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Résumé

Dans l’optique d’améliorer l’efficacité spectrale pour les réseaux 5G/6G, la technolo-
gie MIMO en ondes millimétriques a émergé, offrant des avancées significatives grâce
à des techniques de précodage avancées. Malgré son potentiel, la complexité des en-
vironnements urbains réels et les caractéristiques uniques des fréquences mmWave
posent des défis. La communication massive MIMO à des fréquences entre 30 GHz et
300 GHz nécessite un alignement précis des faisceaux, crucial pour établir des liens
initiaux robustes. Les méthodes classiques dans les normes conventionnelles, telles
que la WiGig, impliquent un sondage exhaustif des faisceaux, notre benchmark, en-
trâınant une surcharge importante de signalisation de pilotes et l’impossibilité de le
déployer dans des applications MIMO de grandes dimensions.

Notre recherche aborde ce problème en proposant un alignement partiel et aveu-
gle des faisceaux, une approche qui intègre des techniques d’apprentissage automa-
tique. En tirant parti des codebooks sous-échantillonnés et en utilisant des réseaux
neuronaux et la factorisation matricielle, nous visons à réduire la surcharge des
pilotes et à identifier avec précision les paires de faisceaux optimaux.

Dans la littérature, les méthodes de l’état de l’art sont divisées en deux familles:
l’alignement classique des faisceaux et l’alignement basé sur l’apprentissage automa-
tique. Les premières approches reposent sur l’alignement exhaustif des faisceaux,
généralement via des codebooks hiérarchiques, la Compressed Sensing, le Beam Cod-
ing et de nombreux autres outils, visant à optimiser le processus d’alignement des
faisceaux en utilisant tous les échantillons disponibles. Elles nécessitent généralement
une estimation de canal basée sur l’échange des CSI tout en utilisant des architec-
tures de précodage hybrides. Par contre, les approches basées sur l’apprentissage
s’appuient sur moins d’échantillons d’entrâınement avec des résultats prometteurs.
Cependant, l’étude de la complexité du ML et de ses exigences matérielles illustre
les défis liés à l’application d’outils d’IA dans les systèmes de communication sans
fil.

Dans ce contexte, ce travail vise à investiguer la faisabilité de l’approche proposée
d’alignement des faisceaux basée sur l’apprentissage automatique, en s’appuyant sur
des architectures entièrement analogiques à faible complexité avec des châınes RF
limitées et des réseaux neuronaux peu profonds. Ainsi, nous avons commencé par un
scénario basique, point-à-point, Uplink, à bande étroite et avons progressé, étape par
étape, en formulant continuellement les nouveaux problèmes techniques et les con-
traintes rencontrées, dans le but de répondre mathématiquement et empiriquement
à ces problématiques.

Nous avons d’abord considéré un scénario Uplink point-à-point, à bande étroite,
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en champ libre, utilisant une châıne RF pour l’utilisateur et une châıne RF pour
la station de base. La solution au problème d’alignement des faisceaux est basée
sur l’application de la factorisation matricielle et de ses variantes pour accomplir la
tâche d’Alignement Aveugle et Partiel des Faisceaux en utilisant des codebooks sous-
échantillonnés. En plus des garanties théoriques, les résultats numériques servent
de preuve convaincante, démontrant l’efficacité de notre approche hybride: ”data-
driven” et ”model-based”. Notamment, notre méthode atteint ses objectifs avec
efficacité, en utilisant seulement 10% des faisceaux disponibles et en atteignant une
solution entièrement aveugle au CSI. Cette réalisation représente une avancée signi-
ficative pour relever le défi du grand surdébit de signalisation dans l’alignement des
faisceaux et a conduit à la publication d’un article au sein de la conférence WCNC.

Notre deuxième découverte dans le cadre de ce doctorat a débuté par une ex-
tension de notre modèle système, augmentant la complexité de notre configuration
expérimentale pour refléter des conditions réelles, notamment un modèle large bande
en non-ligne de visée, plusieurs châınes RF à la station de base et des codebooks
DFT sous-échantillonnés. Par la suite, nous avons introduit l’architecture du per-
ceptron multicouche, présentant ses équations d’entrée-sortie, énonçant le problème
et formulant la solution. Ainsi, nous avons proposé une étude comparative, mettant
en lumière l’interaction nuancée entre la complexité et la qualité des prédictions
pour les deux méthodes. Nos résultats soulignent que seulement 10% de l’ensemble
des paires de faisceaux sont suffisants pour aligner avec précision les faisceaux entre
l’équipement utilisateur et la station de base, pour les deux méthodologies pro-
posées, dans un scénario utilisateur unique point à point. De plus, nous avons
exploré de manière perspicace les similitudes et les différences dans le comporte-
ment des modèles en variant la puissance émise. Ces résultats éclairent la viabilité
pratique de nos méthodes, fournissant une base solide pour leur application dans des
contextes réels et ouvrant la voie à une nouvelle ère d’alignement de faisceaux dans
les futurs systèmes de communication. Ces découvertes ont permis la soumission du
papier journal EURASIP.

Le troisième résultat de cette thèse de doctorat explore profondément la quan-
tification, s’attaquant ainsi aux contraintes pratiques du déploiement des modèles
d’apprentissage automatique. Nous avons commencé par établir l’architecture du
système et la formulation des équations du modèle. Une illustration mathématique
de ces contraintes a été entreprise, ouvrant la voie à la création du jeu de données
quantifié, pour nos classifieurs. L’approche d’apprentissage a ensuite été élucidée,
cartographiant la cascade des couches de régression logistique binaire et décrivant
leurs équations d’entrée-sortie respectives à chaque étape.

Notamment, les révélations numériques ont mis en évidence une constatation
cohérente et assertive: notre ratio optimal de surcharge (maintenu à 10% tout au
long de cette thèse) peut s’harmoniser avec un schéma aggressif de quantification
binaire. Cette adaptation, remarquablement, ne compromet pas la qualité prédictive
tout en respectant des strictes prérequis de faible complexité, affirmant ainsi la
praticabilité de notre approche proposée, comme illustré dans la publication du
papier de la conférence ICC.

Enfin, nous avons investigué la gestion du scénario multi-utilisateur, en formulant
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les problèmes sous-jacents et les équations du système. Nous avons ainsi présenté
deux approches pour résoudre le problème: la complétion matricielle generalisée et
la complétion tensorielle. Notre jeu de données, une collection de valeurs SINR pour
chaque paire de faisceaux à travers tous les utilisateurs, est devenu la pierre angulaire
sur laquelle notre procédure d’alignement a été élaborée, exploitant des codebooks
sous-échantillonnés par DFT. À mesure que notre exploration approfondissait, les
CNN peu profondes, MLP et AE ont non seulement atteint leurs objectifs, mais l’ont
fait avec un faible ratio de surcharge de pilote, soulignant l’efficacité des deux ap-
proches proposées. De plus, le protocole expérimental a impliqué une comparaison
axée sur la qualité de service, explorant les performances des modèles en fonction
des échantillons d’entrâınement disponibles. En reconnaissant les limitations ren-
contrées, nous avons tracé les voies pour des recherches futures, mettant en évidence
des directions de recherches pour améliorer nos méthodologies et les éventuelles per-
spectives pour surmonter ces défis.



6



Contents

1 Introduction 23
1.1 General context: 5G and towards 6G applications . . . . . . . . . . . 23
1.2 Literature survey and technical overview . . . . . . . . . . . . . . . . 24
1.3 Research plan and manuscript organization . . . . . . . . . . . . . . . 25
1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2 Foundations of Machine Learning for Wireless Communications 29
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2 A brief history of Artificial Intelligence and Computer Science . . . . 30
2.3 Statistical Learning and foundations of probability . . . . . . . . . . 32
2.4 Neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4.1 From formal neuron to increasing in depth . . . . . . . . . . . 37
2.4.2 Activation functions and neural architectures . . . . . . . . . . 38
2.4.3 Empirical Risk Minimisation principle and Loss functions . . . 42
2.4.4 Gradient descent and back-propagation . . . . . . . . . . . . . 45

2.5 Learning paradigms and optimization problems . . . . . . . . . . . . 48
2.5.1 Supervised, Unsupervised and Reinforcement Learning . . . . 48
2.5.2 Families of optimization problems . . . . . . . . . . . . . . . . 49

2.6 Matrix Factorization for low-rank matrix completion . . . . . . . . . 51
2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3 Overview of Beam Alignment for mmWave MIMO communica-
tions 55
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.2 The mmWave band and propagation properties . . . . . . . . . . . . 55

3.2.1 mmWave spectrum . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2.2 mmWave limitations . . . . . . . . . . . . . . . . . . . . . . . 57
3.2.3 mmWave massive MIMO challenges . . . . . . . . . . . . . . . 58

3.3 Overview of Beam Management techniques for MIMO systems . . . . 59
3.3.1 Beamforming, precoding and combining . . . . . . . . . . . . 59
3.3.2 Analog, digital and hybrid MIMO architectures . . . . . . . . 61
3.3.3 Beam Alignment . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.3.4 SotA Beam Alignment and benchmark . . . . . . . . . . . . . 65
3.3.5 Beam Sweeping: . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.3.6 Beam Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7



3.4 Machine Learning meets the beam Alignment Problem . . . . . . . . 69
3.4.1 Wireless communications datasets for AI tools . . . . . . . . . 70

3.5 Non-linear regression using shallow neural networks . . . . . . . . . . 71
3.6 Logistic regression using classifiers . . . . . . . . . . . . . . . . . . . . 72
3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4 Matrix Factorization for blind and partial Beam Alignment in mas-
sive mmWave MIMO 75
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2 Point-to-point system architecture with one-RF chain at UE and BS . 76

4.2.1 Beam former and combiner . . . . . . . . . . . . . . . . . . . 76
4.2.2 Narrowband Saleh-Valenzuela mmWave Channel model . . . . 76
4.2.3 Received Signal Energies . . . . . . . . . . . . . . . . . . . . . 77
4.2.4 Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.3.1 Proposed low-rank MF Approach: . . . . . . . . . . . . . . . . 79
4.3.2 Proposed low-rank NMF Approach: . . . . . . . . . . . . . . . 81
4.3.3 Overhead ratio . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4 Solutions to the formulated problems . . . . . . . . . . . . . . . . . . 82
4.4.1 BCD, BGD and BSGD solutions using Matrix Factorization . 83
4.4.2 BCD, BGD and BSGD solutions using Non-negative Matrix

Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.5 Predictions for MF and NMF . . . . . . . . . . . . . . . . . . . . . . 87
4.6 Algorithm for the proposed Beam Alignment using MF/NMF . . . . 88
4.7 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.7.1 Train Performance . . . . . . . . . . . . . . . . . . . . . . . . 89
4.7.2 Test Performance . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.7.3 Train/Test Performance . . . . . . . . . . . . . . . . . . . . . 92

4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5 Multi Layer Perceptron for blind and partial Beam Alignment in
massive mmWave MIMO 95
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.2 Point-to-point system architecture with one-RF chain at UE and mul-

tiple RF-chains at BS: . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.2.1 Beam former and combiner . . . . . . . . . . . . . . . . . . . 97
5.2.2 Wideband Saleh-Valenzuela mmWave Channel model . . . . . 97
5.2.3 Received Signal Energies . . . . . . . . . . . . . . . . . . . . . 98

5.3 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.3.1 Problem statement for MLP . . . . . . . . . . . . . . . . . . . 98
5.3.2 Proposed solution . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.3.3 Back-propagation Algorithm with mini-batch: . . . . . . . . . 100
5.3.4 Prediction using MLP: . . . . . . . . . . . . . . . . . . . . . . 101

5.4 Algorithms of the proposed Beam Alignment using MLP and MF/NMF101
5.5 Numerical simulations and comparison . . . . . . . . . . . . . . . . . 102

8



5.5.1 MF/NMF training and test QoS Performance . . . . . . . . . 103
5.5.2 MLP training and test QoS Performance . . . . . . . . . . . . 106
5.5.3 Comparative study of MF and MLP performances . . . . . . . 110
5.5.4 Similarities and Differences between models . . . . . . . . . . 112

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6 Cascaded binary classifiers for Beam Alignment using 1-bit quan-
tization 115
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.2 System architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.3 Binary Classification and one-bit Quantization . . . . . . . . . . . . . 117

6.3.1 One-bit Quantization . . . . . . . . . . . . . . . . . . . . . . . 117
6.3.2 Binary Logistic Regression . . . . . . . . . . . . . . . . . . . . 118

6.4 Proposed cascaded structure of Binary Logistic Regression . . . . . . 119
6.4.1 System architecture and input-output equations . . . . . . . . 119
6.4.2 Analysis: algorithm convergence, computational complexity,

signaling overhead . . . . . . . . . . . . . . . . . . . . . . . . 121
6.4.3 Cascaded-BLR based BA Algorithm . . . . . . . . . . . . . . 121

6.5 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.5.1 Train/Test Performance . . . . . . . . . . . . . . . . . . . . . 125
6.5.2 Total signaling overhead ratio . . . . . . . . . . . . . . . . . . 125

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7 Convolutional Neural Network and Auto Encoder for Multi User
Beam Management in mmWave massive MIMO 127
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.2 SotA Multi-user Beam Alignment . . . . . . . . . . . . . . . . . . . . 128
7.3 Multi-user system model . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.4 SINR tensor dataset: problem formulation . . . . . . . . . . . . . . . 131
7.5 Proposed solutions using AE, MLP and CNN . . . . . . . . . . . . . 131
7.6 Numerical simulations: . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.6.1 Primary results . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.6.2 Limitations and perspectives . . . . . . . . . . . . . . . . . . . 140

7.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

8 Conclusions and perspectives 143
8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
8.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

A Proof: BCD convergence 147

B Proof: BLR convergence 149



10



List of Figures

2.1 AI timeline [29] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2 Statistical learning intersections with AI and ML disciplines . . . . . 33
2.3 Formal neuron diagram representation . . . . . . . . . . . . . . . . . 37
2.4 Neural architectures overview [34]: the distinction between neural

architectures lies in the specific types of cell functions that constitute
individual layers and the manner in which these layers are arranged
and interconnected. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.5 2D convolution layer simplified diagram representation [35]: Size rep-
resents the dimensions of the convolutional filter, Padding consists in
adding extra border pixels to the input image to control the spatial
dimensions of the output feature map after convolution and Stride is
the step size at which the convolutional filter moves across the input
image during the convolution operation. . . . . . . . . . . . . . . . . 43

2.6 Overfitting and underfitting symptoms observed on the train/test Er-
ror curve in function of the ML model complexity: underfitting is
related to high bias and low variance while overfitting is the result of
high variance and low bias. . . . . . . . . . . . . . . . . . . . . . . . . 44

2.7 Families of Optimization problems [37] . . . . . . . . . . . . . . . . . 50
2.8 Matrix Factorization simplified diagram representation for 6×5 input

matrix: S is first decomposed as the product of two latent factors
(model’s parameters P and Q) in order to fill the unknown coefficients 51

3.1 mmWave spectrum: the band of frequencies between 30 and 300 GHz
[38] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2 Overview of mmWave propagation limitations and challenges [39] . . 58
3.3 Beamforming gain and directivity in MIMO systems: more antennas

gives narrower and more directive lobes [40] . . . . . . . . . . . . . . 60
3.4 Simplified fully-analog beamforming architecture . . . . . . . . . . . . 61
3.5 Simplified fully-digital beamforming architecture . . . . . . . . . . . . 62
3.6 Simplified analog-digital beamforming architecture . . . . . . . . . . . 62
3.7 Beam Alignment technical objective: accurately direct the beams

between UE/BS using codebooks holding beam patterns for each an-
tenna pair in both sides of the transmission . . . . . . . . . . . . . . 63

3.8 Simplified illustration of an Uplink scenario for Beam Alignment using
(AoA, AoD) from UE/BS DFT codebooks . . . . . . . . . . . . . . . 64

3.9 Uniform codebook beams vs Laplacian codebook beams [46] . . . . . 65

11



3.10 SotA Beam Training families of methods [1] . . . . . . . . . . . . . . 66

3.11 SotA Beam Tracking families of methods [1] . . . . . . . . . . . . . . 69

4.1 Exhaustive Search step by step using two RF chains at BS and one
RF chain at UE through a 4× 4 MIMO setup . . . . . . . . . . . . . 78

4.2 Proposed partial BA using sub-sampled codebooks: toy-example with

CT = CR = 4 using one RF chain at UE and two RF chains at BS i) Ran-

domly sound subset of beam-pairs from codebook at UE and BS (colored

entries in the dataset matrix represent the training set) ii) Process MF to

predict RSE of non-sounded beam-pairs (matrix coefficients marked with

X) iii) Select the optimal couple which holds the largest RSE (or SNR in

case of prior CSI-based channel estimation) . . . . . . . . . . . . . . . . 80

4.3 Toy Example: Matrix Factorization with |T | = 5, |R| = 7, D = 3.
MF results in two rectangular matrices to be optimized: MF uses
the RSE of known beams in yellow to complete and infer for the
unknown beams, colored in gray. The product of the latent vectors
θθθT2 and ψψψ5 gives the unknown value of RSE2,5 . . . . . . . . . . . . . 83

4.4 Train and Test MF/NMF Performance in function of the overhead ratio 89

4.5 MF/NMF Learning curves: Train/Test MSE in function of the learn-
ing iterations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.1 Proposed BA diagram representation . . . . . . . . . . . . . . . . . . 96

5.2 Multi Layer Perceptron Architecture (Toy example with J = 4) . . . 99

5.4 MF/NMF Train/Test performance and Learning curves . . . . . . . 105

5.5 MLP Learning curves . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.6 Train/Test NMSE in function of Pu forMLP andMF for 512×512
using optimal overhead ratio . . . . . . . . . . . . . . . . . . . . . . . 109

5.7 Train/Test NMSE in function of Pu forMLP andMF for 128×128
using optimal overhead ratio . . . . . . . . . . . . . . . . . . . . . . . 110

5.8 log(NMSE) in function of Pu for 1024×1024 using optimal overhead
ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.1 Cascaded binary logistic regression diagram representation . . . . . . 119

6.2 Models performance evaluation for 64 × 64 and 128 × 128: learning
curves, confusion matrix, accuracy, precision, recall and F1-score . . . 122

6.3 Models performance evaluation for 256×256 and 512×512 : learning
curves, confusion matrix, accuracy, precision, recall and F1-score . . . 123

7.1 Simplified diagram representation of the proposed Uplink multi-user
architecture with 3 UEs . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.2 Proposed solution for multi user system with K=3: generalized point-
to-point vs tensor completion . . . . . . . . . . . . . . . . . . . . . . 133

7.3 CNN Learning curves for multi user Beam Alignment . . . . . . . . . 136

7.4 AE Learning curves for multi user Beam Alignment . . . . . . . . . . 137

7.5 MLP Learning curves for multi user Beam Alignment . . . . . . . . . 138



7.6 QoS models evaluation: -log(MSE) in function of the number of train-
ing samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

13



14



List of Tables

1 Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2 Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3 Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4 Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1 Frequently used activation functions: definitions, derivatives and plots 38

4.1 256 by 256 Train MSE in function of the overhead ratio . . . . . . . . 91
4.2 512 by 512 Train MSE in function of the overhead ratio . . . . . . . . 91
4.3 1024 by 1024 Train MSE in function of the overhead ratio . . . . . . 91
4.4 256 by 256 Test MSE in function of the overhead ratio . . . . . . . . 92
4.5 512 by 512 Test MSE in function of the overhead ratio . . . . . . . . 92
4.6 1024 by 1024 Test MSE in function of the overhead ratio . . . . . . . 92
4.7 The minimum overhead required for the proposed configurations . . . 93

5.1 Point-to-point BA: proposed system parameters and hyperparameters 103
5.2 MF/NMF — QoS Minimum overhead required for Pu = 1W . . . . 105
5.3 MF/NMF — QoS Minimum overhead required for Pu = 10−1W . . 105
5.4 MF/NMF — QoS Minimum overhead required for Pu = 10−2W . . 106
5.5 MLP — QoS Minimum overhead required for Pu = 1W . . . . . . . 106
5.6 MLP — QoS Minimum overhead required for Pu = 10−1W . . . . . 106
5.7 MLP — QoS Minimum overhead required for Pu = 10−2W . . . . . 107

7.1 Proposed system parameters and hyperparameters . . . . . . . . . . . 134



16



Glossary

AE: Auto-Encoder.

AI: Artificial Intelligence.

ALS: Alternating Least Squares.

AoD: Angle of Departure.

AoA: Angle of Arrival.

ADC: Analog to Digital Converter.

AWGN: Additive White Gaussian Noise.

BA: Beam Alignment.

BS: Base Station.

BCE: Binary Cross Entropy.

BCD: Block Coordinate Descent.

BGD: Block Gradient Descent.

BSGD: Block Stochastic Gradient Descent.

CSI: Channel State Information.

CAE: Convolutional Auto Encoder.

CNN: Convolutional Neural Network.

DFT: Discrete Fourier Transform.

DAC: Digital to Analog Converter.

ERM: Empirical Risk Minimization.

FF: Feed Forward.

GD: Gradient Descent.

GPU: Graphics Processing Unit.

17



GPT: Generative Pre-trained Transformer.

GPS: Global Positioning System.

IEEE: Institute of Electrical and Electronics Engineers.

ISI: Inter Symbol Interference.

IP: Integer Programming.

LoS: Line of Sight.

LP: Linear Programming.

MDP: Markov Decision Process.

MF: Matrix Factorization.

ML: Machine Learning.

MRC: Maximum Ratio Combining.

MLP: Multi Layer Perceptron.

MIMO: Multiple Input Multiple Output.

MU-MIMO: Multi User Multiple Input Multiple Output.

MIP: Mixed Integer Programming.

MSE: Mean Squared Error.

MMSE: Minimum Mean Squared Error.

NMF: Non-Negative Matrix Factorization.

NLP: Non Linear Programming.

NLoS: Non Line of Sight.

NMSE: Normalized Mean Squared Error.

OFDM: Orthogonal Frequency Division Multiplexing.

PMF: Probability Mass Function.

PCA: Principle Component Analysis.

PDF: Probability Density Function.

QP: Quadratic Programming.

QoS: Quality of Service.

18



RMSE: Root Mean Squared Error.

ReLu: Rectified Linear Unit.

RNN: Recurrent Neural Network.

RSE: Received Signal Energies.

RF: Radio Frequency.

SGD: Stochastic Gradient Descent.

SotA: State-of-the-Art.

SVM: Support Vector Machine.

SNR: Signal to Noise Ratio.

SINR: Signal to Interference and Noise Ratio.

SU-MIMO: Single User Multiple Input Multiple Output.

Tanh: Hyperbolic Function.

TPU: Tensor Processing Unit.

t-SNE: t-distributed Stochastic Neighbor Embedding.

UE: User Equipment.

VAE: Variational Auto Encoder.

ZF: Zero Forcing.



20



Notations

The following notations are employed throughout the present PhD manuscript.

Notation Description
ai i-th element of vector a
ai i-th element of the random vector a
Ai,j Element at row i, column j of matrix A
Ai,j Element at row i, column j of the random matrix A
Ai,: Row i of matrix A
A:,j Column j of matrix A
aT Transpose of vector a
AT Transpose of matrix A
A−1 Inverse of matrix A
|A| Determinant of matrix A
A† Transpose conjugate of A, or Hermitian transpose
A∗ Conjugate of A

diag(v) Diagonal matrix with diagonal elements from vector v
D(M) Vector (column) constructed from the diagonal elements of matrix M
A×B Product of matrices A and B
A⊙B Pointwise (Hadamard) product of matrices (or any n-dimensional tensor) A and B
||a||1 1-norm of vector a
||a||2 2-norm, or Euclidean norm, of vector a
||a||22 Squared Euclidean norm of vector a

A ≻ 0, A ⪰ 0 Positive Definite and Positive Semi-Definite matrices
A ≺ 0, A ⪯ 0 Negative Definite and Negative Semi-Definite matrices

Table 1: Algebra

Notation Description
df(x)
dx
∈ R or f ′(x) Derivative of f(x) : R→ R with respect to scalar x
∂f(x)
∂x
∈ R Partial derivative of scalar field f(x) : Rn → R with respect to scalar x

∇xf(x) = ∂f(x)
∂x
∈ Rn Gradient of scalar field f(x) : Rn → R with respect to vector x

∇xfx(x) = ∂f(x)
∂x
∈ Rn×m Matrix derivative of scalar field f(X) : Rn×m → R with respect to matrix X

∂f(x)
∂x
∈ Rm Derivative of vector field f(x) : Rn → Rm with respect to scalar x

Jxf(x) =
∂f(x)
∂x
∈ Rn×m Jacobian matrix of vector field f(x) : Rn → Rm with respect to vector x

∂F (X)
∂x
∈ Rl×p Derivative of matrix function F (X) : Rn×m → Rl×p with respect to scalar x

∇2xf(x) = ∂
∂x

(∇xf(x)) ∈ Rn×n Hessian of scalar field f(xx) : Rn → R with respect to vector x

Table 2: Calculus



Notation Description
a Scalar
a Vector (column)
A Matrix
ek k-th standard basis vector, i.e., a vector with a 1 at index k and 0 otherwise
In Identity matrix of size n× n. If n is not specified, it is implied by context
0 All-zero vector (or any n-dimensional tensor) whose size is implied by context
j Imaginary unit
x∗ Complex conjugate of the complex number x

Table 3: Arrays

Notation Description
a Random scalar variable
a Random vector variable (column)
A Random matrix variable

a ∼ D Random variable a follows distribution D
P (a ∼ D | a = a) Probability that the random variable a takes the value a under distribution D

p(a ∼ D, a = a) = p(a) Probability Mass Function of (discrete) random variable a
f(a ∼ D, a = a) = f(a) Probability Density Function of (continuous) random variable a

E(a ∼ D) Expectation of the random variable a following distribution D
V ar(a ∼ D) Variance of the random variable a following distribution D

Table 4: Probabilities

Notation Description
x(t) A continuous signal as a whole or indexed at time t
x[k] A discrete signal as a whole or the k-th sample (sometimes denoted as xk using vector indexing notations)
δ(x) Dirac function or Kronecker Delta function
f(x; θ) Parametric function of x with θ as a parameter

argminθf(θ) Argument of the minima of the function f(θ) with regard to parameters θ
argmaxθf(θ) Argument of the maxima of the function f(θ) with regard to parameters θ
limx→∞ f(x) Limit of the function f(x) as x approaches +∞

x ∗ y Convolution of signal x by signal y (discrete or continuous)
x ⋆ y Cross-correlation of signal x by signal y (discrete or continuous)
Ryy Auto-Correlation Matrix of signal y

Table 5: Functions

Notation Description
S A set

{1, 2, 3} The elements of a set
Sn The power set whose elements are the n-ary Cartesian product of S
Sc Complement of a set (with regard to another)

A ∪B Union of sets A and B
A ∩B Intersection of sets A and B
Card(S) The cardinal, i.e., size, of a set
[a, b[ An interval over an ordered set between a (included) and b (excluded) endpoints
Fp A finite field, i.e., Galois field, of p elements
R The set of real numbers
C The set of complex numbers

Table 6: Sets
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Chapter 1

Introduction

”I propose to consider the question, Can ma-
chines think? This should begin with defini-
tions of the meaning of the terms machine
and think.”

Alan Turing.

1.1 General context: 5G and towards 6G appli-

cations

In recent years, the exponential growth in data consumption and the emergence
of bandwidth-intensive applications have driven the evolution of wireless commu-
nication systems for the fifth generation and towards the highly anticipated sixth
generation. These next-generation networks aim to satisfy the increasing demand
for higher data rates, ultra-low latency, and massive connectivity, ushering in a new
era of communication for multiple applications including Enhanced Mobile Broad-
band, Internet of Things, mission-critical communications, augmented reality and
autonomous vehicles. As predicted in [1], worldwide data traffic demand will grow
to 5 Zettabytes per month, with personal data rates reaching 100 Gbps by 2030. To
address these ambitious requirements, Multiple-Input Multiple-Output technology
(MIMO) has is considered a fundamental pillar in enhancing system capacity and
spectral efficiency. Specifically, Massive MIMO based technologies enhance spec-
tral efficiency by allowing multiple users to be served simultaneously on the same
frequency band offering better coverage, reduced interference, and enhanced overall
system performance via diversity gain.

In particular, the utilization of millimeter-wave frequency bands has garnered
substantial interest as a key resource for meeting the escalating data demands of
future wireless networks. The mmWave bands, spanning from 30 to 300 GHz, offer
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significantly wider bandwidths compared to traditional frequency bands, enabling
unprecedented data transmission rates. By harnessing the vast spectrum available
in the mmWave range, MIMO systems hold tremendous potential in transforming
the wireless landscape and enabling a myriad of innovative applications.

Nevertheless, propagation at mmWave frequencies is severely impacted by high
free-space path loss which results in a significant attenuation of transmitted signals
in addition to remarkable penetration loss. These sensitive physical properties of
mmWave suggest the use of large antenna arrays and the application of beamforming
techniques in order to design highly directional beams. Hopefully, mmWave band
is characterized by small wavelength which allows the implementation of massive
antenna elements in small sized arrays in order to guarantee large beamforming
gain. In this thesis, we investigate one fundamental problematic: what is the optimal
beam steering direction between a transmitted and a receiver in mmWave Massive
MIMO networks. This primordial technical challenge is denoted in the literature as
the Beam Alignment (BA) problem:

• Technical problem: in order to guarantee a reliable initial link before data
transmission, the beams at the transmitter and the receiver sides are continu-
ously and constantly aligned and accurately steered. However, the alignment
procedure is subject to a large pilot overhead, which scales with the resolution
of the beamforming codebook and the number of antennas at both sides of
the transmission, in crucial time-varying conditions and non-stochastic vari-
ations of the wireless network. We focus on the signaling overhead problem
where traditional beam alignment techniques, such as exhaustive search based
predefined codebooks are not applicable and are not well-suited for dynamic
environments with high dimensional antenna systems.

• Proposed solution: to address this limitation, machine learning techniques
have emerged as a promising solution, providing multiple tools that can adap-
tively learn beamforming patterns and optimize beam alignment based on
channel conditions and environmental dynamics. Moreover, ML algorithms
can rely on large-scale datasets, to extract complex beamforming features and
strategies which aims to maximize signal quality, minimize destructive inter-
ference, and improve overall system performance.

1.2 Literature survey and technical overview

The beam alignment problem, due to its significance, has been extensively inves-
tigated and addressed in the existing literature. In conventional standards, Brute
Force BA, is the de-facto approach for the Alignment process. Denoted as Exhaus-
tive BA, it consists on sounding all beam-pairs at both sides of the transmission
in order to Exhaustively select the beam couple with the highest Signal to Noise
ratio. In the 60 GHz, this approach has been adopted in multiple mmWave WLAN
or WPAN communication technologies, e.g., IEEE 802.15.3c [2], IEEE 802.11ad
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[3] [4]. It is continuously and conventionally being applied in small MIMO config-
urations using small codebook sizes (e.g., codebooks of size 8 × 8 for LTE). Early
approaches introduce two main families of BA methods: classical BA and ML-based
BA.

• Classical BA: these techniques are all based on Exhaustive BA. They aim to
require more and more structured Beam Alignment scheme using hierarchical
multi-level codebooks [5] where training beamforming vectors with different
beam widths on multiple stages are used. In addition, overlapped beam pat-
tern [6] techniques, Beam coding [7] and Subspace estimation/decomposition
based BA [8] are also well investigated in the literature. Besides, exploiting
channel sparsity, Compressed sensing-based BA [9] estimates the angles of de-
parture/arrival and the channel propagation path gains so that it constructs
the beamforming vectors. Recently, a lot of researchers withdrew this ap-
proach due to non-linearity limitations. The limitations of classic approaches
are the large signaling overhead ratio which states the impossibility of their
deployment in massive MIMO systems. Some of these methods rely on strong
assumptions regarding the temporal variations and generally require a precise
prior knowledge of channel statistics, structure and sparsity.

• ML-based Beam Alignment: lately, Machine Learning tools for BA emerged
and are increasingly and continuously illustrating promising results. For in-
stance, statistical models such as Kolmogorov in [10] with sub-sampled code-
books introduced the concept of Partial BA where a small subset of all available
beams is used for the Alignment process. Same core-theme explains the in-
tensive use of multiple shallow neural networks where we can distinguish two
major learning paradigms: first, Supervised Learning to resolve non-linear re-
gression problems using Support Vector Machine for joint Analog beam selec-
tion in [11], convolutional neural networks based on a beam space observation
in combination with RF environment characteristics in [12]. Similar neural
architectures are used for calibrated beam training in [13] in addition to recur-
rent neural networks for beam tracking in [14][15][16] and auto-encoders for
beam Management in [17]. Second, the Reinforcement Learning in [18][19][20],
generally used to resolve the problems of Multi-Armed Bandit and Markov de-
cision process. Recently, multiple semi-supervised and Unsupervised learning
paradigms are increasingly investigated.

1.3 Research plan and manuscript organization

This PhD work focuses on addressing the challenge of large signaling overhead in
Beam Alignment for mmWave massive MIMO systems using Machine Learning tech-
niques. The goal is to propose signal processing approaches for Partial and Blind BA
by involving sub-sampled codebooks that do not require explicit channel estimation.
Our approach offers two main advantages: reducing the overhead by using a small
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training set of beam pairs and suppressing the dependency on channel estimation
using low-complexity ML methods for fully-analog system architecture.

