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Abstract

The goal of this thesis is to explore and qualify the use of N -body quantum dynamics to
solve hard industrial problems and machine learning tasks. As a collaboration between
industrial and academic partners, this thesis explores the capabilities of a neutral atom

device in tackling real-world problems.
First, we look at combinatorial optimisation problems and showcase how neutral atoms can

naturally encode a famous combinatorial optimisation problem called the Maximum Independent
Set on Unit-Disk graphs. These problems appear in industrial challenges such as Smart-Charging
of electric vehicles. The goal is to understand why and how we can expect a quantum approach
to solve this problem more efficiently than classical method and our proposed algorithms
are tested on real hardware using a dataset from EDF, the French Electrical company. We
furthermore explore the use of 3D neutral atoms to tackle problems that are out of reach
of classical approximation methods. Finally, we try to improve our intuition on the types of
instances for which a quantum approach can(not) yield better results than classical methods.

In the second part of this thesis, we explore the use of quantum dynamics in the field
of machine learning. In addition of being a great chain of buzzwords, Quantum Machine
Learning (QML) has been increasingly investigated in the past years. In this part, we propose
and implement a quantum protocol for machine learning on datasets of graphs, and show
promising results regarding the complexity of the associated feature space. Finally, we explore
the expressivity of quantum machine learning models and showcase examples where classical
methods can efficiently approximate quantum machine learning models.
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Introduction

This thesis is the result of a collaboration between LIP6, a quantum information academic
group and Pasqal, an experimental physics spin-off company building quantum computers
made of arrays of neutral atoms. The aim of this collaboration is to conceive quantum

protocols that run on a neutral atom hardware device and gaining intuition on where we can
expect quantum computers to have an advantage over classical computers for practical and
industrial problems. To do so requires some understanding of complexity theory, the main tool
used in theoretical computer science, as well as a basic understanding of quantum mechanics
and the inner functioning of neutral atom devices. Ideally, computational complexity theory
provides us with an understanding of where we can anticipate quantum advantage, while a
solid grasp of neutral atom technology determines the range of experiments we can conduct on
the quantum processor. A crucial aim is to develop algorithms that are tailored to the device
to maximise its usefulness, and study the proposed quantum algorithms with the metrics of
computational complexity theory to compare them to their classical counterparts.

In Chapter 1, we detail the inner workings of a quantum processor made of neutral atoms.
We explain the reason why these devices were created in the first place and describe the typical
experimental setup. Then, we show how exciting atoms to specific states (called Rydberg states)
can be used to simulate many-body quantum dynamics, a useful tool to explore exotic phases
of matter that are out of reach for classical computers.

In Chapter 2, we translate two real-world problems related to the field of Smart-Charging
to instances that can be mapped to a neutral atom quantum processor. We then estimate the
quality of heuristic approaches in solving these NP-hard problems. Interestingly, the Maximum
Independent Set on unit-disk graphs (UD-MIS) fits very naturally to the experimental platform.
We therefore detail precisely how an implementation would work on the hardware and develop
methods to embed the problem optimally and on large datasets.

In Chapter 3, we take a step back from hardware implementation and look at UD-MIS
from the lens of computational complexity theory. More precisely, we unravel the complexity of
MIS by using insights from computational approximation theory and statistical physics. We
then build graph instances for which a phenomenon reminiscing Anderson localisation appears
during quantum annealing, that can explain why it should also be hard to solve the problem
quantumly. Furthermore, we develop an embedding scheme that allows us to embed more
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INTRODUCTION

general graphs than UD graphs, an exciting perspective to tackle more difficult graphs with
quantum schemes. Our embedding scheme has been realised experimentally using 3D arrays of
atoms in collaboration with a Korean academic group.

In the following chapters, we look at the growing field of quantum machine learning (QML).
After a gentle introduction to the field, we recall that Noisy Intermediate Scale Quantum devices
(NISQ) can be used as learning models. We therefore describe in Chapter 4 how a neutral
atom quantum processor can be used to create quantum feature maps for graph ML tasks. We
implement a new quantum evolution kernel and show interesting results on the complexity of
the resulting feature space.

In Chapter 5, we take a step back once again from hardware implementation on neutral
atoms and try to understand the expressive power of using NISQ devices as learning models.
In particular, we show that although some variational quantum circuits (VQC) can be hard
to simulate classically, it is possible to approximate the resulting quantum learning model by
using random Fourier features (RFF), a well-known tool used to approximate high-dimensional
kernels in classical ML. Understanding the regimes for which RFF is not effective helps to build
quantum learning models that are truly out of classical approximation schemes.

This thesis is based on the following papers:

• [DHJ+21] Dalyac, C., Henriet, L., Jeandel, E., Lechner, W., Perdrix, S., Porcheron, M.,
Veshchezerova, M. (2021). Qualifying quantum approaches for hard industrial optimization
problems. A case study in the field of smart-charging of electric vehicles. EPJ Quantum
Technology, 8(1), 12.

• [DHK+23] Dalyac C., Henry LP., Kim M., Ahn J., Henriet L. Exploring the impact of
graph locality for the resolution of MIS with neutral atom devices, In proceedings (2023)

• [ADL+23] Dalyac, C., Albrecht, B., Leclerc, L., Ortiz-Gutiérrez, L., Thabet, S., D’Arcangelo,
M., ... Henriet, L. (2023). Quantum feature maps for graph machine learning on a neutral
atom quantum processor. Physical Review A, 107(4), 042615.

• [LTD+22] Landman, J., Thabet, S., Dalyac, C., Mhiri, H., Kashefi, E. (2022). Classically
Approximating Variational Quantum Machine Learning with Random Fourier Features.
ICLR 2023

I had the opportunity to participate to two other papers that are not detailed in this thesis:

• [HTDH21] Henry, L. P., Thabet, S., Dalyac, C., Henriet, L. (2021). Quantum evolution
kernel: Machine learning on graphs with programmable arrays of qubits. Physical Review

2



CHAPTER 0. INTRODUCTION

A, 104(3), 032416.

• [SGD+22] Silvério, H., Grijalva, S., Dalyac, C., Leclerc, L., Karalekas, P. J., Shammah,
N., ... Henriet, L. (2022). Pulser: An open-source package for the design of pulse sequences
in programmable neutral-atom arrays. Quantum, 6, 629.

Finally, two parts of this thesis will be included in a paper in preparation:

• Dalyac C., Leclerc L., Henriet L., A.B. Grilo, E. Kashefi, Experimental signature of
quantum phase transitions in quantum annealing for the maximum independent set
problem.
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Rydberg atoms and quantum simulation of
spin models

1.1 Understanding physics using simulation

In physics, equations of motions describe the behaviour of systems in time. While physicists
have been able to find the equations that accurately describe the evolution of planets, liquids
or atoms, solving them analytically (i.e. with pen and paper) for specific instances is usually
intractable. In order to predict the dynamics of a satellite or forecast weather conditions,
scientists have come up with numerical approximation methods to solve these equations. Some
of these methods involve approximating the solution to the equation by breaking it down into
small pieces and using iterative techniques to solve each piece.

In the XVIIIth century, the Swiss mathematician Leonhard Euler developed a numerical
method known today as the "Euler method" [Eul24]. In this method, time is cut into small
intervals and a first-order method builds approximate solutions at each step. The accuracy of
this method depends on the size of the interval time chosen. The Euler method and higher
order ones was used during WWII to calculate the trajectories of shells, taking into account
variables such as air density, temperature or wind and took between 20 to 40 hours to compute
by hand [QZQ+18].

An alternative but creative technique was to solve the equations of motions using analog
machines. An analog machine is a device that is subject to the same physical laws of the
system of interest but over which an operator has a certain level of control. For example, Lord
Kelvin invented in 1872 an analog machine that predicted the tides at a given location based
on astronomical observations [Tho81]. The device consisted of a series of interconnected gears,
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levers, and rods that moved in a pattern that represented the ebb and flow of the tides. The
gears could be adjusted to reflect the current conditions at the location being analysed, such
as the water depth or the time and position of the Moon and Sun in the sky. This powerful
device could predict the tide over a period of several hours or days. It worked so well that
it was used in World War II to predict tides on the French beach for the D-Day invasion of
Normandy [Ehr08]. However, it was expensive to build and the speed of calculation was limited.
Analog computers were eventually superseded by digital computers thanks to the explosion
in the number of transistors that allowed to apply approximation methods much faster: it
took just under a minute to calculate the shell trajectories on the first big digital computer
(ENIAC) [GH20]. Throughout the decades, digital computers became increasingly powerful and
solved more and more complex equations: in 2019, scientists were able to simulate with high
resolution the formation of thousands of galaxies in the universe in a volume of 30×106 parsecs 1.
This simulation ran on 24, 000 CPUs, each containing more than a billion transistors [PNS+19].
The result of the simulation required a storage memory of 846.5 terabytes (Tb).

In the realm of quantum physics, scientists are also very eager to simulate the dynamics of
quantum systems. A well-known model that captures important properties of matter is the
spin-1

2 model. In this model, the magnetic moments of atoms or molecules are represented as
quantum mechanical spin-1

2 particles, which can have two possible states often referred to as
"up" and "down". Spin models become particularly interesting when local interactions between
spin display emergent macroscopic behaviour that cannot be explained by the behaviour of
individual spins. Such behaviours include phase transitions or macroscopic properties such
as magnetism. However, in order to witness such phenomenons, physicists sometimes have to
calculate the dynamics of spin models for hundreds of spins. Unfortunately, determining the
quantum dynamics of spins requires an enormous amount of computer memory. To convince
ourselves, suppose that we want to predict the evolution of a single spin described by a
wavefunction |ψ(t)⟩. We apply a time-independent Hamiltonian H such that for any given time
t, |ψ(t)⟩ is described by the Schrodinger equation

iℏ
d

dt
|ψ(t)⟩ = H|ψ(t)⟩. (1.1)

The solution to the Schrodinger equation is given by |ψ(t)⟩ = exp{−iℏHt}|ψ(0)⟩. To find
the numerical value of |ψ(t)⟩ requires to store the state |ψ(0)⟩ in memory. A quantum state
is described by a vector of complex numbers that grows exponentially with the size of the
system. While a single spin is described by a vector of size 2, a system composed of N spin−1

2
requires a vector of size 2N . Already with 50 spins, the state vector requires, with a float32
precision, 1230Tb of memory to be stored in a computer, which is already more memory than
the gigantic astrophysical simulation of Ref. [PNS+19]! Now if you double the number of spins,
the memory required blows up to 1030 bytes which represents a thousand times more memory
than all humankind storage in 2023 [RRG18].

1A parsec corresponds to 3.26 lightyears, or 31 trillion kilometers.
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This inescapable exponentiation of quantum systems convinced scientists like Richard
Feynman that if we were to compute dynamics of quantum systems efficiently for large systems,
then the computer itself should be quantum [Fey82]. In other words, because the quantum
computer is also subject to quantum mechanics it can efficiently store quantum states. In
parallel, experimental physicists managed to control physical systems of smaller and smaller
sizes and in 2012 Serge Haroche was awarded the Nobel prize in physics for his pioneering work
in controlling individual quantum systems [RBH01]. With his team, he developed techniques
for manipulating and measuring the quantum states of single atoms and photons with high
precision. The capacity to control a quantum state laid the basis for the realisation of an analog
quantum computer: in similar fashion to Lord Kelvin’s device, quantum physicists thought of
using the dynamics of an ensemble of controllable atoms to mimic spin models that cannot be
simulated on classical computers.

In the following section, we will describe in more detail how experimentalists have managed
to simulate spin models in the past years by using arrays of neutral atoms trapped in optical
tweezers. By manipulating up to hundreds of atoms, the dynamics that are observed are well
beyond the reach of classical computing. We will describe in more detail how such a neutral-atom
device works, and what types of models it can implement. While these experimental devices
have been used for many-body physics exploration, this thesis explores the potential of quantum
dynamics to solve other types of problems such as combinatorial optimisation and machine
learning tasks.

1.2 Description of a neutral atom device for Hamiltonian
simulation

In this section, we briefly describe the inner workings of a neutral-atom device. Detailed
explanations of the physics involved can be found in [BVC+13, Ldk18]. While operating on the
microscopic scale, today’s neutral-atom quantum computer is relatively big (though smaller
than the ENIAC!). Made of 5000 different components, it measures 1.7m x 2m x 3m for a total
weight close to 1500kg. It embarks five different laser sources to control the different steps of the
quantum computation. In total, it uses 5kW of energy which is close to the energy consumption
of an electric water heater, more than a hundred times lower than current supercomputers
(1300kW) [AH23] and four times lower than quantum computers with dilution fridges like
Google’s Sycamore chip [AAB+19].

The building block of the computation in a neutral atom device is the rubidium atom,
commonly used in experimental physics. The two main challenges behind the experimental
set-up are to:

(i) trap the atoms into a pre-defined layout
(ii) manipulate their inner state to control their quantum evolution.

6
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Trapping individual atoms is already quite a tour-de-force. In order to so, experimentalists
start with a block of rubidium metal which is heated with a diffusive oven to create an
atomic vapour at a temperature of about 40◦C. Then, two successive magneto-optical traps are
used to slow down and condense the vapour into a cloud of approximately 1mm3, containing
approximately 106 cold rubidium atoms. These atoms are trapped at the centre of the vacuum
system showed in Figure 1.1, where the temperature is of the order of 10µK (a million times
colder than outer-space). Then, a second trapping laser system isolates individual atoms within
this ensemble. From a cloud of atoms, the goal is to trap individual atoms. It is possible
to create a micrometer-sized optical trap by focusing a trap laser across a high numerical
aperture lens situated inside the vacuum chamber. One atom from the cloud therefore gets
locked in the trap and because of the extremely small trapping volume, only one atom can
be loaded at a time: if a second atom enters the trap, the collision between the atoms will
eject both of them [SRPG01]. This ensures that each trap, called an optical tweezers, contains
at most a single atom. This stochastic optical tweezers has a loading efficiency of about 50%.
Interestingly, a single trap can be "cloned" into hundreds of them by appropriately altering the
spatial phase of the trap laser before the lens[Lab16]. The laser phase is modified before the
lens using a Spatial Light Modulator (SLM) as shown in Figure 1.1. The laser consequently
diffracts after the lens into many spots, creating layouts of arbitrary traps in 2D and in 3D.
The number of traps that can be created is only limited by the optical power of the laser, and
it is estimated that with current lasers one can create layouts with up to 10, 000 traps [GOS22].
Because each trap has a 50% chance of being loaded, the layout is loaded arbitrarily as shown in
Figure 1.2. The idea is therefore to create 2n traps, obtain n trapped atoms located arbitrarily
and re-arrange the atoms one-by-one into the desired layout. Moving the atoms from a trap
to another trap is done with a mobile optical tweezer using a 2D Acoustico-Optic Deflector
(2D-AOD in Figure 1.1). This step is done for each atom in under a millisecond. Once all the
atoms are correctly assembled, a final fluorescence image is taken to confirm the successful
preparation of the layout: the quantum dynamics part can now start.

The micro-traps are separated by a few micrometers (5µm) which means that the atoms
are at a distance a thousand times bigger than their usual interaction length. In order to have
the atoms interact with each other, the atoms can be excited to Rydberg states, which are
states with a large principal quantum numbers n [ŠA18]. Precisely, the rubidium atom has a
single electron in its valence orbital that can be prepared in a highly excited electronic state
using a multi-photon excitation scheme. This highly excited state, called a Rydberg state, is
interesting for two reasons. First, the electron is very far away from the nucleus on average
when it is excited to a Rydberg state, typically 100nm which represents a thousand times the
typical atomic radius. This "oversize" property allows the atom to interact with other atoms
that are excited to Rydberg states over distances of dozens of micrometers, much bigger than
the distance separating the micro-traps [BBL16a]. Furthermore, the lifetime of these Rydberg
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states is proportional to n3 which means that it can reach lifetimes of hundreds of µs for
n = 60 [BL20], much longer than a typical computation cycle. In other words, the Rydberg
state is very stable and can be chosen as a reliable energy level thanks to its long lifetime and
its capacity to interact over distances that are longer than the typical micro-traps separation
length. Next, we will explain how these interactions between Rydberg levels naturally encode
spin-1

2 models.
The interaction between a pair of Rydberg atoms at a distance R is dominated by an

electronic dipole-dipole Hamiltonian when R is much bigger than the size of the electronic
wavefunction. This interaction can change depending on the Rydberg levels selected, therefore
yielding different spin Hamiltonians. First, let’s suppose that the two atoms are prepared in
the same Rydberg state. In that case, the dipole-dipole interaction leads to a van der Waals
interaction scaling as C6/R

6. The C6 term depends on the Rydberg level n and is proportional
to n11. For a system of N atoms, the effects of van der Waals interactions are pairwise additive
and the interaction Hamiltonian is

HvdW =
∑
i<j

C6
R6

ij

n̂in̂j , (1.2)

where i, j are the indices of the spins and n̂i = |r⟩⟨r|i is the projector onto the Rydberg state
of atom i. In the language of spin-1

2 models and taking |g⟩ = |↓⟩ and |r⟩ = |↑⟩, the projector
can be understood as n̂i = (I + σ̂i

z/2). Another setting is to use two different Rydberg levels
|nS⟩ and |nP ⟩ that also have a dipole interaction but of different nature. In this case, the
interaction between the two excited states corresponds to an excitation exchange, and if one
maps |nS⟩ = |↓⟩ and |nP ⟩ = |↑⟩, then the effective Hamiltonian is called the XY Hamiltonian
and on N atoms reads

HXY =
∑
i<j

C3
R3

ij

(
σ̂+

i σ̂
−
j + σ̂+

j σ̂
−
i

)
, (1.3)

where σ̂± = σ̂x ± iσ̂y.
The XY Hamiltonian is a very interesting example of a flip-flop interaction; it drives the

exchange of the spin state between two neighbouring particles. It has been put forward as a
possible mechanism of photosynthesis in plants [Col13]. In this model, the photons drop energy
in the chloroplasts that has to be transferred to the centre of the cell where it is transformed
into chemical energy using XY-Hamiltonian-like dynamics. To summarise, it is possible to
prepare different interaction Hamiltonians by selecting the appropriate Rydberg levels. Recently,
experimentalists even realised a XXZ Hamiltonian using microwave engineering [SWB+22].
Furthermore, if we add a global coherent laser driving the transition |↓⟩ and |↑⟩ with a Rabi
frequency Ω and a detuning δ, the total Hamiltonian reads, for the Ising model,

HIsing = ℏΩ
2

N∑
i=1

σ̂x
i − ℏδ

N∑
i=1

n̂i +
∑
i<j

C6
R6

ij

n̂in̂j , (1.4)
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Figure 1.1: Experimental set-up of a neutral atom device reproduced from
Ref. [HBS+20]

and for the XY model,

HXY = ℏΩ
2

N∑
i=1

σ̂x
i − ℏδ

N∑
i=1

n̂i +
∑
i<j

C3
R3

ij

(
σ̂+

i σ̂
−
j + σ̂+

j σ̂
−
i

)
. (1.5)

Once the energy levels encoding the two-level system have been selected, the type of
interaction is fixed accordingly. The idea is then to evolve the system of atoms in time and
observe the dynamics. The parameters Ω, δ can be adiabatically modified in time as Ω(t), δ(t)
to prepare the groundstate of a particular Hamiltonian of interest [SZF+15]. They can also be
suddenly changed to create quantum quenched dynamics [Mit18], an active field of research in
which scientists try to understand intriguing phenomenons like many-body localisation [And58].
Experimentalists can therefore tweak the different parameters to observe many different many-
body dynamics. Further degrees of freedom include changing the layout of the atoms before
applying the coherent laser driving. For example, changing the layout of the atoms from a
square to a triangular grid can induce frustration and create exotic dynamics in the case
of antiferromagnetic interactions [Hen13]. Recent experiments have even demonstrated the
capacity to move the atoms coherently in 2D during the coherent laser driving which modifies
the interactions dynamically [BLS+22]: in other words, Rij can evolve in time as Rij(t). Finally,
several groups around the world have managed individual control over the atoms, in addition
to the global coherent laser driving [KZI+10, GOS22, MHC+22]. This adds another degree of
freedom and enables to apply local operations, opening the path to realising quantum digital
gates for quantum computing [LKS+19].

While neutral atom arrays are primarily focused on simulating many body dynamics, there
exists a bridge between them and more general computational problems. We will explore this
in the following section.
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Figure 1.2: Trapping of the atoms in 2D and 3D reproduced from
Ref. [BLL+18].

1.3 Spin models also map combinatorial problems

The essence of combinatorial problems lies in making choices from a set of discrete elements in
order to optimise a given objective, while satisfying a set of constraints. Usually, the number of
discrete elements to be chosen from grows exponentially with the size of the problem, making
an exhaustive search for the optimal solution impractical. Let us illustrate this concept with
a simple example 2. Suppose that you are planning a dinner for a group of friends but you
know that some people do not get along. You can represent this social network with a graph
G = (V, E) where V are the vertices that represent your friends and an edge e = (i, j) ∈ E
between two vertices i and j translates that these two people do not get along very well. Willing
for a calm and enjoyable night, you decide to invite the maximum number of people that
get along with each other: in your graph, this corresponds to finding a maximum subset of
the nodes that are not connected to each other. On small graphs this can be done by hand
but when the number of friends n grows, you have to use another technique. A naive and
inefficient approach is to check all subsets of the n guests and choose the biggest one for
which everyone gets well together. In that case, the number of operations is 2n, which scales
exponentially with the number of guests: it would take a thousand years to solve this problem
on the best supercomputer today, just with n = 70 guests (it would require 270 ≈ 1021 steps).
Surprisingly, no general method has been found to solve this problem more efficiently than this
naive approach. For this reason this problem, called the Maximum Independent Set (MIS), has

2This example is taken from Arora and Barak [AB09].
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been cast to the NP-hard (nondeterministic polynomial time) complexity class, which implies
that there is no known polynomial-time algorithm that can solve the problem exactly on all
instances [GJ78]. Furthermore, one can also associate a cost function to the MIS problem. Given
a graph G = (V, E), an independent set is defined as a subset S of the vertices such that no two
vertices of S share an edge in G. Mathematically, S is an independent set of G if and only if

S ⊆ V s.t. ∀(x, y) ∈ S2, (x, y) /∈ E . (1.6)

A maximum independent set S∗ corresponds to an independent set of maximum cardinality.
Any possible solution to this problem consists in separating the vertices of G into two distinct
classes: an independent one and the others. We attribute a status z to each vertex, where zi = 1
if vertex i belongs to the independent set, and zi = 0 otherwise. The Maximum Independent
Set corresponds to the minima of the following cost function:

C(z1, . . . , zn) = −
n∑

i=1
zi + U

∑
⟨i,j⟩

zizj , (1.7)

where U ≫ ∆(G), where ∆(G) is the degree of the vertex with maximum degree, ⟨i, j⟩ represents
nodes in E (the edges), and n = |V|. This cost function favours having a maximal number of
atoms in the 1 state, but the fact that U ≫ 1 strongly penalises two vertices in state 1 that share
an edge. In mathematics, this type of cost function is called a Quadratic Unconstrained Binary
Optimisation (QUBO) formulation [BH91]. QUBOs are ubiquitous in operational research and
represent many optimisation problems such as network flows, scheduling, max-cut, max-clique
or vertex cover [KGAR04]. Given binary variables zi, QUBOs are written as the following
general problem

Minimise
n∑

i=1
qiizi +

n∑
i,j=1

qijzizj , (1.8)

where qii represents the weight on the node i and qij represent the weight of the constraints
between nodes i and j. Interestingly, this formulation is exactly the same as classical Ising
models of spins. Indeed, a classical Ising model can be written as a quadratic function of a set
of n spin-1

2 as

H(s1, . . . , sn) =
n∑

i=1
hiisi +

n∑
i,j=1

Jijsisj . (1.9)

This remarkable parallel between QUBOs and spin models opened a fertile area of research
where methods from statistical physics such as simulated annealing have been used to solve
difficult QUBO instances [KGJV83, MM09] and conversely, computational complexity theory
have given hardness results on solving problems such as polymer protein folding [BL98]. In
2014, all of Karp’s 21 NP-complete problems where explicitly transformed into an equivalent
Ising spin formulation [Luc14]. Later, the authors of the pioneer publication [PWZ+18] noticed
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that the Hamiltonian of interacting Rydberg atoms naturally realises the QUBO formulation of
an interesting combinatorial problem. We build upon these results to propose in the following
chapter of this thesis the embedding of two practical industrial problems related to Smart-
Charging of electric vehicles.
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Combinatorial optimisation with
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Quantum approaches for industrial
problems

In this chapter we develop quantum approaches to solve two industrial problems drawn from
the growing sector of smart-charging of electrical vehicles (EVs). In section 2.1 the problems
are explicitly translated into QUBO instances that correspond to the max-k-cut and the

Maximum Independent Set (MIS) respectively. In section 2.2 we encode these high-dimensional
discrete problems in the Hilbert space spanned by the neutral atom device’s many-body
quantum system and evaluate the performance of the Quantum Approximate Optimisation
Algorithm (QAOA) [FGG14, PSTZ+18]. These numerical results suppose a perfect embedding
of the problems and a noiseless device, hence we explore in section 2.4 the practical issues faced
when trying to embed these industrial problems with available neutral atom devices. We provide
details on the noise model of a neutral atom device and describe what type of pulses we can
run naturally on it. The QAA approach is more natural regarding the hardware constraints
and noisy simulations give us a precise idea of the results that we can expect on the device. At
the time this chapter is written, the instances are expected to run on hardware in the following
weeks. This first part of this chapter is based on the paper

• [DHJ+21] Dalyac, C., Henriet, L., Jeandel, E., Lechner, W., Perdrix, S., Porcheron, M.,
Veshchezerova, M. (2021). Qualifying quantum approaches for hard industrial optimization
problems. A case study in the field of smart-charging of electric vehicles. EPJ Quantum
Technology, 8(1), 12.

and the second part will be summarised in a paper in preparation.
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2.1 Modelling two smart-charging tasks as NP-hard problems

Smart-charging is an umbrella term that encompasses all optimisation problems linked to the
charging of electric vehicles (EVs). The recent surge in the number of EVs presents both new
challenges and additional possibilities for electricity management. On the one hand, new issues
such as charging task allocation, scheduling, and cost optimisation arise because of the charging
times of these vehicles and their unpredictable load on the electrical system [RB20]. On the
other hand, vehicle batteries could be used both as energy storage and power supply devices, a
technique called vehicle-to-grid (V2G) which would improve significantly the flexibility of the
electric system and reduce the use of fossil fuels during high-peak demand [GSS21].

Many difficult problems lie ahead of this scheme, related to the optimal management
of the electric system in terms of cost while satisfying various technical constraints. These
include among others the modulation of electricity demand taking into account the potentially
high demand specific to EV loads: a 2021 study showed that an electric car used 32% of the
total electric consumption of a household [DZAG21]. Another challenge is the availability of
buffer required to guarantee the frequency stability of the grid when charging EVs [QZB10].
Interestingly, these problems translate to large sized combinatorial optimisation problems
represented in Figure 2.1.

Vocabulary and model hypotheses

Both problems will be tackled under the following assumptions:

1. A load station is made up of several charging points, each of them loading at most a
single electric vehicle (EV) at a given time step;

2. The charging points are parallel identical machines that supply the same power. The
charging time of a given EV is thus independent of the charging point it is scheduled on;

3. We consider neither additional job characteristics and constraints (release/due dates,
charging profile imposed by the battery state) nor global resource constraints on the load
station (maximal power deliverable at a given time step);

4. Preemption is not allowed: a load task cannot be interrupted to be resumed later, on the
same charging point or another one.

2.1.1 (SC1) The minimisation of total weighted load completion time is a
max-k-cut instance

We consider J = {1, . . . , n} charging jobs of n EVs with duration T = {t1, . . . , tn} to be
scheduled on a set I = {1, . . . , k} of k charging points. An integer weight wj > 0 is associated
to each job j that measures its importance: we might want to prioritise for example the charge
of emergency vehicles. The time at which a load j ends is called the completion time and is
noted Cj . The goal is to minimise the weighted total time of completion of the charges
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Figure 2.1: Smart-charging problems and their modelling as NP-hard
problems. The first problem looks at the distribution of n vehicles when k charging
stations are available. This problem (SC1) translates to a max-k-cut instance on
a complete graph of size n. The second problem is related to the scheduling of n
charging tasks under group and time constraints. In this case, the problem (SC2)
translates to finding the MIS of a graph of size n.

∑
j∈J

wjCj , (2.1)

The problem (SC1) associated to minimising equation (2.1) is a classical scheduling problem
known to be NP-hard in the general case [GLLRK79]. It can be solved in polynomial time if
k = 1 as the optimal scheduling is given by executing them in the decreasing order defined
by the ratio wj/tj (a rule known as the Smith Rule [Smi56]). Therefore the only problem in
constructing good schedules for instances with k machines is to assign the jobs appropriately to
each machine. If the number of machines k is fixed, (SC1) can be solved by pseudo-polynomial
algorithms1, typically based on dynamic programming and in the case where m is not fixed
(SC1) is NP-hard [GLLRK79].

We now translate this problem into a max-k-cut instance where the goal is to divide the
vertices of a graph into k disjoint sets to maximise the number of (weighted) edges that are cut
or crossed between these sets. First, we can decompose the weighted total time of completion as∑

j∈J

wjCj =
∑
j∈J

wj(tj +Wj), (2.2)

1An algorithm is said to be pseudo-polynomial if it is polynomial in the numeric values of its data, but
super-polynomial in the length of their binary encoding.
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where Wj is the waiting time before completing task j. The waiting time Wj decomposes as

Wj =
∑
i≺j

ti, (2.3)

where i are all jobs scheduled before job j on the same machine. We can re-write equation (2.2)
as ∑

j∈J

wjCj =
∑
j∈J

wjtj +
∑
j∈J

∑
i≺j

wjti. (2.4)

Recall that the ordering ≺ is given by the Smith rule, which runs job i before job j if
wi/ti < wj/tj , or equivalently witj < wjti. Therefore given a partition of the jobs in k groups
{V1, . . . ,Vk}, the weighted total time of completion can be written as

∑
j∈J

wjCj =
∑
j∈J

wjtj +
k∑

m=1

∑
u,v∈Vm

min{wutv, wvtu}, (2.5)

=
∑
j∈J

wjtj +
∑

u,v∈V
euv(1− δu,v), (2.6)

where euv = min{wutv, wvtu} and δu,v = 1 if u and v are in the same subset and δu,v = 0
otherwise. Because the first term of equation (2.6) is constant, the minimisation of the weighted
total time of completion corresponds to minimising the second term which in turn corresponds
to maximising the k-cut of graph G [Sku98, YY03].

QUBO formulation of max-k-cut

If we let zu be the index of the machine assigned to job u, the cost function C associated to
the maximal-k-cut reads

C(z1, . . . , zn) =
∑
u̸=v

euv(1− δzu,zv ), (2.7)

where δ is the Dirac function equal to 1 if zu = zv and 0 otherwise. In the case where k = 2,
the problem reduces to zi ∈ {−1, 1} and eq.( 2.7) can be expressed as a QUBO instance:

C(z1, . . . , zn) =
∑
u̸=v

euv
1− zuzv

2 . (2.8)

Without loss of generality if k = 2l where l ∈ N, then each k is uniquely identified with a
binary {±1}l string z1 . . . zl and the general max-k-cut reads

C(z1, . . . , zn) =
∑
u̸=v

euv

l∏
k=1

1− z(k)
u z

(k)
v

2 . (2.9)

where zi = (z(1)
i , . . . , z

(l)
i ). This cost function can be encoded in a quantum operator Ĉ acting on

n× l qubits. In this encoding each vertex of V is associated to a set of l qubits z = {z(1), . . . , z(l)}
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that will indicate the colour of the vertex. Note that we need nl ≈ n ln k qubits to encode
the entire colouring of the graph. In the specific case where k = 2l, the computational ba-
sis that spans the Hilbert space of our platform corresponds exactly to all the 2nl possible
colourings of the graph. A natural extension for all natural k would be to use qudits instead of
qubits [BKKT20].

We can build a cost operator Ĉ that is diagonal in the computational basis, such that
Ĉ|z1 . . . zn⟩ = C(z1 . . . zn)|z1 . . . zn⟩, by writing :

Ĉ = −
∑

1≤u<v≤n

euv

(
1− 1 + σ̂

(1)
u σ̂

(1)
v

2 . . .
1 + σ̂

(l)
u σ̂

(l)
v

2

)
, (2.10)

where σ̂(i)
u corresponds to a Pauli-Z matrix σ̂z acting on the atom i ∈ {1, . . . , l} associated to

vertex u. The operator Ĉ in equation (2.10) can be decomposed as a sum of operators with
{2, 4, . . . , 2l}-body interaction terms. Interaction terms involving more than 2-body operators
are not directly implementable on most quantum computing platforms which only support
2-qubit gates. Instead, they can be decomposed as sums of two-body terms, which can be
realized with CNOT gates. An example of the resulting circuit for an edge is shown in Figure 2.2.

q
(0)
u : • • • •

q
(1)
u : • • • •

q
(0)
v : Rz(wuv×γ

2 ) • •

q
(1)
v : Rz(wuv×γ

2 ) Rz(wuv×γ
2 )

Figure 2.2: A quantum circuit implementing a term e−iγCu,v corresponding to the
edge ⟨u, v⟩ in binary encoding for k = 4. Here, Rz(.) is a single-qubit rotation along
the z-axis.

Because for the instances of max-k-cut the graphs are complete (i.e. all nodes are connected),
the cost operator in Eq. (2.10) involves coupling terms between all qubits. However, all quantum
chips have a finite connectivity in practice. The physical realization of the desired terms
between remote qubits thus requires the introduction of a large number of SWAP gates, that are
detrimental to the performance of the procedure. In section 2.4 we introduce a hardware-efficient
implementation of max-k-cut on Rydberg atom arrays which minimizes this overhead.

2.1.2 (SC2) The optimal scheduling of load time intervals within groups is
an Maximum Independent Set instance

We now consider the following problem: given a set of load tasks represented as intervals on a
timeline, such that each of them belongs to a specific group, for example distinct vehicle fleets
of a company, select a subset of these loads which
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(i) maximises the number of non-overlapping tasks
(ii) ensures that at most one load in each group is completed.

The goal is here to both minimise the completion time of the selected loads and to guarantee
that no group will be over-represented in the schedule.

This problem belongs to the class of Interval Scheduling problems [KLPS07]. More precisely,
it is a Group Interval Scheduling problem. It can be restricted without loss of generality to the
case where all the groups contain the same number of tasks k and is NP-hard for k ≥ 3 [Spi99].

