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R E P R E S E N T I N G E V I D E N C E F O R AT T R I B U T E P R I VA C Y:
B AY E S I A N U P D AT I N G , C O M P O S I T I O N A L E V I D E N C E , A N D

C A L I B R AT I O N

représentation de la preuve pour le respect de la vie privée :
inférence bayésienne , preuve compositionnelle et calibration

paul-gauthier noé

PhD thesis

Supervised by Jean-François Bonastre and Driss Matrouf

Laboratoire Informatique d’Avignon
Avignon Université

September 2023



Paul-Gauthier Noé: Representing evidence for attribute privacy: Bayesian updating, compositional
evidence, and calibration, Représentation de la preuve pour le respect de la vie privée : In-
férence Bayésienne, preuve compositionnelle et calibration, © September 2023



v





To my Grandmother Anne-Marie.





A B S T R A C T

Attribute privacy in multimedia technology aims to hide only one or a few personal charac-
teristics, or attributes, of an individual rather than the full identity. To give a few examples,
these attributes can be the sex, nationality, or health state of the individual. When the at-
tribute to hide is discrete with a finite number of possible values, the attacker’s belief about
the attribute is represented by a discrete probability distribution over the set of possible
values. The Bayes’ rule is known as an information acquisition paradigm and tells how the
likelihood function is changing the prior belief into a posterior belief.

In the binary case—i. e. when there are only two possible values for the attribute—the
likelihood function can be written in the form of a Log-Likelihood-Ratio (LLR). This has
been known as the weight-of-evidence and is considered a good candidate to inform which
hypothesis the data is supporting and how strong. The Bayes’ rule can be written as a sum
between the LLR and the log-ratio of prior probabilities decoupling therefore the evidence
provided by the data and the initial personal belief.

This thesis proposes to represent the sensitive information disclosed by the data by a
likelihood function. In the binary case, the LLR is a good candidate for expressing the
likelihood function. However, this appealing form of the Bayes’ Rule can not be general-
ized straightforwardly to cases where more than two hypotheses are possible. In order to
get around this issue, this thesis proposes to treat discrete probability distributions and
likelihood functions as compositional data. The sample space of compositional data is a
simplex on which a Euclidean vector space structure—known as the Aitchison geometry—
can be defined. With the coordinate representation given by the Isometric-Log-Ratio (ILR)
approach, the Bayes’ rule is the translation of the prior distribution by the likelihood func-
tion. Within this space, the likelihood function—in the form of a ILR transformation of the
likelihood vector (ILRL)—is considered in this thesis as the multiple hypotheses and mul-
tidimensional extension of the LLR. The norm of the Isometric-Log-Ratio-Likelihood (ILRL)
is the strength-of-evidence and measures the distance between the prior distribution and the
posterior distribution. This can be seen as a measure of the information disclosed by the
data. This measure of information is referred as evidence information.

Perfect privacy—coming from Claude Shannon’s perfect secrecy—is reached when the at-
tacker’s belief does not change when observing the data: its posterior probabilities remain
equal to its prior ones. In other words, we want the data to provide no evidence about the
value the attribute takes. This idea—also known as zero-evidence—is theoretically reached
when the LLR is zero in a binary setting, and by extension when the ILRL is the zero vector
in a non-binary case corresponding to no strength-of-evidence.

The information—contained in an observation—about an attribute, is represented by a
ILRL. However, in order to properly represent the information, the ILRLs have to be cali-
brated. The concept of calibration has been mostly discussed for probabilities but can be
applied to likelihood functions. The idempotence of calibrated LLRs and its constraint on the
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distributions of normally distributed LLRs are well-known properties. In this thesis, these
properties are generalized to the ILRL for multiple hypotheses applications.

Based on these properties and on the compositional nature of the likelihood function,
a new discriminant analysis approach is proposed. First, for binary applications, the pro-
posed discriminant analysis maps the input feature vectors into a space where the discrim-
inant component forms a calibrated LLR. The mapping is learned through Normalizing
Flow (NF) a cascade of invertible neural networks.

This discriminant analysis can be used for standard pattern recognition but also for pri-
vacy purposes. Since the mapping is invertible, the LLR can be set to zero—which is consis-
tent with the zero-evidence formulation of privacy—and the data can then be mapped back
to the feature space. This protection strategy is tested on the concealment of the speaker’s
sex in neural network-based speaker embeddings. The resulting protected embeddings are
tested for Automatic Speaker Verification (ASV) and for voice conversion applications.

Since the properties of the LLR naturally extend to the ILRL thanks to the Aitchison ge-
ometry of the simplex, the proposed discriminant analysis is easily generalized to cases
where more than two classes, or hypotheses, are involved. We call this new approach
Compositional Discriminant Analysis (CDA). It maps the data into a space where the dis-
criminant components form calibrated likelihood functions expressed by the ILRLs.

The family of invertible transformations given by the NF can be used to learn a calibration
mapping for LLR. This is briefly discussed at the end of this thesis.

Although this work is presented first in the context of privacy preservation, we believe
this opens several research directions in pattern recognition, calibration of probabilities and
likelihoods for multiclass applications, and the learning of interpretable representation of
information.
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R É S U M É

Le respect de la vie privée dans les technologies multimédia consiste généralement à dissi-
muler l’identité d’un individu. Cette thèse s’intéresse cependant au respect de la vie privée
dit orienté attributs. Le but est de dissimuler l’information relative à un seul attribut de l’in-
dividu comme son sexe, sa nationalité ou son état de santé, tout en préservant les autres
attributs ou caractéristiques de l’individu. Quand l’attribut à dissimuler ne peut prendre
qu’une seule valeur parmi un ensemble fini de valeurs possibles, la connaissance d’un
attaquant sur l’attribut est représentée par une distribution de probabilité discrète sur l’en-
semble des valeurs possibles. L’inférence bayésienne décrit comment une connaissance a
priori, c’est-à-dire avant d’avoir observé des données, est transformée en une connaissance
a posteriori par une fonction de vraisemblance.

Dans le cas binaire, c’est-à-dire lorsque l’ensemble de valeurs possibles pour l’attribut
ne contient que deux éléments, la fonction de vraisemblance peut être écrite comme le log-
ratio des deux vraisemblances (LRV). Le LRV est connu en inférence bayésienne comme
le poids de la preuve et informe quelle hypothèse (ou valeur de l’attribut) une observation
appuie et à quel point. La formule de Bayes peut être écrite comme la somme du LRV et
du log-ratio des probabilités a priori. De cette manière, la contribution de l’observation et
la contribution de la connaissance a priori sont séparées dans le calcul des probabilités a
posteriori.

Dans cette thèse, il est proposé que l’information relative à l’attribut, révélée par une
donnée, soit représentée par une fonction de vraisemblance. Dans le cas binaire, le LRV ex-
prime de manière intuitive la fonction de vraisemblance. Cependant, cette manière d’écrire
la formule de Bayes n’est pas directement généralisable aux cas avec plus de deux hy-
pothèses, ou valeurs de l’attribut possibles. Cette thèse propose donc de traiter les distri-
butions de probabilité et les fonctions de vraisemblance comme des données composition-
nelles. La formule de Bayes peut ainsi être réécrite comme une somme entre la contribution
des données et la connaissance a priori. Les données compositionnelles vivent sur le sim-
plexe sur lequel un espace vectoriel euclidien, connu sous le nom de géométrie d’Aitchison,
peut être défini. Avec le système de coordonnées défini par l’approche isometrique-log-
ratio, l’inférence bayésienne est la translation de la distribution a priori par la fonction de
vraisemblance. Dans cet espace, la fonction de vraisemblance, appelée Isométrique-Log-
Ratio-Vraisemblance (ILRV), est considérée comme la généralisation multidimensionnelle
et multi-hypothèses du LRV. La norme du ILRV est la force de la preuve et mesure la distance
entre la distribution a priori et la distribution a posteriori ce qui peut être vu comme une
mesure de l’information révélée par les données.

La notion de secret parfait introduite par Claude Shannon, peut être appliquée au respect
de la vie privée. Le secret parfait correspond à la situation où la distribution a posteriori de
l’attaquant est égale à sa distribution a priori. De cette manière, les données n’ont fourni
aucune information à l’attaquant. Le secret parfait est atteint lorsque le LRV est zéro pour
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les cas binaires et, par extension, lorsque le ILRV est égal au vecteur nul pour les cas
non-binaires.

Pour que les ILRVs représentent correctement l’information révélée par les données, ils
doivent être calibrés. Le concept de calibration est habituellement appliqué aux probabi-
lités mais peut être appliqué aux vraisemblances. L’idempotence des LRVs calibrés et sa
contrainte sur la distribution des LRVs normalement distribués sont des propriétés bien
connues. Dans cette thèse, ces propriétés sont généralisées aux ILRVs pour des applica-
tions multi-hypothèses.

À partir de ces propriétés et de la nature compositionnelle des fonctions de vraisem-
blance, une nouvelle analyse discriminante est proposée. D’abord présentée pour des ap-
plications binaires, l’analyse discriminante plonge les vecteurs de caractéristiques en entrée
dans un espace où la composante discriminante est un LRV calibré. La transformation est
apprise avec un flot normalisant (normalizing flow) qui est une cascade de réseaux de
neurones artificiels inversibles.

Dans cette thèse, nous proposons d’utiliser cette analyse discriminante pour le respect
de la vie privée orienté attributs. La transformation étant inversible, le LRV peut être mis
à zéro, avant de replonger les données dans l’espace des caractéristiques, respectant ainsi
l’idée de secret parfait. Cette approche est testée sur la dissimulation du sexe du·de la
locuteur·trice sur des représentations locuteur·trice issues de réseaux de neurones artificiels
profonds. Une fois protégées, ces représentations sont testées sur une tâche de vérification
automatique du·de la locuteur·trice et sur une tâche de conversion de la voix.

Les propriétés du LRV étant généralisables au ILRV grâce à la géométrie d’Aitchison,
l’analyse discriminante proposée dans le cas binaire se généralise facilement aux cas non-
binaires. De manière similaire au cas binaire, cette approche, que nous proposons et appe-
lons Analyse Discriminante Compositionnelle, plonge les données dans un espace où les
dimensions discriminantes forment une fonction de vraisemblance calibrée exprimée par
l’ILRV.

L’idée d’utiliser un flot normalisant peut être expérimentée pour apprendre une trans-
formation de calibration de LRV. Ce point est brièvement abordé à la fin de cette thèse.

Même si les travaux de cette thèse sont principalement présentés dans un contexte
de sécurité des données personnelles, les notions abordées ouvrent des directions de re-
cherche dans les domaines de la calibration des probabilités et des vraisemblances et dans
l’apprentissage automatique, en particulier pour l’apprentissage de représentations inter-
prétables de l’information.
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1
I N T R O D U C T I O N

With the advent of the digital revolution, data is being shared more freely than ever before.
Consequently, privacy concerns are increasing, as evidenced by the attempt to create leg-
islation1. People are using “smart” multimedia devices for multiple tasks like listening to
music, online shopping, or even for medical consultations. It has also become natural for
many people to control their digital devices through voice commands to such an extent
that certain people are not aware that they are disclosing personal information. However,
the manner a user is speaking and his or her voice embed information that could be con-
sidered private such as the sex, age, health and emotional state, or some information about
the native language of the user [1, 64, 65, 72, 103, 114]. Private information can be misused
by someone who intercepted the data, unbeknown to the user. Or, this can be misused
by someone to whom the data is intentionally given in exchange for a service2. Therefore,
privacy systems are required for the protection of the sensitive information in the data.

Originally, privacy approaches have been focused on the sanitization of datasets before
their publication. Approaches like k-anonymity [153] aim in making each row of a dataset
indistinguishable from at least k− 1 other rows. This reduces the granularity of the dataset
and can be seen as a group-based approach: within a group, some samples are made in-
distinguishable. This approach has been introduced in the context of dataset publishing,
especially for tabular data where the columns represent independent factors. This the-
sis is rather concerned with multimedia data, like speech, where a sample3 is commonly
represented by a large dimensional vector in which the different factors of variation are
entangled.

Many privacy approaches are based on randomized mechanisms incorporating noise in
the data. Differential privacy4 [52] is a theoretical guarantee of the level of privacy provided
by these mechanisms. Starting with the idea that for the data release to be useful, some leak
of sensitive information is inevitable, the level of the noise is adjusted to find a trade-off
between the privacy and the utility of the data.

Our approach to privacy is different. While standard approaches are mostly concerned
with indistinguishability between individuals, this thesis is concerned with what is called
attribute privacy5. Attribute privacy aims for the concealment of a personal attribute of a

1 As the General Data Protection Regulation in European Union.
2 For instance, this can be a banking or insurance company that uses authentication by voice, or a company

producing smart speakers.
3 Here, the term “sample” does not refer to one sample of a waveform. It rather refers to an observation like a

speech utterance, an image, etc.
4 Originally developed in the context of statistical database release too, differential privacy generalizations have

been proposed for other applications [32].
5 Not to be confused with attribute privacy as defined in [165].
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person which can be for instance the sex, nationality or health state6. Attribute privacy is
of interest in a situation where the user is concerned with the protection of only one of
their personal attribute7. In such a situation, since the private attribute explains only a part
of the variability in the data, the complete concealment of the attribute can be considered
while keeping the rest of the variability for the data to remain useful. This is substantially
different from approaches that consider that the level of privacy protection is at the expense
of the utility of the data and therefore seek a trade-off between privacy and utility.

The privacy approach discussed in this thesis aims to provide no information about the
sensitive attribute when a sample is released. Therefore, the first natural question which
drives this thesis is:

How to represent the information–contained in a sample–related to a personal attribute?

Thinking about how to represent the sensitive information contained in the data is con-
sidered here as a crucial step before considering its concealment. The Bayes’ rules tells how
an individual’s8 belief about an attribute, represented by a discrete probability distribution
over the set of values the attribute can take, changes when observing new data [14, 42,
60, 93]. In this way, the Bayes’s rule can be used as an information acquisition paradigm.
When the attribute is binary, i. e. when it has only two possible values, the concept of
weight-of-evidence [69, 102], is a good candidate for representing how the data is supporting
one value against the other. However, extending this concept to cases where the attribute
has more than two possible values is not straightforward and requires a new paradigm. By
treating the vectors of probabilities and likelihoods as compositional data [128], this thesis
presents an extension of the concept of weight-of-evidence to non-binary attributes.

Even if a formal way of representing the evidence is adopted, one has to make sure that
this can not be misinterpreted. This is where the concept of calibration [22, 40, 43, 137] steps
in. In a nutshell, calibration insures that the information is properly represented avoiding
potential misinterpretation. This concept will be essential all through this thesis.

Once it has been stated how to represent the sensitive information in the data, i. e. the
evidence, the manipulation of this information for privacy purpose can be considered. This
thesis is secondly concerned by the following question:

How to accurately model and manipulate the information related to an attribute?

These last years, machine learning methods appeared to be really effective for data mod-
eling and pattern recognition [16, 109]. However, their behavior often suffers from a lack
of interpretability, especially since the advent of what is called deep learning [90]. For crit-
ical applications like privacy, it is crucial to manipulate the data in an accurate and inter-
pretable manner. Discriminant analysis approaches aim to model the data and transform

6 To be more precise, this can be any attribute representable by a discrete variable with a finite number of possible
values.

7 This situation has also been called user-configurable privacy [7].
8 In the context of privacy preservation, the individual refers to an attacker, i. e. the person who seeks to infer

the value of the private attribute.
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it into a space that maximizes the information related to the classes (i. e. the possible val-
ues of the attribute) by maximizing the separability between the classes. They are usually
based on assumptions about the distribution of the data or are not designed to represent
the information in a calibrated and interpretable manner. This thesis will propose a new
discriminant analysis for modeling and manipulating the evidence in the data for privacy
purposes. The data is mapped into a space where the first dimensions accurately represent
the evidence while the others represent the remaining variability.

Nevertheless, even if the main motivation of this work is for privacy application, the con-
cepts encountered throughout this thesis are more general and can be applied to decision
theory, pattern recognition, and any field interested in the extraction and manipulation of
useful and interpretable representation of the information contained in some data.

1.1 organisation of this thesis

This thesis is organized as follows:

• Chapter 2 presents some basics of Bayesian decision theory and the subjective inter-
pretation of probabilities. It introduces the Bayes’ rule, the Log-Likelihood-Ratio (LLR),
also known as weight-of-evidence, and the concept of calibration of probabilities and
LLRs. In addition, Proper Scoring Rule (PSR), its connection with information theory,
and how this can be used to measure the goodness of probabilities and LLRs are
briefly presented. This chapter also introduces, in Section 2.6, properties of calibrated
LLRs: the idempotence property and its constraint on the distribution’s parameters of
normally distributed LLRs.

• Chapter 3 introduces compositional data analysis. Discrete probability distribution
lives on the probability simplex and can therefore be treated as compositional data. It
presents how vectors of likelihoods can also be treated as such and that within the
Aitchison geometry of the simplex, the likelihood vector naturally extends the concept
of LLR to non-binary cases. This generalization of the LLR is called the Isometric-Log-
Ratio-Likelihood (ILRL), or evidence function.

• Chapter 4 extends Claude Shannon’s definition of perfect secrecy to privacy. Perfect
privacy is reached when no evidence is given to the attacker, i. e. when all likelihoods
are equal corresponding to a zero vector on the Aitchison simplex: this is zero-evidence.
The expected privacy disclosure from the Zero Evidence Biometric Recognition Assess-
ment (ZEBRA) framework is then presented. It is a measure of the amount of sensitive
information disclosed by a two classes recognizer. In addition, this chapter discusses
two different views of the information. One refers to the information received by an
observer and necessarily depends on his or her prior belief; and the other, called ev-
idence information, refers to the information disclosed by an observation and does not
depend on the observer.

• Chapter 5 presents how the idempotence property’s constraint on the distributions
of the LLR can be used to design a two classes discriminant analysis which maps the
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data into a space where the first dimension represents the evidence (i. e. the sensitive
information in a privacy context) expressed by the LLR. This chapter also shows how
the proposed discriminant analysis can be used for attribute privacy, applying it to
the concealment of the speaker’s sex in speaker embeddings and speech utterances.

• Chapter 6 shows that the idempotence property applies also to calibrated ILRLs. This
property leads to a constraint on the parameters of the distributions of normally
distributed ILRLs. This generalizes the properties of the LLR presented in Section 2.6
to the ILRL.

• The constraint on the distributions of the LLRs has been used to design the two classes
discriminant analysis presented in Chapter 5. Since this constraint generalizes also to
the ILRL, i. e. the multiclass extension of the LLR, Chapter 7 naturally extends the
discriminant analysis to more than two classes.

• Chapter 8 discusses a potential new generative calibration approach for the transfor-
mation of binary classifier scores into calibrated LLRs.

• Chapter 9 is the conclusion. It summarizes the main findings of this thesis, gives
additional thoughts, and discusses a few potential directions for future works.

1.2 contributions

Novel technical contributions of this thesis are listed above:

• The treatment of probability vectors as compositional data in the context of Bayesian
updating has been discussed in [55, 58]. However, Chapter 3 presents the ILRL as
the multidimensional extension of the LLR. Moreover, we provide a simple proof of
the general formula of Equation 45 that recursively gives the component of the ILR

transformation of a composition when the Aitchison basis is obtained through the
Gram-Schmidt procedure9.

• Section 4.3.2 provides original thoughts about uncertainty and evidence information.

• Chapter 2.6 presents properties of the LLR known for decades but lays the foundations
of what will constitute, in Chapter 6, their generalization to ILRL. Chapter 6 indeed
provides new results: it shows the idempotence property of the ILRL and its constraint
on the distribution of normally distributed ILRL written in Proposition 2.

• Chapter 5 and 7 present a new approach to discriminant analysis. The main original-
ity of this approach is that—taking advantage of the properties of calibrated likeli-
hood vectors within the Aitchison geometry of the simplex—it is explicitly designed
such that the discriminant components form a calibrated likelihood function.

• Finally, Chapter 8 is an attempt to design a new approach to generative calibration.

9 Even if this formula can be found in [56], at the beginning of our work, we were not aware of this result, thus
we proofed it.
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B AY E S I A N U P D AT I N G O F B E L I E F

If someone asks you whether it will rain tomorrow or not in Avignon, do you feel able
to say “Yes, it will rain” or “No, it will not rain”? You may prefer to say something like
“I’m not sure, but I believe that...” because you feel uncertain about it. Even the weather
forecasters are not certain about the coming weather. Instead of affirming whether it will
rain or not, they provide a probability that it will rain. You may have noticed that we wrote
“a” rather than “the” probability. Indeed, probabilities represent here a personal belief that
can differ from one another because we all have different knowledge and background.
Weather forecasters may have for instance different atmospheric models, sensor positions,
etc. This interpretation of probability is referred to as subjectivist. Probability allows dealing
with uncertainty by representing an individual’s belief about something.

Decision theory is the study of rational decision-making in presence of uncertainty1.
An individual has to decide what action to do based on their belief and some potential
consequences represented by costs. Let’s consider a winegrower who has to decide whether
to harvest or not based on his or her probability that it will be freezing tonight. If it freezes
while he or she had decided to not harvest, all the grapes will be lost and the cost of this
loss will be bigger than if he or she had harvested even if it did not freeze. Decision theory
provides a framework for minimizing the expected cost also called the Bayes risk.

In this chapter, we recall some of the basics of subjective probability and Bayesian deci-
sion theory2. The first section presents the application of Bayes’ rule as the updating of an
individual’s belief when receiving new information. It then discusses the binary hypothe-
sis testing and the likelihood-ratio for representing the evidence’s effect i. e. how the data
is changing the belief of the observer. The application of the Bayesian decision framework
to Automatic Speaker Verification (ASV) is then briefly discussed. Then, the concept of cal-
ibration of probabilities is introduced before presenting Proper Scoring Rule (PSR), how
it relates to information theory [34], and its use to evaluate the goodness of probabilities.
Then, the concept of calibration is extended to the likelihood-ratios rather than probabili-
ties. Finally, we briefly mention how the Bayesian paradigm can be used to define perfect
privacy, a concept that will be discussed in more detail in Chapter 4.

1 To be more precise, we refer here to epistemic uncertainty i. e. an uncertainty that is due to a lack of knowledge
rather than some random phenomenon [125].

2 For further readings on subjective probability and decision theory, the reader can refer to Bruno de Finetti’s The-
ory of Probability [60], Understanding Uncertainty by Dennis V. Lindley [93], Bayesian Theory by José M. Bernardo
and Adrian F. M. Smith [14] and Optimal Statistical Decisions by Morris H. DeGroot [42].
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6 bayesian updating of belief

2.1 updating of belief & the likelihood-ratio

The state of knowledge of an individual about a set of hypotheses is represented by a
probability distribution over these hypotheses. This set can be seen as the set of possible
events or outcomes of a coming phenomenon as for instance {“rain”, “no rain”}, it can be
a set of possible values for the unknown height of the Mont Blanc3 or it can be for instance
a set of models that pretend to describe a physical phenomenon where some experiments
and observations may support some models against some others.

Let’s consider one protagonist in Japan who is aware that Avignon is located in the
southeast of France, a region that he or she knows has low rainfall. He or she may first
go in favor of the “no rain” hypothesis. However, after having a call with a colleague at
Avignon University who said that the weather is currently bad and rainy in the south of
France, the belief of our protagonist may change in favor of the other hypothesis.

Personal belief is changing when new information is obtained.

2.1.1 The Bayes’ rule

Bayes’ formula provides a natural way to revise an individual’s belief when observing new
information. It results in a posterior probability distribution that represents the individual’s
new belief in the light of the observed data also called evidence. Let H = {H1,H2, . . . HN}
be a set of possible events, the posterior probability for an event H ∈ H after observing an
evidence E is given by:

P(H | E,K) =
P(E | H,K)P(H | K)

P(E | K)
. (1)

K represents the prior knowledge which is all information available to the individual other
than the evidence E. P(H | K) refers to the prior belief i. e. when the evidence is not con-
sidered and P(H | E,K) refers to the posterior belief i. e. where all the information is taken
into account including the evidence. From now, K will be taken for granted and dropped
from the equation. We rewrite the Bayes’ rule as:

P(H | E) =
P(E | H)P(H)

P(E)
(2)

P(E | H) is a quantity that informs on the likelihood of observing E when H appears to be
true. This should not be seen as a probability but rather as a quantity that is multiplied by
the prior probability to obtain the posterior probability up to a scaling factor. The latter is
P(E) which is not zero and can be written using the law of total probability as:

P(E) =
∑
H∈H

P(E | H)P(H). (3)

3 The highest mountain in Europe.
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The Bayes’ rule can therefore be read as:

“posterior probability ∝ likelihood × prior probability”,

where ∝ means “proportional to”.

2.1.2 The binary case, likelihood ratio and evidence

When there are only two competing hypothesesH1 andH2, like in the {“rain”,“no rain”} ex-
ample, the Bayes’ rule can be rewritten in an appealing way considering the ratios, named
odds, of the probabilities for each event:

P(H1 | E)

P(H2 | E)
=
P(E | H1)

P(E | H2)

P(H1)

P(H2)
, (4)

which can be read as:

“posterior odds = likelihood-ratio × prior odds”.

When one hypothesis appears to be true, the other is necessarily false such that P(H1) =

1− P(H2) and P(H1 | E) = 1− P(H2 | E). Applying the logarithm function leads to:

log
P(H1 | E)

1− P(H1 | E)
= log

P(E | H1)

P(E | H2)
+ log

P(H1)

1− P(H1)
,

logitP(H1 | E) = log
P(E | H1)

P(E | H2)
+ logitP(H1),

(5)

where the logit is the inverse function of the sigmoid and is defined as logit(p) = log p
1−p

for p ∈]0, 1[. The Bayes’ rule is here expressed as a sum and can be read as:

“posterior log-odds = log-likelihood-ratio + prior log-odds”.

This is a sum between a subjective quantity: a prior log-odds which depends only on the
individual’s prior knowledge, and an objective quantity in the sense that it does not depend
on the prior probabilities: the Log-Likelihood-Ratio (LLR)4.

The logit function is transforming the segment ]0, 1[, which is actually the 1-simplex S2

that will be defined in the next chapter, into the real line R = ]−∞,+∞[. Figure 1 illustrates
this transformation. When the logit function is applied to the probabilities p and 1− p, the
probability distribution lives on the unbounded real line5.

4 To be more precise, the LLR is not “fully” objective. Indeed, likelihoods are not necessarily available and some-
times need to be computed from a probabilistic model also known as generative model in pattern recognition.
The parameters of this model have to be estimated from a training set of observations with their corresponding
hypothesis (also called class in pattern recognition). This model can be seen as a part of the initial knowledge
K in Equation 1 and because they may differ from one another, the computation of the likelihoods is to this
extent subjective. However, we will consider here the LLR as an objective quantity.

5 We want here to share an informal intuition. On the left side of Figure 1, the space on which the probability
distributions are living is bounded (by the vertices represented by the small black points). The translation
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1− p

p
1

1

0

π

P

− logit(p)

logit(p)π

P
logit

sigmoid

Figure 1: Logit transformation of the 1-simplex into the real line. The arrows represent the Bayesian
updating of a prior probability distribution π into a posterior probability distribution P.

Example:
To better understand the application of the Bayes’ rule, let’s consider the following

example highly inspired by Dennis V. Lindley’s book [93]. Someone gave you an urn
that contains a lot of black balls and red balls. The person only told you that the
urn either contains two-thirds of black balls or two-thirds of red balls. Let’s call these
hypotheses B and R respectively. Because you do not have more information about
the urn, let’s say that your prior belief about the kind of the urn is represented by
the prior probability P(B) = 1− P(R) = 0.5 i. e. the prior odds o(B) = P(B)/P(R) = 1

corresponding to maximum uncertainty. The inside of the urn is so dark that you
cannot have a look inside. In order to figure out which kind of urn it is, you have
to randomly draw balls one by one. Let the two possible drawing events b and r be
respectively a drawing of a black ball and a drawing of a red ball. Assuming that
the number of balls in the urn is sufficiently large that when drawing a few balls, the
proportion of colors does not significantly change, you know that at each drawing, the
likelihoods are:

P(r | R) = 2
3 P(b | R) = 1

3 ,

P(r | B) = 1
3 P(b | B) = 2

3 .

Let’s say that the first ball you draw is black. It corresponds to a Likelihood-Ratio (LR)
P(b|B)
P(b|R) = 2. Multiplying this LR by your prior odds (Equation 4) gives your posterior
odds representing your new belief about the urn in the light of the drawn ball. Your
probability that the urn is B is now twice bigger than your probability for R. If you now
draw a black ball again, your odds is again multiplied by 2 such that your posterior
odds is now 4 and the urn appears to you four times more probable to be B than R.

corresponding to the Bayesian updating cannot move the distribution out of the simplex bounds. Therefore
the magnitude of the translation is necessarily bounded and depends on the position of the prior, in particular
on how close to the bounds the prior is. On the other hand, the logit transformation is kind of sending
the simplex’s vertices to infinity. The space on which the distributions are living is now unbounded. The
Bayesian updating translation is here free to have any magnitude and does not depend on the prior distribution
anymore.
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After having drawn seven balls, you had observed a sequence S: bbrbrbb. When a
black ball appears, the odds is multiplied by 2 and when a red ball appears, the odds
is multiplied by P(r|B)

P(r|R) = 0.5. Your posterior odds is now:

o(B | S) = 2× 2× 0.5× 2× 0.5× 2× 2× o(B)
= 8

(6)

However, multiplication might be less intuitive than addition. In Equation 5, we have
seen how the logarithm function transforms the odds form of the Bayes’ rule as a sum.
Equation 6 can therefore be rewritten as:

logo(B | S) = log 2+ log 2+ log 0.5+ log 2+ log 0.5+ log 2+ log 2+ logo(B)

= log 2+ log 2− log 2+ log 2− log 2+ log 2+ log 2+ logo(B)

= log 2+ log 2+ log 2+ logo(B)

= 3 log 2.

(7)

There is now a symmetry: when a black ball is drawn, log 2 is added to your log-odds
and when a red ball is drawn log 2 is subtracted from your log-odds. In this case, the
balls have the same strength in changing the belief no matter the color. The color of
the ball just tells in which direction the belief is changing.

To better visualize the symmetry induced by the logit transformation, Figure 2 shows the
odds and log-odds as a function of the probability. They are respectively the function
p 7→ p

1−p and p 7→ log p
1−p for p ∈]0, 1[. logit(p+ 0.5) = − logit(−p+ 0.5) such that the

log-odds are symmetric around p = 0.5.
A general formula of the successive Bayesian updating when observing a sequence S =

{Ei}16i6NS of size NS is:

logo(B | S) = logo(B) +
NS∑
i=1

log
P(Ei | B)

P(Ei | R)
. (8)

This expression shows a property known as independent additivity [78] where each coming
evidence is adding a weight to the prior log-odds independently of the other evidences and
independently of the prior log-odds.

The LLR is commonly used as a weight-of-evidence [69, 102] informing how an evidence
is changing the prior belief into the posterior belief. In the above example, a positive LLR

goes in favor of B against R while a negative LLR goes in favor of R against B.

