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Merci à Amaury B. et Julie A. et à leur amour invétéré des peluches. Je me souviens avec
plaisir de notre voyage (enrhumé) en Alsace.
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nombreux sont ceux qui auraient été à même de le faire, surtout vu le nombre de parties de Smash
et de vaisselle que cela t’a demandé !
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gent) à la réalisation de magnifiques polytopes dans notre bureau.
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m’avoir prêté votre appartement alors que ma deuxième année commençait. Ma mamie de m’avoir
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Merci à Viviane P. pour ses conseils, son aide et son sens de l’organisation. Merci pour ton
regard pertinent sur les questions humaines : cela m’a fait beaucoup réfléchir.
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rencontres dominicales à Cité U, ou les anciens de la section, chercheurs aux SageDays, les gens
de passage chez moi : j’aime toujours autant le frisbee malgré les rares opportunités que j’ai de le
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propice au travail. Bien des fois, j’aurais aimé que quelqu’un rentre par hasard dans notre bureau
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Étienne, Thomas (tous les Thomas), Mahya, Perla, Adrien, Adrien, Mattias, Christina, Mathieu,
Haowen, Nastaran, Tristan, les pauses du midi n’auraient certes pas été si longues sans vous, mais

7
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Introduction

That the powerful play goes on, and you may contribute a verse.
– Walt Whitman, “Oh Me! Oh Life!” in Leaves of Grass

Mathematicians study geometry for more than 2 500 years. Even though they may not be the
first to have explored such concepts, Greek scholars are renown for having introduced both the art
of the proof and the formalization of abstract geometry. In particular, polygons and polyhedra
seem to have held a very special place in their representation of the world.

Polygons, for instance, were at the heart of a burning controversy about the essence of Nature.
At first, integers were thought to be the natural numbers. Furthermore, as ratios of integers, the
rational numbers were also thought as perfect: a fraction is no more than two commensurable
(integer) lengths, that is two lengths that can be drawn as integer lengths in a well-chosen scaling.
Greek philosophers thought for a time that perfect objects can only involve such numbers, but
regular polygons seem to be perfect as well: nevertheless, the length of the diagonal of a square
with unit-length side is not a rational number, and more and more irrational numbers appear
when considering all regular polygons. This cataclysmic discovery led the majority of Greek
mathematicians and philosophers to accept constructible numbers as (somewhat) perfect, and to
state the famous three problems of Ancient history: trisecting the angle, doubling the cube, and
squaring the circle.

Besides, 3-dimensional studies were not outdone. Pythagoras, and his school after him, dis-
covered the tetrahedron, the hexahedron (a.k.a. the cube), and the dodecahedron. Later on,
Theaetetus constructed the two last of the five Platonic solids, namely the octahedron and the
icosahedron. Plato, in the Timaeus, associated each of these five polyhedra with an element:
Fire (tetrahedron), Earth (cube), Air (octahedron), Water (icosahedron), and the element “the
demiurge used for arranging the constellations on the whole heaven” (dodecahedron).

The Greek history of geometry is synthesized by Euclid. Books IV and XIII of his famous
Elements (Στoιχεια) are devoted to regular polygons and regular polyhedra, respectively. He
proved numerous and numerical relations between these objects, gave explicit constructions, stated
and solved problems and puzzles. In his honor, the name Euclidean geometry has ever since
designated the usual geometry (which was the only existing one before the Euclid’s fifth postulate
was put into question, and Gauss defined non-Euclidean geometries).

Researches around polygons and polyhedra have never stopped since, and it is hard to find a
great mathematician that has spoken no word about them. On top of that, polyhedra are among
the very few abstract mathematical objects to make repeated appearances in Arts and Letters.
To begin with, not only did Plato give his solids a central role in his cosmogony, but Johannes
Kepler, in his Mysterium Cosmographicum, also thought that the distances between the planets
in the solar system were explained by the possibility to circumscribe Platonic solids around each
of their orbits. He soon abandoned this idea when realizing planet’s orbits were not circular.
Architecture obviously benefited from the study of plane and spacial geometry, while making
contributions to it. Especially, it is worth mentioning the Grande Arche de La Défense, designed
by Johan Otto von Spreckelsen as a gigantic 3-dimensional embodiment of a 4-dimensional cube.
Painting as well, above all during the Renaissance period, was largely inspired by plane geometry
and the symmetry regular polygons and polyhedra exhibit. Albrecht Dürer famously portrayed an
eponymous polyhedron in Melancolia I, and Platonc solids appear in the Portrait of Luca Pacioli
from Jacopo de’ Barbari. Even music is imbued with geometry: the Timaeus is a dialogue on
music, and the recent piece Polytopes from Iannis Xenakis is constructed thanks to polytopal ideas.

By dint of all these cultural occurrences, polyhedra are well known to the public. It is then quite
remarkable that the research on polygons, polyhedra, and polytopes, is still greatly flourishing:
after thousands of years and thousands of contributors, some questions are still open, and new
exciting ones keep being thought of.

Such a keen interest for polyhedra may be explained by their duality. Indeed, polyhedra are
both simple to define, and rich in the behaviors they can express; they are sitting on the fence
between concrete numerical geometry and purely abstract topology; they are drawn and visualized
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by everyone but elementary properties can be hard to prove; they seem alighting from the realm of
ideas, although they can be directly encountered in nature (from capsids of viruses to furnishing).
If this has participated in draping polyhedra with a mystical allure, it has also exerted a prolific
fascination on numerous mathematicians. In particular, the help of modern computers have greatly
improved our capacity to construct polyhedra and play with them, leading to numerous conjectures
and open problems. In return, the discrete nature of computer science’s problems has paved the
way for a large panel of new challenges and applications of polyhedral geometry.

The main objects of the present manuscript are polytopes: a polytope is defined as the convex
hull of finitely many points in the Euclidean space Rd. As such, polytopes are the generalization of
polygons and polyhedra to higher dimensions. In this thesis, I will try to unveil some links between
the geometric aspects of polytopes and their combinatorial behaviors. We give hereafter a precise
description of the context each chapter contributes to, and the new results proven. Two concepts
will be at the center of this polytopal journey: generalized permutahedra and linear programs.

The first notion arises from the systematic research of the combinatorial properties of polytopes,
which have played a great role in the development of the field since their (re)popularization during
the 20th century, see [Grü03, Zie98] for the history of the subject. Polytopes naturally come
with various combinatorial properties: foremost, one can try to understand their faces (which are
themselves polytopes), and how its faces are included one in another, leading to the definition of
the face lattice of a polytope. If exploring the face lattice of a polytope is already fascinating,
the reverse question turns out to be even more fecund: given a combinatorial structure, how to
construct a polytope to embody it? An epitome of such quest is surely the construction of the
permutahedron. Discovered by Schoute in 1911 [Sch11], the vertices of the permutahedron are in
one-to-one correspondence with the permutations. Moreover, the faces of it can be labelled by the
ordered partitions, while its (oriented) graph naturally describes the Bruhat order on permutations.

But this is only the tip of the iceberg: the permutahedron can be deformed (in a sense that
will be made clear in Section 2) to create generalized permutahedra. Originally defined by Ed-
monds [Edm70] under the name polymatroids, their rediscovery by Postnikov in 2009 [Pos09] was
the starting point of a myriad of researches. In particular, various combinatorial families can
be encapsulated in the combinatorics of certain generalized permutahedra. A first example is
the (hyper)cube whose vertices are in bijection with binary sequences, and help for instance to
understand Hamming codes [Ham50]. Besides, the matroid polytopes also arises as generalized
permutahedra [ABD10, Ard21], and play an important role in the search for Minkowski indecom-
posable generalized permutahedron. But the one and foremost example of generalized permuta-
hedra is probably the associahedron: known as the “mythical polytope” [Hai84] and introduced
by Tamari [Tam51] and Stasheff [Sta63], its first realizations were given by Milnor (unpublished),
Haiman [Hai84], Lee [Lee89], and then Loday [Lod04, PSZ23]. Its combinatorics encapsulate
the one of Catalan families, that is to say triangulations of a polygon, binary search trees, sub-
partitions of the staircase partition, non-crossing arborescences, etc. The realization of the associ-
ahedron as a generalized permutahedron allows for numerous links between the combinatorics of
permutations and Catalan families, this is nowadays the subject of an abundant literature ranging
from mathematical physics [AHBHY18] to cluster algebra [FZ02] and moduli space [Sta63, Kel01].

On top of that, the set of generalized permutahedra is not only a list of relevant examples, it
is also endowed with its own structure: it forms a cone, called the submodular cone. This cone is
the type cone of the permutahedron, in the sense of McMullen [McM73], and as such have been
studied from a wide variety of perspectives: for instance, the name submodular cone comes from
the notion of diminishing returns in economy [JKS22], while in the domain of toric varieties, it is
known as the numerically effective cone [CLS11]. Furthermore, it is the natural (and universal)
setting for the construction of a Hopf monoid of polytopes [AA17]; it appears in the study of the
Grassmannian, especially in positive geometry [AHBL17, LP20], and the amplituahedron program
(with links to mathematical physics) [AHT14, AHBC+16].

On the other side, linear programming delves into the geometrical aspects of polytopes. Opti-
mization is known for being a supremely useful but notably difficult theory, and linear optimization
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encompasses the optimization problems in which both the constraints and the quantity to optimize
are linear in the involved variables. This kind of problems originally appeared for logistic grounds:
Dantzig [Dan63] was working for the U.S. Air Force in 1947 when he introduced the general con-
cept, and Kantorovich already thought about some specific cases in 1939 for the timber industry of
U.S.S.R. However, the field grew only slowly at first, until two crucial breakthroughs: Kantorovich
and Koopmans earned the Nobel Prize of Economy in 1975 for their work on resource allocation,
and computers became a growing part of the organization of our civilizations throughout the end
of the century.

There are several methods to solve a linear problem, among which some are known to be of
polynomial complexity (see [MG07, Chapter 7] and [RTV05, DNT08]), but the original method,
which is still of prime importance, is the simplex method, whose complexity class is not fully
understood for now [KM72, DS14]. The simplex method can be thought of as the counterpart
of the Gaussian elimination, but when dealing with linear inequalities (and a linear functional to
optimize). In broad, the key idea is to consider the set of solutions of your system of inequalities
as a polytope (or an unbounded polyhedra), and to jump from one vertex onto one of its neigh-
bors, increasing the value of the linear functional at each step. This method will end at a point
maximizing the linear functional, thanks to the convexity of the polytope. Nevertheless, one needs
to set up a rule on how to choose the neighbor to jump onto: this is the pivot rule. Pivot rules and
how to elect the right one have been written about extensively (see [MG07, APR14, DS14, FS14]
among many other), and we certainly do not intend to fully answer this question here.

Instead of taking a computer science approach, the point of view we would like to develop on
the simplex method centers around its combinatorial behavior: given a polytope and a direction,
what can be said about the structure of the set of (edge) paths on the polytope that are increasing
for this direction? There are several ways to understand (and to tackle) this question. When
focusing on the worst case scenario, it is natural to explore monotone paths [AER00, BLL20],
and even monotone path polytopes [BS92, ALRS00, MSS20, BL21], while new works focus on
the whole decision tree that a (memory-less) pivot rule gives rise to, and construct several pivot
rule polytopes [BDLLS22, BDLLSon]. Among the pivot rule polytopes, the max-slope pivot rule
polytope is a generalization of the monotone path polytope, moreover, the latter is a deformation
of the first.

In addition, the pivot rules that max-slope pivot rule polytopes and monotone path polytopes
casts about, namely the max-slope pivot rules (a generalisation of shadow vertex rules), echo more
algebraic researches. More precisely, fiber polytopes were defined by Billera and Sturmfels [BS92]
to understand both projections and subdivisions of polytopes. While pivot rules address edge
paths on polytopes, fiber polytopes aim at encompassing triangulations which can be thought of as
their higher-dimensional counterpart. This construction opened the door to new ways of thinking
about classical polytopes: for instance, the permutahedron is the monotone path polytope of the
cube [BS92], and the fiber polytope for the projection from a simplex is deeply linked to the
triangulations of points configuration through the secondary polytope of Gelfand, Kapranov and
Zelevinski [GKZ90, GKZ91]. Furthermore, it led to fruitful developments in a wide variety of
research areas such as convex geometry [Est08, Mer22], type B Coxeter associahedron [Rei02], and
even power series [McD95].

In this manuscript, we study on the one hand generalized permutahedra and the submodular
cone, and on the other hand max-slope pivot rule polytopes and fiber polytopes. Although the
domains undeniably interact all along the present thesis, ideas coming from one side being steadily
applied to the other, the pre-eminent result creating a neat bridge between these two realms is
Section 3.3: we state that the combinatorial behavior of the class of max-slope pivot rules can be
handled more easily by embedding the question inside the realm of generalized permutahedra. We
hope that such a new insight may open the way to a better understanding of (memory-less) pivot
rules.

The rest of this introduction details the content of the present thesis, especially the contexts
and results of each following section.
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Section 1 is dedicated to a short introduction to the basic notions we will need on polytopes,
order theory and linear programming. The three main chapters (Sections 2 to 4) begin by their
own preliminaries, before presenting two new results. For each result, we have implemented the
key objects thanks to the open source software Sage. We end each sub-section by discussing these
implementations and putting some light on possible mathematical perspectives.

After the preliminary Section 1, each chapter can be read independently, even though they
are thought to be read in order. Likewise, inside each section, the first sub-section shall be read
first, but the two others can be read independently. Note however that Section 4.3 deeply relies
on Section 3.2.

Section 1: Preliminaries. The reader probably already knows what is presented in this introduc-
tory chapter. The crucial definitions are highlighted so he or she can swiftly consult them and
look at the figures. Yet, we may emphasize some key elements:
• Partially ordered sets: The notion of pre-orders is probably the less known among the presented

notions, while ordered partitions and permutations are the most important ones.
• Polytopes: The definition of polytopes, faces and lattices of faces are of prime importance, but
the dual notion of fans and normal fans is more central in this thesis. The examples, especially
the permutahedron and the associahedron, will be the key objects for the next chapters.

• Linear programming: As this thesis is not about linear programming itself, its presentation will
be succinct and only aims at giving a different yet enlightening point of view on the geometry
of polytopes.

Section 2: Deformations of polytopes. The first main section is devoted to the study of deforma-
tions of polytopes. A deformation of a polytope P can be equivalently described as (i) a polytope
whose normal fan coarsens the normal fan of P [McM73], (ii) a Minkowski summand of a dilate of
P [Mey74, She63], (iii) a polytope obtained from P by perturbing the vertices so that the directions
of all edges are preserved [Pos09, PRW08], (iv) a polytope obtained from P by gliding its facets
in the direction of their normal vectors without passing a vertex [Pos09, PRW08]. A sequence
of deformations is illustrated in Figure 10. The deformations of P form a polyhedral cone under
dilation and Minkowski addition, called the deformation cone of P [Pos09]. The interior of the
deformation cone of P, called the type cone [McM73], contains those polytopes with the same
normal fan as P. When P is a rational polytope, it has an associated toric variety [CLS11], and
the type cone (also known as the numerically effective cone or nef cone) encodes its embeddings
into projective space [CLS11, Sect. 6.3]. Among the different ways to parametrize and describe the
deformation cone of a polytope P (see e.g. [PRW08, App. 15]), we use the parametrization by the
heights corresponding to the facets of P and the description given by the wall-crossing inequalities
corresponding to the edges of P [CFZ02]. While this inequality description is immediately derived
from the linear dependencies among certain normal vectors of P, it is in general more difficult to
extract the irredundant facet inequality description of the deformation cone.

Fundamental examples of deformations of polytopes are the deformed permutahedra (a.k.a. gen-
eralized permutahedra or polymatroids) studied in [Edm70, Pos09, PRW08], which are classically
parametrized by submodular functions. The set of deformed permutahedra is the set of defor-
mations of the standard permutahedron. As such, it forms a cone, namely the submodular cone.
In the present thesis, we give the facet-description of some faces of the submodular cone. The
key idea lies in the following fact: if Q is a deformation of P, then the deformation cone of Q is
a face of the deformation cone of P, see Section 2.1. As numerous deformations of the standard
permutahedron are already well studied, this fact grants us access to faces of the submodular
cone. We present two new results in this domain: the facet-description of the deformation cone of
graphical zonotopes in Section 2.2, and the facet-description of the deformation cone of nestohedra
in Section 2.3. Moreover, we characterize which graphical zonotopes and which nestohedra have
a simplicial type cone.

Section 2.2 is directly adapted from our paper [PPP22b] (accepted for publication), while
Section 2.3 is adapted from our published paper [PPP23].
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Section 3: Max-slope pivot rule polytopes. The second main section is dedicated to max-slope
pivot rule polytopes. For solving linear programs, the simplex method has been used since its
introduction by Dantzig [Dan63]. This algorithm was not only used for numerical computing, it
also brought new understanding to the combinatorial and geometrical problems, such as finding
a flow in a graph or the largest circle in a polygon [MG07]. The simplex method requires a pivot
rule to guide the consecutive choices that are to be made. Understanding pivot rules is crucial to
discuss the complexity of the simplex method [KM72, APR14, DS14, FS14]. An important class
of pivot rules are the max-slope pivot rules, introduced in [BDLLS22] to generalize the shadow
vertex rule. A given max-slope pivot rule is encoded by the arborescence (directed tree) it induces
on the graph of the feasibility domain. Remarkably, when the feasibility domain is a polytope P,
the combinatorial behavior of the max-slope pivot rules can be captured by the face lattice of a
polytope, called the max-slope pivot rule polytope of P.

These polytopes are not yet well understood. The case of the standard cube has been de-
tailed in the original article [BDLLS22], and the simplex will be dealt with in the upcoming
[BDLLSon]. In the present thesis, we explore in Section 3.2 the max-slope pivot rule polytope
of the cyclic polytopes, that we call cyclic associahedra, helped by ideas developed in [ALRS00]
for fiber polytopes between cyclic polytopes. They generalize the standard associahedron Asson
defined in Section 1.2.4, and their genesis prompts a natural complexity parameter on Catalan
families (parenthesizations, binary search trees, triangulations of polygons...).

Moreover, generalized permutahedra will step again into play in Section 3.3, and prove them-
selves a powerful framework to analyze max-slope pivot rule polytopes. The key idea of this part is
to realize that comparing slopes of line segments between points amounts ultimately to comparing
real numbers, and consequently to wander inside the braid fan (the normal fan of the permuta-
hedron). This shed a new light on max-slope pivot rule polytopes, linking them with generalized
permutahedra, and help us understand their behavior with respect to products of polytopes. We
conclude this part by constructing the max-slope pivot rule polytopes of products of simplices.
Thanks to the work of Chapoton and Pilaud [CP22] on shuffle products of generalized permuta-
hedra, we show that the max-slope pivot rule polytope of the product of simplices is the shuffle
product of the max-slope pivot polytope of each involved simplex. Furthermore, we explicit a
piece-wise linear transformation from the max-slope pivot rule polytope of a simplex to the stan-
dard associahedron of Loday [Lod04], and point out that several basic examples of products of
simplices gives rise to known polytopes, e.g. multiplihedra and constrainahedra.

Section 4: Fiber polytopes. The third main section focuses on fiber polytopes. In their seminal
paper, Billera and Sturmfels [BS92] introduced and studied fiber polytopes, which have since
proven to be a powerful tool to understand both projections and subdivisions of polytopes. It
has also found applications in algebraic geometry [McD95], and theoretical physics as part of the
amplituhedron program [GPW19, AHHST22]. In particular, numerous famous polytopes can be
realized as fiber polytopes, prominently permutahedra, associahedra, and some other generalized
permutahedra naturally appear [BS92, ALRS00, Rei02, LRS10], and new constructions come to
enrich the subject, such as fiber bodies [Est08, Mer22], or (partial) sweep polytopes [PP22].

However, fiber polytopes are hard to compute in general. In their original paper [BS92],
the authors link the fiber polytopes to secondary polytopes defined by Gelfand, Kapranov and
Zelevinsky in [GKZ90, GKZ91], the vertices of which are in bijection with triangulations of a
point configuration. On top of that, when one projects a polytope P onto a segment of direction c,
the associated fiber polytope is the monotone path polytope of P in direction c: its vertices
are in bijection with the monotone paths that the shadow vertex rules follow to go from the
minimal vertex to the optimal one (i.e. from v ∈ P that minimizes ⟨v, c⟩ to v ∈ P maximizing
it). Billera and Sturmfels constructed the monotone path polytopes of simplices and cubes, while
recent articles solved the cases of cyclic polytopes [ALRS00], and cross-polytopes [BL21] and more.
Section 4.2 centers on the monotone path polytopes of hypersimplices. We connect monotone paths
on an hypersimplex with the realm of lattice paths, and conclude by giving some arguments in
favor of log-concavity of the number of (coherent) monotone paths sorted by length, which was
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conjectured by Jesús de Loera (for all polytopes).
Numerous works on fiber polytopes either deal with projections onto a segment (i.e. monotone

path polytopes), or examine the general case. In Section 4.3, thanks to the ideas elaborated in
Section 3.2 and [ALRS00], we tackle the fiber polytope for the projection of the cyclic polytope of
dimension d onto the cyclic polytope of dimension 2.
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1 Preliminaries

All things are difficult before they are easy.
– Thomas Fuller

1.1 Partially ordered sets

This thesis is not on partially ordered sets, but some basic knowledge of order theory is necessary to
understand combinatorial polytope theory, and especially the combinatorics of the permutahedron,
see Section 1.2.3. For this reason, we will define in this section the notions of partially ordered
sets, lattices, pre-orders and ordered partitions. These notions are presented for the sake of
completeness and self-containment, and the reader, surely well aware of them, shall focus on
pre-orders and ordered partitions.

We denote [n] := {1, . . . , n} ⊂ N for n ≥ 1, and [i, j] := {i, . . . , j} ⊂ N for integers i < j.

Definition 1.1. A binary relation on a set E is a subset E of E×E, and we denote R(x, y) instead of
(x, y) ∈ E . A binary relation is total when

(
R(x, y) or R(y, x)

)
for all x, y ∈ E, and we emphasize

its possible non-totality by calling it partial in the general case. A binary relation is
1. reflexive when, for all x ∈ E, R(x, x).
2. symmetric when for all x, y ∈ E, if R(x, y) then R(y, x).
3. anti-symmetric when for all x, y ∈ E, if R(x, y) and R(y, x) then x = y.
4. transitive when for all x, y, z ∈ E, if R(x, y) and R(y, z) then R(x, z).
A binary relation is called:

(a) a pre-order relation when it is reflexive and transitive.
(b) an equivalence relation when it is reflexive, symmetric, and transitive.
(c) an order relation when it is reflexive, anti-symmetric and transitive.

A partially ordered set or poset is a couple (E,R) where R is a (partial) order relation on E.

To a pre-order R, we associate an equivalence relation S with S(x, y) =
(
R(x, y) and R(y, x)

)
.

This creates a partition of E into equivalence classes cl(x) := {y ∈ E ; S(x, y)}. On the set
of equivalence classes, R induces a pre-order R defined by R

(
cl(x), cl(y)

)
= R(x, y). With this

definition, R is not only reflexive and transitive, but also anti-symmetric. When denoting a
pre-order by the infix notation ≼, we will denote its equivalence relation by ≃ and introduce
x ≺ y :=

(
x ≼ y and not x ≃ y

)
. We will also slightly abuse notations by denoting again ≼ the

partial order associated on the set of its equivalence classes.
In a poset (E,≼), an element y covers an element x when x ≺ y and there exists no z ∈ E

with x ≺ z ≺ y. A poset is graded when it can be endowed with a rank function r : E → N such
that r(y) = r(x) + 1 when y covers x.

We say that a pre-order ⊴ extends a pre-order ≼ when if x ≼ y, then x ⊴ y. This extension
shall be thought of as adding an order relation between some pairs (x, y) that are not already
ordered by ≼.

The dual of a poset (E,≼) is the poset (E,≽) where x ≽ y if and only if y ≼ x.

Definition 1.2. In a poset (E,≼), the meet of two elements x, y ∈ E is, when it exists, the unique
maximum x∧y of the elements that are less than both x and y: x∧y = max{z ∈ E ; z ≼ x, z ≼ y}.

The join of two elements x, y ∈ E is, when it exists, the unique minimum x∨ y of the elements
that are greater than both x and y: x ∨ y = min{z ∈ E ; x ≼ z, y ≼ z}.

A poset is a lattice when every pairs of elements have a meet and a join.
A lattice (L ,≼) always has a minimum element called 0 by convention, and a maximal element

called 1 by convention. An atom is an element that covers 0, and the lattice is atomic1 when all
its elements can be written as a join of atoms. A co-atom is an element that is covered by 1, and
the lattice is co-atomic1 when all its elements can be written as a meet of co-atoms.

The dual of (L ,≼) is the poset (L ,≽). It is a lattice called its dual lattice.

1Some authors prefer the term (co-)atomistic, saving the word (co-)atomic for another property.
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Definition 1.3. An ordered partition is an ordered collection of sets I1 ≺ · · · ≺ Ik that partition [n],
i.e. Ii ∩ Ij = ∅ for all i ̸= j and

⋃
i Ii = [n]. Dually to ordered partitions, we define an (integer)

surjection as a map σ : [n] → [k] with k ≤ n such that for all a ∈ [k], σ−1(a) ̸= ∅. The collection
Ia := σ−1(a) for a ∈ [k] form an ordered partition where Ia ≼ Ib when a ≤ b. When k = n, the
surjection is a bijection, and the ordered partition is the corresponding permutation.

A surjection σ naturally induces a total pre-order on [n] by i ≼ j when σ(i) ≤ σ(j).

1.2 Polytopes

Polytopes are beautiful objects, they are going to be at the heart of the present thesis. The aim
of this section is to introduce the basic definitions and properties of polytopes that will be used
all along this thesis. For a complete presentation on polytopes, the reader is invited to look at the
wonderful Lectures on Polytopes of Ziegler [Zie98]. As what we state here are known theorems,
we will mainly refer to the literature for proofs.

Polytopes come, foremost, as objects embedded in the Euclidean space Rd. Vectors of Rd will
usually be denoted in bold font like x ∈ Rd, and their coordinates are the real numbers x1, . . . , xd.
We denote the standard basis of Rd by (e1, . . . , ed), and for x,y ∈ Rd, the standard scalar product

is ⟨x,y⟩ :=∑d
i=1 xiyi.

Definition 1.4. A polytope P is the convex hull of a finite number of points in Rd:

P = conv{v1, . . . ,vn} =

{
x ∈ Rd ;

x =
∑n

i=1 λivi

∀i, λi ≥ 0 and
∑n

i=1 λi = 1

}

This endows polytopes with a first manifestation of duality, coming from the duality of Rd as
a Euclidean space: sharing a linear dependency is equivalent to being orthogonal to a vector.

Definition 1.5. For a vector a ∈ Rd ∖ {0} and a constant b ∈ R, the affine hyperplane H(a,b)

associated is H := {x ; ⟨x,a⟩ = b}. An open half-space is the open component of Rd ∖ H
where H is an affine hyperplane of Rd. A closed half-space is a closure of the latter. We denote
H+

(a,b) := {x ; ⟨x,a⟩ ≥ b} and H−
(a,b) := {x ; ⟨x,a⟩ ≤ b} the two possible closed half-spaces.

Theorem 1.6. (Minkowski–Weyl, see [Zie98, Theorem 1.1]). A polytope is a bounded intersection
of closed half-spaces: There exist v1, . . . ,vn ∈ Rd such that P = conv{v1, . . . ,vn} if and only if
there exist a1, . . . ,am ∈ (Rd)m and b1, . . . , bm ∈ Rm such that P is bounded and:

P =
m⋂

j=1

H−
(aj ,bj)

=
{
x ∈ Rd ; ∀i, ⟨x,aj⟩ ≤ bj

}

Figure 1 illustrates this ambivalence. In the upcoming concept of duality, the notion of dimen-
sion and faces will play a role.

Definition 1.7. The dimension of P is the dimension of its affine hull, denoted dim(P).

Note that the dimension of a polytope is not necessary the dimension of the Euclidean space it
is embedded in. Indeed, it often comes in handy to embed a polytope in an affine subspace (often
a hyperplane) of Rd, see for instance Section 1.2.3.

Definition 1.8. A face of a polytope P is a subset of P with, for some c ∈ Rd, the form:
Pc = {x ∈ P ; ⟨x, c⟩ = maxy∈P ⟨y, c⟩}. The polytope P itself is a face of P (with c = 0),
and by convention ∅ is a face of P.

For a given direction c ∈ Rd, as P is compact (it is convex and bounded), the maximum δ of
y 7→ ⟨y, c⟩ is attained on P, so the above is well-defined and non-empty. Moreover, the face Pc

trivially satisfies Pc = H(c,δ)∩P = H+
(c,δ)∩H−

(c,δ)∩P. The Minkoswki–Weyl theorem then ensures:

Proposition 1.9. Every face of P is a polytope.
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Figure 1: (Left) A polytope defined as a (bounded) intersection of half-spaces, the facet-defining
ones being in blue, while black inequalities are redundant; (Right) the same polytope as the convex
hull of a finite set of points, vertices are in red and edges in blue, while black points are redundant.

A hyperplane H such that H ∩P is a face of P will be called a valid hyperplane. Nevertheless,
such a hyperplane does not necessarily appear in the description of P as a bounded intersection
of half-spaces: a valid hyperplane sometimes shares with P a lower dimensional intersection. The
dimension of a face F of P is the dimension of F as a polytope (i.e. the dimension of its affine hull).
By convention, the empty face ∅ has dimension −1.

This naturally leads to ordering the set of faces of P by inclusion.

Theorem 1.10. ([Zie98, Theorem 2.7]). The face lattice L (P) of P is the set of faces of P ordered
by inclusion. It is a graded, atomic, co-atomic lattice with rank function F 7→ dim(F) + 1. The
meet of two faces F and G is F ∩ G (while the join has no straightforward description).

The faces of dimension 0, (i.e. the atoms of L (P)) are the vertices of P, while the faces of
co-dimension 1 (i.e. co-atoms of L (P)) are the facets of P. The faces of dimension 1 are called
edges of P, and the graph GP whose vertices are the vertices of P and whose edges are the edges
of P is the graph of P.

The set of vertices of P, denoted V (P), is the unique set of extremal elements of P as a convex
set, hence P = conv

(
V (P )

)
. The latter is called the vertex-description of P. In a dual fashion,

the set of facets H(P) gives the unique minimal description of P as a bounded intersection of
half-spaces. Such description is called the facet-description of P.

On that account, the description of a polytope comes across two mathematical challenges that
can be solved on the algorithmic level but remain hard in high dimensions. On the one side, when
a polytope is handled as a convex hull of points or as a set of linear inequalities, then extracting
an extremal set from it is often arduous. On the other side, computing the vertex-description
from a facet-description or the reverse can turn out to be convoluted (see the Fourier–Motzkin
elimination of [Zie98, Chapter 1]).

The second notion of duality arises from a subtle embodiment of the above duality into the
realm of lattices. Recall that the dual of a lattice is the lattice defined on the same set by reversing
the order relation.

Theorem 1.11. ([Zie98, Section 2.3]). The dual lattice of L (P) is (isomorphic to) the lattice of
a polytope. Especially, for P△ := {c ∈ Rd ; ⟨c,x⟩ ≤ 1 for all x ∈ P}, the lattice L (P△) is
anti-isomorphic to L (P).
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Though prodigious, this fact will not be at the center of the current thesis, but it invites us to
introduce the following.

Definition 1.12. A polyhedral cone2 C is the positive span of finitely many vectors, meaning there
exists v1, . . . ,vm ∈ Rd such that:

C =

{
m∑

i=1

λivi ; ∀i, λi ≥ 0

}

One can define the notion of faces for cones the same way as for polytopes.
A polyhedral cone is simplicial when v1, . . . ,vm are linearly independent. It is then a cone

over a simplex (see Section 1.2.1), and all its faces are simplicial polyhedral cones.

Definition 1.13. A fan F in Rd is a collection of polyhedral cones of Rd such that if C ∈ F then
all faces of C belong to F , and the intersection C∩C′ is a face of both C and C′ when C,C′ ∈ F .A
fan is:
• complete when it covers Rd, that is

⋃
C∈F C = Rd.

• essential when none of its cones contains a line, that is {0} ∈ F .
• simplicial when all of its cones are simplicial.
• polytopal when it is the normal fan of a polytope.

The face lattice of a fan is the set of its cones, ordered by inclusion. For a polytope P, the
poset of faces of its normal fan NP is anti-isomorphic3 to its own face lattice L (P).

A fan G coarsens a fan F when the cones of G are unions of cones of F . Conversely, in this
setting, F refines G.

Definition 1.14. For a face F of a polytope P, its normal cone is N (F) = {c ∈ Rd ; Pc = F}. The
normal fan of the polytope P is the collection NP =

(
N (F) ; F face of P

)
.

Fans and normal fans, among other appearances, will be at the heart of Sections 2 and 3.3.
Given a graded, atomic and co-atomic lattice, it is NP-hard to decide whether it is the lattice of
a polytope. Notwithstanding, deciding if a fan is polytopal amounts to finding a solution to a set
of linear inequalities, which is far easier. The notion of normal fan is more precise than the one of
face lattice: two polytopes can share the same face lattice without sharing their normal fan. This
gives a first hint of what it can mean for two polytopes to be “the same”:

Definition 1.15. Two polytopes P and Q are said to be:
• combinatorially isomorphic or combinatorially equivalent when L (P) ≃ L (Q).
• normally equivalent when NP = NQ.
• affinely equivalent when there exists an affine transformation L such that Q = L(P).

Obviously, affine equivalence implies combinatorial equivalence, and normal equivalence also
implies combinatorial equivalence. But the converse does not hold, and affine equivalence does
not imply normal one (rotations are not allowed in normal equivalence, for instance).

An important operation on polytopes is the Minkowski sum. Although the construction is
simple to describe in the setting of convex set, the faces are more easily accessed in the framework
of normal fans. This gives rise to a simple but non-trivial behavior that allows us to encapsulate
various combinatorics, see Sections 1.2.3 and 2 and Figures 28 and 58 for instance.

Definition 1.16. The Minkowski sum of two polytopes P ⊂ Rp and Q ⊂ Rq is the polytope:

P+ Q := {p+ q ; p ∈ P, q ∈ Q}

A zonotope is a Minkowski sum of segments.

2All the cones in the present thesis will be polyhedral, except if specified else way.
3The face lattice of NP needs to be completed by a top element for this anti-isomorphism to hold.
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Figure 2: The standard simplices for dimension d = 0, 1, 2, 3 and 4 (from Left to Right). Each
face is labelled by the corresponding subset of [d]. The 4-dimensional standard simplex (Right) is
depicted thanks to its Schlegel projection.

It is immediate to see that the vertices of P + Q are among the possible sums v +w for v a
vertex of P and w a vertex of Q (the reversed inclusion is false in general), that is:

V (P+ Q) ⊆ {v +w ; v ∈ V (P), w ∈ V (Q)}

The normal fan NP+Q of P+ Q is the common refinement of NP and NQ, meaning that:

NP+Q = {C ∩ C′ ; C ∈ NP, C′ ∈ NQ}

The rest of this section will be devoted to presenting some special yet universal polytopes.

1.2.1 Simplex

A d-simplex is the convex hull of d + 1 affinely independent points. A d-simplex is
d-dimensional, has d + 1 vertices, d + 1 facets, and

(
d+1
k

)
faces of dimension k. Each face of

dimension k is itself a k-simplex. The face lattice of a simplex is (isomorphic to) the lattice of
subsets of [d+ 1], called the boolean lattice, see Figure 2. Hence, it is a self dual lattice.

The standard simplex of Rd+1 is∆d := conv{e1, . . . , ed+1} where (e1, . . . , ed+1) is the canonical
basis of Rd+1. Note that the ∆d has dimension d even if it lives in dimension d+ 1.

1.2.2 Cube

The standard cube of Rd is the convex hull □d := conv
{∑

i∈I ei ; I ⊆ [d]
}
where [d] = {1, . . . , d}.

It is d-dimensional, has 2d vertices and 2d facets. Its facet-description is given by the 2d inequalities
□d =

⋂d
i=1{x ∈ Rd ; 0 ≤ ⟨x, ei⟩ ≤ 1}. Each k-dimensional face of a standard cube is (normally

equivalent to) a standard cube, see Figure 3. A d-dimensional cube is a polytope combinatorially
equivalent to the standard cube.

The standard cube is a zonotope as □d =
∑d

i=1[0, ei]. Moreover, any Minkowski sum of
d linearly independent segments is a d-dimensional cube. Note also that all zonotopes arise as
projections of the standard cube, see [Zie98, Section 7.3].

1.2.3 Permutahedron

The permutahedron Πn is defined as the convex hull Πn = conv

{(
σ(1)

.

.

.
σ(n)

)
; σ ∈ Sn

}
⊂ Rn

where Sn is the set of all permutations of {1, . . . , n}. The permutahedron is a zonotope as it
is the translation of

∑
i<j

1
2 [ei − ej , ej − ei] by the vector n+1

2 (1, . . . , 1), see [Zie98, Example
7.15].

The vertices v of the permutahedron Πn are naturally in bijection with permutations of
{1, . . . , n} by σ 7→ ∑

i σ(i)ei. Two vertices are adjacent when the corresponding permutations
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Figure 3: The standard cubes for dimension d = 0, 1, 2, 3 and 4 (from Left to Right). Each
vertex is labelled by the corresponding subset of [d]. The 4-dimensional standard cube (Right) is
depicted thanks to its Schlegel projection.
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Figure 4: (Left) The braid fan of dimension 2, each maximal cone being labelled by the according
permutation, (Right) the sylvester fan of dimension 2, each maximal cone being labelled by the
according maximal parenthesization. These fans are the normal fans of the polytopes drawn in
Figure 5(Middle Top) and Figure 7(Bottom).

σ and τ differ by an elementary transposition: σ = (i i + 1) ◦ τ . Consequently, the possible
directions of edges of the permutahedron Πn are ej − ei for i, j ∈ [n] with i ̸= j, see Figure 5.

The facet-description of the permutahedron is:

Πn =

{
x ∈ Rn ;

∑n
i=1 xi =

(
n+1
2

)
∑

i∈I xi ≥
(|I|+1

2

)
for all ∅ ⊊ I ⊊ [n]

}

The face lattice of the permutahedron Πn is (isomorphic to) the lattice of ordered partitions
(or surjections) of {1, . . . , n}. Especially, it has n! vertices, 2n − 2 facets, and dimension n − 1.
Instead of describing this face lattice more thoroughly, we focus on its normal fan. The normal
fan of the permutahedron Πn is called the braid fan Bn, see Figure 4(Left). It is the fan defined
by the arrangement of hyperplanes, called the braid arrangement, composed by all hyperplanes
{x ∈ Rn ; xi = xj} for i, j ∈ [n] with i ̸= j. The cones of the braid fan are in bijection with the
surjections on [n]: to a surjection σ, one associates the cone

Cσ :=

{
x ∈ Rn ;

xi < xj if σ(i) < σ(j)
xi = xj if σ(i) = σ(j)

}

The braid fan, as defined here, is not essential: each cone of Bn contains the line in direction
(1, . . . , 1). This fact will be problematic for the use we want to make of it. We will solve this
issue in three different ways: in Section 3.3 we will keep the non-essential braid fan as defined
above; in Section 2.2 we will divide each maximal cone of the braid fan in two simplicial cones
(one containing a ray in direction (1, . . . , 1) and one containing a ray in direction (−1, . . . ,−1)); in
Section 2.3 we will project orthogonally the braid fan onto the hyperplane {x ∈ Rn ;

∑
i xi = 0}.
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Figure 5: The permutahedra for dimensions d = 0, 1, 2, 3 and 4. Up to dimension 3, the vertices
are labelled by the permutations, and each edge is colored according to its class of parallelism (for
example, going through a blue edge amounts to exchanging the values 1 and 2). The 4-dimensional
permutahedron have been made with Zometool, the vertices correspond to the white nodes.
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1.2.4 Associahedron

The associahedron is the polytopal embedding of Catalan families. We will first give a quick but
not-so-short overview of Catalan families and then define the associahedron as a combinatorial
polytope (i.e. we will describe its face lattice). We will end by discussing Loday’s realization of
the associahedron and its link with the permutahedron.

Catalan families A Catalan family is, in first place, a family of objects counted by Catalan
numbers. Neil Sloane, the founder of the (Online) Encyclopedia of Integer Sequences, claims that
“the Catalan numbers are certainly the most common sequence that people don’t know about”
[Slo23]. A straightforward definition of the Catalan numbers Cn is their explicit formula:

Cn =
1

n+ 1

(
2n

n

)

We also mention their recursive formula:

C0 = 1 and Cn+1 =

n∑

i=0

CiCn−i

Note that Catalan numbers grow quite rapidly, as: Cn ∼ 1√
π

4n

n3/2
.

As said, a Catalan family is a family of combinatorial objects such that there are Cn objects
of size n. For example, parenthesizations on n + 1 letters, triangulations of a (n + 2)-gon, non-
crossing arborescences on n+1 nodes, binary search trees with n elements... The reader is invited
to consult [Sta15] for a presentation of 214 Catalan families and bijections between them, we give
here a shorthand on the 4 aforementioned families.

Each family is endowed with a very important notion of flip: they shall be thought of as a graph
whose Cn vertices are the objects, and where two vertices share an edge when the corresponding
objects differ by a flip. It is sometimes convenient to direct the flip, giving rise to a directed graph.
Directed this way, this graph is a poset: the Tamari lattice. We will not present this lattice in
details but only give a glimpse on it, see [Tam51, PSZ23]. Instead, we will be interested in the
face lattice of the associahedron, which corresponds to super-Catalan families (and are counted
by Schröder–Hipparchus numbers).

Before constructing the associahedron, we briefly review the four aforementioned Catalan fam-
ilies. The aim is not to give an extensive nor self-contained introduction, but rather a dictionary
that will allow the reader to perceive the underlying general framework behind each specific lexicon
(see the table of correspondences below). Therefore, we detail a bit the case of parenthesizations,
as we find it easy to handle and insightful. We then give some explanations on binary search trees
because it will be needed for Section 3.3.1, and we refer the reader to the indicated sections of the
present thesis for non-crossing arborescences and triangulations.

Max. parenthesization Non-crossing arbo. Triangulation BST

Objects parenthesis arcs triangles (not defined here)
Compatibility nested or disjoint non-crossing non-intersecting (not defined here)
Flips remove & re-add remove & re-add remove & re-add rotations
Super-Catalan parenthesizations multi-arborescences subdivisions Schröder trees
See here above Sections 3.1 and 3.2 Section 4.3.1 Section 3.3

Parenthesizations Fix a n letter words a1a2 . . . an where ai are just symbols. One can paren-
thesize this word by adding pairs of opening and closing parentheses (. . . ) where the opening one
precedes the closing one: a1 . . . ai−1(ai . . . aj)aj+1 . . . an. Such a pair of parentheses can be identi-
fied by the pair (i, j) with 1 ≤ i < j ≤ n. A pair of parentheses is valid when (i, j) ̸= (1, n). Two
pairs of parentheses are compatible when the part they separate are either disjoint or included
one in the other. A maximal parenthesization is a maximal family of pair-wise compatible pairs
of parentheses.
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There are Cn−1 maximal parenthesizations for a word of n letters, each containing exactly
n− 2 pairs of parentheses.

The flip between two maximal parenthesizations consists in removing a pair of parentheses and
adding the only other possible pair of parentheses. Such a flip is forward if the leftmost parenthesis
moves from left to right, and backward else way.

In this context, the super-Catalan family is the family of all parenthesizations (not necessarily
maximal ones). This family has a natural ordering: a parenthesization refines another one when
it can be obtained by adding (compatible) pairs of parentheses to the first.

Binary search trees A binary search tree (BST) is a planar rooted binary tree whose nodes are
labelled from 1 to n respecting that for each node i, all labels in its left sub-tree are smaller than
i, and all labels in its right sub-tree are greater than i. Note that a binary search tree is fully
defined by its skeleton, thus they are in bijection with binary trees and form a Catalan family.

Binary search trees are a powerful data structure for sorting the numbers from 1 to n. The
key operations on this structure are insertion of a number and deletion of the root. Thanks to
these operations, one can sort a list L in O(n log n) (time-)complexity by inserting all the numbers
from L in order of appearance, and then extracting them. The binary search tree corresponding
to L depends on which order does the numbers from 1 to n appear in L, i.e. its permutation.
Consequently, to each permutation σ ∈ Sn one associates a binary search tree T (σ) thanks to the
following recursive algorithm:
• Inserting σ(i) to an empty tree gives rise to a tree on one node σ(i) (hence T initializes at the

tree on one node labelled σ(1));
• After having inserted σ(1), . . . , σ(i − 1) in T , one adds σ(i): if σ(i) is smaller than the root of
T , then σ(i) is recursively added to the left sub-tree of T ; if σ(i) is greater than the root of T ,
then σ(i) is recursively added to the right sub-tree of T ;

• Once inserted all values σ(1), . . . , σ(n) (i.e. all numbers from 1 to n), the resulting tree is T (σ).
A flip between binary search trees is a rotation of the tree, and the super-Catalan family is the

family of Schröder trees.
We will encounter binary search trees again in Section 3.3.1.

Construction of the associahedron The associahedron was first defined by Tamari [Tam51] and
later Stasheff [Sta63] as a combinatorial polytope, and then realized by Milnor (unpublished),
Haiman [Hai84], Lee [Lee89] and Loday [Lod04, PSZ23]. They give a description of a super-
Catalan family as defined above, and proved that this poset is the face lattice of a polytope.
Hence, any polytope whose face lattice if isomorphic to the super-Catalan poset can to be called
an associahedron. To this extent, several different realizations of the associahedron will appear
in the present thesis, see Example 2.22 and Sections 3.2, 3.3.1 and 4.3. Nevertheless, we will
emphasize a specific realization of the associahedron that, as far as we believe, would deserve to
be called standard, namely Loday’s realization of the associahedron [Lod04, PSZ23].

A straightforward way to define it and to emphasize its link with the permutahedron Πn is
thanks to its facet-description:

Asson =

{
x ∈ Rn ;

∑n
i=1 xi =

(
n+1
2

)
∑

i∈I xi ≥
(|I|+1

2

)
for all ∅ ⊊ I = [a, b] ⊊ [n]

}

Instead of the 2n−2 facets of the permutahedron Πn that correspond to the non-trivial subsets
of [n], the associahedron Asson is supported by the

(
n
2

)
− 1 facets that correspond to non-trivial

sub-intervals of [n]. Consequently, the associahedron Asson is a removahedron for the permutahe-
dron Πn, meaning that is can be obtained by removing some inequalities in its facets-description4,
see Figure 6. A 3-dimensional model of a permutahedron inside the Loday associahedron can also
be found on Viviane Pons’ website [Pon18]. This will be relevant for Section 2.

4The standard cube □n is linearly isomorphic to the removahedron obtained by keeping only the inequalities
corresponding to I of the form [1, i] or [i, n] for i ∈ [n]. The latter is also a removahedron for the associahedron
Asson.
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Figure 6: Four realizations of the 3-dimensional permutahedron Π3 sitting inside an associahedron.
The left-most associahedron is the Loday’s associahedron Asso3. Illustration from [PSZ23, Figure
7(Top)].

The associahedron Asson has Cn vertices,
(
n
2

)
− 1 facets, dimension n − 1 (although being

embedded in Rn), and its face lattice is the super-Catalan poset, thus its edges correspond to the
flips between Catalan objects, see Figure 7. Note that there exists an orientation of the ambient
space Rn such that the induced orientation on the graph GAsson is precisely the Tamari orientation
of flips.

We will not provide here a (coordinate) vertex description of the associahedron Asson and refer
to the abounding literature [Lod04, Pos09, PSZ23]. Instead, we briefly describe the normal fan of
the associahedron Asson, called the sylvester fan. The maximal cones of the sylvester fan (i.e. the
normal cones of the vertices of Asson) can be described easily thanks to binary search trees, see
Figure 4(Right). With the definition of Cσ given above for the permutahedron, for a binary search
tree T , the associated normal cone is CT =

⋃
σ ; T (σ)=T Cσ.

1.3 Linear programming

Linear programming has proven to be a powerful tool to tackle theoretical and applied problems.
The aim is to optimize a linear functional subject to linear constraints. For example, imagine I
want to breed goats and cows. My barn has 15 boxes, a goat takes 1 box and a cow 3 boxes.
Milking a goat gives 4L, while a cow gives 3L, and my storage allows at most 24L. I want to
maximize the number of animals I have. Denote by g the number of goats and c the number of
cows, then this toy example amounts to maximize g + c under the conditions:

g ≥ 0 c ≥ 0 g + 3c ≤ 15 4g + 3c ≤ 24

Even though this optimization problem seems simple (and the numbers chosen are quite unrealis-
tic), it encapsulates a wide variety of problems, from its prototypical purpose of optimizing a diet
from a nutritional point of view [Dan63], to constructing the best line to fit data, or finding the
largest disk in a polygon, see [MG07].

A linear problem can be thought of as the problem of finding the vertex (or face) of a convex
polyhedron that is maximal for the scalar product with a certain direction c. The polyhedron is
called its feasibility domain while the direction c is its objective function. In the present thesis, the
feasibility domain will be bounded (i.e. it will be a polytope), and the objective function will be
generic (i.e. it will not be orthogonal to any edge of the feasibility domain, so the optimum will be
attained at a vertex). Precisely, for our toy example, the four inequalities define a quadrilateral in

the plane, and we want to find its furthest point in direction
(
1
1

)
, see Figure 8. Here, the optimal

solution is 3 goats and 4 cows.
Note that we conveniently created a toy example where the optimal solution is a couple of

integers. Notwithstanding, the optimal solution of a linear problem is not integral in general: the
added requirement of finding the optimal integral point for a linear program is the focus of integer
programming [MG07, Chapter 3], which is far more difficult than linear programming. Further-
more, a plethora of natural questions and generalizations can be asked from our toy example, that
we will not address in this light introduction.
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Figure 7: (Bottom) The 2-dimensional Loday’s associahedron with each vertex labelled by the
corresponding maximal parenthesization (on 4 letters), triangulation (of a pentagon), binary search
tree (on [3], rooted at their bottoms) and non-crossing arborescence (on 4 nodes). Note that the
permutations 213 and 231 both yield the same binary search tree, namely the rightmost one, thus
the normal cone of the rightmost vertex is the union of the normal cone of the two right vertices of
the 2-dimensional permutahedron in Figures 4 and 5. (Top) The 0 and 1-dimensional counterparts.
The interested reader shall refer to page 12 of [Lod04] for the 3-dimensional picture.
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Figure 8: Feasibility domain, objective function and optimal vertex of the toy example.

A widely used method for solving linear problems is the simplex algorithm [Dan63]. Suppose
known a vertex v of the feasibility domain, then it is algorithmically not difficult to find the
neighbors of v that increase the scalar product ⟨v, c⟩. Choose one of these improving neighbors
and pursue the algorithm from there. By convexity, this algorithm ends at a vertex vopt maximizing
⟨x, c⟩ for x in the feasibility domain. The path followed by the simplex method depends on the
pivot rule used to choose the improving neighbor.

It has been proven that, given a linear problem, it is possible to solve it in polynomial time (with
respect to the size of its entries) using interior-point methods [RTV05, DNT08]. Nevertheless, the
polynomiality of the simplex method is still open [KM72, DS14]. The core of the simplex method
is thus the choice of the pivot rule, see [MG07, Section 5.7] for a short review of the main ones,
and [BDLLS22, Section 2] for a polytopal discussion on the subject. Here, we will only recall the
useful definitions and detail the ideas behind the pivot rules called the shadow vertex rules and
the max-slope pivot rules.

In this thesis, a linear program is a couple (P, c) where P ⊂ Rd is a bounded feasibility domain
(i.e. a polytope), and c ∈ Rd is a generic objective function (i.e. a vector such that ⟨u, c⟩ ≠ ⟨v, c⟩
for u,v ∈ V (P) with u ̸= v). The vertex of P that maximizes the scalar product with respect
to c is called the optimal vertex of the linear program. The generic objective function orients the
graph GP of P by orienting each edge from u to v such that ⟨u, c⟩ < ⟨v, c⟩. This orientation is
acyclic. The out-neighbors of a vertex v ∈ V (P) are called its improving neighbors. A directed
path in this oriented graph is called a c-monotone path on P, or simply a monotone path when
(P, c) is clear from the context.

The reader shall think of a pivot rule as an oracle that, if you give it a linear program (P, c)
and a starting vertex vinit (not necessarily the vertex that minimizes the scalar product against c),
will return a monotone path that starts at vinit and ends at vopt. Pivot rules are hard to describe
in general, see [APR14, DS14, FS14] for a study of their complexity. However, we can restrict
ourselves to an easy-to-describe subclass of pivot rules, the ones that are defined by their local
behavior.

Definition 1.17. Amemoryless pivot rule R is a pivot rule that associates each non-optimal vertex v
of each linear program (P, c) to one of its improving neighbors R(P,c)(v).

For a linear program (P, c) and a starting vertex vinit, its monotone path is formed by the
successive images of vinit under R(P,c), namely

(
vinit, R(P,c)(vinit), R(P,c)(R(P,c)(vinit)), . . . ,vopt

)
.

For a fixed linear program (P, c), a memoryless pivot rule induces an arborescence A on the
graph GP, formed by the edges uv such that v = R(P,c)(u). Memoryless pivot rules are fully
defined by the arborescences they induce on each linear program, as all monotone paths can be
retrieved from the knowledge of this arborescence. The study of possible arborescences is at the
heart of pivot rule polytopes, see [BDLLS22] and Section 3.1.
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Figure 9: The two possible monotone paths starting at the minimal vertex for a 2-dimensional
polytope (the objective function is from left to right).

When P is 2-dimensional, pivot rules are very simple, see Figure 9. The only vertex where a
choice shall be made is the vertex vmin that minimizes the scalar product against c. This vertex
has two possible monotone paths to choose from.

When P is higher dimensional, the situation becomes far more convoluted. An efficient idea
is to simplify the problem by making it 2-dimensional again. By choosing a vector ω ∈ Rd

linearly independent from c ∈ Rd, one can project the polytope P onto the 2-dimensional plane
of basis (c,ω), and perform the simplex algorithm on this projection. This method will find the
optimal vertex ṽopt in the plane (c,ω). As c is generic, vopt is the only vertex of P that projects
onto ṽopt, solving the higher dimensional linear problem, see Figure 25(Left). Consequently, one
can define a family of memoryless pivot rules as follows:

Definition 1.18. A memoryless pivot rule R is a max-slope pivot rule when for every linear pro-
gram (P, c), there exists ω linearly independent from c such that the arborescence Aω induced
by R on (P, c) is defined by its edges between u ∈ V (P)∖ {vopt} and

Aω(u) := argmax

{ ⟨ω,v − u⟩
⟨c,v − u⟩ ; v improving neighbor of u

}

The study of max-slope pivot rules is of prime importance, as it links the world of linear
optimization with the one of fiber polytopes. Presenting some aspects of this nexus is the focal
point of Sections 3 and 4: especially, we will fix a linear program (P, c) and study all the possible
arborescences that arise when varying the parameter ω of the max-slope pivot rules.

It is worth noting that max-slope pivot rules are the memoryless version of shadow vertex rules,
which may be more familiar to the reader. A pivot rule is a shadow vertex rule when, for every
linear program (P, c) and every vertex vint ∈ V (P), there exists ω linearly independent from c
such that the c-monotone path from vinit to vopt is the upper part of the 2-dimensional projection
of P onto the plane of basis (c,ω). Although very similar, these definitions are different: in a
max-slope pivot rule, one chooses a fix ω for all the vertices of P; whereas the choice of ω is
subordinated to the vertex vinit at stake for a shadow vertex rule, see [BDLLS22, Section 6.1].
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2 Deformations of polytopes and generalized permutahedra

“Surely,” said I, “surely that is something at my window lattice;
Let me see, then, what thereat is, and this mystery explore
Let my heart be still a moment and this mystery explore;”

– Edgar Allan Poe, The Raven

2.1 Deformations of polytopes

In Section 1.2.4, we have seen that a realization of the associahedron, Loday’s associahedron,
can be retrieved from the standard permutahedron by removing facets. In this construction,
edge directions are preserved, and only the normal fan is coarsened. This process embodies the
combinatorics of flips of Catalan families inside the graph of the weak order on permutations. This
section is devoted to the presentation of the general concept of “gliding facets”, and the vast family
of polytopes one can obtain from the permutahedron by this construction.

