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Machine learning algorithms are widely used in the recommender systems that drive newsfeeds, streaming platforms, online marketplaces and social networking services. Their main purpose is to provide users with personalized recommendations by predicting their preferences and sorting available content based on those predictions. However, by selecting content from some producers over others, recommendation algorithms decide who is visible and who is not. These decisions have real ethical and societal implications, including the potential to overlook disadvantaged social groups when suggesting profiles to employers, or the possibility of certain voices and cultures being underor over-represented on social media. It has therefore become crucial to ensure that these automated decisions are unbiased and fair towards content producers, avoiding giving some groups an excessive advantage or disadvantage. In addition to deciding which producers are visible, recommendation algorithms also control the information and opportunities that users are exposed to, including job and housing ads. Consequently, concerns have emerged about whether these algorithms provide fair access to information and opportunities among their users. This thesis seeks to address the limitations of current recommendation algorithms by developing fairer systems that consider the welfare of both users and content producers. However, developing fair algorithms presents several challenges, including the definition of appropriate fairness criteria and the implementation of computationally efficient ranking algorithms that satisfy these criteria.

Drawing on the rich literature of social choice theory, we propose a conceptual framework to assess the fairness of ranked recommendations, relying on established concepts for fair division problems that have been relatively overlooked by the machine learning and recommender systems communities. This framework guides the development of new recommendation methods that follow the principles of fair division, and distribute exposure more equitably among content producers, without compromising the quality of recommendations for users. These methods are supported by theoretical results on the fairness properties, convergence guarantees and computational efficiency of the proposed algorithms, as well as experimental evaluations on publicly available datasets.

Résumé en français

Les algorithmes d'apprentissage automatique (machine learning)s o n tl a r g e m e n tu t i l i s é sd a n sl e s systèmes de recommandation qui alimentent les plateformes de streaming, de commerce et les réseaux sociaux. Leur principal objectif est de fournir aux utilisateurs des recommandations personnalisées en prédisant leurs préférences et en triant les contenus disponibles en fonction de ces prédictions.
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ces décisions automatisées soient non biaisées et équitables envers les producteurs de contenu, en évitant de donner à certains groupes un avantage ou un désavantage excessif. En plus de décider quels producteurs sont visibles, les algorithmes de recommandation jouent également un rôle clé dans la décision de quels utilisateurs sont exposés à certains contenus, notamment les contenus associés à des opportunités économiques telles que les offres d'emploi et annonces immobilières.

Par conséquent, des préoccupations se posent quant à l'équité d'accès à ces opportunités parmi les utilisateurs des systèmes de recommandation.

Cette thèse vise à adresser les limites des algorithmes de recommandation actuels en développant des systèmes plus équitables qui tiennent compte à la fois des utilisateurs et des producteurs de contenu. Cependant, le développement d'algorithmes équitables présente plusieurs défis, notamment la définition de critères d'équité appropriés et l'implémentation efficace d'algorithmes de ranking qui satisfont ces critères. En nous appuyant sur la riche littérature de la théorie du choix social, nous proposons un cadre conceptuel pour évaluer l'équité des listes ordonnées de recommandations, à partir de concepts établis pour les problèmes de partage équitable qui ont été peu étudiés en machine learning et en recommandation. Dans ce cadre conceptuel, nous développons de nouvelles méthodes de recommandation qui suivent les principes du partage équitable et distribuent l'exposition plus équitablement entre les producteurs de contenu, sans compromettre la qualité des recommandations pour les utilisateurs. Ces méthodes sont soutenues par des résultats théoriques sur la satisfaction de propriétés d'équité, sur les garanties de convergence et l'efficacité algorithmique des algorithmes proposés, ainsi que par des évaluations expérimentales sur des jeux de données publics.
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Introduction

The societal impacts of recommender systems

Recommender systems are an integral part of modern digital platforms, serving up to billions of users worldwide. These systems are present in online marketplaces, streaming services, content sharing platforms, and online social media. They play a crucial role in organizing the vast amount of available information by providing personalized recommendations to users for a variety of purposes, such as browsing news articles, finding products, jobs, housing, or people to connect with.

In the era of machine learning and its increasing adoption in many applications that affect our daily lives, recommender systems stand out as one of the most successful applications of machine learning algorithms. Machine learning have been instrumental in leveraging the vast amounts of data available on online platforms to personalize user experience and facilitate the discovery of new and relevant items. These algorithms analyze statistical patterns in users' past browsing behavior, interactions with items, expressed preferences, and other characteristics to predict their future interests. These predictions enable the retrieval of items to recommend with the aim of maximizing user engagement, such as increasing the number of clicks, likes, reshares, or time spent on the platform. Machine learning offers the promise of highly tailored recommendations that reflect individual tastes and preferences, leading to higher user satisfaction and increased platform usage.

it is crucial to carefully evaluate their societal implications and ensure that they do not unfairly disadvantage any groups.

On the side of users, recommender systems are traditionally designed to provide them with the most relevant items, a goal which seemingly aligns with their interests. However, concerns have been raised about the impact of recommendation algorithms on users in recent years. Audits of recommender systems have exposed disparities in the content delivered to various social groups of users. For instance, Datta et al. [2015]f o u n dt h a te q u a l l yq u a l i fi e dw o m e nr e c e i v e df e w e ro n l i n e ads for high-paying jobs than men. To prevent the risk of unfair delivery of opportunities across users, significant efforts have been made to audit recommender systems for unintended biases or discrimination against their users. These efforts call for the development of new recommendation algorithms that provide fair access to information and opportunities to their users.

Given the real-world impacts of recommender systems on their users and item producers, fairness in recommender systems has become a central topic in machine learning and information retrieval research. Fairness in recommender systems can be examined from at least two different sides: the item side and the user side. On the item side, the goal is to provide item producers a fair share of exposure in the recommendations. On the user side, it is necessary to ensure that recommender systems do not create or amplify unintended biases and provide recommendations that benefit all users. There is a growing demand for recommender systems that simultaneously achieve both goals, in order to sustain a healthy recommendation ecosystem that serves the interests of all their stakeholders [START_REF] Gourab K Patro | Fairrec: Two-sided fairness for personalized recommendations in two-sided platforms[END_REF], Abdollahpouri et al., 2020]. The societal impact of recommender systems is significant, and ensuring fairness for both users and item producers is crucial to avoid perpetuating or amplifying existing biases and inequalities.

Fairness in recommender systems is a fo cal p oint in a broader and active debate on the so cietal impacts of machine learning algorithms. As machine learning algorithms continue to gain traction in our daily lives, there has been growing public concern about the potential of machine learning models to introduce biases and discrimination in algorithmic decisions [START_REF] Buolamwini | Gender shades: Intersectional accuracy disparities in commercial gender classification[END_REF]Gebru, 2018, Barocas and[START_REF] Barocas | Big data's disparate impact[END_REF]. As a result, fairness has become a central topic in machine learning research, particularly in the context of classification and supervised learning [Barocas et al., 2019].

With the potential for algorithms to perpetuate biases and discrimination in decision-making, researchers have proposed a range of fairness metrics and methods to address these concerns in various supervised learning tasks, including recidivism prediction, hiring, and credit scoring. These methods aim to ensure that the algorithms do not perpetuate unfair practices, such as differences in treatment or outcomes based on gender, race, or other protected characteristics. In this chapter, we will delve into the key role of fairness in recommender systems within the expansive and constantly evolving field of fair machine learning, and we will present our contributions to this critical area.

Fairness concerns in recommender systems

Sources of unfairness in recommender systems

Overview of recommender systems. The task of a recommender system is to provide each of its users with a ranked list of items, which are selected from a large pool of candidate items (e.g., videos) provided by producers (e.g., video creators). The recommender system evaluates the quality of the rankings with ground-truth relevance scores, which measure the value of an item to a user.

At a high level, recommendation algorithms rely on two steps to generate ranked recommendations:

1. Learning: Estimate the value of every item for each user. This is done with a machine learning model that learns from past interactions of users with items, item features (e.g., category, might leave aside users with less common preference patterns. Because of this, the system may incorrectly learn stereotypical user tastes, such as gendered associations between user preferences and job categories. The ranking step then amplifies these biases by ordering items according to the estimated values, resulting in poor recommendation performance for users with non-stereotypical tastes [Ekstrand et al., 2018] or skews in the recommendation of certain content across sensitive groups [Sweeney, 2013[START_REF] Imana | Auditing for discrimination in algorithms delivering job ads[END_REF]. Moreover, in the case of advertising markets, skews in ad delivery appear when the ranking decision accounts for the results of an auction in which advertisers compete for the same group of users [START_REF] Ali | Discrimination through optimization: How facebook's ad delivery can lead to biased outcomes[END_REF]. For example, job advertisers must sometimes compete with product ads targeted at women, leading them to be shown to fewer women than men.

Fair recommendation vs. fair classification

This section aims to draw parallels between the problem of fairness in recommender systems and the more widely studied problem of fairness in classification tasks in machine learning. By making these connections, we aim to introduce the specific nuances of the former problem to readers who may already be familiar with the latter. While this serves as an introductory comparison to establish the foundation of our framework for fair recommendation, a comprehensive review of the literature on this topic is provided in Chapter 2.

Learning and decision-making in classification. Fairness in recommender systems is a critical area of research within the broader field of fairness in machine learning, which garnered significant attention in recent years. While recommender systems can be decomposed into a learning step and a ranking step, many other machine learning applications also have these learning and decision-making components [Kleinberg et al., 2018b, Kilbertus et al., 2020[START_REF] Corbett-Davies | Algorithmic decision making and the cost of fairness[END_REF]. The most largely studied setting is fair (binary) classification, where the goal is to predict a binary label for each individual, such as whether or not they will repay a loan, in order to assist a decision, such as whether or not to accept a loan application. Other common examples are recidivism prediction and hiring [Corbett-Davies andGoel, 2018, Barocas et al., 2019]. We discuss how fairness considerations in the learning and decision steps of classification tasks relate to the fairness considerations in the learning and ranking steps of recommender systems.

Let us consider a classical example in the fair machine learning literature, where a lender uses an algorithm to determine whether or not to approve a loan application [Hardt et al., 2016a[START_REF] Jia | When online dating meets nash so cial welfare: Achieving efficiency and fairness[END_REF]. In the learning step, a supervised learning algorithm produces a score for each individual by estimating the probability that they belong to the positive class (i.e., the probability that they repay the loan). This score is predicted by a probabilistic classifier that is trained on historical data. Unfairness can arise in the learning step when the data used to train the model is not representative of the population to which it is applied. The resulting model may not perform well on unseen data that comes from a different population, or it may learn problematic associations between sensitive attributes and outcomes. In the lending example, if the training data contains a majority of unsuccessful loan applications from people of a certain race or socioeconomic background, the resulting model may produce estimates that are biased against those groups. This can lead to unfair outcomes where certain groups are systematically denied access to loans because of a systematic underestimation of their creditworthiness. As discussed in the previous section, learning algorithms aimed at predicting items' values in recommender systems can also overestimate the value of popular items because of the lack of user feedback for less popular items in historical data.

In the decision-making step, individuals are classified as positive or negative based on their predicted scores. In the lending example, the decision to accept a loan application is based on whether the applicant is predicted as creditworthy, which is done by applying a threshold to the estimated probability of repayment. The decision threshold can have significant fairness implications, as it determines which individuals are deemed eligible for certain life opportunities or services. In particular, when choosing group-specific (or group-agnostic) threshold policies, the resulting distribution of positive outcomes may or may not lead to welfare gains for disadvantaged groups [Kleinberg et al., 2018b[START_REF] Corbett-Davies | Algorithmic decision making and the cost of fairness[END_REF].

In recommender systems, ranking algorithms also make a decision on who receives positive outcomes. The decision is more complex than binary classification thresholds in at least two ways.

First, it consists in producing one ranking of items for each user, instead of a simple threshold per user. Second, it involves making complex trade-offsb e t w e e nt h ei n t e r e s t so fv a r i o u ss t a k e h o l d e r s who value the recommendations differently: users seek rankings that best match their preferences, while items seek high exposure -therefore, the notion of positive outcome is not absolute.

In this thesis, we focus on the fairness of the decision that occurs at the ranking stage of recommender systems, more precisely on the social planning problem that consists in choosing a trade-off between the utilities of users and items (we later clarify the definitions of utilities in Section 1.3). This is a similar stance to Kleinberg et al. [2018b] who claim that fairness considerations should affect how the social planner uses the learned scores to make a decision, rather than the choice of learning algorithm, in the context of binary decision problems (i.e., college admissions).

Fairness criteria in classification. Fairness criteria have b een prop osed for b oth the learning and decision steps. The fairness of scores produced in the learning stage has been intensely studied in classification. Criteria include calibration between groups and parity2 of predicted scores [Kleinberg et al., 2016, Pleiss et al., 2017]. In the lending example, parity requires that the average credit score is the same for all groups, while calibration requires that the probability of repaying a loan for a given credit score is the same for all groups. In the fair recommendation literature, a few criteria for the fairness of scores have been proposed [Yao andHuang, 2017, Islam et al., 2021], but several authors highlighted the insuffiency of considering scores in isolation from the final decision, i.e. the rankings [Beutel et al., 2019a, Singh and[START_REF] Singh | Fairness of exposure in rankings[END_REF]. In particular, calibration of scores does not trivially extends to the setting of recommender systems [Steck, 2018], because the impact of an item's score is only meaningful in comparison to the scores of other items [Beutel et al., 2019a].

Ab r o a dc l a s so ff a i r n e s sc r i t e r i ai nt h ed e c i s i o ns t e po fc l a s s i fi c a t i o nt a s k sa i ma te q u a l i z i n g outcomes across sensitive groups. Demographic parity requires equal probability of positive outcomes across sensitive groups [START_REF] Feldman | Certifying and removing disparate impact[END_REF], Zliobaite, 2015]a n dequality of opportunity [Hardt et al., 2016b](orequalityoferrorrates [Zafar et al., 2017a[START_REF] Bilal Zafar | Fairness constraints: A flexible approach for fair classification[END_REF]) aims at equalizing the probabilities of positive outcomes for the positive class across groups. Geyik et al. [2019]p r o p o s eam a p p i n go f demographic parity and equality of opportunity to the ranking setting. When items are partitioned into sensitive groups, demographic parity requires that groups of items receive equal exposure in the rankings, while equality of opportunity is similar to a popular merit-based criterion for rankings that we present in Section 1. 3.5. Corbett-Davies et al. [2017], Hu and Chen [2020]i n s i s to nt h ec o s tf o rs o c i a lw e l f a r eo fs e e k i n g parity of outcomes in classification problems, as it is possible to equalize outcomes across groups by depriving individuals from positive outcomes without redistributing them to disadvantaged individuals. In this thesis, we also demonstrate the undesirable consequences of enforcing fairness constraints on item exposure (Chapter 3). However, we argue that reducing inequalities in the distribution of outcomes is reasonable in the case of ranking, where the decision is allocative,because it can lead to positive changes in social welfare. In contrast, decisions in most fair classification problems are not allocative, because there is no budget on the number of positive classifications [START_REF] Bilal Zafar | Fairness constraints: A flexible approach for fair classification[END_REF], 2017a, Hardt et al., 2016b, Agarwal et al., 2018]. In other words, these works consider strict classification problems, rather than selection problems. In practice though, binary accept/reject decisions are often budgeted: there is typically a fixed budget to spend in lending problems, and a fixed number of slots in a college admissions. Budget considerations as in [Kleinberg et al., 2018b[START_REF] Emelianov | Fairness in selection problems with strategic candidates[END_REF]b r i n gc l a s s i fi c a t i o np r o b l e m sc l o s e rt or e c o m m e n d e rs y s t e m s where there is a fixed number of recommendation slots to allocate. In those budgeted settings, it is desirable to redistribute outcomes, since a positive outcome that is taken from someone is necessarily transferred to someone else. We present in the following section a main contribution of this thesis, which is a framework for guiding the allocative decision of ranking in recommender systems, rooted in distributive justice principles of social choice.

Social choice for fair recommendation

This section presents a core contribution of this thesis: a conceptual framework for fairness in recommender systems that is grounded in social choice theory.

Fair allocation of exposure in recommender systems

As we previously discussed, at the ranking stage, recommender systems make a collective allocative decision on which items receive exposure, and to which users they are exposed. Fairness in allocation problems,o rfair division, has a long history in social choice theory, which is a branch of economics that studies collective decision-making processes based on the heterogeneous preferences of multiple agents [START_REF] Kenneth J Arrow | Handbook of social choice and welfare[END_REF][START_REF] Moulin | Fair division and collective welfare[END_REF]. In this thesis, we approach fairness in recommender systems as a new fair division problem, where the scarce resource to distribute is the amount of content that the system can display to its users, i.e., the total available exposure. Different item producers compete for a share of this limited resource. Our view is that the recommender is a social planner whose goal is to provide ranked recommendations to users by fairly allocating the exposure budget among item producers, while also taking into account the impact of the allocation mechanism on user satisfaction. We build on the extensive research on fair division that has been conducted in the past in social choice theory and cardinal welfare economics.

We use the term utility in its broad sense in cardinal welfare economics as a "measurement of the higher-order characteristic that is relevant to the particular distributive justice problem at hand " [START_REF] Moulin | Fair division and collective welfare[END_REF]. In our allocation problem, there are two types of agents -users and item producers -who benefit differently from the rankings. Users value high quality rankings that best match their preferences, and items benefit from a high number of views. As a result, we define user utility as a ranking performance metric, and item utility as the expected number of views. We provide formal definitions of user utility and item utility in the next section, and a discussion of these modelling choices in Chapter 7. The allocation problem consists in choosing rankings by making trade-offs between user utilities and item utilities. We refer to this allocation problem as the fair allocation of exposure problem.

As discussed earlier, the traditional approach in recommender systems is to maximize average user utility only, by sorting items by decreasing relevance for each user. However, this approach can have undesirable effects, such as unfair winner-take-all effects and amplification of biases in estimated scores, as described in Section 1.2.1. Therefore, our motivation for considering the fairness of exposure allocation towards both users and item producers is to mitigate these negative Chapter 1. Introduction consequences.

Formal setting and utility models

We formalize the notions of user and item utilities in the following recommendation setting.

Formal setting. We consider a setting in which there is a set of n users and m items (e.g., videos) created by producers (e.g., video creators), and the recommender system must generate a top-K ranking of items for each user. We denote by µ ij 2 [0, 1] the ground-truth value of item j for user i. In practice, µ ij represents a relevance score, or the probability that the user positively engages with the item (e.g., the probability of watching or liking a video). We denote by P 2 R n⇥m⇥m a ranking policy that defines a ranking for each user: P ijk is equal to 1 if j is recommended to user i at position k,a n d0 otherwise. The output of the recommender system is a ranking policy P .

Utility models. Following the academic literature on fairness of exposure [e.g. [START_REF] Singh | Fairness of exposure in rankings[END_REF], Wang and Joachims, 2021, Biega et al., 2018], we assume that users examine ranked lists by following the position-based model [Craswell et al., 2008]. This model is based on the intuition that users examine items in order of their ranking, and that the probability of examining an item decreases as the item's rank increases (1.1)

The user utility is higher when relevant items are ranked higher. When the weights are b k / 1 log 2 (1+k) , the user utility is the discounted cumulated gain (DCG) [Järvelin and Kekäläinen, 2002], a classical ranking performance metric. Note that the utility of user i only depends on their own ranking P i and not the global ranking policy P .

Since the ranking policy also has an impact on the item producers, we also measure the exposure of an item, which is its expected number of views across all users' rankings in the position-based model. Formally, the exposure of an item j 2 JmK is defined as:

Item exposure: v j (P )= n X i=1 m X k=1 P ijk b k .
Exposure is higher when the item appears in higher positions in more users' rankings. We define the item utility as the item exposure, and use the two terms interchangeably. To simplify the presentation, we identify item producers with items,b u tt h ef r a m e w o r kw o u l db ec o n c e p t u a l l y equivalent by defining the exposure of a producer as the sum of the exposures of all the items produced by the producer. We defer the discussion of the implications and limitations of these utility models to Chapter 7,S e c t i o n7.2. 3.1. Note that unlike user utility, the exposure of an item j depends on the global ranking policy P , and not just the local ranking P i of a given user i. Considering items' exposures' thus introduces a coupling between the rankings, and requires handling the global ranking policy P .

Maximizing welfare functions

The recommender system has to make a normative decision on how much utility should be redistributed a) between users and items, and b) among each population, between the better-off and the worse-off individuals. This involves a complex multidimensional trade-off.B o o s t i n gs m a l l item producers by reducing the exposure of popular items is costly for average user utility. At the same time, the least satisfied users should not bear that cost. It is therefore crucial to examine who benefits or bears the cost of reducing inequalities of exposure among items. Our goal is to provide a framework to assess the multi-dimensional trade-offsi n v o l v e db yar a n k i n gp o l i c y ,a n dt o generate rankings that achieve a variety of these trade-offs. The choice of a specific trade-off is left to the designer of the recommender system.

We follow a general framework based on maximizing welfare functions in so cial choice [START_REF] Moulin | Fair division and collective welfare[END_REF], Sen, 1970[START_REF] Joseph Arrow ; N E Wy O R K | Social Choice and Individual Values[END_REF]. Welfare functions specify an ordering of a set of alternatives P by mapping a utility profile to a real value that represents the aggregate utility of all individuals for a given alternative P 2 P.S o c i a l l yp r e f e r r e da l t e r n a t i v e sa r et h o s et h a tm a x i m i z et h ew e l f a r e function. For the fair allocation of exposure problem, we propose to find a ranking policy P within as e to fr a n k i n gp o l i c i e sP by maximizing a global welfare function F (P ), which is a weighted sum of welfare functions for users and items: 1)g user (u(P )) + g item (v(P )),

F (P )=(
where g user : R n ! R and g item : R m ! R are strictly concave, increasing functions that respectively aggregate the utilities of users and the utilities of items, and 2 [0, 1] controls the trade-off between the welfare of users and the welfare of items. The strength of the curvature of the concave welfare function g item (resp. g user )c o n t r o l sh o wm u c hu t i l i t ys h o u l db er e d i s t r i b u t e df r o mb e t t e r -o ff to worse-off items (resp. users).

1. 3.4 Distributive justice principles in welfare economics

In this thesis, we study two classes of welfare functions from cardinal welfare economics for the choice of g user and g item in F (P ) in Equation (1.2).W ef o c u so na d d i t i v ec o n c a v ew e l f a r ef u n c t i o n s in Chapter 3 and generalized Gini welfare functions in Chapter 4.W el a t e ri n t r o d u c et h e s ec l a s s e s of welfare functions in their respective chapters, as well as in the background section on social choice (Section 2.4). When using either of them in the global welfare function F (P ),w ep r o v et h a tt h e ranking policies obtained by maximizing F (P ) simultaneously satisfy two fundamental social choice properties. These properties are Pareto efficiency and the Pigou-Dalton transfer principle [START_REF] Moulin | Fair division and collective welfare[END_REF], which we introduce for the problem of fair allocation of exposure in recommender systems.

Considering the whole population of users and items, these properties are defined as follows:

1. Pareto efficiency: It is not possible to improve the utility of an individual (user or item), without decreasing the utility of another individual.

2. Pigou-Dalton transfer principle:A tag i v e nl e v e lo ft o t a lu t i l i t y ,u t i l i t ys h o u l db er e d i stributed as much as possible from the better-off to the worse-off individuals.

Pareto efficiency is an efficiency criterion that avoids undesirable rankings where everyone is made worse-off. The Pigou-Dalton transfer principle is a distributive fairness criterion that allows to sort through Pareto-efficient solutions. It favours rankings that redistribute exposure from highly visible items to less visible items. Therefore, it promotes more equality among items, and it allows to mitigate the winner-take-all effects of the traditional ranking solution, which we described in Section 1.2.1.F u r t h e r m o r e ,o nt h eu s e rs i d e ,s i n c ew o r s t -o ff individuals are prioritized, the transfer principle makes sure that the least satisfied users do not bear the cost of boosting the exposure of the least visible items.

The Pigou-Dalton transfer principle is equivalent to Lorenz efficiency,ac r i t e r i o nt h a tw e introduce in Chapter 3 that combines these efficiency and fairness guarantees [Hardy et al., 1952[START_REF] Albert W Marshall | Inequalities: theory of majorization and its applications[END_REF]. The definition of the Lorenz efficiency criterion is based on the generalized Lorenz curves of utility profiles, which are a graphical representation of the cumulative utility detained by each fraction of a population, and are used in welfare economics to measure income inequality [Shorrocks, 1983, Kolm, 1976]. We introduce them in more detail in the background section (Section 2.4), and in Chapter 3 where we use generalized Lorenz curves to assess the fairness of rankings obtained by various methods for users and items.

Assessment of merit-based fairness constraints

In the previous section, we introduced fundamental social choice properties, particularly the Pigou-Dalton transfer principle (or equivalently, Lorenz efficiency), which had been overlooked by the fair ranking literature. These properties provide a principled basis to assess the fairness of rankings for users and items. In Chapter 3,w eu s et h e i ri n s i g h t st oe x a m i n et h ed i s t r i b u t i v ef a i r n e s so fe x i s t i n g approaches to fair ranking.

In the literature on fairness of exposure in rankings, fairness for items is often measured by a distance between the vector of items' exposures' (i.e., the item utility profile) and a target exposure vector, which represents the ideal distribution of exposure among items in a recommender system considered as fair [Diaz et al., 2020, Kletti et al., 2022a, Raj and Ekstrand, 2022]. A prominent fairness notion in this recent literature is merit-based fairness which states that the exposure of an item should be proportional to its merit -in these works the target exposure of an item is defined as an increasing function of its average value to users, which is used to measure the merit of an item [Biega et al., 2020, Diaz et al., 2020, Morik et al., 2020[START_REF] Singh | Fairness of exposure in rankings[END_REF], Biega et al., 2018]. Starting from this merit-based fairness measure, authors either proposed to minimize merit-based unfairness [Diaz et al., 2020, Biega et al., 2018], or optimize trade-offsb e t w e e na v e r a g e user utility and merit-based fairness [Kletti et al., 2022a, Morik et al., 2020, Biega et al., 2020], or maximize user utility under merit-based fairness constraints [START_REF] Singh | Fairness of exposure in rankings[END_REF] 3 .

In Chapter 3, we assess these approaches in the light of distributive justice principles. Following these works, we define the merit of an item j as q j = P n i=1 µ ij .L e tE = n kbk 1 the total exposure and Q = P m j 0 =1 q j 0 the total merit. Then the target of item j is qj E Q ,s ot h a ti ff o ra l li t e m sj the exposure of j is equal to its target, then the ranking policy satisfies the merit-based fairness criterion stating that the exposure of an item should be proportional to its merit. We assess approaches which optimize the following trade-offs between total user utility and merit-based fairness, where > 0 is a trade-off parameter:

F merit (P )= n X i=1 u i (P ) m v u u t m X j=1 ✓ v j (P ) q j E Q ◆ 2 (1.3)
We show in Chapter 3 (Proposition 2) that when increasing the strength of the penalty in favour of the merit-based fairness criterion, this can lead to increase inequalities among items while decreasing total user utility. In practice, in some recommendation problems, merit-based fairness can increase the exposure of popular items (items j with high merit q j ), leading to rich-gets-richer effects.

Although this is compatible with Pareto efficiency, it is a clear violation of the Pigou-Dalton transfer principle, which promotes transfers of exposure from "rich" to "poor" items. This fundamental fairness condition in social choice provides a more complete understanding of merit-based approaches, by demonstrating that they may unintentionally lead to distributive unfairness.

Reciprocal recommendation

Reciprocal recommender systems. The recommendation framework that we discussed thus far depicted "one-sided" recommendation,i nt h es e n s et h a to n l yi t e m sa r eb e i n gr e c o m m e n d e d .

Our conceptual framework for fair allocation of exposure also applies to reciprocal recommendation problems [Palomares et al., 2021]. Reciprocal recommender systems include the recommendation of friends or dating partners in social networks, or the recommendation of job seekers to recruiters and vice versa on job search platforms. The specificity of reciprocal recommender systems is that users are also items that can be recommended to other users (the item per se is the user's profile or CV). Since items are also users, they have meaningful preferences on which users they should be recommended to.

Ensuring fair recommendations in reciprocal recommender systems is a critical and complex issue.

In professional matching platforms, uncarefully addressed popularity biases or learned stereotypes [Palomares et al., 2021[START_REF] Sahin | Fairness-aware ranking in search & recommendation systems with application to linkedin talent search[END_REF]c a nr e s t r i c tt h ea c c e s so fd i s a d v a n t a g e dg r o u p so fe l i g i b l e candidates to job opportunities, whenever the recommender system fails to give them enough exposure to the employers who are relevant to them, and to whom they would be relevant. Online dating platforms are also questioned about the fairness of their recommendation algorithms, which may exacerbate pre-existing biases in the dating market where users feel more entitled to express preferences based on race or economic status [START_REF] Wang | Modeling dynamic missingness of implicit feedback for recommendation[END_REF][START_REF] Jevan A Hutson | Debiasing desire: Addressing bias & discrimination on intimate platforms[END_REF].

The key to extend our recommendation framework to reciprocal recommendation tasks is to redefine the utility of a user to account for the fact that (1) the user utility comes from both the recommendation they receive and who they are recommended to, and (2) users have preferences over who they are recommended to. In this setting, the set of users and the set of items are identical, so we have n = m.L e tu sd e n o t eb yµ ij the mutual preference value between two users i and Palomares et al., 2021]. For instance, when recommending CVs to recruiters, µ ij can be the probability of an interview, while in dating, it can be that of a "match". The two-sided utility of a user i is then the sum of the utility u i (P ) derived by i from the recommendations received, and the utility v i (P ) from being recommended to other users:

u i (P )=u i (P )+v i (P )= X 1i,jn (µ ij + µ ji )P | ij b
where

u i (P )= n X j=1 µ ij P | ij b and v i (P )= n X j=1 µ ij P | ji b .
In other words, the two-sided utility of i is the sum of its user-side utility and its item-side utility.

Fair allocation of exposure in reciprocal recommender systems. In the reciprocal recommendation setting, since there are only users, the welfare objective F (P ) of Equation (1.2) is simply a function that aggregates the two-sided utilities: F (P )=g(u(P )),w h e r eg : R n ! R is a strictly concave, increasing function. In this setting, distributive fairness aims at improving the utility of the worse-off users, and the recommender system must make trade-offsbe t w e e nt h eu t i l i t y of the worst-off users and total user utility. The curvature of g controls how much redistribution of two-sided utility is desired from better-off users to worse-off users. In practice, the utility of the worse-off users can be improved by boosting their exposure, i.e. increasing their "item-side utility".

As for non-reciprocal recommendation problems, we address both additive concave welfare functions in Chapter 3 and generalized Gini welfare functions in Chapter 4 for the choice of g.W e show that in both cases, ranking policies P obtained by maximizing F (P ) satisfy Lorenz efficiency (i.e., Pareto efficiency and the Pigou-Dalton transfer principle). We also show in Chapter 3 that striving for equal utilities in reciprocal recommendation is Pareto inefficient as it can destroy everyone's utility. Finally, we discuss in Chapter 7 the similarities and differences between reciprocal recommendation and matching problems.

Overall, our framework for fairness in recommender systems applies to both non-reciprocal and reciprocal recommendation tasks. As discussed in the related work chapter (Chapter 2,S e c t i o n 2.1), the latter problem received considerably less attention in the fair recommendation literature.

We b elieve that our framework for fair allo cation of exp osure in recipro cal recommendation tasks can be useful to address critical fairness issues in this overlooked setting.

Algorithms for maximizing concave functions of rankings

This section discusses the algorithmic challenges of maximizing concave functions of rankings and presents a high-level overview of our algorithmic contributions to overcome these challenges.

Batch and bandit settings

In this thesis, we consider either of two settings for recommender systems, which combine learning and ranking in different ways. , depending on the quality of the estimation. In Chapter 5, we address the contextual bandit setting, where the recommender system balances exploration and exploitation to learn user preferences and rank items.

The

In the previous Section 1. 3,w ep r e s e n t e do u rc o n c e p t u a lf r a m e w o r ka n dr a n k i n go bj e c t i v e si n the batch setting. The batch setting is useful for disentangling the learning step from the ranking step. This static setting allows to focus on the fairness of the allocative decision made in the ranking step. Specifically, it facilitates the modeling of trade-offsi n v o l v e di nt h er a n k i n gp o l i c ya n de n a b l e s the definition of ideal objective functions for fair ranking by considering all users and items at once. This separation between learning and decision-making allows to think about fairness in allocative terms at the ranking stage, and to bring insights from the literature on fair division in social choice -a na r e at h a th a sb e e nr e l a t i v e l yu n e x p l o r e di nt h ec o n t e x to ff a i rm a c h i n el e a r n i n g .

The drawback of the batch setting is that it is impractical for real-world recommender systems, since it requires computing the rankings of all users at once, involving large computation and memory costs. In practice, rankings are generated online as users enter new sessions and request recommendations. It is much more efficient to compute the ranking of a single user at a time.

The contextual bandit setting enables this, in combination with online learning of user preferences.

However, the bandit setting is more challenging, as it requires to design algorithms that efficiently balance exploration and exploitation while optimizing for complex fairness objectives.

Maximizing concave ranking objectives

Algorithmic challenge: Maximization of concave functions of rankings. As described in Section 1. 3.3,w Despite the convex relaxation to stochastic rankings, optimizing welfare functions of the form of F (P ) is still computationally challenging, because ranking with fairness of exposure for items requires to solve a global optimization problem in the space of rankings of all users. Indeed, recall that the exposure of an item is the sum of its exposure to every users: v j (P )= P n i=1 P m k=1 P ijk b k , which means that it is not possible a priori to decouple the global optimization problem into a set of local optimization problems where P i is found independently for each user i. In contrast, the traditional solution for maximizing average user utility finds each P i independently by sorting items by decreasing values µ ij for each user i.

Generic algorithms for concave ranking objectives. In this thesis, we present computationally efficient algorithms that optimize ranking objectives of the form of F (P ).

1. In the batch setting, our algorithms output a randomized ranking policy that can be represented as a sparse convex combination of deterministic ranking policies. 2. In the contextual bandit setting, our algorithms produce one deterministic ranking at a time for each user observed in sequence, associated with a stochastic context.

The main algorithmic contributions of this thesis start from the result of Theorem 5, which we prove in Chapter 3.O u rr e s u l ts t a t e st h a ti t e r a t i o n so ft h eF r a n k -W o l f ea l g o r i t h m [ Frank and Wolfe, 1956]c a nb ec o m p u t e de fficiently for concave functions of rankings in the position-based model, with one decentralized sorting operation per user.B a s e do nt h i sr e s u l t ,w el e v e r a g eF r a n k -W o l f e variants and their theoretical analyses to derive computationally efficient algorithms for ranking that provably optimize various fair ranking objectives, in the batch setting and in the bandit setting.

While our efficient ranking algorithms are primarily motivated by the optimization of global welfare functions of the form of F (P ) (Equation (1.2)), they apply to all concave functions of users' and items' utilities, and not just welfare functions. This includes objectives with convex item-side fairness penalties that have been proposed in the fair ranking literature. For example, our algorithms also apply to the merit-based fairness objective of Eq. ( 1.3) that we presented in Section 1. 3.5.

Outline and contributions

We now present the outline of this thesis and summarize the contributions by chapter, which each corresponds to an article published during the PhD.

--

The first two chapters focus on the fairness of the ranking stage, in the batch setting.

Chapter 3: Fairness in rankings with additive concave welfare functions. We prop ose to assess the fairness of rankings for users and items in recommender systems based on fundamental distributive justice principles in welfare economics, based on Pareto efficiency and the Pigou-Dalton transfer principle. We show that some popular approaches to fair ranking fail to satisfy those principles. For example, merit-based fairness constraints can decrease user utility while increasing inequalities of exposure among item producers, which goes against the transfer principle that aims to reduce inequalities. To overcome the limitations of existing approaches, we propose a new approach to generating fair rankings that is grounded in cardinal welfare economics. It consists in maximizing additive concave welfare functions, which are a family of smooth welfare functions.

These welfare functions can be interpreted as sums of utilities of agents who have diminishing returns. The property of diminishing returns for exposure means that "one additional view counts more for items who have 10 views than who have 10 million views", which is particularly relevant for recommender systems. Rankings produced by maximizing such welfare functions satisfy Pareto efficiency and the Pigou-Dalton transfer principle.

We also intro duce the related to ol of generalized Lorenz curves from welfare economics to assess the fairness of rankings. Generalized Lorenz curves are a graphical representation that allows to visualize the distribution of utilities among users and items, and in particular the utility of the worst-off individuals, which we aim to improve. Using this representation, we can observe how much utility is taken from the best-off to increase the utility of the worst-off individual users, when varying the parameters of the additive welfare function.

Our conceptual framework is also the first one to simultaneously address fairness in non-reciprocal and reciprocal recommendation problems. Reciprocal recommendation is a specific setting that has been relatively overlooked by the fairness literature, and where users are also items. Their utility is thus two-sided: they benefit from the recommendations they receive, and from being recommended to other users. We show that the welfare function approach for non-reciprocal recommendation can be extended to the reciprocal case by using our new notion of two-sided utility, in order to better serve the worst-off users.

On the algorithmic side, global welfare functions that account for items' exposures are challenging to optimize, because the exposure of an item depends on the rankings of all users. Prior to our work, existing methods addressed this challenge with heuristic approaches without any guarantees or control over the achievable trade-offs. We propose a computationally efficient algorithm for fair ranking based on the Frank-Wolfe method [Frank and Wolfe, 1956]. The algorithm generates a stochastic ranking policy as a weighted sum of deterministic ranking policies. This eliminates the need for an additional Birkhoff-von-Neumann decomposition step [Birkhoff, 1940], which was required in prior work using stochastic rankings [Singh andJoachims, 2018, Wang andJoachims, 2021]. Our algorithm is capable of optimizing any concave function of the utilities of the rankings, which encompasses our additive welfare functions but also existing fair ranking criteria.

We simulate a music recommendation task based on data from Last.fm to evaluate the p erformance of our algorithm. Our experiments confirm that merit-based fairness approaches are unable to decrease item inequality and can exacerbate winner-take-all effects where popular items capture a large fraction of the total exposure. In contrast, our approach based on maximizing additive welfare functions obtains better trade-offsb e t w e e nt o t a lu s e ru t i l i t ya n di n e q u a l i t yo fu t i l i t i e sa m o n gi t e m s (measured by the Gini index or the standard deviation). Moreover, by varying the parameters of the welfare function, we are able to drive item inequality close to zero. Finally, towards two-sided fairness, our approach is able to generate a wide range of trade-offsb e t w e e nf a i r n e s sf o ri t e m sa n d fairness for users, measured by the utility of the 10% and 25% worst-off users.

Since our framework encompasses reciprocal recommendation problems, we also provide experimental evaluation on a social recommendation task based on Twitter data. By maximizing an additive concave welfare function of the two-sided utility of users, we are able to generate a wide range of trade-offsb e t w e e nt o t a lu t i l i t ya n du t i l i t yo ft h e1 0 %w o r s t -o ff.

Chapter 4: Fairness in rankings with generalized Gini welfare functions. We prop ose an alternative fair ranking approach based on Generalized Gini welfare Functions (GGF), which are a more expressive class of welfare functions than the previous additive welfare functions. A drawback of GGFs compared to additive welfare functions is that they cannot be expressed as a sum of utilities of agents with diminishing returns. Although we lose this intuitive interpretation, we gain in expressivity since GGFs are able to directly express fairness criteria based on utility quantiles (e.g. "maximize the utility of the 10% worse-off"). GGFs also cover more classical inequality measures such as the Gini index, which is widely used in inequality measurement and more recently in the literature on fairness in recommender systems. Although GGFs do not have an intuitive interpretation as "sum of utilities with diminishing returns",t h e i rm a i na d v a n t a g ei st h a tt h e y generalize various existing fairness criteria for ranking. Emphasizing the generality of GGFs, we also prove that all Lorenz-efficient rankings can be generated by maximizing GGFs.

The algorithmic challenge of optimizing GGFs is that they are nondifferentiable, and therefore not amenable to vanilla Frank-Wolfe optimization. We propose to adapt a Frank-Wolfe variant for nonsmooth problems [Lan, 2013] which uses the Moreau-Yosida envelope as smoothing technique [Moreau, 1962[START_REF] Yosida | Functional analysis[END_REF], and present a computationally efficient procedure to compute the smooth approximation of GGFs.

We conduct exp eriments on movie and music recommendation tasks and compare our algorithm that optimizes GGFs to previous recommendation methods, including our own approach based on additive concave welfare functions from Chapter 3.A se x p e c t e d ,w efi n dt h a to u rG G F -b a s e d approach obtains better trade-offsb e t w e e nt o t a lu s e ru t i l i t ya n di t e mi n e q u a l i t ym e a s u r e db yt h e Gini index. This is because GGFs can be instantiated to the Gini index and our Frank-Wolfe variant allows for direct optimization of this non-differentiable measure. For two-sided fairness, we also obtain superior trade-offsbe t w e e nt h eu t i l i t yo ft h e2 5 %w o r s t -o ff users and the Gini index of items' utilities, when instantiating the user-side GGF and item-side GGF to these criteria. Experiments on a reciprocal recommendation task based on Twitter data demonstrate similar results when optimizing trade-offsb e t w e e nt h eu t i l i t yo ft h e2 5 %w o r s t -o ff users and total user utility.

--

The two previous chapters focus on the ranking problem to analyze its properties from a fair allocation perspective, independently from potential biases arising at the learning stage. In practice though, there are real-world limitations to the previous batch setting in which learning and decision-making are decoupled, and one global decision is made for all users at once. Modern recommender systems interact with users in an online manner: they learn the personalized items' values from user feedback, and at the same time decide what content to show to the current user as they request recommendations. Contextual bandits are a popular paradigm to model this joint learning-and-decision-making setting in personalized recommender systems [Li et al., 2010].

Chapter 5: Fair ranking in the contextual bandit setting. We address the problem of fair ranking with contextual bandits, which is the paradigm of choice for online personalized recommender systems that learn to generate recommendations from user feedback. We present ag e n e r i ca l g o r i t h mt h a tw o r k sf o rm a n yf a i rr a n k i n go b j e c t i v e s ,i n c l u d i n gt h es m o o t hw e l f a r e functions of Chapter 3 and the nonsmooth welfare functions of Chapter 4. This is the first algorithm with regret guarantees for fair ranking in the contextual bandit setting. Moreover, the algorithm is computationally fast and has an intuitive interpretation: At each timestep, the algorithm gives an adaptive boosts to items that received low exposure in past recommendations, and the boost depends on the gradient of the fair ranking objective.

In fact, we provide an extensive treatment of the more general problem of contextual bandits with concave rewards (cbcr) [START_REF] Agrawal | An efficient algorithm for contextual bandits with knapsacks, and an extension to concave objectives[END_REF], which is a multi-objective bandit problem.

In cbcr,t h e r ei sav e c t o ro fm u l t i p l er e w a r d st h a td e p e n d so nas t o c h a s t i cc o n t e x t ,a n dt h e trade-off between the rewards is defined by a concave function. This cbcr setting covers a variety of problems beyond fair ranking, including optimizing multiple user engagement metrics (e.g., clicks, streaming time) in recommender systems. Prior theoretical works addressed simpler versions of cbcr with simple policy spaces: [START_REF] Agrawal | Bandits with concave rewards and convex knapsacks[END_REF], [START_REF] Busa-Fekete | Multi-objective bandits: Optimizing the generalized gini index[END_REF]f o c u s on the non-contextual setting where policies are distributions over actions, and Agrawal et al.

[2016]a d d r e s sar e s t r i c t i o no fcbcr to a finite policy space. We remove these restrictions and present regret guarantees for the general cbcr problem by proving a reduction of cbcr to classical scalar-reward contextual bandits. Our proof is based on a geometric interpretation of cbcr as an optimization problem over the convex set of all achievable expected rewards, and leverages techniques from theoretical analyses of Frank-Wolfe algorithms in constrained convex optimization.

On the experimental side, we simulate an online ranking task based on music recommendation data. We observe that compared to heurisic contextual bandit algorithms for fair ranking, algorithms using our reduction reach the highest value of the fair ranking objective as the number of timesteps increases. This shows the advantage of a principled bandit algorithm compared to heuristics without theoretical guarantees. When the fair ranking objective is a trade-off between average user utility and item inequality, our reduction-based bandit algorithm obtains higher average utility than existing bandit algorithms, at all levels of inequality between items.

-- companies proposing similar jobs. Our contribution to this research stream is a complement to existing audits for user fairness. We start from the observation that existing audits do not control for disparities that are in line with user preferences. To strengthen the conclusions of these audits, we propose to test for the preference-based criterion of envy-freeness, which stipulates that no user should prefer their recommendations to those of other users. Envy-freeness is a fairness criterion that was first studied in fair division [START_REF] Duncan | Resource allocation and the public sector[END_REF], and it thus has similar roots to the main conceptual framework of this thesis. However, it leads to a different assessment in the context of recommender systems, and the choice of fairness criterion depends on the motivating application.

In
In the previous Chapters 3 and 4, our work was motivated by applications where item producers are not advertisers paying for users' attention, but rather content creators claiming a fair share of exposure on the platform. Typical examples are online video sharing platforms and music streaming services. Since item-side fairness is a key concern in these applications, we designed algorithms that improve the exposures of small items across the rankings of all users. We also aimed to ensure that the users whose rankings are impacted by boosting small items are not those for whom the boosts are the most costly. We addressed two-sided fairness in the sense of improving the exposure of the worst-off items, while also prioritizing the utilities of the worst-off users. The ranking algorithms that we developed in the previous chapters are not guaranteed to pass the audit for envy-freeness of Chapter 6,be c a u s eo p t i m a lr a n k i n gpo l i c i e sf o ro bj e c t i v e st h a ti n c l u d eac o n c a v ei t e mf a i r n e s st e r m are not envy-free for users in general. For example, if users Alice and Bob both want to receive job ads from a popular company, but the designer promotes less popular employers by boosting their ads in Bob's recommendations, then Bob will be envious of the recommendations of Alice.

In practice though, we recommend that our audit for envy-freeness is used in applications where user-side fairness is the main concern and item-side fairness is not a priority, such as in ad systems.

Overall, our perspective in Chapter 6 is that of an auditor who is solely focused on assessing fairness for users, without considerations of whether user-side unfairness is a consequence of other objectives. We argue that the audit perspective is as important as that of the designer, given the significant role played by audits for user fairness in raising awareness about the need for fairness in recommender systems. Moreover, designers can use the evaluations produced by auditors as additional diagnoses to improve their systems. In fact, existing audits have led to settlements that drove online platforms to change their recommendation algorithms to comply with new requirements for user fairness [START_REF] Bogen | Toward fairness in personalized ads[END_REF].

Chapter 6: User fairness as envy-freeness. In Chapter 6,w ep r o p o s et oa s s e s st h ef a i r n e s s of recommender systems for their users with the criterion of envy-freeness from fair division in social choice theory. Transposed to the recommendation setting, envy-freeness states that each user should prefer their recommendations to those of other users. For example, in a job recommender system where two users Alice and Bob seek taxi driver roles [START_REF] Ali | Discrimination through optimization: How facebook's ad delivery can lead to biased outcomes[END_REF], if Bob is the only one to receive ads for driver jobs, then the system is deemed unfair by the envy-freeness criterion.

Compared to our previous welfare function approach that relied on comparing utilities across users, envy-freeness avoids the difficult assumption of interpersonal comparisons of utilities. Indeed, in the envy-freeness criterion, different recommendations are compared from the perspective of the same user (e.g., Alice).

We present a formal analysis of the prop erties of envy-freeness as a user-side fairness criterion for recommender systems, and show its compatibility with optimal recommendations. We also show its incompatibility with item-side merit-based fairness constraints. 4 We also present a probabilistic relaxation of envy-freeness, in order to remove the quadratic dependence on the number of users and make the certification of envy-freeness tractable.

Compared to the previous chapters where we took the perspective of the designer of the recommender system as a social planner, in this chapter we take the perspective of an internal auditor of the recommender system. Auditing envy-freeness in recommender systems is technically challenging, because it requires probing users' preferences for the recommendations of others, in order to reliably answer the counterfactual questions: "would user Alice prefer the recommendations of Bob?". Our algorithmic contribution is that we cast the problem of certifying envy, or the absence thereof, as a new form of pure exploration bandit problem, with conservative exploration constraints. The conservative exploration constraints prevent the audit from significantly deteriorating recommendation performance for users, when switching their recommendations with those of other users. We present OCEF, an auditing algorithm with theoretical guarantees on its sample complexity and the satisfaction of the conservative exploration constraints. We experimentally confirm that the OCEF algorithm is able to certify envy-freeness on two recommendation tasks, while maintaining a performance close to the audited recommender system.

--We conclude the thesis in Chapter 7, where we recapitulate the main contributions of this thesis and present additional contributions. This chapter also includes a critical examination of the limitations imposed by our modeling choices, as well as a discussion of the insights gained and questions that remain open. In this chapter, we present a comprehensive overview of the various literature related to this thesis. The main chapters of the thesis also include their own specific related work sections from the original publications.

Fairness in rankings and recommender systems

Fairness in machine learning Fairness in machine learning is an active research area that has gained increasing attention in recent years [Barocas et al., 2019, Corbett-Davies and Goel, 2018[START_REF] Oneto | Fairness in machine learning[END_REF][START_REF] Matt | The long road to fairer algorithms[END_REF][START_REF] Mitchell | Algorithmic fairness: Choices, assumptions, and definitions[END_REF], Chouldechova and Roth, 2020[START_REF] Kamiran | Classifying without discriminating[END_REF]. This field of study started from the realization that machine learning algorithms, if not designed and implemented carefully, can produce biased outcomes that disproportionately affect sensitive groups of people. This can perpetuate existing inequalities in the distribution of the benefits and harms of machine learning applications, and reinforce societal biases and stereotypes in learned representations. A large part of this literature has been first focused on classification and scoring tasks [START_REF] Mitchell | Algorithmic fairness: Choices, assumptions, and definitions[END_REF], Chouldechova, 2017, Kleinberg et al., 2016].

The domain of fairness in machine learning is organized along two main axes. The first axis is whether fairness is oriented towards individuals or groups defined by sensitive or protected attributes, such as race, gender, age, or socioeconomic status [START_REF] Barocas | Big data's disparate impact[END_REF]. Group fairness considers differences in average outcomes between salient social groups of people, usually to prevent discriminatory decisions [START_REF] Barocas | Big data's disparate impact[END_REF][START_REF] Feldman | Certifying and removing disparate impact[END_REF], Hardt et al., 2016a]. Individual fairness means that the algorithm should treat individuals fairly regardless of their group membership, often by considering a similarity measure between individuals [START_REF] Dwork | Fairness through awareness[END_REF], Bower et al., 2021]. In Chapters 3,4,5 we measure the distributive fairness of outcomes at the level of individuals, without notion of similarity. We made this presentation choice to make the framework simpler, but as discussed in Appendix A.2,ourframew orkcanbeexpandedtogroups using aggregate measures. On the other hand, the fairness criterion of envy-freeness, which we adapt to personalized recommender systems in Chapter 6,i sp r i m a r i l yo r i e n t e dt o w a r d si n d i v i d u a l s .

The second axis of fairness in machine learning is whether fairness is a question of parity or preference-based. Parity means that predictions, or prediction errors, should be the same between groups or individuals. Preference-based fairness means that predictions are allowed to be different as long as they faithfully reflect the preferences of all parties involved [Ustun et al., 2019, Kim et al., 2018, Zafar et al., 2017b]. In this thesis, we consider preference-based notions of fairness for users, because they are aligned with personalization: They allow for different recommendations to different users, as long as these recommendations are in line with the preferences of users. In Chapters 3 and 4,w ec o n s i d e rp r e f e r e n c e -b a s e df a i r n e s sf o ru s e r sa si m p r o v i n gt h eu t i l i t yo ft h e worst-off users (following the Pigou-Dalton transfer principle from social choice), using a utility measure that depends on users' preferences (defined in Eq. (1.1),S e c t i o n1.2.1). In Chapter 6,w e consider envy-freeness, another preference-based fairness criterion for users, also derived from fair division in social choice. Envy-freeness ensures that no user prefers the recommendations of others.

Fairness of exposure in recommender systems Al a r g ep a r to ft h el i t e r a t u r eo nf a i r n e s si n machine learning, especially at the beginning of its rapid expansion, focused on classification and regression tasks. Fairness in ranking and recommendation systems is a growing subfield of fairness in machine learning, which directly involves multiple stakeholders [START_REF] Burke | Balanced neighborhoods for multi-sided fairness in recommendation[END_REF], Abdollahpouri et al., 2020]. In this literature review, we put more emphasis on exposure-based fairness, which is al i n eo fw o r ko nf a i r n e s si nr a n k i n g sf o rr e c o m m e n d a t i o na n dr e t r i e v a ls y s t e m st h a ti n t e r v e n e s on the exposure or attention given to items, depending on their position bias. In the context of recommender systems, fairness has been considered from the perspective of both users and item producers, as these two stakeholders have different interests and goals which are mediated by the recommender system. The work of this thesis addresses two-sided, exposure-based fairness in rankings for recommender systems.

On the user side, the question of fairness in rankings originated from independent audits on recommender systems or search engines, which showed that results could exhibit bias against salient social groups by representing or exagerating stereotypes [START_REF] Mattioli | On orbitz, mac users steered to pricier hotels[END_REF], Sweeney, 2013[START_REF] Kay | Unequal representation and gender stereotypes in image search results for occupations[END_REF], Hannak et al., 2014, Mehrotra et al., 2017[START_REF] Lambrecht | Algorithmic bias? an empirical study of apparent genderbased discrimination in the display of stem career ads[END_REF], Datta et al., 2015, Asplund et al., 2020[START_REF] Ali | Discrimination through optimization: How facebook's ad delivery can lead to biased outcomes[END_REF], Vlasceanu and Amodio, 2022]. In Chapter 6,w ep r o p o s e to complement these audits with an alternative user-side fairness criterion, namely envy-freeness.

By measuring disparities which are aligned with user preferences, audits for envy-freeness can strengthen the conclusions of audits for recommendation parity. In the literature, another common goal for user-side fairness is to prevent disparities in recommendation performance across sensitive groups of users [Mehrotra et al., 2017, Ekstrand et al., 2018]. For example, it is important to ensure that recommender systems do not systematically recommend lower-quality or less relevant items to disadvantaged users. In Chapters 3 and 4, we seek a similar goal without requiring strict equality of recommendation performance, but rather by improving recommendation performance for the worst-off users.

On the item side, there is an active stream of research on ranking algorithms that promote fairness for individual or sensitive groups of items [Celis et al., 2017b[START_REF] Burke | Balanced neighborhoods for multi-sided fairness in recommendation[END_REF], Biega et al., 2018[START_REF] Singh | Fairness of exposure in rankings[END_REF], Morik et al., 2020[START_REF] Zehlike | Reducing disparate exposure in ranking: A learning to rank approach[END_REF], Kletti et al., 2022a,b, Beutel et al., 2019a[START_REF] Narasimhan | Pairwise fairness for ranking and regression[END_REF], Heuss et al., 2022, Diaz et al., 2020, Oosterhuis, 2021, García-Soriano and Bonchi, 2021, Sarvi et al., 2022], for example when ranking resumes of job applicants (items) to recruiters (users) [START_REF] Sahin | Fairness-aware ranking in search & recommendation systems with application to linkedin talent search[END_REF]o rr a n k i n gm u s i ct r a c k s( i t e m s )t o listeners (users) [Mehrotra et al., 2018]. The goal is often to prevent winner-take-all effects, combat popularity bias [Abdollahpouri et al., 2019b], promote smaller producers [Liu et al., 2019, Mehrotra et al., 2018]o rd i v e r s er e p r e s e n t a t i o n [ Zehlike et al., 2022a]. A branch of this literature aims to ensure a minimal proportion of items from sensitive groups are shown in the top-K positions of a ranking [START_REF] Asudeh | Designing fair ranking schemes[END_REF], Celis et al., 2017b, Zehlike et al., 2017]. In the other stream of fairness of exposure,a u t h o r sp r o p o s e dm e t h o d st h a tr e d i s t r i b u t ee x p o s u r ea c r o s s( g r o u p so f) producers, either towards equal exposure, or equal ratios of exposure to a measure of merit [START_REF] Singh | Fairness of exposure in rankings[END_REF], Biega et al., 2018, Diaz et al., 2020, Kletti et al., 2022a]. These approaches may be applied either within the recommendation list of each user [START_REF] Singh | Fairness of exposure in rankings[END_REF], Yang and Stoyanovich, 2017, Celis and Vishnoi, 2017, Zehlike et al., 2017], or on average over all users (in the literature, this is referred to as amortized fairness of exposure) [Biega et al., 2018, Beutel et al., 2019a, Kletti et al., 2022a, Usunier et al., 2022[START_REF] Prost | Simpson's paradox in recommender fairness: Reconciling differences between per-user and aggregated evaluations[END_REF]. Section 3.3 of Chapter 3 is devoted to the assessment of these exposure-based approaches in our welfare-based framework, through the lens of distributive justice. Our framework focuses on the case of amortized exposure, which is more computationally challenging because it couples the rankings of all the users.

Moreover, the works that focused on "within-list" fairness are often motivated by recruitment, college admissions and search engines, rather than personalized recommendation [START_REF] Singh | Fairness of exposure in rankings[END_REF], Celis et al., 2017b[START_REF] Asudeh | Designing fair ranking schemes[END_REF], Zehlike et al., 2017]. We assess the fairness of some of these approaches in Appendix A. 8. In the fair ranking literature, inequalities among items are often measured by the classical Gini index [Morik et al., 2020, Mansoury et al., 2021b, Wang et al., 2023[START_REF] Ge | Towards long-term fairness in recommendation[END_REF]. We study a generalized version of this inequality measure in Chapter 4,a n d address the challenge of directly optimizing this nondifferentiable measure over the space of ranking policies.

Some authors consider fairness for both users and items, often by applying existing user or item fairness criteria simultaneously to both sides, such as [Basu et al., 2020, Wu et al., 2021b, Wang and Joachims, 2021[START_REF] Naghiaei | Cpfair: Personalized consumer and producer fairness re-ranking for recommender systems[END_REF], Wu et al., 2022b]. We address the problem of two-sided fairness in ranked recommendations in Chapters 3 and 4.S e c t i o n6. 3.3 while [Deldjoo et al., 2021]p r o p o s et ou s eg e n e r a l i z e dc r o s s -e n t r o p yt om e a s u r eu n f a i r n e s sa m o n g sensitive groups of users and items. [Wu et al., 2022a]r e c e n t l yc o n s i d e r e dt w o -s i d e df a i r n e s si n recommendation as a multi-objective problem, where each objective corresponds to a different fairness notion, either for users or items. Other works consider additional stakeholders and interests, such as platform revenue [START_REF] Burke | Balanced neighborhoods for multi-sided fairness in recommendation[END_REF], Abdollahpouri et al., 2020, Abdollahpouri and Burke, 2019[START_REF] Gharahighehi | Fair multi-stakeholder news recommender system with hypergraph ranking[END_REF].

Finally, we highlight that the majority of works that address fairness of exposure for items focus on the position-based model [START_REF] Singh | Fairness of exposure in rankings[END_REF], Morik et al., 2020[START_REF] Zehlike | Reducing disparate exposure in ranking: A learning to rank approach[END_REF], Biega et al., 2018, Oosterhuis, 2021], where the exposure of an item only depends on its rank.

The linear structure of the position-based model is algorithmically convenient, because it allows to express user utilities and item exposures as linear quantities. In this thesis, we follow these works and propose computationally efficient algorithms for fair ranking that leverage this linear structure.

Only a few works consider exposure in more general cascade models [Craswell et al., 2008]a n d dynamic bayesian network models [Chuklin et al., 2015, Chapelle andZhang, 2009]. These works often propose heuristic algorithms focusing on empirical insights [Biega et al., 2020, Mansoury et al., 2022, Jeunen and Goethals, 2021], except for Kletti et al. [2022b] who propose a theoretical algorithm for Pareto optimal trade-offsb e t w e e nu s e ru t i l i t ya n di t e m -s i d ef a i r n e s s ,i nas i n g l e -u s e r setting.

Fairness in reciprocal recommendation Most of the works mentioned above consider usual one-sided recommendation settings, such as music or movie recommendation, where items and users are separate entities, and only items are being recommended. In reciprocal recommender systems [Pizzato et al., 2013], such as dating applications or friends recommendation, users are recommended to other users. Reciprocal recommender systems received comparatively less attention in the fairness literature, to the exception of [START_REF] Jia | When online dating meets nash so cial welfare: Achieving efficiency and fairness[END_REF][START_REF] Xia | Reciprocal recommendation system for online dating[END_REF][START_REF] Paraschakis | Matchmaking under fairness constraints: a speed dating case study[END_REF]. In Chapters 3 and 4,w ep r e s e n tt h efi r s tg e n e r i cf r a m e w o r kt oj o i n t l ya d d r e s s one-sided and reciprocal recommendation. Xia et al. [2019]a i ma te q u a l i z i n gu s e ru t i l i t yb e t w e e n groups, which suffers from the problems discussed in Section 3.3 of Chapter 3:S t r i v i n gf o rp e r f e c t l y equal user utilities can lead to lower utility for everyone, and even zero utility. [START_REF] Jia | When online dating meets nash so cial welfare: Achieving efficiency and fairness[END_REF] generate rankings using a welfare function approach, but optimizing only the utility of users being recommended, while we introduce a notion of two-sided utility which also accounts for a user's satisfaction of the recommendations they receive. [START_REF] Paraschakis | Matchmaking under fairness constraints: a speed dating case study[END_REF]p o s t p r o c e s s rankings to correct for inconsistencies between estimated and declared preferences of users. We do not aim at correcting biases in preference estimates through post-processing. In contrast, we aim at fair trade-offsb e t w e e nu t i l i t i e s ,u n d e rt h ea s s u m p t i o nt h a tb i a s e si nt h ep r e f e r e n c ee s t i m a t e sh a v e been addressed earlier in the recommendation pipeline. Fairness is also studied in the context of ridesharing applications [START_REF] Wolfson | Fairness versus optimality in ridesharing[END_REF], Lesmana et al., 2019[START_REF] Vedant Nanda | Balancing the tradeoff between profit and fairness in rideshare platforms during high-demand hours[END_REF], but they address matching rather than ranking problems.

For exhaustive surveys on fairness in ranked recommendations, we refer to [Zehlike et al., 2022a,b, Patro et al., 2022[START_REF] Naghiaei | Cpfair: Personalized consumer and producer fairness re-ranking for recommender systems[END_REF], Wang et al., 2023, Ekstrand et al., 2022, Abdollahpouri et al., 2020[START_REF] Prost | Simpson's paradox in recommender fairness: Reconciling differences between per-user and aggregated evaluations[END_REF], Chen et al., 2023].

Normative analysis

Overall, the focus of the thesis work has been on the algorithmic aspects of fair recommendation as an allocation problem, aiming to develop solutions that are robust and applicable across various scenarios, independent of our specific normative reasons. Most technical papers on fairness in recommender systems, including the ones we published over the course of the PhD program, do not explicitly discuss the underlying normative framework. We aim to bridge this gap in this section by providing a normative analysis of our approach to fairness in recommender systems. This normative analysis draws on the classification frameworks of normative judgements proposed by Zehlike et al. The first dimension pertains to the notion of group structure, which encompasses factors such as the number of sensitive groups involved, their cardinality and how multiple sensitive attributes are handled. Under this category, the survey analyzes various approaches to ensure fairness across groups in recommender systems.

The second dimension is about bias types,i n c l u d i n gp r e e x i s t i n gb i a s e sa n dt e c h n i c a lb i a s e s( e . g . , position bias), which can influence the outcomes of recommender systems.

The third dimension revolves around different worldviews adopted when defining fairness, as proposed in the taxonomy of Friedler et al. [2016]. One such perspective is the "What You See Is What You Get" (WYSIWYG) worldview, which advocates that observable scores accurately reflect the true merit of individuals. The survey discusses "merit-based fairness" (presented in Section 1. 3.5) as an example of an approach aligned with this worldview. On the other hand, the "We are All Equal" (WAE) viewpoint suggests that any disparities observed are a result of biased observations rather than inherent differences.

The fourth dimension explores the concept of Equal Opportunity (EO), which is a broad philosophical doctrine aimed at rectifying morally irrelevant circumstances in accessing opportunities.

Within this dimension, the survey distinguishes between different version of EO. Formal EO focuses on fair competitions where candidates are evaluated solely based on their qualifications, rejecting any irrelevant attributes but not addressing disparities due to prior disadvantages. Formal-plus EO extends this by considering how certain attributes can lead to disparities in qualifications. Substantive EO takes a broader view, considering lifetime opportunities and attempting to mitigate the impact of arbitrary factors on relevant qualifications. Luck-egalitarian EO and Rawls' Fair EO are examples of substantive EO approaches, aiming to make people's future prospects comparable and improve outcomes for the most disadvantaged, respectively.

Normative analysis of our approach We now apply the classification framework of Zehlike et al. [2022a]t oo u ra p p r o a c ho ff a i ra l l o c a t i o no fe x p o s u r ei nr e c o m m e n d e rs y s t e m s .

First, we do not consider fairness towards explicit groups in our framework, but rather distributive fairness at the level of individuals, following the paradigm of fair division. We discuss how to extend our approach to fairness across groups in Section 7.2.1.

Second, we focus on exposure-based fairness in recommender systems, which compares individual items based on position bias, which is a type of technical bias. If we consider exposure at the level of sensitive groups as in Appendix A.2 (following existing works on fairness of exposure [START_REF] Singh | Fairness of exposure in rankings[END_REF]), then our techniques can be used to mitigate preexisting biases in the observed data that affect the scoring model, and lead to unequal exposure across groups of items.

On the axis of worldview, the approach undertaken in our work can be categorized as "We Are All Equal" (WAE), to some extent. In contrast to merit-based approaches to fairness in recommender systems, we strive to equalize outcomes for items without defining a notion of merit. Still, we avoid giving too much exposure to items that are irrelevant to some users in their rankings by considering global recommendation objectives as trade-offsb e t w e e nu s e rw e l f a r ea n di t e mw e l f a r e . W h i l ew e do not define talent or merit explicitly, our approach ensures that item producers with similar relevance receive comparable exposure. On the user side, our welfare-based approach do not strictly equalize user utilities, but rather redistribute utility among users regardless of any measure of their "merit", and without destroying total utility. Lastly, our work relates to the priority view or prioritarianism in political philosophy, which asserts that "social welfare orderings should give explicit priority to the worse off " [Temkin, 1993, Arneson, 2000, Parfit, 2018]. Prioritarianism is a concept distinct from Equal Opportunity and is often seen in contrast to strict egalitarianism. Prioritarianism is often associated to concave welfare functions in economics [START_REF] Fleurbaey | Equality versus priority: how relevant is the distinction?[END_REF], which provide social welfare orderings that give explicit priority to the worst off individuals, and where the strength of the curvature controls the degree of priority. The absolute view of prioritarianism considers that the importance of an individual should not depend on their relative position. This view aligns with the additively separable concave welfare functions from welfare economics that we consider in Chapter 3. In contrast, the relative view of prioritarianism considers the utility of individuals in relation to others: This includes non-additive welfare function such as the genaralized Gini welfare function that we study in Chapter 4 [START_REF] Fleurbaey | Equality versus priority: how relevant is the distinction?[END_REF]. In our research, EO is not a primary consideration, as the main axiom in welfarism and social choice is anonymity, which conflicts with considering explicit attributes to identify individuals' circumstances. Since the main presentation of our fair allocation framework does not involve explicitly choosing groups, the language of Equal Opportunity is difficult to apply.

The closest to our approach is Rawls' Fair EO, particularly in the aspect of trading-off between user welfare and exposure redistribution among items. This allows us to ensure that items of similar relevance receive comparable exposure, without defining a measure of "merit" or "effort". This compromise aligns with the Rawlsian Fair EO principle, which advocates for equal prospects of success among equally talented individuals, irrespective of arbitrary circumstances.

