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Titre: Programmation logique pour l’analyse des flux métaboliques et applications à la biologie
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Résumé: En biologie des systèmes, l’analyse des voiesmétaboliques est uneméthode essentielle pour étudier lemétabolisme et améliorer la compréhension du fonction-nement des systèmes vivants. Deux concepts clés sontl’analyse des modes élémentaires de flux (EFMs), qui per-met de décrire les réseaux métaboliques en termes devoiesminimales, et lesMinimal Cut Sets (MCSs), représen-tant les coupures minimales de flux du réseau en termesde réactions.
Dans le cadre de cette thèse, nous avons développéune méthode de programmation logique pour le cal-cul des modes élémentaires de flux: aspefm. L’outil estune méthode de raisonnement automatique à base deAnswer Set Programming (ASP), étendue par des con-traintes linéaires. Cette approche permet de récupérerdes voies lorsque les méthodes classiques ne le peu-vent pas, d’interroger directement le réseau et d’éviterl’explosion en mémoire. La méthode peut prendre encompte des contraintes biologiques importantes de toustypes, ce que nous avons illustré sur un réseau centrald’Escherichia coli. Elle est aussi applicable aux réseaux àl’échelle du génome, et calcule plus aisément des solu-

tions de large taille que les méthodes à base de program-mation linéaire.
Notre méthode a été appliquée, à la bactérie pathogènePseudomonas aeruginosa (PA) qui est présente dans80% des plaies chroniques. PA utilise des stratégiesécologiques différentes de celles des bactéries modèlescomme E. coli. Elle est retrouvée généralement dansles plaies chroniques avec une autre bactérie infectieuse,Staphylococcus aureus (SA). Nous supposons que leursdeuxmétabolismes sont complémentaires, ce qui permetune production de biomasse plus élevée conduisant à desmauvais pronostics pour les patients.
L’extension de notre outil aspefm à l’analyse des MCSssur un modèle de consortium de ces deux bactéries nousa permis de retrouver des métabolites dont l’échangeentre les deux bactéries permettrait de compenser desphénotypes prédits létaux, ainsi que d’explorer des ciblesthérapeutiques potentielles contre les bactéries. Parailleurs, dans un autre cadre, nous avons appliqué notreméthode de calcul au métabolisme de la cellule can-céreuse humaine et à la formation du stroma tumoral.

Title: Logic programming tools for metabolic fluxes analysis and biological applications
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Abstract: In systems biology, metabolic pathwaysanalysis is an essential method to study metabolism andimprove the understanding of biological systems. Keyconcepts include Elementary Flux Modes (EFMs), describ-ing metabolic networks in terms of minimal pathways,and Minimal Cut Sets (MCSs), representing minimal cut-ting sets of reactions affecting network flux.
In the scope of this thesis, we developed a logic pro-gramming method for the computation of ElementaryFlux Modes: aspefm. The tool is an automatic reason-ing method based on Answer Set Programming (ASP),extended by linear constraints. This approach allowsone to get minimal pathways when classical methods areunable to, and to directly query the network, helpingwith memory usage considerations. Important biologicalconstraints of many different kinds can be integrated intothe program, which we illustrated on a central metabolicmodel of Escherichia coli. Themethod is also applicable togenome-scale metabolic models, showing better perfor-

mance than linear programming-based methods on enu-meration of large-size solutions.
The method was applied to the pathogenic bacteriumPseudomonas aeruginosa (PA) found in 80% of chronicwounds. PA uses different ecological strategies thanmodel bacteria. PA is commonly co-isolated fromwoundswith another opportunistic pathogen, Staphylococcus au-reus (SA), and it is hypothesized the metabolisms of thetwobacteria are complementary enabling higher biomassproduction and increasing wound bioburden leading topoor patient outcomes.
We extended our tool aspefm to the analysis of MCSs on aconsortiummodel of these two bacteria, permitting us toretrieve exchanged metabolites involved in the recoveryof growth after several intervention strategies, and lead-ing to insights about potential therapeutic targets againstthe twobacteria. Furthermore, in an other context, we ap-plied our computation method to cancer cell metabolismand tumoural stroma formation.
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Résumé

En biologie des systèmes, l’analyse des voies métaboliques est une méthode essentielle pour étudier le métabolisme

et pour améliorer la compréhension du fonctionnement des systèmes vivants. La modélisation à base de

contraintes [Palsson, 2015] a énormément contribué à la connaissance des réseaux métaboliques et est devenue

l’une des approches de modélisation la plus réussie dans ce domaine. Un concept clé est l’analyse des modes

élémentaires de flux (EFMs) qui permet de décrire les réseaux métaboliques en termes de voies minimales

[Schuster, Dandekar and Fell, 1999]. Leur application était jusqu’à présent limitée aux petits modèles métaboliques

en raison de l’explosion combinatoire du nombre d'EFMs dans les grands réseaux, et ne pouvait donc pas passer

à l’échelle du génome.

Par ailleurs, il existe une méthode complémentaire des EFMs, les Minimal Cut Sets (MCSs), dont le calcul peut être

ramené à l’énumération d’EFMs particuliers sur un réseau métabolique dual [Ballerstein et al, 2012]. Cette méthode

représente les coupures minimales de flux du réseau, et peut être appliquée afin de retrouver des réactions dites

’essentielles’ à la croissance cellulaire, et d’évaluer la robustesse du réseau.

L'efficacité des algorithmes de calcul pour déterminer les EFMs a progressé régulièrement depuis l'introduction

de la théorie EFMs. Cependant, l’énumération de tous les EFMs n’est pas nécessaire pour analyser les réseaux

car dans la plupart des cas on s’intéresse seulement à l’existence (ou la non-existence) de quelques voies. Par

conséquent, des méthodes à base de logique SMT (SAT modulo theories) et de MILP (Mixed-Integer Linear Pro-

graming) [Peres, Morterol and Simon, 2014; Morterol et al, 2016; de Figueiredo et al., 2009] ont été développées,

permettant d'interroger les réseaux métaboliques et de trouver des EFMs sans devoir énumérer toutes les solutions.

Dans le cadre de cette thèse, nous avons développé une méthode de programmation logique pour le calcul des

EFMs: aspefm [Mahout, Carlson and Peres, 2020], à base de Answer Set Programming (ASP), étendue par des

contraintes linéaires [Janhunen et al, 2017]. Cette méthode permet de récupérer des voies lorsque les méthodes

classiques ne le peuvent pas, d’interroger directement le réseau et d’éviter l’explosion en mémoire. En particulier, la

méthode se révèle efficace pour le calcul de voies minimales de grande taille, en comparaison avec les méthodes

MILP. La méthode peut prendre en compte des contraintes biologiques importantes de tous types, ce que nous

avons illustré sur un réseau central d’Escherichia coli [Mahout, Carlson and Peres, 2020]. Elle est aussi applicable

aux réseaux à l’échelle du génome.
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Notre méthode a été appliquée, en collaboration avec Ross Carlson (Montana State University), à la bactérie

pathogène Pseudomonas aeruginosa (PA) qui est présente dans ~80% des plaies chroniques. PA utilise des

stratégies écologiques différentes de celles des bactéries modèles comme E. coli [McGill et al, 2021]. Elle est

retrouvée généralement dans les plaies avec une autre bactérie pathogène, Staphylococcus aureus (SA). Nous

supposons que leurs deux métabolismes sont complémentaires, ce qui permet une production de biomasse plus

élevée conduisant à des mauvais pronostics pour les patients.

L’extension de notre outil aspefm à l’analyse des MCSs sur un modèle de consortium de ces deux bactéries nous a

permis de retrouver des métabolites dont l’échange entre les deux bactéries permettrait de compenser des phéno-

types prédits léthaux, ainsi que d’explorer des cibles thérapeutiques potentielles contre les bactéries [Mahout et al,

2023a]. Par ailleurs, dans un autre cadre, nous avons appliqué notre méthode de calcul des EFMs au métabolisme

de la cellule cancéreuse humaine et à la formation du stroma tumoral [Mahout et al, 2023b].

Le manuscrit de thèse comporte cinq chapitres et deux annexes. Le premier chapitre est une introduction à la

modélisation des systèmes vivants ainsi qu’une description du domaine de la biologie des systèmes, complétée

par la remise en contexte de la modélisation à base de contraintes dans son champ de recherche plus global en

bio-informatique. Le deuxième chapitre décrit le domaine de la modélisation à base de contraintes ainsi que les

méthodes abordées dans la thèse: dont EFMs, MCSs et Flux Balance Analysis (FBA). Le troisième chapitre décrit

l’utilisation d’ASP pour calculer les EFMs, complétée par l’ajout de contraintes de différents types. Ce chapitre

inclut le développement de notre méthode aspefm, ainsi que son application à un modèle métabolique central de

Escherichia coli [Mahout, Carlson and Peres, 2020], et à une cellule tumorale humaine [Mahout et al, 2023b].

Le quatrième chapitre décrit l’utilisation d’ASP pour calculer les MCSs, ainsi que son application aux métabolismes

de Pseudomonas aeruginosa et Staphylococcus aureus [Mahout et al, 2023a], révélant les différents types de

métabolites permettant aux bactéries de récupérer une croissance normale malgré des délétions de gènes, lors

de leur développement dans les biofilms associés aux plaies chroniques. Enfin, le dernier chapitre élabore les

perspectives et conclusions de ces travaux de thèse. Les annexes développent quant à elles différents éléments

manquant au document principal, dont l’intégration de la compilation de connaissances à Answer Set Programming,

élément qui a été un des points de départ du projet de thèse.
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Chapter 1

Introduction

1.1 Introduction to life sciences

Life sciences, or biology, is the study of all living organic material, all living organisms, and their observable mecha-

nisms. An organic object is usually said to be living if it is self-contained, can manage its resources on its own, and

has the greater purpose of reproducing itself. A living cell could be the smallest unit considered an organism. For

such a cellular organism, the act of reproduction consists of sharing its vessel into two, by processes such as binary

fission or mitosis, and sharing material such as DNA, RNA, lipids, proteins along the two subcomponents.

This is not the only definition of living unit possible, as viruses and mobile genetic elements replicate themselves but

do not adhere to the reproduction scheme described above [1, 2]. As well, some argued nucleic acids themselves

could be the smallest self-replicating units characterizing life [1]. This would be supported by the hypothesis that

RNA ribozymes are the earliest enzymes on Earth [3]. Scientists argue the origin of life should be differentiated

from the origin of replication, and from the origin of metabolism [4, 1].

There are four major building blocks of life: lipids, sugars, amino acids, and nucleic acids [5]. Nucleic acids are

mainly used to store genetic information, lipids to construct membranes, amino acids to construct proteins. Life

sciences studies every intricate part of life, from the sharing of genetic material, to production of RNA, proteins,

lipids, lipoproteins and to which eye color is most prevalent in the Homo sapiens species.

In particular, life is divided in many realms, phyla, genus and species. The three arguably defined realms are

bacteria, archea and eucaryotes. Prokaryotes include bacteria and archaea which lack a nucleus, while eukaryotes

are distinguishable by possessing a nucleus, and sometimes organelles such as chloroplasts and mitochondria,

which share similarities to bacteria [5].

Organisms share a great deal of similarities with each other, inherited from their common DNA. They display com-

mon characteristics from the essential parts of their metabolism in common, but they might largely differ in the way

they interact with other organisms and chemical compounds.
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1.2 Metabolism and interactions between organisms

At the center of every observable biological mechanism, metabolism plays a role. Metabolism is the set of all

chemical reactions in a cellular organism. Almost all essential biochemical reactions can be catalyzed by proteic

enzyme complexes, which are often synthesized by the organism itself. In fact, translation of DNA into RNA, and

traduction of RNA into proteins, are also done by enzymatic complexes of an organism’s core metabolism.

Some theorists argue that metabolism should be at the center of the origin of life debates, as evidenced by the

presence of ATP synthase and proton-motive forces in all known non-viral living organisms [6]. ATP, or adenosine

triphosphate, is unanimously considered the main source of energy of all living cells.

The chemical reactions of metabolism are organized into metabolic pathways, in which one metabolic species are

transformed through a series of steps into other chemicals, each step being facilitated by a specific enzyme. The

metabolic species are called metabolites.

The major biochemical pathways are described in well-known, well-curated metabolic pathway maps [7, 8]. Mean-

while, metabolic pathways such as aromatic amino acids biosynthesis, that do not belong to the core metabolism:

the part of metabolism shared by all organisms, would be called secondary metabolic pathways [9]. Mammals who

cannot synthesize aromatic amino acids must obtain them from other organisms.

Metabolism is usually linked to cell survival; catabolism is the destruction of elementary bricks to produce energy,

while anabolism is the synthesis of elementary bricks from available energy. According to the ’the origin of life is the

origin of replication’ theory, a cell’s goal is usually said to be to replicate itself, that is, to produce biomass – mass of

cells – a quantifiable amount of growth.

Such biomass can be measured in grams of Dry Weight (gDW). Grams of dry weight are usually defined for bacterial

colonies, but the term can also apply to eukaryotes, such as for yeasts. Dry weight is quantified in vitro after

centrifugation of colonies, either by accordingly weighting the dry cells, or by colorimetry - i. e. optical density (OD)

- though the linear relation of OD to dry weight is not strong [S1].

Inside a cell, or a bacterial community, and in our body, many metabolic interactions exist. Metabolites are being

exchanged at every turn. For example, human cells have mitochondria, in which metabolites are exchanged for ATP

production in a fermentation process, generating energy. Cooperation between organisms is called symbiosis [5].

Strong evidence exists to suggest that most diseases are the result of collaboration between pathogenous organ-

isms, with a poor response from the human host, leading to worse patient outcomes [10, 11]. An example of this

would be microbes cooperatively forming biofilms, such as the bacteria Staphylococcus aureus and Pseudomonas

aeruginosa [11]. These collaborations often involve points of junction in the metabolism of the organisms.

Organisms generate considerable amount of wastes, to which by law of entropy, if the wastes are not recycled

properly, accumulation of wastes happen, which is toxic to neighbouring cells and organisms. An example of cells

with such a chaotic metabolism: high anabolism and low catabolism, would be tumoural cells [12].
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1.3 Enzymatic reactions

Biochemical reactions are largely known to be thermodynamically unfavorable, unless they are catalyzed by enzymes

[13]. Enzymes come largely in proteic forms, and they are most often associated with cofactors, including ions and

vitamins. Purich defines an enzyme as ‘a biological catalyst for making and/or breaking chemical bonds‘, and es-

timates their number of unique catalyzed reactions at over 10 000 [14]. Enzymes have catalytic activity for many

different chemical processes, and thus an attempt to describe them all exists in the form of Enzyme Commission

(E.C.) numbers [15].

A ligand of an enzyme is a metabolite that can bind to its active site, usually a cavity inside the enzyme where

the species can form hydrogen bonds with the protein. A metabolite that is metabolized through the biochemical

reaction process catalyzed by the enzyme is called a substrate. The resulting metabolite after the biochemical

reaction happened is called a product. Both substrates and products are enzyme ligands, and the reaction happens

in the active site.

Enzymatic complexes designates complexes of several subunits: whether they would be proteins, peptides, nucleic

acids, cofactors, ligands, other metabolites, all with possibly multiple purposes. A protein might be the subunit of

several different enzymes with different metabolic functions, and an enzyme might catalyze a very wide variety of

different biological processes.

Many substrates of biochemical reactions are coenzymes, such as NAD (Nicotinamide adenine dinucleotide), ATP

(Adenosine Triphosphate), CoA (Coenzyme A), and most vitamins [13]. Through the process of the biochemical

reactions, these coenzymes get reduced or oxidized, in the case of NAD, phosphoryled or dephosphoryled, in the

case of ATP, and acylated or deacylated, in the case of CoA [13].

Other coenzymes taking part in oxidoreducing reactions include NADP/NADPH, FAD/FADH2, ubiquinol/ubiquinone,

cytochromes a/b/c/d, and other phospate sources include GTP.

Coenzymes play a central role in major biochemical pathways such as glycolysis, Krebs cycle, photosynthesis, etc.

As an example, in human cells, aerobic glycolysis, that is, glycolysis in presence of oxygen, followed by transport of

pyruvate into mitochondria, pyruvate dehydrogenase, Krebs cycle, and respiration through the mitochodrial electron

transport chain, is said to be producing 31 molecules of ATP, helped by oxidation of 10 NADH and 2 FADH2 [7].

1.3.1 Enzyme kinetics

The study of whether chemical reactions can proceed or not is called thermodynamics [16]. The study of rates at

which chemical reactions occur is called kinetics [13, 17]. Kinetics and in particular enzyme kinetics are fields of

study involving the discovery of kinetics parameters: a set of variables describing reaction rates.

In biological life, most enzymes catalyze bisubstrate reactions: reactions with two substrates and one or more prod-

ucts. Monosubstrate reactions are infrequent and trisubstrate reactions are less common than the bisubstrate reac-

tions [18, 15]. Chemical reactions are considered in aqueous solutions since life is mainly composed of water [5].
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A classical model for the description of biochemical reactions is described in this section. Three types of reactions

are usually considered:

A→ P unimolecular order 1

A+B → P bimolecular order 2

A+B + C → P termolecular order ?

(1.1)

The molecularity of a chemical reaction refers to the theoritical mechanism in play, while its order refers to the

mathematical model of the kinetics of the reaction. The order of reaction defines how many concentration terms

must be multiplied together to get its rate law [18].

Kinetics is another word for dynamics, meaning that essentially the study of reaction rates should be understood as

the study of rates of metabolite consumption over time. Throughout this thesis, [X] denotes the concentration of a

metabolite X, while [X]0 denotes the initial concentration of a metabolite X, at time t = 0.

For a first-order reaction A
k−→ P , with rate constant k in s−1 , the rate law gives reaction velocity, as:

v =
d[P ]

dt
= −d[A]

dt
= k[A] = k([A]0 − [P ]) (1.2)

Integration of equation 1.2 gives equation 1.3. Unstable substances such as radioactive nuclei undergo decompo-

sition through unimolecular reactions, of first-order.

[P ](t) = [A]0(1− e−kt)

[A](t) = [A]0e
−kt (1.3)

For a second-order reaction A+B
k−→ P , with k in mol.L−1.s−1 the rate law gives reaction velocity, as:

v =
d[P ]

dt
= −d[A]

dt
= −d[B]

dt
= k[A][B] (1.4)

Termolecular reactions are unusual, as the simultaneous collision of three molecules is a very rare event [13].

Usually, these are rather the combination of two elementary steps of second order, such as A + B → X and

C +X → P [18]. The order of any reaction can be determined experimentally by observing the rate v, measuring

the consumption of substrate or product over time, and checking if the above models fit [13, 17].

1.3.2 Enzyme thermodynamics

On the other end, reaction thermodynamics is concerned with how far a reaction can proceed. Regardless of how

fast an enzymatic reaction is, it cannot continue beyond the point of thermodynamical equilibrium [16]. As well,
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reaction thermodynamics involves studying reversibility of reactions using measurable differences of energies. Note

that only difference of energies can be measured, not energies themselves.

A reaction A + B ⇌ Y + Z is simply said to be reversible if from Y and Z, A and B can also be produced. The

direction A + B → Y + Z is called the forwards direction of the reaction and the direction Y + Z → A + B the

backwards direction. Let us define the reaction in equation 1.5.

aA+ bB ⇌ yY + zZ (1.5)

The partial Gibbs molar free energy of A through reaction equation 1.5 is approximately given by the relation [13]:

ḠA = RT ln [A] + Ḡ◦
A (1.6)

Where Ḡ◦
A denotes the Gibbs partial molar free energy of A in its standard state. The standard state is under the

following chemical conditions: [A] = 1 M = 1 mol.L−1, temperature T = 25◦C; pressure P = 1 atm. R denotes the

gas molar constant, and T the temperature of the system, which energy computations are highly dependant on.

In biological reaction systems, the most important thermodynamic parameter is ∆G the variation in Gibbs free

energy [13]. A non null ∆G is indicative of a biological process that is spontaneous, that can proceed, regardless of

the rate at which it can proceed. A null ∆G is indicative of a biological process that has reached equilibrium.

The variation of Gibbs free energy of reaction equation 1.5 is given by :

∆G = (yḠy + zḠz)− (aḠa + bḠb) (1.7)

From equation 1.7 and equation 1.6, we derive the following:

∆G = ∆G◦ +RT ln
(
[C]c[D]d

[A]a[B]b

)
(1.8)

The property of ∆G is determining the direction of a reaction, i. e. if ∆G < 0, then the forwards direction of the

reversible reaction is the direction that can proceed, and conversely, if ∆G > 0, then the backwards direction of the

reaction can proceed. As seen in equation 1.8, ∆G varies greatly on the concentration of reactants and products.

This chapter is illustrated on the example of reaction equation 1.5 but more generally, we have:

∆G = ∆G◦ +RT ln


∏

Pr∈Products

[Pr]stochPr

∏
Rc∈Reactants

[Rc]stochRc

 (1.9)
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At equilibrium, the free energy variation is null, ∆G = 0, yielding:

∆G◦ = RT ln

(
[C]ceq[D]deq
[A]aeq[B]beq

)
= RT ln Keq (1.10)

Where [X]eq denotes the concentration of X such that the reaction is at equilibrium. Keq is the familiar equilibrium

constant of a reaction, its value depending on concentrations of products and reactants. As can be seen by the

relation in equation 1.10, Keq can also be numerically defined directly from the variation of free energy in standard

state ∆G◦, Keq = e−∆G◦/RT .

The variation of free energy in standard state ∆G◦ can be further defined in terms of free energy of formation ∆G◦
f

of every metabolite in its standard state. This describes the change of energy accompanying the formation of 1 mol

of a substance in its standard state, from energy of its molecular composition in their standard states [13].

∆G◦ =
∑

Pr∈Products

∆G◦
f (Pr)−

∑
Rc∈Reactants

∆G◦
f (Rc) (1.11)

In practice, in order to determine experimentally observed reversibilities of reactions, depending on concentration in

metabolites external to the system, temperature, ionic force, and pH, the free energies of formation ∆G◦
f of every

metabolite can be used. They are reported in websites such as Equilibrator [19], which offers a programmatic

interface [20] to compute ∆G◦ and Keq values ourselves.

It should also be noted that inter-compartment transport reactions and redox processes have their own energy

mechanisms that should be described further than simply ∆G free energy. Ion gradients are at the basis of many

transport processes including oxidative phosphorylation in mitochondria [S2].

To conclude, since processes at equilibrium can only occur at an infinitesimal rate, a reaction will either proceed in

its forwards or backwards direction, depending on metabolite concentrations. Thermodynamics can be used to help

determining reaction reversibilities in general cases [13].

1.3.3 Michaelis-Menten’s model

In light of enzyme kinetics and thermodynamics, enzymes are catalysts that impact reaction rates, but without

affecting distance of the reaction to an equilibrium state. This is usually understood in terms of enzymes decreasing

the activation energy of the reactions they catalyze. This is referred to as the transition-state theory: a lower

activation energy means a faster reaction rate [14, 13, 21].

Let us take a simple irreversible reaction of rate k transforming a single substrate into a product:

S
k−→ P (1.12)

The enzymatic reaction describing the mechanism of enzyme catalysis of reaction equation 1.12 might be written:
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Figure 1.1: Schematic view of an enzymatic reaction with a single active site, with E representing the enzyme, S
the substrate, P the product. Enzyme kinetics is the field of studying kinetic rates of reactions (in violet). Enzyme

thermodynamics is the field of studying directionalities of reactions (in dark red).

E + S ⇌ ES ⇌ EP ⇌ E + P (1.13)

where E, S, and P respectively represent the enzyme, substrate, and product; ES and EP are transition complexes

of the enzyme with the substrate and with the product. This information is more visually summarized in Figure 1.1.

We redefine the previous equation 1.13 by attributing reaction rates ki to each direction in equation 1.15:

E + S
k1−−⇀↽−−
k−1

ES
kE−−−⇀↽−−−
k−E

EP
k2−−⇀↽−−
k−2

E + P (1.14)

Note that this is a simplification of enzyme catalysis involving one active site where both substrates and products

would bind, in other words the enzyme could only have a single ligand at a time. Michealis-Menten’s model, which

is described in this chapter, follows that assumption too, and thus can theoritically only model a single enzymatic

reaction with one substrate and one product at a time.

Michaelis-Menten’s model provides two abstractions to this model, first the transition reaction ES ⇌ EP , admittedly

the moment where the actual reaction S
k−→ P occurs, is rendered ’spontaneous’ and abstracted into a single

metabolite EX. This is arguably due to difficulty observing this state in vitro, compared to simple measurements of

substrate concentration [S] and product concentration [P ]. The model becomes:
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E + S
k1−−⇀↽−−
k−1

EX
k2−−⇀↽−−
k−2

E + P (1.15)

Then, the second abstraction is rendering the overall reaction irreversible, by supposing the reaction EX → E+P to

be thermodynamically favorable, and its inverse backwards reaction E + P → EX thermodynamically unfavorable.

E + S
k1−−⇀↽−−
k−1

ES
k2−→ E + P (1.16)

Michaelis-Menten originally assumed the first reaction step E + S ⇌ ES reached equilibrium fast enough to be

represented by a single thermodynamic equilibrium constant Ks = [E][S]/[ES], with k2 being the limiting rate,

however this is not the case when in limiting concentrations of substrate [S]. Briggs and Haldane introduced the

kinetic rates k1 and k−1, leading to the following formulation:

d[ES]

dt
= k1([E]0 − [ES])[S]− k−1[ES]− k2[ES] (1.17)

Where equation 1.17 represents evolution of the enzymatic complex ES (or EX) concentration over time. Eventually,

this quantity is said to reach a steady-state and at a fast rate, so for simplicity this evolution over time is assumed to

already be at steady-state [14, 17]. This is also Briggs and Haldane’s contribution.

d[ES]

dt
= 0⇔ k1([E]0 − [ES])[S] = k−1[ES] + k2[ES] (1.18)

The steady-state assumption stipulates that the initial rate of reaction reflects a steady state in which [ES] is constant

over time, that is, the rate of formation of the ES complex is equal to the rate of its breakdown [21]. From equa-

tion 1.18, we can derive the value of concentration [ES] of the complex ES, with as parameters the concentration

in substrate [S], the initial enzyme concentration in the medium [E]0, and the kinetic rates.

[ES] =
k1[E]0[S]

k1[S] + k−1 + k2
=

[E]0[S]

[S] + (k−1 + k2)/k1
=

[E]0[S]

Km + [S]
(1.19)

Where Km in equation 1.19 designates the Michaelis constant:

Km =
k−1 + k2

k1
(1.20)

Now, let us defines the velocities of interest V0 and Vmax. V0 is the velocity of the reaction ES
k2−→ E + P , thus

V0 = k2[ES]. Vmax is the the maximum velocity value taken by V0, which would only be reached at a point where

[ES] = [E]0. The initial enzyme concentration [E]0 (also called [E]tot) represents the total enzyme concentration,

bound with substrate or not, so [ES] = [E]0 would mean all enzymes are bound to substrates, hence reaching a
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theoritical maximum velocity value when all of them are catalyzing the reaction. Thus Vmax = k2[E]0. Multiplying

equation 1.19 by k2, Michaelis-Menten’s model can thus be summarized to this single equation:

V0 =
Vmax[S]

Km + [S]
(1.21)

V0 is also called the initial velocity. At the beginning of the experiment, as [S] is provided in low concentrations,

and slowly consumed by the reaction, the velocity V0 is linearly dependant on [S], with approximate value V0 ≈

Vmax[S]/Km. On the other end, at the end of the experiment, the Km term becomes insignificant and the velocity is

approximately V0 ≈ Vmax. Around the middle of the experiment, [S] ≈ Km and V0 ≈ Vmax/2. The well-known curve

of evolution of initial velocity V0 in function of concentration [S] is presented in Figure 1.2.

V0

Km

1/2 Vmax

[S]

       Vmax
       Vmax [S]

Km

Figure 1.2: Dependence of initial velocity on substrate concentration in Michaelis-Menten’s model. The graph
shows the relations between the value of [S] and kinetic parameters, defining the limits of the curve [21].

For each biological enzyme, there is a need to define what is called the turnover rate, or limiting rate of any enzyme-

catalyzed reaction at saturation. If a reaction has several steps with one rate constant being limiting, then the

turnover rate kcat is that limiting rate. In more complex enzymatic models, the abstractions presented in equa-

tion 1.15 and equation 1.16. might not apply, and thus kcat might be a function of several parameters. But in the

simple case of standard Michaelis-Menten’s models as described, kcat = k2, and also kcat = Vmax/[E]0.

Michaelis-Menten’s model, while adequate and simple to use, applies to a single substrate and product. Thankfully,

there is no issue dealing with multiple ligands i.e. multisubstrate reactions, which is the case of many enzymes.

It is possible to derive a Michaelis-Menten equation taking into account the multiple substrates and their kinetic

parameters (see chapter 8. "Reactions of More than One Substrate" of [17]).
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However, Michaelis-Menten’s model is unable to take into account regulation by the substrate of the enzyme catal-

ysis mechanism, also known as allosteric regulation, used by regulatory enzymes (see chapter 12. "Regulation of

Enzyme Activity" of [17]). In that case, higher order models, described by the Hill equation, should be used. The

higher order models are a lot more complex to use mathematically.

A last important measure of Michaelis-Menten model kinetics is enzyme specificity [S3]. Let us consider an enzyme

E with two competing substrates, e.g. S E−→ P and S′ E−→ P ′. This is not to be confused with a bisubstrate reaction

S1 + S2
E−→ P . Note that to avoid the case of bisubstrate reactions experimentally, and always compute specificity

towards a single metabolite, the other substrate of bisubstrate reactions is usually always provided in saturating

quantity, while the metabolite of interest is limiting [17].

For a same enzyme E catalyzing reactions with two competing substrates S1 and S′
1, the specificity is defined as :

specificity to S: kspec = kcat/Km

specificity to S′: k′spec = k′cat/K
′
m

E more specific to S than S′:
v

v′
> 1⇔ kspec > k′spec

(1.22)

When dealing with kinetics of more than one enzyme and one substrate, computer modelling becomes more appro-

priate than manual calculations. The field of systems biology, aiming to describe biology and in particular metabolism

with methods from the engineering of systems, offer computational solutions to help modelling.

A large field of study in systems biology and computational biology is drug discovery: searching for inhibitory

metabolites to essential enzymes in virulent pathogens and diseases of interest [22]. Yet, non-productive substrate

binding such as described in equation 1.23 cannot strictly follow the standard Michaelis-Menten’s model [14]:

E + I ⇌ EI (EI cannot be catalyzed into EP and dissociated into E + P ) (1.23)

Inhibitors that do not yield products can be incorporated in an extended Michaelis-Menten model if their existence

is known and their corresponding kinetic constants such as the inhibition constant Ki can be derived. Inhibition

mechanisms are classified in many multiple types (see chapters 6 and 7 of [17] and chapter 8 of [14] for details).

While essential enzymes can be targeted at the gene level, and RNA level with RNA interference techniques, a

more common method used for human therapeutic applications is finding inhibitory metabolites that may be ligands

to the enzyme of interest. A good inhibitory metabolite acting as a drug to the enzyme of interest may need to have

good ligand specificity to the enzyme, and a significant reduction of the original kinetic rate should be observed

in presence of the inhibitor. Most inhibitors usually trap the enzyme into one or more catalytically inactive forms,

allowing a reduction in the concentration of the active reaction catalyst [14].

In systems biology analyzes, kinetic parameters kcat,Km, Vmax – and Ki for inhibitors – are always sought for, and

are known to be difficult to measure. They are usually reported in kinetic parameters databases [23, 24].

24



1.4 Microbial growth

Bacteria and unicellular organisms such as yeasts can be cultivated in experimental conditions. These organisms

can be used and altered for many purposes, including testing for antimicrobial resistance and engineering of new

bioproducts. Their use in bioengineering is often referred by the term "cell factories". In this section, we take a

closer look at the mathematical models describing microbial growth.

1.4.1 Growth phases and growth rates

ln

Time

[C] Growth phase

Acceleration phase
Lag phase

Decline
phase Death

phase

Stationary
phase

Figure 1.3: Typical batch culture microbial growth curve after adding substrate. [C] denotes cell concentration [16].

In Figure 1.3, we describe the standard microbial growth phases as described in common organisms, such as E.

coli or S. cerevisiae. Lab experiments are able to retrieve this measurements graph, either by measuring dry weight

or using colorimetry, as mentioned previously. The phase of most interest when studying how fast a strain is growing

is the exponential growth phase. In particular, the specific growth rate µ of a bacteria is defined, in h−1, by:

µ such that
d[C]

dt
= µ[C] (1.24)

Note that the growth phase is one where the growth rate nears its theoritical maximum, i.e. µ ≈ µmax [16].
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1.4.2 Bioreactors and mass-balance of biochemical processes

Biochemists define biochemical processes in a broad sense which includes both enzymatic reactions and microbial

colony growth that is designed to perform that reaction. Bacteria and yeasts are now grown in bioreactors, a broad

term which, according to IUPAC, includes all "apparati used to carry out any kind of bioprocess; examples include

fermenter or enzyme reactor" [25]. Fermenters are used to grow products from bacteria and yeasts at large-scale.

Bioreactors might operate in open or closed systems. A system is said to be closed if its boundary does not allow

mass to pass to the surroundings. It is said to be open if it is able to exchange mass with its surroundings. To study

a dynamical chemical process such as bacterial growth, one would have to open the bioreactor to add a substrate

to the system, resulting in generation of more bacterial mass, i.e. biomass [16].

In open systems, where mass flows in and out, and undergoes production and consumption by chemical reactions,

chemical species are subject to mass conservation laws, which can be summarized by the following equation:

mass accumulated = mass in − mass out + mass generated − mass consumed (1.25)

In the case of open systems at steady-state, no mass is accumulated over time, thus we have the following equation:

mass in + mass generated = mass out + mass consumed (1.26)

Open system at steady-state here refers to a system where mass is unchanging with time, meaning that mass

flowing in the system is equal to mass flowing out of the system for the whole duration of the process.

An example of such a process would be for bacterial growth on glucose, despite glucose still flowing in the system,

the number of biomass generated and consumed has become constant over time. More concisely:

mass in = mass out (1.27)

Considering the system as a whole, detail of continuous mass generation and consumption by reactions would be

abstracted, thus equation 1.27 can apply. However, one might be also interested into the behaviour of the system

at unsteady-state, to know which amount of mass is generated and consumed by reactions over time.

Mass balance is useful for checking conservation of mass into biochemical pathways from substrate utilization and

product output of lab experiments. In addition, the same thermodynamical background and mathematical concepts

used here can be applied to energy balance [16]. In particular, species charge (affected by pH, oxidoreduction,

etc.), species phase changes, temperature, all might affect energy of a system. Common biological processes such

as glycolysis and respiration all imply consideration of bioenergetics. Thus it is important to also balance electrons

when performing mass balance of reactions or pathways. Energy balance can be used to help determine ATP and

energy requirements for the growth of microorganisms [16].
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1.4.3 Monod’s model

A chemostat is defined as "a bioreactor in which constant growth conditions for microorsanisms are maintained over

prolonged periods of time by supplying the reactor with a continuous input of nutrients and continuous removal of

medium." [25]. A chemostat is an example of bioreactor performing continuous cell culture, and which can define

an open system as steady-state.

In microbial growth experiments, typically the specific growth rate µ depends on the concentration [S] of a limiting

substrate S. We can assume that a low amount of substrate gives a low growth rate and that if the substrate

concentration increases the growth rate increases. For sufficiently high substrate quantites, the growth rate becomes

saturated, similarly to enzyme saturation by substrate described in Figure 1.2. Thus, Jacques Monod showed that

the biochemical process of microbial growth on substrates could be described similarly to Michaelis-Menten kinetics:

µ =
µmax[S]

Ks + [S]
(1.28)

Supposedly, Monod’s model should be applied to chemostat, as typically this type of continuous cell culture should

eventually reach a biochemical steady-state. Indeed, formation of new biomass is balanced by loss of cells inside

the bioreactor [26]. Monod’s model can also be applied to non-continuous cultures, e.g. batch cell culture, as

described in Figure 1.3 [26, 16]. The stationary phase of batch cell growth, where µ = 0, should not be confused

with a steady-state. Batch cell cultures typically do not allow for the existence of steady states [26, 16].

1.4.4 Stoichiometry of cell growth

It is well-known that aerobic respiration on glucose is said to respect the following mass-balance equation [7] :

C6H12O6 + 6 O2 → 6 CO2 + 6 H2O (1.29)

Then, let us represent biomass, i.e. cell growth on a carbon source such as glucose and a nitrogen source, whether

in aerobic or anaerobic conditions, by the following equation:

carbon source + oxygen + nitrogen source → biomass + carbon dioxide + water (1.30)

Doran thus provides the following master equation for stoichiometry of cell growth, using the atoms carbon, hydro-

gen, oxyen, and nitrogen, the main sources of biological matter [16]:

CwHxOyNz + a O2 + b HgOhNi → c CHαOβNγ + d CO2 + e H2O (1.31)

Where the order of operands in equation 1.31 respectively matches the order of operands in equation 1.30.
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To retrieve the stoichiometric coefficients of equation 1.31, one can solve the system of mass-balance equations

presented in equation 1.32, provided that the respiration quotient d/a is known from experimental data. Note that

coefficients w, x, y, z and g, h, i are known, and α, β, γ can be retrieved from elemental compositions of microbial

cells dry weight in literature. For instance, E. coli ’s elemental composition1 is CH1.75O0.43N0.22. [16].

C balance: w = c+ d

H balance: x+ bg = cα+ 2e

O balance: y + 2a+ bh = cβ + 2d+ e

N balance: z + bi = cγ

(1.32)

In such cell growth, the carbon source is considered the substrate of the reaction (nitrogen source being secondary).

The yield of biomass production, or biomass yield, YXS , is defined as :

YXS =
g cells produced

g substrate consumed
(1.33)

In strain engineering applications, i.e. industrial bioreactor fabrication of bioproduct, products are added to the

master equation 1.30. A product yield YPS can then be computed: the mass of product over the mass of substrate,

in addition to YXS . In this classical notation, X denotes biomass, P denotes product, and S denotes substrate.

1.4.5 Measuring reaction fluxes at steady-state

Contributions in the field of microbial growth mathematical modelling eventually led to the development of flux bal-

ance analysis (subsection 1.6.7, section 2.6), a method relying on mass-balance at steady-state to study whether

biomass growth through a biomass synthesis reaction is possible [27]. This is also commonly referred to as

metabolic fluxes analysis by bioengineers, who work at integrating experimental flux data into metabolic flux models.

Note that in experimental conditions, not all substrate goes into biomass, thus the master equation cannot be used

to represent processes other than growth. In particular, substrate utilization that is unrelated to growth is often

said to go into processes called maintenance [16]. In metabolic models, inclusion of maintenance into the biomass

reaction is often questioned, for instance with ATP maintenance [28].

The stoichiometry of cell growth is used to make the biomass synthesis reaction of metabolic models. More complex

reaction models of cell growth typically include utilization of coenzymes: ATP hydrolysis and NADH reduction. They

might also include DNA, RNA, and protein macromolecular resource considerations for growth [28].

The idea of metabolic fluxes analysis is to study fluxes going through the cell during its growth. Reaction fluxes,

fluxes of metabolite consumption or production, may be reported in units of mol·(g dry weight of cells) −1·h −1 or,

alternately, as C-mol·(g biomass)−1·h−1 or C-mol·(C-mol biomass)−1·h−1. One C-mol of biomass is represented by

the chemical ‘formula’ for dry cells normalized to 1 atom of carbon, CHαOβNγ , as described in equation 1.31 [16].

1Also of note when performing mass-balance for organisms such as E. coli are degrees of reductions, used in electron balances [16].

28



For instance, in modern metabolic models, one would find that flux data should be normalized for 1 gram of dry

weight of biomass, and with biomass reaction flux actually attempting to predict experimental growth rate in h−1.

No longer substrate-dependent, the newest large-scale biomass reactions might look like the following:

protein + RNA + DNA + other molecular composition → 1g dry biomass (1.34)

Although steady-state flux models have now been extended to whole genomes and human cells, they rely on several

large assumptions: first, that a cell produces and optimizes biomass, as in microbial growth described here; second,

that all data and results are in steady-state conditions. For example, experimental data of microbial cultures used

to constrain the analysis could be measured in continuous chemostat bioreactors, as these guarantee steady-state

conditions [16]. In practice, chemostats make for very good fermenters [26]. The successful industrial production of

compounds combined with metabolic fluxes analysis wasn’t possible until the rise of high-throughput technologies.

1.5 From classical genetics to high-throughput technologies

In 1865, Mendel first described on species of peas the notion of dominant and recessive characteristics, that is,

characteristics that might be either preferentially conserved, or preferentially lost in a hybrid [S4]. With his work,

Mendel described what would later become known as alleles, genotypes and phenotypes. A genotype, set of all

alleles – versions of genes of an individual – is responsible for the phenotype – a set of all displayed and observable

characteristics of the individual [S5].

Mendel’s legacy is still carried today, including through the concept of mendelian diseases in human [S6]. Today,

the entire coding human genome is sequenced [S7, S8], thus diagnostic of human diseases-related alleles can

easily be done by mapping a sequence of to a genome of reference, or reference genome. This makes heavy use

of high-throughput sequencing technologies and computational biology. Nucleotide polymorphisms, in other words,

natural deviation in sequence contents, as well as chrosomal structural variants, are now used as alleles of human

genes [S9], to predict resulting human phenotypes e.g. genetic conditions, congenital conditions.

1.5.1 Genotypes and phenotypes

From classical genetics, a genotype is defined as the set of alleles of genes an individual has, while a phenotype

is defined as the observable characteristics the individual porting this alleles display. An allele being a version of a

gene. For instance, as genes are defined with the DNA sequence code, any letter mutation or codon mutation might

result in the creation of a new "allele". The average rate of errors in DNA polymerases is estimated to 1 in 105 [S10].

The two notions of genotype and phenotype are related, and are meant to be observed together for two or more

individuals of the same species [29]. Quanitification of genes and phenotypes has evolved a lot over the years, and

so have biotechnologies for characterization and storage of biological data, such as genome sequences of human

patients. The speed of development of new biotechnologies is actually thought to be rising faster than the speed of

standard information technology, as usually described by Moore’s law [S11, S12].
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Today almost all organisms of interest have reference sequences, meaning sequencing does not have to be done ’de

novo’. Fast sequencing can now be done by mapping short or long reads, the output of high-throughput sequencers,

onto a reference genome [S13, S14]. In human, mapping to a reference genome might be for example done for

paternity tests and prediction of illnesses. Thus deriving genotypes is becoming less and less of a problem.

Deriving phenotypes can be more complicated though. If the phenotype is not something simple such as ’healthy’

and ’ill’, or ’alive’ and ’dead’, then one might be interested into what specific protein or metabolite is produced by the

studied organism. For example, when a protein of interest is known beforehand, one might use specific antibodies

to detect its presence or absence in cells [S15].

However, while high-throughput technologies for deriving genotypes are efficient, high-throughput technologies for

detection of proteins and metabolites on a large-scale are still lacking accuracy even today [S16].

1.5.2 High-throughput technologies and omics

High-throughput biotechnological methods are defined as "methods that perform thousands of simultaneous mea-

surements of biological molecules", and are well-known for generating great amounts of data [S17]. As a result of

the rise of new biotechnologies, it is now believed biology databases and medical databases constitute the most

massive amount of data that computer scientists and data scientists have to deal with, surpassing other science

fields [S18, S11].

Omics: including genomics, transcriptomics, proteomics, are defined as the study with high-throughput technologies

of biological data; with genomes, transcriptomes, proteomes being the sets of all data relating to the corresponding

category, genes, transcription, proteins [30, 31]. While high-throughput biotechnologies permit spectacular charac-

terization of cells, they of course do so with a loss in precision and are always in need of improvements [S16, S19].

Genomics, defining genomes, the set of all coding genes of an organism, can be obtained today by short-read and

long-read sequencing [S13, S14]. Transcriptomics, set of all messenger RNAs, can be obtained with RNA-Seq,

however a downside of the method is that its main application necessitates comparison to another dataset, usually

two conditions, one ’healthy’ and one ’ill’, giving only differential expression data [S20].

Proteomics, the set of all expressed proteins of an organism, is a field carried by mass spectrometry [S21, S22]:

however the methods: MS-MS sequencing: tandem mass stoichiometry, LC-MS sequencing – mass stoichiometry

coupled with liquid chromatography, etc. are subject to many possible imprecisions. In particular, absolute quan-

tification of protein — or enzyme — levels, i.e. absolute by opposition to relative levels which can be obtained with

differential analyses, is still a challenge today [S23, S22].

Metabolomics, the study of metabolites, can be done by mass spectrometry as well [S24, S25]. RMN has also

been reported to be used, such as in [S24] and [31]. Exometabolomics is a term used when only the metabolites

from the extracellular medium are seeked for. Indeed, these makes for easier experiments to calibrate, as the

medium composition can be known by the experimenter [32]. By contrast, internal metabolomics are subject to

more imprecisions.
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Fluxomics, the study of metabolite fluxes, can be done by radioactive isotope labelling. The presence of an isotope

element, e.g. C13, makes tracking and following what becomes of an extracellular medium carbon source possible.

Fluxomics can be correlated to internal metabolomics data done by mass spectrometry for better accuracy [33, 32].

As a summary, we devised a non-exhaustive table describing existing types of omics and some of their associated

high-throughput technologies, presented in Table 1.1.

1.5.3 Representation of knowledge in biology

All the afflux of newly-identified biological data now has to be represented in online biological databases. Biological

databases might be international web portals like NCBI (US national center) [W1], ExPASY (Swiss equivalent) [S26]

and EBI (European equivalent) [S27], or self-maintained projects from labs all over the world (e.g. [S28, S29, S30]).

For their knowledge representation method: these might be standard SQL relational databases, knowledge ontology

databases, etc.

Gene Ontology repertories logic relationships on discoveries on genes and on proteins, for example information

about the function of proteins, and classification of those functions in the enzymatic world [S31, S32]. Using queries

on ontologies, one can derive logic links between genes and their associated proteins and conferred phenotypes.

Another way to derive logic relationships between genotypes and phenotypes would be by using medical databases

[S6], such as the one from the NCBI portal [W1], or well-curated organism-dependant databases [S33, S34].

Bioinformatics data, especially the ones obtained from high-throughput technologies are now massively repertoried

in biological databases. Genome sequences, RNA transcript sequences, protein sequences, gene definitions, med-

ical observations related to genes, protein structures, biological pathways, all of those are reported in databases.

In particular, several paradigms exist for the storing of genes and proteins. UniProt adopts a "one gene = one

protein" policy, and stores together genes, and their protein products. UniProt consists of mainly manually reviewed

and annotated proteins, making it a reference database for quality annotations of proteins [34]. However, UniProt’s

policy forgets the existence of messenger RNA splicing, leading to several protein products with completely different

functions from the same DNA sequence, and the existence of non-coding genes. NCBI instead stores each gene,

each transcript and each protein in its own entry [W1].

For metabolites, we recommend PubChem [S35] and CheBI [S36]. For metabolic pathway maps, we recommend

KEGG [35]. And for complete metabolic networks of reactions and metabolites, aside from KEGG, the Rhea

database [S37], the MetaNetX database [S38], the ModelSeed database [36], the BiGG database [37], the MetaCyc

database [S39] would consistute a good non-exhaustive list.

Metabolic networks are distinguished from metabolic models, i.e. models ready for use in systems biology, often

found in a XML specific specification called SBML [38]. Those models can be found on the BiGG database [37],

and also on the BioModels database among others [39, 40]. Metabolic models are however absent from informative

databases such as MetaCyc and KEGG. Note that BioModels contains a collection of systems biology models, also

including, among differential equation models and others, signaling networks in the SBGN specification, another
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XML-like format [41].

Protein structures as well, are reported on biological databases, such as PDB [42], for the complete crystallized

structure, and InterPro [S40, S41], for protein domains. For protein structure, the method of choice is crystallography,

which is a quite slow method to perform and thus not easily scalable to whole genomes. Thankfully, AlphaFold – an

AI from Google, applied to Uniprot entries – now permits to have structure predictions, such as we can cover the

whole genome and proteome of an organism, although these are not the real structures but predictions [43].

Other examples of databases include DrugBank, for repertoring commercially available drug ligands to enzymes

[44]. Also, STRING, which repertories Protein-Protein Interactions (PPI) networks [S42]. PPI networks are very

large networks descriptive of protein complexes, including enzymatic complexes, which are in part predicted through

interactomics high-throughput methods [S43].

Classical
genetics

Omics-associated name High-throughput technologies

Genotype

Genomics: sequencing a whole genome Short-read, long-read sequencing, alignment to a
reference genome for detection of variants

Exomics: sequencing only the exons in
eukaryotes by reverse transcription of messenger
RNA

Short-read, long-read sequencing, alignment to a
reference genome for detection of variants

Transcriptomics: counting the RNA expression of
all genes in a cell

RNA-Seq, which uses short-read and long-read
sequencing, and tools to determine RNA counts
and variants

Epigenomics: studying interactions of genome
elements with proteins

ChIP–chip [S44]

Metagenomics: sequencing whole genomes
of several cell species, such as microbial
communities

Short-read, long-read sequencing, reference
genome mapping methods

Phenotype

Proteomics: quantifying a whole proteome Mass spectrometry, MS-MS, LC-MS, isotope
labelling

Metabolomics: quantifying the set of metabolites
displayed by a cell

Mass spectrometry, MS-MS, LC-MS, RMN

Fluxomics: quantifying the fluxes of each reaction
through the cell

Isotope labelling

Interactomics: determining protein interactions
on a proteome level, determine protein-protein-
interaction networks

Co-Immunoprecipitation [S43]

Phenomics: quantifying certain phenotypes of
several cells e.g. of a microbial colony all at once

Bioreactor culture, ELISA test, Antibodies

Table 1.1: From classical genetics to high-throughput technologies

In conclusion, as new biotechnologies arised, biologists have been invited to move on beyond classical experiments

such as classical genetics and to welcome bioinformatics and computational biology. As a result, many biological

data have been listed online. However, as with any data stored in the information technology field, materials must

be submitted to thorough quality control checks.
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1.6 Systems biology

Systems biology is an idea introduced as long ago as the 1950s [45]. Briefly, it consists of conducting a systems-level

analysis of biological processes. Mihajlo Mesarovic, often considered a father of systems biology, defines systems

theory as "the theory of formal (mathematical) models of real life (or conceptual) systems", with two fundamental

premises: 1) "a theory of any real life phenomena (biological or otherwise) is always based on an image, termed a

model", and 2) "without introducing any constraints whatsoever the formal, invariant, aspects of that model can be

represented as a mathematical relation. This relation will be termed a system" [46]. It follows that deductions on the

formal model should be interpreted with their implications on real life processes.

Since biological systems have a high dimensional complexity, including micromolecules: metabolites; macro-

molecules: proteins, DNA, RNA; micromolecular processes: enzymatic reactions; and macromolecular processes:

DNA replication, transcription of DNA into RNA, translation into proteins; it follows that one would benefit from using

the formal theory used in the engineering of complex systems [47]. Often in systems biology one ends up defining

multiple modelling levels: a genetic and a ribonucleic level, a proteic level; a metabolism level, with enzymatic re-

actions and metabolites. By understanding and combining modelling at these different levels, and using biological

data to constrain and further specify the model, one can fully predict the effect of a genotype and its corresponding

phenotype in silico [48].

Systems biology took off in the early 2000s, thanks to the rise of high-throughput biotechnologies and computational

biology [49]. However, the field is not new, and has been around for a while, including, among others, the study of

(regulatory) genetic Boolean circuits [50, 51, 52, 53]. In addition, engineering theory and mathematical models for

explaining experimentally observed biological phenomena have been used for a long time, including models such

as Michaelis-Menten’s and Monod’s. And indeed, reaction kinetic models are often of interest in the field [53, 54]. A

key defining factor of systems biology might then be that the study is done at a systemic level, i.e. considering small

to large-scale biological systems such as a cell, a cellular compartment, a multicellular organism, etc. [54].

Early examples of modelling of biosynthetic reaction networks, with dynamic modelling using Ordinary Differential

Equation systems (ODEs), include the works of Rosen and Casti on "Metabolism-Repair" systems in the 1980s [55].

Another instance includes the famous E. coli substrate uptake shift, which could be observed by Varma and Palsson

with the so-called flux balance analysis method in 1994: an example of steady-state modelling, which is of most

relevance to this thesis [27, 51]. With systems biology, scientists are able to to reproduce phenotypes in silico from

modulating genotypes on their model, providing traceable explanations to biological phenomena. When systems

biology modelling methods focus primarily on metabolic reactions, one should speak of metabolic modelling [56].

Douglas Kell suggests that systems biology should be contrasted to classical molecular biology, which focuses on

experimentally validating predefined hypotheses with a reductionist view [57]. Indeed, systems theory allows for

the study of a complete system using a holistic approach, without complete knowledge of its functioning [57, 58].

From high-throughput data, models are able to generate many new scientific hypotheses, emergent properties of

the biological system.
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Jens Nielsen distinguishes top-down systems biology from bottom-up systems biology: the former is a data-driven

process, where new biological information are extracted from the model and omics datasets, possibly automatically

using online databases; while the latter is based on curated knowledge and experimentally-proven hypotheses,

providing a model with gaps to be filled [59, 60]. Both approaches can naturally apply to the same model, e.g. in

the case of genome-scale metabolic models [60, 61]. Intuitively, the two notions should be understood in terms of

reverse-engineering (top-down) and engineering (bottom-up) of a biological system [62].

1.6.1 Scope of systems biology

Hiroaki Kitano defines four key areas of study in systems biology: the system’s structure, its dynamics, its control

mechanisms, and its ability to be engineered [49, 63]. These are general terms for every subdomain of systems

biology, and their potential theoritical and industrial applications. For example, one could study the dynamics of a

metabolic pathway, both computationally and experimentally, trying to study the kinetic parameters of enzymes.

Static metabolic networks can be reconstructed from information found in online databases, and the network’s

properties and structure can be further analyzed. The network’s intrinsic control mechanisms could reveal which

enzymes we would benefit the most from targeting in vitro and in vivo. And reverse-engineering the system would

allow us to perform that genetic modification, to design new strains.

The notion of control is central to the engineering of systems [51, 64]. In his 1997 book: "Understanding the Control

of Metabolism", David Fell summarizes the principles of Metabolic Control Analysis (MCA) [S45, S46], a method

defining control coefficients, quantifying how much a metabolic flux varies, in a metabolic pathway [64]. This replaces

the old experimental biologist concept of "rate-limiting reactions". The method is now often used by enzymologists

in conjunction with experimentally-retrieved kinetic parameters, and ODEs systems modelling reaction kinetics.

In particular, the team of Hans Westerhoff has advocated for the adoption of this systems biology extension of

enzyme kinetics studies [54, 65]. Their methods were applied on mitochondrial respiration [S47], to glycolysis of

Trypanosoma brucei [S48, S49, S50], and to cancer metabolism [S51]. By determining which enzymes have the

highest control coefficients, meaning the ones with most impact on metabolism, researchers are able to predict

drug targets [S52]. Barbara Bakker applied this method to Trypanosoma brucei, proposing that enzymes with high

control coefficients in the parasite but low control coefficients in the host are the best possible targets [S48, S53].

The rapid rise of systems biology in the 2000s has led some scientists to raise some criticisms, particularly towards

its supposed holistic approach [66, 67, 57]. A thorough study of around 400 papers from 2011 shows that ODEs

modelling dominated most systems biology studies from the 2000s [68]. Accordingly, the tool of choice from back

then was MATLAB ©. The authors also reported that only a minority of the studies were reproducible [68]. The issue

of reproducibility was tackled on at the time by the implementation of the SBML standard, and the construction of

the BioModels library [69, 39], and it is still worked on today by the community of dynamic modellers [70].
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In the 2010s onwards though, trends have changed in favor of FBA (flux balance analysis), i.e. steady-state mod-

elling, stoichiometric modelling, genome-scale metabolic modelling. To get an idea of this new community bias, the

2010 paper: "What is flux balance analysis?" has now be cited no less than 3800 times [71]. Meanwhile, the 2013

COBRAPy paper will soon reach 1000 citations, indicating a shift towards the Python programming language [72].

Flux balance analysis is a true game changer in holistic systems biology, in that it can scale to whole genomes.

Genome-scale metabolic models are metabolic models computationally generated from a reference genome [28,

73]. The strength of genome-scale metabolic modelling is precisely that many different kinds of omics data can

be integrated into models [54, 61]. Although, the models - and FBA - are based on bacterial and microbial growth

as defined in section 1.4 and thus not theoritically applicable to human cells [74], bacteria and yeasts make for

excellent organisms of study and cell factories [59]. We illustrate the links between systems biology, high-throughput

technologies, omics data and computational software, and its applications to microbes in Figure 1.4 and Figure 1.6.

In addition to the previously mentioned therapeutic applications, systems biology is now at the genome-scale tackling

areas of research as wide as microbial ecology, gut microbiota and metabolic engineering [59, 75, 76]. The latter,

using metabolic modelling to help engineer new strains, is of particular interest to industries.

Figure 1.4: Trinity of systems biology: advances in health and life sciences, computer sciences and
biotechnologies lead systems biology research
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1.6.2 From systems biology to synthetic biology

The studies of Jacob and Monod on the lac operon and on diauxic growth of E. coli sparked a large interest among

biologists in the design of synthetic biological circuits [53, 62, 77]. Efforts into making accurate models of gene

regulation using circuit engineering – with Boolean circuits and logic gates – sparked in the years 2000s, and are

still prevalent today [62, 51, 52].

MIT, one of the pioneers of synthetic biology, defined the field as : (a) "the design and fabrication of biological com-

ponents and systems that do not already exist in the natural world" and (b) "the re-design and fabrication of existing

biological systems" [W2]. Meanwhile, iGEM, the International Genetically Engineered Machine competition, defines

synthetic biology as "an approach that uses engineering principles to design and build biological systems" [W3].

A huge prospect of synthetic biology is being able to engineer biology processes. For instance, protein engineering,

enhancing a protein structure to have certain properties, can be achieved by gene modification, and expression of

that gene by microbial cells [78, 79]. The field of metabolic engineering was defined – back in the 1990s – as the

"manipulation of cellular enzymatic, regulatory and transport processes using recombinant-DNA technology for the

purpose of enhancing specific [...] desirable properties" [80, 81].

Whether it is through circuit engineering, or metabolic engineering and strain optimization, it is fair to say the field

of synthetic biology has always been linked to advances in systems biology. Learning information from metabolic

fluxes analysis, or metabolic control analysis, allows one to design strain with deactivated enzymes for therapeutic

applications, or for enhanced fermentation production, for instance. Or, alternately, kinetic modelling of enzymes

obtained from DNA mutations allows us to determine which recombinant enzyme is the most efficient [78, 81].

In industry, bacteria and yeasts are often called cell factories for their ability to be engineered and manufactured on

a large-scale [82, 83]. Recently, cell factories have been in the center of engineering of new bio-based chemical

products [84], including innovative solutions such as biofuels, pharamaceutical compounds, cosmetics products

[S54, S55]. These industrial applications made use of synthetic biology and metabolic engineering [85, 79, 83].

When aiming to construct new protein designs, and thus mutant strains for bioproduction, one can perform directed

or undirected mutagenesis, acquiring new DNA mutations throughout genetic engineering or evolution of strains,

eventually leading to possible new enzymes with the desired properties. Directed mutagenesis include, for example,

CRISPR-Cas9. Meanwhile, an example of undirected mutagenesis process for bioproduct manufacturing that is

industrialized on a large-scale is adaptive laboratory evolution. It is used in particular for consolidating fitness of

manually-designed recombinant strains [S56, S57].

The classic engineering framework used in synthetic biology is called Design-Build-Test-Learn cycle. In the context

of metabolic engineering, metabolic flux analysis methods, which serve as a prediction tool to check if our recom-

binant strain can display the desired phenotype, are said to fall into the Design part of the cycle [86, 83]. Adaptive

laboratory evolution, as a mutagenesis process towards a desired fitness for the reconstructed mutant strain, would

be part of the Build phase [S57]. As well, when information about the strain is learned back from the Learn phase,

going back to the Design phase of the cycle, the metabolic model should be changed accordingly.
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Figure 1.5: The Design-Build-Test-Learn cycle in metabolic engineering and synthetic biology

While one does not have to go as far as writing a complete Design-Build-Test-Learn cycle (Figure 1.5) when doing

systems or synthetic biology, it is important to remember than the model can only work with knowledge about

biological reality that would be provided by lab experiments, and thus they work in collaboration: the model brings

new information for the experiments, and the experiments bring new information for the model. Since a model

could predict anything, experimental verification is required, and reciprocally experiments are not error-free. The

interdisciplinary systems biology field opens the door for a high technical complexity, both formal and experimental.

1.6.3 Overview of systems biology methods

Systems biology methods include any methods concerned with the modelling of a biological system. Systems

biology methods are usually separated into two categories: discrete modelling methods and continuous modelling

methods. The former includes Boolean modelling methods, Gillespie’s SSA algorithm, and more, while the latter

includes dynamic simulation by ODE systems, and steady-state modelling.

