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Parmi les différents polluants qui induisent des risques pour la santé et 

l’environnement, le plomb est l'un de ceux qui se trouve le plus souvent dans les milieux 

contaminés (Alkorta et al. 2004). Potentiellement toxique pour les organismes vivants, même à 

faible concentration (Sahi et al. 2002), le plomb peut être inhalé ou ingéré par l’homme et 

selon Henry (2000), induire des effets délétères (impact sur le tractus gastro-intestinal, les 

reins et le système nerveux central, pertes de mémoire, nausées, insomnie et anorexie, effet 

cancérigène potentiel) en particulier sur la santé infantile.  

Selon Laperche et al. (2004), les émissions totales de Pb en France étaient de 217 tonnes/an en 

2002. Basol (http://basol.environnement.gouv.fr), recensait, en 2005, 3 717 sites pollués pour 

lesquels l’État a entrepris une action de remédiation. Les sols non contaminés contiendraient 

de 10 à 30 mg Pb kg-1 de sol sec ; des teneurs en plomb supérieures à 110 mg Pb kg-1 sont 

considérées comme des anomalies (Laperche et al. 2004). La migration du plomb dans 

l'environnement est essentiellement tributaire de la solubilité des espèces chimiques présentes 

et des interactions du plomb avec les constituants réactifs des milieux (argiles, matières 

organiques, oxydes…). La précipitation des complexes peu solubles, la formation de 

complexes organiques relativement stable, et l'adsorption sur les constituants organiques et 

inorganiques peuvent réduire la biodisponibilité du plomb dans le sol, les sédiments et l'eau 

(Hettiarachchi et Pierzynski 2004). Le comportement du plomb dans un sol dépend donc en 

particulier de sa spéciation chimique (Dumat et al. 2001) et de ces  interactions avec les 

constituants du sol (Cecchi et al. 2008), qui sont la résultante des caractéristiques pédologiques 

et physico-chimiques du sol.  Les interactions entre les différents constituants des sols 

modifient aussi la capacité individuelle de chacun des constituants à adsorber ou complexer les 

métaux (Dumat et al. 2006).  

De nombreuses techniques ont été développées afin de réduire la quantité totale et/ou la 

fraction disponible des métaux dans les sols pollués et d’apporter des réponses adaptées aux 

divers contextes de pollution (He et al. 2005). Les techniques physico-chimiques sont les plus 

couramment utilisées (comme par exemple l’excavation du sol, « nettoyé » ensuite par des 

solvants), elles ont l’avantage de réduire très rapidement et efficacement les concentrations 

totales en métaux. Cependant ces techniques physico-chimiques sont peu respectueuses de 

l’environnement bio-géo-chimique du sol, qui suite à ce type de traitement devient parfois un 

simple matériau de remblai (Ensley 2000). Certaines plantes sont capables d’adsorber 
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(phénomène de surface) et d’absorber les métaux au niveau de leurs racines, puis de les 

transloquer vers leurs parties aériennes. L’utilisation de plantes afin de réduire la concentration 

ou la disponibilité des métaux d’un sol contaminé est appelée « Phytoremédiation ». Les 

techniques de phytoremédiation sont moins coûteuses que les techniques physico-chimiques: 

selon Hettiarachchi et Pierzynski (2004), la technique de décontamination « off-site » est 5.7 

fois plus chère par rapport à la phytoremédiation.  

 Des plantes ont été utilisées pour le traitement des eaux usées, il y a environ 300 ans 

(Lasat 2000). L'accumulation de métaux dans différentes parties aériennes de plusieurs 

espèces de plantes a également été signalée au 19e siècle et au début du 20e siècle (Lasat 

2000). En 1980, l'idée de l'assainissement par les plantes a été réintroduite et développée par 

Utsunamyia (1980) et Chaney (1983). Ils ont été rejoints par Baker et al. (1991) qui a effectué 

des premiers essais au champ pour la phytoextraction de Zn et Cd. Au cours des deux 

dernières décennies, de nombreuses recherches ont été menées pour identifier/rechercher des 

plantes qui ont la capacité d’extraire les métaux du sol vers les parties aériennes de plantes.  

Selon Prasad et Freitas (2003), plus de 400 plantes sont identifiées comme hyper-

accumulatrices des métaux. Mais, malgré la disponibilité de ces 400 plantes hyper 

accumulatrices, l’utilisation de la phytoremédiation au champ reste encore à une échelle 

limitée. Cependant, la phytoextraction du nickel  par Alyssum sp. est couramment utilisée aux 

Etats-Unis (Chaney et al. 2007). Alyssum murale et Alyssum corsicum peuvent accumuler plus 

de 20 000 mg Ni kg-1 dans les parties aériennes et dégager des bénéfices économiques de 

$16000 ha-1 (dus à la vente de nickel) avec un coût de production de $250 a $500 ha-1.  

 Les limitations majeures de l’utilisation de la phytoextraction du Pb à grande échelle 

sont : i) indisponibilité de plantes qui accumulent de fortes concentrations dans les parties 

aériennes et produisent en même temps des biomasses élevées ; ii) trop peu d’essais au 

champ ; iii) connaissance insuffisante des mécanismes d’hyperaccumulation du Pb. La plupart 

des plantes identifiées à ce jour ne sont pas capables de réduire rapidement (quelques mois) les 

concentrations totales de Pb dans le sol en raison de leur trop faible biomasse ou de leur trop 

faible concentration en Pb dans leurs parties aériennes. L’exploration des mécanismes 

d’hyperaccumulation de façon générale, a sans doute peu avancé à ce jour en raison de 

l’absence d’outils génomiques et moléculaires (banques génomiques, EST,  transgénèse) pour 

les espèces autres que les espèces modèles telle Arabidopsis thaliana. Si cette espèce est 
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devenue la référence en matière de génétique moléculaire pour la compréhension de 

mécanismes intervenant dans le développement, dans la résistance aux stress biotiques et 

abiotiques, elle ne convient pas pour l’étude de l’hyperaccumulation de métaux car elle n’est 

pas hyperaccumulatrice.  Par contre, elle est apparentée à Arabidopsis halleri (accumulatrice 

du Zn et Cd) et  Thlaspi caerulescens (accumulatrice du Pb, Zn et Cd), qui sont devenues des 

modèles d’études moléculaires pour l’accumulation du cadmium et du zinc. L’homologie au 

niveau des séquences codantes entre ADN d’Arabidopsis thaliana et les deux espèces 

nommées ci-dessus sont respectivement de 94 et 88,5% (Becher et al. 2004; Rigola et al. 

2006). Il a donc été possible d’identifier plusieurs dizaines de gènes qui sont impliqués dans la 

régulation de l’absorption, de la translocation, de la séquestration et la détoxication des métaux 

chez les hyper accumulateurs. L’attribution d’une fonction à une séquence donnée n’est 

faisable que si on dispose de techniques d’expression dans l’organisme ciblé. Ainsi dans le cas 

des variétés hyperaccumulatrices du Pélargonium, il serait envisageable d’aborder l’étude des 

mécanismes cellulaires et moléculaires régissant le phénotype hyperaccumulateur si on 

disposait d’une technique de transformation génétique stable. 

 Ce travail de thèse fait partie d’un projet, qui a été initiée en 2004 en collaboration 

avec la STCM (http://w3.stc-metaux.com): entreprise de recyclage de batteries au plomb, 

volontaire en matière de gestion environnementale. Des essais au champ ont été mis en place 

afin de tester la faisabilité de la phytoremédiation en conditions réelles. Des expériences sur 

sites industriels (Toulouse-31 et Bazoche-45) en activité, ont été réalisées afin de tester sur 

deux sols aux caractéristiques contrastées, les capacités d’extraction du plomb de différents 

cultivars de Pélargonium. Cette étape constitue la base des expériences effectuées par la suite 

en conditions contrôlées :  

 

1) Etude des paramètres influant le transfert sol-plante du Pb 

2) mise au point d’outils d’études (régénération et transformation génétique) nécessaires 

pour déterminer les mécanismes moléculaires mis en jeu lors de l’hyperaccumulation 

du plomb.  

 

Ce manuscrit de thèse est composé de quatre parties (Chapitres) présentés sous formes 

de publications (acceptées, soumises ou en préparation). 
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Le premier chapitre  présente une synthèse bibliographique des divers aspects concernant la 

phytoextraction du Pb. 

Le deuxième chapitre traitera des résultats d’essais au champ pour la faisabilité de la 

phytoextraction du Pb par le Pélargonium.  

Le troisième chapitre est consacré à l’étude en conditions contrôlées de la phyto-disponibilité 

du Pb et de sa spéciation dans le système sol-plante en relation avec les changements physico-

chimiques au niveau de la rhizosphère.  

Le quatrième chapitre comporte deux parties : le première relatera les résultats concernant la 

mise au point d’une technique de régénération de plantes, et la deuxième partie sera focalisée 

sur l’optimisation de la transformation génétique. 

Les conclusions de ce travail seront finalement exposées ainsi que quelques perspectives. 

 



 

 

 

 

Chapter 1 

Literature review 
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Bio-accumulative nature of potentially toxic metals and metalloids through entrance 

into the food chain represents an important ecological and health hazard due to their toxic 

effects. The European Environmental Agency (2007) has reported the occurrence of 250,000 

polluted sites, mostly with heavy metals in 32-member states of the European Union. The 

identification process is going on and the number may increase up to three million sites 

(Jensen et al. 2009). Highly toxic nature of Pb, As, Cd and Hg makes them the most important 

among other pollutants (Chojnacka et al. 2005). Lead is comparatively less studied element 

with reference to Cd, Ni and Zn, due to the difficulties for remediation i.e. low mobility in 

soil, lack of hyperaccumulators with high biomass under field conditions, safe disposal of the 

biomass produced etc. Search for hyperaccumulators with high biomass and understanding 

accumulation, particularly of Pb, are the areas of particular interest, to develop environmental 

friendly techniques i.e. phytoremediation, for soil cleanup.  

 

1.1 Sources of lead contamination 

 Anthropogenic and geogenic processes are the sources of heavy metals in the soil. 

Lead remains one of the most common metal (Alkorta et al. 2004) in the environment due to 

its persistence and numerous past or present uses (Fig 1). Half-life, the time taken to reach half 

concentration naturally, for Pb has been reported to be about 740–5900 years, depending upon 

soil physical and chemical properties (Alloway and Ayres 1993). Although some sources of 

Pb contamination have been reduced worldwide (e.g. from Pb alkyls in gasoline), Pb emission 

to the environment is still increasing in many countries (Adriano 2001). Nowadays, battery 

manufacturing is the principal current use of lead and the batteries represent 70% of the raw 

material for lead recycling industries reaching 160,000 t per year in France (Cecchi et al. 

2008; Uzu et al. 2009). To limit the emission of Pb into the environment, it was recently 

classified as a substance of very high concern in the European REACH law (European 

Parliament Regulation EC 1907/ 2006 and the Council for Registration, Evaluation, 

Authorization and Restriction of Chemicals, 18 December 2006). However, its uses stay 

justified by industries in terms of cost-benefits analysis.  
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Figure 1: Different sources of lead contamination. Adapted from Sharma and Dubey 2005. 

 

1.2 Hyperaccumulation and remediation 

 All the land plants have natural ability to take up essential and non-essential elements 

from the soil. Although most plant species are affected by the presence of metal ions in the 

environment, a few higher plants have evolved populations with ability to tolerate and thrive 

in metal-rich soils. These plants, known as metal accumulators, can sequester excessive 

amounts of metal ions in their biomass―the phenomenon is termed as 

hyperaccumulation―without incurring damage to basic metabolic functions―termed as 

tolerance (Cunningham et al. 1997; Reeves and Baker 2000).  

 

1.2.1 Hyperaccumulator plants 

 The plants which can accumulate a certain amount of the target metal in shoots (Table 

1), e.g. for Pb more than 0.1% of DW (Cunningham et al. 1997; Reeves and Baker 2000) are 

called “hyperaccumulators”. The hyperaccumulator plants could tolerate to heavy metal ions 

through various detoxification mechanisms, which may include selective metal uptake, 

excretion, complexing by specific ligands, and compartmentation of metal–ligand complexes 

(Rauser 1999; Cobbet 2000; Clemens 2001). Currently more than 400 plant species have been 

characterized as hyperaccumulators (Prasad and Freitas 2003). But, most of them are 
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characterized by a low biomass production or a low translocation rate, slow growth habit 

(Gleba et al. 1999). Some examples of hyperaccumulator species are presented in Table 1. 
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 By looking on the table 1, it can easily be figured out that the most of the 

hyperaccumulators reported for Pb have been only tested in hydroponics or on salt/perlite 

mixture. These conditions are very far from reality. Moreover, there is no information about 

their biomass which is of prime importance for phytoextraction purpose. The only field tested 

case is of Thlaspi which is capable of accumulating 33 kg Pb ha-1 y-1. With this effectiveness, 

it would take too long to decontaminate even moderately contaminated soil. So it is of great 

interest to find new plants which are able to accumulate high concentrations of Pb as well as 

elevated biomass, resulting into increased extracted quantity of Pb and fasten the process of 

phytoextraction. 

 

1.2.2 Remediation techniques 

  Different retrieval techniques are being employed to reduce the total and/or available 

metal concentration in polluted soils (He et al. 2005). Current technologies exploit soil 

excavation and, either land filling or soil washing followed by physical or chemical separation 

of the contaminants. Unfortunately, these techniques are labour-intensive, costly, and 

moreover affect the soil properties together with its agricultural potential (Ensley 2000). 

Whereas, plant based techniques offer economic (Table 2) and environmental advantages 

(Tanhan et al. 2007; Alkorta et al. 2004) and are considered as promising techniques due to 

their multi-fold advantages: large scale application, aesthetic value to the landscape, increased 

aeration of the soil in favour of a healthy ecosystem and, stabilization of the top soil that 

reduces erosion and health risks (Deng et al. 2006; Saxena et al. 1999; Ruby et al. 1996). 

 

Table 2: Cost comparison of some remediation techniques 

Decontamination Technique             

(USD)

Off-site 1 600 000

Soil washing 790 000   
Phytoextraction                             279 000

Net present cost (ha-1) 

 
       (Hettiarachchi and Pierzynski, 2004) 
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 Plant based techniques are further named depending upon their mode of action e.g. 

phytoextraction, phytostabilization, rhizofiltration …etc. These remediation strategies are 

grouped into a collective name “Phytoremediation”. These strategies and their mode of action 

have been listed in Table 3.  

 

Table 3: Various phytoremediation strategies 

Technique Action mechanism Medium treated

Phytoextraction Direct accumulation of contaminants into plant Soil
shoots with subsequent removal of the plant shoots.

Rhizofiltration Absorb and adsorb pollutants in plant roots. Surface water and water 
 (phytofiltration) pumped  through roots

Phytostabilization Root exudates cause metals to precipitate and Groundwater, soil, 
 becomes less bioavailable. mine tailings

Phytovolatilization Evaporation of certain metal ions and Soil, groundwater
volatile organics from plant parts.

Phytodegradation  Plant-assisted bioremediation; microbial Rhizosphere 
degradation in the rhizosphere region.

Phytotransformation Uptake of organic contaminants & degradation. Surface and groundwater

Removal of aerial Uptake of various volatile organics by leaves. Air
contaminants

(Adapted from Yang et al. 2005)  

 

Of these plant based techniques, phytoextraction offers a better solution, particularly for non-

degradable contaminants or metals. The phytoextraction involves the removal of the 

contaminants from the soil and stockage in aerial parts which are subsequently removed away. 

The application of phytoextraction in field is hampered by the time required to decontaminate 

completely (Alkorta and Garbisu 2001). The time required is dependent on the type and extent 

of metal contamination, the length of the growing season, and the efficiency of metal removal 

by plants. Phytoextraction is applicable only to sites that contain low to moderate levels of 

metal pollution, because plant growth is not sustained in heavily polluted soils and/or it may 

take centuries to decontaminate. 
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1.2.3 Examples of Pb phytoextraction 

 Currently, two kinds of plants are being tested for phytoextraction; i) metal 

hyperaccumulators, ii) high biomass producing which accumulate low to average metal 

concentrations, but which compensate for this by their high biomass, such as Brassica juncea, 

(Lasat 2002), tobacco (Keller et al. 2003). The hyperaccumulating plants take up one or two 

specific metals and have a low biomass that is compensated by very high metal concentrations 

in the shoots (Reeves and Baker 2000; Chiang et al. 2006). 

 Pelargonium sp. "Frensham", scented geranium was identified as one of the most 

efficient metal hyperaccumulator plants (Saxena et al. 1999). In a greenhouse study, young 

cuttings of scented geranium grown in artificial soil and fed with different metal solutions, 

were capable of taking up large amounts of three metal contaminants i.e. Pb, Cd and Ni in a 

14-day experiment. These plants were capable of extracting from the feeding solution and 

stocking in their roots, amounts of lead, cadmium and nickel equivalent to 9%, 2.7% and 1.9% 

of their dry weight material, respectively. With an average root mass of 0.5-1.0 g in dry 

weight, scented geranium cuttings could extract 90 mg of Pb, 27 mg of Cd and 19 mg of Ni 

from the feeding solution in 14 days. These values easily satisfy the conditions for being 

hyperaccumulator and, are even multi-folds to the desired amounts. If these rates of uptake 

could be maintained under field conditions, scented geranium should be able to cleanup 

heavily contaminated sites in less than 10 years. However, growth and uptake in nutrient 

solution can be extremely different to that in soil (Prasad and Freitas 2003), and scientific 

studies indicate the hydroponics culture is not indicative of a real-world situation, due to ion 

competition, root impedance, and the fact that plants do not grow root hairs when they are 

grown in solution (Prasad and Freitas 2003).  

 KrishnaRaj et al. (2000) reported the ability of scented geranium plants (Pelargonium 

sp. ‘Frensham’) to tolerate and maintain normal metabolic processes, when exposed to various 

levels of lead under greenhouse conditions. According to Dan et al. (2002), Pelargonium 

genera (Geraniaceae family) offers several hyperaccumulators species with high biomass 

levels and translocation rates. Moreover the crop could be exploited through the production of 

essential oils, reducing the cost of the remediation treatment. Recently, Hassan et al. (2008) 

tested Pelargonium zonale, for lead extraction from artificially contaminated soil. The plants 

accumulated 54, 478 and 672 mg kg-1 during 3 weak pot culture on soil containing 2000, 



  Literature review 
 

 15

5000, 7000 mg kg-1 Pb, respectively. Utilization of EDTA increased Pb accumulation and 

respective values of Pb concentrations in shoots were 257, 727 and 2291 mg kg-1. However, 

they have not mentioned the biomass produced that could have given an idea for the time 

required for soil cleanup. 

Apart from Pelargonium spp., some other species have also been reported as lead 

Hyperaccumulators. Wang et al. (2007) has described Bidens maximowicziana as a Pb 

hyperaccumulator offering remarkable tolerance and accumulation of Pb, simultaneously. 

Lead concentration in roots was 1509 mg kg-1 and 2164 mg kg-1 in over-ground tissues. EDTA 

application promoted translocation of Pb and its concentrations in over-ground parts was 

increased from 24–680 mg kg-1 to 29–1905 mg kg-1. Typha orientalis Presl is another Pb 

hyperaccumulator reported by Li et al. (2008). The average lead concentrations in the leaves 

and roots were 619 and 1233 mg kg-1, respectively, in plants collected from mine tailings. In 

hydroponics, Pb concentrations in the leaves and roots increased with increasing of Pb level in 

the modified Hoagland’s nutrient solution resulting into 16190 and 64405 mg kg-1 in the 

leaves and roots, respectively. The observations of Li et al. (2008) also confirm the differences 

in accumulation in hydroponics as compared to field conditions. 

 

As a plant-based technology, the success of phytoextraction is inherently dependent 

upon several plant characteristics. The combination of high metal accumulation and elevated 

biomass would result in the best output of metal removal. Other desirable plant characteristics 

include the ability to tolerate difficult soil conditions i.e. soil pH, salinity, soil structure and 

water content, the production of a dense root system, ease of care and establishment, and few 

disease and insect problems. Although some plants show promise for phytoextraction, there is 

no plant which possesses all of these desirable traits. Finding the perfect plant continues to be 

the focus of many plant-breeding and genetic-engineering research efforts (Prasad and 

Freitas, 2003). Despite the efforts in developing phytoextraction, the understanding of plant 

mechanisms involved in metal extraction is still emerging. In addition to this, relevant applied 

aspects, such as the optimisation of agronomic practices on metal removal by plants are still 

largely unknown, probably due to lack of field research studies and relevant data. Most of the 

experimentation has been carried out in hydroponics and greenhouse conditions. All the 
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plants reported to-date for Pb hyperaccumulation are required to be tested in field conditions 

to have the real efficiency and feasibility. 

 

1.3 Metal availability and uptake 

  

 Soil-root interface comprising of few millimeters for soil surrounding the plant roots 

and directly affected by root activities is considered as rhizosphere. Plant roots represent 

highly dynamic systems that explore the rooting medium, typically soil, to stabilize the plant 

mechanically and to take up water and mineral nutrients, depleting both in the rhizosphere 

relative to the bulk soil. In response to this, plant roots provide structural elements as the 

rhizoplane and act as a continuous source of energy and materials creating specific conditions 

in the rhizosphere soil. 

 The movement of mineral elements to the root surface depends on different factors 

including; 

i) Diffusion of elements along the concentration gradient formed due to uptake and 

subsequent decrease of the concentration in the root vicinity. 

ii) Root interception, displacement of soil volume by root volume due to root growth. 

iii) Mass flow, transport from bulk soil solution along the water potential gradient 

driven by transpiration (Marschner 1995). 

 Different metals have different localities for being taken up by plants. Some metals in 

plants are taken up primarily at the apical region and others may be taken up over the entire 

root surface. All the above stated mechanisms may apply singly, or in combination depending 

on conditions in root zone and plant capacities for uptake of concerned element (Fig 2).  
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Figure 2: Cross-section of root showing the passage of ions through apoplastic and symplastic 

pathways (Gobat et al, 1998). 

 

 During uptake, metals first enter into apoplast of the roots. Then, apart of total amount 

of metal is transported further into the cells symplastically (Clemens 2006; Verbruggen et al. 

2009); some in the apoplast and some may be bound to cell wall substances (Greger and 

Johansson 2004). Distribution of the total metal taken up between these three depends on the 

type of metal, plant genotype as well as many other external factors. For example, a major 

portion of Pb is bound to the cell walls (Wierbzicka 1998) and deposited in apoplast region 

(Laperche et al. 1997). According to Marschner (1995), heavy metals are transported 

apoplastically in plant tissue. For translocation, metals have to reach the xylem vessels by 

crossing endodermis and subrinized cell wall called ‘Casparian strips’. Ultimately, most of the 

metal uptake is performed by the younger parts of the root where the Casparian strips are not 

yet fully developed. All the mechanisms involved in metal uptake are interdependent on 

amount of particular element present in the soil and its availability to the plant system. Metal 
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availability may be influenced by multiple factors including soil characteristics, plant’s ability 

to mobilize the element in the rhizosphere through root exudates or external addition of similar 

products i.e. chelators.  

 

1.3.1 Effect of soil properties on metal bioavailability 

 Metal mobility and bioavailability in the soil are also determinant factors for field 

application of phytoextraction of heavy metals. Plants can only take up available fraction of a 

metal or must have a mechanism to make the metals available. Different biogeochemical 

processes controlling availability of elements in soil-plant system have been schematized in 

fig 3. The availability of heavy metals is controlled by soil chemical properties (pH, Eh, CEC, 

metal speciation), physical properties (texture, clay content, organic matter percentage), 

biological factors (plant action, bacteria, fungi), their interactions (Ernst et al. 1992) and soil 

mineralogy (Navarro et al. 2006). The chemical forms of heavy metals in soil are affected by 

soil pH modifications. An increase in pH results in increased adsorption of Cd, Zn and Cu to 

soil particles and reduces the uptake of Cd, Zn and Pb by plants (Kuo et al. 1985). In contrast 

to this, acidification increases the metal absorption by plants through a reduction of metal 

adsorption to soil particles (Brown et al., 1994). In acidic soils, metal desorption from soil 

binding sites into solution is stimulated due to H+ competition for binding sites. Soil pH 

affects not only metal bioavailability but also the process of metal uptake by roots (Brown et 

al. 1995). Li et al. (2007) has reported that external Pb loading decreased soil pH and 

increased Pb bioavailability in soil, thus resulting in increased Pb uptake and accumulation in 

the edible parts of rice. This indicate that plant availability of externally loaded Pb is related to 

Pb transformation and fractionation in soils, which are affected by basic soil properties such as 

clay, oxide content and composition, pH, and organic matter. 

 The redox potential (Eh) of the soil is a measure of the tendency of the soil solution to 

accept or donate electrons. As the redox potential decreases, heavy metal ions are converted 

from insoluble to soluble forms, thus increasing bioavailability (Pendias- Kabata and Pendias 

1984). The cation exchange capacity increases with increasing clay content in the soil while 

the availability of the metal ions decreases (Pendias- Kabata and Pendias 1984). Thus, the 

higher the cation exchange capacity of the soil, the greater the sorption and immobilization of 

the metals. 
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Figure 3: Biogeochemical processes controlling availability of metals in soil-plant system. 

The above figure shows various mechanisms involved in the equilibrium of labile pool. The 

availability of any element in the soil-plant system is the function of all the factors capable of 

disturbing equilibrium. However, the extent of one process may differ from the other in a 

given set of climatic, biological and soil conditions. 

  

 The soil texture also plays an important role for the bioavailability of heavy metals. 

Generally, metal ion availability is the lowest in clay soils, followed by clay loam and finally 

loam and sand (Webber and Singh, 1995). The binding of heavy metals with organic matter, 

humic acid in particular, has been well documented (Chen et al. 2006; Dumat et al. 2006; 

Quenea et al. 2009). High organic matter content enhances the retention of the metals, 

drastically reducing the metal availability.  
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1.3.2 Effect of root exudates and microbes 

An essential component of the bioavailability process is the exudation of metal 

chelating compounds by plant roots (ex. phytosiderophores). These chelators can mobilize 

heavy metals such as copper, lead and cadmium by formation of stable complexes. Chelators 

are usually low molecular weight compounds such as sugars, organic acids, amino acids and 

phenolics that can change the metal speciation and thus, metal bioavailability (Salt et al. 

1995). Organic compounds released into the rhizosphere provide the substrate and the energy 

source for microbial populations. Both plant roots and microbes are responsible for secretion 

of inorganic and organic compounds e.g. protons, HCO3
-, and various functional groups 

capable of acidification, chelation and/or reduction. These compounds can affect a range of 

chemical reactions and biological transformations. Due to continued accelerated input and 

output of energy, materials and chemical reactivity, the rhizosphere soil far from equilibrium, 

thus quickly differentiating from non-rhizosphere. Due to root activity, even relatively static 

soil properties, such as mineralogy (Hinsinger et al. 1992), may be affected within a relatively 

short time.  