Definition 2.1. A deformation (or weak Minkowski summand) of a polytope P is a polytope Q
whose normal fan NQ coarsens the normal fan of P. The set of deformations of P is called its
deformation cone:

DC(P) =
{
Q ⊂ Rd ; NQ ⊴ NP

}

The name deformation comes from the pictorial illustration of gliding facets along their normal
vectors, see Figure 10. To justify the appellation cone, note the following: For Q and R two
polytopes, then NλQ = NQ for all λ > 0, and NQ+R is the common refinement of NQ and NR.
Consequently, NλQ and NQ+R coarsen NP when NQ and NR do, which means DC(P) is closed by
dilation and Minkowski sums.

Howbeit, it is hard to understand the deformation cone as a cone of polytopes, one would
prefer to parameterize it by a cone in the Euclidean space RN for some N . There are several ways
to do so, this thesis will focus on the so-called height deformation cone, and briefly present the
other realizations.

Let P ⊂ Rd be a polytope with normal fan F supported on the vector set S. Let G be the
N × d-matrix whose rows are the vectors in S. For any height vector h ∈ RN , we define the
polytope Ph :=

{
x ∈ Rd ; Gx ≤ h

}
. It is not hard to see that any weak Minkowski summand

of P is of the form Ph for some h ∈ RN .
Moreover, for deformations Ph and Ph′ of P, we have Ph + Ph′ = Ph+h′ and λPh = Pλh for

any λ > 0. Hence, the deformation cone is parameterized by the height deformation cone:

DC(P) ≃ DCh(P) :=
{
h ∈ RN ; NPh

⊴ NP

}
.

Other descriptions of the deformation cones are of theoretical importance. As we will not use
them in this thesis, we restrain ourselves to a succinct glimpse of their definitions.

For a polytope P, let E(P) be the set of its edges. To P, one can associate the vector ℓ ∈ RE(P)

of its edge-lengths, where ℓe is simply the length of e ∈ E(P). Conversely, a vector in RE(P)
+

gives rise to a polytope Qℓ: for e ∈ E(P), choose a direction and denote ue the unitary vector in
this direction, then Qℓ = conv

{∑
e∈P εPe ℓeue ; P directed edge-path in GP

}
where εPe = 1 if the

direction of e ∈ P is the same as in ue, and εPe = −1 else way. The deformation cone is isomorphic

to the edge deformation cone
{
ℓ ∈ RE(P)

+ ; Qℓ ⊴ NP

}
, see [PRW08, Appendix 15] for instance.

On top of that, a deformation of P can also be described as a polytope whose support functional
is a convex piece-wise linear continuous function supported on the face fan of P [CLS11, Section
6.1] and [DRS10, Section 9.5]. The deformation cone is isomorphic to the cone of such linear
functionals.

From now on, we will slightly abuse notations by using ambiguously the word deformation cone
to designate the cone of the deformations of a polytope or the height deformation cone. Besides,
although we define the deformation cone for a polytope, it only depends on the normal equivalence
class of the latter, i.e. of its normal fan. Consequently, we will sometimes prefer to talk about the
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Figure 10: Animated sequence of deformations. The first polyhedron is the permutahedron Π4

(First frame). One by one, we remove inequalities from its facet-description (by augmenting
the constant b in ⟨x,a⟩ ≤ b) to obtain the associahedron Asso4 (Middle pause), and then pur-
sue the process to obtain a cube linearly isomorphic to □3 (Final frame). See also Figure 6.
(Animated figures obviously do not display on paper, and some PDF readers do not support the
format: it is advised to use Adobe Acrobat Reader. If no solution is suitable, the animation can be
found on my website or asked by email.)
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deformation cone of a fan (especially in Section 2.3): when the fan F is polytopal, then DC(F)
would be the deformation cone DC(P) of any polytope P with NP = F ; and DC(F) = ∅ when F
is not polytopal.

The height deformation cone is a polyhedral cone, and the two following propositions give an
inequality description of it. The first one is devoted to simple polytopes and will be used for
describing the deformation cones of nestohedra in Section 2.3, while the second one deals with
general polytopes exploiting a triangulation of their normal fan, allowing a description of the
deformation cones of graphical zonotopes in Section 2.2. Note that, in general, these propositions
give an inequality description far from being a facet-description: namely, many inequalities are
actually redundant.

Proposition 2.2 ([CFZ02, GKZ08]). Let P ⊂ Rd be a simple polytope with simplicial normal fan F
supported on the rays S. Then the deformation cone DC(P) is the set of polytopes Ph for all h in
the cone of RS defined by the inequalities

∑

s∈R∪R′

αR,R′(s)hs ≥ 0

for all adjacent maximal cones R≥0R and R≥0R
′ of F with R∖ {r} = R′∖ {r′}, where αR,R′(s)

denote the coefficients in the unique linear dependence5

∑

s∈R∪R′

αR,R′(s) s = 0

among the rays of R ∪R′ such that αR,R′(r) + αR,R′(r′) = 2.

The edge deformation cone also enjoys an inequality description. Indeed, an edge vector ℓ ∈ RE
+

corresponds to a deformation of a simple polytope P when it satisfies the polygonal face equations:
for each 2-dimensional face F of P,

∑
e∈E(F) ℓeue = 0 where the sum is on the edges of F. The edge

deformation cone of a simple polytope P is the intersection of RE(P)
+ with the kernel of polygonal

face equations [PRW08, Pos09].
Similarly, the cone of convex piece-wise linear continuous functions on the face fan of a simple

polytope has an inequality description.

The characterization of the height deformation cone can be extended to general (not neces-
sarily simple) polytopes. One straightforward way to do so is via a simplicial refinement of the
normal fan. If such a simplicial refinement contains additional rays, then the type cone will be
embedded in a higher dimensional space, but projecting out these additional coordinates gives a
linear isomorphism with the standard presentation. See [PS19, Prop. 3] and [PPPP19, Prop. 1.7].

Proposition 2.3. Let P ⊂ Rd be a polytope whose normal fan F is refined by the simplicial fan G
supported on the rays S. Then the deformation cone DC(P) is the set of polytopes Ph for all h in
the cone of RS defined by

• the equalities
∑

s∈R∪R′ αR,R′(s)hs = 0 for any adjacent maximal cones R≥0R and R≥0R
′

of G belonging to the same maximal cone of F ,

• the inequalities
∑

s∈R∪R′ αR,R′(s)hs ≥ 0 for any adjacent maximal cones R≥0R and R≥0R
′

of G belonging to distinct maximal cones of F ,

where
∑

s∈R∪R′ αR,R′(s) s = 0 is the unique linear dependence with αR,R′(r) + αR,R′(r′) = 2
among the rays of two adjacent maximal cones R≥0R and R≥0R

′ of G with R∖ {r} = R′ ∖ {r′}.
5The linear dependence is unique up to rescaling, and we fix this arbitrary positive rescaling for convenience in

the exposition.
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As a polyhedral cone, the height deformation cone possesses a face lattice. In particular, if
h ∈ DCh(P) is in the interior of the deformation cone, then Ph has the same normal fan as P,
i.e. is normally equivalent to P. The interior of the deformation cone is sometimes called the
type cone in the literature, while the word deformations can refer to non-(normally)-equivalent
deformations of P. Consequently, (the interior of) each face of DCh(P) is associated to a class of
normally equivalent polytopes, and the face lattice of DCh(P) gives rise to a lattice of (classes of
normally equivalent) deformations of P. The following proposition grants us access to the faces of
the deformation cone.

Proposition 2.4. If Q is a deformation of P, then DC(Q) is a face of DC(P).

Though simple, this proposition is of great importance. As a first application, suppose we
want to study the deformation cone of P and we know one of its deformations, Q, then studying
the deformation cone of Q is a simpler problem (because Q is of lower dimension than P) which
describes a face of DC(P). A second purpose of this proposition is to measure how deformed is Q
with respect to P. For example, the associahedron is a deformation of the permutahedron, and we
will see in Proposition 2.33 that the respective dimensions of DC

(
Πn

)
and DC(Asson) are 2n−n−1

and
(
n
2

)
: in high dimension, the associahedron is very low in the lattice of deformations of Πn.

Deformations of the standard permutahedron Πn are called generalized permutahedra. Origi-
nally introduced by Edmonds in 1970 under the name of polymatroids as a polyhedral generaliza-
tion of matroids in the context of linear optimization [Edm70], the generalized permutahedra were
rediscovered by Postnikov in 2009 [Pos09], who initiated the investigation of their rich combina-
torial structure. They have since become a widely studied family of polytopes that appears nat-
urally in several areas of mathematics, such as algebraic combinatorics [AA17, ABD10, PRW08],
optimization [Fuj05], game theory [DK00], statistics [MPS+09, MUWY18], and economic the-
ory [JKS22]. The set of deformed permutahedra can be parametrized by the cone of submodular
functions [Edm70, Pos09].

The search for irredundant facet descriptions of deformation cones of particular families of com-
binatorial polytopes has received considerable attention recently [ACEP20, BMDM+18, CDG+20,
CL20, PPPP19, APR21]. One of the motivations sparking this interest arises from the amplituhe-
dron program to study scattering amplitudes in mathematical physics [AHT14]. As described in
[PPPP19, Sec. 1.4], the deformation cone provides canonical realizations of a polytope (seen as a
positive geometry [AHBL17]) in the positive region of the kinematic space, akin to those of the
associahedron in [AHBHY18].

Contributing to this domain, Sections 2.2 and 2.3 set forth and prove the facet-descriptions of
deformation cones of two families of generalized permutahedra: graphical zonotopes and nestohe-
dra respectively.
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2.2 Deformation cones of graphical zonotopes

This section is joint work with Arnau Padrol and Vincent Pilaud. It comes from our paper
[PPP22b] (accepted for publication), enriched with some additional details and figures.

The graphical zonotope of a graph G is a convex polytope ZG whose geometry encodes several
combinatorial properties of G. For example, its vertices are in bijection with the acyclic orienta-
tions of G [Sta07, Prop. 2.5] and its volume is the number of spanning trees of G [Sta12, Ex. 4.64].
When G is the complete graph Kn, the graphical zonotope is a translation of the classical
n-dimensional permutahedron, see Section 1.2.3.

The main result of this section (Theorem 2.12) presents complete irredundant descriptions of
the deformation cones of graphical zonotopes. Note that, since graphical zonotopes are deformed
permutahedra, their type cones appear as particular faces of the submodular cone. Faces of the
submodular cone are far from being well understood. For example, determining its rays remains
an open problem since the 1970s, when it was first asked by Edmonds [Edm70].

It is worth noting that most of the existing approaches to compute deformation cones only focus
on simple polytopes with simplicial normal fans [CFZ02, PRW08]. Nevertheless, most graphical
zonotopes are not simple. They are simple only for chordful graphs (those where every cycle
induces a clique), see [PRW08, Prop. 5.2], [Kim08, Rmk. 6.2], or [Pil21, Prop. 52]. In this section,
we thus use an alternative approach to describe the deformation cone of a non-simple polytope
based on a simplicial refinement of its normal cone.

This section is organized as follows. We first recall in Section 2.2.1 the necessary material
concerning graphical zonotopes. We then describe the deformation cone of any graphical zonotope,
providing first a possibly redundant description (Section 2.2.2), then irredundant descriptions of
its linear span (Section 2.2.2) and of its facet-defining inequalities (Section 2.2.3), and finally a
characterization of graphical zonotopes with simplicial type cones (Section 2.2.4).

2.2.1 Graphical zonotopes

Let G = (V,E) be a graph with vertex set V and edge set E. The graphical arrangement AG is
the arrangement of the hyperplanes

{
x ∈ RV ; xu = xv

}
for all edges {u, v} ∈ E. It induces the

graphical fan FG whose cones are all possible intersections of one of the sets
{
x ∈ RV ; xu = xv

}
,{

x ∈ RV ; xu ≥ xv

}
, or

{
x ∈ RV ; xu ≤ xv

}
for each edge {u, v} ∈ E. The lineality of FG is

the subspace KG of RV spanned by the characteristic vectors of the connected components of G.
The graphical zonotope ZG is the Minkowski sum of the line segments [eu, ev] in RV for all

edges {u, v} ∈ E. Here, (ev)v∈V denotes the canonical basis of RV . Note that ZG lies in a subspace
orthogonal to KG. The graphical fan FG is the normal fan of the graphical zonotope ZG.

The following result is well-known. For example, it can be easily deduced from [Sta07, Propo-
sition 2.5] or [BLS+99] (for the latter, see that the graphical matroid from Section 1.1 is realized
by the graphical arrangement, and use the description of the cells of the arrangement in terms of
covectors from Section 1.2(c)).

An ordered partition (µ, ω) of G consists of a partition µ of V where each part induces a
connected subgraph of G, together with an acyclic orientation ω of the quotient graph G/µ. We
say that (µ, ω) refines (µ′, ω′) if each part of µ is contained in a part of µ′ and the orientations
are compatible; that is, for all u, v ∈ V if there is a directed path in ω between the parts of µ
respectively containing u and v, then there is a directed path in ω′ between the parts of µ′

respectively containing u and v.

Proposition 2.5. The face lattice of FG is antiisomorphic to the lattice of ordered partitions of G
ordered by refinement. Explicitly, the antiisomorphism is given by the map that associates the
ordered partition (µ, ω) to the cone Cµ,ω defined by the inequalities xu ≤ xv for all u, v ∈ V such
that there is a directed path in ω from the part containing u to the part containing v (in particular,
xu = xv if u, v are in the same part of µ).
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Some easy consequences of Proposition 2.5 are:

• The maximal cones of FG are in bijection with the acyclic orientations of G. We denote
by Cω the maximal cone of FG associated to the acyclic orientation ω.

• The minimal cones of FG, that is the rays of FG/KG, are in bijection with the biconnected
subsets of G, i.e. non-empty subsets S of V such that there is a disjoint non-empty subset T
of V such that S ∪ T is a connected component of G and the induced subgraphs G[S] and
G[T ] are connected.

• The rays of FG/KG that belong to the maximal cone associated to an acyclic orientation are
the biconnected subsets which form an upper set of the acyclic orientation (hence, they are
in bijection with the minimal directed cuts of the acyclic orientation).

• Similarly, the rays of FG/KG that belong to the cone associated to an ordered partition
(µ, ω) are the biconnected sets that contracted by µ give rise to an upper set of ω.

Note that the natural embedding of a graphical fan FG is not essential, as it has a lineality
given by its connected components. This is why we cannot directly talk about the rays of the
fan in the enumeration above. The usual solution to avoid this is to consider the quotient by the
subspace KG. However, this subspace depends on the graph, and with such a quotient we would
lose the capacity of uniformly treating all the graphs with a fixed vertex set. We will instead
work with the natural non-essential embedding, together with a collection of vectors supporting
simultaneously all graphical fans.

Example 2.6. As seen in Section 1.2.3, when G is the complete graph Kn, the graphical zonotope
is the permutahedron. The graphical fan is the braid fan Bn, induced by the braid arrangement
consisting of the hyperplanes {x ∈ Rn ; xi = xj} for all 1 ≤ i < j ≤ n. Its lineality is spanned
by the all-ones vector 11n := (1, . . . , 1). Since all the proper subsets of [n] are biconnected in Kn,
the face lattice of Bn is isomorphic to the lattice of ordered partitions of [n]. The rays of Bn/11n
correspond to proper subsets of [n], and its maximal cells are in bijection with permutations of [n].
Each maximal cell is the positive hull of the n− 1 rays corresponding to the proper upper sets of
the order given by the permutation. In particular, Bn/11n is a simplicial fan.

2.2.2 Graphical deformation cones

Our main result is an irredundant facet description of the deformation cone of ZG for every
graph G = (V,E). Our starting point is Proposition 2.10, which gives a (possibly redundant)
description derived from Proposition 2.3. It is strongly based on the fact that the braid fan
simultaneously refines all the graphical fans. Note however that the braid fan is not simplicial
(due to its lineality). The classical approach to overcome this issue is to quotient the braid fan
by its lineality space. However, we prefer to triangulate the braid fan, since it simplifies the
presentation of the proof.

A first polyhedral description Associate to each subset S ⊆ V the vector

ιS :=
∑

v∈S

ev −
∑

v/∈S

ev.

This is essentially the characteristic vector of S, but it has the advantage that ιV = 11V
and ι∅ = −11V positively span the line 11V R, which is the lineality KKV

of the braid fan.

Lemma 2.7. For any ordered partition (µ, ω) of a graph G = (V,E), we have

Cµ,ω = cone {ιS ; S ⊆ V upper set of ω} .
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Figure 11: The fan B̂123 intersected with the unit sphere. (For brevity, here and in the labels we
write 123 to denote the set {1, 2, 3}, and so on.) The braid fan B123 is the Cartesian product of a

regular hexagonal fan with a line. To obtain B̂123, each maximal cell is divided into two simplicial
cells, one containing ι∅ and one containing ι123.

Here, we mean that S is an upper set of ω when contracted by µ. Note that ∅ and V are
always upper sets, which is consistent with the fact that the lineality of FG always contains the
line spanned by 11V .

We will work with a refined version B̂V of the braid fan whose maximal cells are

C∅
σ := cone {ιS ; S ⊊ V upper set of σ} and CV

σ := cone {ιS ; ∅ ̸= S ⊆ V upper set of σ}
for every acyclic orientation of the complete graph KV , which we identify with a permutation σ
of V . An example is depicted in Figure 11. The following two immediate statements are left to
the reader.

Lemma 2.8. For any finite set V :

(i) The fan B̂V is an essential complete simplicial fan in RV supported on the 2|V | vectors ιS
for S ⊆ V .

(ii) For any permutation σ, the maximal cones C∅
σ and CV

σ are adjacent, and the unique linear
relation supported on the rays of C∅

σ ∪ CV
σ is ι∅ + ιV = 0.

(iii) The other pairs of adjacent maximal cells are of the form CX
σ and CX

σ′ , where X ∈ {∅, V } and
σ = PuvS and σ′ = PvuS are permutations that differ in the inversion of two consecutive
elements. The two rays that are not shared by CX

σ and CX
σ′ are ιS∪{u} and ιS∪{v}, and the

unique linear relation supported on the rays of CX
σ ∪ CX

σ′ is given by

ιS∪{u} + ιS∪{v} = ιS + ιS∪{u,v}.

Lemma 2.9. For any graph G = (V,E):

(i) The fan B̂V is a simplicial refinement of the graphical fan FG.

(ii) For an acyclic orientation ω of G and S ⊆ V , we have ιS ∈ Cω if and only if S is an upper
set of ω.

(iii) For an acyclic orientation σ of KV and X ∈ {∅, V } we have CX
σ ⊆ Cω if and only if σ is a

linear extension of ω.

We are now ready to describe the deformation cone of the graphical zonotope ZG. For

any h ∈ R2V , let Dh be the polytope given by

Dh :=
{
x ∈ RV ;

∑

v∈S

xv −
∑

v/∈S

xv ≤ hS for all S ⊆ V
}
.
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Proposition 2.10. For any graph G = (V,E), the deformation cone DC(ZG) of the graphical zono-

tope ZG is the set of polytopes Dh for all h in the cone of R2V defined by the following (possibly
redundant) description:

• h∅ = −hV ,

• hS∪{u} + hS∪{v} = hS + hS∪{u,v} for each {u, v} ∈
(
V
2

)
∖ E and S ⊆ V ∖ {u, v}, and

• hS∪{u} + hS∪{v} ≥ hS + hS∪{u,v} for each {u, v} ∈ E and S ⊆ V ∖ {u, v}.

Proof. Observe first that, as stated in Lemma 2.9, B̂V provides a simplicial refinement of FG.
Following Proposition 2.3, we need to consider all pairs of adjacent maximal cones of B̂V , and to
study which ones lie in the same cone of FG.

Adjacent maximal cones of B̂V are described in Lemma 2.8, and the containment relations of
the cones of B̂V in the cones of FG are described in Lemma 2.9.

For any σ, the cones C∅
σ and CV

σ belong to the same cell of FG. Hence, by Proposition 2.3, the
following equation holds in the deformation cone:

h∅ = −hV .

The remaining pairs of adjacent maximal cones of B̂V correspond to pairs of acyclic orientations
ofKV differing in a single edge; or equivalently, to pairs of permutations of V of the form σ = PuvS
and σ′ = PvuS. The unique linear relation supported on the rays of CX

σ ∪ CX
σ′ for X ∈ {∅, V } is

then
ιS∪{u} + ιS∪{v} = ιS + ιS∪{u,v}.

We consider first the case when {u, v} /∈ E. Observe that both σ and σ′ induce the same
acyclic orientation of G, which we call ω. We have then CX

σ ∪CX
σ′ ⊆ Cω by Lemma 2.9. Therefore,

by Proposition 2.3 and Lemma 2.8, we have

hS∪{u} + hS∪{v} = hS + hS∪{u,v}

for any h in DC(ZG). Note that, for any {u, v} /∈ E and S ⊂ V ∖ {u, v}, we can construct such
permutations σ and σ′. This gives the claimed description of the linear span of DC(ZG).

In contrast, if {u, v} ∈ E, then σ and σ′ induce different orientations of G, and hence they be-
long to different adjacent cones of FG by Lemma 2.9. Therefore, by Proposition 2.3 and Lemma 2.8,
we have

hS∪{u} + hS∪{v} ≥ hS + hS∪{u,v}

for any h in DC(ZG). As before, for any {u, v} ∈ E and S ⊂ V ∖ {u, v}, we can construct such
permutations σ and σ′. This gives the claimed inequalities describing DC(ZG).

The linear span of graphical deformation cones The description of the deformation cone of Propo-
sition 2.10 is highly redundant, both in the equations describing its linear span and in the inequal-
ities describing its facets. We will give a non-redundant description in Theorem 2.12. The first
step will be to give linearly independent equations describing the linear span. As an important
by-product, we will obtain the dimension and a linear basis of (the vector space generated by) the
deformation cone DC(ZG).

It is sometimes convenient to consider the set of deformations of P embedded inside the
real vector space of virtual d-dimensional polytopes Vd [PK92]. This is the set of formal dif-
ferences of polytopes P − Q under the equivalence relation (P1 − Q1) = (P2 − Q2) whenever
P1 + P2 = Q1 +Q2. Endowed with Minkowski addition, it is the Grothendieck group of the semi-
group of polytopes, which are embedded into Vd via the map P 7→ P − {0}. It extends to a real
vector space via dilation: for P − Q ∈ Vd and λ ∈ R, we set λ(P − Q) := λP − λQ when λ ≥ 0,
and λ(P−Q) := ((−λ)Q)− ((−λ)P) when λ < 0. Here, λP := {λp ; p ∈ P} denotes the dilation6

of P by λ ≥ 0.

6Note in particular that −P does not represent the reflection of P, but its group inverse.

37



For a polytope P ⊂ Rd, we define the space VD(P) ⊂ Vd of virtual deformations of P as the
vector sub-space of virtual polytopes generated by the deformations of P. Equivalently, VD(P)
is the linear span of the deformation cone DC(P). Every virtual polytope in VD(P) is of the
form Ph −Ph′ for deformations Ph,Ph′ ∈ DC(P ). Note that the vector h−h′ uniquely describes
the equivalence class of this virtual polytope, and we will use the notation Ph−h′ to denote it.

Denote by ∆U := conv {eu ; u ∈ U} ⊂ RV the face of the standard simplex ∆V corresponding
to a subset U ⊆ V . These polytopes are particularly important deformed permutahedra as they
form a linear basis of the deformation space of the permutahedron [DK00] (see also [ABD10,
Prop. 2.4]). Namely, any (virtual) deformed permutahedron can be uniquely written as a signed
Minkowski sum of dilates of ∆I . Our first result states that this linear basis is adapted to graphical
zonotopes.

Theorem 2.11. For any graph G = (V,E):

(i) The dimension of VD(ZG) is the number of non-empty induced cliques in G (the vertices
of G count for the dimension as they correspond to the lineality space).

(ii) The faces ∆K of the standard simplex ∆V corresponding to the non-empty induced cliques K
of G form a linear basis of VD(ZG).

(iii) VD(ZG) is the set of virtual polytopes Dh for all h ∈ R2V fulfilling the following linearly
independent equations:

• h∅ = −hV and

• hS∖{u} + hS∖{v} = hS + hS∖{u,v} for each S ⊆ V with |S| ≥ 2 not inducing a clique

of G and any {u, v} ∈
(
S
2

)
∖E (here, we only choose one missing edge for each subset S,

for example, the lexicographically smallest).

Proof. Observe first that the faces ∆I of the standard simplex ∆V corresponding to the induced
cliques I of G are all in the deformation cone DC(ZG). Indeed, faces of the standard simplex ∆I

belong to the deformation cone of the complete graph KI by [Pos09, Prop. 6.3]. The graphical
zonotope ZG′ is a Minkowski summand of ZG for any subgraph G′ of G, and hence summands
of ZG′ are also summands of ZG.

Moreover, all faces ∆I for ∅ ̸= I ⊊ V are Minkowski independent by [ABD10, Prop. 2.4]. This
shows that the dimension of VD(ZG) is at least the number of non-empty induced cliques of G.

Let (fX)X⊆V be the canonical basis of
(
R2V

)∗
. The vectors

oS := fS − fS∖{u} − fS∖{v} + fS∖{u,v},

for all subsets ∅ ̸= S ⊆ V not inducing a clique of G and one selected missing edge {u, v} for
each S, are clearly linearly independent. Indeed, if the fX are ordered according to any linear
extension of the inclusion order on the indices X, and the oS are ordered analogously in terms
of the indices S, then the equations are already in echelon form, as fS is the greatest non-zero
coordinate of oS . Finally, the vector v ∈ 2V with vX = |X| for X ∈ 2V is orthogonal to any oS

with |S| ≥ 2 but not to o∅ := f∅ + fV , showing that the latter is linearly independent to the
former. This proves that the dimension of VD(ZG) is at most the number of non-empty induced
cliques of G.

We conclude that
{
∆K ; ∅ ̸= K ⊆ V inducing a clique of G

}
is a linear basis of the deforma-

tion cone, and that
{
oS ; S = ∅ or S ⊆ V not inducing a clique of G

}
is a basis of its orthogonal

complement (we slightly abuse notation here as oS was defined in
(
R2V

)∗
instead of in (Vd)∗,

but note that each fX can be considered as a linear functional in (Vd)∗ if seen as a support
function).

Note that the dimension of the deformation space of graphical zonotopes has been indepen-
dently computed by Raman Sanyal and Josephine Yu (personal communication), who computed
the space of Minkowski 1-weights of graphical zonotopes in the sense of McMullen [McM96]. Their
proof also uses the basis from Theorem 2.11 (ii), but with an alternative argument to show that
they are a generating family.
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2.2.3 The facets of graphical deformation cones

To conclude, it remains to compute the facets of the deformation cones, i.e. a non-redundant
inequality description.

We define the neighborhood of a vertex v in a graphG = (V,E) asN(v) := {u ∈ V ; {u, v} ∈ E}.

Theorem 2.12. For any graph G = (V,E), the deformation cone DC(ZG) of the graphical zono-

tope ZG is the set of polytopes Dh for all h in the cone of R2V defined by the following irredundant
facet description:

• h∅ = −hV ,

• hS∖{u} + hS∖{v} = hS + hS∖{u,v} for each ∅ ̸= S ⊆ V and any {u, v} ∈
(
S
2

)
∖ E,

• hS∪{u} + hS∪{v} ≥ hS + hS∪{u,v} for each {u, v} ∈ E and S ⊆ N(v) ∩N(v).

Note that this description is given as a face of the submodular cone, embedded into R2V . One
gets easily an intrinsic presentation by restricting to the space spanned by the biconnected subsets
of V . However, that presentation loses its symmetry, and the explicit equations depend on the
biconnected sets of G.

Proof of Theorem 2.12. We know by Proposition 2.10 that DC(ZG) is the intersection of the cone

hS∪{u} + hS∪{v} ≥ hS + hS∪{u,v} (1)

for {u, v} ∈ E and S ⊆ V ∖ {u, v} with the linear space given by the equations h∅ = −hV and

hS∪{u} + hS∪{v} = hS + hS∪{u,v} (2)

for {u, v} ∈
(
V
2

)
∖ E and S ⊆ V ∖ {u, v}.

We have already determined the equations describing the linear span in Theorem 2.11, so it
only remains to provide non-redundant inequalities describing the deformation cone.

We will prove first that the inequalities from (1) indexed by {u, v} ∈ E and S ⊆ N(v) ∩N(v)
suffice to describe DC(ZG). To this end, consider an inequality from (1) for which S ⊈ N(v)∩N(v).
Without loss of generality, assume that there is some x ∈ S such that {x, v} /∈ E. We will show
that this inequality is induced (in the sense that the half-spaces they define coincide on the linear
span of DC(ZG)) by the inequality

hS′∪{u} + hS′∪{v} ≥ hS′ + hS′∪{u,v} (3)

where S′ = S ∖ {x}. Our claim will then follow from this by induction on the elements of
S ∖ (N(v) ∩N(v)).

Indeed, if {x, v} /∈ E, we know by (2) that the following two equations hold in the linear span
of DC(ZG) by considering the non-edge {x, v} with the subsets S′ and S′ ∪ {u}, respectively:

hS∪{u} + hS′∪{u,v} = hS′∪{u} + hS∪{u,v}, (4)

hS + hS′∪{v} = hS′ + hS∪{v}, (5)

where we used that (S′ ∪ {u}) ∪ {x} = S ∪ {u} and (S′ ∪ {u}) ∪ {x, v} = S ∪ {u, v} in the first
equation, and that S′ ∪ {x} = S and S′ ∪ {x, v} = S ∪ {v} in the second equation. To conclude,
note that (1) is precisely the linear combination (3) + (4)− (5).

We know therefore that the descriptions in Proposition 2.10 and Theorem 2.12 give rise to the
same cone. It remains to show that the latter is irredundant. That is, that each of the inequalities
gives rise to a unique facet of DC(ZG).

Let (fX)X⊆V be the canonical basis of
(
R2V

)∗
. For u, v ∈ V and S ⊆ V ∖ {u, v}, let

n(u, v, S) := fS∪{u} + fS∪{v} − fS − fS∪{u,v}.
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Note that, if {u, v} /∈ E, then n(u, v, S) is orthogonal to DC(ZG), whereas if {u, v} ∈ E, then
n(u, v, S) is an inner normal vector to DC(ZG).

Fix {u, v} ∈ E and S ⊆ N(v) ∩N(v). To prove that the half-space with normal n(u, v, S) is

not redundant, we will exhibit a vector w ∈ R2V in the linear span of DC(ZG) that belongs to the
interior of all the half-spaces describing DC(ZG) except for this one. That is, we will construct a

vector w ∈ R2V respecting the system:





⟨w, n(u, v, S)⟩ ≤ 0,

⟨w, n(u, v,X)⟩ > 0 for S ̸= X ⊆ N(u) ∩N(v),

⟨w, n(a, b,X)⟩ > 0 for {a, b} ∈ E ∖ {u, v} and X ⊆ N(a) ∩N(b), and

⟨w, n(a, b,X)⟩ = 0 for {a, b} ∈
(
V
2

)
∖ E and X ⊆ V ∖ {a, b}.

(6)

Denote by T := N(u) ∩N(v)∖ S. We will construct w as the sum w := tS − tT + c for some

vectors tS , tT , and c ∈ R2V defined below, whose scalar products with n(a, b,X) for {a, b} ∈
(
V
2

)

and X ⊆ V ∖ {a, b} fulfill:

〈
tS , n(a, b,X)

〉 〈
−tT , n(a, b,X)

〉
⟨c, n(a, b,X)⟩

if {a, b} = {u, v} and X = S −|S| 0 |S|
if {a, b} = {u, v} and S ̸= X ⊆ N(u) ∩N(v) −|S ∩X| |T ∩X| |S|
if {a, b} ∈ E ∖ {u, v} and X ⊆ N(a) ∩N(b) ≥ −1 ≥ 0 2

if {a, b} /∈ E 0 0 0

It immediately follows from this table that the vector w will fulfill the desired properties from (6).
For the second one, note that if S ̸= X ⊆ S ⊔ T , then either |S ∩X| < |S| or |T ∩X| > 0.

To define these vectors, first, for {x, y, z} ∈
(
V
3

)
, let txyz ∈ R2V be the vector such that txyzX = 1

if {x, y, z} ⊆ X and txyzX = 0 otherwise. Note that, for any a, b ∈
(
V
2

)
and X ⊆ V ∖{a, b}, we have

⟨txyz, n(a, b,X)⟩ =
{
−1 if {x, y, z} = {a, b, t} for some t ∈ X, and

0 otherwise.
(7)

We define
tS :=

∑

s∈S

tuvs and tT :=
∑

t∈T

tuvt.

It is straightforward to derive the identities in the table from (7). For the inequalities, notice that
if ⟨tuvx, n(a, b,X)⟩ = −1 but {a, b} ≠ {u, v}, then either {a, b} = {u, x} or {a, b} = {v, x}, and
in both cases ⟨tuvy, n(a, b,X)⟩ = 0 for any y ̸= x.

Now, for {x, y} ∈
(
V
2

)
, let cxy ∈ R2V be the vector such that cxyX = 1 if |{x, y} ∩X| = 1 (that

is, if {x, y} belongs to the cut defined by X), and cxyX = 0 otherwise. Note that, for any a, b ∈
(
V
2

)

and X ⊆ V ∖ {a, b}, we have

⟨cxy, n(a, b,X)⟩ =
{
2 if {a, b} = {x, y}, and

0 otherwise.
(8)

We set

c :=
|S|
2
cuv +

∑

{a,b}∈E∖{u,v}
cab.

The identities in the table are straightforward to derive from (8).

Corollary 2.13. For any graph G = (V,E), the dimension of DC(ZG) is the number of induced
cliques in G, the dimension of the lineality space of DC(ZG) is |V |, and the number of facets
of DC(ZG) is the number of triplets (u, v, S) with {u, v} ∈ E and S ⊆ N(u) ∩N(v).
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Figure 12: A 3-dimensional affine section of the deformation cone DC(ZK3
) for the triangle K3.

The deformations of ZK3
corresponding to some of the points of DC(ZK3

) are depicted. Especially,
all points in the interior correspond to polytopes normally equivalent to Π3, while the above left
polytope is the Loday associahedron Asso3.

Example 2.14. For the complete graph KV , the graphical zonotope ZKV
is a permutahedron

and the deformation cone DC(ZKV
) is the submodular cone given by the irredundant inequal-

ities hS∪{u} + hS∪{v} ≥ hS + hS∪{u,v} for each {u, v} ⊆ V and S ⊆ V ∖ {u, v}. (The usual
presentation imposes h∅ = 0, but both presentations are clearly equivalent up to translation). It

has dimension 2|V | − 1 and
(|V |

2

)
2|V |−2 facets. The lineality space is |V |-dimensional, given by the

space of translations in R|V |.
For instance, for the triangle K3, the graphical zonotope ZK3 = Π3 is the regular hexagon

depicted in the bottom left of Figure 12, which arises as the Minkowski sum of 3 coplanar vec-
tors in R3. Its deformation cone DC(ZK3

) lives in the 8-dimensional space R2[3] , has dimen-
sion 7, a lineality space of dimension 3, and 6 facets. It admits as irredundant description the
equation h∅ = −h123 and the following 6 inequalities:

h1 + h2 ≥ h∅ + h12 h1 + h3 ≥ h∅ + h13 h2 + h3 ≥ h∅ + h23

h12 + h13 ≥ h1 + h123 h12 + h23 ≥ h2 + h123 h13 + h23 ≥ h3 + h123.

After quotienting the lineality and intersecting with an affine hyperplane, we get the bipyramid
over a triangle (living in dimension 7− 3− 1 = 3) illustrated in Figure 12. Note that the four rays
of DC(ZK3) (i.e. vertices of the bipyramid) of the form ∆K for an induced clique K of K3 provide
a linear basis of DC(ZK3) (i.e. an affine basis of the bipyramid). Nevertheless, the last ray can not
be written as a positive Minkowski sum of ∆K and remain thus unlabeled.

Example 2.15. For a triangle-free graph G = (V,E), the deformation cone DC(ZG) has dimen-
sion |V | + |E| and |E| facets. As before, the lineality is |V |-dimensional, given by the space of
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Figure 13: A 3-dimensional affine section of the deformation cone DC(ZC4
) for the 4-cycle C4.

The deformations of ZC4
corresponding to some of the points of DC(ZC4

) are depicted. Especially,
interior all points correspond to polytopes normally equivalent to ZC4

. Note that as the rays of
DC(ZC4) correspond to segments, all deformations of ZC4 are zonotopes (which is not the case for
the deformations of Πn).

translations in R|V |. Thus DC(ZG) is simplicial.
For instance, for the 4-cycle C4, the graphical zonotope ZC4

is the 3-dimensional zonotope
depicted in the bottom right of Figure 13 (a rhombic dodecahedron), which arises as the Minkowski
sum of 4 vectors in a hyperplane of R4. Its deformation cone DC(ZC4) lives in the 16-dimensional
space R2[4] , has dimension 8, a lineality space of dimension 4, and 4 facets. It admits as irredundant
description the following 8 equations and 4 inequalities:

h∅ = −h1234 h12 + h14 = h124 + h1 h1 + h2 ≥ h12 + h∅

h1 + h3 = h13 + h∅ h12 + h23 = h123 + h2 h2 + h3 ≥ h23 + h∅

h2 + h4 = h24 + h∅ h23 + h34 = h234 + h3 h3 + h4 ≥ h34 + h∅

h123 + h134 = h1234 + h13 h14 + h34 = h134 + h4 h1 + h4 ≥ h14 + h∅.

After quotienting the lineality and intersecting with an affine hyperplane, we get the 3-simplex
(i.e. tetrahedron) illustrated in Figure 13.

2.2.4 Simplicial graphical deformation cones

As an immediate corollary, we obtain a characterization of those graphical zonotopes whose de-
formation cone is simplicial.

Corollary 2.16. The deformation cone DC(ZG) is simplicial (modulo its lineality) if and only if G
is triangle-free.

Proof. If G is triangle-free, the deformation cone DC(ZG) has dimension |V |+ |E|, lineality space
of dimension |V |, and |E| facets, and hence it is simplicial. If G is not triangle-free, then we
claim that the number of induced cliques K of G with |K| ≥ 2 is strictly less than the number
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of triples (u, v, S) with {u, v} ∈ E and S ⊆ N(u) ∩ N(v). Indeed, each induced clique K of G

with |K| ≥ 2 already produces
(|K|

2

)
triples of the form (u, v,K ∖ {u, v}) which satisfy {u, v} ∈ E

and K ∖ {u, v} ⊆ N(u) ∩ N(v) and are all distinct. Since
(|K|

2

)
> |K| as soon as |K| ≥ 3, by

Corollary 2.13, this shows that the deformation cone DC(ZG) is not simplicial.

Corollary 2.17. If G is triangle-free, then every deformation of ZG is a zonotope, which is the
graphical zonotope of a subgraph of G up to rescaling of the generators.

Proof. For any induced clique K of G of size at least 2, ∆K is a Minkowski indecomposable
(|K| − 1)-dimensional polytope in the deformation cone DC(ZG) (see for example [Grü03, 15.1.3]
for a certificate of indecomposability). It spans therefore a ray of DC(ZG). When G is triangle-free,
the deformation cone modulo its lineality is of dimension |E|, and the polytopes ∆e for e ∈ E
account for the |E| rays of the simplicial deformation cone DC(ZG).

Therefore, each polytope P ∈ DC(ZG) can be uniquely7 expressed as a Minkowski sum

P =
∑

e∈E

λe∆e

with non-negative coefficients λe. Since each ∆e is a segment, P is a zonotope, normally equivalent
to the graphical zonotope of the subgraph G′ = (V,E′) with E′ = {e ∈ E ; λe ̸= 0}.
Remark 2.18. Note that if G is not triangle-free, its deforamation cone is not simplicial and hence
has a ray that do not correspond to a face of the standard simplex, i.e. not all the deformations
of ZG are graphical zonotopes.

2.2.5 Perspectives and open questions

Computational remarks The computation of deformation cones of graphical zonotopes has been
implemented with Sage, allowing us to conjecture Corollary 2.13 before proving it. Thanks to this
code, one can input a graph G and compute the deformation cone of its graphical zonotope as
the cone of heights in R2n , illustrating Theorem 2.12. Although very symmetric and well suited
for mathematical purposes, this first implementation has the inconvenient to live in a highly
dimensional space. For this reason, I have also implemented a second version that computes the
deformation cone in RBS(G) where BS(G) is the collection of biconnected subsets of G (which
are in bijection with the rays of F(G)). Some technical choices have to be made to speed up this
computation, in particular by efficiently using the dual graph of F(G) in order to get rid of some
redundant equalities.

Assets and limits of the current approach, open questions The question of the dimension space
of the deformation is of prime importance for a larger subject. In [McM93, McM96], McMullen
constructed several algebras associated to a polytope P: in particular, its polytope algebra and
its weight algebra. This construction was used to provide an alternative proof of the famous g-
theorem of Billera–Lee and Stanley [Sta80]. Both algebras are graded. When P is simple, these
two algebras are isomorphic, but in general there is only an embedding of the polytope algebra in
the weight algebra. For example, the permutahedron Πn is simple and the dimension of the k-th
graded piece of its polytope algebra is the Eulerian number A(n, k), see [Ham17].

The first graded piece of the polytope algebra of P is the linear span of DC(P) (i.e. the space
of virtual deformations discussed above Theorem 2.11). This means that in the present section,
we have computed the dimension of the first graded piece of the polytope algebra of graphical
zonotopes (and of nestohedra in the next section). On top of that, our result gives a basis of this
first graded piece, and the polytope algebra is generated in degree 1.

With Arnau Padrol, we considered the second graded piece of the polytope algebra of graphical
zonotopes and managed to find an explicit basis of it. We are currently attempting to extend these
results to higher graded pieces. Furthermore, graphical zonotopes are (in general) non-simple
polytopes: therefore, we hope to describe the gap between both algebras for graphical zonotopes.

7Uniqueness comes from the simpliciality of DC(ZG).
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2.3 Deformation cones of nestohedra

This section is a joint work with Arnau Padrol and Vincent Pilaud. It comes from the article
[PPP23] (where the majority of the figures come from), enriched with some additional details and
figures.

This section focuses on some specific deformed permutahedra generalizing the associahedra,
namely the graph associahedra and nestohedra. Graph associahedra were defined by M. Carr
and S. Devadoss [CD06] in connection to C. De Concini and C. Procesi’s wonderful compactifi-
cation [DCP95]. For a given graph G, the G-associahedron Asso(G) is a simple polytope whose
combinatorial structure encodes the connected induced subgraphs of G and their nested structure.
More precisely, the G-associahedron is a polytopal realization of the nested complex of G, defined
as the simplicial complex of all collections of tubes (connected induced subgraphs) of G which
are pairwise compatible (either nested, or disjoint and non-adjacent). As illustrated in Figure 14,
the graph associahedra of certain special families of graphs coincide with well-known families of
polytopes: complete graph associahedra are permutahedra, path associahedra are classical asso-
ciahedra, cycle associahedra are cyclohedra, and star associahedra are stellohedra. Graph associ-
ahedra were extended to nestohedra, which are simple polytopes realizing the nested complex of
arbitrary building sets [FS05, Pos09]. Graph associahedra and nestohedra have been constructed
in different ways: by successive truncations of faces of the standard simplex [CD06], as Minkowski
sums of faces of the standard simplex [FS05, Pos09], or from their normal fans by exhibiting ex-
plicit inequality descriptions [Zel06, Dev09]. For a given building set, the resulting polytopes all
have the same normal fan, called nested fan, whose rays are given by the characteristic vectors
of the building blocks, and whose cones are given by the nested sets. As all nested fans coarsen
the braid fan, all graph associahedra and nestohedra are deformed permutahedra, and hence they
can be obtained by gliding facets of the permutahedron. However, in contrast to the classical
associahedron [SS93, Lod04, HL07], note that some graph associahedra and nestohedra cannot be
obtained by deleting inequalities in the facet description of the permutahedron [Pil17].

In this section, we describe all realizations of the nested fans by studying the deformation cone
of the G-associahedron for any graph G (Section 2.3.1) and of the B-nestohedron of any building
set B (Section 2.3.2). Our main contribution is an irredundant facet description of these deforma-
tion cones, characterizing which of the wall-crossing inequalities are irreplaceable (Theorems 2.28
and 2.62). Even though the graphical case is a specialization of the general case, we present it
first separately, since it admits a much simpler description that serves as an introduction for the
general case. This simplification relies on two pleasant properties (Proposition 2.23): first, the
classical simple characterization of the pairs of exchangeable tubes, and second, the fact that the
wall-crossing inequalities only depend on their exchanged tubes.

The non-graphical case is much more involved. First, we need a characterization of the
pairs of exchangeable blocks (Proposition 2.49), which was surprisingly missing for arbitrary
building sets (Remark 2.56). Second, the wall-crossing inequalities do not any more correspond
to the pairs of exchangeable blocks. Namely, the wall-crossing inequalities do not only depend on
the exchanged blocks, but also on an additional structure that we call the frame of the exchange.
Moreover, some distinct exchange frames actually yield the same wall-crossing inequalities.

These irredundant inequality descriptions enable us to count the facets of these deformation
cones and thus to determine when these deformation cones are simplicial. It turns out that the
deformation cone of the G-associahedron is simplicial if and only if G is a disjoint union of paths
(i.e. the G-associahedron is a Cartesian product of classical associahedra). In contrast, there is
much more freedom for nestohedra of arbitrary building sets, and we show that the deformation
cone of the nestohedron is always simplicial for an interval building set, that is a building set whose
blocks are some intervals of [n] (Proposition 2.69). As advocated in [PPPP19], the simpliciality
of the deformation cone leads to an elegant description of all deformations of the polytope in the
so-called kinematic space [AHBHY18]. Generalizing the kinematic associahedra of [AHBHY18],
we thus define the kinematic nestohedra of arbitrary interval building sets (Proposition 2.73).
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Figure 14: Some classical families of polytopes as graph associahedra. Illustration from [MP17].

2.3.1 Deformation cones of graphical nested fans

In this section, we study graphical nested fans, postponing the study of arbitrary nested fans to
Section 2.3.2. While the graphical case is significantly simpler than the general case, some proof
ideas presented here will be transported to Section 2.3.2. This section is thus useful both to the
readers only interested in the graphical case and as a prototype for the general case.

Graphical nested complex, graphical nested fan, and graph associahedron We start with the
definitions and properties of the nested complex of a graph, using material from [FS05, CD06,
Zel06, Pos09, MP17].

Graphical nested complex Let G be a graph with vertex set V . A tube of G is a non-empty subset
of vertices of G whose induced subgraph is connected. The set of tubes of G is denoted by BG. The
(inclusion) maximal tubes of G are its connected components κ(G). Two tubes t, t′ of G are com-
patible if they are either nested (i.e. t ⊆ t′ or t′ ⊆ t), or disjoint and non-adjacent (i.e. t ∪ t′ /∈ BG).
Note that any connected component of G is compatible with any other tube of G. A tubing on G
is a set T of pairwise compatible tubes of G containing all connected components κ(G). Examples
are illustrated in Figure 15. The nested complex of G is the simplicial complex N (G) whose faces
are T∖ κ(G) for all tubings T on G. If T∖ {t} = T′ ∖ {t′} for two maximal tubings T and T′ and
two tubes t and t′, we say that T and T′ are adjacent and that t and t′ are exchangeable.

Figure 15: Some incompatible tubes (Left and Middle), and a maximal tubing (Right).
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Graphical nested fan Let (ev)v∈V be the canonical basis of RV . We consider the subspace
H :=

{
x ∈ RV ;

∑
v∈K xv = 0 for all K ∈ κ(G)

}
and let π : RV → H denote the orthogonal

projection onto H. The g-vector of a tube t of G is the projection g(t) := π
(∑

v∈t ev
)
of the

characteristic vector of t. We set g(T) := {g(t) ; t ∈ T} for a tubing T on G. Note that by
definition, g(∅) = 0 and g(K) = 0 for all connected components K ∈ κ(G). The vectors g(t)
with t ∈ BG support a complete simplicial fan realization of the nested complex, see Figure 16.

Theorem 2.19 ([FS05, CD06, Zel06, Pos09]). For any graph G, the set of cones

F(G) := {R≥0 g(T) ; T tubing on G}
is a complete simplicial fan of H, called the nested fan of G, realizing the nested complex N (G).

Figure 16: Two graphical nested fans. The rays are labeled by the corresponding tubes. As the
fans are 3-dimensional, we intersect them with the sphere and stereographically project them from
the direction (−1,−1,−1).

Graph associahedron The following statement is proved in [FS05, Zel06, CD06, Dev09, Pos09].
As before, for a subset U ⊆ V , denote by ∆U := conv {eu ; u ∈ U} the face of the standard
simplex ∆V corresponding to U .

Theorem 2.20 ([FS05, Zel06, CD06, Dev09, Pos09]). For any graph G, the nested fan F(G) is the
normal fan of a polytope. For instance, F(G) is the normal fan of

(i) the intersection of H with the half-spaces ⟨g(t), x⟩ ≤ −3|t| for all tubes t ∈ BG [Dev09]

(ii) the Minkowski sum
∑

t∈BG ∆t of the faces of the standard simplex given by all t ∈ BG [Pos09]

Definition 2.21. Any polytope whose normal fan is the nested fan F(G) is called graph associahe-
dron and denoted by Asso(G).

For example, Figure 17 represents the graph associahedra realizing the graphical nested fans
of Figure 16 and obtained using the construction (ii) of Theorem 2.20.

Example 2.22. For instance,

(i) for the complete graph Kn, the tubes are all non-empty subsets of [n], the tubings corre-
spond to ordered partitions of [n], the maximal tubings correspond to permutations of [n], the
graphical nested fan F(Kn) is the intersection of the classical braid fan
with H = {x ∈ Rn ;

∑
i xi = 0}, and the graph associahedron Asso(Kn) is the classi-

cal permutahedron embedded in H (see e.g. [Zie98, Hoh12] or Section 1.2.3), this gives a
slightly different point of view on Example 2.14;
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Figure 17: Two graph associahedra, realizing the graphical nested fans of Figure 16. The vertices
are labeled by the corresponding maximal tubings.

(ii) for the path Pn, the tubes are all non-empty intervals of [n], the tubings correspond to
Schröder trees with n+1 leaves, the maximal tubings correspond to binary trees with n+1
leaves, the graphical nested fan F(Pn) is the classical sylvester fan, and the graph associa-
hedron Asso(Pn) is the classical associahedron (see [SS93, Lod04, PSZ23] or Section 1.2.4).

Exchangeable tubes and g-vector dependencies The next statement follows from [Zel06, MP17].

Proposition 2.23. Let t, t′ be two tubes of G. Then

(i) The tubes t and t′ are exchangeable in F(G) if and only if t′ has a unique neighbor v in t∖ t′

and t has a unique neighbor v′ in t′ ∖ t.

(ii) For any adjacent maximal tubings T,T′ on G with T∖{t} = T′∖{t′}, both T and T′ contain
the tube t ∪ t′ and the connected components of t ∩ t′.

(iii) The linear dependence between the g-vectors of T ∪ T′ is given by

g(t) + g(t′) = g(t ∪ t′) +
∑

s∈κ(t∩t′)

g(s).

In particular, it only depends on the exchanged tubes t and t′, not on the tubings T and T′.

Proof. Points (i) and (ii) were proved in [MP17]. Point (iii) follows from the fact that

∑

v∈t

ev +
∑

v∈t′

ev =
∑

v∈t∪t′

ev +
∑

v∈t∩t′

ev =
∑

v∈t∪t′

ev +
∑

s∈κ(t∩t′)

∑

v∈s

ev.

For instance, the two tubes on the left of Figure 15 are exchangeable, while the two tubes in
the middle of Figure 15 are not.
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Deformation cones of graphical nested fans As a direct consequence of Proposition 2.2 and Propo-
sition 2.23, we obtain the following (possibly redundant) description of the deformation cone of
the graphical nested fan F(G). Note that as F(G) is simplicial, there are (almost) no equalities
to deal with, contrarily to the case of graphical zonotopes of Section 2.2. This simplifies sorely
the computation of the dimension of DC(F(G)).

Corollary 2.24. For any graph G, the deformation cone of the nested fan F(G) is given by

DC(F(G)) =

{
h ∈ RBG ;

hK = 0 for any connected component K ∈ κ(G) and
ht + ht′ ≥ ht∪t′ +

∑
s∈κ(t∩t′) hs for any exchangeable tubes t, t′

}
.

We denote by f t for t ∈ BG the canonical basis of RBG and by

n(t, t′) := f t + f t′ − f t∪t′ −
∑

s∈κ(t∩t′)

f s

the inner normal vector of the inequality of the deformation cone DC(F(G)) corresponding to an
exchangeable pair {t, t′} of tubes of G. Thus h ∈ DC(F(G)) if and only if ⟨n(t, t′), h⟩ ≥ 0 for all
exchangeable tubes t, t′ ∈ BG.

Remark 2.25. For instance,

(i) for the complete graph Kn, the deformation cone DC(F(Kn)) is formed by all submodular
functions, i.e. functions h : 2[n] → R such that h∅ = 0 = h[n] and hA + hB ≥ hA∩B + hA∪B

for any A,B ⊆ [n]. The inequalities hU∖{v} + hU∖{v′} ≥ hU + hU∖{v,v′} for v, v′ ∈ V
and {v, v′} ⊆ U ⊆ V clearly imply all submodular inequalities. This was already studied
with the framework of graphical zonotopes in Example 2.14 as well as in [Pos09].

(ii) for the path Pn, the deformation cone DC(F(Pn)) is formed by the functions
h : {[i, j] ; 1 ≤ i ≤ j ≤ n} 7→ R such that h[1,n] = 0 = h{i} for all i ∈ [n] and
h[i,j] + h[k,ℓ] ≥ h[i,ℓ] + h[k,j] for all 1 ≤ i ≤ j ≤ n and 1 ≤ k ≤ ℓ ≤ n such that i < k, j < ℓ
and k ≤ j + 1 (where h[k,j] = 0 if k = j + 1). This was already studied in the context of
mathematical physics [AHBHY18] whose results bring back deformation cones to the fore.