In particular, genetic regulatory systems have gotten a lot of attention. In a review paper, Modeling and Simulation

of Genetic Regulatory Systems: A Literature Review, dating from 2000, Hidde de Jong characterizes at least eleven

distinct modelling methods applied to genetic regulatory systems: subgraphs analysis in their graphs representa-

tion, Bayesian networks modelling, nonlinear ODEs, piecewise-linear differential equations, stochastic differential

equations and stochastic simulation, partial differential equations, Boolean networks, generalized logic formalisms,

qualitative differential equations, and rule-based simulation formalisms [87].
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Partial differential equations might be used to represent a different variable than time for the evolution of chemical

reactions, such as space, or diffusion. These are the so-called reaction-diffusion equations [87].

Generalized logic formalisms cover extension of Boolean formalisms from René Thomas to sets of integers [87],

which in this thesis, we cover by the discussion of Constraint Satisfaction Problems (section 3.1). As well, I would like

to note that rule-based simulation formalisms have common syntaxic elements with logic programming. Examples

of rule-based simulation methods used today are: [S58, S59].

For the sake of completeness, we will introduce Boolean modelling and Gillespie’s SSA algorithm, although they are

oftentimes outside of the scope of metabolic modelling. The method of most relevance to this thesis is steady-state

modelling. Its existence cannot be dissociated from dynamic modelling, or ODEs, since the formalism describes an

ODE steady-state, and it compensates for ODEs inability to scale at the genome-scale level.

Definition 1.6.1 – Ordinary Differential Equations

An Ordinary Differential EquationOrdinary Differential EquationOrdinary Differential EquationOrdinary Differential EquationOrdinary Differential EquationOrdinary Differential EquationOrdinary Differential EquationOrdinary Differential EquationOrdinary Differential EquationOrdinary Differential EquationOrdinary Differential EquationOrdinary Differential EquationOrdinary Differential EquationOrdinary Differential EquationOrdinary Differential EquationOrdinary Differential EquationOrdinary Differential Equation, or ODE, is a differential equation involving ordinary derivatives, meaning

derivatives dependant on a single variable.

Often, the goal is to solvesolvesolvesolvesolvesolvesolvesolvesolvesolvesolvesolvesolvesolvesolvesolvesolve an ODE: determining which set of functions satisfy the equation.

For example, for any k ∈ R, the ODE:

dx(t)

dt
= kx(t) or more simply

dx

dt
= kx

admits as solutions the functions of the form x(t) = Cekt, where C ∈ R is a constant.

Systems of ODEsSystems of ODEsSystems of ODEsSystems of ODEsSystems of ODEsSystems of ODEsSystems of ODEsSystems of ODEsSystems of ODEsSystems of ODEsSystems of ODEsSystems of ODEsSystems of ODEsSystems of ODEsSystems of ODEsSystems of ODEsSystems of ODEs might be used to model evolution of dynamic systems over time.

Definition 1.6.2 – Boolean functions and Boolean formulas

A Boolean functionBoolean functionBoolean functionBoolean functionBoolean functionBoolean functionBoolean functionBoolean functionBoolean functionBoolean functionBoolean functionBoolean functionBoolean functionBoolean functionBoolean functionBoolean functionBoolean function is a function f : Bk → B over k Boolean variables v ∈ Bk with B = {0, 1}, and giving the

output of a Boolean variable b ∈ B, such that b = f(v).

A Boolean formulaBoolean formulaBoolean formulaBoolean formulaBoolean formulaBoolean formulaBoolean formulaBoolean formulaBoolean formulaBoolean formulaBoolean formulaBoolean formulaBoolean formulaBoolean formulaBoolean formulaBoolean formulaBoolean formula is a string of symbols which most often describes a Boolean functionBoolean functionBoolean functionBoolean functionBoolean functionBoolean functionBoolean functionBoolean functionBoolean functionBoolean functionBoolean functionBoolean functionBoolean functionBoolean functionBoolean functionBoolean functionBoolean function. It might be composed

of logic operator symbols ∧ (AND), ∨ (OR) and ¬ (NOT), and of names of Boolean variables.

Note that the Boolean formula describing a Boolean function might not always be known.

An additional symbol often used in biology is the implicationimplicationimplicationimplicationimplicationimplicationimplicationimplicationimplicationimplicationimplicationimplicationimplicationimplicationimplicationimplicationimplication: x⇒ z (Z IF X).

An example of logical equivalenceequivalenceequivalenceequivalenceequivalenceequivalenceequivalenceequivalenceequivalenceequivalenceequivalenceequivalenceequivalenceequivalenceequivalenceequivalenceequivalence (IFF,⇔) between Boolean formulas is the following: (a⇒ b)⇔ (¬a ∨ b).

Additionally, the search for satisfyingsatisfyingsatisfyingsatisfyingsatisfyingsatisfyingsatisfyingsatisfyingsatisfyingsatisfyingsatisfyingsatisfyingsatisfyingsatisfyingsatisfyingsatisfyingsatisfying solutionssolutionssolutionssolutionssolutionssolutionssolutionssolutionssolutionssolutionssolutionssolutionssolutionssolutionssolutionssolutionssolutions s∗ such that f(s∗) = b∗ might be of interest.

Boolean networksBoolean networksBoolean networksBoolean networksBoolean networksBoolean networksBoolean networksBoolean networksBoolean networksBoolean networksBoolean networksBoolean networksBoolean networksBoolean networksBoolean networksBoolean networksBoolean networks, systems of several Boolean functions, might be used to model dynamic systems over time.
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Figure 1.6: Classical systems biology workflow: example of metabolic modelling application to bacterial strains

Figure 1.7: Boolean network asynchronous simulation of variables representing protein and biomass production
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1.6.4 Boolean modelling methods

In systems biology, problems might be expressed through Boolean circuits [51, 52], or Boolean networks [88].

Boolean networks are appropriate for dynamic modelling of biological systems.

A Boolean network is defined as a pair B = (N,F ) where N = {v1, · · · , vn} is a finite set of nodes ie. variables

representing biological agents and F = {f1, · · · , fn} is a set of Boolean functions fi : Bk → B, with B = {0, 1},

describing evolution of states of vi over time [88].

A vector or state x(t) = (x1, · · · , xn) describes the values of all nodes N at a time step t, where xi represents the

value of the node, either 1 or 0, which might also be written as {True} or {False}, respectively [88].

An example of such a Boolean network would be the following:

Protein = IF mRNA AND TranslationPromoter AND NOT ProteinDegradation

Biomass = IF Protein AND (WasteTransporter OR ProteinDegradation)

ProteinDegradation = IF NOT ProteinDegradation

(1.35)

There are three described Boolean functions: for nodes Protein, Biomass and ProteinDegradation. These functions

describes how the state x(t + 1) evolves compared to the state x(t). Understandably, this means in our exam-

ple, nodes mRNA and TranslationPromoter and WasteTransporter are static over time. This example is a way of

expressing dynamics of protein production and degradation, another way will be as described in equation 1.38.

We can assume a synchronous mode of evolution, meaning all nodes update at the same time, or an asynchronous

mode of evolution, where the first node updates first, then the second, then the third, etc., ie. where an order has to

be defined. It goes without mentioning that Boolean networks, called Boolean circuits in synthetic biology, obey the

rules of formal logic and logic resolution.

For our example, we assumed an asynchronous mode. At time t = 0, we set Boolean variables mRNA, Translation-

Promoter and WasteTransporter to {True}, essentially simplifying the Boolean formulas for the other nodes. For

the other nodes, we set initial values of Biomass and ProteinDegradation to 1, while Protein is at 0. At each time it

is evaluated, ProteinDegradation oscillates between present and absent. We represented the evolution of Protein

and Biomass in Figure 1.7 [W4]. Note that they are closely related: once Protein is evaluated to {True} or {False},

the Boolean relationship between the two of them is so that Biomass eventually follows with that same truth value.

In particular, Boolean Networks are used to study dynamics of gene expression and protein expression [51, 88], and

mechanisms such as transcriptional regulation, protein-level regulation, feedback loops, cell cycle, etc. [S60, S61].

An important object of study are also attractors of the Boolean dynamic systems [S60, S61]. We refer to the work

of René Thomas for further details in the field of Boolean modelling methods in biology [50].

Note that logic modelling is important in biology as it conceptually matches with the intuitive reasoning from biologists

[S62, S63]. Rather than discrete and continuous data, biologists would record data in qualitative ways, linked

by Boolean relations to each other [S62, S64]. Examples of these include Gene Ontologies and other ontology
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databases, which also notably include protein functions and metabolism functions [S65, S32, S66]; and signaling

pathways describing activation and inhibition of proteins, which may be reported in BioModels in SBGN (Systems

Biology Graphical Notation) format [39, 41].

Thus, it is important to incorporate Boolean data into models, even in fully discrete and continuous systems [51].

However, a too strict discrete Boolean encoding of transcriptional regulation, among other examples, might not be

a reasonable hypothesis. This was directly touched upon in the studies I undertook for my thesis [89].

Nevertheless, the sigmoidal shape, observed in kinetic models, bacterial growth, gene regulation, and many other

biological processes, is one that can be accurately reproduced by Boolean models, as a Boolean ON/OFF switch

[S62, S67].

1.6.5 Dynamic modelling with ODEs

As well, dynamic modelling problems can be expressed by Ordinary Differential Equation systems (ODEs for short).

Markus Covert proposes the following general template for modelling ODEs of concentrations of entities x [51],

presented in equation 1.36:

dx

dt
=
∑

Ratesproduction −
∑

Ratesconsumption (1.36)

Where the sum
∑

Ratesproduction −
∑

Ratesconsumption must be a function over time t, possibly depending on x(t)

or on other functions that are variables of the ODE system.

For instance, considering concentrations of three entities, DNA, Protein and Biomass, here is an ODE system:

d[DNA]

dt
= −ktrl[DNA]

d[Protein]

dt
= ktrl[DNA]− kdeg[Protein]

d[Biomass]

dt
= −kdeg[Protein]

(1.37)

This example (equation 1.37) was simulated and represented in Figure 1.9 using Julia [S68, S69].

For simplicity, we’ll consider a system of a single equation and variable [51]. The rate constants used in the ab-

straction for protein production presented in equation 1.38 are ktrl rate of gene translation and kdeg rate of protein

degradation.

d[Protein]

dt
= ktrl − kdeg[Protein] (1.38)
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Covert then decides to further simplify the system by setting ktrl = kdeg = 1 in equation 1.39 :

d[Protein]

dt
= 1− [Protein] (1.39)

The analytical solution to that simple ODE system, with initial conditions of [Protein](t = 0) = 0 is the following

function over time:

[Protein](t) = 1− e−t (1.40)

Here the case is simple enough that the solution to the ODE can be analytically retrieved. However, that is not always

the case. A technique to approximate solutions to an ODE would be the Euler method. The idea is approximating

the ODE system, with real steps of time ∆t rather than infinitesimal steps, i.e. similar to computing tangents to the

curve of the solution function.

The derivative notation in equation 1.38 can be rewritten with infinitesimal steps as the following:

[Protein](t+∆t) = [Protein](t) + (1− [Protein](t)) ·∆t (1.41)

An application of Euler method to equation 1.38, for t = 0.01, with a time step of ∆t = 0.01 is presented in

equation 1.42. We approximately retrieve the result that we would obtain by applying equation 1.40 to that time

value of t = 0.01.

[Protein](t = 0.01) = [Protein](t = 0) + (1− [Protein](t = 0)) · 0.01 = 0.01 ≈ 1− e−0.01 (1.42)

Of course, this is a simple example of a system of only one ODE and of first-order. In practice, biological systems

models would incorporate complex kinetic parameters such as described in subsection 1.3.3, and are thus much

harder to analytically solve, and approximate, if even possible. Further techniques to help integrating and simulating

solutions to ODEs can be obtained thanks to Taylor series approximations [51].

ODE solvers and approximation methods are implemented in classical mathematical libraries such as MATLAB [W5],

Julia [S69], SciPy [S70]. Alternately, one might approximate ODEs with Gillespie’s stochastic simulation algorithm,

though the parameters they operate on are different.

1.6.6 Gillespie’s stochastic simulation algorithm

Gillespie’s stochastic simulation algorithm (SSA) is another tool used in systems biology to approximate consump-

tion of metabolites by reactions [S71, S72]. While at first glance it has similarities to ODEs, it takes a very different

approach. It is based on the probablity of two molecules interacting at any given time, according to physics. Gille-

spie’s SSA operates on discrete metabolite quantities rather than continuous concentrations [51].
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Figure 1.8: Gillespie SSA simulation of reactions representing evolution of DNA, Protein and Biomass variables

Figure 1.9: ODE simulation of reactions representing evolution of DNA, Protein and Biomass variables
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For comparison’s sake, we provide the same example as for ODEs (equation 1.37), which we simulated and repre-

sented in Figure 1.8 using Julia [W6].

Let us take the following system of reactions, characterized by their reactions constants cj :

DNA
ctrl−−→ Protein

Protein
cdeg−−−→ Biomass

(1.43)

Similar to the initial condition in ODEs solving, Gillespie’s simulation require definition of numbers of molecules for

every molecule in the simulation. Rates of protein synthesis and degradation in organisms can be found reported

on databases such as BioNumbers, which have many use cases in systems biology [S73].

In Gillespie’s SSA, the reaction constants cj are then used to compute reaction propensities aj . Constants are not to

be confused with kinetic rate constants, as they operate on number of molecules rather than volumic concentrations.

The number of molecules xi is independant of volume. The volume parameter is set elsewhere in the algorithm.

The first step in an iteration of Gillespie’s SSA is computing the sum of all reaction propensities atotal :

atotal =

M∑
j=1

aj(x) =

N∑
j=1

cjhj(x) (1.44)

Where hj is a function of the number of molecules vector x at time t, depending on reaction stoichiometry and the

order of reaction j. Then the interval τ between the current time and the time of the next reaction is calculated,

using a randomly generated number U1 ∼ [0, 1].

τ =
1

atotal
ln

(
1

U1

)
(1.45)

This Monte-Carlo simulation method gives time steps τ into a familiar exponential probability distribution. Then the

reaction q occuring at that time is chosen, according to a second randomly generated number U2 ∼ [0, 1].

q is such that
q−1∑
j=1

aj ≤ atotal · U2 <

q∑
j=1

aj (1.46)

Such an algorithm describes the probability that the next reaction q occurs during the next time interval τ , considering

the number of molecules x at time t. This is expressed as:

P (τ, q | x, t) = aq(x) exp(−τ
M∑
j=1

aj(x)) (1.47)

Further insights into the stochastic simulation algorithm as presented by Gillespie are given in [S71, S72]. A great

advantage of the SSA method is providing an actual integer number of molecules by time for each molecule, more
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reflective of biological reality than concentration values in floating numbers. It also might provide more accurate

insights regarding limiting metabolites in the solution, as the algorithm simply stops when one of the reactants

quantity reaches 0, while an ODE system might tend towards zero indefinitely.

However, just like ODEs, SSA suffers scaling issues when the number of variables increases. Indeed, the time steps

τ are inherently inversely dependant on the number of reactions and molecules in the system. Covert suggests

compensating for these problems by making hybrid models [51]. Examples of hybrid models include: [90], [S74].

In conclusion, systems biology presents a vast panel of methods. The method with the most scalability which will

be presented in this thesis is steady-state modelling. While steady-state makes the variation over time abstract, it

could be coupled in hybrid frameworks with Boolean formalisms, ODEs solving, and stochastic simulation algorithm

for further description of the evolution of the system over time.

1.6.7 Steady-state modelling

To conclude this introduction, we present a brief introduction to how dynamic modelling methods relate to steady-

state modelling, and how systems biology modellers have come to consider steady-state modelling from a dynamic

modelling background.

While Michaelis-Menten can be used to modelize enzyme kinetics in a variety of biological substrates, determining

the kinetic parameters for even a single enzyme can be a lot of experimental work, so determining kinetic parameters

for whole metabolic networks is still out of reach today.

extracellular intracellular extracellular

Figure 1.10: Abstraction of a metabolic model for illustrating steady-state modelling. Fig. proposed by Covert [51].

Let us consider a simple abstraction of a metabolic network and metabolic fluxes i.e. reaction rates, as presented

in Figure 1.10. There are two compartments: extracellular and intracellular. The network possesses two enzy-

matic Michaelis-Menten transporter 2 reactions {St, Pt}, and one standard intracellular Michaelis-Menten enzymatic

reaction E. It involves metabolites Mets = {Sout, Sin, Pin, Pout}. It is defined as the following:

Sout
vSt−−→ Sin

Sin
vE−−→ Pin

Pin
vPt−−→ Pout

(1.48)

2Note that transport reactions might be non-enzymatic and that using Michaelis-Menten’s model in that context, ignoring membranal ionic
strength, is strongly discouraged. Handbooks of kinetics provide stronger formalisms for these non-standard enzymes [14, 17].
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To model this metabolic network using ODEs, we rewrite it into a system of production and loss rates [51]:

∀M ∈Mets,
d[M ]

dt
=
∑

vproduction −
∑

vconsumption (1.49)

Applying equation 1.49, we get the following system [51]:

d[Sout]

dt
= −vSt

d[Sin]

dt
= vSt

− vE

d[Pin]

dt
= vE − vPt

d[Pout]

dt
= vPt

(1.50)

Taking the second equation and applying Michaelis-Menten kinetics gives the parameter-dependant ODE equation

below, showing that computing evolution of concentrations over time requires the knowledge of kinetic parameters :

d[Sin]

dt
=

Vmax(St) · [Sout]

[Sout] +Km(St)
−

Vmax(E) · [Sin]

[Sin] +Km(E)
(1.51)

Since metabolite concentrations and Michaelis-Menten kinetic parameters tend to be hard to determine, accurately

analyzing such an ODE might be difficult [51]. Let us consider another approach.

The steady-state assumption, or steady-state modelling hypothesis, states: metabolites internal to the system are

directly consumed and produced, without any time consideration. The variation in time of concentration is consi-

dered null. Here all metabolites including extracellular ones are internal. Setting a steady-state assumption gives:

∀M ∈Mets,
d[M ]

dt
= 0 =

∑
vproduction −

∑
vconsumption (1.52)

Which in turn is rewritten as the following system:

−vSt = 0

vSt
− vE = 0

vE − vPt = 0

vPt
= 0

(1.53)

This allows us an abstraction of Michaelis-Menten kinetic parameters and internal metabolite concentrations, meaning

those do not have to be experimentally determined or computationally estimated.
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These equations will need to be solved to get values of metabolite fluxes estimated over time i.e. reaction rates, not

to be confused with metabolite quantities or concentrations. However it is now a linear system, instead of an ODEs

system. This is in fact a lot easier to solve computationally, and can scale to large systems with over 1000 reactions

instead of the 4 reactions presented here.

While what happens intracellularly is determined by the linear system, there is still modularity at the extracellular

world, the boundaries of the system, i.e. what we give as input to the system, and want as output. For example,

were we to consider a concentration of [Sout] = CS and a product yield of [Pout]/[Sout] = YPS , such bounds could be

applied to the first and last equation of the system without harming the modelling formalisms, as those constraints

would not affect the topology of the intracellular metabolic network, which is supposed invariant.

Let us this time assume an open system, where mass flows in and out, e.g. with mass-balance dynamics according

to equation 1.25. Since we will be using the steady-state assumption, we should model inputs and outputs quantities

as constant flows over time. Usually, one can assume the time of a steady-state model to correspond to initial

concentrations, and final concentrations of an experiment. We rewrite:

d[Sout]

dt
= −vSt

+ CS

d[Pout]

dt
= vPt − YPS × CS

(1.54)

Assuming the steady-state hypothesis for metabolites in the system; and initial substrate concentration and final

product yield as [Sout]0 = CS = YPS = 1 arbitrary flux unit, we get the following trivial linear system:

−vSt = 1

vSt
= vE

vE = vPt

vPt
= 1

(1.55)

This time the solution is interpretable, if 1 unit of S goes through the metabolic network in Figure 1.10, then 1 unit

of P will be produced. And in the process, fluxes of every reaction in the network were estimated. We now have

a simple illustration of how microbial growth data as detailed in section 1.4 can be used as constraints in steady-

state modelling to obtain reaction fluxes; and thus validate – or invalidate – growth predictions, product yields and

potential byproducts.

For a better modelling capacity, a second hypothesis, after steady-state, is formulated: that of having pre-determined

reaction reversibilities. Modelling reaction fluxes at steady-state as a linear system, one gets reaction fluxes as real-

valued linear variables, and thus irreversible-only reactions should correspond to positive-only linear variables, while

reversible reactions could correspond to positive or negative variables.
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Note that, as underlined in subsection 1.4.5, working on a model with the steady-state assumption means that any

experimental data should be collected under steady-state conditions.

Hypothesis 1.6.1 – Modelling biological systems at steady-state

By modelling biological systems at steady-state, the consumption and production of metabolites by reactions

over time is considered constant. This is the steady-state assumption.

For metabolites Mets internal to the biological system, the steady-state hypothesis simply states:

∀M ∈Mets,
d[M ]

dt
=
∑

vproduction −
∑

vconsumption = 0 (1.56)

In other words, there is no accumulation over time of metabolites in the system.

Metabolites external to the system go directly from consumption in the system to production outside the system.

Hypothesis 1.6.2 – Reaction reversibilities are pre-determined

For the reaction fluxes vR of a reaction R, we have:

• vR > 0 if R operates forwards,

• vR < 0 if R operates backwards,

• vR = 0 if R does not operate.

Due to the complexity of modelling thermodynamics and reaction reversibilities, fluxes bounds are

predetermined according to biological knowledge and experimental data.

Thus, a systems biology modeller must determine which reactions are reversible and which are not.

These reversibilities impose constraints on the domain of the solution space defined by the linear system

derived from steady-state assumption.

Seeing the benefits of this abstraction, the interest from dynamic modellers has shifted to steady-state models,

modelling the intracellular world as static, and keeping only the extracellular world dynamic. Methods to analyze

steady-state models are defined in the area of constraint-based modelling, which we develop in the next chapter.
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Chapter 2

Constraint-based modelling

As a complement to the dynamic modelling formalism, steady-state modelling was born. Steady-state modelling is

also sometimes interchangeably termed constraint-based modelling (CBM). Here, we will use the term constraint-

based modelling to refer to the construction of metabolic models specifically adapted for steady-state modelling.

The term constraint-based modelling likely comes from Bernhard O. Palsson, co-inventor of Flux Balance Analysis

(FBA) [27], and author of an influential reference book named "Systems biology: Constraint-based reconstruction

and analysis" [91]. The name constraint-based modelling is also present in the name of the widely used COBRA

toolbox, standing for COnstraint-Based Reconstruction and Analysis methods [92], and early instances include

works with Markus Covert [93, 94]. Palsson introduces the idea in "The challenges of in silico biology": imposing a

successive series of biological constraints, one can limit likely cellular behavior to a formulated solution space [95].

Although our main methods of interest (EFMs, MCSs) differ from the main method of interest of Palsson (FBA),

we very much abide by the same ideas. In particular, the addition of constraints into the computation of EFMs

and MCSs is a major challenge that should be adressed for two reasons: first, it makes the computation of these

solutions on large metabolic models achievable, and second, there is a need for methods that adress the finer

details of biological reality as experimental biologists observe it, and we believe such a level of accuracy can only

be permitted by the addition of constraints. The major advantage of EFMs in particular is removing the bias from

the objective function from FBA, which causes a significant loss in biological accuracy.

Throughout this chapter we will detail the basis of mathematical programming and metabolic modelling, as well as

every relevant method in constraint-based modelling. The methods of most importance that will be studied in this

thesis are in fact Elementary Flux Modes (EFMs) and Minimal Cut Sets (MCSs). But to understand their interest

and their functioning we must also introduce Flux Balance Analysis (FBA) and Linear Programming (LP).

Elementary Flux Modes (EFMs) and Minimal Cut Sets (MCSs) are the two methods that our tool, aspefm, proposes

to do with a better computation algorithm than the competition. While this chapter introduces all relevant methods

for our thesis, aspefm and our subsequent results will be presented from chapter 3 onwards.
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2.1 Linear programming

Linear Programming (LP) consists of solving a linear program, or linear problem. To define such problems, a first

look should be given at the area of optimization and mathematical programming. A mathematical program is simply

a mathematical optimization problem under constraints, as defined in Definition 2.1.1 [96]. This general definition

aims to englobe every common optimization problem.

Some examples of mathematical optimization subclasses include: first, linear programming, for the solving of linear

constraints over linear variables, and popularized in 1947 by Dantzig with his simplex method [97]. Secondly,

convex programming consists in minimizing a convex function over convex constraints; minimizing the unconstrained

convex function can be done with algorithms such as gradient descent [S75]. If several objective functions must be

optimized at the same time (or consecutively), solving the problem is called multi-objective optimization (or multi-

level programming) [S76]. And finally, if some of the constraints or the objective function are non-linear, solving such

a problem might be called non-linear programming [S77, S75].

In the absence of an objective function, a mathematical program becomes a feasibility problem, where constraints

just need to be satisfied. Lustig and Puget thus argue that linear programs and mathematical programs join the area

of constraint satisfaction problems, ie. combinatorial problems [98]. However, this chapter mostly deals with linear

programming problems, which are resolved mathematically, rather than exhaustively. Combinatorial problems and

constraint satisfaction problems, solved with different solvers, will be detailed in chapter 3, through the so-called

constraint programming formalism.

Definition 2.1.1 – Mathematical Programming

A mathematical programmathematical programmathematical programmathematical programmathematical programmathematical programmathematical programmathematical programmathematical programmathematical programmathematical programmathematical programmathematical programmathematical programmathematical programmathematical programmathematical program is a program of the form:

Minimizex f(x)

subject to:

gi(x) ≤ 0 i = 1, · · · ,m

x ∈ Sols ⊂ Rn

(2.1)

Where x1, x2, · · · , xn are the variablesvariablesvariablesvariablesvariablesvariablesvariablesvariablesvariablesvariablesvariablesvariablesvariablesvariablesvariablesvariablesvariables of the problem.

f(x) is called the objectiveobjectiveobjectiveobjectiveobjectiveobjectiveobjectiveobjectiveobjectiveobjectiveobjectiveobjectiveobjectiveobjectiveobjectiveobjectiveobjective function (minimization or maximization)

Sols is called the domaindomaindomaindomaindomaindomaindomaindomaindomaindomaindomaindomaindomaindomaindomaindomaindomain of solutions.

And (gi(x) ≤ 0) i = 1, · · · ,m are called the constraintsconstraintsconstraintsconstraintsconstraintsconstraintsconstraintsconstraintsconstraintsconstraintsconstraintsconstraintsconstraintsconstraintsconstraintsconstraintsconstraints.

Note that the formalism englobes maximizationmaximizationmaximizationmaximizationmaximizationmaximizationmaximizationmaximizationmaximizationmaximizationmaximizationmaximizationmaximizationmaximizationmaximizationmaximizationmaximization as such a problem is equivalent to maximizing −f(x).
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To understand the simplicity and efficacity of linear programming solving, we first need to adress the definition of

convexity. Convexity is defined in Definition 2.1.2. A special property of convex mathematical programs – programs

over real variables, with convex constraints and a convex objective function – is that any local optimum they admit

is also a global optimum. This is explained in Theorem 2.1.1 and illustrated in Figure 2.1.

Linear functions (or affine functions) are convex, meaning that linear programming: consisting in minimization of a

linear function over linear constraints, admits a single global optimal value. Note that this is only true of values, ie.

result of min f(x), and not of solutions, ie. assignment of variables x. In fact, linear programs often admit several

optimal solutions (see Figure 2.2). Linear programming is properly defined in Definition 2.1.3. A graphical example

of the resolution of a linear program in dimension n = 2 variables is shown in Figure 2.3.

Definition 2.1.2 – Convexity

A set K of Rn is convexconvexconvexconvexconvexconvexconvexconvexconvexconvexconvexconvexconvexconvexconvexconvexconvex if, for each pair of distinct points a = (x1, · · · , xn), a′ = (x′
1, · · · , x′

n) in K, the closed

segment s with endpoints a and a′ is contained within K.

From a set of points A = (a1, a2, · · · , an), its convex hullconvex hullconvex hullconvex hullconvex hullconvex hullconvex hullconvex hullconvex hullconvex hullconvex hullconvex hullconvex hullconvex hullconvex hullconvex hullconvex hull conv(A) is defined as the smallest convex set K ⊂ Rn

containing all of A. In dimension 2, the convex hull of any given polygon or set of points is a convex polygon.

In dimension n, the convex hull of any given finite set is a convex polytopepolytopepolytopepolytopepolytopepolytopepolytopepolytopepolytopepolytopepolytopepolytopepolytopepolytopepolytopepolytopepolytope [W7].

A functionfunctionfunctionfunctionfunctionfunctionfunctionfunctionfunctionfunctionfunctionfunctionfunctionfunctionfunctionfunctionfunction f(x) : Rn → R is convexconvexconvexconvexconvexconvexconvexconvexconvexconvexconvexconvexconvexconvexconvexconvexconvex if its domain is a convex set and for all x, x′ in its domain, and all λ ∈ [0, 1]:

f(λx+ (1− λ)x′) ≤ λf(x) + (1− λ)f(x′) (2.2)

All real-valued affineaffineaffineaffineaffineaffineaffineaffineaffineaffineaffineaffineaffineaffineaffineaffineaffine functions, or linearlinearlinearlinearlinearlinearlinearlinearlinearlinearlinearlinearlinearlinearlinearlinearlinear functions, of the form f(x) = aTx+ b, x ∈ Rn, are convex.

A mathematical programmathematical programmathematical programmathematical programmathematical programmathematical programmathematical programmathematical programmathematical programmathematical programmathematical programmathematical programmathematical programmathematical programmathematical programmathematical programmathematical program is said to be convexconvexconvexconvexconvexconvexconvexconvexconvexconvexconvexconvexconvexconvexconvexconvexconvex if it consists in minimizing a convex function under convex

constraints and over a closed convex domain [96].

Theorem 2.1.1 – Optimality and convexity

In optimization, finding local optimalocal optimalocal optimalocal optimalocal optimalocal optimalocal optimalocal optimalocal optimalocal optimalocal optimalocal optimalocal optimalocal optimalocal optimalocal optimalocal optima to functions is often achievable. However, there might not be a guarantee

that a local optimum solution is a global optimumglobal optimumglobal optimumglobal optimumglobal optimumglobal optimumglobal optimumglobal optimumglobal optimumglobal optimumglobal optimumglobal optimumglobal optimumglobal optimumglobal optimumglobal optimumglobal optimum. Also, exhaustive testing of all possible solutions is not a

computationally adequate maneuver. As a result, approximation methods or heuristicsheuristicsheuristicsheuristicsheuristicsheuristicsheuristicsheuristicsheuristicsheuristicsheuristicsheuristicsheuristicsheuristicsheuristicsheuristicsheuristics can be used to give the

best possible solutions in reasonable times, depending on the problem.

On the other hand, convex mathematical programs follow a fundamental special property: in a convex programconvex programconvex programconvex programconvex programconvex programconvex programconvex programconvex programconvex programconvex programconvex programconvex programconvex programconvex programconvex programconvex program,

any local optimumlocal optimumlocal optimumlocal optimumlocal optimumlocal optimumlocal optimumlocal optimumlocal optimumlocal optimumlocal optimumlocal optimumlocal optimumlocal optimumlocal optimumlocal optimumlocal optimum is a global optimumglobal optimumglobal optimumglobal optimumglobal optimumglobal optimumglobal optimumglobal optimumglobal optimumglobal optimumglobal optimumglobal optimumglobal optimumglobal optimumglobal optimumglobal optimumglobal optimum. This means convex programs are relatively easier to solve.
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Local and global optimum

Global optimum
Local optimum

Figure 2.1: Local and global optimum of functions to be optimized

We further develop the convexity of linear programming in Definition 2.1.5. The theory surrounding linear program-

ming and its resolution cannot be dissociated from the theory of polytopes and polyhedra [96, 99, 100]. A linear

program, or linear problem (LP) is formally defined by: m constraints over n real-valued variables, forming a polyhe-

dron P = {x | Ax ≤ b, x ∈ Rn}, and an objective function min or max f(x) = cT x. Where A is a m× n real-valued

matrix, and b ∈ Rm and c ∈ Rn are real-valued vectors.

Following this definition, a canonical linear programming problem is simply defined as Definition 2.1.4 [96]. This is

the definition used by common linear programming solvers. The solver of choice for linear programs is IBM© cplex

[W8], although other alternatives exist, including gurobi [W9], cvxpy [S78], GLPK [W10].

Algorithms for solving linear programming include the aforementioned simplex method [97], and the now widely

used and very efficient interior-point methods [101]. The simplex method is supposedly exponential in worst-case,

though a probablistic complexity analysis places the algorithm as polynomial in only the number of variables n.

Interior point methods are polynomial in worst-case in the dimension n but also in the binary length of the data L,

and have a polynomial probablistic complexity of O(
√
n lnn) [101]. Polynomial degree may range up to 4 [101].
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Definition 2.1.3 – Linear Programming

A generic linear programlinear programlinear programlinear programlinear programlinear programlinear programlinear programlinear programlinear programlinear programlinear programlinear programlinear programlinear programlinear programlinear program is a program defined by the form:

Minimizex f(x)

subject to:

gi(x) = 0 i ∈ I0 (equality constraints)

gi(x) ≤ 0 i ∈ I−

gi(x) ≥ 0 i ∈ I+

 (inequality constraints)

x = (x1 x2 · · ·xn) ∈ Rn

(2.3)

Where f and gi ∀i are all affineaffineaffineaffineaffineaffineaffineaffineaffineaffineaffineaffineaffineaffineaffineaffineaffine or linearlinearlinearlinearlinearlinearlinearlinearlinearlinearlinearlinearlinearlinearlinearlinearlinear functions over real variables x.

Any linear program is a mathematical programmathematical programmathematical programmathematical programmathematical programmathematical programmathematical programmathematical programmathematical programmathematical programmathematical programmathematical programmathematical programmathematical programmathematical programmathematical programmathematical program. Indeed, (I0) constraints can be rewritten as (I+) and (I−)

constraints, and any (I+) constraint can be rewritten as an (I−) constraint by multiplying the inequality by -1.

Secondly, any linear program can be rewritten in a canonical formcanonical formcanonical formcanonical formcanonical formcanonical formcanonical formcanonical formcanonical formcanonical formcanonical formcanonical formcanonical formcanonical formcanonical formcanonical formcanonical form, operating on positive variables.

Definition 2.1.4 – Canonical form of Linear Programming

A linear programlinear programlinear programlinear programlinear programlinear programlinear programlinear programlinear programlinear programlinear programlinear programlinear programlinear programlinear programlinear programlinear program in canonical formcanonical formcanonical formcanonical formcanonical formcanonical formcanonical formcanonical formcanonical formcanonical formcanonical formcanonical formcanonical formcanonical formcanonical formcanonical formcanonical form is a program defined by the following:

Maxx f(x) = cTx

subject to:

Ax ≤ b

x ≥ 0

(2.4)

Where linear variables are x ∈ Rn, A is a m × n matrix, b is a vector b ∈ Rm, c is a vector c ∈ Rn, n is the

number of variables and m is the number of constraints, f is the function to be maximized or objective function.

The canonical form is the one used in linear solvers. Usually, the solver asks that constraints and variables

conform to that canonical form. In addition, strict equality (=) and strict inequalities (<, >) can only be

modelled as normal inequalities over a very small tolerance ϵ, for example Ax < b becomes Ax− ϵ ≤ b.

This is implemented in solvers as an ϵ tolerance parameter.
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Definition 2.1.5 – Convexity of Linear Programming

Linear Programming is convex. The solution spacesolution spacesolution spacesolution spacesolution spacesolution spacesolution spacesolution spacesolution spacesolution spacesolution spacesolution spacesolution spacesolution spacesolution spacesolution spacesolution space, the definition domain of linear programming, is the set of

all reals under linear constraints, which is a convex polyhedronconvex polyhedronconvex polyhedronconvex polyhedronconvex polyhedronconvex polyhedronconvex polyhedronconvex polyhedronconvex polyhedronconvex polyhedronconvex polyhedronconvex polyhedronconvex polyhedronconvex polyhedronconvex polyhedronconvex polyhedronconvex polyhedron. The minimized (or maximized) function is also

linear. Thus linear programming is convex and admits only global optimaonly global optimaonly global optimaonly global optimaonly global optimaonly global optimaonly global optimaonly global optimaonly global optimaonly global optimaonly global optimaonly global optimaonly global optimaonly global optimaonly global optimaonly global optimaonly global optima.

More precisely, a subset P ⊂ Rn is a (convex) polyhedron if there exists a positive integer m, an m× n matrix

A, and a vector b ∈ Rm such that P is of the form:

P = {x | Ax ≤ b, x ∈ Rn} (2.5)

When b = 0, the polyhedron contains the origin, and is said to be a polyhedral coneconeconeconeconeconeconeconeconeconeconeconeconeconeconeconecone [99, 100].

Note that using this definition from the linear programming field, a polyhedron is not necessarily boundedboundedboundedboundedboundedboundedboundedboundedboundedboundedboundedboundedboundedboundedboundedboundedbounded.

Optimization procedures require polyhedra to be bounded. A bounded polyhedron is then called a polytopepolytopepolytopepolytopepolytopepolytopepolytopepolytopepolytopepolytopepolytopepolytopepolytopepolytopepolytopepolytopepolytope. In

practice, linear programming is performed with polytopes, which are bounded, finite, and their own convex hulls.

Arbitrary maximum variables bounds are automatically set, avoiding unboundedness. Note that definitions of

polytopes and polyhedra may vary [W11].

Definition 2.1.6 – Common issues in Linear Programming

In linear programming, problems might arise. A first common problem is multiple optimal solutionsoptimal solutionsoptimal solutionsoptimal solutionsoptimal solutionsoptimal solutionsoptimal solutionsoptimal solutionsoptimal solutionsoptimal solutionsoptimal solutionsoptimal solutionsoptimal solutionsoptimal solutionsoptimal solutionsoptimal solutionsoptimal solutions: there might

be many optimal solutions, which might result from the choice of the objective function, or the problem being

unconstrainedunconstrainedunconstrainedunconstrainedunconstrainedunconstrainedunconstrainedunconstrainedunconstrainedunconstrainedunconstrainedunconstrainedunconstrainedunconstrainedunconstrainedunconstrainedunconstrained. Solvers have to order solutions and return the first solution found. Secondly, when the problem

is too constrained, constraints might be conflictingconflictingconflictingconflictingconflictingconflictingconflictingconflictingconflictingconflictingconflictingconflictingconflictingconflictingconflictingconflictingconflicting, and no solutions might exist, in that case the problem is

said to be infeasibleinfeasibleinfeasibleinfeasibleinfeasibleinfeasibleinfeasibleinfeasibleinfeasibleinfeasibleinfeasibleinfeasibleinfeasibleinfeasibleinfeasibleinfeasibleinfeasible. And thirdly, if objective functions, bounds and constraints are not set correctly, a problem

might be unboundedunboundedunboundedunboundedunboundedunboundedunboundedunboundedunboundedunboundedunboundedunboundedunboundedunboundedunboundedunboundedunbounded, and cannot admit optimal solutions.

Common issues encountered in Linear Programming are summarized in Definition 2.1.6. Multiple optimal solutions

is illustrated in Figure 2.2. Infeasible problems are illustrated in Figure 2.5 and unboundedness is illustrated in

Figure 2.6.

2.2 Mixed-Integer Linear Programming

There are multiple optimization methods derived from linear programming, including quadratic programming and

geometric programming. These will not be detailed here but they are relevant in many constraint-based modelling

approaches. These variants all fall into the area of mathematical programming, but we might also refer to these as

’linear programming-related methods’ in the following sections.
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The other method of interest that we will present is Mixed-Integer-Linear Programming (MILP), a notable subdomain

of mathematical programming which allows restriction of variables to integers. This method is of particular interest

to this thesis, as it is the basis for the concurrent method to ours for computation of EFMs and MCSs, as we will

detail later.

In Integer Linear Programming (ILP), while the objective function and constraints are linear like for Linear Program-

ming (LP), variables are now integers instead of reals [99]. The solution space is thus no longer convex, and is

rather an union of convex solution spaces, for each fixed integer point.

For instance, comparison between LPs and ILPs is shown in Definition 2.2.1 and equation 2.1.4, as well as for

their graphical resolution in Figure 2.3 and Figure 2.4. ILPs bridges the gap between linear programming and

combinatorial problems, but it does so with a radical loss in computation performance. As expected, exhaustively

enumerating integers is terrible in practice, thus most often integer variables end up restricted to small sets of values,

such as Booleans.

A more generalist definition than ILPs are MILPs (Mixed Integer Linear Programs), which may contain both linear

variables and integer variables. A definition of MILPs is proposed in Definition 2.2.2. In practice, MILPs are most

often used with Boolean variables, which may act as indicators of positivity or nullity for real variables.

Multiple optimal solutions

Figure 2.2: Common issues in Linear Programming: multiple optimal solutions
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Definition 2.2.1 – Integer Linear Programming

Let us take the canonical linear program form from equation 2.4, but express it as a mathematical programmathematical programmathematical programmathematical programmathematical programmathematical programmathematical programmathematical programmathematical programmathematical programmathematical programmathematical programmathematical programmathematical programmathematical programmathematical programmathematical program

over Boolean variablesBoolean variablesBoolean variablesBoolean variablesBoolean variablesBoolean variablesBoolean variablesBoolean variablesBoolean variablesBoolean variablesBoolean variablesBoolean variablesBoolean variablesBoolean variablesBoolean variablesBoolean variablesBoolean variables.

Maxx f(x) = cTx

subject to:

Ax ≤ b

x ∈ {0, 1}

(2.6)

This is an integer linear programinteger linear programinteger linear programinteger linear programinteger linear programinteger linear programinteger linear programinteger linear programinteger linear programinteger linear programinteger linear programinteger linear programinteger linear programinteger linear programinteger linear programinteger linear programinteger linear program, or integer programinteger programinteger programinteger programinteger programinteger programinteger programinteger programinteger programinteger programinteger programinteger programinteger programinteger programinteger programinteger programinteger program, over integer variables {0, 1} ⊂ Z. In particular, this pro-

gram corresponds perfectly to the ’Knapsack Problem’, which is one of the Karp combinatorial problems [102].

As a result, complexity of integer linear programming, and of the related mixed integer linear programming, is

known to be NP-hard [99].

Such a program can be solved by linear relaxation of the problem, that is, by solving the linear program in

equation 2.4 with 0 ≤ x ≤ 1 as additional constraint, and then exhaustively testing if solutions after setting

x = 0 or x = 1 belongs to the solution space. This procedure is called Branch-and-Bound [103].

Definition 2.2.2 – Mixed Integer Linear Programming

A Mixed Integer Linear Program, or MILP, is a linear program that might contain a ’mix’ of linear variables,

integer variables, Boolean variables, under standard linear constraints. For instance:

Maxx f(x) = cTx

subject to:

Alxl ≤ bl

Azxz ≤ bz

xl ∈ L ⊂ R (linear variables)

xz ∈ I ⊂ Z (integer variables)

(2.7)

Where x = (xl xz), and Al, Az and bl, bz denotes the submatrices and subvectors corresponding to either

linear or integer variables. For example, common MILPs presented in this thesis are programs where we have

two classes of variables: linear variables over positive reals, ie. L = R+, and Boolean variables, or logical

variables, defined in I = B. Of course, more than two classes of variables can be considered.
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Solution space: gray area

Figure 2.3: Resolution of a simple linear program

Solution space: all points

Figure 2.4: Resolution of a simple integer linear program.
Linear relaxation of this integer program gives Figure 2.3
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From there on, the expression indicator variables refers to Boolean variables in a MILP that indicate nullity or

positivity of linear variables in the MILP. For example, let us define (z1, z2, · · · , zn) Boolean variables and

(x1, x2, · · · , xn) linear variables. The program must be such that the indicator constraints (zi = 0) ⇔ (xi = 0) and

(zi = 1)⇔ (xi > 0) apply. Additionally, these must be the single constraints mixing both of these linear and Boolean

variables; if we have such a program, then Boolean variables might be called indicator variables.

As you could see here with logical equivalence, logic operations can be incorporated in MILPs. These are internally

encoded differently within the solver, either translated to linear constraints, or with a Boolean resolution backend

[104]. Of course, solvers for LPs generally include resolution of MILPs, and of other ’linear-programming-related

methods’ – especially in the case of cplex.

A special property of MILPs with indicator variables is that integer cut constraints can be added, as is described

in Definition 2.2.3. Although not thoroughly documented online, integer cut constraints have been around for a

while [105] and were notably used in a metabolic modelling context as early as 2005 [106]. Integer cut constraints

allow exhaustive enumeration of all MILP solutions. Now that integer cut constraints were discussed, we have every

necessary element to understand computation of EFMs and MCSs with MILPs. But to start, we will introduce and

formalize constraint-based metabolic modelling, and the classical FBA optimization procedure.

Definition 2.2.3 – Integer cut constraints

Let us suppose a MILP problem (MP ) where the goal is to minimize the number of activeactiveactiveactiveactiveactiveactiveactiveactiveactiveactiveactiveactiveactiveactiveactiveactive Boolean indicator

variables ki, i.e. corresponding to linear variables vi with non-zero values.

An integer cutinteger cutinteger cutinteger cutinteger cutinteger cutinteger cutinteger cutinteger cutinteger cutinteger cutinteger cutinteger cutinteger cutinteger cutinteger cutinteger cut constraint is then an additional constraint to the MILP, of the form:

iP∑
i=i1

ki ≤ P − 1 (2.8)

where ki, ∀ i = i1, · · · , iP are the P active variables of a previously found solution.

The constraint ensures that in next calls to the solver, a solution with these active variables will not be found,

meaning that solution and all supersets of that solution will be excluded.

Integer cuts are added for each previous solutioneach previous solutioneach previous solutioneach previous solutioneach previous solutioneach previous solutioneach previous solutioneach previous solutioneach previous solutioneach previous solutioneach previous solutioneach previous solutioneach previous solutioneach previous solutioneach previous solutioneach previous solutioneach previous solution. The program (MP ) becomes:

Minimize
n∑

i=1

ki

Subject to Constraints on linear variables vi
ki indicator variables of vi

And integer cuts
iP∑

i=i1

ki ≤ P − 1 ∀{i1, · · · , iP } ∈ PreviousSols

Where ki ∈ {0, 1} : ∀ i, 1 ≤ i ≤ n

(2.9)

In practice, the (MP ) program can enumerate distinct solutions for which active variables are subset-minimal.
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Infeasible: empty solution space

Figure 2.5: Common issues in Linear Programming: infeasible problems

Solution space: unbounded

Figure 2.6: Common issues in Linear Programming: unboundedness
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2.3 Metabolic modelling

There are multiple ways of representing metabolic networks. For example, one may represent metabolic networks as

a bipartite graph with metabolites and reactions as the two constitutive disjoint sets. Others may represent metabolic

networks as Petri nets [S79]. Our analyses will deal with metabolic models, which are directed hypergraphs linking

metabolites and reactions through hyperedges which are weighted by stoichiometry [107]. We will use the term

metabolic networks and metabolic models interchangeably; it refers to a metabolic model as defined here.

Definition 2.3.1 – Metabolic model

A metabolic modelmetabolic modelmetabolic modelmetabolic modelmetabolic modelmetabolic modelmetabolic modelmetabolic modelmetabolic modelmetabolic modelmetabolic modelmetabolic modelmetabolic modelmetabolic modelmetabolic modelmetabolic modelmetabolic model, or metabolic networkmetabolic networkmetabolic networkmetabolic networkmetabolic networkmetabolic networkmetabolic networkmetabolic networkmetabolic networkmetabolic networkmetabolic networkmetabolic networkmetabolic networkmetabolic networkmetabolic networkmetabolic networkmetabolic network, representing a set of metabolic reactions, is a directed hypergraph

H = (Met,Reac, Stoch) of nodes Met, of hyperedges Reac, and of integer-valued or real-valued stoichiometry

weights on hyperedges Stoch. The latter which are usually better represented by a stoichiometry matrixstoichiometry matrixstoichiometry matrixstoichiometry matrixstoichiometry matrixstoichiometry matrixstoichiometry matrixstoichiometry matrixstoichiometry matrixstoichiometry matrixstoichiometry matrixstoichiometry matrixstoichiometry matrixstoichiometry matrixstoichiometry matrixstoichiometry matrixstoichiometry matrix.

Additionally, one might want to distinguish subsets of Met: the set of internal metabolitesinternal metabolitesinternal metabolitesinternal metabolitesinternal metabolitesinternal metabolitesinternal metabolitesinternal metabolitesinternal metabolitesinternal metabolitesinternal metabolitesinternal metabolitesinternal metabolitesinternal metabolitesinternal metabolitesinternal metabolitesinternal metabolites Int from Ext: the

set of external metabolitesexternal metabolitesexternal metabolitesexternal metabolitesexternal metabolitesexternal metabolitesexternal metabolitesexternal metabolitesexternal metabolitesexternal metabolitesexternal metabolitesexternal metabolitesexternal metabolitesexternal metabolitesexternal metabolitesexternal metabolitesexternal metabolites. Ext is generally defined as the set of nodes m for which either the metabolite m is

never consumed or the metabolite m is never produced.

In other words, Met = Int ∪ Ext, with Ext = {m ∈ Met | (d+(m) = 0) ∨ (d−(m) = 0)} and Int = Met \ Ext,

where d+(m) and d−(m) respectively represent in degree and out degree in graph theory terms.

The field of dealing with analysis and construction of metabolic models is called metabolic modellingmetabolic modellingmetabolic modellingmetabolic modellingmetabolic modellingmetabolic modellingmetabolic modellingmetabolic modellingmetabolic modellingmetabolic modellingmetabolic modellingmetabolic modellingmetabolic modellingmetabolic modellingmetabolic modellingmetabolic modellingmetabolic modelling. In

metabolic modelling, the system that is most commonly being modelled is a cellcellcellcellcellcellcellcellcellcellcellcellcellcellcellcellcell: internal metabolites are

intracellularintracellularintracellularintracellularintracellularintracellularintracellularintracellularintracellularintracellularintracellularintracellularintracellularintracellularintracellularintracellularintracellular, and external metabolites are extracellularextracellularextracellularextracellularextracellularextracellularextracellularextracellularextracellularextracellularextracellularextracellularextracellularextracellularextracellularextracellularextracellular. These are called compartmentscompartmentscompartmentscompartmentscompartmentscompartmentscompartmentscompartmentscompartmentscompartmentscompartmentscompartmentscompartmentscompartmentscompartmentscompartmentscompartments of the model.

Metabolic networks are greatly interconnected. In particular, in usual cellular networks, hydrogen protons and

coenzymes such as NAD and ATP could be considered hub metabolites, as they are nodes of many hyperedges of

the networks. Measures of the connectedness of the networks are often used in systems biology and can be used

to derive interesting properties [S80]. In particular, since metabolic networks are hypergraphs [107], hypergraph

partition techniques might be applied to parallelize problems [S81, S82].

Metabolites are separated into two categories: internal, and external, external metabolites being the hypergraph

nodes that are sources (i.e. inputs, nodes with null in degrees) and sinks (i.e. outputs, null out degrees). Usually,

metabolic models represent cellular systems, thus an easy distinction between internal metabolites and external

metabolites would be being intracellular and extracellular.

With these distinctions, a metabolic model would be defined by a set of extracellular inputs and outputs, while the

intracellular world would be constant, similar to how a biologist would make expriments in their lab. However, due

to the high interconnection of hydrogen protons and coenzymes ADP and NAD as mentioned before, sometimes,

intracellular metabolites are set as external, as if they were transported in and out of the cell, in order to abstract

their mechanisms (e.g see ATP in [108]). This is not an absurd abstraction, as limiting the confines of our model to

simply inside/outside the cell, while more comprehensive, is arbitrary.
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Hydrogen protons are often even removed from models due to the complexity of modelling them (e.g again see

[108]). Hydrogen protons quantity can be represented by the familiar chemical notion of pH in aqueous conditions.

Definition 2.3.2 – Stoichiometry matrix

The stoichiometric matrixstoichiometric matrixstoichiometric matrixstoichiometric matrixstoichiometric matrixstoichiometric matrixstoichiometric matrixstoichiometric matrixstoichiometric matrixstoichiometric matrixstoichiometric matrixstoichiometric matrixstoichiometric matrixstoichiometric matrixstoichiometric matrixstoichiometric matrixstoichiometric matrix, also called S-matrixS-matrixS-matrixS-matrixS-matrixS-matrixS-matrixS-matrixS-matrixS-matrixS-matrixS-matrixS-matrixS-matrixS-matrixS-matrixS-matrix for short, is an alternate way of representing the metabolic

network, by its sparsesparsesparsesparsesparsesparsesparsesparsesparsesparsesparsesparsesparsesparsesparsesparsesparse weighted adjacency matrix. It is such that every column corresponds to a reaction and

every row corresponds to a metabolite, and it is most-often real-valued.

Let us define the stoichiometry matrix S ∈ Rm×r, m number of metabolites, r number of reactions, by:

∀i ∈Met, ∀j ∈ Reac, Sij =


k if reaction j produces k units of metabolite i,

−k if reaction j consumes k units of metabolite i

0 otherwise.

(2.10)

Or, in other words, the reaction stoichiometry coefficients are negative for the reactants of the reactions, and

positive for the products of the reaction.

In steady-state modelling, including external metabolites in the S-matrix is not a recommended practice.

Indeed, the steady-state assumption only applies to metabolites internal to the system.

Another way to understand the stoichiometry matrix is in terms of mass-balancing. All chemical compounds

are assumed to be mass-balanced, therefore this should be reflected in the stoichiometry matrix [91].

Definition 2.3.3 – Dealing with reversibilities

To incorporate predefined reversibilitiesreversibilitiesreversibilitiesreversibilitiesreversibilitiesreversibilitiesreversibilitiesreversibilitiesreversibilitiesreversibilitiesreversibilitiesreversibilitiesreversibilitiesreversibilitiesreversibilitiesreversibilitiesreversibilities, we can extend our hypergraph formalism into a metabolic model

M = (Met,Reac, Stoch,Rev), where Rev is the subset of hyperedges Reac defining reversible reactions.

Now, instead of having two separate reactions defining a reversible one, we can incorporate bi-directionality

into a single edge. However, this has the downside of requiring more information to be stored.

If dealing with the stoichiometric matrix formalism, we can add an additional informative 0-1 vector rev ∈ Br,

and the metabolic network becomes described by the pair (S, rev).

Metabolic models are also called stoichiometric models: since they can be described solely by a stoichiometric

matrix S, incorporating information for the mass-balance of every chemical reaction (see subsection 1.4.2 for mass-

balance). This stoichiometry matrix can be seen as a linear transformation of the flux vector to a vector of time

derivatives of the concentration vector [91]. This allows us to study dynamics of the system, and in particular we will

be interested in the system’s steady-state (see Hypothesis 1.6.1). In addition, our second assumption is that the

reversibility of reactions are pre-defined (see Hypothesis 1.6.2). We define the stoichiometric matrix and explain the

incorporation of reversibilities in Definition 2.3.2 and Definition 2.3.3.
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Figure 2.7: Toy model network of 5 reactions

A toy model metabolic network of 5 reactions (1 reversible, 4 irreversible) is presented in Figure 2.7. The network

possesses 4 external metabolites and 2 internal metabolites. However, for helping with the steady-state assumption,

external metabolites are assumed to be excluded from the stoichiometry matrix.

Therefore, its associated stoichiometric matrix S is:

S =


T1 T2 T3 T4 R1 R1backwards

A 1 0 −1 0 −1 1

B 0 1 0 −1 1 −1

 (2.11)

This matrix includes the split of the reversible reaction R1 into two irreversible reactions for the forwards and back-

wards direction. Representing the model’s R1 reaction by a single bi-directional hyperedge, we would instead get:

S =


T1 T2 T3 T4 R1

A 1 0 −1 0 −1

B 0 1 0 −1 1

 (2.12)

rev =
(
0 0 0 0 1

)

A particularly convenient format to store metabolic networks is the METATOOL format [109]. All information required

for metabolic modelling is stored on that format – except lower flux bounds and upper flux bounds: if those are

needed they should be inferred from reversibilities. The format includes internal and external metabolites, reaction

stoichiometry and reaction reversibility in an easily readable way, as seen in Listing A.1.

Indeed, when analyzing reaction fluxes, if dealing with irreversible reactions, then only the forwards direction is

authorized, meaning flux bounds are [0,∞[, while with reversible reactions, the backwards direction is also autho-

rized, meaning flux bounds are ]−∞,∞[.
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When dealing with the definition of an extracellular medium however, or with a specific flux value of ATP maintenance

one wants to constraint a model to [71], not having the possibility to specify flux bounds is an inconvenience. Often

the lower flux bounds on external metabolites from the medium correspond somewhat to the quantity of metabolite

present in the experimental growth medium. To incorporate lower flux bounds and upper flux bounds, the further

notion of constraint-based model is used, as well as the more complete SBML modelling format [69].

2.4 Stoichiometric flux cone

Let us consider a stoichiometric matrix S ∈ Rm×r of m internal metabolites (lines) and r reactions (columns). For

each reaction, consumed or produced metabolite quantities are reported on the matrix coefficients, negative for

consumption and positive for production. The notion of reaction flux relates to the evolution of metabolite quantity

over time, similarly consumption of metabolites over time will be negative and production will be positive. We

denote by v a reaction flux vector of rates dependent on metabolite concentrations over time, and consistent with

pre-determined reaction reversibilities.

The evolution of internal metabolite concentrations x(t) over time is written by an ODE system:

∀i ∈ Int,
dxi(t)

dt
= S.v(x(t))

Where, for each metabolite, its concentration [M ] or xi is given by a linear combination of all fluxes of reactions

consuming or producing that reaction, computed by multiplying the S-matrix defining the reaction stoichiometry by

the flux vector v, with the fluxes themselves being functions of metabolite concentrations over time.

At steady-state, the evolution of internal metabolite concentrations over time is null, therefore dx(t)/dt = 0 and

S.v(x(t)) = 0, which we may simplify into S.v = 0, with fluxes becoming constants rather than functions. In addition,

note that from linear algebra, we know that the set {v | S.v = 0} defines the null space of S.

A flux distribution is a steady-state vector v ∈ Rr giving constant reaction consumption or production rates for each

reaction. Its support is the set of active reactions: Supp(v) = {j | vj ̸= 0}. Irreversible reactions, for which flux is a

non-negative real, are distinguished from reversible reactions, for which flux may be negative.

Therefore, any flux distribution v is included in the null space of S. In particular, we could compute the stoichiometric

kernel, kernel of the stoichiometric matrix Ker(S), which would provide a basis of the null space. This could be

calculated with Gauss-Jordan elimination methods, or approximation methods for large matrices. However, the

issue with the null space alone is that it does unfortunately not respect reaction reversibilities.

We denote here by C the set of stoichiometric null space vectors which respects reaction directionalities. This

solution space is a polyhedral convex cone [96, 100].

C = {v ∈ Rr | Sv = 0 and ∀j irreversible vj ≥ 0}
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The solution space C is called the stoichiometric flux cone. polyhedral convex cones are particular polyhedra useful

in the theory of Linear Programming. And indeed, exploring this set for solutions could be done by setting Sv = 0

as linear constraints and using Linear Programming.

      FBA Solution                Elementary Flux Modes            ODEs Solving

Figure 2.8: Constraint-based modelling in a nutshell: Steady-state modelling: FBA, EFMs vs. Dynamic Modelling

In fact, the stoichiometric flux cone is the LP solution space of our methods of interest, Flux Balance Analysis

(FBA) (section 2.6) and Elementary Flux Modes (EFMs) (section 2.7). We represent the different applications of

steady-state modelling: FBA, EFMs and for comparison, ODE dynamic modelling in Figure 2.8. While the flux

vector in ODEs modelling is dynamic and might eventually reach – or not – a steady-state, FBA and EFMs help us

characterize well-defined steady-state flux distributions [51].

2.5 Constraint-based modelling

In the introduction to this chapter, we remarked that the term constraint-based modelling, somewhat synonymous to

steady-state modelling, likely comes from Bernhard Palsson and his team. Now, we properly define constraint-based

modelling and a constraint-based model in Definition 2.5.1. Also, we will detail particular forms of constraint-based

models: the ones where all reactions are irreversibles, and the ones where exchange reactions are added for every

single extracellular metabolite. The latter is specifically an idea from Palsson’s team, as noted in Markus Covert’s

book [51]. A short history of Palsson’s team and their toolbox named COBRA is given in the next section: section 2.6.

An introduction to constraint-based modelling might be found in [95, 91], and two instructive complete reviews of the

constraint-based modelling field and its concepts include [110, 92]. Other reviews, which include mentions to the

use of – in particular – omics data to constrain a metabolic model, include [54, 59, 61, 31]. And an application of

the constraint-based approach to our subject of interest, EFMs, which includes transcriptional regulation and which

we will come back a lot to later, is [93]. The figure Figure 2.9 illustrating addition of constraints is inspired from [92].
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Models with only irreversible reactions, which, if we have a constraint-based model cbm, we may simply note

Irrev(cbm), deserve a mention as they correspond to the proper encoding of these models in modern LP solvers.

