1 H > k + R k ⇤ 1 (2.43)
Zhao and Wang [START_REF] Zhao | Motion measurement using inertial sensors, ultrasonic sensors, and magnetometers with extended kalman filter for data fusion[END_REF] showed that the use of EKF could reduce the cumulative error of inertial sensors and improve the accuracy of orientation and position measurements.

Wang et al. [START_REF] Wang | Magnetic-based indoor localization using smartphone via a fusion algorithm[END_REF] fused information obtained from the PDR and the magnetic fingerprint with EKF and PF schemes. It demonstrated higher localization performance than using PF alone.

In a positioning system, the system state or user state is the user's position and orientation.

x =(p x ,p y ,θ) (2.44)
Assuming that the user's motion is considered to be on a horizontal plane (2D), we can obtain the acceleration and orientation from the accelerometer and gyroscope in the smartphone. The relationship between these sensor measurements and the user's state is as follows, and Eq. (2.38) can be rewritten as: sin (θ t+1 )

θ t+1 = θ t +∆θ + G θ (2.
3 5 ⇥ (l + G l ) (2.46)
where l is the step size, ∆θ is the user's change in heading between two consecutive steps, and G l ⇠ N (0,σ l ) and G θ ⇠ N (0,σ θ ) are Gaussian noise.

In the measurement model, we use the magnetic fingerprint as the primary observation y. Eq. (2.39) is used to obtain the observations for state x in the fingerprint database.

The initial values of the system state x 0 and the covariance matrix P 0 are set, and the parameters of the process noise Q 0 and the measurement noise R 0 are obtained from the sensor measurements. A Kalman-filter-based positioning system is complete.

Particle filter :Ap a r t i c l efi l t e ri saS e q u e n t i a lI m p o r t a n c eS a m p l i n g( S I S )m e t h o dt h a t expresses the state distribution of an object by extracting random state particles from the posterior probabilities. Each particle x k has a corresponding weight W k that represents the value of the function at the point determined by that particle. The greater the number 2.8. INDOOR LOCALIZATION METHODS USING MAGNETIC FINGERPRINTS as i n g l es a m p l eh a se x t r e m e l yd o m i n a n tw e i g h t s ,t h er e s a m p l i n gs t e pi sn e c e s s a r yf o rd egeneracy. After the particles are resampled, the weight distribution is set to be uniform. Layer 3: The motion process of the particles shown in the third layer is predicted to be different since each particle has a different state after applying the model A k . Layer 4: Noise w k is applied to cover some unlikely assumptions and distinguish the particles if some of them are the same-the resampling step.

Layer 5: After obtaining the noise measurements, the observation model is evaluated based on the state estimates of each particle. The observation model assumes the probability that the measurement y k will occur when we know the state x k of the object. Layer 6: The sixth layer shows the posterior probability function resulting from the measurement step. Applying the observation model to each particle, particles whose observations are similar to actual ones will have greater weights. In contrast, particles distant from the actual observations will receive low weights. Finally, the updated particles are used to evaluate the state (e.g., median or mean of the particle states) for the next iteration.

We now describ e how the particle filter actually works. First, N random particles are generated from an initial region γ = {ξ 1 ,ξ 2 ,...,ξ N }2R n⇥1 .Ap a r t i c l ei sa na s s u m p t i o n about the state of the user with a weight.

ξ i = {x i ,w i } (2.47)
where w i is the weight of the particle. The motion model P (x k+1 | y k ) for each particle is updated with Eq. (2.46). The probability of observing y on state x is given as

P (y | x)= 1 (2π) n/2 |V| 1/2 exp ⇢ 1 2 [y g(x)] > V 1 [y g(x)] . (2.48)
where n is the dimension of y, V is the covariance matrix, and g(x) is a function to obtain observations of state x in the fingerprint database. We evaluate each particle by

w k+1 i = w k i • P y k+1 | x k+1 i . (2.49)
Finally, we use the weighted average of the current particles to estimate the true state, as shown in Eq. (2.50).
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FINGERPRINTS x = N X i=1 x i • w i .
(2.50)

The particle filtering approach has specific applications in magnetic field localization.

For example, Xie et al. [START_REF] Xie | A reliability-augmented particle filter for magnetic fingerprinting based indoor localization on smartphone[END_REF] innovated the motion, measurement, and resampling mo dels for smartphone indoor localization systems and proposed a reliability-augmented particle filter. They used a dynamic step estimation algorithm and a heuristic particle resampling algorithm to reduce the error of motion estimation and improve the robustness of the elementary particle filter. The use of combined PF and EKF is proposed in [START_REF] Wang | Magnetic-based indoor localization using smartphone via a fusion algorithm[END_REF] to fuse the information obtained from PDR and magnetic fingerprinting and to improve the inherent blindness in the traditional PF scheme and solve the particle degradation problem. This fusion algorithm has a localization accuracy of 1-2 m in large buildings when the user walks slowly, which has a higher accuracy compared to many other algorithms.

Simultaneous Localization and Mapping

Simultaneous localization and mapping (SLAM) uses both mapping and localization algorithms to build a map and simultaneously localize objects within that map. Many researchers have recently combined SLAM with smartphone sensor data for location estimation, as summarized in Tab. 2.5.

Wang et al. [START_REF] Wang | Exponentially weighted particle filter for simultaneous localization and mapping based on magnetic field measurements[END_REF] introduced eSLAM, a simultaneous localization and mapping (SLAM) method that utilizes measurements of the ambient magnetic field present in all indoor environments. They implemented a modified exponentially weighted particle filter to estimate objects' pose distribution and a Kriging interpolation method to update the magnetic field map. Through simulations on Matlab and tests on mobile devices, they observed two interesting phenomena: the shift in position estimation after sharp turns and the cumulative error.

Besides this, there are two main challenges for SLAM based on magnetic field measurement. The first one is that map construction for large-scale indoor environments is a difficult task. The second one is that the continuous data exchange between the map and the localization algorithm consumes a lot of power. Vallivaara et al. in [START_REF] Vallivaara | Simultaneous localization and mapping using ambient magnetic field[END_REF] proposed a SLAM method using the local anomalies of the ambient magnetic field. A Rao-Blackwell particle filter was implemented for the pose distribution estimation of the robot, and Gaussian process regression was used for magnetic field map modeling. MagSLAM was presented in [START_REF] Robertson | Simultaneous localization and mapping for pedestrians using distortions of the local magnetic field intensity in large indoor environments[END_REF], and it demonstrated that simultaneous localization and mapping of indoor pedestrians using measurements of ambient magnetic field strength and human stride measurements without using an a priori map built by ground truth-based methods could be scalable and accurate. The work in [START_REF] Kok | Scalable magnetic field slam in 3d using gaussian process maps[END_REF] combines reduced-rank Gaussian process regression and Rao-Blackwellized particle filter to provide a scalable 3D magnetic field SLAM algorithm. It shows the feasibility of using smartphone measurements to obtain accurate position and orientation estimates. SemanticSLAM [START_REF] Abdelnasser | Semanticslam: Using environment landmarks for unsupervised indoor localization[END_REF] is a calibration-free indoor positioning system that utilizes unique signatures of specific locations in an indoor environment. Unique signatures include unique patterns in the smartphone's accelerometer when climbing stairs, unusual magnetic interference in specific locations, as well as unique Wi-Fi access on others locations. SemanticSLAM used these unique signatures as landmarks and combined them with a pedestrian dead reckoning in the (SLAM) framework to reduce localization errors and convergence times. It shows a median positioning error of 0.53 m with fast convergence times.

Neural Networks MF-Based Methods

There have been many studies on magnetic field localization methods based on an artificial neural network (ANN), and ANN is often applied for classification and prediction.

For magnetic-field-based lo calization, the NN is trained using the magnetic field measure- Ashraf et al. [START_REF] Ashraf | Application of deep convolutional neural networks and smartphone sensors for indoor localization[END_REF] presented a multi-sensor indoor localization method using magnetic • Camera

• Magnetic field

• CNN • mKNN • 9720 m 2
• Galaxy S8;

• LG G6; the heterogeneous smartphone and user height. This method performs better than the other two methods, mPILOT [START_REF] Ashraf | mpilot-magnetic field strength based pedestrian indoor localization[END_REF] and GUIDE [START_REF] Ashraf | Guide: Smartphone sensorsbased pedestrian indoor localization with heterogeneous devices[END_REF]. The work in [START_REF] Bhattarai | Geomagnetic field based indoor landmark classification using deep learning[END_REF] mentioned that despite having the same magnetic field measurements at multiple locations, the spatial/temporal sequence of magnetic field values around a particular region would form a unique pattern over time. Therefore, an LSTM deep recurrent neural network (DRNN) is proposed for learning magnetic patterns from spatial/temporal sequences. The experimental results show that the overall classification accuracy of the DRNN model is 97.20%, which is better than traditional machine learning methods, such as support vector machines and K-nearest neighbors.

Neural networks are promising in complex environmental scenarios where feature extraction is high and there is challenging data dimensionality [START_REF] Le | Unsupervised deep feature learning to reduce the collection of fingerprints for indoor localization using deep belief networks[END_REF]. Neural networks allow for analyzing large amounts of unlabeled and unclassified data. Its most significant advantage is automatically extracting features from the acquired data without manual extraction [START_REF] Khatab | A fingerprint method for indoor localization using autoencoder based deep extreme learning machine[END_REF]. Indoor positioning is often faced with global positioning errors and kidnapping robot problems. When the initial position is unknown, this is known as the global localization problem. An RNN estimates the next position by predicting a time series and can be an excellent solution to this challenge.

Smartphone-Based Pedestrian Dead Reckoning

Inertial navigation is an infrastructure-free method that uses inertial sensor measurements (accelerometers and gyroscopes) on the pedestrian to track the position and orientation of the object relative to a known starting point [START_REF] Wu | A survey of the research status of pedestrian dead reckoning systems based on inertial sensors[END_REF][START_REF] Tian | A multi-mode dead reckoning system for pedestrian tracking using smartphones[END_REF]. 

Step Detection

Recent literature has proposed using the camera [START_REF] Ozcan | Robust and reliable step counting by mobile phone cameras[END_REF] and gyroscope data [START_REF] Kang | A novel walking detection and step counting algorithm using unconstrained smartphones[END_REF] for step counting, and we focus here on step counting with a built-in accelerometer for smartphones.

Time domain approaches: Time-domain methods can be divided into thresholding [START_REF] Hu | Wibest: A hybrid personal indoor positioning system[END_REF] ,pe a kd e t e c t i o n[ 1 6 2 ] ,z e r o -c r o s s i n g[ 1 [START_REF] Zhao | Does btle measure up against wifi? a comparison of indoor location performance[END_REF] 3 ] ,a n da u t o -c o r r e l a t i o n[ 1 6 4 -1 6 6 ] .

1. Threshold: The threshold method calculates the number of steps by determining whether the sensor data meet some predetermined threshold. The work in [START_REF] Jin | A robust dead-reckoning pedestrian tracking system with low cost sensors[END_REF][START_REF] Pratama | S m a r t p h o n e -b a s e dpe d e s t r i a nd e a dr e c k o n i n ga s an indoor positioning system[END_REF] proposed a relative threshold detection scheme. It uses acceleration measurements already projected into the vertical direction to detect steps. The scheme detects a step when a valid maximum peak (as a maximum value) and a valid minimum peak (as a minimum value) are detected in sequence over a specific time interval.

The maximum value is the most prominent peak above the upper threshold, while the minimum is the minor peak below the lower threshold. The upper threshold is determined by the sum of the last valid minimum and the ∆ threshold value, while the lower threshold is determined by subtracting the last valid maximum and the 2.9. SMARTPHONE-BASED PEDESTRIAN DEAD RECKONING ∆ threshold value.

Peak Detection:

The heel causes sharp changes in vertical acceleration when it touches the ground, and we can use these acceleration maxima for step counting.

Typically, the impact of the foot on the ground may cause multiple local peaks due to the large forces generated by the motion of the sensor [START_REF] Zhang | A handheld inertial pedestrian navigation system with accurate step modes and device poses recognition[END_REF]. Yang and Huang [START_REF] Yang | An accurate step detection algorithm using unconstrained smartphones[END_REF] proposed a new peak detection algorithm for smartphones carried in an unconstrained manner. First, a rotation matrix is obtained using a Kalmanfilter-based pose estimation algorithm. Then, the acceleration measurements are converted from the device reference frame to the earth reference frame. Finally, the peak algorithm is used to detect and calculate the number of steps for the vertical component of the acceleration in the earth reference frame.

Zero-crossing:

The steps are detected by analyzing the magnitude of the acceleration signal and subtracting the local gravity coming from the magnitude of the acceleration measurement. A repetitive pattern can be observed when the user starts walking. The acceleration signal crosses the zero mark once in the negative direction and then in the positive direction. This phenomenon is called zero-crossing, and a new step is calculated when the acceleration signal changes from negative to positive [START_REF] Davidson | A survey of selected indoor positioning methods for smartphones[END_REF]. Seo et al. [START_REF] Seo | Step counting on smartphones using advanced zero-crossing and linear regression[END_REF] used an advanced scheme to detect the zero-crossing and then employed linear regression to estimate the number of steps using zero crossings. If the user is walking, then the auto-correlation will spike at the correct period of the walker. The work in [START_REF] Rai | Zee: Zero-effort crowdsourcing for indoor localization[END_REF] presents Normalized Auto-correlation-based Step Counting (NASC). When a person is walking, the normalized auto-correlation will be close to 1 when the time lag τ is exactly equal to the period of the acceleration pattern. Since the value of τ is unknown beforehand, NASC tries to find τ = τ opt between τ min and τ max such that the value of the normalized auto-correlation is maximized.

Pan and Lin proposed a step counting algorithm for smartphone users [START_REF] Pan | A step counting algorithm for smartphone users: Design and implementation[END_REF]. Firstly, the linear acceleration and gravity values are collected from the smartphone's accelerometer to obtain the horizontal component of the linear acceleration value. The starting point of the possible periodic linear acceleration measurement is determined. Finally, the raw data collected from the data collection phase are segmented 2.9. SMARTPHONE-BASED PEDESTRIAN DEAD RECKONING using the correlation coefficient method to find the potential correlation segments as the number of steps taken by the user. Brajdic and Harle [START_REF] Brajdic | Walk detection and step counting on unconstrained smartphones[END_REF] surveyed various standard step counting algorithms in the literature and compared them fairly and quantitatively using different smartphones.

They came to two important conclusions. Firstly, a straightforward thresholding of accelerometer standard deviations can robustly and inexpensively detect walking times. Second, the windowed peak detection algorithm is overall the best choice for step counting, regardless of the smartphone placement. Santos et al. [START_REF] Santos | Autocorrelation analysis of accelerometer signal to detect and count steps of smartphone users[END_REF] first determined the peak frequency by subtracting its average value from the acceleration signal and using Fast Fourier transform. A band-pass filter is then used to remove high frequencies and frequencies below 1 Hz. Afterward, the moving standard deviation of the acceleration magnitude is used as a dynamic threshold to detect whether the user is stopping or moving, dividing the acceleration signal into different segments. Finally, an auto-correlation function is implemented for each segment to detect the steps performed by the user and obtain the number of calculated steps.

Frequency domain approaches : A windowed subset of the periodic accelerometer signal is transformed into the frequency domain, and the principal frequency can be used as the walking frequency. Barralon et al. [START_REF] Barralon | Walk detection with a kinematic sensor: Frequency and wavelet comparison[END_REF] analyzed the accelerometer data to detect the walking phase using the short-term Fourier transform (STFT) [START_REF] Devaul | Real-time motion classification for wearable computing applications[END_REF] or continuous/discrete wavelet transform (CWT/DWT) [START_REF] Sekine | Classification of walking pattern using acceleration waveform in elderly people[END_REF][START_REF] Wang | Real time accelerometer-based gait recognition using adaptive windowed wavelet transforms[END_REF]. It was reported that the method using DWT decomposition was the most effective. FFT cannot determine when each frequency component occurs and introduces resolution problems. CWT/DWT can capture sudden changes in acceleration but is more computationally expensive [START_REF] Figo | Preprocessing techniques for context recognition from accelerometer data[END_REF]. Lester et al. [START_REF] Lester | Validated caloric expenditure estimation using a single body-worn sensor[END_REF] developed an adaptive FFT energy-based filter that selects the lowest frequency band that accounts for 10% of the energy in the FFT output to calculate the pace. This energy threshold is shown to be robust under various conditions. Brajdic and Harle [START_REF] Brajdic | Walk detection and step counting on unconstrained smartphones[END_REF] used the STFT to calculate the number of steps per window. The window width is divided by the dominant walking period it detects, and these fractional values are summed to estimate the number of steps taken. Brajdic and Harle [START_REF] Brajdic | Walk detection and step counting on unconstrained smartphones[END_REF] zeroed all CWT/DWT coefficients outside the walking frequency band, followed by inverting the conversion to remove the DC component and retaining the walk information. Individual steps are then extracted according to the Mean Crossings Counts algorithm. After preprocessing the data from the accelerometer and applying the fast Fourier transform, the results showed a walk success rate of 87.52% [START_REF] Dirican | Step counting using smartphone accelerometer and fast fourier transform[END_REF].
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Feature clustering approaches :O t h e r r e s e a r c h w o r k s p r o p o s e d t h e u s e o f H i d d e n

Markov Models (HMMs) [START_REF] Ren | A novel pedestrian navigation algorithm for a foot-mounted inertial-sensor-based system[END_REF][START_REF] Suh | Pedestrian inertial navigation with gait phase detection assisted zero velocity updating[END_REF][START_REF] Ruppelt | A novel finite state machine based step detection technique for pedestrian navigation systems[END_REF], together with K-Means clustering [START_REF] Pirttikangas | Feature selection and activity recognition from wearable sensors[END_REF][START_REF] Siirtola | Recognizing human activities user-indep endently on smartphones based on accelerometer data[END_REF] and other machine learning algorithms, to classify activities by time and frequency domain features extracted from accelerometer signals [START_REF] Dargie | Analysis of time and frequency domain features of accelerometer measurements[END_REF][START_REF] Preece | Activity identification using body-mounted sensors-a review of classification techniques[END_REF]. In [START_REF] Brajdic | Walk detection and step counting on unconstrained smartphones[END_REF], Brajdic and Harle dynamically train the HMM in a rolling time window to distinguish between gait states (e.g., heel-off, toe-off, heel strike, and foot stationary). The model periodically assigns one state to the hill and the other to the valley of the stride. Brajdic and Harle also tested the K-Means Clustering method. The Lloyd algorithm [START_REF] Lloyd | Least squares quantization in pcm[END_REF] was used to partition the feature vector of the rolling time window into two clusters (hills/valleys). They predicted the results by computing the closest cluster.

Step Length Estimation

Due to the drift error of smartphone accelerometers, the double integration of acceleration method is not suitable for step-length-based pedestrian dead reckoning (PDR) [START_REF] Tian | A multi-mode dead reckoning system for pedestrian tracking using smartphones[END_REF]. Researchers proposed several step estimation models to calculate the step length. Techniques for estimating step length usually use parameters such as acceleration, step frequency, or height as input [START_REF] Vezočnik | Average step length estimation models' evaluation using inertial sensors: a review[END_REF]. They often estimate gain using artificial neural networks [START_REF] Wang | Walking step prediction based on ga optimized neural network algorithm[END_REF],

Kalman filter, and its variations [START_REF] Zhou | Pedestrian dead reckoning on smartphones with varying walking speed[END_REF][START_REF] Kasebzadeh | Improved pedestrian dead reckoning positioning with gait parameter learning[END_REF], as well as a particle filter [START_REF] Pirkl | Virtual lifeline: Multimodal sensor data fusion for robust navigation in unknown environments[END_REF][START_REF] Moder | 3d indoor positioning with pedestrian dead reckoning and activity recognition based on bayes filtering[END_REF].

Alternative, ad hoc but simpler methods exist. Weinberg proposed Eq. (2.51) to determine the step length with vertical acceleration [START_REF] Weinberg | Using the adxl202 in pedometer and personal navigation applications[END_REF].

L 1 = K 1 ⇥ 4 p A max A min (2.51)
where A max and A min are the maximum and minimum values for a single step in vertical acceleration, respectively, and K 1 represents the constant to obtain the proper step length. [START_REF] Kang | Smartpdr: Smartphone-based pedestrian dead reckoning for indoor localization[END_REF] modified the Weinberg formula by including another tunable constant.

L 3 = K 3 4 p A max A min + γ (2.54)
Zhou et al. [START_REF] Zhou | An improved dead reckoning algorithm for indoor positioning based on inertial sensors[END_REF] extended Eq. (2.51) as follows:

L 4 = K 4 ⇥ ⇣ A max A min + 4 p A max A min ⌘ . (2.55) 
Adeeplearningnet w orkStepNetw aspresen tedin [START_REF] Klein | Stepnet-deep learning approaches for step length estimation[END_REF]toestimatetheW ein berggain

K 1 .
The average error of the StepNet architecture with regression steps is 3.2% when only using accelerometer measurements.

Kim et al. proposed Eq. (2.56) to determine the step length with average vertical acceleration of the current step [START_REF] Kim | A step, stride and heading determination for the pedestrian navigation system[END_REF].

L 5 = K 5 ⇥ 3 s P N k=1 |A k | N (2.56)
where A k is the acceleration measurement at the k-th sample in the current step, N is the total number of samples per step, and K 5 is also a constant for step length estimation.

The work in [START_REF] Guo | Accurate indoor localization based on crowd sensing[END_REF] extended this model to improve the accuracy of step size estimation.

L 6 = K 6 ⇥ 3 s P N k=1 |A k | N + b (2.57)
Tian et al. developed a lightweight step-based tracking algorithm and proposed the novel step estimation model [START_REF] Tian | A multi-mode dead reckoning system for pedestrian tracking using smartphones[END_REF] shown in Eq. (2.58).

L 7 = K 8 ⇥ h ⇥ p f s (2.58)
where f s is the measured step frequency, h is the height of the smartphone user, and K 8 is a constant equal to 0.3139 for males and 0.2975 for females.

Zijlstra and Hof [START_REF] Zijlstra | Assessment of spatio-temporal gait parameters from trunk accelerations during human walking[END_REF] presented a model based on the vertical displacement of the center of body mass (CoM):

L 8 =2 p 2lh h 2 (2.59)
where h is equal to the change in height of the CoM, and l equals the pendulum length. 