The research methodology adopted in this thesis follows a progressive approach,
starting from a basic and simple scenario and gradually incorporating constraints
and complexity. At each stage, a specific problem is formulated and resolved, while
considering the trade-off between accuracy and complexity from a Quality of Service
perspective.

• The initial phase of the thesis involves an extensive literature survey and math-
ematical analysis of the problem. The massive MIMO system model begins
with a simple architecture and progressively introduces additional constraints
and complexities. We then formulate the non-convex optimization problem,
known as Block Coordinate Descent, and explore its closed-form solution. Sub-
sequently, the alignment process is framed as a matrix completion problem,
where Matrix Factorization and its variants naturally fit the task at hand. For
BA, the proposed approach involves using sounding Received Signal Energies
(RSE), i.e., Received Signal Strength, to generate a dataset matrix, capturing
RSE values for all beam-pairs between the User Equipment and Base Station.
A small subset of this matrix is randomly selected as the training set for the
ML models, while the remaining unsounded beams represent the test set. Ma-
trix completion is performed by predicting the RSE values for the test set using
ML techniques. Thus, we start the investigation proposing an Uplink, point-
to-point, narrowband system model with fully-analog architecture using phase
shifters. Supported by theoretical guarantees for the monotonic convergence
of the Learning Cost function, the thesis empirically demonstrates the success
ofMF and Non-negativeMF in the alignment task using only 10% fraction of
the beam-pairs as the training set. The problem formulation shares similarities
with collaborative filtering for recommendation systems [21], where MF aims
to accurately complete sparse, massive, and low-rank dataset matrices. In or-
der to investigate the impact of different optimizers and parameter constraints,
sixMF -based models/variants are implemented and showed promising results
empirically.

• The system architecture in the second phase of the thesis is enhanced to include
multiple RF chains at the Base Station, and the channel model follows the
widely used Saleh-Valenzuela [22], from narrowband to wideband model with
the utilization of Discrete Fourier Transform codebooks. This extension of the
system model conducts the exploration of various Machine Learning tools for
the same non-linear regression problem in mmWave massive MIMO systems.
Additionally, the impact of varying the transmitted power (and so, the RSE
regime) is investigated. ML contributions in this phase include the utilization
of Multi-Layer Perceptron architecture and a QoS performance comparison
with MF/NMF .

• In the third step of the thesis, a practical perspective is adopted, addressing the
quantization of Received Signal Energy values before the alignment procedure.
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This introduces a dual trade-off challenge: determining the minimum number
of training samples required and identifying the optimal quantization scheme.
Consequently, the dataset becomes discrete, and the problem transforms from
non-linear regression to logistic regression. Empirical observations reveal that
a binary quantization scheme using a cascaded structure of Binary Logistic
Regression layers can achieve satisfactory performance with only 10% of the
beams as the training set.

• The final research direction of the thesis focuses on the scalability of the
proposed approach in a multi-user scenario. An uplink multi-user mmWave
MIMO model is proposed based on Signal-to-Interference-plus-Noise Ratio val-
ues. The dataset now becomes a high-dimensional tensor, and two approaches
are explored: processing each user separately using a shallow neural archi-
tecture or considering the entire tensor and feeding it to a denser and more
complex neural network. This investigation aims to examine the trade-off
between prediction quality and computational complexity in both approaches.

The manuscript follows a structured organization that aligns with the research
plan. Chapter one provides an introduction to the PhD context and presents a brief
survey of the state-of-the-art, emphasizing the large signaling overhead problem in
massive MIMO systems and the need for ML techniques to overcome the limitations
of conventional methods.

Chapter two introduces Machine Learning for Wireless Communications, encom-
passing a historical overview of AI and Computer Science, statistical learning prin-
ciples, fundamentals of neural architectures, mathematical foundations of learning
paradigms and optimization problems and an introduction to Matrix Factorization
and its Non-negative MF variant.

Chapter three focuses on the Beam Alignment problem in mmWave MIMO com-
munications. It begins with an overview of the mmWave band, highlighting its ad-
vantages, sensitive propagation properties, as well as limitations and challenges. The
chapter then presents the Beam Management techniques, including Beamforming,
precoding, combining, Beam Alignment, Beam Sweeping and Beam Tracking. The
meeting between Machine Learning and Beam Alignment is introduced, emphasizing
the resolution of non-linear and logistic regression problems throughout the PhD.

Chapter four constitutes the first contribution of the thesis, presenting Matrix
Factorization for blind and partial Beam Alignment in massive mmWave MIMO sys-
tems. It includes the point-to-point narrowband system model, problem statement,
benchmark, proposed solutions, algorithm, and numerical simulations for model
training and test evaluation.

Chapter five represents the second contribution, introducing the utilization of
Multi-Layer Perceptron for blind Beam Alignment in massive mmWave MIMO sys-
tems. The chapter encompasses an extended system architecture and a wideband
model, problem formulation, proposed solutions, algorithm, numerical results, and
a comparison with the performance of Matrix Factorization while considering vari-
ations in the transmitted power regime and signaling overhead ratios.
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Chapter six illustrates the third contribution, incorporating practical constraints
such as quantization and proposing a cascaded structure of Binary Logistic Regres-
sion layers for binary classification tasks. The chapter derives the total and aggre-
gated signaling overhead and explores the accuracy/complexity trade-off through
numerical simulations.

Chapter seven presents the fourth contribution, which introduces a multi-user
system model based on SINR values and presents the utilization of Convolutional
Neural Network for Multi-User Beam Alignment in mmWave MIMO systems. The
chapter outlines the corresponding algorithm and experimental protocol to evaluate
the performance of the proposed approach.

Finally, chapter eight concludes the thesis and provides perspectives for future
research directions, highlighting the contributions made in this work and their im-
plications for advancing the field of Beam Alignment in mmWave massive MIMO
systems.
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Chapter 2

Foundations of Machine Learning
for Wireless Communications

”The fundamental problem of communication
is that of reproducing at one point either ex-
actly or approximately a message selected at
another point.”

Claude Shannon.

2.1 Introduction

Artificial Intelligence is a trending field of computer science focused on creating and
designing systems capable of performing tasks that typically require human intel-
ligence, such as problem-solving and learning from various and massive datasets.
Machine Learning is a subset of AI that involves developing algorithms and mod-
els that enable computers to improve their performance on specific tasks through
exposure to data and patterns, without being explicitly programmed and without
any user intervention. On the other hand, Wireless Communications is a technology
that enables the transmission of data and information over long distances without
physical connections, using electromagnetic waves through the air. The relationship
between AI and Wireless Communications lies in AI’s potential to help the wireless
industry by enhancing network management, optimizing resource allocation, com-
bating crucial large signaling overheads and enabling intelligent decision-making,
thereby advancing the capabilities and efficiency of wireless communication systems.
In this preliminary chapter, we embark a historical journey to explore the evolution
of Artificial Intelligence. Subsequently, we delve into the foundational pillars of AI,
encompassing essential elements like Statistical Learning, Probability theory, Neural
Networks, the Empirical Risk Minimization principle, various Learning paradigms,
Optimization problems, and Matrix Factorization for completing low-rank matrices.
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Figure 2.1: AI timeline [29]

2.2 A brief history of Artificial Intelligence and

Computer Science

The fields of Artificial Intelligence and Computer Science have experienced signif-
icant progress throughout their extensive timeline, profoundly influencing various
aspects of our society. In the course of history, notable advancements can be traced
back to ancient times, such as the analog computer known as the Antikythera mech-
anism from the second century BC [24], as well as the development of Euclid’s al-
gorithm for calculating the greatest common divisor of integers [25]. The desire to
automate machines has been a longstanding aspiration of humankind, and vision-
aries like Charles Babbage (1791 - 1871) [26], Ada Lovelace (1815 - 1852) [27], and
Alan Turing (1912 - 1954) [28] played pivotal roles in advancing this dream. Their
contributions marked a significant shift from single-purpose computing devices to
the advent of general-purpose computers. The modern era of AI can be traced back
to the Dartmouth Conference in 1956, where influential researchers like John Mc-
Carthy and Marvin Minsky coined the term ”Artificial Intelligence” and laid the
foundation for future advancements.

• Since then, AI has experienced periods of significant progress and transfor-
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mative breakthroughs, alongside phases of reduced funding and diminished
interest, commonly referred to as AI winters. However, in the 21st century,
AI has experienced a resurgence, fueled by exponential growth in computa-
tional power, the availability of vast amounts of data, and groundbreaking
algorithmic innovations.

• The timeline of AI breakthroughs showcases notable milestones. In the 1990s,
the field witnessed the rise of machine learning, particularly with the introduc-
tion of neural networks and the development of efficient learning algorithms.
This period saw the successful application of AI techniques in various domains,
including natural language processing, computer vision, and speech recogni-
tion.

• In more recent years, the advent of big data and the proliferation of pow-
erful computing systems have enabled the training of deep neural networks,
giving rise to the era of deep learning. This advancement has revolutionized
AI by enabling breakthroughs in areas such as image and video recognition,
autonomous vehicles, and natural language understanding

• Simultaneously, Computer Science as a discipline has evolved alongside these
AI developments. It encompasses various sub-fields, including algorithms, data
structures, programming languages, software engineering, and computer net-
works. The evolution of Computer Science has been tightly intertwined with
technological advancements, such as the development of powerful computers,
the establishment of the Internet, and the proliferation of digital devices.

• These advancements in AI and Computer Science have reshaped the way we
process information, communicate, and interact with the world. They have
paved the way for transformative applications and technologies, ranging from
intelligent virtual assistants and autonomous systems to data-driven decision-
making and smart infrastructure.

Computers have long surpassed humans in solving complex numerical problems.
However, more recently, these algorithms have started to outperform humans in more
intricate and generalized tasks. For example, while a human annotator achieves a
top-5 accuracy of only 5.1% on the ImageNet [30] image classification challenge,
the best model achieved a remarkable top-5 accuracy of 99.02%. This remarkable
progress has been made possible by the widespread availability of GPU-accelerated
computation and vast datasets. Narrow AI models, also known as state-of-the-art
models due to their specialization in specific tasks, are paving the way towards the
ultimate goal of achieving general AI. Remarkable advancements in this multidis-
ciplinary field are evident in groundbreaking models such as DeepMind Alpha-Go
[31] and OpenAI GPT-3 [32], two decades after Alan Turing’s historical seminal
paper ”Can Machine Think?” [33]. These advancements serve as a testament to the
remarkable strides made in this rapidly evolving field.

In terms of Telecommunication applications, the integration of AI techniques
with wireless communication systems has opened up new possibilities for intelligent
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and efficient wireless networks. By leveraging AI algorithms, such as statistical
learning and deep learning, wireless communication systems can adapt dynamically
to changing environments, optimize resource allocation, overcome the large signaling
overhead problems, ensure robustness and improve overall system performance. This
integration of AI and wireless communications holds immense potential for future 6G
applications, enabling higher data rates, lower latency, and more intelligent network
management.

2.3 Statistical Learning and foundations of prob-

ability

Statistical learning, a prominent field in both statistics and machine learning, fo-
cuses on the development of computational tools and techniques for making informed
decisions and predictions from data. It provides a framework for extracting meaning-
ful insights, identifying patterns, and building models that capture the underlying
relationships within complex datasets. At its core, statistical learning leverages
statistical principles and methodologies to uncover valuable information and make
reliable inferences in the presence of uncertainty.

In statistical learning, the primary objective is to understand and model the
relationship between the input variables, often referred to as features or predictors,
and the output variables, known as responses or targets. This involves analyzing the
patterns, trends, and dependencies present in the data to develop models that can
be used for prediction, classification, and inference. Statistical learning approaches
encompass a range of methodologies, including regression analysis, classification al-
gorithms, re-sampling techniques, and dimensionality reduction methods, among
others. These techniques are grounded in statistical theory and rely on probabil-
ity distributions, hypothesis testing, and estimation principles to make data-driven
decisions.

Machine learning, on the other hand, is a broader field that encompasses sta-
tistical learning as one of its key components. While statistical learning focuses on
modeling and inference, machine learning extends beyond this to include the de-
velopment of algorithms and computational systems that can automatically learn
from data and improve their performance through experience. Machine learning al-
gorithms are designed to identify patterns, extract knowledge, and make predictions
without explicit programming instructions. They leverage computational power
and advanced mathematical techniques to automatically learn from data, adapt to
changing environments, and make accurate predictions or decisions.

Probability background:
Probabilistic reasoning is based on dealing with variables that have the capability of
assuming different values at random. The technical general objective is modelling
natural phenomenons relying on measuring Uncertainty. These variables are referred
to as random variables and illustrate the core of Probabilities. A random variable,
on its own, may not be particularly useful as it merely enumerates possible out-
comes. However, when linked with a probability distribution, it becomes possible to
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Figure 2.2: Statistical learning intersections with AI and ML disciplines

describe the likelihood of these outcomes occurring, thereby providing insights not
only into what is possible but, more crucially, what is likely. A random variable can
be defined as a variable that takes on diverse, either discrete or continuous, values
randomly within a sample space Γ. In this manuscript, we denote a scalar random
variable as x, while random vectors are represented by x and random matrices are
represented by X where the probability distribution of a random variable charac-
terizes the probability of each of its possible outcomes. Within this document, the
notation x ∼ D is used to indicate that the random variable x follows the probability
distribution D.

In the case of a discrete variable, such as when describing the outcome of a
coin toss, the distribution of the random variable is typically expressed using a
Probability Mass Function, denoted as px∼D(x = x) or simply px(x). This function
quantifies the probability of the random variable x assuming the value x under
the distribution D. A probability of 0 indicates that it is impossible signifies that an
outcome is impossible while a probability of 1 illustrates that the outcome is certain.
Therefore, a PMF must adhere to the following properties:

1. 0 ≤ px(x) ≤ 1,∀x ∈ Γ, the probability of all outcomes lies between 0 and 1.

2.
∑

x∈Γ px(x) = 1, the sum of the probabilities of all outcomes is equal to 1.

When dealing with continuous random variables, the sample space is linked to
one or multiple continuous intervals over the infinite set of real numbers R. The prob-
ability distribution is then characterized using the continuous Probability Density
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Function, denoted as fx∼D(x = x) or simply fx(x). Since the function is continuous,
the PDF fx(x) does not directly provide the absolute likelihood of the random vari-
able x being equal to x, as this would tend towards 0 due to infinitely many possible
outcomes. Instead, the PDF represents the relative likelihood or the probability of
the random variable x taking on a value in the infinitesimal neighborhood dx of x,
expressed as fx(x)dx. In a parallel way to PMF, the PDF is defined through two
major properties:

1.
∫
x∈Γ fx(x)dx = 1, where we switch from discrete summation to an integral.
Similarly to the PMF, the sum of all outcomes must sum to 1.

2. 0 ≤ fx(x),∀x ∈ Γ, PDF is by definition always positive

Additionally, for any specific interval [a, b] within the sample space Γ, the prob-
ability of the random variable x falling within that interval can be determined by
integrating the PDF over that interval. Mathematically, this can be expressed as
Px(a ≤ x ≤ b) =

∫ b
a
fx(x)dx

These characteristics guarantee that the PDF provides a valid and meaningful
representation of the probabilities associated with the continuous random variable x,
allowing us to compute the likelihood of the variable falling within different intervals
and making probabilistic predictions.

Another fundamental definition in the domain of probabilities is the marginal
distribution, calculated using the sum rule in order to handle problems related to a
joint distribution over a sample-subset of the total variables. For instance, for a set
of n discrete random variables {x1, ..., xn}, the marginal distribution over the first
k < n variables is expressed as:

px1,...,xk(x1, ..., xk) =
∑

xk+1∈Γk+1

...
∑
xn∈Γn

px1,...,xn(x1, ..., xn) (2.1)

In case we handle continuous variables:

fx1,...,xk(x1, ..., xk) =

∫
xk+1∈Γk+1

...

∫
xn∈Γn

fx1,...,xn(x1, ..., xn)dxn...dxk+1, (2.2)

On the other hand, when an event A is conditioned by another event B, we intro-
duce the notion of conditional probability where the probability of the realization
of event A is related to the assumption that event B is realised. The conditional
probability of event A knowing B is formulated as:

P{A|B} = P{A,B}
P{B}

for P{B} > 0 (2.3)

The Bayes rule is one of the fundamentals in the literature and is derived from
the conditional probability definitions. It computes the probability of an Hypothesis
H knowing an observation of Evidence E using the following equation:

P{H|E} = P{E|H}P{H}
P{E}

(2.4)
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where P{H} is the prior i.e. the probability that hypothesis {H} is true before
any observed evidence while P{E} is denoted as the marginal likelihood i.e. the
probability of seeing the evidence {E}. P{E|H} is known as the likelihood or the
probability to observe the evidence {E} given the hypothesis {H}. Ultimately,
P{H|E} is the posterior i.e. the probability that hypothesis {H} is true given the
evidence {E}.

Besides, we derive the product rule of probability where a multivariate joint dis-
tribution is factored into the chain product of the corresponding conditional proba-
bility:

P{X1, ..., Xn} = P{X1}
n∏
i=2

P{Xi|X1, ..., Xi−1} (2.5)

Moreover, the expectation, often denoted in the literature as the first moment, is
defined as the weighted average of a (large) number of samplings according to their
probability of occurrence and is expressed as follows for a discrete variable

Ex∼D{x} =
∑
i

xipx∼D(x = xi) (2.6)

When we handle continuous variables, the expectation is formulated similarly as
follows:

Ex∼D{x} =
∫
xfx∼D(x = x)dx (2.7)

On the other hand, we mathematically introduce the relationship between proba-
bilistic modeling and inference which serves as mathematical background for various
ML models. We then denote d, the generated sequence of samples regarding an un-
known stochastic process and θ the parameters of the probabilistic model. Therefore,
we introduce the likelihood function, denoted as L(θ,d), representing the probability
that the model (with parameters θ) outputs a sequence identical to the observed
sequence d:

L(θ,d) = Pd∼D{d = d; θ} (2.8)

where Pd∼D{d = d; θ} represents the sampled stochastic sequence d from distribu-
tion D and have the same values as the observed realizations of the unknown data
sampling distribution. When samples are independent, we define the log-likelihood
function as the following product of probabilities:

logL(θ,d) = log
n∏
i=1

Pdi∼D{di = di; θ} =
n∑
i=1

logPdi∼D{di = di; θ} (2.9)

Note that the logarithm is strictly monotonic function which means it has no effect
on minimization or maximization procedures and recall that the core of ML is the
minimization of the Cost, i.e. Loss, function defined in the next sections of this
chapter.
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The intersection between statistical learning (based on probability reasoning)
and machine learning lies in their shared goal of utilizing data to extract valuable
information and make predictions or decisions. Both fields employ mathematical
and statistical techniques to analyze datasets and build models. However, machine
learning tends to emphasize computational efficiency, scalability, and the ability to
handle large and complex datasets. It encompasses a broader range of algorithms,
including both statistical and non-statistical methods, such as deep learning, rein-
forcement learning, and ensemble methods. Machine learning also places greater
emphasis on algorithmic design, optimization, and the deployment of models in
real-world applications.

While statistical learning and machine learning share common goals and prin-
ciples, their differences primarily lie in their historical roots, methodologies, and
emphases. Statistical learning often provides a more interpretable and transparent
framework, making it well-suited for domains where model interpretability and in-
ference are crucial. Machine learning, with its focus on automation, scalability, and
complex modeling techniques, excels in scenarios where predictions or decisions need
to be made rapidly and accurately, even in the absence of a deep understanding of
underlying statistical relationships. Both fields contribute to the advancement of
data-driven decision-making and play vital roles in various scientific, industrial, and
societal domains. Recall that in this PhD manuscript, ML is used to solve Beam
Alignment problem through a ML model-based and data-driven approach.

2.4 Neural networks

Neural architectures serve as the foundation of modern artificial intelligence systems,
mimicking the structure and functionality of the human brain.

At the core of neural architectures are artificial neurons, also known as per-
ceptrons, which receive inputs, apply mathematical operations, and produce output
signals. These artificial neurons are organized into layers, with each layer performing
specific computations. The input layer receives raw data, which is then processed
through multiple hidden layers, each consisting of interconnected neurons. The final
layer, known as the output layer, generates the desired output or prediction. The
connections between neurons are defined by weights, representing the strength of the
connections. During training, these weights are adjusted iteratively using optimiza-
tion algorithms, such as gradient descent, to minimize the error between predicted
and actual outputs.

In this subsection, we delve into the foundations of neural networks by intro-
ducing the formal neuron, which serves as the building block for more complex
multi-layer architectures. By understanding the formal neuron, we lay the ground-
work for exploring deep learning concepts and techniques including gradient descent,
backpropagation and activation functions.
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Figure 2.3: Formal neuron diagram representation

2.4.1 From formal neuron to increasing in depth

From the formal neuron, the field of neural architectures has witnessed significant
advancements, particularly in increasing the depth and complexity of these net-
works. While the initial models consisted of a single layer of neurons, known as the
perceptron, researchers soon recognized the limitations of such shallow architectures
in capturing complex relationships within the data.

A formal neuron, also known as a perceptron, is a fundamental building block
of neural architectures. It takes a set of input values, each multiplied by a corre-
sponding weight, and applies a mathematical operation, typically a weighted sum,
to produce an output. The output is then passed through an activation function,
which introduces non-linearity into the neuron’s response. The activation function
helps determine whether the neuron should ”fire” or be inactive based on the in-
put. This firing decision is often represented as a binary output, where the neuron
outputs 1 if the activation threshold is exceeded, and 0 otherwise.

To perform the calculations inside a neuron, let’s consider an example with three
input values, x1, x2, and x3, and their corresponding weights, w1, w2, and w3. As
shown in figure (2.3), the weighted sum is computed as the sum of each input
multiplied by its weight:

z = w1x1 + w2x2 + w3x3 (2.10)

The weighted sum, z, is then passed through the activation function, which
maps the output to a desired range. Common activation functions, given in table
(2.1), include the step function, sigmoid function, and rectified linear unit function.
The choice of activation function depends on the specific problem and the desired
properties of the neuron’s response.

While perceptrons and shallow neural architectures could be powerful tools in
some specific tasks, they have certain limitations. One major limitation is their
inability to capture complex relationships or patterns in the data. This is because
perceptrons are linear classifiers and can only separate data points with a straight
line or plane. To overcome this limitation and enable more sophisticated learning,
increasing the depth of neural architectures is necessary. By adding more hidden
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Table 2.1: Frequently used activation functions: definitions, derivatives and plots

layers and neurons, neural networks can learn hierarchical representations of data,
capturing intricate relationships and patterns that would be challenging for a single
perceptron. This increased depth allows for more expressive models and enables the
network to learn complex features and make accurate predictions.

2.4.2 Activation functions and neural architectures

Activation functions play a crucial role in neural architectures by introducing non-
linearity into the output of individual neurons. They determine whether a neuron
should be activated or remain inactive based on the input it receives. Various
activation functions are used in neural networks, each with its own characteristics
and suitability for different types of problems. Table (2.1) states a mathematical
comparison of widely used activation functions:

• One commonly used activation function is the step function, which produces a
binary output. It maps input values below a certain threshold to 0 and input
values above the threshold to 1. The step function is useful for binary classi-
fication problems where the neuron’s output needs to be a discrete decision.

• Another popular activation function is the sigmoid function, also known as
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the logistic function. It maps the input to a value between 0 and 1, repre-
senting the probability of the neuron being activated. The sigmoid function is
advantageous because it provides a smooth transition from 0 to 1, allowing for
more gradual changes in neuron activations. It is commonly used in problems
involving probability estimation and binary classification tasks.

• The rectified linear unit function is another widely used activation function,
especially in deep learning architectures. It sets the output to 0 for negative
input values and retains positive input values as they are. The ReLU function
introduces sparsity and non-linearity into the network, enabling better gradient
flow during backpropagation and faster convergence. It has been found to be
particularly effective in handling large-scale datasets and deep neural networks.

• Other activation functions include the hyperbolic tangent function, which
maps the input to a value between -1 and 1, and the softmax function, com-
monly used in multi-class classification problems to produce a probability dis-
tribution over multiple classes.

The choice of activation function depends on the specific problem at hand, the
desired properties of the neuron’s response, and the characteristics of the dataset.
Selecting an appropriate activation function is essential for ensuring that the neural
network can effectively learn and represent complex relationships in the data.

On the other hand, there are various types of neural architectures commonly used
in artificial intelligence and machine learning. These architectures are designed to
address different types of problems and have varying levels of complexity. Some of
the commonly used neural architectures include feed forward neural networks, recur-
rent neural networks, convolutional neural networks, auto-encoders and generative
adversarial networks. Each architecture has its own unique characteristics and is
suited for specific tasks. The choice of architecture depends on the nature of the
data and the problem at hand. Figure (2.4) plots an overview of several extensively
used neural networks.

• Feed forward neural network, also known as a multi layer perceptron, consists
of an input layer, one or more hidden layers, and an output layer. It processes
information in a forward direction, with no loops or feedback connections,
making it suitable for tasks such as classification and regression.

Mathematically, we denote h(j) the output from each layer (j), σ(j) the acti-
vation function at layer (j). W(j) is the Weights matrix and x(j) is the bias
vector of the j-th layer of the feed forward architecture, containing l dense
layers. The input-output equation is expressed as:

h(1) = σ(1)(W(1)x) + b(1) (2.11)

h(j) = σ(j)(W(j)h(j−1)) + b(j),∀j ∈ {2, ..., l − 1} (2.12)

y = σ(l)(W(l)h(l−1)) + b(l) (2.13)
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Figure 2.4: Neural architectures overview [34]: the distinction between neural archi-
tectures lies in the specific types of cell functions that constitute individual layers
and the manner in which these layers are arranged and interconnected.
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• Auto encoder is a type of neural network that aims to reconstruct its own
input data. It consists of an encoder network that compresses the input data
into a lower-dimensional representation, and a decoder network that recon-
structs the original input from the compressed representation. Auto encoders
are often used for dimensionality reduction and unsupervised learning tasks.
Similarly, variational auto encoder is a generative model that learns to approx-
imate the underlying probability distribution of the input data and enables the
generation of new samples from the learned distribution.

• Recurrent neural network is designed to process sequential data by utilizing
recurrent connections that allow information to be carried forward in time. It is
well-suited for tasks such as natural language processing, speech recognition,
and time series analysis. One commonly used RNN is the long short term
memory which addresses the vanishing gradient problem and allows for better
capturing long-term dependencies in sequential data.

• Convolutional neural network is primarily used for analyzing visual data, such
as images. It consists of convolutional layers that extract local features from
the input data, pooling layers that down-sample the features, and fully con-
nected layers for classification or regression. CNNs have achieved remarkable
success in tasks such as image classification, object detection, and image gen-
eration.

The convolution is a mathematical operation that involves combining two func-
tions to produce a third function that represents the interaction between them. In
the context of signal processing, convolution is used to process signals by applying
a filter or kernel to it. This filter is usually a small window of values that slides over
the input data, and at each position, the element-wise multiplication of the filter’s
values with the corresponding values in the input data is summed up to produce
the output value at that position in order to capture local patterns and features in
the input data. For instance, given two continuous signals x and h, the convolution
of x by h is the integral of the two signals product after one is reversed and shifted,
generalized over all shift values:

y(τ) = (x ∗ h)(τ) =
∫ +∞

t=−∞
x(t)h(τ − t)dt (2.14)

If the x and h signals are discrete, the convolution product is similarly defined as:

y[n] = (x ∗ h)[n] =
+∞∑

m=−∞

x[m]h[n−m] (2.15)

In the literature, the cross-correlation operator, like the convolution operator, asses
the degree of similarity of two continuous signals:

Rxy(τ) = (x ∗ y)(τ) =
∫ +∞

t=−∞
x(t) ∗ y(t− τ)dt (2.16)
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Similarly when x and y are discrete signals:

Rxy[n] = (x ∗ y)[n] =
+∞∑

m=−∞

x[m]y[m− n] (2.17)

We distinguish 1D convolutional layer where the kernel, input, output and bias
are vectors from 2D convolutional layer where these mathematical entities are ma-
trices. For instance, we consider a kernel of size 2 (two coefficients k1, k2 in the
kernel vector). The computations with 1D-convolutional dense layer are represented
in matrix form as follows:
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The 1D-convolution input-output equation is expressed as:

y = σ(Wx+ b) ≡ y = σ(k ∗ x+ b) (2.18)

On the other hand, the core concept of 2D-convolution is simplified and resumed
in figure (2.5). In this example, the filter is a 2D matrix of size 3×3 and is applied on
a 2D input matrix of size 6× 6. We consider no padding, no bias and no activations
for the sake of simplicity while fixing the stride as equal to one, the resulted output
matrix is of size 4× 4.

2.4.3 Empirical Risk Minimisation principle and Loss func-
tions

Unlike classical optimization algorithms, Machine Learning methods rely on mini-
mizing a surrogate error function substituting the actual error function in the opti-
mization problem. The surrogate loss function, often denoted as surrogate objective
function, is useful when the original loss function is complex or computationally ex-
pensive as they can simplify the optimization process without sacrificing the quality
of the final solution. Common examples of surrogate error functions include hinge
loss for support vector machines, soft max cross-entropy loss for neural networks in
classification tasks and squared loss for regression problems. These functions are
chosen based on their mathematical properties and suitability for the optimization
algorithms being used.

Conventionally, we define S = {(xi,yi)}si=1 as a standard training set of size
s containing all sample pairs characterized by xi as the features vector and yi as
the corresponding labels. Therefore, we define a mapping function f(xi,Θ) from
inputs xi to known outputs, labels, yi. Obviously, Θ represents the parameters
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Figure 2.5: 2D convolution layer simplified diagram representation [35]: Size rep-
resents the dimensions of the convolutional filter, Padding consists in adding extra
border pixels to the input image to control the spatial dimensions of the output
feature map after convolution and Stride is the step size at which the convolutional
filter moves across the input image during the convolution operation.

of the optimization problem. The adequacy of the model’s predicted labels are
continuously compared to the expected true label thanks to a loss function. This
cost function measures a scalar-distance between true values and predicted values.
The individual loss is defined for each training pair and is formulated as:

li = l(f(xi; Θ),yi) (2.19)

The technical objective behind an optimization procedure is to look for the optimal
set of model parameters Θ∗ in order to minimize the expected loss, i.e. expected
risk. It is denoted as L(Θ) and generalizes the individual loss over all samples of
the data generating distribution D:

Θ∗ = argmin
Θ

L(Θ) = argmin
Θ

E(x,y)∼D{li} (2.20)

The true risk is approximated by the empirical risk ˆL(Θ) due to the inaccessibility
of the complete data generation distribution. The empirical loss is formulated as
the average of the individual losses over all training samples:

L̂(Θ) =
1

s

s∑
i=1

li (2.21)

The goal of the empirical risk minimisation is to find the optimal parameters of the
model such that:

Θ̂ = argmin
Θ

L̂(Θ) (2.22)

Note that Θ∗ is most of the time not equal to Θ̂. However, when the dataset size
goes to infinity, the difference both values converge to zero.
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Figure 2.6: Overfitting and underfitting symptoms observed on the train/test Error
curve in function of the ML model complexity: underfitting is related to high bias
and low variance while overfitting is the result of high variance and low bias.

The choice of the loss function is vital to guarantee better model performances
depending on the problem context and the nature of the corresponding dataset. In
this PhD manuscript, the research work led to the use of the following prototypical
cost functions:

• The Mean Squarred Error: de-facto method for regression problems. It mea-
sures the squared Euclidian distane between the model’s predicted labels and
the targeted true labels:

lMSEi
= (f(xi,Θ)− yi)

2 (2.23)

• The Binary Cross-Entropy i.e. the Logarithmic Loss: conventionally applied
on classification problems penalizing the model more heavily when its pre-
dicted probability diverges from the true binary label using the following equa-
tion:

lBCEi
= (1− yi)log(1− f(xi; Θ))− yilog(f(xi; Θ)) (2.24)

Generally, we include a regularization term in the loss function to combat Over-
fitting which occurs when a ML model learns the training data too well, capturing
not only the underlying patterns but also the noise and randomness present in the
data. Therefore, the model performs exceptionally well on training samples but
fails to generalize to new unseen data. The model memorized the training data
instead of learning the new underlying relationships. The regularized empirical risk
is formulated by adding a penalty term to the loss function, r(Θ), expressed as:

L̂r(Θ) =
1

s

s∑
i=1

li + r(Θ) (2.25)

On the other hand, underfitting occurs when a ML model is too simple to capture
the underlying patterns in the training data. As a result, it performs poorly in both
training and test data. An under-fitted model is unable to learning the complexities
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of the data, and its predictions tend to be biased and inaccurate. In figure (2.6),
the training/test error curve in function of model complexity states the overfitting
where the gap between training and test errors increases, generally explained by
high variance symptoms. Contrarily, the underfitting is related to high bias when
training and test errors are decreasing. Finally, the balances fit is characterized by
low variance and low bias; model complexity and dimensions shouldn’t out-pass the
corresponding ”best fit” limit in order to avoid overfitting.

In summary, overfitting and underfitting are opposite ends of the spectrum in
terms of model performance, while regularization is a technique used to strike a
balance between the two.

