
HAL Id: tel-04212447
https://theses.hal.science/tel-04212447v1

Submitted on 20 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

What do you know, BERT ? Exploring the linguistic
competencies of Transformer-based contextual word

embeddings
Eleni Metheniti

To cite this version:
Eleni Metheniti. What do you know, BERT ? Exploring the linguistic competencies of Transformer-
based contextual word embeddings. Linguistics. Université Toulouse le Mirail - Toulouse II, 2023.
English. �NNT : 2023TOU20023�. �tel-04212447�

https://theses.hal.science/tel-04212447v1
https://hal.archives-ouvertes.fr


THÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE

Délivré par l'Université Toulouse 2 - Jean Jaurès

 

Présentée et soutenue par

Eleni METHENITI

Le 28 juin 2023

Qu'est-ce que tu sais, BERT? Explorer les compétences
linguistiques des plongements lexicaux contextuels basés sur

Transformers

Ecole doctorale : CLESCO - Comportement, Langage, Education, Socialisation,
Cognition

Spécialité : Sciences du langage 

Unité de recherche :
CLLE - Unité Cognition, Langues, Langage, Ergonomie 

Thèse dirigée par
Nabil HATHOUT et Tim VAN DE CRUYS

Jury
Mme Marie CANDITO, Rapporteure

Mme Lonneke VAN DER PLAS, Rapporteure
M. Olivier FERRET, Examinateur

M. Nabil HATHOUT, Co-directeur de thèse
M. Tim VAN DE CRUYS, Co-directeur de thèse

Mme Cécile FABRE, Présidente





Acknowledgements

As one long prepared, and graced with courage,

as is right for you who proved worthy of this kind of city,

go firmly to the window

and listen with deep emotion, but not

with the whining, the pleas of a coward;

listen—your final delectation—to the voices,

to the exquisite music of that strange procession,

and say goodbye to her, to the Alexandria you are losing.

—The God Abandons Antony (1911), C.P. Cavafy (1863-1933)

∗

∗ ∗

I would like to express my sincerest gratitude to my advisor, Nabil Hathout, for his

steady guidance, continuous support, and hard work throughout my doctoral work. I

would also like to deeply thank my advisor, Tim Van de Cruys, for his helpful guidance

and essential ideas and insights for my research.

I am thankful to my colleagues at CLLE in the University of Toulouse 2, for their

support and the friendly and uplifting environment, when the pandemic didn’t keep us

apart. Thank you to Filip, Julie, Marine, Daniele, Yizhe, and Sylvia, to mention only a

few of those who lent a friendly ear to my worries.

I could not forget my colleagues at IRIT either, former and present coworkers, for

their immense help and trust during not only during my thesis but also during the tran-

sitional period between my thesis and my postdoc. To Chloé Braud and Philippe Muller,

I will always be grateful for your faith in me. Thank you to Laura, Kate, Nicolas, Fanny,

and Fu-Hsuan, my musical friend.

Thank you to everyone inmy almamater, Saarland University, professors, coworkers

and friends, for all the knowledge, support and opportunities to study and work on my

passion.

i



I would not have made it this far without my parents, who have been enduring the

sorrow of separation for too long, yet they still stand by my side.

Thank you to my childhood friend, Emma, for the decades of love and companion-

ship. Thank you to Stefan for being a loyal friend and a provider of Brezeln.

Thank you, my dear Karel, for your love and for being by my side through thick and

thin—especially during the hard times.

Thanks to cleopatrick and The Blue Stones for providing the soundtrack to long days

and nights of work.

Finally, thank you to everyone who has shown me kindness. Even though I have

never relied on it, it’s a gift I rarely offer myself. And to everyone that I have forgotten

to mention in these acknowledgments, inadvertently or intentionally, you were all part

of the road that led to this work.

ii



Contents

Acknowledgements i

Table of Contents iii

List of tables vii

List of figures x

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Transformer-based contextual word embeddings 11

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Language encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Static word embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Transformer architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.1 Traditional attention mechanisms . . . . . . . . . . . . . . . . . . 22

2.4.2 The self-attention mechanism . . . . . . . . . . . . . . . . . . . . 26

2.4.3 The Vaswani Transformer architecture . . . . . . . . . . . . . . . 30

2.4.4 Transfer learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5 Contextualized embeddings with Transformers . . . . . . . . . . . . . . . 37

2.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5.2 ELMo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.5.3 GPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.5.4 BERT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.5.5 RoBERTa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.5.6 XLNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

iii



2.5.7 ALBERT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.5.8 CamemBERT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.5.9 FlauBERT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3 Explainability of Transformer-based architectures 57

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2 Linguistic Evaluation & Explainability . . . . . . . . . . . . . . . . . . . . 58

3.2.1 Probing methodology . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2.2 Assessing Transformer models’ linguistic knowledge . . . . . . . 59

3.2.3 Self-attention and psycholinguistics . . . . . . . . . . . . . . . . 62

3.3 Interpretability of self-attention . . . . . . . . . . . . . . . . . . . . . . . 63

3.3.1 Is self-attention explanation? . . . . . . . . . . . . . . . . . . . . 63

3.3.2 Visualizing self-attention for interpretation . . . . . . . . . . . . 66

4 Selectional preferences in contextual word embeddings 69

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 Linguistic background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3 Selectional Preferences and NLP . . . . . . . . . . . . . . . . . . . . . . . 73

4.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4.1.1 SP-10K corpus . . . . . . . . . . . . . . . . . . . . . . . 76

4.4.1.2 Prompt sentence corpus . . . . . . . . . . . . . . . . . 78

4.4.2 Transformer models . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4.3.1 Correlation of SP-10K score and probability . . . . . . 81

4.4.3.2 Prediction with attention masks . . . . . . . . . . . . . 82

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.5.1 Quantitative results . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.5.2 Analysis of head words . . . . . . . . . . . . . . . . . . . . . . . . 85

4.5.3 Correlations and attention per layer . . . . . . . . . . . . . . . . 88

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

iv



5 Classification of lexical aspect in English and French 95

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2 Linguistic overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3 Identifying and learning aspect with NLP . . . . . . . . . . . . . . . . . . 99

5.4 First round of experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.4.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.4.3 Models and finetuning . . . . . . . . . . . . . . . . . . . . . . . . 104

5.4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.4.4.1 Quantitative test set . . . . . . . . . . . . . . . . . . . . 105

5.4.4.2 Qualitative test sets . . . . . . . . . . . . . . . . . . . . 106

5.4.4.3 Additional experiments: Attention Masks . . . . . . . . 110

5.5 Second round of experiments . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.5.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.5.2 Datasets in English . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.5.3 Improvements on technical methods . . . . . . . . . . . . . . . . 113

5.5.4 Results for English . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.5.4.1 Quantitative results . . . . . . . . . . . . . . . . . . . . 114

5.5.4.2 Qualitative results and analysis . . . . . . . . . . . . . 118

5.5.4.3 Additional experiments: A look at attention . . . . . . 120

5.5.4.4 Additional experiments: Classification with layer em-

beddings and logistic regression . . . . . . . . . . . . . 123

5.5.4.5 Additional experiments: Unseen verbs . . . . . . . . . 123

5.5.5 Telicity and duration classification in French . . . . . . . . . . . . 125

5.5.6 Results for French . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.5.6.1 Quantitative analysis . . . . . . . . . . . . . . . . . . . 127

5.5.6.2 Qualitative analysis . . . . . . . . . . . . . . . . . . . . 128

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.7.1 English datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.7.2 French datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

v



6 Classification of attributive adjective position in French 141

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.2 Linguistic background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.3 Word order and Transformer models . . . . . . . . . . . . . . . . . . . . 144

6.4 Experiment 1: Classification of adjective position via finetuning . . . . . 146

6.4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.4.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.4.3 Models and baselines . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.4.4 Quantitative Results . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.4.5 Qualitative analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.5 Experiment 2: Existing knowledge in pretrained embeddings . . . . . . . 155

6.5.1 Classification with adjective embeddings . . . . . . . . . . . . . . 155

6.5.2 Adjective probabilities with Masked Language Models . . . . . . 156

6.5.3 Visualizing adjective embeddings per layer . . . . . . . . . . . . 157

6.6 Experiment 3: Human and Transformers judgments of adjective order . . 159

6.6.1 Methodology and Dataset . . . . . . . . . . . . . . . . . . . . . . 159

6.6.2 Questionnaire distribution . . . . . . . . . . . . . . . . . . . . . . 161

6.6.3 Quantitative and Qualitative results . . . . . . . . . . . . . . . . . 161

6.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.8 Appendix: Questionnaire datasets . . . . . . . . . . . . . . . . . . . . . . 167

7 Conclusion 173

8 Abstracts 181

8.1 Abstract in English . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

8.2 Abstract in French . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

8.3 Long abstract in French . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

Bibliography 203

vi



List of Tables

1.1 Samples of predictions from pretrained models. . . . . . . . . . . . . . . 4

2.1 An example of Bag-of-Words encoding. . . . . . . . . . . . . . . . . . . . 14

2.2 An example of one-hot encoding. . . . . . . . . . . . . . . . . . . . . . . 15

2.3 List of parameters in the BERT-base model. . . . . . . . . . . . . . . . . . 48

2.4 An example of permutation language modeling. . . . . . . . . . . . . . . 51

2.5 Comparison of CamemBERT and FlauBERT. . . . . . . . . . . . . . . . . 56

4.1 Examples of grammaticality and acceptability judgments. . . . . . . . . . 71

4.2 Examples of felicity with the verb “eat”. . . . . . . . . . . . . . . . . . . . 73

4.3 SP-10K corpus statistics and our final dataset. . . . . . . . . . . . . . . . 80

4.4 Correlation of masked word probability and word pair plausibility score. 84

5.1 Features of lexical and grammatical aspect. . . . . . . . . . . . . . . . . . 97

5.2 Binary properties of lexical aspect and aspectual classes. . . . . . . . . . 98

5.3 Grammatical aspect in Czech. . . . . . . . . . . . . . . . . . . . . . . . . 99

5.4 Visualization of the token_type_ids vector. . . . . . . . . . . . . . . . . . 102

5.5 Final size of the Friedrich and Gateva’s dataset. . . . . . . . . . . . . . . . 103

5.6 A sample of the manually annotated sentences for telicity. . . . . . . . . 104

5.7 A sample of the manually annotated sentences for duration. . . . . . . . 104

5.8 A sample of the manually annotated minimal pairs of telicity. . . . . . . 104

5.9 Pretrained models for our experiments. . . . . . . . . . . . . . . . . . . . 105

5.10 Results for the Friedrich and Gateva test set, for telicity classification. . . 108

5.11 Results for the Friedrich and Gateva test set, for duration classification. . 108

5.12 Wrong predictions for telicity. . . . . . . . . . . . . . . . . . . . . . . . . 109

5.13 Wrong predictions for duration. . . . . . . . . . . . . . . . . . . . . . . . 109

5.14 Wrong predictions for telicity minimal pairs. . . . . . . . . . . . . . . . . 110

5.15 Results for the Friedrich and Gateva test set, for telicity classification

with attention masks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

vii



5.16 Results for the Friedrich and Gateva test set, for duration classification

with attention masks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.17 Final number of sentences and annotations. . . . . . . . . . . . . . . . . . 113

5.18 Results of classification accuracy on the telicity test set. . . . . . . . . . . 116

5.19 Results of classification accuracy on the duration test set. . . . . . . . . . 116

5.20 Results on seen/unseen verbs of the test set in telicity/duration classifi-

cation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.21 Examples of English and French present tenses. . . . . . . . . . . . . . . 125

5.22 A sample of the manually annotated sentences for telicity. . . . . . . . . 126

5.23 A sample of the manually annotated sentences for duration. . . . . . . . 126

5.24 A sample of the additional manually annotated sentences for telicity. . . 126

5.25 Results for telicity classification in French. . . . . . . . . . . . . . . . . . 127

5.26 Results for duration classification in French. . . . . . . . . . . . . . . . . 127

5.27 Annotated sentences for telicity. . . . . . . . . . . . . . . . . . . . . . . . 132

5.28 Annotated sentences for duration. . . . . . . . . . . . . . . . . . . . . . . 133

5.29 Minimal pairs of telicity. . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.30 Additional sentences annotated for telicity . . . . . . . . . . . . . . . . . 136

5.31 French annotated sentences for telicity. . . . . . . . . . . . . . . . . . . . 137

5.32 French annotated sentences for duration. . . . . . . . . . . . . . . . . . . 138

5.33 Minimal pairs for telicity in French. . . . . . . . . . . . . . . . . . . . . . 139

5.34 Additional sentences for telicity. . . . . . . . . . . . . . . . . . . . . . . . 140

6.1 Example input for the classifier. . . . . . . . . . . . . . . . . . . . . . . . 147

6.2 Example of the attention mask input for the classifier. . . . . . . . . . . . 148

6.3 Dataset sizes for word order classification. . . . . . . . . . . . . . . . . . 149

6.4 A wrong prediction example. . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.5 Classification results with two-sentence input. . . . . . . . . . . . . . . . 152

6.6 Classification results with two-sentence input with attention mask on

context. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.7 Classification results with two-sentence input with attention mask on

adjective-noun. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

viii



6.8 Classification results with one-sentence input. . . . . . . . . . . . . . . . 153

6.9 Classification results with one-sentence input with attention mask on

context. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.10 Classification results with one-sentence input with attention mask on

adjective-noun. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.11 Samples of questionnaire sentences. . . . . . . . . . . . . . . . . . . . . . 160

6.12 Correlation between speakers’ and models’ word order choices. . . . . . 162

6.13 Sentences in the Presence of adjective/noun dependent category. . . . . . . 168

6.14 Sentences in the Fixed expressions category. . . . . . . . . . . . . . . . . . 169

6.15 Sentences in the Structural persistence category. . . . . . . . . . . . . . . 170

6.16 Sentences in the Blocked and mobile adjectives category. . . . . . . . . . . 172

ix



x



List of Figures

2.1 3D PCA projection of word2vec embeddings. . . . . . . . . . . . . . . . . 20

2.2 2D PCA projection of word2vec embeddings. . . . . . . . . . . . . . . . . 20

2.3 2D PCA projection of word2vec verb embeddings for gender and tense. . 21

2.4 2D PCA projection of GloVe embeddings. . . . . . . . . . . . . . . . . . . 21

2.5 Visualization of Bahdanau attention. . . . . . . . . . . . . . . . . . . . . 23

2.6 Visualization of self-attention. . . . . . . . . . . . . . . . . . . . . . . . . 27

2.7 Visualization of multi-headed self-attention. . . . . . . . . . . . . . . . . 29

2.8 Visualization of the Transformer architecture. . . . . . . . . . . . . . . . 30

2.9 Visualization of Transformer input. . . . . . . . . . . . . . . . . . . . . . 31

2.10 Taxonomy of transfer learning methods. . . . . . . . . . . . . . . . . . . 35

2.11 Visualization of the biLM model. . . . . . . . . . . . . . . . . . . . . . . . 38

2.12 Visualization of GPT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.13 Visualization of BERT input. . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.14 Visualization of BERT’s pretraining process. . . . . . . . . . . . . . . . . 45

2.15 XLNet’s two-stream self-attention. . . . . . . . . . . . . . . . . . . . . . . 52

3.1 Visualization of Bahdanau attention for neural machine translation. . . . 64

3.2 Visualization of Clark et al.. . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1 Example of a dependency parse. . . . . . . . . . . . . . . . . . . . . . . . 77

4.2 Illustration of the four attention mask settings. . . . . . . . . . . . . . . . 83

4.3 Correlation of BERT and human assessments. . . . . . . . . . . . . . . . 89

4.4 Attention heatmaps for an nsubj word pair. . . . . . . . . . . . . . . . . 91

4.5 Attention heatmaps for a dobj word pair. . . . . . . . . . . . . . . . . . . 92

5.1 Probability distribution for telicity labels. . . . . . . . . . . . . . . . . . . 117

5.2 Probability distribution for duration labels. . . . . . . . . . . . . . . . . . 117

5.3 Visualization of attention for a sentence pair of telicity. . . . . . . . . . . 121

5.4 Visualization of the verb token’s attention for a sentence pair of telicity. 122

5.5 Results of logistic regression classification. . . . . . . . . . . . . . . . . . 124

xi



6.1 Probability of predicted labels for word order classification. . . . . . . . . 151

6.2 Results for logistic regression classification for word order. . . . . . . . . 155

6.3 Probabilities of masked adjectives in original positions. . . . . . . . . . . 157

6.4 Probabilities of masked adjectives in reversed positions. . . . . . . . . . . 157

6.5 Embedding projections of adjectives. . . . . . . . . . . . . . . . . . . . . 158

xii



Chapter 1

Introduction

1.1 Motivation

Natural Language Processing (NLP) has traditionally concentrated on defining and de-

signing systems for the treatment, understanding, and production of language, with the

motivation that success on these tasks would result in competent language systems for

downstream applications. NLP applications include classification tasks on a sentence

or document level (e.g. sentiment classification), sequence labeling tasks on a word or

phrase level (e.g. syntactic parsing, named entity recognition), span relation classifica-

tion, and generation tasks, which involve creating text output based on a given input (e.g.

machine translation, dialogue generation, speech production). These task-specific algo-

rithmic architectures could be combined with other models to execute complex tasks and

could be themselves composed of different models, e.g. tokenizers and part-of-speech

taggers. Originally built with hand-written rules by linguists, nowadays the use of ad-

vanced statistical methods of logistic regression and neural network models has become

the norm in most applications of NLP.

In recent years, there have been monumental developments in the implementation

of neural network architectures and giant leaps in their abilities to process, comprehend

and produce language. These advancements and novel architectures have been follow-

ing trends and developments in other fields of Computer Science and Machine Learning,

most notably Computer Vision, i.e. the process of interpretation of visual information by

a computer in order to acquire the same information that the human visual system can

understand. The use of attentionmechanisms inNLP becamewidespread after theworks
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of Bahdanau et al. (2014) and Luong et al. (2015) on neural machine translation, where

the alignments between the source and target tokens were effectuated by an attention al-

gorithm; soon after, attention mechanisms became commonly used in the architectures

of Recurrent Neural Networks, for NLP applications beyond the scope of machine trans-

lation. Vaswani et al. (2017) introduced a new method of attention called self-attention,

which is built in the architecture of a neural network called a Transformer. This atten-

tion mechanism is able to generate the attention weights of each token by observing its

different hidden states in the sequence. It captures multiple representations with regard

to the other tokens, with the use of multiple heads of self-attention.

These developments have allowed for the creation of Transformer architectures for

NLP that use dynamic, contextualized word embeddings and are able to learn multiple

tasks (even in parallel) through sequence learning. These architectures are trained with

huge datasets on multiple computing units with massive processing power and produce

language representations in the form of models of contextualized word embeddings.

These models are capable of performing multiple NLP tasks with achieving state-of-the-

art results, and can also be adapted to specific tasks (with the use of smaller datasets and

common computers) in order to be evenmore competent on a particular function1. These

features of generality and adaptability alongside their excellent performance on accuracy

metrics have rendered them a staple in multiple NLP applications, especially ones that

relied on the combination of multiple tasks (e.g. conversational agents). Models such as

BERT (Devlin et al., 2019) have demonstrated an astonishing breadth of language skills

and flexibility to a wide variety of linguistic circumstances, and recent NLP research has

focused on their multiple applications and on analyzing their successes and weaknesses.

The ability of these systems to achieve human levels of performance on various NLP

tasks is fascinating, but there are substantial differences between the way humans learn

and develop language and how these models are trained to complete specific tasks. It

1Since their introduction, the NLP community has erroneously referred to Transformer architectures
as language models; however, a more accurate description of BERT and BERT-like architectures would
be a machine learning framework for NLP that can produce pretrained embeddings. Unlike traditional
language models, these models do not contain actual probabilities, but the representations of words in
different contexts, as learned by the Transformer architecture. Predicting the probability of a word is the
objective of the pretraining process of most of those architectures, but the final output is discarded and
the hidden state of the target word is kept.
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is essential to comprehend the significance of this gap between machine and human

language learning; humans are capable of learning semantic concepts and expressing

them with the appropriate syntactic patterns, while research supports that Transformer

models learn frequent artifacts from their vast corpora, some rudimentary idiosyncratic

patterns of syntax, but no notions of semantics. Even when a model successfully gen-

erates a linguistic construction once, there is no guarantee that subsequent instances of

that construction will be similar or consistent, especially following a shift in the subject

matter’s domain. Without reverting to systems that rely too heavily on strict linguistic

norms, there needs to be a better understanding and an improved learning process of

syntax and semantics.

Language acquisition is an inherent human ability that develops rapidly yet remains

a lifelong process, as a human learns new terms and concepts, may acquire multiple

languages, and evolves in a dynamic society. Language models are bound to be language

representations “frozen in time” of the period when their corpora were created, and

retraining them with new data is a costly and lengthy process. On the issue of corpora,

these models require a vast amount of data in order to learn meaningful connections

and representations; BERT was trained on 3.3 billion words, far more than a human will

encounter and utter in a lifetime. Finally, one trade-off that has to be made in order

to acquire these large datasets is the inability to fully take account of their content,

thus resulting in fiction being interpreted as fact by the model (whereas for humans the

distinction would be evident), in addition to the presence of inductive biases and the

models learning and using them.

A few examples of pretrained models producing problematic outputs can be seen in

Table 1.1; the task was to predict the five most likely words to fill the blank in short

sentences. The models predicted words without distinguishing among parts of speech,

sometimes even making syntactic mistakes (e.g. predicting le “the” at the end of the

sentence). They relied on frequent co-occurrences (“drink”-“beer”) without being mind-

ful of semantic constraints in the context (“The boy”, “breakfast”). They reproduced

some learned artifacts regardless of their fit (e.g. “evalle” in ALBERT), and they also

occasionally used offensive terms (the RoBERTa model). There are evident weaknesses

in the capacity of these models to understand the content of the words and sequences
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they have learned, and this directly affects how they produce language output. These

mistakes should not be overlooked as a sacrifice to overall high accuracy. Reproducing

harmful biases that target social and ethnic groups is an alarming problem for the NLP

community, and proof that the computational power of Transformers does not come

close to the sophistication of human cognition, regardless of reports of stellar accuracy

and positive press.

Sentence bert-base-uncased roberta-base albert-base-v2

My dog is [MASK]. dead, here, fine,
gone, missing dead, *, *, sick, * evalle, joyah, lucivar,

jaenelle, adorable

The boy drank [MASK]. deeply, slowly, again,
heavily, it

beer, more, heavily,
milk, water

evalle, joyah, whisky,
vodka, whiskey

The boy drank [MASK]
for breakfast.

water, milk, it,
coffee, beer

milk, water, coffee,
tea, juice

vodka, brandy,
whiskey, beans,

evalle

We ate [MASK] for lunch. together, lunch,
dinner, it, pizza

pizza, sushi, tacos,
sandwiches, pasta

joyah, sandwiches,
pizza, cookies, fries

I wore my [MASK] shoes
and went running.

running, tennis,
own, new, gym

running, tennis,
normal, gym, hiking

jogging, tennis,
hiking, tread, athletic

Sentence
(French) Translation

camembert-
base

Translation
flaubert-base-

uncased
Translation

Mon chien est
[MASK].

“My dog is
[MASK].”

malade,
décédé, mort,
heureux,
diabétique

sick,
deceased,

dead, happy,
diabetic

le, tout, aussi,
un, à

the, all,
also, one,

at

Le garçon a bu
du [MASK] au
petit déjeuner.

“The boy
drank [MASK]
for breakfast.”

lait, café, thé,
vin,

champagne

milk, coffee,
tea, wine,
champagne

poulet, lait, riz,
vin, porc

chicken,
milk, rice,
wine, pork

Table 1.1: The top 5 predictions of three English language models (BERT, RoBERTa,
ALBERT) and two French models (CamemBERT, FlauBERT) when asked to fill in the
blank in a few sentences. With asterisk (*) are marked ableist slurs that the authors
refuse to reproduce.
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1.2 Research objectives

A Transformer architecture’s underlying structure is built on parallel operations, mul-

tiple layers, and multi-headed self-attention. Multi-headed attention in a multi-layer

model means that every head, in every layer, computes its own weights and attends to

the architecture’s encoded input separately. This powerful mechanism has been credited

with the outstanding performance of Transformer models but is also difficult to exam-

ine and comprehend with traditional NLP methods. There has been a great deal of study

and discussion to determine whether these self-attention processes are interpretable,

i.e. whether they yield results—correct or incorrect—that can be linked to the way they

respond to the input.

The objective of this doctoral thesis is to study the linguistic abilities (if any) and

the limitations of Transformer-based contextual word embeddings, with experiments

on complex syntactic-semantic phenomena. The main hypothesis of this thesis is the

following:

Can contextual word embeddings capture enough information, through pretraining and

finetuning, to be competent in complex linguistic tasks? Are their successes due to a true

understanding of token relations and hierarchies or a shallow repetition of patterns in the

training set? Are their failures serious, and are they systematic weaknesses or random oc-

currences?

We selected linguistic features and phenomena that are easily perceived by a native

speaker with mature syntactic-semantic competencies but have been traditionally hard

to define with linguistic rules. Specifically, we are focusing on:

• Selectional preferences, i.e. the arguments and classes of arguments that best com-

plement themeaning of the verb, resulting in grammatical and semantically acceptable

(felicitous) sentences.

• Lexical aspect, i.e. is a set of features that determine a verb’s temporal qualities

regardless of grammatical features such as tense.

• Word order of epithet adjectives in French, a seemingly simple task but complex

at times, due to adjective mobility based on linguistic, non-linguistic, and semantic

factors.
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Overall, we lay out the specific questions that will be addressed by the approaches pro-

posed in this thesis:

• Do contextual word embeddings capture context sufficiently and effectively?

This question is an observation on pretrained word embeddings. During the pretrain-

ing process, are the embeddings able to generalize and group contexts in classes—not

as in linguistic classes, but as clusters of linguistic-semantic similarity that can be ac-

cessed by the model to make better predictions?

• Do contextual word embeddings show sensitivity to semantic features and se-

mantic felicity/infelicity?

Some phenomena such as lexical aspect are inherent properties and are not always

expressed morphologically or with the help of the context. Have the models encoded

enough information based on instances in pretraining, in order to successfully identify

such phenomena? When faced with an infelicitous sentence, will the models reject it

due to its low frequency or due to some internalization of semantics?

• Is finetuning necessary, beneficial, and stable for challenging tasks?

Transfer learning is one of the most groundbreaking functionalities of transformer-

based models, allowing the already powerful embeddings to become even more spe-

cialized on a task without the need for large datasets. However, there has been crit-

icism of the stability of finetuning, moreover, we want to observe the amount of im-

provement that it offers.

• What is the role of the attention mechanism in predictions, with regard to our

experimental questions? The high performance of Transformer-based models has

been attributed to their multi-head self-attention architecture, a mechanism notori-

ously difficult to decipher. Are the choices of our models reflected in the inner work-

ings of the layers and heads of the attention mechanism?

• Is word order truly unimportant for transformer-based models? The paral-

lelization of the learning process in Transformer models means that these models do

not view input sequentially. Research has shown insensitivity to word order, but are

the models insensitive to it when word order is determined by the meaning of a token?
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1.3 Contributions

We are hoping that our work brings practical and empirical contributions to the NLP

community. Our work falls under the scope of the ongoing “BERTology” research, the

unofficial moniker of the studies in comprehending and interpreting Transformer mod-

els. We aim to contribute to the ongoing discussions with our findings on the linguistic

capabilities of Transformer-based models. Our motivation is based on language com-

petencies examined through quantitative and qualitative measures, and moving beyond

the scope of success on benchmarks and reported accuracies on NLP tasks. By unveiling

the linguistic weaknesses of the models, we hope to dispel any claims that Transformer

models truly understand and produce language in a similar way to humans, with the

same syntactic and semantic capacities. However, we are also looking forward to ob-

serving the models’ strengths, understanding the inner workings that make them indu-

bitably very successful, and discovering patterns of behavior that could point to a degree

of sophistication in language processing. Additionally, we would like to see if transfer

learning, the method of specializing the models with explicit knowledge, can help them

overcome some of their limitations.

1.4 Thesis outline

In Chapter 2, we present an overview of the technological advances that paved the way

for the development of Transformer architectures. We present an overview of word

embeddings, from traditional static word embeddings to Transformer-produced deep

contextual word embeddings. We also discuss the development of the attention mecha-

nism, and subsequently the self-attention mechanism and its parallel use with the Trans-

former architecture, to create contextual word embedding models. Finally, we present

an overview of the architectures and models that will be used in our work.

In Chapter 3, we focus on the existing research on the abilities of Transformer archi-

tectures and contextual word embeddings. Our bibliography spans from 2019 to early

2022, since the rapid developments of Transformers in NLP were occurring in tandem

with the work of this doctoral work and it is impossible—and not relevant—to exhaus-

tively present all work. We propose a selected bibliography on the explainability of self-
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attention, the linguistic analyses of contextual word embeddings, and the conclusions of

several researchers on the linguistic abilities of the models and their embeddings.

The following chapters present our experiments with Transformer-based deep con-

textual word embeddings and the linguistic features that we selected to test the models

on. The phenomena examined are based on syntactic and semantic competencies that

develop naturally in native speakers, but could potentially be challenging for a model

that has only acquired a superficial level of this information.

In Chapter 4, we are presenting the first series of experiments we conducted in En-

glish, on the abilities of contextual word embeddings to capture the selectional prefer-

ences of a verb for its arguments. We perform tests on the bert-base-uncased model (a

well-studied model, at the time) in order to compare its predictions of verb dependents

to the plausibility/felicity scores that speakers would assign to them.

In Chapter 5, we focus on two sets of experiments with contextual word embeddings

from Transformer-based architectures (BERT, RoBERTa, XLNet, ALBERT, CamemBERT,

FlauBERT), testing their abilities to classify verbal lexical aspect (telicity, duration) in a

sentence. We conduct quantitative and qualitative analyses of the models’ assessment

of lexical aspect in English and French, and we observe the models’ self-attention mech-

anism and surface-level linguistic preferences.

In Chapter 6, we present our experiments on the classification of adjective word or-

der in French, with contextual word embeddings from Transformer-based architectures

(CamemBERT, FlauBERT). We examine the strengths and weaknesses of the models in

identifying adjective position, also in correlation to human preferences.

Finally, Chapter 7 contains our conclusion where we summarize our findings and

provide our opinion on future endeavors.

1.5 Publications

The work in this dissertation principally relates to the following peer-reviewed articles

(in order of publication):

• Metheniti, E., Van de Cruys, T., & Hathout, N. (2020). How Relevant Are Selectional

Preferences for Transformer-based Language Models?. In Proceedings of the 28th In-
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ternational Conference on Computational Linguistics (pp. 1266-1278). ACL: Association

for Computational Linguistics.

• Metheniti, E., Van de Cruys, T., & Hathout, N. (2021). Prédire l’aspect linguistique

en anglais au moyen de transformers (Classifying Linguistic Aspect in English with

Transformers). In Actes de la 28e Conférence sur le Traitement Automatique des Langues

Naturelles. Volume 1: conférence principale (pp. 209-218).

• Metheniti, E., Van De Cruys, T., & Hathout, N. (2022). About Time: Do Transformers

Learn Temporal Verbal Aspect?. In 12th Workshop on Cognitive Modeling and Compu-

tational Linguistics (CMCL 2022) (pp. 88-101).

• Metheniti, E., Van De Cruys, T., Kerkri, W., Thuilier, J. & Hathout, N. (to appear).

“Chère maison” or “maison chère”? Transformer-based prediction of adjective place-

ment in French. In Proceedings of the 17th Conference of the European Chapter of the

Association for Computational Linguistics: Findings.

While not directly related, the following articles have also been completed over the

course of the doctoral work:

• Metheniti, E., & Neumann, G. (2020). Wikinflection corpus: A (better) multilingual,

morpheme-annotated inflectional corpus. In Proceedings of the Twelfth Language Re-

sources and Evaluation Conference (pp. 3905-3912).
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Chapter 2

Transformer-based contextual word
embeddings

2.1 Introduction

This chapter presents the technical background of this doctoral thesis. An exhaustive

overview of many decades of computer science, machine learning, and natural language

processing developments that led to the release of large language models (LLMs) is

impossible and not necessarily relevant to our work. LLMs have little to no linguis-

tic motivation and share more commonalities with Computer Vision models than with

statistical natural language processing methods and linguistic tools. Nevertheless, we

present a brief history and features of static word embeddings, and we explain in detail

the traditional attention mechanism, as a stepping stone to analyzing self-attention and

Transformer architectures and models. These competencies are necessary, not only be-

cause they set the foundation for Transformer-based contextual word embeddings, but

also for the experiments presented in the following chapters, as we make use of tradi-

tional methods (embedding visualizations, attention visualizations) to further study our

experimental results.

Natural language processing methods commonly require text to be converted into

vectors of numerical values. Encoding can be a succinct process of mapping values to a

vocabulary either as indices or as optimized vectors for processing. A vector spacemodel

or word embeddings model is a semantic space, where lexical items (words or multi-

word terms) are represented as vectors or embeddings. Vector similarities may correlate

with semantic similarities, because words of the same class, function, or similar meaning
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are encoded with similar vectors based on their similar occurrences in multiple contexts.

This has led to the common assumption that vector space models contain may be able

to capture important semantic information. The idea of language models representing

semantics stems from structuralist linguistics and the philosophy of language (Harris,

1954; Firth, 1957). Initial attempts to measure semantic similarity via feature representa-

tions employed hand-crafted features (Osgood et al., 1957). Following the advancements

in machine learning, statistical methods were introduced (e.g. Latent semantic analysis,

Deerwester et al., 1990; Landauer et al., 1998), allowing for the extraction of distributions

from large corpora (Salton et al., 1975) in an unsupervised way (Mikolov et al., 2013a;

Pennington et al., 2014).

Even though one of the original motivations of word embeddings was to capture dis-

tributional information, static word embeddings focus on capturing the averagemeaning

of a word rather than all its possible senses, its different uses, and its preferred context(s).

Their structure of one embedding per word means that, unfortunately, words with am-

biguous meanings or varied contexts will not be accurately represented. However, the

advancements in neural network architectures, such as Transformer-based models, have

allowed for more dynamic unsupervised learning of words and their context.

Following the initial approach of Bengio et al. (2000) to capture distributional in-

formation with a neural network, modern methods of creating word embeddings aim

to create distributionally-informed word representations. The creation of word embed-

dings from neural architectures is possible due to the embedding layer of the model,

which maps the input sequence into a series of vectors. These vectors are created by

the model on a specific training task, therefore they contain all the learned information

needed for said task. Deep contextualized language representations are dynamic be-

cause they are able to represent a word in multiple instances as a function of its context,

capturing important and varied syntactic-semantic information. Additionally, the repre-

sentations can be finetuned on a given task and dataset, thus becoming more specialized

with precise knowledge.

While BERT was not the first architecture of deep contextualized word embeddings

or based on a Transformer architecture, it radically changed the field of natural language

processing, with its state-of-the-art results in multiple fields and tasks, and easy fine-
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tuning process. The introduction of libraries in Python (e.g. Huggingface Transformers)

that can automatically load the pretrained models and provide the code implementation

for finetuning and for basic tasks (masked language modeling, next sentence prediction,

binary/multiple sequence classification, token classification, question answering) has in-

creased the popularity of BERT models even more and has solidified its presence as one

of the standard practices in modern NLP. However, along with the praise has also been

extensive work to analyze Transformer-based contextual word embeddings. In the fol-

lowing sections, a few pivotal architectures and their embeddings for English and French

will be presented, focusing on the ones used in the course of this doctoral research.

2.2 Language encoding

Raw data for neural networks can be either binary (two possible values), categorical

(three or more possible values), or numerical. Text may be broken into smaller units,

either of linguistic significance like words, phrases, and sentences, or further broken

down into characters or subwords (i.e. fragments of words) and is then encoded in vec-

tors and passed as input (numerical data). Each unit of the original input corresponds

to a real-valued vector: the most straightforward method would be with index-based

encoding, where an index number represents every unique element and the input is a

vector or a series of vectors. For example, a large text may be encoded per word; the

set of words (i.e. the vocabulary) would be indexed, and each sentence can be a vector

where each value corresponds to the index of a word. The downside of this method is

that it creates vectors of large size, it cannot encode new elements which have not been

seen in the original text (they are encoded en masse as an unknown token), and does not

contain any meaningful information of the encoded element.

Another way to encode a large text per word would be with the Bag-of-Words algo-

rithm; in this approach, the vocabulary does not have unique indices, but each element of

the vocabulary receives a non-unique value (boolean in binary BoW, or with more values

if the frequency of the element is taken into consideration). The sentence vector would

be composed of these values, as seen in the example in Table 2.1. While this method

allows for the encoding of large amounts of data while dealing with unknown elements,

it does not encode the uniqueness of the elements, their word order, or systematically
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capture linguistic information. Additionally, even with the ability to represent unknown

elements, the produced vectors for a large dataset may be very large with lots of zero

scores, called a sparse vector or sparse representation, that are more computationally

expensive to process (Goldberg, 2016).

Document:
“She eats an apple.”

“We like your apple cake.”
“They like pie.”

Encoding:
{ she:1, eats:1, an:1,

apple:2, we:1, like:2, your:2,
cake:1, they:1, pie:1, .:3 }

Sentence:
“I like apple pie.”

⇓
[0, 2, 2, 1, 3]

Table 2.1: An example of Bag-of-Words encoding; how the frequency-based encodings
are made from a document of sentences, and how to encode a new sentence.

In order to be able to capture semantic information about language, words (or units

with semantic and linguistic importance) need to be treated as categorical data, i.e. la-

beled data. Words can be described, based on the presence or absence of a concept that

is used as a label/feature, and this allows not only for a description of the meaning and

function of the word, but can also create semantic links between words, e.g. synonymy,

hyponymy, and hypernymy. The encoding of categorical data in a form that can be

used by machine learning methods is done by encoding each element/category in its

own vector, where every vector dimension corresponds to a feature. One-hot encod-

ing maps these categories with binary values based on the presence/absence of each

feature (see Figure 2.2). While this encoding scheme allows for feature labeling, the

rigidity of the binary values results in sparse vectors, which, as previously discussed,

are usually undesirable. Additionally, knowing merely the presence or absence of a fea-

ture is not sufficient to interpret the semantic relations, especially between synonyms

and co-hyponyms. This difficulty is also reflected in the computational processing of

these vectors. Other methods of encoding have been introduced to represent features

in more compact ways by aggregating values for categories (e.g. target encoding), but

they remain uninformed of the actual content of the category and may misinterpret its

relation to other elements.
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Word Category

fruit sweet . . . color human

apple 1 1 . . . 0 0
orange 1 1 . . . 1 0
apple pie 0 1 . . . 0 0
. . .

“I like apple pie”
⇓

[[0, 0, ..., 0, 1],
[0, 0, ..., 0, 0],
[0, 1, ..., 0, 0]]

Table 2.2: An example of one-hot encoding of categorical data, and how the resulting
vectors can be used to encode a phrase.

2.3 Static word embeddings

Instead of relying solely on language encodings to fully capture the linguistic and seman-

tic intricacies of language, an additional method of representing language may be used

alongside them, the word embeddings in an embedding layer. A word embedding model

is a set of vector representations, usually of 100-500 dimensions, where each dimension

represents a learned feature of a word in a real number. These features, however, do

not correspond to human-defined categories in unsupervised learning methods. The

model is called static because each word is represented by one vector, its possible dif-

ferent meanings summed up. Static word embeddings are commonly created based on

large corpora, thus they aim to represent a large vocabulary and are not specialized to

a specific task. The broader their vocabulary, the better they are at representing seman-

tic similarities and relations among words, as the model learns each word’s “preferred

company”.

The idea of a semantic space with linguistic items (words or multi-word concepts)

conveyed as vectors or embeddings may tackle the computational difficulties of comput-

ing categorical properties in the encoding stage. Indeed, Collobert et al. (2011) reported

that word embeddings learned from significant amounts of unlabeled data are far more

satisfactory than randomly initialized encodings, and Al-Rfou’ et al. (2013) highlight

their positive contribution even to tasks they were not originally created for (in this

case, multilingual part-of-speech tagging). Determining the vectorial representations of

words with semi- or self-supervised methods could either be performed as a function of

a term’s presence in a bag of documents, as a form of the tf-idf encoding used in Infor-
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mation Retrieval (document occurrence representation), or as a function of similar words

that appear in the same contexts (term co-occurrence representation).

History of distributional semantics

Distributional semantics, which focuses on understanding meaning in observed lan-

guage, has employed semantic vector space models as a means of knowledge representa-

tion. The goal is to quantify and classify semantic similarities between linguistic items

based on their distributional features in large samples of language data. This distribu-

tional approach is easy to scale on different corpora sizes, as it does not rely on specific

resources, and additionally is able to model corpus-specific sense distributions. Harris

(1954) supported that words with similar meanings tend to occur in the same contexts,

and Firth (1957) developed the hypothesis that “a word is characterized by the company

it maintains”, an idea also explored by psycholinguists of the time (semantic differential,

Osgood et al. (1957)).

The vector space model for information retrieval (Salton et al., 1975) is the first at-

tempt to create semantic space models for use in computational linguistics; however,

this method creates a very sparse, high dimensional vector space. To tackle the sparse

vector problem, latent semantic analysis (Deerwester et al., 1990; Landauer et al., 1998)

and the random indexing approach (Kanerva et al., 2000; Sahlgren, 2002) were intro-

duced, in order to reduce the number of dimensions, using linear algebraic techniques

like singular value decomposition. Since then, many clustering methods have been pro-

posed in order to improve the quality and the performance of these word embeddings

(Pantel and Lin, 2002). Pereira et al. (1993) created word clusters based on syntactic and

co-occurrence relations, in order to reduce dimensions in a more linguistically-informed

manner. The issue that persists with the distributional method, however, is the weak-

ness of capturing salient meaning and distinguishing synonyms from antonyms, when

compared with rule-based methods (Lin et al., 2003).

Vinokourov et al. (2002) introduced the concept ofmultilinguality in word represen-

tations since the same word in different languages should still occupy the same semantic

space, and created word and document embeddings in a self-supervised manner (with

the use of kernel Canonical Correlation Analysis). Morin and Bengio (2005) proposed a
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hierarchical language model of a binary tree of words, built with neural networks along-

side WordNet’s human-crafted definitions and categories, and Mnih and Hinton (2008)

proposed an automatic method of construction of these hierarchies.

The release of theword2vec algorithm has been pivotal in the development of word

embeddings (Mikolov et al., 2013c,a). It consists of a two-layer neural network trained

on a “fake task” to retrieve one random similar word for a word in the middle of a con-

text window (e.g. a sentence) and uses the learned hidden weights. Its two main archi-

tectures are the Continuous Bag-of-Words model which predicts the target word based

on the distributed representations of the context words, and the Continuous Skip-Gram

Model which aims to learn and predict the context of the target word (McCormick, 2016).

Word2Vec can provide accurate predictions about a word’s meaning based on its usage

and its associations in a (large) text, but more importantly, it is capable of assigning sim-

ilar values to words of similar meanings and distributing words in meaningful groups.

These meanings and semantic associations can be easily observed with algebraic oper-

ations, to visualize similarities and semantic clusters. In addition to the algorithm, pre-

trained word embeddings have been released, trained on large corpora (Google News

corpus of 100 billion words, Wikipedia dumps) and with large vocabularies, ready to be

used alongside NLP applications.

Soon after the release of word2vec, the GloVe (Global Vectors) learning algorithm

was introduced (Pennington et al., 2014); it is also capable of creating word vector rep-

resentations from large texts, in a distribution that reflects semantic relations. It is an

unsupervised method like word2vec but uses local context information of words along-

side an aggregated global word-to-word co-occurrence matrix (for example, latent se-

mantic analysis) in order to come up with a principled loss function that uses both these.

Thus GloVe vectors are able to examine global occurrences and co-occurrences of terms

and determine the semantically-important context from regular context. The idea of us-

ing dimensionality reduction on the word co-occurrence matrix also appeared in other

works of the time (Lebret and Collobert, 2014; Levy and Goldberg, 2014; Li et al., 2015),

however, GloVe was also able to harness the benefits of the word2vec approach to cap-

ture synonymy. Pretrained word vector models made with the GloVe algorithm have

also been made available and widely used, with large Internet-sourced corpora.
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Bojanowski et al. (2017) created the fastText algorithm and pretrained embeddings,

using the skip-gram method as word2vec and additionally by decomposing a word to

character n-gram information, i.e. subword units. This approach aims to incorporate

morphological information into vector embeddings, as the (automatically segmented)

subwords may contain morpheme information with salient syntactic and semantic in-

formation –whether they coincidewithmorpheme boundaries or not. While thismethod

strays away from word-level semantic information, and additionally the subword units

are not linguistically informed, they have achieved similar or better performance in some

NLP tasks, and demonstrated their usefulnesswithmorphologically-rich languages, bring-

ing up an important perspective in the usually anglocentric approach of NLP methods.