Indeed, since reversible reactions are represented by a single real-valued variable, one might think solvers prefer this

to having two non-negative-only variables, but the reverse is actually true: having two non-negative-only variables

for each reversible reaction speeds up the computation. To convert any constraint-based model into a constraint-

based model with only irreversible reactions, one simply splits each reversible reaction into two forwards-only.

A stoichiometric matrix such as in equation 2.11 is obtained instead of equation 2.12. Ideally, this is done by a

backend and is hidden from the end user, but for more complex tools such as ours, we prefer to have it exposed.

In fact, the encoding of reversible reactions should no longer be done by a single 0-1 vector in constraint-based

models (CBM). Since flux bounds are of major importance in FBA applications, we chose to define constraint-based

models as the kinds of models were complete description of lower and upper flux bounds for each reaction are

incorporated. This corresponds to the SBML format with Flux Balance Constraints (FBC) specification [69].

Definition 2.5.1 – Constraint-based modelling

Constraint-based modellingConstraint-based modellingConstraint-based modellingConstraint-based modellingConstraint-based modellingConstraint-based modellingConstraint-based modellingConstraint-based modellingConstraint-based modellingConstraint-based modellingConstraint-based modellingConstraint-based modellingConstraint-based modellingConstraint-based modellingConstraint-based modellingConstraint-based modellingConstraint-based modelling (CBM) is the subset of the metabolic modelling field which deals with the analysis

of reaction fluxes at the steady-state with the stoichiometric flux cone.

A constraint-based metabolic modelconstraint-based metabolic modelconstraint-based metabolic modelconstraint-based metabolic modelconstraint-based metabolic modelconstraint-based metabolic modelconstraint-based metabolic modelconstraint-based metabolic modelconstraint-based metabolic modelconstraint-based metabolic modelconstraint-based metabolic modelconstraint-based metabolic modelconstraint-based metabolic modelconstraint-based metabolic modelconstraint-based metabolic modelconstraint-based metabolic modelconstraint-based metabolic model is a quadruplet CB = (Met,Reac, Stoch,Bounds) with metabolites as

hypergraph nodes Met, reactions as hyperedges Reac, weights on hyperedges Stoch, and additional lower

and upper bounds Bounds = {(LBi, UBi) ∈ R | i ∈ Reac} for the flux of reactions Reac.

A constraint-based model brings as additional information to the metabolic model (Met,Reac, Stoch) the

lower boundslower boundslower boundslower boundslower boundslower boundslower boundslower boundslower boundslower boundslower boundslower boundslower boundslower boundslower boundslower boundslower bounds and upper boundsupper boundsupper boundsupper boundsupper boundsupper boundsupper boundsupper boundsupper boundsupper boundsupper boundsupper boundsupper boundsupper boundsupper boundsupper boundsupper bounds of the fluxes to be considered for linear programming computations.

As a result, a constraint-based model defines the following cone as solution space for linear programming:

C = {v | Sv = 0, LBi ≤ vi ≤ UBi} (2.13)

Where S is the stoichiometric matrix of (CB), defined from the stoichiometry Stoch, and vi are the fluxes.

For simplicity, we can represent the model (CB) by its S matrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrix of m lines and n columns, m the number of

metabolites, n the number of reactions, and its reaction boundsreaction boundsreaction boundsreaction boundsreaction boundsreaction boundsreaction boundsreaction boundsreaction boundsreaction boundsreaction boundsreaction boundsreaction boundsreaction boundsreaction boundsreaction boundsreaction bounds (LBi, UBi) ∀i = 1, · · · , n.

Note that changes to these lower and upper bounds impact greatly the result of CBM analysis methods such

as Flux Balance AnalysisFlux Balance AnalysisFlux Balance AnalysisFlux Balance AnalysisFlux Balance AnalysisFlux Balance AnalysisFlux Balance AnalysisFlux Balance AnalysisFlux Balance AnalysisFlux Balance AnalysisFlux Balance AnalysisFlux Balance AnalysisFlux Balance AnalysisFlux Balance AnalysisFlux Balance AnalysisFlux Balance AnalysisFlux Balance Analysis (FBA) and Elementary Flux ModesElementary Flux ModesElementary Flux ModesElementary Flux ModesElementary Flux ModesElementary Flux ModesElementary Flux ModesElementary Flux ModesElementary Flux ModesElementary Flux ModesElementary Flux ModesElementary Flux ModesElementary Flux ModesElementary Flux ModesElementary Flux ModesElementary Flux ModesElementary Flux Modes (EFM).

Palsson and collaborators devised the notion of exchange reactions in constraint-based metabolic models [51].

These are factice transport reactions that are added on top of the metabolic model’s intracellular to extracellular

transporters. Adding these new external transporters to every extracellular metabolite allows for a more proper

definition of the external metabolites of the stoichiometry matrix. Setting the exchange bounds of these exchange

reactions also allows one to simulate an extracellular growth medium, which is of very high convenience.
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The idea is to have an easy predefined way to constrain the linear systems with elements from the extracellular

world, as we did in equation 1.55. As well, this avoids the stoichiometry consistency issue caused by cells having

several biologically-determined transporters such as H+ → ∅ and X + H+ → ∅. Since the SBML format also

provides a flexible definition for model compartments, exchange reactions as modelled by the COBRA team fit

perfectly within SBML. We represent adding exchange reactions in Figure 2.10.

A subtility should be noted however, since we are at the boundary of the system, fluxes represent rates of mass going

in or going out, therefore H+ → ∅ corresponds to mass going out, or secretion rates, while ∅ → H+ corresponds to

mass going in, or uptake rates. Exchange reactions are encoded as reversible reactions with the forwards direction

being H+ → ∅ and the backwards direction being ∅ → H+, allowing experimentally determined rates to correspond

to consumption and production by the cell.

Adding exchange reactions is a very useful concept, but it should be kept in mind that it artifically increases metabolic

network size, and thus those reactions must often be compressed together with the actual biologically-determined

metabolite transporters when performing exhaustive metabolic pathways analysis such as EFMs (see section 2.7).

Finally, CBM models as defined by COBRA specify default flux bounds of [0, 1000] instead of [0,∞[ for every irre-

versible reaction and [−1000, 1000] instead of ] −∞,∞[ for every reversible reaction. This is because unbounded

variables in linear programs cause unboundedness (see Figure 2.6) and numerical instability, and by bounding every

variable’s domain, this kind of errors are avoided. These flux bounds are directly encoded in the SBML file.

2.6 Flux Balance Analysis and variants

Briefly, Flux Balance Analysis (FBA) can be explained as a method allowing one to obtain an optimal point, or optimal

flux distribution, on the stoichiometric flux cone, through the usage of linear programming, with an appropriate

objective function. This is illustrated on Figure 2.8. Additionally, FBA applications should respect flux bounds as

defined in constraint-based models (CBM).

Flux Balance Analysis was introduced in the mid-1990s by the laboratory of Bernhard Palsson [111], who is now

at University of California, San Diego (UCSD). The major regroupment of CBM and FBA methods, which was

started by Palsson, is now called the COBRA toolbox, for Constraint-Based Reconstruction and Analysis methods

toolbox, and it is open-source. It is implemented in mainly MATLAB [112], then Python [72] and Julia [S83], and it

is currently maintained by Ronan Fleming from National University of Ireland, Galway, Nikolaus Sonnenschein from

the Technical University of Denmark, and Nathan Lewis from UCSD [W12].

Due to its implementation in MATLAB© [W5], the COBRA MATLAB toolbox [112], as well as additional wrappers

around it, such as the RAVEN toolbox from Chalmers University of Technology, Göteburg [S84], are hard to use for

truly open projects and outside of collaborations with MathWorks©.
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Figure 2.10: The COBRA approach: adding exchange reaction to fluxes
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A great advantage of the COBRA toolbox in Python [72] is that depending on the problem chosen, it selects the

most appropriate solver according to their computations, between cplex, gurobi, scipy and glpk. To do so, it uses a

wrapper library called optlang, of great utility [S85]. However, depending on the applications, additional solvers not

in optlang might be used. An example of this is performing geometric programming to get metabolite concentrations

of an FBA or EFM solution, this might require the use of CVXPy [S78, S86].

The COBRA toolbox in Julia is the most promising compromise between the efficiency of MATLAB and the openness

of Python, but it still lacking features [S83]. Other concurrent toolboxes attempts exist, such as merlin [S87] and

mewPy [S88] developed by the Centre of Biological Engineering, University of Minho, Braga. The unique standard

for the encoding of constraint-based models is the SBML format [38].

Thanks to its ease of accessibility, COBRAPy is usually the tool of choice for FBA in constrained-based mod-

elling and related methods. COBRAPy makes loading and rewriting of SBML models easy, using libSBML, and

in accordance with the version 2 of the SBML Flux Balance Constraints (FBC) plugin [69], specifically made for

constraint-based modelling models. The standard tool for editing such SBML FBC models is CBMPy [S89], which

is a wrapper around libSBML [113] allowing for performing FBA and more. COBRAPy however is a lot more widely

used, and quite a bit more convenient. COBRAPy performs its own quality checks, which are different from the ones

done by libSBML [113], and does automatic changes to the model, signalled with warnings, something that libSBML

on its own doesn’t.

However, COBRAPy is not without bugs. On some occurences, reversibilities and bounds on metabolic models we

retrieved have not been correctly defined. COBRA would either recorrect them, or prioritizing the bounds defined in

the SBML over the reversibility Boolean toggle, instead of the reverse, although better behaviour would have been

to return an error to the user inviting them to fix the inconsistency in the model. Conversely, libSBML conforms

to a very well-defined SBML XML specifiation, as well as the SBML FBC plugin specification [69], providing more

programatically correct and user-friendlier ways to signal clear modelling errors.

As well, one should be in fact careful as to specify the COBRAPy version one utilizes, as between versions there

are different behaviours of loading SBML models, for example, there might be different handling on flux bounds, and

forcing every flux bound to 1 000, or surprisingly, the bound might be automatically set to 100 000, when there are

coefficients too small in the biomass. Since this is a community tool, issues such as this are most often documented

online [W13].

In our case, for most of our FBA analyzes, COBRAPy was used [72], and for the linear programming solver, we

almost always used IBM© cplex, which provides a free academic license with Python bindings [W8]. GurobiPy also

provided us a free academic license, but we found its performance on LPs and especially MILPs to be lacking [W9].

As well, since the SBML specification is solidly well-defined, we made sure to store all modifications done with

COBRAPy in the SBML model files, and tried to prevent COBRAPy from any automatic changes to the model on

loading as much as possible.
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We define Flux Balance Analysis (FBA) as the problem of maximizing the biomass production flux on a constraint-

based model (Definition 2.6.1). The biomass synthesis reaction is a standard reaction in constraint-based models

[114, 115, 116]; it is defined as detailed in subsection 1.4.4. FBA is usually performed with one or more carbon

sources as substrates, in order to be in accordance with well-known microbial growth data, but a complete growth

medium might also be considered. FBA knows many applications, whether it is metabolic engineering, strain design,

research of therapeutic targets, or simply theoritical biology research.

In particular, the first and most well-known application of Flux Balance Analysis was to predict the diauxic growth

shift in E. coli in 1994 – by Varma and Palsson [27]. This was not solely FBA, in fact there was a dynamic simulation

element to it, today the method is called dynamic FBA, or dFBA [117]. At each time iteration, the extracellular

metabolite concentrations at the boundaries are recalculated, according to an ODE system. Variations of this

algorithm were made by Markus Covert by adding transcriptional regulation (rFBA: regulated dynamic FBA) [118].

Nowadays the dFBA algorithm is implemented in COBRAPy [72], however the implementation in that code is very

slow, and susceptible to errors, due to failing to find correct initial value conditions [S90]. A significantly faster Python

implementation based on a more recent algorithm [S90] was published by Tourigny in 2020 [S91].

Definition 2.6.1 – Flux Balance Analysis

Flux Balance Analysis is the name given to the standard application of Linear Programming to Constraint-

Based Modeling. It is a method originally developed for bacterial strains. The standard objective function is

biomass growth, and the standard flux unit should be mmol · l−1 ·h−1 ·cDW−1. The classic biomass-optimizing

linear program is given below, considering a constraint-based model (CB). The method finds optimal values

to fluxes of all reactions such that biomass production is maximized.

Maximize vbiomass

Subject to: Sv = 0

LBi ≤ vi ≤ UBi

∀i = 1, · · · , n

(2.14)

Biomass production, or maximizing product output for strain optimization, are hardly the only applications of FBA.

We provide here a review of many different kinds of alternate FBA objective functions by Robert Schuetz [119].

In general, Flux Balance Analysis comes with its lots of variants. First, Flux Variability Analysis (FVA) deserves a

mention. FVA consists in testing flux bounds permitting the production of at least µ% of biomass for every reaction

[120]. This is a very useful method as we know reactions which are detected as having a zero lower bound and

upper bound flux for production of biomass could be for example removed from the model. Next, we should mention

flux sampling [121], randomly generating solutions from the LP solution space. Several algorithms for flux sampling

exist, and COBRAPy in particular implements two of them: OptGP [122] and ACHR [W14].
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Finally, we should mention parsimonious FBA [123]. Parsimonious FBA (pFBA) is a bilevel linear programming

procedure that is used to counter the problem of finding multiple optimal solutions [124]. Indeed, on top of finding

the maximal biomass-producing solution, pFBA asks the solver to find the solution with that optimal value with the

smallest sum of reaction fluxes. This returns FBA solutions with a small number of non-zero reaction fluxes, i.e. a

small support. Pseudo-code algorithms for FBA and four of its variants are proposed in appendix1.

Note that unfortunately, most often in FBA the LP system is underdetermined, meaning that it has more variables

than constraints. This is due to the solution space being underconstrained. However, as par with "constraint-based

modelling", by adding constraints the system’s underdetermination can be overcome [95, 91]. Additionally, the

system being underconstrained also means problems with multiple optimal solutions as shown in Figure 2.2 are

very common. This is actually very problematic in FBA, since often that very optimal solution is the one used as the

end result. This is the main reason why we consider FBA analysis to yield unsatisfactory results, and why we turn

to EFMs analysis. Fortunately, the flux distributions retrieved with EFMs are unique.

2.7 Elementary Flux Modes

Contrarily to Flux Balance Analysis (FBA), Elementary Flux Modes (EFMs) define a finite set of many possible

extremal solutions. These solutions are unique and of minimal support, meaning they correspond to minimal flux

pathways instead of an optimal linear combination of several minimal flux pathways for FBA.

Definition 2.7.1 – Elementary Flux Modes

As explained in section 2.4, with the steady-state assumptionsteady-state assumptionsteady-state assumptionsteady-state assumptionsteady-state assumptionsteady-state assumptionsteady-state assumptionsteady-state assumptionsteady-state assumptionsteady-state assumptionsteady-state assumptionsteady-state assumptionsteady-state assumptionsteady-state assumptionsteady-state assumptionsteady-state assumptionsteady-state assumption, the set of flux distributions v is included in the

null space of S ∈ Rm×r the stoichiometry matrix. However, we cannot simply compute the basis of the null

space, as we also have to consider reaction reversibilitiesreaction reversibilitiesreaction reversibilitiesreaction reversibilitiesreaction reversibilitiesreaction reversibilitiesreaction reversibilitiesreaction reversibilitiesreaction reversibilitiesreaction reversibilitiesreaction reversibilitiesreaction reversibilitiesreaction reversibilitiesreaction reversibilitiesreaction reversibilitiesreaction reversibilitiesreaction reversibilities.

We denote by C the set of vectors from the stoichiometric matrix which respects directionalities of reversible

and irreversible reactions. C is a polyhedral convex cone.

C = {v ∈ Rr | Sv = 0 and ∀j irreversible vj ≥ 0} (2.15)

Elementary Flux ModesElementary Flux ModesElementary Flux ModesElementary Flux ModesElementary Flux ModesElementary Flux ModesElementary Flux ModesElementary Flux ModesElementary Flux ModesElementary Flux ModesElementary Flux ModesElementary Flux ModesElementary Flux ModesElementary Flux ModesElementary Flux ModesElementary Flux ModesElementary Flux Modes are then the solutions of C of subset-minimal support:

E = {e ∈ C | ∄e′ ∈ C Supp(e′) ⊂ Supp(e)} (2.16)

These solutions are all unique: they can be expressed by their support, which defines a Boolean relationship:

non-zero flux or zero flux. The stoichiometric coefficients of an elementary mode can be computed solely from

its support’s binary pattern and the stoichiometric matrix [125, 126].

1See the following: Algorithm A.1, Algorithm A.3, Algorithm A.2 and Algorithm A.4.
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Let us re-define the example of metabolic network in Figure 2.7. Let us present its Elementary Flux Modes derived

from its stoichiometry matrix in Figure 2.11 and Figure 2.12. Reactions in red in Figure 2.12 are those with a

non-zero flux, indicating the support of the EFMs.

T1 T2 T3 T4 R1

S =

(
1 0 −1 0 −1
0 1 0 −1 1

)

E =

T1
T2
T3
T4
R1


1
0
1
0
0



1
0
0
1
1




0
1
1
0
−1



0
1
0
1
0



Figure 2.11: Modes élémentaires de flux d’un réseau métabolique simple

Since EFMs are solutions of minimal support, there exists no two EFMs with the same support. Thus, we can

denote EFMs by their support, in the following way: M1 = {T1, T3}, M2 = {T1, R1, T4}, M3 = {T2,−R1, T3},

M4 = {T2, T4}.

Figure 2.12: EFMs of a toy model network of 5 reactions

In the case where all reactions are irreversible, the cone C is zero-pointed and Elementary Flux Modes E are

the extreme rays of the cone (Figure 2.8). For computation performance, splitting reversible reactions into two

irreversible reactions is therefore recommended. By definition of the set of EFMs E, any support, set of reactions s,

that is a strict subset of an EFM Supp(s) ⊂ Supp(e) with e ∈ E, cannot define a flux distribution belonging in the flux

cone C. Trying to find such a flux distribution with respect to the solution space’s LP constraints will thus result in an

infeasible program (Figure 2.5). This is insightful for the development of computational methods to calculate EFMs.
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Elementary Flux Modes are not the only mathematical objects of interest on the stoichiometry flux cone. We

compiled these supplementary notions in Definition 2.7.2. As a note, since reversible reactions are split during

the computation of EFMs, one must ensure no flux goes into both the resulting irreversible reactions at the same

time. As well, post-processing treatment is required to convert flux in split reactions into the flux of a single reaction.

Definition 2.7.2 – Other mathematical objects of interest

In his thesis, Marco Terzer, developer of EFMTOOL, separately defines EFMs from minimal generatorsminimal generatorsminimal generatorsminimal generatorsminimal generatorsminimal generatorsminimal generatorsminimal generatorsminimal generatorsminimal generatorsminimal generatorsminimal generatorsminimal generatorsminimal generatorsminimal generatorsminimal generatorsminimal generators and

extreme pathwaysextreme pathwaysextreme pathwaysextreme pathwaysextreme pathwaysextreme pathwaysextreme pathwaysextreme pathwaysextreme pathwaysextreme pathwaysextreme pathwaysextreme pathwaysextreme pathwaysextreme pathwaysextreme pathwaysextreme pathwaysextreme pathways [127]:

— First, minimal generatorsminimal generatorsminimal generatorsminimal generatorsminimal generatorsminimal generatorsminimal generatorsminimal generatorsminimal generatorsminimal generatorsminimal generatorsminimal generatorsminimal generatorsminimal generatorsminimal generatorsminimal generatorsminimal generators, convex bases of C, correspond to our definition of EFMs when reversible reactions

are not split into irreversible ones: these are extreme rays of the unpointed cone. On the other hand, he only

defines EFMs as extreme rays of the pointed cone, when reversible reactions are split into irreversible ones.

Throughout this thesis, we only study EFMs in the case when reversible reactions are split into two, thus staying

true to Terzer’s definition, on which property Theorem 2.7.1 is said to apply.

— Secondly, extreme pathwaysextreme pathwaysextreme pathwaysextreme pathwaysextreme pathwaysextreme pathwaysextreme pathwaysextreme pathwaysextreme pathwaysextreme pathwaysextreme pathwaysextreme pathwaysextreme pathwaysextreme pathwaysextreme pathwaysextreme pathwaysextreme pathways are extreme rays of a particular cone where only exchange reactions are al-

lowed to be reversible, while internal reversible reactions are split into irreversible ones, where a non-negativity

constraint for the variables applies.

The latter, extreme pathwaysextreme pathwaysextreme pathwaysextreme pathwaysextreme pathwaysextreme pathwaysextreme pathwaysextreme pathwaysextreme pathwaysextreme pathwaysextreme pathwaysextreme pathwaysextreme pathwaysextreme pathwaysextreme pathwaysextreme pathwaysextreme pathways, is notably used by the Palsson team, such as on the E. coli core network [91].

EFMs are in fact a superset of extreme pathwayssuperset of extreme pathwayssuperset of extreme pathwayssuperset of extreme pathwayssuperset of extreme pathwayssuperset of extreme pathwayssuperset of extreme pathwayssuperset of extreme pathwayssuperset of extreme pathwayssuperset of extreme pathwayssuperset of extreme pathwayssuperset of extreme pathwayssuperset of extreme pathwayssuperset of extreme pathwayssuperset of extreme pathwayssuperset of extreme pathwayssuperset of extreme pathways [127].

Related concepts to EFMs also include Generating Flux ModesGenerating Flux ModesGenerating Flux ModesGenerating Flux ModesGenerating Flux ModesGenerating Flux ModesGenerating Flux ModesGenerating Flux ModesGenerating Flux ModesGenerating Flux ModesGenerating Flux ModesGenerating Flux ModesGenerating Flux ModesGenerating Flux ModesGenerating Flux ModesGenerating Flux ModesGenerating Flux Modes (GFMs) [128], Elementary Flux VectorsElementary Flux VectorsElementary Flux VectorsElementary Flux VectorsElementary Flux VectorsElementary Flux VectorsElementary Flux VectorsElementary Flux VectorsElementary Flux VectorsElementary Flux VectorsElementary Flux VectorsElementary Flux VectorsElementary Flux VectorsElementary Flux VectorsElementary Flux VectorsElementary Flux VectorsElementary Flux Vectors (EFVs)

[129], and the recent Elementary Conversion ModesElementary Conversion ModesElementary Conversion ModesElementary Conversion ModesElementary Conversion ModesElementary Conversion ModesElementary Conversion ModesElementary Conversion ModesElementary Conversion ModesElementary Conversion ModesElementary Conversion ModesElementary Conversion ModesElementary Conversion ModesElementary Conversion ModesElementary Conversion ModesElementary Conversion ModesElementary Conversion Modes (ECMs) [130].

Elementary Flux Modes present a particular property: any FBA solution can be linearly decomposed into EFMs

(see Theorem 2.7.1). This is not always the case with the other mathematical objects detailed in Definition 2.7.2:

extreme pathways and minimal generators [127]. This property is one of the major reasons why one should still be

interested in EFMs, despite the rise of faster methods in computation times such as Elementary Conversion Modes

[130]. Another major property is its relationship to Minimal Cut Sets, which we detail further in section 2.12.

Theorem 2.7.1 – Decomposability of FBA solutions into EFMs

Let v be any flux vector of C – that respects directions of reactions. Then, there exists a set of elementary flux

modes {e1, · · · , ek} such that v can be linearly decomposed solely from EFMs:

v =

k∑
i=1

λiei {λ1, · · · , λk} ≥ 0 (2.17)

In particular, Jean-Marc Schwartz proposed an algorithm to decompose flux solutions such as the ones

obtained with FBA into linear combinations of EFMs [131, 132].
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Finally, since EFMs are vectors of the nullspace of the stoichiometry matrix S, a special property can be used to

check whether a flux vector is truly an elementary mode or not. This is called a kernel test or rank check, and it is

performed by verifying the S-matrix’s rank as presented in Theorem 2.7.2. Rank checks can easily be performed

using Numpy’s SVD-based rank calculations [S70], or the slower but more exact Gaussian elimination method.

Theorem 2.7.2 – Rank check for EFMs

In order to know if a flux vector v of support Supp(v) is indeed an EFM, one can check if the kernel of the

submatrix SSupp(v) — the stoichiometric matrix indexed by its support, that is, the S-matrix where columns j

for which v[j] = 0 were removed — is of dimension 1 [125].

Then, by the rank-nullity theorem, one can instead check whether the rank of that submatrix is equal to

|Supp(v)| − 1. If it is equal, then it is an EFM, if it is not, then it isn’t. This is called the rank check.

2.8 Methods for EFM Computation

The computation of EFMs presents many challenges. Traditionally, the algorithm used to compute Elementary

Flux Modes is Double Description (DD) [133]. It is an efficient algorithm based on matrix computations. However,

the number of EFMs increases with the size of the metabolic networks, when networks are large-scale – over

100 reactions – the more there are EFMs and it becomes less practicable to enumerate all solutions – there is a

combinatorial explosion in the number of solutions. Indeed, counting the number of EFMs has been proved to be

#P-Hard [134, 135]. Therefore it is at the moment impossible to compute EFMs on the so-called genome-scale

networks which may have – in the most extreme cases – up to 10 000 reactions [37].

Another related problem to the computation of EFMs is finding the EFMs of interest. Indeed, on metabolic networks,

among the many EFMs retrieved, only a small part is truly observed in lab experiments. The majority of elementary

modes found are not credible when relevant biological constraints are integrated into the computation. Therefore

scientists proposed to directly integrate constraints during the calculations, rather than filtering the biologically-

infeasible EFMs after enumeration was finished. This is a lot less costly in both computation time and memory

requirements.

To directly integrate constraints, new methods arised, in particular using linear programming, we refer to those as

LP-based tools. These methods take advantage of the fact that any first EFM can be found in polynomial time with

a Linear Program [134]. As a result, these methods can enumerate biologically relevant subsets of EFMs on the

fly on very large-scale networks – even with over 1 000 reactions, which was previously not thought to be possible.

Whereas Double Description struggles to deal with networks with over 100-300 reactions – complete enumeration

even with constraints is too long and needs to be interrupted.
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We illustrate the dichotomy between complete enumeration and constrained enumeration on a toy network example

in Figure 2.13. Here the biologically-determined constraint is asking for transport reaction T2 to be present. Using

a complete enumeration algorithm such as DD would necessitate one to enumerate all 4 EFMs of the network, then

retrieve the 2 most at right ones, which contain T2. In contrast, using LP-based algorithms, one could get directly

the EFMs containing reaction T2, as part of the full computation procedure, without ever enumerating the other two.

Complete enumeration

Constrained enumeration

Figure 2.13: Complete enumeration approach vs. Constrained enumeration approach

EFMs computation is implemented in the well-known tools METATOOL [109, 136], ScrumPy [137], CellNetAnalyzer

[138], COPASI [S92] and most importantly EFMTool [139], published in 2008, which performs Double Description.

METATOOL, published in 1999, performs a method utilizing Gauss-Jordan elimination [109]. In 2004, Gagneur

and Klamt stated that all known enumeration algorithms back then were variants of the Double Description [126].

No matter the algorithm, the EFM tools listed here perform complete enumeration with limited possibility of filtering.

By contrast, linear programming-based tools and therefore constrained enumeration tools were most popularized

by de Figueireido’s paper in 2009 [140].

2.8.1 Double Description

Double Description (DD) is an algorithm permitting enumeration of extreme rays. It was proposed by Motzkin in 1953

[141], and revisited in 1994 by Fukuda [133]. It is a widely used algorithm, implemented in EFMTool developed by

Marco Terzer [139]. In his thesis, Terzer describes the Double Description algorithm as is presented in Algorithm A.5.
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It is an incremental algorithm – and the later iterations are the ones where the combinatorial exploration is the most

problematic. We refer to Terzer’s thesis and Morterol’s thesis for details [127, 142].

The main drawback of the DD method is that enumerating all solutions and filtering the ones of interest afterwards

is not convenient. For example, Jungreuthmayer, developer of regEFMTool, an extension of EFMTool, computed

all EFMs of the E. coli core network [143]. These were said to take 259 GB and 31h to compute. They added

regulations, reducing the computation time in pre-processing and during the algorithm for negative constraints that

could be included, and reducing the number of EFMs post-processing. Despite this, computation still took 7.1 hours

and the researchers obtained over 2 million EFMs to be analyzed further.

Another method based on a network splitting algorithm allowed the computation of ∼ 2 billion EFMs from a large

metabolic model of microalga Phaeodactylum tricornutum consisting of 318 reactions [144]. But in comparison,

many genome-scale networks have on the order of thousands of reactions. Thus, it is thought to not be currently

possible to enumerate all EFMs from genome-scale metabolic models.

Using DD is a major inconvenience, as in practice one would be interested by EFMs regardless of their number in

the network. For example, one might be interested in the specific EFMs that decompose a certain FBA solution. Or,

alternatively, one would want the EFMs corresponding to optimal yield rates.

So, an inherent problem is finding EFMs of interest from the large solution set. Among the many EFMs computed

by DD, only a small fraction are thought to be active in cells. To save computational time and memory and to

focus on biologically relevant phenotypes, it becomes necessary to integrate biological constraints directly during

the computation of EFMs.

More often than not biological constraints cannot be added to DD. While Jungreuthmayer succesfully added tran-

scriptional regulation to DD [143], and while Peres et al proved that thermodynamic equilibrium constraints could be

added to DD [145], flux yield constraints for example, are not to our knowledge known to be integrable into DD.

Other emerging extreme ray enumeration tools applied to EFMs include lexicographic reverse search [146]. In

general, advances in the field of enumeration of polyhedron vertices, polyhedron facet enumeration, polyhedron

convex hull computation [147, 148] might be related to advances in cone extreme ray computation, as extreme ray

enumeration is simply a particular case2 of vertex enumeration [133].

2.8.2 Linear Programming-based tools

In 2009, de Figueireido et al [140] proposed a method enumerating the shortest elementary flux modes with Mixed

Integer Linear Programming (MILP). The method is named k-shortest EFMs, and it enumerates the smallest EFMs

until iteration k, where k is the number of reactions of the EFM.

Let us consider a metabolic model M = (Mets,Reac, Stoch,Rev), where Mets denotes m internal metabolites,

Stoch denotes the stoichiometry matrix S ∈ Rm×r for these internal metabolites, with smr denoting stoichiometry

2Vertex enumeration applies on the polyhedron of constraints Ax = b while extreme ray applies on the cone of constraints Ax = 0.
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coefficients, Reac is the set of r irreversible reactions, obtained after the split of reversible reactions of the constraint-

based model into two irreversible ones, Rev a set of pairs associating together irreversible reactions issued from the

split of reversible reactions.

The ’k-shortest EFMs’ MILP [140], providing linear variables for reaction fluxes v and Boolean indicator variables z,

is given by the following equations:

Minimize
∑

r∈Reac

zr EFM size

Subject to zr ↔ vr > 0 ∀r ∈ Reac Indicator constraints

zrfwd
+ zrbwd

≤ 1 ∀(rfwd, rbwd) ∈ Rev Handle split reversible reactions∑
r∈Reac

zr ≥ 1 Eliminate trivial solutions

∑
r∈Reac

smr × vr = 0 ∀m ∈Mets Steady-state constraint

Where z ∈ Br, v ∈ Rr Domain of flux and indicator variables

(2.18)

Each flux vector v retrieved with this formulation is an Elementary Flux Mode, minimizing support size.

And for each EFM solution retrieved with the MILP, the following exclusion constraint to the program is added:

Integer cut
jP∑

i=j1

zj ≤ P − 1 ∀{j1, · · · , jP } = Supp(e) ∀e ∈ PreviousEFMs (2.19)

As we can see in equation 2.18 and equation 2.19, the ’k-shortest EFMs’ MILP enumerates the minimal EFMs in

terms of size, then for each EFM found it adds an integer cut as was defined in Definition 2.2.3. However, a major

drawback can be found in that in its default setting, this MILP only iteratively enumerates the smallest EFMs first,

while EFMs, subset-minimal solutions but not minimum in terms of size, can come in any size. The program would

enumerate first solutions of size 1, then of size 2, then 3, etc. This problem of the method was however fixed by the

Klamt team in CellNetAnalyzer [149], and its recent Python implementation CNAPy [138].

The method was revisited several times, including [150, 151, 138], and notably for other applications such as Gen-

erating Flux Modes (GFMs, subsets of EFMs) [152] and Minimal Cut Sets (MCSs) [153, 154]. Other methods based

on Linear Programming also include Alternate Integer Linear Programming, a method that alternately computes

EFMs and MCSs [155].

Furthermore, in 2014 and 2016, the problem of Boolean Satisfiability (SAT) and of Satisfiability Modulo Theories

(SMT) were utilized for the constrained enumeration of EFMs [156, 157, 142]. These methods are also partly linear

programming-based. The linear programming solving is taking place this time inside the Linear Real Arithmetic

theory of the SMT solver. To distinguish this type of constrained enumeration methods from MILP-based methods,

we decided to devise the term Logic Programming with Linear Constraints, abbreviated to LoPLC.
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The method we developed during the course of this thesis, aspefm, to compute EFMs and MCSs, is an example of

such a LoPLC method. It is based on logic programming with linear constraints, especially, Answer Set Programming

logic programming [89] (see chapter 3).

2.9 Genome-scale modelling

Early on, one of Palsson’s ambitions was bringing metabolic models to genome-scale [95, 94, 54]. What this means

is having metabolic models reconstructed from a complete genome, reference genome sequences as one can

find on the RefSeq database [158] from NCBI [W1]. From a reference genome, one might find annotated coding

sequences (also known as CDS), which might be translated into proteins, which might then correspond to enzymes.

The idea is to scale the metabolic models to all enzymes predictable from the genome.

In order to find the corresponding enzymes from the reference genome, one might map the genomic functions to

enzymes from encyclopedias such as KEGG [35, 71], which contain many metabolic maps. In addition, RefSeq

sometimes contain mentions of E.C. numbers, easily linked to KEGG entries [15]. As previously mentioned, there

are now many database portals referencing enzymes which contain a large coverage of many organisms, helping

the analysis of reference genomes (such as [36] and [S37, S38]). For the remaining proteins derived from coding

sequences (hypothetical or unannotated), one might look at the process of gap-filling [159, 160], based on sequence

homology with phylogenetically close organisms: seeing what enzymes are present or absent in the metabolic

model, which gaps are retrieved in otherwise linear pathways, fill the gaps with an enzyme that is present in a very

close homologue taxon, for example. This complete process is called metabolic network reconstruction [71].

In this section, we will be focusing on the major advances made by the Palsson group, the SBML format, and what

this means in terms of integration of biological constraints in constraint-based models. A major application of Flux

Balance Analysis is being able to provide phenotypic predictions [71, 161]. In a constraint-based metabolic model,

only external metabolite concentrations and flux bounds can vary, therefore if we want predictions close to reality,

integration of biological constraints is needed [95].

A first approach at integrating biological constraints by Palsson team was realized by Covert, Schilling and Palsson

in 2001 on a toy metabolic model [118]. This approach integrates a Transcriptional Regulation Network (TRN), a set

of regulation rules representing interations between genes and transcription factors, usually of the type activation

or inhibition. Transcriptional Regulation Networks are Boolean Networks (see subsection 1.6.4) that can be used in

dynamic analyzes, in particular, dynamic FBA [111], and dynamic regulated FBA (rFBA), described in their paper

[118]. We briefly described dynamic FBA and its algorithm in section 2.6. Moreover, Covert also used the TRN as

constraints for the EFMs computation, and their study was a major motivator for studying TRNs in our analyzes with

our tool aspefm [93, 89] . We will develop the TRNs and their utility further in section 3.6.

The dynamic rFBA method is then applied to E. coli at the genome-scale, considering genomic / gene-protein data

and transcriptional regulation data from literature of many papers, in a very extensive work, in 2002 [94]. Here is

presented an example of three transcriptional regulation rules from the metabolic model of Covert and Palsson:
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Figure 2.14: Example TRN rules of E. coli core. We refer to Orth et al for a visualization of the complete TRN

FUMAR =⇒ ¬ (ArcA ∨ FNR)

FUMBR =⇒ FNR

ADHER =⇒ ¬ (O2xt ∧ FruR)

With the reactions FUMAR and FUMBR being two isozymes, homologue proteins coded at different loci in the

genome, catalyzing the fumarase enzymatic function. Here, each reaction can be regulated (⇒) by transcriptional

regulators or external metabolites according to Boolean formulas composed of NOT (¬), AND (∧) and OR (∨) 3

The authors then construct a complete metabolic network of over 1 000 reactions at the genome-scale of E. coli,

integrating transcriptional regulation networks, and transcriptomic data obtained with microarray, which they use to

predict new phenotypes. Covert’s article is published in Nature in 2004 [73].

3Color code: Reactions, Environment metabolite, Regulator protein, Genes
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A nice review of genome-scale models published back then is presented in [110]. According to the paper, the first

instances of genome-scale models reaching around 1 000 reactions include E. coli str. K12 in 2003 [S93] and S.

cerevisiae in 2003 and 2004 [S94, S95]. Covert then publishes an extended model where kinetics modelling is

included on top of transcriptional regulation in 2008 [90].

In 2010, Jeffrey Orth, Ronan Fleming and Bernhard Palsson published a guide for the reconstruction of genome-

scale models, including getting enzymes from references genomes, but also transcriptional data. The example

utilized was a model of central carbon metabolism of Escherichia Coli, which we refer to as E. coli core [71].

Orth also dedicates a part of a guide about reconstruction of transcription regulation networks, based on ChIP-chip

data [S44]. Unfortunately, despite the guide, as of today many models still lack TRNs. This can perhaps be explained

by scientists realizing the inherent complexity of transcriptional regulation thanks to the rise of transcriptomics data

with the new RNA-Seq method in the 2010s.

On the bright side, this means that the E. coli core model (Figure 2.15) is one of the few that possess a transcriptional

regulation network (Figure 2.14) [71]. Instead of containing a reaction for each isozyme like the model from 2002,

this model defines a Boolean relationship between genes and reactions, and transcriptional regulation constraints

are applied later, but only on genes. This allows one to considerably decrease the number of reactions of the model.

FRD7 =⇒ (frdA ∧ frdB ∧ frdC ∧ frdD)

FUM =⇒ (fumA ∨ fumB ∨ fumC)

Here we can see that fumarase A and fumarase B are this time encoded by a OR. While OR represent isozymes,

AND, in contrast, represents different subunits of the same enzyme complex. Note that in such associations between

genes and reactions, the NOT (¬) is forbidden, only AND (∧) and OR (∨) are allowed. These Boolean associations

between genes and reactions went on to be called Gene-Protein-Reaction associations; or rules, denoted GPRs

[162]. Something to be noted is that this notation might either represent a gene or a protein, depending on the

context, similarly to how Uniprot’s ’one gene = one protein’ paradigm defines entries encompassing both possible

types. Sometimes, the appelation gene-product is used to refer to these elements representing both the genes and

the proteins. Although similar-looking, GPRs rules are not to be confused with TRNs rules.

The rise of such constraint-based models allowed a standard measure of genome-scale models quality to develop:

gene essentiality prediction4. Using GPRs, a model is considered good quality if it is able to accurately predict in

silico the majority of lethal knock-outs retrieved in vitro, assuming lab experimenters have performed knock-outs of

each known gene of an organism. An example of study combined with experiments which uses such a metric is [163].

4An extension of the computation of essential reactions is the computation of Synthetic Lethals (SLs) presented later in section 2.11.
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Nowadays there exists many genome-scale models. They are repertioried in part on the database BiGG Models [37]

or on the website BioModels [39] in SBML format (Systems Biology Markup Language) [38]. Note that BioModels

models are not all manually curated as some of them are straight out of the automation pipeline. The advantage

from using BiGG models is also that they require to conform to a specific way of doing reconstruction, and the

models there all have GPRs rules, which are now essential for modelling, especially for integration of omics data.

Various studies linked before describe how integration of omics data is possible in genome-scale models thanks to

GPRs [59, 61], and indeed, since these Boolean relationships allow access to a level representing both genes and

proteins, one might be interested into integrating genomic, proteomic, transcriptomic data, and many more [31].

All models on the BiGG database are provided in SBML format, and as it turns out in its latest SBML version

with the FBC plugin also used for flux bounds, SBML defines a native encoding for GPRs relationships [69], as

XML Boolean formulae. The corresponding SBML tags attached to each reaction are <fbc:and>, <fbc:or> et

<fbc:geneProduct>. No standard encoding for TRNs was developed however.

Figure 2.15: Escher view of the E. coli core metabolic model (Orth, Fleming, Palsson, 2010)
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Definition 2.9.1 – Gene-Protein-Reaction association rules

Gene-Protein-ReactionGene-Protein-ReactionGene-Protein-ReactionGene-Protein-ReactionGene-Protein-ReactionGene-Protein-ReactionGene-Protein-ReactionGene-Protein-ReactionGene-Protein-ReactionGene-Protein-ReactionGene-Protein-ReactionGene-Protein-ReactionGene-Protein-ReactionGene-Protein-ReactionGene-Protein-ReactionGene-Protein-ReactionGene-Protein-Reaction association rules, or GPRsGPRsGPRsGPRsGPRsGPRsGPRsGPRsGPRsGPRsGPRsGPRsGPRsGPRsGPRsGPRsGPRs, are positive monotone Boolean functions, i.e. they do

not contain any NOT operator [S96], and they define the relationship between an enzymatic function and its

associated enzymes.

ex: (b1 ∧ b2) ∨ (b1 ∧ b3) two isozymes which share a subunit in common (2.20)

An OR relationship symbolizes isozymes while an AND relationship symbolizes an enzymatic complex. These

are said to be at the Gene-Protein level, or gene product level, since although they represent enzymes which

are proteins, if one were to disable genes, then one would have to deactivate the Boolean function – or in other

words – find an assignment such that the Boolean function becomes {False}.

A little known fact about BiGG models is that the uppercase letters in the model’s abbreviated names correspond to

the modeller’s initials, while the numbers correspond to the number of genes in the model, since these are models

reconstructed from annotated reference genomes. For example, iSB619, a Staphylococcus aureus model from

2005, is named this way since it was developed by Scott Becker, and it contains 619 genes [164]. As well, iYS854,

a Staphylococcus aureus model from 2019, was made by Yara Seif, and contains 854 genes [163]. The number of

genes in a genome-scale model simply refers to the number of gene products, associated to reactions via GPRs.

Note that GPRs as defined in Definition 2.9.1 are not the most accurate representation of protein subunits as it lacks

for many properties commonly found in biology, such as, most notably, homodimers, and other complexes made

of the same subunit several times. For examples, in the GPR for fumarase FUM , there is no mention that the

gene fumA should be encoded twice and form a homodimer complex to perform the fumarase enzymatic function,

although this is experimentally observed [S97].

Therefore, people have proposed to further complete the GPRs formalization by including subunit quantity for each

gene, and also to include ions which often serve as cofactors in enzymatic complexes. Although, from just a

gene perspective when considering knock-outs, and not a protein perspective, maybe that information might not be

needed. This is discussed in an issue on the COBRAPy toolbox GitHub [W15], and we might hopefully see changes

in later specifications of the SBML FBC plugin.

In the meantime, there exists more complex models of the proteins involved in GPRs, and more complex frameworks

retrieving proteic data from reference genomes, to perform extensions of the FBA formalism, but taking into account

proteomic data. An example of such a method is Resource Balance Analysis (RBA), which considers the enzyme

resource usage of every enzyme in its FBA-derived problem, and to do so, it requires knowledge of enzyme com-

plexes composition for every gene associated to the genome-scale metabolic model [165, 166, 167]. Their Python

API, RBAPy, automatically downloads data from UniProt and computationally generates an extended genome-scale

model where information about cofactors and subunit composition is present [168].
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Omics
Genomics constraints on GPRs, regulation, knock-outs through GPRs

Transcriptomics constraints on GPRs, modulating enzyme quantity

Proteomics constraints on GPRs, modulating enzyme quantity,
enzyme quantity constrained by total enzyme quantity

Metabolomics constraints on external metabolite concentrations, exchange fluxes,
internal fluxes, allows thermodynamics checks

Fluxomics constraints on flux bounds, possibly metabolite concentrations

Non-omics
Transcriptional
regulation

knock-out of GPRs if actively inhibited by regulation

Thermodynamics constraints on flux bounds, metabolite concentrations

Yields
Growth rates

constraints on flux bounds, biomass reaction modifications
GPRs may be used for resource allocation at different growth rates

Kinetics constraints on flux bounds, GPRs through modulating enzyme quantity

Table 2.1: Integration of omics and non-omics data in genome-scale models.
Highlights the importance of GPRs if they are to be developed further in the future.

The equivalent Palsson team iteration of RBA is called Metabolism-Expression models or ME-models, a combination

of metabolic modelling and constraining the enzyme quantities by a total enzyme pool, modelling protein expres-

sion5, and therefore requiring protein concentrations for every enzyme, in order to integrate omics data [S98, S99].

Once enzyme concentrations and metabolite concentration data are known, further calibrations of the genome-scale

models might be done, such as by performing thermodynamic and kinetic calculations.

In conclusion GPRs describe which enzyme and which coding gene are involved in an enzymatic reaction. Whether

or not GPRs are to be extended to resource allocation problems in the future, we illustrate how they could be used

to impose constraints for most if not all omics kinds of data in Table 2.1. Ultimately, constraints imposed on GPRs

imply the application of constraints on flux bounds, and therefore by integrating omics data onto GPRs we would

obtain flux distributions that are closer to biological reality.

Finally, a nice review of resource allocation with ME-like and RBA-like models, together with transcriptional reg-

ulation models including dynamic rFBA-like methods is presented in [S100]. Genome-scale models know many

applications, and we refer the reader to review papers for further information.

2.10 Model curation and compression

As the size of metabolic models grew, models could not be curated purely through manual work, and thus methods

for model curation and model compression were needed. Notably, since most genome-scale models are not manu-

ally curated after their automatic generation, they might contain a large number of inconsistencies.

5In RBA-models, transfer RNAs are also needed for protein translations. This is part of the encoding of the translation process.
Acyl-transferase reactions charging amino acids with tRNAs are now provided in modern genome-scale models.
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In recent years, efforts of the community have been made towards tools correcting inconsistencies, most notably in

the domain of gap-filling as mentioned before, but also towards possible stoichiometric coefficient inconsistencies,

inaccurate definition of biomass, blocked reactions and dead-end metabolites – meaning they cannot bring flux, lack

of GPR associations, and lack of proper SBML annotations. Such a tool encompassing all of these possibilities of

error is MEMOTE, the community tool for assessing the quality of metabolic models [169].

2.10.1 Curating annotation errors with MEMOTE

MEMOTE only takes a SBML model in input, and rates its quality through a percentage score. In practice, models

rarely get positive scores, unless they are developed by people with expert knowledge of the COBRA toolbox, that

is [170]. SBML in COBRA specification should contain annotations (in RDF format) of all GPRs with their reference

genome from which it was reconstructed from. They also should have reaction, metabolite, gene identifiers that

are repertoried on the BiGG databases [37]. BiGG identifiers are the new standard, providing comprehensible

standard names for all reactions and metabolites, regardless of the organism of interest [37]. When BiGG standard

is not applied, one might be confronted with models with nonsensical numerical identifiers such as SEED compound

identifiers [36], these models are – in my opinion – not possible to work with.

A large percentage of MEMOTE’s reports are related to annotation issues and format specifications. Models which

do not adhere to SBML FBC version 2 would have their bounds defined in annotations, as was the previous standard,

or in other ways, such as obsolete FBA formats, or in the worst situations, no bounds are defined, and even no

reversibility attribute are defined on reactions. Models such as these would get a poor MEMOTE score from this

alone. Again this is also understandable, as the COBRA toolbox has trouble dealing with those models, and most

often one needs to read the model and simply re-export the model into a by COBRA’s SBML writing functions.

We therefore recommend usage of SBML FBC version 2 for constraint-based metabolic models.

GPRs annotations also present some issues. In the legacy versions of COBRA SBMLs – before FBC v2 –

GPRs could not be read programatically from the XML with libSBML, the submodule COBRA uses for parsing.

This means libSBML alone is not enough to read old COBRA models: the COBRA toolbox should be used. As

an example, the version we retrieved of HMR, the human model reconstuction with thousands of reactions across

different cell lines, available on the Virtual Metabolic Human database, does not adhere to these standards [171].

A BiGG version is available, but it lacks reactions of some tissue-specific models. This is a shame, as again BiGG

and SBML FBC v2 define very well suitable standards for the constraint-based modelling community.

Aside from identifiers and format specification problems, the issues of most interest to us in model curation are

stoichiometric consistency errors, and errors which result from the definition of flux bounds. We will be covering

the latter when discussing metabolic model compression – the process of reducing the number of reactions of the

model, in subsection 2.10.4.
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2.10.2 Stoichiometric consistency errors

A stoichiometric consistency error might be an error of the following form:

R1 : A+B → C

R2 : C → 2 B +A

R3 : C → D

(2.21)

This system of three reactions is inconsistent since in that case the mass conservation law between metabolites

cannot be properly respected. Indeed, mass conservation law dictates that no matter is created from nowhere, but

in that case, C is said to be stoichiometrically equivalent to both A+B and A+ 2B at the same time, which cannot

be correct. Thus, the system could be used to generate infinite amounts of B matter if this would be a dynamic

model.

In our case, with the steady-state assumption Sv = 0, this will simply lead to a wrong computation of the reaction

fluxes v. With this inconsistency, the system of equations Sv = 0 is described by:

[A] : 0 = −v1 + v2

[B] : 0 = −v1 + 2v2

[C] : 0 = v1 − v2 − v3

[D] : 0 = v3

(2.22)

The solution space of that system is S = {v | v1 = v2 = 0}, essentially forcing fluxes of the two inconsistent reactions

R1 and R2 to be null.

On the other hand, fixing reaction R2 to the backwards direction of R1, ie. R2 : C → B + A, gives the following

equations system:

[A] : 0 = −v1 + v2

[B] : 0 = −v1 + v2

[C] : 0 = v1 − v2 − v3

[D] : 0 = v3

(2.23)

The solution space of that system is S = {v | v1 = v2}, which is a more permissive solution space allowing both

reactions R1 and R2 to have non-zero flux.
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Notice that in the first solution space, we have reactions which flux is always zero, i.e. blocked reations, and in the

second solution space, we have reactions with always the same fluxes, linearly dependant reaction fluxes. We will

come back to these characteristics later.

2.10.3 Detection of stoichiometric inconsistencies

Now, let us consider such a consistency error and a model defined by its stoichiometry matrix S. A model is defined

to be stoichiometrically consistent if it respects the property defined in Definition 2.10.1.

Definition 2.10.1 – Stoichiometric consistency of a model

A metabolic model is said to be stoichiometrically consistentstoichiometrically consistentstoichiometrically consistentstoichiometrically consistentstoichiometrically consistentstoichiometrically consistentstoichiometrically consistentstoichiometrically consistentstoichiometrically consistentstoichiometrically consistentstoichiometrically consistentstoichiometrically consistentstoichiometrically consistentstoichiometrically consistentstoichiometrically consistentstoichiometrically consistentstoichiometrically consistent if and only if the following linear program admits

a solution:

Minimize
m∑
i=1

mi

Subject to STm = 0

Where mi ≥ 1 : ∀ i, 1 ≤ i ≤ m

(2.24)

Where ST is the transposetransposetransposetransposetransposetransposetransposetransposetransposetransposetransposetransposetransposetransposetransposetransposetranspose of the stoichiometry matrix S, extended with external metabolites.

In a consistent metabolic model, all metabolites are said to be conservedconservedconservedconservedconservedconservedconservedconservedconservedconservedconservedconservedconservedconservedconservedconservedconserved. An inconsistent metabolic model

admits unconservedunconservedunconservedunconservedunconservedunconservedunconservedunconservedunconservedunconservedunconservedunconservedunconservedunconservedunconservedunconservedunconserved metabolites, which can be retrieved by solving the following MILP.

Maximize
m∑
i=1

ki

Subject to STm = 0

Where 0 ≤ ki ≤ mi, ki ∈ {0, 1} : ∀ i, 1 ≤ i ≤ m

(2.25)

All unconservedunconservedunconservedunconservedunconservedunconservedunconservedunconservedunconservedunconservedunconservedunconservedunconservedunconservedunconservedunconservedunconserved metabolites are metabolites mi for which ki is equal to 1 in the MILP of equation 2.25.

These definitions were introduced by Gevorgyan, Poolman and Fell in their paper from 2008: Detection of stoichio-

metric inconsistencies in biomolecular models [172]. Gevorgyan et al also introduced more notions: the concepts

of minimal net stoichiometries, and elementary leakage modes. These concepts are described in Definition 2.10.2.

The methods were implemented into the versatile ScrumPY metabolic modelling software [137].
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Definition 2.10.2 – Minimal net stoichiometries, elementary leakage modes

Considering K = Ker(S) the kernel of the stoichiometric matrix, a minimal net stoichiometryminimal net stoichiometryminimal net stoichiometryminimal net stoichiometryminimal net stoichiometryminimal net stoichiometryminimal net stoichiometryminimal net stoichiometryminimal net stoichiometryminimal net stoichiometryminimal net stoichiometryminimal net stoichiometryminimal net stoichiometryminimal net stoichiometryminimal net stoichiometryminimal net stoichiometryminimal net stoichiometry associated to an

unconserved metaboliteunconserved metaboliteunconserved metaboliteunconserved metaboliteunconserved metaboliteunconserved metaboliteunconserved metaboliteunconserved metaboliteunconserved metaboliteunconserved metaboliteunconserved metaboliteunconserved metaboliteunconserved metaboliteunconserved metaboliteunconserved metaboliteunconserved metaboliteunconserved metabolite u is a vector y such that y is a solution to:

Minimize
m∑
i=1

ki

Subject to yTK = 0, yu > 0

Where 0 ≤ yi ≤ ki, ki ∈ {0, 1} : ∀ i, 1 ≤ i ≤ m

(2.26)

Adding integer cut constraintsinteger cut constraintsinteger cut constraintsinteger cut constraintsinteger cut constraintsinteger cut constraintsinteger cut constraintsinteger cut constraintsinteger cut constraintsinteger cut constraintsinteger cut constraintsinteger cut constraintsinteger cut constraintsinteger cut constraintsinteger cut constraintsinteger cut constraintsinteger cut constraints for each solution found helps one to find all minimal net stoichiometry for a

single unconserved metabolite.

Then, the computation of elementary leakage modeselementary leakage modeselementary leakage modeselementary leakage modeselementary leakage modeselementary leakage modeselementary leakage modeselementary leakage modeselementary leakage modeselementary leakage modeselementary leakage modeselementary leakage modeselementary leakage modeselementary leakage modeselementary leakage modeselementary leakage modeselementary leakage modes is recommended. Elementary leakage modes should be

retrieved on an augmented matrix (S|y), the stoichiometry matrix S where the minimal net stoichiometry y is

added as a new reaction. Finding the EFMs, extreme rays of the cone defined by (S|y)v = 0, and removing

the net stoichiometry reaction from the EFMs afterwards gives us the elementary leakage modes, indicating

which set of reactions are conflicting, along with vector coefficients.

Note that the computation of minimal net stoichiometries for each unconserved metabolite is extremely costly, and

elementary leakage modes can only be computed once a minimal net stoichiometry is obtained, which is a very

troublesome disadvantage when one is trying to simply get the set of conflicting reactions. Thus, if multiple incon-

sistencies are present in a model, multiple net stoichiometries might be obtained for each unconserved metabolite,

and leakage modes are supposed to be computed for each one of them. It should also be mentioned that once a

set of conflicting reactions is obtained, depending on the size of the reactions set, once might still not be able to

detect the inconsistency. Thus, this computation is poorly applicable to genome-scale models in practice.

The check for model stoichiometric consistency computation is incorporated in the MEMOTE toolbox [169], along

with computation of unconserved metabolites and minimal net stoichiometries, though these latter two are skipped

by default. Elementary leakage modes are omitted from MEMOTE. Another way to detect stoichiometric incon-

sistencies, which is quite more efficient, is the algorithm GAMES by Shin and Hellerstein [173]. It also computes

conflicting reaction sets in the form of reaction isolation sets and metabolite isolation sets, and is parametered by

default to only output a few solutions. A process one might take to detect the inconsistency is computing the mass

balance equation from the sum of all inconsistent reactions and take guess as to what metabolite imbalance is in-

consistent and where it comes from. For example, the output for the equation in equation 2.21 provided by GAMES

is presented in Listing A.10. GAMES is applicable to SBMLs of any specification.
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2.10.4 Three principles of curation of compression of EFMTOOL

In 2004, an article from Gagneur and Klamt underlined the important steps in compressing and removing errors of a

metabolic model [126]. This is solidified by Appendix B of Urbanczik and Wagner in 2005 [174]. Later, Terzer further

defined these steps, separating into the categories of feasibility analysis, nullspace analysis and graph consistency

analysis [127].

Errors which result from the definition of flux bounds can be filtered with feasibility analysis. Feasibility analysis can

be summarized roughly as FVA but performed without the µ parameter, or without maximization of biomass. Terzer

defines several types of reactions detected by feasibility analysis, which consists of performing LPs to minimize

and maximize the flux value of each reaction, and links reaction removal to lethality. He seems to suggest lumping

essential reactions with biomass synthesis reaction, which is a fair point potentially helping to decrease the number

of variables in computations.

Terzer calls reactions that have their minimal and maximal flux values at zero zero flux reaction – we will be using

the term blocked reactions – these reactions should definitely be removed. Next, by not maximizing biomass in

our model and performing a FVA that is not linked to optimal growth, we might be able to retrieve the minimal and

maximal flux values of all reactions, and constraining our CBM to simply these flux bounds. This is a major step in

correcting models, which sometimes has bounds that it simply can never reach from its stoichiometry and topology.

On the other hand, nullspace analysis, depends purely on the stoichiometry of the network, by the use of analysis of

the kernel of stoichiometric matrix Ker(S), or nullspace. Terzer notices zero-rows in the kernel matrix corresponds

to reactions that are always blocked reactions, regardless of flux bounds.

The second concept is the one of enzyme subsets, or reaction subsets, as introduced back in 1999 in METATOOL

[109, 126]. The idea is to notice linearly dependant lines in the stoichiometric kernel K = Ker(S), lines only differing

by a constant factor α, and lump them together. These are reactions that are by definition always flux-carrying at the

same time, the flux through one reaction is always a multiple of the flux through the other reaction. Reaction subsets

allows for a reaction compression process. Obtained reaction subsets can be of very large size, in particular for all

reactions essential to the synthesis of biomass.

Using the information gained from reaction subsets, one can detect inconsistent reversibilities. For example, two

reactions that are together in the same enzyme subset with a strictly positive α might have been considered as

backwards-only for one and forwards-only for the other. Terzer does not detail what he does in that case. We

assume that it simply conforms with the reversibilities defined in the model, and if no flux can be carried in the

direction specified in the model, then that reaction has to be removed.

Finally, Terzer defines three types of structures we could identify through graph consistency analysis: dead-end

metabolites, linear pathways, and unique flows [127]. For dead-end metabolites, that is, metabolites for which there

is never consumption or production, they should be removed along with their producing or consuming reactions. For

linear pathways, internal metabolites are removed recursively until only a single reaction remains. Finally, uniquely

produced and uniquely consumed metabolites, which Terzer calls unique flow, can be removed by incorporating
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Figure 2.16: Overview of the different model curation and compression techniques. Venn diagram relationships
are simplified for reading convenience and should not be considered exact.

the functionally unique reaction into all the other reactions interacting with the metabolite. For example, if one X

is uniquely produced by R1 through the use of one Y , and X is consumed by R2 and R3, then delete X and R1

and incorportate consumption of one Y in R2 and R3 [126]. Together, these three ideas define a solid metabolite

compression process.

Following from the ideas by Terzer, the team from CNAPy developed an interface tool with EFMTool ([W16] and

[138]). Their interface tool goes a step further and flips the reaction reversibilities for flux-carrying reactions which

are backwards-only, to make them forwards-only for better convenience. It also performs a FVA with the flux bounds

given when the model is loaded through the COBRA toolbox, which is of great utility to perform a compression that

is dependant on the model’s defined growth medium. We note here that, in particular, blocked reactions, and more

generally min and max reaction bounds, are intrisically dependant from flux bounds defined by the growth medium.

The compression from CNAPy should incorporate all elements discussed above.
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In conclusion, for comparison, the standard tool MEMOTE [169] provides elements that might lead to similar insights

than the ones provided by Terzer. In particular, it calls orphan metabolites metabolites that are only consumed and

dead-end metabolites metabolites that are only produced. It also provides universally blocked reactions (ie. kernel

matrix zero-rows) and provides reactions in stoichiometrically balanced cycles. Extending MEMOTE and proposing

a standard tool for performing both curation and compression of constraint-based models might be of major interest

in the coming years. We provide Figure 2.16 as a summary of this section.

2.11 Computation of synthetic lethals

Synthetic lethals (SLs) refers to combinations of gene-deletions or enzyme interference targets which prevent growth

[175]. While the term initially refered to pairs of genes, it is now used to describe n-tuples of reaction targets. The

synthetic lethals may explictly consider both the metabolic potential of the organism and the role of the nutritional

environment provided by the extracellular medium [176]. Synthetic lethals apply on metabolic modelling contexts

and is done with an exhaustive procedure based on Flux Balance Analysis.

