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Introduction (Français)

La vie est un spectacle, autant faire sa propre mise

en scène.

— William Shakespeare



Cette thèse a été effectuée dans l’équipe MΞDISIM à Inria Saclay sous la direction de
Sébastien Imperiale et Philippe Moireau. Elle s’inscrit dans une thématique clé de cette
équipe : les problèmes inverses. L’idée est de pouvoir reconstruire une information incon-
nue (conditions initiales, terme source, paramètres...) à l’aide de mesures sur le système.
Nous nous intéressons aux systèmes propagatifs et plus spécifiquement à la propagation
d’ondes. L’enjeu est d’établir des propriétés d’observabilité et de stabilisation en dimen-
sion infinie. Cette thèse porte principalement sur des enjeux théoriques, cependant les
problèmes inverses que nous étudions possèdent beaucoup d’applications concrètes. Nous
survolons quelques applications possibles pour les problèmes inverses qui mettent en jeu
des phénomènes propagatifs.

Contexte applicatif

Les propagations d’ondes jouent un rôle dans de nombreux domaines, que se soit en bio-
logie, dans les infrastructures, dans le corps humain, les systèmes de réseaux, si bien que
le nombre d’applications possibles est très important. Nous présentons quelques exemples
proches des thématiques de l’équipe MΞDISIM.

L’hémodynamique
L’hémodynamique est le phénomène biologique décrivant la propagation de sang dans le
corps humain. D’un point de vue mathématique et modélisation, les équations régissant
la propagation du sang peuvent être vues (dans un certain régime asymptotique) comme
une propagation d’onde 1D de pression et de débit dans un réseau (par exemple dans le
réseau artériel) [Lombardi, 2014; Saito et al., 2011]. Sur ce sujet, une question étudiée
dans l’équipe MΞDISIM est la reconstruction de pression et de débit en sortie de coeur
connaissant la pression ou le débit à une autre extrémité du réseau. En effet, ces infor-
mations sont généralement non disponibles et sont pourtant très informatives sur l’état
de santé du patient. D’un point de vue mathématique, il s’agit d’un problème inverse de
reconstruction de source pour l’équation des ondes [Imperiale et al., 2023]. Le problème
inverse mentionné n’est évidemment pas le seul, on peut en citer d’autres par exemple la
reconstruction de paramètres du réseau [Martin et al., 2005] notamment par le filtre de
Kalman [Caiazzo et al., 2017]. À terme, les techniques de problèmes inverses peuvent même
être utilisés par exemple pour reconstruire les paramètres d’un modèle du cœur couplé au
réseau [Manganotti et al., 2021] ou encore en pharmacologie pour optimiser l’administra-
tion de médicaments en anesthésie.

L’élastographie ultrasonore
L’imagerie médicale est apparue au cours du 20èmes siècle. On cherche à obtenir des images
du corps humain de façon non intrusive afin de pouvoir, par exemple, poser des diagnos-
tics. Plusieurs méthodes ont été établies à cette fin : IRM, échographie, radiographie, etc.
Derrière ces techniques se cache la résolution d’un problème inverse. On présente ici l’élas-
tographie ([Raghavan and Yagle, 1994; Ophir et al., 2002; Parker et al., 2011]) qui est un
sujet souvent étudié dans l’équipe MΞDISIM ([Caforio, 2019; Imperiale et al., 2020]). C’est
une technique d’imagerie pour caractériser les propriétés élastiques des tissus biologiques.
On peut définir les ondes élastiques à partir de l’équation d’élastodynamique :

⇢@ttu+ div(�) = f, (1)

où u est le champ de déplacement, � est le tenseur de contraintes, ⇢ représente la densité et
f le terme source. La définition de � dépends des conditions du milieu. Notamment dans
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le cas isotrope, on a la loi de Hooke

� = 2µ✏(u) + �tr(✏)Id,

où � et µ sont les coefficients de Lamé. Lorsque le milieu est homogène, les coefficients de
Lamé sont constants. On peut décomposer le champ u en deux ondes : celles de compression
et celles cisaillement. Les tissus biologiques sont considérés comme quasi incompressibles
du fait de la densité de l’eau qu’ils contiennent. Leur module de compressibilité est ainsi
très proche de celui de l’eau. En revanche le module de cisaillement est très variable. En
outre, un changement d’état pathologique entraîne un changement de raideur. La technique
d’élastographie capte particulièrement les ondes de cisaillement, cette approche est donc
bien adaptée pour détecter des anomalies dans les tissus biologiques.
On peut distinguer trois grandes étapes en élastographie :

1. L’excitation de la région d’intérêt par une onde dans le tissu ;

2. La mesure de cette perturbation ;

3. Et enfin la reconstruction de la propriété recherchée du tissu.

Deux grandes catégories d’imagerie d’élasticité ultrasonore (EUS) se fondent sur les équa-
tions élastiques :

• l’imagerie d’élasticité ultrasonore statique ;

• l’imagerie d’élasticité ultrasonore dynamique.

Apparue dans un premier temps comme une méthode quasi-statique [Ophir et al.,
1991], l’imagerie d’élasticité ultrasonore est une méthode de déformation consistant en
une compression statique. Plus précisement, cela correspond à étudier des solutions quai-
statiques qui n’entrainent pas de propagation. Danc ce cas, le terme source de (1) se réécrit
f(x, t) = �(t)✓(x) où �(t) varie très lentement et converge vers 1.
L’imagerie d’élasticité ultrasonore a par la suite été étendue en méthode dynamique [Sar-
vazyan et al., 2011] qui consiste alors à appliquer une force qui varie en fonction du temps
(soit avec de très rapides impulsions soit avec une force oscillatoire à fréquence fixée) [Gen-
nisson et al., 2013]. Cela crée une perturbation mécanique qui se propage sous forme d’onde
élastique dans le tissu. Cette technique est largement étudiée [Rudenko et al., 1996; Sar-
vazyan et al., 2010; Gennisson et al., 2013; Sigrist et al., 2017] et est utilisée par exemple
en médecine pour faire des échographies.

Le contrôle non destructif
Le contrôle non destructif (CND) [Banks et al., 2000; Albanese et al., 2002; Shull, 2002;
Altpeter et al., 2002], parfois appelé Essais Non destructifs (END) dans la littérature, est
une méthode permettant de vérifier l’intégrité d’une structure sans l’altérer. Contrairement
aux techniques présentées plus haut destinées au médical, celle-ci a plutôt une application
industrielle, notamment dans le domaine aérospatial, nucléaire, ferroviaire, automobile,
etc. Le but est de mettre en évidence des défauts (que se soit pour des questions de
sécurité, de conformité etc). On distingue plusieurs catégories de méthodes au sein du
CND : l’examen visuel, la magnétoscopie, la thermographie, le ressuyage, les courants de
Foucault, la radiographie et les ultrasons. On s’intéresse particulièrement à cette dernière
catégorie, car elle repose sur une dynamique de propagation d’onde transitoire. La méthode
par ultrasons (voir par exemple [Blitz and Simpson, 1995]) est une technique acoustique
qui permet de mesurer l’épaisseur d’un objet ou de détecter une détérioration telle qu’une
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fissure. On envoie des ondes acoustiques à travers l’objet, celles-ci rebondissent sur des
matériaux où la densité et la raideur sont différentes. Les ondes envoyées peuvent être des
ondes de compressions, des ondes de cisaillements ou encore des ondes guidées dont on
parlera plus loin ci-dessous.

Une branche de recherche appelée contrôle de santé intégrée (structural health moni-
toring en anglais) [Farrar and Worden, 2007; Worden et al., 2007; Taupin, 2011; Mitra
and Gopalakrishnan, 2016] découle des techniques de CND. Celle-ci a la particularité de
détecter des défaults en temps réel et s’est développé ces trente dernières années. Elle est
notamment utilisée en aéronautique [Boller and Meyendorf, 2008; Le et al., 2015], aérospa-
tial [Staszewski et al., 2004], naval [Okasha et al., 2011; Mondoro et al., 2016], infrastructure
[Chang et al., 2003; Brownjohn, 2007; Karbhari and Ansari, 2009; Cross et al., 2013; Feng
and Feng, 2018], etc.
Les ondes guidées, des ondes ultrasonores qui se propagent dans une structure et qui sont
confinées à l’intérieur de celles-ci [Gazis, 1959; Bartoli et al., 2006; Raghavan, 2007; Mesnil
et al., 2019], sont utilisées dans le contrôle de santé intégré. Les systèmes de contrôles
utilisant les ondes guidées peuvent avoir recours au mode actif : c’est un transducteur
piézoélectrique qui envoie des excitations ponctuelles, on a alors des informations entre le
transducteur et le récepteur grâce à l’onde. Le mode passif lui est utilisé pour une sur-
veillance en temps réel, car aucune onde n’est stimulée, les transducteurs attendent un
signal en cas d’endommagement. Une des spécificités des guides d’ondes, c’est qu’ils per-
mettent la propagation d’ondes multimodales. Lorsque les ondes se propagent à travers
des plaques et des coques minces délimitées par des surfaces sans contraintes on parlera
d’ondes de Lamb [Lamb, 1917; Worlton, 1961; Su et al., 2006], c’est notamment le cas en
aéronautique [Dalton et al., 2001]. Pour des plaques plus épaisses, les ondes étudiées sont
alors des ondes de surface dénommées ondes de Rayleigh. Tous ces phénomènes peuvent
être modélisés mathématiquement comme une équation d’onde (1) et sont étudiés dans
l’équipe MΞDISIM [Dalmora et al., 2023].

La sismologie
Les applications en sismologie sont très proches de celles de la CND et de l’elastographie
car elles s’appuient sur les mêmes équations mais à une autre échelle. En effet, ici la pro-
pagation d’ondes a lieu sur de longues distances. Les problèmes inverses au travers du
développement de l’assimilation de données – un ensemble de stratégies qui combine les
données observées sur le système et le modèle mathématiques qui le représente – ont beau-
coup d’application en sismologie. Les ondes sismiques se propagent à l’intérieur de la Terre
et permettent d’étudier la structure du sol. Les observations de ces ondes sismiques (temps
de parcours, amplitudes, etc) offrent des informations importantes sur diverses propriétés
géologiques notamment sur la structure interne du sous-sol. La méthode Full waveform
inversion (FWI) est très en vogue pour étudier la structure de la terre. L’idée est de ré-
soudre de façon itérative [Tarantola and Valette, 1982; Tarantola, 1984], le problème de
minimisation associé au problème inverse. On nomme cette méthode 4D-var (pour varia-
tionnelle 3D et temps). On verra notamment dans cette thèse, qu’au lieu de résoudre ce
problème de manière itérative, il est possible de le faire séquentiellement. Cette méthode
a beaucoup été étudiée et illustrées par des résultats numériques [Gauthier et al., 1986]
avant de connaître de nombreuses extensions [Tarantola, 1987; Mora, 1987; Sun and Mc-
Mechan, 1992; Crase et al., 1990; Sun, 1991; Pratt et al., 1998; Operto et al., 2004; Pratt
et al., 1996]. Grâce aux progrès de l’informatique, il est maintenant possible de faire des
simulations en trois dimensions de grandes précisions [Graves, 1996; Akcelik et al., 2003;
Komatitsch et al., 2004] et les FWI sont largement étudiés [Komatitsch et al., 2004; Tromp
et al., 2005; Symes, 2008; Jing et al., 2016; Wang et al., 2019].
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On présente maintenant le contexte théorique de cette thèse théorique et notamment
les piliers sur laquelle elle se fonde et les enjeux qu’elle aborde.

Contexte et enjeu théorique

Problème inverse
La résolution d’un problème inverse (voir par exemple [Baumeister, 1987; Engl et al., 1996])
consiste généralement à identifier des paramètres dans un système à l’aide d’observations
accessibles sur celui-ci. On introduit un opérateur Ψ : Z ! Y . Résoudre le problème
inverse peut être résumé comme ceci : "connaissant y 2 Y, trouver z 2 Z tel que Ψz = y".
On parle donc d’un problème inverse, car résoudre ce genre de problème entraîne l’inversion
de l’opérateur Ψ. Plusieurs questions découlent de ce problème. A-t-on assez d’informations
dans les observations y pour résoudre ce problème ? Quelles méthodes de résolution utiliser ?
De plus, les mesures sont généralement bruitées, le but devient donc de "retrouver aussi bien
que possible z 2 Z en connaissant y� 2 Y qui est une version bruitée de y". On précisera
plus bas la notion "d’assez d’informations" en abordant la définition de problème bien ou
mal posé. On peut se demander quel est alors l’impact du bruit et comment quantifier
la qualité de la reconstruction ? En outre, les problèmes inverses sont souvent mal posés,
c’est-à-dire qu’ils ne satisfont pas une des conditions suivantes (au sens d’Hadamard) :

• existence d’une solution ;

• unicité de la solution ;

• continuité de la solution par rapport aux données.

Lorsque le problème est mal posé, il est souvent nécessaire de supposer que l’on a connais-
sance d’un a priori sur le paramètre étudié. On peut extraire trois grandes catégories dans
les problèmes inverses : le problème de condition initiale, la reconstruction de source et
la reconstruction de paramètre (identification). Le problème d’estimation de conditions
initiales [Luenberger, 1963; Phung and Zhang, 2008; Ramdani et al., 2010; Ito et al., 2011;
Haine, 2014b; Imperiale et al., 2020] est le problème linéaire le plus naturel.

Un des buts des problèmes inverses consiste en la reconstruction de paramètres. Or
celle-ci est un problème non linéaire et est donc plus complexe à étudier [Jijun and Yuan-
ming, 1997; Fu and Han, 2004; Jellali, 2006; Baudouin et al., 2017; Liao, 2011; Baudouin
et al., 2013; Roman et al., 2020; Baudouin et al., 2021]. Entre ces deux catégories de pro-
blèmes inverses, se trouvent la reconstruction de source [Yamamoto, 1995, 1999; Komornik
and Yamamoto, 2002; Alves et al., 2009; Moireau et al., 2008; Mukanova and Romanov,
2016]. Celle-ci est un véritable lien entre problème de conditions initiales et de paramètres.
En effet, en linéarisant le problème inverse de reconstruction de paramètres, il est possible
de se ramener à des problèmes linéaires de reconstruction de source. De plus, pour résoudre
un problème de source, on peut s’appuyer sur les outils développés pour la reconstruction
de conditions initiales. Par exemple en créant des systèmes joints état-paramètre, ou en
utilisant des résultats développés pour l’estimation de condition initiale tels que des résul-
tats d’observabilité. C’est pourquoi on se focalisera sur cette catégorie fondamentale dans
cette thèse.
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Théorie du contrôle
En théorie du contrôle (voir par exemple [Lions, 1968, 1988; Lasiecka and Triggiani, 2000;
Trélat, 2005; Coron, 2007]), plusieurs notions sont primordiales lorsque l’on étudie des
systèmes. La première est la contrôlabilité. Supposons qu’on étudie le système suivant

(
ż(t) = A(t)z(t) +B(t)u(t),

z(0) = z0,

où x représente l’état du système et u le contrôle. On se demande si étant donné un point
z1, il existe un contrôle u tel que la trajectoire correspondante à ce contrôle joigne z0 et
z1 en un temps T . Si le contrôle est indépendant de l’état du système on a alors une com-
mande en boucle ouverte. Dans la plupart des cas, on utilisera des commandes en boucles
fermées, c’est-à-dire que les contrôles s’ajustent en fonction de l’état du système. De cette
branche, on peut extraire la notion de contrôle optimal, qui pose également cette ques-
tion de commande de trajectoire, mais en optimisant un critère tel que l’énergie utilisée
pour relier deux points. Beaucoup de méthodes existent pour résoudre de tels problèmes
(calcul des variations, principe de maximum de Pontryagin [Pontryagin, 1987], équations
d’Hamilton-Jacobi–Bellman [Bellman, 1966], équations de Riccati,...). La notion d’obser-
vabilité est duale de celle de contrôlabilité que l’on abordera tout au long de cette thèse.
Cette fois ci on s’intéresse à la dynamique

8
><
>:

ż(t) = A(t)z(t),

y(t) = C(t)z(t),

z(0) = z0.

Les questions d’observabilité consistent à se demander si, connaissant les observations y,
il est possible de retrouver l’état du système.

Les notions d’observabilité et contrôlabilité sont duales. Par exemple en dimension finie
et infinie, un système est observable si son système adjoint est contrôlable et inversement.
De plus dans le cas d’un contrôle en boucle fermée, le contrôle et l’observation se rejoignent.
En effet, le système produit des observations afin de déterminer son état et de proposer le
contrôle associé. En observation, on parlera d’identification lorsque l’on cherche à retrouver
non plus l’état, mais un paramètre du système. Ces questions d’estimations (observation
d’état ou identification) ou de contrôles sont fortement reliées à la notion de stabilisation.
Dire qu’un système est stable, c’est affirmer qu’un petit décalage loin du point d’équilibre
à un instant conduit à une convergence vers le point d’équilibre. Le but de la stabilisation
du système (

ż = A(t)z(t),

z(0) = z0,

consiste à trouver un feedback (ou retour d’état) qui stabilise le système. Autrement dit on
cherche Q, tel que le système

ż(t) = (A(t) +B(t)Q(t))z(t),

qui bouclé par le feedback u(t) = Q(t)z(t), soit stable. Pour des systèmes de dimensions
finies autonomes linéaires, si un système est contrôlable alors il est stabilisable. Ces notions
sont donc fortement reliées entre elles. Tous les principes énoncés précédemment ont large-
ment été étudiés pour des systèmes de dimension finie : c’est l’automatique. Elle a connu
des extensions pour les équations dérivées partielles appliquées aux problèmes d’évolutions
(notamment [Lions, 1968; Coron, 2007] en contrôle et [Bensoussan, 1971] en observation).
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Ma thèse s’inscrit dans l’ANR ODISSE dont une partie des membres viennent de la com-
munauté de l’automatique. L’objectif de cette thèse est d’étendre à la dimension infinie
certains estimateurs proposés en dimension finie.

Assimilation de données : méthode variationnelle et séquentielle
On s’intéressera notamment à l’assimilation de données, une gamme de problèmes inverses
qui consiste à déterminer des grandeurs inconnues tel que l’état d’un système en utilisant
les informations contenues dans le modèle ainsi que dans les observations. Celle-ci est issue
des questions d’observation en théorie du contrôle. Bien que l’assimilation de données
ait une connotation désormais plus numérique, on s’intéressera dans cette thèse à ses
enjeux théoriques. Pour résoudre les problèmes d’assimilation de données, deux grandes
catégories de méthodes ont émergé : les méthodes variationnelles [Lions, 1968; Le Dimet
and Talagrand, 1986; Talagrand and Courtier, 1987; Moore, 1991; Luong et al., 1998]
et les méthodes séquentielles. La première catégorie consiste à minimiser explicitement
un critère ([Chavent, 2010; Banks and Kunisch, 2012] en identification et [Blum et al.,
2009] en observation). Les méthodes séquentielles (ou filtrage) [Ghil, 1989; Houtekamer and
Mitchell, 1998; Evensen, 2003; Verron et al., 1999], sont apparues dans un premier temps
en dimension finie [Wiener, 1949]. Il faut attendre les années 1960 pour que Kalman montre
que l’on peut résoudre le problème de minimisation sur des fenêtres de temps successives.
Ainsi quand le temps d’observation augmente et que de nouvelles données sont disponibles,
il n’est pas nécessaire de recalculer les résultats précédemment obtenus. Ces filtres sont
désormais utilisés pour les équations aux dérivées partielles (voir notamment [Bensoussan,
1971]), mais le coût numérique est important. Une des solutions est alors d’utiliser un filtre
de Kalman réduit [Pham et al., 1998b; Hoteit, 2001; Moireau and Chapelle, 2011].

Structure du manuscrit

Cette thèse est séparée en deux parties composées de deux chapitres chacune.

• La Partie I consiste à s’intéresser aux problèmes d’estimation d’état pour les phéno-
mènes de propagation d’onde.

– Le Chapitre 1 est un chapitre introductif qui présente les outils et les difficultés
à travers l’exemple de l’estimation d’état. Ces outils seront ensuite adaptés
dans le reste du manuscrit à l’estimation de source. Par exemple, on mettra en
lumière dans ce chapitre l’approche par contrôle optimal en dimension infinie,
ainsi que les différentes possibilités de résolution (méthodes variationnelles ou
séquentielles) et l’impact du bruit sur ces problèmes d’estimation.

– Dans le Chapitre 2, toujours dans le cadre de l’estimation d’état, nous nous
concentrons sur l’impact de la discrétisation sur les résultats de stabilisation
de l’équation des ondes avec amortissements sur le bord. Notamment, il est
connu que sans ajout de termes dissipatifs, la propriété d’exponentielle stabilité
satisfaite au niveau continu n’est plus valide au niveau discret. On propose alors
l’introduction de nouveaux termes dissipatifs compatibles avec des éléments
finis spectraux d’ordres élevés qui n’entachent pas l’ordre du schéma et qui
permettent de retrouver la propriété d’exponentielle stabilité.

• La Partie II se consacre à l’identification d’un terme source pour les problèmes de
propagation d’ondes scalaires

@ttu(x, t)�∆u(x, t) = f(x, t).
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– Le but du Chapitre 3 est d’étendre la définition d’un observateur optimal à la
reconstruction de source en dimension infinie. Notamment le terme source cible
qui est à variable séparée est dépendant de l’espace et multiplié par une fonction
dépendant du temps, c’est-à-dire f(x, t) = �(t)✓(x). On établit la formulation
de l’observateur, à savoir son existence, mais aussi sa propriété asymptotique
et sa robustesse au bruit de mesure. En particulier, on considère l’analyse sur
des mesures de champ dans un sous-domaine, alors que la plupart des résultats
d’observabilité pour les équations d’ondes s’appuient sur des mesures de vitesse.

– Le Chapitre 4 est une extension du chapitre précédent. Cette fois-ci la fonc-
tion qui multiplie le terme spatial à estimer dépend du temps et de l’espace,
c’est-à-dire f(x, t) = �(x, t)✓(x). L’observabilité, s’appuyant sur des mesures
de vitesses, nécessite alors d’établir une nouvelle estimation de Carleman. Pour
reconstruire le terme source, comme dans le Chapitre précédent, on utilise un
observateur construit via la théorie du contrôle optimal.
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Part I

State estimation for wave

propagation problem





CHAPTER 1

Introduction to data assimilation for the wave equa-

tion

S’il n’y a pas de solution c’est qu’il n’y a pas de

problème.

— Les shadoks

In this introductory chapter, we focus on state estimation problems for the wave equation.
This allows us to introduce several tools that will be used later for more involved inverse
problems such as source term estimation. First, we need to recall the various notions of
solutions. In fact, the study of the inverse problem depends heavily on the nature of the
solution considered. We then introduce a first data assimilation strategy called 4D-var
– for fourth-dimensional (namely 3D and time) variational – originally introduced in the
context of weather forecast. It consists in minimizing a criterion: more precisely, it consists
in reducing the gap between the measurements available on the system and the simulated
measurements associated with the solution with given initial data. This minimization is
usually carried out using a gradient descent algorithm. Sequential methods is a possible
alternative to solve such problems. More precisely, we will study the Kalman estimator,
which is based on a dynamic programming approach and allows to recover the target
trajectory by solving only one evolution problem. This method, however, requires to
compute a Riccati operator, which is numerically expensive. We then present a less costly
sequential alternative: the Luenberger observer, whose exponential convergence can be
proved for perfect measurements when an observability inequality is fulfilled.
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1.1. Introduction

1.1 Introduction

Inverse wave equation problems -also known as data assimilation for wave equation - can
be divided into several categories: initial condition estimation, source reconstruction, and
parameter reconstruction. First, we focus on the easiest case, i.e., estimating the initial
condition ([Ramdani et al., 2010; Imperiale et al., 2020]). From a control theory point of
view, or more precisely from an observation theory, we exploit the available noisy mea-
surements on the system to find its state.
In this chapter, we consider internal measurements within a subdomain of observation !.
They can be of two kinds: field measurements u|! or velocity measurements @tu|!. The
analysis is similar for these two types of measurements, however we study what changes
when we consider noisy measurements with less regularity.
But before solving the inverse problem, we must set-up the framwork for the existence of
solutions for the wave equation. Naturally, two theories are available and choosing one or
the other will have consequence on our way to formalize the inverse problem.
The first theory of existence of solutions is the one introduced by [Lions et al., 1968] that
we will call variational solutions in this manuscript. The wave equation enters in this
framework as a second-order equation well adapted to finite elements discretization, where
the solutions are seeked in a very specific Hilbert subspace of L2 in time with value in
the energy space. Within this framework, the minimization can be seen as a minimization
under constraints that is naturally solved using a Lagrangian and a Lagrange multiplier
called the adjoint variable.
The second theory is the semigroup theory [Pazy, 1983] where this time we seek for con-
tinuous solution in time. In this framework the Duhamel formula will allow to solve the
minimization problems without relying on the “minimizing under constraints” formalism.
Here also an adjoint variable is introduced, adapted to a first-order semigroup formulation,
but only to simplify gradient computation.
Finally, we will see that we can reconcily the two formalisms, hence benefiting from the
advantages of both theory for solving least squares minimization problem.
Indeed, a least squares based reconstruction of the initial condition will be the first method
for inversion. This strategy is related to full waveform inversion (FWI) for waves and 4D-
var in data assimilation.
The minimizer is caracterized as a two-ends problems typically solve by iterative method
since one part of the dynamics is resolved forward in time and the second in backward
time.
We then show that we can introduce a Kalman filter [Kalman and Bucy, 1961; Bensoussan,
1971], a sequential approach equivalent to the minimization problem, which allows to solve
in one iteration the state estimation like a second-order method. Unfortunately, solving
the problem with the Kalman filter requires calculating a Riccati operator, which can be
very costly.
We present an alternative observer based on Luenberger recommendation [Luenberger,
1963], namely stabilizing assymptotically the error between the target trajectory and the
estimator trajectory. This observer is not equivalent to the minimization of the same cost
functional. However, some exponential convergence still holds once we prove observability
conditions. Indeed, these useful inequalities give properties on the operator to be inverted.
Eventually, we look at the impact of noise regularity on state reconstruction and present
different methods to deal with it. The final challenge is then to extend the method we
propose in order to identify a source term. This will pave the way of the rest of the
manuscript.
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Chapter 1. Introduction to data assimilation for the wave equation

1.2 Problem setting

In this chapter we are concerned with the following wave equation.
8
>>>><
>>>>:

@ttu(x, t)�∆u(x, t) = f(x, t), (x, t) 2 Ω⇥ (0, T ),

u(x, t) = 0, (x, t) 2 @Ω⇥ (0, T ),

u(x, 0) = u0(x), x 2 Ω,

@tu(x, 0) = v0(x), x 2 Ω.

(1.1)

There are several methods to prove the existence of a unique solution of such a system:
the variational solutions in Section 1.2.1 (see, for example, [Lions et al., 1968], [Lions,
1968], and [Dautray and Lions, 1999]), and the mild and strong solutions using semigroup
theory in Section 1.2.2 (see [Pazy, 1983; Bensoussan et al., 2007]). These are not defined
in the same spaces. Therefore, the study of the reconstruction of the initial conditions
depends strongly on the choice of the considered solutions, a classical fundamental issue
when dealing with infinite dimension systems. In the case of variational solutions of the
second order system, we will see later (Section 1.3.2) that solving the inverse problem in this
case entails solving a constrained minimization problem. Finally, we will see that solutions
obtained in the framework of semigroups has several advantages. First, they allow us to
stay with a first-order system, which is more commonly studied in the literature. Moreover,
solving the inverse problem in this case do not require to solve a constrained minimization
problem (Section 1.3.3).

1.2.1 Variational solutions of the wave equation

Let us start by a first look on the existence of solution for the wave equation.

We consider a Hilbert space V ⇢ H which is dense in H with continuous embedding.
Identifying H with its dual, we have

V ,! H ⌘ H0 ,! V 0.

We consider a bilinear continuous coercive form a on V namely 8w 2 V,

9� 2 R | a(w,w) + �kwk2H � ↵kwk2V , ↵ > 0,

and we denote by A0 2 L(V,V 0) the operator associated with the bilinear form a, i.e. for
all v, w 2 V,

a(v, w) = �hA0v, wiV 0,V .

We study the following second-order dynamics
8
>><
>>:

d2

dt2
(u, v)H + a(u, v) = h�, viV 0,V in D0(0, T ),

u(0) = u0,

v(0) = u1.

with � 2 H. (1.2)

We set H = L2(Ω), V = H1
0(Ω), V

0 = H�1(Ω). Choosing A0 = �∆0 the Laplace operator
with Dirichlet boundary conditions – namely a(·, ·) = (·, ·)H1

0(Ω) – the wave equation (1.1)
fits perfectly into the above theory and satisfies the coercivity property.

We introduce the Hilbert space W(0, T,V,H) by

W(0, T,V,H) = {w |w 2 L2(0, T ;V), ẇ 2 L2(0, T ;H)},
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1.2. Problem setting

equipped with the norm

kwkW(0,T,V,H) =

✓Z T

0
kw(t)k2V dt+

Z T

0
kẇ(t)k2H dt

◆1/2

.

Let us present some important properties about the space W(0, T,V,H) – see [Chapter
XVIII, Section 1.3][Dautray and Lions, 1999].