Let I = {(s1, e1) . . . (sn, en)}, be the set of intervals representing load job starting and
ending dates, and G = (V, E) be the graph whose vertices in V correspond to intervals in I. All
intervals are also assigned to a group G. An edge (i, j) in E exists if interval i and j overlap or
if i and j belong to the same group G. A set S of vertices is called an independent set when
no two elements of S are adjacent in the graph. An independent set of G represents a feasible
solution to the problem, and its Maximum Independent Set (MIS) is the optimal one2.

Following our protocol for quantum algorithm qualification on neutral atom devices, we will
limit ourselves to specific instances of (SC2) that can be formulated as MIS on two-dimensional
Unit-Disk (UD) graphs. These geometrical graph are graphs in which two vertices are coupled
by an edge if the distance between them is below a threshold value. This choice is motivated by
the fact that a neutral atom quantum processor is particularly well suited to natively implement
the MIS on Unit-Disk graphs [PSTZ+18]. Of course, this protocol requires to transform (SC2)
graphs to Unit-Disk graphs, a procedure presented in the appendix A.1.

2.1.2.1 Rydberg blockade and independent sets

When looking for the MIS of a graph G, we separate the vertices into two distinct classes: an
independent one and the others. We can attribute a status z to each vertex, where zi = 1 if
vertex i is attributed to the independent set, and zi = 0 otherwise. The Maximum Independent
Set corresponds to the minima of the following QUBO cost function:

C(z1, . . . , zn) = −
n∑

i=1
zi + U

∑
(i,j)∈E

zizj , (2.11)

where U ≫ ∆(G) and ∆(G) is the degree of the vertex with maximum degree. In this cost
function, we want to promote a maximal number of atoms to the 1 state, but the fact that U ≫ 1
strongly penalises two adjacent vertices in state 1. The minimum of C(z1, . . . , zn) therefore
corresponds to the maximum independent set of the graph.

2The above formulation supposes that a starting date is assigned to each load task, in order to represent it
as an interval on the time line. In a real smart-charging management system, such dates could be fixed by the
users of the vehicles, imposed by technical constraints or decided by the smart-charging manager.
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Interestingly, the operator Ĉ associated with the cost function of equation (2.11) can be
natively realised on a neutral atom platform [PSTZ+18], with some constraints on the graph
edges. We map a ground state and a Rydberg state of each atom to a spin 1/2, where |1⟩ = |r⟩
is a Rydberg state and |0⟩ = |g⟩ is a ground state. An atom in a Rydberg state has an excited
electron with a very high principal quantum number and therefore exhibits a huge electric
dipole moment. As such, when two atoms are excited to Rydberg states, they exhibit a strong
van der Waals interaction. Placing n atoms at positions rj in a 2D plane, and coupling the
ground state |0⟩ to the Rydberg state |1⟩ with a laser system enables the realisation of the
Hamiltonian

H =
n∑

i=1

ℏΩ
2 σ̂x

i −
n∑

i=1

ℏδ
2 σ̂

z
i +

∑
j<i

C6
|ri − rj |6

n̂in̂j . (2.12)

Here, Ω and δ are respectively the Rabi frequency and detuning of the laser system and ℏ
is the reduced Planck constant. The first two terms of equation (3.56) govern the transition
between states |0⟩ and |1⟩ induced by the laser, while the third term represents the repulsive
Van der Waals interaction between atoms in the |1⟩ state. More precisely, n̂i = (σ̂z

i + 1)/2
counts the number of Rydberg excitations at position i. The interaction strength between two
atoms decays as |ri − rj |−6.

The shift in energy originating from the presence of two nearby excited atoms induces the
so-called Rydberg blockade phenomenon, illustrated in Fig. 2.3(a). More precisely, if two atoms
are separated by a distance smaller than the Rydberg blockade radius rb = (C6/ℏΩ)1/6, the
repulsive interaction will prevent them from being excited at the same time. On the other hand,
the sharp decay of the interaction allows us to neglect this interaction term for atoms distant of
r≫ rb

3. As such, for Ω = 0, the Hamiltonian in Eq. (3.56) is diagonal in the computational basis
and enables to realize H|z1, . . . , zn⟩ = (ℏδ/2)C(z1, . . . , zn)|z1, . . . , zn⟩, with the cost function
specified in Eq.(2.11), and for which there is a link between atoms i and j if they are closer
than rb apart.

To conclude, the MIS problem on Unit-disk graphs can be naturally encoded in the Ising
Hamiltonian of a neutral-atom device. This means that we can use an analog control over the
atoms which will likely offer better performances than digital approaches as it is a natural
control over the device.

2.2 Tackling (SC1) and (SC2) with the Quantum Approximate
Optimisation Algorithm (QAOA)

In the previous section, we have demonstrated how two Smart-Charging problems (SC1) and
(SC2) can be mapped into QUBO instances which in turn can be encoded in the ground-state

3We will see later on that in practice some atoms are at a distance r ≃ rb and their interaction must be
considered in the simulations.
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Figure 2.3: (a) Illustration of the Rydberg blockade effect. When two atoms are far
apart, |ri−rj | > rb, they don’t interact. On the other hand, if they are separated by
less than the Rydberg blockade radius, |ri − rj | < rb, a strong interaction prevents
the two atoms to be in the state |1⟩ at the same time. (b) Rydberg blockade
and independent sets of a graph. Rydberg atoms correspond to the vertices of a
UD-graph. There are edges between adjacent vertices if the distance between them
is smaller than the Rydberg blockade radius rb, as illustrated for the top-left vertex.
Due to the Rydberg blockade effect, the dynamics of the system is restricted to
independent sets.

of a many-body quantum Hamiltonian Ĉ. The challenge remains now in the preparation of
the ground-state of Ĉ which is not a trivial task: in the following section we will describe the
Quantum Optimisation Approximation Algorithm (QAOA), a well-known quantum approach
for preparing the ground-state of many-body quantum systems.

QAOA computes approximate solutions to combinatorial optimisation problems, with a
theoretical guarantee of convergence when the depth of the quantum circuit increases [FGG14].
QAOA is a variational algorithm for combinatorial problems in which a quantum processor
works hand-in-hand with a classical counterpart, as illustrated in Fig. 2.4 (see Ref. [CAB+20]
for a review on variational algorithm). The quantum processor is used to prepare a wave
function |zγ,β⟩. In the most general case, |z⟩ = |z1z2...zn⟩ represents a n-qudit state vector,
with zi ∈ {0, 1, .., d}, and the subscript in |zγ,β⟩ indicates that the state belongs to a family
of states that is parameterized by the angles γ and β. More specifically, |zγ,β⟩ is generated
by the successive application of unitaries generated by the non-commutative operators M̂ and
Ĉ defined below, with angles given by β = (β1, β2, ..., βp) and γ = (γ1, γ2, ..., γp), respectively.
Given an initial state |z0⟩, the wavefunction prepared by the quantum processor takes the
following form,

|zγ,β⟩ = e−iβpM̂e−iγpĈ . . . e−iβ1M̂e−iγ1Ĉ |z0⟩. (2.13)

A common choice for the cost operator Ĉ (also sometimes referred to as energy operator)
is the diagonal operator in the computational basis, Ĉ|z⟩ = C(z)|z⟩, where C(.) is the cost
function to be optimised for, while the mixing operator M̂ induces transitions between states
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in the computational basis [FGG14, HWO+17]. In the following, we will always reformulate our
problems under the form of minimisation problems, by changing the sign of the cost function of
the original problems. The ground state of the energy operator Ĉ corresponds to the optimal
solution to the optimisation problem. The dimension p of the vectors γ and β is called the
depth of the algorithm.

|z1⟩
|z2⟩

|zN⟩
Uγi

Uβi

Digital Analog

γ, β

i = {1,…, p}

 ⟨Ĉ⟩obs

 min
(γ,β)

⟨Ĉ⟩obs

Figure 2.4: Principle of the QAOA algorithm. A quantum processor, which can be
operated in either digital or analog mode, is used to prepare an ansatz wavefunction
from which we construct the mean value ⟨Ĉ⟩obs using numerous measurements. A
classical optimiser then updates the variational parameters. Some problems are
naturally tailored to the analog mode of the platform, while others require a digital
mapping. In digital mode, the unitaries are built from quantum circuits, made of
elementary quantum gates acting each on one or a few qubits. In the analog mode,
the unitaries are built from sequences of Hamiltonians that can be controlled in a
continuous manner.

The quantum state is then measured to construct an statistical estimator ⟨Ĉ⟩obs of the cost
function to be minimised. A classical optimisation procedure uses this estimator to update the
variational parameters γ and β for the next iteration. This loop repeats until convergence to a
final state, from which an estimate of the solution to the problem is extracted. The approximation
ratio ⟨Ĉ⟩/Copt, where Copt = minzC(z), measures the quality of the approximation yielded
by QAOA. Once optimal parameters for QAOA are found the optimal assignment of variables
is returned by repeatedly preparing and measuring the quantum circuit while saving the best
result. As was pointed out in Ref. [FGG14], a solution with value at least ⟨Ĉ⟩ − 1 is obtained
with probability 1− 1

m after O(m logm) launches where m = Copt ≤ |E|. Thus the sampling
step adds only a polynomial factor and is in general not accounted in the run-time analysis of
QAOA. In the following part we will explore the classical loop optimisation procedure.
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2.2.1 Optimising the classical loop

Although the translation of a combinatorial problem focuses on the quantum loop of QAOA,
finding the optimal parameters (γ,β) is a tricky task. We first describe how the energy landscape
associated to the variational parameters depends in the (SC1) problem on the data itself.

In (SC1), the weights wuv of the edges impact the phase that is applied to each basis state
of the computational basis in the QAOA cycle. To visualise the impact of weights, we plot
the energy (or cost-function) landscape at depth p = 1 as a function of the parameters (γ, β).
Figure 2.5 contains numerical simulation of the energy landscape for the max-cut problem
evaluated on a graph of size 10, with a resolution of 30 points along each axis. For the same
problem, we re-weight the adjacency matrix of the graph by different factors. On the first
figure, a high density of peaked valleys and hills indicates that optimisation is difficult and
would require an important amount of function evaluations to find a decent solution. The
amount of peaks and valleys is due to the fact that the cost Hamiltonian adds a phase term to
each basis vector zi. Indeed, applying Ĉ with an angle γ modifies |zi⟩ to eiγCi |zi⟩, where Ci

corresponds to the cost of the colouring zi. Modifying the graph weights consequently modifies
the phase applied to each basis state |zi⟩. A smaller Ci, as seen in the third figure, smooths
the cost-function landscape enabling adequate local optimisation. Artificially reducing Ci too
much however might over-smooth the landscape, reducing the possible phases that QAOA can
apply, hence missing the global minima. We want Ci to be big enough to allow basis states zi

to acquire a phase eiϕ in a comfortable range. At the same time, we do not believe a phase
ϕ > 2π is necessary. The re-weighting Ci = R∗Ci, where R∗ = 2π

max(Ci) satisfies the two previous
conditions. Numerically, we find that re-weighting the adjacency matrices of all instances by the
factor R indeed concentrates all optimal parameters in a restricted zone of parameter space.

Practically of course, calculating R∗ implies knowledge of maxCi, which corresponds to
the exact solution to the initial problem. We therefore propose the upper bound R = wmax

N2

4 ,
where wmax = maxu,v wuv. It is calculated from the best-cut on a complete graph where all
weights would be equal to wmax.

In the scenario of (SC1), we see that the choice for the optimiser depends on the normalisation
of the weights. If one manages a good normalisation, then local methods of optimisation can be
used with high guarantees of success.

2.2.2 Finding correct parameters: the Egg optimisation

A major hurdle in the optimisation process of quantum variational schemes is the presence of
barren plateaus [MBS+18]. The phenomenon of barren plateaus refers to situations where the
optimisation landscape becomes extremely flat, making it difficult to find an optimal solution
using standard gradient-based optimisation methods. This flatness occurs when the gradient of
the objective function with respect to the circuit parameters becomes exponentially small and
can be induced by random parametrisation of the ansatz [MBS+18], optimisation with respect
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Figure 2.5: The zoom effect. From left to right, we normalised an instance from
(SC1) respectively by R/5, R/2 and R to observe the effect on the energy landscape
of QAOA1.The closer to R, the better the zoom on the global minima. The re-
weighting of a graph affects the energy landscape: it can therefore be used to either
zoom on the point of interest to apply local optimisation, or on the contrary it
might be used to zoom out of barren plateaus to explore more interesting phase
spaces.

to a global cost function [CAB+21] and can also be entanglement-induced [MKW21]. When the
gradient is small, it means that small changes in the parameters of the quantum circuit have
little effect on the objective function. Consequently, optimisation algorithms struggle to identify
the direction of steepest descent, as the gradient provides weak or no guidance. The presence
of barren plateaus poses a significant challenge for optimising variational quantum circuits. It
can lead to slow convergence, increased sensitivity to noise and errors, and a higher likelihood
of getting stuck in sub-optimal solutions. These issues can significantly limit the usefulness of
variational quantum algorithms for practical applications.

In order to find the best variational parameters for p layers of QAOA we develop a method
based on the idea of making an educated guess from previous layers to the new one [ZWC+20],
hence limiting the size of the phase space for optimisation. The Educated Global Guess (Egg)
optimisation process uses differential evolution (DE) [SP97] rather than a local optimisation in
an attempt to find the global optimum in a wrinkled energy landscape. DE works by starting
with an ensemble of points in the phase-space, called the agent population. Then, theses agents
are moved around by recombining their coordinates, and the function is evaluated for these
new agents. If the new position brings an improvement, it is kept, otherwise it is discarded.
This process is repeated until convergence to a minimum, although there is no guarantee that
the global minima will be found. While it cannot be sure that our method will always work
perfectly, the constant growth of the approximation ratio as p increases in our results is a
reassuring indicator, as illustrated on the top panel of Figure 2.10. We strongly reduced the
complexity of the problem by making a global educated guess for the optimal parameters at
layer p using the optimal parameters found at layer p− 1. We use a global optimiser rather
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than a local one in an attempt to find the global optima in a wrinkled energy landscape. This
very much improved computation time by reducing the amount of phase space addressed, and
demonstrated precise results with much fewer function calls than local methods (see Figure 2.6).
The algorithm is described in pseudo-code below and works as follows: find optimal parameters
(γ∗

1 , β
∗
1) for p = 1. For the next layer, optimise the function C : (γ2, β2) 7→ C(γ∗

1 , γ2, β
∗
1 , β2). As

such, two variables are already fixed and the space to explore is once again only two-dimensional.
Once the optimisation ends on the two new coordinates, a local optimisation is done on all
the coordinates. This quick step enables to re-calibrate the previous parameters: it is therefore
possible to achieve a trotterization process for high values of p.

Algorithm 1 Educated global guess (Egg) optimisation

Require: |z0⟩, Ĉ, M̂ , p
Ensure: variational parameters (γ1, . . . , γp, β1, . . . , βp)

1: γ1, β1 ← DE(|z0⟩, Ĉ, M̂)
2: for k in range(2, p):
3: |zk−1⟩ = eiβk−1M̂eiγk−1Ĉ . . . eiβ1M̂eiγ1Ĉ |z0⟩
4: γk, βk = DE(|zk−1⟩, Ĉ, M̂)
5: local optimisation: BFGS(γ1, . . . , γk, β1, . . . , βk, |z0⟩, Ĉ, M̂)
6: return (γ1, . . . , γp, β1, . . . , βp)

A choice of the optimisation routine has a high impact on the performance and cost of
an experimental implementation of QAOA [GS17]. By experimentally comparing different
optimisation methods we observed that for local methods, a gradient-free Nelder-Mead [NM65]
is the best choice for our purposes: its performance is comparable to the one of the quasi-Newton
BFGS [GMW19] (and both methods outperform the COBYLA routine [Pow94] which is often
used in works on applied QAOA [EMW20]) while it requires less evaluations of the objective
function (see Figure 2.6).

We compare these local methods with Differential Evolution (DE) [SP97]. We limited the
number of function calls while using DE in order to have the best trade-off between global
exploration and low number of function evaluation. As seen in Figure 2.6, it is a very effective
method, for which the approximation ratio grows close to Nelder-Mead using however much
less function evaluations with the layers. It should be kept in mind nonetheless that global
optimisation methods require tuning hyper-parameters, a process that must be adjusted by
hand. The optimal hyper-parameters might change from one problem to another, a reason why
they are not so popular. But building optimisation processes such as DE that require little
function evaluations is key in the NISQ era as it ensures quicker performances on unstable
devices.
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Figure 2.6: Cost and performance of different numerical optimisation methods
on Max-Cut (SC1), for graphs with size N = 10. Differential Evolution (DE)
corresponds to a global optimisation algorithm. While yielding results very close
to Nelder-Mead, it does so by requiring very little number of function evaluations.
Building optimisation processes such as DE that require little function evaluations
is key in the NISQ era as it ensures quicker performances on unstable devices.

2.3 Results

In this section, we describe the results obtained when running QAOA on the two smart-charging
problems. We first present an analytical result for (SC1) that allows to compute the mean cost
in a QAOA with depth p = 1, coined QAOA1, without any call to a quantum computer (or
emulator), which is in turn useful to analyse the performance of QAOA1 on large instances.
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Analytical result for Max-Cut: the mean cost in the QAOA1 state

An analytical expression for max-cut on unweighted graphs for p = 1 was derived in [WHJR18]
and can be extended to the case of complete weighted graphs. For an edge (u, v) ∈ E the mean
value of Cu,v for chosen γ, β is:

⟨zγ,β|Cu,v|zγ,β⟩ =wuv

2

1 + sin(4β) sin(γwuv)
2

 ∏
x ̸=u,v

cos(γwux) +
∏

x ̸=u,v

cos(γwvx)

+

−sin2(2β)
2

 ∏
x ̸=u,v

cos(γ(wux − wvx))−
∏

x ̸=u,v

cos(γ(wux + wvx))

 . (2.14)

In this expression we realise that there is a close link between the value of the QAOA1 angle
γ and the weight of the edge wuv, which is in accordance with what we observed in section 2.2.1.

Numerical results (noiseless simulations)

In the following, we present a performance analysis of the various procedures presented above.
For max-cut at depth p = 1 we use the analytical formula of equation (2.14). For max-4-cut,
MIS and max-cut at depth p > 1, we compute the mean cost by Monte-Carlo estimation, by
simulating the quantum evolution either on the Atos Quantum Learning Machine [ato] or using
the QuTIP library [JNN13] on the OCCIGEN supercomputer based in Montpellier, France.

Dataset

Data were driven from a set of 2250 loads performed during May 2017 on identical charging
points of the Belib’s network of load stations located in Paris, France [Bel17].

For both problems (SC1) and (SC2), an instance is a series of chronological loads charac-
terised by their duration for (SC1) and starting/end times for (SC2). The instance size is the
number of loads it contains. A dataset is a set of instances whose first load is randomly chosen
among the 2250, according to a uniform law. Once an instance is built:

• for (SC1), a priority pi ∈ N is randomly assigned to each load according to a Poisson’s law

P(pi = k) = λke−λ

k! ,

enforcing a constant distribution of the different priority levels in each instance4;
• for (SC2), the belonging to a group is randomly assigned to each load according to a

uniform law parameterised by the number of groups and the number of loads in the
instance.

4The "brute" weights from the data yield high values in the cost Hamiltonian, leading to a highly fluctuating
energy landscape for QAOA1 (cf. equation 2.14). A re-weighting was therefore done in order to obtain a smoother
landscape for better optimisation as explained in section 2.2.1).
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Minimisation of Total Weighted Load Completion Time (SC1)

First, we compare the performance of QAOA and the randomised algorithm on max-cut
instances of different sizes n ∈ [6, 8, 10, 15, 30, 50, 70, 100, 150].

The purpose of our performance analysis is not to demonstrate that QAOA beats the best
classical algorithm but rather to compare it to a solution of the same nature. Indeed, both
QAOA and randomised algorithm return a sample from a certain probability distribution (built
by a quantum circuit and uniform distributions respectively). We leave for future work a more
advanced comparison with local classical algorithms of bounded depth, that were suggested as
fair competitors to QAOA in [Has19].

In order to compute the exact optimum Copt we use brute-force search for max-cut on small
instances (with up to 30 vertices) and the dynamic program algorithm presented in Ref. [Sah76]
for the initial scheduling problem on bigger instances.

Not for redistribution by any means without prior written permission © 2020 PASQAL SAS
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N

Figure 2.7: Top panel: Evolution of the approximation ratio of QAOA with depth
p for the Max-Cut problem. Bottom panel: Evolution of the average approximation
ratio with the instance size for QAOA at depth p = 1 (dashed orange line) and for
the randomised algorithm on the initial scheduling problem (dotted blue line).
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As expected, we observe on the top panel of Fig. 2.7 that, for a fixed value of n, the
approximation ratio improves with the QAOA depth p.

Surprisingly, we also notice that the approximation ratio gets better with the size of the
Max-Cut instance. Such behaviour is also observed for the randomised algorithm, as illustrated
on the bottom panel of Figure 2.7. In this numerical experiment we observe that QAOA finds
better solutions than the randomised algorithm.
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Figure 2.8: Approximation ratios of all possible cuts in the unweighted Max-Cut
problem on complete graphs of size N , sorted by increasing values. The blue, orange
and green dots correspond to N = 4, N = 8, and N = 16, respectively.

The good performances of the randomised algorithm shown on the bottom panel of Figure 2.7
suggest that the difficulty of the problem under consideration decreases with its size. To confirm
this insight, let us consider the simpler case of unweighted Max-Cut on a complete graph. In this
scenario, choosing a cut at random gives an approximation ratio of

[∑
k

(n
k

)
k(n− k)

]
/(n2/4)

which goes to 1 in the large n limit. This fact is illustrated in Fig. 2.8, where we show the
approximation ratios of all possible cuts for different values of n. This plot shows that, for
a fixed positive value of the normalised cut number, the corresponding approximation ratio
approaches 1 in the large n limit. While our findings suggest that the presence of O(1) weights
in our problems leads to the same behaviour, it does not extend to instances in which the
magnitude of the weights would increase with n.

We now present numerical results for max-4-cut. Using the normalisation factor introduced
in Section 2.2.1, we run QAOA for p = 7 layers and plot the statistical distribution of the
approximation ratio achieved for 98 different instances (Figure 2.9). As expected, the approxi-
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Figure 2.9: Max-4-cut. QAOA for p = 7 layers, and the statistical distribution
of the approximation ratio achieved for 98 instances. Proper re-weighting of the
graph uniforms the instances. The high value of the approximation ratio achieved
is an encouraging result, showing that quantum approaches are comfortably higher
than the classical approximation minimal guarantee of 0.857487 [dKPW04], even
at low depths. While initial optimisation might not be ideal, as suggested by the
tail of distribution on the first layer, it is corrected by the global smoothing at the
next layer.

mation ratio increases to 1 with the number of layers. The high value of the approximation
ratio achieved is an encouraging result, showing that quantum approaches are comfortably
higher than the classical minimal approximation guarantee of 0.857487 [dKPW04], even at low
depths. At p = 1, the tail of the distribution indicates that some instances have been poorly
optimised. The fact however that this tail disappears in the next layers shows that initial poor
optimisation can be corrected in the following layers. This might be explained by the fact that
at the end of each layer our classical algorithm implements a rapid local optimisation on all
parameters.

Optimal Scheduling of Load Time Intervals within Groups (SC2)

Thanks to Egg optimisation, the function evaluations can be done in parallel. Specifically, we
ran our program on the OCCIGEN supercomputer where we used 28 CPU cores in parallel
for our calculations. This reduced by a factor of 8.8 the time of derivation. In addition, we
reduced the amount of phase space addressed by making educated guesses from layer p− 1 to
layer p, strongly inspired by Ref. [ZWC+20], and showcased precise results with much fewer
function calls. The combination of educated guesses and parallel function evaluations made
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(a) Evolution of the approximation ratio for 84 instances of Unit-Disk MIS (n = 15).
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Figure 2.10: (a) For each layer, the median is plotted and the violin envelop
represents the distribution of the approximation ratio achieved for each of the 84
points. While the approximation ratio grows rapidly to 1 in most cases, there seems
to be some instances that are harder to optimise. We isolate a graph representative
of the best-case bulk (b) and one for the worst-case bulk (c). Further understanding
of the worst-case graphs is important in order to estimate the quality of a quantum
approximation algorithm.
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for a consequent speed-up, bringing down typical calculation times from half a day to an hour.
Finally, the global optimiser (DE) has shown strong results in the context of noisy and changing
landscape [ROM11], a typical behaviour of our noisy intermediate-scale quantum device. Using
(DE) might prove robust in an experimental setup.

As can be seen in Fig. 2.10(a), the performances of QAOA for solving the UD-MIS problem
are good in average, exceeding approximation ratios of 0.95 after seven layers. As can be noted
in the figure, the distribution of the approximation ratio for each layer is rather wide. At the
third layer, the distribution starts to separate in two bulks. The lower bulk stagnates by the
fourth layer as the approximation ratio stays inferior to 0.85 until the last layer, while the
approximation of the upper bulk increases to one as the depth grows. For completeness, we
show on panel (b) and (c) of Fig. 2.10 a typical graph instance of each group. The instances
in the lower bulk correspond to worst-case scenarios and represent 9.5% of the instances.
Understanding the characteristics of the worst instances is of crucial importance to characterise
the quantum approaches. Indeed in the approximation theory the quality of an algorithm is
benchmarked on worst-case instances. The approximation ratio achieved by the algorithm on
these particular instances is a guarantee from below for any other instance. Finding worst-case
scenario has been investigated in the past for max-cut on uniform 3-regular graphs at depths
p = {1, 2, 3} [FGG14, WL20]. Obtaining a lower bound guarantee of QAOA on UD-MIS would
enable us to compare the quantum approach to the classical approximation scheme to assess an
eventual quantum advantage.

To conclude, we have shown numerical results for smart-charging problems, supposing a
QAOA approach to find good solutions in a hardware-agnostic fashion. Because we seek to run
these problems on actual devices, we explore in the following section the different characteristics
that come into play when embedding the problems on a neutral-atom device. We focus on
the implementation of (SC2), as the UD-MIS problem is naturally connected to the Ising
Hamiltonian of Rydberg atoms.

2.4 Towards hardware implementation of unit-disk MIS

(Dalyac C., Leclerc L. et al. in preparation)
In the following section, we explore how one can implement UD-MIS on a neutral atom

device and find good approximate solutions. The first step is to embed the graph with the
atoms, which requires some work to insure that the interaction matrix resembles the adjacency
matrix of the graph under study. Then, we present a batching technique that runs multiple
graphs on the same SLM pattern, enabling a faster processing of the graphs on the device.
Finally, we precise the sources of noises that the hardware is subject to and devise the adequate
method to prepare the ground-state of the cost Hamiltonian associated to UD-MIS.
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2.4.1 Interactions have to be faithful to the graph’s adjacency matrix

In the previous section where we explored QAOA on 84 instances of Unit-Disk graphs, the
respective positions of the vertices are given such that they respect the unit-disk constraints. In
this scheme, two vertices are connected by an edge if their distance is inferior to the Rydberg
blockade radius rb. If the distance between two vertices is rb + ε, where ε > 0, the vertices are
considered to be not connected. Mathematically, this hard-sphere approximation cutoff is given
by the following interaction function

h(r) =
{
∞ if r ≤ rb,

0 else
(2.15)

where r is the distance between two vertices. In reality however, the atoms interact with each
other continuously with a dependency in 1/r6: recall that the interaction term in the Ising
Hamiltonian of equation ( 3.56) is given by

U =
∑
j<i

C6
r6

ij

n̂in̂j . (2.16)

which means that the interaction between atoms which are close to rb is non-negligible as shown
in Figure 2.11.

We therefore modify the positions of the atoms in order to make the hard-sphere approxi-
mation faithful. If this is the case then it ensures that the ground-state of the Ising Hamiltonian
at Ω = 0 and δ > 0 effectively encodes the MIS.

Hard-sphere optimisation of the atomic positions

Let G = (V, E) be a UD-graph with given positions {ri}i∈1,...,|V| represented by an ensemble
of atoms. Because all vertices have a fixed position, we can define for each pair of atoms an
interaction energy Uij = C6

r6
ij

, where C6 is the interaction constant related to the Rydberg
level and rij is the Euclidean distance between atoms encoding vertices i and j. Recall that
Ē is the complementary set of edges of G. The hard-sphere approximation requires that the
largest distance between two atoms sharing a bond in the graph must be far less than the
shortest distance between two atoms not sharing a bond. Formally, the interaction energy UE

min =
min{Uij , (i, j) ∈ E} should be an order of magnitude stronger than U Ē

max = max{Uij , (i, j) ∈ Ē}.
We therefore pre-process the position of the vertices to ensure that the hard-sphere approx-

imation is valid. We developed a heuristic that locally modifies the positions of the vertices.
The result of the optimisation procedure is presented in Figure 2.12. The key idea is to create a
big gap between UE

min, which is the minimal energy between two atoms representing connected
vertices in the graph G, and U Ē

max, which corresponds to the maximal energy between two atoms
that do not represent vertices that are connected in the graph G. Because unit-disk graphs
are local, in the sense that vertices are only connected to other vertices which are close in
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Figure 2.11: Hard-sphere approximation of the Rydberg blockade radius.
The van der Waals interaction energy between two Rydberg atoms separated by a
distance r follows a 1/r6 power law (orange). In the hard-sphere approximation
scheme, or Heaviside approximation (blue), one considers that two atoms that
are far from rb have no interaction (point D), while atoms inside of the Rydberg
blockade radius (point A) have infinite interaction energy. Sometimes however when
embedding random graphs it might happen that the pairwise distance is close to rb

(point B or C). In this case, the approximation does not hold and the dynamics
might be much different than expected.

distance, we devise a procedure that finds optimal positions for sub-groups of vertices, before
concatenating the positions together. We describe the optimisation algorithm ?? below and the
result is plotted in Figure(2.12):

Algorithm 2 optimising atomic positions for hard-sphere approximation
Require: Unit-disk graph G = (V, E)
Ensure: Optimal positions of the atoms (x∗

1, . . . , x
∗
|V|) that maximises the hard-sphere approx-

imation.
1: Initial position (x1, . . . , x|V|)
2: opt_pos = [ ], marked_vertices= [ ]
3: for i in V:
4: sub_vertices = [i] + [j for j in NG(i)] ▷ NG(i) is the neighbourhood of i.
5: opt_pos ←− FindOptimalSubPos(sub_vertices, marked_vertices)
6: marked_vertices ←− marked_vertices + sub_vertices
7: Return opt_pos

34



CHAPTER 2. QUANTUM APPROACHES FOR INDUSTRIAL PROBLEMS

Initial layout Hard-sphere (HS) layout Triangular layout

Interaction matrices

Figure 2.12: Hard-sphere optimisation brings the interaction matrix close
to the adjacency matrix of the graph. In this example, the initial layout of
the atoms induce an interaction matrix that is not representative of the adjacency
matrix of the graph. This can induce dynamics that are not related to the graph
under study. Thanks to the hard-sphere optimisation scheme, the atomic positions
are modified such that the induced interactions between the atoms replicate as
closely as possible the adjacency matrix of the graph. In some cases, the connectivity
of the graph allows it to sit perfectly on an underlying triangular lattice, in which
case the interaction matrix replicates perfectly the adjacency matrix as the pairwise
distances are constant and next-nearest neighbour interaction is close to 0.

Algorithm 3 FindOptimalSubPos
Require: sub_vertices, marked_vertices, G
Ensure: Optimal positions of the sub vertices that maximises hard-sphere approximation,

knowing the marked vertices.
1: G̃ : sub-graph of G with sub_vertices and marked_vertices.
2: pos ←− {xi}i∈G̃

3: {x∗
i }i∈G̃ ←− minimise U

¯̃E
max/U

Ẽ
min by moving positions {xi}i∈G̃

4: Return {x∗
i }i∈G̃

In this algorithm, we keep track of the vertices for which we have already found optimal
positions that are called marked vertices. Then, we select a vertex i and its neighbourhood
N (i) which are called sub vertices and build the subgraph G̃ induced by the sub vertices.
Given the subgraph G̃, we calculate the values of U

¯̃E
max and U Ẽ

min given the positions of the
vertices. We then minimise the ratio U

¯̃E
max/U

Ẽ
min using Sequential Least Squares Programming
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(SLSQP) [BGLS06]. In this minimisation, we also minimise the variance of all pairwise distances
between vertices which are connected in G̃. This is done to ensure that the interaction matrix
between the atoms is close to the adjacency matrix of the graph. The result of this optimisation
is shown in Figure 2.12.

2.4.2 Batching graphs together

The optimised positions of the atoms that have been calculated previously are called the
layout. In principle, the layout can be exactly respected by using the very versatile Spatial
Light Modulator (SLM) pattern that creates the micro-traps on the hardware. In practice
however the SLM calibration step can be quite time-consuming (of the order of the minute).
We therefore seek to use the same SLM pattern for many graphs in order to reduce the number
of calibrations needed for the whole dataset. We start by clustering the dataset of graphs
according to similarities in their structures. The idea behind this is to superimpose all identical
structures between graphs on the same micro-traps. We focus on retrieving the presence and
multiplicity of cycles and build a similarity measure between the graphs. For pentagons for
example, the similarity can be written under the form:

s(G1,G2) = 1− exp
(
−α|NP

1 −NP
2 |
)
, (2.17)

where NP represents the number of pentagons in G and α is a hyper-parameter. We then use a
linear combination of similarity measures to build a similarity matrix between all graphs of
the dataset. Then, we apply a k-means clustering algorithm [C.04] using the similarity matrix
to separate the graphs into different batches. For each batch, we are going to use a single
SLM pattern. Furthermore, since the laser power is distributed over all the traps, we want to
reduce the total number of traps, in order to maximise the intensity provided to each trap.
This ensures that the traps are deep enough to obtain a satisfying filling efficiency (∼ 55%)
over the whole pattern. For each batch, we thus apply the following mapping algorithm:

Algorithm 4 Creating a triangular SLM pattern by batching M graphs
Require: Graphs {G1, . . . ,GM} in sorted sizes and optimised positions {x1, . . . , xM}
Ensure: Single SLM pattern that embeds M graphs with optimal positions on a triangular

lattice.
1: traps ←− {}
2: for i in range 1, · · · ,M :
3: find rGi = {r1, . . . , r|Gi|} triangular grid points that best conserve the pairwise distances

between points in xi and maximises overlap with existing traps.
4: traps ← traps +rGi \traps
5: if |traps| < 2|GM |, add additional random triangular grid points to guarantee the filling

property for re-arrangement.