Even though the use of unsupervised methods has become the norm, especially after

the widespread popularity of pretrained word embedding models, the need for explain-

ability and salient semantic roles was not sated; Qureshi and Greene (2019) proposed

a method of unsupervised word embeddings made with human-readable features, as a

way to make similarity and semantic features more interpretable. However, the tides

did not turn in the world of natural language processing; as machine learning meth-

ods have proved for decades, human cognition is most valuable as an inspiration and a

stepping-off point, rather than a strict blueprint for algorithms.

Properties of static word embeddings

In the previous section, it was discussed how pretrained word embeddings from algo-

rithms like word2vec are able to capture interesting semantic relations between words.

This information can be exploited in order to assess a model’s capacities and the con-

tribution it has to language tasks. As previously explained, each word or subword has a

corresponding vector of 100-500 dimensions.

Each of these vectors can be placed in a continuous vector space, thus creating spatial

relations betweenwords which can be used to compare and congregate them into seman-

tic spaces. The word vectors can be easier visualized in 2- or 3-dimensional plots with

dimension reductionmethods such as principal component analysis (PCA) or t-distributed

Stochastic Neighbor Embedding (t-SNE), and mathematical operations can be used to eas-

ier compare different vectors’ magnitudes and directions.
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In visualizations of vectors, similarity can be defined as the Euclidean distance be-

tween two vectors (i.e. the actual distance between points), or the cosine similarity of the

vectors (the angle between two vectors in space). It is expected that similar word vectors

will converge to similar locations in the word embedding space due to their similarity;

in Figure 2.1, it is shown that words related to vehicles (synonyms or hyponyms) exist

in a cluster far from unrelated words (e.g. moon, tree). Apart from semantic similar-

ity, algebraic operations can also demonstrate different types of dependencies between

words, on a more sophisticated level. For example, in Figure 2.2, Mikolov et al. (2013c)

demonstrate that the word2vec embeddings for country names have negative values on

the x-axis and the capital names have positive values. The countries have similar y-axis

values to the corresponding capital, and the transformation between each country and

its capital is similar for every pair, which suggests that these pairs have a similar se-

mantic relation in the word2vec embeddings. Similar findings were reported for GloVe

vectors, for example with semantic relations between non-verbal elements and words

(postal codes and cities), with named entities (company names and CEOs). Relations of

gender have also been reported to create similar patterns (see Figures 2.3 for word2vec

and Figure 2.4 for GloVe). The existence of clusters and significant vector differences is

not limited to semantic and world knowledge, but other linguistic properties have been

identified in word embeddings. In Mikolov et al. (2013b), it has also been reported that

linguistic patterns had been identified in word embeddings, such as plurals and verb

tense (see Figure 2.3).
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Figure 2.1: Three-dimensional PCA projection of 300-dimensional word2vec embed-
dings of various words. The colors mark manually annotated semantic clusters—though
there are visualization methods for coloring generated clusters. Source: Lynn (2018)

Figure 2.2: Two-dimensional PCA projection of 1000-dimensional word2vec word vec-
tors of countries and their capital cities. Source: Mikolov et al. (2013c)
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Figure 2.3: Two-dimensional PCA projection of 1000-dimensional word2vec word vec-
tors of gender and verb tense word relations. Source: Lynn (2018)

Zip code – City Male – Female gender

Company – CEO Comparative – Superlative degree

Figure 2.4: Two-dimensional PCA projection of 300-dimensional GloVe word vectors.
Source: Pennington (2014)
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2.4 Transformer architecture

2.4.1 Traditional attention mechanisms

The idea of creating an external memory of prior knowledge as a form of top-down atten-

tion has existed for a long time, with architectures such as the Neural Turing Machines

(Graves et al., 2014) and End-to-End Memory Networks (Sukhbaatar et al., 2015). How-

ever, bottom-up attention, i.e. the ability to process input and deduce its most important

parts without the need for prior specialized knowledge, has been further explored in

machine learning. Early attention mechanisms, first used for convolutional neural net-

works in Computer Vision, were implemented as a saliency map of low and high-level

visual features (Itti et al., 1998), and later as additional attention modules applied on

feature maps (e.g. for computer vision in Rodriguez et al., 2018, for natural language

processing in Shen and Huang, 2016).

However, the attention mechanisms that have been established and extensively used

and developed for natural language processing are applied to sequential models. The

first attention mechanism originated from Bahdanau et al. (2014) for neural machine

translation encoder-decoder RNN models. This mechanism and its variations (e.g. dif-

ferent functions and optimization techniques, added elements) can be applied to seq2seq

models regardless of their inner encoder-decoder architecture. The attention mecha-

nism aims to encode the input sentence into a sequence of vectors, instead of treating

the entire input simultaneously. Then, it dynamically chooses a subset of these encoded

vectors in the decoding process. Its goal is to show how the input element of a sequence

correlates to the other elements and “highlight” the important ones, in order to help the

decoder make better-informed decisions. An illustration of additive/Bahdanau attention

in a seq2seq model can be seen in Figure 2.5.

The encoder is a bidirectional RNN responsible for creating an annotation hi for

every word xi in an input sequence of T elements (words). The annotation is the con-

catenation of the forward pass hidden state
−→
hi and the backward pass hidden state

←−
hi

(see Equation 2.1).

hi = [
−→
hT
i ;
←−
hT
i ] (2.1)
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Figure 2.5: Visualization of the attention layer from the encoder input to the decoder
output, for a neural architecture with Bahdanau attention. Source: Karim (2019)
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The decoder computes its hidden states and outputs at each timestep t, as seen in

Equation 2.2. In order to align the decoder output with the corresponding encoder input

(which is important for machine translation), it uses the annotations of the encoder hi

and passes them to an alignment function α(.) alongside the decoder’s output st−1 at the

previous timestep t− 1, to create the attention score et,i at timestep t (see Equation 2.3).

The alignment function is an additive process, hence the alternative name additive at-

tention.

st = RNNdecoder(st−1, yt−1) (2.2)

et,i = α(st−1,hi) (2.3)

The implementation of the alignment function α can be performed either with a weight

matrix W over the vectors st−1 and hi or by applying the attention matrices W1,W2

respectively on them (see Equation 2.4). The alignment outputs are parameterized as a

feedforward neural network and jointly trained with the architecture, i.e. the model still

observes the entire input, but the alignment function provides additional information

on specific parts of the input.

α(st−1,hi) = vT tanh(W[hi ; st−1])

α(st−1,hi) = vT tanh(W1hi +W2st−1)
(2.4)

A softmax function is applied to the decoder output weights, in order to normalize the

output values in a range from 0 to 1. According to Bahdanau et al. (2014), this method

allows the decoder to decide which parts of the input should be attended to. The annota-

tions α are saved as a weighted sum in the context vector ct (see Equation 2.5) which is

updated after every decoding time step. The hidden state of the attention mechanism s̃t

is computed based on a weighted concatenation of the context vector ct and the current

decoder hidden state st, as seen in Equation 2.6. Finally, the decoder’s final output yt is

computed, by applying a weight Wy and a softmax function to the attention’s hidden

state s̃t (see Equation 2.7).
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ct =
T∑
i=1

αt,ihi (2.5)

s̃t = tanh(Wc[ct ; st]) (2.6)

yt = softmax(Wys̃t) (2.7)

Luong et al. (2015) proposed alternative ways to Bahdanau et al. (2014) of computing

α alignment scores, either with the additive method of Bahdanau and a trainable weight

matrix Wα or with multiplicative attention and weights Wα, vα (the three methods

proposed are seen in Equations 2.8). With multiplication, they claim to capture the sim-

ilarity of the encoder’s hidden state and the decoder’s output more closely.

α(st,hi) = vT
α tanh(Wα[st ; hi)]

α(st,hi) = sTt hi

α(st,hi) = sTt Wαhi

(2.8)

Other ways of diversifying attention have emerged for different tasks. Wu et al.

(2016) are processing the context vector and decoder output by layering multiple LSTMs

to further process the encoder and decoder outputs. Global attention is the mechanism

that attends to all encoder hidden states (as described above) and local attention focuses

on a window of hidden states in each timestep, either based on the current decoder

position or with predictive alignments (Luong et al., 2015). Local attention creates the

context vector by computing a weighted average over the set of annotations and hidden

states hi limited by a window around a position pt. The length of the window can be

created either empirically or with trainable parameters based on the input.

Types of attention that emerged from computer vision terminology are soft and hard

attention. Soft attention uses as input the encoder’s weighted inputs (and is equivalent

to global attention), while hard attention uses the attention scores to select one of the

hidden states to focus on (Xu et al., 2015; Yang, 2020).
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Self-attention or intra-attention was originally proposed by Cheng et al. (2016) for

machine reading, with themotivation that each sequencewould contain a representation

of its own elements. They were also able to apply this mechanism to an encoder-decode

architecture with promising results. However, the self-attention module that has revo-

lutionized the world of natural language processing was introduced by Vaswani et al.

(2017). In this work, multi-head self-attention is used alongside a novel neural network

architecture called a Transformer.

2.4.2 The self-attention mechanism

Self-attention is a type of attention mechanism that allows the inputs of the model to

interact with each other, unlike general attention in which the output interacts with

each input. In Vaswani et al. (2017), self-attention is implemented with a Transformer

encoder-decoder model: the encoder is made of 6 layers with 2 sub-layers each. Before

explaining the structure of the Transformer in Section 2.4.3, it is necessary to examine

how the self-attention mechanism is built and how it processes input.

In simple terms, the self-attention attention function is effectively a mapping from a

query to a set of key-value pairs and then to an output. In order to explain the interaction

of queries, keys, and values, a parallel could be drawn with information retrieval; a

database of people contains tuples of keys-values, where a key would correspond to

a last name and its value to the first name. A query to this dataset may be an exact or

approximate match to one of the keys, in which case the value would be returned, or may

not correspond to any keys, in which case there would be no valid answer (Zhang et al.,

2021). During the training process, the self-attentionmechanismwill learn the similarity

of a query and a key as an attention weight. In NLP, the keys and values correspond to

the alignment of input and expected output (e.g. between the source and target tokens

in machine translation) or the input and its extracted features (e.g. in classification).

The result of the self-attention mechanism is calculated as a weighted sum of the

values, with each value’s weight determined by the query’s compatibility function with

its associated key. A graphic demonstration of how the mechanism of self-attention

produces output on the first input segment can be found in Figure 2.6. A mathematical

presentation of the main components follows.
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Figure 2.6: How the mechanism of self-attention produces output on the first input seg-
ment, treating each input segment separately but in parallel. The query comes from the
decoder’s hidden state, and the key and value come from the encoder’s hidden states.
Source: Karim (2022)

First of all, each component of the input vector is split into three representations: the

query q, the key k, and the value v. These representations are contained in matrices Q,

K , V respectively, but are not directly used by the model; instead, each attention module

of the self-attention mechanism initializes its own projection matrices WQ, WK , W V

and aggregates the queries, keys, and values in the respective matrix (Adaloglou, 2021).

In this stage, bias may also be added.

The attention scores for each input are the dot product of the input’s query and of

all the keys of each input, including the current input’s key, and it is scaled down to

create more stable gradients. Hence in Vaswani et al. (2017) it is referred to as scaled dot-

product attention. Its calculation is shown in Equation 2.9. Vaswani et al. (2017) state that

this method is equivalent to the multiplicative attention of Luong et al. (2015) with the

added scaling factor. The scaling factor is a division by the square root of the dimension

of query and key, 1√
dk

(Cristina, 2022a).

attention(Q,K,V) = softmax
(
QKT

√
dk

)
V (2.9)

27



Chapter 2

In Equation 2.9, the alignment scores QKT are produced by multiplying the queries of

matrixQwith the keys of matrixK, wherem is the length of queries and n is the length

of keys:

QKT =


e11 e12 . . . e1n

e21 e22 . . . e2n
... ... . . . ...

em1 em2 . . . emn


Each of these alignment scores e is scaled and passed through a softmax function, in

order to obtain a matrix of weights. The weight is assigned based on the similarity

of the query with the corresponding key. The scores are normalized with a softmax

function, and then each softmaxed attention score for each input is multiplied by the

input’s corresponding value to produce a weighted value.

softmax
(
QKT

√
dk

)
·V =


softmax( e11√

dk

e12√
dk

. . . e1n√
dk
)

softmax( e21√
dk

e22√
dk

. . . e2n√
dk
)

...
... . . . ...

softmax( em1√
dk

em2√
dk

. . . emn√
dk
)

 ·

v11 v12 . . . v1dv
v21 v22 . . . v2dv
...

... . . . ...
vn1 vn2 . . . vndv

 (2.10)

All weighted values for each input are then added, in order to produce the query repre-

sentation, a sum of attention scores that also includes the input’s self-representation.

∗

∗ ∗

In Vaswani et al. (2017), the concept of multi-headed attention was also introduced

(see Figure 2.7). Their self-attention mechanism is composed of 8 attention heads, where

each head has different weight matrices for queries, keys, and values. The operations

of self-attention are the same as described above, but they are performed by each at-

tention head separately. This means that the attention heads have identical architecture

and operate on the same feature space, but each attention head has its own key, value,

and query matrices, and computes its own output matrix. Hence they are “free" to at-

tribute different weights by learning different functions. Thus, the attention function
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is able to extract information from different representation sub-spaces. While there is

no assurance that these weights will be learned differently, the gradient descent process

encourages following heads to become increasingly more sophisticated (Bloem, 2019).

The attention function for each attention head can be summed up in Equation 2.11 as

the weighted output of Equation 2.10, i.e. the head’s learned projection matrices. The

attention weights of the multi-head attention mechanism are saved in matrix WO, and

the attention head functions are concatenated in Equation 2.12. The final output is the

weighted dot product of the concatenation. This brings a groundbreaking capability

to neural network models to perform parallel computations and create sub-spaces with

different specializations.

headi = attention(QWQ
i ,KWK

i ,VWV
i ) (2.11)

multihead(Q,K,V) = concat(head1, . . . , headh)WO (2.12)

Figure 2.7: The mechanism of multi-headed self-attention. The layers in the figure rep-
resent the different attention heads. Source: Vaswani et al. (2017)
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2.4.3 The Vaswani Transformer architecture

Multi-headed attention was introduced alongside a novel neural network architecture,

theTransformer architecture (Vaswani et al., 2017). It is an encoder-decodermodel that

utilizes multi-headed attention in three different ways; the encoder-decoder mechanism

interacts via attention in the same way that general attention allows. However, both the

encoder and the decoder contain their own self-attention layer: self-attention in the en-

coder is responsible for providing attention scores to the current encoder state from the

encoder’s previous states. Meanwhile, the decoder’s self-attention mechanism informs

the decoder’s current state on past and current positions (up to the current one included)

but also attends to the (unknown) future states by masking them (Alammar, 2018). At

each step the model is autoregressive, consuming the previously generated symbols as

additional input when generating the next. A visualization of the Transformer architec-

ture can be seen in Figure 2.8, and a detailed explanation of each component follows.

Figure 2.8: Visualization of a double encoder-decoder neural network with the Trans-
former architecture. Source: Alammar (2018)

30



Transformer-based contextual word embeddings

Input

In Transformer models, input is composed of two vectors: the embedding vector and the

positional encodings (see Figure 2.9). The embedding process involves the conversion of

each text token into a vector with continuous values, based on a pre-existing vocabulary

and mappings or arbitrary values. Splitting text into tokens may be performed on a

character level, sub-word or word level, or longer sequences.

Figure 2.9: A visualization of converting textual input to the input sequence for a Trans-
former model.

The length of each embedding vector is predefined by the model as dmodel. Each em-

bedding vector is also augmented by summing it (element-wise) to a positional encoding

vector of the same dmodel length. The addition of positional encodings in Transformer

neural architectures is necessary since they do not process input linearly as earlier neural

architectures do, hence they do not retain word position information.

The positional encoding provides the location or position of an item in a sequence,

in order to provide each token a distinct representation. At a first glance, indexing the

input with integers would be a sufficient way to represent the token position; however,

absolute positional information has proven to be problematic for the self-attentionmech-

anism. The parallel operations of the attention mechanism would be inefficiently slow

with a large input sequence. Normalizing the indices to a scale of 0-1 (e.g. with a sig-

moid function) could cause additional problems since the position would not be properly

represented with very small numbers.

Transformer models implement positional encodings in which each location or index
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is converted into a vector. The output of the positional encoding layer is a matrix, where

each row of the matrix represents a token that has been encoded and given positional

information. The vectors can either be learned or fixed a priori—in Vaswani et al. (2017)

they are fixed, based on a schema of sine and cosine functions in different frequencies

(Zhang et al., 2021). For an input sequence of length L, the vector of dimension d with

the position p, for a token with position k and index i, is given by Equation 2.131. In

simple terms, every even position P in the final vector is calculated by the sine function

and every odd with the cosine function (Saeed, 2022).

Pk,2i = sin

(
k

100002i/d

)
,

pk,2i+1 = cos

(
k

100002i/d

)
.

0 ≤k < L/2

0 ≤i < d/2

(2.13)

For example, the positional encoding of size d = 3 for the second token of a sequence

with k = 1 would be:

[P10, P11, P12] =

[
sin

(
1

100002
0
3

)
, cos

(
1

100002
1
3

)
, sin

(
1

100002
3
3

)]
= [0.84, 0.99, 0.00]

Encoder

The task of the encoder in a neural architecture is to create a mapping of the input

sequence into an abstract continuous representation. This representation is encoded

and contains learned information on the properties and patterns of the input, in order

to pass to the decoder.

Focusing on the encoder of the Vaswani et al. (2017) Transformer model, it consists

of a stack of 6 identical layers, built by 2 sub-layers. The first sub-layer contains the

multi-head self-attention mechanism, as described in Section 2.4.2. The second sub-

1The value 10, 000 is a user-defined scalar, set to 10, 000 in Vaswani et al. (2017).

32



Transformer-based contextual word embeddings

layer is a fully connected feed-forward network composed of two linear transformations

with Rectified Linear Unit (ReLU) activation. The mathematical interpretation of the

feedforward neural network can be seen in Equation 2.14 (Cristina, 2022b). Each sub-

layer applies the same transformations to the input sequence but uses different weights

W1, W2 and biases b1, b2.

FFN(x) = ReLU(W1x+ b1)W2 + b2 (2.14)

Each sublayer is succeeded by a normalization layer, that normalizes the sum com-

puted between the sublayer input and the output generated by the sublayer itself (see

Equation 2.15). The self-attention sublayer is followed by a layer-normalization step, a

technique developed by Ba et al. (2016) which aims to stabilize the hidden state dynamics

across training, computing the mean and variance used for normalization from all of the

summed inputs in a layer.

layernorm(x+ sublayer(x)) (2.15)

The encoder blocks are also connected with each other with skip or residual connec-

tions, pictured in Figure 2.8 as dashed lines. Residual connections were originally intro-

duced for image processing with convolutional networks (He et al., 2016; Ronneberger

et al., 2015; Huang et al., 2017), and have proven to be beneficial against the vanish-

ing gradient problem. Their objective is to allow gradients to pass through a network

directly, without passing through activation functions. The training signal gets multi-

plied by the derivative of the activation function, and in the case of ReLU, the gradient

often gets multiplied by zero. The addition of residual connections ensures the trans-

fer of the training signal without being lost or affected. Additionally, the existence of

this original, unchanged information allows the Transformer to “remember” the origi-

nal state alongside the transformed representations, thus better representing the input

(Libovický, 2022).

The current encoder outputs are passed to a feedforward layer, in order to project the

33



Chapter 2

output of self-attention in a higher dimensional space. This output is also normalized

and another skip connection is added.

Decoder

The decoder, on the right half of the architecture, receives as input its own predicted

output word at time step t−1 and additionally the positional encoding, in the same way

as the encoder. The decoder layer in Vaswani et al. (2017) is composed of 6 layers, each

containing 3 sub-layers. While the building blocks of the decoder appear to be similar

to those of the encoder architecture in Figure 2.8, they perform different functions.

The encoder is made to attend to every word in the input sequence regardless of its

position. However, the decoder is modified to focus exclusively on the words that come

before the current input. Receiving the previous output of the decoder stack, the first

decoder sublayer adds positional information to it and applies multi-head self-attention

to it. Therefore, the prediction for a word at a given position i in the sequence can only

be based on the known outputs for the antecedent words. This is accomplished in the

multi-head self-attention mechanism by applying a mask on the results of the scaled

multiplication of matrices Q and K. Masking is the suppression of the matrix values

that correspond to the connections that should be ignored (i.e. the subsequent words),

as seen in Equation 2.16.

mask(QKT ) = mask




e11 e12 . . . e1n

e21 e22 . . . e2n
... ... . . . ...

em1 em2 . . . emn



 =


e11 −∞ . . . −∞

e21 e22 . . . −∞
... ... . . . ...

em1 em2 . . . emn

 (2.16)

The second sub-layer of the decoder implements a multi-head self-attention mechanism.

It receives the queries from the previous decoder sublayer and the keys and values from

the output of the encoder. This allows the decoder to attend to all the words in the input

sequence. The third sub-layer is composed of a fully connected feed-forward network,

followed by a softmax layer, to generate a prediction for the next word of the output

sequence. Finally, the three decoder sub-layers are connected with residual connections

and are followed by a normalization layer (Cristina, 2022b).
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2.4.4 Transfer learning

The learned representations of a neural network can be extracted and used as embed-

dings for a new model. It is also possible to train them again and further specialize them

for a specific task, thus infusing them with additional knowledge for a target task. This

method is called transfer learning; apart from the benefit of additional knowledge and

specialization, it also is computationally cheaper, since it requires a smaller amount of

data and processing, while still providing state-of-the-art results.

Transfer learning is a machine learning research topic that allows the storage of

knowledge obtained while training for one task, and applying it to another, unrelated

task. This method has been shown to improve the performance of the second task, in line

with previous findings that pre-existing knowledge is better than random initializations

of input encodings. In transfer learning, a base network is trained on a source dataset

and task, its features are extracted, and these learned features are transferred to a second

target network that is trained on a target dataset and task. If the traits are general—that

is, applicable to both the base task and the target task—rather than task-specific, this

procedure is more likely to succeed (Yosinski et al., 2014).

Ruder (2019) defines two categories and four types of transfer learning. In Figure 2.10,

the taxonomy that they have proposed is presented.

Figure 2.10: Taxonomy of transfer learning methods. Source: Ruder (2019)
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Transductive transfer learning involves the same source and target tasks in both

stages, and domain adoption uses data from different domains while cross-lingual learn-

ing uses data from other languages. In inductive transfer learning, the source and target

tasks are different; inmulti-task learning the models are trained onmultiple related tasks

simultaneously, while in sequential transfer learning the model is trained on source data,

and as a second phase, the trained model is trained again for the target task, in order

to become adapted and specialized to the target task. These two phases involve the

pretraining process, followed by feature extraction or finetuning.

Pretraining is the phase where the model is being trained with the source data and

task, which are ideally as close to the target task as possible. If the pretrained model’s

weights are kept, they can be immediately “adopted” as embeddings (feature extraction),

or they can be further adjusted to the target task (finetuning). In feature extraction, sin-

gle parts (sentences or characters) are extracted to a fixed-lengthmatrix with dimensions

Rn × k, where n is the size of the vocabulary and k is the fixed length. The weights of

the model do not change, but the model learns a linear combination of the top layer (Pe-

ters et al., 2019). However, fine-tuning involves a second training process in which the

pretrained model’s weights are updated on the target task. This allows for better per-

formance and specialization on a specific task. However, this updating technique may

bring some shortcomings. A finetuned model may lose some general knowledge and

relationship between words learned during the pretraining phase, or only update words

that exist in the target data, with other words being left “unseen”.

The finetuning process can be performed in multiple ways, by training the entire

architecture, training some layers, or freezing the entire architecture. When training

the entire architecture, the pretrained model is trained with the target dataset, and the

output is passed to a softmax layer. The error is backpropagated through the entire

architecture and the pretrained weights of the model are updated based on the target

task. Freezing a layer or the entire architecture means disabling gradient computation

and backpropagation for the weights of these layers, i.e. disallowing the update of these

weights. For example, the weights of the initial layers of the model can be kept frozen

while updating only the higher layers. It is also possible to freeze the entire architecture

and add an additional final layer (or more) to be trained and updated.
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2.5 Contextualized embeddings with Transformers

2.5.1 Introduction

The use of pretrained embeddings learned from neural architectures preexisted the ex-

istence of Transformer architectures. The idea of creating context-dependent word em-

beddings also predates deep contextualized embeddingmodels fromTransformers, made

ubiquitous after the work of Radford et al. (2018) and Devlin et al. (2019). Distributional

information can be combined with document occurrence, in order to create networks of

related words. A first attempt to create word distributional representations with neural

methods appeared in Gallant (1991). Hand-encoded semantic features are used along-

side a context algorithm, in order to generate a dynamic context vector for a word at

any position. The work by Bengio et al. (2000) is the first self-supervised method with

a neural network, where the probability for word sequences is learned simultaneously

with a distributed representation for each word. This approach outperformed state-of-

the-art statistical methods of the time with trigrams since it allowed the generalization

that similar words may be interchangeable in a known phrase. Reisinger and Mooney

(2010) also developed context-dependent word embeddings that are capable of capturing

polysemy and homonymy.

However, the Transformers’ unique properties of multiple representations and par-

allel operations have generated dynamic embeddings that are sensitive to multiple con-

texts. These embedding models have been considered the most important advancement

in NLP after word2vec models. In the following sections, we are examining ELMo, a

deep contextualized word embedding model based on a neural architecture (CNN and

LSTMs) that served as the mold for subsequent Transformer-based embedding mod-

els. We later focus on autoregressive models (GPT, XLNet) and autoencoder-like models

(BERT, RoBERTa, ALBERT, CamemBERT, FlauBERT). Even thoughwe are only using the

latter in this doctoral research, it is necessary to briefly talk about the ELMo and GPT

models, in order to understand the structure of more complex models and the motivation

to discard direct output and only use the pretrained word embeddings.
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2.5.2 ELMo

Peters et al. (2018) introduced Embeddings from Language Models (ELMo), a deep con-

textualized word representation model that is able to capture complex characteristics of

word use (e.g. syntax and semantics) and their possible variations in different linguis-

tic contexts. The model and its contextual embeddings significantly improved the state

of the art—at the time—across a broad range of challenging NLP problems, including

question answering, textual entailment, and sentiment analysis.

The model proposed in Peters et al. (2018) is similar to the TagLM model previously

created by Peters et al. (2017) for sequence tagging (part-of-speech, text chunking, and

named entity recognition). A graphic depiction of the architecture is shown in Fig-

ure 2.11. The training objective of the ELMo model is neighbor word prediction (either

to the left or the right, independently).

Figure 2.11: The structure of the biLM model to produce ELMo embeddings. Source:
Hagiwara (2021)
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A character-level CNN (inspired by Jozefowicz et al., 2016) is used to initialize token

embeddings and character-level embeddings for the training process. A character/token

representationxLM
k is passed through a deep bidirectional languagemodel (biLM)withL

layers of LSTM neural networks. At each position k, each LSTM layer outputs a context-

dependent representation
−→
h LM

k,j where j is the layer index. The top layer’s LSTM output,
−→
h LM

k,L , is used to predict the next token tk+1 with a softmax layer.

As seen in Figure 2.11, the input phrase is scanned twice in each layer, once with a

forward and once with a backward pass. The internal states from the backward pass are

calculated from the word itself and the future context, while the internal states from the

forward pass are calculated from theword and its past context. Therefore, the calculation

of the probability of token tk is similar for both passes (see Equation 2.17).

p (t1, t2, . . . , tN) =
N∏
k=1

p (tk | t1, t2, . . . , tk−1)

p (t1, t2, . . . , tN) =
N∏
k=1

p (tk | tk+1, tk+2, . . . , tN)

(2.17)

An intermediateword vector concatenates these two stateswith both contexts, which

differentiates the biLM model from a traditional bidirectional architecture. (In a bidirec-

tional architecture, the internal states of the forward and backward passes would be

concatenated before being passed to the next layer). Every layer of the model computes

its own internal states and the final representation is the weighted combination of the

input word vectors and all intermediate word vectors, as shown in Equation 2.18. The

variablesΘx andΘs are the token and softmax parameters respectively, which are com-

bined for both directions, while the Θ⃗LSTM parameters of each LSTM are unique.

N∑
k=1

(
log p

(
tk | t1, . . . , tk−1; Θx, Θ⃗LSTM ,Θs

)
+ log p

(
tk | tk+1, . . . , tN ; Θx,

←−
ΘLSTM ,Θs

))
(2.18)

ELMo is, according to Peters et al. (2018), a “task-specific combination of the interme-

diate layer representations in the biLM”. Each layer L computes a set of representations
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based on the tokens’ previously observed hidden states (see Equation 2.19).

Rk =
{
xLM
k ,
−→
h LM

k,j ,
←−
h LM

k,j | j = 1, . . . , L
}

=
{
hLM
k,j | j = 0, . . . , L

}
,

(2.19)

These models can be used directly for NLP tasks or adapted to a target task with

additional data. The ELMo-specific task is formulated by Equation 2.20. Rk is the repre-

sentation of the tokens tk and Θ is the size of the context window. γ is the optimization

task-specific parameter to scale the model and staskj is a softmax function to normalize

weights h per token index k and model layer j (Becker, 2020).

ELMotask
k = E

(
Rk; Θ

task ) = γtask
L∑

j=0

staskj hLM
k,j (2.20)

The pretrained model is frozen and the task-specific weights are calculated, to produce

task-specific representations for every token tk, a linear combination of the internal

representations.

The authors used ELMo pretrained embeddings from a trained biLM model and pro-

vide them as language representations to a newmodel, and also used the ELMo output as

weights to the hidden states of the newmodel’s output. With this method, they reported

an accuracy improvement of 6-20% on NLP benchmark tasks: question answering, tex-

tual entailment, semantic role labeling, named entity extraction, co-reference resolution,

and sentiment analysis. These pretrained embeddings can be further improved with the

use of feature extraction.

The creators of the ELMo architecture have released different versions of pretrained

word embeddings, a small and medium-sized model trained on 800 million tokens from

the One Billion Word Benchmark (Chelba et al., 2013), and a large model trained on 5.5

billion tokens from Wikipedia dumps and the monolingual news crawl data from the

Workshops on Statistical Machine Translation (WMT) from 2008 to 2012.
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2.5.3 GPT

Generative Pre-trained Transformer (GPT) (Radford et al., 2018) was the first architec-

ture to produce deep contextualized word representations using a Transformer decoder.

Self-attention in a Transformer allows the model to focus on the most relevant parts of

the input when processing each part of the input, and the Transformer itself is capable

of parallelizing processes to compute weights faster. Word embeddings from the GPT

model are trained in a two-step approach, with the generative pretraining (unsupervised)

and the discriminate finetuning (supervised) being integral parts of the architecture.

The GPT model uses Byte-Pair Encoding (BPE) (Gage, 1994) for its input, a data-

driven form of data compression which has been adapted for use in NLP applications

(Sennrich et al., 2016). The vocabulary is encoded as a series of tokens, where common

words will be encoded as a single token, while rare words will be segmented into sub-

words optimized by frequency. This method ensures the preservation of word-based

encodings for frequent words while keeping the vocabulary size at a relatively reason-

able size. It is also capable of handling unseen and rare words by decomposing them to

(ideally) morphologically salient subwords.

The training objective of GPT is to calculate the probability of tokens u1, . . . , un in

the context vector U (see Equation 2.21), where k is the size of the context window, and

the conditional probability P is modeled using a neural network with parameters Θ.

These parameters are trained using stochastic gradient descent.

L1(U) =
∑
i

logP (ui | ui−k, . . . , ui−1; Θ) (2.21)

The internal architecture is a 12-layer decoder-only Transformer with 12 masked

self-attention heads with 64-dimensional states each (for a total of 768). The architec-

ture uses the Adam optimization algorithm, instead of stochastic gradient descent, and

the Gaussian-error Linear Unit (GeLU) activation function instead of ReLU. This model

applies a multi-headed self-attention operation over the input context tokens followed

by position-wise feedforward layers. GPT employs the concept of autoregression; the

output depends linearly on its own previous values, in a way reminiscent of RNNs, but

harnessing the computational prowess of a Transformer architecture.
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In Equation 2.22, U is the context vector of tokens, n is the number of layers, We

is the token embedding matrix, and Wp is the position embedding matrix. GPT uses

only one direction, calculating the Transformer’s hidden state hl based on the previous

timestep hl−1 (forward pass).

h0 = UWe +Wp

hl = transformer _block (hl−1)∀i ∈ [1, n]

P (u) = softmax
(
hnW

T
e

) (2.22)

Like ELMo, GPT can be finetuned for a specific task with labeled data, using the

word embeddings from the previous pretraining process. With a labeled dataset C of

input tokens x1, . . . , xm with a label y, the objective is to maximize the likelihood of the

classification task. The inputs are passed through the pretrained GPT to obtain the final

transformer block’s activation hm
l , which is then fed into an added linear output layer

with parameters Wy to predict y (see Equation 2.23).

P
(
y | x1, . . . , xm

)
= softmax (hm

l Wy) (2.23)

In order to test GPT, the authors pretrained the model with a large corpus and fine-

tuned the pretrained embeddings on benchmark NLP tasks: causal language modeling

(CLM), natural language inference, question answering and commonsense reasoning,

semantic similarity, and classification. A visualization of the finetuning process for the

different tasks is provided in Figure 2.12.

Pretraining was performed with BookCorpus (Zhu et al., 2015) and around 1 billion

tokens. According to Radford et al. (2018), the GPT pretrained embeddings were able to

outperform traditional methods of neural networks and ELMo, in standardized tasks of

semantic classification (entailment, contradiction), question answering, commonsense

reasoning, and paraphrasing. The authors also highlighted the importance of transfer

learning with finetuning on language-related tasks, which improves the generalization

capacities of the model and accelerates computations.
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Figure 2.12: A visualization of the pretraining process of the GPT Transformer model
(left) and of the task-specific inputs and finetuning processes. Source: Radford et al.
(2018)

2.5.4 BERT

Bidirectional Encoder Representations from Transformers (BERT) (Devlin et al., 2019)

is a Transformer-based bidirectional encoder-decoder architecture, which shortly after

its release became synonymous with deep contextualized word embeddings. One of the

revolutionary aspects of BERT is its pretraining method, inspired by autoencoding (but

not truly an autoencoder, as multiple sources support): the training process randomly

samples positions in the input sequence and learns to fill the word in the masked posi-

tion, while also learning to predict the next sentence given the first sentence. As Radford

et al. (2018) have pointed out, the addition of language-motivated knowledge in a model

is beneficial to its performance.

BERT’s input is treated in three embedding layers that create three different repre-

sentations, which are combined and passed to the training step. A visual is provided in

Figure 2.13. In detail, the embedding layers composing the input are the following:

• The token embedding layer uses the WordPiece tokenization algorithm (Wu et al.,

2016), a data-driven method similar to BPE, that creates words and subwords out of

the input text for optimal vocabulary size and handling of rare/unknown words. At

this stage, BERT’s tokenizer also adds two special tokens, [CLS] (“classification”) to

annotate the start of a sequence and [SEP] (“separate”) at the end of the sequence—
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Figure 2.13: Visualization of converting the input into the embeddings layer and adding
segment encoding and positional encoding to create the BERT input.

these tokens are necessary for the pretraining and finetuning processes when a se-

quence of multiple sentences is reduced to a single input vector. The original BERT

pretrained word embeddings for English were built on a vocabulary of 30,522 words

and subwords. The produced tokens are then encoded into a 768-dimensional vector

representation, in a matrix of shape (n, 768) (where n is the length of the input).

• The length of the input in BERT is fixed to the maximum length of 512; this means

that longer sequenceswill be split and processed separately, and shorter sequenceswill

have to be padded. In order to “block” the unnecessary padding special tokens from

the attention mechanism (since they are not useful to the sequence), an additional

layer called an attention mask may be used. It is a vector where useful tokens are

mapped to 1 and tokens to be ignored are mapped to 0.

• The segment embedding layer is an additional method to separate the input’s sen-

tences, especially for classification tasks with two sequences. This layer only has 2

vector representations; the first vector (of index 0) is assigned to the tokens of the first

sequence, and the second vector (of index 1) is assigned to the tokens of the second

input. If there is no need to differentiate between the two sequences, the first vector

can be assigned to all tokens.

• The position embedding layer serves the purpose of maintaining the positional in-
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formation of the input sequence. They are positional embeddings calculated in the

same way as in Vaswani et al. (2017)—see Section 2.4.3 and Equation 2.13. In a two-

sentence input, the first sentence of length l will be modeled as p(1), . . . , p(l), and the

second sentence of length j as p(l + 1), . . . , p(l + j).

The representations of the three layers are summed element-wise to produce a single

representation with shape (1, n, d), which is then passed to the Encoder layer. The n

variable is the maximum length of accepted input by the model, which in BERT’s case

is 512. d is the number of hidden states of the encoder (768 for base-sized models and

1024 for large-sized models). These representations can be added to a batch matrix of

shape (b, n, d) (where b is the batch dimension).

The internal structure of BERT is a 12-layer Transformer encoder (24-layer for the

large-sized models), with the architecture of the Vaswani et al. (2017) Transformer and

12-headed self-attention (or 16-headed for the large-sized models). A graphic demon-

stration can be seen in Figure 2.14.

Figure 2.14: A visualization of BERT’s pretraining process. In red is the prediction for the
Masked Language Modeling task (based on the corresponding embedding output in the
target position). The classification layer is responsible for the Next Sentence prediction
task. Source: Horev (2018)
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BERT was pretrained simultaneously on two training tasks: masked language mod-

eling and next-sentence prediction. Masked language modeling (MLM) begins before

the model is trained; 15% of the tokens of the input sequence are masked, i.e. replaced

with the special [MASK] token, and the model is tasked to predict the original value

of the masked token based on the context of the other non-masked tokens in the input

sequence. This process involves the addition of a layer on top of the encoder output,

multiplying the output vectors by the embedding matrix to transform them into the

vocabulary dimension, and calculating the probability of each word in the vocabulary

with the softmax function. While this method fits the description of an autoencoder (i.e.

an architecture that creates input representations based on compressing structures ob-

served in data) BERT differs in the sense that it only focuses on the prediction of masked

tokens. Yang et al. (2019b) have described the BERT training process as “denoising auto-

encoding”. Specifically, for a text sequence x, BERT first constructs a corrupted version

x̂ by randomly masking a portion of tokens in x. The masked tokens are represented by

x. The training objective is to reconstruct x from x̂, as seen in Equation 2.24. mt = 1

indicates xt is masked, and Hθ is the Transformer block that maps a length- T text se-

quence x into a sequence of hidden vectors Hθ(x) = [Hθ(x)1, Hθ(x)2, · · · , Hθ(x)T ].

max
θ

log pθ(x | x̂) ≈
T∑
t=1

mt log pθ (xt | x̂)

=
T∑
t=1

mt log
exp

(
Hθ(x̂)

⊤
t e (xt)

)∑
x′ exp

(
Hθ(x̂)⊤t e (x

′)
) (2.24)

Next-sentence prediction (NSP) is a classification task in which the model is asked

whether the second sentence of a two-sentence input is an appropriate continuation

of the first one (as they appeared in the training set). The output vector of the special

[CLS] token is used for the classification; it is passed to a single-layer feedforward neural

network which is used as the classifier, and the result is a softmaxed probability.

The BERT architecture was originally trained with BookCorpus (Zhu et al., 2015) and

the English Wikipedia (2.5 billion words), to produce (in the original paper) models with

different parameter sizes: bert-base and bert-large (and each model having the variant
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“cased” where the training set was unaltered, and “uncased” where it was lower-cased).

The bert-base model has 12 layers, a hidden size of 768, and 12 attention heads for a

total of 110 million hyperparameters, while bert-large has 24 layers, a hidden size of

1024, and 16 attention heads, for a total of 340 million hyperparameters. The size of the

models is calculated not just by the size of the training set, but by thehyperparameters of

the architecture. Parameters are the variables whose values are learned during training,

but hyperparameters are the machine learning parameters whose value is determined

before a learning algorithm is trained. For an architecture such as BERT, its hyperpa-

rameters are the variables that the architecture uses to configure the Transformer and

multi-headed self-attention. These include the number of layers, heads, training size,

learning rate, warmup steps, etc. A full list of the hyperparameters for the bert-base

model is presented in Table 2.3, which also explains how the final number of hyperpa-

rameters is calculated.

These pretrained models can be used directly for NLP tasks (feature-based approach),

achieving high accuracies without specialization being required (Peters et al., 2019).

However, the models can also be finetuned on a specific task, with the use of one addi-

tional layer on top of the existing ones and a much smaller dataset than the pretraining

one (according to Devlin et al. (2019), an annotated dataset of 100 thousand words is

sufficient). Finetuning this additional layer takes 2-4 epochs, the whole process lasting

a few hours on a GPU server compared to the days of pretraining on large processing

units (e.g. around three days on 16 TPUv3 chips). Merchant et al. (2020) have shown that

the update of weights is minimal on earlier layers of BERT and the update focuses on the

last layers, therefore for most tasks and basic use there is no significant improvement

with experimenting on freezing layers.

Soon after the open release of BERT by Google, multiple variations of word embed-

dings emerged; for example, Devlin et al. (2019) released, alongside the English BERT,

multilingual BERT (mBERT), a BERT model pretrained on texts frommultiple languages

and sharing the same vocabulary. Multiple models in different languages appeared, ei-

ther monolingual or multilingual, improving results in many tasks, especially in low-

resource languages forwhich therewere few available datasets and tools available (Wang

et al., 2020b).
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Embedding Matrices
Word Embedding
matrix size

Vocabulary size *
embedding dimension 30,522 * 768 23,440,896

Position embedding
matrix size

Maximum sequence
length * embedding

dimension
512 * 768 393,216

Segment (Token Type)
Embedding

Matrix size 2 * 768 1,536

Embedding Layer
Normalization

Weight + Bias 768 + 768 1,536

Total Embedding parameters 23,837,184
∼ 24M

Attention Head
Query Weight Matrix size (+bias) 768 * 64 + 768 49,920
Key Weight Matrix size (+bias) 768 * 64 + 768 49,920
Value Weight Matrix size (+bias) 768 * 64 + 768 49,920
Total parameters for the
attention of one layer
with 12 heads

No. attention heads *
Sum of Query, Key and

Value weights

12 * 3 (768 * 64 +
768) 1,797,120

Dense weight for
projection after
concatenation of heads

Weight + Bias 7682 + 768 590,592

Layer Normalization Weight + Bias 768 + 768 1,536
Position wise
feedforward network
weight matrices and
bias

Weight + Bias [3072,
768]

2,359,296 + 3072
+ 2,359,296 + 768 4,722,432

Layer Normalization Weight + Bias 768 + 768 1,536

Total parameters for one attention layer
1,797,120 +

590,592 + 1536 +
4722432 + 1536

7,113,216
∼ 7M

Total parameters for 12 layers of attention 12 * 7,113,216 85,358,592
∼ 85M

Output layer of BERT Encoder
Dense Weight Matrix
and bias

Weight + Bias 7682 + 768 590,592

Total Parameters in BERT-base
23,837,184 +
85,358,592 +
590,592

109,786,368
∼ 110M

Table 2.3: How the number of parameters is calculated for the BERT-basemodel of Devlin
et al. (2019).
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2.5.5 RoBERTa

After the meteoric rise of BERT, there has also been a growing interest in how to adapt

and improve the original architecture and implementation of Devlin et al. (2019) for

faster and sturdier performance and higher accuracy. RoBERTa (Robustly Optimized

BERT pretraining Approach) (Liu et al., 2019) is a popular successor to BERT, which

uses the same architecture of BERT and improves on it by optimizing some training

hyperparameters fromDevlin et al. (2019): the learning rate, thewarmup steps, and some

optimizer biases. Additionally, they made small changes in the input and pretraining

objectives. The RoBERTa architecture uses Byte-Pair Encoding (like GPT), yet increases

the vocabulary size to 50,265 words and the batch size from 256 to 8,000. The input is

passed as longer sequences, with the same token limitation as BERT (512 tokens), and

there is no segment embedding layer, thus relying on special tokens (</s>) to denote the

start and end of sequences. During pretraining, RoBERTa focuses only on the language

masking modeling objective and has been trained with much larger mini-batches and

learning rates. Unlike BERT, RoBERTa is trained only with full-length sequences2. Liu

et al. (2019) also make use of dynamic masking; the masking pattern of 15% of the input

tokens is different every time a sequence is fed to the model, as opposed to BERT which

uses the same masking pattern. However, they have deemed that the Next Sentence

Prediction task is not beneficial or stable as a pretraining objective.