Proposition 1.2.1 Let Λ a positive self-adjoint operator such that D(Λ) = V where D(Λ)
is the domain of Λ. We have the embedding property

W(0, T,V,H) ,! C0([0, T ], (V,H)1/2),

where (V,H)1/2 = D(Λ1/2). Furthermore, if (u, v)V = (A0u, v)H and A0 is self-adjoint,

then Λ = A
1/2
0 .

As the previous section, we can show a density result.

Lemma 1.2.2 The space D(0, T ;V) is dense in W(0, T,V,H).

The particular case W(0, T,V,V 0) will be denoted W(0, T ). Note that, in this case, the
embedding property is rewritten

W(0, T ) ,! C0([0, T ],H).

This space is particularly suitable for first-order system, therefore we will give more details
on this space in Section 1.2.3.

We introduce the Hilbert space W̃(0, T ) – in which we will obtain the existence of
solutions – defined by

W̃(0, T ) = {v 2 L2(0, T ;V), v̇ 2 L2(0, T ;H), v̈ 2 L2(0, T ;V 0)},

equipped with the norm

kwkW̃(0,T ) =

✓Z T

0
kw(t)k2V dt+

Z T

0
kẇ(t)k2H dt+

Z T

0
kẅ(t)k2V 0 dt

◆1/2

.

The following proposition extends Green’s formula to this space.

Proposition 1.2.3 (Green’s formula) For all p, q 2 W̃(0, T ), we have

Z T

0
hp̈, qiV 0,V dt�

Z T

0
hp, q̈iV 0,V dt

= (ṗ(T ), q(T ))Z � (ṗ(0), q(0))Z � (p(T ), q̇(T ))Z + (p(0), q̇(0))Z .

For further use, we introduce the Hilbert space W̃V(0, T )) defined by

W̃V(0, T ) = {w |w 2 L2(0, T ;V), ẇ 2 W(0, T )},

equipped with the following norm

kwkW̃V (0,T ) =

✓Z T

0
kẇk2Vdt+ kwk2W(0,T )

◆1/2

.

Proposition 1.2.4 We have the following embedding property

W̃V(0, T ) ,! C([0, T ];V).

17



Chapter 1. Introduction to data assimilation for the wave equation

Existence of solution theorem

We can now formulate the theorem of the existence of solutions.

Theorem 1.2.5 For u0 2 V and, u1 2 H and � 2 L2(0, T ;H), there exists a unique

solution {u 2 L2(0, T ;V),
d

dt
u 2 L2(0, T ;H)} of the system (1.2). Moreover, we have

u 2 W̃(0, T ) since
d2

dt2
u = A0u+ � 2 L2(0, T ;V 0).

Remark 1.2.6 Note that the second member of (1.2) �(t) must belong to H, which is
more restrictive than in the Section1.2.3.

1.2.2 Existence results based on semigroup theory

We begin with a brief reminder of the principles of semigroup theory. We establish the
necessary regularity of the source terms and initial conditions of the problem to guarantee
the existence and uniqueness of solutions. Let Z an Hilbert space. We introduce the
first-order system we study

8
<
:

d

dt
z(t) = Az(t) + f(t), t 2 [0, T ].

z(0) = z0.
(1.3)

We now introduce the solutions of the semigroup theory to present the existence of the
solution. For a complete introduction and analysis of the semigroup theory, see for example
(non-exhaustive) : [Pazy, 1983], [Bensoussan et al., 2007] and [Tucsnak and Weiss, 2009].
First, we recall the notion of m-dissipative operator.

Definition 1.2.1 An operator (A,D(A)) is dissipative if

8z 2 D(A), 8� > 0, k�z �Azk � �kzk.

We recall the definitions and propositions necessary for the existence of solutions.

Proposition 1.2.7 The operator (A,D(A)) in the Hilbert space Z is dissipative if and
only if

8z 2 D(A), (z,Az)  0.

Definition 1.2.2 A dissipative operator (A,D(A)) is maximal-dissipative – also denoted
m-dissipative– if for all � > 0, (�Id �A) is surjective.

The following theorem is fundamental to semigroup theory, as it links m-dissipative oper-
ators and generators of C0-semigroups.

Theorem 1.2.8 (Lummer-Philips) Let A : D(A) ⇢ Z ! Z an unbounded operator
defined on the Hilbert space Z. We have the following equivalence:

1. (A,D(A)) is maximal dissipative,

2. (A,D(A)) is the generator of a C0-semigroup of contraction Φ, namely

8t > 0, kΦ(t)k  1.

18



1.2. Problem setting

The theory of semigroups then ensures the existence and uniqueness of solutions for the
problem (1.3).

Theorem 1.2.9 Let (A,D(A)) be the generator of a C0-semigroup in the Hilbert space Z.
The evolution equation

8
<
:

d

dt
z(t) = Az(t) + f(t), t 2 [0, T ].

z(0) = z0,
(1.4)

admits the following solutions:

1. For all z0 2 D(A) and f(t) 2 C0([0, T ];Z), there exists a unique strong solution
z 2 C1([0, T ];Z) \ C0([0, T ];D(A)) such that z(0) = z0 and ż = Az + f .

2. For all z0 2 Z and for all f 2 Lp(0, T ;Z) there exists a unique mild-solution
z 2 C0([0, T ];Z) such that z(0) = z0 given by Duhamel’s formula

z(t) = etAz0 +

Z t

0
e(t�s)Af(s)ds, t 2 [0, T ] (1.5)

The existence of a strong solution can be extended to the case where f 2 W 1,1(0, T ;Z) or
f 2 L1(0, T ;D(A)) \ C0([0, T ];Z).

We will present a theorem that will be useful for what follows.

Theorem 1.2.10 Let (A,D(A)) a m-dissipative operator in the Hilbert space Z generator
of a C0-semigroup (Φ(t))t�0. Then (A⇤, D(A⇤)) is a maximal-dissipative operator generator
of (Φ(t)⇤)t�0.

Application to the homogeneous wave equation

We rewrite (1.1) as a first order system in the state-space Z = H1
0(Ω) ⇥ L2(Ω), with

f 2 Lp(0, T ;Z), (
ż = Az + f(t), in (0, T ),

z(0) = z0,
(1.6)

where z0 = (u0 v0)
t and the operator A is an unbounded skew-adjoint operator from D(A)

into Z defined by

A =

 
0 Id

∆0 0

!
, D(A) = D(�∆0)⇥H1

0(Ω), (1.7)

where ∆0 denotes the Laplacian operator with homogeneous Dirichlet boundary conditions
[Bensoussan, 1971, Part II, Section 1.2.10]. We equip the state space with the following
norm

8z =
⇣
u v

⌘t
2 Z, kzk2Z = kruk2L2(Ω) + kvk2L2(Ω).

Theorem 1.2.11 The generator (A,D(A)) defined by (1.7) is m-dissipative.

Proof: Since the operator A is skew-adjoint, we have

(Az, z) = �(Az, z) = 0, 8z 2 D(A).
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Chapter 1. Introduction to data assimilation for the wave equation

We, now show the maximal property. For (f g)t 2 Z, we want to find z = (u v)t such
that

(�Id �A)Z z =

 
f

g

!
, � > 0.

We have obtained the two following relations
(
�u� v = f,

�v �∆0u = g.

In order to decouple the two problems, we inject the first relation into the second, and we
obtain (

v = �u� f,

�2u�∆0u = g � �f.

Thanks to the Lax–Milgram theorem, the second problem admits a unique solution u 2
H1

0(Ω). Since f 2 H1
0(Ω) and g 2 L2(Ω), we have that ∆0u 2 L2(Ω). Since f 2 H1

0(Ω), we
also have the existence of v 2 H1

0(Ω). We can conclude that �Id �A is maximal. ⌅

Since (A,D(A)) is m-dissipative hence it is a generator of a C0-semigroup (Theorem
1.2.8). Theorem 1.2.9 gives the existence of solutions z 2 C0([0, T ],Z) for z0 2 Z and
for f 2 Lp((0, T ;Z)).

1.2.3 Variational solution of a first-order system: the viscous wave equa-

tion

One might wonder whether first-order variational solutions are a suitable framework for
the wave equation. We briefly present the theory proposed by [Dautray and Lions, 1999]
in this framework and show that it is not suitable for the wave equation unless a viscous
term is added.

Application: the viscous wave equation

We study the following viscous wave equation (so-called parabolic regularization [Bensous-
san et al., 2007, Part II, Chapter 2, Section 2.3] of the wave equation)

8
>>>><
>>>>:

@ttu(x, t)�∆u(x, t) + ∆@tu(x, t) = f(x, t), (x, t) 2 Ω⇥ (0, T ),

u(x, t) = 0, (x, t) 2 @Ω⇥ (0, T ),

u(x, 0) = u0(x), x 2 Ω,

@tu(x, 0) = v0(x), x 2 Ω.

(1.8)

We consider a Hilbert space V ⇢ Z dense in Z with continuous embedding. Identifying
Z with its dual, we have

V ,! Z ⌘ Z 0
 ,! V 0

.

We denote z = (u v)
t and � = (0 f)t and the operator A 2 L(V,V

0
) given by

A =

 
0 Id

∆0 ∆0

!
, (1.9)

with the associated bilinear form a(·, ·) i.e. for all v, w 2 V,

a(v, w) = �hAv, wiV 0

,V
.
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1.2. Problem setting

Therefore, we are interested in finding solutions in the following first-order system
8
<
:

d

dt
(z, v)Z + a(z, v) = h�, viV 0

,V
in D0(0, T ),

z(0) = z0,
(1.10)

with � 2 V 0
. We consider that ak is a bilinear continuous coercive form on V, namely

8w 2 V,
9� 2 R | a(w,w) + �kwk2Z

� ↵kwk2V
, ↵ > 0. (1.11)

The space W(0, T ) and its properties

To establish the theorem on the existence of solutions to the dynamics (1.10), one must
introduce the Hilbert space W(0, T ). Since L2(0, T ;V) ⇢ D0(0, T ;V), we have for
w 2 L2(0, T ;V)

ẇ =
dw

dt
2 D0(0, T ;V).

Thus, we can now define the space W(0, T ) by

W(0, T ) = {w |w 2 L2(0, T ;V), ẇ 2 L2(0, T ;V 0
)},

equipped with the norm

kwkW(0,T ) =

✓Z T

0
kw(t)k2V

dt+

Z T

0
kẇ(t)k2V 0


dt

◆1/2

.

Let us introduce some important properties of the space W(0, T ) – see [Dautray and
Lions, 1999, Chapter XVIII] for the proof of all the following properties.

Proposition 1.2.12 Every w 2 W(0, T ) is almost everywhere equal to a continuous func-
tion of [0, T ] in Z. Further, we have

W(0, T ) ,! C0([0, T ],Z),

where C0([0, T ],Z) is equipped with the norm of uniform convergence.

Note this important property.

Lemma 1.2.13 The space D(0, T ;V) is dense in W(0, T ).

Let us set up the following proposition that will be useful later.

Proposition 1.2.14 (Green’s formula) For all p, q 2 W(0, T ), we have
Z T

0
hṗ, qiV 0

,V
dt+

Z T

0
hp, q̇iV 0

,V
dt = (p(T ), q(T ))Z

� (p(0), q(0))Z
.

Existence of solution

We can now express the existence of solutions.

Theorem 1.2.15 For z0 2 Z and � 2 L2(0, T ;V 0
), there exists a unique solution z

belonging to W(0, T ) of the system (1.10). Moreover,

Z ⇥ L2(0, T ;V) ! W(0, T ),

(z0,�) ! z,

is a bounded application.
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Chapter 1. Introduction to data assimilation for the wave equation

Let Z = H1
0(Ω) ⇥ L2(Ω) and V = H1

0(Ω) ⇥ H1
0(Ω) equipped with the pivot space

H1
0(Ω)⇥ L2(Ω), namely we have V 0

 = H1
0(Ω)⇥H�1(Ω).

Note that for the viscous equation the coercivity condition is satisfied namely for � > ↵

and  > ↵,

a(z, z) + �kzk
2
Z = krvk

2
L2(Ω) + �kruk

2
L2(Ω) + �kvk

2
L2(Ω)

� ↵
⇣
kruk

2
L2(Ω) + krvk

2
L2(Ω)

⌘
.

Moreover, for � 2 L(0, T ;Z) the viscous wave equation (1.8) converges to the wave equa-
tion (1.1) for  ! 0 (see [Dautray and Lions, 1999, Chapter XVIII, Section 6]), namely
8t 2 [0, T ], �����

u(t) ! u(t) strongly in H1
0(Ω),

v(t) ! v(t) strongly in L2(Ω).

Application to the wave equation

We now show that this framework is not suitable for the wave equation. We denote
z = (u v)t and � = (0 f)t and reformulate the wave equation (1.1) as follows

(
ż(t) = Az(t) + �(t), in (0, T ),

z(0) = z0,
(1.12)

with

z0 =

 
u0

v0

!
, and A =

 
0 Id

∆0 0

!
,

with the associated bilinear form a(·, ·) i.e. for all v, w 2 V,

a(v, w) = �hAv,wiV 0

,V
.

Unfortunately, this configuration does not fit into the previously mentioned framework.
Namely, the coercivity condition (1.11) is not fulfilled. Namely, we have

a(z, z) + �kzk2Z
= �(rv,ru)L2(Ω) � (∆0u, v)L2(Ω) + �kruk2L2(Ω) + �kvk2L2(Ω)

= �kruk2L2(Ω) + �kvk2L2(Ω),

which does not bound the following quantity

↵kzkV = ↵
⇣
kruk2L2(Ω) + krvk2L2(Ω)

⌘
.

1.2.4 Link between variational and semigroup solutions

Note that from the existence of semigroup solutions we can infer the existence of variational
solutions.

Proposition 1.2.16 Consider initial conditions (u0 v0) 2 Z and (0 f)t 2 L2((0, T );Z)
namely f 2 L2((0, T ); L2(Ω)). Then there exists a unique solution z = (u v)t 2 C0([0, T ];Z)
of (1.3) such that

z = etA

 
u0

v0

!
+

Z t

0
eA(t�s)

 
0

f(s)

!
ds, (1.13)

where A is defined by (1.7). The equation – understood in the following weak sense, for
 2 D(0, T )
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1.2. Problem setting

•

Z T

0
 (t)z(t)dt 2 D(A),

•

Z T

0
 ̇(t)z(t)dt�A

✓Z T

0
 (t)z(t)dt

◆
=

Z T

0
 (t)

 
0

f(t)

!
dt,

is equivalent to (1.2).

Proof:

The first equation of (1.13) implies that

�

Z T

0
 ̇(t)u(t)dt+

Z T

0
 (t)v(t) dt = 0 in H1

0(Ω).

Consequently, for ⌘ 2 D(∆0), we obtain

�

Z

Ω

r⌘(x)

Z T

0
 ̇(t)ru(x, t) dt dx+

Z

Ω

r⌘(x)r

Z T

0
 (t)v(x, t) dt dx = 0.

Integrating by parts, we get

Z

Ω

∆⌘(x)

Z T

0
 ̇(t)u(x, t) dt dx�

Z

Ω

∆⌘(x)

Z T

0
 (t)v(x, t) dt dx = 0.

We choose w 2 L2(Ω) such that 9⌘ 2 D(∆) satisfying
(
�∆⌘ = w, in Ω,

⌘ = 0, on @Ω.

Thus, we obtain

�

Z

Ω

w(x)

Z T

0
 ̇(t)u(x, t) dt dx+

Z

Ω

w(x)

Z T

0
 (t)v(x, t) dt dx = 0.

We can invert the order of integration to get

�

Z T

0
(w, u)L2(Ω) ̇(t) dt+

Z T

0
(w, v)L2(Ω) dt = 0. (1.14)

In other words, we have

d

dt
(w, u)L2(Ω) = (w, v)L2(Ω) in D0(0, T ).

From the second equation, we obtain

Z T

0
 ̇(t)v(t) dt�∆0

Z T

0
 (t)u(t) dt =

Z T

0
 (t)f(t) dt.

Let w 2 H1
0(Ω), integrating in space, we have

Z

Ω

w(x)

Z T

0
 ̇(t)v(x, t) dt dx+

Z

Ω

rw(x)

Z T

0
 (t)ru(x) dt dx

=

Z

Ω

w(x)

Z T

0
 (t)f(x, t) dt dx.
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Chapter 1. Introduction to data assimilation for the wave equation

Inverting the order of integration, we obtain

Z T

0
(w, v)L2(Ω) ̇(t) dt+

Z T

0
(rw,ru)L2(Ω) (t) dt =

Z T

0
(w, f)L2(Ω) (t) dt.

Using (1.14), we finally have

Z T

0
(w, u)L2(Ω) ̈(t) dt+

Z T

0
(rw,ru)L2(Ω) (t) dt =

Z T

0
(w, f)L2(Ω) (t) dt.

Thus, we get the variational formulation (1.2) back

d2

dt2
(w, u)L2(Ω) + (rw,ru)L2(Ω) = (w, f), in D0(0, T ).

⌅

This equivalence between the variational solutions and the solutions given by the semi-
group formalism will allow us to use the finite element method in a natural way, while
staying within the framework of the semigroups for estimation purposes hence benefiting
from both worlds.

1.3 Resolution of the inverse problem: the 4D-var approach

Let Y be a Hilbert space called the observation space. We assume that we observe a target
solution ǔ of (1.1) associated with unknown solutions (u0 v0), and we have the corre-
sponding internal measurements in a subdomain ! ⇢ Ω, either field measurements ǔ|! or
velocity measurements @tǔ! – also called observations – denoted by R

+ 3 t ! y̌(t) 2 Y .
The advantage of considering internal observations is that the observation operator C,
which models the process of measurement and is described in detail below, is bounded.
If we consider boundary measurements, the operator C is then unbounded in this case,
which leads to additional difficulties (see Chapter 2).

We model the measurement process at each time t by the observation operator C 2
L(Z,Y), defined by

Cž(t) = y̌(t). (1.15)

The available measurements – denoted by y� – are a perturbation of the unavailable
perfect measurements y̌. Namely, the unavailable perfect measurements can be affected by
noise ��, typically for all t 2 [0, T ]

��(t) = y̌(t)� y�(t) =) k��(t)kY = O(�),

where in this section we have assumed that the noise is regular (y� 2 Y). We will then
look at strategies for dealing with less regular measurements (y� /2 Y).

We introduce two ways of solving such problems. The first is to introduce a constrained
minimization problem, which will be the subject of Sections 1.3.1 and 1.3.2. The other
method presented in Section 1.3.3, which avoids introducing a constrained minimization
problem, is to rely on the adjoint equations already demonstrated in Section 1.3.1 and stay
in the semigroup formalism. Both points of view formally lead to the same method that
we call the variational method. Such method is related to the work of Sasaki ([Sasaki,
1955], [Sasaki, 1970]) and the adjoint formalism appeared in [Le Dimet and Talagrand,
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1.3. Resolution of the inverse problem: the 4D-var approach

1986]. For other applications in weather forecasting ([Lewis and Derber, 1985], [Talagrand
and Courtier, 1987], [Rabier et al., 2000] and to Météo France in the 2000s), the resulting
method is known as 4D-var (fourth-dimensional variational).

The goal is to find an optimal trajectory that minimizes the discrepancy from the
observation. By contrast, the 3D-var method is developped for static cases inversion (for
example, [Moore, 1991], [Courtier et al., 1998], and at Météo France 1996). The 4D-var
approach is now applied to many physics and applications such as oceanography [Robert
et al., 2005] or seismic wave problems. In this last case, the 4D-var method is called the
full waveform inversion (FWI) and is now very popular [Gauthier et al., 1986; Tromp et al.,
2005; Wang et al., 2019].

1.3.1 4D-var approach with variational solutions of first-order system

First, we introduce the minimization problem for first-order systems with variational solu-
tions, described in Section 1.2.3. Although this case is not exactly the one we are interested
in (because of the additional viscous term), optimal control approaches are easier to present
in this framework [Lions, 1968, Chapter III] and will serve as an introduction before we
move on to second order systems [Lions, 1968, Chapter IV].

We denote in this section by z = (u v)
t the solution of the viscous wave equation

8
<
:

d

dt
(z, v)Z + a(z, v) = h�, viV 0

,V
in D0(0, T ),

z(0) = z0,
(1.16)

where
a(v, w) = �hAv, wiV 0

,V
,

with A given by (1.9). To solve the inverse problem, the natural idea is to introduce the
following cost functional JT : Z ! R, which is given by

JT (z0) =
1

2

Z T

0
kCz|z0 � y�(t)k2Y dt+

✏

2
kz0k

2
Z

. (1.17)

The first term of the cost functional represents the data attachment and the second term
is a regularization term.

We rewrite the cost functional to minimize (1.17) using the observation operator.

JT (z0) =
1

2

Z T

0
kCz|z0 � y�k2Y dt+

✏

2
kz0k

2
Z

. (1.18)

We denote the minimizer of the above cost functional z̄0 := argmin
z02Z

JT .

Theorem 1.3.1 The minimizer z̄0 of the cost functional (1.18) is given by the following
dynamics, for q̄T 2 W(0, T ) and z̄T 2 W(0, T ),

8
>>>><
>>>>:

˙̄zT = Az̄T , in (0, T ),

˙̄qT +A⇤
q̄T = �C⇤(y� � Cz̄T ), in (0, T ),

z̄T (0) = ✏�1q̄T (0),

q̄T (T ) = 0.

(1.19)

Proof: We introduce the following minimization under a constraint problem

min
z2W(0,T ), ż=Az

{JT (z) =
1

2

Z T

0
kCz � y�k2Y dt+

✏

2
kz(0)k

2
Z

}. (1.20)
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Chapter 1. Introduction to data assimilation for the wave equation

To solve the problem of minimizing the cost functional JT , we will use the method of
the saddle point of the associated Lagrangian. We therefore introduce the Lagrangian LT

defined by

W(0, T )⇥ L2(0, T ;V) ! R

(z, q) 7! JT (z) + hq, ż �AziL2(0,T ;V),L2(0,T ;V 0

)
.

The minimizer is reached at the critical point (z̄T , q̄T ) of the Lagrangian LT .
We are looking for z̄T such that for all q̃ 2 L2(0, T ;V), we have

h@qL(z̄T , q̄T ), q̃iL2(0,T ;V 0

),L
2(0,T ;V) = hq̃, ˙̄zT �Az̄T iL2(0,T ;V),L2(0,T ;V 0

)
= 0.

We find, in this case, the equation of the constraint of the minimization problem.
We search q̄T such that for all z̃ 2 W(0, T ), we have

h@zL(z̄T , q̄T ), z̃iW 0

(0,T ),W(0,T ) = 0.

This implies the following equality

✏(z̄T (0), z̃(0))Z �

Z T

0
(C⇤(y� � Cz̄T ), z̃)Zdt+

Z T

0
hq̄T ;

˙̃z �Az̃iV,V 0


dt = 0. (1.21)

Setting z̃ : t 7! w�(t) with w 2 V and � 2 D(0, T ), then we have

h@zL(z̄T , q̄T ), z̃iW 0

(0,T ),W(0,T ) =

Z T

0
�(t)hq̄T , AwiV,V 0


dt+

Z T

0
�(t)

⇣
C⇤(y� � Cz̄T ), w

⌘

Z

dt.

We want to show that q̄T 2 W(0, T ). Since
Z T

0
q̄T �̇(t)dt 2 V, we get

⌧Z T

0
q̄T (t)�̇(t)dt, w

�

V,V 0



=

✓Z T

0
q̄T (t)�̇(t)dt, w

◆

Z

=

⌧Z T

0
q̄T (t)�̇(t)dt, w

�

V 0

,V

.

Therefore, we have �����

⌧Z T

0
q̄T (t)�̇(t)dt, w

�

V 0

,V

�����  CstkwkV ,

with Cst = kAkL(V 0

,V)k

Z T

0
q̄T �dtkV + k

Z T

0
C⇤(y� � Cz̄T )dtkZ .

Hence, we have shown that q̇T 2 L2(0, T ;V 0
) and therefore q̄T 2 W(0, T ). As q̄T 2

W(0, T ) and z̄T 2 W(0, T ), we can apply Green’s formula of Proposition 1.2.14 on
(1.21), and we obtain

✏(z̄T (0), z̃(0))Z �

Z T

0
(C⇤(y� � Cz̄T ), z̃)Zdt�

Z T

0
h ˙̄qT ; z̃iV,V 0


dt

+ (q̄T (T ), z̃(T ))Z � (q̄T (0), z̃(0))Z �

Z T

0
hq̄T , Az̃iV,V 0


dt = 0.

We then find q̄T (0) = ✏z̄T (0) and the dynamics (1.19). ⌅

To find the initial conditions, we need to solve the dynamics (1.19). Note that this problem,
known as the two-ends problem ([Lions, 1968],[Bensoussan, 1971]) combines a forward and
a backward dynamics. The dynamics of z starts from the initial conditions and moves
forward in time, while the adjoint dynamics q dynamics starts from the final conditions
and moves backward in time.
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1.3. Resolution of the inverse problem: the 4D-var approach

1.3.2 4D-var approach with variational solutions of second-order system

Let us now move to the framework adapted to the wave equation. This section is divided
into two parts depending on whether we are looking at field measurements or velocity
measurements. In fact, the cost functional we define depends on the measurements we
consider. Indeed, in the case of first-order system, the cost functional (1.46) has the
advantage of being more general, since it uses a general observation operator C that can
be defined in the case of field or velocity measurements. In the case of second-order
systems, in the data attachment term, it must be specified in advance whether field or
velocity measurements are to be considered, and the associated observation operator must
be defined.

Case of field measurements

In this section we want to consider directly the realistic case when the measurement noise
belongs to L2(!). Therefore, we define the observation space as Y = L2(!). As in the
previous section, we introduce an observation operator C! 2 L(H,Y), which is given by

y̌(t) = C!ǔ(t) = ǔ|!.

Namely, we have

C! = I! where I! : L2(Ω) ! L2(!) is the restriction operator. (1.22)

Note that the adjoint of the observation operator is easily identified and corresponds to
the following

C⇤
! = ! where ! : L2(!) ! L2(Ω) is the extension by 0 in Ω\! of any function defined on !.

(1.23)
We introduce the cost functional to be minimized JT : W̃V(0, T ) ! R

JT (u) =
1

2

Z T

0
kC!u� y�k2Y dt+

�

2
ku(0)k2V +

µ

2
ku̇(0)k2H. (1.24)

Note that since W̃V(0, T ) ,! C0([0, T ];V), the condition u(0) 2 V is well defined. Moreover,
since W(0, T ) ,! C0([0, T ];H), the condition u̇(0) 2 H is well defined too.
We denote the minimizer by ūT := argmin

u2W̃V (0,T )

JT .

Theorem 1.3.2 The minimizer ū of the cost functional (1.24) is given by the following
dynamics, for p̄T 2 W̃(0, T ) and ū 2 W̃V(0, T ),

8
>>>>>>>>><
>>>>>>>>>:

¨̄uT = �A0ūT , in (0, T ),

¨̄pT +A⇤
0p̄T = �C⇤

!(C!ūT � y�), in (0, T ),

��A0ūT (0) = ˙̄pT (0),

µ ˙̄uT (0) = p̄T (0),

p̄T (T ) = 0,

˙̄pT (T ) = 0.

(1.25)

Proof:

We introduce the minimization problem under a constraint

min
ü=�A0u, u2W̃V (0,T )

{JT (u) =
�

2
ku(0)k2H +

µ

2
ku̇(0)k2H +

1

2

Z T

0
kC!u� y�k2Ydt}. (1.26)
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Chapter 1. Introduction to data assimilation for the wave equation

The Lagrangian associated with this minimization problem is the following L(u, p) :
W̃V(0, T )⇥ L2(0, T,V) ! R defined by

L(u, p) = JT (u) +

Z T

0
hp, ü+A0uiV,V 0dt.

We search ūT such that for all p̃ 2 L2(0, T ;V), we have

h@pL, p̃iL2(0,T ;V 0),L2(0,T ;V) = 0,

in particular it implies

h¨̄uT +A0ūT , p̃iL2(0,T ;V 0),L2(0,T ;V) = 0,

which corresponds to the constraint definition.
We search p̄T such that for all ũ 2 W̃V(0, T ), we have

h@uL, ũiW̃V (0,T )0,W̃V (0,T ) = �(ūT (0), ũ(0))V + µ( ˙̄uT (0), ˙̃u(0))H

+

Z T

0

⇣
C!ūT � y�, C!ũ

⌘

Y
dt+

Z T

0
hp̄T , ¨̃uiV,V 0dt

+

Z T

0
hp̄T , A0ũiV,V 0dt = 0. (1.27)

We impose ũ(0) = 0 and ˙̃u = 0, which leads to

Z T

0

⇣
C⇤
!(C!ūT � y�), ũ

⌘

H
dt+

Z T

0
hp̄T , ¨̃uiV,V 0dt+

Z T

0
hp̄T , A0ũiV,V 0dt = 0. (1.28)

In order to find the dynamics of p̄T , formally, we integrate by part the second term, which
gives us

Z T

0

⇣
C⇤
!(C!ūT � y�), ũ

⌘

H
dt+

Z T

0
h ¨̄pT , ũiV 0,Vdt+

Z T

0
hp̄T , A0ũiV,V 0dt

+ (p̄T (T ), ˙̃u(T ))H � ( ˙̄pT (T ), ũ(T ))H = 0. (1.29)

We then formally obtain the dynamics of p̄T .
8
><
>:

¨̄pT +A⇤
0p̄T = �C⇤

!(C!ūT � y�), in (0, T ),

p̄T (T ) = 0,

˙̄pT (T ) = 0.