The organic compounds released from roots (rhizodeposits or exudates) stimulate the 

growth of the rhizosphere microbial community. They may be responsible for the differences 

in the structure of the microbial communities commonly observed between the rhizosphere 

and the bulk soil. Rhizodeposits consists of a broad range of compounds including root 

mucilage. Depending upon plant species, low molecular weight organic acids (LMWOAs) can 

play a significant role in the bioavailability and transport (Lagier et al. 2000). These acids 

compete for free metal ions to form soluble complexes and reduce metal adsorption onto soil 

surfaces (Antoniadis and Alloway 2002). The organo-metallic complexes of LMWOAs and 

heavy metals could then be taken up by the plant roots (Evangelou et al. 2004). The 

interactions of LMWOAs are different in their extents and ways of affecting the mobility, 

bioavailability, degradation and phyto-toxicity of different metals (Lagier et al. 2000, Clapp et 

al. 2001). 

Soil microbes in the rhizosphere including plant growth promoting rhizo-bacteria, P-

solubilizing bacteria, mycorrhizal-helping bacteria and arbuscular mycorrhizal fungi play a 

significant role in nutrient dynamics including trace elements. For example arbuscular 

mycorrhizal fungi produce an insoluble glycoprotein, glomalin, which sequester trace 
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elements and could help in remediation of contaminated soils. The inoculation with 

appropriate heavy metal adapted rhizobial microflora could lead to enhanced phytoextraction 

by plants (Khan 2005). 

 

1.3.3 Effect of chelating agents on metal availability 

Use of chelators in the environment has received considerable attention for more than 

50 years now. Ethylene-Diamine-Tetra-acetic Acid (EDTA) occurs at higher concentrations in 

European surface waters than any other identified anthropogenic organic compound 

(Reemtsma et al. 2006). Chelating agents potentially perturb the natural speciation of metals 

(Nowack, 2002) and, consequently influence metal bioavailability. However many chelating 

agents biodegrade slowly and are persistent in the environment (Bucheli-Witschel and Egli 

2001). In the recent past, extensive research on EDTA have given rise to its environmental 

concerns (Nowack and VanBriesen 2005), and its low biodegradability has shaped the 

discussion about the problems of chelating agents (Williams 1998), including leaching of 

heavy metals to underground water due to increased dissolution. Dramatic increase in the 

research on chelating agents in the environment in the last decade was mainly due to the 

proposed use of chelating agents for soil remediation, both for extraction of metals and for 

chelant-enhanced phytoremediation (Nowack et al. 2006). A variety of chelating agents are in 

use with recent additions of growth hormones which promote phytoextraction multifolds (Israr 

and Sahi 2008). Lead accumulation in Sesbania drummondii shoots was enhanced by 654 and 

415% in the presence of 100 mM IAA and 100 mM NAA, respectively, compared to control 

plants exposed to Pb alone. Application of IAA or NAA along with EDTA, Pb accumulation 

was further increased in shoots by 1349% and 1252%, respectively. The photosynthetic 

efficiency and strength of the treated plants were not affected in the presence of IAA or NAA 

and EDTA.  

Due to reports of potential problem from the use of chelating agents, the research has 

also been focused towards selection of suitable chelator. Epelde et al. (2008) compared EDTA 

and Ethylene Diamine Di-Succinate (EDDS) in a greenhouse experiment for chelate-induced 

Pb phytoextraction with Cynara cardunculus, as well as to investigate the toxicity of these two 

chelates to both cardoon plants and soil microorganisms. Shoot concentration was 1332 mg Pb 

kg-1 DW with the addition of 1 mg kg-1 EDTA in a soil polluted with 5000 mg Pb kg−1 soil, 
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whereas, shoot Pb accumulation was 310 mg Pb kg−1 DW with EDDS application. The 

biomass was also lower in case of EDDS as compared to those plants treated with EDTA. On 

the other hand, EDDS degraded rapidly and was less toxic to the soil microbial community in 

control non-polluted soils. Basal and substrate-induced respiration values were significantly 

higher in Pb-polluted EDDS-treated soils than those treated with EDTA. 

Careful application of chelators can potentially help phytoremediation but to-date; 

guidelines about their use are inconclusive. Creating new problems for the environment for the 

sake of already existing or replacing one with another would not be the real solution. Judicial 

use of these agents will rely upon the availability of comprehensive data about the effects and 

interactions of these compounds with soil type, soil structure and texture, kind and extent of 

metal pollution, genotype and, climatic conditions. 

 

1.3.4 Metal speciation 

 Metals have different affinities for different elements, thus influencing complex 

formation and binding to different macromolecules. For example, Hg and Pb can form organic 

metal complexes. Mobility of different metals also varies. Cd and Zn are mobile while Pb is 

relatively immobile and easily forms complexes with fulvic acids (Sposito, 1989). In acidic 

soil, lead is either as Pb2+ or PbSO4 while in alkaline soils, PbCO3, Pb(CO3)2
2- or PbOH+ less 

available species are present (Sposito, 1989). Once the metal is taken up from the rhizosphere, 

it can be either in free ionic form or may bind to organic substances within plant. In xylem sap 

of A. halleri, the dominant form of Cd was free Cd2+ ions (Ueno et al., 2008). According to 

Salt et al. (1999), the major proportion of Zn in the xylem sap of T. caerulescens was the free 

hydrated Zn2+ ions whereas Straczek et al. (2008) have observed the Zn bonding to organic 

acids. Nickel was transported in a complex with histidine in hyperaccumulators (Kramer et al., 

1996). 

The complex nature of interactions present between soil and root in the rhizosphere 

are summarized in Fig 4. Good knowledge of the factors influencing the availability could 

help to successful application of the plant based techniques for remediation purposes. 

Increased bioavailability of the metal element is directly proportional to the uptake of the 

element. So the knowledge of the factors capable of affecting the solubility and uptake of Pb 

are of crucial importance. How the plant reacts to Pb stress; modifications in soil pH, 
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exudation of organic acids, changes in DOC contents, difference in cultivars and cultivar 

specific capacity to enhance availability of Pb, possible binding of Pb within plant tissues, 

etc? These are the questions needed to be addressed for development of Pb phytoextraction 

technique.  

 

 
Figure 4: Schematic presentation of soil-plant interactions in the rhizosphere (Hinsinger, 

2004)  

 

1.4 Metal detoxification, translocation and homeostasis  

Plants respond to heavy metal toxicity in a variety of different ways. Lead can cause 

deleterious effects in metal sensitive plants. Lead accumulation could reduce the concentration 

of chlorophyll, iron, sulphur, Hill reaction activity and catalase activity whereas increased the 

concentration of phosphorus, sulphur and activity of peroxidase, acid phosphatase and 

ribonuclease in leaves of radish (Gopal and Rizvi 2008). A summary of physiological changes 

in response to Pb exposure are presented in Table 4. 
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Table 4: Physiological changes in response to Pb exposure in plants. Modified from Sharma 

and Dubey, 2005. 

 

The type and extent of the reaction to environmental stress may be different in 

hyperaccumulators as compared to metal sensitive plants. Hyperaccumulators could 

immobilize, exclude, chelate and compartmentalize the metal ions, and the expression of more 

general stress response mechanisms such as ethylene and stress proteins could result. Multiple 

genes may be involved in hyperaccumulation. According to Kramer (2005), approximately ten 

key metal homeostasis genes are expressed at very high levels during Zn hyperaccumulation 

in a natural hyperaccumulator plant. One of the major defense mechanisms involves the 

production of proteinaceous compounds e.g. phytochelatins and metallothioneins (Zenk 1996). 

In the last decade, phytochelatins, metallothioneins, metal chelators and transporters were the 

major focus of the research on metal hyperaccumulation, translocation and detoxification. 

Pb2+

Organ and cell functioning 
 

Nutrient uptake 
Alterations in uptake of cations (K+, Ca2+, Mg2+, Mn2+, Zn2+, Cu2+, Fe3+)  
and anions (NO3

-). 
Water regimes 

Decrease in compounds maintaining cell turgor and cell wall, guard cell size, 
stomata opening, level of abscisic acid and leaf area. 

Subcellular functioning 
 

Chloroplast-Photosynthesis 
Alteration in lipid composition of thylakoid membrane, 
Decrease in synthesis of chlorophyll, plastoquinone, carotenoids, 
activity of NADP oxyreductase, electron transport and activities of  
Calvin cycle enzymes. 

Nucleus-Mitotic irregularities 
Increase in irregular shapes, decomposed nuclear material, 
chromosome stickiness, anaphase bridges, c-mitosis and formation 
of micronuclei. 

Mitochondria-Respiration 
Decrease in electron transport, proton transport and activities of enzymes of 
Kreb’s cycle. 
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Their role has been well established in metal homeostasis (Reviewed by Cobbett and 

Goldsbrough 2002; Yang et al. 2005; Clemens 2006; Milner and Kochian 2008; Memon and 

Schroeder 2009). The production of reactive oxygen species (ROS) has also been 

demonstrated in response to heavy metal exposure (Pourrut et al. 2008). A summary about 

their function in metal homeostasis is presented in the followings. 

 

1.4.1 Phytochelatins (PCs) 

 Heavy metals activate PCs (Cobbett and Goldsbrough, 2002) production and they play 

major roles in metal detoxification in plants and fungi. The general formula of PCs is (γ-Glu-

Cys)nX where n is a variable number from 2 to 11 depending on the organism, although most 

common forms have 2-4 peptides, X represents an amino acid such as Gly, β-Ala, Ser, Glu or 

Gln (Cobbett and Goldsbrough 2002). Heavy metals including Cd, Hg, Ag, Cu, Ni, Au, Pb, As 

and Zn induce biosynthesis of PCs. However, Cd is by far strongest inducer (Grill et al. 1989). 

In the presence of the thiol groups of Cys, PCs chelate Cd, forming complexes protecting the 

cytosol from free Cd ions (Cobbett 2000). The metal binds to the constitutively expressed 

enzyme γ-glutamylcysteinyl dipeptidyl transpeptidase (PC Synthase), thereby activating it to 

catalyse the conversion of glutathione to phytochelatin (Zenk 1996).  

 PCs are considered very important in cellular homeostasis and translocation of 

essential nutrients such as Cu and Zn (Thumann et al. 1991) due to their metal ion affinity.  

PCs are required for detoxification of toxic metals, particularly to Cd, as confirmed in both 

Arabidopsis and Schizosaccharomyces pombe, by the Cd sensitive phenotype of cad1 mutants 

defective in PCs activity (Ha et al. 1999). In some cases, the production of PCs in excessive 

amount may not ensure hyper-tolerance. Enhanced PCs synthesis seems to increase heavy 

metals accumulation in transgenic plants (Pomponi et al. 2006), whereas excessive expression 

of AtPCS induced hypersensitivity to Cd stress (Lee et al. 2003). PCs could help in the 

transport of heavy metal ions by forming complexes, into the vacuole (Clemens 2006). Raab et 

al. (2005) have studied As-PC complexes in extracts of the As-tolerant grass Holcus lanatus 

and the As-hyperaccumulator Pteris cretica. The dominant form was non-bound inorganic As, 

with 13% being present in PC complexes for H. lanatus and 1% in P. cretica. 
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1.4.2 Metallothioneins (MTs) 

 Detoxification of metals by the formation of complexes is documented in most of the 

eukaryotes (Kramer et al. 2007). MTs are other cysteine-rich peptides with a low molecular 

weight, able to bind metal ions by means of mercaptide bonds. MTs are the products of 

mRNA translation, induced in response to heavy metal stress (Cobbett and Goldsbrough 

2002). MTs are divided into three different classes depending upon their cysteine content and 

structure. The Cys-Cys, Cys-X-Cys and Cys-X-X-Cys motifs (in which X denotes any amino 

acid) are characteristic and invariant for MTs (Yang et al. 2005). The pea MT (PsMTa) can 

bind Cd, Zn and Cu when expressed in Escherichia coli (Tommey et al. 1991). Arabidopsis 

MTs are able to restore tolerance to copper in MT-deficient yeast strains (Zhou and 

Goldsbrough 1995). In a study, over-expression of mouse MT in tobacco plants increased Cd 

tolerance in vitro (Pan et al. 1994), whereas Brassica juncea MT2, ectopically expressed in A. 

thaliana, confers enhanced tolerance to Cd and Cu (Zhigang et al. 2006). In terms of transcript 

amount, many plant MT genes are expressed at very high levels in all tissues. Salt el al. (1995) 

has reported that Arabidopsis MT1a and MT2a seemed to accumulate in trichomes rendering 

sequestration of heavy metal ions. Since Arabidopsis MT expression has been detected in 

phloem elements, MTS are potentially involved in metal ion transport (Garcia-Hernandez et 

al. 1998).  

 The biosynthesis of MTs may also be triggered by several factors other than metals, 

including hormones and cytogenetic agents. MT genes are expressed during various stages of 

plant development and in response to different environmental conditions (Rauser 1999). 

Abiotic stresses, such as high temperature and deficiency of nutrients can also result in 

production of MTs (Cobbett and Goldsbrough 2002). Despite the concept that MTs might play 

a key role in metal metabolism, their precise function in plants remains to be determined 

owing to a lack of information (Hall 2002; Yang et al. 2005; DalCorso 2008). 

 

1.4.3 Metal chelators 

 Extracellular chelation by organic acids, such as citrate and malate, is important in 

mechanisms of aluminum tolerance. For example, malate efflux from root apices is stimulated 

by exposure to aluminum and is correlated with aluminum tolerance in wheat (Delhaize and 

Ryan 1995). Some aluminum-resistant mutants of Arabidopsis also have increased organic 
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acid efflux from roots (Larsen et al. 1998). Organic acids and some amino acids, particularly 

His, also have roles in the chelation of metal ions both within cells and in xylem sap (Kramer 

et al. 1996; Rauser 1999). Recently Olko et al. (2008) have reported that the accumulation of 

metals can only be explained on the basis of organic acid changes in Armeria maritima plants. 

The content of organic acids, especially malate, decreased in the roots and increased in the 

leaves. These changes may suggest their role in metal translocation from roots to shoots. 

  

1.4.4 Metal ion transporters 

 Terrestrial plants have native effective ions uptake system that enables them the 

acquisition of nutrients as well as metal ions from soil through roots. Therefore, metal cation 

transport and homeostasis is essential for plant nutrition and heavy metal tolerance. Several 

classes of metal transporters/genes identified in plants are presented in (Table 5). They are 

situated in the tonoplast or plasma membrane, playing an important role in metal homeostasis 

within physiological limits. These include heavy metal (or CPx-type) ATPases that are 

involved in the overall metal ion homeostasis and tolerance in plants, the natural resistance-

associated macrophage protein (Nramp) family of proteins, cation diffusion facilitator (CDF) 

family proteins (Williams et al. 2000), and the zinc-iron permease (ZIP) family (Guerinot 

2000). Despite these identifications, many plant metal transporters remain to be explored at 

the molecular level (Yang et al. 2005). 
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 The CPx-type heavy metal ATPases have been identified in a wide range of 

organisms and have been implicated in the transport of essential, as well as potentially 

toxic, metals like Cu, Zn, Cd, and Pb across cell membranes (Williams et al. 2000). They 

are considered to be important not only in metal sequestration for essential cell functions, 

but also in preventing the accumulation of these ions to toxic levels. A novel family of 

similar proteins, Nramp, has been implicated in the transport of divalent metal ions, 

particularly Fe and Cd (Thomine et al. 2000). Disruption of an AtNramps3 gene slightly 

increased Cd resistance, whereas over-expression resulted in Cd hypersensitivity in 

Arabidopsis.  

 Another important family is the CDF proteins. CDF transporters have been 

characterized in both prokaryotes and eukaryotes and can transport across membranes 

divalent metal cations such as Zn, Cd, Co, Fe, Ni or Mn (Montanini et al. 2007). Some of 

the CDF family members are thought to function in catalyse efflux, and some are found in 

plasma membranes whereas others are located in intracellular membranes.  van der Zaal et 

al. (1999) have reported that the protein zinc transporter of Arabidopsis thaliana (ZAT1) 

may have a role in zinc sequestration. Elevated zinc resistance was observed in transgenic 

plants over-expressing ZAT1 and these plants showed an increase in the zinc content of the 

root under conditions of exposure to high concentrations of zinc. However, ZAT1 is not 

confined to root tissue; protein analysis conferred that ZAT1 was constitutively expressed 

throughout the plant and was not induced by exposure to higher levels of zinc.  

 To-date, 15 members of the ZIP gene family has been identified in the A. thaliana 

genome. Different members of the ZIP family are known to be able to transport iron, zinc, 

manganese, and cadmium. Pence et al. (2000) cloned the transporter ZNT1, a ZIP gene 

homolog, in the Zn/Cd hyperaccumulator Thlaspi caerulescens. They found that ZNT1 

mediates high-affinity Zn uptake as well as low-affinity Cd uptake. In recent studies, 

another group of transporters ATP-binding cassette (ABC transporters) have shown to be 

implicated in a range of processes including polar auxin transport, lipid catabolism, disease 

resistance, stomatal function, xenobiotic and metal detoxification (Kim et al. 2006; Rea 

2007). 

  

1.4.5 Oxidative stress mechanisms 

 When plants are exposed to different metals, they try to adjust themselves 

accordingly through producing certain proteinicious compounds or concentrating into 

certain structures. Different detoxifying mechanisms including cell wall sequestration 
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(Wierzbicka, 1998), isolation of lead from the cytoplasm with a membrane (Małecka et al., 

2008), synthesis of PCs in response to Pb (Piechalak et al. 2002) playing a role in lead 

sequestration into plant vacuoles (Piechalak et al. 2003), are activated. Another important 

reaction of plants is the production of reactive oxygen species (ROS) resulting in an 

unbalanced cellular redox status (Sharma and Dubey 2005; Pourrut et al. 2008). Redox 

modifications at cellular level might induce changes in proteins and nucleic acids or the 

peroxidation of bio-membranes. Plants also contain a complex antioxidant system to tackle 

ROS (Apel and Hirt 2004). This system is comprised of antioxidants such as reduced 

glutathione, ascorbate or α-tocopherol (Vitamin E) and antioxidant enzymes such as 

superoxide dismutase, catalase, peroxidases, ascorbate peroxidase and glutathione 

reductase. Recently, Pourrut et al. (2008) have reported an oxidative burst in roots of Vicia 

faba and induced lipid peroxidation in response to Pb uptake. They have also found that Pb 

accumulation in leaves caused lipid peroxidation and a strong decrease of photosynthetic 

pigments.  

  

 Metal homeostasis and tolerance in plants remained a major field of research in 

the last decade, with particular focus on As, Cd, Ni and Zn. However, our understanding of 

molecular mechanisms of Pb accumulation, tolerance and translocation in plants is very 

poor (Clemens, 2006). Current knowledge of the functions of PCs, MTs, metal chelators, 

transporters and oxidative stress mechanism would only be fruitful if the genes responsible 

for these compounds could be easily manipulated. Most of the work reported in literature 

is concentrated to model species Arabidopsis halleri and Thlaspi caerulescens. Recent 

projects on genomic scale profiling of nutrient and trace elements in A. thaliana (Lahner et 

al. 2003) are very promising. But the application of all these developments to species other 

than model ones, is hindered due to unavailability of tools required for gene function 

studies i.e. genetic transformation and regeneration. Keeping in mind the wide diversity of 

plants growing in extreme conditions, understanding the molecular and physiological 

bases would allow developing or engineering plants with desired set of characteristics for 

environmental remediation (Milner and Kochian 2008) and sustainable development. 

 

1.5 Phytoremediation and Genetic Engineering 

 Production of plants with improved characteristics by genetic engineering, i.e. by 

modifying metal uptake, transport and accumulation as well as metal tolerance, opens up 

new possibilities for phytoremediation (Karenlampi et al. 2000). Phytoremediation using 
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non-transgenic plants (grasses, sunflower, corn, hemp, flax, alfalfa, tobacco, willow, Indian 

mustard, poplar, Pelargonium etc.) shows good potential, especially for the removal of 

pollutants from large areas with relatively low concentrations of unwanted compounds due 

to time period constraints. Multifold increase in accumulation and/or tolerance has been 

reported in genetically modified plants as compared to wild types, for some metal 

pollutants e.g. As (Dhankher et al. 2002), Hg (Che et al. 2003), Pb (Martinez et al. 2006) 

and Se (Pilon et al. 2003).  

 Some hyperaccumulators, such as Thlaspi caerulescens, can take up high levels of 

metals to their harvestable parts but their low biomass limits their efficiency (Meagher 

2000; Nedelkoska and Doran 2000). Through genetic transformation, plants can be 

transformed either for improved metal uptake or increased biomass. For example, 

nicotianamine synthase gene (Higuchi et al. 1999) is involved in the formation of 

phytosiderophore―the metal binding amino acid―that increases the bioavailability of 

metals to plants. However, the most common strategy involves targeting the proteins 

involved in metal homeostasis (metallothioneins, phytochelatins and glutathione) for 

genetic manipulations (Clemens et al. 2002). Although such approaches typically involve 

the manipulation of plant enzymes responsible for the formation of phytochelatins and 

related compounds e.g. over-expression of glutathione synthetase (Zhu et al. 1999), 

gamma-glutamylcysteine synthetase (Dhankher et al. 2002), phytochelatin synthase (Li et 

al. 2004), manipulations with other enzymes have also been successful. These enzymes are 

considered to be responsible for the first phase in plant detoxification, the activation 

reaction of recalcitrant compounds in plants (Sandermann 1994).  

 

1.5.1 Genes for phytoremediation 

 Genetic engineering-based phytoremediation strategies for elemental pollutants like 

mercury and arsenic using the model plant Arabidopsis are being tested. The success of the 

techniques will lead the way for the remediation of other challenging elemental pollutants 

like lead or radionuclides. However, the identification and characterization of the genes in 

native hyperaccumulators hold prime importance. The real effectiveness of any gene could 

only be tested in the parent plant. Some of the examples of genes/molecules involved in 

hyperaccumulation, transport and metal homeostasis have been presented in table 5.  

 Availability of biotechnological techniques and knowledge of the desired genes can 

help to develop effective phytoremediation techniques. Plants can be engineered with 

enhanced metal tolerance, capable to adjust their rhizosphere to increase mobility of 



  Literature review 

 32

targeted element, able to modify speciation within plant system for better translocation and 

ultimately storage of toxic elements either in vacuoles or after transformation into less 

toxic forms through binding with organic acids and thiol-rich chelators (Meagher and 

Heaton 2005). 

 

1.5.2 Gene function discovery 

 Recent developments in large scale genomics programs on model species (NCBI, 

Genome project) have laid the foundation towards exploring the structure, expression and 

mechanisms involved in the regulation of genes upon exposure to abiotic and biotic 

stresses. Gene isolation is a relatively high throughput technology these days the 

identification of their functions and regulation mechanisms are the major impediments. 

Availability of genome databases with known functions could help to assign putative 

function to newly discovered sequence. This could merely give an idea of the biochemical 

function of the coding sequence. The majority of genes isolated have therefore been 

attributed putative functions on the basis of in silico studies. The strategies other than in 

silico aimed at understanding gene function are grouped under the name of “functional 

genomics”. These strategies are based on either spatio-temporal expression of the genes or 

the over-expression of the target gene. The spatio-temporal expression of the genes 

(mRNA and protein expression) is the response to the stimulus during developmental 

stages, or to biotic or abiotic stresses (Narusaka et al. 2004). However, these studies, only 

give an indirect proof of the role and function of the genes. The over-expression of the 

desired gene is achieved by using a strong plant promoter and adjoining activation 

sequences to drive high level and constitutive expression of a gene coding sequence. The 

effect is high steady state mRNA and protein levels. Any phenotypic changes could then 

be assigned to the native gene’s function based on biochemical pathways that are altered in 

the transformants. However, over-expression of an endogenous gene can lead to co-

suppression by RNAi mechanism, a possible approach for deciphering gene function. 

However, the use of these strategies is impossible without availability of the tools required 

for gene transformations i.e. genetic transformation.  

 

1.5.3 Genetic transformation procedure 

 Plant transformation and regeneration systems have become indispensable tools 

(Busov et al. 2005) since its initial application about 25 years ago (De Block et al. 1984),  
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Figure 5: Schematic diagram of Agrobacterium-mediated transformation of plants. 
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to explain gene function and for crop improvement, either by modulating existing traits or 

introducing new ones. This allows the exploration of many aspects of plant physiology and 

biochemistry through analysis of gene function and regulation that cannot be studied by 

any other experimental method. Genetic transformation systems are based on the 

introduction of foreign DNA into plant cells, followed by the regeneration of such cells 

into whole fertile plants. A schematic diagram of the transformation protocol is presented 

in Fig 5.  

 The success of any plant genetic transformation strategy depends upon the 

availability of an efficient in vitro regeneration system coupled with appropriate selection 

regime and a method for introducing DNA into plant cells (Twyman et al. 2002). The 

efficiency of the regeneration system is greatly influenced by different factors particularly, 

the plant organ to be used as donor explants, the basic culture medium, growth hormones 

and their altogether interactions (Poulsen 1996). In addition to auxins and cytokinins, 

Thidiazuron (TDZ) has proven to be a highly effective regulator of plant morphogenesis. 

TDZ (N-phenyl-N'-l,2,3-thidiazol-5-yl urea) is a substituted phenylurea compound which 

was adopted for mechanized harvesting of cotton bolls (Murthy et al., 1998). Originally 

TDZ was classified as a cytokinin and induced many responses typical of natural 

cytokinins (Murthy et al. 1998). However, later research showed that TDZ, unlike 

traditional cytokinins, was capable of fulfilling both cytokinin and auxin functions 

involved in various morphogenetic responses of different plant species (Jones et al. 2007). 

TDZ has been mostly tested for inducing somatic embryogenesis through short period 

shock with it. Somatic embryogenesis in Pelargonium species has focused to a major 

extent on zonal (Pelargonium x hortorum) and regal (Pelargonium x domesticum) 

cultivars. Different explants such as hypocotyls and petioles (reviewed in Haensch 2007), 

hypocotyls and cotyledons (Murthy et al. 1999, 1996), have been used as starting material. 

TDZ demonstrated the ability to enhance the efficiency of somatic embryogenesis in a 

wide range of species including Pelargonium sp. (Murthy et al. 1998).  However, the 

occurrence of true somatic embryos induced from hypocotyls on TDZ-containing medium 

in Pelargonium x hortorum and Pelargonium domesticum has been challenged. 