Step Direction Estimation

Sensor fusion schemes and signal processing methods are continuously proposed to obtain accurate walking directions. Smartphone orientation estimation typically uses embedded accelerometers, gyroscopes, and magnetometers. Ideally, accurate direction estimation can be obtained from gyroscope data, but the Gaussian white noise in the gyroscope readings generates cumulative errors (cumulative errors are also known as drift) [START_REF] Ji | Application of the digital signal procession in the mems gyroscope de-drift[END_REF][START_REF] Zhou | Use it free: Instantly knowing your phone attitude[END_REF]. Therefore, accelerometers and magnetometers are used to compensate for the drift to obtain more accurate attitude estimates [START_REF] Yean | Smartphone orientation estimation algorithm combining kalman filter with gradient descent[END_REF]. Commonly used fusion techniques include Kalman filtering, extended Kalman filters [START_REF] Yean | Smartphone orientation estimation algorithm combining kalman filter with gradient descent[END_REF][START_REF] Sola | Quaternion kinematics for the error-state kalman filter[END_REF][START_REF] He | Adaptive error-state kalman filter for attitude determination on a moving platform[END_REF][START_REF] Vitali | Robust error-state kalman filter for estimating imu orientation[END_REF], unscented Kalman filters (UKF) [START_REF] Crassidis | Unscented filtering for spacecraft attitude estimation[END_REF], adaptive Kalman filters (AKF) [START_REF] Suh | Orientation estimation using a quaternion-based indirect kalman filter with adaptive estimation of external acceleration[END_REF][START_REF] Makni | Adaptive kalman filter for memsimu based attitude estimation under external acceleration and parsimonious use 161 BIBLIOGRAPHY of gyroscopes[END_REF], particle filters [START_REF] Oshman | Attitude estimation from vector observations using a genetic-algorithm-embedded quaternion particle filter[END_REF], complementary filtering [START_REF] Kim | Stroketrack: wireless inertial motion tracking of human arms for stroke telerehabilitation[END_REF], Madgwick AHRS [START_REF] Madgwick | Estimation of imu and marg orientation using a gradient descent algorithm[END_REF], etc. Kim et al. [START_REF] Kim | Stroketrack: wireless inertial motion tracking of human arms for stroke telerehabilitation[END_REF] proposed Stroke-Track, an efficient complementary filter to reduce gyroscope drift with lower complexity compared to the Kalman filter. The complementary filter implements a combination of a low-pass filter for accelerometer and magnetometer data and a high-pass filter for gyroscope data [START_REF] Mahony | Complementary filter design on the special orthogonal group so (3)[END_REF]. Yean et al. [START_REF] Yean | Smartphone orientation estimation algorithm combining kalman filter with gradient descent[END_REF] proposed two fusion algorithms: complementary filtered feedback (CFF) and gradient descent with quaternion-based Kalman filtering (KFGD).

CFF shows its potential to correct for drift by setting trust weights that favor accelerometer and magnetometer data over gyroscope data. KFGD has the best performance. With the smartphone sensor data, KFGD ensures a consistent output, while Madgwick [START_REF] Madgwick | Estimation of imu and marg orientation using a gradient descent algorithm[END_REF] is sensitive to changes in orientation. The results show that KFGD outperformed Madgwick.

Fourati et al. [214] used a complementary nonlinear filter coupled with the Levenberg

Marquardt Algorithm (LMA) to process IMU measurements.

Kok and Schön [START_REF] Kok | A fast and robust algorithm for orientation estimation using inertial sensors[END_REF] improved the Madgwick AHRS [START_REF] Madgwick | Estimation of imu and marg orientation using a gradient descent algorithm[END_REF] method using directional deviations parameterized by the rotation vector to estimate directions, reducing the computational complexity by about 1/3 and allowing for more accurate estimates when largescale updates are made to the estimates.The multiplicative EKF (MEKF) mentioned in work [START_REF] Crassidis | Survey of nonlinear attitude estimation methods[END_REF][START_REF] Markley | Attitude error representations for kalman filtering[END_REF] is an alternative technique that sets the directional deviation with the rotation vector (axis angle) as a parameter.

Renaudin and Combettes [START_REF] Renaudin | Magnetic, acceleration fields and gyroscope quaternion (magyq)-based attitude estimation with smartphone sensors for indoor pedestrian navigation[END_REF] presented a new attitude and heading estimation filter 58 2.9. SMARTPHONE-BASED PEDESTRIAN DEAD RECKONING based on Magnetic, Acceleration fields, and GYroscope Quaternion (MAGYQ), which uses quaternions to represent state vectors and angular rate measurements and applies an extended Kalman filter (EKF). In the update step, the magnetic field angular rate (MARU) and the observation equation using the acceleration gradient update (AGU) are used. MAGYQ can often be used to constrain gyroscope errors even in indoor spaces where the Earth's magnetic field is disturbed.

uDirect [START_REF] Hoseinitabatabaei | udirect: A novel approach for pervasive observation of user direction with mobile phones[END_REF] is a method of determining the orientation of a user using a mobile phone, regardless of the orientation of the phone. uDirect can calibrate measurements of a mobile phone in any orientation and estimate the orientation based on the acceleration pattern of a person walking. When the mobile device is placed in the user's trouser pocket, the horizontal sample in the middle of the standing phase is the most informative sample of the user's forward direction.

Hybrid Localization

Different localization techniques have various advantages and limitations in terms of accuracy, coverage, requirement for infrastructure, and cost of deployment, and no single localization method can meet the demands of all applications [START_REF] Gu | Indoor localization improved by spatial context-a survey[END_REF]. The localization service performs better with a multimodal approach compared to monomodal approaches [START_REF] Molina | A multimodal fingerprint-based indoor positioning system for airports[END_REF].

It is essential to fuse different localization signals and enrich the database to improve the localization accuracy [START_REF] Shang | Improvement schemes for indoor mobile location estimation: A survey[END_REF]. The PDR-based magnetic field fingerprint localization algorithm is a hybrid localization method that integrates IMUs.

The fusion of magnetic fingerprinting and WiFi complements their location resolution capabilities. WiFi is a short-range radio. It ensures that distant locations will see a different radio environment (with less or no common APs), while nearby areas will share as i m i l a rr a d i oe n v i r o n m e n t . I nc o n t r a s t ,g e o m a g n e t i cs t r e n g t hi sg l o b a l . Ad i s t a n t location may have a similar magnetic field, while a nearby location may have a different magnetic field due to interference from the local magnetic field. Magicol [START_REF] Shu | Magicol: Indoor localization using pervasive magnetic field and opportunistic wifi sensing[END_REF] combined magnetic fields with WiFi to improve the localization accuracy through a particle filter.

DeepPositioning [START_REF] Zhang | Deeppositioning: Intelligent fusion of pervasive magnetic field and wifi fingerprinting for smartphone indoor localization via deep learning[END_REF] combines WiFi's Received Signal Strength Indicator (RSSI) and the prevalent magnetic field to obtain a richer fingerprint using a deep learning approach for indoor positioning. Ban et al. [START_REF] Ban | Indoor positioning method integrating pedestrian dead reckoning with magnetic field and wifi fingerprints[END_REF] combined pedestrian death projection (PDR), WiFi, and residual magnetism. Fingerprints are represented by Gaussian Mixture Models (GMMs) to reduce computational effort. All these methods are proven to be more accurate in detecting locations.

As magnetic anomalies can only affect a limited area, many of the magnetic signals received from areas far from the disturbance may be the same, which can degrade positioning accuracy. Du et al. [START_REF] Du | Camera-aided region-based magnetic field indoor positioning[END_REF] proposed a camera-assisted area-based indoor localization system for magnetic fields that maximizes the benefits of local magnetic field anomalies.

The camera-assisted magnetic field solution improves more than 50% of the average error distance in both less and more disturbed environments compared to using magnetic fields alone. Rajagopal et al. [START_REF] Rajagopal | Improving augmented reality relocalization using beacons and magnetic field maps[END_REF] showed how Visual Inertial Odometry (VIO) and beacon could be combined to construct a dense indoor magnetic field map that serves as a fine 

Comparison, Applications

In this section, we compare magnetic-field-based methods with alternative methods based on Wi-Fi, Bluetooth, GSM, and FM and discuss applications, such as geomagnetic-based smartphone positioning in practical scenarios. Tab. 2.7 compares the latest indo or p ositioning technologies based on Wi-Fi, Blueto oth, GSM, camera, FM, acoustic, inertial sensors, and magnetic field.

Comparison of Different Indoor Positioning Techniques

Zhang et al. [START_REF] Zhang | Indoor localization fusing wifi with smartphone inertial sensors using lstm networks[END_REF] proposed a fused indoor localization algorithm for smartphones based • Wi-Fi

• Inertial sensors

• WLAN • LSTM • High
• Ave r a g e e r r o r o f 0.42m at best Chen et al. [START_REF] Chen | A data-driven inertial navigation/bluetooth fusion algorithm for indoor localization[END_REF] • Bluetooth

• Inertial sensors

• iBeacon • Particle filters • Medium
• Texting (0.78 m)

• Swinging (1.63 m)

• Calling (1.11 m)

• Pocket (0.96 m)

Rizk et al. [START_REF] Rizk | Cellindeep: Robust and accurate cellular-based indoor localization via deep learning[END_REF] • GSM;

• Cellular Network • Deep network • High • 0.78m
Poulose and Han [START_REF] Poulose | Hybrid indoor localization using imu sensors and smartphone camera[END_REF] • Camera

• Inertial sensors

• No • SLAM; • High • 0.07m
Du et al. [START_REF] Du | Kf-knn: low-cost and highaccurate fm-based indoor localization model via fingerprint technology[END_REF] • FM

• FM Radio

• Chipset;

• Kalman filter

• K-nearest neighbor • Medium • 1.9m Chen et al. [230] • Acoustic • No • Kalman filter • High • 0.3⇠1m Poulose et al. [231] • Inertial sensors • No • Sensor fusion • Medium • Rectangular motion (2.6 m)
• Linear motion (0.94 m) As can be seen in Tab. 2.7, Wi-Fi, camera, GSM, and acoustics consume more energy.

• Circular motion (1.2 m) Zhang et al. [232] • Magnetic field • No • LSTM • Low • 0.
Cameras, acoustics, inertial sensors, and magnetic fields do not require infrastructure and are less costly. The experimental results show that the accuracy of magnetic field localization is at a medium level. The low deployment cost, low energy consumption, and medium accuracy of the magnetic field make it a practical method to explore. • Geomagnetic field

Indoor Atlas [START_REF]IndoorAtlas[END_REF] • Geomagnetic field

• Inertial navigation • Wi-Fi • Bluetooth beacons • Barometric height information • Visual inertial odometry (VIO) from ARCore Gipstech [238] • Geomagnetic field • Inertial navigation • Wi-Fi • Bluetooth beacon Anyplace [239] • Wi-Fi (1.96 m) Navigine [240] • Wi-Fi • Bluetooth • Internal sensors Combain [241] • Wi-Fi • Bluetooth beacon Infsoft [242] • Wi-Fi • Bluetooth beacon TechnoPurple Indoor [243] • WiFi • Bluetooth 64 2.11. CONCLUSIONS
positioning can be used to complement hybrid indoor positioning systems to provide better indoor positioning services.

Conclusions

Areviewofindoorlocalizationtechniquesusingmagnetictechnologieshasbeenpresented.

This review aims to provide a comprehensive awareness of magnetic fingerprinting-based localization techniques used in indoor environments. We first provided a detailed description of the magnetic field characteristics and discussed its advantages as well as its challenges. We then described the magnetometer model and the effect of ferromagnetic interference. Several coordinate systems commonly used for magnetic field localization were presented, and their transformation relationships were described. Existing magnetic field benchmark databases were described in detail, and researchers can select suitable datasets to test their algorithms. We also summarized magnetic field calibration algorithms and analyzed their accuracy, robustness, computational cost, and deployment. Traditional surveyor construction of magnetic field maps is labor-intensive, and we reviewed crowdsourcing and SLAM methods for improving the efficiency of constructing and updating magnetic maps. We presented state-of-the-art methods based on magnetic landmarks, DTW, magnetic field fingerprinting, filtering, SLAM, and neural networks and then compared their usage scenarios and localization performance. We compare the advantages of magnetic fields with Wi-Fi, Bluetooth, GSM, FM, camera, acoustics, inertial sensors and their practical applications in industries. Finally, we summarized the smartphone PDR method with a detailed description of step detection, step length estimation, and step orientation estimation.

Chapter 3

Analysis of Magnetic Field

Measurements for Indoor Positioning It demonstrates that, in the absence of disturbances, the MF measurements in indoor environments follow a Gaussian distribution with temporal stability and spatial discernibility. It shows the fluctuations in magnetic field intensity caused by the rotation of a smartphone around the Z-axis. Secondly, it suggests that the RLOWESS method can be used to eliminate magnetic field anomalies, using magnetometer calibration to ensure consistent MF measurements in heterogeneous smartphones. Thirdly, it tests the magnetic field positioning performance of homogeneous and heterogeneous devices using different machine learning methods. Finally, it summarizes the feasibility/limitations of using only MF measurement for indoor positioning.

Introduction

Magnetic field-based positioning has many limitations. The magnetic field intensity of the Earth's surface varies smoothly between 23 µTa n d6 2µT [START_REF] Finlay | I n t e r n a t i o n a lg e o m a g n e t i cr e ference field: the eleventh generation[END_REF]. The magnetic field measurement has only three components, which leads to its low discernibility. Embedded magnetometers of heterogeneous smartphones are produced by different suppliers with different noise tolerances and accuracies, resulting in different MF measurements of heterogeneous smartphones. Seamlessly connecting all heterogeneous smartphone positioning solutions is therefore very challenging [START_REF] Ashraf | A comprehensive analysis of magnetic field based indoor positioning with smartphones: Opportunities, challenges and practical limitations[END_REF].

This chapter analyzes the challenges and feasibility of magnetic-based positioning through systematic experiments.

In conclusion, the main contributions of this chapter are as follows:

• A magnetic field acquisition system was developed using the Arduino Pro Mini and the LSM9DS1. The RLOWESS smoothing filter was proposed to eliminate the effects of noise, distortion, and outliers in the raw MF measurements.

• Static tests, trajectory tests, and rotational tests were designed to investigate the magnetic characteristics of the heterogeneous smartphone.

• Calibration tests of heterogeneous smartphones were carried out to demonstrate the potential of smartphone calibration in solving the heterogeneous device problem of MF.

• Classification tests of heterogeneous smartphones were performed to show the feasibility of magnetic field positioning.

This chapter is organized as follows. In Section 3.2, we present related works in the literature about MF characteristics. In Section 3.3, we discuss the statistical characteristics of the magnetic field and its temporal stability, compare the similarity of the magnetic field trajectories of heterogeneous smartphones, and present the variation of MF intensity with device orientation for the uncalibrated case. In Section 3.4, we compare the characteristics of 'calibrated' MF for heterogeneous smartphones. In Section 3.5, we use different machine learning methods to compare the positioning performance of homogeneous and heterogeneous smartphones. Finally, Section 3.6 summarizes the chapter and highlights the challenges of magnetic field positioning.

Related Work

Many research works exist in the literature relative to indoor positioning and navigation using MF measurement.

MF characteristics have been thoroughly analyzed in works [START_REF] Ashraf | A comprehensive analysis of magnetic field based indoor positioning with smartphones: Opportunities, challenges and practical limitations[END_REF][START_REF] Frassl | Magnetic maps of indoor environments for precise localization of legged and non-legged locomotion[END_REF][START_REF] Shu | Magicol: Indoor localization using pervasive magnetic field and opportunistic wifi sensing[END_REF][START_REF] Li | How feasible is the use of magnetic field alone for indoor positioning[END_REF][START_REF] Li | Using geomagnetic field for indoor positioning[END_REF]. Li et al. [START_REF] Li | How feasible is the use of magnetic field alone for indoor positioning[END_REF] conducted experiments where indoor magnetic flow density was measured in different environments. The results show stable magnetic flow density measurements over a 24 h period. The experiments were repeated three months later, and no significant change was detected. It has been observed that the MF intensity of four different smartphone models differs due to the sensors' different sensitivities [START_REF] Li | Using geomagnetic field for indoor positioning[END_REF]. This problem can be solved by normalization, but it will reduce the accuracy of positioning. Two smartphones were also placed in the exact location for long-time data collection to demonstrate that the MF intensity is time-stable. However, due to the smartphone battery capacity limitation, the data collection time will not exceed one day. Some anomalies brought about by the change in MF over time cannot be observed.

Shu et al. [START_REF] Shu | Magicol: Indoor localization using pervasive magnetic field and opportunistic wifi sensing[END_REF] tested MF measurements on heterogeneous smartphones with different attitudes. They showed the uniqueness of local magnetic disturbance, the temporal stability of MF measurements, and the tolerance of MF measurements to moving objects.

However, they highlight that heterogeneous devices have different MF measurements in the exact location.

As MF measurements are three-dimensional and directional, the reference frame of the magnetometer is not easily aligned with the world frame, which leads to the use of Smartphone-based positioning is often more complex due to complex user behavior, e.g., user height, handheld smartphone position. The work in [START_REF] Frassl | Magnetic maps of indoor environments for precise localization of legged and non-legged locomotion[END_REF] studied MF intensity and direction distribution features. Using data from accelerometers and gyroscopes to obtain rotation matrices to transform the magnetic field coordinate system will increase the system's complexity. To avoid the coordinate transformation, the work in [START_REF] Xie | Maloc: A practical magnetic fingerprinting approach to indoor localization using smartphones[END_REF] used the gradient of the MF values between two consecutive steps to avoid calibrating different smartphones.

Since the magnetic pattern from heterogeneous smartphones is not the same, the work [START_REF] Ashraf | Enhancing performance of magnetic field based indoor localization using magnetic patterns from multiple smartphones[END_REF] proposed to use magnetic data from multiple smartphones to make the magnetic pattern.

The authors propose an algorithm that identifies outliers in the MF data, removes them, and then normalizes the selected data to calculate the magnetic pattern.

The effect of user height on the performance of magnetic-based positioning algorithms with two male and two female users was analyzed in the work [START_REF] Ashraf | Minloc: Magnetic field patterns-based indoor localization using convolutional neural networks[END_REF]. The MF vector measured by the magnetometer is related to the orientation of the sensor and the position and orientation can be identified by an augmented MF vector with a directional variation [START_REF] Lee | Iloa: Indoor localization using augmented vector of geomagnetic field[END_REF]. As the MF vector can produce many different vectors in different attitudes, it can be trained by a transformed MF vector.

The calibrated smartphone and magnetometer were found to have similar magnetic fingerprints [START_REF] Vandermeulen | Indoor localization using a magnetic flux density map of a building[END_REF]. GPS and Wi-Fi, as well as hand-held smartphones, do not significantly affect the measurement results. The peaks and drops of the MF signal can be used to identify certain areas. The effects of different metals and electronic objects on the MF were compared. MF measurements in indoor environments obviously vary more than those in outdoor environments. The quality of the positioning depends on the number of components used. When all three components are used, the performance of MF positioning is good. When using only the magnitude, or the vertical and horizontal components, the positioning performance decreases rapidly.

Indoor mapping is a prerequisite for indoor positioning systems. He et al. [START_REF] Shu | Magicol: Indoor localization using pervasive magnetic field and opportunistic wifi sensing[END_REF] use a site survey method based on compliance walks. This traditional map construction requires hiring experts to build indoor maps and update them regularly, which is an expensive 69 3.2. RELATED WORK and time-consuming method that cannot be applied to large-scale indoor coverage. In recent years, crowdsourcing, SLAM, as well as Gaussian processes have been proposed for constructing magnetic maps [START_REF] Luo | Constructing an indoor floor plan using crowdsourcing based on magnetic fingerprinting[END_REF]. Crowdsourcing is an approach that uses crowd contributions to achieve complex tasks and is well suited for magnetic map construction [START_REF] Pei | A survey of crowd sensing opportunistic signals for indoor localization[END_REF].

For example, the works [START_REF] Chen | Meshmap: A magnetic field-based indoor navigation system with crowdsourcing support[END_REF][START_REF] Ayanoglu | Crowdsourcing-based magnetic map generation for indoor localization[END_REF][START_REF] Wang | Indoor smartphone localization via fingerprint crowdsourcing: Challenges and approaches[END_REF] used crowdsourcing to merge sensor data from multiple users on different paths to build a magnetic map. PFSurvey [START_REF] Gao | Semi-automated signal surveying using smartphones and floorplans[END_REF] uses accelerometer, gyroscope, and magnetometer data to estimate the trajectory of the surveyor and uses SLAM and particle filters to incorporate the floor plans of buildings, allowing for the rapid construction of magnetic field maps. PFSurvey's data collection costs are low, yet it achieves similar accuracy to traditional site survey methods. Combining the physical properties of the magnetic field with a Gaussian process to model the magnetic field components allows for continuous updating of the estimates and the time variation of the magnetic field to build magnetic field maps quickly [START_REF] Vallivaara | Simultaneous localization and mapping using ambient magnetic field[END_REF][START_REF] Akai | Gaussian processes for magnetic map-based localization in large-scale indoor environments[END_REF][START_REF] Wahlström | Modeling magnetic fields using gaussian processes[END_REF][START_REF] Solin | Modeling and interpolation of the ambient magnetic field by gaussian processes[END_REF][START_REF] Kok | Scalable magnetic field slam in 3d using gaussian process maps[END_REF] Magnetic field positioning methods can be divided into five categories: magnetic landmark, dynamic time warping, filtering method, SLAM, and neural network method.

Equipment with ferromagnetic materials (e.g., refrigerators, lifts, metal doors, etc.) can cause MF measurements to show prominent variations, and this magnetic disturbance can be used as a magnetic landmark to enhance indoor positioning and mapping [START_REF] Wang | No need to war-drive: Unsupervised indoor localization[END_REF][START_REF] Abdelnasser | Semanticslam: Using environment landmarks for unsupervised indoor localization[END_REF][START_REF] Shang | Apfiloc: An infrastructure-free indoor localization method fusing smartphone inertial sensors, landmarks and map information[END_REF], to detect indoor/outdoor environments [START_REF] Zhou | Iodetector: A generic service for indoor outdoor detection[END_REF], and to label the semantics of indoor environments [START_REF] Elhamshary | Transitlabel: A crowd-sensing system for automatic labeling of transit stations semantics[END_REF].