Frank-Wolfe algorithms

The backbone of the algorithmic contributions of this thesis is the family of Frank-Wolfe algorithms [Frank and Wolfe, 1956]. In this thesis, we show that they provide computationally efficient algorithms for fair ranking in the position-based model. In Chapter 3,w es h o wh o wt ou s ea vanilla Frank-Wolfe algorithm to generate rankings with smooth concave welfare functions in the batch setting, using only one top-K sorting operation per user of the batch at each iteration of the algorithm. In Chapter 4,w ed e s i g na ne fficient smoothing method for the class of Generalized Gini welfare functions, which are non-differentiable, and we show how to apply a Frank-Wolfe variant for nonsmooth objectives from Lan [2013]. This section provides background on the Frank-Wolfe algorithms and smoothing techniques that we used for the batch setting,andsituatesouralgorithmic contributions with respect to related techniques and existing algorithms for fair ranking.

We also use Frank-Wolfe in Chapter 5, to generate rankings with smooth and nonsmooth concave welfare functions in the contextual bandit setting, obtaining a fast algorithm that delivers fair rankings at the same cost as standard ranking-by-sorting algorithms. We discuss related approaches in the dedicated section on bandits with concave rewards (Section 2.3.2).

Background on Frank-Wolfe and algorithms for fair ranking

Background on Frank-Wolfe. The Frank-Wolfe algorithm [Frank and Wolfe, 1956], also known as the conditional gradient method, is an iterative optimization algorithm used for solving constrained convex optimization problems. Although it has been extensively used in machine learning applications, such as structured output prediction and low-rank matrix completion [START_REF] Lacoste-Julien | Block-coordinate frank-wolfe optimization for structural svms[END_REF], to the best of our knowledge, it has not been used for ranking prior to the work of this thesis.

Consider a convex optimization problem of the form:

max P 2P F (P ), (2.1)
where F is a smooth and concave function defined over a compact convex set P. where rF (P (t) ) is the gradient of F evaluated at P (t) .

The algorithm then updates the solution by performing a convex combination of the current solution and the newly obtained solution, i.e., t) )P (t1) + (t) P, Clarkson, 2010]. Notably, the algorithm always remains in the feasible region without the need for any additional projection step.

P (t) =(1 ( 
where (t) = 2 t+2 [
The Frank-Wolfe algorithm is particularly useful for simplex-type constraints [Clarkson, 2010]. In this case, each P computed in the linear subproblem of (2.2) is a single element of the simplex.

The Frank-Wolfe algorithm then constructs a solution that has a sparse representation.

An algorithmic contribution: Frank-Wolfe for fair ranking. The Frank-Wolfe algorithm is best used when argmax P 2P hP | rF (P (t) )i (Eq. (2.2))c a nb ec o m p u t e de fficiently. In Chapter 3, we show that this is the case when P is the set of stochastic ranking policies. More precisely, we prove that the inner loop of Frank-Wolfe consists in computing one ranking for each user, which can be obtained with a straightforward top-K sort operation per user, when:

• P is the convex hull of tensors P where each slice P i is a permutation matrix for one user i 1 ,

• and the concave objective F depends on user and item utilities defined in a position-based model with non-increasing weights.

Recalling that m is the number of items and K the number of ranking slots, each iteration of the Moreover, the algorithm outputs a sparse representation of a stochastic ranking policy, as a convex combination of deterministic ranking policies.S t a n d a r dF r a n k -W o l f ec o n v e r g e n c er e s u l t s guarantee that the algorithm finds an ✏-optimal solution of the problem in (2.1) at a sublinear rate [START_REF] Lacoste-Julien | Block-coordinate frank-wolfe optimization for structural svms[END_REF], Clarkson, 2010].

Comparison with existing algorithms for fairness of exposure in rankings. The usage of stochastic rankings was initiated by [START_REF] Singh | Fairness of exposure in rankings[END_REF]i nt h ec o n t e x to ff a i r n e s si n rankings to make inference a convex optimization problem. [START_REF] Singh | Fairness of exposure in rankings[END_REF]h o w e v e r considered a notion of item fairness applied within the ranking of each user separately, while we consider amortized fairness across users, similarly to [Morik et al., 2020, Biega et al., 2018, Kletti et al., 2022a]. Thus, they did not need to infer globally optimal ranking policies, and their optimization problem involved m 2 variables with m items, which was tractable in their case. In the amortized fairness setting, the optimization problem of [START_REF] Singh | Fairness of exposure in rankings[END_REF]w o u l di n v o l v e n ⇥ m 2 variables where n is a typically large number of users. Our Frank-Wolfe approach is thus more efficient for amortized fairness in the batch setting.

Moreover, the usage of stochastic rankings usually requires a post-processing stage in order to sample deterministic rankings. [START_REF] Singh | Fairness of exposure in rankings[END_REF]u s et h eB i r k h o ff-von Neumann decomposition [Birkhoff, 1940], which decomposes a bistochastic matrix as a convex sum of permutations, with at most (m 1) 2 +1 members in the decomposition, and Kletti et al. [2022a] propose an improved decomposition with m terms only. With the Frank-Wolfe algorithm, we remove the need for an additional decomposition step since Frank-Wolfe directly constructs a weighted sum of deterministic ranking policies.

In the line of works considering amortized fairness of exposure over multiple rankings, Wang and Joachims [2021], Kletti et al. [2022a]d on o tc o n s i d e rpersonalized ranking policies with one (stochastic) ranking for each user. Since the number of users is not an input variable in their problem settings, they do not seek algorithms that are scalable with respect to this variable. Biega et al. [2018]f o c u so na m o r t i z e df a i r n e s sa c r o s safi x e dn u m b e rn of rankings, and thus face the challenge of finding a global solution for the n rankings that are coupled by the items' exposures', similarly to us. They bypass this challenge by solving a linear program for each ranking separately, but this heuristic offers no global guarantee on items' exposures across rankings. In contrast, our Frank-Wolfe approach provably finds ✏-optimal solutions to global optimization problems that consider the rankings of all users. In an online ranking setting, Morik et al. [2020]p r o p o s ea n algorithm for amortized fairness across rankings which ensures that a specific item-side disparity measure converges to zero. However, their algorithm cannot be used to optimize intermediate tradeoffsb e t w e e na v e r a g eu s e ru t i l i t ya n di t e m -s i d ef a i r n e s s ,o rt w o -s i d e df a i r n e s so bj e c t i v e s . M o r e o v e r they do not provide guarantees on the users' utilities'. In contrast, the Frank-Wolfe algorithm provably maximizes concave functions that express a wide range of fairness-aware objectives as trade-offsb e t w e e nu s e r s 'a n di t e m s 'u t i l i t i e s ,i n c l u d i n gt h em e r i t -b a s e df a i r n e s sc r i t e r i o no fBiega et al. [2018], Morik et al. [2020]. Finally, Patro et al. [2020]c o n s i d e rar e c o m m e n d a t i o ns e t t i n gt h a ti ss i m i l a rt oo u rb a t c h setting, where the recommender systems produces one personalized list of items for each users, with two-sided fairness considerations. Our Frank-Wolfe approach improves over their method in three ways. First, they considered unordered lists, while we consider the more challenging task of finding ranked lists, which increases the search space. Second, the complexity of their round robin algorithm is O(nmK),a n di ti sn e i t h e ra m e n a b l et op a r a l e l l i z a t i o na c r o s st h en users, nor adaptable to an online setting where users are observed in sequence. In contrast, our Frank-Wolfe algorithm decentralizes the top-K ranking operations for each user, and we adapt it to the online bandit setting in Chapter 5. Third, Patro et al. [2020]'s algorithm is limited to specific fairness criteria, while Frank-Wolfe allows for a broader variety of fairness-aware objectives.

Frank-Wolfe with smoothing

In Chapter 4,w ep r o p o s et oo p t i m i z ew e l f a r ef u n c t i o n sb a s e do ng e n e r a l i z e dG i n iw e l f a r ef u n c t i o n s (GGFs) [START_REF] Weymark | Generalized gini inequality indices[END_REF], which are ordered weighted averages of utilities, parameterized by a vector of non-increasing weights. Since these concave functions are non-differentiable, they cannot be optimized using the previous vanilla Frank-Wolfe algorithm. The technical contribution of Chapter 4 builds on nonsmooth convex optimization methods [Nesterov, 2005, Shamir and[START_REF] Shamir | Stochastic gradient descent for non-smooth optimization: Convergence results and optimal averaging schemes[END_REF], and in particular variants of the Frank-Wolfe algorithm [START_REF] Cowell | Measuring inequality.O x f o r dU n i v e r s i t yP r e s s[END_REF]Wolfe, 1956, Jaggi, 2013] for nonsmooth problems [Lan, 2013, Yurtsever et al., 2018, Ravi et al., 2019, Thekumparampil et al., 2020a]. The recent algorithm of [Thekumparampil et al., 2020a]i saF r a n k -W o l f ev a r i a n t that uses the Moreau envelope like us. Its number of first-order calls is optimal, but this is at the cost of a more complex algorithm with inner loops that make it slow in practice. In our case, since the calculation of the gradient is not a bottleneck, we use the simpler algorithm of Lan [2013], which applies Frank-Wolfe to the Moreau-Yosida envelope [Moreau, 1962[START_REF] Yosida | Functional analysis[END_REF]o ft h e nonsmooth objective.

The technical contribution of Chapter 4 is also related to the literature on differentiable ranking, which includes a large body of work on approximating learning-to-rank metrics [Chapelle and Wu, 2010, Taylor et al., 2008, Adams and Zemel, 2011], and recent growing interest in designing smooth ranking modules [Grover et al., 2019[START_REF] Cuturi | Differentiable ranking and sorting using optimal transport[END_REF], Blondel et al., 2020]forend-to-end differentiation pipelines. The closest method to the algorithm that we present in Chapter 4 is the differentiable sorting operator of Blondel et al. [2020]. Blondel et al. [2020]u s ear e g u l a r i z a t i o n term to smooth the linear formulation of sorting. The regularized form can itself be written as a projection to a permutahedron, which can be efficiently computed using a well-known reduction to isotonic regression [START_REF] Negrinho | Orbit regularization[END_REF]Martins, 2014, Lim andWright, 2016]. The problem they address is different since they differentiate the multi-dimensional sort operation, but eventually the techniques are similar to the ones we use because the smoothing is done in a similar way. In our case, the projection onto a permutahedron appears in the gradient of the GGF, rather than the GGF itself, which is important to unlock the result of Proposition 10. This is the key to fast Frank-Wolfe iterations in our optimization problem over sto chastic ranking p olicies. Moreover, the weights of the GGF are also important in our case as they affect the Frank-Wolfe convergence guarantee, while Blondel et al. [2020]a s s i g ne q u a lw e i g h t st ou t i l i t i e s .

Bandit algorithms for fair and multi-objective recommender systems

In Chapter 5, we focus on the problem of online learning with bandit feedback and multiple rewards, where the desired trade-off between the rewards is defined by a known concave objective function. This problem is referred to as bandits with concave rewards (bcr) [START_REF] Agrawal | Bandits with concave rewards and convex knapsacks[END_REF]. We provide regret guarantees for the contextual setting of bcr (cbcr), where the vector of multiple rewards depends on a stochastic context. This setting is particularly relevant to fair machine learning in recommender systems and online allocation problems, where the overall welfare is naturally expressed as a (known) concave function of the (unknown) utilities of the agents [START_REF] Moulin | Fair division and collective welfare[END_REF], Berthet and Perchet, 2017, Do et al., 2021c]. We review the literature on fairness in bandit-based recommendation in Section 2. 3.1 and the literature on bandits with multiple rewards in Section 2. 3.2. Finally, we discuss the pure exploration bandit setting in Section 2. 3.3, which is different from minimizing regret and is useful for the fairness certification problem of Chapter 6.

Fairness of exposure in bandits

In Chapter 5, we address the question of fairness of exposure in the contextual bandit setting, which is a popular paradigm for recommender systems that learn to generate personalized recommendations from online interations with users [Li et al., 2010, Lattimore and[START_REF] Lattimore | Bandit algorithms[END_REF]]. On the one hand, contextual bandit algorithms have been mostly developed to maximize a single scalar reward.

In the case of recommendation, this reward usually corresponds to a proxy of user satisfaction based on engagement signals (e.g., clicks, shares, likes, etc.), and it thus ignores the impact of recommendations on item producers. On the other hand, most of the item-side fairness literature, which we reviewed in Section 2.1,f oc u s e do nastatic ranking setting, either without learning [START_REF] Sahin | Fairness-aware ranking in search & recommendation systems with application to linkedin talent search[END_REF], Beutel et al., 2019a, Yang and Stoyanovich, 2017[START_REF] Singh | Fairness of exposure in rankings[END_REF][START_REF] Gourab K Patro | Fair ranking: a critical review, challenges, and future directions[END_REF], Kletti et al., 2022a, Diaz et al., 2020, Do and Usunier, 2022, Wu et al., 2022b] or with learning-to-rank [Bower et al., 2021, Singh and Joachims, 2019[START_REF] Zehlike | Reducing disparate exposure in ranking: A learning to rank approach[END_REF].

Existing work on fairness of exposure in stochastic bandits focused on local exposure constraints on the probability of pulling an arm at each timestep, either in the form of lower/upper bounds [Celis et al., 2018b]o rm e r i t -b a s e de x p o s u r et a r g e t s [ Wang et al., 2021a]. In contrast, we consider amortized exposure over time, in line with prior work on fair ranking [Biega et al., 2018, Morik et al., 2020, Usunier et al., 2022], along with fairness trade-offsd e fi n e db yc o n c a v eo bj e c t i v ef u n c t i o n s which are more flexible than fairness constraints [START_REF] Zehlike | Reducing disparate exposure in ranking: A learning to rank approach[END_REF], Do et al., 2021c, Usunier et al., 2022, Wu et al., 2022a]. Moreover, these works [Celis et al., 2018b, Wang et al., 2021a]d o not address combinatorial actions, while ours applies to ranking in the position-based model, which is more practical for recommender systems [Lagrée et al., 2016, Singh and[START_REF] Singh | Fairness of exposure in rankings[END_REF]. The methods of [Patil et al., 2020, Chen et al., 2020]aimatguaran teeingaminimalcum ulativ eexposure over time for each arm, but they also do not apply to ranking. In contrast, [Xu et al., 2021, Li et al., 2019] consider combinatorial bandits with fairness, but they do not address the contextual case, which limits their practical application to recommender systems. Mansoury et al. [2021a], Jeunen and Goethals [2021]p r o p o s eh e u r i s t i ca l g o r i t h m sf o rf a i r n e s si nr a n k i n gi nt h ec o n t e x t u a l bandit setting, highlighting the problem's importance for real-world recommender systems, but these algorithms lack theoretical guarantees. In Chapter 5,w ei n t r o d u c et h efi r s tp r i n c i p l e db a n d i t algorithms for this problem with provably vanishing regret.

Finally, several works on fairness in bandits focus on hiring rather than personalized recommendation [START_REF] Joseph | Fairness in learning: Classic and contextual bandits[END_REF], Liu et al., 2017, Schumann et al., 2019b]. These works study criteria that are different from fairness of exposure since the goals and tasks involved are distinct.

Bandits with concave rewards

Several recent works on the societal impact of recommender systems and machine learning algorithms have advocated for the optimization of multiple rewards, instead of focusing on a single reward [START_REF] Anderson | Algorithmic effects on the diversity of consumption on spotify[END_REF], Stray et al., 2021[START_REF] Vamplew | Human-aligned artificial intelligence is a multiobjective problem[END_REF]. The desired trade-off between the rewards is typically defined by a known concave function f , which is set by the practitioner depending on the application context [START_REF] Anderson | Algorithmic effects on the diversity of consumption on spotify[END_REF]. In the multi-objective bandit literature, the optimization of a known concave function of different rewards is known as Bandits with Concave Rewards (bcr) [START_REF] Agrawal | Bandits with concave rewards and convex knapsacks[END_REF]. Chapter 5 is dedicated to the contextual setting of bcr (cbcr), where the vector of multiple rewards depends on a stochastic context.

The main challenge of cbcr is that the set of stationary policies are all mappings from a continuous context set to distributions over actions. In the non-contextual (bcr), which has been previously studied by [START_REF] Agrawal | Bandits with concave rewards and convex knapsacks[END_REF], and by [START_REF] Busa-Fekete | Multi-objective bandits: Optimizing the generalized gini index[END_REF]f o rt h e special case of Generalized Gini indices, policies are distributions over actions. These approaches perform a direct optimization in policy space, which is not possible in the contextual setup without restrictions or assumptions on optimal policies. [START_REF] Agrawal | An efficient algorithm for contextual bandits with knapsacks, and an extension to concave objectives[END_REF]s t u d yas e t t i n go fcbcr where the goal is to find the best policy in a finite set of policies. Because they rely on explicit search in the policy space, they do not resolve the main challenge of the general cbcr setting we address in Chapter 5. Cheung [2019], Siddique et al. [2020], Mandal and Gan [2022], Geist et al.

[2021] address multi-objective reinforcement learning with concave aggregation functions, a problem more general than stochastic contextual bandits. In particular, Cheung [2019]u s eaF r a n k -W o l f e approach for this problem. However, these works rely on a tabular setting (i.e., finite state and action sets) and explicitly compute policies, which is not possible in our setting where policies are mappings from a continuous context set to distributions over actions. Our work is the only one amenable to contextual bandits with concave rewards by removing the need for an explicit policy representation. Finally, compared to previous Frank-Wolfe approaches to bandits with concave rewards, e.g. [Agrawal andDevanur, 2014, Berthet andPerchet, 2017], our analysis is not limited to confidence-based exploration/exploitation algorithms.

cbcr is also related to the broad literature on bandit convex optimization (BCO) [Flaxman et al., 2004[START_REF] Agarwal | Stochastic convex optimization with bandit feedback[END_REF], Hazan et al., 2016, Shalev-Shwartz et al., 2012]. In BCO, the goal is to minimize a cumulative loss of the form P T t=1 `t(⇡ t ), where the convex loss function `t is unknown and the learner only observes the value `t(⇡ t ) of the chosen parameter ⇡ t at each timestep. Existing approaches to BCO perform gradient-free optimization in the parameter space. While bcr considers global objectives rather than cumulative ones, similar approaches have been used in non-contextual bcr [Berthet and Perchet, 2017] where the parameter space is the convex set of distributions over actions. As we previously highlighted, such parameterization does not apply to cbcr because direct optimization in policy space is infeasible.

cbcr is also related to multi-objective optimization [Miettinen, 2012, Drugan and[START_REF] Madalina | Designing multi-objective multi-armed bandits algorithms: A study[END_REF], where the goal is to find all Pareto-efficient solutions. (C)bcr,f o c u s e so no n ep o i n to ft h eP a r e t o front determined by the concave aggregation function f , which is more practical in our application settings where the decision-maker is interested in a specific (e.g., fairness) trade-off.

Pure exploration

We also leverage the multi-armed bandit paradigm for the online certification problem of Chapter 6, in which an auditor must collect user feedback to certify the preference-based fairness criterion of envy-freeness. However, unlike in Chapter 5,w ef o c u so nap u r ee x p l o r a t i o np r o b l e m ,r a t h e r than the regret minimization setting. The regret minimization problem deals with the explorationexploitation trade-off, where bandit algorithms aim to achieve a cumulative performance at any time that is as close as possible to the optimal achievable performance [Robbins, 1952, Auer et al., 2002, Bubeck and Cesa-Bianchi, 2012]. In contrast, in the online certification setting, the goal is not to design a recommender system with cumulative performance guarantees, but rather to audit and evaluate an existing recommender system. We model this audit as a pure exploration problem, where the bandit algorithm must present a certificate regarding the arms after an exploration phase that should be as short as possible, and without taking cumulative performance into account. In our case, the certificate indicates whether an arm is better than the baseline, which is the audited recommender system.

The conservative exploration setting [Wu et al., 2016, Garcelon et al., 2020a], which was introduced for the regret minimization problem, adds the constraint that the anytime average performance should not be far worse than that of a special arm called the baseline. In Chapter 6, the baseline is the current recommender system, and the other "arms" are other users' personalized recommendations. The goal is to output a certificate indicating if an arm is better than the baseline, while not deteriorating performance compared to the baseline. We thus use a mix of pure exploration and conservative constraints.

In pure exploration, the most studied task is best-arm identification [Even-Dar et al., 2006, Gabillon et al., 2012[START_REF] Audibert | Best arm identification in multi-armed bandits[END_REF], Garivier and Kaufmann, 2016]. In Chapter 6,t h e problem is not to find the best arm but rather to decide whether an arm is better than the baseline, which is less demanding. The online certification problem is closer to threshold bandits [Locatelli et al., 2016], where the goal is to identify the set of arms with higher reward than a fixed threshold. Combinatorial pure exploration bandits [START_REF] Chen | Combinatorial pure exploration of multi-armed bandits[END_REF]a n dm u l t i p l et e s t i n g [ Jamieson and Jain, 2018]a d d r e s ss i m i l a rp r o b l e m s .

The differences with these settings, in addition to the conservative constraint, are twofold. First, they assume the threshold is known, i.e., the baseline performance is known, which we do not.

Second, they aim at finding all arms that are better than the threshold, rather than deciding if there is such an arm. Although ideas from these works may be valuable in our context, we focused on ideas from best-arm identification methods [START_REF] Audibert | Best arm identification in multi-armed bandits[END_REF]t ok e e po u rp r o p o s e d auditing algorithm and its analysis as simple as possible.

Background on fair division in social choice

Social choice theory is the study of collective decision-making based on the preferences of agents over alternatives [START_REF] Kenneth J Arrow | Handbook of social choice and welfare[END_REF]. Fair division is one of the main branches of social choice, which addresses the allocation of resources among several agents in a manner that satisfies efficiency and fairness criteria [START_REF] Moulin | Fair division and collective welfare[END_REF]. While the majority of this literature was first developed in microeconomics, it benefited from recent developments in computer science, with the rise of the field of computational social choice.

Fairness notions have b een thoroughly examined from the p ersp ective of distributive justice [Sen, 1970, Roemer, 1996]. The social choice literature proposed a variety of ways to translate these notions into mathematical definitions, and analyse their properties. In this section, we provide background on important fairness and efficiency criteria for allocation problems in social choice, in which the conceptual framework developed in this thesis is grounded. We discuss their axiomatic foundations and properties, as well as their interpretations in the context of recommender systems.

We refer to [START_REF] Moulin | Fair division and collective welfare[END_REF] for comprehensive overviews of fair division, and to [Bouveret et al., 2016]f o rar e c e n ts u r v e yo ff a i rd i v i s i o ni nc o m p u t a t i o n a ls o c i a lc h o i c e .

Cardinal welfarism

Fair division is a social choice problem in which an alternative (or an allocation)i sc h o s e nf r o ma set of feasible alternatives based on the individual preferences of a group of agents.

Problem definition. Classical fair division problems can be classified into two types, based on the nature of goods involved: either indivisible goods (e.g., books) or divisible goods (e.g., a cake).

The inputs of a fair division problem are the set of agents, the set of goods, and the preferences of the agents over the goods, which are expressed as numerical values in cardinal welfare economics (rather than ordinal preferences). The output is an allocation of goods to the agents which specifies which (share of) goods are given to which agents ("who gets what" ).

Let us now describe the inputs and outputs of our problem of fair allocation of exposure in recommender systems, focusing on the non-reciprocal setting2 . We have the following inputs:

• The set of agents are the users and the items;

• The good with limited availability is the total exposure in the rankings (or equivalently, the slots in every users' ranking);

• Users have heterogeneous preferences over items, quantified by the relevance scores µ ij ,a n dt h e y obtain higher utility when higher exposure is given to relevant items in their own ranking. Items all have the same preference for high exposure (or equivalently, slots in higher positions in all users' rankings).

The output is a ranking policy that defines one ranking of items per user, and it is chosen from a set of alternatives which is the set of stochastic ranking policies. A ranking policy specifies which users' attention is given to which items. In fair division terms, it allocates to each item a share of total exposure, and to each user a ranking of items. Although the inputs and outputs are not standard for fair division, fair recommendation can still be framed as a fair division problem. 3Normative properties. The most important property is the criterion of Pareto efficiency.

According to [START_REF] Moulin | Fair division and collective welfare[END_REF], in distributive justice, "its desirability is undisputed". In words, an allocation is Pareto-efficient if there is no other feasible allocation that would make at least one agent strictly better off while not making any of the others worse off.

We formally define Pareto-efficiency and Lorenz-efficiency by introducing the following notation.

In this section, we denote by n the total number of agents, A ag e n e r i ca l t e r n a t i v ea n dA the set of alternatives (which would be the set of stochastic ranking policies P in the fair allocation of exposure problem). We denote by U = {(u i (A)) n i=1 : A 2 A} the set of achievable utility profiles. Let u, v 2 R n two utility profiles. We write u ⌫ P v if 8i 2 JnK,u i v i .W es a yt h a tu Pareto-dominates v,n o t e du P v,i fu ⌫ P v and 9i,

u i >v i .G i v e nU ✓ R n , u 2 U is said to be Pareto-efficient in U if no v 2 U Pareto-dominates u,i . e . ,i f8v 2 U , ¬(v P u).S i m i l a r l y ,A 2 A is said to be Pareto-efficient if u(A) is Pareto-efficient.
We now describ e the criterion of Lorenz efficiency which is at the core of the framework of Chapter 3.L e t(u " i ) n i=1 (resp. (v " i ) n i=1 )b et h ev a l u e si nu (resp. v)s o r t e di na s c e n d i n go r d e r ,i . e . , [Shorrocks, 1983]. Similarly, A 2 A is said to be Lorenz-efficient if u(A) is Pareto-efficient. Note that Lorenz efficiency implies Pareto efficiency.

u (1)  ...  u (n) . We write u ⌫ L v if 8k 2 JnK,u " 1 + ...+ u " k v " i + ...+ v " k .W es a yt h a tu Lorenz-dominates v,d e n o t e db yu L v,i fu ⌫ L v and 9k, u " 1 + ...+ u " k >v " i + ...+ v " k . u 2 U is said to be Lorenz-efficient in U if 8v 2 U, ¬(v L u)
The Lorenz dominance preorder is closely related to the mathematical notion of majorization [Hardy et al., 1952]. The definition of majorization is in fact the same as Lorenz dominance, except that the utilities are sorted in decreasing order instead of increasing order.

Cardinal social welfare functions. Given a set of possible alternatives A,acardinal social welfare function or more simply, a welfare function4 F maps the utility profile (u i (A)) n i=1 for A 2 A to a real value that represents the aggregate preference of all individuals for the alternative A. Socially preferred alternatives are those which maximize F over U = {(u i (A)) n i=1 : A 2 A}. We now describ e useful prop erties of so cial welfare functions F which relate to the efficiency of their maximizers. Let

F : dom(F ) ✓ R n ! R and (u, v) 2 dom(F ) 2 . F is monotonic if u ⌫ P v ) F (u) F (v). F is Schur-concave if P n i=1 u i = P n i=1 v i and u ⌫ L v =) F (u) F (v). These extend to natural strict criteria of strict monotonicity (u P v =) F (u) >F(v))a n d strict Schur-concavity ( P i u i = P i v i and u L v =) F (u) >F(v)).
Given U ✓ dom(F ),t h e definitions imply that for every u 2 argmax v2U F (v),i fF is monotonic, then u is Pareto-efficient, and if F is both monotonic and strictly Schur-concave, then u is Lorenz-efficient [Shorrocks, 1983[START_REF] Paul D Thistle | Ranking distributions with generalized lorenz curves[END_REF].

The axiomatic approach. The axiomatic approach to cardinal welfare economics specifies desirable properties of social welfare functions based on the axioms of symmetry, continuity, independence of unconcerned agents and independence to scale, defined in [START_REF] Moulin | Fair division and collective welfare[END_REF].

Afundamen talresultofaxiomaticcardinalw elfareeconomicsisthatw elfarefunctionsF : R n + ! R [ { 1} that satisfy monotonicity, symmetry, continuity, independence of unconcerned agents and independence to scale are additive and have the following form for ↵ 2 R: .3) In Chapter 3,w ep r o po s et ofi n dr a n k i n gpo l i c i e sb ym a x i m i z i n gt h e s ea d d i t i v ew e l f a r ef u n c t i o n s .

W ↵ (u)= n X i=1 (u i ; ↵) where (x; ↵)= 8 > > > < > > > : x ↵ if ↵ > 0 log(x) if ↵ =0 x ↵ if ↵ < 0 . ( 2 
More precisely, we maximize trade-offs between the welfare of users and the welfare of items, where the welfare on each side is defined by a function of the form of W ↵ (u).

Fairness: the Pigou-Dalton transfer principle and Lorenz efficiency. The fundamental axiom of fairness in cardinal welfare economics is the Pigou-Dalton transfer principle. It states that social welfare increases when we redistribute utility from a better-off individual to a worse-off,keeping others' utilities and the overall sum of utilities constant. This transfer principle is mathematically equivalent to Schur-concavity, which holds for welfare functions of the form (2.3) above when ↵  1 [Hardy et al., 1952[START_REF] Albert W Marshall | Inequalities: theory of majorization and its applications[END_REF][START_REF] Franklin | Some methods applicable to identities and inequalities of symmetric algebraic functions of n letters[END_REF]. Since ↵ =1corresponds to the pure utilitarian welfare function, which is neutral with respect to mean-preserving redistributions of utilities, the Pigou-Dalton principle holds strictly for strictly Schur-concave functions, and thus for ↵ < 1 in (2.3). Then, socially preferred alternatives are Lorenz-efficient, which follows the fundamental concept underlying the welfarist measurement of inequalities [Shorrocks, 1983, Hardy et al., 1952]: a distribution of utility u which Lorenz-dominates a distribution v with the same mean is seen as more equitable since a larger share of utility is held by the worse-off individuals.

Assessing recommender systems in light of the Pigou-Dalton transfer principle (or with Lorenz efficiency) is useful to prohibit rich-gets-richer effects and promote less visible item producers. Since it favours utility transfers to the worst-off,i tp r e v e n t sr a n k i n gp o l i c i e st h a tu n f a i r l yp u tt h eb u r d e n of item-side redistrbution on the worst-off users.

Utilitarianism with diminishing returns. An alternative point of view that yields the same social preferences is to consider that u i (A) is not the underlying utility of i,b u tr a t h e rt h ea m o u n t of "value" received under A,a n dt h et r u eu n d e r l y i n gu t i l i t yo fi exhibits diminishing returns with respect to u i (A).A s s u m i n gt h es a m ed i m i n i s h i n gm a r g i n a lu t i l i t yc u r v ef o re v e r yi n d i v i d u a l ,s o c i a l welfare functions of the form (2.3) are then utilitarian social welfare functions, where ↵ controls the diminishing marginal utility (see e.g., the discussion by Atkinson et al. [2015]). From either perspective (non-utilitarian/equity or utilitarian/diminishing marginal utility), Lorenz-efficiency of profiles (u i (A)) n i=1 is the refinement of Pareto-efficiency that leads to socially preferred outcomes. In other words, Lorenz-efficiency allows to choose between Pareto-efficient solutions.

The concept of diminishing returns is especially applicable to recommender systems. This is because item producers experience diminishing returns as they receive more exposure to users: "One extra view counts less for a producer with 10 million views than for one with only 10 views." This concept aligns with the goal of promoting smaller item producers and making them sustainable.

Inequality indices, welfare functions and Lorenz curves

An important class of fairness criteria aims to quantify the level of economic inequality caused by a given alternative. These criteria are based on inequality indices, which are often associated with welfare functions. In Chapter 4,w ea p p l yt h ec l a s so fg e n e r a l i z e dG i n iw e l f a r ef u n c t i o n st ot h ef a i r ranking problem, which are linked to the widely used Gini index for measuring inequality.

In this section, we present inequality indices and how they relate to welfare functions. Then we present the Gini index and other inequality indices, and discuss their properties. The Lorenz curve, ag r a p h i c a lr e p r e s e n t a t i o no fu t i l i t yp r o fi l e s ,i sa l s od i s c u s s e d ,a si si t sc o n n e c t i o nt ot h eG i n ii n d e x .

For a more detail survey on inequality measures, we refer the reader to Cowell [2000]f o rt h et h e o r y of inequality measures in welfare economics and to Chakravarty et al. [2009]f o ra ne x t e n s i v es u r v e y of measures used in practice.

Inequality indices and welfare functions

Inequality indices are functions that measure the level of inequality in a population, in particular inequality of wealth or income. An important perspective on inequality is that more inequality in a society causes a loss of social welfare [START_REF] Anthony B Atkinson | On the measurement of inequality[END_REF]. In this view, choosing an inequality index is similar to selecting a welfare function: it involves making a normative judgment.

Inequality indices like the well-known Gini index are often associated with welfare functions. In practice, inequality indices are typically used as evaluation measures, while welfare functions are used to decide on an allocation. In Chapter 4, we focus on the Gini index, which is also commonly used in recommendation papers to measure unfairness, and we maximize its associated welfare function, which we present in the following subsection.

The formal connection between inequality indices and welfare function is made in [START_REF] Anthony B Atkinson | On the measurement of inequality[END_REF], Cowell, 2000]. In the following, we consider a generic population of n individuals and their utilities u 2 R n .A ni n e q u a l i t yi n d e xt a k e sa si n p u tau t i l i t yp r o fi l eu and outputs a measure

I(u) 2 R.
The welfare function W : R n + ! R associated to an inequality index I is an increasing function of the mean of utilities ū = 1 n P n i=1 u i ,a n dad e c r e a s i n gf u n c t i o no ft h ei n e q u a l i t ym e a s u r e I(u). It is often formulated as: W (u)=ū(1 I(u)). Conversely, it is possible to define an inequality index from a welfare function W as follows:

I(u)= 8 < : 1 W (u) ū if u 6 =0 0 otherwise.
The inequality index I(u) thus represents the proportion of loss of welfare due to inequality.

The concavity of the welfare function represents the degree of aversion to inequality of the evaluator.

As for the choice of welfare function, choosing an index to measure inequality involves a normative judgement, since various choices can produce different conclusions.

Af u n d a m e n t a ld i fference between inequality indices and their associated welfare function is the absence of normalization by the mean of utilities. As elaborated by [START_REF] Anthony B Atkinson | On the measurement of inequality[END_REF]a n dd i s c u s s e d in the context of recommender systems in Chapter 3,i n e q u a l i t yi n d i c e so n l yf oc u so nt h es h a peo fa utility profile, not on its mean. This implies that it is possible to decrease the value of an inequality index by making everyone worse-off, which is undesirable. The absence of normalization in the welfare function prevents this degenerate behavior. This is why inequality indices are used for evaluation rather than decision-making, while decisions are made by maximizing welfare functions.

We follow this practice in Chapters 3 an 4.

Generalized Gini indices

The Gini index [Gini, 1921] is a well-known inequality index used in cardinal welfare economics. It is often calculated as [Yitzhaki and Schechtman, 2013]:

Gini(u)= 1 n 2 ū n X i=1 n X j=1 |u i u j | with ū = 1 n n X i=1 u i .
Note that in addition to the Gini index being a well-known measure of inequality, the sum of absolute pairwise differences previously appeared routinely in papers on fairness of exposure [Morik et al., 2020]a sm e a s u r e so f" u n f a i r n e s s " ,e v e nt h o u g ht h e s ep a pe r sd on o te x p l i c i t l ym e n t i o nt h e relationship with the Gini index.

The (Generalized) Lorenz curve The Gini index has many definitions. One of the most commonly used is based on the Lorenz curve, which plots cumulative fractions of utility owned by individuals ordered from those with less utility (the worse-off) to those with highest utility (the better-off). Formally, let u " be the values of u sorted in increasing order, i.e., u " 1  ...  u " n and let U 2 R n be the cumulative sum of u " ,i . e . ,U i

= u " 1 + ... + u " i . The Lorenz curve of u is i/n 7 ! Ui kuk 1 (note that kuk 1 = U n ,s ot h ee n dp o i n to ft h ec u r v ei s1). Then the Gini index is equal to 1-2*A
where A is the area under the Lorenz curve:

Gini(u)=1 2 n kuk 1 n X i=1 U i .
An example of Lorenz curve is given Fig. 2.1 (left). It provides a representation of how utility is distributed across the population. When there is perfect equality of utility, the Lorenz curve is as t r a i g h tl i n ef r o m(0, 0) to (1, 1).O nt h eo t h e rh a n d ,t h es t r o n g e rt h ec u r v a t u r e ,t h em o r et h e utility is concentrated on the better-off individuals.

Generalized Lorenz curves are, which are at the core of Chapters 3 and 4,a r eL o r e n zc u r v e s without the normalization by mean utility, i.e. the curve i/n 7 ! U i [Shorrocks, 1983]( F i g u r e2.1 right). Unlike Lorenz curves, generalized Lorenz curves uniquely characterize the distribution of utility in the population [Shorrocks, 1983], by taking into account the actual amount of utility possessed by each fraction of the population. Importantly, they make it possible to visualize which fractions of the population, ordered from worse-off to better-off,be n e fi tt h em o s tf r o ma na l l oc a t i o n .

In Chapter 3,w ep r o p o s et od i a g n o s et h ef a i r n e s so fr a n k i n g sb yl o o k i n ga tt h eg e n e r a l i z e d Lorenz curves of users and items to visualize "who gets what". In particular, it allows to visualize how strongly our ranking methods redistribute utility from better-off to worst-off users or items, and to show that some existing ranking methods reduce the utility of the worst-off.

The welfare function of the Gini index The welfare function associated to the Gini index is the un-normalized value

1 n P n i=1 U i .
It can be written as the area under the generalized Lorenz curve, or equivalently as an ordered weighted average (OWA, [Yager, 1988]): .4) This formula clarifies that the utility of the worse-off (u " i for small i)a c c o u n t sf o rm o r et h a nt h e utility of the better-off.N o t et h a tt h er i g h t -h a n ds i d eo ft h ef o r m u l aa b o v ei sc a l l e da no r d e r e d weighted average because the weight associated to a coordinate in u depends on its rank after Figure 2.1: (Left) Lorenz curves and (Right) Generalized Lorenz curves of two income profiles y and y 0 ,f r o mt h eo r i g i n a lp a p e ro f [ Shorrocks, 1983]. Because of Lorenz curves are normalized by mean income, they do not favour an income profile over the other since the two intersect. In contrast, Generalized Lorenz curves show that y 0 is preferrable to y because the cumulative income is higher for all fractions of the population, from the worst-off individuals to the whole population. In other words, the income profile y 0 Lorenz-dominates y.

W Gini (u)= 1 n n X i=1 U i = n X i=1 n i +1 n u " i . ( 2 
sorting in increasing order. i ). Since generalized Lorenz curves uniquely characterizes the distribution of utility in the population [Shorrocks, 1983], a natural way to formulate normative judgements in terms of redistribution is by assigning weights to each point of the Lorenz curve. This family of welfare function is called Generalized Gini welfare Functions (GGFs, [START_REF] Weymark | Generalized gini inequality indices[END_REF]), which can be written as an OWA of utilities [Yager, 1988]. Given a vector w of non-increasing positive weights, s.t.

w 1 =1 ... w n 0,a n du s i n gt h ec o n v e n t i o nw n+1 =0,t h eG G F sa r ed e fi n e da s :

g w (u)= n X i=1 (w i w i+1 )U i = n X i=1 w i u " i .
The fact that the weights w are non-increasing imply that w i w i+1 0,a n da l s ot h a tW Gini is concave [Yager, 1988]. It is clear also that g w (u) is increasing with respect to each coordinate in u. This guarantees that maximizing W Gini generates solutions that are Pareto-efficient and that W Gini is monotonic with respect to the dominance of generalized Lorenz curves.

Inequality indices as special cases of Generalized Gini The Bonferroni and De Vergottini indices are two classical inequality indices, for which the associated welfare functions are special instantiations of Generalized Gini welfare Functions [Aristondo et al., 2013]. The Bonferroni index [Bonferroni, 1941]comparestheo v erallincomemeantotheincomemeansofthepoorestindividuals in the population to assess inequality. The De Vergottini index [De Vergottini, 1950] jn [Aristondo et al., 2013]. Top wealth shares [Piketty and Saez, 2003]a n dq u a n t i l er a t i o s [ Burkhauser et al., 2009[START_REF] Neves | Not all inequality measures were created equal-the measurement of wealth inequality, its decompositions, and an application to european household wealth[END_REF] are other widely used examples of inequality measures based quantiles of utilities. A commonly used quantile ratio is the D9/D1 index which is the ratio of the 90th and 10th percentile values, and allows to compare the incomes of the wealthiest and poorest individuals of the population. GGFs also allow to express normative criteria based on utility quantiles, using e.g. w i =1if i bqnc for the bottom q-th quantile.

Additively decomposable inequality indices

While the family of Generalized Gini indices provides an expressive framework for measuring inequality, there are several alternative inequality measures with interesting properties. A class of indices of interest are generalized entropy indices [Shorrocks, 1980], which are defined as: , 1970], which is defined from a welfare function.

E ↵ (u)= 8 > > > < > > > : 1 n↵(↵ 1) P n i=1 ⇥ ui ū ↵ 1 ⇤ , if ↵ 6 =0, 1 1 n P n i=1 ln( ui ū ), if ↵ =0 1 n P n i=1 ui ū ln( ui ū ), if ↵ =1.
The appealing property of generalized entropy indices is that they are additively decomposable, meaning that they can be decomposed into a within-group and a between-group inequality term.

In contrast, generalized Gini indices do not satisfy additive decomposability in general [Shorrocks, 1980]. Existing work on group fairness in ranking and recommendation define group utilities by averaging the utilities in the group, and measure unfairness by the Gini index [Morik et al., 2020].

The resulting measure does not account for within-group inequalities, while using an additively decomposable inequality measure on the utility profile would provide a decomposition into withingroup and between-group fairness. [START_REF] Speicher | A unified approach to quantifying algorithmic unfairness: Measuring individual &group unfairness via inequality indices[END_REF]a d v o c a t ef o rt h i sp r o p e r t yi nt h ec o n t e x t of fair machine learning. We propose a simple treatment of group fairness in Appendix A.2 that we discuss in more detail in Chapter 7, but we do not address the question of within-group vs.

between-group fairness.

Envy-free allocations

The concepts from cardinal welfare economics that we presented in the previous section -i.e. welfare functions, inequality indices, Pareto and Lorenz dominance -are applicable to various social choice problems, including the allocation of private goods (e.g., a piece of cake) or public goods (e.g., a public road) [Le Breton and Weymark, 2011]. In this section, we discuss fairness criteria that are specific to allocation problems for private goods. As we discuss in Chapter 6,t h e s ec r i t e r i ac a nb e used to conceptualize user fairness in personalized recommender systems, where the personalized ranking assigned to a user can be seen as a private good.

Envy-freeness, which is usually credited to [START_REF] Duncan | Resource allocation and the public sector[END_REF], is a desirable property in the fair division of private goods, in which a resource or a set of items must be divided among multiple agents. An allocation is said to be envy-free if no agent prefers the share of resource or bundle of items of another agent to their own, i.e., there is no envy. An extensive discussion of the axiomatic foundations of envy-freeness is found in [START_REF] Thomson | Fair allocation rules[END_REF].

Another fairness criterion in fair division is proportionality, which is satisfied if each agent receives a share that they value at least as much as 1/n of the total resource's value to them. In the classical setting of additive utilities, envy-freeness implies proportionality [START_REF] Thomson | Fair allocation rules[END_REF].

Unlike the welfare function approach described previously, envy-freeness can be defined in terms of ordinal preferences. Furthermore, it does not involve interpersonal comparison of utilities across agents, since different bundles are assessed by the preferences of the same agent. The latter property is interesting for recommender systems, since user utilities can be difficult to compare as they are based on patterns that differ across users (e.g., rating or browsing habits).

In Chapter 6,w ep r o p o s ee n v y -f r e e n e s sa saf a i r n e s sc r i t e r i o nf o rp e r s o n a l i z e dr e c o m m e n d a t i o n , and analyse its properties and its relationship to other criteria for fair recommendation. The only agents that we consider in that chapter are the users.

The personalized recommendation setting is different from classical fair division in several ways.

First, in recommender systems, the same item can be shown to an unrestricted number of users, whereas in fair division, a single good can be given to at most one agent. Second, the true user preferences in recommender systems are unknown and must be estimated from noisy feedback, while in fair division problems, the agents' preferences are known to the decision-maker. We address the technical challenge of exploring user preferences to certify envy-freeness in Chapter 6.

Social choice and welfare for fair machine learning

Recently, there has been growing interest in building connections between fairness in machine learning and social choice theory [START_REF] Speicher | A unified approach to quantifying algorithmic unfairness: Measuring individual &group unfairness via inequality indices[END_REF], Ustun et al., 2019, Balcan et al., 2018, Gölz et al., 2019[START_REF] Hossain | Designing fairly fair classifiers via economic fairness notions[END_REF][START_REF] Chakraborty | Equality of voice: Towards fair representation in crowdsourced top-k recommendations[END_REF], Finocchiaro et al., 2021, Saito and Joachims, 2022], and welfare economics in particular [START_REF] Speicher | A unified approach to quantifying algorithmic unfairness: Measuring individual &group unfairness via inequality indices[END_REF], Hu and Chen, 2020, Kleinberg et al., 2018b, Zimmer et al., 2021, Hossain et al., 2021]. In line with Hu and Chen [2020], who focused on classification tasks and parity constraints, we argue that the principle of Pareto efficiency should be part of fairness assessments. In Chapter 3,w ea r et h efi r s tt op r o p o s e concave welfare functions and Lorenz efficiency to address two-sided fairness in recommendation. In particular, by introducing Lorenz efficiency, which combines Pareto efficiency and the Pigou-Dalton principle, we provide a refinement of Pareto efficiency which helps choosing ranking policies among Pareto-efficient solutions with a more complete assessment of "who gets what".

Among the recently proposed connections between fair machine learning and economic concepts, some authors proposed to use inequality indices to quantify and mitigate unfairness [START_REF] Speicher | A unified approach to quantifying algorithmic unfairness: Measuring individual &group unfairness via inequality indices[END_REF][START_REF] Speicher | A unified approach to quantifying algorithmic unfairness: Measuring individual &group unfairness via inequality indices[END_REF][START_REF] Lazovich | Measuring disparate outcomes of content recommendation algorithms with distributional inequality metrics[END_REF], take an axiomatic perspective [Gölz et al., 2019, Cousins, 2021, Williamson and Menon, 2019]o ra p p l yw e l f a r ee c o n o m i c sp r i n c i p l e s [ Hu andChen, 2020, Rambachan et al., 2020]. In particular, the Generalized Gini welfare Functions (GGFs) that we study in Chapter 4, were recently applied to fair multi-agent reinforcement learning, with multiple reward functions [START_REF] Busa-Fekete | Multi-objective bandits: Optimizing the generalized gini index[END_REF], Siddique et al., 2020, Zimmer et al., 2021]. These works consider sequential decision-making problems without ranking, and their GGFs aggregate the objectives of a few agents (typically n<20), while in our ranking problem, there are as many objectives as there are users and items.

The integration of social choice concepts into fair machine learning is also useful for defining preference-based fairness criteria. Specifically, since social choice deals with fair decision-making based on the heterogeneous preferences of agents, its concepts are particularly suitable to personalized Notice that while the original frameworks of preference-based fairness for classification are defined at the level of groups [Zafar et al., 2017b, Ustun et al., 2019[START_REF] Hossain | Designing fairly fair classifiers via economic fairness notions[END_REF], Suriyakumar et al., 2022], it is more challenging to define group envy-freeness when the recommendations are personalized. This is because in the classification setting, there is only one classifier per group, while in our case we have a recommendation policy per individual in the group. In our personalized recommendation setting, we would need a non-trivial definition to capture what it means for a group of users to be "envious of the recommendations of another group", since there is no single group-level recommendation.

Chapter 3

Fairness in rankings with additive concave welfare functions This chapter is the article Two-sided fairness in rankings via Lorenz dominance,p u b l i s h e da t

NeurIPS 2021 (see [Do et al., 2021c]). In this chapter, we approach fair recommendation as a fair division problem where the scarce resource is the total exposure and the agents are the users and items. We propose a conceptual framework for fairness in ranked recommendations grounded in cardinal welfarism in social choice. This chapter provides a basis for the design of fair ranking objectives, on which we rely in the next chapters that will focus on algorithmic challenges and online learning.

We introduce generalized Lorenz curves to the fair ranking problem, which are graphical representations of the distribution of utility among users and items. We formalize the criterion of Lorenz efficiency for fairness in rankings, which is satisfied by rankings with non-dominated generalized Lorenz curves. It ensures that rankings are Pareto-efficient and that they are maximally redistributive at a given level of overall utility (i.e., they follow the Pigou-Dalton transfer principle).

This framework provides a better understanding of existing criteria for fairness in rankings, and shows that existing approaches amplify rich-gets-richer effects or destroy utility instead of redistributing it, in violation of Lorenz efficiency. We propose a principled approach to generate fair rankings by maximizing additive concave welfare functions of the utility profiles of users and items. The curvature of the welfare function for users (resp. items) controls the degree of redistribution among users (resp. items).

In this chapter, we consider a batch setting, and focus on the ranking problem. We do not address the problem of learning the values µ ij and assume they are given as input to the recommender system. Nonetheless, we provide in Appendix A. 3.3 an excess risk bound on the true welfare of the ranking obtained when using estimates μij .

In the batch setting, ranking with item-side fairness is challenging because items' utilities depend on the rankings of all users,r e q u i r i n gg l o b a li n f e r e n c e . P r e v i o u sm e t h od st h a tp r e c e d e d the publication of this work addressed this issue with heuristic methods without guarantees or control on the achievable trade-offs. We show how the Frank-Wolfe algorithm can be leveraged for tractable fair ranking in the position-based model.

Our method can be applied to both one-sided and reciprocal recommendation tasks, such as music or movie recommendation, and dating or social recommendation, respectively. By proposing the first unified framework for these two settings, we provide a new opportunity to investigate the fairness of rankings in reciprocal recommender systems, an area that has received relatively little attention in prior research.

The modelling choices made in this chapter are further discussed in Chapter 7.

Note that this chapter uses the notation of the original publication, which is different than the notation of Chapter 1. This is because at the time of writing the article, we aimed at minimal changes between one-sided and reciprocal recommendation settings. We also use the term "quality-weighted exposure" instead of "merit-based exposure" to refer to a prior item-side fairness criterion.

Introduction

Recommender systems have a growing impact on the information we see and on our life opportunities, as they help us browse news articles, find a new job, house, or people to connect with. While the objective of recommender systems is usually defined as maximizing the quality of recommendations from the user's perspective, the recommendations also have an impact on the recommended "items".

News outlets rely on exposure to generate revenue, finding a job depends on which recruiter gets to see our resume, and the effectiveness of a dating application also depends on who we are recommended to-and if we are being recommended, then someone else is not. Two-sided fairness in rankings is the problem of generating personalized recommendations by fairly mediating between the interests of users and items. It involves a complex multidimensional trade-off.F a i r n e s st o w a r d s item producers requires boosting the exposure of small producers (e.g., to avoid winner-take-all effects and popularity biases [Abdollahpouri et al., 2019b]) at the expense of average user utility.

Fairness towards users aims at increasing the utility of the least served users (e.g., so that least served users do not support the cost of item-side fairness), once again at the expense of average user utility. The goal of this paper is to provide an algorithmic framework to generate rankings that achieve a variety of these trade-offs, leaving the choice of a specific trade-off to the practitioner.

The leading approach to fairness in rankings is to maximize user utility under constraints of equal item exposure (or equal quality-weighted exposure) [Singh andJoachims, 2018, Biega et al., 2018]o re q u a lu s e rs a t i s f a c t i o n [ Basu et al., 2020]. When these constraints imply an unacceptable decrease in average user utility, so-called "trade-offsb e t w e e nu t i l i t ya n df a i r n e s s " [ Zehlike andCastillo, 2020, Singh andJoachims, 2019]a r eo b t a i n e db yr e l a x i n gt h ef a i r n e s sc o n s t r a i n t s ,l e a d i n g to the optimization of a trade-off between average user utility and a measure of users' or items' inequality.

Thinking about fairness in terms of optimal utility/inequality trade-offsh a s ,h o w e v e r ,t w o fundamental limitations. First, the optimization of a utility/inequality trade-off is not necessarily Pareto-efficient from the point of view of users and items: it sometimes chooses solutions that decrease the utility of some individuals without making anybody else better off.W ea r g u et h a t reducing inequalities by decreasing the utility of the better-off is not desirable if it does not benefit anyone. The second limitation is that focusing on a single measure of inequality does not address the question of how inequality is reduced, and in particular, which fraction of the population benefits or bears the cost of reducing inequalities.

In this paper, we propose a new framework for two-sided fairness in rankings grounded in the analysis of generalized Lorenz curves of user and item utilities. Widely used to study efficiency and equity in cardinal welfare economics [Shorrocks, 1983], these curves plot the cumulative utility obtained by fractions of the population ordered from the worst-off to the best-off.Ac u r v et h a t is always above another means that all fractions of the populations are better off.W ed e fi n ef a i r rankings as those with non-dominated generalized Lorenz curves for users and items. First, this definition guarantees that fair rankings are Pareto-efficient. Second, examining the entirety of the generalized Lorenz curves provides a better understanding of which fractions of the population benefit from an intervention, and which ones have to pay for it. We present our general framework based on Lorenz dominance in usual recommendation settings (e.g., music or movie recommendation), and also show how extend it to reciprocal recommendation tasks such as dating applications or friends recommendation, where users are recommended to other users.

We present a new metho d for generating rankings based on the maximization of concave welfare functions of users' and items' utilities. The parameters of the welfare function control the relative weight of users and items, and how much focus is given to the worse-off fractions of users and items.

We show that rankings generated by maximizing our welfare functions are fair for every value of the parameters. Our framework does not aim at defining what parameters are suitable in generalrather, the choice of a specific trade-off depends on the application.

From an algorithmic p ersp ective, two-sided fairness is challenging b ecause items' utilities dep end on the rankings of all users, requiring global inference. Previous work on item-side fairness addressed this issue with heuristic methods without guarantees or control on the achievable trade-offs. We show how the Frank-Wolfe algorithm can be leveraged to make inference tractable, addressing both our welfare maximization approach and existing item-side fairness penalties.

We demonstrate that our welfare function approach enjoys stronger theoretical guarantees than existing methods. While it always generates rankings with non-dominated generalized Lorenz curves, many other approaches do not. We show that one of the main criteria of the literature, called equity of attention by Biega et al. [2018], can lead to decrease user utility, while increasing inequalities of exposure between items. Moreover, equal user satisfaction criteria in reciprocal recommendation can lead to decrease the utility of every user,e v e nt h ew o r s e -o ff.O u rn o t i o no f fairness prevents these undesirable behaviors. We report experimental results on music and friend recommendation tasks, where we analyze the trade-offso b t a i n e db yd i fferent methods by looking at different points of their Lorenz curves. Our welfare approach generates a wide variety of trade-offs, and is, in particular, more effective at improving the utility of worse-off users than the baselines.

We present our formal framework in Section 3.2.W ed i s c u s st h et h e o r e t i c a lp r o p e r t i e so fp r e v i o u s approaches in Section 3.3,a n dp r e s e n to u rr a n k i n ga l g o r i t h mi nS e c t i o n3.4.O u re x p e r i m e n t sa r e described in Section 3.5,a n dt h er e l a t e dw o r ki sd i s c u s s e di nS e c t i o n3.6.

Two-sided fairness via Lorenz dominance

Formal framework

Terminology and notation. We identify an item with its producer, so that "item utility" means "item producer's utility". The main paper focuses on fairness towards individual users and items.

We describ e in App endix A.2 the extension of our approach to sensitive groups of users or items. A( d e t e r m i n i s t i c )r a n k i n g : I ! J|I|K is a one-to-one mapping from items j to their rank (j).

Following [START_REF] Singh | Fairness of exposure in rankings[END_REF], we use stochastic rankings because they allow us to perform inference using convex optimization (see Section 3.4). The recommender system produces one stochastic ranking per user, represented by a 3-way ranking tensor P where P ijk is the probability that j is recommended to i at rank k.W ed e n o t eb yP the set of ranking tensors.

Utilities of users and items are defined through a position-based model, as in previous work [START_REF] Singh | Fairness of exposure in rankings[END_REF], Biega et al., 2018, Wu et al., 2021b]. Let v 2 R |I| , where v k is the exposure weight at rank k.W ea s s u m et h a tl o w e rr a n k sr e c e i v em o r ee x p o s u r e ,s ot h a t8k 2 J|I| 1K,v k v k+1 0.1 Given a user i and a ranking i ,t h euser-side utility of i is the sum of the µ ij sw e i g h t e d by the exposure weight of their rank i (j):

u i ( i )= P j2I v i (j) µ ij .
G i v e na ni t e mj,t h eitem-side utility of j is the sum over users i of the exposure of j to i. These definitions extend to stochastic rankings by taking the expectation over rankings, written in matrix form:2 user-side utility:

u i (P )= X j2I µ ij P ij v item-side utility (exposure): u j (P )= X i2N P ij v
We denote by u(P )=(u i (P )) n i=1 the utility profile for P ,a n db yU = {u(P ):P 2 P} the set of feasible profiles. For u 2 U, u N =(u i ) i2N and u I =(u i ) i2I denote the utility profiles of users and items respectively.

Two-sided fairness in rankings. In practice, values of µ ij are not known to the recommender system. Ranking algorithms use an estimate μ of µ based on historical data. We address here the problem of inference:t h et a s ki st oc o m p u t et h er a n k i n gt e n s o rg i v e nμ, with the goal of making fair trade-offsb e t w e e n( t r u e )u s e ra n di t e mu t i l i t i e s . N o t i c et h a tt h eu s e r -s i d eu t i l i t yd e p e n d so n l y on the ranking of the user, but for every item, the exposure depends on the rankings of all users.

holds when all utilities are comparable. In our case where there are users and items, we propose the following welfare function parameterized by ✓ =( , ↵ 1 , ↵ 2 ):

3 8u 2 R n + : W ✓ (u)=(1 ) X i2N (u i , ↵ 1 )+ X j2I (u j , ↵ 2 ) with (x, ↵)= 8 > > > < > > > : x ↵ if ↵ > 0 log(x) if ↵ =0 x ↵ if ↵ < 0 .
Inference is carried out by maximizing W ✓ (an efficient algorithm is proposed in Section 3.4):

(ranking procedure)

P ⇤ 2 argmax P 2P W ✓ (u(P )) (3.1)
In W ✓ , 2 [0, 1] controls the relative weight of users and items. The motivation for the specific choice of is that it appears in scale invariant welfare functions [START_REF] Moulin | Fair division and collective welfare[END_REF], but other families can be used as long as the functions are increasing and concave.M o n o t o n i c i t yi m p l i e st h a tm a x i m a of W ✓ are Pareto-efficient. For ↵ 1 < 1 and ↵ 2 < 1, W ✓ is strictly concave. Then, W ✓ exhibits diminishing returns, which is the key to Lorenz efficiency: an increment in utility for a worse-off user/item increases welfare more than the same increment for a better-off user/item. The effect of the parameters is shown in Fig. 3.1 (left): For item fairness we obtain more item equality by using

↵ 1 < 1 (here, ↵ 1 =0.5
)a n di n c r a s i n g (see blue solid vs orange dashed curve). The parameter ↵ 2 controls user fairness:s m a l l e rv a l u e sy i e l dm o r eu s e ru t i l i t yf o rt h ew o r s e -o ff users at the expense of total utility, with similar item exposure curve (green dotted vs orange dahsed curves). Let

Θ = {( , ↵ 1 , ↵ 2 ) 2 (0, 1) ⇥ ( 1,1) 2 }.F o re v e r y✓ 2 Θ,W ✓ is
strictly concave, and users and items have non-zero weight. We then have (the result is a straightforward consequence of diminishing returns, see Appendix A.3):

Proposition 1. 8✓ 2 Θ, 8P ⇤ 2 argmax P 2P W ✓ (u(P )), P ⇤ is Lorenz-efficient.
Relationship to inequality measures A well-known measure of inequality is the Gini index, defined as 1 2 ⇥ AULC, where AULC is the area under the Lorenz curve. The difference between Lorenz and generalized Lorenz curves is that the former is normalized by the cumulative utility. This difference is fundamental: we can decrease inequalities while dragging everyone's utility to 0. However, this would lead to dominated generalized Lorenz curves. Interestingly, for item-side fairness, the cumulative exposure is a constant and thus trade-offsb e t w e e nu s e ru t i l i t ya n di t e m exposure inequality are not really problematic. However, for user-side fairness, the total utility is not constant and reducing inequalities might require dragging the utility of some users down for the benefit of no one.

Additional theoretical results

In App. A.3.2,w es h o wt h a ta s↵ 1 , ↵ 2 ! 1, utility profiles tend to leximin-optimal solutions [START_REF] Moulin | Fair division and collective welfare[END_REF]. Leximin optimality corresponds to increasing the utility of the worst-off users/items one a a time, similarly to a lexical order. In App. A.3.3, we present an excess risk bound, which provides theoretical guarantees on the true welfare when computing rankings based on estimated preferences, depending on the quality of the estimates.

Extension to reciprocal recommendation

In reciprocal recommendation problems such as dating, the users are also items. The notion of fairness simplifies to increasing the utility of the worse-off users, which can in practice be done by boosting the exposure of worse-off users. Our framework above applies readily by taking N = I and n = |N |.T h ec r i t i c a ls t e ph o w e v e ri st or e d e fi n et h eu t i l i t yo fau s e rt oa c c o u n tf o rt h ef a c tt h a t( 1 ) the user utility comes from both the recommendation they receive and who they are recommended to, and (2) users have preferences over who they are recommended to.

To define this two-sided utility,l e tu sd e n o t eb yµ ij the mutual preference value between i and j,

and our examples follow the common assumption that µ ij = µ ji (see e.g., Palomares et al. [2021]).

For instance, when recommending CVs to recruiters, µ ij can be the probability of interview, while in dating, it can be that of a "match". The two-sided utility is then the sum of the user-side utility and item-sided utility of the user:

user-side utility (j recommended to i) z }| { u i (P )= X j2I µ ij P ij v item-side utility (i recommended to j) z }| { v i (P )= X j2N µ ij P ji v (two-sided) utility z }| { u i (P )=u i (P )+v i (P )
With this definition of two-sided utility, our previous framework can be readily applied using N = I.

A( t w o -s i d e d )u t i l i t yp r o fi l eu 2 U is Lorenz-efficient if there is no u 0 2 U such that u 0 L u. The welfare function simplifies to W ✓ (u)= P n i=1 (u i , ↵
),a n dP r o p o s i t i o n1 also holds true in this setting: maximizing the welfare function always yields Lorenz-efficient rankings. Fig. 3.1 (right) illustrates how decreasing ↵ increases utilities for the worse-off users at the expense of total utility. It also shows a Lorenz-dominated (unfair) profile, in which all fractions from the worst-off to the better-off users have lower utility.

From now on, we refer to one-sided recommendation for non-reciprocal recommendation.

Comparison to utility/inequality trade-off approaches

As stated in the introduction, leading approaches to fairness in ranking are based on utility/inequality trade-offs. We describe here the representative approaches we consider as baselines in our experiments. We then present theoretical results illustrating the undesirable behavior of some of them.

Objective functions

One-sided recommendation In one-sided recommendation, the leading approach is to define exposure-based criteria for item fairness [Singh andJoachims, 2018, Biega et al., 2018]. The first criterion, equality of exposure, aims at equalizing exposure across items. The second one, quality-weighted exposure4 , which is advocated by many authors, defines the quality of an item as the sum of user values q j = P i2N µ ij and aims for item exposure proportional to quality. The motivation of quality-weighted exposure is to take user utilities into account in the extreme case where the constraint is strictly enforced. Interestingly, as we show later, this approach has bad properties in terms of trading off user and item utilities.

In our experiments, we use the standard deviation as a measure of inequality. Denoting by E = |N | kvk 1 the total exposure and by Q = P j2I q j the total quality: [Singh and Joachims, 2019, Morik et al., 2020, Basu et al., 2020]. D qua and D 0 have qualitatively the same behavior. We propose D qua (u) as a computationally efficient alternative to D 0 ,s i n c ei ti n v o l v e so n l yal i n e a r number of terms and p D qua is convex and differentiable except on 0.

quality-weighted exposure F qua (u)= X i2N u i p D qua (u) with D qua (u)= 1 |I| X j2I ⇣ u j q j E Q ⌘ 2 . equality of exposure F (u)= X i2N u i p D(u) with D(u)= 1 |I| X j2I ⇣ u j 1 |I| X j 0 2I u j 0 ⌘ 2 . Some authors use D 0 (u)= P (j,j 0 )2I 2 | uj qj u j 0 q j 0 | instead of p D qua
Reciprocal recommendation For recipro cal recommendation, we consider as comp eting approach a trade-off between total (two-sided) utility and inequality of utilities, as measured by the standard deviation:

equality of utility F (u)= X i2N u i p D(u) with D(u)= 1 n X j2I ⇣ u j 1 n X j 0 2I u j 0 ⌘ 2 .

Inequity and inefficiency of some of the previous approaches

We p oint out here to two deficiencies of previous approaches.

First, for one-sided recommendation, we show that in some cases, compared to the welfare approach with any choice of the parameter ✓ 2 Θ,qualit y-w eigh tedexposureleadstotheundesirable behavior of decreasing user utility while increasing inequalities of exposure between items. This is formalized by the proposition below, which uses the following notation: for ✓ 2 Θ,l e tu ✓ = argmax u2U W ✓ (u),a n df o r > 0,l e tU qua = argmax u2U F qua (u).

Proposition 2. The following claims hold irrespective of the choice of u qua, 2 U qua .

For every d 2 N ⇤ and every N 2 N ⇤ , there is a one-sided recommendation problem, with d +1 items and N (d + 1) users, such that 8✓ 2 Θ, we have: 

9 > 0, u ✓ N L u qua,
P i2N u qua, i P i2N u ✓ i ! d!1 5 6 .
Second, in reciprocal recommendation, striving for pure equality can even lead to 0 utility for every user,e v e nt h a to ft h ew o r s t -o ff user. More precisely, we show that in some cases, compared to the welfare approach with any choice of parameter ✓ 2 Θ,t h e r ee x i s t s > 0 such that equality of utility has lower utility for every user, eventually leading to 0 utility for everyone in the limit !1.

Proposition 3. For > 0,l e tU eq = argmax u2U F (u). The claim below holds irrespective of the choice of u eq, 2 U eq .L e tn 5. There is a reciprocal recommendation task with n users such that:

8✓ 2 Θ, u ✓ , 9 > 0: 8i 2 JnK,u ✓ i >u eq, i and lim !1 X i2N u eq, i =0
.

Proofs and additional results All proofs are deferred to App. A.4, where we provide several additional results regarding the use of quality-weighted exposure and equality of exposure in reciprocal recommendation: We show in Prop. 25 that there are cases where both approaches lead to user utility profiles with Lorenz-dominated curves, and significantly lower total user utility than the welfare approach for any choice of the parameters.

Efficient inference of fair rankings with the Frank-Wolfe algorithm

We now present our inference algorithm for (3.1).A p p e n d i xA.5 contains the proofs of this section and describes a similar approach for the objective functions of the previous section. From an abstract perspective, the goal is to find a maximum P ⇤ such that:

P ⇤ 2 argmax P 2P W (P ) with W (P )= n X i=1 Φ i ✓ n X j=1 µ ij (P ij + P ji )v ◆
where for every i, Φ i : R + ! R is concave increasing, µ ij 0 and v is a vector of non-negative non-increasing values. Since W is concave and P is defined by equality constraints, the problem above is a convex optimization problem. However, this is a global optimization problem over the rankings of all users, so a naive approach would require |N ||I| 2 parameters and 2|N ||I| linear constraints. The same problem arises with the penalties of previous work. In the literature, authors either considered applying the item-fairness constraints to each ranking individually [Singh andJoachims, 2018, Basu et al., 2020], which leads to inefficiencies with our definition of utility (see Appendix A.8), or resort to heuristics to compute the rankings one by one without guarantees on the trade-offst h a ta r ea c h i e v e d [ Morik et al., 2020, Biega et al., 2018].