Histological analysis demonstrated that regenerated structures formed both through 

organogenesis and somatic embryogenesis were, indeed, shoot-like and leaf-like structures 

(Haensch 2004; Madden et al. 2005). On the other hand, TDZ was not necessary for 

inducing somatic embryos from petioles of Pelargonium x domesticum cv. Madame Layal 

(Haensch 2007) and in scented Pelargonium sp. ‘Frensham’ (KrishnaRaj et al. 1997). In 
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the latter case, the method proved to be an efficient tool for the development of transgenic 

scented Pelargonium plants (Bi et al. 1999). For genetic transformation, regeneration 

sytem is compulsory irrespective of the method of regeneration i.e. direct shoot formation, 

indirect through callus phase or embryogenesis. Genetic transformation is influenced by 

multiple factors particularly plant genotype, type of explant, bacterial strain, presence of 

phenolic substances like Acetosyringone in the culture and inoculation media to induce vir-

gene, tissue damage, co-cultivation, antibiotics and the time of application (Boase et al. 

1998; Opabode 2006; Liu et al. 2008; Moeller and Wang 2008). 

 

 1.5.4 Mechanism of genetic transformation 

 A DNA segment is genetically transferred by Agrobacterium to its host (plant cell), 

from its tumor-inducing (Ti) plasmid to the host-cell genome (Gelvin 1998). Engineered 

Agrobacterium strains by replacing the native T-DNA with genes of interest are the most 

efficient vehicles used today for the transformation process for the production of transgenic 

plant species (from Tzfira and Citovsky 2006). A set of bacterial chromosomal (chv) and 

Tiplasmid virulence (vir) genes encodes for proteins that forms the molecular machinery 

needed for T-DNA production and transport into the host cell. In addition, various host 

proteins have been reported to participate in the Agrobacterium-mediated transformation 

process (Tzfira and Citovsky 2002; Gelvin 2003). The vir region, located on the 

Agrobacterium Ti plasmid, encodes most of the bacterial virulence (Vir) proteins used by 

the bacterium to produce its T-DNA and to deliver it into the plant cell. In wild-type 

Agrobacterium strains, the T-DNA region (defined by two 25 base pair direct repeats 

termed left and right T-DNA borders) is located in cis to the vir region on a single Ti 

plasmid. In disarmed Agrobacterium strains with replaced native T-DNA, a recombinant 

T-DNA region usually resides on a small, autonomous binary plasmid and functions in 

Trans to the vir region (from Tzfira and Citovsky 2006). The step-wise process of genetic 

transformation is explained in Figure 6. 
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Figure 6: Agrobacterium-mediated genetic transformation (Tzfira and Citovsky, 2006). 

The transformation process comprises 10 major steps and begins with recognition and 

attachment of the Agrobacterium to the host cells (1) and the sensing of specific plant 

signals by the Agrobacterium VirA/VirG two-component signal-transduction system (2). 

Following activation of the vir gene region (3), a mobile copy of the T-DNA is generated 

by the VirD1/D2 protein complex (4) and delivered as a VirD2–DNA complex (immature 

T-complex), together with several other Vir proteins, into the host-cell cytoplasm (5). 

Following the association of VirE2 with the T-strand, the mature T-complex forms, travels 

through the host-cell cytoplasm (6) and is actively imported into the host-cell nucleus (7). 

Once inside the nucleus, the T-DNA is recruited to the point of integration (8), stripped of 

its escorting proteins (9) and integrated into the host genome (10).  

 

1.6 Research approach and objectives 

 The phytoremediation, an environment friendly technique, offers a great hope for 

rehabilitation of the ecosystem as well as fulfilling food requirements of the ever growing 

world population through making contaminated land, culture-able.  But its field application 

remains limited due to lack of effective hyperaccumulator plants, poorly understood mech- 
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-anisms and absence of respective agronomic practices. Identification of plants producing 

high biomass through rapid growth and accumulating elevated amounts of metals could 

help to reduce the time factor, a major limitation for plant based technology. If the plants 

of interest for remediation could help to overcome the costs e.g. energy production, 

essential oils etc, that would the ideal case. Another factor generally over-looked is the use 

of edible plants which could facilitate the entry of metals into food chain. So plants with 

least possibility of being eaten should be preferred for remediation purposes. We selected 

Pelargonium for phytoextraction purposes because they are high biomass producing plants. 

There is less threat of entry of the metal into food chain. Production of essential oil from 

the biomass could reduce the cost of remediation. Ultimately, the biomass could be used 

for energy production purposes. A schematic diagram of our research approach is given in 

Fig 7. 

 The objective of the present work was to assess scented Pelargonium cultivars for 

remediation of lead contaminated soils and subsequent developments of methods 

understand Pb accumulation. This work can be divided into two major parts. First part was 

concentrated on hyperaccumulation essays, phytoavailability and speciation of Pb. Second 

part was comprised of development of tools for understanding Pb hyperaccumulation. 

Stepwise specific objectives were: 

i. Feasibility of lead phytoextraction by various Pelargonium cultivars in field 

conditions. 

ii. Soil-plant transfer in relation to soil characteristics and genotype effects and Pb 

speciation in soil-plant system.  

iii. Development of regeneration and transformation protocols for selected 

Pelargonium cultivars, a pre-requisite for gene function studies.  

 



 

 

 

 

Chapter 2 

Identification of lead hyperaccumulators 
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The project was started with collaboration of STCM, battery recycling industry. Six 

scented Pelargonium cultivars were grown on two Pb contaminated soils with contrasting 

characteristics, located in Bazoche and Toulouse, near STCM Plants. Six cultivars were 

grown in natural conditions without fertilization and irrigation for the feasibility assays of 

phytoextraction. The cultivars’ performance was determined on the bases of Pb 

accumulation and the biomass produced. Further details and data are presented in the 

following publication. 
 

2.1. A field study of lead phytoextraction by various scented Pelargonium cultivars. 

Chemosphere 71:2187-2192. 



  Indentification of hyperaccumulators 
 

 42



  Indentification of hyperaccumulators 
 

 43



  Indentification of hyperaccumulators 
 

 44

 



  Indentification of hyperaccumulators 
 

 45



  Indentification of hyperaccumulators 
 

 46



  Indentification of hyperaccumulators 
 

 47

 

 



  Indentification of hyperaccumulators 
 

 48

2.2. Perspectives 

Three scented Pelargonium cultivars demonstrated their ability to hyper-

accumulate Pb in field conditions and produced considerably high biomass as compared to 

other hyperaccumulators reported in literature. The cultivars’ performance was different on 

contrasting soils and over different seasons. However, during this field experiment, many 

questions remained unanswered e.g. what are the factors controlling uptake of Pb by 

scented pelargonium studied, role of soil pH, soil Pb contents, soil organic matter and 

carbonates amounts, cultivars’ ability to modify rhizosphere, translocation and speciation 

etc..? Due to the complexity and labour intensity of field experimentations, we opted for 

controlled conditions assays in the greenhouse and growth chamber to understand different 

factors controlling soil-plant transfer of Pb at rhizosphere level.  

For this purpose a special cropping device (Fig 8) for rhizosphere studies (Neibes et 

al. 1993; Guivarch et al. 1999; Chaignon and Hinsinger 2003; Uzu et al. 2009) was used.  

 

30 μm Polyamide mesh 

PVC  
Cylinders 

Nutrient solution

Filter paper

Soil Nylon net ∅ 900μm  

support 

Root
mat 

30 μm Polyamide mesh 

PVC  
Cylinders 

Nutrient solution

Filter paper

Soil Nylon net ∅ 900μm  

support 

Root
mat 

 
 

Figure 8: Cropping device used for rhizosphere experiments. 

 

The device facilitates the separation of the roots from the soil at harvest. A small PVC 

cylinder is enclosed by a nylon net (diameter 900 µm) inserted into a larger cylinder, itself 

enclosed by a finer polyamide mesh (30 µm, Fyltis/Nytel, Sefar filtration). A space of 7-8 

mm was left between the net and the finer mesh, where the roots could develop as a mat 
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named ‘root mat’. The soil (10 g) in round bottom plates (60 mm in diameter) is placed in 

contact with root mat through polyamide mesh. The soil is humidified by a filter paper 

present beneath the soil and dipped in nutrient solution on the other end. 

On basis of field experiments, a Pb hyperaccumulator (Attar of Roses) and a non-

accumulator (Concolor Lace) cultivars were selected to clearly distinguish plant effects for 

rhizosphere experiments. Two soils with contrasting characteristics were spiked with 

industrial particles in order to obtain three different levels of Pb i.e. control (0), ~ 500 and 

1500 mg Pb kg-1 soil. These levels were selected on the basis of the fact that the field 

application of phytoextraction technique is potentially suitable to remediate moderately 

contaminated soils i.e. ~2000 mg Pb kg-1 as compared to highly contaminated soils i.e. 

~40,000 mg Pb kg-1. At higher concentrations, its applicability is hampered due to time 

required for phytoextraction. The detailed methodology and subsequent results are 

presented in the Chapter 3. 

 

 



 

 



 

 

 

 

Chapter 3 

Lead phytoavailability and speciation 
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 In the previous study, the plants used were bought from Heurtebise nursery, 

Clansayes, France, (http://www.pepinieres-heurtebise.com/) and tested in field conditions 

for Pb phytoextraction experiments. For the subsequent experiments to understand Pb 

hyperaccumulation in soil plant system, the first step was to develop a method of 

producing rooted plants through cuttings from the stock plants, to avoid heterogeneity, in 

case we might have bought new plants from the nursery. For this purpose, different media 

were tested (Table 6). The experiments were repeated many times to have a reliable 

procedure for developing rooted plants, to be used for Pb phytoextraction essays at the 

Lab. The results presented in the table 3.1, are from two selected repeats which were better 

performing, after 30 day period. We started with hydroponics and then moved gradually to 

other substrates perlite, acid washed inert sand, organic soil, which are being used for 

potted plants. In hydroponics, we observed that with increasing Fe concentration, the 

percentage of rooted plants increased significantly (Table 6).  

 

Table 6: Rooted plants (%) obtained from scented Pelargonium cuttings after 30 days 

culture on different media/substrates.  

Medium Additional treatment
Attar Atomic

Hydroponics 5 mg L-1 Fe 26 ± 4e 53 ± 5c

10 mg L-1 Fe 78 ± 7b 75 ± 10b

Perlite + Inert sand (1:1) Hormone - 0 0
*Hormone + 0 0

Perlite + Organic Soil (1:1) 38 ± 7d 50 ± 6cd

Organic soil 45 ± 8cd 57 ± 4c

Fertis® 100 ± 0a 100 ± 0a

Rooted plants (%)

 
More than 15 cuttings were grown each time. Results presented are from two replicates 

and different small alphabets show that the results are significantly different (P<0.05), 

measured by LSD Fisher test. 

*Hormone de bouturage = 0.25% B-indole butyric acid (hormone being used in nursery for 

favouring root development). 

 

 Perlite-sand mixture was successfully used by KrishnaRaj et al. (1997) for 

Pelargonium sp. “Frensham”. However, in our case, it did not work and unexpectedly, no 

rooted formation in the presence of rooting hormones (hormone de bouturage), being used 
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regularly in commercial nursery. Then we tested the mixture of perlite and organic soil 

(25% OM) and, organic soil for development of rooted plants prior to Pb phytoextraction 

essays. The rooting efficiency was about 50%.  All these rooting media tested could not 

provide a reliable procedure for having rooted plants as there were fluctuations in the 

efficiency each time (data not shown). Finally, we used Fertis®, which is low nutrient solid 

substrate. With Fertis®, the rooting efficiency was 100% and there was no cultivar 

dependency. So we used Fertis®, for having rooted plants, needed for experimentations in 

greenhouse and growth chamber (Phytotron). Detailed study focusing on Pb 

phytoavailability and its speciation in soil-plant system is presented in the following 

publication. 

 

3.1 Phytoextraction of lead by scented Pelargonium cultivars: availability and speciation. 

Submitted to Chemosphere. 
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Abstract 

 Phytoavailability is one of the major factors to be considered for successful 

application of lead (Pb) phytoextraction. An experiment was performed using special 

cropping device, designed for rhizosphere studies, to estimate the available fraction of soil 

Pb, rhizosphere changes and Pb speciation in soil as well as in plant. Two contrasting 

scented Pelargonium cultivars were grown on two different soils and the soil-plant contact 

duration was two weeks. Both soils were spiked with characterized Pb particles emitted 

from recycling industry to achieve different levels i.e. 0, 500 and 1500 mg Pb kg-1 soil. 

Lead hyperaccumulator cultivar, Attar of Roses, significantly acidified its rhizosphere as 

compared to non-accumulator cultivar Concolor Lace. Dissolved organic carbon 

concentration in the rhizosphere was significantly higher for Attar of Roses as compared to 

Concolor Lace. Lead concentrations in the both cultivars were best correlated with CaCl2 

extracted Pb. Speciation studies with EXAFS and ESEM-EDS revealed that major part of 

Pb in soil was inorganic (mainly PbSO4) whereas it was first complexed with organic acids 

and secondly associated with phosphorus within plant tissues.  

 

Key words: Phytoremediation, rhizosphere, phytoavailability, speciation, pH, DOC. 
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1. Introduction 

 

Lead contamination poses serious risks to human health causing irreversible 

disorders of nervous, digestive and reproductive systems, or anemia (Ahamed and 

Siddiqui, 2007) and, to plant vitality and metabolism (Chaney et al., 2007). High 

concentrations of Pb in the environment is the result of various anthropogenic activities 

(Sharma and Dubey, 2005; Dumat et al., 2001) and persistence of Pb. Half-life for Pb has 

been reported about 740–5900 years depending upon soil physical and chemical properties 

(Alloway and Ayres, 1993). Its mobility and bioavailability with respect to the chances of 

entering into food chain are determinant factors for environmental risk assessments (Zehl 

and Einax, 2005). Lead intake by humans can be due to the consumption of crop plants 

grown on contaminated soils, ingestion of contaminated soil, inhalation of soil particles 

and drinking water with high soluble concentrations (Alexander et al., 2006). In this 

context, Pb was recently classified as a substance of very high concern in the European 

REACH law (European Parliament Regulation EC 1907/ 2006 and the Council for 

Registration, Evaluation, Authorization and Restriction of Chemicals, 18 December 2006). 

Therefore, its uses might be strongly justified by industries in terms of cost-benefits 

analysis. Nowadays, battery manufacturing is the principal use of lead and the batteries 

represent 70% of the raw material for lead recycling industries reaching 160,000 t per year 

in France (Cecchi et al., 2008; Uzu et al., 2009).  

 Cleaning up of contaminated soils without disturbing natural equilibrium or 

producing new problems is an important environmental challenge. Ex-situ decontamination 

using physico-chemical techniques is labour intensive, expensive, and could affect 

biological properties of the soil. In situ decontamination by phytoextraction could be used 

as an alternative (Tanhan et al., 2007) but the time required to decontaminate remains a 

limiting factor (Keller et al., 2005). Low availability and mobility of Pb in soils could 

hamper the field application of the phytoextraction by augmenting the time period 

(Clemens, 2006) as compared to other elements like zinc (Dumat et al., 2006). It can 

however migrate through the soil with dissolved organic matter (Cecchi et al., 2008) or be 

mobilized by Pb hyperaccumulating plants (Arshad et al., 2008).  

 Phytoavailability of Pb is generally higher at low pH in the rhizosphere (Su et al., 

2004). Depending upon plant species, root exudates can play a significant role in the 

bioavailability and transport of nutrients and contaminants (Lagier et al., 2000). The 

exudates compete for free metal ions to form soluble complexes and reduce metal 
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adsorption onto soil surfaces (Antoniadis and Alloway, 2002), and the resulting complexes 

could be taken up by the plant roots (Evangelou et al., 2004). The release of exudates from 

roots could alter dissolved organic carbon (DOC) contents of the rhizosphere that 

ultimately can influence metal uptake. However, the nature and amount of the organic 

acids excreted could strongly affect the mobility, bioavailability, degradation and phyto-

toxicity of different metals (Lagier et al., 2000; Khan et al., 2006). According to Titeux and 

Delvaux (2009), larger mineralization and higher DOC release in the soil could promote 

metal release from exchange sites. Other factors including plant genotype, climatic 

conditions and agronomic management practices may influence the phytoavailability of 

heavy metals (Kabata-Pendias and Pendias, 2001). 

 Availability and transport from soil to root cells are only the first steps in metal 

accumulation. Effective translocation from roots to shoots needs symplastic pathway and 

active loading into the xylem (Clemens, 2006; Verbruggen et al., 2009). The complexation 

of metals with ligands in the xylem remains controversial. In xylem sap of Arabidopsis 

halleri, the dominant form of Cd was free Cd2+ ions (Ueno et al., 2008). According to Salt 

et al. (1999), the major proportion of Zn in the xylem sap of Thlaspi caerulescens was the 

free hydrated Zn2+ ions whereas Straczek et al. (2008) have observed Zn-organic acids 

complexes. In hyperaccumulators, nickel was transported in a complex form associated 

with histidine (Kramer et al., 1996). In the recent past, considerable advancements have 

been reported in understanding accumulation and translocation of Zn, Ni and Cd whereas 

very less is known about Pb in plant tissue.  

 In this context, the first objective of the present study was to evaluate the 

phytoavailability of Pb for scented Pelargonium cultivars on two contrasting soils by 

determining plant uptake, CaCl2 exchangeable Pb, rhizosphere pH changes and DOC. The 

second objective was to observe Pb speciation in plant tissue using Extended X-ray 

Absorption Fine Structure (EXAFS-peeler) and Environmental Scanning Electron 

Microscopy─Energy Dispersive x-ray Spectroscopy (ESEM-EDS). EXAFS is well suited 

technique for Pb speciation assessments in plant samples because it is an element-specific 

probe sensitive to short range roder (Salt et al., 2002). It has been recently used by 

Straczek et al. (2008) for Zn speciation studies in tobacco roots. ESEM has become a 

powerful tool to study biological tissues as there is no need for special preparations as was 

required for high vacuum SEM. 
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2. Materials and methods 

 

2.1 Soil material and spiking with enriched lead particles 

 Two uncontaminated top soils (0-30 cm) having contrasting characteristics (Table 1) 

were collected from vicinity of Toulouse (south-west of France), air-dried and sieved to 2 

mm. These were named as Soil 1 (calcareous clay) and Soil 2 (sandy clay loam with acidic 

pH and low OM as compared to soil 1). These soils were spiked with well characterized Pb 

particles (Uzu et al., 2009) emitted from a secondary Pb smelter which currently recycles 

batteries, the Society for Chemical Treatment of Metals (STCM) located in the urban area 

of Toulouse (43o38′ 12″ N, 01o_25′34″ E). These particles contained 333,777 mg Pb kg-1 

DW. Calculated amounts of the particles were added to the boxes containing 10 g of soil, 

to achieve final concentrations 0 (control), 500 and 1500 mg kg-1 of Pb and were 

thoroughly mixed as described by Uzu et al. (2009). These levels were selected on the 

basis of previous field experiments where different cultivars showed potential to remediate 

moderately contaminated soils i.e. ~2000 mg Pb kg-1 as compared to highly contaminated 

soils i.e. ~40,000 mg Pb kg-1 (Arshad et al., 2008). After spiking, the soils were turned over 

weekly for a month before using for culture experiments. This period allows establishing 

natural equilibration of the various sorption mechanisms in the soil (Alexander et al., 

2006).  

 

2.2 Plant material and preparations for rhizosphere experiments 

 We selected two cultivars of Pelargonium capitatum; Attar of Roses and Concolor 

Lace on basis of their performance in the field experiments (Arshad et al., 2008). Attar of 

Roses is a Pb hyperaccumulator while Concolor is a non-accumulator cultivar. This 

contrast could help to explain plant effects on phytoavailability of Pb. Potted plants of both 

cultivars were obtained from the Heurtebise nursery, Clansayes, France, 

(http://www.pepinieres-heurtebise.com/) and were grown in the greenhouse. The scented 

Pelargonium cultivars Attar of Roses and Concolor Lace will be referred to as Attar and 

Concolor, hereafter.  

 Cuttings (12-15 cm in length) of both cultivars taken from the greenhouse grown 

plants were grown on Fertis®, a low nutrient substrate that favors root development of the 

cuttings, for four weeks to develop rooted plants and were irrigated regularly with tap 

water. After 4 weeks, the rooted plants were transferred to special cropping devices 

designed for rhizosphere studies (Neibes et al., 1993; Guivarch et al. 1999; Chaignon and 
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Hinsinger, 2003; Uzu et al., 2009). These devices facilitate the separation of the roots from 

the soil at harvest. The eight cropping devices containing one plant/device were placed in 

containers having 20 L of nutrient solution to promote root growth and develop sufficient 

volume of roots for soil-plant contact. The composition of nutrient solution was 5000 µM 

KNO3, 5000 µM Ca(NO3)2, 2000 μM KH2PO4, 1500 µM MgSO4, 46 μM H3BO3, 9 μM 

MnSO4.H2O, 0.1 μM MoNaO4.2H2O, 0.9 μM CuSO4.5H2O, 15 μM ZnSO4.7H2O and 180 

μM Fe–EDTA. After two weeks of culture in the hydroponics, root mat was developed and 

plants were ready for rhizosphere studies. The level of nutrient solution was maintained 

with distilled water. The step was performed in a greenhouse with a photoperiod of 14 h, 

temperature 25 ± 1/22 ± 1 °C day/night cycles with 60-70% relative humidity.  

 

Table 1: Characteristic analysis of the soils used for rhizosphere experiments 

Characteristic Unit Soil 1 Soil 2
Clay g kg−1 421 228
Silt g kg−1 343 265
Sand g kg−1 236 507
Textural class Clay Sandy

clay loam
pH water 8.22 6.41
pH CaCl2 7.41 5.39
Organic carbon g kg-1 18.3 5.86
Organic matter g kg−1 31.7 10.1
CaCO3 total g kg-1 268 <1
N total g kg-1 1.97 0.72
C/N 9.28 8.09
CEC cobalthexamine cmol(+) kg−1 30 10.7
Pb Aqua Regia mg kg-1 17.7 17.1  

 

2.3 Culture of plants on soil 

 Ten grams of control and spiked soils were added to detachable round plates of 

cropping devices having 60 mm internal diameter and resulting into 3 mm thick soil layer. 

At the same time, each soil was sampled to determine the initial pH and for chemical 

analysis. During culture stage, containers having 4 L of nutrient solutions were covered 

with aluminum paper and 5 plants were placed on the top and the soils were humidified 

through filter paper dipped in the nutrient solution. During this stage, the concentrations of 

KNO3, Ca(NO3)2, KH2PO4 and MgSO4 were reduced to 1/10th and, to half for iron of the 
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original nutrient concentrations, to favor metal accumulation (by reduction of ions’ 

competition). The nutrient solution was changed weekly over a culture period of 2 weeks. 

While the levels in containers were maintained with nutrient solution sufficiently to keep 

the filter paper dipped in the solution. Soil controls that correspond to the soils without 

plants on the round plates were also maintained. These were humidified in a similar 

manner with the same nutrient solution as for culture to evaluate the pH changes 

influenced by nutrient solution during culture stage. The pH of nutrient solution was 5.5-

6.0. From soil controls, pH changes were measured after 0, 4, 8, 12, and 15 days during the 

experiment by collecting a representative sample. After 2 week period, shoots and roots 

were harvested separately and whole the soil was considered as rhizosphere soil. There 

were five replicates for all the assays. 

 

2.4 Soil and plant analysis 

 Fresh soils were taken for pHCaCl2 and CaCl2 extracted Pb determinations. A variety 

of methods have been reported, either single extraction or sequential extraction (Reviewed 

in Wang et al., 2004). Soil pH (AFNOR, 1994) and PbCaCl2 were measured from a 0.01M 

CaCl2 (1:5 soil/solution on dry basis). The mixture was shaken for five minutes and left 

during 30 minutes to stabilize before pH determinations in the supernatant. After pH 

measurements, clear supernatants were collected for Pb determinations and stored at 4°C 

before analysis. For soil solution extraction, humid soil was taken in Eppendorf® tubes and 

centrifuged at RCF 15000 during 15 min at 20 °C temperature (modified from Angeles et 

al., 2006). The supernatants collected were considered as “soil solution”, for estimation of 

pH, Pb contents and DOC. The DOC was determined using a Shimadzu 5000A TOC 

Analyzer. 

 The plant parts were freshly weighed at harvest after 15 days culture period. The 

roots were washed with 0.01 M HCl to determine Pb bound to the outer root cell walls, 

called [Pb]adsorbed, according to the method described by Ferrand et al. (2006). The roots 

and shoots were then oven-dried at 80°C during 48 hours and weighed again for dry weight 

(DW). Dried plant material was ground to powder form and 125 mg of each sample was 

mineralized in a 5:1.5 mixture of HNO3 and H2O2 at 80°C for 4h. After filtration, the 

elemental concentrations were determined with an IRIS Intrepid II XDL ICP-OES 

spectrophotometer. The accuracy of the acidic digestion and analytical procedures was 

verified using known reference material (Virginia tobacco leaves, CTA-VTL-2, ICHTJ). 
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2.5 Bio-concentration factor (BCF) and Translocation factor (TF) 

 TF is the ratio of metal concentration in plant’s aerial parts to the metal concentration 

in plant’s root (Marchiol et al., 2004), i.e. TF = [Cshoot] / [Croot]. BCF is the ratio of metal 

concentration in plant tissues at harvest to the initial concentration of metals in external 

environment (Zayed et al., 1998). TF and BCF were calculated from the results obtained 

through chemical analysis. 

 

2.6 Lead speciation through ESEM and EXAFS  

 Secondary and backscattering electronic images and X-ray elemental maps of roots 

and leaves were obtained using an ESEM working in low-vacuum mode. The Quanta 200 

FEI instrument was equipped with an energy-dispersive X-ray (EDX) Quantax (Brucker) 

system. ESEM was operated at 25 kV. Roots were put on carbon substrates and analysed 

without further preparation. Because of the ESEM configuration, light element detection 

(C, N, and O) was ambiguous. ESEM-EDX analyses were performed at the “Geosysteme” 

laboratory (UMR CNRS 8157) of the University of Lille.  

 EXAFS spectra were recorded at the Pb LIII-edge (13.055 keV) at the French 

National Synchrotron Facility (SOLEIL, St Aubin, France) on the SAMBA beamline 

equipped with a Si(111) double crystal monochromator (Belin et al., 2005). The bulk 

spiked soil was dried, ground in an agate mortar and pressed as 5 mm-diameter pellets. 

Fresh roots of Pelargonium cultivated on Pb contaminated soil were plunged in liquid N2, 

ground using a mortar immersed in liquid N2, pressed as 5 mm-diameter pellet, and 

transferred in a cryostat cooled with N2 by keeping the material in frozen state at all times. 