Once we have clustered the graphs into different batches, we embed them onto an underling
grid structure. In the case of the Smart-Charging dataset, we select 33 graphs that can be
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Figure 2.13: Batching graphs on the same SLM pattern. The batching method
aims at superimposing graphs of a dataset on the same traps, created by a single
SLM pattern. The graphs G1 and G2 are mapped to an underlying triangular lattice
(grey intersection). By sharing common traps, a single SLM pattern (white circles)
can be used to map many graphs; in this case, 16 graphs are mapped on the same
underlying traps.

exactly embedded onto a triangular lattice such that the induced interaction matrix is a close to
the adjacency matrix as it can be. Once all graphs have been embedded, the layouts are shifted
and rotated to maximise the occupation of the same micro-traps. An example of overlapping
graphs is given in Figure 2.13. In practice the graphs are ran sequentially, but all using the
same SLM pattern.

To conclude this part, we have optimised the positions of the atoms in order to replicate as
best as possible the adjacency matrix of the graphs under study. In a concern for hardware
efficiency, we also grouped the different graphs in batches using the same SLM pattern. In
this regime, the interaction matrix of the atoms replicate as closely as possible the topology of
the embedded graph. This translates into the Rydberg blockade regime effectively blocking
neighbouring atoms from being excited simultaneously. In other words, the quantum dynamics
evolve only in the basis states that encode independent sets. This approximation, called the
Truncated Hilbert Space (THS), enables us to simulate the dynamics of the ensemble of atoms
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only in the Hilbert sub-space spanned by the independent sets. The following step in our
protocol is now to implement an evolution that guides the system towards the MIS of the
graph. Before doing so, we have to go through the different sources of noise that can affect the
hardware implementation.
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2.4.3 Neutral-atom device noise model

To bring simulation closer to experience, the effects of various physical phenomena acting on the
dynamics of atoms must be taken into account. In this section, we summarise the information
contained in [Ldk18, DLBL+18]. The various noises can be categorised in different families.
The first ensemble of errors are called state preparation and measurement errors (SPAM),
which encompasses atom loading failure [Ldk18] but also false positive and false negative when
measuring the quantum system at the end of the evolution. Once the atoms are trapped, the
atoms are all prepared in the same state |0⟩ by optically pumping them to one of the 5S
hyper-fine energy level. During the dynamics, the tweezers are switched off but by the end
of the process the measurement is done by switching on again the tweezers which effectively
recaptures atoms in |0⟩ and repels atoms in the Rydberg state |1⟩. In this context, there are
three types of errors that can occur:

1. Optical pumping η. This error accounts for the small inefficiency to load an atom in
a specific 5S state. If the atom is loaded in another state, it will not follow the same
dynamic as the others. A first approximation is to consider that it will not experience
anything and will be measured at all times as being in |0⟩. A second approximation
would be to make it undergo the dynamics but with a consequent detuning to include
the difference in energy levels. This error effect is quantified by η, which represents the
fraction of inefficiency of the initial state preparation and is typically of the order 0.5−5%.

2. False positive ε. False positive error accounts for the probability of losing an atom while
the dynamics is performed, due to collisions or thermal motion, or during the fluorescence
imaging. This loss amounts to misinterpret a |0⟩ for a |1⟩ and is quantified by ε and is
typically in the range 1− 5%.

3. False negatives ε′. False negative error accounts for the probability that an atom in |r⟩
quickly decays to |g⟩ during the recapture duration. This effect depends on the Rydberg
state chosen as |r⟩. This unintended acquisition amounts to misinterpret a |r⟩ for a |g⟩,
measuring a 1 instead of a 0, and is quantified by ε′ and is typically in the range 3− 7%.

These errors happen in the state preparation and the measurement steps, but there are also
sources of noise that affect the dynamics when applying pulses to the ensemble of atoms. First,
the pulses are applied using excitation lasers that have themselves several sources of noise. For
example, they do not have a uniform profile: the electric field they shine on the ensemble of
atoms decreases with the distance to the focal point. Therefore, the Rabi frequency applied to
the ensemble of atoms has a spatial gradient and for a given atom at distance r from the focal
point, the perceived Rabi frequency is given by:
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Ω(r) = Ω0 exp
(
− r

2

w2

)
, (2.18)

where w is called the waist of the laser and its typical value is w = 170µm [Ldk18]. Furthermore,
the centre of this Gaussian profile can be inaccurate and can change from one shot to another.
This can be modelled as a centred Gaussian distribution N (0, σf ) with a standard deviation
σf = 1µm. Finally, the Rabi frequency the laser produces is not the same at each shot,
considering that its typical variation time is greater than the duration of a shot. This effect can
be modelled by multiplying the value Ω by a Gaussian distribution with mean 1 and standard
deviation σΩ. This deviation is typically of order of a few percent with a lower bound of 1%
achieved with feedback loops. Another source of noise comes from the finite temperature inside
of the vacuum chamber. The temperature’s effect on the dynamics is two-fold:

1. Atom motion. Atoms do not remain perfectly still in the tweezers because of finite
temperature, which is related to their kinetic energy. In the trap plane, this random
motion is usually modelled as a Gaussian law around the trap centre with a deviation
given by σr = σv/ω where ω is the trapping angular frequency. In the orthogonal direction,
according to experiment, the position uncertainty is said to be 4 times stronger. Thus
r = (x, y, z) ∼ N (r0,σ) with σ = (σr, σr, 4σr). This motion affects differently for each
shot the global Hamiltonian in two separate ways: the dipole-dipole interaction strength
depends on the distance between atoms and the Rabi frequency has a spatial gradient. The
first effect can be neglected if the inter-atomic distance R is such that σr ≪ R. The second
effect can be neglected if σr ≪ w where w is the waist of the Gaussian profile. Setting
the trapping angular frequency at ω = 2π × 0.1 MHz gives σr(T ) = 0.12 µm× ( T

60µK )1/2.

2. Doppler shift. Given a temperature T , the atoms move with a velocity v that follows a
centred Gaussian distribution with standard deviation σv(T ) =

√
kBT/m. The motion of

the atoms then alters the lasers’ frequency they "see". Defining the combined wave vector
k⃗eff = k⃗r + k⃗b, the Doppler shift induced on the two-photon detuning δ is distributed
according to a Gaussian of parameters N (0, σδ(T ) = || ⃗keff ||σv(T )). Thus for each new
shot, the lasers are slightly off resonant and the dynamics of the system differs by the
value of the two-photon detuning perceived. The amplitude of these variations must be
compared to the amplitude Ω.

All in all, three types of errors have to be taken into account when looking at the dynamics
of an ensemble of atoms: SPAM errors, finite temperature effects and laser noises. All these
errors are grouped in the Table 2.1

Taking into consideration all these noises is important when trying to estimate the quality
of the hardware in solving the MIS problem on Unit-disk graphs. In the following part, we
explicit the pulses that will be applied on the hardware in order to prepare a good ground-state
to solve MIS.
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SPAM errors

ε False positives Probability to lose an atom in
|g⟩ during sequence.

P1→0 = ε(1−ε)n1−1(1−
ε′)n0 1%− 5%

ε′ False negatives
Probability to recapture an
atom in |e⟩ before expelling it
from the trap.

P0→1 = ε′(1 − ε)n1(1 −
ε′)n0−1 3%− 7%

η Optical pumping Probability to initially not
pump the atom in |g⟩.

(1 − η)N H + η(1 −
η)N−1 ∑

iH/i
0.5%− 5%

Temperature

σδ Doppler shift
Detuning variation due to ran-
dom motion of atoms and
lasers orientation.

sts : δ + N (0, σδ) with
σδ =

√
kBT/m keff

660 kHZ for
T = 60 µK

σr Position Atoms move randomly in traps
due to their temperature.

sts : pos + N (0, σr, 2)
with σr =√
kBT/m/ωtrap

120 nm for
T = 60 µK

Laser spec

σΩ Amp. inaccuracy Variation of the laser ampli-
tude between shots sts : Ω×N (1, σΩ) 1%− 5%

w Amp. waist

Amplitude varies with position
according to a Gaussian enve-
lope maximal at the barycen-
ter

Ω(r) =
Ω exp

(
−||r − r0||2/w2) ∼ 170 µm

σ0 Focus inaccuracy Variation of position of the fo-
cus point r0 of the laser. sts : r0 +N (0, σf , 2) 1 µm

Table 2.1: Main sources of noise in a neutral-atom device.

2.4.4 Constraints on an adiabatic preparation

While the theoretical study in the noiseless case was done using QAOA, the lack of closed-loop
optimisation on the current device makes it quite cumbersome to implement. Furthermore,
continuously modifying over time the Rabi frequency Ω(t) and the detuning δ(t) is a natural
parametrisation of the laser pulse sequence. For completeness, we recall the formulation of the
Ising Hamiltonian that is parameterised by the Rabi frequency Ω(t) and the detuning δ(t):

H =
n∑

i=1

ℏΩ(t)
2 σ̂x

i −
n∑

i=1

ℏδ(t)
2 σ̂z

i +
∑
j<i

C6
|ri − rj |6

n̂in̂j . (2.19)

Recall that by embedding the atoms {ri}i∈|V| onto a triangular grid, we have ensured that
the interaction term of the Hamiltonian (third term) embeds the adjacency matrix of the graph.
This means that when Ω(t) = 0 and δ(t) > 0, the ground-state of H corresponds to the MIS (we
suppose it’s unique for now). The next step is therefore to devise a protocol that prepares the
ground-state of H(Ω = 0, δ > 0). Inspired by the preparation of antiferromagnetic (AFM) states
on square and triangular lattices presented in [SSW+21], we design with Pulser [SGD+22] an
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Figure 2.14: Adiabatic ramp pulse for MIS preparation. Let G be a graph of
n vertices with a unique MIS represented in the computational basis state as |S⟩.
At t = 0, the groundstate of the Hamiltonian is |0⟩⊗n. Then the Rabi frequency
Ω(t) ramps up from 0 to Ωmax, adding excitations to the ground-state on its way.
The value of Ωmax is chosen so as to respect the THS approximation. At t = tf ,
the Hamiltonian is diagonal and the value of the final detuning is chosen to be
δf = dmax

dmax−1UNN , where dmax is the maximum degree of G. This ensures that |S⟩ is
the ground-state of H(t = tf ). Because the pulses are controlled by an Acoustico-
Optic Modulator (AOM), they are subject to the finite bandwidth deformation
effect depicted as the shaded area.

adiabatic ramp sequence. Our motivation for using this protocol is that AFM states correspond
to Maximum Independent Sets on regular lattices. Interestingly in our case, we have pre-
processed the graphs on the same type of regular lattice structure (triangular). The sequence is
represented in Figure 2.14 and is built in the following way:

• linearly ramping up Ω(t) from 0 to Ωmax while maintaining δ(t) at δ0 < 0 for t1,
• linearly ramping up δ(t) from δ0 to δf while maintaining Ω(t) at Ωmax for t2,
• linearly ramping down Ω(t) from Ωmax to 0 while maintaining δ(t) at δf for t3.

Some intuition can be built to understand why we choose this pulse. Suppose we have n
atoms that encode a graph G with a single MIS. At t = 0, the negative detuning δ(0) = δ0 < 0
and Ω(0) = 0 ensures that the ground-state at t = 0 is |0⟩⊗n, which corresponds to the state
obtained after the optical pumping. At final time t = tf , the detuning is now positive (δf > 0)
and Ω(tf ) = 0 which means that the ground-state of H(tf ) is the computational basis state
that corresponds to the MIS if δf is in the correct range of values. Note that if δf is much
greater than the van der Waals interaction between two atoms, then the excitation of the two
atoms becomes the groundstate. We therefore have an easy-to-prepare groundstate at t = 0 and
the wanted MIS encoded in the groundstate of the Hamiltonian at t = tf . The pulse is called
adiabatic because the parameters Ω(t), δ(t) vary slowly enough to ensure that at all times the
quantum state stays in the ground-state of the instantaneous Hamiltonian. If this adiabatic
process is done slowly enough, one should be able to measure the MIS with high probability at
t = tf . In a following chapter, we will define more formally this adiabatic approach and try to
understand in which cases we can expect a quantum speed-up when using this method.

The pulse is characterised by 6 parameters : Ωmax, δ0, δf , t1, t2 and t3. We want to have
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enough power (given by Ω) to overcome the strongest interaction between two no link-sharing
atoms. We also want Ωmax to be below the interaction between two atoms sharing an edge in G
to ensure that we stay in the independent set regime. Because all graphs sit on an underlying
triangular lattice with spacing 5µm, we want Ωmax to be below the nearest-neighbour (NN)
interaction

UE = UNN = C6/56 ≈ 2π × 9MHz

but also want Ωmax to be above the next-nearest neighbour (NNN) interaction given by

UĒ ≤ UNNN = UNN/
√

36 = 2π × 0.3MHz

In the case of a triangular layout, we choose Ωmax in the range

Ωmax ∈ [0.3, 9]× 2πMHz, (2.20)

We also want to choose the range of values for δf such that the MIS is the groundstate of our
Hamiltonian at t = tf . Let S be the MIS of size s represented by the computational basis state
|S⟩ such that H |S⟩ = E(S) |S⟩ when Ω = 0. In that case,

E(S) = −sδf + 1
2
∑

i,j∈S

Ui,j , (2.21)

is the energy associated to the MIS 5. We now consider the change in energy if we add or delete
an excitation i0 from |S⟩. Adding an excitation yields

E(S + i0) = −(s+ 1)δf + 1
2
∑

i,j∈S

Ui,j +
∑
i∈S

Ui,i0 , (2.22)

where the third term encodes the interaction energy between i0 and the other excited atoms of
S. In the case where we delete an excitation from S, the energy function reads

E(S − i0) = −(s− 1)δf + 1
2
∑

i,j∈S

Ui,j −
∑

i∈S,i̸=i0

Ui,i0 . (2.23)

To derive an upper bound we can use the fact that we want to ensure that for any vertex i0 /∈ S,

E(S) < E(S + i0),

which implies therefore that δf < mini0 /∈S (
∑

i∈S Ui,i0). In the worst case, i0 is linked to only
one atom of S and is far away from the others and we obtain the constraint

δf < UNN . (2.24)

To derive a lower bound, we use the fact that we want

∀i0 ∈ S, E(S) < E(S − i0),
5Note that in the hard-sphere approximation, the second term is equal to zero.
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which gives us the constraint

δf > max
i0∈S

 ∑
i∈S,i̸=i0

Ui,i0

 > 0. (2.25)

On a triangular lattice, the worst case is to get 6 next-nearest neighbours, which corresponds
to δf > 6UNNN = 1.8× 2πMHz. The bounds for δf are therefore

δf ∈ [6UNNN , UNN ]. (2.26)

In practice, we want to take the highest value possible of δf in order to favour |S⟩ as much as
possible. For this reason, we decide to set

δf = dmax
dmax + 1UNN , (2.27)

where dmax is the maximum degree of G. For δ0, we take δ0 = −δf .

2.4.5 Improvements using Bayesian optimisation

Pulses on the hardware can actually be shaped more precisely than simple ramping up or
down the lasers in both intensity and frequency. With a bandwidth of few MHz, Acousto-
Optical Modulators (AOM) allow to modulate the Rabi frequency Ω(t) and the detuning δ(t)
at ∼ 100ns scale and run smoother pulses. To leverage this flexibility, we decide to optimise
the adiabatic pulse by parametrising the timescale of the pulse at m different points in time.
Precisely, we divide the total pulse duration T in m equal durations and define 2m control
points {Ω(ti), δ(ti)}i=1···m where ti = T (i− 1)/(m− 1). The total time T can also be used as a
tunable parameter. The control fields are finally derived using interpolation by monotonic cubic
splines which directly maps a set of parameters to implementable pulses (see Fig.2.15). The
parameter space is bounded by the same constraints that we presented in the previous section
but are also hardware-related. For example, the maximum coherence time of the machine or the
available laser power can fix the upper bounds on T and Ω. Given the constraints, we use an
optimisation method called Bayesian optimisation [Fra18]. The Bayesian method seeks optimal
parameters given a cost function C and is known for its robustness against noisy evaluations, its
efficiency already with few iterations and its gradient-free approach. The algorithm consists of
both a statistical model that simulates the unknown landscape function and a decision maker,
the acquisition function which indicates where the next guess will be most likely to provide
useful information [Fra18]. Bayesian optimisation methods have been used in many experimental
set-ups to prepare quantum states with higher-fidelity than naive approaches [MSX+20].

On this specific dataset, we choose m = 5 and the following hardware constraints:

• 0 ≤ Ω/2π ≤ 2 MHz,
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• −5 ≤ δ/2π ≤ 5 MHz,

• Tmin ≤ T ≤ Tmax with Tmin/max = 0.5, 1.25µs.

We perform the optimisation over the reduced family of mapped graphs with |V| < 15, which
we call the training set, so that the optimisation can be done on a classical CPU. We initialise
the optimiser with nr = 30 random guesses using the Latin Hypercube sampling [Loh96] of the
parameter space and set a maximum budget of nc = 300 iterations. The optimised pulse lasts
T = 1.18µs (1.70µs with finite bandwidth) and ends at δf/2π = 4 MHz.

Figure 2.15: Instance of interpolated sequence with m = 5. A Bayesian
optimisation outputs optimal value for the pulse T∗ and the corresponding values of
Ω(t) and δ(t) at m time-points of the pulse ti = T (i− 1)/(m− 1). The values of Ω
are fixed initially and at the end to zero. The dinal control fields are derived using
interpolation by monotonic cubic splines at the optimal points. As these sequences
are also produced by the AOM, they are subject to the same finite bandwidth
deformation effect that we saw for the ramp adiabatic pulse.

The optimised pulse is represented in Figure 2.16. It seems that the area under the Rabi
frequency is the same, while the detuning profile is sharper in the case of the optimised pulse.
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Figure 2.16: Optimised pulse profile using Bayesian optimisation for MIS
preparation on the training dataset (left/right) Pulse before/after applying
limited bandwidth. (line/filled) Ramp and optimised sequence with (top/bottom)
amplitude/detuning.
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2.4.6 Results

Considering the dataset of graphs mapped to a triangular underlying lattice, we compare the
two protocols for the preparation of MIS states; the simulations are performed with the finite
bandwidth effect. We measure the quality of each protocol by looking at the the probability
of measuring the MIS in the final state. The two types of pulses yield high probabilities of
measuring the Maximum Independent Set and the optimised pulse achieves remarkable results,
with a mean 80% of measuring the MIS on the training dataset.

In Fig.2.17(a), the probability to measure a MIS state, P(MIS) after applying the ramp
(blue) or the optimised pulse (red) is shown for each graph. The dataset is split between graphs
used or not for the optimisation, i.e. with |G| < 15 (i) or |G| ≥ 15 (ii). Around the cut between
(i) and (ii), we plot µ± σ for both protocols and for the 3 distributions (left) |V | < 15, (right)
|V | ≥ 15 and (middle) for all graphs in thee dataset. For all graphs, the optimised pulse
increases P(MIS), even for graphs it was not trained on. This counter-intuitive result stems
from the shared topology (density, neighbourhood, mapping) between all graphs of the selected
family. Thus, the optimised pulse is specifically tailored for MIS preparation on UD graphs
lying on a triangular lattice. The improvement obtained with the optimised pulse compared
to the ramp pulse is on average of 19% for all 3 distributions meaning that we are not losing
efficiency by applying the trained pulse on the larger test part of the dataset.

In Fig.2.17(b), we shows the distributions of P(MIS) in a more global form and we also
analyse the effect of measurement errors on those distributions. On the first line, using the
optimised pulse on the trained part instead of the ramp shifts the distribution towards values
of P(MIS) closer to 1 while including the whole dataset adds a smooth tail ending around
p− := 36%. This value is the minimum probability of measuring a MIS on the dataset, meaning
that performing Nshots > log(1− F )/ log(1− p−) ≈ 15.5 assures to measure the MIS with
fidelity F = 99.9%. For the ramp, this leads to Nshots > 31.

On the second line, we modify the distributions by including a posteriori measurement
errors. Those can be summarised by ε = 3% and ε′ = 8%, respectively the false positive and
false negative probabilities. The probability of measuring the bitstring j instead of i is derived
with:

Pj|i =
N∏
k

(1− |i− j|k)− (−1)|i−j|k [(1− ik)ε+ ikε
′] . (2.28)

The measurement errors mean that a prepared MIS can be detected as a MIS+1 if a bit is
flipped from 0 to 1 with ε and can be detected as an IS if a bit is flipped from 1 to 0 with ε′.
The global effect of the SPAM is to compress the distributions while shifting them towards
lower values of P(MIS). Indeed, the random bit-flips tend to bring different distributions closer
together. Interestingly, the improvement from ramp to optimised pulse is less pronounced with
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Figure 2.17: Probability of measuring the MIS in the final state after a
ramp adiabatic pulse and an optimised pulse on the EDF dataset (a)
Histograms of P(MIS) for each graph, sorted by size. The mean value and standard
deviation (dots) are plotted for all graphs with sizes |G| ≤ 15. The same pulses
are then applied to the graphs with a higher number of vertices, achieving decent
results. (b) The violin-plots of P(MIS) show the distribution over the dataset. Gtrain
corresponds to the graphs with size ≤ 15. The mean of each distribution are marked
with black lines (thick = training dataset, thin = whole dataset). We see that the
optimised pulses achieve an overall +20% score compared to the ramp adiabatic
pulse. The impact of SPAM errors is also plotted and reveals that the optimised
pulse yields in practice +10% in preparation quality.
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only a 10% increase on average over the whole dataset. Crudely estimating that the MIS for
each graph consists in exciting half the sites, we can estimate that P(MIS) will be altered by a
factor (1− ε)N/2(1− ε′)N/2. On average on the whole dataset, this quantity is around 53% with
the spam values considered, explaining the factor 2 between the improvement ramp-optimised
with and without SPAM. In a less expected way, it seems that some instances among the bigger
graphs are less prone to SPAM errors.

2.5 Discussion and open problems

In the previous sections, we have demonstrated the capacity of neutral atom technology to
prepare a quantum state that encodes the MIS of unit-disk graphs. First, we developed a
method to map the atoms to positions that replicate as closely as possible the adjacency
matrix of the underlying graph. Then, we implemented a batching method that enables to use
the hardware efficiently regarding SLM calibration. Finally, we have shown two methods to
prepare the ground-state of the Ising Hamiltonian inspired by adiabatic approaches that take
into account the main noise sources of the hardware. Overall, we expect to see encouraging
results on hardware and need to increase the dataset of UD-graphs and their size to gain
intuition on the capacities of neutral-atom based methods. Impressive efforts in this direction
have been achieved in reference [EKC+22] where UD graphs up to sizes |V| = 289 have been
achieved experimentally with neutral atoms. While it is already interesting to see that quantum
methods can be used to address the instances of the UD-MIS problem, it is important to
benchmark these results against classical algorithms to understand to what extent we can hope
for a quantum speed-up using neutral atoms. In the following chapter, we define and compare
classical approaches to solve NP-hard problems like max-k-cut and MIS on UD graphs.

A first challenge in comparing our approach to classical counterparts is the definition of an
algorithmic success metric. Given the heuristic and probabilistic nature of the quantum method,
a reasonable metric is to use the expected approximation ratio R of the output state defined by:

R = ⟨Ĉ⟩
Copt

= ⟨ψf |Ĉ|ψf ⟩
minzC(z) , (2.29)

where |ψf ⟩ is the final quantum state and ⟨Ĉ⟩ is an average of the cost function over the Nsamples

quantum measurements. We used this metric in the first part to showcase the quality of the
QAOA approach in section 2.2. While this metric gives a good indication of the quality of the
overall state in a noiseless setting, in practice SPAM errors can alter samples into poor solutions
and artificially lower the average approximation ratio. Furthermore in practice one would return
the best solution among all samples. We therefore define the truncated approximation ratio Rp

as the approximation ratio when only considering the top p% best shots:

Rp = ⟨Ĉ⟩p
Copt

, (2.30)
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Figure 2.18: Evolution of truncated approximation ratio with p. 1 − Rp

decreases with p towards 0 as only the best part of the samples are taken into
consideration. The highest value p∗ at which it hits 0 is the minimum proportion
of samples to keep to only sample MIS states. Lines represent the mean over
distributions while light areas represent the std.

where

⟨Ĉ⟩p =
⌊ pNsamples ⌋∑

i=1
C(zi), (2.31)

considering that the samples are sorted by cost quality. With this definition, the expected
approximation ratio corresponds to keeping p = 100% of the samples. In Figure 2.18 we plot
the evolution of the truncated approximation ratio for the EDF dataset as a function of p. We
observe that truncating the samples to the best 50% when applying the optimised pulse to the
whole dataset in presence of SPAM errors neglects these sources of error and enables to reach
the same value as R1 = 96.5% in the noiseless case.

Another interesting addition to the approximation ratio is to take into consideration the
execution time of the algorithm. In this case, we can also look at the maximum approximation
ratio defined in [SMA20] as

R(nsamples) ≡ max
i∈{1,...,nsamples}

C(zi)
Copt

. (2.32)

As our quantum approach is a heuristic and can yield sub-optimal results, it is natural to
compare it to classical approximation schemes. In the following chapter, we will dive into more
detail in the classical methods that have been developed to tackle these NP-hard problems.
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Unravelling the complexity of Maximum
Independent Set: insights from statistical
physics, quantum annealing and
approximation schemes

This chapter embarks on a comprehensive exploration of the intricacies surrounding the
challenging problem of Maximum Independent Set (MIS) from both computational
complexity and approximation perspectives. We begin by delving into the theoretical

foundations of MIS as an NP-hard problem in section 3.1 and leverage insights from statistical
physics to gain a deeper understanding of its inherent complexity on random graphs. Thanks
to their better understanding, physicists have proposed a heuristic solver called simulated
annealing that we detail in section 3.2. Next, we delve into the realm of quantum annealing in
Section 3.3 and its potential to address MIS. We present instances where exponential annealing
time is expected, shedding light on the limitations of this quantum computational approach.
Shifting our focus, we investigate the notion of approximation schemes in section 3.5 and their
applicability to MIS on specific types of graphs. Finally, we propose in section 3.6 a method that
utilises neutral atoms to map graphs that are out of reach for efficient classical approximation
schemes. It is part of the paper

• [DHK+23] Dalyac C., Henry LP., Kim M., Ahn J., Henriet L. Exploring the impact
of graph locality for the resolution of MIS with neutral atom devices, arXiv preprint
arXiv:2306.13373. (2023)

Through this interdisciplinary examination of MIS, statistical physics, quantum annealing
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and approximation schemes, this chapter offers insights into the challenges and potential
breakthroughs in solving MIS, ultimately paving the way for future advancements in quantum
computing with neutral atoms.

Computational complexity is a branch of computer science that reveals many fascinating
results about the hardness of solving problems and the types of algorithms that can be used to
do so efficiently. In 1945, the first digital computer named the Electronic Numerical Integrator
and Computer (ENIAC) came to use [Mah88]. The ENIAC was a large, room-sized machine
that used vacuum tubes to perform calculations. It was capable of performing a variety of
complex computations, including ballistics calculations for the US military. Weighing in at 30
tons the machine contained over 18,000 vacuum tubes, 1,500 relays, and hundreds of thousands
of resistors, capacitors and inductors [Wei55]. Functioning thanks to 200 kW of electric power,
the ENIAC regularly caused blackouts in the city of Philadelphia. It was able to add or subtract
5000 times a second, making it a thousand times faster than any other machine at that time:
before the development of the ENIAC, calculations were performed by human “computers"
(typically women) using mechanical calculators. For tasks such as predicting the trajectory of a
shell, these calculations had to take into account variables such as air density, temperature or
wind and a single trajectory took between 20 to 40 hours to compute by hand [GH20]. With
the introduction of ENIAC however, the same calculations took under a minute. As it could
be reprogrammed for many different problems, the ENIAC and its successors were quickly
overwhelmed with demands of calculations from scientists across the world. Physical limits
however came into play: it could take several days to reprogram the ENIAC to run another
algorithm and the reliability was quite poor because of heating fluctuations. Indeed, many
vacuum tubes burned out almost every day, leaving the device nonfunctional about half the
time. In order to make the most out of the up-time of the ENIAC, scientists tried to find out
more efficient algorithms that could solve the calculations faster. For some problems quicker
algorithms were found easily, but other problems seemed to resist and seemed intrinsically
hard. After many unsuccessful attempts, it seemed that finding the most efficient algorithm
for a given problem was not so trivial, and started to bother scientists like Alan Cobham who
mentioned this struggle during a conference in 1964 [Cob65]:

The subject of my talk is perhaps most directly indicated by simply asking two
questions: first, is it harder to multiply than to add? and second, why? ... I (would
like to) show that there is no algorithm for multiplication computationally as simple
as that for addition, and this proves something of a stumbling block.

In this particular context, a significant area of focus involves looking at combinatorial
optimisation problems [PY91]. Instances of these problems are defined with a cost function C

taking a finite number of values defined over n variables. Combinatorial optimisation seeks
to determine whether families of such cost functions can be categorised in a way that allows
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algorithms to find their global minimum through polynomial many steps in n. The dominant
conjecture as of today is that certain families of cost functions exist for which no polynomial-
time algorithm can achieve this objective, a notion commonly referred to as the well-known
P̸=NP conjecture [Coo23]. While P optimisation problems can be solved in polynomial-time,
the two problems we have looked at in the previous chapter, namely max-k-cut and maximum
independent set (MIS), are two problems that are believed to be NP-hard [Spi99, GJ78]. Let
us build some intuition on why these problems are hard to solve. First of all, not all instances
of NP problems are hard: solving MIS for example on path graphs or rooted-tree graphs takes
polynomial time [CV86]. For other families of graphs however like Erdos-Renyi random graphs,
it seems very hard to find solutions in polynomial time [Fri90].

3.1 MIS on random graphs is hard

Let G(n,m) be a graph on n vertices obtained by choosing m edges uniformly at random
(without replacement). We call independence number α(G(n,m)) of the graph the size of its
maximum independent set. If we let d = 2m/n denote the average degree, then it can be shown
that for 1≪ d≪

√
n [Fri90]:

α(G(n,m)) ≃ 2n ln d
d
. (3.1)

Astonishingly, there is no known polynomial algorithm that can find an independent set
of size (1 + ε)n ln(d)/d for any ε > 0 in the worst case. In other words, it seems that it is
computationally difficult to find an independent set that is bigger than half the size of the
MIS. An amusing fact is that a simple greedy algorithm that constructs an inclusion-maximal
independent set over G yields with high probability an independent set of size n ln(d)/d [GM75]
and has never been beaten after almost fifty years of research on the subject. Coja-Oghlan
and Eftymiou have put forward an explanation to this apparent hardness: there is a phase
transition in the structure of the problem that occurs when the size of the independent sets
passes the point n ln(d)/d [COE15]. For a graph G and an integer k ∈ N, we let Sk(G) denote
the set of all independent sets in G that have size exactly k. For each size k, we create an
auxiliary graph where each independent set is represented by a node, and two independent
sets are connected by an edge if their Hamming distance is inferior to a constant (that does
not depend on n). Mathematically, we define for two independent sets A and B the symmetric
difference A∆B := A ∪ B − A ∩ B such that dH(A,B) = |A∆B| where dH is the Hamming
distance between the two ensemble seen as vectors of size n. We say that Sk is γ−connected
if for any two independent sets σA, σB ∈ Sk there exists a path σ1, . . . , σN such that σ1 = σA

and σN = σB and dH(σi, σi+1) ≤ γ for all 1 ≤ i < N . Conversely, we can also define the
inverse notion called shattering, which describes an ensemble Sk that can be partitioned into
unconnected subsets. Precisely,
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Definition 3.1. A set Sk(G(n,m)) shatters if there exists constants γ, ζ > 0 such that with
high probability the set Sk(G(n,m)) admits a partition into subsets such that

1. Each subset contains at most e−γn|Sk(G(n,m))| independent sets
2. If A,B belong to different subsets, then dH(σA, σB) ≥ ζn.

Given these definition, the authors prove the following theorem:

Theorem 3.1 ([COE15]). There exists εd, ε
′
d → 0 and for any d a number Cd > 0 (independent

of n) such that

(i) Sk(G(n,m)) is Cd−connected with high probability for any

k ≤ (1− εd)n ln d
d
, (3.2)

(ii) Sk(G(n,m)) shatters for all k such that

(1 + ε′
d)n ln d

d
≤ k ≤ (2− ε′

d)n ln d
d
. (3.3)

This theorem shows that there is a critical point in k when looking at the structure of
Sk(G(n,m)): if k < n ln d/d, then Sk is well connected and local algorithms like simple Markov
chains are ergodic. However at the critical point k = n ln d/d the auxiliary graph associated to
Sk shatters to exponentially many unconnected subgraphs of exponentially small sizes. While
these results give information on the structure of Sk(G(n,m)), it is also interesting to look at
how much an independent set of size k can be expanded into a bigger independent set. The
authors prove that with high probability, almost all independent sets of size k = (1− ε)n ln d

d

are contained in some bigger independent set of size (1 + ε)n ln d
d , above the transition point.

However, with high probability an independent set of size k = (1 + ε)n ln d
d cannot be expanded

to an independent set of size (1 + γ)k, where γ > εd without first reducing its size below the
critical point k∗ = n ln d

d . All in all, these results demonstrate that before the critical point k∗,
most independent sets can be expanded to sizes k∗ + ε, but with high probability these new
independent sets are not expandable. This means that the cost function landscape associated to
MIS on random graphs is full of local minima around half the size of the MIS, with exponentially
few of them being expandable to higher sizes. We illustrate this property in Figure 3.1.

Statistical physics have had a prominent role in understanding the complexity of the
landscape of random NP-hard problems. The emergence of phase transition in classical
combinatorial optimisation problems naturally connects them to transitions in mean-field
spin glasses [BFK+13], as physical systems defined via random constructions like the Anderson
localisation model [And58] have been studied for decades in physics. Furthermore, optimisation
problems are intimately related to low-temperature statistical physics.
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Figure 3.1: Shattering of the independent sets in random graphs. The
x-axis corresponds to the size of the independent sets of a random graph G. At
small sizes, the independent sets are adjacent and it is quite easy to navigate from
one to another. At the critical size k∗ = |MIS|/2, the independent sets shatter to
an ensemble of exponentially small ensemble of independent sets. Tragically, the
abundant local minima at size k∗ + ε, where ε > 0 are dead-ends in the sense that
they are not expandable to bigger independent sets (these are also called maximal
independent sets as opposed to maximum). These minima make it very difficult to
find the global MIS using local algorithms.