Example 2.26. Consider the graphical nested fans illustrated in Figure 16. The deformation cone
of the left fan lives in R13, has a lineality space of dimension 3 and 19 facet-defining inequalities
(given below). In particular, it is not simplicial. Note that, as in Figure 16, we express the
g-vectors in the basis given by the maximal tubing containing the first three tubes below.
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tubes

g-vectors

[
1
0
0

] [
0
1
0

] [
0
0
1

] [
0
1
−1

] [
1
−1
1

] [
1
−1
0

] [
1
0
−1

] [
−1
1
0

] [
−1
0
1

] [
−1
0
0

] [
0
−1
1

] [
0
−1
0

] [
0
0
−1

]

facet 0 0 0 0 0 0 0 0 0 0 1 −1 1
defining 0 0 0 0 0 1 0 0 0 1 0 −1 0

inequalities −1 1 0 −1 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 −1 −1 1 0
0 0 0 0 0 −1 1 0 0 0 0 1 −1
−1 1 −1 0 1 0 0 0 0 0 0 0 0
−1 0 0 0 1 −1 1 0 0 0 0 0 0
0 1 −1 0 0 0 0 −1 1 0 0 0 0
0 0 −1 0 1 0 0 0 1 0 −1 0 0
0 0 0 0 1 −1 0 0 0 0 −1 1 0
0 0 1 0 0 0 0 0 −1 1 0 0 0
0 0 1 0 −1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 −1 0 1 0 0
1 0 0 0 0 0 −1 0 0 0 0 0 1
1 0 0 0 −1 0 0 0 0 0 1 0 0
1 −1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 −1 0 1 0 0 −1
0 0 0 1 0 1 −1 0 0 0 0 0 0
0 −1 1 1 0 0 0 0 0 0 0 0 0

The deformation cone of the right fan lives in R11, has a lineality space of dimension 3 and
12 facet-defining inequalities (given below). In particular, it is not simplicial. Note that, as in
Figure 16, we express the g-vectors in the basis given by the maximal tubing containing the first
three tubes below.

tubes

g-vectors

[
1
0
0

] [
0
1
0

] [
0
0
1

] [
1
−1
1

] [
1
−1
0

] [
−1
1
0

] [
−1
0
1

] [
−1
0
0

] [
0
−1
1

] [
0
−1
0

] [
0
0
−1

]

facet −1 1 −1 1 0 0 0 0 0 0 0
defining 1 −1 0 0 0 1 0 0 0 0 0

inequalities 0 1 −1 0 0 −1 1 0 0 0 0
1 0 0 −1 0 0 0 0 1 0 0
0 0 −1 1 0 0 1 0 −1 0 0
0 0 0 1 −1 0 0 0 −1 1 0
0 0 0 0 0 1 −1 0 1 0 0
0 0 0 0 0 0 1 −1 −1 1 0
0 0 0 0 0 0 0 0 1 −1 1
0 0 0 0 1 0 0 1 0 −1 0
0 0 1 0 0 0 −1 1 0 0 0
0 0 1 −1 1 0 0 0 0 0 0
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Example 2.27. We can exploit Corollary 2.24 to show that certain height functions belong to (the
interior of) the deformation cone of F(G) and recover some classical constructions of the graph
associahedron.

(i) Consider the height function h ∈ RBG given by ht := −3|t|. Then for any exchangeable
tubes t and t′, we have

⟨n(t, t′), h⟩ = −3|t| − 3|t
′| + 3|t∪t′| +

∑

s∈κ(t∩t′)

3|s| ≥ −2 · 3|t∪t′|−1 + 3|t∪t′| > 0.

Therefore, the height function h belongs to the interior of the deformation cone DC(F(G)).
The corresponding polytope Ph :=

{
x ∈ RV ; ⟨g(t), x⟩ ≤ ht for t ∈ BG

}
is the graph

associahedron constructed by S. Devadoss’s in [Dev09].

(ii) Consider the height function h ∈ RBG given by ht := −
∣∣{s ∈ BG ; s ⊆ t

}∣∣. Then for any
exchangeable tubes t and t′, we have

⟨n(t, t′), h⟩ =
∣∣{s ∈ BG ; s ̸⊆ t and s ̸⊆ t′ but s ⊆ t ∪ t′

}∣∣ > 0

since t∪t′ fulfills the conditions on s. Thus, the height function h belongs to the interior of the
deformation cone DC(F(G)). The polytope Ph :=

{
x ∈ RV ; ⟨g(t), x⟩ ≤ ht for t ∈ BG

}
is

the graph associahedron constructed by A. Postnikov’s in [Pos09].

Note that many inequalities of Corollary 2.24 are redundant. In the remaining of this section,
we describe the facet-defining inequalities of the deformation cone of the graphical nested fans.
We say that an exchangeable pair {t, t′} of tubes of G is

• extremal if its corresponding inequality in Corollary 2.24 defines a facet of DC(F(G)),

• maximal if t∖ {v} = t′ ∖ {v′} for some neighbor v of t′ and some neighbor v′ of t.

We can now state our main result on graphical nested complexes.

Theorem 2.28. An exchangeable pair is extremal if and only if it is maximal.

Proof. We treat separately the two implications:

Extremal ⇒ maximal. Consider an exchangeable pair {t, t′} of tubes of G. By Proposition 2.23,
t′ has a unique neighbor v in t ∖ t′ and t has a unique neighbor v′ in t′ ∖ t. Therefore, t ∖ t′

and t′ ∖ t are both connected. Assume that {t, t′} is not maximal, for instance that t∖ t′ ̸= {v},
and let w ̸= v be a non-disconnecting node of t∖ t′. By Proposition 2.23, t̃ := t∖ {w} and t′ are
exchangeable, and t̃′ := (t ∪ t′)∖ {w} and t are exchangeable as well. Moreover, we have

n(̃t, t′) + n(t, t̃′) =
(
f t̃ + f t′ − f t̃∪t′ −

∑

s∈κ(̃t∩t′)

f s

)
+
(
f t + f t̃′ − f t∪t̃′ −

∑

s∈κ(t∩t̃′)

f s

)

= f t + f t′ − f t∪t′ −
∑

s∈κ(t∩t′)

f s = n(t, t′),

as t̃ ∪ t′ = t̃′, t̃ ∩ t′ = t ∩ t′, t ∪ t̃′ = t ∪ t′ and κ(t ∩ t̃′) = κ(̃t) = t̃. Therefore n(t, t′) defines
a redundant inequality and {t, t′} is not an extremal exchangeable pair. The proof is symmetric
if t′ ∖ t ̸= {v′}.
Maximal ⇒ extremal. Let {t, t′} be a maximal exchangeable pair. To prove that {t, t′} is extremal,
we will construct a vector w ∈ RBG such that ⟨n(t, t′), w⟩ < 0, but

〈
n(̃t, t̃′), w

〉
> 0 for any

other maximal exchangeable pair {t̃, t̃′}. This will show that the inequality induced by {t, t′} is
not redundant.
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Define α(t, t′) := {s ∈ BG ; s ̸⊆ t and s ̸⊆ t′ but s ⊆ t ∪ t′}. Note that α(t, t′) is non-empty
since it contains t ∪ t′. Define three vectors x,y, z ∈ RBG by, for each tube s ∈ BG:

xs := −|
{
r ∈ BG∖ α(t, t′) ; r ⊆ s

}
|,

ys := −|
{
r ∈ α(t, t′) ; r ⊆ s

}
|,

zs :=

{
−1 if t ⊆ s or t′ ⊆ s,

0 otherwise,

We will prove below that their scalar products with n(̃t, t̃′) for any maximal exchangeable
pair {t̃, t̃′} satisfy the following inequalities

〈
n(̃t, t̃′), x

〉 〈
n(̃t, t̃′), y

〉 〈
n(̃t, t̃′), z

〉

if {t, t′} = {t̃, t̃′} = 0 = |α(t, t′)| = −1

if α(̃t, t̃′) ̸⊆ α(t, t′) ≥ 1 ≥ 0 ≥ −1

otherwise = 0 ≥ 1 ≥ 0

It immediately follows from this table that the vectorw := x+δy+εz fulfills the desired properties
for any δ, ε such that 0 < δ · |α(t, t′)| < ε < 1.

To prove the inequalities of the table, observe that for any maximal exchangeable pair {t̃, t̃′},
•
〈
n(̃t, t̃′), x

〉
= |α(̃t, t̃′)∖ α(t, t′)|,

•
〈
n(̃t, t̃′), y

〉
= |α(̃t, t̃′) ∩ α(t, t′)|,

•
〈
n(̃t, t̃′), z

〉
≥ −1 since z t̃ = −1 or z t̃′ = −1 implies z t̃∪t̃′ = −1,

•
〈
n(̃t, t̃′), z

〉
≥ 0 when {t, t′} ≠ {t̃, t̃′} but α(̃t, t̃′) ⊆ α(t, t′). Indeed α(̃t, t̃′) ⊆ α(t, t′)

implies t̃∪t̃′ ⊆ t∪t′. If t ⊆ t̃, then t ⊆ t̃ ⊊ t̃∪t̃′ ⊆ t∪t′, which implies that t = t̃ by maximality
of t in t ∪ t′. Similarly, t′ ⊆ t̃ implies t′ = t̃. Hence, if z t̃ = −1, then by definition t ⊆ t̃
or t′ ⊆ t̃, which implies that t̃ ∈ {t, t′}. Similarly, z t̃′ = −1 implies t̃′ ∈ {t, t′}. Hence,
z t̃ = −1 = z t̃′ implies t̃ = t̃′ (impossible since t̃ and t̃′ are exchangeable) or {t, t′} = {t̃, t̃′}
(contradicting our assumption). Therefore, at most one of z t̃ and z t̃′ equals to −1, and if
exactly one does, then z t̃∪t̃′ = −1. We conclude that

〈
n(̃t, t̃′), z

〉
≥ 0.

The following statement reformulates Theorem 2.28.

Corollary 2.29. The extremal exchangeable pairs for the nested fan of G are precisely the pairs of
tubes s∖ {v′} and s∖ {v} for any tube s ∈ BG and distinct non-disconnecting vertices v, v′ of s.

We derive from Theorem 2.28 and Corollary 2.29 the irredundant facet description of the
deformation cone DC(F(G)).

Corollary 2.30. For any graph G, the deformation cone of the nested fan F(G) is given by the
following irredundant facet description

DC(F(G)) =



h ∈ RBG ;

hK = 0 for any connected component K ∈ κ(G), and
hs∖{v′} + hs∖{v} ≥ hs + hs∖{v,v′} for any tube s ∈ BG
and distinct non-disconnecting vertices v, v′ ∈ s



 .

Remark 2.31. For instance,

(i) for the complete graphKn, all the inequalities hU∖{v}+hU∖{v′} ≥ hU+hU∖{v,v′} for v, v′ ∈ V
and {v, v′} ⊆ U ⊆ V are facet defining inequalities of DC(F(Kn)) (fortunately, this result is
coherent with Example 2.14).

(ii) for the path Pn, only the inequalities h[i,j−1] +h[i+1,j] ≥ h[i,j] +h[i+1,j−1] for 1 ≤ i < j ≤ n
are facet defining inequalities of DC(F(Pn)) (where h∅ = 0 by convention).
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We derive from Corollary 2.29 the number of facets of the deformation cone DC(F(G)). For
a tube t of G, we denote by nd(t) the number of non-disconnecting vertices of t. In other words,
nd(t) is the number of tubes covered by t in the inclusion poset of all tubes of G.

Corollary 2.32. The deformation cone DC(F(G)) has
∑

s∈BG

(
nd(s)
2

)
facets. This cone has dimension

|BG| − |κ(G)| and lineality |V | − |κ(G)|.

We call proper dimension of DC(F(G)) the value |BG| − |V | (i.e. the number of tubes that
not singletons) which is its dimension as a cone once quotiented out its lineality. The formula of
Corollary 2.32 can be made more explicit for specific families of graph associahedra discussed in
the introduction and illustrated in Figure 14.

Proposition 2.33. The number of facets of the deformation cone DC(F(G)) is:

• 2n−2
(
n
2

)
for the permutahedron (complete graph associahedron) in proper dimension 2n−n−1;

•
(
n
2

)
for the associahedron (path associahedron) in proper dimension

(
n
2

)
;

• 3
(
n
2

)
− n for the cyclohedron (cycle associahedron) in proper dimension (n− 1)2;

• n− 1 + 2n−3
(
n−1
2

)
for the stellohedron (star associahedron)in proper dimension 2n−1 − 1.

Proof. As the proper dimension is straightforward, we detail the computation of the number of
facets. For the permutahedron, choose any two vertices v, v′, and complete them into a tube by
selecting any subset of the n − 2 remaining vertices. For the associahedron, choose any two ver-
tices v, v′, and complete them into a tube by taking the path between them. For the cyclohedron,
choose the two vertices v, v′, and complete them into a tube by taking either all the cycle, or one
of the two paths between v and v′ (this gives three options in general, but only two when v, v′

are neighbors). For the stellohedron, choose either v as the center of the star and v′ as one of the
n− 1 leaves, or v and v′ as leaves of the star and complete them into a tube by taking the center
and any subset of the n− 3 remaining leaves.

Example 2.34. We would like to draw a figure similar to Figures 12 and 13. The proper dimension
of such example shall be at most 4, so that we can intersect DC(F(G)) with a hyperplane and
embed it in 3 dimensions. Unfortunately, the path P4 already contains 6 tubes that are not
singletons, and the star on 4 vertices contains 7 (non-singleton) tubes, so all connected graphs G
with 4 vertices or more yield a deformation cone with proper dimension at least 6 and can not be
drawn.

There are two connected graphs on 3 vertices: the complete graph K3 and the path P3. The
deformation cone DC(F(K3)) is depicted in Figure 12, and the deformation cone DC(F(P3)) is the
above left 2-dimensional face of the latter, as the associahedron can be written
Asso3 = ∆13 +∆23 +∆123 in the setting of graphical zonotopes.

Simplicial deformation cone To conclude on graphical nested fans, we characterize the graphs G
whose nested fan F(G) has a simplicial deformation cone.

Proposition 2.35. The deformation cone DC(F(G)) is simplicial if and only if G is a disjoint
union of paths.

Proof. Observe first that the graphical nested fan F(G) has N = |BG| − |κ(G)| rays and dimen-
sion n = |V | − |κ(G)|. Moreover, any tube t with |t| ≥ 2 has two non-disconnecting vertices when
it is a path, and at least three non-disconnecting vertices otherwise (the leaves of an arbitrary
spanning tree of t, or any vertex if it is a cycle). Therefore, each tube of BG which is not a
singleton contributes to at least one extremal exchangeable pair. We conclude that the number of
extremal exchangeable pairs is at least

|BG| − |V | = (|BG| − |κ(G)|)− (|V | − |κ(G)|) = N − n,
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with equality if and only if all tubes of G are paths, i.e. if and only if G is a collection of paths.
Hence, DC(F(G)) is simplicial if and only if G is a disjoint union of paths.

The motivation to study the simpliciality of the deformation cone DC(F(G)) stems from the
kinematic associahedra of [AHBHY18, Sect. 3.2]. These polytopes are alternative realizations of
the associahedron obtained as sections of the kinematic space (the positive orthant in R(

n
2)) by

a well-chosen affine subspace parametrized by positive vectors. While these polytopes are just
affinely equivalent to the realizations in RV , they have the advantage of being more natural from
the scattering amplitudes’ perspective [AHBHY18]. As observed in [PPPP19], such realizations
can be directly obtained from the facet description of the deformation cone, when the latter is
simplicial. Hence, combining Proposition 2.35 and Corollary 2.30 produces kinematic realizations
of all graph associahedra of disjoint union of paths (i.e. all Cartesian products of associahedra).
Our next statement only recalls the construction of the kinematic associahedron as it serves as a
prototype for Proposition 2.73 that will describe new families of kinematic nestohedra.

Proposition 2.36. For any p ∈ R(
[n]
2 )

>0 , the polytope Rp(n) defined as the intersection of the positive

orthant
{
z ∈ R{[i,j] ; 1≤i≤j≤n} ; z ≥ 0

}
with the hyperplanes

• z[1,n] = 0 and z[i,i] = 0 for i ∈ [n],

• z[i,j−1] + z[i+1,j] − z[i,j] + z[i+1,j−1] = p[i,j] for all 1 ≤ i < j ≤ n,

is an associahedron whose normal fan is F(Pn). Moreover, the polytopes Rp(n) for p ∈ R(
[n]
2 )

>0

describe all polytopal realizations of F(Pn) (up to translations).

2.3.2 Deformation cones of arbitrary nested fans

We now extend our results from graph associahedra to nestohedra. In the general situation, the
set of tubes is replaced by a building set B, and the tubings are replaced by B-nested sets (this
generalization can equivalently be interpreted as replacing the graph by an arbitrary hypergraph).
As in the graphical case, the nested sets define a nested complex and a nested fan, which is the
normal fan of the nestohedron. In this section, we describe the deformation cones of arbitrary
nested fans. We follow the same scheme as in the previous Section 2.3.1, even if the general
situation is significantly more intricate (Remarks 2.50 and 2.55 highlight some of the complications
of the general case).

Nested complex, nested fan, and nestohedron We first recall the definitions of arbitrary building
sets, nested complexes, nested fans and nestohedra, following [FS05, Zel06, Pos09, Pil17].

Building sets A building set B on a ground set V is a set of non-empty subsets of V such that

• if B,B′ ∈ B and B ∩B′ ̸= ∅, then B ∪B′ ∈ B, and

• B contains all singletons {v} for v ∈ V .

We denote by κ(B) the set of connected components of B, defined as the (inclusion) maximal
elements of B. We denote by ε(B) the set of elementary blocks of B, defined as the blocks B ∈ B
such that |B| > 1, and B = B′ ∪B′′ implies B′ ∩B′′ = ∅ for any B′, B′′ ∈ B∖ {B}. For instance,
consider the building set B◦ on [9] defined by

B◦ := {1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 25, 123, 456, 789, 1234, 1235, 1456, 2456, 12345, 12456, 123456}

(since all labels have a single digit, we abuse notation and write 123 for {1, 2, 3}). Its connected
components are κ(B◦) = {123456, 789}, and its elementary blocks are ε(B◦) = {14, 25, 123, 456, 789},
which are represented in Figure 18 (left).
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Remark 2.37. If B ∈ B is elementary, then the maximal blocks of B strictly contained in B
are disjoint. Conversely, if there exist two disjoint maximal blocks M,N ∈ B strictly contained
in B ∈ B, then B is elementary. Otherwise, there would be B′, B′′ ∈ B∖{B} such that B = B′∪B′′

and B′ ∩B′′ ̸= ∅. By maximality, M and N are not strict subsets of B′ and B′′, hence M and N
intersect both B′ and B′′. Since M ∩ B′ ̸= ∅, we have M ∪ B′ ∈ B. As M ⊆ M ∪ B′ ⊆ B,
we obtain again by maximality of M that M = M ∪ B′ or M ∪ B′ = B. In the former case, we
have ∅ ̸= B′ ∩ N ⊆ M ∩ N contradicting our assumption on M and N . In the latter case, we
have N ⊆ B′ ∖M contradicting the maximality of N .

Remark 2.38. For a graph G with vertex set V , the set BG of all tubes of G is a graphical building
set. The blocks of κ(BG) are the vertex sets of the connected components κ(G) of G, and the
blocks of ε(BG) are the edges of G.

Remark 2.39. Note that not all building sets are graphical building sets. It was in fact proved
in [Zel06, Prop. 7.3] that a building set is graphical if and only if for any B ∈ B and C ⊂ B,
if B ∪ ⋃ C ∈ B, then there is C ∈ C such that B ∪ C ∈ B. However, arbitrary building sets
can be interpreted using hypergraphs [Ber89] instead of graphs. More precisely, a hypergraph H
on V defines a building set BH on V given by all non-empty subsets of V which induce connected
subhypergraphs of H (a path in H is a sequence of vertices where any two consecutive ones belong
to a common hyperedge of H). Conversely, a building set B on V is the building set of various
hypergraphs on V , all containing the hypergraph with hyperedge set ε(B). See [DP11] for details.

Nested complex Given a building set B, a B-nested set N is a subset of B such that

• for any B,B′ ∈ N , either B ⊆ B′ or B′ ⊆ B or B ∩B′ = ∅,

• for any k ≥ 2 pairwise disjoint B1, . . . , Bk ∈ N , the union B1 ∪ · · · ∪Bk is not in B, and

• N contains κ(B).

These are the original conditions that appeared for instance in [Pos09]. In this paper, we prefer
to use the following convenient reformulation, similar to that of [Zel06]: N ⊆ B is a B-nested set
if and only if κ(B) ⊆ N and the union

⋃X of any subset X ⊆ N does not belong to B ∖ X .
It is known that all inclusion maximal nested sets have |V | blocks. The B-nested complex is the
simplicial complex N (B) whose faces are N ∖ κ(B) for all B-nested sets N . It is a simplicial
sphere of dimension |V | − |κ(B)|. Note that it is convenient to include κ(B) in all B-nested sets as
in [Pos09] for certain combinatorial manipulations, but to remove κ(B) from all B-nested sets as
in [Zel06] when defining the B-nested complex. If N ∖{B} = N ′∖{B′} for two maximal B-nested
sets N and N ′ and two building blocks B and B′, we say that N and N ′ are adjacent and that B
and B′ are exchangeable.

For instance, Figure 18(Middle) represents the two adjacent maximal B◦-nested sets

N◦ := {3, 4, 5, 7, 8, 14, 789, 12345, 123456} and N ′
◦ := {3, 4, 5, 7, 8, 25, 789, 12345, 123456}.

Remark 2.40. For a graph G, a set of tubes of BG is nested if and only if its tubes are pairwise com-
patible in the sense of Section 2.3.1 (either nested or non-adjacent). The nested complex N (BG)
thus coincides with the graphical nested complex N (G) introduced in Section 2.3.1 (which justi-
fies our notation there). Note that, in contrast to the graphical nested complexes, not all nested
complexes are flag (i.e. clique complexes of their graphs).

For a B-nested set N and B ∈ N , we call root of B in N the set r(B,N ) := B ∖
⋃

C C where
the union runs over C ∈ N such that C ⊊ B. The B-nested set N is maximal if and only if
all r(B,N ) are singletons for B ∈ N . In that case, we abuse notation writing r(B,N ) for the
only element of this singleton. For instance, in the maximal B◦-nested sets N◦ and N ′

◦ represented
in Figure 18 (middle), we have r(14,N◦) = 1 = r(12345,N ′

◦) and r(12345,N◦) = 2 = r(25,N ′
◦).
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Figure 18: The elementary blocks of a building set B◦ (Left), two adjacent maximal B◦-nested
sets (Middle), and the corresponding frame (Right).

Nested fan We still denote by (ev)v∈V the canonical basis of RV . We consider the subspace
H :=

{
x ∈ RV ;

∑
v∈B xv = 0 for all B ∈ κ(B)

}
and let π : RV → H denote the orthogonal pro-

jection onto H. The g-vector of a building block B of B is the projection g(B) := π
(∑

v∈B ev
)
of

the characteristic vector of B. We set g(N ) := {g(B) ; B ∈ N} for a B-nested set N . Note that
by definition, g(K) = 0 for all connected components K ∈ κ(B). The vectors g(B) with B ∈ B
support a complete simplicial fan realization of the nested complex. See Figure 19.

Theorem 2.41 ([FS05, Zel06, Pos09]). For any building set B, the set of cones

F(B) := {R≥0 g(N ) ; N nested set of B}

is a complete simplicial fan of H, called the nested fan of B, which realizes the nested complex N (B).

Remark 2.42. For a graph G, the nested fan F(BG) coincides with the graphical nested fan F(G)
introduced in Section 2.3.1 (which justifies our notation there).

Figure 19: Two nested fans. The rays are labeled by the corresponding blocks. As the fans are
3-dimensional, we intersect them with the sphere and stereographically project them from the
direction (−1,−1,−1).

Nestohedron Again, the B-nested fan is always the normal fan of a polytope, as shown in [FS05,
Zel06, Pos09]. As usual, we still denote by ∆U := conv {eu ; u ∈ U} the face of the standard
simplex ∆V corresponding to a subset U of V .

Theorem 2.43 ([FS05, Zel06, Pos09]). For any building set B, the nested fan F(B) is the normal
fan of a polytope. For instance, F(B) is the normal fan of
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Figure 20: Two nestohedra, realizing the nested fans of Figure 19. The vertices are labeled by the
corresponding maximal nested sets.

(i) the intersection of H with the hyperplanes ⟨g(B), x⟩ ≤ −3|B| for all B ∈ B [Dev09, Pil17],

(ii) the Minkowski sum
∑

B∈B ∆B of faces of the standard simplex given by all B ∈ B [Pos09].

Definition 2.44. Any polytope whose normal fan is the nested fan F(B) is called a nestohedron
of B and denoted by NestB.

For instance, Figure 20 represents the nestohedra realizing the nested fans of Figure 19 and
obtained using the construction (ii) of Theorem 2.43.

Remark 2.45. For a graph G, the nestohedra of BG are the graph associahedra of G.

Restrictions and contractions Following [Zel06], we describe a structural decomposition of links
in nested complexes. For any U ⊆ V , define

• the restriction of B to U as the building set B|U := {B ∈ B ; B ⊆ U},

• the contraction of U in B as the building set B/U := {C ⊆ V ∖ U ; C ∈ B or C ∪ U ∈ B}.

Proposition 2.46 ([Zel06, Prop. 3.2]). For U ∈ B∖κ(B), the link {C ⊆ B ∖ {U} ; C ∪ {U} ∈ N (B)}
is isomorphic to the Cartesian product N (B|U )×N (B/U ).

In particular, two building blocks B and B′ in U (resp. in V ∖ U) are exchangeable in N (B)
if and only if they are exchangeable in N (B|U ) (resp. in N (B/U )).

Slightly abusing notation when B is clear from the context, we define the connected components
of U as κ(U) := κ(B|U ). For instance, for the building set B◦ whose elementary blocks are
represented in Figure 18(Left) and U = {1, 2, 4, 5, 7, 8}, we have B◦|U = {1, 2, 4, 5, 7, 8, 14, 25} so
that κ(U) = {14, 25, 7, 8}. Note that the definition of building sets implies that

• for any U ⊆ V , the connected components κ(U) define a partition of U ,

• for any U,U ′ ⊆ V such that U ∩ U ′ = ∅ and there is no B ∈ B with B ⊆ U ⊔ U ′

and U ∩B ̸= ∅ ̸= U ′ ∩B, we have κ(U ⊔ U ′) = κ(U) ⊔ κ(U ′).
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Exchangeable building blocks and exchange frames We now provide an analogue of Proposi-
tion 2.23 characterizing the exchangeable blocks for arbitrary building sets. The situation is
however much more technical, as highlighted in Remarks 2.50 and 2.55. We start with two useful
lemmas.

Lemma 2.47. For any B-nested set N and any block B ∈ B ∖ κ(B), the set
{
C ∈ N ; B ⊊ C

}

admits a unique (inclusion) minimal element M . Moreover, if B /∈ N , then M is also the unique
(inclusion) maximal element of

{
C ∈ N ; r(C,N ) ∩B ̸= ∅

}
.

Proof. Let X :=
{
C ∈ N ; B ⊊ C

}
and Y :=

{
C ∈ N ; r(C,N ) ∩ B ̸= ∅

}
. Note first that

neither X nor Y are empty since ∅ ̸= B /∈ κ(B). Since all elements of X contain B and N
is a B-nested set, X forms a chain by inclusion, and thus admits a unique inclusion minimal
element M . Moreover, any building block in Y intersects B so that

⋃Y = B ∪ ⋃Y is in B.
Hence, Y admits a unique maximal element M ′ :=

⋃Y. By definition, B ⊆ M ′. If B /∈ N ,
then B ̸= M ′ since M ′ ∈ Y ⊆ N . Hence, M ′ ∈ X . Moreover, for any C ∈ N such that C ⊊ M ′,
we have C ∩ r(M ′,N ) = ∅ so that B ̸⊆ C and C /∈ X . We conclude that M ′ = M .

Lemma 2.48. If N and N ′ are two adjacent maximal B-nested sets with N ∖ {B} = N ∖ {B′},
then {C ∈ N ; B ⊊ C} = {C ′ ∈ N ′ ; B′ ⊊ C ′}.

Proof. Assume for instance that there is C ∈ N ∩ N ′ such that B ⊊ C but B′ ̸⊆ C. We then
claim that N ∪N ′ would be a B-nested set, contradicting the maximality of N and N ′. Consider
a subset X of N ∪N ′ whose union

⋃X is in B. If B /∈ X , then X ⊆ N ′, hence
⋃X is in X as N ′

is a B-nested set. Similarly, if B′ /∈ X , then
⋃X is in X . Assume now that both B and B′ belong

to X . Define Y := {C} ∪ X ∖ {B}. Note that Y ⊆ N ′ since B /∈ Y. Moreover,
⋃Y = C ∪⋃X

belongs to B since C and
⋃X both belong to B and intersect B. Hence,

⋃Y is in Y since N ′

is a B-nested set. Note that
⋃Y ≠ C since B′ ̸⊆ C and B′ ∈ Y. Therefore

⋃Y is in X , and
thus

⋃X =
⋃Y is in X .

For two adjacent maximal B-nested sets N and N ′ with N ∖ {B} = N ∖ {B′}, we say that

• the unique minimal element P of
{
C ∈ N ; B ⊊ C

}
=
{
C ′ ∈ N ′ ; B′ ⊊ C ′} is the parent,

• the vertices v := r(P,N ′) and v′ := r(P,N ) are the pivots, and

• the triple (B,B′, P ) is the frame

of the exchange between N and N ′. Note that the parent is well-defined by Lemmas 2.47 and 2.48.
We call an exchange frame a triple (B,B′, P ) which is the frame of an exchange between two
adjacent maximal B-nested sets. For instance, for the two adjacent maximal B◦-nested sets N◦
and N ′

◦ represented in Figure 18(Middle), we have B = 14, B′ = 25, P = 12345, v = 1 and v′ = 2.
The corresponding exchange frame is illustrated in Figure 18(Right).

We are now ready to characterize the pairs of exchangeable building blocks for arbitrary build-
ing sets. For three blocks B,C, P ∈ B, we abbreviate the conditions B ∩ C ̸= ∅ and C ⊆ P
but C ̸⊆ B into the short notation B ⊢ C ⊆ P . The following statement generalizes Proposi-
tion 2.23 (i).

Proposition 2.49. Two blocks B,B′ ∈ B are exchangeable in F(B) if and only if there exist a
block P ∈ B, and some vertices v ∈ B ∖B′ and v′ ∈ B′ ∖B such that

• B ⊊ P and B′ ⊊ P , and

• v′ ∈ C for any B ⊢ C ⊆ P while v ∈ C ′ for any B′ ⊢ C ′ ⊆ P .

Proof. Assume first that B and B′ are exchangeable. Let N and N ′ be two adjacent maximal
B-nested sets such that N ∖ {B} = N ∖ {B′}. Let P be the parent and v, v′ be the pivots of this
exchange. Note that v ∈ B (by Lemma 2.47) but v /∈ B′ (by definition, since B′ ∈ N ′ and B′ ⊊ P ).
Similarly, v′ ∈ B′ ∖ B. Consider now a building block C such that B ⊢ C ⊆ P . By definition,
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B ⊊ B ∪C ⊆ P and B ∪C ∈ B. If B ∪C = P , then v′ = r(P,N ) belongs to B ∪C and thus to C.
If B∪C ̸= P , then P is the inclusion minimal element of {D ∈ N ; B ∪ C ⊊ D}. Since B∪C /∈ N
by minimality of P in {D ∈ N ; B ⊊ D}, we obtain by Lemma 2.47 that v′ = r(P,N ) belongs
to B ∪ C and thus to C. Similarly, v ∈ C ′ for any B′ ⊢ C ′ ⊆ P .

Conversely, consider B,B′ ∈ B so that there is P ∈ B, v ∈ B ∖ B′ and v′ ∈ B′ ∖B satisfying
the conditions of Proposition 2.49. Let U := P ∖ {v, v′}, and M denote an arbitrary maximal
B|U -nested set. Let N := M ∪ {B} and N ′ := M ∪ {B′}. Consider a subset X of N whose
union

⋃X is in B. If B /∈ X , then X ⊆ M, hence
⋃X is in X since M is a B|U -nested set.

If B ∈ X , since B∩⋃X ̸= ∅ and
⋃X ⊆ P but v′ /∈ ⋃X , the conditions of Proposition 2.49 ensure

that
⋃X ⊆ B, so that

⋃X = B is in X . Hence, N is a B|P -nested set. It is moreover maximal
since |N | = |M ∪ {B,P}| = |M|+ 2 = |U |+ 2 = |P |. By symmetry, N ′ is a maximal B|P -nested
set. Since N ∖ {B} = N ′ ∖ {B′}, we obtain that B and B′ are exchangeable in N (B|P ), hence
in N (B) by Proposition 2.46. The parent of this exchange is P and the pivots are v and v′.

Remark 2.50. For the graphical nested fans, Proposition 2.23 (i) ensures that if B and B′ are
exchangeable, then B ∪ B′ is always a block and is the only possible parent (note however that
B and B′ are not necessarily exchangeable when B ∪ B′ is a block). In contrast to the graphical
case, for a general building set,

• the same exchangeable blocks may admit several possible parents and pivots,

• the set of parents does not necessarily admit a unique (inclusion) minimal element,

• B ∪ B′ is not always a block when B and B′ are exchangeable. In other words, B and B′

can be exchangeable even if {B,B′} ∪ κ(B) is a B-nested set.

For instance, in the building set B◦ of Figure 18(Left), the blocks B = 14 and B′ = 25 are simulta-
neously compatible and exchangeable. They are exchangeable with parent 12345 and pivots (1, 2)
or with parent 12456 and pivots (4, 5).

Remark 2.51. Observe also that it follows from the definitions that

• it suffices to check the condition of Proposition 2.49 for C and C ′ elementary blocks of B,

• if B and B′ are exchangeable, then B ̸⊆ B′ and B′ ̸⊆ B,

• if (B,B′, P ) is an exchange frame and B ∪B′ ⊆ P ′ ⊆ P , then (B,B′, P ′) is also an exchange
frame (using the same pivots),

• if B and B′ are exchangeable and B ∪ B′ is a block (in particular if B ∩ B′ ̸= ∅),
then (B,B′, B ∪B′) is an exchange frame.

We now apply Proposition 2.49 to identify some exchange frames that will play an important
role in the description of the deformation cone of the B-nested fan.

Proposition 2.52. If B,B′, P ∈ B are such that B and B′ are two distinct blocks of B strictly
contained in P and inclusion maximal inside P , then (B,B′, P ) is an exchange frame.

Proof. Consider C ∈ B such that B ⊢ C ⊆ P . Since B ∩C ̸= ∅, we have B ∪C ∈ B. Since C ⊆ P
and C ̸⊆ B, we have B ⊊ B ∪ C ⊆ P . By maximality of B in P , we obtain that B ∪ C = P .
Hence, B ⊢ C ⊆ P implies B′∖B ⊆ C and similarly B′ ⊢ C ′ ⊆ P implies B∖B′ ⊆ C ′. Therefore,
choosing any v ∈ B ∖ B′ and v′ ∈ B′ ∖ B, we obtain that B,B′, P, v, v′ satisfy the conditions of
Proposition 2.49, and thus (B,B′, P ) is an exchange frame.

We call maximal exchange frames the exchange frames defined by Proposition 2.52. For P ∈ B,
we will denote by µ(P ) the maximal blocks of B strictly contained in P .
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g-vector dependencies We now describe the exchange relations in the B-nested fan F(B). We
first need to observe that certain building blocks are forced to belong to any two adjacent maximal
nested sets with a given frame, generalizing Proposition 2.23 (ii).

Proposition 2.53. For two adjacent maximal B-nested sets N and N ′ with N ∖ {B} = N ′ ∖ {B′}
and parent P , all connected components of κ(B ∩B′) and of κ

(
P ∖ (B ∪B′)) belong to N ∩N ′.

Proof. Even if we discuss separately the elements of κ(B ∩B′) from that of κ(P ∖ (B ∪B′)), the
reader will see a lot of similarities in the arguments below.

We first consider K ∈ κ(B ∩ B′) and prove that N ∪ {K} is a B-nested set, which proves
that K ∈ N by maximality of N . Indeed, let us consider a subset X of N ∪{K} whose union

⋃X
is in B, and prove that

⋃X is in X . We assume that K ∈ X , since otherwise X ⊆ N so
that

⋃X is in X as N is a B-nested set. Assume now that B ∈ X and define Y := X ∖ {K}.
Since K ⊆ B ∈ X , we have

⋃Y =
⋃X in B, thus in Y ⊂ X since Y ⊆ N and N is a B-nested

set. It remains to consider the case when X ⊆ (N ∩ N ′) ∪ {K}. Assume now that
⋃X ̸⊆ B

and define Y := {B} ∪ X ∖ {K}. Since K ⊆ B, we have
⋃Y = B ∪ ⋃X which belongs to B

since B and
⋃X both belong to B and intersect K. Hence,

⋃Y is in Y since Y ⊆ N and N is
a B-nested set. Note that

⋃Y ≠ B by our assumption that
⋃X ̸⊆ B. Therefore,

⋃Y is in X ,
and thus

⋃X =
⋃Y is in X . By symmetry, we obtain that

⋃X is in X if
⋃X ̸⊆ B′. Assume

finally that
⋃X ⊆ B ∩B′. Then all the elements of X are in B ∩B′. Since K ∈ X is a connected

component of B ∩B′ and
⋃X is in B, this implies that

⋃X = K ∈ X .
We now consider K ∈ κ(P ∖ (B∪B′)) and prove that N ∪{K} is a B-nested set, which proves

that K ∈ N by maximality of N . Indeed, let us consider a subset X of N ∪{K} whose union
⋃X

is in B, and prove that
⋃X is in X . We assume that K ∈ X , since otherwise X ⊆ N so that

⋃X
is in X as N is a B-nested set. Assume now that

⋃X ̸⊆ P and define Y := {P} ∪ X ∖ {K}.
Since K ⊆ P , we have

⋃Y = P ∪⋃X which belongs to B since P and
⋃X both belong to B and

intersect K. Hence,
⋃Y is in Y since Y ⊆ N and N is a B-nested set. Note that

⋃Y ̸= P by our
assumption that

⋃X ̸⊆ P . Therefore,
⋃Y is in X , and thus

⋃X =
⋃Y is in X . Assume now

that
⋃X ⊆ P ∖ (B ∪B′). Then all elements of X are in P ∖ (B ∩ B′). Since K is a connected

component of P ∖ (B ∩ B′) and
⋃X is in B, this implies that

⋃X = K ∈ X . Assume finally
that

⋃X is contained in P and intersects B or B′. If B′ ∩ ⋃X ̸= ∅, then B′ ⊢ ⋃X ⊆ P , thus
v := r(P,N ) ∈ ⋃X by Proposition 2.49. Hence, in both cases B ∩⋃X ≠ ∅, thus B ⊢ ⋃X ⊆ P ,
and thus v′ := r(P,N ) ∈ ⋃X by Proposition 2.49. Therefore, there is C ∈ X ∖ {K} ⊆ N
containing v′. Since v′ = r(P,N ), we obtain that P ⊆ C, and hence P = C because C ⊆ ⋃X ⊆ P .
Thus K ⊆ C and

⋃X =
⋃Y where Y := X ∖ {K}. Hence,

⋃Y is in Y since Y ⊆ N and N is a
B-nested set. We conclude that

⋃X =
⋃Y is in X .

We obtained that all blocks of κ(B ∩ B′) and of κ
(
P ∖ (B ∪ B′)) belong to N , and thus also

to N ′ by symmetry.

We are now ready to describe the exchange relations in the B-nested fan. The main message
here is that these relations only depend on the frames of the exchanges, generalizing Proposi-
tion 2.23 (iii).

Proposition 2.54. For two adjacent maximal B-nested sets N and N ′ with N ∖ {B} = N ′ ∖ {B′}
and parent P , the unique (up to rescaling) linear dependence between the g-vectors of N ∪N ′ is

g(B) + g(B′) +
∑

K∈κ(P∖(B∪B′))

g(K) = g(P ) +
∑

K∈κ(B∩B′)

g(K). (9)

In particular, the g-vector dependence only depends on the exchange frame (B,B′, P ).

Proof. Equation (9) is a valid linear dependence since it holds at the level of characteristic vec-
tors, and g(C) := π

(∑
v∈C ev

)
where π is the orthogonal projection from RV to H. Since all

building blocks involved in Equation (9) belong to N ∪N ′ by Proposition 2.53, we conclude that
Equation (9) is the unique (up to rescaling) linear dependence between the g-vectors of N∪N ′.
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Remark 2.55. For the graphical nested fans studied in Section 2.3.1, the parent of the exchange
of B and B′ is always B ∪B′ and we recover the g-vector relation of Proposition 2.23 (iii). In
contrast to the graphical case, for an arbitrary building set,

• the sum on the left of Equation (9) is empty only when P = B ∪B′,

• Equation (9) depends on the exchange frame (B,B′, P ), not only on the exchangeable build-
ing blocks B and B′.

For instance, the g-vector relation of the exchange between the two adjacent maximal B◦-nested
sets N◦ and N ′

◦ represented in Figure 18(Middle) is g14 + g25 + g3 = g12345. Another g-vector
relation for the same exchangeable blocks B = 14 and B′ = 25 is g14 + g25 + g6 = g12456.

Remark 2.56. The g-vector dependencies were already studied in [Zel06]. Namely, our Propo-
sition 2.53 and Equation (9) are essentially Proposition 4.5 and Equation (6.6) of [Zel06]. Our
versions are however more precise since we obtained in Proposition 2.49 a complete characterization
of the exchangeable building blocks of B, which was surprisingly missing in the literature.

Note that while the g-vector dependence only depends on the exchange frame, different frames
may lead to the same g-vector dependence. In the next two statements, we describe which of
the maximal exchange frames lead to the same g-vector dependence. Remember that we denote
by µ(P ) the maximal blocks of B strictly contained in a block P ∈ B.

Proposition 2.57. For an elementary block P ∈ ε(B), all exchange frames (B,B′, P ) for B ̸= B′

in µ(P ) lead to the same g-vector dependence
∑

B∈µ(P ) g(B) = g(P ).

Proof. Observe first that (B,B′, P ) is indeed an exchange frame by Proposition 2.52. We thus
apply Proposition 2.54 to describe the corresponding g-vector dependence. Observe first that
the sum on the right of Equation (9) is empty because B ∩ B′ = ∅ by Remark 2.37 since P is
elementary and B,B′ ∈ µ(P ). The result thus follows from the observation that κ(P ∖(B∪B′)) =
µ(P )∖ {B,B′} which we prove next.

Let us consider K ∈ κ(P ∖ (B ∪B′)) and prove that K ∈ µ(P ) ∖ {B,B′}. Consider L ∈ B
such that K ⊆ L ⊊ P . If L ∩B ̸= ∅, then L ∪B ∈ B and B ⊊ L ∪B ⊆ P , so that L ∪B = P by
maximality of B, contradicting the elementarity of P . Hence, L ⊆ P ∖ (B ∪ B′), so that K = L
by maximality of K in P ∖ (B ∪B′). We conclude that K ∈ µ(P )∖ {B,B′}.

Conversely, let us consider C ∈ µ(P )∖ {B,B′} and prove that C ∈ κ(P ∖ (B ∪B′)). Since P
is elementary and B,B′, C ∈ µ(P ), the block C is disjoint from B and B′ by Remark 2.37. Hence,
C ⊆ P ∖ (B ∪B′) and thus C ∈ κ(P ∖ (B ∪B′)) by maximality of C.

Proposition 2.58. If (B1, B
′
1, P ) and (B2, B

′
2, P ) are two distinct maximal exchange frames with

the same g-vector dependence, then P is elementary.

Proof. Since the exchange relations given by Equation (9) for the exchange frames (B1, B
′
1, P )

and (B2, B
′
2, P ) coincide, B2 and B′

2 belong to {B1, B
′
1} ∪ κ(P ∖ (B1 ∪ B′

1)). Since (B1, B
′
1, P )

and (B2, B
′
2, P ) are distinct exchange frames, we can assume for instance that B2 does not belong

to {B1, B
′
1}. Hence, B2 belongs to κ(P ∖ (B1 ∪ B′

1)), thus B1 ∩ B2 = ∅, and therefore P is
elementary by Remark 2.37 since it contains two disjoint maximal blocks.

Deformation cone of nested fans As a consequence of Proposition 2.54, we obtain the following
redundant description of the deformation cone of the nested fan F(B).

Corollary 2.59. For any building set B, the deformation cone of the nested fan F(B) is given by

DC(F(B)) =
{
h ∈ RBG ;

hB = 0 for B ∈ κ(B) and for any exchange frame (B,B′, P )
hB + hB′ +

∑
K∈κ(P∖(B∪B′)) hK ≥ hP +

∑
K∈κ(B∩B′) hK

}
.
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We denote by fB for B ∈ B the canonical basis of RB and by

n(B,B′, P ) :=
(
fB + fB′ +

∑

K∈κ(P∖(B∪B′))

fK

)
−
(
fP +

∑

K∈κ(B∩B′)

fK

)

the inner normal vector of the inequality of the deformation cone DC(F(B)) corresponding to an
exchange frame (B,B′, P ) of B. Thus h ∈ DC(F(B)) if and only if ⟨n(B,B′, P ), h⟩ ≥ 0 for all
exchange frames (B,B′, P ) of B.
Example 2.60. Consider the nested fans illustrated in Figure 19. The deformation cone of the left
fan lives in R8, has a lineality space of dimension 3 and 5 facet-defining inequalities (given below).
In particular, it is simplicial. Note that, as in Figure 16, we express the g-vectors in the basis
given by the maximal tubing containing the first three tubes below.

blocks

g-vectors

[
1
0
0

] [
0
1
0

] [
0
0
1

] [
1
−1
0

] [
−1
1
0

] [
−1
0
1

] [
0
−1
1

] [
0
0
−1

]

facet 1 −1 0 0 1 0 0 0
defining 0 0 0 0 1 −1 1 0

inequalities 1 0 0 −1 0 0 1 1
0 1 −1 0 −1 1 0 0
−1 0 1 1 0 0 −1 0

The deformation cone of the right fan lives in R8, has a lineality space of dimension 3 and 7
facet-defining inequalities (given below). In particular, it is not simplicial.

blocks

g-vectors

[
1
0
0

] [
0
1
0

] [
0
0
1

] [
1
−1
0

] [
−1
1
0

] [
−1
0
0

] [
0
−1
1

] [
0
0
−1

]

facet 1 −1 0 0 1 0 0 0
defining 0 1 −1 0 0 0 1 0

inequalities 1 0 0 −1 0 0 1 1
0 0 0 0 1 −1 1 1
−1 0 1 1 0 0 −1 0
0 0 1 0 −1 1 −1 0
0 0 0 1 0 1 −1 −1

Example 2.61. We can exploit Corollary 2.59 to show that certain height functions belong to
the (interior of the) deformation cone of F(B) and recover some classical constructions of the
nestohedron, generalizing Example 2.27.

(i) Consider the height function h ∈ RB given by hB := −3|B|. Then for any exchange
frame (B,B′, P ) of B, we have

⟨n(B,B′), h⟩ = −3|B| − 3|B
′| −

∑

K∈κ(P∖(B∪B′))

3|K| + 3|P | +
∑

K∈κ(B∩B′)

3|K|

≥ −2 · 3|B∪B′|−1 − 3|P∖(B∪B′))| + 3|P | > 0.
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Therefore, the height function h belongs to the interior of the deformation cone DC(F(B)).
The corresponding polytope Ph :=

{
x ∈ RV ; ⟨g(B), x⟩ ≤ hB for B ∈ B

}
was constructed

in [Pil17], generalizing the graph associahedra of [Dev09].

(ii) Consider the height function h ∈ RB given by hB := −|
{
C ∈ B ; C ⊆ B

}
|. Then for any

exchange frame (B,B′, P ) of B, we have

⟨n(B,B′, P ), h⟩ = | {C ∈ B ; C ̸⊆ B, C ̸⊆ B′ and C ̸⊆ P ∖ (B ∪B′) but C ⊆ P} | > 0

since P fulfills the conditions on C. Thus, the height function h belongs to the interior of the
deformation cone DC(F(B)). The polytope Ph :=

{
x ∈ RV ; ⟨g(B), x⟩ ≤ hB for B ∈ B

}

is the nestohedron constructed by A. Postnikov’s in [Pos09].

Note that many inequalities of Corollary 2.59 are redundant. In the remaining of this section,
we describe the facet-defining inequalities of DC(F(B)). We say that an exchange frame (B,B′, P ) is

• extremal if its corresponding inequality in Corollary 2.59 defines a facet of DC(F(B)),

• maximal if B and B′ are both maximal building blocks in P as in Proposition 2.52.

We can now state our main result on nested complexes, generalizing Theorem 2.28.

Theorem 2.62. An exchange frame is extremal if and only if it is maximal.

Proof. We treat separately the two implications:

Extremal ⇒ maximal. Consider an exchange frame (B,B′, P ) of B, and fix pivot vertices v, v′

satisfying the conditions of Proposition 2.49. We assume that this frame is not maximal, and
prove that it is not extremal by showing that the normal vector n(B,B′, P ) of the corresponding
inequality of the deformation cone DC(F(B)) is a positive linear combination of normal vectors
of some other exchange frames. By symmetry, we can assume that there is M ∈ B such that B ⊊
M ⊊ P and we can assume that M is maximal for this property. We decompose the proof into
two cases, depending on whether B′ ⊆ M or B′ ̸⊆ M .

Case 1: B′ ⊆ M . Observe first that:

• (B,B′,M) is an exchange frame, since (B,B′, P ) is an exchange frame and B ∪B′ ⊆ M ⊆ P ,

• (M,W,P ) is an exchange frame for any connected component W of P ∖ (B ∪B′) containing
a vertex w ∈ P ∖M . Indeed, we just check the conditions of Proposition 2.49 for v ∈ M∖W
and w ∈ W ∖M :

– for any M ⊢ C ⊆ P , we have w ∈ P ∖M ⊆ C by maximality of M .

– for any W ⊢ C ′ ⊆ P , we have C ′ ⊆ P and C ′ ̸⊆ W , hence C ′ ∩ (B ∪ B′) ̸= ∅ since W
is a connected component of P ∖ (B ∪B′). Assume for instance that C ′ ∩B ̸= ∅ (the
proof for C ′ ∩ B′ ̸= ∅ is symmetric). Since C ′ ∩W ̸= ∅, we obtain that B ⊢ C ′ ⊆ P
and thus v′ ∈ C ′ by Proposition 2.49. We therefore obtain that B′ ⊢ C ′ ⊆ P and
thus v ∈ C ′ by Proposition 2.49 again.

We claim that these two exchange frames enable us to write

n(B,B′, P ) = n(B,B′,M) + n(M,W,P ).

Proving this identity amounts to check that

κ(P ∖ (B ∪B′)) ⊔ κ(M ∩W ) = κ(M ∖ (B ∪B′)) ⊔ κ(P ∖ (M ∪W )) ⊔ {W}. (10)

For this, we distinguish two subcases, depending on whether or not M and W intersect.
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P = M ∪B′
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B

B′W

⋆v

⋆v′
⋆w

Case 1.1 Case 1.2 Case 2

Figure 21: Illustrations for the case analysis of the proof of Theorem 2.62.

Subcase 1.1: M ∩W = ∅. See Figure 21 (left). First, we claim that either C ∩M = ∅ or C ⊆ M
for any C ∈ B with C ⊆ P ∖ (B ∪B′). Indeed, if C ∩M ̸= ∅, then C ∩W = ∅ since M ∩W = ∅
and W is a connected component of P ∖ (B ∪ B′). Hence C ∪M ∈ B and B ⊊ C ∪M ⊊ P , and
thus C ⊆ M by maximality of M . We therefore obtain that

κ(P ∖ (B ∪B′)) = κ(M ∖ (B ∪B′)) ⊔ κ(P ∖ (M ∪W )) ⊔ {W}.

This shows Equation (10) since M ∩W = ∅.

Subcase 1.2: M ∩W ̸= ∅. See Figure 21 (middle). As M ∪ W ∈ B and B ⊊ B ∪ W ⊆ P
and W ̸⊆ M , we have P = M ∪W by maximality of M . Since W ∈ κ(P ∖ (B ∪B′)), we have

κ(P ∖ (B ∪B′)) = κ(P ∖ (B ∪B′ ∪W )) ⊔ {W} = κ(M ∖ (B ∪B′ ∪W )) ⊔ {W}

Moreover, by maximality of W , we obtain that there is no block of B contained in M ∖ (B ∪B′)
and meeting both M ∩W and M ∖ (B ∪B′ ∪W ). Hence

κ(M ∩W ) ⊔ κ(M ∖ (B ∪B′ ∪W )) = κ(M ∖ (B ∪B′)).

Combining these two identities proves Equation (10) since P = M ∪W .

Case 2: B′ ̸⊆ M . See Figure 21 (right). Observe that:

• (M,B′, P ) is an exchange frame. Indeed, we just check the conditions of Proposition 2.49
for v ∈ M ∖B′ and an arbitrary w ∈ B′ ∖M :

– for any M ⊢ C ⊆ P , we have w ∈ P ∖M ⊆ C by maximality of M .

– for any B′ ⊢ C ′ ⊆ P , we have v ∈ C ′ by Proposition 2.49.

• (B,W,M) is an exchange frame for the connected component W of M ∩ B′ containing v′.
Indeed, we just check the conditions of Proposition 2.49 for v ∈ B ∖W and v′ ∈ W ∖B:

– for any B ⊢ C ⊆ M , we have B ⊢ C ⊆ P and thus v′ ∈ C by Proposition 2.49.

– for any W ⊢ C ′ ⊆ M , we have B′ ⊢ C ′ ⊆ P and thus v ∈ C ′ by Proposition 2.49.

We claim that these two exchange frames enable to write

n(B,B′, P ) = n(M,B′, P ) + n(B,W,M).

Proving this identity amounts to check that

κ(P∖(B∪B′))⊔κ(M∩B′)⊔κ(B∩W ) = κ(B∩B′)⊔κ(P∖(M∪B′))⊔κ(M∖(B∪W ))⊔{W}. (11)

To prove this, we observe that:
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• Since W contains v′, Proposition 2.49 ensures that there is no block of B contained in M ∩B′

and meeting both B and B′ ∖ (B ∪W ). Since W ∈ κ(M ∩B′), we thus obtain

κ(M ∩B′) = κ((M ∩B′)∖ (B ∪W )) ⊔ κ(B ∩B′ ∖W ) ⊔ {W}.

• As W ∈ κ(M ∩ B′), there is no block of B contained in B ∩ B′ and meeting both B ∩ W
and B ∩B′ ∖W , hence

κ(B ∩W ) ⊔ κ(B ∩B′ ∖W ) = κ(B ∩B′).

• There is no block of B contained in M ∖ (B ∪W ) and meeting both M ∖ (B ∪B′) and (M ∩
B′) ∖ (B ∪ W ) (such a block C would satisfy B′ ⊢ C ⊆ P and v /∈ C, contradicting
Proposition 2.49). Hence

κ(M ∖ (B ∪B′)) ⊔ κ((M ∩B′)∖ (B ∪W )) = κ(M ∖ (B ∪W )).

Combining these three identities proves (11) since P = M ∪B′ by maximality of M .

Maximal ⇒ extremal. Let (B,B′, P ) be a maximal exchange frame. To prove that (B,B′, P ) is
extremal, we will construct a vector w ∈ RB such that ⟨n(B,B′, P ), w⟩ < 0, but at the same time〈
n(B̃, B̃′, P̃ ), w

〉
> 0 for any maximal exchange frame (B̃, B̃′, P̃ ) with n(B,B′, P ) ̸= n(B̃, B̃′, P̃ ).

This will show that the inequality induced by (B,B′, P ) is not redundant. Remember from
Propositions 2.57 and 2.58 that, as (B,B′, P ) and (B̃, B̃′, P̃ ) are maximal exchange frames,
n(B,B′, P ) ̸= n(B̃, B̃′, P̃ ) if and only if P ̸= P̃ , or P = P̃ is not an elementary block.

Define α(B,B′, P ) := {C ∈ B ; C ̸⊆ B, C ̸⊆ B′ and C ̸⊆ P ∖ (B ∪B′) but C ⊆ P}. Define
three vectors x,y, z ∈ RB by

xC := −|
{
D ∈ B ∖ α(B,B′, P ) ; D ⊆ C

}
|,

yC := −|
{
D ∈ α(B,B′, P ) ; D ⊆ C

}
|,

zC :=

{
−1 if B ⊆ C or B′ ⊆ C,

0 otherwise,

for each bock C ∈ B.
We will prove below that their scalar products with n(B̃, B̃′, P̃ ) for any maximal exchange

frame (B̃, B̃′, P̃ ) satisfy the following inequalities

〈
n(B̃, B̃′, P̃ ), x

〉 〈
n(B̃, B̃′, P̃ ), y

〉 〈
n(B̃, B̃′, P̃ ), z

〉

if n(B,B′, P ) = n(B̃, B̃′, P̃ ) = 0 = |α(B,B′, P )| = −1

if α(B̃, B̃′, P̃ ) ̸⊆ α(B,B′, P ) ≥ 1 ≥ 0 ≥ −1

otherwise ≥ 0 ≥ 1 ≥ 0

It immediately follows from this table that the vectorw := x+δy+εz fulfills the desired properties
for any δ, ε such that 0 < δ · |α(B,B′, P )| < ε < 1.