This is crucial to avoid changes of Pb speciation. Various Pb reference compounds were 

recorded, including PbSO4, Pb oxysulfate, hydrocerrusite, pyromorphite, aqueous Pb-

glutathione (15 mM Pb(NO3)2 + 15 mM GSH + 30 mM ascorbic acid, pH = 3), and 

aqueous Pb2+ (10 mM Pb(NO3)2, pH = 6.5). The solutions were mixed with 30% glycerol 

to avoid the formation of ice crystals. Spectra were recorded in fluorescent mode using a 

silicon drift detector (RONTEC) or in transmission depending on Pb concentration, at 77K 

for the roots and aqueous reference and at room temperature for soil, particles and 

inorganic references. The EXAFS interference function χ(k) was extracted using the 

ATHENA  program, version 9, a part of the IFEFFIT package (Ravel and Newville, 2005). 

Sample spectra were fitted by linear combinations using the standard spectra mentioned 

above and other mineral and organic Pb references recorded previously (Manceau et al. 

1996; Sarret et al. 1998a, 1998b) and Pb-sorbed ferrihydrite provided by A. Scheinost 
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(Scheinost et al., 2001). For a given compound, the spectrum recorded at 77K had only 

slightly higher amplitude than the one recorded at 300K, so we could combine both type of 

measurements in the linear combination fits. Each spectrum was first fitted with one 

component, and an additional component was allowed if the fit quality was improved 

significantly, i.e., if the normalized sum squares residual parameter (NSS = ∑[k3 χ(k)exp - 

k3 χ(k)fit]2 / ∑[k3 χ(k) exp]2 100) was decreased by at least 10%. Using this procedure, the 

spectrum for the soil and roots were correctly simulated by four components. Satisfactory 

fits were defined by NSS increase within 5% of that for the best fit. Using this criterion, 

one and five good fits were obtained for the soil and roots, respectively. For the roots, 

average and standard deviation of the proportions of lead species were calculated on these 

good fits. 

 

2.7 Statistical analysis 

 Statistical analyses were performed following the ANOVA procedure with the test of 

least significant difference (LSD) using STATISTICA software (Stat Soft, 2005). 

 

3. Results 

 

3.1 Lead accumulation 

3.1.1 Total lead concentrations in shoots and roots 

 Several factors influence Pb concentration in the plant including genotype, total and 

available fraction of Pb in soil, type of soil, plant’s ability to mobilize the soil Pb. Results 

showing Pb concentrations in plant parts of Attar and Concolor cultivars have been 

presented in Fig 1. Attar cultivar accumulated 284 ± 39 mg Pb kg-1 DW in shoots when 

cultured on soil 1 containing 1500 mg Pb kg-1 soil, whereas concentration in Concolor’s 

shoots were significantly (P<0.05) lower i.e. 53 ± 4 mg Pb kg-1 DW (Fig 1A). With 

increasing levels of Pb in soil, Pb concentrations were increased significantly in both 

cultivars as compared to the control. Attar and Concolor cultivars gathered 3707 ± 696 and 

1493 ± 123 mg Pb kg-1 DW, respectively when cultured on soil containing 1500 mg Pb kg-

1 soil. Shoot Pb concentration for Attar cultivar was 201 ± 15 mg Pb kg-1 DW in shoots 

when grown on soil 2 (Fig 1B), with 1500 mg Pb kg-1 soil. Concolor cultivar had very low 

concentrations in shoots i.e. 37 ± 8 mg kg-1 DW. Similar trends were observed for roots 

with concentrations 10-28 times higher as compared to that of shoots. In roots, the 

maximum concentrations were 4042 ± 518 and 1905 ± 169 mg Pb kg-1 DW for Attar and 
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Concolor cultivars, respectively. Shoot Pb concentrations were 10-50 times lower in 

comparison to that of roots for both cultivars cultured on soil 2. 
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Figure 1: Lead concentrations in plant parts after two week culture on soils spiked with 

Pb-particles; A) culture on soil 1 and B) on soil 2.  = Attar,  = Concolor. 
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3.1.2 Lead uptake, translocation and bio-concentration 

 Lead uptake for both cultivars has been presented in Fig 2A. Total uptake was 

calculated from the concentrations and dry biomass using following formula; 

 Pb uptake (mg) = ([Pbshoot] x DWshoot) + ([Pbroot] x DWroot)  [Eq 1] 

Lead uptake for Attar cultivar was 2.79 mg plant-1 when cultured on soil 1, whereas the 

maximum value for Concolor 0.5 mg plant-1 on the same soil and soil Pb level i.e. 1500 mg 

kg-1. The uptake was decreased significantly on soil 2 as compared to soil 1 for Attar. 

However it did not differ significantly for Concolor cultivar on both soils. 

 Results regarding TF and BCF have been presented in table 2. TF values for Attar 

cultivar were higher at 500 mg kg-1 Pb as compared to 1500 mg kg-1 Pb irrespective of the 

soil type. TF values for Concolor were not changed (0.04) with increasing Pb 

concentration in soil 1.  On soil 2, TF value at higher soil Pb concentration was slightly 

low (0.02) in comparison with low soil Pb (0.03). BCF was separately calculated for shoots 

(BCFs and roots (BCFr). BCFs values for Attar cultivar were almost reduced to half when 

cultivated on soil 2 containing 1500 mg kg-1 Pb as compared to 500 mg kg-1 on both soils. 

Similar trends were observed for Concolor cultivar but BCFs values ~5 times lower as 

compared to that for Attar cultivar.  All the BCFr values were higher than the BCFs values 

for both cultivars. BCFr values at 500 mg kg-1 soil Pb were higher than the values obtained 

at 1500 mg kg-1 soil Pb and were never reached two folds for both cultivars on both soils.   

 

Table 2: Lead translocation and bio-concentration factors for Pelargonium capitatum 

cultivars. 

Soil Soil [Pb]
mg kg-1 TF BCFs BCFr TF BCFs BCFr

Soil 1 500 0.10 0.40 4.19 0.04 0.07 1.92
1500 0.08 0.19 2.47 0.04 0.04 1.00

Soil 2 500 0.09 0.27 3.00 0.03 0.06 1.87
1500 0.05 0.13 2.70 0.02 0.02 1.27

Attar Concolor

 

TF = Translocation factor; BCFs & BCFr = Bio-concentration factor (shoot & root). 
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Figure 2: Lead absorption and adsorption by scented Pelargonium cultivars after two 

week soil-plant contact. A) Lead uptake, B) Adsorbed Pb.  = Attar and  = Concolor. 

 

3.1.3 Lead adsorption 

 A part of total amount of metal taken up by plant may bind to cell wall substances 

(Greger and Johansson, 2004) but a major portion of Pb has been bound to the cell walls 
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(Wierbzicka, 1998; Uzu et al., 2009). Results presenting loosely bond Pb (Pbadsorbed) to the 

root cell walls, extracted by washing with 0.01M HCl have been shown in Fig 2B. 

Considerable amounts of Pb were adsorbed to the root cell walls of both cultivars. Lead 

adsorption was significantly higher for Attar cultivar when cultured on soil 1 as compared 

to soil 2. The maximum adsorbed Pb concentration for Attar was 375 ± 37 µg g-1 DWroot 

on soil 1 containing 1500 mg Pb kg-1. For Concolor cultivar, there was no difference in 

adsorption at 500 and 1500 mg kg-1 Pb cultivated on soil 1. Whereas on soil 2, Pbadsorbed  

was the highest i.e. 443 ± 59 µg g-1 DWroot for Concolor. 

 

3.2 Plant induced rhizosphere changes 

 

3.2.1 Soil pH 

 Three methods were used to measure soil pH: soil solution pH, pH CaCl2 0.01M (1:5 

soil/liquid ratio) and pH H2O (1:5). The results of pH changes have been presented in Fig 

3, they can be interpreted in terms of ΔpH = (final pH - pH of the control soil (SC)---[Eq 2] 

Negative value of ΔpH will indicate acidification and vice versa. The pH of control soils 

for both soils was unaffected by the nutrient solution at the end of the experiment. Soil 

solution pH was changed up to -0.35 pH units by Attar cultivar on soil 1 whereas Concolor 

cultivar could not affect soil solution pH. In a similar manner, Attar cultivar acidified the 

soil and changed pHsoil solution up to - 0.41 units of pH on soil 2 as compared to control soil 

without plant. Contrarily, Concolor cultivar alkalinised the soil resulting into + 0.7 pHsoil 

solution units increase. The ∆pH were slightly different for pHH2O as compared to pHsoil 

solution. The pHH2O was decreased up -0.26 units by Attar cultivation on soil 1 while 

Concolor could not change the pH. On soil 2, the maximum ∆pH was -0.56 for Attar and 

+0.48 for Concolor cultivar. In case of pHCaCl2, the maximum ∆pH -0.33 and -0.18 units 

for Attar and Concolor cultivars, respectively, cultivated on soil 1, as compared to control 

soil without plant. While the ∆pH on soil 2 were up to -0.61 and +0.45 for Attar and 

Concolor cultivars, respectively. The pH modifications observed for Attar cultivar were 

independent of the soil Pb contents. However, the pH changes induced by Concolor 

cultivar were dependent of soil Pb concentrations.  
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Figure 3: Effect of scented Pelargonium cultivars on rhizosphere pH.  = Attar,  = 

Concolor, SC = control soil without plant. 

 

3.2.2 Lead phytoavailable fractions in soils 

To quantify the labile pool of nutrients/elements (readily available to the plants), 

various extraction methods have been used. Lead concentrations measured in soil solution, 

water and CaCl2 extracted solutions to identify cultivar effects to mobilize soil Pb for 

uptake have been presented in Fig 4. The soil solution concentrations were higher for Attar  
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Figure 4: Effect of scented Pelargonium cultivars on plant available Pb contents in 

rhizosphere soil. A) Pbsoil solution, B) PbH2O, C) PbCaCl2.  = Attar,  = Concolor. 

 

cultivar as compared to Concolor on both soils. The maximum Pbsoil solution values for Attar 

were 175 ± 44 and 106 ± 11 mg kg-1 Pb, cultivated on soil 1 and soil 2, respectively.  

Whereas Concolor cultivar could mobilize to soil solution 71 ± 7 and 67 ± 2 Pb, mg kg-1 

cultured on soil 1 and 2, respectively. Water extracted Pb concentrations were generally 

low as compared to soil solution except for Soil 1 in contact with Attar cultivar. The 

highest PbH2O concentration was 151 ± 32 mg kg-1 followed by 92 ± 3 mg kg-1 for Attar 

cultivar grown on soil 1 containing 1500 and 500 mg kg-1 of Pb, respectively. All other 
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values were below 50 mg kg-1 Pb in water extracted solutions. The trends were similar for 

CaCl2 extracted Pb. The highest PbCaCl2 concentration was 160 ± 25 mg kg-1 followed by 

101 ± 17 mg kg-1 for Attar cultivar grown on soil 1 containing 1500 and 500 mg kg-1 of Pb, 

respectively. The PbCaCl2 concentration reached 71 ± 14 mg kg-1 for Attar cultivar grown 

on soil 2 containing 1500 mg kg-1 of Pb whereas the values were below 40 mg kg-1 Pb for 

Concolor cultivar irrespective of the soil type and Pb contents.  

  

3.2.3 Dissolved organic carbon 

 Plants provide a major contribution to DOC in soil through root turnover and 

exudation (Khalid et al., 2007). However organic matter decomposition may also 

contribute to the pool of DOC in soil solution (Buckingham et al., 2008). Results regarding 

DOC in soil solution have been presented in Fig 5.  
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Figure 5: Dissolved organic carbon influence by scented Pelargonium cultivars during two 

week culture. Control soils without plant had 40 and 46 mg L-1 of DOC for soil 1 and 2, 

respectively.  = Attar,  = Concolor. 

 

The base values of DOC measured on control soils without plant were 40 ± 4 and 46 ± 8 

mg L-1 for soil 1 and 2, respectively. Significant increase in DOC concentrations was 

observed by plant culture on both soils. The maximum value 144 ± 32 mg L-1 of DOC in 

soil solution was recorded for Attar cultivar grown on soil 2 containing 500 mg kg-1 Pb. 

D
O

C
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The minimum value for Attar was 107 ± 13 on the same soil but at 1500 mg kg-1 Pb level. 

The values were significantly higher in the rhizosphere of Attar cultivar as compared to 

Concolor on both soils. The DOC value reached 89 ± 13 mg L-1 for Concolor cultivated on 

soil 1 at 500 mg kg-1 Pb and the lowest mean value was 74 ± 11 mg L-1. Different 

concentrations of Pb in soil 1 could not affect the DOC concentrations in the soil solution 

of both cultivars. However, there was significant decrease in DOC value for Attar 

cultivated on soil 2 with 1500 mg kg-1 as compared to the control (0) with plant. But the 

DOC values for Concolor cultivar remained unchanged despite the different Pb levels in 

soil 2. 

 

3.3 Lead speciation in soil-plant system 

 

3.3.1 Environmental Scanning Electron Microscopy 

 Secondary and backscattering images and EDX spectra showing elemental 

composition were obtained from air-dried leaves and roots (Fig 6) of Attar cultivated on 

soil 1 having 1500 mg kg-1 Pb, during 2 weeks. In Pelargonium roots, the BSE images 

showed the precipitation of aligned solid particles having 10 µm length and 5 µm along the 

roots (Fig 6A). EDX analysis (Fig 6B) revealed that Pb, P and Cl are the major elements 

constituting such structure and can be attributed to the Pb-phosphate species (such as 

pyromorphites). Such precipitates are observed sparsely distributed along roots. Al, Si, Ca 

and Fe detected on the EDX spectra can be attributed to the soil particles which are 

concomitant to the Pb rich precipitates. Some fine particles (< 10µm) containing Pb with or 

without S were observed included within roots together with soil particles or scattered 

along roots (not shown). These particles can be attributed to Pb, PbO, PbSO4 or PbS and 

probably originated from particle source as these species were identified in Pb source 

samples (Uzu et al., 2009). PbSO4 and PbS are relatively soluble forms of Pb that could 

explain the low number of Pb rich particles observed within roots. Contrarily, there was no 

precipitation observed in leaves and Pb was evenly distributed.  
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Figure 6. ESEM image and chemical analysis on the spectrum. A) BSE image of 

precipitates along roots. B) EDX spectra of precipitate performed by ESEM-EDX. 

 

3.3.2 Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy:  

 Figure 7 present EXAFS spectra of some reference compounds used in the linear 

combination fits and the spectra for the amended soil and for the roots with their fits. The 

EXAFS spectra for bulk soil and roots clearly differ by the shape of the second oscillation 

and position of the third and higher oscillations. Both spectra were correctly simulated by 

A

B
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four components. For the amended soil, the best fit was obtained with 30% PbSO4 + 33% 

PbO.PbSO4 + 47% αPbO + 12% Pb oxalate (NSS = 0.038). Other 4-component fits 

obtained were not satisfactory because NSS was increased by 10% and more, and did not 

reproduce correctly the shoulder on the second oscillation. Similarly, 3-component fits did 

not reproduce correctly the spectral features (NSS = 0.052), so the four Pb species 

including PbSO4, PbO.PbSO4, αPbO and organic Pb are likely present in the soil. The first 

three species have been identified in the original particles (Uzu et al., 2009). Organic Pb 

may result from the weathering of the particles and redistribution on the soil organic 

matter. 

 
Figure 7: Pb LIII-edge EXAFS spectra for the bulk soil amended with Pb-containing 

particles, roots of scented Pelargonium cultivar Attar and representative Pb standard 

spectra used for the linear combination fits (dashed lines). 

 

 For the roots, five linear combinations were retained, and the following proportions 

were obtained: 52±5% αPbO + 33±4% Pb-sorbed ferrihydrite + 50±3% Pb-Thiols. In the 

five fits, Pb-Thiols were a combination of two references including Pb-glutathione and Pb-

cysteine. If Pb-Thiols were excluded from the fit, NSS was increased by 25%. Therefore, 

the roots likely contain Pb bound to thiol groups. The sum of the three species is higher 
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than 100%. This may be due to a higher thermal disorder for the references recorded at 

300K (αPbO and Pb-sorbed ferrihydrite) leading to a decreased amplitude compared to the 

root spectrum recorded at 77K, and/or to a higher structural disorder in the reference 

compounds.  Pb-sorbed ferrihydrite may correspond to iron precipitates forming the root 

plaque as observed in aquatic plants (Hansel et al., 2001). No pyromorphite precipitates 

were detected in the roots by EXAFS, contrary to what was observed on sudax (Laperche 

et al., 1997). αPbO which was identified in the amended soil, likely correspond to mineral 

particles attached to the roots. Finally, Pb-Thiols may correspond to complexes present in 

the root cells, and result from a detoxification process involving S-containing ligands 

(cysteine, GSH, phytochelatins, metallothioneins). 

 

4. Discussion 

 

4.1 Phytoavailability of Pb in acidic and alkaline soils 

 Biomass (on dry weight bases) of scented Pelargonium cultivars Attar and Concolor 

cultivated on the two soils spiked with Pb particles was not affected with the presence or 

absence of Pb. Lead concentrations in plant parts and uptake were significantly higher for 

Attar as compared to Concolor cultivar (Fig 1 and 2). These trends are in good accordance 

with the field data presented by Arshad et al. (2008). During two weeks culture, shoot Pb 

concentration for hyperaccumulator cultivars, Attar, were reasonably high as compared to 

Hassan et al. (2008). They tested Pelargonium zonale for Pb extraction from artificially 

contaminated soil. The plants accumulated 54 mg kg-1 during 3 week pot cultures on soil 

containing 2000 mg kg-1 Pb. In our case, Pbshoot concentration measured was 284 mg kg-1 

only in two week soil-plant contact and the soil Pb level was 1500 mg kg-1. Attar 

accumulated more that 134 mg Pb kg-1 DW giving whatever the Pb level or soil type (500 

or 1500 mg kg-1 Pb). 

 Apart from Pb taken up by the plants, a considerable amount was adsorbed to root 

cell wall. The highest value of Pbadsorbed for Concolor (Fig 2B) cultivar also explained the 

low uptake and translocation (Table 2) in this cultivar compared to Attar. The adsorbed 

was calculated on % bases as follows; 

 % Pbadsorbed = [Pbadsorbed]/ [Pbroot] x 100     [Eq 3] 

The Pb adsorption was 6-12% for Attar whereas it was 14-23% for Concolor. The 

adsorption of Pb on to cell walls is an important phenomenon at soil-root interface. It 

strongly affects the translocation factor as Pb2+ binds to carboxyl groups at the root surface 
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(Seregin and Kozhevnikova, 2004) reducing absorbed quantities and rate of translocation 

to shoots (Pendergrass and Butcher, 2006; Piechalak et al., 2002).  

 The higher Pb accumulation for Attar in comparison with Concolor could be result of 

different factors. First, modification of rhizosphere pH: (1) Attar cultivar acidified the soil 

irrespective of the initial pH and soil Pb contents; (2) Concolor cultivar performed in a 

different way. Cultivated on soil 1, it either could not modify the pH or slightly acidified 

the soil whereas on soil 2, it alkalinized the soil (Fig 3). The purpose of applying different 

methods was to assess variations in soil pH and select the one method that could help to 

establish phytoavailability. The CaCl2 (0.01M) is being considered as single extraction 

method the assessment of available fraction of nutrients and trace elements. However, soil 

solution pH and pHH2O are good indicators of actual pH since no application of ions is 

involved, e.g. Ca2+ that could interfere with exchange sites. These pH modifications were 

exclusively resulted from plant action as only nutrient solution could not modify soil pH, 

either way, in soil controls maintained without plants. These results suggest that the plant 

could adjust its rhizosphere depending upon initial pH or exposure level. From the three 

methods used for pH determinations, the differences (acidification / alkalinization) in case 

of pHH2O were lower as compared to soil solution and pHCaCl2. So the Pb availability was 

not well predicted by pHH2O which will be discussed later. Other factors including type of 

root exudates, mineral nutrition and genotype may play significant role in rhizosphere pH 

changes (Loosemore et al., 2003). Soil acidification generally favors mobilization 

rendering the ions available for plants (Hinsinger et al., 2003). Lin et al. (2004) and Kidd 

and Monterroso (2005) also observed that exchangeable Pb was much higher in the 

rhizosphere than in the bulk soil due to difference in pH. 

 Another parameter that could explain the differences in Pb uptake between the two 

cultivars is DOC amount in the rhizosphere. Comparatively higher amounts of DOC in the 

rhizosphere of Attar than that of Concolor cultivar (fig 5) might be the result of enhanced 

root exudation. DOC concentrations in soil were increase almost 3 times by Attar and 2 

times by Concolor cultivar as compared to the controls without plant. The higher Pb 

contents in Attar could be due to high levels of DOC that directly indicate the presence of 

organic acids. Complementary analysis through ion chromatography of some samples for 

low weight organic acids (LWOAs) revealed that citrate and tartrate ions were the major 

LWOAs in the rhizosphere of Pelargonium cultivars (data not shown). These organic acids 

could increase Pb uptake (Wang et al., 2007). The significant increase in DOC and 

phenolics in soil solution as compared to unplanted control has been observed for 11 grass 
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species by Khalid et al. (2007). They have also reported enhanced biodegradability of 

DOC in the presence of plants that could potentially increase phytoavailability of elements 

in the rhizosphere. Titeux and Delvaux (2009) have reported that higher DOC release in 

the soil could promote metal release from exchange sites. The root exudates either in the 

form of DOC could affect metal speciation and behavior in the rhizosphere (Lin et al., 

2004; Laperche et al., 1997; Welch 1995). This phenomenon has been particularly 

observed for calcareous soil by Chaignon and Hinsinger (2003). However slight decrease 

in DOC in the Rhizosphere of Attar cultivar cultivated on the soil containing 1500 mg kg-1 

Pb might be the result of high Pb contents of the soil. The decrease of DOC in highly 

contaminated soil could result of reduction of organic matter mineralization in the soil as 

the phenomenon has been observed by Dumat et al. (2006) and Quenea et al. (2009).  

 The speciation of Pb in the soil might also influence its availability. Lead 

concentrations and uptake were generally higher on soil 1 than on soil 2. It might be 

explained as soil 1 is calcareous in nature containing 268 g kg-1 of CaCO3, and the high 

contents of CaCO3 may promote formation of Pb-CO3 complexes that are comparatively 

soluble form of Pb in soil and can be taken up preferentially (Uzu et al., 2009). As pH 

influences metal solubility and transfer (Wang et al., 2006), the rhizosphere acidification 

could have displaced the equilibrium towards bicarbonates, which are less stable than 

carbonates (Sauvé et al., 1998). 

 

4.2 Predicting phytoavailability 

 The total concentrations of metals in soils are not a good indicator of phytoavailable 

fraction of metals, due to complex chemical speciation of the metals in soil (Chen et al., 

1996). We performed extractions for soil solution Pb, PbH2O and PbCaCl2 measurements to 

predict Pb availability after two week culture on spiked soils. Shoot Pb concentrations 

were best correlated to PbCaCl2.  

 [Pbshoot] = 0.0008 × [PbCaCl2]2 + 0.283 × [PbCaCl2] + 5.51 (r2 = 0.95) [Eq 4] 

However, on soil 1, the Pb concentrations were independent of the method of extraction for 

Attar cultivar. Keeping in view the practical aspects, 0.01M CaCl2 is a better option due to 

simplicity and possibility of pH measurements simultaneously. This extraction method has 

also been considered a suitable procedure for the determination of phytoavailable Pb 

(Pueyo et al., 2004; Uzu et al., 2009). Wang et al. (2004) have reported that the 

phytoavailability of trace elements was strongly correlated to extractable fraction by CaCl2, 

total metal concentration in soils, soil pH, organic matter and cation exchange capacity.  
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4.3 Lead speciation in soil and plant 

 Several compounds with strongly different solubility and availability were observed 

with the two complementary techniques used (EXAFS and ESEM-EDS). The average Pb 

speciation through EXAFS revealed different forms in roots and the bulk contaminated 

soil. Conversion of Pb to organic species makes them less toxic, enhance plant’s tolerance 

and increase translocation. Several studies have demonstrated an important role of organic 

acids in affecting plant tolerance to different elements (Reviewed in Wang et al., 2007). 

They have shown the binding of Pb(II) in wheat roots with carboxylic group in 

hydroponics through EXAFS. Zinc-organic acid complexing has been reported in tobacco 

roots by Straczek et al. (2008). 

 Because of the ESEM configuration, light element detection (C, N, and O) was 

ambiguous. However, that technique permitted to highlight minor inorganic lead species 

like phosphates and sulphates. Formation of pyromorphites in the roots of Pelargonium 

could help the plant to avoid from toxicity by the presence of Pb whereas other forms i.e. 

binding with sulfate could favor the translocation of Pb. However, formation of stable 

complexes could also help to increase the cell stock of P that is potentially useful to tackle 

toxicity effects of Pb in the cells. As experiments were performed only over two weeks, 

Pb-P complex might be there to handle sudden exposure to Pb and might be dissolved over 

the time increasing translocation of Pb in field for the long term experiments. The even 

distribution in the leaves may also help to decrease the extent of toxicity imposed by Pb. 

An increase in the concentration of phosphorus and sulphur has been observed in leaves of 

radish (Gopal and Rizvi, 2008).   

 

5. Conclusion and perspectives 

  

 Two Pelargonium capitatum cultivars performed contrastingly to each other during 

two week soil-plant contact through special cropping devices. According to our results, 

higher Pb accumulation by Attar cultivar could be attributed to its potential to modify its 

rhizosphere by changing pH and DOC amounts. The increased concentration of DOC in 

the rhizosphere soil predicts the role of different organic acids. The BCFs and TFs were 

decreased with increasing soil Pb concentration. Lead concentrations in the both cultivars 

were best correlated with CaCl2 extracted Pb. From the fits obtained by EXAFS, it can be 

concluded that Pb was bound to organic acids in roots. Its bonding with cysteine and GSH 

predicts the potential presence of Phytochelatins and Metallothioneins which play an 
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important role in metal accumulation and tolerance in plants. Lead phosphates were also 

observed with MEB-EDS. These low soluble compounds could be a storage form of Pb 

permitting to the plant to reduce Pb toxicity. 
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3.2 Additional results 

 The particles used for soil spiking to obtain different levels of Pb in the rhizosphere 

experiments also contained 26900 mg kg-1 of Cd. Presence of Cd in particles resulted into 

40 and 120 mg kg-1 Cd in soils containing 500 and 1500 mg kg-1 of Pb, respectively. So we 

also measured the concentrations of Cd in the shoots and root. The results are shown in Fig 

4.2. Attar cultivar accumulated 48 and 62 mg Cd kg-1 in shoots when cultivated on soil 1 

and 2, respectively (Fig 9a & b).  
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Figure 9: Cd concentrations in shoots and roots of scented Pelargonium cultivars. a) 

cultivated on soil 1, b) on soil 2. Attar ( ), Concolor ( ) 
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 The Cd concentrations in shoots for Attar cultivar were significantly high (p<0.05) as 

compared to that for Concolor at 120 mg Cd kg-1 soil. In general there was more 

accumulation on soil 1 as compared to soil 1, both in shoots and roots. There was no 

significant difference in root concentration of both cultivars on the same soil. However the 

root concentrations were almost two times for both cultivars when cultivated on soil 2 as 

compared to soil 1. This difference could be explained on the bases of soil pH. Acidic pH 

(soil 2) could favour the uptake of Cd in soil whereas Cd might be adsorbed on exchange 

site at alkaline pH (soil 1). According to (Kuo et al., 1985), an increase in pH results in 

increased adsorption of Cd to soil particles and reduces the uptake of Cd by plants. 