An exhaustive search for synthetic lethal pairs is implemented in COBRAPy [72]. Exploration is purely exhaustive,

meaning all combinations are tested for knock-out using FBA. The computation of n-tuples of synthetic lethals can

be achieved too with a combinatorial exploration of every possible n-tuple of reactions. Improved algorithms for

computing synthetic lethal strategies have been proposed to speed up the calculation process, such as Fast-SL

[177] and Rapid-SL [178]. On large networks of over a thousand reactions, computation runs slower as the size of

n-tuples increases, and we argue it becomes impracticable if n-tuples of size over 4 are requested – see [177].

We present in appendix the standard algorithms for computing synthetic lethals, illustrating their link to FBA.

Algorithm A.6 illustrates the knock-out of a metabolic model reaction. Algorithm A.7, Algorithm A.8, and Algo-

rithm A.9 respectively illustrate the computation of essential reactions, synthetic lethal pairs, synthetic lethal triplets

with a large tolerance for biomass synthesis of 10−5. FBA is assumed to be performed with the standard objective

function of maximizing biomass synthesis.

Knocking-out a reaction is done by setting the reaction’s flux lower bound and upper bound to zero. Although, a

less usually done approach but just as much important in our point of view is differentiating the knock-out approach

of reversible reactions to be done on either the backwards or forwards direction. This is important as while the

production flux of a product P from a substrate S might be essential, the backwards direction of producing S from

the substrate P might not. When splitting reversible reactions into irreversible ones, this approach is done naturally.

As one can see, with the proposed exhaustive search algorithms, for computation of SLs of size s on metabolic

models of size n reactions, the time complexity would be estimated around O(ns). Among the lines of codes

performed ns times in the presented procedures, the only costly call is FBA, which is itself polynomial in n but

below O(n) in the mean case [101]. Thus, we argue that the exhaustive search of SLs on GSMMs starts becoming

impracticable – i.e. in the order of magnitude of seconds, minutes, hours – when n-tuples size becomes above 4.
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The reasoning for this is that for s ≥ 4 and n ≥ 1000 – GSMMs have thousands of reactions – performing above 10004

operations is required, and the average personal computer needs a second to perform a billion operations [W17].

Instead of an exhaustive search, the algorithms presented in [175], [177] and [178] propose methods based on bi-

level linear programming. Bi-level programming saves on time complexity since the linear program is now no longer

run ns times, however complexity is not necessarily polynomial [179]. Complexity of the SLs exhaustive search and

bi-level optimization procedures is reported in Table 2.2 and its comparison to models size in Table 2.3.

Another method proposed for identifying synthetic lethals, whether n-tuple size is under or over 4, is the computation

of Minimal Cut Sets (MCSs), with the biomass synthesis reaction as a target reaction.

2.12 Minimal Cut Sets

Minimal Cut Sets (MCSs) are cuts in a metabolic network such that a target reaction or function is disabled. A

proper mathematical definition is given in equation 2.12.1.

Definition 2.12.1 – Minimal Cut Sets

Minimal Cut Sets are minimal cuts in a metabolic network disabling flux into certain reaction targets.

Let us denote by T ⊂ Reac the set of target reactions to be disabled, typically this would be biomass production.

From the set of EFMs E = {e ∈ C | ∄e′ ∈ C, Supp(e′) ⊂ Supp(e)} (equation 2.16), we derive the subset of

target-containing EFMs ET according to the following:

ET = {e ∈ E | eT ̸= 0 i. e. T ⊂ Supp(e)} (2.27)

We then define the set of MCSs disabling targets as MT the ’Hitting Sets’ of ET . A Minimal Cut Set in MT is a

subset-minimal set of reactions that forbids function of every EFM in ET .

CST = {cs ⊂ Reac | ∀e ∈ ET , cs ⊆ Supp(e)} (2.28)

MT = {cs ∈ CST | ∄cs′ ∈ CST , Supp(cs′) ⊂ Supp(cs)} (2.29)

Thus, Minimal Cut Sets with biomass synthesis reaction as target reaction can be applied to the computation of

Synthetic Lethals, whether they are of size under 4 or over 4. For clarity, we could refer to MCSs of size 3 or less as

‘small MCSs‘ and MCSs of size 4 or more as ‘large MCSs‘.

For example, we might define MS the MCSs of small size and ML the MCSs of large size as:

MS =
{
cs ∈ MT

∣∣ |cs| ≤ 3
}

and ML = MT −MS (2.30)

We will detail an application of this arbitrary definition of small/large size MCSs in subsection 4.3.2.
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Figure 2.17: MCSs of the toy model network of 5 reactions, cutting target reaction T3

As an example of MCSs, let us take Figure 2.17 with target reaction T3. Cutting the flux into c1 = {T3} obviously

disables T3, however, out of the 4 EFMs of the toy network, there are only two involving reaction T3. The EFMs with

their support in red are represented in Figure 2.17. From the EFMs, we can see there is two other alternate possible

ways to cut flux into reaction T3, but this time it has to cut one reaction from each EFM, respecting equation 2.28.

The intervention strategies are: c2 = {T1, R1} and c3 = {T1, T2}. Indeed, we can see that cutting T1 or R1 alone

is not enough to disable T3. We therefore have our three subset-minimal MCSs solutions: c1, c2, c3.

Minimal Cut Sets were first introduced by Steffen Klamt and Ernst Gilles in 2004 [180]. MCSs are traditionally defined

as the ’Hitting Sets’ of Elementary Flux Modes (EFMs) [134, 181, 182], and are an exhaustive way of exploring

robustness of a network. Setting a certain reaction as target for inactivation, MCSs define all sets of reactions

capable of preventing flux through the target reaction [183]. MCSs have demonstrated remarkable performance

identifying synthetic lethals in cancer cells [184].

MCSs suffer the same computational time hindrances as EFMs. The number of possible MCSs grows exponential

with the number of reactions [185]. Interestingly, it has been proven that MCSs can be enumerated as the EFMs of a

so-called dual metabolic network [186, 187]. As a result, similarly to how Mixed-Integer Linear Programming (MILP)

methods were developed for computing the shortest EFMs of a metabolic network, [140, 150], MILP methods for

computing the shortest MCSs have been developed [153, 154].

With biomass synthesis reaction as the target reaction, Minimal Cut Sets can be applied to the research of synthetic

lethals. It is necessary to convert the obtained MCSs into sets of target genes or proteins for biological interpretation.

Methods have been developed to incorporate multilevel data, namely the Gene-Protein-Reaction association rules

(GPRs) from GSMMs, into the stoichiometric matrix [162]. These solutions have been repurposed for the MCSs

computation [184, 188, 189]. One method in particular can be found in COBRA MATLAB © [188, 112].
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Finally, Minimal Cut Sets have practical application in the design and optimization of biotechnological processes.

Methods such as OptKnock can be used to study minimal intervention strategies for overproduction of target bio-

chemicals in microbial strains [190, 182]. In that case, the computed cut sets are reactions to be knocked-out that

disable certain target flux modes instead of certain target reactions, and such that a certain desired product yield is

improved after knocking-out [182].

In conclusion, while EFMs enumerate all possible pathways in a metabolic network, MCSs enumerate all possible

cuts in a metabolic network, that disable a certain set of target EFMs. Therefore the two notions are highly related.

2.12.1 Ballerstein’s duality property between EFMs and MCSs

In 2012, Kathrin Ballerstein and colleagues demonstrated that MCSs could be computed as special EFMs of

a so-called dual network, constructed from the original network [186, 187]. We roughly summarize the related

information in Theorem 2.12.1.

Theorem 2.12.1 – Duality property of Minimal Cut Sets

Let M = (Met,Reac, Stoch,Rev) be a metabolic network and T ⊂ Reac targets.

Then there exists a dual network D = (f(M,T ), g(M,T ), h(M,T ), ϕ(M,T )) where a particular subset

of the EFMs of D corresponds to the MCSs of M cutting target T [186, 187].

Where f, g, h, ϕ are transformations of elements of the original metabolic network M and of the target-s T .

For easier reading, we might write: D = (Metdual, Reacdual, Stochdual, Revdual).

A special property of the dual network proposed by Ballerstein and colleagues is that Metdual = Reac.

This means metabolites of the dual network correspond to reactions in the original network.

We will illustrate this network conversion process with the von Kamp formulation in subsection 4.1.1.

In particular, Ballerstein’s dual network formulation, based on the stoichiometry matrix S ∈ Rm×n, is the following:

Sdualvdual =
(
ST I −IIrrev −T

)

u

v

w

t

 = 0

u ∈ Rm, v ∈ Rn, w ∈ R|Irrev|, t ∈ R|T |

w ≥ 0, t > 0

(2.31)

Where I ∈ Rn×n is the identity matrix and IIrrev ∈ Rn×|Irrev| is the identity matrix indexed at the position of

irrversible reactions. As well, T ∈ Rn×|T | is an identity matrix indexed at the position of target reactions T ⊂ Reac.

Remember that reactions of the original network become metabolites, hence they become row positions.
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Note here that, for the steady-state assumption, instead of the single variables v, we now have four sets of variables:

u, v, w, and t. This is significatively important. In fact, unlike the name of their article might lead you to believe,

the MCSs of the primal network cannot simply be enumerated as EFMs of the dual network [186]. Indeed, only the

variables called v are the ones where subset-minimality should apply. This means that if one were to use traditional

EFMs computation algorithms to compute MCSs, EFMs non-subset minimal in v might appear for each MCS, and

post-processing filtering would have to be performed to remove all EFMs composed only of the other three kinds of

variables together. Additionally, all EFMs not containing the target reaction variable t are not of interest.

The advantage of this method is being able to enumerate all MCSs without having knowledge of all or even any

EFM. This was not the case before, as people used to compute the MCSs as ’Hitting Sets’ of EFMs [134, 182]. We

can therefore use tools such as the Double Description to enumerate all MCSs in a metabolic network. However,

due to the points we just raised, the Double Description algorithm would have to be modified accordingly [187].

Incidentally, notice here that we force the flux of the target reaction-s t to be non-zero. This might have a detrimental

impact on the addition of additional constraints in the computation of MCSs (later discussed in subsection 3.5.1).

But most importantly, the interest of having such a property where MCSs of the primal network are EFMs of the

dual network is that we can check for the validity of a MCSs by performing the rank test (Theorem 2.7.2) on the dual

matrix. However, as we’ll see, von Kamp’s formulation is condensed and yields faster computation times.

In conclusion, we represent how the dual metabolic network as encoded by Ballerstein’s formulation looks like in

Figure 2.18. Reactions annotated ’M_’ represent u variables, reactions annotated ’R_’ represents v variables,

’irr_’ represents w variables, ’tgt_’ represents the t variable. This represents the dual network of the network

in Figure 2.17 for target reaction T3.

2.12.2 Von Kamp’s Mixed-Integer Linear Programming formulation

As seen before, Double Description methods require enumeration of all solutions, which is as inconvenient in the

case of MCSs than it is for EFMs. MILP (Mixed-Integer Linear Programming) methods have therefore been de-

veloped to compute MCSs. Like EFMs, these methods can easily be adapted to other methods, including Logic

Programming with Linear Contraints (LoPLC). However, for the sake of presentation, we are going to refer to the

original MILPs as they were formulated.

Two equivalent formulation of MILPs exist, the one from Ballerstein’s, and the one from von Kamp’s. The advantage

of Ballerstein’s formulation is that MCSs can correspond to a subset of all EFMs on its network, meaning MCSs

can be verified by using the rank test. On the other hand, on von Kamp’s network, MCSs might not correspond to

special EFMs. This is not an issue, as there are other ways to check validity of MCSs solutions in polynomial time,

such as simply using FBA and optimizing target reactions.

The strength of von Kamp’s method is that it reduces significantly the number of variables and of constraints com-

pared to Ballerstein’s method, thanks to removing the w variables from Ballertein’s method. Here is von Kamp’s

formulation for the MILP constraints:
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 ST
Rev IRev −IRev −TRev

ST
Irrev IIrrev −IIrrev −TIrrev



u

v

t

=

≥

0

0


u ∈ Rm, v ∈ Rn, t ∈ R|T |

vIrrev ≥ 0, t > 0

(2.32)

Where Rev and Irrev indices designates indexes for the reversible and irreversible reactions, as was done before for

the Ballerstein formulation with identity matrices, with Rev ⊂ Reac and Reac \Rev = Irrev. Notice that reactions u

corresponding to metabolites are reversible, reactions v where subset-minimality apply are this time only reversible

if the original reaction at that index is reversible, while t is always irreversible.

This formulation should be read, for the first row of the dual stoichiometry matrix, impose constraint equals zero,

and for the second row, impose constraint greater than zero. In both cases, matrix multiplication with the variables

vector occurs. The original network reactions’ reversibility determines the kind of steady-state constraint the dual

metabolite imposes: the first row for reversible reactions, and the second row for irreversible row.

We further detail the conversion of a metabolic network into a dual network, as well as the treatment of reversible

reactions, which are split into two irreversible reactions for these computations, in subsection 4.1.1.

We represented how a dual metabolic network in von Kamp’s formulation looks like in Figure 2.19. Annotations are

the same as for Figure 2.18, and we can notice two differences between the two: the absence of ’irr_’ reactions

or w variables, and the change in reversibility of reactions ’R_’ or v variables.

For further detailing of the example, here are the target-containing EFMs we would find with Ballerstein’s for-

mulation of the dual network of the toy model: e1 = {R_T3, tgt_T3}, e2 = {−M_A,−R_R1, R_T1, tgt_T3},

e3 = {−M_A,−M_B,R_T1, R_T2,−R_T4, tgt_T3}, e4 = {−M_A,−M_B,R_T1, R_T2, irr_T4, tgt_T3}. We

can see that EFMs e1, e2, e4 correspond to all three MCSs c1, c2, c3 of Figure 2.17, while e3 includes {R_T4} on top

of {R_T1, R_T2}, and is thus not subset-minimal in regards to variables v.

Meanwhile here are the target-containing EFMs we would find on von Kamp’s formulation: e′1 = {R_T3, tgt_T3} and

e′2 = {−M_A,−R_R1, R_T1, tgt_T3}. We can see that in von Kamp’s formulation EFMs do not correspond to all

MCSs, and inversely. Of course though, algorithms computing MCSs could check validity of MCSs by elementary of

EFMs by having both dual networks computed, using von Kamp’s network for a faster computation and Ballerstein’s

for verification. For aspefm, our logic programming with linear constraints implementation of MCSs, we preferred

using von Kamp’s implemetation with simple FBA tests with the target (see section 5.2).

EFMs for this example were computed using COPASI [S92] and figures were visualized with CellDesigner [S101].

Unfortunately, to use CellDesigner, we have to convert SBML models which are written in version 3 with FBC version

2 into the old SBML version 2 models. But thankfully, CBMPy is a good and quick tool to perform such a conversion

[S89]. Other tools for the visualization of models include ESCHER [191], or simply modifying a SVG file, like is

performed by FAME [S102] and FluxVisualizer [S103].

94



int

R1T1

T2

T3

T4

irr_T4

M_A

M_B R_R1

R_T4R_T2irr_T2

R_T3R_T1irr_T1 irr_T3 tgt_T3

Figure 2.18: MCSs dual network of the toy model, using Ballerstein’s formulation
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Figure 2.19: MCSs dual network of the toy model, using von Kamp’s formulation
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2.13 Current applications of metabolic modelling

To conclude this chapter, let us discuss the current applications of metabolic modelling. With genome-scale models

now being a widely adopted standard, recent applications have shifted towards larger and larger models. And

therefore, people are looking to reduce the computation times of FBA methods. For this reason, we believe a

major hurdle that will be necessary to overcome in the future is determining the exact complexity of the methods, in

particular for FBA-derived methods.

As an example, a phylogeny of many FBA and other constraint-based modelling methods published in 2012 [161],

which is way outdated in the current year; seems to indicate that much effort is given into making new methods,

while less effort is given into maintaining those methods and studying their exact time complexity for them to run

faster on larger models.

Therefore, to that end, we present in Table 2.2 a rough overview of the computational complexity of the methods

presented in this thesis. And in Table 2.3 we display an estimated overview of how methods scale to larger models,

including the verifiable performance of our LoPLC tool aspefm, represented as (LP). We were indeed able to apply

the method to the wide human reconstruction model [192] – although constrained to a specific tissue.

The metabolic model sizes are given as indicative milestones. For instance, the AGORA gut microbiota model

consists of single-species bacterial models, which we did not perform computations on, and the models are of size

ranging from 1 thousand to 3 thousands, but one could build a larger model if these were combined [75]. The

Whole-Body models are said to contain a total of 81,094 reactions [171], which is the basis for us asserting that

FBA up to the hundred thousands of reactions is possible. In terms of linear programming, this should not pose an

issue if one possesses sufficiently performant machines.

The interest of the metabolic modelling community has now shifted towards multicellular models, such as the

AGORA bacterial community models [75], and the whole human body models [171]. These models contain a

lot more reactions, due to encompassing several cellular compartments. Other examples of modelling of microbial

communities include [193] and [S104]. However, a higher number of reactions does not correlate to a better quality

of the model, which is why the principles for metabolic network curation and verification as described in section 2.10

become increasingly important, especially as people keep pushing for larger models.

On the other hand, a fantastic application of the integration of omics data in our opinion is the creation of context-

specific genome-scale models – see [163, 194] and [S105, S106, S107]. This is something that has also been done

for a while on the human reconstruction model HMR – also called Recon [192]. One can select from which tissue

the metabolic model should come from, according to tissue expression data. This is a great advance as constraints

greatly reduce the complexity of models and we therefore go back to smaller-scale models, while staying faithful

to constraint-based modelling ideas. Tools are also now able to automatically construct microbial genome-scale

models constrained to a growth medium, such as KBase [S108]. While a lot of curation is necessary to use these

models, we believe the addition of transcriptomics and metabolomics data will lead us to many advances in the

understanding of metabolism and its phenotypical expression in different tissues, in human in particular.
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Methods Algorithms Estimated time complexity
Flux Balance Analysis (FBA)
Flux Variability Analysis (FVA)

Linear Programming (LP)
Constant number of calls to LP

Polytime in n, n number of reactions, i.e.
linear variables [101]

Dynamic Flux Balance Analysis (dFBA)
Dynamic regulated FBA (rFBA)

Constant number of calls to LP
Constant calls to ODE solving

At least polytime in n, n number of reac-
tions, i.e. linear variables, complexity
most dependant on ODE solving

Resource Balance Analysis (RBA)
ME-models with enzyme considerations

Feasibility Linear Problem
Constant number of calls to LP

Polytime in a(n), where a(n) denotes the
number of linear variables after resource
model construction

Synthetic Lethals (SLs)

Exhaustive search : polytime
calls to Linear Programming

Around O(ns), n number of linear vari-
ables and s size of reaction set

Bilevel Linear Programming Polytime in n best case, exponential in
worst case [179]

Parsimonious FBA (pFBA) Bilevel Linear Programming Polytime in n best case, exponential in
worst case

Elementary Flux Modes (EFMs)

Double Description (DD) Exponential in the number of reactions n
No solutions yielded until the end of
enumeration

Mixed-Integer-Linear-
Progamming (MILP)

Exponential in the number of reactions n
Best case, single solution in polytime
[134]

Logic Programming with Linear
Constraints (LoPLC)

Exponential in the number of reactions n
Best case, single solution in polytime

Minimal Cut Sets (MCSs)

Double Description (DD)
Hitting Sets (HSs) computation

Exponential in the number of reactions n
No solutions yielded until the end of
enumeration

Mixed-Integer-Linear-
Progamming (MILP)

Exponential in number of reactions d(n)
d(n) denotes number of reactions of the
constructed dual network
Best case, single solution in polytime

Logic Programming with Linear
Constraints (LoPLC)

Exponential in number of reactions d(n)
d(n) denotes number of reactions of the
constructed dual network
Best case, single solution in polytime

Table 2.2: Constraint-based metabolic modelling methods mentioned in this thesis and their estimated complexity

Finally, it is worth mentioning that the metabolic modelling community is now very interested into the integration of

resource allocation constraints [S99, S109]. For example, one might cite the birth of the GECKO toolbox [S110],

also linked with mewPy [S88], or formalisms such as Elementary Growth Modes to explore beyond the steady-state

[S111, S112]. People are shifting from single objective optimization with FBA to multi-objective optimization i.e.

Pareto optimization [195], or simply to feasibility problems as is done in RBA [166]. And a great remaining issue to

solve in FBA and EFMs analyzes is the integration of experimentally-retrieved kinetic parameters [196, 197].

We will present aspefm and our results with the method in the two subsequent chapters (chapter 3 and chapter 4).

In the perspectives (chapter 5), we will discuss whether aspefm can be an answer to some of these questions.
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Models
Methods FBA/FVA dFBA RBA/ME 4-SLs

(exhaustive)
4-SLs

(bilevel)
pFBA EFMs

(DD)
EFMs
(LP)

MCSs
(HSs)

MCSs
(LP)

Toy model of 10 reactions ! ! ! ! ! ! ! ! ! !

Central E. coli model of
∼50 reactions

! ! ! ! ! ! ! ! ! !

Central E. coli model of
∼100 reactions

! ! ! ! ! ! ! ? ! ?

Central Human cell model
of ∼150 reactions

! ! ! ! ! ! ! C ! C

Model of 300 reactions ! ! ! ! ! ! ! C ! C

Bacterial model of 1000
reactions

! ! ! ! ! ! ? C ? C

Consortium bacterial
model of 3000 reactions

! ! ! ? ! ! % C % C

HMR human cell model of
10000 reactions

! ! ? % ? ? % C % C

Combined gut microbiota
model of 20000 reactions

! ? ? % ? ? % ? ? ?

WBM whole human body
model of 100000 reactions

! ? ? % ? ? % ? % ?

Table 2.3: Models size and scalability of main CBM methods of interest.
!: Computationally feasible. ?: Unknown, not tested. X: Above current computation power.

C: enumeration possible of subset of solutions using biological constraints.
(4-SLs): Synthetic Lethals of size up to 4. (DD): Double Description. (HSs): Hitting Sets.

(LP): linear-programming based methods, including both MILP and SAT-based.
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Chapter 3

aspefm: a collection of logic programming

tools for exhaustive metabolic fluxes

analysis

During the course of this thesis, we developed aspefm: a collection of logic programming tools for computing

Elementary Flux Modes, Minimal Cut Sets, and more, based on logic programming with the Answer Set Program-

ming paradigm. Briefly, Answer Set Programming is a logic programming language optimized for the resolution of

combinatorial problems. To touch upon the subject of combinatorial problems, we introduce Constraint Satisfaction

Problems, as defined in the Constraint Programming area of study. Our particular case of Elementary Flux Modes

and Minimal Cut Sets are combinatorial problems that can be solved with Logic Programs with incorporated Linear

Constraints, making use of Logic Programming, and Linear Programming as presented in the previous chapter.

Throughout this chapter, we describe the aspefm method for computing EFMs, as well as the research of related

biological constraints, of logical and linear nature. Integration of biological constraints leads to amelioration of

enumeration performance and more thorough selection of biological pathways of interest, which we illustrate on an

E. coli core model, and a central human cell model.

3.1 Constraint Programming

Constraint Programming (CP), the domain of automated reasoning computer programs through sets of constraints

and variables, is a significant area of study in artificial intelligence research [98]. Constraint Satisfaction Problems

(CSPs), mathematical problems defined according to equation 3.1.1, are of interest in CP.
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Following this definition, the Boolean Satisfiability problem, better known a SAT, is a particular case of CSP, with

Boolean variables. Other well-known algorithmic problems such as ‘Map Coloring‘ and ‘Stable Marriage‘ can also

be expressed as CSPs [98, 102].

CP is closely related to logic programming: CSPs can be seen as a more basic prototype of a complex declarative

programming language model, in which an agent specifies constraints to the machine, and the machine deduces

the solution by itself. In fact, logic programming might simply be a subset of constraint programming, and well-known

solvers of CSPs programs are classic logic programming solvers, including extended SAT-solvers.

Definition 3.1.1 – Constraint Satisfaction Problem

A Constraint Satisfaction Problem (CSP) is defined by a triplet (X,D,C): [198, 98]

X = {X1, · · · , Xn} a set of variables,

D = {D1, · · · , Dn} a set of variables value domains,

C = {C1, · · · , Cm} a set of constraints.

(3.1)

We define a constraint Cj of scope Vj = (X1, X2, · · · , Xn) = X as a mathematical relation: a subset R of the

set D1×D2×· · ·×Dn, such that if the assignment (v1, v2, · · · , vn) ∈ R, then the constraint is said to be satisfied.

The scopescopescopescopescopescopescopescopescopescopescopescopescopescopescopescopescope of a constraint Cj is a tuple of variables Vj ⊂ X involved in the constraint’s relation.

A solutionsolutionsolutionsolutionsolutionsolutionsolutionsolutionsolutionsolutionsolutionsolutionsolutionsolutionsolutionsolutionsolution to a CSP problem is such that every variable Xi get assigned to a value in its domain Di, and such

that every constraint Cj is satisfied. If not all variables are assigned to values, we have a partial assignmentpartial assignmentpartial assignmentpartial assignmentpartial assignmentpartial assignmentpartial assignmentpartial assignmentpartial assignmentpartial assignmentpartial assignmentpartial assignmentpartial assignmentpartial assignmentpartial assignmentpartial assignmentpartial assignment.

An assignmentassignmentassignmentassignmentassignmentassignmentassignmentassignmentassignmentassignmentassignmentassignmentassignmentassignmentassignmentassignmentassignment might be said to be consistentconsistentconsistentconsistentconsistentconsistentconsistentconsistentconsistentconsistentconsistentconsistentconsistentconsistentconsistentconsistentconsistent or inconsistentinconsistentinconsistentinconsistentinconsistentinconsistentinconsistentinconsistentinconsistentinconsistentinconsistentinconsistentinconsistentinconsistentinconsistentinconsistentinconsistent with the constraints. In the case of inconsistency,

the constraints and variables creating a conflictconflictconflictconflictconflictconflictconflictconflictconflictconflictconflictconflictconflictconflictconflictconflictconflict are of interest.

For instance, a CSP with two variables and one constraint is X = {X1, X2}, D = {{A,B}, {A,B}}, and

C = {⟨X1 ̸= X2⟩} = {{(A,B), (B,A)}}. The CSP admits two solutions. If we add the constraint {(A,B)}, then

the CSP only now admits one solution. If we instead add the constraint ⟨X1 = X2⟩ = {(A,A), (B,B)}, now the

program does not admit any solutions, since constraints are conflicting.

Parallelly, Linear Programming is possible to consider as declarative programming, as the formalism dictates a

way to retrieve solutions from user-imposed directives. It seems unclear whether the paradigm is embraced as a

Constraint Programming subdomain by the community, but LP can indeed be seen as a particular case of CSP

where domains are reals, constraints are linear, and an objective function is optimized.

In fact, the IBM API proposes two different distinct sections of its solver, one for LP: cplex and one for CSPs: CP

Optimizer, which is lesser known [W8].
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To avoid confusion between our hybrid logic+linear programming method and linear+logic programming methods

such as MILP, we chose to call our area of interest Logic Programming with Linear Constraints (LoPLC). Solving

MILPs would fall into the area of Mathematical Programming, while solving LoPLCs and CSPs would fall into the

area of Constraint Programming. As we will see, our aspefm application uses a CSP solver rather than a MILP

solver at its base, thus we argue that our study is definitely befitting of the Constraint Programming study domain.

3.2 Logic Programming and SAT

Logic Programming (LoP) is a declarative programming paradigm. Declarative programming defines a class of

programming languages where a descriptive program code in comprehensive terms is sent to an engine, and

resolved without further user input. An example of this would be SQL for database exploration. It is in opposition

to imperative programming, where the program is instructed what to do from start to finish. In logic programming, a

user inputs a logic problem, or logic program, and a logic solver finds an answer respecting all logic constraints.

Well-known logic programming solvers and languages include ProLog [199], Inductive Logic Programming [S113],

Answer Set Programming [200], clingo [201], DLV [S114], etc. These tools have been widely used for many ap-

plications including theorem solving [S115], robotics [S116], breast cancer diagnosis [S117], electrocardiogram

pattern recognition [S113]. Such solvers are essential in the artificial intelligence field and more particularly the

automated reasoning domain for the construction of human-intelligible machines, thanks to providing a solid and

rational interpretability and explicatibility of results [202].

Logic programming is seen as a particular case of constraint programming and may be used to solve CSPs, which

are problems as described in equation 3.1.1. Most logic programming solvers are thus able to deal with classical

propositional logic, first-order logic, but also constraints with integer domains. At its most basic level, it can be said

that solving a Boolean satisfiability problem or SAT problem is also a form of logic programming [203].

Propositional logic is the study of the properties of logical propositions, composed of propositional variables, or

literals, statements that can be either {True} or {False}, and logical operators. The language used for propositional

logic is the language of Boolean functions, thus we refer the reader to Definition 1.6.2. The use of propositional logic

can be dated as far back as Aristotles [204].

The Boolean Satisfiability problem, better known a SAT, can be seen as the following: for a set of logic propositions

P = {P1, P2, · · · , Pn}, over propositional variables V = {V1, V2, · · · , Vm}, SAT is the problem of finding if there exists

an assignment of the literals V to {True} or {False} such that the Boolean function P1∧P2∧· · ·∧Pn yields {True}.

We give more insights into determining satisfiability of a Boolean formula in Definition 3.2.1.

3-SAT is a particular iteration of the SAT problem, dealing with a special specification of Boolean formulas: propo-

sitions must be clauses, ie disjunctions of literals, and in its most simplified form the largest clause of the formula

must have exactly three literals. 3-SAT is the first computational problem proved to be NP-Complete [205, 102, 206].

Further definitions for understanding the 3-SAT problem are presented in Definition 3.2.2 and Definition 3.2.3.

101



Definition 3.2.1 – Satisfiability of a Boolean formula

Given a Boolean formula, or a set of logic propositions, the SAT problem is the decision problem of determining

whether or not there exists a solution satisfying the whole formula. A Boolean formula is said to be satisfiable

if, for an assignment of variables, the associated Boolean function simply yields {True}.

A related problem to SAT is enumeration of all solutions satisfying the Boolean formula.

Let us rewrite any Boolean formula F over Boolean variables V = {V1, V2, · · · , Vn} as a set of logic propositions

P = {P1, P2, · · · , Pm}, for instance such that F = P1 ∧ P2 ∧ · · · ∧ Pm. We thus have:

X = {X1, · · · , Xn} our set of variables,

D = {B, · · · ,B} variables are Boolean,

C = {P1, · · · , Pm} our set of constraints.

(3.2)

And solutions to this problem are such that every constraint in C is respected.

SAT is thus a special case of a CSP.

Satisfiability is therefore linked to computational complexity. In practice the problem of formula satisfiability can

be seen solved by finding a single assignment that sets the Boolean formula to {True}, or failing to do so. This

is called a decision problem. In contrast, throughout this thesis we are dealing with enumeration problems. For

the SAT problem, enumeration would mean, if there exists assignments satisfying the Boolean formula, finding all of

those solutions with the use of a special enumeration tool called a SAT-solver. The characterization of the complexity

of an enumeration problem is also different than for decidability12.

Definition 3.2.2 – Conjunctive and Disjunctive Normal Form

A Boolean formula is in Conjunctive Normal Form (CNF) if it is a conjunction of clausesclausesclausesclausesclausesclausesclausesclausesclausesclausesclausesclausesclausesclausesclausesclausesclauses, ie. a conjunction of

disjunctionsdisjunctionsdisjunctionsdisjunctionsdisjunctionsdisjunctionsdisjunctionsdisjunctionsdisjunctionsdisjunctionsdisjunctionsdisjunctionsdisjunctionsdisjunctionsdisjunctionsdisjunctionsdisjunctions of (positive or negative) literals (
∧∨

xi). The negation operator (¬) is only allowed inside clauses.

A Boolean formula is in Disjunctive Normal Form (DNF) if it is a disjunction of conjunctions of literals (
∨∧

xi).

Every Boolean formula, regardless of its form, can be converted in CNF and in DNF, although the conversion

might (or might not) be computationally complex.

1We previously mentioned that the complexity of counting EFMs is in the complexity class #NP-Hard. The complexity of counting problems
differs from the complexity of decision and enumeration problems, but depending on problems these complexities might be strongly related.

2In their Knowledge Compilation Map [207], Darwiche and Marquis define classes of compiled languages of Boolean formula – DNF and
CNF are such examples of compiled languages. Some of the compiled languages end up being queriable in polynomial time for counting or
enumeration of all solutions.
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Definition 3.2.3 – Boolean Satisfiability Problem 3-SAT

A Boolean formula, assumed in its most simplified form, is said to be in k-CNF if it is a conjunction of clauses

of at most k literals, and it has at least one clause with k literals. For instance, (x1∨x2)∧ (x1∨¬x3) is a 2-CNF.

While the SAT problem is trivial on 1-CNF and 2-CNF, it is proved to be NP-Complete on 3-CNF. We thus refer

to the corresponding problem as 3-SAT, and say that 3-SAT is NP-Complete [205, 102].

3.2.1 Propositional logic with examples

Let us take an example in biology to understand propositional logic. Of course this is merely a simplied example.

Respiration happens in presence of oxygen.

Fermentation happens in absence of oxygen.
(3.3)

To transform these statements into propositional logic, we must define literals, the elementary variables of proposi-

tional logic, assignable to {True} or {False}. Let us define the following literals: fermentation, oxygen et respiration

and the following logical formulas:
respiration =⇒ oxygen.

fermentation =⇒ ¬ oxygen.
(3.4)

Simply, the SAT problem of finding satisfiable solutions to these two logical formulae consists in assigning values to

each literal, such that, if possible, the two formulae are respected.

Here is an example of resolution performed by a SAT-solver: let us assign oxygen to {True}, then fermentation is

necessarily {False}. Conversely, let us assign oxygen to {False}, then respiration is necessarily {False}. A solution

is found where all literals are assigned either to {True} or to {False}. Assignments can be seen as branches of a

resolution tree, while solutions, or non-solutions, are the tree leaves.

For instance, if we have oxygen to {True}, and fermentation to {False}, then there are two valid solutions, one

with respiration to {True} and respiration to {False}. For simplicity, these solutions are respectively written:

{oxygen, respiration,¬ fermentation} and {oxygen,¬ respiration,¬ fermentation}

The logic problem in equation 3.4 thus admits four solutions:

{oxygen, respiration,¬ fermentation},

{¬ oxygen, fermentation,¬ respiration},

{oxygen,¬ respiration,¬ fermentation},

{¬ oxygen,¬ fermentation,¬ respiration}.

(3.5)
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Indeed, the four other possible assignments of the three variables do not satisfy the formulae.

A SAT-solver is a tool allowing to find one, several, all assignments satisfying a formula. Here, using a SAT-solver

would return all the solutions in equation 3.5. An example of a SAT-solver-based tool is clingo, the Answer Set

Programming solver used in this thesis.

3.2.2 First-order logic

An extension of propositional logic is first-order logic, which can be roughly summarized as the addition of quantifiers

∀ and ∃. As well, predicates and quantifier variables can now be defined. Predicates are relations or tuples of

unlimited arity and might involve several quantifier variables.

This first-order formalism allows us to define problems on large sets of values, for example, taking the previous

example, let us say we replicate it on a set T of several experiments. We get:

∀t ∈ T, respiration(t) =⇒ oxygen(t).

∀t ∈ T, fermentation(t) =⇒ ¬ oxygen(t).
(3.6)

Where respiration(t) is an example of predicate, and t is a so-called quantifier variable. In this new example, the

number of variables is multiplied by |T |. Previously, there was 3 variables, and thus 23 possible assignments. If we

fix |T | = 4, we get 12 variables, and thus 212 possible assignments. Notice the exponential nature of SAT problems.

Here, the number of satisfiable assignments is also taken to the power of |T |, in this case because each problem

was independant. Dependance could have been modelled, for example respiration(t) =⇒ oxygen(t+ 1).

First-order logic notations are convenient for logic modellers. In practice though, first-order problems can be con-

verted back to simple propositional logic for solvers.

3.2.3 Satisfiability Modulo Theories

An extension of the Boolean SAT problem to more diverse varieties of CSP problems is possible with the so-

called SAT Modulo Theories (SMT). SMT introduces non-Boolean variables, removing the need to convert every

combinatorial problem to pure SAT Boolean formalism. SMT provides very strong specifications for its non-Boolean

variables and is able to solve classic combinatorial problems such as N-queens [S118] and Sudoku [S119] with

ease.

The hybrid method allows the user to add constraints and variable of numeric type into the formalism, for instance

real numbers and linear constraints with the Linear Real Arithmetic theory. The theory part of the solving is a second

solver called during the propagation of Boolean literals in the SAT solver. The second solver is called a theory solver.
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Here is an example of what SMT logic constraints would look like:

respiration =⇒
(
[O2] ≥ 10−3

)
.

fermentation =⇒
(
[O2] < 10−3

)
.

(3.7)

Where [O2] is a linear real-valued variable indicating oxygen concentration.

The theories available to SMT solvers are usually reported on websites such as SMT-LIB [W18]. SMT with Linear

Real Arithmetic theory was successfully applied previously to perform the computation of EFMs [157].

3.3 Answer Set Programming

Answer Set Programming (ASP) is a particular specification of logic programming. It is a widely used tool for

combinatorial problems. ASP has been utilized to solve a variety of biological problems including metabolic network

problems [208]. Gebser et al. [209] used the formalism to check the consistency of large-scale data sets and

provided explanations for inconsistencies by determining minimal representations of conflicts. Razzaq et al. [88]

combined ASP and model checking to integrate time series of phosphoproteomic data into signaling networks.

More recently, Frioux et al. [160] developed a hybrid ASP and linear programming approach for the network gap-

filling problem using the solver clingo[LP] [210], an extension of the state-of-the art ASP solver clingo [211] for

solving logic problems with linear constraints over integer and real numbers. This has been possible since clingo

implemented a theory solver in its last release [201, 212, 213]. Note that, interestingly, clingo’s internal solver, clasp,

uses a SAT-solver-like backend [211], greatly helping performance but also theory integration [201, 212].

The Answer Set Programming logic programming paradigm is oriented towards the resolution of constraint satisfac-

tion problems (CSPs, constraint programming), combinatorial optimization applications, and NP-hard problems in

general. As with other logic programming methods, it defines automated reasoning programs, declarative programs

that are "solving themselves". In ASP’s case, a set of solutions can be derived, and solutions are called answer sets.

The language defines the so-called stable models semantics, where a model is solution if and only if it is stable, and

thus answer sets, complete assignments of atoms, are also called stable models [214].

In her 2017 paper: "What is answer set programming to propositional satisfiability", Lierler describes how ASP and

the SAT problem are related, and how they can express the same formalisms [214]. However, ASP can actually

express naturally first-order logic, cardinality constraints, integer variables in its language and with its native solver,

and it can integrate most of the formalisms provided by SMT and corresponding theories, thanks to the aforemen-

tioned integration of theory solvers. Thus the ASP specification can actually express a much wider variety of CSP

problems than SAT. Besides, ASP is actually expressed through comprehensive human-readable variables, rather

than mathematical symbols. Since ASP specification is quite complex even for SAT modellers, we recommend

Lierler’s paper as both an entry-level review and a thorough look at the Answer Set Programming field [214].
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3.3.1 Answer Set Programming specification

Answer Set Programming (ASP) is a declarative approach oriented toward knowledge processing with a logic pro-

gramming approach. Problems are formulated according to first-order propositional logic in order to facilitate the

problem modeling. A logic program in ASP is a finite set of rules of the form:

a← b1, . . . , bm, not cm+1, . . . , not cn

where a, b1, . . . , bm, cm+1, . . . cn are atomic propositions. An atom a must either belong in a program solution or not,

in which case it is denoted by not a. If an atom is known as a fact, or inferred from a rule, it is considered true:

the atom becomes part of the answer set. If not, then it cannot be true: Closed-world assumption (CWA) applies,

meaning that by default, unknown atoms do not belong to solutions, i.e. they are false. CWA is a principle absent

from classical logic that states that everything not currently known to be {True} is {False} [214].

The head of a rule denotes atom a and the body denotes positive atoms b1, . . . , bm and negative atoms cm+1, . . . cn.

If all positive body atoms are present and all negative body atoms are absent then the head atom should be present.

To state that an atom should be present in the solution, the body is omitted. This is called a fact. Alternatively, to

state integrity constraints on body atoms, the head atom is omitted. For a more formal introduction to answer set

programming, we refer the reader to [200].

A typical ASP tool is composed of two parts: the grounder which handles predicate variables – it converts first-order

logic to classical propositional logic – and the solver which finds stable sets of atoms satisfying the logic program.

The software clingo from the University of Potsdam is one such tool, it performs ASP grounding through the gringo

interface and ASP solving through the clasp interface [215]. Its clasp solver takes advantage of high performance

solving using Boolean satisfiability (SAT) resolution techniques [211]. Both interfaces can be used independantly

from clingo, and we refer to the official clingo guide for a complete explanation of the language capabilities [215].

Other ASP solvers and specifications include DLV [S114] and smodels [S120]. However, in this section we will only

describe clingo ASP specification, as this is the one that we will be using.

(1) head :- statement_1; ... ; statement_n.

(2) known_fact.

(3) {unknown_fact}.

(4) :- statement_1; ... ; statement_n.

(3.8)

The program above in equation 3.8 is called a logic program. For syntaxic elements, we can no longer use the term

literals: we use the term atoms. Note that atoms might be propositions, or first-order logic predicates. Atoms might

be either known or unknown, depending on the state of logic resolution, and either true or false.

The program is composed of logic rules, which must terminate by a point. Here, we represented the four principal

ASP rules of our interest. We wil go over the four types of rules and detail their application.

106

https://potassco.org/


— Rule (1): the head and the body of the rule are present, the rule must then be read body→ head. However, this

is not an implication in classical logic terms. A reminder of this important distinction might be that we are inferring

about knowledge state of atoms (known/unknown), rather than about truth values (true/false).

The body in ASP should be read as a conjonction (AND) of atoms. Thus in our example the head is part of the

answer set if all of the statements from the first to the n-th are also part of the answer set.

In ASP, unknown elements are false by default, which is called Closed World Assumption (CWA). Thus we must

specify to the program what is known, using logic phrases with only a head, no body: these are called facts.

— Rule (2): we specify that atom known_fact is necessarily true.

In biological experimental conditions we are often confronted with elements of unknown nature, with observations

assumed to be true, and like in CWA inferring truth from elements of unknown nature is forbidden. By opposition,

classical logic do not possess any assumption for elements of unknown nature. Thus we believe that through CWA,

ASP can be a tool of great importance for biology. However, it must be said that CWA is restrictive, and implies

there might no longer be any lack of knowledge in the corresponding reasoning [S121].

The opposite hypothesis: Open-World Assumption (OWA), exists, allowing that a statement may be true even if it is

not certainly known that it is true. This hypothesis is used in web ontologies [S122].

— Rule (3): we specify that atom unknown_fact can be either true or false. It thus corresponds roughly to a literal

from classical logic.

Note that when performing logic resolution of ASP programs, atoms are indeed associated with classical Boolean

literals. There are thus ways to "remove" CWA from ASP logic rules, to perform classical logic reasoning.

— Rule (4): the last rule is an integrity constraint. It should be read as a negation: body→ {False}, ie. expressing

the negation of the conjonction of constraints defined by the body.

Thus here it is read as at least one of those statements are wrong, using De Morgan’s law to convert the negation

of the conjunction into a disjunction of negation of atoms.

Integrity constraints are the only reliable way to express a constraint in classical logic, along with the use of the

"classical literals" such as unknown_fact in rule (3). Thus integrity constraints are used to "remove" CWA [214].

The keyword allowing to express negation is not. Here is an example of usage with first-order logic predicates:

fermentation(T) :- not oxygen(T). Just like implication in rule (1), not does not express classical logic negation.

However, coupled with the use of integrity constraints, one can express classical logic constraints with positive and

negative literals, e.g :- not support(R1); support(R2). becomes the constraint R1 ∨ ¬R2.
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3.3.2 Cardinality constraints and further syntax elements

The rule (3) in equation 3.8 : { unknown_fact } is in fact a shorthand for the full notation of cardinality constraints

in ASP. In actuality, such a constraint would translate into:

0 { unknown_fact } 1. (3.9)

Which is a particular case of cardinality constraint, defined in first-order logic for a set S = {s | subset(s)} as:

LB { subset(S): set(S) } UB. (3.10)

Where we have 0 ≤ LB ≤ UB ≤ |S| and (LB,UB) ∈ Z, the lower and upper bound imposed on the number of

atoms in S. By default, if (LB,UB) are omitted and thus not set, we have (LB = 0) and (UB = |S|), a disjunction

of atoms. And this notation itself is a shorthand for this full specification:

LB <= #count { subset(S): set(S) } <= UB. (3.11)

The equation 3.11 should be read exactly as it is written: the number of atoms subset(S) should be comprised

between LB and UB. The colon (:) separator indicates membership: find all elements subset(S) for which atoms

set(S) is a fact. This helps defining first-order logic relations, which are instantiated by the ASP grounder into

named atoms, separated by semicolons (;). Semicolons generally define a conjunction of atoms, unless when

embedded in curly braces where it defines a disjunction of atoms instead.

Where #count is the special keyword for counting and the H-tag # indicates special keywords in clingo syntax. Other

special keywords include #sum (sums instead of counting), #const (constants), #show (when displaying answer sets,

displays only the wanted atoms), and #theory (defines a theory for the theory solver). Special keywords for theory

constraints handled by a theory solver, starting with &, such as &sum, can also be added.

As mentioned previously, cardinality constraints are not natively incorporated in SAT-solving, and finding the right

encoding for them is one of the areas of research [216, 217]. With ASP though this becomes easy. ASP also

possesses a natural encoding of integer constraints, useful for task planning for instance [215]. However, the use of

a particular theory solver for integers: clingcon, might also be more convenient when dealing with integers [218].

Uppercase letters indicate predicate variables, meaning subset(S) refers to any atom subset(s) ∀s ∈ S, while

lowercase letters set(s), and string constants set("element"), indicate a specific named atom, a specific instance

of the predicate variable.

The syntax defined in here and the previous subsection is specific to clingo. clingo’s installation is possible with

Anaconda or pip: conda install -c potassco clingo, and online: https://potassco.org/clingo/run/.
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3.3.3 Illustrating conversion between SAT and ASP

Let us express the following problem from equation 3.4 in ASP:

respiration =⇒ oxygen.

fermentation =⇒ ¬ oxygen.
(3.12)

{oxygen}.

{fermentation}.

{respiration}.

:- respiration; not oxygen.

:- fermentation; oxygen.

(3.13)

Using clingo’s full enumeration mode, launched with command line clingo -n 0, we can enumerate all solutions:

{oxygen, respiration,¬ fermentation},

{¬ oxygen, fermentation,¬ respiration},

{oxygen,¬ respiration,¬ fermentation},

{¬ oxygen,¬ fermentation,¬ respiration}.

(3.14)

Now let us illustrate the conversion of the first-order logic example.

∀t ∈ T, respiration(t) =⇒ oxygen(t).

∀t ∈ T, fermentation(t) =⇒ ¬ oxygen(t).
(3.15)

#const nb=5.

{oxygen(T)} :- T=1..nb.

{fermentation(T)} :- T=1..nb.

{respiration(T)} :- T=1..nb.

:- respiration(T); not oxygen(T); T=1..nb.

:- fermentation(T); oxygen(T); T=1..nb.

(3.16)

We can observe the augmentation of the number of solutions by increasing the value of constant nb. Here is an

example of command line execution: clingo -n 0 -c nb=5 sets nb to the value 5.
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3.3.4 Subset-minimal ASP solutions

We believe many applications in biology could benefit from the usage of ASP. For example, a simple novel idea

would be to implement diagnostic tools with ASPs. From a given phenotype, we could enumerate all possible

genotypes, and from a given genotype, we could compute all possible phenotypes. And by bringing in more data,

the enumeration can be redirected towards a more likely solution. Most often computational biology analyzes take

statistical-related approaches, when sometimes exhaustive combinatorial enumeration could be just as informative.

In particular, the applications of our focus in this thesis is enumeration of mathematical objects relating to fluxes of

metabolic networks: EFMs, and MCSs. Such applications are possible thanks to the capacities of solver clingo to

enumerate all subset-minimal solutions of a given constraint satisfaction problem.

Reminder: (s ∈ P is subset-minimal)⇔ (∄s′ ∈ P such that s′ ̸= s and s′ ⊂ s).

Let us present the following simple ASP example:

{a}. {b}.

:- not a; not b.
(3.17)

The program admits as answer sets: {a}, {b} et {a, b}.

To enumerate all subset-minimal solutions in ASP, we should add minimization heuristics.

In particular, clingo must be run with the parameter --heuristic Domain --enum-mode domRec and for each atom

to be minimized, the rule #heuristic atom. [1, false] should be added to the ASP program.

More precisely, --enum-mode domRec specifies to record every found solution, and add nogoods, negative literal

clauses forbidding the solution to reappear again, for the next enumerations.

For example, if a solution is {T1, R1, T4}, the solver adds the following negative Boolean clause: ¬(T1 ∧R1 ∧ T4),

this negative clause is a nogood.

As far as I understand, the minimization heuristics are particular heuristics that force the corresponding Boolean

literals to the atoms to always be set to {False} during the literal propagation, unless inferred otherwise, and if no

other option is left, doing the trick and computing subset-minimal Boolean assignments. The heuristics are slightly

more detailed in the clingo guide [215] and in the clasp article [211].

Here, we add the following heuristics:

#heuristic a. [1, false]

#heuristic b. [1, false]
(3.18)

With the clingo command, we then obtain two subset-minimal solutions to the program : {a}, {b}. Note that previously

enumerated solution {a, b} was eliminated here due to not being subset-minimal.
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3.4 aspefm for computation of subsets of EFMs

During this thesis, we developed aspefm, a tool to compute EFMs and MCSs with ASP logic programming [89].

To incorporate steady-state constraints, we used the extension of ASP to linear variables and constraints [210].

The motivation for using ASP came from the fact that it is an extremely efficient tool to compute subset-minimal

solutions, as explained in the previous section. It turns out the problem of computing EFMs is also a problem of

computing subset-minimal solutions. As well, the advantage of using ASP over SAT for example is that we can add

any logical or linear constraints in human-readable format, which is a bonus for biologists. ASP is also suited for

resolution of combinatorial problems and NP-hard problems, which coincides with our use case perfectly.

Elementary Flux Modes computation is a combinatorial problem for which enumeration is said to be #P-complete.

With traditional methods, it is impossible to compute all EFMs of a metabolic network of large size, as detailed in

chapter 2. An inherent problem of EFMs computation is computing the EFM of interest, integrating many biological

constraints. Previously, methods based on SAT and SMT to compute EFMs were developed to address this issue

[156, 157]. Parallelly, MILP methods were developed [138]. Therefore, our aspefm method is inscribed into the

panel of existing methods, as seen in Figure 3.1.

For SAT, SMT and aspefm, we call our problem resolution area Logic Programming with Linear constraints, or

LoPLC. The aspefm computation procedure can be summarized by one single program that will be expressed as a

LoPLC problem. The problem will look similar to MILP, with linear constraints being prominent, while logic constraints

are expressed as is, and are required by the solver to be satisfied.

EFMs computation methods

Double Description
T. S. Motzkin et al., 1953 ; M. Terzer and J. Stelling, 2008

Linear Programming-based methods

Mixed Integer Linear Programming
de Figuereido et al, 2009 ; Thiele et al, 2021      

Logic Programming with Linear Constraints
Peres et al, 2014 ; Mahout et al, 2020 ASPefm

efmtool

CNA

Figure 3.1: aspefm compared to the principal computation methods of EFMs
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reaction(t1).
reaction(t2).
reaction(t3).
reaction(t4).
reaction(r1).
metabolite(a).
metabolite(b).

stoichiometry(a, t1, 1).
stoichiometry(b, t2, 1).
stoichiometry(a, t3, -1).
stoichiometry(b, t4, -1).
stoichiometry(a, r1, -1).
stoichiometry(b, r1, 1).

reversible(r1).

Figure 3.2: Expressing a metabolic model in ASP

Since ASP is its own programming language, metabolic networks given in input for EFMs computation first need to

be converted into a set of ASP facts to be read by the solver.

We give an example of conversion into a metabolic network in Figure 3.2. In practice, we want the reversible reaction

fluxes to be split into two different variables. To do so, we extend the stoichiometry matrix to include the backward

directions of reversible reactions with opposite coefficient, as detailed in section 2.3.

Thus we must define a set of rules with duplicated facts for forwards and backwards direction of reversible reactions.

To illustrate on Figure 3.2, reversible(r1) would be replaced by the pair reversible(r1, r1_rev), and we would

add the following lines to the program:

reaction(r1_rev).

stoichiometry(a, r1_rev, 1).

stoichiometry(b, r1_rev, -1).

(3.19)

The tool we developed for easy conversion of metabolic networks from their SBML format to ASP format is called

MPARSER. It is a Python module, and it should be distributed as a submodule of the aspefm tool. The module also

allows conversion of metabolic networks from and to other popular input formats such as EFMTOOL, SCRUMPY,

METATOOL (see section 2.3).

3.4.1 ASP encoding of metabolic networks

In this section we develop our full formulation of metabolic network models (see section 2.3, section 2.5) in ASP.
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Let us represent a metabolic network by a quintuplet N = (M,R, S,Ext,Rev) with M a set of metabolites, R a set

of irreversible reactions, S a stoichiometric matrix of size |M |×|R|, Ext ⊆M the subset of external metabolites, and

Rev : R×R the set of all pairs (r, rrev) of reactions such that r and rrev are issued from the splitting of a reversible

reaction. We denote by smr the stoichiometric coefficient from S associated with metabolite m and reaction r.

To encode the stoichiometric matrix into answer set programming, we translate an input metabolic network N =

(M,R, S,Ext,Rev) into a set of the following facts:

ASP(N) = {reaction(r) | r ∈ R} ∪

{reversible(r, rrev) | (r, rrev) ∈ Rev} ∪

{metabolite(m) | m ∈M \ Ext} ∪

{external(m) | m ∈ Ext} ∪

{stoichiometry(m, r, smr) | smr ∈ S ∧ smr ̸= 0}

For the problem of finding EFMs of such a network in ASP, the hybrid logic programming-linear programming solver

will deduce solutions composed of the following atoms:

• {flux(r) | r ∈ R} representing the flux values νr for every reaction r. These are theory atoms valued during

the solving by clingo[LP]. The vector ν composed of all values contained in the flux atoms of a solution is a flux

vector.

• {support(r) | r ∈ R} representing active reactions, reactions r such that Boolean indicator variable zr = 1.

There is no atom support(r) for reactions r for which zr = 0. In this way, the set of all support atoms represents

the support Supp(ν) of the solution flux vector ν.

Definition 3.4.1 – Logical and linear constraints

Throughout the rest of the document, we designate by logical constraintlogical constraintlogical constraintlogical constraintlogical constraintlogical constraintlogical constraintlogical constraintlogical constraintlogical constraintlogical constraintlogical constraintlogical constraintlogical constraintlogical constraintlogical constraintlogical constraint and linear constraintlinear constraintlinear constraintlinear constraintlinear constraintlinear constraintlinear constraintlinear constraintlinear constraintlinear constraintlinear constraintlinear constraintlinear constraintlinear constraintlinear constraintlinear constraintlinear constraint biological

constraints for the computation of EFMs and MCSs that can be expressed by the following principles:

• logical constraints or Boolean constraints are Boolean functions over Boolean variables zr ∀r ∈ R

• linear constraints are linear constraints over flux linear variables vr ∀r ∈ R

While linear and logical variables are linked by the following relation: ∀r ∈ R, zj ↔ νj > 0.

Or in other words, zr ∀r ∈ R are indicator variablesindicator variablesindicator variablesindicator variablesindicator variablesindicator variablesindicator variablesindicator variablesindicator variablesindicator variablesindicator variablesindicator variablesindicator variablesindicator variablesindicator variablesindicator variablesindicator variables of flux variables vr ∀r ∈ R.

A Boolean constraint is respected if the corresponding Boolean function is satisfiable.
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3.4.2 aspefm’s input program

aspefm’s main component is a declarative logic program in ASP that can be generalized to any metabolic network

written in ASP using clingo and its grounder. Indeed, rules are written in first-order logic.

We define a set of hybrid predicate logical and linear constraints on the network to be encoded into a set of ASP

rules in the clingo[LP] syntax. Given a reaction r, we represent its flux by linear variable νr and if it is active by the

Boolean indicator variable zr ∈ {0, 1}. Since all reactions are irreversible, this means all fluxes have non-negative

values. In order to be a flux vector at steady-state, a solution should satisfy the following constraints on variables νr

and zr :

νr ≥ 0 ∀r ∈ R (3.20)

zr ↔ νr > 0 ∀r ∈ R (3.21)

¬zr ∨ ¬zrrev ∀(r, rrev) ∈ Rev (3.22)

∨
r∈R

zr (3.23)

∑
r∈R

smr × νr = 0 ∀m ∈M \ Ext (3.24)

Notice that Equations (3.20), (3.21) and (3.24) need the likes of a linear programming solver, while the other equa-

tions are solved with propositional logic only. Equation (3.20) ensures that all fluxes are non-negative values.

Equation (3.21) ensures that the Boolean indicator variables are true if and only if the flux has a strictly positive

value. Equation (3.22) ensures that the resulting flux does not contain both directions of a split reversible reaction.

Equation (3.23) excludes the trivial solution, and the steady state assumption is fulfilled by Equation (3.24). These

program rules and the metabolic networks are expressed in ASP using the predicates presented in Section 3.4.1.

The problem formulation is reminiscent of the k-shortest EFMs method [140]. In the MILP problem, on top of these

rules, the solver is given the task to minimize the sum of indicator variables, thus returning the shortest flux modes.

In our method, such a minimization was not considered. Instead, clingo allows us to set heuristics to enumerate

answer sets that are a subset minimal in regards to the indicator variables [215]. This gives us flux solutions with

subset minimal support or elementary flux modes. In summary, we are able to enumerate the EFMs of a given input

metabolic network by translating the network and the rules presented above into a clingo[LP] logic program and by

using clingo heuristics.

As with COBRA constraint-based modelling (section 2.5), in practice, flux values are usually bounded by large

constants. Thus, equation 3.20 is represented in the clingo[LP] syntax with the following rule: &dom{0..nb} =

flux(R) :- reaction(R) where nb is a large constant (∼ over 1 000). Note that EFMs enumeration is sensitive to

this nb parameter, and to flux bounds in general, they might affect the number of EFMs computed.
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Let us quickly summarize the main rules composing the input program for EFMs computation with ASP in textual

form. aspefm consists of a logic program with the following rules:

• a rule defining the domain of linear variables — reversible reactions are split so that every flux is a non-

negative real: ∀r, νr ≥ 0

• a rule for ensuring the reactions reversibility is still respected

• a rule excluding trivial solutions

• a linear constraint describing the steady-state: S.ν = 0

• a rule defining the support as when a reaction is active, ie. the reaction has a positive flux: ∀r, zr ↔ νr > 0

❖ and finally heuristics to get answer sets with subset-minimal support

The LoPLC program is composed of five logical and linear rules in clingo[LP] syntax, describing the basis for

elementary modes, namely the steady-state constraint and the description of the reversibility, as well as rules such

as non-triviality and defining Boolean indicator variables for when a reaction is active.

And to these rules, we add clingo heuristics allowing us to compute all solutions of subset-minimal support using

the Boolean indicator variables defined before: solutions correspond to minimal assignments to {True}.

Each EFM is a subset-minimal answer set of the logic program composed of the input network, the problem rules,

and potential additional constraints. It is represented by the solution set of hybrid theory atoms flux(r) representing

flux values νr for each reaction r in R and the solution set of propositional logic atoms support(r) representing

Boolean indicator variables zr for each reaction r such that indicator variable zr equals 1.

Thus one can use aspefm to check if a given flux vector is indeed an EFM, or enumerate all EFMs respecting given

constraints, with command clingo -n 0 aspefm.lp4 network.lp4 --heuristic Domain --enum-mode domRec.

The full command with parameters such as epsilon parameter for conversion of strict inequalities to loose inequalities

and float accuracy is given in subsection A.6.1. The input program aspefm.lp4 is presented in Listing A.2.

3.4.3 Framework and computation details

We represent the framework of aspefm, including clingo[LP] computation details in Figure 3.3. As a refresher, the

software clingo from the University of Potsdam allows for the resolution of an ASP logic program. It is composed of

an ASP grounder: gringo, and an ASP solver: clasp [211], and it has theory solving capacities [201]. The extension

clingo[LP] uses clingo as the ASP solver and an external LP solver, allowing us to solve LoPLCs [210]. In particular,

clingo[LP] syntax, defined by theory atoms marked by &, allows one to handle linear constraints in an ASP logic

program, such as the steady-state assumption in our case. For aspefm, we use clingo[LP] with strict semantics –

see [210] – and the linear programming solver CPLEX ©.
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Figure 3.3: Schematic overview of the aspefm workflow for computing EFMs under constraints. The ASP rules
representing the metabolic model and additional biological constraints are given as input into clingo[LP] along with
the logic program for computing EFMs. From all of these rules, the grounder of clingo[LP] generates instantiated

constraints, which are sent to the ASP/LP solver. The resulting answer sets are EFMs consistent with all the
constraints. These EFMs can be analyzed in post-processing to select the optimal functioning ones.