The equalities of the table are immediate. To prove the inequalities, observe that for any
maximal exchange frame (B̃, B̃′, P̃ ),

•
〈
n(B̃, B̃′, P̃ ), x

〉
≥ |α(B̃, B̃′, P̃ )∖ α(B,B′, P )|,

•
〈
n(B̃, B̃′, P̃ ), y

〉
≥ |α(B̃, B̃′, P̃ ) ∩ α(B,B′, P )|,

•
〈
n(B̃, B̃′, P̃ ), z

〉
≥ −1. Indeed, observe that zP̃ = −1 as soon as zK̃ = −1 for some

K̃ ∈ {B̃, B̃′} ⊔ κ(P̃ ∖ (B̃ ∪ B̃′)). This already implies that
〈
n(B̃, B̃′, P̃ ), z

〉
≥ −1 except
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if zK̃ = zK̃′ = zK̃′′ = −1 for three distinct K̃, K̃ ′, K̃ ′′ ∈ {B̃, B̃′} ⊔ κ(P̃ ∖ (B̃ ∪ B̃′)). But

since B̃ and B̃′ are the only intersecting blocks among {B̃, B̃′} ⊔ κ(P̃ ∖ (B̃ ∪ B̃′)), the
only option (up to permutation) is that K̃ = B̃ and K̃ ′ = B̃′ both contain B (resp. B′), K ′′

containsB′ (resp.B), while none of the other blocks of {B̃, B̃′}⊔κ(P̃∖(B̃∪B̃′)) meetsB ∪B′.

This implies that zP̃ = −1 = zL for some L ∈ κ(B̃ ∩ B̃′), and thus
〈
n(B̃, B̃′, P̃ ), z

〉
≥ −1.

•
〈
n(B̃, B̃′, P̃ ), z

〉
≥ 0 when n(B,B′, P ) ̸= n(B̃, B̃′, P̃ ) but α(B̃, B̃′, P̃ ) ⊆ α(B,B′, P ).

Indeed, α(B̃, B̃′, P̃ ) ⊆ α(B,B′, P ) implies that P̃ ⊆ P . Let K̃ ∈ {B̃, B̃′} ⊔ κ(P̃ ∖ (B̃ ∪ B̃′)).
If B ⊆ K̃, then B ⊆ K̃ ⊊ P̃ ⊆ P which implies that B = K̃ and P = P̃ by maximality
of B in P . Similarly, B′ ⊆ K̃ implies B′ = K̃ and P = P̃ . Hence, if zK̃ = −1, then

by definition B ⊆ K̃ or B′ ⊆ K̃, which implies that K̃ ∈ {B,B′}. Hence, if K̃ ̸= K̃ ′

are two distinct blocks of {B̃, B̃′} ⊔ κ(P̃ ∖ (B̃ ∪ B̃′)) such that zK̃ = −1 = zK̃′ , then

(B,B′, P ) = (K̃, K̃ ′, P̃ ) and moreover either {B,B′} = {K̃, K̃ ′}, or K̃ ∩ K̃ ′ = ∅, so that P
is elementary by Remark 2.37 since it has two disjoint maximal blocks. In both cases,
we obtain n(B,B′, P ) = n(B̃, B̃′, P̃ ) by Proposition 2.58, contradicting our assumption.
Therefore, at most one of zK̃ for K̃ ∈ {B̃, B̃′} ⊔ κ(P̃ ∖ (B̃ ∪ B̃′)) equals to −1, and if exactly

one does, then zP̃ = −1. We conclude that
〈
n(B̃, B̃′, P̃ ), z

〉
≥ 0.

We derive from Theorem 2.62 the facet description of the deformation cone DC(F(B)). Re-
member that we denote by µ(P ) the maximal blocks of B strictly contained in a block P ∈ B.

Corollary 2.63. The inequalities

•
∑

B∈µ(P ) hB ≥ hP for any elementary block P of B,

• hB + hB′ +
∑

K∈κ(P∖(B∪B′)) hK ≥ hP +
∑

K∈κ(B∩B′) hK for any block P of B neither

singleton nor elementary, and any two blocks B ̸= B′ in µ(P ),

provide an irredundant facet description of the deformation cone DC(F(B)).

Corollary 2.64. The number of facets of the deformation cone DC(F(B)) is

|ε(B)|+
∑

P

(
µ(P )

2

)

where the sum runs over all blocks P of B which are neither singletons nor elementary blocks. The
dimension of DC(F(B)) is |B| − |κ(B)|, and its lineality |V | − |κ(B)|.

Example 2.65. As for Examples 2.14 and 2.15, we can portray the deformation cone of a nesto-
hedron. For the connected building set on 4 elements B = {1, 2, 3, 4, 12, 123, 234, 1234}, the corre-
sponding 3-dimensional nestohedron NestB is depicted in Figure 22 as the Minkowski sum of faces
of the standard simplex (faces corresponding to vertices of the standard simplex are omitted as
they only account for translations in the Minkowski sum).

The deformation cone DC(F(B)) has dimension |B| − |κ(B)| = 7. Nonetheless, it has |V | −
|κ(B)| = 3 dimensions of lineality. Thus, after intersecting it with a hyperplane, we can picture
it in dimension 3 in Figure 23. By the above Corollary 2.64, it has 6 facets. Each vertex of the
drawn bi-pyramid correspond to a ray of the deformation cone DC(F(B)), i.e. to a Minkowski
indecomposable polytope. Among them are the four simplices involved in the defining Minkowski
sum NestB = ∆12 + ∆134 + ∆234 + ∆1234. However, note that these polytopes do not have all
the same dimension (even though they all live in R3 as deformations of NestB), and the last ray
(rightmost polytope in Figure 23) do not correspond to a simplex. On the other side, the interior
of DC(F(B)) correspond to polytopes normally equivalent to NestB.
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Figure 22: (Top) A building set B on 4 elements with 4 (no-singleton) blocks, (Bottom) the
corresponding NestB described as the Minkowski sum of faces of the standard simplex ∆1234.
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•

∆12

∆134

∆234

∆1234

∆134 +∆234

∆134 +∆234 +∆1234

NestB

Figure 23: A 3-dimensional affine section of the deformation cone DC(F(B)) for the building set
of Example 2.65 and Figure 22. The deformations of NestB corresponding to some of the points
of DC(F(B)) are depicted. Especially, all points in the interior correspond to polytopes normally
equivalent to NestB, while the rightmost polytope is not a simplex. See also Figure 12 for the case
of the complete graph on 3 vertices.
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Figure 24: Four interval nested fans. The top left one is the sylvester fan, the top right one is
the Pitman-Stanley fan, the bottom left one is the freehedron fan, and only the top right one is a
fertilotope fan. The rays are labeled by the corresponding blocks. As the fans are 3-dimensional, we
intersect them with the sphere and stereographically project them from the direction (−1,−1,−1).

2.3.3 Simplicial deformation cones and interval building sets

To conclude this section, we characterize the building sets B whose nested fan F(B) has a simplicial
deformation cone and study in more details a specific family of such building sets.

Proposition 2.66. The deformation cone DC(F(B)) is simplicial if and only if all blocks of B with
at least three distinct maximal strict sub-blocks are elementary.

Proof. Recall that the nested fan F(B) has dimension |V |−|κ(B)| and has |B|−|κ(B)| rays. Hence,
the deformation cone DC(F(B)) is simplicial if and only if it has |B| − |V | facets. The statement
thus immediately follows from Corollary 2.64.

We conclude this section by focussing on the following special family of building sets which
fulfills Proposition 2.66 and is illustrated in Figure 24.

Definition 2.67. An interval building set is a building set on [n] := {1, . . . , n} whose blocks are some
intervals. We call interval nested fan and interval nestohedron the nested fan and nestohedron of
an interval building set.

Example 2.68. Particularly relevant examples of interval nestohedra include:

• the classical associahedron of [SS93, Lod04, PSZ23] for the building set with all intervals
of [n],
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• the Pitman-Stanley polytope of [SP02] for the building set with all singletons {i} and all
initial intervals [i] for i ∈ [n],

• the freehedron of [San09] for the building set with all singletons {i}, all initial intervals [i] for i ∈ [n],
and all final intervals [n]∖ [i] for i ∈ [n− 1],

• the fertilotopes of [Def21] for the binary building sets defined as the interval building sets
where any two intervals are either nested or disjoint.

Note that, by definition, any interval nested fan coarsens the associahedron nested fan, so all the
above examples are deformations of the associahedron.

Proposition 2.69. For any interval building set B, the deformation cone DC(F(B)) is simplicial.

Proof. We give two proofs of this fact.
(Proof with the tools of this section). Assume that B has a non-elementary block [i, j], with at

least three distinct maximal strict sub-blocks [a, b], [c, d] and [e, f ]. Since [a, b], [c, d] and [e, f ] are
pairwise non nested, we can assume up to permutation that a < c < e and b < d < f . Since [i, j]
is not elementary, [a, b] ∩ [c, d] ̸= ∅ and thus [a, b] ∪ [c, d] = [a, d] is a block of B. This contradicts
the maximality of [a, b] since [a, b] ⊊ [a, d] ⊊ [i, j] as b < d < f ≤ j.

(Proof with using deformations). As interval nestohedra are deformation of the associahedron,
by Proposition 2.4 their deformation cone is a face of the deformation cone of the associahedron
which is simplicial (see Proposition 2.35).

Remark 2.70. Note that there are building sets B for which the deformation cone DC(F(B)) is
simplicial, but which are not (isomorphic to) interval building sets. See e.g. Figure 19(Left).

We now translate the facet description of Corollary 2.63 to the specific case of interval build-
ing sets. We need a few additional notations. Consider an interval building set B on [n].
For 1 ≤ i < j ≤ n, define

ℓ(i, j) := min {k ∈ [i+ 1, j] ; [k, j] ∈ B} and r(i, j) := max {k ∈ [i, j − 1] ; [i, k] ∈ B} .

Note that ℓ(i, j) and r(i, j) are well-defined since B contain all singletons. Observe that [i, r(i, j)]
and [ℓ(i, j), j] are maximal strict subblocs of [i, j]. Therefore,

• if [i, j] ∈ B is elementary, then we have r(i, j) < ℓ(i, j) and the maximal strict sub-blocks
of [i, j] are the intervals [sk−1(i, j), sk(i, j) − 1] for k ∈ [p] where the sequence
s0(i, j) < s1(i, j) < · · · < sp(i, j) is defined by the boundary conditions s0(i, j) := i and
s1(i, j) = r(i, j) + 1 and sp(i, j) := j + 1, and the induction sk(i, j) := r(sk−1(i, j), j+1)+1.

• if [i, j] ∈ B is not elementary, we have ℓ(i, j) ≤ r(i, j) so that

[i, r(i, j)] ∪ [ℓ(i, j), j] = [i, j] and [i, r(i, j)] ∩ [ℓ(i, j), j] = [ℓ(i, j), r(i, j)].

Thus [i, r(i, j)] and [ℓ(i, j), j] are the only maximal strict sub-blocks of [i, j]. Moreover, the
connected components of [i, r(i, j)] ∩ [ℓ(i, j), j] = [ℓ(i, j), r(i, j)] are the intervals
[tk−1(i, j), tk(i, j)− 1] for k ∈ [q] where the sequence t0(i, j) < t1(i, j) < · · · < tq(i, j) is de-
fined by the boundary conditions t0(i, j) := ℓ(i, j) and tq(i, j) := r(i, j) + 1, and the induc-
tion tk(i, j) := r(tk−1(i, j), r(i, j) + 1) + 1.

Using these notations, the following statement is just a translation of Corollary 2.63.

Proposition 2.71. Consider an interval building set B on [n] and let B⋆ := B ∖ {{i} ; i ∈ [n]}
denote the blocks which are not singletons. Then the inequalities

•
∑

k∈[p] h[sk−1(i,j),sk(i,j)−1] ≥ h[i,j] for all [i, j] ∈ B⋆ with r(i, j) < ℓ(i, j),

• h[i,r(i,j)]+h[ℓ(i,j),j] ≥ h[i,j]+
∑

k∈[q] h[tk−1(i,j),tk(i,j)−1] for all [i, j] ∈ B⋆ with ℓ(i, j) ≤ r(i, j),
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provide an irredundant facet description of the deformation cone DC(F(B)).
Example 2.72. For instance

• for the building set containing all intervals of [n], we have ℓ(i, j) = i+ 1 and r(i, j) = j − 1,
so that the facet defining inequalities of the deformation cone are h[i,j−1]+h[i+1,j] ≥ h[i,j]+
h[i+1,j−1] for all 1 ≤ i < j ≤ n (with the convention that h[i+1,j−1] = 0 for i + 1 = j), this
is the facet description of the deformation cone of the associahedron;

• for the building set containing all singletons {i} and all intervals [i] for i ∈ [n], we have
r(1, j) = j − 1 < j = ℓ(1, j), so that the facet defining inequalities of the deformation cone
are h[j−1] + h{j} ≥ h[j] for all 1 < j ≤ n.

Generalizing Proposition 2.36, we finally combine Propositions 2.66 and 2.71 to define kinematic
nestohedra for interval building sets, similar to the constructions of [AHBHY18, BMDM+18,
PPPP19] for associahedra, cluster associahedra and gentle associahedra. Again, these polytopes
are just affinely equivalent to the realizations in Rn, but they should be more natural from a
mathematical physics’ perspective.

Proposition 2.73. Consider an interval building set B on [n] and let B⋆ := B ∖ {{i} ; i ∈ [n]}
denote the blocks which are not singletons. Then for any p ∈ RB⋆

>0, the polytope Rp(B) ⊆ RB

defined as the intersection of the positive orthant
{
z ∈ RB ; z ≥ 0

}
with the hyperplanes

• zK = 0 for K ∈ κ(B),
•
∑

k∈[p] z[sk−1(i,j),sk(i,j)−1] − z[i,j] = p[i,j] for [i, j] ∈ B⋆ with r(i, j) < ℓ(i, j),

• z[i,r(i,j)]+z[ℓ(i,j),j]−z[i,j]−
∑

k∈[q] z[tk−1(i,j),tk(i,j)−1] = p[i,j] for [i, j] ∈ B⋆ with ℓ(i, j) ≤ r(i, j),

is a nestohedron whose normal fan is the nested fan F(B). Moreover, the polytopes Rp(B) for
p ∈ RB⋆

>0 describe all polytopal realizations of F(B) (up to translations).

We end this discussion on nestohedra with a simplicial deformation cone by proving the equiv-
alent of Corollary 2.17 in this setting, and thanking Vic Reiner for pointing us the question:

Theorem 2.74. For a building set B, all deformations of its nestohedron NestB are nestohedra
if and only if B has only elementary blocks. In this case, its deformations are exactly all (the
polytopes normally equivalent to) the NestC for C a sub-building set of B.
Proof. It is straitghforward that all NestC for C a sub-building set of B are deformations of NestB,
as they appear as Minkowski summand: NestB =

∑
B∈B ∆B = NestC+

∑
B∈B∖C ∆B . On the other

hand, if C is a building set that is not a sub-building set of B, then it contains a block C ∈ C ∖B,
so ∆C is a deformation of NestC but not of NestB (the faces of the standard simplex that are
deformations of NestB are precisely the ∆B for B ∈ B). This proves that the only deformations of
NestB that are nestohedra are the NestC for C a sub-building set of B.

Besides, note that if DC(F(B)) is not simplicial, then some of its rays correspond to deforma-
tions of NestB that are not (sums of) faces of the standard simplex, hence not nestohedra. Thus,
we consider the case where DC(F(B)) is simplicial. It has 2|B|−|V | faces, so all deformations of
NestB are nestohedra if and only if B has 2|B|−|V | sub-building sets. That is only the case when
all blocks of B are elementary. Indeed, if B ∈ B is not elementary, then B∖ {B} is not a building
set (it does not respect the intersection property), so B has strictly less than 2|B|−|V | sub-building
sets.

2.3.4 Perspectives and open questions

Computational remarks The computation of deformation cones of nestohedra have been imple-
mented with Sage, allowing us to construct numerous examples that helped us to build the main
proofs of this section. Thanks to this code, one can input a building set B and compute the defor-
mation cone of is nestohedron as the cone of heights in RB, illustrating Corollary 2.63. As the fan
F(B) is simplicial, the direct implementation of Proposition 2.2 can be used for this computation.
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Assets and limits of the current approach, open questions We have computed in this section the
deformation cones of two families of generalized permutahedra: graphical zonotopes on the one
side, and nestohedra on the other. The final goal would be to understand the full submodular
cone, i.e. the deformation cone of the permutahedron, answering a longstanding question opened
since the 70s [Edm70]. However, two intermediate questions seem to be particularly interesting.

The first one is the computation of the deformation cone of hypergraphic polytopes. Hyper-
graphic polytopes are the pendant of graphical zonotopes for general hypergraphs: fix a collec-
tion H of subsets of [n] and define the associated hypergaphic polytope as the Minkowski sum
of the corresponding face of the standard simplex: PH :=

∑
C∈H ∆C . This family encapsulates

both graphical zonotopes and nestohedra. The deformation of a hypergraphic polytope is again a
hypergraphic polytope, and this family can be thought of as the sub-cone of the submodular cone
generated by the faces of the standard simplex. However, deformations of hypergraphic polytopes
are more difficult to handle than the families studied in this section, as their normal fan is not
in general simplicial, and the combinatorial resources we can use are not as rich as in the case
of graphs. As stated in [PPP22a], we are able to give an explicit basis of the linear span of the
deformation cone of the hypergraphic polytopes: as in the case of graphical zonotopes (see Theo-
rem 2.11), it is formed by the induced cliques of the hypergraph. We also applied Proposition 2.3
to hypergraphic polytopes, but only obtained a highly redundant description of the deformation
cone of hypergraphic polytopes.

Generalized permutahedra go beyond hypergraphic polytopes, and some other families could
be both not-too-hard to tackle, and rich enough to improve our knowledge of the submodular cone.
In particular, quotientopes [PS19] seem to fall in this category. We have already determined which
quotientopes have a simplicial deformation cone, but giving a facet description of their deformation
cone in general seems more involved.

Last but not least, even if we focused here on giving a facet-description of interesting faces of the
submodular cone, the question of computing its rays remain open since Edmonds [Edm70], even in
the cases we studied. It is worth noting that the facet-description we provide allow for computer
experiments in higher dimensions than before (for the specific cases of graphical zonotopes and
nestohedra), and may help to find new examples of rays for the submodular cone. These rays can
be thought of as explicit height vectors, or looked upon as their polytopal counterpart.
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3 Max-slope pivot rule polytopes

J’ai appris que la voie du progrès n’était ni rapide ni facile.
Dans la vie, rien n’est à craindre, tout est à comprendre.

– Marie Curie

3.1 Max-slope pivot rule and max-slope pivot polytope

For a linear program (P, c), the choice of a c-improving neighbor of a vertex v ∈ V (P) is determined
by the pivot rule adopted by the simplex method, see Section 1.3. Beside varying the objective
function of a linear program, one can wonder about the behavior of different pivot rules. Recall that
the pivot rule is called memoryless if the choice is deterministic and based only on the knowledge
of v. Among pivot rules, max-slope pivot rules are of a great theoretical and practical importance.
First observe that linear programming is easy in dimension 2: for a polygon in the plane, the
monotone path chosen by the simplex method is either the upper path of the polygon or its lower
path, see the exterior of Figure 25(Left). Thus, for a linear program (P, c), the idea of a max-slope
pivot rule is to choose a secondary vector ω, linearly independent with c, then to project P onto
the plane defined by (c,ω). The path chosen by the simplex method is defined, by convention, to
be the upper path of this 2-dimensional projection of P.

Thereby, a max-slope pivot rule depends on one parameter ω, but several ω can give the same
monotone path. A monotone path P on P is said to be coherent if there exists ω such that P
is the path followed by the simplex method with the max-slope pivot rule associated to ω, see
Figure 25(Left). The set of coherent paths on P can be seen as the set of vertices of a polytope,
called its monotone path polytope Mc(P), we will discuss this construction in more details in
Section 4.2.1.

When studying the monotone path polytope, one focuses on the behavior of the pivot rule only
on the monotone path that the simplex method walks on when starting from the worst vertex (the
vertex v0 minimizing ⟨v, c⟩), and going towards the optimal vertex (the vertex vopt maximizing
⟨v, c⟩). But besides this, one can also look at all the monotone paths at once, i.e. the combinatorial
behavior the pivot rule has on all the vertices of the polytope, see [BDLLS22]: each vertex points

towards the one of its neighbor improving ⟨v, c⟩ that maximizes the slope ⟨ω,u−v⟩
⟨c,u−v⟩ . As depicted

in Figure 25(Right), for a given linear program (P, c), and a secondary direction ω, the associated
arborescence is a function Aω : V (P)∖ {vopt} → V (P) defined by (where “argmax” designate the
unique maximizer of the studied quantity):

Aω(v) = argmax

{ ⟨ω,u− v⟩
⟨c,u− v⟩ ; u improving neighbor of v

}

Conversely, a function A : V (P) ∖ {vopt} → V (P) is said to be a coherent arborescence or a
max-slope arborescence when there exists ω such that A = Aω. Note that coherent arborescences
are necessary monotone in the sense that ⟨A(v), c⟩ > ⟨v, c⟩ for all v ∈ V (P ) ∖ {vopt}, we call
arborescence a function that satisfies this monotonicity property, and extend A to V (P) by setting
A(vopt) = vopt when convenient. As for coherent monotone paths, the set of coherent arbores-
cences can be embedded as the vertices of a polytope. We give several ways to construct this
polytope. To begin with, one can construct a fan whose maximal cones are CA = {ω ; Aω = A}
for A a (coherent) arborescence on P: Figure 26 shows how to gather all coherent arborescences
for the case of the 3-dimensional simplex, while Figure 27 pictures the resulting fan.

For a fixed linear program (P, c) and an arborescence A : V (P) → V (P) define

Ψ(A) :=
∑

v ̸=vopt

1

⟨c, A(v)− v⟩ (A(v)− v) .

The max-slope pivot rule polytope is defined as

Π(P, c) := conv{Ψ(A) : A arborescence of (P, c)} .
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Figure 25: (Left) In red, the coherent monotone path associated to the parameter ω for the linear
problem (P, c). (Right) In red, the coherent arborescence associated to the same parameter. In
both figures, to each vertex, the pivot rule associates the one of its neighbors that maximizes the
slope in the plane (c,ω).

The following special case of [BDLLS22, Theorem 1.4] states that the pivot rule polytope cap-
tures the combinatorics of max-slope arborescences, as its normal fan is the fan constructed above.
For a polytope Q ⊂ Rd and ω ∈ Rd, we denote as usual (see Section 1.2)
Qω = {x ∈ Q ; ⟨ω, x⟩ ≥ ⟨ω, y⟩ for all y ∈ Q} the face of Q that maximizes ω.

Theorem 3.1 ([BDLLS22]). Let P ⊂ Rd be a polytope of dimension k and c ∈ Rd a generic
objective function. The polytope Π(P, c) is of dimension k − 1 and for any generic ω ∈ Rd:
Π(P, c)ω = {Ψ(Aω)} .

In particular, the vertices of Π(P, c) are in bijection to max-slope arborescences of (P, c). The
faces of Π(P, c) are in correspondence to certain multi-arborescences, that is, maps
A : V (P) → 2V (P) such that for all v ̸= vopt, A(v) is a nonempty subset of c-improving neighbors
of v, see Section 3.3.

The max-slope pivot polytope can also be constructed as a sum of sections of P, see Figure 28:
for each vertex v ∈ V (P), consider the convex hull conv

(
{v} ∪ {u ; u improving neighbor of v}

)

and take a section orthogonal to c close to v (which correspond to the vertex figure at v). The
Minkowski sum of these sections for v ∈ V (P) ∖ {vopt} is (a dilate of) Π(P, c). For instance,
Figure 28 illustrates the fact that the max-slope pivot polytope of any simplex (for any generic
objective function) is an associahedron [BDLLSon], see also Section 3.3.1 for a self-contained
proof of this fact. We give here a first description of this result. Let S be a simplex of di-
mension n − 1. We may assume that the vertices v1,v2, . . . ,vn are labelled in such a way that
⟨c,v1⟩ < ⟨c,v2⟩ < · · · < ⟨c,vn⟩. As V (S) is in bijection with [n], an arborescence of (S, c) is
encoded by a map A : [n] → [n] such that A(n) = n and A(i) > i for i = 1, . . . , n − 1. We
sometimes identify A with the collection of pairs (i, A(i)) and write (i, k) ∈ A if A(i) = k. We
call an arborescence A : [n] → [n] non-crossing if for all i < j if j < A(i), then A(j) ≤ A(i). In
other words, there are no i < a < j < b such that (i, j), (a, b) ∈ A, see Figure 32(Right) for an
example. Non-crossing arborescences form a Catalan family in the sense of Section 1.2.4, we detail
here some of their properties. It is straightforward, that for any polytope P whose graph is the
complete graph, all coherent arborescences on P are non-crossing, see Figure 29 for an illustration.

Theorem 3.2 ([BDLLSon]). Let S be an (n − 1)-simplex and c a generic objective function. An
arborescence A is a max-slope arborescence for (S, c) if and only if A is non-crossing. Moreover,
Π(S, c) is combinatorially isomorphic to Asson−2.
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Figure 26: Animated construction of the normal fan of the max-slope pivot polytope
of the 3-dimensional simplex. For each ω ∈ R3 orthogonal to c, we project ∆3

onto the plane (c,ω) (Left), and record the corresponding coherent arborescence (Right).
(Animated figures obviously do not display on paper, and some PDF readers do not support the
format: it is advised to use Adobe Acrobat Reader. If no solution is suitable, the animation can be
found on my website or asked by email.)

• • • •

• • • •

• • • •

• • • •

• • • •

Figure 27: Normal fan of Π(∆3, c) where each maximal cone is labelled by the corresponding
coherent arborescence.
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Figure 28: The max-slope pivot rule polytope Π(P, c) can be obtained as (a dilate of) the
Minkowski sum of sections, here illustrated for the tetrahedron P = ∆3. For each vertex v ∈ V (P),
consider the convex hull that v forms with its improving neighbors, and take a section of it or-
thogonal to c (close to v). Their sum is normally equivalent to Π(P, c).

Example 4.3 in [BDLLS22] illustrates the max-slope polytope of a simplex. Theorem 3.2 is
discussed in the more general context of pivot associahedra in [BDLLSon]. Here, we give the main
results and ideas. We will use the following simple decomposition of non-crossing arborescences.

Proposition 3.3. For a non-crossing arborescence A : [n] → [n] define r(A) as the minimal r ≥ 1
such that A(r) = n. Restricting A to [r] and to [r+1, n] := {r+1, . . . , n} yields two non-crossing
arborescences A′ and A′′ and A is uniquely determined by (r,A′, A′′).

Proposition 3.3 immediately gives a recursive way to compute the number of non-crossing
arborescences (identical to the recursive formula of Section 1.2.4), which shows that there are
Catalan-many non-crossing arborescences. To check that Π(P, c) is indeed combinatorially iso-
morphic to the associahedron, it suffices to determine the graph of Π(P, c) and use the fact that
simple polytopes are determined by their graph [BML87]; see also [Zie98, Chapter 3.4]. We call an
i < n forward-sliding if A(i) ̸= n and there is no j < i with A(j) = A(i). We call i backward-sliding
if A(i) ̸= i+ 1. If i is forward-sliding, then define FiA by FiA(i) := A(A(i)) and FiA(k) := A(k)
for all k ̸= i. Likewise, if i is backward-sliding, then define BiA(i) := j where j > i is minimal
with A(j) = A(i) and BiA(k) = A(k) for k ̸= i. A quick scribble reveals that both BiA and FiA
are non-crossing, and that BiFiA = A and FiBiA = A. As for all Catalan families, we say that
BiA and FiA differ from A by a flip. To summarize, non-crossing arborescences form a Catalan
family, and flips in this family are forward- or backward-slide.

The following proposition is adapted from [BDLLSon] or Theorem 3.69.

Proposition 3.4. Let A1, A2 : [n] → [n] be non-crossing arborescences. Then [Ψ(A1),Ψ(A2)] is an
edge of Π(S, c) if and only if A1, A2 differ by a flip.

As for the proof’s strategy of Theorem 3.2, let us first note that up to linear transformation,
we may assume that S = ∆n−1 := conv(e1, . . . , en) ⊂ Rn. For a given ω ∈ Rn, define pi = (ci, ωi)
for i ∈ [n] and the slope τ(i, j) =

ωj−ωi

cj−ci
for all 1 ≤ i < j ≤ n. Then A is a max-slope arborescence

on S if and only if there is ω ∈ Rn such that

τ(i, A(i)) > τ(i, k) for all k > i and k ̸= A(i)

Pictorially, consider the points p1, . . . , pn ∈ R2. Then A(i) = j if all points pk for i < k ̸= j are
strictly below the line pipj , see Figure 32(Left). This perspective yields the following key insight:

Lemma 3.5. For 1 ≤ r < s < t ≤ n

τ(r, t) > τ(r, s) ⇐⇒ τ(s, t) > τ(r, t) and τ(r, t) < τ(r, s) ⇐⇒ τ(s, t) < τ(r, t)

Proof. The following convex combination gives the result: τ(r, t) = cr−cs
ct−cr

τ(r, s)+ ct−cr
ct−cr

τ(s, t).
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Figure 29: Coherent arborescences on a polytope whose graph is complete are non-crossing. For

i < a < j < b with A(i) = j, then Lemma 3.5 ensures that
⟨ω,vj−va⟩
⟨ω,vj−va⟩ > ⟨ω,vb−va⟩

⟨ω,vb−va⟩ , so A(a) = b is

impossible.

P π(P)

[x, y]

Π(P, π∗(c)) Π(π(P), c)

π

⟨ · ,π∗(c)⟩ ⟨ · ,c⟩

π

Figure 30: When the graph of P is isomorphic to the graph of π(P), then the max-slope polytope
of π(P) is a projection of the one of P. We denote x = ⟨v0, c⟩ and y = ⟨vopt, c⟩.

The monotone path polytope construction behaves functorially with respect to linear projec-
tions, see Section 4.1, that is, if π : P → Q is a projection of polytopes, then the monotone path
polytope of Q is a projection of the one of P. This does not hold for max-slope pivot polytopes
in general. However, it does hold in the special case when graphs are retained under projection,
see Figure 30. This first new result will help us link the max-slope pivot rule polytope of cyclic
polytopes with the associahedron (as the max-slope pivot rule polytope of the simplex).

Theorem 3.6. Let P ⊂ Rd be a polytope and π : Rd → Re a linear projection. If π(P) has the same
graph as P, then for every linear function c that is generic for π(P), denoting π∗ the adjoint of π:

Π(π(P), c) = π(Π(P, π∗(c)))

Proof. Let P′ = π(P). If P and P′ have the same graph, then π : V (P) → V (P′) is a bijection and
we write π(v) = v′. In particular, A is an arborescence of P if and only if A′ := π ◦ A ◦ π−1 is an
arborescence of P′. For an arborescence A on P we compute

π(Ψ(A)) =
∑

v∈V (P)

⟨π∗(c), A(v)− v⟩−1
π(A(v)−v) =

∑

v∈V (P)

⟨c, A′(v′)− v′⟩−1
(A′(v′)−v′) = Ψ(A′)

and hence π(Π(P, π∗(c))) = conv(Ψ(A′) : A) = Π(P′, c).

A polytope P is called 2-neighborly if any two vertices of P share an edge, that is to say when
the graph of P is the complete graph.

Corollary 3.7. Let P be a 2-neighborly polytope. Then, for any generic linear function c, Π(P, c)
is the projection of an associahedron.

Proof. Every polytope P = conv(v1, . . . ,vn) ⊂ Rd is the projection of ∆n−1 under the linear map
π : Rn → Rd with π(ei) = vi for i ∈ [n]. Since P is 2-neighborly, the projection π retains the
graph of ∆n−1 and the result follows from Theorem 3.6 and Theorem 3.2.

This result motivates the next section. We will study the max-slope pivot polytopes of a
well-known family of 2-neighborly polytopes: cyclic polytopes.
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3.2 Max-slope pivot polytope of cyclic polytopes

This section is a joint work with Aenne Benjes and Raman Sanyal. An article is in preparation,
containing this section together with Section 4.3.

For a linear program (P, c), we have seen that when the graph of P is the complete graph
on n nodes, that is, if P is 2-neighborly, then its max-lope pivot polytope is a projection of
the associahedron Asson−2. This implies that the arborescences corresponding to the vertices of
Π(P, c) will be non-crossing, meaning that there are no i < j < k < l such that A(i) = k and
A(j) = l. Note that not all non-crossing arborescences will show up as a vertex of Π(P, c), but
only a sub-family of them. Stronger even, Corollary 3.7 shows that when the vertices of P are
sufficiently generic, then the faces of Π(P, c) are products of associahedra.

For n > d ≥ 4 and t = (t1 < t2 < · · · < tn) ∈ Rn, the d-dimensional cyclic polytope is
Cycd(t) := conv{(ti, t2i , . . . , tdi ) : i = 1, . . . , n}, see Figure 31. Cyclic polytopes play the main role
in the Upper Bound Theorem for polytopes [McM70] and they exhibit a number of remarkable
properties. In particular, for d ≥ 4, Cycd(t) is 2-neighborly and simplicial. Moreover, its vertices
are in general position: no d + 1 of them belong to the same hyperplane. The linear function
x 7→ ⟨e1,x⟩ = x1 is generic with respect to Cycd(t). Corollary 3.7 yields that Π(Cycd(t), e1) is
a projection of Asson−2 defined in terms of t. Thus, for generic t, its combinatorial structure
corresponds to a subposet of the lattice of faces of Asson−2, and justifies the following definition.

Definition 3.8. For n > d ≥ 4 and t = (t1 < t2 < · · · < tn), the (d − 1)-dimensional cyclic
associahedron Assod−1(t) is the max-slope pivot polytope Π(Cycd(t), e1).

The following section is devoted to the study of cyclic associahedra. In particular, a quick
numerical implementation reveals that the combinatorics of Assod−1(t) depends on t, whereas
Athanasiadis, De Loera, Reiner and Santos have shown in [ALRS00] that the combinatorics of the
monotone path polytope of the cyclic polytope does not depend on t. A first result (Corollary 3.13)
determines the vertices of Assod−1(t) as if it were not depending on t, that is we indicate which
non-crossing arborescence appears as a vertex of Assod−1(t) for at least a t. Then, in Theorem 3.16,
we give a general but complex criterion for a non-crossing arborescence to appear as a vertex of
Assod−1(t) for a given t. These two theorems allow a full description of the case d = 3: intriguingly,
the number of vertices of Asso2(t) does not depend on t, see Corollaries 3.37 and 3.49.

To determine which non-crossing arborescences correspond to a vertex of Assod−1(t), we pro-
pose a general perspective in elementary geometric terms: For a univariate polynomial
P (t) = w1t + w2t

2 + · · · + wdt
d, consider the n points pi = (ti, P (ti)) ∈ R2. Define A : [n] → [n]

by the property that A(i) = j if j > i and all points pk for i < k ̸= j are below the line pipj ; see
Figure 32 for an illustration. This defines a non-crossing arborescence, and we say that P captures
A on t. Thus, if d ≥ 4, a non-crossing arborescence A correspond to a vertex of Assod−1(t) if and
only if it can be captured on t by a polynomial of degree at most d.

Since Cycn(t) is a (n− 1)-simplex, every non-crossing arborescence is captured by some poly-
nomial on t. We define the degree µ(A, t) of a non-crossing arborescence A as the minimal degree
of a polynomial P that captures A on t. In general, the degree of A depends on the choice of
t = (t1 < · · · < tn). We define the intrinsic degree of A as µ(A) := mint µ(A, t). The intrinsic
degree defines a natural complexity measure on non-crossing arborescences and hence on Cata-
lan families. We show that µ(A) can be determined directly from the combinatorics of A, see
Corollary 3.13.

Even though our motivation originally comes from the study of the geometry of pivot rules,
it also advocates for new ways to think about the associahedron. In fact, (combinatorial) un-
derstandings and realizations of the associahedron already naturally arise in a wide variety of
domains: the associahedron occurs as a secondary polytope [Lee89], as a generalized permutahe-
dron [Lod04, Pos09], or as a polytope of expansive motions [RSS03]. In this section, the realizations
of the associahedron we introduce are parametrized by t ∈ Rn, and generalized to more convoluted
structures whose genesis prompts a natural complexity parameter on Catalan families (parenthe-
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Figure 31: The cyclic polytope Cyc3(t) for n = 9. Note that its graph is not complete (the graph
of Cycd(t) is complete for d ≥ 4).

sations, binary search trees, triangulations of polygons...). Moreover, the tools developed here will
be of prime importance for the study of fiber polytopes in Section 4.3.

If A is a max-slope arborescence of (P, c), then the leading path from the minimal to the maxi-
mal vertex of c over P is a coherent c-monotone path in the sense of Billera–Sturmfels [BS92]. The
monotone path polytope Mc(P) gives a geometric model for coherent monotone paths, and one can
prove it captures the homotopy type of the Baues poset [BKS94]. It was shown in [BDLLS22] that
Mc(P) is a weak Minkowski summand of Π(P, c) : the monotone path polytope is a deformation
of the max-slope pivot polytope, see Section 4.2.1 for the details. On the combinatorial level,
this implies that Assod−1(t) refines the combinatorics of Me1

(Cycd(t)). The latter was studied by
Athanasiadis, De Loera, Reiner and Santos in [ALRS00]: the proof of Corollary 3.13 is related to
the relative locations of roots of P ′′(t) induced by the combinatorics of A and is inspired by their
work. There, the authors show that the combinatorics of Me1

(Cycd(t)) is that of cyclic zonotopes
and, in particular, independent of t. In our case, the combinatorics of the polytope Assod−1(t)
will depend on t. This motivates the notion of universal non-crossing arborescences.

A non-crossing arborescence A is universal if for any t = (t1 < t2 < · · · < tn) there is a
polynomial of degree µ(A) that captures A on t (that is µ(A, t) = µ(A) for all t). For d ≥
max(4, µ(A)) this implies that A is always a vertex of Assod−1(t) whatever t. In Section 3.2.2
we completely classify universal arborescences of intrinsic degree 3 and smaller. To that end,
we study realization sets of A, that is, the set of t = (t1 < · · · < tn) such that A is captured
by a polynomial of a given degree. Moreover, we prove in Corollary 3.37 that the number of
non-crossing arborescence A captured on t in degree 3 or smaller is

(
n
2

)
− 1, independently of t.

Note however that when d ≤ 3, the max-slope pivot polytope Assod−1(t) is not a projection
of the associahedron, the special cases Asso1(t) and Asso2(t) will be studied in Section 3.2.3. We
prove there that the number of vertices of Asso1(t) and Asso2(t) are independent from t: they are
respectively 2 and 3n− 7, see Theorem 3.39 and Corollary 3.49.

3.2.1 Cyclic associahedra and the intrinsic degree

We start by fixing the notations of what we have swiftly introduced above.
For d ≥ 2 and t = (t1, t2, . . . , tn) ∈ Rn with t1 < t2 < · · · < tn, the d-dimensional cyclic

polytope Cycd(t) is defined as the convex hull of γd(t1), . . . ,γd(tn) where γd(t) := (t, t2, . . . , td).
It is well-known that for d ≥ 4, the cyclic polytope Cycd(t) is 2-neighborly [Zie98, Cor. 0.8]. For
c = e1 = (1, 0, . . . , 0), we have ⟨e1,γd(t)⟩ = t for all t ∈ R and hence e1 is a generic linear function
for Cycd(t). For d ≥ 4, we call Assod−1(t) := Π(Cycd(t), e1) a cyclic associahedron.

Proposition 3.9. For any d ≥ 4, if t is sufficiently generic, then the faces of Assod−1(t) are
combinatorially isomorphic to products of associahedra.

Proof. When d ≥ 4, Cycd(t) is 2-neighborly for any t. By Corollary 3.7, Assod−1(t) is the image of
Π(∆n−1, t) = Asson−2 under the projection π(ei) = γd(ti) for i = 1, . . . , n. For every (d− 2)-face
G ⊂ Asson−2 let UG be the (d − 2)-dimensional linear subspace parallel to G. This gives a finite
collection of (d− 2)-linear subspaces. The collection of t such that π is not injective on the union
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and 6 is the unique interior immediate leaf.

Figure 32: (Left) A 5-degree polynomial with the points pi in red and the (pieces of) lines pipA(i)

in blue; (Right) the non-crossing arborescence A captured by P on t.

of these subspaces is Zariski closed. For any t in the complement, for any facet F ⊂ Assod−1(t),
the face π−1(F ) ⊂ Asson−2 is linearly isomorphic to F . This proves the claim.

Proposition 3.9 also implies that for generic t and d ≥ 4, the vertices of Assod−1(t) correspond
to certain non-crossing arborescences A : [n] → [n] that depend on t and d. For a given (generic)
w = (w1, . . . , wd), there is a simple way to determine the associated non-crossing arborescence.
We note that ⟨w,γd(t)⟩ = w1t+w2t

2+ · · ·+wdt
d =: Pw(t) is a univariate polynomial in t of degree

at most d. Consider the graph of the function Pw(t) with the marked points pi(t) = (ti, P (ti)) for
i = 1, . . . , n. As in the previous section, we note that A(i) = j if and only if pk(t) is below the
line pi(t)pj(t) for all k > i with k ̸= j. Figure 32 illustrates the construction. We say that the
non-crossing arborescence A is captured by the polynomial Pw on t. For d ≥ 4, A is captured by
a polynomial of degree d on t if and only if Ψ(A) appears as a vertex of Assod−1(t). The following
fact is immediate from this geometric perspective, as ‘being below’ a line is an open condition.

Corollary 3.10. Let A be a non-crossing arborescence that is captured by P on t. Then there is an
ε > 0 such that A is captured by P on t′ for all t′ with ∥t− t′∥∞ < ε.

Recall that the degree of a non-crossing arborescence A with respect to t is

µ(A, t) := min{degP ; A is captured by P on t} .

For fixed t, the degree defines a filtration on non-crossing arborescences. However, as we will
see in the next section, the degree of A depends on t. This motivates the definition of the intrinsic
degree of A as

µ(A) := min{µ(A, t) ; t = (t1 < t2 < · · · < tn) ∈ Rn} .
In the remainder of this section, we prove that the intrinsic degree can be computed efficiently

and easily from the non-crossing arborescence, see Corollary 3.13. A j ∈ [n − 1] is a leaf of A if
there is no i with A(i) = j. We call j an immediate leaf if, additionally, A(j) = j + 1 and denote
by L(A) the set of immediate leaves. An immediate leaf j ∈ L(A) is interior if 1 < j < n− 1, and
we write L◦(A) for the interior leafs. We first prove that a lower bound on the degree µ(A):

Theorem 3.11. Let A be a non-crossing arborescence. Then

µ(A) ≥ |L(A)|+ |L◦(A)|+ 1 .

Proof. Let P be a polynomial and t = (t1 < t2 < · · · < tn) so that P captures A on t. Recall that

for i < j, τ(i, j) =
P (tj)−P (ti)

tj−ti
is the slope of the line connecting (ti, P (ti)) to (tj , P (tj)). Applying

the mean-value theorem to t 7→ P (t), we get that for every i = 1, . . . , n− 1, there is ti < θi < ti+1

with P ′(θi) = τ(i, i+ 1).
Let i ∈ L(A) with i > 1 and set j = A(i − 1). Since i is a leaf, we know that j ≥ i + 1 and

τ(i − 1, j) > τ(i − 1, i). From Lemma 3.5 we obtain τ(i, j) > τ(i − 1, j). From A(i) = i + 1, we
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Figure 33: Decomposition of a D(A)-clip into D(A′)-clip and D(A′′)-clip for r + 1 ∈ L(A).

deduce that τ(i, i + 1) ≥ τ(i, j) and therefore τ(i, i + 1) > τ(i − 1, i). Applying the mean-value

theorem to t 7→ P ′(t), we find θi−1 < αi < θi with P ′′(αi) =
P ′(θi)−P ′(θi−1)

θi−θi−1
= τ(i,i+1)−τ(i−1,i)

θi−θi−1
> 0.

On the other hand, for every i < n− 1, if A(i) = i+1, then τ(i, i+1) > τ(i, i+2). Lemma 3.5
yields τ(i, i+ 1) > τ(i, i+ 2) > τ(i+ 1, i+ 2) and there is θi < βi < θi+1 such that P ′′(βi) < 0.

If i, j ∈ L(A) with i < j, then P ′′(βi) < 0 < P ′′(αj) and, since i ≤ j − 2, we have βi < θj−1 <
αj . If there is no immediate leaf between i and j, then there is a root in the open interval (βi, αj).
So far, this gives |L(A)| − 1 roots of P ′′.

For every interior immediate leaf 1 < j < n−1, we have P ′′(βj) < 0 < P ′′(αj) and αj < θj < βj

and P ′′ has a root in (αj , βj). This gives an additional |L◦(A)| roots of P ′′. To finish the proof,
we compute degP = degP ′′ + 2 ≥ |roots(P ′′)|+ 2 ≥ |L(A)|+ |L◦(A)|+ 1.

The idea for the proof was inspired by the proof of Theorem 3.1 in [ALRS00], where the
authors study monotone path polytopes of cyclic polytopes. The coherence of a e1-monotone
path of Cycd(t) depends on the degree, but it was shown that it does not depend on the choice
of t. Unfortunately, the degree of A depends on the choice of t, and in order to prove µ(A) ≤
|L(A)|+ |L◦(A)|+ 1 we need to exhibit a concrete polynomial P and t to capture A.

For d ≥ 1, the Chebychev polynomial Td of the first kind is the polynomial of degree d with the
property that Td(cos(α)) = cos(dα) for all α ∈ [0, π]. It follows that all d roots of Td are distinct
and real, and lie in the open interval (−1, 1). Moreover, Td has d+1 extrema in the interval [−1, 1]
and the extrema alternate between −1 and 1. In particular, Td(1) = 1 and Td(−1) = (−1)d. We
also note that T ′′

d (1) > 0 and (−1)dT ′′
d (−1) > 0. Hence (−1)dTd(t) and Td(t) are convex in a

neighborhood of t = −1 and t = 1, respectively.
For D ≥ 0, a D-clip of Td is an interval [m,M ] ⊆ [−1, 1] that contains D+1 extrema including

m and M and M is a maximum (Td(M) = 1). We call the D-clip concave if Td is concave on
[M − ε,M ] for some ε > 0. Any D-clip with M < 1 is concave.

For a non-crossing arborescence on n ≥ 1 nodes we define D(A) := 2|L(A)| if 1 ̸∈ L(A) and
D(A) := 2|L(A)| − 1 if 1 ∈ L(A). If n = 1, then set D(A) := 0.

Proposition 3.12. Let A be a non-crossing arborescence on n nodes. For any concave D(A)-clip
[m,M ] of Td there are m ≤ t1 < t2 < · · · < tn = M such that A is captured by Td on t = (t1, . . . , tn)
and Td(ti) < 1 = Td(tn) for i = 1, . . . , n− 1.

Proof. We prove the claim by induction on n. Let [m,M ] be a fixed concave D(A)-clip of Td.
For n ≤ 2, this is clearly true. Let n ≥ 3 and consider the decomposition of A into (r,A′, A′′) of
Proposition 3.3. We distinguish three cases.

If r = 1, then A′ has a single node. Moreover, D(A) = 2|L(A)| is even and thus m is a
maximum. If 2 ∈ L(A), then D(A′′) = D(A) − 1 is odd. Let m′′ be the first minimum of the
concaveD(A)-clip [m,M ]. By induction, A′′ can be captured on [m′′,M ]. The condition Td(ti) < 1
for i < n ensures that for t1 = m + ε with ε > 0 sufficiently small, the points pi(t) = (ti, Td(ti))
for 1 < i < n are below the line p1(t)pn(t). If 2 ̸∈ L(A), then D(A′′) = D(A) and A′′ can be
captured on [m,M ]. Since D(A) is even, m is a maximum and m < t2. The same argument as
before shows that choosing t1 ∈ (m, t2) close enough to m suffices.
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If r = n − 1, then D(A′) = D(A) and A′ can be captured on the concave D(A)-clip [m,M ]
with m ≤ t1 < t2 < · · · < tn−1 = M . By Corollary 3.10, we can change tn−1 to tn−1 − ε for some
small ε > 0. For tn = M , the line pn−1(t)pn(t) is close to the tangent of Td at tn and by the
concavity of the maximum, pn(t) is below all lines pi(t)pn−1(t) for i < n− 1.

Thus, we can assume 1 < r < n−1. If r+1 ̸∈ L(A), then D(A) = D(A′)+D(A′′) and D(A′′) is
even. Let y ∈ [m,M ] such that [m, y] is a concave D(A′)-clip and [y,M ] is a concave D(A′′)-clip.
By induction there are m ≤ t1 < · · · < tr = y < · · · < tn = M that capture A′ and A′′ on their
clips. Again by Corollary 3.10, t1 < · · · < tr = y − ε still captures A′ for ε > 0 sufficiently small.
Since Td(tj) < 1 for all j < r, the points pi(t) for i > r are all below the lines pj(t)pr(t) as well

as below the line pr(t)pn(t). If r+1 ∈ L(A), then D(A) = D(A′) +D(A′′) + 1 and D(A′′) is odd,
see Figure 33. Choose y ∈ [m,M ] so that [y,M ] is a concave D(A′′)-clip. Since D(A′′) is odd, y is
a minimum and let x be the maximum before y. We can capture A′ on [m,x] and again changing
tr to tr = x− ε, the resulting t1 < · · · < tn capture A on the concave D(A)-clip [m,M ].

Corollary 3.13. Let A : [n] → [n] be a non-crossing arborescence. Then

µ(A) = |L(A)|+ |L◦(A)|+ 1 .

Proof. Let A : [n] → [n] be a non-crossing arborescence. By Theorem 3.11 it suffices to prove that
A is captured by a polynomial P of degree d = |L(A)|+ |L◦(A)|+1 on some t = (t1 < · · · < tn). If
n− 1 is not an immediate leaf of A, then D(A) = |L(A)|+ |L◦(A)| = d− 1 and −Td has a concave
D(A)-clip. If n − 1 ∈ L(A), then D(A) = |L(A)| + |L◦(A)| + 1 = d. We note that if n − 1 is an
immediate leaf, then in a D(A)-clip [m,M ] the maximum M does not have to be concave and we
can choose M = 1 to capture A on Td.

3.2.2 Realization sets and universal arborescence

In this section, we now investigate the collection of vectors t = (t1 < t2 < · · · < tn) for which a
non-crossing arborescence A can be captured on t by a polynomial P of degree at most d. We use
these realization sets to characterize universal non-crossing arborescences A (i.e. µ(A, t) = µ(A)
for all t) of intrinsic degree µ(A) ≤ 3. These universal arborescences will correspond to vertices
of the cyclic associahedron Assod−1(t) for every d ≥ max(µ(A), 4).

Realization sets

Definition 3.14. For a non-crossing arborescence A : [n] → [n] and any d, we define the realization
set T ◦

d (A) of A as the collection of t = (t1 < t2 < · · · < tn) ∈ Rn such that A can be captured on
t by some polynomial P of degree at most d.

If A is captured on t by P , then for λ > 0, A is captured on λt by P ( t
λ ). Likewise, A is captured

on (c, . . . , c) + t by P (t − c). With Corollary 3.10, this shows the closure Td(A) of T ◦
d (A) is a

(generally non-convex) full-dimensional subcone of the order cone On = {t ∈ Rn : t1 ≤ · · · ≤ tn}.
In particular, when convenient, we can assume t1 = 0 and tn = 1. By definition, remark that

T1(A) ⊆ T2(A) ⊆ · · · ⊆ Tn(A) = On.

In order to give a description of Td(A), let Ib
A, If

A ⊆ [n − 2] be the sets of backward-sliding
and forward-sliding nodes of A. We start with a description of the collection of polynomials P
that capture A on a given t. If i ∈ If

A is forward-sliding, we write i∗ := A(i). If i ∈ Ib
A is

backward-sliding, we write i∗ for minimal j > i with A(j) = A(i). See Figure 34.

Lemma 3.15. Let A : [n] → [n] be a non-crossing arborescence and t ∈ O◦
n. A polynomial P

captures A on t if and only if for all forward-sliding i ∈ If
A

(tA(i∗) − ti)(P (ti∗)− P (ti))− (ti∗ − ti)(P (tA(i∗))− P (ti)) > 0

and for all backward-sliding i ∈ Ib
A

(tA(i∗) − ti)(P (ti∗)− P (ti))− (ti∗ − ti)(P (tA(i∗))− P (ti)) < 0 ,
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Figure 34: Here, If
A = {1, 2, 3, 5} is the set of forward-sliding nodes, and Ib

A = {3, 4, 5} is the set
of backward-sliding nodes.

Proof. Let P (t) = wdt
d +wd−1t

d−1 + · · ·+w1t = ⟨w,γd(t)⟩. Then P captures A on t if and only
if ⟨w,Ψ(A)⟩ > ⟨w,Ψ(A′)⟩ for all non-crossing arborescences A′ ̸= A. By convexity, it suffices to
consider only those A′ such that [Ψ(A),Ψ(A′)] is an edge. By Proposition 3.4 this boils down to

⟨w,Ψ(A)⟩ − ⟨w,Ψ(FiA)⟩ =
P (ti∗)− P (ti)

ti∗ − ti
− P (tA(i∗))− P (ti)

tA(i∗) − ti
> 0 ,

when i ∈ If
A; and when i ∈ Ib

A to

⟨w,Ψ(A)⟩ − ⟨w,Ψ(BiA)⟩ =
P (tA(i))− P (ti)

tA(i) − ti
− P (ti∗)− P (ti)

ti∗ − ti
> 0

We can write Lemma 3.15 as follows. Define the complete symmetric polynomial of degree s:

hs(x1, x2, x3) :=
∑

a+b+c=s

xa
1x

b
2x

c
3

For i ∈ Ib
A ∪ If

A, we construct Φd
i (t) ∈ Rd with Φd

i (t)j = hj−2

(
ti, ti∗ , tA(i∗)

)
.

Observe that Φd
i (t)1 = 0 and Φd

i (t)2 = 1. We set Φ
d

i (t) :=
(
hj(ti, ti∗ , tA(i∗))

)
j=1,...,d−2

∈ Rd−2.

Theorem 3.16. Let A : [n] → [n] be a non-crossing arborescence. For t ∈ O◦
n and d ≥ 2, define the

polytopes

Pf
d (A, t) := conv

{
Φ

d

i (t) : i ∈ If
A

}
and Pb

d (A, t) := conv
{
Φ

d

i (t) : i ∈ Ib
A

}
.

Then A is captured on t by some P of degree at most d if and only if Pf
d (A, t) ∩ Pb

d (A, t) = ∅.

Proof. Let P (t) = w1t + · · · + wdt
d = ⟨w,γd(t)⟩, and t ∈ O◦

n. By Lemma 3.15, A is captured on

t by some polynomial P of degree at most d if and only if ⟨w,Ψ(A)−Ψ(FiA)⟩ > 0 for all i ∈ If
A

and ⟨w,Ψ(A)−Ψ(BiA)⟩ > 0 for all i ∈ Ib
A. For i ∈ If

A, let j = A(i) and k = A(j). We compute

Ψ(FiA)r+1−Ψ(A)r+1 =
tr+1
k − tr+1

i

tk − ti
−
tr+1
j − tr+1

i

tj − ti
=

r∑

s=0

tskt
r−s
i −

r∑

s=0

tsjt
r−s
i =

r∑

s=0

(tsk−tsj)t
r−s
i .