(1.30)

For a given {u(t) 2 W̃V(0, T ), t 2 [0, T ]}, we have that C⇤
!(C!u� y�) 2 L2(0, T ;H), hence

by the Theorem 1.2.5, there exists p̄T 2 W̃(0, T ) solutions of (1.30). Furthermore, we have
¨̄pT 2 L(0, T ;V 0). By construction, p̄T satisfies (1.28). We still have to show the uniqueness
of the solution p̄T . We consider two solutions p1 and p2, and we denote the difference by
p = p1 � p2 which satisfies Z T

0
hp, ¨̃u+A0ũiV,V 0 dt = 0. (1.31)

We choose ũ such that 8
><
>:

¨̃u(t) +A0ũ(t) = p(t), in (0, T ),

ũ(0) = 0,

˙̃u(0) = 0.
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1.3. Resolution of the inverse problem: the 4D-var approach

Since p 2 L2(0, T ;H), we have ¨̃u+A0ũ 2 L2(0, T ;H). Therefore, we obtain

Z T

0
(p, ¨̃u+A0ũ)H dt = 0. (1.32)

Using the expression of ũ, we finally have

Z T

0
kpk2H dt = 0,

which proves the uniqueness.
Moreover, since we have p̄T 2 W̃(0, T ) we can apply the Green’s formula of Proposition
1.2.3 to (1.27), and we get

�(ūT (0), ũ(0))V + µ( ˙̄uT (0), ˙̃u(0))H +

Z T

0

⇣
C⇤
!(C!ūT � y�), ũ

⌘

H
dt

+

Z T

0
h ¨̄pT , ũiV 0,Vdt+

Z T

0
hA⇤

0p̄T , ũiV 0,Vdt

(p̄T (T ), ˙̃v(T ))� (p̄T (0), ˙̃u(0))� ( ˙̄pT (T ), ũ(T )) + ( ˙̄pT (0), ũ(0)) = 0.

Using the dynamics (1.30) of p̄T we find the following initial conditions
(
��A0ūT (0) = ˙̄pT (0),

µ ˙̄uT (0) = p̄T (0),

which concludes the proof. ⌅

Case of velocity measurements

Let Y = L2(!). The observation operator C 2 L(H,Y) satisfies

y̌(t) = C! ˙̌u(t) = ˙̌u|!(t).

Namely, we have the same definition of the observation operator C and its adjoint as in
the previous case of field measurements. We introduce the cost functional to minimize
JT : W̃V ! R

JT (u) =
1

2

Z T

0
kC!u̇� y�k2Y dt+

�

2
ku(0)k2V +

µ

2
ku̇(0)k2H. (1.33)

We denote the minimizer of the above cost functional by ūT := argmin
u2W̃V (0,T )

JT .

Theorem 1.3.3 8
>>>>>>>>><
>>>>>>>>>:

¨̄uT = �A0ūT , in (0, T ),

¨̄pT +A⇤
0p̄T = C⇤

!(C! ˙̄uT � y�), in (0, T ),

ūT (0) = ��1p̄T (0),

˙̄uT (0) = µ�1 ˙̄pT (0),

p̄T (T ) = 0,

˙̄pT (T ) = 0.

(1.34)
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Chapter 1. Introduction to data assimilation for the wave equation

Proof: As before, we introduce the minimization problem under a constraint

min
ü=�A0u, u2W̃V (0,T )

{JT (u) =
�

2
ku(0)k2V +

µ

2
ku̇(0)k2H +

1

2

Z T

0
kC!u̇� y�k2Ydt }. (1.35)

The Lagrangian associated with this minimization problem is the following L(u, q) : W̃V(0, T )⇥
L2(0, T,V) ! R defined by

L(u, q) = JT (u) +

Z T

0
hq, ü+A0uiL2(0,T ;V),L2(0,T ;V 0)dt.

We search ūT such that for all q̃ 2 L2(0, T ;V), we have

h@qL, q̃iL2(0,T ;V 0),L2(0,T ;V) = 0,

in particular we find the constraint definition

h¨̄uT +A0ūT , q̃iL2(0,T ;V 0),L2(0,T ;V) = 0.

We are looking for q̄T such that, for all ũ 2 W̃V(0, T ), we have

h@uL, ũiW̃V (0,T )0,W̃V (0,T ) = �(ūT (0), ũ(0))V + µ( ˙̄uT (0), ˙̃u(0))H

+

Z T

0

⇣
C! ˙̄uT � y�, C! ˙̃u

⌘

Y
dt+

Z T

0
hq̄T , ¨̃uiV,V 0dt

�

Z T

0
hq̄T , A0ũiV,V 0dt = 0. (1.36)

We introduce the following change of variables ˙̄pT (t) = q̄T (t) 2 L2(0, T ;V). Therefore, we
can rewrite (1.36) as follows

�(ūT (0), ũ(0))V + µ( ˙̄uT (0), ˙̃u(0))H +

Z T

0

⇣
C! ˙̄uT � y�, C! ˙̃u

⌘

Y
dt

+

Z T

0
h ˙̄pT , ¨̃uiV,V 0dt�

Z T

0
h ˙̄pT , A0ũiV,V 0dt = 0. (1.37)

We impose ũ(0) = 0 and ˙̃u(0) = 0, thus we get

Z T

0

⇣
C! ˙̄uT � y�, C! ˙̃u

⌘

Y
dt+

Z T

0
h ˙̄pT , ¨̃uiV,V 0dt�

Z T

0
h ˙̄pT , A0ũiV,V 0dt = 0. (1.38)

Formally, we integrate by part the two last terms which leads to

Z T

0

⇣
C! ˙̄uT � y�, C! ˙̃u

⌘

Y
dt�

Z T

0
h ¨̄pT , ˙̃uiV 0,Vdt+ ( ˙̄pT (T ), ˙̃u(T ))H

+

Z T

0
hp̄T , A0

˙̃uiV,V 0dt� (p̄T (T ), A0ũ(T ))H = 0. (1.39)

Therefore, formally we obtain the dynamics of p̄T .
8
><
>:

¨̄pT +A⇤
0p̄T = C⇤

!(C! ˙̄uT � y�), in (0, T ),

A⇤
0p̄T (T ) = 0,

˙̄pT (T ) = 0.

(1.40)
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1.3. Resolution of the inverse problem: the 4D-var approach

For a given {u(t) 2 W̃V(0, T ), t 2 [0, T ]}, we have C⇤
!(C! ˙̄uT � y�) 2 L2(0, T ;H), and

hence the Theorem 1.2.5, there exists p̄T 2 W̃(0, T ) solutions of (1.40). Furthermore, we
have ¨̄pT 2 L(0, T ;V 0). By construction, p̄T satisfies (1.38). Let us prove the uniqueness
of the solution p̄T . We consider two solutions p1 and p2, and we denote the difference by
p = p1 � p2 which satisfies Z T

0
hṗ, ¨̃u�A0ũiV,V 0 dt = 0. (1.41)

We choose ũ such that 8
><
>:

¨̃u(t)�A0ũ(t) = p(t), in (0, T ),

ũ(0) = 0,

˙̃u(0) = 0.

Since p 2 L2(0, T ;H), we have ¨̃u�A0ũ 2 L2(0, T ;H). Therefore, we obtain

Z T

0
(ṗ, ¨̃u�A0ũ)H dt = 0. (1.42)

Using the expression of ũ, we have
Z T

0
kṗk2H dt = 0. (1.43)

Since A0 is a self-adjoint invertible operator, it does not have a kernel, therefore we obtain

A⇤
0p̄T (T ) = 0 =) p̄T (T ) = 0. (1.44)

Gathering (1.43) and (1.44), we obtain that

p ⌘ 0,

that proves the uniqueness.
Furthermore, we apply the Green’s formula of Proposition 1.2.14 to (1.37), and we get

�(ūT (0), ũ(0))V + µ( ˙̄uT (0),˙̃u(0))H +

Z T

0

⇣
C⇤
!(C! ˙̄uT � y�), ˙̃u

⌘

H
dt

�

Z T

0
h ¨̄pT , ˙̃uiV 0,Vdt�

Z T

0
(A⇤

0p̄T , ˙̃uiV 0,Vdt+ (p̄T (T ), A0ṽ(T ))

� ( ˙̄pT (0), ˙̃u(0)) + ( ˙̄pT (T ), ˙̃u(T ))� (p̄T (0), A0ũ(0)) = 0.

Therefore, we get 8
>>>>>>>>><
>>>>>>>>>:

¨̄uT = �A0ūT , in (0, T ),

¨̄pT +A⇤
0p̄T = C⇤

!(C! ˙̄uT � y�), in (0, T ),

A⇤
0ūT (0) = ��1A⇤

0p̄T (0),

˙̄uT (0) = µ�1 ˙̄pT (0),

A⇤
0p̄T (T ) = 0,

˙̄pT (T ) = 0.

(1.45)

It is possible to weaken the regularity of the second equation of (1.45). Indeed, the 3rd
and 5th equations can be rewritten as follows

(
ūT (0) = ��1p̄T (0),

p̄T (T ) = 0.
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Chapter 1. Introduction to data assimilation for the wave equation

Therefore, the dynamics of p̄T in (1.45) is then defined in V 0, and we find the dynamics
(1.25). ⌅

As in the first-order formalism, we need to solve a dynamics, either (1.25) or (1.34),
where one part of the dynamics is forward in time and the other is backward in time.

1.3.3 4D-var approach and semigroup formalism

In this section, as in Section 1.3.1, we solve the inverse problem, which consists in recov-
ering the initial condition from the observations of the system, but this time the solutions
of the wave equation is obtained in the framework of semigroup theory (Section 1.3.2).
Lagrangian LT given by (1.20) is not be introduced because the solution z considered in
this section does not naturally belong to the space W(0, T ). We will therefore use a dif-
ferent method. Let us recall precisely the inverse problem we study: Given measurements
y� 2 YT = L2((0, T );Y) of the target system ž solution of (1.6) associated with unknown
initial conditions z0. We recall that in practice, the available measurements y� are noisy
– where � is the noise level bound. As in the previous section, we introduce the cost
functional to minimize

JT (z0) =
✏

2
kz0k

2
Z +

1

2

Z T

0
kCz|z0 (t)� y�(t)k2Y dt, (1.46)

where the observation operator C 2 L(Z,Y) is defined by (1.15) and the notation z|z0
denotes the solution z of the wave equation (1.6) associated with the initial condition z0.
The inverse problem corresponds to invert the following input-output operator

ΨT :

�����
Z ! L2((0, T );Y) := YT ,

z0 7! (y(t))t2[0,T ] = (Ψ(t)z0)t2[0,T ].
(1.47)

It is possible to rewrite the cost functional (1.46) relying on the input-output operator

JT (z0) =
✏

2
kz0k

2
Z +

1

2

Z T

0
kΨ(t)z0 � y�(t)k2Y dt, (1.48)

This problem can be rewritten using the adjoint of the input-output operator such that

Ψ
⇤
TΨT z0 = Ψ

⇤
T y̌.

Since the available measurements y� are noisy, they could not belong to RanΨT . In this
particular case, we can use a Tikhonov regularization (see, for example, [Tihonov, 1963],
[Baumeister, 1987], and [Engl et al., 1996]) and solve the following problem

Ψ
⇤
TΨT z0

�,✏
T + ✏z0

�,✏
T = Ψ

⇤
T y

�,

where ✏ is the Tikhonov regularization parameter. In the following, to simplify the notation,
we will omit the exponent �, ✏ and T and write down the initial state z0. In our case, the
input-output operator is defined using Duhamel’s formula as follows

Ψ(t) = CetA.

So we have to solve the following normal equation
Z T

0
etA

⇤

C⇤CetAz0dt+ ✏z0 =

Z T

0
etA

⇤

C⇤y�(t)dt. (1.49)

We will show that solving this minimization problem is equivalent to solving a two-ends
problem ([Bensoussan, 1971], [Lions, 1968]).
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1.3. Resolution of the inverse problem: the 4D-var approach

Theorem 1.3.4 The following two-ends problem
8
>>>><
>>>>:

˙̄zT = Az̄T , in (0, T ),

˙̄qT +A⇤q̄T = �C⇤(y� � Cz̄T ), in (0, T ),

z̄T (0) = ✏�1q̄T (0),

q̄T (T ) = 0,

(1.50)

is the optimal system associated with the minimization of the cost functional

JT (z0) =
✏

2
kz0k

2
Z +

1

2

Z T

0
kCz|z0 (t)� y�(t)k2Y dt.

Proof: We compute the Frechet derivative of JT using the Duhamel formula (1.5)

hDz0JT (z0), ⇠i = ✏(z0, ⇠)Z + (CetAz0 � y�, CetA⇠)YT
, 8⇠ 2 Z. (1.51)

The minimizer is obtained when hDz0JT (z̄0), ⇠i = 0, which leads to the so-called normal
equation Z T

0
etA

⇤

C⇤CetAz̄0dt+ ✏z̄0 =

Z T

0
etA

⇤

C⇤y�(t)dt. (1.52)

It is possible to drastically simplify the normal equation by relying on the so-called adjoint
equation (which we found in the Section 1.19)

(
q̇(t) +A⇤q(t) = �C⇤(y�(t)� Cz(t)), t 2 (0, T ),

q(T ) = 0.
(1.53)

Here the adjoint dynamics is defined backward in time. Nevertheless, for a given {z(t) 2
Z, t 2 [0, T ]} and its associated measurements {y(t) 2 Y, t 2 [0, T ]},this dynamics is well-
posed. Indeed, for a A⇤ is a generator of a C0-semigroup (see Theorem 1.2.10), thus �A⇤

is the generator of a C0 semigroup backward in time. Since C⇤(y� � Cz) 2 C0([0, T ];Z)
using theorem 1.2.9, the adjoint q can be defined as a weak solution of (1.53). Using the
Duhamel formula, we compute the expression of the adjoint

q(t) =

Z T

t
e(⌧�t)A⇤

C⇤
⇣
y�(⌧)� Cz(⌧)

⌘
d⌧. (1.54)

Thus, (1.52) becomes

�

Z T

0
etA

⇤

C⇤(y�(t)� CetAz̄0)dt+ ✏z̄0 = 0.

Recalling that the optimal trajectory is z̄T (s) = etAz̄0 using Duhamel’formula, we have

�q̄T (0) + ✏z̄0 = 0. (1.55)

Since the cost functional defines a quadratic functional in the Hilbert space Z and ✓ 7!
k✓k2

H1
0(Ω)

is coercive, we have the existence of a unique minimizer. Moreover, the unique-

ness of this solution of (1.50) is ensured by the uniqueness of the minimizer of JT . ⌅

Note that from (1.55) and using the dynamics of q̄T given by (1.54), we find the
normal equation (1.49) associated with ΨT , which is classically defined in the Tikhonov
regularization problems.

Therefore, we find a direct relation to find our initial condition, but this requires solving
the two-ends problem. The disadvantage of this system is that is not a Cauchy problem.
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1.3.4 Link between first-order and second-order systems

We now aim to establish a link between the two-ends systems in the respective first- and
second-order formulations. We separate the cases where we consider field measurements
and velocity measurements.

Case of velocity measurements

Proposition 1.3.5 The first-order formulation of the two-ends problem (1.50) is equiva-
lent to the second-order formulation (1.34) when ✏ = µ = �.

Proof: Let Z = H1
0(Ω)⇥L2(Ω) = V⇥H and Y = L2(!). We set C = (0 C!)

t 2 L(Z,Y)
since C! 2 L(H,Y) defined by C! = I!. Choosing qT = (pT ṗT )

t 2 L2(0, T ;V) ⇥
L2(0, T ;H), we have

 
ṗT

p̈T

!
�

 
0 Id

�A0 0

! 
pT

ṗT

!
= �

 
0

C⇤
!

!
(y� � C!u̇T ).

Thus, the first equation is zero, the second corresponds to the second-order adjoint dy-
namics of (1.34). The final condition of (1.50) leads to

qT (T ) =

 
pT (T )

ṗT (T )

!
= 0,

which corresponds to the final conditions of the adjoint equations of (1.34). Finally, we
have

qT (0) =

 
pT (0)

ṗT (0)

!
= ✏zT (0) =

 
✏uT (0)

✏u̇T (0)

!
,

which corresponds to the initial conditions with ✏ = µ = �. ⌅

Case of field measurements

Proposition 1.3.6 The first-order formulation of the two-ends problem (1.50) is equiva-
lent to the second-order formulation (1.25) when ✏ = µ = �.

Proof: Let Z = H1
0(Ω) ⇥ L2(Ω) = V ⇥ H and Y = L2(!). We consider the observation

operator associated with the two-ends problem (1.50) as the following

C =
⇣
I! 0

⌘
: Z ! L2(!) where I! 2 L(H1

0(Ω),L
2(!)). (1.56)

Then, the adjoint observation is given by C⇤ = (F! 0)t where F! 2 L(L2(!),H1
0(Ω)) is

defined by

F!� :=  the solution of

(
�∆ = !�, in Ω,

 = 0, on @Ω,
(1.57)

where ! is the characteristic function of !. In other words, we have

F! = A�1
0 !.
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Choosing qT = (�A�1
0 ṗT pT )

t 2 L2(0, T ;V) ⇥ L2(0, T ;H), the two-ends problem (1.50)
leads to

 
�A�1

0 p̈T

ṗT

!
�

 
0 Id

�A0 0

! 
�A�1

0 ṗT

pT

!
= �

 
A�1

0 !

0

!
(y� � uT |!).

The second equation is zero and the first one gives

�A�1
0 p̈T � pT = �A�1

0 !(y
� � uT |!),

which implies
p̈T +A0pT = !(y

� � uT |!).

Since A⇤
0 = A0 and the observation operator in the case of field measurements and its

adjoint is given by (1.22) and (1.23), we obtain

p̈T +A⇤
0pT = C⇤

!(y
� � uT |!),

and it corresponds to the dynamics of the adjoint equation of (1.25) since A⇤
0 = A0. The

final condition of (1.50) leads to

qT (T ) =

 
�A�1

0 ṗT (T )

pT (T )

!
= 0 =)

 
ṗT (T ) = 0

pT (T ) = 0

!
,

which corresponds to the final conditions of the adjoint equations of (1.25). Furthermore,
we have

qT (0) =

 
�A�1

0 ṗT (0)

pT (0)

!
= ✏zT (0) =

 
✏uT (0)

✏u̇T (0)

!
,

which are to the initial conditions with ✏ = µ = �. ⌅

1.3.5 Gradient descent for practical minimization

To solve the problem at two-ends (1.50), a natural idea is to use an iterative method. In
this section we present one such possibility, the gradient descent associated with (1.50).
Later (Section 1.4) we will see that we prefer to use a sequential method to solve the
inverse problem. Finally, we emphasize that this is not only a practical method to find
the minimizer of JT , but also a method to prove the existence of a solution of (1.50). The
limit of the gradient descent dynamics (1.58)-(1.59) when k tends to infinity is the solution
of (1.50).

By the Riesz’s representation theorem we have the expression for the gradient of the
cost functional

rJT (z0) = ✏z0 � q(0).

Knowing the expression of the gradient, we start with the recursive relation

zk+1
0 = zk0 � ⇢krJT (z

k
0 ), k � 0

where (⇢k)k�0 is a chosen relaxation sequence. We therefore have the following gradient
descent algorithm which consists in solving recursively from z0 = 0 and for k � 0 the back
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Chapter 1. Introduction to data assimilation for the wave equation

and forth dynamics
(
żk+1 = Azk+1, in [0, T ],

zk+1(0) = (1� ✏⇢k)z
k(0) + ✏⇢kq

k(0),
(1.58)

and
(
q̇k+1 +A⇤qk+1 = �C⇤(y� � Czk+1), in [0, T ],

qk+1(T ) = 0.
(1.59)

Now that we have seen how the initial condition can be reconstructed by solving the
two-ends problem, the question of time discretization arises. Can we get the same type of
result after discretization in time and space?

1.3.6 Time discretization: midpoint scheme

The philosophy behind this section is the following: It is not enough to discretize the ob-
tained results in time, we must also discretize-then-optimize (see [Zuazua, 2005]). The first
step is to discretize the initial wave equation and then repeat all the steps in discrete time
until the different results are obtained. We discretize the wave equation using Lagrange
finite element and a midpoint scheme. We denote zh 2 Zh = Vh ⇥ Vh and consider

8
<
:

zh,n+1 � zh,n
⌧

= Ah
zh,n+1 + zh,n

2
, 0  n  N,

zh,n=0 = zh,0,
(1.60)

where

Ah =

 
0 Idh

∆0,h 0

!
,

with ∆0,h is the bounded linear operator in Vh associated with the finite-element dis-
cretization of ∆0. We can rewrite the above scheme using the bounded transition operator
Φh,n+1|n.

8
<
:
zh,n+1 = Φh,n+1|nzh,n, 0  n  N,

zh,n=0 = zh,0,
where Φh,n+1|n =

⇣
Idh �

⌧

2
Ah

⌘�1 ⇣
Idh +

⌧

2
Ah

⌘
.

(1.61)
We can then obtain a direct formula for zh,n as a function of the initial data zh,0 which
corresponds to a time discretization of the Duhamel formula (1.5).

zh,n = Φh,n+1|0zh,0 where Φh,n|k = Φh,n|n�1 � ... � Φh,k+1|k and Φh,n|n = Idh.

We introduce the discrete-time cost functional to be minimized.

Jh,N (zh,0) =
✏

2
kzh,0k

2
Zh

+
1

2

NX

n=0

⌧kChzh,n � y�h,nk
2
Y . (1.62)

We express this cost functional as a minimization problem under constraints. In other
words, we search the minimizer of

Jh,N (zh,n) =
✏

2
kzh,n=0k

2
Zh

+
1

2

NX

n=0

⌧kChzh,n � y�h,nk
2
Y , (1.63)

36



1.3. Resolution of the inverse problem: the 4D-var approach

under the constraint zh,n+1 = Φh,n+1|nzh,n. The first step is to find the adjoint equations.
For this purpose we introduce the Lagrangian.

Lh,N (zh,n, qh,n) = Jh,N (zh,n=0) +

N�1X

n=0

(qn+1, zh,n+1 � Φh,n+1|nzh,n)Zh
. (1.64)

To find the adjoint equations, we calculate the derivative of the Lagrangian with respect
to zh,n, and look at the critical point.

@Lh,N

@zh,n
= ⌧C⇤

h

⇣
Chzh,n � y�h,n

⌘
� Φ

⇤
h,n+1|nqh,n+1 + qh,n = 0,

which leads to the adjoint dynamics

qh,n = Φ
⇤
h,n+1|nqh,n+1 � ⌧C⇤

h

⇣
Chzh,n � y�h,n

⌘
. (1.65)

In order to find the final condition of the adjoint dynamics, we compute the derivative of
Lh,N with respect to zh,n+1, and we find

@Lh,N

@zh,N
= qh,N+1 = 0. (1.66)

We then find the discretized adjoint equations (1.65) - (1.66). Note that it is also possible
to find the relation between the initial condition zh,0 and the adjoint equation. Indeed, we
compute the derivative of Lh,N with respect to z0 and obtain at the critical point

@Lh,N

@zh,0
= ✏zh,0 + ⌧C⇤

h

⇣
Chzh,0 � y�h,0

⌘
� Φh,1|0,⇤qh,1 = 0.

Using dynamics (1.65) at time n = 0, we ultimately arrive at

✏zh,0 = qh,0. (1.67)

We can now state the most important theorem connecting the two-ends system with the
minimization of the cost functional.

Theorem 1.3.7 The following two-ends problem
8
>>>><
>>>>:

z̄h,n+1 = Φh,n+1|nz̄h,n, 0  n  N,

q̄h,n = Φ
⇤
h,n+1|nq̄h,n+1 � ⌧C⇤

h

⇣
Chz̄h,n � y�h,n

⌘
, 0  n  N,

z̄h,0 = ✏�1q̄h,0,

q̄h,N+1 = 0,

(1.68)

is the optimal system associated with the minimization of the cost functional Jh,N defined
by (1.62).

Proof: We compute the Frechet derivative of Jh,N .

hDzh,0Jh,N , ⇠i = ✏(zh,0, ⇠)Zh
+

NX

n=0

⌧
⇣
Chzh,n � y�h,n, ChΦh,n|0⇠

⌘

Y
.

The optimum is reached when hDzh,0Jh,N , ⇠i = 0. Thus, we have

✏(z̄0,h, ⇠)Zh
+

NX

n=0

⌧
⇣
C⇤
h(Chz̄h,n � y�h,n),Φh,n|0⇠

⌘

Zh

= 0.
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Using the adjoint dynamics found in (1.65), we get

✏(z̄h,0, ⇠)Zh
+

NX

n=0

⇣
Φ
⇤
h,n|0Φ

⇤
h,n+1|nq̄h,n+1 � Φ

⇤
h,n|0q̄h,n, ⇠

⌘

Zh

= 0.

Using that Φ
⇤
h,n|0Φ

⇤
h,n+1|n = Φh,0|n+1 and Φh,0|0 = Idh, we then find

✏(z̄h,0, ⇠)Zh
� (q̄h,0, ⇠)Zh

+ (Φh,0|N+1q̄h,N+1) = 0.

From (1.66), we have that q̄h,N+1 = 0 where we directly infer the desired result. ⌅

We have seen that to find the minimizers of the cost functional we need to solve the
two-ends problem (1.68), and that one way is to use a gradient descent (1.58). Of course,
we could use any other iterative method that is more efficient to solve this problem such
as GMRES. However, first-order method will imply certain numbers of iterations to con-
verge. Only a second order method will lead to a solution in one iteration, for problems of
reasonable size since it is costly to compute. In fact, in the next section, we will introduce
the Kalman Filter which is equivalent to minimizing the cost function with a second order
method.

1.4 The Kalman filter: a dynamic programming approach

Dynamic programming, introduced by Bellman in the 1950s [Bellman, 1966] in finite di-
mension and later extended to infinite dimension for the problem under study [Bensoussan,
1971], leads to a sequential (or filtering) approach for solving the two-ends problem (1.50).
The goal is to recover the optimal estimate by injecting a feedback term: a discrepancy
between the observations of the system and the simulated trajectory, often referred to as
innovation. In other words, we will construct a time function that uses the measurements
available through a feedback law and equivalently solves the minimization problem at final
time. One of the best known filters is the Kalman filter [Kalman and Bucy, 1961]. As pre-
viously explained we will now limit our presentation to the semigroup approach even if all
the concepts can be introduced in the framework of variational solution (see [Bensoussan,
1971]).

1.4.1 Riccati dynamics from the semigroup approach

We present the Kalman filter
(
˙̂z = Aẑ + PC⇤(y� � Cẑ), in (0, T ),

ẑ(0) = 0,
(1.69)

where P is solution of
(
Ṗ = AP + PA⇤ � PC⇤CP, t > 0,

P (0) = P0.
(1.70)

In our case, we set P0 = ✏�1Id. The dynamics (1.70) corresponds to a Riccati equation
([Bensoussan et al., 2007, Part IV, Chapter 1]) and for P0 2 S+(Z) admits a mild solution
in C0([0, T ];S+(Z)) where S+(Z) is the space of positive self-adjoint bounded operators
(see Chapter 3 for a complete analysis).
One can observe that for all t 2 [0, T ], A(t)�P (t)C⇤C(t) is a bounded perturbation of A.
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1.4. The Kalman filter: a dynamic programming approach

Consequently, one can show that there exists one and only one mild solution in C0([0, T ];Z)
of (1.69) which is also a weak solution in L2(0, T ;Z) satisfying for all v 2 D(A⇤)

8
<
:

d

dt
(ẑ(t), v) = (ẑ(t), A⇤v) + (y�(t)� Cẑ(t), CP (t)v), t 2 (0, T ),

(ẑ(0), v) = 0.

We here refer to Chapter 3 where we will give all the details of the proof of existence of
solution for such problems. Then, we can show the following fundamental inequality (see
[Aussal and Moireau, 2022], and Chapter 3), which links the sequential approach and the
variational approach

8t 2 [0, T ], z̄T (t) = ẑ(t) + P (t)q̄T (t), (1.71)

where P is the solution of (1.70), (z̄T , q̄T ) are defined in (1.50) and ẑ is the solution of
(1.69). Finally, note that (1.69) is indeed a Kalman estimator, since at the final time T ,
the adjoint equation q̄T (T ) = 0, i.e. we have

z̄T (T ) = ẑ(T ). (1.72)

The link between the minimization problem and the sequential method is established at
each time t thanks to the fundamental identity (1.71). Moreover, both are equivalent at the
last time T . We will see that this relation is preserved after adequate time discretization
in Section 1.4.4.

1.4.2 Kalman filter as an observer

In this section, we prove that the Kalman filter we have just presented is an observer
according to the definition of [Krener, 1999], i.e., it has two properties, an asymptotic
convergence property in the absence of noise and a property of robustness to noise. The
observer property of the Kalman filter relies on an important tool: observability conditions
[Lions, 1988].

To introduce the notion of observer, we consider a wave model in an infinite time
window, 8

><
>:

@ttu(x, t)�∆u(x, t) = 0, (x, t) 2 Ω⇥ (0,1),

u(x, t) = 0, (x, t) 2 @Ω⇥ (0,1),

u(x, 0) = u0(x), @tu(x, 0) = v0(x), x 2 Ω.