Our approach is based on the Frank-Wolfe algorithm [Frank and Wolfe, 1956], which was previously used in machine learning in e.g., structured output prediction or low-rank matrix completion [START_REF] Lacoste-Julien | Block-coordinate frank-wolfe optimization for structural svms[END_REF], but to the best of our knowledge not for ranking. Denoting hX | Y i = P ijk X ijk Y ijk the dot product between tensors, the algorithm creates iterates P (t) by first computing P = argmax P 2P hP | rW (P (t) )i and then updating P (t) =(1 (t) )P (t 1) + (t) P with (t) = 2 t+2 [Clarkson, 2010]. Starting from an initial solution5 ,t h ea l g o r i t h ma l w a y ss t a y si nt h ef e a s i b l e region without any additional projection step. Our main contribution of this section is to show that argmax P 2P hP | rW (P (t) )i can be computed efficiently, requiring only one sort operation per user after computing the utilities. In the result below, for a ranking tensor P and a user i,w ed e n o t eb y S(P i ) the support of P i in ranking space. 6Theorem 4.

Let μij = Φ 0 i u i (P (t) ) µ ij + Φ 0 j u j (P (t) ) µ ji .L e t P such that: 8i 2 N , 8˜ i 2 S( Pi ): ˜ i (j) < ˜ i (j 0 )= ) μij μij 0 . Then P 2 argmax P 2P hP | rW (P (t) )i.
Moreover, it produces a compact representation of the stochastic ranking as a weighted sum of permutation matrices. The number of iterations of the algorithm allows to control the trade-off between memory requirements and accuracy of the solution. Using previous convergence results for the Frank-Wolfe algorithm [Clarkson, 2010], assuming each Φ 00 i is bounded, we have:

Proposition 5. Let B = max i2JnK kΦ 00 i k 1 and U = max u2U kuk 2 2
.L e tK be the maximum index of a nonzero value in v (or |I|). Then 8t 1,W(P (t) ) max

P 2P W (P ) O( BU t ).
Moreover, for each user, an iteration costs O(|I| ln K) operations and requires O(K) additional bytes of storage.

using matrix factorization. The experimental protocol is detailed in App. A. 6.4.W ea l s op r e s e n ti n App. A. 6.5 additional experiments using the Epinions dataset Richardson et al. [2003]. The results are qualitatively similar.

Our main baseline is equal utility (eq. utility)d e fi n e di nS e c t i o n3. 3.W ea l s oc o m p a r et o quality-weighted exposure, and equality of exposure as baselines that ignore the reciprocal nature of the task. The results are summarized in Fig. 3.4:

• Example of trade-offs obtained by varying ↵ are plotted in Fig. 3.4a. As ↵ decreases, the utility increases for the worse-off users at the expense of better-off users. We note that increasing the utility of worse-off users has a massive cost on total user utility: looking at the exact numbers we observe that ↵ = 5 has more than doubled the cumulative utility of the 10% worse off users compared to ↵ =1(120 vs 280), but at the cost of more than 60% of the total utility (17kv s 6.4k). Fig. A.2 in Appendix A. 6.4 contains plots of the trade-offsa c h i e v e db yt h eo t h e rm e t h o d s .

• qua.-weighted and eq. exposure are dominated by welf on a large range of hyperparameters. An example is given in Fig. 3.4b, where welf ↵ =0.5 already dominates some of their models, even though in this region of ↵ there is little focus on worse-off users. More generally, all values of 0.1 for qua.-weighted and eq. exposure lead to rankings with dominated curves. This is expected since they ignore the reciprocal nature of the task.

• eq. utility is dominated by welf near strict equality as illustrated in Fig. 3.4c: for large values of ,i ti sn o tp o s s i b l et oi n c r e a s et h eu t i l i t yo ft h ew o r s eo ff users, and eq. utility only drags utility of better-off users down.

• welf is more effective at increasing utility of the worse-off users as can be seen in Fig. 3.4e-g, which plots the total utility as a function of the cumulative utility at different points of the Lorenz curve (10%, 20%, 50% worse-off users respectively). For total utilities larger than 50% of the maximum achievable, welf significantly dominates eq. utility in terms of utility of worse-off users (10% and 25%) at a given level of total utility. welf also dominates eq. utility on the 50% worse-off users (Fig. 3.4h) in the interesting region where the total utility is within 20% of the maximum.

• More inequality is not necessarily unfair As shown in Fig. 3.4d, we see that for the same utility for the 10% worse-off users, welf models have higher inequalities than eq. utility.

A ss e e nb e f o r e ,t h i s higher inequality is due to a higher total utility (and higher total utilities for the 25% worse-off users. The analysis of these Lorenz curves allow us to conclude that these larger inequalities are not due to unfairness. They arise because welf optimizes the utility of the worse-off users at lower cost in terms of average utility than eq. utility.

Related work

The question of fairness in rankings originated from independent audits on recommender systems or search engines, which showed that results could exhibit bias against relevant social groups [Sweeney, 2013, [START_REF] Kay | Unequal representation and gender stereotypes in image search results for occupations[END_REF], Hannak et al., 2014, Mehrotra et al., 2017[START_REF] Lambrecht | Algorithmic bias? an empirical study of apparent genderbased discrimination in the display of stem career ads[END_REF] Our work follows the subsequent work on ranking algorithms that promote fairness of exposure for individual or sensitive groups of items [Celis et al., 2017b, Burke, 2017, Biega et al., 2018[START_REF] Singh | Fairness of exposure in rankings[END_REF], Morik et al., 2020[START_REF] Zehlike | Reducing disparate exposure in ranking: A learning to rank approach[END_REF]. The goal is often to prevent winner-take-all effects, combat popularity bias [Abdollahpouri et al., 2019b]o rp r o m o t es m a l l e r producers [Liu et al., 2019, Mehrotra et al., 2018]. Section The expected positive societal impact of this work is to provide more principled approaches to mediating between several parties on a recommendation platform. Yet, we did not address several questions that are critical for the deployment of our approach. In particular, true user preferences are often not directly available, and we only observe proxies to them, such as clicks or likes. Second, interpersonal comparisons of utilities are critical in this work. It is thus necessary to make sure that the proxies we choose lead to meaningful comparisons of utilities between users.

Third, estimating preferences or their proxies is itself not trivial in recommendation because of partial observability. The true fairness of our approach is bound to a careful analysis of (at least) these additional steps. This chapter is the article Optimizing generalized Gini indices for fairness in rankings,p u b l i s h e d at SIGIR 2022 (see [START_REF] Do | Optimizing generalized gini indices for fairness in rankings[END_REF]). This chapter uses the notation of the original article, which is the same as the notation of Chapter 1.

In this chapter, we build on the previous conceptual framework and propose an alternative approach to additive welfare functions that also produces Lorenz-efficient rankings. We introduce the maximization of Generalized Gini welfare Functions (GGFs) for fair ranking, which allows to generate all Lorenz-efficient rankings. In contrast, maximizing additive concave welfare functions produces Lorenz-efficient rankings, but not all of them in general. While additive welfare functions have an intuitive interpretation as utilitarianism with diminishing returns, GGFs can express fairness criteria based on utility quantiles and classical inequality measures like the Gini index.

On the technical side, this chapter addresses the challenge of optimizing GGFs, in the batch setting. Since GGFs are nondifferentiable, we cannot use the Frank-Wolfe algorithm of the previous chapter which was limited to smooth functions. To overcome this, we introduce a Frank-Wolfe variant that uses the Moreau-Yosida envelope as a smoothing technique, and present a computationally efficient procedure for computing the smooth approximation of GGFs.

The limitations of the modelling choices made in this chapter are further discussed in Chapter 7.

Abstract

There is growing interest in designing recommender systems that aim at being fair towards item producers or their least satisfied users. Inspired by the domain of inequality measurement in economics, this paper explores the use of generalized Gini welfare functions (GGFs) as a means to specify the normative criterion that recommender systems should optimize for. GGFs weight individuals depending on their ranks in the population, giving more weight to worse-off individuals to promote equality. Depending on these weights, GGFs minimize the Gini index of item exposure to promote equality between items, or focus on the performance on specific quantiles of least satisfied users. GGFs for ranking are challenging to optimize because they are non-differentiable. We resolve this challenge by leveraging tools from non-smooth optimization and projection operators used in differentiable sorting. We present experiments using real datasets with up to 15ku s e r sa n d items, which show that our approach obtains better trade-offst h a nt h eb a s e l i n e so nav a r i e t yo f recommendation tasks and fairness criteria.

Introduction

Recommender systems play an important role in organizing the information available to us, by deciding which content should be exposed to users and how it should be prioritized. These decisions impact both the users and the item producers of the platform. While recommender systems are usually designed to maximize performance metrics of user satisfaction, several audits recently revealed potential performance disparities across users [Sweeney, 2013, Datta et al., 2015, Ekstrand et al., 2018, Mehrotra et al., 2017]. On the side of item producers, the growing literature on fairness of exposure aims to avoid popularity biases [Abdollahpouri et al., 2019b]b yr e d u c i n gi n e q u a l i t i e si n the exposure of different items [START_REF] Singh | Fairness of exposure in rankings[END_REF], or aiming for equal exposure weighted by relevance [Diaz et al., 2020, Biega et al., 2018, Morik et al., 2020]. In most cases, the approaches proposed for user-and item-side fairness aim to reduce inequalities.

In this paper, we propose a new approach to fair ranking based on Generalized Gini welfare Functions (GGFs, [START_REF] Weymark | Generalized gini inequality indices[END_REF]) from the economic literature on inequality measurement [Cowell, 2000]. GGFs are used to make decisions by maximizing a weighted sum of the utilities of individuals which gives more weight to those with lower utilities. By prioritizing the worse-off, GGFs promote more equality.

The normative appeal of GGFs lies in their ability to address a multiplicity of fairness criteria studied in the fair recommendation literature. Since GGFs include the well-known Gini inequality index as a special case [Gini, 1921], they can be used to optimize trade-offsb e t w e e ne x p o s u r e inequality among items and user utility, a goal seeked by many authors [Morik et al., 2020, Zehlike and[START_REF] Zehlike | Reducing disparate exposure in ranking: A learning to rank approach[END_REF]. GGFs also conveniently specify normative criteria based on utility quantiles [Do et al., 2021c]: for instance, it is possible to improve the utility of the 10% worse-off users and/or items with GGFs, simply by assigning them more weight in the objective. Moreover, using techniques from convex multi-objective optimization, we show that GGFs cover all ranking policies that satisfy Lorenz efficiency, a distributive justice criterion which was recently introduced for two-sided fairness in rankings [Do et al., 2021c].

The difficulty of using GGFs as objective functions for fairness in ranking stems from their non-differentiability, which leads to computational challenges. Indeed, ranking with fairness of exposure requires the solution of a global optimization problem in the space of (randomized) rankings of all users, because the exposure of an item is the sum of its exposure to every users.

The Frank-Wolfe algorithm [Frank and Wolfe, 1956] was shown to be a computationally efficient method for maximizing globally fair ranking objectives, requiring only one top-K sort operation per user at each iteration [Do et al., 2021c]. However, vanilla Frank-Wolfe algorithms only apply to objective functions that are differentiable, which is not the case of GGFs.

We prop ose a new algorithm for the optimization of GGFs based on extensions of Frank-Wolfe algorithms for non-smooth optimization [Lan, 2013, Yurtsever et al., 2018, Thekumparampil et al., 2020a]. These methods usually optimize smoothed surrogate objective functions, while gradually decreasing a smoothing parameter, and a common smoothing technique uses the Moreau envelope [Moreau, 1962[START_REF] Yosida | Functional analysis[END_REF]. Our main insight is that the gradient of the Moreau envelope of GGFs can be computed in O(n log n) operations, where n is the number of users or items. This result unlocks the use of Frank-Wolfe algorithms with GGFs, allowing us to efficiently find optimal ranking policies while optimizing GGFs.

We showcase the p erformances of the algorithm on two recommendations tasks of movies and music, and on a reciprocal recommendation problem (akin to dating platforms, where users are recommended to other users), with datasets involving up to 15k users and items. Compared to relevant baselines, we show that our algorithm successfully yields better trade-offsi nt e r m so fu s e r utility and inequality in item exposure measured by the Gini index. Our approach also successfully finds better trade-offs in terms of two-sided fairness when maximizing the lower quantiles of user utility while minimizing the Gini index of item exposure.

In the remainder of the paper, we first describe our recommendation framework. We then present the family of generalized Gini welfare functions and its relationship to previously proposed fairness criteria in ranking. In Sec. 4.3 we provide the details of our algorithm and the convergence guarantees. Our experimental results are reported in Sec. 4.4,a n da ne x t e n s i o nt or e c i p r o c a l recommendation problems is discussed in Sec. 4. [START_REF][END_REF]. We position our approach with respect to the related work in Sec. 4.6,a n dS e c .4.7 concludes the paper and discusses the limitations of our work.

Fair ranking with Generalized Gini functions

Recommendation framework

We consider a recommendation scenario with n users, and m items, and K recommendation slots.

µ ij 2 [0, 1] denotes the value of item j for user i (e.g, a "liking" probability), and we assume the values µ are given as input to the system. The goal of the system is to produce a ranked list of items for each of the n users. Following previous work on fair rankings [e.g. [START_REF] Singh | Fairness of exposure in rankings[END_REF],

we consider randomized rankings because they enable the use of convex optimization techniques to generate the recommendations, which would otherwise involve an intractable combinatorial optimization problem in the space of all users' rankings. A randomized ranking for user i is represented by a bistochastic matrix P i 2 R m⇥m , where P ijk is the probability that item j is recommended to user i at position k. The recommender system is characterized by a ranking policy

P =(P i ) n i=1 .
W ed e n o t et h ec o n v e xs e to fr a n k i n gp o l i c i e sb yP. We use the term utility in its broad sense in cardinal welfare economics as a "measurement of the higher-order characteristic that is relevant to the particular distributive justice problem at hand " [START_REF] Moulin | Fair division and collective welfare[END_REF]. Similarly to Patro et al. [2020], Wang and Joachims [2021], Do et al. [2021c], we define the utility of a user as the ranking performance, and the utility of an item as its average exposure to users, which are formalized in (4.1) below. Utilities are defined according to the position-based model [Biega et al., 2018, Morik et al., 2020, Do et al., 2021c] with weights b 2 R m + . The weight b k is the probability that a user examines the item at position k,a n dw ea s s u m et h a t the weights are non-increasing. Since there are K recommendation slots, we have b 1 ... b K and b k =0for any k>K. The user and item utilities are then:

User utility: u i (P )= m X j=1 µ ij P > ij b Item exposure: v j (P )= n X i=1 P > ij b. (4.1)
We follow a general framework where the ranking policy P is found by maximizing a global welfare function F (P ),a n dt h ew e l f a r ef u n c t i o ni saw e i g h t e ds u mo fw e l f a r ef u n c t i o n sf o ru s e r sa n di t e m s :

F (P )=(1 )g user (u(P )) + g item (v(P )), (4.2) 
where g user : R n ! R and g item : R m ! R respectively aggregate the utilities of users and item exposures and 2 [0, 1] specifies the relative weight of users and items.

Generalized Gini welfare functions

In this work, we focus on the case where g item and g user are based on Generalized Gini welfare Functions (GGFs) [START_REF] Weymark | Generalized gini inequality indices[END_REF]). A GGF g w : R n ! R is a function parameterized by a vector w 2 R n of non-increasing positive weights such that w 1 =1 ... w n 0,a n dd e fi n e db ya weighted sum of its sorted inputs, which is also called an ordered weighted averaging operator (OWA) [Yager, 1988]. Formally, let x 2 R n be a utility vector and denote by x " the values of x sorted in increasing order, i.e., x " 1  ...  x " n . Then:

g w (x)= n X i=1 w i x " i .
Let V n = {w 2 R n : w 1 =1 ... w n 0} be the set of admissible weights of GGFs. Given w 1 2 V n , w 2 2 V m and 2 (0, 1),w ed e fi n et h etwo-sided GGF as the welfare function (4.2) with g user = g w 1 and g item = g w 2 :

F ,w 1 ,w 2 (P )=(1 )g w 1 u(P ) + g w 2 (v(P ) . (4.3)
With non-increasing, non-negative weights w,O W Ao p e r a t o r sa r ec o n c a v e [ Yager, 1988]. The maximization of F ,w 1 ,w 2 (P ) (4.3) is thus a convex optimization problem (maximization of a concave function over the convex set of ranking policies). GGFs address fairness from the point of view of distributive justice in welfare economics [START_REF] Moulin | Fair division and collective welfare[END_REF], because they assign more weight to the portions of the population that have the least utility. Compared to a standard average, a GGF thus promotes more equality between individuals.

Relationship to the Gini index GGFs are welfare functions so they follow the convention that they should be maximized. Moreover, if w i > 0 for all i, g w is increasing with respect to every individual utilities, which ensures that maximizers of GGFs are Pareto-optimal [START_REF] Moulin | Fair division and collective welfare[END_REF]. The Gini index of x,d e n o t e dGini(x) is associated to the GGF g w (x) with w i = (n i+1) /n [for formulas of Gini index, see Yitzhaki and Schechtman, 2013]:

Gini(x)=1 2 kxk 1 n X i=1 n i +1 n x " i (4.4) = 1 n 2 x n X i=1 n X j=1 |x i x j | with x = 1 n n X i=1 x i .
The second equality gives a more intuitive formula as a normalized average of absolute pairwise differences. The Gini index is an inequality measure, and therefore should be minimized, but, more importantly, it is normalized by the sum of utilities kxk 1 , which means that in general minimizing the Gini index does not yield Pareto-optimal solutions. The importance of this normalization is discussed by e.g., [START_REF] Anthony B Atkinson | On the measurement of inequality[END_REF], and by [Do et al., 2021c]i nt h ec o n t e x to ff a i r n e s si nr a n k i n g s .

Yet, when x is a vector of item exposures x = v(P ),t h en o r m a l i z a t i o ni sn o ti m p o r t a n tb e c a u s e the total exposure is constant. It is then equivalent to minimize the Gini index of item exposures or to maximize its associated GGF.

Multi-objective optimization of Lorenz curves An alternative formula for g w (x) is based on the generalized Lorenz curve1 [Shorrocks, 1983]o fx, which is denoted X and is defined as the vector of cumulative sums of sorted utilities:

g w (x)= n X i=1 w 0 i X i where w 0 i = w i w i+1 and X i = x " 1 + ...+ x " i . (4.5) 
We used the convention w n+1 =0.N o t i c et h a ts i n c et h ew e i g h t sw are non-increasing, we have that w 0 i 0.T h u s ,f a m i l yo fa d m i s s i b l eO W Aw e i g h t sw yield weights w 0 that are non-negative and sum to 1. This formula offers the interpretation of GGFs as positively weighted averages of points of the generalized Lorenz curves. Every GGF thus corresponds to a scalarization of the multi-objective problem of maximizing every point of the generalized Lorenz curve [Geoffrion, 1968[START_REF] Miettinen | Nonlinear multiobjective optimization,v o l u m e1 2 . S p r i n g e rS c i e n c e&B u s i n e s s Media[END_REF]. We get back to this interpretation in the next subsections.

GGFs for fairness in rankings

To give concrete examples of the relevance of GGFs for fairness in rankings, we provide here two fairness evaluation protocols that have been previously proposed and fall under the scope of maximizing of GGFs as in Eq. ( 4.3).

Trade-offs between user utility and inequality in item exposure

The first task consists in mitigating inequalities of exposure between (groups of) items, and appears in many studies [START_REF] Singh | Fairness of exposure in rankings[END_REF][START_REF] Zehlike | Reducing disparate exposure in ranking: A learning to rank approach[END_REF], Wu et al., 2021b]. This leads to a trade-off between the total utility of users and inequality among items, and such inequalities are usually measured by the Gini index (as in [Morik et al., 2020, Biega et al., 2018]). Removing the dependency on P to lighten the notation, a natural formulation of this trade-off uses the two-sided GGF (4.3) by setting w 1 =(1,...,1) and w 2 = m j+1 m m j=1 , which yields:

g user (u)= 1 n n X i=1 u i g item (v)= m X j=1 m j +1 m v " j . (4.6)
As stated in the previous section, for item exposure, maximizing g item is equivalent to minimizing the Gini index. The Gini index for g item has been routinely used for evaluating inequality in item exposure [Morik et al., 2020, Biega et al., 2018]b u tt h e r ei sn oa l g o r i t h mt oo p t i m i z eg e n e r a l trade-offsbe t w e e nu s e ru t i l i t ya n dt h eG i n ii n d e xo fe x po s u r e . Morik et al. [2020]usetheGiniindex of exposures in the context of dynamic ranking (with the absolute pairwise differences formula (4.4)), where their algorithm is shown to asymptotically drive g item (v) to 0,e q u i v a l e n tt o ! 1 in (4.2).H o w e v e r ,t h e i ra l g o r i t h mc a n n o tb eu s e dt oc o n v e r g et ot h eo p t i m a lr a n k i n g sf o ro t h e rv a l u e s of . Do et al. [2021c]u s ea sb a s e l i n eav a r i a n tu s i n gt h es t a n d a r dd e v i a t i o no fe x po s u r e si n s t e a do f absolute pairwise difference because it is easier to optimize (it is smooth except on 0). In contrast, our approach allows for the direct optimization of the welfare function (4.2) with this instantiation of g item given by eq. (4.6).

Several authors [Morik et al., 2020, Biega et al., 2018]u s e dmerit-weighted exposure2 v 0 j (P )= v(P )/µ j where µ j = 1 n P n i=1 µ ij is the average value of item j across users, rather than the exposure itself. We keep the non-weighted exposure to simplify the exposition, but our method straightforwardly applies to merit-weighted exposure. Note however that the sum of weighted exposures is not constant, so using (4.6) with merit-weighted exposures is not strictly equivalent to minimizing the Gini index. the cumulative utility at a specific quantile q of users and total utility can be formulated using a parameter ! 2 [0, 1] as follows:

g user (u)= n X i=1 w 0 i U i with w 0 bqnc = ! and w 0 n =1 !, (4.7) 
where all other values of w 0 i =0. In our experiments, we combine this g user with the Gini index for g item for two-sided fairness.

Generating all Lorenz-efficient solutions

In welfare economics, the fundamental property of concave welfare functions is that they are monotonic with respect to the dominance of generalized Lorenz curves [START_REF] Anthony B Atkinson | On the measurement of inequality[END_REF], Shorrocks, 1983[START_REF] Moulin | Fair division and collective welfare[END_REF], because this garantees that maximizing a welfare function performs an optimal redistribution from the better-off to the worse-off at every level of average utility. In the context of two-sided fairness in rankings, Do et al. [2021c]f o r m a l i z et h e i rf a i r n e s sc r i t e r i o nb ys t a t i n gt h a ta ranking policy is fair as long as the generalized Lorenz curves of users and items are not jointly dominated. In this section, we show that the family of GGFs F ,w 1 ,w 2 (P ) (4.3) allows to generate every ranking policy that are fair under this definition, and only those. The result follows from standard results of convex multi-objective optimization [Geoffrion, 1968[START_REF] Miettinen | Nonlinear multiobjective optimization,v o l u m e1 2 . S p r i n g e rS c i e n c e&B u s i n e s s Media[END_REF]. We give here the formal statements for exhaustivity.

Let x and x 0 two vectors in R n + .W es a yt h a tx weakly-Lorenz-dominates x 0 ,d e n o t e dx ⌫ L x 0 , when the generalized Lorenz curve of x is always at least equal to that of x 0 ,i . e . ,x ⌫ L x 0 () 8i, X i X 0 i .W es a yt h a tx Lorenz-dominates x 0 ,d e n o t e dx L x 0 if x ⌫ L x 0 and x 6 = x 0 ,i . e . , if the generalized Lorenz curve of x is strictly larger than that of x 0 on at least one point. The criterion that generalized Lorenz curves of users and items are not jointly-dominated is captured by the notion of Lorenz-efficiency: Definition 2 (Do et al. [2021c]). A ranking policy P 2 P is Lorenz-efficient if there is no P 0 2 P such that either [u(P 0 ) ⌫ L u(P ) and v(P 0 ) L v(P )] or [v(P 0 ) ⌫ L v(P ) and u(P 0 ) L u(P )].

We now present the main result of this section:

Proposition 6. Let Θ =(0, 1) ⇥ V n ⇥ V m .
1. Let ( , w 1 , w 2 ) 2 Θ, where w 1 and w 2 have strictly decreasing weights, and P ⇤ 2 argmax P 2P F ,w 1 ,w 2 (P ).

Then P ⇤ is Lorenz-efficient.

2. If P is Lorenz-efficient, then there exists ( , w 1 , w 2 ) 2 Θ such that P 2 argmax P 2P F ,w 1 ,w 2 (P ).

Proof. The proof uses standard results on convex multi-objective optimization from [Geoffrion, 1968[START_REF] Miettinen | Nonlinear multiobjective optimization,v o l u m e1 2 . S p r i n g e rS c i e n c e&B u s i n e s s Media[END_REF]. Written in the form (4.5),t h eG G F sc o r r e s p o n d st ot h es c a l a r i z a t i o n of the multi-objective problem of jointly maximizing the generalized Lorenz curves of users and items, which is a problem with n + m objectives. Indeed, each objective function is a point of the generalized Lorenz curve (U (P ), V (P )). Each objective U i (P ) is concave because it corresponds to an OWA operator with non-increasing weights ρ with ⇢ i 0 = {i 0 i} , applied to utilities, which are linear functions of the ranking policy. Each objective V i (P ) is similarly concave. Moreover, we are optimizing over the convex set of stochastic ranking policies P. The multi-objective problem is then concave, which means that the maximizers of all weighted sums of the objectives (U (P ), V (P ))

with strictly positive weights are Pareto-efficient. Reciprocally every Pareto-efficient solution is a solution of a non-negative weighted sum of the objectives (U (P ), V (P )), where the weights sum to 1 [START_REF] Miettinen | Nonlinear multiobjective optimization,v o l u m e1 2 . S p r i n g e rS c i e n c e&B u s i n e s s Media[END_REF].

The result follows from the observation that the Lorenz-efficiency of P ,d e fi n e da st h eL o r e n zefficiency of (u(P ), v(P )), is equivalent to the Pareto-efficiency of its joint user-item Lorenz curves (U (P ), V (P )). This is because the Lorenz dominance relation between vectors x, x 0 is defined as Pareto dominance in the space of their generalized Lorenz curves X, X 0 .

Additive welfare functions vs GGFs Do et al. [2021c]

u s ea d d i t i v ec o n c a v ew e l f a r ef u n c t i o n s to generate Lorenz-efficient rankings. Let (x, ↵)=x ↵ if ↵ > 0, (x, ↵)=log(x) if ↵ =0and (x, ↵)= x ↵ if ↵ < 0. Do et al. [2021c]u s ec o n c a v ew e l f a r ef u n c t i o n so ft h ef o r m : g user (u)= n X i=1 (u i , ↵ 1 ) g item (v)= m X j=1 (v j , ↵ 2 ) (4.8)
Where ↵ 1 (resp. ↵ 2 )s p e c i fi e sh o wm u c ht h er a n k i n g ss h o u l dr e d i s t r i b u t eu t i l i t yt ow o r s e -o ff users (resp. least exposed items).

Additive separability plays an important role in the literature on inequality measures [START_REF] Dalton | The measurement of the inequality of incomes[END_REF][START_REF] Anthony B Atkinson | On the measurement of inequality[END_REF][START_REF] Frank | Inequality decomposition: three bad measures[END_REF], as well as in the study of welfare functions because additive separability follows from a standard axiomatization [START_REF] Moulin | Fair division and collective welfare[END_REF]. However, this leads to a restricted class of functions, so that varying ↵ 1 , ↵ 2 and in (4.8) cannot generate all Lorenz-efficient solutions in general. The GGF approach provides a more general device to navigate the set of Lorenz-efficient solutions, with interpretable parameters since they are weights assigned to points of the generalized Lorenz curve.

Optimizing Generalized Gini Welfare

In this section, we provide a scalable method for optimizing two-sided GGFs welfare functions (4. 

Challenges

In multi-objective optimization, a standard approach to optimizing OWAs is to solve the equivalent linear program derived by Ogryczak and Śliwiński [2003]. Because the utilities depend on 3d-tensors P 2 P in our case, the linear program has O(n • m 2 ) variables and constraints, which is prohibitively large in practice. Another approach consists in using online subgradient descent to optimize GGFs, like [START_REF] Busa-Fekete | Multi-objective bandits: Optimizing the generalized gini index[END_REF][START_REF] Anderson | Algorithmic effects on the diversity of consumption on spotify[END_REF]. This is not tractable in our case because it requires to project iterates onto the parameter space, which in our case involves costly projections onto the space of ranking policies P. On the other hand, the Frank-Wolfe algorithm [Frank and Wolfe, 1956] was shown to provide a computationally efficient and provably convergent method to optimize over P [Do et al., 2021c]. However, it only applies to smooth functions, and Frank-Wolfe with subgradients may not converge to an optimal solution [Nesterov, 2018].

We turn to Frank-Wolfe variants for nonsmo oth ob jectives, since Frank-Wolfe metho ds are well-suited to our structured ranking problem [Do et al., 2021c[START_REF] Lacoste-Julien | Block-coordinate frank-wolfe optimization for structural svms[END_REF], Clarkson, 2010]. More precisely, following [Lan, 2013, Yurtsever et al., 2018, Thekumparampil et al., 2020a], our algorithm uses the Moreau envelope of GGFs for smoothing. The usefulness of this smooth approximation depends on its gradient, which computation is in some cases intractable [Chen et al., 2012]. Our main technical contribution is to show that the gradient of the Moreau envelope of GGFs can be computed in O(n log n) operations.

The Moreau envelope of GGFs

In the sequel, kzk denotes the `2 norm. Moreover, a function L :

X ✓ R n ! R is C-smooth if it is differentiable with C-Lipschitz continuous gradients, i.e., if 8x, x 0 2 X , krL(x) rL(x 0 )k C kx x 0 k .

Definition and properties

Let us fix weights w 2 V and focus on maximizing the GGF g w . Let h(z):= g w (z) to obtain a convex function (this simplifies the overall discussion). The function h is kwk-Lipschitz continuous, but non-smooth. We consider the smooth approximation of h given by its Moreau envelope [START_REF] Parikh | Proximal algorithms[END_REF]]d e fi n e da s : input : GGF weights w 2 R n , z 2 R n output : Projection of z onto the permutahedron C( w).

h (z)= min z 0 2R n h(z 0 )+ 1 2 kz z 0 k 2 . It is known that h (z)  h(z)  h (z)+ 2 kwk 2 and that h is 1 -smooth [see e.
1 w (w n ,...,w 1 ) and argsort(z) 2 x PAV(z w) 3 y z + x σ 1 4 Return y.

Efficient computation of the gradient

We now present an efficient procedure to compute the gradient of f (P ):=h (u(P )).

Given an integer n 2 N, let JnK := {1,...,n} and let S n denotes the set of permutations of JnK. 

C(x)=conv{x σ : 2 S n }. Finally, let Π X (z):=argmin z 0 2X
kz z 0 k 2 . denote the projection onto a compact convex X . The following proposition formulates rf as a projection onto a permutahedron:

Proposition 7. Let w = (w n ,...,w 1 ).L e tP 2 P. Then for all (i, j, k) 2 JnK ⇥ JmK 2 , we have:

@f @P ijk (P )=y i µ ij b k where y = Π C( w) ✓ u(P ) ◆ . (4.9) 
Proof. Let prox h (z)=argmin

z 0 2R n h(z)+ 1
2 kz 0 zk 2 denote the proximal operator of h.D e n o t i n g by u⇤ the adjoint of u, it is known that rf (P )= 1 u ⇤ (u(P ) prox h (u(P )) [START_REF] Parikh | Proximal algorithms[END_REF].

We first notice that since w are non-increasing, the rearrangement inequalities [Hardy et al., 1952]g i v e s : h(z)= min 

h(z) = max 2Sn w | σ z =s u p y2C( w) y | z.
Then the Fenchel conjugate of h is the indicator function of C( w),a n di t sp r o x i m a li st h ep r oj e c t i o n Π C( w) [START_REF] Parikh | Proximal algorithms[END_REF]. By Moreau decomposition, we get prox(z)=z Π C( w) ( z / ) , and thus:

rf (P )=u ⇤ Π C( w) ( u(P ) / ) .
The result follows from the definition of u(P )= ⇣ P

j,k µ ij P ijk b k ⌘ n i=1 .
Overall, computing the gradient of the Moreau envelope boils down to a projection onto the permutahedron C( w). This projection was shown by several authors to be reducible to isotonic regression:

Proposition 8 (Reduction to isotonic regression [Negrinho and Martins, 2014, Lim and Wright, 2016, Blondel et al., 2020]). Let 2 S n that sorts z decreasingly, i.e. z (1) ... z (n) . Let x be a solution to isotonic regression on z σ w,i . e .

x = argmin

x 0 1 ...x 0 n 1 2 kx 0 (z σ w)k 2
Then we have:

Π C( w) (z)=z + x σ 1 .
Following these works, we use the Pool Adjacent Violators (PAV)algorithmforisotonicregression, which gives a solution in O(n) iterations given a sorted input Best et al. [2000]. The algorithm for computing the projection is summarized in Alg. 1 where we use the notation argsort(z)={ 2

S n : z (1) ... z (n) } for permutations that sort z 2 R n in decreasing order. Including the sorting of u(P ) ,i tc o s t sO(n log n) time and O(n) space.

Remark 1. Our method is related to the differentiable sorting operator of Blondel et al. [2020],

which uses a regularization term to smooth the linear formulation of sorting. The regularized form can itself be written as a projection to a permutahedron. The problem they address is different since they differentiate the multi-dimensional sort operation, but eventually the techniques are similar because the smoothing is done in a similar way.

Remark 2. We computed the gradient of f (P )=h (u(P )) with user utilities. The gradient of f (P )=h (v(P )) using item exposures is computed similarly: @f @P ijk (P )=y

j b k with y = Π C( w) ⇣ v(P ) ⌘ .

Frank-Wolfe with smoothing

We return to the optimization of the two-sided GGF ob jective (4.3). In this section, we fix the parameters ( , w 1 , w 2 ) and consider the minimization of f := F ,w 1 ,w 2 over P.F o r > 0 we denote by h 1 and h 2 the Moreau envelopes of g w 1 and g w 2 respectively. The smooth approximation of f is then:

f (P ):=(1 )h 1 (u(P )) + h 2 (v(P )).
Our algorithm FW-smoothing (Alg. 2)f o rm i n i m i z i n gf uses the Frank-Wolfe method for nonsmooth optimization from Lan [2013] 3 .G i v e nas e q u e n c e( t ) t 1 of positive values decreasing to 0,t h ea l g o r i t h mc o n s t r u c t si t e r a t e sP (t) by applying Frank-Wolfe updates to f t at each iteration t. More precisely, FW-smoothing finds an update direction with respect to rf t by computing:

Q (t) = argmin P 2P
hP | rf t (P (t 1) )i.

(4.10)

The update rule is P (t) = P (t 1) + 2 t+2 Q (t) P (t 1) . Before giving the details of the computation of (4.10),w en o t et h a ta p p l y i n gt h ec o n v e r g e n c e result of Lan [2013], and denoting D P = max P,P 0 2P kP P 0 k the diameter of P,w eo b t a i n4 : Proposition 9 (Th. 4, [Lan, 2013]). With 0 = 2D P b1 kwk and t = 0 p t , FW-smoothing obtains the following convergence rate:

f (P (T ) ) f (P ⇤ )  2D P b 1 kwk p T .
Efficient computation of the update direction For smo oth welfare functions of user utilities and item exposures, the update direction (4.10) can be computed with only one top-K sorting operation per user [Do et al., 2021c]. In our case, the update is given by the following result, where top-K(z)={ 2 S n : z (1) ... z (K) and 8k K, z (K) z (k) } is the set of permutations that sort the k largest elements in z.

Algorithm 2: FW-smoothing. Alg. 1 is used for y 1 and y 2 . input : values (µ ij ), # of iterations T ,s m o o t h i n gs e q . ( t ) t output : ranking policy P (T )

1 Initialize P (0) such that P (0) i sorts µ i in decreasing order 2 for t=1, . . . , T do

3 Let y 1 = Π C( w1 ) ✓ u(P (t 1) ) t ◆ and y 2 = Π C( w2 ) ✓ v(P (t 1) ) t ◆ 4 for i=1, . . . , n do 5 μij =(1 ) y 1 i µ ij + y 2 j 6 ˜ i top-K( μi ) // Update direction (4.10) 7 end 8 Let Q (t) 2 P such that Q (t) i represents ˜ i 9 P (t)
(1 2 t+2 )P (t 1) + 2 t+2 Q (t) . 10 end 11 Return P (T ) . Proposition 10. Let μ defined by μij =( 1) y 1 i µ ij + y 2 j where y 1 = Π C( w1 ) u(P (t 1) ) / t and y 2 = Π C( w2 ) v(P (t 1) ) / t . For all i 2 JnK, let ˜ i 2 top-K( μi ) and Q (t) i a permutation matrix representing ˜ i . Then

Q (t) 2 argmin P 2P hP | rf t (P (t 1) )i.
Proof. Using the expression of the gradient of the Moreau envelope derived in Proposition 7,e q . (4.9), we have: @f t @P ijk (P (t 1) )=(1 ) @ @P ijk (h t 1 (u(P (t 1) )) + @ @P ijk (h t 2 (v(P (t 1) ))

And thus @f t @P ijk (P (t 1) )=μ ij ⇥ b k . The result then follows from [Do et al., 2021c,L e m . 3 ]a n di sa consequence of the rearrangement inequality Hardy et al. [1952]: Moreover, the algorithm produces a sparse representation of the stochastic ranking policy as a weighted sum of permutation matrices. In other words, this gives us a Birkhoff-von-Neumann decomposition [Birkhoff, 1940]o ft h eb i s t o c h a s t i cm a t r i c e sfor free,a v o i d i n gt h eo v e r h e a do fa n additional decomposition algorithm as in existing works on fair ranking [START_REF] Singh | Fairness of exposure in rankings[END_REF], Wang and Joachims, 2021, Su et al., 2021].

Q (t)

Experiments

We first present our experimental setting for recommendation of music and movies, together with the fairness criteria we explore and the baselines we consider. These fairness criteria have been chosen because they were used in the evaluation of prior work, and they exactly correspond to the optimization of a GGF. We thus expect our two-sided GGF F ,w 1 ,w 2 to fare better than the baselines, because they allow for the optimization of the exact evaluation criterion. We provide experimental results that demonstrate this claim in Sec. 4.4.2.N o t et h a tt h eG G F sa r ee x t r e m e l y flexible as we discussed in Sec. 4.2.1,s oo u re x p e r i m e n t sc a no n l ys h o waf e wi l l u s t r a t i v ee x a m p l e s of fairness criteria that can be defined with GGFs. In Sec. 4.4.3,w es h o wt h eu s e f u l n e s so f FW-smoothing compared to the simpler baseline of Frank-Wolfe with subgradients.

Experimental setup

Our experiments are implemented in Python 3.9 using PyTorch 5 .F o rt h ePAV algorithm, we use the implementation of Scikit-Learn.6 

Data and evaluation protocol

We present experiments on two recommendation tasks, following the protocols of [Do et al., 2021c[START_REF] Gourab K Patro | Fairrec: Two-sided fairness for personalized recommendations in two-sided platforms[END_REF]. First, we address music recommendation with Lastfm-2k from Cantador et al.

[2011] which contains real listening counts of 2k users for 19k artists on the online music service Last.fm 7 .W efi l t e rt h e2, 500 items having the most listeners. In order to show how the algorithm scales, we also consider the MovieLens-20m dataset Harper and Konstan [2015], which contains ratings in [0.5, 5] of movies by users, and we select the top 15, 000 users and items with the most interactions.

We use an evaluation proto col similar to Patro et al. 1+k) . The generated µ ij are used as ground truth to evaluate rankings, in order to decouple the fairness evaluation of the ranking algorithms from the evaluation of biases in preference estimates (which are not addressed in the paper). The results are the average of three repetitions of the experiments over different random train/valid/test splits used to generate the µ ij .

Fairness criteria

We remind two fairness tasks studied in the ranking literature and presented in Section 4.2.3, and describe existing approaches proposed to address them, which we consider as baselines for comparison with our two-sided GGF (4.3) F ,w 1 ,w 2 .

Task 1: Trade-offs between user utility and inequality between items We use the twosided GGF F ,w 1 ,w 2 instantiated as in Eq. (4.6), i.e., with w 1 =(1,...,1) and w 2 j = m j+1 m . This corresponds to a trade-off function between the sum of user utilities and a GGF for items with the Gini index weights, where the trade-off is controlled by varying 2 (0, 1). We remind though that unlike the standard Gini index, the GGF is un-normalized (see eq. ( 4.4), Sec 4.2.2).

We use three baselines for this task.

First, since the Gini index is non-differentiable, [Do et al., 2021c]p r o p o s e dad i fferentiable surrogate using the standard deviation (std) instead, which we refer to as eq. exposure: for every item, where is the user-item tradeoff parameter.

F eq (P )= n X i=1 u i (P ) m v u u u t m X j=1 0 @ v j (P ) 1 m m X j 0 =1 v j 0 (P )
Finally, we use the additive welfare function (4.8) (refered to as welf) with the recommended values ↵ 1 2 { 2, 0, 1} and ↵ 2 =0 [Do et al., 2021c], and varying 2 (0, 1) as third baseline. We only report the result of ↵ 1 =1since it obtained overall better performances on this task.

Task 2: Two-sided fairness We consider trade-offsb e t w e e nt h ec u m u l a t i v eu t i l i t yo ft h eq fraction of worst-off users, where q 2 {0.25, 0.5}, and inequality between items measured by the Gini index, as in [Do et al., 2021c]. For this task, we instantiate the two-sided GGF F ,w 1 ,w 2 as follows: the GGF for users is given by Eq. (4.7) with parameters (q, !) in {0.25, 0.5} ⇥ {0.25, 0.5, 1}, and the GGF for items uses the Gini index weights w j = m j+1 m . We generate trade-offsb e t w e e n user fairness and item fairness by varying 2 (0, 1).

The baseline approach for this task is welf,t h ea d d i t i v ew e l f a r ef u n c t i o n(4.8), still with the recommended values ↵ 1 2 { 2, 0, 1} and ↵ 2 =0and varying 2 (0, 1).W eo n l yr e p o r tt h er e s u l t s of ↵ 1 = 2 as they obtained the best performances on this task.

Results

We now present exp eriments that illustrate the effectiveness of the two-sided GGF approach on Task 1 and 2. We optimize F ,w 1 ,w 2 using FW-smoothing with 0 = 100 and T =5 k for Lastfm-2k, and 0 = 1000 and T = 50k for MovieLens. F welf and F eq are optimized with the Frank-Wolfe method of [Do et al., 2021c]f o rT =1k and T =5k iterations respectively for Lastfm-2k and MovieLens. This is the number of iterations recommended by [Do et al., 2021c], while we need more interactions for FW-smoothing because its convergence is O( 1 p T ) rather than O( 1 T ) because of non-smoothness. We first fo cus on Lastfm-2k. On Task 1, Fig. 4.1a,t h eG G F( r e d+ curve) obtains the best trade-off between total utility of users and Gini inequality between items, compared to FairRec and eq. exposure. It fares better than eq. exposure (orange ⇥)o nt h i st a s kb e c a u s eeq. exposure reduces inequality between items by minimizing the std of exposures, while GGF with weights w 2 j = m j+1 m More precisely, FW-subgradient is also equivalent to using subgradients of g w 1 and g w 2 in Line 3 of Alg. 2,i n s t e a do frf t (P (t) ), ignoring the smoothing parameters t .F W -s u b g r a d i e n ti s simpler than FW-smoothing, but it is not guaranteed to converge [Nesterov, 2018]. The goal of this section is to assess whether the smoothing is necessary in practice.

We fo cus on the two-sided GGF (4.6) of Task 1 on Lastfm-2k and MovieLens, using FWsubgradient and FW-smoothing with different values of 0 .F i g u r e4.1d depicts the objective value as a function of the number of iterations, averaged over three seeds (the colored bands represent the std), on Lastfm-2k. We observe that FW-subgradient (blue dotted curve) plateaus at a suboptimum. In contrast, FW-smoothing converges (orange dotted and green dash-dot curves), and the convergence is faster for larger 0 .O nM o v i e L e n s( F i g4.1h), FW-subgradient converges to the optimal solution, but it is still slower than FW-smoothing with 0 = 1000.

In conclusion, even though FW-subgradient reaches the optimal performance on Movielens for this set of parameters, it is still possible that FW-subgradient plateaus at significantly suboptimal solutions. The use of smoothing is thus not only necessary for theoretical convergence guarantees, but also in practice. In addition, FW-smoothing has comparable computational complexity to FW-subgradient since the computation cost is dominated by the sort operations in Alg. 2.

Reciprocal recommendation

Extension of the framework and algorithm

We show that our whole method for fair ranking readily applies to reciprocal recommendation tasks, such as the recommendation of friends or dating partners, or in job search platforms.

Reciprocal recommendation framework

The recommendation framework we discussed thus far depicted "one-sided" recommendation,i nt h es e n s et h a to n l yi t e m sa r eb e i n gr e c o m m e n d e d .

In reciprocal recommendation problems [Palomares et al., 2021], users are also items who can be recommended to other users (the item per se is the user's profile or CV), and they have preferences over other users.

In this setting, n = m and µ ij denotes the mutual preference value between i and j (e.g., the probability of a "match" between i and j). Following [Do et al., 2021c], we extend our previous framework to reciprocal recommendation by introducing the two-sided utility of a user i, which sums the utility u i (P ) derived by i from the recommendations it gets, and the utility v i (P ) from being recommended to other users:

u i (P )=u i (P )+v i (P )= X i,j (µ ij + µ ji )P | ij b
where

u i (P )= n X j=1 µ ij P | ij b and v i (P )= n X j=1 µ ij P | ji b .
Objective and optimization The two-sided GGF objective (4.3) in reciprocal recommendation simply becomes one GGF of two-sided utilities, and it is specified by a single weighting vector w:

max P 2P
{F w (P ):=g w (u(P ))}.

(4.11)

The choice of w controls the degree of priority to the worse-off in the user population. We show in our experiments in Section 4. [START_REF][END_REF].2 that in reciprocal recommendation too, the GGF objective can be adequately parameterized to address existing fairness criteria.

First, similarly to eq. exposure,t ob y p a s st h en o n s m oo t h n e s so ft h eG i n ii n d e x , [ Do et al., 2021c] optimize a surrogate with std, named eq. utility:

F eq (P )= n X i=1 u i (P ) n v u u t n X i=1 u i (P ) 1 n n X i 0 =1 u i 0 (P ) ! 2 .
Second, the welfare function welf (4.8) of [Do et al., 2021c]i su s e di nr e c i p r oc a lr e c o m m e n d a t i o n as a single sum: F welf (P )= P n i=1 (u i (P ), ↵) where is defined in Sec. 4.2.3.W es t u d ywelf as baseline by varying ↵, which controls the redistribution of utility in the user population.

Task 2: Trade-offs between total utility and utility of the worse-off The main task studied by [Do et al., 2021c] with welf is to trade-off between the total utility and the cumulative utility of the q fraction of worse-off users. For this task, we instantiate the GGF with (4.7), with fixed quantile q =0.25 and we vary ! to generate trade-offsb e t w e e nt o t a lu t i l i t ya n dc u m u l a t i v e utility of the 25% worst-off.

We compare it to the welf baseline where ↵ is varied as in [Do et al., 2021c].

Fairness trade-offs results

Results

We now demonstrate that in recipro cal recommendation to o, GGF is the most effective approach in addressing existing fairness criteria. We optimize the GGF F w (P ) using FW-smoothing with 0 = 10 for T = 50k iterations, and optimize F welf and F eq using Frank-Wolfe for T =5 k iterations.

Figure 4.2 depicts the trade-offso b t a i n e db yt h ec o m p e t i n ga p p r o a c h e so nt h ef a i r n e s st a s k s1 and 2, on the Twitter dataset. Fig. 4.2a illustrates the superiority of GGF (green ⇤)o nT a s k1 , despite good performance of the baselines eq. utility (orange ⇥)a n dwelf (blue ). As in one-sided recommendation with eq. exposure, the reason why eq. utility achieves slightly worse trade-offso n this fairness task is because it minimizes the std as a surrogate to the Gini index, instead of the Gini index itself as GGF does. For Task 2, on Fig. 4.2b, we observe that GGF with parameterization (4.7) (green ⇤)i st h em o s te ffective. This is because unlike the welf approach (blue )o fDo et al.

[2021c] who address this fairness task, this form of GGF is exactly designed to optimize for utility quantiles.

Related work

Algorithmic fairness Fairness in ranking and recommendation systems is an active area of research. Since recommender systems involve multiple stakeholders [Burke, 2017, Abdollahpouri et al., 2020], fairness has been considered from the perspective of both users and item producers.

On the user side, a common goal is to prevent disparities in recommendation performance across sensitive groups of users [Mehrotra et al., 2017, Ekstrand et al., 2018]. On the item side, authors aim to prevent winner-take-all effects [Abdollahpouri et al., 2019b]b yredistributingexposureacross groups of producers, either towards equal exposure, or equal ratios of exposure to relevance [START_REF] Singh | Fairness of exposure in rankings[END_REF], Biega et al., 2018, Diaz et al., 2020, Kletti et al., 2022a], sometimes measured by the classical Gini index [Morik et al., 2020, Wilkie andAzzopardi, 2014]. Some authors consider fairness for both users and items, often by applying existing user or item criteria simultaneously to both sides, such as [Basu et al., 2020, Wu et al., 2021b, Wang and Joachims, 2021]. [START_REF] Gourab K Patro | Fairrec: Two-sided fairness for personalized recommendations in two-sided platforms[END_REF], Do et al., 2022a] instead discuss two-sided fairness with envy-freeness as user-side criterion, while [Deldjoo et al., 2021]p r o p o s et ou s eg e n e r a l i z e dc r o s s entropy to measure unfairness among sensitive groups of users and items. [Wu et al., 2021a]recen tly considered two-sided fairness in recommendation as a multi-objective problem, where each objective corresponds to a different fairness notion, either for users or items. Similarly, [START_REF] Anderson | Algorithmic effects on the diversity of consumption on spotify[END_REF] aggregate multiple recommendation objectives using a GGF, in a contextual bandit setting. In their case, the aggregated objectives represent various metrics (e.g., clicks, dwell time) for various stakeholders. Unlike these two works [Wu et al., 2021a[START_REF] Anderson | Algorithmic effects on the diversity of consumption on spotify[END_REF], in our case the multiple objectives are the individual utilities of each user and item, and our goal is to be fair towards each entity by redistributing utility. To our knowledge, we are the first to use GGFs as welfare functions of users' and items' utilities for two-sided fairness in rankings.

Reciprocal recommender systems received comparatively less attention in the fairness literature, to the exception of [START_REF] Jia | When online dating meets nash so cial welfare: Achieving efficiency and fairness[END_REF][START_REF] Xia | Reciprocal recommendation system for online dating[END_REF][START_REF] Paraschakis | Matchmaking under fairness constraints: a speed dating case study[END_REF]. The closest to our work is the additive welfare approach of [Do et al., 2021c], which addresses fairness in both one-sided and reciprocal recommendation, and is extensively discussed in the paper, see Sec. 4.2.1. In the broader fair machine learning community, several authors advocated for economic concepts [Finocchiaro et al., 2020], using inequality indices to quantify and mitigate unfairness [START_REF] Speicher | A unified approach to quantifying algorithmic unfairness: Measuring individual &group unfairness via inequality indices[END_REF][START_REF] Speicher | A unified approach to quantifying algorithmic unfairness: Measuring individual &group unfairness via inequality indices[END_REF][START_REF] Lazovich | Measuring disparate outcomes of content recommendation algorithms with distributional inequality metrics[END_REF], taking an axiomatic perspective [Gölz et al., 2019, Cousins, 2021, Williamson and Menon, 2019]orapplyingw elfareeconomicsprinciples [Hu andChen, 2020, Rambachan et al., 2020]. GGFs, in particular, were recently applied to fair multi-agent reinforcement learning, with multiple reward functions [START_REF] Busa-Fekete | Multi-objective bandits: Optimizing the generalized gini index[END_REF], Siddique et al., 2020, Zimmer et al., 2021]. These works consider sequential decision-making problems without ranking, and their GGFs aggregate the objectives of a few agents (typically n<20), while in our ranking problem, there are as many objectives as there are users and items.

Nonsmooth convex optimization and differentiable ranking Our work builds on nonsmooth convex optimization methods [Nesterov, 2005, Shamir and[START_REF] Shamir | Stochastic gradient descent for non-smooth optimization: Convergence results and optimal averaging schemes[END_REF], and in particular variants of the Frank-Wolfe algorithm [START_REF] Cowell | Measuring inequality.O x f o r dU n i v e r s i t yP r e s s[END_REF]Wolfe, 1956, Jaggi, 2013]f o rn o n s m oo t hp r o b l e m s [Lan, 2013, Yurtsever et al., 2018, Ravi et al., 2019, Thekumparampil et al., 2020a]. The recent algorithm of [Thekumparampil et al., 2020a] is a Frank-Wolfe variant which uses the Moreau envelope like us. Its number of first-order calls is optimal, but this is at the cost of a more complex algorithm with inner loops that make it slow in practice. In our case, since the calculation of the gradient is not a bottleneck, we use the simpler algorithm of Lan [2013], which applies Frank-Wolfe to the Moreau envelope of the nonsmooth objective.

Our technical contribution is also related to the literature on differentiable ranking, which includes a large body of work on approximating learning-to-rank metrics [Chapelle and Wu, 2010, Taylor et al., 2008, Adams and Zemel, 2011], and recent growing interest in designing smooth ranking modules [Grover et al., 2019[START_REF] Cuturi | Differentiable ranking and sorting using optimal transport[END_REF], Blondel et al., 2020]f o re n d -t o -e n d differentiation pipelines. The closest method to ours is the differentiable sorting operator of Blondel et al. [2020], which also relies on isotonic regression. The differences between our approaches are explained in Remark 1.

Conclusion

We prop osed generalized Gini welfare functions as a flexible metho d to pro duce fair rankings. We addressed the challenges of optimizing these welfare functions by leveraging Frank-Wolfe methods for nonsmooth objectives, and demonstrated their efficiency in ranking applications.

Our framework and algorithm applies to both usual recommendation of movies or music, and to reciprocal recommendation scenarios, such as dating or hiring.

Generalized Gini welfare functions successfully address a large variety of fairness requirements for ranking algorithms. On the one hand, GGFs are effective in reducing inequalities, since they generalize the Gini index in economics. Optimizing them allows to meet the requirements of equal utility criteria, largely advocated by existing work on fair recommendation [START_REF] Singh | Fairness of exposure in rankings[END_REF], Basu et al., 2020[START_REF] Gourab K Patro | Fairrec: Two-sided fairness for personalized recommendations in two-sided platforms[END_REF], Wu et al., 2021b]. On the other hand, GGFs effectively increase the utility of the worse-off, which is usually measured by quantile ratios in economics, and has been recently considered as a fairness criterion in ranking [Do et al., 2021c].

Our approach is limited to fairness considerations at the stage of inference. It does not address potential biases arising at other parts of the recommendation pipeline, such as in the estimation of preferences. Moreover, we considered a static model, which does not accounts for real-world dynamics, such as responsiveness in two-sided markets [Su et al., 2021], feedback loops in the learning process [START_REF] Bottou | Counterfactual reasoning and learning systems: The example of computational advertising[END_REF], and the changing nature of the users' and items' populations [Morik et al., 2020]a n dp r e f e r e n c e s [ Kalimeris et al., 2021]. Addressing these limitations, in combination with our method, are interesting directions for future research. This chapter is the article Contextual bandits with concave rewards, and an application to fair ranking, published at ICLR 2023 (see [START_REF] Liu | Group fairness without demographics using social networks[END_REF]). In this chapter, we address fair ranking in the contextual bandit setting, which we first described in Section 1.4.1 of Chapter 1. In the contextual bandit setting, rankings are computed one at a time as the users request recommendations, and user preferences are learned online through sequential interactions. This setting is more practical than the batch setting, since it is more efficient to compute the ranking of the current user, instead of all the users in a large batch, as in the previous chapters.

In this paper, we address a more generic contextual bandit problem with multiple rewards,

where the trade-off between the rewards is defined by a known concave function f . This bandit problem, called Contextual Bandits with Concave Rewards (cbcr), encompasses our fair ranking problem, but also the optimization of multiple metrics on online platforms. Our work provides the first general solution to cbcr that does not impose restrictions on the policy space. This was made possible through a novel use of theoretical analyses of Frank-Wolfe algorithms, which allowed us to prove a reduction to scalar-reward contextual bandits. Motivated by fairness in rankings, we

show how cbcr applies to fairness-aware objectives for ranking in Section 5.4,a n dd e r i v et h efi r s t algorithm with regret guarantees for fair ranking in the contextual bandit setting.

In the application of cbcr to fair ranking (Section 5.4), we solely focus on ranking objectives with item-side fairness, while the previous chapters addressed two-sided fairness. More precisely, we only consider trade-offs between item-side fairness and average user utility, which is the average of user rewards over contexts. Addressing user-side fairness would require explicitly encoding user identifiers in the context vector x t and keeping track of user activity. This would require a lot of additional formalism just for the fair ranking application, at the cost of clarity for the rest of the paper which core matter is our solution to the general cbcr problem. For insights on how to integrate user fairness in an online setting, we refer to [START_REF] Usunier | Fast online ranking with fairness of exposure[END_REF] which addresses two-sided fairness in online ranking, without learning.

Abstract

We consider contextual bandits with concave rewards (cbcr), a multi-objective bandit problem where the desired trade-off between the rewards is defined by a known concave objective function, and the reward vector depends on an observed stochastic context. We present the first algorithm with provably vanishing regret for cbcr without restrictions on the policy space, whereas prior works were restricted to finite policy spaces or tabular representations. Our solution is based on a geometric interpretation of cbcr algorithms as optimization algorithms over the convex set of expected rewards spanned by all stochastic policies. Building on Frank-Wolfe analyses in constrained convex optimization, we derive a novel reduction from the cbcr regret to the regret of a scalar-reward bandit problem. We illustrate how to apply the reduction off-the-shelf to obtain algorithms for cbcr with both linear and general reward functions, in the case of non-combinatorial actions. Motivated by fairness in recommendation, we describe a special case of cbcr with rankings and fairness-aware objectives, leading to the first algorithm with regret guarantees for contextual combinatorial bandits with fairness of exposure.

Introduction

Contextual bandits are a popular paradigm for online recommender systems that learn to generate personalized recommendations from user feedback. These algorithms have been mostly developed to maximize a single scalar reward which measures recommendation performance for users. Recent fairness concerns have shifted the focus towards item producers whom are also impacted by the exposure they receive [Biega et al., 2018[START_REF] Sahin | Fairness-aware ranking in search & recommendation systems with application to linkedin talent search[END_REF], leading to optimize trade-offsb e t w e e n recommendation performance for users and fairness of exposure for items [Singh andJoachims, 2019, Zehlike and[START_REF] Zehlike | Reducing disparate exposure in ranking: A learning to rank approach[END_REF]]. More generally, there is an increasing pressure to insist on the multi-objective nature of recommender systems [START_REF] Vamplew | Human-aligned artificial intelligence is a multiobjective problem[END_REF], Stray et al., 2021], which need to optimize for several engagement metrics and account for multiple stakeholders' interests [START_REF] Anderson | Algorithmic effects on the diversity of consumption on spotify[END_REF], Abdollahpouri et al., 2019a]. In this paper, we focus on the problem of contextual bandits with multiple rewards, where the desired trade-off between the rewards is defined by a known concave objective function, which we refer to as contextual bandits with concave rewards (cbcr). Concave rewards are particularly relevant to fair recommendation, where several objectives can be expressed as (known) concave functions of the (unknown) utilities of users and items [Do et al., 2021c].

Our cbcr problem is an extension of bandits with concave rewards (bcr) [START_REF] Agrawal | Bandits with concave rewards and convex knapsacks[END_REF] where the vector of multiple rewards depends on an observed stochastic context. We address this extension because contexts are necessary to model the user/item features required for personalized recommendation. Compared to bcr,themainchallengeofcbcr is that optimal policies depend on the entire distribution of contexts and rewards. In bcr,o p t i m a lpo l i c i e sa r ed i s t r i b u t i o n s over actions, and are found by direct optimization in policy space [Agrawal andDevanur, 2014, Berthet andPerchet, 2017]. In cbcr,s t a t i o n a r yp o l i c i e sa r em a p p i n g sf r o mac o n t i n u o u sc o n t e x t space to distributions over actions. This makes existing bcr approaches inapplicable to cbcr because the policy space is not amenable to tractable optimization without further assumptions or restrictions. As a matter of fact, the only prior theoretical work on cbcr is restricted to a finite policy set [START_REF] Agrawal | An efficient algorithm for contextual bandits with knapsacks, and an extension to concave objectives[END_REF].

We present the first algorithms with provably vanishing regret for cbcr without restriction on the policy space. Our main theoretical result is a reduction where the cbcr regret of an algorithm is bounded by its regret on a proxy bandit task with single (scalar) reward. This reduction shows that it is straightforward to turn any contextual (scalar reward) bandits into algorithms for cbcr.

We prove this reduction by first re-parameterizing cbcr as an optimization problem in the space of feasible rewards, and then revealing connections between Frank-Wolfe (FW) optimization in reward space and a decision problem in action space. This bypasses the challenges of optimization in policy space.

To illustrate how to apply the reduction, we provide two example algorithms for cbcr with non-combinatorial actions, one for linear rewards based on LinUCB [Abbasi-Yadkori et al., 2011],

and one for general reward functions based on the SquareCB algorithm [Foster and Rakhlin, 2020] which uses online regression oracles. In particular, we highlight that our reduction can be used together with any exploration/exploitation principle, while previous FW approaches to bcr relied exclusively on upper confidence bounds [START_REF] Agrawal | Bandits with concave rewards and convex knapsacks[END_REF], Berthet and Perchet, 2017, Cheung, 2019].

Since fairness of exposure is our main motivation for cbcr,w es h o wh o wo u rr e d u c t i o na l s o applies to the combinatorial task of fair ranking with contextual bandits, leading to the first algorithm with regret guarantees for this problem, and we show it is computationally efficient.W e compare the empirical performance of our algorithm to relevant baselines on a music recommendation task.

Related work. [START_REF] Agrawal | An efficient algorithm for contextual bandits with knapsacks, and an extension to concave objectives[END_REF]a d d r e s sar e s t r i c t i o no fcbcr to a finite set of policies, where explicit search is possible. Cheung [2019] use FW for reinforcement learning with concave rewards, a similar problem to cbcr. However, they rely on a tabular setting where there are few enough policies to compute them explicitly. Our approach is the only one to apply to cbcr without restriction on the policy space, by removing the need for explicit representation and search of optimal policies.

Our work is also related to fairness of exposure in bandits. Most previous works on this topic either do not consider rankings [Celis et al., 2018b, Wang et al., 2021a, Patil et al., 2020, Chen et al., 2020], or apply to combinatorial bandits without contexts [Xu et al., 2021]. Both these restrictions are impractical for recommender systems. Mansoury et al. [2021a], Jeunen and Goethals [2021] propose heuristics with experimental support that apply to both ranking and contexts in this space, but they lack theoretical guarantees. We present the first algorithm with regret guarantees for fair ranking with contextual bandits. We provide a more detailed discussion of the related work in Appendix B.1.

Maximization of concave rewards in contextual bandits

Notation. For any n 2 N,w ed e n o t eb yJnK = {1,...,n}. The dot product of two vectors x and y in R n is either denoted x | y or using braket notation hx | yi, depending on which one is more readable.

Setting. We define a sto chastic contextual bandit [Langford and Zhang, 2007] problem with D rewards. At each time step t, the environment draws a context x t ⇠ P , where x 2 X ✓ R q and P is a probability measure over X . The learner chooses an action a t 2 A where A ✓ R K is the action space, and receives a noisy multi-dimensional reward r t 2 R D , with expectation E[r t |x t ,a t ]=µ(x t )a t , where µ : X ! R D⇥K is the matrix-value contextual expected reward function. 1 The trade-off between the D cumulative rewards is specified by a known concave function

f : R D ! R [ {±1}.
L e tA denote the convex hull of A and ⇡ : X ! A be a stationary policy, 2 then the optimal value for the problem is defined as f

⇤ =sup ⇡:X !A f ⇣ E x⇠P ⇥ µ(x)⇡(x) ⇤ ⌘ .
We rely on either of the following assumptions on f :

Assumption A. f is closed proper concave 3 on R D and A is a compact subset of R K . Moreover,
there is a compact convex set K ✓ R D such that

• (Bounded rewards) 8(x, a) 2 X ⇥ A,µ(x)a 2 K and for all t 2 N ⇤ , r t 2 K with probability 1. Example 3 (Optimizing multiple metrics in recommender systems.). [START_REF] Anderson | Algorithmic effects on the diversity of consumption on spotify[END_REF] formalized the problem of optimizing D engagement metrics (e.g. clicks, streaming time) in a bandit-based recommender system. At each t, x t represents the current user's features. The system chooses one arm among K, represented by a vector a t in the canonical basis of R K which is the action space A. Each entry of the observed reward vector (r t,i ) D i=1 corresponds to a metric's value. The trade-off between the metrics is defined by the Generalized Gini Function: f (z)= P D i=1 w i z " i , where (z " i ) D i=1 denotes the values of z sorted increasingly and w 2 R D is a vector of non-increasing weights.

• (Local Lipschitzness) f is L-Lipschitz continuous
Example 4 (Fairness of exposure in rankings.). The goal is to balance the traditional objective of maximizing user satisfaction in recommender systems and the inequality of exposure between item producers [Singh andJoachims, 2018, Zehlike and[START_REF] Zehlike | Reducing disparate exposure in ranking: A learning to rank approach[END_REF]. For a recommendation task with m items to rank, this leads to a problem with D = m +1 objectives, which correspond to the m items' exposures, plus the user satisfaction metric. The context x t 2 X ⇢ R md is a matrix where each x t,i 2 R d represents a feature vector of item i for the current user. The action space A is combinatorial, i.e. it is the space of rankings represented by permutation matrices:

A = a 2 {0, 1} m⇥m : 8i 2 JmK, m X k=1 a i,k =1and 8k 2 JmK, m X i=1 a i,k =1 (5.1)
For a 2 A, a i,k =1if item i is at rank k. Even though we use a double-index notation and call a a permutation matrix, we flatten a as a vector of dimension K = m 2 for consistency of notation.

We now give a concrete example for f , which is concave as usual for objective functions in fairness of exposure [Do et al., 2021c]. It is inspired by Morik et al. [2020], who study trade-offs between average user utility and inequality 4 of item exposure:

f (z)= z m+1 | {z } user utility 1 2m m X i=1 m X j=1 |z i z j | | {z } inequality of item exposure
where > 0 is a trade-off parameter. (5.2)

The learning problem. In the bandit setting, P and µ are unknown and the learner can only interact online with the environment.Let h T = x t ,a t ,r t t2JT 1K be the history of contexts, actions, and reward observed up to time T 1 and 0 > 0 be a confidence level, then at step t ab a n d i t algorithm A receives in input the history h t ,t h ec u r r e n tc o n t e x tx t ,a n di tr e t u r n sad i s t r i b u t i o n over actions A and selects an action a t ⇠ A(h t ,x t , 0 ). The objective of the algorithm is to minimize the regret

R T = f ⇤ f (ŝ T ) where ŝT = 1 T T X t=1 r t .
Note that our setting subsumes classical stochastic contextual bandits: when D =1and f (z)= z,m a x i m i z i n gf (ŝ T ) amounts to maximizing a cumulative scalar reward P T t=1 r t . In Lem. 32 (App. B. 3.3), we show that alternative definitions of regret, with different choices of comparator or performance measure, would yield a difference of order O(1/ p T ),a n dh e n c en o ts u b s t a n t i a l l y change our results.