This implies that Φd
i (t) =

1
tk−tj

(Ψ(FiA)−Ψ(A)), and as tj < tk, the inequality ⟨w,Ψ(A)−Ψ(FiA)⟩ >
0 is equivalent to

〈
w,Φd

i (t)
〉
< 0. For i ∈ Ib

A we can prove analogously, that ⟨w,Ψ(A)−Ψ(BiA)⟩ >
0 is equivalent to

〈
w,Φd

i (t)
〉
> 0. This gives us a system of strict linear inequalities that by Gor-

dan’s lemma, a variant of Farkas’ lemma (cf. [Sch98, Sect. 7.8]), has a solution if and only if there

are λi ≥ 0 for i ∈ If
A and µj ≥ 0 for j ∈ Ib

A not identically zero and
∑

i∈If
A

λiΦ
d
i (t) =

∑

i∈Ib
A

µiΦ
d
i (t) .

Since Φd
i (t)2 = 1, it follows that Λ :=

∑
i∈If

A
λi =

∑
i∈Ib

A
µi > 0. Dividing both sides of the above

equality by Λ yields a point in Pf
d (A, t) ∩ Pb

d (A, t).
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Example 3.17. For n = 5, one can consider t = (1, 2, 3, 4, 5). In Figure 35 are drawn Pb
d (A, t) and

Pf
d (A, t) for d = 3 and d = 4 for the two given non-crossing arborescences. None of the polytopes

intersects for d = 4, indicating that both arborescences are captured in degree 4 (what was already
known, as d = 4 = n − 1, and all non-crossing arborescences on n nodes are captured in degree
d). However, for d = 3, the left arborescence is not captured while the right one is.

The situation is inverted for t = (−1, 2, 3, 4, 5), as shown in Figure 36.

Non-crossing arborescences with µ(A) ≤ 3 In this section, we will characterize realization sets
of non-crossing arborescences of intrinsic degree at most 3. We call a non-crossing arborescence A
quadratic if µ(A) = 2, and cubic if µ(A) = 3. We start with a classification of quadratic and cubic
arborescences, obtained from Corollary 3.13. Quadratic non-crossing arborescences have exactly
1 exterior immediate leave (and no interior one), while cubic ones have either 1 interior and no
exterior, or 2 exterior ones. Consequently, their non-crossing property gives:

Corollary 3.18. The two non-crossing arborescences of intrinsic degree 2 on n ≥ 3 nodes are Am

and AM , defined by Am(i) = i + 1 for 1 ≤ i ≤ n − 1 and AM (i) = n for 1 ≤ i ≤ n − 1. See
Figure 37.

Corollary 3.19. For n ≥ 4, there are precisely 2n−2 + n − 5 non-crossing arborescences A on n
nodes with µ(A) = 3. They come in two types:
(i) For 1 < k < n− 1, define A(i) = i+ 1 for 1 ≤ i < k and A(i) = n for k ≤ i < n. These are

n− 3 non-crossing arborescences with L(A) = {1, n− 1}.
(ii) For 1 < k < n − 1 and n ≥ j1 ≥ j2 ≥ · · · ≥ jk−1 > k, define A(i) = ji for 1 ≤ i < k and

A(i) = i+1 for k ≤ i < n. These are 2n−2 − 2 non-crossing arborescences with L(A) = {k}.
We call a non-crossing arborescence A : [n] → [n] universal if A can be captured by a polynomial

of degree µ(A) on all t ∈ O◦
n, that is: Tµ(A)(A) = On. Note that this implies that Td(A) = On for

all d ≥ µ(A). We next determine all universal arborescences A with µ(A) ≤ 3, giving a description
of the realization set of any non-crossing arborescence A with µ(A) ≤ 3.

Lemma 3.20. Let A : [n] → [n] be a non-crossing arborescence with µ(A) = 3 and L(A) = {k},
1 < k < n− 1. Then for all t ∈ O◦

n,

min{ti + ti∗ + tA(i∗) : i ∈ Ib
A} < max{ti + ti∗ + tA(i∗) : i ∈ If

A} .

Proof. As k ̸= n − 1 there is an i ∈ If
A ∩ [n − 2] with i∗ = n − 1. Recall that A is of the form

Corollary 3.19(ii). If j1 ≤ n − 2, then for all j ∈ Ib
A we have A(j∗) ≤ n − 2 and the statement

follows. Otherwise, either j ∈ Ib
A exists with j∗ = n−1 and j < i, or j∗ = n−2 and i ≤ j. In both

cases, for all t ∈ O◦
n, we have min{ti + ti∗ + tA(i∗) : i ∈ Ib

A} ≤ tj + tj∗ + tA(j∗) < ti + ti∗ + tA(i∗) ≤
max{ti + ti∗ + tA(i∗) : i ∈ If

A}.

Theorem 3.21. Let A : [n] → [n] be a non-crossing arborescence with µ(A) ≤ 3. Then A is
universal if and only if µ(A) = 2, or if µ(A) = 3 and
(a) L(A) = {1, n− 1}, or
(b) L(A) = {n− 2}, A(i) = n for i = 1, . . . , n− 4, and A(n− 3) ∈ {n− 1, n}, or
(c) L(A) = {2} and A(1) ∈ {3, 4}.

Proof. Using Theorem 3.16 it suffices to show that Pf
d (A, t) ∩ Pb

d (A, t) = ∅ for all choices of t
holds in precisely the situations stipulated above.

When µ(A) = 2, Pf
d (A, t) and Pb

d (A, t) are polytopes in R0. Hence, the claim holds if and

only if Ib
A = ∅ or If

A = ∅. By Corollary 3.18 this is the case for both Am and AM .

If µ(A) = 3, then Pf
d (A, t) = [xf , yf ], P

b
d (A, t) = [xb, yb] ⊂ R with (xf , yf ) the minimum and

maximum of {ti + ti∗ + tA(i∗) : i ∈ If
A} and likewise for (xb, yb).

Let A an arborescence with µ(A) = 3. If L(A) = {1, n − 1}, then A satisfies Corollary 3.19

(i) for some 1 < k < n− 1. Thus If
A = {1, 2, . . . , k − 1} and Ib

A = {k, . . . , n− 2}. It follows that
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Figure 35: The polytopes Pb
d (A, t) and Pf

d (A, t) with t = (1, 2, 3, 4, 5), for d = 3 (Bottom, 1-
dimensional drawing) and d = 4 (Top, 2-dimensional drawing), for the two non-crossing arbores-
cences drawn (Left and Right).
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d (A, t) with t = (−1, 2, 3, 4, 5), for d = 3 (Bottom) and
d = 4 (Top), for the two non-crossing arborescences drawn (Left and Right).
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Figure 37: The two (universal) non-crossing arborescences of intrinsic degree 2, and degree 2
polynomials capturing them.

yf = tk−1+ tk + tn+1 < tk + tk+1+ tn = xb. This proves (a). Otherwise, A satisfies Corollary 3.19
(ii) for some 1 < k < n − 1 and n ≥ j1 ≥ j2 ≥ · · · ≥ jk−1 > k. Note that Ib

A ⊆ [k − 1] and they
are all leaves. For (b), k = n − 2 and j1 = · · · = jn−4 = n. If jn−3 = n, then n − 2 is the only
forward-sliding node and xf = yf = tn−2 + tn−1 + tn > tn−3 + tn−1 + tn = yb. If jn−3 = n − 1,
then xf = yf = tn−3 + tn−1 + tn > max(tn−3 + tn−1 + tn−2, tn−4 + tn−1 + tn) = yf . Likewise, for
(c) we have k = 2. If A(1) = 3, then xb = yb = t1 + t2 + t3 < t1 + t3 + t4 = xf . If A(1) = 4, then
xb = yb = t1 + t3 + t4 < min(t2 + t3 + t4, t1 + t4 + t5) = xf .

Assume A satisfies Corollary 3.19 (ii) with L(A) = {k}, but neither (b) nor (c). In this case,

we will find t with Pf
d (A, t) ∩ Pb

d (A, t) ̸= ∅, which proves A is not universal. By Lemma 3.20,

Pf
d (A, t) ∩ Pb

d (A, t) = ∅ if and only if yb < xf .
If k is forward-sliding, then k∗ = k + 1 and either there is i < k with ji > A(k∗) = k + 2, or

j1 = · · · = jk−1 = k + 2 < n and 1 < k − 1. In the first case, choose the maximal i < k with
ji > k + 2: i is backward-sliding and i∗ = A(i∗) − 1 = ji − 1 > k + 1. For any t ∈ O◦

n with
ti∗ > tk + tk+1 it follows xf ≤ tk + tk+1 + tk+2 < ti + ti∗ + tA(i∗) ≤ yb. In the second case, i = 1
is forward-sliding with i∗ = k + 2, and k − 1 is backward-sliding with (k − 1)∗ = k + 1. Choosing
t ∈ O◦

n with t1 small enough, ensures xf ≤ t1 + t1∗ + tA(1∗) < tk−1 + tk−1∗ + tA(k−1∗) ≤ yb.
If k is not forward-sliding, then k − 1 is backward-sliding with (k − 1)∗ = k and there is a

minimal forward-sliding i < k with i∗ = k + 1. If i < k − 1 then we can find t ∈ O◦
n with ti small

enough so that xf ≤ ti + tk+1 + tk+2 < tk−1 + tk + tk+1 ≤ yb. If i = k − 1, then 1 < k − 1 and
we can choose j < k − 1 forward-sliding. Similarly, we can find t ∈ O◦

n, with tj small enough and
thus xf ≤ tj + tj∗ + tA(j∗) < tk−1 + tk + tk+1 ≤ yb.

Corollary 3.22. The number of universal non-crossing arborescences A : [n] → [n] with µ(A) ≤ 3
is n+ 3.

Proof. The universal non-crossing arborescences on [n] are characterized by Theorem 3.21. There
are exactly two non-crossing arborescences with µ(A) = 2. Moreover, there are n−3 arborescences
of the form (a), 2 of the form (b) and 2 of the form (c).

Example 3.23. In Figure 38(Left), you can see all non-crossing arborescences A : [5] → [5] with
µ(A) ≤ 3. Two arborescences A,A′ are connected by an edge if and only if they differ by a flip.
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Figure 38: All non-crossing arborescences A on n = 5 (Left) and n = 6 (Right) nodes with
µ(A) ≤ 3. Green and blue dots represent universal arborescences, red dots non-universal ones.

The arborescences at the green dots are the two universal arborescences of intrinsic degree 2, the
ones at the blue dots are the universal arborescences of intrinsic degree 3. The two remaining
arborescences at the red dots are the two non-universal arborescences of intrinsic degree 3, see
Example 3.17.

One can construct the same graph for n = 6, see Figure 38(Right), and n = 7, see Figure 39.
Note that these graphs are oriented from top to bottom by the Tamari orientation of flips. For
d ≥ 4 and fixed t, one can consider the graph Gt whose set of vertices is the set of A with
µ(A, t) ≤ 3, and the edges are the flips between them. This forms a sub-graph of the graph of
Assod−1(t), and hence a sub-graph of the graph of the associahedron. The projection principle of
Proposition 3.9 ensures that Gt is the graph of a polygon, thus Gt is a cycle. The idea behind
the rest of this section will be to prove that Gt is a great cycle in Figures 38 and 39 (and of
the corresponding graph for greater n), meaning that Gt is composed by two paths from AM to
Am: the left path of universal arborescences, and a right path that is increasing for the Tamari
orientation. Not all increasing right paths will correspond to a Gt for some t, but this will allow
us to prove that the number of vertices of Gt is independent from t.

Remark 3.24. Applying the bijection between non-crossing arborescences and triangulations to
Figure 38 we obtain the graph of the fiber polytope for the canonical projection from Cyc4(t) to
Cyc2(t) for t ∈ O◦

n as pictured in Figure [ALRS00, Figure 1]. The study of this phenomenon will
be at the heart of Section 4.3.

In the remaining of the section, we are going to use the properties of cubic arborescences and
the first property we have given of their realization set in order to count the number of cubic
arborescences that can be captured for a given t ∈ O◦

n. Even though it will be notationally heavy,
most of it will boil down to proving that what our previous drawings indicates holds in general.

Definition 3.25. For a non-crossing arborescence A, a forward-sliding i is called minimal when i is
a leaf, and a backward-sliding i is called maximal when i∗ + 1 = A(i∗).

Lemma 3.26. Let A : [n] → [n] be a non-universal cubic arborescence, and L◦(A) = {k}. For any
minimal forward-sliding i, i∗ + 1 = A(i∗) with i ≤ k and i∗ > k. Any maximal backward-sliding j
is a leaf, j < k and j∗ ≥ k.
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Figure 39: All non-crossing arborescences A on n = 7 nodes with µ(A) ≤ 3. Green and blue dots
represent universal arborescences, red dots non-universal ones.
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Proof. Since A is non-universal and cubic, A is of the form described in Corollary 3.19(ii). For
any i > k, one has A(i− 1) = i ; thus any minimal forward-sliding i has to be smaller or equal to
k. Moreover this ensures that i∗ > k and A(i∗) = i∗ + 1.

Suppose j is backward-sliding and maximal. The fact that A(j) > j + 1, forces j < k. Thus j
is a leaf. By Corollary 3.19(ii), j∗ > k.

Theorem 3.27. Let A : [n] → [n] be a cubic arborescence and t ∈ O◦
n. If A is non-universal, then

t ∈ T ◦
3 (A) if and only if

(i) ti < ti+1 for all 1 ≤ i < n,

(ii) tj + tj∗ + tA(j∗) < ti + ti∗ + tA(i∗) for all j ∈ Ib
A maximal and i ∈ If

A minimal.

Proof. Let A be cubic non-universal. By Theorem 3.16, it suffices to show that Pf
d (A, t) ∩

Pb
d (A, t) = ∅ and t ∈ O◦

n precisely when t satisfies the conditions (i) and (ii). Let Pf
d (A, t) =

[xf , yf ] and Pb
d (A, t) = [xb, yb]. By Lemma 3.20 we conclude that for t ∈ O◦

n, P
f
d (A, t)∩Pb

d (A, t) =
∅ if and only if yb < xf . As a consequence any t ∈ T ◦

3 (A) satisfies (i) and (ii).
Conversely, let t ∈ Rn fulfil (i) and (ii). Obviously t ∈ O◦

n.

Assume that i ∈ If
A is not minimal. Then there is a forward-sliding leaf a < i and m > 1 such

that Am(a) = i. This shows xf ≤ ta + ta∗ + tA(a∗) < ti + ti∗ + tA(i∗). Hence tj + tj∗ + tA(j∗) <
ti + ti∗ + tA(i∗) is implied by tj + tj∗ + tA(j∗) < ta + ta∗ + tA(a∗).

Assume that j ∈ Ib
A is not maximal. Then j∗ < A(j∗)−1 implies that there exists a backward-

sliding b with j∗ ≤ b < A(j∗) and A(j∗) = A(b∗) = b∗ + 1. This shows ti + ti∗ + tA(i∗) <
tj + tj∗ + tA(j∗) ≤ yb. We conclude that tj + tj∗ + tA(j∗) < ti + ti∗ + tA(i∗) is implied by
tb + tb∗ + tA(b∗) < ti + ti∗ + tA(i∗).

Example 3.28. For n = 5, there are 10 non-crossing arborescences A with µ(A) ≤ 3, see Fig-
ure 38(Left). Among them, 8 are universal and 2 are not. We have discussed the 2 non-
universal ones in Example 3.17. Theorem 3.27 allows us to compute the realizations sets of
theses 2 non-universal arborescences: besides facets of O5, they have a facet on the hyperplane
{t ∈ R5 ; t2 + t3 + t4 = t1 + t4 + t5}. In Figure 40(Bottom) are drawn these two realization sets,
embedded inside the order cone O5. As this cone is 5-dimensional, we intersect it with the two
hyperplanes {t ∈ R5 ; t1 = 0} and {t ∈ R5 ; t5 = 1}, making the picture 3-dimensional. For
each realization sets, we have drawn in blue Assod−1(t) for d = 4 which is an associahedron, and
highlighted in red the non-crossing arborescences A with µ(A, t) ≤ 3 for the corresponding t.

Remark 3.29. Note that different cases of Theorem 3.27 lead to the same inequality (see Figure 41):

(i) For example, if i ∈ Ib
A ∩ [1, k − 1], i + 1 ∈ If

A and A(i + 1) < i∗. Since i + 1 ≤ k,
i + 1 is a leaf and thus minimal. By A(i + 1) < i∗ and thus i∗ > k follows that i is
maximal. Moreover, i < i + 1 < k < A(i + 1) < A(A(i + 1)) ≤ i∗ < A(i∗). By (ii),
tA(i+1) < tA(A(i+1)) ≤ ti∗ < tA(i∗) and so (iii) implies ti < ti+1.

(ii) If i ∈ Ib
A, j ∈ If

A and i = j, then A(i∗) = j∗ and thus the inequality ti + ti∗ + tA(i∗) <
tj + tj∗ + tA(j∗) is implied by ti∗ < tA(j∗).

(iii) If i ∈ Ib
A, j ∈ If

A and i∗ = j∗, then j < i as A is non-crossing. As i is forward-sliding and j
is maximal, i = j + 1 and the inequality corresponding to i and j follows from tj < ti.

Now we want a closer look at the realization set and describe, which of the inequalities in
Theorem 3.27 of the form (ii) give a facet for T3(A).

Let A : [n] → [n] be a non-crossing arborescence, i ∈ [n − 2] forward-sliding and j ∈ [n − 2]
backward-sliding. Recall the definitions of flips (FiA and BjA are non-crossing arborescences):

FiA(k) =

{
A(i∗) k = i

A(k) k ̸= i
and BjA(k) =

{
j∗ k = j

A(k) k ̸= i.
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t2 + t3 + t4 = t1 + t4 + t5

Figure 40: The order cone O5 intersected by the hyperplanes {t ; t1 = 0} and {t ; t5 = 1}, and
subdivided into the different realization sets for non-crossing arborescences A with µ(A) ≤ 3. For
each realization sets, the cyclic associahedron Asso3(t) with, highlighted in red, the non-crossing
arborescences A with µ(A, t) ≤ 3.
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Figure 41: Some diagonal switches are forbidden due to the relative positions of i, j, i∗ and j∗.
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Figure 42: A non-crossing arborescence A : [7] → [7] and two diagonal switches.

If j is backward-sliding in FiA and i is forward-sliding in BjA then we could consider the
combination of the two flips. We say that A and A′ differ by a diagonal switch if A′ = FiBjA =
BjFiA ̸= A, equivalently we say that we perform a diagonal switch with respect to i and j on A.

The notion diagonal switch is motivated by the fact that A, FiA, BjA and FiBjA form a square
face8 of Asson−2, and switching from A to FiBjA corresponds to switching along the diagonal of
the square that contains A. In the directed graph Gt defined in Example 3.23, a diagonal flip
amounts to travelling through two edges: one respecting the Tamari orientation and the other not
(in Figure 38 and Figure 39, two arborescences are linked by a diagonal switch when there are at
the same height and at distance 2).

Lemma 3.30. Let A : [n] → [n] be a non-crossing arborescence, i forward-sliding and j backward-
sliding. We can perform a diagonal switch with respect to i and j on A, if and only if the following
conditions are fulfilled, see Figure 41:
(i) i ̸= j
(ii) j∗ ̸= i∗

(iii) j ̸= i∗

Proof. Suppose one of the conditions is not fulfilled. If i = j, then FiBjA = BjFiA = A. If j∗ = i∗,
then A(j∗) = A(i∗) and as A(j) = A(j∗) > A(i) = i∗, we need j < i. Hence BjA(j) = j∗ = i∗,
and thus i is not forward-sliding in BjA. If j = i∗, then FiBjA(i) = j∗ ̸= BjFiA(i) = A(i∗).

Suppose (i)− (iii) are fulfilled. Notice that (i) implies i∗ ̸= A(j∗), (ii) and (iii) imply A(i∗) ̸=
A(j∗). It cannot happen that j∗ = i, as then i would not be forward-sliding. If i = A(j∗), j =
A(i∗) or j∗ = A(i∗), then the diagonal switch can be performed. Otherwise, {i, i∗, A(i∗)} ∩
{j, j∗, A(j∗)} = ∅ and thus the diagonal switch can be performed as well.

Corollary 3.31. Let A : [n] → [n] be a non-crossing arborescence, 1 ≤ i ≤ n − 2 forward-sliding
and 1 ≤ j ≤ n− 2 backward-sliding. If j = i∗, then either L(A) = {1, n− 1} or µ(A) > 3.

Proof. From j = i∗ follows that A(i∗) = A(j∗). As i∗ < A(i∗) − 1, there is an immediate leaf
i∗ < ℓ1 < A(i∗) ≤ n − 1. Furthermore either A(1) = 2 and thus 1 ∈ L(A), or there is an interior
immediate leaf 1 < ℓ2 < i∗.

8All induced 3-, 4- and 5-cycles in the graph of a simple polytope are 2-faces, thus the four vertices associated
to A, FiA, BjA and FiBjA form a square face of Asson−2.
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Proposition 3.32. Let A : [n] → [n] be a cubic non-universal non-crossing arborescence. Let
1 ≤ i ≤ n− 2 be forward-sliding and minimal and 1 ≤ j ≤ n− 2 backward-sliding and maximal. If
i ̸= j and i∗ ̸= j∗, then A′ = FiBjA = BjFiA is cubic and non-universal.

Proof. As A is non-universal and cubic, by Theorem 3.21 A satisfies L(A) = {ℓ}, 1 < ℓ < n − 1.
If i is minimal, then, by Corollary 3.19 and Lemma 3.26, either i = ℓ or i < ℓ. If i = ℓ, then this
implies i∗ = ℓ + 1 and A(i∗) = ℓ + 2 and thus L(FiA) = L(FlA) = {ℓ + 1}. If i < ℓ, then as
A(i∗) = i∗ + 1 ≥ ℓ+ 1, it follows that L(FiA) = L(A) = {ℓ}.

If j is maximal, then, by Corollary 3.19, either j = ℓ−1 or j < ℓ < j∗. In the first case, j∗ = ℓ,
A(j∗) = ℓ+ 1 and L(BjA) = {ℓ− 1}. In the second case, L(BjA) = L(A) = {ℓ}.

Moreover, we observe, that ℓ can not be forward-sliding and ℓ − 1 is backward-sliding at the
same time. We conclude, that L(FiBjA) ⊆ [2, n − 2] and thus FiBjA is cubic. If 3 ≤ ℓ ≤ n − 3
this almost shows that FiBjA is non-universal. We only have to consider two special cases.
Suppose ℓ = 3 and A(1) = 4. Then only 2 is backward-sliding and maximal and only 1 is forward-
sliding and minimal. Thus L(B2F1A) = {2}, but with A(1) = 5, implying that B2F1A is non-
universal. Similarly, if ℓ = n−3 and A(k) = n for all k < n−3, then as only n−3 is forward-sliding
and minimal and only n−4 is backward-sliding and maximal. We have L(Bn−4Fn−3A) = {n−2}.
Moreover, Bn−4Fn−3A(n− 4) = n− 1 and thus Bn−4Fn−3A is non-universal.

If ℓ = 2, as A is non-universal, we have A(1) > 4. Thus only 1 is backward-sliding and
maximal, and only 2 is forward-sliding and minimal, which leads to L(B1F2A) = 3 and hence
B1F2A is non-universal. If ℓ = n− 2, as A is non-universal, we have A(n− 4) = A(n− 3) = n− 1.
Then the smallest i < n−4 such that A(i) = n−1 is the only forward-sliding and minimal choice,
and only n− 3 is backward-sliding and maximal. This leads to L(FiBn−3A) = {n− 3} and thus
A is non-universal.

Now we want to highlight some inequalities of Theorem 3.27. Let A : [n] → [n] be a cubic
arborescence. We call a facet of T3(A) internal, if it is not contained in any facet of On. By
definition, universal arborescences have no internal facets.

Theorem 3.33. Let A be a cubic, non-crossing and non-universal arborescence. Any internal facet
of T3(A) is of the form

T3(A) ∩ {t ∈ Rn ; tj + tj∗ + tA(j∗) = ti + ti∗ + tA(i∗)},

where i is forward-sliding and minimal and j is backward-sliding and maximal, and a diagonal
switch can be performed on A with respect to i and j.

Proof. In the inequality description given by Theorem 3.27, the inequalities of the form (i) come
from facets of On. By Lemma 3.30 and Corollary 3.31, a diagonal switch can be performed with
respect to i and j if and only if i ̸= j and i∗ ̸= j∗. If i = j or i∗ = j∗, then the associated inequality
gives rise to a facet of On, Remark 3.29(ii) and (iii).

Remark 3.34. The above Theorem 3.33 almost gives a facet-description of T3(A). Indeed, we
know that its facets are associated to pairs of compatible minimal forward-sliding and maximal
backward-sliding nodes, but it is not mandatory that all such couples are associated to a facet.
Nonetheless, the collection of such couples is far smaller than the collection of all couples of
forward-sliding and backward-sliding nodes, and will reveal to be far more manageable thanks to
the diagonal flip.

Definition 3.35. The switching arrangement Hn is the collection of hyperplanes

H(i,j) = {t ∈ Rn : tj + tj∗ + tA(j∗) = ti + ti∗ + tA(i∗)}

for all couples (i, j) such that there exists a non-crossing non-universal cubic arborescence A :
[n] → [n] with i forward-sliding and minimal, and j backward-sliding and maximal and a diagonal
switch can be performed with respect to i and j.
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For t ∈ Rn, let A(t) be the collection of non-crossing arborescences A : [n] → [n] such that
t ∈ T ◦

3 (A). Observe, that A ∈ A(t) for any universal A : [n] → [n] and any t ∈ O◦
n. We can prove

the last main theorem of this section:

Theorem 3.36. For all t, t′ ∈ O◦
n \⋃H∈Hn

H, one has |A(t)| = |A(t′)|.
Proof. By Theorem 3.33, if t and t′ belong to the same maximal cone of O◦

n \ ⋃H∈Hn
H, then

A(t) = A(t′).
Suppose t ∈ C and t′ ∈ C′ where C and C′ are two adjacent maximal cones of O◦

n \⋃H∈Hn
H.

Then C and C′ are separated by a hyperplane H(i,j).
For A ∈ A(t), if (i, j) is not a couple with i minimal forward-sliding in A and j maximal

backward-sliding in A such that a diagonal switch can be performed, then A ∈ A(t′), as the
segment [t, t′] does cross any facet of T3(A).

Suppose the converse. Then A /∈ A(t′), but we can perform a diagonal switch on A with
respect to i and j to obtain A′ = FiBjA. We are going to prove that A′ ∈ A(t′). For a minimal
forward-sliding in A′, then one can list the possibilities: either a = j, or a∗ = i, or a∗ = j∗,
or a is forward-sliding in A (all other possibilities contradict the minimality of a or the fact that
µ(A′) = 3). In all these cases, as A is captured on t, we have ti+ti∗ +tA(i∗) ≤ ta+ta∗ +tA′(a∗). By
adjacency of C and C′, the segment [t, t′] does not cross any hyperplane of Hn other than H(i,j), so
t′j+t′j∗+t′A′(j∗) ≤ t′a+t′a∗+t′A′(a∗). The same arguments ensure that t′i+t′i∗+t′A′(i∗) ≤ t′b+t′b∗+t′A′(b∗)

for all bmaximal back-sliding in A′. By construction of t′, we have t′i+t′i∗+t′A′(i∗) ≤ t′j+t′j∗+t′A′(j∗).

Consequently, t′ ∈ T3(A′), meaning that A′ ∈ A(t′).
We have proven that |A(t)| ≥ |A(t′)|. By symmetry, both quantities are equal. The theorem

results from the fact that the graph of maximal cones of O◦
n \⋃H∈Hn

H is connected.

Corollary 3.37. If t ∈ O◦
n \⋃H∈Hn

H, then |A(t)| =
(
n
2

)
− 1.

Proof. By Theorem 3.36 it is enough to show |A(t)| =
(
n
2

)
− 1 for some t ∈ O◦

n \ ⋃H∈Hn
H.

Let tlex = (2, 22, . . . , 2n). Recall that for m ∈ N, 2m − 1 =
∑m−1

i=0 2i and thus 2m >
∑m−1

i=0 2i.
Thus for any triples (i1, i2, i3), (j1, j2, j3) with 1 ≤ i1 < i2 < i3 ≤ n and 1 ≤ j1 < j2 < j3 ≤ n,
2i1 + 2i2 + 2i3 = 2j1 + 2j2 + 2j3 if and only if (i1, i2, i3) = (j1, j2, j3). This implies that tlex ∈
O◦

n \⋃H∈Hn
H.

Let A : [n] → [n] be a non-crossing arborescence with µ(A) ≤ 3. If A is universal, then
A ∈ A(tlex). There are two such arborescences of intrinsic degree 2 by Corollary 3.18 and n − 3
of intrinsic degree 3 by Corollary 3.19(i). Otherwise, L(A) = L◦(A) = {ℓ} ⊆ [2, n − 2], see
Corollary 3.19. By Lemma 3.26, if j is backward-sliding and maximal, then j < ℓ, j∗ > ℓ and
A(j∗) = j∗+1. If i is forward-sliding and minimal, then i ≤ ℓ and A(i∗)−1 = i∗ > ℓ. Consequently,
A ∈ A(tlex) if and only if for all i minimal forward and j maximal backward:

2j + 2j
∗
+ 2A(j∗) < 2i + 2i

∗
+ 2A(i∗). (12)

As A is non-crossing, if j < i, then j∗ ≥ i∗. Assume j∗ ≥ i∗ + 1. Then 2A(j∗) > 2i + 2i
∗
+ 2A(i∗)

and thus A /∈ A(tlex). Otherwise, if i∗ = j∗, then Equation (12) holds. If j ≥ i, then A(i∗) > j∗

and thus Equation (12) also holds. Consequently, if A ∈ A(tlex), then there is p ∈ [ℓ] and
k ∈ [ℓ+ 1, n− 1] such that for all i < p, A(i) = k and for all p ≤ i < ℓ, A(i) = k + 1. If k > ℓ+ 1,
then ℓ is forward-sliding and minimal and 2k+1 > 2ℓ + 2ℓ+1 + 2ℓ+2. Thus A ∈ A(tlex) if and only
if k = ℓ+ 1. The number of those arborescences is

n−2∑

ℓ=2

ℓ∑

p=1

1 =

n−2∑

ℓ=2

ℓ =

(
n− 1

2

)
− 1.

Hence in total

|A(tlex)| =
(
n− 1

2

)
− 1 + (n− 1) =

(
n

2

)
− 1.
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Example 3.38. We consider the subdivision of On induced by Hn, and then merge the maximal
cones C and C′ such that A(t) = A(t′) for t ∈ C and t′ ∈ C′. Said differently, we consider the
subdivision Sn of On induced by the family of polytopes T3(A) for A with µ(A) ≤ 3.

For n = 6, thanks to a computer analysis, we can show that S6 is composed of 12 cones,
separated by the 5 hyperplanes of H6. Corollary 3.37 ensures that to each cone C correspond a
14-gon whose vertices are in bijection with the 14 non-crossing arborescences A with µ(A, t) ≤ 3
for all t ∈ C. In Figure 43 is pictured the dual graph of S6: each maximal cone is represented by
its 14-gon whose vertices are labelled by the corresponding non-crossing arborescence. The edges
of the dual graph are colored according to the hyperplane of H6 they correspond to. Moreover, the
vertices of the 14-gons are colored with the same colors: hence, following the cyan edge amounts to
performing a diagonal switch on the label of the cyan vertex (and similarly for the other colors).
As before, green vertices correspond to non-crossing arborescences A with µ(A) = 2, and blue
vertices to universal ones with µ(A) = 3.

3.2.3 Pivot polytopes of cyclic polytopes of dimension 2 and 3

The cyclic polytope Cycd(t) has a complete graph for d ≥ 4, but for d = 2 and d = 3, one can also
define the max-slope pivot polytope Π(Cycd(t), e1), even though it will not be the projection of an
associahedron. Hence, its vertices will not be associated (in general) to non-crossing arborescences,
but just to arborescences on n nodes. For the sake of completeness, we present here the study of
the cases d = 2 and d = 3. To this end, we make use of the method developed in the previous
sections (and the proof will be exposed in a more concise way).

Dimension 2 In dimension 2, whatever the chosen t ∈ Rn, n ≥ 4, the cyclic polytope Cyc2(t) is
not neighborly: as it is a polygon, its graph is not complete. Thus, its max-slope pivot polytope
is not in general the projection of an associahedron. In this section, we describe the max-slope
pivot polytope of Cyc2(t) for the objective function e1.

Theorem 3.39. For all t ∈ O◦
n, the 1-dimensional polytope Π(Cyc2(t), e1) has two vertices, one cor-

responding to the arborescence A
(2)
m defined by A

(2)
m (i) = i+1 for all i ∈ [n], and one corresponding

to A
(2)
M defined by A

(2)
M (1) = n and A

(2)
M (i) = i+ 1 for i ̸= 1, see Figure 44.

Proof. As Cyc2(t) is 2-dimensional, Π(Cyc2(t), e1) is 1-dimensional and has precisely two vertices.
Fix t ∈ O◦

n. When orienting Cyc2(t) along e1, the only improving neighbor of γd(ti) is γd(ti+1)
for i ̸= 1 ; on the other hand, γd(t1) has two improving neighbors: γd(t2) and γd(tn). Thus, there

are exactly two possible arborescences on Cyc2(t): A
(2)
m and A

(2)
M . Consequently A

(2)
m and A

(2)
M

correspond to the two vertices of Π(Cyc2(t), e1).

Remark 3.40. The arborescences A
(2)
m and A

(2)
M are universal in the sense that they appear as

vertices of Π(Cyc2(t), e1) for all t ∈ O◦
n. Note that A

(2)
m is captured on all t ∈ O◦

n by any

polynomial P (t) = a2t
2 + a1t+ a0 with a2 < 0 whereas A

(2)
M is captured when a2 > 0.

Last but not least, although A
(2)
m = Am is a non-crossing arborescence of degree 2 in the sense

of the previous section, this is not the case of A
(2)
M ̸= AM .

Dimension 3 In dimension d = 3, whatever the chosen t ∈ On, n ≥ 5, the cyclic polytope Cyc3(t)
is not neighborly: its graph is not complete. Thus, its max-slope pivot polytope is not in general
the projection of an associahedron. In this section, we will explore the max-slope pivot polytope
of the cyclic polytope Cyc3(t). First, we need to understand the edges of Cyc3(t).

Lemma 3.41. When orienting Cyc3(t) along e1, the vertex γd(ti) has at most 2 improving neighbors
for i ̸= 1: γd(tj) with j ∈ {i+1, n}. Moreover, every γd(tj) for 1 < j ≤ n is an improving neighbor
of γd(t1).
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+
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=
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+
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+
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+

t 4
+
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=
t 1

+
t 5

+
t 6
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+

t 4
+
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=
t 1

+
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+
t 6
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+

t 3
+
t 4

=
t 1

+
t 5

+
t 6

t 2
+

t 3
+
t 4

=
t 1

+
t 4

+
t 5

Figure 43: Dual graph of the subdivision of O6 induced by T3(A) for A non-crossing with µ(A) ≤ 3.
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Figure 44: The two arborescences A
(2)
m (Left) and A

(2)
M (Right) appearing as vertices of

Π(Cyc2(t), e1) for all t ∈ O◦
n, and degree 2 polynomials capturing them.

Proof. As Cyc3(t) is a simplicial 3-dimensional polytope, its facets are triangles. By Gale’s evenness
condition (see [Zie98] Theorem 0.7), the vertices γd(ta), γd(tb) and γd(tc) form a facet when there
is an even number of elements from {a, b, c} between the elements of [n]\{a, b, c}. This means
either {a, b, c} = {1, i, i + 1} for some 1 < i < n, or {a, b, c} = {i, i + 1, n} for some 1 < i < n.
Thus, edges of Cyc3(t) are [γd(ti),γd(ti+1)], [γd(t1),γd(ti)] and [γd(ti),γd(tn)]. Orienting them
along e1 yields the lemma.

Definition 3.42. A 3-arborescence is a map A : [n] → [n] with A(i) ∈ {i + 1, n} for i ̸= 1 (and
A(1) ∈ [n]).

Hence, by Lemma 3.41, each vertex of Π(Cyc3(t), e1) can be associated to a 3-arborescence.
Note that such arborescences can have crossings, contrarily to what we discussed so far.

The fact that Cyc3(t) is not neighborly also modifies the notion of capturing an arborescence.

Proposition 3.43. A 3-arborescence A corresponds to a vertex of Π(Cyc3(t), e1) if and only if there

exists a polynomial P of degree at most 3 such that (denoting τ(a, b) = P (b)−P (a)
b−a as usual):

• for all j /∈ {1, A(1)}, τ(1, A(1)) > τ(1, j).

• for all i ̸= 1, if A(i) = i+1, then τ(i, i+1) > τ(i, n), else if A(i) = n, then τ(i, n) > τ(i, i+1).

Proof. Fix t = (t1, ..., tn). A 3-arborescence A corresponds to a max-slope arborescence for the
linear program (Cyc3(t), e1) if there exists w = (w1, w2, w3) ∈ R3 such that A(i) = Aw(γd(ti)) for

all i ∈ [n], with Aw(v) = argmax
{

⟨w,u−v⟩
⟨e1,u−v⟩ : u e1-improving neighbor of v

}
. Denoting by P the

univariate polynomial P (t) = w3t
3 + w2t

2 + w1t, then ⟨γd(ti),w⟩ = P (ti), and the conditions of
the proposition precisely describe Aw.

Corollary 3.44. For all t ∈ O◦
n, a 3-arborescence corresponding to one of the vertices of Π(Cyc3(t), e1)

can have one of the following forms:

(i) For k ∈ [n− 1], define A
(3)
k by A

(3)
k (i) = i+ 1 for 1 ≤ i < k and A(i) = n for k ≤ i < n, see

Figure 45. There are n− 1 such arborescences.
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Figure 45: 3-arborescences captured by a degree 3 polynomial with positive leading coefficient.
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Figure 46: 3-arborescences captured by a degree 3 polynomial with negative leading coefficient.

(ii) For 1 < k ≤ j − 1 ≤ n − 1 and (j, k) ̸= (n,−1), define A
(3)
j,k by A

(3)
j,k(1) = j, A

(3)
j,k(i) = n for

1 ≤ i < k and A
(3)
j,k(i) = i + 1 for k ≤ i < n, see Figure 46. There are

∑n
j=3(j − 2) − 1 =(

n−1
2

)
− 1 such arborescences.

Proof. Fix t ∈ O◦
n. Write P (t) = w3t

3 + w2t
2 + w1t. If w3 = 0, then P is of degree 2: it can

capture A1 (when w2 > 0) or An−1 (when w2 < 0). There remain two cases.
First, suppose that the leading coefficient of P is positive, i.e. w3 > 0. We are going to prove

that a 3-arborescence captured by P is necessarily of the form A
(3)
k for some k ∈ [n−1]. Indeed, let

A be the arborescence captured by P on t. By Lemma 3.41, we know that A is a 3-arborescence.
Suppose that there exists i ̸= 1 such that A(i) = n and A(i+1) = i+2. Then τ(i, n) > τ(i, i+1)
and τ(i+ 1, i+ 2) > τ(i+ 1, n). By Lemma 3.5, the first inequality gives τ(i+ 1, n) > τ(i, i+ 1)
and the second τ(i+2, n) > τ(i+1, i+2). Then τ(i+1, i+2) > τ(i, i+1). Thus, as in the proof
of Theorem 3.11, there is α ∈]θi, θi+2[ with P ′′(α) > 0 and β ∈]θi+1, θn[ with P ′′(β) < 0, where
θi < θi+1 < θn. But this means that α < β, which contradicts the fact that the leading coefficient
of P is positive.

Consequently, if A(i) = i + 1, then A(i′) = i′ + 1 for all i′ ≥ i. If A(1) ̸= 2, then the same

reasoning applies (with i = 1). This proves that A = A
(3)
k for some k.

On the other side, if the leading coefficient of P is negative, i.e. w3 < 0, then similar arguments
apply to prove that, in the 3-arborescence A captured, if A(i) = i + 1, then A(i′) = i′ + 1 for all
i′ ≥ i. Suppose that A(1) = j for some j ∈ [2, n], then A(j − 1) = j, because, with Lemma 3.5,

τ(1, j) > τ(j, n), and τ(1, j) < τ(j − 1, j), thus τ(j − 1, j) > τ(j, n). This proves that A = A
(3)
j,k

for some 1 < k ≤ j − 1 ≤ n− 1.
As An−1 = Bn,n−1, we avoid double counting by requiring (j, k) ̸= (n, n− 1).

We now want to mimic Theorem 3.16.

Theorem 3.45. For k ∈ [n− 1], we define:

Pf
3

(
A

(3)
k , t

)
= [t1 + t2 + t3, tk−1 + tk + tn]

Pb
3

(
A

(3)
k , t

)
= [tk + tk+1 + tn, tn−2 + tn−1 + tn]
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For 1 < k ≤ j − 1 ≤ n− 1, we define:

Pf
3

(
A

(3)
j,k, t

)
= [min(t1 + tj + tj+1, tk + tk+1 + tn), tn−2 + tn−1 + tn]

Pb
3

(
A

(3)
j,k, t

)
= [t1 + t2 + t3, max(t1 + tj−1 + tj , tk−1 + tk + tn)]

For t ∈ O◦
n, a 3-arborescence A with A = A

(3)
k (for some k ∈ [n−1]) or A = A

(3)
j,k (for some 1 <

k ≤ j−1 ≤ n−1), A corresponds to a vertex of Π(Cyc3(t), e1) if and only if Pf
d (A, t)∩Pb

d (A, t) = ∅.

Proof. This proof is slightly different from the one of Theorem 3.16 because we can not benefit from
Lemma 3.15, as Π(Cyc3(t), e1) is not the projection of an associahedron. Nevertheless, the same
proof than for Theorem 3.16, applying Gordan’s lemma to the inequalities of Proposition 3.43,
gives that A can be captured on t if and only if Pf

3 (A, t) ∩ Pb
3 (A, t) = ∅ where:

Pf
3 (A, t) = conv {tx + ty + tz : x < y < z all triples such that A imposes τ(x, y) > τ(x, z)}

Pb
3 (A, t) = conv {tx + ty + tz : x < y < z all triples such that A imposes τ(x, y) < τ(x, z)}

On the one hand, A
(3)
k imposes τ(x, y) > τ(x, z) for (x, y, z) ∈ {(1, 2, i)}i≥3∪{(i, i+1, n)}i≤k−1;

and τ(x, y) < τ(x, z) for (x, y, z) ∈ {(a, a + 1, n)}a≥k. Analyzing the minimum and maximum
possible sums of triplets gives the desired endpoints of both segments.

On the other hand, A
(3)
j,k imposes τ(x, y) > τ(x, z) for (x, y, z) ∈ {(1, j, i)}i>j ∪{(i, i+1, n)}i≥k;

and τ(x, y) < τ(x, z) for (x, y, z) ∈ {(1, a, j)}a<j ∪ {(a, a + 1, n)}1<a<k. Analyzing the minimum
and maximum possible sums of triplets give the desired endpoints of both segments.

This result allows us to determine which 3-arborescences are universal in the sense that they
correspond to a vertex of Π(Cyc3(t), e1) for all t ∈ O◦

n, and to give an inequality description of
their realization set otherwise.

Corollary 3.46. For all k ∈ [n−1], the 3-arborescence A
(3)
k is universal. For (j, k) ∈ {(3, 2), (4, 2), (n, n−

2)}, the 3-arborescence A
(3)
j,k is universal.

For 1 < k ≤ j − 1 ≤ n− 1 with (j, k) /∈ {(3, 2), (4, 2), (n, n− 2), (n, n− 1)}, the 3-arborescence

A
(3)
j,k is not universal, and corresponds to a vertex of Π(Cyc3(t), e1) if and only if

t ∈ O◦
n ∩

{
t ∈ Rn ;

tk−1 + tk + tn < t1 + tj + tj+1 when k ̸= 2 and j ̸= n
t1 + tj−1 + tj < tk + tk+1 + tn

}
⊊ O◦

n

Proof. For all t ∈ O◦
n, and k ∈ [n − 1], it is easily seen that Pf

3

(
A

(3)
k , t

)
and Pb

3

(
A

(3)
k , t

)
do not

intersect.
For t ∈ O◦

n and 1 < k ≤ j − 1 ≤ n − 1, Pf
3

(
A

(3)
j,k, t

)
and Pb

3

(
A

(3)
j,k, t

)
do not intersect if and

only if tk−1 + tk + tn < t1 + tj + tj+1 and t1 + tj−1 + tj < tk + tk+1 + tn. The first inequality is
defined only when k ̸= 2 and j ̸= n. This gives the last part of the above corollary.

Furthermore, the above inequalities are redundant with respect to the ones of O◦
n if and only

if (j, k) ∈ {(3, 2), (4, 2), (n, n− 2)}.

Definition 3.47. For n, the 3-switching arrangement H(3)
n is the collection of hyperplanes defined

for 1 < k ≤ j − 1 ≤ n− 1 by:

Hj,k = {t ∈ Rn ; tk + tk+1 + tn = t1 + tj + tj+1}

Remark that the two inequalities of the above corollary correspond to the hyperplanes Hj,k−1

and Hj−1,k. Consequently, the same ideas as for Corollary 3.37 allows us to prove the following
main results:

Theorem 3.48. The number of vertices of Π(Cyc3(t), e1) is the same for all t ∈ O◦
n \⋃

H∈H(3)
n

H.
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Proof. By Corollary 3.46, if t and t′ belong to the same maximal cone of O◦
n \
⋃

H∈H(3)
n

H, then the

3-arborescences captured on t and t′ are the same. Thus the number of vertices of Π(Cyc3(t), e1)
and Π(Cyc3(t

′), e1) are the same.

For a maximal cone C of the arrangement H(3)
n , we denote by A(3)(C) the set of 3-arborescences

captured on (any) t ∈ C. Take two adjacent maximal cones C and C′. Suppose that, for some

1 < k ≤ j − 1 ≤ n − 1 with (j, k) /∈ {(3, 2), (4, 2), (n, n − 2), (n, n − 1)}, A
(3)
j,k ∈ A(3)(C) but

A
(3)
j,k /∈ A(3)(C′). Then the hyperplane separating C and C′ is either Hj−1,k or Hj,k−1. Suppose

it is Hj−1,k, then A
(3)
j+1,k−1 /∈ A(3)(C) (as C is not on the side of Hj−1,k where A

(3)
j+1,k−1 can be

captured) but A
(3)
j+1,k−1 ∈ A(3)(C′) because C′ is on the side of Hj−1,k where A

(3)
j+1,k−1 can be

captured, and on the same side of Hj+1,k−2 as C, where A
(3)
j+1,k−1 can be captured. If it were

Hj,k−1, then A
(3)
j−1,k+1 ∈ A(3)(C) \ A(3)(C′) for the same reasons.

As all other 3-arborescences can be captured both in C and C′, we deduce that |A(3)(C′)| ≥
|A(3)(C)|. This proves that the cardinal |A(3)(C)| is the same for all maximal cone C of the

hyperplane arrangement H(3)
n (as the graph of adjacency of its maximal cones is connected).

Corollary 3.49. For all t ∈ O◦
n \⋃

H∈H(3)
n

H, the number of vertices of Π(Cyc3(t), e1) is 3n− 7.

Proof. By Theorem 3.48, it is enough to compute the number of vertices of Π(Cyc3(t), e1) for some
t ∈ O◦

n \⋃
H∈H(3)

n
H. Take tlex = (1, 2, ..., 2n−1) ∈ O◦

n, then deciding if ta + tb + tc < tx + ty + tz
amount to knowing which triple of indices is lexicographically the greatest between (a, b, c) and
(x, y, z). Thus, tlex /∈ ⋃

H∈H(3)
n

H.

By the inequalities of Corollary 3.46, A
(3)
j,k is captured on tlex if and only if it falls into one of

the following (mutually exclusive) cases:

• k = 2 and j ∈ [3, n− 1], accounting for n− 3 possibilities

• j = n− 1 and k ∈ [3, n− 2], accounting for n− 4 possibilities

• j = n and k = n− 2, accounting for 1 possibility

These, plus the n− 1 universal arborescences A
(3)
k sum up to 3n− 7.

Example 3.50. For n = 5, Π(Cyc3(t), e1) are octagons, all but 1 vertex of which correspond to
universal 3-arborescences. There are 2 possible such octagons, depending on whether t2+ t3+ t5 <
t1 + t4 + t5 or the converse, see Figure 47.

For n = 6, Π(Cyc3(t), e1) are 11-gons, all but 3 vertices of which correspond to universal 3-
arborescences. There are 5 possible such 11-gons, depending on the position of t with respect to
the 3 hyperplanes {t ∈ Rn ; t2 + t3 + t6 = t1 + t4 + t6}, {t ∈ Rn ; t2 + t3 + t6 = t1 + t5 + t6} and
{t ∈ Rn ; t3 + t4 + t6 = t1 + t5 + t6}, see Figure 48.

For n = 7, Π(Cyc3(t), e1) are 14-gons, all but 5 vertices of which correspond to universal 3-
arborescences. There are 12 possible such 14-gons, depending on the position of t with respect to

the 6 hyperplanes of H(3)
6 .

In general, one can draw the graph whose vertices are all 3-arborescences on n nodes, and where
A and A′ are linked by an edge when there exists t ∈ O◦

n such that the vertices of Π(Cyc3(t), e1)
corresponding to A and A′ appear and are linked by an edge. This amounts to consider the graph

of “flips” of 3-arborescences: flipping a 3-arborescence A
(3)
k gives A

(3)
k+1 for k ∈ [n − 2], flipping

A
(3)
j,k gives either A

(3)
j+1,k or A

(3)
j,k+1, and flipping A

(3)
n−1 gives either A

(3)
3,2 or A

(3)
n−2. Though tedious,

this definition of flips is made clear in the graph depicted in Figure 49 for n = 7. All max-slope
pivot polytope Π(Cyc3(t), e1) correspond to a great cycle in this graph. To count these great

cycles, we look at the paths from A
(3)
1 to A

(3)
n−1 that only uses 3-arborescences of the form A

(3)
j,k.

These paths are in bijection with Dick paths of length 2(n− 3), thus they are 1
n−2

(
2(n−3)
n−3

)
many

(Catalan number). Note that for n = 5 and n = 6, all such paths do correspond to max-slope
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(0, 0, 0, 0, 1)

(0, 0, 0, 1, 1)

(0, 0, 1, 1, 1)

(0, 1, 1, 1, 1)•

•

•

•
•
t2 + t3 + t5 = t1 + t4 + t5

Figure 47: For n = 5, Π(Cyc3(t), e1) are octagons. Green and blue vertices represent universal
3-arborescences (green are captured by degree 2 polynomials), the red vertex is non-universal. For

t ∈ O◦
5 with t2 + t3 + t5 < t1 + t4 + t5, the 3-arborescence A

(3)
4,3 can be captured, while A

(3)
5,2 can

not (and conversely).

pivot polytopes (in the sense that there exists a t ∈ O◦
n such that the vertices of Π(Cyc3(t), e1)

correspond to the 3-arborescences appearing in this path). But for n = 7, there are only 12
possible max-slope pivot polytopes: not all 14 paths correspond to a max-slope pivot polytope,
only 12 of them do. Again, one can wonder how many combinatorially different Π(Cyc3(t), e1)
there are for all n.

This concludes this complementary section on 2- and 3-dimensional problems, and closes (al-
most completely) the case. As per usual, we devote the last sub-section to some perspectives and
open questions. This sub-section will concern the general problem for d ≥ 4, so the readers can
forget what they just read and have a look again at Figures 38 to 40 and 43.

3.2.4 Perspectives and open questions

Computational remarks All the objects mentioned in this section have been implemented with
Sage, allowing to compute the above examples. There are two possibilities for computing the
maximal cones of the subdivision Sn mentioned in Example 3.38, and especially for counting the
number of such cones. We say that two maximal cones correspond to two combinatorially different
cyclic associahedra.

A straightforward way to do so is to take the hyperplane arrangement Hn and compute the
maximal cones it induces, as topes of the corresponding oriented matroid. It is then easy to list the
arborescences captured in each tope (it amounts to checking for each 3-arborescence if it respects
the inequalities of its realization set), and to count how many different lists we get. To speed up
this process, we use the forcing poset Fn of hyperplanes, that is the poset of inclusion of H+ ∩On

for H ∈ Hn. Indeed, a tope corresponds to a down set of the forcing poset (but not all down sets
correspond to topes).

On Figure 50 are the forcing posets F6 (Left) and F7 (Right, only the poset structure, without
labeling). Quite remarkably, F6 has 12 down-sets which correspond to the 12 cyclic associahedra of
Example 3.38. This explains the cubical structure of the dual graph of the polyhedral subdivision
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t2 + t3 + t6 = t1 + t4 + t5

t2 + t3 + t6 = t1 + t5 + t6

t3 + t4 + t6 = t1 + t5 + t6

Figure 48: For n = 6, Π(Cyc3(t), e1) are 11-gons. Each 11-gon correspond to a subcone of O◦
6 on

which its 3-arborescences are precisely the one captured. There are 5 such subcones, and the five
colored edges figure the dual graph of this subdivision. For example, two 11-gons are linked by a
red thick edge when their 11-gons differ only on the label of the red vertex.
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Figure 49: Green and blue dots represent universal arborescences, red dots non-universal ones.
Each Π(Cyc3(t), e1) for t ∈ O◦

7 correspond to a great circle in this graph. A great circle is composed

of the path from the green node to the other one on the left of the picture (using A
(3)
k s) and a

path on the right of the picture (going from top to bottom). Not all great circles correspond to a
Π(Cyc3(t), e1).
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t3 + t4 + t5 ≤ t2 + t5 + t6

t3 + t4 + t5 ≤ t1 + t5 + t6

t2 + t4 + t5 ≤ t1 + t5 + t6

t2 + t3 + t4 ≤ t1 + t5 + t6

t2 + t3 + t4 ≤ t1 + t4 + t5

Figure 50: The forcing posets F6 (Left) and F7 (Right). Having only 1 element, F5 is not drawn.

for n = 6 in Figure 43: oriented from left to right and top to bottom, it is the graph of a lattice
of ideals, which is a distributive lattice, hence cubical.

Unfortunately, not all down-sets of F7 do correspond to topes of the polyhedral subdivision
for n = 7: F7 has 336 down-sets whereas there are only 187 topes in the polyhedral subdivision,
each of them corresponding to a combinatorially different cyclic associahedron. This comes from
the fact that being in some subsets of half-spaces forces to be in some other subsets, whereas the
forcing poset only records if being in one half-space forces to be in another. But trying to construct
the forcing relation for subsets of half-spaces would become impracticable, as there are already 15
elements in F7 (so 215 subsets) and 35 in F8 (so 235 subsets).

The failure of this first method advocates for a new one. Going back to Example 3.23, Corol-
lary 3.37 implies that all cyclic associahedra come from a great cycle in the sub-graph of the Tamari
graph induced by the non-crossing arborescences A with µ(A) ≤ 3 (i.e. the graphs pictured in
Figures 38 and 39 and their counterparts for greater n). We can run through all these great cycles,
and for each of them compute the intersection of T3(A) for the non-crossing arborescences in the
great cycle. The family of arborescences forming the great cycle correspond to a cyclic associahe-
dron if and only if this intersection is non-empty. This algorithmic solution gives the number of
combinatorially different cyclic associahedra for n = 8 by testing “only” 33592 great cycles.

n 5 6 7 8
number of combinatorially different cyclic associahedra Asso2(t) 1 12 187 6179

Assets and limits of the current approach, open questions This computer experiment raises the
following natural open question: How many combinatorially different cyclic associahedra Asso2(t)
are there for n ≥ 9? We have proven that all cyclic associahedra Asso2(t) have the same number
of vertices

(
n
2

)
− 1 by Corollary 3.37. We know how to determine if a non-crossing arborescence A

satisfies µ(A, t) ≤ 3 or not (by checking if a set of linear inequality has a solution, i.e. by solving
a linear problem), but we do not know how to efficiently compute the number of combinatorially
different cyclic associahedra.