2.4.4 Gradient descent and back-propagation

One of the fundamental algorithms behind training neural networks is Gradient
Descent, which enables the optimization of model parameters to minimize the loss
function. Gradient Descent iteratively updates the weights and biases of the neural
network in the direction of steepest descent of the loss function. This process aims
to find the optimal set of parameters that minimizes the difference between the
predicted outputs of the network and the true targets. The key idea behind Gra-
dient Descent is to compute the gradients of the loss function with respect to each
parameter using the chain rule of calculus. These gradients indicate the direction
and magnitude of the steepest ascent of the loss function in the parameter space.
By subtracting a fraction of the gradients from the current parameter values, the
network gradually moves towards the local or global minimum of the loss function.

Algorithm 1 Gradient Descent

Procedure GD: S = {(xi,yi)}si=1, f(x; θ), Nsteps, α, θ0)
init. θ ← θ0

for i = 1 to Nsteps do
Compute gradient ∇J(θ) using training data
Update parameters: θ = θ − α · ∇J(θ)
end for
return θ
end GD;

In this algorithm, f(xi; θ) is the parametric function, θ represents the model
parameters, α is the learning rate (step size), and Nsteps is the number of iterations.
The algorithm iteratively updates the parameters θ by subtracting the product of
the learning rate and the gradient of the cost function J(θ) with respect to the
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parameters.

∇Jθ(θ) =


∂f(θ)
∂θ1
∂f(θ)
∂θ2
...

∂f(θ)
∂θn

 (2.26)

We now consider a mini-batch B of size b randomly containing samples from the
training set S of size s.

Algorithm 2 Gradient Descent using mini-batch

Procedure MBGD: (S = {(xi,yi)}si=1, f(x; θ), Nsteps, b, α, θ0))
init. θ ← θ0

for i = 1 to Nsteps do
S ← Shuffle(S)
B ← S[0 : b]
Computegradient∇J(θ) using training data
Update parameters: θ = θ − α · ∇J(1

b

∑
(xi,yi)∈B l(f(xi; θ),yi))

end for
return θ
end MBGD ;

Gradient descent with mini-batch involves updating model parameters using a
subset of training data in each iteration, which helps in faster convergence and effi-
cient memory usage. On the other hand, gradient descent with momentum incorpo-
rates a moving average of past gradients to achieve faster convergence by dampening
oscillations and enhancing gradient directions, resulting in improved training effi-
ciency and stability.

Algorithm 3 Gradient Descent using momentum

Procedure MGD: S = {(xi,yi)}si=1, f(x; θ), Nsteps,m, α, θ0)
init. θ ← θ0
m← 0

for i = 1 to Nsteps do
Compute gradient ∇J(θ) using training data
m← βm+ (1− β)∇θ(

1
s

∑
(xi,yi)∈S l(f(xi, θ),yi))

Update parameters: θ = θ − αm
end for
return θ
end MGD;

Alternatively, backpropagation is an efficient algorithm used to compute the
gradients required by Gradient Descent. It leverages the chain rule of calculus to
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efficiently propagate the errors from the output layer back to the network’s earlier
layers. In the forward pass, the inputs are fed through the network, and the outputs
are computed layer by layer. During the backward pass, the gradients of the loss
function with respect to the outputs are first computed. Then, these gradients are
successively back-propagated through the layers, allowing the computation of the
gradients with respect to the weights and biases. The backpropagation algorithm
efficiently calculates these gradients by reusing intermediate results obtained during
the forward pass, avoiding redundant computations. By utilizing these gradients,
the weights and biases of the neural network are updated iteratively using Gradient
Descent, ultimately leading to the convergence of the network towards an optimal
solution. For instance, let f, g and h be three real functions where y = f(x), z =
g(f(x)), g(y) and w = h(g(f(x)) = h(g(y)) = h(z), modeling the input-output
functions of 3 layers in a neural network. In order to calculate the derivative of
the output of the last layer w with regard to the input x, we rely on the following
equation:

∂w

∂x
=
∂w

∂z
· ∂z
∂y
· ∂y
∂x

(2.27)

Using the Jacobian matrix in backpropagation offers several advantages in training
neural networks enabling efficient computation of gradients for each layer’s inputs
which generally leads to faster and more accurate updates to the model’s parameters.
For example, let y = f(x) where f : Rn → Rm. The Jacobian matrix is expressed
as:

Jxf(x) =
∂f(x)

∂x
=


∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

. . . ∂f2
∂xn

...
...

. . .
...

∂fm
∂x1

∂fm
∂x2

. . . ∂fm
∂xn

 (2.28)

The Jacobian matrix simplifies the implementation of complex architectures, as it
encapsulates the partial derivatives of each layer’s output with respect to all inputs,
reducing the risk of errors in the gradient calculations during backpropagation.

The combination of Gradient Descent and Backpropagation forms the basis of
training deep neural networks. This iterative optimization process, guided by the
computed gradients, allows neural networks to automatically learn and adapt their
parameters to minimize the loss function. With the advent of powerful compu-
tational resources and the development of efficient optimization techniques, deep
neural networks can now be trained on large-scale datasets, enabling the extraction
of meaningful representations from complex data [14] [18] [20]. Gradient Descent and
Backpropagation have played a pivotal role in the success of deep learning, allowing
for breakthroughs in various fields, including computer vision, natural language pro-
cessing, and speech recognition. These algorithms have also been instrumental in
addressing challenges in wireless communications, such as beam alignment, channel
estimation, and interference mitigation, enabling the optimization and enhancement
of future mmWave massive MIMO systems.
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2.5 Learning paradigms and optimization prob-

lems

Artificial Intelligence and computer science have witnessed remarkable advance-
ments over the years, revolutionizing various fields and shaping the way we interact
with technology. From the early development of formal neurons and the exploration
of neural architectures, to the advent of gradient descent and back-propagation al-
gorithms, AI has evolved into a powerful tool for solving complex problems. These
advancements have paved the way for the emergence of multiple machine learn-
ing paradigms, including supervised, unsupervised, and reinforcement learning in
addition to several optimization problems, such as linear programming, quadratic
programming, nonlinear programming, integer programming..

2.5.1 Supervised, Unsupervised and Reinforcement Learn-
ing

We distinguish three fundamental paradigms in machine learning:

• Supervised learning where the model learns from labeled training data, based
on a training set S = {(xi,yi)}si=1 where each input xi is associated with a
corresponding output yi. The goal is to learn a mapping function f(xi,yi)
that can generalize to unseen inputs and produce accurate predictions or clas-
sifications. Supervised learning can be formulated as an optimization problem,
where the objective is to minimize the discrepancy between the predicted out-
puts and the true labels.

• Unsupervised learning, on the other hand, deals with unlabeled data. The
goal is to discover the underlying structure, patterns, or relationships in the
data without explicit guidance. Clustering and dimensionality reduction are
common tasks in unsupervised learning. Clustering aims to group similar in-
stances together, while dimensionality reduction techniques aim to reduce the
dimensionality of the data while preserving important information. Unsuper-
vised learning algorithms leverage statistical properties and patterns in the
data to extract meaningful representations using PCA, k-NN, Kohenen Map
and t-SNE approaches.

• Reinforcement learning takes a different approach by focusing on learning op-
timal decision-making policies through interactions with an environment. In
this setting, an agent learns to take actions in an environment to maximize
a cumulative reward signal. The agent receives feedback in the form of re-
wards or punishments based on its actions, which guides its learning process.
Reinforcement learning often involves Markov decision processes and utilizes
techniques such as value iteration, policy iteration, or Q-learning to find the
optimal policy.
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These three learning paradigms have distinct characteristics and applications.
Supervised learning is commonly used in tasks such as image classification, speech
recognition, and natural language processing. Unsupervised learning finds applica-
tions in anomaly detection, data clustering, and generative modeling. Reinforce-
ment learning is well-suited for problems with sequential decision-making, such as
robotics, game playing, and autonomous systems.

In the context of wireless communication systems, these learning paradigms find
various applications. For instance, supervised learning techniques [12] [17] can be
used to optimize beamforming in mmWave massive MIMO systems by learning the
optimal beamforming weights based on labeled channel state information. Unsuper-
vised learning methods can be employed for interference detection and mitigation
in wireless networks, where the goal is to identify and separate different sources of
interference. Reinforcement learning can be utilized for dynamic resource allocation,
where the system learns to allocate radio resources effectively to maximize network
performance while considering changing traffic conditions and channel conditions
[18] [19].

Overall, the integration of machine learning techniques, including supervised,
unsupervised, and reinforcement learning, offers promising avenues for advancing
wireless communication systems by enabling intelligent decision-making, optimiza-
tion, and adaptation.

2.5.2 Families of optimization problems

Optimization problems involve finding the best solution among a set of feasible
options based on a defined objective function and a set of constraints. Optimiza-
tion problems can be classified into two families: convex and non-convex, each
having sub-families, based on their characteristics and mathematical formulations
(discrete/continuous, linear/non-linear):

• Linear programming where the objective function and constraints are linear.
LP has been extensively studied and finds applications in resource allocation,
production planning, and portfolio optimization [36]. The simplex method
and interior-point methods are widely used to solve LP problems efficiently.

• Quadratic programming is another family of optimization problems that in-
volves a quadratic objective function subject to linear constraints. QP prob-
lems arise in various fields such as robotics, control systems, and support
vector machines . Specialized algorithms, including the active set method and
interior-point methods, are employed to solve QP problems effectively.

• Nonlinear programming deals with optimization problems where the objec-
tive function or constraints are nonlinear. NLP encompasses a broad range of
problems, from smooth (continuously differentiable objective function, with no
abrupt changes or discontinuities) and convex optimization (where the func-
tion’s graph forms a bowl-like shape, allowing for efficient algorithms to find
the global optimum and guaranteeing that any local optimum found is also the
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Figure 2.7: Families of Optimization problems [37]

global one), to highly non-convex and non-smooth optimization. Techniques
like gradient-based methods, such as gradient descent and Newton’s method,
as well as metaheuristic algorithms like genetic algorithms and simulated an-
nealing, are used to solve NLP problems.

• Integer programming and its subset, mixed-integer programming. In IP prob-
lems, one or more variables are constrained to take only integer values, while
in MIP problems, some variables are integers, and others are continuous. IP
and MIP have applications in diverse areas, including logistics, scheduling,
and network design. Branch-and-bound, cutting plane, and branch-and-cut
algorithms are commonly employed to solve IP and MIP problems.

Convex optimization focuses on problems where the objective function and con-
straints are convex. Convex optimization problems have attractive mathematical
properties, allowing for efficient and guaranteed global optimization. Interior-point
methods, proximal gradient methods, and augmented Lagrangian methods are fre-
quently used to solve convex optimization problems.

These families of optimization problems, resumed in (2.7), provide a framework
for modeling and solving a wide range of real-world challenges. Throughout this
PhD, the non-convex problems are investigated. In the context of machine learn-
ing, optimization plays a crucial role in training models, estimating parameters, and
solving inference problems. By formulating machine learning tasks as optimization
problems, researchers and practitioners can leverage the rich literature of optimiza-
tion algorithms to find optimal solutions and drive advancements in AI and wireless
communication systems.
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Figure 2.8: Matrix Factorization simplified diagram representation for 6 × 5 input
matrix: S is first decomposed as the product of two latent factors (model’s param-
eters P and Q) in order to fill the unknown coefficients

2.6 Matrix Factorization for low-rank matrix com-

pletion

Matrix factorization is a popular technique in machine learning and data analy-
sis that aims to decompose a given matrix into two or more lower-rank matrices.
The goal is to approximate the original matrix by finding a reduced-dimensional
representation that captures its underlying structure and latent features. Matrix
factorization has been widely applied in various domains, including recommender
systems, collaborative filtering, and dimensionality reduction. By leveraging linear
algebra and optimization methods, matrix factorization provides a powerful tool for
extracting meaningful information from high-dimensional data and enabling efficient
computation on large-scale datasets.

Low-rank matrix completion is a fundamental problem in the field of machine
learning and data analysis. It deals with the task of recovering a complete matrix
from a limited set of observed entries, where the underlying matrix is assumed
to have a low-rank structure. The motivation behind low-rank matrix completion
arises from the fact that many real-world datasets are inherently incomplete or
corrupted, and being able to accurately recover the missing entries is crucial for
various applications. The main idea behind low-rank matrix completion is to exploit
the inherent low-rank structure of the matrix to estimate the missing entries. The
low-rank assumption assumes that the rank of the underlying matrix is much smaller
than its dimensions, indicating that the matrix can be well-approximated by a matrix
of significantly lower rank. This assumption is often valid in practice, as many real-
world datasets exhibit inherent redundancy and can be effectively represented in a
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lower-dimensional space.
To solve the low-rank matrix completion problem, various algorithms and tech-

niques have been developed. In recommender systems, for example, it can be used
to predict user preferences or missing ratings in a user-item rating matrix [33]. In
image and video processing, it can be employed for inpainting missing regions or
reconstructing corrupted images. Additionally, it finds applications in collaborative
filtering, data imputation, and network inference, among others. The development
of efficient and accurate algorithms for low-rank matrix completion continues to
be an active area of research, aiming to advance the field of machine learning and
enhance the capabilities of data analysis and decision-making processes.

The low-rank matrix completion is formulated in this PhD as a non-convex
optimization problem, where the objective is to find a low-rank matrix that fits the
observed entries while satisfying certain constraints. These methods often employ
iterative algorithms that aim to minimize a non-convex objective function, such as
the sum of squared errors or the weighted nuclear norm. Although finding the global
minimum of a non-convex optimization problem is generally challenging, various
heuristics and optimization techniques, such as alternating minimization or gradient
descent, have been developed to effectively explore the solution space and converge
to promising solutions. Non-convex formulations of low-rank matrix completion
offer a flexible and powerful framework for handling complex data structures and
can lead to improved accuracy in matrix recovery tasks.

The goal of low-rank MF method is to learn from train samples and continuously
optimize the latent vectors of dimension D, {pu,qi}(u,i)∈K. The training samples are
the known coefficients of our dataset matrix S, which holds the sounded Received
Signal Energies for training beam pairs. The dataset is then split into a training
set, denoted K and a test set, denoted L, the unknown (non-sounded) samples
that we aim to complete using MF. Recall that for MF , the latent vectors satisfy
pu ∈ RD,qi ∈ RD, ∀(u, i) ∈. The loss function is then formulated as:

f((pu,qi)(u,i)∈K) =
∑

(u,i)∈K

[
1

|K|
(
[S]u,i − pu

Tqi

)2
+ λi∥qi∥22 + µu∥pu∥22

]
(2.29)

Therefore, the optimization Problem for MF is expressed as:

(PMF ) : {p̂u, q̂i}

 argmin
{pu,qi}(u,i)∈K

f((pu,qi)(u,i)∈K)

pu ∈ RD, qi ∈ RD

In (PMF ), the Received Signal Energies of the sounded beam-pairs are known,
i.e., training set, {[S]u,i|∀(u, i) ∈ K} , and the optimization variables that are needed
to be learned are the latent factors corresponding the training set, {qi,pu|∀(u, i) ∈
K}. The optimal latent vectors are denoted as {p̂u, q̂i}(u,i)∈K.

We resolve the MF problem (PMF ) using the following methods:

• Block Coordinate Descent often denoted as Alternating Least Squares.

• BCD with Stochastic Gradient Descent.
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• Block Gradient Descent, that merges BCD and Gradient Descent definitions.

Our proposed NMF follows the exact steps as MF , with the main difference of
constraining the latent vectors to be non-negative:

pu ∈ RD
+ , qi ∈ RD

+ ,∀ (u, i) ∈ K (2.30)

Given that, the loss for NMF is the regularized empirical risk in (PNMF ) with
non-negative parameters:

(PNMF ) : {p̂u, q̂i}

 argmin
{pu,qi}(u,i)∈K

f((pu,qi)(u,i)∈K

pu ≥ 0 , qi ≥ 0
,

where 0 is the all-zero vector of dimension D. Likewise, we solve the NMF problem,
(PNMF ), using BCD, SGD, and BGD.

2.7 Conclusion

Chapter 2 provides a comprehensive introduction to ML techniques and paradigms.
It covers the historical breakthroughs and key developments in AI then illustrates
a technical overview for Statistical Learning and Deep Learning. Various Learning
paradigms and optimization problems are discussed. In the next chapter, the focus
shifts to Beam Alignment in massive mmWave MIMO systems, highlighting the
unique challenges and opportunities associated with this field.
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Chapter 3

Overview of Beam Alignment for
mmWave MIMO communications

”It is through science that we prove, but
through intuition that we discover.”

Henri Poincare.

3.1 Introduction

Beam alignment refers to the process of aligning the transmitting and receiving
beams between the base station and user equipment, ensuring optimal signal strength
and minimizing interference. Therefore, it plays a crucial role in mmWave MIMO
systems, where the use of directional beams is necessary to establish reliable commu-
nication links. In these high-frequency bands, narrow beams are employed to combat
severe path loss and enhance system capacity. This procedure is essential to exploit
the directional characteristics of mmWave channels, maximize spatial multiplexing
gain, and achieve high data rates in future wireless communication systems. In
this chapter, we present the terminology associated with this technical issue, taking
into account the characteristics of mmWave band propagation, its constraints, and
the technical obstacles it poses. Simultaneously, we give an overview of the signal
processing methods employed to address the suite of Beam Management challenges,
encompassing Beamforming, Beam Alignment, Beam Sweeping, and Beam Tracking.

3.2 The mmWave band and propagation proper-

ties

Millimeter-wave MIMO refers to the use of multiple antennas at both the transmitter
and receiver in wireless communication systems operating in the millimeter-wave fre-
quency range. It harnesses the abundant spectrum available in these high-frequency
bands to enable both high-capacity and high-speed data transmission, and offers
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Figure 3.1: mmWave spectrum: the band of frequencies between 30 and 300 GHz
[38]

significant potential for meeting the ever-increasing demands of future wireless net-
works.

3.2.1 mmWave spectrum

The mmWave spectrum in (3.1) refers to a portion of the electromagnetic spectrum
that spans frequencies between 30 and 300 GHz. This frequency range is significantly
higher than the traditional sub-6 GHz bands used in most wireless communication
systems. The mmWave spectrum offers several advantages, such as a vast amount
of available bandwidth and the ability to support high data rates:

• 30-300 GHz (E-band): The E-band, spanning 30 to 300 GHz, is a millimeter-
wave range well-suited for microwave and millimeter-wave communication sys-
tems. Its high-frequency attributes facilitate robust point-to-point data trans-
mission, notably in 5G backhaul links and dense urban environments.

• 57-71 GHz (V-band): Within the V-band, operating between 57 and 71 GHz,
mmWave frequencies find applicability in various wireless communication sce-
narios, particularly as a component of short-range, high-capacity connections
such as small cell deployments and fixed wireless access.

• 71-76 GHz and 81-86 GHz (W-band): The W-band, encompassing 71-76 GHz
and 81-86 GHz, serves as a pivotal region for advanced radar, spectroscopy,
and scientific research due to its high-frequency attributes. It enables fine-
resolution radar imaging, atmospheric sensing, and investigations into molec-
ular spectral lines.

• 140-220 GHz (D-band): Extending from 140 to 220 GHz, the D-band plays a
crucial role in atmospheric studies, Earth observation, and specialized commu-
nication systems. It is notably adept at penetrating adverse weather conditions
and supports applications like weather radar and environmental monitoring.

• 220-325 GHz (F-band): The F-band, ranging from 220 to 325 GHz, serves as
a cornerstone in radio astronomy, spectroscopy, and space research endeavors.
Its capacity to detect precise molecular transitions makes it instrumental in
probing celestial objects and examining the universe’s composition.
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• 325-500 GHz (G-band): Operating within the 325-500 GHz range, the G-
band holds significance in scientific exploration, including radio astronomy
and space communications. This frequency regime is integral for studying
cosmic microwave background radiation and establishing high-frequency space
communication links.

Furthermore, the use of mmWave frequencies enables the deployment of highly
directional beamforming techniques, leveraging the large antenna arrays at both
the transmitter and receiver to focus the energy in specific directions. This en-
ables the possibility of achieving significantly higher data rates and supporting
massive connectivity in dense network scenarios. Despite the challenges associated
with mmWave propagation, advancements in antenna design, signal processing, and
beamforming techniques are enabling the realization of mmWave communication
systems with improved performance and reliability.

3.2.2 mmWave limitations

Path Loss and Penetration Loss: One of the primary challenges of mmWave com-
munication is increased path loss and reduced penetration through obstacles. The
higher frequency signals are more susceptible to attenuation and absorption by at-
mospheric gases, rain, foliage, and buildings. This results in shorter communication
range and limited signal penetration, requiring careful consideration of the deploy-
ment and placement of mmWave devices according to [39]. These limitations and
challenges behind the mmWave technologies are resumed in (3.2):

• Blockage and Line-of-Sight Requirement: mmWave signals are highly direc-
tional and sensitive to blockages. Even small obstructions, such as buildings
or human bodies, can cause significant signal attenuation. Maintaining a clear
line-of-sight between the transmitter and receiver becomes crucial for reliable
mmWave communication. The presence of blockages can lead to frequent sig-
nal interruptions and reduced coverage, requiring the development of effective
beamforming and beam tracking mechanisms.

• Limited Coverage Area: Due to the high path loss and susceptibility to block-
age, mmWave signals have a limited coverage area. The effective coverage
range of mmWave base stations and devices is typically shorter compared to
lower frequency bands. This limitation necessitates the deployment of a dense
network infrastructure with small cell sizes to ensure reliable connectivity and
seamless handoffs between cells.

• Mobility and Doppler Effects: The mobility of devices introduces additional
challenges in mmWave communication. As devices move, there are rapid
changes in the channel conditions, leading to significant Doppler shifts. The
high frequency nature of mmWave signals amplifies the Doppler effects, result-
ing in frequency offsets and potential signal distortion. Robust mechanisms for
beam tracking and adaptation to fast-changing channel conditions are required
to maintain reliable communication in mobile scenarios.
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Figure 3.2: Overview of mmWave propagation limitations and challenges [39]

• Limited Diffraction and Scattering: mmWave signals have limited ability to
diffract and scatter around obstacles compared to lower frequency signals.
This limits the ability to bypass obstacles and reach non-line-of-sight loca-
tions. The reliance on LOS communication further exacerbates the challenges
of mmWave propagation, necessitating the development of advanced beam-
forming techniques to steer and focus the signals towards the desired receivers.

• Higher Sensitivity to Noise and Interference: The higher frequency bands used
in mmWave communication are more susceptible to noise and interference,
which can degrade the quality of the received signal. Background noise, in-
terference from other devices, and multipath effects can impact the signal
quality and overall system performance. Robust interference mitigation and
noise suppression techniques are essential for maintaining reliable and efficient
mmWave communication.

Addressing all mmWave limitations [39] requires a combination of advanced sig-
nal processing techniques, adaptive beamforming, intelligent resource allocation,
and sophisticated network planning. Overcoming these challenges will enable the
realization of the full potential of mmWave communication systems in delivering
high-capacity, low-latency, and ultra-reliable wireless connectivity for future appli-
cations.

3.2.3 mmWave massive MIMO challenges

Massive Multiple-Input Multiple-Output refers to a wireless communication system
that utilizes a large number of antennas at both the transmitter and receiver ends.
This technology leverages the spatial dimension to enhance system performance
by simultaneously transmitting multiple data streams to multiple users. With the

58



ability to spatially separate signals and mitigate interference, massive MIMO of-
fers significant gains in terms of capacity, spectral efficiency, and reliability, making
it a promising solution for next-generation wireless networks. The large available
bandwidth in mmWave bands enables high data rates and supports the massive
connectivity requirements of modern applications. However, as mentioned in the
previous subsection and [39], mmWave signals are susceptible to higher path loss,
attenuation, and sensitivity to blockages due to their shorter wavelengths. In ad-
dition, we define the mmWave Coherence Interval as the time where the channel
coefficients remain static. For mmWave, this critical interval is so short and the im-
plementation of Beam Alignment techniques are often tackled with this enormous
practical constraint [40]. This introduces challenges in maintaining reliable and
robust communication links, particularly in massive MIMO systems with a large
number of antennas. In the context of beam management techniques, mmWave
massive MIMO plays a crucial role in optimizing beamforming, beam alignment,
and beam tracking. The beam management techniques of the next subsection are
fundamental for realizing the full potential of mmWave massive MIMO systems, en-
abling high-capacity and reliable wireless communication in challenging propagation
environments.

3.3 Overview of Beam Management techniques

for MIMO systems

3.3.1 Beamforming, precoding and combining

Beamforming, precoding and combining are sophisticated signal processing methods
applied in wireless communication systems, strategically improving signal transmis-
sion and reception performance:

• Beamforming is a signal processing technique used in wireless communication
systems to enhance the transmission and reception of signals. It involves
manipulating the amplitude and phase of the transmitted or received signals
to concentrate the signal power in a specific direction, known as the beam. By
steering the beam towards the intended receiver, beamforming improves signal
strength, increases coverage, and reduces interference, thereby enhancing the
overall system performance. In figure (3.3), the increase in the number of
antennas helps obtaining more beamforming directivity where the main lobe
gets narrower and strictly directed to the target. In this PhD, we propose
to focus on massive MIMO systems for future generations where hundreds
and thousands of antennas are used in order to maximise the beam forming
gain by selecting the constructive interference between beams and filtering the
destructive one. Commonly used mathematical methods include Zero Forcing
[41], Maximum Likelihood and Minimum Mean Squared Error Beamforming
[42].
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Figure 3.3: Beamforming gain and directivity in MIMO systems: more antennas
gives narrower and more directive lobes [40]

• Precoding is a technique used in multi-antenna systems to optimize the trans-
mitted signal based on the channel conditions. Mathematically, it is a gen-
eralization of beamforming. It involves applying specific linear transforma-
tions to the data symbols before transmission, taking into account the channel
state information. Precoding enables the transmitter to exploit the channel
characteristics to enhance the received signal quality at the receiver. By pre-
multiplying the data symbols with the precoding matrix, the transmitter can
shape the transmitted signal to maximize the signal-to-interference-plus-noise
ratio at the receiver. ZF Precoding and MMSE precoding are widely used
approaches in the literature [42].

• Precoding and Combining, also known as receive beamforming, is the counter-
part of beamforming at the receiver side. It involves combining the received
signals from multiple antennas in a way that optimally combines the signals to
improve the received signal quality. By adjusting the combining weights based
on the channel state information, combining techniques enhance the desired
signal while suppressing interference and noise. Combining can significantly
improve the overall system performance by mitigating the effects of fading,
interference, and noise in the received signal. Frequently employed Combining
methods include Maximum Ratio Combining [42], Selection Combining [43]
and Singular Value Decomposition [44] and [45].

These techniques play crucial roles in optimizing the performance of wireless
communication systems, especially in scenarios with challenging channel conditions,
interference, and multi-path effects.
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Figure 3.4: Simplified fully-analog beamforming architecture

3.3.2 Analog, digital and hybrid MIMO architectures

The design of MIMO systems in terms of architectural requirements is one of the
most important challenges in Beam Management problems. We distinguish three
main architectures: fully-analog, fully-digital or hybrid involving both.

Fully-analog MIMO architectures are characterized by using analog components
throughout the entire signal processing chain. The key advantage of fully-analog
architectures is their simplicity and low implementation complexity. Since the sig-
nals remain in the analog domain, they can be processed using highly efficient and
low-power analog circuitry. However, fully-analog architectures suffer from limita-
tions in terms of flexibility and adaptability. Any changes or updates to the signal
processing algorithms require modifications to the analog circuitry, which can be
time-consuming and costly. Additionally, fully-analog architectures may be suscep-
tible to interference and noise, as there are no digital signal processing techniques
available to mitigate these effects. Figure (3.4) provides a simplified diagram repre-
sentation of a fully-analog architecture.

On the other hand, fully-digital MIMO architectures rely on digital signal pro-
cessing techniques for all stages of signal transmission and reception. The incoming
signals are first converted from analog to digital domain, and all subsequent process-
ing is performed digitally. Fully-digital architectures also offer superior interference
and noise mitigation capabilities, thanks to the powerful digital processing algo-
rithms and techniques. However, fully-digital architectures can be more complex
and require higher computational resources compared to their analog counterparts.
The need for high-speed and high-resolution analog-to-digital converters and digital-
to-analog converters adds to the overall cost and power consumption of the system.
Figure (3.5) provides a simplified diagram representation of a fully-digital architec-
ture.

Hybrid architectures, in figure (3.6), combine the advantages of both fully-analog
and fully-digital approaches. They employ a combination of analog and digital com-

61



Figure 3.5: Simplified fully-digital beamforming architecture

Figure 3.6: Simplified analog-digital beamforming architecture

ponents in the signal processing chain. Typically, the RF front-end and the initial
stages of signal processing are implemented in the analog domain, while the later
stages involve digital processing. This allows for a balance between performance,
flexibility, and complexity. Hybrid architectures can leverage the efficiency of analog
processing for initial RF tasks while benefiting from the flexibility and adaptabil-
ity of digital processing for more advanced signal processing functions. However,
the design and optimization of hybrid architectures require careful consideration of
the trade-offs between analog and digital components, as well as the interfaces be-
tween them. Efficient coordination and synchronization between analog and digital
processing stages are essential to ensure optimal system performance.

3.3.3 Beam Alignment

Beam Alignment is a fundamental operation in mmWave MIMO communication
systems, which aims to establish an optimal beamforming link between the trans-
mitter and the receiver, as shown in figure (3.7) and (3.8). It involves the process of

62



Figure 3.7: Beam Alignment technical objective: accurately direct the beams be-
tween UE/BS using codebooks holding beam patterns for each antenna pair in both
sides of the transmission

aligning the transmit and receive beams in the most favorable direction to maximize
the signal quality and improve system performance. Beam Alignment is crucial in
mmWave systems due to the highly directional nature of mmWave signals, where
precise beam steering is required to overcome the severe path loss and limited diffrac-
tion characteristics of these high-frequency signals, stated in the previous section of
this chapter.

During the Beam Alignment process, the transmitter and receiver exchange con-
trol information to estimate the channel conditions and determine the optimal beam-
forming vectors. Beam sweeping is often employed as an initial step, where a prede-
fined set of beamforming vectors is systematically swept across the angular space to
explore potential beam directions. The receiver then measures the received signal
quality for each beam direction and feeds this information back to the transmitter.
Based on the feedback, the transmitter selects the beamforming vector that max-
imizes the received signal strength or other performance metrics. This process is
typically iterated until an optimal beam alignment is achieved.

Beam Alignment is often denoted Beam Training in the literature in reference
to the training required to accurately direct the beams, where this literature survey
in [1] resumes in three families, illustrated in figure (3.10).

Codebook-based Beam Alignment:
In codebook-based Beam Alignment, predefined sets of beamforming vectors, known
as codebooks, are employed at both the transmitter and receiver to establish a reli-
able communication link. These codebooks consist of distinct beamforming patterns
(AoD, AoA..) that facilitate efficient beam alignment in millimeter-wave frequen-
cies, allowing for optimal signal transmission between transmitters and receivers.

• Discrete Fourier Transform codebook: utilizes the mathematical princi-
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Figure 3.8: Simplified illustration of an Uplink scenario for Beam Alignment using
(AoA, AoD) from UE/BS DFT codebooks

ples of the DFT to create a set of orthogonal beamforming vectors:

TDFT =

{
1√
N
· e−j

2π
N

·k·n
∣∣∣∣ 0 ≤ k ≤ N − 1, 0 ≤ n ≤ N − 1

}
(3.1)

where k and n are the indices indicating the beams in the codebook, N repre-
sents the number of antennas in the array, and e−j

2π
N

·k·n calculates the complex
exponential values for the beamforming elements. The normalization factor
1√
N
ensures that the beamforming vectors have unit norm. The resulted beams

from the DFT codebooks are equispaced.

• Uniform Linear Array codebook: Well known for its simplicity, ULA
codebook utilizes evenly spaced antenna elements to cover a specific angular
range, enabling beamforming in both horizontal and vertical dimensions.

• Uniform Planar Array codebook: extends beamforming capabilities to a
two-dimensional plane, employing a grid of antennas in both horizontal and
vertical directions. This type of codebook enhances spatial coverage and diver-
sity, suitable for complex mmWave environments with diverse user locations.

• Non-Uniform Linear Array codebook: Unlike Uniform codebooks, the
Non-Uniform Linear Array codebooks employ unequally spaced antenna ele-
ments, allowing for customized beamforming patterns tailored to specific an-
gular regions. This adaptability enhances beamforming precision, making it
suitable for scenarios where focusing on specific angles is crucial.

• Singular Value Decomposition based codebook: can be represented as
follows:

FSVD = UTX ·VH
RX. (3.2)
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Figure 3.9: Uniform codebook beams vs Laplacian codebook beams [46]

Here, UTX ,V
H
RX are the unitary matrices obtained from the singular value

decomposition of the channel matrix H, formulated as:

H = UTX ·Σ ·VH
RX (3.3)

with Σ being a diagonal matrix containing the singular values of H.

• Laplacian codebook: its distinctive characteristic lies in utilizing phase
shifts with Laplacian-distributed angles, ϕ, as follows [46]:

f(ϕ) =
k√
2σϕ

exp(−
√
2|ϕ−mϕ|
σϕ

), ϕ ∈ [ϕmin, ϕmax] (3.4)

where mϕ denotes the mean of the angles and σϕ is the standard deviation. In figure
(3.9), we compare the resulted beams from Uniform codebooks and Laplacian code-
books using 8 antennas. In summary, the diverse array of codebooks, including the
classic DFT, the evenly distributed Uniform codebook, the SVD-based codebook,
and the Laplacian codebook, collectively enrich the toolkit for mmWave MIMO
beam alignment.