Different walking speeds and sampling rates produce different numbers of magnetic samples within the same spatial coverage. Dynamic time warping (DTW) could align two magnetic field sequences with similar patterns but different amplitudes and times by compressing or stretching the time axis of one (or both) magnetic field sequences.

Subbu et al. [START_REF] Subbu | Indoor localization through dynamic time warping[END_REF] use DTW to classify magnetic signatures collected from different corridors. By aligning unknown magnetic signatures with known signatures, the technique can obtain a close match between test and specific, temporally distinct magnetic signatures, thus providing correct corridor/location information. Through a similar method, Perez-Navarro et al. [START_REF] Perez-Navarro | Magnetic field as a characterization of wide and narrow spaces in a real challenging scenario using dynamic time warping[END_REF] showed that magnetic fields are a promising positioning mechanism when only the user's zone needs to be located. Wang et al. [START_REF] Wang | An indoor self-localization algorithm using the calibration of the online magnetic fingerprints and indoor landmarks[END_REF] used DTW as a distance function to quantify the similarity between two signature vectors with different spatial sampling densities to match magnetic trajectories. The matched magnetic trajectories were used to calibrate the pedestrian dead reckoning (PDR) position, and the authors used online-collected magnetic trajectories to construct backward magnetic trajectories to increase the probability of improving the PDR position. By averaging the direction
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of travel for all steps between two successive detected turns, the authors reduced fluctuations in the direction of travel caused by user movement, sensor noise, local magnetic anomalies, and other electrical disturbances.

In addition, 3DDTW [START_REF] Chen | A hybrid dead reckon system based on 3-dimensional dynamic time warping[END_REF], which extends the one-dimensional input signal into a two-dimensional signal, calculates the distance between the MF measurement and the magnetic fingerprinting, thus reducing the mismatch between the magnetic signature.

CSMS [START_REF] Li | Smartphone-based indo or lo calization with integrated fingerprint signal[END_REF] integrates channel state information (CSI) and magnetic field strength (MFS).

Initial positions are first obtained by the M-KNN method. Then, DTW is applied to match the magnetic sequence during the motion for tracking. Finally, the k-nearest neighbor algorithm calculates the weights and narrows down the positioning range for fingerprint matching.

Machine learning methods such as K-NN [START_REF] Hoang | A soft range limited k-nearest neighbors algorithm for indoor localization enhancement[END_REF], support vector machines (SVM) [START_REF] Bottou | Support vector machine solvers[END_REF],

naive Bayes [START_REF] Wu | Passive indoor localization based on csi and naive bayes classification[END_REF], decision trees [START_REF] Loh | Classification and regression trees[END_REF], and discriminant analysis [START_REF] Fisher | The use of multiple measurements in taxonomic problems[END_REF] are widely used to extract the core features of a signal. The advantage of the machine learning approach is its ability to learn helpful information from input data with known or unknown statistics [START_REF] Nessa | A survey of machine learning for indoor positioning[END_REF]. Galván-Tejada et al. [START_REF] Galván-Tejada | Magnetic field feature extraction and selection for indoor location estimation[END_REF] proposed a "signature" obtained by walking randomly around the room, using the spectrum, skewness, kurtosis, and variance of the magnetic signal as features. A genetic algorithm (GA) was used as the feature selection algorithm for data dimensionality reduction. However, the authors used only one-dimensional MF intensity and did not consider calibrating MF measurements of heterogeneous smartphones. Chuang et al. [START_REF] Chung | Indoor location sensing using geo-magnetism[END_REF] designed a system with four magnetometers to evaluate the MF strength in each direction and used the nearest neighbor method to classify MF measurements with 12 components. The MF measurements of two different floors could be distinguished. The effects of smartphones, watches, laptops, elevators, and workbenches on the intensity of the MF were analyzed. Their system used chest-hung magnetometers instead of smartphones, which, in reality, do not have four magnetometers to measure the magnetic fingerprints in all directions.

Filter-based methods (e.g., Hidden Markov Model (HMM), Kalman filter, particle filter) have many indoor magnetic field positioning applications. Filter-based methods can fuse data from multiple sensors to provide higher positioning accuracy. For example, the work of Basmag [START_REF] Ma | Basmag: An optimized hmm-based localization system using backward sequences matching algorithm exploiting geomagnetic information[END_REF] used a Backward Sequence Matching Algorithm (BSMA) to optimize the HMM and improve the low discriminability of the magnetic signal with the help of PDR. An HMM-based unsupervised learning algorithm was proposed in work [START_REF] Kwak | Magnetic field based indoor localization system: A crowdsourcing approach[END_REF] to compare the similarity of magnetic fingerprints with a lightweight algorithm. The extended Kalman filter could reduce the cumulative error of inertial sensors and improve 71 3.2. RELATED WORK orientation and positioning accuracy [START_REF] Zhao | Motion measurement using inertial sensors, ultrasonic sensors, and magnetometers with extended kalman filter for data fusion[END_REF]. A reliability-augmented particle filter was mentioned in [START_REF] Xie | A reliability-augmented particle filter for magnetic fingerprinting based indoor localization on smartphone[END_REF]; they used a dynamic step estimation algorithm and a heuristic particle resampling algorithm to reduce the error of motion estimation and improve the robustness of the particle filter. The work [START_REF] Wang | Magnetic-based indoor localization using smartphone via a fusion algorithm[END_REF] employed the extended Kalman filter and particle filter to fuse information obtained from pedestrian dead reckoning and magnetic fingerprints, showing higher positioning performance than using the particle filter alone.

SLAM-based magnetic field positioning was recently presented in the work [START_REF] Abdelnasser | Semanticslam: Using environment landmarks for unsupervised indoor localization[END_REF][START_REF] Robertson | Simultaneous localization and mapping for pedestrians using distortions of the local magnetic field intensity in large indoor environments[END_REF].

MagSLAM [START_REF] Robertson | Simultaneous localization and mapping for pedestrians using distortions of the local magnetic field intensity in large indoor environments[END_REF] used MF and human stride measurements without using a priori maps.

Unique patterns in a smartphone's accelerometer when climbing stairs, unusual magnetic disturbance at specific locations, and unique Wi-Fi access can serve as unique signatures in indoor environments. SemanticSLAM [START_REF] Abdelnasser | Semanticslam: Using environment landmarks for unsupervised indoor localization[END_REF] adopted these unique signatures as landmarks and combined them with the pedestrian dead reckoning in the SLAM framework to reduce localization errors and convergence times. This approach is proven to be calibrationfree. SLAM based on magnetic field measurements has two main challenges. Firstly, the construction of maps for large-scale indoor environments is challenging. Secondly, the continuous data exchange between the map and the positioning algorithm is energyintensive [START_REF] Wang | Exponentially weighted particle filter for simultaneous localization and mapping based on magnetic field measurements[END_REF].

Artificial neural networks (ANNs) are often used for classification and prediction, and researchers have recently applied ANNs to MF positioning. The MF maps are used to train the NN in the offline phase. The real-time MF measurements are fed into the trained NN to estimate its position in the online phase. The two main types of ANN-based magnetic field positioning are convolutional neural networks (CNN) and recurrent neural networks (RNN). The work in [START_REF] Ashraf | mpilot-magnetic field strength based pedestrian indoor localization[END_REF][START_REF] Ashraf | Guide: Smartphone sensorsbased pedestrian indoor localization with heterogeneous devices[END_REF][START_REF] Ashraf | Application of deep convolutional neural networks and smartphone sensors for indoor localization[END_REF][START_REF] Ashraf | Minloc: Magnetic field patterns-based indoor localization using convolutional neural networks[END_REF][START_REF] Sun | Improving fingerprint indoor localization using convolutional neural networks[END_REF] uses CNNs to convert MF fingerprints into "image patterns" for classification, and the work in [START_REF] Bae | Large-scale indoor positioning using geomagnetic field with deep neural networks[END_REF][START_REF] Wang | Deepml: Deep lstm for indoor localization with smartphone magnetic and light sensors[END_REF][START_REF] Bhattarai | Geomagnetic field based indoor landmark classification using deep learning[END_REF][START_REF] Jang | Geomagnetic field based indoor localization using recurrent neural networks[END_REF][START_REF] Liu | Recurrent neural networks based on lstm for predicting geomagnetic field[END_REF] uses RNNs to predict MF measurements as time series.

There are several limitations to the above studies. Firstly, they directly used the magnetic field data to predict the user's current location, without pre-processing the magnetic field in conjunction with the magnetometer measurement model. Secondly, due to the battery capacity limitations of smartphones, magnetic field measurements cannot be collected continuously for long periods. Thirdly, although several research works have given solutions for heterogeneous smartphones, it is not clear whether the calibration parameters will change over time and whether they need to be calibrated at every point in space. Fourthly, uncalibrated magnetic field measurement varies with the orientation of the device. Magnetic field measurements in a specific direction can only be matched to the magnetic field fingerprint in that specific direction. Finally, the above studies with the MF measurements of various smartphones [START_REF] Ashraf | A comprehensive analysis of magnetic field based indoor positioning with smartphones: Opportunities, challenges and practical limitations[END_REF]. Hence, we first investigate the indoor magnetic field's temporal stability, Gaussianity, and heterogeneity.

Three heterogeneous smartphones (iPhone Xs Max, Huawei P9, Bluebird) were used to investigate the MF's statistical characteristics with heterogeneous smartphones.

The three smartphones were placed at a specific point on a wooden table without ferromagnetic material, and the orientation was kept consistent, with a sampling frequency of 100 Hz during a period of 35 min. We found that although the experiment was set at a sampling frequency of 100 Hz, the heterogeneous smartphones could not always reach the set frequency. The iPhone Xs Max sampled at 100 Hz, the Huawei P9 at 103 Hz, and the Bluebird could only reach 80 Hz. The sampling frequency that we can achieve is related to the processor performance of the smartphone. uncertainty is the highest. Usually, the smaller the standard deviation of the smartphone, the smaller the fluctuation of the MF signal, the higher the certainty of MF measurement, and the better the positioning performance.

From the column of mean values, the MF intensity of the iPhone and Huawei are at the same level, while Bluebird's measurements are biased, well outside of the geomagnetic range of 23 µTt o6 2µT [START_REF] Matzka | Geomagnetic observations for main field studies: from ground to space[END_REF]. The magnetometer calibration algorithm based on ellipsoidal fitting can correct the measurement distortions. The iPhone's kurtosis and skewness show a right-skewed normal distribution. At the same time, the Bluebird's measurements have many outliers, resulting in much larger kurtosis and skewness than those of the iPhone and Huawei. Based on the above analysis, we found that different smartphone manufacturers have different embedded magnetometer models, resulting in different MF measurements. Moreover, differences in processor performance make it difficult to achieve consistent sampling frequencies across heterogeneous smartphones.

Trajectory Test with Heterogeneous Smartphone

From Section 3.3.1, we have already confirmed that MF does not change over a short time period. In this section, we study the spatial distribution variability and temporal stability of heterogeneous smartphones' MF measurement. Users walked along the same path with heterogeneous smartphones to collect data at a sampling frequency of 100 Hz.

The experiment took place on the third floor of Polytech Galilee (Orléans, France), and the tested heterogeneous smartphones included the iPhone Xs Max, Samsung S9, Redmi Note 10 Pro, and Huawei P9.

As shown in Fig. 3.2, the trajectories of the heterogeneous smartphones tested at different dates largely overlap, demonstrating that the indoor MF is stable over time without significant changes to the indoor infrastructure. 

Rotation Test

Magnetometers are often fused with inertial sensors for pose estimation. Accurate MF measurements are essential for determining the user's heading and orientation. The construction of an MF map would be a tedious task if the MF measurement was dependent on orientation. MF measurements in various orientations at a specific point have been investigated.

A smartphone was placed on a rotatable platform, as shown in Fig. 3.4, the smartphone frame was aligned with the platform frame, and the platform was rotated around the z axis of the smartphone. The MF database was collected at a sampling frequency of 100 Hz for 25 s.

MF positioning is based on the stability and uniqueness of the MF signature. In the positioning phase, smartphone measurement should match the MF database. The location with the shortest distance has the highest probability. However, as seen in Fig. 3.5(a), The x and y axis of the MF can represent the variation in the magnetic direction. Fig. 3.5(b) shows that the magnetic orientation varies between 180 and 180 , where the magnetic direction is calculated as follows:

Orientation =arctan ✓ m y m x ◆ . (3.1)
The ideal magnetic direction should be a standard sine curve, but the curve shown in 

Static Tests with Magnetometer

The previous analysis used a commercial smartphone with already pre-processed MF measurements by the manufacturer. An MF acquisition device, shown in Fig. The robust locally weighted scatterplot smoothing (RLOWESS) method has been applied for outlier rejection [START_REF] Robert | Stl: A seasonal-trend decomposition procedure based on loess[END_REF]. Indeed, robust estimation methods generally involve the detection and mitigation of outliers, e.g., [START_REF] Ashraf | Enhancing performance of magnetic field based indoor localization using magnetic patterns from multiple smartphones[END_REF]. In our context, this pre-processing step is to avoid the large positioning bias that might be induced by such outliers. The robust weightings, multiplied with the neighborhood weight, are used for re-estimating a linear regression function:

X i w i η i (r i ) 2 , (3.2)
where w i is a neighborhood weight expressed as:

w i = 1 x x i λ q (x) 3 ! 3 , (3.3)
x is the predictor, x i is the nearest neighbor of x as defined by the window slide, and λ q (x) is the distance of the qth farthest x i from x within the window slide.

ANALYSIS OF THE MF CHARACTERISCTICS

η i is the robust weight expressed as a bisquare function:

η i = 8 < : 1 (r i /6h) 2 2 , |r i | < 6h 0, |r i | 6h (3.4)
where r i is the residual of the response value y and the predicted response value ŷ ,a n d h is the median of the residuals

h =median(|r i |)=median(|y i ŷ i |) . (3.5)
In the following, we use the RLOWESS algorithm to smooth the MF measurements.

Fig. 3.8(a) shows that magnetic fingerprinting is not stable before filtering. There will be a sudden jitter without a calibration step. has some values of 0 to 15 µT, while D5 has some values in the range of 30 to 50 µT.

A similar situation has been found for the Bluebird, where we believe that smartphone manufacturers have different standards for the calibration of magnetometers, resulting in different MF measurements. In this experiment, we used the RLOWESS method mentioned above to filter out outliers of MF measurement.

The filtering result is shown in Fig. 3.8(c), and the histogram of filtered MF is given in Fig. 3.8(d). As we can see, the magnitude of MF intensities is different at different positions. The six quasi-normal distributions could be distinguished by visual inspection in this particular case. We can draw the conclusion from Tab. 3.3 that MF is stable for the considered period of time and subject to quasi-normal distribution. However, the conditioning of the sensors (or pre-filtering of their outputs) is necessary since all measurements are affected by outliers, which results in very high-level variance. The higher the variance, the worse the performance for positioning. 

Calibration of Magnetic Field

Magnetometer calibration of a smartphone is actually the estimation of the calibration parameters A and b in Eq. (2.13). In this chapter, we use the batch magnetometer calibration method, where the smartphone is rotated along each direction to obtain magnetic field data, using the entire set of magnetic field measurements to estimate the unknown calibration parameters [START_REF] Soken | A survey of calibration algorithms for small satellite magnetometers[END_REF]. Supposing that magnetometer measurements are constant, and the local MF measurements are attitude-independent, to estimate the magnetometer error term, we can construct a cost function from the difference between the magnetometer measurement model and the true MF measurements [START_REF] Wu | On calibration of three-axis magnetometer[END_REF]. Here, we present a calibration test with a different smartphone, and the calibration algorithm uses the work in [START_REF] Ozyagcilar | Calibrating an ecompass in the presence of hard-and soft-iron interference[END_REF].

We calculate the soft iron A and hard iron b of the smartphone at a given point and a Fig. 3.9 shows the calibration results at P1 on 7 February 2022, where the MF measurements of these smartphones are found to be spherical. This means that their distortion matrix approximates the identity matrix and the bias is negligible. Meanwhile, there is a significant bias for Bluebird (shown in Fig. 3.9(c)), which needs to be eliminated. We calculated calibration parameters using MF measurements of P1 from three smartphones on 7 February 2020. The obtained calibration parameters were applied to Eq. (3.6) to obtain true MF measurements at different times.

m n = R nb A 1 m b b ε. (3.6)
The rotation matrix and bias obtained at point P1 on the first day were used to calibrate all other data to demonstrate that the rotation matrix and bias of the MF are independent of time and space and only relate to the internal parameters of the smartphone. The X axis represents the 10 points where the magnetic field was collected. When we connect the MF intensity of the 10 points, we find that the six datasets collected over five Based on the above analysis, the original and calibrated magnitude of MF at each point remains stable over five months, while the surrounding environment remains unchanged.

Different points have different mean values of MF intensity, which is an advantage for magnetic fingerprinting positioning. For the Huawei P9 and iPhone Xs, they have already been initially calibrated by the smartphone manufacturer. The iPhone Xs Max has the slightest standard deviation in MF intensity of the three smartphones. On 14 February 2020, the Huawei P9 had anomalies at P1, P3, P4, P5, P6, and P7. The standard deviation of these points is so significant that calibrating these values using the rotation matrix and bias from P1 on the first day would have resulted in substantial errors. The original magnitude of the Bluebird is not at the same level as the iPhone Xs Max and Huawei P9.

However, the calibrated magnitude is at the same level for all three smartphones.

Classification Test with Calibration

The rapid development of artificial intelligence has attracted the attention of researchers who are applying machine learning methods to indoor positioning technology to address the limitations of traditional positioning techniques. The most important advantage of the machine learning approach is its ability to learn helpful information from input data with known or unknown statistics [START_REF] Nessa | A survey of machine learning for indoor positioning[END_REF].

Classifier algorithms such as k-NN [START_REF] Hoang | A soft range limited k-nearest neighbors algorithm for indoor localization enhancement[END_REF], support vector machines (SVM) [START_REF] Bottou | Support vector machine solvers[END_REF], naive Bayes [START_REF] Wu | Passive indoor localization based on csi and naive bayes classification[END_REF], decision trees [START_REF] Loh | Classification and regression trees[END_REF], and discriminant analysis [START_REF] Fisher | The use of multiple measurements in taxonomic problems[END_REF] are widely used to extract the core features of a signal in machine-learning-based positioning.

Positioning methods often need to consider positioning accuracy and computational complexity. Obtaining high-dimensional data through feature engineering can improve accuracy, but it also brings higher computational complexity. Dimensionality reduction techniques such as principal component analysis (PCA) [START_REF] Salamah | An enhanced wifi indoor localization system based on machine learning[END_REF] and singular value decomposition (SVD) [START_REF] Chan | An improved algorithm for computing the singular value decomposition[END_REF] can transform high-dimensional features into low-dimensional features, significantly reducing the storage space and computational complexity of magnetic fingerprint-based positioning.

The architecture of a magnetic-based positioning system is shown in Fig. 2.10, in Chapter 2.

The system consists of two phases: online and offline [START_REF] Ouyang | A survey of magnetic-field-based indoor localization[END_REF]. First, raw magnetic data are collected at a reference location using a smartphone. Then, during the data pre-processing step, low-pass filters, smoothing filters, and calibration algorithms are applied to remove noise and bias from the smartphone's MF measurements. Thirdly, the pre-processed data construct a fingerprinting database corresponding to each location. The fingerprinting database is trained using machine learning methods (e.g., kNN, support vector machines, decision trees, naive Bayes, discriminant analysis) to obtain predictive models. Finally, a prediction model is used to predict the test data's position. We will focus on fuzzy kNN, support vector machines, decision trees, naive Bayes, and discriminant analysis in the following.

This experiment used three different smartphone models (iPhone Xs Max, Huawei P9, Bluebird) to test the location discernibility of local magnetic fingerprinting. Among them, Bluebird is an industrial custom smartphone for location-based services.

The test area is a corridor in the 3rd floor of Polytech Galilée, University of Orléans (shown in Fig. 3.12); zones 1, 2, and 3 each contain 10 sampling points. Firstly, the user stands for 5 s at each point, holding a smartphone to capture a magnetic fingerprint database of 30 points with 100 Hz sampling frequency. Next, the user stands for 1 second at each point to capture test data and calculates the average of these 100 samples; this process was repeated five times to obtain 5 test datasets. Finally, we obtained n =15,000 samples of training data

X training = {x 1 , x 2 ...x n | x i }2R n⇥3 ,a n dk =1 5 0samples of test data X test = {x 1 , x 2 ...x k | x j }2R k⇥3
, respectively. Each sample has a label belonging to class y = {1, 2 ...30}.

In the experiments, the test and training sets were collected in the same direction (along the corridor direction). The sampling interval between two successive points is set to 1.5 m. The height of a smartphone is set at 1.05 m distance from the ground.

Data Pre-Processing

In Section 3.4, we have already discussed the significance of MF calibration. Hence, in this experiment, the raw MF signal is pre-processed before classification tests. More precisely, the MF measurements are calibrated according to Eq. (3.6), where the rotation matrix R nb comes from the TRIAD algorithm mentioned in [START_REF] Shuster | Three-axis attitude determination from vector observations[END_REF].

MF measurement on the smartphone's frame is transformed into the horizontal (denoted as m h )a n dv e r t i c a l( d e n o t e da sm v )c o m p o n e n t s [ 4 6 ] . A f t e rt h i st r a n s f o r m a t i o n , the horizontal and vertical components are "ideally" independent of the user's direction.

Thus, the features of the training and test data can be expressed as:

x i = {m h ,m v , magnitude}2R 3 , (3.7)
The RLOWESS smoothing filter mentioned in Section 3.3.4 is also used to eliminate anomalies in the smartphone's MF measurements.

Machine Learning Methods Used for Classification

Magnetic field positioning can be seen as a classification problem. Training data with labels are used to train the classifier in the training phase. Afterward, the new data are fed into the classifier for classification. The machine learning methods used for the tests will be briefly described here.

Classification Result

The test zones are shown as three rectangles in Fig. 3.12, with 10 test points in zones 1, 2, and 3, respectively. The green area is the elevator, which is a source of magnetic interference. Fig. 3.13 shows the "calibrated" MF intensity at 10 points in zone two as

an illustrative example to visually analyze the MF magnitude fingerprints in this zone.