2.2 application of bayesian decision framework to speaker verification

This section gives an application example of the Bayesian decision framework. The Bayesian
decision framework has been supported in forensic science for matching fingerprints, DNA,
or voice traces [104]. In this section, we discuss Automatic Speaker Verification (ASV) [15] as
the task of deciding whether two speech utterances have been said by the same speaker or
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Figure 2: Odds and log-odds as a function of the probability p. The log-odds is the logit function
and is symmetric around p = 0.5

by two different speakers. Forensic individualization [29, 31, 135] is not the only application
of ASV, this can also be used for authentication purposes [61].

Let’s consider this latter application as an example. A user requests an access by sub-
mitting a sample of their voice. The authentication side has to decide whether to accept or
reject the request based on the comparison of the submitted speech utterance, called test,
with one or several reference utterances called enrolment(s) given beforehand. A pair of test
and enrolment is called a trial. The authentication side can provide access to the wrong
person or deny access to the person in right. These cases correspond to the two types of
error respectively called false-alarm and miss.

For a trial t, the authentication side uses a comparison system to produce a LLR:

l(t) = log
P(t | tar)

P(t | nontar)
. (9)

where tar refers to the target hypothesis: “the test and enrolment utterances have been
produced by the same speaker”; and nontar refers to the non-target hypothesis: “they
have been produced by two different speakers”. A decision is taken by thresholding the
LLR. Maximum a posteriori decision leads to the following threshold:

Access is given if:

P(tar | t) > P(nontar | t) ⇐⇒ log
P(tar | t)

P(nontar | t)
> 0,

⇐⇒ l(t) + logitP(tar) > 0,

⇐⇒ l(t) > − logitP(tar).

(10)
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However, giving access to the wrong person is usually considered to have worst conse-
quences than not giving access to the person in right. Different costs or penalties are there-
fore assigned to the different types of error. Let Cm and Cfa be respectively the costs
assigned to the miss and the false-alarm errors. The decision rule is therefore rewritten to
minimize the expected cost also known as the risk6 [28]:

P(tar | t)Cm > P(nontar | t)Cfa ⇐⇒ l(t) > log
Cfa
Cm

− logitP(tar), (11)

where the costs are weighting the posterior probabilities.

Automatic speaker verification technologies:
Some of the recent technologies used for ASV are here briefly introduced. The reader

not concerned with this can go to Section 2.3 but has to know that in practice, com-
parison systems for ASV produce scores that can not be directly interpreted as LLR.
Additional processing of the scores, known as calibration, is therefore necessary to pro-
duce LLRs for minimum-risk decisions. Calibration will be discussed in more detail
starting from Section 2.3.

For ASV and speech processing in general, Voice Activity Detection (VAD) is com-
monly applied to speech utterances and acoustic features are extracted. The most
prominent acoustic features are the Mel-Frequency Cepstral Coefficients (MFCC) [39]
and the Linear Predictive Coding (LPC)-based features [75]. These are short-term fea-
tures extracted from a sliding window (of size commonly around 25ms with a 10ms
sliding step) resulting in a sequence of acoustic feature vectors.

A few decades ago, ASV was done using a speaker-dependent Gaussian Mixture
Model (GMM) [138, 142] trained on the acoustic feature vectors extracted from speech
uttered by the speaker. The likelihood of a test feature vector or a set of feature vec-
tors can be computed using the density function of the speaker-dependent GMM. For
verification, this likelihood can be compared with the likelihood computed from a
Universal Background Model (UBM) which is a GMM learned on a large cohort of
speakers. Maximum A Posteriori (MAP) adaptation of the UBM was also proposed for
obtaining a speaker or utterance-dependent GMM [62, 139].

Then, supervectors were introduced. Given a speech utterance, a GMM is learned
with MAP adaptation of the UBM. The mean vectors of the GMM are concatenated to
produce the so called supervector. In this way, a fixed-length vector is obtained for
representing a variable-length speech utterance. Then, a kernel-based comparison of
utterances is performed for verification [30].

Next, the research in speaker verification focused on modeling the supervector, us-
ing Factor Analysis (FA), trying to decompose the speaker-related and channel-relateda

variabilities into different latent variables of lower dimensionality [82, 83, 100]. FA-
based approaches lead to the i-vector feature vector extraction. Instead of considering
two separate subspaces, one for the speaker variabilities and one for the channel vari-

6 Here, not doing an error is considered to have no bad consequence i. e. no cost.
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abilities, the idea is to have a single total variability spaceb [44, 45]. The estimated total
variable can then be used as a new feature vector for representing a speech utterance.
Probabilistic Linear Discriminant Analysis (PLDA) [76, 134] has been widely used for
comparing two i-vectors for verification.

More recently, supervectors have been put aside in aid of Deep Neural Network
(DNN)-based approaches for extracting, from speech utterances, fixed-length feature
vectors. These are basically based on DNN that takes variable-length utterances as
input and are trained on a speakers discrimination task. Then, the vector outputted
by one layer of the DNN, also called embedding, can be used as a feature vector for
representing the speaker-related information in the input utterance. This embedding
is known as the x-vector. Many variations have been explored. They basically differ in
the type of architecture used for the DNN. The original one was based on Time Delay
Neural Network (TDNN) and statistical pooling [149]. For an overview of the DNN-
based speaker embeddings, the reader can refer to [11]. For verification, the x-vectors
are usually compared with PLDA or directly with cosine similarity.

We just mentioned a wide but non-exhaustive range of ASV technologies. Some ap-
proaches produce verification scores using kernel function or cosine similarity and
therefore do not produce LLR. Approaches based on generative models, like GMM, FA,
PLDA, produce LLR-like scores in the sense that they are computed from the ratio of
probability density functions images. However, since these models are based on as-
sumptions that may not be fulfilled, the computed LLRs are not necessarily calibrated.
An additional calibration step is therefore required to transform the scores into cali-
brated LLRs necessary for minimum-risk decisions. Starting from the next section, the
concept of calibration will be introduced.

a The channel variabilities are induced by the different types of microphone, compression, the distance
between the speaker and the microphone, etc. In other words, this is all the variability added to the
signal from the moment the speech has been emitted by the speaker to the digitization of the signal.

b This has been motivated by the fact that the channel factor was still containing speaker-related infor-
mation [46]. This could be due to the linearity of the approach which may not be flexible enough to
disentangle speaker and channel contributions.

2.3 calibration and discrimination

In this section, the concept of calibration of probabilities is presented. It has been intro-
duced in the context of weather forecasting [18, 43, 161] where the aim is to do a prevision
by choosing a probability that it will rain on a given day. The previsions are said to be
calibrated if they match the observed outcomes. To be more precise, over a long sequence
of previsions and observed outcomes, the relative frequency f(p) of days where it actually
rained and on which the probability p has been assigned must be p [40, 43]. In other words,
we want:

f(p) =
Nr(p)

Nr(p) +Nr̄(p)
= p, (12)
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Figure 3: Artificial examples of empirical calibration plots. For good calibration, the bins’ height
have to be as close as possible to the dashed line f(p) = p. In (a), the previsions are
well-calibrated while not calibrated in (b) where the forecaster tends to be over-confident.

where Nr(p) is the number of days with the assigned probability p and where it has
rained and Nr̄(p) is the number of days with the assigned probability p and where it has
not rained.

Computing f(p) requires that, in the set of previsions and observed outcomes, the num-
ber of elements with a probability p is not zero which is not necessarily the case for a con-
tinuous and infinite set of probabilities. To get around this issue, some applications—like
weather forecasting—limit the set of allowable probability values to a finite and discrete set.
To assess how well-calibrated the probabilities are, binning can also be used. The relative
frequency is instead computed for a set of probabilities that are within an interval p±∆p.
Empirical calibration plots allow us to visualize these frequencies as a function of the bin
center probability p. Figure 3 shows examples of such plots. The height of a bin at p gives
the relative frequency of days it actually rained and to which a probability within p±∆p
has been assigned. For good calibration, the height of each bin must be as close as possible
to the dashed line f(p) = p.

Even if the concept of calibration has been introduced for probabilistic forecasts, it can be
applied to the probability outputs of a classifier in pattern recognition. However, calibration
is not the only desirable property: one also wants the probabilities to help in discriminating
the different hypotheses (or classes) i. e. distinguishing days with rain and days without.
This property will be here referred to as discrimination but is also known as refinement [43].

Many modern classification tasks in pattern recognition focus mainly on discrimination.
However, calibration is important for making rational decisions [66], i. e. making decisions
that minimize the expected cost, also referred to as Bayes risk [42], and which can be ex-
pressed in terms of the well-known cross-entropy as we will see in the next section.
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2.4 measuring the goodness of probabilities

The goodness of probabilities can be assessed with Proper Scoring Rule (PSR) [18, 43, 60, 63,
66, 143]. This section briefly defines what PSR are and how they relate to the cross-entropy,
a well-known quantity in information theory [34] and pattern recognition.

2.4.1 Proper scoring rules and cross-entropy

Let SN be a (N− 1)-simplex7, the sample space of probability distribution over the set of
hypothesis H = {H1,H2, . . . HN}. A scoring rule S is a function that takes the assigned
probability distribution Q = [q1,q2, . . . qN] ∈ SN and the event h ∈ H that finally occurred
and gives a penalty S(Q,h). Scoring rules can be defined in term of penalty like we are
doing in this thesis and like it is done for instance in [22, 41] or in terms of reward [63]
and utility [14]. The term finally is used here to highlight the fact that a prevision is done
first, waiting for the event to occur, and once the event has been observed, the scoring rule
assesses how good the prevision was8. When the assigned probability distribution is in
accordance with an observed outcome, the score (the penalty) tends to be low, otherwise,
it tends to be high. A scoring rule can therefore be seen as a cost in a decision problem.

Let’s consider a reference probability distribution P that we, perhaps clumsily, interpret
as the “true” distribution of the phenomenon we are interested in9. The expected score is:

S(Q,P) = EH∼P [S(Q,h)] , (13)

where the subscript H ∼ P indicates that the expectation is done under the probability
distribution P. A scoring rule S is proper if for all P,Q ∈ SN, S(Q,Q) 6 S(P,Q) and is
strictly proper if equality holds only when P = Q.

In the context of Bayesian decision, a PSR S(Q,h) can be seen as a cost and its expectation
S(Q,P) and the infimum of its expectation S(P,P) = inf

Q∈SN
S(Q,P) are referred to as Bayes

risks [19, 42]. The function H : P 7→ H(P) = S(P,P) for P ∈ SN is a concave function on
the set SN of discrete probability distributions and is an uncertainty or entropy function. It
measures the level of uncertainty associated with a probability distribution [41, 42].

7 Simplex will be defined in more detail in the next chapter.
8 We present the concept of scoring rule in the context of weather forecast since this is how it was historically

introduced [18, 43, 161]. However, as we will see later, scoring rules can also be used in pattern recognition to
assess the goodness of the probabilities produced by a classifier. In this case, the word finally should not be
seen in terms of time but rather in terms of available labels.

9 In my understanding of the subjective interpretation of probability [60], such a “true” distribution does not
make sense since probability only exists subjectively. However, I do not want to go into this epistemological
question here because no matter if such distribution exists or not, it is rarely available such that in practice, the
expectations will be replaced by (empirical) averaging over a set of observed events and reference probability
distribution will be chosen according to this set.
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Depending on the PSR that is used, different entropy functions are obtained. This gener-
alises the well-known Shannon’s entropy [34, 145] obtained with the logarithmic scoring
rule:

S(Q,hi) = − logqi, (14)

where qi is the probability that has been assigned to the event hi that occurred. This PSR

leads to Shannon’s entropy:

HS(P) = −

N∑
i=1

pi logpi. (15)

A PSR also defines a discrepancy—also known as divergence—between two probability
distributions Q,P ∈ SN:

D(Q,P) = S(Q,P) −H(P), (16)

and S(Q,P) is known as the cross-entropy. With the logarithmic scoring rule, the Kullback-
Leibler divergence [87] is obtained:

DKL(Q,P) =
N∑
i=1

pi log
pi
qi

. (17)

We saw how a PSR defines an entropy function. Equivalently, any concave function de-
fines a PSR. Figure 4 gives, in a two hypotheses case, a geometric intuition about the joint
definition of a PSR and the corresponding information theoretic measures. Because this
example is restricted to the binary case, we express the distributions Q = [1− q,q] and
P = [1− p,p] by the probabilities q and p respectively. The concave blue curve represents
any concave function. It defines an uncertainty or entropy function. S(q,p) is the corre-
sponding cross-entropy between the two distributions q and p, and the gap between H(p)
and S(q,p), i. e. the gap between the blue and the red curves, gives the measure of diver-
gence between the two distributions. The divergence can be seen as an additional loss of
information when considering q instead of the reference probability distribution p. The
images of the red tangent function S(q, ·) at 0 and 1 define the scoring rule.

We have seen that scoring rules in probabilistic forecasting, Bayesian decision, and in-
formation theory are closely linked. For more details, the reader can refer for instance to
[41, 42, 63] and Niko Brümmer’s thesis [19] where he recalls the connection between infor-
mation theory and the evaluation of the goodness of probability distribution in Bayesian
decision using proper scoring rule.

2.4.2 Cross-entropy and the calibration-discrimination decomposition

Let’s consider a binary classifier that takes an input e and outputs a posterior probability
distribution over the set of hypotheses H = {H1,H2}. Hypothesis H1 states that e comes
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Figure 4: Entropy, divergence, cross-entropy, and proper scoring rule. The blue curve represents
a concave function of the probability distribution. This defines an entropy function. Its
tangent at q defines the scoring rule and a cross-entropy function S(q,p). The gap between
S(q,p) and H(p) gives the divergence D(q,p) between q and p.

from the first class while H2 states that e comes from the second class. Let q2 = 1− q1

be the posterior probability assigned to H2 by the classifier10. Considering the logarith-
mic scoring rule, the expected cross-entropy between the classifier’s distribution and the
reference “true” distribution p is:

∫
e

S(q,p)P(e)de =
∫
e

(
−

2∑
i=1

P(Hi | e) logqi

)
P(e)de,

= −

2∑
i=1

P(Hi)

∫
e

P(e | Hi) logqide.

(18)

This expression is sometimes simply called the cross-entropy [136]. The sampling probabili-
ties, or likelihoods, P(e | Hi) are usually not known. Having a set of observations with their
corresponding class, an empirical approximation known as Empirical Cross-Entropy (ECE)
is obtained [136]:

ECE = −

2∑
i=1

P(Hi)

|Ei|

∑
e∈Ei

logqi, (19)

where Ei is the set of observations that belong to class i. The expectation has been replaced
by empirical averaging assuming that for a given class, the observations are equally likely
P(e | Hi) ≈ 1

|Ei|
.

10 q1 and q2 depend of course on the observation e and a prior but we do not explicitly write it to lighten the
equations.
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The ECE is a function of the prior probabilities P(H1) and P(H2). When chosen as P(H1) =
|E1|

|E1|+|E2|
and P(H2) =

|E2|

|E1|+|E2|
also known as the empirical priors, the resulting ECE is the

well known binary cross-entropy loss commonly used in the training of classifier in pattern
recognition.

Let π = P(H2) = 1− p(H1), and since q2 = 1− q1, let’s simply consider the probability
q2 that we will from now denote q. Let Q1 be the set of posterior probabilities assigned to
the observations of class 1 and let Q2 be the set of posterior probabilities assigned to the
observations of class 2, we rewrite the ECE as:

ECE(π,Q1,Q2) =
π− 1

|Q1|

∑
q∈Q1

(log(1− q)) −
π

|Q2|

∑
q∈Q2

logq, (20)

Let’s now introduce a calibration mapping that aims in transforming the probabilities
into “better” probabilities in the sense that they are better-calibrated and lower the ECE. It
has been shown that the Pool Adjacent Violators Algorithm (PAVA)11 gives a non-parametric
mapping that perfectly calibrates the probabilities minimizing therefore the ECE (with fixed
discrimination) [9, 24, 162]. However, these perfectly calibrated probabilities can be ob-
tained only when the classes are available i. e. on a training set. PAVA should therefore only
be used to create reference probabilities to evaluate how good were the predicted probabil-
ities when the classes are available or once they have been obtained. The ECE can therefore
be written in a decomposed form [136]:

ECE = EdisCE + EcalCE , (21)

where:

EdisCE = ECE(π,γ(Q1),γ(Q2)),

EcalCE = ECE(π,Q1,Q2) − EdisCE .
(22)

where γ perfectly calibrates the set of probabilities with PAVA. These terms can respectively
be seen as a discrimination loss and a calibration loss [22, 136]. See Appendix 10.1 for addi-
tional details on this decomposition in the context of both probabilistic forecasting [43] and
binary classification [136].

2.5 calibration of log-likelihood-ratios

In pattern recognition and probabilistic forecasting, the concept of calibration has been
usually formalized for probabilities [43, 71, 86, 115, 132]. It can however be extended to LLR

as we briefly mentioned in Section 2.2. Driven by forensic science, research in ASV has been
very active in the formalization of LLR calibration [19, 22, 28, 91, 96, 137].

11 For intuitive illustrations and examples on how PAVA is working, the reader can refer to Andreas Nautsch’s
PhD thesis Appendix B [111].
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Given a prior π, there is a bijection between the posterior q and the LLR l = log P(e|H1)P(e|H2)

through the Bayes’ rule. The ECE can therefore be rewritten as a function of the set of LLRs:

ECE(π,L1,L2) =
1− π

|L1|

∑
l∈L1

log
(
1+

π

1− π
exp(−l)

)

+
π

|L2|

∑
l∈L2

log
(
1+

1− π

π
exp(l)

)
,

(23)

where L1 is the set of LLRs assigned to the observations of class 1 and L2 is the set of
LLRs assigned to the observations of class 2. Calibrated LLRs result in calibrated posterior
probabilities and minimize the ECE for a given prior and discrimination power. It has been
shown that PAVA can be formalized as a LLR calibration rather than probabilities [24].

2.5.1 Measuring the goodness of log-likelihood-ratios

For a set of LLRs, empirical cross-entropy plots [136, 137] allow us to evaluate—for a wide
range of prior—how good the LLRs are in terms of both discrimination and calibration.
It represents two ECEs as a function of the prior: one with the actual set of LLRs and
one with the LLRs calibrated using PAVA. The latter shows the discrimination capacity of
the LLR set while the gap between the two curves gives the loss of information due to
poor calibration. When the prior is π = 0.5 the metrics known as Cllr and Cmin

llr —that
have been used a lot in the NIST Speaker Recognition Evaluations—are recovered [19,
22]. Figure 5 shows examples of ECE plots12. The black dotted profile is the prior entropy
(which is equivalent to the case where all LLRs are zero). We provide two examples: the blue
and the dashdotted red profile. They correspond to two sets of LLRs. Both have the same
discrimination capacity: when they are calibrated using PAVA, the minimum ECE profile
(black dashed) is obtained. However, they both have different calibration qualities. Even if
it is not perfectly calibrated, the blue profile is below the prior profile meaning that the
set of LLRs provides useful information. However, being above the prior profile, the red
one is an example of bad calibration corresponding to a loss of information. The ECE can
be arbitrarily large because of the calibration loss. However, the minimum ECE, i. e. with
perfect calibration, which can be interpreted as the posterior entropy, is always below the
prior entropy [22, 136] which respects the information theory’s inequality stating that, on
average, observations reduce the uncertainty [34].

2.6 the idempotence and the distributions of the log-likelihood-ratios

This section presents some properties of the LLR that will be crucial for the rest of this
thesis especially starting from Chapter 5. This section first presents the idempotence prop-

12 The natural logarithm is here used such that the entropy is measured in nat. Later in the thesis, the base 2 is
used and the entropy is measured in bit.
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Figure 5: Artificial example of ECE plots.

erty of calibrated LLRs. This property leads to a constraint on the distributions of the LLR.
These results have been reproofed and discussed in the context of speaker verification and
forensic identification [91, 102]. However, they are known by statisticians since the works
of Alan Turing and Irving John Good [67, 69].

2.6.1 The idempotence property

In the context of forensic speaker verification, a LLR l = log P(E|H1)P(E|H2)
is considered as cali-

brated if it results in the same posterior probabilities whether l or the data E is given [96,
97]:

∀i ∈ {1, 2}, P(Hi | E) = P(Hi | l)

⇐⇒ P(H1 | E)

P(H2 | E)
=
P(H1 | l)

P(H2 | l)
since P(H2 | ·) = 1− P(H1 | ·),

⇐⇒ log
P(H1 | E)

P(H2 | E)
= log

P(H1 | l)

P(H2 | l)
,

⇐⇒ log
P(E | H1)

P(E | H2)
+ logitP(H1) = log

P(l | H1)

P(l | H2)
+ logitP(H1),

⇐⇒ log
P(E | H1)

P(E | H2)
= log

P(l | H1)

P(l | H2)
,

⇐⇒ l = log
P(l | H1)

P(l | H2)
.

(24)

The last line can be read as [91, 96, 97]:
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“The LLR of the LLR is the LLR”

This is known as the idempotence property of the LLR. An alternative formulation and
proof have been given in [102].

Having the posterior probabilities the same whether l or E is given ensures that l contains
all the relevant information, about H1 and H2, contained in E. This has been expressed
differently decades ago—but the idea is the same—in [69] as: “[..] the weight of evidence tells
us just as much as E does about the odd of [H1 and H2..]”, stating directly that:

l = log
P(E | H1)

P(E | H2)
= log

P(l | H1)

P(l | H2)
. (25)

In the next section, we will see how this property leads to a constraint on the distributions
of the LLR.

2.6.2 The LLR’s conditional densities

The idempotence of the LLR leads to a constraint on the conditional densities of the LLR.

Proposition 1. If l | H1 ∼ N(µ,σ2), then l | H2 ∼ N(−µ,σ2) and σ2 = 2µ.

In other words, if one conditional density of the LLR is Gaussian, the other is necessarily
Gaussian, with an opposite mean, the variances are the same and are equal to two times
the mean.

Proof. This is not a new result (proofs can be found in [69, 91, 102, 130]) but we report
here a proof since it shares some elements with the proof of Proposition 2 presented in
Chapter 6.

The idempotence can be written in term of the probability density functions:

l = log
fH1(l)

fH2(l)
⇐⇒ fH1(l) = e

lfH2(l). (26)

We have,

l | H1 ∼ N(µ,σ2), where µ > 0

fH1(l) =
1

σ
√
2π

exp
(
−
(l− µ)2

2σ2

)
,

(27)

and because of Expression 26, we have:

fH2(l) =
1

σ
√
2π

exp
(
−
(l− µ)2

2σ2

)
exp (−l) ,

=
1

σ
√
2π

exp

(
−

(
l−
(
µ− σ2

))2
2σ2

)
exp

(
σ2

2
− µ

)
.

(28)
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Since fH2 is a probability density function, its integral is one:∫+∞
−∞ fH2(l)dl = 1 ⇐⇒ exp

(
σ2

2
− µ

)
= 1,

⇐⇒ σ2 = 2µ.
(29)

Therefore,

fH2(l) =
1

σ
√
2π

exp

(
−
(l− (−µ))2

2σ2

)
,

l | H2 ∼ N(−µ,σ2),

(30)

and σ2 = 2µ.

2.6.2.1 The parameter and the separability

The only parameter of the conditional densities is a scalar: the mean µ (or equivalently
the variance σ2 since σ2 = 2µ). In this section, we will see how this parameter can be
expressed in terms of the separability between the two densities which can also be seen as
the separabilities between the two classes in a pattern recognition context.

In [91], the author expressed the parameter in terms of the Equal Error Rate (EER). Here
we express the parameter in terms of the Kullback-Leibler divergence (DKL). Since the two
densities are Gaussian with the same variance, the Kullback-Leibler divergence is sym-
metric. Since the LLR is a continuous variable, the DKL between its conditional densities
involves integrals rather than sums like in Equation 17 [34]:

DKL(fH1 , fH2) =
∫+∞
−∞ fH1(l) log

fH1(l)

fH2(l)
dl, (31)

=

∫+∞
−∞

1

σ
√
2π

exp
(
−
(l− µ)2

2σ2

)
log

exp
(
−

(l−µ)2

2σ2

)
exp

(
−

(l−(−µ))2

2σ2

)dl,
=

1

σ
√
2π

∫+∞
−∞ exp

(
−
(l− µ)2

2σ2

)
(l+ µ)2 − (l− µ)2

2σ2
dl,

=
1

σ
√
2π

∫+∞
−∞ exp

(
−
(l− µ)2

2σ2

)
2µl

σ2
dl,
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doing the substitution x = l−µ

σ
√
2

we get:

DKL(fH1 , fH2) =
1

σ
√
2π

∫+∞
−∞ exp

(
−x2

)(
4µx+

2
√
2µ2

σ

)
dx,

=
4µ

σ
√
2π

∫+∞
−∞ x exp

(
−x2

)
dx︸ ︷︷ ︸

0

+
2µ2

σ2
√
π

∫+∞
−∞ exp

(
−x2

)
dx︸ ︷︷ ︸√

π

,

=
2µ2

σ2
=
σ2

2
= µ because σ2 = 2µ.

(32)

The DKL is therefore equal to the mean µ. This result may first seem surprising as long
as the idempotence property has not been digested. Indeed, from Equation 31, because

l = log
fH1(l)

fH2(l)
thanks to the idempotence, we recognise that the DKL is the expected LLR for

the hypothesis H1 and equivalently, minus the expected LLR for the other hypothesis:

DKL(fH1 , fH2) =
∫+∞
−∞ fH1(l)ldl = El|H1 [l] = µ,

DKL(fH2 , fH1) =
∫+∞
−∞ fH2(l) log

fH2(l)

fH1(l)
dl

= −

∫+∞
−∞ fH2(l) log

fH1(l)

fH2(l)
dl

= −El|H2 [l] = µ.

(33)

This can also be expressed in terms of the EER as already mentioned: DKL =

2 (probit(EER))2 where the probit function is the inverse function of the cumulative normal
distribution function.

Figure 6 shows examples of conditional densities of the LLR. When the mean increases,
the variance and the separability increase. When the separability is 0, the two conditional
densities are a Dirac delta function at 0.

2.7 non-updating of belief : zero-evidence & privacy

Let’s do a slight digression about one use of the Bayesian view for privacy. We have seen
so far that observed data, also called evidence, changes the observer’s belief. In his 1949

paper “Communication theory of secrecy systems” [146], Claude Shannon defined the idea
of perfect secrecy where the posterior probabilities remain equal to the prior ones for all
observed evidence. When an attacker observes data to infer some sensitive information in
it, his or her belief is not changing, and the data turns out to be useless for the attacker. In
[113], Andreas Nautsch applied this concept to privacy and biometric recognition. When
the attacker wants to infer which of two hypotheses is true, perfect privacy is reached when
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(a) LLR’s conditional densities. EER = 0.01, DKL ≈
10.8.
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(b) LLR’s conditional densities. EER = 0.1, DKL ≈ 3.3.
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(c) LLR’s conditional densities. EER = 0.25, DKL ≈ 0.9.
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Figure 6: Examples of LLR’s conditional densities. When the separability between the two condi-
tional densities increases, the mean and variance increase. When there is no difference
between the densities, i. e. when EER = 0.5 and DKL = 0, the two densities are a Dirac
delta function at 0.



24 bayesian updating of belief

the LLR is equal to zero for all evidences: this is zero-evidence. None of the observations is
supporting a hypothesis against the other. These concepts will be discussed in more detail
in Chapter 4.

2.8 summary

In this chapter, some basics of Bayesian decision theory have been introduced. The personal
belief of an individual that is uncertain about which hypothesis is true over a set of possible
ones can be represented by a discrete probability distribution. This personal belief can be
revised using the well-known Bayes’ rule when new data, also called evidence, is obtained.

When there are only two exhaustive and mutually exclusive hypotheses, the Bayes’ rule
can be written as a sum between the prior log-odds and the Log-Likelihood-Ratio (LLR).
The former represents the initial knowledge of the individual while the latter represents
the observed evidence and to which extent it supports a hypothesis against the other.

For doing cost-effective decisions, and to properly represent the information provided
by the evidence, the probabilities and equivalently the likelihood functions—in the form of
a LLR in a two hypotheses case—have to be well-calibrated. Proper Scoring Rule (PSR) and
Empirical Cross-Entropy (ECE) can be used to assess how good probabilities and LLR are in
terms of both calibration and discrimination.

We have seen a property of calibrated LLRs known as the idempotence. This ensures that
all the relevant information contained in the data is contained in the LLR. This property
leads to a constraint on the LLR’s distribution. The parameter of the conditional densities
are linked such that when one is Gaussian with a mean µ, the other is necessarily Gaussian
with an opposite mean −µ, the variances are the same and are equal to 2µ. The only
parameter µ of these densities is the Kullback-Leibler divergence which can be seen as the
separability between the two classes in a binary classification context. In Chapter 5, these
properties will be used to design a new discriminant analysis in a two classes case. Chapter
5 will also show how this discriminant analysis approach can be used for privacy purposes
when the attribute to hide is binary.

Perfect secrecy and zero-evidence as the idea of providing—to an attacker—no evidence
about which hypothesis is true or false have been briefly introduced for privacy purposes.
This will be discussed in more detail in Chapter 4.

Nevertheless, this chapter was focused on the two hypotheses case where the Bayes’ rule
can be written in an appealing way. However, the properties of linearity and independent
additivity have been considered as not extensible to cases where more than two hypotheses
are possible as for instance in Section 4.3 of E.T. Jaynes’ book [78]. We agree with this but
only when log-ratios are treated one by one, independently from one another. In the next
chapter, we will see how treating probabilities and likelihood functions as compositional
data provides an elegant manner for treating all log-ratios at once in a vector form and
how linearity and independent additivity are recovered.
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C O M P O S I T I O N A L E V I D E N C E

The previous chapter introduced some basics of Bayesian theory. We have seen how the
logit transformation, and expressing the likelihood function in the form of a LLR, pro-
vide a good representation of the observed evidence in Bayesian updating when only two
competing hypotheses are involved (Equation 5). The logit function transforms the one-
dimensional simplex into the real line R. When there are more than two possible hypothe-
ses, the probability distribution lives in a higher-dimensional simplex. In this chapter, we
will see how compositional data analysis and the Aitchison geometry of the simplex help
in treating probability distributions and likelihood functions, and help in recovering the
appealing linearity and independent additivity properties of the logit form of the Bayes’
rule for more than two possible hypotheses.

This chapter is crucial for the rest of this thesis. Chapter 5 will propose a new approach
to discriminant analysis for two classes where the data is mapped into a space where the
discriminant component is the likelihood function in the form of a LLR. In order to extend
this discriminant analysis to more than two classes, it is necessary to first generalize the
concept of LLR to multiclass. The current chapter aims in doing so and proposes a way to
represent an observed evidence in a multiple hypotheses case.

3.1 compositional data analysis

A piece of basalt is made of several minerals. Let’s say that one consists of 35% of pyroxene,
50% of plagioclase, 12% of olivine, and 3% of magnetite. These percentages represent the
mineral composition of the stone. They sum to 100% such that knowing the three first is
enough to know the last one. Vectors of such percentages are compositional data. Each
element describes a part of some whole [128] like vectors of proportions, concentrations, and
even probabilities. Compositional data analysis aims in treating such data by taking into
account the compositional nature and structure of the data. For an overview of composi-
tional data analysis, the reader can refer to the book Modeling and Analysis of Compositional
data by Vera Pawlowsky-Glahn, Juan José Egozcue, and Raimon Tolosana-Delgado [128].