3.3.4 SotA Beam Alignment and benchmark

As we mentioned in the first chapter, the literature survey illustrates two families
of Beam Alignment approaches: classical BA and ML based BA. Classical Beam
Alignment techniques tend to use more and more structured Beam Alignment de-
sign such as hierarchical multi-level codebooks in [5] where training beamforming
vectors are constructed with different beam widths at different levels, overlapped
beam pattern in [6] where the main idea is to augment the amount of informa-
tion carried by each channel measurement reducing the required channel estimation
time, beam coding in [7] where we assign a unique code-signature to each beam an-
gle in addition to subspace estimation/decomposition based BA in [8]. Compressed
sensing-based algorithms in [9] is also used in this context taking advantage of chan-
nel sparsity. The majority of prior work using compressed sensing was limited to
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Figure 3.10: SotA Beam Training families of methods [1]

the single-beam training and transmission. This limitation is resolves in [48] where
an adaptive compressed sensing algorithm is adopted on Saleh Valenzuela geometric
channel model for full channel estimation, followed by hybrid precoding based on
quantized beam steering directions to directly approximate the channel’s dominant
singular values, which aligns with the MAC-layer protocol IEEE 802.11 ay. On the
other hand, in [41], authors investigate the performance of Regularized Zero Forcing
for massive MIMO in addition to hybrid MMSE based precoding and combining
techniques in [42]. Quite similar hybrid approach is found in [43], endorsed with one
joint beam selection combining using Lens antenna array, attached to an adaptive
Selection network, multiple RF chains and base band signal processing architec-
ture. In [44], authors rely on 3D SVD based codebooks to align beams. All these
methods require hybrid architectures, full channel estimation and a high overhead
scaling with the MIMO massive configuration. These SVD based codebooks where
compared to a deep neural network in [45], aiming to encounter the pilot overhead
problem, still through hybrid architecture and the prior full-exchange of CSI. In
[47], authors presented an overview of signal processing tools for mmWave BA, cov-
ering several channel/system models, the beam space sparsity in narrowband and
wideband models, analog, digital and hybrid precoding and combining in addition
to a deep dive through beam training protocols, including [2] [3], the low resolution
receivers and the multi user extensions. In addition, in [49], the proposed spatially
sparse precoding via orthogonal matching pursuit exploits the spatial structure of
mmWave systems with large antenna arrays, formulating the problem as a sparse
reconstruction problem, implemented on low-cost RF hardware with both limited
and full feedback. Moreover, in [50], the dominant model in the literature, Saleh
Valenzuela, is well investigated and the notions of its power delay profiles, fading and
statistical properties are rigorously defined. The 802.11ay standard is investigated in
[54] where authors merged adaptive compressed sensing solution with sub-connected
hybrid precoding multi-resolution hierarchical codebook, for single path and multi
path channels, while varying the power allocation, the level of interference and the
quantization errors, comparing the performances with Exhaustive BA.

Therefore, a commonality observed in most conventional methods lies in their
dependency on channel state information for channel estimation and Exhaustive
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Beam Alignment techniques (using all available beam patterns). The impractical-
ity of these approaches becomes evident in Massive MIMO setups, primarily due
to the significant pilot overhead involved. In this context, Machine Learning based
Beam Alignment emerges as a promising solution, offering potential avenues to over-
come these inherent limitations. For instance, statistical models such as Kolmogorov
model-based BA in [10] with sub-sampled codebooks reduce the signaling overhead:
15% of exhaustive BA provides accurate predictions for optimal beams at UE and
BS among a partial point-to-point BA procedure, similar to the proposed approach
in the first contributions of this PhD work. Besides, Deep learning through shallow
neural networks is increasingly used by Wireless Communication scientists where
we distinguish two learning paradigms: first, the ML methods related to the Super-
vised Learning via Support Vector Machine and Multi Layer Perceptrons for joint
Analog beam selection in [11], convolutional neural networks for beam Management
in sub-6 GHz in [12] and for calibrated beam training in [13], recurrent neural net-
works such as Long Short Term Memory network for beam tracking in [14][15][16],
auto-encoders for beam Management in [17] and several other neural architectures.
Second, the Reinforcement Learning in [18][19][20], generally used to resolve the
problems of Multi-Armed Bandit and Markov decision process. In [51], authors
study systems having one dominant cluster and propose a deep neural network
based on (AoD, AoA) beam patterns, using MMSE as QoS metric of evaluation, at
high SNR regime. The limitations of this approach is lack of robustness handling
noisy environments and lower SNR regimes. In [52], authors proposed a multi layer
perceptron based algorithm for beam alignment in multi-path environments, using
only phase-less received power measurements. Using 60 GHz radios with 36-element
phased arrays, their algorithm suggests a 62% reduction in overhead, benchmark-
ing the Exhaustive BA. Additionally, the survey in [53] provides a comprehensive
overview of several emerging technologies for 5G and towards 6G systems, such as
multiple access technologies, hybrid precoding and combining, non-orthogonal mul-
tiple access, cell-free massive MIMO, simultaneous wireless information and power
transfer technologies, comparing existing wireless communication techniques like
sub-6-GHz WiFi and sub-6 GHz 4G LTE over mmWave communications.

In essence, machine learning models offer a promising avenue for addressing
the substantial pilot overhead by efficiently utilizing sub-sampled codebooks and a
limited set of training data. However, their implementation often demands hybrid
precoding architectures featuring multiple radio frequency chains, leading to moder-
ate to high architectural complexity. Additionally, managing extensive datasets and
the offline computational intensity associated with cross-validation pose significant
challenges. Certain models advocated in existing literature, such as dense neural
networks, add computational intricacy, prompting researchers to explore avenues
for compression or delve into shallower architectures with reduced dimensions and
parameters.

Benchmark In conventional standards, Exhaustive BA, also called Brute Force
BA, is the de-facto approach for the Alignment process. It is based on sounding
all available beams at both UE and BS codebooks in order to Exhaustively select
the optimal beam-pair. One obvious drawback is the fact that the resulting signal-
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ing overhead scales as the product of the UE and BS codebook sizes. In the 60
GHz, the Exhaustive BA has been adopted in several mmWave WLAN or WPAN
communication technologies, e.g., IEEE 802.15.3c [2], IEEE 802.11ad [3]. It is con-
ventionally being applied in small MIMO configurations using small codebook sizes
(e.g., codebooks of size 8 × 8 for LTE) and guarantees the optimal performance.
For cellular networks [4], V2X communications, Unmanned Aerial Vehicle or High
Speed Train applications, the infeasibility of brute force based BA pushes scientists
to reduce the large signaling overhead, resulted from using massive antennas sys-
tems, aiming to find the smallest possible subset of beams that guarantees accurate
Alignment and a reliable initial-link [1].

3.3.5 Beam Sweeping:

Beam Sweeping is a technique used in the initial phase of Beam Alignment to explore
different beam directions and identify the optimal beamforming vector. It involves
systematically steering a set of predefined beamforming vectors across the angular
space to cover a wide range of potential beam directions. The receiver measures the
received signal quality for each beam direction, such as the received signal strength
or signal-to-noise ratio, and provides feedback to the transmitter. By sweeping
through various beam directions, the system can identify the direction with the
strongest signal and select the corresponding beamforming vector for subsequent
data transmission.

Beam Sweeping is necessary in mmWave MIMO systems due to the narrow beam
width and highly directional nature of mmWave signals. The main objective is to
explore different beam directions and evaluate the quality of the received signals to
identify the best beamforming direction for optimal communication. Beam Sweeping
can be performed in a structured manner, such as using predefined codebooks with
specific beamforming vectors, or in a more adaptive way, where the beam directions
are dynamically adjusted based on the feedback from the receiver. The effectiveness
of Beam Sweeping directly impacts the overall system performance, as it determines
the accuracy and efficiency of subsequent Beam Alignment and data transmission
processes.

3.3.6 Beam Tracking

Beam Tracking is a critical operation in mmWave MIMO communication systems
that aims to maintain a robust and reliable communication link between the trans-
mitter and receiver as they move relative to each other. Unlike Beam Alignment,
which focuses on the initial establishment of an optimal beamforming link, Beam
Tracking is responsible for continuously adapting the beamforming direction to com-
pensate for the changing channel conditions caused by mobility, fading, and other
environmental factors.

In Beam Tracking, the transmitter and receiver continuously exchange feedback
information to estimate the variations in the channel and adjust the beamform-
ing vectors accordingly. This feedback can include measurements of received signal
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Figure 3.11: SotA Beam Tracking families of methods [1]

strength, signal quality indicators, or other channel parameters. Based on the feed-
back, the transmitter dynamically adjusts the beamforming direction to maintain
an optimal link, ensuring high-quality communication and mitigating the effects of
channel fluctuations. The families of state of the art methods used to encounter the
Beam Tracking problem are resumed in figure (3.11):

The key challenge in Beam Tracking lies in accurately tracking the changing
channel conditions in real-time and promptly adjusting the beamforming direc-
tion. This requires efficient feedback mechanisms, fast beamforming adaptation
algorithms, and low-latency control signaling. Beam Tracking algorithms should be
able to handle rapid variations in the channel state, such as fast-moving users or dy-
namic multi-path propagation, to ensure uninterrupted and reliable communication.
By continuously tracking and adapting the beamforming direction, Beam Tracking
enhances the system’s robustness, improves link reliability, and helps maintain op-
timal performance in dynamic mmWave environments.

3.4 Machine Learning meets the beam Alignment

Problem

ML techniques have emerged as a promising approach for addressing Beam Align-
ment problems in wireless communication systems. This trend is driven by the ro-
bustness and flexibility of ML approaches, which have shown superior performance
compared to traditional methods and benchmarks in terms of Quality of Service
[1]. By leveraging ML, researchers are able to provide concrete solutions to the
challenges faced by conventional methods.

Although ML techniques may lack interpretability and pose challenges in hard-
ware implementation, they remain a vital research direction for 5G and beyond.
Particularly in the context of BA, ML tools offer a means to tackle the issue of large
signaling overhead ratios that arise from using a significant number of pilots in high-
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dimensional MIMO setups. Through various paradigms and learning approaches,
ML algorithms efficiently capture the hidden interactions between transmitters and
receivers and extract meaningful features to make accurate predictions.

Furthermore, ML’s robustness has been empirically demonstrated in various ex-
perimentally challenging environments and scenarios, including Blind BA [55]. Un-
like traditional methods that heavily rely on channel estimation prior to the align-
ment procedure, which can be time-consuming and resource-intensive in massive
MIMO systems, ML approaches handle the alignment problem without any knowl-
edge of the channel coefficients. The empirical evidence suggests that the impact
of blindness in ML-based approaches is minimal, highlighting their effectiveness in
addressing BA challenges.

3.4.1 Wireless communications datasets for AI tools

Data plays a pivotal role in the realm of Artificial Intelligence, particularly in the
context of Data-driven Beam Alignment problems. These problems involve the uti-
lization of datasets that can be categorized into two major groups. The first category
comprises structured datasets generated based on well-established models found in
the literature such as in survey [1] and in [56]. For example, in mmWave MIMO
communications, widely used models like geometrical Saleh-Valenzuela [22] and its
extensions, are employed. These datasets can take the form of matrices or tensors,
containing various parameters such as Signal-to-Noise Ratio, Signal-to-Interference-
plus-Noise Ratio, Received Signal Energy, beam patterns, GPS locations, spatial
coordinates, and more. The values in these datasets are generated following rig-
orous model setups with multiple architectural parameters, simulating both indoor
and outdoor scenarios [57].

The second category consists of datasets derived from experimental measure-
ments in real-life scenarios. Notably, datasets like deepMIMO [58], QuadriGa [59],
DeepSense [60] have gained significant recognition in the field, providing a rich col-
lection of technologies, scenarios, and source codes. These datasets also encompass
a wide range of indoor and outdoor simulations and incorporate diverse types of
data, including images, videos, radar/Lidar signals, sensor readings, and others [61].
Typically, the first category of datasets is utilized in the initial stages of AI model
validation. Once the researcher verifies the theoretical functionality of their model,
transitioning to datasets akin to deepMIMO is recommended for enhanced robust-
ness and more rigorous evaluation. However, scientist can face a lack of accessibility
to industrial datasets, protected by privacy and confidentiality measures. Some of
these datasets are generally shared as open-source for academic research and sci-
entific explorations. Huge datasets require a lot of training time for ML models,
even the low complex ones where the debate of Offline and Online training and
fine-tuning is continuously investigated for the industrial deployment of AI tools in
Wireless Communications components.

In this PhD manuscript, all proposed mmWave MIMO data-driven BA models
are based on the Saleh-Valenzuela framework, which is widely used in the literature
for both classic and ML based BA. Depending on the nature of the data, whether
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it is continuous or discrete, a distinction is made between non-linear regression
problems and logistic regression. These models and datasets serve as foundations
for developing AI-driven BA techniques, allowing for accurate and efficient beam
alignment in mmWave MIMO systems. The next sections introduce the two families
of optimization problems, illustrating the foundations of the proposed ML tools in
the literature: non-linear regression problems and logistic-regression problems.

3.5 Non-linear regression using shallow neural net-

works

Regression problems in the context of machine learning refer to the task of predicting
a continuous output value based on input features. These problems involve estab-
lishing a functional relationship between the input variables and the target variable,
allowing for the estimation of unknown values or making future predictions. The
goal of regression analysis is to identify and quantify the relationships between the
input variables and the target variable, enabling the creation of a predictive model
that can generalize to unseen data. Various algorithms and techniques are employed
in regression, such as linear regression, polynomial regression, and support vector
regression, each suited to different types of data and underlying assumptions. Non-
linear regression and MSE loss are two fundamental keywords of this manuscript:

• Non-linear regression expands upon the concept of regression by considering
complex relationships between the input variables and the target variable. Un-
like linear regression, which assumes a linear relationship, non-linear regression
models allow for more flexible and intricate mappings. These models employ
non-linear functions to capture the underlying patterns and dependencies in
the data. Non-linear regression is particularly useful when the relationship
between the variables cannot be adequately represented by a linear equation.
It enables the modeling of curvilinear, exponential, logarithmic, or other non-
linear trends, offering a more accurate representation of complex real-world
phenomena.

• MSE loss function, mathematically introduced in the previous chapter, is par-
ticularly suitable for non linear regression problems as long as it aims to min-
imize the discrepancy between the predicted values and the ground truth by
penalizing large deviations. It provides a quantitative measure of the model’s
performance, with lower MSE values indicating a better fit to the data. Thus,
it focuses on the magnitude of errors and assigns higher weights and learning
parameters to larger errors due to the squaring operation. The optimization
process in regression models often involves minimizing the MSE loss through
techniques like gradient descent, enabling the model to converge towards op-
timal parameter values. The MSE loss function is widely used due to its
mathematical properties, interpretability, and compatibility with various op-
timization algorithms.
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In the context of neural networks and deep learning, the mean squared error
loss serves as a measure of the discrepancy between the network’s predicted output
and the true target value. By calculating the average squared difference across all
training samples, the MSE loss guides the network’s learning process, facilitating the
adjustment of the network’s weights and biases to minimize the overall error. The
MSE loss function provides a continuous and differentiable objective that enables
efficient optimization through backpropagation and gradient-based algorithms. Its
utilization in neural network training ensures the network’s ability to learn and
generalize from the training data, making it a fundamental component in regression
tasks within the deep learning domain.

3.6 Logistic regression using classifiers

Logistic regression is a statistical modeling technique used for binary classification
problems. It is primarily employed when the target variable is categorical and has
two possible outcomes, such as ”yes” or ”no,” ”true” or ”false,” or ”spam” or ”not
spam.” The goal of logistic regression is to estimate the probability of a given input
belonging to a specific class. Unlike linear regression, which predicts continuous
values, logistic regression utilizes a logistic function (also known as the sigmoid
function) to map the linear combination of input features to a value between 0
and 1, representing the probability of belonging to the positive class. The logistic
regression model is trained using maximum likelihood estimation, optimizing the
parameters to maximize the likelihood of the observed data. It is a popular and
interpretable algorithm in the field of machine learning, often used as a baseline for
more complex classification models.

• Logistic regression is commonly used for binary classification problems, where
the target variable has two possible outcomes. However, it can also be ex-
tended to handle multi-class classification tasks through various techniques,
such as one-vs-rest or softmax regression. In one-vs-rest (or one-vs-all) logis-
tic regression, a separate logistic regression model is trained for each class,
treating it as the positive class and the remaining classes as the negative
class. During prediction, the model that produces the highest probability is
selected as the predicted class. Moreover, Softmax regression, also known as
multinomial logistic regression, is another extension of logistic regression for
multi-class classification. Instead of training separate models for each class,
softmax regression uses a single model with multiple output nodes, each corre-
sponding to a class. The softmax function is applied to the output layer, which
converts the raw predictions into a probability distribution across all classes.
The class with the highest probability is then assigned as the predicted class.

• Classification, on the other hand, is a fundamental task in machine learning
that involves assigning input samples to predefined categories or classes. It
is the process of learning a mapping from input features to discrete output
labels. The objective of a classification model is to accurately classify unseen
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data based on the patterns and relationships learned from the training data.
Various algorithms are employed for classification, such as logistic regression,
decision trees, support vector machines, random forests, and neural networks.
The performance of classification models is typically evaluated using metrics
such as accuracy, precision, recall, and F1-score, which quantify the model’s
ability to correctly classify samples into their respective classes.

The need for classification problem formulation came in when we considered
Quantizing the dataset before the Alignment procedure. Therefore, the data be-
comes discrete. We then use cross-entropy as our loss function which measures the
dissimilarity between the predicted probability distribution and the true probability
distribution of the target classes. The cross entropy loss is derived from informa-
tion theory and aims to minimize the average number of bits needed to encode the
true class labels given the predicted probabilities. Mathematically, the cross en-
tropy loss is computed by taking the negative sum of the logarithm of the predicted
probabilities of the correct classes. This loss function encourages the model to as-
sign high probabilities to the correct classes and penalizes deviations from the true
distribution.

3.7 Conclusion

This chapter serves as a comprehensive introduction to the realm of Beam Align-
ment and Management in mmWave MIMO systems. We begin by providing an
overview of the mmWave frequency band, highlighting its advantages and limita-
tions in wireless communication. Next, we delve into the essential concepts and
keywords associated with the signal processing package of Beam Management tech-
niques. We also explore the interdisciplinary intersection between Machine Learning
and Beam Alignment, discussing the nature of datasets and the choice of loss func-
tion, which in turn determines the regression problem to be addressed. In these two
introductory chapters on ML from one side and BA on the other hand, we have pro-
vided a comprehensive description of all the tools required for a full understanding of
the manuscript. In the subsequent chapter, we present the first contribution of this
thesis, where we apply ones of these tools, Matrix Factorization and its variants, in
a point-to-point narrowband system model. Our objective is to tackle the challenge
of large signaling overhead encountered in the exhaustive Beam Alignment process.
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Chapter 4

Matrix Factorization for blind and
partial Beam Alignment in
massive mmWave MIMO

”Mathematics compares the most diverse phenomena
and discovers the secret analogies that unite them.”

Joseph Fourier

4.1 Introduction

This chapter introduces the first scientific contribution of the thesis, which centers
around addressing the substantial signaling overhead challenge through two key
words: ”Partial” Beam Alignment and ”Blind” Beam Alignment.

• Partial Beam Alignment, the first keyword of this chapter, derives its name
from its distinctive approach of not utilizing the entire set of beam pairs for
alignment, a departure from conventional methods. Instead, we leverage code-
books that store beam patterns (AoA, AoD) between the User Equipment and
Base Station. These codebooks are judiciously sub-sampled, and a small train-
ing set is randomly selected, determined by a predefined ratio known as the
overhead ratio. The optimal value of this ratio represents the initial research
direction of this chapter.

• Blind Beam Alignment, our second focal point, revolves around sounding beam
pairs between the UE and BS without necessitating the exchange of Chan-
nel State Information. This approach renders the system ”blind” to channel
details.

We propose to track the training and test performance of the first proposed
learning tool, MF , over a basic point-to-point narrowband LoS channel and a sim-
ple fully-analog architecture with one RF chain at both sides of the transmission with
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the perspective of extending the channel and system model progressively throughout
the thesis in a parallel way to investigating more ML models. Thus, the proposed
Beam Alignment methodology in this chapter hinges on completing a sparse and
low-rank Received Signal Energy matrix using Matrix Factorization, backed by ro-
bust theoretical convergence proofs. This approach not only optimizes signaling
overhead but also lays the foundation for efficient and effective beam alignment in
massive MIMO configurations, as evidenced by promising results both in our work
and in related literature. This chapter comprises several key components, including
the system architecture, the mathematical formulation of the partial and blind BA
problem, the equations detailing the Matrix Factorization based solution, as well as
experimental simulations and comprehensive performance evaluations.

4.2 Point-to-point system architecture with one-

RF chain at UE and BS

We consider a mmWave Massive MIMO setup, where a UE and BS equipped with
NT and NR antennas respectively, wish to align the optimal Tx-Rx beamformer and
combiner pair in order to establish an initial link.

4.2.1 Beam former and combiner

The assumption of low-energy/complexity architecture is achieved, by having one
RF chain at the UE and one RF chains at BS. Note that the number of RF
chains should be smaller than the corresponding number of antenna and is fixed as
one in this narrowband model regarding this chapter and is generalized to multiple
chains within the wideband model of the next chapter. The UE selects its analog
beamformer fffu ∈ CNT from a codebook of (AoA, AoD) beam patterns, u ∈ T ,
where the set T , represents the UE codebook. Equivalently, the BS chooses its
fully analog combiner wi ∈ CNR from a codebook i ∈ R, where R represents the set
of BS codebook indexes. We denote by CT = |T |, and CR = |R| the cardinality of
codebook at the UE and BS, resp. Indeed, UE and BS beams satisfy the constant
modulus constraints:

fffu ∈ CNT , | [ fffu ]t | = (NT )
−1 , ∀ t ∈ {1, ..., NT}

wwwi ∈ CNR , | [ wwwi ]r | = (NR)
−1 , ∀ r ∈ {1, ..., NR}

where [ x ]t is entry t of a vector x and |x| is the absolute value of x.

4.2.2 Narrowband Saleh-Valenzuela mmWave Channel model

We define beam-pair (u, i) ∈ T × R, as beam u ∈ T from the UE codebook, and
beam i ∈ R from the BS codebook. In addition, as in [62] the signal at the BS
corresponding to beam couple (u, i) is expressed as:

yu,i = wH
i Hfffusu + ñi, ∀ (u, i) ∈ T ×R, (4.1)
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where su =
√
Pu is the pilot symbol associated with fffu, Pu is the corresponding

transmitted power over ñi = wH
i n, the zero mean additive white Gaussian noise with

unit variance, σ̃i
2 = 1. We denote the MIMO channel by H ∈ CNR×NT , that may

be a narrow- or wide-band channel model in general, narrowband in the numerical
simulations of this chapter, and L := rank(H) its rank (where L ≪ (NT , NR)).
Moreover, the channel is invariant for a mmWave coherence interval, I. It is called
in the literature slow fading channel [22] and is expressed thanks to the following
equation [63]:

H =

√
NTNR

L

L∑
i=1

ρi aR(θ
(R)
i )aHT (θ

(T )
i ) (4.2)

where L is number of paths of the channel representing the channel Rank, θ
(R)
i and

θ
(T )
i are angles of arrival at the BS, and angles of departure at the UE (AoA/AoD)
of the ith path, respectively. They are both considered uniform over [−π/2, π/2]).
Moreover, ρi is the complex gain of the ith path such that ρi ∼ CN (0, 1), ∀i. Finally,
aR(θ

(R)
i ) ∈ CNR and aT (θ

(T )
i ) ∈ CNT are the array response vectors at both the UE

and BS, respectively. We further assume that H is static during the BA procedure,
and that H is completely unknown to UE and BS where an independent realization
is observed for each time-index i.e., H(1) ≈ ... ≈ H(I).

4.2.3 Received Signal Energies

We define the received SNR for the beam couple (u, i) as:

SNRu,i = P |wH
i Hfffu|2, ∀ (u, i) ∈ T ×R (4.3)

We drop the time index from wi, fu, Pu since it is implicitly present in these quan-
tities. However, due to the lack of CSI due to the choice of the blind approach, the
BS is unable to compute the exact value of SNR. Thus, the BA is based on approx-
imating these SNR values with received signal energies or received signal strengths
as in [63]:

RSEu,i = |yu,i|2, ∀(u, i) ∈ T ×R, (4.4)

which does not require knowing H, fu, Pu. Therefore, we implicitly assume that the
RSE is close to the true SNR, for each beam-pair, i.e., SNRu,i ≈ RSEu,i,∀(u, i) ∈
T ×R just like a majority of blind BA approaches presented in the literature. Note
that the impact of this approximation is trivial when we use ML, where learning
models have the ability to extract hidden information from the RSE distribution
and provide performances quasi-similar to the ones where the exact values of SNR
are used.

4.2.4 Benchmark

Exhaustive BA: is a SotA method against which we benchmark, throughout the
whole PhD manuscript. Recall that Brute Force BA is performed via exhaustively
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Figure 4.1: Exhaustive Search step by step using two RF chains at BS and one RF
chain at UE through a 4× 4 MIMO setup

sounding both codebooks at UE and BS, i.e., exhaustively testing each and every
beam-pair, jointly as shown in figure (4.1) [2] [3]. Then, we perform an exhaustive
search of the beam-pair that holds the highest RSE.
The indexes of the optimal beam-pair are selected as:

(u⋆, i⋆) = argmax
(u,i)∈T ×R

RSEu,i (4.5)

From the above equation, it is clear that exhaustive BA must sound each and every
beam-pair in the UE and BS codebooks, T ×R: consequently, its signaling overhead
is, |T | × |R| = CT CR. Therefore, the main challenge of exhaustive BA is the
massive signaling overhead, that scales as the product of the codebook sizes at UE
and BS.

4.3 Problem Statement

Instead of processing exhaustive alignment for all possible beam pairs at UE and
BS, the proposed approach offers the capability to selectively probe a subset of
these beams while accurately predicting the RSE for the unsounded beam pairs.
This approach stands in contrast to several existing methods that rely on channel
knowledge. Furthermore, we achieve this with just a single Radio Frequency chain to
control the extensive antenna arrays at both the transmitter and receiver, resulting
in minimal power consumption.

Moreover, our approach avoids the use of digital precoding or combining and
instead leverages full analog beamforming. As a result, our method and derivations
are equally applicable to the wideband channel model. Notably, we aim to sound a
very small subset of the codebooks, resulting in a significant reduction in signaling
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overhead compared to the exhaustive BA benchmark, while maintaining negligible
loss in optimality.

As mentioned in the system model, we capitalize on the low-rank structure of
the Received Signal Energy matrix, denoted as S. This low-rank structure arises
from the inherent low-rank nature of the channel matrix H. Specifically, we suggest
sounding a subset of beam pairs and using their corresponding RSE values as a
training set to optimize a low-rankMF model. This trained model can then predict
the RSE values for the beam pairs that were not sounded. Note that the minimum
number of training samples required is always proportional to the rank and dimen-
sions of S. This property makes low-rank MF ideally suited for selecting a small
subset of beam pairs and predicting the RSE for the larger number of remaining
unknown beam pairs.

4.3.1 Proposed low-rank MF Approach:

Instead of sounding the entire codebooks at UE and BS, T and R, e.g., Exhaustive
BA described above, we use sub-sampled codebooks of beam couple, RS and TS
such that, RS ⊂ R and TS ⊂ T . The sub-sampled codebooks are chosen to have
small sizes, i.e., |RS | ≪ |R| and |TS | ≪ |T |. We denote beam-pair (u, i) as the
combination of analog beamforming vector i in the UE codebook of beams, and
analog combining vector u in the BS codebook of beams. Afterwards, we only
sound beam-pairs from sub-sampled codebook of beams, RS and TS (see Fig. 4.2).
Therefore, we express the RSE of beam-pair (u, i), from the sub-sampled codebooks
TS ×RS , as:

RSEu,i := | yu,i |22 ∀ (u, i) ∈ TS ×RS (4.6)

where yu,i is the received signal at BS in an Uplink scenario, resulting from beam-
pair (u, i), given in (4.1) . (6.2) can be equivalently written using an incomplete
RSE matrix, S ∈ RCT×CR(:= R|T |×|R|) as,

[ S ]u,i :=

RSEu,i , if (u, i) ∈ TS ×RS

unknown , if (u, i) /∈ TS ×RS
(4.7)

where [S]u,i, ∀(u, i) ∈ T ×R denotes element (u, i) of S.
Indeed, the BS knows the RSE of entries in S that correspond to the sub-sampled

codebooks at UE and BS, TS ×RS , because they already have been sounded. Sub-
sequently, The value of RSE is undefined for the beam-pairs that were not sounded
and shows the unknown matrix entries in the Matrix Completion task. We will use
their RSE as the training set, K, which we introduce as the sub-sampled codebook
indexes, K := {(u, i) | (u, i) ∈ TS × RS}. We then use the training set, K (beam-
pairs that have sounded and known RSE values in the matrix S, in (4.7)) to learn
a low-rank MF model, and apply it, to predict the RSE of entries in S that are
labeled ’unknown’, in (4.7); see Fig 4.2. In the matrix of RSE, S, we rely on the
entries for which the RSE is sounded and known (i.e., the training set K) to predict
the RSE value of unknown beam-pairs.
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Figure 4.2: Proposed partial BA using sub-sampled codebooks: toy-example with CT =
CR = 4 using one RF chain at UE and two RF chains at BS
i) Randomly sound subset of beam-pairs from codebook at UE and BS (colored entries
in the dataset matrix represent the training set)
ii) Process MF to predict RSE of non-sounded beam-pairs (matrix coefficients marked
with X)
iii) Select the optimal couple which holds the largest RSE (or SNR in case of prior CSI-
based channel estimation)

80



The intuition behind low-rank MF is to model the RSE of the sounded beam-
pairs, i.e., the coefficients of S that are known TS×RS , as an inner product between
two D-dimensional latent factors, i.e. latent vectors, θuθuθu,ψiψiψi. Thus, the RSE of beam-
pair (u, i) is formulated as:

RSEu,i = [S]u,i := θuθuθu
Tψiψiψi , θuθuθu ∈ RD , ψiψiψi ∈ RD,

∀ (u, i) ∈ K(:= TS ×RS) (4.8)

where D is the dimension of the MF model (also referred to as the complexity of
the learning model). Due to the low-rank MF model, D is theoretically assumed to
much smaller than the dimensions of S, i.e., D ≪ (CT , CR). The goal of low-rank
MF method is to optimize the latent factors, {θuθuθu,ψiψiψi}(u,i)∈K, corresponding to the
coefficients of S that are known (i.e., the training set K := TS ×RS). Particularly,
learning theMF latent factors, θuθuθu,ψiψiψi, corresponding to sample (u, i), of the training
set K, is formulated as:

fu,i(θuθuθu,ψiψiψi) :=
(
[S]u,i − θuθuθuTψiψiψi

)2
=

(
SNRu,i − θuθuθuTψiψiψi

)2
(4.9)

where fu,i(θuθuθu,ψiψiψi) is the cost function of the beam-sample (u, i) of the training set,
K. Afterwards, we sum over all the samples (u, i) of the training set K, to get the
total cost function, and formulate the optimization problem (P1) that results from
the low-rank MF problem, as:

(P1) :=

 argmin
{θuθuθu,ψiψiψi}(u,i)∈K

∑
(u,i)∈K fu,i(θuθuθu,ψiψiψi)

subject to θuθuθu ∈ RD, ψiψiψi ∈ RD

where the loss function of (P1) is expressed as:∑
(u,i)∈K

fu,i(θuθuθu,ψiψiψi) =
∑

(u,i)∈K

(
[S]u,i − θuθuθuTψiψiψi

)2
(4.10)

Note that in (P1), the RSE of the sounded beam-pairs are known (training set,
{[S]u,i|∀(u, i) ∈ K}), and the optimization variables that need to be tuned are the
latent factors w.r.t the training set, {ψiψiψi, θuθuθu|∀(u, i) ∈ K}.

4.3.2 Proposed low-rank NMF Approach:

Our proposed Non-Negative Matrix Factorization follows similar steps as MF , with
the main difference of constraining the latent factors of the NMF model to be non-
negative, i.e., the RSE of beam-pair (u, i) ∈ K, assuming the NMF model, is given
as:

RSEu,i = [S]u,i := θuθuθu
Tψiψiψi , θuθuθu ∈ RD

+ , ψiψiψi ∈ RD
+ ,

∀ (u, i) ∈ K(:= TS ×RS) (4.11)

The logic leading from the above RSE based model to the NMF optimization
problem, are the same those of MF . We skip re-writing them in this section to
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avoid redundancy. Thus, we formulate (P2), the NMF optimization problem, as
follows:

(P2) :=

 argmin
{θuθuθu,ψiψiψi}(u,i)∈K

∑
(u,i)∈K fu,i(θuθuθu,ψiψiψi)

subject to θuθuθu ≥ 0, ψiψiψi ≥ 0

where 0 is the all-zero vector of dimension D. Note that the loss function of (P2)
is similar as that of (P1), given in (4.10).