The Huawei device has a more significant variance in the MF intensity than the other two smartphones, with more overlap between the signals. Bluebird's database shows that there is an overlap between P12, P15 and P20, P18, and P19. The iPhone has a slight overlap between P12 and P13. The positioning accuracies of the iPhone Xs Max and Bluebird are relatively similar (close to 80 or above), basically meeting the needs of essential indoor positioning. In contrast, the positioning accuracy of the Huawei P9 is significantly lower than the other two smartphones. The elevator in the green area of Fig. 3.12 is a source of magnetic field interference, making this area even more special. The results from Huawei P9 show that the interference source improves the positioning performance (i.e., it enhances the differences between the MF features). The variances of the MF measurements for the iPhone Xs Max, Bluebird, and Huawei P9 are 0.04 µT, 0.12 µT, and 0.21 µT, respectively. As the intensity of the magnetic field varies smoothly between 23 µTesla and 62 µTesla [START_REF] Matzka | Geomagnetic observations for main field studies: from ground to space[END_REF], the larger the variance, the more likely it is to overlap with other signals within a limited variation interval, which degrades the positioning performance. Due to the significant variance of the MF measurement, Huawei's positioning accuracy is lower than the other two smartphones. We can see that the positioning accuracy decreases when the magnetic fingerprinting database and the test data are inconsistent compared to Tab. 3.4. We already saw earlier that the Bluebird's MF measurement is significantly different from the other two smartphones. Nonetheless, using the calibrated Bluebird's MF measurement, we can also achieve accuracy of approximately 50%, which means that we have the opportunity to use the iPhone to create a magnetic field fingerprint database that other smartphones can use for positioning. We can also see that KNN, discriminant analysis, and SVM have better positioning accuracy than decision tree and naive Bayes in this experiment.

Conclusions

With the widespread use of smartphones, ubiquitous magnetic fields are attracting researchers' interest. The use of smartphones to measure magnetic fields for indoor positioning has significant advantages: infrastructure-free, temporal stability, and spatial uniqueness.

However, there are also significant challenges highlighted by our study:

• Firstly, the use of MF data requires the processing of device heterogeneity. The magnetometers with different specifications used by smartphone manufacturers result in different MF measurements. Hence, MF fingerprinting would require the use of smartphones/magnetometers which have similar characteristics to ensure the efficiency of such a positioning approach.

• Data pre-processing is necessary in order to exploit the MF data. This includes filtering out the outliers that affect the magnetometer measurements (in this work, we propose the RLOWESS algorithm to smooth the MF measurements). It also includes the calibration of the magnetometer, which is necessary to eliminate soft and hard iron influences.

• The magnetic signatures of heterogeneous smartphones on the same path have the same pattern but do not overlap. As the X and Y axes of the magnetic field are direction-dependent, the MF intensity of the smartphone fluctuates as it rotates around the Z axis, which is challenging for magnetic field map construction.

• Calibration tests were carried out with different smartphones in specific locations at given dates. It was found that the calibration parameters of the smartphones depend only on its specifications and not on the environment. There is no need to re-estimate the calibration transform periodically or for different locations.

• The MF collected by one smartphone is calibrated as a fingerprint database, and other smartphones can use this MF fingerprint database for positioning. This method can somewhat solve the MF positioning problem of heterogeneous devices. However, we can still see that the positioning accuracy of heterogeneous devices is significantly lower than that of homogeneous devices.

• Interference sources may enhance the specificity of local MF fingerprints (e.g., proximity to fridges, lifts, metal doors). In the above experiment, the Huawei P9's positioning accuracy was significantly higher in zone 2 than in the other two zones.

• Despite these challenges, MF data can be used as a complementary method to improve the positioning accuracy of hybrid positioning solutions (e.g., in combination with Wi-Fi, Bluetooth, etc.). 

Introduction

In low-cost, high-performance inertial navigation systems, the magnetometer is a crucial auxiliary sensor for precise attitude estimation by comparing magnetic field measurements in body coordinates with magnetic field measurements in earth coordinates. The information fusion of the magnetometer and inertial sensor enables accurate estimation of the 3D attitude [START_REF] Wu | Fast complementary filter for attitude estimation using low-cost marg sensors[END_REF], [START_REF] Ahmed | Accurate attitude estimation of a moving land vehicle using low-cost mems imu sensors[END_REF]. However, such 3D attitude estimation depends heavily on sensor calibration [START_REF] Zhang | Calibration of miniature inertial and magnetic sensor units for robust attitude estimation[END_REF]. Magnetometers are more sensitive to environmental changes and require more frequent recalibration than inertial sensors [START_REF] Kok | Magnetometer calibration using inertial sensors[END_REF]. There are two methods for calibrating magnetometers: attitude-dependent and attitude-independent. The classical 4.2. CLASSICIAL CALIBRATION ALGORITHM compass swing calibration method described in [START_REF] Gebre-Egziabher | Calibration of strapdown magnetometers in magnetic field domain[END_REF] is an attitude-dependent algorithm that requires a known external heading source and keeps the magnetometer plane horizontal.

On the other hand, the magnetometer measurements can be used to evaluate the magnetometer's error term because they are constant and attitude-independent. The batch magnetometer calibration methods involve using the whole set of magnetic field measurements to determine the unknown calibration parameter.

The work in [START_REF] Kok | Magnetometer calibration using inertial sensors[END_REF][START_REF] Alonso | Twostep: A fast robust algorithm for attitudeindependent magnetometer-bias determination[END_REF][START_REF] Wu | On calibration of three-axis magnetometer[END_REF] derived the magnetometer calibration in a Gaussian noise environment, using the maximum likelihood (ML) approach. The authors in [START_REF] Wu | Dynamic magnetometer calibration and alignment to inertial sensors by kalman filtering[END_REF] utilized the Kalman filter to solve the magnetometer calibration as a state estimation problem.

In [START_REF] Dorveaux | Iterative calibration method for inertial and magnetic sensors[END_REF], [START_REF] Papafotis | Mag. ic al.-a unified methodology for magnetic and inertial sensors calibration and alignment[END_REF], authors used iterative least square method for magnetometer calibration.

The work in [START_REF] Vasconcelos | Geometric approach to strapdown magnetometer calibration in sensor frame[END_REF] formulated the magnetometer calibration as an ellipsoid's maximum likelihood (ML) estimation problem and solved the approximate ML estimate using the Gauss-Newton method. In [START_REF] V. Renaudin | Complete triaxis magnetometer calibration in the magnetic domain[END_REF], authors reformulated the magnetometer calibration problem into an ellipsoidal fitting issue and solved it with an adaptive least squares (LS)

estimator. The LS-based ellipsoid fitting cannot guarantee that the magnetic field measurement is an ellipsoidal surface with intense noise and outliers because there is no positive semi-definite constraint for the LS solution. Authors in [START_REF] Li | Least squares ellipsoid specific fitting[END_REF] proposed a generalized eigenvalue decomposition method to impose an explicit semi-definiteness constraint. Lin et al [START_REF] Lin | Fast multidimensional ellipsoid-specific fitting by alternating direction method of multipliers[END_REF] proposed a fast and robust algorithm based on alternating direction method of multipliers (ADMM) [START_REF] Boyd | D i s t r i b u t e do p t i m i z ation and statistical learning via the alternating direction method of multipliers[END_REF] for ellipsoid fitting. We propose to exploit the latter ADMM based algorithm together with appropriate pre-processing techniques to achieve robust magnetometer calibration.

The structure of the chapter is as follows: Section 4.2 presents the classical LS magnetometer calibration algorithm. Section 4.3 introduces the robust calibration algorithm.

Section 4.4 evaluates our proposed algorithm using simulated data with comparisons with other state of art algorithms. Section 4.5 summarizes and concludes this chapter.

Classicial Calibration Algorithm

The calibration of 3-axis magnetometer relies on the fact that the magnitude of magnetic field measurement magnitude is attitude-independent. In this section, we will formulate it as an ellipsoid fitting problem and use a novel, robust, and efficient ADMM-based method to solve it.

CLASSICIAL CALIBRATION ALGORITHM

If matrix A and bias b are known, then (2.13) can be rewritten as

m n =(R bn ) 1 A 1 (m b b ε), (4.1) 
where

m b =[m b x , m b y , m b z ] > 2 R 3⇥N .As R bn is a orthogonal matrix, namely (R bn )(R bn ) > = I 3⇥3 ,a n dkm n k = I 1⇥N , Eq. (4.1) can be expanded to r =(m b b) > A 1 > A 1 (m b b) 1. (4.2) Denote Q =(A 1 ) > A 1 , we can refomulate Eq. (4.2) as r =(m b ) > Qm b 2m b Qb + b > Qb 1, (4.3) 
To simplify Eq. ( 4.3), we get:

(m b ) > Qm b + hm b + c =0, (4.4) 
where

h = 2Qb, c = b > Qb 1.
As 4.4) can be expressed as a linear equation with unknowns, namely

m b =[ m b x ,m b y ,m b z ] > 2 R 3⇥1 , Eq. (
r = dq ⇡ 0, (4.5) 
where (4.7)

d = 0 B B B B B B B B B B B B B B B B B B B B B B B B B @ m b x 2 p 2m b x m b y m b y 2 p 2m b x m b z p 2m b y m b z m b z 2 m b x m b y m b z 1 1 C C C C C C C C C C C C C C C C C C C C C C C C C A > , q = 0 B B B @ vec(Q) h c 1 C C C A = 0 B B B B B B B B B B B B B B B B B B B B B B B B B @ Q 11 p 2Q 12 Q 22 p 2Q 13 p 2Q 23 Q 33 h x h y h z c 1 C C C C C C C C C C C C C C C C C C C C C C C C C A . ( 4 
Thus, the problem of magnetic field calibration is converted into an ellipsoid fitting problem. Work in [START_REF] Fitzgibbon | Direct least square fitting of ellipses[END_REF] used linear least square (LLS) fitting to solve the ellipsoid fitting problem.

min q krk 2 2 = q > Kq, s.t. M(q) ⌫ 0, trace (M(q)) = 1, (4.8) 
where K = DD > , M(q) maps the vector q 2 R 3⇥1 to the symmetric matrix Q 2 R 3⇥3 .

The eigenvector of the smallest eigenvalue of K corresponds to the smallest residual error

krk 2 2 .
H o w e v e r ,L L S h a s n o p o s i t i v e s e m i -d e fi n i t e c o n s t r a i n t ,i t c a n n o t b e a p p l i e d t o scenarios with intense noise and outliers.

Robust Calibration

In practice, magnetic field measurements also contain outlier data, we can reformulate Eq. (2.13) with outlier o 2 R 3⇥1 as

m b = AR bn m n + b + o + ε. (4.9) 
It is challenging to separate o and b in the linear equation shown as Eq. (4.8), so we first preprocess the data to eliminate outliers. This section describes robust calibration methods as well as data pre-processing including compression and truncation.

Pre-processing

Magnetic field measurements contain data that deviates dramatically from the rest of the data, known as "outliers". These outliers may affect the calibration result negatively. To reduce outliers, we propose two preprocessing techniques, truncation, and compression.

Compression:

The compression function effectively maps outliers to the mean and is smoothly differentiable 

y 1 =tanh( km b k t ). (4.10) 4.3. 

Proposed Method

As the outlier was removed during the data pre-processing, our objective function is still Eq. (4.8) as traditional ellipsoid fitting problem.

Authors proposed a generalized eigenvalue decomposition method for ellipsoid fitting in [START_REF] Li | Least squares ellipsoid specific fitting[END_REF]. In [START_REF] Papafotis | Magnetic field sensors' calibration: Algorithms' overview and comparison[END_REF], the author compare several state-of-the-art magnetometer calibration algorithms and demonstrate that the linear least squares-based iterative MAGICAL method is the best. Lin ang Huang [START_REF] Lin | Fast multidimensional ellipsoid-specific fitting by alternating direction method of multipliers[END_REF] proposed a fast and robust algorithm based on alternating direction method of multipliers (ADMM) [START_REF] Boyd | D i s t r i b u t e do p t i m i z ation and statistical learning via the alternating direction method of multipliers[END_REF] for ellipsoid fitting.

In this chapter, we use ADMM to directly solve the magnetometer calibration problem.

The alternating direction method of multipliers (ADMM) is a widely used algorithm in many fields to decompose the objective function of a convex optimization problem into 98 4.3. ROBUST CALIBRATION several more tractable sub-problems and then solve each sub-problem in parallel to obtain the global solution to the original problem [START_REF] Zhang | Advanced ellipse fitting algorithm based on admm and hybrid bfgs method[END_REF]. min q q> Kq, s.t. M(q) ⌫ 0, trace (M(q)) = 1. Similar to [START_REF] Lin | Fast multidimensional ellipsoid-specific fitting by alternating direction method of multipliers[END_REF], we express augmented Lagrangian function of problem (4.8) as follows:

L(q, ẑ, µ)=q > Kq + µ(ẑ q)+ λ 2 kẑ qk 2 2 , (4.14) 
where z is the auxiliary variable, µ is the Lagrange multiplier, and λ is the penalty parameter, respectively. The iterative update equation for the ADMM is as follows

qk+1 =a r g m i n q,trace(M(q))=1 L (q, ẑk , µ k ) , ẑk+1 =a r g m i n ẑ,M(ẑ)⌫0 L (q k+1 , ẑ, µ k ) , µ k+1 = µ k + λ k (ẑ k+1 qk+1 ) , λ k+1 =min(ρλ k ,λ max ) , (4.15) 
where ρ is an adaptive penalty scheme [START_REF] Lin | Linearized alternating direction method with adaptive penalty for low-rank representation[END_REF]. A detailed solution of (4.14) can be found in [START_REF] Lin | Fast multidimensional ellipsoid-specific fitting by alternating direction method of multipliers[END_REF].

From Eq. (4.14) we can obtain the estimate q.N o t i c i n gt h a tηq for any real η is also a solution to Eq. (4.8), we assume

q = ηq. (4.16) 
From Eq. (4.4),

1=b > Qb c = h > Q 1 h 4c 4 = η ĥ> Q 1 ĥ 4ĉ 4 ! , (4.17) 
namely,

η = 4 ĥ> Q 1 ĥ 4ĉ . (4.18) 
we could convert the optimal estimate q to  and b as follows:

Â> Â = η Q 1 , (4.19) 4.4. 
SIMULATION EXPERIMENT b = 1 2 Q 1 ĥ, (4.20) 
 can be obtained from Eq. (4.19) by singular value decomposition (SVD).

Simulation Experiment

We designed a program to efficiently generate synthetic data to test the p erformance of the above algorithms for a range of outliers. Based on the world magnetic field model [270], we chose Orleans city's geomagnetic field as the true value m n = h 0.4466 0.0110 0.8947

i > (North, East, Down),
The soft-iron and hard-iron effects in (4.9) are generated as follows:

A = aI 3⇥3 + E, b = h 0.20 .70 .6 i > , (4.21) 
where a ⇠ U(0.8, 1.2) is a uniform distribution, the standard deviation of E 2 R 3⇥3 is 0.05. The standard deviation of the Gaussian noise ε 2 R 3⇥1 is 0.0005. The rotation matrix The ADMM [START_REF] Lin | Fast multidimensional ellipsoid-specific fitting by alternating direction method of multipliers[END_REF] was compared to LS with generalized SVD decomposition [START_REF] Li | Least squares ellipsoid specific fitting[END_REF], and MAGICAL [START_REF] Papafotis | Mag. ic al.-a unified methodology for magnetic and inertial sensors calibration and alignment[END_REF]. The calibration algorithm aims to find parameters A and b that are close to the ground truth. Therefore, we have used three metrics r A , r b and r m in this chapter to verify the algorithm's performance.

R b n = R z (α)R x (β)R x (γ)= 2 

SIMULATION EXPERIMENT

r A = 1 9 kA A ref k 2 F , (4.24) 
r b = 1 3 kb b ref k 2 F , (4.25) 
r m = 1 N m 2 m 2 ref 2 2 , (4.26) 
where k•k F denotes the Frobenius norm of matrix.

Tab. 4.1 shows the residuals of the calibration parameters without pre-processing, truncation, and compression. and MAGICAL algorithms deviate significantly from the reference value y = 1. The LS method is close to reference y = 1, but there are significant outliers.

r A =0 . 0 0 5 r b =0 . 1 5 4 r m =0 . 9 0 7 r A =0 . 0 1 3 r b =0 . 0 0 0 r m =0 . 0 4 9 r A =0 . 0 3 7 r b =0 . 0 1 0 r m =0 . 1 1 2 MAGICAL [262] r A =0 .

INTRODUCTION

Traditional magnetic field p ositioning metho ds collect magnetic field information from each spatial point to construct a magnetic field fingerprint database. During the positioning phase, real-time magnetic field measurements are matched to a magnetic field map to predict the user's location. However, this approach requires a significant amount of time to traverse the entire magnetic field fingerprint database and does not effectively leverage the magnetic field sequence's unique patterns to improve the accuracy and robustness of the positioning system. In recent years, the application of deep learning for indoor positioning of magnetic fields has grown rapidly, especially by using the magnetic field sequence as a time series and a trained LSTM model to predict position, avoiding the time-consuming matching process directly. However, the training of LSTM is timeconsuming, and the degradation problem occurs as the stack of layers increases. This chapter proposed a TCN-based magnetic field positioning system that extracts magnetic field sequence features by preprocessing with coordinate transformation, smoothing filtering, and first-order differencing. The proposed method is proven to be seamlessly applicable to heterogeneous smartphones. The trained TCNs models are compared with the LSTM and GRU models, showing the high accuracy and robustness of the proposed algorithm.

Introduction

In recent years, the rising demand for accurate and timely location-based services (LBS) has attracted considerable interest from academics and the industry. Advanced positioning technology can provide better services such as indoor navigation and tracking, entertainment, location-based information retrieval, and emergency and safety applications [2,[START_REF] Basiri | Indo or lo cation based services challenges, requirements and usability of current solutions[END_REF].

Infrastructure-based approaches include Wi-Fi, radio frequency identification (RFID), ultra-wideband (UWB), and Bluetooth (BLE), and they require customized infrastructure such as Wi-Fi access points (APs), beacons, sensors, and tags to sense the environment.

Pedestrian dead reckoning (PDR) and magnetic field-based location systems employ environmental signals and do not require infrastructure [START_REF] Ali | Harvesting indoor positioning accuracy by exploring multiple features from received signal strength vector[END_REF][START_REF] Alarifi | Ultra wideband indoor positioning technologies: Analysis and recent advances[END_REF][START_REF] Yao | An indoor positioning system based on the dual-channel passive rfid technology[END_REF][START_REF] Cantón Paterna | A bluetooth low energy indoor positioning system with channel diversity, weighted trilateration and kalman filtering[END_REF].

Wi-Fi [START_REF] Liu | Survey on wifi-based indoor positioning techniques[END_REF] has an average accuracy of 5 to 15 meters. It has the advantage of widely distributed Wi-Fi APs, low access requirements, and high flexibility. However, it also has which has limited the widespread use of Wi-Fi location methods [START_REF]Android Developers: Wi-Fi scanning overview[END_REF].

BLE [START_REF] Mainetti | A survey on indoor positioning systems[END_REF] has been the focus of attention for indoor positioning technologies, with an UWB [START_REF] Mazhar | Precise indoor positioning using uwb: A review of methods, algorithms and implementations[END_REF] has the advantages of high accuracy (10⇠30 cm), high multipath resolution, large bandwidth, low latency, high penetration, and freedom from interference. The constraints of UWB include high infrastructure requirements, high energy consumption, and high user costs.

Inertial navigation [START_REF] Wu | A survey of the research status of pedestrian dead reckoning systems based on inertial sensors[END_REF] is advantageous due to its low cost and ease of deployment, and its disadvantage is that it is restricted by the accuracy of inertial sensors and the accumulation of drift and deviation errors.

Magnetic field-based indoor positioning is an attractive candidate for indoor positioning solutions due to the prevalence of magnetic fields. The advantages of magnetic fields are infrastructure-free, temporal stability, and tolerance to moving objects. There are also some disadvantages, such as low discernibility (i.e., identical magnetic field measurement can be found elsewhere), heterogeneity of devices (i.e., heterogeneous smartphones have different magnetic field measurements at the same location), and susceptibility to interference from the presence of ferromagnetic materials in the surrounding environment [START_REF] Ouyang | Analysis of magnetic field measurements for indoor positioning[END_REF].

The contributions of this study are summarised as follows.

• Am a g n e t i cfi e l d -b a s e di n d oo rpo s i t i o n i n gs y s t e mw a sd e s i g n e d . F o u rs m a r t p h o n e s , including iPhone 12 Mini, iPhone Xs Max, Redmi Note 7, and Samsung Galaxy S20, were used to collect magnetic field trajectories to construct an extensive database of magnetic field trajectories.

• Compared to traditional machine learnng and DTW method, the proposed method does not require the traversal of the entire magnetic field database.

• Compared to RNN methods (e.g., LSTM and GRU), the proposed method avoids the degradation problem as the number of stack layers increases. And LSTM/GRU 5.2. RELATED WORK gathered 21 points in a corridor and evaluated the classification using kNN, SVM, random forest, and other algorithms, demonstrating good positioning performance.

Typically, fingerprinting methods require traversing the entire magnetic field database, which is often time-consuming. Most conventional methods treat successive sequences of magnetic fields as independent observations of each other, and positioning is achieved by point-to-point matching. However, measurements from two points at different spatial locations may show 'similarity' in a wide environment, leading to positioning errors. Complex indoor environments often have various constraints, and as some walking trajectories are relatively fixed, it becomes feasible to use historical information about the trajectory to enhance the location estimation method [START_REF] Bai | Dl-rnn: An accurate indoor localization method via double rnns[END_REF].

In the work [START_REF] Subbu | Locateme: Magnetic-fields-based indoor localization using smartphones[END_REF][START_REF] Perez-Navarro | Magnetic field as a characterization of wide and narrow spaces in a real challenging scenario using dynamic time warping[END_REF], the authors used DTW (dynamic time warping), which treats the magnetic field trajectory as a time series. Work [START_REF] Shu | Magicol: Indoor localization using pervasive magnetic field and opportunistic wifi sensing[END_REF][START_REF] Wang | Magnetic-based indoor localization using smartphone via a fusion algorithm[END_REF][START_REF] Lee | Amid: Accurate magnetic indoor localization using deep learning[END_REF] used sensor fusion metho ds to increase p ositioning accuracies, such as the fusion of the pedestrian dead reckoning (PDR) with the magnetic field using Kalman filters, particle filters, or hidden Markov models. However, these methods improve positioning performance by increasing the information and do not improve positioning methods that use only the magnetic field. Furthermore, filter-based sensor fusion requires sufficient experience to tune parameters such as the covariance matrix [START_REF] Subbu | Locateme: Magnetic-fields-based indoor localization using smartphones[END_REF].