3.2 Simulated annealing: a statistical physics approach to
combinatorial problems

Let us consider an optimisation problem defined by a cost function C over the domain {0, 1}n.
While optimisation consists in finding the optimal configuration z∗ ∈ {0, 1}n, one can introduce
a Boltzmann probability measure on the space of configurations where each configuration z is
assigned a probability pβ defined as

pβ = 1
Z(β)e

−βC(z), whereZ(β) =
∑

z∈{0,1}n

e−βC(z). (3.4)

In this formulation the parameter β plays the role of an inverse temperature and the
partition function Z(β) ensure the normalisation of the probability law. In the low temperature
regime (β −→∞) the probability distribution concentrates on the configurations of minimum
energy which is the relevant limit for optimisation problems. This approach led to the creation,
among other methods, of simulated annealing, a statistical physics-inspired method to solve
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combinatorial optimisation problems. To discover the lowest values of the cost function C, we
first define an annealing schedule of the form

{(β1, N1), (β2, N2), . . . , (βL, NL)}, (3.5)

where βi ∈ [0,+∞[ is the inverse temperatures andNi ∈ N. Starting from a random configuration
z0, the algorithm executes N1 a random-walk in the configuration space {0, 1}n with transition
probabilities respecting the detailed-balance equations with respect to the Boltzmann probability
measure at temperature β1. After the N1 steps, the final state is used as a starting point for the
next cycle of N2 steps at a temperature β2. Usually, the temperature schedule slowly decreases
towards zero and if done slowly enough, ensures that the final state is the optimal solution.
An intuitive way of understanding the idea of the algorithm is that at high temperatures the
random-walk equilibrates across the configuration space, and as the temperature decreases it
focuses on low-cost regions of the space. The finite temperature ensures that with some non-zero
probability a configuration with higher cost can be accepted by the algorithm. This temperature
can be related to a kinetic energy term which can help the system escape local minima in a
thermal hopping fashion. By the end of the annealing schedule, the very low temperature forces
the system to the minimum energy cost. An important remark is that this method is guaranteed
to converge to the optimum if for every temperature βi the random walk, seen as a Markov
chain, converges to its stationary distribution. Unfortunately, there are instances of graphs
for which the number of steps required to converge to the stationary distribution increases
dramatically. For the random Erdos-Renyi graphs G(n,m) that we have studied earlier, it has
been shown that the mixing time of the Markov chain becomes exponential with n when trying
to access independent sets bigger than (1 + εd)n ln d/d [COE15].

In the following section, we will describe quantum annealing, which is the quantum version
of the simulated annealing, where the kinetic term is replaced by a transverse field. The idea is
then to confront both methods and try to understand in which cases we can expect quantum
annealing to have an advantage over simulated (thermal) annealing.

3.3 Adiabatic quantum algorithms

For any given cost function C, we define the associated cost Hamiltonian HC , diagonal in the
computational basis such that

HC |z⟩ = C(z) |z⟩ , (3.6)

In the following, we omit for clarity the bold font for z and simply write a computational
basis state as |z⟩. To perform a quantum annealing scheme, we choose another Hamiltonian
HM , called the mixing Hamiltonian that does not commute with HC . A typical choice for HM

is
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HM = −
n∑

i=1
σ̂x

i , (3.7)

that can be seen as a transverse field acting on the qubit system. A quantum annealing procedure
consists in initialising the system in the ground-state of HM , here |ψ(0)⟩ = |+⟩⊗n and applying
a time-dependent Hamiltonian H(s) according to:

i

T
d

ds
|ψ(s)⟩ = H(s) |ψ(s)⟩ , (3.8)

where H(s) is a linear interpolation between the initial and the final Hamiltonian, s = t/T is
the interpolation parameter where T is the total duration of the evolution. If the adiabatic
condition holds, then for all times s the state |ψ(s)⟩ is close to the instantaneous ground-state.
Therefore at the end of the annealing, |ψ(s = 1)⟩ corresponds to the ground-state of HC and a
measurement of the qubit system returns an optimal solution to the cost function C.

The adiabatic condition

Let |z0(s)⟩ , |z1(s)⟩ be the instantaneous ground-state and first excited state of H(s), with
respective energies E0(s) and E1(s). According to the adiabatic condition [Ami09], a quantum
system remains in its instantaneous ground-state if the following condition on the total time T
is satisfied:

T ≫ 1
ε

max
s∈[0,1]

|⟨z0(s)| d
dsH(s)|z1(s)⟩|

|E0(s)− E1(s)|2 . (3.9)

This condition ensures that the probability of not finding the system in the ground-state is
at most ε2. More formal versions of the adiabatic conditions exist and we refer the interested
reader to the review by Albash and Lidar [AL18], but this version is sufficient to put forward the
important condition for adiabaticity. Note that the the term |⟨z0(s)| d

dsH(s)|z1(s)⟩| can be seen
as the difference in slopes between the ground-state and the first excited state. Because it has
no singular scaling with the system size n [BFK+13], the adiabatic condition of equation (3.9)
can be replaced by the simpler form

T ≫ O(ng−2
min), (3.10)

where gmin = mins∈[0,1] |E0(s)−E1(s)|. This means that the total time of the adiabatic protocol
is governed by the minimum gap gmin and its scaling with n. Typically, we do not expect to find
gmin = 0 for non-degenerate Hamiltonians which would correspond to a level crossing between
the ground-state and the first excited state during an adiabatic evolution. The intuition behind
this can be built by looking at the adiabatic process on a simple two-level generic Hamiltonian
that depends on s

H(s) =
(

a(s) c(s) + id(s)
c(s)− id(s) b(s)

)
, (3.11)
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where a, b, c and d are real-valued functions. In this case, the level crossing corresponds to
having a(s) = b(s) = x and simultaneously c(s) = d(s) = 0. The parameterised curve
(a(s), b(s), c(s), d(s)) in R4 does not possess any specific characteristics or constraints that would
cause it to cross (x, x, 0, 0). On the other hand, if H(s) commutes with σ̂x, then a(s) = b(s)
and d(s) = 0, and it seems more probable that for some s, c(s) = 0 which would correspond
to level-crossing. These arguments can be generalised to Hamiltonians acting on n qubits and
the authors of [FGGS00a] argue that in the absence of symmetries, levels typically do not cross
during an adiabatic evolution. Although levels do not cross, the anti-crossing phenomenon can
create exponentially small gaps that make the evolution time impractically large.

Avoided level-crossing and adiabaticity

Also known as the von Neumann-Wigner theorem, an avoided level-crossing corresponds to
levels getting extremely close but not equal during an evolution under an external perturbation.
The following Hamiltonian describes the phenomenon on a reduced two-level system. Let

H =
(
b(s− s∗) γ

γ −b(s− s∗)

)
, (3.12)

where γ represents an external perturbation. After diagonalising H, the spectral gap reads
g(s) = 2

√
γ2 + b2(s− s∗)2 which means that even when the diagonal values are equal the

spectral gap is non zero as gmin = g(s∗) = 2γ.
In the following section, we will explicit instances of graphs for which solving the MIS

with a typical adiabatic path yields exponentially closing gaps. Before doing so, we would
like to conclude by recalling the main differences between classical and quantum annealing
schemes. The main difference comes from the resource that is used to escape local minima;
finite temperature in the classical system enables thermal hopping over energy barriers while
quantum tunnelling allows the system to go through energy barriers. Therefore, the height and
width of typical barriers in the energy landscape of a combinatorial optimisation problem affect
the quality of each method. We illustrate in Figure 3.2 the optimal landscape for each method.

3.4 Hard instances of MIS for quantum adiabatic algorithms

In this section, we build hard instances of the MIS problem by adapting the proof from Farhi
et al. [FGG+09] where they build hard instances of 3SAT for which the spectral gap vanishes
exponentially by the end of the adiabatic path.

We propose a family of random bipartite graphs. In this construction, we build a bipartite
graph G = (V, E) where V = A∪B, with |A| = |B| = n

2 , A∩B = ∅ and E = {(a, b), a ∈ A, b ∈ B}.
To begin with, we initially connect nodes from A and B as an even cycle graph. This insures
that the only two solution MIS are all nodes in A or all nodes in B. From the n(n− 1) available
edges, we select each one randomly with probability p = logn/n (grey edges in Figure 3.3).
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Figure 3.2: Walls and traps for annealing schemes. Simulated annealing
and quantum annealing can escape local minima in different fashion and their
efficiency depends on the cost function landscape. Precisely, the height and width of
a barrier between a local minima and a global solution affect differently simulated
thermal annealing or quantum annealing. Simulated annealing works fine if the
cost barriers are short. If the cost barrier is too high, the probability of accepting
the configuration on top of the barrier is very low or requires high temperatures
and does not converge. On the other hand, quantum annealing tunnels through
energy barriers. It works great if the energy barrier is thin, and can tunnel through
high-valued energy peaks.
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Figure 3.3: An instance of a random bipartite graph. While by nature A and
B have the same total out-degree, the distribution over the nodes is different:
dA = {3, 3, 3, 3} while dB = {2, 3, 4, 3}. In order to have a non-degenerate ground-
state for HC , we add an artificial El link between nodes 0 and 2, insuring that B is
the ground-state and A is right above. Taking El = 1

2∆ ensures that A is the first
excited state of HC (lower than B with one less node).
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We consider a cost Hamiltonian of the following form

H̃c = −∆
n∑

i=1
σ̂z

i + U
∑
i<j

Aijn̂in̂j , (3.13)

where ∆ > 0 and Aij are the elements of the adjacency matrix of the graph G and n̂i = (I+σ̂z)/2.
We then add an artificial El link between nodes 0 and 2, insuring that B is the ground-state
and A is the non-degenerate first excited state. Taking El = 1

2∆ ensures that A is lower in
energy than B with one less node. We obtain the cost Hamiltonian

Hc = H̃c + h = −∆
n∑

i=1
σ̂z

i + U
∑
i<j

Aijn̂in̂j + Eln̂0n̂1. (3.14)

Furthermore, we choose the following mixing Hamiltonian

HM = −Ω
n∑

i=1
σ̂x

i . (3.15)

Note that Ω and ∆ are positive constants which physically correspond respectively to the Rabi
frequency and the detuning in a quantum Ising Hamiltonian. The ground-state of HM is the
equal superposition of all vectors of the computational basis representing independent sets in
the graph. Then, the idea is to slowly vary from HM to HC using the adiabatic evolution:

H(s) = (1− s)HM + sHc, s ∈ [0, 1], (3.16)

where s controls the rate at which H(s) varies.

Location of the minimum spectral gap

We show in this subsection the existence of an exponentially closing gap at the end of the
adiabatic path. Recall that

H(s) = (1− s)HM + sHc = s

[1− s
s

HM +Hc

]
. (3.17)

When s→ 1, we can view HM as a perturbation term of H(s). We will use perturbation
theory to estimate the location of the minimum spectral gap.

Let z be a bit-string of size n. In the perturbation approximation, the energy associated to
z can be re-written as:

Ez(s) = s

[
E(0)

z + 1− s
s

E(1)
z + (1− s)2

s2 E(2)
z + . . .

]
, (3.18)

where

E(0)
z = ⟨z|Hc|z⟩ = Ez, (3.19)

E(1)
z = ⟨z|HM |z⟩ = 0, (3.20)

E(2)
z =

∑
y ̸=z

|⟨y|HM |z⟩|2

E
(0)
z − E(0)

y

, (3.21)
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and |y⟩ is a computational basis state.
Note that all odd powers of the expansion are null: this is because ⟨y|HM |z⟩ ≠ 0 if and only

if y and z are at a Hamming distance of 1. For an odd power expansion term, there is therefore
always a term in the product that is equal to zero. We can therefore re-write the perturbation
approximation of the energy associated to z, defining λ := 1−s

s :

Ez(s) = s
∞∑

m=0
λ2mE(2m)

z , (3.22)

Furthermore, we only need to explicit the second order to find the location of the minimum
spectral gap. By re-writing σ̂(i)

x |z⟩ = |z ⊕ ei⟩ where |ei⟩ is the i−th computational basis state,
we can write the second order correction as:

E(2)
z =

∑
y ̸=z

|⟨y|HM |z⟩|2

E
(0)
z − E(0)

y

,

= |Ω|2
n∑

i=1

|⟨z ⊕ ei|σ(i)
x |z⟩|2

E
(0)
z − ⟨z ⊕ ei|Hc|z ⊕ ei⟩

,

= |Ω|2
n∑

i=1

1
E

(0)
z − ⟨z ⊕ ei|Hc|z ⊕ ei⟩

.

(3.23)

The two MIS solutions on either even vertices or the odd vertices will respectively be called
the upper state and the lower state according to their place in the energy spectrum of HC . We
will denote by zU and zL the corresponding bitstrings (zU = 1010...0 and zL = 0101.....1). We
can write the energy difference between these two states as a function of s:

EU (s)− EL(s) = s

[
El + (1− s)2

s2 (E(2)
U − E(2)

L )
]
. (3.24)

We can then estimate the second order difference

E
(2)
U − E(2)

L = |Ω|2
n∑

i=1

1
E

(0)
U − ⟨zU ⊕ ei|Hc|zU ⊕ ei⟩

+ |Ω|2
n∑

i=1

1
E

(0)
L − ⟨zL ⊕ ei|Hc|zL ⊕ ei⟩

.

(3.25)

We can now rewrite Equation (3.25) as

E
(2)
U − E(2)

L = |Ω|2
n∑

i=1

1
E

(0)
U − ⟨zU ⊕ ei|Hc + Eln0n2|zU ⊕ ei⟩

+ 1
E

(0)
U − ⟨zL ⊕ ei|Hc + Eln0n2|zL ⊕ ei⟩

.

(3.26)

For i > 2, the link El is conserved and the energy difference can be written, for i ∈ J3, nK:
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E
(2)
U − E(2)

L = |Ω|2
n∑

i=3

1
E

(0)
U − ⟨zU ⊕ ei|Hc|zU ⊕ ei⟩

− 1
E

(0)
L − ⟨zL ⊕ ei|Hc|zL ⊕ ei⟩

, (3.27)

= |Ω|2
n∑

i=3

1
E

(0)
U − ⟨zU ⊕ ei|Hc|zU ⊕ ei⟩

− 1
E

(0)
L − ⟨zL ⊕ ei+1 (mod n)|Hc|zL ⊕ ei+1 (mod n)⟩

,

(3.28)

= |Ω|2
n∑

i odd

1
E

(0)
U − ⟨zU ⊕ ei|Hc|zU ⊕ ei⟩

− 1
E

(0)
L − ⟨zL ⊕ ei+1 (mod n)|Hc|zL ⊕ ei+1 (mod n)⟩

.

(3.29)

We only keep the terms in the sum that increase the Hamming weight of the bitstring,
which corresponds to adding a node from the opposite class. In that case,

⟨zU ⊕ ei|Hc|zU ⊕ ei⟩ = (n+ 1)∆ + U × di + El, (3.30)

and
⟨zL ⊕ ei|Hc|zL ⊕ ei⟩ = (n+ 1)∆ + U × di, (3.31)

where di is the degree of node i. Recall that:

E
(0)
L = n∆ and E

(0)
U = n∆ + El. (3.32)

and we can simplify the equation to

E
(2)
U − E(2)

L = |Ω|2
n∑

i odd

1
−∆− U × di

− 1
∆− U × di+1

. (3.33)

By construction, the degree of each node is a random variable that follows a binomial
distribution B(n, logn/n) with E(di) = O(logn) and variance V(di) = logn(1 − log n

n ) =
O(logn).

Useful results

We recall a few useful results that will be used in the estimation of the energy difference.
Let X be a random variable following a binomial distribution X = B(n, p).

E
( 1
X

)
≃ 1

E(X) + 1
E(X)3V(x), and (3.34)

E(Xc) =
c∑

k=0
S(c, k)nkpk, (3.35)

where S(c, k) is the Stirling numbers of the second kind and nk is the k-th falling power of n
defined as

nk = n(n− 1)...(n− k + 1). (3.36)
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Back to estimating the second order difference

We recall that the second order difference is given by eq.(3.33):

E
(2)
U − E(2)

L = |Ω|2
n∑

i odd

1
−∆ + U × di+1

− 1
−∆ + U × di

. (3.37)

By symmetry of the degree distribution, the expectation value of the difference is zero. We
now estimate the variance of the difference. In order to do this, we are interested in the quantity

V
( 1
di

)
= E

( 1
d2

i

)
− E

( 1
di

)2
. (3.38)

On the one hand, we have

E
( 1
Udi −∆

)
= 1
UE(di)−∆ + U2 1

(UE(di)−∆)3V(di), (3.39)

≃ 1
logn + 1

log2 n
, (3.40)

using equation 3.34, and on the other hand

E
( 1
d2

i

)
≃ 1

E(d2
i )

+ 1
E(d2

i )3V(d2
i ), (3.41)

and
E(d2

i ) = n(n− 1)p2 + np = (logn)2 + logn, (3.42)

and

V(d2
i ) = −2(logn)3, (3.43)

= O((logn)3), (3.44)

and therefore
E
( 1
d2

i

)
= 1

(logn)2 + 1
(logn)2 . (3.45)

Finally, we find that:

V
( 1
di

)
= 2

(logn)2 −
1

(logn)2 −
2

(logn)3 −
1

(logn)4 , (3.46)

= O

( 1
log2 n

)
. (3.47)

Now, the variance of the sum is of order
√
n×V( 1

di
) = O(

√
n

log2 n
). We can know find s∗ such

that:

62



CHAPTER 3. COMPLEXITY OF MIS

EU (s∗)− EL(s∗) = 0, (3.48)

⇐⇒ s∗
[
(E(0)

U − E(0)
L ) + (1− s∗)2

s∗2 (E(2)
U − E(2)

L )
]

= 0, (3.49)

⇐⇒ 1
s∗ = 1±

√
Θ( ∆2

|Ω|2
log2 n√

n
), (3.50)

⇐⇒ s∗ = 1
1 + Θ(∆ log2 n

|Ω|n )
, (3.51)

where we keep the solution such that s∗ < 1.
We see that for theses instances, in the same fashion as in Ref. [FGGS00b], the position of

the spectral gap goes to 1 as n→∞. Let us remind that the energy difference expression can
be written as

EUL(s) = s
∞∑

m=0
λ2mE

(2m)
UL . (3.52)

where E(2m)
UL := E

(2m)
U − E(2m)

L . Because the two solutions U and L are at a Hamming distance
of order n, the non-zero term appears at the nth order correction as ⟨U |Hn

M |L⟩ ≠ 0.
We can write the Hamiltonian at the n−th order correction, reduced to the two levels |U⟩

and |L⟩ as

H(s) =
(

E
2 (s− s∗) λn

λn E
2 (s− s∗)

)
, (3.53)

where E = EU − EL. By diagonalisation of the matrix, we see that the instantaneous gap is

EUL(s) = 2

√
λ2n + E2

4 (s− s∗), (3.54)

and when s = s∗, the energy anti-crossing correction is

E12(s∗) = 2λn, (3.55)

which is exponentially small in n.
To summarise, we built random instances of MIS that reveal an interesting mechanism that

can happen in quantum annealing, resembling Anderson localisation on the hypercube [AKR10].
Indeed, the avoided level crossing becomes exponentially small mainly because the two solutions
have been artificially planted at the antipodes of the hypercube at a Hamming distance of order
n. Therefore, they can only be connected by a transverse field matrix element of order |Ω|n,
which becomes exponentially small in the thermodynamic limit n→∞.

Another structure of the cost function landscape that can give rise to an exponentially
closing gap has been explored in Ref [AC09]. In their work, the authors build a graph instance
where there is a single global narrow minimum, and a secondary local minimum that has higher
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Cost
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𝒪(n)
𝒪(n)

Figure 3.4: Anderson localisation makes quantum annealing fail. This
visualisation is inspired from [BFK+13]. We represent the cost function of two
problems that put forward Anderson localisation using two different mechanisms
that can create anti-crossing. The configurations are represented as point linked to
their neighbours in Hamming distance. On the left, we depict our built instances
for which two global solutions are far apart in Hamming distance. On the right,
the authors of Ref [AC09] build an instance with a local minimum which is wider
than the global minimum. Both these cost functions explicit an exponential closing
of the spectral gap close to s = 1 between localised states.

energy but is much wider (see Figure 3.4). In this case, the denominator in the perturbation
equation 3.21 is much smaller for the secondary minimum and therefore under the effect of
the transverse field the energy level of the secondary minimum is lowered faster than the
global one and a crossing eventually appears. For both types of instances, the position of the
minimal spectral gap goes to s = 1 asymptotically and has therefore been called a perturbative
anti-crossing in the literature [AKR10, Dic11] between two states that are almost classical.
While it exhibits an exponentially closing gap, these instances are toy-models which were
carefully crafted to showcase these possible anti-crossings. Our findings are in accordance with
a very interesting recent result [CCL+23] that also proves exponential closing gaps close the end
of the adiabatic path. In this paper, the authors put forward a mechanism of (de)localisation in
the configuration space. They show that the QAA performance is determined by (de)localisation
of the low-energy eigenstates right above the MIS in configuration space. They show that
when low-energy eigenstates are delocalised over the configuration space, QAA can achieve
a quadratic speedup over a wide class of SA and parallel tempering algorithms. While these
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results are promising, it is still an open-question to know if these phenomenons appear in real
data. Indeed, the problems we built are not representative of general combinatorial optimisation
problems: typical hard instances of exact cover for example (the problem depicted in [AKR10])
have been shown to have exponentially-many solutions [KS10] for which the non-degenerate
perturbation theory is not valid. Some quantum Monte-Carlo numerical results have rather
shown the appearance of exponentially closing gaps at the middle of the adiabatic path [YKS10].
All in all, it is interesting to see that the structure of the (classical) energy landscape associated
to a combinatorial optimisation problem affects the quality of a classical or quantum algorithm.
All NP-complete problems seem to share the characteristic of an energy landscape with many
local minima, which explains the difficulty to solve them exactly. However, the number of
configurations around a local minima can change from one NP-complete problem to another,
as well as the steepness of the energy around a local minimum can depend on the minimum
itself [BFK+13]. Different NP-Complete problems can have very different energy landscapes
that have been studied in detail thanks to developments in the analysis of classical spin
glasses [MPV87, BMW00, MZ02]. The structure of the cost landscape is also a good indicator
of the hardness in finding approximate solutions. In the random Erdos-Renyi graphs that we
studied in Section 3.1, the shattering of the independent sets at half the size of the MIS explained
why it is so hard to find even an approximate MIS of size |MIS|

2 + ε, ε > 0. In the following
section, we will leave the study of the energy landscape and dive into the theory of approximate
solutions with a priori guarantees. In this fascinating topic, researchers have discovered that
although finding an exact solution is NP-hard, some problems can be approximated much more
easily than other ones. This includes approximate solutions to the MIS on Unit-disk graphs.

3.5 Approximation schemes for MIS

Unit-disk graphs are a class of graphs which are inherently local in the sense that two nodes v
and w are connected by an edge if and only if the distance between the two nodes is inferior to
a given threshold. These graphs are part of the larger family of intersection graphs, that appear
in concrete problems such as wireless networking [Gil61], computational biology [XB06], map
labelling [EHJ+10] or to maximise yield when cutting chips from a large chip wafer [HM85]. An
example of a broadcasting instance is depicted in Figure 3.5. Although these graphs seem to
present a little more structure than the random graphs we looked at previously, solving MIS
on unit-disk graphs is also NP−hard [CCJ90]. Because it is strongly believed that it is not
possible to find a polynomial time algorithm to solve optimally NP-hard problems, operational
researchers have been strongly motivated in finding approximate solutions. The idea is to find
a good trade-off between time complexity and solution quality. The simulated annealing or
quantum annealing that we saw previously are part of this family as well as other well-known
schemes such as polyhedral methods [CCZ09]. The approximation algorithms of interest in this

65



CHAPTER 3. COMPLEXITY OF MIS

Figure 3.5: Unit-disk graphs represent well broadcasting problems. Suppose
that an ensemble of identical radio transmitters over French cities have the same
radius of transmission. They can be naturally modelled by a unit-disk graph,
where each tower is represented by a vertex and two vertices are connected if their
respective towers transmit on an overlapping territory. Then, a typical reason one
would want to solve the MIS problem on this graph is that two transmitters with
close or equal frequencies can interfere with one another, hence the necessity to
assign non-interfering frequencies to overlapping transmitting towers. Because of
the limited amount of bandwidth space, some towers have to be assigned the same
or close frequencies. The MIS of a graph of towers indicate the maximum number
of towers that can have close or equal given frequency (red points).

section are called polynomial approximation schemes with a priori performance guarantees.

Polynomial-time approximation schemes

One example of such an approximation algorithm is called the Polynomial Time Approximation
Scheme (PTAS) that provides near-optimal solutions to complex optimisation problems in
polynomial time. A more formal definition [Vaz10] is:

Definition 3.2 (PTAS). Let Π be an NP-hard optimisation problem with objective function fΠ.
OPT will denote the objective function value of an optimal solution to instance I. Algorithm A
is an approximation scheme for Π if on input (I, c), where I is an instance of Π and c > 0 is
an error parameter, it outputs a solution s such that:

1. fΠ(I, s) ≤ (1 + c) ·OPT if Π is a minimisation problem.

2. fΠ(I, s) ≥ (1− c) ·OPT if Π is a maximisation problem.
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A will be said to be a PTAS if for each fixed c > 0, its running time is bounded by a polynomial
in the size of instance I.

The great advantage of this method is that it returns feasible solutions with an a priori
guarantee on the quality of the solution, in polynomial time. Most examples of PTAS appear
for problems that have an underlying structure over which a divide-and-conquer approach is
applied. This approach consists in cutting the problem in smaller pieces, solving locally the
independent parts and then concatenating the results to find a global feasible solution. The local
solving is done exactly, which can take exponential time but on a sub-instance of size m≪ n. A
significant characteristic of a PTAS is that its running time A can depend arbitrarily on c > 0.
In some cases, this dependence is exponential. In Appendix A.4, we describe in detail how a
PTAS can be used to tackle the MIS problem on Unit-disk graphs, using the shifting strategy.
A shifting lemma bounds the error of the shifting strategy and therefore offers a guarantee for
the approximation ratio that depends on the required precision.

Another type of PTAS exists for solving approximately (weighted) UD-MIS called the
breadth-first search sphere based scheme [NHK05]. The authors of Ref [SMA20] draw inspiration
from this method to build a classical heuristic of local nature. Precisely, a vertex u ∈ V of
the graph is selected at random, and given a parameter d the subgraph Sd(u) of radius d
is built. The MIS of Sd(u) is calculated and the subgraph and its neighbours are deleted. A
random vertex is selected in the new graph and the steps are repeated until the graph is empty.
This method, although it does not guarantee an approximation ratio and therefore cannot be
considered as a PTAS, has nonetheless the advantage of processing each node exactly once and
more importantly resembles finite quantum correlation distances that appear during a quantum
annealing scheme [LdLB+18]. The authors of [SMA20] estimated the spin-spin correlation length
for various sizes and noise levels. In a noiseless setting, the longest the annealing time, the
longer the correlation length gets through the system and hence a better solution can be found.
In the case of noise however, the decoherence introduces defaults in the correlation between
distant atoms, thereby limiting the median size of the correlation. Therefore for each noise
level there exists an optimal annealing time, independent of the size of the graph under study.
This allows to extrapolate without simulating the expected approximation ratio of quantum
annealing on UD-MIS for large sized graphs. Compared to their heuristic, they find a break-even
point for quantum advantage estimated to 8,000 atoms for a time budget of 2 seconds, or 1,000
- 1,200 atoms for a time budge of 0.2 seconds, given the actual repetition rate of a neutral atom
quantum processor and that the noise level can be improved by a factor 10.

More general graphs are harder to approximate

Interestingly, the quality of the approximation depends on the type of graph under study: for
Unit-Disk graphs, we have seen previously that classical algorithms can leverage the locality of
the edges to efficiently estimate an approximation of the MIS. In the case of planar graphs,
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another PTAS exists that also guarantees high approximation ratios. In the same flavour as for
the UD case, it relies on dividing the graph into subgraphs with k−outerplanar forms [Bak94].

Exp-APX
Poly-APX

Log-APX
APX

PTAS
F-PTAS

MIS-MISΔ
UD-MIS

PLANAR-MIS

Figure 3.6: Standard approximability classes of NP-hard problems (under
the assumption P ̸= NP). While solving MIS exactly is NP-Hard, finding an
approximate solution of useful quality can be easy, depending on the nature of the
graph at hand. The complexity class NPO corresponds to the class of optimisation
problems whose underlying decision problem is in NP. A polynomial-time approx-
imation scheme (PTAS) is a family of ε−parameterised algorithms that output
approximate optimal solutions that are ε > 0 away from the exact solution in
polynomial time. When the family of algorithms is also polynomial in the parameter
ϵ, it is a Full-PTAS (F-PTAS) and is very efficient. The APX class corresponds
to problems for which a polynomial-time algorithm can only achieve a constant
approximation ratio. For MIS, if the graph is Unit-Disk or planar, there exists a
PTAS. In our work, we propose a polynomial embedding of general bounded-MIS
(∆-MIS) problems which are known to be in APX. ∆-MIS is even APX-Complete,
meaning that no PTAS exists for it unless P = NP. In the case of a general
graph with no underlying structure, it was proven that for any ε > 0, MIS is
inapproximable within approximation ratio nε−1, corresponding to the complexity
class poly-APX.

However, more general graphs such as bounded-degree graphs do not present enough
structure for classical algorithms to ε−approximate maximum independent sets in polynomial
time. In the case of a graph with bounded-degree ∆, finding an approximation solution to
the MIS problem is known to be APX-complete [PY91]. In other words, this means that the
best approximation ratio that can be achieved by a classical algorithm is constant; to the
best of our knowledge this approximation ratio is r = 5

∆+3 [BF94]. We expect that this ratio
cannot be improved without adding an exponential time overhead for a classical algorithm. The
approximation guaranteed by a polynomial-time approximation scheme worsens in the case of
a general graph. It was proven that for any ε > 0, MIS is inapproximable within approximation
ratio nε−1, unless P = NP [Zuc06]. A summary of the approximability classes of MIS on these
specific classes of graphs is shown in Figure 3.6. The key take-away is that the presence of
structure (locality, planarity, bounded-degree) in a graph can provide enough information for a
classical algorithm to find good approximations in polynomial time.
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Figure 3.7: Solving MIS on unit-ball graphs with Rydberg atoms. The
graph K+

3,3 represented in (a) is the smallest example of a unit-ball graph for
which the Greedy algorithm fails. This graph is embedded with a 3D array of
atoms. (b.) The adiabatic evolution path corresponds to a linear detuning ∆
from ∆i = 2π × 0.7MHz to ∆f , while the Rabi frequency Ω is ramps up to
Ω0 = 2π × 0.7MHz. (c.) The experiment is tested by changing the final detuning
∆f . (d.)The microstates probability histogram is presented for ∆f = 2π × 1.5MHz.
The SPAM error P (g|r) = 0.15 and P (r|g) = 0.05 is corrected. The MIS solution
probability is improved up to PMIS = 0.25, in stark contrast to the other microstates.

The difference in the approximability of these problems motivates the need for efficient
hardware embedding of graphs which present less geometrical structure than UD or planar
graphs. Unit-disk graphs can be extended to higher dimension where they are referred to as
unit-ball graphs of dimension d. It can be shown that any n−vertex graph can be embedded as
a unit-ball graph of dimension d = n− 1[Mae84]. The dimension of the embedding is therefore
a parameter of hardness for MIS approximation, since for d = 2 there exists a PTAS but for
d = n− 1 it is inapproximable within approximation ratio nε−1 for any ε > 0. A natural step
in finding a hard approximation zone is therefore to increase the dimension d, which we do in
the following section by embedding unit-ball graphs where d = 3.
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3.6 Breaking the approximation barrier: mapping
harder-to-approximate graphs on a neutral atom device

3.6.1 Unit-ball graphs

A common strategy employed to find an approximate solution to the MIS problem is to use a
greedy algorithm. This iterative method involves local optimal choices at each step and yields a
valid solution in polynomial time. For example, a greedy algorithm on MIS selects a random
vertex in G at each step, deletes its neighbours and repeats this step until the graph is empty.
By construction this method guarantees that the selected vertices form an independent set.
The greedy algorithm therefore provides an 1/n−approximation to MIS as in the worst-case
it returns a single vertex. Surprisingly, the inapproximability result for general MIS below
nε−1 implies that the greedy algorithm is an optimal approximation algorithm [Hås99]. It is
also proven to be optimal for bounded-degree graphs [HR97]. An improvement to the greedy
algorithm is to select at each step the vertex with the lowest degree as it deletes less neighbouring
vertices. As the greedy algorithm runs in polynomial time and MIS is an NP-complete problem,
there exists a class of graphs for which the greedy algorithm fails completely. The smallest graph
of this class [Mar17] is K+

3,3 and is represented in Figure 3.7. It corresponds to the bipartite
graph with 3 vertices per class, called K3,3, augmented with edges such that one class forms a
clique (in our figure it corresponds to vertices (4, 5, 6)) and a single vertex (0) is connected to the
other class (1, 2, 3). In this case, the degree-informed greedy algorithms fails. Interestingly, K+

3,3
is a unit-ball graph, for which we give an embedding on the right of Figure 3.7. We therefore
embed K+

3,3 experimentally in 3D using an array of atoms and follow a quantum annealing
scheme to prepare its MIS.

We remind that the reader that for Rydberg atoms, the Ising Hamiltonian reads

Ĥθ(r; t) = Ĥc(t; θ) + ĤvdW (r) = ℏ
N∑

i=1

(Ωθ(t)
2 σ̂i

x − δθ(t)n̂i

)
+
∑
j<i

U(||ri − rj ||)n̂in̂j (3.56)

The control part is composed of two parameterized control fields, Ωθ and δθ and the atoms
positions r set the distance-dependent interaction part U(d) ∝ d−6. The trial adiabatic evolution
path is tuning the detuning δθ(t) linearly from δi to δf , while the Rabi frequency Ω is fixed
to Ω0. The experiment is tested by changing the final detuning ∆f . The full 27 microstates
probability histogram is presented for ∆f = 2π × 1.5MHz. The SPAM error P (g|r) = 0.15
and P (r|g) = 0.05 is corrected. The MIS solution probability is improved up to PMIS = 0.25,
in stark contrast with the other microstates. These very encouraging results show that it is
possible to prepare the MIS of K+

33 using a quantum annealing scheme on a 3D array of neutral
atoms. On the classical side, K+

33 is the smallest example for which a greedy algorithm, optimal
in approximation, fails. Other classical methods however known as slicing [vL06] can return
the optimal solution in polynomial time on such instances. We therefore need a way to embed
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Figure 3.8: Mapping a non-UD graph with Rydberg atoms using 3D
quantum wires. The graph on the left is the smallest example of a non-Unit-Disk
graph (otherwise the vertex 2 would be connected to 1 and 3). This graph is
embedded in a 3D array of atoms (right). The red atoms correspond to the original
graph vertices, while the chains of black atoms encode the edges of the original
graph. The procedure enables to map any general graph, including non-UD and
non-planar graphs with a bounded-degree up to ∆ = 6.

classes of graphs for which the inapproximability is stronger. This is the case for bounded-degree
graphs and we will demonstrate how such graphs can be embedded on a neutral atom device in
the following section.