For the English version, the training data was the same as BERT with an additional

144GB of text from Wikipedia, BookCorpus, CC-News (Mackenzie et al., 2020) and var-

ious annotated datasets for NLP (for a total of 160GB of data). The original release in-

cluded two models, both exclusively lower-cased: roberta-base has 12 layers, hidden

size of 768, 12 attention heads, and 125M parameters while roberta-large has 24 layers,

hidden size of 1,024, 16 attention heads, and 355M parameters. The authors of RoBERTa

claim that, at the time of its release, their model and embeddings achieved better down-

stream task performance compared to BERT, as a combination of its hyperparameter op-

timization and its longer and larger pretraining process. It has been tested on standard-

ized benchmark tasks for NLP that examine complex linguistic phenomena and measure

2BERT was trained by randomly injecting short sequences, and with a reduced sequence length for
the first 90% of updates.
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success based on quantitative accuracy metrics, such as the General Language Under-

standing Evaluation (GLUE) benchmark that examines language understanding and lin-

guistic competencies (Wang et al., 2018), and tasks such as natural language inference,

textual entailment, and reading comprehension. At the time of its release, RoBERTa had

achieved state-of-the-art for many of these benchmarks.

2.5.6 XLNet

XLNet (Yang et al., 2019b) is an architecture that uses autoregression similar to GPT,

alongside BERT’s bidirectional motivation, as a means to tackle the limitations of both

architectures.

XLNet employs the segment-level recurrence mechanism and relative positional en-

codings, as introduced in Transformer-XL, a predecessor to XLNet (Dai et al., 2019). The

representations calculated for a segment t are fixed and cached for later usage as the

extended context for segment t+1. By allowing contextual information to now traverse

segment borders, it is possible to extend the dependency length byN times, whereN is

the depth of the network, thus allowingmore contextual information through themodel.

This technique may tackle BERT’s independence assumption, i.e. that a masked token is

only dependent on non-masked tokens and not other masked tokens, and that masked

tokens are equally dependent on all the non-masked tokens (Yang and Le, 2019). An

example from Yang and Le (2019) that illustrates the benefit of segment-level recurrence

is the prediction of “New” in the masked sentence “[MASK] York is a city.”. XLNet is

capable of capturing the dependency pair “New York”, while BERT will not model these

words as a pair.

XLNet introduces permutation language modeling; by using a permutation opera-

tion during training time, the model is capable of capturing bidirectional context. For a

sequenceX of length T , there are T ! possible orders for a valid autoregressive factoriza-

tion, which are permutated while the model traverses through sentences. A simplified

example of the permutation language modeling objective is shown in Table 2.4: all the

possible permutations for a sequence of length 3 (with index 0 being the model’s mem-

ory of learned hidden states). If the model is asked to predict the token “dogs” (token

with index 3), the model will observe the possible contexts and predict based on those
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(or rely only on past knowledge, if there is no available context). With this objective, the

model is able to efficiently capture a token’s relations with the rest of the input tokens,

regardless of distance.

Sentence Permutation order Permutated tokens Seen tokens for idx=3

“I like dogs”

0,1,2,3 I like dogs 0, I, like
0,1,3,2 I dogs like 0, I
0,2,1,3 like I dogs 0, like, I
0,2,3,1 like dogs I 0, like
0,3,1,2 dogs I like 0
0,3,2,1 dogs like I 0

Table 2.4: The input sequence “I like dogs” and its possible permutations by the XLNet
architecture. When the word “dogs” is masked to be predicted, the model will learn the
3! permutated contexts.

A formalization of permutation language modeling can be found in Equation 2.25.

For an input x, a permutation order z is created, and the likelihood pθ(x) according

to the order. With all the possible permutation orders, xt will have seen every possible

element xi ̸= xt in the sequence, thus ensuring bidirectionality. θ is the model parameter

that maximizes the expected value of the permutation order. ZT is the set of all possible

permutations of a sequence with length T . The current t-th token is zt and the previous

tokens of the permutation order z are z<t.

max
θ

Ez∼ZT

[
T∑
t=1

log pθ (xzt | xz<t)

]
(2.25)

The permutated order operations can be computationally costly, therefore the model

does partial predictions, meaning that the model outputs predictions only for the last

tokens in the factorization order with a cut-off point (He, 2020). The choice of tokens

to predict is shown in Equation 2.26. A hyperparameterK is used such that about 1/K

tokens are selected for predictions; i.e., |z|/(|z| − c) ≈ K . In this equation, z>c is

chosen to be predicted, because it possesses the longest context in the sequence given the

factorization order z. The model does not compute query representations for unselected

tokens (Yang et al., 2019b).
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max
θ

Ez∼ZT

[
log pθ

(
xz>c | xz≤c

)]
= Ez∼ZT

 |z|∑
t=c+1

log pθ (xzt | xz<t)

 (2.26)

In order to combine permutated orderwith the segment-level occurrence, XLNet uses

fixed embeddings with learnable transformations rather than learnable embeddings, this

being able to capture longer sequences than fixed-size encodings.

XLNet utilizes two-stream self-attention (see Figure 2.15) in order to be able to attend

to words in both directions, even if these words were not in the past of the token in the

permutated word order.

Figure 2.15: (a) Content stream attention, (b) Query stream attention, and (c) the two-
stream self-attention. Source: Yang et al. (2019b)

The content representation hθ

(
xz≤t

)
, or abbreviated as hzt is similar to the hidden

states in a Transformer encoder. This representation encodes both the context and xzt

itself. Meanwhile, the query representation gθ (xz<t , zt), or abbreviated as gztonly has

access to the contextual information xz<t and the position zt, but not the content xzt .

Thus, the model is able to encode both positional-sensitive and positional-independent

contextual information. The calculations for the content representation are seen in Equa-

tion 2.27 and for the query representations in Equation 2.28.
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h(m)
zt ← Attention

(
Q = h(m−1)

zt ,KV = h(m−1)
z≤t

; θ
)

(2.27)

g(m)
zt ← Attention

(
Q = g(m−1)

zt ,KV = h(m−1)
z<t

; θ
)

(2.28)

The pretrained XLNet embeddings were trained on 32.89 billion words from various

corpora: Wikipedia, BooksCorpus, English Gigaword Fifth Edition3, ClueWeb 2012-B4,

and Common Crawl5. XLNet also uses the SentencePiece algorithm for tokenization.

The 12-layer 12-attention head XLNet-base with a hidden size of 768 was trained only

on the first two corpora for a total of 110 million hyperparameters, while the 24-layer

16-attention head XLNET-large has a hidden size of 1,024 and a total of 340M hyperpa-

rameters. According to Yang et al. (2019b), the benefits of autoregression and autoencod-

ing set XLNet ahead of BERT on benchmark tasks such as question answering, natural

language inference, sentiment analysis, and document ranking.

2.5.7 ALBERT

ALBERT (A Lite BERT) (Lan et al., 2020) is another successor to BERT, with the moti-

vation to create an architecture that is smaller and more efficient; a smaller model can

be trained and finetuned without the need for large processing units and high energy

consumption. ALBERT uses 18x fewer parameters than BERT and can be trained 1.7

times faster, without a trade-off in performance. It keeps the masked language modeling

objective, accompanied by the sentence order prediction classification task. ALBERT uses

factorized embedding parameterization, a process that divides the embedding matrix into

two halves: the vocabulary embeddings E and the hidden layer embeddings H . The

vocabulary embeddings maintain context-independent token representations, while the

hidden layer embeddings learn context-dependent representations through pretraining.

In a model like BERT and RoBERTa, the embedding parameters have a size of (V ×H),

while in ALBERT, the embedding parameters are reduced to (V × E + E ×H).

3https://catalog.ldc.upenn.edu/LDC2011T07
4https://lemurproject.org/
5https://commoncrawl.org/
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ALBERT’s input includes the relative positional encoding vectors and the segment

encoding vectors. After decomposing the embedding matrix, ALBERT applies a linear

fully connected layer to the embedding matrices in order to map its dimensions to the

hidden layer.

Additionally, with cross-layer parameter sharing, the encoder blocks of ALBERT are

able to share weights with each other, thus do not have to calculate them individu-

ally, a process which helps with computations and also with regularization of the model

(Wright, 2019). Finally, ALBERT removes dropout layers, i.e. does not randomly ignore

some neurons, relying on the Transformer’s parallelization skills to avoid overfitting.

Furthermore, following the example of Liu et al. (2019) and Yang et al. (2019b), ALBERT

does not include the Next Sentence Prediction classification task.

ALBERT was pretrained on Wikipedia and BookCorpus, as BERT was, and uses the

SentencePiece algorithm (Kudo and Richardson, 2018) for tokenization. The second ver-

sion of the pretrained embeddings released included no dropout, additional training data,

and longer training, and came in four different training sizes (with the cased/uncased

variations):

• albert-base-v2 (12 layers, embedding size of 128, hidden size of 768, 12 attention heads,

11M parameters)

• albert-large-v2 (24 layers, embedding size of 128, hidden size of 1024, 16 attention

heads, 17M parameters)

• albert-xlarge-v2 (24 repeating layers, embedding size of 128, hidden size of 2048, 16

attention heads, 58M parameters)

• albert-xxlarge-v2 (12 layers, embedding size of 128, hidden size of 4096, 64 attention

heads, 223M parameters)

At the time of its release, ALBERT outperformed BERT on NLP benchmarks such

as textual entailment and reading comprehension, proving that better exploitation of

contextual representations could be more beneficial than larger training and parameter

sizes.
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2.5.8 CamemBERT

CamemBERT (Martin et al., 2020) is a monolingual Transformer-based deep contextu-

alized word embedding model, built with the RoBERTa architecture described in Sec-

tion 2.5.5. The model uses SentencePiece for tokenization and employs Whole Word

Masking, in which the model has to predict a word instead of a subword artifact (Joshi

et al., 2020). As the RoBERTa architecture does, CamemBERT uses dynamic masking

for 15% of the input, and only uses the Masked Language Modeling task for pretraining.

The pretrained embeddings are based on the OSCAR corpus (Ortiz Suárez et al., 2019),

the French version of CommonCrawl, and Wikipedia. There are several models (exclu-

sively lowercased) available: the base models have 12 layers, a hidden size of 768, 12

attention heads, and a total of 110M hyperparameters while the large models have 24

layers, hidden size of 1,024, 16 attention heads, and 335M parameters. Some of the base

models were also trained only with a subset of the training datasets (4GB of data instead

of 135GB), and the authors did not notice a deterioration in results.

At the time of its release, the only deep contextualized word embeddings came from

multilingual models that included French, e.g. mBERT (Devlin et al., 2019), XMLMLM-TLM

(Conneau and Lample, 2019). CamemBERT managed to significantly outperform them

in tasks of POS tagging, dependency parsing, named entity recognition, and natural

language inference.

2.5.9 FlauBERT

French Language Understanding via Bidirectional Encoder Representations from Trans-

formers (FlauBERT) (Le et al., 2020) was the second monolingual French model to be

released, up to this day. The FlauBERT model is based on BERT, but uses only its pre-

training task of masked language modeling; it has already been observed from previ-

ous architectures that the next sentence prediction task does not affect performance on

downstream tasks. FlauBERT uses the Moses tokenizer (Koehn et al., 2007) and sources

data from multiple datasets, mainly Wikimedia projects, French text corpora offered

in the OPUS collection6 and monolingual data for French provided in WMT19 shared

6https://opus.nlpl.eu/
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tasks7. They have released 3 different sizes of their models, with the base model being

also available in lower-cased: flaubert-small with 6 layers, 8 attention heads, hidden

size of 512 and 54M parameters, flaubert-basewith 12 layers, 12 attention heads, hidden

size of 768 and 137M parameters, and flaubert-large with 24 layers, 16 attention heads,

hidden size of 1024 and 373M parameters.

Alongside their architecture, the authors introduced FLUE (French Language Un-

derstanding Evaluation), a French benchmark of various tasks (text classification, con-

stituency parsing and part-of-speech tagging, dependency parsing, word sense disam-

biguation, paraphrasing, natural language inference). They reported that FlauBERT

models were marginally better than CamemBERT in most of these tasks, with Camem-

BERT having very similar accuracies and the multilingual embeddings only outperform-

ing them in natural language inference. In Table 2.5 we are comparing the parameters

of the two architectures.

CamemBERT FlauBERT

Train size 138 GB 71 GB
Pretraining objectives MLM MLM
Parameters (base-large) 110 M / 335 M 138 M/ 373 M
Tokenizer SentencePiece 32K BPE 50K
Masking strategy Dynamic & Whole word masking Dynamic & Sub word masking

Table 2.5: A comparison of the CamemBERT and FlauBERT architectures, from Le et al.
(2020).

7https://www.statmt.org/wmt19/translation-task.html
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Explainability of Transformer-based
architectures

3.1 Introduction

Transformer models have overtaken the field of NLP since their contextual word embed-

dings have proven to yield high accuracies in multiple tasks, some of which were diffi-

cult to tackle with traditional machine learning methods. These models quickly outper-

formed traditional methods and neural network approaches in standardized tests called

benchmarks; these tests measure accuracy on an NLP task (e.g. machine translation)

with a predetermined dataset and accuracy metrics and are widely accepted as proof of

competence in NLP applications. However, success in a benchmark does not guarantee

a complete mastery of the given task. The benchmarks themselves tend to be short-lived

and (understandably) very limited in the scope of the phenomena and datasets they can

test (Srivastava et al., 2022). Unfortunately, in recent years there have been overzealous

attempts to create systems that achieve a high ranking in benchmark scores, without a

guarantee that the winning models will be successful on this task in a different setting

or with a different dataset. Based on the reported high accuracies in many NLP tasks,

these models have also been released for public and commercial use, without a true un-

derstanding of their capacities, limitations, and potential dangers (from the perpetuation

of harmful stereotypes to their considerable carbon footprint) (Bender et al., 2021).

Hence, it is paramount to understand and interpret how Transformer models achieve

such good performances; can these models learn linguistic structures (e.g. agreement,

dependency structure), or is their performance based on skillful exploitation of artifacts
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in their massive training data (Bender and Koller, 2020)? Fortunately, the scientific com-

munity is conscious of these shortcomings and aims to explore the capabilities of these

models, even though the increasingly complex architectures become harder to decipher.

The interest in understanding and interpreting these powerful models is so widespread

that the study on explainability has been unofficially named “BERTology”, made popular

after the paper of Rogers et al. (2021).

Explaining a neural architecture model can either be a process of introspection or

generalization. Insights into how a specific model processes information may help im-

prove a model’s performance, by changing factors such as the number of labeled data,

the value of the hyperparameters, and the model selection. On the other hand, general-

izing sheds light on model predictions; the goal is to explain, typically in terms of model

input, why a certain prediction was generated by the model and ideally identify patterns

of behavior in the model’s predictions.

3.2 Linguistic Evaluation & Explainability

3.2.1 Probing methodology

In order to perform linguistic analysis, a combination of probing methods and attention

analyses have been proposed. They permit us to observe how much linguistic informa-

tion and of what type has been learned by a model. When possible, the scientific com-

munity opts for qualitative analysis, either by creating specialized datasets for probing

or by examining specific phenomena and sentences.

A method of studying the capabilities of a model is with probing. In NLP research,

probing methods that use the encoded representations of one system to train another

classifier on a different task of interest. These classifiers are also known as diagnostic

classifiers (Hupkes et al., 2018). The probing tasks are usually linguistically motivated

and focus on simple and complex linguistic properties of a predefined input. They may

involve surface-level features, syntactic information, semantic information, etc. ideally

isolated from structures and phenomena that could interfere with the study. If the prob-

ing classifier performs well on the probing task, it is implied that the system has encoded

the linguistic phenomena in question (Conneau et al., 2018).
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For example, Shi et al. (2016) used the encoder input of a system performing neu-

ral machine translation to train a logistic regression model to perform syntactic label-

ing and reported positive findings. Ettinger et al. (2016) proposed a classification task

using Word2Vec embeddings and prompt sentences with semantic differences that are

easily distinguishable for humans but were occasionally confusing to embedding mod-

els (e.g. a non-animate verb subject as agent). Gulordava et al. (2018) experimented

with embeddings generated from RNN architectures and their ability to predict long-

distance number agreement. They concluded that the models were not relying only on

frequent morphosyntactic sequences, but were able to construct patterns akin to syntac-

tic structure. Giulianelli et al. (2018) also explore LSTM embeddings for their knowledge

of subject-verb number agreement and observed that this information is learned by the

model dynamically, in each timestep of the learning process. Zhu et al. (2018) create

sentence-level embeddings by averaging static word embeddings and reported that the

classifying process was able to distinguish between negation and synonymy, but not

between synonymy with different word order.

For transformer models, probing is performed on pretrained models for a down-

stream task, e.g. natural language inference, or with multiple training objectives like

BERT. The goal is to observe if the pretraining process suffices to capture enough lin-

guistic information to show a degree of syntactic and semantic competence (Kim et al.,

2019). An important point by Hewitt and Liang (2019) is that the probing process should

not necessarily aim for high accuracy, but for providing linguistic insights, with simple

(for the intended observation) yet efficient probes. They are critical of probing tasks,

claiming that it is possible that the target observation is learned during classifying and

not truly encoded in the source model.

3.2.2 Assessing Transformer models’ linguistic knowledge

Raganato and Tiedemann (2018) were some of the first to investigate encoder represen-

tations and the attention mechanism of a Transformer model (trained for the task of

Machine Translation) for its learned information. They observed that there is some spe-

cialization on syntactic information by some attention heads and that lower layers tend

to syntactic information and higher levels to semantic information. Goldberg (2019) has
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found that BERT (a Transformer model) is more robust in syntactic tasks than a sim-

ple LSTM architecture (a Recurrent Neural Network). With a series of probing tasks on

different datasets, they proved that there is some syntactic knowledge beyond semantic

and contextual relations, in subject-verb pairings. According to its creators, BERT per-

formed better on syntactic tasks, compared to older neural network models and other

Transformer architectures, because it was able to avoid distractors (Wolf, 2019).

Further research on learned syntactic information showed that BERT captures dif-

ferent types of information on different levels. Jawahar et al. (2019) claim that BERT

captures phrase-level information in the early layers, surface levels, syntactic and se-

mantic features at the middle layers, and makes use of the final layers to track long-

distance dependencies. Coenen et al. (2019) found that the attention matrices output

by bert-base-uncased contain syntactic representations, with certain directions in space

representing specific relations, and they were also able to locate similar sub-spaces for

semantic relations. Ravishankar et al. (2021) focus on attention heads in multilingual

BERT and observe that even single attention heads are able to recreate dependency syn-

tax tree structures (a fining also found in Jawahar et al. (2019)) and that frozen models

demonstrate interesting attention patterns akin to linguistic structures.

The specialization of layers is also reported in Vig and Belinkov (2019), who analyzed

GPT-2 and observed that attention heads show a great variety of attention to tokens in

different layers and heads. They also report that, in middle layers, attention may follow

dependency relations, and attention heads focus on different parts of speech. Petroni

et al. (2019) report that BERT contains enough relational knowledge to compete with

knowledge-based methods on tasks such as open-type questions, which leads them to

the conclusion that the model has acquired a certain level of semantic knowledge.

However, McCoy et al. (2019) question the ability of BERT—and similar pretrained

models—to truly capture deep linguistic structures and semantic information, as past

bibliography has suggested. Tenney et al. (2019) also investigated pretrained models

on their performance on both syntactic and semantic phenomena. They concluded that

simple syntactic phenomena were successfully identified, but phenomena that primar-

ily relied on semantic relations were not as easily learned. Ettinger (2020) presents a

number of experiments on syntactic-semantic knowledge, where in many cases BERT
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makes good predictions with regard to semantic pertinence, such as hypernyms and

subject-object nouns. However, they are critical of the semantic competencies of BERT

compared to human performance and highlight that the model does not perform well

with truth statements and negations. Yu and Ettinger (2020) examined contextual word

embedding models against human evaluations of phrase similarity and meaning shift.

They compare the findings before and after controlling for word overlap, in order to

distinguish between lexical effects and composition effects. They claim that there is

minimal indication of nuanced composition in these models’ phrase representation and

that the representation mainly depends on the content of the context words. They ex-

amine several models and discover that, when using the sentence as input, the middle

layers of most architectures offer the most accurate predictions. They also propose that

the use of an averaged embedding of a sentence’s embeddings offers a better sentence

representation than the use of special tokens (e.g. [CLS] for BERT). Zhang et al. (2019c)

created SemBERT, a BERT model with integrated explicit contextual semantics, sup-

porting the fact that external semantic knowledge was more useful than manipulating

inherent model knowledge to achieve better results in semantics-related tasks. Mickus

et al. (2020) delve further into exploring the embeddings of BERT and report that it is

uncertain whether the embeddings are able to properly represent semantic similarities

on a word-base level (as the theory of distributional semantics would suggest), due to

the influence of the context sentence on the distributional semantics space (even without

meaning correlates).

Lasri et al. (2022) examine whether BERT can make correct number agreement as-

sociations, between a verb and its nominal subject in English, in many variations of

syntactic structures. They claim that BERT may favor meaningful lexical combinations

because they are more frequent. Weissweiler et al. (2022) study how pretrained lan-

guage models treat sentences with comparative correlative in English, a construction

that requires syntactic and semantic competencies to be understood. The models were

able to recognize sentences as examples of the construction, even in challenging situ-

ations, suggesting that the syntactic aspect is captured in pretraining. However, they

showed weaknesses in comprehending the sentence’s meaning and using its context for

complex processes as inference, thus demonstrating weakness in semantic-driven tasks.
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Kim et al. (2022) focus on the treatment of auxiliary clauses and the phenomenon of el-

lipsis and note that the models show sensitivity to the connection of auxiliary verbs to

the main clause, but this preference stems from superficial frequency factors rather than

principled discourse rules.

3.2.3 Self-attention and psycholinguistics

The interpretability of attention as an analogy to human attention has also been ex-

ploited by literature; Chrupała and Alishahi (2019) use Representational Similarity Anal-

ysis to correlate the way a Transformer model encodes and processes representations

to the way humans process a sentence, and found some modest connections. Abdou

et al. (2019) conduct similar experiments, with the addition of gaze fixation as a measure

of human attention. Brandl et al. (2022) continue experiments with the mean attention

vector of the final layer heads of Transformer models and with psycholinguistics meth-

ods of measuring human gaze, and observed a high correlation between human- and

machine-highly attended tokens. However, human attention is not an infallible mea-

sure of human language processing, as the ways of measuring human reaction can—and

probably are—simultaneously affected by biological, psychological, environmental, and

other linguistic processes (Lindsay, 2020).

Chang and Bergen (2021) conduct a study of neural networks and transformer archi-

tectures, BERT and GPT-2, inspired by language acquisition research; they draw simi-

larities between the frequency-based learning of language models and the chronological

stages of language acquisition in humans, for which frequency of words and features are

important factors—but not the driving force. They identified similarities in the learning

of frequent word forms during the training process of models (by examining word sur-

prisal) and during human acquisition.
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3.3 Interpretability of self-attention

3.3.1 Is self-attention explanation?

Neural networks use sub-symbolic structures, meaning that the information they acquire

is kept in numerical elements that cannot be interpreted on their own, making it difficult,

if not impossible, to identify the causes of a neural architecture’s output. The attention

mechanism not only improves performance but also serves as a tool for deciphering

the behavior of neural architectures, which is notoriously challenging to do. Even if it

cannot be regarded as a trustworthy method of explanation (Jain and Wallace, 2019),

attention may be an interesting way to partially analyze and explain neural network

behavior (Guidotti et al., 2018; Wiegreffe and Pinter, 2019). For example, the weights

calculated by attention could point us to important data that the neural network missed

or unimportant components of the input source that have been taken into account and

could explain an unexpected result of the neural network (Galassi et al., 2020).

A commonly usedmethod to explain the behavior of the attentionmechanism is visu-

alization with grid heatmaps, which originated from data science to summarize findings

and main components in data. An example of how Bahdanau et al. attention can be visu-

alized is shown in Figure 3.1, which presents an example of how attention is visualized,

for an RNN neural network with Bahdanau et al. attention, performing neural machine

translation of English to Dutch. In the attention mechanism, the alignment score func-

tion f produces the alignment scoresα (i.e. the attentionweights), which align the differ-

ent parts of the input and output. These alignment scores can be directly used to create

a heatmap; in black-and-white heatmaps, lighter colors correspond to higher alignment

scores and darker to lower attention. Through this matrix, it is possible to observe that

the attention mechanism focuses mostly on each input token’s direct translation, while

also capturing some syntactic relations (verb-subject, noun-determiner).

As explained in Section 2.4.2, the internal structure of a Transformer architecture is

based on parallel operations, multiple layers, and self-attention. The high performance

in multiple NLP tasks is attributed to the use of the self-attention mechanism, a struc-

ture far more complex than traditional attention mechanisms previously used in NLP.

Extensive research and discussions have been carried out, to assess whether these self-
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High-level overview of Bahdanau et al. attention Attention heatmap

Figure 3.1: An example of attention as interpretation in neural machine translation, in
a neural network with Bahdanau et al. (2014) attention for English-Dutch translation.
Source: Ras et al. (2022)

attention mechanisms are interpretable, that is, whether they produce results—correct

or incorrect—which can be traced back to the way they tend to the input sequence. This

task is not as straightforward as with traditional neural architectures; multi-headed at-

tention in a multi-layer model means that every head, in every layer, computes its own

weights and attends to input in a unique way.

Jain andWallace (2019) investigated whether the input tokens which were attributed

the highest attention weights were, in fact, the most important tokens of the input and

for the output. They conducted experiments on the correlation between input atten-

tion weights and feature importance methods (gradient-based and leave-one-out) and on

prediction outcomes by randomly (and adversarially) shuffling attention weights. They

observed that there are no correlations between the assigned attention weights and the

chosen explanation methods and that the models’ output was not affected even by shuf-

fled attention weights. Serrano and Smith (2019) conducted similar experiments to Jain

and Wallace (2019), by removing attention weights of the input sequence and observing

the results of the text classification models, and noted that there were some cases where

attention to the most important input constituents was important, e.g. the other binary

label was predicted. However, they do not conclude with solid and definitive evidence

about the attention’s role and interpretability. Michel et al. (2019) conducted pruning ex-
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periments on machine translation and multi-headed attention and stated that big parts

of the network can be removed and some layers may be reduced to one attention head,

without loss in performance. This means that the influence of certain attention heads

on the output sequence may be more significant than other heads.

However, Wiegreffe and Pinter (2019) recreated the experiments of Jain and Wallace

(2019)’s and claimed that permutations of attention weights are not an efficient way to

test attention. Their experiments showed that an adversarial permutation of attention

weights is, in fact, detrimental to model performance. Also, shuffling attention weights—

in an inconsistent way—cannot lead to truly meaningful insights on the role of attention.

Brunner et al. (2019) have explored whether the final attention weights of a model using

self-attention can offer interpretations of the relations of input-output tokens. They ob-

served that there is the possibility that different variations of optimized attentionweights

could produce the same output since the inner workings of the attention mechanism do

not treat tokens and input in an identifiable, analogous way. They propose that the

study of attention can be fruitful, with their method of removing the attention weights

that do not influence the model’s predictions (effective attention). Kobayashi et al. (2020)

support the findings of Brunner et al. (2019) by examining BERT’s embeddings, and

they observe that meaningful alignments are created between the inputs and the out-

put tokens in the pretraining process. However, they do support that attention vectors

alone are not an adequate explanation, since, at first glance, the model’s attention does

not focus on important tokens. They suggest that attention vectors should be studied

alongside the transformed input vectors, in order to gain insight into the behavior of

Transformer-based models.

Vashishth et al. (2020) added that attention may be influential and interpretable for

specific tasks, such as natural language inference and neural machine translation, but

trivial for other tasks such as text classification (which was used by Jain and Wallace

(2019) and by Wiegreffe and Pinter (2019)). Bastings and Filippova (2020) also agree that

using attention as an explanation might not be the best course of action to interpret the

inner workings of Transformer models on various NLP tasks. They examine gradient-

based, propagation-based, and occlusion-based methods, and observe that these models

are more efficient in identifying the important parts of the input sequence. Galassi et al.
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(2020) propose that attention can be explainable and interpretable, but its study should

be more thorough with a combination of input analysis, and a clear distinction of the

methodology in which it may be extracted from the model, as the bibliography might

not be consistent.

In their study, Vashishth et al. (2020) used human evaluation to assess whether the

top three attention-weighted words were in fact the most significant of the sequence,

introducing the notion of plausibility of model outputs as a correlation of human per-

formance/assessment. However, Jacovi and Goldberg (2020) are opposed to human eval-

uation and rephrase the quest for interpretability of attention as an evaluation of faith-

fulness, i.e. whether a model’s output can be interpreted based on the models’ deci-

sions. They claim that the criteria of evaluating attention for its contributions and

choices, framed as plausibility, can be unreliable and produce anecdotal interpretations

of a model’s inner workings. They support that the success of a model should be mea-

sured by the stability and reproducibility of its results, rather than human evaluation

and comparison.

Bibal et al. (2022) conducted extensive and exhaustive bibliographic research on find-

ings and methods of evaluating self-attention, and they concluded that methods that

combine the analysis of attention with proactive methods of selecting only relevant

weights, such as effective attention (Brunner et al., 2019; Kobayashi et al., 2020), can po-

tentially make self-attention more interpretable.

3.3.2 Visualizing self-attention for interpretation

As previously discussed, visualization can be a powerful tool for examining the strengths

andweaknesses of models, however, visualizingmulti-headed attention over several lay-

ers is a challenging feat. Vig (2019) aims to explain attention in a Transformer model

with a multi-scale visualization tool that can visualize attention per attention head, per

model, and per neuron. This tool follows the traditional methods of visualizing attention

in neural networkswhile adapting to the challenge of visualizing the deep architecture of

Transformer models with multiple layers and heads. Clark et al. (2019) have also devel-

oped a visualization tool for Transformer models, with many visualizations of attention

weights per attention head and entropy changes in attention, as commonly studied in
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neural machine translation interpretation. Their tool focuses on pretrained BERT mod-

els. An example from their work can be seen in Figure 3.2, in which they load pretrained

embeddings and compute attention head entropies for each token to the other tokens of

the sequence (including itself). Instead of creating a heatmap, they are using lines with

varying thicknesses, to show how each token attends to the other tokens in a sentence.

They create a separate visualization, for each head in one layer, in order to study each

attention head’s weights and how they evolve.

Abnar and Zuidema (2020) visualize attention by using attention flow (by treating the

attention graphs as flow networks) and attention rollout (by computing the amount of

information that is propagated from each node). They support that this work can provide

better insights on the distribution of attention, since it is challenging to follow in multi-

layer, multi-head models, and because deeper layers and heads are more contextualized

and may all carry similar information.

Hoover et al. (2020) developed exBERT, a tool that visualizes BERT’s token-level at-

tention with a wider context scope. Alongside the attention heatmap visualization per

head, it also displays linguistic metadata for a selected token. The tool retrieves the sen-

tences of the training datasets of BERT that contain the selected token, thus providing

more insight into how the contextual information was captured by the model, given

various inputs and contexts. The evolution of this tool, LMdiff (Strobelt et al., 2021), is

capable of examining and comparing multiple models’ outputs on a sentence at the same

time, whether they are pretrained, finetuned, distilled, or have varying hyperparameters.

Figure 3.2: A visualization produced by the tool of Clark et al. (2019). Source: Clark et al.
(2019)
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Selectional preferences in
contextual word embeddings

4.1 Introduction

The first experiment we planned and conducted focused on the BERT transformer ar-

chitecture. The linguistic knowledge of BERT in multiple NLP applications has been

probed withmethods traditionally used in attention-based neural networks, as discussed

in Section 3.2. Our contribution to these endeavors is the investigation of knowledge on

a syntactic and semantic level; relevant work supported the presence of syntactic com-

petencies, but little was known about semantics.

In order to examine both syntactic and semantic abilities, we used the selectional pref-

erences of a word, i.e. the type of arguments and meanings a word prefers to be related

with. We investigated whether BERT embeddings contain information on the selectional

preferences of words, by examining the probability it assigns to the dependent word,

given the presence of its head word in a sentence. In early experiments, we examined

the probability itself, with quantitative and qualitative methods; however, this does not

suffice in the study of selectional preferences, since they are quite complex to determine.

Even in literature, linguists cannot fully define selectional preferences in every possible

context and language use by native speakers, and have made use of computational meth-

ods for assistance in selectional preference induction. A proper understanding of this

phenomenon is important within various NLP applications, and selectional preferences

have indeed been used as an additional knowledge source for various NLP tasks, such

as word sense disambiguation (McCarthy and Carroll, 2003) and semantic role labeling
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(Gildea and Jurafsky, 2002).

For our experiments, we made use of an existing dataset of selectional preference,

which has been annotated by humans on word pair preferences (Zhang et al., 2019b).

Word pairs are annotated with an average plausibility score, an analogy to the felicity of

the head word choosing a word as its argument. We used word pairs of head-dependent

words in five different syntactic relations from the SP-10K corpus of selectional pref-

erence, as found in real sentences from the ukWaC corpus (Ferraresi et al., 2008). We

calculated the correlation of the plausibility score and the model’s assigned probabili-

ties for the dependent word, as retrieved by the masked language modeling version of

bert-base-uncased.

Our results show that overall, there is no strong positive or negative correlation in

any of the proposed syntactic relations. However, we do find that certain head words

have a strong correlation. Additional experiments with attention masks (on the self-

attention mechanism of BERT) showed that masking all words but the head word yields

the most positive correlations in most scenarios, which indicates that the semantics of

the predicate is indeed an integral and influential factor for the selection of the argument.

4.2 Linguistic background

Native speakers have structural preferences and constraints on how to speak and write

their language, which they learn during language acquisition and later on may poten-

tially influence or adapt to their needs (while maintaining mutual understanding in their

communities). The conventions that have been established as a way to model language,

at a specific time and for a specific speech variety (dialect, idiom), are called the gram-

mar of the language1. The notion of grammaticality explains the creation of utterances

that are well-formed and adhere to the rules of the native speakers’ grammar, and sen-

tences that do not follow these rules are deemed ungrammatical (Fromkin et al., 2013).

For example, as seen in Table 4.1, grammatical sentences in English are those that follow

the syntactic rules of subject–verb–object word order, phrase structure, and agreement,

1This definition conforms to generative grammar, a concept introduced by Chomsky (1957). Grammar
is seen as a cognitive function, rather than a set of fixed, moored rules that should be taught and strictly
followed by all speakers.
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Acceptable Unacceptable

Grammatical (1) John said he likes Mary. (3) *The banana cried all room.
Ungrammatical (2) ?More people have been to

Russia than I have.
(4) *Mary likes he John said.

Table 4.1: Examples of grammaticality and acceptability judgments. Sentences adapted
by Montalbetti (1984) and Leivada and Westergaard (2020).

without necessarily examining the semantic content of the utterance.

However, following the rules of building a sentence does not guarantee that an ut-

terance can be understood and used for human communication. A speaker may con-

sciously decide if a sentence belongs in their language, but this acceptance should not

be confounded with a direct adherence to the status quo of grammar (Schütze, 2016).

Acceptability is aligned with the intuition of a native speaker on how comprehensible

and well-formed an utterance is (Greenbaum, 1977). It makes use of cognitive capacities

and the knowledge of grammatical conformisms, in order to interpret an utterance (Bard

et al., 1996). Grammars are created with the intention of creating rules that capture the

largest number of utterances in a language, but cannot take into account all possible uses

and intentions (Laporte, 2004). While linguists and non-native language learners benefit

from the existence of grammar, for the native speaker acceptability holds more signifi-

cance. For example, as seen in Table 4.1, it is possible for an utterance to be acceptable,

without following all grammatical rules, as long as there is intelligible meaning and that

some core structural elements of the language are preserved (in Example (2), the word

order is respected but the pronoun agreement is incorrect). However, if the combination

of words in an utterance is nonsensical (e.g. Example (3)), or too many rules are disre-

spected (e.g. incorrect word order and incorrect agreement in Example (4)), it will be

rejected even if it follows the conventions of grammar.

Selection is the capacity of words to choose the semantic content of their arguments.

A word’s selectional preferences are defined by its propensity to occur in a syntactic

relation with words belonging to specific semantic classes (Katz and Fodor, 1963). For

example, the verb “eat”, when used in a literal sense in the English language, requires a

subject that is a living organism capable of digestion, and its direct object must be of the
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Food class (Schütze, 2016). Selectional preferences are based on pragmatics and cannot

be easily defined as strict rules, but as tendencies to favor particular arguments within

a certain linguistic context, and reject others that result in conflicting or implausible

meanings. For these reasons, it is common to refer to selectional preferences with a scale

of felicity, rather than correctness or acceptability. However, the semantically felicitous

combinations of words should respect the syntactic framework of a language, and in the

case of a verb its subcategorization frame (i.e. the syntactic arguments that can occur

with a specific verb in a predicate).

Selectional preferences commonly refer to the choices that a predicate makes for its

arguments rather than the argument’s preferences, following the syntactic hierarchy of

a sentence (Light and Greiff, 2002). The meaning of a word can sometimes be used to ex-

plain its preferences and constraints, for example in the case of the verb “eat” in its literal

sense (see Table 4.2). In other instances, however, a word’s selectional preferences ap-

pear to be less rooted in the pragmatics of the real world; for example, “join” and “enlist

in” are synonymous in the phrases “join/enlist in the army” (meaning Registration).

While “join” can accept “a political party” in its predicate, “enlist in a political party”

is considered an infelicitous phrase –neither ungrammatical nor unacceptable, but un-

natural to the native speaker of English. The presence of homographs or metaphorical

speech may also create pairs that are felicitous but contradict the preferences of a word;

for example, the metaphorical use of “eat” as Torment means that the verb can accept

an inanimate subject (see example (3) in Table 4.2). Idioms, i.e. language-specific phrases

that were created to be intentionally nonsensical or whose original meaning is lost in

time, also tend to create felicitous pairs that may not be evident to non-native speakers

or in direct translation to different languages (see examples (5) and (6a) in Table 4.2).

The presence of additional context may also shift the felicity of an utterance, with more

details that clarify the meaning (see examples (4) and (5) in Table 4.2) (Mĕchura, 2008).

Much like the concept of acceptability, whether a combination of words is felicitous or

not rests upon the discretion of the native speakers, and is a complicated affair dependent

on communicational needs, conversational cues, and language evolution.
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Animate S? Edible DO? Felicitous?

(1) The goat eats an apple. Yes Yes Yes
(2) The house eats a marathon. No No No
(3) My thoughts are eating me alive. No No Yes
(4) John ate dust for breakfast. Yes No No
(5) John ate dust at the race. Yes No Yes
(6a) Tu as mangé du lion? Yes Yes Yes
(6b) Did you eat lion? Yes Yes No

Table 4.2: Examples with the verb “eat” and different arguments, that produce felici-
tous/infelicitous utterances. Even when following the selectional preferences of a verb,
it is possible to create semantically infelicitous sentences and vice versa. Example (6a)
contains the original idiom in French manger du lion “to have a lot of energy”, and (6b)
is the direct translation of the sentence.

4.3 Selectional Preferences and NLP

As presented previously, selectional preferences are difficult to capture with rules, due to

the speakers’ needs for communication, expression, and creativity. Despite the linguistic

community’s best efforts to map verbs to their preferred arguments, it is difficult to take

into account all possible uses. The use of statistical methods for NLP, however, provide

the possibility for automatic extraction of relations and patterns between words, either

from lexical databases like WordNet or from large corpora.

Resnik (1993, 1996) proposed the automatic selectional preference induction, for

noun clusters (i.e. phrases), with the use of WordNet synsets and prior-posterior proba-

bilities. The selectional preference strength of a specific verb v (Resnik, 1993, 1996) in a

particular relation is calculated by computing the Kullback-Leibler divergence between

the posterior class distribution of the verb and the prior cluster distribution, as seen in

Equation 4.1:

SR(v) =
∑
c

p(c|v) log p(c|v)
p(c)

(4.1)

where c stands for a noun cluster, and R stands for a given predicate-argument relation.

The selectional association of a particular noun cluster is the contribution of that cluster

73



Chapter 4

to the verb’s preference strength; for example, the best argument noun class for the verb

“drink” are nouns of the Beverage class (see Equation 4.2).

AR(v,c) =
p(c|v) log p(c|v)

p(c)

SR(v)

(4.2)

The model’s generalization relies entirely on WordNet, focusing on generalization

for noun classes.

Since then, there has been a lot of research on creating generalizations for word

classes from WordNet based on probability distributions from large corpora (for exam-

ple, Li and Abe (1998); Clark and Weir (2001); Ó Séaghdha and Korhonen (2012)). Al-

ishahi and Stevenson (2007) proposed a probabilistic model derived from WordNet that

predicts a predicate’s preferences based on the semantics of the verb. However, research

interest has gradually shifted from hand-crafted resources to acquiring selectional pref-

erences from large corpora, which are superior to the WordNet generalizations as dis-

cussed in Zapirain et al. (2013). For example, Rooth et al. (1999) propose an Expectation–

Maximization (EM) clustering algorithm (seen in Equation 4.3) for automatic induction

of verb constraints, based on a probabilistic latent variable model. Their model generates

both predicate and argument from a latent variable, where the latent variables represent

clusters of tight verb-argument interactions.

p(v, o) =
∑
c∈C

p(c, v, o) =
∑
c∈C

p(c)p(v|c)p(o|c) (4.3)

The use of latent variables allows the model to generalize to predicate-argument

tuples that have not been seen during training. The latent variable distribution and the

probabilities of predicates and arguments are automatically induced from data using EM.

Erk (2007) and Erk et al. (2010) describe a method that uses corpus-driven distribu-

tional similarity metrics for the induction of selectional preferences, with the possibility

of generating generalizations from domain-specific corpora. The key idea (seen in Equa-

tion 4.4) is that a predicate-argument tuple (v, o) is felicitous if the predicate v appears

in the training corpus with arguments o′.
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S(v, o) =
∑
o′∈Ov

wt(v, o′)

Z(v)
· sim(o, o′) (4.4)

whereOv represents the set of arguments that have been attested with predicate v, wt(·)

represents an appropriate weighting function (in its simplest form the frequency of the

(v, o′) tuple), and Z is a normalization factor.

Van deCruys (2009) proposes a tensor factorization-based approach that can simulate

multiple selectional preferences. A latent tensor factorizationmodel is used to generalize

to unseen instances for three-way co-occurrences of subjects, verbs, and objects, that

are represented as a three-way tensor (the generalization of a matrix). Bergsma et al.

(2008) provide a discriminatory method for generating selectional preferences. Positive

instances are drawn from observed predicate-argument pairs, while negative instances

are created from unobserved combinations. The positive occurrences are distinguished

from the negative ones using an sc-SVM classifier. Other proposed models are built

on the topic modeling framework, either for the selectional preference of a predicate

and a single argument (Ó Séaghdha, 2010), or multi-way selectional preferences for bi-

transitive predicates (Ritter et al., 2010).

Approaches based on neural networks have also been employed, e.g. a feed-forward

neural network with predicates as embeddings, to produce a single selectional prefer-

ence value (Van de Cruys, 2014). Le and Fokkens (2018) use a neural network in order

to extract one-way and multi-way selectional preferences for predicates –but make note

that the use of automatically-extracted selectional preferences is not sufficient for down-

stream tasks. Zhang et al. (2019a) propose multiplex word embeddings for selectional

preference modeling, with “relational” embeddings to capture how each word interacts

with other words inside a given syntactic connection.

Evaluating the performance of selectional preference induction can be performed by

humans or automated. Many researchers have used the pseudo-disambiguation task for

evaluation, in which the model is asked to disambiguate between existing selectional

preference pairs from a corpus and randomly constructed, corrupted pairs (Rooth et al.,

1999; Ritter et al., 2010; Van de Cruys, 2014). It is also possible to perform human eval-

uation, i.e. the selectional preference judgments of the model are compared to labeled
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datasets of human judgments, using a correlation measure. The process of collecting

human judgments however is quite time-costly, therefore hasn’t been favored by the

researchers of automatic preference induction (McRae et al., 1998; Zhang et al., 2019b).

4.4 Experimental Setup

4.4.1 Datasets

4.4.1.1 SP-10K corpus

In our experiments with transformer-based architectures, we aim to analyze the English

BERT-based models’ competence in capturing selectional preferences and compare this

performance to the human standard. There are several datasets of syntactic-semantic

relations, released throughout the years for linguistics and NLP research, but not nec-

essarily annotated with human evaluations of preferences and constraints (e.g. F-Inst

(Ferretti et al., 2001), P07 (Padó, 2007) and GDS-all (Greenberg et al., 2015)). We were

looking for a dataset with a sufficient number of entries and multiple human evalua-

tions (in order to ensure that the felicity judgments were not skewed by one speaker’s

idiolect). Out of the two datasets we found in research, McRae et al. (1998) was not

openly accessible, so we opted for the SP-10K dataset (Zhang et al., 2019b).