The use of deep learning algorithms in indoor positioning has grown rapidly in recent years.

In the work [START_REF] Ashraf | Deeplocate: Smartphone based indoor localization with a deep neural network ensemble classifier[END_REF][START_REF] Ashraf | Localizing pedestrians in indoor environments using magnetic field data with term frequency paradigm and deep neural networks[END_REF][START_REF] Fernandes | An infrastructure-free magnetic-based indoor positioning system with deep learning[END_REF], the authors highlighted the problem of heterogeneous devices for magnetic field-based positioning and attempted to solve this problem using a deep learning approach.

Magnetic field positioning can be divided into point-to-point matching and trajectory matching schemes.

Recent work has attempted to implement point-to-point matching using deep learning methods to classify magnetic field measurements (magnetic landmarks) that have Ashraf et al. [START_REF] Ashraf | Localizing pedestrians in indoor environments using magnetic field data with term frequency paradigm and deep neural networks[END_REF] enabled three heterogeneous smartphones to collect various magnetic field landmarks along indoor paths, transforming the magnetic field data into terms (words) and documents to mitigate the effects of smartphone heterogeneity. The extracted term frequency vectors were used to train LSTM and GRU networks, and their predictions were voted on to estimate the user's current location.

Research into the classification of magnetic field trajectories through deep learning has also been developed. In work AMID [START_REF] Lee | Amid: Accurate magnetic indoor localization using deep learning[END_REF], the authors extracted recurrence plot (RP), trend, sequence length, and peak features from magnetic field sequences. The extracted image features were then analyzed with a convolutional neural network (CNN), and magnetic landmarks were classified with a multilayer perceptron (MLP). The corridor and atrium achieved accuracies of 0.8 m and 2.3 m, respectively.

Zhang et al. [START_REF] Zhang | Real-time indoor localization using smartphone magnetic with lstm networks[END_REF] proposed an LSTM-based magnetic field positioning algorithm and extended the magnetic field dimension by a double sliding window-based scheme, which expanded the feature dimension of the LSTM model to obtain higher positioning accuracy.

To solve the ab ove problem, this pap er prop osed a novel magnetic p ositioning algorithm based on TCNs to avoid the RNN (LSTM and GRU) vanishing gradient problem.

Magnetic field sequences are used to represent each corridor [START_REF] Bai | An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[END_REF]. A vast database of magnetic fields was collected through heterogeneous smartphones. We designed coordinate system transformation, moving average filtering, and first-order differencing methods to pre-process the magnetic field measurements to overcome the heterogeneous device nature and improve the algorithm performance.

Magnetic Field Preliminaries

Magnetic field measurements from heterogeneous devices are not the same [START_REF] Ashraf | A comprehensive analysis of magnetic field based indoor positioning with smartphones: Opportunities, challenges and practical limitations[END_REF][START_REF] Ashraf | Localizing pedestrians in indoor environments using magnetic field data with term frequency paradigm and deep neural networks[END_REF], the positioning accuracy can vary significantly when applying a positioning method to data from heterogeneous devices.

However, magnetic field measurements of heterogeneous devices on the same path show the same pattern [START_REF] Subbu | Locateme: Magnetic-fields-based indoor localization using smartphones[END_REF], which is a good characteristics for magnetic indoor positioning.

MAGNETIC FIELD PRELIMINARIES

It's labor and time intensive to create fine magnetic field point maps. As the magnetic field varies between 25 to 65 µT, almost identical magnetic field measurements may be repeated at different indoor locations, leading to low magnetic field discernibility problems [START_REF] Ouyang | A survey of magnetic-field-based indoor localization[END_REF].

The magnetic trajectory model methodology is more reliable than point-based methods for magnetic field positioning. It connects the magnetic points in space in sequence to form a spatio-temporal series. This spatio-temporal series with unique patterns can help us identify specific areas and narrow the positioning range. The value of m z is much larger than that of m x and m y ,c o n t r i b u t i n g9 0 %o ft h e intensity mag.I n t u i t i v e l y ,m z and intensity mag show an axisymmetric relationship. We also use the information from m x and m y to improve the model's robustness.

The magnetic field trajectory's spatial and temporal stability could help us find the area where the user is located, such as the initial position of the PDR.

The user walks with the smartphone in an arbitrary gesture and direction, so it is essential to transform the raw magnetic field measurement into a direction-independent coordinate.

The coordinate system of a smartphone, with the X-axis pointing east, the Y-axis pointing north, and the Z-axis pointing sky, constitutes a right-handed coordinate system (ENU) [START_REF] Ouyang | A survey of magnetic-field-based indoor localization[END_REF]. The magnetic field measurement is directional, mainly on the X and Y-axis, while the Z-axis reading is direction-independent. The calibrated magnetic field intensity is constant at the same position [START_REF] Ouyang | Analysis of magnetic field measurements for indoor positioning[END_REF].

The three-dimensional magnetic field can be decomposed into two horizontal and ver- tical components using the gravity vector, where the vertical component is parallel to the direction of gravity, and the horizontal component is orthogonal to gravity [START_REF] Shahidi | Gipsy: Geomagnetic indoor positioning system for smartphones[END_REF]. 

Temp oral Convolutional Networks

Temporal convolutional network (TCN) is a class of architectures with two distinctive characteristics: first, the convolution in the architecture is causal, meaning that future information does not influence previous information, and second, the input sequence and output sequence have the same length [START_REF] Bai | An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[END_REF].

Sequence Modeling

Suppose we have an input magnetic field sequence X = {x 1 , x 2 ...x T | x i 2 R m } and wish to predict some corresponding outputs Y = {y 1 , y 2 ...y T } (e.g., the labels of the corridor). We predict y t ,usingonlythoseinputspreviouslyobserved:

X = {x 1 , x 2 ...x t | x i 2 R m }.
Am a g n e t i cfi e l ds e q u e n c em o d e l i n gn e t w o r kc a nb ee x p r e s s e da saf u n c t i o nf : X t+1 ! Y t+1 ,n a m e l y ŷ0 ,...,ŷ t = f (x 0 ,...,x t ) .

(5.1)

TEMPORAL CONVOLUTIONAL NETWORKS

The restriction on y t is dependent only on {x 1 , x 2 ...x t },a n dn o to na n y" f u t u r e "i n p u t {x t+1 , x t+2 ...x T }.O u r g o a l i s t o fi n d a n e t w o r k f that minimizes the expected loss between the actual values and predicted values, L (y 0 ,...,y T ,f (x 0 ,...,x T )).

Causal Convolutions

RNNs or LSTMs are often used for sequence modeling, such as processing video/audio/sensor signals along the time direction. Generally, convolutional neural network (CNN) is used for image processing. However, due to bottlenecks in models like RNN and LSTM, it has been found that CNN is significantly underestimated for sequential modeling and that CNN builds more concise models than RNNs.

p(x)= T Y t=1 p (x t | x 1 ,...,x t 1 ) (5.2) 
The traditional CNN model cannot deal directly with sequence modeling, which uses causal convolutions and works with Sequence Modeling, mainly abstracting to predict y t based on {x 1 , x 2 ...x t } and {y 1 , y 2 ...y t 1 },m a k i n gy t close to the actual value.

Causal convolution requires many layers or large filters to increase the receptive fields of the convolution. As shown in Fig 5 .3, an output corresponds to more inputs when many hidden layers exist between the output and input layer. The more hidden layers between the input and output layers, the further apart they are, and the higher the convolutional computation, which can bring problems such as gradient vanishing, high training complexity, and poor fitting.
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Hidden Layer

Hidden Layer Output 
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Dilated Causal Convolutions

Dilated convolution can be applied to regions larger than the length of the filter by skipping some of the input and is equivalent to generating a larger filter from the original filter by adding zeros.

Suppose a network has N convolutional layers, the dilated factor of the n-th convolutional layer is 2(n 1),t h es p a ni s1 ,a n dt h efi l t e rs i z ei sf size ,t h e nt h er e c e p t i v efi e l d size of the network can be computed as R =( f size 1) 2 N 1 +1. The size of the receptive field and the number of learnable parameters can be adjusted by changing the filter's size and the number of layers. Dilated convolution allows a model to have a very large receptive field with a small number of layers, which can solve the problems associated with causal convolution [START_REF] Bai | An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[END_REF][START_REF] Oord | Wavenet: A generative model for raw audio[END_REF]287].

! ! ! " ! # ! $ ! !%# ! !%" . . . " # $ " # # " # !%" " # " " # !%# " # ! . . .

Residual Block

Adeepneuralnet w orkcanbeview edasamappingbet w eentheinputandoutputspaces.

It is composed of multiple stacked layers. Each layer is a subfunction with respect to its underlying mapping.

Deep neural networks face the problem of degradation, and researchers have found that as the depth of the network increases, the accuracy gets saturated and degrades rapidly.

He et al. [START_REF] He | Deep residual learning for image recognition[END_REF] proposed deep residual learning to solve this degradation problem. • Stable gradients: Since the backpropagation path of TCN is different from the temporal direction of the sequence, it avoids the explosion/gradient disappearance problem of RNN (LSTM, GRU).

• Low memory requirement for training : Training requires less memory for TCNs. In TCNs, the cell gates are shared within a layer, and the backpropagation path depends exclusively on network depth. LSTM and GRU typically require a substantial amount of memory to store the partial outcomes of their numerous cell gates.

• Arbitrary length input : TCNs obtain sequences of arbitrary length by sliding onedimensional convolutional kernels, while RNNs simulate input sequences of different lengths by recursion.

TCN also has a distinct disadvantages.

• Insufficient flexibility in transfer learning: TCN may not be as transferable because the amount of historical information necessary for model prediction may vary across domains. As a result, the performance of TCN may be poor when transferring a model from a problem that requires less memory information to a problem that requires more memory, as its receptive field is insufficiently large.

Experiments

In this section, we designed a framework for a magnetic field indoor positioning system based on TCNs. Numerous magnetic field trajectories were collected in an indoor corridor using a heterogeneous smartphone, and the magnetic field data were pre-processed by coordinate transformation, moving average, and first-order differencing. Trained and untrained smartphones were used to evaluate the algorithm. The corridors chosen were all between 10 and 20 meters in length, MATLAB Mobile application was used for data collection, and the sampling frequency was set to 100Hz.

System Architecture

The smartphones were held horizontally, and data was collected 10 times in the forward direction and 10 times in the backward direction so that there were [START_REF] Mazhar | Precise indoor positioning using uwb: A review of methods, algorithms and implementations[END_REF] We also to ok two round-trip paths of the Samsung Galaxy S20, Samsung Galaxy S9, and OnePlus 7T Pro to test whether the algorithm could be seamlessly applied to heterogeneous smartphones, even if we had not used the neural network to train them.

Experimental settings

Tab. 5.2 describes the parameter settings of the algorithm. We defined a TCN network with 6 residual blocks in sequence, beginning with a dilation factor of 1 and each subse-5.5. EXPERIMENTS quent residual block with a dilation factor that is twice that of the previous layer. For the residual block's one-dimensional convolutional layer, 128 filters of size 5 are provided, and a dropout factor of 5 ⇥ 10 3 is specified for the dropout layer. Optimizer was set to 'adam', epochs were set to 120, the mini batch size was set to 4, and the learning rate was set to 1 ⇥ 10 

Magnetic Features Preprocessing

The magnetic field sequence underwent three preprocessings: coordinate system transformation, smoothing filtering, and first-order differentiation.

• Coordinate transformation: The original magnetic field signal needs to be transformed from a body coordinate system to a world coordinate system.

m n t = R nb t m b t (5.3)
where m b t =(m b x,t ,m b y,t ,m b z,t ) 2 R 3⇥1 is the magnetic field measurement in the body coordinate system at time t,a n dm n t =( 0 ,m n h,t ,m n v,t ) 2 R 3⇥1 is the magnetic field measurement in the world coordinate system at time t, R nb t 2 R 3⇥3 is the rotation matrix that transforms the magnetic field measurement from the body coordinate system b to the world coordinate system n.

After the coordinate transformation, we use the magnetic field horizontal component, vertical component, and the magnetic field intensity as features, namely

m =(m h ,m v , p m 2 h + m 2 v ).
• Smoothing filter : As the collected magnetic field sequence contains Gaussian white noise and burrs, we employ the moving average approach with a window size of 100 to smooth the signal.

• First order difference:A f t e rt r a n s f o r m i n gt h ec o o r d i n a t es y s t e ma n ds m o o t h i n g filter, we calculate the difference between adjacent elements of the magnetic field sequence as features.

Classification Result

We first tested our prediction model using the 3 trained smartphone. The test dataset for the experiment consisted of forward and backward trajectories from the 3 trained smartphones. The majority of the 148,600 total points correspond to correct predictions. Classification accuracy can be evaluated by comparing predictions with ground truth, it can be calculated with Eq. 3.8, the accuracy of the TCN-based magnetic field trajectory classification method is 99.80%.

To evaluate the applicability of our trained mo del to an untrained smartphone, we utilized a Samsung Galaxy S20, Samsung Galaxy S9 and OnePlus 7T Pro to collect three test datasets (two round-trip walks in eight corridors for each smartphone). The newly collected data was fed into the previously trained model, Fig. 5.9(b), 5.9(c) and 5.9 that the trained model could also be applied to untrained smartphones.

We applied the GRU and BiLSTM models to the same training and test sets. Tab. 5.4

compares the classification accuracy of BiLSTM, GRU and TCNs in the same dataset.

The TCN models outperform the other two RNN models. 

Conclusion

In this section, we propose a novel TCNs-based indoor magnetic positioning algorithm for smartphones, which exploits the predictive power of TCNs to solve the indoor magnetic positioning problem and avoids the time-consuming fingerprint matching process 

Conclusion

In this thesis, we have presented several contributions to magnetic field based indoor positioning.

• We presented a comprehensive survey of magnetic field-based indo or p ositioning.

From the origin of the geomagnetic p osition, the comp onents of the magnetic field, its advantages, and challenges are introduced. Magnetometer models and the effects of ferromagnetic interference are described. Coordinate systems for magnetic fieldbased positioning, such as sensor coordinate systems, device coordinate systems, and world coordinates, are also presented.

Several coordinate systems commonly used for magnetic field localization are presented, and their conversion relationships are demonstrated.

CONCLUSION

Existing publicly available magnetic field reference databases, magnetometer calibration algorithms, and state-of-the-art methods for constructing magnetic field maps are also reviewed.

State-of-the-art methods based on magnetic landmarks, DTW, magnetic field fingerprinting, filtering, SLAM, neural networks, and PDR algorithms are summarised.

• As e r i e so fe x p e r i m e n t sw e r ed e s i g n e dt oa n a l y z et h ef e a s i b i l i t yo fu s i n gm a g n e t i c field measurements alone for indoor positioning. Static experiments with heterogeneous smartphones and magnetometers demonstrate that the magnetic field measurements obey a Gaussian distribution. Trajectory experiments verified that the trajectories of magnetic field measurements from heterogeneous smartphones exhibit similar patterns, a property that can be used to identify specific areas. Rotation experiments verify that the X and Y axes of the magnetic field are direction-dependent and that direction-independent Z-axis readings can be used as a feature for magnetic field positioning. Calibration experiments demonstrate that magnetic field measurements for hard and soft iron depend only on internal smartphone parameters and are independent of the environment. Classification experiments evaluate the magnetic field positioning performance of homogeneous and heterogeneous devices and demonstrate the feasibility and limitations of magnetic field positioning.

• We propose a robust magnetometer calibration algorithm using ADMM. We use truncation and compression methods to pre-process outliers and calculate the magnetometer calibration parameters using the ADMM method. The proposed method is evaluated with synthetic magnetic field data and compared with state-of-the-art magnetometer calibration algorithms to demonstrate the robustness and accuracy of the proposed algorithm.

• At i m e -c o n v o l u t i o n a ln e t w o r k -b a s e dm a g n e t i cfi e l dpo s i t i o n i n gs y s t e mh a sbe e nd esigned to take advantage of the unique patterns presented by magnetic field sequences. The proposed method allows direct prediction of magnetic field inputs without traversing the entire magnetic field database, avoiding positioning delays.

In addition, the structure of the proposed algorithm avoids the degradation problem that occurs as the number of layers in the stack increases.

Three pre-processing methods: coordinate transformation, smoothing filtering, and first-order differencing, are used to extract magnetic field sequence features. An extensive database was built to evaluate the proposed algorithm, achieving an accuracy of 99.8% on trained phones and 93,79% on for-trained phones, outperforming 6.2. CHALLENGES FOR MAGNETIC FIELD BASED LOCALIZATION the LSTM/GRU algorithm.

Challenges for Magnetic Field Based Localization

Due to smartphones' limited battery and computing power, smartphone-based positioning technologies need to balance accuracy, complexity, and performance in terms of latency.

The main challenges for magnetic-field-based indoor positioning applications are as follows:

1. Positioning accuracy: Magnetic field measurements have only three elements with low discernity, which may be duplicated at several locations in a large indoor environment.

Constructing magnetic map:

The construction of a reliable magnetic field map is time-consuming and labor-intensive and requires advanced equipment calibration.

Suppose a crowdsourcing approach is used to build the map. In that case, it is not easy to merge multiple databases into one, and the heterogeneity of the equipment needs to be taken into account. • Limited influence of the surroundings and good penetration of walls.

• Multipath effects and attenuation.

Wi-Fi [START_REF] Liu | Survey on wifi-based indoor positioning techniques[END_REF] ⇠35 m 5 m⇠15 m

• Widely distributed hot spots;

• Low access conditions;

• High flexibility.

• High fingerprint collection effort;

• Vulnerable to access point changes;

• Fluctuation of Wi-Fi signal;

• Radio mismatch problems;

• Heterogeneity of Wi-Fi devices;

• Noise and multipath distortion.

Bluetooth [START_REF] Mainetti | A survey on indoor positioning systems[END_REF] ⇠10 m 1⇠5m • Low reception range;

• Low energy consumption.

• Low positioning accuracy;

• Prone to noise.

UWB [START_REF] Mazhar | Precise indoor positioning using uwb: A review of methods, algorithms and implementations[END_REF] Few meters 10⇠30 cm

• Immune to interference;

• High accuracy;

• High multipath resolution;

• Large bandwidth.

• Shorter range;

• Extra infrastructure requirement;

• High cost for users.

Visible light [START_REF] Singh | Passive visible light positioning systems: An overview[END_REF] Line of sight condition 10 cm ⇠2m

• Device-free; Security;

• Less infrastructure changes in passive devices;

• Energy efficiency.

• High infrastructure changes on the transmitter side;

• The burden on the user;

• Complex infrastructure.

Vision (camera) [START_REF] Koyuncu | A survey of indoor positioning and object locating systems[END_REF] Line of sight condition 0.01⇠1m

• High positioning accuracy;

• Unaffected by the external environment;

• Strong anti-interference capability.

• Complex algorithms;

• High power consumption;

• Sensitive to light conditions;

• Expensive and lacks wide applications.

Inertial navigation [START_REF] Wu | A survey of the research status of pedestrian dead reckoning systems based on inertial sensors[END_REF] Hundreds of meters 2m • Low cost;

• Easy to deploy.

• Subject to the accuracy of inertial sensors;

• Accumulation of drift and deviation errors.

Magnetic field [START_REF] Ouyang | A survey of magnetic-field-based indoor localization[END_REF] ⇠ 1⇠5m

• Infrastructure-free;

• Temporal stability;

• Uniqueness due to ferromagnetic disturbance;

• Tolerance to moving objects.

• Low discernibility;

• Need for frame transformation;

• Heterogeneous device. La lumière visible [START_REF] Singh | Passive visible light positioning systems: An overview[END_REF] présente les avantages suivants : absence de dispositif, sécurité, efficacité énergétique et moins de changements d'infrastructure dans les dispositifs passifs.

Le principal inconvénient est l'importance des changements d'infrastructure du côté de l'émetteur, la charge pour l'utilisateur et la complexité de l'infrastructure.

La caméra [START_REF] Koyuncu | A survey of indoor positioning and object locating systems[END_REF] présente l'avantage d'une grande précision de positionnement, elle n'est pas affectée par l'environnement extérieur et elle a une forte capacité d'anti-interférence.

L'inconvénient est que la caméra est chère, et que les algorithmes complexes sont complexes et très consommateurs d'énergie. La caméra dépend également des conditions de luminosité et n'a pas de larges applications.

La navigation inertielle [START_REF] Wu | A survey of the research status of pedestrian dead reckoning systems based on inertial sensors[END_REF] est avantageuse en raison de son faible coût et de sa facilité de déploiement. Son inconvénient est qu'elle est limitée par la précision des capteurs inertiels et l'accumulation des erreurs de dérive et de déviation.

Le positionnement intérieur basé sur les champs magnétiques [START_REF] Ouyang | Analysis of magnetic field measurements for indoor positioning[END_REF] est un candidat intéressant pour les solutions de positionnement intérieur en raison de la prévalence des champs magnétiques. Les avantages des champs magnétiques sont l'absence d'infrastructure, la stabilité temporelle et la tolérance aux objets en mouvement. Ils présentent également certains inconvénients, tels que la faible discernabilité (c'est-à-dire qu'une mesure de champ magnétique identique peut être trouvée ailleurs), l'hétérogénéité des appareils (c'est-à-dire que des smartphones hétérogènes ont des mesures de champ magnétique différentes au même endroit) et la susceptibilité aux interférences dues à la présence de matériaux ferromagnétiques dans le milieu environnant.

La technologie de positionnement magnétique a suscité un intérêt constant dans le monde universitaire [START_REF] Haverinen | A global self-localization technique utilizing local anomalies of the ambient magnetic field[END_REF][START_REF] Xie | Maloc: A practical magnetic fingerprinting approach to indoor localization using smartphones[END_REF] et dans l'industrie [START_REF]IndoorAtlas[END_REF][START_REF]Find & Order[END_REF] en raison de la popularité des smartphones, tablettes et agents numériques personnels (PDA) avec magnétomètres intégrés. En tant que méthode émergente de positionnement intérieur, le positionnement Pour résumer, les principales contributions de ce chapitre sont les suivantes :

• Une vue d'ensemble des avantages et des défis du suivi intérieur basé sur le champ magnétique ;

• Représentations et transformations des champs magnétiques dans des systèmes de coordonnées déférents ;

• Un examen des algorithmes de calibration des magnétomètres et des constructions de cartes magnétiques ;

• État de l'art des systèmes de localisation intérieure basés sur l'empreinte magnétique ;

• Une étude complète de la navigation à l'estime des piétons par smartphone ;

• Un coup de projecteur sur les nouvelles applications et les opportunités de recherche connexes basées sur la localisation basée sur le champ magnétique. En conclusion, les principales contributions de ce chapitre sont les suivantes :

• Un système d'acquisition de champ magnétique a été développé en utilisant l'Arduino Pro Mini et le LSM9DS1. Le filtre de lissage RLOWESS a été proposé pour supprimer les effets du bruit, de la distorsion et des valeurs aberrantes dans les mesures brutes du champ magnétique.