However, plants are capable of modifying phytoavailable pool of the elements in 

rhizosphere through exudation (Sterckemam et al. 2005). 

 These results showed the potential of scented Pelargonium cultivars for multielemnt 

accumulation. However, these results only gave an indication that these cultivars are 

capable of accumulating other metals. Detailed studies are needed to assess the possibility 

of multielement decontamination using scented Pelargonium cultivars. 

 

3.3 General discussion 

 The results presented in Chapter 2 and in the first part of the current chapter, showed 

that Scented Pelargonium cultivars are capable of accumulation Pb without any symptoms 

of toxicity. Three Pelargonium cultivars; Attar, Atomic and Clorinda, accumulated Pb 

more than 1000 mg kg-1 DW or 0.1%, that is widely accepted concentration for the plants 

to be considered as hyperaccmulators. Moreover, the biomass was multifolds (up to 45 t ha 

y-1) of 3 t ha y-1 (Schnoor, 1997) that the hyperaccumulator plants should have, at least. 

Potential of Attar cultivar for Cd accumulation makes it more attractive as most of the 

contaminated sites have multielement contaminations. Multielement accumulation is one 

of the most desired characteristics for plants to be used for phytoextraction purposes 

(Prasad and Freitas 2003).  It is very promising to have plants with potential of 

multielement accumulation and high biomass but the identification of plants of this rare 

category might only be first step towards application of phytoextraction. Physiological 

parameters like availability, uptake, rhizosphere modifications, etc. could help to decide 

the feasibility of phytoextraction technique within given circumstances. But the major 

factor, limiting field application i.e. time could only be addressed with improved plant 

characteristics. Fig 10 shows a schematic diagram presenting possible options for the use 

of biotechnology for phytoextraction. Plants with improved accumulation can be obtained 
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Figure 10: A schematic presentation of possible strategies for improved phytoextraction. 

 

through gene transfer from model species to the target plants to be used for remediation. 

But for this option, biosafety remains a major concern for its field application. Other option 

could be the application of the mechanisms of hyperaccumulation, e.g. use of plant or 

bacterial metabolite to enhance accumulation. For both approaches, the knowledge of 

molecular mechanism and gene function is of critical importance. For which availability of 

tools is primary condition e.g. genetic transformation (Fig 10). 

 One of the major hindrances in plant genetic engineering is the fact that not all plant 

species are equally transformable. Even the availability of transformation procedure for a 

cultivar is not necessarily applicable to other cultivars of the same species. Genetic 

transformation systems are based on the introduction of foreign DNA into plant cells, 

followed by the regeneration of such cells into whole fertile plants. The success of any 

plant genetic transformation strategy depends upon the availability of an efficient in vitro 

regeneration system coupled with appropriate selection regime and a method for 

introducing DNA into plant cells (Twyman et al. 2002). We developed the regeneration 

and transformation protocols. The results and detailed discussions are presented in Chapter 

4 comprising of two major parts; A. Regeneration and B. Transformation.  
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 A pre-requisite to the optimisation of genetic transformation in a species is to develop 

an efficient and reproducible system for the development of plants, from regenerated buds 

or embryos. Initially, we tested the competence for the two Pelargonium cultivars for their 

response towards somatic embryogenesis and morphogenesis. Using several published 

protocols as basis of our experimentations, (KrishnaRaj et al. 1997; Boase et al. 1998; 

Saxena et al. 2000; Hassanein and Dorion 2005), we could not have any embryogenic 

event and suitable medium for morphogenesis for the cultivars. We therefore focused on 

different regeneration schemes. The efficiency of the regeneration system is greatly 

influenced by different factors particularly, the plant organ to be used as explant, the basic 

culture medium, growth hormones and their altogether interactions (Poulsen 1996).  

 

4.1(A) Choice of Explants 

 

 Different plant parts could serve as an appropriate explant e.g. leaf, petiole, 

cotyledon, hypocotyl, etc. The sources may also be different e.g. from greenhouse or in 

vitro grown plants. Two scented Pelargonium cultivars; Attar and Atomic were selected 

for regeneration protocol development on the basis of their performance for Pb 

phytoextraction in the field experiments. We tested two types of explants i.e. leaves and 

petioles. By using petioles as explants, cultured on different media (media are discussed 

later), we could not observe regeneration or callus formation. After that, we only focused 

on leaves as explants.  

 We obtained in vitro mother-plants by growing apical meristems on medium 

containing MS salts (Murashige and Skoog, 1962), 10 g L-1 sugar and 0.8% Agar as gelling 

agent.  

 We tested leaves from greenhouse plants and from in vitro plants simultaneously. 

The regeneration efficiencies (no. of explants forming shoots/ total no. of explants x100) 

for Attar and Atomic cultivars were 50 and 70% in preliminary essays on the medium 

containing 2 mg L-1 of BAP and NAA each added to MS. However, in vitro explants were 

very sensitive to antibiotics used for selection purpose and there was no morphogenesis at 

all. On the basis of these preliminary results, we used only leaf explants obtained from 

greenhouse plants. The effect of growth hormones, darkness and other relevant 

optimizations are presented in the following publication, which describes a highly efficient 

and reproducible regeneration system for two scented Pelargonium cultivars 
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4.2 (A) High efficiency Thidiazuron-induced shoot organogenesis from leaf explants of 

lead hyperaccumulator scented Pelargonium capitatum cultivars. Submitted to Plant Cell, 

Tissue and Organ Culture. 
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ABSTRACT 

A pre-requisite to understanding gene function in plants is the availability of a 

genetic transformation protocol, itself dependent on an efficient regeneration system. The 

objective of present work was to optimise culture conditions for plant regeneration of two 

lead (Pb) hyperaccumulator scented Pelargonium capitatum cultivars (Attar of Roses and 

Atomic Snowflake). Two efficient shoot regeneration systems, from leaf disks of 

greenhouse-grown plants of both cultivars, have been developed. The first protocol 

consisted of basal MS medium supplemented by 2 mg L-1 each of BAP and NAA. The 

second one contained 10 µM TDZ in addition to 1 mg L-1 each of BAP and NAA during a 

pre-culture step of two weeks, followed by  removal of TDZ from the culture medium. 

Regeneration efficiencies were close to 90% for both cultivars, with the induction of more 

than 100 shoots per explant. Regenerated plantlets were rooted on half-strength MS 

medium supplemented with 15 g L-1 sucrose and 1.5 mg L-1 of IAA. On organic soil, 100% 

of the in vitro regenerated plants were successfully acclimatized in greenhouse conditions 

for both cultivars. In hydroponics, the survival efficiencies were 78 and 60% for Attar of 

Roses and Atomic Snowflake, respectively.  

 

Key words: Geraniaceae, in vitro culture, regeneration, heavy metal, TDZ 

 

Abbreviations:  

BAP- N6-benzylaminopurine 

IAA- Indole-3-acetic acid 

NAA- α-naphthaleneacetic acid 

TDZ- Thidiazuron 

MS- Murashige and Skoog 
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Introduction 

 

Pelargonium species are commercially important crop plants, being used as source 

of essential oils in aromatherapy, perfumery, cosmetics, as insect repellents, anti-

inflammatory agents and as bedding or pot plants. They have been classified into four 

groups: Scented (Pelargonium capitatum, P. graveolens), Zonal (Pelargonium x 

hortorum), Regal (Pelargonium x domesticum) and Ivy-leaf (Pelargonium peltatum). 

Scented and zonal pelargonium varieties are of highest market value, the latter being used 

as bedding plants. Improvement of Pelargonium species by conventional breeding is 

hampered by sterility, very low fertility or sexual incompatibility. Therefore, the use of 

biotechnological approaches is being increasingly considered as alternative techniques. To 

this end, in vitro regeneration systems of economically important species have been the 

subject of focus for the last 20 years.  

Some cultivars of scented Pelargonium have been identified as Pb 

hyperaccumulators in greenhouse conditions (KrishnaRaj et al. 2000) and confirmed in 

field trials (Arshad et al. 2008). Considerable effort has been devoted towards 

understanding the physiological mechanisms underlying metal uptake, transport and 

sequestration in different plant species. Despite the progress made, the genetic and 

biochemical processes involved are still poorly understood (Yang et al. 2005), especially 

for Pb (Clemens 2006). Genetic transformation techniques have become powerful tools for 

cultivar improvement as well as for studying gene function in plants. The first step towards 

development of a genetic transformation protocol is the optimization of an efficient 

regeneration protocol, coupled to the availability of an appropriate selection regime. A 

regeneration system is dependent on the type of explants, the genotype, the basic culture 

medium, growth regulators and their altogether interactions (Poulsen 1996). Regeneration 

systems for Pelargonium species have mostly been described for Zonal (Pelargonium x 

hortorum), Regal (Pelargonium x domesticum) and Ivy-leaf (Pelargonium peltatum), 

(reviewed in Mithila et al. 2001; Haensch 2007), compared to fewer reports for scented P. 

capitatum and P. graveolens (Rao 1994; KrishnaRaj et al. 1997; Saxena et al. 2000; 

Hassanein and Dorion 2005). 

Plant regeneration through indirect organogenesis was achieved in Pelargonium x 

hortorum  after callus induction from anthers (Abo El Nil et al. 1976) and shoot tips of 

seedlings (Dunbar and Stephens 1989), followed by shoot and root differentiation. 

Adventitious shoot organogenesis of leaf disks of Pelargonium x domesticum occurred 
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often through a callus phase (Boase et al. 1998). Agarwal and Ranu (2000) used petioles 

and leaf explants of Pelargonium x hortorum and found a higher regeneration ability of 

petioles compared to leaves. Direct shoot regeneration systems were developed for 

Pelargonium x hortorum and scented Pelargonium (P. captitatum cv Bois joly and P. 

graveolens cv Grey Lady Plymouth) using leaf disks from in vitro-grown plants 

(Hassanein and Dorion 2005). Both direct and indirect organogenesis was established for 

Pelargonium graveolens cv. Hemanti (Saxena et al. 2000) contrarily to Pelargonium 

graveolens (L’Hert) which regenerated shoots only after an intervening callus phase (Rao 

1994). All these studies did not make use of Thidiazuron (TDZ) in the culture medium.  

TDZ has proven to be a highly effective regulator of plant morphogenesis. 

Originally TDZ was considered as a cytokinin and induced many responses typical of 

natural cytokinins (Murthy et al. 1998). However, later research demonstrated that TDZ, 

unlike traditional cytokinins, was capable of fulfilling both cytokinin (bud formation) and 

auxin (somatic embryogenesis) functions involved in various morphogenetic responses of 

different plant species (Jones et al. 2007). It has been shown that TDZ can initiate 

organogenesis in leaves and petioles of Pelargonium zonale and Pelargonium peltatum 

hybrids (Winklemann et al. 2005). They all regenerated by adventitious organogenesis. 

However, the response was genotype dependent with cultivars of P. peltatum expressing 

higher efficiencies than those of the P. zonale hybrids. In general, petioles were better than 

leaf explants for organogenesis. Adventitious shoot regeneration from petiole explants of 

Pelargonium x hederaefolium ‘Bonete’ (Wojtania et al. 2004)  was also described both by 

organogenesis and somatic embryogenesis using high TDZ concentrations i.e. 9-18 µM (2-

4 mg L-1). 

Our long term project aims at understanding plant Pb hyper-accumulation, 

specifically exploring gene function in Pb phytoextraction process by scented Pelargonium 

cultivars to develop improved phytoextraction technique. Genetic transformation would be 

used as a tool for gene function studies, depending on the availability of an efficient 

regeneration method. In preliminary studies, we screened more than 15 scented 

Pelargonium cultivars for their amenability to in vitro culture. Two Pelargonium 

capitatum cultivars, Attar of Roses and Atomic Snowflake were selected on the basis of 

better performances both for phytoextraction (Arshad et al. 2008) and to in vitro culture. 

We report here, optimized culture conditions of leaf disk explants that allow the 

development of regenerated shoots into mature flowering plants in greenhouse conditions.  

This is, to our knowledge, the first report of two equally efficient plant regeneration 
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methods by organogenesis, in the absence or presence of TDZ, for the scented P. 

capitatum cvs Attar of Roses and Atomic Snowflake.  

 

Materials and methods 

 

Plant material 

Scented P. capitatum cultivars (Attar of Roses and Atomic Snowflake), propagated 

from cuttings of commercial plantlets from the Heurtebise nursery, Clansayes, France, 

were grown in pots containing special substrate for Pelargonium; a mixture of white peat, 

humic peat and clay granulate at pHCaCl2 5.5-6.1 (Hawita Flor). The plants were maintained 

in a greenhouse and were regularly irrigated with tap water. Scented Pelargonium cultivars 

Attar of Roses and Atomic Snowflake will be referred to as Attar and Atomic, respectively. 

 

Disinfection and culture conditions 

The two latest fully developed leaves from greenhouse-grown plants aging about 

four months were harvested and washed with tap water for 30 min. The leaves were then 

dipped in 95% ethanol for 30 sec followed by immersion in filtered 2.5% Calcium 

hypochlorite during 20 min and rinsed thrice in double de-ionized sterile water. Sterilized 

leaves were cut into 0.25 cm2 pieces, and 12 pieces were placed adaxial side down per 

Petri dish (94 x 16 mm) containing 25 mL of different regeneration media. More than 30 

explants were cultured on each medium and all experiments were repeated thrice. Petri 

dishes were maintained in a culture room at 25°C with 70% relative humidity and a 14-h 

photoperiod (150 μmol m−2 s−1) provided by 600W lamps (day light fluorescent lamp, 

Philips). 

 

Regeneration media 

Two types of regeneration media (RM) were tested to develop a high-output and 

time friendly tissue culture system. The first set of experiments contained different auxin 

and cytokinin combinations on MS based medium with 30 g L−1 sucrose (Murashige and 

Skoog 1962). Four growth regulators, BAP, NAA, Zeatin and Kinetin were chosen on the 

basis of previous reports on scented Pelargonium cultivars (Saxena et al. 2000; Hassanein 

and Dorion 2005). The different hormonal combinations resulted in eight regeneration 

media (Table 1). BAP concentrations ranged from 0.5 to 3.0 mg L-1 (2.2 to 13.2 µM) and 

those of NAA from 0.05 to 2.0 mg L-1 (0.3 to 10.6 µM). Only two levels of Zeatin, 0.5 and 



  Plant regeneration 
 

 93

1.0 mg L-1 (2.3 to 4.6 µM) and one for Kinetin 5.0 mg L-1 (23 µM) were tested. Explants 

were regularly examined to monitor morphogenesis responses. Those forming at least 10 

shoots, on each explant were considered as responding explants and scored for 

regeneration efficiency calculations. In 2nd set of experiments, the effect of pre-incubation 

with MS medium supplemented by 1 and 10µM TDZ concentrations for two weeks, with 

subsequent transfer to RM3, RM5 and RM7 media, were assessed as described in Table 2. 

In 3rd set, 10 µM of TDZ were added to RM3, RM5 and RM7 during two week pre-

incubation period prior to culture on these media (Table 2). For 2nd and 3rd set of 

experiments, the explants forming more than 25 shoots were only considered as responding 

and for regeneration efficiency calculations. All media were adjusted to pH 5.8 ± 0.05 and 

autoclaved (autoclave; SMI 134) during 20 min at 121◦C, solidified either by 0.8% bacto-

agar (Fischer), 0.2% gelrite (Duchefa) or 0.3% Phytagel (Sigma). 

 

Optimization of physical conditions 

The effect of light and darkness as well as the type of gelling agent was tested for 

regeneration efficiency. Explants were either directly exposed to light conditions or 

cultured in darkness during 15 and 22 days respectively, before being exposed back to light 

conditions.  

 

Elongation and rooting medium 

After 7-8 weeks of culture, 16 regenerated buds were transferred to 900 cm3 

Vitrovent boxes (Duchefa, The Netherlands) containing 100 mL of elongation and rooting 

medium, consisting of half strength MS medium, 15 g L-l of sucrose supplemented with 

1.0, 1.5 or 2.0 mg L-1 of IAA and solidified by 0.8% agar.  

 

Acclimatization of plants 

Well developed and rooted plants were removed from Vitrovent boxes after 10 

weeks, washed from the gelling agent, and acclimatized either in pots containing organic 

soil or in hydroponics (aerated non-circulating nutrient solution) in the greenhouse. They 

were maintained at 24-26 °C and 60-70% relative humidity with a 14-h photoperiod (45 

μmol m−2 s−1). Plants were placed in a closed mini growth-chamber, in the greenhouse 

during two weeks, after which they were opened every other day to allow gradual exposure 

to greenhouse conditions. Plants transferred to organic soil were regularly irrigated with 

tap water and every two weeks with the following nutrient solution (Uzu et al. 2009) 
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comprising macronutrients: 5 mM KNO3, 5 mM Ca(NO3)2, 2 mM KH2PO4, 1.5 mM 

MgSO4, and micronutrients: 46 μM H3BO3, 9 μM MnSO4.H2O, 0.1 μM MoNaO4.2H2O, 

0.9 μM CuSO4.5H2O, 15 μM ZnSO4.7H2O and 180 μM Fe–EDTA. In the case of 

hydroponic cultures, the nutrient solution was renewed every two weeks and the level was 

maintained with de-ionized water. Acclimatization efficiency, defined as the percentage of 

plants that survived the transition from in vitro to greenhouse conditions, was calculated on 

the basis of observations after one month. 

 

Statistical analysis 

Data obtained was subjected to analysis of variance (ANOVA) with two factors, 

using the software Statistica, Edition’98 (StatSoft Inc., Tulsa, OK, USA). For each 

bioassay, mean values with different letters represent significant difference (p < 0.05) as 

measured by LSD Fisher test. 

 

Results and discussion 

 

Optimization of shoot regeneration  

A set of parameters such as gelling agent, light/darkness incubation period and 

regeneration medium having the best possible combination of growth hormones were 

optimized simultaneously to develop an efficient regeneration system. None of the gelling 

agents -Agar, Gelrite and Phytagel- tested had significant effects on regeneration 

efficiencies for both cultivars (data not shown). Eight regeneration media, presented in 

Table 1, were assessed for different light/darkness regimes. Results of the two best 

performing media for both cultivars are shown in Figure 1. Attar cultivar proved to be very 

light sensitive as explants rapidly showed signs of necrosis resulting in poor regeneration 

efficiencies of 7 and 2% on RM3 and RM5 respectively. On the contrary, organogenesis of 

Atomic was not severely inhibited by light on both media, nearing approximately 70% on 

RM3 and 50% on RM5. Both cultivars were very performing, when cultured on RM5 

medium with a two week darkness pre-incubation period before being cultured back to 

light conditions. In this case, regeneration efficiencies reached 93% on the average for both 

cultivars, with at least 100 shoots randomly induced per explant. This efficiency is suitable 

for genetic transformation experiments as the number of cells involved in the morphogenic 

responses is very high. One additional week incubation in the dark reduced the 

organogenesis efficiency, in all cases. In our experiments, the effects of darkness were 
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more pronounced at higher concentrations i.e. 2 mg L-1 of each BAP and NAA, as 

compared to lower amounts of 1 mg L-1 of these regulators.  

 Beneficial effects and enhanced sensitivity to darkness at higher levels of auxins 

and cytokinins have been observed by Hassanein and Dorion (2005) but the optimal 

duration was 4-weeks in contrast to our results where 2-weeks darkness pre-incubation was 

optimum. This was also described in several other genera (Perez-Tornero et al. 2000; 

Zobayed and Saxena 2003) and could be explained by an inhibitory effect of light on 

hormone efficiency (Suzuki et al. 2004). All further experiments were thus carried out with 

a 15 day darkness pre-incubation period. During this phase of culture, explant size was not 

altered. Organogenesis was initiated one week after being put to light conditions with clear 

round smooth structures (Fig 2a) which developed into shoots 2 weeks later (Fig 2b ), 

producing plantlets (Fig 2c)  after a total of  7 weeks in culture. 

 

Table 1: Effect of growth hormones on organogenesis potential of P. capitatum cultivars 

Attar of Roses and Atomic Snowflake with two week incubation in darkness. 

Regeneration Ratio
Medium BAP NAA Zeatin Kinetin BAP/NAA Attar Atomic
RM1 0.5 0.2 0.5 - 2.5   14.4 ± 1.9f 0.0
RM2 1.0 0.5 1.0 - 2.0 21.1 ± 5.1e 5.6 ± 3.9g

RM3 1.0 1.0 - - 1.0 75.4 ± 8.6c 86.2 ± 3.3b

RM4 1.0 0.5 - - 2.0 24.4 ± 10.3e 10.9 ± 1.8f

RM5 2.0 2.0 - - 1.0 89.4 ± 3.8ab 96.6 ± 3.8a

RM6 2.0 0.05 - - 40.0 4.4 ± 2.6g 30.3 ± 10.6e

RM7 3.0 1.0 - - 3.0 80.2 ± 5.4bc 54.9 ± 5.9d

RM8 - 2.0 - 5.0 - 0.0 0.0

Shoot formation (%)    Growth regulators (mg L-1)

RM = regeneration media containing MS salts, BAP = N6-benzylaminopurine, NAA = α-

naphthalene acetic acid. Mean values from three replications (30 explants per replication) 

with different letters are significantly different (p < 0.05) as measured by LSD Fisher test. 

 

Regeneration efficiencies of eight media containing different combinations of auxins and 

cytokinins are presented in Table 1, which are the mean values of 3 replications performed 

with two week darkness regime. RM 3, 5 and 7 were better than others for both cultivars. 

In the case of Attar, regeneration efficiency on RM 5 (89.4 ± 3.8%) was significantly 

different to that of RM3 (75.4 ± 8.6 %), whereas RM7 (80.2 ± 5.4%) was not significantly 

different to RM3 (75.4 ± 8.6%) and RM5 (89.4 ± 3.8%). In the case of Atomic cultivar, 
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RM5 (96.6 ± 3.8%) had a significantly higher regeneration efficiency than RM3 (86.2 ± 

3.3%) and RM7 (54.9 ± 5.9%). Both cultivars performed better on RM5, the regeneration 

scheme being independent of the cultivar, a highly desired characteristic sought, when 

developing regeneration system for any species. 
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Fig 1: Influence of darkness on the regeneration efficiency of P. capitatum. Direct 

exposure to light ( ), 15 days ( ) and 22 days ( ) of darkness. 

  

 For both cultivars, the media containing only BAP and NAA, with either a ratio of 

1 or 3, performed better than those with ratios of 2 or 40. Addition of zeatin to medium 

containing a BAP/NAA ratio of 2, did not improve the regeneration efficiency contrarily to 

the results from Hassanein and Dorion (2005) where the combination of zeatin and BAP 

was necessary to achieve high regeneration frequency. In their case, direct shoot 

regeneration with 100% of explants inducing buds that developed into shoots was obtained 

from in vitro leaf disks of P. capitatum cultivar Bois Joly on MS/2 medium supplemented 

with 0.5 mg L-1 NAA, 1.0 mg L-1 BAP and 1.0 mg L-1 zeatin. The difference of medium 

and regeneration efficiency could be attributed to the origin of explants. For the present 

experiments, the source of explants were greenhouse grown plants whereas Hassanein and 

Dorion (2005) used leaves as explants from in vitro grown plants. NAA proved to be most 

effective compared to IAA and, 1.0 mg L-1 each of BAP and zeatin were better than 2.0 mg 

L-1. In our study, kinetin was most detrimental, when substituted for BAP leading to 

browning and death of explants.  Agarwal and Ranu (2000) tested different media  
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Fig 2: Shoot regeneration on leaf blade explants from P. capitatum cv. Attar of Roses 

without (a-c) and with TDZ (d-f). a) Shoot bud initiation on 2 mg L-1 BAP and NAA from 

leaf explants after 21 days culture. Bar = 2 mm. b) Development of buds into shoots after 5 

weeks in culture. Bar = 2 mm. c) In vitro shoots developed on regeneration medium after 7 

weeks in culture. Bar = 1 cm. d) Expansion and greening of explants after two week 

darkness incubation on 10 µM TDZ plus RM3 followed by 2 week culture on RM3. Bar = 

2 mm. e) Onset of organogenesis, 6 weeks after culture initiation. Bar = 2 mm. f) Shoot 

development after 8 weeks in culture. Bar = 2 mm. g) Rooting of in vitro shoots on half 

strength MS medium supplemented with 1.5 mg L-1 IAA after 12 weeks of culture 

initiation. Bar = 2 cm. h) Acclimatized plant in the greenhouse, 18 weeks after experiment 

initiation. 
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containing a range of BAP (0.22–1.1 mg L-1) concentrations in combination with 0.35 mg 

L-1 of IAA by using leaves as explants for three cultivars of Pelargonium x hortorum. They 

observed responses in a narrow range of BAP (0.22-0.56 mg L-1) and above 0.56 mg L-1 of 

BAP, regeneration was completely suppressed. According to Saxena et al. (2000), the 

regeneration efficiency for Pelargonium graveolens cv Hemanti was lower from leaf 

segments than with petioles. The maximum number of shoots per leaf explant was 

achieved on medium containing 5.0 mg L-1 of Kinetin and 1.0 mg L-1 of NAA, contrarily to 

our results where kinetin decreased the regeneration efficiency. 

 Keeping in view the dual ability of TDZ as morphogenesis inducer (Jones et al. 

2007), its effect on the response of both cultivars was tested in selected combinations with 

or without auxins and cytokinins. Different TDZ concentrations (1-20 µM) were tested. 

The two cultivars were sensitive to 15 and 20 µM, resulting in rapid tissue browning and 

inhibition of morphogenesis (results not shown). Finally, two concentrations (1 and 10µM) 

were retained for further experimentations (Table 2). Explants were pre-incubated during 

two weeks as prolonged exposure to TDZ (3-4 weeks) caused necrosis and death of 

primary shoot and callusing of primary root in most of the seedlings of pigeon pea (Singh 

et al. 2003). During the first two weeks in culture on regeneration media containing TDZ 

in darkness, explants generally expanded, swelled and thickened, showing intense cell 

division as in the work reported on lentils (Chhabra et al. 2008).  Before sub culturing on 

TDZ free-medium, explants were cut into two or three (depending on the final size) in 

order to allow direct contact with the medium. They became dark green after 2 weeks in 

the light (Fig 2d). Morphogenesis started after 6 weeks resulting into small outgrowths (Fig 

2e) which developed into shoots after 8 weeks in culture (Fig 2f). There was neither callus 

formation nor embryogenesis at any stage. KrishnaRaj et al. (1997) have also reported that 

there was no somatic embryo formation by TDZ application in scented Pelargonium sp. 