(1.73)

As in the previous section, we reformulate this system as a first-order system like (1.6) but
with infinite horizon (

ż = Az, in (0,1),

z(0) = z0.
(1.74)

As shown earlier, we assume that we observe a target solution ž with unknown initial
condition. The perfect observations correspond to y̌ such that y̌ = Cž, where C is the
observation operator and will be clarified just bellow. Unfortunately, these measurements
y̌ are not available. We assume that we have y� 2 Y1 = L2((0,1);Y), so that, for example

ky̌ � y�k2Y1
 �2T.

Note that in this case the noise is assumed to belong to the observation space Y, i.e. it is
quite regular. We will see in Section 1.5.3 how to cope when y� /2 Y i.e. when they belong
to a larger space than Y.
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1.4.2.1 Definition of an observer

We can now introduce the notion of observer with a simplified version of an asymptotic
observer proposed by [Krener, 1999].

Definition 1.4.1 An asymptotic observer of (1.74) is a function R
+ 3 t 7! ẑ(t; (y�(s))st)

such that

1. Robustness to noise : for all 0  ⌧ , and for all " > 0, there exist ↵, � > 0, such
that

kẑ(0)� ž(0)kZ  ↵,

ky̌ � y�kL2((0,⌧);Y)  �

)
) kž(t)� ẑ(t)kZ  ", t � ⌧.

2. Asymptotic convergence: for all 0  ⌧ , and for all ",↵, � > 0, there exists T0 > 0
such that

kẑ(0)� ž(0)kZ  ↵,

ky̌ � y�kL2((0,⌧);Y)  �

supp(y̌ � y�) ⇢ (0, ⌧)

9
>=
>;

) kž(t)� ẑ(t)kZ  ", t � T0 + ⌧.

Remark 1.4.1 The observer can be calculated at time t from the information available
at time s  t, thus it is a causal function of the measurements. Note also that, as a
consequence of 1., an asymptotic observer satisfies the following condition, for all s � 0

ẑ(s) = ž(s),
�
y�(t) = y̌(t), t � s

�
)

�
ẑ(t) = ž(t), t � s

�
. (1.75)

To show that the Kalman dynamics is an observer, we need an observability condition.

1.4.2.2 Observability conditions

In this section we recall the concept of observability conditions, namely if there exists a
time T0 and a constant Cst, so that for all T > T0 and for all mild solutions of the wave
equation from an initial condition z0, we have

Z T

0
kyk2Y dt = kΨT z0k

2
YT

=

Z T

0
kCetAz0k

2
Y dt � Cstkz0k

2
Z . (1.76)

A proof of observability condition (1.77) for the wave equation is given in Section 1.4.5.2.
Indeed, observing y 2 Y on (0, T ) yields as much information as knowing z(0) 2 Z. Indeed,
the observability condition is equivalent to a coercivity condition of Ψ⇤

TΨT 2 L(Z) where
the input-output operator is defined by (1.47), namely

8z0 2 Z, (z0,Ψ
⇤
TΨT z0)Z =

Z T

0
kCetAz0k

2
Y dt � Cstkz0k

2
Z . (1.77)

1.4.2.3 The Kalman filter as un observer

We can now demonstrate that the Kalman filter is an observer in the sense of [Krener,
1999] when considering either velocity or field measurements.

Theorem 1.4.2 Suppose that the observability (1.77) holds. The estimator ẑ defined by
(1.69) is an asymptotic observer in the sense of Definition 1.4.1.
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1.4. The Kalman filter: a dynamic programming approach

Proof: We start by showing the property of asymptotic convergence in the absence of
noise (namely Cž = y�), i.e. the second property of Definition 1.4.1.
We here use the link between the observer and the functional minimization. On one hand,
from (1.72), we have that

ẑ = z̄t(t) = z|✓̄t ,

thus, we obtain
kẑ(t)� žk2Z = kz̄t(t)� žk2Z , (1.78)

where z̄T is defined by (1.50). On the other hand, we set z̃ = z̄t � ž which is the solution
of (

˙̃z = Az̃, in (0, T )

z̃(0) = z̄t(0)� ž0 := z̃0.

Since A is the generator of a C0-semigroup of contraction (see Theorem 1.2.8), we have
that

kz̃(t)k2Z  kz̃0k
2
Z .

Using the observability property (1.77), we obtain that there exists a positive scalar Cst

such that

kz̃(t)k2Z  kz̃0k
2
Z  Cst

Z t

0
kCz̃(s)k2Y ds = Cst

Z t

0
kCz̄t(s)� Cž(s)k2Y ds. (1.79)

Since we consider noise-free observations, we have that Cž = y�, therefore, we obtain

kz̃(t)k2Z  Cst

Z t

0
kCz̄t(s)� y�(s)k2Y ds.

Recalling that the cost function associated with the minimization problem is defined by

JT (z0) =
✏

2
kz0k

2
Z +

1

2

Z T

0
kCz|z0 (t)� y�(t)k2Y dt,

we obtain
kz̃(t)k2Z  Cst(2JT (z̄t(0)))  Cst(2JT (ž0))  Cst✏kž0k

2
Z .

Hence, combining the above equation and (1.78), we proved the second property of Defini-
tion 1.4.1. Let us now show the first property, namely the stability of the observer to the
noise. We start from (1.79). We inject the noisy observations and by triangle inequality
we obtain

kz̃(t)k2Z  2Cst

Z t

0
kCz̄t(s)� y�(s)k2Y ds+

Z t

0
kCž(s)� y�(s)k2Y ds

�
.

Finally, using again the definition of the cost functional we have

kz̃(t)k2Z  2Cst


2JT (ž0) +

Z t

0
kCž(s)� y�(s)k2Y ds

�

 2Cst


✏kž0k

2
Z + 2

Z t

0
kCž(s)� y�(s)k2Y ds

�
,

which combining with (1.78) prove the first property of Definition 1.4.1. ⌅
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1.4.3 Initial conditions reconstruction problem

The initial objective is to estimate the initial conditions, that is, to compute ẑ0, which
is not computed by the Kalman estimator ẑ. One idea might be to use a time reversal
method [Fink et al., 2000] to recover the initial conditions. However, this method is only
valid for the wave equation, since it requires the time reversal property. A more general
idea is proposed here. The idea is to inject the fundamental identity (1.71) into the adjoint
dynamics (1.50) to obtain

(
˙̄qT + (A⇤ � C⇤CP )q̄T = �C⇤(y� � CẑT ), in (0, T ),

q̄T (T ) = 0,
(1.80)

The dynamics (1.80) makes possible to reconstruct the initial conditions in one iteration.
Unfortunately, it is computed backward in time, while the Riccati solution is computed
forward in time, which is not very practical. To remedy this, we first introduce the operator
t 7! Q(t) 2 L(Z) solution of

(
Q̇ = AQ� PC⇤CQ, in (0, T ),

Q(0) = P0 := ✏�1Id.
(1.81)

One can prove that Q 2 C0([0, T ];L(Z)) such that

8z 2 Z, Q(t)z = etAP0z �

Z t

0
e(t�s)AP (s)C⇤CQ(s)z ds.

This defines a mild solution of (1.81). Furthermore, Q is also a strict solution in the senses
that for all z 2 D(A), Qz 2 C0([0, T ];D(A)). Then, we introduce the estimator

(
˙̂z0 = QC⇤(y� � Cẑ), in (0, T ),

ẑ0(0) = 0,
(1.82)

which admits a weak solution in L2((0, T );Z) as t 7! Q(t)C⇤(y�(t)�Cẑ(t)) 2 L2((0, T );Z).
This new operator and dynamics allow us to reconstruct the initial conditions, as described
in the next proposition. In other words, by solving an additional forward Riccati equation
and an additional forward dynamics, we are able to directly estimate z̄0T with only one
iteration.

Proposition 1.4.3 For all T � 0, we have the following identity

8t 2 [0, T ], z̄0T = ẑ0(t) +Q⇤(t)q̄T (t). (1.83)

Hence, ẑ0 is a Kalman estimator of the initial condition in the following sense:

8t � 0, ẑ0(t) = z̄0t. (1.84)

Proof: We denote ⌘ : t 7! ẑ0(t) +Q⇤(t)q̄T (t), and consider v 2 D(A) giving

d

dt
(⌘, v)Z =

d

dt

�
ẑ0(t), v

�
Z
+

d

dt

�
q̄T (s), Q(t)v

�
Z

���
s=t

+
d

dt

�
q̄T (t), Q(s)v

�
Z

���
s=t

=
�
(y� � Cẑ), CQ(t)v

�
Z
�
�
q̄T (t), (A� PC⇤C)Q(t)v

�
Z

�
�
(y� � Cẑ), CQ(t)v

�
Z
+
�
q̄T (t), (A� PC⇤C)Q(t)v

�
Z

= 0.
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1.4. The Kalman filter: a dynamic programming approach

Therefore, ⌘ ⌘ ⌘(0) = P0q̄T (0) = ✏�1q̄T (0) = z̄0T , whence justifies (1.83). Finally,
qT (T ) = 0 in (1.83) yields ẑ0(T ) = z̄0T . ⌅

In contrast to the gradient descent method presented in Section 1.3.5, we have presented
a direct method for solving the initial conditions reconstruction problem. However, this
requires the computation of a Riccati operator, which can be very costly. Therefore, in
the Section 1.5, we will introduce an alternative to avoid the computation of a Riccati
operator.

1.4.4 Time discretization: prediction-correction scheme

We now present a time scheme based on the discrete-time Kalman filter, which is a Pre-
diction - Correction scheme [Kalman, 1960].

Prediction:

(
ẑ�h,n+1 = Φh,n+1|nẑ

+
h,n,

P�
h,n+1 = Φh,n+1|nP

+
h,nΦ

⇤
h,n+1|n,

(1.85)

Correction:

8
<
:
ẑ+h,n = ẑ�h,n + ⌧P+

h,nC
⇤
h(y

�
h,n � Chẑ

�
h,n),⇣

P+
h,n

⌘�1
=
⇣
P�
h,n

⌘�1
+ ⌧C⇤

hCh.
(1.86)

With observations at time 0, the procedure begins with initialization of

(P+
h,n=0)

�1 = (Ph,0)
�1 + ⌧C⇤

hCh and ẑ+h,n=0 = ẑh,0 + ⌧P+
h,nC

⇤
h(y

�
h,0 � Chẑh,0).

We could also start with

P�
h,n=0 = Ph,0 and ẑ�h,n=0 = ẑh,0.

Note that, in many cases the a priori already takes into account the observation at time
t0, which is why the algorithm usually starts with the prediction step.

We can rewrite the Prediction - Correction scheme (1.85) in a one-step version by
keeping only the variables ẑ�h,n+1 and P�

h,n+1. Indeed, on the one hand, we have

P�
h,n+1 = Φh,n+1|n

✓⇣
P�
h,n

⌘�1
+ ⌧C⇤

hCh

◆�1

Φ
⇤
h,n+1|n.

Using Woodbury formula, we get the one-step version of P�
h,n+1

P�
h,n+1 = Φh,n+1|n

✓
P�
h,n � P�

h,nC
⇤
h

⇣
⌧�1 + ChP

�
h,nC

⇤
h)
⌘�1

ChP
�
h,n

◆
Φ
⇤
h,n+1|n. (1.87)

On the other hand, ẑ�h,n+1 can be rewritten as follows

ẑ�h,n+1 = Φh,n+1|nẑ
�
h,n + ⌧Φh,n+1|nP

+
h,nC

⇤
h(y

�
h,n � Chẑ

�
h,n). (1.88)

Using the dynamics of P+
h,n given by (1.85), we find the one-step version of ẑ�h,n+1

ẑ�h,n+1 = Φh,n+1|nẑ
�
h,n + ⌧Φh,n+1|n

✓⇣
P�
h,n

⌘�1
+ ⌧C⇤

hCh

◆�1

C⇤
h(y

�
h,n � Chẑ

�
h,n). (1.89)

Finally, we can show that the fundamental identity (1.71) is satisfied in a time-discrete
version.
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Theorem 1.4.4 We have the fundamental identity for all 0  n  N + 1,

z̄h,n = ẑ�h,n + P�
h,nq̄h,n, (1.90)

where P�
h,n and ẑ�h,n are given by (1.87) and (1.89) and z̄h,n is given by (1.68). In partic-

ulary, we have
z̄h,N+1 = ẑ�h,N+1. (1.91)

The second property (1.91) follows from the first (1.90) one since at the final time, the
adjoint equation q̄h,N+1 = 0.

Therefore, we have shown that, even in the discrete case, the sequential Kalman filter
method is equivalent to minimizing the cost function. It has the advantage of giving an
estimation in one iteration. However, it has a disadvantage: the operator P must be
computed. This operator is the solution of a Riccati equation and therefore numerically
expensive. In the Section 1.5, we will look at defining an alternative observer – here called
a Luenberger observer – which aims to replace the operator P with an operator much
simpler.

1.4.5 Application to the scalar wave equation

In this section we will show the observability results for the wave equation, for which we
need to go into more detail. Before we present the various results of observability, we need
to define more precisely the observation operator under consideration.

1.4.5.1 Definition of the observation operator

We adopt the semigroup formalism of the section (1.2.2). We specify the different obser-
vation operators C that will be studied. Assuming that we have access to internal velocity
measurements y = @tu|! 2 Y = L2(!), we introduce

C =
⇣
0 I!

⌘
:

�������

H1
0(Ω)⇥ L2(Ω) ! L2(!),

z =

 
u

v

!
7! y = v|!,

(1.92)

where I! : L2(Ω) ! L2(!) is the restriction operator. Although, when we consider internal
field -measurements y = u|!, we set Y = H1

Γ
(!) – the subspace of functions in H1(!) zero

to Γ. Indeed, since the solution u belongs to H1
0(Ω), it is logical that its restriction to the

observation subdomain belongs to H1(!). Therefore, we define the observation operator
by

C =
⇣
I! 0

⌘
:

�������

H1
0(Ω)⇥ L2(Ω) ! H1

Γ(!),

z =

 
u

v

!
7! y = u|!,

(1.93)

where I! : H1
0(Ω) ! H1

Γ
(!) is the restriction operator. In each case, we need to define the

adjoint of the observation operator. For the first case, we directly infer that

C⇤ =

 
0

!

!
:

�������

L2(!) ! H1
0(Ω)⇥ L2(Ω),

y 7!

 
0

!y

!
,

(1.94)
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where ! naturally defines the extension by zero on Ω of a function defined on !, namely

!y : Ω 3 x 7!

(
y(x), x 2 !,

0, x 2 Ω \ !.

The second case is a little more intricate. As in [Chapelle et al., 2012a], we equipped the
space H1

Γ
(!) with the norm k·kH1

!
= kE!(·)kH1

0(Ω), where E! 2 L(H1
Γ
(!),H1(!)) is defined

by

E!� :=  the solution of

8
><
>:

∆ = 0, in Ω \ !,

 = �, in !̄,

 = 0 2 @Ω.

(1.95)

We recall the following lemma

Lemma 1.4.5 The norm k · kH1
!

is equivalent to the norm k · kH1(Ω).

Proof: As in [Chapelle et al., 2012a], first we show that E! is bounded from H1(!) to
H1

0(Ω). Let v 2 H1
0(Ω) be a test function, (1.95) gives us

�

Z

Ω\!
∆ v dx+

Z

!

 v dx =

Z

!

� v dx.

Integrating by parts and since � =  on !, we obtain
Z

Ω\!
r rv dx�

Z

@(Ω\!)
r� ·⌘ vdx+

Z

!

 v dx+

Z

!

r rv dx =

Z

!

� v dx+

Z

!

r�rv dx.

Choosing v =  and using Cauchy-Schwarz and Young inequalities with ✏ > 0, we get

kr k2L2(Ω)  kr�k2L2(!) +
✏

2
k k2

H�1/2(@!\@Ω)
+

1

2✏
k�k2

H1/2(@!\@Ω)
.

By trace property, we have

kr k2L2(Ω)  kr�k2L2(!) + Cst ✏

2

⇣
k∆ k2L2(Ω\!) + k k2H1(Ω\!)

⌘
+ Cst 1

2✏
k�k2H1(!).

Since ∆ = 0 on Ω \ !, for ✏ small enough, we get

krE!�k
2
L2(Ω) = kr k2L2(Ω)  k�k2H1(!).

On the other hand, we have

k�k2H1(!) = kr(E!�)k
2
L2(!) + k�k2L2(!)

 kr(E!�)k
2
L2(Ω) + kE!�k

2
L2(Ω).

Using Poincaré inequality, we get

k�k2H1(!)  (1 + Cp)kr(E!�)kL2(Ω).

⌅

Furthermore, from (1.95) one can show the following orthogonality property

8� 2 H1
!, 8 2 H1

0(Ω) such that  |! = 0, (r(E!�),r )L2(Ω) = 0.
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Therefore, we obtain that for all � 2 H1
! and  2 H1

0(Ω),

(r(E!�),r )L2(Ω) = (r(E!�),r(E! |!))L2(Ω) � (r(E!�),r(E! |! �  ))L2(Ω)

= (r(E!�),r(E! |!))L2(Ω) = (�, |!)H1
!
.

Then, with the Riesz representation, the adjoint of E! is I!, and thus we can directly infer
that

C⇤ =
⇣
E! 0

⌘
:

�������

H1
Γ(!) ! H1

0(Ω)⇥ L2(Ω),

y 7!

 
0

E!y

!
.

(1.96)

1.4.5.2 Observability conditions for the wave equation

Several methods can be used to establish such condition. We propose to follow [Lions,
1988] and base our estimates on the multiplier approach [Komornik, 1997]. The results of
the energy repartition results between the whole domain, its boundary, and/or subdomains
are the basis of the multiplier approach. It allows setting observability conditions for the
observation domain containing a sufficiently large part of the domain boundary. Following
[Lions, 1988, Chapter 7], we first introduce a part of the boundary on which our subdomain
will lean on. We define

8x0 2 R
d, Γ(x0) :=

�
x 2 @Ω

�� (x� x0) · ⌫(x) > 0
 
,

where ⌫ is the outward unit normal to @Ω. We introduce a subdomain illustrated in
Figure 1.1

!⇢(x0) = O⇢ \ Ω where O⇢ =
[

x2Γ(x0)

B(x, ⇢).

xa

x0

xb

Γ0
ω = ωρ(x0)

Ω xa

x0

xb

Γ0

ω

ωρ̃(x0)

Ω

Figure 1.1: (Left) An example of domain !ρ(x0). (Right) An example of domain ! where there
exists ⇢̃ s.t. !ρ(x0) ⇢ !. Courtesy Philippe Moireau ([Moireau and Bourgeois, 2023])

The condition – called the multiplier condition – for the observation domain ! is that
it must contain (or be equal to) !⇢(x0). First, we recall the observability result for the
initial condition ([Lions, 1988, Chapter 7, Lemma 2.3]).

Theorem 1.4.6 Let Ω be a bounded domain of R
d of boundary @Ω of class C0. There exists

a constant Cst such that for all T > T (x0) = 2max
x2Ω̄

|x � x0| and for all weak solutions of

the homogeneous wave equation (1.1) with Dirichlet boundary and with initial condition
(u0, u0) 2 H1(Ω)⇥ L2(Ω), we have

Z T

0

Z

!⇢(x0)

⇥
|@tu|

2 + |ru|2
⇤
dx dt � Cst

⇥
ku0k

2
H1

0(Ω) + kv0k
2
L2(Ω)

⇤
. (1.97)
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From this theorem, one can deduce a theorem [Lions, 1988, Chapter 7, Lemme 2.4] that
will be useful for subsequently obtaining an observability condition in weaker norms.

Theorem 1.4.7 Let ⇢ > 0. There exists, T0 and Cst such that for all T > T0,
Z T

0

Z

!⇢(x0)

⇥
|@tu|

2 + |u|2
⇤
dx dt � Cst

⇥
ku0k

2
H1

0(Ω) + kv0k
2
L2(Ω)

⇤
, (1.98)

and Z T

0

Z

!⇢(x0)

⇥
|ru|2 + |u|2

⇤
dx dt � Cst

⇥
ku0k

2
H1

0(Ω) + kv0k
2
L2(Ω)

⇤
. (1.99)

for all weak solution of (1.1) with initial condition (u0, v0).

The theorem 1.4.7 allows us to obtain a coercivity property of the form (1.77). Indeed,
we prove directly that for T > T0, ΨT defined by (1.47) as a linear operator of Z = H1

0(Ω)⇥
L2(Ω) in YT = L2((0, T ); H1(!)) or in YT = H1((0, T ); L2(!)) such that Ψ

⇤
TΨT 2 L(Z) is

invertible of bounded inverse. In order to rely on less informative data, we aim to obtain
weaker observability conditions.

Theorem 1.4.8 Supposing that for a subdomain !, the Theorem 1.4.6 holds, then we have
also Z T

0

Z

!

|@tu|
2 dx dt � Cst

⇥
ku0k

2
H1

0(Ω) + kv0k
2
L2(Ω)

⇤
. (1.100)

Proof: The proof is inspired from [Moireau and Bourgeois, 2023].
We proceed by contradiction. Suppose that (1.100) is not satisfied. We consider a sequence
of initial conditions {zm0 = (um0 , vm0 )}m�0 such that

kum0 k2H1
0(Ω) + kvm0 k2L2(Ω) = 1. (1.101)

The weak solution of (1.1) denoted by {zm = (um, @tu
m)}m�0 with initial condition

(um0 , vm0 ) satisfies Z T

0

Z

!

|@tu
m|2 dx dt �����!

m!+1
0. (1.102)

From (1.101), we assume that

zm0 = (um0 , vm0 ) �����*
m!+1

z0 = (u0, v0), in Z.

Therefore, we obtain
Z T

0

Z

!

|@tu|
2 dx dt = lim

m!+1

Z T

0

Z

!

@tu @tu
mdxdt = 0,

which gives us, @tu ⌘ 0 in ! ⇥ (0, T ). Thus, we have z0 = 0. Eventually, we have that

8z 2 Z, (etAzm0 , z) = (zm0 , etA
⇤

z) �����!
m!+1

0,

which implies that etAzm0 * 0 when m tends to infinity. In other words, we get

@tu
m �����*

m!+1
0, rum �����*

m!+1
0, um �����*

m!+1
0 in L2(Ω⇥ (0, T )).

By the compact embedding theorem (um)m�0 converges strongly in L2(Ω⇥ (0, T )), and we
directly infer that the limit is 0:

um �����!
m!+1

0, in L2(Ω⇥ (0, T )).
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Combined with (1.102), there exists Cst > 0 such that

kum0 k2H1
0(Ω) + kvm0 k2L2(Ω)  Cst

Z T

0

Z

!

⇥
|@tu

m|2 + |um|2
⇤
dx dt �����!

m!+1
0,

which contradicts (1.101). ⌅

This theorem corresponds to observability condition (1.77) when considering velocity mea-
surements.

Historically, the multiplier approach – that identify subdomains in which the differ-
ent observability conditions are satisfied– appeared in the 1980s. Shortly thereafter, the
approach was widely adopted in the community, especially through more complicated mul-
tipliers that are often used to establish Carleman estimates (see Chapter 4). In the late
1980s and 1990s, microlocal tools made it possible to specify weaker geometrical condi-
tions on domains to establish observability conditions. The Geometric Control Condition
is introduced by [Bardos et al., 1988] and is used to define geometric conditions on the
domain for which the observability condition holds with internal measurements. In other
words: a subdomain ! is compatible with the following observability condition for a given
T0 if any optic ray following the Descartes rules enters the subdomain before T0

ku0k
2
H1

0(Ω) + ku1k
2
L2(Ω)  Cst

Z T

0
kb @tuk

2
L2(!)dt,

where b is C1(Ω). In this case, this condition is not exactly compatible with the case
we consider where b = !. Let !0 ⇢ !, one possibility is to define a cut-off function
⇢ 2 C1(Ω) such as

⇢(x)

8
><
>:

= 1 in !0,

= 0 in Ω \ !,

2 [0, 1] in ! \ !0.

In this case, we can use the Geometric Control Condition defined by [Bardos et al., 1988],
but we lose information because we do not use all available observations. Some time later,
this type of result was extended to observations at the boundary (see [Bardos et al., 1992]).
This is a more complicated case, since the observation operator is not bounded. We will
deal with this topic in Chapter 2. In the end, we had to wait more than 20 years for
a geometric condition called the strong geometric control condition (SGCC) ([Burq and
Gérard, 2020]) that allows control by a ! function. Here is the definition. For a domain Ω

with analytic boundary @Ω, we define a ray as segments {x⌧ (s), s 2 [0, T ]} of the direction
denoted by ⌧ in the interior of Ω with three different behaviors when encountering the
boundary @Ω: the hyperbolic points (blue line in Figure 1.2), the diffractive points (green
line in Figure 1.2), and the glancing points (red line in Figure 1.2).

Ω

Figure 1.2: The three kind of rays: hyperbolic (blue line), diffractive (green line) and glancing
(red line). Courtesy Philippe Moireau
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Definition 1.4.2 (Strong Geometric Control Condition (SGCC)) Let ! ⇢ Ω and
T0 > 0. We say that the couple (!, T0) satisfies the SGCC if every ray of geometric optics
called generalized geodesic s 7! x⇠(s) from a point ⇠ and traveling at speed one in Ω meets
! in a time t < T0, in the sense

8⇠ 2 Ω, 9s 2 (0, T ), 9� > 0, B(x⇠(s), �) ⇢ !. (1.103)

We say that ! satisfies the SGCC if there exists T0 > 0 such that (!, T0) satisfies the
SGCC. This allows us to state the following result which gives necessary and sufficient
conditions for observability conditions to hold. Let T0 > 0. Let Ω be a domain of analytic
boundary @Ω and ! ⇢ Ω such that (!, T0) satisfies the SGGC, then there exists T > T0

such that (1.100).

This method will be use in another part of the manuscript in Chapter 3.

1.5 An alternative: a Luenberger observer

We present a Luenberger observer inspired by the strategy proposed in [Luenberger, 1963,
1971]. The idea is to replace the operator P that appears in the Kalman filter (1.69) with
an operator that is easier to compute. In our case we choose �Id with � 2 R

+,⇤. More
precisely, we are interested in the following system

(
˙̂z = Aẑ + �C⇤(y� � Cẑ), in (0, T ),

ẑ(0) = 0.
(1.104)

1.5.1 Analysis of the Luenberger observer using observability conditions

Definition of the Luenberger observer

We introduce the function ẑ such that
(
˙̂z = Aẑ + �C⇤(y� � Cẑ), in (0,1),

ẑ(0) = ẑ0,
(1.105)

for a given ẑ0 (typically ẑ0 = 0) and � 2 R
+,⇤ and y� 2 L2(0, T ;Y). Note that the system

defined by (1.105) is well-posed in the sense, there exists a mild solution ẑ 2 C0([0,1);Z).
Indeed, one can prove that A� = A � �C⇤C of domain D(A) is maximal dissipative and
hence by Theorem 1.2.9, we have the existence of a mild solution.

We would like to show that this observer converges to the state of the target system.
However, we no longer have the fundamental identity property linking observer and the
minimization of the cost functional. Therefore, there is no guarantee that this observer
converges to the desired quantity. The proof of convergence relies on a very important tool:
observability conditions. In other words, we must show that we have enough information
in the measurements to be able to reconstruct the state of the system ([Lions, 1988]).

We now analyze the Luenberger observer ẑ defined by (1.104) and show that it converges
to z̄T following [Ramdani et al., 2010].

We have that
˙̌z = Až + �C⇤(y̌ � Cž), in (0,1) (1.106)
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which justifies that ẑ and ž coincide for t � s as soon as ẑ(s) = ž(s) and here y̌ = Cž
(namely it is a noise-free data). We introduce the error system between (1.106) and (1.105).
Let us denote the measurement noise ⌘ = y� � y̌ and the state error z̃ = ž � ẑ, so we have

˙̃z = ˙̌z � ˙̂z

= Až �Aẑ � �C⇤(�y̌ + Cž + y� � Cẑ)

= Az̃ � �C⇤Cz̃ � �C⇤⌘.

Thus, the error is solution of
(
˙̃z = (A� �C⇤C)z̃ � �C⇤⌘, in (0,1),

z̃(0) = z̃0 := ž(0)� ẑ(0),
(1.107)

which is well-defined in C0([0,1);Z). We now demonstrate that ẑ is an asymptotic ob-
server.

Theorem 1.5.1 Assuming that y� 2 L2((0,1);Y), the system defined by (1.105) is an
asymptotic observer if A� �C⇤C is an exponentially stable C0-semigroup.

Thus, proving that the observer property is asymptotic amounts to showing that the gen-
erator A� �C⇤C is exponentially stable.

Let us therefore show that the C0-semigroup is exponentially stable under the observ-
ability condition.

Theorem 1.5.2 We assume that there exists T0 > 0 and Cst such that

8T > T0, 8z0 2 Z,

Z T

0
kCetAz0k

2
Y dt � Cstkz0k

2
Z . (1.108)

Then, the C0-semigroup �̃ associated with A� �C⇤C is exponentially stable.

Therefore, we have proved that the A � �C⇤C operator is exponentially stable. We
illustrate the different results by some numerical examples.

1.5.2 Space and time discretization

In this section we will define the discretization in time and space for Luenberger’s observer
in the context of velocity measurements and then field measurements.
Les us begin with the case of velocity measurements. We intend to construct the observer
dynamics (1.105) starting from an initial guess ẑ0 = 0 using a midpoint scheme, where we
denote ẑ(tn) = ẑn for n 2 [0, N ]
8
><
>:

ẑn+1 � ẑn
⌧

= A
ẑn+1 + ẑn

2
+ �C⇤

 
y�n+1 + y�n

2
� C

ẑn+1 + ẑn
2

!
, in Z = H1

0(Ω)⇥ L2(Ω),

ẑn=0 = ẑ0.