A N-part composition is a vector of N non-zero positive real numbers that sum to a
constant k. Each element of the vector is a part of the whole k. The sample space of compo-
sitional data is known as the simplex:

SN =
{
x = [x1, x2, . . . xN]T ∈ RN | ∀i ∈ J1,NK, xi > 0 and

N∑
i=1

xi = k
}

, (34)

In a composition, the value of a part alone does not matter. Only the relative information
between parts matters and John Aitchison introduced the use of log-ratios of components

25
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to handle this [2]. He defined several operations on the simplex that leads to what is called
the Aitchison geometry of the simplex.

3.2 the aitchison geometry of the simplex

John Aitchison defined an internal operation called perturbation, an external one called
powering and an inner product [4]:

• perturbation:

x⊕y = C ([x1y1, . . . xNyN]) , (35)

• powering:

α� x = C ([xα1 , . . . xαN]) , (36)

• inner product:

〈x,y〉a =
1

2N

N∑
i=1

N∑
j=1

log
xi
xj

log
yi
yj

(37)

where x,y ∈ SN, α ∈ R and C(·) is the closure operator. Since only the relative in-
formation matter, scaling factors are irrelevant and a composition x is equivalent to
λx = [λx1, λx2, . . . λxN] for all λ > 0. This equivalence is materialized by the closure op-
erator: x = C(λx). The closure is defined for k > 0 as:

C (x) =

[
kx1
‖x‖1

,
kx2
‖x‖1

, . . .
kxN
‖x‖1

]T
, (38)

where x ∈ R∗N+ and ‖x‖1 =

N∑
i=1

|xi|. Therefore, any vector of positive real numbers can be

projected onto the simplex using the closure.
Perturbation and powering give to the simplex a (N− 1)-dimensional vector space struc-

ture and the inner product makes it Euclidean. The corresponding norm and distance are:

‖x‖a =

√√√√ 1

2N

N∑
i=1

N∑
j=1

(
log

xi
xj

)2
, (39)

da(x,y) = ‖x	y‖a = ‖x⊕ ((−1)�y)‖a

=

√√√√ 1

2N

N∑
i=1

N∑
j=1

(
log

xi
xj

− log
yi
yj

)2
,

(40)
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respectively called the Aitchison norm and the Aitchison distance. This Euclidean vector space
structure of the simplex is called the Aitchison geometry of the simplex.

3.3 probability distribution and likelihood function as compositional

data

Parameters of a discrete probability distribution live on a simplex (k = 1) called proba-
bility simplex. Indeed, probabilities are positive and sum to one. A vector of probabilities
can therefore be treated as a composition. From now on, SN will refer to the probability
simplex.

Let’s come back to our set of hypothesis H = {H1,H2, . . . HN}, to our evidence E, and to
the Bayesian updating procedure. Let:

• π = [P(H1),P(H2), . . . P(HN)]
T ∈ SN be the vector of prior probabilities assigned to

each hypothesis,

• w = [P(E | H1),P(E | H2), . . . P(E | HN)]
T ∈ R∗N+ be the vector of likelihoods,

• P = [P(H1 | E),P(H2 | E) . . . P(HN | E)]T ∈ SN be the vector of posterior probabilities.

They respectively representent the prior probability distribution, the likelihood function,
and the posterior probability distribution.

As already discussed in Section 2.1.1, likelihoods should not be seen as probabilities.
Moreover, a vector of likelihoods does not sum to one. However, compositional data carries
only relative information and are scale invariant. This defines equivalent classes [12]: all
points in the positive orthant and on the line that passes through the origin are equivalent
compositions. In this way, likelihood vectors can also be seen as compositions since they
are scale-invariant and carry only relative information. Indeed, in Bayesian updating, it is
known that no matter which scaling factor is applied to the likelihoods, the application of
the Bayes’ rule is the same:

B(w,π) = B(λw,π) (41)

where λ > 0 and B is the application of the Bayes’ rule. In the Bayes’ rule, the scaling factor
λ factorizes in the law of total probability in the denominator and cancels out with the
factor of the likelihood in the numerator.

Hence, From now on, when we discuss a likelihood vector w we refer to its scaled
equivalence w ∼ C(w) that lives on the probability simplex. Figure 7 illustrates likelihood
equivalent classes. Likelihood lines (in dashed blue) go through the probability simplex S3.
Within a line, all likelihood functions are equivalent and are represented by the likelihood
vector—given by the closure operator—that lives on the simplex. Therefore, likelihood
functions live on the same space as probability vectors: the probability simplex1.

1 In [19, 27], the authors already had the intuition that only the relative values of the likelihoods matter such that
likelihood vectors live on a (N− 1)-dimensional subspace of RN.
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w3

w1

w2

S3

C(w)

w

Figure 7: The probability simplex and likelihood lines as equivalent classes. All likelihood functions
that live on the same blue dashed line are equivalent, and can be represented by, the
likelihood vector that lives on the probability simplex.

The computation of the posterior probabilities through the Bayes’ rule is the multiplica-
tion of the prior probabilities with the likelihoods normalized by P(E) given by the law of
total probability (see Section 2.1.1). This is exactly the perturbation of the prior probability
vector by the likelihood vector, where the closure ensures the normalization:

∀i, P(Hi | E) =
P(E | Hi)P(Hi)

P(E)
=

wiπi
N∑
j=1

wjπj

,

P =


w1π1
N∑
j=1

wjπj

,
w2π2
N∑
j=1

wjπj

, . . .
wNπN
N∑
j=1

wjπj


T

,

= C ([w1π1,w2π2, . . . wNπN]) ,

= w⊕π.

(42)

With the Aitchison geometry of the simplex, the Bayes’ rule is the perturbation of the prior
distribution by the likelihood function [3, 55, 58]. The extension of the Aitchison geometry
to the space of probability density functions has been studied in [53, 57, 157] but is out of
the scope of this thesis.



3.3 probability distribution and likelihood function as compositional data 29

3.3.1 Zeros and the Cromwell’s rule

Since the Aitchison geometry is based on log-ratios of components, the components of a
composition can not be equal to zero. The reader may have noticed that, in the definition
of the sample space of compositions in Equation 34, the zeros are excluded. Dealing with
zeros has been problematic in compositional data analysis [98, 128].

However, banning probabilities equal to zero is not an issue for us. We are indeed inter-
ested in the treatment of probabilities in the context of Bayesian updating, a realm where
probabilities equal to zero are not desirable. Since a posterior probability is proportional to
the product of the prior probability and the likelihood, if the prior probability is zero, the
posterior is necessarily equal to zero no matter which evidence is observed. If you have a
prior probability equal to zero, this means that this is already certain for you that the corre-
sponding hypothesis is false, and no matter what evidence you observe or how someone is
trying to convince you, your opinion about this hypothesis can not change. Doing so would
be closed-minded. Any scientist must think that it is possible that he or she is wrong. The
rule excluding certainty in the prior belief, i. e. banning prior probabilities equal to 0 or 1,
has been proposed by Dennis Lindley and called the Cromwell’s rule [93]2. If you initially
consider the set of possible hypotheses H = {H1,H2,H3} and you finally proved logically
that H2 is wrong, you must not assign a probability 0 to H2. You must instead redefine
your decision problem and your range of possibility as H = {H1,H3} i. e. everything that is
for you neither certainly true nor certainly false [60].

However, this argument holds for the probabilities only. There might be situations where
the likelihood for a hypothesis of observing an evidence is zero. If such likelihood value is
permitted in Bayesian updating, likelihood vectors as compositions can not contain zeros.
In this case, the zeros have to be replaced. Zeros replacement strategies for compositional
data are discussed in [98].

3.3.2 The isometric log-ratio transformation for probability and likelihood

In Section 3.2, the Euclidean vector space structure of the simplex has been defined. We are
now interested in expressing the probability and likelihood vectors in a Cartesian coordi-
nate system. This can be done using the Aitchison inner product by projecting the vectors
on an orthonormal basis of the simplex. Let the set {e(i) ∈ SN, i = 1, . . . N− 1} be an Aitchi-
son orthonormal basis of the simplex. The set {ilr(e(i)) ∈ RN−1, i = 1, . . . N− 1} forms a

2 The name of this rule comes from a quote Oliver Cromwell addressed to the Church of Scotland: “I beseech you,
in the bowels of Christ, think it possible that you may be mistaken.”.
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p̃1

p̃2

p̃N−1

p1 p2 p3 pN

Figure 8: Bifurcating tree corresponding to the orthonormal basis obtained with the Gram-Schmidt
procedure [56].

canonical basis in RN−1. The vectors of the Aitchison orthonormal basis obtained using
the Gram-Schmidt procedure are defined for all i ∈ J1,N− 1K as follows:

e(i) = C


exp

(√
1

i(i+ 1)

)
, . . . exp

(√
1

i(i+ 1)

)
︸ ︷︷ ︸

The first i elements

, exp

(
−

√
i

i+ 1

)
, 1, . . . 1


 . (43)

For details on the computation of this basis see [56].
The Isometric-Log-Ratio (ILR) transformation [56] allows a vector p ∈ SN to be expressed

in a Cartesian coordinate system as follows3:

p̃ = ilr(p) =
[
〈p,e(1)〉a, . . . 〈p,e(N−1)〉a

]T
. (44)

This defines an isometric isomorphism4 between SN and RN−1. Different bases could be
used but the one presented above has a simple and intuitive recursive structure. The
ILR transformation of the probability (or likelihood) vector results in a recursive group-
ing of the probabilities (or likelihoods) as illustrated by the bifurcation tree in Figure 8.
Considering a vector p = [p1, . . . pN]

T ∈ SN and its ILR transformation p̃ = ilr (p) =

[p̃1, . . . p̃N−1]
T ∈ RN−1, each node in the tree corresponds to a component p̃i of p̃. The first

component compares the probabilities for the two first hypotheses. Each next component
then recursively compares the probabilities for the next hypothesis with the probabilities

3 We used here the definite article the to refer to the ILR transformation. However, this implies that there is only
one ILR transformation while there is as many ILR transformations as they are Aitchison orthonormal bases
on the simplex i. e. an infinite number. Along this thesis and without loss of generality, the ILR transformation
will refer to the ILR transformation with the orthonormal basis obtained using the Gram-Schmidt procedure
as defined in Equation 43. The use of this specific basis in no way excludes the general aspect of the following
results since Aitchison orthonormal bases are related through unitary transformations [56].

4 An isometric isomorphism is an invertible mapping that preserves the distances: x,y ∈ SN, da(x,y) =
|| ilr(x) − ilr(y)||2.
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for the previous ones. A general formula for the ith element p̃i of the ILR transformation
of p is given by:

p̃i = 〈p,e(i)〉a =
1√

i (i+ 1)
log


i∏
j=1

pj

(pi+1)i

 . (45)

A proof of this result can be found in Appendix 10.2. An ILR component can be interpreted
as a score. When the probability for the (i+ 1)th hypothesis increases and the probabili-
ties for the hypotheses H16j6i decrease, the score p̃i decreases. Therefore, a low p̃i goes
in favor of the (i+ 1)th hypothesis against the hypotheses H16j6i independently of the
hypotheses Hi+26j6N.

A component of a composition carries relative information rather than absolute informa-
tion. The treatment of compositional data is therefore based on ratios and in particular on
log-ratios as already mentioned in Section 3.1. We can see the analogy with log-odds and
Log-Likelihood-Ratio (LLR) presented in the previous chapter in the context of Bayesian
updating.

3.3.3 The Bayes’ rule as an addition

One benefit of the Aitchison geometry of the probability simplex is that it makes the Bayes’
rule a perturbation: the posterior distribution is the perturbation of the prior distribution
by the likelihood function. Within the Aitchison geometry of the simplex, the perturbation
is an addition such that with the coordinate representation given by the ILR transformation,
the Bayes’ rule can be written as the translation of the prior by the likelihood vector in a
Euclidean vector space [55, 58]:

P = w⊕π,

ilr(P) = ilr(w) + ilr(π),

P̃ = w̃+ π̃.

(46)

Just like the logit transformation, the ILR transformation allows us to write the Bayes’ rule
as a sum between a term that depends only on the prior probabilities and a term that
depends only on the likelihoods. In this way, the appealing additivity of Equation 5 is
recovered.

To be more precise and to summarise, the likelihood vector w̃ translates a prior probabil-
ity distribution π̃ into a posterior distribution P̃. Moreover, the ILR transformation on a two
hypotheses probability or likelihood vector is a one-element vector in which the element is
the log-ratio of the components5 which is consistent with Equation 5 and the LLR.

Figure 9 shows an example of Bayesian updating in a three hypotheses ILR space. The
first component p̃1 compares the probability for hypothesis H1 with the probability for

5 To be more precise, with the given Aitchison basis, this is the log-ratio scaled by 1√
2

(see Equation 45).
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p̃1

p̃2

+0.5

+
0.5

π̃

w̃

P̃

N

BR

Figure 9: Bayesian updating in the three hypotheses ILR space. The posterior distribution P̃ is the
translation of the prior distribution π̃ by the likelihood function w̃. The red arrows indi-
cate the directions that go in favor of one hypothesis against the two others. The dashed
blue rays mark out the maximum a posteriori decision regions.

hypothesis H2 the second component p̃2 compares the third probability against the two
others as illustrated in the bifurcation tree in Figure 8. Each red arrow shows the direction
that goes in favor of one hypothesis against the two others. These three directions are
naturally separated by an angle of 120◦ i. e. one-third of 360◦. The dashed blue rays mark
out the maximum a posteriori decision regions (see Appendix 10.3 for their computation).
Here, the simplex is 2-dimensional because we consider three possible hypotheses but keep
in mind that for N hypotheses, the simplex is (N− 1)-dimensional. When there are only
two possible hypothesis, the simplex is one-dimensional such that if one goes against one
hypothesis, it necessarily goes in favor of the other. With more hypotheses, the number of
directions is now infinite.

Let’s explicitly write in the notation of the likelihood vector the data or evidence E:

w̃(E) = ilr ([P(E | H1), . . . P(E | HN)]) , (47)

and let S = {Ei}16i6|S| be a sequence of observed evidence. The posterior distribution over
the set of hypothesis H given the sequence S is the successive (the order does not matter)
translation of the probability distribution by the likelihood vectors:

P̃ = π̃+

|S|∑
i=1

w̃(Ei). (48)

We therefore recover the independent additivity as in the logit form of the Bayes’ rule in
the two hypotheses case (see Equation 8).
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Example:
Coming back to the example we discussed in Section 2.1.1 with the urn that consists

of either 23 of black balls and 1
3 of red balls or 23 of red balls and 1

3 of black balls. Let’s
consider a third possible hypothesis that states that none of the colors prevails. Let’s
summarise the set H = {B,R,N} of possible hypotheses:

• The hypothesis B: there are 23 of black balls,

• The hypothesis R: there are 23 of red balls,

• The hypothesis N: none of the color prevails, there are as many black balls as
red balls.

Either a black or a red ball can be drawn. Again, assuming that the number of balls
in the urn is sufficiently large such that drawing a few balls does not significantly
change the color proportions, the likelihood functions are:

w(·) = [P(· | B),P(· | R),P(· | N)] ,

w̃(·) =
[
1√
2

log
P(· | B)
P(· | R) ,

1√
6

log
P(· | B)P(· | R)
P(· | N)2

]
,

w(b) =

[
2

3
,
1

3
,
1

2

]
,

w̃(b) =

[
1√
2

log 2,
1√
6

log
8

9

]
,

w(r) =

[
1

3
,
2

3
,
1

2

]
,

w̃(r) =

[
−
1√
2

log 2,
1√
6

log
8

9

]
.

Figure 10 shows the successive applications of the Bayes’ rule when different se-
quences of draws are observed. The prior probability distribution π̃ is at the origin
i. e. the maximum uncertainty position. 10a shows a case where the observed sequence
of draws is rbrbbr. There are as many observed black balls as red ones. The probability
distribution moved toward the direction of hypothesis N against the two others that
state that the urn is not balanced. In 10b, the observed sequence brrbrr contains 23 of
red balls. Although the resulting likelihood (sum of all likelihoods) goes in the oppo-
site direction of B, the reader may first be surprised that it does not go straight to the
direction of R. If we had had a likelihood going straight to R when drawing a red ball,
it would have been against B and N equally. However, drawing a red ball goes indeed
in favor of the falsity of B but not in favor of the falsity of N. This has to be regarded
relatively: drawing further red balls would send the posterior deeper into the R region
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and further away from the N region. However, if the next drawn ball is instead black,
the distribution falls into the N region. 10c shows the successive Bayesian updating
when the observed sequence is bbrbrbb i. e. the one we studied in the two hypotheses
case in Section 2.1.1. While in 2.1.1 we considered only two possible hypothesis, we
have here considered a third possibility.

In the above example, all likelihoods go toward the lower half-part of the plan because
there is no draw of a ball that would support the falsity of N. This particularity would not
have been observed if for instance, we had considered instead an urn that contains three
different colors and where the three possible hypotheses were about which color prevails.

3.3.4 Multiple hypotheses evidence representation

Recovering the additive form of the Bayes’ rule—being the basic property of the weight-of-
evidence [69]—the concept of LLR and weight-of-evidence can be now extended to cases
with more than two hypotheses. The ILR transformation of the likelihood function, which
we will now call Isometric-Log-Ratio-Likelihood (ILRL), can be seen as a multidimensional
extension of the LLR making it a good candidate for representing the evidence when there
are more than two possible hypotheses.

The direction of the ILRL informs which hypothesis or hypotheses the data may or may
not support. The norm of the ILRL informs how strong. Like the absolute value of the LLR,
the absolute value of each ILRL component gives the strength-of-the-evidence in the support
of one hypothesis against some others as shown by the bifurcation tree (Figure 8). However,
one basis does not provide all possible comparisons of hypotheses, this would have been
redundant. If one wants to do a specific comparison, let’s say for instance p3 against p1
only, he or she will have to use another basis resulting in a different bifurcation tree [54],
which basically corresponds to a rotation and/or a permutation in the Euclidean space.

The Aitchison norm of the likelihood vector w (i. e. the Euclidean norm of its ILR trans-
formation w̃) can be regarded as a global strength-of-evidence and is given by:

‖w(E)‖a = ‖w̃(E)‖2 =

√√√√ 1

N

N∑
i=1

N∑
j=i+1

(
log

P(E | Hi)

P(E | Hj)

)2
. (49)

This is proportional to the square root of the sum of the square of all possible LLR. This
informs how much the evidence E is changing the belief, i. e. how far the posterior distri-
bution is from the prior distribution, regardless of any hypothesis. Since ‖w‖a = 0 ⇐⇒
w̃ = 0, a global strength-of-evidence equal to zero confirms there is no update of belief: the
posterior remains equal to the prior. Such a situation is what is desirable in our conception
of privacy where we want the belief of the attacker to not change when observing some
data. The next chapter formally presents this conception of privacy.
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(a) Sequence: rbrbbr
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p̃1

p̃2

+ 0.5

+
0.5π̃

P̃

N

BR

(c) Sequence: bbrbrbb

Figure 10: Bayesian updating in the three hypotheses ILR space when observing different sequences
of ball draws. The prior probability vector π̃ is successively translated by the likelihood
vectors resulting in the posterior P̃.
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3.4 summary

This chapter briefly introduced compositional data analysis and the Aitchison geometry of
the simplex. The latter gives to the probability simplex, i. e. the sample space of discrete
probability distributions, a Euclidean vector space structure in which the Bayes’ rule is the
translation of the prior probability distribution by the likelihood function. The Isometric-
Log-Ratio (ILR) transformation expresses the probability and the likelihood vector in this
Euclidean vector space where the linearity and independent additivity of the Bayes’ rule
are recovered. The ILR transformation of the likelihood vector (ILRL) is a good candidate for
representing the evidence and extending the idea of the LLR when more than two hypothe-
ses are considered. For perfect privacy, the attacker’s belief must not change. Therefore, we
want the strength of the translation induced by the likelihood functions to be null i. e. we
want the norm of the likelihood functions in the Aitchison geometry of the simplex to be
zero: this is zero-evidence.



4
P E R F E C T S E C R E C Y, P E R F E C T P R I VA C Y A N D E V I D E N C E
I N F O R M AT I O N

In 1948, Claude Shannon published his work “A Mathematical Theory of Communication”
[145], a pioneer in the field of information theory. This work found numerous applica-
tions, especially in the development of telecommunications but also in cryptography and
secrecy systems with the paper “Communication Theory of Secrecy Systems” that Shannon
published a year after [146]. In this paper, Shannon studied the mathematical structure of
general secrecy systems where a message is enciphered, before transmission, with a partic-
ular key known by the source of the message and by the receiver. During the transmission,
an attacker may intercept the enciphered message—called cryptogram—and try to infer
the message. The attacker’s prior belief about the transmitted message is represented by a
prior probability distribution over the set of all the possible messages. When observing the
intercepted cryptogram, the belief of the attacker is changed into a posterior belief.

In order for the receiver to decipher the cryptogram, the enciphering transformation—
with a given key—has to be invertible. In contrast, the concept of privacy we are interested
in this thesis requires the sensitive information to be unrecoverable by any means. The
study of secrecy systems in the context of cryptography is not the only contribution of
Shannon in his 1949 paper [146]. He also discussed the theoretical concept of perfect secrecy.
This concept can be used in the context of attribute privacy.

After presenting the idea behind perfect secrecy, this chapter presents the concept of perfect
privacy and zero-evidence [113]. It then presents, when the sensitive information to protect is
binary, an information-theoretic metric for assessing how far to perfect privacy a protection
system is. Finally, the concept of evidence information as the amount of information disclosed
by the data is discussed.

4.1 claude shannon’s perfect secrecy

In this section, the definition of perfect secrecy developed by Shannon in [146] is presented.
Let M = {M1,M2, . . .MN} be the set of possible messages and E = {E1,E2, . . . EN} be the set
of possible cryptograms. A message M ∈ M is enciphered with the ith key which gives a
cryptogram E ∈ E: E = fi(M), where fi is the enciphering transformation corresponding to
the ith key. Let the attacker have a prior belief about the transmitted message represented
by a prior probability distribution π ∈ SN over the set of possible messages:

π = [P(M1), . . . P(MN)]
T = [π1, . . . πN]

T . (50)

37
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After intercepting the cryptogram and processing it by any means, the belief of the attacker
is updated resulting in a posterior probability distribution:

P(E,π) = [P(M1 | E), . . . P(MN | E)]T ∈ SN. (51)

Perfect secrecy is simply defined as follow:

∀E, P(E,π) = π. (52)

In this way, the posterior probabilities of the attacker remain equal to the prior probabilities
and the attacker receives no information about the transmitted message.

Chapter 2 discussed the Bayes’ rule as the natural way to update a prior belief when new
data is obtained. The Bayes’ rule is here rewritten in terms of the current cryptography
problem:

P(M | E) =
P(E |M)P(M)

P(E)
, (53)

where P(E | M) is the likelihood of getting the cryptogram E when M appeared to be the
transmitted message and P(E) is the marginal. One can see from this equation that perfect
secrecy is achieved when the ratio P(E|M)

P(E) is one for all E and M. In other words, we want:

∀E, ∀M, P(E |M) = P(E). (54)

This has been presented in [146] as a necessary and sufficient condition for perfect secrecy.
In most practical cryptography problems, perfect secrecy is not achievable since it requires
the entropy of the key to be at least as great as the entropy of the message. Regardless, in
this thesis, we are not concerned with this issue since we are interested in attribute privacy
where no keys are involved and the concealed information does not have to be recoverable.

4.2 perfect privacy & zero evidence

In the context of attribute privacy, the aim is to conceal in some data or observations, the
information about an attribute of the person to whom the data belongs. The attribute is
supposed to be discrete with a finite number of categories. In this context, perfect secrecy
is renamed perfect privacy and is achieved when:

∀E ∈ E,∀C ∈ C, P(C | E) = P(C), (55)

where E and C are respectively the set of observations and the set of categories the attribute
can take1.

1 The notation C is here used in accordance with the concept of class in pattern recognition.
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When the attribute to hide is binary with C = {C1,C2}, we have seen in Section 2.1.2 that
the Bayes’ rule can be written as the sum of the Log-Likelihood-Ratio (LLR) and the prior
log-odds:

logitP(C1 | E) = log
P(E | C1)

P(E | C2)
+ logitP(C1). (56)

The LLR represents the evidence in the data, i. e. how much the data is supporting one
hypothesis against the other and how the data is changing the belief of the observer. One
can easily see from the above equation that perfect privacy is reached when:

∀E ∈ E, log
P(E | C1)

P(E | C2)
= 0. (57)

In the two hypotheses or classes case, perfect privacy is reached when the LLRs are equal
to zero: this is zero-evidence2.

In the context of the VoicePrivacy initiative [155], the concept of perfect secrecy has been
formulated as perfect privacy in Andreas Nautsch’s paper [113]. The paper proposes an eval-
uation framework to empirically assess how close to perfect privacy a protection system is.
This framework will be presented in more detail in the next section.

Equation 57 formulates the concept of zero-evidence and perfect privacy in the binary
case. In Chapter 3, the Aitchison geometry of the simplex has been presented. Within this
geometry, the Bayes’ rule can be written as the perturbation of the prior probability distri-
bution by the vector of likelihoods i. e. the likelihood function. With the coordinate system
given by the Isometric-Log-Ratio (ILR) transformation, the Bayes’ rule is the translation of
the prior probability distribution by the likelihood function:

∀E ∈ E, P̃(E,π) = w̃(E) + π̃, (58)

where w̃(E) is the ILRL i. e. the ILR transformation of the likelihood vector, and π̃ and P̃(E,π)
are respectively the ILR transformation of the prior distribution and the ILR transformation
of the posterior distribution. Here, one can see that perfect privacy is reached if and only
if:

∀E ∈ E, w̃(E) = 0, (59)

where 0 is the (N− 1)-dimensional zero vector: this is multiple hypotheses zero-evidence.
Chapter 3 already discussed the ILRL as the multiple hypotheses extension of the LLR

for representing the evidence in Bayesian updating. The strength-of-evidence is given by the
norm of the ILRL and informs how much the data is changing the observer’s belief. Here,
we naturally see that, for perfect privacy, the ILRL must be the zero vector corresponding
to a null strength-of-evidence.

2 The expressions perfect privacy and zero-evidence will be used interchangeably. Perfect privacy has the advantage
to follow Shannon’s terminology while zero-evidence refers to the notion of evidence in biometry and Bayesian
updating.
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In his paper [146], Shannon presented the necessary and sufficient condition for perfect
secrecy written in Equation 54 which of course implies that w̃(E) = 0. However, as dis-
cussed in Section 3.3, likelihood vectors are scale-invariant such that the necessary and
sufficient condition can therefore be rewritten as:

perfect privacy ⇐⇒ ∀E ∈ E, ∀C ∈ C, P(E | C) = α ⇐⇒ ∀E ∈ E, w̃(E) = 0, (60)

where α ∈ R∗+.

4.3 regarding the amount of information disclosed by the data

The concept of information is usually expressed in terms of uncertainty [146]. The informa-
tion received by an observer is the difference between its prior uncertainty and its posterior
uncertainty [92]. The entropy function H returns the uncertainty associated with a probabil-
ity distribution such that the information—about a set of hypothesis C = {C1,C2, . . . CN}—
received by an individual when observing e can be written as3:

I(e,π) = H(π) −H(P(e,π)), (61)

where π is the prior probability distribution of the individual and P(e,π) is the posterior
probability distribution of the individual when observing e. Note that this quantity can be
negative but is positive on average. Indeed the entropy of one posterior distribution should
not be confused with what is called conditional entropy [34] or posterior entropy [136] defined
as:

H(C | E) =

∫
e

P(e)H(P(e,π))de, (62)

which is the expected entropy of the posterior distributions. This quantity is always below
the entropy of the prior distribution:

H(C | E) 6 H(π). (63)

This inequality is well-known in information theory [34]. However, in the context of pattern
recognition, the probabilities P(e) are usually not known. This is where the cross-entropy
and the Empirical Cross-Entropy (ECE) [136] presented in Section 2.4.2 reappear. When
the scores are calibrated, we have seen that the ECE is below the prior entropy which is
consistent with the above inequality. The gap between the prior entropy and the ECE can
be seen as the amount of information an individual received from the scores given by the
recognizer.

Nevertheless, whether in terms of posterior entropy or in terms of ECE, the measure of
information received from an observation or from a set of observations still depends on the
observer’s prior. Let’s consider the following example to better understand how measuring

3 From now on, the expression entropy function will refer to the Shannon’s entropy as defined in Equation 15.
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the amount of information received by an observed in terms of a drop of uncertainty
necessarily depends on the prior. Let’s say that the individual is almost certain about which
hypothesis is true. When observing something that confirms his or her intuition, he or she
is not learning something “new” since he or she was already almost certain before the
observation.

In a privacy context, since he or she does not know the prior belief of the attacker,
the privacy safeguard must think in terms of “information disclosed” rather than in terms
of “information received by the attacker”. Indeed, as discussed above, the latter necessarily
depends on the unknown initial knowledge of the attacker. It is in this context that the Zero
Evidence Biometric Recognition Assessment (ZEBRA) framework [113] proposes a measure
called the expected privacy disclosure independent of the attacker’s prior.

4.3.1 ZEBRA’s expected privacy disclosure

The ZEBRA framework [113] has been proposed to measure the amount of information
disclosed by scores of biometric recognition or any binary attribute recognition systems.

Let’s consider a set of two hypotheses or classes C = {C1,C2}. These can be for instance
{tar,nontar} for biometric recognition based on verification as discussed for instance in
the case of ASV in Section 2.2 and in the original ZEBRA paper [113]. In this case, the
privacy objective is to hide the identity of the individual by making verification impossible.
C can also be a set of categories or classes a binary attribute can take as for instance
{male, female}. In any case, we want the data to provide no information i. e. no evidence
about which hypothesis is true or false.

When the attacker observes a sample from which he or she wants to infer some infor-
mation about the sensitive attribute, the evidence given by the sample to the attacker is
represented by a LLR. In practice, this LLR is computed using a pattern recognizer. ZEBRA

provides a measure called the expected privacy disclosure DECE which gives the expected pri-
vate information disclosed by the recognizer independently of the attacker’s prior knowl-
edge.
DECE basically measures how far the minimum Empirical Cross-Entropy (ECE) curve is

from the prior entropy profile. We recall here the expression of the ECE4:

ECE(π,L1,L2) =
1− π

|L1|

∑
l∈L1

log2

(
1+

π

1− π
exp(−l)

)

+
π

|L2|

∑
l∈L2

log2

(
1+

1− π

π
exp(l)

)
,

(64)

where π = P(C2) = 1−P(C1) is the prior probability of the attacker, L1 is the set of LLRs for
samples of class C1, and L2 is the set of LLRs for samples of class C2. When all LLR scores
are zero, the ECE is equal to the prior entropy for all priors: this is zero-evidence. When

4 Base 2 is used here for the logarithmic scoring rule as in the original paper [113]. The information is therefore
measured in bit.
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the scores provide useful information to the attacker, the ECE is below the prior entropy.
For perfect privacy, the aim is to reduce the area between the two profiles as illustrated
in Figure 11. DECE is the measure of this area and is computed by integrating out the
attacker’s prior as follow:

DECE(L1,L2) =
∫1
0

(H(π) − ECE(π,L1,L2))dπ, (65)

where H(π) = −π log2 π− (1− π) log2(1− π) is the prior entropy (as defined in Equation
15). Computing the integral in Equation 65 gives the following expression for the DECE:

DECE(L1,L2) =
1

2 log 2

 1

|L1|

∑
l∈L1

(Z(l)) +
1

|L2|

∑
l∈L2

(Z(−l))

 , (66)

where:

Z(l) =
1

2
+
l+ (1− exp(l))
(1− exp(l))2

, (67)

lim
l→−∞Z(l) = −∞, lim

l→0
Z(l) = 0, lim

l→∞Z(l) = 1

2
.