On the other hand, the works presented so far only deal with the case d ≤ 3. Numerous
questions are still open for d ≥ 4. Indeed, Theorem 3.16 gives a way to check if, for a given t, a
non-crossing arborescence A satisfies µ(A, t) ≤ t, but it remains difficult to compute Td(A). To
do so, one would need to determine for which t do some (d− 2)-dimensional polytopes intersect,
but these polytopes have coordinates of degree d− 2 in t, making the question (at least) as hard
as computing a semi-algebraic set of degree d − 2. With the help of the cylindrical algebraic
decomposition, see [BPR06, Chapter 5], one can hope for dealing with the case d = 4 and n = 6,
but going higher would require a better mathematical understanding of our problem.

Nonetheless, computer experiments indicate that the number of vertices of Assod−1(t) depends
on t for d = 4. Moreover, given a set A of non-crossing arborescences, it is unclear whether the
common realization set

⋂
A∈A Td(A) is connected or not, and we believe that there exists A such

that it is not connected, even for d = 4 (but have not found an example yet).
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3.3 Max-slope pivot polytopes of products of polytopes

This section is an ongoing work on a conjecture of Vincent Pilaud and Raman Sanyal.

In the previous section, we have computed the max-slope pivot polytopes of cyclic polytopes.
Especially, if one reviews the computation, he or she will notice that the key objects are the slopes

in the plane (c,ω) between the projection of adjacent vertices u,v ∈ V (P), namely ⟨ω,u−v⟩
⟨c,u−v⟩ . The

comparisons between these slopes determine the arborescence associated to ω, and, for fixed c, u
and v, these slopes are linear with respect to ω. In the present section, we will emphasize this
idea by considering the partially ordered set that records only these comparisons and forgets the
exact values of the slopes. Not only will this grant us, in Section 3.3.1, a second proof that the
max-slope pivot polytope of the standard cube is the permutahedron [BDLLS22], and that the
max-slope pivot polytope of a simplex is an associahedron [BDLLSon], but it will also give access,
in Section 3.3.2, to the max-slope pivot polytope of a product of simplices (and grasp some hint
about products of polytopes in general).

Generalized permutahedra will be at the center of this part, as we unveil the link between the
normal fan of the max-slope pivot polytope and the braid fan. Besides Section 3.1 which introduces
the preliminary notions concerning max-slope pivot rule polytopes, the useful definitions on pre-
orders and braid fans are presented in Sections 1.1 and 1.2.3. We will directly use the notations
defined in these preliminaries.

The watchword of this section is that max-slope pivot rule polytopes can be embedded in the
braid fan and thought of as akin to generalized permutahedra. As a consequence, we will be able
to detail max-slope pivot polytopes of products of simplices and prove that they are linked to the
notion of shuffle defined in [CP22] on generalized permutahedra. In particular, this allows us to
give new families of realizations of the multiplihedron and the constrainahedron in Example 3.75.
These polytopes are generalizations of the permutahedron and the associahedron. Especially,
the constrainahedron was introduced by Bottman and Poliakova [Bot19, Pol21] in order to study
higher version of the A∞ operad. The vertices of the constrainahedron are associated to bracketing
on the 2-dimensional m × n-grid, whereas the vertices of the usual associahedron correspond to
usual bracketing (see Section 1.2.4). As to the multiplihedron, its vertices are in bijection with m-
painted binary n-trees, and its combinatorics arises from the study of maps between A∞-algebras,
see [For08] for an historical presentation of the subject.

In this section, the central tools are only basic linear algebra (namely linear maps and dimen-
sions of vector spaces), and (shuffle of) partially ordered set. Although these notions are well
known to the reader, the notions will feel heavy and unwieldy, making the proofs technical. The
reader is advised to first read the theorems and examples, and then to keep in mind that the idea
is to prove that what the framework suggests is indeed true.

We start by exposing the general theory of how to embed max-slope pivot polytopes into the
realm of generalized permutahedra. To this end, we need an elementary lemma:

Lemma 3.51. The projection π : Rn → Rn−1 that forgets the last coordinate sends the braid fan Bn

onto the braid fan Bn−1. For a surjection α of [n− 1], the pre-image of the cone Cα is exactly the
union of cones: π−1

(
Cα

)
=
⋃

σ extends α Cσ.

Proof. This fact is straightforward from the definition of Cσ:

Cσ =

{
x ∈ Rn ;

xi < xj if σ(i) < σ(j)
xi = xj if σ(i) = σ(j)

}

As we want to discuss max-slope pivot polytopes as a whole and not only their vertices, we
first detail the combinatorial interpretation of the faces of the max-slope pivot polytope, see
[BDLLS22, Section 5]. For the rest of this discussion, we fix a linear program (P, c), on a polytope
P of dimension d, n its number of vertices, and m its number of edges. As before, the set of
vertices of P is V (P), and vopt is the vertex maximizing ⟨v, c⟩. Besides, Ec(P) will be the set of

c-improving edges of P, that is edges uv of P with ⟨u, c⟩ < ⟨v, c⟩. As always: τω(u,v) =
⟨ω,u−v⟩
⟨c,u−v⟩
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Definition 3.52. A multi-arborescence A is a function A : V (P)∖{vopt} → 2V (P) such that A(v) is
a non-empty subset of c-improving neighbors of v. By convention A(vopt) = {vopt} when needed.

A secondary direction ω captures the following multi-arborescence (where“Argmax”designates
the set of maximizers of the studied quantity) :

Aω(v) = Argmax

{ ⟨ω,u− v⟩
⟨c,u− v⟩ ; uv ∈ Ec(P)

}

A multi-arborescence A is coherent when there exists ω such that A = Aω, and we denote
τω(A(u)) = τω(u,v) for any

9 v ∈ A(u).

We say that a multi-arborescence A refines a multi-arborescence A′ when A(v) ⊆ A′(v) for all
v ∈ V (P). In this case, we denote by A ⊆ A′ this relation, and by A the corresponding partially
ordered set completed by an arbitrary minimal element ∅. The following theorem gives access to
the face lattice of the max-slope pivot polytope.

Theorem 3.53. ([BDLLS22, Theorem 5.4]) For a linear program (P, c), the lattice of coherent
multi-arborescences A is isomorphic to the face lattice of the max-slope pivot polytope Π(P, c).

Fix a linear program (P, c) and a coherent multi-arborescence A on it, we denote FA the
corresponding face in the max-slope pivot polytope Π(P, c). By (a refined version of) Theorem 3.1,
we know that the normal cone at FA is precisely the cone of ω that captures A. We call N (A)
this cone, and set N (A) = ∅ when A is not coherent.

In order to know what multi-arborescence a given ω captures, one does not need the exact
value of ω, but only the comparisons between the slopes ω gives to each improving edge uv of
P (when projecting this edge into the plane (c,ω)). This invites us to define the two following
pre-orders.

Definition 3.54. For a given ω ∈ Rd, its slope vector is θ(ω) :=
(
τω(u,v) ; uv ∈ Ec(P)

)
∈ REc(P).

Moreover, a given ω induces a pre-order on Ec(P), called its slope pre-order, by considering
uv ≼ω u′v′ when τω(u,v) ≤ τω(u

′,v′), or equivalently θ(ω)uv ≤ θ(ω)u′v′ .

The knowledge of the slope pre-order of ω fully determines which multi-arborescence it cap-
tures, and this pre-order can be retrieved from comparison between coordinates of its slope vector.
Note that the map ω 7→ θ(ω) is a linear map.

Furthermore, if ω ∈ Rd captures a multi-arborescence A, it necessarily satisfies some slope
inequalities, i.e. certain relations of its slope pre-order can be deduced from the capture of A. For
instance, if ω captures A, then the improving edges uv with v ∈ A(u) are greater (for the slope
pre-order of ω) than any improving edge uv′. And we have seen in the previous Section 3.2 that
Lemma 3.5 allows us to compare other slopes between them thanks to the triangles in the graph
GP.

We thus endow A with a pre-order of its own:

Definition 3.55. A multi-arborescence A induces an utter slope pre-order on the set Ec(P) by
uv ≼A u′v′ when τω(u,v) ≤ τω(u

′,v′) for all ω ∈ Rd capturing A. Said equivalently:

uv ≼A u′v′ ⇐⇒ ∀ω ∈ N (A), uv ≼ω u′v′

It is then immediate to see that:

Proposition 3.56. A given ω ∈ Rd captures a multi-arborescence A if and only if ≼ω extends ≼A.

The drawback of the utter slope pre-order of A is that it might encapsulate geometric con-
straints, while we would like to only care about the combinatorial constraints. Indeed, one could
think that the utter slope pre-order is obtained by first enforcing, for all u, that uv′ ≼A uv
when v ∈ A(u), and then repeatedly applying Lemma 3.5 to deduce all possible slope inequalities.

9Note that the slope does not depend on v ∈ A(u) by definition of the multi-arborescence.
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Nevertheless, this is false: it can happen that all ω capturing A respect a slope inequality that
cannot be deduced by Lemma 3.5, see Example 3.76 and Figure 54(Bottom Right).

The other inconvenient of the slope vector is that it compares all the edges: not only have
we seen that it implies comparisons that cannot be read from the multi-arborescence, but it
also involves the slope vector which live in REc(P). We would like to keep less information and
consequently embed our problem in a smaller dimension. To this end, we restrict the utter slope
pre-order to the edges that are used by the multi-arborescence (and forget the other ones), this is
easier done by considering the vertices of P instead of its edges:

Definition 3.57. For a multi-arborescence A and a given ω ∈ Rd, the associated restricted slope
vector is ϑA(ω) :=

(
τω(A(v)) ; v ∈ V (P) ∖ {vopt}

)
∈ RV (P)∖{vopt}. A multi-arborescence A

induces an adapted slope pre-order on the set V (P)∖{vopt} by u ⊴A v when τω(A(u)) ≤ τω(A(v))
for all ω ∈ Rd capturing A, or equivalently ϑA(ω)uv ≤ ϑA(ω)u′v′ for all ω ∈ N (A).

Finally, we define a map to encompasses all the restricted slope vectors. All these maps are
illustrated in Figure 51.

Definition 3.58. The adapted slope vector associated to ω ∈ Rd is defined by ϑ(ω) = ϑAω (ω).

In the utter slope pre-order, the improving edges uv with v ∈ A(u) are greater than any
improving edge uv′. Conversely, given a pre-order on Ec(P), such that for all u ∈ V (P) the maxima
of
(
uv
)
v ; uv∈Ec(P)

are equivalent, then this pre-order determines a unique multi-arborescence.

Nevertheless, this is no longer true for the adapted slope pre-order: we will see that several
coherent multi-arborescences share the same adapted slope pre-order.

Still, the adapted slope pre-order is a restriction of the utter one:

Lemma 3.59. For a multi-arborescence A and a vertex u ∈ V (P) ∖ {vopt}, fix arbitrarily a rep-
resentative vu ∈ A(u). The map u 7→ uvu is an injective (pre)order preserving map from the
adapted pre-order to the utter pre-order.

Proof. The map u 7→ uvu is clearly injective. As τω(A(u)) = τω(u,vu) by definition, this map
is (pre)order preserving.

The utter and the adapted slope pre-orders are linked to the braid fan. Indeed, for each of them,
we directly compare the slopes. The maps θ : Rd → Rm , ϑA : Rd → Rn−1, and ϑ : Rd → Rn−1 will
play a crucial role in what follows. The next theorem will show that the two first maps embed the
pivot polytope into the realm of generalized permutahedra and braid fans, even though they have
the undeniable handicap of raising the dimension. The last map ϑ is not, in general, well-behaved,
but it will reveal powerful once the aforementioned handicap dealt with.

Definition 3.60. In a fan F , a great cone is a cone that can be written as the union of cones of F .
A fan G is embedded into a fan F when the cones of G are great cones of F .
In the braid fan Bn, a pre-order cone is a great cone associated to a pre-order ≤ and defined

as C≤ =
⋃

σ extends ≤ Cσ for σ surjection.

Theorem 3.61. Fix a linear program (P, c), with n = |V (P)| and m = |Ec(P)|.
(a) The map θ : Rd → Rm is an injective linear map that sends the normal fan NΠ(P,c) of Π(P, c)

onto a (complete) fan θ
(
NΠ(P,c)

)
embedded into the sub-braid fan Bm ∩ Im(θ), inside Rm.

Moreover, a cone θ(N (A)) is the intersection of Im(θ) with the pre-order cone C≼A .
(b) For a given multi-arborescence A, the map ϑA : Rd → Rn−1 is a linear map that sends the

cone N (A) onto a great cone of the sub-braid fan Bn−1 ∩ Im(ϑA) inside Rn−1. Moreover, the
cone ϑA(N (A)) is the intersection of Im(ϑA) with the pre-order cone C⊴A .

Remark 3.62. A sub-braid fan is not necessary a braid fan: it is only a sub-fan of a braid fan, that
is the intersection of a braid fan with a linear space (usually of lower dimension).
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Proof of Theorem 3.61. (a) As the coordinate of θ(ω) on uv is ⟨ω,v−u⟩
⟨c,v−u⟩ , it is linear in ω. Fur-

thermore, if θ(ω) = 0, then ω is orthogonal to all edges of P, so ω = 0 as P has dimension d.
Consequently, θ is an injective linear map.

Fix a cone C in θ
(
NΠ(P,c)

)
and consider its pre-image: by injectivity, it is a cone N (A) for

some multi-arborescence A. By Proposition 3.56, a vector ω ∈ Rd belongs to N (A) if and only
if the slope pre-order of ω is an extension of the utter slope pre-order of A. This is equivalent to
requiring that the entries of the slope vector θ(ω) respect coordinate-wise equalities and inequali-
ties. Consequently, ω ∈ N (A) if and only if θ(ω) belongs to one of the cones Cσ for σ an extension
of the utter slope pre-order, i.e. C = Im(θ) ∩ ⋃σ extends ≼A

Cσ. As each cone of θ
(
NΠ(P,c)

)
is a

union of cones of Bm intersected with Im(θ), the embedding is proven.
(b) For a multi-arborescence A and a vertex u ∈ V (P)∖{vopt}, fix arbitrarily a representative

vu ∈ A(u), then τω(A(u)) = τω(u,vu). Consider the projection πA : REc(P) → RV (P)∖{vopt}

that forgets all coordinates but the ones associated to (u,vu) for u ∈ V (P) ∖ {vopt}. Then,
by definition, ϑA = πA ◦ θ, and πA projects the cone θ(N (A)) of θ

(
NΠ(P,c)

)
onto the cone

ϑA(N (A)). On top of that, by Lemma 3.51, this projection πA projects Bm onto (a fan lin-
early isomorphic to) Bn−1. Hence, ϑA(N (A)) is a union of cones of Bn−1. More precisely,
ϑA(N (A)) = Im(ϑA)∩

⋃
σ extends ≼A

πA
(
Cσ

)
. As the projection πA forgets all but the coordinates

on uvu, Lemma 3.59 ensures that πA
(
Cσ

)
= Cα for some α that extends ⊴A, i.e. ϑA(N (A)) =

Im(ϑA) ∩
⋃

α extends ⊴A
Cα.

Remark 3.63. If P is not full dimensional but embedded into higher dimension, then the kernel of
θ is the sub-space orthogonal to the affine hull of P. This does not change the core of the following
results, but would overburden the notations.

In general, θ
(
NΠ(P,c)

)
is not a complete fan in dimension m. As such, it does not coarsen

the braid fan Bm, and Π(P, c) is not a deformed permutahedron (in the sense of Section 2).
Nonetheless, when Q is a projection of P, then NQ is the intersection of NP by a sub-space, see
[Zie98, Lemma 7.11]. This motivates the following conjecture.

Conjecture 3.64. For all polytopes P ⊂ Rd with m edges, and objective function c ∈ Rd, the
max-slope pivot polytope Π(P, c) is the orthogonal projection of a generalized permutahedron whose
normal fan coarsens Bm.

The projection hinted at in the above conjecture would be the orthogonal projection onto Im(θ).
If a generalized permutahedron R exists that answers the conjecture, its normal fan NR would
satisfy NR ∩ Im(θ) = θ

(
NΠ(P,c)

)
. A natural way to introduce NR (as a coarsening of the braid fan

Bm) would be to require the maximal cones of NR to be exactly C≼A =
⋃

σ extends ≼A
Cσ for A a

multi-arborescence on P, but two problems occur. Firstly, it is not mandatory, in general, that
all σ extend a ≼A for some multi-arborescence A: in order to properly define the coarsening NR,
one would need to choose what to do with the cones Cσ for σ that does not extend a ≼A. On the
other hand, it is not clear if there exists a way to choose this coarsening such that NR is a fan,
and even less clear how to guarantee its polytopality.

Another consequence of the non-completeness of θ
(
NΠ(P,c)

)
inside Bm is that it may happen

that θ(N (A)) does not intersect a cone Cσ, even though σ extends ≼A. This implies that given
a multi-arborescence A and a surjection σ that extends the utter slope pre-order ≼A, it can be
impossible to find ω that captures A with slope pre-order σ.

To confront this non-completeness, one would like to drop dimension, and consider, for instance,
the map ϑ, as it goes into RV (P)∖{vopt} instead of REc(P). Although the map θ is linear on the
whole normal fan of Π(P, c), the map ϑA depends on the chosen multi-arborescence A. Therefore,
even though two cones ϑA(N (A)) and ϑA′(N (A′)) live in the same braid fan Bn−1, they may lie
in different sub-spaces Im(ϑA) and Im(ϑA′). Moreover, they may also intersect, and the collection
of cones

(
ϑA(N (A))

)
for A a coherent multi-arborescence is not a fan in general. In a word: the

map ϑ is not an injective (piece-wise) linear map in general.
Yet, Theorem 3.61 embeds max-slope pivot polytopes into the realm of generalized permu-

tahedra. In particular, this allows us to study the capture of a multi-arborescence as a purely
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Figure 51: (Middle) The linear maps and projections that embeds the normal fan of Π(P, c) into
braid fans of different dimensions. (Left) The real vector spaces these maps have for domains.
(Right) Utter and adapted pre-orders associated to the multi-arborescence, and their restrictions.

combinatorial phenomenon. Before giving three different applications that benefits from this ap-
proach, we deal with parallelisms. As parallel edges always have the same slope when projected
onto the plane (c,ω), we can simply keep one edge per parallelism class. We make that precise:

Definition 3.65. In a polytope P, two edges uv and u′v′ are parallel when v − u and v′ − u′ are
linearly dependent. The set of parallelism classes of edges P is denoted Ec(P), and the number of
classes m.

Theorem 3.66. For a linear program (P, c), fix a representative fX for each class X of parallelism
of edges in Ec(P). Let ρ : Rm → Rm be the projection that forgets all but the coordinates associated
to (fX)X∈Ec(P)

. Then θ := ρ ◦ θ : Rd → Rm is a linear injection.

Moreover, θ(N (A)) is the intersection of Im(θ) with the pre-order cone of Bm associated to the
pre-order that ≼A induces on Ec(P).

Proof. If uv and u′v′ are parallel, then θ(ω)uv = ⟨ω,v−u⟩
⟨c,v−u⟩ =

⟨ω,v′−u′⟩
⟨c,v′−u′⟩ = θ(ω)u′v′ . Consequently,

if π ◦ θ(ω) = 0, then all coordinates of θ(ω) are zero, and ω = 0 by injectivity of θ.
The above equality also implies that uv ≃A u′v′ when uv and u′v′ are parallel. So Lemma 3.51

ensures that the projection ρ sends the (triangulation of the) great cone associated to ≼A in
Bm∩Im(θ) onto the (triangulation of the) great cone associated to the quotient of≼A on parallelism
classes.

We now use the power of these embeddings inside (sections of) braid fans to study the max-
slope pivot polytopes of cubes, simplices and products of simplices.

3.3.1 Max-slope pivot polytopes of the cube and the simplex

Max-slope pivot polytope of a cube The standard cube □d has been introduced in Section 1.2.2.
Note that applying an affine transformation to P and c amounts to applying the same linear
transformation to Π(P, c), by Theorem 3.6, so the case of the standard cube enlightens the case
of all cubes with parallel edges, and gives a hint for the case of zonotopes (as projections of the
standard cube). We are going to prove the following:

Theorem 3.67. For any generic c ∈ Rd, the affine map θ sends the max-slope pivot polytope
Π(□d, c) to (a polytope normally equivalent to) the permutahedron Πd. Moreover, the normal cone
NA of the vertex of Π(□d, c) associated to A is sent to the pre-order cone of the pre-order ≼A
induced on Ec(P).

This case was already studied in [BDLLS22, Example 4.2]: there, the authors prove that
Π(□d, c) is a permutahedron in the sense that it is the convex hull of the d! points obtained from
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applying the action of the permutation group Sd on a starting point. Though the computations
are similar, we give here a different perspective.

Fix P to be the standard cube □d of dimension d and c ∈ Rd any generic objective function. By
symmetry, we can suppose c1 < · · · < cd. The vertices of the cube□d identify with the subsets of [d]
through the characteristic vector: eI :=

∑
i∈I ei for a subset I ⊆ [d], and V (□d) = {eI ; I ⊆ [d]}.

The optimal vertex is e[d]. Moreover, the improving edges are of the for eIeI∪{i} for i /∈ I ⊊ [d],
and their parallelism class is given by ei, see Figure 52(Top Right).

Hence, there are m = d classes of parallelism of edges of □d. The linear map θ : Rd → Rm

injects the normal fan of Π(□d, c) into the braid fan Bd. As m = d, θ is surjective. This implies
that Π(□d, c) is a generalized permutahedron.

It remains to understand the fan θ(NΠ(P,c)). Fix a multi-arborescence A on □d. Let σ be a
surjection on [d] that extends the pre-order induced by ≼A on [d]. Then for i ̸= j, looking at
A([d] ∖ {i, j}), one concludes that σ(i) ≤ σ(j) if and only if [d] ∖ {i} ∈ A([d] ∖ {i, j}). Thus σ
is fully determined by A: the image θ(N (A)) is a cone Cσ for some surjection σ of [d].

Example 3.68. In Figure 52(Top Right) is depicted the standard 3-dimensional cube□3, where each
vertex is labelled by the corresponding set I (denoted without comma nor bracket). The objective
function corresponds to the left-to-right orientation. The max-slope pivot polytope Π(□3, c) ≃ Π3

is the hexagon drawn on the left. Each vertex and each edge is labelled by a representation of
the corresponding multi-arborescence A, and the ordered partition whose associated surjection is
the pre-order ≼A on Ec(□3). For instance, the vertical edge on the right side corresponds to the
multi-arborescence A with (using the notations of the figure) A(∅) = {1, 3}, A(1) = A(3) = {13},
A(2) = {12, 23}, A(13) = A(12) = A(23) = {123}. Such multi-arborescence imposes that if
ω ∈ R3 captures A, then ω2 < ω1 = ω3.

Max-slope pivot polytope of a simplex As all simplices are affinely equivalent, for all linear
program (P, c′) with P a simplex, Theorem 3.6 ensures that the max-slope pivot polytope Π(P, c′)
is linearly equivalent to Π(∆d, c) where ∆d is the standard simplex ∆d = conv{e1, . . . ed+1},
and c1 < · · · < cd+1. Hence, we are going to prove the following:

Theorem 3.69. For any c ∈ Rd+1, the map ϑ sends the max-slope pivot polytope Π(∆d, c) to (a
polytope normally equivalent to) Loday’s associahedron Assod (that is a deformed permutahedron,
see Section 1.2.4). Moreover, the normal cone N (A) of the vertex of Π(∆d, c) associated to A is
sent by ϑ to the pre-order cone of the pre-order ⊴A on V (P)∖ {ed+1}.

This case was already studied in [BDLLSon]: there the authors prove that Π(∆d, c) is combi-
natorially equivalent to Assod.

Contrarily to the case of the cube, there are
(
d
2

)
classes of parallelisms of edges, so θ : Rd → R(

d
2)

is injective but not surjective. However, n − 1 = d (where n is the number of vertices of ∆d), so
for a multi-arborescence A on ∆d, the map ϑA is an endomorphism of Rd = aff(∆d).

For the simplex ∆d, one can recover θ(ω) from ϑA(ω) for all ω ∈ Rd+1. Indeed, ϑA is an
automorphism because if ϑA(ω) = 0, then ω is orthogonal to d different edges of ∆d, so ω = 0
as d different edges of ∆d spans Rd. Thus, as ϑA = πA ◦ θ, the dimensions indicate that the map
πA is a bijection between Im(θ) and Im(ϑA). Consequently, ϑ is injective: if ϑ(ω) = ϑ(ω′), then
θ(ω) = θ(ω′) by the previous argument, so ω = ω′ as θ is injective.

Therefore, ϑ is an injective piece-wise linear map from aff(∆d) to Rd: it is a bijection as their
dimensions are equal10. Thus, Π(∆d, c) is combinatorially isomorphic to a generalized permuta-
hedron. It remains to understand the normal fan of ϑ

(
Π(∆d, c)

)
.

To this end, it is enough to focus on the maximal cones of the fan ϑ
(
Π(∆d, c)

)
, i.e. to arbores-

cences captured on ∆d. Each such arborescence A can be seen as a map A : [d + 1] → [d + 1]
with A(i) > i. For a coherent arborescence A on ∆d, we have A(i) = min

(
{j ; j > i and j ≼A

10Such a map induces a continuous injective application ω 7→ ϑ(ω)
∥ϑ(ω)∥ of the d-dimensional sphere Sd to itself.

If it were not surjective, it would induce an injection from Sd to Rd (which is homeomorphic to a sphere minus a
point): Borsuk–Ulam’s theorem ensures it does not exist. As ϑ(λω) = λϑ(ω), the map ϑ is bijective.

107



•

•

•

•

•

•

•

•

•

•

•

•

•

•

3|2|1

•

•

•

•

•

•

•

•

2|3|1

•

•

•

•

•

•

•

•

2|1|3

•

•

•

•

•

•

•

•

1|2|3

•

•

•

•

•

•

•

•

1|3|2

•

•

•

•

•

•

•

•

3|1|2

•

•

•

•

•

•

•

•

1|23

•

•

•

•

•

•

•

•

13|2

•

•

•

•

•

•

•

•

3|12

•

•

•

•

•

•

•

•

23|1

•

•

•

•

•

•

•

•

2|13

•

•

•

•

•

•

•

•

12|3

•

•

•

•

•

•

•

•∅

1

2

3

12

13

23

123

Figure 52: The max-slope pivot polytope of the cube □3 (the objective function is left to right).
Each vertex is labelled by the corresponding multi-arborescence, and the surjection associated.
For instance, the bottom vertex is associated with the arborescence Aω with ω1 < ω2 < ω3.
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i} ∪ {d + 1}
)
. Indeed, for a fixed i, on the one hand for all i < j < A(i), Lemma 3.5 applied to

the triangle (ci, ωi), (cj , ωj), (cA(i), ωA(i)) ensures that i ≼A j; and on the other hand, A(i) ≼A i
by Lemma 3.5 applied to the triangle (ci, ωi), (cA(i), ωA(i)), (cA(A(i)), ωA(A(i))).

To a binary search tree T on [d], one can associate the map AT : [d+ 1] → [d+ 1] defined by
AT (d+ 1) = d+ 1 and AT (i) = min

(
{j ; j /∈ T i} ∪ {d+ 1}

)
where T i is the sub-tree of root i in

T . Fix a permutation σ and consider its binary search tree T (σ), that is the binary search tree
on [d] in which i is inserted before j when σ(i) < σ(j), see Section 1.2.4(paragraph Binary search
trees). Then, AT (σ) is an arborescence such that σ extends ⊴AT (σ)

. As ϑ is injective, AT (σ) is the
unique arborescence with this property. Conversely, if two binary search trees T1 and T2 differ,
then there exists i such that T i

1 and T i
2 differ, so AT1

̸= AT2
.

Hence, the map T 7→ AT induces through ϑ a piece-wise linear isomorphism between NΠ(∆d,c)

and the coarsening of Bd defined by gluing Cσ and Cα when σ and α yield the same binary search
tree, i.e. the sylvester fan. We have proven that Π(∆d, c) is piece-wise linearly equivalent to
Loday’s associahedron. Moreover, ⊴A is precisely the pre-order associated to the normal cone
ϑ(N (A)).

Example 3.70. In Figure 53(Top Right) is depicted a 3-dimensional simplex ∆3, where the vertices
are labelled from 1 to 4 according to their scalar product against the (left-to-right oriented) objec-
tive function. The max-slope pivot polytope Π(∆3, c) ≃ Asso3 is drawn on the left. Each vertex
is labelled three times. Firstly, by its non-crossing arborescence A (in the fashion of Sections 1.2.4
and 3.2). Secondly, by the pre-order ⊴A on [3], figured as a binary search tree. Lastly, by the
pre-order ≼A on Ec(∆3) (which has 6 edges, identified by the couple of vertices linked).

For instance, the rightmost vertex corresponds to the non-crossing arborescence A with A(1) =
2, A(2) = A(3) = 4, which adapted slope pre-order is defined by 2 ≼A 1 and 2 ≼A 3 (and no
relation between 1 and 3), and utter slope pre-order can be read in increasing order from bottom
to top on the rightmost part of Figure 53 (in red are the edges that A uses).

3.3.2 Max-slope pivot polytope of a product of simplices

The cartesian product of two polytopes P ⊂ Rp and Q ⊂ Rq is the polytope in Rp+q = Rp × Rq

defined as P × Q := {(p, q) ; p ∈ P, q ∈ Q}. For two fixed polytopes P and Q and objective
functions c1 ∈ Rp and c2 ∈ Rq, suppose we know the max-slope pivot polytopes Π(P, c1) and
Π(Q, c2): what can we say about the max-slope pivot polytope Π(P× Q, c) where c = (c1, c2)?

We have already seen an instance of this problem: the standard cube □d is the product of d
segments [0, 1], and its max-slope pivot polytope is the permutahedron. We will see that when P
and Q are products of simplices, then Π(P × Q, c) is combinatorially isomorphic to the shuffle of
Π(P, c1) and Π(Q, c2) as defined in [CP22, Section 2]. We will not be able to fully describe the
general case, but some interesting general properties will spring from the discussion that follows.

Definition 3.71. ([CP22, Definition 75]). The shuffle product of two generalized permutahedra
P ⊂ Rp and Q ⊂ Rq is the polytope P ⋆ Q ⊂ Rp+q defined by:

P ⋆ Q = P× Q+
∑

i∈[p], j∈[q]

[ei, ep+j ]

Definition 3.72. Given two pre-orders ≤ on a set E and ≼ on a set F , a pre-order ⊴ on E ⊔ F is
shuffle of ≤ and ≼ when the four following conditions hold:

• for all e, e′ ∈ E, if e ≤ e′ then e ⊴ e′;

• for all f, f ′ ∈ F , if f ≼ f ′, then f ⊴ f ′;

• for all e ∈ E, f ∈ F , either e ⊴ f or f ⊴ e;

• ⊴ is the closure relation of the above (that is, for all e, e′ ∈ E, if e ⊴ e′, then either e ≤ e′

or there exists f ∈ F such that e ⊴ f ⊴ e′, and conversely for f, f ′ ∈ F ).
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Figure 53: The max-slope pivot polytope of the simplex ∆3. Each vertex is labelled by the
corresponding (coherent) non-crossing arborescence A, the binary search tree T with A = AT , and
the pre-order ≼A on the edges of ∆3.
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Recall that each cone of the normal fan of a deformed permutahedron is a pre-order cone.

Proposition 3.73. ([CP22, Proposition 79]). For P and Q two deformed permutahedra, the normal
fan of P ⋆ Q is precisely the set of pre-order cones C⊴ where ⊴ runs over all shuffles between a
pre-order ≤ corresponding to a normal cone of P and a pre-order ≼ corresponding to a normal
cone of Q.

We are going to prove the following:

Theorem 3.74. If P is (isomorphic to) a product of simplices ∆d1 × · · · ×∆dr with d =
∑r

i=1 di,
then for any generic objective function c, there exists a piece-wise linear map ϑ (explicitly defined
hereafter) that sends the max-slope pivot polytope Π(P, c), to (a polytope normally equivalent to)
the shuffle product Assod1

⋆ · · · ⋆ Assodr
.

Moreover, the normal cone N (A) of the vertex of Π(P, c) associated to A is sent by ϑ to the
pre-order cone of the pre-order that ⊴A induces on

∏r
i=1 V (∆di)∖ {edi+1}.

Proof. Although the notations can feel heavy, we are simply going to work with (piece-wise) linear
functions, and analyze which pre-orders are associated to which cones.

We first focus on classes of parallelism on P×Q. Fix polytopes P ⊂ Rp and Q ⊂ Rq with generic
objective functions c1 ∈ Rp and c2 ∈ Rq. We denote popt the optimal vertex of P with respect to c1,
and qopt the optimal vertex of Q with respect to c2. Take a coherent multi-arborescence A on P×Q
captured by ω = (ω1,ω2) ∈ Rp × Rq. Remark that A induces a coherent multi-arborescence AP

on P and a coherent multi-arborescence AQ on Q defined as follows: AP(u)×{qopt} = A((u, qopt))
and {popt} × AQ(v) = A((popt,v)). Manifestly, these multi-arborescences are coherent as they
are captured by ω1 and ω2 respectively.

Then note that for any p,p′ ∈ V (P) and q ∈ V (Q), the edges (p, q)(p′, q) and (p, qopt)(p
′, qopt)

are parallel (and respectively for Q). Hence, there are three possibilities: either A((p, q)) =
AP(p) × {q}, or A((p, q)) = {p} × AQ(q), or A((p, q)) = AP(p) × AQ(q), depending on the
(in)equality between τω1

(AP(p)) and τω2
(AQ(q)). This allows us to associate to A a pre-order

⊴A,∥ on
(
V (P)∖ {popt}

)
⊔
(
V (Q)∖ {qopt}

)
defined by (the closure of):





p ⊴A,∥ p′ if (p, qopt) ⊴A (p′, qopt)

q ⊴A,∥ q′ if (popt, q) ⊴A (popt, q
′)

p ◁A,∥ q if A((p, q)) = {p} × AQ(q)

q ◁A,∥ p if A((p, q)) = AP(p)× {q}
p ≃A,∥ q if A((p, q)) = AP(p)×AQ(q)

The pre-order ⊴A can be retrieved from the knowledge of ⊴A,∥, as we only have quotiented
(certain) equivalence classes: (p, q) ≃A (p, qopt) when q ⊴A,∥ p ; and (p, q) ≃A (popt, q) when
p ⊴A,∥ q.

Consequently, when P = ∆d1 ×· · ·×∆dr (where
∑

i di = p = dim(P)) is a product of simplices,
the above process allows us to associate injectively a pre-order ⊴A,∥ on

⊔
i V (∆di

) ∖ {edi+1} to
the pre-order ⊴A, for each multi-arborescence A on P.

Now, we prove by induction on the number of factors that when P is a product of simplices
∆d1 × · · · × ∆dr , then there exists a piece-wise linear (continuous) bijection ϑP : Rp → Rp that
embeds NΠ(P,c1) into Bp where ϑP(N (AP)) is the pre-order cone C⊴AP,∥ . Fix two products of

simplices P and Q and suppose the statement holds, denoting ϑP : Rp → Rp for P and ϑQ : Rq → Rq

for Q. Then define ϑ : Rp+q → Rp+q by setting ϑ
(
(ωP,ωQ)

)
=
(
ϑP(ωP), ϑQ(ωQ)

)
. The application

ϑ is a piece-wise linear (continuous) bijection as ϑP and ϑQ are. It embeds ϑ(NΠ(P×Q,c)) into the
braid fan Bp+q. Moreover, for a multi-arborescence A on P×Q, if σ is a surjection of [p]⊔ [q] that
extends ⊴A,∥, the definition of this pre-order ensures that if ω ∈ Rp+q satisfies ϑ(ω) ∈ Cσ, then ω

captures A. As ϑ is bijective, the cone ϑ(N (A)) is the union of cones Cσ for σ that extends ⊴A,∥.
As the statement holds for any simplex by Theorem 3.69, the induction follows.
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We have proven that Π(P × Q, c) is a generalized permutahedron, as ϑ sends bijectively the
normal fan of Π(P × Q, c) on a fan coarsening Bp+q. It remains to understand this coarsening.
As P = ∆d1 × . . .∆dr , we denote V (P) :=

⊔
i V (∆di) ∖ {edi+1}. Fix a multi-arborescence A on

P× Q and defined as before: AP(u)× {qopt} = A((u, qopt)) and {popt} × AQ(v) = A((popt,v)).

Associate to A the pre-order ⊴ on V (P) ⊔ V (Q) that is the shuffle of ⊴AP,∥ and ⊴AQ,∥ defined as
the transitive closure of the following relations:





p ⊴ p′ if p ⊴AP,∥ p′

q ⊴ q′ if q ⊴AQ,∥ q′

p ⊴ q if {p} × AQ(q) ⊆ A((p, q))

q ⊴ p if AP(q)× {q} ⊆ A((p, q))

If a surjection σ of [p]⊔ [q] extends this shuffle pre-order ⊴, then Cσ ⊆ ϑ(N (A)). Indeed, as ϑ is
bijective, take x ∈ Cσ and ω = (ω1,ω2) with ϑ(ω) = x, then ω1 capturesAP on P, and ω2 captures
AQ on Q, by definitions of ϑP and ϑQ. Furthermore, p ⊴ q if and only if {p}×AQ(q) ⊆ A((p, q)),
so x ∈ ϑ(N (A)) as σ extends ⊴. Conversely, if x = ϑ((ω1,ω2)) ∈ Cα for α that does not extend
⊴, then there exists r, r′ ∈ V (P) ⊔ V (Q) such that r ⊴ r′ but α(r) > α(r′). If r, r′ ∈ V (P),
then the definition of ≤AP,∥ ensures that ω1 does not capture P, and idem if r, r′ ∈ V (Q). And if

r ∈ V (P) while r′ ∈ V (Q), then τω1(AP(p)) > τω2(AQ(q)), so {p} × AQ(q) ̸⊆ A((p, q)). In any
case, x /∈ ϑ(N (A)).

We have proven that Cσ ⊆ ϑ(N (A)) if and only if σ extends the shuffle ⊴AP,∥ and ⊴AQ,∥ that
⊴ defines. Moreover, as Proposition 3.73 ensures that the shuffle product Π(P, c1) ⋆ Π(Q, c2) is
realizable, we obtain that ϑ(N (A)) is the pre-order cone C⊴. Together with Theorem 3.69, this
proves the claimed theorem.

Example 3.75. Theorem 3.74 grants access to several examples, studied in details in [CP22, Sections
3 & 4]. We briefly review the most prominent, and the combinatorial families they are associated
to.

Let P = ∆d1
× . . .∆dr

be a product of simplices, then:
(a) When r = 1, P = ∆d is a simplex, and Π(∆d, c) is an associahedron Assod (see Theorem 3.69).

Its vertices correspond to binary trees.
(b) When di = 1 for all i, P = □d is the standard cube and Π(□d, c) is a permutahedron Πd (see

Theorem 3.67). Its vertices correspond to permutations.
(c) When r = 2, d1 = 1 and d2 = n, then P = ∆1×∆n is a prism over a simplex, and Π(∆1×∆n, c)

is the multiplihedron (see [Sta70, For08]). More generally, when r = m+1, d1 = · · · = dm = 1
and dm+1 = n, then P = □m×∆n is the product of a cube and a simplex, and Π(□m×∆n, c) is
the (m,n)-multiplihedron as defined in [CP22, Section 3.2]. Its vertices correspond to painted
trees.

(d) When r = 2, d1 = n and d2 = m, then P = ∆m × ∆n is the product of two simplices, and
Π(∆m ×∆n, c) is the (m,n)-constrainahedron (see [Bot19, Pol21] and [CP22, Section 4]). Its
vertices correspond to cotrees.

Example 3.76. For any P and Q, each coherent multi-arborescence A on P×Q is associated with
a pre-order ≤ on

(
V (P)∖{popt}

)
⊔
(
V (Q)∖{qopt}

)
that is a shuffle between some pre-orders ≤AP

and ≤AQ
for AP and AQ as defined before. The map A 7→ ≤ is injective, as we have seen that the

knowledge of all comparisons given by ≤ allows to recover the multi-arborescences. Nevertheless,
⊴A is not necessarily isomorphic to ≤, but only extends it11.

Moreover, in the general case when P or Q is not a product of simplicies, not all shuffles
between coherent pre-orders on P and on Q are associated to a coherent pre-order on P × Q

by this construction. To illustrate this fact, consider the following example. Fix v1 =

(
0
0

)
,

v2 =

(
1
0

)
, v3 =

(
0
1

)
and v4 =

(
2
1

)
and let P = conv {v1,v2,v3,v4} with c = (1, 1), see

11The author sees no proof of isomorphism in general but is still trying to find a counter-example.
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Figure 54: A non-standard square P (Top) and its max-slope pivot polytope (Bottom), labelled
by its corresponding (coherent) arborescence A and B, together with their its adapted slope pre-
orders ⊴A and ⊴B .

Figure 54(Top). Note that the edges v1v2 and v3v4 are parallel, while v1v3 and v2v4 are not. As
P is 2-dimensional, Π(P, c) is 1-dimensional and has two vertices. With the help of a computer,
one can determine that the first vertex is associated with the arborescence (for convenience, we
identify vi with i ∈ [4]) A with A(1) = 2, A(2) = 4 and A(3) = 4, giving rise to the pre-order ≤A

defined by 2 <A 1 =A 3, see Figure 54(Bottom Left). The second vertex is associated with the
arborescence B with B(1) = 3, B(2) = 4 and B(3) = 4, giving rise to the pre-order ≤B defined
by 1 <B 3 <B 2, see Figure 54(Bottom Right).

Define θ : R2 → R3 by θ(ω) =
(
τω(v1v2), τω(v2v4), τω(v1v3)

)
. As we observe that

v4 − v2 = (v3 − v1) + (v2 − v1), one has that Im(θ) =
{
(x, y, z) ∈ R3 ; z = x+y

2

}
, so in

particular, for all ω ∈ R2, the second coordinate of θ(ω) is always in-between the two others:
the only pre-order cones of B3 that intersects Im(θ) are the ones associated with the pre-order
1 < 2 < 3 (corresponding the arborescence B) and 3 < 2 < 1 (corresponding to the arborescence
A).

Now, we consider P2 = P × P. Our computer experiment indicates that Π(P2, (c, c)) has 44
vertices. But there are 46 possible shuffles between ≤A and ≤B , indeed:

(
2 + 2

2

)
+

(
2 + 3

2

)
+

(
3 + 2

3

)
+

(
3 + 3

3

)
= 6 + 10 + 10 + 20 = 46

In the product P2, we denote (i, j) for i, j ∈ {1, 2, 3, 4} the vertex (vi,vj). The couple (4, 4)
represents the optimal vertex (v4,v4), and the support of the shuffles of A and B is {(i, 4)}1≤i≤3⊔
{(4, i)}1≤i≤3. Thanks to our computer experiment, we can identify the two shuffles of A and B that
do not correspond to vertices of Π(P2, c): they are (3, 4) < (4, 3) < (4, 2) < (2, 4) < (1, 4) < (4, 1)
and its symmetric.

3.3.3 Perspectives and open questions

Computational remarks First of all, as for the other sections, I have implemented with Sage the
main objects of the present section. To begin with, the computation of max-slope pivot polytopes is
done as a sum of sections, see Figure 28. For a d-dimensional polytope P with n = |V (P)|, although
this method seems efficient (as it does not require running through all possible arborescences and
identify the coherent ones), it needs to construct n− 1 polytopes of dimension d− 1 and compute
their Minkowski sum: even the max-slope pivot polytope of the product of two pentagons (d = 4
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and n = 25) takes time. A better implementation of max-slope pivot polytopes would thus be
important for more involved computations.

Besides, I have also implemented the computations of the utter and adapted slope pre-orders
≼A and ⊴A: for a linear program (P, c), my implementation can list the coherent arborescences
together with their pre-orders, and determine (the coordinates and normal cone of) the associated
vertex in Π(P, c).

Assets and limits of the current approach, open questions The above map ϑ is very suitable
for the study of product of simplices, but seems not exactly fit for products of other polytopes.
Indeed, to replicate the proof of Theorem 3.69, the key point would be to decompose a polytope
P as a product P = P1 × · · · × Pr (where each Pi can not be written as a product), and to have
each Pi endowed with a piece-wise linear bijection ϑi : Rd → Rn−1. But this would mean that
n− 1 = d, so Pi is a simplex.

Nevertheless, multiple ideas are to be retrieved from the study lead previously.
First, Conjecture 3.64 indicates that numerous links between the realm of max-slope pivot poly-

topes and generalized permutahedra are to be discovered. Especially, it advocates for a new way
of thinking of slope comparisons, as comparisons between coordinates of a linear transformation.

Furthermore, this framework is efficient for quotienting parallelism of edges. For instance, all
generalized permutahedra P ⊂ Rn have (at most)

(
n
2

)
classes of edge parallelism12, indicating

that all generalized permutahedra have morally the same complexity in terms of combinatorial
behavior of the max-slope pivot rule (except for cubes, simplices, etc, which are simpler). It
would be interesting to study the impact of other symmetries, for example by studying polytopes
with central symmetry such as zonotopes, or classes of polytopes closed by taking faces such as
hypersimplices.

Besides, the above Example 3.76 points out that, in general, the max-slope pivot polytope of
a product P×Q, even though not being the shuffle product of the max-slope pivot polytope of P
and Q, is not far from being so. This shuffle product is not in general well-defined (as a polytope),
as shuffle product is only defined for generalized permutahedra, but it is defined as a poset: it is
the poset consisting of all shuffles between pre-orders of coherent multi-arborescences on P and
pre-orders of coherent multi-arborescences on Q. The face lattice of Π(P × Q, (c1, c2)) injects in
this poset, and one can wonder how distinct the two can be.

Last but not least, an important open problem is to determine for which linear program (P, c)
does the max-slope pivot polytope Π(P, c) is (combinatorially or piece-wise linearly isomorphic
to) a generalized permutahedron. We have proven it happens for products of simplices. On the
opposite, for cyclic polytopes it can not be the case in general, as the 2-dimensional Π(Cyc3(t), e1)
and Assod(t) already have too many vertices, see Section 3.2 and Corollaries 3.37 and 3.49. How-
ever, the problem remains open, and finding a polytope P such that its max-slope pivot polytope
is a generalized permutahedron would grant a powerful tool to study the behavior of the simplex
method on P, while providing a very interesting example.

12As generalized permutahedra are (edge-)deformations of Πn, all their edges are parallel to edges of Πn, that is
to say to ej − ei for some i, j ∈ [n] with i ̸= j, limiting the number of classes of parallelism to at most

(n
2

)
.
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4 Fiber polytopes

Que mes claviers seront usés
D’avoir osé

Toujours vouloir tout essayer
Et recommencer

Là où le monde a commencé
– Michel Berger, Le Paradis Blanc

4.1 Preliminaries on fiber polytopes

In the following, we give a very brief introduction to fiber polytopes, secondary polytopes and
π-coherent subdivisions arising from a polytope projection π : P → Q. For an instructive and
illustrated presentation of the subject, we advise the reader to look at [Zie98, Chapter 9], a more
in depth explanation can be found in [ALRS00, Section 2] and [LRS10, Chapter 9.1], and the
original articles [BS92] (for fiber polytopes) and [GKZ90, GKZ91] (for secondary polytopes) give
the details of the proofs.

Definition 4.1. A polytope projection is a couple (P, π) where P ⊂ Rd is a polytope and
π : Rd → Rd′

is a projection. When dimensions are obvious or irrelevant, we usually denote
such a projection by π : P → Q assuming that Q := π(P).

In order to define fiber polytopes, we need to introduce (coherent) subdivisions. The notion
of a complex is widely spread in mathematics, and we have already seen an instance of them, as
fans are complexes. Here, we only focus on polyhedral complexes.

Definition 4.2. A polyhedral complex C is a collection of polytopes such that if P ∈ C, then all the
faces of P are in C, and if P,Q ∈ C, then the intersection P ∩ Q is a face of both P and Q.

A subdivision of a polytope Q is a polyhedral complex C such that
⋃

P∈C P = Q.

Definition 4.3. For a polytope projection π : P → Q, a π-induced subdivision of Q is a subdivision
π(F) of Q where:
(i) π(F) = {π(F ) ; F ∈ F} for F a family of faces of P.
(ii) for F, F ′ ∈ F , if π(F ) ⊆ π(F ′), then F = F ′ ∩ π−1 (π(F )).
The set of π-induced subdivisions is ordered by refinement, forming the Baues poset: π(F1) ≼

π(F2) when every polytope of π(F2) is a union of polytopes of π(F1). More conveniently, as F can
be recovered from the knowledge of π(F) (see [Zie98, Chapter 9]), one has that π(F1) ≼ π(F2) if
and only if

⋃
F∈F1

F ⊆ ⋃F∈F2
F .

By convention, the empty family will be considered a π-induced subdivision. It is the minimal
element of the Baues poset. Note that even if they are called subdivisions, the π-induced subdi-
visions are better thought of not as subdivisions of Q, but as polyhedral complexes that live in P
(and whose projection by π is a subdivision of Q). Among π-induced subdivisions, some appear
as special (regular) subdivisions, we follow here the reformulation of [Zie98].

Definition 4.4. ([Zie98, definition 9.2]) Let π : P → Q be a polytope projection with dimP = d
and dimQ = d′. For ω ∈ Rd, define πω : Rd → Rd′+1 by

πω(x) =

(
π(x)
⟨ω,x⟩

)

The family of lower faces13 of πω(P) projects down to Q by forgetting the last coordinate, giving
rise to a π-induced subdivision of Q. The π-induced subdivisions of this form are called π-coherent
subdivisions, and form a sub-poset of the Baues poset: the lattice of π-coherent subdivisions.

We say that ω captures the subdivision.

13A face is a lower face when its normal cone contains a vector with a negative last coordinate.
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R P

Q

Σρ◦π(R,Q) Σπ(P,Q)

ρ

ρ◦π π

ρ

∆n−1 P

Q

Σ(Q) Σπ(P,Q)

ρ

π

ρ

Figure 55: (Left) A projection ρ : R → P induces a projection between the fiber polytopes of R
and P for their projections onto Q. Note that as ρ and π are projection |V (R)| ≥ |V (P)| ≥ |V (Q)|.
(Right) If n = |V (Q)|, then Σπ(P,Q) is a projection of Σ(Q) when |V (P)| = |V (Q)| = n.

Note that when ω is generic with respect to P, then the associated π-coherent subdivision is a
finest π-coherent subdivision in the sense that it covers the empty subdivision in the Baues poset.

The fiber polytope has several (equivalent) definitions. In the present thesis, even though the
formal definition is given here, we will not use the realization of the fiber polytope, but only focus
on the characterization of its face lattice given in the following Theorem 4.6.

Definition 4.5. For a polytope projection π : P → Q, a section of P is a continuous map γ : Q → P
satisfying π ◦ γ = idQ. The fiber polytope Σπ(P,Q) for the projection π : P → Q is defined by:

Σπ(P,Q) =

{
1

vol(Q)

∫

Q

γ(x)dx ; γ section of P

}

Theorem 4.6. ([BS92, Corollary 1.4]). For a polytope projection π : P → Q, the fiber polytope
Σπ(P,Q) is a polytope and its face lattice is (isomorphic to) the lattice of π-coherent subdivisions
of Q.

Note that Σπ(P,Q) is of dimension dim(P)− dim(Q), though embedded in Rdim(P).
The construction of fiber polytopes through Definition 4.5 is cumbersome for numerical compu-

tations and drawings. Fortunately, the following theorem provides a description of fiber polytopes
as a finite Minkowski sum.

Theorem 4.7. ([BS92, Theorem 1.5]). For the polytope projection π : P → Q, consider the
subdivision of Q defined as the common refinement of all π(F) for F a face of P. For each maximal
cell C of this subdivision, we denote bC the barycenter (or centroid) of C. Then:

Σπ(P,Q) =
1

vol(Q)

∑

C maximal cells

vol(C) π−1(bC)

Even though an adequate construction of a category of polytopes is still lacking, fiber polytopes
have a categorical flavor. Indeed, if one would construct a category Pol in which objects are
polytopes, and morphisms are (surjective) projections between polytopes, then the map (π : P →
Q) 7→ Σπ(P,Q) would resemble a functor from the category of morphisms of Pol to Pol itself.
The commutative diagram of Figure 55(Left) indicates how the (categorical) cone over Q would
be sent to Pol by this functor. Notably, the following proposition guaranties fiber polytopes are
well-behaved with respect to projections:

Proposition 4.8. ([BS92, Lemma 2.3]). For two polytopes projections ρ : R → P and π : P → Q,
one has:

Σπ(P,Q) = ρ
(
Σπ◦ρ(P,R)

)

Among all fiber polytopes, some are very special. For instance, when projecting a simplex onto
a polytope, the finest π-coherent subdivisions are then in bijection with all regular triangulations
of P. This motivates the construction of the following universal object.
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Definition 4.9. Consider the standard simplex ∆n = conv(e1, ..., en) ⊂ Rn and a polytope P of
dimension d with vertices (v1, ...,vn). Let π : Rn → Rd be the projection defined by π(ei) = vi.
Then the dilate of the fiber polytope Σ(P) := (d + 1)vol(P)Σπ(∆n,P) is called the secondary
polytope of P. The vertices of Σ(P) are in bijection with the set of regular triangulations of P.

In particular, if P and Q share the same number n of vertices, then there exists a polytope
projection ρ : ∆n−1 → P, see Figure 55(Right). In this setting, the previous proposition ensures:

Corollary 4.10. If P and Q share the same number n of vertices, then Σπ(P,Q) arises as a projec-
tion of the secondary polytope of Q, i.e. there exists a projection ρ such that:

Σπ(P,Q) = ρ
(
Σ(Q)

)

This corollary is only a glint of the more general theory of secondary polytopes. They were
defined to study triangulations of any points configuration. We limit ourselves to secondary
polytopes of polytopes (i.e. points configuration in convex position), but the interested reader is
referred to the original papers of Gelfand, Kapranov and Zelevinsky [GKZ90, GKZ91] for a global
presentation. In particular, it is important to keep in mind that any fiber polytope is a projection
of a secondary polytope of a points configuration, but only fiber polytopes for projections that
retain the number of vertices are projections of secondary polytopes of polytopes.
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4.2 Monotone path polytopes of the hypersimplices

This section is a work on my own on a question originally asked by Alex Black and a conjecture
from Jesús De Loera. An article is in preparation.

After their introduction by Billera and Sturmfels in [BS92], fiber polytopes have received a
lot of attention. Especially, the fiber polytope for the projection of a polytope P onto a segment
encapsulates the combinatorics of monotone paths on P. For this reason, it is called the monotone
path polytope of P [Ath99, AER00, BLL20]. The vertices of the monotone path polytopes are in
bijection with the monotone paths that can be followed by a shadow vertex rule. As such, it links
the world of linear optimization to the world of triangulations.

This, and the fact that monotone path polytopes stand among the easiest fiber polytopes to
compute, have motivated numerous studies on the subject. Especially, the monotone path polytope
of a simplex is a cube [BS92], the one of a cube is a permutahedron [BS92, Zie98, Example 9.8],
the one of a cyclic polytope is a cyclic zonotope [ALRS00], the one of a cross-polytope is the
signohedron [BL21], and the one of a S-hypersimplex is a permutahedron [MSS20].