(1.109)
If we set (ẑn)n�0 = ((ûn)n�0 (v̂n)n�0)

t and use the definition of the observation operator
(1.92), we get the following scheme
8
>>>>>>>>><
>>>>>>>>>:

ûn+1 � ûn
⌧

=
v̂n+1 + v̂n

2
, in H1

0(Ω)

v̂n+1 � v̂n
⌧

= ∆0
ûn+1 + ûn

2
+ � !

 
y�n+1 + y�n

2
� I!

v̂n+1 + v̂n
2

!
, in L2(Ω),

ûn=0 = û0,

v̂n=0 = v̂0.

(1.110)
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Classical discretization with Lagrange finite elements (see, e.g., [Brenner and Scott, 2008])
then leads to the solution of the following system in finite-dimensional space Vh ⇥ Vh, in
which the mass matrix is usually denoted by M and the stiffness matrix by K

8
>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

K
Ûh,n+1 � Ûh,n

⌧
= K

V̂h,n+1 + V̂h,n

2
,

M
V̂h,n+1 � V̂h,n

⌧
= �K

Ûh,n+1 + Ûh,n

2
,

+�I⇤!

 
y�h,n+1 + y�h,n

2
� I!

V̂h,n+1 + V̂h,n

2

!
,

Ûh,n=0 = Ûh,0,

V̂h,n=0 = V̂h,0,

(1.111)

where I! selects the degrees of freedom (dofs) on Ω and ûh,n+1 2 Vh and Ûh,n+1 2 Vh are
respectively identified with the vectors of dofs Ûh,n+1 and V̂h,n+1.

In the case of field measurements, we build the observer dynamics (1.105) using the
same procedure as for the case of velocity measurements. Namely, using the definition
of the observation operator (1.93) and its adjoint (1.96), the time discretization of the
observer leads to

8
>>>>>>>>><
>>>>>>>>>:

ûn+1 � ûn
⌧

=
v̂n+1 + v̂n

2
+ �E!

 
y�n+1 + y�n

2
� I!

ûn+1 + ûn
2

!
, in H1

0(Ω),

v̂n+1 � v̂n
⌧

= ∆0
ûn+1 + ûn

2
, in L2(Ω),

ûn=0 = û0,

v̂n=0 = v̂0.

(1.112)

Before discretizing in space, following the methodology of [Moireau et al., 2009; Impe-
riale et al., 2021], we replace the operator E! by a penalized version. Namely, we define
E↵
! : L2(!) ! H1

0(Ω) by , for all y 2 L2(!),

E↵
!y = u↵ where u↵ is solution of

8
><
>:

�∆u↵ = 0, in Ω \ !,

�↵2
∆u↵ + u↵ = y, in !,

u↵ = 0, on @Ω.

(1.113)

In Section 1.5.3.1 we will analyze and give several properties of this operator, in particular
we will show that E↵

! converges to E!. Approximation and stability properties will be
given. From the definition (1.113), we can deduce an explicit form of E↵

!

E↵
! = (�↵2

∆0 + I⇤!I!)
�1I⇤!, (1.114)

where I! 2 L(L2(Ω),L2(!)) is the restriction operator and its adjoint is the L2-extension
by 0 namely !.
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Therefore, the space discretization of (1.112) reads to
8
>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

K
Ûh,n+1 � Ûh,n

⌧
= K

V̂h,n+1 + V̂h,n

2

+�K(↵2
K + IT! I!)

�1IT!

 
y�h,n+1 + y�h,n

2
� I!

Ûh,n+1 + Ûh,n

2

!
,

M
V̂h,n+1 � V̂h,n

⌧
= �K

Ûh,n+1 + Ûh,n

2
,

Ûh,n=0 = Ûh,0,

V̂h,n=0 = V̂h,0.

(1.115)
To avoid having to invert an operator, we multiply the first line of (1.115) with

(↵2
K + IT! I!)K

�1 and obtain
8
>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(↵2
K + IT! I!)

Ûh,n+1 � Ûh,n

⌧
= (↵2

K + IT! I!)
V̂h,n+1 + V̂h,n

2

+�IT!

 
y�h,n+1 + y�h,n

2
� I!

Ûh,n+1 + Ûh,n

2

!
,

M
V̂h,n+1 � V̂h,n

⌧
= �K

Ûh,n+1 + Ûh,n

2
,

Ûh,n=0 = Ûh,0,

V̂h,n=0 = V̂h,0.

(1.116)

Now that we have the space and time schemes of our two Luenberger observers, we can
present some numerical illustrations.

Numerical illustrations

We represent in Figure 1.3 the domain Ω and the observation subdomain ! over which
we have observations of the system. The domain mesh is shown in Figure 1.4. All the

ωΩ

1

Figure 1.3: Representation of Ω and !

following examples have been coded with Freefem++ [Hecht, 2012] with P1 finite element
discretization with 14847 degrees of freedom (dofs).

As an example, we consider the following wave equation
8
>>>><
>>>>:

@ttu(x, t)�∆u(x, t) = 0, (x, t) 2 Ω⇥ (0, T ),

u(x, t) = 0, (x, t) 2 @Ω⇥ (0, T ),

u(x, 0) = u0(x), x 2 Ω,

@tu(x, 0) = 0, x 2 Ω,

(1.117)
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Figure 1.8: Evolution of the relative error Ê and the target energy Ě(left) and the error energy
Ẽ(right) over the time
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Figure 1.9: Evolution of the relative error Ê/Ě for T = 10 (left) and T = 100 (right)

shown in Figure 1.10 (left).
However, if we increase the number of eigenvalues represented, the high frequencies affect
the exponential stability property. As illustrated in Figure 1.10 (right), there are in this
case, some eigenvalues on the imaginary axis. In Figure 1.9 (right) we notice that the
decay is no longer linear after a certain time. This gives an illustration of the loss of the
uniform exponential stability property caused by the discretization.
Indeed, as we will see in Chapter 2 and in [Delaunay et al., 2023], spatial discretization
can alter the exponential stability property. In fact, numerical pollution can destroy this
property at the discrete level, and we will explore new remedies to address this.

We have seen that the available measurements are noisy. Therefore, we introduce an
artificial noise ��h such that k��hk

2
L2(0,T ;L2(!))  �2T – see Figure 1.11. We define, at each

time n, the discretized noise data as

�
�,n
h =

�
p
TNmod

vuut⌧

NX

n=1

kyh,nk
2
L2(!)

NmodX

i=0

⇠ni Φi, (1.118)

where Φ are the Nmod Laplacian modes and ⇠ are independent and identically distributed
Gaussian variables in N(0, 1) and N = T/⌧ . The idea is to simulate an additive white
Gaussian noise such that the order of magnitude of the error is a fixed percentage of the
L2 norm of the observations [Lord et al., 2014].
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Figure 1.13: Evolution of the observer energy Ê and the target energy Ě(left) and the error
energy Ẽ (right) over the time from noisy measurements
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Figure 1.14: Evolution of the relative error Ê/Ě

58







1.5. An alternative: a Luenberger observer

0 2 4 6 8 10

0

20

40

time

Observer energy

Target energy

0 2 4 6 8 10

10
−2

10
−1

10
0

10
1

10
2

time

Figure 1.17: Evolution of the observer energy Ê and the target energy Ě (left) and the error
energy Ẽ(right) over the time from field measurements
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Figure 1.18: Evolution of the relative error Ê/Ě over the time
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Figure 1.19: Representation of the 400 eigenvalues of A� �C∗C with � = 20 and with a mesh
with 3603 degrees of freedom
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1.5.3 Luenberger observer: find an alternative method for dealing with

less regular measurements

We will study two methods for dealing with less regular measurements. The first is to
regularize the measurements and then consider the previously defined estimations. To
do this, we introduce a regularization of the adjoint of the observation operator, which
regularizes the observations at the same time. The second method aims at looking at the
inverse problem in weaker space.

1.5.3.1 Regularize-then-invert strategy

The idea of this section is to replace the operator C⇤ = (E! 0)t with a regularization
operator G↵

! that would lift the noisy measurements (which is defined in a larger space
y� 2 L2(!)). To this purpose, we use the operator E↵

! , which is a penalization of the
operator E! and that we have already introduced in Section 1.5.2.

Different properties on the regularization operator

Let us show that this regularization operator E↵
! tends towards the E! operator. To do

this, we need the following abstract theorem.

Theorem 1.5.3 Let V ,! B, two Hilbert spaces. Let a(·, ·) be a bilinear, symmetric,
continuous and coercive form in V . Let b(·, ·) be a bilinear, symmetric, continuous and
nonnegative form in B. We define the set Ky, for each y 2 B

Ky = {u 2 V, b(u� y, u� y) = 0}.

Denote respectively u↵ = argmin
v2H1

0(Ω)

J ↵(v) with J (v) =
1

2
a(v, v) +

1

2↵2
b(v � y, v � y). The

solution u↵ converges to u. Denote respectively

u = argmin
v2Ky

J (v) and u↵ = argmin
v2V

J ↵(v),

the minimizers of the following functionals

J (v) =
1

2
a(v, v) and J ↵(v) =

1

2
a(v, v) +

1

2↵2
b(v � y, v � y),

then ku↵ � ukV !
↵!0

0.

Proof: The proof is inspired by [Maury, 2009].
Step 1: weak convergence
The family (J ↵) is uniformly elliptic, thus ku↵kV is bounded. We extract a sub-sequence
also denoted u↵ such that (u↵)* u 2 V . Since J ↵(v) � J (v) and u↵ minimizes J ↵, then
we have, 8z 2 Ky

J (u↵)  J ↵(u↵)  J ↵(z). (1.119)

However, we have

J ↵(z) =
1

2
a(z, z) +

1

2↵2
b(z � y, z � y).

The last term is null since z 2 Ky, this implies in particular,

J ↵(z) = J (z). (1.120)

62



1.5. An alternative: a Luenberger observer

As J is convex and continuous, we have, using (1.119) and (1.120),

J (u)  liminf J (u↵)  J (z).

We also obtain that
1

2
a(u↵, u↵) +

1

2↵2
b(u↵ � y, u↵ � y) = J (u↵) +

1

2↵2
b(u↵ � y, u↵ � y),

= J ↵(u↵)  J (z).

This implies that
1

2↵2
b(u↵ � y, u↵ � y) is bounded uniformly in ↵. Thus, we obtain

b(u↵ � y, u↵ � y) ! 0
↵!0

.

Since b is lower semi-continuous and Iu↵ � y *
B

Iz � y, we have

0  b(u� y, u� y)  liminf b(u↵ � y, u↵ � y) = 0.

Therefore, we have u 2 Ky, and it implies that u is the minimizer of J .
Step 2: strong convergence
We show the strong convergence, namely that a(u↵, u↵) ! a(u, u) – since a is coercive in
V . The functional u 7! a(u, u) is lower semi continuous and u↵ * u thus we have

a(u, u)  liminf a(u↵, u↵).

And from (1.119) and (1.120) we finally get

a(u↵, u↵)  a(u, u),

which implies the convergence ku↵kV !
↵!0

kukV , hence the strong convergence. ⌅

Thanks to this theorem, we can obtain an approximation property. We cannot prove the
rate of convergence of this operator E↵

! (�) to E!(�) if � 2 H1(!) is in the H1
0 norm. Indeed,

the problem does not satisfy the classical inf-sup condition (see [Girault and Raviart, 1986,
Chapter1, Section 4]). Therefore, we cannot ensure that convergence is in ↵2 ([Maury,
2009]).

Theorem 1.5.4

For � 2 H1(!), 9↵ such that kE↵
! (�)� E!(�)kH1

0(Ω)  f(↵,�),

where f is a continuous function and f(↵) !
↵!0

0.

Proof: We rewrite the operator E! defined by (1.57) as a constrained minimization
problem.

E!y = argmin
u|!=y

1

2
kruk2L2(Ω), (1.121)

The operator E↵
! is then described as the penalization of this minimization problem.

E↵
!y = argmin

u2H1
0(Ω)

1

2
kruk2L2(Ω) +

1

2↵2
ky � uk2L2(!). (1.122)

Setting V = H1
0(Ω) and B = L2(!), we can then apply the Theorem 1.5.4 by posing

a(·, ·) = (·, ·)H1
0(Ω) and b(·, ·) = (·, ·)L2(!). ⌅

An important property is the stability of this operator.
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Proposition 1.5.5 The regularization operator E↵
! satisfies, 8y 2 L2(!)

kE↵
!ykH1

0(Ω) 
1

p
2↵

kykL2(!).

Proof: We denote u↵ = E↵
!y 2 H1

0(Ω) . The operator E↵
! satisfies the following varia-

tional formulation 8v 2 H1
0(Ω),

Z

Ω

ru↵rvdx+
1

↵2

Z

!

u↵vdx =
1

↵2

Z

!

yvdx.

Choosing the test function v = u↵ and using Cauchy–Schwarz and Young inequalities, we
finally get

kru↵k
2
L2(Ω) 

1

2↵2
kyk2L2(!).

⌅

From the definition (1.113), we recall that we can deduce the explicit form of E↵
! , we

have
E↵
! = (�↵2

∆0 + I⇤!I!)
�1I⇤!, (1.123)

where I! 2 L(L2(Ω),L2(!)) is the restriction operator and its adjoint is the L2-extension
by 0 namely !.
It is possible to rewrite the operator E↵

! in another way, using another operator denoted
R↵ for which interesting properties can be deduced.

Proposition 1.5.6 For all u 2 H1
0(Ω) and y 2 L2(!), we have the following property

(rE↵
!y, u)L2(Ω) = (R↵y, u|!)L2(!),

where R↵ : L2(!) ! L2(!) is defined by

R↵ = (�I!∆
�1
0 I⇤! + ↵2

!)
�1.

Proof: Using the definition of the operator E↵
! and the isomorphism property of �∆0

we get

(u,E↵
!y)H1

0(Ω) = (ru,r((�↵2
∆0 + I⇤!I!)

�1I⇤!y))L2(Ω),

= (u,�∆0((�↵
2
∆0 + I⇤!I!)

�1I⇤!y))L2(Ω),

With some elementary manipulations, we can then obtain

(u,E↵
!y)H1

0(Ω) = (u,�∆0(�↵
2
∆0 + I⇤!I!)

�1I⇤!(�I!∆
�1
0 I⇤! + ↵2

!)

⇥ (�I!∆
�1
0 I⇤! + ↵2

!)
�1y)L2(Ω),

= (u,�∆0(�↵
2
∆0 + I⇤!I!)

�1(�I⇤!I! + ↵2
∆0)

⇥∆
�1
0 I⇤!(�I!∆

�1
0 I⇤! + ↵2

!)
�1y)L2(Ω),

= (u, I⇤!(�I!∆
�1
0 I⇤! + ↵2

!)
�1y)L2(Ω).

⌅

We can show that this operator R↵ is a positive operator.
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Proposition 1.5.7 For all y 2 L2(!), there exists a positive scalar Cst such that

kyk2L2(!) 
(Cst + ↵2)2

↵2
(R↵

!y, y)L2(!).

Proof: The definition of the operator R↵ leads to

(R↵
!y, y)L2(!) = (R↵

!y, (R
↵
!)

�1R↵
!y)L2(!),

= (R↵
!y, (�I!∆

�1
0 I⇤! + ↵2

!)R
↵
!y)L2(!).

Since �I!∆
�1
0 I⇤! is positive, we obtain

(R↵
!y, y)L2(!) � ↵2kR↵yk2L2(!). (1.124)

On the other hand, setting � = R↵y, we have

kyk2L2(!) = (y, (R↵)�1�)L2(!) = (y, (�I!∆
�1
0 I⇤! + ↵2

!)�)L2(!).

One can prove that �I!∆
�1
0 I⇤! is bounded, therefore we get

kyk2L2(!)  (Cst + ↵2)kykL2(!)k�kL2(!).

The above equation leads to

kykL2(!)  (Cst + ↵2)kR↵ykL2(!). (1.125)

Combining (1.124) and (1.125), we find the desired result. ⌅

Following a similar proof, we can even prove that R↵ is equivalent to the L2(!) norm.

The weakened Luenberger observer

Now that we have given the necessary properties of the operator E↵
! , we introduce the

regularized Luenberger observer.
(
˙̂z = Aẑ + �G↵(y� � Cẑ), in (0,1),

ẑ(0) = ẑ0,
(1.126)

where G↵ = (E↵
! 0)t 2 L(L2(!),Z) and C 2 L(Z,H1(!)) is defined by (1.93). We will

now show that there are solutions to this dynamics.

Proposition 1.5.8 Let T > 0 and ẑ0 2 Z, y� 2 Lp((0,1);Y), p � 1, the system defined
by (1.126) is well-posed in the sense, there exists a mild solution ẑ 2 C0([0,1);Z).

Proof: Let us prove that A � �G↵C of domain D(A) is maximal dissipative. For all
z 2 Z, we have

(z, (A� �G↵C)z)Z = (z,Az)Z � �(z,G↵Cz)Z .

Since A is skew-adjoint and using Proposition 1.5.6, we get

(z, (A� �G↵C)z)Z = ��(u,E↵
!u|!)H1

0(Ω) = ��(u|!, R
↵u|!)L2(Ω).

Using Proposition 1.5.7 we have established that the above product scalar is positive,
therefore A� �G↵C is dissipative. Let us show the maximal property of A� �G↵C. Let
� > 0, � 2 Z, we seek z 2 D(A) such that

(Id � �(A� �G↵C))z = � =) (Id � �A)z = � � �G↵Cz
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We introduce the application F : D(A) 3 z = (Id � �A)�1(� � ��G↵Cz) 2 Z satisfies

kF (z1)� F (z2)kZ  ��kG↵kkCkkz1 � z2kZ .

Using the stability result of Proposition 1.5.5, we obtain

kF (z1)� F (z2)kZ 
��
p
2↵

kCkkz1 � z2kZ .

Thus, there exists � <
p
2↵(�kCk)�1, so that F is a contraction. By the contrac-

tion mapping principle , (Id � �(A � �G↵C)) is surjective from Z to D(A). Moreover,
�G↵y� 2 Lp((0,1);Y), so by Theorem 1.2.9 for all T � 0 there is a unique mild solution
ẑ 2 C0([0, T ];Z) by (1.126). ⌅

Stability of the Luenberger observer

By contrast with the previous section, we cannot show the exponential stability of A� �G↵C.
On the other hand, we can still show some asymptotic stability.

Theorem 1.5.9 The following two propositions are equivalent.

1. For all u eigenvector of �∆0 such that I!u ⌘ 0 =) u ⌘ 0.

2. For all solutions z of
(
ż � (A� �G↵C)z = 0,

z(0) = z0 = (u0 u1) 2 H1
0(Ω)⇥ L2(Ω),

(1.127)

we have lim
t!1

kzk2Z ! 0.

Proof: For the sake of compactness we only prove that the first property implies the
second. The proof is inspired by [Burq and Gérard, 2002]. Let us show that the first
property implies the second one. We show the second property for (u0 u1) 2 D(A), the
result is extended by density to Z. Assume that the second property is not satisfied, then
there exists (tn) ! +1 such that kz(tn)k

2
Z does not converge to 0. The energy of (1.127)

is decreasing. Using Proposition 1.5.6 we have in fact

E(t) :=
1

2
kz(t)k2Z = E(0)� �

Z t

0
(G↵Cz(s), z(s))Zds,

= E(0)� �

Z t

0
(E↵

!u|!(s), u(s))H1
0(Ω)ds,

= E(0)� �

Z t

0
(R↵u|!(s), u|!(s))L2(!)ds,

and since R↵ is positive by 1.5.7, the energy is decreasing. Therefore, we have

lim
s!+1

kz(s)k2Z = � > 0.

From the Duhamel formula ((1.5)) we get z(tn) = e�tn(A��G↵C)z0, and it is bounded in
D(A). Indeed, we have

kz(tn)k
2
Z = 2E(tn)  2E(0),
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and
kAz(tn)k

2
Z = 2Ẽ(tn)  2Ẽ(0),

where Ẽ is the energy associated with the following system
(
˙̃z � (A� �G↵C)z̃ = 0,

z̃(0) = Az0.

The embedding of D(A) in Z is compact, so there exists a subsequence (tnk
) such that

z(tnk
) ! zw0 := (w0 w1)

t in Z. We introduce the following solution

zw(t) = (w y)t = e�t(A��G↵C)zw0 .

We have

e�t(A��G↵C)zw0 = lim
k!1

e�t(A��G↵C)z(tnk
),

= lim
k!1

e�(t+tnk
)(A��G↵C)z0.

Since E(t) is decreasing, we obtain

kzwk
2
Z = lim

s!1
kz(s)k2Z = kzw0k

2
Z = � > 0.

Thus, for all t > 0,
(R↵w,w)L2(!) = 0.

This implies, in particular using Proposition 1.5.7, for all t > 0

kwkL2(!) = 0.

In other words, zw is the solution of
(
żw = Azw,

zw(0) = zw0 = (w0 w1)
t.

We decompose w on a Hilbert basis of L2(Ω) formed by the eigenvectors of �∆0.

w(t) =
1X

1

⇣
w⌫,+e

it
p
�⌫ + w⌫,�e

�it
p
�⌫
⌘

with �⌫ 6= �µ if ⌫ 6= µ, (1.128)

and
w(0) =

X
(w⌫,+ + w⌫,�) = w0 =

X
w⌫,0,

and
@tw(0) =

X
i
p
�⌫ (w⌫,+ + w⌫,�) = w1 =

X
w⌫,1.

We have w0 2 H1
0(Ω) and w1 2 L2(Ω), thus

1

2

1X

1

(kw⌫,+kL2 + kw⌫,�kL2) = kw0k
2
H1

0(Ω) + kw1k
2
L2  +1.

We fix ⌫0 � 1 and we set

y(T, x) =
1

T

Z T

0
@tw(t, x)e

�it
p
�⌫0dt.
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Furthermore, we have

y(T, x) = i
p
�⌫0w⌫0,+(x) +

X

⌫ 6=⌫0

i
p
�⌫

iT
�p
�⌫ �

p
�⌫0

�
⇣
eiT (

p
�⌫�

p
�⌫0 ) � 1

⌘
w⌫,+

�
1X

⌫=1

i
p
�⌫

iT
�p
�⌫ +

p
�⌫0

�
⇣
e�iT (

p
�⌫+

p
�⌫0 ) � 1

⌘
w⌫,�.

This leads to
y(T, x)� i

p
�⌫0w⌫0,+(x) !

T!1
0 in L2(Ω).

Since we have y|! = 0, this implies that w⌫0,+ = 0 on ! and thus using the second property,
w⌫0,+ = 0. In exactly the same way, we can show that we have w⌫0,� = 0. Finally, we have
w = 0, which contradicts (1.128). ⌅

To show that the Luenberger observer is stable, we need to show that the first property
of Theorem 1.5.9 is satisfied. To do this, we give the stabilization property for the following
dynamics

(
ż � (A� �C⇤C)z = 0, where C = (I! 0) : Z ! H1(!),

z(0) = z0 2 H1
0(Ω)⇥ L2(Ω),

(1.129)

which we know from Theorem 1.5.2 is exponentially stable.

Proposition 1.5.10 We have implication relations for the following properties: 1. =)
2. =) 3. =) 4.

1. For all solutions z of (1.129), lim
t!1

kz(t)k2Z = 0.

2. For all (u0 u1)
t eigenvectors of A��C⇤C, with eigenvalues �, satisfies the solution

z of (1.129) lim
t!1

kz(t)k2Z = 0.

3. For all (u0 u1)
t eigenvectors of A� �C⇤C such that I!u0 ⌘ 0, u ⌘ 0.

4. For all u-eigenvectors of �∆0 such that I!u ⌘, then u ⌘ 0.

Proof: We have that 1. =) 2. trivially.

Let us show that 2. =) 3.. For all (u0 u1)
t eigenvectors of A� �C⇤C we have

e�t(A��C⇤C)

 
u0

u1

!
= e�t�

 
u0

u1

!
.

Moreover, we have

d

dt
E(t) :=

1

2

d

dt
kz(t)k2Z = �

Z

Ω

|I!u(x, t)|
2dx = e�2tRe�

Z

Ω

|I!u0|dx.

Therefore, the energy is constant when I!u0 = 0. However, E(t) ! 0, so E(0) = 0 and
u0 = u1 = 0. Let us show that 3. =) 4.. Let u be an eigenvector of �∆0 associated
with the eigenvalue w satisfying the condition I!u = 0. We know that w > 0 and that
(u i

p
wu) is an eigenvector of A� �C⇤C associated with eigenvalue i

p
w which satisfies

p
zI!u0 = 0, so it follows that u ⌘ 0. ⌅
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Figure 1.22: Evolution of the observer energy Ê(t) and the target energy Ě(t)(left) and the error
energy Ẽ(t)(right) over the time from noisy field measurements
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Figure 1.23: Evolution of relative error Ẽ(t)/Ě(t) (left)

1.5.3.2 Invert-then-regularize strategy

Let us present the second method. This time, the idea is to change the definition of the
observation operator. In particular, we will extend its codomain to L2. Noisy measurements
will therefore belong to this space. Then we will not need to regularize the measurements.
This is done directly using the adjoint of the observation operator. We will see that the
advantage of this method is that it does not require the introduction of a regularization
operator. On the other hand, the convergence of the associated observer is exponentially
stable in a weaker space and relies on the proof of an observability condition in a weaker
energy space. As we will see in Chapter 3, this method is well suited when we have a proof
of observability proven in a weaker energy space. We consider internal field measurements
y = u|! 2 Y = L2(!). We define

C =
⇣
I! 0

⌘
:

�������

H1
0(Ω)⇥ L2(Ω) ! L2(!),

z =

 
u

v

!
7! y = u|!,

(1.131)
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where I! : H1
0(Ω) ! L2(!) is the restriction operator. We recall that the adjoint observa-

tion is given by C⇤ =
⇣
F! 0

⌘t
where F! 2 L(L2(!),H1

0(Ω)) is defined by

F!� :=  the solution of

(
�∆ = !�, in Ω,

 = 0, on @Ω,
(1.132)

where ! is the characteristic function of !. With this definition of C, we can now use
the dynamics (1.105) of the Luenberger observer ẑ 2 C([0,1);Z). However, we show that
the price of weakening the regularity of the observation space Y is that the semigroup
associated with A� �C⇤C is exponentially stable, but in a weaker space L2(Ω)⇥H�1(Ω)
instead of in the energy space H1

0(Ω)⇥ L2(Ω). Indeed, we will show that the observability
condition associated with the observation operator C is in weakened norm (1.133). We
will see that the price for the weakening of the observation space Y is also the weakening
of the space of initial conditions Z.

Theorem 1.5.11 Under the hypothesis of Theorem 1.4.8, we have also
Z T

0

Z

!

|u|2dxdt � Cst
⇣
ku0k

2
L2(Ω) + kv0k

2
H�1(Ω)

⌘
. (1.133)

Proof: We introduce w(t) =

Z t

0
u(s)ds + ⌘ where ⌘ is the solution of the following

system (
�∆⌘ = v0, in Ω,

⌘ = 0, on @Ω.

The variable w satisfies the following equation

@ttw �∆w = @tu�

Z t

0
∆uds�∆⌘

= @tu�

Z t

0
∆uds� v0.

Integrating the first equation of (1.1) in time, we find that

@ttw �∆w = 0.

We can then apply the observer condition (1.100) of Theorem 1.4.8 to w, which is the
solution of the following dynamics

8
>>>><
>>>>:

@ttw(x, t)�∆w(x, t) = 0, (x, t) 2 Ω⇥ (0, T ),

w(x, t) = 0, (x, t) 2 @! ⇥ (0, T ),

w(x, 0) = ⌘(x), x 2 Ω,

@tw(x, 0) = u0(x), x 2 Ω,

which gives us
Z T

0

Z

!

|@tw(x, t)|
2dxdt � Cst

⇣
k⌘k2H1

0(Ω) + ku0k
2
L2(Ω)

⌘
.

Since the Laplace operator with Dirichlet boundary conditions �∆0 defines an isomor-
phism from H1

0 to H�1, the result follows immediately. ⌅
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Theorem 1.5.12 We assume that there exist Cst such that

8T > T (x0),

Z T

0
kuk2L2(!) dt =

Z T

0
kCetAz0k

2
L2(!) dt � Cstkz0k

2
L2(Ω)⇥H�1(Ω). (1.134)

Then, the C0-semigroup �̃ associated with A� �C⇤C is exponentially stable.

Proof: The proof is divided into two steps.
Step 1: First we prove an observability inequality, namely that there exists Cst > 0 such
that

8T � T (x0), 8z0 2 Z,

Z T

0
kCz̃(t)k2L2(!) dt � Cstkz0k

2
L2(Ω)⇥H�1(Ω),

where z̃ is solution of (
˙̃z = (A� �C⇤C)z̃, in (0, T ),

z̃(0) = z0.
(1.135)

Using the Duhamel formula (1.5) we have that

z̃ = et(A��C⇤C)zz0.

As in the proof of Theorem 1.5.12 we decompose z̃ in z̃ =  + ⌘ where
(
 ̇ = A , in (0, T )

 (0) = z0,
and

(
⌘̇ = A⌘ � �C⇤Cz̃, in (0, T )

⌘(0) = 0.

The observability condition (1.108) gives

Cstkz0k
2
L2(Ω)⇥H�1(Ω) 

Z T

0
kC k2L2(!) dt  2

Z T

0
kCz̃k2L2(!) + 2

Z T

0
kC⌘k2L2(!).