The expression H(π) − ECE(π,L1,L2), in the integral of Equation 65, can be seen as
an empirical formulation of H(π) −H(C | E). This tells, for a given prior π, how much the
uncertainty of the attacker has decreased and therefore how much information the attacker
has received. However, as discussed above, this depends on the attacker’s prior and this is
why the prior is integrated out5.

The ECE discussed here is the minimum ECE where the LLRs in L1 ∪L2 are perfectly cal-
ibrated through PAVA. In practice, the scores of the attacker are not necessarily calibrated.
DECE is therefore measuring an overestimated amount of useful information disclosed to
the attacker. However, considering such a pessimistic scenario is a safe strategy for pri-
vacy design. The scenario where the attacker’s scores are not calibrated has been briefly
discussed as the expected calibration distortion in [121].

Remark:
In contrast to differential privacy [52] which is a theoretical guarantee of the amount

of privacy ensured by a protection mechanism, the level of privacy given by a protec-
tion system is here empirically measured.

4.3.2 Uncertainty and evidence information

In this section, the conceptual differences between the information received expressed in
terms of uncertainty and the information disclosed will be discussed in more detail.

5 Assuming that all prior values have the same probability of occurrence. In a situation where the privacy safe-
guard has some information about the attacker’s prior, non-uniform probability distribution for the attacker’s
prior value could be used instead, on condition that the integral can be computed.
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Figure 11: Area DECE(L1,L2) between the prior entropy and the ECE curve as the expected amount
of information disclosed by the set of scores L1 ∪L2.

Considering only two hypotheses, the absolute value of the logit of one of the proba-
bilities is related to an uncertainty function. As discussed in Section 2.4.1, an uncertainty
function is concave on the simplex. The absolute logit function is convex as one can see in
Figure 12. A minimum absolute logit aligns with a maximum uncertainty while an infinite
absolute logit aligns with no uncertainty. In the two hypotheses case, the absolute logit
function is equivalent to the Aitchison distance between one distribution and the uniform
distribution (up to a scaling factor 1√

2
). However, in a multiple hypotheses case, even if this

distance informs how far a probability distribution is from the uniform distribution, i. e. the
distribution corresponding to the maximum uncertainty, this can not be interpreted as an
uncertainty like the Shannon’s entropy. Figure 13a shows the entropy function in the three
hypotheses ILR space of probability distributions and Figure 13b shows the distance from
the uniform distribution6. p̃1 and p̃2 are respectively the first and the second ILR compo-
nent7. Both the entropy and the distance reach their extremum at the uniform distribution
(p̃1 = 0 and p̃2 = 0). However, the entropy is “aware” of the hypothesis directions while
the distance is not. Indeed, contrary to the entropy, the distance evolves equally regardless
of the distribution’s direction. When the distribution goes in the direction of a hypothesis,
the entropy drops to zero (see the blue regions in Figure 13a). When the distribution goes
in the opposite direction of one hypothesis, the entropy diminishes but not to zero. Indeed
some certainty has been obtained: it is more certain that one hypothesis is not true, but

6 This is the Aitchison norm of the probability vector but within the coordinate system given by the ILR trans-
formation, this norm is simply the 2-norm.

7 Considering a set of three possible hypotheses and a probability distribution p = [p1,p2,p3] over this set,
p̃1 = 1√

2
log p1

p2
and p̃1 = 1√

6
log p1p2

p2
3

.
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Figure 12: Shannon’s entropy and absolute value of the logit function on the one dimensional sim-
plex.

uncertainty about the two other hypotheses remains. Starting from the uniform distribu-
tion and going straightly to the opposite direction of a hypothesis, along one of the three
ridges, reduces the entropy from log 3 to log 2 i. e. from the three hypotheses maximum
uncertainty to the two hypotheses maximum uncertainty.

Even if the Aitchison distance from the uniform distribution, i. e. the Aitchison norm, can
not be interpreted as an uncertainty function, this can be used on the vector of likelihoods
as a measure of information.

As already discussed in Section 3.3.4, the Aitchison norm of the likelihood function is
the strength-of-evidence telling how much an observation is changing the belief. This can
be seen as a measure of information provided by the observation. The idea of using the
Aitchison norm as a measure of information has been discussed in [55, 58].

Remark:
Here, a clarification of the terminology employed is necessary. In [55, 58], the au-

thors used the expression evidence information to refer to the information given by an
observation, or to refer to the information captured by a prior or a posterior. In this
thesis, the word evidence refers to the observation (or the data, the experiment, what-
ever you call it depending on the context) and we are only concerned by the amount of
information it provides. Following the terminology employed in [68], and considering
the ILR transformation as the multidimensional extension of the logit transformation,
the ILRL can be seen as the multiple hypotheses extension of the weight-of-evidence
while the ILR transformation of a probability vector refers to the plausibility. This may



4.3 regarding the amount of information disclosed by the data 45

−5
0

5
−5

0

5

0.5

1

1.5

2

p̃1

p̃2

en
tr

op
y

(a) Entropy in the ILR space.

−5
0

5
−5

0

5

0

10

p̃1

p̃2

di
st

an
ce

(b) Euclidean distance from the uniform distribu-
tion in the ILR space.

Figure 13: Shannon’s entropy and Euclidean distance (Aitchison distance on the simplex) from the
uniform in the three hypotheses ILR space of probability distribution.

somehow sound absurd since the terms weight and plausibility refer both to a scalar
while in a multiple hypotheses context, the ILR transformation of likelihood or proba-
bility vector is multidimensional. Be that as it may, this thesis is concerned only with
the likelihood function for representing the evidence and the expression evidence infor-
mation will here refer to the Aitchison norm of the likelihood function as a measure of
the information disclosed by an observation.

Within the Aitchison simplex, the likelihood function is translating the prior into the
posterior. Its norm is the distance between the prior and the posterior and therefore tells
how much the belief has changed. This change of belief is here considered as the amount
of evidence information i. e. the amount of information—about the hypotheses—disclosed by
the data. For perfect privacy, the aim is to provide no information in the sense that the
attacker’s belief does not change. In this context, the term information refers therefore to
the evidence information.

Considering the Aitchison norm of the likelihood function as the amount of information
disclosed by an observation has some benefits. First, this is prior independent contrary
to the difference between the prior and the posterior uncertainty. Secondly, considering a
single observation, measuring the information in terms of a uncertainty drop can be mis-
leading. When the entropy of the posterior is greater than the entropy of the prior, the
measure of information is negative. In the context of zero-evidence, what does “negative”
information mean when the belief has changed? As another example, let’s consider, in a
three hypotheses case, a prior belief of [0.8, 0.1, 0.1] and a posterior belief of [0.1, 0.8, 0.1].
These two beliefs are different: initially, the individual was going in favor of the first hy-
pothesis and then, he or she is going in favor of the second hypothesis. And yet, they both
correspond to the same uncertainty such that measuring the information in terms of uncer-
tainty would give zero. With the evidence information, measured by the Aitchison norm
of the likelihood function, the information is positive as soon as the belief has changed.
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Even if the observation is misleading and the uncertainty of the attacker has increased,
it is considered that a certain amount of information has been disclosed. Indeed, in the
context of perfect privacy, the goal is not to mislead or to dupe the attacker but rather to
provide no evidence that may change the attacker’s belief. Perfect privacy is reached when
the evidence information is zero corresponding to a zero strength-of-evidence and equal
likelihoods as mentioned in Section 3.3.4.

Actually, one can not say that among these two ways of measuring information—
measuring the information as a drop of uncertainty or as a change of belief—one is better.
Comparing them is meaningless since they both refer to different notions of information:

• The information received, by an individual, that necessarily depends on the prior belief
and is expressed as a difference between the prior and the posterior uncertainty of
the individual,

• The information disclosed by the data tells how much the data is supporting the true-
ness or falseness of one hypothesis or a set of hypotheses and tells how much the
belief is changing when observing the data. This is expressed by the Aitchison norm
of the likelihood function but can not be interpreted in terms of the observer’s uncer-
tainty.8.

While no information disclosed, i. e. zero-evidence, implies no information received by the
attacker, no information received does not imply no information disclosed.

4.4 summary & discussion

Perfect secrecy is a theoretical concept developed by Shannon stating that the attacker’s
knowledge about a sensitive transmitted message must not change when observing the
cryptogram. Formulated in terms of subjective probabilities, the posterior probability dis-
tribution of the attacker must remain equal to the prior one. This concept can be used in the
context of privacy preservation where the posterior belief of the attacker about the sensitive
attribute must be equal to the prior belief. In this case, the data provides no information
about the attribute to the attacker. This is perfect privacy also referred to as zero-evidence and
is reached when all likelihoods are equal i. e. when the ILRL is the null vector.

The expected privacy disclosure DECE measures—independently of the attacker’s prior—
how much a privacy system is far from perfect privacy. It measures the amount of infor-
mation disclosed by the scores of a binary attribute recognizer that proceeds on protected
data. However, the recognizer is actually the one used by the attacker which is unknown.
Even if, for the computation of the DECE, the scores are perfectly calibrated, the discrim-
ination component of the ECE depends on how flexible the recognizer is9. It is therefore
implicitly assumed that the family of recognizers used by the privacy safeguard for the

8 The ZEBRA’s expected privacy disclosure presented in Section 4.3.1 is a measure of the information disclosed.
However, this can be interpreted in terms of uncertainty. This is the expected drop in the uncertainty of the
attacker when the expectation is done over the attacker’s prior.

9 By “flexible” we mean the ability for the recognizer to extract discriminant information from the data.
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computation of DECE is wide enough to cover the attacker’s recognizer. The expected pri-
vacy disclosure DECE is formalized for binary recognition problems. Its extension to the
multiple hypotheses case has not been studied yet and remains an open question.

Section 4.3.2 detailed nuances between two different notions of information. One is the
information received by an individual (the attacker in a privacy context) which is a drop of
uncertainty and necessarily depends on the prior knowledge. The other is the information
disclosed by one observation which tells how much the belief of the observer is changing
and is expressed by the Aitchison norm of the likelihood function also called here the
strength-of-evidence.

The next chapter presents a new approach to discriminant analysis for a binary classi-
fication. It is based on the indempotence property of the LLR and on Proposition 1. This
approach allows the manipulation in the data of the evidence information represented by
a LLR. These can be set to zero for privacy purposes, being therefore consistent with the
zero-evidence formulation of privacy presented above. In order to extend—in Chapter 7—
this discriminant analysis to applications with more than two classes, Chapter 6 extend the
idempotence property and Proposition 1 to the ILRL.





5
A N O N - L I N E A R D I S C R I M I N A N T A N A LY S I S F O R B I N A RY
AT T R I B U T E P R I VA C Y

This chapter presents a new discriminant analysis. In addition to recognition tasks, the
proposed model can be used to remove any evidence about a set of two hypotheses or
classes in some data. We will here adopt a pattern recognition terminology where x refers
to an observed feature vector that belongs either to class C1 or to class C2. Along this
thesis, the term class and hypothesis are used interchangeably depending on the context. In
the current pattern recognition context, the probability for an element to belong to a class
i is equivalent to the probability for the hypothesis “The element belongs to class i” to be
true.

Discriminant analysis aims to map the data into a space that maximizes the separability
between the classes. The discriminant direction on which the data is mapped can often be
seen as a LLR-like score. When the mapping is invertible, the data can be mapped back
into the original feature space after having annihilated the LLR. This idea will be used
to divert the use of discriminant analysis for privacy purposes in Section 5.3. Let’s first
introduce in more detail the discriminant analysis by presenting the Linear Discriminant
Analysis (LDA).

5.1 linear discriminant analysis and others

With the LDA, the class-conditional densities in the feature space are assumed to be multi-
variate normal distributions with a shared covariance:

x | C1 ∼ N (µ1,Σ) ,

x | C2 ∼ N (µ2,Σ) ,
(68)

where µ1 and µ2 are the mean vectors and Σ is the shared covariance matrix. A LLR-like
score1 for an observed vector x is computed as follows:

log
f(x | µ1,Σ)
f(x | µ2,Σ)

= vTx+
1

2

(
µT2Σ

−1µ2 − µ
T
1Σ

−1µ1
)

(69)

where f(· | µ,Σ) is the probability density function of a multivariate normal distribution
with mean µ and covariance matrix Σ and v = Σ−1(µ1 − µ2) is the eigenvector with non-
zero eigenvalue of the matrix Σ−1ΣB where ΣB is the between-class covariance matrix. The

1 We sometimes use the expression LLR-like score to refer to scores that are log-likelihood-ratio in the sense that
they are computed from the ratio of probability density functions images but are not necessarily calibrated
and do not necessarily respect the idempotence property. Keep in mind that the idempotence property is a
property of calibrated LLR or a property that LLR “should” respect.
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feature vector x is projected onto the discriminant direction given by v and shifted. This
can be seen as the projection of the data that minimizes the within-class variability and
maximizes the between-class variability. However, since the observations are not necessar-
ily normally distributed, as assumed by the model, the computed scores are not necessarily
calibrated LLR and therefore misrepresent the information related to the classes.

Other discriminant analysis approaches have softer assumptions on the distributions of
the features. The QDA also assumes the features to be normally distributed for a given class,
but the shared covariance assumption is dropped such that each class-conditional density
has its own covariance and the LLR-like score becomes:

log
f(x | µ1,Σ1)
f(x | µ2,Σ2)

=
1

2
xT
(
Σ−1
2 −Σ−1

1

)
x+ xT

(
Σ−1
1 µ1 −Σ

−1
2 µ2

)
+
1

2

(
µT2Σ

−1
2 µ2 − µ

T
1Σ

−1
1 µ1

)
+
1

2
log

|Σ2|

|Σ1|

(70)

This results in a quadratic form and a non-linear mapping of the features. However, this is
still based on a Gaussian assumption and is not necessarily invertible contrary to the LDA’s
mapping [16, 73].

Some approaches make no assumption on how the feature vectors are distributed. In
[50], the authors proposed what they called “DeepLDA” where the general LDA eigen-
value problem is solved on the top of an artificial neural network. However, the approach
is fully discriminative and looses the generative nature of the LDA. In this sense, we do
not consider this as a non-linear extension of the LDA. Generalized [152] and kernel-based
[106] discriminant analysis are good candidates for generalizing the LDA in a non-linear
manner with no assumptions on the distribution of the features. However, like the QDA,
they do not have a trivial inverse mapping from the discriminant space back to the orig-
inal feature space [159]. Works like [8, 77] propose generative classifiers by modeling the
class-conditional densities of the features using invertible neural networks transformation,
known as Normalizing Flow (NF), between the feature space and a base2 space. In the base
space, the class-conditional densities are chosen to be multivariate normal distributions.
However, these approaches are not designed to have, in the base space, a discriminant
direction interpretable as a calibrated LLR.

In the following section, we present a non-linear discriminant analysis with no explicit
assumption on the distribution of the feature vectors. It allows mapping, in an invertible
manner, input feature vectors into a space where the discriminant component is a calibrated
LLR. This chapter is focused on the two classes case. Chapter 7 will extend the proposed
discriminant analysis to any number of classes using the concept of Isometric-Log-Ratio-
Likelihood (ILRL) presented in Chapter 3 and its properties presented in Chapter 6.

2 Some literature on Normalizing Flow (NF) uses the term latent rather than base. We were also doing so in [123],
however, agreeing with the argument proposed in [127], we have adopted the term base. The mapping is indeed
deterministic such that mapping the observed variable into the base space is just another way to represent the
same random variable.
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5.2 proposed non-linear discriminant analysis for two classes

This section presents the new discriminant analysis that we introduced in [123]. The ap-
proach makes no explicit3 assumption on how the feature vectors are distributed. It maps,
in an invertible manner, the data into a space where one component is discriminant, re-
spects the idempotence property, and forms a calibrated LLR. The main reasons why an in-
vertible mapping is desirable are for preserving the sampling ability of generative models
and for manipulating the data for privacy preservation. This latter point will be discussed
in the next section.

Let {C1,C2} be the set of classes and X be the d-dimensional feature space of the observed
data. Let l(x) ∈ L ⊂ R be the LLR of an observation x ∈ X:

l(x) = log
P(x | C1)

P(x | C2)
, (71)

which is, as we saw in Section 2.1.2, a good candidate for representing the evidence and
which hypothesis the data is supporting and how strong. Let r(x) = [r1(x), . . . rd−1(x)]

T ∈
R ⊂ Rd−1 be what we call the residual of x. The residual is everything in the observation
that is independent of the class variable. We want to map the feature vectors into a base
space Z = L⊕R where the first dimension represents the evidence represented by the LLR

and the other dimensions form the residual and embed the variability not related to the
classes. The first dimension is the discriminant one, while the other dimensions contain the
remaining variability not related to the classes.

5.2.1 Class-conditional densities in the base space

Since we want the first dimension of the base space to properly represent the evidence,
we want it to be a calibrated LLR. Hence, its distribution has to respect the idempotence
property constraint of Proposition 1. The class-conditional densities in the base space are
therefore chosen accordingly:

z | C1 ∼ N(µe1,Σ),

z | C2 ∼ N(−µe1,Σ),
(72)

where:

• µ ∈ R∗+ is the only parameter of the densities in the base space and is the Kullback-
Leibler divergence between the two densities as discussed in Section 2.6.2.1,

• e1 = [1, 0, . . . 0]T ,

• Σ = diag(2µ, 1, . . . 1) is a diagonal covariance matrix with variances equal to one ex-
cept the variance of the first component which is 2µ in order to respect Proposition 1.

3 To be more precise, the approach assumes there is a diffeomorphism that would transform the class-conditional
densities of the feature vectors into the target densities. For more detail, see the remark at the end of Section
5.2.2.
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Figure 14: Few contours of class-conditional densities in the base space. The first component is
the LLR distributed according to Proposition 1. The other component is not discriminant
and is normally distributed with a zero mean vector and an identity covariance matrix
regardless of the classes.

In this way, the first component z1 of z is the LLR of z:

l(z) = log
(2π)−

d
2 |Σ|−

1
2 exp

(
−12 (z− µe1)

T Σ−1 (z− µe1)
)

(2π)−
d
2 |Σ|−

1
2 exp

(
−12 (z+ µe1)

T Σ−1 (z+ µe1)
) ,

= log
exp

(
µzTΣ−1e1

)
exp (−µzTΣ−1e1)

,

= 2µzTΣ−1e1,

=
2µz1
2µ

because Σ−1 = diag
(
1

2µ
, 1, . . . 1

)
,

= z1,

(73)

and respects the idempotence constraint on the LLR’s distribution. The other dimensions
are normally distributed with a zero mean and an identity covariance matrix regardless of
the class.

Figure 14 shows 2-dimensional examples of class-conditional densities in the base space.
Only the first component is discriminant and is the LLR distributed according to Proposi-
tion 1. When the parameter µ increases, the separability between the two classes increases
as discussed in Section 2.6.2.1.

5.2.2 Mapping between the feature space and the base space

Let’s assume that there is a diffeomorphism—i. e. an invertible and differentiable mapping—
g between X and Z such that x = g(z) and z = g−1(x). Normalizing Flow (NF) is a family
of differentiable and invertible neural network transformations that aims to transform a
base probability distribution into an “observed” one. NF has been mostly developed in
an unsupervised context but can be used with a supervised training for modeling class-
conditional densities as briefly mentioned in Section 5.1.
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Since the mapping is invertible, it allows both sampling and inference and if the determi-
nant of the Jacobian can be computed, the likelihood of the data can be exactly computed.
Let D = {(x(1),C(1)), . . . (x(|D|),C(|D|))} be a set of observed feature vectors with their cor-
responding class. The mapping g can be learned by maximizing the log-likelihood of the
observed data:

log f(D | θg,µ) =
2∑
i=1

 ∑
(x,Ci)∈D

log fX|Ci(x | θg,µ)

 , (74)

where θg are the parameters of g and since the mapping is a diffeomorphism, the change
of variable formula gives:

fX|Ci(x | θg,µ) = fZ|Ci(z | µ)

∣∣∣∣det
(
∂g(z)

∂z

)∣∣∣∣−1 , ∀i ∈ {1, 2}. (75)

In our work, g is a neural network with the Real NVP [48] architecture which allows easy
inversion and computation of the Jacobian determinant.

Remark on the implicit assumption made about the data:
While LDA and QDA assume the data to be normally distributed, the proposed ap-

proach does not have an explicit assumption on how the data is distributed. However,
this does not mean there is no assumption at all. The proposed approach indeed
assumes the existence of a diffeomorphism that would transform the features’ class-
conditional densities into the target Gaussian densities.

5.2.3 Estimation of µ

As one can see in Equation 72, µ is the only parameter of the densities in the base space.
Like the parameters θg of the mapping, µ can be learned using automatic differentiation
and gradient descent. In [123] we instead used a two steps optimization strategy. Indeed,
µ appears only through the first dimension of z, and for a batch BZ = {z = g−1(x) | x ∈
BX ⊂ D} of samples in the base space, a maximum likelihood estimator is given by:

µ̂MLE(BZ) = −1+

√√√√1+ 1

|BZ|

∑
z∈BZ

z21, (76)

where z1 is the first component of z. See Appendix 10.4 for a detailed derivation. The
two steps optimization is summarised in the following algorithm where α is an adaptation
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(a) Gaussians dataset. (b) Moons dataset. (c) Circles dataset.

Figure 15: Training sets for the binary discriminant analysis examples. The color indicates to which
of the two classes a sample belongs: blue for C1 and orange for C2.

weight for the update of µ:
Choose α ∈ [0, 1],
Initialise θg and µ,
for all batches BX do

BZ ← g−1(BX)

θg ← argmax
θg

log f(BX | θg,µ)

µ← αµ+ (1−α)µ̂MLE(BZ)

end
For each batch, the parameter θg of the mapping is first optimized using automatic dif-
ferentiation and gradient descent and µ is then optimized using the maximum likelihood
estimator.

5.2.4 Toy examples

In this section, we provide a few toy examples to illustrate the proposed discriminant anal-
ysis. We compare in terms of both discrimination and calibration our approach with both
LDA and QDA on three generated datasets. The first dataset, we call Gaussians, consists
of two multivariate Gaussians with their own mean and covariance matrix. The second
one is known as the Moons dataset and consists of two interleaving noisy half-circles. The
third one is the Circles dataset which consists of a large noisy circle containing a smaller
one. These datasets are generated with scikit-learn [129]. For each set, 12000 samples are
generated, 10000 are used for training and 2000 are used for testing the discriminant anal-
ysis. The results are assessed in terms of Cllr and Cmin

llr (see Section 2.5.1) and scatter plots
visualization.
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Table 1: Cllr measures of the discriminant analysis on the toy examples.

datasets
LDA QDA Proposed

Cmin
llr [bit] Cllr [bit] Cmin

llr Cllr Cmin
llr Cllr

Gaussians 0.125 0.198 0.115 0.126 0.117 0.155

Moons 0.387 0.432 0.387 0.432 0.105 0.118

Circles 0.839 1.000 0.023 0.491 0.040 0.054

Gaussians:

Figure 15a shows the training set for the Gaussians example. Figure 16 shows the results
of the maximum likelihood classification using LDA, QDA, and the proposed discriminant
analysis. Cllr measures are reported in Table 1. Both LDA and QDA are based on the Gaussian
assumption. However, the LDA assumes that both classes share the same covariance which
is not the case here. The LDA has therefore a discrimination and a calibration that are not
as good as the QDA. The Cmin

llr is 0.125 bit for the LDA while it is 0.115 bit for the QDA and
the calibration cost Ccal

llr = Cllr − C
min
llr is 0.073 bit for the LDA and 0.011 for the QDA. The

QDA is even better than the proposed approach which has a Cmin
llr of 0.117 bit and a Ccal

llr
of 0.038 bit. The goodness of the QDA is here not surprising since it assumes the data to
be normally distributed with different covariance matrices for each class which is actually
how the data is distributed.

With interleaving moons.

Figure 15b shows the training set for the Moons example. Figure 17 shows the results of the
maximum likelihood classification using LDA, QDA, and the proposed discriminant analysis.
Cllr measures are reported in Table 1. Both LDA and QDA hardly separate the two classes
while the proposed discriminant analysis does better in terms of both discrimination and
calibration with Cllr = 0.105 bit and Ccal

llr = Cllr −C
min
llr = 0.013 bit.

With circles.

Figure 15c shows the training set for the Circles example. Figure 18 shows the results of the
maximum likelihood classification using LDA, QDA, and the proposed discriminant analy-
sis. Cllr measures are reported in Table 1. Being linear, the LDA cannot separate the two
classes. The QDA has the best discrimination with a Cmin

llr of 0.023. The proposed approach
has a slightly bigger Cmin

llr of 0.040. We can indeed see in Figure 18 a tiny slice of blue
samples that are miss-classified as orange on the left-bottom part of the larger circle (this
is more discernible on the training set we show in Figure 19). This is due to the fact that
the family of mappings is restricted to a family of diffeomorphisms where none allows
a “perfect” transformation of these interleaving circles into two distinct Gaussians. How-
ever, even if QDA has the best discrimination ability—thanks to the quadratic nature of
the circle-shape boundary—it is still based on Gaussian assumptions while the data are
definitely not normally distributed. This results in a calibration that is not as good as the
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(a) Ground truth. (b) With LDA.

(c) With QDA. (d) With the proposed discriminant analy-
sis.

Figure 16: Maximum likelihood classification on the Gaussians dataset. In (a), the colors indicate
the true label while for the other figures, the colors indicate the predicted class.
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(a) Ground truth. (b) With LDA.

(c) With QDA. (d) With proposed.

Figure 17: Maximum likelihood classification on the Moons dataset. In (a), the colors indicate the
true label while for the other figures, the colors indicate the predicted class.
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(a) Ground truth. (b) With LDA.

(c) With QDA. (d) With proposed.

Figure 18: Maximum likelihood classification on the Circles dataset. In (a), the colors indicate the
true label while for the other figures, the colors indicate the predicted class.
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Figure 19: Proposed discriminant analysis on Circles training set (ground truth is given in Fig-
ure 15c). Since it is restricted to invertible and differentiable transformations, this dis-
criminant analysis will never “perfectly” separate the two classes as the tiny slice of
miss-classification illustrates.

calibration of the proposed discriminant analysis. The QDA has indeed a Ccal
llr of 0.468 while

the proposed discriminant analysis has a Ccal
llr of 0.037 on the testing set. This suggests

that in this example—while the Gaussian assumption of the QDA leads to the worst cali-
bration of the three methods—if the implicit assumption discussed in Section 5.2.2 is not
fulfilled, the invertibility and differentiability constraints of the proposed approach limit
the discrimination ability in the aid of a better calibration.

Grid visualisation of the learned transformation.

Since the above examples are two-dimensional, a learned diffeomorphism can be visual-
ized as a transformation of a two-dimensional grid as shown in Figure 20. The right part
of Figure 20 shows the testing data in the learned base space for the three examples. As ex-
pected, for each class, the data looks normally distributed and symmetric around the zero
of the first dimension i. e. the zero-LLR line. For visualizing the learned diffeomorphism, a
set of points is generated—in the form of a grid—homogeneously and regularly over the
base space. The set of points are transformed through the learned diffeomorphism and the
resulting deformed grid is visualized in the feature space on the left part of the figure. In
the feature space, the transformed regular grid approximates the manifold on which the
data lives. The testing sets are shown over the grids. The colors represent the true label of
the samples. One can see on the bottom left of Figure 20e the slice of miss-classification
of the blue circle. The orange circle’s samples are “going through” the blue circle at the
expense of the few blue samples that will be miss-classified and that can be seen in Figure
18d for the testing set and in Figure 19 for the training set. This confirms what we dis-
cussed in the above paragraph. On the circle example, the proposed approach favors the
calibration quality at the expense of the discrimination quality.
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(a) Transformed grid in the feature space for
the Gaussians examples.

(b) Regular grid in the base space for the Gaus-
sians example.

(c) Transformed grid in the feature space for the
Moons example.

(d) Regular grid in the base space for the
Moons examples.

(e) Transformed grid in the feature space for the
Circles example.

(f) Regular grid in the base space for the Circles
example.

Figure 20: Grid vizualisation of the learned diffeomorphisms on the toy examples. The samples
from the testing sets are shown over the grid.
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5.3 application to privacy : zero-llr sex-recognition speaker embedding

The approach presented above can be used for discriminant analysis. However, in this
thesis, we are particularly interested in privacy preservation. We will see in this section
how the discriminant analysis can be used for the concealment of a binary attribute in
some data.

When the variable to hide is binary, the data can be mapped, using the proposed discrim-
inant analysis, into a base space where the first dimension represents the LLR. In Section
2.7 and Chapter 4, we saw that perfect privacy is reached when the LLR is equal to zero for
all samples. For privacy, the LLR is therefore set to zero in the base space before mapping
the data back into the original feature space. Indeed, setting the LLR to zero in the base
space Z is equivalent to setting the LLR to zero in X annihilating therefore the strength of
the evidence in the observed data:

fZ|C1(z)

fZ|C2(z)
=
fX|C1(x)

∣∣∣det
(
∂g(z)
∂z

)∣∣∣
fX|C2(x)

∣∣∣det
(
∂g(z)
∂z

)∣∣∣ = fX|C1(x)

fX|C2(x)
. (77)

In Expression 77, the change of variable formula is used and the Jacobian determinants
cancel out such that the LR is the same for x and z. This holds because the mapping is a
diffeomorphism which is also required for mapping the data back into the original feature
space X.

The protection strategy is summarized as follows:

• Map each sample into the base space,

• For each sample, set the first dimension of the base space (i. e. the LLR) to zero,

• Map each sample back into the feature space using the inverse transformation.

In [123], we tested this approach for the concealment of the speaker’s sex in x-vector
speaker embeddings [149]. These are neural network embeddings obtained from a net-
work trained using a speaker classification criterion. They are commonly used for speaker
verification where two embeddings are compared using a PLDA [76]. Recently, different
architectures have been explored for the embedding extraction and the PLDA is sometimes
replaced by a similarity measure like the cosine similarity [47].

In [120], we proposed an approach based on adversarial disentanglement [88] for hiding
the sex of the speaker in x-vectors. The vectors are fed into an autoencoder and a classifier
tries to predict the sex of the speaker from the encoded representation. With an adversarial
training where the encoder tries to fool the classifier while the latter tries to predict the cor-
rect sex, the discrimination between the sex can be reduced in the encoded representation.
However, this approach has not been designed to represent the sex-related information
into a LLR and is therefore not suitable for the zero-evidence formulation of privacy.