The main advantages of the aspefm method are the following:

• the use of logic programming makes for user-readable constraints, as we can name our variables with a

meaning that can be understood by biologists. This is an improvement over previous methods such as SAT

and even MILP, for which constraints’ names are usually nonsensical and hidden under APIs and GUIs

• unlike MILP, aspefm does not attempt to minimize the number of reactions in every EFM it returns as solutions.

Both algorithms differ in that MILP is primarily linear-based, while aspefm is primarily logic-based. As we will

see later, we believe that our aspefm tool, while underperforming against MILP for small solutions, achieves

better performance than MILP for larger solutions, as a result of these differences

• thanks to the hybrid nature of the tool, any additional logical and linear constraints can be incorporated, and

they would be handled well by the solver. Further types of constraints might be possible to incorporate thanks

to the versatility of clingo as a tool. Logical constraints are of particular interest since they might reduce the

solution space the most and since clingo is primarily a logic resolution tool

• since aspefm is based on constraint satisfaction, it can still yield a result for models where complete enu-

meration methods might fail, especially when adding many biological constraints. The typical example is

genome-scale models: complete enumeration on genome-scale models is deemed impossible, but with suffi-

cient enough constraints it is possible with aspefm

Note that while clingo[LP] originally allows for another LP solver, aspefm is intended for the use with the cplex

solver solely. We in fact provide our own version of the clingo[LP] extension within aspefm. Indeed, multiple code

ameliorations were made to aspefm since our first application to E. coli core, making it much faster. We also

extended it to incorporate yet even more types of constraints.
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The method was applied and tested on several networks on which complete enumeration was possible and the

number of EFMs was known, from toy models to small-medium-scale networks of fifty reactions: including one from

M. Covert and B. Palsson [93], and one from R. Carlson [108], which underwent several modifications by S. Peres.

Finally, the method was applied to the computation of subsets of EFMs of the E. coli core network [28], a network

of about a hundred reactions but two hundred million EFMs, as a case study.

clingo comes with various configuration parameters, including different constraint resolution methods and heuristics

for clasp, and modifying parameters might lead to better tool performance [215]. We tried the different configuration

parameters of clasp i.e trendy, tweety, crafty, frumpy, handy, jumpy and the parameter used by default: tweety,

performed better on average each time. However, with a tool as complex and customizable as clingo, there is no

telling if there might be a parameter that increases average performance that we might have missed.

3.5 Retrieving biological constraints

A major functionality of our tool is the ability of computing EFMs under a variety of constraints. This is done directly

during the computation – prior to potential filtering steps in post-processing.

We characterize two different types of constraints: logical constraints and linear constraints. Any additional set of

logical and linear constraints can be given as input to our encoding using clingo[LP], utilizing the hybrid nature of

the tool. When given to clingo alongside the input network and the problem rules, the solver will compute directly

the EFMs under constraints (Figure 3.3). Biologically relevant constraints tested with our tool include transcriptional

and environmental regulation, thermodynamic equilibrium and biomass operating cost.

We will give a brief overview of the aforementioned kinds of biological constraints, which can be natively integrated to

aspefm, then develop their analysis and validation further, especially for transcriptional and environmental regulation

(see section 3.6). Logical and linear constraints are defined according to Definition 3.4.1 and equation 3.21. For

better distinction, we will color constraints blue for linear and purple for logical.

3.5.1 Examples of logical and linear constraints

As a remainder, here are the definitions for the EFMs solution space and for logical and linear variables:

– Solution space: P = {ν ∈ Rr | S.ν = 0 et νirrev ≥ 0}

– Reaction fluxes after splitting reversible reactions: ∀j ∈ R, νj ≥ 0

– Literals indicating support of reaction fluxes: ∀j ∈ R, zj ↔ νj > 0

A modeller may add the following types of constraints, expressed in formal terms:

❖ Wanted reactions, ex: νbiomass > 0 (alt. zbiomass)
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❖ Unwanted reactions, ex: νlac = 0 (alt. ¬zlac)

❖ Flux bounds, ex: νATP = 8.39 (no Boolean alternative)

❖ Transcriptional regulation, ex: zbiomass → bregulateur (alt. ¬ zbiomass ∨ bregulateur)

❖ Environmental regulation, ex: zoxy_transport → boxy_env

❖ Thermodynamical equilibrium, ex: keq1 νoxygen + keq2 νbiomass > 0

❖ Operational costs, ex: νoxygen < K νbiomass

Where bi ∀i = 1, ..., n is part of a Boolean Network symbolizing transcriptional and environmental regulation, or

Transcriptional Regulation Network (TRN).

Notice that wanted reactions and unwanted reactions constraints are highlighted in purple. Indeed, when alternative

formulation as Boolean constraints are available, one should use the Boolean constraint rather than the linear

constraint formulation with aspefm, since its main component is a logic solver. Linear constraints for the equivalent

formulations were tested on multiple occasions and found to return slower computation times.

3.5.2 Expressing additional constraints in ASP

Coming from the modeller mathematical formalism, biologists might appreciate the user-readability of the related

ASP constraints. See subsection 3.4.1 for a refresher on corresponding ASP atoms for logical and linear variables.

The additional constraints for the EFMs computation should be expressed in ASP as integrity constraints (see

subsection 3.3.1). Therefore, negations of the classical logic phrases must be taken.

Thus, zr1 becomes :- not support("R01").

and ¬zr1 becomes :- support("R01").

For the literal clause zr1 ∨ ¬zr2:

:- not support("R01"); support("R02"). (3.25)

And a conjunction of clauses (ex: zr1 ∧ zr2 ) will be modelled by a different ASP rule for each clause.

:- not support("R01").

:- not support("R02").
(3.26)

Linear constraints (νr1 − νr2 > 0) respect a particular syntax, read by the theory solver.

&sum{flux("R01"); -1*flux("R02")} > 0. (3.27)
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3.5.3 Operating costs constraints

An operating cost, in metabolic engineering, can be defined as the ratio between the carbon source or oxygen

source uptake rate and the biomass production rate. It basically corresponds to the inverse of the biomass yield

defined in equation 1.33 in subsection A.6.4.

νr1
νr2

<
β

α
r1 ∈ R, r2 ∈ R, α ∈ R, β ∈ R (3.28)

By adding an upper bound on the operating cost, we further restrict the solution space. It is expressed as a linear

constraint, see equation 3.29:

α νr1 − β νr2 < 0 r1 ∈ R, r2 ∈ R, α ∈ R, β ∈ R (3.29)

These types of constraints are called operating costs constraints, or yield constraints.

Since we are working with fluxes, and flux experimental measurements such as fluxomics are not easily available

nor simple to perform, often one gets experimental measurements only for uptake rates and biomass yields instead.

For example, for E. coli, uptake rates corresponding to certain biomass compositions are well known [108].

In addition, while constraining flux bounds to experimental flux data in metabolite mass × dry weight −1× time −1 in

FBA might make sense, for EFMs solutions we are dealing with vectorial elements, which could be multiplied by any

factor α in linear combinations corresponding to FBA solutions.

Thus, when looking at the solution space of EFMs, operating costs, which only constrain ratios of fluxes rather than

fluxes themselves, are more appropriate compared to flux bound constraints 3. Simple flux bounds constraints might

of course still be enforced, but we believe they must be put in application only if all the other fluxes are bounded

significatively, such as what we will do in the analysis of subsection 3.8.4.

3.5.4 Positive and negative constraints

Logical and linear constraints can be added easily to the computation of flux modes with aspefm, but they do not

actually guarantee that the subset-minimal flux modes returned are EFMs (Theorem 3.5.1).

We decide to separate additional Boolean and linear constraints, into two types: positive constraints and negative

constraints. The former are defined as linear constraints that imply one or more fluxes cannot be inactive anymore.

Adding more than one positive constraint will bound the polytope defining the solution space, resulting in a solution

space with different subset-minimal flux modes. This was demonstrated and illustrated by Pey and Planes [150].

We provide Definition 3.5.1 and Definition 3.5.2 for how positive and negative constraints apply to logical and linear

constraints. Note that positive and negative logical formulae inherently imply positive and negative linear constraints,

respectively, thus we only need to provide the formal definitions for linear constraints.

3In fact, for referring to EFMs, since they are vectorial solutions, it is more accurate to talk about flux yields than flux values.
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The solutions resulting from constraining the solution space, in the presence of Boolean constraints, were previously

coined Minimal Constrained Flux Modes (MCFMs) [157]. In particular, for negative Boolean constraints, Jungreu-

thmayer et al. demonstrated that unsatisfiability was monotone regarding subset-minimality of EFMs supports [143].

A more general definition of MCFMs is that they are minimal flux modes of the constrained network, while EFMs

are minimal flux modes of the unconstrained network. Unfortunately, MCFMs are not always a subset of EFMs.

The MCFMs formalism provides a basis for excluding false solutions, i.e. solutions that are MCFMs but not EFMs,

found when performing enumeration of solutions. When not EFMs, these MCFMs solutions are instead linear

combinations of EFMs, as illustrated in Figure 3.4 on the toy network. The most practical idea for filtering them out

is simply to use the rank test, as defined in Theorem 2.7.2, for each solution found [125]. Nowadays, this procedure

can be integrated directly into the aspefm propagation by the use of extensions (see chapter 5).

In hindsight, it is logical to assume that when only disabling reaction fluxes – with negative constraints – all MCFMs

are EFMs [142, 143], thus there is no need to check and filter out potential erroneous solutions. The problems would

only arise with constraints actively modifying the solution space – which we termed positive constraints. The terms

positive and negative constraints are meant to coincide with positive and negative clauses of literals.

Definition 3.5.1 – Positive constraints

Let us consider the solution space (P ), non-negative flux values ν ∈ RR and Boolean indicators z ∈ BR.

A linear constraint (LC) defined by aT ν ≥ b or aT ν = b; with a ∈ RR, b ∈ R is said to be positivepositivepositivepositivepositivepositivepositivepositivepositivepositivepositivepositivepositivepositivepositivepositivepositive if :

∃ j ∈ R such that (P ) + (LC) =⇒ (vj > 0) when (P ) ≠⇒ (vj > 0) (3.30)

From this definition of positive constraints, we can derive that any Boolean function (BF ) that is a positive

conjunction of literals zr ∀r ∈ R is a positive constraint. For disjunctions of positive literals, this applies as well.

In fact, from the moment there is one single positive literal in (BF ) it is considered a positive constraint.

Definition 3.5.2 – Negative constraints

Let us consider the solution space (P ), non-negative flux values ν ∈ RR and Boolean indicators z ∈ BR.

Conversely, a linear constraint (LC) defined by aT ν ≥ b or aT ν = b; w. a ∈ RR, b ∈ R is said to be negativenegativenegativenegativenegativenegativenegativenegativenegativenegativenegativenegativenegativenegativenegativenegativenegative if :

∄ j ∈ R such that (P ) + (LC) =⇒ (vj > 0) when (P ) ≠⇒ (vj > 0) (3.31)

Any Boolean function (BF ) that is a negative conjunction or disjunction of literals zr ∀r ∈ R is said to be a

negative constraint. In addition, these constraints are proved to be monotone regarding subset-minimality of

the support, thus do indeed not impact subset-minimality of EFMs [143].

120



Theorem 3.5.1 – Property of positive constraints

Following the reasoning of Pey and Planes, when constraining the solution space with two or more positive

constraints, two cases arise: extreme pointsa either match with EFMs of the network without these constraints,

or they might match with intersections with one of the newly added hyperplanes [150].

From this property it follows that for any additional set of constraints that corresponds to more than one positive

constraint, LP-based algorithms do not guarantee non-decomposability of solutions, i.e. we cannot guarantee

that the solutions retrieved with MILP and aspefm are really EFMs.

aAnd by extension, any solution found by LP which is used as the oracle for EFM computation in MILP and LoPLC methods.

Unfortunately, it turns out that operating costs as mentioned in subsection 3.5.3 are positive constraints. Therefore,

more than one of these at the same time cannot be added without generating solutions that are MCFMs but not

EFMs. In fact, all interesting linear constraints are by definition positive constraints, including changing flux bounds.

The issue of positive constraints needing a separate extension to filter out erroneous solutions is quite a problem,

and as we’ll see, it also greatly hinders the computation time in subsection 3.8.4.
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Figure 3.4: MCFMs respecting constraint T1 ∧ T2. No EFMs respecting this constraint exists. These MCFMs are
returned by aspefm upon adding the constraint, unless we filter them out.

3.5.5 Thermodynamic equilibrium

The notion of thermodynamical equilibrium was introduced in subsection 1.3.2. In our case, thermodynamic equi-

librium depends on external metabolite concentrations [EXi] ∀i ∈ Ext, since the internal system is at steady-state.
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An EFM e is consistent with the thermodynamic equilibrium if eT ln K̂eq > 0 [145] with K̂eq the vector of apparent

equilibrium constants such that for each reaction j:

K̂j
eq =

Kj
eq∏

i[EXi]S(i,j)
(3.32)

Apparent equilibrium constants are calculated from standard reaction equilibrium constants, external metabolite

stoichiometry, and external metabolite concentrations. This constraint is expressed very simply in our formalism for

ASP (equation 3.33, Listing A.5). ∑
r∈R

νr × ln K̂r
eq > 0 (3.33)

Thermodynamic equilibrium constraints have the great advantage of having been proven to be monotone in regards

to subset-minimality of EFMs supports [145]. This means these should not count towards the count of positive

constraints for the guarantee of non-decomposability. We tested thermodynamic equilibrium constraints with aspefm

on the modified example from R. Carlson [108, 145], and it was able to remove a few solutions.

3.5.6 Discussing the addition of biological constraints

In light of the existence of two categories of additional logical and linear constraints: positive and negative, we

believe the best possible approach to computing subsets of EFMs is integrating a maximum of negative constraints,

and a minimum of positive constraints.

The best approach to get a large amount of reactions disabled has been in our experience constraining a metabolic

model to a minimal growth medium. Indeed, all metabolites that are not present in the growth medium can by

definition not be consumed by the cell model, leading to the transporter reactions to be deactivated. Combined with

network compression, this will lead to great improvement of the performance of the computation of EFMs.

Secondly, in EFMs analysis, we are often only interested in biomass-producing EFMs. Sadly, this is a positive

constraint, but adding it is necessary as focusing on only these EFMs allows us to eliminate futile cycles from the

enumeration. We found that operating costs, which are constraints with an effect on biomass flux, are also very

useful to remove many solutions from the solution space.

In addition, some metabolic networks, such as the Covert and Palsson model [93], and E. coli core [28] possess

a Transcriptional Regulation Network (TRN). These networks greatly help reducing the number of EFMs as well.

However, such a Boolean network should be expressed only in terms of negative constraints. We will discuss why

in the following section 3.6.

Further versions of aspefm will be able to incorporate additional constraints beyond the scope of simple logical and

linear constraints, thanks to the use of propagator extensions (see chapter 5).
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3.6 aspefm encoding of Transcriptional Regulation Networks

In this section we will be interessed in enumeration of EFMs respecting constraints of transcriptional regulation.

This is a type of Boolean constraints that could be incorporated in tool SMTTool [157], as well as integrated into

Description by the method regEFMTool [143].

In 2003, Covert and Palsson computed extreme pathways under regulation rules constraints on a toy model they

developed together with C. Schilling in 2001 [93, 118]. We will refer to that network as CSP2001 (Covert, Schilling,

Palsson, 2001). In the case of this model, EFMs correspond exactly to extreme pathways, meaning we could use it

to test the validity of aspefm computation of EFMs under regulation rules constraints. Their regulation rules take into

consideration the impact of the growth medium as well: meaning we separate rules into two types: transcriptional

regulation, and environmental regulation.

In comparison, the software regEFMTool from Jungreuthmayer et al. [143] was tested on Orth, Fleming and Pals-

son’s E. coli core model from 2010. As far as we know, regEFMTool does not take into account growth medium

considerations, even though they are described into the E. coli core’s Transcriptional Regulation Network (TRN).

For our study of EFMs under regulation constraints, we shall then look at the two following networks: CSP2001 and

ECOLICORE. Informations on the size of the models are presented in Table 3.1. We will entrely describe the TRN

of CSP2001 in the following section, while E. coli core was used for its own analysis, which we published. A small

view of several Boolean nodes of the TRN of E. coli core is provided in Figure 2.14.

Note that in order to take into account environmental regulation on top of transcriptional regulation in the TRN, we

introduce supplementary regulation rules linked to transport reactions, e.g: an oxygen transport reaction can only

be present if external oxygen is present.

Metabolic network CSP2001 ECOLICORE

Number of reactions 20 95 (including 20 exchange reactions)

Number of metabolites 11 internal, 8 external 72 internal, 20 external

Number of genes No genes 137 genes, associated to reactions

Number of regulation rules 11 (7 regulated reactions, 4 regulatory proteins) 78 (56 regulated reactions, 17 regulatory proteins)

Nombre total d’EFMs 80 (59 respecting regulation) 226.3 · 106 total

Table 3.1: Summary table of informations for the two metabolic networks of interest

3.6.1 Types of rules and variables in Transcriptional Regulation Networks

A regulation rule Ri on a variable bh of the transcriptional regulation network Reg can be expressed as the following:

(A) Ri : bh =⇒ ϕi(b1, . . . , bm) (3.34)

(B) Ri : bh ⇐⇒ ϕi(b1, . . . , bm) (3.35)

Where ϕi is the associated Boolean formula, and b1, . . . , bm other Boolean variables of the network.

The network Reg is therefore composed of variables b1, . . . , bn and of the conjonction of rules R1 ∧ · · · ∧Rp.
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Let us separate variables b1, . . . , bn into four diferent types of variables controlled by regulation rules in the TRN:

regulatory proteins, active reactions, genes, and metabolites from the growth medium. These four types of variables

are based on what is found in litterature for TRN, especially [219, 94, 71].

Most importantly, notice that we have two possible types of regulation rules, and that one of the types of variables

will be the active reactions, which are therefore used and determined during the computation of EFMs from the

Boolean indicator variables. As we will be detailing, for all three other types of variables, both types (A) and (B) are

possible, but for active reactions, only type (A) is allowed.

Generally, we may associate TRNs used to help computation of EFMs to static Boolean networks: as opposed to

those from subsection 1.6.4, they do not evolve over time, except for the active reactions part of the logic resolution

with ASP. All other Boolean inputs are therefore known from the start, and Boolean rules will be simplified and

compressed. If used for drFBA instead, the full TRN Boolean network would of course be dynamic this time [W19].

3.6.2 Regulatory proteins and growth medium metabolites

Regulatory proteins are intermediate products activated by the environment, the presence of active reactions, or

other regulatory proteins. They correspond to known regulatory proteins of the metabolism, such as transcription

factors ArcA and FNR in Escherichia coli, or they might be factice indicators marking a particular state of the

metabolic network, such as ’surplusFDP ’. The truth value of these Boolean variables is determined automatically

by inference and the user has no way of controlling them.

Growth medium metabolites are external metabolites which determine the environment of growth of a microorganism

at the start of the simulation. It will determine which regulatory proteins and which reactions will be activated or

deactivated. Environment metabolites are in particular implicated in transport reactions, removing a metabolite

from the growth medium will automatically disable its transporter. The Boolean variables indicate the presence

or absence of these metabolites in the growth medium and are controlled manually by the user, or also possibly

determined by the metabolic model’s exchange flux bounds.

3.6.3 Active reactions and associated genes

Active reactions are regulated by regulatory proteins or directly by external metabolites for cases that are too com-

plex. On a biological point of view, regulatory proteins are acting as promoters or inhbitors of the transcription of the

mRNA coding the enzyme catalazing the reaction.

From a given elementary mode, we can determine which reactions are active and which are not, using the support,

represented by Boolean indicators in aspefm. Thus for each flux mode, active reactions will set the corresponding

Boolean variables of the Boolean network to 1, and inactive reactions will set the corresponding Boolean variables

to 0, simplifying the Boolean expressions into a formula that is either satisifiable – if the EFM is consistent with the

TRN – or not. In other words, querying the regulation rules network during the computation will let us know if an

EFM is consistent with the regulation.
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However, if the reverse practice is authorized, i.e. Boolean inference on genes gives us a result that implies forced

activation of reactions, there is no way to incorporate this into the ASP logic resolution without setting a positive

constraint on Boolean indicators. Therefore, rules for active reactions Boolean variables should only be of type (A)

and never of type (B). Respecting this different modelling for active reactions, we arrive at the same conclusions

for EFMs consistent with transcriptional regulation than Covert and Palsson [93].

In general, we believe this modelling limitation is for the better, as this is consistent with biology’s natural order,

of reactions being impacted by genes, but genes not being impacted back by these same reactions. Genes are

impacted by different enzymes of course, which is why regulatory proteins are also modelled separately. We will

keep arguing that point of separating genes and reactions throughout this thesis.

In genome-scale metabolic models, reactions are associated to genes through Gene-Protein-Reaction association

rules (GPRs), and transcriptional regulation is done with regulatory proteins at the gene level [28]. In practice, the

truth value of Boolean variables for genes is automatically determined by inference, just like for regulatory proteins.

3.6.4 Transcriptional and environmental regulation in aspefm

Now let us explore how transcriptional and environmental regulation from TRNs are incoprated as additional

constraints into the computation with aspefm. For the final equation, SE·tsp denotes stoichiometry of an external

metabolite E in its transport reaction tsp. These constraints are meant to be rewritten in ASP syntax.

Let us denote by Reg the set of Boolean variables corresponding to transcriptional regulation constraints. A Boolean

function f(Reg) on these variables is any Boolean expression that may be formed from the variables and from NOT,

AND, and OR logic operators. Using this formalism, we say that a reaction r is active only if its regulation rule

fr(Reg) returns true (equation 3.36).

zr → fr(Reg) r ∈ R (3.36)

For example, the regulation for a transport reaction tspA may be ztspA → Aext ∧ regtspA where Boolean variable

Aext ∈ Reg indicates the presence of external metabolite A ∈ Ext and Boolean variable regtspA ∈ Reg indicates the

presence of transcriptional regulator regtspA. The truth values of Boolean variables can either be automatically in-

ferred with other Boolean functions provided in the transcriptional regulation network or manually set before starting

the computation of EFMs.

In practice, following from the formalism proposed by Covert and Palsson [93], we may introduce Boolean variables

for every external metabolite and add regulation rules for each transport reaction (equation 3.37), providing us with

full control of the environments and environmental regulation. This is a crucial step as restricting us to a single

environment reduces drastically the number of EFMs.

ztsp → Eext ∀tsp ∈ R, ∀E ∈ Ext such that SE·tsp < 0 (3.37)
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3.6.5 Exemple of the Covert and Palsson toy metabolic network

The following example presents regulation rules of the CSP2001 metabolic network. The metabolic network is a toy

model with standard reactions from a metabolic model, i.e. glycolysis-like and Krebs-like reactions, as well as two

carbon sources, one oxygen and one hydrogen source, and other sources and byproducts to complete the model.

Reactions

r2a =⇒ ¬rpb

r5a =⇒ ¬rpo2

r5b =⇒ rpo2

r7 =⇒ ¬rpb

r8a =⇒ ¬rph

rres =⇒ ¬rpo2

tc2 =⇒ ¬rpc1

Regulatory proteins

rpo2 ⇐⇒ ¬oxygen

rpc1 ⇐⇒ carbon1

rph ⇐⇒ th

rpb ⇐⇒ r2b

Metabolite inputs

tc2 =⇒ carbon2

tc1 =⇒ carbon1

th =⇒ h

tf =⇒ f

to2 =⇒ oxygen

Reactions : {r1, r2a, r2b, r3, r4, r5a, r5b, r6, r7, r8a, r8b, rres, tc2, tc1, th, tf, to2, growth, td, te}

Regulatory proteins : {rpo2, rpc1, rph, rpb}

Metabolite inputs : {carbon1, carbon2, h, f, oxygen}

The elementary mode {r2b, r3, r4, r5b, r8b, rres, th, to2, growth} is not consistent with the regulation. Indeed, we

have: rres =⇒ ¬rpo2 and r5b =⇒ rpo2, a contradiction. Moreover, if the growth medium did not contain oxygen,

then the rule to2 =⇒ oxygen would not be respected.

We provide the ASP code for the Covert and Palsson network as well as its transcriptional regulation network in

Listing A.7, Listing A.6 and Listing A.8. Results obtained with aspefm can be compared with the table presented in

their 2003 article [93].

In conclusion, Transcriptional Regulation Networks are a great way to help reduce the number of EFMs and only

compute a biologically-relevant subset of EFMs. Indeed, these are encoded as negative Boolean constraints, which

allows for disabling inactive reactions. However, these kinds of networks are in fact rarely described in the literature,

aside from the one of E. coli core [28]. And as we will see in the following analysis, the logical constraints imposed

by regulation encoded in a rigid TRN might be too strict.
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3.7 Application to the E. coli core model

The E. coli core model is a model on which Double Description, the standard algorithm for computing EFMs,

struggles to work with. Therefore, in our publication: "Answer Set Programming for Computing Constraints- Based

Elementary Flux Modes: Application to Escherichia coli Core Metabolism", in collaboration with Ross Carlson, we

attempt to show that aspefm greatly expands the size range of metabolic models that can be analyzed for EFMs

and, thus, greatly expands the potential for using EFMs to interpret complex biological behaviors [89].

Elementary Flux Modes (EFMs) provide a rigorous basis to systematically characterize the steady state, cellular

phenotypes, as well as metabolic network robustness and fragility. However, the number of EFMs typically grows

exponentially with the size of the metabolic network, leading to excessive computational demands, and unfortu-

nately, a large fraction of these EFMs are not biologically feasible due to system constraints. This combinatorial

explosion often prevents the complete analysis of genome-scale metabolic models. Traditionally, EFMs are com-

puted by the double description method [133, 139], an efficient algorithm based on matrix calculation; however, only

a few constraints can be integrated into this computation. They must be monotonic with regard to the set inclusion

of the supports; otherwise, they must be treated in post-processing and thus do not save computational time.

To enumerate only a subset of EFMs, de Figueireido et al. [140] proposed the k-shortest EFMs, a Mixed Integer

Linear Programming (MILP) method that lists the shortest EFMs up to an iteration k, k which is the number of

nonzero flux reactions in the EFM. This method has been revisited several times [150, 151, 220], in particular for

other applications such as GFMs (Generating Flux Modes) [128], Minimal Cut Sets (MCSs) [153], an application of

EFMs that allows one to identify essential reactions within a metabolic network, and to compute EFMs containing

a given set of target reactions [220]. Another variation termed Alternate Integer Linear Programming (AILP) was

proposed by Song et al. for computing EFMs and MCSs in a sequential manner [155]. Both the SMT and MILP

methods can enumerate EFMs on the fly on large models (defined here as networks with ∼ 200+ reactions), for

which the DD algorithm may not work.

We present aspefm, a hybrid computational tool based on Answer Set Programming (ASP) and Linear Programming

(LP) that permits the computation of EFMs while implementing many different types of constraints. We apply our

methodology to the Escherichia coli core model, which contains 226× 106 EFMs [28, 143]. In considering transcrip-

tional and environmental regulation, thermodynamic constraints, and resource usage considerations, the solution

space is reduced to 1118 EFMs that can be computed directly with aspefm. The solution set, for E. coli growth on

O2 gradients spanning fully aerobic to anaerobic, can be further reduced to only four optimal EFMs by a Pareto front

analysis in post-processing.

aspefm is a new hybrid ASP method using clingo[LP], for computing EFMs under Boolean and linear constraints,

and it is inspired by the works of Frioux et al. on gap-filling of metabolic networks [160]. As SMT and MILP, the com-

putation of EFMs in ASP aims to enumerate EFMs upon request from large networks. However, the use of logical

programming with linear constraints provides a method for enforcing numerous types of biological constraints includ-

ing transcriptional and environmental regulation, thermodynamics, and resource operating costs on the computation

of EFMs, all within a human-readable format.
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To show its versatility, our aspefm tool was applied to a well-known E. coli core model with a significant number

of EFMs. The method proved capable of computing a subset of biologically-relevant EFMs while a Pareto front

optimization was performed as a final analysis step. The framework returned a small number of EFMs which could

be analyzed manually and compared with experimental data. The Pareto optimality analysis complements aspefm

by revealing the most efficient phenotypes, represented by EFMs. In summary, the constraint-based approach

succesfully identified, what are deemed to be, all biologically relevant EFMs for producing biomass in a minimal

glucose medium.

3.7.1 Biomass production and Pareto optimality constraints

EFMs analysis fully characterizes the metabolic capabilities of an organism since every steady state flux can be

represented as a non-negative linear combination of EFMs. This property is useful in many applications such as in

analyzing the stability of metabolic systems [221, 183], or in identifying gene deletions that are lethal to the network

[222, 223], or in designing optimal cell factories [224, 182].

Most microbial habitats are dynamic, and the availability of resources like electron donors, electron acceptors,

and anabolic forms of nitrogen can change with time. Phenotypic plasticity, where the utilized metabolic path-

ways change with the changing environment, permits microorganisms to remain competitive. Analyzing poten-

tial metabolic strategies in the phenotypic tradeoff space permits the identification of EFMs that are competitive

for gradients of resource scarcity. EFM analysis of E. coli phenotypic acclimation to gradients of resource avail-

ability, including O2 and anabolic nitrogen, have been reported using tradeoff analysis and Pareto optimization

[108, 225, 226, 227]. The methodology tabulates the resource requirements to realize each EFM; these resources

can be anabolic, e.g., nitrogen to assemble metabolic enzymes, which are described here as resource investment

costs or catabolic, e.g., O2 which serves as an electron acceptor, which are described here as resource operating

costs. Some resources can serve both anabolic and catabolic functions like glucose which is both an energy source

and carbon source for enzyme synthesis. Optimal phenotypes for acclimating to environments along gradients of

resource scarcity can be identified by plotting the resource costs for each EFM in a tradeoff space where Pareto

optimality identifies the most competitive phenotypes [228]. Those EFMs that minimize the resource requirements

to achieve a target cellular function are considered most competitive because the phenotypes would permit the most

biomass to be made based on a finite supply of a substrate. Tradeoff analysis has accurately predicted and inter-

preted E. coli acclimation to O2, carbon, and nitrogen, scarcity based on physiological, proteomics, and fluxomics

data from E. coli chemostat cultures [115, 229].

The optimal solution of a constraint-based enzyme allocation problem, with general kinetics, is an EFM [196].

Wortel et al. [195] studied growth rate vs. growth yield tradeoffs using an Enzyme-Flux Cost Minimization (EFCM)

method. All biomass producing EFMs were screened and it was assumed that the growth rate depended linearly

on the enzyme investment per rate of biomass production. EFMs can also be used for dynamic metabolic modeling

such as macroscopic biochemical reaction models [230] or hybrid cybernetic models [231]. In these cases, the

enumeration of all EFMs is not needed, but the enumeration of EFMs of interest is essential.
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For this analysis of EFMs of interest on E. coli core, we will base ourselves on the following major hypothesis:

Hypothesis 3.7.1. The analysis with aspefm will illustrate how the integration of biologically relevant constraints

helps getting minimal pathways that are close to representatives of the biological reality. And, to that means, we

supposed the hypothesis that all experimentally observed Biomass-producing flux distributions lie on a Pareto front,

of biomass yield from carbon source, and of biomass yield from oxygen source, similarly to analyzes in [108, 225].

This simplification lying on two axes allows one to get all main pathways and states classically observed in E. coli

metabolism, as we will see later. Due to the nature of EFMs, with the theorem stating all flux distributions are

decomposable into linear combinations of EFMs, and the nature of Pareto optimality, and of convex hulls, our model

providing the main pathways of the cell will be able to be used to determine all flux states lying on a Pareto front.

Hypothesis 3.7.1 – Experimentally observed Biomass-producing flux distributions lie on a Pareto front

An analysis of the bidimensional operating cost space was performed as described in [108] to identify the most

efficient EFMs for converting substrates into biomass. The technique found Pareto optimal EFMs, specific

EFMs that minimized operating costs for both substrates of interest: Glucose and O2, and that defined in

aggregate, a surface of optimal functioning.

The analysis was based on the assumption that evolution has selected phenotypes, represented by EFMs, that

minimize both operating costs simultaneously. Cells expressing phenotypes that do not minimize both costs

would not produce as much biomass as cells that do, limiting their fitness in the considered environment. EFMs

(or linear combinations of the EFMs) found along the edge of the bidimensional substrate operating cost space

represent optimal phenotypes for growth on glucose and a gradient of O2 availability spanning sufficiency to

anaerobic conditions.

The method to identify the EFMs that were on the Pareto front, with respect to both operating costs, required to

calculate Pareto optimality of solutions and then compute the convex hull of the operating cost space of EFMs.

Solutions that were both Pareto optimal and belonging to the convex hull of the operating cost are the ones lying on

the Pareto front. Further information is given in Definition 3.7.1 and Definition 3.7.2.

Definition 3.7.1 – Pareto optimal

A solution ν∗∈ Sols is said to be Pareto optimal with respect to cost functions fi for all i if and only if:

̸ ∃ν ∈ Sols such that fi(ν) ≤ fi(ν
∗) for all i and fi(ν) < fi(ν

∗) for at least one i (3.38)
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Definition 3.7.2 – Pareto front

An EFM e of Sols subset of EFMs computed with aspefm is said to belong on the Pareto front if:

– It is Pareto-optimal with respect to both glucose and oxygen operating costs eG and eO

– It is an extreme point of the convex hull of the projection of Sols into axes (G, O)

We can then say that the Pareto front line composed of all EFMs belonging to the Pareto front represents all

possible linear combinations of those extreme points. Any point on the line is a combination of EFMs, can be

found with FBA, LP methods; and is assumed to correspond to an experimentally observed distribution flux.

In this analysis, we only have two operating cost axes, but the Pareto optimality analysis can of course be extended

to several more axes, although with loss in computation time. In practice, EFMs are prealably normalized by biomass

fluxes eB so that operating costs can be read on uptake fluxes eG and eO and so that linearity can be preserved.

3.7.2 Short overview of the methods

The aspefm method makes use of a metabolic network and biological constraints translated into a set of ASP rules

and integrates them into the hybrid ASP and LP solver clingo[LP] to compute constraint-based EFMs. Finally, the

resulting EFMs can be processed with a Pareto surface analysis. An overview of the framework is presented in

Figure 3.3. The necessary files to run the analysis on the E. coli core network are provided in Supplementary Files

of the article and described in Appendices subsection A.6.1 and subsection A.6.2.

As a remainder, the biological constraints integrated into the E. coli core analysis are: transcriptional and envi-

ronmental regulation: (equation 3.36) and (equation 3.37), thermodynamic equilibrium (equation 1.5) and biomass

operating costs (equation 3.29). We manually curated the TRN of E. coli core to make sure all regulation rules

involving the activity of reactions are implications and not equivalences, as explained in section 3.6.

Note that the epsilon parameter, responsible for conversion of strict inequalities into loose inequalities, and given

in subsection A.6.1, is critical for the method and analysis to be successful. This has been the case for several

models, also including the one where thermodynamical equilibrium constraints were tested [145]. aspefm and

clingo[LP] [210] are in general very epsilon-sensitive.

Pathway visualizations using Escher are available in Supplementary Files of the article [191]. Note that the analysis

was performed with an old version of aspefm where checking for MCFMs could only be performed in post-processing.

Every post-processing analysis, including removal of MCFMs, biomass normalization, Pareto front computing, gen-

eration of Escher maps, and so on, was performed in Jupyter Notebooks [S123].

The operating costs bounds were choosen as arbitrary values, based on distance from minimum operating costs

computed by aspefm. For convenience, the bounds are the same ones as the desired axes limits in the figures.

When not enforced, the number of EFMs increases drastically, as observed in subsection A.6.6.
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3.7.3 Computing subsets of EFMs on the E. coli core Model

The aspefm method was applied to the E. coli core model by Orth et al, 2010, which includes a full transcriptional

regulation network [28]. As well, thermodynamic equilibrium data for that network is simple to obtain.

The E. coli core metabolic network consists of 95 reactions, 72 internal metabolites, 20 external metabolites, and

78 regulation rules. Fifty-nine reactions were reversible. The core model was found to contain 226.6 × 106 EFMs

based on a previous study [223].

The ASP-based EFMs analysis tool computed a biologically relevant subset of EFMs belonging to this network

by integrating thermodynamic and regulatory constraints. Additionally, the simulations considered environmental

constraints based on growth in a minimal medium containing glucose, CO2, NH+
4 , inorganic phosphate, H+, H2O

and O2. Accordingly, all other transport reactions were inactivated. The biomass-producing EFMs were selected to

represent cellular growth. To further reduce computational burden, the solution space was limited to EFMs with a

O2 operating cost of less than 0.7 O2 moles per biomass C mole and a glucose operating cost of less than seven

glucose C moles per biomass C mole. Since the presence of O2 had a large impact on the regulatory constraints,

two separate scenarios were considered: (1) aerobic and (2) anaerobic conditions.

The ASP-based tool identified 1118 aerobic and 363 anaerobic EFMs in 542s and 232s, respectively (Table 3.2).

The tool also returned 39 aerobic MCFMs that were filtered out in post-processing. Results were obtained on a

commercial laptop with Intel® Core™ i5-7440HQ CPU 2.80GHz [89] 4.

Table 3.2: Number of EFMs retrieved from the E. coli core network depending on culturing conditions.
The computation time of a single clingo[LP] execution given within brackets. Disabling the formate regulation

returned EFMs for both aerobic and anaerobic conditions in a single execution.

Standard Regulation No Formate Regulation

Processing
Aerobic conditions 1118 EFMs [542s] 4 11017 EFMs [5318s] 4

Anaerobic conditions 363 EFMs [232s] 4

Post-processing
Filtered out MCFMs 39 MCFMs 119 MCFMs

Pareto optimal in biomass yield 4 EFMs 5 EFMs

The aggregate set of aerobic and anaerobic EFMs was processed using a phenotypic tradeoff analysis with Pareto

optimization of biomass production relative to O2 availability, as described previously in Carlson and Srienc, 2004 [108].

EFMs that permitted optimal acclimation to gradients of O2 scarcity had the lowest substrate operating costs (C

moles glucose consumed/C mole biomass produced and O2 moles consumed/C mole biomass produced) defining

a Pareto front. Four EFMs defined the Pareto surface with the applied constraints (Figure 3.5, Appendix A.6.3).

4Outdated results, in date of December 2020, date of publication of the article. Computation times on E. coli core today are about 5x faster.
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3.7.4 Removing the strict formate regulation

The regulation network applied in Orth et al. [28] was examined for refinement. A modification to formate metabolism

was made based on experimental data. Formate has been measured in E. coli cultures in the presence of O2.

The pyruvate formate lyase (PFL) enzyme, which produces formate, is O2 sensitive, but activity is possible when

dissolved O2 concentrations are low, as occurs when cells grow rapidly or in high density cell cultures [229, 115, 232,

233]. In the regulation network of this model, the PFL enzyme is disabled in the presence of O2 by transcriptional

regulators ArcA and FNR (Figure 2.14). However, we believe this too strict of a regulation rule.

Removing this regulation rule for formate metabolism resulted in a ∼ 10-fold increase in the number of total EFMs

(Table 3.2) and a slightly different Pareto front, which predicted formate production at low O2 availability (Figure 3.6),

consistent with experimental data and previous EFM analyses [108, 229, 115, 233]. Briefly, the Pareto front included

the most efficient EFM for producing biomass from glucose, the upper left EFM, which also had a relatively high O2

requirement. As environmental O2 availability decreases, optimal use of the network shifts right along the Pareto

front quantifying the increased requirement for glucose as metabolic byproducts are secreted. The first predicted

byproduct moving down the Pareto surface was acetate, followed by a combination of acetate and formate and,

finally, under anaerobic conditions acetate, formate and ethanol.

Figure 3.5: E. coli core EFMs sorted by carbon/biomass and oxygen/biomass operating costs.
Regulation constraints are as described in Orth et al. 2010.
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Figure 3.6: E. coli core EFMs sorted by carbon/biomass and oxygen/biomass operating costs.
Regulation constraints allow production of formate in aerobic conditions.

3.7.5 Summarizing results on regulation and optimal pathways

Our results are based on the information that experimentally-grown E. coli shows four different main phenotypes,

assumed optimal, in between aerobic conditions and anaerobic conditions. They are the following:

(A) In fully aerobic conditions, oxidative respiration is used, along with Krebs cycle

(B) Then, as we decrease oxygen availability, we observe acetate production

(C) Then we observe combination of acetate and formate, this is also referred to as microaerobic conditions

(D) Finally, under anaerobic conditions, we observe fermentation, i.e. acetate, formate and ethanol secretion

In their article from 2004, Carlson and Srienc find exactly these four states, expressed in the form of four Pareto-front

EFMs. As well, they were able to retrieve these results not only for the biomass growth derived from carbon source

consumption, but also for the ATP energy derived from glucose [108].

In our case, let us name the EFMs in Figure 3.6, from left to right, (1), (2), (3), (4), and (5). Assuredly, when looking

at the representation maps of the pathways in Escher – see subsection A.6.3, we have: (1) – corresponds to (A);

both (2), (3) – corresponds to (B); (4) – corresponds to (C), (5) – corresponds to (D). Notice that in Figure 3.5, 4 is

missing, due to the stringent formate regulation. Therefore Figure 3.6 is the analysis that is the closest to reality,

despite an increase in number of EFMs.
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At the time when the article was published, computing aerobic formate-producing pathways was an annoying en-

deavour, as each execution took about 1h28 minutes (Table 3.2). High number of EFMs and high computation times

greatly hinder the constraint-based approach, in which we aim to test many different constraints to get the most

biologically relevant pathways; case in point: we didn’t push further the analysis and implemented a logic rule to

exclude formate-producing EFMs in fully aerobic conditions. Thankfully, nowadays with aspefm computation times

are about five times faster so extending this analysis would be much easier (see commentary in subsection A.6.7).

Our study underlines that one of the key logic rules from the TRN defined in E. coli core is too stringent. ArcA, one

of the transcriptional regulators at fault, acts differently depending of at least three states: aerobic, microaerobic,

and anaerobic conditions [233]. So in conclusion, we believe that modelling oxygen consumption as a simple {0, 1}

Boolean state was an oversimplification, where really there are all kinds of thresholds for activation that may exist

depending on specific concentrations of external metabolites. Since the TRN was used for dynamic analyzes in

the past, where transcriptional regulators might be active or not at any point of time, maybe this strictness of the

regulation was, in that context, less important.

3.7.6 Integrating non-growth associated maintenance

From literature data, we know that the average aerobic biomass yield rate is is ∼0.4 Cmol biomass per Cmol

glucose and that the average anaerobic biomass per glucose is ∼0.1 Cmol biomass per Cmol glucose. Currently,

in Figure 3.6, optimal aerobic EFM scores at ∼1.6 Cmol glucose per Cmol biomass and optimal anaerobic EFM

scores at ∼4.7, meaning aerobic yield rates of ∼0.625 Cmol biomass per Cmol glucose and anaerobic yield rate of

∼0.2 Cmol biomass per Cmol glucose5. In order to get closer yields to experimental data, we modify the model.

The E. coli core model was originally formulated for Flux Balance Analysis (FBA) [71] and the biomass synthesis

reaction did not include non-growth associated ATP maintenance (subsection 1.4.5 and [28]). The biomass reaction

was modified to facilitate its integration with EFM analysis by account of the maintenance energy required for a

culture with a 40 minute doubling time. The biomass reaction was also updated to create elemental stoichiometry of

growth, including the degree of reduction, consistent with experimental measurements (see subsection 1.4.4). A de-

tailed explanation of the modifications and additional results are provided in subsection A.6.4 and subsection A.6.5.

We observe a significant change in operating costs, which are now closer to experimental data. Indeed, we now

observe optimal aerobic EFM scores at ∼2 Cmol glucose per Cmol biomass and optimal anaerobic EFM scores at

∼8, meaning aerobic yield rates of ∼0.5 Cmol biomass per Cmol glucose and anaerobic yield rate of ∼0.125 Cmol

biomass per Cmol glucose, in Figure A.1 and Figure A.2.

This indicates that maybe the separation of ATP requirements into growth and non-growth associated maintenance

as it is often done in FBA metabolic models is perhaps not as reasonable as it sounds, at least in the scope of our

modelling method. This is part of the modelling hypotheses that are inherent to modelling growth requirements,

should ATP maintenance be separate or included?

5Remember that operating costs are simply the inverse of yield rates.
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In FBA, modellers often optimize growth while having the ATP maintenance flux – in the case of E. coli core, the

ATPM reaction – be bound to a single value, however, what should we do in EFMs analysis? We believed this

question was of most relevance.

Although these are good results, in practice, this model modification is quite inconvenient for us as it significatively

increases the number of EFMs. In addition, since the biomass stoichiometry was modified, the metabolic network

and its stoichiometry matrix are no longer the same, thus the number of total EFMs differs and we can no longer

compare our results to the literature and in particular to Jungreuthmayer’s results [143].

3.7.7 Discussing the scope of our analysis

The presented aspefm method greatly improves the calculation of constraint-based EFMs analyzes. It is capable

of enumerating the EFMs of interest without having to calculate and store the complete set of EFMs and it negates

the requirement for secondary processing required to select the desired subset. Indeed, E. coli core contained

226.3×106 EFMs (251 GB) which were computed using EFMtool in 34.1 h [143]. When the regulation network rules

were considered, using tool RegEFMTool, the number of EFMs dropped to 2.1× 106 (2.3 GB) with a run time of 7.1

h. The substantial requirement for disk space to store the complete set of EFMs hampered further analysis.

In contrast to these DD-based methods, aspefm makes it possible to integrate a large number of constraints reducing

the calculation of non-relevant EFMs. The ASP-based method calculates the desired EFMs relatively quickly without

the need for huge storage capacity. In addition, while FBA-based problems are often easily solved, they typically

only identify solutions when the constraints make the solution space convex. For example, when stoichiometric

and thermodynamic constraints are considered together, the set of possible flux configurations does not generally

define a convex set, and thus, it is generally difficult to solve with FBA-relevant optimization algorithms, contrary to

the presented analysis. See [234] for a review that tackles the different class of problems.

It is worth noting that computing a minimal set of EFMs with constraints is fundamentally different from computing

EFMs and filtering them. In our previous work, we established that the set of EFMs satisfying a constraint c does

not always match with the set of flux distributions at the steady state of minimal support satisfying c, which we

coined as Minimal Constrained Flux Modes (MCFMs) [157] (see subsection 3.5.4). In particular, this is the case

when c is an additional linear constraint ν1 + ν2 > 0, or alternately, a conjunction of positive Boolean literals z1 ∧ z2.

Steady-state solutions of minimal support for such a constraint c (i.e., MCFMs) may be combinations of several

EFMs. These MCFMs can be easily discarded by a kernel test. A solution vector Sol is a MCFM and not an EFM if

dim(Ker(SSupp(Sol))) ̸= 1 [125, 150].

In other cases, the set of MCFMs would correspond exactly to the set of EFMs satisfying the constraint. For example,

disjunctions of negative literals do not impact the decomposability of solutions. When we bound the operating cost

of several metabolites, we add linear constraints in the set of ASP rules which can generate MCFMs which are not

EFMs. This is the case in our analysis of the E. coli core model, but their number is small compared to the total
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number of EFMs (39 MCFMs filtered out versus 1 118 EFMs with the standard regulation and 119 MCFMs filtered

out versus 11 017 EFMs with the revised formate regulation, see Table 3.2 and the additional results in Appendix

A.6.6). Further work will be performed to integrate verification of elementarity of aspefm solutions during execution

of the algorithm rather than post-processing (see section 5.2 for our successful integration of the elementarity check

for each solution found by aspefm).

This work highlights the importance of integrating different types of constraints when performing EFMA on a metabolic

model. First, integration of strict Boolean constraints allows the user to restrict analysis to a specific environment and

to consider the effects of transcriptional regulation. However, as illustrated by the presented formate metabolism reg-

ulation of the E. coli core model, a transcriptional regulation network that is too stringent might lead to the omission

of experimentally relevant pathways. Second, the integration of curated thermodynamic data enables the computa-

tion of EFMs consistent with the equilibrium constants. Conversely, thermodynamic data can be overly lenient, as

is the case in this analysis where no EFMs were filtered from the set. Finally, when analyzing biomass production,

the application of substrate operating costs bounds constrained the enumerated EFMs to biologically reasonable

ranges, but the process may have generated unwanted MCFMs, which had to be removed. Biomass operating costs

are convenient for performing Pareto front analyses, which, in turn, facilitate the comparison of model results with

experimental data. Further work should be done by also looking at nitrogen investment costs, as was performed in

[225]. All gene products were retrieved in the current analysis, and by recuperating data from Uniprot, one could get

amino acid costs for every enzyme [34]. This would subsist in a third dimension of the Pareto front.

The presented results are promising as they expand substantially the range of model sizes that can be decomposed

into EFMs. However, in order to be applied to large-scale models, the tool will likely require a large number of

biological constraints. Otherwise, clingo[LP] may struggle with the number of linear problems that need to be

solved. Boolean constraints work notably well since clingo[LP] is primarily a logic solver, and Boolean constraints

mean cutting solutions early before solving any linear problems. The current standard for metabolic models is to link

genes to reactions through Boolean associations [69]. clingo[LP] is a very efficient tool for solving these Boolean

constraints while still representing the syntax in a readable format; and thus, many models found on the BiGG

database [37] could be analyzed with our tool using only a reasonable number of additional constraints.

The computation time could be further improved via network reduction and using multi-thread computation routines.

The ASP-based implementation with clingo[LP] does not currently use multi-threading, so computing EFMs on a

server would have minimal benefit in terms of computing time. The method is compatible with network reduction

techniques such as the ’enzyme subsets’ (i.e., groups of enzymes that operate together in fixed flux ratios at steady

state) computation as described in [235, 236], although in this case, only the reduced reactions and metabolites

should be used as the input metabolic network. Applied constraints would need to be cast in a manner consis-

tent with the reduced network representation. The network reduction process, including appropriate translation

of regulatory constraints, will be the focus of future work (see subsection 3.8.2 for our successful application of

compression).
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3.8 Application to a model of the human tumoural cell

In order to further demonstrate applicability of our tool aspefm, we decided to apply it to a central human cancer

cell model, C2M2NF (Central Carbon Metabolic Model with added Nitrogen and Folate) by Jean-Pierre Mazat and

Stéphane Ransac [237, 238]. The results presented in this section will be published soon as part of the article

"Metabolic modelling shows a correlation of neoangiogenesis, collagen production, and inflammation to Warburg

effect in cancer" [239], a work in collaboration with Laurent Schwartz, Ashraf Bakkar and Romain Attal.

Cancer cells are surrounded by a so-called tumoural stroma, which is composed mainly of immune cells, fibrob-

lasts, abnormal blood vessels and collagen. Cancer cells also undergo the well-known Warburg effect, or "aerobic

glycolysis", which is abnormal use of the fermentation pathway from glucose to lactate. Lastly, cancer cells show

abnormally high uptake of glutamine [240].

To incorporate properties of the tumoural stroma, and show its relation to Warburg effect and glutamine uptake, we

devised an improved version of the C2M2NF model, which we called C2M2NFS, for Central Carbon Metabolic Model

with added Nitrogen, Folate, and Stroma formation. Stroma formation is itself characterized by collagen synthesis,

inflammatory response markers IL1β and TNFα, and growth factor VEGF-A, linked to neoangiogenesis.

We then attempt to demonstrate the two hypotheses presented in Hypothesis 3.8.1 and Hypothesis 3.8.2, first, that

neoangiogenesis, collagen production, and inflammation are correlated to Warburg effect in cancer, and second,

that glutamine is key to the formation of tumour-related collagens.

Hypothesis 3.8.1 – Neoangiogenesis, collagen production, and inflammation

are correlated to Warburg effect in cancer

Throughout our study of the cancer cell metabolism on C2M2NFS, we attempt to show that neoangiogenesis,

collagen production and inflammation are correlated to Warburg effect and glutamine uptake, or at least that

they happen all simulateneously. Inflammation is represented by inflammatory response markers IL1β and

TNFα. Neoangiogenesis is represented by growth factor VEGF-A. Collagen is represented by peptides of a

hundred bricks, with its three main components, glycine, proline and hydroxyproline [241].

Hypothesis 3.8.2 – Glutamine is key to the formation of tumour-related collagens

By conversion to glutamate, which is then converted to proline, glycine and hydroxyproline, glutamine might be

the key to the formation of tumour-related collagens. The synthesis of collagen can happen endogenously in

cells solely from uptake of glutamine.

In order to show our prospect that production of lactate from glucose, collagen from glutamine and release of

cytokines are linked together with tumoral growth in cancer cells, we computed Elementary Flux Modes (EFMs)

on a modified version of a core metabolic model of central human metabolism: the C2M2NF model by Mazat and

Ransac [237, 238].
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C2M2NF, Central Carbon Metabolic Model with added Nitrogen and Folate, is a reduced metabolic model of cen-

tral carbon metabolism comprising about a hundred reactions and metabolites total. The model possesses three

compartments, external, cytoplasmic and mitochondrial. It includes an oxidative phosphorylation (OxPhos) reaction

system, as well as mitochondrial transporters with pseudo-metabolites (DPH and DPSI) representing the proton

gradient through the mitochondrial membrane. Another pseudo-metabolite (PMFm) derived from this gradient is

used to represent the mitochondrial protomotive force.

Metabolites of note comprised in the C2M2NF biomass reaction for modelling tumoral growth include: ATP, palmi-

tate, nucleotides, pyruvate, formylmethionine, glutathione and the following amino acids: serine, glycine, glutamine,

glutamate, aspartate, arginine, methionine. No changes were made to the biomass reaction in C2M2NFS.

An important point of note is that for simplicity, metabolism of the following amino acids: (Asp and Asn), (Thr, Iso,

Val), (Tyr, Phe, Leu, Lys, Trp) are conflated together. In particular, the latter two groups are combined into single

metabolites: TIV and YFLKW, and their uptake (TIVUP, YFLKWUP) or catabolism (TIVDG, YFLKWDG) are defined

by single group reactions. This allows for working with a smaller-scale model.

3.8.1 Construction of C2M2NFS

Production of proteins is not usually taken into account into metabolic models, as these tend to only include purely

metabolic processes. It is occasionally done as a resource optimization procedure such as in RBA [166, 165,

167], meaning every enzyme catalyzing the metabolic processes must be synthesized. However, this requires a

tremendous amount of experimental data to calibrate.

In the C2M2NFS model, protein production is done by simply redirecting amino acid metabolism (AAs) to the

production of proteins of interest using specific production reactions. Our proteins of interest are collagen and

inflammation response markers, ie. IL1β and TNFα, and growth factor VEGF-A.

In order to define the C2M2NFS model, reactions were added to the C2M2NF model to incorporate missing amino

acids and transporters: proline, histidine, alanine, asparagine, as well as associated reactions and pathways: ala-

nine aminotransferase, asparaginase, histidine degradation pathway, etc. Pathways were retrieved from Human

KEGG PATHWAYS.

Collagen synthesis was defined from literature data as follows: the proportion of AAs in collagen tripeptides was

found to be roughly 33% Gly, 16% Pro+Hyp (Hyp: hydroxyproline), and 50% rest [242].

We arbitrarily defined a peptide of collagen as 100 bricks of tripeptides, and thus associated collagen flux to the

amount of produced 100 tripeptide collagen strands for conveniences. This is done with the following reactions6:

COLLAG: 100 CBrick → Collagen

CBS6 : 0.33 Gly + 0.50 XYAA6 + 0.085 Pro + 0.085 Hyp → CBrick

6CBS: Collagen Brick Synthesis, XYAA: Amino Acids other than Gly-Hyp-Pro, XYAAS: Synthesis of Amino Acids except Gly-Hyp-Pro
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For other AAs than Gly and Pro, excluding Met, Cys, Asn, and His, which are four of the least common amino acids

found in the XY part of collagen tripeptide [242], we assumed an equiprobability distribution.

XYAAS6 : ALAc + ARGc + SERc + TIVc + YFLKWc + GLNc + ASPc + GLUTc → 14 XYAA

Inflammatory markers IL1β and TNFα, and growth factor VEGF-A, were incorporated as protein synthesis reactions,

based on the amino acid content of their consensus Uniprot FASTA protein sequence [34]. Corresponding Uniprot

entries were IL1B_HUMAN, TNFA_HUMAN and VEGFA_HUMAN.

Stoichiometric coefficients in the three following protein synthesis reactions correspond to amino acid proportions

of the protein sequences. Thus, the stoichiometric coefficient next to the protein is the inverse of its length.

IL1B: 0.045 MET + 0.048 ALAc + 0.078 GLUTc + 0.13 TIV + 0.056 PROc + 0.275 YFLKW + 0.078

SERc + 0.048 GLYc + 0.045 ASNc + 0.074 ASPc + 0.067 GLNc + 0.019 CYSc + 0.022 ARGc + 0.015

HISc → 0.00371 IL-1B

TNFA: 0.009 MET + 0.086 SERc + 0.163 TIV + 0.069 GLUTc + 0.06 ARGc + 0.03 ASPc + 0.245 YFLKW

+ 0.082 ALAc + 0.064 PROc + 0.073 GLYc + 0.056 GLNc + 0.017 CYSc + 0.017 HISc + 0.03 ASNc →

0.00429 TNF-A

VEGFA: 0.034 METc + 0.03 ASNc + 0.237 YFLKWc + 0.065 SERc + 0.108 TIVc + 0.047 HISc + 0.034

ALAc + 0.056 GLNc + 0.065 PROc + 0.069 GLUTc + 0.06 GLYc + 0.034 ASPc + 0.082 ARGc + 0.078

CYSc → 0.00431 VEGFA

If one of the inflammation markers IL1β or TNFα is present in reasonable quantity through its production flux, and

growth factor VEGF-A is also being produced, then an inflammatory response with neoangiogenesis is supposed

on the model.

FACT: VEGFA → GrowthFactor

INF1: IL1B → Inflam

INF2: TNFA → Inflam

STRO: Inflam + GrowthFactor→ Stroma

The resulting C2M2NFS model is of size 119 metabolites and 150 reactions, including 36 exchange reactions. After

network compression, the network comprises 94 reactions, 66 internal metabolites, 25 external metabolites.

3.8.2 Metabolic network curation and compression

Since C2M2NFS contains a large amount of EFMs, it is wise to apply network compression to the model. Our

network compression pipeline procedure in aspefm was combined with network curation, since they go hand in

hand. For the network compression, we retrieved code from the CNAPy and EFMTool libraries. A general framework

idea is presented in Figure 3.7.
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Figure 3.7: General framework for curation and compression of metabolic models in practice

The three principles of metabolic network curation and compression proposed by Terzer (subsection 2.10.4), are of

major importance. They are thankfully encoded in the EFMTool compression process, thus when using EFMTool

compression code, the analysis is performed right away. More specifically, we used code from the CNAPy library

[138] (or, equivalently, strainDesign [243]). We retrieved from the helper GitHub repository efmtool_link [W16],

which calls EFMTool’s Java archive through Python interface code.

The compression of enzyme subsets performed by EFMTool in Java is very reliable. We developed our own enzyme

subsets compression with a Python procedure with SymPy, a rational arithmetic library [S124]. Indeed, since the

goal of nullspace analysis is to get linearly dependant rows of the kernel matrix, the kernel must be computed with

exact methods, and expressed as rationals, so that correct α ratios are then identified. However, performance with

SymPy was lacking when compared to EFMTool. We do not recommand using floats or approximation methods for

kernel computation, exact Gauss-Jordan should be performed.

The code from CNAPy also performs FVA from COBRAPy [72] to exclude reactions that are blocked, ie. flux that

never occurs, after application of the growth medium. Thus, the process of compression is also highly depen-

dant on the growth medium, which has significant impact on the exchange reactions flux bounds. Finally, we use

our MPARSER Python module to convert the compressed network into ASP logic programs. Since we work with

compressed networks, constraints must apply on those.

Note that although this has to be checked further, we are unsure that the code we retrieved from the Klamt lab Python

interface for our tools performs full metabolite compression as described by Terzer. This might be an element of

future improvement for our methods.
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We found that the consistency analysis described in subsection 2.10.3 developed by Gevorgyan was not applicable.

That method was tested on the 2004 model by Ross Carlson [108] (with one intentional inconsistency we added

by hand) and on a model of starch production in potato tuber (30 reactions and 31 metabolites, with 7 out of them

unconserved, and 123 elementary leakage modes, all caused by a single input error) [S125, S126]. This was done

by rewriting the MILP implementations in ASP, for which we present the code in Listing A.9 and Listing A.11.

However, this led to unsatisfying performance, even when using logic programming with linear constraints. Indeed,

for a single error on a small network, we retrieve an amount of minimal net inconsistencies so considerable that

enumeration might as well run for more than a day. And as well, once elementary leakage modes are obtained, it

was not possible to link that set of reactions with inconsistencies back to single faulty metabolites or reactions. As a

result, we opted for the implementation of network curation by Shin and Hellerstein, called GAMES [173].