SP-10K is the largest dataset openly available to date for evaluating the selectional

preference abilities of natural language processing tasks. It has been annotated by hu-

man Mechanical Turk workers, who were presented with word pairs without any other

context and asked to evaluate the plausibility of the second word being dependent on

the first with a specific syntactic relation. The dataset is composed of (slightly over) ten

thousand pairs of words 2, evenly split into five different types of syntactic relations:

1. nsubj: verb and noun as verb + nominal subject

2. dobj: verb and noun as verb + direct object

3. amod: noun and adjective as noun and modifier to the noun

4. nsubj_amod: verb and adjective as verb + (subject) + modifier to the subject

2A few tens of sentences were added for the two-hop relation pairs, for the authors’ tests on the
Winograd Schema Challenge.
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5. dobj_amod: verb and adjective as verb + (direct object) + modifier to the direct object

The first three categories include one-hop syntactic relations, i.e. direct connections

between two nodes of a syntactic dependency tree 3. The two latter represent higher-

level, two-hop dependencies, i.e. two nodes that are not immediately connected but

need an intermediate node. To better illustrate the meaning of dependency distance, we

present a dependency parse in Figure 4.1. In the sentence “The lazy dog eats tasty treats.”,

the connections between two nodes (i.e. sentence tokens) with one arrow are one-hop

relations (e.g. eat - treats), and relations that require two arrows and an intermediate

node are two-hop relations (e.g. eat - tasty). Even though selectional preferences are

usually built on direct semantic connections, Zhang et al. claim that, in certain cases

and contexts, the constraints of the verb are strong enough to influence the choices

made by their constituents.

Figure 4.1: A dependency parse for the sentence “The lazy dog eats tasty treats.”.

The words composing the word pairs are 2,500 frequent words, lemmatized, and all

of the word pairs are annotated with a plausibility score, a concept similar to the felicity

of a pair. The human annotators were presented with the word pairs and the syntactic

relation and asked to rate the fit of the dependent word on that role, on a scale of 0 to 10.

The speakers were asked to evaluate both the syntactic and semantic appropriateness,

even though the words were not presented in the context of a sentence; this perhaps

permitted more or less metaphorical interpretations of the context, but might have also

misled some annotators.

The dataset is currently publicly available on the authors’ Github page 4, in a simple

text format, in separate files per syntactic relation.

3The syntactic formalism followed in the construction of this dataset is dependency parsing, the most
commonly used in NLP applications.

4https://github.com/HKUST-KnowComp/SP-10K/tree/master/data
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4.4.1.2 Prompt sentence corpus

Our goal is to investigate the relative importance of selectional preference information

on BERT’s predictions for a masked word within the context of a complete sentence.

Therefore, we need to discover relevant sentences that contain the word pairs from the

SP-10K corpus, in the proper syntactic positions and relations. To investigate the circum-

stances in which selectional preferences have an impact on the prediction of the masked

word, we need grammatical sentences with a variety of contexts. We made the decision

not to create our own prompt phrases, since doing so would have required a massive

amount of work and could have produced unintended biases. Conversely, the SP-10K

pairs were not sufficiently represented in available datasets of prompt phrases, either

because they are too small (such as the Corpus of Linguistic Acceptability, Warstadt

et al. (2018)) or too specialized on semantic relations (such as the LPAQA corpus, Jiang

et al. (2020)).

As a result, we made the decision to extract sample sentences for each word pair

from a large corpus. The ukWaC corpus (Ferraresi et al., 2008) contains about 2 billion

words and a range of English texts (articles, titles, user reviews, etc.) that were collected

by crawling websites in the .uk domain. We used a syntactically annotated version of

the corpus, parsed with the Malt parser (Nivre et al., 2006). The dependency parser

generates syntactic dependency trees in CoNLL-U format with lemmas, extended part-

of-speech tags, and dependency labels (the same labels were used for the SP-10K corpus).

This allowed us to identify the SP-10K word pairs in the ukWaC sentences in the correct

syntactic positions and relations.

Among the 85 million sentences in the ukWaC corpus, we sought short sentences (4

to 15 tokens), in order to stay well under BERT’s limit of 512 tokens per sequence and

to ensure that the sentences were not mistakenly composed of multiple sentences (due

to segmentation errors), multiple clauses, or complex and long-distance dependencies.

We considered excluding some specific dependency labels, such as xcomp (open clausal

complement) and acl:rel (for relative subclauses), but our selected sentenceswere already

short enough to exclude the more complex syntactic phenomena. Automated parsing

frequently fails to accurately identify passive structures, but this did not pose a problem

for the syntactic relations we were examining. Thus we decided not to eliminate them
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or take measures to correct the parsing. Additionally, we came to the conclusion that

the distance between each pair of words in the phrase should be between one and five

words, leaving enough room for determiners andmodifiers without making the sentence

excessively complicated.

Wemade the decision to assess the quality of the chosen sentences, at this point in the

creation of our selectional preferences dataset. Parsing errors are inevitable in automatic

dependency parsing, but when the same word pair is repeatedly incorrectly tagged, the

result is many false prompt sentences. Additionally, the quality of the word pairs in the

SP-10K corpus was problematic in some cases. For instance, we observed that several

of the word pairs, when placed in the context of the defined syntactic relation, should

have received the lowest possible score (zero), but were deemed felicitous or believable

to some extent by the human annotators. We are aware that some of the word pairs

were intentionally designed to be of low frequency or low plausibility; we are referring

to falsely tagged syntactic structures. For these reasons, we decided it was necessary to

perform a quick and non-exhaustive manual evaluation of the SP-10K word pairs and

the resulting extracted sentences.

First of all, we noticed some problematic word pairs in the SP-10K corpus, which

were included in a group with a certain syntactic relation, which they could not possess.

For example, some word pairs under the verb-direct object relation included intransitive

verbs such as “laugh”, “walk”, “smile”, or verbs that could not accept the dependent word

as a direct object such as “look way”, “think time”. For many pairs, the words of a pair

belong in similar contexts, hence these pairs were still assigned plausible scoreswhen the

plausibility should have been zero because of the proposed syntactic relation (e.g. “look

way”, where “way” had a score of 6.5). We are unaware if these errors were caused by

careless reading of the annotation instructions or by the annotators’ lack of knowledge

of the exact syntactic relation between these words. These word pairs with problematic

head or dependent words were removed from our query for sentences, in order to make

sure that they were not accidentally found in a sentence with a wrong parse tree.

On the other hand, some word pairs, especially the ones which were by design very

infelicitous and had a low plausibility score, are not found in the ukWaC corpus – almost

half of the word pairs for all types of syntactic relation. However, some word pairs are
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very common in the corpus and are found in disproportionately more sentences. In addi-

tion, several word pairs are parts of idiomatic, lexicalized phrases, and are very frequent

in the ukWaC corpus and almost exclusively found in the context of these idiomatic

phrases, but were assigned a low score. As an example, for the nsubj relation, in the

pairs “weather permit” (4.06) and “study find” (4.0), the subjects are inanimate (whereas

the verbs generally require an animate subject) but in this specificmetaphorical use, they

are acceptable.

These problems in the correct and consistent annotation of word pairs and their

plausibility scores might have negatively affected the correlation results. However, we

believe that the extent is limited, after our manual evaluation of the word pairs.

The number of sentences that we extracted from the ukWaC corpus is presented in

Table 4.3. These sentences are organized per type of SP-10K word pairs, for the pairs

found in at least one sentence with the given parts of speech and dependency relation.

These sentences have been counted after implementing our criteria of length and dis-

tance that we previously determined, and our manual evaluation.

Type Word pairs in ukWaC Found sents Final sents Score

nsubj 958 / 2,000 38,613 30,526 6.64
dobj 980 / 2,000 70,250 56,777 7.39
amod 1,030 / 2,000 29,403 23,110 7.62
nsubj_amod 956 / 2,061 15,265 12,911 5.75
dobj_amod 922 / 2,063 28,336 21,839 6.32
Total 4,846 / 10,124 181,867 145,163

Table 4.3: The number of SP-10K word pairs which were found in sentences of the
ukWaC corpus (out of the total number of word pairs), the initial number of found sen-
tences, and how many of those sentences include the word pairs in the correct syntactic
positions (after our evaluation). The last column documents the average score of the
SP-10K annotated plausibility scores of all pairs in the category.

4.4.2 Transformer models

Our experiment makes use of the pretrained contextual word embeddings from English

monolingual BERT. One of the training objectives for the BERT models is masked lan-

guage modeling, i.e. the prediction of a masked word in a sequence. Our experiment
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was modeled after this training objective, as well: for a sentence with an SP-10K word

pair, we mask the dependent word of the pair. The model receives the sentence with a

masked word, and the probability of the dependent word being in its original masked

position is retrieved. The experimental setup will be further explained in the following

sections.

We used the bert-base-uncased model for English, as provided by HuggingFace’s

transformers Python library (Wolf et al., 2020), and specifically its version for masked

word prediction. The BERT base model has been exploited and extensively analyzed

for its semantic and syntactic competencies, for example in Goldberg (2019) and McCoy

et al. (2019). Some preliminary experiments we performed with bert-large-uncased did

not show significantly different results, thus we used the computationally lighter base

model. We do not perform any finetuning of the encoder weights or pruning of any

heads but use the pretrained model as it is made available.

On the sentences of our ukWaC & SP-10K dataset, we add the special BERT tokens

[CLS] (to indicate the start of a sentence) and [SEP] (to mark the end of it). After mask-

ing the dependent word, we use the BERT tokenizer, so that the sentence is tokenized

to words and subwords that can be matched to BERT’s embeddings. However, for our

masking experiment, we could only preserve the dependent words that were not tok-

enized to subwords, as the pretrained model from the transformers library only sup-

ports one masked token. Out of the 250 unique words of the SP-10K word pairs, only 27

were split into subword segments and therefore were not eligible for our experiments

(since computing simultaneously the probabilities of multiple adjacent subwords is not

possible with the BERT models we employed)5.

4.4.3 Methodology

4.4.3.1 Correlation of SP-10K score and probability

For each example sentence in our corpus, we mask the dependent word of the word

pair using a [MASK] token, and we retrieve the probability that is assigned to the target

5“grandparent”, “hightech”, “indiscreet”, “cholesterol”, “allegation”, “pant”, “grandchild”,
“africanamerican”, “tasty”, “socalled”, “tshirt”, “fulltime”, “wellknown”, “carbohydrate”, “guideline”,
“symptom”, “oldfashioned”, “tablespoon”, “lawmaker”, “youngster”, “cede”, “shortterm”, “wellbeing”,
“longterm”, “stereotype”, “respondent”, “nosy”
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word in the focal position. The probability is computed by passing the last hidden state

through a softmax function.

We are making the assumption that this result is to be treated as the conditional

probability of a bi-directional language model, similar to what a traditional language

model would return.

We compute the correlation of the masked word’s probability and the plausibility

score of the word pair, using the Kendall rank correlation coefficient as implemented by

the scipy Python library. Kendall τ (tau) correlation is a non-parametric measure of the

monotonicity of the relationship between two datasets. The p-value roughly indicates

the probability of an uncorrelated system producing datasets that have a correlation at

least as extreme as the one computed from these datasets. 6 Values close to 1 indicate

a strong positive correlation, while values close to -1 indicate strong disagreement. In-

tuitively, we are looking for a strong positive correlation, meaning that the higher the

plausibility score of the word pair, the higher the probability of the dependent word in

the context of the head word.

We created batches of 128 sentences and used CUDA to accelerate our calculations.

4.4.3.2 Prediction with attention masks

In order to determine the relative importance of selectional preference information, we

retrieve probabilities in different attention settings by using attention masks. As ex-

plained in Section 2.5.4, the attention mask is an array of 1s and 0s indicating which

tokens we do not wish to incorporate in the way the model attends to the sequence.

By using this feature, we are able to “block” certain tokens of the sentence from BERT’s

self-attention mechanism, and examine the impact it brings to the probability scores and

the correlation. These masks do not completely block parts of the input, only mask them

from the attention mechanism. We use four different settings:

• The standard setting does not involve any masking, thus the model can attend to the

whole sequence.

• The head setting blocks attention to the headword of the pair, so the attention can only

6In the remainder of this doctoral work, significant results are defined as p < 0.01.
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focus on the rest of the context (other arguments of the head word and non-dependent

words).

• The context setting masks the context except for the head word, so the attention can

only focus on the head word (and BERT’s special tokens).

• The control setting masks all the words of the sequence (except for the special tokens),

so that the attention mechanism is “sabotaged” and no adequate prediction should be

possible (as a sanity check).

A graphical example of the four different attention settings is given in Figure 4.2.

Mask Type The film tells the story of that trial .
standard [CLS] the film tells the [MASK] of that trial . [SEP]
head [CLS] the film - the [MASK] of that trial . [SEP]
context [CLS] - - tells - [MASK] - - - - [SEP]
control [CLS] - - - - [MASK] - - - - [SEP]

Figure 4.2: Illustration of the four attention mask settings, for the sentence “The film
tells the story of that trial.” with the word pair “tell story” (as a dobj relation). Dashes
indicate blocked attention.

The correlation scores between the plausibility scores and the model’s probabilities

are calculated per sentence, then the results are both micro- and macro-averaged. As

previously indicated, there are considerable differences in the amount of extracted sen-

tences for each word pair. The micro-averaged findings are calculated over the whole

collection of sentences, without accounting for this varying amount of sentences. For

the macro-averaged results, we first calculate the average for each word pair’s sentences,

before providing a total average for all the pairs (hence treating all word pairs as equally

important). A value above 0.4 will be regarded as a strong positive correlation, and a

value below −0.4 will be regarded as a strong negative correlation.
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4.5 Results

4.5.1 Quantitative results

In Table 4.4, the correlation results between the human assessments of plausibility and

the probability of the dependent word in the sentence are presented. Our results do

not demonstrate a strong positive or negative correlation for any of the five syntactic

relation categories, neither without masking the attention nor with the attention masks.

However, we observed interesting differences between the different settings, that point

to assumptions about selectional preferences and attention.

Mask type standard head context control

nsubj 0.03 -0.02 0.16 -0.01
dobj 0.05 -0.07 0.05 -0.05
amod 0.04 -0.06 0.24 -0.04
nsubj_amod -0.01 -0.13 0.29 -0.00
dobj_amod 0.06 0.01 -0.03 0.02

(a) Micro-averaged results

Mask type standard head context control

nsubj 0.19 0.15 0.29 0.08
dobj 0.16 0.04 0.27 0.05
amod 0.15 0.03 0.35 0.03
nsubj_amod 0.01 -0.04 0.22 0.06
dobj_amod 0.14 0.10 0.20 0.07

(b) Macro-averaged results

Table 4.4: Kendall τ (tau) correlation coefficient of masked word probability and word
pair plausibility score.

The context attention mask scenario (masking attention for the entire sequence aside

from the head word and BERT tokens) exhibits the highest positive values (positive cor-

relation up to +/-.30), whereas the head attention mask scenario (masking attention for

the head word and attending to the context for prediction) displayed no strong corre-

lation but was biased toward negative values. Prediction with attention to the entire

sequence is successful, because both the head word and the context are important, but

the presence of context slightly lowers the probability of the dependent word. Attention
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solely to the head word worked the best, as the relationship of the word pair dictates.

However, the absence of attention to the head word acts negatively, even in the case of

two hop-relations. This finding lends credence to the claim that, in syntactic relations

where verbs serve as the head word, the verb’s selectional preferences are comparatively

significant and sufficiently influential in the choice of constituents. BERT seems to have

captured these preferences and constraints in its encodings and makes use of them to

assign the dependent word a proportionate probability.

The nsubj relationships exhibit slightly stronger positive correlations than the dobj

relationships for direct objects, possibly due to the restriction of animacy for some sub-

jects (word pairs included a variety of animate and inanimate subjects). The two-hop

relations, nsubj_amod and dobj_amod, exhibit lower correlations but are still quite

strong with attention only to the head word (the context attention mask), supporting

the claim of Zhang et al. (2019b) that selectional preferences extend beyond one-hop

relations.

4.5.2 Analysis of head words

Taking a closer look at the head words of the word pairs, we searched for strong positive

or negative correlations for each head word that exists in at least two different word

pairs, per syntactic relation. We examined whether specific verbs and nouns affected

positively or negatively the correlation of probability and plausibility, and whether there

were common features between these head words (e.g. semantic similarity, common

semantic class). We grouped the probabilities and scores of sentences per head word,

and calculated the correlation coefficient for head words that were present in at least two

different word pairs. Overall, for all five syntactic categories of our experiment, we do

not notice distinct classes, semantic or syntactic, that the words with strong correlations

could be grouped with.

For nsubj relations, verbs with semantic similarity (in at least one of their mean-

ings) did not demonstrate similar patterns of probability and correlation; for example,

the verbs of violence (in some contexts) “kill”, “strike”, “grab”, “fire” show a strong posi-

tive correlation, while the verbs of the same semantic class “shoot” and “confront” have

a strong negative correlation – this could be caused by the different metaphorical mean-
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ings that these two words might have, or the dependent words that they were paired

with in the SP-10K dataset (favorable for “kill”, detrimental for “shoot”). Concerning the

type of subjects, the animate subject “man” had a high plausibility score in the SP-10K

dataset and high probability scores for “kill” and “shoot”, causing a strong positive corre-

lation. The inanimate subjects had mid-range plausibility scores (“earthquake”, “explo-

sion”) or low scores (“film”, “tragedy”) but the probability varied based on the sentence

and metaphorical use; for the word pair “strike tragedy” which existed in many sen-

tences of our dataset, the plausibility score was 5.25 and the assigned probability for

“tragedy” was relatively low, even though the idiomatic phrase “tragedy struck” is fairly

common. Likewise, we noticed that in the standard head attention mask scenarios, the

word pair “kill explosion” had a strong positive correlation while “shoot man” 8.0 had a

strong negative correlation; interestingly enough, the former had a plausibility score of

6.25 while the latter had a score of 8.0.

Examining the dobj relations, verbs (head words) showed inconsistent correlations

among the different attention mask scenarios; out of the few verbs that showed consis-

tently positive or negative correlation, we were not able to identify semantic clusters of

verbs or differences based on verb transitivity (monotransitive/ditransitive). The pres-

ence of a strong correlation relied more on BERT’s semantic knowledge rather than

world knowledge or utterance plausibility; for example, the word pair “blame customer”

has (correctly) a moderate plausibility score (6.75), is found twice in the ukWaC cor-

pus, but the assigned probability by BERT of the word “customer” is very low in the

standard and context attention mask scenarios. The word pair “blame management”, on

the other hand, with slightly lower plausibility (6.25) is assigned a proportionally good

probability. This leads us to the conclusion that, even though both syntactic pairs are

grammatically correct and have commonly usedwords, the pretrainedmodel has learned

that “management” (someone in control and responsible of a service) is a more probable

direct object for the verb “blame” than the word “customer” (the receiver of a service),

especially when the only given context is the verb. When attention to the head word

was removed, there was no strong negative correlation between “blame” and the given

plausibility score.

Concerning the amod word pairs, again no semantic class of nouns appear consis-
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tently in the positive or relative correlation groups. An interesting observation is that

high-frequency adjectives of size and age, such as “small”, “big”, “old” and “new” were al-

most always assigned a high probability by BERT, but the variations in plausibility score

(from 8.25 to 4.25) led to strong positive or negative correlations, especially since word

pairs with these adjectives are quite frequent in our corpus, for example “new house”,

“small bird” and “new face” had many occurrences in the corpus and a strong positive

correlation (high plausibility/high probability), “new material” (6.5) and “old daughter”

(4.25) had lower plausibility scores and subsequently lower probabilities, in all atten-

tion mask scenarios. Unlike in the other syntactic relation groups, we do not notice

shifts from strong to weak correlation, based on the attention mask scenario, though in

most cases blocking the head word attention yielded a slightly weaker correlation and

blocking the context word attentions a stronger one.

In the nsubj_amod word pairs, again we see that high-frequency descriptive adjec-

tives (dependent words) are still assigned higher probabilities, even though the plausibil-

ity scores are more mediocre for the word pairs of this relation, therefore high-frequency

adjectives can be found in both the strong positive and negative correlation groups. We

also do not notice distinctive semantic classes among the verbs (head words), and nei-

ther can we make assumptions based on the animacy of the subject, since the adjective

modifiers do not follow such a constraint (“new”, “local”, “national”, “exact”, “different”)

and the given verbs do not have the animacy constraint either (“bring”, “attract” had a

strong positive correlation, “increase”, “reflect” a strong negative). Some verbs that do

prefer animate objects were found to have a strong positive correlation (e.g. “compare”,

“operate”), others to have a strong negative one (e.g. “lift”). Concerning the different

attention scenarios, there is a noticeable positive shift in correlations (+.30, +.20) with

the context attention mask compared to no mask or masking the head word, which hints

at the influence that the verb had in the predictions, and how the context (including the

one-hop dependency to the verb subject) produced less polarizing probabilities.

Finally, for the dobj_amod word pairs, as in the direct object word pairs, we do not

notice verb grouping based on semantics or transitivity. Many of the verbs with strong

positive (“teach”, “promise”) or negative correlation (“claim”, “confirm”) are verbs with

varied subcategorization frames. In this syntactic category, we observe the smallest pos-
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itive shifts with the use of the context attention mask, and even a decrease in correlation

(-0.03) in the micro-averaged results. However, the results still show a weak positive

correlation similar to the ones of the other syntactic relations, for the most part; this

observation supports the fact that the role of the verb is quite important for predictions.

4.5.3 Correlations and attention per layer

We conducted several experiments in order to visualize the behavior of BERT per model,

and to better peer into the attention layers. Focusing on the standard setting without the

use of attention masks, we froze the model on each layer (see Section 2.4.4 for details on

freezing layers) and asked the model to predict the probability of the dependent word.

Then, we calculated the correlation to the human assessments. By freezing the model

on each layer, we can only assess the predictions per layer, therefore the results are

different than those presented in Table 4.4. Overall, there are no strong correlations, with

layers being slightly positively or negatively biased (±0.10) for all five syntactic relations

categories. As seen in Figure 4.3, the performance of layers is not always uniform among

the different relation types and neighboring layers demonstrate quite different behavior

(e.g. from layers 5 to 8). We observe that for most types of syntactic relations, the

models achieve the highest positive correlations in layers 7-9, with layers 2 and 5-6 also

having a tendency for positive correlations. The final layers do not always demonstrate

the highest positive correlations. This finding is in accordance with the literature on

the linguistic capabilities of the models (see Section 3.2), where it is observed that BERT

models show some linguistic specialization in their layers, with earlymiddle layers being

focused on syntax and late middle layers on semantics. However, this experiment does

not provide solid proof of syntactic and semantic competencies, since there were no

strong positive or negative correlations in any category or layer.
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Figure 4.3: Correlation of masked dependent word probability and human assessments
from SP-10K. The graphs are separated per syntactic category.
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Focusing on attention, we examined the way the tokens of a sentence attend to the

other tokens of the sentence, in the case of unmasked attention. The attention weights

of the 12 heads of the bert-base-uncased model were aggregated per layer and plotted

in a heatmap. The different plots per layer allow us to observe how layers attend to

tokens, and whether the specialization we observed in the probability correlations was

reflected in attention, too. Every square in a plot represents how a token in a sequence

attends to the rest of the tokens of the sequence, and the lighter the shade, the higher

the attention weight to the target token. In Figure 4.4 the attention heatmaps are shown

for the sentence “The event took months to plan.” which includes the nsubj word pair

“take event”. Additionally, the attention heatmaps for the sentence “Give us the chance

to teach loving.” for the dobj word pair “give chance” is shown in Figure 4.5.

This traditional method of depicting attention may not be perfectly suited for multi-

headed self-attention, since it doesn’t offer insights into how each head behaves and

attends to the input. However, it does visualize the behavior of each layer in a human-

readable way and offers insights into the choices of the model in each layer. For example,

we notice that some layers show the same patterns of self-attention even with different

sentences; layer 3 shows a monotonic focus of attention of a token to its right neighbor,

and layer 12 shows that tokens aggregate their attention to the end-of-sequence token.

Examining each sentence we selected to present, we notice that the token “took” does

not strongly attend to the masked position of the “event” token in any of the layers, apart

from some attention in layer 2, and prefers to attend to the subordinate clause. Similarly,

“give” attends to the masked position of the “chance” token mostly in layer 2 and also

prefers the subordinate clause. The determiners “the” and “a” still attend to the masked

positions, however.
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Figure 4.4: Attention heatmaps for the sentence “The event took months to plan.”, for
the nsubj word pair “take event”, for layers 1-12 of bert-base-uncased.
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Figure 4.5: Attention heatmaps for the sentence “Give us a chance to teach loving.”, for
the dobj word pair “give chance”, for layers 1-12 of bert-base-uncased.
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4.6 Discussion

Selectional preferences are hard to define, and as seen by the SP-10K annotating process,

challenging to identify even to humans. In our experiment, we investigated whether the

contextual word embeddings of BERT (specifically, the bert-base-uncased version) con-

tain such information, by comparing their knowledge to human annotations. We studied

the head word-dependent word pairs in the SP-10K corpus, in real sentences; the process

of extracting real sentences from ukWaC with these word pairs was already a method

of filtering out the infelicitous pairs that existed in SP-10K (for research purposes). The

correlation coefficient between human judgments and BERT probabilities did not show

a strong positive or negative correlation; this is caused by two factors. First, the average

plausibility of the pairs in SP-10K was sometimes quite low for common pairs, especially

those found in idioms and lexicalized phrases. Meanwhile, BERT assigns high probabil-

ities in frequently seen pairs of words and contexts. Second, BERT had the advantage of

accessing full sentences, while the annotation in SP-10K was performed on word pairs.

Additionally, as mentioned already, SP-10K pairs were created out of frequent words,

and BERT tends to favor the prediction of frequent words (e.g. adjectives of size), some-

times to a fault. However, we were not demanding a human-like performance by BERT,

but rather we explored its learned preferences and whether they coincide with human

intuition to some extent.

The ability to use attention masks allowed us to study how the likelihood of the

target word can change, depending on how the input sequence is processed by the self-

attention mechanism. Our objective was to determine how much the head word influ-

enced the probability of the dependent word and if the context was more significant than

the head word alone. The fact that the strongest positive correlation values nearly al-

ways resulted from focusing attention exclusively on the head word (and the non-lexical

BERT tokens) suggests that the head word is recognized as an essential and significant

component of the sequence when it comes to choosing a masked word. Blocking the

attention mechanism from accessing the head word also showed the head word’s im-

portance to the assigned probability to the dependent word, even in two-hop relations

where the one-hop relation was masked. Further experiments with self-attention, how-
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ever, did not pinpoint this observation to a specific layer in the model, as the literature

has suggested.

Comparing the different syntactic relations of the SP-10K corpus, the lowest cor-

relation scores came from the amod syntactic relation category, even though some

nouns also have strong lexical preferences. This stems from BERT’s favoritism of high-

frequency adjectives, which in some cases may not be very felicitous to nouns. Interest-

ingly enough, the verb and adjective (as the modifier to the subject or the direct object)

categories showed, for the most part, similar positive correlations as the one-hop syn-

tactic relations of verb and noun. As Zhang et al. (2019b) have also mentioned, these

two-hop relations also fall under the influence of a word’s selectional preferences. The

head word in these cases is the head of the sequence and the subject or direct object are

its arguments, therefore its selectional preferences could have impacted the selection of

a modifier to a greater extent than the context could.

Our overall results did not show a strong correlation that would definitively prove or

disprove the presence of selectional preferences, but there are indications that BERT’s

embeddings have captured enough syntactic-semantic information to be able to assign

probability based on “the right fit” for a head word. BERT is able to capture, to some

extent, a verb’s preferences and constraints, and can make predictions based on them,

when the use is not metaphorical and conflicting with usual, literal cases.
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Classification of lexical aspect in
English and French

5.1 Introduction

Lexical aspect is the property of a verb describing the temporal qualities of the verb’s ac-

tion, event, or state. Unlike grammatical aspect and verb tense, it is a semantic property

that is innate to the verb, and could only change in the presence of different meanings

and contexts. The comprehension of lexical aspect is crucial for many tasks where se-

mantic knowledge is required, since aspect conveys details on temporal relations (Costa

and Branco, 2012), textual entailment (Hosseini et al., 2018; Kober et al., 2019) and event

ordering (Chambers et al., 2014).

Our goal was to discover whether deep contextual word embeddings can learn and

encode lexical aspect information in their encodings. We focused on the properties of

telicity (the existence of an endpoint or not) and duration (the presence of an action or

a state). We used transformer-based architectures by finetuning the sequence classifica-

tion language models on a dataset of telicity and duration annotations.

We conducted two rounds of experiments, one with the dataset of Friedrich and Gat-

eva (2017) and another with the addition of the dataset of Alikhani and Stone (2019), and

finetuned the English pretrained models. The second iteration of our experiments was

deemed necessary, first of all, because the results of the first round of experiments did

not produce sufficient explanations, and second, because of some annotation problems

we identified in the Friedrich and Gateva dataset. In both rounds of experiments, our

main experiment was conducted as follows; We trained the models on a binary sequence
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classification task of telicity or duration (telic-atelic and stative-durative) in two differ-

ent ways: by either providing the verb position or not. We tested on a held-out test

set from the datasets, and two smaller hand-crafted test datasets with simple sentences.

Additionally, we performed experiments with attention masks, attention visualization

methods, and the knowledge of the pretrained word embeddings. We were also able to

extend some experiments in French, with translations of our datasets and the French

transformer models.

Even when trained on limited datasets, transformer models were quite effective in

classifying data. Adding the verb position as extra information enhanced performance

in telicity and duration categorization for English, but not for French. Even without

finetuning, the pretrained word embeddings contain knowledge of lexical aspect, inside

the verb representation. From the analyses of our qualitative test sets, we observed that

the models classified based on verb before context, meaning that they are able to distin-

guish the most important part of the sequence. However, when required to, they failed

to capture more precise information, for complex sentences where the verbal aspect

contradicted the temporal information in the context.

5.2 Linguistic overview

The internal temporal organization of the events that verbs (predicates or sentences)

describe has been the subject of continuous research. The linguistic concept of aspect

describes the temporal characteristics of a verb’s reported action, occurrence, or state,

beyond the scope of the verb’s tense. Aspect communicates information like frequency,

duration, and completeness, but this information can either be dynamic or inherent to

the verb’s meaning. Lexical aspect (or aktionsart) relies on the meaning of the verb (a

described event, state, action, or accomplishment), and these meanings cannot change

regardless of how they are placed on a timeline. For example, in Table 5.1, the sentence

“I eat an apple.” is presented in different grammatical tenses of present. These tenses

change the time that the action of Eat occurs but cannot change the lexical aspect: the

action of Eat is bound to finish once the Food is consumed.

The endeavor of defining lexical aspect is a complex one, and apart from the se-

mantic meaning of a verb, its perception is the outcome of the entire verbal phrase and

96



Classification of lexical aspect in English and French

not solely the verb’s features (Krifka, 1998). However, it should not be confused with

grammatical aspect; grammatical aspect defines temporal properties that can change in

different contexts and can be expressed with syntax and morphology. This distinction

isn’t always clear for all contexts and languages; even the first definition of telicity was

built on the grammatical feature of perfectivity. According to Garey (1957), telic verbs

express actions that are directed towards a goal that is thought to be realized in the per-

fective tense but contingent in the imperfective tense. In contrast, atelic verbs express

actions that are realized as soon as they begin, and lack any goal or endpoint in their

semantic structure.

Lexical aspect
Tense Sentence Telicity Duration Frequency
Present simple I eat an apple. telic durative non-repeated
Present continuous I am eating an apple. telic durative non-repeated
Present perfect I have eaten an apple. telic durative non-repeated
Present perfect con-
tinuous

I have been eating an apple. telic durative non-repeated

Grammatical aspect
Tense Sentence Progressivity Perfectivity
Present simple I eat an apple. not progressive imperfect
Present continuous I am eating an apple. progressive imperfect
Present perfect I have eaten an apple. not progressive perfect
Present perfect con-
tinuous

I have been eating an apple. progressive perfect

Table 5.1: Features of lexical and grammatical aspect, of the present tense, in English.

Since then, there have been multiple proposals to define the different features in-

cluded in lexical aspect and correlate them to verb classes. Vendler (1967) divides verbs

(more accurately, predicates) into four categories: state, activity, accomplishment, and

achievement. States (know, believe, own) are homogeneous, non-dynamic, and continu-

ous circumstances (Dowty, 1979; Kearns, 1991; McClure, 1994). Activities, such as run-

ning, walking, swimming are dynamic activities that carry on continually with no obvi-

ous endpoint (Smith, 1997). Accomplishments, such as draw (a picture), run (a mile), build

(a house), are dynamic and durative events with an inherent endpoint. Achievements

(recognize, arrive, die) are dynamic and near-instantaneous events with an inherent end-

point. Semelfactives, added by Comrie (1989) and Smith (1997), refer to punctual events
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such as cough, knock, wink. They are similar to activities, but they have an instantaneous

endpoint and can be iterated. Scalar verbs (Hovav and Levin, 2010) include activity verbs,

e.g. cool, widen, with a degree of achievement, thus they may have a varied endpoint in

different contexts (and depending on the context, the presence of an endpoint may be

irrelevant).

Olsen (1994, 1997) and Kearns (2000) chose a feature-based representation for aspec-

tual classes, in order to accurately distinguish between the various aspectual classes. The

three binary properties ([±dynamic], [±durative], and [±telic]) and their existence or

not in an aspectual class can be found in Table 5.2. It is also important to highlight that

these classifications usually include a verb in a specific grammatical form (e.g. running)

or with specific arguments (e.g. draw a picture), since these factors can possibly affect

the event structure of a verb (Siegel, 1998).

Verb example [±dynamic] [±durative] [±telic]

State know - + -
Activity running + + -
Accomplishment draw (a picture) + + +
Achievement recognize + - +
Semelfactive cough + - –
Scalar cool + + ±

Table 5.2: Binary properties of lexical aspect and how aspectual classes include them.
Table adapted by Peck et al. (2013).

However, lexical and grammatical aspects are intertwined, in that the semantic con-

straints of lexical aspect can influence how grammatical aspect can be expressed on a

verb. As a result, the grammatical aspect can be a surface-level indicator of lexical as-

pect; for example, in Czech and other Slavic languages, an atelic verb can be created

from a telic verb with a related meaning and the addition of a morpheme of perfectivity

(see Table 5.3). By adding the prefix na- to the imperfective verb, it is transformed into a

perfective verb, and one or another meaning specialization is very often superimposed

on the imperfective meaning (Šimandl et al., 2016). The derivative verb expresses a dif-

ferent meaning from its base verb, therefore may express a different degree of telicity

(e.g. napsat “to write” is a telic verb, as opposed to its imperfective base form psát “to

write” which is atelic). In these cases, the context is chosen by the verb to complement
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Imperfective Perfective

psát “write” napsat “write (something)”
Pořád píš-u dopisy. Na-psa-l o tom článek.
still write-PRS.IND.ACT.1SG letters PF-write-PST.IND.ACT.3SG.M about it article
I still write letters. He has written an article about it.

kreslit “to draw” nakreslit “to draw (something)”
Kresl-i-l-a obrázky. Na-kresl-i-l-a květinu.
draw-THEME-PST.IND.ACT-3SG.F pictures PF-draw-THEME-PST.IND.ACT-3SG.F flower
She drew pictures. She drew a flower.

Table 5.3: Examples of deriving an imperfective verb from a perfective base form with
the prefix na- in Czech, with corresponding sentences. Sources: Šimandl et al. (2016);
Ševčíková et al. (2017)

the verb’s degree of telicity, e.g. when the action of drawing has an endpoint with a

direct object of a known, quantifiable size, the verb form nakreslit will be chosen over

kreslit.

For the purposes of this doctoral work, and in order to comply with the annotations

of our datasets, we are focusing on two features of lexical aspect, in a binary manner.

Telicity denotes the potential presence of an endpoint or not; if the verb’s action can

be completed in the past, present, or foreseeable future the verb is telic, but if the verb

describes a state or action whose completion is either indefinite, impossible, or irrelevant

the verb is atelic. Duration distinguishes between a state (stative verbs) and an action

(durative verbs), regardless of the existence of a possible endpoint or not –with a possible

distinction of the duration of the action (punctual verbs). Examples of telic/atelic and

stative/durative sentences will be presented in the following sections, discussing our

experiments and datasets.

5.3 Identifying and learning aspect with NLP

In modern NLP research, Siegel and McKeown (2000) were the first to propose natural

language processing methods for aspectual classification. They located linguistic indi-

cators of stativity and completedness using decision trees, genetic programming, and

logistic regression, and reported that supervised methods performed better than unsu-
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pervised approaches.

In order to predict a verb’s stativity and duration, Friedrich and Palmer (2014) use a

semi-supervised strategy of learning lexical aspect, by incorporating linguistic and dis-

tributional variables. This work has also provided two datasets of annotated sentences

for stativity. Friedrich and Pinkal (2015) extended this approach by classifying verbal lex-

ical aspects into multiple categories of duration and features of habitual/episodic/static,

with the use of Brown clustering (Brown et al., 1992). Friedrich et al. (2016) expanded

their datasets and classes, achieving 76% accuracy on supervised classification of sta-

tivity and duration with Brown clustering, compared to their human baseline of 80%.

Friedrich and Gateva (2017) published two datasets in English with gold- and silver-level

annotations of telicity and duration as part of their most recent study. Gold annotations

come from humans, while silver annotations are obtained from parallel English—Czech

corpora, where aspectual features were inferred by Czech morphological markers of

perfectivity. They claim that automatic telicity classification has significantly improved,

with the use of these datasets and their L1-regularized multi-class logistic regression

model. They report results on training and testing with their gold-annotated dataset of

86.7% accuracy of telicity classification –and up to 86.2 accuracy on the gold test set,

with the addition of their silver-annotated data.

Loáiciga andGrisot (2016) exploit telicity annotations in order to improve on French–

English machine translation. They observe that tense is better translated with the use

of verb classification of telicity (defined as boundedness). Falk and Martin (2016) also use

machine learning techniques in addition to morpho-syntactic and semantic annotations

to predict the aspect of French verbs in different contexts (verb readings). Peng (2018)

employ the dataset of Friedrich and Gateva and two different compositional models (PLF,

LSA) to classify telicity. They emphasize the significance of the verbal phrase and the

verb’s dependents in the interpretation of telicity, and they report accuracies of up to

89%. Kober et al. (2020) also propose modeling the aspect of English verbs with regard

to their context. They use compositional distributional models and confirm that the

context of a verb and closed-class words of tense (e.g. prepositions, auxiliary verbs) are

important features for aspect classification.

Alikhani and Stone (2019) created a multi-lingual annotated dataset of image cap-
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tions, in which they included annotations of grammatical and lexical aspects. They con-

ducted quantitative and qualitative analyses of these captions, in order to explore how

temporal qualities depicted in an image are interpreted and expressed linguistically by

human annotators. An extension of this work was presented in Alikhani et al. (2022),

in which they perform (lexical) aspectual classification and zero-shot learning of as-

pect, with the corpus of Alikhani and Stone and pretrained word embeddings (fastText,

mBERT, ELMo). They concluded that aspect can be predicted with distributional repre-

sentations in a monolingual setup, but also learned even with cross-lingual information.

5.4 First round of experiments

5.4.1 Methodology

As discussed previously, lexical aspect is a feature of the verb but relies heavily on the

predicate, the verb’s dependents, and meaning on a sentence level. Thus, the task we

decided would be most appropriate for identifying telicity and duration is binary classi-

fication. The process of using contextual word embeddings for sentence classification is

streamlined with the use of the Huggingface library transformers; the pretrained model

is loaded and has to be finetuned to the classification task. As mentioned in Section 2.4.4,

finetuning is the strategy of adapting a pretrained model to a specific task, by adding an

extra layer on top of the existing ones and specializing it on the given task. We are

finetuning each transformer model for binary sequence classification of telicity and du-

ration separately. Thus, we can exploit the existing model’s knowledge from its con-

textual word embeddings, without the need for a large annotated corpus. We can also

avoid large computational power and long training times. We are testing the accuracy of

the finetuned model in predicting telicity and duration, both with quantitative measures

and also with the manual evaluation of specific cases we created.

The telicity and duration annotations of Friedrich andGateva annotate the sentence’s

verb as a carrier of telicity/duration, and we decided to use this additional information.

We are finetuning each model in two ways: by providing an embedding that points to

the position of the verb in the input sequence (by using the token_type_ids vectors when

available, see Table 5.4), or by training only with the inputs and labels.
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tokens He worked well and earned much . [SEP]

token_type_ids 0 1 0 0 0 0 0 0

Table 5.4: Tokens and corresponding token_type_ids vector of a sentence in our dataset.
The sequence is followed by padding with special tokens/zeroes to 128 tokens.

5.4.2 Dataset

For this round of experiments, we used the gold- and silver-annotated datasets that have

been developed and made publicly available by Friedrich and Gateva (2017)1. The gold

annotations are based on the MASC dataset (Ide et al., 2008), while the silver annota-

tions were crafted from the InterCorp parallel corpus of English and Czech (Čermák

and Rosen, 2012), extracting the annotations from the Czech morphological markers of

telicity and duration and applying them to the English translations. From the dataset,

we extracted 6,354 sentences with their verbs annotated for telicity and/or duration. Ta-

ble 5.5 presents the total number of sentences per tag. Telicity and duration-annotated

sentences were used as two separate datasets. It is important to mention that, during

our preprocessing of the dataset, we made note of the quality of annotations was ques-

tionable. The silver annotations were based on grammatical aspect in Czech, which

should not be equated to lexical aspect as previously explained. Also, we noticed con-

flicts among the annotators in some sentences. For this round of experiments, we tried

to not eliminate many problematic cases, as our dataset was already small. Besides, the

dataset has been already successfully used in telicity classification—reportedly (Friedrich

and Gateva, 2017; Peng, 2018).

In order to prepare the sentences for tokenization by the transformer models, we

pre-processed them and fixed inconsistent annotations, e.g. annotations referencing a

word form of the verb which did not exist in the sentence. As indicated for finetuning,

we additionally padded, lower-cased, and truncated the sequences to 128 tokens. Since

only one sentence in the whole dataset was longer than 128 characters and the annotated

verb was in the first 128 tokens, this did not lead to issues with our dataset.

For finetuning and testing, we are splitting each dataset into training, validation,

1https://github.com/annefried/telicity
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Type Label No. sentences Training Validation Testing

telicity telic 3,220 5,083 635 636atelic 3,134

duration stative 1,861 4,095 512 512dynamic 3,258

TOTAL 6,354

Table 5.5: Number of sentences tagged for telicity and duration in Friedrich and Gateva’s
dataset.

and test sets with a ratio of 80-10-10%, since our telicity and duration datasets are rather

small. We have also prepared a second small testing dataset of 40 sentences annotated on

telicity, and 40 sentences annotated on duration, evenly split between the telic-atelic tags

and stative-durative. We hand-crafted these sentences, with the help of aforementioned

bibliography and online resources2. A sample of the dataset is seen in Tables 5.6 and 5.7.

The entirety of these datasets can be found in Section 5.7.1, Table 5.27 for telicity, and

Table 5.28 for duration.

Finally, we prepared a third dataset of telicity-annotated sentences, aiming to create

“minimal pairs” of telic-atelic sentences. The creation process was to form a sentence

with a certain verb and degree of telicity, and then create another sentence with (prefer-

ably) the same verb and context, and the smallest amount of changes that could lead

to a different degree of telicity. For example, the sentence “The boy is eating an apple.”

is telic, because the action is telic and the determined end is established by the direct

object. However, in the sentence “The boy is eating apples.” the action of the verb in

present continuous implies a repetition or continuity, and the non-finite amount of the

direct object does not force an endpoint to the action. The entire dataset of minimal

pairs is presented in Section 5.7.1, Table 5.29.

2https://www.perfect-english-grammar.com/support-files/stative-verbs-list.pdf
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label sentence label sentence

telic I ate a fish for lunch. atelic Cork floats on water.
telic The cat drank all the milk. atelic The Earth revolves around the Sun.
telic John kicked the door shut. atelic Kim is singing.
telic I opened the juice bottle. atelic We live in a democratic age.

Table 5.6: A sample of the manually annotated sentences for telicity.

label sentence label sentence

stative She didn’t agree with us. durative The boy kicked the ball hard.
stative I don’t believe the news. durative The dogs bark all night.
stative Do you hear music? durative The snow melts every spring.
stative This box contains a cake. durative I slept all morning.

Table 5.7: A sample of the manually annotated sentences for duration.

label sentence label sentence

telic I drank the whole bottle. atelic I drank juice.
telic I read the book in an hour. atelic I read the book for an hour.
telic The boy is eating an apple. atelic The boy is eating apples.
telic I put on my red dress. atelic I wore my red dress.

Table 5.8: A sample of the manually annotated minimal pairs of telicity.

5.4.3 Models and finetuning

We are using the pretrained models from the Huggingface Python library transformers3,

and specifically the models for sequence (binary) classification. In preliminary experi-

ments, we used the Python library simpletransformers;4 even though it is endorsed by

the transformers development team (Wolf et al., 2020), it did not offer the flexibility we

needed, in order to compare the effect of the verb in the finetuning process. Therefore we

followed the implementation of the transformers’ team on finetuning the library models

for sequence classification5. We are using selected models of the following transformer

architectures: BERT, RoBERTa, XLNet, and ALBERT. These models have already been

introduced in Section 2.5 and in Table 5.9 we list the models that we used and their

hyperparameters.