3.6.2 Bounded-degree graphs

Recent and previous works propose to represent non-local edges of graphs with chains of
ancillary atoms [PWZ+18, KKH+21], in 2D and 3D respectively. Building upon this idea, we
present an efficient and automatic method to represent any graph of degree at most 6 with a
3D array of atoms. An illustration of our method is given in Figure 3.8. It runs in polynomial
time and numerical simulations suggest a low overhead in the number of added ancillary atoms
(linear).

We define the drawing of a graph as the realisation or layout of a graph in a 3D space,
where no two vertices overlap and no vertex-edge intersection occurs unless its incidence
exists in the original graph. We say that a drawing is crossing-free if no two edges cross. A
growing interest emerged in 3D drawings of graphs for circuit designs [LR86] or for information
visualisation [WF94, WM08]. In our case, we focus on 3D orthogonal grid drawings (OGD) of
a graph G = (V,E) for which the vertices of G are represented as distinct points of the grid
Z3, while all edges E = (u, v) ∈ V 2 are restricted to being drawn on lines parallel to one of
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the three axes. This restriction implies that only graphs with maximum degree six can have
such a drawing; given a vertex at coordinates (x, y, z) ∈ Z3, the only authorised directions for
an edge are (x± 1, y ± 1, z ± 1). It is proven that every graph of bounded-degree ∆ admits a
crossing-free OGD if ∆ ≤ 6 :

Theorem 3.2 ([ESW96]). Let G be a graph with n vertices and maximum degree ∆ ≤ 6. Then
G has a three-dimensional orthogonal grid drawing such that no pair of edges cross.

The general idea behind our method is to construct an OGD for the original graph and
replace the edges by chains of ancillary atoms. The advantage of an OGD is that two distinct
edges only intersect at common endpoints, thereby preventing ancillary atoms from interacting
if they are not part of the same chain. Ideally, we would like to find an OGD that minimises the
edge lengths in order to have as little ancillary atoms as possible. Unsurprisingly, it is NP-hard
to find an OGD that minimises the total length of the edges [ESW96]. While many different
algorithms have been proposed to optimise the total volume [BJSW02] or the average number
of bends per edge [PT97] of an OGD, we present a simple heuristic to construct an OGD with
a small total length of edges.

Given a general ∆-bounded graph G = (V,E) with ∆ ≤ 6, we place the vertices of V in R3

using the Fruchterman-Reingold algorithm (FR) [FR91b] that runs efficiently in O(|V |3) steps.
Note that other algorithms could be used at this step [STT81, HGK10, Shn92] but FR yielded
the best results in our simulations. The vertices are then moved to the closest grid point in Z3,
insuring that no two vertices get the same coordinates.

We then use optimal path-finding algorithms [D+59, HNR68] to find the shortest route
between two vertices, restricted to the underlying grid. The resulting path is transformed into a
chain of ancillary vertices. We previously ensure that two distinct edges are separated by at least
a 2-grid-point distance, in order to avoid any unwanted interaction between ancillary atoms of
two distinct chains. Finally, if the path length is odd, we add an ancillary vertex at each Z3

coordinate of the path. If the path is of even length p, we add p+ 1 evenly spaced ancillary
vertices along the path. After this procedure, one obtains an augmented graph G+ = (V+, E+)
of size |V+| = N+.

By representing all vertices with atoms, one can encode a Maximum Independent Set of G
in the ground state of an Ising Hamiltonian on Rydberg atoms [BBL16b] over the augmented
graph G+ :

H+ =
N+∑
j=1

ℏΩ
2 σx

j −
N+∑
j=1

ℏ
2(δ + δj)σz

j +
∑
j<i

C6
|ri − rj |6

ninj . (3.57)

where δj represents the local detuning applied to each atom and ni = (σz
i + I)/2.

In Figure 3.9, we show explicitly on a single augmented edge how one can choose the values
of local detuning on ancillary atoms to ensure that the MIS of the edge corresponds to the
groundstate of the Hamiltonian H+.
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Figure 3.9: Local detuning on ancillary atoms. In the top, an edge between
vertex 1 and 2 is augmented with two ancillary atoms 3 and 4. With no local
detuning, the ground-state of the augmented edge corresponds to exciting {1, 2}.
This however is inconsistent in the initial graph (1 and 2 cannot be simultaneously
in the MIS). We therefore add local detuning to all ancillary atoms to ensure that
the ground-state corresponds to the anti-ferromagnetic state. (b) Energy diagram
of the spectrum as a function of the local detuning δi applied to the ancillary atoms.
A red atom corresponds to an excited state. The independence condition of the
original link is respected if 0.05× U ≤ δi ≤ 0.95× U , where U is the interaction
between two neighbouring atoms. In these values of local detuning, the ground-state
corresponds to the anti-ferromagnetic state.

In this example, there are 3 MISs in the augmented graph : {1, 4}, {2, 3} which are acceptable
solutions, but also {1, 2} which does not correspond to a MIS of the original graph. With a
reasonable global detuning δ > 0, this latter state is actually the ground state of the chain.
In order to guarantee that {1, 4}, {2, 3} correspond to the ground-states of the Hamiltonian
associated to the augmented path, we apply an additional local detuning δi to each ancillary
atom with δi = J/2, where U = C6/r

6 is the interaction energy between two closest atoms of
the augmented graph.

Keeping 0.5× U ≤ δi ≤ 0.95× U ensures that the MIS returned by the algorithm preserves
initial constraints.

We estimate in this proof the lower and upper bound for the local detuning on the two
ancillary atoms of an augmented edge. Let Ei1i3i4i2 be the energy associated to the bit-string
i1i3i4i2, where ik ∈ {0, 1} and k is the label of the atom (1, 2 are the main atoms, and 3, 4 the
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ancillas. We want to ensure the following inequalities:E1010 < E1001

E1010 < E0110
. (3.58)

We show calculations in the case δi = 0 for original atoms (1 and 2). We therefore have that−2δ − δi + 1
26U < −2δ + 1

36U,

−2δ − δi + 1
26U < −2(δ + δi) + U,

⇐⇒ δi ∈ [( 1
26 −

1
36 )× U, (1− 1

26 )× U ].

(3.59)

Taking δi = U/2 for all ancillary atoms is a safe spot. In the general case, we determine for
each edge the corresponding value for the detuning that will be applied on all the ancillary
atoms of that chain. This ensures that the ground state of the augmented Hamiltonian encodes
a Maximum Independent Set of the original graph.

Overhead

The procedure described above enables us to replicate the connectivity of any input graph G of
maximum degree six in three dimensions, at the expense of adding ancillary vertices. In order
to assess the overhead incurred by this embedding, we test the procedure of general graphs
of maximum degree 6. For each size, 20 Erdos-Renyi graphs are generated and the size N+ of
the augmented graph is recorded. Our simulations seem to indicate a linear overhead in the
number of ancillary atoms, as illustrated in Figure 3.10 where we show the number of vertices
in the augmented graph N+ with respect to the size of the original graph N . Our method
would be impractical if the number of ancillary atoms exploded or if the size of the edges grew
exponentially with respect to the graph size. Indeed, the Lieb-Robinson bounds [LR72a] would
imply that information could not propagate efficiently through the ancillary paths. Luckily, the
necessary volume to draw the OGD of a graph was proven to be polynomially bounded [ESW96].
Precisely, every N -vertex degree-6 graph admits an OGD in O(N3/2) volume and that bound
is best possible for some degree-6 graphs. The authors give an explicit algorithm that places all
vertices on a O(N)×O(N) grid in a 2D plane and draws each edge with at most 16 bends. The
growing number of atoms that can be experimentally trapped in recent experimental setups [?]
is an encouraging sign that the overhead in the number of atoms required in our method is
reasonable.

We described here the versatility of neutral atom platforms at solving hard graph problems.
Previous implementations of MIS solutions using atoms trapped in optical tweezers were either
limited to UD graphs or using a large number of ancillary qubits [NLW+23]. We have successfully
illustrated that this approach can be extended to a larger class of graphs, by solving the MIS
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Figure 3.10: Scaling of additional atoms in our method. For each size, 20
random Erdos-Renyi graphs of maximum degree 6 are generated. Our method
is then applied and we plot the mean size N+ of the augmented graphs and the
standard deviation of the sample. The power-law fit suggests a sub-linear growth
of the required additional atoms.

problem on a minimal non-unit disk hard graph using a 3D array of atoms. The results showcase
the validity of the approach for unit-ball graphs.

Furthermore, we described a method embedding the MIS problem over non-local graphs
as Unit-Ball graphs in 3D space. This procedure is guaranteed to run in a time growing
polynomially with the input graph size, and can be used, in particular, to encode bounded-
degree graphs of maximum degree 6, for which no PTAS exists unless P = NP. As neutral
atom platforms develop and benefit from additional hardware features, we expect our method
to become more and more relevant. In particular, the validity of the OGD relies on the ancillary
chains being in an antiferromagnetic state, which can be enforced using local detunings. A
very intriguing and exciting prospect is to qualify both theoretically and experimentally the
capabilities of quantum devices in approximately solving the MIS on this classes of hard graphs
like the bounded-degree graphs. We believe that understanding from a theoretical perspective
the capabilities of quantum approaches in finding guaranteed performance ratio for NP-complete
problems is an important question in the quest for practical quantum advantage.

3.7 Perspective on many-body dynamics for combinatorial
optimisation problems

Seeking quantum advantage on a combinatorial optimisation problem is a high risk/reward
mission. While the applications are numerous and concern real-world practical problems, no
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one has convincingly proven a speed-up on combinatorial task with a quantum computer in
practice. First, current quantum computers are obviously too small to map real-world hard
problems: with a maximum of few hundreds of qubits individually mapped to a single variable,
the problem can usually be solved by classical means. In the past years, the hope for quantum
advantage on these tasks relied on the fact that at some point the classical computer has to
brute-force the solution which corresponds to unstructured search. Grover’s algorithm [Gro96]
which promises a quadratic speed-up for unstructured search could therefore be used as a
sub-routine to accelerate the computation. In practice however achieving Grover speed-up is very
unlikely. With fault-tolerant quantum computers for example, an asymptotic quadratic speed-up
will suffer from constant overheads considering the slow clock-time, lack of parallelisability
and error-correction overhead compared to classical computers [DPCB23]. Indeed, studies have
estimated that an error-corrected quantum computer with quadratic speed-up will surpass
classical computers on combinatorial problems only if:

(i) the calculation time is an entire day with 105 logical qubits [CKM19]

(ii) the calculation time is one entire year with 512 logical qubits [SBC+20].

In other words, the time required for the quadratic speed-up to be faster in practice
than a classical computer is on timescale much bigger than expected. These studies take
into account the large overhead in error-correction schemes and the fact that a single CPU
can run a billion operation per second. Nonetheless, these estimations become much more
optimistic if the polynomial degree of the speed-up increases. For example, a quartic (T

1
4 )

speed-up would yield a quantum advantage after just 5 hours of calculations (in comparison
to a year for quadratic speed-up) [SBC+20]. Following this direction, a recent paper has
presented rigorous super-Grover speed-ups for combinatorial optimisation problems [DPCB23],
paving the way towards more reachable quantum advantage. Excitingly, the authors use
a twisted version of a quantum annealing algorithm to prove their speed-up. As of today,
the most promising schemes to achieve a practical speed-up rely on variations of annealing
procedures [EKC+22, CL21, YONL19], a very natural type of quantum evolution to be run on
neutral atom quantum processors. Known to have long coherence times and low overheads,
neutral atom platforms have successfully explored many-body dynamics that are unreachable for
classical simulations including quantum quenches [Lab16], topological exotic phases [SLK+21]
or continuous-symmetry breaking phenomenon [CBB+23]. Note that even a digital quantum
computer using Trotter-Suzuki decomposition would require itself 106 qubits and an hour run-
time to replicate just 100 steps of the dynamic on 256 atoms of a neutral atom device [SBC+20].
In my opinion, neutral atoms platforms have demonstrated clear advantage in simulating
quantum dynamics of spin glasses in excited regimes and we should therefore pursue efforts
in this direction to find traces for quantum speed-ups on combinatorial tasks. Recent works
assess the use of such quantum effects like many-body localisation [WYK22] or quantum critical
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dynamics [KRL+23] to achieve quantum speed-ups; I believe these are very exciting research
directions.
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Part II

Quantum supervised machine
learning with Rydberg atoms
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A gentle introduction to quantum
machine learning (QML)

Machine learning is the art and science of making computers learn how to solve problems
instead of being explicitly programmed by learning on data [SP21]. The well-known
problem of hand-written digit classification is a good example to showcase the capacity

of machine learning algorithms to learn patterns and extract features from complex data. In
this problem, a dataset consisting of hand-written digits and their associated value are given to
the algorithm. The raw input consists of pixel values representing the intensity of each pixel,
and traditional rule-based algorithms would struggle to define precise rules for classifying each
possible variation of a digit. Machine learning however can learn and discern relevant features
that differentiate one digit from another without relying on explicit classification rules.

Mathematically, given an input domain X = {x1, . . . , xM} and an output domain Y, the
dataset consists of M point D = {(x1, y1), . . . , (xM , yM )}. Given a new unclassified input x ∈ X ,
the goal is to predict the corresponding output y ∈ Y. The idea to do so is to build a model
family {f(x, θ) : X × Θ :→ Y}, parameterised by θ, and pick the model that minimises the
error of the model over the dataset. If we consider X and Y as Euclidean spaces, a typical error
function that is widely used is the empirical risk that reads

E(θ) = 1
M

M∑
i=1
∥f(xi, θ)− yi∥2, (4.1)

and represents the mean of the sum of the square of errors between the predictions f(xi, θ)
and the corresponding target value yi. The training of the model minimises the empirical risk
by using gradient descent techniques [DHS11, Lem12]. Once the model is trained it can be
tested to predict the value of unseen datapoints in a process called generalisation. The ability
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to generalise is crucial because the ultimate purpose of a machine learning model is to make
predictions on unseen data, rather than merely memorising the training examples. Ideally,
a well-generalised model will exhibit similar performance on both the training and test sets,
indicating that it has learned the underlying patterns and can make accurate predictions on
new data.

The field of ML attracted increasing attention with the development of deep learning, where
artificial neural networks with multiple layers demonstrated the capacity to learn hierarchical
representations of data, allowing for more complex and abstract feature extraction. In 2017, the
introduction of transformers [VSP+17] revolutionised the field of natural language processing
(NLP): unlike traditional sequential models, transformers use a self-attention mechanism that
allows them to capture long-range dependencies in a sequence of data. Transformers have become
the backbone of many state-of-the-art models in NLP, including the popular GPT, BERT
and Llama models [Ope23, DCLT19, TLI+23]. All of these impressive tools have impacted
a diversity of fields including image and speech recognition [KSH17, THC23], autonomous
systems [BDTD+16, ABC+20], recommendation systems [CAS16] or protein folding [JEP+21].

The field of experimental quantum physics has also been transformed by machine learning
and the most impressive example took place in Germany in 2017. At that time, quantum
optics researcher Mario Krenn and his team were banging their heads against the blackboard
as they had been trying to come up with an experimental set-up to observe high-dimensional
multipartite-entanglement. After several weeks, Krenn developed a machine learning model
named Melvin [KMF+16] that was given access to a toolbox containing typical optical devices
that are accessible in a quantum optics lab: beam splitters, phase shifters, wave plates, holograms,
dove prisms and more complex devices such as effective single-photon filters. Melvin was free
to place any elements on the virtual optical table, at the end of which the resulting state
was calculated and compared to the target state. Considering approximately 120 different
optical devices in the toolbox and space for 15 of them on the optical table, the number
of possible set-ups amounted to 12015 ≃ 1031 different configurations. Astonishingly, Melvin
identified within a few hours a protocol that seemed able to prepare the state. A couple of
years later, Melvin’s protocol was refined and realised experimentally, showing in practice the
long-sought-after high-dimensional entangled state [EMKZ18]. Melvin is an impressive example
of how machine learning can help quantum scientists and as such fits the definition of quantum
ML.

Quantum ML (QML) is an umbrella term that groups many different approaches, depending
on the way one decides to mix quantum with classical. An interesting distinction was proposed
in Ref [SP21], where the authors separate the field in four according to the nature of the data
being examined and the nature of the device processing the data. If we focus on the type of
device and data that is used in QML, there are actually four different sub-fields that can be
distinguished.
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1. (CC) The first one corresponds to classical data being analysed with a classical device
(CC class) but with a quantum-inspired method. Examples of QML that fit this class are
applications of tensor networks for neural network training [GPC18] and also (amusingly)
quantum algorithms that have been dequantised, i.e. that can be implemented efficiently
classically with conserved speed-ups [ADBL19].

2. (QQ) On the other side of the spectrum, we can define QML tasks where the data
is itself quantum and analysed with a quantum device (QQ class). We could imagine
quantum simulations preparing ground-states and, feeding those quantum states to a
quantum computer, use specific quantum methods to analyse them [CCL19a]. Note that
this approach requires to store and extract a quantum state, which is a very tricky task
due to decoherence and as such QQ ML is seen as a long-term perspective.

3. (QC) The third class corresponds to analysing quantum states using classical ML tools.
With the recent emergence of available quantum hardware, scientists can prepare ground-
states of interest but are often limited in the number of measurements they can do of the
system. ML scientists have come up with a scheme to nonetheless predict many properties
of a quantum system from very few measurements [HKP20]. Furthermore, experimentalists
can also face hardware constraints that limit the exploration of phase space. Once again,
classical ML techniques have been successful in predicting from few samples the whole
phase space, putting forward interesting transitions locations for physicists [HKT+21].

4. (CQ) Finally, the class of interest in this thesis corresponds to classical data being
analysed with a quantum computer (CQ class). In the following chapters, our definition of
QML will be focused on classical data being processed on a quantum device. Historically,
it was of theoretical interest to understand if quantum computing could speed-up ML
sub-routines in the same fashion than Shor’s algorithm speeds-up factorisation [Sho94].
Dominated by a complexity theory mindset, scientists worked to prove quadratic or
exponential speed-up on linear algebra routines, the most famous one being the Harrow-
Hassidim-Lloyd (HHL) algorithm [HHL09] that promises an exponential speed-up over
classical methods for solving a specific linear system of equations. Precisely, provided
a N -linear system is sparse and has a low condition number κ and that the user is
interested in the result of a scalar measurement on the solution vector, the HHL algorithm
has a run-time of O(logNκ2) compared to the classical run-time O(Nκ2), offering an
exponential speedup. Although the exponential speed-up is impressive, this algorithm
has been criticised over the assumptions made on data access and the matrix being
“well-behaved" [Aar15].
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While the first wave of QML was dominated by a complexity theory point of view, the
development and availability of Noisy-Intermediate Scale Quantum (NISQ) devices in the past
years shifted the focus of QML towards a hands-on approach. Indeed, scientists started focusing
on the capabilities of quantum devices to act as ML models themselves rather than being
sub-routines accelerating classical ML methods. Very interesting results have emerged in the
understanding of the types of problems that can be embedded on NISQ devices by taking into
consideration hardware capabilities and limitations. Examples on IBM, Google, Xanadu and
other devices have attracted quite some attention.

In the following chapter, we will explore in the same fashion the capabilities of Rydberg-atom
QPUs in QML tasks. Then, we will try to understand in our final chapter where resides the
advantage of quantum expressivity.

CC CQ

QC QQ

Data	processing	device

Da
ta
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•Tensor	Networks	for	NN	training	

•De-quantised	quantum	algorithms

•Quantum	Convolutional	NN•Predicting	ground-state	properties	

•Predicting	phase	transitions

•FTQC	acceleration	of	ML	models	

•NISQ	devices	as	ML	models Our	work

Figure 4.1: The four quadrants of quantum machine learning (QML).
Depending on the device generating the data and the one treating it, QML can
mean very different things. In this thesis, we focus on using a neutral-atom quantum
processor as a machine learning model to treat classical data. The goal is to
understand what types of ML problems can be embedded on the device and where
and why we can expect some quantum advantage.
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Graph Machine Learning with Neutral
atom QPUs

As we have seen in the first part of this thesis, it is possible to replicate to some extent
the adjacency matrix of a graph with the interaction matrix of Rydberg atoms. Graphs
are not only suited to represent combinatorial problems, but they are also a natural

representation of data in many domains of sciences. They naturally describe relationships in
social networks [Fre00], characterise interactions of proteins and genes [TvDEF09] and can also
represent the structure of sentences in linguistics [S+01]. Many impactful applications arise
from efficient graph-based methods, such as predicting potential edges in recommendation
systems [SKR01], detecting frauds in communication networks [POKB20], or for protein function
prediction [MOB20].

While graphs offer a rich structure for manipulating complex data, it is unfortunately
difficult to apply linear algebra tools directly to these kinds of datasets: for example two
graphs might have the same adjacency matrix but different labels on the nodes and on the
edges. The high level of freedom that graph-structured data presents therefore comes with
a resource-consuming data analysis. An important research topic is to therefore find good
graph embedding techniques [GF18], which refer to finding a representation of a graph or
of its individual nodes in a vector space. By finding node representatives which preserve
different types of relational information from the graph, node embedding can be used for
prediction tasks at the node-level, such as node classification [BCM11] or link prediction [LNK03].
Embeddings can also be done at the graph-level to distinguish graphs of different nature: using
the exponentially large Hilbert space accessible to a quantum computer in order to generate
graph embeddings is an appealing idea, with many proposals and theoretical studies over the
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past few years [SK19, HCT+19, SBI+20, KSR+21]. With the recent advances in geometric
quantum machine learning, works have shown how graph-structured data could be encoded into
quantum states and manipulated for classification, clustering or regression tasks. These efforts
started with quantum convolutional neural networks [CCL19b, ZGL21], and attempts were
made to translate classical Graph Neural Network (GNN) architectures to Quantum Neural
Networks (QNN) [VML+19a]. Theoretical studies of geometrical quantum machine learning
and their invariant properties include [LSS+22a, SCY+23], the latter studying applications
to weighted graphs. More recently, in-depth theoretical studies of equivariant and geometric
quantum machine learning aspects were presented [RBN+22, NSB+22, SLSC22].

In this chapter, we will first show formally how a neutral-atom QPU can be seen as a
learning model for graph-based data (section 5.1). Then, we will explore in section 5.2 the
expressivity of the feature map created by our learning model. Finally, we will implement our
method on hardware on a practical classification task of protein toxicity in section 5.3. This
chapter is summarised in the paper

• [ADL+23] Dalyac, C., Albrecht, B., Leclerc, L., Ortiz-Gutiérrez, L., Thabet, S., D’Arcangelo,
M., ... Henriet, L. (2023). Quantum feature maps for graph machine learning on a neutral
atom quantum processor. Physical Review A, 107(4), 042615.

5.1 A parameterised Hamiltonian evolution is a learning model

In the introduction to Part II, we defined a machine learning model as a family of parameterised
function {f(x, θ) : X ×Θ :→ Y}. A variational analog quantum processing scheme can easily
fit this definition, if we look at it in the following way:

Starting from a graph G reproduced in the array of tweezers with qubits in state |0⟩, we
apply a parameterized laser pulse onto the atoms in order to generate a wavefunction |ψG⟩ of
the form

|ψG⟩ = U(G; t) |0⟩⊗|G|, (5.1)

where we define the time-evolution operator U(G; t) as

U(G; t) := T
[
exp

(
−i/ℏ

∫ t

s=0
ĤG(s)ds

)]
. (5.2)

The time-evolution operator U(G; t) depends on the data graph G and on the parametrisation
of ĤG(s) over time. Then, a quantum observable Ô is measured and the function

f(G, θ) = ⟨ψG | Ô |ψG⟩ , (5.3)

defines a deterministic quantum learning model in the sense of Ref [Sch21]. We will call quantum
feature map the feature map that is yielded by our quantum learning model for graph-structured
data. Note that we can use this feature map as an input for building more complex feature
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Figure 5.1: Two graphs that are locally equivalent but non-isomorphic.
For each graph, the nodes can be separated in two classes; the border ones (circle
nodes) and the centre ones (square nodes). Interestingly, while it is easy to see that
these two graphs are not isomorphic, nodes have the same neighbourhood in both
graphs. Indeed, in each graph the circle nodes have degree two and square nodes
have degree three. Moreover, circle nodes are adjacent to a circle node and a square
node, and each square node is adjacent to another square node and two circle nodes.
All-in-all, they are indistinguishable by their local structure but non-isomorphic.

maps, as we can decide for example to add post-processing blocks by looking at the distribution
of an observable, an idea that will be explored in a future section. As a first step, we explore in
the following section the expressive power of our graph quantum feature map.

5.2 Insights on the expressive power of the graph quantum
feature map

The graph quantum feature map already shows interesting properties when associated with
single-body observables ⟨Ôi⟩ for i ∈ {1, . . . , |G|}. The measured values are not only affected by
local graph properties such as node degrees, but also by more global ones such as the presence
of cycles. This enrichment provided by the quantum dynamics contrasts with the locality of
node representations in many classical graph machine learning schemes. This key feature comes
from the fact that the quantum dynamics of a given spin model is significantly influenced
beyond short times by the complete structure of the graph as the quantum correlation length
grows with time [LR72b, TGS+19].

We illustrate experimentally this behaviour for two graphs G1 and G2 that are represented
in Figure 5.1. In these graphs, nodes can be separated into two equivalence classes according to
their neighbourhood: border nodes B have one degree-3 neighbour and one degree-2 neighbour,
while centre nodes C have two degree-2 neighbours and one degree-3 neighbour. We will see
that the presence of interactions will enable us to discriminate between G1 and G2 by comparing
the dynamics of local observables on border and centre nodes.

These graphs are quite famous as they are one of the smallest example of non-isomorphic
graphs for which the Weisfeiler-Lehman (WL) test [WL68] fails. The WL test is a polynomial-
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time graph isomorphism algorithm that works most of the time. It is known for its local
nature, as it directly relies on the neighbourhood of each vertex in the graph. Precisely, the
algorithm starts by assigning each vertex a unique label based on its immediate neighbourhood,
considering the vertices it is directly connected to. Then, in subsequent iterations, the labels
are refined by incorporating information from the labels of the neighbouring vertices and their
respective neighbourhoods as well. This iterative process continues until either a distinguishing
feature is found or the labels stabilise 1. By focusing on the local neighbourhood information, the
Weisfeiler-Lehman test captures the local structure of the graphs being compared. It exploits
the idea that if two graphs are isomorphic, their vertices and their respective neighbourhoods
should exhibit similar label patterns throughout the iterations. Conversely, if the graphs are not
isomorphic at some point in the iterations the labels will capture distinguishing characteristics
that reveal the structural differences. The WL test is also related to standard message-passing
neural networks (MPNN) [GSR+17] architectures where information is only propagated along
the graphs edges. In particular, these successful models [MLLK22] have been proven to be at
most as powerful in distinguishing graph structures [XHLJ19]. While the WL test is quite
powerful, it fails on the two graphs we represent in Figure 5.1. It is therefore interesting to
see what happens when embedding these graphs with atoms and letting them evolve under a
quantum Ising Hamiltonian.

Experiment

The first step is to embed the graphs on the hardware. To do so, we prepare a tweezers
array with a nearest-neighbour (NN) distance of rNN = 5.3µm. Once the atoms are trapped
and re-arranged to respect the layout of the graphs, we apply the Ising Hamiltonian with a
constant pulse with Ω/2π = 1.0 MHz and δ/2π = 0.7 MHz. We then measure the mean Rydberg
excitation ⟨ni⟩ for varying pulse duration t ∈ [0, 2.5]µs (Figure 5.2). Because the dynamics only
depend on being a centre or border node, we limit our study to one representative of each class,
for each graph. As illustrated in Figure 5.2, a qualitative difference in the dynamics of both
graph appears after t ∼ 0.25µs.

Precisely, the excitation of the border nodes is initially increasing with indistinguishable
behaviour between the two graphs before a distinction appears. The mean density for the border
qubits of G1 exhibits damped oscillations around ⟨nB⟩ ∼ 0.15 with period of the order of 0.5µs
while for G2 it exhibits flatter oscillations centred around 0.25 with period around 1µs. We can
observe a comparable distinction between the two graphs for the centre qubits.

When restricted to the mean-field approximation, the qubit dynamics on either graphs are
far more similar as illustrated in the insets of Figure 5.2. We still observe distinct dynamics
between the two graphs, which is due to next nearest neighbours (NNN) interactions. If we
neglected those NNN interactions, the mean-field equations governing the dynamics of each

1An excellent visualisation and introduction can be found in Ref [BBCV21].
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Figure 5.2: Different Rydberg dynamics for locally-equivalent nodes. We
measure the mean Rydberg excitation ⟨ni⟩ for varying pulse duration t ∈ [0, 2.5]µs.
Because the dynamics only depend on being a centre or border node, we limit our
study to one representative of each class, for each graph. Precisely, we plot the
evolution of the mean occupation ⟨ni⟩ of the two regions B (left) and C (right) for
both graphs G1 (red) and G2 (blue). The dots represent the experimental results
while the full curves show noisy simulation results. Horizontal error bars account
for the sequence-trigger uncertainty (≈ 40ns) while the vertical ones account for the
sampling noise. The insets show the corresponding mean field dynamics (dashed)
with only NN (black) or full (coloured) interactions.

qubit would only depend on its direct neighbourhood and as a result the whole dynamics would
solely depend on the local structure of the graph. In that case, the qubits dynamics for G1 and
G2 obey the exact same equations.

To conclude this analysis, we have seen experimentally that evaluating local observables in
the presence of interactions enables to discriminate between two graphs that are nonetheless
locally equivalent. We can also quantify these difference by looking at a global observable.

Global observable

In the following part, we choose the general observable

Ô =
6∑

i=1
n̂i, (5.4)

to quantify the difference in the dynamics between the two graphs. In order to do so, we first
compute the histogram Pi of number of excitations observed in each shot on graph Gi. The
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Figure 5.3: Evolution of the Jensen-Shannon divergence of a global observ-
able. The experimental values (dot) are compared to the noisy simulation (plain).
At each point in time, JS(P1,P2) is computed using the excitation distributions
P1/2 = {Pn(G1/2)}n=0...6 obtained either numerically (bar) or experimentally (dot).
The inset depicts P1/2 obtained at t ≈ 0.57 µs which yields the maximum value
JSmax ≈ 0.28 reached.

difference between those graphs is then estimated via the Jensen-Shannon divergence JS of
their respective histograms [BH13], a commonly-used distance measure between probability
distributions, which is defined as

JS(P1,P2) = H

(P1 + P2
2

)
− H(P1) +H(P2)

2 . (5.5)

Here H(P) = −
∑

k pk log pk is the Shannon entropy of P = (p1, . . . p|G|). The Jensen-
Shannon divergence is minimal JS(P,P) = 0 if P1 = P2 = P and is maximal if P1 and P2

have disjoint supports, with JS(P1,P2) = log 2. This is illustrated in
Figure 5.3 where the largest difference JSmax ≈ 0.28 is achieved (roughly 40% of the

maximal value) at a time t ∼ 0.57µs. At this duration, the distribution for G1 is sharply peaked
at n = 0 while that of G2 is wider and peaks around n = 2, as illustrated in the inset. We
note that the local observables ⟨nj⟩j∈B/C exhibit maximal deviation at this same duration t,
indicating direct correspondence between measurements at the node and graph levels. On a
more general aspect, the dependency of local observables evaluated after the application of the
quantum feature map on global graph structures have been considered in quantum-enhanced
versions of GNNs [VML+19b, MMC22, TFH22].

Noise model

Despite the precise calibration of the control devices which enable to monitor quantities such as
the SLM pattern spacing or the pulse shapes, several experimental imperfections may alter the
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data measured on the experiment. Among the many different noise sources that were detailed
in Part I, the most affecting ones are statistical sampling noise, SPAM errors and decoherence.

First, due to the nature of the quantum state and the limited budget of shots, measurements
are subject to sampling noise. For instance, on average, each of the 25 experimental points on
Figure 5.3 is obtained using 600 shots and the uncertainty related to this effect (vertical error
bars) is estimated using the Jackknife resampling method [ST95].

The finite sampling is also inherently flawed by several physical processes like atoms
thermal motion, background-gas collisions or Rydberg state finite lifetime, whose effects can
all be encompassed as first approximation into the two SPAM parameters ε and ε′. On our
device, we measure ε ≈ 3% and ε′ ≈ 8%; thus as an example, we can compute P1001|0101 =
εε′(1− ε)(1− ε′) ≈ 0.2%. Those detection errors can deeply modify the measured excitation
distributions, with a noticeable effect shown on Fig. 5.3 at t = 0 where the simulated ⟨nj⟩ does
not start at 0 despite |ψ(t = 0)⟩ = |0 . . . 0⟩.

Additional errors can also lead to decoherence in the system [DLBL+18], affecting the atom
dynamics in ways costly to emulate. In order to replicate the experimental data presented
in Figure 5.3 we resort to an effective decoherence model in the form of solving the Master
equation with a relaxation rate of 2π × 0.06 MHz [BVC+13]. This value was obtained by fitting
with the above model damped Rabi oscillations measured on the same device. Thus, reaching
similar behaviour within error bars between numerically simulated and experimentally obtained
JS(P1,P2) was achieved with no free parameter.

In the following section, we recall the link between a feature map and a kernel and expose
many variants of classical graph kernels. This helps to understand the particularities of our
quantum evolution kernel (QEK).

5.3 From a quantum feature map to a kernel: the Quantum
evolution kernel (QEK)

5.3.1 Classification in ML using feature maps and kernels methods

Suppose that we are given a dataset of M points {(xi, yi)}i=1,...,M where xi ∈ R2 and yi ∈
{−1,+1} are two distinct classes represented in Figure 5.4. Because this dataset is distributed
in concentric circles, blue and red datapoints are not linearly separable in R2.