Let us focus on the last term on the right-hand side. We have

⌘(t) = ��

Z t

0
e(t�s)AC⇤Cz̃(s) ds,

which gives

k⌘(t)kZ  �

Z t

0
e(t�s)�kCkL(Z,L2(!))kCz̃(s)kL2(!) ds

 CstkCkL(Z,L2(!))

⇣1� e��T

2�

⌘ 1
2
kCz̃kL2((0,T );L2(!)).

Finally, there exist  > 0, so that

kz0k
2
L2(Ω)⇥H�1(Ω)  

Z T

0
kCz̃(t)k2L2(!) dt, (1.136)

Step 2: Now for each solution z̃ = (ũ ṽ)t in D(A) of (1.135)

( ˙̃z, z̃)L2(Ω)⇥H�1(Ω) = ((A� �C⇤C)z, z̃)L2(Ω)⇥H�1(Ω),

leads to

( ˙̃u, ũ)L2(Ω) + ( ˙̃v, ṽ)H�1(Ω) = (ṽ, ũ)L2(Ω) + (∆0ũ, ṽ)H�1(Ω) � �(Cz̃, Cz̃)L2(!).
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Defining the H�1-norm by (·, ·)H�1(Ω) = (∆�1
0 ·,∆�1

0 ·)H1
0(Ω), we get

1

2

d

dt

⇣
kuk2L2(Ω) + kvk2H�1(Ω)

⌘
= (ṽ, ũ)L2(Ω) + (rũ,r∆

�1
0 ṽ)L2(Ω) � �kCz̃k2L2(!).

Finally, integrating by part, we obtain

1

2

d

dt
kz̃k2L2(Ω)⇥H�1(Ω) = ��kCz̃k2L2(!).

Combined with (1.136), we find

1


kz̃(t� T )k2L2(Ω)⇥H�1(Ω) 

Z t

t�T
kCz̃(t)k2L2(!) dt 

1

2�
kz̃(t� T )k2L2(Ω)⇥H�1(Ω).

Reasoning as in the proof of Theorem 1.5.2, we obtain with � = � ln(1� ⇢)/T > 0 where
⇢ = 2�


2 (0, 1),

8t > 0, kz̃(t)kL2(Ω)⇥H�1(Ω)  e
�
2
T e�

�
2
tkz̃(0)kL2(Ω)⇥H�1(Ω),

which ensures that there exist Cst, �̃ > 0 such that for all t > 0, the semigroup �̃

satisfies k�̃(t)k  Cste��̃t. ⌅

It has been shown that the observer in the weaker space L2(Ω)⇥H�1(Ω) is exponentially
stable. However, the solution of this observer is then defined in a weaker space. Therefore,
we will work in the space H1

0(Ω) ⇥ L2(Ω) even though we have no proof of exponential
stability in this space. We will use this method in Chapter 3, as we will demonstrate an
observability inequality where the norm of the parameter is in a weaker space.

The spatial and temporal discretization of this weak Luenberger observer results in
8
>>>>>>>>>><
>>>>>>>>>>:

K
Ûh,n+1 � Ûh,n

⌧
= K

V̂h,n+1 + V̂h,n

2
+ �IT!

 
y�h,n+1 + y�h,n

2
� I!

Ûh,n+1 + Ûh,n

2

!
,

M
V̂h,n+1 � V̂h,n

⌧
= �K

Ûh,n+1 + Ûh,n

2
,

Ûh,n=0 = Ûh,0,

V̂h,n=0 = V̂h,0.

(1.137)
We see in Figure 1.24 and 1.25 that we can reconstruct the state of the system from noisy
field measurements but you have to wait much longer than with the method regularize-
then-invert (see Figure 1.21) even with a larger parameter �.

As we can see in Figure 1.25, the energy of the observer system reaches the energy of
the target system even with noisy measurements, but the convergence takes much longer.
As shown in Figure 1.26, the reconstruction is slower than the other method (see Figure
1.23). In fact, you have to wait until T = 10 to get an error within 10%. On the other
hand, the error rate decreases with time, reaching 1% at t = 2 and 0.3% at t = 40.
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Figure 1.25: Evolution of the observer energy Ê(t) and the target energy Ě(t) (left) and the error
energy Ẽ(t) (right) over the time from noisy field measurements
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Figure 1.26: Evolution of relative error Ẽ/Ě (left) over the time

1.5.4 Reconstruction of the initial conditions: the Back and forth algo-

rithm

The following method, introduced by [Ramdani et al., 2010], consists in using the available
measurements and benefiting from the time reversibility of the wave equation to reconstruct
the initial conditions. See [Imperiale et al., 2020] for a generalization with unbounded
domain.

Observers are systems that asymptotically estimate in time the state of a target system.
To use an observer to reconstruct initial conditions, we need to reintroduce a fixed time
period (0, T ) and use the time reversibility of the wave equation to look back for an initial
condition. Thus, we introduce the so-called backward observer, which is defined by

(
˙̂zb = Aẑb � �C⇤(y� � Cẑb), in (0, T )

ẑb(T ) = ẑ(T ).
(1.138)

The dynamics is well posed as soon as �A is the generator of a C0-semigroup and C is
bounded, which is the case here as A⇤ = �A, namely A is skew-adjoint.

The backward dynamics– called the Back and forth – imagined by [Ramdani et al.,
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2010] allows us to define the following reconstruction algorithm

(B&F) :

8
>>>>>>><
>>>>>>>:

˙̂zk+1 = Aẑk+1 + �C⇤
⇣
y� � Cẑk+1

⌘
, in [0, T ],

ẑk+1(0) = ẑkb (0),

˙̂zk+1
b = Aẑk+1

b � �C⇤
⇣
y� � Cẑk+1

b

⌘
, in [0, T ],

ẑk+1
b (T ) = ẑk+1(T ),

(1.139)

which turns out to be an original reconstruction strategy of the target initial condition
ž(0) of an observed corresponding target trajectory ž : t 7! etAž(0). This method has the
advantage of being effective. It is also less costly than the method presented in Section
1.4.3, which required computing a Riccati operator. Unlike the gradient descent method
(or any other iterative method) presented in Section 1.3.5, it does not rely on minimizing
the criterion JT . Moreover, this method relies on the time-reservability property of the
wave equation and therefore cannot necessarily be extended to dissipative of systems.

1.6 Towards identification problem

We have proved that using the solutions given by the semigroup formalism has the advan-
tage of avoiding a constrained minimization problem and that the obtained solutions are
equivalent to variational solutions. One way to solve our state estimation problem is to use
a Kalman filter, a sequential approach which is equivalent to the minimization of a least
squares criterion. However, the computation can be numerically costly since it involves a
Riccati operator. Therefore, we reviewed an alternative: using a Luenberger observer, it
is possible to recover the state of the system from unknown initial conditions by introduc-
ing the error between the measurements we have on the system and the target solution,
without computing this Riccati operator. The proof of convergence relies on observability
inequalities, which are important tools in inverse problems and will be studied in more
detail in all subsequent chapters of the manuscript. When the noise is defined in a space
less regular than the space of observations, we have explored two methods to deal with
it: regularize-then-invert and invert-then-regularize. Both imply a change in the definition
of the observation operator and consequently its adjoint. For the first method we have
proved that the Luenberger associated is stable, while for the second we have shown that
we have the exponential stability property, but in a weaker space. A natural question is
how we can extend these methods to the case of parameter estimation. Let us take the
simplest case, that of reconstructing the ✓ parameter in the following wave equation

8
>>>><
>>>>:

@ttu(x, t)�∆u(x, t) = ✓(x), (x, t) 2 Ω⇥ (0, T ),

u(x, t) = 0, (x, t) 2 @Ω⇥ (0, T ),

u(x, 0) = 0, x 2 Ω,

@tu(x, 0) = 0, x 2 Ω.

(1.140)

We assume that we have observed the velocity of a target solution @tǔ, and that we have
access to a noisy version of these observations y� 2 L2(0, T ; L2(!)),

Z T

0
k@tǔ� y�k2L2(!)dt  �2T. (1.141)

We look at two methods that lead back to an initial conditions problem.
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1.6.1 Source term identification by derivation strategy

As far as observability is concerned, it is important to rewrite the source estimation problem
as a state estimation problem. To do this, we pose v = @tu. Thus, (1.140) is rewritten as
follows 8

>>>><
>>>>:

@ttv(x, t)�∆v(x, t) = 0, (x, t) 2 Ω⇥ (0, T ),

v(x, t) = 0, (x, t) 2 @Ω⇥ (0, T ),

v(x, 0) = 0, x 2 Ω,

@tv(x, 0) = ✓(x), x 2 Ω,

(1.142)

which can be rewritten as a first-order system by setting z = (v @tv)
t,

8
<
:
ż(t) = Az(t), t 2 (0, T ),

z(0) =
⇣
0 ✓

⌘t
.

(1.143)

Then, the key idea is to show an observability inequality on (1.143). We use a similar
approach when we will study a slightly more complicated case in Chapter 3, with the source
term of the form �(t)✓(x).

1.6.2 Source term identification by joint state-parameter system

The idea is to artificially add the dynamics of ✓ (which does not depend on time) as
proposed in [Moireau et al., 2008], in other words we study

8
>>>><
>>>>:

ż(t) = Az(t), t 2 [0, T ],

✓̇(t) = 0, t 2 [0, T ],

z(0) = z0,

✓(0) = ✓.

(1.144)

Returning to an initial condition problem, we introduce the augmented system

z =

 
z

✓

!
2 Z := Z ⇥ P, (1.145)

which is the solution of
8
<
:
ż(t) = Az(t),

z(0) = z0 :=
⇣
z0 ✓

⌘t
,

where A =

 
A Id

0 0

!
. (1.146)

Obviously, the observation operator must be extended for this augmented system namely,
we set

C =
⇣
0 C

⌘
2 L(Z,Y), (1.147)

where C is defined by (1.92) in the case of velocity measurements with Y = L2(!) and
in the case of field measurements by (1.93) with Y = H1(!). This brings us back to the
situation in Section 1.3.3, where we can define the cost functional using the augmented
operators, namely we introduce

JT =
✏

2
kz0k

2
Z +

1

2

Z T

0
kCz|z0

(t)� y�(t)k2Y dt, (1.148)
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and the minimization of the cost functional leads to the following two-ends problem
8
>>>><
>>>>:

˙̄zT = Az̄T , in (0, T ),

˙̄qT +A⇤q̄T = �C⇤(y� �Cz̄T ), in (0, T ),

z̄T (0) = ✏�1q̄T (0),

q̄T (T ) = 0.

(1.149)

So the rest of the analysis is similar to what we did before. Obviously, we can define the
Kalman filter which is equivalent to minimizing the cost functional:

(
˙̂z = Aẑ + PC⇤(y� �Cẑ), in (0, T ),

ẑ(0) = 0.
(1.150)

This means that we have to solve the augmented Riccati operator P , which is even more
costly to compute. In Chapter 3 we will see how to solve such a problem by relying on a
reduced Riccati operator, the solution of a Riccati dynamics in a reduced space.

1.7 Conclusion

In this chapter, we introduced all the tools that we will use in the rest of the manuscript
using the inverse problem of state estimation. We have seen that in infinite dimensions
the spaces in which we work are of paramount importance. Depending on the type of
solution we consider (variational solutions or solutions given by semigroup theory) and the
type of observations, the mathematical techniques and resulting methods used will differ.
When considering variational solutions, it is natural to solve a constraint minimization
problem. This can be avoided for solutions obtained using the semigroup theory. However,
we have shown the equivalence between variational solutions and solutions from semigroup
theory. Therefore, we can use the optimization techniques given by the semigroup approach
while ensuring a natural discretization by finite elements. We then introduced the 4D-var
method which correspond to the minimization of the deviation between the observations
and the solution. This leads us to solve a two-ends problem. We defend the idea that
an adapted discretization choice is to first discretize the model and then minimize under
the constraint defined by the discrete dynamics. We then present the Kalman filter, an
observer equivalent to the minimization of the cost functional. Later, in Chapters 3 and
4, we will focus on this sequential method. It has the advantage of being a direct method
to the cost of computation of a Riccati operator. We saw an alternative: the Luenberger
observer. The measurements space plays a very important role. In particular, where the
noise is less regular than the space in which the measurements are naturally defined, two
methods have been studied. One is exponentially stable in a weaker space and requires a
proven observability condition with weakened norms. This method is used in Chapter 3.
The other consists in regularizing the measurements before inverting, and will be used at
the last of this manuscript.
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CHAPTER 2

Uniform boundary stabilization of a high-order finite

element space discretization of the 1-d wave equation

Les mathématiques ont un triple objectif. Ils

doivent fournir un instrument pour l’étude de la

nature. Mais ce n’est pas tout: ils ont un but

philosophique et, j’ose dire, un but esthétique

— Henri Poincaré

The objective of this work is to propose and analyze numerical schemes for solving bound-
ary control problems or data assimilation problems by observers for wave propagation
problems. The efficiency of the considered control or data assimilation strategy relies on
the exponentially stable character of the underlying system. Therefore, the aim of our work
is to propose a discretization process that allows preserving the exponential stability at the
discrete level when using high-order spectral finite element approximation. The main idea
is to add a stabilizing term to the wave equation that dampens the spurious oscillatory
components of the solutions. This term is based on a discrete multiplier analysis that gives
us the exponential stability of the semi-discrete problem at any order without affecting the
approximation properties.
This chapter contains a submitted article, realized in collaboration with Sébastien Impe-
riale and Philippe Moireau.
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2.1. Introduction

Uniform boundary stabilization of a high-order finite

element space discretization of the 1-d wave equation
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Submitted

Abstract

The objective of this work is to propose and analyze numerical schemes for solving
boundary control problems or data assimilation problems by observers for wave propagation
problems. The efficiency of the considered control or data assimilation strategy relies on
the exponentially stable character of the underlying system. Therefore, the aim of our work
is to propose a discretization process that allows preserving the exponential stability at the
discrete level when using high-order spectral finite element approximation. The main idea
is to add a stabilizing term to the wave equation that dampens the spurious oscillatory
components of the solutions. This term is based on a discrete multiplier analysis that gives
us the exponential stability of the semi-discrete problem at any order without affecting the
approximation properties

Keywords— High-order finite element, stabilization, numerical analysis, wave propaga-
tion

2.1 Introduction

The aim of this work is to demonstrate an asymptotic exponential stability of a one-
dimensional wave-like system with boundary damping uniformly with respect to the time
and space discretization of the system. Such a system typically arises when analyzing
boundary control problems [Lasiecka and Triggiani, 2004], data assimilation problem using
boundary data [Haine, 2014b] or stabilization property of absorbing boundary condition
imposed to initially unbounded formulations [Ervedoza and Zuazua, 2008].

Obtaining exponential stability results – through observability condition in most cases –
is a rather difficult result at the continuous level, which has been extensively studied by the
control community [Zuazua, 2005] and proved by various techniques, typically multiplier
techniques [Lions, 1988; Komornik, 1997; Joly, 2006] or even Carleman estimates [Tebou,
2008], spectral approaches [Cox and Zuazua, 1994; Ramdani et al., 2007], or microlocal
analyzes [Lebeau et al., 1992]. However, discretizing the dynamics so that the stabilization
properties are preserved at the discrete level presents an additional difficulty because of the
presence spurious high frequencies that remain uncontrolled if one relies on the classical
discretization of the stabilization terms ([Infante and Zuazua, 1999; Zuazua, 2005; Ervedoza
and Zuazua, 2012; Marica and Zuazua, 2015]). Several strategies – either for finite element
or finite difference discretizations – are presented in the literature to compensate for the
instabilities caused by high frequencies, namely Fourier techniques ([Micu, 2002; Negreanu
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and Zuazua, 2003; Münch, 2005]), Tikhonov regularization [Glowinski et al., 1990], multi-
grid finite difference methods [Negreanu and Zuazua, 2004] or mixed finite element methods
([Castro and Micu, 2006] and their extension for nonuniform meshes [Ervedoza, 2010]).

For dealing with high-performance wave propagation applications, high-order spectral
finite elements [Cohen, 2002] are now considered indispensable – see for instance [Faccioli
et al., 1997; Cohen et al., 2001; Bolis et al., 2014] and for seismic wave applications [Ko-
matitsch et al., 2009, 2010] – however, the above discretization strategies cannot be easily
extended to such high-order discretizations without losing their advantages, in particular
their convergence order and their efficiency.

Here we follow a strategy of including additional consistent stabilization terms in the
discretization to preserve the efficiency of the methods for possible extension to high dimen-
sions. The additional vanishing stabilization terms have a similar goal as those found in
[Burman et al., 2020]. However, here these additional terms are constructed in such a way
that the classical multiplier method, which proves stabilization in the continuous method,
can be continued at the discrete level, achieving uniform stabilization with respect to the
discretization parameters. Moreover, the stabilization terms are carefully designed to pre-
serve the consistency order. In particular, our result can extend the discretization result
for observers proposed in [Chapelle et al., 2012b] to high-order schemes, which states that
using data, one can obtain discretization schemes that do not suffer from the asymptotic
time drift of the error.

Our proof is limited to the one-dimensional case, while an implicit mid-point time-
scheme is chosen for the time-discretization however the principles of our approach pave the
way for possible extension to higher dimensions and more efficient time schemes, typically
fully explicit approaches – that are nevertheless tested in this work.

This work is organized as follows. In Section 2.2, the motivations for this work are
stated. In Section 2.3 we lay out the continuous configuration and the method for proving
exponential stability. Section 2.4 proves the uniform exponential in h in the semi-discrete
configuration using a general abstract framework. In Section 2.5 we present a semi-discrete
convergence results for a data assimilation problem. Then, Section 2.6 presents the fully
discretized framework using an implicit scheme in time. The numerical results are presented
in Section 2.7, which is split into two parts. First, we consider the eigenvalues of the
operator belonging to our damped system to observe the uniform exponential stability
property. To obtain an efficient method, in a second step we introduce an explicit scheme
for discretization in time that preserves the properties shown in the previous sections.
Using this scheme, we can then present numerical results that illustrate the interest of
adding the damping terms.

2.2 Motivation of the observation problem

Let us study a model problem which shines a light on the difficulties that appear for the
stabilization of discretized problems.
Let Ω = (0, 1) be the domain of propagation. We study a homogenous wave equation
formulated as a first-order system

(
@tu(x, t) + @xv(x, t) = 0, (x, t) 2 Ω⇥ (0, T ),

@tv(x, t) + @xu(x, t) = 0, (x, t) 2 Ω⇥ (0, T ).
(2.1)

We define the boundary conditions and the initial conditions of our wave equation. The fol-
lowing boundary conditions corresponds to Neumann at point x = 0 and a Robin condition
at point x = 1. We exclude the degenerate case � = 1 which corresponds to transparent
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conditions.
(
u(1, t) = �v(1, t) t 2 (0, T ),

v(0, t) = 0, t 2 (0, T ),

(
u(x, 0) = u0(x), x 2 Ω,

v(x, 0) = v0(x), x 2 Ω.
(2.2)

The study of such a system ((2.1) with (2.2)) allows to simulate the case of the study
of a system with absorbing conditions (at boundary x = 1). It can also be similar to
the study of an error system between a target system and a simulated system (which we
would like to converge asymptotically in time toward the target trajectory). Namely, if
we consider having access to measurements (here v at x = 1), and we can incorporate
by a feedback law in the boundary conditions the difference between the solution and
the measurements. To study the convergence of this system called observer system (see
[Krener, 1999; Ramdani et al., 2010]) towards the target system, it is equivalent to show
the exponential convergence towards 0 of the error system that could represent ((2.1) with
(2.2)). In all cases, the convergence of these problems ((2.1) with (2.2)) is related to the
exponential convergence of a damped PDE (at x = 1 in this case). Furthermore, at the
continuous level, one can prove that this system is exponentially stable ([Cox and Zuazua,
1994] in 1D problem, [Ervedoza and Zuazua, 2012]).

2.2.1 Parasitic waves

The question is to prove that such system – that is known to be exponentially stable
preserves its exponential stability property after standard high-order spectral finite element
discretization on space and explicit second order energy preserving time discretization
[Cohen, 2002]. To illustrate the phenomenon of propagation, we will represent the wave over
time. We simulate our problem with finite elements (F.E.M.) Pr– the set of polynomials of
degree r – and an explicit time scheme and on uniform mesh. We initialize u as a Gaussian
(see Figure 2.1 (Left)) and set v to 0 as initial condition.
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Figure 2.1: Approximation of u obtained with P4 finite elements with h = 1/10 at time t = 0
(Left) and at t = 2 (Right)

The boundary conditions of the wave propagation involve two effects. At the boundary
x = 0, the wave bounces while on the boundary x = 1, part of the wave is absorbed, we
should therefore have an exponential convergence to 0. We notice the oscillations of the
wave in the course of time, these are due to the presence of high-frequency spurious waves
(see Figure 2.2 with a change of scale).

In order to show that the discretization taints this property of uniform exponential
stability, we represent the evolution of the energy of the system over time in log scale
(Figure 2.3). We notice that the decay is no longer linear after a certain time.
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Figure 2.2: Approximation of u obtained with P4 finite elements with h = 1/10 and dt = 1/1000
at time t = 2 (Left) and at time t = 4 (Right)
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Figure 2.3: Approximation of ln (ku(t)k2 + kv(t)k2)
1/2

obtained with P4 finite elements with
h = 1/10 and dt = 1/1000

This gives an illustration of the loss of the uniform exponential stability property caused
by the high-order spectral finite elements discretization.

2.2.2 Investigation of eigenvalues

As a key indicator of the behavior of the discrete system, we investigate the eigenvalues of
the generator of the corresponding semigroup. We formulate (2.1) as follows,

ż = Az, with z =

 
u

v

!
, and A =

 
0 �@x

�@x 0

!
, (2.3)

where A : L2(Ω)⇥L2(Ω) ! L2(Ω)⇥L2(Ω) is an unbounded operator with domain D(A) ⇢
H1(Ω)⇥H1(Ω). The discrete approximation of the above systems is

żh = Ahzh,

where Ah 2 L(Vh) is an approximation of the operator A in a finite-dimensional space Vh

that is a subspace of H1(Ω) ⇥ H1(Ω) obtained using high-order spectral finite elements
([Cohen, 2002]). Since we look for exponential stability we aim at constructing approxima-
tions for which the eigenvalues of Ah lies in the complex plane not close to the imaginary
axis.

We see in Figure 2.4 (Left) that the eigenvalues are close to the imaginary axis, which
implies that the exponential stability property is in the best case scenario, not uniform in
h, or even lost. By choosing h smaller, the consistency is improved, namely the smallest
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Figure 2.4: Spectrum of Ah

eigenvalues – in amplitude – are more and more well approximated, still the uniform
exponential stability property is not recovered, see Figure 2.4 (Right). In fact, it has
been shown – at least for P1 finite elements, (see [Infante and Zuazua, 1999; Ervedoza
and Zuazua, 2012]) – that the uniform exponential stability property cannot be obtained
at the discrete level without adding additional dissipative terms. As mentioned the main
contribution of this work is to construct such terms that stabilized the system – in the sense
where the uniform exponential stability property is guaranteed – and preserves high-order
accuracy that is obtained with Pr finite elements.

2.3 Continuous setting

This section presents standard multiplier techniques [Komornik, 1997] to show the expo-
nential stability property at the continuous level of System (2.1). We have chosen to present
these classical results, first for the sake of completeness, second because they will be re-
produced at the discrete level. To complete this last step the sought additional dissipative
terms will be needed.

2.3.1 Observability of the undamped system

First, we define the variational formulation of the undamped system (� = 0),

8
>><
>>:

Z 1

0
@tuũdx�

Z 1

0
v@xũdx+ v(1)ũ(1) = 0,

Z 1

0
@tvṽdx+

Z 1

0
@xuṽdx� u(1)ṽ(1) = 0,

(2.4)

where u(t), ũ 2 H1(0, 1) and v(t), ṽ 2 L2(0, 1). For smooth initial data, it is standard to
show that (2.4) has a unique solution,

(u, v) 2 C1([0, T ];L2(0, 1)⇥ L2(0, 1)) \ C0([0, T ];H1(0, 1)⇥H1(0, 1)).

System (2.4) is conservative, indeed, one can easily show, the following theorem.

Theorem 2.3.1 Let (u, v) solutions of (2.4), we have the energy conservation

d

dt

⇣
ku(t)k2L2(0,1) + kv(t)k2L2(0,1)

⌘
= 0. (2.5)

The proof consists in choosing ũ = u(t) and ṽ = v(t) in (2.4) and summing the two
obtained equations. Note that, as an obvious consequence of the energy preservation
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property we have

Z T

0
ku(t)k2L2(0,1) + kv(t)k2L2(0,1)dt = T

⇣
ku(0)k2L2(0,1) + kv(0)k2L2(0,1)

⌘
. (2.6)

A first step towards our goal is to derive an observability inequality (the precise meaning
is given in the theorem below). This step is not a necessity to prove exponential stability but
should rather be seen as a useful intermediate step. The strategy to prove the observability
inequality relies on multipliers [Komornik, 1997].

Theorem 2.3.2 Let (u, v) be solutions of (2.4). For T large enough, there exists Cst(T )
strictly positive such that

1

2

⇣
ku(0)k2L2(0,1) + kv(0)k2L2(0,1)

⌘
 Cst(T )

Z T

0
v2(1)dt. (2.7)

Proof: The proof given below is separated in several steps that will all be mimicked at
the discrete level.
Step 1: We choose ũ = �xv(t) and ṽ = �xu(t) in (2.4) and sum the two obtained
equations, integrating by parts and neglecting negative terms we get, we obtain

�
d

dt

Z 1

0
xuvdx  �

1

2

�
ku(t)k2L2(0,1) + kv(t)k2L2(0,1)

�
+

1

2
v2(1).

Step 2: Integrating in time and using the energy conservation property of 2.3.1 and its
direct consequence (2.6) we get

�

Z 1

0
xuvdx

�T

0

 �
T

2

⇣
ku(0)k2L2(0,1) + kv(0)k2L2(0,1)

⌘
+

1

2

Z T

0
v2(1)dt. (2.8)

Step 3: We use Cauchy-Schwarz, Young inequalities and Theorem 2.3.1 to show

����
Z 1

0
xu(t)v(t)dx

���� 
1

2
kv(t)k2L2(0,1) +

1

2
kv(t)k2L2(0,1) =

1

2
kv(0)k2L2(0,1) +

1

2
kv(0)k2L2(0,1).

Finally, using this inequality together with (2.8) we obtain

(T � 2)
⇣
ku(0)k2L2(0,1) + kv(0)k2L2(0,1)

⌘


Z T

0
v2(1)dt.

⌅

Inequality (2.7) does not directly guarantee that the boundary damped system is ex-
ponentially stable. It is however a good indicator since the damping term corresponds to
the right-hand side of (2.7). This will be used as a clue to define the required damping
terms at the discrete level.
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2.3.2 Exponential stability for the damped system using Lyapunov func-

tional

We define the variational formulation associated with System (2.1) with (2.2)

8
>>><
>>>:

Z 1

0
@tuũdx�

Z 1

0
v@xũdx+ v(1)ũ(1) = 0,

Z 1

0
@tvṽdx+

Z 1

0
@xuṽdx� ṽ(1)u(1) + �v(1)ṽ(1) = 0,

(2.9)

We have existence and uniqueness of solutions for the above variational formulation, we
will now establish an energy relation for this system.

Theorem 2.3.3 Let (u, v) solutions of (2.9), we have the energy dissipation property

1

2

d

dt

⇣
ku(t)k2L2(0,1) + kv(t)k2L2(0,1)

⌘
= ��v2(1). (2.10)

Proof: We choose ũ = u(t) and ṽ = v(t) in (2.9). Then, adding the two equations in
(2.9), we conclude the proof. ⌅

Theorem 2.3.4 Let (u, v) solutions of (2.9). There exist two constants Cs > 0 and � > 0
such that

ku(t)k2L2(0,1) + kv(t)k2L2(0,1)  Cse
��t

⇣
ku(0)k2L2(0,1) + kv(0)k2L2(0,1)

⌘
. (2.11)

Proof: The proof given below is separated in several steps that will all be mimicked at
the discrete level.
Step 1: We choose ũ = �xv(t) and ṽ = �xu(t) in (2.9).
Summing the two equations and integrating by parts, we get

�
d

dt

Z 1

0
xuvdx =

1

2
v2(1)�

1

2
u2(1) + �v(1)u(1)�

1

2

⇣
ku(t)k2L2(0,1) + kv(t)k2L2(0,1)

⌘
.

Moreover, thanks to Young’s inequality we have �u(1)v(1) 
�2

2
v2(1) +

1

2
u2(1), finally we

obtain

�
d

dt

Z 1

0
xuvdx 

1 + �2

2
v2(1)�

1

2

⇣
ku(t)k2L2(0,1) + kv(t)k2L2(0,1)

⌘
.

Step 2: We add the energy relation (2.3.3) multiplied by ↵ > 0.

d

dt

✓
↵

2

⇣
ku(t)k2L2(0,1) + kv(t)k2L2(0,1)

⌘
�

Z 1

0
xuvdx

◆



✓
�2 + 1

2
� ↵�

◆
v2(1)�

1

2

⇣
ku(t)k2L2(0,1) + kv(t)k2L2(0,1)

⌘
.