4.3.3 Overhead ratio

The overhead ratio is the most important parameters of this chapter and probably
the whole PhD manuscript. It is expressed as:

η :=
overhead of learning based BA

overhead of exhautive BA
=
|TS | × |RS |
|T | × |R|

(4.12)

It measures the signaling overhead of all the proposed MF/NMF methods com-
pared to that of our benchmark, the exhaustive BA (where 0 < η ≤ 1). Evidently,
we desire the smallest possible value of η, resulting consequently in the smallest
signaling overhead, which is vital for massive MIMO configurations. On the other
hand, low η indicates that the dimensions of the training set is small and con-
sequently, the prediction error may be large. For that reason, there is a major
trade-off between η value and the prediction error. Note that the signaling overhead
ratio from an ML perspective is the train/test split of our dataset. The RSE matrix
S includes the mmWave MIMO channel, H. Thus, S is a large-dimensions matrix
((CT , CR)≫ 1), characterized with low-rank structure (rank(S)≪ (CT , CT )). Thus,
low-rank MF/NMF both fit to the task in question with theoritical guarantees of
the monotonic convergence of the loss function to minimize.

4.4 Solutions to the formulated problems

We resolve the MF problem (P1) using the following methods:

• Block Coordinate Descent, i.e., Alternating Least Squares.

• BCD with Stochastic Gradient Descent.

• Block Gradient Descent merging Gradient Descent and BCD definitions.

Besides, figure (4.3) provides a simplified diagram representation so that we
highlight the learning and completion procedure: MF learns from known coefficients
in order to predict for the unknowns with the fundamental condition of low-rank
input dataset matrix.

82



Figure 4.3: Toy Example: Matrix Factorization with |T | = 5, |R| = 7, D = 3. MF
results in two rectangular matrices to be optimized: MF uses the RSE of known
beams in yellow to complete and infer for the unknown beams, colored in gray. The
product of the latent vectors θθθT2 and ψψψ5 gives the unknown value of RSE2,5

4.4.1 BCD, BGD and BSGD solutions using Matrix Factor-
ization

BCD for MF (BCD MF):
BCD proceeds by splitting the optimizing problem (P1) into sub-problems, suppos-
ing that all other blocks are known/fixed. We will show that each sub-problem is
strongly convex in each block, and the BCD algorithm converges to a stationary
point. The application of BCD to theMF problem, results in two sub-problems, S1
and S2, that are solved iteratively. At iteration k, the sub-problem (S1) is defined
by fixing block {ψiψiψi(k)}∀i, and only solving block {θuθuθu}∀u:

(S1) : θuθuθu
(k+1) = argminθuθuθu∈Rd f({θuθuθu ,ψiψiψi(k)}) (4.13)

=
∑

(u,i)∈K

[([S]u,i − θuθuθuTψiψiψi(k))2 + µu∥θuθuθu∥22 + λi∥ψiψiψi(k)∥22] (4.14)

In addition, the sub-problem (S2) is defined by fixing block {θuθuθu(k+1)}∀u in (P1),
and only updating block {ψiψiψi}∀i:

(S2) : ψiψiψi
(k+1) = argminψiψiψi∈Rd f({θuθuθu(k+1) ,ψiψiψi}) (4.15)

=
∑

(u,i)∈K

[([S]u,i − θuθuθu(k+1)ψiψiψi)
2 + µu∥θuθuθu(k+1)∥22 + λi∥ψiψiψi∥22] (4.16)
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We will rewrite S1 into as series of equivalent problems as follows:

(S1) := argminθθθu∈Rd

∑
(u,i)∈K

[[S]2u,i − 2[S]u,iθuθuθu
Tψiψiψi

(k) + θuθuθu
Tψiψiψi

(k)ψiψiψi
(k)Tθuθuθu + µu∥θuθuθu∥22]

(4.17)

⇔ argminθuθuθu∈Rd

∑
u

[−2θuθuθuT
∑
i

([S]u,iψiψiψi
(k)) + θuθuθu

T
∑
i

(ψiψiψi
(k)ψiψiψi

(k)T )θuθuθu + µu∥θuθuθu∥22]

(4.18)

⇔ argminθuθuθu∈Rd

∑
u∈Ui

[−2θuθuθuT (r(k)u ) + θuθuθu
T (Qu

(k))θuθuθu + µu∥θuθuθu∥22] =
∑
u∈U⟩

hu(θuθuθu), (d.1)

(4.19)

θuθuθu
(k+1) = argminθuθuθu∈Rd [−2θuθuθuT ru(k) + θuθuθu

T ( Qu
(k) + µuID )θuθuθu] = f1(θuθuθu), (e.1)

(4.20)

∀u ∈ Ui where Ui is the set of row-indexes u in the RSE matrix corresponding to
column i in the known entries of RSE matrix, Qu

(k) =
∑

i(ψiψiψi
(k)ψiψiψi

(k)T ) and ru
(k) =∑

i([S]u,iψiψiψi
(k)).

We derive the closed form solution for sub-problem S1, by finding the global min
of f1(θuθuθu):

∇f1(θuθuθu) = 0⇔ −2ru(k) + 2( Qu
(k) + µuID )θuθuθu = 0⇔ θuθuθu = ( Qu

(k) + µuID )−1ru
(k)

(4.21)

Similarly, we rewrite sub-problem (S2), into a following series of equiv problems,
by stating the last one:

(S2) : ψiψiψi
(k+1) =argminψiψiψi∈Rd [−2ti(k+1)Tψiψiψi +ψiψiψi

T ( Pi
(k+1) + λiI )ψiψiψi] = f2(ψiψiψi), (e.2)

(4.22)

∀ i ∈ Iu where Iu is the set of column-indexes i in the RSE matrix corresponding
to row u in the known entries of RSE matrix, ti

(k+1) =
∑

u( [S]u,iθuθuθu
(k+1)T ) and

Pi
(k+1) =

∑
u( θuθuθu

(k+1)θuθuθu
(k+1)T ).

Afterwards, we derive a closed form solution for sub-problem S2, by finding the
global min of f2(ψψψi):

∇f2(ψiψiψi) = 0⇔ −2ti(k+1) + 2( Pi
(k+1) + λiID )ψiψiψi = 0 (4.23)

⇔ ψiψiψi = ( Pi
(k+1) + λiID )−1ti

(k+1) (4.24)

↔ ψiψiψi
(k+1) = ((

∑
u

( θuθuθu
(k+1)θuθuθu

(k+1)T )) + λiID )−1(
∑
u

( [S]u,iθuθuθu
(k+1)T )) (4.25)
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Thus BCD updates to solve MF are given:θuθuθu
(k+1) = (

∑
iψiψiψi

(k)(ψiψiψi
(k))T ) + µuI)

−1(
∑

i[S]u,iψiψiψi
(k))

ψiψiψi
(k+1) = ((

∑
u θuθuθu

(k+1)(θuθuθu
(k+1))T ) + λiI)

−1(
∑

u[S]u,iθuθuθu
(k+1))

∀(u, i) ∈ K , k = 0, 1, ..., IM (4.26)

where (k) represents the index of the BCD iterations, (u,i) are the codebooks indexes
at UE and BS, [S]u,i denotes the RSE of the (u,i) beam-couple. The solution

{θ̂uθuθu, ψ̂iψiψi}(u,i)∈K is reached after the interval/gap between consecutive iteration reaches
a predefined ϵ or a max number of iterations, IM .

We have the following result: the sequence of updates {θuθuθu(k),ψiψiψi(k) | ∀(u, i) ∈ K}k
generated by BCD, in (4.26), is non-increasing (in k), and converges to a stationary
point, as k →∞. Proof: see appendix A.

Block-Stochastic Gradient Descent (BSGD) for MF (SGD MF):
SGD MF proceeds by taking T plain SGD steps (mini-batch size = 1). BGD pro-
ceeds by taking T SGD steps for each block BCD. We first choose at random a single
training sample (u, i) ∈ K.

The BSGD update for sub-problem (S1) is done by performing SGD for f1(θθθu) =∑
u∈Ui

hu(θθθu) in (d.1), i.e., choosing at random a single index u ∈ Ui and computing

the plain SGD ∇̂f1(θθθu) = ∇̂
(∑

u∈Ui
hu(θθθu)

)
= hu(θθθu), where u is a random index

from Ui, and ∇̂f1(θθθu) is the plain SGD on f1() (in e.1). The update is then expressed
as:

θuθuθu
(k+1) = θuθuθu

(k) − αk ̂∇f1(θuθuθu(k)) ,= θuθuθu
(k) − αk∇hu(θuθuθu(k)) u ∈ Ui (4.27)

= θuθuθu
(k) + 2αk( (

∑
i

([S]u,iψiψiψi
(k)))− ( (

∑
i

ψiψiψi
(k)ψiψiψi

(k)T ) + µuID )θuθuθu
(k)), (4.28)

u ∈ Ui, k = 1..T where u is a single index chosen at random from Ui, Qu
(k) =∑

i(ψiψiψi
(k)ψiψiψi

(k)T ), ru
(k) =

∑
i([S]u,iψiψiψi

(k)), (k) is the iteration index for SGD, and

∇̂f1(θuθuθu) is the plain SGD over one random sample u ∈ Ui.

Similarly, the update for sub-problem (S2) is done by taking T plain SGD steps

of f2(ψψψ) =
∑

i∈Iu hi(ψiψiψi) in d.2), i.e., the SGD, ∇̂f2(ψiψiψi) = ∇̂(
∑

i∈Iu hi(ψiψiψi)) = hi(ψiψiψi) ,
where i is single random index from Iu. Thus, the SGD MF update for sub-problem
(S2) is expressed as:

ψiψiψi
(k+1) = ψiψiψi

(k) − αk ̂∇f2(ψiψiψi(k)) = ψiψiψi
(k) − αk∇h2(ψiψiψi(k)) , i ∈ I⊓ (4.29)

= ψiψiψi
(k) + 2αk( (

∑
u

( [S]u,iθuθuθu
(k)T ))− (

∑
u

( θuθuθu
(k)θuθuθu

(k)T ) ) + λiID )θuθuθu
(k)),

(4.30)
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∀i ∈ Iu, ∀k = 1..T where i is a single index chosen randomly from Iu,

ti
(k) =

∑
u

( [S]u,iθuθuθu
(k)T ),Pi

(k) =
∑
u

( θuθuθu
(k)θuθuθu

(k)T ) (4.31)

where ∇̂f2(ψiψiψi) is the plain SGD gradient calculated with respect to one sample
i ∈ Iu, chosen at random. We express the SGD MF updates as,:{
θuθuθu

(k+1) = θuθuθu
(k) + 2αk( (

∑
i([S]u,iψiψiψi

(k)))− ( (
∑

iψiψiψi
(k)ψiψiψi

(k)T ) + µuID )θuθuθu
(k))

ψiψiψi
(k+1) = ψiψiψi

(k) + 2αk( (
∑

u( [S]u,iθuθuθu
(k)T ))− ( (

∑
u( θuθuθu

(k)θuθuθu
(k)T ) + λiID )θuθuθu

(k))

(4.32)

∀ k = 0, 1, ..., T, i ∈ Iu, u ∈ Ui (4.33)

where u is a random index chosen from Ui, i a random index from Iu. 0 ≤ αk ≤ 1
the step size for SGD .

BGD for MF (BGD MF):
Instead of having a closed form solution for each optimization block, BGD proceeds
by taking T gradient steps, for each block T gradients steps. Therefore, the BGD
updates for the MF problem are expressed as,{
θuθuθu

(k+1) = θθθ
(k)
u + 2αk( (

∑
i([S]u,iψiψiψi

(k)))− ( (
∑

iψiψiψi
(k)
i ψψψ

(k)T

i ) + µuID )θuθuθu
(k))

ψiψiψi
(k+1) = ψiψiψi

(k) + 2αk( (
∑

u( [S]u,iθuθuθu
(k)T ))− ( (

∑
u θuθuθu

(k)θuθuθu
(k)T ) + λiID )θuθuθu

(k))

(4.34)

∀(u, i) ∈ K , k = 0, 1, ..., T, (4.35)

where (u,i) are the codebooks indexes at UE and BS, k the GD iteration index and
α(k) is the BGD step size (0 < α(k) < 1).

4.4.2 BCD, BGD and BSGD solutions using Non-negative
Matrix Factorization

Our proposed NMF follows the exact steps as MF , with the main difference of
constraining the latent vectors to be non-negative θuθuθu ∈ RD

+ , ψiψiψi ∈ RD
+ ,∀ (u, i) ∈ K.

Likewise, we solve the NMF problem, (P2), using BCD, SGD, and BGD.

BCD for NMF (BCD NMF):
The derivations of BCD for NMF (4.36), are identical to those of BCD for MF
(4.26), followed by the corresponding projection operation []+. The updates of BCD
for NMF derivations are given by:θuθuθu

(k+1) =
[
(
∑

iψiψiψi
(k)(ψiψiψi

(k))T ) + µuI)
−1(

∑
i[S]u,iψiψiψi

(k))
]
+

ψiψiψi
(k+1) =

[
((
∑

u θuθuθu
(k+1)(θuθuθu

(k+1))T ) + λiI)
−1(

∑
u[S]u,iθuθuθu

(k+1))
]
+
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∀(u, i) ∈ K , k = 0, 1, ..., IM (4.36)

where (k) is the BCD iteration index, [a]+ := max(a,0) is applied element-by-
element on a, i.e., a Euclidean projection of a on RD

+ . Since the projection is Eu-
clidian (non-expansive operator), the Corollary stated in the previous subsection,
proved in Annex A, applies to the BCD for NMF too.

Block-Stochastic Gradient Descent (BSGD) for NMF (SGD NMF):
The SGD NMF derivations are exactly the same as that of SGD MF, followed by a
projection []+. We thus express the SGD NMF updates as,θuθuθu

(k+1) =
[
θuθuθu

(k) + 2αk( (
∑

i([S]u,iψiψiψi
(k)))− ( (

∑
iψiψiψi

(k)ψiψiψi
(k)T ) + µuID )θuθuθu

(k))
]
+

ψiψiψi
(k+1) =

[
ψiψiψi

(k) + 2αk( (
∑

u( [S]u,iθuθuθu
(k)T ))− (

∑
u( θuθuθu

(k)θuθuθu
(k)T ) ) + λiID )θuθuθu

(k))
]
+

∀ k = 0, 1, ..., T, u ∈ Ui, i ∈ Iu (4.37)

where u is a random index chosen from Ui, i a random index from Iu, [a]+ :=
max(a,0), and α(k) is the SGD step size (0 < α(k) < 1).

BGD for NMF (BGD NMF):
The derivations and solutions for BGD NMF are the same those of BGD MF, fol-
lowed by a projection []+ i.e,θuθuθu

(k+1) =
[
θuθuθu

(k) + 2αk( (
∑

i([S]u,iψiψiψi
(k)))− ( (

∑
iψiψiψi

(k)ψiψiψi
(k)T ) + µuID )θuθuθu

(k))
]
+

ψiψiψi
(k+1) =

[
ψiψiψi

(k) + 2αk( (
∑

u( [S]u,iθuθuθu
(k)T ))− (

∑
u( θuθuθu

(k)θuθuθu
(k)T ) ) + λiID )θuθuθu

(k))
]
+

∀(u, i) ∈ K , k = 0, 1, ..., T, (4.38)

where [a]+ := max(a,0), (k) is the GD iterations index and α(k) is the GD step size
(0 < α(k) < 1). We use a constant step size αk = α for all these methods.

4.5 Predictions for MF and NMF

For both MF and NMF , the predicted RSE of beam-pair (u, i), for beam indexes
that were not sounded, is expressed as:

{R̂SEu,i := (θ̂θθu)
T ψ̂ψψi | ∀(u, i) ∈ L} (4.39)

where L is the test set and {θ̂θθu)T , ψ̂ψψi} are optimal solutions to MF (or NMF).
Afterwards, we search for the optimal beam-pair at UE and BS as the one with the
highest RSE value over both training and test sets:

(u⋆, i⋆) = argmax
(u,i)∈L∪K

(θ̂θθu)
T ψ̂ψψi. (4.40)
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4.6 Algorithm for the proposed Beam Alignment

using MF/NMF

All the different methods proposed in this chapter, are neatly tied together and
presented in Algorithm (4).

Algorithm 4 Proposed MF/NMF-based BA Method

1: Input: {fu}∀u∈T , {wi}∀i∈R, η
2: Generate randomly sub-sampled codebooks, TS ,RS , satisfying (|TS | × |RS |)/(|T | ×
|R|) = η

3: Sound beam-pairs from the training set, K := TS ×RS .
4: Record corresponding RSE and generate matrix S in (4.7).
5: Select the model: MF or NMF.
6: if MF model selected then
7: Solve (P1) with BCD for MF, in (4.26)
8: or solve (P1) with BGD for MF, in (4.35)
9: or solve (P1) with SGD for MF, in (4.33). At the end of training, return optimal

latent vectors, {θ̂θθu, ψ̂ψψi}(u,i)∈K
10: end if
11: if NMF model selected then
12: Solve (P2) with BCD for NMF, in (4.36)
13: or solve (P2) with BGD for NMF, in (4.38)
14: or solve (P2) with SGD for NMF, in (4.37). At the end of training, return ideal

latent vectors, {θ̂θθu, ψ̂ψψi}(u,i)∈K
15: end if
16: Use ideal latent vectors {θ̂θθu, ψ̂ψψi}(u,i)∈K to predict unknown RSE of the test set, L, in

(4.39)
17: Search training and test sets for the beam-pair with the largest RSE, (4.40)
18: Output: fu⋆ , wi⋆ =0

4.7 Numerical Simulations

This section outlines the experimental procedure, focusing on the continuous eval-
uation of Machine Learning model predictions in comparison to Exhaustive Search.
The simulations encompass various setups, ranging from 16 to 1024 antennas at
UE and BS, with specific emphasis on Massive MIMO configurations (256, 512,
1024). The overhead ratio spans from 0.1 to 0.9. The central challenge revolves
around identifying the minimum overhead value that yields accurate predictions for
the optimal Tx-Rx beam pair associated with the highest RSE.

Cross validation is a grid search process that aims to find the optimal hyperpa-
rameters of the proposed models (chosen regarding the lowest achieved test error);
Tx-Rx Regularizers are 20 linearly-equispaced scalars in from 0.001 to 100, the num-
ber of used latent factors (MF model complexity) is 2,3,4 depending on the size of
RSE Matrix. The learning rate (Gradient Descent step size) is fixed and is equal to
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(a) 512×512 Train MSE in function of
the overhead ratio

(b) 512×512 Test MSE in function of the
overhead ratio

Figure 4.4: Train and Test MF/NMF Performance in function of the overhead ratio

0.01 for all the cross validation procedures. The rank of the MIMO channel which
is the number of mmWave channel paths is fixed and is equal to 1 (Narrowband
Line-of-Sight model).

In our calculations for both MF and NMF, we employed two distinct algorithms:

• Alternating Least Squares (ALS): This method relies on equations derived
from (4.26) and (4.36).

• Gradient Descent (GD): We utilized equations from (4.35) and (4.38) for this
approach.

To comprehensively evaluate model performance, we considered four distinct
models in total: MF ALS, MF GD, NMF ALS, and NMF GD (the totality of
proposed models and variants including SGD for MF and NMF are simulated in
the next chapter). For robustness and reliability, every component involved in the
dataset RSE Matrix generation, such as the channel, beamformer, and Tx symbol,
is generated randomly. As we work with increasingly large dataset matrix sizes, the
process of fine-tuning hyperparameters becomes computationally expensive. This
tuning phase is conducted offline. Once the optimal combination of hyperparameters
is determined, we proceed with the prediction phase, which involves completing the
matrix task.

4.7.1 Train Performance

Matrix Factorization models require continuous fine-tuning to identify the optimal
combinations of hyperparameters. This includes selecting the appropriate learning
rate, determining the number of Latent Factors and tuning the regularization factors
for both UE and BS components through multiple iterations. During training, we
assess performance by monitoring the Mean Squared Error of the cost function
applied to the training set samples in relation to the overhead ratio. In contrast,
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(a) 256 by 256 with overhead 20 MF ALS
Learning curve

(b) 512 by 512 with overhead 20 MF GD
Learning curve

(c) 1024 by 1024 with overhead 10 NMF
ALS Learning curve

(d) 1024×1024 with overhead 0.1 NMF
ALS Learning curve

Figure 4.5: MF/NMF Learning curves: Train/Test MSE in function of the learning
iterations
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prediction error measures the difference between the predicted RSE value (fromMF )
and the true RSE value obtained through Exhaustive BA. This provides a localized
evaluation for a specific experimental instance (in all results tables, it indicates the
prediction error of the best beam-pair instance.) Therefore, MSE serves as a more
comprehensive, global and informative evaluation metric.

In Tables (4.3), (4.2), and (4.1), we monitor the training Mean Squared Error for
the four proposed models across matrix sizes of 256×256, 512×512, and 1024×1024.
This evaluation spans overhead ratios ranging from 0.9 to 0.5. Notably, there are dis-
tinct differences in error range and behavior between the Alternating Least Squares
and Gradient Descent models in both Matrix Factorization and Non-Negative Ma-
trix Factorization. This distinction becomes more evident when analyzing the curves
that plot training MSE as a function of the overhead ratio.

For GD-based models, the error range remains relatively consistent at around
10e− 08, while ALS-based models exhibit a wider range of errors, typically around
10e − 04. In the case of both MF and NMF models, as depicted in Figure (4.4),
Train MSE generally decreases with an increase in the overhead ratio, indicating
that with fewer training samples available i.e., higher overhead ratios, the models
tend to learn more effectively.

It’s noteworthy that in all simulations, the training MSE remains extremely
low, underscoring the fact that all models have effectively learned to make accurate
predictions on the training samples across the proposed range of overhead values.

Model overhead = 0.5 overhead = 0.6 overhead = 0.7 overhead = 0.8 overhead = 0.9
MF ALS 0.013973 0.005810 0.003596 0.001714 0.000516
NMF ALS 0.00857 0.00588 0.003652 0.001730 0.000534
MF GD 1.921554e-08 1.000214e-08 1.001488e-08 1.157753e-08 1.026492e-08
NMF GD 1.001505e-08 1.000156e-08 1.000399e-08 9.997341e-09 9.988570e-09

Table 4.1: 256 by 256 Train MSE in function of the overhead ratio

Model overhead = 0.5 overhead = 0.6 overhead = 0.7 overhead = 0.8 overhead = 0.9
MF ALS 0.002538 0.001729 0.001059 0.000504 0.000161
NMF ALS 0.002576 0.001759 0.001089 0.000521 0.000165
MF GD 1.000311e-06 1.000200e-08 9.997494e-07 9.995999e-09 9.999849e-07
NMF GD 1.00010e-06 1.000122e-08 1.000090e-06 1.0004463e-08 1.0001752e-06

Table 4.2: 512 by 512 Train MSE in function of the overhead ratio

Model overhead = 0.5 overhead = 0.6 overhead = 0.7 overhead = 0.8 overhead = 0.9
MF ALS 0.000680 0.000457 0.000279 0.000132 4.187750e-05
NMF ALS 0.000695 0.000467 0.000285 0.000137 4.365256e-05
MF GD 9.998334e-07 9.996394e-09 9.998379e-09 1.023600e-08 9.999563e-09
NMF GD 1.000130e-06 9.998424e-09 1.000207e-08 1.007870e-08 1.000090e-08

Table 4.3: 1024 by 1024 Train MSE in function of the overhead ratio

4.7.2 Test Performance

The analysis of Test Performance primarily relies on tracking the Mean Squared Er-
ror computed on the Test set samples, which represent the unknown entries involved
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in the Matrix Completion task. In Tables (4.6), (4.5), and (4.4), we observe the Test
MSE for the four proposed models across matrix sizes of 256×256, 512×512, and
1024×1024, while considering overhead ratios ranging from 0.9 to 0.5.

Once again, we notice that there are clear distinctions in error range and behav-
ior between the Alternating Least Squares and Gradient Descent models, both in
Matrix Factorization and Non-Negative Matrix Factorization. These differences are
reflected not only in the absolute error values but also in the trends observed when
plotting the Test MSE as a function of the overhead ratio, as shown in Figure (4.5).
These results parallel the patterns observed in the Train Performance analysis for
each proposed setup.

Furthermore, it is worth highlighting that, for both MF and NMF , the perfor-
mance of ALS calculations stands apart from that of GD, and the ranges of error
values exhibit notable distinctions.

Model overhead = 0.5 overhead = 0.6 overhead = 0.7 overhead = 0.8 overhead = 0.9
MF ALS 0.014447 0.008402 0.005680 0.003304 0.001416
NMF ALS 0.012085 0.008819 0.005966 0.003542 0.001937
MF GD 2.310921e-08 1.020069e-08 1.020804e-08 1.226321e-08 1.069049e-08
NMF GD 1.022159e-08 1.019264e-08 1.019379e-08 1.018302e-08 1.014422e-08

Table 4.4: 256 by 256 Test MSE in function of the overhead ratio

Model overhead = 0.5 overhead = 0.6 overhead = 0.7 overhead = 0.8 overhead = 0.9
MF ALS 0.003739 0.002744 0.001872 0.001104 0.000568
NMF ALS 0.003970 0.002983 0.002062 0.001282 0.000782
MF GD 1.000053e-06 1.012991e-08 1.000072e-06 1.011945e-08 1.000348e-06
NMF GD 9.998704e-07 1.011856e-08 1.000473e-06 1.012624e-08 1.000475e-06

Table 4.5: 512 by 512 Test MSE in function of the overhead ratio

Model overhead = 0.5 overhead = 0.6 overhead = 0.7 overhead = 0.8 overhead = 0.9
MF ALS 0.000994 0.000717 0.000480 0.000295 0.000159
NMF ALS 0.001050 0.000768 0.000525 0.000328 0.000243
MF GD 9.999064e-07 1.004559e-08 1.005048e-08 1.031886e-08 1.005227e-08
NMF GD 1.000179e-06 1.004392e-08 1.005100e-08 1.015194e-08 1.004839e-08

Table 4.6: 1024 by 1024 Test MSE in function of the overhead ratio

4.7.3 Train/Test Performance

The Train/Test performance analysis involves monitoring both Train and Test Mean
Squared Error over a series of 100 iterations, which is depicted in the learning curve
shown in Figure (4.5). Notably, ALS calculations, whether for Matrix Factorization
or Non-Negative Matrix Factorization, demonstrate rapid convergence. Right from
the initial iterations, the ALS-based models quickly adjust their parameters, leading
to a substantial reduction in both Test and training MSE, nearly approaching zero.
On the other hand, the Gradient Descent method necessitates more iterations to
achieve a similar drop in MSE. In terms of Quality of Service, Table (4.7) provides an
overview of the minimum overhead necessary for the proposed setups, the optimal
model, i.e. the one with the lowest Test error, and the associated error values
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(Training MSE, Test MSE, and prediction distance for the best beam-pair instance).
Remarkably, for a Line-of-Sight narrowband scenario, massive MIMO configurations
demonstrate that only 10% of beam pairs at UE and BS are needed to conduct
complete Beam Alignment while maintaining highly accurate predictions.

Matrix Size Optimal Model Min Overhead Train MSE Test MSE Prediction Error
16 by 16 NMF GD 0.7 1.663786e-06 0.158286 0.048528
32 by 32 NMF GD 0.6 0.000525 0.000328 0.000243
64 by 64 MF GD 0.3 1.005048e-08 1.031886e-08 1.005227e-08

128 by 128 NMF GD 0.1 8.042019e-06 1.540287e-05 9.044893e-05
256 by 256 MF GD 0.1 1.722457e-06 2.00182e-06 0.001485
512 by 512 NMF GD 0.1 3.184227e-07 3.534617e-07 0.000191

1024 by 1024 NMF GD 0.1 1.002663e-08 1.0099426e-08 0.000118

Table 4.7: The minimum overhead required for the proposed configurations

Table (4.7) clearly demonstrates that larger matrices provide more information
for the models to learn from, ensuring higher prediction quality. In summary, Matrix
Factorization tools proves its ability to train, cross-validate hyperparameters, and
make accurate predictions across a fully-analog low-complexity system architecture.

4.8 Conclusion

In this chapter, our first contribution was presented. It begins with the theoreti-
cal foundation, offering a comprehensive insight into the proposed system model,
which is followed by the formulation of the problem for each variant of Matrix Fac-
torization. Subsequently, the chapter delves into the solutions, providing detailed
derivations and theoretical proofs of the loss function’s convergence. The final part of
the chapter encompasses the algorithm’s description and the presentation of numer-
ical results. In addition to the theoretical convergence guarantees of the proposed
algorithm, these results serve as concrete evidence of the success of our approach,
which combines model-based and data-driven methods to address the challenge of
large signaling overhead. Remarkably, our method achieves its objectives using only
a mere 10% of the beams, making it a fully blind solution.

Now, having established the efficacy of our proposed solution for the Beam Align-
ment problems discussed in this chapter, we are poised to subject our Matrix Fac-
torization techniques and their variants to more intricate experimental setups and
an expanded system architecture. Furthermore, we aim to evaluate their perfor-
mance in comparison to a shallow feed-forward neural architecture, with a specific
focus on Quality of Service considerations. This endeavor represents a pivotal step
in our research journey, as it pushes the boundaries of our methods and seeks to
uncover their potential in increasingly complex scenarios before adding the practical
quantization constraints later.
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Chapter 5

Multi Layer Perceptron for blind
and partial Beam Alignment in
massive mmWave MIMO

”Always remember that when it comes to markets, past
performance is not a good predictor of future returns -
looking in the rear- view mirror is a bad way to drive.
Machine learning, on the other hand, is applicable to
datasets where the past is a good predictor of the future.”

Francois Chollet

5.1 Introduction

This chapter represents the second contribution of the thesis, employing both Ma-
trix Factorization and Multi-Layer Perceptron to address a partial and blind Beam
Alignment challenge within an extended system model and a more intricate exper-
imental setup. While the previous chapter served to validate our approach within
a basic system configuration, focusing primarily on assessing its feasibility and nu-
merical success, the aim here is to expand the Uplink architecture. This expansion
involves the addition of more RF chains and increased complexity at the base sta-
tion, providing the necessary computational resources and meeting the associated
requirements. We delve into the complexities of a wideband Non-Line-of-Sight chan-
nel, which presents a more demanding experimental environment. We employ Dis-
crete Fourier Transform codebooks for beam patterns at both UE and BS instead
of the uniform codebooks, used in the previous chapter. Additionally, as we explore
new models, we investigate a wider range of Machine Learning tools that naturally
align with the task at hand.

The formulation of the partial and blind BA problem, as well as our proposed
solution, remains largely consistent with the previous chapter. The fundamental
challenge remains completing a sparse and low-rank Received Signal Energy dataset
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(a) Fully-analog MIMO architecture us-
ing a single RF Chain at UE and multi-
ple RF Chains at BS

(b) Uplink Beam Alignment problem
simplified illustration

Figure 5.1: Proposed BA diagram representation

matrix by solving a non-linear regression problem. However, this chapter introduces
some key extensions and the new ML tool: the Multi-Layer Perceptron. The prob-
lem formulation and solution approach remain the same for both MLP and MF .
To avoid redundancy, we do not reiterate the MF equations in this chapter (all
MF and NMF derivations in the previous chapter hold here and all BCD, BGD,
BGSD related methods are used in this chapter). Finally, we present a comparative
study between the two proposed learning models, exploring the trade-off between
complexity and accuracy across various transmitted power regimes.

5.2 Point-to-point system architecture with one-

RF chain at UE and multiple RF-chains at

BS:

In this section, we illustrate the mmWave MIMO point-to-point wideband system
model. We consider an Uplink transmission from a multiple-antenna user equipment
UE using a single radio-frequency chain and a multiple-antenna base station BS
using multiple radio-frequency chains, both wishing to align the most optimal fully-
analog beamformer and combiner pair to establish a reliable initial link. Note that,
the proposedML methods are performed at the BS which has higher computational
resources than the UE. Recall the signaling overhead Ω, defined as the total number
of pilots needed for BA, and T denotes the total number of time slots in the frame.
Thus, the effective rate r is expressed as,

r = (1− Ω

T
) log2(1 + SNR) (5.1)

Figure (5.1a) and (5.1b) provide the diagram representation of the proposed
architecture. It consists on a simplified illustration of the proposed beam-sounding
procedure for an Uplink scenario. The UE and BS are respectively equipped with
Uniform Linear Arrays of NT and NR antenna.
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5.2.1 Beam former and combiner

We propose a low-complexity fully-analog architecture where the UE has one radio-
frequency chain and BS have Nrf radio-frequency chains. Recall that the number
of RF chains at both UE and BS is theoretically assumed to be much smaller
that the corresponding number of antennas. The UE selects its analog beamformer
fufufu ∈ CNT from a DFT codebook of feasible beams choices, u ∈ T , where T is
the corresponding index set. Moreover, the BS selects its analog combiner Wi ∈
CNR×Nrf from a DFT codebook i ∈ R with R the index set of the codebook.
The resulted beams from using DFT codebooks are equispaced. We denote by CT
the number of possible beamforming vectors at the UE, i.e. the size/cardinality of
the UE codebook, |T | = CT . Similarly, we consider CR as the number of possible
combining vectors at theBS, i.e. the size/cardinality of theBS codebook, |R| = CR.
Both beamforming and combining are fully done in the analog domain using phase-
shifters at UE and BS, thus they satisfy the following constant modulus constraints:

fu ∈ CNT , |[fu]t| =
1

NT

, ∀t ∈ {1, . . . , NT}

WWW i ∈ CNR×Nrf , | [ WWW i ]r,t | =
1

NrfNR

, ∀ r ∈ {1, ..., NR}, ∀ t ∈ {1, ..., Nrf}

Besides, the processing among an Uplink transmission is all done at the BS. For
our proposed approach, the BS is responsible of receiving signal energies, in order
to learn their patterns and features for the purpose of accurately predicting the
optimal beam indexes from their corresponding codebooks and send them to UE so
that they establish a reliable transmission link.