However, the monotone path polytopes of the hypersimplices have not yet been explored. The
(n, k)-hypersimplex ∆(n, k) can be equivalently defined as the section of the standard cube by the
hyperplane {x ∈ Rn ;

∑
i xi = k}, or as the convex hull of the (0, 1)-vectors with k ones and

n − k zeros [Zie98, Example 0.11]. Hypersimplices appear as usual examples of various classes
of examples ranging from generalized permutahedra [Pos09] to matroid polytopes of uniform ma-
troids [ABD10], and alcove polytopes [LP07]. Moreover, triangulations of the second hypersimplex
∆(n, 2) can be interpreted as through toric ideals of the complete graph [DLST95].

In the present section, we begin with a general introduction to monotone path polytopes
(Section 4.2.1), and then examine the monotone path polytopes of hypersimplices, especially their
vertices. We give a necessary criterion for a monotone path on ∆(n, k) to appear as a vertex of
its monotone path polytope (Section 4.2.2). We prove that this criterion is furthermore sufficient
in the case of the second hypersimplex (Section 4.2.3) and give the exact count of the vertices of
the monotone path polytope of ∆(n, 2) (Section 4.2.4).

4.2.1 Monotone paths polytopes in general

In general, fiber polytopes are, by construction, complicated to compute, even with the help
of Theorem 4.7. As a simple case, fiber polytopes for projections onto a point are trivial, as
Σπ(P, {q}) = P. Hence, among the first cases one would want to investigate are the fiber polytopes
associated to projections onto a 1-dimensional polytope, i.e. a segment.

Definition 4.11. For a linear program (P, c), the monotone path polytope Mc(P) is the fiber poly-
tope for the projection πc : x 7→ ⟨x, c⟩. Denoting the image segment Q = πc(P) = {⟨x, c⟩ ; x ∈ P},
one has: Mc(P) := Σπc(P,Q).

Note that Mc(P) has dimension dim(P)− 1 but is embedded in Rdim(P).
The monotone path polytope, though arising from a fiber polytope point of view, is deeply

linked to linear programming. Indeed, fix a polytope P ⊂ Rd, and consider a finest πc-coherent
subdivision F of P. By Definition 4.4, this amounts to taking a generic ω ∈ Rd and looking at
the polygon πω

c (P) =
{(

⟨x, c⟩ , ⟨x,ω⟩
)
; x ∈ P

}
. The family of lower faces of πω

c (P) is at the
same time the subdivision F at stake, and the monotone path followed by the simplex method
for the shadow vertex rule with secondary direction −ω. Accordingly, this process gives a clever
way to encompass in a polytope the combinatorial behavior of the shadow vertex rule. Note that,
whereas pivot rule polytopes (see Section 3.1) cover the behavior the shadow vertex rule14 has on
each vertex of P, the monotone path polytopes only describe the possible coherent leading paths
on P, that is the coherent paths from the worst vertex to the best, i.e. from the vertex vmin ∈ V (P)
minimizing ⟨v, c⟩ for v ∈ V (P ) to the vertex vopt ∈ V (P) maximizing it. Consequently, the face
lattice of the monotone path polytope is the lattice of coherent cellular strings on P.

14Technically, max-slope pivot polytopes encompass max-slope pivot rules, a generalization of shadow vertex
rules, see Sections 1.3 and 3.1.
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Definition 4.12. For a linear program (P, c), a cellular string is a sequence σ = (F1, . . . ,Fk) of faces
of P such that min(F1) = vmin, max(Fk) = vopt, and for all i ∈ [k − 1], max(Fk) = min(Fk+1),
where minima and maxima are taken with respect to the scalar product against c. As πc-induced
subdivisions, cellular strings are ordered by containment of their union. A cellular string σ is
coherent if there exists ω ∈ Rd such that F ∈ σ if F is the pre-image by πc of a lower face of πc(P).

To make the notations consistent and ease the drawings, we will keep for this section the
convention of linear programming, saying a cellular string σ is captured by ω when πω

c (σ) is the
family of upper faces of πω

c (P) (instead of lower faces).
We now present two ways to visualize the monotone path polytope. First of all, Definition 4.4

invites us to focus on the space of all ω and partition it depending on the coherent cellular strings
they yield. Precisely, to a cellular string σ we associate N (σ) = {ω ; ω captures σ}. Then N (σ)
is a polyhedral cone by linearity of πω

c in ω, and the family N =
(
N (σ)

)
σ
is a fan. This fan is

exactly the normal fan of Mc(P). Hence, one can run through all possible ω ∈ Rd, orthogonal to
c (as all ω+λc capture the same cellular string for any λ ∈ R), to draw the normal fan of Mc(P),
see Figure 56.

This construction gives two interesting properties. On the one hand, it is clear that the normal
fan of Π(P, c) coarsens the normal fan of Mc(P): the cone associated to a coherent cellular string
σ is the union of the cones associated to all coherent multi-arborescences whose leading cellular
string is σ, see Figure 57. Consequently:

Proposition 4.13. ([BDLLS22, Proposition 6.2]). The monotone path polytope Mc(P) is a defor-
mation of the pivot rule polytope Π(P, c).

On the other hand, we have said that for a fixed ω, all ω+λc for λ ∈ R capture the same cellular
string. Consequently, one can obtain the normal fan of Mc(P) by projecting the normal fan of P:

to each normal cone C ∈ NP, associate its projection along c, namely C⊥ := {x− ⟨x,c⟩
⟨c,c⟩ c ; x ∈ C}.

Then the common refinement of all
(
C⊥ ; C ∈ NP

)
is the normal fan15 of Mc(P).

A second way to visualize monotone path polytopes is to use Theorem 4.7. We begin by
sorting the vertices of P according to the scalar product against c: V (P) = {v1, . . . ,vn} with
⟨vi, c⟩ < ⟨vi+1, c⟩. The maximal cells of the segment Q = πc(P) are then the sub-segments
Ci := [qi, qi+1] with qi = ⟨vi, c⟩, and the barycenter (i.e. middle) of Ci is trivially bi =

qi+qi+1

2 .
The monotone path polytope Mc(P) is normally equivalent to the Minkowski sum of sections∑n

i=1 π
−1
c (bi).

Though exact, this construction is a bit unhandy. Yet, as we will prove in Theorem 4.14, one
can forget about centers, as Mc(P) is normally equivalent to

∑n−1
i=2 π−1

c (qi). This gives beautiful
pictures, see Figure 58 for the case of the simplex.

Note that, between the two figures, a slight change of perspective happened: to see that
the fan constructed in Figures 56 and 57(Left) is the normal fan of the Mc(P) appearing in
Figure 58(Right), rotate the latter clockwise slightly so that its bottom left corner fits in the cone
with a right angle.

Theorem 4.14. For a linear program (P, c), denote V (P) = {v1, . . . ,vn} and qi = ⟨vi, c⟩ with
q1 < · · · < qn. The monotone path polytope Mc(P) is normally equivalent to the Minkowski sum

of sections
∑n−1

i=2 {x ∈ P ; ⟨x, c⟩ = qi}.

Remark 4.15. This theorem is not a new result, but is known in the folklore. We give here a
self-contained proof, with the tools developed so far on sections and Minkowski sums, but the
reader at ease with the subject shall rather think of it as an exercise on Cayley polytopes.

Proof of Theorem 4.14. For i ∈ [1, n], we denote γi = {x ∈ P ; ⟨x, c⟩ = qi} the section over qi
and ζi(λ) = {x ∈ P ; ⟨x, c⟩ = λqi + (1− λ)qi+1)} for λ ∈]0, 1[.

First, note that the sections γ1 and γn are points, so adding them to
∑n−1

i=2 Γi amounts to
translating it (without changing its normal equivalence class). For this reason, we will prove by

15This construction embeds the fan NMc(P) directly into the hyperplane c⊥, instead of embedding it in Rdim(P).
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Figure 56: Animated construction of the normal fan of the monotone path polytope of the 3-
dimensional simplex. For each ω ∈ R3 orthogonal to c, we project ∆3 onto the plane (c,ω) (Left),
and record the corresponding coherent monotone path (Right). note that, contrarily to Figure 26,
we only score the upper path of each projection of the tetrahedron, not the full arborescence.
(Animated figures obviously do not display on paper, and some PDF readers do not support the
format: it is advised to use Adobe Acrobat Reader. If no solution is suitable, the animation can be
found on my website or asked by email.)
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Figure 57: The normal fan of Mc(P) coarsens the one of Π(P, c). Here is drawn the example for
the tetrahedron P = ∆3.
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+ =
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•

Figure 58: The construction of Mc(P) as a sum of sections for the tetrahedron P = ∆3. Each
section is orthogonal to c and contains a vertex (except for vmin and vopt).
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induction that Γk+1 =
∑k+1

i=1 γi is normally equivalent to Zk =
∑k

i=1 ζi(
1
2 ). As Zn−1 is normally

equivalent to Mc(P) by Theorem 4.7, this will prove the theorem.
All ζi(λ) are normally equivalent for λ ∈]0, 1[, and γi+1 is a deformation of ζi(λ). Thus Γn is

a deformation of Zn. Furthermore, suppose a face f of ζi(λ) does not appear in the deformation
γi+1 and let F be the corresponding intersected face in P. Then vi+1 is the last vertex of F, and
there exists a vertex vj with j ≤ i in F: then in γj , the face f appears.

This fact has two consequences. On one side, Γ2 is normally equivalent to Z1 as the only
possible face with last vertex v2 is the edge [v1,v2] which section is a point. On the other side,
suppose Γk+1 is normally equivalent to Zk, and consider a face in Zk + ζk+1. This face either
appears in one of the γi for i ≤ k + 1, or in γk+2. As the normal fan of a Minkowski sum is
the common refinement of the normal fans of the summands, the polytopes Γk+2 and Zk+1 are
normally equivalent.

The rest of this section is devoted to the monotone path polytopes of hypersimplices, and
especially hypersimplices for k = 2. Before presenting new results on this subject, we shortly
recall two former results from Billera and Sturmfels [BS92, end of Section 5].

Theorem 4.16 ([BS92]). For any simplex ∆ on n + 1 vertices, and any generic direction c, the
monotone path polytope Mc(∆) is (isomorphic to) a cube of dimension n− 1.

Theorem 4.17 ([BS92]). For the standard cube □d = [0, 1]n of dimension n, and the direction
c = (1, . . . , 1), the monotone path polytope Mc(□d) is (a dilation of) the permutahedron Πn of
dimension n− 1.

These two results motivate the study of the monotone path polytopes of hypersimplices. Indeed,
hypersimplices are a generalization of simplices, and arise as sections of the standard cube.

Definition 4.18. For n ≥ 2, k ∈ [n], the (n, k)-hypersimplex is ∆(n, k) =
{
x ∈ [0, 1]n ;

∑
i xi = k

}
.

It is the section of the standard cube□d = [0, 1]n by the hyperplane {x ∈ Rn ; ⟨x, (1, . . . , 1)⟩ = k}.
The vertices of ∆(n, k) are exactly its (0, 1)-coordinate elements: the (0, 1)-vectors with k ones

and n− k zeros. We denote the support of a vertex v ∈ V (∆(n, k)) by s(v) := {i ; vi = 1}. Two
vertices u,v ∈ V (∆(n, k)) share an edge when |s(u) ∩ s(v)| = k − 1, i.e. to obtain v from u, flip
a zero to a one and a one to a zero.

Note that the hypersimplices∆(n, 1) and∆(n, n−1) are simplices: in this sense, hypersimplices
are a generalization of simplices.

We consider the linear problem (∆(n, k), c) where c ∈ Rn is generic with respect to ∆(n, k).
The vector c ∈ Rn will be fixed for the rest of this analysis of monotone path polytopes of the
hypersimplices. See Figure 59(Left) for an example. We denote M(n, k) := Mc(∆(n, k)) to ease
notations. Such a c is generic for the hypersimplex when ci ̸= cj for all i ̸= j, as each edge has
direction ei − ej . Without lost of generality, as the hypersimplex is invariant under reordering
coordinates, we suppose c1 < c2 < · · · < cn. Note however that there can exist v,w ∈ V (∆(n, k))
with ⟨v, c⟩ = ⟨w, c⟩ (when v and w are not adjacent vertices). When drawing, we will take
c = (1, 2, . . . , n).

We denote vmin = (1, . . . , 1, 0, . . . , 0) ∈ V (∆(n, k)) the vertex of ∆(n, k) minimizing ⟨v, c⟩ for
v ∈ V (∆(n, k)), and vmax = (0, . . . , 0, 1, . . . , 1) ∈ V (∆(n, k)) the vertex of ∆(n, k) maximizing
⟨v, c⟩ for v ∈ V (∆(n, k)). We now interpret the conditions for being a coherent monotone path
on a polytope for the case of the hypersimplex ∆(n, k).

Definition 4.19. A monotone path of vertices P = (v1, ...,vr) on ∆(n, k) is an ordered list of
vertices of ∆(n, k) such that v1 = vmin, vr = vmax and for all i ∈ [r − 1], (vi,vi+1) is an
improving edge of ∆(n, k) for c, i.e. an edge of ∆(n, k) with ⟨vi, c⟩ < ⟨vi+1, c⟩. The length of P
is r.

For all i ∈ [1, r − 1], the vertices vi and vi+1 form an edge of ∆(n, k). Thus, instead of
considering the path P as a list of vertices, we emphasize what changes and what remains between

vi and vi+1 by storing the enhanced steps of P . The i-th enhanced step of P is denoted x
Z−→ y

with:
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• Z the common support, i.e. Z = s(vi) ∩ s(vi+1).
• x the only index in the support of vi that is not in the support of vi+1, i.e. {x} = s(vi)∖s(vi+1).
• y the only index in the support of vi+1 that is not in the support of vi, i.e. {y} = s(vi+1)∖s(vi).

The list of enhanced steps of P is denoted S(P ). The application P 7→ S(P ) is obviously

injective. When a
C−→ b is the i-th enhanced step, and x

Z−→ y the j-th one, with i < j, we denote

a
C−→ b ≺ x

Z−→ y and say that a
C−→ b precedes x

Z−→ y.
A monotone path is said coherent when it corresponds to a vertex of M(n, k).

Proposition 4.20. For ω ∈ Rn, let πω : Rn → R2 be the projection πω(x) =
(
⟨x, c⟩ , ⟨x,ω⟩

)
. In

particular, for a vertex v ∈ V (∆(n, k)), then πω(v) =
(∑

i∈s(v) ci,
∑

i∈s(v) ωi

)
.

A monotone path of vertices P = (v1, . . .vr) is coherent if and only if there exists ω ∈ Rn such
that for all i ∈ [1, r − 1]:

∀J ∈
(
[n]

k

)
,

∑

j∈J

cj >
∑

p∈s(vi)

cp =⇒ τω
(
s(vi), J

)
< τω

(
s(vi), s(vi+1)

)

where τω
(
I, J

)
=

∑
j∈J ωj−

∑
i∈I ωi∑

j∈J cj−
∑

i∈I ci
is the slope between the point

(∑
i∈I ci,

∑
i∈I ωi

)
and the point

(∑
i∈J cj ,

∑
j∈J ωj

)
, see Figure 61(Top). We say that such ω captures P .

Proof. By Definition 4.4, a monotone path of vertices P is coherent if and only if there exists
ω ∈ Rn such that the upper path of the polygon πω(∆(n, k)) is precisely πω(P ) :=

(
πω(v)

)
v∈P

(remember we take the upper faces instead of the lower faces by convention in the section).
If v ∈ V (∆(n, k)) is in the upper path of πω(∆(n, k)), then the next vertex in the upper path

is the improving neighbor v′ of v that maximizes the slope
⟨v′−v,ω⟩
⟨v′−v,c⟩ . As c is generic for ∆(n, k),

the vertex u ∈ V (∆(n, k)) maximizing this slope is necessarily an improving neighbor of v, as the
pre-image of edge

[
πω(v), πω(u)

]
in the polygon πω(∆(n, k)) is an (improving) edge in ∆(n, k).

Consequently, the condition stated in the proposition is both necessary and sufficient.

Example 4.21. The hypersimplex ∆(3, 2) is a triangle, that is to say a simplex of dimension 2.
By Billera–Sturmfels’ Theorem 4.16, for any c ∈ R3, its monotone path polytope is a cube of
dimension 1: it has 2 vertices, one corresponding to the path of length 3 and the other to the path
of length 2.

Example 4.22. On the hypersimplex ∆(4, 2), for c = (1, 2, 3, 4) there are 8 coherent monotone
paths, and 2 non-coherent monotone paths. The 8 coherent monotone paths correspond to the
vertices of the octagon M(4, 2) depicted on Figure 59(Right). There are 4 coherent monotone paths
of length 3, and 4 coherent monotone paths of length 4. On the other side, the 2 non-coherent
monotone paths are of length 5: (1100, 1010,0110, 0101, 0011) and (1100, 1010,1001, 0101, 0011),
in bold are the vertices that differ between the two paths.

With a quick jotting, one can prove that for all c ∈ R4, the same holds: for all c ∈ R4, the
coherent monotone paths are exactly the same. This can also be retrieved from [BL21, Theorem
3.2] as ∆(4, 2) is the cross-polytope of dimension 3.

Example 4.23. To be able to draw the monotone path polytope M(n, k) of the hypersimplex
∆(n, k), we need that dim∆(n, k) ≤ 4, so that dimM(n, k) ≤ 3. This implies n ≤ 5. Moreover,
remember that ∆(n, k) is linearly isomorphic to ∆(n, n− k). For n = 3, Example 4.21 deals with
k = 2 (and thus k = 1 by symmetry). For n = 4, Example 4.22 deals with k = 2, while ∆(4, k)
with k = 1 and k = 3 are simplices and their monotone path polytopes are squares. For n = 5,
∆(5, k) with k = 1 and k = 4 are simplices and their monotone path polytopes are cubes, while
k = 2 and k = 3 are equivalent and their monotone path polytope is depicted in Figure 60: it has
33 vertices, 52 edges, and 21 faces (5 octagons and 16 squares).
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Figure 59: (Left) The (4, 2)-hypersimplex lives in the hyperplane {x ;
∑4

i=1 xi = 2} inside R4.
(Right) The monotone path polytope M(4, 2) is an octagon, each vertex of which is labelled by
the corresponding monotone path (drawn on ∆(4, 2)).
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Figure 60: The monotone path polytope M(5, 2) of the hypersimplex ∆(5, 2). This hypersimplex is
linearly equivalent to ∆(5, 3). As ∆(5, 2) has 5 facets linearly equivalent to ∆(4, 2), its monotone
path polytope M(5, 2) has 5 facets which are isomorphic to M(4, 2) i.e. octagons.
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Figure 61: (Top) For the given c and ω, the hypersimplex ∆(5, 2) is projected the 10 points
drawn, where each vertex of ∆(5, 2) is indicated by its support. The coherent path P captured
is drawn in blue. (Bottom) P corresponds to the diagonal-avoiding path depicted on the right,
while associating P to lattice points (x, y) with x < y give the bottom left figure.
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4.2.2 A necessary criterion for coherent paths on ∆(n, k)

Even if Proposition 4.20 gives an efficient criterion for determining which monotone path a given ω
does capture, the question we want to answer is the converse one: how to characterize the coherent
paths on the hypersimplex? In this section, we present a necessary criterion for a monotone path
to be coherent, and in the next one, we prove this criterion is sufficient in the case of the (n, 2)-
hypersimplices (but not sufficient in general).

Theorem 4.24. If path P is coherent, then for all couples of enhanced steps i
A−→ j ≺ x

Z−→ y with
x < j, one has j ∈ Z or x ∈ A.

Before proving this criterion, we will introduce a simple but powerful lemma. In essence, this
lemma states that there exist only two kinds of triangles in the plane: upwards pointing ones △
and downwards pointing ones ∇. This lemma is equivalent to Lemma 3.5, but we give it here
again to make the section self contained.

Lemma 4.25. For three points in the plane (x1, y1), (x2, y2) and (x3, y3) with x1 < x2 < x3,
denote the slopes τ(1, 2) = y2−y1

x2−x1
, τ(2, 3) = y3−y2

x3−x2
and τ(1, 3) = y3−y1

x3−x1
. Then τ(1, 3) is a convex

combination of the slopes τ(1, 2) and τ(2, 3). In particular, if τ(1, 2) < τ(1, 3), then τ(1, 3) <
τ(2, 3) (and conversely if τ(1, 2) > τ(1, 3), then τ(1, 3) > τ(2, 3)).

Proof. One has the convex combination: τ(1, 3) = x2−x1

x3−x1
τ(1, 2) + x3−x2

x3−x1
τ(2, 3)

Proof of Theorem 4.24. Suppose i
A−→ j ≺ x

Z−→ y ∈ S(P ) with x < j (so cx < cj), j /∈ Z and
x /∈ A. Fix ω ∈ Rn that captures P . Then consider v1, v2 with s(v1) = A∪ {i}, s(v2) = A∪ {j},
and v3, v4 with s(v3) = Z ∪ {x}, s(v4) = Z ∪ {y}, see Figure 62. These are 4 vertices of ∆(n, k)
in the path P . Abusing notation, we write τω(u,v) instead of τω

(
s(u), s(v)

)
when the context is

clear.
As x /∈ A, there exists u1 ∈ V (∆(n, k)) with s(u1) = A ∪ {x}, thus v2 is an improving

neighbor of u1. As j /∈ Z, there exists u2 ∈ V (∆(n, k)) with s(u2) = Z ∪ {j}, thus u2 is an
improving neighbor of v3. First observe that, τω

(
v1,u1

)
< τω

(
v1,v2

)
by Proposition 4.20, thus

τω
(
u1,v2

)
> τω

(
v1,v2

)
by Lemma 4.25 applied in the triangle πω(v1), πω(v2), πω(u1). Moreover,

τω
(
v3,u2

)
< τω

(
v3,v4

)
by Proposition 4.20. As πω(P ) is convex: τω

(
v1,v2

)
> τω

(
v3,v4

)

because the second step comes later in the path. But then: τω
(
u1,v2

)
< τω

(
v3,u2

)
, while in the

meantime: τω
(
u1,v2

)
=

ωj−ωx

cj−cx
= τω

(
v3,u2

)
. This contradiction proves the theorem.

4.2.3 Sufficiency of this criterion in the case ∆(n, 2)

We are going to prove that for ∆(n, 2), the criterion of Theorem 4.24 is actually sufficient. To this
end, we want to associate monotone paths on ∆(n, k) with some lattice paths on the integer grid
[n]k. A first idea to do so would be to associate to each vertex vi in the path P = (v1, . . .vr) a
point ℓi = (ℓi,1, . . . , ℓi,k) ∈ [n]k satisfying {ℓi,1, . . . , ℓi,k} = s(vi). This leaves k! possible choices
for ℓi. Even though a natural choice would be to impose ℓi,1 < · · · < ℓi,k, we will prefer another
one. Indeed, as vi and vi+1 form an edge of ∆(n, k), there is only one index differing between
s(vi) and s(vi+1), so we will impose that ℓi and ℓi+1 differ at only one coordinate.

Although this idea allows us to embed our problem into the realm of lattice paths, it has for
drawback to associate k! different lattice points to a same vertex, see Figure 61(Bottom).

Definition 4.26. A diagonal-avoiding lattice path L = (ℓ1, . . . , ℓr) of size n and dimension k is an
ordered list of points ℓi ∈ [n]k such that:

• ℓ1 = (k, k − 1, . . . , 1);

• ℓr = (ℓr,1, . . . , ℓr,k) with {ℓr,1, . . . , ℓr,k} = {n− k + 1, . . . , n};

• for all i ∈ [r], ℓi,p ̸= ℓi,q for all p, q ∈ [k] with p ̸= q;
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πω(v2) πω(v3)

πω(v4)
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πω(u1)

•
πω(u2)

•

•

•
•

•

•

•

s(v1) = A ∪ {i} s(v2) = A ∪ {j}

s(v3) = Z ∪ {x} s(v4) = Z ∪ {y}

s(u1) = A ∪ {x} s(u2) = Z ∪ {j}

Figure 62: Dotted slopes shall be both equal to
ωj−ωx

cj−cx
: this is impossible if πω(u1) and πω(u2) are

below πω(P ), thus either u1 or u2 is not a vertex of ∆(n, k) (i.e. |s(u1)| ≤ k−1 or |s(u2)| ≤ k−1).

• for all i ∈ [r− 1], there exists a p ∈ [k] such that ℓi,p < ℓi+1,p, and ℓi,q = ℓi+1,q for all q ̸= p.

The i-th enhanced step of L is denoted ℓi,p
Z−→ ℓi+1,p with Z = {ℓi,q ; q ̸= p}.

The ordered list of enhanced steps of L is denoted S(L). The length of L is r.

To a path P = (v1, . . .vr) on ∆(n, k), one can associate a diagonal-avoiding lattice path
L (P ) =

(
ℓ1, . . . , ℓr

)
of size n and dimension k defined by S(L (P )) = S(P ), see Figure 63.

Proposition 4.27. The map P 7→ L (P ) is a bijection from monotone paths on ∆(n, k) to diagonal-
avoiding lattice paths of size n and dimension k.

Proof. Fix a monotone path P on ∆(n, k). Starting at ℓ1 = (k, k − 1, . . . , 1), the lattice path
L (P ) = (ℓ1, . . . , ℓi, . . . , ℓr) can be defined by induction on i. Indeed, denote by L (P )≤i =
(ℓ1, . . . , ℓi), and suppose that for a fixed i: {ℓj,1, . . . , ℓj,k} = s(vj) for all j ≤ i, and the enhanced
steps of L (P )≤i are the (i − 1) first enhanced steps of P . Consider the i-th enhanced step

of P , say x
Z−→ y. As {ℓi,1, . . . , ℓi,k} = s(vj), there exists p ∈ [k] such that ℓi,p = x, and

{ℓi,1, . . . , ℓi,k} ∖ {ℓi,p} = Z. By setting ℓi+1 with ℓi+1,q = ℓi,q for q ̸= p, and ℓi+1,p = y, we
construct L (P )≤i+1 that fulfills the induction hypothesis. Hence, we can define L (P ) such
that S(L (P )) = S(P ). By induction, L (P ) satisfies that {ℓi,1, . . . , ℓi,k} = s(vi). Moreover, as
|s(vi)| = k, we know that ℓi,p ̸= ℓi,q for all p ̸= q. Consequently, as s(vi) and s(vi+1) differ by
only one element, L (P ) is a diagonal-avoiding path.

As P 7→ S(P ) is injective, it is immediate that P 7→ L (P ) is also injective.
Finally, for all diagonal-avoiding paths L = (ℓ1, . . . , ℓr), one can construct by induction an

ordered list of vertices PL = (v1, . . . ,vr) by taking vi =
∑

j∈ℓi
ej . Such a path PL is a monotone

path on ∆(n, k) thanks to the properties of diagonal-avoiding paths. Moreover, as S(PL) = S(L),
the map L 7→ PL is the reciprocal of P 7→ L (P ).

Remark 4.28. It is straightforward to see that the length of P , i.e. the number of vertices contained
in P , equals the length of L (P ), i.e. the number of lattice points contained in L (P ).

Example 4.29. For size n = 3, there are 2 diagonal-avoiding paths, one of length 1 and one of
length 2. As seen in Example 4.21, all of them are images (by L ) of coherent paths on the simplex
∆(3, 2).
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S(P ) =
(
2

1−→ 4, 1
4−→ 5, 4

5−→ 6, 6
5−→ 7, 7

5−→ 8, 5
8−→ 7
)

Figure 63: The lattice path associated to the ordered list of enhanced steps given on Top. It has
size 8, dimension 2 and length 6.

For size n = 4, there are 10 diagonal-avoiding paths, see Figure 64. As seen in Example 4.22,
8 of them are images (by L ) of coherent paths on ∆(4, 2), while 2 come from monotone but not
coherent paths on ∆(4, 2).

To ease notation, for an enhanced step of a path P on ∆(n, 2) or enhanced steps of diagonal-

avoiding lattice paths of dimension 2, we will write i
a−→ j instead of i

{a}−−→ j. We will now
study diagonal-avoiding paths of dimension 2. In particular, we will show that coherent monotone
paths on ∆(n, 2) are associated with a certain family of diagonal-avoiding lattice paths, and that
this family respects an induction process (which is cumbersome but powerful). To describe this
induction process for our family, we need the notion of restriction of diagonal-avoiding lattice
paths, which consists in shrinking the lattice grid [n]2: suppose given a diagonal-avoiding lattice
path on [n+1]2, then erase the points of [n+1]2∖ [n]2 ; the path obtained on [n]2 will probably not
end at the right spot, but you can complete it to mimic the path you started with. The following
definition formalizes this idea.

Definition 4.30. The restriction of a diagonal-avoiding lattice path L = (ℓ1, . . . , ℓr) of size n + 1
and dimension 2 is the diagonal-avoiding lattice path L′ = (ℓ′1, . . . , ℓ

′
s) of size n and dimension 2

defined by:

1. First, for all i ∈ [r] define ℓ′i,p =

{
ℓi,p if ℓi,p ̸= n+ 1
n else

(for p ∈ {1, 2}) with s = r,

2. Next, as ℓ′r = (n, n): if ℓ′r−1 = (x, n) then set ℓ′r = (n− 1, n), whereas if ℓ′r−1 = (n, x) then
set ℓ′r = (n, n− 1);

3. Finally, if ℓ′i = ℓ′i+1, then discard ℓ′i+1 (and keep discarding until no doubles remain).

Even though this definition seems convoluted, it has a very straightforward illustration, see
Figure 65: as explained before, draw the path L on the (n+1)× (n+1) grid, then L′ is obtained

by first restricting L to the n× n grid, then mimicking the steps i
n+1−−−→ j of L by introducing the

steps i
n−→ j in L′ (and slightly modifying L′ to make it diagonal-avoiding).
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Figure 64: All 10 diagonal-avoiding lattice paths of size 4 and dimension 2, sorted by size.
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Figure 65: The restriction of L to L′ restrict its enhanced steps from S(L) =
(
2

1−→ 4, 1
4−→ 2, 4

2−→
n + 1, 2

n+1−−−→ 4, 4
n+1−−−→ 5, 5

n+1−−−→ n
)
to S(L′) =

(
2

1−→ 4, 1
4−→ 2, 4

2−→ n, 2
n−→ 4, 4

n−→ 5, 5
n−→

n− 1
)
.
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We can now introduce the main object of this section:

Definition 4.31. A diagonal-avoiding lattice path L of dimension 2 is said to be a coherent lattice
path if for all couples of enhanced steps i

a−→ j ≺ x
z−→ y with x < j, we have j = z or x = a.

Now, we will study the set of coherent lattice paths of size n. First, we will prove that such
lattice paths can be constructed inductively. Then, we will show that the bijection P 7→ L (P )
(between monotone paths and diagonal-avoiding paths) bijectively sends coherent paths on ∆(n, 2)
to coherent lattice paths. Finally, our inductive construction will allow us to count the number of
coherent paths on ∆(n, 2).

Theorem 4.32. For n ≥ 3, let L be a coherent lattice path of size n+1 and L′ its restriction of size
n. Then L′ is coherent and L can be reconstructed from L′ as it belongs to one of these (mutually
exclusive) 12 cases:

(i) if L′ ends by a step x
n−1−−−→ n with x < n− 1, then denote S ′ = S(L′)∖ {x n−1−−−→ n}. One of

the following holds (see Figure 66):

(a) S(L) = S(L′) ∪ {n− 1
n−→ n+ 1}

(b) S(L) = S(L′) ∪ {n n−1−−−→ n+ 1, n− 1
n+1−−−→ n}

(c) S(L) = S ′ ∪ {x n−1−−−→ n+ 1, n− 1
n+1−−−→ n}

(ii) if L′ ends by steps x
y1−→ n, y1

n−→ y2, . . . , ym−1
n−→ ym with x < n− 1, m ≥ 3 and y1 < · · · <

ym = n − 1, then denote S ′ = S(L′) ∖ {x y1−→ n, y1
n−→ y2, . . . , ym−1

n−→ ym}. One of the
following holds (see Figure 67):

(a) S(L) = S(L′) ∪ {n− 1
n−→ n+ 1}

(b) S(L) =
(
S(L′)∖ {ym−1

n−→ n− 1}
)
∪ {ym−1

n−→ n+ 1}
(c) S(L) = S ′ ∪ {x y1−→ n+ 1, y1

n+1−−−→ y2, . . . , ym−1
n+1−−−→ n− 1, n− 1

n+1−−−→ n}
(d) S(L) = S ′ ∪ {x y1−→ n+ 1, y1

n+1−−−→ y2, . . . , ym−1
n+1−−−→ n}

(iii) if L′ ends by steps x
y−→ n, y

n−→ n − 1 with x < n and y < n − 1, then denote S ′ =

S(L′)∖ {x y−→ n, y
n−→ n− 1}. One of the following holds (see Figure 68):

(a) S(L) = S(L′) ∪ {n− 1
n−→ n+ 1}

(b) S(L) =
(
S(L′)∖ {y n−→ n− 1}

)
∪ {y n−→ n+ 1}

(c) S(L) =
(
S(L′)∖ {y n−→ n− 1}

)
∪ {n y−→ n+ 1, y

n+1−−−→ n}
(d) S(L) = S ′ ∪ {x y−→ n+ 1, y

n+1−−−→ n− 1, n− 1
n+1−−−→ n}

(e) S(L) = S ′ ∪ {x y−→ n+ 1, y
n+1−−−→ n}

Proof. Observe first that if L is a coherent lattice path of size n+ 1, then its restriction L′ of size
n is also coherent. Indeed, if i

a−→ j ≺ x
z−→ y ∈ S(L′) with x < j, then the following two properties

hold:
• either i

a−→ j ∈ S(L), or i a−→ n+ 1 ∈ S(L) and j = n;

• either x
z−→ y ∈ S(L), or x

z−→ n + 1 ∈ S(L) and y = n, or x
n+1−−−→ y′ ∈ S(L) and z = n and

y′ ∈ {y, n}.
As L is coherent, this implies x = a or j = z in all cases except if i

a−→ j ∈ S(L) with j = n and

x
n+1−−−→ y ∈ S(L) with x > a. But in the latter, x > a > j and x ̸= a, j ̸= n+ 1, contradicting the

coherence of L.
Now, we first prove that all 12 cases lead to coherent paths, and then that there is no other

coherent path of size n+ 1.
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Figure 66: All 3 paths of size n+ 1 that restrict to a path of size n of type (i) in Theorem 4.32.
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Figure 67: All 4 paths of size n+ 1 that restrict to a path of size n of type (ii) in Theorem 4.32.
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Figure 68: All 5 paths of size n+ 1 that restrict to a path of size n of type (iii) in Theorem 4.32.
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We say that i
a−→ j ≺ x

z−→ y are mutually coherent if x ≥ j, or if x < j and j = z or x = a.
Case (i)(a), (ii)(a) and (iii)(a) If i

a−→ j ∈ S(L′) satisfies n − 1 < j, then j = n so adding

n− 1
n−→ n+ 1 to S(L′) does not infringe coherence.

Case (i)(b) n
n−1−−−→ n+1 and n−1

n+1−−−→ n are mutually coherent, and if i
a−→ j ∈ S(L′) satisfies

n− 1 < j, then j = n and a = n− 1, so i
a−→ j is mutually coherent with both n

n−1−−−→ n+ 1 and

n− 1
n+1−−−→ n.

Case (i)(c) and (iii)(e) x
y−→ n+1 and y

n+1−−−→ n are mutually coherent, and if i
a−→ j ∈ S′ then

j ≤ y, so i
a−→ j is mutually coherent with both x

y−→ n+ 1 and y
n+1−−−→ n.

Case (ii)(b) and (iii)(b) Changing the endpoint of the last enhanced step doesn’t interfere with
mutual coherence (with previous steps).

Case (ii)(c) and (ii)(d) For p ∈ [m−1], x
y1−→ n+1 and yp

n+1−−−→ yp+1 are mutually coherent as

x
y1−→ n and yp

n−→ yp+1 are in S(L′); if i
a−→ j ∈ S ′, then j ≤ max{x, y1} ≤ n− 1 and thus i

a−→ j is

mutually coherent with yp
n+1−−−→ yp+1, and mutually coherent with x

y1−→ n+1 as x
y1−→ n ∈ S(L′).

Case (iii)(d) The above argument applies here, replacing y1 by y.

Case (iii)(c) The steps x
y−→ n, n

y−→ n + 1 and y
n+1−−−→ n are mutually coherent, and if

i
a−→ j ∈ S(L′)∖ {y n−→ n− 1}, then the above argument again applies.

Finally, we prove that there exists no other coherent paths of size n+ 1.

Case (i) If the last step of L′ is x
n−1−−−→ n, then the 3 claimed L are the only diagonal-avoiding

lattice paths whose restriction is L′ (as lattice paths must be North-East increasing).

Case (ii) If L restrict to L′ whose last steps are x
y1−→ n, y1

n−→ y2, . . . , ym−1
n−→ ym with

x < n− 1, m ≥ 3 and y1 < · · · < ym = n− 1, then consider the last step of the form i
a−→ n+ 1 in

L. Either a = n and L is necessarily in cases (a) or (b); or (i, a) ∈ {(x, y1)} ∪ {(n, yp)}p∈[m]. The
first possibility leads necessarily to cases (c) and (d), while the latest lead to non-coherent paths,

as x
y1−→ n would be in L and is not mutually coherent with yp

n+1−−−→ yp+1 for p ≥ 2.

Case (iii) If the last steps of L′ are x
n−1−−−→ n and y

n−→ n−1, then there are 6 diagonal-avoiding

lattice paths whose restriction is L′ (as lattice paths must be North-East increasing). The only non-

coherent one is given by S(L) =
(
S(L′)∖{y n−→ n−1}

)
∪{n y−→ n+1, y

n+1−−−→ n−1, n−1
n+1−−−→ n},

which is not coherent as n
y−→ n+1 and n−1

n+1−−−→ n are not mutually coherent (as y < n−1).

Now that we know how to inductively construct all coherent lattice paths, we are able to prove
the reciprocal of Theorem 4.24. The proof of the following theorem will be cumbersome but not
difficult: for each 12 cases of Theorem 4.32, we are going to exhibit a vector ω that captures it.

Theorem 4.33. Coherent paths on ∆(n, 2) are in bijection with coherent lattice paths of size n.

Proof. Theorem 4.24 proves that the application L sends injectively coherent paths on ∆(n, 2)
to coherent lattice paths of size n. We now prove the converse: if L is a coherent lattice path of
size n, then there exists a coherent path P on ∆(n, 2) such that L (P ) = L. To this end, we will
use the induction process of Theorem 4.32. Thanks to Example 4.29, we know that all coherent
lattice paths of size 3 and 4 are coherent paths on ∆(3, 2) and ∆(4, 2). We are going to prove that
if L′ = L (P ′) for L′ a coherent lattice path of size n, then for all coherent path L of size n + 1
such that L restrict to L′ (i.e. in all 12 cases of Theorem 4.32), we can find a coherent path P on
∆(n+ 1, 2) such that L = L (P ).

Let L′ be a coherent lattice path of size n such that L′ = L (P ′) where P ′ is a coherent path
and ω′ ∈ Rn captures P ′. We are going to find ωn+1 such that ω := (ω′

1, . . . , ω
′
n, ωn+1) ∈ Rn+1

captures a path P with L (P ) = L (in some cases, we will also modify ωn slightly). We denote
τω(i → j) =

ωj−ωi

cj−ci
as usual. As we will focus the behavior of the points (ci + cj , ωi + ω+j) for

(i, j) ∈ L, in order to ease notation, we say“the point (i, j)” instead of “the point (ci+cj , ωi+ωj)”.
We will distinguish three cases following the main cases of Theorem 4.32.
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Case (i) Suppose the last step of L′ is x
n−1−−−→ n with x < n−1. Remark that for i /∈ {x, n−1, n}:

τω(n− 1 → n) < τω(x → n) < τω(i → n)

Indeed, the first inequality comes directly from the last step of L′: if the inequality were reversed,
the last step would have been n− 1

x−→ n instead. The second inequality follows from Lemma 4.25
applied to the triangle (x, n− 1), (i, n− 1), (n, n− 1).

Note first that, for i < n, if ωn+1 satisfies that τω(n → n + 1) < τω(i → n), then there can

not be a step i
a−→ n + 1 in S(P ) as τω(i → n + 1) < τω(i → n) by Lemma 4.25, thus the points

associated to (i, n+ 1) are all below the path P ′ and do not belong to P . As τω(n → n+ 1) is a
continuous increasing function of ωn+1, this gives three regimes.

Case (i)(a): To obtain P with L (P ) of form (i)(a) in Theorem 4.32, choose ωn+1 small enough
to satisfy τω(n → n + 1) < τω(n − 1 → n), then the path P captured by ω has S(P ′) ⊂ S(P )

by the above, and n − 1
n−→ n + 1 ∈ S(P ) by applying Lemma 4.25 in the triangle (n, n − 1),

(n− 1, n+ 1), (n, n+ 1).
Case (i)(b): To obtain P with L (P ) of form (i)(b) in Theorem 4.32, choose ωn+1 to satisfy

τω(n− 1 → n) < τω(n → n+ 1) < τω(x → n), then the path P captured by ω has S(P ′) ⊂ S(P )

by the above, and n
n−1−−−→ n+ 1 ∈ S(P ) and n− 1

n+1−−−→ n ∈ S(P ) by applying Lemma 4.25 to the
triangle (n, n− 1), (n− 1, n+ 1), (n, n+ 1).

Case (i)(c): To obtain P with L (P ) of form (i)(c) in Theorem 4.32, choose ωn+1 to satisfy
τω(x → n) < τω(n → n + 1) < mini/∈{x,n} τω(i → n), then the path P captured by ω has

S(P ′)∖ {x n−1−−−→ n} ⊂ S(P ) by the above, and x
n−1−−−→ n+ 1 ∈ S(P ) and n− 1

n+1−−−→ n ∈ S(P ).
We have shown that if L′ is in the case (i), then all the paths L that restrict to L′ are of the

form L = L (P ) for some coherent P .

Case (ii) Suppose the last steps of L′ are x
y1−→ n, y1

n−→ y2, . . . , ym−1
n−→ n − 1 with m ≥ 3.

Then for all i /∈ {x, y1, n}, by the same argument as before:

τω(ym−1 → n− 1) < τω(ym−2 → ym−1) < · · · < τω(y1 → y2) < τω(x → n) < τω(i → n)

We distinguish three regimes.
Case (ii)(a): To obtain P with L (P ) of form (ii)(a) in Theorem 4.32, choose ωn+1 small

enough to satisfy τω(n → n + 1) < τω(ym−1 → n − 1), then the path P captured by ω has

S(P ′) ⊂ S(P ), and n − 1
n−→ n + 1 ∈ S(P ) by applying Lemma 4.25 to the triangle (n, n − 1),

(n− 1, n+ 1) and (n, n+ 1).
Case (ii)(b): To obtain P with L (P ) of form (ii)(b) in Theorem 4.32, choose ωn+1 to satisfy

τω(ym−1 → n − 1) < τω(n → n + 1) < τω(ym−2 → ym−1), then the path P captured by ω has

S(P ′)∖{ym−1
n−→ n−1} ⊂ S(P ), and ym−1

n−→ n+1 ∈ S(P ) because applying Lemma 4.25 to the
triangle (ym−1, n), (n, n− 1) and (n− 1, n+1) gives that τω(n− 1 → n+1) < τω(n− 1 → n), and
applying it to (ym−1, n), (ym−1, n+1) and (n, n+1) gives that τω(ym−1 → n+1) > τω(n → n+1).

Case (ii)(d): To obtain P with L (P ) of form (ii)(d) in Theorem 4.32, choose ωn+1 to satisfy
τω(x → n) < τω(n → n + 1) < mini/∈{x,n} τω(i → n), then the path P captured by ω has
S ′ ⊂ S(P ), and by applying Lemma 4.25 to the triangle (x, y1), (n, y1) and (n + 1, y1), one gets

that x
y1−→ n+1 ∈ S(P ). Moreover, the projected path

(
(n+1, y1), (n+1, y2), . . . , (n+1, ym−1), (n+

1, n− 1)
)
is parallel and higher than the projected path

(
(n, y1), (n, y2), . . . , (n, ym−1), (n, n− 1)

)
,

thus yi
n+1−−−→ yi+1 ∈ S(P ) for i ∈ [1,m− 2]. As τω(ym−1 → n− 1) < τω(x → n) ≤ τω(n− 1 → n)

in P ′, Lemma 4.25 ensures that ym−1
n+1−−−→ n ∈ S(P ).

Case (ii)(c): To obtain P with L (P ) of form (ii)(c) in Theorem 4.32, note that in the previous
sub-case there is no point (i, n) in P except from (n, n+1). So lowering the value of ωn (with the
same fixed ωn+1 as in the previous sub-case) will not affect the path except in the last triangle
(ym−1, n + 1), (n − 1, n + 1), (n, n + 1). Taking ωn low enough to satisfy τω(ym−1 → n − 1) >

τω(n − 1 → n), we obtain a path P̃ with S(P ) ∖ {ym−1
n+1−−−→ n} ⊂ S(P̃ ) and {ym−1

n+1−−−→
n− 1, n− 1

n+1−−−→ n} ∈ S(P̃ ).
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Case (iii) Suppose that the last steps of L′ are x
n−→ y, y

n−→ n− 1. Then for i /∈ {x, y, n}:

τω(y → n− 1) < τω(y → n) < τω(x → n) < τω(i → n)

Indeed, τω(y → n) < τω(x → n) otherwise x
y−→ n /∈ S(P ′), and τω(y → n − 1) < τω(y → n)

as already τω(y → n− 1) < τω(n− 1 → n).
Case (iii)(a): To obtain P with L (P ) of form (iii)(a) in Theorem 4.32, choose ωn+1 small

enough to satisfy τω(n → n+1) < τω(y → n− 1), then S(P ′) ⊂ S(P ) and n− 1
n−→ n+1 ∈ S(P ).

Case (iii)(b): To obtain P with L (P ) of form (iii)(b) in Theorem 4.32, choose ωn+1 to satisfy

τω(y → n − 1) < τω(n → n + 1) < τω(y → n), then S(P ′) ∖ {y n−→ n − 1} ⊂ S(P ), and as

τω(n → n+ 1) < τω(y → n), Lemma 4.25 ensures y
n−→ n+ 1 ∈ S(P ).

Case (iii)(c): To obtain P with L (P ) of form (iii)(c) in Theorem 4.32, choose ωn+1 to

satisfy τω(y → n) < τω(n → n + 1) < τω(x → n), then S(P ′) ∖ {y n−→ n − 1} ⊂ S(P ), and as

τω(n → n+ 1) > τω(y → n), Lemma 4.25 ensures {n y−→ n+ 1, y
n+1−−−→ n} ⊂ S(P ).

Case (iii)(e): To obtain P with L (P ) of form (iii)(e) in Theorem 4.32, choose ωn+1 to satisfy

τω(x → n) < τω(n → n + 1) < mini/∈{x,n} τω(i → n), then S ′ ∪ {x y−→ n + 1} ⊂ S(P ), and

y
n−→ n+ 1 ∈ S(P ) as τω(y → n− 1) < τω(n− 1 → n).
Case (iii)(d): To obtain P with L (P ) of form (iii)(d) in Theorem 4.32, from the previous

value of ωn+1, we lower the value of ωn until τω(y → n− 1) > τω(n− 1 → n). As no other point

of the form (i, n) belongs to P , this new ω captures a path P̃ with S(P ) ∖ {y n+1−−−→ n} ⊂ S(P̃ )

and {y n+1−−−→ n− 1, n− 1
n+1−−−→ n} ⊂ S(P̃ ).

We have proven that in all 12 cases, if the restriction of L is the image by L of a coherent
path on ∆(n − 1, 2), then L is the image by L of a coherent path on ∆(n, 2). This shows the
surjectivity of L .

4.2.4 Counting the number of coherent monotone paths on ∆(n, 2)

The induction process of Theorem 4.32 allows us to count precisely the number of coherent lattice
paths, which is the number of vertices of M(n, 2) thanks to Theorem 4.33.

Let tn be the number of coherent paths L of size n such that the last step of L is x
n−1−−−→ n

(i.e. of type (i) in Theorem 4.32). Let qn be the number of these finishing by steps x
y1−→ n, y1

n−→
y2, . . . , ym−1

n−→ n − 1 with m ≥ 3 (i.e. of type (ii) in Theorem 4.32). Let cn be the number of

these finishing by x
y−→ n, y

n−→ n− 1 (i.e. of type (iii) in Theorem 4.32).
Observing the induction process of Theorem 4.32 gives the following:

Proposition 4.34. The sequences tn, qn and cn satisfy the following recursive formula:

∀n ≥ 4,



tn+1

qn+1

cn+1


 = M



tn
qn
cn


 with M =



1 2 2
0 2 1
2 0 2


 and



t4
q4
c4


 =



3
1
4




Proof. The values for t4, q4 and c4 follow from Example 4.29.
Looking at the induction process in Theorem 4.32, for each case (i)(a) to (iii)(e), one can

identify if the created coherent path of size n + 1 is of the type of case (i), (ii) or (iii). For

example, if L′ of size n ends by a step x
n−1−−−→ n, then there are three L of size n+ 1 that restrict

to L′: in case (i)(a), L ends with y
n−→ n+ 1 (with y = n− 1) so it belongs to type (i). The case

analysis is summarized in the following table:

(a) (b) (c) (d) (e)
(i) (i) (iii) (iii)
(ii) (i) (i) (ii) (ii)
(iii) (i) (i) (iii) (ii) (iii)

Reading off the table gives the matrix M .
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Theorem 4.35. For n ≥ 4, there are 1
3

(
25× 4n−4 − 1

)
coherent paths of size n.

Proof. By definition, the total number of coherent paths of size n is tn + qn + cn.
A quick analysis of M shows that Sp(M) = {0, 1, 4} with (2,−2,−1)M = (0, 0, 0). Thus

for all n: 2tn = 2qn + cn. It follows that if cn = tn + 1, then tn = 2qn + 1 and thus cn+1 =
2tn + 2cn = tn + 2qn + 2cn + 1 = tn+1 + 1. By induction: ∀n ≥ 4, cn = tn + 1. This gives:
tn+1 + qn+1 + cn+1 = 4(tn + qn + cn) + 1

With t4 + q4 + c4 = 8, this recursive formula gives the number of coherent paths of size n.

This formula solves the question we started with: determine the vertices of M(n, 2) and count
them. Notwithstanding, one can go even further in the analysis of the induction process. Let tn,ℓ

be the number of coherent path of size n and length ℓ that end with a step x
n−1−−−→ n and let

qn,ℓ, cn,ℓ be the counterparts for the two other main cases of the induction. Let Tn =
∑

ℓ tn,ℓz
ℓ,

Qn =
∑

ℓ qn,ℓz
ℓ and Cn =

∑
ℓ cn,ℓz

ℓ be the associated generating polynomials, then observing
Theorem 4.32 gives the following:

Proposition 4.36. The sequences of polynomials Tn, Qn and Cn satisfy the following recursive
formula:

∀n ≥ 4,



Tn+1

Qn+1

Cn+1


 = M



Tn

Qn

Cn


 with M =




z 1 + z 1 + z
0 1 + z z

z + z2 0 1 + z


 ,



T4

Q4

C4


 =




z4 + 2z3

z4

2z4 + 2z3




Remark 4.37. Note that evaluating the previous relation at z = 1 gives back Proposition 4.34.

Proof of Proposition 4.36. The values for T4, Q4 and C4 have been explored in Example 4.29.
Looking at the induction process, for each case (i)(a) to (iii)(e), one can identify the length of

the created coherent path of size n + 1. For example, if L′ of size n and length ℓ ends by a step

x
n−1−−−→ n, then there are three L of size n + 1 that restricts to L′: in case (i)(a), L contains 1

step more than L′ so it has length ℓ+ 1. The case analysis is summarized in the following table,
assuming the restricted path is of length ℓ:

(a) (b) (c) (d) (e)
(i) ℓ+ 1 ℓ+ 2 ℓ+ 1
(ii) ℓ+ 1 ℓ ℓ+ 1 ℓ
(iii) ℓ+ 1 ℓ ℓ+ 1 ℓ+ 1 ℓ

Reading off this table together with the one of the proof of Proposition 4.34 yields M.

The matrix M (over the polynomial ring) has three eigenvalues λ0 = 0, λ+ = 1 + 3
2z +

1
2z

√
4z + 5, and λ− = 1 + 3

2z − 1
2z

√
4z + 5 with associated (left) eigenvectors:

x0 =
(−1 1 1

1+z

)
, x+ =

(
1

√
4z+5−1
2z

z
√
4z+5+z+2
2(z2+z)

)
, x− =

(
1 −

√
4z+5+1
2z

−z
√
4z+5+z+2
2(z2+z)

)

Unfortunately, the square roots in the eigenvalues and eigenvectors make it very difficult to
derive an explicit formula as simple as in Theorem 4.35, but we can prove two very interesting
properties on the number of coherent paths of a given length.

Theorem 4.38. For a fixed size n with n ≥ 4, the longest coherent path of size n is of length
ℓmax =

⌊
3
2 (n− 1)

⌋
. The number of coherent paths of size n and length ℓmax is 1 if n is odd, and⌊

3
2 (n− 1)

⌋
if n is even.

Proof. We will prove by induction the slightly stronger following statement on the degrees and
leading coefficients of Tn, Qn and Cn. Denote νn =

⌊
3
2 (n− 1)

⌋
:

{
if n odd, Tn = (νn − 2)zνn−1 + o(zνn−1), Qn = O(zνn−1), Cn = zνn + o(zνn)
if n even, Tn = zνn + o(zνn), Qn = zνn + o(zνn), Cn = (νn − 2)zνn + o(zνn)
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This statement holds for n = 4 as ν4 = 4, T4 = z4 + o(z4), Q4 = z4 and C4 = 2z4 + o(z4).
Now, it is just a matter of multiplying by M. Suppose n is odd and the statement holds, then:

Tn+1 = zTn + (1 + z)Qn + (1 + z)Cn

= O(zνn) +O(zνn) + zνn+1 + o(zνn+1)
= zνn+1 + o(zνn+1) as νn+1 = νn + 1

Qn+1 = (1 + z)Qn + zCn

= O(zνn) + zνn+1 + o(zνn+1)
= zνn+1 + o(zνn+1) as νn+1 = νn + 1

Cn+1 = (z2 + z)Tn + (1 + z)Cn

= (νn − 2)zνn+1 + o(zνn+1) + zνn+1 + o(zνn+1)
= (νn+1 − 2)zνn+1 + o(zνn+1) as νn+1 = νn + 1

Suppose n is even, and the statement holds, then:

Tn+1 = zTn + (1 + z)Qn + (1 + z)Cn

= zνn+1 + zνn+1 + (νn − 2)zνn+1 + o(zνn+1)
= (νn+1 − 2)zνn+1−1 + o(zνn+1−1) as νn+1 = νn + 2

Qn+1 = (1 + z)Qn + zCn

= O(zνn+1) +O(zνn+1)
= O(zνn+1−1) as νn+1 = νn + 2

Cn+1 = (z2 + z)Tn + (1 + z)Cn

= zνn+2 + o(zνn+2) +O(zνn+1)
= zνn+1 + o(zνn+1) as νn+1 = νn + 2

Thus, by induction the polynomial Tn +Qn + Cn has degree νn and leading coefficient 1 if n
is odd, and νn if n is even, which proves the theorem.

Theorem 4.39. For a fixed length ℓ, the number of coherent paths of size n ≥
⌈
2
3ℓ+ 1

⌉
is a

polynomial in n of degree ℓ− 3.