A general reduction-based approach for cbcr

In this section we describe our general approach for cbcr.W efi r s td e r i v eo u rk e yr e d u c t i o nf r o m cbcr to a specific scalar-reward bandit problem. We then instantiate our algorithm to the case of linear and general reward functions for smooth objectives f .F i n a l l y ,w ee x t e n dt ot h ec a s eo f non-smooth objective functions using Moreau-Yosida regularization [Rockafellar and Wets, 2009].

Reduction from cbcr to scalar-reward contextual bandits

There are two challenges in the cbcr problem: 1) the computation of the optimal policy

sup ⇡:X !A f ⇣ E x⇠P ⇥ µ(x)⇡(x)
⇤ ⌘ even with known µ; 2) the learning problem when µ is unknown.

1: Reparameterization of the optimization problem. The first challenge is that optimizing directly in policy space for the benchmark problem sup ⇡:

X !A f ⇣ E x⇠P ⇥ µ(x)⇡(x) ⇤ ⌘ is intractable
without any restriction, because the policy space includes all mappings from the continuous context space X to distributions over actions. Our solution is to rewrite the optimization problem as a standard convex constrained problem by introducing the convex set S of feasible rewards:

S = ⇢ E x⇠P ⇥ µ(x)⇡(x) ⇤ ⇡ : X ! A so that f ⇤ =s u p ⇡:X !A f ⇣ E x⇠P ⇥ µ(x)⇡(x) ⇤ ⌘ = max s2S f (s).
Under Assumption A, S is a compact subset of K (see Lemma 30 in App. B. 

8t 2 N ⇤ , E t ⇥ max a2A hrf (z t 1 ) | µ(x t )ai ⇤ = max s2S hrf (z t 1 ) | si.
For all 2 (0, 1], with probability at least 1 , we have:

T X t=1 ⇣ max s2S hrf (z t 1 ) | si max a2A hrf (z t 1 ) | µ(x t )ai ⌘  LD K p 2T ln( 1 ).
Lemma 12 shows that FW for cbcr operates closely to a sequence of decision problems of the form (max a2A hrf (z t 1 ) | µ(x t )ai) T t=1 .H o w e v e r ,w eh a v ey e tt oa d d r e s st h ep r o b l e mt h a tP and µ are unknown. To solve this issue, we introduce a reduction to scalar-reward contextual bandits.W ec a nn o t i c et h a ts o l v i n gf o rt h es e q u e n c eo fa c t i o n sm a x i m i z i n g P T t=1 hrf (z t 1 ) | µ(x t )ai corresponds to solving a contextual bandit problem with adversarial contexts and stochastic rewards.

Formally, using z t = ŝt5 ,w ed e fi n et h ee x t e n d e dc o n t e x tx t =(rf (ŝ t 1 ),x t ),t h ea v e r a g es c a l a r reward μ(x t )=rf (ŝ t 1 ) | µ(x t ) and the observed scalar reward rt = hrf (ŝ t 1 ) | r t i. This fully defines a contextual bandit problem with scalar reward. Then, the objective of the algorithm is to minimize the following scalar regret: (5.3) In this framework, the only information observed by the learning algorithm is ht := xt 0 ,a t 0 , rt 0 t 0 2Jt 1K .

R scal T = T X t=1 max a2A μ(x t ) | a T X t=1 rt = T X t=1 max a2A hrf (ŝ t 1 ) | µ(x t )ai T X t=1 hrf (ŝ t 1 ) | r t i.
This regret minimization problem has been extensively studied [see e.g., Slivkins, 2019, Chap. 8 for an overview]. The following key reduction result6 relates R scal T to R T ,t h er e g r e to ft h eo r i g i n a l cbcr problem: Theorem 13. Under Assmpt. B, for every T 2 N ⇤ and > 0, algorithm A satisfies, with prob.

1

:

R T = f ⇤ f (ŝ T )  R scal T + LD K p 2T ln(1/ )+ C ln(eT ) T .
The reduction shown in Thm. 13 hints us at how to use or adapt scalar bandit algorithms for cbcr. In particular, any algorithm with sublinear regret will lead to a vanishing regret for cbcr.S i n c et h ew o r s t -c a s er e g r e to fc o n t e x t u a lb a n d i t si sΩ( p T ) [Dani et al., 2008], we obtain near minimax optimal algorithms for cbcr.W ei l l u s t r a t et h i sw i t ht w oa l g o r i t h m sd e r i v e df r o m our reduction in Sec. 5.3.2.

Proof sketch of Theorem 13: cbcr and Frank-Wolfe algorithms (full proof in Appendix B.5). Although the set S is not known, the standard telescoping sum argument for the analysis of Frank-Wolfe algorithms (see Lemma 37 in Appendix B.5,a n de . g . , [ Berthet and Perchet, 2017,L e m m a1 2 ]f o r similar derivations) gives that under Assumption B,d e n o t i n gg t = rf (ŝ t 1 ):

TR T  T X t=1 max s2S hg t | s r t i + C ln(eT ).
The result is true for every sequence (r t ) t2JT K 2 K T ,a n do n l yt r a c k st h et r a j e c t o r yo fŝ t in reward space. We introduce now the reference of the scalar regret:

TR T = T X t=1 max s2S hg t | si max a2A hg t | µ(x t )ai + T X t=1 max a2A hg t | µ(x t )a r t i | {z } =R scal T + C ln(eT ) (5.4)
Lemma 12 bounds the leftmost term, from which Theorem 13 immediately follows using (5.4).

Practical application: Two algorithms for multi-armed cbcr

To illustrate the effectiveness of the reduction from cbcr to scalar-reward bandits, we focus on the case where the action space A is the canonical basis of R K (as in Example 3). We first study the case of linear rewards. Then, for general reward functions, we introduce the FW-SquareCB algorithm, the first example of a FW-based approach combined with an exploration principle other than optimism. This shows our approach has a much broader applicability to solve (c)bcr than previous strategies.

From LinUCB to FW-LinUCB (details in Appendix B.7). We consider a cbcr with linear reward function, i.e., µ(x)=✓x where ✓ 2 R D⇥d (recall we have D rewards) and x 2 R d⇥K , where d is the number of features. Let ✓ := flatten(✓) and g t = rf (ŝ t 1 ).U s i n g [.; .] to denote the vertical concatenation of matrices, the expected reward for action a in context x at time t can be written hg t | µ(x)ai = g | t ✓xa = h ✓ | xt ai where xt 2 R Dd⇥K is the extended context with entries xt =[g t,0 x t ; ...; g t,D x t ] 2 R Dd⇥K . This is an instance of a linear bandit problem, where at each time t,a c t i o na is associated to the vector xt a and its expected reward is h ✓ | xt ai.A sar e s u l t ,w e can immediately derive a LinUCB-based algorithm for linear cbcr by leveraging the equivalence FW-LinUCB(h t ,x t , 0 )=LinUCB( ht , xt , 0 ) . LinUCB's regret guarantees imply R scal

T = O(d p T ) with high probability, which, in turn give a O(1/ p T ) for R T .
From SquareCB to FW-SquareCB (details in Appendix B.8). We now consider a cbcr with general reward function µ(x). The SquareCB algorithm [Foster and Rakhlin, 2020]i sa randomized exploration strategy that delegates the learning of rewards to an arbitrary online regression algorithm. The scalar regret of SquareCB is bounded depending on the regret of the base regression algorithm.

For FW-SquareCB, we have access to an online regression oracle μt ,a ne s t i m a t eo fµ which is a function of h t , which has regression regret bounded by R oracle (T ). The exploration strategy of FW-SquareCB follows the same principles as SquareCB: let g t = rf (ŝ t 1 ) and denote μt = g | t μt (x t ), Bound on R T (simplified, using δ 0 = δ) 

FW-LinUCB µ(x)a = θxa for θ 2 R D⇥d ,x 2 R d⇥K LD K dD ln (1 + TLD K dD )/δ p T FW-SquareCB T X t=1 k[k ⇤ μt(xt)at µ(xt)at 2 2  R oracle (T ) L q K R oracle (T )+D 2 K ln(T/

The case of nonsmooth f

When f is nonsmooth, we use a smoothing technique where the scalar regret is not measured using rf (ŝ t 1 ),b u tr a t h e ru s i n gg r a d i e n t so fas e q u e n c e(f t ) t2N of smooth approximations of f , whose smoothness decrease over time [see e. [START_REF] Agrawal | Bandits with concave rewards and convex knapsacks[END_REF]f o r( n o n -c o n t e x t u a l )bcr.O u rt r e a t m e n to f smoothing is more systematic than theirs, since we use a smoothing factor 0 / p t +1that decreases over time rather than a fixed smoothing factor that depends on a pre-specified horizon. Our regret bound for cbcr is based on a scalar regret R scal,sm T where rf t 1 (ŝ t 1 ) is used instead of rf (ŝ t 1 ):

R scal,sm T = T X t=1 max a2A hrf t 1 (ŝ t 1 ) | µ(x t )ai T X t=1 hrf t 1 (ŝ t 1 ) | r t i.
Theorem 14. Under Assumptions A, for every z 0 2 K,e v e r yT 1 and every > 0, 0 > 0, Algorithm A satisfies, with probability at least 1 0 :

R T  R scal,sm T T + LD K p T ⇣ D K L 0 +3 L 0 D K + r 2ln 1 ⌘ .
The proof is given in Appendix B. 6.T a k i n g 0 = D K L leads to a simpler bound where

D K L 0 +3 L 0 D K =4.
Algorithm 3: FW-LinUCBRank: linear contextual bandits for fair ranking. Lem. 49,A p p . B.9) 

input : 0 > 0, > 0, ŝ0 2 K V 0 = I d ,y 0 = 0 d , ✓0 = 0 d 1 for t =1,... do 2 Observe context x t ⇠ P 3 8i, vt,i ✓| t 1 x t,i + ↵ t 0 3 kx t,i k V 1 t 1 // UCB on v i (x t ) (def. of ↵ t in
4 a t top-k{ @f @zm+1 (ŝ t 1 )v t,i + @f @zi (ŝ t 1 )} m i=1 // FW
hu(x t ) | ai = m X i=1 v i (x t ) m X k=1 a i,k b k (x t ).
In this model, b k (x t ) 2 [0, 1] is the probability that the user observes the item at rank k. The quantity P m k=1 a i,k b k (x t ) is thus the probability that the user observes item i given ranking a.W e denote k = max x2X kb(x)k 0  m the maximum rank that can be exposed to any user. In most practical applications, k ⌧ m.A sf o r m a l i z e di nA s s u m p t i o nD below, the position weights b k (x) are always non-increasing with k since the user browses the recommended items in order of their rank. We use a linear assumption for item values, where D X and D ✓ are known constants:

Assumption C. sup x2X kxk 2  D X and 9✓ 2 R d , k✓k 2  D ✓ s.t. 8x 2 X , 8i 2 JmK,v i (x)=✓ | x i .
We propose an observation model where values v i (x) and position weights b(x) are unknown.

However, we assume that at each time step t,a f t e rc o m p u t i n gt h er a n k i n ga t ,w eh a v et w ot y p e so f feedback: first, e t,i 2 {0, 1} is 1 if item i has been exposed to the user, and 0 otherwise. Second c t,i 2 {0, 1} which represents a binary like/dislike feedback from the user. We have the ith-row of µ(x),s e e na sac o l u m nv e c t o r ,e a c ho ft h em first rewards is the exposure of a specific item, while the m +1-th reward is the user utility:

E[e t,i x t ,a t ⇤ = m X k=1 a t ,i, k b k (x t ) E ⇥ c t,i |x t ,
8i 2 JmK, hµ i (x) | ai = m X k=1 a i,k b k (x) and µ m+1 (x)=u(x)
The observed reward vector r t 2 R D is defined by 8i 2 JmK,r t,i = e t,i and r t,m+1 = P m i=1 c t,i . Notice that E ⇥ r t,m+1 x t ⇤ = u(x t ).L e tK be the convex hull of {z 2 {0, 1} m+1 :

P m i=1 z i  k and z m+1  P m i=1 z i }, we have D K  p k p k +2 
k +1 and r t 2 K with probability 1. The objective function f : R D ! R makes a trade-off between average user utility and inequalities in item exposure (we gave an example in Eq. ( 5.2)). The remaining assumptions of our framework are that the objective function is non-decreasing with respect to average user utility. This is not required but it is natural (see Example 4)a n ds l i g h t l ys i m p l i fi e st h ea l g o r i t h m .

Assumption D. The assumptions of the framework described above hold, as well as Assumption B. Moreover, 8z 2 K @f @zm+1 (z) > 0, and 8x 2 X , 1 b 1 (x) ... b k (x)=... = b m (x)=0. Algorithm and results. We present the algorithm in the setting of linear contextual bandits, using LinUCB [Abbasi-Yadkori et al., 2011, Li et al., 2010]a ss c a l a re x p l o r a t i o n / e x p l o i t a t i o n algorithm in Algorithm 3. It builds reward estimates based on Ridge regression with regularization parameter . As in the previous section, we focus on the case where f is smooth but the extension to nonsmooth f is straightforward, as described in Section 5. The proposition says that even though computing a t as in line 4 of Alg. 3 does not require the knowledge of b(x t ),w es t i l lo b t a i nt h eo p t i m a lu p d a t ed i r e c t i o na c c o r d i n gt oμ t .T o g e t h e r with the usage of the observed reward r t in FW iterates (instead of e.g., μt a t as would be done by [START_REF] Agrawal | Bandits with concave rewards and convex knapsacks[END_REF]), this removes the need for explicit estimates of µ(x t ). This is how our algorithm works without knowing the position weights b(x t ), which are then allowed to depend on the context.

The usage of vt to compute a t follows the usual confidence-based approach to explore/exploitation principles for linear bandits, which leads to the following result (proven in Appendix B.9): Theorem 16. Under Assumptions B, C and D, for every 0 > 0,e v e r yT 2 N ⇤ ,e v e r y D 2 X k, with probability at least 1 0 , Algorithm 3 has scalar regret bounded by LinUCBRank.W er e f e rt ot h i sb a s e l i n ea sUnbiased-LinUCBRank.F i n a l l y ,t h eFairLearn(c, ↵) algorithm [Patil et al., 2020]e n f o r c e sa sf a i r n e s sc o n s t r a i n tt h a tt h ep u l l i n gf r e q u e n c yo fe a c ha r m be c,u pt oat o l e r a n c e↵.W ei m p l e m e n ta st h i r db a s e l i n eas i m p l ea d a p t a t i o no fFairLearn to contextual bandits and ranking. Dynamics. Figure 5.1 (middle) represents the values of f over time achieved by the competing algorithms, for fixed =1. As expected, compared to the fairness-aware and -unaware baselines, our algorithm FW-LinUCBRank reaches the best values of f . Interestingly, Unbiased-LinUCBRank also obtains high values of f on the first 10 4 rounds, but its performance starts decreasing after more iterations. This is because Unbiased-LinUCBRank is not guaranteed to converge to an optimal trade-off between user fairness and item inequality.

R scal T = O ✓ L p T k p d ln(T/ 0 ) ⇣ p d ln(T/ 0 )+D ✓ p + q k/d ⌘ ◆ .
At convergence. We analyse the trade-offsa c h i e v e da f t e r5 • 10 6 rounds between user utility and item inequality measured by the Gini index. We vary in the objective f of Eq. ( 5.2) for FW-LinUCBRank and the strength c in FairLearn(c, ↵), with tolerance ↵ =1. In Fig. [START_REF][END_REF].1 (right), we observe that compared to FairLearn, FW-LinUCBRank converges to much higher user utility at all levels of inequality among items. In particular, it achieves zero-unfairness at little cost for user utility.

Conclusion

We presented the first general approach to contextual bandits with concave rewards. To illustrate the usefulness of the approach, we show that our results extend randomized exploration with generic online regression oracles to the concave rewards setting, and extend existing ranking bandit algorithms to fairness-aware objective functions. The strength of our reduction is that it can produce algorithms for cbcr from any contextual bandit algorithm, including recent extensions of SquareCB to infinite compact action spaces [Zhu andMineiro, 2022, Zhu et al., 2022]a n df u t u r e ones.

In our main application to fair ranking, the designer sets a fairness trade-off f to optimize. In practice, they may choose f among a small class by varying hyperparameters (e.g. in Eq. ( 5.

2)).

An interesting open problem is the integration of recent elicitation methods for f [e. g., Lin et al., 2022]i nt h eb a n d i ts e t t i n g . A n o t h e ri n t e r e s t i n gi s s u ei st h eg e n e r a l i z a t i o no fo u rf r a m e w o r kt o include constraints [START_REF] Agrawal | An efficient algorithm for contextual bandits with knapsacks, and an extension to concave objectives[END_REF]. Finally, we note that the deployment of our algorithms requires to carefully design the whole machine learning setup, including the specification of reward functions [Stray et al., 2021], the design of online experiments [Bird et al., 2016], while taking feedback loops into account [START_REF] Bottou | Counterfactual reasoning and learning systems: The example of computational advertising[END_REF], Jiang et al., 2019, Dean and Morgenstern, 2022].

Chapter 6

User fairness as envy-freeness Contents This chapter is the article Online certification of preference-based fairness for personalized recommender systems,p u b l i s h e da tA A A I2 0 2 2( s e e [ Do et al., 2022a]).

In Chapters 3 and 4,w ec o n s i d e r e dt h ep r o b l e mo ft h edesigner of a recommender systems who is concerned with two-sided fairness for users and items. In this chapter, we shift our focus to auditing recommender systems and prioritizing user-side fairness. This work was inspired by the growing concerns raised by audits for user fairness in advertising systems, such as the gender-based disparities observed in ad delivery rates for different companies proposing similar jobs [START_REF] Imana | Auditing for discrimination in algorithms delivering job ads[END_REF][START_REF] Lambrecht | Algorithmic bias? an empirical study of apparent genderbased discrimination in the display of stem career ads[END_REF], Datta et al., 2015]. Our contribution to this research is a complement to existing audits, most of which do not control for disparities that align with user preferences. To address this limitation, we proposed to test for the preference-based criterion of envy-freeness, which stipulates that no user should prefer their recommendations to those of other users. For example, in a job ad system where two users Alice and Bob are interested in taxi driver roles [START_REF] Ali | Discrimination through optimization: How facebook's ad delivery can lead to biased outcomes[END_REF], if Bob is the only one to receive ads for driver jobs, then the system is deemed unfair by the envy-freeness criterion. Envy-freeness is a fairness criterion that has roots in fair division. In the context of recommender systems, it leads to different assessments than our previous framework which was also rooted in fair division, but approached fairness as redistribution of utility, following the Pigou-Dalton transfer principle. One advantage of envy-freeness is that it avoids the challenge of interpersonal comparisons of utilities across users, which are difficult due to the different scaling of performance metrics used to measure user utilities (since users have different browsing or rating patterns). Comparing and aggregating user utilities is necessary in the design of recommender systems, where practitioners traditionally maximize measures of performance on average over users, and in the design of two-sided fair recommender systems, where designers need to make trade-offsb e t w e e nu s e r s 'a n di t e m s ' utilities. In contrast, interpersonal comparisons can be avoided for the auditor, who only seeks reliable evaluations of how the system serves some users compared to others.

In the previous chapters 3 and 4,w ed e s i g n e dr a n k i n ga l g o r i t h m st oi m p r o v et h ee x p o s u r eo f small items while prioritizing the utilities of the worst-off users. These algorithms produce rankings which are suboptimal for average user utility, since one of the main motivations of two-sided fairness in rankings is to mitigate the winner-take-all effects of the user-side optimal rankings. In contrast, we show that envy-freeness is compatible with providing optimal recommendations for users. Further, our previous two-sided fair ranking algorithms may not pass the audit for envy-freeness, as optimal ranking policies for objectives that include a concave item fairness term are not envy-free for users in general. For example, promoting less popular employers by boosting their ads in one user's recommendations may lead this user to envy another user who receives recommendations of popular employers. In contrast, our perspective in this chapter is that of an auditor solely focused on assessing fairness for users, regardless of whether user-side unfairness is a consequence of other objectives, such as item-side fairness.

We argue that the audit p ersp ective is just as imp ortant as that of the designer, given the significant role played by audits for user fairness in raising awareness about the need for fairness in recommender systems. In fact, existing audits have led to settlements that drove online platforms to change their ad recommendation algorithms to comply with new requirements for user fairness [START_REF] Bogen | Toward fairness in personalized ads[END_REF]. Moreover, designers can use the evaluations produced by auditors as additional diagnoses to improve their systems. If an internal auditor detects envy in a recommender system, then the designer can examine whether removing user envy would lead to increased inequalities on the item side, and assess whether this trade-off is acceptable with respect to the objective set for item fairness. In practice though, we recommend that our audit for envy-freeness be used in applications where user-side fairness, rather than item-side fairness, is the main concern, such as in the line of work on auditing ad delivery systems.

On the algorithmic side, the auditing problem is completely different from the designer's problem.

We cast the audit for envy-freeness as a pure exploration bandit problem, since the goal is to provide high-confidence envy-freeness certificates from as few samples as possibles. This is different from Chapter 5 where the designer addresses a regret minimization problem, in order to deliver recommendations while balancing exploration and exploitation. The auditing algorithm OCEF that we introduce in this chapter is meant as an auditing tool, not a recommendation strategy.

We also note the following presentation differences with the previous chapters:

1. Recommendation policies are distributions over single items. We do not consider rankings.

2. We use the original notation of the article, which is different from the rest of the thesis since we address a different problem.

3.

In the formal analysis of the compatibility between envy-freeness and item-side fairness criteria in Section 6. 3.3, we consider fairness criteria within the recommendations of a single user ("within list"), rather than across users. Moreover, compared to Chapter 3,w eu s et h et e r m i n o l o g y" e q u i t y of exposure" instead of "quality-weighted exposure", and "parity of exposure" instead of "equal

Introduction

Recommender systems shape the information and opportunities available to us, as they help us prioritize content from news outlets and social networks, sort job postings, or find new people to connect with. To prevent the risk of unfair delivery of opportunities across users, substantial work The audits above aim at controlling for the possible acceptable justifications of the disparities, such as education level in job recommendation audits. Yet, the observed disparities in recommendation do not necessarily imply that a group has a less favorable treatment: they might as well reflect that individuals of different groups tend to prefer different items. To strengthen the conclusions of the audits, it is necessary to develop methods that account for user preferences. Audits for equal satisfaction between user groups follow this direction [Mehrotra et al., 2017], but they also have limitations. For example, they require interpersonal comparisons of measures of satisfaction, a notoriously difficult task [Sen, 1999].

We propose an alternative approach to incorporating user preferences in audits which focuses on envy-free recommendations:t h er e c o m m e n d e rs y s t e mi sd e e m e df a i ri fe a c hu s e rp r e f e r st h e i r recommendation to those of all other users. Envy-freeness allows a system to be fair even in the presence of disparities between groups as long as these are justified by user preferences. On the other hand, if user B systematically receives better opportunities than user A from A's perspective,

the system is unfair. The criterion does not require interpersonal comparisons of satisfaction, since it relies on comparisons of different recommendations from the perspective of the same user. Similar fairness concepts have been studied in classification tasks under the umbrella of preference-based fairness [Zafar et al., 2017b, Kim et al., 2019, Ustun et al., 2019]. Envy-free recommendation is the extension of these approaches to personalized recommender systems.

Compared to auditing for recommendation parity or equal satisfaction, auditing for envy-freeness poses new challenges. First, envy-freeness requires answering counterfactual questions such as "would user A get higher utility from the recommendations of user B than their own?", while searching for the users who most likely have the best recommendations from A's perspective. This type of question can be answered reliably only through active exploration, hence we cast it in the framework of pure exploration bandits [START_REF] Bubeck | Pure exploration in multi-armed bandits problems[END_REF]. To make such an exploration possible, we consider a scenario where the auditor is allowed to replace a user's recommendations with those that another user would have received in the same context. Envy, or the absence thereof, is estimated by suitably choosing whose recommendations should be shown to whom. While this scenario is more intrusive than some black-box audits of parity, auditing for envy-freeness provides am o r ec o m p e l l i n gg u a r a n t e eo nt h ew e l l b e i n go fu s e r ss u bj e c tt ot h er e c o m m e n d a t i o n s .

The second challenge is that active exploration requires randomizing the recommendations, which in turn might alter the user experience. In order to control this cost of the audit (in terms of user utility), we follow the framework of conservative exploration Wu et al. [2016], Garcelon et al.

[2020a], which guarantees a performance close to the audited system. We provide a theoretical analysis of the trade-offst h a ta r i s e ,i nt e r m so ft h ec o s ta n dd u r a t i o no ft h ea u d i t( m e a s u r e di nt h e number of timesteps required to output a certificate).

Our technical contributions are twofold. (1) We provide a novel formal analysis of envy-free recommender systems, including a comparison with existing item-side fairness criteria and a probabilistic relaxation of the criterion. (2) We cast the problem of auditing for envy-freeness as a new pure exploration problem in bandits with conservative exploration constraints, and propose a sample-efficient auditing algorithm which provably maintains, throughout the course of the audit, a performance close to the audited system.

We discuss the related work in Sec. 6.2.E n v y -f r e er e c o m m e n d e rs y s t e m sa r es t u d i e di nS e c . 6.3. In Sec. 6.4, we present the bandit-based auditing algorithm. In Sec. 6.5,w ei n v e s t i g a t et h e trade-offsa c h i e v e do nr e a l -w o r l dd a t a s e t s .

Related work

Fair recommendation The domain of fair machine learning is organized along two orthogonal axes. The first axis is whether fairness is oriented towards groups defined by protected attributes [START_REF] Barocas | Big data's disparate impact[END_REF], or rather oriented towards individuals Dwork et al. Multi-armed bandits In pure exploration bandits [START_REF] Bubeck | Pure exploration in multi-armed bandits problems[END_REF], [START_REF] Audibert | Best arm identification in multi-armed bandits[END_REF], an agent has to identify a specific set of arms after exploring as quickly as possible, without performance constraints. Our setting is close to threshold bandits Locatelli et al. [2016], ? where the goal is to find arms with better performance than a given baseline. Outside pure exploration, in the regret minimization setting, conservative exploration Wu et al. [2016]e n f o r c e st h ea n y t i m e average performance to be not too far worse than that of a baseline arm.

In our work, the baseline is unknown -i ti st h ec u r r e n tr e c o m m e n d e rs y s t e m-a n dt h eo t h e r "arms" are other users' policies. The goal is to make the decision as to whether an arm is better than the baseline, while not deteriorating performance compared to the baseline. We thus combine pure exploration and conservative constraints.

Existing work on fairness in exploration/exploitation [START_REF] Joseph | Fairness in learning: Classic and contextual bandits[END_REF], Jabbari et al. [2017], Liu et al. [2017]i sd i fferent from ours because unrelated to personalization.

Fair allocation Envy-freeness was first studied in fair allocation Foley [1967]i ns o c i a lc h o i c e .

Our setting is different because: a) the same item can be given to an unrestricted number of users, and b) true user preferences are unknown.

Envy-free recommendations

Framework

There are M users, and we identify the set of users with JM K = {1,...,M}.Ap e r s o n a l i z e d recommender system has one stochastic recommendation policy ⇡ m per user m.W ed e n o t eb y ⇡ m (a|x) the probability of recommending item a 2 A for user m 2 JM K in context x 2 X .W ea s s u m e that X and A are finite to simplify notation, but this has no impact on the results. We consider a synchronous setting where at each time step t,therecommendersystemobserv esacon textx m t ⇠ q m for each user, selects an item a m t ⇠ ⇡ m (.|x m t ) and observes reward r m t ⇠ ⌫ m (a m t |x m t ) 2 [0, 1]. We denote by ⇢ m (a|x) the expected reward for user m and item a in context x,a n d ,f o ra n y recommendation policy ⇡, u m (⇡) is the utility of m for ⇡:

u m (⇡)=E x⇠q m E a⇠⇡(.|x) E r⇠⌫ m (a|x) [r] = X x2X X a2A q m (x)⇡(a|x)⇢ m (a|x) (6.1)
We assume that the environment is stationary:t h ec o n t e x ta n dr e w a r dd i s t r i b u t i o n sq m and ⌫ m , as well as the policies ⇡ m are fixed. Even though in practice policies evolve as they learn from user interactions and user needs change over time, we leave the study of non-stationarities for future work. The stationary assumption approximately holds when these changes are slow compared to the time horizon of the audit, which is reasonable when significant changes in user needs or recommendation policies take e.g., weeks. Our approach applies when items a are single products as well as when items are structured objects such as rankings. Examples of (context x,i t e ma) pairs include: x is a query to a search engine and a is a document or a ranking of documents, or x is a song chosen by the user and a as o n gt op l a yn e x to ra ne n t i r ep l a y l i s t . R e m e m b e r ,o u rg o a li s not to learn the user policies ⇡ m ,b u tr a t h e rt oa u d i te x i s t i n g⇡ m sf o rf a i r n e s s .

✏-envy-free recommendations

Existing audits for user-side fairness in recommender systems are based on two main criteria:

1. recommendation parity:t h ed i s t r i b u t i o no fr e c o m m e n d e di t e m ss h o u l db ee q u a la c r o s s( g r o u p s of) users, 2. equal user utility:a l l( g r o u p so f )u s e r ss h o u l dr e c e i v et h es a m eu t i l i t y ,i . e .8m, n, u m (⇡ m )=

u n (⇡ n ).
There are two ways in which these criteria conflict with the goal of personalized recommender systems to best accomodate user preferences. First, recommendation parity does not control for disparities that are aligned with user preferences. Second, equal user utility drives utility down as soon as users have different best achievable utilities. To address these shortfalls, we propose envy-freeness as a complementary diagnosis for the fairness assessment of personalized recommender systems. In this context, envy-freeness requires that users prefer their recommendations to those of any other user:

Definition 5. Let ✏ 0. A recommender system is ✏-envy-free if: 8m, n 2 [M ]: u m (⇡ n )  ✏ + u m (⇡ m ).
Envy-freeness, originally studied in fair allocation Foley [1967]andmorerecentlyfairclassification Balcan et al. [2018], Ustun et al. [2019], Kim et al. [2019], stipulates that it is fair to apply different policies to different individuals or groups as long as it benefits everyone. Following this principle, we consider the personalization of recommendations as fair only if it better accommodates individuals' preferences. In contrast, we consider unfair the failure to give users a better recommendation when one such is available to others.

Unlike parity or equal utility, envy-freeness is in line with giving users their most preferred recommendations (see Sec. 6.3.3). Another improvement from equal user utility is that it does not involve interpersonal utility comparisons.

Envy can arise from a variety of sources, for which we provide concrete examples in our experiments (Sec. 6.5.1). Remark 3. We discuss an immediate extension of envy-freeness from individuals to groups of users in App. C.2, in the special case where groups have homogeneous preferences and policies.

Defining group envy-free recommendations in the general case is nontrivial and left for future work.

Compatibility of envy-freeness

Optimal recommendations are envy-free.1 Let ⇡ m,⇤ 2 argmax ⇡ u m (⇡) denote an optimal recommendation policy for m. Then the optimal recommender system (⇡ m,⇤ ) m2M is envy-free since: u m (⇡ m,⇤ )=max ⇡ u m (⇡) u m (⇡ n,⇤ ). In contrast, achieving equal user utility in general can only be achieved by decreasing the utility of best-served users for the benefit of no one. It is also well-known that achieving parity in general requires to deviate from optimal predictions [START_REF] Barocas | Fairness and Machine Learning.f a i r m lbook[END_REF].

Envy-freeness vs. item-side fairness Envy-freeness is a user-centric notion. Towards multisided fairness [Burke, 2017], we analyze the compatibility of envy-freeness with item-side fairness criteria for rankings from [START_REF] Singh | Fairness of exposure in rankings[END_REF], based on sensitive categories of items (denoted A 1 ,...,A S ). Parity of exposure prescribes that for each user, the exposure of an item category should be proportional to the number of items in that category. In Equity of exposure2 ,theexposure of item categories should be proportional to their average relevance to the user.

The optimal policies under parity and equity of exposure constraints, denoted respectively by (⇡ m,par ) M m=1 and (⇡ m,eq ) M m=1 ,a r ed e fi n e dg i v e nu s e rm and context x as: • the policies (⇡ m,par ) M m=1 are envy-free, while • the policies (⇡ m,eq ) M m=1 are not envy-free in general. Optimal recommendations under parity of exposure are envy-free because the parity constraint ( 6.2) is the same for all users. Given two users m and n, ⇡ m,par is optimal for m under ( 6.2) and ⇡ n,par satisfies the same constraint, so we have u m (⇡ m,par ) u m (⇡ n,par ).

In contrast, the optimal recommendations under equity of exposure are, in general, not envy-free.

Afi r s tr e a s o ni st h a tl e s sr e l e v a n ti t e mc a t e g o r i e sr e d u c et h ee x p o s u r eo fm o r er e l e v a n tc a t e g o r i e s :

a user who prefers item a but who also likes item b from another category envies a user who only liked item is a.N o t et h a tamortized versions of the criterion and other variants considering constraint averages over user/contexts [Biega et al., 2018[START_REF] Gourab K Patro | Fairrec: Two-sided fairness for personalized recommendations in two-sided platforms[END_REF]h a v es i m i l a rp i t f a l l s unless envy-freeness is explictly enforced, as in Patro et al. [2020] who developed an envy-free algorithm assuming the true preferences are known. For completeness, we describe in App.C.1 a second reason why equity of exposure constraints create envy, and an edge case where they do not.

Probabilistic relaxation of envy-freeness

Envy-freeness, as defined in Sec. 6.3.2,( a ) this means that the sample complexity of the audit increases with the number of users, and that all users must be part of the audit.

In practice, it is likely sufficient to relax both conditions on all users to give a guarantee for most recommendation policies and most users. Given two small probabilities and ,t h er e l a x e d criterion we propose requires that for at least 1 fraction of users, the utility of users for their own policy is in the top-% of their utilities for anyone else's policy. The formal definition is given below. The fundamental observation, which we prove in Th. 19 in Sec. 6.4.5,i st h a tt h es a m p l e complexity of the audit and the number of users impacted by the audit are now independent on the total number of users.W eb e l i e v et h a tt h e s er e l a x e dc r i t e r i aa r et h u sl i k e l yt oe n c o u r a g et h e deployment of envy-free audits in practice.

Definition 6. Let ✏, , 0.L e tU M denote the discrete uniform distribution over JM K. Au s e r m is (✏, )-envious if:

P n⇠U M ⇥ u m (⇡ m )+✏ <u m (⇡ n ) ⇤ > .
3

The original criterion [Singh and Joachims, 2018, Eq. 4] would be written in our case as 8s, s 0 2 JSK,

1 |As| P a2As p(a)= 1 |A s 0 | P a2A s 0 p(a)
,w h i c hi se q u i v a l e n tt o(6.2). A similar remark holds for the equity constraint.

criterion, we also bring the principle of conservative exploration to the pure exploration setting, while it had only been studied in regret minimization [Wu et al., 2016]. In our setting, conservative constraints involve nontrivial trade-offsbe t w e e nt h ed u r a t i o na n dc o s to ft h ea u d i t . W en o wp r e s e n t the algorithm, and then the theoretical guarantees for the objectives and evaluation measures. 6.4.3 The OCEF algorithm OCEF is described in Alg. 4 Conservative exploration To deal with the conservative exploration constraint ( 6.3),w ef o l l o w Garcelon et al. [2020a]. Denoting A t = {s  t : k s 6 =0 } the time steps at which the baseline was not pulled, we maintain a confidence interval such that with probability 1 ,w eh a v e 8t>0, P s2At (µ ks r s )  Φ(t). The formula for Φ is given in Lem. 55 in App. C.5. This confidence interval is used to estimate whether the conservative constraint (6.3) is met at round t as follows. First, let us denote by N k (t) the number of times arm k has been pulled until t,a n d notice that (6.3) is equivalent to P s2At µ ks ((1 ↵)t N 0 (t))µ 0 0.A f t e rc h o o s i n g`t (line 3), we use the lower bound on P s2At µ ks and the upper bound for µ 0 to obtain a conservative estimate of (6.3). Using ⌧ = t 1,t h i sl e a d st o : .4) Then, as long as the confidence intervals hold, pulling `t does not break the constraint ( 6.3)i f

⇠ t = X s2A⌧ r s Φ(t)+µ `t (⌧ )+(N 0 (⌧ ) (1 ↵)t)µ 0 (⌧ ) . ( 6 
⇠ t 0.
The algorithm thus pulls the baseline arm when ⇠ t < 0.T os i m p l i f yt h et h e o r e t i c a la n a l y s i s , OCEF also pulls the baseline if it does not have the tightest confidence interval (lines 4-6).

Analysis

The main theoretical result of the paper is the following:

Theorem 18. Let ✏ 2 (0, 1], ↵ 2 (0, 1], 2 (0, 1 2 ) and ⌘ k = max(µ k µ 0 ,µ 0 + ✏ µ k ) and h k = max(1, 1 ⌘ k ).
Using µ, µ and Φ given in Lemmas 53 and 55 (App. C.5), OCEF achieves the following guarantees with probability 1 :

• OCEF is correct and satisfies the conservative constraint on the recommendation performance (6.3).

• The duration is in O ✓ K X k=1 h k log K log( Kh k/ ⌘ k ) min(↵µ 0 , ⌘ k ) ◆ . • The cost is in O ✓ X k:µ k <µ0 (µ0 µ k )h k ⌘ k log K log( Kh k/ ⌘ k ))
◆ .

The important problem-dependent quantity ⌘ k is the gap between the baseline and other arms k. It is asymmetric depending on whether the arm is better than the baseline (µ k µ 0 ) or the converse (µ 0 µ k + ✏)b e c a u s et h es t o p p i n gc o n d i t i o nf o renvy does not depend on ✏. This leads to a worst case that only depends on ✏,s i n c e⌘ k = max(µ k µ 0 ,µ 0 µ k + ✏) ✏ 2 , while if the condition was symmetric, we would have possibly unbounded duration when µ k = µ 0 + ✏ for some k 6 =0.O v e r a l l , ignoring log terms, we conclude that when ↵µ 0 is large, the duration is of order

P k 1 ⌘ 2 k
and the cost is of order

P k 1 ⌘ k . This becomes P k 1 ↵µ0⌘ k and P k 1
⌘ k when ↵µ 0 is small compared to ⌘ k .T h i s means that the conservative constraint has an impact mostly when it is strict. It also means that when either ↵µ 0 ⌧ ⌘ k or ⌘ 2 k ⌧ ⌘ k the cost can be small even when the duration is fairly high.

Full audit

Exact criterion To audit for envy-freeness on the full system, we apply OCEF to all M users simultaneously and with K = M ,m e a n i n gt h a tt h es e to fa r m sc o r r e s po n d st oa l lt h eu s e r s 'po l i c i e s .

By the union bound, using 0 = M instead of in OCEF's confidence intervals, the guarantees of Theorem 18 hold simultaneously for all users.

For recommender systems with large user databases, the duration of OCEF thus becomes less manageable as M increases. We show how to use OCEF to certify the probabilistic criterion with guarantees that do not depend on M .

Probabilistic criterion

The AUDIT algorithm for auditing the full recommender system is described in Alg. [START_REF][END_REF]. AUDIT samples a subset of users and a subset of arms for each sampled user. Then it applies OCEF to each user simultaneously with their sampled arms. It stops either upon finding an envious user, or when all sampled users are certified with ✏-no envy. Again there is a necessary asymmetry in the return statements of AUDIT to obtain finite worst-case bounds whether or not the system is envy-free.

The number of target users M and arms K in Alg. 5 are chosen so that ✏-envy-freeness w.r.t. the sampled users and arms translates into (✏, , )-envy-freeness. Combining these random approximation guarantees with Th. 18,w eg e t : 3) for all M target users, and the bounds on duration and cost from Th. 18 (using 3 M instead of ) are simultaneously valid.

Importantly, in contrast to naively using OCEF to compare all users against all, the audit for the probabilistic relaxation of envy-freeness only requires to query a constant number of users and policies that does not depend on the total number of users M . Therefore, the bounds on duration and cost are also independent of M , which is a drastic improvement.

Experiments

We present exp eriments describing sources of envy (Sec. 6.5.1)andev aluatingtheauditingalgorithm OCEF on two recommendation tasks (Sec. 6.5.2).

We create a music recommendation task based on the Last.fm dataset from [START_REF] Cantador | 2nd workshop on information heterogeneity and fusion in recommender systems (hetrec 2011)[END_REF], which contains the music listening histories of 1.9ku s e r s . W es e l e c tt h e2500 items most listened to, and simulate ground truth user preferences by filling in missing entries with a popular particular, on envy-free configurations, the cost of the audit is positive and grows when relaxing the conservative constraint, while it is negative and decreasing with ↵ when there is envy. More details are provided in App. C.4.2.

Conclusion

We proposed the audit of recommender systems for user-side fairness with the criterion of envyfreeness. The auditing problem requires an explicit exploration of user preferences, which leads to a formulation as a bandit problem with conservative constraints. We presented an algorithm for this problem and analyzed its performance experimentally. In future work, we plan to extend envy-freeness to heterogeneous groups of users, in order to generalize existing definitions of preferencebased fairness to personalized predictions. 

Summary of contributions

This thesis makes both conceptual and algorithmic contributions.

In this thesis, we developed a conceptual framework based on distributive justice principles from social choice theory to assess the fairness of ranked recommendations. We approach recommendation as a fair allocation problem where the designer makes trade-offsb e t w e e nt h eu t i l i t i e so ft h eu s e r s and items. Within this framework, we proposed a principled approach to generate fair rankings by maximizing concave welfare functions of users' and items' utilities. In Chapter 3, we started with additive concave welfare functions, which encode the intuition of diminishing marginal utilities, and then treated in Chapter 4 the case of generalized Gini welfare functions, which have a more complex form but are more expressive. The perspective of social choice also gives a better understanding of existing ranking approaches, in which we show that popular merit-based approaches can lead to undesirable distributive unfairness (Chapter 3).

Along with the conceptual framework of this thesis, we made several algorithmic contributions, built around Frank-Wolfe methods. We addressed the challenge of optimizing concave functions of stochastic ranking policies, which can be used to express many objectives for fair and multi-objective recommendation. We first showed how to efficiently leverage Frank-Wolfe methods in the batch setting, for ranking in the position-based model in Chapter 3. Then we showed how to extend this approach to the case of the non-differentiable GGFs in Chapter 4. In Chapter 5,w ea d d r e s s e dt h e problem of fair ranking in the contextual bandit setting, and presented the first bandit algorithm with regret guarantees for the problem. All the algorithms developed in this thesis are supported by theoretical guarantees on their convergence and complexity. We also evaluated our algorithms against relevant benchmarks on simulated environments based on public datasets such as MovieLens, Last.fm and Twitter data, which include up to 15k users and items.

In addition to proposing new methods for designing recommender systems that are fair towards both users and items, we also addressed a different auditing problem, which is focused on user-side fairness in Chapter 6.M o t i v a t e db yp r o m i n e n ta u d i t sf o rp a r i t yi nt h ed e l i v e r yo fj o ba d s ,w e propose an audit for envy-freeness, which provides more refined conclusions but is more technically challenging. We address this technical challenge by developing a sample-efficient pure exploration bandit algorithm for the task, that does not significantly degrade recommendation performance for the users sampled for the audit.

As we will discuss in the last section, our research leaves several open questions. These include a more detailed treatment of two-sided fairness at the group level, more general modeling of user and item utilities, and the incorporation of real-world dynamics that affect user and item preferences and behaviors. Additionally, while our work focuses on the perspective of fair division, the field of social choice offers valuable insights for the recommendation community that warrant further exploration. Addressing these challenging questions in conjunction with our contributions can lead to exciting research avenues. Despite the remaining open questions, our research has made significant strides in improving the current state-of-the-art in fairness for recommender systems.

We have gained a b etter understanding of the limitations of equality and merit-based constraints on exposure, as well as how to design principled ranking objectives. Our results have led to the development of efficient algorithms that can be practically implemented, serving as a stepping stone towards the development of principled approaches to fairness in recommender systems in more complex settings. We hope that our work will inspire further progress in this field.

Discussion

In this final section, we discuss additional relevant topics that we did not include in the main body of this thesis, but to which we contributed. These topics are group fairness (Section 7.2.1)andothe r perspectives from social choice (Section 7.2.2). Then we discuss the limitations of our framework and open questions (Section 7.2.3), and the challenges of implementing fair recommender systems in practice (Section 7.2.4).

Towards group fairness

We describ ed our framework for fair allo cation of exp osure at the level of individuals. Our framework can be extended to groups, following prior work on fair ranking which considered the utility of a group as the sum or the average of utilities of its members [START_REF] Singh | Fairness of exposure in rankings[END_REF], Morik et al., 2020, Singh and Joachims, 2019]. We provide the technical details of this extension in Appendix A.2, using the sum to aggregate utilities. In Appendix A.2,w ed e fi n eL o r e n ze fficiency at the level of group utilities, and show that maximizing additive concave welfare functions of group-level utilities yields Lorenz-efficient ranking policies. Note that this extension also allows to consider item-side fairness at the level of item producers instead of single items, by defining the utility of a producer as the sum or mean of their items' utilities.

However, this treatment of groups by adding up individual utilities is not the only method to assess fairness at the level of groups and has some limitations. In particular, it does not account for individual differences inside groups. Considerations for both individual differences within groups and redistribution between groups have been extensively studied in the economic literature on equality of opportunity [START_REF] Roemer | Theories of distributive justice[END_REF]Trannoy, 2016, Roemer, 1996], which has inspired several works on algorithmic fairness [Hardt et al., 2016b, Heidari et al., 2019, Arif Khan et al., 2022]. Another perspective is the economic literature on inequality measurement, where the decomposition of inequality into a within-group term and between-group term was studied through the property of additive decomposability [Cowell, 2011], and was recently discussed in the context of fair machine learning [Speicher et al., 2018, Williamson andMenon, 2019]. The future implementation of these principles to two-sided fairness in recommendation are a promising extension of our efforts to integrate distributive justice principles into the assessment and design of recommender systems.

In all cases, fairness at the level of groups is predicated on access to a discrete sensitive attribute of users and/or items. Consequently, the practical application of group fairness notions is restricted by real-world constraints on the direct usage of sensitive attributes. Such restrictions exist when the sensitive attribute is not available, when collecting or inferring information about group membership is illegal, or when the delineation of groups into discrete categories is impractical or unethical [Tomasev et al., 2021, Andrus and[START_REF] Andrus | Demographic-reliant algorithmic fairness: characterizing the risks of demographic data collection in the pursuit of fairness[END_REF]. Addressing group fairness without access to sensitive attributes is considered a key open problem for practical applications of fairness-aware measures and algorithms [START_REF] Holstein | Improving fairness in machine learning systems: What do industry practitioners need?[END_REF], Veale and Binns, 2017[START_REF] Andrus | Demographic-reliant algorithmic fairness: characterizing the risks of demographic data collection in the pursuit of fairness[END_REF], Kallus et al., 2022]. In a recent work [START_REF] Liu | Group fairness without demographics using social networks[END_REF], we leverage homophily in social networks to derive group fairness measures for recommender systems that do not rely on discrete group labels, while satisfying a notion of additive decomposability of inequality measures.

Opportunities of social choice for modern selection problems

Election problems Social choice problems fall into two broad categories: public outcomes (e.g., elections) and private outcomes (e.g., fair division) [Arrow et al., 2010, Donaldson andWeymark, 1988]. In this thesis, we focused on personalized recommender systems, in which the outcomes are private. Indeed, for users, the rankings are personal, and for items, the amount of exposure received by an item is not shared with other items. This motivated us to leverage fair division as a conceptual framework for personalized recommender systems. In non-personalized search engines and group recommender systems (e.g., lists of "Trending topics" or "Top restaurants in Paris"), the recommendations are the same for all users, and hence the outcome is public, from the perspective of users. In this non-personalized setting, concepts from fair public decision-making in social choice present interesting opportunities.

During the PhD program, we also made contributions to this branch of social choice where outcomes are public. In [Do et al., 2021a[Do et al., , 2022b]], we addressed committee elections,ap o p u l a rc l a s s of social choice problems where the public outcome is a subset of individuals elected from a larger pool of candidates [Lackner and Skowron, 2020]. In committee elections, fairness is often understood as a form of proportional representation,m e a n i n gt h a tt h ee l e c t e dc o m m i t t e ei sr e p r e s e n t a t i v eo f the population of voters [Lackner and Skowron, 2020]. While proportionality is mainly considered with respect to the preferences of voters, a few recent works have considered representation based on demographic attributes [START_REF] Lang | Multi-attribute proportional representation[END_REF], Celis et al., 2017a, Bredereck et al., 2018].

The connection between voting problems and group recommender systems has already received significant attention in the computational social choice literature [Skowron et al., 2016a,b]a n di n the literature on diversity in information retrieval [Dang and Croft, 2012], and has been studied in fair recommendation more recently [START_REF] Chakraborty | Equality of voice: Towards fair representation in crowdsourced top-k recommendations[END_REF], Allouah et al., 2022]. This connection is often made by casting users as voters and items as candidates. In Appendix D,w ei n c l u d e da contribution made to the social choice literature, in which we address a specific committee election problem (see [Do et al., 2021a]). In that piece of work, we focused on designing algorithms for selecting committees that satisfy a proportional representation criterion with respect to multiple demographic attributes, in online settings.

Although we did not develop a formal connection between recommender systems and the committee selection problem addressed in Appendix D,s e v e r a lp r o m i n e n tc o n c e p t sa n dt o o l s independently developed in the two fields are closely related. The proportionality criteria developed in the committee election literature are in fact similar to some diversity and fairness criteria developed in the recommender systems and information retrieval literature. For instance, intentbased diversification of search results consists in finding a set of items that covers the various intents behind a specific query (e.g., the query "jaguar" can have the animal or the car brand as intent) [START_REF] Chapelle | Intent-based diversification of web search results: metrics and algorithms[END_REF]. This problem can be seen as a voting problem where each item is a candidate and each intent is a voter. As a matter of fact, a few works on proportionality in committee elections also use query ambiguity in search engines as a motivating example [Skowron et al., 2016b].

Another example is the problem of proportional representation of political parties based on representation targets in party-list elections [START_REF] Lang | Multi-attribute proportional representation[END_REF]. Existing rules for electing a committee (i.e., an assembly) are closely related to some metrics proposed for fair ranking with respect to sensitive groups of items. The D'Hondt rule is mathematically similar to the KL-metric for fair ranking proposed in [Yang andStoyanovich, 2017, Geyik et al., 2019], and the Hamilton rule is the `1 metric of [Yang and Stoyanovich, 2017]. Leveraging deeper connections between proportionality in committee elections and fairness and diversity in information retrieval is a promising avenue for future research.

Matching Matching problems are also widely studied in game theory and social choice, and fall in the category of private outcomes [Gale and Shapley, 1962]. In the fair machine learning literature, a few recent works explore fairness in matchings when a centralized matching algorithm uses noisy estimates of agents' merit as input [START_REF] Castera | Statistical discrimination in stable matchings[END_REF], Devic et al., 2023].

While the conventional examples of matching problems in social choice are college admissions and hospital-resident matching, two-sided matching markets are widespread in online platforms for job search, dating and friend recommendation. In this thesis, we modelled these applications as ranking tasks in reciprocal recommender systems, because their main purpose is to filter profiles among an overloaded candidate space, in order to support users with limited attention. The rankings produced by the recommender system assist users in finding other users. Users then act autonomously to match with each other. For example, on a job search platform, a recruiter can decide to connect with a candidate that was recommended to them, and the candidate can accept or decline the invitation to connect. Unlike in more traditional matching problems such as college admissions, the matching itself is not computed by the algorithm.

Nonetheless, the matching literature is still relevant in the context of reciprocal recommender systems, since it focuses more explicitly on the actual capacity constraints of agents (e.g., the actual number of slots in a university program or the headcount of a recruiter), while recommender systems focus on their limited attention on the online platform.

Limitations of recommendation as fair allocation

Challenges of defining utilities

Challenges of measuring user preferences and utility. Our framework for fair allocation of exposure in recommender systems is based on careful definition and measurement of the users' preference values µ ij . It does not address potential biases arising at other parts of the recommendation pipeline, such as in the learning stage. These include selection bias (e.g., users only give feedback on items that were recommended to them) [START_REF] Benjamin | Collaborative prediction and ranking with non-random missing data[END_REF], position bias (e.g., users tend to click on items that are shown first) [Craswell et al., 2008], and estimation bias (e.g., in the learning model used to produce estimates μij ) [ Chen et al., 2023]. These can create feedback loops that reinforce suboptimalities in the learning of µ ij if exploration is not sufficient [START_REF] Bottou | Counterfactual reasoning and learning systems: The example of computational advertising[END_REF].

Beyond the challenges of producing unbiased engagement predictions, measuring the true values of items to users is a fundamentally difficult task because of the lack of observable ground truth.

In our experimental analysis, we followed the common practice of online platforms which rely on engagement signals such as clicks, likes, and play counts to measure the values µ ij , which are the main signals available at large scale. However, there may be a mismatch between these engagement signals and the true unobservable user preferences. Furthermore, those signals differ in strength, e.g. proposed by researchers in academia and industry to overcome these challenges. These include the use of surrogates of long-term user value [START_REF] Wang | Surrogate for long-term user experience in recommender systems[END_REF], and of measurement theory in social sciences to provide a more principled approach to measuring value from existing signals [Milli et al., 2021, Jacobs andWallach, 2021]. Other works proposed psychologically-grounded models of user preferences and behaviour [Curmei et al., 2022, Kleinberg et al., 2022].

Moreover, we assumed a stationary model of user preferences µ ij . This stationarity assumption ignores the feedback loops involved in recommender sytems. These include feedback loops caused by the impact of the recommender system on users' preferences themselves [Adomavicius et al., 2013, Kalimeris et al., 2021, Carroll et al., 2022, Jiang et al., 2019, Warlop et al., 2018], and the patterns of consumption used to estimate them [START_REF] Anderson | Algorithmic effects on the diversity of consumption on spotify[END_REF]]. An interesting direction would be the incorporation in our work of some recently proposed dynamic models of user preferences in recommender systems [Dean and Morgenstern, 2022, Curmei et al., 2022, Jiang et al., 2019].

Note that fair classification problems also suffer from measurement issues [Suresh and Guttag, 2019, Corbett-Davies and Goel, 2018, Kilbertus et al., 2020, Kleinberg et al., 2018a]. In the bank loan example of Section 1.2.2, repaid/default outcomes are only observed for individuals whose loan application was accepted. Kilbertus et al. [2020]e m p h a s i z et h ei m p o r t a n c eo ff o c u s i n go nf a i r decisions rather than on predictions, especially in settings where data availability depends on past decisions. We take a similar stance for recommendation problems by focusing on the fairness of rankings, even in the presence of imperfect measures of µ ij .

Challenges of defining item producer utility. Following the academic literature on fairness of exposure [Kletti et al., 2022b[START_REF] Singh | Fairness of exposure in rankings[END_REF], Biega et al., 2018, Diaz et al., 2020], we identified item producers with their items and defined the item utility as the expected number of views received by an item, i.e., its exposure. In order to define an item producer's utility, we suggest to follow the TREC fair ranking track [Biega et al., 2020], wherein the producer's utility is the cumulative utility of their items. These modeling choices aim at simplifying the formal framework and the presentation of our approach and results.

The definition of an item's utility as its expected number of views comes with certain limitations that need to be considered carefully in real-world contexts. There are various settings where what item producers seek is not mere exposure but active engagement with their content. These include streaming platforms, where artists value the number of playcounts, or social media platforms, where people seek user interaction in the form of likes and shares. In such situations, it could be more apt to define an item's utility as the expected positive engagement received (i.e., number of likes), as opposed to just views. This aligns with the concept of utility as "impact" proposed by Saito and Joachims [2022], as well as the conditions for long-term sustainability of item producers considered in [Mladenov et al., 2020[START_REF] Zhan | Towards content provider aware recommender systems: A simulation study on the interplay between user and provider utilities[END_REF].

However, there are also circumstances where the expected exposure is a reasonable proxy for item-side utility. Consider a business such as a shop or restaurant listed on a mapping application like Google Maps. In such a scenario, the number of views could be a satisfactory measure of item utility, as users cannot engage more beyond views at the recommendation stage to contribute to the establishment's success. These variations highlight the difficulty of crafting a universally applicable measure of item utility, and the importance of taking the application context into account.

Transitioning the definition of item utility from views to engagement does not poses significant changes on the algorithmic side. Our Frank-Wolfe algorithms can still be used to efficiently optimize concave welfare functions of users' and items' utilities, since the item utility still has a similar linear form as in the case of utility-as-exposure. In fact, this definition of item utility bears resemblance to our notion of utility in the reciprocal recommendation setting, where our Frank-Wolfe variants can also be used in an efficient way.

The shift from views to engagement more importantly alters the implications of fairness for items. The redistribution of engagement among items, as opposed to redistributing exposure, necessitates a significant boost for items that have no relevance to the majority of users. Moreover, the pursuit of engagement equality among items, as opposed to exposure, could impose a substantial burden on the user side. This has been highlighted by LinkedIn's research [Basu et al., 2020], demonstrating that it may inadvertently lead to the intensified recommendation of less relevant items. In our approach, where we promote trade-offso v e rs t r i c te q u a l i t yc o n s t r a i n t s ,s u c hac h a n g e would necessitate careful adjustment of the trade-off parameters, in order to decrease inequality in item utilities at a reasonable cost for user welfare. Consequently, when item utilities are defined in terms of engagement rather than exposure, it may be appropriate to consider alternative notions of fairness beyond mere redistribution. For instance, Saito and Joachims [2022]a d v o c a t e sf o r envy-freeness as a criterion for item-side fairness, when engagement metrics take precedence over views. This choice avoids the degenerate behaviour of redistributing engagement across items.

The definition of utilities requires a nuanced understanding of what users and item producers' actually value, while also keeping in mind the consequences of different definitions on the recommender systems' stakeholders.

Fixed exposure in the position-based model

We followed the literature on fairness of exposure which defines exposure in the position-based user model (PBM) [START_REF] Singh | Fairness of exposure in rankings[END_REF][START_REF] Ali | Discrimination through optimization: How facebook's ad delivery can lead to biased outcomes[END_REF], Biega et al., 2018[START_REF] Zehlike | Reducing disparate exposure in ranking: A learning to rank approach[END_REF], where the probability that a user observes an item only depends on its rank.

Fairness of exp osure in cascade mo dels [Craswell et al., 2008]a n di nm o r eg e n e r a ld y n a m i cb a y e s i a n network models [Chapelle and Zhang, 2009]i sm o r ec h a l l e n g i n gf r o ma na l g o r i t h m i cp e r s p e c t i v e .

Indeed, these general exposure models do not have the linear structure of the PBM which enabled linear programming formulations [START_REF] Singh | Fairness of exposure in rankings[END_REF]a n dt h ec o m p u t a t i o n a le fficiency of the Frank-Wolfe-based algorithms developed in this thesis. While the PBM is still widely used for its manageability and the (normalized) DCG metric [Järvelin and Kekäläinen, 2002], there has been interest in evaluating fairness of exposure in rankings in cascade models, as in the TREC 2019 fair ranking track [Biega et al., 2020]. It is only recently that an algorithm with optimality guarantees was proposed for fair trade-offs in general dynamic bayesian network models [Kletti et al., 2022b].

From a fair division p ersp ective, cascade mo dels challenge the notion of exp osure as a fixed quantity to allocate. In the PBM, the total exposure is fixed and equal to E = n kbk 1 where n is the number of users b k is the weight associated to the rank k. In practice though, the system has an impact on the actual budget of exposure to allocate, since the number of viewed items varies dynamically depending on whether the user keeps browsing the ranked list. In cascade models, the rank at which a user stops browsing depends on whether items ranked at higher positions are relevant to the user. Therefore, the number of exposed items depends on the ranking (via the interdependence of the values of ranked items). 1

It is not clear how to assess the fairness of the allocation of exposure when exposure is a dynamic quantity. In theory, it is possible to increase the total exposure available by showing irrelevant items in the highest positions of the ranking, in order to keep a patient user captive and have more exposure to give to small items. In practice though, the user's patience is likely to decrease in the long run. Jeunen and Goethals [2021], who propose a heuristic for item-side fairness in a cascade model, make a similar observation in their experiments. They find that shuffling the items in the first positions yields different user utility/item inequality trade-offs, depending on the user's openness to randomization. We also suspect that the effectiveness of fairness-aware ranking policies in cascade models depends on how much patience users have, and this likely varies depending on their satisfaction from past recommendations.

Fairness beyond fair division

Fairness is a complex, multi-faceted, contextual and much debated up on concept, and fair division is only one way to frame it. We focused on the perspective of fair division because of its historical importance, its strong foundations in decades of research in social choice, and its relevance to the problem of making trade-offsb e t w e e nt h ei n t e r e s t so ft h es t a k e h o l d e r so fr e c o m m e n d e rs y s t e m s .

However, there are many other ways to frame fairness which could help improve recommender systems. In Section 7.2.1,w es u g g e s t e dt h a to t h e re c o n o m i cm o d e l so fd i s t r i b u t i v ej u s t i c e ,s u c h as the theory of equality of opportunity, could provide a better treatment of groups of items and users in recommender systems. Fair division is historically not concerned with groups, and does not explicitly address the historical and societal disadvantage of social groups [START_REF] Moulin | Fair division and collective welfare[END_REF]. In contrast, in the theory of equality of opportunity of Roemer [1996], outcomes are redistributed after correcting for arbitrary circumstances that are not in the control of individuals (e.g., race or socio-economic background). Several works proposed to connect doctrines of equality of opportunity with group-level fairness notions in machine learning [Heidari et al., 2019, Zehlike et al., 2022a, Arif Khan et al., 2022], but the adaptation of these frameworks to user-side and item-side fairness in recommender systems remains an open issue.

Finally, distributive justice is one fundamental axis of theories of justice that has been considered as separate and complementary to recognition justice [START_REF] Fraser | Redistribution or recognition?: a political-philosophical exchange[END_REF]]. In the context of fair machine learning, this distinction has been discussed in terms of distributive harms and representational harms [Binns, 2017, Barocas et al., 2017]. Distributive harms are about the fair distribution of outcomes of machine learning applications, while representational harms are concerned with biases and stereotypes in learned representations, such as gendered associations in word embeddings [Bolukbasi et al., 2016]. In the context of recommender systems, this thesis deals with the former axis, through explicit anchoring in distributive justice principles. However, fairness in rankings as in [Zehlike et al., 2017, Yang and Stoyanovich, 2017[START_REF] Sahin | Fairness-aware ranking in search & recommendation systems with application to linkedin talent search[END_REF][START_REF] Singh | Fairness of exposure in rankings[END_REF]i so f t e nm o t i v a t e db yt h em i t i g a t i o no fr e p r e s e n t a t i o n a lh a r m s [ Binns, 2017]. The difference between our work and these works on fair ranking is that we consider the distribution of exposure across the lists of multiple users, while they consider exposure within a single ranked list. Fair ranking within lists can be seen as a way to promote diverse representation within a 1 Using the notation of Chapter 1: In the cascade model with weights b,g i v e nadeterministic ranking policy P, the exposure of an item j is:

v j (P )= n X i=1 m X k=1 P ijk b k Y r<k (1 µ | i P i:r ).
The total exposure is:

E(P )= n X i=1 m X k=1 b k Y r<k ( 1 
µ | i P i:r )
, where µ | i P i:r is the value of the item at rank r for user i in the ranking policy P . The total exposure to allocate thus depends on the ranking policy P .

ranking, by matching group-based representation targets [Zehlike et al., 2022a]. This brings the purpose of fair ranking within lists closer to topic-based diversification [START_REF] Zhai | Beyond independent relevance: methods and evaluation metrics for subtopic retrieval[END_REF], Ziegler et al., 2005], although they have been considered as separate problems in the literature [START_REF] Burke | Balanced neighborhoods for multi-sided fairness in recommendation[END_REF], Zehlike et al., 2017, Yang et al., 2019]. In our case (as well as in [Biega et al., 2018, Kletti et al., 2022a, Diaz et al., 2020, Morik et al., 2020]), we provide exposure guarantees for (groups of) items across lists, because the utility that an item derives from a recommender system is its overall exposure. These guarantees of fair distribution of utility in the overall recommender system do not a priori translate into guarantees of fair representation or diversity within each of the lists. This makes existing work on within-list fairness and diversity complementary to ours, from a conceptual perspective. From an algorithmic perspective, our approach deals with the within-list setting simply by considering a separate objective function for each user (as explained in Appendix A.8).

Practical challenges of real-world recommender systems

Several industry practitioners highlighted the challenges of integrating academic research on fairness into production systems [Bakalar et al., 2021[START_REF] Holstein | Improving fairness in machine learning systems: What do industry practitioners need?[END_REF], Beutel et al., 2019b]. This section discusses some of the remaining gaps between the normative question addressed in this thesis ("how should the system trade-off between the interests of users and item producers?") and the practical challenges of implementing and evaluating algorithms that respond to it.

Dynamics of recommender systems

In the framework of this thesis, we assumed that several aspects of the environment were static, such as the set of items (or item producers) and the preferences and engagement patterns of users. These assumptions can be challenging in practice because they ignore the impact of the recommender system on the environment. We previously mentioned the effect of recommendations on user preferences in Section 7.2. 3.R e c o m m e n d a t i o n s also impact users' perception of the platform, affecting user retention in the long run through complex mechanisms. It is thus important to consider this long-term impact when designing fairness-aware recommendation strategies, through models of leaving/returning behaviour [Wu et al., 2017, Jing and Smola, 2017, Ben-Porat et al., 2022[START_REF] Chandar | Using survival models to estimate user engagement in online experiments[END_REF], surrogate measures of long-term user experience [START_REF] Wang | Surrogate for long-term user experience in recommender systems[END_REF], and models of user trust [START_REF] Sarah H Cen | A game-theoretic perspective on trust in recommendation[END_REF]. Some works also discussed how recommendations affect the long-term dynamics of content production [Mladenov et al., 2020[START_REF] Zhan | Towards content provider aware recommender systems: A simulation study on the interplay between user and provider utilities[END_REF]. Recent work also proposed game-theoretic frameworks for recommender systems, which model the strategic behaviour of item producers [Hron et al., 2023, Ben-Porat and[START_REF] Ben | A game-theoretic approach to recommendation systems with strategic content providers[END_REF].

Because of feedback loops, static fairness interventions can fail to improve global welfare in the long run [START_REF] Akpinar | Long-term dynamics of fairness intervention in connection recommender systems[END_REF], Peysakhovich et al., 2023]. A few works use reinforcement learning to account for the recommendations' impact on the environment with long-term fairness constraints [START_REF] Ge | Towards long-term fairness in recommendation[END_REF], Yu et al., 2022]. An interesting direction would be to build upon simulation studies and open-sourced environments that have been proposed to model feedback loops and long-term effects in recommender systems [Ie et al., 2019, Yao et al., 2021, Krauth et al., 2020, Huang et al., 2020, Rohde et al., 2018, Bountouridis et al., 2019[START_REF] Zhan | Towards content provider aware recommender systems: A simulation study on the interplay between user and provider utilities[END_REF]. Another possible direction is the use of causal inference methods to tackle feedback loops in recommender systems [START_REF] Bottou | Counterfactual reasoning and learning systems: The example of computational advertising[END_REF], Schnabel et al., 2016, Sinha et al., 2016, Wang et al., 2020, Krauth et al., 2022].

Multi-stage recommendation pipelines Real-world recommender systems are part of pipelines that are more complex than the one described in Section 1.2.1.A sd o c u m e n t e db ye x i s t i n gp l a t f o r m s [Twitter, 2023, YouTub e, 2021, Instagram, 2022], those pipelines include more components, such as a candidate sourcing stage, where a few thousand recent items are extracted from a pool of hundreds of million items, before the learning stage. Several recent works have studied the interaction of multiple components in a multi-stage pipeline [Hron et al., 2021, Wang et al., 2021b], emphasizing the implications of unfair candidate sourcing on the ranking stage [Wang andJoachims, 2023, Bower et al., 2022].