3https://huggingface.co/models
4https://simpletransformers.ai/
5https://github.com/huggingface/transformers/blob/5bfcd0485ece086ebcbed2d008813037968a9e58/

examples/run_glue.py
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Model Layers Embedding size Hidden Heads Hyperparemeters

bert-base-cased 12 - 768 12 109M
bert-base-uncased 12 - 768 12 110M
bert-large-cased 24 - 1024 16 335M
bert-large-uncased 24 - 1024 16 336M
roberta-base 12 - 768 12 125M
roberta-large 24 - 1024 16 355M
xlnet-base-cased 12 - 768 12 110M
xlnet-large-cased 24 - 1024 16 340M
albert-base-v2 12 128 768 12 11M
albert-large-v2 24 128 1024 16 17M

Table 5.9: The pretrained models and their parameters used for our experiments.

We finetune the models as Devlin et al. (2019) have recommended, with some mod-

ifications; we use a batch size of 32 and a learning rate of 2 × 10−5. We apply dropout

with probability p = 0.1 and weight decay with λ = 0.01. We use the PyTorch Adam

as our optimizer (AdamW) without bias correction. We are finetuning each model for

a maximum of 4 epochs, and we select the parameters between epochs 2-4 with the

best accuracy, following the recommendation of Devlin et al. (2019) and McCormick and

Ryan (2019) to train for 2-4 epochs for finetuning on a specific task. For base models,

each training epoch took 25 minutes, and for large models 85 minutes, on one GPU

system with CUDA acceleration of the IRIT computing cluster OSIRIM.

5.4.4 Results

5.4.4.1 Quantitative test set

The results are presented in Table 5.10 for telicity and Table 5.11 for duration. We calcu-

lated the accuracy metrics with the Python library scikit-learn (Pedregosa et al., 2011),

which returns the metrics of precision, recall, and F1-score for the classification process

and for each binary tag.

On classifying telicity, the best performing models were bert-base-cased and bert-

large-cased. Overall, BERT models outperformed the other architectures significantly,

and the large models were more successful than the base ones. RoBERTa models were

moderately successful, although they were not able to make use of the verb position

information in an additional embedding. Some XLNet and ALBERT models (xlnet-large-

105



Chapter 5

cased, albert-base-v2, albert-large-v2) completely failed to classify the sentences and

predicted the same label for all testing instances, switching their decision in each epoch.

For our training objective with the addition of the verb position information in the sen-

tence, the accuracy for most models (especially the more successful ones) improved sig-

nificantly, e.g. 65% → 76% for bert-base-cased, 68% → 79% for bert-large-cased.

However, there was rarely a significant improvement in the unsuccessful models, some-

times even a decline in accuracy.

Our findings on the best performing models in duration classification were simi-

lar to the ones on telicity. Despite the dataset being smaller and unbalanced, the BERT

models performed overall better on this classification task. The bert-basemodels outper-

formed the bert-large ones (86% and 74− 77% respectively), while roberta-large, xlnet-

large-cased and albert-large-v2 failed to make predictions. In this classification task, we

noticed a significant improvement in accuracy when providing the model with the verb

position information, especially in the leading models: 73%→ 85% for bert-base-cased,

74%→ 84% for bert-base-uncased.

5.4.4.2 Qualitative test sets

We examined further the incorrect predictions made by the models, focusing on BERT

models since they were the ones consistently producing the best results. Instead of mea-

suring accuracy with quantitative methods, this type of analysis permits the study of

the type of errors that the models are prone to, thus revealing their weaknesses. The

sentences that were consistently mislabeled by the BERT models can be found in Ta-

ble 5.12. The classification errors in almost all the models could be found in certain

specific sentences where the verb or verbal phrase has a strong preference of telicity,

yet elements of the context define the temporal aspect of the sentence in the opposite

manner. This could be due to a temporal prepositional phrase, for example, “I eat a fish

for lunch on Fridays.”; “eat” with a finite direct object would be considered telic, but the

prepositional phrase “on Fridays” implies a degree of repetition, turning the action of

the verb semelfactive (and therefore atelic). The presence of a grammatical tense is, as

previously stated, not the vessel of lexical aspect, but can influence the temporal qual-

ity of the telic action; for example, in the sentence “The inspectors are always checking
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every document very carefully.” the continuous tense and the presence of the adverb

“always” also render this sentence atelic. The adverb “always” was also ignored in the

case of the atelic sentence “I always spill milk when I pour it in my mug.”, leading to

incorrect labeling.

The test set of minimal pairs of telicity provided an even better insight into the

learned aspectual information of the model. The two sentences of the pair are as similar

as possible, therefore the model may be biased towards a certain degree of telicity, which

is respected by one sentence and not by the other. For example, the sentence “The boy

is eating an apple.” is a telic sentence, however, the presence of a continuous tense has

misled all the models to incorrectly classify the sentence as atelic. Similarly, the sen-

tence “The Prime Minister made that declaration for months.” would be telic, if not for

the presence of the prepositional phrase “for months”. However, all models incorrectly

classified this sentence. The atelic sentence “They have been building the house.” has

also been challenging for all models. We could hypothesize that the models give too

much importance to the verb and not enough to the verb tense or the context, even if it

contains prepositions and prepositional phrases of time.

Concerning the qualitative test set of duration, we observed fewer classification mis-

takes than the telicity questions, in all models. This improvement was expected since

all models performed better on the duration classification task, and additionally because

duration is harder to be misinterpreted or to be altered from a state to a durative ac-

tion from context. In Table 5.13, the sentences that were consistently mislabeled by the

BERTmodels are presented. Themost commonlymisinterpreted sentence by the models

as stative was “She’s playing tennis right now.”; this was unexpected, as “play” is a verb

of action in all of its possible meanings. However, the sentence “Do you hear music?”

was incorrectly labeled as “durative” by some models, This may not be due to a deeper

understanding of the state having an eventual endpoint, but due to frequent contexts

dictating that “hear” has a short duration (but is, in fact, a state).
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Model Verb position Accuracy Precision Recall F1-score

bert-base-uncased
yes 0.72 0.72 0.72 0.72
no 0.66 0.66 0.66 0.66

bert-base-cased
yes 0.76 0.76 0.76 0.76
no 0.65 0.65 0.65 0.65

bert-large-uncased
yes 0.64 0.64 0.64 0.64
no 0.66 0.66 0.66 0.66

bert-large-cased
yes 0.79 0.79 0.79 0.79
no 0.68 0.68 0.68 0.68

roberta-base no 0.64 0.64 0.64 0.64
roberta-large no 0.66 0.66 0.66 0.66

xlnet-base-cased
yes 0.59 0.59 0.59 0.59
no 0.61 0.61 0.61 0.61

xlnet-large-cased
yes 0.59 0.59 0.59 0.59
no 0.51 0.26 0.51 0.34

albert-base-v2
yes 0.49 0.24 0.49 0.33
no 0.6 0.6 0.6 0.6

albert-large-v2
yes 0.49 0.24 0.49 0.33
no 0.49 0.24 0.49 0.33

Table 5.10: Results for the Friedrich and Gateva test set, for telicity classification.

Model Verb position Accuracy Precision Recall F1-score

bert-base-uncased
yes 0.86 0.85 0.86 0.85
no 0.71 0.71 0.71 0.71

bert-base-cased
yes 0.86 0.86 0.86 0.86
no 0.7 0.7 0.7 0.7

bert-large-uncased
yes 0.77 0.77 0.77 0.77
no 0.7 0.69 0.7 0.7

bert-large-cased
yes 0.74 0.73 0.74 0.73
no 0.71 0.71 0.71 0.71

roberta-base no 0.72 0.71 0.72 0.71
roberta-large no 0.64 0.41 0.64 0.5

xlnet-base-cased
yes 0.7 0.69 0.7 0.68
no 0.71 0.7 0.71 0.69

xlnet-large-cased
yes 0.64 0.41 0.64 0.5
no 0.64 0.41 0.64 0.5

albert-base-v2
yes 0.8 0.8 0.8 0.78
no 0.68 0.66 0.68 0.66

albert-large-v2
yes 0.64 0.41 0.64 0.5
no 0.64 0.41 0.64 0.5

Table 5.11: Results for the Friedrich and Gateva test set, for duration classification.
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label sentence bert-base-uncased bert-base-cased bert-large-uncased bert-large-cased
yes no yes no yes no yes no

telic I ate a fish for lunch. x x
telic The cat drank all the milk. x
telic The classes lasted one hour and took place

twice a week over a four-week period.
x x x x x x x x

telic I can swim from one coast to another in less
than an hour.

x x x x x x

telic Last night I slept like a baby. x x x x x x x x
telic Jean was born in 1993 in Lyon. x
telic The advancements in technology have

changed the world.
x x x x x

atelic I eat a fish for lunch on Fridays. x x x
atelic I always spill milk when I pour it in my mug. x x x x x x
atelic The inspectors are always checking every doc-

ument very carefully.
x x x

atelic I am working on a big project now. x
atelic The damage may last for many years. x
atelic In the summer months James sleeps in every

morning.
x x

atelic Kim is writing a song. x x x x x x
atelic Grandma is making pancakes for breakfast. x x x x
atelic He is constantly changing his script. x

Table 5.12: The sentences which were predicted with the wrong label of telicity, from
the BERT models. The ‘yes’ and ‘no’ labels refer to whether the model was trained with
the verb position vectors or not.

label sentence bert-base-uncased bert-base-cased bert-large-uncased bert-large-cased
yes no yes no yes no yes no

stative Bread consists of flour, water and yeast. x
stative Do you hear music? x x x x
stative I suppose John will be late. x
stative I’ve known Julie for ten years. x
stative The noise surprised me. x
stative I didn’t realise the problem. x
stative I suppose John will be late. x x
durative She plays tennis every Friday. x x
durative She’s playing tennis right now. x x x x x x
durative The snow is melting right now. x x x
durative We talked for hours on our trips. x x x
durative She runs ten kilometers a day. x
durative The dogs bark all night. x
durative He grew potatoes in his farm. x x
durative I slept all morning. x
durative She runs ten kilometers a day. x x
durative They ate their dinner in silence. x

Table 5.13: The sentences which were predicted with the wrong label of duration, from
the BERT models. The ‘yes’ and ‘no’ labels refer to whether the model was trained with
the verb position vectors or not.
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label sentence bert-base-uncased bert-base-cased bert-large-uncased bert-large-cased
yes no yes no yes no yes no

atelic I drank juice. x
telic She fell asleep at 8 pm. x
telic I read the book in an hour. x
atelic I stopped reading the book at 5 pm. x x x x x x x
atelic I will receive new stock on [UNK]. x x x x x x x
telic She ate that sandwich.
telic The boy is eating an apple. x x x x x x x x
atelic She has been eating that sandwich. x x
telic She noticed him. x x x x x x x
atelic She looked at him. x
atelic She slept at 8 pm. x
atelic The artist studies a painting. x x
telic The girl walked a kilometer yesterday. x x
atelic The girl walked yesterday. x x x x x
atelic The hunters chased the deer. x
atelic The hunters chased the deer. x
telic The pond is freezing over. x x x
atelic The PrimeMinistermade that declaration

for months.
x x x x x x x

telic The workers painted the house in an hour. x x
atelic The workers painted the house for an hour. x x x x
atelic They have been building the house. x x x x x x x x

Table 5.14: The sentences of minimal pairswhich were predicted with the wrong label
of telicity, from the BERT models. The ‘yes’ and ‘no’ labels refer to whether the model
was trained with the verb position vectors or not.

5.4.4.3 Additional experiments: Attention Masks

Inspired by the attention mask experiments of the selectional preferences experiment in

Section 4.1, we conducted a final experiment with classification and the use of attention

masks. Since the verb positionwas already indicated, and since the verb possesses lexical

aspect, we could create attention masks that allow attention only to the verb or obstruct

the verb from the attention mechanism. The attention masks were applied to the testing

input sentences, not to training input sequences, therefore the same finetuned classifi-

cation models were used as previously. We experimented only with the BERT models

since they were the most successful.

When the models were asked to classify telicity or duration only attending to the

verb of the sentence, the classification results drastically declined (see Tables 5.15 and

5.16). This demonstrates that the finetuned models additionally take into consideration

the context and the dependents of the verb, in order to classify the telicity and duration

properties of the verb since they can do better predictions when this information is avail-

able. However, it is not clear whether this is information acquired from the pretrained

embeddings or the finetuning process.
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Model Verb position Accuracy Precision Recall F1-score

bert-base-uncased
yes 0.50 0.76 0.75 0.75
no 0.52 0.53 0.52 0.52

bert-base-cased
yes 0.50 0.49 0.50 0.49
no 0.51 0.51 0.51 0.51

bert-large-uncased
yes 0.49 0.48 0.48 0.48
no 0.53 0.53 0.53 0.53

bert-large-cased
yes 0.51 0.51 0.51 0.51
no 0.53 0.53 0.53 0.53

Table 5.15: The classification results for telicity for the Friedrich and Gateva test set,
with BERT models with an attention mask on the context.

Model Verb position Accuracy Precision Recall F1-score

bert-base-uncased
yes 0.46 0.58 0.46 0.51
no 0.45 0.54 0.45 0.49

bert-base-cased
yes 0.38 0.66 0.38 0.48
no 0.46 0.54 0.46 0.50

bert-large-uncased
yes 0.60 0.48 0.60 0.53
no 0.60 0.51 0.60 0.55

bert-large-cased
yes 0.45 0.58 0.45 0.51
no 0.46 0.50 0.46 0.48

Table 5.16: The classification results for duration for the Friedrich and Gateva test set,
with BERT models with an attention mask on the context.
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5.5 Second round of experiments

5.5.1 Methodology

The first round of experiments on lexical aspect offered us some interesting insights,

but more experiments were required in order to understand the extent of lexical aspect

knowledge in contextual word embeddings. The occasional failure of the RoBERTa, XL-

Net, and ALBERT-based models to perform binary classification, even in the relatively

easy task of duration, was puzzling and led us to conduct a second round of experiments,

with the same methodology but improved training datasets. We performed additional

experiments, with the dataset of Friedrich and Gateva (2017) and additionally the dataset

of Alikhani and Stone (2019). We explored the inner workings of the attention mecha-

nism and the capacities of the pretrained word embeddings. Additionally, we recreated

our finetuning and classification experiments in French, with the translated versions of

the English datasets (with adaptations to the qualitative sets, when needed).

5.5.2 Datasets in English

Similarly to the first round of experiments, the telicity and duration-annotated sentences

were used as separate datasets for separate experiments. We used the dataset of Friedrich

and Gateva (2017) as previously, and we added sentences from the “Caption” dataset

of Alikhani and Stone (2019). This addition of sentences allowed us to remove many

problematic sentences from the first dataset: multiple occurrences of the same sentence,

annotations with conflicting labels, and sentences that were too long to be useful.

The “Captions” dataset6 (Alikhani and Stone, 2019) was built from five image–text

caption corpora, with the intention to study inference between sentences. Based on the

aspect of the verb and the context, it has been annotated with human annotators for

telicity (telic/atelic) and duration (stative/durative/punctual). Even though the focus of

the original work was on the head verb of each sentence, the verbs were not separately

annotated in the original study. However, the sentences were all short descriptions of

an image, with a simple syntactic structure usually containing one verb. As a result, we

employed dependency parsing with spaCy (Honnibal et al., 2020) to extract the verb and

6https://github.com/malihealikhani/Captions
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its position for our studies. Since there were not enough sentences to support a third

category with the punctual label, we eliminated these sentences. We also found some

annotation errors that we fixed.

In Table 5.17 we present the sizes of the two datasets and our final dataset. We split

this dataset into training, validation, and test sets with a ratio of 80-10-10%. We are also

using the qualitative datasets from the first round of experiments, for telicity (Table 5.27),

duration (Table 5.28), and minimal pairs for telicity (Table 5.29). In addition, we created

an extra test set for telicity, with variations of some challenging sentences, by changing

the verb tense or the prepositional phrase word order, to the extent that English permits.

This could allow an even deeper insight into the context’s importance in deciding the

telicity degree of a sentence — possibly leading to mistakes. This additional dataset can

be found in Table 5.30.

Type Label Friedrich and Gateva Captions Current Total

telicity telic 1,831 785 2,885 6,173atelic 2,661 1,256 3,288
stative 1,860 419 2,036

4,081duration durative 38 1,843 2,045
punctual - 355 -

Table 5.17: Number of sentences and annotations in each dataset, and our final dataset
sizes.

5.5.3 Improvements on technical methods

We are using the same models and the same finetuning setting as the first round of ex-

periments, with improvement on the overall technical methodology of our work. First

of all, it was necessary to establish baselines with non-transformer methods, in order to

test how difficult the classification task of telicity and duration is, for traditional NLP

methods, and compare the transformers to a trusted baseline. We used two standard

binary classification models trained and tested on the same sets as the transformers.

First, a simple bag-of-words logistic regression model, implemented with the Python

library scikit-learn (Pedregosa et al., 2011) with default parameters and data scaling.

Then, a one-layer convolutional neural network model (CNN) implemented with Py-
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torch (Paszke et al., 2019) and trained for 50 epochs, which is commonly used for text

classification tasks (Kim, 2014). The CNN model is trained without pretrained word em-

beddings (such as word2vec, fastText), embedding dimension of 300, filter size of [3, 4, 5],

100 filters per dimension, a dropout rate of 0.5, a learning rate of 0.01 and the Adadelta

optimizer.

Despite the criticism on the efficacy of finetuning, we tried to ensure, as much as

possible, the success of our methodology. We are aware that our training sets were small

(6K for telicity, 4K for duration). We took into consideration the proposition of Dodge

et al. (2020) to not shuffle the datasets before splitting them into the train, test, and

validation sets. Instead of using BERTadam which was proposed by Devlin et al. (2019)

andWolf et al. (2020), we are using the PyTorchAdam as our optimizer as recommended

by Zhang et al. (2020), because they report that BERTadam omits debiasing, and directly

uses the biased estimates in the parameters update. Unlike the proposition of Dodge

et al. (2020) and Mosbach et al. (2020) for multiple training epochs, which has not been

definitively proven beneficial for all tasks (Zhang et al., 2020), we followed the advice

of Devlin et al. (2019) and McCormick and Ryan (2019) for fewer training epochs and

picking the best epoch based on validation results. We did however perform several

training runs, with the same (80%) or more (90%) or fewer (75%) training data, and we

did not notice significantly different behaviors or results in loss or validation metrics.

While studying the classification results, we also examined the probability distribu-

tion of the predicted labels. In addition, we planned some smaller experiments, in order

to observe how the context is interpreted and attended to by the model—based on previ-

ous work by Clark et al. (2019) and Subudhi (2019). Finally, moving from the finetuned

results, we explored the knowledge of the pretrained contextual word embeddings on

lexical aspect with a classification experiment.

5.5.4 Results for English

5.5.4.1 Quantitative results

In this section, the results of the finetuning experiment of telicity and duration classifi-

cation in English are presented. The results for telicity are found in Table 5.18 and for

duration in Table 5.19. The probability scores are found in Figures 5.1 and 5.2 respec-
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tively.

On classifying telicity, bert-large-cased model had the best performance. In gen-

eral, BERT models performed better in this round of experiments as well, although all

models showed relatively high accuracy of > 80%, compared to the 64% accuracy of the

logistic regression baseline and the 75% of the CNN baseline. Accuracy increased for all

models (+1/4%) when trained with the additional knowledge of the verb location in the

sentence, but not statistically significant. Looking at the probability distributions of the

predicted labels, the BERT models, both base and large, were the most confident in their

predictions, with the probability of each label being 90%, whereas the large versions of

other models were the ones whose probability distribution included more instances with

lower label probability. Overall, the models were more confident when making accurate

predictions, and only slightly less confident when making incorrect predictions (with a

few labels closer to 40− 60% but still a majority above 90%).

Our results on classifying duration were comparable to those for classifying telic-

ity, with the models generally performing better on this classification task despite the

smaller dataset –even the CNN baseline performed very well, with 88% accuracy. Al-

though all models reached an accuracy of 93%, the BERT models were the most suc-

cessful, with an accuracy of up to 96%. Since most models either improve or worsen by

±1% in this classification task, it is difficult to determine the impact of using verb posi-

tion information. Regardless of how accurate they were, all models were quite confident

in categorizing phrases and had high confidence in both correct and wrong predictions

when looking at the probability distribution of the two labels (erroneously).
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Model Verb position Accuracy Precision Recall F1-score

bert-base-uncased
yes 0.86 0.86 0.86 0.86
no 0.81 0.81 0.81 0.81

bert-base-cased
yes 0.87 0.87 0.87 0.87
no 0.81 0.80 0.80 0.80

bert-large-uncased
yes 0.86 0.86 0.86 0.86
no 0.81 0.80 0.80 0.80

bert-large-cased
yes 0.88 0.87 0.87 0.87
no 0.81 0.81 0.80 0.80

roberta-base no 0.84 0.84 0.84 0.84
roberta-large no 0.80 0.81 0.79 0.79

xlnet-base-cased
yes 0.82 0.82 0.82 0.82
no 0.81 0.81 0.81 0.80

xlnet-large-cased
yes 0.82 0.82 0.82 0.82
no 0.80 0.80 0.80 0.80

albert-base-v2
yes 0.84 0.84 0.84 0.84
no 0.81 0.80 0.80 0.80

albert-large-v2
yes 0.80 0.80 0.80 0.80
no 0.82 0.81 0.81 0.81

CNN (50 epochs) no 0.75 0.75 0.75 0.75
Logistic Regression BoW no 0.61 0.61 0.61 0.61

Table 5.18: Results of classification accuracy on the telicity test set.

Model Verb position Accuracy Precision Recall F1-score

bert-base-uncased
yes 0.96 0.96 0.96 0.96
no 0.94 0.94 0.94 0.94

bert-base-cased
yes 0.96 0.96 0.96 0.96
no 0.96 0.95 0.96 0.96

bert-large-uncased
yes 0.96 0.96 0.96 0.96
no 0.95 0.95 0.94 0.94

bert-large-cased
yes 0.96 0.96 0.96 0.96
no 0.95 0.95 0.95 0.95

roberta-base no 0.95 0.95 0.95 0.95
roberta-large no 0.95 0.95 0.95 0.95

xlnet-base-cased
yes 0.94 0.94 0.94 0.94
no 0.95 0.95 0.95 0.95

xlnet-large-cased
yes 0.94 0.94 0.94 0.94
no 0.95 0.95 0.95 0.95

albert-base-v2
yes 0.95 0.95 0.95 0.95
no 0.95 0.95 0.95 0.95

albert-large-v2
yes 0.96 0.96 0.96 0.96
no 0.96 0.96 0.96 0.96

CNN (50 epochs) no 0.88 0.88 0.88 0.88
Logistic Regression BoW no 0.70 0.70 0.69 0.69

Table 5.19: Results of classification accuracy on the duration test set.
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Figure 5.1: Probability distribution for
the telicity labels, for the most success-
ful model (bert-large-cased with verb
position).

Figure 5.2: Probability distribution for
the duration labels, for the most suc-
cessful model (bert-large-cased with
verb position).
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5.5.4.2 Qualitative results and analysis

As previously stated, in order to examine aspectual features outside the scope of classi-

fication measures, we additionally produced our own annotated datasets of telicity and

duration. The cases that were easier or more challenging for the models to categorize

were identified by a deeper examination of the right and inaccurate predictions made by

them. Our objective was to manually examine the models’ strengths and weaknesses in

challenging and contradictory classification cases, hence the smaller qualitative datasets

and the inclusion of the most interesting examples.

For telicity, overall, models were quite successful in classifying the sentences of our

qualitative dataset, and they were more successful than the models of the first round of

experiments thanks to our improvements on the dataset and methodology. However, we

noticed that the common mistakes came from a preference of the models for the atelic

label than the telic. For example, all models were able to identify that sentences with

statements are atelic, such as “Cork floats on water.” and “The Earth revolves around the

Sun.”, but they mistakenly labeled the sentence “The advancements in technology have

changed the world.” as atelic as well. Sentences with an action were correctly classified

almost all the time: “I spilled the milk.” was correctly classified as telic, and “I always

spill milk when I pour it in my mug.” was also correctly classified as atelic (except for

the xlnet models). However, the sentences “Yesterday I ran a mile in under 10 minutes.”,

“The classes lasted one hour and took place twice a week over a four-week period.”, and

“Louise made the biggest progress of everyone this year.” were almost always incorrectly

classified as atelic, despite the presence of prepositional phrases of time and past tenses.

Some sentences with conflicting verbal lexical aspect and context, such as “I eat a fish

for lunch on Fridays.” (atelic) and “The inspectors are always checking every document

very carefully.” (atelic) were still incorrectly annotated by the finetuned models, as they

were in the first round of experiments.

Moving to our minimal pairs of telic-atelic sentences, we observe that, in most cases,

most models are able to classify correctly a sentence based both on the verb action and

the context. The sentences “I drank the whole bottle.” and “I drank juice.” were properly

categorized as telic and atelic, respectively, despite the existence of the identical verb and

tense. However, the sentence “The cat drank all the milk.” was mistakenly categorized
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by all the models in our qualitative dataset as atelic. Another intriguing error we found

was classifying the pair “The boy is eating an apple.” and “The boy is eating apples.” as

atelic; in the first, the action is telic, but the tense is continuous for pragmatic reasons.

In order to observe specific tenses, word positions, and context more extensively, we

can examine the variations of sentences (some of which were already challenging cases

of the previous test sets). Word order did not affect the models’ wrong predictions in

some sentences, such as “I ate a fish for lunch at noon.” and “The classes lasted one hour

and took place twice a week over a four-week period.”. In some complex cases, such as

the sentence “The PrimeMinister made that declaration formonths.” we notice that most

models fail to classify it as atelic in all its variations, except for when the prepositional

phrase is at the start and the tense is present perfect continuous (“has beenmaking”). We

noticed that even sentences with a more obvious degree of telicity (“John Wilkes Booth

killed Lincoln on 1865.” – telic) were sometimes labeled incorrectly when the preposi-

tional phrase was at the end rather than the start. However, the presence of a perfective

tense over past simple, especially past perfective, led the models to correctly label the

specific variations of telic sentences, e.g. “Louise (had) made the biggest progress out of

everyone this year.”

Regarding duration, the models were less successful at classifying stative sentences

than durative. Statements such as “I like reading detective stories.”, “I love chocolate.”,

“I prefer chocolate ice cream.” were incorrectly labeled as durative by almost all the

models. However, statements such as “I disagree with you.” were correctly classified.

Another weakness was the sentences with world knowledge and facts, which tend to

be stative, even some sentences with intransitive verbs, such as “Bread consists of flour,

water and yeast.” and “This cookbook includes a recipe for bread.”. Durative sentences,

despite verb tense and context, were almost always correctly classified, e.g. “She plays

tennis every Friday.” and “She’s playing tennis right now.”. Some notable examples are

“The noise surprised me.” and “He screamed for help.”, incorrectly classified as stative

by xlnet and albert models, while “Do you hear music?” was classified as durative.
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5.5.4.3 Additional experiments: A look at attention

It has been extensively discussed how the analysis of the self-attention mechanism has

been a preferred method of explaining transformer architectures’ results and abilities.

For our analysis, we studied sentences from the qualitative test sets and their visualiza-

tions per layer and per attention head. We observed that, among the models we tested

in our experiments, BERT models in earlier levels exhibited more “focused” attention to

particular tokens and “diffused” attention on later layers. Meanwhile, the other architec-

tures exhibited more “diffused” attention even from earlier layers. Most tokens attended

to all tokens or to the special tokens in the final layers (the special tokens of start and

end of the sequence). In Figure 5.3, we are comparing a minimal pair of telicity, on layer

3 of the bert-base-uncased model (with information on verb position): “I read the book

in an hour.” (telic) and “I read the book for an hour.” (atelic).

The most interesting were the earlier layers, while the middle layers specialized on

syntactic dependencies (verb attended to subject and object, prepositional phrase at-

tended to its tokens) and the last layers did not focus saliently on any word tokens. For

the presented example, there was a tendency for the verb to slightly attend more to “for”

than “in”, before moving to focus on its subject and direct object. Looking even closer at

the attention of the verb token in Figure 5.4, we located this tendency in head 4 but gen-

erally, the verb prefers to pay attention to its neighboring words and its closer syntactic

dependents.
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“I read the book in an hour.”

“I read the book for an hour.”

Figure 5.3: Visualization of attention for the sentences “I read the book in an hour.” (telic)
and “I read the book for an hour.” (atelic), from the model bert-base-uncased (with verb
position information), on the 3rd layer of the model, for all heads (1-12).
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“I read the book in an hour.” “I read the book for an hour.”

Figure 5.4: Visualization of attention of the verb token to all other sentence tokens (x
axis), from the model bert-base-uncased (with verb position information), on all layers
(y axis), for all heads (per plot).
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5.5.4.4 Additional experiments: Classification with layer embeddings and lo-
gistic regression

The contextualized word embeddings of pretrained models already include linguistic

information, that could be extracted and employed with task-specific models for classi-

fication. The wide use of these models is a direct outcome of the embeddings’ learned

knowledge since they enable quicker computations and access to this information with-

out the need for specialization (even though specialization with finetuning is recom-

mended). In order to determine how much knowledge has been already been acquired

in the pretraining process by each layer of a transformer model about lexical aspect, we

extracted the contextual word embedding (for the annotated verb) from each layer and

trained a logistic regression model to classify telicity and duration. The inspiration for

these experiments came from probing experiments, such as Jawahar et al. (2019); Coenen

et al. (2019).

In Figure 5.5, we present the accuracy for each layer of the base models. Similar to

the performance of the finetuned models, models were successful up to 79% for telicity

classification and up to 90% for duration classification. However, as the layers increase,

accuracy does not increase proportionally. For example, for telicity, some models attain

high accuracy in the intermediate layers, then again in the last layers, with accuracy

occasionally declining in the final layer.

5.5.4.5 Additional experiments: Unseen verbs

In our training and test datasets, there was a large variety of verbs (as the root of sen-

tence), which allowed us to test the classification success on sentences where the verb

has not been observed by the model. For telicity, 267 verb forms which were the head

of their phrase were not “seen” by the model in the training set (and 146 of them were

not split into subwords), and for duration, 117 verbs (and 80 not split). We investigated

whether the associated sentences had been erroneously labeled, as well as the average

likelihood of the assigned label in the models. Overall, a few phrases were classified

wrongly for both classification tasks, with labels of either category. This implies that

even when the verb form has not been detected by the model, context plays a significant

impact in the decisions made.
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Figure 5.5: Accuracy of classification of logistic regression, per layer of embeddings, for
base models.

Model Verb
Telicity Duration

Seen verbs Unseen Verbs Seen verbs Unseen Verbs
Correct Wrong Acc. Correct Wrong Acc. Correct Wrong Acc. Correct Wrong Acc.

bert-base-uncased
yes 1286 240 0.84 180 41 0.81 681 26 0.96 142 6 0.96
no 1194 336 0.78 170 50 0.77 678 29 0.96 143 5 0.97

bert-base-cased
yes 1290 218 0.86 169 31 0.85 665 17 0.98 129 5 0.96
no 1169 342 0.77 162 37 0.81 661 21 0.97 128 6 0.96

bert-large-uncased
yes 1292 234 0.85 190 31 0.86 687 20 0.97 142 6 0.96
no 1191 339 0.78 177 43 0.8 688 19 0.97 143 5 0.97

bert-large-cased
yes 1308 200 0.87 168 32 0.84 666 16 0.98 128 6 0.96
no 1167 344 0.77 153 46 0.77 667 15 0.98 127 7 0.95

roberta-base no 1243 291 0.81 185 41 0.82 662 19 0.97 126 8 0.94
roberta-large no 1157 377 0.75 176 50 0.78 667 14 0.98 127 7 0.95

xlnet-base-cased
yes 1196 327 0.79 174 43 0.8 651 30 0.96 127 8 0.94
no 1175 350 0.77 171 45 0.79 656 25 0.96 129 6 0.96

xlnet-large-cased
yes 1190 333 0.78 174 43 0.8 653 28 0.96 127 8 0.94
no 1182 343 0.78 169 47 0.78 652 29 0.96 125 10 0.93

albert-base-v2
yes 1281 271 0.83 186 44 0.81 698 16 0.98 138 5 0.97
no 1194 362 0.77 187 42 0.82 696 18 0.97 137 6 0.96

albert-large-v2
yes 1204 348 0.78 174 56 0.76 690 24 0.97 137 6 0.96
no 1212 344 0.78 184 45 0.8 698 16 0.98 137 6 0.96

Table 5.20: The results on the test set, for sentences with seen/unseen verbs in the train-
ing set, for telicity and duration. The ratio of correct/incorrect labels is similar, with
seen and unseen verbs, both for telicity and duration.
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5.5.5 Telicity and duration classification in French

Additionally, we were interested in determining whether transformer models could clas-

sify telicity and duration in a different language. Frenchmorphology differs fromEnglish

enough to constitute an interesting antagonist to the English experiments. French verb

tenses are formed and employed in a different manner; for example, the inflected forms

of present simple and present continuous in French are the same, while English has

two separate forms (see Table 5.21). However, French does not include morphological

markers of perfectivity as Czech does, thus the lexical aspect remains “morphologically

hidden” in the semantics of the verb and the context.

The added benefit of using French is that it is a high-resource language for NLP and

there exist monolingual transformer models ready for use in the transformers library.

Tense French English

Present simple Il parle. He speaks.
Present continuous Il parle. / Il est en train de parler. He is speaking.
Present with emphasis Il parle. He does speak.

Table 5.21: Examples of how present simple and present continuous are homographs in
French, while English differentiates between the two — with an additional structure for
emphasis. However, there is a construction in French that is used to express continuity,
which is not included in the conjugation paradigm of verbs: Il est en train de parler. “He
is in the process of speaking.”.

Since there are no French datasets with annotations of telicity and duration, we used

the DeepL translator7 to translate our English datasets and manually reviewed 200 sen-

tences from the datasets to ensure that the translation and annotation were accurate.

Our average accuracy rating for the machine-translated sentences was 88.6%, whereas

the annotated label accuracy rating was 73.5%. In order to train the classifier with the

verb position information, we also extracted the verb-head word from each sentence

using the spaCy dependency parser. However, because dependency parsers are flawed,

the compound verb tenses of French have led to many mistakes. Therefore, we decided

to only perform the classifying experiment, and not the additional experiments we per-

7https://www.deepl.com/translator
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formed for English.

We use the resulting datasets to finetune the French transformer models, and as-

sess their abilities in aspectual classification. We are using the two monolingual French

transformer models available from the transformers library, CamemBERT (Martin et al.,

2020) and FlauBERT (Le et al., 2020). Details on the models can be found in Section 2.5.8.

In addition, we manually translated our qualitative test sets and made appropriate

changes (when verb tense did not convey the desired telicity, for example), and in lieu

of the English sentences on variations of word order and verb tense, we created more

minimal pairs with variations on prepositional phrases. These qualitative sets can be

found in Table 5.31 for the telicity set, Table 5.32 for duration, Table 5.33 for the minimal

pairs and Table 5.34 for the additional sentences. A sample is shown in Tables 5.22 and

5.24 (for telicity) and 5.23 (for duration).

label sentence label sentence

telic J’ai renversé le lait. atelic Le liège flotte sur l’eau.
telic Kim a écrit une chanson. atelic La Terre tourne autour du Soleil.
telic J’ai accroché le tableau au mur. atelic Kim chante.
telic La soupe a refroidi en une heure. atelic Jean regarde la télévision.

Table 5.22: A sample of the manually annotated sentences for telicity.

label sentence label sentence

stative Le bruit m’a surpris. durative Elle joue au tennis tous les vendredis.
stative Cette chemise me va bien. durative Elle joue au tennis en ce moment.
stative Je connais Julie depuis dix ans. durative Ils ontmangé leur dîner en silence.
stative Cette boîte contient un gâteau. durative Il a crié à l’aide.

Table 5.23: A sample of the manually annotated sentences for duration.

label sentence label sentence

telic Le garçon mange une pomme. atelic Le garçon mange des pommes.
telic J’ai bu toute la bouteille. atelic J’ai bu du jus de fruit.
telic Les chasseurs ont chassé le cerf. atelic Les chasseurs chassaient le cerf.
telic J’ai mis ma robe rouge. atelic Je portais ma robe rouge.

Table 5.24: A sample of the additional manually annotated sentences for telicity.
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5.5.6 Results for French

5.5.6.1 Quantitative analysis

The results of the classification for telicity and duration are presented in Tables 5.25 and

5.26. Overall, accuracy is lower than in English. The models performed better than the

CNN classifier baseline, but marginally. However, the fact that the extra verb position

information was nearly always harmful is likely a fault with dependency parsing incor-

rectly identifying an auxiliary verb as the main verb, since French uses compound tenses

more frequently than English does.

Model Verb position Accuracy Precision Recall F1-score
camembert-base no 0.77 0.77 0.78 0.77
camembert-large no 0.76 0.77 0.77 0.77

flaubert-small-cased
yes 0.69 0.70 0.70 0.69
no 0.73 0.73 0.73 0.72

flaubert-base-uncased
yes 0.74 0.75 0.74 0.72
no 0.76 0.76 0.76 0.75

flaubert-base-cased
yes 0.76 0.76 0.77 0.76
no 0.77 0.78 0.78 0.78

flaubert-large-cased
yes 0.73 0.74 0.74 0.72
no 0.75 0.76 0.76 0.74

CNN (50 epochs) no 0.71 0.69 0.65 0.65
Logistic Regression BoW no 0.61 0.59 0.59 0.59

Table 5.25: Results for telicity classification in French.

Model Verb position Accuracy Precision Recall F1-score
camembert-base no 0.82 0.82 0.82 0.82
camembert-large no 0.87 0.87 0.87 0.87

flaubert-small-cased
yes 0.79 0.79 0.79 0.79
no 0.81 0.81 0.81 0.8

flaubert-base-uncased
yes 0.80 0.81 0.80 0.80
no 0.84 0.84 0.84 0.84

flaubert-base-cased
yes 0.81 0.82 0.82 0.81
no 0.83 0.83 0.83 0.83

flaubert-large-cased
yes 0.81 0.81 0.81 0.80
no 0.87 0.87 0.87 0.87

CNN (50 epochs) no 0.80 0.82 0.82 0.82
Logistic Regression BoW no 0.68 0.68 0.67 0.67

Table 5.26: Results for duration classification in French.
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5.5.6.2 Qualitative analysis

The French finetuned models performed better on the qualitative sets than their English

counterparts, avoiding the English models’ common mistakes such as classifying the

atelic sentence Je mange un poisson à midi le vendredi. “I eat a fish for lunch on Fridays.”

as telic. Unlike the English models that classified incorrectly mostly telic sentences, the

French models’ fewer mistakes occurred in the classification of both labels. However,

there were still some interesting mistakes in the models’ performance that were not

common for English. For example, the sentences Je renverse toujours le lait quand je le

verse dans ma tasse. “I always spill milk when I pour it in my mug.” (atelic) and Jenny a

travaillé comme médecin toute sa vie. “Jenny worked as a doctor her whole life.” (atelic)

were incorrectly classified as telic, perhaps due to the verb of the sentence. The sentence

Les cours duraient une heure et avaient lieu deux fois par semaine sur une période de quatre

semaines. “The classes lasted one hour and took place twice a week over a four-week

period.” (telic) was challenging both for the English and the French models, regardless

of the presence of a continuous verb tense in either of those languages, because of its

length and the presence of multiple verbs and temporal descriptors in the sentence.

Comparing minimal pairs, we notice that, unlike in English, the sentence J’ai bu du

jus de fruit. “I drank juice.” (atelic) was frequently marked as telic by the models, and

so did its pair J’ai bu toute la bouteille. (“I drank the whole bottle.” – telic). And unlike

the common mistake of marking both sentences as telic in English, the French models

marked the sentences Le garçon mange [une pomme/des pommes]. (“The boy is eating

[an apple/apples]) both as atelic.

For the duration classification, similarly to the English models, we observe that sta-

tive sentences were the ones which were occasionally or always incorrectly classified

by the models; sentences with statements such as Le pain est composé de farine, d’eau

et de levure. (“Bread consists of flour, water and yeast.”) or J’aime le chocolat. (“I love

chocolate.”) were labeled incorrectly.
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5.6 Discussion

The process of finetuning transformer models has brought state-of-the-art results to the

already very capable pretrained contextual word embeddings. However, the difficulty

of interpretability of results, called colloquially the “black-box” effect, is an ongoing

challenge for the NLP community. In addition, the process of finetuning is also not

transparent and is considered somewhat unstable; for example Dodge et al. (2020) point

out that initializing the finetuning process with a random seed can lead to substantially

different results, even with the same hyperparameters.

Our finetuned models were quite successful in the classification tasks, outperform-

ing our baselines to a statistically significant degree. The CNN classifier without any

embedding information was also able to achieve relatively high accuracy. Therefore,

classifying lexical aspect (especially duration) must have been easy for the deep contex-

tualized word embedding models. However, we did observe how impactful the datasets

were for the transfer learning process. Both datasets contained errors, and even though

we were able to eliminate most of the problems, there might have been several cases

of mislabeling left – not necessarily a problem, since introducing some noisy data is a

known NLP strategy. The first dataset of Friedrich and Gateva contained longer and

more complex sentences than the Caption dataset Alikhani and Stone (2019). This may

explain why models had trouble with some long sentences in the qualitative test sets,

having seen shorter utterances with a more uncomplicated structure.

Additionally, for the duration classification, the superior performance with finetuned

models did raise a question; did the models learn to classify duration or to identify the

different corpora? With our qualitative analysis in two languages, we can conclude that

the models are indeed able to classify duration and were successful because of the little

overlap between stative and durative verbs and contexts. However, the models strug-

gled with sentences for which world knowledge is crucial, which is a known issue of

contextualized word embeddings (Rogers et al., 2021).

Another interesting finding is that the large models sometimes outperformed base

models, even though they are more unpredictable in finetuning, as documented in litera-

ture (Dodge et al., 2020). Perhaps for a complex task such as lexical aspect identification,
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the additional processing and information available to the large models were benefi-

cial to their classification accuracy. However, during our experiments, we also noticed

that sometimes the finetuning process for large models was a failure and they failed to

classify, thus the process had to be repeated.

Additionally, the models proved to be quite successful in the classification tasks even

without finetuning, simply with the information included in the single-verb embedding.

Thus, contextual embeddings prove to efficiently encode the verb’s interaction with its

context, which is relied on for the verb’s lexical aspect (for example, a telic verb such

as “eat” would be found more frequently with count nouns that establish the endpoint

of the action). This contextual knowledge is already learned in the pretraining process,

and the finetuning process supplements information for higher accuracy.

Surprisingly, the classification results were not greatly harmed by the segmentation

of verbs and context into subwords by the models’ tokenizers, for example, the ALBERT

tokenizer separating nouns from their plural suffix. This could have been problematic

since the presence of plural tense sometimes affects the telicity of a sentence (Krifka,

1998). However, the model might need to focus on more tokens and may not favor

some parts of the context, if additional segmentation separates verb characteristics from

the root. Therefore, the models with smaller vocabularies such as ALBERT might have

slightly underperformed because of this.

Examining the models’ self-attention mechanisms allowed us to gain some, but very

limited, insight into how input sequences were treated by the models. BERT’s self-

attention mechanism on earlier layers demonstrated a certain sensitivity to syntactic

structure and better “focus” on individual tokens in early layers. However, the other

models did not show a specific focus on constituents in any layer or attention head. This

could have led to their weaker performance in the quantitative test set, compared to

BERT models, especially from RoBERTa and ALBERT which are optimized versions of

BERT and had slightly lower performance than BERT models. XLNet models, despite

the architecture’s reported improved performance on longer dependencies in other NLP

tasks, were not able to attend to context more efficiently than BERT or encode more

pertinent information in their encodings.

The use of the verb position was very beneficial for the first round of experiments,
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and less for the second. This could be due to two reasons: first, the Friedrich dataset was

annotated with the verb position in mind, while the Captions dataset wasn’t annotated.

We used a dependency parsing tool to extract the verb from the Captions sentences,

which could have led to parsing mistakes. However, in our opinion, the likelihood of

widespread mistakes is quite low, given that the sentences were quite small and con-

tained one verb. The influence of finetuning with verb position information became

more evident in the qualitative sets, where BERT models made fewer annotation mis-

takes when finetuned with this additional information.

Our examination of varying verb tenses and positions of prepositional phrases re-

vealed thatmodels showed some preference for the past perfective and continuous tenses,

compared to the past simple tense. Word order was not a strong indicator of success or

confusion, but placing a prepositional phrase of time at the start of the sentence (as op-

posed to the middle or end) occasionally enhanced predictions. This is to be expected be-

cause the bidirectional transformer architectures should not be very sensitive toword or-

der, and also, as the self-attention visualization demonstrated, the prepositional phrases

were not heavily attended to. Sentences with conflicting contexts were rarely classified

correctly. This leads us to conclude that the verb embedding and its information is more

important to the model’s classification effort than the other word emebeddings.