On the C2M2NF base model, we retrieve an inconsistency presented in Listing A.12. GAMES retrieves reaction

isolation sets, which are minimal sets of reactions describing a mass balance inconsistency, in the same vein as

elementary leakage modes; and metabolite isolation sets, a similar notion but with minimal sets of metabolites [173].

Finally, additional inconsistencies with the solution space shape might occur, caused by stoichiometry, flux bounds,

and additional linear constraints. These can be simply tested for by trial and error and noticing infeasibilities of the

network (see LP infeasibilities, Figure 2.5). We advise for the use of cplex and its conflict refiner to detect and

resolve LP infeasibilities present in the model. This was an useful tool when working with C2M2NF(S), and for

detecting appropriate linear constraints as will be described in the next section. In fact, in clingo[LP], the conflict

refiner (see section 5.5) uses this knowledge to detect exactly the minimal constraints in conflict.

The model is very well curated, in fact it was curated by Jean-Pierre Mazat by hand multiple times so that no

inconsistencies appear. However, there are still inconsistencies that only appear when summing ≈ 60 reactions

together (Listing A.12), which is not something that can be seen by eye. In conclusion, we did not manage to solve

all of the inconsistencies.

It goes without saying that if even small hand-curated models can contain inconsistencies of this scale, automatically

generated genome-scale models should not be used without caution. The MEMOTE [169] tool for assessing quality

of genome-scale models contains stoichiometry consistency checking, using the method by Gevorgyan. However,

in practice, MEMOTE automatically skips it for the reasons mentioned above: the computation of inconsistencies is

too expensive on large models. Thus, we advocate for the use of GAMES, which runs much faster (Figure 3.7).

Another network curation and compression process was devised for the bacterial models of Staphylococcus

aureus and Pseudomonas aeruginosa, which are actual genome-scale metabolic models, where the effects of

growth medium restriction, and network compression, are more apparent (chapter 4).

3.8.3 Devising an EFMs analysis from exometabolomics data

For the following section, we are going to base ourselves on the hypothesis presented in Hypothesis 3.8.3. We

retrieved exometabolomics data provided by Jain and coauthors [32]. This dataset is called NCI-60 CORE data
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for COnsumption (uptake flux) or RElease (production flux) data, and it represents 60 tumoural cell lines, from

the following categories of tumoral tissues: Colon, Leukemia, Lung, Prostate, Ovarian, Breast, Melanoma, Central

Nervous System, and Renal. Similarly to an analysis by Mazat [238], we computed the mean fluxes data across all

60 cell lines. The mean and standard deviation of the data is represented in Table 3.3.

Hypothesis 3.8.3 – Experimentally observed cancer-cells flux distributions fit linearly to EFMs

Given exometabolomics flux data D in fmol/cell/h, we suppose that if our model is well-constructed, there must

be a flux balance distribution F in arbitrary units for which exchange fluxes fit linearly to the flux data from D.

Considering E a set of EFMs in arbitrary units, F can be expressed as a linear combination of EFMs in E.

Thus an EFM e ∈ E is a linear fit to exometabolomics data D if and only if for every exchange reaction that is

active in e, exchange fluxes fits linearly with the data D. We seek to find the EFM e with optimal fit to D.

The experimental data from Jain and coauthors includes an estimation of exchange fluxes for a total of 60 cancer

cellular lines in fmol / cell / h. Considering the standard deviation and mean exchange fluxes of the cellular lines, we

separated the global experimental observations: uptake, secretion, or either, into two categories: hard constraints,

what we force as an input constraint for our computation, and expected observations, inputs we expect to observe

in the minimal pathways, but do not force. The resulting constraint data is reported in Table 3.3.

aspefm was used to compute EFMs in the study. Warburg effect (glucose uptake and lactate production) and glu-

tamine uptake were included as hard constraints, while the rest of NCI-60 observations were included as expected

observations. Hard constraints and expected observations were modelled as logical constraints. Additional linear

constraints were added. This allows for enumerating a smaller subset of minimal pathways observed with EFMs. A

size constraint was added as well. The corresponding constraints are detailed in the next section.

Now let us summarize the methods for our study. We developed the C2M2NFS model as an extension of the

C2M2NF model. The model comprises 150 reactions. In accordance with constraints describing Warburg effect,

collagen production and inflammatory markers and growth factor VEGF-A synthesis, a subset of 747 EFMs was

computed with aspefm. Then, the best EFM was selected according to classic linear regressions of the solutions

to the mean exometabolomics data from Jain and colleagues using Python package Scikit-Learn [244]. A detailed

look at our analysis workflow is presented in Figure 3.8.

3.8.4 Biological constraints for our analysis

Logical constraints given in input to aspefm are detailed in Table 3.3. The constraints are separated into two types:

hard constraints, which are forced inputs for the computation, and expected observations, not forcing any input but

forbidding the opposite observation. For example, the three hard constraints are: glucose must be consumed,

lactate must be produced, glutamine must be consumed. And an example of expected observation would be

aspartate should be consumed, ie. we forbid aspartate production.
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Figure 3.8: Methods for analysis of C2M2NFS. Cancer exometabolomic data from the NCI-60 cell lines - from Jain
and coauthors - is used to produce constraints for aspefm computation and for selecting the optimal EFM once the

program instances were stopped.

Metabolite Glucose Lactate Glutamine Glutamate Serine Glycine Alanine Proline Asp
Asn Arginine

Mean +/- SD
cancer cell
exchange flux
interval

-326.87
+/-

196.12

442.20
+/-

289.40

-82.48
+/-
56.20

13.54
+/-
16.99

-11.57
+/-
7.05

0.96
+/-
2.97

15.89
+/-
13.34

1.21
+/-
1.49

-3.33
+/-
3.39

-4.90
+/-
4.44

Corresponding
constraint – + – + – +/- + +/- – –

Metabolite TIV (Thr, Ile,
Val)

YFLKW (Tyr,
Phe, Leu,
Lys, Trp)

XTP
(Nucleotides) Pyruvate Formate Histidine Cysteine Methionine

Mean +/- SD
cancer cell
exchange flux
interval

-14.90
+/-
7.99

-19.80
+/-
10.57

0.10
+/-
0.22

Uncalibrated
data

Data
missing

Data
missing

0.05
+/-
0.08

-2.11
+/-
1.23

Corresponding
constraint – – +/- + +/- – +/- +/-

Table 3.3: Mean +/- SD exchange fluxes intervals from NCI-60 exometabolomics data, and resulting hard
constraints and expected observations from the model, for glucose, lactate, XTP, pyruvate, formate, and amino

acids. Minus (-) symbolizes uptake while plus (+) symbolizes secretion. Experimental observations are separated
into two kinds: hard constraints (bold font) and expected observations (normal font), indicating different types of

logical constraints.
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Hard constraints are encoded as direct logical constraints: “reaction must be active”, meaning “reaction flux must be

non null” - equation (1) - meanwhile expected observations (+) and (–) are encoded by forbidding reactions going in

the opposite direction - equation (2) (see equation 3.39).

(1) ∀R ∈ HardConstraints, νRfwd
> 0↔ zRfwd

(Rfwd, Rbwd) ∈ Reversibles

(2) ∀R ∈ ExpectedObservations, νRbwd
= 0↔ ¬zRbwd

(Rfwd, Rbwd) ∈ Reversibles
(3.39)

Given that νR ∀r ∈ R represents the flux of each reaction R in the set of all reactions R, and that zR ∀r ∈ R are

aspefm indicator Boolean variables of when a reaction is active, ie. when its flux is non null. Logical constraints are

enforced by setting aspefm Boolean indicators to be {True} or {False}, taking advantage of the hybrid nature of

the solver.

For example, the hard constraint “lactate must be secreted” will be encoded by the constraint “flux going into forwards

reaction of lactate production must be strictly positive”, while the expected observation “alanine must be secreted”

will have the constraint “flux going into backwards reaction of alanine production must be null”.

Although the metabolic model is calibrated so that metabolite flux could be correlated to units of metabolite flux

in fmol/cell/h, it is best not to assume any units for the flux going into pathways, as EFMs are minimal vectorial

solutions, the extreme rays of the model’s flux solution space. As a consequence, we decided linear constraints

should be arbitrary as well.

Namely, the constraints we added are described by the following equations: (3) bounds each flux by the arbitrary

value of 15 (4) forbids total flux to surpass the arbitrary value of 500, (5) constrains the PMFm metabolite flux to

under 1, thus keeping mitochondrial proton-motive force among realistic values (0 to 1 V), (6) constrains biomass

production flux to over 0.01, as to keep a minimal amount of flux going into tumoral growth, (7) constrains collagen

production flux to be over biomass production flux, (8) constrains inflammatory marker response to be over biomass

production flux, finally (9) and constrains glucose uptake flux to be over 0.1 (low glucose uptake conditions), or over

1 (high glucose uptake conditions) depending on the aspefm program instance (see equation equation 3.40).

(3) ∀r ∈ R, νr < 15

(4)
∑
r∈R

νr < 500

(5) νPMF ≤ 1

(6) νBIOMASS ≥ 0.01

(7) νCOLLAGEN > νBIOMASS

(8) νSTROMA > νBIOMASS

(9) νGLUCUP ≥ 0.01

(3.40)

Given that νr ∀r ∈ R represents the flux of each reaction r in the set of all reactions R.
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In addition, a size constraint for number of reactions of EFMs was added :

(10) card{r ∈ R | vr ̸= 0} < 60 (3.41)

The size constraint of equation (10) forces EFMs size to be below 60 active reactions - reactions with non-null fluxes

(see equation 3.41). This bound was chosen to correspond to about 10 reactions more than the smallest retrieved

EFM solution. Such a size constraint takes full use of the aspefm solver’s constraint programming origins.

Elementary Flux Modes are computed with aspefm, a logic programming tool based on clingo’s SAT solver techno-

logy [211, 210] and leading linear programming tool cplex [W8]. For each solution found by aspefm, the rank test is

performed [125]. If the rank of the submatrix indexed by the current solution mode is equal to the number of active

reactions minus one, then that mode is elementary. If not, then the solution should be excluded and another one

should be searched.

This method is relatively computationally fast with fewer constraints, but struggles on largely constrained models as

this one, as the majority of solutions found will be combinations of EFMs such that constraints are respected, or

Minimal Constrained Flux Modes (MCFMs) [157].

In regards to this issue, the computation was set to run for longer, in our case 3.5 days, before being stopped.

Decomposition methods were envisaged to retrieve EFMs from MCFMs, but the idea was abandoned as it was

deemed just as computationally expensive, especially considering said resulting EFMs would very likely not respect

our imposed constraints.

Multiple instances of aspefm were launched at the same time to compensate for its lack of parallelization. All

executions are non-deterministic due to the SAT-solver’s random decisions, meaning overlap of solutions between

instances is not guaranteed. Once all executions were stopped, all results were gathered and 560 duplicates were

removed.

3.8.5 Finding the optimal EFMs with linear regression

After running enumeration of EFMs with aspefm, 747 unique minimal pathways were obtained. These metabolic

pathways span a large diversity of possible inputs and outputs, including the varying flux values of internal metabolic

reactions. The statistics of fluxes of the principal reactions of interest are plotted in Figure 3.10. A complete view of

the statistics of exchange fluxes in our EFMs can be found in Table A.4.

All obtained EFMs show Warburg effect, tumoral growth, production of collagen and either inflammation markers

IL1β or TNFα, representing cell inflammation, and growth factor VEGF-A, representing neoangiogenesis. And in

particular, as asked by our constraints, more flux is going into collagen synthesis and factors recruitment than

biomass. As well, all EFMs either respect observations from Table 3.3, or do not input any flux into the exchange

reactions.
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Figure 3.9: Linear regression of the EFM with the best fit to mean flux data from all NCI-60 cancer lines

Aside from glutamine which is a forced input of our model, the only amino acids clusters observed to be consumed

in all minimal pathways for tumoral growth, production of collagen and either inflammation markers were cysteine,

histidine, TIV and YFLKW. Other amino acids, such as arginine, serine, aspartate and asparagine, might or might

not appear to be consumed in EFMs. Similarly, secreted-only amino acids such as glutamate, alanine often did not

appear to be produced. An interesting point of note is the high variability of exchange fluxes EX_FOR (SD: 2.40)

and EX_GLY (SD: 3.36). Along with methionine (SD: 0.60), and serine (SD: 3.30), which can only be consumed,

these four fluctuating exchange reactions appear related to usage of the tetrahydrofolate (THF) cycle.

In order to select a single specific pathway of interest for our analysis, we took all elementary modes from our

analysis and correlated their non-null uptake fluxes to the mean uptake flux among all 60 NCI-60 cancer cell lines,

as described in Table 3.3. The pathway with the best fit to the experimental data (R2 of 0.98, RMSE of 26.9)

was represented in Figure 3.11. The corresponding linear regression analysis was represented in Figure 3.9.

Visualization of the reactions was done through the EscherPy Python package [191].
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Figure 3.10: Statistics of our principal reactions of interest among all 747 EFMs. EX_Biomass: tumoral growth,
EX_Collagen: collagen production, EX_Stroma: recruitment of inflammation markers IL1β or TNFα, and growth

factor VEGF-A, EX_GLUC: glucose consumption, EX_GLN: glutamine consumption, EX_LAC: lactate production,
EX_FOR: formate consumption or production, EX_GLY: glycine consumption or production, EX_PRO: glycine
consumption or production, EX_SER: serine consumption, EX_ASP: aspartate and asparagine consumption,

EX_ARG: arginine consumption. In the case of EX_FOR, EX_GLY, EX_PRO, negative values represent
consumption, and positive values represent production.

147



This pathway is characterized by the secretion of TNFα as the inflammatory response marker, VEGF-A as a repre-

sentant of neoangiogenesis, consumption of the following amino acids: glutamine, cysteine, histidine, arginine, TIV,

and YFLKW; collagen production and Warburg effect. Nucleotide synthesis is performed above biomass require-

ments which results in nucleotide secretion. The tetrahydrofolate cycle is used through cytosolic reaction SHMT1,

and mitochondrial reactions MTHFD1L, MTHFD2.

No external consumption of glycine or proline is observed, indicating that in the case of this elementary pathway,

amino acids glycine and proline, going into collagen synthesis and composing about 50% of the collagen content,

are synthesized de novo, purely through other metabolic reactions and catabolism of other amino acids.

In particular, fluxes of notice include high glutamine consumption (-2.48), which is converted into 2.01 units of

glutamate through nucleotide synthesis by the NUC reaction (0.87). Glutamate is also obtained from α-ketoglutarate

(αKG) using the GOT1 reaction (-3.95). From these 5.96 units of glutamate, 3.25 units go into mitochondria and get

converted into αKG, from which 0.24 units are transformed to citrate through reverse tricarboxylic acid cycle usage,

then to oxaloacetate and acetyl-CoA, contributing to biomass lipids production. Among the remaining cytosolic

glutamate units, 0.72 units are converted into serine by SERSYNT, 0.95 units are used for proline production,

0.48 units are used for alanine synthesis, 0.43 units are used for VEGF-A and TNFβ production, 0.11 for collagen

formation. And from the produced serine units, 0.13 units are converted into glycine through the use of SMHT1.

Thus, glutamate can be converted into proline by reaction PROS, hydroxyproline through reaction HPRO, and

glycine through reaction SERSYNT and then use of the THF cycle with reaction SHMT1 to convert serine into

glycine, making up for the three principal collagen consituants.

We believe that the best EFM fit not importing either of those collagen consituants and making use of glutamate

and SERSYNT to produce proline, serine and glycine de novo is a result of major importance shown by our model

and our methodology. As R2 decreases, the use of SERSYNT may be replaced by the uptake of glycine and serine.

Equivalently, proline and other amino acids might be imported from the extracellular medium.

3.8.6 Proposing a schematic model of the tumoural stroma

By taking the EFM most in accordance with physiological data, which displays rates of collagen production and

inflammatory markers synthesis constrained to be above biomass production, we achieve a new methodology in

constrained-based modelling, vastly different from the usual hypothesis that reaction fluxes in the cell only contribute

to optimizing its growth. Our methodology is able to highlight, in accordance with the experimental data, which amino

acids are the most pivotal for the synthesis of our four proteins of interest – collagen, VEGF-A, IL1β, and TNFα.

Jain and coauthors found that glycine and THF cycle held a pivotal role in cancer cell metabolism [32]. Since we

select the best EFM according to their exometabolomics data, our model’s solutions also corroborate that hypothe-

sis. Additionally, we found that glycine, hydroxyproline and proline, the three major components of collagen, could

be synthesized endogeneously solely from glutamine, which is converted to glutamate in our model by using the

nucleotide synthesis reaction. Glutamate is easily converted into proline through 1-Pyrroline-5-carboxylic acid, and
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Figure 3.11: EFM with the best fit to mean exchange fluxes from NCI-60 exometabolomics data. 70 reactions of
most interest of C2M2NFS are shown, including most cytosolic transporters and some mitochondrial transporters

but not mitochondrial TCA Cycle.
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then to hydroxyproline [245]. Then, the use of serine synthesis from glutamate and THF cycle allows the cell to

obtain its glycine requirement to synthesize collagen, presenting a phenotype similar to the one observed in the

stroma around cancer cells. No extracellular proline, glycine or serine import could in fact be needed.

In light of these findings, we devised a graphical model of how the tumoral stroma might be conceived, presented

in Figure 3.12. The graphical model includes the main findings observed in our optimal pathway, namely: glucose

is fermentated into lactate through glycolysis, and glutamine is converted into glutamate, which is transformed into

the main amino acids for collagen production, and into acetyl-CoA lipid bricks helping tumoral growth. Finally, the

amino acid pool formed through amino acid biosynthesis and amino acid uptake is used to synthesize inflammation

and neoangiogenesis markers, helping to recruit the cells composing the tumoral stroma.

Immune
cells

Glucose Pyr Lactate

Glutamine Glu
Ala

OAA + AcCoA
Biomass
lipids

GluAsp

Ser Gly }Pro Hyp

AA pool

IL1β , TNFα VEGF-A Collagen

Fibroblasts

Stroma

αKG

Cancer cell

Neoangiogenesis

Figure 3.12: Explicative model of tumoral stroma production in light of amino acid metabolism and the Warburg
effect. Two parallel pathways are observed, glycolysis and glutaminolysis. Abbreviations are amino acids three
letter codes, Hyp: hydroxyproline, AA: amino acids, αKG: α-ketoglutarate, Pyr: pyruvate, OAA: oxaloacetate,

AcCoa: acetyl-CoA.

It is interesting to note that the two renowned cancer hallmarks, glycolysis and glutaminolysis, undergo parallel

pathways, glycolysis leading to lactate acidifying the tumoral stroma medium and glutaminolysis leading to increased

production of biomass lipids and collagen. Whether or not collagen is produced by the main tumoral cell or by

cancer-associated fibroblasts [246], and whether or not fibroblasts themselves undergo Warburg effect as well, as

has been hypothesized [247, 248], is not of relevance to our unicellular metabolic model. Indeed, if collagen may not

be produced by the tissue cell, it follows that the glycine, proline, and hydroxyproline overproduction by our tissue

cell will lead to extracellular export of those amino acids into the medium, which will then be picked by fibroblasts

to increase their production of collagen. Alternately, our cell model could be representing a cancer-associated

fibroblast instead.
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3.8.7 Comparing our method to parsimonious Flux Balance Analysis and flux sampling

A parsimonious FBA (pFBA) solution was used for comparison with the linear regressions of EFMs, computed with

COBRAPy [72]. As explained previously, FBA is a method which requires optimization of an objective function.

Meanwhile, EFMs conduct an unbiased decomposition of a metabolic model into its minimal functional units. The

results of the comparison analysis to pFBA is presented in Figure 3.13, Figure 3.14 and Figure 3.15.

For the solution obtained with Parsimonious Flux Balance Analysis, the R² fit to experimental data (Figure 3.14)

scores as low as the 10% worst EFM solutions (Figure 3.13). The solution is visualized in Figure 3.15. A clear bias

is seen towards the objective function, which was set to sum of production fluxes BM, COLLAG and STRO. As an

example, the flux of reaction CBS is saturated to 15.0 which is the upper bound set to every flux. No Warburg effect

is shown, despite being suggested by the constraints given.

Both inflammation markers IL1β and TNFα are produced, while only one of those must have been necessary at a

given time. These characteristics of the COBRApy pFBA solution illustrate the drawbacks of relying on an objective

function. Meanwhile, EFMs analysis performs no maximization and returns a diverse panel of minimal pathways

that the cell can alternate between at each given time.
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Figure 3.13: RMSE and R² scores of linear regressions to exometabolomics data applied to all 747 EFMs
solutions. Indicated by a vertical blue line, the R² score of the pFBA solution was reported on this graph for

comparison with the R2 of the EFMs solutions
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Figure 3.14: Linear regression of experimental flux values to the parsimonious FBA solution

Over the years, interest in the constraint-based modelling community has mostly been oriented more towards Flux

Balance Analysis-related methods than Elementary Flux Modes, as the latter are effectively more time-consuming

and expensive to compute. However, Flux Balance Analysis has the drawback of partaking in maximization of

an objective function, which is an assumption that cannot necessarily correlate with biological observations. The

solution obtained from Parsimonious Flux Balance Analysis (pFBA), a bilevel optimization problem with minimization

of the sum of reactions on top of maximization of the objective function, was unable to fit to the experimental data (R²

= 0.044), scoring as low as the ten percent worst Elementary Flux Modes (Figure 3.13, Figure 3.14). As well, a clear

bias was seen towards the objective function in the fluxes shown in Figure 3.15, with fluxes being saturated, both

inflammation markers being synthesized while only one might have been enough, and three more amino acids were

found imported than for the optimal EFM solution. Thus, in the case of this application to cancer, we argue that the

maximization approach, optimizing the sum of flux going into tumoral growth, collagen formation and inflammation

markers production, is not an adequate answer to our problem.

One might also suggest the use of flux sampling rather than EFMs, with methods such as OptGpSampler [122].
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Figure 3.15: Escher visualization of the Parsimonious Flux Balance Analysis optimal solution obtained with the
same as constraints as for Elementary Flux Modes Analysis
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Figure 3.16: Boxplots of regression score values - RMSE and R² for the flux sampling of 1 000 or 50 000 solutions
obtained with OptGPSampler compared to EFMs of this study
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However, perhaps due to the different nature of solutions sampled, we found that flux sampling did not answer to

our problem quite as well as EFMs, achieving a maximum R² to experimental data of 0.70 with a sample of 1 000

solutions, and a maximum R² of 0.87 with a sample of 50 000 solutions (Figure 3.16). While, with a sample of

747 EFMs, we were effortlessly able to reach a maximum R² of 0.98. Therefore, we believe there remains a clear

need for Elementary Flux Modes analysis, may it be exhaustive or constrained. Through our findings, by focusing

on enumerating subsets of EFMs, and taking the constraint-based approach to its extreme, by adding as many

constraints as possible, solutions obtained are also closer to biological reality.

Although our C2M2NFS metabolic model of 150 reactions would be considered of a relatively small scale by today’s

standards, enumeration of EFMs using EFMTool could not finish or yield any results at all [139]. This due to the

way its implemented algorithm, Double Description, works [133]. Previous attempts on networks of around this size

had to split the model in multiple smaller networks to complete enumeration [144], or resorted to MILP, which may

be restricted by minimizing solution size [140]. Another kind of method emerged for networks over this size using

Lexicographic Reverse Search [146]. On the other hand, aspefm can yield results on metabolic networks of this

size and over, up to thousands, very easily, and it is able to handle biological constraints, which is ultimately the goal

in EFM analysis. The tool can yield any new EFM in reasonable time – however, downsides appear from choosing

constraints that are too difficult to filter out, which unfortunately includes most linear ones [150, 157]. When that is

the case, aspefm spends most of its time filtering out solutions that are not EFMs instead of finding EFMs, and its

enumeration must thus be eventually stopped with a time limit – in our case 3.5 days. These are points of major

improvement for our tool in the future.

3.8.8 Discussing the scope of our analysis

The debate on whether cancer is a genetic disease or merely that cancer cells is unable to oxidize glucose properly

and rely on fermentation is still not settled. Warburg postulated that cancer relies heavily on glycolysis and that

pyruvate is preferentially converted to lactate instead of continuing to Krebs cycle to be converted to ATP by the

oxidation phosphorylation where oxygen is needed [249]. This phenomena - “aerobic glycolysis” - is now recognized

as a hallmark of cancer [240, 250]. On the other hand, it has been shown that the stroma plays a key role in tumor

development and progression. The stroma is marked by appearance of cytokines such as IL1β and tumor necrose

factor TNFα, and growth factor VEGF, causing recruitment of new immune cells and blood vessels [240]. As well,

glutamine metabolism is accelerated in cancer cells as opposed to healthy, non-proliferating cells, consequently

the demand is larger to meet the energy and biomass production needs [251, 252]. Combining calorie-restricted

ketogenic diet with glutamine targeting in late-stage experimental glioblastoma has shown clear therapeutic benefits

[253]. The triple helix shape of collagen is made up of three polypeptide chains that are coiled around one another.

Glycine, proline, and hydroxyproline residues are prevalent in these chains [241]. The production of hydroxyproline,

which is necessary for the stability of the triple helix collagen structure, is facilitated by glutamine [254, 255, 256].

Interestingly, our model finds that endogeous collagen production is possible from glutamine only, with no glycine

or proline uptake requirement. This result strongly suggests a possible key role of glutamine in the formation of

collagen in cancer.
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Mazat and Ransac’s model, C2M2NF, which we extended for this study, proves to be a great tool for exploring

glutamine metabolism, independently of glucose [237]. Similarly to a study by Mazat [238], we retrieved the ex-

ometabolomics cancer cells dataset by Jain and collaborators. In their dataset, Jain and collaborators categorize

uptake and secretion fluxes of sixty cell lines by their origin tissue [32]. To determine the EFM best in agreement

with experimental data, we took the EFM with best linear regression fit to mean flux values of all cell lines regardless

of their origin tissue. In order to further the analysis, we took our optimal EFM, and attempted linear regression

against only specific types of cell lines. We found that our EFM showed no specificity to any of the tumor cell lines,

achieving highly similar scores in all cases (Table A.5). Alternatively, the issue of tissue specificity, which is of great

interest for our study, could be achieved by using larger-scale organ-specific metabolic models [171].

While this EFMs analysis is modelling at a medium to large-scale level, it should be kept in mind that the many

selected constraints apply. Selected biological constraints are of major importance for us to keep the number of

solutions to manually analyze low. However, the analysis being very constrained means that smaller and larger

elementary metabolic pathways also descriptive of biological processes of interest might have been filtered out by

our methodology. It should also be noted that the steady-state assumption for intracellular metabolites is a strong

hypothesis, ignoring all internal thermodynamic and time-dependant processes at play. Finally, other modellers

might consider a smaller-scale level analysis such as the one presented in Braakman and Smith [257] appropriate.

Or, alternatively, a larger-scale, extracellular view of the mechanisms in play in collagen formation and recruitment

of the multifunctional stroma might be of interest. In particular, metabolic modelling has recently seen a number of

advances: the construction of a whole human body metabolic model [171], and particular emphasis on metabolic

interactions between cells at the multicellular level [193].

In conclusion, we suggest that the Warburg effect is correlated to the formation of the stroma and particularly to the

synthesis of collagen, which plays a key role in cancer progression and metastasis. Metabolic pathways analysis

suggests that the collagen production phenotype displayed by fibroblasts and Warburg effect might occur at the

same time, and without extracellular import of the macromolecule’s main components, glycine and proline. As well,

in the process of their synthesis for tumoral growth, amino acids might be recycled into cytokines to recruit immune

cells and new blood vessels forming the stroma. Cancer cells act like primary producers of the tumoral ecosystem:

their wastes exert an ecological pressure on their environment and modify the surrounding landscape. The rerouting

of resources and wastes by the newly formed stroma and vascular network has an impact on the larger scale of

the organ and the full organism. By proposing a tumor metabolic model at the unicellular level encompassing the

properties of the tumor stroma we open the road for further analyses of the impact of Warburg effect at the tissue

level.
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Chapter 4

Minimal Cut Sets with aspefm reveal new

bacterial interactions

Minimal Cut Sets are minimal cuts in metabolic networks disabling certain target functions. They can be used in

metabolic engineering contexts as well as simply in the research of reactions essential to a growth medium, of

therapeutic relevance. The standard analysis for Minimal Cut Sets is leading to the search of synthetic lethals (SLs)

– set of two or more reactions for which removal leads to death of the cell. This is usually limited to sets of four or

less reactions. Indeed, it is often hard for a synthetic biologist to deactivate more than three targets at once.

However, aspefm excels in finding reaction sets of four or more reactions. In this chapter, we extend the computation

of aspefm to MCSs, and we broaden the scope of MCSs analysis to include reaction sets of four or more reactions.

We demonstrate that these MCSs are of major interest and apply the method to a consortium of two pathogenic

bacteria, Pseudomonas aeruginosa and Staphylococcus aureus. As well, we explore the significance of metabolite

exchanges in the context of finding therapeutic solutions against the bacteria.

4.1 Implementation of Minimal Cut Sets in aspefm

We can extend our workflow to compute Minimal Cut Sets with aspefm. Minimal Cut Sets with the biomass synthesis

reactions as the target reaction identify which reaction cuts lead to lethal phenotypes. aspefm compared to the other

principal computation methods of MCSs presented in Figure 4.1.

aspefm uses the fact that MCSs can be computed as the EFMs of a dual metabolic network, after a conversion

process [186] (see subsection 2.12.1). As we can see in Figure 4.2, like with EFMs, we can add any constraints we

want, namely specify a size limit for MCSs, specify reactions that are wanted or unwanted – see subsection 3.5.1

for the correponding formulation.
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MCSs computation methods

Double Description then Hitting Sets
T. S. Motzkin et al., 1953 ; Klamt and Gilles, 2004

Linear Programming-based methods on a Dual Network
Ballerstein et al, 2012

Mixed Integer Linear Programming
von Kamp and Klamt, 2014 ; Thiele et al, 2021      

Logic Programming with Linear Constraints
Mahout et al, in publication, 2023 ASPefm

efmtool

CNA

Figure 4.1: aspefm compared to the other principal computation methods of MCSs

In aspefm, we formulated the problem by making use of the MILP version proposed by von Kamp and Klamt in

2014 [153], which excludes some of the linear variables and constraints introduced by Ballerstein. A notable feature

of the method by von Kamp and Klamt was defining an inequality constraint instead of an equality constraint for

metabolites of the dual network that were originally irreversible reactions.

All reversible dual reactions are split into two irreversible dual reactions. As in the formalisms defined by Ballerstein

and von Kamp, the reactions corresponding to reversibility constraints are the only ones to which subset-minimality

applies, meaning the other linear variables are free to be either strictly positive or equal to zero following whether

it suits the linear program. We give the LoPLC program constraints in subsection 4.1.2 and the ASP code in

Listing A.13.

We first tested the computation of Minimal Cut Sets on E. coli core with the biomass as target reaction. We were

able to retrieve all 352 MCSs of size three or less on that model in about 21 min. Generally, this is quite a bit slower

than computing EFMs on the same network, but that’s to be expected as the dual network contains more reactions

than the original, meaning there are more logical and linear variables to be taken into consideration for our solvers.

4.1.1 Formalizing the dual stoichiometric matrix

Let us define S the stoichiometry matrix of size m × r, m being the number of metabolites in the metabolites set

M and r being the number of reactions in the reactions set Reac. Let us define the set of reversible reactions

Rev ⊂ Reac and the set of target reactions t ⊂ Reac to be disabled for MCSs computation.
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Dual network ASP Rules aspefm Minimal Cut Sets

Wanted
reactionsMetabolic network

Unwanted
reactions

MCS
size limit

Figure 4.2: Current framework for the computation of MCSs with aspefm.
Minimal Cut Sets can then be converted into gene knock-outs

In the dual metabolic network, original reactions become metabolites, and original constraints become reactions. If

S the primal stoichiometry matrix is of size m× r, with I the identity matrix of size r × r and −T vector of size r × 1

with values 0 for j /∈ t and −1 for j ∈ t, then D is a dual matrix of size r × d, with d = m + r + 1, and defined as

D = (ST I − T).

The computation of the dual network D generates a metabolites set Mdual and a reactions set Reacdual. The

set Mdual is simply the reactions set Reac and is thus of size r, while the reactions set Reacdual is of size d and

composed of three different types of reactions: Reacdual = S ∪RC ∪ T .

More precisely, all m stoichiometry constraints S become reversible reactions, r reversibility constraintsRC become

reversible if and only if the original reaction is reversible too, while the reactions t to be disabled become one

irreversible target reaction T .

After splitting the d dual network reactions into k irreversible reactions, the set Rdual of irreversible reactions is

obtained. For clarity, k = 2m + r + |Rev| + 1. For MCSs computation, we are concerned with its subset of interest

Cut ⊂ Rdual, corresponding to the split of reactions RC. The set Revdual : Rdual ×Rdual → Reacdual keeps track of

which reactions ofRdual were originally reversible in the reaction setReacdual. This is the set of forwards backwards

reaction pairs. Further ahead, we denote by D the dual matrix of size k × r after splitting reversible reactions.

4.1.2 Minimal Cut Sets formalization

GivenRev ⊂ Reac the set of reversible reactions of the primal network, D the dual matrix of the stoichiometric matrix

S, Mdual the set of dual metabolites, originally reactions of the primal network, Rdual the set of k irreversible dual

reactions, Revdual ⊂ Rdual × Rdual indicating which pairs of reactions result from a split, Cut ⊂ Rdual the subset

of reactions corresponding to directionality constraints of the primal network, and T ∈ Rdual a target reaction

associated to one or several primal network reactions t that should be disabled, the Minimal Cut Sets problem can

be defined as the following:
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Problem: Find non trivial subset-minimal affectations to {True} of cr ∈ B, ∀r ∈ Cut such that :

∑
r∈Rdual

Dmr × vr = 0 ∀m ∈Mdual ∩Rev (4.1)

∑
r∈Rdual

Dmr × vr ≥ 0 ∀m ∈Mdual \ Rev (4.2)

vr ≥ 0 ∀r ∈ Rdual (4.3)

zr ⇔ vr > 0 ∀r ∈ Rdual (4.4)

cr ⇔ zr ∀r ∈ Cut (4.5)

¬zr ∨ ¬zrrev ∀(r, rrev) ∈ Revdual (4.6)

v ∈ Rk, z ∈ Bk, vT > 0 (4.7)

Dmr denotes the dual matrix D stoichiometry coefficient associated to dual metabolite m ∈Mdual and dual reaction

r ∈ Rdual. Equation (1) and (2) represent the steady-state constraint, and is an equality or an inequality whether the

metabolite the constraint applies on was originally a reversible or an irreversible reaction. Equation (3) is defining

that all reaction fluxes vr should be positive or null. Equation (4) associates boolean indicator variables zr to active

reaction fluxes, meaning reaction with non-null fluxes. Equation (5) defines specific boolean indicator variables

cr for reaction fluxes corresponding to reactions in Cut. These are the boolean variables that are considered for

subset-minimal solutions. The Cut reactions are the only reactions which flux is of interest: representing the actual

reactions in MCSs. Equation (6) forbids flux of two irreversible reactions issued from the split of a reversible one to

be non-null. Equation (7) defines the domain of reaction fluxes vr ∀r ∈ Rdual as real linear values, the domain of

indicator variables zr ∀r ∈ Rdual as boolean logic values, and forces the target reaction flux to be non-null.

Taking all of these constraints and searching for subset-minimal affectations of cr to {True}, we obtain the MCSs

disabling reaction targets T . Information for dual metabolic network construction and Minimal Cut Sets problem

is summarized visually with a complete formalization for genome-scale metabolic models in Figure 4.4. A simpler

general look at the framework will also be presented in Figure 4.11.

4.2 Getting back genes from reactions

Minimal Cut Sets might be used to get essential genes, and intervention strategies for metabolic engineering de-

scribed by gene-knockouts. To retrieve back the minimal cutting sets of genes from the MCSs of reactions, we

defined a separate logic problem. It makes use of the GPRs, which are commonly defined in genome-scale models,

according to the specification of SBML Level 3 with FBC Level 2 plugin.
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4.2.1 Defining a formalism for Minimal Sets of Genes

Let us characterize the set of all genes G, and the set of all Gene-Protein-Reaction association rules GPRA :

R 7→ f(P(G)), defining for each reaction r ∈ R a Boolean formula f : B|G| 7→ B from a given genes subset G ⊂ G.

G is a minimal set of genes (MSG) for a reaction subset R if G is subset-minimal and an affectation of all the genes

in G to true is enough to activate all the reactions in R, according to the GPR rules defined in GPRA.

In an EFMs context:

MSGR = {G ⊂ G | ∀r ∈ R, G satisfies GPRA(r) and ∄G′ ⊂ G (4.8)

such that ∀r ∈ R, G′ satisfies GPRA(r)}

For example, we say that G is a minimal set of genes for an EFM e if an affectation of at least all genes in G to

{True} is required to activate the EFM e.

The Boolean formulas described by GPRs are monotone, i.e. they do not include the not operator. These can be

changed to dual form. Considering variables G = {g1, . . . , gn}, the dual of a formula f written f(G) =
∧∨

gi is a

formula fd such that fd(G) =
∨∧

gi, with and and or operators switched.

The duality property between monotone Boolean functions is such that we can derive the minimal set of genes that

this time deactivates a set of reactions by simply computing the dual formulae of all GPR relations and obtaining the

dual set of GPR rules GPRAd(r) ∀r. Therefore, in a Minimal Cut Sets context, G is a minimal set of genes (MSG)

for a reaction subset R if G is subset-minimal and an affectation of all the genes in G to true is enough to deactivate

all the reactions in R, according to the GPR rules defined in GPRAd.

In an MCSs context:

MSGR = {G ⊂ G | ∀r ∈ R, G satisfies GPRAd(r) and ∄G′ ⊂ G (4.9)

such that ∀r ∈ R, G′ satisfies GPRAd(r)}

In both cases, this is the same enumeration problem. The problem of enumerating all minimal sets of genes is the

problem of enumerating all subset-minimal satisfying assignments of gene Boolean literals to {True}, which is in at

least NP-hard since determining a single satisfying assignment is NP-complete.

The dualization of monotone Boolean functions is a well-studied topic [258]. In many cases, one is interested in

necessary components for activation and deactivation of Boolean functions. The same duality property is used

for the link between EFMs and MCSs [259, 186, 187]. Thanks to the existing duality properties between Boolean

formulae, algorithms for joint generation of EFMs and MCSs exist. Related studies include [259, 155] and [S127].
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Minimal sets of genes or MSGs for the obtained reactions MCSs are potential gene knockouts. In order for our

subset-minimal computation of genes from reactions to be valid, it is required that each reaction is associated to at

least one gene. So for transporter reactions that are not associated to genes, we should add a dummy association,

which in fact corresponds to the either backwards or forwards direction of that reaction, since reactions are split for

MCSs computation.

In practice, forwards transporter reactions should also be assumed to be dependent on the presence of external

metabolites in the medium. Some transporter reactions are also known to be spontaneous and annotated as such

in their GPR association rules.

The full problem of getting back potential gene knockouts can be combined with network decompression, which

follows the same logic ideas, i.e. activating (resp. cutting) a reaction subset means activating (cutting) all (one) of

its reactions. It can be encoded as a logic program with subset-minimization heuristics in Answer Set Programming.

4.2.2 Illustrating Minimal Sets of Genes with examples

Let us define reactions {R1, R2, R3} and the following GPR rules:

R1→ g1 ∧ g2

R2→ g2 ∨ g4

R3→ g3

Figure 4.3: Minimal Sets of Genes. (A) An example of reactions and GPRs;
(B) Minimal Set of Genes g = {g1, g2, g3} for EFM e = {R1, R2, R3};
(C) Minimal Set of Genes g = {g2, g4, g3} for MCS c = {R1, R2, R3}

Intuitively, the minimal set of genes allowing the network to function is {g1, g2, g3}.

But to be sure, we should compute all minimal sets of genes for subsets of reactions. Searching for minimal

affectations to {True}, we obtain:

MSG{R1} = {{g1, g2}}, MSG{R2} = {{g2}, {g4}}, MSG{R3} = {{g3}}

Now let us take EFM e = {R1, R2, R3}. Minimal affectations to {True} gives: MSGe = {{g1, g2, g3}}

However, if e were to be an MCS c instead, one would be interested into minimal sets of genes that cut network

function, instead of minimal functioning units.
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To do so, we take the dual functions of all GPR rules before computing MSGs.

R1→ g1∨ g2

R2→ g2∧ g4

R3→ g3

This time, we obtain: MSG{R1} = {{g1},{g2}}, MSG{R2} = {{g2,g4}}, MSG{R3} = {{g3}}.

And therefore, MSGc = {{g2,g3,g4}}.

Let us further illustrate the use of MSGs for EFMs and MCSs using GPRs from E. coli core. This example displays

that fumarase (FUM), an enzyme with three isozymes catalyzing that function, is a harder enzyme to deactivate

than fumarate reducatase (FRD), an enzyme with four subunits. Indeed, for FRD, deactivating any of the subunits

is enough to cut its function, while for FUM, deactivating all three isozymes is required.

FRD7 =⇒ (frdA ∧ frdB ∧ frdC ∧ frdD)

FUM =⇒ (fumA ∨ fumB ∨ fumC)

reaction("FRD7"). reaction("FUM"). {gene("frdA")}. {gene("frdB")}. {gene("frdC")}.

{gene("frdD")}. {gene("fumA")}. {gene("fumB")}. {gene("fumC")}.

:- reaction("FRD7"); not gene("frdA"; "frdB"; "frdC"; "frdD").

:- reaction("FUM"); not gene("fumA"); not gene("fumB"); not gene("fumC").

#heuristic gene(G). [1, false]

The above ASP program yields 7 solutions, including 3 subset-minimal, corresponding to each FUM isozyme.

FRD7 =⇒ (frdA ∨ frdB ∨ frdC ∨ frdD)

FUM =⇒ (fumA ∧ fumB ∧ fumC)

reaction("FRD7"). reaction("FUM"). {gene("frdA")}. {gene("frdB")}. {gene("frdC")}.

{gene("frdD")}. {gene("fumA")}. {gene("fumB")}. {gene("fumC")}.

:- reaction("FRD7"); not gene("frdA"); not gene("frdB"); not gene("frdC"); not gene("frdD").

:- reaction("FUM"); not gene("fumA"; "fumB"; "fumC").

#heuristic gene(G). [1, false]

The above ASP program yields 15 solutions, including 4 subset-minimal, corresponding to each FRD subunit.
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Figure 4.4: Diagram of the problem of computing MCSs and its formulation in a comprehensive view. Minimal Cut
Sets are expressed as a dual problem to Elementary Flux Modes. To make use of genome-scale metabolic models

(GSMMs), network compression is required, and solutions are converted back to genes using GPRs.
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4.3 Application to S. aureus and P. aeruginosa

Our final aspefm application of choice will be to a consortium of highly pathogenic bacteria. Staphylococcus aureus

and Pseudomonas aeruginosa are opportunistic pathogens commonly associated with the skin microbiome and

water sources, respectively. The two problematic bacteria are responsible for an estimated 1+ million deaths yearly

due in part to widespread antimicrobial resistance [10]. S. aureus and P. aeruginosa are frequently co-isolated from

chronic wounds and cystic fibrosis lungs [260, 11]. Their interactions such as metabolite crossfeeding [261, 262]

have been associated with higer resiliancy to antibiotics and worse patient outcomes [263, 264].

The complex nature of their interactions with other bacteria and the environment has motivated a growing number of

studies involving consortia of these pathogenic bacteria, whether it is through in vivo and in vitro models [265, 266],

or in silico models [267, 268]. Better informed and therefore more effective intervention strategies for treating S.

aureus and P. aeruginosa infections could save millions of lives and billions of dollars in healthcare expenses.

Staphylococcus aureus is a Gram-positive bacterium, member of the Bacillota phylum and of the Staphylococcus

genus. It is known for its cocci form, in circular shape. It is often positive for catalase and it is a facultative anaerobe:

it can grow without the need for oxygen. Pseudomonas aeruginosa is a Gram-negative bacterium, member of the

Pseudomonadota phylum and of the Pseudomonas genus, a catalase positive organism and a de facto aerobe, it

can grow in anaerobic conditions but it is rather rarely observed to do so. It is known for its rod-shaped form. Both

bacteria perform anaerobic respiration using nitrate as an electron acceptor in place of oxygen.

Gram-positive and Gram-negative are indicative of the type of peptidoglycan-made cell wall, surrounding the bac-

terial membrane. Catalase positive means the bacterium possesses the catalase enzyme, in part used to derive

hydrogen peroxide from amino acids, which can then be converted to oxygen. Thus, one can see the two bacteria

present characteristics that might be complementary, for instance: Pseudomonas aeruginosa might be performing

oxidative respiration metabolism while Staphylococcus aureus would function with fast anaerobic glycolysis, and so

on. Also, the different types of peptidoglycan cell walls make it for more difficult conjoint treatments.

The mucus formed by Pseudomonas aeruginosa is often considered a major accelerator of the formation of biofilms

and a therapeutic target [S128]. P. aeruginosa is considered a multidrug resistant pathogen, and acts more with

the role of a catalyst in infections, with lessened virulence, rather than a fast-growing deadly strain like S. aureus

[267]. In comparison, S. aureus as a bacteria presented phenotypes of antibiotic tolerance until recently, where

such strains stopped evolving due to selection pressure caused by overusage of antimicrobials [10].

The topic of antimicrobial resistance is very much related to our subject of studying metabolic interactions between

the two bacteria. I created an animatic slideshow story illustrating the need for metabolic modellers for better

understanding the bacteria and coming up with strong therapeutic solutions in this era of antibacterial overusage.

The so-called ’digital story’ can be found here: https://eugloh-network.pageflow.io/maxime-mahout.

Concerning the bacteria’s metabolism, it is now known that Pseudomonas aeruginosa presents a reverse diauxie

phenotype, or reverse carbon catabolite repression (rCCR), which is the inverse of the ’glucose-first’ phenotype

from E. coli and S. aureus [269, 270, 271], termed classic carbon catabolite repression (cCCR) [271]. For example,
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in McGill et al [271], the researchers present a metabolic model analysis that fits well to their experimental obser-

vations, that is, that the order of growth medium substrate preference for P. aeruginosa is the following: (1) amino

acids, (2) citrate, (3) succinate, (4) lactate, (5) acetate and in last, (6) glucose.

S. aureus is characterized by its complex regulation, surprisingly involving a non-coding RNA as one of the central

parts, RNAIII [S129]. The two central protein regulators of S. aureus are CcpA, reacting to glucose and other

classical carbon sources (the regulator is involved in cCCR) [S130, S129, S131], and CodY, reacting to branched-

chain amino acids [S132, S133] and GTP [272]. Transcriptional regulation for P. aeruginosa and S. aureus has not

yet been completely elucidated and is well less studied than the reference bacterial organism E. coli, meaning it can

hardly be incorporated in systems biology modelling methods as of now. There have been attempts to elucidate the

transcriptional regulation of S. aureus using an approach based on analysis of transcriptomic data and FBA-related

methods for validation [S134, S135].

Various co-living mechanisms appear in biofilms between the two bacteria. One of them is the release of pyocyanin

by P. aeruginosa, in order for P. aeruginosa to limit S. aureus growth [267]. In a chronic wound, other mecha-

nisms include spatial adaptation towards oxygen presence – for P. aeruginosa in particular, while S. aureus can

colonize anoxic regions of the wound. For instance, a nonexhaustive summary of the chronic wound model and its

corresponding discoveries presented by Phalak et al in 2016 [267] is presented in Figure 4.5.

Finally, the bacteria are involved in various metabolite exchanges, including syntrophy or metabolite cross-feeding,

a term which is used when bacteria are thought to be cooperating with each other in a symbiosis way. This is the

core of our study in this chapter of the thesis. We aim to present a new application of MCSs, able to reveal novel

metabolite exchanges. To do so, we devise a MCSs analysis on a model of a consortium of these two bacteria: S.

aureus and P. aeruginosa. Finding therapeutic targets to the whole consortium model would result in therapeutic

targets that prevent growth and metabolite exchanges of both bacteria.

4.3.1 Genome-scale metabolic model selection

Several models were available for Staphylococcus aureus and Pseudomonas aeruginosa. For example, the N315

model of Staphylococcus aureus from 2005 [164] and the iMO1086 Pseudomonas aeruginosa PAO1 model from

2008 [273] are both very well-curated central metabolism models and would have made for very good choices.

Instead though, we opted to choose more recent models, and models that contained a large number of reactions, in

order to illustrate aspefm’s capacity to handle large-size models.

The choice for the Staphylococcus aureus model was made according to a study by Renz and Dräger [170]. Lots

of pre-processing and curating work was done to make models available for use, notably in the case of the P.

aeruginosa one, which had unreadable ModelSEED IDs, which are very hard to work with [36]. We also worked on

having all the GPRs in the SBML models be associated to UniProt entries, which we will use later in the analysis.
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Figure 4.5: P. aeruginosa and S. aureus biofilm model figure redrawn from Phalak et al, 2016 [267] and expanded
upon. The P. aeruginosa and S. aureus catabolism phenotypes: rCCR (reverse carbon catabolite repression) and
cCCR (classic carbon catabolite repression) are presented, as explained in McGill et al, 2021 [271].P. aeruginosa
mostly colonizes regions towards the oxygen using aerotaxis, and manages its survival by secreting pyocyanin to

reduce S. aureus strain growth.

We used metabolomics studies to refine the Staphylococcus aureus models exchanges lower and upper bounds,

including the ones in [S136, S137, S138]. This revealed blocked exchange bounds for S. aureus metabolism

byproducts in the original iYS854 such as for example Formate and Butanediol. For Pseudomonas aeruginosa,

we performed less curation, and trusted the modellers’ exchange bounds.

As well, we corrected the iYS854 model, by adding back transporters for the main purines: adenine and guanine.

The existence of such a transporter, while it has seemingly not been conclusively proved, according to our last

literature review, it should be supported by evidence of response from the bacterium to guanine depletion [272].

4.3.2 Devising a MCSs analysis on S. aureus and P. aeruginosa

In order to help understand the multilayered MCSs analysis we perform on S. aureus and P. aeruginosa, we will

detail our two main hypotheses: Hypothesis 4.3.2 and Hypothesis 4.3.1. We also provide definitions related to the

analysis in Definition 4.3.1 and a related illustration in Figure 4.12.

To clarify, we will be comparing our tool aspefm with two other methods: cnapy and cobamp. These tools are

MILP-based, and they perform well on the so-called MCSs of small size. On the other hand, we believe that, while

our tool performs worse on small-size MCSs, it would perform better on the large-size ones.
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And in fact, we believe that the so-called MCSs of large size are the ones that justify the use of such an expan-

sive computation tool such as a MCSs enumerator. To illustrate that second belief, we show an application of

our constraint-based methodology to interspecies metabolite exchanges that might circumvent lethal phenotypes

conferred by knock-out interventions, using the large-size solutions.

Definition 4.3.1 – Minimal Cut Sets-related definitions

On genome-scale models, we define as MCSs of small sizesmall sizesmall sizesmall sizesmall sizesmall sizesmall sizesmall sizesmall sizesmall sizesmall sizesmall sizesmall sizesmall sizesmall sizesmall sizesmall size the biomass-targeting MCSs of size 3 or less.

This is due to the fact these MCSs could be computed with iterative methods such as synthetic lethals (SLs)synthetic lethals (SLs)synthetic lethals (SLs)synthetic lethals (SLs)synthetic lethals (SLs)synthetic lethals (SLs)synthetic lethals (SLs)synthetic lethals (SLs)synthetic lethals (SLs)synthetic lethals (SLs)synthetic lethals (SLs)synthetic lethals (SLs)synthetic lethals (SLs)synthetic lethals (SLs)synthetic lethals (SLs)synthetic lethals (SLs)synthetic lethals (SLs)

computation instead. Contrarily, we define as MCSs of large sizelarge sizelarge sizelarge sizelarge sizelarge sizelarge sizelarge sizelarge sizelarge sizelarge sizelarge sizelarge sizelarge sizelarge sizelarge sizelarge size the biomass-targeting MCSs of size 4 or

more. These are the MCSs we are interested in, as their number is exponentially higher as the size requested

augments. Our study aims to constrain the solution space of these MCSs to obtain elements giving us insight

for therapeutic applications. In particular, we decide to construct a consortium modelconsortium modelconsortium modelconsortium modelconsortium modelconsortium modelconsortium modelconsortium modelconsortium modelconsortium modelconsortium modelconsortium modelconsortium modelconsortium modelconsortium modelconsortium modelconsortium model of our two bacteria

of interest, and look at metabolite exchangesmetabolite exchangesmetabolite exchangesmetabolite exchangesmetabolite exchangesmetabolite exchangesmetabolite exchangesmetabolite exchangesmetabolite exchangesmetabolite exchangesmetabolite exchangesmetabolite exchangesmetabolite exchangesmetabolite exchangesmetabolite exchangesmetabolite exchangesmetabolite exchanges allowing recovery of growth, which are highlighted whenever

bacterial models exchange reactions are present within MCSs.

If the general idea of the analysis is not clear from these definitions and hypotheses, we suggest getting an early

look at the following figures: Figure 4.10, Figure 4.9, Table 4.1, Figure 4.11, Figure 4.12 before following the article’s

natural reading order. This final analysis done with aspefm highlighted many biological results of significant im-

portance, including highlighting that some actively researched antimicrobial targets could in fact be nullified by

metabolite exchanges, and recuperating targets that were most likely to target both bacteria at the same time

using artificial-intelligence powered protein structure predictions. It is a very complete work, essential to show the

metabolic modelling community that the constraint-based approach not only makes EFMs and MCSs calculations

possible thanks to powerful computation methods such as aspefm, but also required in the light of driving biological

discovery and developing new therapeutic treatments.

Hypothesis 4.3.1 – Antibacterial treatments might be nullified by interspecies metabolite exchanges

Oftentimes, pharamaceutical applications to biofilm treatments in chronic wound infections are studied on a

pathogen by pathogen level, forgetting the ecological implications of pathogens forming biofilms together to

solidify their antimicrobial resistance capacities. For the purpose of this systems biology analysis, we propose

to find antibiotic treatment that would target both bacteria at the same time, rather than only a single bacterium.

To do so, we reveal that there are in fact metabolite exchanges that might nullify lethal phenotypes conferred

by intervention strategies studied on a single-species level. This is done by studying the small-size MCSs

of single species, giving gene knockout interventions, on a larger-size scale using large-size MCSs of the

consortium-level.
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Hypothesis 4.3.2 – aspefm specializes in enumerating MCSs of large size

Based on several observations, both on small-size, toy models, and on large-scale, genome-scale models,

we believe that our tool, while struggling with smaller-size MCSs, performs better than its concurrence, MILP-

based tools, on large-size MCSs. To illustrate that belief, we build an astonishingly large-sized model for

EFMs/MCSs computation standards: a consortium model of around three thousand reactions, result of the

combination of two models of about one and a half thousand reactions. Surprisingly, we will show that aspefm

handled the consortium model perfectly fine, and was able to enumerate solutions regardless of their size.

This very promising result will provide the foundation for future applications of aspefm, whether for biologically

relevant MCSs, or for biologically relevant EFMs, the latter which are usually composed of many reactions.

4.3.3 Introducing our MCSs analysis

From there on, I am presenting our article titled "Logic programming-based Minimal Cut Sets reveal consortium-

level therapeutic targets for chronic wound infections", which is in publication process [274]. I present the article’s

introduction as is, as I belive it presents a great summary of the methods detailed in this thesis. Unlike for the two

other articles, I kept the biology field way of putting ’Results’ before ’Methods’, as in the case of this article the main

biological results should be at the front, and I believe the methods alone do not make sense without their application

to the results.

Abstract: Minimal Cut Sets (MCSs) identify sets of reactions which, when removed from a metabolic network, dis-

able certain cellular functions. The method has been applied to identify essential genes, and to guide the engineer-

ing of organisms for desired phenotypes. The traditional search for MCSs within genome-scale metabolic models

(GSMMs) targets cellular growth, identifies reaction sets of varying sizes which result in a lethal phenotype if dis-

rupted, and retrieves a list of corresponding gene, mRNA, or enzyme targets using Gene-Protein-Reaction (GPR)

association rules. Using the dual link between MCSs and Elementary Flux Modes (EFMs), our logic-programming

based tool aspefm was able to compute MCSs of any size from GSMMs in acceptable run times. The tool demon-

strated better performance than the mixed-integer linear programming method used by cnapy, identifying more than

twice as many solutions in the same 1.5 day run time.

We applied the new MCSs methodology to a medically-relevant consortium model of two crossfeeding bacteria,

Staphylococcus aureus and Pseudomonas aeruginosa, which were represented by well-curated GSMMs. aspefm

constraints were used to bias the computation of MCSs toward exchanged metabolites that could complement

lethal phenotypes in an individual species. We found that crossfeeding inosine could complement lethal reaction

knock-outs in the purine synthesis, glycolysis, and pentose phosphate pathways of both bacteria. Finally, the results

were used to derive a list of promising enzyme targets for consortium-level therapeutic applications that cannot be

circumvented via interspecies metabolite exchange.
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Introduction: Constraint-based metabolic modelling (CBM) is an emerging systems biology field involving the com-

putational reconstruction and analysis of biological mechanisms at multiple levels [91]. At its core are metabolic

networks, hypergraphs described by a set of metabolites and reactions linked to each other by stoichiometric co-

efficients stored in a stoichiometric matrix. The constraint-based modelling approach calculates metabolite fluxes

based on the assumption that the system is at steady-state; therefore, intracellular metabolite production and con-

sumption are balanced over time relevant time intervals.

Flux balance analysis (FBA) is one type of CBM that uses linear optimization to identify solutions to metabolic

models, based on an objective function which often involves maximizing the flux through a biomass synthesis

reaction [71, 119]. The FBA solution is a flux distribution that predicts cellular phenotype including which enzymes

are active and what the magnitude of the flux is through each enzyme. The biomass synthesis reaction accounts

for cell growth as observed experimentally [116]. FBA and derived methods are used to make in silico phenotype

predictions based on changes in the growth medium or based on altering of enzyme activity through gene knockouts

or recombinant interventions [161].

Elementary Flux Mode (EFM) analysis is another CBM method that performs an exhaustive enumeration of the

edges of the metabolic solution space defined by the stoichiometric matrix; FBA solutions are nonnegative linear

combinations of EFMs [236]. The number of EFMs grows exponentially in relation to the number of reactions;

counting all EFMs has been proven to be #P-hard [134, 135]. Consequently, enumeration of EFMs from large

metabolic models with over 100 reactions is challenging, requiring special computational methods [144], biologi-

cal constraints such as transcriptional regulation [143] and thermodynamic data [275], and careful model network

compression [109, 126, 174].

Building from the set of metabolic reactions encoded in the genome, and progressing to the intricate mechanisms at

the protein and enzyme level, CBM contributes to the description of a wide variety of cellular processes. Genome-

scale metabolic models (GSMMs), large-scale constraint-based metabolic models computationally generated from

genomes of interest are now the norm [92, 276], thanks to increased availability of data and computational power.

GSMMs are well suited for identifying putative drug targets through predicting gene and metabolite essentiality

[277, 278].

GSMMs have been applied to analyze drug targets in cancerous cells [279, 280] and to treat Pseudomonas aerugi-

nosa infections [281]. The methods identified essential reactions and synthetic lethals (SLs) [175]. Synthetic lethals

refers to combinations of gene-deletions or enzyme interference targets which prevent growth. While the term ini-

tially refered to pairs of genes, it is now used to describe n-tuples of reaction targets. The synthetic lethals may

explictly consider both the metabolic potential of the organism and the role of the nutritional environment provided

by the extracellular medium [176].

Improved algorithms for computing synthetic lethal strategies have been proposed to speed up the calculation

process, such as Fast-SL [177] and Rapid-SL [178]. The computation of synthetic lethals essentially deals with

a combinatorial exploration of every possible n-tuple of reactions. Thus on large networks of over a thousand

reactions, computation runs slower as the size of n-tuples increases, and becomes impracticable if n-tuples of size
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over 4 are of interest [177].

Another method proposed for identifying synthetic lethals, whether n-tuple size is under or over 4, is the computation

of Minimal Cut Sets (MCSs), with the biomass synthesis reaction as a target reaction. MCSs are traditionally

defined as the ’Hitting Sets’ of Elementary Flux Modes (EFMs) [180, 181], and are an exhaustive way of exploring

robustness of a network. Setting a certain reaction as target for inactivation, MCSs define all sets of reactions

capable of preventing flux through the target reaction [183]. In particular, Minimal Cut Sets have been formalized for

metabolic engineering and recombinant strain optimization [182]. Alternately, MCSs have demonstrated remarkable

performance identifying synthetic lethals in cancer cells [184].

MCSs suffer the same computational time hindrances as EFMs. The number of possible MCSs grows exponential

with the number of reactions [185]. Interestingly, it has been proven that MCSs can be enumerated as the EFMs of a

so-called dual metabolic network [186, 187]. As a result, similarly to how Mixed-Integer Linear Programming (MILP)

methods were developed for computing the shortest EFMs of a metabolic network, [140, 150], MILP methods for

computing the shortest MCSs have been developed [153, 154].