Choice of trade-off in practice In the fair ranking problem, the designer decides on a specific welfare function F to optimize. In practice, this can be accomplished by varying hyperparameters within a predefined class of welfare objectives (i.e., by varying and the hyperparameters of g user , g item in Eq. ( 1.2)). The task of choosing a trade-off between different metrics in recommender systems is a general problem that practitioners face [Kohavi et al., 2009, Gunawardana et al., 2012]. The gold standard for evaluating and choosing a recommendation algorithm based on overall evaluation criteria (OEC) is the use of online controlled experiments [Kohavi et al., 2009], which must be carefully designed with awareness of their social and ethical implications [Bird et al., 2016].

Beyond the fairness trade-offsi n v o l v i n gu s e r sa n di t e m st h a tw es p e c i fi c a l l ya d d r e s si nt h i s thesis, other trade-offs, objectives, and stakeholders are also relevant in the design of recommender systems. Practitioners must consider the interests of the platform itself: For example, when revenue is drawn from advertising, the trade-off between revenue and user experience is a common concern [START_REF] Pierre L'ecuyer | Revenue-maximizing rankings for online platforms with quality-sensitive consumers[END_REF]. Platform policies and regulations also require compliance with additional ethical and regulatory principles, such as privacy [McSherry and Mironov, 2009]a n di n t e g r i t y [Kalimeris et al., 2021, Faceb o ok, 2020, YouTub e, 2021]. Moreover, the overall performance of recommender systems that drive the choice of an algorithm is often measured by OECs which are more focused on long-term goals, such as daily or monthly active users. These metrics are typically prioritized over offline metrics like DCG, that we use to measure user utility in this thesis [START_REF] Kohavi | Trustworthy online controlled experiments: Five puzzling outcomes explained[END_REF].

The task of balancing multiple OECs in recommender systems is akin to a macroeconomic problem. The framework developed in this thesis focuses on the microeconomic problem of deciding which users get to see which items. It is one piece of the bigger picture: The overall performance of the system is the result of the interaction between the microeconomic decisions and the macroeconomic dynamics of the system. time. The proposition gives a formal statement of the rate at which should converge to 1 relative to ↵.

In the statement of the proposition, given two functions F and G,w eu s eF (↵)

↵! 1 G(↵) as a shorthand for F (↵) G(↵) for ↵ sufficiently small. 4 . Proposition 23. Let U item lex = {u 2 U : 8u 0 2 U, u I lex u 0 I } and let u ⇤ = argmax u2U item lex P i2N (u i , ↵ 1 ). 8⌘ > max(1, ku ⇤ I k 1 ), 8u 2 U : W 1 ⌘ ↵ ,↵1,↵ (u ⇤ ) ↵! 1 W 1 ⌘ ↵ ,↵1,↵ (u).
This means that among the leximin-optimal item-side utility profiles, ↵ 1 still controls the redistribution profile on the user side, since it is possible that |U item lex | > 1 in one-sided recommendation. As i m i l a rr e s u l th o l d sf o ru s e r -s i d ei t e ml e x i m i n .

Proof. Let u ⇤ = argmax u2U item lex P i2N
(u i , ↵ 1 ) and u 2 U.L e t✓ =( , ↵ 1 , ↵) and take ↵ < min(0, ↵ 1 ).

Let (j 1 ,j 2 ,...,j |I| ) be the ranking of u ⇤ I in increasing order: u ⇤ j1  ...u ⇤ j |I| . Likewise, let (j 0 1 ,j 0 2 ,...,j 0 |I| ) be the ranking of u I in increasing order: Let

u j 0 1  ...  u j 0 |I| . Let m = max{k 2 J|I|K [ {0} : 8` k, u ⇤ j `= u j 0 `} +1
C(↵)=W 1 ⌘ ↵ ,↵1,↵ (u ⇤ ) W 1 ⌘ ↵ ,↵1,↵ (u). Let K = P i2N (u ⇤ i , ↵ 1 ) (u 0 i , ↵ 1 ) . case 1: m = |I| +1. Then C(↵)=( 1 ⌘ ↵ )K 0 since u ⇤ I = u I and u ⇤ maximizes the user-side welfare.
case 2: m<|I|. Then, we have u j 0 m <u ⇤ jm by the leximin optimality of u ⇤ I .W et h e nh a v e :

C(↵)=(1 ⌘ ↵ )K + ⌘ ↵ X j2I (u ⇤ j ) ↵ +(u j ) ↵ = (1 ⌘ ↵ ) u ⇤ jm ↵ ⇣ K 1 ⌘ ↵ ⌘ u ⇤ jm ↵ | {z } ! ↵! 1 0 +1 + X k>m u ⇤ j k u ⇤ jm ↵ | {z } ! ↵! 1 0 u j 0 m u ⇤ jm ↵ | {z } ! ↵! 1 +1 X k>m u j 0 m u ⇤ jm ↵ | {z } 0 ⌘ which implies lim ↵! 1 C(↵)=+1
and thus the desired result.

A.3.3 Guarantees when performing inference with estimated preferences

In practice, inference is carried out on an estimate μ of µ,m e a n i n gt h a t ,d e n o t i n gû the resulting estimated utility5 the system output P = argmax P 2P W ✓ (û(P )). The following result extends surrogate regret bounds that exist in classification [Bartlett et al., 2006, Zhang et al., 2004]a n d learning to rank [Cossock and Zhang, 2008[START_REF] Ravikumar | On ndcg consistency of listwise ranking methods[END_REF], Agarwal, 2014]to the case of welfare functions and global stochastic rankings. It makes the link between the quality of the estimate μ and an optimality guarantee for u( P ) (i.e., the true welfare of the ranking inferred on the estimated values). We prove the result for ✓ =( 1 2 , ↵, ↵) for ↵  1 to simplify notation. 6Theorem 24. Let ↵  1 and ✓ =( 1 2 , ↵, ↵) 2 Θ.L e tμ 2 R

|N |⇥|I| +

, P = argmax P 2P W ✓ (û(P )), and P ⇤ = argmax P 2P W ✓ (u(P )).

4 Formally, F (α)

α! 1 G(α) () 9 α 0 2 R, 8α  α 0 ,F(α) G(α).
Similarly, using B 2 (μ) = max i2JnK 0 (u i ( P ), ↵) and the same arguments as above, we obtain:

C 2  q n kvk 2 2 kAk F  2B 2 (μ) q n kvk 2 2 kµ μk F
which yields the desired result.

A.4 Comparison to utility/inequality trade-offs

In this appendix, we provide the proofs of Section 3. A.4.1 One-sided recommendation: quality-weighted exposure

We prove here Prop osition 2 of Section 3.3. The result shows that in some cases, compared to any choice of the parameter ✓ 2 Θ of the welfare approach, quality-weighted exposure leads to the undesirable behavior of decreasing user utility while increasing inequalities of exposure between items. Figure A.1 gives an example.

Proposition 2. The following claims hold irrespective of the choice of u qua, 2 U qua .

For every d 2 N ⇤ and every N 2 N ⇤ , there is a one-sided recommendation problem, with d +1 items and N (d + 1) users, such that 8✓ 2 Θ, we have:

9 > 0, u ✓ N L u qua, N and u ✓ I L u qua,

I

and lim

!1 P i2N u qua, i P i2N u ✓ i ! d!1 5 6 . 
Proof. We prove it for N =1, the more general case is just obtained by repeating the pattern with d +1 items and d +1 users.

Let i 1 ,...,i d+1 be the indexes of the users and j 1 ,...,j d+1 the indexes of the items. The preferences have the following pattern:

8k 2 Jd +1K,µ i k j k =1 8k 2 JdK,µ i k j d+1 = 1 2
all other µ ij (for user i and item j)a r es e tt o0 (note that we are in a problem with one-sided preferences, which means µ ji =1for every item j and user i.

We consider a task with a single recommendation slot (v 1 =1,v 2 = ... = v |I| =0). On that problem, the optimal ranking for every ✓ 2 Θ is to show item j k to user i k , which leads to perfect equality in terms of item exposure, and maximizes every user utility. It is thus leximin optimal for both users and items for every ✓ 2 Θ.

Then, the qualities are equal to:

8k 2 JdK,q j k =1 q j d+1 = 1 2 d +1
the target exposure is thus t j k = d+1 3 2 d+1 for k 2 JdK and t j d+1 =(d + 1)

1 2 d+1 3 2 d+1
. Since the problem is symmetric in the users i 1 ,...,i d ,b yt h ec o n c a v i t yo fF qua (u(P )) with respect to P ,t h e r ei sa no p t i m a lr a n k i n gd e s c r i b e db yas i n g l ep r o b a b i l i t yp as:

8k 2 JdK,P i k j k =1 pP i k j d+1 = pP i d+1 j d+1 =1
Note that for such a P , 8k 2 JdK, u qua, i k (P )=1 1 2 p,a n di ti sc l e a r rt h a tt h e r ei s > 0 such that p>0, which then implies u ✓ L u qua, N and u ✓ L u qua, I . Now, as !1, p is such that exposure equals its target, which leads to the following equation:

dp +1=(d + 1) 1 2 d +1 3 2 d +1
.

We thus get p = d+1 d d+2 3d+2

1 d ! d!1 1 3 , which gives the result u qua, i k (P )=1 1 2 p ! p! 1 3 5 6 .
Notice that similarly to Proposition 3,theresultdoesnotdependonthec hoiceofu qua, because the sum of user utilities converges.

A.4.2 Reciprocal recommendation: equality of exposure

We now prove Prop osition 3.

Proposition 3. For > 0,l e tU eq = argmax u2U F (u). The claim below holds irrespective of the choice of u eq, 2 U eq .L e tn 5. There is a reciprocal recommendation task with n users such that:

8✓ 2 Θ, u ✓ , 9 > 0: 8i 2 JnK,u ✓ i >u eq, i and lim !1 X i2N u eq, i =0.
Proof. The example is given in Figure A.1. We still consider a recommendation task with a single recommendation slot.

Let us rename the users by i 1 ,i 2 ,...,i 5 . The preference patterns are µ i1i2 = µ i1i3 =1and µ i4i5 =1.A p a r tf r o mµ ij = µ ji ,o t h e rµ ij sa r e0. In this proof, we show that u eq, i1 =2u eq, i2 for every , which implies that u eq, i1 ! !1 0 because 0 utility for every user is feasible. On this task, the leximin ranking also maximizes the sum of users utilities (as shown in Figure A.1), so the optimal ranking is the same for every ✓ 2 Θ,a n de v e r yu s e rh a sat w o -s i d e du t i l i t yo fa tl e a s t1. [START_REF][END_REF].

Since F (u) is stricly Schur-concave for > 0, i 2 and i 3 always have the same utility in an optimal utility profile (because they play a symmetric role). i 4 and i 5 also have the same utility.

Note that the interest of i 4 and i 5 in that problem is to make it possible to recommend them to i 1 , which has 0 value.

Similarly to the problem in one-sided recommendation, the only way to decrease the penalty is to reduce the utility of i 1 ,i 4 ,i 5 .H o w e v e r ,r e d u c i n gt h eu t i l i t yo fi 1 can only be done by either recommending i 4 or i 5 to i 1 ,o rr e c o m m e n d i n gi 4 /i 5 to i 2 /i 3 . In all cases, decreasing i 1 's utility decreases i 2 /i 3 's utilities.

More precisely, because of the symmetries and the concavity of F (u(P )) with respect to P ,f o r every > 0,t h e r ei sa no p t i m a lr a n k i n gt e n s o rd e s c r i b e db yt h r e ep r o b a b i l i t i e sp, q, q 0 such that:7 

P i1i2 = P i1i3 = 1 2 pP i2i1 = P i3i1 = qP i4i5 = P i5i4 = q 0 P i1i4 = P i1i5 = 1 2 (1 p) P i2i3 = P i2i4 = P i2i5 = 1 3 (1 q) P i4i1 = P i4i2 = P i4i3 = 1 3 (1 q 0 ) P i3i2 = P i3i4 = P i3i5 = 1 3 (1 q) P i5i1 = P i5i2 = P i5i3 = 1 3 (1 q 0 )
In all cases, the two-sided utility are

u i1 (P )= p |{z} Pi 1 i 2 µi 1 i 2 +Pi 1 i 3 µi 1 i 3 user-side utility

+2 q |{z}

Pi 2 i 1 µi 2 i 1 +Pi 3 i 1 µi 3 i 1 item-side utility and u i2 (P )=q + 1 2 p Thus, in an optimal ranking for F (u),w em u s th a v eu i1 (P )=2u i2 (P ). Equality, which is achieved at !1can then only be at 0 utility for every user (since 0 is feasible).

The task used in the proof contains only 5 users. Any number of users can be added to the group {i 4 ,i 5 }, with a "complete" preference profile (µ ij =1for all pair i, j in that group).

The Lorenz efficiency of our welfare approach guarantees that it cannot exhibit the undesirable behaviors of equality or quality-weighted exposure penalties described in Propositions 2 and 25.

A.4.3 Equality of exposure and quality-weighted exposure in reciprocal recommendation

In one-sided recommendation with one-sided preferences, equality of exposure is the same as equality of utility. More generally, let e j (P )= P i2N P ij v the total exposure of item j.E q u a l i t yo fe x p o s u r e is defined by:

F expo (P )= X i2N u i (P ) v u u t X j2I ⇣ e j (P ) |N | |I| kvk 1 ⌘ 2
In one-sided recommendation, parity of exposure is relatively well behaved because the exposure target |N | |I| kvk 1 is constant. Driving towards equality can thus not lead to a decrease of the total exposure budget, which was the problem with equality of utility in settings with two-sided preferences (driving towards equality of utility leads to a decrease of total utility), as we described in Section 3. 3.

The formula allows us to extend parity of exposure in the next section and in our experiments, since it is also valid in reciprocal recommendation. Likewise, the formula of quality-weighted exposure that is also valid in reciprocal recommendation is given by:

F qua (P )= X i2N u i (P ) s X j2I ⇣ e j (P ) q j E Q ⌘ 2 .
The result below shows that equality of exposure and quality-weighted exposure lead to inefficiencies in reciprocal recommendation settings:

Proposition 25. For every n 2 N ⇤ , there is a reciprocal recommendation task with n users such that:

8✓ 2 Θ, 9 > 0: u ✓ L u expo, and u ✓ L u qua, . Moreover, lim !1 X i2N u expo, i = 2 n X i2N u ✓ i and lim !1 X i2N u qua, i = 2+n 2n X i2N u sum i .
Proof. An example of extreme case is with n users when there is a "leader" who is the only possible match with other users. We consider a single recommendation slot. The preferences are:

8j 2 {2,...,n},µ 1j = µ j1 =1 8(i, j) 2 {2,...,n} 2 ,µ ij =0.
same factor). Since both penalties drive towards equality, it is straightforward to show that the results of Section 3.3 as !1also apply to D 0 (u).

A.8 Exposure constraints at the level of every ranking

The notions of fairness of exposure are sometimes defined with item-side constraints defined at the level of every ranking [Singh andJoachims, 2018, Basu et al., 2020]. We give here the examples of constraints for equality of exposure and quality-weighted exposure:

equality of exposure

P expo 2 argmax P 2P X i2N u i (P ) u.c. 8(i, j) 2 N ⇥ I,P ij v = kvk 1 |I| quality-weighted exposure P qua 2 argmax P 2P X i2N u i (P ) u.c. 8(i, j) 2 N ⇥ I,P ij v = µ ij kvk 1 P j 0 2I µ ij 0
The advantage of this formulation is that it leads to optimization problems that can be solved locally for every user, since there is no dependency between user rankings through item utility anymore.

However, applying the exposure criterion at the level of every ranking effectively applies a different notion of fairness. In our setting, this corresponds to defining a separate recommendation task for every user, i.e., taking |N | =1. The welfare function then mediates, within a single ranking, between the user utility and the utility of the different items.

When evaluated on exposures aggregated over all users, as we do in the paper, applying the fairness constraints at the level of individual rankings can lead to drastic reductions of user utility for no benefit in terms of total item exposure. This is summarized in the following result, which shows that there exists problems for which the optimal rankings for every ✓ 2 Θ satisfy the constraints of equality of exposure and quality-weighted exposure as we define them in Section 3.3, but when applying the constraints at the level of every ranking, it has the effect of reducing user utility. In the proposition, we use the notation of the objective function for parity of exposure F and F qua of Section 3.3.

Proposition 28. For every d 2 N ⇤ and every N 2 N ⇤ , there is a one-sided recommendation task with d +1 items and N (d + 1) users such that, 8✓ 2 Θ:

8u ✓ 2 argmax u2U W ✓ (u), 8 > 0 we have: u ✓ 2 argmax u2U F (u) and u ✓ 2 argmax u2U F qua (u), and 
X i2N u i (P expo )= 2 d +1 X i2N u ✓ i and X i2N u i (P qua )=( 1 2 + 1 d ) X i2N u ✓ i .
In other words, applying the constraints at the level of every ranking might lead to a drastic decrease of user utilities, even in tasks where satisfying the constraints on average over users (as we do in this paper) does not conflict with the optimal ranking.

Proof. We describe the problem with N =1,thegeneralcaseisobtainedb yrepeatingthepreference pattern. Let us consider a task with d +1 users, d +1 items and a single recommendation slot. Let i 1 ,...,i d+1 be the user indexes, and j 1 ,...,j d+1 the item indexes. The preferences are defined as:

8k 2 Jd +1K,µ i k j k =1 8j 6 = j k ,µ i k j = 1 d .
All items have the same quality. For every ✓ 2 Θ, u ✓ is given by the utilitarian ranking, which gives probability 1 to item j k for user i k , which leads to optimal user utility u ✓ i =1and equal exposure to every item u ✓ j =1.S i n c et h eq u a l i t yi st h es a m ef o ra l li t e m s( e q u a lt o1+d 1 d ), the ranking for u ✓ satisfies both equality of exposure and quality-weighted exposure constraints. Thus, for every > 0, u ✓ 2 argmax u2U F (u) and u ✓ 2 argmax u2U F qua (u).

On the other hand, satisfying equality of exposure at the level of every ranking requires

P expo ij = 1
d+1 for every user i and item j, which leads to

u i (P expo )= 1 d+1 + d ⇥ 1 d ⇥ 1 d+1 = 2
d+1 for every user.

For quality-weighted exp osure for every ranking, it leads to:

8k 2 Jd +1K,P qua i k j k = 1 2 8j 6 = j k ,P qua i k j = 1 d
and thus a user utility

u i (P qua )= 1 2 + d ⇥ 1 d ⇥ 1 d = 1 2 + 1 d .
Notice that in the examples of the proof, the global exposure of items is constant in P expo and P qua ,a sw e l la si nt h er a n k i n gg i v e nb yo p t i m a lw e l f a r e . S of r o mt h epo i n to fv i e wo fo u rd e fi n i t i o n s of utility, applying the constraints at the level of every ranking only decreased user utility for the benefit of no items. Yet, we re-iterate that applying item-side fairness at the level of every ranking might be meaningful in some contexts. The goal of this section is to highlight the difference between using global and local definitions of item utilities.

[ Do et al., 2021c]:

(Gini) f item (s)= m X j=1 m j +1 m s " j (eq. expo) f item (s)= 1 m v u u u t m X j=1 0 @ s j 1 m m X j 0 =1 s j 0 1 A 2
Since Gini is nonsmooth, we apply the FW-LinUCBRank algorithm for nonsmooth f with Moreau-Yosida regularization, presented in Section 5. 3.3 and detailed in Appendix B. 6.1 (we use 0 =1in

our experiments). To compute the gradient of the Moreau envelope f t , we use the algorithm of Do and Usunier [2022] which specifically applies to generalized Gini functions and top-k ranking.

We also study additive concave welfare functions [Do et al., 2021c[START_REF] Moulin | Fair division and collective welfare[END_REF] where ↵ is a parameter controlling the degree of redistribution of exposure to the worse-off items:

(Welf ) f item (s)= m X j=1 s ↵ j , ↵ > 0 B.2.1

.2 Additional results

We now present additional results, which are obtained by repeating each simulation with 10 different random seeds. W es e t =0.5 for all objectives and for welf,w es e t↵ =0. [START_REF][END_REF].

Dynamics

We observe that with this value of , the item objective f item is given more importance in f than the user utility.

We observe that for Gini and welf, FW-LinUCBRank achieves the highest value of f across timesteps. This is because unlike LinUCBRank,i ta c c o u n t sf o rt h ei t e mo bj e c t i v ef item . In both cases, Unbiased-LinUCBRank achieves a high value of f over time but starts decreasing, after 10 4 iterations for Gini and 5.10 5 iterations for welf. This is because Unbiased-LinUCBRank is not designed to converge towards an optimum of f .F o req. exposure, when =0 .5, Unbiased-LinUCBRank obtains surprisingly better values of f than FW-LinUCBRank. Therefore, depending on the objective to optimize and the timeframe, Unbiased-LinUCBRank can be chosen as an alternative to FW-LinUCBRank.H o w e v e r ,d u et oi t sl a c ko ft h e o r e t i c a lg u a r a n t e e s ,i ti sm o r e difficult to understand in which cases it may work, and for how many iterations. Furthermore, unlike Unbiased-LinUCBRank, FW-LinUCBRank can be chosen to optimise a wide variety of functions by varying the tradeoff parameter in all objectives, and ↵ in welf to control the degree of redistribution. Unbiased-LinUCBRank does not have such controllability and flexibility. where FW-LinUCBRank converges more quickly than its competitors (⇡ 5, 000 iterations for Gini and ⇡ 500 iterations for welf)a n do b t a i n st h eh i g h e s tv a l u e so ff. For the first 10 5 iterations of optimizing Gini, Unbiased-LinUCBRank obtains significantly lower values than FW-LinUCBRank on welf. Remark 4 (About our Lipschitzness assumptions). We use Lipschitzness over an open set containing K in Assumption A because we use boundedness of the super-gradients of f . In fact, a more precise alternative would be to require that super-gradients are bounded uniformly on K by L.W e choose the Lipschitz formulation because we believe it is more natural.

As a side note, in assumption B, we use Lipschitzness of the gradients on K, not on an open set containing K. This is because smoothness in used in the ascent lemma (see Eq. B.5), which uses Inequality 4. 3 of Bottou et al. [2018], the proof of which directly uses Lipschitz-continuity of the gradients on K [Bottou et al., 2018, Appendix B], without relying on an argument of boundedness of gradients. B.3.2 Preliminaries: the structure of the set S

We denote by x 1:T =(x 1 ,...,x T ) as e q u e n c eo fc o n t e x t so fl e n g t hT .L e t

S = ⇢ E x⇠P ⇥ µ(x)⇡(x) ⇤ ⇡ : X ! A 8x 1:T 2 X T , S(x 1:T )= ⇢ 1 T T X t=1 µ(x t )⇡(x t ) ⇡ : X ! A It is straightforward to show that S(x 1:T )= ⇢ 1 T P T t=1 µ(x t )⇡ t (⇡ 1 ,...,⇡ T ) 2 A T .
These sets are particularly relevant because of the following equality, for every f : R D ! R [ {±1}:

f ⇤ =s u p ⇡:X !A f ⇣ E x⇠P ⇥ µ(x)⇡(x) ⇤ ⌘ =sup s2S f (s) (B.1) and f + T =s u p (⇡t) t2JT K 2A T f ⇣ 1 T T X t=1 µ(x t )⇡ t ⌘ =s u p s2S(x 1:T ) f (s).
We study in this section the structure of these sets. We provide here the part of Assumption A that is relevant to this section:

Assumption Ã. A is a compact subset of R K and there is a compact convex set K ✓ R D such that 8(x, a) 2 X ⇥ A,µ(x)a 2 K.
We remind the following basic results from convex sets in Euclidian spaces that we use throughout the paper without reference:

Lemma 29. Let A be a compact subset of R K . We have:

• [Rockafellar and Wets, 2009, Corollary 2.30] The convex hull A of a, denoted by A, is compact.

• For every w 2 R K , max a2A w | a = max a2A w | a.
The following lemma allows us to use maxima instead of suprema over S and S(x 1:T ). The proof of this lemma is deferred to Appendix B. [START_REF] Koren | Matrix factorization techniques for recommender systems[END_REF].1.

Lemma 30. Under Assumption Ã, S is compact and 8T 2 N ⇤ , 8x 1:T 2 X T , S(x 1:T ) is compact.

The next result regarding the support functions of S and S(x 1:T ) is the key to our approach:

Lemma 31. Let w 2 R D and T 2 N ⇤ . Under Assumption Ã, we have

E x 1:T ⇠P T h max s2S(x 1:T ) w | s i = max s2S w | s.
Moreover, for every 2 (0, 1], we have with probability at least 1 :

max s2S(x 1:T ) w | s  max s2S w | s + kwk 2 D K r 2ln 1 T .
The inequality max

s2S w | s  max s2S(x 1:T ) w | s + kwk 2 D K r 2ln 1
T also holds with probability 1 .

Proof. The first result is a direct consequence of the maximization of linear functions over the simplex. Using (B.1) with f (s)=w | s and the linearity of expectations, we have

max s2S w | s = max ⇡:X !A E x⇠P ⇥ w | µ(x)⇡(x) ⇤ .
The optimal policy given w,d e n o t e db y⇡ w is thus obtained by optimizing for every x the dot product between w | µ(x) 2 R K and ⇡(x) 2 A ✓ R K .S i n c e ,f o re a c hx,i ti sal i n e a ro p t i m i z a t i o n , we can find an optimizer in A (see Lemma 29), which gives:

max s2S w | s = E x⇠P ⇥ w | µ(x)⇡ w (x) | {z } ⌘ w (x) ⇤ where ⇡ w (x) 2 argmax a2A w | µ(x)a,
where in the equation above we mean that ⇡ w is a measurable selection of x 7 ! argmax a2A w | µ(x)a.

For the same reason, we have max

s2S(x 1:T ) w | s = 1 T T X t=1 ⌘ w (x t ).
We obtain

E x 1:T ⇠P T h max s2S(x 1:T ) w | s i = E x 1:T ⇠P T h 1 T T X t=1 ⌘ w (x t ) i = E x⇠P ⇥ ⌘ w (x) ⇤ = max s2S w | s.
which is the first equality.

For the high-probability inequality, let

X t = ⌘ w (x t ) E x⇠P ⇥ ⌘ w (x)
⇤ .S i n c et h e(x t ) t 2JT K are independent and identically distributed (i.i.d.), the variables (X t ) t 2JT K are also i.i.d., and we have

|X t |  w | ⇣ µ(x t )⇡ w (x t ) | {z } 2K E x⇠P ⇥ µ(x)⇡ w (x) ⇤ | {z } 2K ⌘ kwk 2 D K and E ⇥ X t ⇤ =0.
Given 2 (0, 1],H o e ffding's inequality applied to 1 T P T t=1 X t gives, with probability at least 1 :

max s2S(x 1:T ) w | s max s2S w | s = 1 T T X t=1 X t k wk 2 D K r 2ln 1 T .
The reverse equation is obtained by applying Hoeffding's inequality to 1 T P T t=1 X t .

B.3.3 Proof of Lemma 32

Lemma 32. Under Assumption A, 8T 2 N ⇤ , 8 2 (0, 1], we have, with probability at least 1 :

f + T f ⇤  LD K s 2ln 4e 2 T where f + T = max (⇡1,...,⇡ T )2A T f ⇣ 1 T T X t=1 µ(x t )⇡ t ⌘
We also have, with probability 1 over contexts, actions, and rewards:

f (s T ) f (ŝ T )  LD K r 2ln(2e 2 1 ) T where s T = 1 T T X t=1 µ(x t )a t .
The first statement shows that the performance of the optimal non-stationary policy over T steps converges to f ⇤ at a rate O(1/ p T ).F u r t h e r m o r e ,m e a s u r i n gt h ea l g o r i t h m ' sp e r f o r m a n c eb y expected rewards instead of observed rewards would also amount to a difference of order O(1/ p T ). This choice would lead to what is commonly referred to as a pseudo-regret. Since the worst-case regret of bcr is Ω(1/ p T ) [Bubeck and Cesa-Bianchi, 2012], the previous lemma shows that the alternative definitions of regret would not substantially change our results.

Proof. We start with the first inequality.

We first prove that w.p. greater than 1 /2,w eh a v ef

+ T  f ⇤ + LD K q 2ln 2
T . Since f is continuous on K and since S ✓ K and S is compact by Lemma 30,t h e r ei s

s ⇤ 2 S such that f ⇤ = f (s ⇤ ).S i m i l a r l y ,s i n c eS(x 1:T ) is compact, there is s ⇤ T such that f (s ⇤ T )= max s2S(x 1:T ) f (s).U s i n g(B.
1), we need to prove that with probability at least 1 /2,w eh a v e

f (s ⇤ T )  f (s ⇤ )+LD K q 2ln 2
T . Using the concavity of f ,l e tg ⇤ be a supergradient of f at s ⇤ .W eh a v e

f (s ⇤ T )  f (s ⇤ )+hg ⇤ | s ⇤ T s ⇤ i  f (s ⇤ ) + max s2S(x 1:T ) hg ⇤ | s s ⇤ i =) w.p. 1 /2: f (s ⇤ T )  f (s ⇤ ) + max s2S hg ⇤ | s s ⇤ i | {z } 0 by def. of s ⇤ + kg ⇤ k 2 D K s 2ln 2 T (by Lemma 31)  f (s ⇤ )+LD K s 2ln 2 T .
(by the Lipschitz assumption)

We now prove

f ⇤  f + T + LD K q 2ln 4e 2 T with probability at least 1 /2. Let ⇡ ⇤ 2 argmax ⇡:X !A f ⇣ E x⇠P ⇥ µ(x)⇡(x) ⇤ ⌘
(an optimal policy exists by Lemma 30). Denote by (X t = µ(x t )⇡ ⇤ (x t )) t2JT K as e q u e n c eo fi n d e p e n d e n ta n di d e n t i c a l l yd i s t r i b u t e dr a n d o mv a r i a b l e s obtained by sampling x t ⇠ P .

We have |X t EX t |  D K and EX t = s ⇤ .B yt h eL i p s c h i t zp r o p e r t yo ff ,w eo b t a i n

f (s ⇤ )  f ( 1 T T X t=1 X t )+L k[k i 1 T T X t=1 X t s ⇤ 2 .
Using the version of Azuma's inequality for vector-valued martingale with bounded increments of Hayes [2005, Theorem 1.8] to obtain, for every ✏ > 0:

P ⇣ 1 D K k[k i 1 T T X t=1 X t s ⇤ 2 ✏ ⌘  2e 2 e T ✏ 2 /2 .
Setting 2 =2e 2 e T ✏ 2 /2 and solving for ✏ gives, with probability at least 1 /2:

f ⇤  f ( 1 T T X t=1 X t )+LD K s 2ln 4e 2 T  f + T + LD K s 2ln 4e 2 T .
For the second inequality: using L-Lipschitzness of f ,t h ei n e q u a l i t yi sad i r e c tc o n s e q u e n c eo f the lemma below, which is itself a direct consequence of [Hayes, 2005, Theorem 1.8].

In the following lemma and its proof, we use the two following filtrations:

• F =(F t ) t 2N⇤
where F t is the -algebra generated by (x 1 ,a 1 ,r 1 ,...,x t 1 ,a t 1 ,r t 1 ,x t ),

• F =(F T ) T 2N⇤ where F T is the -algebra generated by (x 1 ,a 1 ,r 1 ,...,x t 1 ,a t 1 ,r t 1 ,x t ,a t ).

Our setup implies that the process (a t ) t 2N⇤ is adapted to F while (r t ) t 2N⇤ is adapted to F.

Lemma 33. Under Assumption A, if the actions (a 1 ,...,a T ) define a process adapted to (F T ) T 2N , then, for every T 2 N, for every , with probability 1 , we have:

ks T ŝT k 2  D K s 2ln 2e 2 T Proof. Let X T = P T t=1 r t µ(x t )a t .W eh a v ekX T X T 1 k 2  D K ,a n d(X T ) T 2N is a martingale adapted to (F T ) T 2N satisfying X 0 =0
.W ec a nt h e nu s et h ev e r s i o no fA z u m a ' si n e q u a l i t yf o r vector-valued martingale with bounded increments of Hayes [2005, Theorem 1.8] to obtain, for every ✏ > 0:

P ⇣ k[k i X T D K 2 ✏ ⌘  2e 2 e ✏ 2 /(2T ) .
Solving for ✏ gives the desired result. 

B.4 The general template Frank-Wolfe algorithm

Let ⇢ t = U(h t+1 , 0 ) // Generic Frank-Wolfe update 6 Update z t = z t 1 + 1 t ⇢ t z t 1 7 end
A more general framework The analysis of the next sections is done within a more general famework than that of the main paper, which is described in Algorithm 6.S i m i l a r l yt ot h em a i n paper, the action is drawn according to a t ⇠ A(h t ,x t , 0 ) (Line 3 of Alg. 6). However, we allow for a generic choice of Frank-Wolfe iterate with respect to which we compute (an extension of) the scalar regret (presented in (B.2) below). The update direction is denoted by ⇢ t and is chosen according to a function U(h t+1 , 0 ),ac o m p a n i o nf u n c t i o nf r o mA(h t ,x t , 0 ).N o t et h a tt h eu p d a t e direction is chosen given h t+1 =( h t , (x t ,a t ,r t )),t h eh i s t o r ya f t e rt h ea c t i o n sa n dr e w a r d sh a v e been taken.

The proofs of the main paper apply to the special case of Alg. 6 where 8t 1, ⇢ t = r t .

We then have the FW iterate z t in Line 6 of the algorithm satisfy 8t 1,z t =ŝ t .

The reason we study this generalization is to show how our analysis applies in cases where the FW iterate is not the observed reward. In prior work on (non-contextual) bcr, Agrawal and Devanur [2014,A l g o r i t h m4 ]u s ea nu p pe r -c o n fi d e n c ea p p r o a c ha n du s et h eu p pe rc o n fi d e n c eo nt h e expected reward as update direction. The generalization made by introducing U(h t+1 , 0 ) compared to the main paper allows for our analysis to encompass their approach.

We need to up date Assumptions A and B to account for the fact that ⇢ t is used in place of r t .

Assumption A 0 . f is closed proper concave on R D and A is a compact subset of R K . Moreover, there is a compact convex set K ✓ R D such that
• (Bounded rewards and iterates) For all t 2 N ⇤ , r t 2 K and ⇢ t 2 K with probability 1. In Assumption A we added µ(x t )a t 2 K for clarity, but it is not necessary since µ(x t )a t 2 K with probability 1 is implied by r t 2 K with probability 1. The difference between Assumption A 0 and Assumption A is to make sure that the updates ⇢ t ,a n dt h u st h ei t e r a t e sz t belong to K and are in the domain of definition of f .N o t i c et h a ti nt h es p e c i a lc a s eo f⇢ t = r t ,A s s u m p t i o n A 0 reduces to Assumption A and, similarly, Assumption B reduces to Assumption B 0 .W eu s et h e term smooth as a synonym of Lipschitz-continuous gradients.

• (Local Lipschitzness) f is L-Lipschitz continuous
Analysis for (possibly) non-smooth objective functions We are going to present a single analysis that encompasses both the case where f is smooth (Assumption B of the main paper),

and the case where f may not be smooth, which we briefly discussed in Section 5. 3.3. In order for our analysis to be agnostic to the type of smoothing used and to also encompass the case where f is smooth, we propose the following assumption, where (f t ) t2N is a sequence of smooth approximations of f :

Assumption E. Assumption A 0 holds and 9( 0 ,L,M 1 ,M 2 ) 2 R 4 + such that (f t ) t2N satisfy: 1. 8t 2 N,f t : R D ! R [ {±1} is proper closed concave on R D , 2. 8t 2 N,f t is differentiable on K with sup z2K krf t (z)k 2  L, and f t is p t+1 0 -smooth on K, 3. 8t 2 N ⇤ , 8z 2 K, |f t (z) f t 1 (z)|  M1 t p t and |f t (z) f (z)|  M2 p t .
Notice that any function f satisfying Assumption B with coefficient of smoothness C satisfies Assumption E with 0 =1/C, M 1 = M 2 =0.R e g a r d i n gn o n -s m o o t hf ,w ed i s c u s si nm o r ed e t a i l s in Appendix B.6 specific methods to perform this smoothing, including the Moreau envelope used in Section 5. 3.3. The generalization of the scalar regret takes into account both the approximation functions (f t ) t2N and the general update z t :

R gen T = T X t=1 max a2A hrf t 1 (z t 1 ) | µ(x t )ai T X t=1 hrf t 1 (z t 1 ) | ⇢ t i + LT kz T ŝT k 2 . (B.
2)

The general regret bound then takes the following form, where we distinguish between smooth and non-smooth f .R e c a l lt h a t C = CD 2 K /2.

Theorem 34. Under Assumptions B 0 ,u s i n g8T 2 N,f T = f .

For every T 2 N,e v e r yz 0 2 K,e v e r y > 0, Algorithm 6 satisfies, with probability at least 1 :

R T  R gen T + LD K q 2T ln 1 + C ln(eT ) T Theorem 35.
Under Assumptions E, for every z 0 2 K,e v e r yT 1 and every > 0, Algorithm 6 satisfies, with probability at least 1 :

R T  R gen T T + D 2 K 0 +4M 1 +2M 2 + LD K q 2ln 1 p T
The proofs are given in Appendix B. [START_REF][END_REF].

The worst-case regret of contextual bandits is Ω( p T ) [Bubeck and Cesa-Bianchi, 2012[START_REF] Varsha | Stochastic linear optimization under bandit feedback[END_REF][START_REF] Lattimore | Bandit algorithms[END_REF], which gives a lower bound for the worst-case regret of cbcr in Ω( 1 p T ).T h ed e p e n d e n c i e so nt h ep r o b l e mp a r a m e t e r sa r ea l ld i r e c t l yd e r i v e df r o mt h e regret bounds R gen T of the underlying scalar bandit algorithm (LinUCB, SquareCB, etc.). Therefore we obtain cbcr algorithms that are near minimax optimal as soon as R gen

T  O( p T ).
The residual terms O( 1 p T ) terms are tied to the use of Azuma's inequality (Lemma 36)a n dF Wa n a l y s i s( u s i n g Lipschitz and smoothness parameters), and the dependencies to these parameters match usual convergence guarantees in optimization [START_REF] Lacoste-Julien | Block-coordinate frank-wolfe optimization for structural svms[END_REF], Clarkson, 2010, Lan, 2013]. As we rely on a worst-case analysis in deriving our reduction guarantees, it remains an open question whether problem-dependent optimal bounds could be recovered as well.

We make three remarks in order:

Remark 5 (Why we need a specific result for smooth f ). The result for C-smooth f has a better dependency than the general result using 0 =1/C (ln(eT ) instead of p T ), which makes a fundamental difference in practice if the smoothness coefficient is close to p T . This is why we keep the two results separate.

Remark 6 (Comparison to the smoothing as used by [START_REF] Agrawal | Bandits with concave rewards and convex knapsacks[END_REF]). Agrawal and Devanur [2014, Thm 5.4] present an analysis for non-smooth f where, at a high-level, they run the smooth algorithm using f T instead of a sequence (f t ) t2N , and then apply the convergence bound for smooth f . Our analysis has two advantages:

1. Anytime bounds: our approach does not require the horizon to be known in advance.

2. Better bound: they obtain a bound on p ln T /T by suitably choosing the smoothing parameter, whereas we obtain a bound of 1/ p T . In practice, it may not make a difference if

R gen T T
is itself in p ln T /T , but the advantage of our approach is clear as far as the analysis of FW for ( c)bcr is concerned.

Remark 7 (About the confidence parameter 0 in A(h t ,x t , 0 ) and U(h t+1 , 0 )). In practice, exploration/exploitation algorithms need a confidence parameter that defines the probability of their regret guarantee. For instance, in confidence-based approaches, it is the probability with which the confidence intervals are valid at every time step. In our case, it means that explicit upper bounds on R gen T are of the form R gen (T, 0 ) which hold with probability 1 0 , where 0 is the confidence parameter in A(h t ,x t , 0 ). Using the union bound, we obtain bounds of the form

R T  R gen (T, 0 )/T + O q ln(1/ ) T
that are valid with probability 1 0 .

Note the difference in the roles of and 0 : is not a parameter of the algorithm, it is only here to account for the randomization over contexts. B.5 Proofs for Section 5.3 and Appendix B.4 This section contains the proofs for the results of Section 5. Lemma 36. Assume that 8T,f T is differentiable on K with 8z 2 K, krf T (z)k 2  L. Then, for every z 2 K, we have: 

E x⇠P ⇥ max a2A hrf t 1 (z) | µ(x)ai ⇤ = max ⇡:X !A E x⇠P ⇥ hrf t 1 (z) | µ(x)⇡(x)i ⇤ = max s2S hrf t 1 (z t 1 ) | si. (B.
⇡ ⇤ t : X 7 ! A such that ⇡ ⇤ t (x) 2 argmax a2A hrf t 1 (z t 1 ) | µ(x)ai,
using some arbitrary tie-breaking rule when the argmax is not unique. We have, for every policy ⇡:

E x⇠P ⇥ hrf t 1 (z) | µ(x)⇡(x)i ⇤  E x⇠P ⇥ max a2A hrf t 1 (z) | µ(x)ai ⇤ =) max ⇡:X !A E x⇠P ⇥ hrf t 1 (z) | µ(x)⇡(x)i ⇤  E x⇠P ⇥ hrf t 1 (z) | µ(x)⇡ ⇤ t (x)i ⇤ .
On the other hand, it is clear that

E x⇠P ⇥ hrf t 1 (z) | µ(x)⇡ ⇤ t (x)i ⇤  max ⇡:X !A E x⇠P ⇥ hrf t 1 (z) | µ(x)⇡(x)i ⇤ ,
and we get the first equality of (B.3).

The second equality in (B.3)h o l d sb yt h ed e fi n i t i o no fS since for every policy ⇡,w eh a v e

E x⇠P ⇥ hrf t 1 (z) | µ(x)⇡(x)i ⇤ = hrf t 1 (z) | E x⇠P ⇥ µ(x)⇡(x) ⇤ i.
We now prove (B.4).L e t E t ⇥ . ⇤ t 1 be the conditional expectations with respect to the filtration e F =( e F t ) t 1 where F t is the -algebra generated by (x 0 t ,a 0 t ,r 0 t ) t 0 2Jt 1K ,i . e . ,c o n t e x t s ,a c t i o n sa n d rewards up to time t 1,s ot h a tw eh a v e :

E t ⇥ hrf t 1 (z t 1 ) | µ(x t )⇡ ⇤ t (x t )i ⇤ = E x⇠P ⇥ hrf t 1 (z t 1 ) | µ(x)⇡ ⇤ t (x)i ⇤ . Using (B.3)g i v e sE t ⇥ hrf t 1 (z t 1 ) | µ(x t )⇡ ⇤ t (x t )i ⇤ = max s2S hrf t 1 (z t 1 ) | si, from which we obtain max s2S hrf t 1 (z t 1 ) | s µ(x t )a ⇤ t i = E t ⇥ hrf t 1 (z t 1 ) | µ(x t )⇡ ⇤ t (x t )i ⇤ hrf t 1 (z t 1 ) | µ(x t )⇡ ⇤ t (x t )i
X T = P T t=1 max s2S hrf t 1 (z t 1 ) | s µ(x t )a ⇤ t i thus defines a martingale adapted to F,a n d , using X 0 =0,w eh a v e ,f o ra l l t :

|X t X t 1 |  L sup s2S x2X a2A ks µ(x)ak 2  L sup z,z 0 2K kz z 0 k 2  LD K .
The results then follows from Azuma's inequality.

The next lemma is the main technical tool of the paper. The proof is not technically difficult given the previous result, using the telescoping sum approach of the proof of Lemma 12 of Berthet and Perchet [2017]a n do r g a n i z i n gt h er e s i d u a lt e r m s .

Lemma 37 Let C(T ), F ⇤ (T ) in R [ {+1} such that, 8T 2 N ⇤ , we have:

T X t=1 D 2 K 2 C t 1 t  C(T ), T X t=1 t Rt (z t ) Rt 1 (z t )  F ⇤ (T )
And let B(T )=C(T )+F ⇤ (T ). Then, for all z 0 2 K, 8T,8 > 0, 8 0 > 0, Algorithm 6 satisfies, with probability at least 1 :

f ⇤ T f T (ŝ T )  B(T )+R gen T + LD K q 2T ln 1 T Proof.
We start with the standard ascent lemma using bounded curvature on K [Bottou et al., 2018, Inequality 4.3], denoting CT =

D 2 K 2 C T : f t 1 (z t ) f t 1 (z t 1 )+ 1 t hrf t 1 (z t 1 ) | ⇢ t z t 1 i Ct 1 t 2 f ⇤ t 1 f t 1 (z t )  f ⇤ t 1 f t 1 (z t 1 ) 1 t hrf t 1 (z t 1 ) | ⇢ t z t 1 i + Ct 1 t 2
Let us denote by g t = rf t 1 (z t 1 ) and let a ⇤ t 2 argmax a2A hg t | µ(x t )ai.W efi r s td e c o m p o s et h e middle term:

hg t | ⇢ t z t 1 i = max s2S hg t | s z t 1 i max s2S hg t | s µ(x t )a ⇤ t i hg t | µ(x t )a ⇤ t ⇢ t i f ⇤ t 1 f t 1 (z t 1 ) max s2S hg t | s µ(x t )a ⇤ t i | {z } ↵t hg t | µ(x t )a ⇤ t ⇢ t i | {z } ⇢t (by (B.5) below)
Where the last inequality uses the concavity of f t :f o ra l ls ⇤ t 1 2 argmax s2S f t 1 (s),w eh a v e : .5) and thus we get

f ⇤ t 1 f t 1 (z t 1 ) hrf t 1 (z t 1 ) | s ⇤ t 1 z t 1 imax s2S hrf t 1 (z t 1 ) | s z t 1 i (B
f ⇤ t 1 f t 1 (z t )  f ⇤ t 1 f t 1 (z t 1 ) (1 1 t )+ 1 t (↵ t + ⇢ t )+ Ct 1 t 2 =) t Rt (z t )  (t 1) Rt 1 (z t 1 )+↵ t + ⇢ t + Ct 1 t + t Rt (z t ) Rt 1 (z t ) =) T RT (z T )  T X t=1 ↵ t + T X t=1 ⇢ t + T X t=1 t Rt (z t ) Rt 1 (z t ) + T X t=1 Ct 1 t
Using the Lipschitz property for f T ,w efi n a l l yo b t a i n 

T RT (ŝ T )  T X t=1 ↵ t + T X t=1 ⇢ t + TLkz T ŝT k 2 | {z } LD K p 2T ln(1/ )+R
+ T X t=1 Ct 1 t | {z } C(T )
Which is the desired result.

B.5.1 proofs of the main results

We now prove the results of App endix B.4.

Proof of Theorem 34. First, notice that since f differentiable on K (since it is smooth) and since both z T and 1

T P T t=1 µ(x t )a t are in K,u s i n g8t, f t = f ,w eh a v eR T = f ⇤ f (ŝ T )=f ⇤ T f T (ŝ T ).
Using the notation of Lemma 37,w et h e nh a v eC(T )=0and D(T )=0.A l s o :

T X t=1 D 2 K 2 C t t = T X t=1 C t  C(ln(t) + 1)
The result then follows from Lemma 37.

Proof of Theorem 35. Using the notation of Lemma 37,w es p e c i f yC(T ), F ⇤ (T ) in turn.

T X t=1 D 2 K 2 C t 1 t = T X t=1 D 2 K 2 0 p t  D 2 K 0 p T.
For F ⇤ (T ),w ed e c o m p o s e Rt (z t ) Rt 1 (z t ) into two terms:

Rt (z t ) Rt 1 (z t )=f ⇤ t f ⇤ t 1 + f t 1 (z t ) f t (z t )  2M 1 t p t Using P T t=1 1 p t  2 p T ,w eo b t a i nF ⇤ (T )  2M 1 P T t=1 t t p t  4M 1 p T .L e m m a37 gives f ⇤ T f T (ŝ T )  R gen T + D 2 K 0 +4M 1 + LD K p 2ln( 1 /2) p T (B.6)
To finish the proof, notice that:

f ⇤ f (ŝ T ) f ⇤ T f T (ŝ T )  2 sup z 0 2K |f T (z 0 ) f (z 0 )|  2M 2 p T . (B.7)
The result follows from (B.6)a n d( B.7)u s i n g :

R T = f ⇤ f (ŝ T )  f ⇤ T f T (ŝ T )+ 2M 2 p T .

B.6 Smooth approximations of non-smooth functions

We discuss here in more details two sp ecific smo othing techniques: the Moreau envelop e, also called Moreau-Yosida regularization in Section B. 6 Proof of Theorem 14. Usinh Theorem 35 above and Lemma 39 below gives the result since , 2009, Th. 2.26] are that if f : R D ! R [ {±1} is an upper semicontinuous, proper concave function then f is concave, finite everywhere, continuously differentiable with 1 -Lipschitz gradients. We also have that the proximal operator prox is well-defined (the argmax is attained in a single point) and we have

D 2 K 0 +4M 1 +2M 2 = D 2 K 0 +3L 2 0 = LD K D K L 0 +3 L 0 D K . B.
r f (z)= 1 z prox (z) .
It is immediate to prove the following inequalities for every z 2 R n and every > 0:

f (z)  f (z)  f (prox (z)).
The following properties of the Moreau envelope (See [Yurtsever et al., 2018,A p p e n d i xA . 1 ] and [Thekumparampil et al., 2020b,L e m m a1 ] )a r ek e yt ot h em a i nr e s u l t s : Lemma 38. Let > 0, f : R D ! R [ {±1} be a proper closed concave function, and Z ✓ R D be a convex set such that f is locally L-Lipschitz-continuous on Z. Then:

• 8z 2 Z such that prox (z) 2 Z, we have z prox (z)  L and:

f (z) L 2 2  f (z)  f (z).
• 8z 2 Z such that prox (z) 2 Z, 8 > 0 and 0 > 0, we have: 

f  f 0 + 1 2 ⇣ 1 0 1 ⌘ k[k ⇤ z prox (z)
 f t 1 (z) f t (z)  L 2 0 2t ( p t +1 p t)  L 2 0 2t p t . and thus M 1 = L 2 0 2 .
Algorithm 7: FW-linUCB: linear cbcr with K arms.

input : 0 > 0, > 0, ŝ0 2 K V 0 = I dD ,y 0 = 0 dD , ✓0 = 0 dD 1 for t =1,. • afi n i t ea c t i o ns p a c eA which is the canonical basis of R K ,i . e . ,w ef o c u so nt h em u l t i -a r m e d bandit setting

• X ✓ R d⇥K , where d is the dimension of the feature space. Given x 2 X ,thefeaturerepresen tation of arm a 2 A is given by the matrix-vector product xa,

• Given a matrix ✓ 2 R D⇥d ,w ed e n o t eb yk✓k F the frobenius norm of ✓,i . e . ,k✓k F = kflatten(✓)k 2 .

In addition, we make here the following linear assumption on the rewards:

Assumption F. There is ✓ 2 R D⇥d such that k✓k F  D ✓ such that 8x 2 X ,µ(x)a = ✓xa.
Moreover, there is

D X > 0 such that sup x2X a2A kxak 2  D X .
We p erform the analysis under Assumption E, which is the more general we have. In particular, we assume that we have access to a sequence (f t ) t2JT K of smooth approximations of f .W ef o c u so n the special case of Algorithm 6 that is described in the main paper, i.e., where ⇢ T = r t .

The algorithm. As hinted in Section 5. 3.2, FW-LinUCB applies the LinUCB algorithm [Abbasi-Yadkori et al., 2011], designed for scalar-reward contextual bandits with adversarial contexts and stochastic rewards, to the following extended rewards and contexts, where we use [.; .] to denote the vertical concatenation of matrices and g t = rf t 1 (ŝ t 1 ):

• xt 2 R Dd⇥K is the extended context with entries xt =[g t,0 x t ; ...; g t,D x t ] 2 R Dd⇥K ,s ot h a tt h e feature vector of action a at time t is xt a;

• rt = g | t r t is the scalar observed reward, • ✓ = flatten(✓) 2 R dD is the ground-truth parameter vector and μ(x)= ✓| xt is the average reward function. Given this notation, the FW-LinUCB algorithm is LinUCB applied to the scalar-reward bandit problem above. The algorithm is summarized in Algorithm 7 for completeness, where is the regularization parameter of the ridge regression, ✓t is the current regression parameters, the matrix V t and the vector y t are incremental computations of the relevant matrices to compute ✓t . The crucial part of the algorithm is Line 3 which defines an upper confidence bound on μ(x t )a,d e n o t e d by ût 2 R K and defined by:

8i 2 JKK, ût,i = ✓| t 1 xt,i + ↵ t ( 0 /2) kx t,i k V 1 t 1 where kx t,i k V 1 t 1 = q x| t,i V 1 t 1 xt,i ,(B.10)
and ↵ t is defined according to Theorem 2 of Abbasi-Yadkori et al. [2011]: .11) Under Assumption E, we have with probability et al., 2011, Theorem 2].

↵ t ( 0 )= LD K 2 s dD ln ⇣ 1+TD 2 e X / 0 ⌘ + p D ✓ . ( B 
1 0 /2: 8t 2 N ⇤ , ût a μ(x t )a [Abbasi-Yadkori
The result. Let d = dD. The regret bound of LinUCB [Abbasi-Yadkori et al., 2011, Theorem 3] and Azuma inequality give:

Theorem 42. Under Assumption E, for every T 2 N ⇤ , for every 0 > 0, Algorithm 7 satisfies, with probability at least 1 0 :

R scal T 4 q T d log(1 + TD e X / d) ⇣ p D ✓ + LD K 2 q 2ln(2/ 0 )+ d ln 1+TD e X /( d) ⌘ + LD K p 2ln(2/ 0 ).
Proof. Recall that as noted in (5.3) We decomp ose the scalar regret R scal 2011, Appendix C], which in our notation and our assumption can be written as:

max a2A μ(x t ) | a μ(x t ) | a t  min ⇣ 2↵ t ( 0 /2) kx t a t k V 1 t 1 ,LD K ⌘  2↵ t ( 0 /2) min(kx t a t k V 1 t 1 , 1)
where the first inequality comes from Abbasi-Yadkori et al. For the rightmost term, let F = F t t2N⇤ be the filtration where F t is the -algebra generated by (x 1 ,a 1 ,r 1 ,...,x t 1 ,a t 1 ,r t 1 ,x t ,a t ). Then (X t ) t2N⇤ is a martingale difference sequence adapted to F with |X t |  LD K .B yA z u m a ' si n e q u a l i t y ,w eh a v e P T t=1 X t  LD K q 2T k ln 2 0 with probability we consider the randomization over actions and rewards, while they only consider the randomization over actions because they study average rewards. However, since it does not change the upper bound on the variations of the martingale, this additional randomness does not change the bound.

The next step is the fundamental step in the proof of the original SquareCB algorithm. Even though the notation differ slightly from the original paper, the proof is the same as in [Foster and Rakhlin, 2020,A p p e n d i xB ] :

Lemma 45. [Foster and Rakhlin, 2020, Lemma 3] For every t 2 N ⇤ , the choice of t and A(h t ,x t , 0 )

of Algorithm 8 guarantees:

E a⇠At ⇥ µ ⇤ t µ | t a ⇤  2K t + t 4 E a⇠At ⇥ μ| t a µ | t a 2 ⇤ .
The last step of these preliminary lemmas is to relate the cumulative expected error to the oracle regret bound. We use here the same proof as [Foster and Rakhlin, 2020,L e m m a2 ] . W et h e n have:

Lemma 46. Under Assumption E, for every 0 > 0, Algorithm 8 satisfies, w.p. at least 1 0 :

8T 2 N ⇤ , T X t=1 E a⇠At ⇥ μ| t a µ | t a t 2 ⇤  2L 2 R oracle (T ) + 16L 2 D 2 K ln 2T 2 0 
Proof. We first notice that

P T t=1 E a⇠At ⇥ μ| t a µ | t a t 2 ⇤  L 2 P T t=1 E a⇠At ⇥ k[k ⇤ μ(x t )a µ(x t )a 2 2 ⇤ .
We then apply the same steps as in the pro of of [Foster and Rakhlin, 2020,L e m m a2 ]t o

P T t=1 E a⇠At ⇥ k[k ⇤ μ(x t )a µ(x t )a 2 2
⇤ (which we do not reproduce here) to obtain: for every every T 2 N,e v e r y 0 T > 0, with probability at least 1 0 T : Notice the log T factor in the bound, which appears because the bound is valid for all time steps.

T X t=1 E a⇠At ⇥ μ| t a µ | t a t 2 ⇤  2L 2 R oracle (T ) + 16L 2 D 2 K ln 1 0 T Let 0 >
This is because we propose anytime convergence bounds, with the exploration parameter that decreases with time, whereas [Foster and Rakhlin, 2020] only prove their result in the case where the exploration parameter is chosen for a specific horizon.

As the main first step for the final result, we need these two lemmas which are the main technical steps to our anytime bound. The proof is deferred to Appendix B. 10.2 Lemma 47. Let ( t ) t 2N 2 R T + be a sequence of non-negative numbers, denote Λ T = P T t=1 t and let (Λ T ) T 2N such that 8T 2 N, Λ T > 0 and Λ T Λ T .

T X t=1 t p Λ t  2 q Λ T .
We get the following corollary

Lemma 48. Let R 0 oracle (T, 0 )=2L 2 R oracle (T ) + 16L 2 D 2 K ln 2T 2 0 .
Under the conditions of Lemma 46, assume that there is 0 > 0 such that 8t 2 JT K, t = 0 q t R 0 oracle (t, 0 ) . Then, for every 0 > 0, Algorithm 9: FW-linUCBRank: linear contextual bandits for fair ranking.

input : 0 > 0, > 0, ŝ0 2 K V 0 = I d ,y 0 = 0 d , ✓0 = 0 d 1 for t =1,... do 2 Observe context x t ⇠ P 3 8i, vt,i ✓| t 1 x t,i + ↵ t 0 3 kx t,i k V 1 t 1 // UCB on v i (x t )
,s e eL e m . 49 for def. of ↵ t 4 a t top-k{ @ft 1 @zm+1 (ŝ t 1 )v t,i + @ft 1 @zi (ŝ t 1 )} m i=1 // FW linear optimization step [START_REF] Agrawal | An efficient algorithm for contextual bandits with knapsacks, and an extension to concave objectives[END_REF])

Even though our linear contextual bandit setup is different from e.g., [Lagrée et al., 2016]f o r ranking, the availability of the feedback e t,i , which tells us whether item i has been exposed, makes the analysis of the online linear regression similar to the general setup of linear bandits. Our approach builds on the confidence intervals developed by [START_REF] Agrawal | An efficient algorithm for contextual bandits with knapsacks, and an extension to concave objectives[END_REF], which expands the analysis of confidence ellipsoids for linear regression of Abbasi-Yadkori et al. Each c t,i is 1 2 -subgaussian (because Bernoulli), and is conditionally independent of the other random variables conditioned and on e t,i and x t,i . The incremental linear regression of line 7 of Algorithm 9 is the same as [Abbasi-Yadkori et al., 2011]. Our observation model satisfies the conditions of the analysis of confidence ellipsoids of [START_REF] Agrawal | An efficient algorithm for contextual bandits with knapsacks, and an extension to concave objectives[END_REF], from which we obtain: Lemma 49. Under the probabilistic model described in Section 5.4, and under Assumption C.L e t 0 > 0 and D 2 X k, and let

↵ T ( 0 )= 1 2 s ln ✓ det(V T ) V 0 02 ◆ + p D ✓ .
Then, under Assumption C and with the notation of Algorithm 9, we have: [START_REF] Agrawal | An efficient algorithm for contextual bandits with knapsacks, and an extension to concave objectives[END_REF],L e m m a4 . 2 ] ) with probability 1 0 , for all T 0, ✓ lies in the confidence ellipsoid: [START_REF] Agrawal | An efficient algorithm for contextual bandits with knapsacks, and an extension to concave objectives[END_REF],L e m m a4 . 4 ] ):

• ( [
C T = { ✓ 2 R d : ✓T ✓ V T  ↵ T ( 0 )} • ( [
↵ T ( 0 )  1 2 s 2ln ✓ 1 0 ◆ + d ln ✓ 1+ TD 2 X k d ◆ + p D ✓ .
These results stem from [Li et al., 2016, Lemma A.4 and A.5] that claim that, with the assumptions of Lemma 49, the following inequality holds with probability 1:

T X t=1 m X i=1 kx t,i k 2 V 1 t 1 e t,i  2ln det V T det(V 0 )  2d ln ⇣ 1+ TD 2 X k d ⌘ .
Notice that terms equivalent to D X and D ✓ do not appear in [START_REF] Agrawal | An efficient algorithm for contextual bandits with knapsacks, and an extension to concave objectives[END_REF]]b e c a u s et h e y assume they are  1.T h eD 2 X term comes from a modification necessary in [START_REF] Agrawal | An efficient algorithm for contextual bandits with knapsacks, and an extension to concave objectives[END_REF],L e m m a By Lemma 49,w eh a v e✓ 2 C t for all t 0 with probability 1 0 /3. Therefore, with probability Step 2: Upper bound on P T t=1 B t using linear bandit techniques Let a t,i 2 R m denote the i-th row of mat(a t ), which contains only 0se x c e p ta1 at the rank of item i in a.S i n c eμ t and µ(x t ) only differ in the last dimension, which is the user utility, we have, using (B.15):

1 0 /3,
B t = g t,m+1 (v t v(x t )) | mat(a t )b(x t ) = g t,m+1 m X i=1 vt,i v i (x t ) a | t,i b(x t )
Denoting e t,i = a | t,i b(x t ) 2 R the expected exposure of item i in ranking a t given context x t ,w e have:

B t = g t,m+1 | {z } 2[0,L] m X i=1 vt,i v i (x t ) e t,i  L m X i=1 ⇣ ( ✓t 1 ✓) | x t,i + ↵ t ( 0 /3) kx t,i k V 1 t 1 ⌘ e t,i  L m X i=1 ⇣ ✓t 1 ✓ Vt 1 kx t,i k V 1 t 1 + ↵ t ( 0 /3) kx t,i k V 1 t 1 ⌘ e t,i
(by Cauchy-Schwarz)

By Lemma 49, we have, with probability 1 0 /3:

✓t 1 ✓ Vt 1  ↵ t ( 0 /
3),a n dt h u s :

B t  2L↵ t ⇣ 0 3 ⌘ m X i=1 kx t,i k V 1 t 1 e t,i =2L↵ t ⇣ 0 3 ⌘ ✓ ⇣ m X i=1 kx t,i k V 1 t 1 (e t,i e t,i ) ⌘ | {z } X 0 t + ⇣ m X i=1 kx t,i k V 1 t 1 e t,i

⌘ ◆

We first deal with the sum over t of the right-hand side, using e t,i 2 {0, 1}:

T X t=1 m X i=1 kx t,i k V 1 t 1 e t,i = T X t=1 m X i=1 (kx t,i k V 1 t 1 e t,i ) ⇥ e t,i  v u u t T X t=1 m X i=1 e 2 t,i v u u t T X t=1 m X i=1 (kx t,i k 2 V 1 t 1 e 2 t,i ) (by Cauchy-Schwarz)  p T k s d ln ⇣ 1+ TD 2 X k d ⌘ .
(by B. 9.1) For the left-hand term, we have that P T t=1 X 0 t T 2N⇤ is a martingale adapted to the filtration F =( F T ) T 2N⇤ where F T is the -algebra generated by (x 1 ,a 1 ,r 1 ,...,x T 1 ,a T 1 ,r T 1 ,x T ,a T ), with X 0 t  D X k p . Thus, with probability at least

1 0 /3,w eh a v e T X t=1 m X i=1 m X i=1 kx t,i k V 1 t 1 (e t,i e t,i )  D X k p r 2T ln 3 0  r 2T k ln 3 0 .
Where the last inequality comes from the assumption D 2 X k.W ec o n c l u d et h i ss t e pb ys a y i n g that with probability 1 2 0 /3,w eh a v e :

T X t=1 B t  2L↵ t ⇣ 0 3 ⌘p T k ✓ r 2ln 3 0 + s d ln ⇣ 1+ TD 2 X k d ⌘ ◆ .
Step 3: Upper bound on P T t=1 X t using Azuma's inequality Following the same arguments as in the proof of Thm. 42,l e tF = F t t2N⇤ be the filtration where F t is the -algebra generated by (x 1 ,a 1 ,r 1 ,...,x t 1 ,a t 1 ,r t 1 ,x t ,a t ). Then (X t ) t2N is a martingale difference sequence adapted to

F with |X t |  LD K ,s ot h a t P T t=1 X t  L q 2T k ln 3 0 with probability 1 0 /3.
The final result is obtained using a union bound, considering that Step 1 and Step 2 use the same confidence interval given by Lemma 49 which is valid w. We thus get

R scal (T, )=O ✓ L p T k p d ln(T/ ) ⇣ p d ln(T/ )+D ✓ p ⌘ + Lk p T ln(1/ ) ◆ = O ✓ L p T k p d ln(T/ ) ⇣ p d ln(T/ )+D ✓ p + q k/d ⌘ ◆
For the smo oth case, the total b ound adds O(Lk p T ln(1/ ) + C ln T T ).Ab o u n do nt h ec o m p l e t e regret is thus 

R T = O ✓ L p T k p d ln(T/ ) ⇣ p d ln(T/ )+D ✓ p + q k/d + C ln T T ◆ B.
p Λ t = T X t =T0 t p Λ t  2 q Λ T .
the arm played.

Lemma 53. Let 2 (0, 1). Assume the rewards are -subgaussian.

Let ! 2 (0, 1),

✓ = log(1 + !) ! 2(2+!) 1 1+! . Let N k (t)= t X s=1 {ks=k} b µ k (t)= P t s=1 r s {ks=k} N k (t) k (t)= s 2 2 (1 + p !) 2 (1 + !) N k (t) ⇥ s log ✓ 2(K + 1) ✓ log((1 + !)N k (t)) ◆ µ k (t)=b µ k (t) k (t) µ k (t)=b µ k (t)+ k (t)
Then,

P h 8t>0, 8k 2 JKK,µ k 2 [µ k (t); µ k (t)] i 1 2 .
Notice that the choice of ✓ makes sure that k is well defined as long as N k (t) > 0.W eu s e the convention that when N k (t)=0, k (t) is strictly larger than when N k (t)=1to ensure k is strictly decreasing with N k . Also, when N k (t)=0,w es e tb µ k (t)=0.

Following Garcelon et al. [2020a], our lower bound on the conservative constraint relies on Freedman's martingale inequality Freedman [1975].

Lemma 54. Assume all rewards are -subgaussian. Let A t = {s  t : k s 6 =0} be the number of times a non-baseline arm k 6 =0has been pulled up to time t.L e t (t)=

q 2|A t 1 | log 6|At 1 | 2 + 2 3 log 6|At 1 | 2 .
Then, 8 > 0,

P 2 4 8t>0, X s2At 1 (µ ks r s )  (t) 3 5 1 2 .
As in Lemma 53,w eu s et h ec o n v e n t i o n (t)=0when |A t 1 | =0.

Lemma 55. Let 2 (0, 1).

Let Φ(t)=min P K k=1 k (t 1)N k (t 1), (t) ,w i t h (t) defined in Lemma 54.L e tE be the event under which all confidence intervals are valid, i.e.:

E = E 1 \ E 2 with E 1 = 8k 2 {0,...,K}, 8t>0,µ k (t) 2 [µ k (t); µ k (t) E 2 = 8t>0, X s2At 1
(µ ks r s )  Φ(t) .

Then P [E] 1 .

Proof. By Lemma 53, P [E 1 ] 1 2 . By the lemma above, with probability 1 2 ,w eh a v ef o ra l l t>0, P s2At 1 (µ ks r s )  (t).

Then, notice that

X s2At 1 (µ ks r s ) = K X k=1 N k (t 1)(µ k b µ k (t 1)) .
Hence under E 1 we also have:

X s2At 1 (µ ks r s )  K X k=1 N k (t 1) k (t 1).
Therefore,

E = E 1 \ E 2 = E 1 \ ⇢ X s2At 1 (µ ks r s )  (t) ,
and thus, by a union bound, we have:

P [E] 1 . 
C. 5.1.2 Theorems

We now provide our complete theoretical guarantees for correctness (Theorem 56), duration (Theorem 57) and cost (Theorem 58), which we then prove in App. C. 5.2 and C.5.3.F r o mt h e s e results, we derive Theorem 18 in the main paper, which we prove in App. C. 5.4.