Step 3: Choosing ↵ large enough such that

�2 + 1

2
� ↵� < 0,
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we get

d

dt

✓
↵

2

⇣
ku(t)k2L2(0,1) + kv(t)k2L2(0,1)

⌘
�

Z 1

0
xuvdx

◆

 �
1

2

⇣
ku(t)k2L2(0,1) + kv(t)k2L2(0,1)

⌘
. (2.12)

Step 4: We introduce the Lyapunov functional

L(t) =
↵

2

⇣
ku(t)k2L2(0,1) + kv(t)k2L2(0,1)

⌘
�

Z 1

0
xuvdx. (2.13)

Using Cauchy-Schwarz and Young inequalities, we prove the equivalence between the en-
ergy functional

E(t) :=
1

2
ku(t)k2L2(0,1) + kv(t)k2L2(0,1)

and the Lyapunov functional with ↵� 1 > 0.

(↵� 1)

2

⇣
ku(t)k2L2(0,1) + kv(t)k2L2(0,1)

⌘
 L(t)


↵+ 1

2

⇣
ku(t)k2L2(0,1) + kv(t)k2L2(0,1)

⌘
. (2.14)

Using this equivalence in (2.12), we get

d

dt
L(t)  �

1

↵+ 1
L(t).

Step 5: Integrating in time and using again the equivalence between the energy and the
Lyapunov functional we finally have

⇣
ku(t)k2L2(0,1) + kv(t)k2L2(0,1)

⌘

↵+ 1

↵� 1
e
�

1

↵+ 1
t ⇣

ku(0)k2L2(0,1) + kv(0)k2L2(0,1)

⌘
.

⌅

2.4 Semi-discrete setting

As mentioned we give a counterpart of Theorem 2.3.2 and Theorem 2.3.4 at the semi-
discrete level. This is achieved in an abstract framework. We then show – and this is
the most important part of the work – that the semi-discrete wave problem falls in the
described framework.

2.4.1 Abstract framework

Let Zh be a family of finite-dimensional parametrized by h space associated with the scalar
product (·, ·)h. We consider the semi-discretized abstract first-order system for zh 2 Zh,

(
żh = Ahzh, in [0, T ],

zh(0) = zh,0,
(2.15)

90



2.4. Semi-discrete setting

where Ah 2 L(Zh) and kAhkh
h!0

! +1. We assume that the operator Ah satisfies the

following property
(Ahzh, zh)h = 0. (2.16)

Furthermore, we have classically the existence and unicity of smooth solutions (uh, vh)
belonging to Ck([0, T ];Zh), for all k � 0. We start by presenting the discrete property of
energy preservation.

Theorem 2.4.1 Let zh 2 Zh the solution of (2.15), we have the discrete conservation
energy property

1

2

d

dt
kzk2h = 0.

Proof: We multiply (2.15) by zh, and since Ah satisfies (2.16), the result follows imme-
diately. ⌅

Let Yh be a finite-dimensional space. We have seen that in the continuous problem,
we have added a dissipative term that stabilizes the problem. By analogy, we therefore
introduce a perturbation by an operator C⇤

hCh, where Ch 2 L(Zh,Yh),

(
żh = (Ah � �C⇤

hCh) zh, in [0, T ],

zh(0) = zh,0.
(2.17)

For this system, we have the discrete dissipation energy property.

Theorem 2.4.2 Let zh 2 Zh the solution of (2.17), we have the discrete dissipation energy
property

d

dt

1

2
kzhk

2
h = ��kChzhk

2
h.

Proof: Proof similar of the proof of Theorem 2.4.1. ⌅

In order to demonstrate the observability property, we need a fundamental hypothesis.

Assumption 1 9↵, �, CΠ > 0, independent of h and for all h, 9Πh symmetric belonging
to L(Zh) and kΠhkh  CΠ with CΠ > 0, such that, 8zh 2 Zh

(ΠhAhzh, zh)h  ↵kChzhk
2
h � �kzhk

2
h.

From this assumption, we can establish the property that interest us: the observability
property.

Theorem 2.4.3 Let zh be the solution of (2.15). Assuming Assumption 1, for T large
enough, there exists a constant Cst(T ) > 0 independent of h such that

kzh,0k
2
h  Cst(T )

Z T

0
kChzhk

2
hdt.

Proof: The proof is separated into the same steps as for the proof of observability at
the continuous level of Theorem 2.3.4.
Step 1: We multiply the first equation of (2.15) by Πhzh.

(Πhżh, zh)h = (ΠhAhzh, zh)h.
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Using Assumption 1, we obtain

1

2

d

dt
(Πhzh, zh)h  ↵kChzhk

2
h � �kzhk

2
h.

Step 2: We integrate in time and use the energy conservation property

1

2
(Πhzh(T ), zh(T ))h �

1

2
(Πhzh,0, z0,h)h  ↵

Z T

0
kChzhk

2
hdt� �

Z T

0
kzh(t)k

2
hdt.

The use of the energy conservation property of Theorem 2.4.1 leads to

1

2
(Πhzh(T ), zh(T ))h �

1

2
(Πhzh,0, z0,h)h  ↵

Z T

0
kChzhk

2
hdt� �Tkzh(0)k

2
hdt.

Step 3: Since Πh is bounded, we have

�
1

2
kΠhkhkzh(T )k

2
h �

1

2
kΠhkkzh,0k

2
h  ↵

Z T

0
kChzhk

2
hdt� �Tkzh(0)k

2
hdt.

Using the energy conservation Theorem 2.4.1, we get

(�T � kΠhkh) kz0,hk
2
h  ↵

Z T

0
kChzhk

2
hdt.

For T > kΠhkh�
�1, we obtain the result. ⌅

As for showing the observability property, we need a fundamental hypothesis to estab-
lish the exponential stability property.

Assumption 2 9�,  > 0, independent of h and for all h, 9Πh 2 L(Zh) symmetric such
that, 8zh 2 Zh

(ΠhAhzh, zh)h � �(Chzh, ChΠhzh)h  �kChzhk
2
h � kzhk

2
h.

We can now proceed to the main theorem of this work : the uniform exponential
stability property for the damped system.

Theorem 2.4.4 Let zh be the solution of (2.17). Under Assumption 2, there exist two
constants Cs,� > 0 independent of h such that

1

2
kzh(t)k

2
h  Cskzh,0k

2
he

��t.

Proof: The proof is separated into the same steps as for the proof of exponential stability
at the continuous level of Theorem 2.3.4.
Step 1: We multiply the first equation of (2.17) and Πhzh (in the sens of the scalar
product).

(Πhżh, zh)h = (ΠhAhzh, zh)h � �(Chzh, ChΠhzh)h.

We use Assumption 2 and we obtain

1

2

d

dt
(Πhzh, zh)h  �kChzhk

2
h � kzhk

2
h.
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Step 2: Adding the dissipation energy identity of Theorem 2.4.2 times ↵ > 0, we get

1

2

d

dt

�
(Πhzh, zh)h + ↵kzhk

2
h

�
 (�� ↵�) kChzhk

2
h � kzhk

2
h.

Step 3: We choose ↵ large enough such that �� ↵�  0. Thus, we have

1

2

d

dt

�
(Πhzh, zh)h + ↵kzhk

2
h

�
 �kzhk

2
h.

Step 4: We introduce the following discrete Lyapunov functional

Lh(t) = (Πhzh, zh)h + ↵kzhk
2
h.

Since Πh is bounded, we can establish an equivalence between the Lyapunov functional–

and the energy functional Eh(t) :=
1

2
kzh(t)k

2
h.

(�kΠhkh + ↵) kzk2h  Lh(t)  (kΠhkh + ↵) kzhk
2
h. (2.18)

Using this equivalence with ↵ > kΠhkh, we obtain

1

2

d

dt
Lh(t)  � (kΠhkh + ↵)�1 Lh(t).

Step 5: Integrating in time and using again (2.18), we finally get

1

2
kzh(t)k

2
h 

↵+ kΠhkh
↵� kΠhkh

kzh,0k
2
he

�(kΠhkh+↵)
�1t.

⌅

2.4.2 Discretization with high-order spectral finite elements

In this section, we show how the semi-discretization in space using high-order spectral finite
elements of the wave propagation problem (2.1) enters the abstract framework presented
above. We introduce two discrete spaces U r

h and V r
h – where r is the order of the finite

elements used – defined by

U r
h = {uh 2 C0[0, 1] | uh|[xi,xi+1] 2 Pr},

and
V r
h = {vh 2 L2(0, 1) | vh|[xi,xi+1] 2 Pr}.

Note that U r
h ⇢ V r

h and we denote Zh = U r
h⇥V r

h . We consider a quasi-uniform subdivision
[xi, xi+1], for i 2 {0, N} of the domain [0, 1], namely we denote hi = |xi+1 � xi| for
i 2 {0, N � 1}, and

h = sup
i2{0,N�1}

hi,

and there exists ⇢ > 0 such that

min
i2{0,N�1}

hi  ⇢h.
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The efficiency of high-order spectral finite elements stems from the fact that mass-lumping
can be achieved without loss of consistency using a quadrature rule based on Gauss-Lobatto
points. We represent the use of this quadrature by the symbol

I 1

0
f(x)dx ⇠

Z 1

0
f(x)dx with

I 1

0
f(x)dx :=

NX

i=0

rX

k=0

hiwkf(xi + hi⇠k),

where and wk are the quadrature coefficients and ⇠k 2 [0, 1] the Gauss-Lobatto interpola-
tion nodes.
Note that we have the following bounds (see [Joly, 2007]),

9Cq, cq > 0, such that 8vh 2 V r
h , cq

Z 1

0
v2hdx 

I 1

0
v2hdx  Cq

Z 1

0
v2hdx. (2.19)

The semi-discrete formulation of the damped system (2.9) reads: Find (uh, vh)(t) 2 Zh

such that for (ũh, ṽh) 2 Zh,
8
>><
>>:

I 1

0
@tuhũhdx�

Z 1

0
vh@xũhdx+ vh(1)ũh(1) = 0,

I 1

0
@tvhṽhdx+

Z 1

0
@xuhṽhdx� uh(1)ṽh(1) + �vh(1)ṽh(1) = 0,

(2.20)

with initial data
uh(0) = u0h, vh(0) = v0h.

Note that when � = 0 one recovers the semi-discrete variational formulation of the un-
damped system (2.4). In order to relate to the abstract theory presented in Section 2.4.1,
we reformulate the variational formulation (2.20) as an operator equation. To do so, we
introduce the scalar product in V r

h by

8(vh, ṽh) 2 V r
h ⇥ V r

h , (vh, ṽh)h :=

I 1

0
vhṽhdx, . (2.21)

The scalar product in U r
h ⇢ V r

h is defined similarly, finally we extend this notation for
zh = (uh, vh)

t, z̃h = (ũh, ṽh)
t 2 U r

h ⇥ V r
h ,

(zh, z̃h)h =

I 1

0
uhũhdx+

I 1

0
vhṽhdx.

The variational formulation (2.20) is equivalent to
(
@tuh �R⇤

hvh = 0,

@tvh +Rhuh + �Bhvh = 0,
(uh, vh)(0) = (u0h, v

0
h) := zh,0, (2.22)

where, for all (uh, vh, ṽh)t 2 U r
h ⇥ V r

h ⇥ V r
h ,

(Rhuh, ṽh)h =

Z 1

0
@xuhṽhdx� uh(1)ṽh(1) and (Bhvh, ṽh)h = vh(1)ṽh(1). (2.23)

Denoting zh = (uh, vh)
t, we can rewrite System (2.22) as

8
><
>:
żh = Ahzh � �

 
0 0

0 Bh

!
zh,

zh(0) = zh,0,

where Ah =

 
0 �R⇤

h

Rh 0

!
. (2.24)

Note that the operator Ah 2 L(Zh) satisfies, for all zh 2 Zh, (Ahzh, zh)h = 0, i.e., it is
skew-adjoint.
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2.4.3 Discrete observability

Our objective is – in a preliminary step – to prove an observability property for the system
(2.24). To do so, Theorem 2.4.3, is used and therefore Assumption 1 is satisfied in what
follows by introducing an appropriate operator Πh 2 L(Zh).
The strategy to define Πh is based upon our analysis presented at the continuous level.
More precisely one want to have (see the proof of Theorem 2.3.2 in Section 2.3)

Πhzh ⇠

 
�xvh

�xuh

!
.

However, this later equation can not be an equality since xvh /2 U r
h and xuh /2 V r

h . A
simple remedy is to introduce the following interpolation operator: �h(·) : U

r
h ! V r

h by
I 1

0
�h(uh)vhdx =

I 1

0
xuhvhdx, 8uh 2 U r

h, vh 2 V r
h , (2.25)

and its adjoint �⇤
h(·) : V

r
h ! U r

h is given by
I 1

0
�⇤
h(vh)uhdx =

I 1

0
xvhuhdx, 8uh 2 U r

h, vh 2 V r
h . (2.26)

We define, for zh = (uh, vh)
t and z̃h = (ũh, ṽh)

t the operator Πh by

Πhzh =

 
��⇤

h(vh)

��h(uh)

!
. (2.27)

Note that it is easy to show that Πh is self-adjoint and bounded using (2.19) uniformly
with respect to h. More precisely, there exists CΠ independent of h such that 8zh 2 Zh

kΠhzhkh  CΠkzhkh. (2.28)

We are interested in the discrepancy between the multiplier that we would like to use (but
cannot) and the one we are going to use, namely in the following discrepancy

Πhzh �

 
�xuh

�xvh

!
.

It turns out that the operator Ch – which appears in the fundamental assumption 1 –,
involves the local semi-norm H1 of this discrepancy. That is why, for all uh, ũh 2 U r

h and
8vh, ṽh 2 V r

h , we define two bilinear forms dh and dh,⇤ as

dh(uh, ũh) :=
NX

i=0

Z xi+1

xi

@x (xuh � �h(uh)) @x (xũh � �h(ũh)) dx, (2.29)

and

dh,⇤(vh, ṽh) :=

NX

i=0

Z xi+1

xi

@x (xvh � �⇤
h(vh)) @x (xṽh � �⇤

h(ṽh)) dx. (2.30)

Proposition 2.4.5 Let dh and dh,⇤ be the positive and symmetric bilinear forms defined
by (2.29) and (2.30). Then, there exists a constant Cd > 0 depend only on r such that
8(uh, vh) 2 U r

h ⇥ V r
h

dh(uh, uh) + dh,⇤(vh, vh)  Cd

Z 1

0
u2h + v2hdx.
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Proof: Let us show first, that dh is bounded. We use an interpolation property [Brenner
and Scott, 2008, Chapter 4, Section 4, Theorem 4.4.4]. Since xuh belongs to Pr+1(K) with
K = [xi, xi+1] for some i 2 {0, N � 1}, we have

|xuh � �h(uh)|H1(Ki)  hriCr|xuh|Hr+1(Ki),

where Cr > 0 depends only on r. However, as x 2 P1(K) and uh 2 Pr(K), the general
Leibniz rule leads to

(xuh)
r+1 =

r+1X

j=0

 
r + 1

j

!
x(j)u

(r+1�j)
h = (r + 1)(uh)

(r).

Injecting this result in the equation above, we get

|xuh � �h(uh)|H1(Ki)  hriCr(r + 1)|uh|Hr(Ki).

Thus, using an inverse estimate [Brenner and Scott, 2008, Chapter 4, Section 5, Lemma
4.5.3], we have with Cr > 0, another scalar depending only on r,

|xuh � �h(uh)|H1(Ki)  CrkuhkL2(Ki).

Hence, finally we have
dh(uh, uh)  Cr

2kuhk
2
L2(0,1).

Since we can reproduce this inequality for dh,⇤, the proof is ended. ⌅

We define the following operators Dh 2 L(U r
h, U

r
h) and Dh,⇤ 2 L(V r

h , V
r
h ) associated

with the bilinear forms dh and dh,⇤,
(
(Dhuh, ũh)h = dh(uh, ũh), 8uh, ũh 2 U r

h,

(Dh,⇤vh, ṽh)h = dh,⇤(vh, ṽh), 8vh, ṽh 2 V r
h .

(2.31)

Unfortunately, the definition of the operator Ch – appearing in Assumption 1 – requires,
in this case, to define the jump of the variable vh. For this purpose, we introduce the
notation, for all i 2 {1, N � 1},

[[vi]] := v+i � v�i , where v+i = vh(x
+
i ) and v�i = vh(x

�
i ). (2.32)

Then, we define the jump operator

(Jhvh, ṽh)h =
N�1X

i=1

1

h̃i
[[vi]][[ṽi]], where h̃i = min(hi�1, hi). (2.33)

In the theorem below, we check that the multiplier Πh satisfies the Assumption 1. We
can then apply Theorem 2.4.3 and prove the observability inequality. Note that since the
operators Jh, Bh, Dh and Dh,⇤ are self-adjoint and positive, it is possible to consider their
roots. We define the operator Ch 2 L(Zh, U

r
h ⇥ [V r

h ]
3) – equipped with the scalar product

(·, ·)h inherited from V r
h – by

Ch =

0
BBBBB@

D
1/2
h 0

0 J
1/2
h

0 B
1/2
h

0 D
1/2
h,⇤

1
CCCCCA

. (2.34)
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Theorem 2.4.6 Let zh = (uh, vh) 2 Zh = U r
h ⇥ V r

h be the solutions of (2.24) with � = 0.
Then, Πh defined by (2.27) satisfies Assumption 1 namely

(ΠhAhzh, zh)h  ↵kChzhk
2
h � �kzhk

2
h, ↵,� > 0 independent of h,

with the operator Ch is given by (2.34).

Proof: By definition, we have

(ΠhAhzh, zh)h = (Ahzh,Πhzh)h

= �

Z 1

0
vh@x�

⇤
h(vh)dx+ v2h(1) +

Z 1

0
@xuh�h(uh)dx� u2h(1).

Inserting xvh � xvh = 0 in the first term of the right-hand side, we get

(Ahzh,Πhzh)h =

NX

i=0

Z xi+1

xi

vh@x (xvh � �⇤
h(vh)) dx�

NX

i=0

Z xi+1

xi

vh@x(xvh)dx

+ v2h(1) +

Z 1

0
@xuh�h(uh)dx� u2h(1). (2.35)

Let us focus on the second term in the right-hand side.

�
NX

i=0

Z xi+1

xi

vh@x(xvh)dx = �
NX

i=0

Z xi+1

xi

v2hdx�
1

2

NX

i=0

Z xi+1

xi

x@x
�
v2h
�
dx.

Integrating by parts, we get

�

NX

i=0

Z xi+1

xi

vh@x(xvh)dx = �

NX

i=0

Z xi+1

xi

v2hdx+
1

2

NX

i=0

Z xi+1

xi

v2hdx

�
1

2
v2h(1)�

1

2

N�1X

i=1

xi
�
v+i

�2
� xi

�
v�i

�2
.

Using the algebraic identity a2 � b2 = (a� b)(a+ b), we obtain

�
NX

i=0

Z xi+1

xi

vh@x(xvh)dx = �
1

2

NX

i=0

Z xi+1

xi

v2hdx�
1

2
v2h(1)

�
1

2

N�1X

i=1

xi(v
+
i � v�i )(v

+
i + v�i ).

We define the average of vh for 2 {1, N � 1} by

{{vi}} :=
v+i + v�i

2
, where v+i = vh(x

+
i ) and v�i = vh(x

�
i ).

Using the jump definition (2.32) and for the last term, we obtain

�

NX

i=0

Z xi+1

xi

vh@x(xvh)dx = �
1

2

NX

i=0

Z xi+1

xi

v2hdx�
1

2
v2h(1)�

N�1X

i=1

xi{{vi}}[[vi]].
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Injecting this result into (2.35), we get

(Ahzh,Πhzh)h =
NX

i=0

Z xi+1

xi

vh@x (xvh � �⇤
h(vh)) dx�

1

2

Z 1

0
v2hdx

+
1

2
v2h(1)�

N�1X

i=1

xi{{vi}}[[vi]] +

Z 1

0
@xuh�h(uh)dx� u2h(1).

Injecting xuh � xuh = 0 in the penultimate term in the right-hand side, then we get

(Ahzh,Πhzh)h =
NX

i=0

Z xi+1

xi

vh@x (xvh � �⇤
h(vh)) dx�

1

2

Z 1

0
v2hdx+

1

2
v2h(1)

�
N�1X

i=1

xi{{vi}}[[vi]]�
NX

i=0

Z xi+1

xi

(xuh � �h(uh)) @xuhdx

+
1

2

Z 1

0
x@x(u

2
h)dx� u2h(1).

We integrate by parts, we have

(Ahzh,Πhzh)h =
NX

i=0

Z xi+1

xi

vh@x (xvh � �⇤
h(vh)) dx�

1

2

Z 1

0
v2hdx+

1

2
v2h(1)

�

N�1X

i=1

xi{{vi}}[[vi]]�

NX

i=0

Z xi+1

xi

(xuh � �h(uh)) @xuhdx

�
1

2

Z 1

0
u2hdx�

1

2
u2h(1).

We integrate by part and use the property that the terms involving the difference between
xuh and its interpolation are zero at the boundary. This leads to the following important
inequality

(Ahzh,Πhzh)h =
NX

i=0

Z xi+1

xi

vh@x (xvh � �⇤
h(vh)) dx�

1

2

Z 1

0
v2hdx+

1

2
v2h(1)

�

N�1X

i=1

xi{{vi}}[[vi]] +

NX

i=0

Z xi+1

xi

uh@x (xuh � �h(uh)) dx

�
1

2

Z 1

0
u2hdx�

1

2
u2h(1). (2.36)

Using Cauchy-Schwarz and Young inequalities, we obtain with � > 0

(Ahzh,Πhzh)h  �
1

2
(1� �)

Z 1

0
u2h + v2hdx+

1

2�

NX

i=0

Z xi+1

xi

[@x (xvh � �⇤
h(vh))]

2 dx

+
1

2�

NX

i=0

Z xi+1

xi

[@x (xuh � �h(uh))]
2 dx

+
1

2
v2h(1)�

N�1X

i=1

xi{{vi}}[[vi]]. (2.37)
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Let us focus on the last term. Using Cauchy-Schwarz and Young inequalities and bounding
xi by 1, we get with µ > 0

�

N�1X

i=1

xi{{vi}}[[vi]] 
1

2µ

N�1X

i=1

1

h̃i
[[vi]]

2 +
µ

2

N�1X

i=1

h̃i{{vi}}
2.

Using the definition of the average and using (a+ b)2  2(a2 + b2), we obtain

�

N�1X

i=1

xi{{vi}}[[vi]] 
1

2µ

N�1X

i=1

1

h̃i
[[vi]]

2 +
µ

4

N�1X

i=1

h̃i
�
(v+i )

2 + (v�i )
2
�
. (2.38)

On the segment [0, h], we classically have the trace inequality

|v2h(0)|
2  kvhkL2(0,h)

✓
1

h
kvhkL2(0,h) + 2k@xvhkL2(0,h)

◆
.

Using an inverse estimate [Brenner and Scott, 2008, Chapter 4, Section 5, Lemma 4.5.3],
we get, with Cr > 0 depending only on r

|v2h(0)|
2 

✓
1 + 2Cr

h

◆
kvhk

2
L2(0,h).

This inequality is generalized on each mesh, so we have
8
>>><
>>>:

|v+i |
2 

✓
1 + 2Cr

hi

◆
kvhk

2
L2([xi,xi+1])

, i 2 [1, N � 1],

|v�i |
2 

✓
1 + 2Cr

hi�1

◆
kvhk

2
L2([xi�1,xi])

, i 2 [1, N � 1].

Summing the two equations and using the definition of h̃i, we get

h̃i
�
(v+i )

2 + (v�i )
2
�
 h̃i

1 + 2Cr

hi
kvhk

2
L2([xi,xi+1])

+ h̃i
1 + 2Cr

hi�1
kvhk

2
L2([xi�1,xi])

,

 (1 + 2Cr)
⇣
kvhk

2
L2([xi,xi+1])

+ kvhk
2
L2([xi�1,xi])

⌘
.

We use the above inequalities in (2.38) to get

�
N�1X

i=1

xi{{vi}}[[vi]] 
1

2µ

N�1X

i=1

1

h̃i
[[vi]]

2 +
µ(1 + 2Cr)

2
kvhk

2
L2(0,1).

Injecting this result in (2.37) we obtain

(Ahzh,Πhzh)h  �
1

2
(1� �)

Z 1

0
u2hdx�

1

2
(1� �� µ(1 + 2Cr))

Z 1

0
v2hdx

+
1

2�

NX

i=0

Z xi+1

xi

[@x (xvh � �⇤
h(vh))]

2 dx

+
1

2�

NX

i=0

Z xi+1

xi

[@x (xuh � �h(uh))]
2 dx

+
1

2
v2h(1) +

1

2µ

N�1X

i=1

1

h̃i
[[vi]]

2.
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We recognize the expression of the bilinear forms dh and dh,⇤ defined by (2.29) and (2.30).
Using (2.19) for the first and the second terms in the right-hand side, we get

(Ahzh,Πhzh)h  �
1

2
(1� �)

1

Cq

I 1

0
u2hdx�

1

2

1

Cq
(1� �� µ(1 + 2Cr))

I 1

0
v2hdx

+
1

2�
dh,⇤(vh, vh) +

1

2�
dh(uh, uh) +

1

2
v2h(1) +

1

2µ

N�1X

i=1

1

h̃i
[[vi]]

2.

We choose � and µ small enough such that

1� � > 0 and 1� �� µ(1 + 2Cr) > 0.

We obtain the fundamental multiplier inequality

(Ahzh,Πhzh)h  �
1

2Cq
(1� �� µ(1 + 2Cr)) kzhk

2
Z +

1

2�
dh(uh, uh)

+
1

2�
dh,⇤(vh, vh) +

1

2
v2h(1) +

1

2µ

N�1X

i=1

1

h̃i
[[vi]]

2. (2.39)

Thus,

(ΠhAhzh, zh)h  ↵kChzhk
2
h � �kzhk

2
h, (2.40)

where

� =
1

2Cq
(1� �� µ(1 + 2Cr)) and ↵ = max

✓
1

2�
,
1

2µ
,
1

2

◆
.

⌅

Corollary 2.4.6.1 Let zh = (uh, vh) belonging to U r
h ⇥ V r

h be the solutions of (2.24). For
T large enough, there exists Cst(T ) independent of h, such that

kuh(0)k
2
h + kvh(0)k

2
h  Cst(T )

Z T

0
dh(uh, uh)dt+

Z T

0
dh,⇤(vh, vh)dt (2.41)

+

Z T

0
v2h(1)dt+

Z T

0

N�1X

i=1

1

h̃i
[[vi]]

2dt

#
= Cst(T )

Z T

0
kChzhk

2
hdt,

where dh and dh,⇤ are defined respectively by (2.29) and (2.30).

Proof: Since Πh defined by (2.27) satisfies Assumption 1 by Theorem 2.4.6, we can
apply Theorem 2.4.3 where Ch and Ah are defined by (2.34) and (2.24). ⌅

Following what was done in Section 2.3, (2.41) is a guideline to build an exponentially
stable problem. Using the operator Ch – defined in the above section by (2.34) – to damp
the dynamics (2.24), we construct an exponentially stable dynamics uniformly in h.
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2.4.4 Exponential stability

We incorporate in the system (2.24) the dissipative terms Ch in the observability conditions.
In other words, we introduce a perturbation of system (2.24) by the operator �C⇤

hCh, which
gives us the following system

(
żh = Ahzh � �C⇤

hChzh, in [0, T ],

zh(0) = zh,0,
(2.42)

where Ah and Ch are respectively defined by (2.24) and (2.34). We will be able to expose
our main result, namely the uniform exponential stability property in the semi-discrete
case. First, as for the observability property, we will check that our multiplier Πh satisfies
the fundamental Assumption 2.

Theorem 2.4.7 Let Ch be defined by (2.34). Let zh = (uh, vh) 2 Zh be the solutions of
(2.42). Then, Πh defined by (2.27) satisfies Assumption 2 namely

(ΠhAhzh, zh)h � �(Chzh, ChΠhzh)h  �kChzhk
2
h � kzhk

2
h,

where �, > 0 are independent of h.

Proof: Let clarify the expression of (Chzh, ChΠhzh)h.

� (Chzh, ChΠhzh)h = �
N�1X

i=1

1

h̃i
[[vi]][[�h(uh)]] + vh(1)uh(1)

+ dh(uh,�
⇤
h(vh)) + dh,⇤(vh,�h(uh)).

At a point, xuh has the same value as its interpolation. Therefore, as uh is continuous
(and consequently its jump is zero), then �h(uh) has a zero jump too. Then, thanks to
(2.36), we have

(ΠhAhzh, zh)h � �(Chzh, ChΠhzh)h

= �

Z 1

0
vh@x�

⇤
h(vh)dx+

Z 1

0
@xuh�h(uh)dx� u2h(1) + v2h(1)

+ �vh(1)uh(1) + �dh(uh,�
⇤
h(vh)) + �dh,⇤(vh,�h(uh)).