Proof. Let vn,ℓ be the total number of coherent paths of size n and length ℓ, then Vn =
∑

ℓ vn,ℓz
ℓ =

Tn +Qn + Cn. We can compute Vn thanks to the powers of M:

Vn+4 =
(
1 1 1

)
Mn



T4

Q4

C4




With the eigenvalues and eigenvectors given above, one can compute:

Vn+4 =
λn
+ − λn

−√
4z + 5

z5 +

(
2(λn

+ + λn
−) + 6

λn
+ − λn

−√
4z + 5

)
(z4 + z3)

Note that as λ+ and λ− depend on z. Indeed:

λn
+ − λn

−√
4z + 5

=
∑

k

(
n

2k + 1

)(
1 +

3

2
z

)n−(2k+1)(
5

4
+ z

)k

z2k+1

and

λn
+ + λn

− = 2
∑

k

(
n

2k

)(
1 +

3

2
z

)n−2k (
5

4
+ z

)k

z2k
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Not only they are polynomials in z (which was expected as Vn is a polynomial by definition),
but we can investigate their coefficients. It allows us to re-write:

Vn+4 =
∑

(a,b,c)∈N3

αn,a,b,c

(
1 +

3

2
z

)a(
5

4
+ z

)b

zc

where αn,a,b,c is a sum of binomial coefficient
(

n
f(a,b,c)

)
with f a function of a, b and c. This

coefficient is thus a polynomial in n.
By Theorem 4.38, we know that the polynomial Vn has degree

⌊
3
2 (n− 1)

⌋
, thus for a fixed ℓ,

the coefficient of Vn on zℓ is non-zero when n ≥
⌈
2
3ℓ+ 1

⌉
. This coefficient can be seen as (a

multiple of) the evaluation at z = 0 of the polynomial ∂ℓ

∂zℓVn. But this derivative is again a sum of

(products of) powers of
(
1 + 3

2z
)
, of

(
5
4 + z

)
and of z, with no new dependencies in n. Evaluating

at z = 0 gives that vn,ℓ is a sum (which coefficients depend on ℓ) of
(

n
f(a,b,c)

)
: a polynomial in n.

To obtain the degree of this polynomial, we look for the greatest κ such that
(
n
κ

)
appears in the

coefficient of zℓ. In the developments of both
λn
+−λn

−√
4z+5

and
(
λn
+ + λn

−
)
, remark that κ is the power

on the factor z. For a fixed ℓ, the greatest power on the factor z appearing in
λn
+−λn

−√
4z+5

z5 is ℓ − 5,

the greatest in
(
2(λn

+ + λn
−) + 6

λn
+−λn

−√
4z+5

)
(z4+z3) is ℓ−3. Thus, the degree of the polynomial vn,ℓ,

as a polynomial in n, is ℓ− 3.

Example 4.40. With the help of Proposition 4.36, one can compute the number of coherent paths
of size n and length ℓ:

n|ℓ 3 4 5 6 7 8 9 10 11 12 13 14 15
4 4 4
5 4 16 12 1
6 4 28 56 38 7
7 4 40 132 195 129 32 1
8 4 52 240 556 694 448 129 10
9 4 64 380 1205 2250 2496 1571 501 61 1
10 4 76 552 2226 5565 8896 9019 5564 1914 304 13
11 4 88 756 3703 11627 21416 34622 32725 19881 7236 1375 99 1

In this table, one can read out Theorem 4.38 (for n ≤ 11) by looking at the right-most value in
each line. Furthermore, Theorem 4.39 ensures that each column ℓ is a polynomial in n of degree
ℓ− 3, observing the rows given, the following holds for n ≥ 1:

• for ℓ = 3: vn+3,3 = 4 is also the number of diagonal-avoiding paths of length 3.

• for ℓ = 4: vn+3,4 = 12n− 8 is also the number of diagonal-avoiding paths of length 4.

• for ℓ = 5: vn+4,5 = 4n(4n− 1) is not the number of diagonal-avoiding paths of length 5.

• for ℓ = 6: vn+5,6 = 14n3 − 24n2 + 11n.

• for ℓ = 7: vn+6,7 = 1
6 (55n

4 − 2n3 − 34n2 + 23n).

And one can easily continue this list with a computer.

4.2.5 Perspectives and open questions

Computational remarks As usual, all the objects present in this section have been implemented
with Sage. Namely, I am able to compute monotone path polytopes and label their vertices by
the corresponding monotone paths and their normal cones (i.e. the cone of ω that captures the
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Figure 69: Number of coherent paths on ∆(50, 2) for length ℓ ∈ [3, 73]

corresponding monotone path). Monotone path polytopes are computed as a Minkowski sum of
sections, one at each vertex, however the same remark as for max-slope pivot rule polytopes holds:
computing Minkowski sums in high dimension and with a lot of vertices takes time.

Furthermore, in the case of the monotone path polytope of the hypersimplices ∆(n, 2), all
numerical statements have been checked by (i) constructing the monotone path polytope and
counting its vertices (up to dimension 8); (ii) constructing all possible monotone paths and solving
the linear system to know whether it can be captured or not (up to dimension 9); (iii) generating
all paths that respect the criterion of Theorem 4.24 and verifying if they are coherent (up to
dimension 12); (iv) implementing the matrix recursion (up to dimension 300). Fortunately, all
these methods lead to the same result. We also have implemented similar methods for counting
the paths by their length.

Besides, the diagonalization of matrices were done with the help of Sage (and latter checked
by hand and with Wolfram Alpha), which benefits from excellent and easy-to-use tools to deal
with matrices over any rings (especially the ring of symbolic expressions, i.e. of polynomials and
more).

Assets and limits of the current approach, open questions We have detailed the behavior of
vn,ℓ for a fixed length ℓ. But on the other side, for a fixed size n, one can look at the sequence(
vn,ℓ ; ℓ ∈ [3,

⌊
3
2 (n− 1)

⌋
]
)
. Jesús De Loera conjectured the following for all polytopes:

Conjecture 4.41 (De Loera). For any polytope P and generic objective function c, the sequence(
Nℓ ; ℓ ≥ 1

)
of the number of coherent monotone paths on P of length ℓ is a log-concave sequence.

Especially, in our case, this conjectures states that for a fixed dimension n, the sequence(
vn,ℓ ; ℓ ≥ 3

)
is log-concave. Thanks to Proposition 4.36, we can compute these sequences for

large n, for example n = 50 in Figure 69. All the computations done so far tend to confirm this
conjecture, in particular it holds true for all n ≤ 150. Moreover, note that the archetypal sequence((

n
ℓ

)
; ℓ ∈ [0, n]

)
is log-concave and shares a property similar to Theorem 4.39: for a fixed ℓ,

the value
(
n
ℓ

)
is a polynomial in n of degree ℓ. Even though we have not been able to prove this

conjecture for hypersimplices ∆(n, 2), there may be a way to extract this property from the matrix
recursion presented in Proposition 4.36.
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Moreover, one can count the number of monotone path according to their length (without
restricting to coherent monotone paths), which amounts to counting the total number of diagonal-
avoiding lattice paths. This exercise of enumerative combinatorics will be carried out in the future.
Given the type of combinatorics at stake, it does not seem senseless to think that the sequence of
total number of monotone paths will be log-concave, although it remains non-trivial to prove it is.

Besides, Theorem 4.24 gives a necessary criterion for a monotone path on ∆(n, k) to be coher-
ent. We have shown that this criterion is sufficient for the case k = 2, but computer experiments
shows that is it no longer sufficient when k ≥ 3. The encoding of monotone paths on ∆(n, k)
through lattice paths on the grid [n]k seems a good framework for studying this problem further.

Last but not least, we only give here a description of the vertices ofM(n, 2), it would be of prime
interest to investigate the (higher-dimensional) faces of it. A first idea to do so is to introduce a
notion of adjacencies between coherent lattice paths in order to describe the edges of M(n, 2), but
the drawings this notion gives birth to are not easy to interpret. A second idea would be to use
the fact that faces of the hypersimplex are again hypersimplices (of lower dimensions): one could
try to “see”M(n− 1, k) inside M(n, k), and recover (properties of) the face lattice of M(n, k) from
there. A glimpse of this is depicted in Figures 59 and 60: the 5 octagons appearing in the polytope
of the second figure shall be thought of as 5 copies of the octagon on the right of the first figure
(but it remains hard to explain where the 16 squares come from, and how the faces fit together).
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4.3 Fiber polytopes for the projection from Cycd(t) to Cyc2(t)

This section is a joint work with Aenne Benjes and Raman Sanyal. An article is in preparation,
containing this section, together with Section 3.2.

We have seen that the study of fiber polytopes has drawn a lot of attention in recent years.
They were, at the beginning, constructed in order to give a positive answer to the generalized
Baues problem [BS92, Rei99] which can be thought of as the problem of structuring the set of
subdivisions of a given polytope. From there, fiber polytopes made an appearance in a myriad
of domains, ranging from linear optimization up to triangulations, and the search for a category
of polytopes. We have already discussed their link with linear programming in Section 4.2, and
briefly mentioned the longing for a category of polytope in Section 4.1, and we emphasize here
their relationship with triangulations.

In particular, the secondary polytope introduced by Gelfand, Kapranov and Zelevinsky [GKZ90,
GKZ91] (see also [BFS90]) encapsulates (regular) triangulations of a point configuration into the
vertices of a polytope. It is worth noting that when the points of the configuration are in convex
position, i.e. when looking at a polytope, the secondary polytope is (a dilation of) the fiber poly-
tope for the projection of a simplex onto these points. In this context, the associahedron again
appears, as the secondary polytope of a polygon [DRS10, Chapter 5]. Polygons and simplices are
the two extreme cases of cyclic polytopes, so the aim of the section is to factor the projection from
a simplex onto a polygon by an intermediate projection from a cyclic polytope onto a polygon:
for t = (t1, . . . , tn), one consider the sequence of projections Cycn(t) → Cycd(t) → Cyc2(t) where
Cycn(t) ≃ ∆n and Cyc2(t) is a n-gon (and 2 ≤ d ≤ n). The vertices of the fiber polytope for
the projection Cycd(t) → Cyc2(t) will naturally associate to triangulations of Cyc2(t), prompting
a notion of degree on triangulation (and hence Catalan families). This way, we will analyze a
fiber polytope that is not a monotone path polytope (projection onto a segment), nor a secondary
polytope (projection from a simplex), but a more general case.

It is not an accident that the present framework resemble the one of Section 3.2: even if the
motivations and context are different, the tools and techniques developed are the same, and the
results similar. We will widely reuse the material of this section and the ideas of [ALRS00] who
began the exploration of fiber polytopes between cyclic polytopes. The present section starts
with a short preliminary on triangulations (Section 4.3.1), gathering the useful vocabulary and
constructing the bijection from triangulations to non-crossing arborescences. We pursue with the
main result (Section 4.3.2) that determines how to know if a triangulation appears or not as a
vertex of the fiber polytope for the projection Cycd(t) → Cyc2(t), and we then focus on the case
d = 4 (Section 4.3.3). Again, quite surprisingly, we obtain that the number of vertices of the fiber
polytope Σπ(Cyc4(t),Cyc2(t)) is

(
n
2

)
− 1, independently of t, see Theorem 4.60.

4.3.1 Bijection between triangulations and non-crossing arborescences

Triangulations of a (n + 1)-gon and non-crossing arborescences on n nodes are both Catalan
families, as presented in Section 1.2.4. We exhibit an explicit bijection between these families
that will allow us to link fiber polytope for the projection from Cycd(t) to Cyc2(t) and cyclic
associahedra Πd

t of Section 3.2.
A vast study of triangulations, adorned by plenty of figures, can be found in [LRS10], especially

Chapters 3 and 5 for what concerns us here.

Definition 4.42. Let P be a (n+1)-gon whose vertices are labelled clockwise from 0 to n in circular
order. A triangle in P is a triplet of distinct indices δ = (i, j, k) ∈ [0, n]3 with i < j < k. Such a
triangle splits the (cyclic) interval [n] into three pieces of circle: [i, j], [j, k] and [k, n] ∪ [0, i]. Two
triangles δ1, δ2 in P don’t intersect when all three indices of δ2 belong to the same piece of circle of
δ1. A triangulation T of P is a family of n− 1 (pairwise) non-intersecting triangles, see Figure 70
(n− 1 being the maximum number of non-intersecting triangles that a (n+ 1)-gon can welcome).

An edge of a triangulation T is a couple (x, y) with x < y that appears in a triangle of T :
(x, y) ⊂ δ for some δ ∈ T . An edge (x, y) is exterior when y = x + 1 or (x, y) = (0, n) (meaning
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Figure 70: (Left) The triangulation T =
(
(0, 5, 7), (0, 1, 5), (1, 3, 5), (1, 2, 3), (3, 4, 5), (5, 6, 7)

)
. Its 8

exterior edges are in black, while its 5 interior ones are in blue. It has 2 positive quadrangles and
3 negative ones: Q+(T ) =

(
(0, 1, 5, 7), (1, 2, 3, 5)

)
and Q−(T ) =

(
(0, 1, 3, 5), (0, 5, 6, 7), (1, 3, 4, 5)

)
.

Its immediate vertices are in green: L(T ) = {2, 4, 6}. Flipping the edge (3, 5) gives the triangu-
lation T ′ on the Right. The new quadrangles are Q+(T ′) =

(
(0, 1, 5, 7), (1, 3, 4, 5), (1, 2, 3, 4)

)
and

Q−(T ′) =
(
(0, 5, 6, 7), (0, 1, 4, 5)

)
, and new immediate vertices are L(T ′) = {2, 6}. Flipping the

edge (1, 4) in T ′ gives back T .

it is an edge of the polygon P), interior otherwise. We denote by E(T ) the set of edges of T and
E◦(T ) the set of interior edges of T . Note that in a triangulation, interior edges appear in exactly
two triangles, while exterior ones appear in exactly one triangle.

A quadrangle in a triangulation T is a quadruplet of indices κ = δ1 ∪ δ2 corresponding to two
adjacent triangles δ1, δ2 ∈ T , i.e. |κ| = 4. The edge eκ of the quadrangle κ is the (interior) edge
shared by the two adjacent triangles. Note that κ 7→ eκ is a bijection between interior edges E◦(T )
and the set of quadrangles of T . A quadrangle (i, j, k, l) is positive when its edge is (i, k), and
negative when its edge is (j, l). The family of positive quadrangles is denoted Q+(T ), and the
family of negative ones Q−(T ).

A flip in a triangulation T consists in removing one interior edge and adding back the only other
interior edge possible. Namely, if (x, y) ∈ E◦(T ), then (x, y) belongs to two triangles, forming a
quadrangle κ: flipping (x, y) amounts to changing κ from positive to negative or the reverse (the
Tamari orientation consists in changing from negative to positive). This changes one edge, two
triangles and at most five quadrangles. It is well known that the graph of flips of the triangulations
of a (n+ 1)-gon is precisely the graph of the associahedron Asson−1.

An immediate vertex of T is some index ℓ ∈ [n − 1] such that (ℓ − 1, ℓ, ℓ + 1) ∈ T . When
immediate vertices, 1 and n − 1 are called exterior, while other immediate vertices are called
interior ones. We denote by L(T ) the set of all immediate vertices of T , and by L◦(T ) the set of
interior ones.

The corresponding super-Catalan family is the family of all subdivisions of P.

There is a very easy way to construct a bijection from the set of triangulations of a (n+1)-gon
to the set of non-crossing arborescences on n nodes:

Proposition 4.43. Let T be a triangulation of a (n + 1)-gon and E(T ) its set of edges. Then the
map AT : [n− 1] → [n− 1] defined by AT (i) = max{j ; j > i and (i, j) ∈ E(T )} is a non-crossing
arborescence on n nodes16, see Figure 71. The application T 7→ AT is a bijection between the set
of triangulations of a (n+ 1)-gon and the set of non-crossing arborescences on n nodes.17

Proof. First, notice that T 7→ AT sends a triangulation of a (n + 1)-gon to a non-crossing ar-
borescence on n nodes. Indeed, edges of AT are (some) edges of T , so if AT were crossing, then
two triangles of T would intersect. Furthermore, flipping the edge (j, l) in a negative quadrangle
(i, j, k, l) of T changes the (j, l) in AT to (j, k) because of the non-intersecting property: flips for
triangulations correspond to flips for non-crossing arborescences. Thus, the application T 7→ AT

16As usual, it shall be complete with AT (n) = n.
17Triangulations are defined on [0, n] while arborescences are defined on [1, n]: 0 is not mapped by AT .
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Figure 71: The bijection T 7→ AT between triangulations of a (n + 1)-gon and non-crossing
arborescences on n nodes. (Left) In bold are drawn the edges of the triangulation kept in the
non-crossing arborescence.
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Figure 72: In the left triangulation T , the positive quadrangle (0, 2, 3, 8) ∈ Q+(T ) is sent to the

forward-sliding node 2 ∈ If
AT

, while the negative quadrangle (4, 5, 6, 7) ∈ Q−(T ) is sent to the

backward-sliding node 5 ∈ Ib
AT

.

is surjective as the graph of flips of non-crossing arborescences is connected. As the numbers of
triangulations of a (n + 1)-gon and the number of non-crossing arborescences on n nodes is the
same, T 7→ AT is a bijection.

Note that, in particular, immediate vertices of T are sent bijectively through the bijection
T 7→ AT to immediate leaves of AT . We refer to Section 3.2.2 for the definitions of forward- and
backward-sliding nodes (and consort).

Lemma 4.44. Let T be triangulation and AT the associated non-crossing arborescence. Positive
quadrangles of T are sent bijectively to forward-sliding nodes AT through (i, j, k, l) 7→ j; and
negative quadrangles of T are sent bijectively to backward-sliding nodes AT through (i, j, k, l) 7→ j,
see Figure 72.

Proof. Fix (i, j, k, l) ∈ Q+(T ). Then k = max{y ; (j, y) ∈ E(T )} because otherwise (j, y) would
cross the edge (i, k). Thus AT (j) = k. Besides l = max{y ; (k, y) ∈ E(T )} because otherwise
(k, y) would cross the edge (i, l). Thus AT (k) = l. Finally, an edge (a, k) with a < j would cross
either the edge (i, j) or the edge (i, l). So j = min{x ; AT (x) = k}, which fulfills the definition

for j ∈ If
AT

.

The proof is similar for the negative quadrangles. As |Q+(T )|+|Q−(T )| = n−1 = |If
AT

|+|Ib
AT

|,
the two bijections holds.

4.3.2 Fiber polytopes for the projection Cycd(t)
π−→ Cyc2(t)

In the remaining of this section, we present some new results on a family of fiber polytopes
associated to cyclic polytopes. These results extend the one of [ALRS00]. It will be the opportunity
to use the tools and ideas developed in Section 3.2.

In the latter, we designated the order cone by On = {t ∈ Rn ; t1 ≤ · · · ≤ tn}. In what
follows, we will slightly abuse notations: for a fixed n ≥ 1, if t ∈ On+1, then its coordinates will
be denoted t = (t0, t1, . . . , tn), and triangulations will be on a (n+ 1)-gon ; while if t ∈ On, then
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its coordinates will be denoted t = (t1, . . . , tn) and non-crossing arborescences will take place on
n nodes.

Definition 4.45. For d ≥ 2 and t ∈ O◦
n+1, the fiber associahedron Σd

2(t) is the fiber polytope
Σπ(Cycd(t),Cyc2(t)) where π is the projection that forgets all but the two first coordinates: π(x) =
(⟨x, e1⟩ , ⟨x, e2⟩).

By Corollary 4.10, Σd
2(t) is a projection of the secondary polytope Σ(Cyc2(t)). As Cyc2(t)

is a polygon with n vertices, its secondary polytope Σ(Cyc2(t)) is an associahedron Asson−2, see
[LRS10]. For t ∈ O◦

n+1, as vertices of Σ(Cyc2(t)) are naturally associated to triangulations of
Cyc2(t), one can associate a triangulation to each vertex of Σd

2(t). We now establish a criterion
for a triangulation to be associated to a vertex of Σd

2(t).

Proposition 4.46. For (i, j, k, l) ∈ [0, n]4 with i < j < k < l, t ∈ O◦
n and a polynomial P , we denote

τ(i, j, k, l) = det




1 1 1 1
ti tj tk tl
t2i t2j t2k t2l

P (ti) P (tj) P (tk) P (tl)




For t ∈ O◦
n+1 and d ≥ 2, a triangulation T of Cyc2(t) corresponds to a vertex of Σd

2(t) if and
only if there exists a polynomial P of degree at most d such that τ(κ) > 0 for all κ ∈ Q+(T ) and
τ(κ) < 0 for all κ ∈ Q−(T ).

When these conditions are satisfied, we say that P captures the triangulation T on t.

To prove this property, we need a classical lemma, of which we give a short proof for the sake
of completeness.

Lemma 4.47. For a 3-dimensional polytope P with vertices v0 =



x0

y0
z0


 , . . . ,vn =



xn

yn
zn


, a

triangle (i, j, k) corresponds to a lower face of P if and only if, for all l ∈ [0, n]∖ {i, j, k} one has:

det




1 1 1 1
xi xj xk xl

yi yj yk yl
zi zj zk zl


 > 0

Proof of Lemma 4.47. The positivity of this determinant is equivalent to the fact that vl ∈ H+
(i,j,k)

where H(i,j,k) is the plane of R3 containing the points vi, vj and vk.

Proof of Proposition 4.46. Fix t ∈ O◦
n+1. By Theorem 4.6, vertices of Σd

2(t) are in bijection
with π-coherent triangulations of Cyc2(t). Pick w = (w1, ..., wd) ∈ Rd generic with respect to

Cycd(t) and construct πw : x 7→
(

π(x)
⟨w,x⟩

)
as in Definition 4.4. Then the vertices of πw(Cycd(t))

come from vertices γd(ti) of Cycd(t): they are thus of the form pi :=




ti
t2i

⟨w,γd(ti)⟩


. Denoting

P (t) = w1t + · · · + wdt
d, one has ⟨w,γd(ti)⟩ = P (ti). The family of lower faces of πw(Cycd(t))

projects down to a triangulation of Cyc2(t) (by forgetting the last coordinate).
Consequently, a triangulation T of Cyc2(t) appears as such a projection if and only if there

exists a polynomial P of degree at most d satisfying that for all triangle δ = (j, k, l) ∈ T , the
points pj ,pk,pl are the vertices of a lower face of conv{pi ; i ∈ [0, n]}. By Lemma 4.47, this
amount to having τ(j, k, l,m) > 0 for all m ∈ [0, n]∖ {j, k, l}.

In the associahedron Asson−2, the vertex associated with T is adjacent to the vertices associated
with the triangulations T ′ obtained by flipping any quadrangle in T . Hence, by convexity, it is
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equivalent to test the positivity of τ(j, k, l,m) for (j, k, l,m) a quadrangle of T , than to test the
positivity of τ(j, k, l,m) for all (j, k, l) ∈ T and m ∈ [0, n]∖ {j, k, l}.

Thus, by re-ordering the columns of the determinant τ(κ), the triangulation T appears if and
only P satisfies that τ(κ) > 0 for all κ ∈ Q+(T ) and τ(κ) < 0 for all κ ∈ Q−(T ).

The above Proposition 4.20 gives a simple criterion for determining the triangulation captured
by a polynomial on a given t. Also, Lemma 4.47 ensures that if P captures T on t, then we know
the value of τ(i, j, k, l) for all quadruples (i, j, k, l) ∈ [0, n]4, not only for the quadrangles of T .

Recall from Section 3.2.2 the complete symmetric polynomial of degree s on 4 variables:

hs(X,Y, Z, U) =
∑

a+b+c+d=s

XaY bZcUd

For a quadrangle κ = (i, j, k, l) in a triangulation T and t ∈ O◦
n+1, we construct Ωd

κ(t) ∈ Rd

defined by Ωd
κ(t)s = hs−3(ti, tj , tk, tl), together with Ω

d

κ(t) =
(
hs(ti, tj , tk, tl)

)
s=1,...,d−3

∈ Rd−2.

As for Theorem 3.16, these points allow us to reformulate Proposition 4.46 into a more handy
criterion, that hinges on intersection of polytopes.

Theorem 4.48. For t ∈ O◦
n+1, a triangulation T of Cyc2(t) can be captured on t if and only if the

following polytopes do not intersect:

Q+
d (T, t) = conv

{
Ω

d

κ(t) ; κ ∈ Q+(T )
}

and Q−
d (T, t) = conv

{
Ω

d

κ(t) ; κ ∈ Q−(T )
}

Proof. Fix t ∈ O◦
n+1. A triangulation T can be captured on t if and only if there exists P (t) =

wdt
d + · · ·+w1t such that τ(κ) > 0 for all κ ∈ Q+(T ), and τ(κ) < 0 for all κ ∈ Q−(T ). One gets:

τ(κ) =

d∑

s=1

ws det




1 1 1 1
ti tj tk tl
t2i t2j t2k t2l
tsi tsj tsk tsl


 = VdM4(ti, tj , tk, tl)

d∑

s=1

wshs−3(ti, tj , tk, tl)

The first equality comes from the linearity of the determinant. Besides, the above deter-
minant appears in the definition of a Schur function (through the Jacobi’s bialternant formula,
see [SF99, Chapter 15]): it equals s(s−3,0,...,0)(t) VdM4(t) with the Vandermonde determinant
VdM4(ti, tj , tk, tl) = (tl − tk)(tl − tj)(tl − ti)(tk − tj)(tk − ti)(tj − ti). Thanks to the first Jacobi-
Trudi formula, we obtain the second equality.

As VdM4(ti, tj , tk, tl) > 0 (as i < j < k < l and t ∈ O◦
n+1), the existence of P amounts to the

existence of a solutionw to the system
∑

s wshs−3(κ) > 0 if κ is positive, and negative respectively.
By Gordan’s lemma, this is equivalent to the existence of a λκ ≥ 0, for all κ, non-identically zero,
satisfying ∑

κ∈Q+(T )

λκΩ
d
κ(t) =

∑

κ∈Q−(T )

λκΩ
d
κ(t)

Since Ωd
κ(t)2 = 1, it follows that Λ =

∑
κ∈Q+(T ) λκ =

∑
κ∈Q−(T ) λκ > 0. Dividing both sides

of the previous equation by Λ yields a point in Q+
d (T, t) ∩ Q−

d (T, t).

Once defined the notion of capturing a triangulation, we can define the degree of a triangu-
lation and its realization set, mirroring the ones of non-crossing arborescences. Even if it will be
slightly confusing at first glance, we adopt the same notations for triangulations and non-crossing
arborescences, as the ideas concerning them are too akin to be distinguished by new notations.

Definition 4.49. Let T be a triangulation of a (n+ 1)-gon.
For t ∈ O◦

n+1, the degree of T on t is µ(T, t) = min{degP ; T is captured by P on t}. The
intrinsic degree of T is µ(T ) = min{µ(T, t) ; t ∈ O◦

n+1}.
For d ≥ 2, the realization set of T of degree d is T ◦

d (T ) = {t ∈ O◦
n+1 ; µ(T, t) ≤ d}.

A triangulation T is universal when T ◦
µ(T ) = O◦

n+1.
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These notions respect the same straightforward properties as their counterparts for non-crossing
arborescences. For all t ∈ O◦

n+1, one has µ(T, t) ≤ n+ 1, and consequently µ(T ) ≤ n+ 1. Indeed,
if d ≥ n + 1, then Cycd(t) is a simplex and Σd

2(t) is combinatorially isomorphic to the secondary
polytope Σ(Cyc2(t)): an associahedron.

For d ≥ 2, the closure Td(T ) of T ◦
d (T ) is a (generally non-polyhedral and even non-convex)

full-dimensional subcone of the order cone On+1, because if T can be captured on t ∈ O◦
n+1, then

by translation, T can be captured on (t0 + c, . . . , tn + c) for all c ∈ R, and on λt for λ > 0, by a
polynomial of the same degree. Furthermore, the definition ensures that:

T3(T ) ⊆ T4(T ) ⊆ · · · ⊆ Tn+1(T ) = On+1

In addition, Theorem 4.48 gives the following powerful reformulation.

Proposition 4.50. Let T be a triangulation of a (n + 1)-gon. One has, for t ∈ O◦
n+1 and d ≥ 3:

µ(T, t) = min{d ; Q+
d (T, t) ∩ Q−

d (T, t) = ∅}, and T ◦
d (T ) = {t ; Q+

d (T, t) ∩ Q−
d (T, t) = ∅}.

Beside these properties, µ(T, t) and µ(T ) are hard to describe: Theorem 4.48 gives a nice
way to check whether a triangulation can be captured in some degree, but no mean to estimate
the minimal degree after which it becomes possible. In particular, note that the coordinates of
Q+

d (T, t) and Q−
d (T, t) are polynomials of degree up to d − 3, thus it is simple to study the case

d = 4, but when d ≥ 5 deciding if their intersection is empty becomes as hard as deciding if there
exists a solution to a certain polynomial system (of degree at least d− 3). In the following part of
this section, we focus on the case d = 4.

4.3.3 Realization sets and universal triangulations for Cyc4(t)
π−→ Cyc2(t)

In this section, we study the fiber polytope Σ4
2(t) = Σπ(Cyc4(t),Cyc2(t)) for t ∈ O◦

n+1 where π :
R4 → R2 is the projection forgetting all but the two first coordinates. These results extend the last
example of [ALRS00]. In particular, we give a complete characterization of which triangulations
of a (n+ 1)-gon can be associated to a vertex of Σd

2(t) for some t ∈ O◦
n+1, then we describe their

realization sets, state which of them are universal, and conclude on the number of vertices of Σd
2(t).

Even though the computations of the present section are different from the ones of Section 3.2, the
ideas behind them clearly look alike. Note however that there seems not to be a straightforward
way to deduce the following results from the theorems of Section 3.2: we will see in Example 4.61
an example indicating that cyclic associahedra and fiber associahedra are indeed dissimilar.

Even though it will not be at the center of our proofs, the bijection T 7→ AT between triangu-
lations of a (n+1)-gon will help us get a better understanding of the notions at stake. Indeed, we
will prove that this bijection induces a bijection between:
(i) Triangulations T with µ(T ) = 3 and non-crossing arborescences A with µ(A) = 2 (Corol-

lary 4.52(i)).
(ii) Triangulations T with µ(T ) = 4 and non-crossing arborescences A with µ(A) = 3 (Theo-

rem 4.55).
(iii) Universal triangulations T with µ(T ) = 4 and universal non-crossing arborescences A with

µ(A) = 3 (Corollary 4.54).
Nevertheless, this bijection is not a magic wand! Some powerful properties are not shared

between cyclic associahedra and fiber associahedra, in particular:
(a) We don’t have a theorem that characterizes µ(T ) in terms of L(T ) and L◦(T ) (a twin to

Corollary 3.13). In particular, we don’t know if there exists a triangulation T such that
µ(T ) = 6 but µ(AT ) = 4.

(b) The vertices of Σ4
2(u) for u ∈ O◦

n+1 correspond to a family of triangulations, but the associated
family of non-crossing arborescences does not necessarily correspond to the vertices of Π3

t for
any t ∈ O◦

n+1, see Example 4.61.
We first would like to show that triangulations T with |L(T )|+ |L◦(T )| ≤ 2 are exactly the ones

satisfying µ(T ) ≤ 4. We will prove this in two steps. We first state one inclusion, and postpone
the reciprocal for later (see Theorem 4.55).
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Proposition 4.51. For a triangulation T of a (n+ 1)-gon: if µ(T ) ≤ 4 then |L(T )|+ |L◦(T )| ≤ 2.

Proof. Fix a triangulation T captured by P (t) = w1t+w2t
2 +w3t

3 +w4t
4 on t ∈ O◦

n+1. Suppose
that |L(T )|+ |L◦(T )| > 2, then either |L◦(T )| ≥ 2, or L(T ) ∩ {1, n− 1} ≠ ∅ and L◦(T ) ̸= ∅.

Suppose |L◦(T )| ≥ 2. Let ℓ ∈ L◦(T ). For a < ℓ− 1 and b > ℓ+ 1, Lemma 4.47 ensures that:

τ(ℓ− 1, ℓ, ℓ+ 1, a) > 0 and τ(ℓ− 1, ℓ, ℓ+ 1, b) > 0

Giving:

{
VdM4(tℓ−1, tℓ, tℓ+1, ta)

(
w4(tℓ−1 + tℓ + tℓ+1 + ta) + w3

)
> 0 and

VdM4(tℓ−1, tℓ, tℓ+1, tb)
(
w4(tℓ−1 + tℓ + tℓ+1 + tb) + w3

)
> 0

As a < ℓ− 1 < ℓ < ℓ+ 1 < b, the signs of the Vandermonde determinants give:

w4(tℓ−1 + tℓ + tℓ+1 + ta) + w3 < 0 and w4(tℓ−1 + tℓ + tℓ+1 + tb) + w3 > 0

But if m ∈ L◦(T ) with ℓ < m, then w4(tℓ−1 + tℓ + tℓ+1 + tm) + w3 > 0 as ℓ ∈ L◦(T ), and
w4(tm−1 + tm + tm+1 + tℓ) + w3 < 0 as m ∈ L◦(T ). But tℓ−1 ≤ tm−1 and tℓ+1 ≤ tm+1, so
w4(tℓ−1 + tℓ + tℓ+1 + tm) + w3 < w4(tm−1 + tm + tm+1 + tℓ) + w3, which contradicts the signs of
each side.

The same ideas apply when {1, n− 1} ∩ L(T ) ̸= ∅ and L◦(T ) ̸= ∅.

The above theorem can be reformulated in saying that T 7→ AT injects the family of triangula-
tions T with µ(T ) ≤ 4 into the family of non-crossing arborescences A with µ(A) ≤ 3. This allows
us to give a description of the triangulations with µ(T ) ≤ 4.

Corollary 4.52. If T is a triangulation with µ(T ) ≤ 4, then T falls in one of the following cases:
(i) The triangulations Tm with interior edges E◦(Tm) = {(0, i) ; i ∈ [n − 1]}, and TM with

interior edges E◦(TM ) = {(i, n) ; i ∈ [n − 1]}. These are the only 2 triangulations with
µ(T ) = 3. Note that L(Tm) = {1} and L(TM ) = {n− 1}.

(ii) For 1 < k < n−1, triangulations with triangles (0, i, i+1) for i < k, (0, k, n), and (i, i+1, n)
for i ≥ k. These are n− 1 triangulations with L(T ) = {1, n− 1}.

(iii) For 1 < ℓ < n − 2, triangulations with (ℓ − 1, ℓ + 1) ∈ E◦(T ) and all (x, y) ∈ E◦(T ) satisfy
x < ℓ < y. These are 2n − 2 triangulations with L(T ) = {ℓ}.

Proof. For (i), note thatQ−(Tm) = ∅ andQ+(T ) =
(
(0, i, i+1, i+2) ; i ∈ [n−2]

)
, so Theorem 4.48

ensures that Tm can be captured on any t by a degree 3 polynomial, as Q−
4 (Tm, t) = ∅ (so the

intersection is empty). The case of TM is identical.
For (ii) and (iii), note that all triangulations (on a polygon of any number of vertices) have

an immediate leave, by induction. If ℓ ∈ L◦(T ), and (x, y) ∈ E◦(T ) with ℓ /∈ [x, y], then the sub-
triangulation T

∣∣
[x,y] is the triangulation of some polygon: there is an immediate leaf m ∈ L◦(T )

with x ≤ m ≤ y, so m ̸= ℓ. Consequently, if µ(T ) ≤ 4, then Proposition 4.51 implies that T is of
the form (ii) or (iii).

In the rest of this section, we give a description of the realization sets for triangulations T with
µ(T ) ≤ 4, and the characterization of universal triangulations.

Lemma 4.53. Let T be a triangulation of a (n+1)-gon with µ(T ) = 4 and L(T ) = {ℓ}, 1 < ℓ < n−1.
Then µ(T, t) = 4 for all t ∈ O◦

n+1 satisfying:

max{ti + tj + tk + tl ; (i, j, k, l) ∈ Q−(T )} < min{ti + tj + tk + tl ; (i, j, k, l) ∈ Q+(T )}

Proof. By Theorem 4.48, we know that T can be captured on t ∈ O◦
n+1 by a polynomial of degree

4 if and only if Q+
4 (T, t)∩Q−

4 (T, t) = ∅. As they are 1-dimensional, we denote Q+
4 (T, t) = [x+, y+]

and Q−
4 (T, t) = [x−, y−]. Suppose proven that x− < y+, then Q+

4 (T, t)∩Q−
4 (T, t) = ∅ if and only

if y− < x+, which is what the lemma states.
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For T non-universal with µ(T ) = 4, let ℓ be its immediate leaf. Corollary 4.52 ensures that
negative quadrangles (i, j, k, l) satisfy either i < j < ℓ < k < l or i < j < k < ℓ < l. There
always exists a negative quadrangle of the first kind: if (i, j, k, l) is of the second kind, then the
quadrangle which edge is (max{x ; (x, l) ∈ E(T )}, l) is of the first kind.

For (i, j, k, l) of the first kind, if (j, k) is an interior edge, then there exists a ∈]j, k[ such
that (j, a, k) ∈ T : the quadrangle (j, a, k, l) is positive with ti + tj + tk + tl < tj + ta + tk + tl
(as t ∈ O◦

n+1). Else, (j, k) = (ℓ − 1, ℓ), and taking i′ = min{x ; (x, ℓ + 1) ∈ E(T )} gives a
negative quadrangle (i′, i′ + 1, i′ + 2, ℓ) and a positive quadrangle (i′, i′ + 1, ℓ, ℓ + 1) satisfying
ti′ + ti′+1 + ti′+2 + tℓ < ti′ + ti′+1 + tℓ + tℓ+1. In all cases, we have proven that x− < y+, yielding
the lemma.

Lemma 4.53 allows us to show that universal triangulations T for µ(T ) ≤ 4 are in bijection
with universal non-crossing arborescences A with µ(A) ≤ 3:

Corollary 4.54. A triangulation T of a (n + 1)-gon is universal if and only if µ(T ) = 3, or if
µ(T ) = 4 and one of the following holds:
(i) L(T ) = {1, n− 1} ;
(ii) L(T ) = {n− 2} and interior edges of T are either (1, 3) and (0, i) for i ∈ [3, n− 1], or (1, 3),

(1, 4) and (0, i) for i ∈ [4, n− 1] ;
(iii) L(T ) = {2} and interior edges of T are either (n − 3, n − 1) and (i, n) for i ∈ [1, n − 3], or

(n− 3, n− 1), (n− 4, n− 1) and (i, n) for i ∈ [1, n− 3].
Note that they are in bijection with universal non-crossing arborescences A with µ(A) = 3,

through the usual bijection T 7→ AT .

Proof. If µ(T ) = 3, then the universality of T follows directly from the proof of Corollary 4.52, as
Q−

4 (Tm, t) = ∅, and Q−
4 (TM , t) = ∅.

(i) In this case, by Corollary 4.52, there exists k such that Q+(T ) =
(
(0, i, i + 1, i + 2) ; i ∈

[k − 2]
)
∪
(
(0, k − 1, k, n)

)
, and Q−(T ) =

(
(i, i + 1, i + 2, n) ; i ∈ [k, n − 3]

)
∪
(
(0, k, k + 1, , n)

)
.

Then Q−
4 (T, t) ∩ Q+

4 (T, t) = ∅ for all t ∈ O◦
n+1, as

∑
i∈κ ti <

∑
j∈κ′ tj for all κ ∈ Q−(T ) and

κ′ ∈ Q−(T ). Thus by Theorem 4.48, T is universal.
(ii) Suppose (1, 3) ∈ E(T ) but (1, 4) /∈ E(T ). In this case, Q−(T ) =

(
(0, 1, 2, 3)

)
and Q+(T ) =(

(0, i, i+ 1, i+ 2) ; i ∈ [3, n− 2]
)
. Thus Q+

4 (T, t) ∩ Q−
4 (T, t) = ∅ for all t ∈ O◦

n+1.

(ii) Suppose (1, 3) ∈ E(T ) and (1, 4) ∈ E(T ). In this case, Q−(T ) =
(
(0, 1, 3, 4)

)
and Q+(T ) =(

(0, i, i+ 1, i+ 2) ; i ∈ [4, n− 2]
)
∪
(
(1, 2, 3, 4)

)
. Thus Q+

4 (T, t) ∩ Q−
4 (T, t) = ∅ for all t ∈ O◦

n+1.
(iii) This case is symmetric to (ii).
We finish by proving that if T does not belong to the above cases, then T is not universal, mean-

ing there exists t ∈ O◦
n+1 with Q+

4 (T, t) ∩ Q−
4 (T, t) ̸= ∅. Fix T of the form of Corollary 4.52(iii),

and for i < ℓ, denote ji the index ji > ℓ such that (i − 1, i, ji) ∈ T . If jℓ−1 ≥ ℓ + 2, then
(ℓ−1, ℓ, ℓ+1, ℓ+2) ∈ Q+(T ) and (ℓ−2, ℓ−1, ji, ji−1) ∈ Q−(T ). Taking an arbitrarily high value
for tji violates the inequality of Lemma 4.53. The case ji = ℓ+ 2 is a mirror of the latter.

With Corollary 4.52 and Lemma 4.53, we can also prove the reciprocal of Proposition 4.51:

Theorem 4.55. For a triangulation T of a (n+1)-gon, µ(T ) ≤ 4 if and only if |L(T )|+|L◦(T )| ≤ 2.

Proof. Proposition 4.51 states that if µ(T ) ≤ 4 then |L(T )|+ |L◦(T )| ≤ 2. We prove the reciprocal
by induction on n. The latter is clear for (the only) triangulation on n+ 1 = 3 vertices.

Fix a triangulation T with |L(T )|+ |L◦(T )| ≤ 2. Corollary 4.54 ensures that µ(T ) ≤ 4 if T is
of the form of Corollary 4.52(i) or Corollary 4.52(ii). Suppose T is of the form Corollary 4.52(iii),
then either (0, 1, n) ∈ T or (0, n − 1, n) ∈ T . In the first case, set T ′ = T

∣∣
[1,n] and construct,

by induction, t′ ∈ O◦
n such that µ(T ′, t′) = 4. Then, define t = (t0, t

′
1, . . . , t

′
n) by choosing t0

arbitrarily small. Then, Q+(T ) = Q+(T ′), and Q−(T ) = Q−(T ′)∪
(
(0, 1, a, n)

)
with a ∈ {2, n−1}.

As t0 is small enough, we have t0 + t1 + ta + tn < min{ti + tj + tk + tl ; (i, j, k, l) ∈ Q+(T )}, so
Lemma 4.53 ensures that µ(T, t) = 4.

The case of (0, n− 1, n) ∈ T is solved similarly by setting tn large enough.
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Figure 73: All triangulations T of a hexagon with µ(T ) ≤ 4. Green and blue dots represent
universal triangulations, red dots non-universal ones.
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Figure 74: A non-universal triangulation T with µ(T ) = 4 and L(T ) = {4}. It has 2 minimal
positive quadrangles among which (2, 3, 5, 6), and 3 maximal negative quadrangles among which
(0, 1, 7, 8). It has 1 non-minimal positive quadrangle (2, 5, 6, 7), and no non-maximal negative
quadrangle.

As announced, we have proven that T 7→ AT induces a bijection between:
(i) Triangulations T with µ(T ) = 3 and non-crossing arborescences A with µ(A) = 2.
(ii) Triangulations T with µ(T ) = 4 and non-crossing arborescences A with µ(A) = 3.
(iii) Universal triangulations T with µ(T ) = 4 and universal non-crossing arborescences A with

µ(A) = 3.
This allows us to construct in Figure 73 the graph of all triangulations T with µ(T ) ≤ 4,

similarly as in Figure 38 but with triangulations. This figure is closely related to Figure 1 of
[ALRS00], and all its properties are the pendant as the one discussed in Example 3.23 about
non-crossing arborescences A with µ(A) ≤ A.

It remains to study, for a fixed t ∈ O◦
n+1, the number of vertices of Σ4

2(t), that is the number
of triangulations T with µ(T, t) ≤ 4.

Definition 4.56. In a non-universal triangulation T with µ(T ) = 4, a positive quadrangle κ =
(i, j, k, l) is minimal when k = min{k′ ; (i, k′) ∈ E◦(T )}; a negative quadrangle κ = (i, j, k, l) is
maximal when l = max{l′ ; (j, l′) ∈ E◦(T )}, see Figure 74.

Remark 4.57. Note that maximal negative quadrangles (i, j, k, l) are quadrangles that form a Z-
shape, while minimal positive ones form a Z-shape, see Figure 74. This illustrates the fact that
flipping the edge of a minimal positive quadrangle turns it into a maximal negative quadrangle.
Moreover, such flips send a triangulation T with µ(T ) = 4 either to another triangulation T ′ with
µ(T ′) = 4, or to one of the triangulations Tm or TM of Corollary 4.52(i).
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Theorem 4.58. Let T be a non-universal triangulation with µ(T ) = 4, and t ∈ O◦
n+1, then t ∈ T4(T )

if and only if ti + tj + tk + tl < ti′ + tj′ + tk′ + tl′ for all (i, j, k, l) ∈ Q−(T ) maximal and
(i′, j′, k′, l′) ∈ Q+(T ) minimal.

Proof. Fix a non-universal triangulation T with µ(T ) = 4, and t ∈ O◦
n+1. By Lemma 4.53,

this theorem amounts to proving that the minimum of {ti + tj + tk + tl ; (i, j, k, l) ∈ Q+(T )} is
achieved when (i, j, k, l) is a minimal positive quadrangle, and conversely for negative quadrangles.
Suppose that (i, j, k, l) ∈ Q+(T ) is not minimal, and let a = max{x ∈]i, j[ ; (i, x) ∈ E(T )}. Then
(i, a, j, k) ∈ Q+(T ) and ti+ ta+ tj + tk < ti+ tj + tk+ tl. A similar reasoning gives that a negative
quadrangle achieves the maximum of {ti′ + tj′ + tk′ + tl′ ; (i′, j′, k′, l′) ∈ Q−(T )} only when it is
maximal.

For a triangulation T , if κ is a minimal positive quadrangle and ζ a maximal negative one, such
that they do not share a triangle, then one can flip the edge eκ and the edge eζ independently.
We say that T and T ′ differ by a diagonal switch with respect to these two quadrangles when T ′

can be obtained by flipping two such edges.
The switching arrangement Gn is the collection of hyperplanes

G(κ,ζ) = {t ∈ Rn+1 ; ti + tj + tk + tl = ti′ + tj′ + tk′ + tl′}

for all couples of quadruples κ = (i, j, k, l) and ζ = (i′, j′, k′, l′) such that κ ∈ Q+(T ) is minimal
and ζ ∈ Q−(T ) is maximal for some non-universal triangulation T with µ(T ) = 4.

Theorem 4.59. For tlex = (1, 2, . . . , 2n) ∈ O◦
n+1 and ulex = (2, . . . , 2n) ∈ O◦

n, the triangulations T
with µ(T, tlex) ≤ 4 are sent bijectively through T 7→ AT to the non-crossing arborescences A with
µ(A,ulex) ≤ 3. Informally, this amounts to say that Σ4

2(tlex) ≃ Π3
ulex

.

Proof. As universal triangulations and universal non-crossing arborescences are in bijection, we
only focus on non-universal ones.

By Lemma 4.53, to know whether a non-universal triangulation T can be captured or not on
t, we need to compare the ti+ tj + tk + tl for different quadrangles (i, j, k, l). But comparing these
values for tlex amounts to comparing reverse-lexicographically the associated quadruplets (this is
the principle of the binary numeral system). The lexicographic order is denoted ≤lex.

Let T be a triangulation with µ(T ) ≤ 4. On one side, tlex ∈ T ◦
4 (T ) if and only if (l, k, j, i) ≤lex

(l′, k′, j′, i′) for all (i, j, k, l) ∈ Q+(T ) and (i′, j′, k′, l′) ∈ Q−(T ). On the other side, Lemma 4.44

ensures that (i, j, k, l) ∈ Q+(T ) if and only if j ∈ If
AT

, and (i′, j′, k′, l′) ∈ Q−(T ) if and only if

j′ ∈ Ib
AT

; thus ulex ∈ T ◦
3 (AT ) if and only if (l, k, j) ≤lex (l′, k′, j′) for all (i, j, k, l) ∈ Q+(T ) and

(i′, j′, k′, l′) ∈ Q−(T ).
Moreover, if (i, j, k, l) ∈ Q+(T ), then (j, k, l) /∈ T , so there is no negative quadrangle in T of

the form (a, j, k, l) for a < j. Therefore, i and i′ are irrelevant in the comparison (l, k, j, i) ≤lex

(l′, k′, j′, i′), meaning that: (l, k, j, i) ≤lex (l′, k′, j′, i′) if and only if (l, k, j) ≤lex (l′, k′, j′).
Consequently, T can be captured on tlex if and only if AT can be captured on ulex.

Theorem 4.60. For all t ∈ O◦
n+1 \

⋂
G∈Gn

G, the number of vertices of Σd
2(t) is

(
n
2

)
− 1.

Proof. By Theorem 4.58, if t and t′ belong to the same maximal cone of O◦
n+1 \

⋃
G∈Gn

G, then

the triangulations captured on t and t′ are the same. Thus the number of vertices of Σd
2(t) and

Σd
2(t

′) are the same.
For a maximal cone C of the arrangement Gn, we denote by V(C) the set of triangulations T

such that C ⊆ T ◦
4 (T ). Take two adjacent maximal cones C and C′. Suppose that T ∈ V(C) but

T /∈ V(C′). Then the hyperplane separating C from C′ is of the form G = {t ; ti + tj + tk + tl =
ti′ + tj′ + tk′ + tl′} for some κ = (i, j, k, l) ∈ Q+(T ) minimal in T and ζ = (i′, j′, k′, l′) ∈ Q−(T )
maximal in T . As the two sums are equal for t ∈ G, κ and ζ can not share a triangle. Let T ′ be
obtained from T by first flipping (i, k) and then (j′, l′). We know that T ′ /∈ V(C) (because C is on
the wrong side of G for T ′ to be captured), and we want to prove that T ′ ∈ V(C′), i.e. C′ ⊆ T ◦

4 (T ′).
Fix t ∈ G.

150



Then, we know that ti′ + tj′ + tk′ + tl′ < tα + tβ + tγ + tη for all (α, β, γ, η) ∈ Q+(T ) as these
inequalities are respected in C because T can be captured there. Furthermore, ti + tj + tk + tl =
ti′ + tj′ + tk′ + tl′ as t ∈ G. This proves that ti+ tj + tk + tl = min{tα+ tβ + tγ + tη ; (α, β, γ, η) ∈
Q+(T ) minimal}.

Now take (e, f, g, h) ∈ Q+(T ′) minimal. If (e, f, g, h) ∈ Q+(T ), then te + tf + tg + th >
ti + tj + tk + tl. Otherwise, (e, f, g, h) comes from the diagonal switch. We detail this switch,
see Figure 75. If it comes from the flip of (i, k), then its edge is either (e, g) = (i, l) or (e, g) =
(j, k). But in the first case, (e, f, g, h) = (i, j, l, h) with h > l because (e, f, g, h) ∈ Q+(T ′).
In the second case, (e, f, g, h) = (j, f, k, l) because (e, f, g, h) is minimal in T ′. In both cases
te + tf + tg + th > ti + tj + tk + tl. No minimal positive quadrangle can appear when flipping
(j′, l′) (apart (i′, j′, k′, l′) itself) because if (e, g) = (i′, l′) then (e, f, g, h) is not minimal, and if
(e, g) = (j′, k′), then (e, f, g, h) can not be positive. This establishes that ti + tj + tk + tl =
min{tα + tβ + tγ + tη ; (α, β, γ, η) ∈ Q+(T ′) minimal}.

The same holds for negative quadrangles: ti′+tj′+tk′+tl′ = max{tα+tβ+tγ+tη ; (α, β, γ, η) ∈
Q−(T ′) maximal}.

Thus, t′ ∈ C′ taken arbitrarily close to t ∈ G respects all inequalities of T ◦
3 (T ′). This ensures

that T ′ ∈ V(C′) but T ′ /∈ V(C), and consequently |V(C′)| ≥ |V(C)|. As a result, the cardinal |V(C)|
is the same for all maximal cones C of the hyperplane arrangement Gn (as the graph of adjacency
of its maximal cones is connected).

Finally, Theorem 4.59 states that this cardinal is also the number of vertices of Π3
t :
(
n
2

)
− 1.

Example 4.61. One can consider the graph on triangulations T of a (n+1)-gon with µ(T ) ≤ 4 with
an edge between T and T ′ if there exists t ∈ O◦

n+1\
⋃

G∈Gn
G such that the vertices corresponding to

T and T ′ are neighbors in Σ4
2(t). This is precisely the induced sub-graph of flips of triangulations,

restricted to {T ; µ(T ) ≤ 4}. By Theorem 4.55, this graph is isomorphic to the graph discussed
in Example 3.23, through the bijection T 7→ AT . As previously, the polygons Σ4

2(t) correspond
to great cycles in this graph, but not all great cycles do correspond to Σ4

2(t). Nevertheless, a
given great cycle does not give rise to the same system of inequalities for triangulations as for non-
crossing arborescences. In particular, one can compute the number of combinatorially different
Σ4

2(t), i.e. the number of great cycle whose associated system of inequalities has a (full-dimension
set of) solution:

• For n = 5, there are 2 possible Σ4
2(t), see Figure 1 of [ALRS00] and Figure 76.

• For n = 6, there are 12 possible Σ4
2(t).

• For n = 7, there are 216 possible Σ4
2(t).

• For n = 8, there are 8368 possible Σ4
2(t)

For n = 5 and n = 6, the bijection T 7→ AT extends to a bijection between possible Σ4
2(t)

and possible Π3
t . But for n = 7, as there are 216 possible Σ4

2(t) and only 187 possible Π3
t , this is

no longer plausible (and for n = 8, there are only 6179 possible Π3
t). Moreover, when applying

T 7→ AT , one will conclude that 181 possible Σ4
2(t) map to Π3

t while 35 do not, and 6 Π3
t are not

(images of) Σ4
2(t).

4.3.4 Perspectives and open questions

Computational remarks As usual, the objects of this section have been implemented with Sage.
Especially, to compute the fiber polytopes at stake, we chose to first compute its secondary poly-
tope and then project it. The secondary polytope can be computed by running through all trian-
gulations of Cyc2(t), and associating to each a vertex (whose coordinates have an explicit formula
involving the area of its triangles). The projection is precisely the projection Cyc4(t) → Cyc2(t).
We could also have computed the fiber polytopes as a finite Minkowski sum, see Theorem 4.7, but
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Figure 75: All possible quadrangles that can be created during a diagonal switch.
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t0 + t1 + t4 + t5 < t1 + t2 + t3 + t4 t0 + t1 + t4 + t5 > t1 + t2 + t3 + t4

Figure 76: The 2 possible Σ4
2(t) for n = 5. Green vertices correspond to triangulations T with

µ(T ) = 3, blue ones to universal T with µ(T ) = 4, and the red one to the non-universal triangula-
tion (the only one that differs between Left and Right). Each Σ4

2(t) correspond to one of the two
cones inside O6 separated by the hyperplane {t ; t0 + t1 + t4 + t5 = t1 + t2 + t3 + t4}. Contrarily
to Figure 40, it is not possible to picture this subdivision of O6 as, even when intersected with the
hyperplanes {t ; t0 = 0} and {t ; t5 = 1}, it is 4-dimensional.

the first method has the advantage to directly associate the vertices of Σd
2(t) with triangulations

of Cyc2(t).
Besides, to calculate the values claimed in Example 4.61, one needs to construct the subdivision

On+1\
⋃

G∈Gn
G. The same issues as discussed in Section 3.2.4 occur, but note that most of the

material developed for Section 3.2 can not be directly reused here, and need to be adapted.

Assets and limits of the current approach, open questions Lemma 4.44 is essential for proving
Theorem 4.59, but to this end, we only use Lemma 4.44 on the triangulations with 1 interior
immediate leaf or 2 exterior ones. As the lemma applies for all triangulations, we can hope for
a generalization of Theorem 4.59, which would grant access to a theory of intrinsic degree for all
triangulations. However, the way to do so remains unclear.

The fiber polytope we have studied in this section is very similar to the max-slope pivot rule
polytope studied in Section 3.2, although they are not exactly the same. The mystery around the
link between both is not totally unveiled. It would be interesting to determine whether this link is
due to the combinatorics and geometry of the cyclic polytopes, or if this is but the tail of a more
general phenomenon.

I was working on the proof of one of my poems all the morning, and took out a comma.
In the afternoon I put it back again.

– Oscar Wilde
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