Finally, our results on the French datasets demonstrated that the syntactic and se-

mantic choices a language makes in conveying aspect did influence the models’ capacity

to categorize aspect, even with our lower-performing models. Even with different model

architectures, the disparities in classification mistakes and successes in the qualitative

datasets of the two languages show that the morphosyntax of French may lead to dif-

ferent semantic representations by the model. This is supported by the fact that errors

occurred in the classification of telicity in English sentences with the presence of distinct

simple/continuous tenses (which are not connected to telicity but were beneficial to the

model in some cases), while their French translations were correctly classified regardless

of the verb form.
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5.7 Appendix

5.7.1 English datasets

label sentence

telic I ate a fish for lunch.
telic John built a house in a year.
telic The cat drank all the milk.
telic I spilled the milk.
telic Yesterday I ran a mile in under 10 minutes.
telic The inspector checked our tickets after the first stop.
telic The classes lasted one hour and took place twice a week over a four-week period.
telic I hang the picture on the wall.
telic The vase broke in a million pieces.
telic John kicked the door shut.
telic I opened the juice bottle.
telic She opens the door and the dog jumps in her lap.
telic Kim has written a song.
telic You fell for my trap again.
telic The advancements in technology have changed the world.
telic Louise made the biggest progress of everyone this year.
telic The dog destroyed the couch.
telic She cut one single rose from the bush.
telic The soup cooled in an hour.
telic Jean was born in 1993 in Lyon.

atelic I eat a fish for lunch on Fridays.
atelic John is building good houses with his construction company.
atelic John watched TV.
atelic I always spill milk when I pour it in my mug.
atelic I’m running 10 miles every day for my training process.
atelic The inspectors are always checking every document very carefully.
atelic The damage may last for many years.
atelic We swim in the lake in the afternoons.
atelic In the summer months James sleeps in every morning.
atelic Cork floats on water.
atelic My grandfather still lives in his childhood home.
atelic Nobody laughs at my corny jokes.
atelic Jenny worked as a doctor her whole life.
atelic I am working on a big project now.
atelic Kim is singing.
atelic Kim is writing a song.
atelic Grandma ismaking pancakes for breakfast.
atelic He is constantly changing his script.
atelic We live in a democratic age.
atelic The Earth revolves around the Sun.

Table 5.27: Annotated sentences for telicity.
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label sentence

stative She didn’t agree with us.
stative I don’t believe the news.
stative Bread consists of flour, water and yeast.
stative This box contains a cake.
stative I disagree with you.
stative I have disliked mushrooms for years.
stative This shirt fits me well.
stative Julie’s always hated dogs.
stative Do you hear music?
stative This cookbook includes a recipe for bread.
stative I’ve known Julie for ten years.
stative I like reading detective stories.
stative I love chocolate.
stative I prefer chocolate ice cream.
stative I didn’t realise the problem.
stative I didn’t recognise my old friend.
stative He didn’t remember my name.
stative Your idea sounds great.
stative I suppose John will be late.
stative The noise surprised me.

durative She plays tennis every Friday.
durative She’s playing tennis right now.
durative The snowmelts every spring.
durative The snow ismelting right now.
durative The boxer hits his opponent.
durative The boxer is hitting his opponent.
durative They ate their dinner in silence.
durative I walked past the barn.
durative We learned to make pasta.
durative He grew potatoes in his farm.
durative I slept all morning.
durative We talked for hours on our trips.
durative I will write you a letter tomorrow.
durative She runs ten kilometers a day.
durative He read a fairytale to his kids.
durative The boy kicked the ball hard.
durative We will go soon.
durative He screamed for help.
durative The dogs bark all night.
durative She closed the door.

Table 5.28: Annotated sentences for duration.
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label sentence

telic The girl walked a kilometer yesterday.
atelic The girl walked yesterday.
telic I will receive new stock on Friday.
atelic I will receive new stock on Fridays.
telic The boy is eating an apple.
atelic The boy is eating apples.
telic I drank the whole bottle.
atelic I drank juice.
telic I read the book in an hour.
atelic I read the book for an hour.
telic The Prime Minister made that declaration yesterday.
atelic The Prime Ministermade that declaration for months.
telic The workers painted the house in an hour.
atelic The workers painted the house for an hour.
telic The hunters chased the deer away.
atelic The hunters chased the deer.
telic I finished reading the book at 5 pm.
atelic I stopped reading the book at 5 pm.
telic The pond is freezing over.
atelic It’s freezing outside.
telic The hunter reached the mountain hut.
atelic The hunter occupied the mountain hut.
telic I put on my red dress.
atelic I wore my red dress.
telic The artist draws a painting.
atelic The artist studies a painting.
telic The policemen entered the church.
atelic The policemen watched the church.
telic They caught the boar.
atelic They hunted the boar.
telic She fell asleep at 8 pm.
atelic She slept at 8 pm.
telic She noticed him.
atelic She looked at him.
telic The people died from starvation.
atelic The people suffered from starvation.
telic They built the house.
atelic They have been building the house.
telic She ate that sandwich.
atelic She has been eating that sandwich.

Table 5.29: Minimal pairs of telicity.
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label Sentence

telic I ate a fish for lunch at noon.
telic I had eaten a fish for lunch at noon.
telic At noon, I ate a fish for lunch.
telic At noon, I had eaten a fish for lunch.
telic John built a house in a year.
telic John had built a house in a year.
telic In a year, John built a house.
telic In a year, John had built a house.
telic I ran a mile in under 10 minutes yesterday.
telic I had run a mile in under 10 minutes yesterday.
telic I ran a mile yesterday in under 10 minutes.
telic I had run a mile yesterday in under 10 minutes.
telic Yesterday I ran a mile in under 10 minutes.
telic Yesterday I had run a mile in under 10 minutes.
telic The inspector checked our tickets after the first stop.
telic The inspector had checked our tickets after the first stop.
telic After the first stop, the inspector checked our tickets.
telic After the first stop, the inspector had checked our tickets.
telic The classes lasted one hour and took place twice a week over a four-week period.
telic The classes lasted one hour and had taken place twice a week over a four-week

period.
telic The classes took place twice a week over a four-week period and lasted one hour.
telic The classes had taken place twice a week over a four-week period and lasted one

hour.
telic Over a four-week period, the classes lasted one hour and took place twice a week.
telic Over a four-week period, the classes lasted one hour and had taken place twice a

week.
telic Louise made the biggest progress out of everyone this year.
telic Louise had made the biggest progress out of everyone this year.
telic Out of everyone this year, Louise made the biggest progress.
telic Out of everyone this year, Louise had made the biggest progress.
telic This year, Louise had made the biggest progress out of everyone.
telic This year, Louise made the biggest progress out of everyone.
telic The soup cooled in an hour.
telic The soup had cooled in an hour.
telic In an hour, the soup cooled.
telic In an hour, the soup had cooled.
telic John Wilkes Booth killed Lincoln on 1865.
telic On 1865, John Wilkes Booth killed Lincoln.
telic Lincoln was killed by John Wilkes Booth on 1865.
telic On 1865, Lincoln was killed by John Wilkes Booth.
telic John Wilkes Booth had killed Lincoln before the play ended.
telic Before the play ended, John Wilkes Booth had killed Lincoln.
atelic I eat a fish for lunch on Fridays.
atelic I usually eat a fish for lunch of Fridays.
atelic On Fridays, I eat a fish for lunch.
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Table 5.30 – continued from previous page.
label Sentence

atelic On Fridays, I usually eat a fish for lunch.
atelic John watched TV.
atelic John watched TV all afternoon.
atelic John watched TV every afternoon.
atelic John watched TV after finishing his homework.
atelic I’m running 10 miles every day for my training process.
atelic Every day I’m running 10 miles for my training process.
atelic We swim in the lake in the afternoons.
atelic We swim in the lake each afternoon.
atelic In the afternoons, we swim in the lake.
atelic Each afternoon, we swim in the lake.
atelic Kim is singing.
atelic Kim is singing a song.
atelic Kim is writing.
atelic Kim is writing a song.
atelic In the summer months James sleeps in every morning.
atelic James sleeps in every morning in the summer months.
atelic Grandma is making pancakes for breakfast.
atelic Grandma is making pancakes whenever we visit her.
atelic For breakfast, grandma is making pancakes.
atelic Whenever we visit her, grandma is making pancakes.
atelic I will receive new stock on Fridays.
atelic I receive new stock on Fridays.
atelic On Fridays, I will receive new stock,
atelic On Fridays, I receive new stock.
atelic I read the book for an hour.
atelic I have been reading the book for an hour.
atelic The Prime Minister made that declaration for months.
atelic The Prime Minister has been making that declaration for months.
atelic For months the Prime Minister made that declaration.
atelic For months the Prime Minister has been making that declaration.
atelic The workers painted the house for an hour.
atelic The workers have been painting the house for an hour.
atelic The workers painted the house since 8 am.
atelic The workers have been painting the house since 8 am.
atelic The workers had been painting the house for an hour.
atelic The workers had been painting the house since 8 am.

Table 5.30: Additional sentences annotated for telicity, with variations of verb tense and
word order.
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5.7.2 French datasets

label sentence

telic J’ai mangé un poisson pour le déjeuner.
telic Jean a construit une maison dans un an.
telic Le chat a bu tout le lait.
telic J’ai renversé le lait.
telic Hier, j’ai couru un kilomètre en moins de 10 minutes.
telic L’inspecteur a vérifié nos billets après le premier arrêt.
telic Les cours duraient une heure et avaient lieu deux fois par semaine sur une période

de quatre semaines.
telic J’ai accroché le tableau au mur.
telic Le vase s’est brisé en mille morceaux.
telic John a fermé la porte d’un coup de pied.
telic J’ai ouvert la bouteille de jus de fruit.
telic Elle ouvre la porte et le chien saute sur ses genoux.
telic Kim a écrit une chanson.
telic Tu es encore tombé dans mon piège.
telic Les progrès de la technologie ont changé le monde.
telic Louise a fait le plus gros progrès de tous cette année.
telic Le chien a détruit le canapé.
telic Elle a coupé une seule rose du buisson.
telic La soupe a refroidi en une heure.
telic Jean est né en 1993 à Lyon.

atelic Je mange un poisson à midi le vendredi.
atelic Jean construit de belles maisons avec son entreprise de construction.
atelic Jean regarde la télévision.
atelic Je renverse toujours le lait quand je le verse dans ma tasse.
atelic Je cours 16 km tous les jours pour m’entraîner.
atelic Les inspecteurs vérifient toujours très soigneusement chaque document.
atelic Les dégâts peuvent durer de nombreuses années.
atelic Nous nageons dans le lac l’après-midi.
atelic Pendant les mois d’été, James fait la grasse matinée tous les matins.
atelic Le liège flotte sur l’eau.
atelic Mon grand-père vit toujours dans la maison de son enfance.
atelic Personne ne rit de mes blagues à l’eau de rose.
atelic Jenny a travaillé comme médecin toute sa vie.
atelic Je travaille sur un grand projet en ce moment.
atelic Kim chante.
atelic Kim écrit une chanson.
atelic Notre grand-mère fait des crêpes pour le petit-déjeuner.
atelic Il change constamment son scénario.
atelic Nous vivons dans une ère démocratique.
atelic La Terre tourne autour du Soleil.

Table 5.31: French annotated sentences for telicity.
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label sentence

stative Elle n’était pas d’accord avec nous.
stative Je ne crois pas les nouvelles.
stative Le pain est composé de farine , d’eau et de levure.
stative Cette boîte contient un gâteau.
stative Je ne suis pas d’accord avec vous.
stative Je n’aime pas les champignons depuis des années.
stative Cette chemise me va bien.
stative Julie a toujours détesté les chiens.
stative Tu entends de la musique ?
stative Ce livre de cuisine contient une recette de pain.
stative Je connais Julie depuis dix ans.
stative J’aime lire des romans policiers.
stative J’aime le chocolat.
stative Je préfère la glace au chocolat.
stative Je ne me suis pas rendu compte du problème.
stative Je n’ai pas reconnu mon vieil ami.
stative Il ne s’est pas souvenu de mon nom.
stative Ton idée est géniale.
stative Je suppose que John sera en retard.
stative Le bruit m’a surpris.

durative Elle joue au tennis tous les vendredis.
durative Elle joue au tennis en ce moment.
durative La neige fond chaque printemps.
durative La neige fond en ce moment.
durative Le boxeur frappe son adversaire.
durative Le boxeur va frapper son adversaire.
durative Ils ontmangé leur dîner en silence.
durative Je suis passé devant la grange.
durative Nous avons appris à faire des pâtes.
durative Il cultivait des pommes de terre dans sa ferme.
durative J’ai dormi toute la matinée.
durative Nous avons parlé pendant des heures de nos voyages.
durative Je t’écrirai une lettre demain.
durative Elle court dix kilomètres par jour.
durative Il a lu un conte de fées à ses enfants.
durative Le garçon a frappé le ballon avec force.
durative Nous allons bientôt partir.
durative Il a crié à l’aide.
durative Les chiens aboient toute la nuit.
durative Elle a fermé la porte.

Table 5.32: French annotated sentences for duration.
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label sentence

telic La fille a marché un kilomètre hier.
atelic La fille a marché hier.
telic Je recevrai de nouveaux stocks ce vendredi.
atelic Je recevrai de nouveaux stocks les vendredis.
telic Le garçon mange une pomme.
atelic Le garçon mange des pommes.
telic J’ai bu toute la bouteille.
atelic J’ai bu du jus de fruit.
telic J’ai lu le livre en une heure.
atelic J’ai lu le livre pendant une heure.
telic Le Premier ministre a fait cette déclaration hier.
atelic Le Premier ministre a fait cette déclaration depuis des mois.
telic Les ouvriers ont peint la maison en une heure.
atelic Les ouvriers ont peint la maison pendant une heure.
telic Les chasseurs ont chassé le cerf.
atelic Les chasseurs chassaient le cerf.
telic J’ai fini de lire le livre à atelic7 heures.
atelic J’ai arrêté de lire le livre à atelic7 heures.
telic L’étang est gelé.
atelic Il gèle dehors.
telic Le chasseur a atteint le refuge de montagne.
atelic Le chasseur a occupé la cabane de montagne.
telic J’ai mis ma robe rouge.
atelic Je portais ma robe rouge.
telic L’artiste dessine un tableau.
atelic L’artiste étudie un tableau.
telic Les policiers sont entrés dans l’église.
atelic Les policiers ont surveillé l’église.
telic Ils ont attrapé le sanglier.
atelic Ils ont chassé le sanglier.
telic Elle s’est endormie à 20 heures.
atelic Elle s’est endormie.
telic Elle l’a remarqué.
atelic Elle l’a regardé.
telic Les gens sont morts de faim.
atelic Les gens ont souffert de la famine.
telic Ils ont construit la maison.
atelic Ils sont en train de construire la maison.
telic Elle a mangé ce sandwich.
atelic Elle était en train de manger ce sandwich.

Table 5.33: Minimal pairs for telicity in French.
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label sentence

telic La fille a marché un kilomètre hier.

telic Je recevrai de nouveaux stocks vendredi.
telic Le garçon mange une pomme.
telic J’ai bu toute la bouteille.
telic J’ai lu le livre en une heure.
telic Le Premier ministre a fait cette déclaration hier.
telic Les ouvriers ont peint la maison en une heure.
telic Les chasseurs ont chassé le cerf.
telic J’ai fini de lire le livre à atelic7 heures.
telic L’étang est gelé.
telic Le chasseur a atteint le refuge de la montagne.
telic J’ai mis ma robe rouge.
telic L’artiste dessine un tableau.
telic Les policiers sont entrés dans l’église.
telic Ils ont attrapé le sanglier.
telic Elle s’est endormie à 20 heures.
telic Elle l’a remarqué.
telic Les gens sont morts de faim.
telic Ils ont construit la maison.
telic Elle a mangé un sandwich.

atelic La fille a marché hier.
atelic Je recevrai de nouveaux stocks tous les vendredis.
atelic Le garçonmange des pommes.
atelic J’ai bu du jus de fruit.
atelic J’ai lu le livre pendant une heure.
atelic Le Premier ministre a fait cette déclaration pendant des mois.
atelic Les ouvriers ont peint la maison pendant une heure.
atelic Les chasseurs ont poursuivi le cerf.
atelic J’ai arrêté de lire le livre à atelic7 heures.
atelic Il fait froid dehors.
atelic Le chasseur a occupé la cabane de montagne.
atelic Je portais ma robe rouge.
atelic L’artiste étudie un tableau.
atelic Les policiers surveillent l’église.
atelic Ils ont chassé le sanglier.
atelic Elle a dormi à 2telic heures.
atelic Elle l’a regardé.
atelic Les gens ont souffert de la famine.
atelic Ils étaient en train de construire la maison.
atelic Elle était en train de manger un sandwich.

Table 5.34: Additional sentences for telicity.
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Classification of attributive
adjective position in French

6.1 Introduction

Our topic of research explores the competencies of deep contextual word embeddings

with word order when it is relevant to the grammaticality and meaning of a sequence.

While previous work has shown that transformer models are insensitive to word order

(Pham et al., 2021; Gupta et al., 2021), finetuned models have been successful in classi-

fying permutated word order (Sinha et al., 2021b). The linguistic phenomenon related

to word order that we studied in this chapter is adjective placement in French. Despite

the traditional grammar rules that suggest postposition (Laurent and Delaunay, 2013,

Paragraph 31), the placement of the attributive adjective in a noun phrase, with regard

to its head noun, can vary significantly, based on syntactic and semantic processes. The

position of the attributive adjective can be crucial to the meaning of the noun phrase.

While linguistic intuition is sufficient for native speakers to make these decisions, our

goal is to assess whether transformer models are capable of understanding the difference

between the two possible positions of an adjective in a sequence.

We finetuned French transformer models to learn the preferred attributive adjective

position in noun phrases, by providing the two possible positions and classifying for the

preferred one, since the models do not have information on the proper syntactic struc-

ture of a noun phrase. We also tested with uninformed and traditional baselines and

we also examined the effect of attention masks on classification (blocking attention to

the noun phrase or to the rest of the context). We studied the pretrained word embed-
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dings with masked predictions and with traditional visualization methods. Finally, we

also had the opportunity to conduct an experiment with native French speakers, to com-

pare the models’ predictions to their choices in challenging cases of attributive adjective

placement.

6.2 Linguistic background

Traditional prescriptivist grammar states that attributive adjectives in French should

come after the noun in a noun phrase—however, linguistic analysis suggests that, in gen-

eral, adjectives are mobile and can come before or after the noun (Abeillé and Godard,

1999). Linguistic studies were conducted based on frequency in large corpora (Benz-

itoun, 2014; Thuilier, 2013), in an effort to capture the preferred adjective position by

native speakers rather than follow grammatical rules. Most attributive adjectives have a

preference or tendency to appear in a specific position in a given context; for example,

chromatic adjectives have almost exclusively been found in postposition. Nonetheless,

polysemic adjectives may prefer different positions for their different meanings, for ex-

ample, the adjective cher can be anteposed when it means “dear” (ma chère maison “my

dear house”) and postposed when it means “expensive” (une maison chère “an expensive

house”) (Thuilier, 2012). Benzitoun (2013) divided adjectives into three groups:

• Adjectives that only accept anteposition, for example, ordinal adjectives with the suffix

-ième (e.g. troisième “third”), are almost always anteposed to the noun. The adjectives

satané “damned”, triple “triple” and tiers “third-party” are also only found in anteposi-

tion (Benzitoun, 2013).

• Adjectives that only accept postposition, for example, the adjectives exotique “exotic”,

idéal “ideal”, populaire “popular”, moderne “modern”, géant “giant”, naturel “natural”

are always postposed according to Larsson (1994).

• Adjectives that accept either position, for example, énorme “huge”, immense “immense”,

superbe “superb” alternate between the two possible positions (Larsson, 1994; Benzi-

toun, 2014).

However, classification based solely on frequency has proven to be inconsistent. For
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example, Benzitoun (2014) reported that puissant “powerful” and difficile “difficult” are

only found in postposition, but in later worked reported cases of anteposition for both

nouns. Therefore, linguists have defined constraints, based on non-linguistic and lin-

guistic features of adjectives and adjective classes, in order to group the behavior pat-

terns of adjectives and adjective classes (Thuilier, 2012).

The preferred position of an attributive adjective depends on its frequency; for in-

stance, according to corpus data, the adjective prochain “next” does not appear in postpo-

sition in plural form, although it does in the singular form (Benzitoun, 2014). According

to calculations by Wilmet (1980, 1981) and by Forsgren (2016), the most frequent adjec-

tives in written-word corpora almost always appear before the noun: grand “big”, petit

“small”, bon “good”, jeune “young”, beau “pretty”, vieux “old”.

However, the high-frequency chromatic adjectives, such as rouge “red”, are always

postposed to nouns (except in multi-word expressions). In this case, the adjective fea-

tures and class determine the position, despite frequency. Wilmet (1980, 1981) and

Forsgren (2016) state that chromatic and nationality adjectives tend to prefer postpo-

sition, while ordinal adjectives prefer anteposition. Additionally, derivative adjectives

also show a significant propensity for postposition of (Forsgren, 2016; Goes, 1999). Short

adjectives have a tendency to antepose, but longer adjectives can only be postposed, ac-

cording to Wilmet (1981) and Forsgren (1978), because of phonetic constraints (Abeillé

and Godard, 1999).

The placement of an adjective with regard to its head word can also be influenced by

semantics, as previously exhibited with the adjective cher. In multi-word expressions

(also called fixed expressions in literature), adjectives appear in a specific position in the

noun phrase. For some noun and adjective pairs, the specific combination can only be

found in a fixed expression, hence the position of the adjective in the particular phrase is

always determined, e.g. chaise longue “lounge chair” (Gross, 1996, Chapter 2). Addition-

ally, Benzitoun (2014) introduces the idea of word pairs, noun-adjective pairs that can

exist in a lexicalized fixed expression with a specific meaning, but that can also be com-

bined in other phrases with different meanings, thus allowing for a different adjective

position. For example, the fixed expression arts premiers, where premier is postposed,

has a specific meaning (“arts of the non-Western world”) compared to premiers arts “first
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arts” where it used in its literal sense (and is not lexicalized).

The presence of other dependents in the noun phrase also influences the position

of the attributive adjective. The general tendency in French is to place short elements

before the longer ones (Thuilier, 2013; Forsgren, 2016). This tendency may be sometimes

overruled by high-frequency adjectives, such as magnifique “magnificent”. If there is a

dependent to the adjective in the adjective phrase (another adjective, adverb, or phrase),

then the adjective phrase will be postposed to the noun, in the noun phrase, e.g. the

anteposed adjective fier “proud” will be postposed with the post-adjectival dependent

de son fils “of his son” in the phrase un homme fier de son fils “a man proud of his son” in

order to not be separated from the noun (Thuilier, 2013). When a noun has multiple ad-

jective dependents, postposition is also preferred. For example, the anteposed adjective

grand “large” will be postposed in the phrase un appartement grand et calme “a large and

quiet apartment”. Overall, the presence of additional dependents may drive the adjective

phrase into postposition, raise the likelihood that it will be in postposition, or at the very

least allow for more flexible placement of the adjective phrase concerning the noun.

6.3 Word order and Transformer models

By design, Transformer-based architectures learn in a parallel, non-sequential way; this

has raised the question ofwhether this is directly reflected in theway language is learned.

Even thoughmost architectures also encode positionswith relative positional embeddings—

which are beneficial to their performance (Yang et al., 2019a)—it is questionable how

important this information is during downstream tasks. For human languages, how-

ever, word order is controlled by the syntactic rules of a language (allowing for strict or

free-er word order in sentences but with reasonable limitations) and is crucial for the

grammaticality and acceptability of a sentence.

Transformer models trained with masked language modeling, such as BERT and

RoBERTa, are able to learn absolute word positions, but they also learn structural word

positions (i.e. phrase position in hierarchical tree structures) and make use of them

(Wang et al., 2019b; Wang and Chen, 2020). Multiple experiments combine absolute and

structural word positions to create better-informed and better-performing word embed-

dings (Wang et al., 2019a; He et al., 2020; Chang et al., 2021; Wang et al., 2020a).
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A lot of experiments have been performed on Transformer-based architectures, by

retraining the models with permutated word orders or testing the pretrained models’

sensitivities on shuffled word order. Pham et al. (2021) conducted experiments on BERT-

based models (BERT, RoBERTa, ALBERT) with the GLUE benchmark classification tasks,

and showed that downstream tasks were not affected by shuffled word order, except for

the grammatical correctness task. Hessel and Schofield (2021) train BERT and RoBERTa

modelswith short-distance permutations (i.e. shuffled order that respects the self-attention

distance) and notice no decline in performance in several GLUE tasks.

However, even though pretrained models do not always make use of word order in-

formation, perturbation can be catastrophic on performance. O’Connor and Andreas

(2021) conducted experiments on the effect that context variation has on transformer

models’ usable information, and discovered that word shuffling has a negative effect,

whether the shuffling was implemented on short or long distances among words. Gupta

et al. (2021) conducted similar experiments with GLUE tasks and observed that model

performance was lower on shuffled word orders (in methods that render a sequence un-

grammatical and incomprehensible to humans) but close enough to support that models

rely more on embedding information rather than sequential context.

Sinha et al. (2021b) confirm that pretrained language models are insensitive to word

order, in tasks of natural language inference, but show that on some occasions classifica-

tion is successful only with certain (random) permutations of the input. They also con-

ducted experiments with a RoBERTa model which has been pretrained with a shuffled

corpus model and finetuned with a non-shuffled dataset and noted its positive influence

on learning word order. Finetuning improved performance on tasks of inference and

grammaticality (even with models pretrained with scrambled word order) (Sinha et al.,

2021a). Papadimitriou et al. (2022) observe that, in BERT and GPT-2, early-layer em-

beddings are mostly lexical in nature, but word order plays a significant role in creating

the later-layer representations of words. They also highlight that positional information

may seem redundant at first, as some positional information based on syntax is already

included in word embeddings, but in cases where co-occurrence can be misleading, the

positional information is utilized.

Abdou et al. (2022) study positional embeddings learned from shuffled text, and probe
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language models for word order information, demonstrating that even shuffled models

maintain information about grammatical word order. This is partially due to the pertur-

bations happening before tokenization, thus preserving some meaningful word orders.

They also criticize previous research on permutated word order that relies solely on

GLUE benchmark results, since a range of language tasks actually necessitate knowl-

edge of word order, frequently to a degree that cannot be taught by fine-tuning.

On the limited examples of studying word order in languages other than English, Li

et al. (2021) examine the French Transformer-based architectures for their capacity to

capture long-range object-verb agreement and word order. They observed that models

performed worse with scrambled inputs, and proportionately worse with an increasing

number of permutations. They take note of the models’ preferences for more singu-

lar forms, which are more frequent than plural forms. However, they do support that

the models capture important information on hierarchical grammatical structure with

abstract representations.

6.4 Experiment 1: Classification of adjective position
via finetuning

6.4.1 Methodology

There has been a great deal of analysis of the syntactic and semantic capacities of trans-

former models and their pretrained word embeddings. While the models are capable of

capturing important linguistic information, they are not always sensitive to word order.

Given the bibliographic research in Section 6.3 and our previous experiments, here we

explore whether pretrained deep contextual word embeddings (with finetuning) are able

to classify the position of the adjective in a sentence.

A pair of sentences are given as input; the first sentence always has the adjective an-

teposed to the noun, while the second sentence always has the adjective postposed. This

provides the model with the two alternative positions the adjective may take in the noun

phrase. Based on the adjective order in the original sentence, the two-sentence sequence

is labeled as “anteposed” (0) if the adjective was originally anteposed and “postposed”

(1) if the adjective was postposed. For an illustration, see Table 6.1. The special end-of-
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On construit les éléments de plus haut niveau.
⇓

Sentence Label

On construit les éléments de plus haut niveau. </s>On construit les élé-
ments de plus niveau haut.

0

Table 6.1: An example input of two sentences for the original sentence On construit
les éléments de plus haut niveau “We build the higher level elements” with anteposition
(0). We only shift the position of the adjective-noun pair in the noun phrase, without
affecting any other elements of the phrase (e.g. the dependent adjective plus).

sequence token of model tokenizers is used to split the sentences. With this task, the

model is required to distinguish between two sentences with the same tokens but dif-

ferent word orders. The other word order may be implausible for some adjectives and

possible for others. The acceptability will be influenced by the specific context of the

sentence.

The same finetuning experiment is also conductedwith a single sentence input that is

the original sentence, with no permutations, and the adjective position as the sentence

label. In this setup, the model can only predict the correctness of classification but is

unaware of the different possible positions of the adjective in the noun phrase.

In order to further investigate the effect of self-attention on different tokens in the

input sequence, we also performed finetuning with blocked attention to particular to-

kens. To do so, we used the attention mask vector (see Section 2.5.4), as seen in our

previous experiments. In addition to the standard setting where all tokens are attended

to, there were additionally the pair setting (in which all tokens are masked except for the

adjective and its head noun) and the context setting (in which the adjective and noun are

masked and all the other tokens are visible). The objective of the former is to determine

if the adjective-noun pair embeddings are capable of capturing their preferred positions.

The goal of the latter is to see whether the context already provides enough information

about preferred positions even when no explicit information about the pair is provided.

In this case, the prediction is based on the preferred class of nouns and adjectives in the

given context. We demonstrate the attention mask setting with an input sentence in

Table 6.2.

147



Chapter 6

Mask Type Tokens

No mask on construit les éléments de plus haut niveau .
Standard on construit les éléments de plus haut niveau .
Pair - - - - - - haut niveau -
Context on construit les éléments de plus - - .

Table 6.2: Use of attention masks for the sentence: On construit les éléments de plus haut
niveau. In this sentence, the adjective-noun pair is haut niveau (the adjective is before
the noun). The label for all three inputs is [0]. For the double-sentence input, the same
process will be followed for the second sentence of the input On construit les éléments de
plus niveau haut.

6.4.2 Datasets

We extracted sentences with adjective-noun pairs from two syntactically parsed corpora:

the frWaC corpus (Baroni et al., 2009) and the French corpora of Universal Dependencies

2.9 (UD; Zeman et al., 2021)1.

We extracted 120K sentences from frWaC sentences and added the entirety of the

Universal Dependencies (UD) corpora, and from those, we kept the sentences with ad-

jectives as modifiers to a noun. We used a 2/3 ratio of anteposition/postposition, which

is roughly the ratio documented in the literature and the one that occurs in our corpora

–as measured in one million frWaC sentences and the entire UD corpora. This ratio is

beneficial since anteposed adjectives are fewer but more frequent than postposed adjec-

tives. However, we excluded the adjectives and words that were incorrectly parsed as

adjectives, such as numerals and some adjectives such as autre “other”, certain “certain”,

chacun “each”, quelque “some” that are also used as pronouns. We additionally had to

exclude the adjectives and nouns that the transformer model tokenizers tokenized into

subwords, in order to construct the attention mask, extract probabilities and perform the

masked word experiment.

The sentences of the two datasetswere combined and used in variousways. Through-

out our finetuning experiments, we made different iterations of the datasets to train and

test. In one setting, we trained the model only with frWaC, and used the UD sentences as

1The list of corpora can be found at https://universaldependencies.org/fr/
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an additional test set. In another one, we added a subset of the UD sentences to the train

set and tested on the rest of UD; we also finetuned the model just with the (significantly)

smaller UD dataset. When applicable, we tested both with frWaC and UD sentences. The

size of the datasets is presented in Table 6.3.

Dataset Train Validation frWac test UD test (entire) UD test (part)

frWaC 76,164 7,672 7,740 27,373 5,151
frWaC+UD 91,615 7,672 7,740 - 5,151
UD 13,905 1,546 7,740 - 5,151

Table 6.3: Dataset sizes for word order classification.

6.4.3 Models and baselines

We used two monolingual French transformer-based models, available from the Hug-

gingFace Python library (Wolf et al., 2020), CamemBERT (Martin et al., 2020) and FlauBERT

(Le et al., 2020). Details on the models can be found in Section 2.5.8.

The most straightforward baseline that can be created is based on frequency in cor-

pora. From the training sets, we extracted the most frequent position for each adjective

(after lemmatization) and we assigned the label of ante-/postposition according to fre-

quency. The other baselines were built with classical NLP classification methods and

without pretrained embeddings, namely a Bag-of-Words logistic regression model, im-

plemented with scikit-learn (Pedregosa et al., 2011), and a CNN-based classifier, more

sensitive to word order, implemented with PyTorch (Paszke et al., 2019). The CNN was

trained for 50 epochs, without pretrained word embeddings, embedding dimension of

300, filter size of [3, 4, 5], 100 filters per dimension, a dropout rate of 0.5, a learning rate

of 0.01 and the Adadelta optimizer.

6.4.4 Quantitative Results

The results for the two-sentence input experiment can be found in Table 6.5 (and for

the one-input in Table 6.8). With a sufficiently large training set, the CNN classifier per-

forms quite well. It should therefore come as no surprise that the finetuned transformer

models performed even better and have a very low error rate, with nearly 100% accuracy
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overall. Finetuning with the combination of the two datasets (frWaC and UD) was more

successful than using only the frWaC or UD dataset, the results were consistently good

regardless of the test set domain. However, performance deteriorated –but was still very

high for some models– with the significantly smaller UD training set as expected; fine-

tuning guidelines recommend a training set of at least 100K inputs (Clark et al., 2019).

Concerning the baselines, even though the CNN classifier performed well, the logistic

regression classifier was very weak, and sometimes failed to classify (by predicting only

one label). The frequency-based baseline, which does not use any NLP learningmethods,

was able to correctly predict the position of the adjective with great success. Especially

in the case of the one-sentence training, it outperformed the transformer models and the

other baselines in many cases.

The probabilities of predicted labels (see Figure 6.1) show that the models are highly

confident in their predictions, both correct and incorrect. However, there were some

instances of lower probabilities in incorrect predictions, for example in Table 6.4. In

this case, the marginally wrong prediction occurs with the mobile adjective ancienne

“former/old”, thus both adjective positions are acceptable.

The results of the experiments with attention masks are presented in Table 6.6 and

6.7 (and Table 6.9 and 6.10 for the one-input finetuning experiment). In these experi-

ments, the models’ attention mechanism had only access to certain tokens, in order to

study which contextual word embeddings carry the most information about adjective

position. When attention was only allowed to the adjective and noun pair, the Flaubert

models were unable to classify, while the Camembert models were perturbed but still

(mostly) successful with classification, especially on the frWaC sets. Meanwhile, mask-

ing the adjective and noun pair, only allowing attention to the rest of the sequence, was

surprisingly successful for the finetuned models with the larger training sets. Specifi-

cally, camembert-base and the Flaubert models reached similar accuracies to those of

the no-mask finetuned models, except with the small UD training set. For the one-

input finetuning experiment, we observe that performance significantly improved for

the masked context scenario only for CamemBERT models and only in the frWaC set,

while the Flaubert models once more failed. The performance is noticeably worse for

the UD domain and the adjective-noun masked scenario.
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Figure 6.1: The probability of predicted labels, for correct and wrong predictions. The
models were trained on the frWaC train set and the plots aggregate results from all test
sets.

Input une école a ouvert dans une ancienne église en 1950 . <sep> une école
a ouvert dans une église ancienne en 1950 .

Label Anteposition (0)
Probabilities 0: 0.4885, 1: 0.5115

Table 6.4: A (marginally) wrong prediction from the flaubert_base_uncasedmodel. The
last row displays the probabilities assigned to each label.
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Model frWaC train frWaC+UD train UD train
frWaC UD-full UD-test frWaC UD-test frWaC UD-test

camembert-base 0.99 0.93 0.93 0.99 0.99 0.93 0.95
camembert-large 0.99 0.91 0.93 0.99 0.99 0.98 0.66
flaubert-small-cased 0.99 0.90 0.9 0.99 0.99 0.62 0.66
flaubert-base-cased 0.99 0.90 0.87 0.99 0.97 0.96 0.96
flaubert-base-uncased 0.99 0.90 0.91 0.99 0.99 0.95 0.95
flaubert-large-cased 0.99 0.93 0.88 0.99 0.99 0.91 0.87
Position frequency 0.91 0.77 0.93 0.91 0.94 0.45 0.62
Logistic Regression 0.45 0.68 0.66 0.45 0.65 0.82 0.87
CNN 0.94 0.48 0.94 0.96 0.95 0.55 0.72

Table 6.5: Classification results for the finetuned models and baselines, with two
sentence-input, for the different training and test sets. Values in italics indicate that
the model completely failed to classify.

Model frWaC train frWaC+UD train UD train
frWaC UD-full UD-test frWaC UD-test frWaC UD-test

camembert-base 0.99 0.80 0.83 0.99 0.99 0.78 0.83
camembert-large 0.98 0.76 0.76 0.45 0.66 0.87 0.91
flaubert-small-cased 0.45 0.68 0.68 0.45 0.66 0.45 0.66
flaubert-base-cased 0.45 0.68 0.68 0.45 0.66 0.45 0.66
flaubert-base-uncased 0.45 0.68 0.68 0.45 0.66 0.45 0.66
flaubert-large-cased 0.45 0.68 0.68 0.45 0.66 0.45 0.66

Table 6.6: Classification results of the finetuned models with two-sentence input and
with attention mask: only adjective and noun visible, context is hidden. Values in italics
indicate that the model failed completely to classify.

Model frWaC train frWaC+UD train UD train
frWaC UD-full UD-test frWaC UD-test frWaC UD-test

camembert-base 0.99 0.45 0.57 0.99 0.98 0.45 0.66
camembert-large 0.45 0.66 0.66 0.45 0.66 0.45 0.63
flaubert-small-cased 0.99 0.52 0.52 0.99 0.98 0.47 0.64
flaubert-base-cased 0.99 0.47 0.47 0.99 0.99 0.58 0.68
flaubert-base-uncased 0.99 0.61 0.61 0.99 0.99 0.47 0.62
flaubert-large-cased 0.99 0.54 0.54 0.99 0.99 0.50 0.64

Table 6.7: Classification results of the finetuned models with two-sentence input and
with attention mask: adjective and noun are hidden, context is visible. Values in italics
indicate that the model failed completely to classify.
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Model frWaC train frWaC+UD train UD train
frWaC UD-full UD-test frWaC UD-test frWaC UD-test

camembert-base 0.89 0.80 0.80 0.89 0.87 0.84 0.87
camembert-large 0.89 0.80 0.80 0.89 0.87 0.84 0.87
flaubert-small-cased 0.88 0.81 0.81 0.88 0.87 0.84 0.85
flaubert-base-cased 0.89 0.81 0.81 0.89 0.87 0.82 0.87
flaubert-base-uncased 0.89 0.82 0.82 0.88 0.87 0.82 0.87
flaubert-large-cased 0.89 0.81 0.81 0.89 0.87 0.83 0.87
Position frequency 0.91 0.77 0.93 0.91 0.94 0.45 0.62
Logistic Regression 0.45 0.68 0.66 0.45 0.65 0.45 0.65
CNN 0.80 0.75 0.82 0.8 0.84 0.68 0.79

Table 6.8: Classification results for finetuning models and baselines, with only one sen-
tence as input, with our different training and test sets. Values in italics indicate that the
model failed completely to classify.

Model frWaC train frWaC+UD train UD train
frWaC UD-full UD-test frWaC UD-test frWaC UD-test

camembert-base 0.99 0.99 0.99 0.80 0.80 0.69 0.83
camembert-large 0.97 0.98 0.98 0.97 0.98 0.45 0.66

flaubert-small-cased 0.45 0.68 0.68 0.76 0.79 0.57 0.72
flaubert-base-cased 0.45 0.68 0.68 0.80 0.80 0.70 0.87

flaubert-base-uncased 0.45 0.68 0.68 0.80 0.80 0.45 0.68
flaubert-large-cased 0.45 0.68 0.68 0.45 0.66 0.83 0.87

Table 6.9: Classification results of finetuning models with only one sentence as input
and with attention mask: only adjective and noun visible, context is hidden. Values in
italics indicate that the model failed completely to classify.

Model frWaC train frWaC+UD train UD train
frWaC UD-full UD-test frWaC UD-test frWaC UD-test

camembert-base 0.79 0.77 0.77 0.79 0.89 0.67 0.82
camembert-large 0.45 0.66 0.66 0.45 0.66 0.45 0.66

flaubert-small-cased 0.76 0.75 0.75 0.76 0.82 0.59 0.74
flaubert-base-cased 0.80 0.69 0.69 0.80 0.90 0.70 0.86

flaubert-base-uncased 0.81 0.76 0.76 0.69 0.75 0.70 0.86
flaubert-large-cased 0.82 0.79 0.79 0.69 0.75 0.69 0.83

Table 6.10: Classification results of finetuning models with only one sentence as input
and with attention mask: adjective and noun hidden, context visible. Values in italics
indicate that the model failed completely to classify.
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6.4.5 Qualitative analysis

Overall, it is challenging to deduce common factors in classification errors, since the

models often produced very few errors that are inconsistent among models, and do not

share an adjective or other elements. By concentrating on the frWaC training set and

using the UD dataset as test set, the majority of the sentences that were incorrectly

classified had an adjective that could have been in a different position with a different

meaning than the original, i.e. the utterance remains grammatical and acceptable when

the adjective-noun order is reversed, but the meaning changes. For example, the sen-

tence Une école a ouvert dans une ancienne église en 1950. “A school opened in a former

church.” remains correct with ancienne postposed to the noun, but the meaning of the

adjective changes from “former” to “old”. The context provided by the sentence is not

sufficient to decipher the actual meaning, and native French speakers agree that both

sentences are grammatical. On the other hand, mistakes in the classification of sen-

tences such as Les créations sensuelles, modernes et orientales se font remarquer. “The

sensual, modern and oriental creations stand out.” uncover the models’ shallow percep-

tion of syntactic relations –these mistakes are, however, quite rare. Finally, we notice

a few badly-parsed and badly-formed sentences in the dataset, which were not enough

to warrant a redesign, but were confusing to the models. For example, in the sentence

Cette campagne, dure et sévère, contre un adversaire très mobile et mordant. “This cam-

paign, tough and stern, against a very agile and abrasive opponent.”, the pair campagne

– dure was identified. A correct way to create the anteposed variation would be [...]

dure campagne, [...], but our script generated the pair [...] dure, campagne [...] with the

inclusion of a comma, to respect the original distance between the nouns and adjectives.

These mistakes are not widespread but were easily identifiable in the few errors that the

models produced.

This experiment demonstrated that the finetuned transformer models are quite ef-

fective in classifying the preferred position between two alternative positions for an

adjective. However, it is important to explore whether this ability is a product of fine-

tuning or if the pretrained models had already acquired enough information about the

adjective’s preferred location in relation to its context.

154



Classification of attributive adjective position in French

6.5 Experiment 2: Existing knowledge in pretrained
embeddings

6.5.1 Classification with adjective embeddings

The layers of a transformer model specialize create different dynamic word embeddings,

which capture and interact with a word’s context in a different way than the previous

layer. Therefore, the adjective embedding might contain the syntactic, contextual, and

semantic information that determine its position with regard to the noun. We extracted

the word embeddings of the adjective of each sentence, per layer, andwe trained a simple

logistic regression model –built in the same way as in Section 6.4.3. We opted to use the

base and smallmodels, in order to limit the results to a maximum of 12 layers as opposed

to the 24 layers of the large models, an amount easier to study and visualize. We used

the frWaC training set and tested on the frWaC test set and on the entire UD dataset.

The results of the classification for the two test sets can be seen in Figure 6.2. The

classification results for the frWaC test set are quite low—close to failure of classification—

except for the flaubert_base_uncasedmodel, which unexpectedly reached 97% accuracy

on the last layer. Results for the UD test set were more unpredictable, with a few lay-

ers of camembert-base reaching a very high accuracy, but the final layer having the

lowest accuracy. On the other hand, the flaubert models had a progressively better per-

formance, but they are not as good as their finetuned counterparts nor as the baselines.

From the bibliography and our previous research, it has been indicated that the early-

middle layers (3-6) of the base architectures tend to specialize in syntactic structures,

Figure 6.2: Logistic regression accuracy trained with layer-specific adjective embed-
dings, with the base and small models.
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while late-middle layers (7-10) on semantic knowledge, and the last layers (11-12) ag-

gregate the findings of previous layers. However, this remains a tendency and not a

universal finding.

6.5.2 Adjective probabilities with Masked Language Models

One of the pretrained models’ training objectives is Masked Language Modeling, i.e. the

prediction of a masked token in a sequence (see Section 2.5.4). By using this objective,

we retrieved the probability that the models assigned to the adjective in the sentence,

specifically in the place it was originally located. Figure 6.3 presents these probabilities.

It is noted that themodels generally assigned higher probabilities to anteposed adjectives

being in anteposition than to postposed adjectives in postposition. This could be due

to multiple factors; first of all, there are stricter linguistic and feature constraints for

anteposed adjectives (e.g. frequency, length, dependents). Specifically, on frequency, it

is known from all previous experiments in this doctoral thesis that transformer models

highly favor frequent tokens. The majority of the most frequent adjectives in French are

anteposed, whereas postposition includes a much greater number of adjectives, hence

the higher and lower probabilities. Additionally, we observed that CamemBERT models

predict both anteposed and postposed adjectives with greater probabilities.

However, the models seemed to respect the original sentence’s order of adjectives in

predictions and probabilities. We shifted the [MASK] position from its original position

to the opposite one and asked the models to assign the adjective’s probability in the

“wrong” position. The probability results can be seen in Figure 6.4. The probability

of the adjectives, in the non-original position, was close to zero for at least 85% of the

cases, even for anteposed adjectives which tend to be more mobile and quite frequent.