To make the data linearly separable, a good feature map is

ϕ(z) = (z1, z2, z
2
1 + z2

2), (5.6)

where z = (z1, z2) ∈ R2 is a data-point. This feature map makes the data linearly separable
in R3. The goal of our classification task now consists in defining regions of the feature space
that correspond to different classes. In the case where the data is linearly separable, we can
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Figure 5.4: A non-linear separable dataset can be linearly separated when
mapped to a higher dimensional space. A dataset of 2 two-dimensional
concentric circles is impossible to separate by a linear decision boundary (right):
using the feature map ϕ(z) = (z1, z2, z

2
1 + z2

2) transforms the data into a linear
separable dataset (left).

use a linear discriminant for which the decision boundary between the different regions is a
hyperplane. The simplest representation for a linear discriminant function is given by

y(x) = wTϕ(x) + b, (5.7)

where w is a weight vector of size 2 and b is sometimes called a bias, an offset that we set to
zero by supposing that the data is centred. Training the model consists in finding the vector
w∗ that minimises a regularised sum-of-squares error function given by

J(w) = 1
2M

M∑
i=1
|wTϕ(xi)− yi|2 + λ

2 ||w||
2, (5.8)

= 1
2M ||Φw− y||2 + λ

2 ||w||
2, (5.9)

where Φ is a matrix of size M × 2 with each row i corresponds to ϕ(xi)T and y is the vector of
all labels yi. Note that the first term corresponds to the Mean Square Error (MSE) while the
second term represents the ridge regularisation and prevents the weights from exploding. The
magnitude of the regularisation is controlled by a hyperparameter λ > 0.

Here, an analytic solution to the problem is given by setting the gradient of J(w) with
respect to w equal to zero and reads

w∗ = (ΦTΦ + λI)−1ΦTy. (5.10)

The dual formulation of this problem is given by expressing w as a linear combination of
the data points w = ΦTα. The minimisation on w become a minimisation on α and can be
expressed as

α∗ = argmin
α

1
M
||ΦΦTα− y||2 + λαTΦΦTα. (5.11)

(5.12)
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In this dual formulation, the solution to the problem reads

α∗ = (ΦΦT + λI)−1y. (5.13)

Note that the dual solution only depends on the matrix of scalar products between feature
vectors ΦΦT , whereas the covariance matrix ΦTΦ appears in the primal version. We can now
define the Gram matrix

K := ΦΦT , (5.14)

which is an M × M symmetric matrix with elements Kij = k(xi, xj) = ⟨ϕ(xi), ϕ(xj)⟩. In
machine learning, k is called a kernel function and is a similarity measure between data points.
The kernel function is designed in such a way that it corresponds to the inner product of the
data points in the high-dimensional feature space. Formally, it is defined as following:

Definition 5.1 ([Sch21]). Given a data domain X , a kernel is a positive semi-definite bivariate
function k : X × X −→ R. Positive semi-definiteness means that for any dataset of points
D = {x1, . . . , xM} ⊂ X , the Gram matrix K with entries

Km,m′ = k(m,m′), (5.15)

is positive semi-definite. As a consequence, k(m,m′) ≥ 0 and k(m,m′) = k(m,m′)∗.

The interesting property of kernel functions is that they can be used directly in the linear
regression model instead of the explicit feature vectors. Indeed, we can now re-write the linear
regression model (equation 5.7, taking b = 0) as

y(x) = w∗Tϕ(x) = α∗TΦϕ(x) = k(x)T (K + λI)−1y. (5.16)

where k(x) = (k(x, x0), . . . , k(x, xM )). As such, the dual formulation allows the solution to
the least-squares problem to be expressed entirely in terms of the kernel function k. In some
cases, it can be interesting to come up directly with a kernel function rather than an explicit
feature map. Because a kernel is a similarity measure between datapoints, it might happen that
for some classification tasks one has a good intuition for a kernel function. For example, the
Gaussian kernel is given by

k(xi, xj) = e−γ∥xi−xj∥2
, (5.17)

where γ > 0 is a hyperparameter. Using the series expansion of the exponential we can write
this kernel as

k(xi, xj) = e−γ∥xi−xj∥2
, (5.18)

=
∞∑

j=0

(xT
i xj)k

k! e
1
2 ∥xi∥2

e− 1
2 ∥xj∥2

, (5.19)

= ⟨ϕ(xi), ϕ(xj)⟩. (5.20)
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where ϕ(xi) is a feature vector of infinite size. Another great advantage of kernels is that
they can handle symbolic objects, i.e. not only vectors but more general objects... like graphs.
In the following section, we describe a number of classical graph kernels that will be confronted
to our quantum graph kernel. Then, we will describe how classifications for graphs can be done
using graph kernels using the well-known Support Vector Machine (SVM) algorithm.

5.3.2 Classical graph kernels

In this subsection, we describe a couple of classical kernels that will be used in the main text
to benchmark the quality of our quantum kernel.

Size kernel

A very naive kernel but that will give us interesting insights is called the size kernel. Given two
graphs G1 = (V1, E1) and G2 = (V2, E2), the size kernel is defined as:

Ksize(G1,G2) := e−γ(|V1|−|V2|)2
, (5.21)

with a choice of hyperparameter γ > 0. It echoes the Gaussian kernel presented in the previous
section and considers that two graphs are similar if their sizes are close.

SVM-ϑ kernel

The Lovasz-ϑ kernel is a graph kernel that is based on the Lovasz extension of graph iso-
morphisms. It measures the similarity between graphs by comparing their induced subgraphs.
However, computing the Lovasz-ϑ kernel can be computationally intensive, especially for large
graphs, which may limit its practicality in some scenarios. The SVM-ϑ kernel was proposed as
an alternative to the more computationally intensive Lovasz-ϑ kernel. Both ϑ kernels leverage
the so-called orthogonal representation of a graph. Given a graph G = (V, E), the orthogonal
representation is an assignment of unit vectors {ui} to each node of the graph, subject to the
constraint that unit vectors associated to vertices that are not joined by an edge are orthogonal:
⟨ui,uj⟩ = 0 if {i, j} /∈ E .

Orthogonal representations are not unique, but there is a particular representation associated
with the ϑ number [Lov79] of a graph. Given a graph G = (V, E) with n vertices, denote UG an
orthogonal representation of G, and C the space of unit vectors in Rn. The ϑ number is defined
as:

ϑ(G) := min
c∈C

min
UG

max
ui∈UG

1
⟨c,ui⟩2

. (5.22)

From now on, we will always be referring to the particular orthogonal representation UG that
minimizes (5.22).

92



CHAPTER 5. GRAPH MACHINE LEARNING WITH NEUTRAL ATOM QPUS

Now consider a subset of vertices B ⊂ V, and call UG|B the orthogonal representation
obtained from UG by removing the vectors that are not in B:

UG|B := {ui ∈ UG : i ∈ B}. (5.23)

Note that UG|B preserves the global properties encoded in UG through the orthogonal constraint,
and that UG|B is not in general the orthogonal representation of the subgraph of G containing
only the vertices in B. Define the ϑB number:

ϑB(G) := min
c∈C

max
ui∈UG|B

1
⟨c,ui⟩2

. (5.24)

We are ready now to give the definition of the Lovasz-ϑ kernel. Given two graphs G1 = (V1, E1),
G2 = (V2, E2), define:

KLo(G1,G2) :=
∑

B1⊂V1

∑
B2⊂V2

δ|B1|,|B2|
1
Z
k (ϑB1 , ϑB2) , (5.25)

where Z =
( |V1|

|B1|
)( |V2|

|B2|
)
, δ is the Kronecker delta, and k is a freely specifiable kernel (called base

kernel) from R× R to R.
The SVM-ϑ kernel is defined as (5.25), but it uses an approximation for the ϑ numbers.

Consider a graph G with n vertices and adjacency matrix A, and let ρ ≥ −λ, where λ is the
minimum eigenvalue of A. The matrix

κ := 1
ρ
A+ I, (5.26)

is positive semi-definite. Define the maximization problem:

max
αi≥0

2
n∑

i=1
αi −

n∑
i,j=1

αiαjκij . (5.27)

If {α∗
i } are the maximizers of (5.27), then it can be proven that on certain families of graphs

the quantity
∑

i α
∗
i is with high probability a constant factor approximation to ϑ(G):

ϑ(G) ≤
n∑

i=1
α∗

i ≤ γϑ(G), (5.28)

for some γ. The SVM-ϑ kernel then replaces the ϑB numbers on subgraphs with:

ϑB(G)→
∑
j∈B

α∗
j . (5.29)

The SVM-ϑ kernel requires a choice of base kernel k : R × R → R. We choose a translation
invariant universal kernel [MXZ06] k(x, y) = (β+ ||x−y||2)−α, where α and β are two trainable
hyperparameters.
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Graphlet Sampling kernel

This kernel is designed to capture the local structural patterns, known as graphlets, within
a graph. Graphlets are small connected subgraphs that can be used as building blocks to
represent the structural properties of a larger graph. The Graphlet Sampling kernel measures
the similarity between two graphs by counting the occurrences of different graphlets in both
graphs and comparing their frequencies.

Formally, let G = (V, E) and H = (VH , EH) be two graphs. We say that H is a subgraph of
G if there exists an injective map α : VH → V such that (u, v) ∈ EH ⇐⇒ (α(u), α(v)) ∈ E . In
general it might be possible to map H into G in several different ways, i.e. the mapping α, if it
exists, is not necessarily unique.

Given two graphs G1 = (V1, E1) and G2 = (V2, E2), the idea behind the Graphlet kernel is to
pick an integer k < min{|V1|, |V2|}, enumerate all possible graphs of size k and find the number
of ways they can be mapped to G1 and G2. Denote by f (k)

Gi
the vector where each entry counts

the way a specific graph of size k can be mapped as a subgraph of Gi. A kernel can then be
defined as the dot product f (k)

G1
· f (k)

G2
between the two vectors.

The complexity of computing such a kernel scales as O(nk), as there are
(n

k

)
size-k subgraphs

in a graph of size n. For this reason it is preferable to resort to sampling rather than complete
enumeration [SVP+09]. Given a choice of integer N , graphs g1, . . . , gN of size between 3 and
k are randomly sampled. The number of ways each gi can be mapped as a subgraph of Gj is
computed and stored in a vector fGj , and the Graphlet Sampling kernel is defined as the dot
product:

KGS(G1,G2) := fG1 · fG2 . (5.30)

To account for the different size of G1 and G2, each vector can be normalized by the total
number of its subgraphs.

Random Walk kernel

The Random Walk kernel is one of the oldest and most studied graph kernels [GFW03].
Given two graphs G1 = (V1, E1) and G2 = (V2, E2), the idea is to measure the probability of
simultaneous random walks of a certain length between two vertices in G1 and G2.

Simultaneous random walks can be conveniently encoded in powers of the adjacency matrix
on the product graph. The product graph G1 × G2 = G× = (V×, E×) is defined as follows:

V× := {(ui, ur) | ui ∈ V1, ur ∈ V2}, (5.31)

E× := {
(
(ui, ur), (vj , vs)

)
| (ui, vj) ∈ E1,

(ur, vs) ∈ E2}. (5.32)

In other words, an edge in the product graph indicates that an edge exists between the endpoints
in both G1 and G2. If A× is the adjacency matrix of the product graph, then the entries of
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Ak
× indicate the probability of a simultaneous random walk of length k between two vertices

ui, vj ∈ V1 and ur, vs ∈ V2.
If p, q ∈ R|V×| are vectors representing the probability distribution of respectively starting

or stopping the walk at a certain node of V×, the first idea for a kernel would be to compute
the sum

∑
k q

TAk
×p, which however may fail to converge. A simple modification to make the

sum convergent is to choose an appropriate length-dependent weight µ(k):

K(G1,G2) :=
∞∑

k=0
µ(k) qTAk

×p. (5.33)

The Geometric Random Walk kernel is obtained by choosing the weights to be the coefficients
of a geometric series µ(k) = λk, and p, q to be uniform. If λ is tuned in such a way as to make
the series convergent, the kernel reads:

KRW(G1,G2) :=
∞∑

k=0
λk eTAk

×e = eT (I − λA×)−1 e, (5.34)

where e denote vectors with all the entries equal to 1.
The cost of matrix inversion scales as the cube of the matrix size. If |V1| = |V2| = n, then

the cost of the algorithm scales as O(n6), as it involves the inversion of an adjacency matrix of
size n2 × n2. Several methods are proposed in [VSKB10] to make the computation faster. The
Spectral Decomposition method in particular allows to reduce the complexity for unlabeled
graphs to O(n3). Essentially, one exploits the fact that the adjacency matrix of the product
graph can be decomposed in the tensor product of the individual adjacency matrices:

A× = A1 ⊗A2, (5.35)

which allows to diagonalize each n×n adjacency matrix in O(n3) time and perform the inversion
only on the diagonal components.

Shortest Path kernel

Given a graph G = (V, E), an edge path between two vertices u, v ∈ V is a sequence of edges
(e1, . . . , en) such that u ∈ e1, v ∈ en, ei and ei+1 are contiguous (i.e. they have one of the
endpoints in common) and ei ̸= ej for i ≠ j. Computing the shortest edge path between
any two nodes of a graph can be done in polynomial time with the Dijkstra [Dij59] or Floyd-
Warshall [Flo62] algorithms, which makes it a viable feature to be probed by a graph kernel.

The first step of the Shortest Path kernel is to transform the graphs into shortest path
graphs. Given a graph G = (V, E), the shortest path graph GS = (VS , ES) associated to G is
defined as:

VS = V, (5.36)

ES = {(u, v) | ∃ an edge path (e1, . . . , en)

between u and v in G}. (5.37)
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In addition, to each edge e ∈ ES a label l(e) is assigned given by the length of the shortest path
in G between its endpoints. The Shortest Path kernel is then defined as:

KSP(G1,G2) :=
∑

e∈ES
1

∑
p∈ES

2

k(e, p), (5.38)

with k being a kernel between edge paths such as the Brownian bridge kernel:

k(e, p) := max{0, c− |l(e)− l(p)|}, (5.39)

for a choice of c.
To conclude, we presented several classical graph kernels. As we mentioned previously,

although graphs can be very versatile to represent data they have the burden of being harder
to analyse. For this reason, different graph kernels have been introduced to capture different
aspects of graph structures. In the following section, we will detail our quantum evolution
kernel. A main interest is to understand if it can capture graph features that are not accessible
to classical graph kernels.

5.3.3 The quantum evolution kernel (QEK)

We now present the quantum evolution kernel (QEK), using the dynamics of an interacting
quantum system as a tool to characterise graphs. As we have seen in the previous sections,
the idea is to encode the adjacency matrix of a graph G in the interaction term of a quantum
Hamiltonian. Given a graph G = (V, E), one can take for example an Ising Hamiltonian of the
form ĤG = ĤI =

∑
(i,j)∈E σ̂

z
i σ̂

z
j , or the XY Hamiltonian ĤG = ĤXY =

∑
(i,j)∈E(σ̂+

i σ̂
−
j + h.c.).

Those two Hamiltonians are analysed here because they are ubiquitous spin models that can be
easily implemented on a neutral-atom processor. Depending on the problem at hand and the
features of the graph one is trying to take into account, different Hamiltonians could be used.

The most general time-evolution of the system under a parameterised Hamiltonian ˆ̂H(t) is
given by:

|ψf ⟩ = T exp
[
−i
∫ tf

0
dt Ĥ(t)

]
|ψ0⟩ , (5.40)

where T is the time-ordering operator and |ψ0⟩ is the initial state. Once the system has been
prepared in the final state |ψf ⟩, an observable Ô is measured and we can build a histogram of
the obtained values. In other words, we reconstruct the components of |ψf ⟩ in the eigenbasis
of the operator. Let us note {λ1, . . . λK}, the eigenvalues of Ô (i.e. the possible outcomes of
the measure), and {|o1⟩ , . . . |oK⟩} the corresponding eigenstates. The normalised histogram of
measured values approaches in the large M limit the following probability distribution

PÔ
G (Λ) = (p1, . . . pK), where pk = |⟨ok|ψf ⟩|2 . (5.41)
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Note that if some eigenvalues are degenerate, one would get instead

pk =
∑

i

δ(λi − λk) |⟨oi|ψf ⟩|2 , (5.42)

where pk is restricted to the K̃ < K distinct eigenvalues of Ô.
In practice, if K is large, one would resort to binning the values of λi by defining a set of

K ′ < K intervals {Ik = [λ̃k, λ̃k+1]}k=1...,K′ , with λ̃1 ≤ mink λk and λ̃K+1′ ≥ maxk λk, such that
PÔ

G (Λ) = (p̃1, . . . p̃K′), where

p̃k = |{mi|mi ∈ Ik}|
M

≡
M→∞

∑
i|λi∈Ik

|⟨oi|ψf ⟩|2 . (5.43)

Finally, once we have associated a probability distribution to G and G′, we can naturally
define a graph kernel by computing the distances between the probability distributions P and
P ′. There are many choices of distances between probability distributions. We will here use the
Jensen-Shannon divergence that we used in section 5.2. We recall that given two probability
distributions P and P ′, the Jensen-Shannon divergence is defined as

JS(P,P ′) = H

(P + P ′

2

)
− H(P) +H(P ′)

2 , (5.44)

where H(P) = −
∑

k

pk log pk is the Shannon entropy of P. JS(P,P ′) takes values in [0, log 2].

In particular JS(P,P) = 0, and JS(P,P ′) = log 2 is maximal if P and P ′ have disjoint
supports.

For two graphs G and G′, and their respective probability distributions P and P ′ we define
the graph kernel as

Kµ(G,G′) = exp
[
−µJS(P,P ′)

]
∈
[
2−µ, 1

]
. (5.45)

The kernel is then positive by construction. Throughout this chapter we set µ = 1, but it might
be helpful to adjust this value to improve the results. The parameter Λ is determined through
training on a dataset containing graphs whose class is known.

All-in-all, the approach we propose consists in associating each graph G with a probability
distribution PG obtained by the measurement of an observable on a quantum system whose
dynamics is driven by the topology of G. Then, the QEK is computed using the Jensen-Shannon
divergence.

Depending on the type of Hamiltonian evolution or observable, QEK can be related to other
kernels, a subject detailed in Ref [HTDH21]. In the following section, we describe a machine
learning algorithm that uses a kernel to classify datapoints. Specifically, one can use QEK inside
of SVM to do classification tasks on graphs.
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Figure 5.5: Building blocks of the Quantum Evolution Kernel (QEK). For
each graph, a quantum system is evolved under a Hamiltonian that encodes G (resp.
G′) to a specific state of the Hilbert space. Then, an observable is measured and
is converted into a probability distribution P (resp. P ′). Finally, QEK consists in
exponentiating the Jensen-Shannon divergence of the two distributions P,P ′.

The Support Vector Machine (SVM) algorithm

The SVM algorithm aims at splitting a dataset into two classes by finding the best hyperplane
that separates the data points in the feature space, in which the coordinates of each data point
(here each graph) is determined according to the kernel K.

Suppose we have access to a training graph dataset {Gi}i=1...M with a set of labels y =
{yi}i=1...M where yi = ±1 depends on which class the graph Gi belongs to. Mathematically, the
dual formulation of the SVM problem consists in finding α̃ ∈ AC(y) =

{
α ∈ [0, C]M

∣∣∣αT y = 0}
such that

1
2α̃

TQα̃− eT α̃ = min
α∈AC(y)

{1
2α

TQα− eTα

}
, (5.46)

where e is the vector of all ones, Q is a M ×M matrix such that Qij = yiyjK(Gi,Gj), and
C > 0 is an adjustable penalty hyperparameter 2. The data points for which α̃i > 0 are called
support vectors (SV). Once the αi are trained, the class of a new graph G is predicted by the
decision function, given by:

y(G) = sgn
{∑

i∈SV

yiα̃iK(G,Gi)
}
. (5.47)

Once the kernel is trained, the prediction relies only on estimate the kernel between the
unseen graph and the support-vector graphs. The choice of the kernel function determines the
nature of the decision boundary that SVM can learn: in the next section, we benchmark SVM
when used with different underlying kernels, namely the classical graph kernels and QEK.

5.4 Experimental results on a toxicity classification task

In this section, we tackle a binary classification task on a dataset of chemical compounds called
the Predictive Toxicity Challenge on Female Mice (PTC-FM) [HKKS01, SNL+18]. The objective

2Setting C to a large value increases the range of possible values of α and therefore the flexibility of the
model. On the other hand, it also increases the training time and overfitting risk.
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Figure 5.6: Overview of QEK implementation. A dataset of graphs G is first
mapped onto atomic registers r(G) implementable on the QPU, and separated
between a training set Gtraining and a test set Gtest(a). We use the training set to
determine numerically the optimal pulse sequence to be applied on the hardware
using a grid search algorithm for optimising F1(t) (see b). This training phase
outputs the optimal parameter T used to design the laser-pulse sequence applied
experimentally on each register of the test set. The resulting dynamics performed
on the QPU generates U(G;T ), driving the system from |0⟩⊗G to |ψG⟩. F1 is
then derived from the measured probability distributions {P(G)}G∈Gtest . b. The
optimisation of the score function F1 during the training includes several steps. The
input t, taken from the parameter space [tmin, tmax] defines a laser sequence with
Ω and δ fixed parameters followed by a measurement. The dynamics of the system
is emulated and enables us to compute the probability distributions associated to
this particular value of t for the whole training part of the dataset. Finally, F1(t) is
obtained by fitting the SVM with the kernel constructed from those probability
distributions.

is to accurately predict the toxicity of chemical compounds based on their structural properties.
Indeed in many cases poisonous proteins act as enzyme inhibitors, where the geometry of the
protein fits to the binding site of an enzyme and perturbs its usual functioning [BUBVO20, SV91].
To realise the classification task on this dataset, we test classical kernels and QEK inside of an
SVM algorithm. In the next sections, we will detail the hardware implementation protocol for
QEK. The whole process is illustrated in Figure 5.6.
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5.4.1 Mapping the dataset on hardware

In the original PTC-FM dataset, the 349 molecules are represented under the form of graphs
where each node is labeled by atomic type and each edge is labeled according to its bond type.
We first truncate the dataset to small graph sizes in order to be able to train the kernel in
reasonable time, and discard larger molecules. For the M = 286 remaining graphs of this dataset,
we take into account the adjacency matrix of the graphs representing the compounds and
discard the nodes and edges labels. Note that the results of our implementation are therefore
not directly comparable to kernel results in the literature which take into account edge and
node labels as in Ref. [KJM20] for example.

Each node of a graph will be represented by a qubit in the QPU. In the same fashion as for
the UD-graphs in combinatorial optimisation schemes, we first need to determine the positions
of these atoms in order to implement an interaction term that effectively reflects the graph
topology. To this end we use the same mapping and batching technique as presented in Part I
of this thesis. For completeness, we just recall the main idea of our protocol. Starting from a
Reingold-Fruchterman layout [FR91a], our optimiser minimises the average distance between
two connected nodes while maximising the distances between unconnected nodes. Then taking
advantage of our ability to tailor the spatial disposition of the tweezers generated by a Spatial
Light Modulator (SLM) to fit the optimised layout, we can replicate the graph in the hardware.

a b

Figure 5.7: Optimising positions for embedding graph topology in atomic
registers. Histograms of normalised pairwise distances between atoms in the 286
graphs of the truncated dataset when performing the embedding with a. only a
Fruchterman-Reingold layout or b. when adding a local optimisation step afterwards.
For a given graph (insets), two atoms forming a pair ∈ E (blue) can be close enough
to form a bond via interaction (plain) or too far, creating a missing bond (dotted).
Likewise, two atoms forming a pair /∈ E can be placed too close and form a fake
edge (thick line).

We assess the benefit of this approach by comparing the distributions of distance of pairs ∈ E
and pairs /∈ E before and after the optimisation (Figure 5.7). While some defects such as fake
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Jensen-Shannon divergence

Figure 5.8: Distribution of Jensen-Shannon divergences between measured
and expected histograms for a pulse of duration T = 0.66µs. We see that a
majority of the graphs are exactly mapped, while others unfortunately are further
away than expected.

or missing bonds frequently appear in the pre-optimisation embedding, the optimised positions
are constrained in such a way that a clear cut is visible between the two distributions. One
can also characterise the effect of these defects by analysing their impact on the measurement
histograms. For each graph, we first compute the histogram that would have been obtained with
a perfect embedding. We then compute the Jensen-Shannon divergence between this histogram
and the one measured in the QPU (Figure 5.8).

Once the mapping is deemed good enough, we apply the batching method to the dataset
and successfully map the entire dataset of 286 graphs into only 6 SLM patterns. For example,
we batch 66 graphs together onto the 71-trap SLM pattern presented in Figure 5.9. On average,
the 6 SLM patterns use 70 traps each to encode 48 graphs each.

5.4.2 Model training

To test the performance of our implementation, we perform a standard procedure called cross-
validation. Cross-validation consists in dividing the dataset in 5 equal parts called ‘splits’, and
using each split for testing while the rest of the dataset is used for training. During the training
phase, we construct for each pulse duration t the corresponding kernel and train a SVM model
with it. We estimate the quality of the classification by using the F1 score defined as

F1 = tp
tp + (fp + fn) /2 , (5.48)

where tp, fp and fn are respectively the number of true positives, false positives and false
negatives of the predicted distribution. Correctly predicting the toxicity of a compound leads to
a better F1 score. On the other hand, classifying a toxic compound as harmless or a harmless
compound as toxic results in a lower score. We then evaluate the F1-score on the part of the
dataset that was left as a test set. We repeat the splitting 10 times, and the cross-validation
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Figure 5.9: Batching graphs to the same SLM pattern. A family of 66 graphs,
ranging in sizes from 4 to 19 nodes, is mapped and batched to the same SLM
pattern (white dots) over a triangular grid with spacing 5.6µm. The traps used
when implementing G1 (G2) are colored in red (blue). The bi-colored traps are those
used for both graphs.

score is defined as the average of the F1-score of each split (50 splits in total). We perform a
grid search on the penalty hyperparameter C of the SVM on the range [10−3, 103] such that
the final score of a given pulse is the best cross-validation score among the tested values.

Including graphs with sizes |V| ≤ 20, we numerically compute the score for a nearest-
neighbour distance rNN = 5.6µm and a resonant constant pulse with fixed Ω/2π = 1 MHz. We
vary its duration between tmin = 0.1µs and tmax = 2.5µs to select the duration that exhibits
the maximum F1-score (namely T = 0.66µs) before implementing the pulse directly on the
QPU.

5.4.3 Classification results

After a training of our model, we experimentally obtain an F1-score of 60.4± 5.1%. We show in
Table 5.1 the performances of QEK and all the classical kernels we exposed previously, namely
the Graphlet Sampling (GS), the Random Walk (RW), the Shortest Path (SP) and the SVM-ϑ
kernels. The obtained scores range from 49.8± 6.0% up to 58.2± 5.5%, showing that QEK is
on-par with standard classical kernels on this dataset.
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Figure 5.10: Kernel matrices obtained numerically or experimentally.
Each kernel is represented by a M × M matrix where Ki,j = K(Gi,Gj). The
graph indices are sorted by increasing size. A separation (black line) is drawn
between numerically simulated (top right) and experimentally measured (bottom
left) QEK matrices. a. QEK kernel obtained using directly the raw distributions
Pi and Pj . b. Kernel obtained via SVM-ϑ method. c. Size kernel obtained with
Ksize(Gi,Gj) = exp

(
−γ(|Gi| − |Gj |)2) with γ = 0.1. d. QEK kernel obtained using

modified distributions P̃i and Pj , where graphs of smaller sizes are convoluted with
binomial distributions when compared to larger graphs.

Kernel F1-score (%)
QEK 60.4± 5.1

QEK (size-compensated) 45.1± 3.7
SVM-ϑ 58.2± 5.5

Size 56.7± 5.6
Graphlet Sampling 56.9± 5.0

Random Walk 55.1± 6.9
Shortest Path 49.8± 6.0

Table 5.1: F1-score reached experimentally on the PTC-FM dataset by QEK (± std.
on the splits). In addition, the scores reached numerically by the classical kernels
SVM−ϑ, Size, Graphlet Sampling, Random Walk and Shortest-Path. The values
reported are the average over a 5-fold cross-validation repeated 10 times.

Because the dataset is of acceptable size, we can plot directly the Gram matrix associated to
each kernel (Figure 5.10). Using the same noise model as for the expressivity test (Section 5.2),
we find adequate agreement between the numerical noisy simulation and experimental results.

Size is important

An interesting feature of both QEK and SVM-ϑ kernel matrices is the emergence of size-related
diagonal blocks (Figure 5.10b). This means that the models capture the size of the graphs
as an important feature for classification. Examining more closely the dataset, we found out
that indeed our dataset was significantly size imbalanced, as illustrated in Figure 5.11. Since
the graph size seems to be a relevant feature for this particular dataset, we reach an F1-score
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Figure 5.11: Dataset imbalance. The PTC-FM dataset exhibits a strong size
imbalance. For small number of nodes (≲ 10) more graphs are labeled as harmless
(blue) while it is the opposite for larger graphs, more prone to be labeled as toxic
(red).

of 56.7± 5.6% with the simplest size kernel. The corresponding kernel matrix is displayed in
Figure 5.10c and exhibits a block-diagonal shape with a Gaussian tail.

It is interesting to note that the quantum model was able to identify size as a relevant
parameter for this dataset, leading to classification results which are on par with the best
classical kernels.

Getting rid of the size feature

In this part, we want to understand if our quantum kernel can capture other features rather
than the size. In order to do so, we modify the QEK procedure to incorporate a convolution
operation. Mathematically, let us consider two graphs Gi and Gj of respective sizes Ni and
Nj = Ni + ∆N > Ni. We note their respective observable distributions Pi and Pj . From Pi we
construct P̃i = Pi ⋆ b

(i/j)
∆N which is the convolution of Pi and a binomial distribution:

b
(p)
∆N (n) =

(
∆N
n

)
pn(1− p)∆N−n. (5.49)

A physical intuition is to see P̃i as the distribution one would get by adding ∆N non-
interacting nodes to the graph. When embedded in the atomic array, each of these isolated
atoms undergoes Rabi oscillations induced by the applied pulse sequence. They are therefore
measured either in |0⟩ with probability p or in |1⟩ with probability 1− p, where p = sin2(πΩT )
(≈ 0.768 here). We finally define the modified graph kernel as

Kconv(Gi,Gj) = exp
[
−JS(P̃i,Pj)

]
. (5.50)

Using this procedure on the data obtained experimentally, we obtain the kernel matrix shown
in Figure 5.10d with a corresponding F1-score of 45.1± 3.7%. If this size-compensated version
of QEK had been implemented without interaction between atoms, its score would be 42%,
which is the lowest score reachable by any kernel. We therefore see that this version of QEK
cannot capture useful features beyond the graph size, meaning that the presence of interactions
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by itself is not sufficient to produce an interesting kernel for the task at hand. Nonetheless,
although the size-compensated QEK does not give results that are comparable with classical
kernels, it is still interesting to study the geometric structure that is induced by this kernel. In
the next part we will show that the geometry induced by this method is hardly reproducible by
a classical kernel. In other words, QEK creates an associated feature space with highly complex
geometry that is unfortunately not necessary for the classification task at hand.

5.5 Geometric test with respect to classical kernels and
maximum quantum-classical separation

In order to obtain an advantage over classical approaches it is not sufficient to implement
a quantum feature map based on quantum dynamics that are hard to simulate classically.
As shown in [HBM+21a], classical ML algorithms can in certain instances learn efficiently
from intractable quantum evolution if they are allowed to be trained on data. The authors
consequently propose another metric between kernels in the form of an asymmetric metric
function called the geometric difference g12. It compares two kernels K1 and K2 in the following
way:

g12 =
√
||
√
K2 (K1)−1√K2||∞, (5.51)

where ||.||∞ is the spectral norm. Intuitively, g12 measures the difference between how kernels
K1 and K2 perceive the relation between data. Precisely, it characterises the disparity regarding
how each of them maps data points to their respective feature spaces. In our case, we take K1

to be the size-compensated QEK Kconv, and K2 is selected from a set of classical kernels. If
the geometric difference is small, it means that there exists no underlying function mapping
the data to the targets for which Kconv outperforms the classical kernel. On the other hand, a
high geometric difference between a quantum and a classical kernel guarantees that there exists
such a function for which the quantum model outperforms the classical one. Estimating the
geometric difference is therefore a sanity check stating that the encoding of data to the feature
space through the Quantum Evolution Kernel could not be closely replicated by a classical
model.

We compute the geometric difference between QEK and various classical kernels over the
PTC-FM dataset and report the results in Table 5.2. The threshold for a high geometric
difference is typically taken to be

√
M , where M is the size of the dataset. Here, the obtained

g12 is always far beyond
√
M ∼ 101, indicating that the embedding of data through our

quantum-enhanced kernel is not trivial and cannot be replicated by a classical machine learning
algorithm.

To summarize, while the F1-score on PTC-FM is rather similar using quantum or classical
models, we see nonetheless that the geometry created by our quantum model is non-trivial. A
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possible interpretation of the non-superiority of quantum approaches on PTC-FM would be
that the relationship between the data and the targets is not better captured by our quantum
model, although its feature space is not reproducible by classical means. To further confirm
this understanding, we find a function that increases and even maximizes the utility of our rich
quantum feature space. We build such a function by artificially relabelling the targets according
to the following procedure.

Relabelling the targets

If M is the size of the dataset, a value of gCQ of order
√
M or greater indicates that the

geometry of the feature space induced by the quantum kernel is rich enough to be hard to learn
classically, and the quantum kernel can potentially perform better than classical kernels. In
that case, it is possible to artificially relabel the dataset in order to maximally separate the
kernels’ performance. Such a relabelling process is a constructive proof of the existence of a
certain dataset on which one kernel performs much better than the other. If v is the eigenvector
of
√
K2 (K1)−1√K2 corresponding to the eigenvalue g2

12, the vector of new labels is given by
ynew =

√
K2v. When dealing with a finite amount of training data, equation (5.51) should be

regularised in order to stabilize the inversion of K1. The regularised expression reads:

g12(λ) =
√
||
√
K2
√
K1 (K1 + λI)−2√K1

√
K2||∞, (5.52)

where λ is the regularisation parameter. The geometric difference g12(λ) has a plateau for small
λ, when the regularisation parameter becomes smaller than the smallest eigenvalue of K1, and
decreases for increasing λ. The effect of λ is to introduce a certain amount of training error.
The training error can be upper bounded by a quantity proportional to:

gtra(λ)2 = λ2||
√
K2 (K1 + λI)−2√K2||∞. (5.53)

Practically, one should look at the regime where g12 has not plateaued but the training error is
still small enough.