In [123], we used instead the new discrimination analysis-based protection presented in
this chapter. We report the results of our experiments on kaldi’s x-vector [149] on VoxCeleb
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dataset [33, 110] (see [123] for more details). V2D and V2T respectively denote a subset
of VoxCeleb2 development part and a subset of VoxCeleb2 test part. They are used to
respectively train and test our protection approach. V2T is split into two parts V2T-train
and V2T-test respectively used for the training and the testing of a sex classifier. The latter
can be seen as the attacker’s classifier. Therefore, for good protection, we want this classifier
to perform poorly on protected data. The classifier is here trained on protected data which
corresponds to an informed attacker which is strong in comparison to an ignorant attacker
that trains its system on original non-protected data [150]4.

Our approach is compared with an LDA-based protection that can be expressed with the
following whitening:

x← x−
vvT

‖v‖2x+
1

2‖v‖2
(
µTFΣ

−1µF − µ
T
MΣ

−1µM
)
v, (78)

where for each class the data is assumed to be normally distributed in X with means µF
and µM (where F stands for Female and M stands for Male) and shared covariance Σ. ΣB
is the between-class covariance matrix and v = Σ−1 (µF − µM) is the non-zero eigenvalue
eigenvector of Σ−1ΣB. This whitening is equivalent to setting the LDA’s LLR of Equation 69

to zero. We also compared the proposed protection system with the one based on adver-
sarial disentanglement autoencoding (adv-AE) [120].

Remark:
Randomly assigning a target sex to each speaker or x-vector could be a solution to

conceal the true sex of the speaker. It would actually lead to better protection results
when the performance is measured in terms of automatic detection of sex. However,
we see several limitations to this approach:

• First, the assigned sex will sometimes be the actual true sex. Those samples will
therefore not be protected;

• Secondly, the resulting voice would still be sexed, containing some evidence in
favor of the sex male or female no matter the true sex of the speaker. However,
as discussed in Chapter 4, our concept of privacy is not to fool the attacker but
rather to not provide any evidence about the speaker’s sex.

Detailed architecture of the proposed protection system:

The proposed protection system is based on the discriminant analysis proposed in Section
5.2. In our experiment, the invertible mapping is implemented through a NF architecture
based on Real NVP [48]. It consists of six stacked coupling layers where the scale and
translation functions are multilayer perceptrons. The scale function is made of three linear
layers with two LeakyReLU activation functions [94] and an output hyperbolic tangent ac-

4 In our work on adversarial disentanglement [120], only ignorant attacks were considered. The protection ability
findings of the system were therefore overestimated.
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(a) First two principal components of
the x-vectors

(b) First two components of the x-
vectors in the base space

Figure 21: V2T’s x-vectors visualization in the original feature space and in the base space. In the
base space, only the first component is discriminant and represents the LLR. Its distribu-
tion tends to respect Proposition 1 imposed by the idempotence property.

tivation. The translation function is made of three linear layers with also two LeakyReLU
activation functions but no output activation. Adam algorithm [84] with a 10−4 learning
rate is used for optimization. At the time we did this experiment, the parameter µ was
manually initialized, but it can be automatically initialized at the Kullback-Leibler diver-
gence value computed in the X space assuming Gaussian class-conditional densities with
shared covariance. In this way, we expect the initial µ value to be not too eccentric. The
initialization of the base densities parameter will be discussed in more detail in Chapter
7 when we will extend the proposed discriminant analysis to more classes using the ILRL.
We here report the results in [123] where µ were initialized manually at 10 and converged
around 9 with α = 0.99 (see Section 5.2.3).

5.3.1 Protection and utility assessment of the zero-LLR speaker embeddings

In this section, we test the protection ability of the system by checking whether a sex
recognizer is able to perform on the protected embeddings. We also report ASV results to
see if these embeddings can still be used for authentication purposes.

Figure 21 shows the x-vectors of the test set V2T in both the X space and the base space
Z. In 21b, we can see that in Z, the samples are normally distributed as designed in Section
5.2.1 and respect the idempotence constraint of Proposition 1. Only the first component is
discriminant and represents the LLR. The Cmin

llr for this set of LLR is equal to 0.067 and the
Ccal

llr is 0.008. The low value of the calibration cost shows that these LLRs are well-calibrated
and therefore properly embed the information about the sex of the speaker.

For privacy, the LLR dimension must be set to zero. Then, the data is protected and is
mapped back to the X space by using the inverse transformation.
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In order to assess the protection ability of our system we train four two-layers perceptron
sex classifiers. One on each version of V2T-train:

• without any protection (original data),

• protected with the LDA following the Equation 78,

• protected with the adversarial approach (adv-AE) [120],

• protected with the proposed strategy (zero-Log-Likelihood-Ratio (zLLR)).

Each trained classifier is tested on the corresponding V2T-test. Cmin
llr and DECE measures

are given in the left part of Table 2 denoted by Sex classification performance. For a good
protection, we want the Cmin

llr to be close to one and the DECE to be close to zero. The
classifiers hardly generalize to the test set when the data are protected, especially with the
proposed approach (zLLR) where the Cmin

llr is 95.7510−2 and theDECE is 0.029. This illustrates
the difficulty of an attacker to use such a classifier to detect the sex of the speaker from the
x-vectors when the proposed approach is used5.

We also report unsupervised visualization of the protected x-vectors. Figure 22 shows
Uniform Manifold Approximation and Projection (UMAP) visualization [101] of the x-
vectors. We can see from 22b and 22c that even with the protection based on the LDA

and on the adversarial disentanglement, UMAP still allows distinguishing two classes while
this is not the case with the proposed approach (22d).

The proposed approach reduces the amount of information related to the sex of the
speaker in the x-vectors. We want now to see if the protected x-vectors can still be used
for speaker verification. If yes, this would argue that some of the speaker variability not
related to the sex has been preserved and that authentication by voice is still possible while
allowing the user to not provide information about their sex. We use a PLDA trained on non-
protected x-vectors for comparing the protected enrolment and test x-vectors. Indeed, we
suppose that the authentication side is using a general ASV backend since it does not know
that the user is protecting its data6. The EER and Cmin

llr are reported in the right part of Table
2—denoted by ASV performance—for the original data, protected with the LDA, protected
with adv-AE, and with the proposed approach (zLLR). Be aware that these results are for
the binary classification target/non-target rather than female/male as in left part of the table.
Therefore, we want a low EER and a low Cmin

llr for good ASV performance. In addition to
a good protection ability, zLLR results in better speaker verification in comparison to the
adv-AE approach but the EER increases from 1.72% to 2.11% in comparison to the original

5 In our original paper [123], we also reported an estimated mutual information (MI) measures between the
x-vector’s dimensions and the sex variable. However, we do not report these results here and ask the reader
who will refer to the original paper to interpret these results with caution. Indeed, we reported MI values
averaged over the x-vector’s dimensions but this is relevant only if the dimensions are independent, which
is not guaranteed. Even if the target distribution is Gaussian with uncorrelated dimensions, this target is not
necessarily reached to perfection during the training procedure.

6 In this example, only the x-vectors are given to the authentication side and not the speech utterances. This
may not be practical in a real-life application as this requires the x-vectors to be extracted locally (on the user’s
device). However, we want to provide a toy example as a modest proof of concept rather than providing a
direct solution usable in a real-life application.



5.3 application to privacy : zero-llr sex-recognition speaker embedding 65

(a) Original data (b) Data protected with the LDA

(c) Data protected with adv-AE (d) Data protected with the proposed ap-
proach (zLLR)

Figure 22: UMAP vizualisation (with euclidean metric and 30 neighbors) [101] of the original and
protected V2T’s x-vectors. Even with the LDA protection and the adv-AE protection, unsu-
pervised visualization allows visualizing two separated classes while with the proposed
approach, male and female x-vectors are mixed in the visualization.
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Table 2: Sex classification and ASV performance on non-protected and protected speaker embed-
dings. The first line is for non-protected data, the second is with the LDA-based protection,
the third line is for the adv-AE protection and the last line is with the proposed system.
The left part of the table reports the sex classifier performance on V2T. For good privacy,
Cmin

llr must be close to 1 and DECE must be as low as possible on V2T-test. The right part of
the table reports the ASV performance. For good ASV ability, the EER and the Cmin

llr must be
as low as possible.

System
Sex classification performance

ASV performance
V2T-train V2T-test

Cmin
llr 10−2 [bit] DECE [bit] Cmin

llr 10−2 DECE EER [%] Cmin
llr

original data 8.39 0.658 2.12 0.703 1.72 0.067

LDA 12.20 0.628 57.75 0.295 1.57 0.065

adv-AE 30.43 0.493 74.21 0.179 2.36 0.097

zLLR 48.45 0.362 95.75 0.029 2.11 0.086

non-protected speech. However, this can be considered a low price to pay for privacy. In
this experiment, the LDA-based protection results in even better ASV performance compared
to the original data but fails in protecting the data.

5.3.2 Summary

In this section, the proposed non-linear discriminant analysis has been tested for the con-
cealment of the sex-related information in speaker embeddings. For protectection, the data
is mapped into the base space where the first dimension forms the LLR that represents the
sex-related information contained in the data. The LLR can be set to zero and the resulting
protected data mapped back into the feature space. This approach is theoretically consistent
with the zero-evidence formulation of privacy of Chapter 4. The experiments conducted
on speaker embeddings from the VoxCeleb datasets showed the ability of the approach to
remove the sex information while preserving remaining speaker-related variability in the
data.

5.4 voice conversion with zero-llr sex-recognition speaker embedding

In the previous section, we discussed how the discriminant analysis approach proposed in
Section 5.2 can be used for the concealment of the sex of the speaker in speaker embed-
dings. These embeddings are usually used for ASV, however, their manipulation can also be
explored for voice conversion. Voice Conversion (VC) [147] is the process of transforming a
speech signal to make it sounds like another speaker by changing the perceived voice while
keeping linguistic content unchanged. This can be used for privacy purposes [150, 155] by
avoiding the listener to perceive the original voice and therefore hiding the identity of the
speaker (assuming that the prosody and the linguistic content do not contain information
about the speaker’s identity).
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Most of the research in voice conversion for privacy focuses on hiding the full identity of
the speaker while there might be situations where attribute privacy is preferable. Like in the
previous section, we focus here on the sex as an attribute to hide and want to transform a
voice into a voice that provides no evidence about the sex of the speaker.

Recently, methods have been proposed for hiding the sex of the speaker with voice
conversion. In [140], in order to avoid sex-related bias in speech model training, the authors
proposed making speech “sex-neutral” beforehand by automatically searching for pitch
and formants shifting that would lead to the maximum uncertainty sex classifier score,
i. e. 50%. However, in their paper, there is no guarantee that the classifier they used is well-
calibrated, and a search for shifting parameters must be done for each utterance. Here, we
prefer to have a single transformation that can be applied regardless of the input utterance,
which appears to us more suitable for a real-life application of privacy systems. In [151],
the authors proposed removing the speaker’s sex using an adversarial approach. Their
approach also aims to protect the speaker’s identity instead of leaving the speaker’s other
information unchanged.

Here, we report our work presented in [119] that aims in altering only the speaker’s
sex while preserving the other speaker-related variabilities. We consider the explicit “dis-
entanglement” of the sex information in the speech as a desirable step. The proposed
discriminant analysis can be used but it has been designed for vector inputs only and
extending this approach to waveforms is challenging. Hence, we instead include it in an
analysis/synthesis framework. We use the HiFiGAN7 vocoder [85] fed by the f0 trajectory,
a HuBERT soft content representation [116], and an ECAPA-TDNN [47] speaker embed-
ding. Once the analysis/synthesis pipeline is trained, we apply the protection proposed
in Section 5.3 to the speaker embedding and an affine transformation to the f0 to remove
sex-related information. In our experiments, we test the protection ability of our approach
in terms of automatic sex recognition performance with both ignorant and informed attacks
[150], respectively regarded as weak and strong attacks. We evaluate the performance of
Automatic Speech Recognition (ASR) and Automatic Speaker Verification (ASV) as down-
stream tasks. Listening tests are also done in order to assess the human ear perception of
protected speech.

5.4.1 Detailed architecture of the voice conversion-based protection

Analysis/synthesis is the process of extracting features from which the original speech
signal can be recovered using a vocoder. In speech technology, this approach has been
widely used. The intermediate characterization of speech can be used for speech trans-
mission, voice conversion, speech anonymization, etc. In speech anonymization, we want
a part of the intermediate features to represent speaker-related information that can be
manipulated for privacy. In [105], the authors proposed to update the first VoicePrivacy’s

7 Recently, some speech synthesis approaches have been inspired by the adversarial learning procedure of the
Generative Adversarial Network (GAN) [70]. However, these systems, like the HiFiGAN we are using and
contrary to the GAN, are not generative models in the statistical sense even if they are named as such. They
transform input features into an output waveform in a deterministic manner.
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Figure 23: Architecture of the voice conversion system for speaker’s sex protection. The blue-dashed
path is used during training and the purple path during protection. Neural discriminant
for zero evidence refers to the zLLR approach of Section 5.3.

baseline [155] by replacing the neural source-filter vocoder [158] with a HiFiGAN vocoder
[85]. They also replaced the x-vector Kaldi TDNN speaker embedding [149] with a x-vector
ECAPA-TDNN speaker embedding [47]. The authors also got rid of the acoustic model
by using instead a HuBERT-based soft content representation [116]. In [105], the authors
used this system for the VoicePrivacy task and studied its application to unseen languages.
Here, we use this system but replace the speaker embedding averaging used for voice
anonymization with the discriminant analysis-based protection of Section 5.3. In addition,
since the fundamental frequency (f0) is known to contain information about the sex, we
apply an affine transformation to the f0 in order to force the vocoder to output a fixed tar-
get f0 trajectory’s mean and standard deviation that we expect to be sex-neutral. The target
f0 trajectory’s mean and standard deviation are computed from a training set where the
means and standard deviations from f0 trajectories are first averaged at the speaker level
and are then averaged over all males and all females resulting in two means and two stan-
dard deviations f0 (one for each sex). Then, the target mean for f0 is obtained by taking the
average between the male and the female mean for f0, and the target standard deviation is
obtained by taking the average between the male and the female standard deviation. These
careful ways of averaging are done in order to avoid bias due to an unbalanced number of
utterances per speaker and speakers per sex in the training set.

Figure 23 shows an outline of our system. The blue-dashed arrows show the training
path of the HiFiGAN. The feature extractors are pretrained and fixed. Once the vocoder
has been trained, the purple path is used. Both the f0 and the speaker representation are
transformed to reduce the sex-related information they contain. The content representa-
tion is assumed to not contain sex-related information. However, in real applications, the
speaker might explicitly reveal their sex but we do not consider this scenario and instead
focus on hiding the sex information in the acoustic features.
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5.4.2 Training, testing sets, and baselines

The sets used in our experiment for training and testing the proposed system are presented
above.

• Vocoder’s training:

LibriTTS train-clean-100 [163] was used to train the HiFiGAN as in [105]. The feature
extraction modules were pretrained and fixed. ECAPA-TDNN [47] with 80-coefficient
FBank features [105] was used for the 192-dimensional speaker representation extrac-
tion and was trained on VoxCeleb2 development set [33]. The 200-dimensional con-
tent representation was extracted by a HuBERT soft content encoder [116] fine-tuned
from a pretrained HuBERT base model8 on LibriTTS train-clean-100. Its training pro-
cedure is detailed in [105]. We used YAAPT [81] for the extraction of f0, which does
not require any training.

• Training of the protection modules:

Once the analysis/synthesis system is trained, it can be used for voice conversion and
privacy by manipulating the speaker representation and the f0 trajectory. In our ex-
periment, the protection of the speaker representation is done using the discriminant
analysis for zero-evidence sex recognition presented in Section 5.3. The discriminant
analysis model was trained on ECAPA-TDNN speaker embeddings from LibriTTS
train-other-500. The target f0 mean and standard deviation were computed, with the
averaging strategy described in the previous paragraph, from LibriTTS train-other-
500 also.

• Testing sets:

The VoicePrivacy challenge provides a complete evaluation protocol. For conciseness,
we merged its libri_dev and libri_test sets—subsets of LibriSpeech [126]— for the
evaluation of our system, resulting in 35 females with a total of 1185 utterances and
34 males with a total of 1136 utterances.

We compared the proposed approach with two baselines:

• The first one, we call global, is the same as our proposed approach but instead of
using the discriminant analysis-based protection of the speaker representation, we
simply fed the HiFiGAN with one global averaged x-vector for all utterances. The
averaging was done in such a way as to avoid bias as it was done for the computation
of the target f0 trajectory moments. In this case, we expect that the sex of the original
speaker will be hidden but that all the remaining speaker variability will be altered
such that the resulting voices all look the same.

• The second baseline simply transforms the f0 using Time Domain Pitch Synchronous
Overlap Add (TDPSOLA) [108]. Since we know that sex information is also contained

8 https://github.com/pytorch/fairseq/tree/main/examples/hubert

https://github.com/pytorch/fairseq/tree/main/examples/hubert
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Figure 24: Mean f0 and standard deviation f0 histograms for original speech (orange) and for gen-
erated protected speech (blue) with target f0 mean ≈ 154 and standard deviation ≈ 30
(dashed lines).

in the spectral envelope, we expect that the sex of the speaker will not be satisfactorily
hidden.

Is the HifiGAN vocoder following the target f0 moments?
Before going further, we want to make sure that the HifiGAN vocoder is following

the target f0 mean and standard deviation. Figure 24 shows histograms of generated
f0 trajectory mean and standard deviation when the protection proposed in Section
5.4.1 is applied. The target moments are shown by the dashed vertical lines: ≈ 154

for the mean and ≈ 30 for the standard deviation. The histograms of the mean and
standard deviation of the generated f0 are in blue. We can see that they are narrow
around the target values shown by the dashed lines which suggest that the moments
of the outputted f0 trajectory follow the target ones.

5.4.3 Protection results with automatic sex classification

We report the results for:

• original speech i. e. natural non processed speech,

• synthesised speech i. e. speech utterances that have been processed by the analy-
sis/synthesis system of Section 5.4.1 but the protection of the x-vector and f0 have
not been applied,

• protected speech with the proposed approach of Section 5.4.1 (zLLR-VC, for zero-LLR-
voice-conversion),

• protected speech with the global baseline,

• protected speech with TDPSOLA-based baseline.

In order to assess the protection ability of the systems, we report how much an automatic
sex classifier is able to detect the sex of the speaker from the speech. This paragraph is
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concerned with automatic attacks only. An attacker may try to infer the sex of the speaker
by listening manually to the data. This point will be discussed later when reporting the
listening test results. We study two kinds of attack:

• Ignorant attack where the classifier is trained on original speech data. In this scenario,
the attacker does not have access to the protection system or may not be aware that
the data has been protected. Therefore, he or she uses a sex classifier trained on
natural non-protected speech;

• Informed attack where the classifier is trained on protected speech data. This is the
strongest attack we consider. In this scenario, the attacker has access to the protec-
tion system. He or she can apply the protection to the data used for training of the
automatic sex classifier. The training of the classifier can therefore benefit from the
sex-related information that could remain in the protected data.

The classifier we used in our experiment is based on fine-tuned HuBERT base features
extraction (with frozen convolution), statistical pooling, and multilayer perceptron. Ideally,
an objective measure of information leakage should not depend on any classifier architec-
ture. We however consider, as an approximation, that this classifier is flexible enough for
the attacker to extract the information about the speaker’s sex that potentially remains in
the speech. Table 3 reports the results in terms of two metrics: the EER and the DECE. For
privacy, we want a low DECE and an EER close to 50%. The first line shows the initial ability
to distinguish the sex of the speakers. We can see from the second line that this is slightly
altered when the speech has been processed even without protection applied. The next
two lines show how the classification performance drops when the global or the zLLR-VC

protection is applied. For the ignorant attack, we have a drop in DECE of 78% with the
zLLR-VC approach and 66% with global. The methods have also a positive effect against the
informed attack with a drop in DECE of 65% and 60%. The TDPSOLA baseline is not com-
petitive, which is not a surprise since it alters only the f0 while it is known that differences
in vocal tract shape between males and females are significantly related to the spectral
envelope. However, we do not have a clear explanation as to why the zLLR-VC approach
protects better than the global baseline does. This could be due to uncontrolled bias in the
data or to the fact that the global x-vector—which is a linear interpolation—may go out of
the manifold on which the x-vectors are living, however, this requires further study.

5.4.4 Automatic speech recognition and speaker verification results

We want now to make sure that Automatic Speech Recognition (ASR) and Automatic
Speaker Verification (ASV) can still be performed as downstream tasks.

ASR aims in recognizing what has been said in a speech utterance. It transcripts a speech
utterance into a text sentence. The produced text can be compared with the true transcrip-
tion by computing a Word Error Rate (WER). This can be used to assess how much a voice
conversion system is altering the speech content.



72 a non-linear discriminant analysis for binary attribute privacy

Table 3: Sex classification results for protection assessment of the voice conversion systems.

ignorant informed

system EER [%] DECE [bit] EER DECE

original 3.67 0.578

synthesised 4.32 0.542 4.01 0.593

global 24.95 0.198 20.60 0.233

TDPSOLA 6.30 0.504 4.36 0.542

zLLR-VC 28.99 0.128 24.13 0.200

Table 4: Automatic speech recognition results in term of WER.

WER [%]

original 4.02

synthesised 4.79

global 4.92

TDPSOLA 4.43

zLLR-VC 4.81

We use here the same ASR evaluation as in the VoicePrivacy challenge [155]. The WER

is reported in Table 4. Processing the speech slightly increases the WER, but among the
two systems that provide good protection, the proposed approach seems to alter the ASR

performance less than the global approach (at least on this dataset). At worst, 0.9% is added
to the WER which is a relatively low price to pay for privacy.

We also report ASV results. We used the same ASV system used for evaluation in the
VoicePrivacy challenge. It consists of a Kaldi TDNN speaker embedding extractor [149]
with a PLDA backend. Both enrolment and test utterances were processed by the system.
The EER and Cmin

llr are reported in Table 5. We can see that processing the data without ap-
plying protection already slightly reduces the ASV performance. This suggests that the Hi-
FiGAN vocoder results in a small distortion or domain shift for the ASV backend. Applying
the protection further reduces the ASV performance. For global, all the speaker variability
in the x-vector is annihilated by the global averaging, increasing therefore the confusion
between voices. With the zLLR-VC approach, the x-vector is transformed in order to alter
only the speaker’s sex. In this way, other speaker variabilities must be preserved and, as
expected, the resulting protected voices remain consistent to some extent. Indeed, the pro-
posed approach does far better than the global one although—compared with original
data—significant ASV ability is lost with an increase in Cmin

llr from 0.278 to 0.445 and from
0.040 to 0.345 for female and male respectively. In addition to the domain shift induced by
the HiFiGAN synthesis, this drop in performance could be explained by both the reduction
in sex information as a component of the speaker variability that significantly helps in dis-
tinguishing speakers, not only a male speaker from a female one but also between speakers
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Table 5: Automatic speaker verification results. F and M refer respectively to in-between female and
in-between male trials, while FM refers to cross-sex trials.

system
EER [%] Cmin

llr [bit]

F M FM F M FM

original 8.15 1.13 5.77 0.278 0.040 0.204

synthesised 9.42 7.18 6.86 0.325 0.245 0.240

global 39.88 39.81 35.86 0.931 0.943 0.903

TDPSOLA 9.36 1.26 6.38 0.332 0.046 0.237

zLLR-VC 13.22 9.85 11.55 0.445 0.345 0.407

with the same sex, and also by imperfect “disentanglement” of the sex component from
other speaker-related information.

In [118, 121], we proposed, in the context of the VoicePrivacy initiative, to visualize
speaker voice similarity matrices to investigate the behavior of a protection system at both
a speaker and global level (see Appendix 10.5 for more details). Here, our task is different
than the VoicePrivacy challenge, but we can still visualize voice similarity matrices to assess
the consistency of the protected voices and to pay attention to any sex-related patterns that
could appear in the matrices. We report four of these matrices in Figure 25. Speakers were
grouped by sex such that squares appear in the matrix 25a. Indeed, male speakers generally
look more like other males than females and vice versa. When we have good sex protection
in 25b and 25c, we can see that these squares tend to disappear. The near disappearance
of the diagonal in 25c confirms that global is not suitable enough to preserve other speaker
variabilities compared with zLLR-VC.

5.4.5 Listening tests

The results presented so far show the machine’s perception. In this section, we discuss how
the human ear may perceive the protected speech by reporting listening test results. In ad-
dition to using automatic regonizers, an attacker may try to infer the sex of the speaker by
listening to the speech utterance. Listening tests are therefore crucial to assess the robust-
ness of a protection system to this kind of attack.

In our test, 19 listeners—all native English speakers—were asked to assess the natural-
ness of speech on a discrete scale from 1 (unnatural) to 10 (natural) and whether the speech
sounds like a male (1), a female (5), or neutral (3), also allowing for some nuance with
scores of 2 and 4. Figures 26a and 26b show respectively the distributions of the natural-
ness score and distributions of the sex-perception score for each system. The blue and red
dots show the median of each distribution and the cyan and orange dots show the means
of each distribution. The speech processed by the analysis/synthesis even without protec-
tion does not sound as natural as the original speech. The mass of the naturalness score
distribution synthesised is indeed moved to lower values (Figure 26a). However, applying
the global or the zLLR-VC protection does not further decrease, on average, the naturalness.
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(a) Original. (b) Protected with zLLR-VC.

(c) Protected with global (d) Protected with TDPSOLA

Figure 25: Voice log-similarity matrices (see Appendix 10.5 for more details).
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(a) Distributions of the perceived naturalness scores. The blue and the cyan points respectively show
the medians and the means.
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(b) Distributions of the sex-perception scores. The blue and red points show the medians and the
cyan and orange points show the means.

Figure 26: Listening test results. Violin plots of perceived speech naturalness (top). Violin plots of
perceived speaker’s sex (bottom), blue for female and red for male; blue and red dots
show medians, cyan and orange dots show means.

For assessing the robustness to listening attacks, Figure 26b shows the distributions of
the sex-perception scores. As expected, TDPSOLA does not sufficiently change the percep-
tion of the sex. The scores are on average low for male and high for female. The global
approach seems to change the perception of the speech from males: the mass of the dis-
tribution is around 3. However, it does not have the expected behavior for females9. The
zLLR-VC approach works for both male and female with a good average score close to 3.
This suggests that the proposed protection tends to make attacks by listening inefficient.
However, for better zero-evidence protection of each utterance, it would have been better
to have narrower distributions around the neutral score10.

5.5 summary

In this chapter, a new discriminant analysis for a binary attribute has been presented. It
allows mapping the data into a space where only the first dimension is discriminant and
forms a calibrated LLR representing the attribute-related information contained in the data.

9 We do not have an explanation as to why global does not protect the data as well as zLLR-VC.
10 Daniel Ramos has rightly pointed out that if these distributions are not narrow around the neutral score, it is

because the scores are not calibrated.
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The mapping is invertible such that the LLR can be set to zero before mapping the data back
into the feature space. This allows to reduce in the data the strength of evidence about the
attribute and is consistent with the zero-evidence formulation of privacy.

This approach to privacy has been tested on the concealment of the speaker’s sex in
speaker’s embeddings. Our experiments on VoxCeleb2 showed the ability of the approach
to hide the sex of the speaker into the speaker embeddings while keeping remaining
speaker variabilities.

Such protected speaker embeddings have also been used for voice conversion for re-
ducing the sex-related information in speech utterances. Our experiments on LibriSpeech,
based on automatic sex classification, and listening tests showed the ability of the approach
to reduce, in the voice, the information related to the sex of speaker while preserving rea-
sonable intelligibility according to the ASR, ASV, and listening test results.

The idempotence property of the LLRs and its constraint on their distributions is a crucial
aspect for the design of our approach. The next chapter extends the idempotence property
on ILRL that also leads to a constraint on the ILRL’s conditional densities. This will be
used in Chapter 7 to extend the discriminant analysis presented above to multiclass cases
i. e. where more than two classes are involved.



6
T H E I D E M P O T E N C E A N D D I S T R I B U T I O N S O F T H E L I K E L I H O O D
V E C T O R S O N T H E A I T C H I S O N S I M P L E X

In the previous chapter, we presented a discriminant analysis that can be used for the
concealment of a binary variable by setting the LLR to zero. The first step to extend this
work to non-binary variables is to extend the logit form of the Bayes’ rule to cases where
more than two hypotheses or categories are involved. This has been discussed in Chapter 3

where we saw that the Isometric-Log-Ratio (ILR) transformation of the likelihood function
(ILRL) is a good candidate for going beyond the LLR and summarising the evidence in a
multiple hypotheses case.

The design of the two classes discriminant analysis presented in the previous chapter is
based on the properties of the LLR that have been discussed in Section 2.6. In this chapter,
these properties are generalized to the ILRL.

6.1 the idempotence property

As we mentioned in Section 2.6.1, in the two hypotheses case, we want the posterior distri-
bution to be the same whether the LLR or the data E are given. Equivalently, we want here
the posterior distribution to be the same whether the ILRL or the data E are given meaning
that the ILRL contains all the relevant information, about the hypotheses, contained in E:

∀i ∈ J1,NK, P(Hi | E) = P(Hi | l), (79)

Let P̃(·) = ilr
(
[P(Hi | ·)]16i6N

)
be the ILRL transformation of the posterior probability

vector and l = w̃(E) = ilr (w(E)) be the ILRL vector. Since, within the Aitchison geometry
of the simplex, the Bayes’ rule is the translation of the prior probability vector by the
likelihood vector, Expression 79 can be rewritten as:

P̃(l) = P̃(E) ⇐⇒ w̃(l) + π̃ = w̃(E) + π̃,

⇐⇒ w̃(l) = w̃(E),

⇐⇒ w̃(l) = l,

(80)

where π̃ is the ILR transformation of the prior probability vector and by definition, l = w̃(E).
The result w̃(l) = l is the idempotence of the ILRL that can be read as:

“The ILRL of the ILRL is the ILRL itself”.

77
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6.2 the conditional densities of the isometric-log-ratio-likelihood vec-
tor

Exactly like in Section 2.6.2 with the LLR, we will see how the idempotence property of the
ILRL leads to a constraint on their distributions. Let A ∈ MN−1,N−1(R) be a real square
matrix defined as:

A = {αij}16i,j6N−1

αij =


2
√
i+1
i , if i = j
2√
j(j+1)

, if j < i

0, otherwise

(81)

and let B ∈MN−1,(N−1)2(R) be a block matrix:

B =
[
B(1) B(2) . . . B(N−1)

]
(82)

where B(b) ∈MN−1,N−1(R) is the bth block and is defined as:

B(b) = {β
(b)
ij }16i,j6N−1

β
(b)
ij =



b+1
b , if i = j = b

2
√

i+1
ib(b+1) , if (i = j)∧ (b < i)

1

jb
√

(j+1)(b+1)
, if (b < i)∧ (j < i)

0, otherwise.