Anteposed adjectives can also be found in postposition, when they are not attributive

adjectives, yet themodels were capable of understanding that the context of the sentence

cannot have the presence of a predicative adjective in the postposed position.

156



Classification of attributive adjective position in French

Figure 6.3: The assigned probability of each masked adjective instance, when placed in
its original position, for each model.

Figure 6.4: The assigned probability of each masked adjective instance, when placed in
the opposite position of its original, for each model.

6.5.3 Visualizing adjective embeddings per layer

A traditional method of visualizing static word embeddings is to reduce their dimension-

ality and place them in a two-dimensional plot, in order to examine the algebraic rela-

tions between different vector representations ofwords. We attempted to create the same

type of visualization with contextual word embeddings, in which case every instance of

an adjective, in a specific sentence-context, for a specific layer of the transformer archi-

tecture, would correspond to one vector point. We extracted the layer-specific embed-

dings for some of the transformer models in our research and used them to visualize

static embeddings by reducing their dimensions and plotting them on a 2-dimensional

space. This allowed us to observe their nearest neighbors and examine if any clusters

or patterns appear. We chose a few common adjectives from the literature (Benzitoun,

2013), either with a preferred position or mobile: grand, petit for always-anteposed, na-

turel for always-postposed, ancien for mobile. Each adjective’s embeddings were used
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and plotted separately for each layer.

We reduced the embeddings’ dimensionality with t-distributed Stochastic Neighbor

Embedding (t-SNE) from scikit-learn (Pedregosa et al., 2011) and plotted withmatplotlib

(Hunter, 2007). Some of the plots are presented in Figure 6.5. Intuitively, we assumed

that the anteposed and postposed adjectives would have formed a cluster. However,

we were unable to find any discernible clusters in any of the data. The closest to the

formation of detectable clusters was in some early layers, for some adjectives, and not

for all word forms (e.g. plurals, female).

Figure 6.5: Embedding projections for base-form adjectives ancien ‘old’, grand “large”,
naturel “natural”, petit “small” – from various layers and models. The numbers corre-
spond to the sentence index.
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6.6 Experiment 3: HumanandTransformers judgments
of adjective order

6.6.1 Methodology and Dataset

We also conducted an experiment on adjective word order with the participation of na-

tive speakers. In collaboration withWissam Kerkri and Juliette Thuilier, we studied how

native French speakers choose the preferred adjective position when presented with two

variations of the sentence. The dataset of the sentences was composed of challenging

cases of adjective position, caused by structural or semantic language particularities.

The experiment follows the same format as Experiment 1, in which the finetuned

models and the native speakers were shown a sentence with a noun-adjective pairing

and its variant in which the target adjective was in the opposite position. The mod-

els were trained on the combination of frWaC and UD datasets, which had the highest

accuracy scores in Experiment 1. Both for the models and for the human participants,

each pair of sentences from the two positions was given in the order of anteposition-

postposition. We developed 89 prompt sentences that were either produced by a native

French speaker or extracted and modified from frWaC (without any overlap with our

existing training and test sets). Our goals during the creation of this dataset were to

create sentences where an alternative position could either be acceptable or completely

unacceptable and to limit the number of adjectives used throughout the dataset, in or-

der to avoid great variation among participants. Based on the relationship between the

adjective and the noun, or the context of the sentence, the sentences were divided into

four categories. A few samples for each category are presented in Table 6.11, and the

full dataset is presented in Appendix 6.8.

1. Presence of adjective/noun dependent (Table 6.13): The only categorical constraint that

governs the position of the adjective in French is the presence of a dependent to the

adjective, which forces the adjective to be postposed. However, if the dependent is to

the noun, the position of the adjective is not restricted. We included sentences with

the same adjectives and dependents either to the adjective or the noun.

2. Fixed expressions (Table 6.14): Adjectives in fixed expressions will always have a fixed

position in this specific context and meaning. We contrasted the sentences with fixed
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expressions with sentences whose adjectives occurred in those expressions, but not

in restrictive structures.

3. Structural persistence (Table 6.15): Speakers are sensitive and tend to reuse repeating

syntactic constructions (syntactic priming, Branigan et al. (1995)). The presence of a

noun phrase with an adjective in a certain position may influence the processing of

the next noun phrase, especially if it contains the same adjective. We want to test the

extent of this effect on native speakers and our models.

4. Blocked and mobile adjectives (Table 6.16): In this category, we are including adjec-

tives that are (almost) always found in postposition, and adjectives with free position

depending on the meaning (propre, ancien). This category serves both as a control

group, and could also provide unexpected results.

Presence of adjective/noun dependent

Label Anteposition Postposition Translation

anteposed Cette longue saison de
football a été intense.

Cette saison longue de
football a été intense.

This long football season
has been intense.

postposed Cette longue saison de 4
mois a été intense.

Cette saison longue de 4
mois a été intense.

This 4 month long season
has been intense.

Fixed Expressions

anteposed Il a passé une dure
semaine.

Il a passé une semaine
dure. He had a tough week.

postposed Depuis la mort de son
hamster, il a une dure vie.

Depuis la mort de son
hamster, il a une vie dure.

Since the death of his
hamster, he has had a hard
life.

Structural persistence

anteposed
J’ai aimé le concept : bonne
ambiance, bonne musique,
les gens sont contents.

J’ai aimé le concept : bonne
ambiance,musique bonne,
les gens sont contents.

I liked the concept: good
atmosphere, good music,
people are happy.

postposed
Il lui a offert des
volumineuses plantes à
volumineuses fleurs.

Il lui a offert des
volumineuses plantes à
fleurs volumineuses.

He gave her bulky plants
with voluminous flowers.

Blocked and mobile adjectives

anteposed
Nous nous sommes rejoins
autour d’un chaleureux
repas.

Nous nous sommes rejoins
autour d’un repas
chaleureux.

We came together for a
hearty meal.

postposed Ce chaleureux accueil
m’a fait chaud au cœur.

Cet accueil chaleureux
m’a fait chaud au cœur.

This warm welcome
warmed my heart.

Table 6.11: Samples of sentences of the dataset created for the questionnaire.
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6.6.2 Questionnaire distribution

In order to not tire the human participants, we divided the prompt sentences into 3

questionnaires, making sure that there is an equal proportion of the four categories in

each. The finetuned models, however, were given the entirety of the dataset. Out of the

two position variations, the participants were asked to pick the one that seemed “more

natural” to them. At the beginning of each questionnaire, we asked participants to in-

dicate their native language. To prepare participants for the experiment, we added two

sentence pairs as a tutorial that native French speakers could not possibly misinterpret.

This also allowed us to eliminate (if needed) potential participants who were not fluent

in French. Despite our checks, we have to rely on the truthfulness of the participants on

their language skills. The survey was created using LimeSurvey2 and disseminated to

French locals and French university students. 71 participants completed the question-

naire and were not outliers. Each version of the questionnaire had 22-25 participants,

i.e. each sentence pair was evaluated by at least 22 speakers.

6.6.3 Quantitative and Qualitative results

As was the case in the previous experiments, the models demonstrated weaknesses in

classifying the preferred adjective position, when there were neighboring adjectives that

did not belong to the noun phrase (see category Structural persistence). They also had is-

sues when there was ambiguity in the text, regarding the location of the adjective due to

semantics (see category Blocked andmobile adjectives). These occurrences cannot always

be categorized as errors if the result is a grammatical sentence. These sentences had lim-

ited context and intentionally included ambiguous adjectives. Even the native speakers

occasionally made judgments that were the opposite of the annotation of the original

sentence, whether on purpose (a different interpretation of context) or unintentionally

(possibly an interface error, haste, or lack of attention).

We calculated the average selection across all speakers, and we used this as the stan-

dard against which to evaluate our models. In order to determine which of the models’

performance was most similar to the speakers’ behavior, we calculated the Pearson cor-

2https://www.limesurvey.org/
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Model Presence of Fixed Structural Blocked TOTAL
dependent expressions persistence and mobile Micro avg. Macro avg.

camembert-base 0.2097 -0.1936 -0.0756 0.4703 0.3326 0.1629
camembert-large 0.6731 0.6124 0.5292 0.516 0.5801 0.4673
flaubert_small_cased 0.5131 -0.0323 0.1581 0.7802 0.6014 0.3711
flaubert_base_cased 0.5168 0.0913 0.378 0.7065 0.4330 0.3446
flaubert_base_uncased 0.4012 0.2222 0.6325 0.5898 0.5192 0.3298
flaubert_large_cased 0.4604 0.1750 0.6325 0.4663 0.3688 0.3554

Table 6.12: Correlation between the average choice of the speakers and each model’s
output. Micro-averaged is aggregating all sentences regardless of category while macro-
average is category-sensitive.

relation between the speakers’ selections and the models in Table 6.12. The model with

the highest micro- and macro-averaged correlation was camembert-large, although the

micro-averaged correlation of flaubert_small_casedmodel was marginally better. How-

ever, according to its creators, since it was developed for debugging purposes and the

performance of this model may be unreliable3. We still opted to use it, since models

with a smaller number of parameters have proven to be successful in many tasks. The

camembert-base and flaubert_large_cased models showed the lowest correlations, and

all models except for camembert-large did not show a strong positive correlation (>0.4)

in the macro-averaged correlation.

We also conducted a comparison of the decisions made by the speakers and the pre-

dictions made by the models for each category. For the Presence of adjective/noun depen-

dent category, even when the dependent phrase was attached to the noun, the speakers

preferred longer adjectives in postposition. For instance, all of the speakers chose the

postposed version of the sentence Ils vivent une différente relation sans amour. “They

lived a different relationship without love.” and so did most of the models. However, for

shorter adjectives, the speakers chose anteposition when there was a noun dependent

and postposition when there was an adjective dependent. The models did not behave

consistently; some models tended to favor postposition (camembert-large) or anteposi-

tion (flaubert-large-cased), whereas the more successful ones made errors on the shorter

adjectives.

In the fixed expressions category, the speakers naturally were able to differentiate

3Source: https://huggingface.co/flaubert/flaubert_base_cased
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between the fixed and the free position of the same adjective in different contexts. The

models, however, made a number of errors on widely used fixed expressions, e.g. la

grasse matinée “the morning of sleeping in”, but were not mistaken on expressions with

a short adjective, e.g. bénéfice net “net benefit” (i.e. the short adjectivewas not anteposed,

while its variations in non-fixed phrases are commonly anteposed).

In the category of structural persistence, the speakers were able to make their choices

for the adjective position despite being primed by a preceding noun phrase with the op-

posite adjective position, e.g. they preferred the variation Il lui a offert des volumineuses

plantes à fleurs volumineuses. “He offered them voluminous plants with voluminous

flowers.” for the noun phrase fleurs volumineuses. However, all the models predicted

anteposition, and this could have been affected by the adjectives being in the same word

form.

Finally, in the blocked/mobile adjectives category, the speakers did not make any

unexplainable choices and always preferred postposition for the postposed adjectives

(e.g. chromatic) and both positions for the mobile adjectives (despite the length). The

only model which made mistakes on the postposed adjectives was flaubert-large-cased,

while the other models made very few mistakes on mobile adjectives –decisions that are

to some extent acceptable, since the meaning may be different but still grammatical.

6.7 Discussion

In this work, we studied the capabilities of transformer-based language models in tak-

ing word order into account, specifically the position of adjectives in a noun phrase in

French. In our first and third experiments, we used finetuned models, based on the ex-

isting research claiming that large pretrained models are not sensitive to word order,

but they can be taught to, via finetuning. Our findings demonstrate that the finetuned

models were, in fact, able to distinguish between the original and the permutated word

order in the classification task with very high accuracy. Yet, in the scope of the corpora

we examined, the models were outperformed by a simple frequency-based baseline, and

the CNN classifier was very successful as well. This could indicate that the task at hand

is quite simple, but the sensitivity to word order they demonstrated here contradicts

the multiple findings of Transformer-based architectures to shuffled input (sometimes
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beyond the point of legibility). However, our results in the second experiment on pre-

trained models confirmed previous ones which argued that these models are agnostic to

word position.

Finetuning with a larger and more varied dataset (two corpora, frWaC and UD) was

beneficial, but it was successful with a smaller dataset too, unlike our baselines. Previous

research on transformer models has confirmed that the size of the training data and the

effectiveness of their frequency learning are key factors in their performance in NLP

tasks.

Concerning the use of attention masks, allowing attention only to the noun phrase

(adjective and noun) affected the models in different ways. The CamemBERT models

were very capable of classifying word order by only attending to the adjective and noun,

while for the Flaubert models, it was impossible. Meanwhile, only attending to the con-

text without the adjective and noun was relatively harmless for all models. When the

models’ attention mechanism only has access to the context, and not to the adjective-

noun pair itself, they were still somewhat capable of classifying adjective position, even

without the attention mechanism having access to it. This observation is consistent with

the linguistic observation that adjective position is also determined by context and not

solely by the noun phrase. However, the fact that CamemBERT models were extremely

successful in identifying positionwithout the use of context, while Flaubertmodels failed

completely, is caused by the models’ different architectures and choices in the way the

tokens are handled. In our more detailed experiments, we saw that CamemBERTmodels

assign an overall higher probability to adjectives, regardless of their position, and that,

at least for the UD dataset, the adjective embeddings were, in some layers, very informed

on the preferred word position. This knowledge is correlated to the learned contextual

word embeddings, rather than the word itself, as we observed a lack of semantic simi-

larity in the visualization.

For most adjectives, predicting their position is a relatively easy decision based on

frequency; to observe the models’ underlying competencies in more complex cases, we

carried out an error analysis and additional experiments and visualizations on the pre-

trained versions of the models. The differences between the two architectures were also

reflected in our study of the pretrained word embeddings and the adjective probabili-
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ties, where we noticed that CamemBERT’s adjective embeddings were better informed.

Speaking of adjective embeddings, the way that the embeddings are created seems to put

more emphasis on the context than the word-specific information of the corresponding

token. Examining the iterations of an adjective in different sentences did not demon-

strate a pattern of behavior, akin to vector similarity in traditional embeddings. We

noticed that classification with the adjective word embeddings was only successful for

certain layers and certain models, but was unpredictable between our two datasets. We

could not observe embedding clusters of the same adjective with regard to their position,

either.

These findings suggest that the contextualized word embeddings include some infor-

mation on a word’s preferred word order, but only in certain layers. Finetuning a model

helps to learn these variations in adjective position and very successfully select the cor-

rect one. Overall, models tend to favor frequent adjectives and contextual information,

rather than the content of the adjective (its meaning and class). However, adjective po-

sition relies on frequency, hence the success of the uninformed frequency baseline and

the success of our models. CamemBERT models were more successful than FlauBERT

models over all experiments and captured more positional information in the finetuned

adjective embeddings. However, all transformers models show weaknesses (to different

degrees) in complex cases of adjective/noun-dependent phrases and fixed expressions.

Regarding the models’ mistakes, the very few ones that were made (by the finetuned

models) were justifiable to some extent and were either caused by low-frequency adjec-

tives, bad parsing, or ambiguous meaning which is grammatical and acceptable in both

adjective positions. Additionally, we noted a few sentences in our questionnaire dataset

that might appear unnatural to native speakers, but they were either found in existing

corpora or designed to be challenging by a French native speaker. However, comparing

the models to human performance showed their true strengths and weaknesses; when

they are successful, the models tend to follow a more rigid syntactic structure and fa-

vor postposition, as it is the most frequent adjective position over all adjectives. They

showed severe problems in recognizing some fixed expressions and were more easily

swayed than humans by being primed with the same adjective. In cases where both po-

sitions were possible, they usually preferred the more “traditional” postposition. These
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findings may demonstrate that the models base their predictions more on frequency

rather than the syntactic and semantic information of a particular adjective, and are

impervious to factors that affect speakers’ decisions such as length, the difficulty of pro-

cessing with regard to cognitive load, and substantial or subtle semantic differences.
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6.8 Appendix: Questionnaire datasets

Originally anteposed sentences
Anteposition Postposition Translation

Ces fiers époux attendent
avec impatience le jour J.

Ces époux fiers attendent
avec impatience le jour J.

These proud spouses are
eagerly awaiting the go time.

Cette fière équipe de travail se
hâte de présenter son projet.

Cette équipe fière de travail se
hâte de présenter son projet.

This proud work team is
eager to present its project.

Cette longue saison de
football a été intense.

Cette saison longue de
football a été intense.

This long football season has
been intense.

Elle connait ce fier artiste
depuis des années.

Elle connait cet artiste fier
depuis des années.

She has known this proud
artist for years.

Il a écrit un long article de
linguistique.

Il a écrit un article long de
linguistique.

He wrote a long article on
linguistics.

Ils ont emprunté un long
chemin sans visibilité.

Ils ont emprunté un chemin
long sans visibilité.

They took a long path
without visibility.

J’ai lu un long roman comme
je les aime.

J’ai lu un roman long comme
je les aime.

I read a novel, long as I like
them.

Les fiers ouvriers déjeunent
actuellement.

Les ouvriers fiers déjeunent
actuellement.

The proud workers are
currently having lunch.

Ma tante est une fière
cuisinière de renom.

Ma tante est une cuisinière
fière de renom.

My aunt is a proud cook of
renown.

Elle a participé à un long
séminaire de quelques jours.

Elle a participé à un séminaire
long de quelques jours.

She participated in a seminar
lasting a few days.

Il a écrit un long article de 50
pages.

Il a écrit un article long de 50
pages.

He wrote a 50 page long
article.

Ils ont emprunté un long
chemin de plusieurs
kilomètres.

Ils ont emprunté un chemin
long de plusieurs kilomètres.

They took a path several
kilometers long.

J’ai lu un long roman de
plusieurs tomes.

J’ai lu un roman long de
plusieurs tomes.

I read a novel several volumes
long.

Table 6.13 continued in next page.
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Originally postposed sentences
Elle annote un différent
segment de 32 caractères.

Elle annote un segment
différent de 32 caractères.

She annotates a different
segment of 32 characters.

Ils vivent une différente
relation sans amour.

Ils vivent une relation
différente sans amour.

They live a different
relationship without love.

L’architecte a construit une
différente maison dans le sud.

L’architecte a construit une
maison différente dans le sud.

The architect built a different
house in the south.

Tu as acheté un différent
cahier pour dessiner.

Tu as acheté un cahier
différent pour dessiner.

You bought a different
notebook to draw.

Vous avez couru un différent
marathon toujours populaire.

Vous avez couru un marathon
différent toujours populaire.

You ran a different,
ever-popular marathon.

Ces fiers époux de leurs
préparatifs attendent avec
impatience.

Ces époux fiers de leurs
préparatifs attendent avec
impatience.

These spouses proud of their
preparations are waiting
impatiently.

Cette fière équipe de son
projet se hâte de le présenter.

Cette équipe fière de son
projet se hâte de le présenter.

This team, proud of its
project, is eager to present it.

Cette longue saison de 4 mois
a été intense.

Cette saison longue de 4 mois
a été intense.

This 4 month long season has
been intense.

Elle annote un différent
segment du précédent.

Elle annote un segment
différent du précédent.

It annotates a different
segment from the previous
one.

Elle connait ce fier artiste de
sa création.

Elle connait cet artiste fier de
sa création.

She knows this artist who is
proud of his creation.

Ils vivent une différente
relation de la suivante.

Ils vivent une relation
différente de la suivante.

They live a different
relationship than the
following one.

L’architecte a construit une
différente maison de celle
prévue.

L’architecte a construit une
maison différente de celle
prévue.

The architect built a different
house than planned.

Les fiers ouvriers de leur
avancement s’accordent une
pause.

Les ouvriers fiers de leur
avancement s’accordent une
pause.

The workers, proud of their
advancement, take a break.

Ma tante est une fière
cuisinière de ses talents.

Ma tante est une cuisinière
fière de ses talents.

My aunt is a cook proud of
her talent.

Tu as acheté un différent
cahier du sien.

Tu as acheté un cahier
différent du sien.

You bought a notebook
different from his.

Vous avez couru un différent
marathon de celui de
Toulouse.

Vous avez couru un marathon
différent de celui de Toulouse.

You ran a different marathon
than that of Toulouse.

Table 6.13: Sentences in the Presence of adjective/noun dependent category.
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Originally anteposed sentences
Anteposition Postposition Translation

Dimanche, ils ont pu faire la
grasse matinée.

Dimanche, ils ont pu faire la
matinée grasse.

On Sunday, they were able to
sleep in.

Elle a écrit un vibrant
hommage pour sa mère
décédée.

Elle a écrit un hommage
vibrant pour sa mère décédée.

She wrote a moving tribute
for her late mother.

Elle aime la grasse matinée du
lundi.

Elle aime la matinée grasse du
lundi.

She loves sleeping in on
Mondays.

Il a passé une dure semaine. Il a passé une semaine dure. He had a tough week.
Il admet son net avantage sur
les autres.

Il admet son avantage net sur
les autres.

He admits his clear advantage
over others.

Il ne retient pas ses diverses
leçons.

Il ne retient pas ses leçons
diverses.

He does not retain his various
lessons.

Ils ont rendu un vibrant
hommage à ce digne soldat.

Ils ont rendu un hommage
vibrant à ce digne soldat.

They paid a vibrant tribute to
this worthy soldier.

J’avais des doubles objectifs
précis.

J’avais des objectifs doubles
précis. I had specific dual objectives.

Nous effectuons diverses
expériences.

Nous effectuons des
expériences diverses.

We perform various
experiments.

Elle a fait un net bénéfice ce
mois-ci.

Elle a fait un bénéfice net ce
mois-ci.

She made a net profit this
month.

Originally postposed sentences
Depuis la mort de son
hamster, il a le dur cœur.

Depuis la mot de son hamster,
il a le cœur dur.

Since the death of his hamster,
he has had a hard heart.

Depuis la mort de son
hamster, il a une dure vie.

Depuis la mort de son
hamster, il a une vie dure.

Since the death of his hamster,
he has had a hard life.

Dimanche, ils ont mangé des
gras plats.

Dimanche, ils ont mangé des
plats gras.

On Sunday, they ate fatty
dishes.

Elle essaiera par elle-même
pour en avoir le net cœur.

Elle essaiera par elle-même
pour en avoir le cœur net.

She will try on her own to
find out for sure.

Elle n’aime pas laver la grasse
boîte.

Elle n’aime pas laver la boîte
grasse.

She doesn’t like to wash the
greasy box.

Il est adepte de divers faits. Il est adepte de faits divers. He is adept at various facts.
Il n’a pas accepté sa défaite, il
a le dur cœur.

Il n’a pas accepté sa défaite, il
a le cœur dur.

He did not accept his defeat,
he has a hard heart.

Ils ont acheté un vibrant
fauteuil pour leur salon.

Ils ont acheté un fauteuil
vibrant pour leur salon.

They bought a vibrant
armchair for their living
room.

J’ai mis les doubles bouchées
pour arriver à temps.

J’ai mis les bouchées doubles
pour arriver à temps.

I worked hard to get there on
time.

Nous suivons les divers faits à
la télévision.

Nous suivons les faits divers à
la télévision.

We follow the news on
television.

Vous avez mis les doubles
bouchées pour terminer.

Vous avez mis les bouchées
doubles pour terminer. You worked hard to finish.

Table 6.14: Sentences in the Fixed expressions category.
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Originally anteposed sentences
Anteposition Postposition Translation

A nouvelle année, nouveaux
dynamismes pour cette
entreprise.

A nouvelle année,
dynamismes nouveaux pour
cette entreprise.

A new year, new dynamics
for this company.

Fabuleux amis, fabuleux
camarades : l’ennemi n’est
pas à l’intérieur !

Fabuleux amis, camarades
fabuleux : l’ennemi n’est pas à
l’intérieur !

Fabulous friends, fabulous
comrades: the enemy is not
within!

J’ai aimé le concept : bonne
ambiance, bonne musique, les
gens sont contents.

J’ai aimé le concept : bonne
ambiance, musique bonne, les
gens sont contents.

I liked the concept: good
atmosphere, good music,
people are happy.

Ce document vise à expliquer
le déficit véritable, la véritable
dette dans son ensemble.

Ce document vise à expliquer
le déficit véritable, la dette
véritable dans son ensemble.

This document aims to
explain the real deficit, the
real debt as a whole.

Nous avons adopté pour des
stratégies communes, actions
communes et positions
communes.

Nous avons adopté pour des
stratégies communes, actions
communes et communes
positions.

We have adopted for common
strategies, common actions
and common positions.

Avec la merveilleuse sélection
et de merveilleux essais, ils
ont trouvé les résultats qu’ils
cherchaient.

Avec la merveilleuse sélection
et des essais merveilleux, ils
ont trouvé les résultats qu’ils
cherchaient.

With the wonderful selection
and wonderful testing, they
found the results they were
looking for.

Originally postposed sentences
Il lui a offert des
volumineuses plantes à
volumineuses fleurs.

Il lui a offert des
volumineuses plantes à fleurs
volumineuses.

He gave her bulky plants with
voluminous flowers.

Je suis d’accord avec eux : à
événement exceptionnel,
exceptionnel dispositif.

Je suis d’accord avec eux : à
événement exceptionnel,
dispositif exceptionnel.

I agree with them: for an
exceptional event, an
exceptional device.

Cette année, ils préparent un
diplôme professionnel en
professionnel lycée.

Cette année, ils préparent un
diplôme professionnel en
lycée professionnel.

This year, they are preparing
a professional diploma in
vocational high school.

Concernant la protection des
données personnelles, aucune
personnelle information n’est
collectée.

Concernant la protection des
données personnelles, aucune
information personnelle n’est
collectée.

Regarding the protection of
personal data, no personal
information is collected.

Elle a procédé à l’étude de
quelques instruments
pitoyables et pitoyables
illusions.

Elle a procédé à l’étude de
quelques instruments
pitoyables et illusions
pitoyables.

She proceeded to study some
pitiful instruments and pitiful
illusions.

Ce bâtiment n’a pas changé
depuis sa construction :
lumineuses couleurs,
lumineux lampadaires.

Ce bâtiment n’a pas changé
depuis sa construction :
lumineuses couleurs,
lampadaires lumineux.

This building has not changed
since its construction: bright
colors, bright streetlights.

Table 6.15: Sentences in the Structural persistence category.
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Classification of attributive adjective position in French

Originally anteposed sentences
Anteposition Postposition Translation

Elle préfère son propre
pantalon à celui de sa soeur.

Elle préfère son pantalon
propre à celui de sa sœur.

She prefers her own pants to
her sister’s.

Nous nous sommes rejoins
autour d’un chaleureux repas.

Nous nous sommes rejoins
autour d’un repas chaleureux.

We came together for a hearty
meal.

Tu m’as fait part de ta
fabuleuse idée.

Tu m’as fait part de ton idée
fabuleuse.

You told me about your
fabulous idea.

Cet ancien fer n’est plus
utilisé.

Ce fer ancien n’est plus
utilisé. This old iron is no longer used.

Originally postposed sentences
C’était un fabuleux voyage
que nous avons organisé.

C’était un voyage fabuleux
que nous avons organisé.

It was a fabulous trip that we
organized.

Ce chaleureux accueil m’a fait
chaud au cœur.

Cet accueil chaleureux m’a
fait chaud au cœur.

This warm welcome warmed
my heart.

Ce légendaire récit me
tourmente chaque jour.

Ce récit légendaire me
tourmente chaque jour.

This legendary tale torments
me every day.

Ce puéril discours lui a porté
préjudice.

Ce discours puéril lui a porté
préjudice.

This childish speech harmed
him.

Cette fermière entreprise
n’est plus aussi familiale que
dans le temps.

Cette entreprise fermière
n’est plus aussi familiale que
dans le temps.

This farm business is no longer
as family-run as it used to be.

Cette jaune chaise est très
tendance.

Cette chaise jaune est très
tendance.

This yellow chair is very
trendy.

Cette puérile plaisanterie ne
l’a pas fait rire.

Cette plaisanterie puérile ne
l’a pas fait rire.

This childish joke did not make
him laugh.

Elle m’a fourni la
volumineuse archive.

Elle m’a fourni l’archive
volumineuse.

She provided me with the
voluminous archive.

Il m’a apporté une bleue
gourde.

Il m’a apporté une gourde
bleue.

He brought me a blue water
bottle.

Il mange des roses bonbons. Il mange des bonbons roses. He eats pink candies.
Ils n’ont pas pu télécharger le
volumineux fichier.

Ils n’ont pas pu télécharger le
fichier volumineux.

They were unable to download
the large file.

J’ai écrit sur une bleue feuille. J’ai écrit sur une feuille bleue. I wrote on a blue sheet.
La jaune trousse contient ses
feutres.

La trousse jaune contient ses
feutres.

The yellow pencil case
contains her markers.

La pétrolière industrie ne
m’attire pas du tout.

L’industrie pétrolière ne
m’attire pas du tout.

The oil industry does not
appeal to me at all.

Le ferroviaire transport est
voué à s’étendre.

Le transport ferroviaire est
voué à s’étendre.

Rail transport is destined to
expand.

Table 6.16 continued in next page.
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Anteposition Postposition Translation
Le ministériel arrêté a
confirmé les mesures prises.

L’arrêté ministériel a
confirmé les mesures prises.

The ministerial decree
confirmed the measures taken.

Les filles ont opté pour une
mauve couverture.

Les filles ont opté pour une
couverture mauve.

The girls opted for a purple
blanket.

Leur financière situation
s’aggrave de jour en jour.

Leur situation financière
s’aggrave de jour en jour.

Their financial situation is
getting worse day by day.

Ma sœur porte des mauve
lunettes.

Ma sœur porte des lunettes
mauve. My sister wears purple glasses.

Mon bureau est décoré d’un
vert panier.

Mon bureau est décoré d’un
panier vert.

My office is decorated with a
green basket.

Sa rose poubelle lui plait
énormément.

Sa poubelle rose lui plait
énormément.

His pink trash can pleases him
enormously.

Son doudou est une verte
peluche.

Son doudou est une peluche
verte. His cuddly toy is a green plush.

Elle a acheté un vibrant jouet
pour son fils.

Elle a acheté un jouet vibrant
pour son fils.

She bought a vibrant toy for
her son.

Table 6.16: Sentences in the Blocked and mobile adjectives category.
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Conclusion

In the Introduction, we posed the research questions that we aimed to answer with our

experiments. Reflecting on the outcomes of the experiments, we have formed our opin-

ion on the linguistic competencies of contextual word embeddings, and how the models’

architectures and features deal with language.

To the question of whether contextual word embeddings capture context suf-

ficiently and effectively, our answer leans positive. This is no news since they have

been proven to yield better results than static word embeddings. It is more interest-

ing to discuss how this contextual information is captured. By examining the different

Transformer-based architectures that created these embeddings, we observe one com-

mon denominator; the pretraining process needs an immense number of data, even for

the smaller pretrained models. The Transformer neural architecture is able to process

this enormous volume of data in a dynamic way, extracting patterns based on the multi-

headed self-attention mechanism. The masked language modeling objective is used by

all the models examined in this doctoral work to create their respective pretrained em-

beddings. Seemingly, it is able to assess which of these patterns are the most fitting

for the masked position in a sequence, but this success is a result of frequency, not any

linguistic competence.

The models are linguistically agnostic, hence they treat each token like a piece of

information and eachmasked token as a token void of any features other than its context.

In preliminary experiments, we noticed that the task of prediction in themasked position

yielded irregular results. At a first glance, they seem to usually predict a word fitting to

the context at the masked position. When the masked token was not a verb, the models
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showed affinity to predicting frequent tokens, such as adjectives of size, pronouns, and

punctuation. However, in cases where the context was vague or complex, the model

would predict pronouns or punctuation marks instead of adjectives or nouns. These

experiments were, unfortunately, not fruitful, so they were not further pursued. To sum

them up in a few words, the pretrained models’ choices for a masked position are at best

“the safest bet” and at worse a bland platitude, a nonsensical word, or the occasional

offensive term.

Instead, we focused on only using the masked language prediction by injecting the

originally masked word in said position and retrieving its probability (see Sections 4.4.3,

6.6). The models were not essentially unsuccessful at this task, but their behavior differs

significantly from human choices. They assign high probabilities to frequent tokens,

even if they are not the best fit for the given context. These tokens have been assigned

a high likelihood because they have been frequently observed in many similar contexts.

Likewise, tokens with a lower frequency but a better semantic fit to the masked position

receive a lower probability, because of their overall infrequency.

The modeling of the embeddings is based exclusively on contextual information,

meaning that different instances of the same word are treated and encoded differently.

The models are not able to create classes or clusters of word embeddings, based on the

content of the embeddings. In Section 6.5.3 we studied whether the properties of dy-

namic word embedding vectors corresponded to those of static word embedding vectors,

by plotting different instances of the same word—plotting lemmas and word types. Intu-

itively, we expected clusters to appear, based on the similarity of contextual information

in vectors of the same word, but it was not the case. In Section 4.5.2, we could not iden-

tify either discernible patterns of behavior of head words (verbs, nouns) choosing their

constituents (masked words) based on the head word’s class. We noticed some weak

preferences, such as verbs selecting their subject and object based on animacy.

In the experiments of extracting and probing specific word embeddings, we also had

the opportunity to study specific word embeddings further. In Section 5.5.4.4 we exam-

ined whether verb embeddings were able to capture lexical aspect information—based

on the temporal features of the context, i.e. the verb’s preferred company. This clas-

sification task was quite successful, especially for classifying duration. However, our
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experiment in Section 6.5.1 on classifying adjective position based on the adjective em-

bedding was not as successful. In Layman’s terms, not all embeddings are created equal.

Verb embeddings may contain more interesting information since they tend to put more

constraints on the context than other tokens. Meanwhile, adjectives do not have a such

transformative influence on their context so their pretrained embeddings encode enough

information about the adjective’s preferences.

This brings us to the next question, whether contextual word embeddings show

sensitivity to semantics. Our three research topics explored linguistic phenomena that

influence the acceptability of a sentence; the semantic preferences of a verb for its depen-

dents, the temporal properties of a verb and their interaction with the context, and the

preferred word order when it is semantically salient. In the experiments on selectional

preferences, the pretrained models have shown that they can capture contextual infor-

mation of individual word embeddings and that they have a preference for frequency

and for semantic felicity. However, the finetuned models showed a degree of specializa-

tion on the given tasks, hence our choice to mainly use them for our experiments and

observations in lexical aspect and word order. We used manually created datasets with

small sentences (a slightly adversarial approach, since contextual word embeddings rely

on context), a simple structure without complex syntactic phenomena, and carefully se-

lected constituents to either complement or challenge the annotation category of the

sentence.

We cannot argue that the models have no syntactic competencies; pretrained and

finetuned models showed that they are able to distinguish the most important parts

of a one-sentence input, i.e. the verb of the main clause, its auxiliary verb(s), subject,

and object(s), and the verb of the subordinate clause. Their perception of syntax is not

comparable to human syntactic abilities, and it should not be compared to human cogni-

tion, either. However, the models seemed to not rely on prepositional phrases, adverbs,

and attributive adjectives to process a sentence and classify its properties. They have

(mostly) successfully captured preferred literal contexts, and in cases of metaphors or

antagonistic context, they prefer to “ignore” these discrepancies. Unfortunately, these

elements are quintessential to human communication and convey important syntactic

and semantic information, which led to incorrect predictions when ignored.
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A serious motivation for our experiments was the correlation of the models to hu-

man behavior. We do not aim to support or reproduce the argument that the models

can or should mimic human language production. Our goal was to observe human lin-

guistic preferences, which did not necessarily match perfectly the assessments made by

linguists, and compare them to the models’ learned behavior. The term “stochastic par-

rot” coined by Bender and Koller (2020) comes to mind; while we agree that the models

rely on repetition, we would like to append the adjective “stubborn” to this character-

ization. The architectures learn rudimentary syntactic patterns and insist on their use

even when the context suggests otherwise.

Is there any hope to improve these contextual word embedding models? Focusing

on the role of finetuning in NLP tasks, we have supported, throughout this doctoral

work, that finetuning is beneficial to create embeddings with additional knowledge.

Even though our experiments were testing limited phenomena and our results were

not always impressive percentages that show quantitative success, we exhibited that

transfer learning can sensitize models to linguistic phenomena, to a certain extent. The

possible scope of use of these finetuned models may seem limited, as the community is

focused on models for downstream tasks of a wider scope. Regardless, we hope that our

findings on finetuning will be beneficial to the NLP community.

As for our technical criticism of finetuning, we observed that it is, in fact, not a very

stable process. Random seeds in the finetuning process can cause the failure of classifi-

cation, and we agree with the bibliography that larger models can produce unpredictable

results. The base-size models were more accepting of finetuning, and a few epochs of

finetuning were sufficient for our experiments. As for the recommended sizes of finetun-

ing datasets, our experiments in word order showed that themodels were “data-hungry”;

larger and varied datasets performed better overall. However, our lexical aspect experi-

ments were also successful with much smaller finetuning datasets. From the two rounds

of experiments, we observed that finetuning with data of good quality is paramount to

the success of finetuning. Combining datasets of different domains with the same an-

notation objective was also quite beneficial in all our experiments, since it introduced a

variety in the data, making the finetuned models more robust to different test inputs.
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An essential part of our research was to observe the self-attention mechanism

and assess its abilities and its influence on the predictions of the models. Self-attention

is the backbone of the Transformer. It is the reason the architecture was conceived and

it is the reason for the neural network models’ advanced capacities compared to their

predecessors. We followed two methods of examining self-attention, either by using at-

tention masks for predictions and finetuning or by visualizing layers and attention heads

of the models. In our multiple experiments with attention masks, we observed different

behaviors, sometimes anticipated, sometimes surprising. For the selectional preferences

experiments, where the pretrained model had to predict the masked dependent word,

focusing the models’ attention only on the head word produced better correlations to

human behavior than any other attention setting. As stated above, verb embeddingsmay

contain a bigger breadth of information than other word embeddings, hence their bigger

influence. Additionally, allowing the model to focus on the one token of the sequence

that is the most important for the given task may have contributed to the prediction

successes. However, in the case of classifying lexical aspect, we recreated the finetuning

and classification task with an attention mask on the context and noticed a decline in

accuracy. While this finding contradicted the importance of the verb embeddings for

predictions, it may be caused by the finetuning process modifying the embeddings with

additional information, thus distributing information in the entire sentence.

A long debate has been brewing, on whether attention should be taken as a solid

metric of explainability and success in the interpretation of neural architecture output—

and the popularity of the much more complex and less decipherable multi-headed self-

attention has fanned the flames. We visualize pretrained and finetuned models, and we

find tendencies, but not concrete answers. First of all, the onlymodel that produced visu-

ally interesting findings was BERT, compared to RoBERTa and ALBERT which showed

diffused attention weights without strong preferences. Some particular layers and heads

produced consistently similar attention visualizations regardless of the input sentence,

e.g. the third layer of bert-base-uncased producing monotonic attention from token t to

token t+1. We noticed that the strongest trends of attention occurred between verb to-

kens (head word or of the subordinate clause) and subjects, objects, and auxiliary verbs.

To corroborate the bibliography, we also observed that certain layers of the architec-
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tures show patterns of attention that are akin to syntactic relations. In conclusion, while

multi-head self-attention is difficult to decipher and study, it can be an interesting obser-

vation tool for the models’ inner workings and order of operations when they process

language and produce output.

Finally, to the question of word order importance, if the models were truly agnos-

tic to word order, they would treat inputs with shuffled tokens in the sameway. This was

the case neither in our word order experiments nor in the lexical aspect classification

experiments in which word order was not a finetuning objective (see Section 5.5.4.2).

The finetuned models were able to classify the preferred adjective word order very suc-

cessfully with the classification datasets, in Section 6.4. While the task may have been

quite simple, since a frequency-based metric also yielded good results, it would have

been impossible for the models, if they were completely agnostic to word order. In addi-

tion, they treated grammatical and acceptable sentences of the same tokens in different

ways, classifying their temporal qualities differently. While pretrained models may be

insensitive to permutations, finetuned models can be made sensitive to permutations.

∗

∗ ∗

Modeling and recreating the natural world and the human experience with compu-

tational methods has been a longtime aspiration for humans. The futuristic utopias (and

dystopias) in science fiction literature seem more attainable than ever with the public

release of artificial intelligence advancements, such as synthetic media, voice assistants,

and toolkits for large language models (LLMs). Especially in the last few years, these

tools have left the confines of academic and commercial research and have become ac-

cessible to use by a fraction of the human population (those who have access to educa-

tion, technology, technological literacy, and freedom of speech). Meanwhile, they have

been already exploited (and weaponized) for economic and political profit.

The scientific community has focused its efforts on studying and decrypting contex-

tual word embedding models for the last few years, yet many questions are unanswered.

At the same time, these models are vastly used for natural language processing tasks,

sometimes blurring the lines between ethical and responsible use. With this doctoral
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thesis, motivated by linguistic sensitivities, we hope to have contributed to shedding

light on the “black box” of these models. They are potent, but they should and can be

improved. These dynamic and powerful tools were capable of capturing some impor-

tant linguistic information, from the pretraining and the finetuning stages. Hopefully,

this may motivate future research to improve these models with the incorporation of

targeted linguistic and semantic competencies. We want to face the future of natural

language processing with optimism. They should not be dealt with as shallow copies

of human speech, convincing but off-putting, force-fed more words than a lifetime of

human activity, and confined to a superficial understanding of the world. Our large

language models will only be as good as we allow them to be.
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Abstracts

8.1 Abstract in English

Transformer-based embeddings, also known as large language models, are being widely

used in NLP applications, outperforming traditional methods and neural network ap-

proaches. However, quantitative success in NLP tasks does not guarantee a complete

mastery of human language. Humans are capable of learning semantic concepts and

expressing them with the appropriate syntactic patterns, while Transformer-based lan-

guage models learn artifacts and idiosyncratic patterns of syntax, but no notions of se-

mantics.

This doctoral thesis studies the linguistic abilities and limitations of Transformer-

based contextual word embeddings, with experiments on complex syntactic-semantic

phenomena. The main question is: even though contextual word embeddings can cap-

ture enough information to be competent in complex linguistic tasks, are their successes

due to a true understanding of word relations and hierarchies or a repetition of language

patterns? We selected linguistic features in English and French that are understood by

native speakers with mature syntactic-semantic competencies but have been tradition-

ally hard to define with linguistic rules.

Selectional preference is the tendency of a predicate to favor certain arguments

within a certain linguistic context and reject others that result in conflicting or implausi-

ble meanings. This part of the study investigated whether BERT models in English con-

tain information on the selectional preferences of words, by examining the probability it

assigns to the dependent word given the presence of its head word in a sentence. These

181



Chapter 8

probabilities were compared to human annotations. Results show that there is no strong

positive or negative correlation between human judgments and model probabilities in

any syntactic relation, but certain head words have a strong correlation, and masking

all words but the head word yields the most positive correlations in most scenarios.

Lexical aspect is a verb feature that describes how an action, event, or state of a verb

is situated in time regardless of verb tense. We explored, with two rounds of experi-

ments, whether the models can identify and learn telicity and duration. We performed

quantitative analyses with pretrained and finetuned models, and qualitative analyses

to observe the models’ behavior in challenging cases. Experiments were carried out in

English and French. Results show that the models capture information on telicity and

duration in their vectors, but are biased concerning verb tense and word order.

The final experiment examines the models’ capacities for identifying and learning

attributive adjective position in French. Even though these models are insensitive to

permutated word order by design, we observed that the finetuned models could learn

and select the correct position of the adjective. However, this is attributed to finetuning

rather than knowledge learned during pretraining. Comparing the finetuned models to

native speakers, we notice that the models favor context and global syntactic roles, and

are weaker with complex structures and fixed expressions.

To summarize our findings, contextual word embeddings are very successful, but re-

sults are irregular. The models assign high probabilities to frequent tokens, but cannot

create classes or clusters of word embeddings based on content. Verb embeddings can

capture important syntactic-semantic information, but adjectives do not have a trans-

formative influence. The models show sensitivity to syntax and learn rudimentary syn-

tactic patterns. Semantically, the models rely on frequency and surface-level features,

even when the context suggests otherwise.
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8.2 Abstract in French

Les plongements lexicaux basés sur des Transformers, également connus comme grands

modèles de langage, sont largement utilisés dans les applications TALN, surpassant les

méthodes de statistique et de réseaux neuronaux. Cependant, le succès quantitatif dans

les tâches de TALN ne garantit pas une maîtrise complète du langage humain.

Cette thèse étudie les capacités linguistiques et les limites des plongements lex-

icaux contextuels basés sur Transformers, avec des expériences sur des phénomènes

syntactico-sémantiques complexes. La question principale est la suivante: même si les

plongements lexicaux peuvent capturer suffisamment d’informations pour être compé-

tents dans des tâches linguistiques complexes, leurs succès sont-ils dus à une véritable

compréhension des relations et des hiérarchies entre lesmots ou à une répétition de sché-

mas de langue? Nous avons sélectionné des caractéristiques linguistiques en anglais et

en français qui sont comprises par les locuteurs natifs ayant des compétences syntaxico-

sémantiques matures, mais qui sont traditionnellement difficiles à définir avec des règles

linguistiques.