A regularisation should be introduced also in the relabelling procedure. The new labels are
taken to be ynew =

√
KQv, where v is the eigenvector of the regularised matrix√

KQ

√
KC (KC + λI)−2√KC

√
KQ,

corresponding to the eigenvalue g12(λ)2.
We observe that QEK, without retraining, retains an F1-score of around 99% on the

relabelled dataset, while the closest classical kernel reaches a score of at most 82% even after
retraining it on the new labels. The results are summarised in Table 5.3, where the difference
in F1-score between QEK and the various classical kernels is shown.

In light of the geometric difference assessment and the observed gap of F1-score between
QEK and classical kernels on an artificial function, it remains an open question to generally
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Geometric Difference w.r.t. QEK
SVM-ϑ 103

Size 105

Graphlet Sampling 104

Random Walk 105

Shortest Path 105

Table 5.2: Order of magnitude of the geometric difference between QEK and various
classical kernels.

F1-score gap (%) w.r.t. QEK (relabelled)
SVM-ϑ 17.2± 4.5

Size 17.8± 4.2
Graphlet Sampling 20.1± 4.5

Random Walk 17.3± 4.3
Shortest Path 18.2± 4.4

Table 5.3: Gap in F1-score between QEK and various classical kernels after rela-
belling the dataset.

characterize which types of dataset naturally offer a structure that better exploits the geometry
offered by our quantum model, without requiring artificial tweaking of the labels. In the following
section, we present a synthetic dataset on which QEK is able to outperform classical methods
without any relabelling.

5.6 Synthetic dataset

This binary classification dataset is created by sampling weighted random walks on a triangular
lattice. In class A, sites belonging to a honeycomb-type sublattice are favoured. They are
explored with a weight p0 = 1 while the rest of the triangular lattice sites are explored with
a weight p < 1. Class B is constructed in a similar fashion, but taking a kagome instead of a
honeycomb sublattice. The construction of this artificial dataset is illustrated in Figure 5.12.
In the case where p = 0, the differences in their local structure make the two classes easily
distinguishable. However, with increasing p, their local structure becomes more and more
similar, as additional triangular lattice sites are incorporated. When p is large enough, a lot of
triangular local substructures are shared by the two classes, rendering them potentially hard
to distinguish by classical methods. At p = 1, the underlying triangular lattice is explored
uniformly, rendering the datasets indistinguishable.

Building on our ability to distinguish between graphs with similar local structure but globally
distinct, we apply QEK on this synthetic dataset. We expect our method to be hardly affected
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Figure 5.12: Synthetic dataset. Graphs in Class A contains honeycomb sites
(blue) with inclusions of non-honeycomb sites (red) with probability p. Graphs
in Class B contains kagome sites (blue) with inclusions of non-kagome sites (red)
with probability p. We show examples of generated graph with the aforementioned
process.

by the presence of sparse defects and therefore be able to outperform classical approaches.
We investigate numerically this assumption for several values of p. In each case, we create a

balanced dataset of 200 graphs of 20 nodes each with 100 graphs in each class. The graphs are
mapped to a triangular lattice with 5 µm spacing. Here, we consider two alternative schemes of
pulse sequences. The first one remains almost the same as the experimentally implemented one,
i.e. a unique resonant pulse of Ω/2π = 2 MHz with parameterized duration up to 8µs. The
second one is an alternate layer scheme with 4 parameters as described in [HTDH21], where
we evaluate 500 random values of the parameters and select the best one. The procedure is
designed in such way that it would be directly implementable on the hardware, as we did for
the PTC-FM dataset. We then compare the F1-score reached by QEK to those reached by other
classical kernels, namely: SVM-ϑ, GS, RW and SP. The results are summarised in Figure 5.13.
With decreasing proportion of defects, all methods perform increasingly better, as expected.
Overall, regarding the mean F1-score reached, the two QEK schemes outperform the four other
classical kernels tested for all p ≤ 0.5. Noticeably, at p = 0.1 (resp p = 0.2), the mean gap in
F1-score between the QEK scheme and the best classical scheme is 4.5% (resp 7.1%) while the
mean gap obtained with the alternate QEK scheme is even larger with 13.7% (resp 21%), thus
showing that QEK can significantly surpass classical approaches on certain types of datasets.
When adding too many defects, i.e. p = 0.5, our Quantum Evolution Kernel exhibits similar
performance to the SVM-ϑ.
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Figure 5.13: F1-score (%) reached on the synthetic dataset for different probabilities
p of including non-sublattice sites, by the Quantum Evolution Kernel (the alternate
scheme is noted QEK layer) as well as by the best SVM-ϑ, GS, RW and SP kernels.
The values reported are the average over a 5-fold cross-validation repeated 10 times.
Each kernel reaches an F1-score of 100% when p = 0.

5.7 Conclusion

In this chapter, we reported the implementation of a quantum feature map for graph-structured
data on a neutral atom quantum processor with up to 32 qubits. We experimentally showed
that this embedding was not only sensitive to local graph properties but was also able to
probe more global structures such as cycles. This property offers a promising way to expand
the capabilities of standard GNN architectures, which have been shown to have the same
expressiveness as the Weisfeiler-Lehman (WL) Isomorphism test in terms of distinguishing
non-isomorphic graphs [MRF+19, XHLJ19]. Some properties of quantum-enhanced version of
GNNs have been explored in [TFH22] by some of my collegues.

We then used the quantum graph feature map for a toxicity screening procedure on a
standard bio-chemistry dataset comprising 286 graphs of sizes ranging from 2 to 32 nodes.
This procedure achieved an F1-score of 60.4± 5.1%, on par with the best classical kernels. We
intentionally did not include GNNs in the benchmark, as they belong to another distinct family
of models. Beyond this pure performance assessment, we showcased the potential advantage of
using a quantum feature map through the computation of geometric differences with respect to
said classical kernels, which are metrics evaluating the degree of similarity between the kernels’
feature spaces. We showed that the Quantum Evolution Kernel captured features that are
invisible to the classical kernels we considered. An artificial relabelling of the data enabled us
to create a synthetic dataset for which the performances of the Quantum Evolution Kernel
could not be matched. We also identified another dataset made of bipartite 2D lattices, for
which the quantum procedure exhibited superior performances.

This proof-of-concept illustrates the potential of quantum-enhanced methods for graph
machine learning tasks. Our study paves the way for the incorporation of quantum-enhanced
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algorithms with standard ML solutions, aiming at constructing better tools for graph data
analysis and prediction. Further work on more diverse datasets will be required to assess the
viability of the approach compared to powerful state-of-the-art GNN architectures [GSR+17,
YCL+21, RGD+22, KBH+21]. Additionally, our results showcase the power and versatility of
neutral atom QPUs, with their ability to change the register geometry from run to run. Going
forward, the implementation of similar methods on non-local graphs could be envisaged by
embedding them into three-dimensional registers using our method in Chapter 3 or moving the
qubits throughout the course of the computation [BLS+21].
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Classical approximation of variational
quantum models

In the previous chapter, we showcased a new quantum kernel (QEK) that can be applied
to classification and regression tasks on graph datasets. Interestingly, we have shown that
QEK creates a rich feature space that cannot be learned by other classical kernels. It is

however quite hard to gain insight on the power of quantum machine learning models when,
differently from classical models, they can only be benchmarked on datasets of small sizes and
few hundreds of instances.

To overcome the limitations of current quantum devices, researchers have been exploring
theoretical properties of NISQ learning models. The theoretical study of variational quantum
circuits (VQC) as quantum models mainly focuses on three aspects: expressivity, trainability
and generalisation. Expressivity refers to the capabilities of quantum models to represent and
approximate a wide range of functions or data distributions. The capacity of a VQC to succeed
in finding the correct underlying model relies on the construction of a suited parameterised
quantum circuit, also called an ansatz. The type of ansatz can depend on the task at hand: the
coupled-cluster ansatz [BM07] for example is usually used for quantum chemistry. More simply,
the ansatz can be constrained by the hardware capabilities (these are called hardware-efficient
ansatz) [KMT+17]. Ideally, the ansatz should be expressive enough in order to learn the best
model, but should also be trainable. A trainability issue that is proper to quantum models
is called the barren plateau phenomenon: quantum circuits with a 2-design structure have
exponentially vanishing gradients, making them terribly untrainable [MBS+18]. As a matter
of fact, a fundamental link has been discovered between ansatz expressibility and trainability,
showing that highly expressive ansatz exhibit flatter cost landscapes and are therefore harder
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to train [HSCC22]. Recent results have also connected the dynamical Lie algebra of an ansatz
to the barren plateau phenomenon [LCS+22]. In the past years, researchers have focused on
perfecting the structure of the ansatz and have developed the theory of geometric quantum
learning models based on symmetries of the problem being solved [LSS+22b, MMGF+23].
Finally, the third important component of QML along expressivity and trainability is the
generalisation, which refers to the ultimate goal of a machine learning model of making
accurate predictions on unseen data. Interesting and encouraging results can be found in
Refs [CGFM+21a, HBM+21b, CHC+22, BPP21].

In this chapter we focus on the first pillar of QML, namely expressivity of quantum models
emanating from VQCs. The common intuition behind QML is to leverage the exponential Hilbert
space to learn a complex model. In the following sections, we explore how a classical method
called random Fourier features (RFF) [RR09] can be used to approximate models emanating
from VQCs. Broadly, the idea is to build a tractable model that mimics the un-simulatable
quantum model with good approximation. Understanding how and why certain quantum
models can be effectively approximated classically is an important step in our comprehension
of quantum models in machine learning. In section 6.1, we recall the spectral properties of a
family of quantum models. We then show in section 6.2 that this quantum model gives rise to a
shift-invariant kernel. We then explore in section 6.3 the RFF strategies used to approximate
quantum models, accompanied with theoretical bounds on the quality of approximation. Finally,
we run numerical experiments in section 6.4.

This chapter is summarised in the paper accepted at ICLR 2023, a classical machine learning
conference (2,500+ attendees)

• [LTD+22] Landman, J., Thabet, S., Dalyac, C., Mhiri, H., Kashefi, E. (2022). Classically
Approximating Variational Quantum Machine Learning with Random Fourier Features.
ICLR 2023

6.1 Variational quantum circuits (VQCs) and spectral
properties

Let us consider a standard ML task where a model f is optimised to map data points to their
target values. The data used for the training consists of M points x = (x1, . . . , xM ) in X = Rd

along with their target values y in Y = R. Recall from the previous chapter that a quantum
model is defined as the family of parametrized functions f : (X ,Θ) −→ Y, such that

f(x; θ) = ⟨0|U(x; θ)†OU(x; θ)|0⟩, (6.1)

where U(x; θ) is a unitary that represents the parametrized quantum circuits, θ represents the
trainable parameters from a space Θ, and O is an observable. In the following, we consider
a unitary U(x; θ) that can be decomposed as an alternation of encoding and trainable gates.
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f(x; θ) = ⟨0 |U(x; θ)†OU(x; θ) |0⟩

θ2

e−ixH3

e−ixH1

θ1

e−ixH5

θ6θ3

θ4

e−ixH2 θ5

e−ixH4

|0⟩

|0⟩

|0⟩

|0⟩

f* = min
θ

1
M

M

∑
i=1

l( f(xi; θ), yi)θ
x ∈ 𝒳

14

Figure 6.1: A typical variational quantum circuit (VQC). A data-point x ∈ X
is encoded in a quantum circuit with encoding gates (blue) and trainable gates
(green). Once the quantum circuit is built, it is prepared on a quantum computer,
measured, and the optimal parameters θ∗ are found by minimising the empirical
risk. This yields a quantum model f(x; θ∗).

Precisely, we study the same type of structure that is presented in Ref. [SSM21] where the
unitary is decomposed as

U(x; θ) =
L∏

k=1
Uk(θk)Sk(x), (6.2)

where
Sk(x) = e−ix1Hk

1 ⊗ · · · ⊗ e−ixdHk
d , (6.3)

is the k−th data encoding layer with fixed Hamiltonians Hk
i and Uk(θk) is a trainable unitary

parametrized by the vector θk. A typical instance of U(x; θ) is illustrated in Figure 6.1. Note
that many models in the quantum machine learning literature exist such as quantum circuit
born machines [LW18], variational imaginary time evolution [ZLW21], differentiable quantum
circuits [KPE21] or quantum orthogonal neural networks [KLM21] that are also variational but
are not considered here.

Quantum models are large Fourier series

The expressivity of the quantum model we defined previously has been studied in Ref [SSM21].
The authors showed that the quantum model can be rewritten as the following Fourier series

f(x; θ) =
∑
ω∈Ω

cωe
iωx, (6.4)

where the spectrum Ω of frequencies is determined by the ensemble of eigenvalues of the
encoding Hamiltonians and the coefficients cω depend on the parameterised ansatz (Figure 6.2).
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Figure 6.2: VQCs as Fourier series. The function of a quantum model can be
written in a Fourier basis. Interestingly in our context the frequencies ω ∈ Ω depend
only on the eigenvalues of the encoding Hamiltonians (blue gates). On the other
hand, the coefficients aω, bω are correlated to the trainable gates (green).

Let us build some intuition by explicitly building Ω in the case of a one-dimensional data
input (X = R) and with a variational circuit containing exactly L encoding gates. In simple
terms, the frequency spectrum Ω is the ensemble of all the differences between all possible sums
of the eigenvalues of the encoding gates. Mathematically, let us note λk

ℓ as the kth eigenvalue of
the ℓth encoding Hamiltonian Hℓ having dℓ eigenvalues. We use the multi-index i = (i1, . . . , iL)
indicating which eigenvalue is taken from each encoding Hamiltonian. We define Λi as

Λi = λi1
1 + · · ·+ λiL

L . (6.5)

Finally, we can express Ω the set of frequencies as

Ω =
{

Λi − Λj , i, j ∈
L∏

ℓ=1
[|1, dℓ|]

}
, (6.6)

This is easier to understand schematically, as represented in Figure 6.3.

The simple example of Paul encoding

A simple case to explain the spectrum is to look at Pauli encoding where all encoding Hamil-
tonians are Pauli matrices (e.g. encoding gates RZ(x) = e−i x

2 σZ ). This encoding appears
in [SSM21, CGFM+21b]. In this case all the eigenvalues are λ = ±1/2 and therefore the Λi are
all the integers (or half-integers, if L is odd) in [−L/2, L/2]. It follows that the set of distinct
values in Ω is simply the set of integers in J−L,LK. In this case, there are many redundant
frequencies, due to the fact that all Pauli eigenvalues are the same: only 2L + 1 distinct
frequencies appear among the 22L possible values of Λi − Λj . We therefore see that various
eigenvalues between encoding Hamiltonians creates more distinct frequencies. An interesting
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Figure 6.3: From encoding Hamiltonians to frequencies. The frequencies
composing the VQC model (on one dimensional input) come from all the combina-
tions of eigenvalues from each encoding Hamiltonians. By selecting one eigenvalue
per Hamiltonian and adding them together we obtain a leaf value Λ. The whole
spectrum corresponds to all possible differences between the leaves of this tree graph.
In this figure, we consider L = 3 Hamiltonians. We also see potential redundancy
in the leaves.

approach developed in Ref [STJ22] consists in adding scaling factors in the Pauli encoding gate
to modify their eigenvalues and avoid redundancy: it results in an exponential number of integer
frequencies with respect to L.

General case

Let us now suppose that X = Rd, such that we encode a vector x = (x1, . . . , xd) in our quantum
model. In this case, Ω becomes the d−dimensional Cartesian product

Ω = Ω1 × Ω2 × · · · × Ωd, (6.7)

where each Ωi=1,...,d is defined in equation (6.6) on its own set of encoding Hamiltonians.
As such, the size of the spectrum |Ω| can grow exponentially with the number of encoding

gates and the dimension of the input data. For example, a d-dimensional vector x and L Pauli-
encoding gates for each dimension results in a spectrum Ω that scales as O(Ld). Supposing
L = 20 and d = 16, it would require more than one hundred times the world’s storage data
capacity available in 2007 to store the entire spectrum [HL11].

The main task that we tackle in this chapter is to understand if such a large Fourier series
can be approximated by classical methods. Precisely, we seek to build a classical approximator
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f̃ as

f̃(x) =
∑
ω∈Ω̃

c̃ωe
iωx, (6.8)

such that Ω̃ is of tractable size and the two solution are close, i.e. for a given ε > 0 we guarantee

∀x ∈ X ,
∥∥∥f(x)− f̃(x)

∥∥∥ ≤ ε. (6.9)

In the cases where the construction of such a model is possible, it would imply that although
classically simulating the encoding VQC might not be possible, the quantum model that emerges
from it can be efficiently approximated in a classical way. Our approximator relies on random
Fourier Features [RR09], and requires that the kernel associated to our quantum model is
shift-invariant which we prove in the next section.

6.1.1 Quantum models are shift-invariant kernel methods

As the quantum model is a real-valued function, it follows that ω ∈ Ω implies −ω ∈ Ω and
cω = c∗

−ω. We express the Fourier series of the quantum model as a sum of trigonometric
functions by defining for every ω ∈ Ω:

aω := cω + c−ω ∈ R, (6.10)

bω := 1
i
(cω − c−ω) ∈ R, (6.11)

such that

f(x; θ) =
∑

ω∈Ω+

cωe
iωx + c−ωe

−iωx,

=
∑

ω∈Ω+

aω cos(ωx) + bω sin(ωx),
(6.12)

where Ω+ contains only the positive frequencies from Ω. Considering only Pauli gates, if d = 1,
we simply have Ω = J−L,LK and Ω+ = J0, LK. In dimension d, we have Ω = J−L,LKd and Ω+

is built by keeping half of the frequencies (after removing those of opposite sign), plus the null
vector. We therefore have

|Ω+| =
(2L+ 1)d − 1

2 + 1. (6.13)

Without loss of generality, we consider only Ω+ and conveniently drop the + subscript.
Furthermore, the quantum model can be written as a linear model

f(x; θ) = ⟨ψ(x; θ)|O|ψ(x; θ)⟩ = w(θ)Tϕ(x), (6.14)

where ϕ(x) is the feature vector and w is the trainable weight vector expressed as
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ϕ(x) = 1√
|Ω|


cos(ωTx)
sin(ωTx)

...


ω∈Ω

, w(θ) =


aω

bω

...


ω∈Ω

. (6.15)

Recall from the previous chapter that finding the optimal quantum model translates to
finding the optimal weight vector w∗. This can be done using Linear Ridge Regression [BN06].
As shown in the previous chapter, there exists a dual formulation to the regression task using
the kernel associated to the feature vector. In our case, the related kernel function is defined as

k(x, x′) = ⟨ϕ(x), ϕ(x′)⟩ ,

= 1
|Ω|

∑
ω∈Ω

cos(ωx) cos
(
ωx′)+ sin(ωx) sin

(
ωx′),

= 1
|Ω|

∑
ω∈Ω

cos
(
ω(x− x′)

)
,

(6.16)

which is a shift-invariant kernel, meaning that k(x, x′) = k(x− x′).
Due to the nature of Ω, this kernel is high-dimensional which can make it hard to simulate

classically in practice. But thanks to its shift-invariance, we can leverage Random Fourier
Features (RFF), a seminal method known to be powerful approximator of high-dimensional
kernels [RR09].

6.2 Random Fourier Features: approximating high-dimensional
shift-invariant kernels

In this section we present the Random Fourier Features (RFF) method [RR09, LTOS19, SS15].
We will use this method to create several classical sampling algorithms for approximating
VQCs.

Let X ⊂ Rd be a compact domain and k : X × X −→ R be a kernel function. We assume k
is shift-invariant, meaning

k(x, y) = k(x− y) = k(δ), (6.17)

where k : X −→ R is a single variable function, and we will note k = k to simplify the notation.
Bochner’s theorem [Rud17] insures that the Fourier transform of k is a positive function

and we can write

k(δ) =
∫

ω∈X
p(ω)e−iωT δdω. (6.18)

If we assume k is also normalised, then the Fourier transform p(ω) of k can be assimilated to
a probability distribution. With a dataset of M points, fitting a Kernel Ridge Regression (KRR)
model with the kernel k necessitates M2 operations to compute the kernel matrix and O(M3)
to invert it. This becomes impractical when M reaches high value in modern big datasets.
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The original idea of the RFF method was therefore to sample frequencies from the shift-
invariant kernel and build an approximate kernel. Mathematically, the kernel k is approximated
by

k̃(x, y) ≃ ϕ̃(y)T ϕ̃(x), where ϕ̃(x) = 1√
D

[
cos(ωT

i x)
sin(ωT

i x)

]
i∈J1,DK

. (6.19)

The frequencies ωi=1,...,D are sampled i.i.d. from the frequency distribution p(ω). Formally, it
is a Monte-Carlo estimate of k. In some cases like Gaussian or Cauchy kernel, p(ω) can be
analytically found [RR09] which makes the sampling efficient.

Finally, instead of fitting a KRR for k, one will solve a Linear Ridge Regression (LRR)
with ϕ̃. In this case, the number of operations required is O(MD2 +D3). If D is much smaller
than M , it is much cheaper than solving the KRR directly. The output of the LRR or gradient
descent is simply a weight vector w̃ that is used to create the approximate function

f̃ = w̃T ϕ̃(x). (6.20)

To summarise, the general idea is to sample D frequencies from Ω to build a classical
approximator of the quantum model. We explicitly show how to do so in the following section.

6.3 RFF Methods for Approximating VQCs

As described above, the idea behind our method is to sample frequencies from Ω and train a
classical model from them. We first introduce some related work that was explored in parallel
by Pr. Eisert’s group [SEM22]. Then, we present three different strategies to sample frequencies
from Ω to build classical models in section 6.3.1. Furthermore, we provide theoretical bounds
on the number of samples required in section 6.3.2.

Related Work

A recent work independently proposed a similar approach where classical surrogate methods
approximate quantum models emanating from VQCs. The difference with this work is the
necessity of having access to all Ω, the totality of the frequencies of the VQC considered, without
sampling from them.

Indeed, if Ω is known, the coefficients aω and bω of the VQC function (see Eq.6.12) can be
easily fitted by solving the classical least square problem. Namely, one determines w∗ such that

w∗ = argmin
w

1
M

M∑
i=1
|wTϕ(xi)− yi|2 + λ0

M
||w||2, (6.21)

where ϕ(x) =
[
cos(ωx)
sin(ωx)

]
ω∈Ω

, and λ0 is the regularisation parameter. As explained in the

previous section, with a dataset of M points, this can be solved exactly using matrix inversion
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in O(M |Ω|2 + |Ω|3) operations if M ≥ 2|Ω|. If the inequality is not fulfilled or if |Ω|3 is too big,
one would use stochastic gradient descent instead of matrix inversion.

However, this method assumes that Ω is known, and is not too large, which will usually
be the case as we show in Section 6.1. One should also be able to enumerate all individual
frequencies ω ∈ Ω. For completeness, we note from the seminal work [Sch21] that the author
briefly mentions the idea of approximating kernels with RFF. Similarly, in a more recent
work [PS22] the authors mention RFF as a sampling strategy on VQCs with shift-invariant
kernels.

6.3.1 RFF Sampling strategies

We propose three types of strategies to sample from the spectrum Ω, depending on the knowledge
of the quantum model at hand. Precisely, we will explain in which case these strategies are
suited according to the type of ansatz, the dimension of the input vectors and the number of
training points. The three sampling strategies are named distinct sampling, tree sampling and
grid sampling.

RFF with distinct sampling

In this sampling strategy, we assume that all the frequencies of Ω can be explicitly calculated.
We then select uniformly at random D frequencies. The complete method is describe hereafter
in Algorithm 5.

Algorithm 5 RFF with Distinct Sampling
Require: the VQC of the quantum model f , and M datapoints {xj}j∈[M ]
Ensure: Approximate function f̃

1: Diagonalize the Hamiltonians of the VQC’s encoding gates.
2: Use their eigenvalues to obtain all frequencies ω ∈ Ω, as in Equation (6.6)
3: Sample D frequencies (ω1, · · · , ωD) from Ω

4: Construct the approximated kernel k̃(x, y) = ϕ̃(y)T ϕ̃(x) with ϕ̃(x) = 1√
D

[
cos(ωT

i x)
sin(ωT

i x)

]
i∈J1,DK

5: Solve the Linear Ridge Regression problem by matrix inversion or stochastic gradient
descent and obtain an optimal weight vector w̃∗.

6: Obtain the approximated function f̃(x) = w̃∗T ˜ϕ(x)

RFF with Tree sampling

The distinct sampling requires building all of Ω which can be computationally expensive. In some
cases, redundancies occur in the final frequencies. As we will showcase in numerical experiments,
the frequencies with more redundancy tend to obtain larger coefficients in the quantum model.
Conversely, isolated frequencies are very likely to have small coefficients in comparison, making
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them ’ghost’ frequencies in Ω. Rather than sampling with uniform probability all frequencies of
Ω, it is worth drawing the redundant frequencies with a higher probability. In our tree sampling
method, we propose to directly sample from the tree shown in Figure 6.3 when knowing the
eigenvalue decomposition of each encoding Hamiltonian. In practice, we select uniformly at
random each encoding eigenvalue. This naturally tends to sample redundant frequencies with
higher probability. Furthermore, it does not require computing the whole set Ω, but only D
paths through the tree (which can be used to generate up to

(D
2
)

+ 1 positive frequencies, with
potential redundancy).

Algorithm 6 RFF with Tree Sampling
Require: a VQC model f , and M datapoints {xj}j∈[M ]
Ensure: Approximate function f̃

1: Diagonalize the Hamiltonians of the VQC’s encoding gates.
2: Sample D paths from the tree shown in Figure 6.3, obtain D frequencies (ω1, · · · , ωD) from

Ω
3: Follow steps 4-6 of Algorithm 5.

RFF with Grid sampling

The two above methods suffer from a common caveat: if one or more of the encoding Hamiltonians
are hard to diagonalise, we cannot add encoding eigenvalues together to sample the final
frequencies.

If the eigenvalues are unknown, we can guess an upper bound on the maximum value
ωmax and sample from a grid of frequencies regularly disposed between zero and the upper
bound ωmax. In practice, the value of ωmax can be chosen as the largest frequency learnable
by the Shannon criterion or by using Gershgorin circle theorem [Wei03] to upper-bound the
eigenvalue of each encoding Hamiltonian. Letting s > 0 be the step on this grid, the number of
frequencies on a single dimension is given by ωmax/s. Over all dimensions, there are ⌈(ωmax/s)⌉d

frequency vectors. We will show later on that the error between the quantum model f and
the approximation f̃ can be bounded by s. When s is small enough, the number D of samples
necessary to reach an error ϵ > 0 grows like 1/ϵ2 log(1/s).

Algorithm 7 RFF with Grid Sampling
Require: Assumption on the highest frequency ωmax, a step s > 0 and M datapoints {xj}j∈[M ]
Ensure: Approximate function f̃

1: Create a regular grid in [0, ωmax]d with step s.
2: Sample D frequencies (ω1, · · · , ωD) from the grid.
3: Follow steps 4-6 of Algorithm 5.

We now describe the approximation error that is achieved with this model as a function of
the number of samples used. We derive several versions according to the sampling method used.
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6.3.2 Approximation Error and number of samples

In classical ML, researchers have bounded the approximation error in the RFF method [SS15].
Precisely, the following theorem bounds the actual prediction error when using RFF compared
to the kernel ridge regression (KRR) model estimate:

Theorem 6.1 ([SS15]). Let X be a compact set of Rd, and ϵ > 0. We consider a training
set {(xi, yi)}Mi=1. Let f be the KRR model obtained with the true kernel k and regularisation
λ = Mλ0 for λ0 > 0, and f̃ the KRR model obtained with the approximate kernel and the same
regularisation. Then we can guarantee |f(x)− f̃(x)| ≤ ϵ with probability 1− δ for a number D
of samples given by:

D = Ω
(
d

((λ0 + 1)σy

λ2
0ϵ

)2[
log(σp|X |) + log

(λ0 + 1)σy

λ2
0ϵ

− logδ
])
, (6.22)

with σ2
y = 1

M

∑M
i=1 y

2
i and σp, and |X | = maxx,x′∈X (∥x− x′∥) is the diameter of X . Note that

in Eq.6.22 the notation Ω stands for the computational complexity "Big-Ω" notation.

Theorem 6.1 enables to derive a lower bound on the number of necessary samples D for the
approximation error to be less than ϵ > 0. Remarkably, the bound on D grows linearly with the
input dimension d and logarithmically with σp, which is linked to the variance of the frequency
distribution p(ω). In our case, the continuous distribution p(ω) will be replaced by the actual
set of frequencies Ω

p(ω) = 1
|Ω|

∑
ω∈Ω

δω, (6.23)

where δω represents the Dirac distribution at ω. As a result, we can write the discretised
variance as

σp =
∑
ω∈Ω

p(ω)ωTω. (6.24)

From this, we can explicit the link between the number D of samples necessary and the size of
Ω or the number L of encoding gates per dimension.

In the general case, we consider that σp is the average value of ωTω, that is to say the trace
of the multidimensional variance: the more the frequencies are spread, the higher σp will be.

Finally, note that it is important to take into account the Shannon criterion, stating that one
needs at least 2ωmax training points to estimate the coefficients of a Fourier series of maximum
frequency ωmax. In practice, it puts some limitation on the largest frequency one can expect
to learn on a dataset. For example, exponentially large frequencies within VQCs as depicted
in [STJ22] would have a limited interest when only a low number of training points are available.

In the following sections, we provide the minimum bound in the case of Paul encoding.
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Pauli encoding

We provide here a bound on the minimum of samples required to achieve a certain error between
the RFF model and the complete model in the case of Pauli encoding in the distinct sampling
strategy.

Theorem 6.2. Let X be a compact set of Rd, and ϵ > 0. We consider a training set {(xi, yi)}Mi=1.
Let f be a VQC model with L encoding Pauli gates on each of the d dimensions and full freedom
on the associated frequency coefficients, trained with a regularization λ. Let σ2

y = 1
M

∑M
i=1 y

2
i

and |X | the diameter of X . Let f̃ be the RFF model with D samples in the distinct sampling
strategy trained on the same dataset and the same regularization. Then we can guarantee
|f(x)− f̃(x)| ≤ ϵ with probability 1− δ for a number D of samples given by:

D = Ω
(
dC1(1 + λ)2

λ4ϵ2

[
log(dL2|X |) + log

C2(1 + λ)
ϵλ2 − logδ

])
, (6.25)

with C1, C2 being constants depending on σy, |X |. We recall that in Eq.6.25 the notation Ω
stands for the computational complexity "Big-Ω" notation.

Proof. We know that Ω = J−L,LKd. In one dimension, we simply have σp = 1/L
∑

ℓ=−L,··· ,L ℓ
2 =

O(L2). In dimension d, a frequency ω is given by its values on each dimension (j1, · · · , jd) with
jk ∈ [| − L,L|]. We similarly have

σp = 1
(2L+ 1)d

∑
j1,··· ,jd

j2
1 + · · ·+ j2

d . (6.26)

Note that
∑

j1,··· ,jd
j2

1 + · · ·+ j2
d is d(2L+ 1)d−1 times the sum of all squares,

σp = d(2L+ 1)d−1

(2L+ 1)d

L∑
ℓ=−L

ℓ2 = d

2L+ 1
2L(L+ 1)(2L+ 1)

6 ,

= O(dL2) = O(d|Ω|2/d).

(6.27)

The expression is then obtained by replacing the value of σp in Theorem 6.1.

We can conclude that the number D of samples grows linearly with the dimension d, and
logarithmically with the size of Ω. Furthermore, the result can be extended to scaled Pauli
encoding by replacing L with a term growing as cL where c is a constant. D would therefore grow
linearly in L rather than logarithmically. Note however that the scaling in ϵ and λ, respectively
in Ω(1/ϵ2) and Ω(1/λ4), is not favourable and can limit in practice the use of the RFF method.

Note that this proof changes if we take into account the redundancy of each frequency when
sampling from Ω. This will be the case in the Tree Sampling strategy (see Section 6.3.1). In
that case, the variance becomes even smaller since some frequencies are more weighted than
others, in particular for Pauli encoding.
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Grid sampling

We provide here a bound on the minimum number of samples required to achieve a certain
error between the RFF model and the complete model in the case of a general encoding in
the gird sampling strategy. The proof for this theorem has been done by my clever colleague
Slimane Thabet and is given in the Appendix for completeness.

Theorem 6.3. Let X be a compact set of Rd, and ϵ > 0. We consider a training set {(xi, yi)}Mi=1.
Let f be a VQC model with any Hamiltonian encoding, with a maximum individual frequency
ωmax and full freedom on the associated frequency coefficients, trained with a regularisation λ.
Let σ2

y = 1
M

∑M
i=1 y

2
i and |X | the diameter of X . Let f̃ be the RFF model with D samples in the

grid strategy trained on the same dataset and the same regularisation. Let C = |f |∞|X | and s
the sampling rate defined in the grid sampling strategy. Then we can guarantee |f(x)− f̃(x)| ≤ ϵ
for 0 < s < 1

C with probability 1− δ for a number D of samples given by:

D = Ω
(
dC1(1 + λ)
λ4(ϵ− sC)2

[
log(ωmax|X |) + log C2(1 + λ)

λ2(ϵ− sC) − log δ
])
, (6.28)

with C1 and C2 being constants depending on σy and d(X). We recall that in Equation (A.23)
the notation Ω stands for the computational complexity ’Big-Ω’ notation.

Here, we see that quite intuitively the number of samples will depend inversely on the size
of the spacing. In the following section, we run numerical experiments to check our theoretical
findings.
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6.4 Numerical experiments

In this section we put to practice our method and aim to assess the accuracy and efficiency
of RFF to approximate quantum models. Each VQC was analysed using noiseless simulations
using PyQtorch 1, an efficient large-scale emulator designed for quantum machine learning
integrated with a PyTorch backend.

Approximating random quantum models

A typical random VQC instance is built from a list of general encoding Hamiltonians {H1, · · · , Hk}
applied to randomly selected qubits (Figure 6.4). Note that for simulation purposes the number
of qubits is fixed to five.

Figure 6.4: Random instance of a VQC. In this example, three encoding
Hamiltonians {H1, H2, H3} are randomly assigned over four qubits, and load a
1-dimensional vector x. Following each encoding gate Hi, an ansatz with trainable
parameters and a ladder of CNOTs is applied, li times in a row.