5.2.2 Wideband Saleh-Valenzuela mmWave Channel model

We adopt the wideband Saleh-Valenzuela [22] channel model G ∈ CNR×NT given by

G(k) =

√
1

Nc

Nc∑
l=1

Hle
−j2πlk/Nc , ∀ k ∈ {1, ..., NC} (5.2)

where Nc represents the number of sub-carriers over the whole bandwidth through
an OFDM scenario, k is the index of sub-carrier k, and Hl ∈ CNR×NT is the narrow
band channel model representing the time domain channel impulse response with
L-tapped delays given by,

Hl =

√
NTNR

L

L∑
i=1

ρi aR(θ
(R)
i )aHT (θ

(T )
i ) (5.3)

where L is number of paths (rank) of the channel, θ
(R)
i and θ

(T )
i are angles of arrival

at the BS and angles of departure from the UE, noted (AoA/AoD) corresponding
to the ith path, (and both assumed to be uniform over [−π/2, π/2]), ρi is the
complex gain of the ith path such that ρi ∼ CN (0, 1), ∀i. Last but not least,
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aR(θ
(R)
i ) ∈ CNR and aT (θ

(T )
i ) ∈ CNT are the array response vectors at both the

UE and BS, respectively. We consistently assume that the channel is static and
completely unknown to both UE and BS.

5.2.3 Received Signal Energies

We denote beam pair (u, i) as the combination of UE beamformer indexed u from
the UE codebook T , and combiner indexed i in the BS codebook R. Again, the
signal at the BS resulting from applying beam pair (u, i), yu,i ∈ CNrf is expressed
as,

yu,i = Wi
HG(k) fffusu + nnni, ∀ (u, i) ∈ T ×R, (5.4)

where su =
√
Pu is the transmitted pilot symbol associated with fffu (having power

Pu) over nnni = WH
i n, the effective additive white Gaussian noise AWGN with unit

variance (σ2 = 1). We propose to send one symbol in order to maximize SNR at
BS via array gain. To that end, we define the received Signal to Noise Ratio for the
beam-pair (u, i) as

SNRu,i = Pu||WH
i G(k)fffu||22, ∀ (u, i) ∈ T ×R (5.5)

We assume a fully-blind approach, i.e., neither the BS nor the UE have any knowl-
edge of G. Thus, computing the above SNR expression is not feasible. Similarly
to the previous chapter, we will approximate the SNR of beam-pair (u, i) in (6.2)
using the corresponding instantaneous Received Signal Energies, expressed as,

RSEu,i = ||yu,i||22, ∀(u, i) ∈ T ×R. (5.6)

In other words, we will assume that RSEu,i ≈ SNRu,i, for each beam-pair (u, i) ∈
T ×R.

5.3 Problem formulation

5.3.1 Problem statement for MLP

We consider a feed-forwardMLP , with J layers, modeled as a composition of J non-
linear functions/layers. Let z0 ∈ R be the MLP input, and zJ ∈ R be the MLP
output. We denote by {z2, ..., zJ−1} all the hidden layer. We assume for simplicity
that width of all the layer is the same, denoted as D, i.e., {z2 ∈ RD, ..., zJ−1 ∈ RD};
see Fig 5.2. The eqt describing layer 1 is given by:

z1 = σ1(ϕ1z0) = σ1(ϕ11) (5.7)

where z1 ∈ RD is the output of layer 1, ϕ1 ∈ RD the resulting weight vector,
σ1() : R −→ RD is the non-linear activation function for layer 1. We use a one
hot encoding for the MLP input z0 ∈ R, i.e., z0 = 1 for all training samples,
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Figure 5.2: Multi Layer Perceptron Architecture (Toy example with J = 4)

∀(u, i) ∈ K. We express the output of the hidden layers, {zj ∈ RD}J−1
j=2 as, zj =

σj(Φjzj−1) , ∀ j ∈ {2, ..., J − 1} where zj−1 ∈ RD is the input of layer j and
zj ∈ RD its output , ∀ j ∈ {2, ..., J − 1}, Φj ∈ RD×D the weight matrix for layer j
, ∀ j ∈ {2, ..., J − 1}, and σj−1() : RD −→ RD the element-by-element non-linear
activation function for layer j, ∀ j ∈ {2, ..., J − 1}.

Finally, the relation for last layer j = J is expressed as, zJ = σJ(ϕJzJ−1) where
zJ ∈ R is the output for layer J , ϕJ ∈ R1×D its weight vector, and σJ() : RD −→ R
the non-linear activation function for layer J . We express the output of the MLP
zJ ∈ R (as a function of all layers), as:

zJ := σJ(ϕJ...σ2(Φ2(σ1(ϕ1)))) (5.8)

The output ofMLP is made to fit/approximate all the RSE values at all training
samples; zJ := RSEu,i, ∀(u, i) ∈ K. We define MSE loss lu,i for sample (u, i) in
training set K, as the distance between the MLP output zJ , and the known RSE
label for beam-pair (u, i), RSEu,i:

lu,i := (zJ −RSEu,i)2 = ( σJ(ϕJ...σ2(Φ2(σ1(ϕ1))))︸ ︷︷ ︸
MLP output

− RSEu,i︸ ︷︷ ︸
RSE value

)2 , ∀(u, i) ∈ K

Consequently, the empirical risk is defined as the average of individual loss lu,i
across the training set K, (1/|K|)

∑
(u,i)∈K lu,i. The empirical risk minimization for
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the MLP is given in (P3).

(P3) := {(ϕ1
∗,Φ2

∗, ..., ϕJ
∗)

 argmin
ϕ1,Φ2,...,ΦJ−1,ϕJ

1
|K|

∑
(u,i)∈K lu,i(ϕ1,Φ2, ...,ΦJ−1, ϕJ)

ϕ1 ∈ RD,Φ2 ∈ RD×D, ..., ΦJ−1 ∈ RD×D, ϕJ ∈ R1×D

(5.9)

5.3.2 Proposed solution

We propose to learn the optimal MLP weights, via back-propagation (BP). We
choose an arbitrary mini-batch of samples of size B ⊆ K and define the mini-batch
loss as:

lB :=
1

|B|
∑
u,i∈B

(σJ(ϕJ...σ2(Φ2(σ1(ϕ1))))−RSEu,i)2 , ∀ (u, i) ∈ B (5.10)

We express the partial derivative of the loss corresponding to the mini-batch lB,
w.r.t. each layer Φj, j{1, ..., J} as:

∂lB
∂Φj

=
1

|B|
∑

(u,i)∈B

( δjzj−1
T ), ∀j ∈ {1, ..J} , (5.11)

where:

δj
∆
=

{
(Φj+1

T δj+1) ◦ σj
′
, j < J

2(zJ −RSEu,i) ◦ σj
′
, j = J , (u, i) ∈ B , σ

′

j
∆
=
∂σ(u)

∂u
= [

∂σ(u1)

∂u1
, ...,

∂σ(udj)

∂udj
]
T

,

(5.12)

j = 1, ..., J and ◦ denotes the Hadamard product. We express the BP weight update,
of the mini-batch loss lB, for all layers ∀j ∈ {1, ..., J}, as

Φ
(k+1)
j = Φ

(k)
j − βj

(k) ∂lB
∂Φj

∣∣∣
Φ

(k)
j

,∀j ∈ {1, ..., J}, k = {1, ..., T} (5.13)

where (k) in the BP iteration index, Φ
(k)
j is value of Φj at iteration k, βj

(k) BP

step-size (learning rate) for layer j at iteration k, and ∂lB
∂Φj
|
Φ

(k)
j

the partial derivative

given in (5.11) evaluated at Φ
(k)
j .

5.3.3 Back-propagation Algorithm with mini-batch:

Choose mini-batch B as random subset of training set K
1. Compute the loss function lB, for all samples in mini-batch (u, i) ∈ B, in (5.10).

2. Compute partial derivative ∂lB
∂Φj

of mini-batch loss lB, w.r.t. Φj, in (5.11).

3. Update Weights of each layer, as in (5.13).

We assume that BP learning rate is the same for all layers, β
(k)
j = βk,∀j ∈ {1, ..., J}

.
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5.3.4 Prediction using MLP:

The MLP prediction for sample (u,i) in the test set L, using optimal weights
ϕ1

∗,Φ2
∗, ..., ϕJ

∗:

ẑJ = σJ(ϕJ
∗...σ2(Φ2

∗(σ1(ϕ1
∗)))),∀(u, i) ∈ L (5.14)

Therefore, the Test MSE is defined as

1

|L|
∑

(u,i)∈L

(
R̂SEu,i − σJ(ϕJ

∗...σ2(Φ2
∗(σ1(ϕ1

∗))))
)2

(5.15)

. We then select the optimal indexes u⋆ and i⋆ related to the highest RSEu,i value:

(u⋆, i⋆) = argmax(u,i)∈L∪K {RSEu,i|∀(u, i) ∈ K} ∪ { ˆRSEu,i|∀(u, i) ∈ L} (5.16)

5.4 Algorithms of the proposed Beam Alignment

using MLP and MF/NMF

The algorithm for MLP based Beam Alignment is given by (5):

Algorithm 5 Proposed MLP-based BA Method

Input: {fu}∀u∈T , {Wi}∀i∈R, η, Pu
- Generate randomly sub-sampled codebooks, TS ,RS , satisfying (|TS |.|RS |)/(|T |×|R|) =
η

- Sound beam-pairs from training set, K := TS ×RS .
- Record corresponding RSE and generate RSE mat. S, in (4.7)
- Train MLP weights (using Back-Propagation algorithm)

return optimal weights, {ϕ1∗,Φ2
∗, ..., ϕJ

∗}
- Use optimal parameters {ϕ1∗,Φ2

∗, ..., ϕJ
∗}, to predict unknown RSE of test set, L, in

(5.15)
- Search training and test sets, for optimal beam-pair (u⋆, i⋆), holding the largest RSE,
(5.16)

Output: fffu⋆ , Wi⋆

On the other hand, as we mentioned in the introduction of this chapter, we aim
to apply MF/NMF on the same dataset (regarding the updated wideband system
model) in order to compare its performance to MLP based approach. The MF/NMF
formulated problems (P1) and (P2) from the previous chapter and the corresponding
proposed solutions using MF and variants hold here. The dataset S coefficients are
numerically different (due to a different setup). However, the input-output equations
remain the same. Therefore, we skip re-writing them in this chapter. Due to the fact
that the updates are given in close-form solution, we can quantify the computational
complexity of the corresponding MF models. As seen from the updates for BCD MF
and BCD NMF, we have to invert two D × D matrices (for sum-problems S1 and
S2). Thus the computational complexity per-iteration of BCD MF and BCD NMF is
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approximated as, CBCD MF = CBCD NMF = O( 2D3 ). Moreover, for BGD MF and
BGD NMF one has to compute two full-batch gradients over all training samples in
(for sub-problems S1 and S2). Consequently, the complexity, per-iteration, for BGD
MF and BGD NMF is approximated as, CBGD MF = CBGD NMF = O( 2|K| ).
Finally, for SGD MF and SGD NMF, since we use a mini-batch size = 1 (for
sub-problems S1 and S2), the resulting per-iteration computational complexity is
approximated as, CSGD MF = CSGD NMF = O( 2 ). Solving the MF and NMF
problem, we employ methods such as BCD, BGD, or SGD. All details are shown in
Algorithm (6).

Algorithm 6 Proposed MF/NMF-based BA Method

Input: {fu}∀u∈T , {Wi}∀i∈R, η, Pu
- Generate randomly sub-sampled codebooks, TS ,RS , satisfying (|TS |.|RS |)/(|T |×|R|) =
η

- Sound beam-pairs from training set, K := TS ×RS .
- Record corresponding RSE in and generate mat. S, in (4.7)
- Select model: MF or NMF
- IF MF model selected

solve (P1) with BCD for MF, in (4.26) or solve (P1) with BGD for MF, in (4.35) or
solve (P1) with SGD for MF, in (4.33). At the end of training, return optimal latent

vectors, {θ̂θθu, ψ̂ψψi}(u,i)∈K
- IF NMF model selected

solve (P2) with BCD for NMF, in (4.36) or solve (P2) with BGD for NMF, in (4.38)
or solve (P2) with SGD for NMF, in (4.37). At the end of training, return ideal latent

vectors, {θ̂θθu, ψ̂ψψi}(u,i)∈K
- Use ideal latent vectors {θ̂θθu, ψ̂ψψi}(u,i)∈K, to predict unknown RSE of test set, L, in (4.39)
- Search training and test sets, for beam-pair w/ largest RSE, (4.40)

Output: fu⋆ , Wi⋆

While for MF BCD and NMF BCD the only hyper-parameter is the model size
D, however MF BGD and NMF BGD require in addition to D, αk the GD step-size
as hyper-parameters.

5.5 Numerical simulations and comparison

This section illustrate the experimental protocol. The number of antennas at UE
and BS ∈ {128, 256, 512, 1024}. We set-up NT = CT and NR = CR. The
overhead ratio regime η ∈ {0.7,0.5,0.3,0.1}. The Number of OFDM sub-carriers
Nc = 64 and the number of channel paths L is 2. We vary the transmitted power,
Pu ∈ {1, 10−1, 10−2}. We use DFT codebooks at UE and BS. The optimal hyper-
parameters are chosen to minimize test loss. The model dimension D ∈ {2, 3, 4, 5, 6}
, the learning rate αk ∈ {10−1, 10−2, 10−3, 10−4, 10−5, 10−6} and the regularization
factors, {λ, µ} ∈ {10−2, 10−3, 10−4, 10−5, 10−6, 10−7}. For each MIMO configuration
and for each Pu regime, we randomly generate and store the resulting RSE matrices.
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System configuration for all proposed models
System-parameter Numerical value

number of antennas NT at UE 128, 256, 512, 1024
number of antennas NR at BS 128, 256, 512, 1024
codebook cardinality |T | at UE 128, 256, 512, 1024
codebook cardinality |R| at BS 128, 256, 512, 1024

overhead ratio η regime 0.7, 0.5, 0.3, 0.1
number of OFMD sub-carriers Nc 64

number of channel paths L 2 (NLoS)
transmitted power Pu (W) 1, 10−1, 10−2

MF/NMF dimension DMF 2, 3, 4, 5, 6
MF/NMF learning rate αk 10−1, 10−2, 10−3, 10−4, 10−5, 10−6

MF/NMF regularization factors λ, µ 10−2, 10−3, 10−4, 10−5, 10−6, 10−7

MLP number of layers J 1, 2, 3
MLP number of neurons per layer DMLP 8, 16, 32, 64, 128

MLP batch size B 2, 4, 8, 16, 32, 64, 128
MLP learning rate βk 10−1, 10−2, 10−3, 10−4

Table 5.1: Point-to-point BA: proposed system parameters and hyperparameters

5.5.1 MF/NMF training and test QoS Performance

We propose to look into six models in total (BCD MF, BCD NMF, BGD MF, BGD
NMF, SGD MF, SGD NMF) w.r.t three transmitted power regimes: high Pu = 1W ,
medium Pu = 10−1W and low Pu = 10−2W with fixed σ2 = 1. In table (5.1), we
give a complete summary for the proposed system-parameters. We use the training
Normalized MSE to evaluate the training error, expressed as:

Train NMSE =
1

|K|
(
∑

(u,i)∈K

(
θ̂uθuθuT ψ̂ψψi −RSEu,i

RSEu,i
)2) (5.17)

We similarly define:

Test NMSE =
1

|L|
(
∑

(u,i)∈L

(
R̂SEu,i − θ̂uθuθuT ψ̂ψψi

R̂SEu,i
)2) (5.18)

The behavior of BCD-based models differs significantly from GD-based models,
presenting distinct characteristics in both MF and NMF :

• Error Range: BCD-based models exhibit a distinct range of training errors
compared to GD models. Specifically, BCD models have an error range of
approximately 10−4, whereas GD models achieve a lower error range of about
10−7. This suggests that GD methods are more accurate in minimizing error.

• Convergence Speed: BCD models, on the other hand, showcase a remarkable
trait: they converge faster. These models quickly reduce the cost function to
low values right from the initial iterations. In contrast, GD models may take
longer to reach their optimal solutions but do so with a high level of precision.
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(a) 512×512 Train/Test loss in function
of the overhead ratio

(b) Learning curve: 256 × 256 with over-
head 0.1 BCDMF

(c) Learning curve: 1024×1024 with
overhead 0.1 BCDNMF
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(a) Learning curve: 512 × 512 with over-
head 0.1 BGDMF

(b) Learning curve: 128 × 128 with over-
head 0.1 BCDSGD

Figure 5.4: MF/NMF Train/Test performance and Learning curves

MIMO setup Optimal hyperparameters Min Overhead Train NMSE Test NMSE
128 by 128 BGD NMF{D=2, (λ,µ)=(0.0001,0.0001), αk=0.001} 0.1 8.407746e-06 9.147875e-06
256 by 256 BGD MF{D=3, (λ,µ)=(0.0001,0.0001), αk=0.001} 0.1 4.102708e-06 7.344720e-06
512 by 512 BGD MF{D=4, (λ,µ) =(0.0001,0.0001), αk=0.001} 0.1 8.374633e-07 9.417057e-07

1024 by 1024 SGD NMF{D=4, (λ,µ)=(0.0001,0.0001), αk=0.01} 0.1 1.219227e-07 1.616363e-07

Table 5.2: MF/NMF — QoS Minimum overhead required for Pu = 1W

Additionally, when examining the behavior of MF and NMF models, it be-
comes evident that the Train NMSE decreases as the overhead ratio η increases,
as depicted in Figure (5.3a). This suggests that having a higher number of training
samples, represented by a higher overhead ratio, contributes to reducing prediction
errors.

It’s worth noting that low and medium Pu regimes, characterized by noisy links
between the UE andBS, represent a more challenging experimental environment. In
this context, BCD-based models tend to excel in terms of speed, quickly reaching low
error values. On the other hand, GD-based models, including BSGD, are known for
their accuracy, effectively improving prediction quality compared to standard BGD
methods.

In summary, the choice between BCD and GD methods depends on the specific
requirements of the problem, balancing the need for fast convergence with the pur-
suit of highly accurate predictions, particularly in challenging, noisy communication
environments.

Concerning the simulation figures for MF/NMF , the following sub-figures offer
additional insights into the behavior of these models:

• Sub-figure 5.3a demonstrates the relationship between the overhead ratio and
the train/test Normalized Mean Squared Error. It highlights that increasing
the number of training samples results in a reduction in prediction errors, em-
phasizing the importance of a larger dataset for improved model performance.

MIMO setup Optimal hyperparameters Min Overhead Train NMSE Test NMSE
128 by 128 SGD NMF {D=2, (λ,µ)=(0.0001,0.0001), αk=0.001} 0.1 0.000191 0.000276
256 by 256 SGD NMF {D=3, (λ,µ)=(0.0001,0.0001), αk=0.001} 0.1 4.648861e-05 5.775554e-05
512 by 512 BGD NMF{D=4, (λ,µ)=(0.0001,0.0001), αk=0.001} 0.1 1.052556e-05 1.170430e-05

1024 by 1024 BGD NMF {D=4, (λ,µ)=(0.0001,0.0001), αk=0.001} 0.1 1.600790e-06 1.695907e-06

Table 5.3: MF/NMF — QoS Minimum overhead required for Pu = 10−1W
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MIMO setup Optimal hyperparameters Min overhead Train NMSE Test NMSE
128 by 128 SGD MF {D=2, (λ,µ)=(0.0001,0.0001), αk=1e-06} 0.1 0.115517 0.118776
256 by 256 BGD MF {D=3, (λ,µ)=(0.0001,0.0001), αk=0.0001} 0.1 0.016475 0.016679
512 by 512 SGD NMF{D=4, (λ,µ)=(0.0001,0.0001), αk=1e-06} 0.1 0.003371 0.003449

1024 by 1024 BGD MF {D=4, (λ,µ)=(0.0001,0.0001), αk=1e-05} 0.1 0.001681 0.001948

Table 5.4: MF/NMF — QoS Minimum overhead required for Pu = 10−2W

MIMO setup Optimal hyperparameters Min overhead Train NMSE Test NMSE
128 by 128 {(J=3, D=8), B=4, βk=0.0001} 0.1 0.001144 0.002639
256 by 256 {(J=3, D=16), B=16, βk=0.001} 0.1 3.941522e-05 3.948157e-05
512 by 512 {(J=3, D=64), B=32, βk=0.0001} 0.1 3.305507e-05 3.335168e-05

1024 by 1024 {(J=3, D=64), B=64, βk=0.0001} 0.1 9.810028e-06 9.857067e-06

Table 5.5: MLP — QoS Minimum overhead required for Pu = 1W

• Sub-figures 5.3c and 5.3b showcase the remarkable characteristic of the BCD-
based models. These figures illustrate an immediate drop in loss values from
the very initial iterations, signifying the efficiency of these models in quickly
converging to optimal solutions.

• On the other hand, sub-figures 5.4a and 5.4b exhibit the progressive con-
vergence of the cost function over the course of iterations when employing
BGD-based models. These figures underscore the steady convergence behav-
ior of these models, which may take longer to reach optimal solutions but do
so effectively.

In summary, tables in (5.2) (5.3) (5.4) provides a comprehensive summary of
the key findings, including the optimal signaling overhead ratio required for all
proposed system configurations, the optimal model with the smallest total cost
function, the corresponding combination of optimal hyperparameters, and the asso-
ciated train/test error values. Remarkably, the MF models consistently maintain
the same minimum signaling overhead requirement of 0.1, regardless of the transmit-
ted power regime. This implies that these models can accurately predict with only
10% of sounded beams, resulting in a substantial 90% reduction in pilot signaling
overhead compared to Exhaustive Beam Alignment, all while achieving negligible
training and test errors.

5.5.2 MLP training and test QoS Performance

We define :

Train NMSE =
1

|K|
(
∑

(u,i)∈K

(
RSEu,i − σJ(ϕJ...σ2(Φ2(σ1(ϕ1))))

RSEu,i
)2) (5.19)

Equivalently, the test NMSE is given by:

Test NMSE =
1

|L|
(
∑

(u,i)∈L

(
R̂SEu,i − σJ(ϕJ

∗...σ2(Φ2
∗(σ1(ϕ1

∗))))

R̂SEu,i
)2) (5.20)

MIMO setup Optimal hyperparameters Min overhead Train NMSE Test NMSE
128 by 128 {(J=3, D=8), B=4, βk=0.0001} 0.1 0.007569 0.007662
256 by 256 {(J=3, D=16), B=16, βk=0.001} 0.1 0.000139 0.000288
512 by 512 {(J=3, D=64), B=32, βk=0.0001} 0.1 5.419598e-05 5.756302e-05

1024 by 1024 {(J=3, D=64), B=64, βk=0.0001} 0.1 1.184073e-05 1.72301e-05

Table 5.6: MLP — QoS Minimum overhead required for Pu = 10−1W
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MIMO setup Optimal hyperparameters Min overhead Train NMSE Test NMSE
128 by 128 {(J=3, D=8), B=4, βk=0.0001} 0.1 0.049559 0.071185
256 by 256 {(J=3, D=16), B=16, βk=0.001} 0.1 0.017011 0.017634
512 by 512 {(J=3, D=64), B=32, βk=0.0001} 0.1 0.000141 0.000666

1024 by 1024 {(J=3, D=64), B=64, βk=0.0001} 0.1 1.700140e-04 1.702889e-04

Table 5.7: MLP — QoS Minimum overhead required for Pu = 10−2W

(a) Learning curve: 256×256 with over-
head 0.1 MLP

(b) Learning curve: 512×512 with over-
head 0.1 MLP

(c) Learning curve: 128×128 with over-
head 0.3 MLP

Figure 5.5: MLP Learning curves

We used the same system configurations as for MF/NMF , resumed in (5.1).
Moreover, we choose the learning rate βk ∈ {0.1, 0.01, 0.001, 0.0001} while the
batch size B ∈ {2, 4, 8, 16, 32, 64, 128}, the number of Hidden-layers J ∈ {1, 2, 3}.
For each layer, the number of neurons D ∈ {8, 16, 32, 64, 128}. We use the Rectified
Linear Units as our activation function for all layers. Similar to the observations
made for the Matrix Factorization models, we analyze the training performance of
the MLP model by tracking the evolution of the cost function, represented by the
Normalized Mean Squared Error, applied to the training samples in set K across
iterations. This analysis reveals a consistent pattern characterized by a notably low
range of error values and the coherent learning behavior of the MLP architecture.
These results indicate that our shallow neural network effectively addresses the non-
linear regression challenges inherent in our Beam Alignment process.

• Specifically, for massive MIMO setups, MLP achieves impressively low errors,
reaching around 10−6 in scenarios with high transmitted power. However, it
is worth noting that this cost value tends to increase as noise and interfer-
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ence levels escalate. An interesting observation is that the training NMSE
decreases as we augment the size of the dataset matrix S. This expansion
provides MLP with more samples for training, facilitating enhanced feature
extraction and improved prediction quality.

• Turning our attention to the evaluation of unknown beams, the test error
values presented in the numerical results tables closely align with the training
costs. This consistency suggests that MLP manages to maintain a balanced
performance without signs of overfitting or underfitting, as corroborated by
the learning curves. Furthermore, it’s notable that the test loss experiences
a similar sensitivity to the transmitted power regime as observed during the
training process.

• Likewise, akin to the Gradient Descent based Matrix Factorization models, the
learning curves of the Multi-Layer Perceptron depicted in Figure 5.5 exhibit a
consistent pattern. These curves showcase a continuous, monotonic decrease
in both training and test cost as the number of iterations progresses. This
gradual convergence throughout the iterations culminates in training and test
Normalized Mean Squared Error values reaching impressively low error levels
at the final epoch. This convergence pattern underscores the capability of
MLP to effectively address our specific problem and furnish a robust solution
for Machine Learning-based Beam Alignment.

Transitioning to a Quality of Service perspective, we can extract valuable insights
from tables in (5.5) (5.6) (5.7) , which summarizes the minimum (optimal) signaling
overhead required to achieve successful beam-sounding while maintaining reliable
prediction quality. Mirroring the observations made for MF/NMF models,MLP
demonstrates consistency across various transmitted power scenarios. It consistently
demands only 10% of the total beam-pairs to construct the RSE matrix effectively.
This uniformity in signaling overhead requirements across different power levels un-
derscores the robustness and efficiency of MLP in addressing the Beam Alignment
task. MLP proves to be a versatile and effective solution, ensuring reliable perfor-
mance without the need for excessive signaling overhead.

In summary, the performance of theMLP model in the training phase showcases
its proficiency in resolving non-linear regression challenges associated with the Beam
Alignment process. The model delivers low errors in massive MIMO setups under
high transmitted power conditions. However, it is essential to recognize that the
error increases in the presence of noise and interference. Additionally, the size of
the dataset matrix has a positive impact on training performance. This robustness
and consistency extend to the evaluation of unknown beams in the test phase, with
the test error behavior closely mirroring that of the training process across varying
transmitted power levels.
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(a) 512×512 Train/Test NMSE for
Pu = 1W

(b) 512×512 Train/Test NMSE for
Pu = 10−1W

(c) 512×512 Train/Test NMSE for
Pu = 10−2W

Figure 5.6: Train/Test NMSE in function of Pu for MLP and MF for 512 × 512
using optimal overhead ratio
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(a) 128×128 Train/Test NMSE for
Pu = 1W

(b) 128×128 Train/Test NMSE for
Pu = 10−1W

(c) 128×128 Train/Test NMSE for
Pu = 10−2W

Figure 5.7: Train/Test NMSE in function of Pu for MLP and MF for 128 × 128
using optimal overhead ratio

5.5.3 Comparative study of MF and MLP performances

In our analysis of the six differentMF -based models, we’ve selected the most optimal
one, characterized by the lowest test error, to represent the entire family of MF
methods.

Upon scrutinizing the Quality of Service metrics presented in tables (5.2) (5.3)
(5.4) for MF and (5.5) (5.6) (5.7) for MLP , we notice a clear influence of the
transmitted power regime on prediction quality. Specifically, we observe a noticeable
reduction in overall loss as we transition from higher-power scenarios to lower-power
ones.

• For theMF and NMF models, this shift in power levels leads to a substantial
increase in prediction error. In massive MIMO configurations such as 256, 512,
and 1024, the losses are typically around 10−8, but for smaller setups, they
rise to approximately 10−4. This highlights the sensitivity of MF and NMF
models to changes in transmitted power, especially when moving to lower-
power settings.

• When examining the MLP model, we notice a higher degree of resilience
to variations in transmitted power. Although the overall loss does increase
as transmitted power decreases, this impact is notably less pronounced com-
pared to MF and NMF models. This robustness of MLP suggests that it
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(a) MLP Train/Test log(NMSE) in func-
tion of Pu using optimal overhead ratio

(b) MF Train/Test log(NMSE) in function
of Pu using optimal overhead ratio

Figure 5.8: log(NMSE) in function of Pu for 1024 × 1024 using optimal overhead
ratio
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can maintain reasonably consistent prediction quality even when operating in
scenarios with varying transmitted power levels.

• Another notable empirical finding is that alterations in the values of Pu do not
significantly affect the optimal hyperparameters selected through the cross-
validation process. This stability in hyperparameter selection underscores the
reliability and consistency of the chosen model configurations across different
power scenarios.

• When tracking the evolution of training and test costs over the course of train-
ing iterations, we observe that all models exhibit balanced behavior. There are
no evident signs of overfitting or underfitting. However, as transmitted power
decreases, MF and NMF models tend to be more susceptible to increased
train/test errors. In contrast, MLP maintains a more stable level of error,
further emphasizing its robustness under changing power conditions.

In summary, the selection between MF/NMF models and MLP should not
only consider prediction quality but also the models’ sensitivity to variations in
transmitted power. While MF/NMF models may excel in high-power contexts,
they exhibit substantial performance degradation in low-power scenarios. On the
other hand, MLP offers a more reliable and consistent performance profile, making
it a suitable choice when the system needs to adapt to fluctuations in transmitted
power levels. Moreover, the observed stability in hyperparameters simplifies model
management across different power scenarios.

5.5.4 Similarities and Differences between models

All models required only 10% of the beams for training across all proposed massive
setups. Furthermore, all proposed models are characterized by shallow neural ar-
chitectures, with just a few hidden layers, to adhere to low-complexity constraints.
Even among the largest configurations, the optimal model dimensions selected from
cross-validation indicate the preference for small networks, eliminating the need for
dense architectures.

Moreover, the MF -based models showcase exceptional accuracy, achieving im-
pressively low loss values in the range of 10−8 for massive setups, particularly in the
high Pu regime. Their cross-validation procedures reveal smaller grid searches with
fewer hyperparameters to tune. However, it’s worth noting that they tend to be
slower when applied to high-dimensional MIMO setups.

In contrast, the MLP models strike an appealing balance between run-time
complexity and prediction quality. They achieve loss values around 10−4 to 10−5 for
massive configurations. Notably, the MLP exhibits remarkable robustness in the
face of changes in Pu values.

• In Figure (5.6), we examine the performance of different models across var-
ious MIMO configurations and transmitted power levels. Starting with the
512 × 512 MIMO setup, subfigure (a) reveals that at a high power level
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(Pu = 1W ), the Matrix Factorization model marginally outperforms the Multi-
Layer Perceptron, with an NMSE difference of approximately 10−1. Moving
to subfigure (b) (Pu = 10−1W ),MF maintains a slight performance edge, with
anNMSE difference of around 10−1. However, in subfigure (c) (Pu = 10−2W ),
we observe a shift in performance dynamics. Here, theMF model experiences
a noticeable degradation in performance, resulting in an overall loss of ap-
proximately 10−3, while MLP excels as the best performer. This transition
suggests that MLP exhibits greater robustness in scenarios with low trans-
mitted power, while MF and NMF tend to shine in high-power regimes.

• A similar pattern emerges when considering the 128×128 MIMO configuration
in (5.7). Subfigure (a) highlights that in this setup, MF achieves significantly
better performance compared to MLP , with an NMSE difference of 10−4.
Subfigure (b) demonstrates the robustness of MLP , maintaining consistent
error rates, while MF , despite experiencing a significant drop in performance
(10−3), still manages to outperform MLP . In subfigure (c), where Pu is at its
lowest, MF performs at its worst across all simulations, while MLP consis-
tently delivers the best prediction quality.

• On the other hand,MLP got slightly impacted with an overall loss of 10−1 and
reaches the best quality of prediction. In Fig (5.8), we investigate the highest
configuration 1024×1024. Similar conclusions for Fig (5.7) and Fig (5.6) hold
for this figure in terms of best model (MF for Pu = 1W , Pu = 10−1W and
MLP for Pu = 10−2W ).