Theorem 56 (Correctness). With probability at least 1 :

1. OCEF satisfies the safety constraint (6.3) at every time step, 2. if OCEF outputs ✏-no-envy then the user m is not ✏-envious, and if it outputs envy, then m is envious.

We denote log + (.) = max(1, log(.)).

Theorem 57 (Duration). Let ⌘ k = max(µ k µ 0 ,µ 0 + ✏ µ k ), 2 (0, 1), ✓ = log(2) q 6 , and

8k 6 =0,H k =1+ 64 ⌘ 2 k log ✓ 2(K + 1) log + 128(K+1) ✓⌘ 2 k ✓ ◆ , H 0 = max ✓ max k2JKK H k , 6K +2 ↵µ 0 + K X k=1 256 log ⇣ 2(K+1) log(2H k ) ✓ ⌘ ↵µ 0 ⌘ k ◆ .
With probability at least 1 , OCEF stops in at most ⌧ steps, with

⌧  K X k=0 H k .
Finally, we define the cost of exploration as the potential reward lost because of exploration actions, in our case the cumulative reward lost, on average over users in the group:

C t = tµ 0 t X s=1 µ ks . (C.1)
In the worst case, the following bound holds:

Theorem 58 (Cost of exploration). Under the assumptions and notation of Theorem 57,l e t⌧ be the time step where OCEF stops. With probability 1 , we have:

C ⌧  X k:µ k <µ0 (µ 0 µ k )H k
Certification of the exact criterion for all users The audit of the full system for the exact envy-freeness criterion consists in running OCEF for every user. Since we are making multiple tests, we need to use a tighter confidence parameter for each user so that the confidence intervals simultaneously hold for all users.

Corollary 59 (Online certification). With probability at least 1 , running OCEF simultaneously for all M users, each with confidence parameter 0 = M , we have:

1. for all m 2 [M ] OCEF satisfies the constraints (6.3), 2. all users for which OCEF returns ✏-NO ENVY are not ✏-envious of any other users, and all users for which OCEF returns ENVY are envious of another user. 3. For every user, the bounds on the duration of the experiment and the cost of exploration given by Theorems 57 and 58 (using /M instead of ) are simultaneously valid.

For the certification of the probabilistic envy-freeness criterion, we refer to Theorem 19 in the main paper, which we prove in App. C. 5.5.

C.5.2 Proof of Theorem 56

Proof. We assume that event E holds true. Then all confidence intervals are valid, i.e., for all k =0,...,K, µ k (t)  µ k  µ k (t),a n d P s2At 1 µ ks P s2At 1 r s Φ(t). Let Z t be the safety budget, defined as Z t = P t s=1 µ ks (1 ↵)µ 0 t,s ot h a tt h ec o n s e r v a t i v e constraint (6.3) is equivalent to 8t, Z t 0.W eh a v eZ t = P s2At 1 µ ks +µ kt +(N 0 (t 1) (1 ↵)t)µ 0 . Therefore, ⇠ t (eq. ( 6.4))i sal o w e rbo u n do nt h es a f e t yb u d g e tZ t if `t is played. By construction of the algorithm, the safety constraint (6.3) is immediately satisfied since a pull that could violate it is not permitted.

By the validity of confidence intervals under E, if OCEF stops because of the first condition, then 9k, µ k >µ 0 . Therefore 0 is not ✏-envious of k and OCEF is correct.

If OCEF stops because of the second condition, i.e., 8k, µ k (t)  µ 0 (t)+✏,t h e n8k, µ k  µ 0 + ✏. Therefore 0 is not envious and OCEF is correct.

Since P [E] 1

, OCEF satisfies the safety constraint and is correct with probability 1 .

C.5.3 Proofs of Theorem 57 and Theorem 58

Notation For conciseness, we use

K = K +1,a n d k (t)=2 2 (1 + p !) 2 (1 + !) log 2 K ✓ log((1 + !)N k (t)) ! , so that k (t)= s k (t) N k (t) .
We shall also use Γ ! =2 2 (1 + p !) 2 (1 + !).W eu s et h ec o n v e n t i o n k (t)=0when N k (t)=0, and set k (t) to some value strictly larger than when N k (t)=1.

In the following lemma, we recall that we denote log + (.) = max(1, log (.)).

Lemma 61. Under event E, 8⌧ > 0, 8k 2 JKK, we have

N k (⌧ )  H k with H k =1+ 32 2 (1 + p !) 2 (1 + !) ⌘ 2 k ⇥ log ✓ 2(K + 1) log + 64(K+1) 2 (1+ p !) 2 (1+!) 2 ✓⌘ 2 k ✓ ◆ Proof. Let ⌧ > 0, k 2 
JKK,a n dl e tt  ⌧ be last time step before ⌧ at which k was pulled. If such a t does not exist, then N k (⌧ )=0and the result holds. In all cases, we have N k (t)=N k (⌧ ).

We consider t>0 from now on.

By Lemma 60,w eh a v e4 k (t 1)

⌘ k ,a n dt h u sN k (t 1)  16 k (t 1) Jamieson et al. [2014])

⌘ 2 k , which writes, if N k (t) > 0: N k (t 1)  16 k (t 1) ⌘ 2 k  16Γ ! ⌘ 2 k log 2 K ✓ log ((1 + !)N k (t 1)) ! . (C.5) Using 1 t log ⇣ log((1+!)t) Ω ⌘ c ) t  1 c log ⇣ log((1+!)/cΩ) Ω ⌘ (see Equation (1) in
with

Ω = ✓ 2 K and c = ⌘ 2 k 16Γ! ,w eo b t a i n N k (t 1)  16Γ ! ⌘ 2 k log 2 K ✓ log (1 + !)32 KΓ ! ✓⌘ 2 k
Since N k (t)=N k (t 1) + 1,u s i n glog + instead of log inside to deal with the case N k (t 1) = 0

gives the desired result.

Lemma 62. Under event E, at every time step ⌧ , we have

N 0 (⌧ )  max ✓ max k2JKK H k , 6K +2 ↵µ 0 + K X k=1 64 2 (1 + p !) 2 (1 + !) log ⇣ 2(K+1) log((1+!)H k ) ✓ ⌘ ↵µ 0 ⌘ k ◆ Proof.
Let ⌧ > 0 and t  ⌧ the last time 0 was pulled before ⌧ .W ea s s u m et>0.

Case 1: 0 was pulled because 0 (t 1) > min k2JKK k (t 1).

Then N 0 (⌧ )=N 0 (t 1) + 1  1 + max k6 =0

N k (t 1).

By lemma 60,w et h u sh a v eN 0 (⌧ )  max k2JKK H k .

Case 2: 0 was pulled because ⇠ t < 0. Here the proof follows similar steps as that of Theorem 5

in Wu et al. [2016].

X s2At 1 r s Φ(t)+µ `t (t 1) +(N 0 (t 1) (1 ↵)t)µ 0 (t 1) < 0
We drop µ `t (t 1),r e p l a c et by P K k=0 N k (t 1) + 1 and rearrange terms to obtain:

↵N 0 (t 1)µ 0 (t 1)  (1 ↵)µ 0 (t 1) +(1 ↵) K X k=1 N k (t 1)µ 0 (t 1) X s2At 1 r s + Φ(t) (C.6)
Since we have 0 (t 1)  k (t 1) (otherwise we would be in case 1), and A t 1 = P K k=1 N k (t 1), we bound the the sum over arms in (C.6):

K X k=1 N k (t 1)µ 0 (t 1)  K X k=1 N k (t 1)(µ 0 +2 0 (t 1))  K X k=1 N k (t 1)(µ 0 +2 k (t 1)) = X s2At 1 µ 0 + K X k=1 2 k (t 1)N k (t 1).
Using Lemma 55,w ea l s ob o u n d P s2At 1 r s P s2At 1 µ s + Φ(t) (under E). Plugging this into (C.6)g i v e s :

↵N 0 (t 1)µ 0 (t 1)  (1 ↵)µ 0 (t 1) + 2(1 ↵) K X k=1 N k (t 1) k (t 1) + X s2At 1 ((1 ↵)µ 0 µ ks )+2Φ(t).
Recall that Φ(t)=min( P K k=1 N k (t 1) k (t 1), (t)), and therefore Φ(t) 

P K k=1 N k (t 1) k (t 1).
Using µ 0 µ ks  ⌘ ks and P s2At 1 ⌘ ks = P K k=1 N k (t 1)⌘ k ,w eo b t a i n :

↵N 0 (t 1)µ 0 (t 1)  (1 ↵)µ 0 (t 1) + K X k=1 ✓ (⌘ k ↵µ 0 )N k (t 1) +4 p Ψ k (t 1)N k (t 1) ◆ .
We b ound

f k := (⌘ k ↵µ 0 )N k (t 1) + 4 p Ψ k (t 1)N k (t 1). Since (C.5) N k (t 1)  16 k (t 1) ⌘ 2 k +1 ,a n d⌘ k ↵µ 0  ⌘ k ,w eh a v e f k  16 k (t 1) ⌘ k + ⌘ k +4 s 16 k (t 1) 2 ⌘ 2 k + k (t 1) Using p ( x z ) 2 + x  x z + z 2 for x 0,z > 0, with x =4 k (t 1
) and z = ⌘ k ,w eo b t a i n :

f k  16 k (t 1) ⌘ k + 16 k (t 1) ⌘ k +3⌘ k  32 k (t 1) ⌘ k +3⌘ k . Using k (t 1) = Γ ! log ⇣ 2 K ✓ log((1 + !)N k (t 1)) ⌘ if N k (t) > 0 and N k (t 1)  H k by Lemma 61,w eo b t a i n f k  32Γ ! ⌘ k log 2 K ✓ log ((1 + !)H k ) ! +3⌘ k .
This bound is also valid when N k (t) > 0.

Going back to (C.6),a n ds i n c eµ 0  µ 0 (t 1) under E,w eh a v e( n o t i c e⌘ k  2 since µ k 2 [0, 1] and ✏ 2 [0, 1]):

↵N 0 (t 1)µ 0 (1 ↵)µ 0 (t 1) + 6K + K X k=1 32Γ ! ⌘ k log 2 K ✓ log ((1 + !)H k ) ! . (C.7)
To bound the first term of the right-hand side, let us first notice that the final result holds if N 0 (t 1)  max k2JKK H k .S ow ec a na s s u m eN 0 (t 1) > max k2JKK H k from now on. By the definition of the H k s( s e ea b o v e(C.5)), this implies N 0 (t 1) > 16 0 (t 1) ⌘ 2 min , which in turn implies 4 0 (t 1)  ⌘ min .

We thus use µ 0 (t 1)  µ 0 +2 0 (t 1)  µ 0 + ⌘min 2  2, which gives the final result. The result directly follows from (C.7).

The proof of Theorem 57 follows from ⌧ = P K k=1 N k (⌧ )+N 0 (⌧ ),b ys e t t i n g! =1for ease of reading, and = 1 2 since Bernoulli variables are 1 2 -subgaussian (using Hoeffding's inequality Hoeffding [1963]).

We prove Corollary 59 from Theorem 56 and Theorem 57.

We now prove Theorem 58:

Proof. Since playing the baseline is neutral in the cost of exploration, it can be re-written as:

C ⌧ = K X k=1 (µ 0 µ k )N k (⌧ )  X k:µ k <µ0 (µ 0 µ k )N k (⌧ ),
where ⌧ is the time the algorithm stops. Using Lemma 61 to upper bound N k (⌧ ),w eo b t a i nt h e result.

Corollary 59 simply follows from the fact that by applying each algorithm with confidence /M , the confidence intervals are then simultaneously valid for all users with probability 1 ,s oa l lt h e correctness/duration/cost proofs holds for all groups simultaneously with probability 1 .F o rt h e statistical guarantees on certifying the probabilistic envy-freeness criterion, we provide the proof of Theorem 19 in App. C.5.5.

C.5.4 Proof of Theorem 18

Theorems 56, 57,a n d58 are summarized in Theorem 18 in the main paper. We restate Theorem 18 and prove it below:

Theorem. Let ✏ 2 (0, 1], ↵ 2 (0, 1], 2 (0, 1 2 ) and ⌘ k = max(µ k µ 0 ,µ 0 + ✏ µ k ) and h k = max(1, 1 ⌘ k ).
Using µ, µ and Φ given in Lemmas 53 and 55, OCEF achieves the following guarantees with probability at least 1 :

• OCEF is correct and satisfies the conservative constraint on the recommendation performance (6.3).

• The duration is in O

✓ K X k=1 h k log K log( Kh k ⌘ k ) min(↵µ 0 , ⌘ k ) ◆ . • The cost is in O ✓ X k:µ k <µ0 (µ0 µ k )h k ⌘ k log K log( Kh k ⌘ k ) ◆ . 
Proof. With 2 (0, 1 2 ),l e t✓ = log(2) q 6 . Then Theorems 57 and 58 hold for ( , ✓).

Duration We first show that: .9) Recall from Th. 57 that H k is defined as:

H k = O ✓ h k ⌘ k log Kh k ⌘ k ◆ , (C.8) log(H k )=O ✓ log Kh k ⌘ k ◆ . ( C 
H k =1+ 64 ⌘ 2 k log ✓ 2(K + 1) log + 256(K+1) ✓⌘ 2 k ✓ ◆
We replace the log + term from Th. 57 by log Kh k ⌘ k > 0,b e c a u s e Kh k 3 as soon as K 2.

We thus have

H k =1+O ✓ 1 ⌘ 2 k log ✓ K log Kh k ⌘ k | {z } =B ◆◆ , (C.10) Using log(x)  x ) x log(x)  x 2 for x 0,a n dt h ef a c tt h a tlog Kh k ⌘ k 0,w eh a v e : B  log ✓ Kh k ⌘ k log Kh k ⌘ k ◆  2 log Kh k ⌘ k . Since 1+ 1 ⌘ 2 k  2 h k ⌘ k , eq. (C.8)h o l d s .
We now b ound log(H k ):

log(H k )=O ✓ log ⇣ h k ⌘ k log Kh k ⌘ k ⌘ ◆ = O ✓ log ⇣ Kh k ⌘ k log Kh k ⌘ k ⌘ ◆ = O ✓ log ⇣ Kh k ⌘ k ⌘ ◆ where the last line comes from Kh k ⌘ k log Kh k ⌘ k  Kh k ⌘ k 2 .
Therefore, eq. (C.9)h o l d s .

Now, let

Γ = 6K +2 ↵µ 0 + K X k=1 128 log ⇣ 2(K+1) log(2H k ) ✓ ⌘ ↵µ 0 ⌘ k , so that H 0 = max(max k2JKK H k , Γ).
We have:

Γ = O ✓ K ↵µ 0 + K X k=1 h k ↵µ 0 log K log(H k ) ◆ = O ✓ K X k=1 h k ↵µ 0 log K log(H k ) ◆ = O ✓ K X k=1 h k ↵µ 0 log K log( Kh k ⌘ k ) ◆ ,
where the second equality is because K = P K k=1 1  P K k=1 h k , and the last equality uses eq. (C.9). Combining this with eq. (C.8)w eh a v e :

H 0 = O ✓ K X k=1 h k min(↵µ 0 , ⌘ k ) log K log( Kh k ⌘ k ) ◆ .
Using eq. (C.8)a g a i nt ob o u n d⌧ = H 0 + P K k=1 H k , ,w eg e tt h ed e s i r e db o u n df o rd u r a t i o n .

D.1 Introduction

Forming a representative committee consists in selecting a set of individuals, who agree to serve, in such a way that every part of the population, defined by specific features, is represented proportionally to its size. As a paradigmatic example, the Climate Assembly in the UK and the Citizens' Convention for Climate in France brought together 108 and 150 participants respectively, representing sociodemographic categories such as gender, age, education level, professional activity, residency, and location, in proportion to their importance in the wider society. Beyond citizens' deliberative assemblies, proportional representation often has to be respected when forming an evaluation committee, selecting a diverse pool of students or employees, and so on.

Two key criteria for evaluating the committee formation process are the representativeness of the final selection and the number of persons contacted (each of these incurring a cost). The trade-off is that the higher the number of people contacted, the more proportional the resulting committee.

Afi r s tpo s s i b i l i t yi st ou s ea no ffline strategy (as for the UK assembly): invitations are sent to a large number of people (30,000), and the final group is selected among the pool of volunteers. An alternative setting which is common in hiring is to consider an online process: the decision-maker is given a stream of candidates and has to decide at each timestep whether or not to admit the candidate to the final committee. This work focuses on the latter setting.

Afurtherdifficulty is that the distribution of volunteers is not necessarily known in advance. For example, although the target is to represent distinct age groups proportionally to their distribution in the wider population, it may be the case that older people are predominant among volunteers.

Multi-attribute proportional representation in committee selection in an off-line setting usually assumes full access to a finite (typically large) database of candidates. This assumption is impractical in a variety of real-world settings: first, the database does not exist beforehand and constructing it would require contacting many more people than necessary; second, in some domains, the decision to hire someone should be made immediately so that people don't change their mind in the meantime (which is typical in professional contexts).

An online strategy must achieve a good trade-off between sample complexity, i.e. the number of timesteps needed to construct a full committee, and the quality of the final committee, as measured by its distance to the target distribution.

We fo cus on the online setting. We intro duce a new mo del and offer three different strategies, which rely on different assumptions on the input (and the process). The greedy strategy selects volunteers as long as their inclusion does not jeopardize the size and representation constraints; it does not assume any prior distribution on the volunteer pool. The nonadaptive strategy, based on constrained Markov decision processes, repeatedly chooses a random person, and decides whether to include or not a volonteer with a probability that depends only on their features; it assumes the joint distribution in the volunteer pool is known; it can be parallelised. Finally, the reinforcement learning strategy assumes this distribution is not known a priori but can be learnt online.

Which of these strategies are interesting depends on domain specificities. For each, we study bounds for expected quality and sample complexity, and perform experiments using real data from the UK Citizens' Assembly on Brexit.

The outline of the paper is as follows. We discuss related work in Section D. 

D.2 Related work

Diversity and representation in committee (s)election The problem of selecting a diverse set of candidates from a candidate database, where each candidate is described by a vector of attribute values, has been considered in several places. In [START_REF] Lang | Multi-attribute proportional representation[END_REF], the goal is to find a committee of a fixed size whose distribution of attribute values is as close as possible to a given target distribution. In Celis et al. [2018a], Bredereck et al. [2018], each candidate has a score, obtained from a set of votes, and some constraints on the proportion of selected candidates with Our online setting shifts the difficulty of the multi-attribute representation problem from computational complexity analyses, to the need for probabilistic guarantees on the tradeoffsbet w een sample complexity and achieved proportionality. (2) these recipients answer whether they agree to participate, and if so, give their features; those individuals constitute the pool;( 3 )as a m p l i n ga l g o r i t h mi s used to select the final panel from the pool. As the probability of willingness to participate is different across demographic groups, each person is selected with a probability that depends on their features, so as to correct this self-selection bias. This guarantees that the whole process be fair to all individuals of the population, with respect of going from the initial population to the panel.2 

Representative and fair sortition

The main differences between this work and ours are: (1) (once again) our process is online;

(2) we do not consider individual fairness, only group representativeness;

(3) we care about minimizing the number of people contacted. Moreover, unlike off-line processes, our process can be applied in contexts where hiring a person just interviewed cannot be delayed; this may not be crucial for citizens' assemblies (although someone who volunteers at first contact may change their mind if the delay until the final selection is long), but this is definitely so when hiring a diverse team of employees.

Online selection problems Generalized secretary problems Babaioff et al. [2008] decision-maker must immediately decide between two actions: accept or reject the candidate, which we respectively denote as a t =1and a t =0.

The goal is to select a committee C of K candidates that matches the target vectors as closely as possible, while minimizing the number of candidates screened.

For some set C,l e t (C) 2

Q d i=1 [0, 1] Di be the representation profile of C, where i j (C)= |{x2C:x i =j}| |C| .W ed e fi n et h erepresentation loss as k (C) ⇢k 1 = max i2JdK,j2JDiK | i j (C) ⇢ i j |
.W e evaluate how much C matches the target ⇢ by the `1 metric, because it is harsher than `1, `2 on committees that are unacceptable in our applications (e.g. committees with no women that achieve perfect representation on all other categories than gender).

Let C t = {x t 0 : t 0  t, a t 0 =1 } denote the set of all accepted candidates at the end of step t.

The agent stops at ⌧ , where ⌧ is the first time when K candidates have been accepted, i.e. the total number of candidates screened. The agent following a (possibly randomized) algorithm ALG must minimize the sample complexity E p,ALG [⌧ ].

Importantly, we consider two settings: whether the candidate distribution p is known or unknown.

Remark 9. In this model, we simply ignore non-volunteers, since the agent only needs to make decisions for volunteers, which from now on we call candidates. The joint distribution of characteristic vectors in the population of candidates is p.

D.3.2 Greedy strategy

We describe a first simple strategy. In Greedy,t h ea g e n tg r e e d i l ya c c e p t sa n yc a n d i d a t ea sl o n ga s the number of people in the committee with x i = j does not exceed the quota d⇢ i j Ke + ✏K (Di 1) for any i, j, where ✏ > 0 is some tolerance parameter for the representation quality.

Proposition 63. The representation loss incurred by Greedy is bounded as follows:

k (C ⌧ ) ⇢k 1  a.s. max i2[d] D i 1 K + ✏).
The proof and pseudocode are included in App. E.1. This method is simple to interpret and implement, and can even be used when the candidate distribution p is unknown. However, in the following example, we see that Greedy may be inefficient because it requires interacting with an arbitrarily large number of candidates to recruit a full committee.

Example 9. Let ✏ 0 > 0, ⌧ 1. 

⇢ age =( 3 /4, 1 /4).
Let A be the event that in the first 3 timesteps, the agent observes candidates with characteristic vectors {FS,MS,MS} in any order. Then Greedy accepts all of them, i.e. A = {C 3 = {FS,MS,MS}}. We have: P

[A]= 1 /4( 1 /2 ✏ 0 ) 2 ⇥ 3! = 3 /2( 1 /2 ✏ 0 ) 2 3 /2 1 /3 2 = 1 /6.
Under event A, Greedy can only stop upon finding FJ in order to satisfy the representation constraints. Therefore, ⌧ |A follows a geometric distribution with success probability ✏ 0 , hence its expectation is 1 /✏ 0 , and

E p,Greedy [⌧ ] E [⌧ |A] ⇥ P [A] = 1 /6✏ 0 .
Therefore, the sample complexity of Greedy in this example is arbitrarily large.

This example shows the limits of directly applying a naive strategy to our online selection problem, where the difficulty arises from considering multiple features simultaneously, even when there are only 2 binary features. We further discuss the strengths and weaknesses of Greedy,a n d its sensitivity to the tolerance ✏ in our experiments in Section D. 6.

The greedy strategy is adaptive, in the sense that decisions are made based on the current candidate and candidates accepted in the past. In the following section, we present, with theoretical guarantees, an efficient yet non-adaptive algorithm based on constrained MDPs for the setting in which the candidate distribution is known. We then adapt this approach to the case when this distribution is unknown, using techniques for efficient exploration / exploitation in constrained MDPs relying on the principle of optimism in the face of uncertainty.

D.4 p is known: constrained MDP strategy

In this section, we assume the distribution p is known, and we place ourselves in the limit where we would select a committee of infinite size, and aim to maximize the rate at which candidates are selected, under the constraint that the proportion of accepted candidates per feature value is controlled by ⇢.O n ea d v a n t a g eo ft h i sa p p r o x i m a t i o ni st h a tt h eo p t i m a lp o l i c yi ss t a t i o n a r y , thus simple to represent. Moreover, as stationary policies can be very well parallelized, in the case where multiple candidates can be interviewed simultaneously. To apply this approach to the finite-size committee selection problem, one needs to interrupt the agent when K candidates have been selected. We showcase a high probability bound of O( p 1/K) on the representation loss, which guarantees that for large enough values of K,t h er e s u l t i n gc o m m i t t e ei sr e p r e s e n t a t i v e .

From now on, we assume that any feature vector can b e observed, i.e., p(x) > 0 for all x,s o that proportional representation constraints can be satisfied.

D.4.1 Our model

Fundamentally, our problem could be seen as a contextual bandit with stochastic contexts x t ⇠ p and two actions a t =0or 1.H o w e v e r ,t h et y p eo fc o n s t r a i n t si n c u r r e db yp r o p o r t i o n a lr e p r e s e n t a t i o n are well studied in constrained MDPs (CMDPs) [START_REF] Altman | Constrained Markov decision processes[END_REF], whereas the contextual bandits literature focused on other constraints (e.g., knapsack constraints [START_REF] Agrawal | An efficient algorithm for contextual bandits with knapsacks, and an extension to concave objectives[END_REF]). We show how we can efficiently leverage the CMDP framework for our online committee selection problem.

Formally, we intro duce an MDP M =(X , A,P,r), where the set of states is the d-dimensional candidate space X ,thesetofactionsisA = {0, 1},andthe(deterministic)rewardisr(x, a)= {a=1} .

The transition kernel P , which defines the probability to be in state x 0 given that the previous state was x and the agent took action a,i sv e r ys i m p l ei no u rc a s e : w es i m p l yh a v eP (x 0 |x, a)=p(x 0 ) since candidates are drawn i.i.d regardless of the previous actions and candidates.

We consider the average reward setting in which the performance of a policy ⇡ : X ⇥ A ! [0, 1] is measured by its gain g p,⇡ ,d e fi n e da s :

g p,⇡ (x)= lim T !1 1 T E p,⇡ " T X t=1 r(x t ,a t ) x 1 = x # .
We simply write g p,⇡ := g ⇡ when the underlying transition is p without ambiguity.

We include proportional representation constraints following the framework of CMDPs, where the set of allowed policies is restricted by a set of additional constraints specified by reward functions.

In our case, for i 2 JdK,j 2 JD i K,w ei n t r o d u c er i j (x, a)= {x i =j,a=1} ,a n dl e t⇠ i j = r i j ⇢ i j r be the reward function for the constraint indexed by i, j.S i m i l a r l yt ot h eg a i n ,w ed e fi n eh i

j ⇡ = lim T !1 1 T E ⇡ h P T t=1 ⇠ i j (x t ,a t ) i .
The CMDP is defined by:

max ⇡ {g ⇡ | 8i 2 JdK, 8j 2 JD i K,h i j ⇡ =0}. (D.1)
Given the simplicity of the transition kernel, and since the MDP is ergodic by the assumption p>0,t h eg a i ni sc o n s t a n t ,i . e . 8x 2 X ,g ⇡ (x)=g ⇡ ,a n dp r o b l e m(D.1) is well defined. From now on, we only write g ⇡ and ⇠ i j ⇡ . Moreover, the optimal policy for the CMDP (D.1) is denoted ⇡ ⇤ and is stationary [START_REF] Altman | Constrained Markov decision processes[END_REF].

Lemma 64. g ⇡ is the selection rate under policy ⇡:

g ⇡ = X x p(x)⇡(x, 1) = P p,⇡ [a = 1]
Moreover, if ⇡ is feasible for CMDP (D.1), then:

8i 2 [d], 8j 2 JD i K, P p,⇡ [x i = j|a = 1] = ⇢ i j .
Lemma 64 implies that (a) ⇡ ⇤ maximises the selection rate of candidates, and (b) the constraints of (D.1)f o r c ec a n d i d a t e sx with x i = j to be accepted in proportions given by ⇢ i j . The CMDP can be expressed as the linear program: max

⇡2R X ⇥A + X x,a ⇡(x, a)p(x)r(x, a) u.c. 8x 2 X , X a ⇡(x, a)=1
8i, j, X

x,a ⇡(x, a)p(x)⇠ i j (x, a)=0.

(D.2)

Notice that problem (D.2) is feasible by the assumption that 8x 2 X ,p(x) > 0.N e x tw e study how well the proportional selection along features is respected when we shift from infinite to finite-sized committee selection.

D.4.2 Theoretical guarantees

We analyze the CMDP-based strategy where at each timestep, the agent observes candidates x t ⇠ p, decides to accept x t by playing a t ⇠ ⇡ ⇤ (.|x t ) and stops when K candidates have been accepted.

We later refer to it as CMDP for brevity.

First, we formally relate the gain g ⇡ that we optimize for in (D.1) to the quantity of interest

E p,⇡ [⌧ ].
Lemma 65. For any stationary policy ⇡,

E p,⇡ [⌧ ]= K g ⇡ .
Lemma 65 is a direct consequence of the fact that ⌧ + K follows a negative binomial distribution with parameters K and 1 g ⇡ , which are respectively the number of successes and the probability of failure, i.e. of rejecting a candidate under ⇡.N o t et h a tt h i si so n l yt r u eb e c a u s ei no u rc a s e the transition structure of the MDP ensures constant gain. A quick sanity check shows that if the We first observe that for any integer l 2 N, f (l)=|E l | and F (l)=⌧ l . Secondly, we have

F (x)  bxc X l=1 |E l | + |E dxe | = dxe X l=1 |E l | = F (dxe),
and thus:

f (dxe) p F (dxe) 1  f (x) p F (x) 1 .
We derive our bound as follows:

L X l=1 |E l | p ⌧ l 1 = L X l=1 f (l) p F (l) 1 = Z L 1 f (dxe) p F (dxe) 1 dx  Z L 1 f (x) p F (x) 1 dx = 2( p F (L) 1) = 2( p ⌧ L 1)  2 p T.
We introduce the following notation: for f : X ⇥ A ! R,l e tf ⇡ (x):= P a f (x, a)⇡(x, a).F o r all t>0,l e tl t denote the episode number at time t. The following useful lemma is based on a martingale argument.

Lemma 70. Let f : X ⇥ A ! R.L e t 0 > 0. We have:

P " T X t=1 (hf ⇡ l t ,pi f (x t ,a t ))  p 2T log(1/ 0 ) # 1 0 P " T X t=1 hf ⇡ l t ,pi f (x t ,a t )  p 2T log(2/ 0 ) # 1 0 .
Proof. We define the filtration F t = (x 1 ,a 1 ,. Therefore,

E ⇥ hf ⇡ l t ,pi F t 1 ⇤ = hf ⇡ l t ,pi.
We also have:

E ⇥ f (x t ,a t ) F t 1 ⇤ = E " X x,a f (x, a) {(xt,at)=(x,a)} F t 1 # = X x,a f (x, a)⇡ lt (x, a)=hf ⇡ l t ,pi.
Subtracting the two expressions above, we get E [M t |F t 1 ] =0 . (M t ) t is thus a Martingale difference sequence, such that 1  M t  1. The result follows from Azuma-Hoeffding's inequality.

We now prove Theorem 68.

Cost of constraint violations

The proof for the cost of constraint violations is very similar.

Let us bound R i j (T ):= P T t=1 |⇠ i j (x t ,a t )| for all i, j.W eb r i e fl yd r o pt h es u b / s u p e r s c r i p t si, j.

At each episode l,since(⇡ l , pl ) is a solution of (D.3),wehaveh pl ,⇡ l =0,andthus P x,a ⇠(x, a)⇡ l (x, a)p l (x)= P

x ⇠ ⇡ l (x)p l (x)=0. Therefore, we have:

T X t=1 ⇠(x t ,a t ) = L X l=1 X t2E l ⇠(x t ,a t ) X x ⇠ ⇡ l (x)p l (x)  L X l=1 X t2E l X x ⇠ ⇡ l (x)(p(x) pl (x)) + L X l=1 X t2E l ⇠(x t ,a t ) X x ⇠ ⇡ l (x)p(x)  L X l=1 X t2E l X x ⇠ ⇡ l (x)(p(x) pl (x)) + L X l=1 X t2E l ⇠(x t ,a t ) X x ⇠ ⇡ l (x)p(x)  L X l=1 |E l |k⇠ ⇡ l k 1 kp pl k 1 + T X t=1 ✓ ⇠(x t ,a t ) X x ⇠ ⇡ l t (x)p(x) ◆ ,
where the first part of the last inequality is again by Hölder's inequality. Similarly to the performance regret, the first term is bounded using the validity of confidence intervals under the good event And thus the same bounds holds for R c (T ) = max i,j R i j (T ).

Representation loss

We may now derive the b ound on representation loss.

Let f (T )=O p |X | log(|X |T/ ) . The regret bounds imply that with 1 :

R(T )=g ⇤ T N (T )  f (T ) ) N (T ) g ⇤ T f (T ) R c (T ) N (T ) = max i,j N i j (T ) N (T ) ⇢ i j N (T ) N (T )  f (T ) N (T ) i.e., k (C T ) ⇢k 1  f (T ) N (T ) . 
Therefore, using N (T ) 1,w eh a v e :

k (C T ) ⇢k 1  f (T ) max(1,g ⇤ T f (T )) = O ✓ s |X | log(|X |T/ ) g ⇤2 T ◆ .

E.3 Alternative to RL-CMDP with Bernstein bounds

We present RL-CMDP-B,a na l t e r n a t i v et oRL-CMDP which uses Bernstein empirical bounds Maurer and Pontil [2009].

At each episode l,t h ea l g o r i t h me s t i m a t e st h ed i s t r i b u t i o n sb yp l (x)=

n⌧ l 1 (x) ⌧ l 1
and maintains confidence intervals [p l (x), p l (x)]. These are built using Bernstein's empirical inequality Maurer and Pontil [2009], which implies that there exists constants B 1 ,B 2 such that with probability 1 3 , for each l 1 and x 2 X , .4) where ˆ l (x)= p pl (x)(1 pl (x)). Following e.g. Efroni et al. [2020], we re-write (D.3) as an extended LP by introducing the state-action occupation measure µ(x, a)=⇡(x, a)p(x). 8i, j, X

|p(x) pl (x)|  B 1 s ˆ 2 l (x) log( 6|X |⌧ l ) 1 ^(⌧ l 1) + B 2 log( 6|X |⌧ l ) 1 ^(⌧ l 1) , ( E 
x,a µ(x, a)⇠ i j (x, a)=0.

The second to fourth constraints enforce the compatibility of µ with the confidence intervals.

Controlling each entry of p with Bernstein bounds instead of the `1-norm allows for a simpler optimization problem than the extended LP (D.4). We get the following regret bound:

Theorem 71 (Regret guarantees). With probability 1 , the regret of RL-CMDP-B satisfies:

R(T )=O p |X |T log(|X |T/ )+|X | log(|X |T/ ) 2 R c (T )=O p |X |T log(|X |T/ )+|X | log(|X |T/ ) 2 .
With probability 1 , the representation loss satisfies:

k (C T ) ⇢k 1 = O 0 @ 1 g ⇤ s |X | log |X |T/ T + |X | log(|X |T/ ) 2 g ⇤ T 1 A .
utilisateurs des systèmes de recommandation. 2018]e td es u r r e p r é s e n t e rl e sg r o u p e sd é m o g r a p h i q u e s ,c u l t u r e l so up o l i t i q u e ss u rl e sm é d i a s L'équité dans les systèmes de recommandation est un point focal dans un débat plus large et actif sur les impacts sociétaux des algorithmes d'apprentissage automatique. Alors que les modèles d'apprentissage automatique continuent de gagner en traction dans notre vie quotidienne, il y a eu une préoccupation publique croissante quant au potentiel des modèles d'apprentissage automatique ài n t r o d u i r ed e sb i a i se td el ad i s c r i m i n a t i o nd a n sl e sd é c i s i o n sa l g o r i t h m i q u e s [START_REF] Buolamwini | Gender shades: Intersectional accuracy disparities in commercial gender classification[END_REF]Gebru, 2018, Barocas and[START_REF] Barocas | Big data's disparate impact[END_REF]. Par conséquent, l'équité est devenue un sujet central dans la recherche en apprentissage automatique, en particulier dans le contexte de la classification et de l'apprentissage supervisé [Barocas et al., 2019]. Face au potentiel des algorithmes pour perpétuer les biais et la discrimination dans la prise de décision, les chercheurs ont proposé une série de métriques et de méthodes d'équité pour répondre à ces préoccupations dans diverses tâches d'apprentissage supervisé, y compris la prédiction de la récidive, l'embauche et la notation de crédit. Ces méthodes visent à garantir que les algorithmes ne perpétuent pas des pratiques injustes, telles que les différences de traitement ou de résultats basées sur le sexe, la race ou d'autres caractéristiques protégées. Dans ce chapitre, nous nous pencherons sur le rôle clé de l'équité dans les systèmes de recommandation au sein du vaste et constamment évolutif champ de l'apprentissage automatique équitable, et nous présenterons nos contributions à ce domaine critique. Traditionnellement, l'étape de classement consiste simplement à trier les items par scores décroissants pour chaque utilisateur. Lorsque le système de recommandation dispose des véritables scores de pertinence, cette stratégie est optimale pour maximiser les mesures de classement standard, telles que le discounted cumulated gain (DCG) [Järvelin and Kekäläinen, 2002], qui mesure la qualité des classements du point de vue de l'utilisateur. Toutefois, il ne tient pas compte des producteurs d'items qui sont exposés dans les classements. Comme nous l'avons vu précédemment, il s'agit d'une question d'équité cruciale, car la visibilité accordée aux producteurs d'items (ou l'absence de visibilité) a des conséquences sociales réelles.

L'objectif principal de cette thèse est d'aborder la question de l'équité dans l'étape de classement des systèmes de recommandation. L'étape de classement est une étape cruciale au cours de laquelle le système de recommandation décide quels items seront recommandés à quels utilisateurs, une fois que les préférences de ces derniers ont été estimées. Il s'agit d'une décision collective qui a un impact àl af o i ss u rl e su t i l i s a t e u r se ts u rl e sp r o d u c t e u r sd ' i t e m s . P a rc o n s é q u e n t ,n o t r eo bj e c t i fe s td e veiller à ce que l'étape de classement tienne compte des intérêts des utilisateurs et des producteurs d'items, et les équilibre de manière équitable.

Sources d'inéquité. L'étape de classement, ou la combinaison des étapes d'apprentissage et de classement, peut avoir des conséquences involontaires et indésirables de différentes manières. L'étape de classement peut produire des effets de "winner-take-all", où certains groupes de producteurs d'items s'emparent de toute l'exposition disponible. Dans la solution de classement traditionnelle, qui consiste simplement à classer les items en fonction de leur score, même de petites différences de score entraînent de grandes différences d'exposition entre les producteurs d'items. Il en résulte un effet de longue traîne où quelques items populaires tendent à dominer les positions les plus élevées du classement, laissant de côté un grand nombre d'items moins populaires avec peu ou pas d'exposition (figure 1.3). Cet effet de longue traîne peut être problématique pour les petits producteurs, car ils luttent pour gagner en visibilité ou en reconnaissance, ce qui exacerbe encore la distribution en loi de puissance de l'exposition [Abdollahpouri et al., 2019b]. En outre, des biais systématiques dans l'estimation des préférences peuvent résulter de l'apprentissage de stéréotypes ou de biais de popularité [Mehrotra et al., 2018]. Ces biais à l'étape de l'apprentissage peuvent être amplifiés par l'étape du classement, où les items des groupes défavorisés dont les valeurs sont systématiquement sous-estimées ne sont finalement pas présentés aux utilisateurs (figure 1.2).

La combinaison de l'apprentissage et du classement peut également conduire à des résultats injustes du côté des utilisateurs. Au cours de l'étape d'estimation, les systèmes de recommandation s'appuient souvent sur des hypothèses de modélisation solides et sur l'apprentissage multitâche pour faire face à la rareté des données par utilisateur, avec des méthodes telles que la factorisation matricielle de faible rang [Koren et al., 2009]. La capacité limitée des modèles ou des hypothèses incorrectes peuvent laisser de côté les utilisateurs dont les schémas de préférence sont moins courants.

De ce fait, le système peut apprendre à tort les goûts stéréotypés des utilisateurs, tels que les associations sexuées entre les préférences des utilisateurs et les catégories d'emploi. L'étape de classement amplifie alors ces biais en classant les items en fonction des valeurs estimées, ce qui se traduit par de mauvaises performances en matière de recommandation pour les utilisateurs ayant des goûts non stéréotypés [Ekstrand et al., 2018]o up a rd e sb i a i sd a n sl ar e c o m m a n d a t i o n de certains contenus pour des groupes sensibles [Sweeney, 2013[START_REF] Imana | Auditing for discrimination in algorithms delivering job ads[END_REF]. En outre, dans le cas des marchés publicitaires, des biais dans la diffusion des publicités apparaissent lorsque la décision de classement tient compte des résultats d'une vente aux enchères dans laquelle les annonceurs sont en concurrence pour le même groupe d'utilisateurs [START_REF] Ali | Discrimination through optimization: How facebook's ad delivery can lead to biased outcomes[END_REF]. Par exemple, les annonceurs d'offres d'emploi sont parfois en concurrence avec des annonces de produits ciblant les femmes, ce qui fait qu'elles sont diffusées à moins de femmes que d'hommes.

F.2.2 Recommandation équitable vs. classification équitable

Apprentissage et prise de décision en matière de classification L'équité dans les systèmes de recommandation est un domaine de recherche essentiel dans le cadre plus large de l'équité dans l'apprentissage automatique, qui a fait l'objet d'une attention particulière ces dernières années. Si les systèmes de recommandation peuvent être décomposés en une étape apprentissage et une étape classement,d en o m b r e u s e sa u t r e sa p p l i c a t i o n sd ' a p p r e n t i s s a g ea u t o m a t i q u ec o m p o r t e n té g a l e m e n t ces composantes apprentissage et prise de décision [Kleinberg et al., 2018b, Kilbertus et al., 2020[START_REF] Corbett-Davies | Algorithmic decision making and the cost of fairness[END_REF]. Le cadre le plus étudié est celui de la classification équitable (binaire), où l'objectif est de prédire une étiquette binaire pour chaque individu, par exemple s'il remboursera ou non un prêt, afin d'aider à la prise d'une décision, comme l'acceptation ou le refus d'une demande de prêt. D'autres exemples courants sont la prédiction de la récidive et l'embauche [Corbett-Davies andGoel, 2018, Barocas et al., 2019]. Nous examinons comment les considérations d'équité dans les étapes d'apprentissage et de décision des tâches de classification sont liées aux considérations d'équité dans les étapes d'apprentissage et de classement des systèmes de recommandation.

Considérons un exemple classique dans la littérature sur l'apprentissage automatique équitable, où un prêteur utilise un algorithme pour déterminer s'il doit ou non approuver une demande de prêt [Hardt et al., 2016b[START_REF] Jia | When online dating meets nash so cial welfare: Achieving efficiency and fairness[END_REF]. Dans l'étape apprentissage,u na l g o r i t h m ed ' a p p r e n t i s s a g e supervisé produit un score pour chaque individu en estimant la probabilité qu'il appartienne à la classe positive (c'est-à-dire la probabilité qu'il rembourse le prêt). Ce score est prédit par un classificateur probabiliste formé sur la base de données historiques. Des injustices peuvent survenir lors de l'étape d'apprentissage lorsque les données utilisées pour former le modèle ne sont pas représentatives de la population à laquelle il est appliqué. Le modèle qui en résulte peut ne pas être performant sur des données inédites provenant d'une population différente, ou il peut apprendre des associations problématiques entre des attributs sensibles et des résultats. Dans l'exemple du prêt, si les données d'apprentissage contiennent une majorité de demandes de prêt infructueuses émanant de personnes d'une certaine race ou d'un certain milieu socio-économique, le modèle résultant peut produire des estimations biaisées en défaveur de ces groupes. Cela peut conduire àd e sr é s u l t a t si n j u s t e so ùc e r t a i n sg r o u pe ss ev o i e n ts y s t é m a t i q u e m e n tr e f u s e rl ' a c c è sa u xp r ê t s en raison d'une sous-estimation systématique de leur solvabilité. Comme nous l'avons vu dans la section précédente, les algorithmes d'apprentissage visant à prédire la valeur des items dans les systèmes de recommandation peuvent également surestimer la valeur des items populaires en raison de l'absence de retour d'information de la part des utilisateurs pour les items moins populaires dans les données historiques.

Dans l'étape de prise de décision, les individus sont classés comme positifs ou négatifs sur la base de leurs scores prédits. Dans l'exemple du prêt, la décision d'accepter une demande de prêt est basée sur le fait que le demandeur est prédit comme étant solvable, ce qui est fait en appliquant un seuil à la probabilité estimée de remboursement. Le seuil de décision peut avoir des implications importantes en termes d'équité, car il détermine quels individus sont considérés comme éligibles pour certaines opportunités ou services de la vie. En particulier, lors du choix de politiques de seuil spécifiques à un groupe (ou agnostiques), la distribution des résultats positifs qui en résulte peut ou non conduire à des gains de bien-être pour les groupes défavorisés [Kleinberg et al., 2018b[START_REF] Corbett-Davies | Algorithmic decision making and the cost of fairness[END_REF].

Dans les systèmes de recommandation, les algorithmes de classement prennent également une décision sur les bénéficiaires des résultats positifs. Cette décision est plus complexe que les seuils de classification binaires, et ce pour au moins deux raisons. Premièrement, elle consiste à produire un classement des items pour chaque utilisateur, au lieu d'un simple seuil par utilisateur.

Deuxièmement, elle implique des compromis complexes entre les intérêts des différentes parties prenantes qui apprécient différemment les recommandations : les utilisateurs recherchent les classements qui correspondent le mieux à leurs préférences, tandis que les items recherchent une forte exposition -par conséquent, la notion de résultat positif n'est pas absolue.

Dans cette thèse, nous nous concentrons sur l'équité de la décision qui se produit à l'étape du classement des systèmes de recommandation, plus précisément sur le problème de planification sociale qui consiste à choisir un compromis entre les utilités des utilisateurs et des items (nous clarifions plus tard les définitions des utilités dans la section 1.3). Cette position est similaire à celle de Kleinberg et al. [2018b]q u ia ffirme que les considérations d'équité devraient affecter la manière dont le planificateur social utilise les scores appris pour prendre une décision, plutôt que le choix de l'algorithme d'apprentissage, dans le contexte des problèmes de décision binaires (c'est-à-dire les admissions à l'université).

Critères d'équité dans la classification. Des critères d'équité ont été proposés pour les étapes d'apprentissage et de décision. L'équité des résultats obtenus lors de l'étape d'apprentissage a fait l'objet d'études approfondies dans le domaine de la classification. Les critères comprennent calibration entre les groupes et parité2 des scores prédits [Kleinberg et al., 2016, Pleiss et al., 2017].

Dans l'exemple du prêt, la parité exige que le score de crédit moyen soit le même pour tous les groupes, tandis que l'étalonnage exige que la probabilité de remboursement d'un prêt pour un score de crédit donné soit la même pour tous les groupes. Dans la littérature sur la recommandation équitable, quelques critères d'équité des scores ont été proposés [Yao andHuang, 2017, Islam et al., 2021], mais plusieurs auteurs ont souligné l'insuffisance de considérer les scores indépendamment de la décision finale, c'est-à-dire les classements [Beutel et al., 2019a, Singh and[START_REF] Singh | Fairness of exposure in rankings[END_REF]. En particulier, l'étalonnage des scores ne s'étend pas trivialement aux systèmes de recommandation [Steck, 2018], car l'impact du score d'un item n'est significatif que par rapport aux scores d'autres items [Beutel et al., 2019a].

Les critères d'équité dans l'étape de décision des tâches de classification visent généralement àé g a l i s e rl e sr é s u l t a t se n t r el e sg r o u p e ss e n s i b l e s . La parité démographique exige une probabilité égale de résultats positifs parmi les groupes sensibles [START_REF] Feldman | Certifying and removing disparate impact[END_REF], Zliobaite, 2015]e t l'égalité des chances [Hardt et al., 2016b]( o ué g a l i t éd e st a u xd ' e r r e u r [ Zafar et al., 2017a[START_REF] Bilal Zafar | Fairness constraints: A flexible approach for fair classification[END_REF]) visent à égaliser les probabilités de résultats positifs pour la classe positive à travers les groupes.

Geyik et al. [2019]p r o po s e n tu n em i s ee nc o r r e s po n d a n c ed el ap a r i t éd é m o g r a p h i q u ee td el ' é g a l i t é des chances dans le cadre du classement. Lorsque les items sont répartis en groupes sensibles, la parité démographique exige que les groupes d'items bénéficient d'une exposition égale dans les classements, tandis que l'égalité des chances est similaire à un critère populaire basé sur le mérite pour les classements que nous présentons dans la section 1. 3.5. Corbett-Davies et al. [2017], Hu and Chen [2020]i n s i s t e n ts u rl ec o û tp o u rl eb i e n -ê t r es o c i a ld e la recherche de la parité des résultats dans les problèmes de classification, car il est possible d'égaliser les résultats entre les groupes en privant les individus de résultats positifs sans les redistribuer aux individus défavorisés. Dans cette thèse, nous démontrons également les conséquences indésirables de l'application de contraintes d'équité sur l'exposition aux items (chapitre 3). Toutefois, nous soutenons que la réduction des inégalités dans la distribution des résultats est raisonnable dans le cas du classement, où la décision est allocative,p a r c eq u ' e l l ep e u tc o n d u i r eàd e sc h a n g e m e n t s positifs dans le bien-être social. En revanche, les décisions prises dans la plupart des problèmes de classification équitable ne sont pas allocatives, car il n'y a pas de budget sur le nombre de classifications positives [START_REF] Bilal Zafar | Fairness constraints: A flexible approach for fair classification[END_REF], 2017a, Hardt et al., 2016b, Agarwal et al., 2018]. En d'autres termes, ces travaux portent sur des problèmes de classification stricte plutôt que sur des problèmes de sélection. En pratique cependant, les décisions binaires d'acceptation/refus sont souvent budgétisées : il y a typiquement un budget fixe à dépenser dans les problèmes de prêt, et un nombre fixe de places dans les admissions à l'université. Les considérations budgétaires comme dans [Kleinberg et al., 2018b[START_REF] Emelianov | Fairness in selection problems with strategic candidates[END_REF]r a p p r oc h e n tl e sp r o b l è m e sd ec l a s s i fi c a t i o nd e s systèmes de recommandation où il y a un nombre fixe de créneaux de recommandation à allouer.

Dans ces contextes budgétisés, il est souhaitable de redistribuer les résultats, car un résultat positif qui est retiré à quelqu'un est nécessairement transféré àq u e l q u ' u nd ' a u t r e . N o u sp r é s e n t o n sd a n sl a problème d'allocation comme le problème de la répartition équitable de l'exposition.

Comme nous l'avons déjà discuté, l'approche traditionnelle dans les systèmes de recommandation est de maximiser uniquement l'utilité moyenne de l'utilisateur, en classant les items par pertinence décroissante pour chaque utilisateur. Cependant, cette approche peut avoir des effets indésirables, tels que des effets injustes de type "winner-take-all" et l'amplification des biais dans les scores estimés, comme décrit dans la Section 1.2.1.P a rc o n s é q u e n t ,n o t r em o t i v a t i o nàp r e n d r ee nc o m p t el ' é q u i t é de la répartition de l'exposition envers les utilisateurs et les producteurs d'items est d'atténuer et empêcher ces conséquences négatives.

F.4 Plan détaillé et contributions

Nous présentons maintenant le plan de cette thèse et résumons les contributions par chapitre, qui correspondent chacun à un article publié pendant la thèse.

--Les deux premiers chapitres, le chapitre 3 et le chapitre 4,s ec o n c e n t r e n ts u rl ' é q u i t éd el ' é t a p e de classement, dans un modèle de recommandation statique. Nous montrons que certaines approches populaires du classement équitable ne satisfont pas à ces principes. Par exemple, les contraintes d'équité basées sur le mérite peuvent diminuer l'utilité de l'utilisateur tout en augmentant les inégalités d'exposition entre les producteurs d'items, ce qui va àl ' e n c o n t r ed up r i n c i p ed et r a n s f e r tq u iv i s eàr é d u i r el e si n é g a l i t é s . P o u rs u r m o n t e rl e sl i m i t e sd e s approches existantes, nous proposons une nouvelle approche pour générer des classements équitables qui est fondée sur l'économie du bien-être. Elle consiste à maximiser les fonctions de bien-être concaves additives, qui sont une famille de fonctions de bien-être lisses. Ces fonctions de bien-être peuvent être interprétées comme des sommes d'utilités d'agents qui ont des rendements décroissants.

La propriété des rendements décroissants pour l'exposition signifie qu'"une vue supplémentaire compte plus pour les items qui ont 10 vues que pour ceux qui ont 10 millions de vues",c eq u i est particulièrement pertinent pour les systèmes de recommandation. Les classements obtenus en maximisant ces fonctions de bien-être satisfont à l'efficacité de Pareto et au principe de transfert de Pigou- Dalton. Nous introduisons également l'outil connexe des courbes de Lorenz généralisées, issu de l'économie du bien-être, pour évaluer l'équité des classements. Les courbes de Lorenz généralisées sont une représentation graphique qui permet de visualiser la distribution des utilités entre les utilisateurs et les items, et en particulier l'utilité des individus les plus mal lotis, que nous cherchons à améliorer. Du point de vue algorithmique, il est difficile d'optimiser les fonctions de bien-être globales qui tiennent compte de l'exposition des items, car l'exposition d'un item dépend des classements de tous les utilisateurs. Avant notre travail, les méthodes existantes relevaient ce défi avec des approches heuristiques sans aucune garantie ou contrôle sur les compromis réalisables. Nous proposons un algorithme efficace en termes de calcul pour un classement équitable basé sur la méthode Frank-Wolfe [Frank and Wolfe, 1956]. L'algorithme génère une politique de classement stochastique sous la forme d'une somme pondérée de politiques de classement déterministes. Cela élimine la nécessité d'une étape supplémentaire de décomposition de Birkhoff-von-Neumann [Birkhoff, 1940], qui était nécessaire dans les travaux antérieurs utilisant des classements stochastiques [Singh andJoachims, 2018, Wang andJoachims, 2021]. Notre algorithme est capable d'optimiser toute fonction concave des utilités des classements, ce qui englobe nos fonctions de bien-être additives, mais aussi les critères de classement équitable existants.

Nous simulons une tâche de recommandation musicale basée sur les données de Last.fm pour évaluer la performance de notre algorithme. Nos expériences confirment que les approches d'équité basées sur le mérite sont incapables de réduire l'inégalité entre les items et peuvent exacerber les effets "winner-take-all" lorsque les items populaires capturent une grande partie de l'exposition totale. En revanche, notre approche basée sur la maximisation des fonctions de bien-être additives permet d'obtenir de meilleurs compromis entre l'utilité totale de l'utilisateur et l'inégalité des utilités entre les items (mesurée par l'indice de Gini ou l'écart-type). En outre, en faisant varier les paramètres de la fonction de bien-être, nous sommes en mesure de rapprocher l'inégalité entre les items de zéro. Enfin, en ce qui concerne l'équité bilatérale, notre approche est capable de générer un large éventail de compromis entre l'équité pour les items et l'équité pour les utilisateurs, mesurée par l'utilité des utilisateurs les plus mal lotis (10 % et 25 %).

Comme notre cadre englobe les problèmes de recommandation réciproque, nous fournissons également une évaluation expérimentale sur une tâche de recommandation sociale basée sur des données Twitter. En maximisant une fonction de bien-être concave additive de l'utilité bilatérale des utilisateurs, nous sommes en mesure de générer un large éventail de compromis entre l'utilité totale et l'utilité des 10% les plus défavorisés. Le défi algorithmique de l'optimisation des GGF est qu'ils sont non différentiables et ne peuvent donc pas faire l'objet d'une optimisation par l'algorithme de Frank-Wolfe classique. Nous proposons d'adapter une variante de Frank-Wolfe pour les problèmes non lisses [Lan, 2013]quiutilisel'enveloppe de Moreau-Yosida comme technique de lissage [Moreau, 1962[START_REF] Yosida | Functional analysis[END_REF], et nous présentons une procédure efficace sur le plan du calcul pour calculer l'approximation lisse des GGF. --Les deux chapitres précédents se concentrent sur le problème de classement pour analyser ses propriétés depuis une perspective d'allocation équitable, en découplant les biais potentiels qui peuvent survenir lors de l'apprentissage. Cependant, il y a des limitations pratiques à la configuration batch précédente, dans laquelle l'apprentissage et la prise de décisions sont découplés, et une seule décision globale est prise pour tous les utilisateurs en même temps. Les systèmes de recommandation modernes interagissent avec les utilisateurs de manière en ligne : ils apprennent les valeurs personnalisées des items à partir des commentaires des utilisateurs, tout en décidant en temps réel ce contenu à afficher au utilisateur actuel. Les bandits contextuels sont un paradigme populaire pour modéliser ce contexte d'apprentissage et de prise de décisions personnalisées dans les systèmes de recommandation [Li et al., 2010]. En fait, nous fournissons un traitement approfondi du problème plus général des bandits contextuels avec des récompenses convexes (cbcr) [START_REF] Agrawal | An efficient algorithm for contextual bandits with knapsacks, and an extension to concave objectives[END_REF], qui est un problème de bandit multi-objectif. Dans cbcr,i lyau nv e c t e u rd ep l u s i e u r sr é c o m p e n s e sq u id é p e n dd ' u n contexte aléatoire, et le trade-off entre les récompenses est défini par une fonction concave. Ce setting de cbcr couvre une variété de problèmes au-delà du classement équitable, notamment l'optimisation de plusieurs métriques d'engagement utilisateur (par exemple, clics, temps de streaming) dans les systèmes de recommandation. Des works théoriques antérieurs ont traité des versions simplifiées de cbcr avec des espaces de politiques simples : [START_REF] Agrawal | Bandits with concave rewards and convex knapsacks[END_REF], Busa-Fekete et al.

[2017]s ec o n c e n t r e n ts u rl es e t t i n gn o nc o n t e x t u e lo ùl e sp o l i t i q u e ss o n td e sd i s t r i b u t i o n ss u rl e s actions, et [START_REF] Agrawal | An efficient algorithm for contextual bandits with knapsacks, and an extension to concave objectives[END_REF]t r a i t e n tu n er e s t r i c t i o nd ecbcr àu ne s p a c ed ep o l i t i q u e sfi n i .

Nous supprimons ces restrictions et présentons des garanties de regret pour le problème général de cbcr en prouvant une réduction de cbcr àd e sb a n d i t sc o n t e x t u e l sc l a s s i q u e sa v e cd e sr é c o m pe n s e s une perspective différente : nous nous concentrons sur la certification de ces systèmes, et nous nous focalisons sur l'équité pour les utilisateurs. Ce travail a été principalement mené au début du programme de doctorat, motivé par la grande résonance des audits pour l'équité côté utilisateurs dans les systèmes de publicité en ligne. Par exemple, Datta et al. [2015]on tconstatéquelesfemmes recevaient moins de publicités en ligne pour des emplois bien rémunérés par rapport à des hommes également qualifiés, tandis que [START_REF] Imana | Auditing for discrimination in algorithms delivering job ads[END_REF]o n to b s e r v éd e sd i s p a r i t é sl i é e sa ug e n r ed a n s les taux de livraison de publicités pour différentes entreprises proposant des emplois similaires.

Notre contribution à cette recherche est un complément aux audits existants de l'équité côté utilisateurs. Nous partons de l'observation que les audits existants ne contrôlent pas les disparités qui sont en accord avec les préférences des utilisateurs. Pour renforcer les conclusions de ces audits, nous proposons de tester un critère basé sur les préférences, l'envy-freeness,q u is t i p u l eq u ' a u c u n utilisateur ne devrait préférer les recommandations de ses pairs aux siennes. L'envy-freeness est un critère d'équité qui a été étudié pour la première fois dans la théorie du partage équitable de ressources [START_REF] Duncan | Resource allocation and the public sector[END_REF], et il a des racines similaires à celles du cadre conceptuel principal de cette thèse. Cependant, il mène à une évaluation différente dans le contexte des systèmes de recommandation, et le choix du critère d'équité dépend de l'application.

Dans les chapitres précédents 3 et 4,n o t r et r a v a i lé t a i tm o t i v ép a rd e sa p p l i c a t i o n so ùl e s producteurs d'items ne sont pas des annonceurs payant pour l'attention des utilisateurs, mais plutôt des créateurs de contenu revendiquant une juste part de l'exposition sur la plateforme. Les exemples typiques sont les plateformes de partage de vidéos en ligne et les services de streaming de musique. Dans ces applications, l'équité côté items est une préoccupation clé, et nous avons conçu des algorithmes qui améliorent les expositions des petits items à travers les classements de tous les utilisateurs. Nous avons également cherché à garantir que les utilisateurs dont les classements sont impactés par la promotion des petits items ne sont pas ceux pour lesquels les boosts sont les plus coûteux. Nous avons abordé l'équité bilatérale en améliorant l'exposition des items les plus mal lotis, tout en priorisant les utilités des utilisateurs les plus mal lotis. Les politiques de classement que nous avons développées dans les chapitres précédents ne sont pas garanties d'être envy-free pour les utilisateurs en général, car les politiques de classement optimales pour des objectifs qui comprennent un terme concave de fairness pour les items ne sont pas envy-free pour les utilisateurs en général.

Par exemple, si les utilisateurs Alice et Bob ont tous les deux envie de recevoir des publicités d'une entreprise populaire, mais que le concepteur promeut les employeurs moins populaires en boostant leurs publicités dans les recommandations de Bob, alors Bob sera envieux des recommandations d'Alice. En pratique, nous recommandons que notre certification de l'envy-freeness est utilisée dans les applications où l'équité côté utilisateur est la principale préoccupation et où l'équité pour les items n'est pas une priorité, comme dans les systèmes de publicité.

Globalement, notre perspective dans le Chapitre 6 est celle d'un auditeur qui se concentre uniquement sur l'évaluation de l'équité pour les utilisateurs, sans tenir compte de la question de savoir si l'inéquité du côté des utilisateur est une conséquence d'autres objectifs. Nous soutenons que la perspective de l'audit est aussi importante que celle du concepteur, compte tenu du rôle significatif joué par les audits d'équité pour les utilisateurs pour sensibiliser à la nécessité d'équité dans les systèmes de recommandation. De plus, les concepteurs peuvent utiliser les évaluations produites par les auditeurs comme des diagnostics supplémentaires pour améliorer leurs systèmes.

En fait, les audits existants ont conduit à des accords qui ont poussé les plateformes en ligne à modifier leurs algorithmes de recommandation pour se conformer aux nouvelles exigences d'équité des utilisateurs [START_REF] Bogen | Toward fairness in personalized ads[END_REF]. En plus de proposer de nouvelles méthodes pour concevoir des systèmes de recommandation qui sont équitables envers les utilisateurs et les items, nous avons également abordé un problème différent d'audit,q u ie s ta x és u rl ' équité côté utilisateur au Chapitre 6.M o t i v é sp a rd e sa u d i t s importants pour l'égalité dans la distribution des annonces d'emploi, nous proposons un audit pour l'absence d'envie, qui fournit des conclusions plus affinées mais qui est plus techniquement difficile.

Nous relevons ce défi technique en développant un algorithme de bandit d'exploration pure efficient en termes d'échantillons pour la tâche, qui ne dégrade pas de manière significative les performances de recommandation pour les utilisateurs échantillonnés pour l'audit.

Chapter F. Résumé de la thèse en français Notre recherche laisse plusieurs questions ouvertes. Celles-ci comprennent un traitement plus détaillé de l'équité bilatérale au niveau du groupe, une modélisation plus générale des utilités des utilisateurs et des items, et l'intégration de dynamiques réelles qui affectent les préférences et les comportements des utilisateurs et des items. De plus, bien que notre travail se concentre sur la perspective de la division équitable, le domaine du choix social offre des perspectives précieuses pour la communauté des recommandations qui méritent une exploration plus approfondie. Répondre àc e sq u e s t i o n sd i fficiles en conjonction avec nos contributions peut ouvrir des voies de recherche passionnantes. Malgré les questions restées ouvertes, notre recherche a fait des progrès significatifs dans l'amélioration de l'état de l'art actuel en matière d'équité pour les systèmes de recommandation.

Nous avons mieux compris les limites des contraintes d'égalité et de mérite sur l'exposition, ainsi que la manière de concevoir des objectifs de classement principiels. Nos résultats ont conduit au développement d'algorithmes efficaces qui peuvent être mis en oeuvre pratiquement, servant de tremplin pour le développement d'approches principielles de l'équité dans les systèmes de recommandation dans des contextes plus complexes. Nous espérons que notre travail inspirera de nouveaux progrès dans ce domaine.
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µ

  . The position-based model is defined by a set of weights b 2 R m + , where b k represents the probability that a user examines an item at position k.W e assume that the weights are non-increasing, i.e., b 1 ... b K and b k =0for any k>K. In the position-based model, the user utility is measured with the following ranking performance metric: User utility: u i (P )= ij P ijk b k

j . W

 . ef o l l o wt h ec o m m o na s s u m p t i o ni nt h er e c i p r o c a lr e c o m m e n d a t i o nl i t e r a t u r et h a tµ ij = µ ji [e.g.

  batch setting: There is a fixed, large batch of n users and a set of m items. First, the recommender system operates the learning step off-line:i te s t i m a t e st h ev a l u eo fe a c hi t e m for all the users in the batch, i.e., it produces a full matrix of estimated scores (μ ij ) 1in 1jm by learning from historical interactions and contextual information. Then, the system proceeds to the ranking step. It produces a global, static ranking policy P ,i . e . ,o n er a n k i n go fi t e m sp e r user, based on the estimated values μij .F i n a l l y ,t h er e c o m m e n d e rs y s t e mi sa b l et op r o d u c e static measures of users' satisfactions and items' exposures from the ranking policy P . 2. The contextual bandit setting: This is an online setting where the system observes users sequentially in sessions and learns from online interactions with users. We assume that the set of items is still fixed over time. At each timestep t,t h es y s t e mo b s e r v e sau s e ra n dt h e i rf e a t u r e sx t 2 X ⇢ R d ,e s t i m a t e st h ec o n t e x t -d e p e n d e n tv a l u e sf o rt h ec u r r e n tu s e rμ(x t ),a n dp r o d u c e s a ranking based on the current value model. The system updates the value model based on the noisy feedback that the user gives on the ranking (e.g, which items of the ranking the user examined and engaged with). The system measures user and item utilities dynamically over timesteps. In summary, the contextual bandit setting consists in a sequence of learning and ranking steps, where the learning step is based on the observed user features x t and past feedback from users, and the ranking step is based on the current model of user preferences μ(x t ).In Chapters 3 and 4,w ea d d r e s st h eb a t c hs e t t i n ga n df o c u so nt h er a n k i n gp r o b l e m ,a s s u m i n g that the ranking algorithm has access to a full matrix of user-item values (µ ij ) 1in 1jm.W ed on o t address the learning step of the batch setting in these chapters. Nonetheless, we do provide in Appendix A.3.3 an excess risk bound, which provides guarantees on the true value of the ranking objective when the algorithm uses estimated values (μ ij ) 1in 1jm

  ep r o p o s ei nt h i st h e s i st ofi n dr a n k i n gp o l i c i e sP by maximizing global welfare functions of the form of F (P ) (Equation (1.2)), where F is a concave function of the ranking policy P .W ec h o o s et ofi n dP in the set P which is the convex hull of deterministic ranking policies, or equivalently, the convex set of stochastic ranking policies. We follow the line of work on fair ranking which also considers randomized rankings [e.g.[START_REF] Singh | Fairness of exposure in rankings[END_REF], because they enable the use of convex optimization techniques to generate the recommendations, which would otherwise involve an intractable combinatorial optimization problem in the space of all users' rankings.

  Chapters 3 and 4,w ea d d r e s s e dt h ep r o b l e mo fs o c i a lp l a n n i n gi nr e c o m m e n d e rs y s t e m s , where we seek to trade-off users' and items' utilities for the design of two-sided fair rankings. In Chapter 6,w et a k ead i fferent perspective: we address the audit of recommender systems, and focus on user-side fairness. This work was mostly conducted at the beginning of the PhD program, motivated by the large resonance of audits for user fairness in ad systems. For instance, Datta et al. [2015]f o u n dt h a tw o m e nr e c e i v e df e w e ro n l i n ea d sf o rh i g h -p a y i n gj o b st h a ne q u a l l yq u a l i fi e d men, while Imana et al. [2021]o b s e r v e dg e n d e r -b a s e dd i s p a r i t i e si na dd e l i v e r yr a t e sf o rd i fferent

  of Chapter 6 of this thesis discusses the compatibility of envy-freeness as user-side fairness criterion with usual item-side fairness criteria. Patro et al. [2020]a l s oc o n s i d e r se n v y -f r e e n e s si nat w o -s i d e df a i r n e s sf r a m e w o r k ,

  Classification frameworks ofZehlike et al. [2022a]. In this survey article on fairness in ranking, existing fairness interventions are examined beyond mere technical considerations and analyzed into the underlying value framework and socio-technical context. The authors explore four normative dimensions, each contributing to a comprehensive understanding of fairness in ranking.