‘Frensham’. 

 The best regeneration efficiencies on culture media without TDZ pre-incubation 

were 89.4 and 96.6% on RM5 for Attar and Atomic respectively (Table 2, Exp 1) where 

the number of shoots per explant rarely exceeded 25 (Table 3). The shoots were not 

randomly distributed on the explants. This kind of regeneration systems could not be 

effective for developing a transformation protocol. So TDZ was tested to improve the 

number of shoots per explant. Increasing TDZ concentrations during the pre-incubation 

period, followed by culture on MS medium without BAP and NAA, resulted in increasing 

regeneration efficiencies in terms of number of shoots per explant for both cultivars (Table 
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2, Exp 2-3 and Table 3), showing that TDZ would have a cytokinin action, probably by 

increasing the level of endogenous cytokinins (de Melo Ferreira et al. 2006). However, 

increasing BAP/NAA ratio by increasing BAP concentrations, together with increasing 

TDZ concentrations resulted in different responses for the two cultivars. For Attar, 

increasing the TDZ concentration from 1 to 10 µM, followed by culture on RM3, did not 

alter significantly the regeneration efficiency when compared to culture on RM3 without 

the TDZ pre-incubation period. Doubling BAP and NAA concentrations without 

modifying the BAP/NAA ratio of 1, (RM3 to RM5) or tripling the BAP/NAA ratio, 

resulted in an overall decrease in the regeneration efficiency with 1 and 10 µM TDZ during 

pre-incubation period when compared to no pre-incubation with TDZ in terms of number 

of explants forming shoots. The response of Atomic cultivar was fairly much the same, 

except when pre-incubation with 10 µM TDZ was combined with culture on RM7. In this 

case, the regeneration efficiency was the same as when culture was performed only on 

RM3. These results show that the response of TDZ is determined by the ratio of BAP/NAA 

as well as by the absolute concentrations of BAP in the medium. Depending on the 

cultivar, TDZ can regulate the endogenous levels of auxins and/or cytokinins and modulate 

the morphogenic response. In the absence of growth regulators in the culture medium, 

TDZ in the pre-incubation medium would act as a cytokinin.  Increasing too much the 

concentration of BAP in the medium, together with TDZ concentration, leads to a switch in 

the role of TDZ as a cytokinin-like growth regulator resulting in a decrease in regeneration 

efficiencies. In this case, TDZ could regulate the response by increasing the levels of 

endogenous auxins or its precursor, tryptophane (Murthy et al. 1995). This response 

however seems to be cultivar dependent, as increasing the BAP/NAA ratio together with 

BAP concentration (RM7) for Atomic, leads to a 4.5 fold increase in the regeneration 

efficiency with increasing TDZ concentration from 1 to 10 µM.  

Pre-incubation of both cultivars on RM3 plus 10 µM TDZ followed by culture on 

RM3 resulted in higher regeneration efficiency (93%) with respect to culture on RM3 

alone for Attar (75%) (Table 2, Exp 4 v/s Exp 1). These were the best results that could be 

reproducibly achieved with the two cultivars, each explant producing more than 100 

regenerated shoots (Table 3). Results with higher ratios and concentrations of BAP/NAA 

were cultivar dependent. Pre-culture with 10 µM TDZ in combination with either RM5 or 

RM7 (2 and 3 mg L-1 of BAP respectively,) followed by culture on the same respective 

media, resulted in decreased regeneration efficiencies (65 and 34%) for Atomic. For Attar, 

pre-incubation with RM5 (2mg L-1 of BAP and NAA) as well as 10 µM TDZ, reduced the  
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regeneration efficiency with respect to conditions omitting hormones in the pre-incubation 

period (from 44.8 to 17.9%). However, pre-incubation with RM7 (3 mg L-1 BAP and 1 mg 

L-1 NAA) increased the regeneration efficiency (32 to 58.3%). This was not the case for 

Atomic where efficiencies increased 6 fold on RM5 (Table 2, Exp 3 and 5) and decreased 

3 fold on RM7 (Table 2, Exp 3 and 6). These contrasting responses could be explained by 

genotype effects combined with the interplay between the actions of TDZ on auxin 

transport, synthesis or accumulation with in situ cytokinin concentrations, which would 

result in overall alterations in the endogenous hormone concentrations, leading to different 

regeneration efficiencies. RM3 (1 mg L-1 each of BAP and NAA), appeared the best in the 

presence of TDZ in contrast to RM5 (2 mg L-1 of BAP and NAA each) in the experiments 

without TDZ. This difference could be argumented as the lower levels of BAP and NAA in 

RM3 as compared to RM5 would be complemented by the TDZ-induced response on 

auxin synthesis and transport. Reduced efficiencies in the presence of TDZ for RM5 and 

RM7 may be due to negative effect of higher concentrations of growth regulators. 

 

Table 3: Classification of the regenerated explants for some selected media in terms of 

number of shoots per explant.  

Regeneration Medium

10-25 26-50 51-100 >100 10-25 26-50 51-100 >100
MS - - - - - - - -
RM3 65 7 - - 64 17 - -
RM5 80 12 - - 83 14 6 -
RM7 73 15 1 - 37 15 - -
MS + 10 µM TDZ→ MS - 15 27 4 - 9 27 1
MS + 10 µM TDZ→ RM3 - 20 40 7 - 7 40 2
MS + 10 µM TDZ→ RM5 - 10 26 7 - 5 5 -
MS + 10 µM TDZ→ RM7 - 20 9 3 - 20 39 24
RM3 + 10 µM TDZ→ RM3 - - 1 100 - - 3 102
RM5 + 10 µM TDZ→ RM5 - - 15 2 - - 33 32
RM7 + 10 µM TDZ→ RM7 - - 30 24 - - 27 6

shoots per explant
Attar Atomic

No of explants grouped on the basis of number of shoots per explant

 
In the regeneration medium column, the arrow is directed towards the culture medium used 

after 2 weeks pre-incubation period in the presence of TDZ. For each medium, 90 or more 

explants were cultured. During data recording, the number of shoots per explant were 

counted and then were classified into different groups i.e. 10-25, 26-50, 51-100 and >100. 

For example, 65 explants produced more than 10 and less than 25 shoots per explants 

cultured on RM3 for Attar cultivar. 
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Shoot elongation, rooting and acclimatization of in vitro plants 

 After 7-8 weeks of culture initiation, shoots developed on regeneration media were 

sub-cultured on Elongation and Rooting Medium (ERM. Whatever the protocol used to 

develop shoots, they were elongated and rooted within 4 weeks (Fig 2g). Results 

concerning the influence of IAA on rooting efficiency are shown in Fig 3. The rooting 

efficiencies were 49 and 48% for Attar and Atomic cultivars respectively when plantlets 

were transferred to ERM supplemented by 1 mg L-1 IAA. The respective efficiencies for 

Attar and Atomic cultivars were 90 and 88% on medium supplemented by 1.5 mg L-1 IAA 

or 2 mg L-1 IAA. However, extremely dense rooting, enhanced root diameter and restricted 

growth were observed on the ERM containing 2.0 mg L-1 of IAA. We therefore chose 1.5 

mg L-1 IAA for rooting in all experiments (Fig 2g). 

 Hassanein and Dorion (2005) has reported an optimum of 1 mg L-l IAA for rooting 

of plantlets of scented Pelargonium. Boase et al. (1998) tested the effect of different NAA 

levels (0, 0.05, 0.1, 0.15 and 0.2 mg L-l) in rooting medium for Pelargonium x domesticum 

cv. Dubonnet. The average root number increased with increasing concentrations of NAA 

but shorter roots with larger diameters were observed at higher NAA concentrations (0.1, 

0.15 and 0.2 mg L-l). In the present study, the trends were similar in spite of the different 

rooting hormone i.e. IAA which needed to be applied at 10 fold higher concentrations. 
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Fig 3: Effect of IAA concentration on rooting of regenerated plantlets of P. capitatum 

cultivars Attar ( ) and Atomic ( ). 
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Rooted plants of both cultivars were transferred to organic soil and hydroponics for 

acclimatization to greenhouse conditions. Acclimatization efficiency was 100% on organic 

soil for both cultivars. In hydroponics, the acclimatization efficiencies were 78 and 68% 

for Attar and Atomic cultivars, respectively. All the plants were maintained in greenhouse 

till flowering (Fig 2h). In spite of lower efficiencies of acclimatization in hydroponics, 

growth of plants was more vigorous and quicker in hydroponics and, flowering occurred 

earlier as compared to plants grown on organic soil. These efficiencies are higher than 

those reported by Agarwal and Ranu (2000) where only 25-50% of the shoots could be 

rooted and acclimatized from in vitro to greenhouse conditions (on mixture of vermiculite 

and perlite, 1:1). Hassanein and Dorion (2005) have reported 100% acclimatization 

efficiency for scented Pelargonium (on vermiculite and peat mixture, 2:1 v/v). 

 

Conclusion and perspectives 

 

Two regeneration systems from leaf explants of greenhouse plants of P. capitatum 

cultivars Attar of Roses and Atomic Snowflake have been developed. The first optimized 

medium was comprised of only BAP and NAA at concentration of 2 mg L-1 of each added 

to MS. The second optimized medium contains 10 µM TDZ in addition to 1 mg L-1 each of 

BAP and NAA during pre-culture of two weeks with subsequent removal of TDZ from 

culture medium. Fifteen days pre-incubation in darkness proved the best for maximum 

regeneration efficiency. The regeneration efficiencies were close to 90% or greater for both 

cultivars on both optimized media but in the presence of TDZ pre-incubation, the number 

of shoots per explants were about four times higher as compared to the medium without 

TDZ. These regeneration systems should be assessed for their amenability to genetic 

transformation. They could also be used to produce in vitro plants on a large scale on 

commercial basis. 
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4.3 (A) General discussions  

 

Different combinations of BAP, NAA, Kinetin, Zeatin and TDZ added to MS 

medium (Murashige and Skoog, 1962) comprising of macro- and oligo-elements, two 

regeneration media were optimized. The first one comprised only 2 mg L-1 of BAP and 

NAA added to MS media. The regeneration efficiency i.e. number of explants forming 

shoots/ total number of explants, was about 90% for both cultivars Attar and Atomic but 

the number of shoots per explant could rarely reach to 25 shoots per explants. This system 

should be tested for transformation experiments. To increase the number of responding 

cells which could help to develop better transformation system, we used two weeks pre-

incubation in the presence of TDZ. The second optimized medium contained 1 mg L-1, 

each of BAP and NAA with pre-treatment with 10 µM TDZ during two weeks. The 

regeneration efficiency was more than 90% for Attar and Atomic cultivars, coupled with 

high number of shoots per explant > 100 shoots per explant. This system could be more 

suitable for developing transformation protocol. The procedure and results for 

transformation essays using these two regeneration systems are presented in the following 

part of this chapter (4B). 

 



 

 

 

 

 
B - Genetic Transformation 
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4.4 (B) Genetic transformation of lead-hyperaccumulator scented Pelargonium 

cultivars 

 

Introduction 

 

One of the major goals of plant biotechnology research is to gain in-depth 

knowledge of the function of each gene in a given plant species confronted to the biotic 

and abiotic stresses. Recent developments of ambitious genomics programs on model 

species including Arabidopsis thaliana (AGI 2000), Lotus japonica (Sato et al. 2008), 

Medicago truncatula (Bell et al. 2001), Oryza sativa (IRGSP 2005), (for further details and 

other species; NCBI, Genome project) have opened new avenues towards deciphering the 

structure, the expression and the mechanisms involved in the regulation of extensive sets of 

genes in response to environmental stresses. The outcome of these results could be 

expected to lead to spectacular spin offs in crop improvement and protection in the future. 

Although nowadays, gene isolation is considered as being a relatively high 

throughput technology, the bottle neck remains identifying their function as well as the 

mechanisms underlying their regulation and expression. Putative functions of newly 

isolated genes are first assigned by comparing the target sequence with other sequences 

with known functions, from genome data bases. This method only gives an idea on the 

biochemical function of the coding sequence but cannot attribute a specific role in the 

organism’s response to a stimulus. The majority of genes isolated have therefore been 

attributed putative functions on the basis of in silico studies. Other strategies grouped 

under the name of “functional genomics” have been developed with the aim of 

understanding the function of genes pinned by structural genetics. 

Some strategies are based on either spatio-temporal expression of the genes or the 

over-expression of the desired gene. The spatio-temporal expression of the genes (mRNA 

and protein expression) is the response (in time and localisation) to the stimulus during 

developmental stages, or following different biotic or abiotic stresses, for example 

pathogen infection, heat, drought, salinity, or metal element exposure (Narusaka et al. 

2004). However, these studies, only lead to indirect proof of the role and function of the 

genes. The over-expression of the desired gene is achieved by using a strong plant 

promoter and adjoining activation sequences to drive high level and constitutive 

expression. The effect is high steady state mRNA and protein levels. Any phenotypic 

changes could then be assigned to the native gene’s function based on biochemical 
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pathways that are altered in the transformants.  However, over-expression of an 

endogenous gene can lead to co-suppression by RNAi mechanism, and hence could also be 

an approach towards deciphering gene function. RNAi is a system within living cells that 

helps to control which genes are active and how active they are. Other strategies are 

summarised below.  

Conventional methods of random gene inactivation have made use of chemicals 

Ethyl Methyl Sulfonate (EMS) or γ- irradiations which introduce mutations into 

populations. After phenotypic screening, genetic crosses can, through loci genetic 

mapping, lead to gene isolation. This strategy is known as “forward genetics” whereby 

starting from mutated populations; it is possible to work down to the gene by classical 

genetic mapping techniques combined to the use of molecular markers, provided these are 

available. With the advent of whole genome sequencing projects, a large amount of 

expressed sequences are available for gene function study. Therefore, instead of going 

from phenotype to sequence as it is the case with forward genetics, in “reverse genetics”, 

the gene sequence is disrupted and the resulting phenotype and function are measured. 

Although in yeast, targeted gene inactivation by homologous recombination has enabled to 

unravel gene function in many cases (Cejka et al. 2005), this technology can unfortunately 

not be extended to plants. Indeed, in the latter case, DNA insertion is a random process and 

illegitimate recombination prevails. It is therefore impossible to control homologous 

recombination. Possible strategies to inactivate genes have first made use of expressing 

anti-sense RNAs (Kissil et al. 1999), transposon tagging (Anderson et al. 1997) and more 

recently RNAi constructs (Parizotto et al. 2004) based on the discovery of interfering RNA 

(Fire et al.1998). However, the use of these strategies imply that efficient methods of 

genetic transformation have first been optimised.  

Genetic transformation has remained, for different plant species, an important area 

of research after the first successful foreign gene transfer and integration (De Block et al. 

1984), leading to more than 144 plant species having been transformed to date (Busov et 

al. 2005). This tool is extensively being used in all areas of plant research aiming at 

improved productivity of safer and healthier products (Darbani et al. 2007). More recently, 

this area has been integrated in the field of environmental sciences e.g.phytoremediation, 

either for developing plants aiming soil clean up and phytomining (Doty 2008) or 

understanding mechanisms of metal uptake. Multifold increase in accumulation and/or 

tolerance has been reported in genetically modified plants as compared to wild types, for 
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some metal pollutants e.g. As (Dhankher et al. 2002), Hg (Che et al. 2003), Pb (Martinez et 

al. 2006) and Se (Pilon et al. 2003).  

Considerable efforts for gene function discovery in metal accumulation and 

tolerance have been performed during the last decade, in identifying and exploring the role 

of Phytochelatins and Metallothioneins, metal transporters and chelators. Arabidopsis 

halleri and Thlaspi caerulescens, have become the favoured model plants to study 

hyperaccumulation, specifically relative to zinc and cadmium (Reviewed by Cobbett and 

Goldsbrough 2002; Yang et al. 2005; Clemens 2006; Milner and Kochian 2008; Memon 

and Schroeder 2009). Hyperaccumulation is widespread across different families and 

genera of plants from ferns to monocots and, more than 400 plant species capable of 

hyperaccumulating one or a few heavy metal elements at the same time have been reported 

(Prasad and Freitas 2003). Few reports have concerned mechanistic understanding of metal 

hyperaccumulation, largely because of the absence of molecular tools (genomic sequences, 

mutants) as well as the lack of a reproducible and efficient genetic transformation protocol 

for the most of the species. Recently, Pelargonium species have been indentified as Pb 

hyperaccumulator in greenhouse experiments (KrishnaRaj et al. 2000) and confirmed in 

field trials (Arshad et al. 2008). As demonstrated in Chapter 2, these cultivars can be 

qualified as hyperaccumulators for lead.  

Our long term objective is to develop a model system to study molecular and 

physiological processes involved in lead absorption, transport and accumulation in scented 

Pelargonium species to improve Pb phytoextraction. As described in Chapter 3, we used 

special cropping devices adapted for rhizosphere studies (Neibes et al. 1993) to picture the 

mode of Pb absorption and translocation in the plant. As a follow up to these studies, we 

endeavour to decipher molecular mechanisms involved in Pb hyperacculation in scented 

Pelargoium cultivars. Therefore, we would anticipate pin-pointing targeted genes 

identified as major actors and identify their function in the process. As a pre-requisite to 

these studies, we set up a reproducible and efficient genetic transformation protocol for 

these cultivars. As stated in Chapter 4A, this is dependent on the availability of an efficient 

regeneration system but also on an effective selection regime. Indeed, the success of a 

reliable and reproducible transformation protocol relies on the ability to make two events 

coincide in the same cell; morphogenesis and transformation. This is shown and explained 

in the schematic diagram (Fig 1). Therefore, genetic transformation is merely a question of 

probability depending upon the availability of high numbers of cells competent for both the 

transformation and the morphogenesis event. However, a transgenic plant with proof of 
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insertion into the nuclear chromosomes does not necessarily mean that it will be a high 

expressor for the target transgene. Indeed, gene expression, whether related to endogenes 

or to transgenes, is subject to tight regulation at all levels of gene expression. 

 One of the limiting factors in transformation experiments is the screening and 

detection of the putative transformed events implying stable integration and expression of 

the transgene sequence. Although, the use of selectable marker genes has been the subject 

of major controversies, concerning the voluntary dissemination and commercialisation of 

transgenic plants (Miki and McHugh 2004), it remains an absolute requirement when 

setting up transformation protocols in the laboratory. The major objections towards the use 

of selectable marker genes have given way to the development of efficient methods to 

withdraw them from the selected events to be disseminated in the environment (Sundar and 

Sakthivel 2008). However, this will not be a subject of concern here, as transgenic plants 

developed within the scope of these studies, will solely be used for academic purposes, 

kept in vitro, and in confined environments. 

 

 
Figure 1: Schematic presentation of transformation and regeneration of plant cells.  

 = Transformed cells ;  = Cells with regeneration potential;  +  = Capable of 

transformation as well as regeneration (red encircled). 

 

  In this context, the objective of the present study was to develop an efficient 

transformation system for scented Pelargonium cultivars Attar and Atomic. To this end, 

two highly efficient regeneration systems (Arshad et al. submitted) for Pb 

hyperaccumulator cultivars Attar and Atomic were assessed for their suitability for genetic 

transformation. Various factors influencing the transformation efficiency have been 

addressed in the present work in order to achieve optimum transformation efficiencies for 

both cultivars. 

Explant
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Materials and methods 

 

Plant material and explant preparation 

Scented P. capitatum cultivars (Attar of Roses and Atomic Snowflake), propagated 

from cuttings of commercial plantlets from the Heurtebise nursery, Clansayes, France, 

were grown in pots containing organic soil, in the greenhouse. They were regularly 

irrigated with tap water and fortnightly with nutrient solution. The two Pelargonium 

cultivars Attar of Roses and Atomic Snowflake will be referred to as Attar and Atomic, 

respectively. The two latest fully developed leaves from the greenhouse grown plants were 

harvested and washed with tap water for 30 min. Leaves were then dipped in 95% ethanol 

for 30 sec followed by immersion in filtered 2.5% calcium hypochlorite during 20 min and 

rinsed thrice with double deionized sterile water. These sterilized leaves were used as 

explants for transformation experiments. 

 

A. tumefaciens strains and culture conditions 

 Two nopaline strains of Agrobacterium tumefaciens were used in this study: A. 

tumefaciens EHA105 (Hood et al., 1993) and C58 disarmed, both containing the disarmed 

Ti plasmid pTIBo542 (provided by S.B. Gelvin, Purdue University, USA). EHA 105 (Fig 

2a) harbours the 14.7-kb binary vector p35S GUS INT (derivative of pBIN19, Vancanneyt 

et al., 1990) represented in Hewezi et al. (2002), and C58 disarmed (Fig 2b) contains the 

12.8 kb pMDC162 binary vector (Curtis and Grossniklaus 2003) where the sequences 

between the attR1 and attR2 have been replaced by the double 35S CaMV promoter 

extracted from pMDC143 cloning vector (Curtis and Grossnicklaus 2003). In p35S GUS 

INT, nptII is under the control of pnos promoter. In pMDE162, hpt is under the 

transcriptional regulation of the cauliflower mosaic virus (CaMV) 35S promoter and nos 

terminator (Odell et al., 1985) and is adjacent to the left border of the T-DNA. UidA 

sequence is controlled by the double 35S CaMV promoter and the Nopaline synthase 

terminator sequence. 

 Cultures of A. tumefaciens were initiated from -80 ˚C glycerol stocks, and grown 

for 48H at 28 ˚C in liquid Luria–Bertani medium (10 g L-1 tryptone, 10 g L-1 NaCl, 5 g L-1 

yeast extract, pH 7.2) containing 100 µM Acetosyringone (to enhance virulence) and 

antibiotics as follows: EHA 105 was cultured with 50 mg L-1 kanamycin, 50 mg L-1 

rifampicin and 50 mg L-1, ampicillin. C58 disarmed was cultured with 50 mg L-1 

kanamycin (binary vector also contains kanamycin resistant gene), 20 mg L-1 gentamycin 
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and 50 mg L-1 rifampicin. Bacterial cultures were centrifuged at 4000g for 10 min at 4 ˚C 

and the bacterial pellet was re-suspended in inoculation medium containing 4 mM NH4Cl, 

5.5 mM MgSO4.7H2O, 12.5 mM MES at pH 5.6. The cells were centrifuged thrice to wash 

away the antibiotics. After centrifugation, the optical density of the culture was adjusted to 

1.0 (OD660) and 200 µM acetosyringone was added prior to inoculation. 

nptIIuidA intron T'

RBLB

T p35S pnos

2.7 kb 2.8 kb
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T p35S pnosnptIIuidA intron T'

RBLB

T p35S pnos

2.7 kb 2.8 kb

Hind III
Eco RI Hind III Bg IIIBg III

 
a) p35S GUS INT 

uidAhpt p35S p35Sp35SNOS TER NOS TER

RBLB

Xhol(11855)
Eco RI 1(1)

Xba 1(2172) Xba 1(3933)Xhol(10761)

>2.2 kb >4.2 kb
1094 bp

uidAhpt p35S p35Sp35SNOS TER NOS TER

RBLB

Xhol(11855)
Eco RI 1(1)

Xba 1(2172) Xba 1(3933)Xhol(10761)

>2.2 kb >4.2 kb
1094 bp

 
b) pMDC162 

 

Figure 2: Schematic presentation of the T-DNA regions of the binary vectors used for 

transformation experiments. a) p35S GUS INT (derived from pBIN19, Vancanneyt et al. 

1990) b) pMDC162 (Curtis & Grossniklaus, 2003). LB = left border, RB = right border, 

nptII = Neomycin phosphotransferase II, Hpt = Hygromycin phosphotransferase, uid A = 

GUS reporter gene, NOS Ter = nopaline synthase terminator, p35S = CaMV 35S 

promoter.  

 

Infection and co-cultivation of Tobacco 

 Leaves of Nicotiana tabacum cv Xanthi of in vitro propagated plants were used as 

positive controls for genetic transformation to assess the functionality of the 

Agrobacterium strains. Mid ribs were removed, the remaining leaf blades were immersed 

in the bacterial inoculum, cut into 0.25 cm2 sections and further wounded with the tip of 

the scalpel blade. Following a gentle shaking of the culture during 15 minutes, explants 

were blotted dry. Infected tissue was cultured with the adaxial surface in contact with the 

co-cultivation medium (MS medium without growth regulators). After 2 days of 
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cocultivation in the dark at 26°C, infected tissue was rinsed three times in inoculation 

medium containing 500 mg L-1 augmentin (SmithKline Beecham) to stop A. tumefaciens 

over-growing the tissues. Explants were blotted dry and placed the leaf adaxial surface in 

contact with the regeneration medium: MS medium containing 1 mg L-1 BAP and 0.1 mg 

L-1 NAA, 500 mg L-1 Augmentin and either 100 mg L-1 kanamycin or 25 mg L-1 

hygromycin for leaves infected by EHA 105 and C58, respectively. Augmntin was present 

in the regeneration media throughout the culture period to check the growth of 

Agrobacteria. The regenerated shoots were transferred to half strength MS medium (in 

terms of macroelements only) without hormones containing 10 g L-1 of sucrose, respective 

antibiotics and augmentin. The shoots which developed into rooted plants in the presence 

of antibiotics were analysed for the presence uidA gene. 

 

Infection and co-cultivation of Pelargonium   

Sterilized leaves from greenhouse-grown Pelargonium plants, were immersed into 

bacterial cultures, cut into 0.25 cm2 sections and the leaf lamina were further wounded 

with the tip of the scalpel blade as for tobacco. Infected explants were co-cultivated on 

different media: RM3, RM5 and RM5 + Acetosyringone 100 µM (AS). RM3 and RM5 

were the regeneration media. The intention of adding Acteosyringone was to assess its on 

the transformation efficiency. Petri dishes were wrapped in aluminum foil and incubated in 

darkness at 25°C. After 72 h co-cultivation, explants were washed with liquid basal MS 

medium containing 500 mg L-1 augmentin and blotted on sterilized filter paper before 

transferring to regeneration medium with and without selectable markers. Petri dishes were 

cultured for two weeks in darkness and then exposed to light conditions in a growth 

chamber at 25°C with 70% relative humidity and a 14-h photoperiod (150 μmol m−2 s−1) 

provided by 600W fluorescent lamps. 

 

Regeneration media and selection 

 Two efficient shoot regeneration systems, previously optimized, from leaf disks of 

greenhouse-grown plants of both cultivars, were assessed for their amenability to genetic 

transformation. The first protocol consisted of MS basal medium supplemented by 2 mg L-

1 each of BAP and NAA. The second one contained 10 µM TDZ in addition to 1 mg L-1 

each of BAP and NAA during a pre-culture step of two weeks, followed by  removal of 

TDZ from the culture medium. The effect of pre-conditioning explants on RM5 

regeneration medium, in the presence of 100 µM Acetosyringone during 48H was also 
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assessed, prior to inoculation with Agrobacterium (Table 1). Each time, about 60 explants 

were cultivated and the assays were repeated twice. 