La préférence sélective est la tendance d’un prédicat à favoriser certains arguments

dans un certain contexte linguistique et à en rejeter d’autres qui aboutissent à des signifi-

cations contradictoires ou peu plausibles. Cette partie de l’étude a examiné si les modèles

BERT en anglais contiennent des informations sur les préférences sélectives, en exam-

inant la probabilité qu’ils attribuent au mot dépendant compte tenu de la présence de

son mot principal dans une phrase. Ces probabilités ont été comparées aux annotations

humaines. Les résultats montrent qu’il n’y a pas de forte corrélation entre les jugements

humains et les probabilités du modèle dans n’importe quelle relation syntaxique, mais

certains mots de tête ont une forte corrélation, et le masquage de tous les mots sauf le

mot de tête produit les corrélations les plus positives.

L’aspect lexical est une caractéristique du verbe qui décrit comment une action, un

événement ou un état d’un verbe est situé dans le temps, indépendamment du temps

du verbe. Nous avons exploré, avec deux séries d’expériences, si les modèles peuvent

identifier et apprendre la télicité et la durée. Nous avons effectué des analyses quan-

titatives avec des modèles pré-entraînés et affinés, ainsi que des analyses qualitatives
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pour observer le comportement des modèles dans des cas difficiles. Les expériences ont

été menées en anglais et en français. Les résultats montrent que les modèles capturent

l’information sur la télicité et la durée dans leurs vecteurs, mais qu’ils sont biaisés en ce

qui concerne le temps du verbe et l’ordre des mots.

La dernière expérience examine les capacités des modèles à identifier et apprendre la

position des adjectifs attributifs en français. Bien que ces modèles pré-entraînés soient

insensibles à l’ordre des mots permutés, nous avons observé que les modèles affinés

pouvaient apprendre et sélectionner la position correcte de l’adjectif. En comparant les

modèles aux locuteurs natifs, on remarque que les modèles favorisent le contexte et les

rôles syntaxiques globaux, et qu’ils sont plus faibles avec les structures complexes et les

expressions fixes.

Pour résumer, les plongements lexicaux sont très efficaces, mais les résultats sont

irréguliers. Les modèles attribuent des probabilités élevées aux tokens fréquents, mais

ne peuvent pas créer de classes ou de groupes de mots selon le contenu. Les plongements

de verbes peuvent capturer des informations syntactico-sémantiques importantes, mais

les adjectifs n’ont pas d’influence. Les modèles sont sensibles à la syntaxe et apprennent

des schémas syntaxiques rudimentaires. Sur le plan sémantique, les modèles s’appuient

sur des caractéristiques de fréquence et de surface, même lorsque le contexte suggère le

contraire.
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8.3 Long abstract in French

Qu’est-ce que tu sais, BERT?Explorer les compétences linguistiques
des plongements lexicaux contextuels basés sur Transformers

Le traitement du langage naturel (TALN) s’est traditionnellement concentré sur la

définition et la conception de systèmes pour le traitement, la compréhension et la pro-

duction du langage, avec la motivation que le succès de ces tâches se traduirait par des

systèmes linguistiques compétents pour des applications en aval. Les applications du

TALN comprennent des tâches de classification au niveau de la phrase ou du document

(par exemple, la classification des sentiments), des tâches d’étiquetage de séquences au

niveau du mot ou de la phrase (par exemple, l’analyse syntaxique, la reconnaissance des

entités nommées), la classification des relations de portée, et des tâches de génération,

qui impliquent la création d’un texte sur la base d’une entrée donnée (par exemple, la

traduction automatique, la génération de dialogues, la production de discours).

Ces architectures algorithmiques spécifiques à une tâche peuvent être combinées

avec d’autres modèles pour exécuter des tâches complexes et peuvent elles-mêmes être

composées de différents modèles, par exemple des tokenizers et des marqueurs de partie

du discours. Construits à l’origine par des linguistes à l’aide de règles écrites à la main,

l’utilisation de méthodes statistiques avancées de régression logistique et de modèles de

réseaux neuronaux est aujourd’hui devenue la norme dans la plupart des applications

du TALN.

Ces dernières années, la mise en œuvre des architectures de réseaux neuronaux a

connu des développements monumentaux et les capacités de traitement, de compréhen-

sion et de production du langage ont fait des bonds de géant. Ces développements ont

permis la création d’architectures Transformer pour le TALN qui créent des plongements

lexicaux contextuels. Ces architectures sont entraînées avec d’énormes ensembles de

données sur plusieurs unités informatiques avec une puissance de traitement massive et

produisent des représentations du langage sous la forme de modèles des plongements

lexicaux contextuels. Même si ces modèles sont très performants, il est difficile de les ex-

aminer et de les comprendre avec les méthodes traditionnelles de TALN. De nombreuses
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études et discussions ont été menées pour déterminer si ces calculs de sont interpréta-

bles.

L’objectif de cette thèse est d’étudier les capacités et limites linguistiques des plonge-

ments lexicaux contextuels basés sur les Transformers, avec des expériences sur des

phénomènes syntactico-sémantiques complexes. L’hypothèse principale de cette thèse

est la suivante: Les plongements lexicaux contextuels de mots peuvent-ils capturer suff-

isamment d’informations, pendant les phases de pré-entraînement et d’affinage, pour

être compétents dans des tâches linguistiques complexes? Leurs succès sont-ils dus à

une véritable compréhension des relations et des hiérarchies de tokens ou à une répéti-

tion superficielle de modèles dans l’ensemble d’apprentissage? Leurs échecs sont-ils

graves, et s’agit-il de faiblesses systématiques ou d’événements aléatoires?

Nous avons sélectionné des caractéristiques et des phénomènes linguistiques qui sont

facilement perçus par un locuteur natif ayant des compétences syntactico-sémantiques

matures, mais qui sont traditionnellement difficiles à définir à l’aide de règles linguis-

tiques. Plus précisément, nous nous sommes concentrés sur:

• Préférences de sélection, c’est-à-dire les arguments et les classes d’arguments qui

complètent le mieux le sens du verbe, ce qui se traduit par des phrases grammati-

cales et sémantiquement acceptables.

• L’aspect lexical, c’est-à-dire un ensemble de caractéristiques qui déterminent les

qualités temporelles d’un verbe indépendamment des caractéristiques grammati-

cales telles que le temps

• Ordre des mots des adjectifs épithètes en français, une tâche apparemment simple

mais parfois complexe, en raison de la mobilité des adjectifs basée sur des facteurs

linguistiques, non linguistiques et sémantiques.

Ci-dessous les questions spécifiques qui seront abordées par les approches proposées

dans cette thèse :

• Les plongements lexicaux demots contextuels capturent-ils le contexte demanière

suffisante et efficace? Cette question est une observation sur les mots intégrés pré-

entraînés. Au cours de la procédure de pré-entraînement, les plongements lexicaux
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sont-ils capables de généraliser et de regrouper les contextes en classes, c.-à-d.

groupes de similarité auxquels le modèle peut accéder pour faire de meilleures

prédictions?

• Les plongements lexicaux contextuels de mots montrent-ils une sensibilité aux

caractéristiques sémantiques et à la félicité sémantique? Certains phénomènes tels

que l’aspect lexical sont des propriétés inhérentes et ne sont pas toujours exprimés

morphologiquement ou à l’aide du contexte. Les modèles ont-ils encodé suffisam-

ment d’informations afin d’identifier avec succès de tels phénomènes? Lorsqu’ils

sont confrontés à une phrase infélicite, les modèles la rejettent-ils en raison de sa

faible fréquence ou d’un certain motif de sémantique?

• L’affinage est-il nécessaire, bénéfique et stable pour les tâches difficiles? L’apprentissage

par transfert est l’une des fonctionnalités les plus innovantes des ces modèles, qui

permet aux plongements lexicaux déjà puissants de devenir encore plus spécialisés

dans une tâche sans avoir besoin de grands ensembles de données. Cependant, la

stabilité d’affinage a été critiquée.

• Quel est le rôle du mécanisme d’attention dans les prédictions, au regard de nos

questions expérimentales? La haute performance desmodèles a été attribuée à leur

architecture de self-attention multi-tête. Les choix de nos modèles se reflètent-ils

dans le fonctionnement interne des couches et des têtes dumécanisme d’attention?

• L’ordre des mots est-il vraiment sans importance pour les modèles basés sur les

Transformers? La parallélisation de la procédure d’apprentissage dans les mod-

èles Transformer signifie que ces modèles ne considèrent pas l’entrée de manière

séquentielle. La recherche a montré une insensibilité à l’ordre des mots, mais les

modèles y sont-ils insensibles lorsque l’ordre des mots est déterminé par la signi-

fication de la phrase?

Les méthodes de traitement du langage naturel nécessitent généralement la conver-

sion du texte en vecteurs de valeurs numériques. Le codage peut être une procédure

succincte de mise en correspondance des valeurs avec un vocabulaire, soit sous forme

d’indices, soit sous forme de vecteurs optimisés pour le traitement.
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Un modèle d’espace vectoriel ou un modèle des plongements lexicaux est un espace

sémantique dans lequel les éléments lexicaux appelés tokens (mots ou termes à plusieurs

mots) sont représentés sous forme de vecteurs. Les similitudes vectorielles peuvent être

en corrélation avec les similitudes sémantiques, car les mots de la même classe, de la

même fonction ou d’une signification similaire sont codés avec des vecteurs similaires

sur la base de leurs occurrences similaires dans des contextes multiples. Cela a conduit à

l’hypothèse commune que les modèles peuvent capturer des informations sémantiques

importantes.

L’idée demodèles linguistiques représentant la sémantique découle de la linguistique

structuraliste et de la philosophie du langage. Les premières tentatives demesurer la sim-

ilarité sémantique par le biais de représentations de caractéristiques ont utilisé des car-

actéristiques créées à la main (Osgood et al., 1957). Suite aux progrès de l’apprentissage

automatique, des méthodes statistiques ont été introduites, permettant l’extraction de

distributions à partir de corpora immenses de manière non supervisée (Mikolov et al.,

2013a; Pennington et al., 2014).

Suite à l’approche initiale de Bengio et al. (2000) consistant à capturer les informa-

tions distributionnelles à l’aide d’un réseau neuronal, les plongements lexicaux mod-

ernes sont créés par des réseaux neuronaux. La création de plongements lexicaux à partir

des architectures neuronales est possible grâce à la couche de plongement du modèle,

qui cartographie la séquence d’entrée en une série de vecteurs. Ces vecteurs sont créés

par le modèle dans le cadre d’une tâche d’apprentissage spécifique et contiennent donc

toutes les informations apprises nécessaires à cette tâche. Ces réseaux neuronaux com-

prennent le plus souvent un mécanisme d’attention (Bahdanau et al., 2014; Luong et al.,

2015). Vaswani et al. (2017) a introduit une nouvelle méthode d’attention appelée self-

attention, qui est intégrée dans l’architecture d’un réseau neuronal appelé Transformer.

Self-attention est un type demécanisme d’attention qui permet aux entrées dumodèle

d’interagir entre elles, contrairement à l’attention générale dans laquelle la sortie inter-

agit avec chaque entrée. En termes simples, la fonction mathématique de self-attention

est une correspondance entre une requête et un ensemble de paires clé-valeur, puis une

sortie. Au cours de la procédure d’entraînement, le mécanisme de self-attention apprend

la similarité entre une requête et une clé sous la forme d’un poids d’attention. Dans le
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domaine du TALN, les clés et les valeurs correspondent à l’alignement de l’entrée et de

la sortie attendue (par exemple, entre les tokens source et cible dans la traduction au-

tomatique) ou de l’entrée et de ses caractéristiques extraites (par exemple, dans la clas-

sification). Le résultat du mécanisme de self-attention est calculé comme une somme

pondérée des valeurs, le poids de chaque valeur étant déterminé par la fonction de com-

patibilité de la requête avec sa clé associée.

Ce mécanisme d’attention est capable de générer les poids d’attention de chaque

token en observant ses différents états cachés dans la séquence. Il capture des représen-

tations multiples par rapport aux autres tokens, grâce à l’utilisation de plusieurs têtes de

self-attention.

Les représentations linguistiques créées par lesmodèles Transformers sont dynamiques

car elles sont capables de représenter un mot dans de multiples instances en fonction de

son contexte, capturant ainsi des informations syntactico-sémantiques importantes et

variées. En outre, les représentations peuvent être affinées pour une tâche et un ensem-

ble de données donnés, devenant ainsi plus spécialisées avec des connaissances précises.

Le succès obtenu dans diverses tâches complexes de traitement de texte a conduit au

développement rapide de diverses architectures de Transformers et de modèles capa-

bles de produire des plongements lexicaux contextuels. En fonction des modèles étudiés

dans ce travail documentaire, les modèles peuvent être auto-régressifs (GPT, XLNet) ou

auto-encodeurs (BERT, RoBERTa, ALBERT, CamemBERT, FlauBERT).

Ces modèles ont rapidement surpassé les méthodes traditionnelles et les approches

de réseaux neuronaux dans des tests standardisés appelés benchmarks ; ces testsmesurent

la précision d’une tâche de TALN (par exemple, la traduction automatique) avec un en-

semble de données et des mesures de précision prédéterminés et sont largement acceptés

comme preuve de compétence dans les applications de TALN.

Cependant, la réussite à une tâche ne garantit pas unemaîtrise complète de la langue.

En revanche, sur la base des précisions élevées signalées dans de nombreuses tâches de

TALN, ces modèles ont également été diffusés pour un usage public et commercial, sans

que l’on comprenne vraiment leurs capacités, leurs limites et leurs dangers potentiels

(Bender et al., 2021).

La première expérience que nous avons menée s’est concentrée sur le modèle BERT
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en anglais. Nous avons exploré les préférences sélectives d’un mot, c’est-à-dire le type

d’arguments et de significations avec lesquels un mot préfère être lié. La question de

recherche est de savoir si les plongements lexicaux de BERT contiennent des informa-

tions sur les préférences sélectives des mots, en examinant la probabilité qu’ils attribuent

au mot dépendant, compte tenu de la présence de son mot principal dans une phrase.

Pour nos expériences, nous avons utilisé un ensemble de données existant sur les

préférences de sélection, qui a été annoté par des humains sur les préférences de paires

de mots (Zhang et al., 2019b). Les paires de mots sont annotées avec un score de plau-

sibilité moyen, une analogie avec la félicité du mot de tête choisissant un mot comme

argument. Nous avons utilisé des paires de mots dépendant de la tête dans cinq relations

syntaxiques différentes du corpus SP-10K de préférence sélective, telles que trouvées

dans des phrases réelles du corpus ukWaC (Ferraresi et al., 2008). Nous avons calculé la

corrélation entre le score de plausibilité et les probabilités attribuées par le modèle pour

le mot dépendant, telles qu’elles ont été récupérées par la version de modélisation du

langage masqué de bert-base-uncased.

Le coefficient de corrélation entre les jugements humains et les probabilités de BERT

n’a pas montré une forte corrélation positive ou négative. BERT attribue des probabil-

ités élevées aux paires de mots et aux contextes fréquemment observés. En outre, les

paires de SP-10K ont été créées à partir de mots fréquents, et BERT a tendance à fa-

voriser la prédiction de mots fréquents (par exemple, les adjectifs de taille), parfois à

tort. Cependant, nous n’avons pas exigé de BERT une performance semblable à celle des

humains, mais nous avons plutôt exploré ses préférences apprises et cherché à savoir si

elles coïncidaient avec l’intuition humaine dans une certaine mesure.

L’utilisation des masques d’attention nous a permis d’étudier comment la probabil-

ité du mot cible peut changer, en fonction de la manière dont la séquence d’entrée est

traitée par le mécanisme de self-attention. Notre objectif était de déterminer dans quelle

mesure le mot de tête influençait la probabilité du mot dépendant et si le contexte était

plus significatif que le mot de tête seul. Le fait que les valeurs de corrélation positive

les plus fortes résultent presque toujours de la focalisation de l’attention exclusivement

sur le mot de tête suggère que le mot de tête est reconnu comme un élément essentiel

et significatif de la séquence lorsqu’il s’agit de choisir un mot masqué. Empêcher le mé-
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canisme d’attention d’accéder au mot de tête a également montré l’importance du mot

de tête pour la probabilité attribuée au mot dépendant.

En comparant les différentes relations syntaxiques du corpus SP-10K, les scores de

corrélation les plus faibles proviennent de la catégorie de relation syntaxique amod,

même si certains noms ont également de fortes préférences lexicales. Cela s’explique par

le fait que BERT privilégie les adjectifs à haute fréquence, qui, dans certains cas, peuvent

ne pas être très heureux pour les noms. Il est intéressant de noter que les catégories

verbe et adjectif (en tant que modificateur du sujet ou de l’objet direct) ont montré, pour

la plupart, des corrélations positives similaires aux relations syntaxiques à un saut du

verbe et du nom. Comme Zhang et al. (2019b) l’ont également mentionné, ces relations

à deux sauts sont également influencées par les préférences de sélection d’un mot. Dans

ces cas, le mot de tête est la tête de la séquence et le sujet ou l’objet direct sont ses

arguments, de sorte que ses préférences de sélection pourraient avoir eu un impact sur

la sélection d’un modificateur dans une plus large mesure que le contexte.

Notre deuxième série d’expériences a porté sur l’aspect lexical. L’aspect lexical est

la propriété d’un verbe décrivant les qualités temporelles de l’action, de l’événement ou

de l’état du verbe. Contrairement à l’aspect grammatical et au temps du verbe, il s’agit

d’une propriété sémantique innée du verbe, qui ne peut changer qu’en présence de sig-

nifications et de contextes différents. Notre objectif était de découvrir si les plongements

lexicaux contextuels peuvent apprendre et encoder des informations sur l’aspect lexical.

Nous nous sommes concentrés sur les propriétés de télicité (l’existence ou non d’un point

final) et de durée (la présence d’une action ou d’un état).

Nous avons mené des expériences avec différents ensembles de données Friedrich

and Gateva (2017); Alikhani and Stone (2019). Nous avons entraîné les modèles anglais

sur une tâche de classification de séquence binaire de télicité ou de durée (telique-atélique

et statif -duratif ), en fournissant ou pas la position du verbe. En outre, nous avons

réalisé des expériences avec des masques d’attention, des méthodes de visualisation de

l’attention et la connaissance des plongements lexicaux pré-entraînés. Nous avons égale-

ment mené certaines expériences en français, avec des traductions de nos ensembles de

données et des modèles français.

Nos modèles affinés sont très performants dans les tâches de classification. Cepen-
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dant, nous avons observé l’impact des ensembles de données sur l’affinage. Le premier

ensemble de données Friedrich and Gateva contenait des phrases plus longues et plus

complexes que l’ensemble de données de Alikhani and Stone (2019). Cela peut expliquer

pourquoi les modèles ont eu des difficultés avec certaines phrases longues dans les en-

sembles de tests qualitatifs, après avoir vu des énoncés plus courts avec une structure

moins compliquée.

Un autre résultat intéressant est que les modèles large ont parfois surpassé les mod-

èles base.Pour une tâche complexe telle que l’identification de l’aspect lexical, le traite-

ment et les informations supplémentaires dont disposent les grands modèles ont été

bénéfiques pour la précision de leur classification. Cependant, au cours de nos expéri-

ences, nous avons également remarqué que le processus d’affinage des grands modèles

était parfois un échec et qu’ils ne parvenaient pas à classifier, de sorte que le processus

devait être répété.

En outre, les modèles ont bien performé dans les tâches de classification même sans

affinage, simplement avec les informations incluses dans l’intégration d’un seul verbe.

Ainsi, les plongements contextuels s’avèrent encoder efficacement l’interaction du verbe

avec son contexte, sur lequel on s’appuie pour l’aspect lexical du verbe (par exemple, un

verbe télique tel que "manger" se trouverait plus fréquemment avec des noms de compte

qui établissent le point final de l’action).

Demanière surprenante, les résultats de la classification n’ont pas été très affectés par

la segmentation des verbes et du contexte en sous-mots par les tokenizers des modèles,

par exemple, le tokenizer ALBERT séparant les noms de leur suffixe pluriel. Cela aurait

pu être problématique puisque la présence d’un temps pluriel affecte parfois la télicité

d’une phrase (Krifka, 1998). Cependant, le modèle pourrait devoir se concentrer sur un

plus grand nombre de tokens et pourrait ne pas favoriser certaines parties du contexte

si une segmentation supplémentaire séparait les caractéristiques du verbe de la racine.

Par conséquent, les modèles dotés de vocabulaires plus restreints, tels qu’ALBERT, pour-

raient avoir légèrement sous-performé pour cette raison.

L’examen des mécanismes de self-attention des modèles nous a permis d’obtenir un

aperçu, mais très limité, de la manière dont les séquences d’entrée étaient traitées par les

modèles. Le mécanisme de self-attention de BERT sur les premières couches a démon-
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tré une certaine sensibilité à la structure syntaxique et une meilleure "focalisation" sur

les tokens individuels dans les premières couches. Cependant, les autres modèles n’ont

pas montré de focalisation spécifique sur les constituants dans aucune couche ou tête

d’attention. Cela pourrait avoir conduit à leur performance plus faible dans l’ensemble

de tests quantitatifss, par rapport aux modèles BERT, en particulier de RoBERTa et AL-

BERT qui sont des versions optimisées de BERT et ont eu une performance légèrement

inférieure à celle des modèles BERT. Les modèles XLNet, malgré l’amélioration des per-

formances de l’architecture sur les dépendances plus longues dans d’autres tâches de

TAL, n’ont pas été en mesure de tenir compte du contexte plus efficacement que BERT

ou d’encoder des informations plus pertinentes dans leurs encodages.

Notre examen des différents temps de verbe et des positions des phrases préposi-

tionnelles a révélé que les modèles montraient une certaine préférence pour le passé

perfectif et le passé continu, par rapport au passé simple. L’ordre des mots n’était pas

un indicateur important de réussite ou de confusion, mais le fait de placer un syntagme

prépositionnel de temps au début de la phrase (plutôt qu’au milieu ou à la fin) a parfois

amélioré les prédictions. Les phrases présentant des contextes conflictuels ont rarement

été classées correctement. Cela nous amène à conclure que le plongement du verbe et

ses informations sont plus importants pour l’effort de classification du modèle que les

autres plongements lexicaux.

Enfin, nos résultats sur les ensembles de données français ont démontré que les choix

syntaxiques et sémantiques d’une langue dans la transmission de l’aspect ont influencé

la capacité des modèles à catégoriser l’aspect, même avec nos modèles les moins perfor-

mants. Même avec des architectures de modèles différentes, les disparités entre les er-

reurs et les succès de classification dans les ensembles de données qualitatives des deux

langues montrent que la morphosyntaxe du français peut conduire à des représenta-

tions sémantiques différentes par le modèle. Cela est confirmé par le fait que des erreurs

se sont produites dans la classification de la télicité dans des phrases anglaises avec la

présence de temps simples/continus distincts (qui ne sont pas liés à la télicité mais ont

été bénéfiques pour le modèle dans certains cas), alors que leurs traductions françaises

ont été correctement classées quelle que soit le temps du verbe.

Enfin, la troisième série d’expériences a exploré les compétences des plongements
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lexicaux contextuels avec l’ordre des mots, c.-à-d. la position de l’adjectif attributif dans

un syntagme nominal. Alors que des travaux antérieurs ont montré que les modèles

Transformers sont insensibles à l’ordre des mots (Pham et al., 2021; Gupta et al., 2021),

des modèles affinés ont réussi à classer l’ordre des mots permutés (Sinha et al., 2021b).

Malgré les règles de grammaire traditionnelles qui suggèrent la postposition, la posi-

tion de l’adjectif attributif dans un syntagme nominal, par rapport à son nomde tête, peut

varier de manière significative, en fonction des processus syntaxiques et sémantiques.

La position de l’adjectif attributif peut être cruciale pour le sens du syntagme nominal.

Alors que l’intuition linguistique suffit aux locuteurs natifs pour prendre ces décisions,

notre objectif est d’évaluer si les modèles de Transformers sont capables de comprendre

la différence entre les deux positions possibles d’un adjectif dans une séquence.

Nous avons affiné les modèles Transformers français pour qu’ils apprennent la po-

sition préférée de l’adjectif attributif dans les phrases nominales, en fournissant les

deux positions possibles et en classant celle qui est préférée, puisque les modèles n’ont

pas d’informations sur la structure syntaxique correcte d’une phrase nominative. Nous

avons également testé avec des lignes de base non informées et traditionnelles et nous

avons examiné l’effet desmasques d’attention sur la classification (en bloquant l’attention

sur le syntagme ou sur le reste du contexte). Nous avons étudié les plongements pré-

entraînés avec des prédictions masquées et avec des méthodes de visualisation tradi-

tionnelles. Enfin, nous avons eu l’occasion de mener une expérience avec des locuteurs

natifs français, afin de comparer les prédictions des modèles à leurs choix dans des cas

difficiles de placement d’adjectifs attributifs.

Nos résultats démontrent que les modèles affinés étaient en fait capables de faire

la distinction entre l’ordre des mots original et permuté dans la tâche de classification

avec une très grande précision. Cependant, dans le cadre des corpus que nous avons

examinés, les modèles ont été surpassés par une simple base de référence basée sur la

fréquence, et le classificateur CNN s’est également avéré très performant. Cela pourrait

indiquer que la tâche en question est assez simple, mais la sensibilité à l’ordre des mots

qu’ils ont démontrée ici contredit les multiples résultats des architectures basées sur les

Transformers pour les entrées mélangées (parfois au-delà de toute lisibilité). Cependant,

les résultats de la deuxième expérience sur les modèles pré-entraînés ont confirmé les
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résultats précédents, selon lesquels cesmodèles ne dépendent pas de la position desmots.

Lamise au point avec un ensemble de données plus large et plus varié a été bénéfique,

mais elle a également réussi avec un ensemble de données plus petit, contrairement à

nos lignes de base.

En ce qui concerne l’utilisation des masques d’attention, autoriser l’attention sur

le syntagme nominal uniquement (adjectif et nom) a affecté les modèles de différentes

manières. Les modèles CamemBERT étaient tout à fait capables de classer l’ordre des

mots en ne prêtant attention qu’à l’adjectif et au nom, alors que c’était impossible pour

les modèles FlauBERT. En revanche, le fait de ne tenir compte que du contexte sans

l’adjectif et le nom était relativement inoffensif pour tous les modèles.

Lorsque le mécanisme d’attention des modèles n’a accès qu’au contexte, et non à

la paire adjectif-nom elle-même, ils sont toujours capables de classer la position de

l’adjectif, même si le mécanisme d’attention n’y a pas accès. Cette observation est co-

hérente avec l’observation linguistique selon laquelle la position de l’adjectif est égale-

ment déterminée par le contexte et pas uniquement par le syntagme nominal. Cepen-

dant, le fait que les modèles CamemBERT aient extrêmement bien réussi à identifier

la position sans utiliser le contexte, alors que les modèles FlauBERT ont complètement

échoué, est dû aux différentes architectures des modèles et aux choix dans la façon dont

les tokens sont traités. Dans nos expériences plus détaillées, nous avons constaté que

les modèles CamemBERT attribuent une probabilité globalement plus élevée aux ad-

jectifs, quelle que soit leur position, et que, au moins pour l’ensemble de données UD,

les plongements d’adjectifs étaient, dans certaines couches, très bien informés sur la

position préférée du mot. Cette connaissance est corrélée aux plongements lexicaux

contextuels appris, plutôt qu’au mot lui-même, car nous avons observé un manque de

similarité sémantique dans la visualisation.

Pour la plupart des adjectifs, la prédiction de leur position est une décision relative-

ment facile basée sur la fréquence ; pour observer les compétences sous-jacentes des

modèles dans des cas plus complexes, nous avons effectué une analyse d’erreur et des

expériences et visualisations supplémentaires sur les versions pré-entraînées des mod-

èles. Les différences entre les deux architectures se sont également reflétées dans notre

étude des plongements lexicaux pré-entraînés et des probabilités d’adjectifs, où nous
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avons remarqué que les plongements d’adjectifs de CamemBERT étaient mieux infor-

més. En ce qui concerne les plongements d’adjectifs, la façon dont ils sont créés semble

mettre davantage l’accent sur le contexte que sur l’information spécifique au mot du

token correspondant. L’examen des itérations d’un adjectif dans différentes phrases n’a

pas permis de mettre en évidence un modèle de comportement similaire à la similarité

vectorielle dans les plongements lexicaux traditionnels. Nous avons remarqué que la

classification avec les plongements lexicaux adjectifs n’était réussie que pour certaines

couches et certains modèles, mais qu’elle était imprévisible entre nos deux ensembles de

données. Nous n’avons pas non plus pu observer de grappes de plongement du même

adjectif en ce qui concerne leur position.

Ces résultats suggèrent que les plongements lexicaux contextuels contiennent des in-

formations sur l’ordre préféré des mots, mais seulement dans certaines couches. La mise

au point d’un modèle permet d’apprendre ces variations dans la position de l’adjectif

et de sélectionner avec succès l’adjectif correct. Dans l’ensemble, les modèles tendent

à favoriser les adjectifs fréquents et les informations contextuelles, plutôt que le con-

tenu de l’adjectif (son sens et sa classe). Cependant, la position de l’adjectif dépend de la

fréquence, d’où le succès de la base de fréquence non informée et le succès de nos mod-

èles. Les modèles CamemBERT ont mieux réussi que les modèles FlauBERT dans toutes

les expériences et ont capturé plus d’informations positionnelles dans les plongements

d’adjectifs ajustés. Cependant, tous les modèles de Transformers montrent des faiblesses

(à différents degrés) dans les cas complexes de phrases dépendantes d’un adjectif ou d’un

nom et d’expressions fixes.

En ce qui concerne les erreurs des modèles, les très rares erreurs commises (par les

modèles affinés) étaient justifiables dans une certaine mesure et étaient dues soit à des

adjectifs peu fréquents, soit à une mauvaise analyse syntaxique, soit à un sens ambigu

qui est grammatical et acceptable dans les deux positions de l’adjectif. En outre, nous

avons noté quelques phrases dans notre ensemble de données de questionnaire qui pour-

raient sembler peu naturelles pour des locuteurs natifs, mais elles ont été soit trouvées

dans des corpus existants, soit conçues pour être difficiles à comprendre par un locuteur

natif français. Cependant, la comparaison des modèles avec la performance humaine a

montré leurs véritables forces et faiblesses ; lorsqu’ils réussissent, les modèles ont ten-
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dance à suivre une structure syntaxique plus rigide et à favoriser la postposition, car

c’est la position adjectivale la plus fréquente parmi tous les adjectifs. Ils ont montré de

sérieuses difficultés à reconnaître certaines expressions figées et ont été plus facilement

influencés que les humains lorsqu’ils ont été amorcés avec le même adjectif. Dans les

cas où les deux positions étaient possibles, ils préféraient généralement la postposition la

plus "traditionnelle". Ces résultats pourraient démontrer que les modèles fondent leurs

prédictions davantage sur la fréquence que sur les informations syntaxiques et séman-

tiques d’un adjectif particulier, et qu’ils sont imperméables aux facteurs qui affectent les

décisions des locuteurs, tels que la longueur, la difficulté du traitement en ce qui concerne

la charge cognitive, et les différences sémantiques substantielles ou subtiles.

À la question de savoir si les plongements lexicaux contextuels capturent le con-

texte de manière suffisante et efficace, notre réponse penche vers l’affirmative. Ce n’est

pas une nouveauté puisqu’il a été prouvé qu’ils donnaient de meilleurs résultats que les

plongements lexicaux statiques. Il est plus intéressant d’examiner comment cette infor-

mation contextuelle est capturée. En examinant les différentes architectures basées sur

Transformer qui ont créé ces plongements, nous observons un dénominateur commun

: le processus de pré-entraînement nécessite un très grand nombre de données, même

pour les modèles pré-entraînés les plus petits. L’architecture neuronale Transformer est

capable de traiter cet énorme volume de données de manière dynamique, en extrayant

des modèles basés sur le mécanisme de self-attention à plusieurs têtes. L’objectif de mod-

élisation du langage masqué est utilisé par tous les modèles examinés dans cette thèse

pour créer leurs plongements pré-entraînés respectifs. En apparence, le modèle est ca-

pable d’évaluer lesquels de ces motifs sont les plus appropriés pour la position masquée

dans une séquence, mais ce succès est le résultat de la fréquence et non d’une quelconque

compétence linguistique.

Les modèles sont linguistiquement agnostiques, c’est-à-dire qu’ils traitent chaque to-

ken commeun élément d’information et chaque tokenmasqué comme un token dépourvu

de toute caractéristique autre que son contexte. Lors d’expériences préliminaires, nous

avons remarqué que la tâche de prédiction en position masquée donnait des résultats

irréguliers. À première vue, ils semblent généralement prédire un mot correspondant

au contexte à la position masquée. Lorsque l’élément masqué n’était pas un verbe, les
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modèles ont montré une affinité pour la prédiction d’éléments fréquents, tels que les ad-

jectifs de taille, les pronoms et la ponctuation. Cependant, dans les cas où le contexte était

vague ou complexe, le modèle prédisait des pronoms ou des signes de ponctuation au

lieu d’adjectifs ou de noms. Ces expériences n’ont malheureusement pas été fructueuses

et n’ont donc pas été poursuivies. Pour les résumer en quelques mots, les choix des mod-

èles pré-entraînés pour une position masquée sont au mieux "le pari le plus sûr" et au

pire une platitude fade, un mot absurde ou un terme offensant occasionnel.

Au lieu de cela, nous nous sommes concentrés sur l’utilisation de la prédiction de

la langue masquée en injectant le mot initialement masqué dans cette position et en

récupérant sa probabilité (voir les sections 4.4.3, 6.6). Les modèles n’ont pas essentielle-

ment échoué dans cette tâche, mais leur comportement diffère considérablement des

choix humains. Ils attribuent des probabilités élevées aux mots fréquents, même s’ils ne

sont pas les mieux adaptés au contexte donné. Ces éléments se sont vus attribuer une

probabilité élevée parce qu’ils ont été fréquemment observés dans de nombreux con-

textes similaires. De même, les mots moins fréquents mais qui correspondent mieux à la

position masquée reçoivent une probabilité plus faible, en raison de leur rareté globale.

La modélisation des plongements repose exclusivement sur des informations con-

textuelles, ce qui signifie que les différentes occurrences d’un même mot sont traitées et

encodées différemment. Les modèles ne sont pas en mesure de créer des classes ou des

groupes de mots intégrés, sur la base du contenu des intégrations. Dans la section 6.5.3,

nous avons étudié si les propriétés des vecteurs de plongement de mots dynamiques

correspondaient à celles des vecteurs de plongement de mots statiques, en traçant dif-

férentes instances du même mot - en traçant des lemmes et des types de mots. Intu-

itivement, nous nous attendions à ce que des grappes apparaissent, sur la base de la

similarité des informations contextuelles dans les vecteurs du même mot, mais ce n’était

pas le cas. Dans la section 4.5.2, nous n’avons pas pu identifier non plus de modèles

discernables de comportement des mots de tête (verbes, noms) choisissant leurs consti-

tuants (mots masqués) sur la base de la classe du mot de tête. Nous avons remarqué

quelques préférences faibles, comme les verbes qui choisissent leur sujet et leur objet en

fonction de l’animalité.

Dans les expériences d’extraction et d’exploration d’plongements lexicaux spéci-
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fiques, nous avons également eu l’occasion d’étudier plus avant les plongements lex-

icaux spécifiques. Dans la section 5.5.4.4, nous avons examiné si les plongements de

verbes étaient capables de capturer des informations sur l’aspect lexical, en se basant

sur les caractéristiques temporelles du contexte, c’est-à-dire la compagnie préférée du

verbe. Cette tâche de classification a été réussie, en particulier pour la classification

de la durée. Cependant, notre expérience dans la section 6.5.1 sur la classification de

la position de l’adjectif basée sur l’intégration de l’adjectif n’a pas été aussi fructueuse.

En termes simples, tous les plongements ne se valent pas. Les plongements de verbes

peuvent contenir des informations plus intéressantes, car ils ont tendance à imposer da-

vantage de contraintes au contexte que les autres tokens. En revanche, les adjectifs n’ont

pas une telle influence transformatrice sur leur contexte, de sorte que leurs plongements

pré-entraînés encodent suffisamment d’informations sur les préférences de l’adjectif.

Cela nous amène à la question suivante, à savoir si les plongements contextuels

demotsmontrent une sensibilité à la sémantique. Nos trois sujets de recherche ont

exploré les phénomènes linguistiques qui influencent l’acceptabilité d’une phrase. Dans

les expériences sur les préférences de sélection, les modèles pré-entraînés ont montré

qu’ils peuvent capturer les informations contextuelles des plongements lexicaux indi-

viduels et qu’ils ont une préférence pour la fréquence et pour la félicité sémantique.

Nous ne pouvons pas affirmer que lesmodèles n’ont pas de compétences syntaxiques;

les modèles ont montré qu’ils sont capables de distinguer les parties les plus importantes

d’une phrase, c’est-à-dire le verbe de la clause principale, son (ses) verbe(s) auxiliaire(s),

son sujet et son (ses) objet(s), et le verbe de la clause subordonnée. Leur perception de la

syntaxe n’est pas comparable aux capacités syntaxiques humaines et ne devrait pas non

plus être comparée à la cognition humaine. Toutefois, les modèles semblent ne pas “com-

prendre” les phrases prépositionnelles, les adverbes et les adjectifs attributifs pour traiter

une phrase et classer ses propriétés. Ils ont (la plupart du temps) réussi à capturer les

contextes littéraux préférés et, dans les cas de métaphores ou de contextes antagonistes,

ont préféré "ignorer" ces divergences. Malheureusement, ces éléments sont essentiels

à la communication humaine et véhiculent d’importantes informations syntaxiques et

sémantiques, qui ont conduit à des prédictions incorrectes lorsqu’elles ont été ignorées.

Une motivation importante pour nos expériences était la corrélation des modèles
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avec le comportement humain. Nous ne cherchons pas à soutenir ou à reproduire l’argument

selon lequel les modèles peuvent ou doivent imiter la production linguistique humaine.

Notre objectif était d’observer les préférences linguistiques humaines, qui ne correspondaient

pas nécessairement aux évaluations faites par les linguistes, et de les comparer au com-

portement appris des modèles. Le terme "perroquet stochastique" inventé par Bender

and Koller (2020) nous vient à l’esprit ; bien que nous soyons d’accord sur le fait que

les modèles reposent sur la répétition, nous aimerions ajouter l’adjectif "têtu" à cette

caractérisation. Les architectures apprennent des schémas syntaxiques rudimentaires et

insistent sur leur utilisation même lorsque le contexte suggère le contraire.

Existe-t-il un espoir d’améliorer ces modèles d’intégration contextuelle de mots?

En nous concentrant sur le rôle de finetuning dans les tâches de NLP, nous avons

soutenu tout au long de cette thèse que le finetuning est bénéfique pour créer des em-

beddings avec des connaissances supplémentaires. Même si nos expériences testaient

des phénomènes limités et que nos résultats n’étaient pas toujours des pourcentages im-

pressionnants montrant un succès quantitatif, nous avons démontré que l’apprentissage

par transfert peut sensibiliser les modèles aux phénomènes linguistiques, dans une cer-

taine mesure. Le champ d’utilisation possible de ces modèles affinés peut sembler limité,

car la communauté se concentre sur des modèles pour des tâches en aval d’une portée

plus large. Quoi qu’il en soit, nous espérons que nos conclusions sur l’affinage seront

utiles à la communauté du TAL.

En ce qui concerne notre critique technique de l’affinage, nous avons observé qu’il

ne s’agit pas, en fait, d’un processus très stable. Des graines aléatoires dans le processus

de affinage peuvent perturber la classification, et les modèles de grande taille peuvent

produire des résultats imprévisibles. Les modèles de base ont mieux accepté l’affinage,

et quelques phases d’affinage ont été suffisantes pour nos expériences. Nos expériences

sur l’ordre des mots ont montré que des ensembles de données plus grands et variés ont

donné de meilleurs résultats dans l’ensemble. Cependant, nos expériences sur l’aspect

lexical ont également réussi avec de petits ensembles de données. En outre, les don-

nées de bonne qualité sont importantes pour le succès de l’affinage. La combinaison

d’ensembles de données de différents domaines avec le même objectif d’annotation a

également été très bénéfique dans toutes nos expériences, car elle a introduit une var-
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iété dans les données, rendant les modèles d’affinage plus robustes.

Une partie essentielle de notre recherche a été d’observer le mécanisme de self-

attention. Dans nos multiples expériences avec les masques d’attention, nous avons

observé différents comportements, parfois anticipés, parfois surprenants. Pour les ex-

périences de préférences sélectives, concentrer l’attention des modèles uniquement sur

le mot de tête a produit de meilleurs résultats. Les plongements de verbes peuvent con-

tenir une plus grande quantité d’informations que les autres plongements lexicaux, d’où

leur plus grande influence. Cependant, dans le cas de la classification de l’aspect lex-

ical, nous avons recréé la tâche de mise au point et de classification avec un masque

d’attention sur le contexte et nous avons constaté une baisse de la précision. Bien que

cette constatation contredise l’importance des plongements du verbe pour les prédic-

tions, elle peut être due au fait que le processus d’affinage modifie les plongements avec

des informations supplémentaires, distribuant ainsi l’information dans la phrase entière.

Sur la question de savoir si l’attention est une mesure solide de l’explicabilité et de la

réussite, nous avons trouvé des tendances mais pas de réponses concrètes. Tout d’abord,

le seul modèle qui a produit des résultats visuellement intéressants est BERT, comparé à

RoBERTa et ALBERT qui ont montré des poids d’attention diffus sans préférences mar-

quées. Certaines couches et têtes particulières ont produit des visualisations d’attention

constamment similaires indépendamment de la phrase d’entrée, par exemple la troisième

couche de bert-base-uncased produisant une attention monotone du token t au token

t + 1. Nous avons remarqué que les tendances les plus fortes de l’attention se produi-

saient entre les tokens de verbe (mot principal ou de la clause subordonnée) et les sujets,

les objets et les verbes auxiliaires. Pour corroborer la bibliographie, nous avons égale-

ment observé que certaines couches des architectures présentent desmodèles d’attention

qui s’apparentent à des relations syntaxiques. En conclusion, bien que la self-attention

des têtes multiples soit difficile à déchiffrer et à étudier, elle peut constituer un outil

d’observation intéressant du fonctionnement interne desmodèles et de l’ordre des opéra-

tions lorsqu’ils traitent le langage et produisent des résultats.

Enfin, en ce qui concerne la question de l’importance de l’ordre des mots, si les mod-

èles étaient réellement agnostiques à l’égard de l’ordre des mots, ils traiteraient les en-

trées avec des tokens mélangés de la même manière. Cela n’a été le cas ni dans nos
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expériences sur l’ordre des mots, ni dans les expériences de classification des aspects

lexicaux dans lesquelles l’ordre des mots n’était pas un objectif de l’affinage. Les mod-

èles affinés ont été capables de classer l’ordre des mots de l’adjectif préféré avec succès

dans les ensembles de données de classification, dans la Section 6.4. Bien que la tâche ait

pu être assez simple, puisqu’une métrique basée sur la fréquence a également donné de

bons résultats, elle aurait été impossible pour les modèles s’ils avaient été complètement

agnostiques par rapport à l’ordre des mots. En outre, ils ont traité les phrases grammat-

icales et acceptables des mêmes tokens de manière différente, en classant leurs qualités

temporelles différemment. Alors que les modèles pré-entraînés peuvent être insensi-

bles aux permutations, les modèles finement réglés peuvent être rendus sensibles aux

permutations.
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ung, H., Levina, M., Li, C. Y., Li, J., Li, K., Li, Y., Lim, K., Lima Padovani, B., Lindén,

K., Ljubešić, N., Loginova, O., Lusito, S., Luthfi, A., Luukko, M., Lyashevskaya, O.,

Lynn, T., Macketanz, V., Mahamdi, M., Maillard, J., Makazhanov, A., Mandl, M.,

Manning, C., Manurung, R., Marşan, B., Mărănduc, C., Mareček, D., Marheinecke,

K., Martínez Alonso, H., Martín-Rodríguez, L., Martins, A., Mašek, J., Matsuda, H.,

Matsumoto, Y., Mazzei, A., McDonald, R., McGuinness, S., Mendonça, G., Merzhe-

vich, T., Miekka, N., Mischenkova, K., Misirpashayeva, M., Missilä, A., Mititelu,

C., Mitrofan, M., Miyao, Y., Mojiri Foroushani, A., Molnár, J., Moloodi, A., Monte-

magni, S., More, A., Moreno Romero, L., Moretti, G., Mori, K. S., Mori, S., Morioka,

T., Moro, S., Mortensen, B., Moskalevskyi, B., Muischnek, K., Munro, R., Murawaki,

Y., Müürisep, K., Nainwani, P., Nakhlé, M., Navarro Horñiacek, J. I., Nedoluzhko, A.,

Nešpore-Bērzkalne, G., Nevaci, M., Nguyễn Thi., L., Nguyễn Thi. Minh, H., Nikaido,
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