Frank-

  Wolfe algorithm has a O(m + K ln K) time cost per user (as formally stated in Proposition 5 of Chapter 3 and Proposition 11 of Chapter 4). Importantly, this provides us with an algorithm that decentralizes the computation of rankings across users, while the main technical challenge brought by item-side fairness of exposure is the coupling of the users' rankings (since the exposure of an item is calculated across all rankings). This result also guides us towards the development of fast ranking algorithms in the online setting where users are served one at a time, which we present in Chapter 5.

Generalized

  Gini welfare functions Welfare functions and inequality measures alike define normative judgements on how less inequality is desired. These values are often described in terms of redistribution or transfers from better-off to worse-off individuals in the population. The welfare function of the classical Gini index (2.4) gives equal weight to the cumulative share of each fraction of the population, in the sense that each point of the generalized Lorenz curve U i has equal weight (2.4) (which corresponds to giving more weight to worse-off individuals of the population, where the weight is a linear function of the rank, as shown by the weight n i+1 n assigned to u "

  s u p p l e m e n t s the information given by the Bonferroni index by comparing the overall income mean to the income means of the population's wealthiest individuals. Unlike the classical Gini index, the Bonferroni and De Vergottini indices are sensitive to the precise location of utility transfers within the ordered utility profile. The Bonferroni welfare functions is a GGF with weights w i = P n j=n i+1 1 jn , while the De Vergottini welfare functions is a GGF with weights w i = P n j=i 1

  Several well-known inequality indices belong to the class of generalized entropy indices from [Shorrocks, 1980]. For example, E 1 (u) is the Theil index, and E 2 (u) is half the squared coefficient of variation. Note that the coefficient of variation is a normalized standard deviation, which is what we use to compute utility/inequality trade-offs in Chapter 3.G e n e r a l i z e dE n t r o p yi n d i c e sa r ea l s o related to the Atkinson index of [Atkinson

  recommendation systems that aim to account for user preferences. In Chapter 6,w ep r o p o s et h e social choice criterion of envy-freeness as a preference-based fairness criterion for personalized recommendation, which ensures that no user would prefer the recommendation received by another user. Envy-freeness was also studied as a user-side fairness criterion in Patro et al. [2020], but without addressing the challenge of measuring envy under noisy feedback. Saito and Joachims [2022]r e c e n t l yu s e di tf o ri t e m -s i d ef a i r n e s si nam o d e lt h a tc o n s i d e r st h eu t i l i t i e so fi t e m sb e y o n d am e r ep r e f e r e n c ef o rh i g he x p o s u r e .Preference-based fairness criteria have been discussed in several other aspects by the machine learning community. The framework of envy-free classification[Balcan et al., 2018]f o c u s e so n classification problems with a known auxiliary utility function of predictions. The recent work on preference-informed individual fairness[Kim et al., 2019]c o m b i n e st h en o t i o n so fd i s t a n c ebased individual fairness of[START_REF] Dwork | Fairness through awareness[END_REF]a n de n v y -f r e e n e s s ,b u tr e q u i r e sa c c e s st ob o t hu s e r preferences and a measure of similarity between individuals. In Chapter 6,w eaddressapersonalized recommendation setting, where the preferences of users are unknown and must be estimated by the auditor to estimate envy from noisy feedback.
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  |X | denotes the cardinal of the set X .G i v e nn 2 N,w ed e n o t eb yJnK = {1,...,n}.T h es e to f users N is identified with {1,...,|N |} and the set of items I is identified with {|N | +1,...,n} where n = |N | + |I|.F o r(i, j) 2 N ⇥ I,w ed e n o t eb yµ ij the value of item j to user i.

  3.3 is devoted to the comparison with this type of approaches. Most of these works use a notion of fairness oriented towards items only. Towards two-sided fairness,Wang and Joachims [2020]p r o m o t eu s e r -s i d ef a i r n e s su s i n gc o n c a v e functions of user utilities, similarly to us. Other works use equality constraints to define user-side Lorenz curves of user and item utilities, and develop a new conceptual and algorithmic framework for fair ranking. The generality of the approach is showcased on several recommendation tasks, including reciprocal recommendation.

  Two-sided fairnessDo et al. [2021c]p r o p o s et oa d dau s e r -s i d ef a i r n e s sc r i t e r i o nt ot h et r a d eoff above, to ensure that worse-off users do not bear the cost of reducing exposure inequalities among items. Their evaluation involves multi-dimensional trade-offsb e t w e e ns p e c i fi cp o i n t so ft h e generalized Lorenz curve. Using the formulation (4.5) of GGFs, trade-offsb e t w e e nm a x i m i z i n g

  g., Thekumparampil et al., 2020a]. The parameter thus controls the trade-off between the smoothness and the quality of the approximation of h. Algorithm 1: Computation of Π C( w)

For x 2

 2 R n ,a n d 2 S n ,l e tu sd e n o t eb yx σ =( x (1) ,...,x (n) ).F u r t h e r m o r e ,l e tC(x) denote the permutahedron induced by x,d e fi n e da st h ec o n v e xh u l lo fa l lp e r m u t a t i o n so ft h ev e c t o rx:

  Thus, h is the support function of the convex set C( w),s i n c e :

  is obtained by sorting μij in increasing order, or equivalently, by sorting μij in decreasing order. Since the computation of the gradient of Moreau envelopes costs O(n ln n + n ln m) operations using Alg. 1,t h e nb yP r o p . 10 at each iteration, the cost of the algorithm is dominated by the top-K sort per user, each of which has amortized complexity of O(m + K ln K): Proposition 11. Each iteration costs O(nm + nK ln K) operations. The total amount of storage required is O(nKT ). In conclusion, FW-smoothing has a cost per iteration similar to the standard Frank-Wolfe algorithm for ranking with smooth objective functions. The cost of the non-smoothness of the objective function is a convergence rate of 1/ p T , while the Frank-Wolfe algorithm converges in O(1/T ) when the objective is smooth [Clarkson, 2010].

  [2020],Do et al. [2021c],Wang and Joachims [2021]. For each dataset, a full user-item preference matrix (µ i,j ) i,j is obtained by standard matrix factorization algorithms 8 from the incomplete interaction matrix, following the protocol of[Do et al., 2021c]. Rankings are inferred from these estimated preferences. The exposure weights b are the standard weights of the discounted cumulative gain (DCG) (also used in e.g.,[START_REF] Singh | Fairness of exposure in rankings[END_REF],Biega et al. [2018],Morik et al. [2020]): 8k 2 JKK,b k = 1 log 2 (

  et al. [2020]a d d r e s st h et r a d e -o ff of Task 1, since they compare various recommendation strategies based on the utility of users and the Lorenz curves of items (see [Patro et al., 2020,F i g . 1 ] ) ,r e c a l l i n gt h a tt h es t a n d a r dG i n ii n d e xi so f t e nd e fi n e da s1 2A where A is the area under the Lorenz curve [Yitzhaki and Schechtman, 2013]. Their fairness constraints are slightly different though, as their algorithm FairRec 9 guarantees envy-freeness for users, and a minimum exposure of nkbk m

For

  each fairness metho d, Pareto frontiers are generated by varying .S i n c ePatro et al. [2020]'s algorithm FairRec does not scale, we compare to FairRec only on Lastfm-2k.
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  with respect to k.k 2 on an open set containing K. Assumption B. Assumption A holds and f has C-Lipschitz-continuous gradients w.r.t. k.k 2 on K.The most general version of our algorithm, described in AppendixB.4,r e m o v e st h en e e df o rt h e smoothness assumption using smoothing techniques. We describe an example in Section 5.3.3. In the rest of the paper, we denote byD K =s u p z,z 0 2K kz z 0 k 2 the diameter of K,a n du s e C = C2 D 2 K . We now give two examples of this problem setting, motivated by real-world applications in recommender systems, and which satisfy Assumption A.

  3.A p p e n d i xB.9 provides the analysis for the general case.As noted byDo et al. [2021c], Frank-Wolfe algorithms are particularly suited for fair ranking in the position-based model. This is illustrated by line 4 ofAlg. 3, where for ũ 2 R m , top-k(ũ) outputs ap e r m u t a t i o n( m a t r i x )o fJmK that sorts the top-k elements of ũ. Alg. 3 is thus computationally fast, with a cost dominated by the top-k sort. It also has an intuitive interpretation as giving items an adaptive bonus depending on rf (e.g., boosting the scores of items which received low exposure in previous steps). The following result is a consequence of[Do et al., 2021c, Theorem 1]: Proposition 15. Let t 2 N ⇤ and μt such that 8i 2 JmK, μt,i = µ i (x t ) and μt,m+1 = vt b(x t ) | viewed as a column vector, with v defined in line 3 of Algorithm 3. Then, under Assumption D, a t defined on line 4 of Algorithm 3 satisfies: hrf (ŝ t 1 ) | μt a t i = argmax a2A hrf (ŝ t 1 ) | μt ai.

  Thus, considering only d, T, k and = 0 Alg. 3 has regret R T  O dk ln(T/ ) p T w.p. at least 1 .

  has been done to audit recommender systems Sweeney [2013],Asplund et al. [2020],[START_REF] Imana | Auditing for discrimination in algorithms delivering job ads[END_REF]. For instance,Datta et al. [2015]f o u n dt h a tw o m e nr e c e i v e df e w e ro n l i n ea d sf o rh i g h -p a y i n g jobs than equally qualified men, while[START_REF] Imana | Auditing for discrimination in algorithms delivering job ads[END_REF]o b s e r v e dd i fferent delivery rates of ads depending on gender for different companies proposing similar jobs.

  [2012]. The second axis is whether fairness is a question of parity (predictions [or prediction errors] should be invariant by group or individual) Corbett-Davies and Goel [2018], Kusner et al. [2017], or preference-based (predictions are allowed to be different if they faithfully reflect the preferences of all parties) Zafar et al. [2017b], Kim et al. [2019], Ustun et al. [2019]. Our work takes the perspective of envy-freeness, which follows the preference-based approach and is aimed towards individuals. The literature on fair recommender systems covers two problems: auditing existing systems, and designing fair recommendation algorithms. Most of the auditing literature focused on group parity in recommendations Hannak et al. [2014], Lambrecht and Tucker [2019], and equal user utility Mehrotra et al. [2017], Ekstrand et al. [2018], while our audit for envy-freeness focuses on whether personalized results are aligned with (unknown) user preferences. On the designing side, Patro et al. [2020], Ilvento et al. [2020] cast fair recommendation as an allocation problem, with criteria akin to envy-freeness. They do not address the partial observability of preferences, so they cannot guarantee user-side fairness without an additional certificate that the estimated preferences effectively represent the true user preferences. Our work is thus complementary to theirs. While we study fairness for users, recommender systems are multi-sided Burke [2017], Patro et al. [2020], thus fairness can also be oriented towards recommended items Celis et al. [2017b], Biega et al. [2018], Geyik et al. [2019].

  a|x) . We show their relation to envy-freeness: Proposition 17. With the above notation:

  c o m p a r e st h er e c o m m e n d a t i o n so fat a r g e tu s e rt ot h o s e of all other users, and (b) these comparisons must be made for all users. In practice, as we show,

  satisfies the conservative constraint (6.

  al i k ei sp r o b a b l ym o r ei n f o r m a t i v eo fau s e r ' sp r e f e r e n c et h a nac l i c k . S e v e r a lm e t h o d sh a v eb e e n

  ,b et h el a s ti n d e x( + 1 )s u c ht h a tt h e smallest values of u ⇤ and u are equal (m =1if the smallest values are different).

  3,a n dd e s c r i b em o r ep r e c i s e l yh o ww ea p p l i e d quality-weighted exposure and equality of exposure in reciprocal recommendation.

  For the three ob jectives describ ed, Figure B.1 represents the values of the user and item objectives (left and middle), and the value of the objective f (right) over time, achieved by the competing algorithms on Lastfm-50.

Figure B. 2

 2 Figure B.2 shows the objective values for Gini and welf on Lastfm-2k.W eo b s e r v es i m i l a rr e s u l t s

  Fairness trade-off for fixed T On the larger Lastfm-2k dataset, we study the tradeoffsbe t w e e n user utility and item inequality obtained by FW-LinUCBRank and FairLearn on Figure B.3 after T = 10 6 rounds. The Pareto frontiers are obtained as follows: FW-LinUCBRank optimises for Gini, in which we vary ,a n df o rFairLearn we vary the constraint value c at fixed ↵ =1.F i g u r e5.1 in Section 5.5 of the main paper illustrated the same Pareto frontier but for 5⇥ more iterations and
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 60 Generic Frank-Wolfe algorithm for cbcr. input: initial point z 0 2 K,A p p r o x . R L O Oc o n fi d e n c ep a r a m e t e r for t =1...T do 2 Observe x t ⇠ P 3 Pull a t ⇠ A(h t ,x t , 0 ) // Explore/exploit step 4 Observe reward r t 2 K,u p d a t et e m p o r a la v e r a g eo fo b s e r v e dr e w a r d sŝ t 5

Assumption B 0 .

 0 with respect to k.k 2 on an open set containing K. Assumption A 0 holds and f has C-Lipschitz-continuous gradients w.r.t. k.k 2 on K.

  .1,t h e nr a n d o m i z e ds m o o t h i n gi nS e c t i o nB.6.2.A si n Appendices B.4 and B.5,w ef o c u so nt h eg e n e r a lf r a m e w o r kd e s c r i b e di nA l g o r i t h m6.

⌘ 0 2

 0 We reformulate the lemma ab ove in the language of App endix B.4:Lemma 39. Under Assumption A, assuming furthermore that f is L-Lipschitz on R D . Let f t = f t with t = 0p t+1 . Then f and (f t ) t2N satisfy Assumption E with the corresponding values of 0 and L, M 2 = L 2 and M 1 = L 2 0 2 . Proof. By Lemma 38, f t is L-Lipschitz on R D for every t,a n dw eh a v eM 2 = L 2 0 2 .M o r e o v e r , Lemma 38 also gives 0

  regret term is bounded using Theorem 3 by Abbasi-Yadkori etal. [2011]. The result applies as-is, except that they assume rewards |✓ | xt |  1, which is not the case here. The bound is still valid without changes, as in our case we have | max a2A μ(x t ) | a μ(x t ) | a t |  LD K . The steps in the proof where they use the assumption |✓ | xt |  1 is below 

  [2011]a n dt h es e c o n do n ei st r u ei n our case because 2↵ t ( 0 ) LD K .F r o mh e r eo n ,t h ep r o o fo fAbbasi-Yadkori et al. [2011]'s regret bound follows the same as the original result. 4 Theorem 3 from Abbasi-Yadkori et al. [2011]g i v e s us the first term of the regret bound of the theorem, which is true with probability at least 1 0 /2 in our case because we use ↵ t ( 0 /2).

0 2t

 0 0.A p p l y i n gau n i o nb o u n da n dt a k i n g 0 t =

  [2011]t oc a s c a d eu s e rm o d e l s in rankings.

p. 1 0 / 3 , 3 .

 033 S t e p2u s e sa na d d i t i o n Azuma inequality valid w.p. 1 0 /3, and step 3 uses an additional Azuma inequality which valid with probability 1 0 /Theorem 16. Under Assumptions B, C and D, for every 0 > 0,e v e r yT 2 N ⇤ ,e v e r y D 2 X k, with probability at least 1 0 , Algorithm 3 has scalar regret bounded by only d, T, k and = 0 Alg. 3 has regret R T  O dk ln(T/ ) p T w.p. at least 1 . Proof. Let > 0 and use 0 := 3 /4 and := /4 in the bound on R T obtained by applying Lemma 50 and Theorem 34.N o t i c et h a tU s i n g D 2 X k and D K = O(k),w eh a v e :

  2,definetheproblem in Section D.3,d e fi n ea n ds t u d yo u rt h r e es t r a t e g i e si nS e c t i o n sD.3.2, D.4 and D.5,a n a l y s eo u r experiments in Section D.6 and conclude in Section D.7. 

  ag i v e na t t r i b u t ev a l u ea r es p e c i fi e d ;t h eg o a li st ofi n dafi x e d -s i z ec o m m i t t e eo fm a x i m a ls c o r e satisfying the constraints. In the same vein, Aziz [2019]c o n s i d e r ss o f tc o n s t r a i n t s ,a n dBei et al. [2020]d on o tr e q u i r et h es i z eo ft h ec o m m i t t e et ob efi x e d . 1

  Finding a representative committee (typically, a panel of citizens) with respect to a set of attributes, using sortition,i st h et o p i co fa tl e a s tt w or e c e n tp a pe r s .Benadè et al. [2019]s h o wt h a ts t r a t i fi c a t i o n( r a n d o ms e l e c t i o nf r o ms m a l ls u b g r o u p sd e fi n e db y attribute values, rather than from the larger group) only helps marginally.[START_REF] Flanigan | Neutralizing self-selection bias in sampling for sortition[END_REF]g o further and consider this three-stage selection process: (1) letters are sent to a large number of random individuals (the recipients);

E

  and Lemma 69,a n dt h es e c o n dt e r mi sb o u n d e db yt h em a r t i n g a l ea r g u m e n tu s i n gL e m m a70. Hence, under E we have for any i, j:

  a) p l (x)

  sociaux et les résultats de recherche. Par exemple, des recherches ont montré que les femmes sont systématiquement sous-représentées dans les résultats de recherche pour diverses professions[START_REF] Kay | Unequal representation and gender stereotypes in image search results for occupations[END_REF]. Nous fournissons un nouvel exemple de cela à la Figure1.2,o ùl e sr é s u l t a t sd el a recherche pour le terme "DJ" montrent principalement des DJs masculins. D'autres recherches sur Twitter ont montré que leur algorithme de recommandation favorisait le contenu des politiciens et des médias d'extrême droite sur le contenu de gauche[START_REF] Huszár | Algorithmic amplification of politics on twitter[END_REF], une découverte qui a reçu une grande couverture médiatique1 .L e ss y s t è m e sd er e c o m m a n d a t i o no n té g a l e m e n tl ep o t e n t i e l de favoriser de manière disproportionnée les créateurs et les artistes établis sur les plateformes de partage de contenu, conduisant à la marginalisation et à l'éventuel déclin de ceux qui sont plus petits et qui ne reçoivent pas assez d'exposition pour réussir[Mehrotra et al., 2018]. Pour atténuer l'impact potentiellement négatif des systèmes de recommandation sur les producteurs d'items, il est crucial d'évaluer soigneusement leurs implications sociétales et de s'assurer qu'ils ne désavantagent pas injustement certains groupes.Du côté des utilisateurs, les systèmes de recommandation sont traditionnellement conçus pour leur fournir les items les plus pertinents, un objectif qui semble en adéquation avec leurs intérêts.Cependant, des inquiétudes ont été soulevées ces dernières années quant à l'impact des algorithmes 1 voir par exemple, The Guardian https://www.theguardian.com/technology/2021/oct/22/ twitter-admits-bias-in-algorithm-for-rightwing-politicians-and-news-outlets de recommandation sur les utilisateurs. Des audits des systèmes de recommandation ont révélé des disparités dans le contenu livré à divers groupes sociaux d'utilisateurs. Par exemple, Datta et al. [2015]ad é c o u v e r tq u el e sf e m m e sé g a l e m e n tq u a l i fi é e sr e c e v a i e n tm o i n sd ep u b l i c i t é se nl i g n e pour des emplois bien rémunérés que les hommes. Pour prévenir le risque de livraison inéquitable d'opportunités à travers les utilisateurs, des efforts significatifs ont été faits pour auditer les systèmes de recommandation pour des biais involontaires ou de la discrimination envers leurs utilisateurs. Ces efforts appellent au développement de nouveaux algorithmes de recommandation qui offrent un accès équitable à l'information et aux opportunités à leurs utilisateurs. Étant donné les impacts réels des systèmes de recommandation sur leurs utilisateurs et les producteurs d'items, l'équité dans les systèmes de recommandation est devenue un sujet central dans la recherche en apprentissage automatique et en récupération de l'information. L'équité dans les systèmes de recommandation peut être examinée d'au moins deux côtés différents : le côté des items et le côté des utilisateurs. Du côté des items, l'objectif est de fournir aux producteurs d'items une part équitable de l'exposition dans les recommandations. Du côté des utilisateurs, il est nécessaire de s'assurer que les systèmes de recommandation ne créent pas ou n'amplifient pas de biais involontaires et fournissent des recommandations qui bénéficient à tous les utilisateurs. Il yau n ed e m a n d ec r o i s s a n t ep o u rd e ss y s t è m e sd er e c o m m a n d a t i o nq u ia t t e i g n e n ts i m u l t a n é m e n t ces deux objectifs, afin de maintenir un écosystème de recommandation sain qui sert les intérêts de toutes les parties prenantes [Patro et al., 2020, Abdollahpouri et al., 2020]. L'impact sociétal des systèmes de recommandation est significatif, et assurer l'équité pour les utilisateurs et les producteurs d'items est crucial pour éviter de perpétuer ou d'amplifier les biais et les inégalités existants.

F. 2

 2 Problèmes d'équité dans les systèmes de recommandation F.2.1 Sources d'inéquité dans les systèmes de recommandation Aperçu des systèmes de recommandation La tâche d'un système de recommandation est de fournir à chacun de ses utilisateurs une liste d'items classés, qui sont sélectionnés à partir d'un vaste ensemble d'items candidats (par exemple, des vidéos) fournis par des producteurs (par exemple, des créateurs de vidéos). Le système de recommandation évalue la qualité des classements à l'aide de "vrais" scores de pertinence, qui mesurent la valeur d'un item pour un utilisateur. À un niveau élevé, les algorithmes de recommandation s'appuient sur deux étapes pour générer des recommandations classées : 1. Apprentissage (Learning ): Estimer la valeur de chaque item pour chaque utilisateur. Cette opération est réalisée à l'aide d'un modèle d'apprentissage automatique qui s'appuie sur les interactions passées des utilisateurs avec les items, les caractéristiques des items (par exemple, la catégorie, la date de publication) et les caractéristiques de l'utilisateur (par exemple, l'âge, le pays). 2. Classement (Ranking ): Choisir un classement des K meilleurs items pour chaque utilisateur en fonction des scores estimés. Il en résulte une politique de classement personnalisée, dans le cadre de laquelle des listes d'items différentes sont recommandées à différents utilisateurs en fonction de leurs préférences prédites.

Chapitre 3 :

 3 L'équité dans les classements avec des fonctions de bien-être concaves additives. Nous proposons d'évaluer l'équité des classements pour les utilisateurs et les items dans les systèmes de recommandation sur la base des principes fondamentaux de justice distributive de l'économie du bien-être, fondés sur l'efficacité de Pareto et le principe de transfert de Pigou-Dalton. 

  Grâce à cette représentation, nous pouvons observer la quantité d'utilité prélevée sur les individus les mieux lotis pour augmenter l'utilité des individus les moins bien lotis, lorsque l'on fait varier les paramètres de la fonction de bien-être additive.Notre cadre conceptuel est également le premier à aborder simultanément l'équité dans les problèmes de recommandation réciproque et non réciproque. La recommandation réciproque est un cadre spécifique qui a été relativement négligé par la littérature sur l'équité et dans lequel les utilisateurs sont également des items. Leur utilité est donc double : ils bénéficient des recommandations qu'ils reçoivent et du fait d'être recommandés à d'autres utilisateurs. Nous montrons que l'approche de la fonction de bien-être pour la recommandation non réciproque peut être étendue au cas réciproque en utilisant notre nouvelle notion d'utilité bilatérale, afin de mieux servir les utilisateurs les plus mal lotis.

Chapitre 4 :

 4 Équité dans les classements avec les fonctions de bien-être de Gini généralisées. Nous proposons une autre approche de classement équitable basée sur les fonctions de bien-être de Gini généralisées (GGF), qui constituent une classe de fonctions de bien-être plus expressive que les fonctions de bien-être additives précédentes. L'un des inconvénients des fonctions de bien-être de Gini généralisées par rapport aux fonctions de bien-être additives est qu'elles ne peuvent pas être exprimées comme une somme d'utilités d'agents à rendements décroissants. Bien que nous perdions cette interprétation intuitive, nous gagnons en expressivité puisque les GGF sont capables d'exprimer directement des critères d'équité basés sur les quantiles d'utilité (par exemple, "maximiser l'utilité des 10 % les moins bien lotis"). Les GGF couvrent également des mesures d'inégalité plus classiques telles que l'indice de Gini, qui est largement utilisé dans la mesure des inégalités et, plus récemment, dans la littérature sur l'équité dans les systèmes de recommandation. Bien que les GGF n'aient pas d'interprétation intuitive en tant que somme d'utilités à rendements décroissants, leur principal avantage est qu'ils généralisent divers critères d'équité existants pour le classement. En soulignant la généralité des GGF, nous prouvons également que tous les classements Lorenz efficaces peuvent être générés en maximisant les GGF.

  Nous menons des expériences sur des tâches de recommandation de films et de musique et comparons notre algorithme qui optimise les GGF aux méthodes de recommandation précédentes, yc o m p r i sn o t r ep r o p r ea p p r o c h eb a s é es u rl e sf o n c t i o n sd eb i e n -ê t r ec o n c a v e sa d d i t i v e sd uc h a p i t r e 3. Comme prévu, nous constatons que notre approche basée sur les GGF permet d'obtenir de meilleurs compromis entre l'utilité totale de l'utilisateur et l'inégalité des items mesurée par l'indice deGini. En effet, les GGF peuvent être instanciés en fonction de l'indice de Gini et notre variante de Frank-Wolfe permet une optimisation directe de cette mesure non différentiable. Pour l'équité bilatérale, nous obtenons également des compromis supérieurs entre l'utilité des 25 % d'utilisateurs les plus mal lotis et l'indice de Gini des utilités des items, lorsque les GGF côté utilisateur et côté item sont instanciés en fonction de ces critères. Des expériences sur une tâche de recommandation réciproque basée sur des données Twitter montrent des résultats similaires lors de l'optimisation des compromis entre l'utilité des 25 % d'utilisateurs les plus mal lotis et l'utilité totale de l'utilisateur.

Chapitre 5 :

 5 Classement équitable dans le contexte du bandit contextuel. Nous traitons le problème de classement équitable dans le contexte du bandit contextuel, qui est le paradigme choisi pour les systèmes de recommandation personnalisés en ligne qui apprennent à générer des recommandations à partir des commentaires des utilisateurs. Nous présentons un algorithme générique qui fonctionne pour de nombreux objectifs de classement équitable, y compris les fonctions de bien-être lisses de Chapitre 3 et les fonctions de bien-être non lisses de Chapitre 4. Ceci est le premier algorithme avec des garanties de regret pour le classement équitable dans le contexte du bandit contextuel. De plus, l'algorithme est rapide et a une interprétation intuitive : à chaque étape, l'algorithme donne un bonus adaptatif aux items qui ont reçu une faible exposition dans les recommandations précédentes, et le bonus dépend du gradient de l'objectif de classement équitable.

  scalaires. Notre preuve repose sur une interprétation géométrique de cbcr comme un problème d'optimisation sur l'ensemble convexe de tous les récompenses espérées atteignables, et utilise des techniques d' analyse théorique de Frank-Wolfe en optimisation convexe avec contraintes. Sur le plan expérimental, nous simulons une tâche de classement en ligne basée sur des données de recommandation de musique. Nous observons que par rapport à des algorithmes de bandit contextuel heuristiques pour le classement équitable, les algorithmes utilisant notre réduction atteignent la plus haute valeur de l'objectif de classement équitable à mesure que le nombre d'étapes augmente. Cela montre l'avantage d'un algorithme de bandit avec garanties comparé à des héuristiques sans garanties théoriques. Lorsque l'objectif de classement équitable est un trade-off entre l'utilité moyenne de l'utilisateur et l'inégalité entre les items, notre algorithme de bandit obtenu par réduction obtient une utilité moyenne supérieure à celle des algorithmes de bandit existants à tous les niveaux d'inégalité entre les items. --Dans les chapitres 3 et 4,n o u sa v o n sé t u d i él ep r o b l è m ed el ap l a n i fi c a t i o ns o c i a l ed a n sl e s systèmes de recommandation, où l'on cherche à faire trade-off entre les utilités des utilisateurs et des items pour concevoir des classements équitables à deux faces. Dans le chapitre 6,n o u sp r e n o n s

Chapitre 6 :

 6 L'équité pour les utilisateurs comme absence d'envie. Dans le Chapitre 6, nous proposons d'évaluer l'équité des systèmes de recommandation pour leurs utilisateurs avec le critère de envy-freeness (absence d'envie) issu de la division équitable en théorie du choix social.Transposé au contexte de la recommandation, le critère envy-freeness stipule que chaque utilisateur devrait préférer ses recommandations à celles des autres utilisateurs. Par exemple, dans un système de recommandation d'emploi où deux utilisateurs, Alice et Bob, cherchent des postes de chauffeur de taxi[START_REF] Ali | Discrimination through optimization: How facebook's ad delivery can lead to biased outcomes[END_REF], si Bob est le seul à recevoir des annonces pour des emplois de chauffeur, alors le système est jugé inéquitable par le critère envy-freeness. Comparé à notre précédente approche de fonction de bien-être qui reposait sur la comparaison des utilités entre les utilisateurs, le critère envy-freeness évite l'hypothèse difficile des comparaisons interpersonnelles des utilités. En effet, dans le critère envy-freeness,d i fférentes recommandations sont comparées du point de vue du même utilisateur (par exemple, Alice).Nous présentons une analyse formelle des propriétés du envy-freeness comme critère d'équité du côté des utilisateurs pour les systèmes de recommandation, et nous montrons sa compatibilité avec les recommandations optimales. Nous montrons également son incompatibilité avec les contraintes d'équité basées sur le mérite du côté de l'objet.3 Nous présentons également une relaxation probabiliste du envy-freeness,a fi nd es u p p r i m e rl ad é pe n d a n c eq u a d r a t i q u es u rl en o m b r e d'utilisateurs et de rendre la certification du envy-freeness réalisable.Par rapport aux chapitres précédents où nous avons pris la perspective du concepteur du système de recommandation en tant que planificateur social, dans ce chapitre, nous adoptons la perspective d'un auditeur interne du système de recommandation. Auditer envy-freeness dans les systèmes de recommandation est techniquement difficile, car cela nécessite de sonder les préférences des utilisateurs pour les recommandations des autres, afin de répondre de manière fiable aux questions contrefactuelles : "est-ce que l'utilisateur Alice préférerait les recommandations de Bob?". Notre contribution algorithmique est que nous formulons le problème de la certification de l'envie, ou de son absence, comme une nouvelle forme de problème de bandit d'exploration pure, avec des contraintes d'exploration conservatrices. Les contraintes d'exploration conservatrices empêchent l'audit de détériorer de manière significative les performances de recommandation pour les utilisateurs, lors de l'échange de leurs recommandations avec celles des autres utilisateurs. Nous présentons OCEF, un algorithme d'audit avec des garanties théoriques sur sa complexité d'échantillonnage et le respect des contraintes d'exploration conservatrices. Nous confirmons expérimentalement que l'algorithme OCEF est capable de certifier envy-freeness sur deux tâches de recommandation, tout en maintenant une performance proche de celle du système de recommandation audité.--Nous concluons la thèse dans le Chapitre 7,o ùn o u sr é c a p i t u l o n sl e sp r i n c i p a l e sc o n t r i b u t i o n s de cette thèse et présentons des contributions supplémentaires. Ce chapitre comprend également un examen critique des limites imposées par nos choix de modélisation, ainsi qu'une discussion sur les enseignements tirés et les questions qui restent ouvertes.

F. 5

 5 ConclusionCette thèse apporte à la fois des contributions conceptuelles et algorithmiques.Dans cette thèse, nous avons développé un cadre conceptuel basé sur les principes de justice distributive de la théorie du choix social pour évaluer l'équité des recommandations classées. Nous abordons la recommandation comme un problème d'allocation équitable où le concepteur fait des compromis entre les utilités des utilisateurs et des items. Dans ce cadre, nous avons proposé une approche fondée pour générer des classements équitables en maximisant les fonctions de bien-être concaves des utilités des utilisateurs et des items. Dans le Chapitre 3,n o u sa v o n sc o m m e n c ép a rd e s fonctions de bien-être concaves additives, qui codent l'intuition de l'utilité marginale décroissante, puis nous avons traité dans le Chapitre 4 le cas des fonctions de bien-être de Gini généralisées, qui ont une forme plus complexe mais sont plus expressives. La perspective du choix social permet également de mieux comprendre les approches de classement existantes, où nous montrons que les approches méritoires populaires peuvent conduire à une inéquité distributive indésirable (Chapitre 3). En plus du cadre conceptuel de cette thèse, nous avons apporté plusieurs contributions algorithmiques, basées sur les méthodes de Frank-Wolfe. Nous avons relevé le défi d'optimiser les fonctions concaves des politiques de classement stochastiques, qui peuvent être utilisées pour exprimer de nombreux objectifs pour la recommandation équitable et multi-objective. Nous avons d'abord montré comment utiliser efficacement les méthodes de Frank-Wolfe dans le cadre de la batch, pour le classement dans le modèle basé sur la position au Chapitre 3.E n s u i t e ,n o u sa v o n sm o n t r éc o m m e n t étendre cette approche au cas des GGF non différentiables au Chapitre 4. Au Chapitre 5,n o u s avons abordé le problème du classement équitable dans le cadre du bandit contextuel, et présenté le premier algorithme de bandit avec des garanties de regret pour le problème. Tous les algorithmes développés dans cette thèse sont soutenus par des garanties théoriques sur leur convergence et leur complexité. Nous avons également évalué nos algorithmes par rapport à des benchmarks pertinents sur des environnements simulés basés sur des jeux de données publics tels que MovieLens, Last.fm et Twitter, qui comprennent jusqu'à 15k utilisateurs et items.
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 3 F ,w 1 ,w 2 . The challenge of optimizing GGFs is that they are nondifferentiable since they require sorting utilities. We first describe why existing approaches to optimize GGFs are not suited to ranking inSec. 4.3.1.W et h e ns h o wh o wt oe fficiently compute the gradient of the Moreau envelope of GGFs inSec. 4.3.2 and present the full algorithm inSec. 4.3.3. 

  Reducing the learning problem to scalar-reward bandits. Unfortunately, since P and µ are unknown, the set S is unknown. This precludes the possibility of directly using standard constrained optimization techniques, including gradient descent with projections onto S.W ec o n s i d e r Frank-Wolfe, a pro jection-free optimization metho d robust to approximate gradients[START_REF] Lacoste-Julien | Block-coordinate frank-wolfe optimization for structural svms[END_REF], Kerdreux et al., 2018]. At each iteration t of FW, the update direction is given by the linear subproblem: argmax s2S hrf (z t 1 ) | si, where z t 1 is the current iterate. Our main technical tool, Lemma 12, allows to connect the FW subproblem in the unknown reward space S to a workable decision problem in the action space (see Lemma 36 in Appendix B.5 for a proof):

	Lemma 12. Let E t actions and rewards up to time t. Under Assumption A, we have: ⇥ . ⇤ be the expectation conditional on h t .L e tz t 2 K be a function of contexts,

3)s of attains its maximum over S.W eh a v et h u sr e d u c e dt h ec o m p l e xi n i t i a lo p t i m i z a t i o np r o b l e mt oac o n c a v e optimization problem over a compact convex set.

4 Gini(z 1 ,...,zm)= 1 2m P m i=1 P m j=1 |z i z j | is an unnormalized Gini coefficient.

2:

Table 5 .

 5 1: Regret bounds depending on assumptions and base algorithm A,f o rm u l t i -a r m e db a n d i t s with K arms (in dimension d for LinUCB). See AppendixB.7 and B.8 for the full details.

	Algorithm	Assumptions
	(FW-<bandit>)	(informal)

  a = hg t | μt (x t )ai.L e tA t = FW-SquareCB(h t ,x t , 0 ) defined as

						δ)
				p	T
	so that μ|				
	8a 2 A, A t (a)=	8 > < > :	1 K+ t μ⇤ t 1 P a2A μ| t a6 =a t A t (a) if a = a t a if a 6 = a t	where a t 2 argmax a2A	μ| t a and μ⇤

t t =μ t a t Then FW-SquareCB has R T in O( p R oracle (T )/ p T ) with high probability.

  linear optimization step 5 Observe exposed items e t 2 {0, 1} m and user feedback c t 2 {0, 1} m 6 Update ŝt ŝt 1 + 1 t (r t ŝt 1 )

	7 V t	V t 1 +	m X	e t,i x t,i x | t,i , y t	y t 1 +	m X	c t,i x t,i and ✓t	V 1 t y t	// regression
	8 end		i=1			i=1			
	5.4 Contextual ranking bandits with fairness of exposure
	In this section, we apply our reduction to the combinatorial bandit task of fair ranking, and obtain

the first algorithm with regret guarantees in the contextual setting. This task is described in Example 4 (Sec.

5.2

). We remind that there is a fixed set of m items to rank at each timestep t, and that actions are flattened permutation matrices (A is defined in Ex. 4,E q . (5.1)). The context x t ⇠ P is a matrix x t =(x t,i ) i2JmK where each x t,i 2 R d represents a feature vector of item i for the current user.

Observation model. The user utility u(x t ) is given by a position-based model with position weights b(x t ) 2 [0, 1] m and expected value for each item v(x t ) 2 [0, 1] m .D e n o t i n gu(x t ) the flattened version of v(x t )b(x t ) | 2 R m⇥m ,t h eu s e ru t i l i t yi s

[ Lagrée et al., 2016, Singh and[START_REF] Singh | Fairness of exposure in rankings[END_REF]

:

  Fairness of exposure. There are D = m +1 rewards, i.e., µ(x) 2 R (m+1)⇥m 2 .D e n o t i n gµ i (x)

	e t,i ]=	8 < :	v i (x t ) if e t,i =1 0 if e t,i =0
	This observation model captures well applications such as newsfeed ranking on mobile devices
	or dating applications where only one post/profile is shown at a time. What we gain with this

model is that b(x) can depend arbitrarily on the context x, while previous work on bandits in the position-based model assumes b known and context-independent

[Lagrée et al., 2016]

.
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  . It maintains confidence intervals on arm performances (µ k ) K k=0 .G i v e n the confidence parameter ,t h el o w e ra n du p pe rbo u n d so nµ k at time step t,d e n o t e db yµ k (t) and µ k (t), are chosen so that with probability at least 1 ,w eh a v e8k, t, µ k 2 [µ k (t), µ k (t)]. In the algorithm, k (t)=(µ k (t) µ k (t))/2.A sJamieson et al. [2014], we use anytime bounds inspired by the law of the iterated logarithm. These are given in Lem. 53 in App. C.5. OCEF maintains an active set S t of all arms in JKK (i.e., excluding the baseline) whose performance are not confidently less than µ 0 + ✏. It is initialized to S 0 = JKK (line 1). At each round t,t h ea l g o r i t h ms e l e c t sa na r m`t 2 S t (line 3). Then, depending on the state of the conservative exploration constraint (described later), the algorithm pulls k

t , which is either `t or the baseline (lines 4-6). After observing the reward r t ,t h ec o n fi d e n c ei n t e r v a lo fµ `t is updated, and all active arms that are confidently worse than the baseline plus ✏ are de-activated (line 7). The algorithm returns envy if an arm k is confidently better than the baseline (line 8), returns ✏-no-envy if there are no more active arms, (line 9) or continues if neither of these conditions are met.
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  3.A l lt h ep r o o f sa r em a d ef o rt h em o r e general framework described in AppendixB.4. The framework of the paper can be recovered as the special case 8t 2 N, ⇢ t = r t and z t =ŝ t .Proof of Lemma 12. Lemma 12 is the special case of Lemma 36 when f is smooth. Note that every f satisfying Assumption A satisfies the assumptions of Lemma 36.Proof of Theorem 13. Thm. 13 is a special case of Theorem 34 of Appendix B.4,u s i n g8t 2 N, ⇢ t = r t and z t =ŝ t . The proof of Theorem 34 is given in Section B.5.1. 

3 )

 3 Assume furthermore that z t is a function of contexts, actions and rewards up to time t.L e t Proof. Let z 2 K.W efi r s tp r o v e(B.3). The first equality in (B.3) comes from the maximization over functions over the simplex with a linear objective: define

	a ⇤ t 2 argmax a2A	hrf t 1 (z t 1 ) | µ(x t )ai. For all 2 (0, 1], with probability at least 1	, we have:
		T X t=1	max s2S	hrf t 1 (z t 1 ) | s µ(x t )a ⇤ t iLD K	r 2T ln	1	(B.4)

  6.1 Smoothing with the Moreau envelope For functions that are non-smo oth, we prop ose first a smo othing technique based on the Moreau envelope, following the approach described by Lan [2013]. Let f : R D ! R [ {±1} be a closed proper concave function. The Moreau envelope (or Moreau-Yosida regularization) of f with For > 0,l e tt h ep r o x i m a lo p e r a t o rprox = argmax y2R D f (y). The basic properties of the Moreau envelope [Rockafellar and Wets

	parameter T [Rockafellar and Wets, 2009,D e f . 1 . 2 2 ]i sd e fi n e da s
	f (z) = max y2R D	⇣	f (y)	1 2	ky zk	2 2	⌘	.

  .. do 2 Observe context x t ⇠ P , x t 2 R d⇥K 3 g t rf t 1 (ŝ t 1 ), xt [g t,0 x t ; ...; g t,D x t ] V t V t 1 +(x t a t )(x t a t ) | , y t y t 1 +r t xt a t and ✓t

	4 8i 2 JKK, ût,i ↵ t .	✓| t 1 xt,i + ↵ t	0 2 kx t,i k V 1 t 1	// see (B.10)a n d( B.11)f o rd e f . o fk.k V 1 t 1	and
	5 a t 6 Observe reward r t ,l e tr t = g | argmax a2A ût a t r t 7 Update ŝt ŝt 1 + 1 t (r t ŝt 1 )		
				V 1 t y t	// regression
	9 end				

8

  LD X .M o r e o v e r ,|r t μ(x t )a t |  LD K , which implies in particular that for every t 2 JT K, rt is LD K /2-subgaussian.

	Notice that under assumption A and F,d e n o t i n g			
	e X = [g t,0 x t ; ...; g t,D x t ]:kgk 2  L, x 2 X	and D e X = max x2 e X a2A	kxak 2 ,	(B.9)
	we have 8t, xt 2 e X with probability 1 and D e X 			

5

  Observe exposed items e t 2 {0, 1} m and user feedback c t 2 {0, 1} m 6 Update ŝt ŝt 1 + 1 t (r t ŝt 1 )

	7 V t	V t 1 +	m X	e t,i x t,i x | t,i , y t	y t 1 +	m X	c t,i x t,i and ✓t	V 1 t y t	// regression
	8 end		i=1			i=1			
	B.9.1 Results for online linear regression (from		

  w eh a v ef o ra l lt 0:hg t | µ ✓ (x t )a ⇤ t ihg t | μt a t i.N o t i n gt h a tµ ✓ (x t )=µ(x t) by definition of ✓,w eo b t a i nt h a t8t, A t  0 and thus P T t=1 A t  0 with probability 1 0 /3.

  10 Additional technical lemmas B.10.1 Proof of Lemma 30 (S is compact)Lemma 30. Under Assumption Ã, S is compact and 8T 2 N ⇤ , 8x 1:T 2 X T , S(x 1:T ) is compact.1. if 8 T 2 JT K, t =0then the result is true; 2. otherwise, let T 0 =min{t 2 JT K : t > 0}.U s i n gt h er e s u l ta b o v e ,w eh a v e :

T X t=1 t

  a r eo p t i m a l stopping problems where the goal is to hire the best possible subset of persons, assuming that persons arrive one at a time, their value is observed at that time, and the decision to hire or not Let X = X 1 ⇥ ... ⇥ X d be the product space of d finite domains, each of size D i = |X i |, and where we identify X i with JD i K = {1,...,D i }.E a c hc a n d i d a t ei sr e p r e s e n t e db yacharacteristic vector x 2 X with d features.L e tx i 2 X i denote the value of the i-th feature. For each i 2 JdK,w ec o n s i d e ra The candidate database is infinite and the horizon as well. At each timestep t 1,t h ea g e n t observes a candidate x t drawn i.i.d. from a stationary distribution p over X ,i . e . x t ⇠ p.T h e Table D.1: Example candidate distribution p with 2 binary features.

		gender \ age SJ
		M	1 /2 ✏ 0 1 /4
		F	1 /4	✏ 0
	D.3 Formal setting	
	D.3.1 Problem definition	
	target vector ⇢ i 2 (0, 1) Di with	P Di j=1 ⇢ i j =1.	

them must be taken immediately. The problem has been generalized to finding a set of items maximizing a submodular value function

[START_REF] Mohammad Hossein Bateni | Submodular secretary problem and extensions[END_REF]

,

[START_REF] Badanidiyuru | Streaming submodular maximization: Massive data summarization on the fly[END_REF]

W h i l et h e latter models do not deal with diversity constraints,

Stoyanovich et al. [2018]

a i m sa ts e l e c t i n ga group of people arriving in a streaming fashion from a finite pool, with the goal of optimizing their overall quality subject to diversity constraints. The common point with our approach is the online nature of the selection process. The main differences are that they consider only one attribute, the size of the pool is known, and yet more importantly, what is optimized is the intrinsic quality values of the candidates and not the number of persons interviewed. Closer to our setting is

Panigrahi et al. [2012] 

who consider diversity along multiple features in online selection of search results, regardless of item quality. They only seek to maximise diversity, and do not consider trade-offs with the number of items observed.

The diverse hiring setting of

Schumann et al. [2019a]

i sv e r yd i fferent. At each time step, the decision-maker chooses which candidate to interview and only decides on which subset to hire after multiple rounds, whereas in our setting, candidates arrive one by one and decisions are made immediately.

  There are 2 binary features, gender and age, with domains X gender = {M, F} and X age = {S, J}. The candidates are distributed as p given in TableD.1.W e want a committee of size K =4(e.g., a thesis committee) and the target is ⇢ gender =( 1 /2, 1 /2) and

  Cette thèse vise à adresser les limites des algorithmes de recommandation actuels en développant des systèmes plus équitables qui tiennent compte à la fois des utilisateurs et des producteurs de contenu. Cependant, le développement d'algorithmes équitables présente plusieurs défis, notamment la définition de critères d'équité appropriés et l'implémentation efficace d'algorithmes de ranking qui satisfont ces critères. En nous appuyant sur la riche littérature de la théorie du choix social, nous proposons un cadre conceptuel pour évaluer l'équité des listes ordonnées de recommandations, à partir de concepts établis pour les problèmes de partage équitable qui ont été peu étudiés en machine learning et en recommandation. Dans ce cadre conceptuel, nous développons de nouvelles méthodes de recommandation qui suivent les principes du partage équitable et distribuent l'exposition plus équitablement entre les producteurs de contenu, sans compromettre la qualité des recommandations pour les utilisateurs. Ces méthodes sont soutenues par des résultats théoriques sur la satisfaction de propriétés d'équité, sur les garanties de convergence et l'efficacité algorithmique des algorithmes proposés, ainsi que par des évaluations expérimentales sur des jeux de données publics. préférences individuelles, conduisant à une plus grande satisfaction des utilisateurs et à une utilisation accrue de la plateforme.Cependant, au-delà de la promesse d'une augmentation de l'engagement des utilisateurs, les algorithmes de recommandation ont des conséquences sociales profondes. Avec le pouvoir de décider qui est visible et qui ne l'est pas, ces algorithmes ont un impact significatif sur les producteurs d'items (Figure 1.1). Par exemple, les organes de presse dépendent de leur exposition sur les fils d'actualité pour générer des revenus auprès des lecteurs, tandis que les créateurs sur les plateformes de partage de contenu et les artistes sur les plateformes de streaming dépendent des spectateurs et des auditeurs pour rester durables. De même, l'attractivité des commerçants comme les restaurants et les magasins dépend largement de leur exposition aux clients potentiels dans les recommandations locales de Google Maps. Le succès d'un chercheur d'emploi sur les plateformes de recherche d'emploi comme LinkedIn dépend du recruteur qui arrive à voir son CV, et l'efficacité d'une application de rencontres dépend également des utilisateurs à qui le profil de quelqu'un est recommandé.

	Àl ' è r ed el ' a p p r e n t i s s a g ea u t o m a t i q u ee td es o na d o p t i o nc r o i s s a n t ed a n sd en o m b r e u s e sa p p l i -
	cations qui affectent notre vie quotidienne, les systèmes de recommandation se démarquent comme
	l'une des applications les plus réussies des algorithmes d'apprentissage automatique. L'apprentissage
	automatique a été instrumental pour exploiter les vastes quantités de données disponibles sur les
	plateformes en ligne pour personnaliser l'expérience utilisateur et faciliter la découverte de nouveaux
	items pertinents. Ces algorithmes analysent les modèles statistiques du comportement de navigation
	passé des utilisateurs, les interactions avec les items, les préférences exprimées et d'autres carac-

F.1 Les impacts sociétaux des systèmes de recommandation

Les systèmes de recommandation font partie intégrante des plateformes numériques modernes, desservant jusqu'à des milliards d'utilisateurs dans le monde entier. Ces systèmes sont présents sur les places de marché en ligne, les services de streaming, les plateformes de partage de contenu et les médias sociaux en ligne. Ils jouent un rôle crucial dans l'organisation de la vaste quantité d'informations disponibles en fournissant des recommandations personnalisées aux utilisateurs à diverses fins, comme la navigation d'articles d'actualité, la recherche de produits, d'emplois, de logements ou de personnes avec lesquelles se connecter.

téristiques pour prédire leurs intérêts futurs. Ces prédictions permettent la récupération d'items àr e c o m m a n d e rd a n sl eb u td em a x i m i s e rl ' e n g a g e m e n td e su t i l i s a t e u r s ,c o m m el ' a u g m e n t a t i o n du nombre de clics, de likes, de partages ou de temps passé sur la plateforme. L'apprentissage automatique offre la promesse de recommandations hautement personnalisées qui reflètent les goûts et les En déterminant quels producteurs d'items sont visibles ou non, les systèmes de recommandation prennent des décisions qui posent de réelles préoccupations éthiques et sociales. Celles-ci incluent les risques de négliger ou de désavantager les chercheurs d'emploi de groupes sous-représentés

[START_REF] Sahin | Fairness-aware ranking in search & recommendation systems with application to linkedin talent search[END_REF]

, d'amplifier les biais raciaux dans les applications de rencontres

[Hutson et al., 

In classification, parity criteria are more often considered at the level of outcomes, i.e., of the decisions.

Note that[START_REF] Singh | Fairness of exposure in rankings[END_REF] consider merit-based fairness for items at the level of a single ranking, while we (and the other works mentioned here) consider amortized fairness across the rankings of all users.

In Chapter 6, the result is proved for merit-based fairnesss constraints applied at the level of each user, rather than across users.

Or equivalently, the convex set of tensors P where each slice P i is a bistochastic matrix for user i.

We also address the special case of reciprocal recommendation where items have preferences over users, in Chapters

and

At an abstract level, recommendation is also reminiscent of many-to-one matchings, which are also largely studied in social choice. The output of a many-to-one matching would be an assignment of a set of items ("many") to a user ("one"). However, these matchings problems do not deal with exposure or users' attention as a scarce resource, while the primary goal of recommender systems is to support users with limited attention. We discuss the relationship between matching and recommendation in more detail in Chapter 7.

An alternative naming is col lective utility function as in[START_REF] Moulin | Fair division and collective welfare[END_REF]. These functions induce a social welfare ordering, which is a binary relation over utility vectors that is reflexive, transitive and complete. In the social choice literature, the term welfare function is sometimes used for social welfare ordering, while we use it to refer to a col lective utility function, following the common usage of "utilitarian welfare function" or "Nash welfare function".

We use a user-independent v for simplicity. Considering user-dependent weights is straightforward.

We consider P ij as a row vector in the formula, so thatP ij v = P |I| k=1 P ijk v k .

W θ (u)= 1 if α  0 and 9i, u i =0.In practice, we use ψ(x + η, α) for η > 0 to avoid this case.

We use here the terminology of[Wu et al., 2021b]. This criterion has also been called "disparate treatment"[START_REF] Singh | Fairness of exposure in rankings[END_REF], "merit-based fairness"[Singh and Joachims, 2019]a n d" e q u i t yo fa t t e n t i o n "[ Biega et al., 2018].

In our experiments, we initialize with the utilitarian ranking (Proposition 21).

Formally, S(P i )= σ : I ! J|I|K σ is one-to-one, and 8j 2 I,P ijσ(j) > 0 .

Lorenz curves are normalized so that the last value is 1, while generalized Lorenz curves are not normalized.

also called "equity of attention"[Biega et al., 2018], "disparate treatment"[START_REF] Singh | Fairness of exposure in rankings[END_REF] 

Lan [2013] uses the smoothing scheme of[START_REF] Nesterov | Smo oth minimization of non-smo oth functions[END_REF] which is in fact equal to the Moreau envelope (see[Beck and Teboulle, 2012,S e c .

. 3 ] ) .4 In more details, the convergence guarantee ofLan [2013] uses the operator norm of u and v,w h i c hw e bound as follows: ku(P )k 2  Pi P j,k (µ ij P ijk b k ) 2  b 2 1 kP k 2 , because µ ij 2 [0, 1] b k 2 [0,b 1 ],and similarly kv(P )k 2  b 2 1 kP k 2 .

http://pytorch.org

https://github.com/scikit-learn/scikit-learn/blob/main/sklearn/isotonic.py

https://www.last.fm/

Using the Python library Implicit: https://github.com/benfred/implicit (MIT License).

[START_REF] Gourab K Patro | Fairrec: Two-sided fairness for personalized recommendations in two-sided platforms[END_REF] consider unordered recommendation lists with a uniform attention model. We transform them into ordered lists using the order output by FairRec, and adapt the item-side criterion of minimal exposure to the position-based model.

Notice that linear structure between µ(xt) and at is standard in combinatorial bandits[Cesa-Bianchi and Lugosi, 

2012] and it reduces to the usual multi-armed bandit setting when A is the canonical basis of RK . 2 In the multi-armed setting, stationary policies return a distribution over arms given a context vector. In the combinatorial setup, π(x) 2 A is the average feature vector of a stochastic policy over A. For the benchmark, we are only interested in expected rewards so there is to need to specify the full distribution overA. 3 This means that f is concave and upper semi-continuous, is never equal to +1 and is finite somewhere.

For simplicity, we presented our reduction with zt = ŝt but other choices of zt are possible (see AppendixB.4). The important point is that the reduction works without restricting zt to S.

In practice, this result is used in conjunction with an upper bound R scal (T,δ 0 ) on R scal T that holds with probability 1 δ 0 ,w h i c hg i v e sR T  R scal (T,δ 0 )/T + O( p ln(1/δ)/T ) with probability at least 1 δ δ 0 using the union bound.

When b is unknown, depends on the context x, and we do not observe et, several approaches have been proposed to estimate the position weights [see e.g.,Fang et al., 2019]. Incorporating these approaches in contextual bandits for ranking is likely feasible but out of the scope of this work.

App.C.1 shows the difference between envy-freeness and optimality certificates.

[START_REF] Singh | Fairness of exposure in rankings[END_REF] use the terminology of demographic parity (resp. disparate treatment) for what we call parity (resp. equity) of exposure. Our use of "equity" followsBiega et al. [2018].

Formally, u > lex u 0 if (9k 2 JdK s.t. 8i<k, U i = U 0 i and U k >U 0 k ). u lex u 0 () ¬(u 0 lex u).

We have ûi (P )= P j2I μij P ij v for i 2 N .

The dependency on μ in B(μ) is because ψ 0 (., α) is not bounded in general. In practice, we use ψ(x + η, α) for a small η > 0 to avoid the singular point at 0, in which case B<ψ 0 (η, α).

Since there is a single recommendation slot, we identify P ij1 with P ij

http://pytorch.org

https://www.last.fm/

Using the Python library Implicit: https://github.com/benfred/implicit (MIT License).

In short, they have different bounds, one involving the varance of rt and the other one involving average rewards μ(x). We assume rewards r T are uniformly bounded in K, so we do not have to deal with two different quantities in our bounds and have LD K everywhere.

Monotonicity of R oracle is not required in[Foster and Rakhlin, 2020]. We use it in (B.14) below to deal with time-dependent γt.M e a n i n g f u lR oracle (T ) are non-decreasing with T since they bound a cumulative regret.

Throughout the paper, we chose to provide anytime bounds rather than bounds that depend on horizon-dependent parameters. The analysis with fixed γ is easier.

For all our experiments, we used Python and a machine with Intel Xeon Gold 6230 CPUs,

2.10 GHz, 1.3 MiB of cache.

http://www.lastfm.com 

Using the Python library Implicit: https://github.com/benfred/implicit (MIT License).

Using the implementation of https://github.com/gbolmier/funk-svd (MIT License).

Note that diversity and proportional representation are often used with a different meaning in multiwinner elections, namely, in the sense that each voter should feel represented in an elected committee, regardless of attributes. A good entry to this literature is the surveyFaliszewski et al. [2017].

Fairness guarantees are pushed further in following (yet unpublished) work by the authors: see https://youtu. be/x_1Ce1kT7vc.

https://citizensassembly.co.uk/wp-content/uploads/2017/12/Citizens-Assembly-on-Brexit-Report. pdf,p a g e s2 8 -3

.2 In doing so, we notice that the probability of finding non-voter volunteers is almost zero, hence we only consider "remain" and "leave" for the feature Brexit vote. Indeed, the report states "The only target that proved impossible to meet was that for non-voters in the 2016 referendum." p.28.

Dans la classification, les critères de parité sont plus souvent considérés au niveau des résultats, c'est-à-dire des décisions.

Dans le Chapitre 6, le résultat est prouvé pour les contraintes d'équité basées sur le mérite appliquées au niveau de chaque utilisateur, plutôt qu'entre les utilisateurs.

Acknowlegements

Algorithm 4: OCEF algorithm. ⇠ t (line 4) evaluates the conservative exploration constraint and is defined in (6.4).V a l u e sf o r k (t) and confidence bounds µ k and µ k are given in Lemma 53. input : Confidence parameter ,c o n s e r v a t i v ee x p l o r a t i o np a r a m e t e r↵,e n v yp a r a m e t e r✏ output : envy or ✏ no-envy 1 S 0 JKK // all arms except 0 2 for t=1, . use µ 0 for the utility of the user for their policy (i.e., u m (⇡ m )). Because the audit is a special form of bandit problem, following the bandit literature, an index of a user is called an arm,a n da r m0 is the baseline.

Objectives and evaluation metrics We present our algorithm OCEF (Online Certification of Envy-Freeness) in the next subsection. Given ✏ > 0 and ↵ 0, OCEF returns either envy or ✏-no-envy and has two objectives: 1. Correctness: if OCEF returns envy,t h e n9k, µ k >µ 0 . If OCEF returns ✏-no-envy then max k2JKK µ k  µ 0 + ✏.

2. Recommendation performance: during the audit, OCEF must maintain a fraction 1 ↵ of the baseline performance. Denoting by k s 2 {0,...,K} the arm (group index) chosen at round s, this requirement is formalized as a conservative exploration constraint Wu et al. [2016]:

We fo cus on the fixed confidence setting, where given a confidence parameter 2 (0, 1) the algorithm provably satisfies both objectives with probability 1 . In addition, there are two criteria to assess an online auditing algorithm:

1. Duration of the audit: the number of time-steps before the algorithm stops. 2. Cost of the audit: the cumulative loss of rewards incurred. Denoting the duration by ⌧ ,t h ec o s t is ⌧ µ 0 P ⌧ s=1 µ ks . It is possible that the cost is negative when there is envy. In that case, the audit increased recommendation performance by finding better recommendations for the group.

We note the asymmetry in the return statements of the algorithm: envy does not depend on ✏.

This asymmetry is necessary to obtain finite worst-case bounds on the duration and the cost of audit, as we see in Theorem 18.

Our setting had not yet been addressed by the pure exploration bandit literature, which mainly studies the identification of (✏-)optimal arms [START_REF] Audibert | Best arm identification in multi-armed bandits[END_REF]. Auditing for envyfreeness requires proper strategies in order to efficiently estimate the arm performances compared to the unknown baseline. Additionally, by making the cost of the audit a primary evaluation Appendix A

Appendix of Chapter 3

A.1 Outline of the appendix These appendices are structured as follows:

• In Appendix A.2,w ep r e s e n th o wo u rf a i r n e s sf r a m e w o r kc a nb ea p p l i e dt os e n s i t i v eg r o u p so f users or categories of items.

• In Appendix A.3,w ep r e s e n tad e e p e ra n a l y s i so ft h et r a d e -o ffsa c h i e v e db yt h ew e l f a r ea p p r o a c h .

We also provide a theoretical guarantee relating the true welfare obtained by maximizing the welfare using estimated preferences, depending on the quality of the estimates.

• In Appendix A.4,w ep r e s e n tt h ep r o o f sf o rt h et h e o r e t i c a lr e s u l t sc o m p a r i n go u rr e s u l t sa n d previous criteria of fairness in rankings. In addition, in Appendix A.4.3,w edescribeho wtoextend the criteria of equality of exposure and quality-weighted exposure in a reciprocal recommendation setting. This is the extension used in our experiments on reciprocal recommendation. In Proposition 25,w ep r e s e n ta na d d i t i o n a lr e s u l tr e g a r d i n gt h ei n e fficiency of these criteria in reciprocal recommendation.

• In Appendix A.5, we present the more general version of the Frank-Wolfe algorithm, which we use both to optimize the welfare function over stochastic rankings, as well as the penalty-based baselines. This appendix also contains the proofs of the results in Section 3.4. In addition,this appendix contains fundamental lemmas that are used in other appendices.

• Appendix A. 6 gives the details of the experiments presented in Section 3.5,a sw e l lw em a n y additional experiments (two additional, larger scale datasets on one-sided recommendation, and an additional dataset for reciprocal recommendation)

• Appendix A.7 briefly discusses the difference between the penalty we use in our implementation of the baseline approaches and an alternative penalty used by some authors.

• Finally, Appendix A.8 discusses the difference between applying item-side fairness criteria for every ranking, compared to what we do in the paper, which defines item-side utility as an aggregate over the rankings of all users.

A.2 Fairness towards sensitive groups rather than individuals

In all the paper we focus on fairness towards individual users and items rather than groups of users or items. Prior work [START_REF] Singh | Fairness of exposure in rankings[END_REF], Morik et al., 2020, Singh and Joachims, 2019]c o n s i d e r e dt h eu t l i t yo fag r o u pa st h es u mo rt h ea v e r a g eu t i l i t yo fi t sm e m b e r s . U s i n g this definition of group utility, our framework dirrectly extends to groups rather than individuals.

In this section we describe the case of one-sided recommendation with groups of users and item categories. The case of reciprocal recommendation (with user groups only) is similar but simpler.

Let S =(s p )

|S| p=1 be (possibly overlapping) user groups, i.e., 8p 2 J|S|K,s p ✓ N and [ p2J|S|K s p = N .S i m i l a r l y ,l e tC =( c q ) |C| q=1 be (possibly overlapping) item categories, i.e., 8q 2 J|C|K,c q ✓ I and [ q2J|C|K c q = I.O nt h eu s e rs i d e ,s u c hg r o u p sw o u l dt y p i c a l l yc o r r e s p o n dt od e m o g r a p h i c groups considered sensitive for the application at hand [Sweeney, 2013]. On the item side, groups can represent a single producer for the case where we want to be fair to producers based on the aggregate utility they obtain from their products [Mehrotra et al., 2018], or demographic groups as well [START_REF] Kay | Unequal representation and gender stereotypes in image search results for occupations[END_REF].

In all cases, we redefine the user-side utility for groups and the item-side utility for categories:

Let u gr (P )=(u gr sp (P ))

|S| p=1 and u cat (P )=(u cat cq (P ))

|C| q=1 be the utility profiles of user groups and item categories associated to P respectively. The two-sided Lorenz efficiency for groups and categories is defined as: Definition 7. Let S be a set of user groups and C a set of item categories. Let P 2 P. P is (S, C)-Lorenz-efficient if there is no P 0 2 P such that either condition holds: 1. u gr (P 0 ) ⌫ L u gr (P ) and u cat (P 0 ) L u cat (P ), or 2. u cat (P 0 ) ⌫ L u cat (P ) and u gr (P 0 ) L u gr (P ).

The welfare function associated to (S, C),s t i l lp a r a m e t r i z e db y✓ =( , ↵ 1 , ↵ 2 ) 2 Θ,i sd e fi n e da s W gr ✓ (P )=(1 ) X s2S (u gr s (P ), ↵ 1 )+ X c2C (u cat c (P ), ↵ 2 )

The welfare function follows the general form of objective function used for the algorithm in Appendix A.5,s ot h eo p t i m i z a t i o no fW gr ✓ requires similar computational complexity as W ✓ . Finally, the extension of Proposition 1 is straightforward. Its proof is similar to the proof presented in Appendix A. 3.

W gr ✓ (P ), P ⇤ is (S, C)-Lorenz-efficient.

Note that this way of treating groups is not necessarily optimal. In particular, in does not account for within-group fairness. The separate consideration of within-group and between-group fairness has been studied extensively in the literature on equality of opportunity [Roemer and Trannoy, 2016], which has inspired several works on algorithmic fairness [Hardt et al., 2016b, Heidari et al., 2019]. Yet, how to apply these principles to two-sided fairness in recommendation is still open, and is left as future work.

A.3 More on welfare functions

This appendix provides an in-depth analysis of the trade-offst h a ta r ea c h i e v a b l eb yt h ew e l f a r e approach. We first pove the proposition of Section 3.2.2,a n da n a l y z et h eu t i l i t a r i a nr a n k i n g s (obtained with

We then analyze how to obtain leximin optimal solutions on the side of the items in Appendix A. 3.2,a sm e n t i o n e di nS e c t i o n3.2.2. Finally, we prove Theorem 24 in Appendix A. 3.3, which provides a regret bound relating the true welfare achieved when maximizing welfare on estimated preferences. Some results in this section use Lemma 27 of Appendix 3.4, which is proved in Appendix 3.4.

Throughout the appendices, we use the more general version of item utilities (two-sided preferences), described at the end of Section 3.2.1.M o r e o v e r ,t oc l a r i f yt h en o t a t i o n ,w er e m i n dt h a t a ranking tensor is a three-way tensor P where P ijk is the probability that item j is recommended to user i at rank k.W ec o n s i d e rP as an n ⇥ n ⇥ |I| tensor, where irrelevant entries are set to 0.

With this notation, the utility for both users and items can be written with the same formula:

Note that this formula also corresponds to the two-sided utility in reciprocal recommendation. In general, the results in this appendix can be extended to reciprocal recommendation with minimal changes to their proofs, using N = I = JnK and the formula above for the utility.

A.3.1 Lorenz efficiency and utilitarian ranking

We first prove Prop osition 1:

Proof. It is well known that if Φ is increasing and strictly concave, then F (u)= P n i=1 Φ(u i ) is monotonic with respect to Lorenz dominance [Shorrocks, 1983[START_REF] Paul D Thistle | Ranking distributions with generalized lorenz curves[END_REF]:

) and (., ↵ 2 ) are strictly concave by the definition of Θ (recall that in Θ,w eh a v e↵ 1 , ↵ 2 < 1). 

The partial function

I

L u I ),t h e other case is dealt with similarly. We then have:

which contradicts the maximality of u.

The analogous for Proposition 1 for reciprocal recommendation is a direct consequence of standard results that concave welfare functions are monotonic with respect to Lorenz dominance [Shorrocks, 1983[START_REF] Paul D Thistle | Ranking distributions with generalized lorenz curves[END_REF]].