(83)

The idempotence property of ILRL leads to the following property on their distributions:

Proposition 2. If l | H1 ∼ N(µ1,Σ), then ∀i ∈ J2,NK, l | Hi ∼ N(µi,Σ), where

µi = µ1 −Σai−1 −

i−2∑
j=1

1

j+ 1
Σaj,

and µ1 = A−1Bvec(Σ), where the (N− 1)2-dimensional vector vec(Σ) is the vectorization of the

covariance matrix Σ and ∀i ∈ J1,N− 1K, ai =
√
i+1
i ei where ei is the ith vector of the standard

canonical basis of RN−1.

In other words, if one of the conditional densities of the likelihood vector on the Aitchi-
son simplex is a multivariate Gaussian1, then the others are also Gaussian with the same
covariance matrix and the means are entirely defined by the covariance matrix. A proof of
this result is given in Appendix 10.6.

1 The multivariate normal distribution that appears with the ILR coordinate representation is also known as
the additive logistic-normal distribution, the logistic-normal distribution [5], or simply the normal distribution on the
simplex [128].
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Since µ1 = A−1Bvec(Σ), the only parameter of the distributions is Σ which is
a (N − 1) × (N − 1) symmetric positive definite matrix2. Therefore, it corresponds to
N(N−1)

2 =
(
N
2

)
scalar parameters which is equal to the number of pairs of hypotheses.

In the next paragraph, we will see how these parameters can be expressed in terms of the
Kullback-Leibler divergences between each conditional density. This relation between the
mean vector and the covariance matrix, and how it is related to the divergences, extends
what we discussed in the two hypotheses case in Section 2.6.2.1 where µ = σ2

2 and is equal
to the DKL between the conditional densities of the LLR.

6.2.1 The covariance matrix and the divergences

We will see in this section how the covariance matrix Σ, i. e. the parameter of the ILRL

distributions, can be expressed in terms of the Kullback-Leibler divergences (DKL) between
each conditional density. In a pattern recognition context, these divergences can be seen as
the between class separabilities.

Let ∆ = {di,j}16i,j6N ∈ MN×N(R+), where di,j = DKL
(
fHi , fHj

)
= DKL

(
fHj , fHi

)
, be

the matrix of Kullback-Leibler divergences between each conditional density. Since the
densities are multivariate Gaussian with the same covariance matrix, the divergences are
symmetric and the ∆ is therefore a symmetric matrix. Since di,j = 0 for i = j, the N
diagonal elements are 0. There remain therefore N(N−1)

2 degrees of freedom for the matrix
of divergences, corresponding to the number of variances and covariances in Σ.

The divergence between the densities for the hypotheses or classes i and j can be written
as:

di,j =
1

2
(µi − µj)

TΣ−1(µi − µj)

=
1

2

(
µTj Σ

−1µj − 2µ
T
i Σ

−1µj + µ
T
i Σ

−1µi
)

,
(84)

and since ∀i ∈ J1,N− 1K, µTi+1Σ
−1µi+1 = µ

T
1Σ

−1µ1 (see Appendix 10.6 for a proof),

di,j = µ
T
1Σ

−1µ1 − µ
T
i Σ

−1µj. (85)

Replacing µi and µj with the expression given in Proposition 2 we get:

di,j = ζ
T
i,jµ1 −η

T
i,j vec(Σ) (86)

2 In general, covariance matrices are symmetric positive semi-definite but here, we restrict to symmetric positive
definite because we need Σ−1.
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where

ζi,j =

(
ai−1 +aj−1 +

i−2∑
k=1

1

k+ 1
ak +

j−2∑
k=1

1

k+ 1
ak

)
,

ηi,j =

(
vec(ai−1aTj−1) +

j−2∑
k=1

1

k+ 1
vec(ai−1aTk) +

i−2∑
k=1

1

k+ 1
vec(aj−1aTk)

+

i−2∑
k=1

j−2∑
k=1

1

(k+ 1)(l+ 1)
vec(akaTl )

)
.

(87)

When 2 6 i, j 6 N and i = j, these vectors are respectively the (i− 1)th row of A and the
(i− 1)th row of B. Since µ1 = A−1Bvec(Σ), the divergences can be written as follow:

∀i ∈ J1,N− 1K,

∀j ∈ Ji+ 1,NK,

di,j =
(
ζTi,jA

−1B−ηTi,j
)

vec(Σ).

(88)

Let vech be the half-vectorization of a matrix and vech¬r be the half-vectorization without
the diagonal elements. The above set of equations can therefore be written in the following
matrix form:

vech¬r(∆) =


ζT1,2A

−1B−ηT1,2

ζT1,3A
−1B−ηT1,3

...

ζTN−1,NA
−1B−ηTN−1,N

DN−1

︸ ︷︷ ︸
M

vech(Σ),

vech¬r(∆) =Mvech(Σ),

(89)

where DN−1 is the duplication matrix [95] such that vec(Σ) = DN−1 vech(Σ) and M ∈
MN(N−1)

2 ×N(N−1)
2

(R) is a real square matrix. The divergences can therefore be computed
from the parameter Σ. Unfortunately, we did not prove that M is invertible even if in our
experiments we assumed M to be so, such that the covariances can be expressed in terms
of the divergences as: vech(Σ) =M−1 vech¬r(∆).

Figure 27 shows a few examples of conditional densities of the ILRL with three hypothe-
ses or classes H1, H2, and H3. The blue lines mark out the maximum probability decision
regions. The figures on the right side show the densities on a ternary plot and the figures
on the left side show the densities with the ILR coordinate representation. The densities are
multivariate normal and their parameters are linked and constrained according to Propo-
sition 2. Their parameters can be expressed in terms of the three divergences. When the
separabilities between each class are all the same, the covariance matrix is isotropic and the
means are equidistant. When they are different, the densities stretch accordingly. When two
classes get closer, the densities crush on the corresponding decision boundary and when



6.2 the conditional densities of the isometric-log-ratio-likelihood vector 81

p~1

p~
2

−10 −5 0 5 10

−
10

−
5

0
5

10

H1H2

H3

0

0

0

0.5 0.
5

0.5

1

1

1

p 1

p
2

p3

H1

H2H3

(a) EER1,2 = EER2,3 = EER1,3 ≈ 4.16%, d1,2 = d2,3 = d1,3 = 6.
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(b) EER1,2 ≈ 5.69%, d1,2 = 5; EER2,3 ≈ 3.07%, d2,3 = 7; EER1,3 ≈ 7.86%, d1,3 = 4.
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(c) EER1,2 ≈ 2.28%, d1,2 = 8; EER2,3 ≈ 15.87%, d2,3 = 2; EER1,3 ≈ 7.86%, d1,3 = 4.

Figure 27: Few contours of Gaussian conditional densities of ILRL in a three hypotheses case. They
are here parameterized by a covariance matrix that can be expressed in terms of the three
separabilities between each class. The densities on the ILR space (left) are with respect to
the Lebesgue measure while the densities on the simplex (right) are with respect to the
Aitchison measure [99].
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the separability between all classes goes to 0, the densities collapse at 0 and tend to be a
Dirac delta function.

6.3 summary

This chapter presented properties of the isometric log-ratio transformation of the likelihood
function (ILRL) which can be seen as a multidimensional and multiple hypotheses extension
of the LLR. Just like the LLR, the ILRL is idempotent which leads to a constraint on its
conditional densities. If one of the conditional densities is a multivariate Gaussian, the
others are also a multivariate Gaussian with the same covariance matrix and the means
are entirely defined by the covariance matrix. The latter can be expressed in terms of the
separability between each class for a better interpretation of the densities’ parameter.

In the next chapter, these properties on the distribution of ILRL are used to design the
multiclass generalization of the discriminant analysis presented in Chapter 5.



7
C O M P O S I T I O N A L D I S C R I M I N A N T A N A LY S I S

In Chapter 5 we saw how the idempotence property and its constraint on the distributions
of the LLR can be used to design a new discriminant analysis for the two classes case.
Chapter 6 showed how these properties generalize to the isometric log-ratio transformation
of the likelihood vector (ILRL) that we consider as a multidimensional extension of the LLR

for representing the evidence in a multiple hypotheses or classes case. The current chapter
presents how these properties can be used to extend the discriminant analysis of Chapter
5 to any number of classes.

In Chapter 5, the idea was to map the data into a space where the discriminant dimension
is designed to be a calibrated LLR, the idea is here to map the data into a space where the
discriminant dimensions form a calibrated ILRL.

We call this approach Compositional Discriminant Analysis (CDA) not to be confused
with discriminant analysis that aims in modeling compositional data as discussed for in-
stance in [59] or in section 8.4 of [128]. In these cases, the data is compositional, its sample
space is the simplex defined in Equation 34. Since standard statistical analysis methods are
designed for data that lives on a Euclidean space, the data is beforehand transformed us-
ing for instance the isometric log-ratio transformation. Our approach is different. The data
is not necessarily compositional and the compositional nature of our approach is on the
treatment of the likelihoods and probabilities computed through the discriminant analysis.
The discriminant space is designed to be the space of ILRL having therefore the intuitive
structure of the Aitchison geometry of the simplex. Moreover, for better calibration, the
distributions of the likelihood vectors are designed to respect the idempotence property
constraint of Proposition 2.

7.1 proposed compositional discriminant analysis for multiclass

Like in Section 5.2, the proposed discriminant analysis makes no explicit assumption on
the distribution of the observed data contrary to the LDA or the QDA1. Let’s consider the set
C = {C1,C2, . . . CN} of N classes and an observed vector x which belongs to one of these
classes. The proposed discriminant analysis, named CDA, is a generative model which
models the class-conditional densities in the feature space by learning an invertible and
differentiable mapping between the feature space and a base space in which the class-
conditional densities are known. The class-conditional densities in the base space are de-

1 This does not mean there is no assumption at all. The same remark of Section 5.2.2 holds here. Even if there
is no explicit assumption on how the feature vectors are distributed, the use of the CDA assumes the existence
of a diffeomorphism that transforms the class-conditional densities into Gaussian ILRL and Gaussian residual
densities. As we saw in the two classes example on the Circles dataset in Section 5.2.4, when this assumption
is not fulfilled, this tends to affect the discrimination quality rather than the calibration quality.

83
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signed according to the idempotence property constraint of Proposition 2. In this way, the
mapping transforms the observed vectors into a same-dimensional base space where the
first N− 1 dimensions form the ILRL and the others form the residual which can be seen as
“everything in the observed variable that is independent of the class variable”.

Let X be the d-dimensional feature space and let l(x) ∈ L ⊂ RN−1 be the ILRL of an
observation x ∈ X where the ith component is given by (see Equation 45):

∀i ∈ J1,N− 1K, li(x) =
1√

i(i+ 1)
log


i∏
j=1

P(x | Cj)

P(x | Ci+1)i

 . (90)

Let r(x) = [r1(x), r2(x), . . . rd−N+1(x)]
T ∈ R ⊂ Rd−N+1 be the residual of x. We want the

data to be mapped from the feature space to a base space Z = L⊕R in which the firstN− 1

dimensions form the ILRL, representing therefore the evidence, and the other dimensions
form the residual.

7.1.1 Class-conditional densities in the base space

In order to properly represent the evidence, the first N− 1 dimensions of the base space
have to form a calibrated ILRL. The class-conditional densities in the base space have to be
chosen accordingly to respect the idempotence property constraint of Proposition 2:

∀i ∈ J1,NK, z | Ci ∼ N (mi,C) , (91)

where:

• Σ is a (N− 1)× (N− 1) symmetric positive definite matrix and the only parameter of
the distributions in the base space,

• the means mi ∈ Z ⊂ Rd are the concatenation of µi ∈ L and the (d −N + 1)-
dimensional zero vector. µi is defined as in Proposition 2 and its expression is given
by (see Appendix 10.6 for the proof):

∀i ∈ J1,NK, µi = A
−1Bvec(Σ) −Σai−1 −

i−2∑
j=1

1

j+ 1
Σaj, (92)

where A ∈ MN−1,N−1(R) and B ∈ MN−1,(N−1)2(R) are defined as in Equations 81,

82 and 83, ai =
√
i+1
i ei where ei is the ith vector of the standard canonical basis of

RN−1 and a0 = 0 is the (N− 1)-dimensional zero vector,
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• the covariance matrix C is the following block matrix:

C =

 Σ 0N−1,d−N+1

0d−N+1,N−1 Id−N+1

 , (93)

where IK is the K×K identity matrix and 0K,L is the K× L zero matrix.

In this way, the first N− 1 dimensions of z form the ILRL (see Appendix 10.7 for a proof)
and the others form the residual normally distributed with a zero mean vector and an
identity covariance matrix regardless of the class.

Note that, as shown in the case of the LLR in Equation 77, since the mapping g between
X and Z is invertible, the ILRL of z and the ILRL of x are the same: l(x) = l(z) where
z = g−1(x). Indeed, for a given observation x, the likelihood vector is scaled by the Jacobian
determinant of the mapping to get the likelihood vector of z and, as we discussed in Section
3.3, likelihood vectors are scale invariant.

We will not discuss in detail how the mapping g is learned as this is basically the same
as in Section 5.2.2 but to summarise, g is based on a composition of differentiable and
invertible neural networks, named Normalizing Flow (NF) [127], learned through negative
log-likelihood minimization with automatic differentiation and gradient descent. Never-
theless, the next section will briefly discuss the initialization and optimization of the base
space class-conditional densities’ parameter Σ.

7.1.2 Regarding the initialisation and estimation of Σ

In our experiments, the training of the proposed discriminant analysis turned out to be
very sensitive to the initialization of Σ. In this section, we propose an initialization method
for starting the optimization with a Σ that we expect to be not too eccentric.

Section 6.2.1 showed how the covariance matrix Σ can be expressed in terms of the
Kullback-Leibler divergences (DKL) within each pair of classes2. We propose here to initial-
ize the mapping g as the identity function and to initialize Σ with the DKL measured in
the feature space assuming that each class-conditional densities are multivariate Gaussians
with shared covariance (this is the standard LDA assumption). Even if there is no strong
theoretical foundation for this choice of the initial Σ and g, these initializations appeared
to be effective in our experiments. Note that this does not mean that an assumption on
how the feature vectors are distributed is made. This is only for the initialization of the op-
timization. The parameters of g and Σ are then free to take any value under the constraints
of differentiability and invertibility for g and symmetric positive definiteness for Σ.

The symmetric positive definiteness of Σ is insured by optimizing instead the lower trian-
gular matrix L from the Cholesky decomposition Σ = LLT and since the diagonal elements
of L must be positive, the log-Cholesky parametrization [131] is used. In our experiments,
the estimation of L and the parameters of g is done with automatic differentiation and

2 Keep in mind that since the class-conditional densities in the base space are Gaussian with the same covariance
matrix, the Kullback-Leibler divergences are symmetric.
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gradient descent. We did not find a straightforward computation of a maximum likelihood
estimator of Σ contrary to µ in Section 5.2.3.

7.1.3 Regarding the interpretability of the compositional discriminant analysis

The proposed discriminant analysis maps the data into a space where only the first N−

1 dimensions are discriminant and form the ILRL of the observation. With the standard
LDA, the N − 1 dimensions given by the non-zero eigenvalue eigenvectors of the matrix
Σ−1
W ΣB, where ΣW is the shared within-class covariance matrix and ΣB is the between-class

covariance matrix, are also the discriminant ones. They are usually sorted in the descending
order of the eigenvalues which inform how much each direction is discriminant.

In the proposed approach, the discriminant dimensions are not sorted according to their
discriminant power. However, thanks to the compositional nature of the base space, each
dimension is instead opposing a class with a group of classes in an intuitive recursive
manner as illustrated by the bifurcation tree in Figure 8. The discriminations between the
classes are given by the parameter Σ as discussed in Section 6.2.1.

Moreover, since the densities of the ILRL in the base space are designed to respect the
idempotence constraint of Proposition 2, the approach tends to produce a set of ILRLs that
is well-calibrated. The resulting classifier can therefore be used for uncertainty-aware deci-
sions avoiding under or overconfident predictions. In addition, the ILRL nature of the first
N− 1 dimensions of the base space allows straightforward computation of the posterior
probability distribution over the set of classes by simply shifting the prior distribution by
the likelihood on the Aitchison simplex.

7.1.4 Toy examples

This section discusses two toy examples to illustrate the use of the CDA. The first exam-
ple is the classification of multivariate normal distributions. The second example is the
recognition of hand-written digits with the well-known MNIST database [89].

With Gaussians

Let’s consider here a three classes example for visualization convenience. Indeed, for three
classes, the probability simplex is 2-dimensional and the isometric-log-ratio coordinate
system can be visualized into a 2-dimensional figure. Let the class-conditional densities be
4-dimensional Gaussians. In this way, the residual space is also 2-dimensional.

In this example, each class is generated by a multivariate normal distribution with its
own mean and covariance matrix. Figure 28 shows the training set (10000 samples per
class). Figure 29 shows the base space on which the testing set (2000 samples per class)
is mapped using the learned transformation. Within the ILRL space 29a (i. e. the first two
dimensions of the base space) the first dimension discriminates the two first classes (blue
and orange) while the second dimension discriminates the third class (green) from the two
others without discriminating the first two. This is ensured by the chosen Aitchison basis
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corresponding to the bifurcation tree of Figure 8. The class-conditional densities in the base
space tend to respect the distribution of calibrated ILRL. The residual components are not
discriminant and are normally distributed with zero mean and identity covariance matrix.

The learned parameter Σ of the ILRL’s class-conditional density is:

Σ =

35.50 −0.87

−0.87 8.71

 ,

and can be interpreted in terms of the following divergences, or separability between the
classes, using Equation 89:

d1,2 = 35.50,

d1,3 = 14.65,

d2,3 = 16.16.

We compare the proposed CDA with the LDA and the QDA. Figures 29c and 29d show
the projection of the testing set using the LDA. The first two components are discriminant
but are hardly interpretable by other means than the discriminative power given by the
eigenvalues. The other dimensions are less discriminant but are not identically distributed
contrary to the CDA’s residual space (Figure 29b).

QDA is not designed to have an information-preserving mapping of the data into a same-
dimensional space. This is why there are no results for the QDA in Figure 29. QDA can
however be used to compute LLR scores as given by Equation 70. Figure 30 shows the
histograms of the scores obtained with LDA (Figures 30a,30b and 30c), QDA (Figures 30d,30e
and 30f), and CDA (Figures 30g, 30h and 30i). For the latter, the LLR in favor of a class
against another is obtained by projecting the ILRL vector on the orthogonal direction of the
maximum probability decision boundaries (given in Appendix 10.3)3. For the LDA and the
CDA, the class-conditional densities of the scores look Gaussian as expected. However, for
the LDA, they are not symmetric as required by the idempotence property. We therefore
expect the scores of the LDA to have less good calibration. For the QDA the histograms
are not symmetric but this does not suggest that the scores are not calibrated. Indeed,
the idempotence constraint of Propositions 1 and 2 is formalized for normally distributed
scores while the scores are here not Gaussian4.

To better assess the discrimination and calibration of the scores, Table 6 provides Cllr mea-
sures. The LDA has the worst discrimination and calibration which is not surprising as it is
based on the shared covariance assumption. QDA models the best the data and the resulting
scores have the best discrimination and calibration which is again not surprising since the
QDA’s assumption is actually how the data are really distributed. However, as we already

3 To be more precise, projecting the data into the unit vector orthogonal to the decision boundaries gives the
LLR up to a scaling factor 1√

2
. See the definition of the ILR transformation in Equation 45: its first component

is 1√
2

times the log-ratio.
4 To be more precise, since the data is here normally distributed and the mapping is quadratic, the scores are

distributed according to a generalised chi-squared distribution.
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(a) The first and second dimensions (b) The first and third dimensions.

(c) The first and fourth dimensions (d) The second and third dimensions.

(e) The second and fourth dimensions (f) The third and fourth dimensions.

Figure 28: Training set for the three classes CDA example with non-shared covariance Gaussian. The
colors indicate to which of the three classes a sample belongs: blue for C1, orange for C2
and green for C3.
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(a) The CDA’s ILRL components (b) The CDA’s residual components.

(c) The LDA’s discriminant components (d) The LDA’s residual components.

Figure 29: Testing set in the LDA and CDA base spaces for the non-shared covariance Gaussian ex-
ample.
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(a) Class 1 against 2 with LDA.
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(b) Class 1 against 3 with LDA.
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(c) Class 2 against 3 with LDA.
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(d) Class 1 against 2 with QDA.
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(e) Class 1 against 3 with QDA.
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(f) Class 2 against 3 with QDA.
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(g) Class 1 against 2 with CDA.
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(h) Class 1 against 3 with CDA.

40 20 0 20 40
Score

0

20

40

60

80

100

120

140

Fr
eq

ue
nc

y

(i) Class 2 against 3 with CDA.

Figure 30: LLR score histograms of one class against another for the non-shared covariance Gaussian
example given by LDA, QDA, and CDA. C1, C2, and C3 are respectively blue, orange, and
green.
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Table 6: Cllr measures for the non-shared covariance example. Samples from the non-concerned
class are discarded.

compared classes
LDA QDA CDA

Cllr [bit] Cmin
llr [bit] Cllr Cmin

llr Cllr Cmin
llr

1 vs 2 1.7210−3 0.0 0.0 0.0 4.8510−5 0.0

1 vs 3 1.98 1.4310−1 1.7210−9 0.0 9.4610−3 5.0410−3

2 vs 3 2.0010−1 1.7610−2 6.3710−4 0.0 8.4610−3 5.3110−3

discussed, the QDA does not provide an information-preserving transformation necessary
for the “disentanglement” of the discriminant components from the non-discriminant ones
contrary to the CDA, which, still provides good discrimination and calibration.

With the MNIST database

The MNIST database consists of grayscale images of size 28× 28. Each image is a hand-
written digit between 0 and 9. The training set is made of 60000 samples and the testing set
is made of 10000 samples. The task is here to extract from an image the information about
which digit is written. Figure 31 shows one randomly selected example for each class.

Figure 31: Examples from the MNIST database.

In the following experiment, each image is flattened and normalized into a 784-
dimensional feature vector5. One can see from Figure 31 that the pixels on the edges of
the images tend to all have the same low intensity. This leads to collinearities between
some of the features such that methods that require the inversion of covariance matrices in
the feature space (like the LDA and the QDA) can not be directly used. The dimensionality of
the feature vector is therefore reduced to 40 using a Principal Component Analysis (PCA).

In the above Gaussian example, where only three classes were considered, Cllr measures
were reported for each of the three pairs of classes. In the current experiments, there are 10

classes corresponding to 45 pairs of classes. Thus, we instead report the Empirical Cross-
Entropy (ECE) Cmc of Equation 95 as a summary measure.

5 State-of-the-art discriminative approaches for classification on MNIST are based on Convolutional Neural
Network (CNN). Even if coupling layers [48] (used in our implementation) can be made of convolutions, since
our experiments are just toy examples to illustrate the use of CDA, we do not consider this way of processing
the images.
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About the cross-entropy measure in the multiclass case:
The Empirical Cross-Entropy (ECE) expression of Equation 19 can be written for any

number N of hypotheses or classes as follow:

ECE = −

N∑
i=1

P(Ci)

|Ei|

∑
e∈Ei

logqi, (94)

where qi = P(Ci | e,π) and π = [P(C1), . . . P(CN)]T are respectively the posterior and
the prior probability distribution.

In the two classes case, the Pool Adjacent Violators Algorithm (PAVA) calibrates a
set of scores into a reference set of probabilities or likelihoods that minimizes the ECE

with a fixed discrimination allowing therefore the decomposition of the ECE into a
calibration term and a discrimination term (see Section 2.4.2).

When more than two classes are involved, there is no available method to obtain per-
fectly calibrated probabilities or likelihoods as reference. Thus, the ECE can not be de-
composed into a calibration term and a discrimination term. However, the multiclass
ECE of Equation 94 can still be used to summarise the amount of useful information
given by the pattern recognizer as done for instance in the context of language recog-
nition [141]. Having a multiclass ECE lower than the entropy of the prior probability
distribution informs that the system has extracted useful information.

In our experiments, we report the multiclass ECE at a uniform prior (i. e. P(Ci) = 1
N

for all i ∈ J1,NK). We call this cost Cmc and its expression is given by:

Cmc = −
1

N

N∑
i=1

1

|Ei|

∑
e∈Ei

si, (95)

where si is the log-likelihood score, for the class Ci, given by the pattern recognizer.
In addition, since we do not have a minimum ECE as a discrimination measure, we

report the accuracy of the system with a maximum likelihood decisiona. However,
be aware that the cross-entropy-based measures and the accuracy differ by nature.
The accuracy measures the goodness of hard decisions while the ECE measures the
goodness of probabilities or likelihoods regardless of the operating point or decision
boundaries. In this way, the accuracy can not substitute a minimum ECE measure.

a The accuracy is given by the ratio of well recognized examples over the total number of examples.

Table 7 gives the Cmc in nat6 and the accuracy on the testing set for the LDA, the QDA, and
CDA. All the systems result in a cross-entropy lower than the entropy of the uniform prior
distribution: Cmc < log 10 ≈ 2.30, meaning that all the systems extract useful information
from the images. Interestingly, QDA has the best accuracy but the worst cross-entropy. This
confirms that having a good accuracy does not mean that a system is good for making ra-
tional decisions minimizing the expected cost. The CDA results in the lowest cross-entropy

6 A nat is a unit of information when the natural logarithm is used while a bit is a unit of information with the
base two.
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Table 7: Cross-entropy and accuracy measures on the testing set for the MNIST’s digit recognition
task with LDA, QDA, and CDA.

system Cmc [nat] accuracy [%]

LDA 5.4410−1 87.67

QDA 8.5610−1 96.24

CDA 2.2310−1 94.43

(a) UMAP visualization of the estimated ILRLs. (b) UMAP visualization of the residual.

Figure 32: UMAP visualization of the MNIST testing data in the CDA’s base space. The color indicates
to which class a sample belongs: blue for 0, orange for 1, green for 2, red for 3, purple
for 4, yellow for 5, gray for 6, brown for 7, olive for 8, and cyan for 9.

which shows that it extracts the most useful information from the images. In addition, Fig-
ure 32 shows UMAP visualization of the testing data in the base space. Figure 32a shows an
UMAP visualization of the nine first dimensions i. e. of the estimated ILRL. One can see that,
the visualization results in clusters corresponding to the ten digits while in Figure 32b—
showing an UMAP visualization of the residual—no clusters are produced. This suggests,
as expected, that the information related to the digit that has been written is concentrated
in the ILRL components. Table 8 shows the estimated Kullback-Leibler divergences between
the digit’s class-conditional densities in the base space. These divergences are computed
from the estimated Σ using Equation 89. This informs us about the separability between
the classes. Even if the observed distance between the clusters in Figure 32a can not be
read as they are, they share some overall tendencies with the estimated divergences.

The CDA can be used without dimensionality reduction beforehand. This allows the
learning of an information-preserving transformation between the space of images and a
base space. In this case, CDA can be used for generating images. The interpretability of
the base space allows manipulation or generation of images. As an example, Appendix
10.8 shows interpolation between digits. The parameter Σ of the class-conditional densities
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Table 8: Estimated Kullback-Leibler divergences (rounded with one decimal) between the digit’s
conditional densities in the base space.

digit 0 1 2 3 4 5 6 7 8 9

0 0 - - - - - - - - -

1 38.3 0 - - - - - - - -

2 18.5 15.6 0 - - - - - - -

3 16.2 16.0 8.8 0 - - - - - -

4 24.8 25.0 17.8 17.4 0 - - - - -

5 12.4 19.2 14.1 7.2 13.3 0 - - - -

6 18.4 25.9 13.3 19.6 13.0 13.5 0 - - -

7 21.2 21.6 17.5 15.0 14.2 16.9 27.1 0 - -

8 18.0 16.6 8.3 7.2 13.8 6.7 14.5 17.5 0 -

9 21.2 21.3 17.9 12.8 5.1 11.9 19.0 7.3 10.9 0

in the base space defines the centroid for each digit (see Section 7.1.1) and the Euclidean
structure allows linear interpolation for generating “digits in between”7.

7.2 regarding the use of the compositional discriminant analysis for

privacy

The discriminant analysis presented in Chapter 5 is a particular case of the CDA: this is the
two hypotheses or classes formulation of the CDA. Section 5.3 discussed its use for privacy
where the information to protect is about a binary attribute. The multiclass extension of
the discriminant analysis proposed in the current chapter can similarly be used for the con-
cealment of attributes with more than two categories. The information about the sensitive
attribute is represented by the ILRL components in the CDA’s base space. For protection,
the ILRL components of all observations can be set to zero in the base space being consis-
tent with the zero-evidence formulation of privacy, while keeping the residual information
unchanged. The protected observations can then be mapped back into the feature space.

Unfortunately, there is no experiments in this thesis to illustrated the use of CDA for
multiclass attribute privacy. We hope this will be tested in future works.

7.3 summary

This chapter extended the discriminant analysis proposed in Chapter 5 to any number of
classes. This discriminant analysis we called CDA models the class-conditional densities of
the data by learning a diffeomorphism between the feature space and a base space in which
the densities are designed according to the distribution of calibrated likelihood vectors. In

7 We trained the CDA without pre-dimensionality reduction (i. e. on the 784-dimensional features vectors) result-
ing in a Cmc of 3.8110−1 nats and an accuracy of 89.88%.
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this way, the data can be mapped into a space where the discriminant components form
the likelihood function on the probability simplex with the Euclidean vector space struc-
ture known as the Aitchison geometry of the simplex. This compositional structure of the
base space allows easy interpretation of the discriminant components. Each component is
opposing a class with a group of classes. The calibration cost of standard discriminant anal-
ysis methods usually comes from assumptions—about the distribution of the data—which
are not fulfilled. The proposed CDA makes no explicit assumptions on the distribution of
the data and is designed to produce calibrated likelihood functions. For this reason, CDA

is a good candidate for application where rational decisions in presence of uncertainty is
crucial.





8
F L O W- B A S E D C A L I B R AT I O N

The concept of calibration of LLRs has been discussed in Section 2.5. Some pattern recogniz-
ers produce scores1 with good discrimination but bad calibration making them not suitable
for rational decision-making. Calibration methods can be used on top of a recognizer to
transform the scores into calibrated LLRs or better calibrated LLRs2.

Considering a binary classification problem and a set of scores, a calibration aims in
transforming these scores into a calibrated set of LLRs. This chapter focuses on pure calibra-
tion only. This refers to a calibration that does not change the discrimination power of the
scores and seeks to reduce the calibration cost only in opposition to hybrid discrimination-
calibration which seeks to reduce both the discrimination and the calibration cost [135].
Therefore, in order to avoid “swappings” between scores and to keep the same discrimina-
tion power, pure calibration methods are restricted to invertible and monotonically increas-
ing mappings.