 The selected Agrobacterium strains had genes for hygromycin (C58 disarmed: 

pMDC162 2X35S GUS) and kanamycin (EHA 105: p35S GUS INT) resistance, as 

selectable markers. We evaluated the response of both cultivars to the two markers in view 

of assessing the best concentration for selection during the course of transformation 

experiments. The sensitivity of Attar and Atomic leaf explants to different levels of 

hygromycin and kanamycin was assessed by measuring the organogenesis potential on 

varying concentrations of these antibiotics. More than 30 explants of each cultivar were 

cultured on regeneration medium (RM5) containing 0, 2.5, 5, 10, 15, 20, 25, 30, 50, 75 and 

100 mg L-1 of hygromycin or 0, 5, 10, 15, 20, 25, 30, 50, 75 and 100 mg L-1 of kanamycin. 

Our results (Chapter 4A) showed that the best medium for regeneration consisted of a 2 

week preincubation period in the dark, on TDZ added to RM3 medium, followed by the 

removal of TDZ in the culture medium. We therefore tested the response of Pelargonium 

leaf explants to hygromycin and kanamycin using this regeneration system and the same 

levels of antibiotics were applied as for RM5. The sensitivity to these selectable markers 

was also assessed in combination with 500 mg L-1 augmentin, used to limit the growth of 

Agrobacteria. Augmentin added to the media was maintained through out the culture 

period. All the assays were repeated thrice. All the explants forming shoots (even 1 shoot) 

were considered responding explants and the number was recorded for regeneration 

efficiency calculations.  

 

Elongation and rooting of shoots 

 Randomly distributed shoots on the explants were transferred to 100 x 20 mm Petri 

dishes (for 4 weeks) containing elongation and rooting medium (ERM) made up of half 

strength MS medium (MS/2 macro-elements), 15 g L-1 of sucrose supplemented by 1.5 mg 

L-1 of IAA, 500 mg L-1 augmentin, either hygromycin (10 mg L-1) or kanamycin (15 mg L-

1) and solidified by 0.8% bacto-agar. From each cluster of shoots on the explants, only one 

shoot was picked to ensure independent events of transformation. For example, if there 

were 10 clusters or single shoots on a explant, only ten shoots were transferred to ERM. 

The surviving elongated plantlets were then shifted to 900 cm3 Vitrovent boxes (Duchefa, 

The Netherlands) containing 100 mL of ERM supplemented by the same bacteriostatic and 

antibiotics. 
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GUS activity 

 Histochemical assays for GUS activity were performed to identify potentially 

transformed plants. GUS expression was determined on leaf parts and roots obtained from 

rooted plants under continuous selective pressure. Leaf and root explants were incubated in 

buffer containing 50 mM sodium phosphate buffer with pH 7.0, 10 mM EDTA at pH 8.0, 

0.1% (v/v) Triton X-100 and 0.5 mg L-1 X-GlcA (5-bromo-4-chloro-3-indolyl β-D-

glucuronide) (Jefferson et al. 1987). Tissues were vacuum infiltrated 3 times during 1 

minute, with a quick release between each vacuum application followed by an overnight 

incubation at 37°C. Tissues were thoroughly cleared with 70% ethanol before observation.  

 

Genomic DNA Extraction 

 Small-scale extraction of genomic DNA from 200 mg of young in vitro 

Pelargonium and tobacco leaves was achieved by using a modified version of the 

Dellaporta protocol (Dellaporta et al. 1983). Liquid nitrogen-frozen leaf tissue was first 

ground to a fine powder in a 2 mL Eppendorf containing 3 glass beads of 5 mm diameter 

using the Qiagen Retsch grinder. To this, was added 400 µL of extraction buffer (100 mM 

Tris pH 8.0, 50 mM EDTA pH8.0, 500 mM NaCl, 1% SDS , 0.5% Sodium Bisulfite and 

0.1 mg ml-1 RNase). The mixture was homogenised by vortexing. After 30 minutes 

incubation at 65°C, 200 µL of 5 M potassium acetate was added, gently mixed by 

inversion and incubated on ice during 10 minutes. After centrifugation at 15000 g for 10 

min at 4°C, the supernatant was collected in a 1.5 ml Eppendorf tube and 600 µL of 

chloroform/iso amyl alcohol (24/1 v/v) was added, mixed and centrifuged at 15000g for 10 

min at 4°C. DNA in the supernatant was precipitated with 600 µL iso-propanol carefully 

mixed and centrifuged at 15000g for 10 min at 4°C. The supernatant was discarded and the 

genomic DNA pellet was washed with 70% ethanol, re-centrifuged and dried in an 

evaporator centrifuge for 2 minutes under low heat. The final DNA pellet was re-

suspended in 50 µl of 10mM Tris-1mM EDTA, pH 8 and concentration was measured 

using a nano-drop spectrophotometer. 

 

PCR screening of putative transformed plants 

 Preliminary screening of transgene sequences in putatively transformed plants was 

performed by PCR using β−glucuronidase (GUS) primer: 5’GTGAACAACGAACTGGA-

ACTGGGC3’ and 3’ATTCCATACCTGTTCACCGAGG5’, which amplified a 1250 bp 

fragment. The reaction was performed in a 25 µl reaction containing 100 ng of DNA, 0.2 
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mM of dNTP, 0.2 µM of each primer, 1.5 mM of MgSO4, 2.5µL of specific Taq 

polymerase buffer, 1 unit of KOD Hot start DNA polymerase from Novagen. The 

polymerase was activated at 95°C for 2 min, DNA was denatured at 95°C for 30 s, 

amplified during 35 cycles at 94°C during 30 s, 57°C for 60 s, 72°C  for 90 s, followed by 

a final extension step at 72°C for 10 minutes. Amplified samples were resolved on a 1.2% 

agarose gel, followed by ethidium bromide staining and detection under UV light. 

 

Results and discussion 

 

Effect of antibiotics on shoot regeneration 

 An effective selection regime is very important for developing a transformation 

protocol. The selection strategies were developed using the antibiotics, hygromycin and 

kanamycin, for the two regeneration media. In the first instance, we tested regeneration 

medium containing BAP and NAA, each at 2mg L-1 together with augmentin, used as 

bacteriostatic agent. The presence of 500 mg L-1 augmentin in combination with either 

hygromycin or kanamycin did not affect the regeneration efficiency of both cultivars. With 

the application of augmentin during the development of a selection regime, the reponse of 

the explants and the lethal level for the antibiotics was not altered. Cultured on RM5 media 

containing hygromycin 10 mg L-1 or more, the explants turned brown quickly. There was 

no expansion of explants at 2.5 and 5 mg L-1 of hygromycin. The lethal limit (no shoot 

formation) was observed at 10 and 15 mg L-1 of hygromycin for Attar and Atomic, 

respectively (Fig 3a). For the transformation experiments, both cultivars were selected at 

10 mg L-1 of hygromycin added to RM5. In the presence of kanamycin added to RM5 (Fig 

3b), the explants remained green but there was no shoot formation at concentrations higher 

than 15 mg L-1 of kanamycin. There was no expansion of the explants irrespective of the 

cultivars. The shoot formation was completely inhibited at 15 and 10 mg L-1 of kanamycin 

for Attar and Atomic, respectively. Both cultivars were selected at 15 mg L-1 of kanamycin 

added to RM5, for the transformation experiments. 
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Figure 3: Antibiotic sensitivity of explants added to RM5.  = Attar and  = Atomic 

cultivars. a) Hygromycin sensitivity, b) Kanamycin sensitivity. Results presented are the 

mean value from 3 replicates and the bars show standard deviation. 

 

The second regeneration system involved the pre-incubation period of two week in 

the presence of TDZ. The application of 2.5 mg L-1 of hygromycin in the presence of 10 

µM TDZ did not affect significantly the growth of explants of both cultivars. At 5 mg L-1, 

the regeneration efficiency was reduced to less than 10% and 10 mg L-1 of hygromycin 

was lethal for the explants of both cultivars (Fig 4a and 4b). All the explants turned brown 

quickly when exposed to the hygromycin concentrations above 10 mg L-1, without any 

expansion as was observed at 2.5 and 5 mg L-1. According to some reports in literature 

(Opabode 2006), applying selection pressure too early can hamper the onset of 

morphogenic responses caused by the toxic effects of the selectable markers on the 

expression of genes involved in the morphogenic processes. Therefore, antibiotics were 

 a

b
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applied after 1 and 2 weeks of the start of culture. Delaying the application of the 

antibiotics by one and two weeks, caused a shift in the lethal concentrations to 15 instead 

of 10 mg L-1  hygromycin, for both cultivars . This delaying period allowed the explants to 

expand prior to application of antibiotics. For all the assays for transformation, 5 mg L-1 of 

hygromycin was used for both cultivars, added to RM3, in the presence of TDZ to favour 

the explants to regenerate by reducing selection pressure. 

 The explants expanded at concentrations below 15 mg L-1 of kanamycin. They 

remained green for 8 weeks without any signs of morphogenesis. Shoot formation was 

completely inhibited at 20 and 15 mg L-1 of kanamycin for Attar and Atomic cultivars, 

respectively (Fig 4c and 4d). However, both cultivars had about 20% regeneration 

efficiency at 10 mg L-1 of kanamycin. The lethal limit of kanamycin was shifted up to 25 

mg L-1 of kanamycin by one or two weeks delayed application. For transformation 

experiments, 10 mg L-1 of kanamycin was used, which is below lethal limit, to allow 

explants to initiate morphogenesis and transformation events. Newly regenerated shoots 

(on both media) from non-infected explants were allowed to develop on Elongation and 

Rooting medium (ERM) containing augmentin and either 10 mg L-1 kanamycin or 15 mg 

L-1 hygromycin. The concentrations used in ERM were higher than that were used during 

culture stage. At these concentrations, no shoot could elongate and, the development was 

completely inhibited when tested for non-infected regenerated shoots.  

 Hygromycin for Pelargonium sp. has only been reported once (Robichon et al. 

1995) and 10 mg L-1 was sufficient to stop the growth of non-transformed explants. 

However, it has been used effectively for other plants including Glycine max L. (Olhoft et 

al. 2003; Liu et al. 2008), Sesbania drummondii (Padmanabhan and Sahi 2009), Hordeum 

vulgare (Bartlett et al. 2008), Prunus domestica L. (Tian et al. 2009), Oryza sativa 

(Twyman et al. 2002), and Dichanthium annulatum (Kumar et al. 2005). In our 

experiments, the two step application of hygromycin could be considered effective i.e. 5 

mg L-1 in regeneration medium and 10 mg L-1 in rooting medium. Kanamycin, the second 

antibiotic used in current experiments, has frequently been used for genetic transformation 

of plants including Pelargonium spp. However, very high concentrations of kanamycin 

have been reported by various researchers as compared to that of our experiments. The 

optimized values for transformation experiments were 10 and 15 mg L-1 in regeneration 

and rooting media, respectively, for both cultivars. The reported concentrations from the 

literature for Pelargonium spp. were generally more than 50 mg L-1 in the regeneration and 

rooting medium (Boase et al. 1996; 1998; KrishnaRaj et al. 1997; Hassanein et al. 2005). 
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Kanamycin was considered very effective by Hassanein et al. (2005) for Pelargonium 

capitatum cv bois joly and P x hortorum whereas Robichon et al. (1995) have reported that 

the regeneration from cotyledon and hypocotyl of P x hortorum was not inhibited by its 

presence in the medium even at very high concentrations (400 mg L-1). 
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Figure 4: Response of Pelargonium cultivars to increasing hygromycin and kanamycin 

concentrations added to RM3 containing TDZ. Antibiotics were applied to the cultures at 

the start of culture (  = 0W), one week (  = 1W) and 2 weeks (  = 2W) after the onset of 

culture. a) Attar of Roses; Hygromycin, b) Atomic Snowflake; Hygromycin, c) Attar of 

Roses; Kanamycin, d) Atomic Snowflake; Kanamycin. Results presented are the mean 

value from 3 replicates and the bars show standard deviation. 

 

 Another important factor that could strongly influence the transformation 

efficiencies is delaying the antibiotics’ application which could help the explants to 

alleviate the sufferings from the combined stress of Agrobacterium and antibiotics (Liu et 

b

c d

a



  Genetic transformation 
 

 122

al. 2008). According to our results, the delayed application of antibiotics, particularly, for 

Hygromycin, had no beneficial effects to get more number of rooted plants. The delayed 

application of kanamycin favoured the development rooted plants after infection in some 

cases. The best results were obtained when the antibiotics were applied after co-cultivation. 

The same time period was considered optimum by Hassanein et al. (2005) for Pelargonium 

spp. In contrast to these results, the increase in transformation efficiency have reported in 

maize with resting of 4-day (Zhao et al. 2001), 14 day (Olhoft et al. 2003) and 7 day (Liu 

et al. 2008) for soybean cultivars. 

 

Assesment of capability of Agrobacteriun strains to transfer T-DNA 

 The functioning of Agrobacterium strains was tested by performing transformation 

of tobacco cultivar Xanthi. We obtained antibiotic resistant plants and some of them were 

GUS and PCR positive. However, these plants should be verified by Southern blotting. The 

detection of GUS activity in tobacco plants indicated that the strains were functional and 

capable of transforming T-DNA.  

 

Production of transgenic Pelargonium 

 To develop a transformation system for scented Pelargonium cultivars, three 

strategies were assessed and are presented in Table 1. Stategy A differs from B by the pre-

conditioning but the regeneration medium for both strategies is RM5. In stategy B, 

explants were pre-conditioned during two days on regeneration medium RM5 containing 

100 µM Acetosyringone. This pre-conditioning period was followed by Agrobacterium 

infection. Many variants of the inoculation process have been tested and they concern a 

second round of wounding in the inoculum, with or without Acetosyringone. Strategy C is 

different with respect to co-cultivation medium (RM3) and regeneration medium. 

Regeneration medium contained TDZ that was removed after two weeks of culture start. 

The first strategy (A) did not produce any rooted plant for Attar cultivar, whatever the 

bacterial strain used for infection. Delaying the application of antibiotics did not favour to 

develop rooted. For Attar cultivar, seven rooted plants were obtained only when selection 

application was delayed by 3 weeks, after infection with EHA105 (Table 1, A4). 
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Pre-conditioning with 100 µM Acetosyringone (Strategy B) during 48 hours, 

generally increased the morphogenic response (10% more) of the explants as compared to 

that from strategy A, in the presence of selection. After culture on ERM in the presence of 

selection agents, no rooted plant was obtained for Attar and Atomic cultivar infected with 

Agrobacterium strain C58. Different results for both cultivars were attained after infection 

with EHA105 bacterial strain. Nine rooted plants of Attar were produced (Table 1, B1) and 

16 plants of Atomic (Table 1, B3). These results showed that the presence of AS in the co-

cultivation medium could not favour the development of rooted plants. For Atomic 

cultivar, the presence of AS could be important in developing rooted plants as we obtained 

16 rooted plants when AS was present both in inoculation and co-cultivation media. 

The third strategy (C) in the presence of TDZ 10 µM produced significantly high 

number of rooted plants for both cultivars as compared to two previously described 

methods. Delaying the application of antibiotics to culture medium did not favour the 

production of rooted plants. The efficiencies were higher for Atomic as compared to Attar 

cultivar. Four and 23 rooted plants were obtained for Attar after infection with C58 

disarmed and EHA101, respectively (Table 1, C1). For Atomic cultivar, 107 and 133 

rooted plants were obtained after infection with C58 disarmed and EHA105, respectively 

(Table 1, C1). On the basis of results from these three strategies, C1 method (Table 1) 

could be considered as an effective one for producing antibiotic resistant plant that could 

be putative transgenic plants. 

The T-DNA transfer and its integration into the plant genome is influenced by 

many plant and bacterial factors including plant genotype, type of explant, bacterial strain, 

presence of phenolic substances like Acetosyringone in the culture and inoculation media 

to induce vir-gene, tissue damage, co-cultivation, antibiotics and the time of application 

(Boase et al. 1998; Reviewed in Opabode 2006; Liu et al. 2008). The two day pre-culture 

on regeneration medium supplemented with 100 µM AS promoted the production of 

kanamycin resistant rooted plants in some cases (Table 1, method B1 and B3). For Atomic 

cultivar, the presence of AS in pre-conditioning, inoculation and co-cultivation seemed 

important (Table 1, method B3), even without re-injury of the explants at the time of 

bacterial infection. The effects of wounding on transformation efficiencies in various 

species are controversial. Barik et al. (2005) has reported enhanced efficiencies in grasspea 

with wounding whereas in tea, transformation was best achieved using uninjured somatic 

embryos (Mondal et al. 2001). The presence of 100 µM AS in all the three phases i.e. pre-
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conditioning, inoculation and co-cultivation, has been reported by Boase et al. (1998). 

However, they have not presented comparative results, explaining the role of AS.  

 

 
Figure 5: Selection of regenerated shoots on rooting medium containing 10 mg L-1 of 

hygromycin and GUS expression in different organs of plant (Atomic cultivar). a) non-

infected control, b) Shoots regenerated from infected explants, c) histochemical GUS 

expression, leaf parts, d) Leaf part magnified 20x, e) root from non-infected control 30X, f) 

GUS expressing root, 30x g) Root hairs expressing GUS, 100x. 
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Histochemical GUS assay 

 After 3 week selection on ERM, many shoots gradually turned brown and died 

except for putative transformants (Fig 5a & b). The portions of leaves and roots from all 

the rooted healthy plants were subjected to GUS test (Fig 5c, d, e, f, g). The tissues which 

turned blue from rooted plants were considered as GUS positive. The results concerning 

potential transformation efficiencies after infect with C58 are summarised in Table 2. For 

Attar cultivar, all the shoots regenerated in the absence of selection agent turned brown. In 

the presence of hygromycin, only 26.5% explants formed shoots. Of the 394 shoots 

transferred to ERM, four rooted plants were obtained which were also GUS positive. For 

Atomic cultivar, three rooted plants were developed from the explants cultured in the 

absence of selection agent. Of which only one plant expressed GUS. In the presence of 

selection, 73% of the explants were regenerated. From the shoots transferred to ERM, 

9.7% shoots developed into rooted plants. Eighty-two plants were GUS positive out of 107 

rooted plants for Atomic cultivar. All the GUS positive plants also expressed GUS in the 

roots. The large number of shoots which were not capable of rooting was due to the 

application of lower level of hygromycin than lethal limit to promot regeneration. The 

presence of 10 mg L-1 of hygromycin in the rooting medium was lethal for the shoot which 

were not potentially transformed. 

 

Table 2: Putative transformants after infection with disarmed Agrobacterium strain C58. 

Hgyromycin - + - +
a. No of explants cultured 88 117 97 104
b. Explants forming shoots 73 31 81 76
c. Shoots cultured on ERM 1770 394 2108 1106
d. HygR rooted plants 0 4 3 107
e. Gus expressing plants-leaf 0 4 1 82
f. Gus expressing plants-root 0 4 0 82
g. PCR+ 0 2 0 20
T.E (%) = (g/c *100) 0 0.5 0 1.8

Attar Atomic

 
HygR = Hygromycin resistant; PCR = Polymerase Chain Reaction: Amplification of uidA 

gene was perfomed to obtain the fragment of about 1250 bp.  
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There was also high number of escapes due to low concentration of kanamycin (10 mg L-1) 

which turned brown with the application of higher levels (15 mg L-1) in the rooting 

medium (Table 3). For Attar cultivar, only 4.5% of the shoots transferred to rooting 

medium could survive. For Atomic cultivar, the root forming shoots were 15.9%. All the 

rooted plants after infection with EHA105 were subjected to GUS test and no GUS 

positive rooted plant was observed, neither leaves nor roots, for both cultivars despite the 

considerable high number of kanamycin resistant rooted plants 133 (Table 3).  

 

Table 3: Kanamycin resistant rooted plants and histochemical GUS expression, after 

infection with Agrobacterium strain EHA105. 

Kanamycin - + - +
a. No of explants cultured 70 90 100 99
b. Explants forming shoots 65 39 100 55
c. Shoots cultured on ERM 1917 511 2205 836
d. KanaR rooted plants 0 23 24 133
e. Gus expressing plants 0 0 0 0

AtomicAttar

 
KanaR = Kanamycin resistant 

 

Comparing the results from infection with two different strains, the GUS 

expression oly in case of C58 disarmed strain could be attributed to the presence of double 

p35S promoter on pMDC162 vector whereas in case of EHA105 (p35S GUS INT), there is 

only single promoter. The difference could also be due the absence of intron on pMDC162 

vector. For the time being, another hypothesis could be made for obtaining large number of 

kanamycin resistant plants on the basis of the observations by Robichon et al. (1995), the 

plant might have developed tolerance the antibiotic and they are not transformed. 

However, to confirm all these hypotheses, we absolutely need to perform Southern 

blotting. Only in the presence of the results of Southern blotting, we can argue and explain 

the present results clearly.  

 

PCR screening 

 The DNA of Hyromycin-resistant plants of both cultivars was subjected to 

PCR analysis. DNA was also extracted from the non-infected controls of Pelargonium 

obtained through regeneration. The plasmid containing uidA gene was used as positive 

control. The results are shown in Fig 6. There were no bands for the negative controls. Out 
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of 4 rooted and GUS+ plants of Attar cultivar, two were PCR+ (Table 2). For Atomic 

cultivar, uidA bands were detected for 20 plants of the 82 tested. PCR positive plants can 

be called as putatively transformed. On the basis of PCR results, the transformation 

efficiency (No of PCR+ plants/ No of shoots regenerated on selective medium x100) could 

be 0.5% and 1.8% for Attar and Atomic cultivars, respectively (Table 2) after inoculation 

with C58 strain. However, it is known that PCR could also amplify bacterial sequences that 

are still present in the primary transformants. We performed several controls (such as 

amplification of sequences outside the T-DNA border) to ensure that the positive PCR 

responses do not result from bacterial sequences.  

 

1      2      3      4     5      6      7     8      9      10

1200 bp

 
Figure 6: PCR screening for putatively transformed Pelargonium (Atomic) plants. 1 & 10: 

Markers for molecular weight, 2: GUS (uidA gene), 3: Non-infected Pelargonium 

(negative control), 4-9: Hygromycin resistant Pelargonium (Atomic) plants. 

 

Without confirmation of all the antibiotic resistant plants through Southern blotting, 

it is difficult to explain or justify the results. We can make various hypotheses on the basis 

of bibliography. The absence of GUS activity in some of the rooted plants on selection 

medium could be explained by different factors including genomic position effects or gene 

silencing due to DNA methylation or to multi-copy insertions (Suzuki et al. 2001). 

Antibiotic resistant plants might be transgenic for respective marker genes, nptII or hpt and 

not for uidA (GUS) gene, which is also known as partial transformation (Robichon et al 

1995; KrishnaRaj et al. 1997; Kishimoto et al 2002; Cui et al. 2004; Hassanein et al. 2005). 

All the GUS+ plants were not PCR+ which could be the result of transitory expression and 

the stable transformation was not happened as the PCR analysis was performed after 4-6 

weeks of GUS test. 
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Conclusions and perspectives 

  

 In the present study, two regeneration systems previously developed for two 

hyeperaccumulating cultivars Attar and Atomic have been assessed for their amenability 

towards genetic transformation using two Agrobacterium strains C58 disarmed and 

EHA105. Of the different inoculation methods tested, the various regeneration media, the 

different selection schemes, it appeared that there was a genotypic effect on the efficiency 

of transformants (based on rooted plants and Gus assays). Atomic Snowflake gave 

consistently higher number of GUS expressors in rooted plants on selective medium. Using 

C58, only TDZ containing regeneration system produced hygromycin resistant plants. Both 

regeneration systems tested for obtaining putative transgenic plants produced kanamycin 

resistant plants but TDZ containing regeneration system was much more efficient. This 

could be due to the ability of TDZ to retard the yellowing of leaf explants in Pelargonium 

(Mutui et al. 2005). More number of explants remained green for long time and the 

bacteria had more time to transform. However, this hypothesis should be investigated to 

indentify the exact role of TDZ in transformation of Pelargonium capitatum. PCR analysis 

of randomly selected hygromycin resistant plants showed uidA bands. So these PCR 

positive plants could be putatively transformed. Confirmation of these plants is required by 

southern blotting to verify transgene integration pattern and could explain the different 

expressions obtained with the use of the two strains. This is the first report of 

transformation system for Pelargonium capitatum cultivars Attar and Atomic and the 

second one, using leaves as explants, after Hassanein et al. (2005) for Pelargonium 

capitatum cultivar Bois joly. 
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Lead phytoextraction with Pelargonium 

 

 In field experiments, Scented Pelargonium cultivars demonstrated their ability to 

hyper-accumulate Pb both on calcareous and acidic contaminated soils, without morpho-

phytotoxicity symptoms and producing high biomass. Three cultivars: Attar, Atomic and 

Clorinda, accumulated more that 1000 mg Pb kg-1 DW, a limit given by Baker et al. (2000) 

for Pb hyperaccumulators. All the three cultivars produced more than 3 t ha-1 y-1 which is 

considered by Schnoor (1997), suitable for the plants to be used for phytoextraction. One 

of the cultivars i.e. Atomic was capable of accumulating up to 6904 mg Pb kg-1 DW and 

producing more than 45 t ha-1 y-1 which seems very promising in the perspectives of Pb 

phytoextraction. The maximum quantity of Pb extracted by Atomic cultivar cultivated on 

the soil-T (acidic soil) was 258 kg Pb ha-1 y⎯1 which is 8 times higher as compared to 

Thlaspi (Reeves and Brooks, 1983). The estimated time scale for total soil remediation 

with the Pelargonium plants studied were 151 years for the soil-B (calcareous soil) and 

182 years for the soil-T. Soil-T contained 20 times more Pb than Soil-B. Despite an 

effective extraction with Pelargonium cultivars, the time required to cleanup is more that a 

century which is a major obstacle in the field application of this technique. So a lot of work 

is needed to make this technique applicable at large scale. In the context of field 

experiments, some of the perspectives are proposed in the followings: 

 

I) Optimisation of agronomic practices: As for the field experiments, no 

optimised agronomic practices were used, we believe that there is a potential 

to increase biomass as well as accumulation in aerial parts through optimised 

NPK application and irrigation. In the literature, only a few studies have been 

reported on nutrient management for phytoextraction purpose. Wu et al. 

(2004) observed significant increase in shoot Cu uptake by Indian mustard 

through application of N and P in combination. However, they observed the 

decrease in shoot Cu uptake with increasing concentration of P applied singly. 

