Optical fiber-based dosimetry dedicated to experimental irradiation facilities monitoring
Dosimétrie par fibre optique d'installations d'irradiation expérimentales
Résumé
Radiation composes one of the most primordial entity of our cosmos. Constituted from photons, neutrons, ions, protons, electrons, etc, it composed most of the cosmos components as an ocean surrounding an archipelago. Radiation can also be produced by dedicated facilities and managed by human beings to explore research or to develop new technologies. From the last 50 years, the radiation facilities have been developed around the world to response to researcher and engineer requirements with the technology evolution. The electronic field but also the development of high quality conducting or magnetic materials, the computing and the automatization and finally the fundamental research all contributed to this growing up of radiation facilities around the world. Radiation that we will discuss during this PhD thesis is able to degrade matters ionizing atoms. Matter will be altered by radiation with an evolve of their initial material properties. When this behavior is due to a radiation source, the environment is qualified as radiation harsh environment and is a constrain for most of the electronic components and embedded systems operating in this kind of environment. This can be associated with low or high temperature, chemical or pressured environment mixing the constrains on deployed systems requiring control and mastering. About radiation facility monitoring, devoted systems are required to characterized with accuracy and repeatability the radiation beam. From this statement, optical fiber-based sensors appear as very promising solution for radiation monitoring using radiation induced mechanisms as signature of radiation interaction. By degrading the optical fiber transmission from the radiation dose also called Radiation Induced Attenuation or by stimulated photon emission in doped section of optical fiber-based sensors also called Radiation Induced Emission, it is possible to develop radiation sensors based on this optical guide oriented to specialty radiation detection. For this PhD thesis, a focus has been made on the Radiation Induced Emission allowing to reconstruct radiation dose rate and radiation dose with a single detector. From previous performance demonstrations of optical fiber-based sensors for dosimetry applications, the PhD thesis is dedicated to extend the range of experimented radiation fields and facilities. Indeed, to explore and to demonstrate the optical fiber-based radiation sensors, new experimental works are required in multiple radiation facilities measuring the radiation induced mechanism depending on the radiation flux or radiation dose rate. The PhD thesis explores different radiation sources based on X-ray, proton, neutron and electron beam in high energy range from 40 keV to 63 MeV and experimenting as well continuous beam as pulsed beam (µs and ns scale pulsed beams). Linear correlations have been identified from Radiation Induced Emission made by 50 µm-core Cerium and 50 µm-core Nitrogen doped optical fiber with different dose rate sensitivity allowing to develop specialty detector for radiation facility monitoring. From the reproduction of transversal beam profile, dose rate detection by standard Radiation Induced Emission based sensors or mirror assisted Radiation Induced Emission based sensor, tracking, counting and monitoring ultra-high absolute dose rate pulsed beam, this PhD thesis demonstrates from multiple experimental results the potential of this kind of detector.
Les installations d'irradiation expérimentales doivent être contrôlés par des dispositifs de mesure spécialisés et dédiés. Ceci permet de garantir un fonctionnement optimal tout comme les performances requises par les utilisateurs des faisceaux produits. Ce contrôle est réalisé par des instruments différentiés par leur champ d'applications couvrant la dosimétrie, le monitorage, la métrologie ou le diagnostic de faisceau. Cette thèse s'est particulièrement intéressée à l'instrumentation de faisceaux de radiations (rayons X, électrons, protons, neutrons) utilisant comme élément sonde des fibres spécifiquement sélectionnées. Par l’utilisation de mécanismes radioinduits dans les fibres optiques, c’est-à-dire engendrés par l’interaction radiation-silice dopée composant la fibre optique, il est possible de détecter puis caractériser un faisceau de radiation sous plusieurs aspects notamment la dose et le débit de dose qui sont des paramètres clés du contrôle d’installations d’irradiation expérimentales. Cela permet à la fois de déterminer la qualité de production de faisceau d’un point de vue contrôle machine comme une assurance de bonnes conditions expérimentales pour les expérimentateurs employant le faisceau pour leur besoin. Cette thèse a notamment montré que la radioluminescence générée par des fibres optiques dopées à l’Azote ou au Cérium, pouvaient permettre la caractérisation en débit de dose de faisceau continu comme pulsé couvrant une gamme de débit de dose allant du mGy(SiO2)/s au GGy(SiO2)/s exprimant le potentiel fort et extrêmement compétitif des fibres optiques pour la dosimétrie en conditions d’expérience très étendues.
Origine | Version validée par le jury (STAR) |
---|