In addition, we aim to investigate the overall impact of varying the transmit-
ted power via logarithmic representation of the loss function. Thus, we track the
log(NMSE) values while switching from one Pu regime to another: In Fig (5.8), in
subfigure (a), for MLP , the curve gap from low/medium is log(NMSE)medium −
log(NMSE)low ≈ −16 − (−12) ≈ −4. The gap in the medium/high regimes is
almost negligible ( log(NMSE)high− log(NMSE)medium ≈ −16− (−16) ≈ 0.5). Fi-
nally, in subfigure (c), theMF gap is around log(NMSE)medium−log(NMSE)low ≈
−17− (−9) ≈ −8 and log(NMSE)high − log(NMSE)medium ≈ −22− (−17) ≈ −5:
at each change of Pu, MF is considerably impacted.

To sum up, the choice of the optimal model strongly depends on the available
complexity and the given transmitted power Pu. In fact, MF , whether through
BCD or BGD optimization, is the best model when the transmitted power is high
(Pu = 1W ). In this case, BCDMF converges faster but has higher complexity than
BGD. However, SGD for MF/NMF are the slowest models to converge but show
negligible complexity. On the other hand, if we aim to prioritize run time, MLP
exhibits the fastest predictions with good prediction error. Finally, it is wise to opt
forMLP if the system is to operate under various transmitted power regimes where
MLP offers good prediction quality for every Pu value and the available complexity
is medium.
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5.6 Conclusion

This chapter marks the culmination of the second contribution to this thesis, where
we harnessed the ability of both Matrix Factorization and Multi-Layer Perceptron to
tackle the intricate challenge of partial and blind Beam Alignment. The chapter be-
gan by extending our system model and elevating the complexity of our experimental
setup. Afterwards, we introduced the Multi Layer Perceptron architecture, input-
output equations, problem statement and the formulated solution. Subsequently, we
covered the numerical simulations forMF and forMLP and ended the chapter with
a comparative study between both performances regarding the complexity/quality
of prediction compromise. Again, 10% of total beam pairs are enough to accurately
align the beams between UE and BS for both methods. However, the chapter
stated the similarities and differences between models when varying the transmitted
power. The outcomes of this comprehensive exploration equip us with valuable in-
sights into the practical application of our methods in real-world scenarios, paving
the way for more efficient and effective Beam Alignment in future communication
systems. Thus, practical questions become mandatory for further industrial de-
ployment. One particular problematic introduces the need of quantization before
BA which radically changes the challenge framing and problem statement. This
discussion is covered in details in the next chapter.
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Chapter 6

Cascaded binary classifiers for
Beam Alignment using 1-bit
quantization

”I have this hope that there is a better way.
Higher-level tools that actually let you see the
structure of the software more clearly will be
of tremendous value.”

Guido van Rossum.

6.1 Introduction

This chapter marks the third contribution of the thesis, delving into a critical prac-
tical consideration: the quantization of beam pairs prior to beam alignment pro-
cessing. In digital and hybrid beamforming architectures, digital systems operate
on discrete values. By quantizing the received analog signals into digital values, the
system can process the signals using digital signal processing techniques, making it
easier to manipulate and analyze them. In the context of fully-analog architecture
using ML units at BS, the need for quantizing the input-data helps in terms of
signal representation, where Digital representation of signals allows easier storage,
transmission, and manipulation of the data, before its ML processing. Quantiza-
tion reduces the signal to a finite set of values, making it feasible to represent and
transmit the information efficiently. Proper quantization ensures that the essential
information is preserved while discarding irrelevant details, optimizing the use of
available communication resources and offering compatibility with modern commu-
nication systems, protocols and infrastructure. This constraint fundamentally alters
the problem formulation, rendering our Received Signal Energy dataset discrete due
to the quantization process. From a Machine Learning perspective, this transition
leads to a shift from non-linear regression, as explored in previous chapters, to the
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domain of logistic regression. Despite this transformation, the core directions of our
approach remain unchanged: we continue to operate within the realms of blind and
partial Beam Alignment, where the objective is to complete a sparse dataset within
the context of a ”quantized” matrix. The ML model employed in this context is
referred to as a classifier, tasked with discerning hidden patterns between the User
Equipment and Base Station from a limited training set and making predictions
for the test set. These predictions are now classifications, as the quantized dataset
consists of classes or categories of beam pairs, depending on the chosen quantiza-
tion scheme. From a Quality of Service perspective, this chapter scrutinizes both
classification performance and complexity for the proposed cascaded structure of
Binary Logistic Regression. This chapter seeks to address a dual question: What is
the optimal quantization scheme, and correspondingly, the optimal overhead ratio
required to ensure successful Beam Alignment and the establishment of a reliable
initial link? The proposed approach empirically demonstrates the promising results,
maintaining a 10% ratio of training samples and employing a binary quantization
scheme to provide answers to these questions. The chapter includes the system
model, the mathematical formulation of the problem with the quantization con-
straints, the input-output equations for the solution using our proposed learning
approach, the experimental simulations and the performance evaluations.

6.2 System architecture

We consider a point-to-point mmWave Massive MIMO Uplink scenario, similar to
the previous chapters, where a UE is equipped with NT antennas linked to one RF
chain and a BS is equipped with NR antennas attached to Nrf RF chains, both
wishing to align the optimal couple of beamformer/combiner which hold the maxi-
mum RSE. Evidently, the number of RF chains at both UE and BS is assumed to
be much inferior to the number of antennas. The UE selects its fully-analog beam-
former vector fffu ∈ CNT from a DFT codebook holding the beam patterns, indexed
as u ∈ T , where the set T , represents the codebook at UE. The BS similarly se-
lects its fully-analog combiner matrix Wi ∈ CNR×Nrf from a DFT codebook i ∈ R,
where R represents the set of the codebook indexes at BS. CT = |T |, and CR = |R|
represent the cardinality of codebook at UE and BS resp. Thus, we denote beam-
pair (u, i) ∈ T × R, as beam u ∈ T from the codebook at UE, and beam i ∈ R
from the codebook at BS. Besides, the received signal at BS, ∀ (u, i) ∈ T ×R, is
given by,

yu,i = Wi
HGfffusu + nnni, ∀ (u, i) ∈ T ×R (6.1)

where G ∈ CNR×NT is the wideband mmWave MIMO channel (consistently assumed
to be static and unknown to both UE and BS), nnni = Wi

Hn is the unit-variance
zero-mean AWGN and su =

√
Pu where su, denotes the pilot symbol with transmit-

ting power Pu corresponding to fffu. Similar to the previous chapters, the received
Signal to Noise ratio for the beam-pair (u, i) as:
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SNRu,i = Pu||WH
i Gfffu||22, ∀ (u, i) ∈ T ×R (6.2)

Consistently, we approximate the Signal to Noise Ratio at the BS, with the instan-
taneous Received Signal Energy, i.e.,

RSEu,i = ||yu,i||22, ∀(u, i) ∈ T ×R. (6.3)

Benchmark: Recall the mathematical formulation of Brute Force BA:

(u⋆, i⋆) = argmax
(u,i)∈T ×R

RSEu,i (6.4)

As a result, the signaling overhead is calculated as |T | × |R|
Nrf

= CT×CR

Nrf
, scaling as the

product of both codebook sizes.

Partial Beam Sounding: The partial and blind BA is based on considering
sub-sampled and small-sized codebooks of beams at UE and BS, RS and TS where,
RS ⊂ R, TS ⊂ T , |RS | ≪ |R| and |TS | ≪ |T |. The input-dataset matrix of
our proposed approach can be equivalently expressed using the following incomplete
RSE matrix, S ∈ RCT×CR(:= R|T |×|R) as,

[ S ]u,i :=

RSEu,i , if (u, i) ∈ TS ×RS

Unknown , if (u, i) /∈ TS ×RS
(6.5)

where [S]u,i denotes the coefficient (u, i) of S, ∀(u, i) ∈ T × R The training set
holding the sounded beams is denoted as K := {(u, i) | (u, i) ∈ TS × RS}. The
remaining unknown beams represent the test set, denoted as V .

6.3 Binary Classification and one-bit Quantiza-

tion

6.3.1 One-bit Quantization

After generating the Smatrix given by the previous section, we propose the following
quantization for the RSE values: let Qu,i denotes the non-uniform quantization
function of RSEu,i, ∀(u, i) ∈ TS ×RS :

Qu,i ∈ B :=

{
0, if RSEu,i < β

1, if RSEu,i ≥ β, ∀(u, i) ∈ TS ×RS
(6.6)

For each binary class stated above, the number of training samples is equal for a
balanced dataset, achieved by fixing the quantization threshold, β, as the median
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value of the flattened and sorted S matrix.
Each training sample (u, i) ∈ TS×RS is characterized by a features-vector, xu,i ∈ Rd

and the corresponding binary class/label Qu,i ∈ B. Thus, we define the training set,
K as:

K = {(xu,i ∈ Rd, Qu,i ∈ B)}∀(u,i)∈TS×RS (6.7)

In that sense, class 0 represents the bad quality beam pairs, which the model will
iteratively eliminate, in contrast to good quality beams that we aim to keep, denoted
as class 1.

6.3.2 Binary Logistic Regression

The input-output equations and the mathematical background of BLR are illus-
trated in this section for one (each) stage of the cascaded architecture. Given the
vector of features, xu,i ∈ Rd for one training sample (u, i) and its related binary
label, we denote Lu,i(w) as our individual loss for sample (u, i) ∈ K, formulated as:

Lu,i(w) := (ln(2))−1log2(1 + exp−(wTxu,iQu,i))), (6.8)

∀(u, i) ∈ TS×RS where w ∈ Rd denote the Binary Logistic Regression weights. The
empirical risk L(w), addressed as the average of the all individual losses of training,
formulated as:

L(w) :=
1

|K|
∑

(u,i)∈K

Lu,i(w) (6.9)

The training phase aims to solve the regularized Empirical Risk Minimization, by
finding w⋆, the optimal weights from following optimization:

w∗ := f(w) = arg min
w∈Rd

L(w) + λ∥w∥22 =

1

|K|ln(2)
∑

(u,i)∈TS×RS

log2(1 + exp−(wTxu,iQu,i))) + λ∥w∥22 (6.10)

where λ∥w∥22 denotes the regularization term, used to combat overfitting symptoms
and f(w) : Rd → R represents the regularized empirical risk function. We propose
to find the optimal BLR model w⋆, using low-complexity gradient approach. The
gradient for f(w), ∇wf(w) : Rd → Rd, is expressed as:

∇wf(w) = (ln(2)|K|)−1
∑

(u,i)∈TS×RS

(
−xu,iQu,iexp

−(wT (xu,iQu,i))

1 + exp−(wT (xu,iQu,i))
) + 2λw (6.11)

The regularized empirical risk is strongly convex and the proof is found in Annex B
of the manuscript. Thus, we have theoretical guarantees regarding the convergence
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Figure 6.1: Cascaded binary logistic regression diagram representation

to optimal weights, where these weights are updated using Gradient Descent as
following:

wt+1 = wt − αt∇wf(wt),∀t ∈ {1, .., Nepochs} (6.12)

where t is the index of the learning epoch, αt = α is the constant learning step
size. Consequently, the BLR hyperparameters are the regularizer λ, the number of
epochs Nepochs, the learning rate α, and the vector of features having dimension d.
After solving the ERM problem, we obtain the optimal weights w∗, used to predict
the labels of unknown test samples:

Q̂u,i = sign(w∗Txu,i), ∈ B ∀(u, i) ∈ V (6.13)

where Q̂u,i is the predicted label for test sample (u, i) ∈ V .

6.4 Proposed cascaded structure of Binary Logis-

tic Regression

Our proposed approach includes a K-stage cascade, where a Binary Logistic Regres-
sion problem is solved within each cascade as illustrated in figure (6.1).

6.4.1 System architecture and input-output equations

The multi-level BLR cascaded structure includesK stage. In stage k ∈ {0, .., K−1},
we perform the steps below.
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• 1) LetRS
(k) =BS codebook, TS (k) = UE codebook at stage k, where |RS

(k)| =
C

(k)
R and |TS (k)| = C

(k)
T . We sub-sample the codebooks from stage k − 1,

i.e., RS
(k) ⊆ RS

(k−1) and TS (k) ⊆ TS (k−1),∀k ∈ {1, .., K − 1}. We Choose
TS (k),RS

(k) such that (|TS (k−1)|.|RS
(k−1))|/(|TS (k)|.|RS

(k))| meets the target
ηk. Now, we sound the beam-pairs in the sub-sampled codebooks of stage
k, ∀ (uk, ik) ∈ TS (k) × RS

(k). Afterwards, we build the RSE matrix S(k) ∈
RC

(k)
T ×C(k)

R as:

[ S ]
(k)
u,i :=

RSE
(k)
u,i , if (u, i) ∈ T (k)

S ×R(k)
S

Unknown(k) , if (u, i) /∈ T (k)
S ×R(k)

S

(6.14)

• 2) Set threshold β(k) as the median of all entries in S(k). Then, quantize all
sounded entries in S(k), ∀(u, i) ∈ TS (k) ×RS

(k):

Q
(k)
u,i ∈ B :=

{
0, if RSE

(k)
u,i < β(k)

1, if RSE
(k)
u,i ≥ β(k),∀(u, i) ∈ TS (k) ×RS

(k)
(6.15)

• 3) Select the features (x
(k)
u,i ) and labels (Q

(k)
u,i ), for all training samples at stage

k, K(k), where:

K(k) = {x(k)
u,i ∈ Rd, Q

(k)
u,i ∈ B)}∀(u,i)∈TS (k)×RS

(k) (6.16)

• 4) Solve the empirical risk minimization in (6.17) at level k, f(w(k)), via Gra-
dient Descent in (6.18):

w∗(k) =
1

|K(k)|ln(2)
∑

(u,i)∈TS (k)×RS
(k)

log2(1 + exp−(wT (k)
x
(k)
u,iQ

(k)
u,i ))) + λ(k)∥w(k)∥22

(6.17)

w
(k)
t+1 = w

(k)
t − α

(k)
t ∇

(k)

w(k)f(w
(k)
t ),∀t ∈ {1, .., N (k)

epochs} (6.18)

where ∇(k)

w(k)f(w
(k)
t ) is obtained from (6.11) by substituting w = w

(k)
t , xu,i =

x
(k)
u,i , Qu,i = Q

(k)
u,i , TS = TS (k), RS = RS

(k), λ = λ(k)

• 5) After the Gradient Descent iterations in (6.18) converge, we get the ideal
BLR model for stage k, w∗(k). Thus, we predict the missing unknown labels,

the indexes related to the test set V(k). At stage k, the predicted label
ˆ
Q

(k)
u,i

for pair (u, i) ∈ V(k) is:

ˆ
Q

(k)
u,i = sign(w⋆(k)x

(k)
u,i )∀(u, i) ∈ V(k) (6.19)

Afterwards, we eliminate the beam pair indexes of class 0 beams and store the
beam pair indexes of class 1.
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The final stage k = K, is enabled when dimensions of BS and UE codebooks
reach pre-determined value, which means when |TS (K)| = Cmin

T , |RS
(K)| = Cmin

R .
Subsequently, the Brute Force BA sounds all the beam-pairs in TS (K) and RS

(K),
i.e., ∀(u, i) ∈ TS (K)×RS

(K). The resulting Cmin
R ×Cmin

T RSE matrix is searched to
find optimal beam-pair (u⋆, i⋆), with the largest RSE. No learning nor quantization
is required at stage K.

6.4.2 Analysis: algorithm convergence, computational com-
plexity, signaling overhead

The principle motivation behind the use of BLR is its remarkably low complexity,
which states a fundamental condition for BA in mmWave massive MIMO. Based on
GD, the computational complexity ζk in stage k ∈ {0, .., K − 1} is given by:

ζk = O(TS (k) ×RS
(k)) (6.20)

We formulate the ratio of beam couples to be deleted at stage k , δk∀k ∈ {1, ..., K},
as the fraction of the output to input dimensions:

{δk}Kk=1 =
CT

(k) × CR(k)

CT
(k−1) × CR(k−1)

(6.21)

We then introduce ηk, ∀k ∈ {0, ..., K − 1}, as the ratio between the number of
training samples and the total number of samples in stage k:

{ηk}K−1
k=0 =

TS (k) ×RS
(k)

CT
(k) × CR(k)

(6.22)

The aggregated signaling overhead, denoted η, sums the overheads in all stages:

η = (CTCR)η0 + (CTCR)δ1η0 + (CTCR)δ1δ2η1 + ... (6.23)

+ (CTCR)δ1δ2..δKηK−1 + Cmin
T Cmin

R

The total signaling overhead ratio, denoted γ, is the fraction of the overhead of
proposed approach by the overhead of Brute Force BA:

γ =
η

CT
(0) × CR(0)

(6.24)

6.4.3 Cascaded-BLR based BA Algorithm

Our proposed approach is detailed in Algorithm (7).

6.5 Numerical Simulations

In the experimental setup, we first propose to set the number of antennas as equal
to the sizes of the related codebooks. The number of stages of the proposed cascade
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Figure 6.2: Models performance evaluation for 64 × 64 and 128 × 128: learning
curves, confusion matrix, accuracy, precision, recall and F1-score
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Figure 6.3: Models performance evaluation for 256 × 256 and 512 × 512 : learning
curves, confusion matrix, accuracy, precision, recall and F1-score
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Algorithm 7 Proposed BA using cascaded-BLR

Input: {fu}∀u∈T , {Wi}∀i∈R, ηk, δk, (CminT , CminR )
1- initialize δk, ηk and w and randomly generate codebooks at UE and BS, TS (k),RS

(k)

w.r.t ηk.
2- sound beam-pairs from training set, K(k) := TS (k) ×RS

(k).

3- store sounded RSE
(k)
u,i values, in (6.3), so that we generate RSE

(k)
u,i input dataset matrix

S(k), in (6.14).
4- flatten S(k) into a sorted vector and fix the quantization threshold β(k) as the median,

as in (6.15)

5- attribute to each beam-pair its corresponding class and split features (x
(k)
u,i ) and labels

(Q
(k)
u,i ), as in (6.16)

6- BLR processing:
solve the ERM in (6.17) where weighs update follows the equation (6.18).

at N
(k)
epochs, return optimal weights vector w∗(k).

7- use w∗(k) to predict the classes of the test set unknown beams V(k) in (6.14).
8- delete the class-0 beams and get the new input dataset matrix holding class-1 beams
only.

9- k = k+1 : repeat instructions from step 2 to step 8 w.r.t ηk and δk until the dimensions
of the final-output matrix reach CminT × CminR holding best beam-pairs.

10- exhaustively sound all best beam-pairs and select the couple with the highest RSE.

Output: fffu⋆ , Wi⋆

is K = 5. CT
(0) = 1024, CR

(0) = 1024, Cmin
T = 32, Cmin

R = 32. Besides, we fix
δk = 0.25,∀k. The transmit symbol power is Pu = 1, the number of OFDM sub-
carriers is 64 and the number of paths is 1, simulating a LoS scenario. We use DFT
codebooks at UE and BS and we transmit one symbol. We set the overhead ratios
for the different stages as, η1 = η2 = η3 = η4 = 0.1 and η5 = 0.5. In addition, for
stage k, we use the following feature, x

(k)
u,i = [ u , i ]T , ∀(u, i) ∈ TS (k) × RS

(k),
and the related model dimension is d = 2, for all results. We propose an of-
fline grid-search cross-validation in order to obtain the optimal hyperparameters
{(α(k), λ(k), N

(k)
epoch)}Kk=1.

We introduce the following metrics for binary classification:

• True Positive (TP): if true label Qu,i = 1, and predicted label Q̂u,i = 1

• True Negative (TN): if true label Qu,i = 0, and predicted label Q̂u,i = 0

• False Positive (FP): if true label Qu,i = 1, and predicted label Q̂u,i = 0

• False Negative (FN): if true label Qu,i = 0, and predicted label Q̂u,i = 1.

These evaluation metrics are usually included into a confusion matrix:

[
TN FP

FN TP

]
.

In addition, we define the following metrics of evaluation for Binary Classifcation:
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• The accuracy is given by:

Accu =
TP + TN

TP + FP + TN + FN
(6.25)

• The precision, also called Positive Predictive Value, is expressed as:

Prec =
TP

TP + FP
(6.26)

• The recall, also denoted as sensitivity in binary classification, is formulated as:

Rec =
TP

TP + FN
(6.27)

• The F1 score is given by:

F1 =
2× precision× recall
pecision+ recall

=
2TP

2TP + FP + FN
(6.28)

6.5.1 Train/Test Performance

Concerning the train performance, in figures (6.2) (6.3), the cost in function of
the iterations for training samples, monotonically converge to low values with no
overfitting nor underfitting symptoms for all proposed input dimensions across the
cascade. Test performance is based on evaluating how precise was the BLR in pre-
dicting the class labels for unknown beam pairs using confusion matrices, accuracies,
precisions, recalls and F1 scores. Thus, for all proposed input setups, BLR reached
high classification scores with non-sounded beams: for input-matrix configurations
from 64× 64 to 512× 512, the confusion matrices are diagonal where the predicted
binary labels accurately matches the true binary labels for each class. Even through
the smallest configurations and relying on small amount of training samples, BLR
kept good classification scores and accurate predictions. These scores get extremely
closer to one, illustrating the optimal score, as long as the input dimensions are large
’enough’: in that case, the training set is considerably sufficient, and the prediction
error may be low.

6.5.2 Total signaling overhead ratio

Given η1 = η2 = η3 = η4 = 0.1, η5 = 0.5 and δ = 0.25, the aggregated overhead
of the cascaded structure of BLR, stated in (6.23), is equal to: η = 1024× 1024×
0.1 + (1024 × 1024 × 0.25) × 0.1 + (1024 × 1024 × 0.252) × 0.1 + (1024 × 1024 ×
0.253)× 0.1+ (1024× 1024× 0.254)× 0.5+32× 32× 1 = 142336. Subsequently, the
total overhead in (6.24) is equal to γ = 142336

1024×1024
= 0.1357 which states a promising

solution regarding the Beam Alignment of mmWave massive MIMO systems with
one-bit quantization scheme and low total signaling overhead ratio.
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Remark: from ML perspective, we implemented the proposed cascaded structure
using a Multi Layer Perceptron MLP instead of BLR at each stage, so that we
investigate the trade-off of complexity and quality of prediction. The error function
of the proposed feed forward architecture is the Binary Cross Entropy Loss. The
computational complexity of the MLP is orders of magnitude larger than that of
the proposed Binary Logistic Regression. Besides, tuning the hyperparameters takes
substantially more time for the neural network. We empirically observed thatMLP
performance doesn’t exceed 6% of overall gain in best case scenario. It’s notewor-
thy to state that from Wireless Communication perspective, a cascaded of Multi
Layer Perceptrons is not applicable in the proposed system architecture given the
low complexity constraints (1-bit quantization, 1 RF chain).

6.6 Conclusion

This chapter has unveiled the third contribution of this thesis, focusing on the ramifi-
cations of quantization within our proposed Beam Alignment methods. The chapter
commenced with the establishment of the system architecture and model equations.
Subsequently, it ventured into the mathematical formulation of quantization con-
straints, laying the groundwork for the creation of the corresponding quantized
Received Signal Energy dataset. The learning approach was then elucidated, delin-
eating the cascade of Binary Logistic Regression layers and their respective input-
output equations at each stage. Ultimately, the numerical findings have indicated
that our consistent result regarding the optimal overhead ratio (10% throughout the
entirety of this thesis) can be harmonized with an assertive one-bit binary quantiza-
tion. Remarkably, this adjustment doesn’t compromise the predictive quality while
adhering to stringent low-complexity prerequisites. These outcomes and inferences
from this chapter set the stage for three major research directions: scalability to
multi-user scenario, adding robustness factors in the system equations and inter-
pretability as we need to open the black box of the proposed neural architectures
and aim to explain their predictions. These conclusions and perspectives are ex-
pounded upon in the last chapter of this manuscript while the generalization of our
proposed approach to the Multi User scenario is presented in the next chapter.
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Chapter 7

Convolutional Neural Network
and Auto Encoder for Multi User
Beam Management in mmWave
massive MIMO

”The past resembles the future more than one
drop of water resembles another.”

Ibn Khaldoun.

7.1 Introduction

In this chapter, we embark on an exploration of the scalability of our proposed meth-
ods within a multi-user Uplink system configuration. Recognizing the challenges and
constraints of a MU-MIMO blind approach, we opt for a new strategy. Instead of
relying on blind techniques, we choose to sound the channel before initiating the
Beam Alignment process based on CSI. This provides us with precise values of the
signal to interference and noise ratio for each beam-pair between User Equipments
and the Base Station, both equipped with Discrete Fourier Transform codebooks
containing equispaced beams.

To accommodate this generalization towards a reliable multi-user system, we
extend our system architecture and propose two methodologies:

• Process each user separately: in this approach, we dedicate one Machine Learn-
ing processing unit for each user, complete with all the necessary hardware and
software resources. This allows us to simultaneously process the Beam Align-
ment task for K users, each using its own set of shallow and low-complexity
ML models and requirements. The perspective here is to optimize and evolve
these models towards a distributed learning setup, where these learning units
can exchange data, continually train, and optimize their weights based on all
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users activities, aiming to enhance the overall system efficiency. The ML mod-
els we investigate for this use case include a shallow symmetric auto-encoder
and a shallow feed-forward architecture.

• Process all users at once: in contrast, this approach involves a single ML pro-
cessing unit at the BS. This unit is equipped with the necessary hardware
requirements to accommodate a more extensive and sophisticated neural net-
work. We switch from simple Signal-to-Interference-plus-Noise Ratio matrices
for each user to a unified high dimensional tensor that combines all these matri-
ces into a single set of training and test samples. The Partial Beam Alignment
task is then formulated as a tensor completion procedure. This approach lends
itself to the use of Convolutional Neural Network.

The multi-user scenario considered in this manuscript provides insights into the
strengths and limitations of these proposed approaches. Primary simulations suggest
that overall, models demonstrate efficient and reliable performance but may request
further refinement to meet robustness requirements. Consequently, this chapter
sets the stage for future research directions and perspectives, potentially leading to
significant contributions and industrial applications.

7.2 SotA Multi-user Beam Alignment

Regarding the particularity of multi user BA, we propose to re-introduce the cor-
responding SotA approaches, including additional references, aiming to specialize
the general literature overview we presented in chapter 3, to the specific multi user
Beam Management. This literature survey introduces two families of BA models,
similarly to the single user. Authors in [65] presented Exhaustive BA applied on
WLAN/WPAN scenario. The approach is simple and effective but exhibit high com-
plexity. The Exhaustive BA for Cellular networks is proposed in [66]. Hierarchical
Search in multi user cellular systems is investigated in [67] and [68], proposing to
reduce the number of beams to be sounded. However, the approach may undergo
severe misalignment error propagation. Still in the context of Cellular networks, au-
thors in [69] reduced the number of beams via two-stage search but increased power
consumption. Same remark holds for [70] where Compressed Sensing is used. One
limitation of this approach is the absence of antenna gain during the measurement
step. Side Information based BA is illustrated in [71] for High-Speed-Train Com-
munications, for Vehicle-to-Everything in [72] and for Unnamed-Aerial-Vehicles in
[73], aiming to limit the search space in limited areas but mainly need additional
sensing equipments. Even when they reduce the pilot overhead, the implementation
of these classical approaches in massive MIMO multi user scenarios is a challenge,
and more reduction on the training samples is required to guarantee their efficiency.
The robustness of these methods in cases where users are not static, is another se-
rious research direction for traditional BA, in reference to Beam Tracking methods,
mentioned in Chapter 3.
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On the other hand, Supervised Learning is investigated in [74] in the context
of Vehicle-to-Everything communications and in Cellular networks in [75]. These
methods considerably reduced the overhead with wide range of applications and
high accuracy but with expensive cost to collect training samples. Reinforcement
Learning or multi user Cellular BA in [76] exhibit negligible overhead but lacks
the capability of making complex decision using existing domain knowledge. In
[77], authors introduced a Bidirectional Recurrent Neural Network and Short-Long-
Term-Memory network to overcome the time-latency, but with an energy consuming
digital architecture. Same approach is presented in [78], using a recurrent neural net-
work based on users orientation information and a reference signal received power.
Its limitation resides in the continuous need for more simulation data and possi-
bly field measurement data. In [79], authors discuss a Cell-free distributed MIMO
approach, jointly handling analog Beam Selection and Digital Beam forming us-
ing the extended Saleh-Valenzuela geometric channel, generating the SINR values
for each user, similarly to our approach, in the next section. In addition to the
remarkable sum-rate losses achieved by the proposed Supervised Learning models,
selectively shutting of some RF chains helps save significant power consumption.
In [80], authors handle the multi user BA using CNN and SVD-based beams with
limited CSI feedback, applied on Quadriga dataset. Hybrid Precoding, Tensor Dic-
tionary Manifold and Supervised Learning tools are investigated in [81] [82] [83]
for channel estimation and coverage optimization. Finally, the new trend in multi
user Beam Management is related to the promising results observed when using
Reflective Intelligent Surfaces, such as in [84] and [85], with low pilot overhead and
high alignment accuracy. However, their implementation is challenging and exhibits
higher complexity than other SotA methods.

To sum-up, we propose to encounter the complexity-limitations of SotA ap-
proaches with fully-analog low-complexity system-architecture, aiming to reach low
pilot overhead ratios and high accuracy matrix/tensor completion using shallow
neural networks.

7.3 Multi-user system model

We consider an Uplink mmWave MU-MIMO setup with one BS and K users. These
UEs are equipped with NT antennas attached to one RF chain for each user sep-
arately, while the BS is equipped with NR massive antennas linked to Nrf RF
chains. Each user transmits one symbol from the symbols vector (s ∈ CK) and gets
the same value of transmitted power (Pu). The architecture is still low-complex
and fully-analog but requires the CSI-based channel estimation before BA. In ad-
dition, the technical objective doesn’t change: we aim to accurately align the op-
timal precoder/equalizer for all users where each user gets the ideal pair of beam-
former/combiner holding the maximum SINR. As we did in previous chapters, each
UE selects its analog beamformer Fu ∈ CNT×NT from a DFT codebook for each
user, containing beam patterns, indexed as u ∈ T . The precoding matrix contains
K beamformer vectors corresponding to each user, denoted fu ∈ CNT . On the other
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Figure 7.1: Simplified diagram representation of the proposed Uplink multi-user
architecture with 3 UEs

side of the transmission, the BS selects its analog combiner matrix WH
i ∈ CNR×Nrf

from a DFT codebook i ∈ R. The proposed system architecture is simplified and
resumed in figure (7.1)

The signaling overhead Ω is defined as the total number of pilots needed for BA,
i.e., the total number of samples multiplied by the signaling overhead ratio η. We
denote T as the total number of time slots in the frame in order to recall the effective
rate for user k, r(k), expressed as:

r(k) = (1− Ω

T
) log2(1 + SINR(k)) (7.1)

Thus, we aim to generate the SINR value for each beam couple for each user.
Therefore, we first represent beam-pair (u, i) ∈ T × R. Consequently, the total
received signal at BS is given by:

Y =
K∑
k=1

Yk =
K∑
k=1

WHGfksk + n (7.2)

where G ∈ CNR×NT =
√

1
Nc

∑K
k=1

∑Nc

l=1 Hl,k follows the same geometric Saleh-

Valenzuela model [22], oriented to the multi user case as in [41], with Nc the num-
ber of sub-paths per user. We denote ni = Wi

Hn as the zero-mean unit-variance
AWGN.
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7.4 SINR tensor dataset: problem formulation

The dataset generated by the proposed model architecture is based on the SINR
values for each beam pair (u,i), for each user (k), as in [79]:

SINR
(k)
u,i =

Pu∥Wi
HGf

(k)
u sk∥22

Pu
∑K

j=1,j ̸=k ∥Wi
HGf

(j)
u sj∥22 + ni

,∀k ∈ {1, .., K} (7.3)

Consistently, our benchmark is the Exhaustive BA, and all traditional methods
based on it [2] [3]. The selection of the best beam is the result of the highest SINR
from a total sounding for all possible pairs regarding codebooks at UEs and BS.
For each user k, the optimal codebooks indexes are formulated as:

(u⋆, i⋆)(k) = argmax
(u,i)∈T ×R

SINR
(k)
u,i ,∀k ∈ {1, .., K} (7.4)

The SINR tensor, S ∈ R|T |×|R|×K) is a stack of incomplete SINR matrices for
each user. Thus, ∀k ∈ {1, .., K}, each SINR matrix is equivalently formulated as:

[ S ]
(k)
u,i :=

SINR
(k)
u,i , if (u, i) ∈ TS (k) ×RS

(k)

Unknown , if (u, i) /∈ TS (k) ×RS
(k)

(7.5)

As we did before, TS (k) and RS
(k) are the cardinalities of the sub-sampled codebooks

for each user k in order to accomplish the multi user partial BA task. Similarly to
the previous chapters, the training set holding sounded SINR values is denoted K
and the test set containing the unknowns is denoted L.

On the other hand, the overhead ratio per user, denoted ηk, is the fraction of
the pilot overhead of our proposed approach for user k divided by the overhead of
Exhaustive BA:

ηk :=
overhead of ML based BA

overhead of exhaustive BA
=
|TS (k)| × |RS

(k)|
|T | × |R|

,∀k ∈ {1, .., K} (7.6)

The sum of all signaling overhead ratios introduce the Total overhead of the proposed
solution, η, applicable to both approaches (generalized point-to-point and tensor
completion):

η =
1

K

K∑
k=1

ηk (7.7)

7.5 Proposed solutions using AE, MLP and CNN

A simplified illustration of the proposed solution is proposed in figure (7.2). In
the proposed Multi-User Beam Alignment algorithm, the system begins by gener-
ating random codebooks at both the user equipments and base station antennas,
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ensuring adherence to the specified oversampling ratio. Beam pairs are then system-
atically probed from the training set for each user, and the corresponding Signal-to-
Interference-plus-Noise Ratio values are stored, forming a SINR dataset tensor.