• Des tests statiques, des tests de trajectoire et des tests de rotation ont été mis au points pour étudier les caractéristiques magnétiques du smartphone hétérogène.

• Des tests d'étalonnage des smartphones hétérogènes ont été réalisés pour démontrer le potentiel de l'étalonnage des smartphones dans la résolution du problème des dispositifs hétérogènes de MF.

• Des tests de classification hétérogène des smartphones ont été réalisés pour démontrer la faisabilité du positionnement par champ magnétique. • Nous proposons un algorithme de calibration robuste du magnétomètre en utilisant ADMM. Nous utilisons des méthodes de troncature et de compression pour prétraiter les valeurs aberrantes et calculer les paramètres de calibration du magnétomètre à l'aide de la méthode ADMM. La méthode proposée est évaluée avec des données de champ magnétique synthétique et comparée aux algorithmes de calibrage de magnétomètre de pointe pour démontrer la robustesse et la précision de l'algorithme proposé.

• Un système de positionnement par champ magnétique basé sur un réseau à résolution temporelle a été mis au point pour tirer parti des modèles uniques présentés par les séquences de champ magnétique. La méthode proposée permet de prédire directement les entrées de champ magnétique sans traverser toute la base de données de champ magnétique, évitant ainsi les retards de positionnement. En outre, la structure de l'algorithme proposé permet d'éviter le problème de dégradation qui se produit lorsque le nombre de couches de la pile augmente.

• Trois métho des de prétraitement : transformation des co ordonnées, filtrage de lissage et différenciant de premier ordre, sont utilisées pour extraire les caractéristiques de la séquence de champ magnétique. Une base de données étendue a été construite pour évaluer l'algorithme proposé, atteignant une précision de 99,8% sur les téléphones entraînés et de 93,79% sur les téléphones non entraînés, surpassant l'algorithme LSTM/GRU.

Défis pour la localisation basée sur le champ magnétique

En raison de la batterie et de la puissance de calcul limitées des smartphones, les technologies de positionnement basées sur les smartphones doivent équilibrer la précision, la complexité et les performances en termes de latence. Les principaux défis pour les applications de positionnement intérieur basées sur le champ magnétique sont les suivants :

• Précision du positionnement : Les mesures de champ magnétique ne comportent que trois éléments faiblement discernables, qui peuvent être dupliqués à plusieurs endroits dans un vaste environnement intérieur.

• Construction d'une carte magnétique : La construction d'une carte de champ magnétique fiable demande beaucoup de temps et de travail et nécessite un étalonnage avancé de l'équipement. Supposons qu'une approche de crowdsourcing soit utilisée pour construire la carte. Dans ce cas, il n'est pas facile de fusionner plusieurs bases de données en une seule, et l'hétérogénéité des équipements doit être prise en compte.

• Le bruit ambiant : L'installation d'objets contenant des matériaux ferromagnétiques tels que les machines à laver, les distributeurs automatiques et les ascenseurs peut affecter les mesures FM du smartphone. Cela nécessite la mise à jour et la maintenance de la base de données des empreintes magnétiques. • Approches hybrides de positionnement intérieur : En fonction de la précision de positionnement requise, la combinaison des champs magnétiques avec le Wi-Fi, le Bluetooth et le GSM complète la solution de positionnement hybride.
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  Ac o m p r e h e n s i v es t u d yo fs m a r t p h o n e -b a s e dpe d e s t r i a nd e a dr e c k o n i n g ; • As p o t l i g h to nn e wa p p l i c a t i o n sa n dr e l a t e dr e s e a r c ho p p o r t u n i t i e sb a s e do nm a gnetic field-based localization. This survey is structured as follows: Section 2.2 introduces the characteristics of a geomagnetic field and presents the advantage and challenges of using magnetic fields for localization. Section 2.3 presents the magnetometer model and related measurement distortions. Section 2.4 introduces the commonly used coordinate systems and their transformation in magnetic positioning. Section 2.5 explores several magnetic field benchmark databases. In Section 2.6, one presents the calibration techniques considered to correct the measurement distortions due to the imperfections of the used magnetometers. Section 2.7 reviews the magnetic field map construction techniques that are used by certain indoor localization methods. Section 2.8 introduces the taxonomy of indoor localization and gives a systematic review on the state-of-the-art indoor localization using magnetic landmarks, dynamic time warping, magnetic fingerprinting methods, filtering methods, simultaneous localization and mapping, and neural networks. Section 2.9 summarizes the smartphone-based pedestrian dead reckoning algorithm. The advantages and disadvantages of magnetic field signals are compared with other fingerprints in Section 2.10.
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 22 Figure 2.2: Geomagnetic field component.
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 2 UJIIndoorLoc-Mag Data Set UJIIndoorLoc-Mag (accessed date: 07 March 2022) dataset was presented at a 2015 international conference on indoor positioning and indoor navigation (IPIN) by [69]. The database was collected in a laboratory of approximately 15 ⇥ 20 m with eight corridors and 260 m 2 of space. The sampling frequency was 10 Hz, and 54 different paths were selected for sampling. The sampling of each path was repeated five times so that the training set database consists of 270 different consecutive samples. There are also 11 test set databases. The test paths are complex, involving intersections and multiple turns. The information in the database includes Android's magnetometer (TYPE_MAGNETIC_FIELD), accelerometer (TYPE_LINEAR_ACCELERATION), and orientation (TYPE_ORIENTATION) sensors. The smartphones tested were the Google Nexus 4 and the LG G3, with Android 5.0 as the operating system.

Figure 2 . 11 :

 211 Figure 2.11: Hidden Markov model.

  HMM addresses three main types of problems: Evaluation problem: Knowing the model parameters λ =( A, B,π),a n dt h eo b s e r v e d sequence Y = {y 1 , y 2 ,...,y M }2R M ⇥1 ,c a l c u l a t et h ep r o b a b i l i t yo fo c c u r r e n c eo ft h e observed sequence. Prediction problem (also called the decoding problem) : The model's parameters λ = (A, B,π) are known, and the sequence of observations Y = {y 1 , y 2 ,...,y M }2R M ⇥1 and the most likely states sequence corresponding to the observations sequence is calculated.

  ments and the corresponding position coordinates obtained in the offline phase. Once the ANN is trained, it can estimate its location based on the online magnetic field measurements. The existing ANN-based methods for magnetic-field-based localization are mainly a convolutional neural network (CNN) and a recurrent neural network (RNN). CNN usually converts magnetic field fingerprints into 'image patterns' for classification and RNN for magnetic field time sequence prediction. Tab. 2.6 summarizes the deep-learning-based approach to magnetic field localization. DeepPositioning is a deep-learning-based indoor fingerprinting solution that combines magnetic field and WiFi fingerprinting with a deep neural network model to improve the accuracy of indoor localization [147]. While DeepPositioning is computationally expensive in the training phase, it is lightweight in the testing phase, which is advantageous for achieving real-time indoor localization on mobile devices. The performance of Deep-Positioning depends on the number of APs (access points), RPs (reference points), and labeled samples in the training dataset.

  Sun et al.[START_REF] Sun | Improving fingerprint indoor localization using convolutional neural networks[END_REF] proposed a hybrid localization method based on Bluetooth RSS (received signal strength) and magnetic field measurement data. The method converts the Bluetooth signal strength data in the fingerprint library into a 'fingerprint image' and then uses CNN for fingerprint localization. First, the CNN is used to classify the floor by the received Bluetooth signal strength, and the classification accuracy of floor location reaches 96.7%. After the floor was classified, the real-time magnetic field measurement data were matched with the magnetic field data in the area database to calculate the coordinates of the unknown point. The test accuracy reached 93.33%, with a positioning error of fewer than 1.4 m. When using a CNN for the dynamic localization test, the classification accuracy exceeds 91%, and the accuracy of dynamic localization is also within 1.55 m. This convolutional-neural-network-based fingerprint localization method provides an e ws o l u t i o nf o rm u l t i -fl oo rl a r g ei n d oo re n v i r o n m e n t s . DeepML is a system based on deep long and short-term memory (LSTM)[START_REF] Wang | Deepml: Deep lstm for indoor localization with smartphone magnetic and light sensors[END_REF]. It uses the magnetic and light sensors of a smartphone for indoor localization. Bimodal images were built by preprocessing, and location features are extracted by a trained deep LSTM network. Finally, an improved probabilistic approach is leveraged to estimate 2.9. SMARTPHONE-BASED PEDESTRIAN DEAD RECKONING the smartphone's location. The experimental results showed that about 58% of the test locations had a position error of less than 0.5 m, and 82% had a position error of less than or equal to 2 m in the laboratory. In the corridor, 65% of the test locations had a position estimation error less than or equal to 0.4 m. A total of 87% of the test locations achieved an error of 3 m or less.RNN was introduced to predict the position of geomagnetic signal sequences generated when objects move[START_REF] Bae | Large-scale indoor positioning using geomagnetic field with deep neural networks[END_REF][START_REF] Bhattarai | Geomagnetic field based indoor landmark classification using deep learning[END_REF][START_REF] Jang | Geomagnetic field based indoor localization using recurrent neural networks[END_REF][START_REF] Liu | Recurrent neural networks based on lstm for predicting geomagnetic field[END_REF]. A recurrent neural network (RNN) is a deep neural network model identifying time-varying data sequences. RNN combines current input data with remembered previous data sequences to produce output results from its recurrent network model. According to the test results, the geomagnetic field signal localization based on the LSTM model has a localization accuracy of 0.51 m in a medium-scale testbed and 1.04 m in a large-scale testbed. The average localization errors of the basic RNN model were 1.20 m and 4.10 m, respectively, [151].

4 .

 4 Auto-correlation: User walking is repetitive, and the periodicity of walking leads to as t r o n gp e r i o d i c i t yo fs e n s o rd a t a[ 1 7 0 ] . A u t o -c o r r e l a t i o nc a nb eu s e dt oc o m p a r e the correlation coefficients between two adjacent windows of accelerometer data.

57 2. 9 .

 579 SMARTPHONE-BASED PEDESTRIAN DEAD RECKONINGThe location of the smartphone influences the performance of the acceleration model based on the gait model. The walking speed affects the performance of the model that includes the step frequency. By adjusting the gain parameters of the gait model, the accuracy of the step estimation as well as the localization performance can be improved.

  calibration of the compass to determine the orientation of a mobile device quickly. The approach enables multi-user (and even cross-platform) AR applications where users can orient themselves based on a standard global reference (magnetic field) without sharing any visual feature maps. Huang et al.[START_REF] Huang | A fine-grained indoor fingerprinting localization based on magnetic field strength and channel state information[END_REF] constructed a fingerprinting database with Channel State Information (CSI) and magnetic field information. They then implemented an improved Line of Sight (LOS) recognition algorithm to narrow the matching area and provided a Multi-Dimensional Scaling k-Nearest Neighbor (MDS-KNN) method to achieve fingerprint matching. The algorithm provides better robustness and higher localization accuracy than traditional fingerprint localization methods.

  Compared to radio signals based on Wi-Fi, Bluetooth, GSM, FM, etc., magnetic-fieldbased positioning does not require infrastructure and saves deployment costs. While radio signals change over time, magnetic field data have the advantage of long-term stability. Radio signals, such as Wi-Fi, are shadowed, absorbed, and affected by multipath propagation, while the ubiquitous Earth's magnetic field is almost unaffected by human activity[START_REF] Ashraf | A comprehensive analysis of magnetic field based indoor positioning with smartphones: Opportunities, challenges and practical limitations[END_REF].

  scheme is designed to generate a time series-based feature dataset. Data fusion and localization are accomplished by exploiting the advantages of LSTM networks for time series prediction and characterization. The proposed fusion localization has an average error of about 0.4 m at best-a 90% reduction in localization error compared to filterbased localization. Chen et al. [226] proposed a feasible fusion framework using particle filters to fuse datadriven inertial navigation with Bluetooth Low Energy (BLE)-based localization. Typical BLE-based positioning technology can achieve a mean positional error (MPE) of 1.76 m. The fusion algorithm tested four smartphone uses: texting, swinging, calling, and pocketing. The mean positional error reached 0.78 m, 1.63 m, 1.11 m, and 0.96 m, respectively. Rizk et al. [227] present CellinDeep, a deep-learning-based localization system. It uses a deep network to model the inherent dependencies between different cell towers in an area of interest, capturing the nonlinear relationship between the cellular signal heard by a smartphone and its location. CellinDeep's test results on different Android phones show

2. 10 . 2

 102 Commercial Applications of Indoor Positioning Technology We have reviewed the most recent commercial companies offering indoor positioning software in Google Play and the App Store to see the current trends in indoor positioning technology based on their solutions. The existing commercial indoor positioning companies are listed in Tab. 2.8. These companies provide a public API (application programming interface) for Wi-Fi, BLE, inertial sensors, and magnetometer positioning that third-party developers can use. As of early 2022, there are still more commercial companies using Wi-Fi and iBeacon than those using geomagnetism, suggesting that existing Wi-Fi and Bluetooth fingerprints can still provide more reliable location services despite the drawbacks in terms of energy consumption and fingerprint stability. The application of academic research in magnetic positioning to real products remains very challenging. While Oriient only uses magnetic positioning, Indoor Atlas and Gipstech fuse magnetic signals with inertial sensors, Wi-Fi, and Bluetooth to provide more accurate positioning. Magnetic-field-based indoor 2.10. COMPARISON, APPLICATIONS

68 3. 2 .

 682 RELATED WORKonly the magnitude of MF measurements in practice and makes it difficult to use threedimensional MF measurements to improve discernibility. Ashraf et al.[START_REF] Ashraf | A comprehensive analysis of magnetic field based indoor positioning with smartphones: Opportunities, challenges and practical limitations[END_REF] provided a comprehensive analysis of the advantages and disadvantages of MF measurement. They highlighted the heterogeneity of smartphones, the height and behavior of users, and the low discernibility of MF measurements.

Fig. 3 .

 3 Fig. 3.1(a), 3.1(c) and 3.1(e) demonstrate the temporal stability of the MF measurements of heterogeneous smartphones at a specific location. The MF reading of the iPhone Xs Max and Huawei P9 is quite stable (at least, during a short observation time period), while the MF measurements of the Bluebird are corrupted by outliers and strongly biased compared to the other two groups. From Fig. 3.1(b) and 3.1(d), we can see that the
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 3233 Figure 3.2: MF measurements of heterogeneous smartphones at different dates on the same path.The magnetic fingerprint, including local indoor disturbances, is stable over time with-

Figure 3 . 4 :

 34 Figure 3.4: Rotatable and height-adjustable platform. the x,y component and magnitude of MF also change periodically when the smartphone rotates periodically; only the z components remain relatively stable. Instead of using MF magnitude as a signature, it is better to use the z component as a fingerprint.
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 3335 Fig. 3.5(b) is clearly not a sine curve and does not accurately represent the magnetic direction.Fig. 3.6(a) shows the MF measurements on the x, y, and z axis, where the MF measurements are approximately circular, illustrating that the soft iron effect can be ignored. Fig. 3.6(b) shows the projection of the MF measurement on the xy coordinate; the actual center of the circle is at (4.65, 4.01) instead of at the ideal origin (0, 0), which indicates

Figure 3 . 6 :

 36 Figure 3.6: Ellipse plot.

  3.7, was designed with the Arduino Pro Mini and 9-DoF LSM9DS1 [255] to study the unprocessed MF measurements; the software was developed using the open-source code available on the Arduino website [256]. Six designed devices (referred to as D1, D2, D3, D4, D5, and D6) were placed in a warehouse of width 45.69m and height 49.5m in the city of Tour, France. They continuously collected magnetic measurements in stationary mode 3.3. ANALYSIS OF THE MF CHARACTERISCTICS for 9 days until the battery ran out.

Figure 3 . 7 :

 37 Figure 3.7: Nine-DoF LSM9DS1 embedded with Arduino Pro Mini.

Figure 3 . 8 : 82 3. 4 .

 38824 Figure 3.8: Nine-DoF LSM9DS1 sensor's measurements.

3. 4 .

 4 CALIBRATION OF MAGNETIC FIELD given date. We tested these transformations (i.e., A and b)o v eraperiodoftimetoseeif periodic re-calibration is necessary. Moreover, we tested the same calibration parameters at different points to see if they depend on the ambient location or only on the considered smartphone. To accomplish these goals, three smartphones (iPhone Xs Max, Huawei P9, Bluebird) have been used to continuously collect MF data at 10 points from February to June 2020 in 2 buildings; point 1 to point 7 are in building 1; point 8 to point 10 are in building 2. Smartphones were rotated around X, Y, Z, respectively, for 120 s for the aim of calibration.

Figure 3 . 9 :

 39 Figure 3.9: Smartphone calibration test.

Fig. 3 .

 3 10(a), 3.10(c) and 3.10(e) show the original MF magnitude of the iPhone Xs Max, Huawei P9, and Bluebird. Fig. 3.10(b), 3.10(d) and 3.10(f) show the calibrated MF magnitude of the iPhone Xs Max, Huawei P9, and Bluebird, respectively.

Figure 3 . 10 :

 310 Figure 3.10: Magnitude of heterogeneous smartphones from 7 February 2020 to 29 June 2020.

Fig. 3 .

 3 Fig. 3.10(e) shows that the Bluebird's original MF measurements do not overlap.The MF intensity varies between 80 and 110 µTesla, much greater than the iPhone Xs Max and Huawei P9. However, the calibrated MF intensity (shown in Fig.3.10(f)) is essentially the same as the MF intensity of the iPhone Xs Max and Huawei P9, suggesting that magnetometer calibration can solve the problem of smartphone heterogeneity.

Fig. 3 .

 3 Fig. 3.11(a) compares the MF intensity of the three smartphones from February to June. The MF intensities of the iPhone and Huawei are stable and overlap. Assuming that the iPhone is used to construct an MF map, Huawei can also use this MF map for positioning. However, the MF intensity of Bluebird is significantly different from the other two devices. The difference in the MF measurements of the heterogeneous smartphone is a significant challenge for MF positioning.

Figure 3 . 11 :

 311 Figure 3.11: Comparison of heterogeneous smartphones.

Fig. 3 .

 3 Fig. 3.11(b) compares the calibrated magnitude of the P2 and P10 from February 2020 to June 2020. The calibrated MF intensity varies within a relatively stable range over five months, indicating that the calibration transformation is "stable" over time and over space. Heterogeneous smartphones have similar MF measurements at the same points. One can conclude that the MF calibration parameters are determined by the characteristics of the smartphone, and not by the environment. In addition, magnetometer
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 312 Figure 3.12: Third floor of Polytech Orléans-Galilée, Univ. of Orléans with test zone 1,2 and 3.

Figure 3 . 13 :

 313 Figure 3.13: Smartphone training set in zone 2.

Fig. 3 .

 3 14 shows the confusion matrix for the three smartphones using the KNN method, blue indicates correctly classified points, other colors indicate incorrectly classified points. Huawei P9 performs better in zone 2 (landmark 11 to landmark 20) and does not have high positioning accuracy in zones 1 and 3.
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 314 Figure 3.14: Confusion matrix for KNN methods with different smartphones. (a) iPhone Xs Max. (b) Huawei P9. (c)B l u e b i r d .

3. 6 .

 6 CONCLUSIONSNext, we use the iPhone Xs Max for the training set to obtain the prediction model and test the other two smartphones separately. Tab. 3.5 illustrates the positioning accuracy.

Chapter 4 Robust

 4 Calibration of Magnetometer with Alternating Direction Method of Multipliers Magnetometers have a wide range of applications in inertial navigation. The calibration of the magnetometer is an essential step in magnetic field-based localization and attitude estimation. This chapter is the first to present an ADMM-based algorithm for calibrating three-axis magnetometers in the presence of outliers and spurious measurements. Two pre-processing methods for outliers, truncation, and compression, are proposed. We compare the ADMM-based magnetometer calibration algorithm with other state-of-the-art methods and demonstrate the robustness and accuracy of the ADMM-based magnetometer calibration algorithm with synthetic data.

  Denote D =[d 1 ,...,d N ],w ec a ng e t : r =min q D > q .

  ROBUST CALIBRATION Truncation: The truncation function is almost linear y 2 =min(km b k,t). (4.11) where km b k is the magnitude of m b ,andt is the predefined threshold. Fig. 4.1 shows the truncation and compression functions, respectively. Then we can obtain the processed magnetic field signal by using the following equation m = m b y km b k , where y = {y 1 ,y 2 } .

Figure 4 . 1 :

 41 Figure 4.1: Pre-processing method.

22 )

 22 Similar to[START_REF] Wu | On calibration of three-axis magnetometer[END_REF], γ, β, α are generated as follows: γ =20sin(20πn/N + π/2), β =360n/N, where (n =1,...,N), α =20sin(20πn/N).

(4. 23 )

 23 δ percent of the total samples were randomly collected and set as outliers with an outlier 4.4. SIMULATION EXPERIMENT intensity of o ⇠ U(0.5, 1);W es e tN = 1000 samples, 50 iterations of Monte Carlo algorithm for simulation experiments.

Fig. 4 .

 4 Fig. 4.2(a) illustrates the ideal data, Fig. 4.2(b) shows the ideal data corrupted by bias and outliers, Fig. 4.2(c) represents the magnitude of ideal data and distorted data.

  (a) Ideal data. (b) Distorted Data. (c) Distorted Magnitude.
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 42 Figure 4.2: Soft and hard iron effects with outlier.

Figure 4 . 3 :

 43 Figure 4.3: Pre-processing result.

  Smaller r A and r b indicate that the calibration parameters are closer to the ground truth of A and b.F r o m t h e s e c o n d c o l u m n , i t c a n b e s e e n t h a t t h e r e s i d u a l r m for the magnetic field signal without preprocessing can be significant due to the presence of outliers. In the horizontal direction, the residual r m is significantly lower for signals processed by truncation and compression, this shows that pre-processing is effective in improving calibration performance. LS and ADMM works better with truncation, and MAGICAL works better with compression. The combination of ADMM and Truncation gives the best results.