The dataset consists of M vectors {x1, . . . , xM , xi ∈ Rd}. It is prepared by considering a
grid of evenly distributed points over

Xgrid =
d∏

i=1
[0, xmaxi ], (6.29)

and the associated labels Ygrid corresponds to the evaluation of the quantum circuit over
the input points. According to the sampling method, we sample D frequencies, build the
approximated kernel and obtain an approximated function f̃ by solving the Linear Ridge
Regression (LRR) (Algorithm 5). We use the Mean Square Error (MSE) of the LRR as a metric
for the approximation which effectively corresponds to the train loss value, defined as

MSE = 1
M

M∑
i=1
|wTϕ(xi)− yi|2. (6.30)

1https://github.com/pasqal-io/PyQ
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We benchmark each RFF sampling strategy (distinct, tree, grid) against several types of
encoding gates: Pauli-encoding, exponential Pauli encoding and a XYZ Hamiltonian.

Pauli encoding

We first consider a quantum model with L = 200 Pauli encoding gates for a uni-dimensional
input vector x ∈ R. The resulting spectrum consists of integer-frequency and reads Ω = J0, LKd.
In this case, the quantum model is a periodic function of period T = 2π and we can therefore
limit the grid to Xgrid = [0, 2π].

We estimate the MSE of our RFF model as a function of the fraction of the full spectrum
size |Ω|, and average over 10 different random initialisation (Figure 6.5(a)). On average, the
RFF training error for distinct and grid sampling is a linear function of the number D of
samples taken from Ω. On the other hand, the error using tree sampling exhibits a faster decay,
reaching relatively low errors with only 20% of the spectrum size. An interpretation of the
tree sampling being more efficient is that it naturally follows the redundancy of the spectrum
frequencies. Indeed, we note that the Fourier coefficients of the VQC are correlated on average
to the frequency redundancy in the empirical quantum spectrum (Figure 6.5(b)). Frequencies
above a certain threshold ωeffective are cut from the quantum model empirical spectrum. The
effective spectrum of the VQC is therefore smaller than the one predicted in theory.

(a) Evolution of RFF train loss as a function of
the relative number of frequencies sampled.

(b) Average Fourier Transform of the VQC’s
quantum models.

Figure 6.5: RFF vs. 1D Pauli encoding. In subplot (a) we plot the MSE
associated to RFF models relative to a quantum model consisting of L = 200
Pauli gates. following the three different sampling schemes. The Tree sampling
strategy takes advantage of the high redundancy to sample less frequencies to reach
a good approximation (subplot (b)). The frequencies with high coefficients are the
ones with high redundancy in Ω (inner red histogram). Frequencies over 100 have
negligible coefficients and redundancy, and therefore are not shown.

6.4.0.1 Scaled Pauli encoding

In order to obtain VQCs with a large number of frequencies but low redundancy, we follow
the exponential encoding scheme proposed in Ref [STJ22] resulting in a uniform probability
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distribution over integers. In this encoding strategy, encoding Pauli gates are enhanced with a
scaling coefficient βkl for the lth Pauli rotation gate encoding the component xk. This gives us
a total of 3Ld positive and negative frequencies. These frequencies can be all distinct with the
particular choice of βkl = 3l−1 resulting in an exponentially large and uniform spectrum Ω.

We test our classical RFF approximation in Figure 6.6. This time we observe that all three
strategies have a linear scaling, showing that the absence of redundancy in the spectrum makes
tree sampling on par with the other sampling methods.

(a) Spectrum Ω for an exponential encoding
VQC.

(b) RFF approximation performance

Figure 6.6: RFF vs. exponential Pauli encoding with L = 5 layers. Here, the
Pauli gates are scaled in order to suppress the redundancy of the spectrum Ω. The
empirical frequencies are therefore spread across the whole theoretical spectrum,
making the model more expressive. The three sampling methods are on par and
show a linear decrease with the number of sampled frequencies.

6.4.0.2 XYZ Hamiltonian encoding

We now consider a quantum model where the encoding Hamiltonian is a more general Hamilto-
nian. Precisely, we consider a general two-body XYZ interaction Hamiltonian that reads

HXY Z =
∑
⟨i,j⟩

αij σ̂
i
xσ̂

j
x + βij σ̂

i
yσ̂

j
y + γij σ̂

i
zσ̂

j
z +

∑
i

δiσ̂
i, (6.31)

where ⟨i, j⟩ indicates a pair of connected qubits and σ̂i = {σ̂i
x, σ̂

i
y or σ̂i

z}. An example of the
resulting spectrum is illustrated in Figure 6.7(a). With this complex encoding, the frequencies
of the spectrum Ω are distributed in concentrated packets. When training the RFF, the grid
sampling is not effective as the spacing is too big and the error seems to be in line with the
theoretical bounds given in Theorem 6.3. The distinct and tree sampling on the other hand
show a power-law decay of the error as the number of sampled frequencies increases. A possible
interpretation is that because the frequencies are concentrated in packets, sampling an effective
frequency ωeff per packets allows the RFF to find a good approximate model. This could point
towards the fact that many frequencies that are too close to each other yield quantum models
that are not so hard to approximate with an RFF method.

126



CHAPTER 6. CLASSICAL APPROXIMATION OF VARIATIONAL QUANTUM MODELS

(a) Spectrum Ω (b) RFF train loss.

Figure 6.7: RFF vs. 3-qubits HXY Z Hamiltonian. We depict the spectral
distribution of frequencies for a VQC consisting of a XYZ Hamiltonian and 4 scaled
Pauli-gates.The intensity of the vertical red lines indicates the concentration of the
theoretical frequencies in Ω. The distinct sampling benefits from the concentration
of frequencies in packets to approximate with less samples.

To conclude this first experimental part, we observe that when some frequencies in the
spectrum Ω have much redundancy (Pauli encoding), these frequencies are empirically the
ones with higher coefficients. In such case, the tree sampling strategy is able to approximate
the quantum model with fewer samples than the other methods as expected. With more
complex Hamiltonians, concentrated packets of frequencies appear and even without much
redundancy both tree and distinct sampling require fewer frequency samples to cover these
packets. According to these experiments, the worst case scenario for the RFF is a uniform
probability distribution where all the three sampling techniques will be equivalent. Nonetheless,
the theoretical bounds prove that the number of Fourier features will scale linearly with respect
to the spectrum size that scales itself exponentially. The poor results of grid sampling in the case
of a general Hamiltonian also points towards the fact that for a large many-body Hamiltonian
that cannot be diagonalised we can expect the RFF method to poorly approximate the quantum
model.

Comparing VQC and RFF on artificial target functions

Another interesting numerical comparison is to measure the efficiency of both a quantum
model and a RFF trained from the same frequencies on a common target function. The goal
of this experiment is to understand if quantum models, while having access theoretically to
given frequencies, can be trained to "use" them. Recall that in the previous section we saw
that for VQCs with Pauli encoding, the Fourier coefficients are rapidly decreasing, cutting out
frequencies higher than ωeffective from the empirical spectrum. For this reason, we have chosen
a particular synthetic target function: we create a sparse Fourier series as a target function s(x)
defined as

s(x) =
∑

ω∈{4,10,60}
cos(ωx) + sin(ωx), (6.32)

127



CHAPTER 6. CLASSICAL APPROXIMATION OF VARIATIONAL QUANTUM MODELS

and we train a quantum model with L = 200 1D-Pauli encoding gates. Interestingly, the tree
sampling, which shadows the redundancy in the spectrum, cannot fit the artifical function
and plateaus at the same level as the quantum model’s final loss value (Figure 6.8(b)) as they
miss on the higher frequency. On the other hand, the RFF models based on distinct and grid
sampling can effectively learn the target function with enough frequency samples. This result
shows that even when a VQC with Pauli encoding is trained, it cannot reach all of its theoretical
spectrum thus questioning the expressivity of such a quantum model.

(a) Predicting a target function. (b) RFF train loss.

Figure 6.8: Fitting an artifical target function with a VQC architecture of
L = 200 Pauli gates compared to an RFF model. The predictions of the target
function s(x) are plotted in Figure (a) and shows that the quantum model fVQC
cannot fit the highest frequency, although it exists in its theoretical spectrum.
Clearly, the RFF with distinct and grid sampling are able to outperform the
quantum model, while the tree sampling shadows the redundancy in the VQC and
hence achieves the same loss.

Numerical experiments discussion

To conclude these numerical experiments, we summarise a few interesting results. First, the
simulations confirm that the spectrum of VQCs are predictable from their encoding gates.
We observe however that the effective set of frequencies does not cover the whole spectrum,
questioning the effective expressivity of VQCs in practice. It also confirms the intuition that
frequencies that appear with high redundancy in the spectrum tend to have larger coefficients.
Furthermore, the three RFF alternatives we propose to approximate quantum models on several
tasks revealed to be efficient. The number D of samples seen as a fraction of the spectrum
size grows favourably and allows for good approximation. With a highly redundant spectrum,
the tree sampling method approximate quantum models with fewer samples. It interestingly
inherits the same drawbacks as VQCs and are sometimes not capable of learning less redundant
frequencies in the spectrum. On the other hand, RFF with distinct and grid sampling can
outperform the quantum model in such cases.
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6.5 Conclusion

In this chapter, we have adapted the RFF sampling strategy to approximate quantum models
emanating from variational quantum circuits with Hamiltonian encoding. Our three sampling
methods use the fact that sampling few random frequencies from a large dimensional kernel
can be enough to provide a good approximation. It is worth noting that this can be done
given only the description of the circuit and without requiring running it on a quantum
computer. We studied in depth the number of samples and its dependence to different properties
of the quantum circuit (input dimension, encoding Hamiltonians, circuit depth, spectrum,
number of training points). On the theoretical side, the number of necessary samples grows
favourably with the size of the spectrum, but suffers from potentially high overhead from the
regularisation parameter. Experimentally, we have tested our classical approximators on several
use cases and the approximation power of RFFs of practically relevant quantum circuits will
have to be assessed in further experiments. Interestingly, Ω increases as well when the encoding
Hamiltonians have distinct eigenvalues and are acting on many qubits. Therefore, quantum
computers that can natively implement Hamiltonians acting on many qubits would be a plus
for enlarging the spectrum.

As the Hamiltonians become larger we could reach a limit where it becomes impossible to
diagonalise them. In such a case, without sampling access to Ω, the Distinct and Tree sampling
strategies would be unavailable. The Grid sampling scheme would suffice until suffering from
the high dimensionality or other factors detailed above. Overall, some limits for our classical
methods can be guessed and observed already, but the main ones remain to be measured on
real and larger scale quantum computers. We leave this research for future work. On another
hand, one could want to understand better the relation between the available frequencies and
their amplitude in practice, to find potential singularities that could help, or not, the VQCs.
Finally, we want to insist on the fact that the assumptions on VQCs are crucial on the whole
construction that we propose, and that some of them could be questioned, especially concerning
the encoding. For instance, when encoding vectors x = (x1, · · · , xd), not having encoding gates
expressed as exp(−xiH) could potentially change the expression of f(x; θ) and therefore would
change the associated kernel. For instance, in [KPE21], the authors use exp(− arcsin(xi)H) to
encode data, resulting in f being expressed in the Chebyshev basis instead of the Fourier one.
More generally, understanding what happens with an encoding of the form exp(−g(xi)H), and
whether we can still use our classical approximation methods, remain an open question. Similar
questions arise if we use simultaneous components encoding exp(−xixjH), or other alternative
schemes. We believe that our work showed that somewhat surprisingly some quantum models
can be (theoretically) approximated in a classical fashion although running the corresponding
quantum circuit cannot be done classically. We hope that this work will pave the way towards
designing quantum models that cannot be approximated classically with RFFs in a pursuit of
quantum advantage in QML.
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True Distribution

Quantum Model random Fourier Features

Figure 6.9: Visualisation of our method. The true distribution to find is the
Mona Lisa (centre). A quantum model (left) can be highly complex: see how
detailed the painting is and the range of colours across the quantum Mona Lisa!
This complex quantum model reproduces somewhat the original painting. The RFF
method on the other side samples and creates a model with much less complexity
(pixelised Mona Lisa) but still yields a good approximation of the painting. Our
main message is that quantum models with high complexity can be approximated
with lower-dimensional classical kernels. These images where generated by Leonardo
da Vinci and with the assistance of DALL·E 2.



Conclusion and outlook

We have shown in this thesis that neutral atom QPUs, historically used to simulate
intractable quantum dynamics, can also be used to tackle combinatorial optimisation
problems and machine learning tasks. Thanks to our facilitated access to the device,

we had the chance of running our tailored algorithms directly on hardware.
To summarise, we demonstrated in Part I that industrial problems such as Smart-Charging

can be embedded as the Maximum Independent Set problem on unit-disk graphs (UD-MIS),
which itself can be encoded as the Ising Hamiltonian over Rydberg atoms. Then, we used tools
from computational complexity theory and statistical physics to shed light on the inherent
difficulty of solving UD-MIS with classical methods and the quantum annealing algorithm (QAA).
Furthermore, we proposed a new scheme to embed more general classes of graphs using
3D registers of atoms. We obtained experimental results for unit-ball graphs, and expect
experimental feasibility in the future for bounded-degree graphs of maximum degree 6. These
results open many exciting perspectives for tackling combinatorial problems with neutral atoms.

First, quantum annealing has only been considered as a quantum algorithm to find exact
solutions. Bottlenecks have therefore been identified as exponentially closing gaps appearing
at the very end of the annealing path [AKR10, AC09, CCL+23]. It would be very interesting
however to consider an annealing scheme that stops before the bottleneck and study the quality
of the obtained state. If the exponentially closing gap is indeed asymptotically close to the end,
then stopping right before could lead to a solution of high quality, which is of great importance
in practice. By bounding the quality of this approximate solution, one could open a new
paradigm of quantum approximation algorithms with a priori guaranteed performances. Linked
to this idea, it is also important to understand how and when solutions of good quality appear
during quantum annealing. Experiments on disordered alloys indeed suggest that spin glasses
can be brought into low-energy states faster by annealing with quantum fluctuations than by
conventional thermal annealing [KRL+23]. One could then imagine using quantum annealing
as an accelerator towards low-energy states in combinatorial optimisation problems, yielding
non-trivial approximate solutions. Approximation algorithms in the quantum complexity setting
have been explored in the past [Has12, GK12a, GK12b] but QAA has been very much left aside.
There are however many mechanisms that have been put forward by physicists (Kibble-Zurek
mechanism and quantum phase transitions [Dzi10]) that could be used to better qualify quantum
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approaches for approximate solutions.
In Part II, we showcased how quantum dynamics over ensemble of Rydberg atoms can be

used as a quantum feature map for graphs. We then built upon the quantum feature map a
quantum kernel named Quantum Evolution Kernel (QEK). We implemented our method on
hardware and showed that the geometry induced by QEK cannot be learned by classical means.
Surprisingly however we did not get substantially higher results on the classification challenge
at hand. Our interpretation is that the dataset was not mapped in a particularly useful way
in this rich quantum feature space. To confirm this intuition, we created an artificial dataset
inspired by spin-glass physics for which quantum effects yielded discriminating dynamics. In
this case, QEK performed much better than all other classical kernels tested. A naive argument
for quantum machine learning is to expect better results because the quantum dynamics are
intractable and give rise to a high-dimensional complex feature space. We discovered however
with our experiment that it is not always the case. This triggered our interest in understanding
if a variational quantum circuit, while being classically hard to simulate, can give rise to a
quantum model that can actually be approximated by classical means. We answered positively
this question with the use of random Fourier features (RFF) and showed that many proposed
models of variational quantum circuits as quantum models can be approximated with reasonable
quality. This brings new guidelines to the construction of quantum models, for example applying
a global Hamiltonian on many qubits yields one of the hardest model to approximate with
RFFs.

The field of QML is growing strongly thanks to the increasing availability of quantum
devices and encouraging theoretical results. An interesting question is trying to guess where
the quantum advantage can come from. For classical datasets, it is hard to prove a quantum
advantage as classical models perform already extraordinarily well. Although we have shown
interesting results at a small scale, a fair benchmark requires comparing classical ML models
with quantum ones on very big datasets, which cannot unfortunately be encoded efficiently on
quantum devices just yet. However, it seems quite natural to assume that QML will beat its
classical counterpart on quantum datasets. As we have seen in this thesis, the quality of QEK
changes depending on the dataset at hand and performs well on the artificial dataset. This
is because the graphs where labelled according to their underlying lattices that yield distinct
frustrations during quantum dynamics. We can therefore expect that QML will demonstrate
advantage over classical methods for datasets that are naturally biased with respect to quantum
properties. With the development of quantum memories [CHQ+20] quantum computers will
hopefully have access to quantum states directly, making QML the most suited method to
analyse and learn on quantum datasets directly.
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A.1 Integer linear reformulation of the (QP) problem

The (QP) problem can be solved by a classical reformulation-linearisation of non-convex
quadratic programs into binary/integer ones, by considering variables xi and yi as integers and
replacing them by their binary expansions in constraints(A.16) and (A.17), then adding binary
variables and appropriate constraints to represent the products between them [PB17, EL19,
BSA08]. The resulting binary/integer linear model is as follows:
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Find{(xi, yj)} (A.1)

s.t.

∀i ∈ V, xi =
k=log(L)∑

k=0
2kbxk

i ; yi =
k=log(L)∑

k=0
2kbyk

i (A.2)

∀i ∈ V, xi < L; yi < L (A.3)

∀⟨i, j⟩ ∈ E :

ρ2 ≤ XjXj − 2XiXj +XiXi + YjYj − 2YiYj + YiYi ≤ r2 (A.4)

XiXj =
k=log(L)∑

k=0

k′=log(L)∑
k′=0

2(k+k′)wxk,k′

i,j (A.5)

YiYj =
k=log(L)∑

k=0

k′=log(L)∑
k′=0

2(k+k′)wyk,k′

i,j (A.6)

wxk,k′

i,j ≤ bx
k
i ; wxk,k′

i,j ≤ bx
k′
j ; wxk,k′

i,j ≥ bx
k
i + bxk′

j − 1 (A.7)

(QPRLT ) wyk,k′

i,j ≤ by
k
i ; wyk,k′

i,j ≤ by
k′
j ; wyk,k′

i,j ≥ by
k
i + byk′

j − 1 (A.8)

∀⟨i, j⟩ ∈ E :

XjXj − 2XiXj +XiXi + YjYj − 2YiYj + YiYi > r2 (A.9)

XiXj =
k=log(L)∑

k=0

k′=log(L)∑
k′=0

2(k+k′)wxk,k′

i,j (A.10)

YiYj =
k=log(L)∑

k=0

k′=log(L)∑
k′=0

2(k+k′)wyk,k′

i,j (A.11)

wxk,k′

i,j ≤ bx
k
i ; wxk,k′

i,j ≤ bx
k′
j ; wxk,k′

i,j ≥ bx
k
i + bxk′

j − 1 (A.12)

wyk,k′

i,j ≤ by
k
i ; wyk,k′

i,j ≤ by
k′
j ; wyk,k′

i,j ≥ by
k
i + byk′

j − 1 (A.13)

bxk
i , by

k
i , wx

k,k′

i,j , wyk,k′

i,j all binary. (A.14)

Once rewritten this way, and assuming that it is feasible, (QP) can be solved by any
conventional techniques dedicated to linear discrete constraint satisfaction problems. However,
it is wort noting that this formulation quickly leads to a large amount of binary variables, since
for each couple (xi, yi) of continuous variables modeling a vertex in the original problem, we
introduce 2log(L) binary variables (bxi, byi) to expand its integer representation, and (log(L))2

binary variables wxk,k′

i,j /wyk,k′

i,j to express each product in the constraints related to the edges.
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A.2 From Interval Graphs to Unit Disk Graphs

Graphs such as the ones used to model our Job Interval Selection problem (SC2) do not corre-
spond to UD graphs as they are unions of interval intersection graphs (the edges corresponding
to the overlapping tasks) and of cluster graphs (the set of complete disjoint cliques corresponding
to the groups) and thus one-dimensional intersection graphs, rather than two-dimensional ones.
Hence, we have to transform our scheduling graphs in order to implement the search of their
MIS on the quantum machine.

The mapping between the original problem graph and the locations of the Rydberg
atom/qubits in the machine can be obtained by solving the following continuous quadratic
constraint satisfaction problem (QP):

Find{(xi, yj)} (A.15)

s.t.

∀⟨i, j⟩ ∈ E, ρ2 ≤ (xj − xi)2 + (yj − yi)2 ≤ r2
b (A.16)

∀⟨i, j⟩ ∈ E, (xj − xi)2 + (yj − yi)2 > r2
b (A.17)

∀i ∈ V, xi < L; yi < L (A.18)

where:

1. G = (V, E) is the original interval graph of the problem;
2. G = (V, E) is G’s complementary, i.e. the graph whose vertices (i, j) are connected iff

they are not connected in G;
3. r is the Rydberg blockade radius, i.e. the upper bound on the distance between two

connected vertices, ρ ∼ r/3 a given factor defining the lower bound on their distance,
illustrating the minimal spacing between separated atoms that is experimentally feasible;

4. (xi, yi) are the coordinates in the Euclidean plan of the atom/qubit representing the node
i ∈ V ;

5. L defines the maximum square area available to place atoms on the machine, while
imposing the above constraints.

Experimentally, the Rydberg blockade radius rb can be around 15µm, for minimal distances
between atoms of the order of 5µm, and the atoms are contained in a region characterised by
L ∼ 100µm.

Ideally, the transformation of the original (SC2) graph into one respecting the constraints of
the quantum device, i.e. the solving of the (QP) problem above, should be (i) always feasible,
and (ii) sufficiently efficient to preserve the quantum advantage expected when solving the UD
MIS problem on the quantum machine, thanks to the "natural" embedding of this problem
on it, as shown in the section 2.1.2.1 above. Unfortunately these two conditions cannot be
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met in all cases. First, depending on the machine characteristics (rb, ρ, L) and the structure of
the original interval graph G, (QP) does not necessarily have feasible solutions. For example,
strongly connected graphs make it difficult to satisfy the constraint of bringing together the
atoms corresponding to connected nodes in the rings delimited by (rb, ρ).

Furthermore due to the lower bound in constraints (A.16) and to constraints (A.17), (QP)
is not convex, and is thus NP-hard in the general case. Classical reformulation-linearisations
of non-convex quadratic programs are available for (QP)-like problems [PB17, EL19, BSA08],
leading to integer/binary linear constraint satisfaction problems (CSP) that can be tackled
by well-studied conventional techniques. The drawback however of this approach is the large
number of binary variables. Such a formulation for (QP) is presented in Section A.1. It was
tested on our graph instances using the Ibm Cplex solver. As an alternative, we used a more
compact linear formulation which, although not providing a guarantee to find an existing
solution in the elapsed time allowed, did perform well on the majority of smart-charging graphs
tested. The idea is to replace the quadratic constraints by linear ones but expressing the
inclusion in the rings defined by (r, ρ) by means of a given set of parametrized radius. The
resulting model is as follows:

Find{(xi, yj)} (A.19)

s.t.

∀i ∈ V, xi < L; yi < L (A.20)

(QPRΦ) ∀⟨i, j⟩ ∈ E :
∨

ϕ∈Φ
fϕ(xi, yi, xj , yj) (A.21)

∀⟨i, j⟩ ∈ E : (|xj − xi| > r) ∨ (|yj − yi| > r) (A.22)

where fϕ is a set of clauses enforcing the belonging of the point (xj , yj) to the radius defined
by the angle ϕ intersecting the ring of center (xi, yi) defined by (r, ρ). For example:

fϕ∈[0, π
2 [ = (ρ cosϕ ≤ xj − xi) ∧ (xj − xi ≤ r cosϕ) ∧ (ρ sinϕ ≤ yj − yi) ∧ (yj − yi ≤ r sinϕ)

Because of the "or" and "absolute value" terms, this formulation is still combinatorial, but much
more efficient than the previous one.

This formulation was tested with Ibm Cplex solver. It provided 84 UD graphs to be
implemented for UD-MIS search on the Rydberg atom based quantum machine, starting from
100 instances of real smart-charging graphs of 12 to 15 nodes each, limiting the (QPRΦ) CSP
resolution time to 60s for each instance.

This approach to reformulate (SC2) problems into UD-MIS tractable on Pasqal’s quantum
machine seems thus valid. However, in the experiments conducted up to now and presented
here, we had to solve the (QP) problem this way only for graph instances whose number of
vertices was limited. Tackling larger load scheduling problems on larger quantum processors
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with this method might prove vain, due to the cost of computing the corresponding UD graph
of Rydberg atoms, assuming it exists.

Our method should thus be considered as a hybrid classical/quantum heuristic for solving
(SC2)-like smart-charging problems –NP-Hard with no PTAS– by first trying to quickly find
a UD representation of the graph, then aiming to exploit the expected quantum advantage
gained when solving the UD-MIS problem on a Rydberg atom quantum device. Clearly, any
improvement of the "mapping" between the original scheduling problem and its representation
on the quantum processor will benefit to the method. This is an important research objective
that we leave for future work.

A.3 Grid sampling with a general Hamiltonian

We provide here a bound on the minimum of samples required to achieve a certain error between
the RFF model and the complete model in the case of a general encoding in the gird sampling
strategy.

Theorem A.1. Let X be a compact set of Rd, and ϵ > 0. We consider a training set {(xi, yi)}Mi=1.
Let f be a VQC model with any Hamiltonian encoding, with a maximum individual frequency
ωmax and full freedom on the associated frequency coefficients, trained with a regularisation λ.
Let σ2

y = 1
M

∑M
i=1 y

2
i and |X | the diameter of X . Let f̃ be the RFF model with D samples in the

grid strategy trained on the same dataset and the same regularisation. Let C = |f |∞|X | and s
the sampling rate defined in the grid sampling strategy. Then we can guarantee |f(x)− f̃(x)| ≤ ϵ
for 0 < s < 1

C with probability 1− δ for a number D of samples given by:

D = Ω
(

dC1
λ4(ϵ− sC)2

[
log(ωmax|X |) + log

C2
λ2(ϵ− sC) − logδ

])
(A.23)

with C1 and C2 being constants depending on σy, d(X). We recall that in Eq.A.23 the notation
Ω stands for the computational complexity "Big-Ω" notation.

Proof. The following theorem bounds the approximation between a function defined by its
Fourier series and another function with frequencies distant by at most a constant s of the
original frequencies.

Let X a compact set of Rd with diameter |X | and Ω a finite subset of X . Let f(x) =∑
ω∈Ω

aω cos
(
ωTx

)
+ bω sin

(
ωTx

)
. Let Ω′ a subset of X and s > 0 such that ∀ω ∈ Ω, ∃ω′ ∈

Ω, |ω − ω′| ≤ s.

Let FΩ′ =
{ ∑

ω∈Ω′

aω cos
(
ωTx

)
+ bωsin(ωTx), aω, bω ∈ R

}
.

Theorem A.2. It exists f’ ∈ FΩ′ such that

sup
x∈X
|f ′(x)− f(x)| ≤ sC (A.24)
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with C = |X ||f |∞.

Proof. For each ω ∈ Ω let b(ω) ∈ Ω′ be such that |ω − b(ω)| ≤ s. Such element exists by
definition but is not necessarily unique. Let f ′(x) =

∑
ω∈Ω

aω cos
(
b(ω)Tx

)
+ bω sin

(
b(ω)Tx

)
. The

b(ω)s are not necessarily different therefore there might be less frequencies in f ′ than in f .

|f(x)− f ′(x)| = 2
∣∣∣∣ ∑

ω∈Ω
sin
(

(ω − b(ω))T

2 x

)
(A.25)

[bω sin
(

(ω + b(ω))T

2 x

)
− aω cos

(
(ω + b(ω))T

2 x

)
]
∣∣∣∣ (A.26)

≤ 2
∑
ω∈Ω

∣∣(ω − b(ω))T

2
∣∣|x|[|bω|+ |aω|] (A.27)

≤ s|x|
∑
ω∈Ω
|bω|+ |aω| (A.28)

≤ s|X ||f |∞ (A.29)

We shall here extend the proof where we sample from the grid described above. Let us note
f̂s the RFF model with the whole grid and f̃ the RFF model with D samples from the grid
below. For all x ∈ X we have

|f̃(x)− f(x)| ≤ |f̃(x)− f̂s|+ |f̂s − f(x)| (A.30)

≤ |f̃(x)− f̂s|+ sC (A.31)

Then

P(|f̃(x)− f(x)| ≥ ϵ) ≤ P(|f̃(x)− f̂s| ≥ ϵ− sC) (A.32)

for s < ϵ/C.
In this case |Ω| = (ωmax/s)d Using the expression of Section ??, we can guarantee that

|f(x)− f̃(x)| ≤ ϵ with probability 1− δ if

D = Ω
(
d

1
(ϵ− sC)2

[
log(ωmax/s) + log 1

ϵ− sC
− log δ

])
(A.33)

A.4 PTAS for unit-disk graphs

The graphs that can be mapped onto a neutral-atom device are called λ−precision unit-disk
graphs.
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Definition A.1 ([HIMR+98]). For any fixed λ > 0, consider a finite set of unit disks in the
plane where the centers of any two disks are at least λ apart. A λ−precision unit-disk graph
G(V,E) is a graph where each vertex of G is in one-to-one correspondence with the set of
unit-disks and two vertices are joined by an edge i.f.f. the corresponding disks intersect.

In the case of a neutral-atom quantum processor, λ corresponds to the minimal distance
between atoms, of the order of 5µm.

We describe the algorithm presented by Hunt [HIMR+98] that guarantees an approximate
solution to the MIS problem on a λ-UD graph G for which an embedding in R2 is given.

The quality of the approximation ratio is guaranteed thanks to the shifting technique [HM85].
This general approach uses a set of evenly spaced separators to decompose the problem into
smaller, more manageable sub-problems whose solutions are merged to obtain a solution to the
global problem. The process is repeated with different placements of the separator set, and the
best solution across these placements is selected as an approximation of the optimal solution.
The term “shifting technique" arises from the concept of moving the separator set through the
problem. The key idea of the technique is represented in Figure A.1.
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Partition i = 0Unit-Disk graph

l

Partition i = 1

G0,1

Figure A.1: Shifting technique for UD-MIS. Let G be a λ−UD graph where
two nodes u, v are connected if ∥u, v∥ ≤ 1 and all nodes are separated by a minimal
distance λ > 0. The area I in which G is embedded is decomposed in horizontal
strips of width 1. Given a shifting parameter l, G is partitioned in independent
subgraphs of width l. They are all made independent by deleting the nodes in the
grey strips. The MIS is solved exactly on the individual subgraphs and the IS of
the whole graph is the union of all IS sub-graphs. Because of the independence
of the sub-graphs, such a union of IS is a feasible solution on the global problem.
We can then create another partition of G by moving all grey strips one level
down. After l partitions, we recover the partition i = 0. From the l possible
partitions, the best solution is chosen and has a guaranteed approximation ratio of
(l/(l+ 1)) · |OPT (G)| nodes, where OPT (G) is the optimal solution. This guarantee
comes from the shifting lemma.

We now describe the algorithm in pseudo-code. Let OPT (G) denote (one of) the optimal
solution, and let IS(G) be the output solution of the algorithm:

This algorithm guarantees a solution IS(G) such that IS(G) ≥
(

l
l+1
)
· |OPT (G)|. This is

given by the following lemma:

Lemma A.1 (Shifting technique).
max
0≤i≤l

|OPT (Gi)| ≥
l

l + 1 |OPT (G)|. (A.34)

Proof. For each partition i, 0 ≤ i ≤ l, let Si be the set of unit disks which were not considered
in iteration i. Given the optimal independent set OPT (G), we denote ISopt(Si) = {v ∈ V/v ∈
OPT (G) ∩ Si} the vertices of the optimal set that are in Si. The family {S0, · · · , Sl} forms a
partition of the graph and therefore
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Algorithm 8 PTAS for λ-UD MIS
Require: l ∈ N
Ensure: IS(G) ≥

(
l

l+1
)
· |OPT (G)|

1: Divide the plane into horizontal strips of width 1.
2: for i in 0, · · · , l do ▷ Shifting technique
3: Partition the disks into r disjoint sets Gi,1, . . . , Gi,r by removing all disks in every

horizontal strip congruent to i mod (l + 1).
4: Gi = ∪1≤j≤rGi,j and ∀j, k,Gi,j ∩Gi,k = ∅
5: for j in 1, · · · , r do
6: Solve MIS exactly and obtain OPT (Gi,j). ▷ See theorem.
7: end for
8: OPT (Gi) = ∪1≤j≤rOPT (Gi,j)
9: end for

10: IS(G) = max0≤i≤l OPT (Gi)

l∑
i=0
|ISopt(Si)| = |OPT (G)|, (A.35)

as Si ∩ Sj = ∅ for any i ̸= j. Therefore,

min
0≤t≤l

|ISopt(St)| ≤
1

l + 1 · |OPT (G)|. (A.36)

Also, note that
max
0≤i≤l

|OPT (Gi)| ≥ |OPT (G)| − min
0≤t≤l

|ISopt(St)|, (A.37)

and using the upper bound of equation (A.36) we obtain

max
0≤i≤l

|OPT (Gi)| ≥ |OPT (G)| − 1
l + 1 · |OPT (G)| (A.38)

≥ l

l + 1 · |OPT (G)|. (A.39)

The shifting lemma bounds the error of the shifting strategy and therefore offers a guarantee
of the approximation ratio that depends on the integer l ∈ N. In the algorithm, step 6 requires
to solve MIS exactly on the subgraph Gi,j . Note that when looking at Gi,j over a rectangular
area of rb× lrb, where rb is the Rydberg blockade radius. Then, because the vertices of a λ−UD
graph cannot be closer than λ, the maximum number of vertices inside of the area is l( rb

s )2.
This ensures that the tree decomposition of Gi,j has a treewidth of size l( rb

s )2 (see proof of
Theorem 5.1 in [HIMR+98]), taken as O(l) as rb and s are fixed. In this case, it is possible to
find exactly the MIS of a graph with bounded treewidth in time O(2ln), which is exponential
with the precision parameter (as ε = l/(l + 1)) but linear in n.

To conclude this section, we have detailed the workings of a PTAS for solving MIS on
λ−UD graphs. The shifting technique is the core strategy of this approximation algorithm that
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guarantees a lower-bound on the quality of the solution returned. To the best of my knowledge,
a quantum version of PTAS has not been formalised yet. An immediate approach would be to
build the oracle that returns the quality of a partition i and therefore get a quadratic speed-up
à la Grover to find the best partition from all possible partitions.
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