To align the beams effectively, the algorithm offers two distinct approaches. The
first approach, denoted as Generalized point-to-point or Generalized matrix com-
pletion, involves dividing the SINR tensor into incomplete matrices. Shallow Multi-
Layer Perceptrons and Symmetric Auto-Encoders are fine-tuned specifically for each
user, enabling the completion of the SINR matrices. The second approach, defined
as Tensor Completion, employs a more complex architecture, Convolutional Neural
Network, fine-tuned across all users to complete the SINR tensor. The algorithm
then evaluates and selects the optimal codebook indexes based on the highest SINR
values obtained, providing the optimal transmit beamforming vector for the users
(Fu⋆) and the best receive combining vector for the base station antennas (Wi⋆).

Besides, the architectural limitations of the first approach are explained by the
need of one ML processing unit for each user while the second approach requires
one unit for all of them. However, shallow Feed Forward models and shallow Auto-
Encoders are less complex/greedy in terms of computational resources than the
CNN. This compromise is empirically investigated in the numerical simulations.

Finally, both approaches are neatly tied together and presented in Algorithm (8)

Algorithm 8 Proposed Multi User Beam Alignment

Input: {Fu}∀u∈T , {Wi}∀i∈R, η, ηk, K
[1-] Generate randomly codebooks at UEs and BS, TS (k),RS

(k), satisfying (|TS (k)| ·
|RS

(k)|)/(|T | × |R|) = ηk, ∀k ∈ {1, ..,K}
[2-] Sound beam-pairs from the training set for each user, K := TS (k) × RS

(k). The
sounding leads to obtaining the SINR values, as formulated in (7.3).
[3-] Generate SINR data-set tensor S, in (7.5).
[4-] Select BA approach: generalized matrix completion or tensor completion:
if Generalized point-to-point model selected then

- Split S tensor into K incomplete matrices.
- Fine-tune MLP and AE based on the available training samples in K, respecting the

overhead ratio ηk for each user k, to obtain the optimal weights of the neural networks.
- Use optimal weights to predict for samples in L in order to complete the SINR

matrix for each user.
else

- Fine-tune CNN based on the available training samples in K, corresponding to the
total overhead η for all users, to obtain the optimal weights of the neural network.

- Use optimal weights to predict for samples in L in order to complete the SINR
tensor for all users.
end if
[5-] Select the optimal codebook indexes based on the highest SINR, in (7.4).
Output: Fu⋆ , Wi⋆
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Figure 7.2: Proposed solution for multi user system with K=3: generalized point-
to-point vs tensor completion
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System configuration for all proposed models
System-parameter Numerical value

number of antennas NT at UEs 64, 128, 256, 512, 1024
number of antennas NR at BS 64, 128, 256, 512, 1024
codebook cardinality |T | at UEs 64, 128, 256, 512, 1024
codebook cardinality |R| at BS 64, 128, 256, 512, 1024

number of users 4, 6, 8, 16
overhead ratio η regime 0.5, 0.3, 0.1

number of OFMD sub-carriers Nc 64
number of channel paths: rank(G) 1, 2, 3, 4 (randomly attributed to users)

transmitted power Pu (W) 1
MLP, CNN, AE number of layers 1, 2, 3, 4

MLP, CNN, AE number of neurons per layer 32, 64, 128, 256, 512, 1024
MLP, CNN, AE batch size 8, 32, 128, 256

MLP, CNN, AE learning rate 10−1, 10−2, 10−3, 10−4

AE bottleneck dimension 2, 8, 16
CNN kernel-filter dimension 2

Table 7.1: Proposed system parameters and hyperparameters

7.6 Numerical simulations:

In our comprehensive experimental protocol, we systematically explored a wide
range of system parameters to gain deep insights into the performance of our pro-
posed multi-user beam alignment algorithm. The study involved varying the number
of antennas at both user equipments and base stations across multiple configura-
tions: 64, 128, 256, 512, and 1024. Additionally, we investigated different codebook
cardinalities at UEs and BS, ranging from 64 to 1024, and considered varying num-
bers of users, from 4 to 16. To understand the impact of channel characteristics,
we examined different numbers of channel paths, randomly attributed to users,
ranging from 1 to 4, to modelize different experimental situation for multiple users
(LoS, NLoS..). The experimental setup also included variations in the overhead
ratio regime, exploring values of 0.5, 0.3, and 0.1. We standardized the number
of OFDM sub-carriers at 64 , the carrier frequency at 60 GHz and the considered
transmitted power is fixed at 1W. Thus, the SINR values are in range [0, 10 dB].
Our investigation delved into the architecture of neural networks, varying the num-
ber of layers and neurons per layer for MLP, CNN, and AE models. Additionally,
we explored different batch sizes and learning rates for these networks. The opti-
mal hyperparameters of all proposed neural networks are obtained from the offline
grid-search cross-validation. Consequently, this meticulous exploration allowed us to
comprehensively analyze the algorithm’s behavior under diverse operational scenar-
ios, providing valuable insights into its adaptability and efficiency across a spectrum
of real-world conditions. The experimental protocol is resumed in table (7.1).

Regarding the QoS evaluation metrics, we use the trainingMSE to evaluate the
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training error for all models, expressed as:

Train MSE
(k)
u,i =

1

|K|
∑

(u,i)∈K

(
̂

SINR
(k)
u,i − SINR

(k)
u,i )

2 ,∀k ∈ {1, .., K} (7.8)

where SINR
(k)
u,i is the true SINR value from (7.5) and

̂
SINR

(k)
u,i is the predicted SINR

value from our proposed neural networks, for all samples in K. For test samples in
L, we similarly define:

Test MSE
(k)
u,i =

1

|L|
∑

(u,i)∈L

(
̂

SINR
(k)
u,i − SINR

(k)
u,i )

2 ,∀k ∈ {1, .., K} (7.9)

Finally, we introduce γ, as the total number of required training samples, defined
as the product of the number of antennas at UEs and BS, the number of users K
and the total signaling overhead ratio η:

γ = |T | × |R| ×K × η (7.10)

One of the research directions of this chapter is to investigate the impact of increasing
γ on the quality of prediction of proposed ML tools for both approaches.

7.6.1 Primary results

The CNN demonstrated remarkable efficiency in the task of tensor completion across
various configurations. The training and test Mean Squared Error values consis-
tently trended toward zero throughout the iterations, underscoring the efficacy of
the model. For instance, in Figure (7.3a), the CNN effectively extracted features
from 16 users and a base station, each equipped with 64 antennas, requiring only
30% of the total training samples to achieve precise completion. A similar trend was
observed in Figure (7.3b), where approximately 30% of the total training samples
sufficed to achieve MSE values around 10−3. As the MIMO dimensions increased,
such as with 4 users and a BS, each with 256 antennas, the optimal signaling over-
head decreased to 10%, resulting in MSE values of 10−4 as the total number of
training sample increased.

However, certain simulations revealed subtle overfitting tendencies in the CNN
learning curves which impacts model’s robustness (particularly evident when we
tested transitioning to lower Signal-to-Noise Ratio regimes, outside the proposed
experimental protocol). Addressing these challenges, the next section outlines re-
search directions aimed at refining and enhancing the model’s robustness.

Thus, the tensor completion approach based on CNN not only preserves 90% of
available training samples with high accuracy but also maintains a moderate level of
computational complexity, making it a promising solution for multi-user real-world
applications.

Similarly to CNN, the AE succeeded with the partial BA mission with 30%
and 10% of total samples with balanced learning curves with no symptoms of over-
fitting/underfitting. The range of MSE values reaches 10−2 overall and jumps to
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(a) 64×64 CNN Learning curve for K =
16, η = 0.3

(b) 128×128 CNN Learning curve for
K = 8, η = 0.3

(c) 256×256 CNN Learning curve for
K = 4, η = 0.1

Figure 7.3: CNN Learning curves for multi user Beam Alignment
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(a) 1024×1024 AE Learning curve for
K = 6, η = 0.1 for User 1

(b) 64×64 AE Learning curve for K =
16, η = 0.3 for User 2

(c) 256×256 AE Learning curve for K =
16, η = 0.3 for User 3

(d) 256×256 AE Learning curve for K =
16, η = 0.3 for User 4

Figure 7.4: AE Learning curves for multi user Beam Alignment

around 10−3 for extremely high dimensional MIMO setups. In (7.4a), we focus on
the first UE among 6 simulated: with 10% overhead ratio, this highest MIMO con-
figuration, guarantee the best performance from QoS perspective with the lowest
MSE values for training and test samples. In (7.4b), the second UE among 16 had
just 64 antennas, which represent the opposite case where we have the lowest γ. In-
deed, the optimal overhead ratio reaches 30% and the MSE is ranging around 10−1

for training and test samples. In (7.4c) and (7.4d), when we compare the perfor-
mance between different users, we empirically observe similar behaviour and results
in terms of learning curves, required optimal overhead, required optimal combina-
tion of hyperparameters and reached error values. However, some exceptions are
notices where AE failed to accurately complete the SINR matrix, even with higher
number of training samples: these cases state one limitation for AE in process-
ing some users, characterized by ”difficult” experimental situations (NLoS with 4
channel paths, too far from BS or simply exposed to much noise and interference).
Finally, it is primordial to notice that AE is the fastest and less complex neural
architecture proposed in the whole PhD and in this chapter particularly. Thus,
AE have the smallest dimensions and number of parameters, making it less greedy
to computational resources. With accurate predictions and low signaling overhead
ratios, AE excels with its accuracy/complexity compromise.

Conversely, numerical results suggest that MLP is the most balanced and robust
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(a) 128×128 MLP Learning curve for
K = 8, η = 0.3 for User 2

(b) 128×128 MLP Learning curve for
K = 8, η = 0.3 for User 4

(c) 256×256 MLP Learning curve for
K = 4, η = 0.1 for User 2

(d) 256×256 MLP Learning curve for
K = 4, η = 0.1 for User 4

Figure 7.5: MLP Learning curves for multi user Beam Alignment

model, with higher complexity than AE and lower complexity than CNN. The Feed
Forward architecture guarantee considerably low MSE values for training and test
samples, ranging around 10−4 and scores the best performances among all when it
handles the largest proposed system configurations. In (7.5a) and (7.5b), users illus-
trate similar performances, loss values, monotonic convergence of the corresponding
learning curves, ideal combinations of hyperparameters and the optimal required
overhead ratio. As long as we increase the system configurations and so, γ, MLP in
(7.5c) and (7.5d), training and test MSE decrease to around 10−3.

To sum up, the proposed models succeeded in the Partial BA for multi user with
optimal overhead ratios equal to 30% for small configurations and reaches 10% for
the largest proposed MIMO setups. Figure (7.6) tracks the -log(MSE) in function of
total number of training samples. For the sake of simplicity, we consider the average
between the very close training and test MSE values to represent the MSE loss and
γ is calculated as in (7.10):

• CNN is the largest proposed model, according to the mission in question,
where completing a sparse tensor with low number of samples is a harder task
compared to matrix completion for each user separately, due to the increased
dimensionality and the intricate patterns that can exist in higher-order, espe-
cially when the dataset includes much noise and interference between users.
Consequently, CNN guarantee better performance as long as we increase γ,

138



Figure 7.6: QoS models evaluation: -log(MSE) in function of the number of training
samples
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as shown in figure (7.6): -log(MSE) jumps from 2 for γ = 2 × 104 to 4 for γ
values beyond 105.

• AE is the smallest proposed model, the easiest to fine-tune, the fastest in
terms of cross-validation and predictions. However, it conducts the worst
performance relatively with the highest training and test MSE values among
all. Besides, more training samples for AE means better predictions, where
-log(MSE) jumps from 1.1 for γ = 2 × 104 to 3 for γ = 105. The inflection
point marks the intersection between AE and MLP performances at around
γ = 3.7×104. Beyond this γ value, the slope of the curve drastically increases
for MLP and decreases for AE.

• Feed Forward architecture also depends on more data to decrease training and
test error. Thus, it is the best model when the number of antennas at both
sides of the transmission become extremely high. At γ = 6.5 × 104, MLP
reaches very close loss values for training and test samples compared to the
CNN. Beyond this value, MLP overpasses all models and illustrate the best
QoS performance reaching 4.3 for 105 training samples.

7.6.2 Limitations and perspectives

Regarding the primary results, the slightly presence of overfitting in the CNN per-
formance and the failure of AE and MLP to complete matrices of rare users in
”difficult” experimental situations, lead to following research directions:

• Given the neural networks’ high sensitivity to even minor shifts in optimal hy-
perparameters, it becomes imperative to expand our exploration. Increasing
the granularity of our grid search and experimenting with larger combina-
tions of hyperparameters is crucial. While this approach might incur a higher
cross-validation latency, the potential pay-off is substantial: discovering more
robust hyperparameter combinations that yield significantly lower test Mean
Squared Error. This expanded search necessitates a deeper refinement process,
involving careful considerations such as the selection of appropriate activation
functions and the incorporation of dropout techniques. These architectural
enhancements hold the promise of overcoming the limitations observed in our
initial results. By meticulously refining these elements, we aim to fortify the
neural networks, making them more resilient to variations and ensuring the
reliability and accuracy of our Beam Alignment models.

• From a machine learning perspective, the adage ”more data, better predic-
tions” holds particularly true in the realm of multi-user Beam Alignment. As
the number of users increases, so does the volume of data at our disposal.
This abundance of data opens doors to enhanced prediction quality, a funda-
mental principle in machine learning. Leveraging this principle, our proposed
approaches can be adapted to embrace a transfer learning paradigm. In this
paradigm, our models undergo pre-training across a myriad of experimental
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use-cases and datasets. Subsequently, these pre-trained models are fine-tuned
to tackle new real-time matrix/tensor completion challenges. This approach
capitalizes on the wealth of historical data, allowing our models to learn and
adapt swiftly to evolving scenarios.

• Furthermore, the proliferation of users equipped with large dimensional MIMO
configurations introduces an intriguing prospect: Distributed Learning. In this
paradigm, the training process and feature extractions are distributed among
multiple models. These models collaboratively learn from past performances,
with knowledge rigorously shared and distributed across different ML units.
While this methodology converges towards a concept akin to Federated Learn-
ing, it also prompts critical questions about the orchestration between massive
users and their corresponding voluminous datasets. Properly managed and op-
timized, this distributed approach has the potential to outperform our initial
proposed methods, transcending their limitations and leading to more efficient
and effective Beam Alignment strategies.

7.7 Conclusion

In this pivotal chapter, we embarked on the exploration of partial Beam Alignment
in a multi-user scenario, a terrain brimming with challenges and possibilities. We
laid out the groundwork, first presenting the intricacies of the fully-analog system
architecture and formulating the problem. Within this complex landscape, we de-
lineated two approaches to tackle the issue at hand. Our dataset, comprising SINR
values for each beam-pair across all users, served as the foundation upon which
our Alignment procedure was constructed, employing DFT sub-sampled codebooks.
The chapter unfolded with the unveiling of our primary numerical results, painting
a promising picture: our proposed machine learning tools not only fulfilled their
mission but did so with a low pilot overhead ratio, showcasing the efficiency of both
proposed approaches. As we delved deeper, the chapter culminated in a critical QoS-
focused comparison of the models’ performances in function of the available training
samples, stated some limitations and expressed research directions to combat them.
As we prepare to embark on the conclusive chapter, these findings illuminate the
path forward, guiding us towards a comprehensive understanding of the project’s
context, the contributions made, the results obtained, and the perspectives that lie
ahead.
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Chapter 8

Conclusions and perspectives

”We cannot solve our problems with the same
thinking we used when we created them.”

Albert Einstein.

8.1 Conclusions

In the pursuit of enhancing spectral efficiency for 5G networks, mmWave MIMO
technology emerged, offering significant advancements through advanced precoding
techniques. Despite its potential, the complexity of real-world urban environments
and the unique characteristics of mmWave frequencies pose challenges. Massive
MIMO communication at mmWave frequencies requires precise beam alignment,
vital for establishing robust initial links. Classical methods in conventional stan-
dards, like WiGig, involve exhaustive beam sounding, our benchmark, leading to
excessive pilot-signaling overhead and the impossibility to deploy it in large dimen-
sional MIMO applications. Our research addresses this issue by proposing Partial
and Blind Beam Alignment, an approach integrating machine learning techniques.
By leveraging sub-sampled codebooks and employing neural networks and matrix
factorization, we aim to reduce pilot overhead and accurately identify optimal beam
pairs.

In the literature, SotA methods are divided into two families, classical BA and
ML based BA. The first approaches rely on the brute-force BA and are generally
based on hierarchical codebooks, Compressed Sensing, Beam Coding and multiple
other tools, aiming to optimize the BA process using all available samples. They
generally require CSI-based channel estimation and hybrid beamforming architec-
tures. On the other hand, ML relies on less training samples with promising results.
However, the investigation of its complexity and hardware requirements illustrate
the challenges behind applying AI tools in Wireless Communication systems.

In this context, this work aims to investigate the feasibility of the proposed ML-
based Beam Alignment approach, relying on low-complexity fully-analog architec-
tures with limited RF chains in and shallow neural networks. Thus, we started from
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basic Uplink point-to-point configuration and build up, step-by-step, with continu-
ous formulation of the new encountered technical problems and constraints, aiming
to mathematically and empirically answer these problematics. The main findings of
this PhD work are:

• We first considered a point-to-point, narrowband, LoS, Uplink scenario using
one RF chain for UE and one RF chain for BS. The solution for the BA
problem is based on the application of Matrix Factorization and its variants
to fulfill the task of Blind and Partial BA using sub-sampled codebooks. In ad-
dition to the theoretical guarantees, the numerical results serve as compelling
evidence, demonstrating the efficacy of our approach that seamlessly integrates
model-based and data-driven methodologies. Most notably, our method ac-
complishes its objectives with efficiency, utilizing a mere 10% of the available
beams and achieving a fully CSI-blind solution. This accomplishment repre-
sents a significant stride in addressing the challenge of large signaling overhead
in beam alignment and has led to the publication of the WCNC conference
paper in [86].

• Our second finding in the PhD journey commenced with an extension of our
system model, elevating the complexity of our experimental setup to mirror
real-world conditions, including NLoS wideband model, multiple RF chains
at BS and sub-sampled DFT codebooks. Following this, we introduced the
Multi-Layer Perceptron architecture, presenting its input-output equations,
problem statement, and the formulated solution. Thus, we proposed a com-
parative study, illuminating the nuanced interplay between complexity and
prediction quality for both methods: our findings underscore that a mere
10% of the total beam pairs prove sufficient for accurately aligning the beams
between User Equipment and Base Station for both methodologies in a point-
to-point single user scenario. Furthermore, we discerningly explored the sim-
ilarities and differences in models behavior under varying transmitted power
scenarios. These outcomes illuminate the practical viability of our methods,
providing a solid foundation for their application in real-world contexts and
ushering in a new era of more efficient and effective Beam Alignment in future
communication systems. These findings had allowed the submission of the
journal paper in [87].

• The third outcome of this PhD delves deep into the intricate quantization in
reference to the practical constraints of ML models deployment. We com-
menced with the establishment of the system architecture and the formulation
of model equations. A mathematical formulation of these constraints was
undertaken, paving the way for the creation of the corresponding quantized
Received Signal Energy dataset. The learning approach was then elucidated,
mapping out the cascade of Binary Logistic Regression layers and delineating
their respective input-output equations at each stage. Notably, the numerical
revelations highlighted a consistent and assertive finding: our optimal overhead
ratio (maintained at 10% throughout the entirety of this thesis) can seamlessly
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harmonize with an efficient one-bit binary quantization scheme. This adjust-
ment, remarkably, doesn’t compromise the predictive quality while upholding
stringent low-complexity prerequisites, thereby affirming the practicality of
our proposed approach, illustrated in the publication of the ICC conference
paper in [88].

• Finally, we laid the foundation of the proposed fully-analog system architec-
ture for multi-user Beam Management, formulating the underlying problem
and system equations. Within this complex framework, we outlined two ap-
proaches to address the issue. Our dataset, a comprehensive collection of SINR
values for each beam-pair across all users, became the cornerstone upon which
our Alignment procedure was crafted, leveraging DFT sub-sampled codebooks.
As our exploration deepened, we uncovered primary numerical results: shal-
low CNN, MLP and AE not only met their objectives but did so with a low
pilot overhead ratio, underscoring the efficiency of both proposed approaches.
In addition, the experimental protocol involved a quality-of-service-focused
comparison, exploring the models’ performances in function of the available
training samples. In acknowledging the limitations encountered, we charted
paths for future research, highlighting directions to enhance our methodologies
and overcome these challenges.

8.2 Perspectives

The application of AI tools in Wireless Communication systems is in the early stages
of exploration. As an increasing number of studies highlight its significance, espe-
cially in addressing challenges related to Beam Alignment and Management, fresh
opportunities are emerging. These developments are paving the way for inventive
methodologies that have the potential to bring about unforeseen shifts in the existing
paradigms.

Regarding our specific challenge, several potential project avenues come into fo-
cus. Thus, we distinguish two families of research and development directions:

Wireless Communication perspectives:

• Exploring the impact of user mobility and velocity represents a natural pro-
gression for our research, particularly in real-life scenarios. Addressing this
challenge could involve delving into recurrent neural networks, like the Long
Short Term Memory architecture, or transitioning towards a Reinforcement
Learning paradigm, allowing us to adapt to dynamic user movements.

• Evaluating our models on industrial datasets such as DeepMIMO [58], Quadriga
[59] or DeepSense [60] can provide valuable real-world validation.

• Exploring matrix/tensor completion for partial Beam Alignment using Re-
flective Intelligent Surfaces, an emerging trend in mmWave MIMO literature,
offers both challenges and promising results that warrant investigation.
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• Optimal design of codebooks for Partial Beam Alignment tasks is crucial.
Transitioning from conventional equispaced beams, typically used in DFT
codebooks, to more optimized schemes could substantially enhance our ap-
proach. Similarly, optimizing power allocation to users, perhaps through tech-
niques like water-filling, represents another avenue for refinement.

Machine Learning perspectives:

• Enhancing the robustness of our system equations by incorporating additional
factors is a promising avenue. This can involve striking a balance between com-
plexity and accuracy using advanced AI tools and methodologies. Techniques
like Transfer Learning, leveraging pre-trained models on extensive datasets, or
adopting Federated Learning with distributed training and prediction across
multiple coordinated ML units, could provide significant insights.

• Expanding the scope of our offline grid-search cross-validation could signifi-
cantly enhance the quality of predictions made by our ML tools.

• Compressing the dimensions of these AI tools, akin to the principles of tiny-
ML, quantizing their weights, and reducing the number of parameters, is vital
for future industrial deployment and efficiency.

• Enhancing the interpretability of ML models is an interesting research direc-
tion. Opening the black boxes behind ML tools, understanding the underlying
features, and explaining the predictions made by neural networks are rigorous
tasks that can yield valuable insights across various AI applications in Wireless
Communications and beyond.
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Appendix A

Proof: BCD convergence

We prove that the two necessary conditions for the convergence of BCD are satisfied:

• the loss function is strongly convex, per block, i.e., we should show that sub-
problem S1 and S2 have a unique solution

• the constraints of the MF prob θθθu ∈ Rd , ψψψi ∈ Rd , are separable and individ-
ually convex

Recall that the sub-problem S1 is expressed as:

(S1) : θθθ(k+1)
u =θθθu∈Rd [−2θθθTu r(k)u + θθθTu ( Q

(k)
u + µuID )θθθu] = f1(θθθu), ∀u, (e.1)

(A.1)

Afterwards, we prove that the equivalent form in (e.1), is a strongly convex
function: f1(θθθu) is strongly in θθθu. To that end, we derive the corresponding Hessian:

∇2f1(θθθu) := 2( Q(k)
u + µuID ), ∀u, (g.1)

For the Hessian expression in (g.1), Q
(k)
u ⪰ 0 is by definition a Positive Semi Definite

matrix, µuI ≻ 0 is a Positive Definite matrix, and ( Q
(k)
u +µuID ) ≻ 0 is PD matrix.

Thus, the Hessian is PD matrix ∇2f1(θθθu) ≻ 0, and f1(θθθu) is strongly in θθθu, and the
solution to sub-problem (S1) is unique. The sub-problem (S2) is written as:

(S2) : ψψψi
(k+1) =ψψψi∈Rd [−2t(k+1)T

i ψψψi +ψψψi
T ( P(k+1)

u + λiI )ψψψi] = f2(ψψψi) , ∀i , (e.2)
(A.2)

Subsequently, we show that the equivalent form in (e.2), is a strongly convex func-
tion: f2(ψψψi) is strongly in ψψψi. Therefore, we calculate the corresponding Hessian:

∇2f2(ψψψi) := 2( P
(k+1)
i + λi

(i)ID ), ∀i, (g.2) (A.3)

Thus, for the Hessian expression in (g.2), P
(k+1)
i ⪰ 0 is by definition a PSD matrix,

λ
(i)
i I ≻ 0 is a PD matrix, and ( P

(k+1)
i + λ

(i)
i ID ) ≻ 0 is PD matrix. Following

that, the Hessian is PD matrix ∇2f2(ψψψi) ≻ 0, and f2(ψψψi) is strongly convex in ψψψi.
Consequently, the solution to sub-problem (S2) is unique.
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Appendix B

Proof: BLR convergence

We prove the following statements:

• 1.A) f(w) in (6.10) is a strongly convex function in w.

• 1.B) The Gradient Descent iterations in (B.2) are monotonically decreasing,
i.e., f(wt+1) ≤ f(wt), ∀t ∈ N, and converge to the global optimum w∗, i.e.,
limt→∞{wt}t = w∗.

Where:
(6.10):

w∗ := f(w) = arg min
w∈Rd

L(w) + λ∥w∥22 =

1

|K|ln(2)
∑

(u,i)∈TS×RS

log2(1 + exp−(wTxu,iQu,i))) + λ∥w∥22 (B.1)

(B.2):

wt+1 = wt − αt∇wf(wt),∀t ∈ {1, .., Nepochs} (B.2)

Proof 1.A):

i) show that Lu,i(w) in (6.8) is convex. Given Lu,i(w) = c.log2(1 + exp(−wTa))
where a = xu,i.Qu,i, and c = (ln(2))−1, c > 0. Moreover, exp(−wTa) = g(w)
is convex in w and log2(1 + x) = h(x) is monotonically increasing in x. Thus,
Lu,i(w) = c.h(g(w)) is convex, since it is a composition of a monotonically increas-
ing h(−) and convex functions g(−), and c > 0 constant. The sum of Lu,i(w) convex
functions is convex which proves the convexity of L(w) in (6.9).

ii) f(w) is the sum of a convex function L(w), and a strongly convex function (reg-
ularization term λ∥w∥22). Therefore, f(w) in (6.10) is strongly convex function in w.

Proof 1.B): the proof follows from f(w) being strongly convex.
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Titre : Apprentissage automatique pour l’Alignement des faisceaux pour les systèmes MIMO massifs à ondes
millimétriques
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Résumé : La demande croissante en efficacité spec-
trale, stimulée par les exigences strictes des réseaux
5G, a accéléré le développement de la techno-
logie MIMO en ondes millimétriques, offrant des
améliorations architecturales significatives grâce à
des techniques de précodage avancées. Cette tech-
nologie présente des gains substantiels en termes
d’efficacité spectrale et énergétique par rapport aux
systèmes MIMO traditionnels. Cependant, le poten-
tiel transformateur du MIMO en mmWave est entravé
par les réalités complexes des environnements ur-
bains réels et les propriétés physiques complexes
inhérentes aux fréquences des ondes millimétriques.
De manière cruciale, dans les communications mas-
sives MIMO en mmWave, le beamforming et le com-
bining jouent des rôles essentiels : la large bande
passante et la fréquence de fonctionnement élevée
des systèmes à ondes millimétriques nécessitent un
beamforming/combining dans le domaine analogique,
rendant les approches entièrement digitales techni-
quement impossibles. Au cœur du MIMO massif en
mmWave se trouve le problème d’Alignement des
Faisceaux, exigeant l’identification des paires de fais-
ceaux d’émission et de réception optimales qui maxi-
misent le rapport signal/bruit, assurant ainsi une liai-
son initiale robuste.
Les normes existantes, telles que WiGig, utilisent
des méthodes exhaustives de sondage des faisceaux,
testant chaque paire de faisceaux possible pour trou-
ver celle qui maximise le SNR. Cependant, cela en-
traı̂ne un surcoût important de signalisation de pilotes:
le principal problème que nous cherchons à résoudre
tout au long de cette thèse de doctorat. Notre re-
cherche révolutionne l’Alignement des Faisceaux en
intégrant des techniques de pointe en apprentissage
automatique pour l’Alignement Partiel des Faisceaux,

réduisant considérablement les surcharge de pilotes
en ne sondant qu’un sous-ensemble de paires de
faisceaux à l’aide de codebooks sous-échantillonnés.
Ainsi, nous exploitons les énergies des signaux reçus
à partir de ces sondages de paires de faisceaux, en
utilisant des réseaux neuronaux peu profonds, la fac-
torisation matricielle et leurs variantes pour résoudre
avec précision des problèmes de régression non-
linéaire et logistique, cruciaux pour déterminer la qua-
lité des paires de faisceaux restantes. Un objec-
tif fondamental de cette thèse est de déterminer la
complexité de l’échantillonnage pour ces méthodes
d’apprentissage automatique. Cette complexité dicte
le nombre minimum d’échantillons d’entraı̂nement
nécessaires pour un apprentissage efficace et une
transmission fiable. Nous examinons également les
performances des modèles ML proposés sans es-
timation préalable du canal, introduisant le concept
d’Alignement Aveugle des Faisceaux, ouvrant ainsi
la voie à un changement radical de paradigme. De
plus, notre recherche explore en profondeur les sub-
tilités de la quantification, une contrainte pratique vi-
tale. Nous explorons ensuite des compromis cruciaux
: identifier la surcharge minimale correspondant au
schéma de quantification optimal tout en investiguant
le compromis classique entre précision et complexité.
Grâce à une progression méthodologique
systématique, allant des scénarios point-à-point ba-
siques à bande étroite aux complexes architectures
multi-utilisateurs à large bande, cette thèse de docto-
rat offre des insights et des solutions précieuses: les
contributions proposées font progresser les domaines
des communications en mmWave et les applications
d’apprentissage automatique dans les systèmes sans
fil, surpassant les benchmarks existants et affrontant
les limites des approches conventionnelles.



Title : Machine Learning for beam Alignment in mmWave massive MIMO
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Abstract : The escalating demand for spectral ef-
ficiency driven by the stringent requirements of 5G
networks has spurred the development of mmWave
MIMO technology, promising significant architectu-
ral improvements through advanced precoding tech-
niques. This technology presents substantial gains in
spectral and energy efficiencies compared to traditio-
nal MIMO systems. However, the transformative po-
tential of mmWave MIMO is hampered by the complex
realities of real-world urban environments and the in-
tricate physical properties inherent to mmWave fre-
quencies.
Crucially, in mmWave massive MIMO communica-
tion, beamforming and combining play pivotal roles:
the high bandwidth and operating frequency of mm-
Wave systems necessitate analog domain beamfor-
ming/combining, rendering fully digital approaches
technically non feasible. At the heart of mmWave
large-dimensional MIMO lies the Beam Alignment
problem, requiring the identification of optimal trans-
mit and receiver beam pairs that maximize the Signal-
to-Noise ratio, ensuring a robust initial link.
Existing standards, such as WiGig, employ exhaustive
beam sounding methods, testing each possible beam
pair to find the one maximizing SNR. Consequently, it
leads to substantial pilot-signaling overhead, the ma-
jor problem we aim to encounter throughout this PhD.
Our research revolutionizes Beam Alignment by inte-
grating cutting-edge machine learning techniques for
Partial Beam Alignment, significantly reducing the pi-
lot overhead by soundings a subset of beam pairs

using sub-sampled codebooks. Therefore, we leve-
rage the received signal energies from these beam
pairs soundings, employing shallow neural networks,
matrix factorization, and their variants for accurately
resolving non-linear and logistic regression problems,
crucial for determining the quality of the remaining
beam pairs.
A fundamental objective of this thesis is to determine
the sample complexity for these machine learning me-
thods. This complexity dictates the minimum number
of training samples necessary for effective learning
and reliable transmission. We delve into the perfor-
mance of the proposed ML models without prior chan-
nel estimation, introducing the concept of Blind Beam
Alignment, thus pioneering a paradigm shift. Further-
more, our research delves deep into the nuances of
quantization, a vital practical constraint. We then ex-
plore critical compromises: identifying the minimum
overhead ratio corresponding to the optimal quanti-
zation scheme on the one hand and navigating the
classic trade-off between accuracy and complexity on
the other hand.
Through systematic progression, ranging from basic
point-to-point narrowband scenarios to intricate wide-
band multi-user architectures, this PhD thesis offers
valuable insights and solutions. The proposed contri-
butions advance the fields of mmWave communica-
tions and Machine Learning applications in wireless
systems, outperforming existing benchmarks, and en-
countering the limitations of conventional approaches.
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