Fig 4 . 4

 44 Fig 4.4(a) shows the calibration results without preprocessing, the results of the ADMM

5. 1 .

 1 INTRODUCTIONlimitations such as noise and multipath distortion, radio mismatch issues, fluctuations in Wi-Fi signals, vulnerability to changes in APs and heterogeneity of Wi-Fi devices, and the positioning performance is severely degraded in dynamic environments. In addition, in recent times Android has restricted frequent scanning of Wi-Fi APs (Wi-Fi scan throttling),

accuracy of typically 1

 1 to 5 m. It has the advantage of low reception range and low energy consumption. However, BLE is expensive as it requires the intensive deployment of BLE beacons to improve positioning accuracy. It also has inherent limitations in radio signal propagation, such as shadowing, signal absorption, and multipath.

5. 3 .

 3 MAGNETIC FIELD PRELIMINARIES prominent features in indoor environments. Three LSTM-based DRNNs were proposed to classify magnetic field landmarks by Bhattarai et al. in[START_REF] Bhattarai | Geomagnetic field based indoor landmark classification using deep learning[END_REF]. Magnetic landmarks were collected at 25 points in the corridor and 17 points in the laboratory, and the experimental results achieved a 97.20% accuracy.

Figure 5 .

 5 Figure 5.1 shows the m x , m y , m z axes and intensity components of the magnetic field measurement of three heterogeneous smartphones.Figure 5.1(a),5.1(b),5.1(c) indicate

Figure 5 .

 5 1(a),5.1(b),5.1(c) indicate trajectories in the forward direction along the corridor.

  Figure 5.1(a),5.1(b),5.1(c). It can be clearly observed that the magnetic trajectories of heterogeneous smartphones exhibit similar patterns in the same corridor for all components. Also, symmetrical patterns can be found between the forward and backward figures (e.g., Figure 5.1(a) and 5.1(d)). Take Figure 5.1(a) and 5.1(d) as an example. Since the m x (red) and m y (blue) components of the magnetic field are direction-dependent, i.e., the magnetic declination equals arctan my mx . It is difficult to see whether the correspondence of m x and m y are in opposite directions (forward and backward).

  iPhone Xs Max forward.

  iPhone Xs Max backward.

  Redmi Note 7 backward.

Figure 5 . 1 :

 51 Figure 5.1: Magnetic field measurements of the same corridor collected using heterogeneous smartphones.

Figure 5 .

 5 Figure 5.2 shows the transformation of the magnetic field into horizontal and vertical components.Figure 5.2(a), 5.2(b), and 5.2(c) indicate transformed trajectories in the for-

Figure 5 .

 5 2(a), 5.2(b), and 5.2(c) indicate transformed trajectories in the forward direction along the corridor.

  Figure 5.2(d), 5.2(e), and 5.2(f) represents transformed trajectories in the backward direction along the corridor. It was mentioned earlier that the m x and m y components are direction-dependent, while the m z and mag components are relatively stable. We, therefore, transform the magnetic field measurements into horizon-vertical-coordinate. Take Figures 5.2(d) and 5.2(d) as examples, the vertical component (blue) m v and the magnetic field intensity mag (black) is centrosymmetric in the forward and backward directions, and since the horizontal component m h (red) is equal to m h = p mag 2 m 2 v .W et h e r ei n f e rt h a tm h is also centrosymmetric in the forward and backward directions.

  iPhone Xs Max transformed data backward.

Figure 5 . 2 :

 52 Figure 5.2: Magnetic field measurement after coordinate transformation in the same corridor.

Figure 5 . 3 :

 53 Figure 5.3: Visualization of a stack of causal convolutional layers stack.

Fig. 5

 5 

Figure 5 . 4 :

 54 Figure 5.4: Visualization of a stack of dilated causal convolutional layers.

Fig 5 . 5

 55 Fig 5.5(a) depicts the residual learning block. Assume that H(x) is an underlying mapping composed of multiple stacked layers, with x representing the input of the initial layer. The

Fig. 5 .

 5 Fig. 5.6 depicts the framework of the proposed TCN-based magnetic trajectory classification system. The system is comprised of two phases: offline training and online test.

Figure 5 . 7 :

 57 Figure 5.7: Designed corridors in Polytech Galilee.

Fig 5 . 8

 58 Fig.5.9(a) shows the confusion matrix result of the 3 trained smartphones(iPhone Xs Max, iPhone 12 Mini and Redmi Note 7). The diagonal blue areas represent correctly predicted points, while the non-diagonal parts represent wrongly predicted points.

Figure 5 . 8 :

 58 Figure 5.8: Test trajectories predictions.
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3 . 4 .

 34 Environmental noise: The installation of items containing ferromagnetic materials such as washing machines, vending machines, and lifts can affect the MF measurements of the smartphone. It requires updating and maintaining the magnetic fingerprint database [31]. Complex user behavior :S m a r t p h o n e -b a s e di n d o o rp o s i t i o n i n gi sc o m p l e x .F o re xample, positioning accuracy can be affected by differences in smartphone users (male and female, height, handheld position) and user behavior (calling, texting, pocketing). Using accelerometer and gyroscope data to track the behavior of the smartphone user and obtaining a rotation matrix to transform the magnetic field data from the device frame to the Earth frame introduces accumulative accelerometer and gyroscope errors and deviation.

6. 3 Future 1 . 2 . 3 .. 4 .

 31234 Prosp ects for the Use of Magnetic Fingerprint-Based TechnologyWe take a closer lo ok at promising applications that could use magnetic-field-based p ositioning techniques and options that could further enhance magnetic-field-based positioning. Applying cross-domain techniques: Cross-domain techniques such as signal processing, machine learning, and deep learning techniques can be implemented to optimize existing magnetic field fingerprint-based localization. Magnetic field localization schemes can also benefit from using deep learning techniques such as RNN for faster and more accurate position estimation[START_REF] Vo | A survey of fingerprint-based outdoor localization[END_REF]. Hybrid Indoor Positioning Approaches:D e p e n d i n go nt h er e q u i r e dp o s i t i o n i n ga ccuracy, the combination of magnetic fields with Wi-Fi, Bluetooth, and GSM complements the hybrid positioning solution. Providing location-based services :U s em a g n e t i cp o s i t i o n i n gt od e t e r m i n et h el o c ation of a target of interest and then use location-based services to obtain information about that target, such as 'restaurant prices and customer reviews' or 'seller promotions'Seamless indoor-outdoor positioning system using magnetic fingerprinting: The unified use of magnetic field positioning technology for indoor and outdoor positioning allows seamless user tracking, making it a universal positioning solution.7.1. CONTEXTE GÉNÉRAL

  des dispositifs Wi-Fi, et les performances de positionnement sont fortement dégradées dans les environnements dynamiques. En outre, ces derniers temps, Android a restreint le balayage fréquent des points d'accès Wi-Fi (limitation du balayage Wi-Fi), ce qui a limité l'utilisation généralisée des méthodes de localisation Wi-Fi[START_REF]Android Developers: Wi-Fi scanning overview[END_REF].La technologie BLE[START_REF] Mainetti | A survey on indoor positioning systems[END_REF] a été au centre de l'attention pour les technologies de positionnement à l'intérieur des bâtiments, avec une précisionde 1 à 5 m. Elle présente l'avantage d'une faible portée de réception et d'une faible consommation d'énergie. Cependant, la 7.1. CONTEXTE GÉNÉRAL technologie BLE est coûteuse car elle nécessite le déploiement intensif de balises BLE pour améliorer la précision du positionnement. Elle présente également des limites inhérentes àlapropagationdusignalradio,tellesquel'om brage,l'absorptiondusignaletlestrajets multiples. L'UWB [20] présente les avantages d'une grande précision (10⇠30 cm), d'une haute résolution par trajets multiples, d'une large bande passante, d'une faible latence, d'une forte pénétration et de l'absence d'interférences. Les contraintes de l'UWB comprennent des exigences élevées en matière d'infrastructure, une consommation d'énergie élevée et des coûts d'utilisation élevés.

7. 2 .

 2 DESCRIPTION DE LA THÈSE magnétique utilise la Terre et la perturbation du champ magnétique local pour atteindre l'objectif de positionnement intérieur, ce qui présente l'avantage de la sécurité, de la fiabilité, du faible coût et de l'absence d'infrastructure. Cette thèse vise à proposer des solutions pour le positionnement intérieur basé sur le champ magnétique, en relevant des défis tels que la faible discernabilité, les dispositifs hétérogènes et la perturbation des matériaux ferromagnétiques. 7.2 Description de la thèse 7.2.1 Plan de la thèse et contributions Le reste de la thèse est organisé comme suit : Chapitre 2. Une étude sur la localisation intérieure basée sur les champs magnétiques. Dans ce chapitre, nous avons d'abord présenté les caractéristiques du champ magnétique et discuté de ses avantages et défis. Nous avons ensuite décrit le modèle de magnétomètre et les effets de l'interférence ferromagnétique. Les systèmes de coordonnées du magnétomètre, du dispositif et du monde couramment utilisés pour le positionnement dans le champ magnétique ont été résumés, et leurs relations de transformation ont été présentées. Les bases de données de référence existantes sur le champ magnétique ont été examinées afin de sélectionner des ensembles de données appropriés pour tester les algorithmes. Nous décrivons les méthodes traditionnelles de construction de cartes de champ magnétique, qui demandent beaucoup de travail, et examinons les méthodes de crowdsourcing et de localisation et cartographie simultanées pour la construction efficace de cartes de champ magnétique. Les méthodes les plus récentes, telles que les repères magnétiques, la distorsion temporelle dynamique, l'empreinte magnétique, les filtrages, la localisation et la cartographie simultanées et les réseaux neuronaux, sont passées en revue et leurs scénarios d'utilisation et leurs performances de positionnement sont résumés. La combinaison du champ magnétique et du PDR est un système de positionnement hybride couramment utilisé. Nous passons également en revue l'algorithme PDR basé sur les smartphones pour la détection des pas, l'estimation de la longueur des pas et l'estimation de l'orientation des pas.7.2. DESCRIPTION DE LA THÈSE Nous avons comparé les avantages et les inconvénients des champs magnétiques à d'autres technologies de positionnement, notamment le Wi-Fi, le Bluetooth, le GSM, la FM, les caméras, l'acoustique et les capteurs inertiels. Nous avons examiné les tendances des applications industrielles pour ces technologies de positionnement. Enfin, nous avons résumé les applications, les défis et les perspectives du positionnement intérieur basé sur les champs magnétiques. Par conséquent, l'objectif de cette étude est de fournir une vue d'ensemble et une comparaison opportune et complète des techniques de localisation du champ magnétique afin que le lecteur puisse rapidement acquérir une compréhension de la recherche. En plus de discuter des avantages et des inconvénients des diverses méthodes de pointe, nous abordons également la transformation des systèmes de coordonnées du champ magnétique liés aux systèmes de coordonnées de la terre, du smartphone et du capteur.

Chapitre 3 .

 3 Analyse des mesures de champs magnétiques pour le positionnement à l'intérieur des bâtiments Ce chapitre a abordé les problèmes de faible discernement, de dispositifs hétérogènes et d'interférence des matériaux ferromagnétiques avec le positionnement par champ magnétique et a mis au point une série d'expériences pour analyser la faisabilité de l'utilisation des mesures de champ magnétique seules pour le positionnement à l'intérieur.7.2. DESCRIPTION DE LA THÈSE Les caractéristiques statistiques des mesures du champ magnétique ont été étudiées par des expériences statiques avec des smartphones et des magnétomètres hétérogènes. Les expériences de trajectoire ont permis de vérifier que les trajectoires des mesures de champ magnétique des smartphones hétérogènes présentent des modèles similaires, qui peuvent être utilisés pour le positionnement de zone et la détermination de la position initiale. Les expériences de rotation ont montré que les axes X et Y du champ magnétique dépendent de la direction, tandis que la lecture de l'axe Z est indépendante de la direction. Les expériences de calibration prouvent que les mesures du champ magnétique du fer dur et du fer doux dépendent uniquement du matériel du smartphone et sont indépendantes de l'environnement. Les expériences de classification ont évalué les performances du positionnement du champ magnétique des dispositifs homogènes et hétérogènes en utilisant diverses techniques d'apprentissage automatique. Grâce à ces expériences, nous avons conclu à la faisabilité et aux limites du positionnement du champ magnétique. Ce chapitre analyse les défis et la faisabilité du positionnement à base magnétique par le biais d'expériences systématiques.
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 4135213626 Calibrage robuste d'un magnétomètre avec la méthode des multiplicateurs à direction alternée DESCRIPTION DE LA THÈSE Ce chapitre a présenté un algorithme de calibration de magnétomètre basé sur la méthode ADMM pour calibrer les magnétomètres triaxiaux avec des mesures aberrantes et parasites. Des méthodes de troncature et de compression sont proposées pour prétraiter les mesures aberrantes et transformer le problème d'étalonnage du magnétomètre en un problème d'ajustement d'ellipse, qui est ensuite résolu à l'aide de la méthode ADMM. L'algorithme a été évalué avec des données synthétiques de champ magnétique et comparé avec des méthodes de pointe, démontrant la robustesse et la précision de l'algorithme proposé. Dans ce chapitre, nous tout d'abord introduisons d'abord le modèle de magnétomètre classique et son algorithme de calibration, puis nous proposons un modèle de magnétomètre avec des valeurs aberrantes. Des méthodes de troncature et de compression sont proposées pour prétraiter les valeurs aberrantes, et une méthode de calibration du magnétomètre basée sur ADMM est présentée pour la première fois. Nous comparons l'algorithme de calibration de magnétomètre basé sur ADMM avec d'autres méthodes de pointe et démontrons la robustesse de l'algorithme de calibration de magnétomètre basé sur ADMM. Chapitre 5. Positionnement intérieur basé sur le champ magnétique à l'aide de réseaux convolutifs temporels Dans le chapitre 5, nous avons proposé un système de positionnement du champ magnétique basé sur des réseaux convolutifs temporels.Les méthodes traditionnelles de positionnement par champ magnétique collectent des informations sur le champ magnétique de chaque point de l'espace pour constituer une base de données d'empreintes magnétiques. Pendant la phase de positionnement, les mesures de champ magnétique en temps réel sont mises en correspondance avec une carte de champ magnétique afin de prédire l'emplacement de l'utilisateur. Toutefois, cette approche nécessite un temps considérable pour parcourir l'ensemble de la base de données d'empreintes magnétiques et n'exploite pas efficacement les modèles uniques de la séquence de champ magnétique pour améliorer la précision et la robustesse du système de positionnement. Ces dernières années, l'application de l'apprentissage profond pour le positionnement par champ magnétique en intérieur a connu une croissance rapide, notamment en utilisant la séquence de champ magnétique comme série temporelle et un modèle LSTM entraîné pour prédire la position, évitant ainsi directement le processus de correspondance qui prend beaucoup de temps. Cependant, l'entraînement du LSTM DESCRIPTION DE LA THÈSE prend du temps et un problème de dégradation se produit lorsque la pile de couches augmente. Ce chapitre a proposé un système de positionnement du champ magnétique basé sur le TCN qui extrait les caractéristiques de la séquence du champ magnétique par un prétraitement avec transformation des coordonnées, filtrage de lissage et différentiation de first ordre. Il est prouvé que la méthode proposée est applicable de manière transparente aux smartphones hétérogènes. Les modèles TCNs formés sont comparés aux modèles LSTM et GRU, montrant la grande précision et la robustesse de l'algorithme proposé.Cet algorithme utilise un modèle unique de séquences de champ magnétique pour améliorer la précision du système de positionnement. Contrairement aux méthodes traditionnelles de positionnement des empreintes digitales, la méthode proposée ne nécessite pas de parcourir l'ensemble de la base de données des champs magnétiques. Elle évite également le problème de dégradation lorsque le nombre de couches de la pile augmente.Nous avons développé trois méthodes de prétraitement : transformation des coordonnées, filtrage de lissage et différenciation de premier ordre pour extraire les caractéristiques des séquences de champ magnétique. Des expériences approfondies sont menées sur une vaste base de données de champ magnétique collectée à l'intérieur pour démontrer l'efficacité de l'algorithme proposé par rapport aux algorithmes d'apprentissage profond de pointe. Conclusions et perspectives Ce chapitre tire les conclusions et aborde les perspectives possibles pour les travaux futurs. Conclusions Dans cette thèse, nous avons présenté plusieurs contributions au positionnement intérieur basé sur le champ magnétique. Nous avons présenté une étude complète du positionnement intérieur basé sur le champ magnétique. De l'origine de la position géomagnétique, les composantes du champ magnétique, ses avantages et ses défis sont introduits. Les modèles de magnétomètres et les effets des interférences ferromagnétiques sont décrits. Les systèmes de coordonnées pour le positionnement basé sur le champ magnétique, tels que les systèmes de coordonnées du capteur, les systèmes de coordonnées du dispositif et les coordonnées du monde, sont également présentés. Plusieurs systèmes de coordonnées couramment utilisés pour la localisation par champ magnétique sont présentés, et leurs relations de conversion sont démontrées. Les bases de données de référence de champ magnétique existantes et accessibles au public, les algorithmes 7.2. DESCRIPTION DE LA THÈSE d'étalonnage des magnétomètres et les méthodes de pointe pour construire des cartes du champ magnétique sont également passés en revue. Les méthodes de pointe basées sur les repères magnétiques, le DTW, l'empreinte du champ magnétique, le filtrage, le SLAM, les réseaux neuronaux et les algorithmes PDR sont résumées. Une série d'expériences a été mis au point pour analyser la faisabilité de l'utilisation des seules mesures de champ magnétique pour le positionnement intérieur. Des expériences statiques avec des smartphones et des magnétomètres hétérogènes démontrent que les mesures de champ magnétique obéissent à une distribution gaussienne. Des expériences de trajectoire ont vérifié que les trajectoires des mesures de champ magnétique de smartphones hétérogènes présentent des motifs similaires, une propriété qui peut être utilisée pour identifier des zones spécifiques. Les expériences de rotation vérifient que les axes X et Y du champ magnétique sont dépendants de la direction et que les lectures de l'axe Z indépendantes de la direction peuvent être utilisées comme une caractéristique pour le positionnement du champ magnétique. Les expériences de calibrage démontrent que les mesures de champ magnétique pour le fer dur et le fer doux ne dépendent que des paramètres internes du smartphone et sont indépendantes de l'environnement. Des expériences de classification évaluent les performances de positionnement par champ magnétique de dispositifs homogènes et hétérogènes et démontrent la faisabilité et les limites du positionnement par champ magnétique.
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 1392 Comportement complexe de l'utilisateur : Le positionnement intérieur basé sur les smartphones est complexe. Par exemple, la précision du positionnement peut être affecté par les différences des utilisateurs de smartphones (hommes et femmes, taille, position des mains) et le comportement des utilisateurs (appeler, envoyer des SMS, empocher). L'utilisation des données de l'accéléromètre et du gyroscope pour suivre le comportement de l'utilisateur du smartphone et l'obtention d'une matrice de rotation pour transformer les données de champ magnétique du cadre de DESCRIPTION DE LA THÈSE l'appareil au cadre de la Terre introduisent des erreurs et des déviations cumulatives de l'accéléromètre et du gyroscope. Efficacité énergétique : Lors du choix d'un algorithme de localisation, la complexité de la solution de localisation doit être prise en compte. Des algorithmes plus complexes consommeront plus d'énergie tout en prenant plus de temps à calculer, et les retards dans la localisation peuvent perturber l'expérience de l'utilisateur. Reproductibilité et généralité : Il n'existe pas de norme unique pour évaluer la précision de positionnement des différents algorithmes. La plupart des expériences de la littérature sont des expériences de marche dans une petite zone d'un immeuble de bureaux. Dans un environnement contraint, les auteurs utilisent un smartphone homogène et la même position de portage pendant la phase de formation et de localisation pour obtenir une précision inférieure à 1 m. Cependant, les scénarios d'application pratique sont souvent plus complexes que les expériences, et les smartphones hétérogènes et les différentes positions de portage peuvent diminuer la précision. Sa reproductibilité et sa généralité sont faibles en cas de déploiement pratique. Perspectives pour l'utilisation de la technologie basée sur les empreintes magnétiques Nous examinons de plus près les applications prometteuses qui pourraient utiliser les techniques de positionnement basées sur le champ magnétique et les options qui pourraient encore améliorer le positionnement basé sur le champ magnétique. • Application de techniques inter-domaines : Des techniques inter-domaines telles que le traitement du signal, l'apprentissage automatique et les techniques d'apprentissage profond peuvent être mises en oeuvre pour optimiser la localisation existante basée sur l'empreinte de champ magnétique. Les schémas de localisation par empreinte de champ magnétique peuvent également bénéficier de l'utilisation de techniques d'apprentissage profond telles que le RNN pour une estimation plus rapide et plus précise de la position.
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 1 . . 1: Advantages and disadvantages of indo or p ositioning technologies.
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 2 1: Magnetometers of different smartphones

	2.3. MAGNETOMETER MEASUREMENT MODEL	
	Smartphone	3-Axis Magnetometer	Sensitivity	Temperature ( C)
	Xiaomi Mi A1	AKM AK09918 [59]	0.15 µT/LSB	[ 30, 85]
	LG Nexus 5X	Bosch BMM150 [60]	0.3 µT/LSB	[ 40, 85]
	Samsung Galaxy S8	AK09916C [61]	0.15 µT/LSB	[ 30, 85]
	OnePlus 3	MEMSIC MMC3416PJ [62]	0.05 µT/0.2 µTpe rL S B resolution for 16/14 bits	[ 40, 85]
	Google Pixel 3	LIS2MDL [63]	0.0015 µT/LSB	[ 40, 85]
	iPhone 7	Alps HSCDTD008A [64]	0.15µT/LSB	[ 40, 85]

Table 2 .2: Overview of existing publicly available datasets.

 2 

	Data collection was performed by wearing two devices simultaneously: a smartphone
	and a smartwatch. The smartphone model is a Sony Xperia M2, and the smartwatch
	model is an LG W110G Watch R.
	4. MagPIE: MagPIE (accessed date: 07 March 2022) was presented at IPIN in 2017 [71].
	Data were collected by handheld and wheel-mounted robotic sensors over a test area

3. Barsocchi et al. Barsocchi et al. [70] dataset (accessed date: 07 March 2022) was presented at IPIN 2016. The dataset consists of 36795 consecutive samples collected over an area of 185 m 2 , including corridors and corridors connected by turns. The dataset includes data from Wi-Fi and magnetic fields, acceleration, and gyroscopes.