Furthermore, it might be necessary to convert the obtained MCSs into sets of target genes or proteins for biological

interpretation. Methods have been developed to incorporate multilevel data, namely the Gene-Protein-Reaction

association rules (GPRs) from GSMMs, into the stoichiometric matrix [162]. These solutions have been repurposed

for the MCSs computation [184, 188, 189].

Here, we develop a new method for calculating and analyzing MCSs using our aspefm tool [89]. The aspefm

program is a SAT-based method designed to compute subsets of EFMs while respecting user-defined constraints.

It differs from the Double Description method, implemented in EFMTool [139, 127], which needs to enumerate all

solutions before generating results, and from MILP-based methods, implemented in CNA [149], cnapy [138] and

cobamp [151], which perform minimization in the size of the reaction set. We have extended the functionality of

aspefm to the computation of MCSs.

Throughout this work, we distinguish MCSs of small size (reaction n-tuples of size 3 or less including essential

reactions, synthetic lethal pairs and synthetic lethal triplets) from MCSs of large size (defined here as reaction n-

tuples of size 4 or more). The MCSs of small size are usually the desired reaction sets, they are readily calculated

by MILP methods and SLs computation algorithms, and effortlessly converted to gene and enzyme targets using

GPRs. On the other hand, the MCSs of large size are less well-studied since they would not necessarily correspond

to intervention targets. However, in this study we argue MCSs of large size are critical to study network robustness

and interactions. We intend to bridge the gap between these two types of MCSs with our analysis.

aspefm successfully processed an aggregate model of two GSMMs totalling over three thousand reactions: a

consortium model of bacteria S. aureus and P. aeruginosa. The tool efficiently identified solutions of interest, using

a wide variety of constraints, in acceptable computation times despite the size of the consortium metabolic network.

The aspefm application identifies potential, nonobvious, interspecies metabolite exchanges essential for consortium

growth and thus identifies promising therapeutic targets for controlling the problematic pathogens.
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4.4 Results of our MCSs analysis

4.4.1 Overivew of genome-scale metabolic models for analysis of single species and

consortium

Manually curated genome-scale metabolic models (GSMM) of Staphylococcus aureus and Pseudomonas aerugi-

nosa were selected for our analysis. The S. aureus GSMM, iYS854, was developed based on S. aureus str. JE2

[163]. The GSMM has been used for assessing the validity of experimentally determined transcriptional regulation

modulons of S. aureus [S134, S135]. The model has been graded as the most accurate S. aureus GSMM currently

available, according to a study by Renz and Dräger [170].

The P. aeruginosa GSMM iPae1146 is based on P. aeruginosa strain PAO1 [282]. The GSMM was used for an

high-throughput essentiality analysis [281]. In that study, the model was predicted to have around 97 % accuracy

for predicting gene essentiality during growth on Lysogeny Broth (LB) medium.

Both metabolic models were pre-processed and curated for our analysis, as detailed in the Methods. The resulting

iYS854 model includes 1454 reactions, 1338 metabolites, and 866 genes, while the resulting iPae1146 model

includes 1495 reactions, 1283 metabolites, and 1148 genes.

The models were analyzed in an in silico extracellular environment defined by CSP chemically-defined medium

[269], on which S. aureus and P. aeruginosa can grow as biofilms in vitro [271]. The CSP medium was designed to

serve as a simplified analog of chronic wound exudate. The medium was chosen as the base for all predictions of

growth and consortial crossfeeding in our study.

A consortium model consisting of P. aeruginosa and S. aureus was built from iPae1146 and iYS854 by adding

metabolite exchange reactions with a shared control volume containing the growth medium, as detailed in

Figure 4.10. The newly created metabolic network contains 3241 reactions and 2752 metabolites. When the con-

sortium model was constrained by an extracellular environment defined by CSP medium, a total of 57 metabolites

were classified as ’external’ substrates. 46 external substrates were available to both S. aureus and P. aeruginosa,

one metabolite was exclusively available to P. aeruginosa: citrate, and ten metabolites were exclusively available to

S. aureus including some vitamins and purines.

The network compression process, which is required for MCSs computation, excluded 1296 blocked reactions from

the CSP-constrained consortium model and returned a compressed consortium network of 1062 reactions and 600

metabolites. Statistics and results from the construction and compression of the consortium model, and of the

individual species models iYS854 and iPae1146, are reported in Table 4.1.

As well, the numbers of MCSs of small size for the consortium and individual species models are reported in

Table 4.1. 583 MCSs of size three or less were found for the single species iPae1146 model; 938 MCSs for the

single species iYS854 model. Two single reactions are essential to the consortium-level model, the uptake of ferrous

ions and the secretion of glycolate. These two conditions are necessary for the biomass synthesis reactions of both

models.
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4.4.2 aspefm calculates consortium-level models MCSs regardless of the size of the re-

action set

Figure 4.6: Number of MCSs computed by each tool in a simulation on the consortium model set with a time limit
of 1.5 days, and limited to MCSs of below 16 reactions. A: Size of MCSs computed by aspefm, B: Size of MCSs

computed by cnapy, C: Number of MCSs computed by each tool. Heights correspond to average numbers for five
program executions, error bars represent standard deviation between executions for figure C, and half of standard

deviation for A and B.

The performance of our aspefm tool was evaluated by computing MCSs from the compressed consortium model

comprised of 1062 reactions. The target reactions for the simulation were the biomass synthesis reactions for both

single species. The only constraints for the simulation were to identify MCSs of reaction size 16 or less and a

maximum run time of 1.5 days.

The performance of aspefm was compared with cnapy [243] and cobamp [151], both are MILP-based MCSs enu-

meration methods. For each tool, five executions were launched and averaged in Figure 4.6. On average, aspefm

identified more than twice as many MCSs as cnapy in the 1.5 day run time. aspefm averaged 3663.8 MCSs while

cnapy averaged 1437.2 MCSs. Both aspefm and cnapy were able to enumerate MCSs regardless of the reaction
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set size, while cobamp was heavily hindered by its forced iterative enumeration approach which started with the

smallest cut sets; the method only identified around 196 MCSs on average. Upon decompression, the MCSs found

by aspefm and cnapy reached the order of 105 MCSs, illustrating the necessity of network compression.

The MCSs identified using aspefm sampled solutions ranging from 1 to 16 reactions with the highest frequency

at a reaction size of 5 (Figure 4.6). Meanwhile, the MCSs identified using cnapy were biased toward smaller

reaction numbers and mainly enumerated solutions with 2-7 reactions with the highest frequency occuring at 3

reactions (Figure 4.6). We believe these differences to be explained by the SAT-based nature of our aspefm logic

programming tool. aspefm enumerates solutions regardless of their size, while the MILP approaches used by cnapy

and cobamp find themselves mainly limited to smaller sets of reactions, of size 3 or less. aspefm is thus the tool of

choice for MCSs of larger size.

4.4.3 MCSs reveal robustness of consortial metabolite exchanges

Medical infections comprised of both S. aureus and P. aeruginosa can result in worse patient outcomes and can be

more difficult to treat than monocultures. aspefm can identify metabolite exchanges between species that would by-

pass therapeutic strategies targeting only a single species. MCSs of small size from the single species models were

tested for lethality at the consortium level to determine if directed crossfeeding interactions or passive metabolite

exchange through metabolite leaking could circumvent single species lethalities. Of the 583 MCSs of size three

or less for P. aeruginosa, 68 were no longer cut sets at the consortium level based on metabolites secreted by S.

aureus. Meanwhile, of the 938 MCSs of small size for S. aureus, 199 cut sets were no longer effective due to

metabolite exchanges from P. aeruginosa.

The lethal MCSs that were nullified due to metabolite exchanges were verified through additional analyses of the

consortium-level model. To accomplish this, MCSs were calculated using aspefm by setting the reactions from

the original MCSs as ‘wanted reaction‘ constraints while all reactions unnecessary for metabolite exchange as

‘unwanted reaction‘ constraints (see Methods). The verifying MCSs were limited to eight or fewer reactions and

a time limit was set to 1.5 days for each computation. In total, 531 compressed consortium model MCSs were

computed, ranging in size from 2 to 8 reactions, with the mean and median being 6 reactions and the highest

frequency being 7 reactions.

For instance, a MCS of size three that exists for a single species model might be nullified by five different metabolite

exchange reactions, resulting in a consortium model MCS of size eight. Theoretically, five interventions on ex-

changes with the other bacterium would be required in order for the original MCS to regain lethality. Alternatively, if

only one metabolite exchange reaction were required to nullify a cut set, then only a single theoretical intervention

would be necessary to maintain the lethality of the original MCS.

For each bacterium, the identity of the exchanged metabolites in the consortium model and the number of single-

species MCSs they suppress are reported in Figure 4.7. The majority of cut sets nullified due to metabolite ex-

changes involved purine metabolism, pentose phosphate pathway, and glycolysis. Inosine was a pivotal metabolite

in many of those functions, it was able to complement almost half of the identified cut sets for each bacterium.
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Figure 4.7: Number of single species MCSs recovering growth based on metabolite exchanges from consortium
partners. Analysis limited to single-species MCS of reaction size 3 or smaller. A: MCSs of P. aeruginosa nullified

by extracellular metabolite import from S. aureus, B: MCSs of S. aureus nullified by extracellular metabolite import
from P. aeruginosa. Abbreviations: Acgam: acetylglucosamine, d: desoxy.
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Inosine nucleosidase can transform the metabolite into hypoxanthine – a purine – and ribose, which can support

many central metabolism transformations.

Overall, purines play a central role in these metabolite exchanges allowing the recovery of growth. It is of note that

S. aureus contains more purine-related MCSs due to the putative presence of purine transporters, as opposed to P.

aeruginosa which does not possess genes for such enzymes [S139]. Other notable metabolite exchanges shared

by the two bacteria include acetylglucosamine, ribose, fructose and glycerol, complementing glycolysis functions,

and urea-related metabolites, complementing urea cycle metabolism functions.

The enzyme N5,N10-methylenetetrahydrofolate dehydrogenase-cyclohydrolase, catalyzing methylenetetrahydrofo-

late dehydrogenase and methenyltetrahydrofolate cyclohydrolase, has been studied as potential drug target for P.

aeruginosa [283]. However, these reactions, identified as essential on the single species model, are complemented

by purines and histidine exchanged by S. aureus on the consortium-level model.

Although the majority of the single-species-level MCSs corresponded to consortium-level MCSs of large size: most

recovering growth by at least two distinct possible metabolite exchanges, we also found a few small sized MCSs

outliers, including glucosamine-6-phosphate synthase.

Interestingly, while glucosamine-6-phosphate synthase was identified as an essential reaction in both single species

models, the lethal phenotype conferred by deleting this reaction would be recovered by a simple exchange of

acetylglucosamine between the bacteria. Therefore, efforts using therapeutic agents which inhibit this enzyme

[S140, S141] would also need to consider the potential role of acetylglucosamine found in the environment or

leaked by bacteria in the consortia which are not inhibited by the therapeutic agent.

4.4.4 MCSs identify multi-species, consortium-level intervention targets

The effects of therapeutic agents that target a single species can, in some cases, be bypassed through metabolite

exchange from other consortia species. From single-species MCSs, our analysis illustrated how specific consortium-

level metabolite leakage or crossfeeding events could enable growth recovery. This identified MCSs that should be

excluded from further analysis, while the remaining MCSs could be more promising targets for therapeutic interven-

tion.

In order to retrieve consortium-level intervention targets, we selected MCSs that were mutually shared by the two

bacteria. As well, the corresponding enzyme targets were retrieved from MCSs for protein structure studies. It is

hypothesized that proteins with similar structure could be targeted simultaneously by the same therapeutic agent

and thus target the consortium by conjointly blocking both S. aureus and P. aeruginosa. Out of 515 iPae1146 MCSs

and 739 iYS854 MCSs of small size that were not nullified by metabolite exchanges, 65 MCSs were shared by both

bacteria (Table 4.1).

The structures of the proteins associated with the shared 65 MCSs were analyzed for similarity. The protein struc-

ture analyses ruled out several MCSs since the target enzymes for S. aureus and P. aeruginosa were not deemed

similar enough for concurrent therapeutic intervention. Enzymes were represented by their GSMMs gene assign-
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ments, ie. GPRs (Gene-Protein-Reaction gene products), and were retrieved from MCSs with a logic programming

extension of our aspefm procedure. Interspecies relative enzyme structure similarity was measured by Root Mean

Square Deviation (RMSD) of atom positions in Ångström, protein structure alignments were computed on AlphaFold

structure predictions [43]. The remaining shared MCSs were filtered using an additional criterion: the S. aureus and

P. aeruginosa protein structures were compared to any potential human homologues. MCSs with enzymes that

were deemed too similar to human homologues were removed. As a result, a ranking of the most promising MCSs

for antibiotics discovery in human is presented in Figure 4.8.

From the 65 MCSs common to both bacteria and their corresponding enzymes, 23 of them were considered good

potential drug targets for elimination of the bacterial consortium in human (Fig. 3B). The most promising enzymes

to simultaneously target both S. aureus and P. aeruginosa included thirteen enzymes from nucleotide metabolism,

lipid synthesis, aromatic amino acid biosynthesis, bacterial cell wall construction, amino sugar metabolism and folate

biosynthesis (Figure 3A and 3C).

At the top of the ranking, beta-ketoacyl-ACP synthase III had high protein structure similarity between the two

bacteria (interspecies RMSD: 1.21 Å) and fortunously, there did not seem to be human homologues. However,

there exist functionally related isozymes beta-ketoacyl-ACP synthase I and II [S142] with high similarity with human

homologues, which were thus excluded by our procedure.

Some example cell wall synthesis enzymes include undecaprenyl-disphosphatase (interspecies RMSD: 1.37) and

UDP-N-acetylmuramoyl-L-alanine synthetase (RMSD: 1.81). Both enzymes are found only in the bacteria and not

in human. Amino sugar metabolism included two enzymes for which there are human homologues: GlmU [S143]

and phosphoglucomutase [S144], however the protein structures were considered dissimilar enough by our filtering

procedure for these enzymes to be considered targetable.

Other enzymes with high therapeutic potential to treat S. aureus and P. aeruginosa consortia are four enzymes

from the aromatic amino acid biosynthesis pathway: chorismate synthase (RMSD: 1.22), 3-phosphoshikimate 1-

carboxyvinyltransferase (RMSD: 1.35), shikimate kinase (RMSD: 1.91) and 3-dehydroquinate synthase (RMSD:

2.03). This biosynthesis pathway is not present in mammals [S145]. In fact, an inhibitor of 3-phosphoshikimate

1-carboxyvinyltransferase, glyphosate, is commonly used as an herbicide [S146].

Additionally, out of the 23, 11 environment-dependent, bacterial-only enzyme targets were identified (Fig. 3B).

These enzymes are derived from 2-3 reaction MCSs containing a transporter for an amino acid found in the growth

medium and an amino acid biosynthesis reaction, which becomes essential in absence of that amino acid. Were

the bacteria to be grown in an environment lacking the amino acids associated with these MCSs, an inhibitor of the

enzyme targets would be effective.

These MCSs provide detailed, systemic insight into which amino acid biosynthesis reactions are the most important

for S. aureus and P. aeruginosa growth, and therefore which amino acids biosynthesis pathways are the most

promising targets. Our eleven MCSs correspond to six important amino acids, among two classes, aromatic amino

acids (tryptophan, histidine, phenylalanine) and branched-chain amino acids (isoleucine, leucine, valine). These
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Figure 4.8: Consortium MCSs estimated to be targetable with a single ligand after: elimination of cut sets
recovering viability through metabolite exchanges, selection of MCSs with metabolic functions in common to both
bacteria, elimination of P. aeruginosa and S. aureus targets whose protein structures do not match. From the 23
MCSs targetable in human (in B), only 12 are independent of the growth medium (shown in A and C). Enzymes
indicated with ‘H‘ were found to have human homologues. A: Ordinates labels show targetable enzymes. Bars

heights are Root Mean Square Deviation (RMSD) of atom positions, measured in Ångström, resulting from protein
structural alignment of GPR pairs. B: Categories and pie distribution of MCSs potentially targetable in human.

C: Associated metabolism groups and pie distribution for each targetable enzyme in A.
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essential pathways are in accordance with previous studies and might be druggable [S147]. More insight into the

growth medium dependent MCSs, as well as structure alignments and human homologues, is given in Figure 4.13

and Figure 4.14.

4.5 Methods of the MCSs analysis

Minimal Cut Sets were computed on Staphylococcus aureus and Pseudomonas aeruginosa GSMMs iYS854 and

iPae1146 , as well as on a consortium model containing the two models and reactions to model crossfeeding. The

tools used are either aspefm, our tool, for which we detail the methods further, or cnapy and cobamp. The Python

module representing cnapy is StrainDesign [243]. We provide code for the analysis at https://github.com/maxm4/

paSAmcs/.

An overview of the complete analyzes performed in Table 4.1, Figure 4.7 and Figure 4.8 is found in Figure 4.9. MCSs

of small size of P. aeruginosa and S. aureus were tested for growth recovery on the consortium model. For MCSs

which lost their lethal phenotype on the consortium, MCSs of large size were retrieved explaining which metabolite

exchanges allow recovery of growth. For the remaining MCSs of small size, MCSs in common between the bacteria

were retrieved and analyzed for the search of possible new antibacterial agents. This analysis is further detailed in

Figure 4.11, Figure A.3, Figure A.4.

4.5.1 Metabolic models pre-processing and curating

Both models went into a first phase of pre-processing. iPae1146 did not adhere to the new reaction and metabolite

identifiers standards defined by the BiGG Models Database from UC San Diego [37], and instead used SEED

compounds and SEED reactions names [36], which would have made working with the model overly impractical, so

the identifiers were replaced. The Equilibrator Python API helped with making assocations between SEED identifiers

and BiGG identifiers [19].

A pyocyanin transporter was added to iPae1146, as P. aeruginosa is known to secrete pyocyanin in presence of

S. aureus [284, 267]. As well, new transporter reactions were added to iYS854 to match the Chemically Defined

Medium used in Halsey et al. [285], and such that the well-studied WTA-null non-lethal Staphylococcus aureus

mutant ∆tarO could be accounted for [286], in order to resolve the ambiguities raised by Seif et al [163].

Accuracy of the models was estimated using the MEMOTE community tool for assessing GSMM quality [169].

iPae1146 scored low at 23 %, mainly due to its lack of annotations, while iYS854 scored at 75%. In addition,

network topology issues were reported in Table 4.1. The iPae1146 model contains a smaller number of exchange

reactions, about twice as many blocked reactions, and a significantly higher number of reactions implicated in

stoichiometrically balanced cycles.
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Metabolic models P.A. S.A. Consortium

MODEL STATISTICS

Number of reactions 1495 1454 3241

Number of metabolites 1283 1338 2752

Number of genes 1148 866 2014

Number of external metabolites and exchange reactions 171 239 293

Number of reactions usable for crossfeeding / / 410 (239 + 171)

MEMOTE AND CONSISTENCY ANALYSIS RESULTS

Universally blocked reactions 637 293 1031

Orphan metabolites (consumed but not produced) 54 39 93

Dead-end metabolites (produced but not consumed) 84 61 145

Reactions in stoichiometrically balanced cycles 253 46 697

Extracellular metabolites without exchange reactions 29 38 /

COMPRESSION RESULTS ON CSP MEDIUM

CSP medium metabolites 47 56 57

Blocked reactions on CSP medium 673 485 1296

Number of compressed reactions 470 505 1062

Number of metabolites of the compressed network 252 440 600

MINIMAL CUT SETS OF SIZE THREE OR LESS

Essential reactions on CSP medium 183 309 2

Synthetic lethal pairs of reactions 184 282 over 50 · 103

Synthetic lethal triplets of reactions 216 347 over 50 · 103

Total number of MCSs of size three or less 583 938 unknown

AFTER TESTS FOR CONSORTIUM GROWTH RECOVERY

Single-species MCSs nullified by consortium metabolite exchanges 68 199 /

Single-species MCSs remaining lethal on the consortium 515 739 /

Consortium-level MCSs (potential enzyme targets) 65 /

Table 4.1: Pseudomonas aeruginosa (P.A.), Staphylococcus aureus (S.A.) and consortium model statistics.
Models were individually curated and compressed, then essential reactions, synthetic lethal pairs, and synthetic
lethals triplets were computed on the single species models and on the dual species consortium model. MCSs

computations of synthetic lethal pairs and triplets on the consortium model were too expansive and thus stopped
after one week.
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P. aeruginosa
1495 reactions

aspefm

MCSs of small size

S. aureus
1454 reactions

Consortium
model

3241 reactions

aspefmGrowth

MCSs of large size

No growth AlphaFold

Metabolite exchanges
allowing recovery of

growth
S.A.

P.A.

Figure 4.9: Overview of the main study. MCSs are separated into two kinds: small size and large size. The former
are computed on single-species models, then tested for growth recovery on the consortium-level model. For MCSs

which are no longer lethal on the consortium model, larger size MCSs are computed, revealing metabolite
exchanges. For MCSs that are still lethal on the consortium, interspecies protein structure alignments of AlphaFold

structures are performed to estimate their druggability.

As well, 29 extracellular metabolites from iPae1146 and 38 from iYS854 were found to lack exchange reactions.

Notable metabolites from these lists, which are thus excluded from the possible metabolic interactions between

bacteria, include formate for iPae1146 and citrate for iYS854.

The models were constrained to CSP Chemically Defined Medium. For all 47 CSP medium metabolites metabolized

by P. aeruginosa and all 56 CSP medium metabolites metabolized by S. aureus, exchanges lower flux bounds were

set to arbitrary flux values in accordance to their relative quantity in the medium.

4.5.2 Consortium model construction and analysis

A consortium model of P. aeruginosa and S. aureus models was constructed using exchange reactions of both mod-

els as means for crossfeeding. All reactions of the models were subtitled with ’PA’ or ’SA’ depending on where they

came from. The original extracellular compartment of the models were remade into the extracellular compartment

of P. aeruginosa and the extracellular compartment of S. aureus, and an additional extracellular compartment was

added, with all previously exchange reactions now yielding a metabolite into that compartment.
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Figure 4.10: Diagram of the P. aeruginosa and S. aureus consortium model in CSP Chemically Defined Medium,
including a view of metabolite exchange mechanisms. Extracellular metabolites are symbolized by "Met".

Exchange reactions are symbolized by "EX".

Additional boundary exchange reactions were added to all newly created extracellular metabolites using COBRAPy

[72], and the new exchange reactions fluxes were constrained to correspond to the CSP Chemically Defined Medium

[271]. Finally, all reactions that were previously exchange reactions of the iPae1146 and iYS854 GSMMs became

reactions that could be used for crossfeeding.

We set arbitrary flux bounds of [-20, 20] for all crossfeeding reactions, in accordance with the minimum possible

uptake flux in CSP Medium, which is set to -20 mmol/gDW/hr for O2, as is standard for that metabolite in COBRA

models. A view of the consortium model, including crossfeeding in CSP Chemically Defined Medium, is presented

in Figure 4.10.

Note that for computation of MCSs – and thus essential reactions, synthetic lethal pairs and triplets – on a model

alone, its biomass is taken as the target reaction. As such, when looking for which crossfeeding reactions comple-

ment a cut set of P. aeruginosa or S. aureus alone, only one of the two consortium biomass reactions should be

taken, the targeted biomass reaction in question. The full procedure for computing MCSs revealing crossfeeding

interactions with aspefm, from the sets of lethal MCSs with growth recovery of either bacterium, is presented in

Figure A.4.

Separately, for modelling growth on the consortium model, the FBA objective reaction is defined as the sum of both

biomass reactions. Thus, for computation of MCSs which are lethal to the whole consortium model (Figure 4.6),

both biomasses were taken as the target reactions.
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4.5.3 Network compression

To help with computation efficiency, models are compressed using the network compression procedure developed

by the von Kamp team, as part of the pip package efmtool_link from the Klamt lab [W16]. The tool relies on

excluding blocked reactions and correcting reversibilities through Flux Variability Analysis [71], then applying a

nullspace-based compression method from EFMTool [139].

The general principle behind nullspace-based compression was introduced in METATOOL [109], and later re-

explored in [126] and [174]. Linearly dependent lines from the stoichiometric kernel are regrouped into a same

reaction. This allows reactions that always operate together, i.e. their fluxes are linearly dependent to each other, to

be regrouped into the same reaction subsets. For MCSs analysis, the linear coefficient factor between reactions in

the same subset is of no importance, thus MCSs decompression is trivial.

4.5.4 Network dualization

As described in Ballerstein et al [187], it is possible to describe the problem of computing MCSs as the problem

of computing particular EFMs on a dual metabolic network, meaning that the original network has to undergo a

dualization conversion procedure.

We formulated the problem by making use of the MILP version proposed by von Kamp and Klamt in 2014 [153],

which excludes some of the linear variables and constraints introduced by Ballerstein. A notable feature of this

method was defining an inequality constraint instead of an equality constraint for metabolites of the dual network

that were originally irreversible reactions.

All reversible dual reactions are split into two irreversible dual reactions. As in the formalisms defined by Ballerstein

and von Kamp, the reactions corresponding to reversibility constraints are the only ones to which subset-minimality

applies, meaning the other linear variables are free to be either strictly positive or equal to zero following whether it

suits the linear program.

4.5.5 Using aspefm to compute MCSs

The procedure is applied using aspefm, our Answer Set Programming (ASP) constraint propagation method. The

aspefm tool is distributed at https://github.com/maxm4/aspefm.

Given the compressed metabolic network in dual form, aspefm defines a logic program in Answer Set Programming

able to enumerate all or only a subset of Minimal Cut Sets. ASP is a logic programming language, meaning it

requires a declarative logic program to be defined as input. It is adapted for combinatorial problems thanks to

its SAT-based solving and automatically searches for solutions, the so-called answer sets. SAT refers to the well-

studied Boolean satisfiability problem. The solver used by aspefm is clingo extended to linear constraints through

the clingo[LP] [210] interface and a cplex backend.
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Subset-minimal solutions are obtained through the set minimization heuristics of clingo, aspefm’s solver. Unlike in

a Mixed Integer Linear Programming (MILP) formalization, no minimization on the size of the solutions searched is

performed. Thus, solutions of large size may be returned by the solver in reasonable time. Once a solution is found,

it is added as a negative constraint for the next computation. New solutions are thus found depending on the order

of search and enumeration.

An algorithmic amelioration was made to the clingo[LP] code. The algorithm for finding core conflicts from conflicting

linear constraints was formerly implemented in recursive pure Python. We replaced it by cplex ’s internal conflict

refiner function [W8]. The code runs about 10-times faster on small and on larger models.

Another amelioration was made for direct enumeration of solutions with linear constraints, which are known to modify

the solution space and thus its minimal solutions [150, 157]. A solution checker was implemented and it is called

to verify the minimality and validity of the solution, in the case of MCSs with biomass as a target, it is a simple

FBA call. This linear programming call should be very fast in computation time compared to the overall cost of the

combinatorial exploration.

As with EFMs computation, additional constraints can be added to aspefm, only yielding a subset of all possible

solutions. These constraints need to be expressed on the reactions from the compressed dual network, or undergo

a conversion process if these relate to the original network.

4.5.6 Adding constraints to aspefm

Using aspefm’s input format, it is possible to add constraints to the computation of MCSs. Let us consider Cut the

set of all reactions and cr Boolean variables representing if a reaction is cut or not. For example a size constraint,

meaning that cut sets above a certain size P will not be computed :

Card{cr | cr = 1, r ∈ Cut} < P (4.10)

Supposing we have a non-empty list of "unwanted reactions" of interest U ⊂ Cut. The following negative Boolean

constraint can be added:

∧
¬ cr ∀r ∈ U (4.11)

This will specify to the solver to only compute MCSs containing none of those reactions.

Supposing we have a non-empty list of "wanted reactions" of interest W ⊂ Cut. The following positive Boolean

constraint can be added:

∧
cr ∀r ∈W (4.12)
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This will specify to the solver to only compute MCSs containing all of those reactions. Note that since these postive

Boolean inputs translate into adding linear constraints bounding the flux cone, our solution checker implemented in

aspefm must be called in that case.

4.5.7 Retrieving information at the gene and protein level

Gene and protein level information was reviewed as part of the model curation process. Gene products defined

in the SBML models were modified to all match UniProt or TrEMBL entries [34], in particular for iYS854. iYS854

genes used new locus tags that yielded no UniProt query results, so genes were renamed to their old locus tags.

UniProt entries were seeked for using UniProt BLAST. For the gene products with no match in the str. JE2 strain,

an homologue from a close S. aureus strain was used. In the process, new RDF annotations were added for future

modellers.

For both models, overall Boolean Gene-Protein-Reaction rules (GPRs) were simplified into canonical Disjunctive

Normal Form (DNF), which helps with exhaustive enumeration of gene knock-outs from sets of reactions. Minimal

sets of genes corresponding to the MCSs were computed using ASP logic programming with subset-minimization

heuristics, as the problem can once again be expressed as minimal Boolean affectations to {True}.

Minimal sets of genes are non-trivial subset-minimal affectations to {True} respecting the GPRs Boolean formulae.

However, as underlined in Machado et al [162], some gene products are ubiquitous, appearing in multiple reactions,

meaning that the minimal sets of genes obtained from lethal MCSs of reactions might not necessarily be minimal in

the number of genes to be knockout.

In order to better describe information at the gene or protein level, it is required that each reaction is associated to

at least one gene. So for transporter reactions that are not associated to genes, we added a dummy association,

which in fact corresponds to the either backwards or forwards direction of that reaction, since reactions are split

for MCSs computation. In practice, almost all reactions lacking genes are transporters, and forwards transporter

reactions should also be assumed to be dependent on the presence of external metabolites in the medium. Some

transporter reactions are also known to be spontaneous and annotated as such in their GPR association rules.

4.5.8 Retrieving enzyme cuts targeting both bacteria for therapeutic action in human

To derive the sets of MCSs in common to both bacteria, reactions in MCSs were summed together, and MCSs from

both models which had the same total mass balance equation were kept. The sets of MCSs in common were then

converted into the corresponding minimal sets of genes with ASP logic programming, using GPRs derived from

each bacterial model.

Protein structure models were retrieved using the AlphaFold entries [43] associated to UniProt genes, and structure

alignment was performed using algorithm FATCAT 2.0 [287]. All retrieved genes using the model’s GPRs could be

associated to UniProt entries, but very few of these entries had known crystallized structures in PDB. As such, only

AlphaFold entries were compared together.
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Enzyme targets with good interspecies protein structure alignments were tested for existence of human homologues

in the UniProt database using their E.C. Number [15]. For enzymes with no human homologues, enzymes were kept

as possible targets. For enzymes which had human homologues, the corresponding AlphaFold structure predictions

were retrieved, and further protein structure alignments were performed to check druggability.

4.5.9 Interspecies protein structure alignment of enzyme targets

Protein structures with a FATCAT alignment RMSD above 3 Ångström were considered dissimilar between species.

Excluded enzymes comprise Glutamyl-tRNA synthetase and reductase, and in particular, 3-dehydroquinate de-

hydratase, for which we confirmed through UniProt and InterPro that between P. aeruginosa and S. aureus, the

enzymes have very different protein domains. Overall, we found that this threshold for scores of alignment between

AlphaFold structure predictions was a useful indicator of whether or not the proteins were similar between species.

Many MCSs would equivalently include exchange reactions or transporter reactions. Thus, we called these MCSs

‘growth medium dependent‘. These are possible drug targets, but only in auxotrophic conditions, when amino acids

are depleted from the medium. Although these cut sets might be difficult to use as therapeutic targets, we found

these cut sets to be at least informative in the sense that if only the medium is depleted then the enzymes become

essential and a drug targeting them would have effect. These are also indicator of the main enzymes relating to a

particular amino acid metabolism.

4.5.10 Estimating quality of enzyme targets for therapeutic applications to humans

Enzyme targets with good interspecies protein structure alignments were tested for existence of human homologues

in the UniProt database using their E.C. Number. For enzymes with no human homologues, enzymes were kept as

possible targets. For enzymes which had human homologues, the corresponding AlphaFold structure predictions

were retrieved.

FATCAT alignments between their S. aureus and P. aeruginosa structures and all human homologues were per-

formed. Then, for each alignment, three categories were considered, based on FATCAT scores: ‘Structurally equiv-

alent‘: (RMSD < 3) and (score < 10−6) , ‘Structurally similar‘: (3 ≤ RMSD < 5) and (10−6 ≤ score < 10−3),

‘Structurally dissimilar‘: (RMSD ≥ 5) and (score ≥ 10−3). Then, only enzymes with strictly less than 50% human

homologues which had ‘Structurally equivalent‘ alignments with both bacteria were kept as possible targets.
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Very few alignments ended up in the ‘Structurally similar‘ category, but the inclusion of the FATCAT score this time

in addition to RMSD allowed to rule out alignments with low RMSD but high score, and inversely. An example of

enzyme with only one human homologue and such an alignment falling in ‘Structurally similar‘ but not ‘Structurally

equivalent‘ is glucosamine-1-phosphate N-acetyltransferase. The bacterial enzymes have different protein domains

than its human counterparts.

Most of the enzymes with human homologues were eliminated through this procedure, the analysis excluded thir-

teen potentially not targetable enzymes out of sixteen. Overall, most enzymes which alignments were classified as

‘Structurally equivalent‘ had identical protein domains between human and bacteria, despite the very large phyloge-

netic distance, thus making for dangerous therapeutic targets.

Finally, we decided to exclude the target nucleoside diphosphate kinase (ATP:UDP) (36.73% ’Structurally equiv-

alent’, 18 similar out of 49 homologues), even though it was scored the highest in terms of interspecies protein

structure alignment, as we believe targeting this enzyme would not be viable in human cells. As a result, only two

enzymes with human homologues were kept at the end of the analysis. We represent the results of the analysis in

Figure 4.8, Figure 4.14, and Figure 4.13.

Apply growth medium
Compression
Dualization

Genome-scale
metabolic model

(GSMM)

aspefm
Constraints:

Wanted reactions
Unwanted reactions

MCSs size limit

Minimal Cut
Sets (MCS)

Decompression

MCSs of
large size

Decompression
Conversion to GPRs

MCSs of
small size

Network topology
information and robustness

Gene knock-outs,
enzyme drug targets

Target reactions
ex: Biomass

Figure 4.11: aspefm framework applied on the GSMMs of Staphylococcus aureus, Pseudomonas aeruginosa, and
on the consortium model.
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R1 R2 R3 EX_M1 EX_M2

Figure 4.12: Minimal Cut Sets of small size and of large size on single-species models and a consortium model

A B

Figure 4.13: A: Analysis of GPRs and RMSD scores of interspecies protein structure alignments for the enzyme
targets from GPRs, corresponding to the 65 MCSs. B: Summary of the search of human homologues, leaving 23

’good’ potential targets, including 11 medium dependent ones, out of the 37 considered targets.
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Figure 4.14: A: Enzyme targets dependant on the presence of amino acids in the growth medium. Bars heights
are minimum Root Mean Square Deviation (RMSD) of atom positions, measured in Ångström, resulting from
protein structural alignment of GPR pairs. B: Associated amino acids and pie distribution for each MCSs in A.
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Figure 4.15: Estimated potentials for metabolite exchanges between the two bacteria according to SMETANA.
Abscissae are SMETANA scores, multiplied by -1 when S.A. is the donor instead of P.A.
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4.6 Discussing the scope of our analysis

aspefm is a powerful and promising tool for metabolic systems analysis, able to compute EFMs while respecting any

applied constraints, whether they are logical or linear, and it can be extended at will by the clingo Python interface

[201, 213]. Here, we extend the tool to the computation of MCSs from metabolic models of single and multispecies

systems. MCSs are mathematical objects with great engineering, ecological, and therapeutic potential as they

identify combinations of reactions within large, highly connected networks that have outsized abilities to influence

phenotype. As illustrated in Figure 4.6, automatic exploration of MCS solutions is possible. Additionally, aspefm

has the advantage of identifing more than twice as many MCSs as the concurrent MCSs tools within a reasonable

runtime and it is not restricted by the size of MCSs in number of reactions. Note that the enumeration of these

subsets of solutions with aspefm as well as concurrent method cnapy is non-deterministic, as demonstrated by the

variability in MCSs sizes.

In order to make full use of the enumeration capacities of our aspefm tool, we devised a MCSs analysis to study po-

tential crossfeeding interactions within the consortium. The tool was able to enumerate solutions on the consortium-

level with ease, despite the network comprising about three thousand reactions. Usually, MCSs of size three or less

are often considered the most biological relevant. This logic follows the argument that disrupting more than three

different genes, or interfering with more than three mRNA targets or the drugging of more than three enzymes at

the same time is challenging. MCSs of small size are readily enumerated from single-species metabolic models,

and can be performed with existing SLs enumeration tools or with MCS enumeration tools. However, we argue

that MCSs of large size can provide valuable information on network robustness and fragility as well as potential

metabolite exchanges, whether for single species or consortia analyses. Compared to other methods, aspefm

showed better performance for enumeration of MCSs of large size on the consortium model.

Our analysis proposed the usage of MCSs of small size on single-species models as constraints for the computa-

tion of MCSs of large size on a consortium-level (Figure 4.9). Single-species MCSs were tested for the recovery

of growth on the consortium model, and if metabolite exchanges permitted growth recovery, then MCSs of large

size were computed, giving light into the metabolite exchanges in question. To do so, all reactions that were not

metabolite exchange reactions were set as negative Boolean inputs, and MCSs of small size were used as posi-

tive Boolean inputs, a type of input constraint which is not to our knowledge possible to integrate with other MCSs

tools. We implemented an additional FBA check for every MCSs yielded by the solver to verify the minimality of the

solutions.

Therefore we present the utility of an exhaustive yet constrained metabolic pathways analysis, through application

of biological relevant constraints, as we have presented previously for EFM analysis [89]. Rather than a complete

enumeration of all cut sets, which like EFM enumeration is only achievable on modestly sized reaction networks, we

enumerate a subset of MCSs while answering a specific biological question. Though, the procedure is unfortunately

limited by enumeration capabilities of our tool, which wasn’t capable to conclude on whether all solutions were

enumerated, and needed to be restricted by a time limit of 1.5 days.
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This new application of MCSs highlights the potential role of metabolite exchanges and metabolite crossfeeding on

consortium functioning and resiliance to theapeutic efforts (Figure 4.7). We strengthened the study by combining the

analysis with drug target predictions for the single-species MCSs that did not regain growth by consortial metabolite

exchanges (Figure 4.8). Meylan and coauthors have showed strong evidence that antibiotic tolerance might be

affected by the impact of metabolite exchanges, in particular they showed that uptake of fumarate/glyoxylate by P.

aeruginosa respectively increases/decreases its tolerance to aminoglycosides [288, 289].

Metabolite exchanges can also be retrieved on consortium models through using FBA models and EFMA [290, 291],

and we believe those exchanges to be representative of at least three possible mechanisms: cross-feeding (bac-

terial co-operation), metabolite leakage (overflow of metabolites necessary for biomass production), and simply

recuperation from the bacterial medium (a biofilm medium is composed not only of living bacteria but also of necro-

mass) [292]. Interestingly, we compared our tool to SMETANA, a tool for estimating growth-dependent species

exchanges in bacterial consortia [293]. We could retrieve that 23% of our highlighted metabolite exchanges were

not predicted by SMETANA, as expected since their study of metabolite exchanges is not performed after cutting

several reactions. The analysis performed by SMETANA is given in Figure 4.15.

Our study positions itself in recent efforts from the metabolic modelling community in bringing metabolic models to

the cellular consortium level [193]. There is a growing interest in multi-species models such as AGORA for modelling

of gut microbiota [294], and multicellular models such as whole-body human models [171]. However, we found that

even the well-curated models presented in our study were not exempt from curation and modelling errors. For ex-

ample, iPae1146 lacked reactions for aminoacyltransferase reactions, which are notably different for Pseudomonas

aeruginosa, although including these reactions is now standard [37]. Interestingly, the aminoacyltransferases re-

actions were present on the smaller P. aeruginosa PAO1 model iMO1056 from 2008 [273], but imported from E.

coli pathways, rather than P. aeruginosa. Another instance included the lack of a functioning formate transporter

for iPae1146 and of a citrate transporter for iYS854, although these metabolites might have significant interspecies

exchange potential.

Data from UniProt [34] and AlphaFold [43] was used to predict therapeutic targets based on protein structure sim-

ilarities. Protein structure data was not available for many of the enzymes of interest which limited the mapping of

the specific protein sequence to a model structure. We therefore used the application to quantify similarities of the

predicted structure of two protein sequences rather than the overall accuracy of the 3D structure. If the predicted

protein structures were deemed similar enough, it is hypothesized that an inhibitor would be more likely to be a

ligand to both. AlphaFold derived preemptive ranking for further analysis and provided a uniform method of applying

the computational workflow. Enhanced predictions will be possible with better crystallisation of S. aureus and P.

aeruginosa protein structures, and through further analysis of the enzyme targets with DrugBank [44] for existence

of medically approved inhibitor ligands.

Finally, a relevant point of discussion is the conversion of enzymes to gene and reaction data, ie. GPRs. GPRs are

AND and OR Boolean rules, respectively symbolizing complexes and isozymes are transformed into reactions of

their own. Subunits numbers are unfortunately not incorporated in the standard specification of metabolic models
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[69], though this might eventually change thanks to the development of models incorporating resource allocation

data [166]. Previous studies have incorporated GPRs into the stoichiometric matrix [162, 189]. This has the down-

side of making flux go through factice gene reactions. In contrast, our approach for converting reactions to proteins

using GPRs made use of logic programming, to keep illustrating its application – as GPRs are Boolean logic rules –

and to keep expanding the aspefm framework. GPRs are of major importance when analyzing the enzymes gene or

protein data, and were useful for us when retrieving AlphaFold entries [43]. They were however of lesser importance

for MCSs of large size.

To summarize this study, we argue that both categories of MCSs: small size and large size, equally served their

purposes, when used with the biomass synthesis reaction as target. A subset of all large sized MCSs was able to

reveal consortium-level metabolite exchanges that could only be observed after deletion of one, two, or three path-

ways; and, just as importantly, the essential reactions and synthetic lethals for which there was still no consortium

growth could be analyzed for their ability to be drug targets. We thus propose that there is a strong need for MCSs

enumeration tools such as aspefm, and for metabolic modelling methods as a whole in the context of microbial

ecology, medical intervention and drug discovery.

In conclusion, the medical treatment of Staphylococcus aureus and Pseudomonas aeruginosa is a major challenge

negatively influencing the lives of millions of patients every year. In this study, we develop, analyze, and demonstrate

useful applications of a novel metabolic modelling strategy based on logic programming and the exhaustive enu-

meration of biochemical pathways in metabolic networks. The algorithms were able to predict nonintuitive metabolic

exchanges between multiple bacteria in a consortium-level model illustrating applications to the field of microbial

ecology. Additionaly, the systems biology algorithms were able to identify rational sets of therapeutic targets that

can inhibit the growth of single species and also inhibit the growth of crossfeeding consortia while avoiding host

enzymes with similar protein structures. We identify a list of promising enzyme targets, which share protein struc-

ture similarities, and can potentially be targetted by the same therapeutic agent simultaneously and thus shut down

activity of the entire consortia.
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Chapter 5

Perspectives and conclusions

In addition to logical and linear constraints, we attempt to propose with aspefm a complete formalism capable of

integrating any possible constraint. To make this possible, we have to extend our aspefm tool with other features,

which we refer to here as asepfm extensions.

For instance, a nonexhaustive list of the kinds of constraints that we aim to integrate with aspefm is presented in

Figure 5.1. Some of the constraints ideas presented here and not explained earlier will be developed in this chapter.

Logical Linear Using aspefm extensions

Figure 5.1: Types of constraints: logical, linear, and using aspefm extensions

In this chapter, we will present the core interface for incorporating new features to aspefm, the theory propagator.

As well, we will present ameliorations to aspefm, and new kinds of constraints and features that could be integrated

to the tool and applied to new biological problems in the future.

Of note, the decomposition of FBA solutions into EFMs is an extension with very high significance. As well, the

EFMChecker and MCSChecker extensions were used for our publications, respectively used in the applications of

section 3.8 and section 4.3.
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5.1 Encoding aspefm extensions

As mentioned before, clingo[LP] uses an interface called theory propagator to encode the linear constraints and

communicate with the LP solver cplex. This extension to clingo is in fact defined in a Python file called clingoLP.py,

implementing the "Theory propagator" Python interface.

The theory propagator can act at four levels: init, propagate, undo, and decide, related to the propagation of Boolean

literals within the SAT-based Conflict Driven Constraint Learning (CDCL) procedure [201]. This is an interface, that

each new propagator should implement. The functions are the following: init allows one to define ASP atoms to

be tracked during literal propagation, and to make initialization procedures dependent on command line arguments

and on the ASP atoms in the system after grounding, decide allows one to check and possibly change the next

propagated literal, i.e. heuristic behaviour; propagate is called each time a literal gets propagated, it deals with

either incomplete solutions called partial assignments or complete assignments, and allows one to add clauses

during propagations; undo is called when there is a backtrack, and a literal is no longer being propagated.

To encode an extension to clingo[LP], several approaches could be taken. One might implement an additional

theory propagator, and have clingo run with two propagators, the LP propagator, and the extension propagator.

Or, alternately, one might directly integrate the extension into the LP propagator. After testing a bit with the first

approach, we concluded that taking the second approach lead us to faster computation times and, in fact, better

modularity. In Figure 5.2, we illustrate how the linear solving theory is integrated to clingo, making the tool clingo[LP].

Theory propagator

+ init()
+ propagate()
+ undo()
+ decide()

clingo[LP]

+ solve(ASP[LP])

clingoLP.py

+ LP solver: cplex

+ init()
+ propagate()
+ undo()
+ decide()

clingo

+ solve(ASP)

Figure 5.2: clingo[LP] as a theory propagator for clingo. Uses UML representation of inheritance.
Dotted arrow indicates optional usage. Solid arrow indicates required usage.
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The modulable extension system we envisioned was first illustrated with Binary Decision Diagrams (BDD), a well-

known Boolean logic formalism and knowledge compilation technique [207, 295]. We called our extension BDD-

Extension or BDDChecker, and it was used to encode Transcription Regulation Networks (see section 3.6), to

test validity of solutions regarding transcriptional regulation. This was incorporated into the propagation of literals,

each time a literal was propagated, we could call the BDD representation of the Boolean formula to check whether

regulation is respected or not. More information is provided in French in section B.1.

An illustration is given in Figure B.3. Like clingo[LP], which ’theory’ relies on calling the LP solver cplex as an oracle

to determine whether Boolean literal solutions are valid or invalid, we had the BDDExtension make calls to the BDD

Python module dd. When solutions were found not valid with the BDD, nogoods, clauses of negative literals, were

added to the computation, so that these partial assignments might never appear again. For EFM computation, and

with negative Boolean constraints such as transcriptional regulation, doing so poses no problem, as if a subset of

the support of an EFM does not respect such a desired property, then all EFMs containing that subset will still not

respect that property [127, 143]. This is not true of the opposite, i.e. positive constraints and positive literals.

Since we decided to only keep a single propagator, and have modulable extensions to clingo[LP] instead, in our

extension formalism, we define the same functions, providing a similar interface, except it is called during the prop-

agation of clingo[LP] instead. While the BDDExtension was first encoded as a propagator, it could be converted into

an extension without changing anything to the mechanisms and the results, and it even provided better performance.

Content from those results, we implemented a flexible list of extensions system, illustrated in Figure 5.3.

clingoLP.py [aspefm]

+ LP solver: cplex
+ listOfExtensions: exts

+ init()  → exts.foreach(init_action())
+ propagate() → exts.foreach(prop_action())
+ undo()   → exts.foreach(undo_action())
+ decide()   → exts.foreach(decide_action())

aspefm

+ listOfExtensions: exts

+ initExtensions(args)
+ initClingoLP(exts)
+ solve(ASP[LP])

clingoLPExtension

+ init_action()
+ propagate_action()
+ undo_action()
+ decide_action()

ListOfClingoLPExtensions

+ List<clingoLPExtension> exts

+ foreach(): iterates on each extension

Figure 5.3: Flexible list of extensions system for aspefm.
Uses UML representation of aggregation. Solid arrows indicates usage.
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5.2 EFMChecker and MCSChecker

In order to filter out MCFMs which appear when adding positive constraints, we devised an EFMChecker system

and a MCSChecker as extensions which can be added to the ListOfExtensions (see Figure 5.3). Oftentimes one

isn’t simply interested in adding a single constraint: one wants to add several linear constraints which are positive,

although not too many or else computation would be impossible, then many negative Boolean constraints; and

finally even other kind of constraints that could help filtering out solutions, integrated into aspefm extensions, by

adding nogoods during the propagation of clingo[LP] (see Figure 5.1).

For this reason, the ListOfExtensions system is of great utility, as one can add an EFMChecker to remove false

solutions, while at the same time having another extension reduce the exploration space of EFMs thanks to the

addition of nogoods. Note that in aspefm’s enhanced version of clingo[LP], each init, propagate, undo, decide

iteratively calls the corresponding actions defined in each extension of the list (see Figure 5.3). The order of which

the extensions are called and initialized in ListOfExtensions therefore matters.

As their names suggest, EFMChecker is an extension of clingoLP that can filter out solutions that are not EFMs, and

MCSChecker is an extensions that can filter out solutions that are not MCSs. EFMChecker performs the rank check

or kernel test, as defined in Theorem 2.7.2, while MCSChecker instead performs a simpler call to FBA with the target

reaction, since we opted for von Kamp’s formulation rather than Ballerstein’s (subsection 2.12.2). For this reason,

these two extensions require data to be provided in command line parameters: for EFMChecker the S-matrix is

required for the rank check, while for MCSChecker the SBML file is demanded, for quick use with COBRAPy.

A very notable feature of EFMChecker and MCSChecker extensions is that unlike the BDDChecker, they do not

check the state of partial assignments. Instead, they only check the state of complete assignments, that is, assign-

ments that are such that 100% of the literals have been propagated. Therefore, no computation time is wasted on

partial assignments, as the test for the percentage of propagated literals simply always returns {False} in these

cases. Then, nogoods are only added when complete EFM or MCS solutions are retrieved, unfortunately filtering

them out after they have already been calculated. However, the benefit of having aspefm only return correct EFMs

or MCSs, with no post-processing filtering step as was observed in subsection 3.7.3, overthrows that inconvenience.

Extensions are encoded as Python files (Figure 5.5). If we specify no extension in argument to the command

line, the ListOfExtensions is initialized empty and clingo[LP] runs as normal. We compared the execution times

of standard aspefm and aspefm with the presence of checker extensions for the same problem instances and the

extensions did surprisingly not drastically decrease the computation times, suggesting that the complexity of the

check calls are much lower than the complexity of finding new solutions.

5.3 Decomposition of FBA solutions in EFMs

The decomposition of FBA solutions into EFMs needs a further restructuration of clingoLP, we named the new tool

clingoDCMP. We applied the decomposition of FBA solutions to the C2M2NF network by Jean Pierre Mazat [238].
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So far the results are promising and we believe the development of such a method would greatly help the constraint-

based modelling community. The FBA flux vector data chosen for the EFM decomposition on C2M2NF originated

from the exometabolomics data from Jain et al [32, 238]. We illustrated our program in Figure 5.4.

aspefm
computes

 EFMs

Support of FBA
solution as

negative constraints

FBA:

 solution of
  , 

 with 

EFM decomposition:

 with 
  ,  and , ,

Time limit
Other

constraints

Optional: add MILP indicator
variables  for , minimize
decomposition size instead

Optimal EFMs
decomposition
of FBA solution

Figure 5.4: Method for decomposition of FBA solutions into EFMs with aspefm

In fact, for a single FBA solution, there might be an infinite number of EFMs decompositions that matches with

the flux distribution. Or alternately, there might be no perfectly matching decomposition, considering these are

real-valued solutions prone to numerical errors, and the numerical algorithms used to compute EFMs and FBA

solutions might not be coordinated. The advantage of using aspefm on genome-scale models is that, since there

are many possible EFMs decompositions, we could simply perform a constrained enumeration of EFMs until one

decomposition is found, and this event becomes the stopping condition of our enumeration. This decomposition

must therefore be chosen very close to the FBA solution. Indeed, unless we ensure complete enumeration, we

could not truly know how close to the global optimal our local optimal solution is at the time when we stopped EFMs

enumeration. Nevertheless, we believe that this application would be of great utility.

We were inspired by the ideas from Jean-Marc Schwartz [131] to decompose a flux distribution into EFMs, based on

quadratic programming, but instead, we transformed the problem into a standard linear regression, except with only

positive coefficients. The problem then becomes minimizing the sum of ϵ residual values, instead of the squared

sum of coefficients (Figure 5.4). We implemented the linear regression test in gurobi [W9], and while it worked fine,

we struggled into transforming the problem into a MILP that minimizes decomposition size instead of minimizing

residuals, due to gurobi ’s MILP performance being lacking. Minimizing decomposition size as our local optima,

although great for analysis, is therefore a harder criterion to envision on genome-scale models. Note that when

testing the MILP, we impose a fixed very small bound for the sum ϵ to stay close to the optimal sum of residuals.

As well, we independently tried finding EFMs decompositions from the C2M2NF EFMs respecting our constraints

using appropriate linear regression techniques for sparse matrix and positive coefficients such as lasso regression

using Scikit-learn [296, 244].

199



EFMChecker.py

+ network S-matrix

+ init_action()
+ propagate_action():  
   if all literals propagated
   check EFM validity

MCSChecker.py

+ network SBML file

+ init_action()
+ propagate_action():
   if all literals propagated
   check MCS validity

OmicsChecker.py

+ Multi-Omics Data

+ init_action()
+ propagate_action():  
   add nogood if not consistent
   with omics data

ResourceBalance.py

+ Amino Acid Enzyme Costs

+ init_action()
+ propagate_action():  
   add nogood if over the
   allowed resources amount

ThermoChecker.py

+ Reactions ΔG
+ Metabolite concentrations [M]

+ init_action()
+ propagate_action():  
   add nogood if not
   consistent with thermo.

BDDChecker.py

+ BDD of TRN rules

+ init_action()
+ propagate_action():  
   add nogood if not
   consistent with TRN

clingoLPExtension.py

+ init_action()
+ propagate_action()
+ undo_action()
+ decide_action()

Figure 5.5: Examples of aspefm extensions. Uses UML representation of inheritance.
Class attributes of extensions are also data required as command line parameters of aspefm.
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5.4 Further extensions to aspefm

To extend our tool further, we envision the integration of thermodynamics data, omics-data, and resource allocation

data. To begin, resource allocation data would help us make a three-dimensional Pareto space as described in [225],

and therefore, using data from E. coli core, we could complete the analysis. Resource allocation data, obtainable

from RBAPy [165], and usually expressed in count of nitrogen atoms or of amino acids for each enzyme, can be

used to further constrain our model both before and during the computation. For example, implementing our ideas

on a specific aspefm extension, we could perform a check on the support of partial solutions each time a literal is

propagated. If from the data associated to the reactions – deduced from GPRs and RBAPy generated annotations

– we can infer that producing the enzymes for all of these reactions is more costly that the total amount of resources

that we decided our cell disposes with, then we should add a nogood on that solution, because all EFMs containing

that partial solution would also be too expansive.

Alternately, the same could be done for omics-data, for example, transcriptomics data. If we have two or more

enzymes, and according to transcriptomics the probability of these enzymes to be expressed at the same time is

very low, then a nogood can be added on the support of the partial solution, because we believe that an EFM

containing these two or more enzymes at the same time should not be experimentally observed. This can easily be

applied to proteomics as well, since GPRs encompasses the gene and protein level both. Like with the BDD usage,

these constraints can be applied dynamically: there is no need to compute beforehand every possible data check,

since those can be done during propagation in function of the currently propagated literals.

Finally, following the ideas from tEFMA (thermodynamic EFM analysis) [275, 297], we would like to implement

checks of thermodynamics, including computing free energies ∆ G from metabolite concentrations [M ] (such as

those obtained in metabolomics or fluxomics data). This idea was started to be implemented, however it was less

clear if two reactions were thermodynamically inconsistent meant that any EFMs containing those two reactions

was also inconsistent, so this was a hurdle. This should however be looked further.

While the need to solve a linear program at every propagated literal sounds very time-consuming, we think these

new extensions ideas can give insights for further developing the enumeration of EFMs at the genome-scale, es-

pecially since they allow the integration of even more constraints. Since these ideas correspond to new kinds of

constraints, and are still at the experimental stage, we represented them differently on Figure 5.5, in purple. In

contrast, extensions that were finished, in orange, were distributed on GitHub: https://github.com/maxm4/aspefm.

5.5 Performances of clingo[LP]

We made several ameliorations to the code of clingo[LP]. The code of clingo[LP] is written in pure Python, and we

found it to be impossible to parallellize on multiple threads. In particular, one function caused a hugely significant

loss of time, due to being encoded as a recursive Python function. This appeared to us when we were forced to

update the maximum recursion limit when dealing with genome-scale models. The concerned function was the

subset-minimalization process for finding ’core conflicts’, or Irreducibly Inconsistent Sets (IISs) [S148] in standard
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Linear Programming [W20]. Instead, we replaced the ’core_conflict’ function by the ’cplex.get_confl()’ function

from the CPLEX API, invoking a special tool from IBM CPLEX © called the ’conflict refiner’ [W8]. This is substantially

faster and allowed us to improve the computation time greatly.

Previously, we mentioned that extensions are called at each literal propagation. In fact, this is not exactly true.

Since we are working with a problem of subset-minimality, propagation of negative literals is supposed the default,

while propagation of positive literals are the major event. In the previous clingo[LP] code, one would run linear

programs even when only negative literals were propagated. By adding a simple check of having at least one positive

propagated literal in propagate before running solve, we gained another significant time factor for the computation of

EFMs. As well, we could call propagate_action of our extensions when positive literals are propagated only. Since

the literals are watched, everything should automatically update when undo events occur. Note however, that this

modification should only be valid because in aspefm we are computing subset-minimal solutions.

However, we are neither clingo[LP] nor SAT heuristics experts. We believe a more thourough recoding of clingo[LP]

might be required in order to revisit whether all parts of the code are pertinent, and for us to fully tailor the code to

aspefm. To do so, we think contacting the ASP experts from Potsdam University and collaborating with them will be

the next step towards a truly clean code, validated by specialists. As well, we believe a full rewrite of the code in

Cython as well as a better handling of the program in regards to the Python Global Interpreter Lock (GIL) will help

one to parallelize the code. Indeed, clingo natively supports threads, but when using multiple threads clingo[LP]

cannot run properly. This should also be explored with people with knowledge in parallel computing, and in linear

programming. We refer to subsection A.6.7 for comments about how performance improved since our first article.

5.6 Conclusions

In summary, the problem of Elementary Flux Modes computation on genome-scale models is particularly difficult,

necessitating the use of constrained enumeration methods, in order to integrate multi-omics data, and yield biologi-

cally relevant solutions upon request. EFMs have been known to correspond to optimal phenotypes observed in a

cell, and the need for methods enumerating specific subset-minimal solutions will keep growing in the future.

We were able to express the computation of EFMs as a logic program with linear constraints, using Answer Set Pro-

gramming, and Linear Programming solvers. It relies on enumerating minimal Boolean affectations to true, through

having predefined heuristics biasing the literal propagation. We named our program aspefm, and we illustrated its

capacity to integrate multivariate constraints on a well-known central metabolic network of Escherichia coli. We

were able to reduce the number of EFMs of that network from 226 million to less than 1500, and further reduced

the optimal phenotypic states to 5 EFMs, showing that making sense of these EFMs is possible.

aspefm is able to integrate any additional constraint, linear, or logical, to the computation of EFMs, and even other

types of data can be integrated if proper extensions are coded through the high modularity of the ASP state-of-

the art solver clingo. However, certain constraints modify the solution space and do not guarantee minimality of

solutions anymore. These non-minimal solutions are directly filtered out during the computation thanks to particular

extensions of our tool.
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aspefm was extended to the computation of Minimal Cut Sets, minimal cuts of reaction flux in a metabolic network.

Using genome-scale networks, MCSs are usually associated to essential reactions, and essential genes using

Boolean rules of association between genes and enzymes. However, we argue that MCSs methods should rather

be focused on the computation of larger-size MCSs, as we found those MCSs were able to reveal cross-feeding

interactions between two pathogenic bacteria, Staphylococcus aureus and Pseudomonas aeruginosa. In particular,

our method handles large-size solutions particularly well.

Through a sufficiently constrained enumeration, one can correlate EFMs solutions to flux distributions, using methods

such as FBA flux decomposition or simple linear regression analysis to exometabolomics data. We illustrated such

a constrained enumeration on a central metabolic network of the human cell, extended for incorporation of tumoral

stroma, and we attempted to hypothesize therapeutic applications to cancer.