Chapters 5 and 7 introduced a new approach to discriminant analysis. The idea is to
learn of a diffeomorphism between the feature space and a space where the first dimen-
sions contain the class-related information in the form of a calibrated likelihood function
and the other dimensions form the residual i. e. the variability not related to the class.
This transformation is learned through Normalizing Flow (NF) which is a cascade of learn-
able diffeomorphisms. For calibration purpose, this chapter introduces the use of NF to
transform class-conditional densities of scores into densities that respect the constraint of
Proposition 1. The aim is not to propose a calibration approach that works better than
others but rather to share a new idea that we hope could be helpful for those who want
to go beyond standard calibration methods. First, let’s discuss some of the LLR calibration
methods usually studied in the context of Automatic Speaker Verification (ASV).

8.1 calibration methods for log-likelihood-ratios

Automatic Speaker Verification (ASV) research has been very active in the design of calibra-
tion methods for LLRs. Indeed, scores produced by target/non-target classifiers can rarely be
directly treated as calibrated LLRs. Calibration methods are therefore required to transform
these scores into calibrated LLRs. There are several approaches to calibration:

• Discriminative approaches learn the parameter of a monotonically increasing map-
ping by minimizing an objective function (usually based on proper scoring rules,
it can be for instance the Cllr). The most common is the linear calibration learned

1 The scores are not necessarily LLR-like scores. They can be more general following the property of having a
large value for one class and a low value for the other class.

2 We already discussed calibration mapping in Section 2.4.2 in the context of probability calibration. Here, we
discuss the calibration of LLRs rather than the calibration of probabilities.

97



98 flow-based calibration

through logistic regression [20, 21, 28, 148]. Be aware that even if these approaches
are called discriminative this does not mean they improve the discrimination power
of the scores. Since the mapping is subject to a monotonicity constraint, it can only
improve the calibration. The word discrimination refers here to the training procedure
in opposition to the generative approaches.

• Generative approaches for calibration aim in modeling the class-conditional densities
of the scores. In [91], the class-conditional densities of the scores are assumed to be
Gaussian with shared variance. Scores are affinely transformed to respect the idem-
potence constraint of Proposition 1 (which is actually equivalent to the discriminative
trained logistic regression discussed above). Non-linear generative calibrations have
been proposed in [26] by dropping the shared covariance assumption, resulting in
a quadratic transformation, or assuming more general distributions like Student’s t,
normal-inverse-Gaussian distributions [26], or normal variance-mean mixture distri-
butions [35, 37]. In [36, 38], the authors showed that variance-gamma and the wider
family of generalized hyperbolic distributions better model the ASV scores produced
by the Probabilistic Linear Discriminant Analysis (PLDA). With the generative ap-
proach to calibration, unsupervised and semi-supervised3 training can also be inves-
tigated but are out of the scope of this thesis [23].

• The two calibration kinds presented above are parametric. The PAVA-based calibration
[24], discussed in Section 2.4.2, is non-parametric. While PAVA results in perfectly cali-
brated LLRs on the set used for its training, this does not generalize to unseen scores.
PAVA should be used only for the computation of the minimum ECE as discussed
in Sections 2.4.2 and 2.5.1 and not for the calibration of unseen scores for rational
decision-making.

The next section introduces a new idea for generative calibration by modeling the class-
conditional densities of the scores using NF.

8.2 proposed flow-based calibration of log-likelihood-ratios

In this section, a new generative calibration method is proposed. Let’s consider a set of
classes {C1,C2} and a pattern recognizer that outputs a score in R which is low for class
C1 and large for class C2. The aim of the calibration is to transform the scores produced by
the recognizer into calibrated LLR. NF is used to model and transform the class-conditional
densities of the scores into Gaussian densities respecting the constraint of Proposition 1 . In
order to do so, a composition of mixtures of Cumulative Distribution Functions (CDF) and
logit transformations is used to learn the monotonically increasing calibration function4.

3 Semi-supervised refers to a set where the labels are not known for all samples.
4 The use of mixtures of CDF is highly inspired by Lecture 3 of the Spring 2020 University of California Berkeley

course on Deep Unsupervised Learning: https://sites.google.com/view/berkeley-cs294-158-sp20/ (last
visit in February 2023).

https://sites.google.com/view/berkeley-cs294-158-sp20/
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The CDF for a normal distribution (that we will call normal CDF) with mean µ and stan-
dard deviation σ is given by:

FCDF(x | µ,σ) =
∫x
−∞ f(t | µ,σ)dt =

1

2

(
1+ erf

(
x− µ

σ
√
2

))
, (96)

where f(· | µ,σ) is the probability density function of the normal distribution with mean
µ and standard deviation σ, and erf is the error function: erf(x) = 2√

π

∫x
0 e

−t2dt. Figure 33

shows the normal CDF for some couples of parameters. A normal CDF looks like a sigmoid
function: it is a bijection between R and ]0, 1[. A mixture of K ∈ N∗ CDFs is defined as
follows:

FMCDF(x |M,Σ,W) =

K∑
i=1

wiFCDF(x | µi,σi), (97)

where M = {µi ∈ R}i∈J1,KK is the set of means, Σ = {σi ∈ R∗+}i∈J1,KK is the set of standard

deviations, and W = {wi ∈ R∗+;
K∑
j=1

wj = 1}i∈J1,KK is the set of weights.

A mixture of CDFs defines a wider family of bijections between R and ]0, 1[. An arbitrary
example of a mixture of three normal CDFs is shown in Figure 34.

For the calibration of scores into LLRs, the transformation has to be a bijection between
R and R. In order to do so, the mixture of CDFs is composed with a logit function to obtain
the following bijection:

B(x |M,Σ,W) = logit(FMCDF(x |M,Σ,W)). (98)

Several of these bijections can be composed to build an even wider family of transforma-
tions as follows5:

FFLOWCAL(x | θ) =
N

©
i=1
B(x |Mi,Σi,Wi), (99)

where θ = {Mi,Σi,Wi}i∈J1,NK is the set of all the parameters. Given the following target
class-conditional densities of calibrated LLR (see Proposition 1):

l | C1 ∼ N(−µ, 2µ),

l | C2 ∼ N(µ, 2µ),
(100)

where l = FFLOWCAL(x | θ), the parameters θ, and µ can be learned through negative
log-likelihood minimization using automatic differentiation and gradient descent. Since

5 We define the notation
N
©
i=1

fi(x) as the composition fN(fN−1(. . . f1(x))).
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Figure 33: Normal cumulative distribution functions for some values of the parameters µ and σ.

the mapping is invertible, the exact log-likelihood of the data can be computed using the
change of variable formula. The log-likelihood of a score x belonging to the class Ci is:

log fX|Ci(x | θ,µ) = log fL|Ci(l | µ) + log
∣∣∣∣ ddx (FFLOWCAL(x | θ))

∣∣∣∣ , (101)

see Appendix 10.9 for the computation of the derivative of FFLOWCAL(· | θ).

8.2.1 A toy experiment

Let’s come back to the Circles example of Section 5.2.4. The good discrimination of the
QDA’s scores suggests that the QDA is extracting useful information about the classes. How-
ever, the ECE measure is not as low as the two classes CDA. In order to improve the represen-
tation quality of the information extracted by the QDA, the scores can be further calibrated.
The flow-based calibration presented above will be here use to improve the calibration of
the QDA’s scores and will be briefly compared with the standard linear and quadratic cal-
ibrations. In order to do so, an additional set of 5000 samples sampled from the Circles
distributions is used to train the calibration methods.

Figure 35 shows the histograms of the testing set of scores when the different calibrations
are applied. The histograms of the original scores are showed in Figure 35a. They look al-
most Gaussian but are not symmetric as one would expect from the idempotence property
constraint. As it is restricted only to scaling and shifting, the linear method is not enough to
produce densities that would respect the idempotence constraint and the asymmetry of the
histograms is not fixed (Figure 35b). The quadratic calibration does not result in Gaussian
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Figure 34: Example of a mixture of three normal CDFs with M = {0, 3,−2}, Σ = {1,
√
0.2,
√
0.1} and

W = {0.3, 0.2, 0.5}.

scores (Figure 35c). Since a quadratic transformation of normally distributed scores results
in a generalized chi-squared distribution and that Proposition 1 concerns only normally
distributed scores, these histograms can not be interpreted in terms of the idempotence
property. The histograms of the flow-based calibrated scores look almost Gaussian and
are symmetric around zero (Figure 35d). This symmetry is at least one requirement of
Proposition 1.

Figure 36 shows the ECE values on the testing set for a wide range of prior π and for the
different calibration methods. All the profiles with calibration (purple, red, green, and blue)
are below the profile without (orange). All calibrations are therefore improving the quality
of the LLR scores. The quadratic and flow-based calibrations perform similarly and both
produce better scores in comparison to the linear calibration. Nonetheless, we can see that
they differ significantly for some priors: for a logit prior between 0 and 3, the flow-based
produces slightly better-calibrated scores. For other prior values, the quadratic calibration
seems to perform better. The purple profile shows the ECE for a perfectly calibrated set of
LLR given by the PAVA.

Figure 37 shows the learned calibration functions. Even if the resulting calibration perfor-
mance in terms of ECE of the quadratic and the flow-based approaches are close, the calibra-
tion functions are significantly different. Indeed, the flow-based calibration transforms the
scores into normally distributed calibrated scores while the quadratic approach does not
have Gaussian target distributions. One drawback of the flow-based calibration is that, in
practice, outputs of the mixtures of CDF very close to zero or one will cause numerical issues
since the logit function goes to infinity at zero and one. A small value ε ≈ 2.2210−16 is there-
fore added or subtracted from the output values rounded to zero or one. This however lim-
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(a) Original scores. (b) With the linear calibration.

(c) With the quadratic calibration. (d) with the flow-based calibration.

Figure 35: Effect of calibration on the QDA’s LLR scores histograms from the Circles test set. 35a
shows the scores without calibration, 35b, 35c, and 35d respectively show the scores’
histograms with linear, quadratic, and flow-based calibration.

its the image domain of the flow-based calibration to ]− logit ε,+ logit ε[ ≈ ]−36.04, 36.04[.
This saturation can be seen on the left part of the blue curve in Figure 37. This is prob-
lematic because the tails of the Gaussian can saturate and it is even worst for scores with
a low discrimination cost which corresponds to a large absolute value of the mean and
standard deviation. Actually, the class-conditional densities of the scores in Figure 35d do
not look so Gaussian, each class-conditional density is not symmetric and seems to be
“pressed” on zero. We suspect that this is due to the bounded domain, especially with this
example where the discriminant power of the scores is large. Therefore, we expect that the
performance of the flow-based calibration can be improved by extending the bounds of the
domain. We tried to add to the flow of transformations an affine transformation for this
purpose. However, our experiments are for now not conclusive, and reporting these results
in this thesis would be too hasty without further investigation.
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Figure 36: ECE plots with different calibrations on the QDA’s scores from the test set of the Circles
example.
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8.3 regarding the calibration of multiclass likelihood functions

The calibration of multiclass classifier scores has been mostly studied to produce prob-
abilities rather than likelihoods [71, 86, 162]. Calibration of multiclass likelihood vectors
and its difficulty has however been discussed in the context of language identification [27].
Chapter 3 discussed some advantages of expressing, in a multiclass context, the likelihood
functions with the coordinate system given by the ILR transformation. This way of express-
ing a likelihood function is named Isometric-Log-Ratio-Likelihood (ILRL) and is considered
in this thesis as the multiclass extension of the LLR. Chapter 6 discussed how the idempo-
tence property of calibrated ILRL leads to a constraint on their distribution. Proposition 2

states that if one class-condition density of calibrated ILRL is Gaussian, the others are also
Gaussian, and their parameters are all interdependent and can be expressed in terms of the
Kullback-Leibler divergence within each pair of Gaussians. This is the multiclass formula-
tion of the idempotence constraint on the LLRs’ distributions (Proposition 1) used for the
design of the above flow-based calibration. It is therefore tempting to simply extend the
flow-based calibration to multiclass by learning a multidimensional flow-based calibration
of ILRLs with the target densities respecting Proposition 2. This could be done, for instance,
by training the CDA on ILRLs with a residual of dimension zero. However, the family of
transformations learnable through NF is only restricted to diffeomorphisms and this is not
sufficient for a pure calibration. Indeed, while in the two classes case the invertibility condi-
tion was enough to avoid “swappings” between scores, this is not the case anymore in the
multiclass case. The concept of “swapping” is even not defined in the multiclass case. In
the two classes case, the scores live on a one-dimensional line where the concept of order
is well-defined and where a monotonically increasing function preserves the order of the
scores. In the multiclass case, a “score” is not a scalar anymore but is a vector that lives
in an infinite directional space where the concept of order is not defined. Using NF for the
calibration of multiclass likelihood vectors remains therefore an open question.

8.4 summary

This chapter briefly discussed a new generative approach to LLR calibration. A 1-
dimensional Normalizing Flow (NF), based on compositions of mixtures of normal CDFs
and logit transformations, is used to transform the densities of the non-calibrated scores
into Gaussian densities of calibrated LLR given by Proposition 1. However, in its current
implementation, this flow-based calibration is limited due to some numerical issues and
needs to be improved in the future.

It would be natural to extend this calibration to ILRL for multiclass cases. However, even
if the invertibility constraint of 1-dimensional NF is enough to ensure—in the two classes
case—that the calibration is pure, this is not the case anymore in the multiclass case. The
application of flow-based calibration to ILRL remains therefore an open question.

Actually, NF could be used differently for calibrating LLRs. Here, we proposed to train a
single NF model for the two classes. However, two models could be trained instead, one for
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each class. No matter the shape of the base distributions, the role is here to fit each class-
conditional density. The likelihood of a score for each class can still be computed through
the change of variable formula. We hope to explore such an approach to calibration in the
future. The reason why we preferred to first study the approach presented in this chapter
is that it is conceptually the same approach as the discriminant analysis at the core of this
thesis: it is the discriminant analysis with a residual dimension of zero.
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C O N C L U S I O N & D I S C U S S I O N

9.1 summary and findings

Starting from the idea of attribute privacy, i. e. the protection of a personal attribute in some
data, this thesis addressed two main questions: how to properly represent the attribute-
related information in an observation, and how to manipulate this information for privacy
purposes?

Being restricted to attributes taking one value over a finite set of values, the knowledge of
an attacker about the attribute is represented by a discrete probability distribution. Indeed,
in the Bayesian interpretation of probability, a probability distribution represents a personal
knowledge in presence of uncertainty. The Bayes’ rule is the paradigm of information
acquisition and updates a prior belief—i. e. the knowledge of the attacker before observing
the data—into a posterior belief—i. e. the knowledge of the attacker considering all the
available information, including the observed data— using the likelihood function.

This thesis proposed to represent the attribute-related information contained in the
data—i. e. the evidence— by a likelihood function.

A likelihood function lives in a finite-dimensional vector space and since it is scale-
invariant, it can be treated as compositional data. Thanks to the Aitchison geometry of
the simplex, the probability distributions and the likelihood functions can be expressed
in a Euclidean vector space where the Bayes’ rule is a sum between the prior probability
distribution and the likelihood function. Within this space and with the coordinate repre-
sentation given by the Isometric-Log-Ratio (ILR) approach, the likelihood function is called
Isometric-Log-Ratio-Likelihood (ILRL).

This thesis proposed to treat likelihood functions as compositional data and to use the
ILRL as the multiple hypotheses and multidimensional extension of the Log-Likelihood-
Ratio (LLR).

The LLR is also known in Bayesian updating as the weight-of-evidence. It has been widely
used in forensic science and more generally in any Bayesian updating process with only
two competing hypotheses. It expresses how the data is supporting one hypothesis against
another and how the prior belief of the observer is changed into the posterior belief. The
absolute value of the LLR is known as the strength-of-evidence and informs about the distance
between the posterior and the prior. This can be seen as a measure of information disclosed
by an observation. The multiple hypotheses extension of this concept is naturally given by
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the Aitchison norm of the likelihood function. This notion of information is called evidence
information.

For perfect privacy—the application of Claude Shannon’s definition of perfect secrecy to
privacy—the posterior belief of the attacker must remain equal to the prior belief. Hence,
the evidence information must be equal to zero which corresponds to a zero ILRL.

Perfect privacy is reached when the ILRL is zero for all observations: this is zero-evidence.

For the information to be well represented, the likelihood functions have to be calibrated.
The notion of calibration is usually applied to probabilities but this thesis has been focused
on the calibration of likelihood functions. The idempotence property of the ILRL ensures
that all the sensitive information in the data is contained in the likelihood function. This
ensures that the likelihood function is calibrated and leads to a constraint on the distribu-
tions of the ILRLs. This property has been known for LLR for decades but has been here
extended to the ILRL for multiple hypotheses and multiclass applications.

This thesis showed that the idempotence property, known for calibrated LLRs, holds
naturally for ILRLs thanks to the compositional nature of the likelihood functions.

As with the LLRs, the idempotence property of ILRLs leads to a constraint on their
distributions. When, for one hypothesis or class, the ILRL is normally distributed, the
ILRL is also normally distributed for each of the other classes with the same covariance
matrix. The means are defined by the covariance matrix such that the latter is the
only parameter of these distributions and can be expressed in terms of the separability
between each Gaussian density.

Once it has been stated that the information related to an attribute can be represented by
a likelihood function in the form of a calibrated ILRL respecting the idempotence property
constaint, this thesis has been focused on how to model the data in order to manipulate
these quantities and, consequently, to manipulate the information in the data. For this
purpose:

A new approach to discriminant analysis has been proposed. This is based on a gener-
ative model that models the data by mapping—in an invertible manner—the input vec-
tors into a base space where the discriminant components are the likelihood function
in the form of a calibrated ILRL. This approach is called Compositional Discriminant
Analysis (CDA) since it benefits from the Euclidean vector space structure—given by
the Aitchison geometry of the simplex—to express the likelihood function.
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For privacy, since the mapping is invertible, the samples can be mapped back into the
original feature space after setting the ILRL in the base space to zero which is consistent
with the perfect privacy definition.

The CDA can be used for privacy by setting the estimated ILRLs to zero.

This has been tested for the concealment of the sex of the speaker in DNN-based speaker
embeddings resulting in speaker representations that provides no evidence about the
speaker’s sex.

This transformation of speaker embeddings—combined with an affine transformation
of the pitch trajectory—can be used in an analysis/synthesis pipeline for voice con-
version for the concealment of the speaker’s sex. The experiments based on automatic
recognitions and on listening tests shows the ability of the approach to significantly
reduce the sex-related information in the speech.

However, privacy is not the only possible application of this discriminant analysis. This
can be used for any problem where the accurate modeling and/or manipulation of the
information contained in the data is desirable. Many pattern recognition problems are con-
cerned only with the discrimination power at the expense of the quality of the information
representation i. e. the calibration. Even if the approach proposed in this thesis may have a
comparatively low discrimination power, its focus on calibration and information quality
makes it a good candidate for applications where humans have to objectively interpret and
explain the model.

9.2 discussion

In contrast to the randomized mechanisms that have a theoretical protection guarantee
formalized by the differential privacy framework and its variations, the protection given
by the discriminant analysis-based approach presented in this thesis must be assessed
empirically. Indeed, the protection capacity of the approach depends on the underlying
ability of the generative model to model the data. However, our approach significantly
differs from randomized mechanisms. For some kinds of complex data like speech, it is
not obvious how and where to incorporate noise to alter only one attribute1. Hence, we
focused instead on the accurate disentanglement of the attribute-related information in
embeddings.

The thesis proposed to express the information contained in the data by a likelihood
function. However, the information expressed by the likelihood function should rather be

1 A recent work [144] explored the use of differential private feature extractors in an analysis/synthesis pipeline
for speaker anonymization purposes.
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seen as the information extracted by the learned probabilistic model. This has been ignored
in this thesis on the implicit assumption that the Normalizing Flow (NF) approach we used
is sufficient to model the data properly.

Another limitation of the thesis is that it is restricted to attributes with a finite and
relatively low number of possible values. The number of dimensions of the space of like-
lihood functions linearly increases with the number of possible values the attribute can
take. Therefore, this number has to remain sensibly lower than the dimensionality of the
data. Moreover, if the attribute of interest is continuous like many natural quantities like
for instance, a height, a distance, an age, and so on, the likelihood function may live in an
infinite dimensional space which is technically and conceptually challenging for traditional
machine learning approaches.

Despite the above points, we consider that this thesis opens several research directions
and opportunities:

• Representation learning [13] is the field of extracting from the data meaningful vec-
tors of features, sometimes called embeddings, containing useful information for a
downstream task like classification. To some extent, we believe that the idea of learn-
ing a representation in the form of a calibrated likelihood function2 as presented in
this thesis could be an interesting research direction for the field of representation
learning. Indeed, likelihoods and probabilities have a statistical meaning and, when
they are calibrated, are understandable by humans in contrast to many modern ma-
chine learning models that suffer from a lack of explainability of their outputs.

• Calibration methods for multiclass applications have been ignoring the compositional
nature of probability distributions and likelihood functions. In this thesis, the idempo-
tence property of multiple hypotheses likelihood functions—that naturally appears
thanks to the Aitchison geometry of the simplex—has been studied and used for the
design of a discrimination analysis that produces well-calibrated likelihood functions.
We believe that, in the future, these results could help in the design of new calibration
methods for multiclass applications.

• Calibrated probabilities and likelihoods are crucial for rational decision making and
we have seen in this thesis how the Aitchison geometry of the simplex helps in treat-
ing them. However, costs are just as much crucial but have been ignored in this thesis
since we were concerned only with the extraction and the modeling of the informa-
tion in the data rather than the decision stage. Exploring if the Aitchison geometry of

2 This idea of representing the information of interest in the form of a likelihood function has already been
encountered. In [25], meta-embeddings as a probabilistic generalization of embeddings have been proposed.
Meta-embeddings are likelihood functions for a hidden variable of interest. However, the authors were con-
cerned with a continuous speaker variable in the context of ASV in contrast to an attribute with a finite number
of possible values. In their case—depending on how the variable is modeled—the likelihood function may
live in a high, or even infinite dimensional space making it computationally challenging. To be practical, the
infinite family of meta-embeddings has to be restricted. In our case, the variable of interest is not hidden and
the likelihood function can be represented in a finite-dimensional vector space. This can therefore be used
with standard supervised machine learning approaches designed so that the likelihood function is a part of
the learned representation.



9.2 discussion 111

the simplex can help in the treatment of the costs is also a research direction we wish
to explore in the future.

• While this thesis has been limited to supervised learning of information represen-
tations, unsupervised and semi-supervised training of the normalizing flow-based
mapping between the data and the space of likelihood functions and residuals could
be explored. Indeed, supervised training requires the data to be labeled while labels
are not available in many applications.

• The use of the proposed discriminant analysis for attribute-privacy has been tested on
real speech data only for the concealment of the speaker’s sex. In the future, we wish
to test this approach for the concealment of other attributes like the native language
or the health state for example.

• Finally, we are interested in studying Bayes Hilbert spaces [157] which are general-
izing the Aitchison geometry of the simplex to continuous probability distributions
and continuous likelihood functions. This has been out of the scope of this thesis, but
we wish to explore whether it can help to go beyond discrete attributes.
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A P P E N D I C E S

10.1 some additional remarks about the calibration-discrimination de-
composition

The concept of calibration has been introduced for probabilistic forecasts. In [43], Morris
H. DeGroot showed how the average PSR can be decomposed into a discrimination and
a calibration term. The concept of calibration and the decomposition of the cross-entropy
have been then formalized in the context of pattern recognition like for instance in Niko
Brümmer’s [19, 22] and Daniel Ramos’ [135, 136] works. This has already been discussed
in Section 2.4.2.

In order to help the unfamiliar reader in understanding the connection between the
concept of calibration in probabilistic forecasting and in pattern recognition, this appendix
gives additional details.

Once it has been observed whether it has rained or not, the forecaster’s probabilities
can be compared with the actual outcomes using PSR. In [43], the forecaster is allowed
to choose a probability p within a finite set of allowable values. In this way, the relative
frequency f(p) of rainy days on which the probability p has been assigned is defined (this
is like considering bins as discussed in Section 2.3). We here reformulate—in terms of the
logarithmic scoring rule—what Morris H. DeGroot wrote with the Brier score in Section 4

of his paper [43].
Among those days on which the forecaster’s probability of rain is p, the score will be

− logp with relative frequency f(p) and will be − log(1− p) with relative frequency 1−
f(p). Let v(p) be the relative frequency that the forecaster’s probability is p for a day. The
averaged scoring rule can be written as:∑

p

v(p) [−f(p) (logp) − (1− f(p)) log(1− p)]

=
∑
p

v(p) [−f(p) log f(p) − (1− f(p)) log(1− f(p))]

+
∑
p

v(p)

[
f(p) log

f(p)

p
+ (1− f(p)) log

1− f(p)

1− p

]
=
∑
p

v(p)H(f(p)) +
∑
p

v(p)DKL(f(p),p).

(102)

The averaged Kullback-Leibler divergence (DKL) term is the calibration loss. It measures
how far the probabilities p are from f(p), i. e. how far the bins’ height is from f(p) = p in
Figure 3. The other term, the averaged entropy of f(p), is the discrimination or refinement
loss. Here, f(p) plays the role of the reference probability distribution. In the context of

113
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pattern recognition, the set of available values for p is not restricted to a finite discrete set.
The set of possible values is continuous such that f(p) can not be computed. The reference
probability distribution has to be chosen differently: this is where PAVA steps in.

Let’s summarise the nuances between the formulation just above and the formulation in
the context of binary classification as discussed in Section 2.4.2. In both cases, an Empirical
Cross-Entropy (ECE) is computed for assessing how good the set of probabilities is. v(p)
corresponds to P(e) in Equation 18 and f(p) corresponds to reference probability P(Hi | e).
In DeGroot’s formulation, the decomposition appears because f(p) can be computed and
corresponds to the reference calibrated probabilities. In the pattern recognition formulation
like in [136] and in Section 2.4.2, P(e) and P(Hi | e) are combined through the Bayes’ rule
resulting in the prior probability P(Hi) and the likelihood P(e | Hi). The latter is approxi-
mated by 1

|Ei|
where |Ei| is the number of observations belonging to class i. The reference

probability P(Hi | e) does not appear anymore in this formulation of the ECE (Equations 19

and 20). The probabilities q are then chosen to be the reference probabilities that minimize
the ECE without changing the discrimination ability. These reference probabilities are given
by the Pool Adjacent Violators Algorithm (PAVA).
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10.2 general formula for the ilr components

The set {e(i) ∈ SN, i = 1, . . . N − 1} is the Aitchison orthonormal basis obtained by the
Gram-Schmidt procedure [56] where for k = 1, . . . N− 1:

e(k) = C

exp


√

1

k(k+ 1)
, . . .

√
1

k(k+ 1)︸ ︷︷ ︸
k elements

,−

√
k

k+ 1
, 0, . . . 0


 (103)

forms an Aitchison orthonormal basis on the (N− 1)-simplex SN [56].
The isometric log-ratio transformation (ILR) of a vector p ∈ SN is defined as p̃ = ilr(p) =[
〈p,e(1)〉a, . . . 〈p,e(N−1)〉a

]
. This is an isometric isomorphism between SN and RN−1. The

kth component of the ILR image of the vector p is given by the following formula:

p̃k = 〈p,e(k)〉a =
1√

k(k+ 1)
log


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(pk+1)k

 (104)

Proof.

〈p,e(k)〉a =
1

2N

N∑
i=1

N∑
j=1

log
pi
pj

log
e
(k)
i

e
(k)
j

(application of the inner product),

=
1

2N

N∑
i=1

(
k∑
j=1

log
pi
pj

log
e
(k)
i

exp
(√

1
k(k+1)

) + log
pi
pk+1

log
e
(k)
i

exp
(
−
√

k
k+1

)
+

N∑
j=k+2

log
pi
pj

log
e
(k)
i

1

)
,

=
1

2N

(
k∑
i=1

(
k∑
j=1

log
pi
pj

log 1+ log
pi
pk+1

log
exp

(√
1

k(k+1)

)
exp

(
−
√

k
k+1

)
+

N∑
j=k+2

log
pi
pj

log exp
(√ 1

k(k+ 1)

))
+

k∑
j=1

log
pk+1
pj

log
exp

(
−
√

k
k+1

)
exp

(√
1

k(k+1)

)
+ log 1 log 1+

N∑
j=k+2

log
pk+1
pj

log exp

(
−

√
k

k+ 1

)

+

N∑
i=k+2

(
k∑
j=1

log
pi
pj

log
1

exp
(√

1
k(k+1)

) + log
pi
pk+1

log
1

exp
(
−
√

k
k+1

)
+

N∑
j=k+2

log
pi
pj

log 1

))
,



116 appendices

(105)

〈p,e(k)〉a =
1
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10.3 three hypothesis maximum probability decision regions on the

aitchison simplex

In this section, we will see how the maximum probability decision boundaries are derived.
Let’s consider the set of three possible hypotheses {H1,H2,H3}, the vector of probabilities
over the set of hypotheses P = [p1,p2,p3] and its isometric log-ratio transformation:

P̃ =

[
1√
2

log
p1
p2

,
1√
6

log
p1p2

p23

]
= [p̃1, p̃2] . (107)

Decision region for the first hypothesis

The probability for the hypothesis H1 is the maximum one if:

(p1 > p2)∧ (p1 > p3)

⇐⇒
(

logp1 > logp2

)
∧

((
log (p1p2) > log (p2p2)

)
∧
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logp23 < logp21
))

,
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log
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)
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)
∧
(
− logp23 > − logp21

))
,

⇐⇒
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)
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(
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p1p2
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> log

p2
p1

)
,

⇐⇒
(
p̃1 > 0

)
∧

(
p̃2 > −

1√
3
p̃1

)
.

(108)

Figure 38a shows in red the region where the proposition p̃1 > 0 is true and in orange the
region where p̃2 > − 1√

3
p̃1 is true. The intersection, marked out by the dashed blue lines,

is the maximum probability decision region for hypothesis H1.
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Decision region for the second hypothesis

The probability for the hypothesis H2 is the maximum one if:

(p2 > p1)∧ (p2 > p3)

⇐⇒
(

logp2 > logp1

)
∧

((
log (p1p2) > log (p1p1)

)
∧
(
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))

,
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)
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)
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3
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)
.
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Figure 38b shows in red the region where the proposition p̃1 < 0 is true and in orange the
region where p̃2 > 1√

3
p̃1 is true. The intersection, marked out by the dashed blue lines, is

the maximum probability decision region for hypothesis H2.

Decision region for the third hypothesis

The probability for the hypothesis H3 is the maximum one if:

(p3 > p1)∧ (p3 > p2)

⇐⇒
(
− logp23 < − logp21

)
∧

(
− logp23 < − logp22

)
,
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)
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1√
3
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)
.

(110)

Figure 38c shows in red the region where the proposition p̃2 < − 1√
3
p̃1 is true and in

orange the region where p̃2 < 1√
3
p̃1 is true. The intersection, marked out by the dashed

blue lines, is the maximum probability decision region for hypothesis H3.
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p̃2

p̃1 > 0
p̃2 > − 1√

3
p̃1

(a) Maximum probability decision region for hypothesis H1.

p̃1

p̃2

p̃1 < 0
p̃2 >

1√
3
p̃1

(b) Maximum probability decision region for hypothesis H2.

p̃1

p̃2

p̃2 < − 1√
3
p̃1

p̃2 <
1√
3
p̃1

(c) Maximum probability decision region for hypothesis H3.