Table 2 .

 2 4: Comparison of crowdsourcing approaches.

	2.7. MAGNETIC FIELD MAP CONSTRUCTION		
	from the starting point to the endpoint. The smartphone records the accelerometer, gyro-
	scope, and magnetometer readings during the walk. The estimated actual user trajectory
	is matched to the pre-planned path to determine the location of each step. The positions
	of the collected magnetic signals are interpolated from the positions of adjacent steps.
	2.7.2 Crowdsourcing Approaches		
	Crowdsourcing-based localization systems typically have lower localization accuracy than
	the systems based on explicitly surveyed fingerprint data. Tab. 2.4 depicts the compari-
	son of localization accuracy based on geomagnetic field crowdsourcing methods. Mobile
	crowdsourcing methods do not require pre-labeled reference points and manual calibration
	and are becoming an attractive way to construct magnetic field maps [89].	
	Paper	Information	Device	Area	Geomagnetic Measurement	Accuracy
	MeshMap [90]	• Pressure • Magnetometer • Orientation	• Google Nexus 5	• Campus Building • Magntitude	• 90% time less than 1 m.
	Luo et al. [87]	• Accelerometer • Gyroscope • Magnetometer	• Huawei mate 8 • Samsung S4	• 70 ⇥ 40 m 2	• Magntitude	• 70% time within 2 m • 95% time within 4 m
	Ayanoglu					
	et al. [91]					

Table 2 .

 2 5: Comparison of SLAM methods

	Authors	Device	Approaches	Test area	Accuracy
	eSLAM [145]	• Trolley • Samsung Galaxy S3	• Exponentially weighted particle filter • Kriging interpolation	• 10 m ⇥ 10 m	• The error of 500 steps is 5 m
					• In 19 of the
			• Rao-Blackwellized		20 cases,
	Vallivaara et al [95]	• Robot	particle filter	• Room level	the maps were
			• Gaussian Processes		geometrically
					consistent
	MagSLAM [146]	• Fo ot-mounted sensors	• Particle filter • Hierarchy of hexagonal grids for magnetic map	• Different building	• 2D position errors of 10 to 20 cm
			• Odometry of ARKit		
	Kok and Solin [99]	• iPhone 6s	• Rao-Blackwellized Particle filter	• Path length 125 m	• Not mentioned
			• Gaussian process		
			• FastSLAM	• Engineering Building	
	SemanticSLAM [103]	• Different Android smartphones	algorithm + IMU • Magnetic Field	(3000 m 2 ) • Shopping Mall	• 0.53 m median localization error
			• WiFi landmark	(6000 m 2 )	

Table 2 .

 2 6: Comparison on NN-based localization methods

	Papers	Information	Method	Area	Device	Accuracy
						• 60% of test
	DeepPositioning [147]	• Magnetic field • WiFi	• DNN	• 13.4 ⇥ 6.4 m 2	• Huawei • MT7-TL00	samples under 1.5 m, 78% of test
						samples under 2.0 m
	Ashraf et al. [148]					

  2.9. SMARTPHONE-BASED PEDESTRIAN DEAD RECKONING Inertial navigation technologies are divided into strapdown inertial navigation system (SINS) and pedestrian dead reckoning (PDR). SINS binds one or more Inertial Measurement Units (IMUs) on the human body (such as head, waist, legs, feet, etc.), utilizes the mechanical equation to calculate the location of pedestrian, and employs Zero Velocity Update (ZUPT) to reset the integration errors[START_REF] Wang | Pedestrian dead reckoning based on walking pattern recognition and online magnetic fingerprint trajectory calibration[END_REF]. PDR calculates walking steps and estimates step length and moving direction based on the smartphone-embedded IMUs to reckon the position of pedestrian. The challenge with PDR-based methods is the accurate heading estimation for the user, which is especially difficult when the user is carrying the device in any position. Moreover, both PDR and SINS approaches suffer from the drift problem (i.e., small errors in the measurement of acceleration and angular velocity which are integrated into progressively larger errors in trajectory estimation), which makes it unsuitable for long-term localization.

The fusion of PDR/SINS and magnetic fingerprint localization can mitigate this problem and achieve better localization accuracy than a single magnetic fingerprinting localization method.

  Ho et al. proposed an adaptive estimator based on the average step speed model to obtainthe walking step length[START_REF] Ho | Step-detection and adaptive step-length estimation for pedestrian dead-reckoning at various walking speeds using a smartphone[END_REF]. They trained K 2 with the linear regression model shown

	in Eq. (2.52)		
	K 2 =0.68 0.37 ⇥ vstep +0.15 ⇥ v2 step	(2.52)
	q		
	vstep =	v2 step X +v 2 step Y +v 2 step Z	(2.53)
	where vstep		

X , vstep Y ,a n dv step Z are the magnitudes of the average velocities on the X, Y, and Z axes in each step, respectively. K 2 was then brought into Equation (2.51). The 56 2.9. SMARTPHONE-BASED PEDESTRIAN DEAD RECKONING work in

Table 2 .

 2 7: Comparison of magnetic field with other techniques for smartphone-based indoor localization.

	Authors	Smartphone-Based	Infrastructure	Method	Power	Accuracy
		Sensor Signal			Consumption	
	Zhang et al. [225]					

Table 2 .

 2 8: Commercial applications based on magnetic positioning of smartphone.

	Company	Solutions
	Nextome Technology [233] • BLE (1-2 m)
	Crowd Connected [234]	• Beacon
	Mirror Teknoloji [235]	• Beacon
	Indoora [236]	• Beacon (under 2 m)
	Oriient [237]	

Table 3 .

 3 1: Magnetometer information and operating systems for heterogeneous smartphones.

	Smartphone	System Version	Magnetometer Model	Sensor Vendor	Description
					• 3-axis, 14-bit;
	Huawei P9	Android 8.0	AK09911	AKM	• 0.6 µT/LSB;
					• Range: 4900 µT
					• 3-axis, 14-bit;
	Redmi Note 10 Pro Android 11	AK0991x	AKM	• 0.15 µT/LSB
					• Range: 4900 µT
					• 3-axis, 16-bit;
	Samsung S9	Android 9.0	AK09916C	AKM	• 0.15 µT/ L S B ;
					• Range: 4670 µT
					• 3-axis, 16-bit;
	Bluebird	Android 6.0	Mmc3416x	MEMSIC	• 0.05 µT/ L S B ;
					• Range: 1600 µT
	iPhone Xs Max	iOS 15.3.1	⇠⇠	⇠

Table 3 .

 3 2: Summary of MF intensity statistic characteristics.

	Time	Device	Mean Std Kurtosis Skewness
		iPhone Xs Max 46.87 0.25	2.72	0.06
	22 January 2021	Huawei P9	50.00 0.52	3.87	0.32
		Bluebird	122.24 1.94	506.21	0.04
		iPhone Xs Max 47.63 0.37	3.09	0.62
	4F e b r u a r y2 0 2 1	Huawei P9	49.01 0.53	3.97	0.37
		Bluebird	125.19 1.79 1764.79	12.33

MF magnitude follows approximately a normal distribution. However, Fig.

3

.1(f) shows that Bluebird's MF measurements do not follow a normal distribution due to the effect of outliers. Tab. 3.2 summarizes the mean values, standard deviations, kurtosis, and skewness of MF intensity with heterogeneous smartphones. From the column of standard deviation, the standard deviation of the iPhone Xs Max is relatively low. Huawei's standard deviation is moderate, while Bluebird's standard deviation is the largest and the measurement

Table 3 .

 3 3: MF intensity variance comparison.

	D1 D2 D3 D4 D5 D6
	Original MF Variance 3.67 0.24 0.74 0.20 8.03 0.20
	Filtered MF Variance 0.01 0.19 0.01 0.16 0.07 0.11

Table 3 .

 3 4: Accuracy comparison of homogeneous devices with different positioning methods.

	Smartphone KNN Decision Tree Naive Bayes Discriminant Analysis SVM
	iPhone	93.3%	76.7%	76.7%	88.0%	86.0%
	Huawei	53.3%	40.7%	40.7%	42.7%	52.0%
	Bluebird	88.7%	82.0%	82.0%	89.3%	88.0%

Table 3 .

 3 5: Accuracy comparison of heterogeneous devices with different positioning methods. (iPhone Xs Max is the training set; Huawei P9 and Bluebird are the test sets, respectively).

	Smartphone KNN Decision Tree Naive Bayes Discriminant Analysis SVM
	Huawei	59.3%	53.3%	53.3%	47.3%	46.0%
	Bluebird	59.3%	44.7%	44.7%	55.3%	55.7%

Table 4 .

 4 

	1: Calibration parameter residuals comparison
	Without preprocessing	Truncation Compression
	LS [263]	

  The magnetic field trajectories' unique pattern can overcome the low discernibility problem of the magnetic field, but it is also very timeconsuming and can cause time delays. Although magnetic field anomalies can be used to locate users moving through narrow corridors, it remains challenging to locate users in expansive areas. Perez-Navarro et al.[START_REF] Perez-Navarro | Magnetic field as a characterization of wide and narrow spaces in a real challenging scenario using dynamic time warping[END_REF] created eight 'virtual corridors' to simulate users' movement upon entering this building. Using the DTW method, they obtained a

	dataset of 64 paths (8 paths * 2 directions * 4 smartphones) and achieved corridor-level
	positioning.

Table 5 .

 5 1: Magnetometer information and operating systems for heterogeneous smartphones.

	Smartphone	Operating System	Magnetometer	Sensor Vendor	Description
	Samsung Galaxy S20 Android 11	AK09918C	AKM	3-axis,16-bit; Sensitivity: 0.15 µT/LSB
	Samsung Galaxy 9	Android 9.0	AK09916C	AKM	3-axis,16-bit; Sensitivity: 0.15 µT/LSB;
	OnePlus 7T Pro	Android 11	MMC5603X	MEMSIC	3-axis,16-bit; Sensitivity: 0.15 µT/LSB
	Redmi Note 7	Android 10	AK09918	AKM	3-axis,16-bit; Sensitivity: 0.15 µT/LSB
	iPhone Xs Max	iOS 15.61	⇠⇠	⇠
	iPhone 12 Mini	iOS 16.0.2	⇠⇠	⇠

  4 . Tab. 5.3 shows the working environment of the experiment. The experiments in this chapter are carried out on macOS Monterey, CPU is Intel Core i7 6 cores with a base

	Table 5.2: TCNs parameterization
		Parameter
	Num of Filters	128
	Filter size	5
	Dropout factor 5 ⇥ 10 3 Num of Blocks 6
	Optimizer	'adam'
	Epochs		120
	Mini Batch Size 4
	Learning rate	1 ⇥ 10 4
	frequency of 2.6 GHz. The TNCs-based indoor positioning scheme is deployed on Matlab
	2022a.	
	Table 5.3: Experimental environment
	Operating System • macOS Monterey
	CPU	• Intel Core i7 6 cores 2.6 GHz
	Software	• Matlab 2022a

Table 5 .

 5 4: Prediction accuracy with trained and untrained smartphone.

	Models Trained smartphones Galaxy S20 Galaxy S9 OnePlus 7T Pro
	BiLSTM	85.51%	36.36%	60.53%	62.23%
	GRU	76.97%	34.34%	43.36%	43.61%
	TCN	99.80%	95.20%	88.23%	84.27%

  Reproducibility and generality : There is no single standard for evaluating the positioning accuracy of different algorithms. Most experiments in the literature are walking experiments in a small area of an office building. In a constrained environ-

	6.3. FUTURE PROSPECTS FOR THE USE OF MAGNETIC
	FINGERPRINT-BASED TECHNOLOGY
	6. ment, authors use a homogeneous smartphone and the same carry position during
	the training and localization phase to achieve an accuracy of less than 1 m. How-
	ever, practical application scenarios are often more complex than experiments, and
	heterogeneous smartphones and different carrying patterns can decrease accuracy.
	Its reproducibility and generality are low in practical deployment [101].
	5. Energy efficiency:W h e nc h o o s i n gal o c a l i z a t i o na l g o r i t h m ,t h ec o m p l e x i t yo ft h e
	localization solution needs to be considered. Algorithms with higher complexity will
	consume more energy while taking longer to compute, and delays in localization can
	disrupt the user's experience [12, 289].

Table 7 .

 7 1: Advantages and disadvantages of indo or p ositioning technologies.

	Positioning Technology	Coverage Range	Positioning Accuracy	Advantages	Disadvantages
				• Slow propagation speed	
				(around 340 m/s);	
	Ultrasound [17]	⇠10 m	Meters		
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used homogeneous smartphones and did not use fingerprint databases from heterogeneous smartphones when testing the positioning algorithms. This study aims to provide an exhaustive analysis of magnetic field-based indoor positioning and experimentally explore the feasibility and challenges of magnetic field-based indoor positioning.

Analysis of the MF Characterisctics

In this section, we analyze the MF measurement characteristics of a heterogeneous smartphone through static, trajectory, and rotation tests. Several heterogeneous smartphones were used in the experiments. Tab. 3.1 describes the system version, the sensor vendors, the model, and the characteristics of the magnetometer. Android sensor information is available through the Android API, while iPhone sensor information is not available directly from the iOS API but only through publicly available information. The Huawei P9, Redmi Note 10 Pro, and Samsung S9 all use different magnetometer models from AKM (Asahi Kasei Microdevices), and Bluebird uses magnetometers from MEMSIC Inc. As the iPhone has no interface to obtain detailed information about the sensors [START_REF] Phyphox | phyphox sensor database[END_REF][START_REF] Matyunin | Magneticspy: Exploiting magnetometer in mobile devices for website and application fingerprinting[END_REF], we could not find information on the iPhone sensor's manufacturer, model, range, and resolution. The heterogeneity of smartphones is caused by the different characteristics of magnetometers, making it very difficult to design a positioning system that can seamlessly connect various smartphones [START_REF] Ashraf | A comprehensive analysis of magnetic field based indoor positioning with smartphones: Opportunities, challenges and practical limitations[END_REF][START_REF] Ashraf | Minloc: Magnetic field patterns-based indoor localization using convolutional neural networks[END_REF]. This chapter investigates the MF measurements of the Android and iOS devices. All smartphones used MATLAB Mobile software to collect MF measurements to prevent the effects of software differences. In Section 3.3.1, we study the statistical characteristics and Gaussianity of heterogeneous smartphones. In Section 3.3.2, we compare the MF trajectories of heterogeneous smartphones, and in Section 3.3.3, we test the MF characteristics of smartphones when they are rotated. In Section 3.3.4, we design a magnetic field acquisition device using the Arduino Pro Mini and the LSM9DS1 and analyze the original magnetometer's statistical characteristics.

Statistical Tests with Heterogeneous Smartphones

Ferromagnetic materials in mo dern buildings, such as steel casing, electrical equipment, vending machines, etc., can cause local magnetic disturbance. Magnetic-based indoor positioning requires that the magnetic field measurement remain stable over a relatively long time. It is important to design a positioning method that can seamlessly integrate 

Conclusions

In this chapter, we first introduce the classical magnetometer model and its calibration algorithm and then propose a magnetometer model with outliers. Truncation and compression methods are proposed to pre-process outliers, and an ADMM-based magnetometer calibration method is presented for the first time. We compare the ADMM-based magnetometer calibration algorithm with other state-of-the-art methods and demonstrate the robustness of the ADMM-based magnetometer calibration algorithm.

is a non-parallel learning system that must complete the previous hidden state's computation before the subsequent hidden state's computation, whereas TCN is a parallel system that consumes much less training time.

• The magnetic field measurements are pre-processed using magnetic field coordinate system transformation, moving average, and first-order difference methods.

• The trained model was used to classify the magnetic field sequences from the test set, achieving 99.80% accuracy for the three trained smartphones. For the untrained heterogeneous smartphones (Samsung Galaxy S20, Samsung Galaxy S9, and One-Plus 7T Pro), accuracies of 95.20%, 88.23%, and 84.27% were achieved, respectively.

It's demonstrated that the proposed method works well for heterogeneous devices.

The rest of the chapter is organized as follows: Section 5.2 provides a brief review of previous work on indoor positioning using magnetic fields. Section 5.3 and 5.4 present a preliminary analysis of magnetic field data and a background overview of TCNs, respectively.

Then, the proposed architecture, experimental setup experimental results and analysis are explained in Section 5.5. Finally, Section 5.6 concludes our work.

Related Work

Due to its simplicity and effectiveness, the fingerprinting method is widely used for indoor positioning based on magnetic fields. The fingerprinting approach consists of two phases, online and offline, starting with an online phase where data from ground truth location are collected to create a database, followed by an offline phase where the data from the smartphone is used for positioning.

Magnetic fields are mainly used in narrow one-dimensional spaces such as corridors [START_REF] Haverinen | A global self-localization technique utilizing local anomalies of the ambient magnetic field[END_REF][START_REF] Galván-Tejada | Magnetic field feature extraction and selection for indoor location estimation[END_REF], there are difficulties in using magnetic fields in wide environments [START_REF] Li | Location estimation in large indoor multi-floor buildings using hybrid networks[END_REF], and it is challenging to achieve positioning using magnetic fields in old buildings with almost no metal structures [START_REF] Gozick | Magnetic maps for indoor navigation[END_REF].

The fingerprinting positioning problem can often be seen as a classification problem, and many machine learning methods such as kNN [START_REF] Li | A feature-scaling-based k-nearest neighbor algorithm for indoor positioning systems[END_REF], Support Vector Machines(SVM) [START_REF] Abdou | An efficient indoor localization system based on affinity propagation and support vector regression[END_REF][START_REF] Chriki | Svm-based indoor localization in wireless sensor networks[END_REF], decision trees [START_REF] Yim | Introducing a decision tree-based indoor positioning technique[END_REF], neural networks [START_REF] Zhang | Deep neural networks for wireless localization in indoor and outdoor environments[END_REF][START_REF] Wang | Csi phase fingerprinting for indoor localization with a deep learning approach[END_REF], can be used to predict the location by classifying the fingerprinting signal. Montoliu et al. [START_REF] Montoliu | Magnetic field based indoor positioning using the bag of words paradigm[END_REF] proposed a bag-of-words (BoW)-based method for describing fingerprints based on magnetic fields. The authors We analyzed the characteristics of magnetic field tra jectories and pre-pro cessed the magnetic field sequence using coordinate transformation, smoothing filters, and first-order differencing. Large-scale magnetic field trajectory data was used to train the prediction model, and different test sets were used to evaluate our algorithm. An accuracy of 99.8%

for the three trained smartphones were achieved. The accuracies of 95.20%, 88.23% and 84.27% were achieved for the three untrained heterogenous smartphones, respectively. In addition TCNs algorithm is significantly more efficient compared to models from GRU and BiLSTM.

DESCRIPTION DE LA THÈSE

• Fourniture de services basés sur la lo calisation : Utilisation du p ositionnement magnétique pour déterminer l'emplacement d'une cible d'intérêt, puis utilisation de services basés sur la localisation pour obtenir des informations sur cette cible, telles que "les prix des restaurants et les avis des clients" ou "les promotions des vendeurs".

• Système de positionnement intérieur-extérieur sans faille utilisant l'impression magnétique des doigts : L'utilisation unifiée de la technologie de positionnement par champ magnétique pour le positionnement intérieur et extérieur permet un suivi transparent de l'utilisateur, ce qui en fait une solution de positionnement universelle.
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Guanglie OUYANG Aide à la Mobilité Utilisant la Localisation via l'Empreinte du Champ Magnétique Local

Résumé : En raison de l'omniprésence du champ géomagnétique et la disponibilité de sa mesure sans besoin d'infrastructures onéreuses, le positionnement intérieur basé sur le champ magnétique a suscité un intérêt considérable de la part des universitaires et des industriels. Cependant, les applications de positionnement intérieur basées sur le champ magnétique sont difficiles en raison de sa faible discrimination spatiale, de l'hétérogénéités des dispositifs de mesure et de l'interférence des matériaux ferromagnétiques. Cette thèse contribue à démontrer la faisabilité du positionnement intérieur basé sur le champ magnétique en relevant les défis du positionnement par champ magnétique. Nos contributions sont les suivantes : La première contribution est une étude de l'état de l'art du positionnement intérieur basé sur le champ magnétique, y compris les avantages et les défis, les modèles et la calibration des magnétomètres, la transformation des coordonnées et les méthodes de localisation par champ magnétique. La deuxième contribution est une analyse des défis et de la faisabilité de la localisation par champ magnétique à travers des tests statiques, de trajectoire et de rotation, des tests de calibration et des tests de classification. La troisième contribution présente une méthode robuste basée sur ADMM (Alternating Direction Method of Multipliers) pour calibrer les magnétomètres à trois axes en présence de mesures aberrantes et parasites. La quatrième contribution a conçu un algorithme de classification de trajectoire magnétique basé sur des réseaux convolutifs temporels.

Cette étude des défis et solutions potentielles relatifs à l'utilisation des mesures de champ magnétique pour la localisation de mobile en fait un pas en avant prometteur pour les applications du monde réel.

Mots clés : champ magnétique, positionnement intérieur, smartphone, calibration du magnétomètre, classification, ADMM.

Mobility Aid Using Localization via Local Magnetic Field Fingerprinting

Summary: Due to the ubiquity and infrastructure-free nature of the geomagnetic field, magnetic field-based indoor positioning has gained significant interest from academia and industry. Magnetic field-based indoor positioning applications are challenging due to low discernibility, heterogeneous devices, and ferromagnetic materials interference.This thesis contributes to the analysis of the feasibility of magnetic field-based indoor positioning by addressing some of its main challenges. Our contributions are as follows:

The first contribution provides a state-of-the-art survey of magnetic field-based indoor positioning, including advantages and challenges, magnetometer models and calibration, coordinate systems transformation, and magnetic field localization methods. The second contribution is an analysis of the challenges and feasibility of magnetic field localization through static, trajectory, and rotational tests, calibration tests and classification tests. The third contribution presents a robust method based on ADMM (Alternating Direction Method of Multipliers) for calibrating three-axis magnetometers in the presence of outliers and spurious measurements. The fourth contribution designed a magnetic trajectory classification algorithm based on temporal convolutional networks