In conclusion, we believe aspefm constitutes a promising leading Logic Programming with Linear Constraints tool

for enumeration of subsets of EFMs and MCSs, especially as it belongs among the first to achieve constrained

enumeration of EFMs and MCSs on genome-scale models. Through further amelioration of the tool’s performance,

and developement of an user-friendly interface, we believe our tool might become a standard in the computation of

minimal fluxes and cuts for the analysis of metabolic pathways in systems biology.
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Appendix A

Addititional methods and results

A.1 Example of metabolic network

-METEXT
S biomass fuel1 fuel2

-CAT
R01 : S + ATP => M1 + ADP
R02 : M1 = M2
R03 : M2 + ADP => M3 + ATP
R04 : M3 = M4
R05 : M4 = M5
R06 : M3 => M6
R07 : M6 => M7
R08 : M7 => 0.5 M5 + 0.5 M8
R09 : M8 => fuel1
R10 : M1 = M9
R11 : M9 => M2
R12 : M9 => M10
R13 : M9 + ADP => M11 + ATP
R14 : M11 => 0.7 M12 + 0.3 M13
R15 : M13 => fuel2
R16 : M12 => M5
R17 : M5 => biomass
R18 : M3 => 2.0 M8

Listing A.1: Example of toy model written in METATOOL format
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A.2 State-of-the art algorithms

Function: FBA(m, obj [default : biomass])

Data: Metabolic model m, Objective obj

Result: Objective value sol

Solution reaction fluxes v

Type: Linear Programming in iterative code

S ← m.Stoch; // get S-matrix

(lb, ub)← m.Bounds; // bounds of m.Reac

find sol = max obj × v such that

Sv = 0 ;

lbj ≤ vj ≤ ubj ;

v ∈ Rn ;

return sol, v;

Algorithm A.1: Flux Balance Analysis

Data: Metabolic model m, Objective obj

Result: Objective values o1, o2, Solution

reaction fluxes v

Get k, S, lb, ub from Irrev(m), i.e. m with

reversibles split into two irrev. reactions;

find o1 = min
∑k

j=1 vj such that

find o2 = max obj × v such that

Sv = 0 ;

0 ≤ vj ≤ ubj ;

v ∈ Rk ;

vobj = o2;

return o1, o2, v;

Algorithm A.2: Parsimonious FBA

Function: FVA(m, obj [biomass], µ [90%])

Data: Metabolic model m, Objective obj

Result: Minimal and maximal fluxes vmin, vmax

Get n, S, lb, ub from m;

vmin ← 0n ; vmax ← 0n ;

(sol, v)← FBA(m, obj) ;

for r ∈ m.Reac do

// for each FBA reaction flux

find vmax(r) = max vr and vmin(r) = min vr

Sv = 0 ;

obj × v ≥ µ× sol ;

lbj ≤ vj ≤ ubj ;

v ∈ Rn ;

return vmin, vmax;

Algorithm A.3: Flux Variability Analysis

Data: Metabolic model m, Parameters p

Result: Time simulation t of external metabolite

concentrations [X], Vectors sol, v

for t increasing from 0 to p.MaxTime do

[X]t = ODE([Xt]t−1); // or p.[X]0 if t0

updateExc(m.Exchanges.Bounds, [X]t) ;

if regulated then

Rt = TRN(Rt−1); // or p.R0 if t0

updateRgx(m.RegulatedRx.Bounds, Rt);

(solt, vt)← FBA(m) ;

Algorithm A.4: (Regulated) dynamic FBA

206



Data: Matrix A, defining a polyhedral cone C = {x ∈ Rd | Ax = 0, x ≥ 0}

Result: Matrix R, extreme rays of P = {x ∈ Rd | x = Rc, c ≥ 0}

R← K ; // row-echelon kernel matrix, N(A) = {x | Ax = 0}

ρ← {} ; // indices of already considered non-negativity constraints

while ρ ̸= {1, 2, · · · , d} do

j ← choose from {1, 2, · · · , d} if not in ρ;

τ> ← {i | Rj,i > 0};

τ0 ← {h | Rj,h = 0};

τ< ← {k | Rj,k < 0};

τadj ← {(i, k) | (i, k) ∈ (τ> × τ<) : R∗i is adjacent to R∗k };

Rnew ← [];

foreach (i, k) ∈ τadj do

p← R∗i;

q ← R∗k;

r(ik) ← pj q − qj p;

append column r(ik) to Rnew;

R← [[R∗i], [R∗h], Rnew] with i ∈ τ> and h ∈ τ0;

ρ← ρ ∪ {j};

Algorithm A.5: Double Description
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Function: knock_out(m, r)

Data: Metabolic model m, reaction r

Result: Metabolic model m

rxn← get reaction r in m ;

if rxn is reversible then

// unset lower and upper bound

rxn.lb← 0 ;

rxn.ub← 0 ;

else

rxn.ub← 0 ;

update reaction rxn in m ;

return m;

Algorithm A.6: Reaction knock-out

Function: essential_reactions(m)

Data: Metabolic model m

Result: List of essential reactions sl

sl← {} ;

eps← 10−5 ;

for r ∈ m.Reac do

mtmp← m ;

mtmp← knock_out(mtmp, r) ;

sol← FBA(mtmp) ;

if sol < eps then

sl← sl + {r};

return sl;

Algorithm A.7: Essential reactions

Data: Metabolic model m

Result: List of synthetic lethal pairs sl

sl← {} ;

eps← 10−5 ;

for r1 ∈ m.Reac do

for r2 ∈ m.Reac− r1 do

mtmp← m ;

mtmp← knock_out(mtmp, r1) ;

mtmp← knock_out(mtmp, r2) ;

sol← FBA(mtmp) ;

if sol < eps then

sl← sl + {r1, r2};

return sl;

Algorithm A.8: Synthetic lethal pairs

Data: Metabolic model m

Result: List of synthetic lethal triplets sl

sl← {} ; eps← 10−5 ;

for r1 ∈ m.Reac do

for r2 ∈ m.Reac− r1 do

for r3 ∈ m.Reac− {r1, r2} do

mtmp← m ;

mtmp← knock_out(mtmp, r1) ;

mtmp← knock_out(mtmp, r2) ;

mtmp← knock_out(mtmp, r3) ;

sol← FBA(mtmp) ;

if sol < eps then

sl← sl + {r1, r2, r3};

return sl;

Algorithm A.9: Synthetic lethal triplets
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A.3 aspefm and application to toy models

% Borne supérieure pour les valeurs de flux
#const nb=5000.

% Toutes les réactions sont irréversibles: elles ont un flux positif ou nul
&dom{0..nb} = flux(R) :- reaction(R).

% Deux réactions irréversibles issues de la séparation d'une réaction
% réversible sont mutuellement exclusives
:- support(R1); support(R2); 1 {reversible(R1, R2); reversible(R2, R1)} 1;

reaction(R1); reaction(R2).

% Au moins une réaction doit être utilisée
:- not support(R) : reaction(R).

% Pour chaque métabolite, la somme pondérée par la stoechiométrie
% des flux de chaque réaction le consommant ou le produisant est nulle
&sum{C*flux(R) : stoichiometry(M, R, C), reaction(R)} = 0 :- metabolite(M).

% Définition du support, atomes dont la présence indiquent un flux non nul
support(R) :- &sum{flux(R)} > 0; reaction(R).

% Heuristique sur les atomes support pour la minimisation
#heuristic support(R). [1, false]

Listing A.2: aspefm.lp4 main ASP program code for computation of EFMs
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reaction(r1; r1_rev; t1; t2; t3; t4).
reversible(r1, r1_rev).
metabolite(a;b).

% A -> B
stoichiometry(a,r1,-1).
stoichiometry(b,r1,1).

% B -> A
stoichiometry(a,r1_rev,1).
stoichiometry(b,r1_rev,-1).

% -> A
stoichiometry(a,t1,1).

% -> B
stoichiometry(b,t2,1).

% B ->
stoichiometry(b,t4,-1).

% A ->
stoichiometry(a,t3,-1).

Listing A.3: ASP program code for encoding the toy metabolic model
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clingo version 5.6.2
Reading from clingoLP.py ...
Solving...

LP Solver output
(0.0, {'flux(t2)': 0.0, 'flux(t4)': 0.0, 'flux(r1)': 0.0, 'flux(t3)': 0.01, 'flux(t1)': 0.01, 'flux(r1_rev)': 0.0})
Answer: 1
support(t1) support(t3)

LP solver calls: 6 Time cplex : 0.0036232471466064453

LP Solver output
(0.0, {'flux(t2)': 0.01, 'flux(t4)': 0.01, 'flux(r1)': 0.0, 'flux(t3)': 0.0, 'flux(t1)': 0.0, 'flux(r1_rev)': 0.0})
Answer: 2
support(t2) support(t4)

LP solver calls: 8 Time cplex : 0.004602670669555664

LP Solver output
(0.0, {'flux(t2)': 0.01, 'flux(t4)': 0.0, 'flux(r1)': 0.0, 'flux(t3)': 0.01, 'flux(t1)': 0.0, 'flux(r1_rev)': 0.01})
Answer: 3
support(r1_rev) support(t2) support(t3)

LP solver calls: 11 Time cplex : 0.006068229675292969

LP Solver output
(0.0, {'flux(t2)': 0.0, 'flux(t4)': 0.01, 'flux(r1)': 0.01, 'flux(t3)': 0.0, 'flux(t1)': 0.01, 'flux(r1_rev)': 0.0})

Answer: 4
support(r1) support(t1) support(t4)
SATISFIABLE

LP solver calls: 15 Time cplex : 0.007972478866577148

Models : 4
Calls : 1
Time : 0.468s (Solving: 0.13s 1st Model: 0.05s Unsat: 0.00s)
CPU Time : 1.299s

Listing A.4: ASP clingo[LP] output for the toy metabolic model

% Valeurs des constantes d'équilibre apparentes
keq(t2, 1). keq(t3, -1).
keq(r1, 1). keq(r1_rev, -1).
keq(t1, 1). keq(t4, 1).
% Règle thermodynamique
&sum{K*flux(R) : reaction(R), keq(R, K)} > 0.

Listing A.5: Illustration of thermodynamics constraints encoding in ASP
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A.4 aspefm and application on CSP2001

%%% Note: Ce fichier doit être lancé avec covert_palsson_constr.lp4
%%% Commenter et décommenter les lignes de ce fichier avec "%"
%% Final additional constraints, altering EFM enumeration
%% Exclude inconsistent elementary modes
:- inconsistent.
%% Environment specification
env("Carbon1").
env("Carbon2").
env("Oxygen").
env("H").
env("F").

Listing A.6: Environment settings for growth medium of Covert and Palsson, 2003
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%Computation of constraints without altering the EFM enumeration
%Constraints from Covert and Palsson, 2003
%Regulation proteins
regprotein("RPo2") :- not env("Oxygen"). %RPo2 IF NOT Oxygen
regprotein("RPc1") :- env("Carbon1"). %RPc1 IF Carbon1
regprotein("RPh") :- support("Th"). %RPh IF Th
regprotein("RPb") :- support("R2_rev"). %RPb IF R2_Rev
%Reaction regulation rules
repressed("R2") :- regprotein("RPb"). %R2 IF NOT RPb
repressed("R7") :- regprotein("RPb"). %R7 IF NOT RPb
repressed("R8") :- regprotein("RPh"). %R8 IF NOT RPh
repressed("R5b") :- not regprotein("RPo2"). %R5b IF RPO2
repressed("R5a") :- regprotein("RPo2"). %R5a IF NOT RPO2
repressed("Rres") :- regprotein("RPo2"). %Rres IF NOT RPO2
repressed("Tc2") :- regprotein("RPc1"). %Tc2 IF NOT RPc1
%envs specification
:- support("Tc1"); not env("Carbon1"). % SUP IF ENV
:- support("Tc2"); not env("Carbon2").
:- support("Th"); not env("H").
:- support("Tf"); not env("F").
:- support("To2"); not env("Oxygen").
%Remove CWA for envs
environment("Carbon1"; "Carbon2"; "H"; "F"; "Oxygen").
env(E) :- env(E); environment(E).
not env(E) :- not env(E); environment(E).
%Consistency
enzyme("R5a"; "R5b"; "R7"; "R8"; "Rres"; "Tc2").
inconsistent :- repressed(E); support(E); enzyme(E).
%Clingo show instructions
#show env/1.
#show regprotein/1.
#show repressed/1.
#show inconsistent/0.

Listing A.7: Transcription Regulation Network from Covert and Palsson, 2003
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% External metabolites
external("Eext";"Dext";"Carbon2";"Hext";"Carbon1";"Biomass";"Fext";"Oxygen").
% Internal metabolites
metabolite("A";"ATP";"B";"NADH";"C";"F";"G";"D";"E";"H";"O2").
% Reversible reactions
reversible("R8","R8_rev";"R2","R2_rev").
% All reactions
reaction("R1";"R2";"R2_rev";"R3";"R4";"R5a";"R5b";"R6";
"R7";"R8";"R8_rev";"Rres";"Tc1";"Tc2";"Tf";"Td";"Te";"Th";"To2";"Growth").
% Stoichiometry
stoichiometry("A","R1",-1). stoichiometry("ATP","R1",-1).
stoichiometry("B","R1",1). stoichiometry("B","R2",-1).
stoichiometry("ATP","R2",2). stoichiometry("NADH","R2",2).
stoichiometry("C","R2",1). stoichiometry("B","R3",-1).
stoichiometry("F","R3",1). stoichiometry("C","R4",-1).
stoichiometry("G","R4",1). stoichiometry("G","R5a",-1).
stoichiometry("C","R5a","0.8"). stoichiometry("NADH","R5a",2).
stoichiometry("G","R5b",-1). stoichiometry("C","R5b","0.8").
stoichiometry("NADH","R5b",2). stoichiometry("C","R6",-1).
stoichiometry("ATP","R6",2). stoichiometry("D","R6",3).
stoichiometry("C","R7",-1). stoichiometry("NADH","R7",-4).
stoichiometry("E","R7",3). stoichiometry("G","R8",-1).
stoichiometry("ATP","R8",-1). stoichiometry("NADH","R8",-2).
stoichiometry("H","R8",1). stoichiometry("NADH","Rres",-1).
stoichiometry("O2","Rres",-1). stoichiometry("ATP","Rres",1).
stoichiometry("Carbon1","Tc1",-1). stoichiometry("A","Tc1",1).
stoichiometry("Carbon2","Tc2",-1). stoichiometry("A","Tc2",1).
stoichiometry("Fext","Tf",-1). stoichiometry("F","Tf",1).
stoichiometry("D","Td",-1). stoichiometry("Dext","Td",1).
stoichiometry("E","Te",-1). stoichiometry("Eext","Te",1).
stoichiometry("Hext","Th",-1). stoichiometry("H","Th",1).
stoichiometry("Oxygen","To2",-1). stoichiometry("O2","To2",1).
stoichiometry("C","Growth",-1). stoichiometry("F","Growth",-1).
stoichiometry("H","Growth",-1). stoichiometry("ATP","Growth",-10).
stoichiometry("Biomass","Growth",1).

% Reversible reactions stoichiometry
stoichiometry("B","R2_rev",1).
stoichiometry("ATP","R2_rev",-2).
stoichiometry("NADH","R2_rev",-2).
stoichiometry("C","R2_rev",-1).
stoichiometry("G","R8_rev",1).
stoichiometry("ATP","R8_rev",1).
stoichiometry("NADH","R8_rev",2).
stoichiometry("H","R8_rev",-1).

Listing A.8: Metabolic network of Covert and Palsson, 2003
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A.5 Stoichiometric consistency

% Adaptation and translation in ASP of the MILP from Gevorgyan, 2008 at section 3.2
% Computing a subset minimal answer set corresponding to all unconserved metabolites

% Domain upper bound for mass values
#const nb=5000.

% Tells clingo that it is okay if the input file does not contain these predicates
reversible(do_not_use, do_not_use).

% External metabolites are metabolites too in this formalism
metabolite(M) :- external(M).

% Declare metabolite masses m_i
&dom{0..nb} = mass(M) :- metabolite(M).

% Stoichiometry matrix transposed multiplied by metabolite masses must equal 0
&sum{C*mass(M) : stoichiometry(M, R, C), metabolite(M)} = 0 :- reaction(R); not reversible(_, R).

% Compute conserved metabolites
conserved(M) :- &sum{mass(M)} > 0; metabolite(M).

% Compute unconserved metabolites
unconserved(M) :- not conserved(M); metabolite(M).

% Metabolites are assumed conserved
#heuristic unconserved(M). [1, false]

#show unconserved/1.

Listing A.9: Compute minimal unconserved metabolites
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Model analyzed...
At least one error found.

We detected a mass imbalance
: -> B

from the following reaction isolation set.

1. R2: C -> A + 2.00 B
2. R1: A + B -> C

----------------------------------------------------------------------
----------------------------------------------------------------------

These uni-uni reactions created mass-equivalence.
(The chemical species within a curly bracket have the same atomic mass.)

{C=D} is inferred by:
3. R3: C -> D

----------------------------------------------------------------------

Based on the uni-uni reactions above, we create mass-equivalent pseudo reactions.

(pseudo 1.) R2: {C=D} -> 2.00 {B} + {A}
(pseudo 2.) R1: {B} + {A} -> {C=D}

----------------------------------------------------------------------

An operation between the pseudo reactions:
1.00 * R2 + 1.00 * R1

will result in empty reactant with zero mass:

: -> {B}

Listing A.10: Stoichiometric inconsistency of the example in equation 2.21
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%Adaptation and translation in ASP of the MILP from Gevorgyan, 2008 at section 3.3
%Takes a choice of unconserved metabolites {unconserved(M) : unconsmet(M)} in additional input
%Takes a stoichiometric kernel of non zero coefficients leftkernel(M, R, C) and columns column(R)

% Domain upper bound for mass values
#const nb=5000.

% External metabolites are metabolites too in this formalism
metabolite(M) :- external(M).

% Declare metabolite masses m_i
&dom{0..nb} = mass(M) :- metabolite(M).

% Stoichiometry matrix transposed multiplied by metabolite masses must equal 0
&sum{C*mass(M) : leftkernel(M, R, C), metabolite(M)} = 0 :- column(R).

% Compute faulty stoichiometry for unconserved metabolites
min_stoch(M) :- &sum{mass(M)} > 0; metabolite(M).

% Unconserved metabolites should be in min_stoichiometries
:- not min_stoch(M), unconserved(M).

% Metabolites are assumed conserved
#heuristic min_stoch(M). [1, false]

#show min_stoch/1.

Listing A.11: Compute minimal net stoichiometries
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We detected a mass imbalance from the following reaction isolation set.

1. R_TIVDG: M_TIVc + 0.70 M_AKGc + 1.33 M_NADc + 0.70 M_Q -> 0.70 M_GLUTc + 1.33 M_NADHc + 0.70 M_QH2
2. R_PL1: 8.00 M_ACoAc + 7.00 M_ATPc + 14.00 M_NADPHc + 7.00 M_HCO3 -> M_Palmitate_c

+ 7.00 M_ADPc + 7.00 M_Pic + 14.00 M_NADPc + 8.00 M_CoAc + 7.00 M_CO2
3. R_NAGS_ACY: 2.00 M_GLUTm + M_ACoAm + M_NADHm + 3.00 M_ATPm -> M_ORNm + M_CoAm + M_NADm + 3.00 M_ADPm + 3.00 M_Pim + M_AKGm + M_ACETm
4. R_ASYNT: 3.00 M_ADPm + 3.00 M_Pim + 8.00 M_DPH + 8.00 M_DPSI -> 3.00 M_ATPm
5. R_CPS1_OTC: M_NH3 + M_HCO3 + M_ORNm + 2.00 M_ATPm -> M_CITRm + 2.00 M_ADPm + 2.00 M_Pim
6. R_ORNT2: M_ORNc -> M_ORNm + M_DPH
7. R_RC2: M_SUCCm + M_Q -> M_MALm + M_QH2
8. R_PP1: M_G6P + 2.00 M_NADPc -> M_R5P + 2.00 M_NADPHc + M_CO2
9. R_RC1: M_NADHm + M_Q -> M_NADm + M_QH2 + 4.00 M_DPH + 4.00 M_DPSI
10. R_ACS: M_ACETm + 2.00 M_ATPm + M_CoAm -> M_ACoAm + 2.00 M_ADPm + 2.00 M_Pim
11. R_NUC: M_R5P + 2.40 M_GLNc + M_ASPc + 0.50 M_GLYc + M_FTHFc + 8.70 M_ATPc + 0.20 M_NADc + 0.75 M_NADPHc + 0.50 M_Q

-> M_XTPc + 2.40 M_GLUTc + M_MALc + M_THFc + 8.70 M_ADPc + 8.70 M_Pic + 0.20 M_NADHc + 0.75 M_NADPc + 0.50 M_QH2
12. R_ANT: M_ATPm + M_ADPc + M_DPSI -> M_ATPc + M_ADPm
13. R_GOT2: M_GLUTm + M_OAAm -> M_ASPm + M_AKGm
14. R_MDH1: M_MALc + M_NADc -> M_OAAc + M_NADHc
15. R_PDH: M_PYRm + M_NADm -> M_ACoAm + M_NADHm + M_CO2
16. R_ASS1_ASL_FH: M_CITRc + M_ASPc + 2.00 M_ATPc -> M_ARGc + M_MALc + 2.00 M_ADPc + 2.00 M_Pic
17. R_CL: M_CITc + M_ATPc + M_CoAc -> M_ACoAc + M_OAAc + M_ADPc + M_Pic
18. R_IDH2: M_CITm + M_NADPm -> M_AKGm + M_NADPHm + M_CO2
19. R_PEPCK2: M_OAAm + M_ATPm -> M_PEPm + M_ADPm + M_CO2
20. R_IDH3: M_CITm + M_NADm -> M_AKGm + M_NADHm + M_CO2
21. R_ME2: M_MALm + M_NADm -> M_PYRm + M_NADHm + M_CO2
22. R_CS: M_ACoAm + M_OAAm -> M_CITm
23. R_MDH2: M_MALm + M_NADm -> M_OAAm + M_NADHm
24. R_PYC: M_PYRm + M_HCO3 + M_ATPm -> M_OAAm + M_Pim + M_ADPm
25. R_MTHFD2: M_MTHFm + M_NADm -> M_FTHFm + M_NADHm
26. R_PP2: 3.00 M_R5P -> 2.00 M_G6P + M_G3P
27. R_SERSYNT: M_3PG + M_GLUTc + M_NADc -> M_SERc + M_AKGc + M_NADHc + M_Pic
28. R_T2: M_AKGc + M_MALm -> M_AKGm + M_MALc
29. R_NIG: M_DPSI -> 4.00 M_DPH
30. R_G1: M_GLUCc + M_ATPc -> M_G6P + M_ADPc
31. R_GLUD1: M_GLUTm + M_NADm -> M_AKGm + M_NADHm + M_NH3
32. R_GG3: 2.00 M_G3P -> M_G6P + M_Pic
33. R_PEPCK1: M_OAAc + M_ATPc -> M_PEPc + M_ADPc + M_CO2
34. R_T4: M_GLUTc + M_ASPm + M_DPH + M_DPSI -> M_GLUTm + M_ASPc
35. R_T3: M_MALm + M_Pic -> M_MALc + M_Pim
36. R_SLP: M_AKGm + M_NADm + M_Pim + M_ADPm -> M_SUCCm + M_NADHm + M_CO2 + M_ATPm
37. R_ALDH1L2: M_FTHFm + M_NADPm -> M_THFm + M_NADPHm + M_CO2
38. R_SHMT1: M_SERc + M_THFc -> M_GLYc + M_MTHFc
39. R_ALDH1L1: M_FTHFc + M_NADPc -> M_THFc + M_NADPHc + M_CO2
40. R_GLS1: M_GLNm -> M_GLUTm + M_NH3
41. R_ORNT1: M_ORNc + M_CITRm -> M_ORNm + M_CITRc + M_DPH
42. R_T5: M_Pic + M_DPH -> M_Pim
43. R_T7: M_PEPm + M_CITc + M_DPH + M_DPSI -> M_PEPc + M_CITm
44. R_ME1: M_MALc + M_NADPc -> M_PYRc + M_NADPHc + M_CO2
45. R_ARGASE: M_ARGc -> M_UREAc + M_ORNc
46. R_MTHFD1_1: M_MTHFc + M_NADPc -> M_FTHFc + M_NADPHc
47. R_SHMT2: M_SERm + M_THFm -> M_GLYm + M_MTHFm
48. R_G2: M_G6P + M_ATPc -> 2.00 M_G3P + M_ADPc
49. R_GS1: M_GLUTc + M_NH3 + M_ATPc -> M_GLNc + M_ADPc + M_Pic
50. R_T9: M_GLUTc + M_DPH -> M_GLUTm
51. R_T6: M_PYRc + M_DPH -> M_PYRm
52. R_MTHFD1_2: M_FTHFc + M_ADPc + M_Pic -> M_THFc + M_ATPc + M_FORc
53. R_PK: M_PEPc + M_ADPc -> M_PYRc + M_ATPc
54. R_T1: M_CITm + M_MALc -> M_CITc + M_MALm + M_DPH
55. R_NNT: M_NADHm + M_NADPm + M_DPH + M_DPSI -> M_NADm + M_NADPHm
56. R_GG4: M_G6P -> M_GLUCc + M_Pic
57. R_GOT1: M_GLUTc + M_OAAc -> M_ASPc + M_AKGc
58. R_MTHFD2L: M_MTHFm + M_NADPm -> M_FTHFm + M_NADPHm
59. R_ATPASE: M_ATPc -> M_ADPc + M_Pic
60. R_T18: M_ARGc -> M_ARG
61. R_T21: M_GLYc -> M_GLY
62. R_T22: M_GLYc -> M_GLYm
63. R_GLUCUP: M_GLUC -> M_GLUCc

Listing A.12: Stoichiometric inconsistency of the C2M2NF model by Jean-Pierre Mazat
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A.6 E. coli core analysis

A.6.1 ASP Programs

Description of every ASP file provided in Supplementary File S4 of [89]:

• solve[LP].lp4 i.e. aspefm.lp4 : Program implementing the computation of EFMs under constraints. Works

with any network and constraints encoded in ASP as presented in Section 3.4.1.

• orth_ecoli_core.lp4 : ASP translation of the network, using the encoding established above.

• orth_ecoli_core_atp.lp4 : ASP translation of the network with modified biomass.

• ecoli_core_regul.lp4 : Full translation of the E. coli core transcriptional regulation network.

• ecoli_core_additional_constraints.lp4 : Additional constraints for the E. coli core network, including envi-

ronments, thermodynamic constraints and operating costs constraints.

In addition, we used the former standalone implementation of clingo[LP] as a Python script.

Here are the options we used to launch our tool:

clingo [LP] [Network] [Constraints] aspefm.lp4 -c nstrict=0

--heuristic Domain --enum-mode domRec

-c accuracy=10 -c epsilon="(1,1)"

A.6.2 Additional Python Code

In Supplementary File S5 we provide Jupyter Notebooks [S123] computing the Pareto optimal pathways with Escher

and the plots presenting the EFMs sorted by biomass uptake rate as in figures/ 3.5 and 3.6, figures/ A.1 and A.2.

We also include Python pickle data structures containing the EFMs and MCFMs presented in Tables 3.2 and A.1

as pandas data frames. The notebook requires the use of Python modules pandas, pickle, matplotlib, scipy and

escher.

A.6.3 Pareto Optimal Pathways of E. coli

The Pareto optimal pathways for the E. coli core model were visualized in HTML format with the tool Escher [191].

We represent a total of five EFMs for the network without formate regulation. The pathways for both regulation

conditions are presented in a ZIP file attached in Supplementary Files.
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A.6.4 E. coli Biomass Modifications

The E. coli core biomass coefficients were modified so that they included ATP maintenance requirements. The

biomass now required 139 moles of ATP, for an amount of 42.55 C moles of biomass and an E. coli doubling time

of 40 minutes. In particular, the experimentally-known elemental composition of E. coli was used (see 1.4.4).

Mass balance was performed using the master equations presented in subsection 1.4.4. We also modified ac-

cordingly the H+ and H2O coefficients in order for the number of electrons and hydrogen and oxygen moles in the

biomass to be closer to typical E. coli values. The calculations are detailed in the Supplementary Excel file.

A.6.5 Pareto Optimal Pathways of E. coli with the Adjusted Biomass

Integrating the maintenance energy into the biomass reaction resulted in higher resource operating costs, as ex-

pected. To ensure relevant EFMs were identified, the operating cost bounds were increased to an O2 operating cost

less than 1.4 O2 moles per biomass C mole and a glucose operating cost less than 14 C moles per biomass C mole.

In addition, maintenance reaction ATPM from the model was disabled. The results are presented in Table A.1.

The modified biomass returned a different number of EFMs, resulting in a Pareto front of 5 EFMs for the network with

standard regulation (Figure A.1), and 9 EFMs for the network without formate metabolism regulation (Figure A.2).

In addition, disabling the formate regulation resulted this time in only an ∼ 4 fold increase in the number of EFMs.

The chosen bounds and modifications to the model biomass have a strong impact on the bidimensional substrate

operating cost space geometry.

Table A.1: Number of EFMs retrieved on the modified E. coli core network depending on culturing conditions for
the adjusted biomass. Computation time given within brackets. Disabling the formate regulation returned EFMs for

both aerobic and anaerobic conditions in a single execution.

Standard Regulation No Formate Regulation

Processing
Aerobic conditions 4273 EFMs [2362s] 16411 EFMs [8005s]

Anaerobic conditions 930 EFMs [469s]

Post-processing
Filtered out MCFMs 36 MCFMs 137 MCFMs

Pareto optimal in biomass yield 5 EFMs 9 EFMs

The Pareto optimal pathways for the modified model were visualized in HTML format with the tool Escher. We

represent a total of nine EFMs for the network with modified biomass and formate regulation. The pathways are

presented in a ZIP file attached in Supplementary Files.

The nature of the Pareto optimal pathways are the same as for the original biomass reaction: no byproducts for

the top left EFM, then as O2 availability decreases, EFMs start producing acetate, acetate, and formate and, finally,

acetate, formate, and ethanol under anaerobic conditions.
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Figure A.1: E. coli core EFMs sorted by carbon/biomass and oxygen/biomass operating costs. Biomass was
modified to include ATP maintenance. Regulation constraints are as described in Orth et al. 2010.

Figure A.2: E. coli core EFMs sorted by carbon/biomass and oxygen/biomass operating costs. Biomass was
modified to include ATP maintenance. Regulation constraints allow production of formate in aerobic conditions.
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A.6.6 Additional Results

Table A.2: Additional results observed for the original biomass. Computation time given within brackets.

Constraints Filtered out MCFMs EFMs and MCFMs

With regulation and environment O2 No O2 Formate O2 No O2 Formate

No additional constraints 0 0 0 4027 [1314 s] 1459 [602 s] 28256 [5572 s]

Biomass-producing 0 0 0 2746 [833 s] 1355 [436 s] 24324 [6281 s]

Biomass-producing Thermodynamic data 0 0 0 2746 [901 s] 1355 [471 s] 24324 [6843 s]

Biomass-producing Yields (O2 < 0.7) (C < 7) 39 0 119 1157 [560 s] 363 [220 s] 11136 [4884 s]

Biomass-producing Thermo and Yields 39 0 119 1157 [542 s] 363 [232 s] 11136 [5318 s]

Table A.3: Additional results observed for the revised biomass; BP: Biomass-Producing.
Computation time given within brackets.

Constraints Filtered out MCFMs EFMs and MCFMs

With regulation and environment O2 No O2 Formate O2 No O2 Formate

ATPM
No additional constraints 0 0 0 8354 [2518 s] 1260 [473 s] 33499 [6676 s]

Biomass-producing 3 0 3 7076 [2939 s] 1156 [428 s] 29570 [8697 s]

No ATPM

No additional constraints 0 0 0 7735 [2337s] 1228 [428s] 32098 [6474s]

Biomass-producing 3 0 3 6656 [2948 s] 1140 [441 s] 28795 [8664 s]

BP Thermodynamic data 3 0 3 6656 [3027 s] 1140 [458 s] 28795 [8744 s]

BP Yields (O2 < 1.4) (C < 14) 36 0 137 4309 [2369 s] 930 [473 s] 16548 [7904 s]

BP Thermo and yields 36 0 137 4309 [2362 s] 930 [469 s] 16548 [8005 s]
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A.6.7 Comments on E. coli core Additional Results

The supplementary tables Table A.2 and Table A.3 are provided as they were written and published in the now 3-year

old article [89]. Since then, major ameliorations have been implemented into aspefm, including the EFMChecker

(section 5.2). The great news is with the latest version, computation times are now reduced by at least 5-fold.

Here are some examples of how computation times changed: the 4027 aerobic EFMs are now found in 178s; when

adding biomass production we get to 2746 EFMs in 240s, and with yields we get 1118 EFMs in 98s. Keep in

mind these results are with the EFMChecker extension. For anaerobic conditions, all 1459 EFMs are retrieved in

65s, all 1355 EFMs are retrieved in 124s, and all 363 EFMs are retrieved in 44s. The pattern we can see here is

adding the positive constraint alone does not actually actively decrease the computation time. This is interesting to

keep in mind for future works. Further, we have the 11017 formate-producing EFMs we plotted retrieved in 965s.

On to the other table, we have 7735 aerobic EFMs in condition ’No ATPM’ computed in 160s, with in addition the

biomass-producing condition we have 6656 aerobic EFMs in 486s, and for the longest tested computation time we

have 28795 formate and biomass-producing EFMs retrieved in 2623s.

Like the Supplementary Tables, I only give these new results for informative purposes. They do not constitute

a legitimate attempt of mine at benchmarking, as it does only represent single executions, not even an average,

and clingo’s execution patterns are highly non-deterministic. For example, thermodynamic equilibrium constraints

almost always seem to increase computation times no matter how many runs are launched, which is why I thought

they might be relevant in the Appendix tables, even if not filtering out any EFMs.

These two tables have always presented quite some oddities. Formate-producing EFMs not requiring to combine

aerobic and anaerobic conditions is a result of a clunky encoding of some transcriptional and environmental regula-

tion rules in the transcriptional regulation network, and if I were to redo it today I would try to avoid this as it brings

confusion, even though it was convenient not having to combine different executions and conditions.

However a more striking oddity would be the presence of MCFMs that are not EFMs when only adding a single

positive constraint: asking for biomass production, in Table A.3, conditions ’Regulation and environment’ and ’No

ATP’. This always confused me as MCFMs that are not EFMs should appear after forcing two positive constraints,

not just one. And I thouroughly checked and curated the TRN so that it would not have any positive constraint.

Having retested it with the latest version, I can confirm that these MCFMs are not obtained anymore, and this was

most likely a problem with the maximum flux bounds of every reaction, which impose positive constraints. Indeed, I

am able to reproduce the issue when setting bounds to [0, 5000] with ’-c nb = 5000’, as was used back then.

In any case, all data used for the analysis are provided in the article’s supplementary material so one should be able

to reproduce and recalculate the number of EFMs in the now smaller computation times with the newest version

of aspefm if interested. For further validation of this analysis, one should gather the exhaustive set of 226.3 × 106

EFMs and check how many EFMs of each condition there really are. This would be a supplementary step to confirm

how accurate of a method aspefm is at finding the subsets of EFMs. We did not attempt this procedure because of

the high memory requirements.
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A.7 Tumoural stroma analysis

minimum maximum median mean standard deviation

EX_GLY -11.7760 13.7858 0.0000 0.0361 3.3644

EX_ARG -5.0745 0.0000 -0.8145 -1.0733 0.9929

EX_ASP -12.8867 0.0000 -1.6067 -2.2061 1.9422

EX_GLN -12.0169 -0.1697 -1.7679 -2.4997 2.2157

EX_TIV -8.7957 -0.7183 -1.6904 -2.2185 1.6127

EX_GLUT 0.0000 6.2446 0.0000 0.1707 0.6644

EX_ALA 0.0000 4.9655 0.0000 0.0640 0.4226

EX_SER -14.7054 0.0000 -1.5427 -2.5081 3.2967

EX_YFLKW -14.8778 -1.3146 -3.0614 -4.0092 2.7661

EX_PRO -8.5352 0.8575 -1.2870 -1.6464 1.5906

EX_HIS -7.7354 -0.1635 -0.5035 -1.5421 1.8491

EX_MET -1.2754 4.8228 -0.2290 -0.2083 0.6016

EX_CYS -2.8155 -0.2429 -0.5519 -0.7241 0.5206

EX_FOR -8.9515 12.0801 0.0000 0.4891 2.4040

EX_PYR 0.0000 4.8270 0.0000 0.1721 0.6349

EX_XTP -0.0035 1.4832 0.3022 0.2963 0.2810

EX_GLUC -8.5815 -0.5000 -2.3908 -2.8593 1.8851

EX_LAC 0.0091 14.9990 3.9917 4.7118 3.4683

EX_Biomass 0.0100 0.0879 0.0100 0.0185 0.0144

EX_Stroma 0.0110 0.1276 0.0248 0.0323 0.0236

EX_Collagen 0.0110 0.3125 0.0367 0.0583 0.0575

Table A.4: Statistics (minimum, maximum, median, standard deviation) of the main exchange fluxes for all 747
Warburg effect EFMs, negative values indicates consumption, positive values indicates production
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Number of cell lines Linear regression RMSE Linear regression R²

All cell lines 60 26.9102 0.9813

Colon 7 28.7879 0.9812

Leukemia 6 19.3316 0.9745

Lung 9 40.9490 0.9797

Prostate 2 33.1043 0.9789

Ovarian 7 25.9862 0.9818

Breast 6 31.3463 0.9803

Melanoma 9 23.2846 0.9818

Central Nervous System 6 19.9142 0.9789

Renal 8 28.8023 0.9770

Table A.5: Scores of linear regression fit to the mean flux values of different types of cancer cell lines in the NCI-60
cancer cell lines data, applied to the EFM with best regression fit to the global mean flux values of all 60 cell lines
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A.8 aspefm for the analysis of MCSs of P. aeruginosa and S. aureus

% mcs[LP].lp4 - Von Kamp formulation
% Logic Program in Clingo[LP] - Clingcon ASP format
% Finds fluxes that belongs to the stoichiometric matrix kernel
% Defines an heuristic for them to be enumerated subset minimal
% Used to compute Minimal Cut Sets in metabolic networks

% Domain upper bound for flux values
#const nb=20000.

% Tells clingo that it is okay if the input file does not contain these predicates
reversible(do_not_use, do_not_use).

% Rule A: Since all reactions are irreversible, they must have a nonnegative flux
&dom{0..nb} = flux(R) :- reaction(R).

% Rule B: Two irreversible reactions issued from the splitting of
% one reversible reaction are mutually exclusive
:- support(R1); support(R2); 1 {reversible(R1, R2); reversible(R2, R1)} 1;

reaction(R1); reaction(R2).

% Rule C : At least one reaction that is not the target reaction must be used
:- not support(R) : reaction(R).
:- not cutset(R) : reaction(R).

% Rule D : For each metabolite, the sum, weighted by the stoichiometry,
% of fluxes of all active reactions is null
&sum{C*flux(R) : stoichiometry(M, R, C), reaction(R)} >= 0 :- metabolite(M); mirrev(M).
&sum{C*flux(R) : stoichiometry(M, R, C), reaction(R)} = 0 :- metabolite(M); not mirrev(M).

% Compute support
support(R) :- &sum{flux(R)} > 0; reaction(R).

% Atoms in which we are interested in
cutset(R) :- support(R); interest(R).

% Support minimization heuristic
#heuristic cutset(R). [1, false]

% Show support atoms
#show cutset/1.

Listing A.13: aspmcs.lp4 main ASP program code for computation of MCSs
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Minimal Cut Sets of Pseudomonas aeruginosa and Staphylococcus aureus recovering
growth by metabolite exchange interactions such as crossfeeding
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TG
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Minimal Cut Sets of Pseudomonas aeruginosa and Staphylococcus aureus not recovering
growth and thus making for possible enzyme drug targets

Figure A.3: Summary of the methods performed in the MCSs study using aspefm.
A: Computation of all MCSs of small size on the single-species models; B: Computation of subsets of MCSs of

large size on the consortium model, explaining the metabolite exchanges allowing recovery of growth; C: Search
for new therapeutic targets using protein structure alignments of AlphaFold predictions. Abbreviations: T : target

reaction, PA: Pseudomonas aeruginosa, SA: Staphylococcus aureus.
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Wanted
Reactions

P. aeruginosa model
Minimal Cut Sets

 

R1_PA

R2_PA

R3_PA

aspefm

All other P. aeruginosa
and S. aureus reactions

except exchanges
Unwanted
Reactions

Consortium
model
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Biomass
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TargetNetwork
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MCS1:               
MCS2:               

R1_PA R2_PA R3_PA EX_M1_PA_rev EX_M2_SA

R1_PA R2_PA R3_PA EX_M1_SA EX_M2_PA_rev

Consortium model MCSs representing growth recovery by cross-feeding

Figure A.4: Procedure for computing MCSs revealing metabolite exchanges with aspefm, from the sets of lethal
MCSs of either bacteria with growth recovery on the consortium model (illustrated for P. aeruginosa).

Exchange reactions are denoted by "EX". Backwards direction of a reaction is denoted by "rev". MCSs with growth
recovery on the consortium model are selected as wanted reactions constraints, while all other metabolic reactions
except exchanges usable for crossfeeding are set as unwanted reactions. After running aspefm, output consortium

model MCSs represent growth recovery by crossfeeding of external metabolites.
Displayed on the figure, crossfeeding of external metabolites M1 and M2 complement lethality of cutset {R1, R2,

R3} of P. aeruginosa, thus the new cut sets obtained on the consortium model with P. aeruginosa’s biomass
reaction as target have: {R1, R2, R3} as base, then either consumption of M1 by PA or production of M1 by SA

needs to be cut, and then either consumption of M2 by PA or production of M2 by SA needs to be cut (two
examples of such cut sets shown out of four).
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Appendix B

French: Compilation de connaissances

avec les Binary Decision Diagrams

B.1 Binary Decision Diagrams

Pour illustrer la compilation de connaissances, nous allons détailler une méthode pionnière, les Diagrammes de

Décision Binaire ou BDD. Le principe de compilation de connaissances repose sur l’existence de langages de

compilation cibles qui ont des propriétés particulières telles que la possibilité de compter et d’énumérer des solutions

en temps polynômial [207].

Par exemple, un BDD est une représentation compacte des solutions d’une formule booléenne. Toute formule

booléenne peut être représentée par un BDD. Il est alors possible de vérifier en temps linéaire sur le BDD si

une affectation de valeurs aux variables booléennes est une solution de la formule booléenne. La complexité du

problème est transférée à l’étape de compilation de la formule booléenne en BDD, qui peut prendre beaucoup de

temps.

Soit X = {x1, x2, . . . , xn} un ensemble de variables booléennes. Une interprétation I ∈ Bn de X est une affectation

de chaque variable booléenne de X soit à la valeur Vrai (⊤), soit à la valeur Faux (⊥).

Soit une formule booléenne ϕ : Bn 7→ B. ϕ associe une interprétation de X soit à Vrai, soit à Faux. On appelle

solutions S de ϕ les interprétations de X qui sont vraies par la formule ϕ.

Un Diagramme de Décision Binaire pour une formule booléenne ϕ est un graphe orienté acyclique (DAG) tel que

chaque interprétation possible I de X correspond à un chemin sur le graphe qui mène soit à la valeur Vrai, soit à la

valeur Faux.

Il y a donc deux types de nœuds: les nœuds terminaux qui sont les valeurs Vrai et Faux et les nœuds non-terminaux

qui correspondent aux variables booléennes.
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Ainsi, chaque nœud possède un label : soit Vrai ou Faux pour les deux nœuds terminaux, soit une variable

booléenne (on peut avoir plusieurs nœuds pour la même variable booléenne).

Un nœud non terminal possède toujours deux arcs sortants: l’arc low qui correspond au cas où la variable prend la

valeur Faux, et l’arc high pour le cas où la variable prend la valeur Vrai.

On peut de plus définir un ordre sur les variables de X, par exemple généralement les variables sont numérotées

de 1, 2, . . . , à n.

Un Diagramme de Décision Binaire est dit Ordonné (OBDD) si à tout moment du graphe les variables respectent un

ordre donné {x1 < x2 < · · · < xn}, c’est-à-dire que si i < j, alors un nœud étiqueté xi ne peut être un descendant

d’un nœud étiqueté xj .

On décrit maintenant chaque nœud par un triplet (var, low, high) : var est le label du nœud, low est le label du

nœud fils par l’arc sortant low et high est le label du nœud fils par l’arc sortant high.

Un BDD est dit Réduit (ROBDD) [295] si:

• chaque nœud est dit unique : il n’existe pas deux nœuds distincts avec le même triplet (var, low, high)

• il n’existe pas de nœud (var, low, high) tel que low = high (on arrive à la même variable que var soit Vrai ou

Faux, il s’agit d’un test redondant)

Exemple: soit ϕ1 une formule booléenne sur {t1, t2, t3, t4} telle que

ϕ1 = (t1⇒ ¬t2) ∧ (t3 ∨ t4)

T F

t4

t3

t2

t1

Figure B.1: ROBDD pour la formule ϕ1 = (t1⇒ ¬t2) ∧ (t3 ∨ t4)

Un exemple de ROBDD pour la formule ϕ1 est représenté en Figure B.1. Les arcs low sont représentés en pointillés

tandis que les arcs high sont représentés en trait plein. Par exemple, pour l’interprétation {⊥,⊥,⊤,⊥}, t1 est affecté

à Faux donc on suit l’arc en pointillés, puis on affecte t3 à Vrai ce qui nous amène en suivant le trait plein au nœud

Vrai. Il s’agit d’une solution. Notons que ici la valeur de t2 et t4 n’ont pas influé sur le résultat.
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Pour l’interprétation {⊥,⊤,⊥,⊥}, t1 est affecté à Faux, t3 est affecté à Faux, t4 est affecté à Faux donc on arrive

au nœud Faux. Il ne s’agit pas d’une solution. Effectivement, on peut voir que cette solution ne respecte pas

l’expression booléenne (t3 ∨ t4) dans la formule ϕ1.

Communément, ce que l’on appelera BDD par la suite désignera en fait des diagrammes qui sont réduits et ordon-

nés (ROBDDs).

En suivant ce principe, nous allons donc chercher à compiler nos formules booléennes correspondant aux réseaux

de régulation en BDDs.

Le calcul des modes de flux n’est pas pour l’instant considéré car les contraintes de stœchiométrie nécessaires

sont numériques, or les BDDs ne nous permettent que de regarder les contraintes booléennes.

On cherche donc pour l’instant à tester si un ensemble de réactions actives, issu du calcul des modes de flux,

respecte ou non les contraintes de nos réseaux de régulation.

En d’autres termes, nous allons compiler un BDD du réseau de régulation de telle sorte que si notre mode de flux

est conforme à la régulation, son support correspondra à un chemin du BDD qui amène au nœud Vrai. Inversement,

s’il n’est pas conforme, le chemin amènera au nœud Faux. La formule booléenne considérée sera la conjonction

de toutes les règles du réseau.

B.1.1 Application

Il existe un certain nombre d’opérations possibles sur un BDD. Nous allons détailler celles qui vont nous intéresser:

COUNT et RESTRICT [295].

• Supposons qu’on possède un BDD u pour une expression ϕ. L’opération COUNT(u) nous renvoie le nombre de

solutions S de ϕ. Cette opération est réalisée en temps linéaire en la taille de u, autrement dit O(|u|).

• Supposons qu’on possède un BDD u pour une expression ϕ, une variable x ∈ X et une valeur de vérité b ∈ B.

L’opération RESTRICT(u, x, b) nous renvoie alors un BDD u[x = b] pour la sous-expression ϕ[x = b] tel que la

variable x a été affectée à la valeur b. Cette opération est réalisée en temps linéaire en la taille de u, autrement

dit O(|u|).

Appelons LET(u, V,B) l’opération qui consiste à obtenir un BDD u[V = B] tel que un ensemble de k variables V ⊂ X

ont été affectées à k valeurs de vérités B ∈ Bk. Cette opération consiste à effectuer k fois l’opération RESTRICT.

Elle est donc toujours en temps polynômial O(|u| · k).

Créons maintenant un BDD ur corrrespondant au réseau de régulation d’un réseau métabolique. Les réactions

sont des variables booléennes de notre réseau de régulation et donc de notre BDD.

Pour un ensemble K de k réactions données, il est alors possible de vérifier en temps polynômial s’il existe une solu-

tion dans laquelle toutes les réactions sont affectées à Vrai (⊤). Il suffit de vérifier que l’opération COUNT(LET(ur,K,⊤k))

renvoie un résultat strictement positif.
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Pour chaque mode élémentaire de flux (EFM) trouvé, il est donc possible de vérifier sur le BDD en temps polynômial

s’il respecte la régulation.

TF

oxygen oxygen

rpo2 rpo2 rpo2

to2 to2

rres rres

r5b

Figure B.2: ROBDD compilant des contraintes de régulation de CSP2001

On peut observer sur la Figure B.2 un BDD compilant les contraintes issues du CSP2001 présentées précédemment

avec ASP (voir section 3.6 and section A.4). Appelons ce BDD u1.

Il est possible d’observer directement que les réactions r5b et rres ne peuvent pas apparaître ensemble dans un

même EFM. En effet, en suivant les traits pleins depuis les nœuds r5b et rres, on arrive au nœud Faux.

En revanche, si l’on se tient à ce BDD qui ne représente qu’une petite partie du réseau de régulation complet, tout

EFM ne contenant aucune des 3 réactions {r5b, rres, to2} est une solution, que ce soit en aérobie ou en anaérobie.

Il existe alors 2 solutions possibles pour les variables restantes, 2 chemins alternatifs : {rpo2 : ⊤, oxygen : ⊥} et

{rpo2 : ⊥, oxygen : ⊤}.

En d’autres termes, le nombre de solutions renvoyé par COUNT(LET(u1, {r5b, rres}, {⊤,⊤})) est 0. Le nombre de

solutions renvoyé par COUNT(LET(u1, {r5b, rres, to2}, {⊥,⊥,⊥})) est 2.

B.1.2 Implémentation

Pour tester les BDDs, nous utilisons la librairie dd en Python. Cette librairie interface la librairie standard cudd pour

les BDD réalisée en langage C, en utilisant Cython. Le code Python exécuté appelle donc du code C, ce qui permet

des optimisations majeures en temps de calcul.
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from dd import BDD

bdd = BDD() # Nouveau Manager de BDD

bdd.declare(variables) # Déclaration des variables

function = bdd.add_expr(expression) # Déclaration de la formule booléenne

restricted_function = bdd.let({'R1': True}, function) # LET

nb_sols = restricted_function.count() # COUNT

Nous allons désormais détailler l’intégration du BDD dans le solveur ASP. L’idée consistera à faire un appel aux

fonctions LET et COUNT sur notre BDD lorsque ASP décide quelles réactions vont être actives pour éliminer préma-

turement les ensembles de réactions incompatibles.

Propagateur de théorie

+ init()

+ propagate()

+ undo()

+ decide()

Propagateur LP + BDD *
+ lpsolver : cplex

+ bdd : dd

Propagateur LP

+ lpsolver : cplex

Clingo[LP] + BDD *

+ solve(ASP[LP], BDD)

Clingo[LP]

+ solve(ASP[LP])

Clingo

+ solve(ASP)

Figure B.3: Schéma UML simplifié des outils utilisés. En rouge: Nouveau code apporté au programme.
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∅

Figure B.4: Illustration générale de l’intégration d’un BDD avec le propagateur de théorie, prenant la formule
Booléenne ϕ1 = (t1⇒ ¬t2) ∧ (t3 ∨ t4). A chaque propagation de littéral, un appel est réalisé au BDD, utilisant les

méthodes LET et COUNT afin de vérifier en temps polynômial si l’affectation respecte ou non la formule.

B.1.3 Intégration dans clingo

En Figure B.4, nous proposons une illustration générale de l’intégration dans clingo des BDD avec le propagateur

de théorie, prenant pour example la formule Booléenne de la Figure B.1. Dans le contexte ci-dessous, chaque

flèche standard est une affectation à vrai ou "propagate", et "backtrack" fait référence à un évènement "undo".

Enfin, "nogood" fait référence à un ajout d’une clause négative sur les littéraux restants t2 et r1 ensemble, ajout qui,

comme l’appel au BDD, est effectué à l’intérieur de l’implémentation de la fonction "propagate".

Afin de tester les avantages de la compilation de connaissances, nous avons décidé d’intégrer les BDDs dans notre

implémentation en clingo[LP]. Pour cela, nous pouvons utiliser l’interface des propagateurs de théorie de clingo.

Un propagateur de théorie est une structure externe à clingo capable d’inspecter chaque affectation et ajouter des

nogoods pendant la résolution ASP.

L’interface de propagateur de théorie est disponible depuis la version 5 du solveur clingo [201], et peut être im-

plémentée en Python. Il s’agit de la même interface qui est utilisée pour intégrer la programmation linéaire dans

clingo[LP].

Nous avons d’abord tenté d’utiliser deux propagateurs, un pour les programmes LP cplex et un pour les BDD, ce qui

est possible avec clingo 5. En revanche, nous n’étions pas satisfaits du résultat, car le propagateur BDD semblait

être appelé après le propagateur LP.
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Nous avons donc finalement modifié le code de clingo[LP] afin d’y intégrer le propagateur pour le BDD directement

avant tout appel au solveur linéaire, et ainsi couper les solutions incompatibles avec la régulation le plus tôt possible.

L’interface de propagateur définit des méthodes suivantes :

• "init" : l’initialisation du propagateur, on doit y définir les atomes à observer, on obtient alors les littéraux

correspondants.

• "propagate" : cette méthode est appelée chaque fois qu’un littéral observé est affecté à Vrai, on a de plus

contrôle sur la résolution et on peut ajouter des clauses ou des nogoods (clauses de littéraux négatifs) selon

la valeur des littéraux observés.

• "undo" : cette méthode est appelée chaque fois que l’on "annule" un précédent "propagate", c’est à dire

qu’on assigne à Faux un littéral qu’on avait précédemment affecté à Vrai. Cette méthode ne donne pas de

contrôle de la résolution.

• "decide" : cette méthode est appelée lorsque le solveur doit décider quels littéraux assigner à Vrai, elle peut

être utilisée pour implémenter des heuristiques.

Pour clarifier, si le littéral correspondant à l’atome observé est vrai, alors l’atome observé est présent dans la

solution, et inversement.

Dans notre cas, les atomes à observer sont les atomes support(R). Chaque fois qu’un littéral est affecté à Vrai

("propagate"), on ajoute la réaction R correspondante dans l’ensemble, et chaque fois que cette décision est annulée

("undo"), on le retire de l’ensemble.

A chaque "propagate", l’ensemble de réactions stocké correspond donc aux réactions présentes dans la solution

actuellement calculée. On peut donc faire des requêtes à notre BDD pour vérifier si ces réactions peuvent apparaître

ensemble dans une même solution. Le BDD nous répond en temps polynômial, et s’il n’y a pas de solution possible

contenant ces réactions, on ajoute alors un nogood sur les littéraux.

Par exemple, avec notre implémentation de BDD en dd Python, nous faisons un simple appel à la méthode count

afin de compter le nombre de chemins possibles en assignant toutes les réactions à Vrai avec let. S’il n’y a aucun

chemin possible (count = 0), alors l’EFM correspondant n’est pas acceptable (voir subsection B.1.1): on ajoute un

nogood.

On souhaite que le BDD nous aide au niveau des clauses booléennes disjonctives ou conjonctives de plus de deux

litéraux. Les règles de régulation de nos réseaux de type "P =⇒ Q" sont plutôt bien gérées par ASP. De ce

fait, l’utilisation du BDD qui est une interface extérieure pourrait devenir une perte de temps. Lorsque nous avons

suffisament de clauses, nous pensons que le BDD peut être plus rapide que ASP dans la gestion des contraintes.

B.1.4 Résultats

Nous avons compilé en BDDs nos deux réseaux de régulation étudiés, CSP2001 et ECOLICORE, puis nous avons

compilé deux BDDs des EFMs solutions sur le réseau ECOLICORE.
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Les caractéristiques de chaque BDD ainsi que leur temps de construction sont présentés en Table B.1.

Réseau CSP2001 ECOLICORE ECOLICORE

Type Régulation Solutions
Environnement Encodés dans le BDD Minimal Enrichi
Nombre total d’EFMs possibles jusqu’à 80 226.3 · 106 4027 40551
Nombre de nœuds 438 5576 6752 18521
Nombre de variables 29 252 154 154
Nombre de solutions 5250 1.1 · 1037 4027 40551
Temps de construction 699 µs 17.3 ms 2.17 s 32.7 s

Table B.1: Caractéristiques de chaque BDD

Comme pour ASP, le réseau de régulation de CSP2001 nous a permis de tester la méthode. Nous retrouvons bien

pour chaque environnement différent les mêmes résultats que ceux présentés dans l’article de Covert et Palsson.

Les environnements sont modifiés en faisant un appel à let pour affecter en conséquence les valeurs des variables

correspondant aux métabolites externes. Les métabolites externes qui sont dans l’environnement sont affectés à

Vrai, les autres métabolites externes à Faux.

On a donc un unique BDD compilant tous les environnements. Selon l’environnement on récupère le sous-BDD

correspondant.

Pour le réseau ECOLICORE, nous avons testé les deux environnements suivants avec le BDD de régulation :

l’environnement minimal {Glucose, Pi, H, H2O, CO2, NH4, O2} et l’environnement enrichi {Glucose, Pi, H, H2O,

CO2, NH4, O2, Lactose, Pyruvate}.

En plus des réseaux de régulations, nous avons compilé deux BDDs des solutions du réseau ECOLICORE. En effet,

les EFMs, ou du moins leurs supports, peuvent s’exprimer par une clause conjonctive de littéraux positifs.

Le premier BDD de solutions correspond aux EFMs de l’environnement minimal tandis que le second correspond

aux EFMs de l’environnement enrichi. Si l’on donne ces solutions comme contraintes à clingo[LP], le solveur pourra

alors nous recalculer les mêmes EFMs.

B.1.5 Comparaison

Nous comparons maintenant l’efficacité des contraintes compilées en BDD par rapport aux mêmes contraintes

en ASP évaluées directement pendant la résolution. Pour cela, nous prenons les règles de calcul des EFMs en

ASP[LP], le réseau ECOLICORE et les contraintes de régulation traduites soit en ASP soit en BDD. Dans le cas des

contraintes BDD, nous utilisons notre version modifiée de clingo[LP] (voir subsection B.1.3) qui effectue des appels

aux BDD via la librairie dd. Des résultats moyennés sur 5 éxécutions pour chaque condition sont présentés en

Table B.2.
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ECOLICORE Environnement minimal Environnement enrichi
Contraintes BDD Nombre d’EFMs 4027 40651

Temps (s) 1211.48 8973.29
LPs résolus 51414 252777.4
Nogoods ajoutés 22 20

Contraintes ASP Nombre d’EFMs 4027 40325.6
Temps (s) 1218.81 8914.80
LPs résolus 43804 251836.4

Table B.2: Comparaison de la performance des méthodes avec les contraintes de régulation

On n’observe pas de différence significative pour le temps de calcul entre les contraintes ASP ou BDD, quelque soit

l’environnement proposé. Le nombre de LPs résolus par clingo[LP] est cependant légèrement plus faible pour les

contraintes ASP que pour les contraintes BDD.

Comme expliqué précédemment, cela est dû aux règles de régulation de type "P =⇒ Q", qui sont très bien gérées

à la fois par clingo et par le BDD. Notons que le nombre de nogoods ajoutés est très faible, ainsi avoir compilé le

réseau en BDD n’apporte pas ici d’aide précieuse.

En revanche, sur nos BDDs des solutions (voir subsection B.1.4) – avec plus de nœuds et qui ont pris significative-

ment plus de temps à construire – nous allons pouvoir observer des différences majeures. En effet, les solutions

sont encodées sous forme de clauses conjonctives de nombreux littéraux positifs.

Nous présentons en Table B.3 les résultats d’une seule exécution pour chaque condition, avec les solutions comme

contraintes. On observe un nombre conséquent de nogoods ajoutés par le BDD pour chaque environnement.

De plus, face aux clauses conjonctives, les contraintes ASP font appel au solveur LP près de 10 fois plus que les

contraintes BDD. Le temps de calcul est lui aussi significativement plus élevé pour les contraintes ASP.

ECOLICORE Environnement minimal Environnement enrichi
Contraintes BDD Nombre d’EFMs 4027 40088

Temps (s) 611 4239
LPs résolus 37416 233179
Nogoods ajoutés 652 7752

Contraintes ASP Nombre d’EFMs 4027 40551
Temps (s) 1746 27599
LPs résolus 300796 2239529

Table B.3: Comparaison des méthodes avec les solutions en tant que contraintes

Bien que ce test nécessite en premier lieu la connaissance des solutions, il montre les avantages possibles apportés

par la compilation des contraintes en BDD par rapport à une résolution entièrement en ASP.

En effet, ces résultats laissent à penser que nous aurions observé un gain de temps par rapport à l’utilisation de

ASP si nous avions compilé en BDD un réseau de régulation transcriptionnelle avec plus de règles de types clauses

conjonctives.
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[46] Mihajlo D. Mesarović. Systems Theory and Biology—View of a Theoretician. In M. D. Mesarović, editor,
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AMiT Kumar, Sergiu Ivanov, Jason K. Moore, Sartaj Singh, Thilina Rathnayake, Sean Vig, Brian E. Granger,

Richard P. Muller, Francesco Bonazzi, Harsh Gupta, Shivam Vats, Fredrik Johansson, Fabian Pedregosa,
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