Utilitarian ranking Proposition 21 below generalizes to two-sided utilities the well-known result that maximizing user-side utility is achieved by sorting j 2 I by decreasing µ ij (see e.g., [Cossock and Zhang, 2008]). For a ranking tensor P and a user i,w ed e n o t eb yS(P i ) the support of P i in ranking space. 2 We remind that (j) is the rank of item j,a n dt h a tl o w e rr a n k sa r eb e t t e r . F o ra user i and item j,w eu s eµ ji =1.

1 We denote by (u

2 Formally, S(P i )= σ : I ! J|I|K σ is one-to-one, and 8j 2 I,P ijσ(j) > 0 .

Proposition 21 (Utilitarian ranking). Assume 8k 2 Jn 1K,v k >v k+1 0 and let

When mutual preferences are symmetric (i.e., µ ij = µ ji ), the utilitarian ranking is the same as the usual sort by decreasing µ ij . This also obviously holds when we consider exposue as item utility (µ ji =1). This means that without considerations of two-sided fairness (↵ 1 , ↵ 2 < 1), the optimal ranking for two-sided utilities is the same as the usual ranking. This might explain why the two-sided utility has never been studied before, even in reciprocal recommendation [Palomares et al., 2021].

For the pro of of Prop osition 21, the main part is the following lemma:

Moreover, if 8k 2 Jn 1K,v k >v k+1 0, then the reciprocal is true.

Proof. Notice that, thanks to the completion of P with zeros on irrelevant entries and formula A.3, F (u(P )) can be rewritten as:

where the last equality is obtained by swapping i and j in the second sum, which is possible since i and j span the same range.

The result is then a direct consequence of Lemma 27 in Appendix A.5,u s i n gA ij = µ ij + µ ji .

The first of statement of Proposition 21 assumes that the exposure weights v are non-negative and strictly decreasing as per the second point of Lemma 22.L e m m a22 above gives the statement for the more general case of non-increasing v.

Proof of Proposition 21. The first statement is the consequence of Lemma 22 above, noticing that F (u(P )) in Lemma 22 always has the same argmax. The second statement is obvious from the assumptions.

A.3.2 Item-side leximin optimality

The most egalitarian trade-off achievable by our method is described by the leximin order [START_REF] Sen | Collective Choice and Social Welfare.H o l d e nD a y ,S a nF r a n c i s c o ,1 9 7 0 .U R Lhttp[END_REF]. Given two utility profiles u and u 0 , u lex u 0 if U is greater than U 0 according to the lexicographic order. 3 The leximin optimal profile is egalitarian in the sense that it maximizes the utility of individuals in sequence, from the worse-off to the better-off.D e p e n d i n go nt h es e t of feasible profiles, this may not lead to equal utility for everyone, but any further reduction of inequality can only be achieved by making people worse off for the benefit of no other, in violation of Pareto-dominance.

The proposition below formalizes how leximin optimal solutions on the side of items are found.

It shows that item-side leximin solutions are obtained by having ↵ 2 ! 1and ! 1 at the same Let furthermore B(μ) = max max i2JnK 0 (u i ( P ), ↵), max i2JnK 0 (û i (P ⇤ ), ↵) . We have:

The existing results closest to our Theorem 24 are Theorem 2 of [Cossock and Zhang, 2008].

Here the result is substantially more difficult to prove because of the concave function and the fact that utilities are two-sided, calling for considering the rankings of multiple users at once.

Proof.

We have:

We first prove:

To prove (A.1),w es t a r tb yu s i n gt h ec o n c a v i t yo f (., ↵) for ↵  1.L e tΦ(.)= 1 2 (., ↵).W eh a v e :

where, similarly to the proof of Lemma 22,w es w a p pe dt h ei n d e x e d(i, j) in the Φ 0 (û i (P ⇤ ))µ ij P ⇤ ji )v, which is possible because i and j span the same range in the sum.

Notice that the terms A ij P ⇤ ij v are all zero except if i 2 N and j 2 I (because P ⇤ ijk =0otherwise). For i 2 N ,l e t i be a ranking which ranks (A ij ) j2I in decreasing order, i.e., i (j) < i (j 0 )= ) 0 .U s i n gL e m m a27 in Appendix A.5,w eh a v e :

. By Cauchy-Shwarz inequality and denoting kXk F = q P ij X 2 ij the Frobenius norm of matrix X,w eh a v ekV k F = q n kvk 2 2 and kAk F  B 1 (μ)(kµ μk F + µ > μ> F ), leading to:

which proves (A.1).

A.5 A generic Frank-Wolfe algorithm for ranking

In this section, we present a general form of our algorithm presented in Section 3.4,a sw e l la st h e proofs of the claims.

Let F : R n ! R,c o n c a v e ,a n dw ew a n tt ofi n d

Let hX | Y i = P ijk X ijk Y ijk be the dot product between three-way tensors, and let r(F u)(P ) be the gradient of P 7 ! F (u(P )) taken at P ,i . e . ,(r(F u)) ijk = @F u @P ijk Starting from P (0) 2 P (in our experiments we always use a utilitarian ranking P (0) 2 argmax P 2P

P n i=1 u i (P )), the Frank-Wolfe algorithm alternates two steps for t 1:

The stepsize 2 t+2 is from Clarkson [2010, Section 3], which avoids a line search and in our experiments seemed to yield acceptable results. Irrespective of the step size, the fundamental results which allows to use Frank-Wolfe in the setting of (A.2) are the two following lemmas: Lemma 26. Recall that u i (P )= P n i=1 µ ij (P ij + P ji )v.L e t @F @ui denote the derivative of F with respect to its i-th argument and @F @ui (u(P )) the value of this derivative at u(P ). Then, 8i 2 N , 8j 2 I, 8k 2 J|I|K, we have:

Proof. The result is a consequence of the chain rule:

@F @u p (u(P )) @u p (P ) @P ijk With

Thus @up(P ) @P ijk =(µ ij {p=i} + µ ji {p=j} )v k , which gives the desired result.

Lemma 27. Let A be an n ⇥ n matrix with

with non-negative and non-increasing entries, i.e., 8k 2 J|I| 1K, v k v k+1 0.L e tK be the last index such that v K > 0 (or K = |I| if there is no such index).

Let P 2 P such that:

8i, 8 i 2 S(P i ), 8(j, j 0 ) 2 I 2 :

And let X be the n ⇥ n ⇥ |I| tensor defined as X ijk = A ij v k .

Then P 2 argmax P 2P hP | Xi. Moreover, if 8k 2 J|I| 1K, v k >v k+1 0, then for every P 2 argmax P 2P hP | Xi, we have: 8i, 8 i 2 S(P i ), 8(j, j 0 ) 2 I 2 :

Proof. The result stems from the rearrangement inequality (also known as the Hardy-Littlewood inequality [Hardy et al., 1952]), which states that for two vectors

where ⌫ spans the permutations of JnK,i st h es e to fp e r m u t a t i o n ss u c ht h a tb is ordered similarly to (a ⌫(i) ) n i=1 . If the a k sa r en o n -i n c r e a s i n g ,t h e ne v e r yp e r m u t a t i o nt h a ts o r t sb in decreasing order is in the argmax. We need the reciprocal statement for the second part of our Lemma: if the a i sa r es t r i c t l yd e c r e a s i n g ,t h e no n l yt h ep e r m u t a t i o n st h a ts o r tb in decreasing order are in argmax ⌫ P n j=1 a ⌫(j) b j . Note that these arguments are well-known in learning to rank [see, e.g., Cossock and Zhang, 2008].

In our case, notice that

The maximization over P can then be performed over each user i (and thus each bistochastic matrix P i separately). Now, if P i is such that every i 2 S(P i ) orders A ij in decreasing order, then by the rearrangement inequality i 2 argmax ⌫ P j2I A ij v ⌫(j) .N o t i c et h a ti fo n l yt h eK first elements of v are non-zero, we only need a top-K ranking. This gives us the first part of the thoerem.

The second part of the theorem follows from the reciprocal of the rearrangement inequality, since for P i to be an optimal stochastic ranking for P j2I A ij P ijk v k ,e v e r yp e r m u t a t i o n i in its support must be in argmax ⌫ P j2I A ij v ⌫(j) .

A.5.1 Proof of Theorem 4

Lemma 26 and 27 together are sufficient to give algorithms for the inference of stochastic rankings using our welfare function (3.1) and using the penalties of Section 3.3,b yc o m p u t i n gt h ep a r t i a l derivatives @F @ui . The main result of Section 3.4, which we prove now, instantiates this principle for the welfare function approach: Theorem 4. Let μij = Φ 0 i u i (P (t) ) µ ij + Φ 0 j u j (P (t) ) µ ji .L e t P such that: 8i 2 N , 8˜ i 2 S( Pi ): ˜ i (j) < ˜ i (j 0 )= ) μij μij 0 . Then P 2 argmax P 2P

hP | rW (P (t) )i.

Proof. Notice that with W (P )=F (u(P )) = P n i=1 Φ i (u i (P )),t h e n @F @ui (u(P )) = Φ 0 i (u i (P )).B y Lemma 26,w eh a v et h a thP | rF (P .L e tK be the maximum index of a nonzero value in v (or |I|). Then 8t 1,W(P (t) ) max

Moreover, for each user, an iteration costs O(|I| ln K) operations and requires O(K) additional bytes of storage.

Proof. Note that P is a simplex over ranking tensors containing one deterministic ranking for each user. Using [Clarkson, 2010, Section 3], the Frank-Wolfe algorithm with our step-size converges in

, where, using [Clarkson, 2010,E q u a t i o n1 1 ]a n dd e n o t i n gb yr 2 W the Hessian of W ,w e have

where we used ku

For the computation cost, we use Lemma 27, which is more precise than Theorem 4,t os e et h a t finding the argmax only requires a top-K ranking. While technically any P 2 P should contain a whole bistochastic matrix, it is not necessary to store a completion of the top-K rankings because they have no impact on the utility. As such, storing each P only costs O(K) bytes per user, which contain the indices of the top-K items in the ranking found by Theorem 2.

Computing the two-sided utilities costs O(|N ||I|),a n dt h u sO(|I|) per user. Moreover, computing the top-K ranking costs O(|I| ln K) in the worst case, with a streaming method that maintains a min-heap of the top-K elements seen so far, and finish with sorting the top-K elements.

Notice that for faster average performance, the top-K sort can be performed using a fast selection algorithm (such as quickselect), to obtain the top-K elements with O(|I|) expected time complexity, and then sorting, yielding O(|I| + K ln K) expected time complexity per user at each iteration.

A.6 Additional experimental results

Our experiments are fully implemented in Python 3.9 using PyTorch 9 .W ep r o v i d et h ec o d ea s supplementary material. We compare our welfare maximization approach with the fairness penalties presented in Section 3.3. We also compare ourselves to the algorithm FairRec from Patro et al. [2020]( r e f e r r e dt oa s Patro et al. in the figures and description), who consider envy-freeness as user-side fairness criterion, and max-min share of exposure as item-side fairness criterion. Envy-freeness states that every user should prefer their recommendation list to that of any other user. The max-min exposure criterion on the item side means that each user should receive an exposure of at least E |I| , where is a parameter allowing to control how much exposure is guaranteed to items. We vary this parameter in our experiments to show the trade-offsa c h i e v e db yPatro et al..S i n c ePatro et al. does not produce rankings, we took the recommendation list with the given order as a ranked list.

A. 6.1 One-sided recommendation: Lastfm-2k dataset

We describ e in this section the details of the exp eriments presented in Section 3.5.1.W eu s e ad a t a s e tf r o mt h eo n l i n em u s i cs e r v i c eL a s t . f m 10 . In the main paper, we presented results on Lastfm-2k from [START_REF] Cantador | 2nd workshop on information heterogeneity and fusion in recommender systems (hetrec 2011)[END_REF] which contains real play counts of 2k users for 19k artists, and was used by [START_REF] Gourab K Patro | Fairrec: Two-sided fairness for personalized recommendations in two-sided platforms[END_REF] who also study two-sided fairness in recommendation. We filter the top 2, 500 items most listened to. Following Johnson [2014], we pre-process the raw counts with log-transformation. We split the dataset into train/validation/test sets, each including 70%/10%/20% of the user-item play counts. We create three different splits using three random seeds. One-sided preferences are estimated using the standard matrix factorization algorithm 11 of [START_REF] Hu | Collaborative filtering for implicit feedback datasets[END_REF] trained on the train set, with hyperparameters selected on the validation set by grid search. The number of latent factors is chosen in [16,32,64,128],t h er e g u l a r i z a t i o ni n [ 0.1, 1., 10., 20., 50.],a n dt h ec o n fi d e n c ew e i g h t i n gp a r a m e t e ri n[ 0.1, 1., 10., 100.]. The estimated preferences we use are the positive part of the resulting estimates.

Rankings are inferred from these estimated preferences. The exposure weights we use in the computation of utilities are the standard weights of the discounted cumulative gain (DCG) (also used in e.g., [START_REF] Singh | Fairness of exposure in rankings[END_REF], Biega et al. [2018], Morik et al. [2020]

For each ranking approach, the Frank-Wolfe algorithm is run with 5000 iterations to make sure we are close to convergence, and the number of recommendation slots is set to 40.

We evaluate rankings on estimated preferences, considered as ground truth, following many works on fair recommendation [START_REF] Singh | Fairness of exposure in rankings[END_REF][START_REF] Gourab K Patro | Fairrec: Two-sided fairness for personalized recommendations in two-sided platforms[END_REF], Wang and Joachims, 2020, Wu et al., 2021b]. This is because the goal is to evaluate the fairness of ranking algorithms themselves, rather than biases in preference estimates. All results are averaged over three random seeds. To obtain various trade-offs, for welf we vary in [0.001, 0.01, 0.05, 0.075, 0.1, 0.125, 0.15, 0.2, 0.3, 0.325, 0.35] and [0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.9, 0.95, 0.99, 0.999].F o rPatro et al. we vary in [0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4] and [0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1], and for other methods we vary in [0.001, 0.005, 0.01, 0.015, 0.0175, 0.02, 0.025, 0.03, 0.035, 0.04, 0.045, 0.05, 0.055, 0.06] and [ 0.065, 0.07, 0.075, 0.08, 0.085, 0.09, 0.095, 0.1, 0.105, 0.11, 0.2, 0.5, 1, 2, 5, 10, 20, 30, 40, 50, 70, 100]. 

Item-side fairness

B.1 Related work

The non-contextual setting of bandits with concave rewards (bcr)h a sb e e np r e v i o u s l ys t u d i e db y [START_REF] Agrawal | Bandits with concave rewards and convex knapsacks[END_REF], and by [START_REF] Busa-Fekete | Multi-objective bandits: Optimizing the generalized gini index[END_REF]f o rt h es pe c i a lc a s eo fG e n e r a l i z e d Gini indices. In bcr, policies are distributions over actions. These approaches perform a direct optimization in policy space, which is not possible in the contextual setup without restrictions or assumptions on optimal policies. [START_REF] Agrawal | An efficient algorithm for contextual bandits with knapsacks, and an extension to concave objectives[END_REF]s t u d yas e t t i n go fcbcr where the goal is to find the best policy in a finite set of policies. Because they rely on explicit search in the policy space, they do not resolve the main challenge of the general cbcr setting we address here. Cheung these works rely on a tabular setting (i.e., finite state and action sets) and explicitly compute policies, which is not possible in our setting where policies are mappings from a continuous context set to distributions over actions. Our work is the only one amenable to contextual bandits with concave rewards by removing the need for an explicit policy representation. Finally, compared to previous FW approaches to bandits with concave rewards, e.g. [Agrawal andDevanur, 2014, Berthet andPerchet, 2017], our analysis is not limited to confidence-based exploration/exploitation algorithms.

cbcr is also related to the broad literature on bandit convex optimization (BCO) [Flaxman et al., 2004[START_REF] Agarwal | Stochastic convex optimization with bandit feedback[END_REF], Hazan et al., 2016, Shalev-Shwartz et al., 2012]. In BCO, the goal is to minimize a cumulative loss of the form P T t=1 `t(⇡ t ), where the convex loss function `t is unknown and the learner only observes the value `t(⇡ t ) of the chosen parameter ⇡ t at each timestep. Existing approaches to BCO perform gradient-free optimization in the parameter space. While bcr considers global objectives rather than cumulative ones, similar approaches have been used in non-contextual bcr [Berthet and Perchet, 2017] where the parameter space is the convex set of distributions over actions. As we previously highlighted, such parameterization does not apply to cbcr because direct optimization in policy space is infeasible.

cbcr is also related to multi-objective optimization [Miettinen, 2012, Drugan and[START_REF] Madalina | Designing multi-objective multi-armed bandits algorithms: A study[END_REF], where the goal is to find all Pareto-efficient solutions. (C)bcr,f o c u s e so no n ep o i n to ft h eP a r e t o front determined by the concave aggregation function f , which is more practical in our application settings where the decision-maker is interested in a specific (e.g., fairness) trade-off.

In recent years, the question of fairness of exposure attracted a lot of attention, and has been mostly studied in a static ranking setting [START_REF] Sahin | Fairness-aware ranking in search & recommendation systems with application to linkedin talent search[END_REF], Beutel et al., 2019a, Yang and Stoyanovich, 2017[START_REF] Singh | Fairness of exposure in rankings[END_REF][START_REF] Gourab K Patro | Fair ranking: a critical review, challenges, and future directions[END_REF], Zehlike et al., 2021, Kletti et al., 2022a, Diaz et al., 2020, Do and Usunier, 2022, Wu et al., 2022b]. Existing work on fairness of exposure in bandits focused on local exposure constraints on the probability of pulling an arm at each timestep, either in the form of lower/upper bounds [Celis et al., 2018b]o rm e r i t -b a s e d exposure targets [Wang et al., 2021a]. In contrast, we consider amortized exposure over time, in line with prior work on fair ranking [Biega et al., 2018, Morik et al., 2020, Usunier et al., 2022],

along with fairness trade-offs defined by concave objective functions which are more flexible than fairness constraints [START_REF] Zehlike | Reducing disparate exposure in ranking: A learning to rank approach[END_REF], Do et al., 2021c, Usunier et al., 2022]. Moreover, these works [Celis et al., 2018b, Wang et al., 2021a] do not address combinatorial actions, while ours applies to ranking in the position-based model, which is more practical for recommender systems [Lagrée et al., 2016, Singh and[START_REF] Singh | Fairness of exposure in rankings[END_REF]. The methods of [Patil et al., 2020, Chen et al., 2020]a i ma tg u a r a n t e e i n gam i n i m a lc u m u l a t i v ee x p o s u r eo v e rt i m ef o re a c ha r m ,b u tt h e ya l s od o not apply to ranking. In contrast, [Xu et al., 2021, Li et al., 2019]c o n s i d e rc o m b i n a t o r i a lb a n d i t s with fairness, but they do not address the contextual case, which limits their practical application to recommender systems. [Mansoury et al., 2021a, Jeunen andGoethals, 2021]p r o p o s eh e u r i s t i c algorithms for fairness in ranking in the contextual bandit setting, highlighting the problem's importance for real-world recommender systems, but they lack theoretical guarantees. Using our FW reduction with techniques from contextual combinatorial bandits [Lagrée et al., 2016[START_REF] Agrawal | An efficient algorithm for contextual bandits with knapsacks, and an extension to concave objectives[END_REF][START_REF] Qin | Contextual combinatorial bandit and its application on diversified online recommendation[END_REF], we obtain the first principled bandit algorithms for this problem with provably vanishing regret.

B.2 More on experiments

Our experiments are fully implemented in Python 3.9.

B.2.1 Ranking cbcr:

A p p l i c a t i o nt of a i r n e s so fe x p o s u r ei nr a n k i n g s with bandit feedback

B.2.1.1 Details of the environment and algorithms

Environment Following [START_REF] Gourab K Patro | Fairrec: Two-sided fairness for personalized recommendations in two-sided platforms[END_REF] who also address fairness in recommender systems, we use the Last.fm music dataset 1 from [START_REF] Cantador | 2nd workshop on information heterogeneity and fusion in recommender systems (hetrec 2011)[END_REF], which includes the listening counts of 1, 892 users for the tracks of 17, 632 artists, which we identify as the items. For the first environment, which we presented in Section 5.5 and which we call Lastfm-50 here, we extract the top n = 50 users and m = 50 items having the most interactions. In order to examine algorithms at larger scale, we also design another environment, Lastfm-2k, where we keep all n =1.9k users and the top m =2.5k items having the most interactions. In both cases, to generate contexts and rewards, we follow a protocol similar to other works on linear contextual bandits [Garcelon et al., 2020b[START_REF] Agrawal | An efficient algorithm for contextual bandits with knapsacks, and an extension to concave objectives[END_REF]. Using low-rank matrix factorization with d 0 latent factors 2 ,w eo b t a i nu s e r factors u j 2 R d 0 and item factors v i 2 R d 0 for all j, i 2 JnK ⇥ JmK. We design the context set as

At each time step t, the environment draws a user j t uniformly at random from JnK and sends context x t = flatten(u jt v | i ). Given a context x t and item i, clicks are drawn from a Bernoulli distribution: c t,i ⇠ B(u | jt v i ). We set k = 10,a n df o rt h ep o s i t i o nw e i g h t s ,w eu s et h es t a n d a r dw e i g h t so ft h ed i s c o u n t e d cumulative gain (DCG): 8k 2 J kK,b k = 1 log 2 (1+k) and bk +1 ,...,b m =0.

1 https://www.last.fm, the dataset is publicly available for non-commercial use. 2 Using the Python library Implicit, MIT License: https://implicit.readthedocs.io/ Environments Since the Spotify dataset of [START_REF] Anderson | Algorithmic effects on the diversity of consumption on spotify[END_REF]i sn o tp u b l i c l ya v a i l a b l e ,w e only focus on their simulated, controlled environments. We reproduced these environments exactly as described in Appendix A of their paper. For completeness, we restate the protocol here: we draw ah i d d e np a r a m e t e r✓ 2 R D⇥d uniformly at random in [START_REF][END_REF]1], and each element of a context-arm

Given a context x t and arm k t , the D-dimensional reward is generated as a draw from N (✓x t,kt , 0.01(✓x t,kt ) 2 ). We cho ose d = 10 in the data generation and =0.1 in the Ridge regression, as recommended by Mehrotra et al. [2018].

In Section 5.5 of the main body, we varied the number of objectives D 2 {5, 20} and set K = 50.

Here we also experiment with K = 200 to see the effect of varying the number of arms. The GGF weights are set to w j = 1 2 j 1 . Each simulation is repeated with 100 different random seeds.

Results

The extended results, with more arms and algorithms, are depicted in Figure B.4.W e observe that FW-✏-greedy achieves similar performance to the baseline MOLinCB, with small exploration ✏ =0 .01. FW-SquareCB also achieves comparable performance to MOLinCB when there is little exploration, i.e. with 0 = 10 4 rather than 10 3 . This is coherent with our observation in Section 5.5 that FW-LinUCB obtains better performance when there is very little exploration on this environment from Mehrotra et al. [2018]. Note that there is no forced exploration in their algorithm MOLinCB. Overall, we obtain qualitatively similar results when K = 200 compared to

B.3 Proofs of Section 5.2

In this section we give the missing details of Section 5.2.F o rc o m p l e t e n e s s ,w er e m i n dt h ed e fi n i t i o n s of Lipschitz-continuity and super-gradients in the next subsection. Then, we start in Section B. 3.2 the analysis of the structure of the set S defined in Section 5.3 of the main paper, and more precisely its support function g 7 ! max s2S g | s. This contains new lemmas that are fundamental for the analysis throughout the paper, in particular in the proof of Lemma 32, which is given in Section B. 3.3.

B.3.1 Brief reminder on Lipschitz functions and super-gradients

We remind the following definitions. Let D and D 0 be two integers, and f af u n c t i o nf : R D ! R D 0 .

We have:

We remind the following results when f : R D ! R [ {±1} is a proper closed concave function:

• f has non-empty set of super-gradients at every point z where f (z) 2 R,

and Z is open, then for every z 2 Z and every super-gradient g of f at z,w eh a v ekgk 2  L.

The assumption of Lipschitz-continuity of f on a set Z implicitly implies the assumption that Z is in the domain of f .

B.6.2 Randomized smoothing

We now describ e the randomized smo othing technique [Lan, 2013, Nesterov and Spokoiny, 2017, Duchi et al., 2012, Yousefian et al., 2012] 

Following [Lan, 2013, Duchi et al., 2012], we abuse notation and take the "gradient" of f inside integrals and expectation below, because f is almost-everywhere differentiable since it is concave.

We restate the following well-known properties of randomized smoothing (see e.g., [Yousefian et al., 2012,L e m m a8 ] ) :

Lemma 40. Let > 0 and f be defined as in Eq. (B.8).

• f is L-Lipschitz continuous over K.

• f is continuously differentiable and its gradient is

We obtain the following results, stated in the language of Theorem 35 of Appendix B.4.

Lemma 41. Under Assumption A, assuming furthermore that f is L-Lipschitz on R D .

For t 1,l e tf t = f t with t = D Proof. By Lemma 40, f t is L-Lipschitz on R D for every t, so that f t has L-bounded gradient. Moreover, with this definition of 0 , f t is

We also have 

B.8 FW-SquareCB: cbcr with general reward fuctions

The SquareCB algorithm was recently proposed by Foster and Rakhlin [2020]f o rz e r o -r e g r e t contextual multi-armed bandit with general reward functions,basedonthenotionofonlineregression oracles. They propose, for single-reward contextual bandits with adversarial contexts and stochastic rewards, a generic randomized exploration scheme that delegates learning to an online regression algorithm. Their exploration/exploitation strategy then has (bandit) regret bounded as a function of the online regret of the regression algorithm. In this section, we extend the SquareCB approach to the case of cbcr. The main interest of this section is that by building on the work of Foster and Rakhlin [2020], we obtain at nearly no cost an algorithm for general reward functions for multi-armed cbcr problems.

This section shows how to extend this algorithm to our setting of concave rewards. To simplify the notation, we consider the case of finite K with atomic actions, i.e., |A| = K.O u ra l g o r i t h mi s based on an oracle for multi-dimensional regression RegSq, which provides approximate values for µ:

8T,8x 2 X , μT (x) = RegSq x, (x 1 ,a 1 ,r 1 ,...,a T 1 ,r T 1 ) .

(B.12)

The key assumption is that the problem is realizable and that RegSq has bounded regret:

Assumption G. There is a function T 7 ! R oracle (T ) 2 R, non-decreasing in T , 5 and Φ, a class of functions from X to R D⇥K such that, for every T 2 N:

For every

Assumption G is the counterpart for multidimensional regression of Assumptions 1 and 2a of Foster and Rakhlin [2020], which are the basis of the original SquareCB algorithm.

Remark 8 (The "informal" assumption used in Table 5.1). Notice that in Table 5.1, we describe an "informal" version of this assumption, which reads

, which is the counterpart for multi-dimensional regression of Assumption 2b by Foster and Rakhlin [2020]. Our choice in the table was to simplify the presentation, as this assumption is shorter. Our analysis is also valid under this alternative assumption. Our proofs are made under Assumption G because it is more widely applicable (more discussion of these assumptions can be found in [Foster and Rakhlin, 2020]).

Algorithm 8 describes how SquareCB principles apply to our framework. We use the framework of the main paper, or, equivalently, the special case of Algorithm 6 where 8t 2 N, ⇢ t = r t and z t = ŝt .N o t et h a tt h ea l g o r i t h mi sp a r a m e t e r i z e db y( t ) t2N⇤ instead of the desired confidence level 0 to make the analysis more general. Theorem 43 gives a formula for t as a function of the desired confidence 0 .A sf o rt h ep r e v i o u ss e c t i o n s ,w ed e s c r i b et h ea l g o r i t h mf o rt h eg e n e r a lc a s eo f smooth approximations of f ,u s i n grf t 1 rather than rf in Line 4 of the algorithm.

At time step t,t h er e g r e s s i o no r a c l ep r o v i d e sa ne s t i m a t eo fµ(x t ),t h e nt h ea l g o r i t h mc o m p u t e s A t , with a larger probability for the action which maximizes a 7 ! hrf (ŝ t 1 ) | μt (x t )ai. The exact formula for these probabilities A t follow the original SquareCB algorithm, with the exception that we use an iteration-dependent t instead of a constant . 6 The main result of this section is the following (see Section B. 8.2 and the next section for intermediate lemmas):

. Then, under

Assumptions E and G, Algorithm 8 satisfies, with probability at least 1 0 :

Recall that Assumption B is a special case of E when ⇢ t = r t , as we are here. Thus, the bound on R gen T is the same irrespective of whether we use the algorithm for smooth f (in which case

or with smooth approximations (in which case R scal,sm

. This is because only the Lipschitzness of (f t ) t 2N is used in the analysis of R gen T for FW-SquareCB.

The following result is a direct corollary of Theorem 43,a n dg i v e st h eo r d e ro fm a g n i t u d ew e obtain for smooth f .O b t a i n i n gas i m i l a rf o rs m o o t ha p p r o x i m a t i o n so ff , using Theorem 35 instead of Theorem 34 is straightforward.

Proof of the FW-SquareCB regret bound of Table 5.1. We apply the bound obtained by Theorem 43 within the bound of Theorem 34,u s i n g 0 := 2 /3 and := /3.W eo b t a i n :

T .

The bound given in the theorem uses the sub-additivity of p . to group the terms in p ln 1 for better readability.

The proof of Theorem 43 is decomposed into two subsections: in the next subsection, we make the necessary adaptations to the SquareCB analysis to account for multi-dimensional regression.

This proof follows essentially the same steps as the original analysis of SquareCB. There are only two changes:

• We use multi-dimensional regression instead of scalar regression, while we need to bound a scalar regret. There is an additional step to go from the scalar regret to the multi-dimensional regression, but it turns out there is no added difficulty (see first line of the proof of Lemma 46).

• For coherence with the overall bounds of the paper, we use an anytime analysis using an increasing sequence of ( t ) t2JT K ,i n s t e a do fafi x e de x p l o r a t i o np a r a m e t e r that needs be tuned for a specific horizon determined a priori. This introduces a bit more difficulty, where the main tool is Lemma Nonetheless, what we gain with our anytime bound is that the exploration parameter does not depend on a fixed horizon. What we lose, however, is that we need a high-probability bound on cumulative errors based on R oracle (t) that is valid for every t (see Lemma 46), while the "fixed gamma" case only requires this bound to hold for the horizon T . This is the reason for the ln T factor in our bound, which is not present in the original paper.

In the next sections, we use the following notation:

B.8.1 Adaptation of SquareCB proof to cbcr

In the SquareCB paper, Foster and Rakhlin [2020]studyhighprobabilit yboundsonadifferent type of regret, based on average rewards associated to the actions µ(x t )a t rather than observed rewards r t .H o w e v e r ,t h i sd i fference has little influence since we can start with the following inequality, which is similar to [Foster and Rakhlin, 2020,L e m m a2 ] .

Lemma 44. Under Assumption E, for every T 2 N ⇤ ,e v e r y 0 > 0, Algorithm 8 satisfies

Proof. The proof is by Azuma's inequality. Let F =(F t ) t2N⇤ be the filtration where F t is thealgebra generated by (x 1 ,a 1 ,r 1 ,. Notice that the difference between [Foster and Rakhlin, 2020,L e m m a2 ]a n do u rL e m m a44 is that Algorithm 8 satisfies, w.p. at least 1 0 : 

B.8.2 Final result

Proof of Theorem 43. Notice that the value of t given in the theorem is equal to

.

Using this formula, we have

Where the first line comes from the monotonicity of R oracle (T ) of Assumption G.

Using Lemmas 45 and 48, we thus have, with probability 1 0 /2:

Using a union bound and Lemma 44, we obtain, with probability at least 1 0 :

B.9 FW-LinUCBRank: cbcr for fair ranking with linear contextual bandits

In this section and following the previous sections, we analyze Algorithm 9 under Assumption E, which is more general than the bound proposed in the main paper, which used Algorithm 3 under Assumption B. The only difference in the algorithms is the use of f t 1 instead of f in Line 4 of Algorithm 9. This allows us to provide the algorithm for both smooth and non-smooth objective functions f .

The bound is decomposed into two parts: we describe the results for online regression within our observation model for ranking in the next subsection. Then we dive into the final result. The term k plays the constant C of [START_REF] Agrawal | An efficient algorithm for contextual bandits with knapsacks, and an extension to concave objectives[END_REF].

B.9.2 Guarantees for FW-LinUCB

We start by writing an alternative to Assumption D for the case where f is not smooth to carry out our analysis with as little assumptions on f as possible:

The assumptions of the framework of Sec. 5.4 hold, as well as Ass. E. Moreover, 8t 2 N, 8z 2 K @ft @zm+1 (z) > 0, and 8x 2 X , 1 b 1 (x) . Lemma 50. Under Assumptions D 0 and C Let T>0, 0 > 0 and D 2 X k. Then for every 0 > 0, Algorithm 9 satisfies, with probability at least 1 0 :

where ↵ T is defined in Lemma 49.

Proof. Let g t = rf t 1 (ŝ t 1 ),a n da ⇤ t 2 argmax a2A hg t | µ(x t )a r t i.L e t f u r t h e r m o r e 0 > 0.

Assume the algorithm uses

Let us define μt similarly to Proposition 15,i . e . ,8t 2 N ⇤ , μt such that 8i 2 JmK, μt,i = µ i (x t ) and μt,m+1 = vt b(x t ) | viewed as a column vector, with v defined in line 3 of Algorithm 9.W eh a v e :

Step 1: Upper bound on

), the average reward function where parameters ✓ replace ✓.W efi r s ts h o wt h a t for every a 2 A,w eh a v emax ✓2Ct hg t | µ ✓ (x t )aihg t | vt ai, where vt is given in Line 3 of Algorithm

9.

Given a 2 A,l e tu sd e n o t eb ymat(a) the view of a as an m ⇥ m permutation matrix (instead of an m 2 -dimensional column vector). Recalling that x t is a m ⇥ d matrix and g t 2 R m+1 ,l e tu s denote by g t,1:m the vector containing the first m dimensions of g t .W eh a v e :

The first equality is because g t,m+1 0. The second equality is deduced by direct calculation from the definition of C t in Lemma 49, which gives vt,i = max ✓2Ct ✓| x t,i .

By Proposition 15 we have that a t defined at Line 4 of Algorithm 9 maximizes hg t | μt ai over a.

We thus have max a2A max ✓2Ct hg t | µ ✓ (x t )aihg t | μt a t i.

Proof. We start with S(x 1:T ).L e tx 1:T 2 X T .W en o t i c et h a tS(x 1:T ) is the image of A T by the continuous mapping :( R K ) T ! R D defined by (a 1 ,...,a T )= 1 T P T t=1 µ(x t )a t .S i n c eA is compact, A

T is compact as well. S(x 1:T ) is thus the image of a compact set by a continuous function, and is therefore compact.

For the set S,w ep r o v i d eap r o o fh e r eu s i n gD i e s t e l ' st h e o r e m( s e e [START_REF] Nicholas | Integration of Banach-Valued Correspondence,p a g e s2 -3 5 . S p r i n g e rB e r l i n Heidelberg[END_REF]). Consider the set-valued map defined by G :

Then, S can be written as the Aumann integral of G over X w.r. , 1991, Theorem 3.1] that the collection G of P -integrable selections of G is weakly compact in L 1 (X ,P).F i n a l l y ,s i n c e g 7 ! R X g dP is a weakly continuous mapping from L 1 (X ,P) to R D ,a n dS ✓ R D is the image of G under this mapping (refer to the correspondence (B.16)), we deduce that S is weakly compact as a subset of R D ,a n dt h e r e f o r ec o m p a c ts i n c eR D is finite-dimensional.

B.10.2 Proof of Lemma 47

Lemma 47. Let ( t ) t 2N 2 R T + be a sequence of non-negative numbers, denote Λ T = P T t=1 t and let (Λ T ) T 2N such that 8T 2 N, Λ T > 0 and Λ T Λ T .

Proof. First, we treat the case where 0 > 0. Then

We now prove that the right-hand term is  p Λ T .L e tu so b s e r v et h a t ,f o re v e r y↵ 0, > ↵:

which is proved using

Using the telescoping sum (with

we obtain the desired result.

More generally, if 0 =0,t h e r ea r et w oc a s e s :

Appendix C

Appendix of Chapter 6

C.1 (In-)Compatibility of envy-freeness

C.1.1 Envy-freeness vs. optimality certificates

We showed in Section 6. 3.3 that envy-freeness is compatible with optimal predictions. To understand the differences between a certificate of envy-freeness and a certificate of optimality, let us denote by Π ⇤ = {⇡ : 9u satisfying (6.1) , ⇡ 2 argmax ⇡ 0 u(⇡ 0 )} the set of potentially optimal policies. If the set of users policies approximately covers the set of potentially optimal policies Π ⇤ ,t h e na ne n v y -f r e e system is also optimal. Formally, let

In practice, the space of optimal policies is much larger than the number of users (for instance, there are |A| |X | optimal policies in our setting), so that auditing for envy is tractable in cases where auditing for optimality is not.

C.1.2 Envy-freeness vs. equity of exposure

We remind the definition of optimal policies with equity of exposure constraints from Section 6. 3.3:

The constraints should be ignored when

Following Proposition 17 from Section 6. 3.3, we describe here a second source of envy when using optimal policies with equity of exposure constraints. By the linearity of the optimization problem for ⇡ m,eq ,t h ep o l i c ya s s i g n st ot h eb e s ti t e mi nac a t e g o r yt h ee x p o s u r eo ft h ee n t i r e category. It implies that categories with high average relevance have more exposure than categories with few but highly relevant items. Table C.1 gives an example with two users and two categories of items where both users envy each other with the optimal recommendations under equity of exposure constraints.

In some degenerate cases though, equity of exposure policies are envy-free. Table C.1: Example where the optimal recommendations under item-side equity of exposure constraints are not user-side fair because both users envy each other. There are 4 items, 2 item categories and 2 users. User 1 envies user 2 since u 1 (⇡ 2,eq ) >u 1 (⇡ 1,eq ).A l s o ,u 2 (⇡ 1,eq ) >u 2 (⇡ 2,eq ).

Lemma 51. If for all contexts x 2 X , each user m 2 JM K only likes a single item category A sm , i.e. 8a 2 A\A sm , ⇢ m (a|x)=0, then the policies (⇡ m,eq ) M m=1 are envy-free.

Proof. We set contexts x aside to simplify notation, but the generalization is straightforward.

We actually prove a stronger result than the lemma: if each user m only likes a single item, then (⇡ m,eq ) M m=1 =(⇡ m,⇤ ) M m=1 , where ⇡ m,⇤ is the optimal unconstrained policy for m. Let a m s = argmax a2As ⇢ m (a) be the favorite item in category A s for user m,t h e nt h eo p t i m a l equity of exposure constrained policies has the following analytical expression:

, and we thus have:

. Then u m (⇡ m,eq )=⇢ m (a m sm ) = max a2A ⇢ m (a). Then ⇡ m,eq is the optimal unconstrained policy for user m, meaning the whole system is envy-free (cf. Sec 6.3.2).

From Eq. C.1.2,w ea c t u a l l yn o t et h a t(⇡ m,eq ) M m=1 =( ⇡ m,⇤ ) M m=1 if and only if each user m equally values their favorite items in each category they like, i.e. 8m, 9 > 0, 8s 2 S, ⇢ m (a m s ) > 0 ) ⇢ m (a m s )=.

C.2 Extension to group envy-freeness

We briefly discuss an extension of envy-free recommendation to groups, since most of the literature on fair machine learning focuses on systematic differences between groups. Certifying envy-freeness at the level of groups rather than individuals also relaxes the criterion because it requires less exploration. Let us assume we are given a partition G of the users into disjoint groups. For g, g 0 2 G, we define the group utility of g with respect to g 0 as:

Definition 8. Given ✏ 0, the recommender system is ✏-group-envy-free if: 8g, g 0 2 G, U (g, g 0 )  U (g, g)+✏ .

Group envy-freeness is equivalent to envy-freeness when each group is a singleton. When

we have prior knowledge that user preferences and policies are homogeneous within each group, ✏-envy-freeness translates to ✏ 0 -group envy-freeness, with ✏ 0 ⇡ ✏,a n dt h er e c i p r o c a li sa l s ot r u e :

Proposition 52. Let ✏, ✏ > 0, and assume that for all groups and all pairs of users m, n in the same group g, we have sup The result is natural since when all groups have users with homogeneous preferences and policies, groups and users are a similar entity as regards the assessment of envy-freeness. The proof is straightforward and omitted. When groups have heterogeneous policies, the "average policy"

⇡ n is uninformative because it does not represent any user's policy. Defining a notion of group utility in the general case is thus nontrivial and left for future work.

C.3 Sources of envy

In this section, we first list a few possible sources of envy in recommender systems. Then we provide the details of experiments 1 which showcase one of these sources, namely model mispecification (App. C. 3.2).

C.3.1 Examples of sources of envy

Model mispecification Recommender systems often rely on strong modeling assumptions and multi-task learning, with methods such as low-rank matrix factorization Koren et al. [2009]. The limited capacity of the models (e.g., a rank that is too low) or incorrect assumptions might leave aside users with less common preference patterns. Appendix C. 3.2 gives a more detailed example on two simulated recommendation tasks.

Misaligned incentives Ar e c o m m e n d e rs y s t e mm i g h th a v ei n c e n t i v e st or e c o m m e n ds o m ei t e m s

to specific users, e.g., sponsored content. Envy appears when there is a mismatch between users who like these items and users to whom they are recommended.

Measurement bias Many hybrid recommender systems rely on user interactions together with user-side data Burke [2002]. This includes side-information such as browsing history on third-party, partner websites. Envy arises in these settings if there is measurement bias Suresh and Guttag [2019], e.g., if the side information is unevenly collected for all users (e.g., browsing patterns are different across users and partners are aligned with the patterns of a user groups only).

Operational constraints Regardless of incentives, recommendations might need to obey additional constraints. As described in Proposition 17,t h ei t e m -s i d ef a i r n e s sc o n s t r a i n to fe q u i t yo f exposure is an example of possible source of (user-side) envy. The user-side fairness constraint of equal utility also creates envy, as we showed in Sec. 6.5.1. In the following, we provide the details of our experiments from Sec. 6.5.1 where we showcase examples of environments with envy based on movie and music recommendation tasks.

In these experiments, we measure envy based on the quantity:

In line with Chevaleyre et al. [2017], we consider two ways of measuring the degree of envy:

• the average envy experienced by users:

• the proportion of ✏-envious users:

C.3.2 Setup of the experiments on envy from model mispecification

We describ e in this section the details of the exp eriments on envy from misp ecification presented in Section 6. [START_REF][END_REF].1.W eu s e dL a s t f m -2 k [START_REF] Cantador | 2nd workshop on information heterogeneity and fusion in recommender systems (hetrec 2011)[END_REF], a dataset from the online music service Last.fm 2 which contains real play counts of 2k users for 19k artists, and was used by Patro et al.

[2020] who also study envy-freeness as a user-side fairness criterion. We filter the top 2, 500 items most listened to. Following Johnson [2014], we pre-process the raw counts with log-transformation.

We split the dataset into train/validation/test sets, each including 70%/10%/20% of the user-item listening counts. We create three different splits using three random seeds. We estimate relevance scores for the whole user-item matrix using the standard matrix factorization algorithm 3 of Hu et al. [2008] trained on the train set, with hyperparameters selected on the validation set by grid search with DCG@40 as metric. The number of latent factors is chosen in [16,32,64,128],t h e regularization in [0.01, 0.1, 1., 10.],a n dt h ec o n fi d e n c ew e i g h t i n gp a r a m e t e ri n[ 0.1, 1., 10., 100.]. The resulted matrix of estimated relevance scores serves as the ground truth preferences.

We also address movie recommendation using the MovieLens-1M dataset Harper and Konstan [2015], which contains 1 million ratings on a 5-star scale from approximately 6000 users and 4000 movies. We extract a 2000 ⇥ 2500 user ⇥ items matrix, keeping users and items with the most rating. We transform MovieLens ratings into an implicit feedback dataset similar to Last.fm. Since setting ratings < 3 are usually considered as negative [START_REF] Wang | Modeling dynamic missingness of implicit feedback for recommendation[END_REF], we set ratings < 3 to zero, resulting in a dataset with preference values among {0, 3, 3.5, 4, 4.5, 5}.W et h e nu s et h es a m e algorithm as for Last.fm to obtain relevance scores that we use to simulate ground truth preferences.

We then simulate a recommender system's estimation of preferences using low-rank matrix completion 4 Bell and Sejnowski [1995]o nat r a i n i n gs a m p l eo f70% of the whole "ground truth" preferences, with hyperparameter selection on a 10% validation sample. Here, the regularization is chosen in [0.001, 0.01, 0.1, 1.],a n dt h ec o n fi d e n c ew e i g h t i n gp a r a m e t e ri n[ 0.1, 1., 10., 100.]. The estimated preference scores are given as input to the recommendation policies.

The recommendation policies we consider are softmax distributions over the predicted scores with fixed inverse temperature. These policies recommend a single item, drawn from the softmax distribution.

We generate binary rewards using a Bernoulli distribution with expectation given by our ground truth. We consider no context in these experiments, so that the policies and rewards only depend on the user and the item. Figure 6.2 in Sec. 6.5.1 was generated by varying the number of latent factors in the recommender system's preference estimation model. For each number of latent factors in the range [1,2,4,8,16,32,64,128,256], a new model was trained on the train set with hyperparameter selection on the validation set. The degrees of envy are measured on the whole ground truth preference matrix.

C.3.3 Envy from equal user utility constraints

We provide the full details of the exp eriments on envy from equal user utility presented in Sec. 6.5.1 from the main paper. The goal of these experiments is to show that in contrast to envy-freeness, enforcing equal user utility (EUU) degrades user satisfaction and creates envy between users. We remind from Sec. 6.3.2 that the fairness constraint of EUU is defined as:

or equivalently:

Equal user utility is enforced by adding a penalty to the maximization of user utilities. Optimal EUU policies are found by maximizing the following concave objective function, where the parameter b>0 controls the strength of the penalty:

We infer EUU p olicies using the Frank-Wolfe algorithm Frank and Wolfe [1956] with the ground truth preferences given as input. The parameter of the penalty is set to b = 50. We also generate the unconstrained optimal policies (OPT) based on the ground truth (recall that these are

Ac o m p a r i s o no fE U Ua n dO P Ti sp r o v i d e di nT a b l e6.1 in Sec. 6.5.1, with the following evaluation measures : total utility (higher is better), average envy and proportion of 0.05-envious users (lower is better). The results on both dataset confirm the claim that enforcing EUU penalties deteriorates total utility and creates envy between users, while illustrating the known property that OPT policies are compatible with envy-freeness.

C.4 OCEF experiments

C.4.1 Bandit experiments

We p erformed exp eriments on toy bandit environments to assess the p erformance of our algorithm OCEF on various configurations, which were also considered in Jamieson and Nowak [2014]. The four bandits instances have 10 arms. They are Bernoulli variables with means equal to 1) µ 0 =0.6 and 0.6 ,k =0,...,9,a n dt h eb a s e l i n ei sµ 0 ,

We remind that ! 2 (0, 1),

Finally, we notice that under event E (as defined in Sec. C. 5.1.1), we have for all k 2 {0,...,K} and all t:

Lemma 60. Under event E, for every k 2 JKK,i fk is pulled at round t, then 4 k (t) ⌘ k .

Proof of Lemma 60. Since k is pulled at t,t h et w of o l l o w i n gi n e q u a l i t i e sh o l d :

We prove them by contradiction. If (C.3) does not hold, then k should be discarded from the active set at time t 1,a n dt h e r e f o r ec a n n o tb ep u l l e da tt. Likewise, if (C.4) does not hold, then the algorithm stops at t 1,s ok cannot be pulled at t.

2), we have:

Since 0 was not pulled at time t,w ea l s oh a v e 0 (t 1)  k (t 1),h e n c e4 k (t 1)

Cost For the cost, we remind the bound given in Th. 58:

C.5.5 Proof of Theorem 19

We restate Theorem 19 which summarizes the guarantees for the audit of the probabilistic envyfreeness criterion with AUDIT, and we prove it below:

probability at least 1 ,

• AUDIT satisfies the conservative constraint (6.

3) for all M audited users,

• the bounds on duration and cost from Th. 18 (using 3 M instead of ) are simultaneously valid,

• if AUDIT outputs (✏, , )-envy-free, then the recommender system is (✏, , )-envy-free, and if it outputs not-envy-free, then

Proof. The first point is a consequence of Theorem 56 and the second point is a consequence of Theorems 57 and 58. Since we apply OCEF to each target user with confidence 3 M ,b yt h eu n i o n bound the confidence intervals are simultaneously valid for all M target users with probability 1 3 . Therefore, with probability at least 1 3 ,t h ec o n s e r v a t i v ec o n s t r a i n ti ss a t i s fi e df o ra l l M users and the bounds on cost and duration hold simultaneously for all M users.

We now prove the third bullet p oint in two steps.

Step 1 We show that the value of K = log (3 M/ ) log(1/( 1)) is chosen to guarantee the following result: with probability 1 3 M ,i ff o rau s e rw eh a v eµ 0 + ✏ max k2JKK µ k ,t h e nt h eu s e ri sn o t(✏, )-envious.

First, we apply the theorem on random subset selection from [START_REF] Schölkopf | Learning with kernels: support vector machines, regularization, optimization, and beyond[END_REF], Theorem 6.33), which guarantees that with probability 1 ( 1) K , the arm with maximal reward among the K arms is in the ( 1)-quantile range of all possible M arms. Solving for

m , the arm with maximal reward among the K is in the (1 ) quantile range with probability 1 3 M . This means that if for a target user m,w e have u m (⇡ m )+✏ = µ 0 + ✏ max k2JKK µ k , then with probability 1 3 M ,w ea l s oh a v e :

meaning the user is not (✏, )-envious. By a union bound over the M target users, the property holds simultaneously for all M target users with probability 1 3 .

Step 2 We now show that the numb er of users to audit M = l log(3/ ) m is chosen to guarantee that if none of the M sampled users are (✏, )-envious, then this holds true for an (1 ) fraction of the whole population with probability 1 3 .

Let 0 = 3 .D e n o t i n gq the probability that a user is not (✏, )-envious, we want to guarantee that q 1 with probability at least 1 0 ,u s i n g M Bernoulli trials where p := 1 q is the probability of success.

Let B( M, k, 0 ) denote the largest p 0 such that the probability of observing k or more successes is at least 1 0 (i.e., B( M, k, 0 ) is the binomial tail inversion). By definition, we have p  B( M, 0, 0 ).

Using the property that B( M, 0, 0 )  log(1/ 0 ) M (see e.g., Langford [2005]), we can guarantee that p  as soon as log

m is sufficient to guarantee p  ,o re q u i v a l e n l yq 1 with probability 1 3 .

We combining

Step 1 and 2 by a union b ound: if for M users and K arms, we have µ 0 + ✏ max k2JKK µ k , then with probability 1 2 3 ,a n( 1) fraction of the whole population is not (✏, )envious -or equivalently, the recommender system is (✏, , )-envy-free. Since OCEF is correct with probability 1 3 when outputting that µ 0 + ✏ max k2JKK µ k (i.e., ✏-no-envy), the union bound guarantees with probability 1 that AUDIT is correct when outputting (✏, , )-envy-free.S i n c e OCEF is correct with probability 1 when outputting envy, then so is AUDIT when outputting not-envy-free, which achieves the proof of the third bullet point.

Appendix D

Online selection of diverse committees 

We exhibit a b ound on the representation loss of CMDP which follows the optimal stationary policy ⇡ ⇤ of CMDP (D.1). Let d = P d i=1 (D i 1). ( d = d when all features are binary.)

Proposition 66. Let ⇡ ⇤ be an optimal stationary policy for CMDP (D.1).L e t > 0. Then,

All proofs of this section are available in Appendix E.2.1.

The upper bound on the representation loss of CMDP decreases with the committee size in p 1/K. This shows that the stationary policy ⇡ ⇤ works well for larger committees, although it acts independently from previously accepted candidates. The intuition is that for larger committees, adding a candidate has less impact on the current representation vector.

Example 10. We take the same attributes and same distribution as in Table D.1,w i t h✏ 0 = 1 /6.

Here, the target vectors are ⇢ gender =( 1 /2, 1 /2) and ⇢ age =( 1 /2, 1 /2): an ideal committee contains as many women as men, as many senior as junior.

With the optimal policy for LP (D.2), each time the current volunteer is a senior male, we select him with probability 1 /2; all other volunteers are selected with probability 1. The expected final composition of the pool is 30% of junior male, 30% of senior female, 20% of junior female and 20% of senior male. As the policy selects in average 5 /6 of the volunteers, the expected time until we select K candidates is E p,⇡ ⇤ [⌧ ]=( 6 /5)K. More details can be found in App. E.5.

D.5 p is unknown: optimistic CMDP strategy

We now tackle the committee selection problem when the candidate distribution p is unknown and must be learned online. Let g ⇤ = g ⇡ ⇤ be the value of (D.1), which is the optimal gain of the CMDP when the distribution p is known. We evaluate a learning algorithm by: 1. the performance regret: R(T )= P T t=1 (g ⇤ r(x t ,a t )), 2. the cost of constraint violations: R c (T ) = max i,j P T t=1 ⇠ i j (x t ,a t ) .

We prop ose an algorithm that we call RL-CMDP (Reinforcement Learning in CMDP, Alg. 10).

It is an adaptation of the optimistic algorithm UCRL2 Jaksch et al. [2010], and it also builds on the algorithm OptCMDP proposed by Efroni et al. [2020] for finite-horizon CMDPs. Learning in average-reward CMDPs involves different challenges, because there is no guarantee that the policy at each episode has constant gain. It does not matter in our case, since as we noted in Sec. 

.L e tN i j (t)= P t 1 t 0 =1 {x i t 0 =j,a t 0 =1} be the number of accepted candidates x such that x i = j before t.

At each episode l,t h ea l g o r i t h me s t i m a t e st h et r u ec a n d i d a t ed i s t r i b u t i o nb yt h ee m p i r i c a l distribution pl (x)=

and maintains confidence sets B l on p. As in UCRL2, these are built using the inequality on the `1-deviation of p and pl from [START_REF] Weissman | Inequalities for the l1 deviation of the empirical distribution[END_REF]: Extended LP In order to optimize this problem, we re-write (D.3) as an extended LP. Following Rosenberg and Mansour [2019] and the CMDP literature, we introduce the state-action occupation measure µ(x, a)=⇡(x, a)p(x) and variables (x) to linearize the `1 constraint induced by the confidence set:

x,a µ(x, a)⇠ i j (x, a)=0.

(D.4)

The last constraint is the proportional representation constraint. The second to fourth constraints enforce the compatibility of µ with the `1 confidence set. We retrieve the distribution as pl (x)= P a µ(x, a),a n dt h ep o l i c ya s :

Precisely, if some pl (x)=0,w em a ys e tt h ep o l i c y⇡ l (a|x) arbitrarily. Since the MDP induced by p is still weakly communicating, and in particular any policy is unichain, the optimal gain in this CMDP is not affected.

We now provide regret and representativeness guarantees. Moreover, with probability 1 , the representation loss of RL-CMDP at horizon T satisfies:

The full proof is in Appendix E.2.2. It relies on decomposing regret over episodes, bounding the error on p which decreases over episodes as the confidence sets are refined, and leveraging martingale inequalities on the cumulative rewards.

Since R(T )

T , it means that with high probability, the difference between the optimal selection rate and the selection rate of RL-CMDP decreases in p log(T )/T w.r.t. the horizon T . The representation loss decreases at the same speed, meaning that the agent should see enough candidates to accurately estimate p,a n da c c e p tc a n d i d a t e sa tl i t t l ec o s tf o rr e p r e s e n t a t i v e n e s s .

Compared to the bound from Proposition 66, the cost of not knowing p on representativeness is a p |X | log(|X |) factor. This is due to the estimation of p in the worst case, which is controlled by Lemma 67.A sw es h o wi no u re x p e r i m e n t s( S e c . D.6), the impact of |X | on performance regret (and in turn on sample complexity) is not problematic in our typical citizens' assembly scenario: since there are only a handful of features, our algorithm selects candidates quickly in practice (though representativeness is weakened by not knowing p). For specific structures of p,w eo b t a i n bounds with better scaling in |X |,b yc o n t r o l l i n ge a c he n t r yo fp with Bernstein bounds Maurer and Pontil [2009], instead the `1-norm. For completeness, we describe this alternative in Appendix E. 3. Interestingly, the representation loss is also inversely proportional to g ⇤ ,t h eo p t i m a ls e l e c t i o n rate in the true CMDP. The reason is that the CMDP constraints do not control the ratios

N (T ) ,b u tN i j (T ) instead (by definition of R c (T ) and ⇠ i j ). If N (T ) is small, i.e. due to a small selection rate g,t h e nR i j (T )=|N i j (T ) ⇢ i j N (T )| is small, but not necessarily

⇢ i j |: the committee is too small to be representative.

D.6 Experiments

The goal of these experiments is to answer the following: (Q1) In practice, for which range of committee sizes do our strategies achieve satisfying sample complexity and representation loss? (Q2) What is the cost of not knowing the distribution p for the sample complexity and representation loss?

Experimental setting To answer these questions, we use summary data from the 2017 Citizens' Assembly on Brexit. The participants were recruited in an offline manner: volunteers could express interest in a survey, and then 53 citizens were drawn from the pool of volunteers using stratified sampling, in order to construct an assembly that reflects the diversity of the UK electorate. We use summary statistics published in the report [START_REF] Renwick | A considered public voice on brexit: The report of the citizens' assembly on brexit[END_REF]t os i m u l a t ea no n l i n er e c r u i t m e n t process.

There are d =6features: the organisers expressed target quotas for 2 ethnicity groups, 2 social classes, 3 age groups, 8 regions, 2 gender groups and 2 Brexit vote groups (remain, leave). The report also includes the number of people contacted per feature group (e.g., women, or people who voted to remain) and the volunteering rate for each feature group, which we use as probability of volunteering given a feature group. We use Bayes' rule to compute the probabilities of feature groups among volunteers, and use them as the marginal distributions Pr[x i = j|volunteers] (since we only consider the population of volunteers). Since we only have access to the marginals, we compute the joint distribution as if the features were independent, although our model is agnostic to the dependence structure of the joint distribution. In Appendix E.4.2,w ep r e s e n ta d d i t i o n a l experiments with non-independent features, using a real dataset containing demographic attributes.

The results are qualitatively similar.

We study Greedy with tolerance ✏ =0.02, 0.05.W er u ne x p e r i m e n t sf o rK = 50, 100, 150, 250, 500, 1000, averaged over 50 simulations. More details are found in App. E.4.1.

(A1) We compare Greedy and CMDP, when the distribution p is known.F i g u r eD.1 shows that the greedy strategy with ✏ =0.05 requires 10 times more samples than CMDP,a n di t sr e p r e s e n t a t i o nl o s s is higher as soon as K 250. Greedy with lower tolerance ✏ =0.02 achieves better representation than CMDP for smaller committees (K  100), but the margin quickly decreases with K.H o w e v e r , even for small committees, it requires about 100 times more samples, which is prohibitively expensive. Consistently with Th. 68, we observe that the representation loss is higher when X is larger (d =5). For small and middle-sized committees, the loss of RL-CMDP is much worse than Greedy's which also works for unknown p.F o rl a r g ec o m m i t t e e st h o u g h ,t h em a r g i ni so n l y0.05 when K & 2000 and ⌧ ⇡ 3500 for RL-CMDP (which is ⇥3 more sample efficient than Greedy). In absolute terms, the theoretical regret bounds have a large constant p |X |. This constant is likely unavoidable asymptotically because it comes from Lem. 67,b u to u re x p e r i m e n t ss u g g e s tt h a ti n the non-asymptotic regime, RL-CMDP performs better than the bound suggests.

Appendix E

Appendix of Online selection of diverse committees

E.1 Details of the algorithms

For precision, we provide the pseudo co de of Greedy in Alg. 11,a n dt h eCMDP-based strategy in Alg.

12.

We also prove the b ound on the representation loss of Greedy from Proposition 63 in Section D. 3.2. Proof. For all i, j,w eh a v eb yt h ei f -c o n d i t i o na n dt h et e r m i n a t i o nc o n d i t i o n :

Combining these observations with (E.1):

Combining this lower bound with the upper bound (E.2),w eh a v ef o ra l li 2 JdK,j 0 2 JD i K, Proof of Lemma 64.

Proof. We have:

and g ⇡ = X

x,a ⇡(x, a)p(x)r(x, a)=E x⇠p a⇠⇡ (.|x) [r(x, a)]

The ratio of these two quantities is equal to ⇢ i j by the last constraint of (D.2). It is also equal to P[x i = j|a = 1], which gives the result.

Note that it also holds true for j = JD i K,s i n c e

Proof of Proposition 66.

Proof. For any t>0,w eh a v e .

and by Lemma 64,w eh a v e :

Let 0 > 0. Conditionally on any T K, (a 1 ,...,a T ) 2 {0, 1} T s.t. a 1 + ... + a T = K and a T =1, the draws of x i t |a t =1are independent and thus, by Hoeffding's inequality Hoeffding [1994], we have:

Summing up over all such sequences (a 1 ,...,a T ),w eo b t a i nt h a t :

The result follows from applying a union bound over all i 2 JdK,j 2 JD i 1K (there are d such (i, j) pairs) and choosing 0 = / d.

E.2.2 Proof of Theorem 68

The following lemma states a standard and useful inequality, which is similar to Lem. 19 in Jaksch et al. [2010].

Lemma 69. Recall that L is the random number of episodes ran by RL-CMDP up until horizon T .

We have:

Proof. The proof is similar to that of Lem. 13 in Zanette and Brunskill [2019]: we see E l as the "derivative" of ⌧ l .F o r m a l l y ,l e tu sd e fi n e :

Proof. We define E = E 1 \ E 2 \ E 3 to be the "good event", with: Performance regret We start by upp er b ounding the p erformance regret R(T ).L e t∆ l = P t2E l (g ⇤ r(x t ,a t )) be the regret of episode l.L e t(⇡ l , pl ) be the solution of the optimistic CMDP (D.3)a te p i s o d el.S i n c e(⇡ ⇤ ,p) is feasible for (D.3), then g ⇤  g pl ,⇡ l .W ea l s on o t et h a t

Therefore, we have:

Using Hölder's inequality and the fact that krk 1 =1 ,t h efi r s tt e r mc a nb eb o u n d e db y |E l |kp l pk 1 .B yv a l i d i t yo ft h ec o n fi d e n c ei n t e r v a l su n d e re v e n tE:

Summing up over episodes l =1,...,L:

We b ound the first sum using Lemma 69. The Bernstein version of RL-CMDP may be advantageous for some candidate distributions p.F o r example, if the support S of p is very small compared to X ,t h efi r s tt e r mi nt h eB e r n s t e i ne m p i r i c a l inequality (E.4) is equal to zero for all x outside the support. Therefore, the representation loss scales as:

where |S| ⌧ |X |. Thus, the second term with fast decrease in log(T ) 2 T controls the bound on representation loss.

E.3.1 Proofs

The following lemma states a useful inequality akin to Lemma 69.

Lemma 72. We have:

Proof. The proof is similar to Lem. 13 in Zanette and Brunskill [2019]. Using the same notation as in the proof of Lemma 69,

= log(⌧ L 1)  log T.

We now prove Theorem 71.

Proof. We re-use the same steps and notation as for the proof of Theorem 68.

Here instead, E 1 is the event such that the confidence intervals are valid (E.4).U n d e rt h e high-probability good event E = E 1 \ E 2 \ E 3 ,w et h u sh a v e :

|⇡ l (x) p(x)| . where b ,T = log( 6|X |T ).

In the following, the first inequality is by validity of the Bernstein confidence intervals under E, and the second inequality is by Cauchy-Schwarz's inequality:

By Lemmas 69 and 72,w eh a v e :

Summing up over episodes in inequality (E.5) and plugging in the above inequalities gives the desired bound by following the steps of the proof of Theorem 68.

E.4 Experiments

E.4.1 Details on the Brexit experiments

We provide in Table E.1 the target vectors (⇢ i j ) i,j and marginal distributions (P p [x i = j]) i,j extracted from the Citizens' Assembly on Brexit report [START_REF] Renwick | A considered public voice on brexit: The report of the citizens' assembly on brexit[END_REF]. 1 The report includes the volunteering rates for each feature group, i. We often have ⇢ i j 6 = P p [x i = j].F o re x a m p l e ,c o m p a r e dt ot h ea g et a r g e t ,w ea r el e s sl i k e l yt o find younger people ( 34 years old) among volunteers. For gender, while the target was gender parity, we are much less likely to find women than men in the volunteer population.

Appendix F

Résumé de la thèse en français 

Résumé

Les algorithmes d'apprentissage automatique (machine learning)s o n tl a r g e m e n tu t i l i s é sd a n sl e s systèmes de recommandation qui alimentent les plateformes de streaming, de commerce et les réseaux sociaux. Leur principal objectif est de fournir aux utilisateurs des recommandations personnalisées en prédisant leurs préférences et en triant les contenus disponibles en fonction de ces prédictions.

Cependant, en sélectionnant le contenu de certains producteurs plutôt que d'autres, les algorithmes de recommandation décident de qui est visible ou non. Ces décisions ont de réelles implications éthiques et sociales, comme les risques d'invisibilisation de groupes minoritaires ou défavorisés dans la suggestion de profils à des employeurs, ou les problèmes de sous-ou surreprésentation de certaines opinions et cultures sur les réseaux sociaux. Il est donc devenu crucial de garantir que ces décisions automatisées soient non biaisées et équitables envers les producteurs de contenu, en évitant de donner à certains groupes un avantage ou un désavantage excessif. En plus de décider quels producteurs sont visibles, les algorithmes de recommandation jouent également un rôle clé dans la décision de quels utilisateurs sont exposés à certains contenus, notamment les contenus associés à des opportunités économiques telles que les offres d'emploi et annonces immobilières.

Par conséquent, des préoccupations se posent quant à l'équité d'accès à ces opportunités parmi les section suivante, la principale contribution de cette thèse, qui est un cadre pour guider la décision d'attribution du classement dans les systèmes de recommandation, ancré dans les principes de justice distributive du choix social.

F.3 Le choix social pour la recommandation équitable

Cette section présente une contribution clé de cette thèse : un cadre conceptuel pour l'équité dans les systèmes de recommandation qui est ancré dans la théorie du choix social.

F. 3.1 Répartition équitable de l'exposition dans les systèmes de recommandation Comme nous l'avons déjà discuté, à l'étape du classement, les systèmes de recommandation prennent une décision allocative collective sur quels items reçoivent de l'exposition, et à quels utilisateurs ils sont exposés. L'équité dans les problèmes d'allocation,o ul adivision équitable,au n el o n g u e histoire dans la théorie du choix social, qui est une branche de l'économie qui étudie les processus de prise de décision collective basés sur les préférences hétérogènes de plusieurs agents [START_REF] Kenneth J Arrow | Handbook of social choice and welfare[END_REF][START_REF] Moulin | Fair division and collective welfare[END_REF]. Dans cette thèse, nous abordons l'équité dans les systèmes de recommandation comme un nouveau problème de division équitable, où la ressource rare à distribuer est la quantité de contenu que le système peut afficher à ses utilisateurs, c'est-à-dire l'exposition totale disponible.

Différents producteurs d'items sont en compétition pour une part de cette ressource limitée. Notre point de vue est que le recommandeur est un planificateur social dont le but est de fournir des recommandations classées aux utilisateurs en répartissant équitablement le budget d'exposition parmi les producteurs d'items, tout en tenant compte de l'impact du mécanisme d'allocation sur la satisfaction de l'utilisateur. Nous nous appuyons sur les nombreuses recherches sur la division équitable qui ont été menées dans le passé dans la théorie du choix social et l'économie du bien-être cardinal.

Nous utilisons le terme utilité dans son sens large dans l'économie du bien-être cardinal comme une "mesure de la caractéristique de haut niveau qui est pertinente pour le problème particulier de justice distributive en question" [START_REF] Moulin | Fair division and collective welfare[END_REF]