Figure 38: Maximum probability decision regions in a three hypotheses case.
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10.4 maximum likelihood estimator of µ

In this section, we derive the maximum likelihood estimator presented in Equation 76. The
log-likelihood of a batch BZ = {(z(1),C(1)), . . . (z(|BZ|),C(|BZ|))} in the base space is:

log f(BZ | µ)
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Setting the first derivative to zero:

∂ log f(BZ | µ)

∂µ
= 0 ⇐⇒ −

|BZ|

2µ
−

|BZ|

4
+

1

4µ2

∑
z∈BZ

z21 = 0,

⇐⇒ |BZ|µ
2 + 2 |BZ|µ−

∑
z∈BZ

z21 = 0,

⇐⇒ µ = −1±
√√√√1+ 1

|BZ|

∑
z∈BZ

z21.

(112)

Since µ is positive

∂ log f(BZ | µ)

∂µ
= 0 ⇐⇒ µ = −1+

√√√√1+ 1

|BZ|

∑
z∈BZ

z21. (113)
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This extremum is a maximum if the second derivative of the log-likelihood function at this
point is negative:

∂2 log f(BZ | µ)

∂µ2
< 0 ⇐⇒ |BZ|

2µ2
−

1
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∑
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√√√√1+ 1

|BZ|

∑
z∈BZ
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(114)

which is true since x+ 1−
√
1+ x > 0 for x > 0. Therefore:

µ̂MLE(BZ) = −1+

√√√√1+ 1

|BZ|

∑
z∈BZ

z21. (115)
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10.5 voice similarity matrices

In the context of the VoicePrivacy Challenge [154], we proposed in [118, 121] the use of
voice similarity matrices to visualize potential differences in protection performance be-
tween speakers. In addition, this work proposed two summarizing metrics to assess the
global de-identification and voice distinctiveness preservation of a protection system. In this
section, we review some basic elements of these publications.

De-identification and voice distinctiveness preservation

This work has been done in the context of the VoicePrivacy Challenge where pseudonymiza-
tion is the idea to use a voice conversion system in order to protect the identity of the
speakers while keeping the linguistic content unchanged. Both de-identification and voice-
distinctiveness are desirable criteria. De-identification [10, 79, 80] refers here to the conceal-
ment of the speaker’s identity so that it is not possible to recover who is speaking in pro-
tected speech utterances. This term is also referred to as voice-disguise [74, 164] or identity
masking [133]. However, it is likely that the full concealment of identity is impossible in
practice. One reason is that identity information can not be explicitly disentangled from
other speech attributes that must be preserved like the speech content. Accordingly, de-
identification must be viewed as a process that increases the uncertainty in the linkability
between a speech utterance and the corresponding speaker identity.

Depending upon the application, it can be desirable that protected voices remain con-
sistent and distinguishable, i. e. in the protected domain, segments uttered by the same
speaker are mutually linkable but distinct from protected segments uttered by another
speaker. This requirement is named voice distinctiveness preservation.

Figure 39 illustrates a scenario in which the voice distinctiveness preservation require-
ment is paramount. Consider three speakers who communicate using a teleconferencing
system and wish to not disclose their identities. De-identification systems can be used to
conceal identity but might produce three almost identical or indistinguishable voices as
illustrated by the upper-right situation in Figure 39. This may result in a confusing and un-
natural conversation. Voice distinctiveness preservation allows for a comfortable, natural
conversation by ensuring that the three protected voices remain distinguishable as per the
bottom-right situation in Figure 39. In this case, a pseudo-voice is assigned to each speaker.
It is distinct from the others and from the original speaker’s voice.

Voice similarity matrix

An element of a voice similarity matrix gives a measure of similarity between two speakers.
The similarity is computed with LLRs obtained from perfectly calibrated scores1 given by
the one-by-one comparisons of the speech segments using a biometric classifier. Let tar
refer to the target hypothesis and let nontar refer to the non-target hypothesis (see Section

1 Using PAVA-based calibration.
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De-Ide
ntifi

catio
n

De-Identification& Voice Distinctiveness
Preservation

Figure 39: Illustration of the de-identification alone and together with the voice distinctiveness preser-
vation. Using both results in the concealment of the speakers’ identity while avoiding
confusion between the protected voices.

2.2). To be more precise, a voice similarity matrix M is defined as M = {Sim(i, j)}16i,j6N
where N is the number of speakers in the set to protect and the similarity Sim(i, j) is the
geometric mean of the posteriors, assuming a uniform prior P(tar) = P(nontar) = 0.5,
and is computed as:

Sim(i, j) =
∏
l∈Li,j

(
σ (l)

1

|Li,j|

)
, (116)

where σ(l) = 1
1+exp(−l) and Li,j is the set of LLRs from the biometric comparisons of

all segments from speaker i with all segments from speaker j. When computing the sim-
ilarity of a speaker with itself (self-similarity), scores from the comparison of identical
segments are removed from the mean in order to avoid overestimated similarities. When
computing the voice similarity matrix within a set, it might be surprising to not have all self-
similarities equal to a maximum value one like in a standard confusion matrix. However,
a self-similarity has to be seen as the reflection of the ASV’s behavior on a speaker rather
than a measure compatible with a distance between a speaker and itself: if a speaker has
a small self-similarity, it suggests that she or he behaves like a goat facing the ASV system
[49]. Thus, a diagonal value is related to the strength of the intra-speaker variability [6].
Actually, applying − log2 to Equation 116 gives:

− log2(Sim(i, j)) = −
1∣∣Li,j
∣∣ ∑
l∈Li,j

log2 σ (l) . (117)

One may notice the resemblance with the Empirical Cross-Entropy (ECE) of Equation 19.
Despite that, − log2 is not applied to the similarities in order to keep the values bounded
between zero and one which facilitates the visualization of the matrices.
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Figure 40: Three artificial examples of similarity matrices for pseudonymization assessment. For
each case (a), (b), and (c), the upper-left matrix is MOO, the upper-right and lower-left
are MOP (actually the lower-left matrix is MPO = M>OP but as the biometric classifier
is symmetric, the similarity is symmetric, and MPO = MOP) whereas the lower-right is
MPP.

Applying a pseudonymization system on a set of speech utterances, we call original set
(O), results in a protected set (P). Three different voice similarity matrices can therefore be
computed:

• MOO which returns the speakers’ similarities within the original set of speech utter-
ances,

• MOP which returns the speakers’ similarities between the original and protected sets,

• MPP which returns the speakers’ similarities within the protected set.

The next section presents how these matrices are used to measure the level of de-
identification and voice distinctiveness preservation of a pseudonymization system.

Assessing pseudonymization with the voice similarity matrices

In a voice similarity matrix, the emergence of the diagonal elements reflects how well an
ASV system behaves when the two inputs of the biometric classifier may or may not be
protected. Especially, in the case of MOP, it shows if and which speaker could be identified
from its protected segments. On the other hand, the diagonal elements of MPP show if
the speakers have low intra-speaker variability in the protected space, and the off-diagonal
elements show similarities between the different pseudo-voices. Therefore, the presence
of a diagonal in MPP suggests that each speaker has, in the protected domain, a consis-
tent pseudo-voice that does not confuse with the others. In Figure 40, cases (b) and (c)
are examples of good de-identification (good protection) as the diagonal disappears in
MOP while case (a) is an example of poor de-identification. Cases (a) and (c) are examples
where the voice distinctiveness is preserved as the diagonal remains inMPP. Hence, case (c)
respects two of the pseudonymization’s requirements: both de-identification and voice dis-
tinctiveness preservation are fulfilled. Thus, these pseudonymization’s requirements can be
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measured by comparing the dominance of the diagonal between the matrices. The diagonal’s
dominance of a matrix M is defined as:

Ddiag(M)=

∣∣∣∣∣∣∣∣∣∣
 ∑
16i6N

Sim(i, i)
N

−


∑

16j6N
16k6N
j6=k

Sim(j,k)
N(N− 1)


∣∣∣∣∣∣∣∣∣∣
. (118)

In this way, the diagonal’s dominance is equal to zero for a uniform matrix and one for
the identity matrix, and for a matrix where all diagonal elements are zero and off-diagonal
elements are one. Indeed, we consider that a scenario where a small group of segments
is gathered as being from the same speaker if corresponding target trials result in high
scores and non-target trials result in low scores and the scenario where a small group of
segments is gathered as being from the same speaker if the target trials result in low scores
and non-target trials all result in high scores are equivalent to the same risk of identification.
However, if this property is appropriate for MOP it might be an inconvenience for MPP if a
privacy safeguard results in a MPP where diagonal values are low and off-diagonal values
are high and close together.

The de-identification DeID measures how much the diagonal disappears from MOO

to MOP as illustrated by the blue arrows in Figure 40 and is computed, assuming that
Ddiag(MOO) 6= 0, as follows:

DeID = 1−
Ddiag(MOP)

Ddiag(MOO)
. (119)

DeID = 100% is the perfect de-identification while DeID = 0% corresponds to a system
that achieves no de-identification or at least that the resulting privacy is not better than
the initial one. Indeed, the initial privacy corresponds here to the limited capacity of an
ASV system to discriminate the original voices. To help illustrate this, we consider a pair
of twins who have exactly the same voice such that the ASV system can not distinguish
between them. In this closed case, privacy is already high. Therefore, we are here only
interested in a relative measure of privacy improvement rather than an absolute level of
privacy.

The voice distinctiveness preservation is how much the diagonal remains from MOO to
MPP as illustrated by the green arrows in Figure 40. Because a privacy safeguard can result
in either a loss or an increase of voice distinctiveness, the voice distinctiveness preservation
is computed as a gain of diagonal dominance:

GVD = 10 log10

(
Ddiag(MPP)

Ddiag(MOO)

)
, (120)
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such that a gain equal to zero means that the voice distinctiveness remains the same on
average, and a gain above or below zero corresponds respectively to an increase or a loss
of the global voice distinctiveness.

As we assumed that a privacy safeguard will never result in less privacy, a percentage
of de-identification in Equation 119 is more suitable than a gain like GVD

2. Both are global
metrics that summarize the performance over the set of speakers. The next section moti-
vates how the matrices can be used for assessing the system speaker by speaker.

A zoo tour: an investigation at the speaker level

An ASV system does not perform equally on all speakers. To better interpret the ASV be-
havior across different speakers, George Doddington proposed to categorize speakers into
four different “animals” [49]. This idea has been extended to other categories and the zoo
plot has been proposed to visualize the performance of a biometric system across different
users [51]. This section deals with the use of a voice similarity matrix to visualize, like in
the zoo plots, the performance of a system at the speaker level. Figure 41 shows a few
examples of voice similarity matrix with the corresponding zoo plot below3. The latter
shows speakers in an averaged target/non-target score plane. In these examples, one can
notice that different regions of the plane are covered. For the matrix in column (a), there
are mostly two kinds of resulting pseudo-voices: those which do not confuse with others
but have a self-similarity not so high (1, 2, 7, 8, 11, 12, and 14) and those which confuse
with some others but have a higher self-similarity (3, 4, 5, 6, 9, 10, 13, and 15). These two
kinds correspond to the two clusters in the zoo plot (bottom figure) in column (a) making
them close to goats and wolves respectively. Column (b) shows an example where the ASV

performs almost equally well on all speakers which corresponds to high averaged target
and low averaged non-target scores (sheep). Lastly, column (c) shows an example of a good
privacy preservation, corresponding to poor ASV performance with an OP setting. Speak-
ers are thus placed in the zoo plot with zero scores making them close to worms. These
examples show how the voice similarity matrices can be used to visualize heterogeneous
performance across set of speakers.

Going further

Equation 118 has been written in a way to summarize the appearance of a matrix, especially
for its diagonal. It does not have the information theoretical interpretation of cross-entropy-
based measures like the Cllr. Actually, a de-identification and a voice distinctiveness preser-
vation measure could have been based on empirical cross-entropy. A brief comparison of
these formulations and the use of the voice similarity matrices in a practical privacy system
assessment can be found in our paper [121]. For more examples of the use of these matrices

2 In electrical engineering, telecommunication and acoustics, it is common to express a gain in decibel.
3 For more details on which data these matrices are computed refer to our original paper [121]



10.5 voice similarity matrices 127

0 0.2 0.4 0.6 0.8 1

Sim(i, j)

(a)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0 2 4 6

−5

−4

−3

−2

−1

0

1

2

3
4

5
6

7

8

9
10

11

12

13

14

15

Averaged target score

A
ve
ra
ge
d
n
on

-t
ar
ge
t
sc
or
e

(b)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0 2 4 6

−5

−4

−3

−2

−1

0

1

2

3

4
5

6

7

8

9
10

11

12

13

14

15

Averaged target score

A
ve
ra
ge
d
n
on

-t
ar
ge
t
sc
or
e

(c)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

0 2 4 6

−5

−4

−3

−2

−1

0

Averaged target score

A
ve
ra
ge
d
n
on

-t
ar
ge
t
sc
or
e

Figure 41: Examples of Voice Similarity Matrix with the corresponding zoo plot [51].

for assessing pseudonymization systems, the reader can also refer to the VoicePrivacy 2020

Challenge’s results and findings [156].
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10.6 proof of proposition 2

In this section, we provide a proof for Proposition 2 given in Chapter 6.

Proof. Let’s recall some notations. Let w(E) = [P(E | Hi)]16i6N be the likelihood vector of
E and w̃(E) = ilr (w(E)) = l its ILR transformation.

Equation 45 gives a general expression for the ILR components of a likelihood vector:

li = w̃(E)i =
1√

i (i+ 1)
log


i∏
j=1

w(E)j

(w(E)i+1)i

 (121)

where li is the ith component of l = w̃(E). Using the idempotence property we can replace
E by l:

li =
1√

i (i+ 1)
log


i∏
j=1

w(l)j

(w(l)i+1)i

 (122)

After rewriting this expression and setting ai =
√
i+1
i ei where ei is the ith vector of

the standard canonical basis for RN−1 i.e. with zero everywhere except with 1 at the ith
position, we get:

w(l)i+1 = exp
(
−aTi l

)
i

√√√√ i∏
j=1

w(l)j. (123)

We thus have a recursive way to get any w(l)i from w(l)1. Expressing them in terms of
probability density functions:

w(l) = [P(l | Hi)]16i6N = [fHi(l)]16i6N , (124)

and since l ∼ N (µ1 | Σ), we can use 123 to recursively compute the conditional densities
fHi(l) for i ∈ J2,NK from:

fH1(l) =
1

(2π)
N−1
2 |Σ|

1
2

exp
(
−
1

2
(l− µ1)

TΣ−1(l− µ1)

)
. (125)
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The main idea of the proof is to show—by induction and using the recursive relation of
Expression 123—that:

for all integer N > 2 we have:

∀i ∈ J1,N− 1K,

fHi+1(l) =
1

(2π)
N−1
2 |Σ|

1
2

exp
(
−
1

2
(l− µi+1)

TΣ−1(l− µi+1)

)
,

µi+1 =
1

i

i∑
j=1

µj −Σai,

µTi+1Σ
−1µi+1 = µ

T
1Σ

−1µ1.

(126)

The base case:

From Equation 123 and Equation 125 we get:

fH2(l) = exp
(
−aT1 l

)
fH1(l),

=
1

(2π)
N−1
2 |Σ|

1
2

exp
(
−
1

2
(l− µ1)

TΣ−1(l− µ1) −a
T
1 l

)
,

=
1

(2π)
N−1
2 |Σ|

1
2

exp
(
−
1

2
lTΣ−1l+ lTΣ−1 (µ1 −Σa1) −

1

2
µT1Σ

−1µ1

)
,

=
1

(2π)
N−1
2 |Σ|

1
2

exp
(
−
1

2
(l− µ2)

TΣ−1(l− µ2)

)
exp

(
1

2
µT2Σ

−1µ2 −
1

2
µT1Σ

−1µ1

)
,

(127)

where µ2 = µ1 −Σa1. Since fH2 is a probability density function, its integral is one:∫
l∈RN−1

fH2(l)dl = 1

⇐⇒ exp
(
1

2
µT2Σ

−1µ2 −
1

2
µT1Σ

−1µ1

)
= 1,

⇐⇒ µT2Σ
−1µ2 = µ

T
1Σ

−1µ1.

(128)

We just showed that l | H2 ∼ N (µ2,Σ) where µ2 = µ1 −Σa1 and µT2Σ
−1µ2 = µ

T
1Σ

−1µ1.
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The induction step:

Let’s assume that for an integer K we have:

∀i ∈ J1,K− 1K,

fHi+1(l) =
1

(2π)
N−1
2 |Σ|

1
2

exp
(
−
1

2
(l− µi+1)

TΣ−1(l− µi+1)

)

µi+1 =
1

i

i∑
j=1

µj −Σai,

µTi+1Σ
−1µi+1 = µ

T
1Σ

−1µ1.

(129)

Let’s show that this still holds for K+ 1. Using Equation 123 we can write:

fHK+1(l) = exp
(
−aTKl

)
K

√√√√ K∏
j=1

fHj(l),

= exp
(
−aTKl

) 1

(2π)
N−1
2 |Σ|

1
2

K

√√√√ K∏
j=1

exp
(
−
1

2
(l− µj)TΣ−1(l− µj)

)
,

=
1

(2π)
N−1
2 |Σ|

1
2

exp

−aTKl−
1

2K

K∑
j=1

(l− µj)
TΣ−1(l− µj)

 ,

=
1

(2π)
N−1
2 |Σ|

1
2

exp

−aTKl−
1

2K

K∑
j=1

(
lTΣ−1l+ µTj Σ

−1µj − 2µ
T
j Σ

−1l
) .

(130)

Since for all j ∈ J1,KK, µTj Σ
−1µj = µ

T
1Σ

−1µ1, we have:

fHK+1(l) =
1

(2π)
N−1
2 |Σ|

1
2

exp

−aTKl−
1

2
lTΣ−1l−

1

2
µT1Σ

−1µ1 +
1

K

 K∑
j=1

µj

T Σ−1l

 ,

=
1

(2π)
N−1
2 |Σ|

1
2

exp

−
1

2
lTΣ−1l−

1

2
µT1Σ

−1µ1 + l
TΣ−1

 1
K

 K∑
j=1

µj

−ΣaK

 .

(131)

Setting µK+1 = 1
K

K∑
j=1

µj −ΣaK we get:

fHK+1(l) =
1

(2π)
N−1
2 |Σ|

1
2

exp
(
−
1

2
(l− µK+1)

TΣ−1(l− µK+1)

)
× exp

(
1

2
µTK+1Σ

−1µK+1 −
1

2
µT1Σ

−1µ1

)
,

(132)
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Since fHK+1 is a probability density function, its integral is one, which leads to:

µTK+1Σ
−1µK+1 = µ

T
1Σ

−1µ1. (133)

Therefore, 129 holds also for K+ 1. We hence have proved by induction the expressions
126.

A general formula for the means:

We will here proof by induction the following expression for the derivation of the mean
vectors:

for all integer N > 2:

∀i ∈ J2,NK,

µi = µ1 −Σai−1 −

i−2∑
j=1

1

j+ 1
Σaj, where a0 = 0 the zero vector.

(134)

The base case is straightforward so we provide only the induction step. Let’s assume that
the expression is true for an integer K:

∀i ∈ J2,KK,

µi = µ1 −Σai−1 −

i−2∑
j=1

1

j+ 1
Σaj.

(135)

Let’s show that this holds also for K+ 1. From Expression 126 that we proofed above, we
know that:

µK+1 = −ΣaK +
1

K

K∑
j=1

µj, (136)

we replace µj according to Expression 135:

µK+1 = −ΣaK +
1

K

K∑
j=1

(
µ1 −Σaj−1 −

j−2∑
k=1

1

k+ 1
Σak

)
,

= µ1 −ΣaK −
1

K

K∑
j=2

Σaj−1 −
1

K

K∑
j=3

j−2∑
k=1

1

k+ 1
Σak,

= µ1 −ΣaK −
1

K

K−1∑
j=1

Σaj −
1

K

K−2∑
j=1

n− 1− j

j+ 1
Σaj,

= µ1 −ΣaK −
1

K
ΣaK−1 −

1

K

K−2∑
j=1

(
Σaj +

n− 1− j

j+ 1
Σaj

)
,

(137)



132 appendices

= µ1 −ΣaK −
1

K
ΣaK−1 −

K−2∑
j=1

1

j+ 1
Σaj,

= µ1 −ΣaK −

K−1∑
j=1

1

j+ 1
Σaj,

(138)

Hence,

∀i ∈ J2,K+ 1K,

µi = µ1 −Σai−1 −

i−2∑
j=1

1

j+ 1
Σaj,

(139)

The general expression 134 has therefore been proved by induction.

About matrices A and B

In Proposition 2, the mean vector µ1 is expressed in terms of the covariance matrix Σ and
two constant matrices A and B as follow:

µ1 = A
−1Bvec(Σ), (140)

where A ∈MN−1,N−1(R) and is defined as:

A = {αij}16i,j6N−1

αij =


2
√
i+1
i , if i = j
2√
j(j+1)

, if j < i

0, otherwise

(141)

and where B ∈MN−1,(N−1)2(R) is a block matrix:

B =
[
B(1) B(2) . . . B(N−1)

]
(142)

where B(b) ∈MN−1,N−1(R) is the bth block and is defined as:

B(b) = {β
(b)
ij }16i,j6N−1

β
(b)
ij =



b+1
b , if i = j = b

2
√

i+1
ib(b+1) , if (i = j)∧ (b < i)

1

jb
√

(j+1)(b+1)
, if (b < i)∧ (j < i)

0, otherwise

(143)
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In this paragraph, we show how these matrices are derived. The following system of equa-
tions, that comes from the expressions 126, can be written in a matrix form:

∀ i ∈ J1,N− 1K,

µTi+1Σ
−1µi+1 = µ

T
1Σ

−1µ1.
(144)

Using the general expression 134 for the means, the system of equations becomes:

∀i ∈ J1,N− 1K,

2aTi µ1 + 2µ
T
1Σ

−1
i−1∑
j=1

1

j+ 1
Σaj = a

T
i Σai + 2a

T
i

i−1∑
j=1

1

j+ 1
Σaj +

i−1∑
j=1

i−1∑
k=1

1

(j+ 1)(k+ 1)
aTj Σak,

(145)

Since xTΣy = vec(Σ)T vec(xyT ) and by setting θΣ = vec(Σ) we get:

∀i ∈ J1,N− 1K,2ai + 2 i−1∑
j=1

1

j+ 1
aj

T µ1
=

vec(aiaTi ) + 2
i−1∑
j=1

1

j+ 1
vec(aiaTj ) +

i−1∑
j=1

i−1∑
k=1

1

(j+ 1)(k+ 1)
vec(ajaTk)

T θΣ.

(146)

aia
T
j is a (N − 1) × (N − 1) matrix with zero everywhere except the element at the ith

row and jth column which is
√

(i+1)(j+1)
ij . Its vectorization is therefore the (N − 1)2-

dimensional vector with zero everywhere except the ((j− 1)(N− 1) + i)th element which

is
√

(i+1)(j+1)
ij . Let’s now rewrite this system in a matrix form:

Aµ1 = BθΣ, (147)

where A ∈MN−1,N−1(R), B ∈MN−1,(N−1)2(R). In 146, the vector on the left side of µ is
the ith row of the matrix A and the vector on the left side of θΣ is the ith row of B. This
is straightforward that A is triangular with diagonal elements 2

√
i+1
i for i ∈ J1,N− 1K.

Consequently, its determinant is non zero, and therefore A is invertible. The mean vector
µ1 can therefore be written in terms of the variances and covariances as follow:

µ1 = A
−1BθΣ = A−1Bvec(Σ). (148)
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10.7 proof that the base space’s first dimensions form the ilrl

This section shows that with the class-conditional densities in the base space as defined in
Equation 91, the first N− 1 dimensions of z ∈ Z form the ILRL.

Proof. Expressing Equation 90 in terms of the probability density functions for z, the ith
component of the ILRL vector is given by:

∀i ∈ J1,N− 1K, li(z) =
1√

i(i+ 1)
log


i∏
j=1

fCj(z)

fCi+1(z)
i



=
1√

i(i+ 1)
log


i∏
j=1

exp
(
−12

(
z−mj

)T
C−1

(
z−mj

))
exp

(
− i2 (z−mi+1)

T C−1 (z−mi+1)
)
 ,

(149)

where mi = mi(Σ) and C = C(Σ) are respectively the mean vector and the covariance
matrix as defined in what follows Equation 91,

li(z) =
1√

i(i+ 1)

 i∑
j=1

(
−
1

2

(
z−mj

)T
C−1

(
z−mj

))
+
i

2
(z−mi+1)

T C−1 (z−mi+1)

 ,

=
1√

i(i+ 1)

 i∑
j=1

(
mTj C

−1z−
1

2
mTj C

−1mj

)
+
i

2
mTi+1C

−1mi+1 − im
T
i+1C

−1z

 ,

=
1√

i(i+ 1)

 i∑
j=1

(
µTj Σ

−1z1:N−1 −
1

2
µTj Σ

−1µj

)
+
i

2
µTi+1Σ

−1µi+1 − iµ
T
i+1Σ

−1z1:N−1

 ,

(150)

where z1:N−1 = [z1, z2, . . . zN−1]
T is the vector of the first N− 1 components of z. Since

∀i ∈ J1,NK, µTi Σµi = µ
T
1Σµ1 (see Appendix 10.6), we have:

li(z) =
1√

i(i+ 1)

 i∑
j=1

(
µTj Σ

−1z1:N−1

)
− iµTi+1Σ

−1z1:N−1

 , (151)
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using Equation 92, we get:

li(z) =
1√

i(i+ 1)

(
i∑
j=1

(
A−1Bvec(Σ) −Σaj−1 −

j−2∑
k=1

1

k+ 1
Σak

)T
Σ−1z1:N−1

− i

(
A−1Bvec(Σ) −Σai −

i−1∑
k=1

1

k+ 1
Σak

)T
Σ−1z1:N−1

)
,

=
1√

i(i+ 1)

(
i∑
j=1

(
−aTj−1z1:N−1 −

j−2∑
k=1

1

k+ 1
aTkz1:N−1

)

+ i

i−1∑
k=1

(
1

k+ 1
aTkz1:N−1

)
+ iaTi z1:N−1

)
.

(152)

In the next paragraph, we will see that:

i∑
j=1

(
−aTj−1z1:N−1 −

j−2∑
k=1

1

k+ 1
aTkz1:N−1

)
+ i

i−1∑
k=1

(
1

k+ 1
aTkz1:N−1

)
= 0. (153)

We therefore have:

li(z) =
i√

i(i+ 1)
aTi z1:N−1,

=
i√

i(i+ 1)

√
i+ 1

i
eTi z1:N−1 = e

T
i z1:N−1,

= zi,

(154)

the ith component of the ILRL is therefore the ith component of z for all i ∈ J1,N− 1K.

Proof of Expression 153:

In the following, we will show by induction that Expression 153 is true for all i ∈ J1,N− 1K
which is equivalent to show that:

∀i ∈ J1,N− 1K,
i∑
j=1

(
−aj−1 −

j−2∑
k=1

1

k+ 1
ak

)
+ i

i−1∑
k=1

(
1

k+ 1
ak

)
= 0. (155)

The base case of the proof by induction is straightforward, thus we will focus on the
induction step. We assume that the expression is true for a i = n where n ∈N:

n∑
j=1

(
−aj−1 −

j−2∑
k=1

1

k+ 1
ak

)
+n

n−1∑
k=1

(
1

k+ 1
ak

)
= 0. (156)
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Let’s show this is still true for i = n+ 1:

n+1∑
j=1

(
−aj−1 −

j−2∑
k=1

1

k+ 1
ak

)
+ (n+ 1)

n∑
k=1

(
1

k+ 1
ak

)

=

n∑
j=1

(
−aj−1 −

j−2∑
k=1

1

k+ 1
ak

)
+n

n−1∑
k=1

(
1

k+ 1
ak

)

−an −

n−1∑
k=1

(
1

k+ 1
ak

)
+

n−1∑
k=1

(
1

k+ 1
ak

)
+
n+ 1

n+ 1
an

=

n∑
j=1

(
−aj−1 −

j−2∑
k=1

1

k+ 1
ak

)
+n

n−1∑
k=1

(
1

k+ 1
ak

)
= 0 according to Equation 156.

(157)
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10.8 interpolating between mnist’s numbers

Section 7.1.4 discussed how the Compositional Discriminant Analysis (CDA) can be used to
model MNIST’s digits. The Euclidean base space allows easy interpolation between digits.
This can be done with linear interpolation between the digits’ centroid. The interpolation
between the digit i and the digit j in the base space is given by:

zi,j(α) = αmi + (1−α)mj, (158)

where α ∈ [0, 1] and mi and mj are the learned digits’ centroid as defined in Section 7.1.1.
The image can then be constructed by mapping zi,j(α) into the feature space using the
learned diffeomorphism g: xi,j(α) = g(zi,j(α)). The feature vector is then unflattened to
produce the image. The following set of images shows interpolation between each pair of
digits for α = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}.

From 0 to 1:

From 0 to 2:

From 0 to 3:

From 0 to 4:

From 0 to 5:

From 0 to 6:

From 0 to 7:
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From 0 to 8:

From 0 to 9:

From 1 to 2:

From 1 to 3:

From 1 to 4:

From 1 to 5:

From 1 to 6:

From 1 to 7:

From 1 to 8:

From 1 to 9:

From 2 to 3:
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From 2 to 4:

From 2 to 5:

From 2 to 6:

From 2 to 7:

From 2 to 8:

From 2 to 9:

From 3 to 4:

From 3 to 5:

From 3 to 6:

From 3 to 7:
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From 3 to 8:

From 3 to 9:

From 4 to 5:

From 4 to 6:

From 4 to 7:

From 4 to 8:

From 4 to 9:

From 5 to 6:

From 5 to 7:

From 5 to 8:
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From 5 to 9:

From 6 to 7:

From 6 to 8:

From 6 to 9:

From 7 to 8:

From 7 to 9:

From 8 to 9:
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10.9 derivative of the flow-based calibration function

This section discusses the derivation of the flow-based calibration function’s derivative
required by the change of variable in Equation 101. The calibration function FFLOWCAL(· | θ)
as defined in Equation 99 is a composition of N logit transformed mixtures of normal CDFs.
Let pi be the output of the ith mixture of normal CDFs and li be the output of the ith logit.
In this way, we can write:

log
∣∣∣∣ ddxFFLOWCAL(x | θ)

∣∣∣∣ = N∑
i=1

(
log
(∣∣∣∣ dlidpi

∣∣∣∣ ∣∣∣∣ dpidli−1

∣∣∣∣)) , (159)

where l0 is simply the input x of the calibration mapping. Since li = logitpi:

dli
dpi

=
d

dpi
logitpi =

1

pi(1− pi)
, (160)

and since pi = FMCDF(li−1 |Mi,Σi,Wi) =
K∑
i=1

wiF(li−1 | µi,σi):

dpi
dli−1

=

K∑
i=1

wi
d

dli−1
F(li−1 | µi,σi)

=

K∑
i=1

wif(li−1 | µi,σi),

(161)

where f(li−1 | µi,σi) is the probability density function of the normal distribution with
mean µi and standard deviation σi.
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