According to Wai Mun et al. (2008), the biomass of Kenaf (Hibiscus 

cannabinus L.) plants exposed to different levels of Pb was increased about 

six times with the application of 80 g chicken manure pellets. Moreover, the 

application of organic fertilizer also increased significantly the 

bioaccumulation capacity of individual plant. In a field experiment, Marchiol 

et al. (2007) recorded 10-20 times increase in the biomass of Sorghum bicolor 
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and Helianthus annuus with application of NPK as compared to control but 

there were no increase in concentration of metals including Pb, in the aerial 

parts of these two species. For Pb phytoextraction, careful management of 

applied nutrients is absolutely necessary due to its interactions in the soil with 

other nutrients as well as soil characteristics. For example, application of P 

could lead to stabilisation by forming Pb-precipitates known as pyromorphites 

ultimately reducing availability for plant uptake (Ryan et al., 2001). Similarly, 

organic fertilizers could promote fixation of Pb in the soil and making it 

unavailable for plants (Marchiol et al., 2007). 

 

II) Use of chelates: Another option may be the judicious use of chelators to 

increase uptake as has been demonstrated by Hassan et al. (2008). However, 

concerns about the fate and impact of chelators on the environment are 

increasing and their use in the field conditions is becoming controversial. 

According to Epelde et al. (2008), application of EDTA significantly 

increased root Pb uptake and root-to-shoot Pb translocation as compared to 

that with EDDS. In a soil polluted with 5000 mg Pb kg−1, the addition of 1 g 

EDTA kg−1 soil led to a value of 1332 mg Pb kg−1 DW in shoots whereas a 

shoot Pb accumulation of only 310 mg kg−1 DW was observed with EDDS 

application. Moreover, the plants treated with EDDS produced lower biomass 

than those treated with EDTA. However, EDDS degraded rapidly and less 

toxic to the soil microbial community as compared to EDTA. According to 

Cao et al. (2008), EDTA and EDDS were capable of mobilising 85 and 67% 

of Pb, respectively. Moreover, the application of these two chelates allowed 

extracting organic- and sulphide-bound fraction, which is most difficult to 

remove with plants. These results from the literature are promising but still 

the careful management practices are to be optimised for the application of 

chelates at large scale. 

 

III) Economic valorisation: In the current scenario where field application of Pb 

phytoextraction requires further research to achieve acceptable time frame for 

decontamination process, the use of plants which are ornamentals and non-

edible could serve as immediate solution for the soils waiting for 

decontamination decisions. Another type of interest could be the plants which 
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are sources of essential oils. Zheljazkov et al. (2006) have demonstrated that 

the heavy metals were not removed from the tissues during the process of 

steam distillation and the aromatic products were free of the metals. These 

facts support the use of Pelargonium sp. for remediation purposes. Scented 

Pelargonium cultivars offer several additional economic advantages that 

could offset the cost of deploying phytoremediation and render it a viable 

approach for remediating large area of contaminated lands: (i) Planting and 

harvesting of Pelargonium plants can be accomplished using conventional 

farm equipments, (ii) These ornamentals could beautify unused sites in 

quarantine.  (iii) Harvested biomass can be broken down to yield various 

industrial products such as commercial-grade organic acids and alcohols. 

However it remains to be demonstrated that metal ions would not be present 

in the extracted oil or could be separated from the biomass to enable it to be 

fragmented into safe industrial by-products for every day consumer use. 

 

Phytoavailability and speciation of lead studied 

 

 The results of field study indicated that soil pH, soil Pb contents, OM and cultivar 

type were some of the important parameters for Pb phytoextraction and could be helpful 

the remediation time management. In rhizosphere experiments, we demonstrated that the 

hyperaccumulator cultivar, Attar, was capable of modifying rhizosphere pH and DOC, and 

increased accumulation was observed with increasing soil Pb contents in the range of lead 

concentrations tested. Lead in Pelargonium roots was likely bound to Thiol groups (Pb-

glutathione and Pb-cysteine) which could result from a detoxification process involving S-

containing ligands (cysteine, GSH, phytochelatins and metallothioneins). The potential of 

Attar cultivar for accumulating Cd was demonstrated and it could help to remediate soils 

polluted by more than one element. In the followings, different parameters are discussed in 

detail; 

I) Availability of Pb: The phytoavailable fraction of a metal in a soil is a core 

parameter to be considered for effective phytoextraction technique. Changes 

in rhizosphere pH are of prime importance driving the availability of elements 

in the soil. With decreasing pH, increased release of Pb enhancing Pb2+ in soil 

solution has been observed (Badaway et al., 2002; Sukreeypongse et al., 

2002). In our case, increased Pb uptake was positively correlated with 
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decreasing rhizosphere pH in case of Attar cultivar. More accumulation by 

Attar cultivar as compared to Concolor was also positively correlated with 

increased DOC contents in the rhizosphere. Changes only in rhizosphere pH 

and DOC could not be sufficient to explain the bioavailability of Pb. There 

might be microbial interactions in the rhizosphere which could play an 

important role in Pb mobility. For future research, the special cropping device 

used for the present study could be employed for screening of other 

Pelargonium cultivars. This could help to either find new cultivars with better 

Pb phytoextraction potential or to have cultivars with distinct capabilities of 

modifying their rhizosphere which might help for better understanding of 

rhizosphere interactions influencing the mobilisation and accumulation of Pb. 

 

II) Localisation of Pb:  During the rhizosphere experiments, we recorded very 

high concentrations of Pb in roots. So the questions was, whether Pb entered 

into the Pelargonium roots or not? Microscopic studies have demonstrated the 

presence of some dotted and granule like structure in cell wall regions. Cell 

wall shape was also irregular as compared to the control (Fig 11). This 

granule formation requires to be further studied for indentifying what is 

exactly present in these structures? Other questions that have been opened 

might be; at what concentrations, these changes in shape could happen? What 

are ultimate effects on plant growth and its ability to accumulate Pb? Is there 

any potential effect or changes in the levels of enzymes involved in 

photosynthesis? Finally, is it possible to use the Pelargonium cultivars for 

phytostablistaion of Pb? As higher Pb concentrations in roots of Juglans regia 

have also been reported by Marmiroli et al. (2005) and they have proposed 

potential use of this species in Pb phytostabilistaion. But for this purpose, 

long term experiments are required to assess cost-benefit ratios and 

feasibility.  
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  a) Root cell not exposed to Pb (x40)       b) Root cell exposed to Pb (x40) 

Figure 11: Microscopic images of root cells of Pelargonium capitatum 

cultivar Attar. a) Control, b) exposed to Pb. 

 

III) Speciation of Pb: The spectrometric (EXAFS) and microscopic (ESEM) 

studies revealed different species of Pb present in soil and plant roots. The 

identification of Pb-Thiols bonding through EXAFS indicates the presence of 

Phytochelatins like compounds which could play an important role in 

detoxification mechanisms. However, these results are preliminary which 

provide only the informations concerning the presence and kind of 

compounds. In a similar context, Marmiroli et al. (2005) have reported the 

binding of Pb with lingo-cellulosic structure forming Pb-O bindings in roots. 

Further studies are required to determine the exact role of theses S-containing 

compounds in Pelargonium during metal stress. How their concentrations are 

altered upon exposure to Pb? Quantification of the Thiols and determination 

of other products i.e. sugars, polyols etc. could also help to understand the 

modifications in the cell wall. The precipitate formation in the roots observed 

by ESEM is of particular interest in bioavailability of Pb to the plants. The 

chemical analysis of the precipitates strongly hinted that these are 

phyromorphites which are the least soluble forms of Pb. Similar structure 

have also been reported by Cotter-Howells et al. (1999). As in the past and 

also in our case, the data was obtained from single cultivar. The comparison 

between different cultivars, particularly in hyperaccumulator and non-

accumulator could help to understand the role of these precipitates. The 

pyromorphites are actually phosphorus (P) rich compounds and their 

formation may influence the availability or deficiency of P to the plant 

ultimately affecting photosynthetic efficiency. Their formation procedure and 

the timings within plant roots, their effect of phytoavailability, possible role in 

detoxification, their chance of disintegration over long period, these are the 

questions to be addressed in future research! These understandings could play 

an important role to develop an optimized phytoextraction strategy. 
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A summary of the work performed related to soil-plant interactions using scented 

Pelargonium cultivars is presented in the following figure (Fig 12). 

 

 

 
 

Figure 12: Schematic representation of the work focussed on the understanding of soil-

plant interactions. Phrases in blue colour concern perspectives and phrases in dark colour 

concern the scientific conclusions of the present work. 
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Tools development for comprehension of Pb hyperaccumulation 

 

 Biotechnology approaches could offer the possibility of developing plants with 

improved agronomic properties, but its main assets concern their applications in 

fundamental research to decipher mechanisms involved in physiological processes. We 

have developed regeneration systems for two hyperaccumulating cultivars i.e. Attar of 

Roses and Atomic Snowflake. Using these protocols, selection regimes have been 

optimised and ultimately putative transgenic plants were obtained. A schematic 

presentation of the protocols developed is given in Fig 13. 
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Figure 13: Schematic presentation of the optimized regeneration and transformation 

protocols. 

 

The applications of these protocols and future research possibilities have been presented in 

the followings; 

I) Regeneration systems for Pelargonium cultivars: An efficient regeneration 

system using two week pre-incubation with TDZ @ 10 µM and culture on 

medium supplied with BAP and NAA, 1 mg L-1 each. The number of shoots 

regenerated per plant was more than 100 which ensures the possibility of 

obtaining large number of plants within short time (about 18 weeks). This 
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system can be employed for phytoextraction by different ways. Firstly, it may 

help to develop a transformation system (chapter 4B). Genetic transformation 

is one of the well documented tools being used for understanding of 

molecular mechanisms and so would be the case with Pb hyperaccumulation 

mechanisms. Secondly, the large number of plants obtained through 

regeneration may have a mutant plant which might be sensitive to Pb 

exposure. If that is the case, it would surely ease the understanding of Pb 

hyperaccumulation as we will have the plants of same species and cultivar but 

with different response to Pb stress. It can be ideal thing for indentifying the 

genes involved in Pb hyperaccumulation just by comparing the mutants to the 

parent plants. Thirdly, as Pelargonium cultivars used in this study are male 

sterile and can only be propagated through vegetative means, so we can use 

this efficient regeneration system for obtaining large number of plants to be 

transferred to field conditions for phytoextraction purposes. 

 

II) Genetic transformation: The regeneration systems developed earlier helped 

us to develop transformation systems for Attar and Atomic cultivars. The 

efficiencies for Attar and Atomic were 0.5 and 1.8 % calculated as; No of 

PCR+ plants/ number of total shoots regenerated x 100, when inoculated with 

disarmed C58. However, the integration of uidA remains to be verified 

through southern blotting. Integration patterns will indeed, enable to correlate 

gene copy numbers to expression levels in these different events. The two 

aspects of this work will be to the benefit of a long-term project that our team 

has planned concerning the identification of the major actors involved in 

regulating hyperaccumulation in Pelargonium.  

 

III) Molecular mechanisms: The availability of the tools developed during this 

project can help to understand molecular mechanisms involved in Pb 

hyperaccumulation. Cropping device used to assess plant induced changes in 

the rhizosphere will be applied for plant exposure to metal stress in controlled 

environments. Using a differential proteomic approach, identification of up or 

down-regulated genes during exposure of plants to the metal stress should be 

possible. During the preliminary steps, different proteins/enzymes produced 

during stress conditions could be indentified. In parallel to proteomics, 
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metabolomics could help to indentify different metabolites produced upon 

exposure to Pb stress. Comparing the results of both proteomics and 

metabolomics (Fig 14) may lead to the identification of a similar product or 

enzyme involved in the production of that product. Study of the potential role 

of the concerned product would help to unveil its role in Pb phytoextraction 

and probably, would serve a first step in understanding of molecular 

mechanisms of Pb hyperaccumulation by scented Pelargonium cultivars. 
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  Figure 14: Methodology outline for studying gene function for Pb   

  hyperaccumulation by scented Pelargonium cultivars. 

 

  Correlation with observations on Pb-speciation, localization as well as on 

the full spectrum of metabolites should result in the identification of sequences, 

described or not in protein data banks and which are impaired to one or more of the 

processes involved in hyperaccumulation. These studies should lead to the 

identification of coding sequences, which would then be expressed, or suppressed 

using RNAi constructs. Coupled to the use of tissue-specific promoters, these 

constructions should enable to dissect events during the initial steps (active transport 

across root plasma membranes) and later ones (translocation to shoots and specific 

compartment sequestration). The observed phenotypes with respect to the non 

transformed ones may shed some light on aspects governing hyperaccumulation in 

Pelargonium scented varieties. A brief scheme is presented in Fig 15 and describes 
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the correlations between the different parts of the present work within the scope of 

this ambitious project. 

 

 
 

Figure 15: Prospects for development of improved phytoextraction technique using 

scented Pelargonium cultivars. OA = organic acids, DOC = dissolved organic carbon 

  

 The elucidation of genetic and molecular aspects of all these processes is a major 

challenge and considerable task and can successfully be addressed with model plants such 

as Arabidopsis halleri and Thlaspi caerulescens. It would involve analysis of natural 

genetic variation, genetic segregation in crosses in species with contrasting phenotypes, 

global analysis of the transcriptome by microarray analysis, mapping of gene networks and 
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QTL, mutant isolation, characterization of proteins and coding sequences with the 

hyperaccumulation phenotype, comparative analysis of regulation for specific genes, 

functional analysis by complementation in yeast mutants sensitive to metal stresses and 

also the demonstration in planta through the use of transgenic plants. In the long run, it is 

anticipated that the cellular and molecular mechanisms depicted would drive us to the use 

of natural additives to cultures that would promote metal extraction from soil. 
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Conclusions et perspectives (présentation synthétique) : 
  

 Cultivés en plein champs sur deux sols contrastés (calcaire et acide) contaminés, les 

Pélargonium odorants ont démontré leur capacité à accumuler le Pb dans leurs parties 

aériennes, sans symptômes de phytotoxicité, et avec une biomasse élevée. L'utilisation de 

Pélargoniums odorants pour l'assainissement a plusieurs avantages économiques qui 

pourraient jouer en sa faveur et rendre cette approche viable : (i) la plantation et la récolte 

des plants de Pélargonium peuvent être accomplies en utilisant des équipements classiques 

agricoles, (ii) ces plantes ornementales peut embellir les sites non utilisés en quarantaine, 

(iii ) la commercialisation d’huiles essentielles, acides organiques et alcools qui pourraient 

être commercialisés après vérifier de leur qualité.  

 La quantité maximale de plomb extraite observée est 258 kg Pb ha-1 an-1 (Atomic 

cultivar sur le sol-T). Les temps estimés pour décontaminer les sols sont respectivement de 

151 ans pour le Sol-B et 182 ans pour le sol-T. Ces résultats indiquent que le pH du sol et 

la teneur en Pb sont des paramètres qui influencent fortement l’efficacité de la 

phytoextraction. Nous avons démontré que le cultivar hyperaccumulateur, Attar, était 

capable d’acidifier sa rhizosphère et d’augmenter significativement la concentration en 

carbone organique dissout. Une augmentation de la phyto-accumulation du plomb a été 

observée avec l'augmentation de la teneur en Pb du sol, dans la gamme des concentrations 

en plomb étudiées. Le plomb dans les racines de Pélargonium est probablement lié à des 

thiols (Pb-glutathionne et Pb-cystéine), qui pourraient résulter d'un processus de 

détoxification impliquant des ligands contenant sulfure (cystéine, GSH, phytochelatines et 

metallothioneins). Le potentiel du cultivar Attar pour accumuler Cd pourrait offrir une 

possibilité de décontaminer les sols pollués par plus d'un élément. 

 Les temps de remédiation de l’ordre du siècle limitent cependant le développement 

de la phytoextraction. Ces durées de traitement pourraient être réduites en optimisant la 

fertilisation, l’irrigation et en utilisant des chélates comme cela a été démontré par Hassan 

et al. (2008). Toutefois, l’utilisation de chélates (type EDTA) dans des conditions de 

terrain est de plus controversée en raison de leur impact potentiellement délétère sur 

l'environnement.  

 L’identification des entités moléculaires liées au plomb dans différents tissus, est un 

des préalables à l’élucidation des mécanismes régulant les différentes étapes qui 

aboutissent au phénotype hyperaccumulateur. Le couplage de ces informations aux outils 
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des biotechnologies pourrait mettre en lumière, les gènes qui gouvernent l’absorption, la 

translocation et l’accumulation des éléments métalliques dans les plantes. Ceci permettrait 

d’aboutir à la découverte des voies métaboliques, impliquées et donc des enzymes et des 

produits qui régissent le phénotype résultant. Le pré-requis indispensable à ce type d’étude 

est l’outil de la transformation génétique, qui est le seul moyen de démontrer la fonction 

d’un gène et son implication dans le phénotype.  Nous avons développé des systèmes de 

régénération pour deux cultivars hyperaccumulateurs : Attar of Roses et Atomic Snowflake 

qui ont débouché sur un protocole de transformation génétique efficace, de l’ordre de 35%, 

pour Atomic Snowflake, en nous basant sur le nombre de plantes ayant amplifié par PCR, 

une séquence spécifique correspondant au gène uidA par rapport au nombre total de plantes 

éprouvées. Mais il est connu que la PCR peut aussi amplifier des séquences bactériennes, 

encore présentes dans les transformants primaires. Bien que nous ayons effectué les 

contrôles nécessaires (amplification de séquences à l'extérieur des bordures du  T-DNA) 

pour nous assurer que les réponses positives aux PCR ne résultaient pas de l’amplification 

de séquences bactériennes résiduelles, seules des expériences d’empreintes par la 

technique de Southern, permettra de démontrer l’intégration au niveau du chromosome 

nucléaire et de corréler le nombre de copies insérées à l'expression dans ces différents 

événements. Les deux aspects de ce travail pourront être mis à profit d’un  projet novateur 

et ambitieux à long terme que nous prévoyons concernant l'identification des principaux 

acteurs impliqués dans la régulation d’hyperaccumulation chez les plantes et le 

Pélargonium en particulier.  

 Le dispositif de micro-cultures sera utilisé pour évaluer les changements induits par 

les éléments traces métalliques chez le Pélargonium au niveau de la rhizosphère. En 

utilisant une approche de protéomique fonctionnelle différentielle, l'identification des 

gènes surexprimés ou réprimés au cours de l'exposition des plantes au stress métallique 

sera étudiée. Les résultats obtenus sur la spéciation du Pb, la localisation, ainsi que sur tout 

le spectre des métabolites en conditions de non exposition seront comparés à ceux des 

conditions exposées aux stress métalliques. Ces différences devraient aboutir à 

l'identification des séquences de protéines, décrites ou  non dans les banques de données et 

qui seraient impliquées dans l’hyperaccumulation. Ces séquences protéiques permettront 

de déduire l'identification de séquences nucléiques codantes, qui seront ensuite exprimées à 

l’aide de promoteurs performants, ou réprimées en utilisant des constructions RNAi. 

Couplé à l'utilisation de promoteurs tissus-spécifique, ces constructions devraient 

permettre de disséquer les événements survenus au cours des premières étapes (le transport 
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actif à travers la membrane plasmique racinaire) et des successives (translocation vers les 

parties aériennes et la séquestration dans le compartiment spécifique). Les phénotypes 

observés par rapport à ceux des phénotypes non transformés pourraient expliquer les 

aspects relatifs à hyperaccumulation dans les Pélargonium odorants. 

 L'élucidation des aspects génétiques et moléculaires de l'ensemble de ces processus 

est un défi majeur et une tâche qui ne peut être réalisée qu’avec les plantes modèles 

Arabidopsis halleri et Thlaspi caerulescens, hyperaccumulateurs de métaux. Ce projet 

comporte différentes stratégies faisant appel à de très nombreuses compétences 

transversales, à savoir : des analyses des variations génétiques naturelles, le criblage au 

niveau de  la ségrégation des croisements des espèces avec des phénotypes contrastés, 

l'analyse globale du transcriptome à l’aide de bio-puces, la cartographie des réseaux de 

gènes et des QTL, l'isolement de mutants, la caractérisation de protéines et de séquences 

codantes du phénotype hyperaccumulateur, la recherche de promoteurs spécifiques, 

l’analyse comparative de la régulation pour les gènes spécifiques, l'analyse fonctionnelle 

par complémentation de mutants de levure sensible au stress métallique et également la 

démonstration in planta avec l'utilisation de plantes transgéniques. À long terme, la 

compréhension de ces mécanismes cellulaires et moléculaires devrait permettre d’aboutir à 

la caractérisation d’effecteurs qui pourraient être utilisés en tant qu’additifs naturels qui 

permettraient d’augmenter l'extraction des métaux du sol. 
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ABSTRACT 
 Metal removal from contaminated soils using plants can provide an environment friendly solution. However, its 
successful application on a large scale is still limited due to unavailability of plants with desired set of characteristics i.e. 
hyperaccumulation, high biomass and rapid growth. The objective of this work was to assess the potential of scented 
Pelargonium cultivars for lead (Pb) extraction under field conditions, plant induced rhizosphere changes, soil factors 
influencing availability of Pb and to develop an efficient genetic transformation protocol for the selected cultivars. Of the 
six scented Pelargonium cultivars field-tested, three cultivars (Attar of Roses, Clorinda and Atomic Snowflake) 
accumulated more than 1000 mg Pb kg-1 DW, with high biomass reaching up to 45 tons ha-1 y-1 dry matter. During assays 
in controlled conditions, Attar of roses (Pb hyperaccumulator) significantly acidified its rhizosphere and increased 
Dissolved Organic Carbon (DOC) concentration as compared to Concolor Lace (non-accumulator), probably due to 
enhanced exudation in response to the metal stress. Lead concentrations in both cultivars were best correlated with CaCl2 
extracted Pb. Extended X-ray Absorption Fine Structure (EXAFS) and Environmental Scanning Electron 
Microscopy─Energy Dispersive x-ray Spectroscopy (ESEM-EDS) demonstrated that Pb was mainly complexed to 
organic acids within plant tissues whereas the dominant form in soil was PbSO4. Parallel to the soil-plant Pb transfer 
assays, a genetic transformation protocol was optimized in view of better understanding biochemical processes involved 
in lead hyperaccumulation and gene function, in the future. The best regeneration scheme was based on the pre-culture of 
explants on 10 µM TDZ (Thidiazuron) in addition to 1 mg L-1 each of N6-benzylaminopurine (BAP) and α-
naphthaleneacetic acid (NAA), followed by removal of TDZ from the culture medium. Kanamycin and hygromycin 
proved to be efficient selectable markers for genetic transformation. Two Agrobacterium strains, C58 and EHA105 
harboring binary vectors carrying the selectable marker genes hpt and nptII were chosen for transformation experiments. 
They also contained the uidA gene coding sequence as reporter gene. After infecting with C58, 4 and 107 rooted plants on 
hygromycin-containing medium were obtained for Attar and Atomic cultivars, respectively. The four Attar plants and 82 
Atomic plants expressed Gus in leaves, petioles, stems and roots as expected with a sequence driven by the 35S 
constitutive promoter.  Polymerase Chain Reaction (PCR) screening was performed on Gus positive plants and 2 and 20 
plants of Attar and Atomic were screened as PCR positive, respectively. After infection with EHA105, 23 and 133 rooted 
plants were obtained on kanamycin selection medium but none of these expressed Gus. Southern hybridization patterns 
will enable to correlate gene copy numbers to expression levels in these different events. The optimized protocols could 
be used for understanding molecular mechanisms of Pb accumulation and improvement in phytoextraction technique. 
Key words: Phytoremediation, scented Pelargonium, Pb, hyperaccumulators, phytoavailability, speciation, DOC, pH, 
regeneration, genetic transformation, Agrobacterium. 
RESUME  

L’utilisation des plantes pour décontaminer les sols pollués par les métaux est une solution respectueuse de 
l’environnement. Mais le développement de cette technique à grande échelle est encore limité en raison de 
l'indisponibilité de plantes avec les caractéristiques souhaitées (hyperaccumulation, biomasse élevée et croissance rapide). 
Les objectifs de ce travail étaient d'évaluer le potentiel de plusieurs cultivars de Pélargonium odorants pour l’extraction 
du Pb au champ, étudier la disponibilité du plomb en relation avec l’activité rhizosphérique et développer un protocole de 
transformation génétique. Parmi les six cultivars de Pélargonium odorants testés au champ, trois : Attar of Roses, 
Clorinda et Atomic Snowflake ont accumulé plus de 1000 mg kg-1 Pb, avec une forte biomasse. Pendant les 
expérimentations en conditions contrôlées, Attar of roses (le cultivar hyperaccumulateur) acidifie sa rhizosphère et 
augmente la concentration en COD significativement plus par rapport Concolor Lace (le cultivar non 
hyperaccumulateur), sans doute en réponse à la pollution métallique. Les concentrations en plomb dans les deux cultivars 
sont corrélées avec l’extraction au CaCl2. Les analyses par EXAFS et ESEM-EDS ont montré que le plomb présent dans 
les racines était principalement sous forme de complexes organiques alors que les sulfates de plomb prédominent dans le 
sol. Parallèlement à ces essais, un protocole de transformation génétique a été mis au point en vue de mieux comprendre 
les processus biochimiques impliqués dans l’hyperaccumulation et la fonction des gènes, Le système de régénération 
optimisé se base sur la  pré-culture d’explants sur un milieu contenant  10 μM TDZ + 1 mg L-1 de chacun de BAP et 
NAA suivie par l’enlèvement de TDZ du milieu de culture. La kanamycine et l’hygromycine se sont avérés être de bons 
marqueurs sélectifs pour le Pélargonium. Deux souches d'Agrobacterium, C58 et EHA105 contenant des vecteurs 
binaires avec des gènes marqueurs  hpt et nptII ont été choisis pour des expériences de transformation. Ils ont également 
le gène codant uidA séquence du gène rapporteur. Après l'infection avec C58, 4 et 107 plantes enracinées sur 
hygromycine ont été obtenues pour Attar of Roses et Atomic Snowflake, respectivement. Parmi ces plantes enracinées, 
les quatre plantes d’Attar et 82 d’Atomic Snowflake ont exprimé le Gus dans les feuilles, pétioles, les tiges et les racines 
comme prévu avec une séquence sous contrôle du promoteur constitutif CaMV 35S. De 20 plantes qui expriment le Gus, 7 
plantes se sont avérées être positives après criblage par PCR. Après infection par EHA105, 23 et 133 plantes enracinées 
ont été obtenues après sélection sur kanamycine, mais aucune n’a démontré d’activité GUS. Seule des expériences 
d’empreintes par Southern blotting permettront de corréler le nombre d’insertions et niveau de l'expression dans ces 
différents événements de transformation. Mots-clefs: Phytoremediation, Pélargonium odorants, Pb, hyperaccumulateur, 
phyto-disponibilité, spéciation, COD, pH, régénération, transformation génétique, Agrobacterium. 
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