Following the proof of Theorem 2.4.6.1, one can show

(ΠhAhzh, zh)h � �(Chzh, ChΠhzh)h

 �
1

2Cq
(1� �� µ(1 + 2Cr)) kzhk

2
h +

1

2�
dh(uh, uh) +

1

2�
dh,⇤(vh, vh)

+
�2 + 1

2
v2h(1) +

1

2µ

N�1X

i=1

1

h̃i
[[vi]]

2 + �dh(uh,�
⇤
h(vh)) + �dh,⇤(vh,�h(uh)),

where � and µ are parameters that can be chosen as small desired. Thanks to Cauchy-
Schwarz and Young inequalities for last terms, we get with � > 0

(ΠhAhzh, zh)h � �(Chzh, ChΠhzh)h

 �
1

Cq
(1� �� µ(1 + 2Cr)) kzhk

2
h +

✓
1

2�
+

�

2�

◆
(dh(uh, uh) + dh,⇤(vh, vh))

+
�2 + 1

2
v2h(1) +

1

2µ

N�1X

i=1

1

h̃i
[[vi]]

2 +
��

2
dh(�

⇤
h(vh),�

⇤
h(vh)) +

��

2
dh,⇤(�h(uh)�h(uh)).
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Thanks to Proposition 2.4.5 and (2.28), we obtain

(ΠhAhzh, zh)h � �(Chzh, ChΠhzh)h

 �

✓
1

Cq
�

�

Cq
�

µ(1 + 2Cr)

Cq
�
��CdC

2
Π

2

◆
kzhk

2
h

+

✓
1

2�
+

�

2�

◆
(dh(uh, uh) + dh,⇤(vh, vh))

+
�2 + 1

2
v2h(1) +

1

2µ

N�1X

i=1

1

h̃i
[[vi]]

2.

We choose �, µ, � sufficiently small so that

1

Cq
�

�

Cq
�

µ(1 + 2Cr)

Cq
�
��CdC

2
Π

2
> 0.

Thus, finally we show that the Assumption 2 is satisfied

(ΠhAhzh, zh)h � �(Chzh, ChΠhzh)h  �kChzhk
2
h � kzhk

2
h,

with

� = max

✓
1

2�
+

�

2�
,
�2

2
+

1

2
,
1

2µ

◆
,

and

 =
1

Cq
�

�

Cq
�

µ(1 + 2Cr)

Cq
�
��CdC

2
Π

2
.

⌅

We can deduce from this theorem the uniform exponential stability property for the damped
wave equation (2.42).

Corollary 2.4.7.1 Let zh = (uh, vh) belonging to 2 U r
h ⇥ V r

h be the solutions of (2.42).
There exist two constants Cs > 0 and � > 0 independent of h, such that

kuh(t)k
2
h + kvh(t)k

2
h  Cse

��t
�
kuh(0)k

2
h + kvh(0)k

2
h

�
.

Proof: Using Theorem 2.4.7, we have that the multiplier Πh defined by (2.27) satisfies
Assumption 2. Therefore, we apply Theorem 2.4.4 where Ch and is defined by (2.34). ⌅

2.4.5 Further properties of the stabilization operators

It is possible to interpret that the dissipation term dh defined by (2.29) corresponds to
element-wise r-laplacians operators. In what follows we introduce the notation

xi+ 1
2
=

xi + xi+1

2
.

Proposition 2.4.8 For uh 2 U r
h then

dh(uh, uh) = Cr

N�1X

i=0

h2r+1
i

���u(r)h

⇣
xi+ 1

2

⌘���
2
,

where Cr is a positive scalar depending only on the finite element order r.
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Proof: To show that stated result, it is sufficient to study the following term for uh 2 Pr,

d

dx
(xuh � �h(uh)) .

Since uh 2 U r
h, we have that ui := uh|[xi,xi+1] 2 Pr, hence

ui(x) =

r�1X

k=0

xk

k!
u
(k)
i (xi) + ri(x) where ri(x) :=

xr

r!
u
(r)
i .

Moreover, one can show that

�h(uh)|[xi,xi+1] = Ii(xuh)

where, Ii is the interpolation operator on the Gauss-Lobatto points {xi + hi⇠k}
r
k=0, it is a

projection operator over Pr. Therefore, one can deduce that

(xuh � �h(uh))[xi,xi+1] = xri(x)� Ii(xri(x)) =
u
(r)
i

r!

�
xr+1 � Ii(x

r+1)
�

(2.43)

Using this result and a simple change of variable one can show that

Z xi+1

xi

|@x (xuh � �h(uh)) |
2 =

�
u
(r)
i

�2

r!2

Z hi

0

����
d

dx

�
xr+1 � Ihi

(xr+1)
�����

2

dx, (2.44)

where Ihi
is the interpolation operator on the Gauss-Lobatto points {hi⇠k}

r
k=0. We intro-

duce now the following change of variable,

�i :

�����
[0, 1] ! [0, hi],

⇠ ! x = hi⇠.

Thus, we have
�
Ihi

�
xr+1

�
� �i

�
(⇠) =

rX

k=0

 k(⇠)⇠
r+1
k hr+1

i ,

where { k(⇠)}
r
k=0 are a basis for Pr such that  k(⇠`) = �k,`. The use of the above identity,

the composition of (2.43) and �i leads to

✓
d

dx

�
xr+1 � Ihi

�
xr+1

��◆
� �i =

1

hi

d

d⇠

 
hr+1⇠r+1 �

rX

k=0

 k(⇠)⇠
r+1
k hr+1

i

!
.

Finally, (2.44) is rewritten as follows,
Z xi+1

xi

|@x (xuh � �h(uh)) |
2 = Cr

�
u
(r)
i

�2 1

hi
h2r+2
i ,

where Cr =
1

r!2

Z 1

0

�����
d

d⇠

 
⇠r+1 �

rX

k=0

 k(⇠)⇠
r+1
k

!�����

2

d⇠. ⌅

Of note, in the work of [Tebou and Zuazua, 2007] a Laplace operator us used as a viscous
term for stabilization of finite elements of order 1. Therefore, in some sense our work
generalizes these results by showing that an element-wise r-laplace operator – scaled with
the appropriate power of h – can be used for stabilization of high order finite elements.

The same result cannot be obtained straightforwardly for dh,⇤. In fact, due to the
discontinuous nature of the space V r

h , jump terms are involved.
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Proposition 2.4.9 For vh 2 V r
h then

dh,⇤(vh, vh)  C⇤
r

 
N�1X

i=0

h2r+1
i

���v(r)h

⇣
xi+ 1

2

⌘���
2
+ h

N�1X

i=1

[[vi]]
2

!
,

where C⇤
r is a positive scalar depending only on the finite element order r.

Proof: The proof is based on an adequate decomposition of any function vh 2 V r
h . More

precisely we introduce wh 2 V 1
h defined by

wh(0) = wh(1) = 0, w±
i = ±

[[vi]]

2
, i 2 {1, · · · , N � 1} and wh|[xi,xi+1] 2 P

1.

We then defined uh = vh � wh. It can be verified that uh 2 U r
h. We have

dh,⇤(vh, vh)  2dh,⇤(uh, uh) + 2dh,⇤(wh, wh).

Using Proposition 2.4.5 and the property that uh 2 U r
h we obtain the estimation

dh,⇤(vh, vh)  2dh(uh, uh) + 2Cd

Z 1

0
w2
hdx,

hence, using Proposition 2.4.8,

dh,⇤(vh, vh)  2Cr

N�1X

i=0

h2r+1
i

���u(r)h

⇣
xi+ 1

2

⌘���
2
+ 2Cd

N�1X

i=0

Z xi+1

xi

w2
hdx.

It is then possible to show that

N�1X

i=0

Z xi+1

xi

w2
hdx  h

N�1X

i=1

[[vi]]
2,

finally we observe that u
(r)
h

�
xi+ 1

2

�
= (uh + wh)

(r)
�
xi+ 1

2

�
= v

(r)
h

�
xi+ 1

2

�
by construction. ⌅

Remark 2.4.10 In the numerical results, we used the following simplified expression in-
stead of the term dh,⇤

d̃h,⇤(vh, ṽh) := Cr

N�1X

i=0

h2r+1
i v

(r)
h

⇣
xi+ 1

2

⌘
ṽ
(r)
h

⇣
xi+ 1

2

⌘
. (2.45)

Proposition 2.4.9 allows us to show that Theorem 2.4.6 and Theorem 2.4.7 hold with

eCh =

0
BBBBB@

D
1/2
h 0

0 J
1/2
h

0 B
1/2
h

0 eD1/2
h,⇤

1
CCCCCA

. (2.46)

where eDh,⇤ is associated with d̃h,⇤, thus showing the exponential decay behavior of the system
(
żh = Ahzh � � eC⇤

h
eChzh, in [0, T ],

zh(0) = zh,0.
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2.5 Observer system: Semi-discrete convergence result

In this section we follow the approach of [Chapelle et al., 2012b] and aim at defining at
the semi-discrete level an observer of the solution z = (u, v)t of the system (2.4) with the
assumption that, for all T > 0

z = (u, v) 2 C1
�
[0, T ];Hr+1(0, 1)2

�
.

It is shown below that the constructed observer as the property to converge asymptotically
in time to the solution of z up to an order related to the space discretization – typically
in O(hr) – but bounded in time. For the sake of simplicity and conciseness we directly
introduce the interpolation on the of z denoted z̄h(t) = Ihz(t) = (IUh

u(t), IVh
v(t)), it is

solution of the system

˙̄zh = Ahz̄h + "h, z̄h(0) = z0,h = Ihz0,

where "h is the consistency error and is assumed to be smooth in time and space and

|||"h||| := sup
t2[0,T ]

k"h(t)kL2(0,1)2  C"h
r, (2.47)

where C" > 0 is independent of T . Moreover, the interpolation operator satisfies, for
0  `  k and 0  k  r + 1,

8w 2 Hr+1(0, 1)2,

 
N�1X

i=0

|Ihw � w|2H`(xi,xi+1)2

! 1
2

 CI h
k�`kwkHk(0,1). (2.48)

We refer to [Ciarlet, 2002; Joly, 2007; Brenner and Scott, 2008] for more details on how
these properties can be obtained. The system for the observer is constructed as follows:
we assume v(1, t) is available/measured for t 2 [0, T ]– which is equivalent to having access
to (IVh v)(1, t) – and solve,

˙̂zh = Ahẑh � �

 
eDh 0

0 eDh,⇤ + Jh

!
ẑh � �

 
0 0

0 Bh

!
(ẑh � z̄h), ẑh(0) = 0.

Note that observer systems – and more precisely, state estimator – are very well studied
at the continuous level, we refer the reader to [Luenberger, 1963; Ramdani et al., 2010;
Imperiale et al., 2020]. In short, one expect that ẑh(t) ! z̄h(t) ⇠ z(t) asymptotically
in time , thus alleviating the mismatch in the initial data between the observer and the
interpolation of the solution z(t) of (2.4). The error

eh = z̄h � ẑh,

satisfies, with A�,h = Ah � � eC⇤
h
eCh,

ėh = A�,heh + �

 
Dh 0

0 eDh,⇤ + Jh

!
z̄h + "h, eh(0) = z0,h.

Lemma 2.5.1 There exists a constant CD > 0 independent of h, such that

8u 2 Hr+1(0, 1), kDhIUh
ukL2(0,1)  CDh

rkukHr(0,1),

and
8 v 2 Hr+1(0, 1), JhIVh

v = 0, k eDh,⇤IVh
vkL2(0,1)  CDh

rkvkHr(0,1).
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Proof: We show the first identity. From the Proposition 2.4.8, we have

dh(IUh
u, IUh

u) = Cr

N�1X

i=0

h2r+1
i

���(IUh
u)(r)

⇣
xi+ 1

2

⌘���
2

= Cr

N�1X

i=0

Z xi+1

xi

h2ri

���(IUh
u)(r)

⇣
xi+ 1

2

⌘���
2

 Crh
2r

N�1X

i=0

|IUh
u|2Hr(xi,xi+1)

.

Using (2.48) and a triangular inequality, we get the existence of a constant C̃r such that

dh(IUh
u, IUh

u)  C̃rh
2rkuk2Hr(0,1).

The analysis of k eDh,⇤IVh
vkL2(0,1) is the same as the previous one. Finally, note that since

v is smooth, we have that IVh
v is continuous and therefore JhIVh

v = 0. ⌅

Theorem 2.5.2 There exists a positive scalar Cst > 0 such that, for any T > 0, we have

sup
t2[0,T ]

kz(t)� ẑh(t)kL2(0,1)2  Cst

�
e��tkz0,hkh + hr

�
.

Proof: By triangular inequality and using (2.19), we have that

kz(t)� ẑh(t)kL2(0,1)2 = kz(t)� z̄h + z̄h � ẑh(t)kL2(0,1)2

 kz(t)� z̄hkL2(0,1)2 + c�1/2
q kz̄h � ẑh(t)kh.

Using the interpolation property (2.48), we obtain that there exists a positive scalar Cst

such that
kz(t)� ẑh(t)kL2(0,1)2  Csth

r + c�1/2
q kz̄h � ẑh(t)kh. (2.49)

Let us focus on the error eh = z̄h � ẑh, it satisfies

ėh = A�,heh + "̄h,

where

"̄h = �

 
Dh 0

0 eDh,⇤ + Jh

!
z̄h + "h.

Using Lemma 2.5.1, (2.47) combined with (2.19), we have that there exists Cst independent
of h such that

|||"̄h|||  Csth
r.

From the Duhamel formula, we have

eh(t) = etA�,hz0,h +

Z t

0
e(t�s)A�,h "̄h(s)ds.

Using the exponential stability of the operator A�,h (Corollary 2.4.7.1), we have

keh(t)kh  Cst

 
e��tkz0,hkh + sup

s2[0,t]
||"̄h(s)||h

Z t

0
e��(t�s)ds

!
.
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As a consequence, we finally have that there exist a constant Cst > 0 independent of h
and t such that

keh(t)kh  Cst

✓
e��tkz0,hkh +

1

�
(1� e��t)hr

◆
,

which combining with (2.49) proves the desired result. ⌅

It is worth noting that the preceding theorem states, in particular, that an observer ẑh
initialized from an interpolated initial condition with an accuracy of order hr then remains
at a distance hr from the true solution without error drift with respect to time. This is
due to the fact that the constant Cst does not depend on time. Therefore, in the context
of numerical analysis by semi-discretization, this result extends [Chapelle et al., 2012b] to
high order schemes.

2.6 Time discretization

2.6.1 Abstract results

In this section, we are interested in the discretization of System (2.17) with an implicit
midpoint scheme. The operator Ch or eCh can be used indifferently (we have chosen to use
Ch in what follows for the sake of clarity). We verify that the use of this time discretization
does not alter the stabilization properties.

8
<
:

zn+1
h � znh

∆t
= Ahz

n+1/2
h � �C⇤

hChz
n+1/2
h ,

z0h = zh,0.
(2.50)

It is easy to show that the energy conservation property is preserved in the fully discrete
case.

Theorem 2.6.1 Let {znh}n�0 2 Zh be the solutions of (2.50), we have the discrete dissi-
pation energy property

1

2

kzn+1
h k2h � kznhk

2
h

∆t
= ��kChz

n+1/2
h k2h, 8n � 0. (2.51)

Proof: We multiply (2.50) by z
n+1/2
h . Since Ah satisfies (2.16) and using the difference

of square formula, we obtain the result ⌅

Following the same reasoning as in the semi-discrete case, we start by demonstrating
the observability property for the undamped case � = 0.

Theorem 2.6.2 Let {znh}n�0 2 Zh be the solutions of (2.50) with � = 0. Assuming
Assumption 1, for T large enough, there exists a constant Cst(T ) > 0, independent of h,
such that

kzh,0k
2
h  Cst(T )∆t

NX

n=0

kChz
n+1/2
h k2h.

Proof: The proof of this theorem is very similar to that of Theorem 2.4.3 with � = 0,
in particular, it follows the same steps.

107



Chapter 2. Uniform boundary stabilization of a high-order finite element space
discretization of the 1-d wave equation

Step 1: We multiply the first equation of (2.50) (with � = 0) by Πhz
n+1/2
h , and we get

 
Πh

zn+1
h � znh

∆t
, z

n+1/2
h

!

h

=
⇣
ΠhAhz

n+1/2
h , z

n+1/2
h

⌘

h
.

We decompose the half-sum in the left hand-side to find, using Assumption 1,

1

2∆t

�
Πhz

n+1
h , zn+1

h

�
h
�

1

2∆t
(Πhz

n
h , z

n
h)h =

⇣
ΠhAhz

n+1/2
h , z

n+1/2
h

⌘

h
, (2.52)

 ↵kChz
n+1/2
h k2h � �kz

n+1/2
h k2h.

Step 2: Summing (2.52) over n we get,

1

2∆t

⇣
Πhz

N+1
h , zN+1

h

⌘

h
�

1

2∆t

�
Πhz

0
h, z

0
h

�
h
 ↵

NX

n=0

kChz
n+1/2
h k2h � �

NX

n=0

kz
n+1/2
h k2h.

The fully discrete energy conservation property of Theorem 2.6.1 with � = 0 gives

1

2∆t

⇣
Πhz

N+1
h , zN+1

h

⌘

h
�

1

2∆t

�
Πhz

0
h, z

0
h

�
h
 ↵

NX

n=0

kChz
n+1/2
h k2h � �(N + 1)kz0hk

2
h.

Step 3: Since Πh is bounded, by Cauchy-Schwarz theorem and using again the energy
conservation theorem 2.6.1 with � = 0, we have

✓
�(N + 1)∆t� kΠhkh

◆
kz0,hk

2
h  ↵

NX

n=0

∆tkChz
n+1/2
h k2h.

Choosing (N + 1)∆t = T > kΠhkh�
�1, we obtain the result. ⌅

In the same way as in the semi-discrete case, we obtain the exponential stability prop-
erty for the damped system.

Theorem 2.6.3 Let {znh}n�0 2 Zh be the solutions of (2.50). We assume that there exists
Cc > 0 and 0 < � < 1 such that for all h > 0, ∆t is chosen so that

∆tkChkh  Cc, (2.53)

and
∆t

2
kAhkh  � < 1. (2.54)

With this assumption and Assumption 2, there exist two constants Cs,� > 0 independent
of h such that

kznhk
2
h  Cskzh,0k

2
he

��(1��2)n∆t.

Proof: The proof is separated into the same steps as for the proof of exponential stability
at the continuous level of Theorem 2.4.4.
Step 1: We multiply the first equation by (2.50) and Πhz

n+1/2
h , and we get

 
Πh

zn+1
h � znh

∆t
, z

n+1/2
h

!

h

= (ΠhAhz
n+1/2
h , z

n+1/2
h )h � �(Chz

n+1/2
h , ChΠhz

n+1/2
h )h.

Using (a+ b)(a� b) = a2 � b2 and Assumption 2, we have

1

2∆t

�
Πhz

n+1
h , zn+1

h

�
h
�

1

2∆t
(Πhz

n
h , z

n
h)h  �kChz

n+1/2
h k2h � kz

n+1/2
h k2h.
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Step 2: Using the energy identity of Theorem 2.6.1, we get with ↵ > 0,

1

2∆t

�
Πhz

n+1
h , zn+1

h

�
h
�

1

2∆t
(Πhz

n
h , z

n
h)h + ↵

kzn+1
h k2h � kznhk

2
h

2∆t

 (�� ↵�) kChz
n+1/2
h k2h � kz

n+1/2
h k2h. (2.55)

We intend to bound the last term by �kzn+1
h k2h � kznhk

2
h. Note that this intermediate

necessary step is specific to the time discretization. Decomposing z
n+1/2
h in a well-chose

way, we have

�kz
n+1/2
h k2h = �

1

2
kzn+1

h k2h �
1

2
kznhk

2
h +

(∆t)2

4

�����
zn+1
h � znh

∆t

�����

2

h

.

Using the scheme (2.50) and Cauchy-Schwarz and Young inequalities, we obtain with ✏ > 0,

� kz
n+1/2
h k2h  �

1

2
kzn+1

h k2h �
1

2
kznhk

2
h +

(∆t)2

4
(1 + ✏)

���Ahz
n+1/2
h

���
2

h

+
�(∆t)2

4
(1 + ✏�1)kC⇤

hk
2
h kChz

n+1/2
h k2h.

By triangular inequality and Cauchy-Schwarz inequality and using hypothesis (2.53), we
get

� kz
n+1/2
h k2h  �

1

2

✓
1�

(∆t)2

4
(1 + ✏)kAhk

2
h

◆�
kzn+1

h k2h + kznhk
2
h

�

+
�C2

c

4
(1 + ✏�1)kChz

n+1/2
h k2h.

We choose ✏ =
1

2�2
�

1

2
> 0, using the condition (2.54), we obtain

� kz
n+1/2
h k2h  �

1

4

�
1� �2

� �
kzn+1

h k2h + kznhk
2
h

�

+
�C2

c

4

✓
1 +

2�2

1� �2

◆
kChz

n+1/2
h k2h.

Using the above equation in (2.55), we get

1

2∆t

�
Πhz

n+1
h , zn+1

h

�
h
�

1

2∆t
(Πhz

n
h , z

n
h)h + ↵

kzn+1
h k2h � kznhk

2
h

2∆t



✓
�C2

c

4

✓
1 +

2�2

1� �2

◆
+ �� ↵�

◆
kChz

n+1/2
h k2h �



4

�
1� �2

� �
kzn+1

h k2h + kznhk
2
h

�
.

Step 3: We choose ↵ large enough such that ↵ �
�

�
+

C2
c

4

✓
1 +

2�2

1� �2

◆
. Thus, we have

1

2∆t

�
Πhz

n+1
h , zn+1

h

�
h
�

1

2∆t
(Πhz

n
h , z

n
h)h + ↵

kzn+1
h k2h � kznhk

2
h

2∆t

 �


4

�
1� �2

� �
kzn+1

h k2h + kznhk
2
h

�
. (2.56)
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Step 4: We introduce the fully discrete Lyapunov functional

Ln
h = (Πhz

n
h , z

n
h)h + ↵kznhk

2
h,

and we can also show that it is equivalent to the energy functional En
h :=

1

2
kznhk

2
h using

the bounded nature of Πh and choosing ↵ sufficiently large.

(↵� kΠhkh)kz
n
hk

2
h  Ln

h  (↵+ kΠhkh)kz
n
hk

2
h. (2.57)

Using the above equivalence between the Lyapunov functional and the energy, we obtain

1

2∆t

�
Ln+1
h � Ln

h

�
 �



4

�
1� �2

�
(kΠhkh + ↵)�1 �Ln+1

h + Ln
h

�
.

Rearranging the terms, we have

Ln+1
h  �(∆t,↵)Ln

h.

We denote �(∆t,↵) =

0
@1�

∆t


2

�
1� �2

�

kΠhkh + ↵

1
A
�0

@1 +
∆t



2

�
1� �2

�

kΠhkh + ↵

1
A.

Step 5: By induction and using again (2.18), we obtain

kznhk
2
h 

↵+ kΠhkh
↵� kΠhkh

kzh,0k
2
he

n ln(�(∆t,↵)).

We must now specify the constant ln(�). Bounding from below ∆ by 0 and using a series
expansion we get

ln (�(∆t,↵)) = ln

0
BBBBB@
1�

∆t
�
1� �2

�

kΠhkh + ↵

1 +
∆t



2

�
1� �2

�

kΠhkh + ↵

1
CCCCCA

 ln

 
1�∆t


�
1� �2

�

kΠhkh + ↵

!

⇠
↵!+1

�
∆t

↵

�
1� �2

�
+ o

✓
1

↵

◆
.

Finally, we can conclude,

kznhk
2
h 

✓
↵+ kΠhkh
↵� kΠhkh

◆
kzh,0k

2
he

��n∆t,

with �(1� �2) =
(1� �2)

↵
> 0.

⌅

Remark 2.6.4 In many situations, as the case presented, one can show that there exists
CA independent of h such that,

kChkh  CAkAhkh, (2.58)

and in this case, we can get rid of condition (2.53) and condition (2.54) is sufficient for
Theorem 2.6.3. We recognize a "CFL" condition usually encounter with explicit scheme.
Nevertheless, it allows us to obtain the exponential stability property.

Under the same two assumptions as in the semi-discrete case, we obtain the properties of
observability and exponential stability.
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2.6.2 Application: 1D fully discrete wave problem

We can now present the observability theorem in a totally discrete framework.

Theorem 2.6.5 Let {unh, v
n
h}n�0 belonging to U r

h ⇥ V r
h be the solutions of (2.50) with

� = 0. For T large enough, there exists Cst(T ) independent of h such that

kuh,0k
2
h + kvh,0k

2
h  Cst(T )

NX

n=1

∆t
h
dh

⇣
u
n+1/2
h , u

n+1/2
h

⌘
+ dh,⇤

⇣
v
n+1/2
h , v

n+1/2
h

⌘

+
⇣
v
n+1/2
h (1)

⌘2
dt+

N�1X

i=1

1

h̃i
[[v

n+1/2
i ]]2

#
,

where dh and d⇤h are defined by (2.29) and by (2.30).

Proof: Since Πh satisfies Assumption 1, we can apply Theorem 2.6.2 and the result
follows immediately. ⌅

Theorem 2.6.6 Let {unh, v
n
h}n�0 belonging to U r

h ⇥ V r
h be the solutions of (2.50). We as-

sume that 9� > 0 independent of h and ∆t, 8h, ∆t is chosen small enough such

∆t

2
kRhkh  � < 1. (2.59)

There exists two constants Cs > 0 and � > 0 independent of h such that

kunhk
2
h + kvnhk

2
h  Cse

�n∆t�(∆t)
�
kuh,0k

2
h + kvh,0k

2
h

�
.

Proof: In order to prove Theorem 2.6.3, we need to show that the conditions (2.54)
holds. Since we have the following property

kAhkh  CAkRhkh, CA > 0,

if (2.59) holds, then (2.54) is satisfied.
In order to apply Remark 2.6.4 – and thus to get rid of the condition (2.53) –, it only
remains to show that

kChkh  CckRhkh, Cc > 0.

It is well known that we have the following inequality

↵

h
 kRhkh, ↵ > 0,

so we only need to show that kChkh 
Cst

h
with Cst > 0. Let us compute the operator

norm of Ch. By definition of the operator Ch, we have for zh 2 Zh,

kChzhk
2
h = dh(uh, uh) + dh0⇤(vh, v) + v2h(1) +

N�1X

i=1

1

h̃i
[[vi]]

2.

We only treat the last term because it is the most difficult. Using Proposition 2.4.5 and
the same kind of computations as in the proof of Theorem 2.6.3, one can show that

N�1X

i=1

1

h̃i
[[vi]]

2  2

N�1X

i=0

1 + 2Cr

h̃ihi
kvhk

2
L2([xi,xi+1])

+ 2

NX

i=1

1 + 2Cr

h̃ihi�1

kvhk
2
L2([xi�1,xi])

.
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Since we have a quasi-uniform discretization, we obtain

N�1X

i=1

1

h̃i
[[vi]]

2  4
1 + 2Cr

⇢2h2
kvhk

2
L2(0,1).

We can therefore bound kChkh by 1/h,

kChkh 

✓p
Cd +

p
1 + 2Crp
⇢h

+
2
p
1 + 2Cr

⇢h

◆
.

Furthermore, 8h, ∆t chosen small enough such that

∆tkRhkh  � < 1,

satisfies the condition 2.54 of Theorem 2.6.3. Since Πh satisfies Assumption 2 and (2.58)
and (2.54) holds, we can apply Theorem 2.6.3 and the result follows immediately. ⌅

In perspective, adapting the previous result to the observer analysis, as we did for
the semi-discretization in space, should allow us to extend the fully discretized numerical
analysis proposed in [Chapelle et al., 2012b] to high order schemes. This would then imply
that we can propose an observer that avoids the asymptotic temporal error drift by using
data while remaining compatible with the state of the art of high order discretization.

2.7 Numerical results

We compare the numerical results of Section 2.2 and those obtained with our method.
First we make an analysis of the eigenvalues by comparing our method and other existing
methods in the literature. In a second step, for the sake of efficiency of the method, we
will introduce a leap-frog scheme which preserves the energy dissipation property of the
previous sections. Then we compare the shape of the solution of the damped system with
the solution of the undamped system of Section 2.2. Note that in all the section the term
D̃h,⇤ is the operator associated with the bilinear form d̃h,⇤ defined by (2.45) namely

(D̃h,⇤vh, ṽh)h = d̃h,⇤(vh, ṽh), 8vh, ṽh 2 V r
h . (2.60)

2.7.1 Eigenvalues analysis

We look at the effect of adding the new dissipative terms on the spectrum. We start by
doing a comparison with methods used in the literature. A first idea is to penalize the jump
as seen in [Cohen and Sinding, 2009] for Maxwell’s equations. Thus, we add a dissipation
term Jh corresponding to this penalization of the jump of the second variable which is
discontinuous.

We see in Figure 2.5 (Left) that this method is adapted for finite elements of P1, but
that the decay rate is not as good as the continuous one. As soon as we go to higher finite
elements in Figure 2.5 (Right), we find eigenvalues close to the imaginary axis. We also
represent the spectrum obtained viscosity is added – as a classical stabilization strategy,
(see [Tebou and Zuazua, 2007]). We denote by Vh the discrete Laplace operator on the
first component.
Thus, as we can see in Figure 2.6 (Left), a second order perturbation gives the exponential
stability but with a wrong decay for finite elements of order greater than P1.
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Figure 2.5: Spectrum of Ah � Jh
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Figure 2.6: Spectrum of Ah � Jh � h2Vh (Left) and of Ah � Jh � hr+1Vh(Right), r is the order of
the method

Furthermore, the consistency is really deteriorated. If we soften the impact of the vis-
cous term – Figure 2.6 (Right) –, for instance by replacing the scaling h2 by hr+1 with the
order r of the finite elements, then the exponential stability is not satisfied anymore.
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Figure 2.7: Spectrum of Ah � Jh �Dh � D̃h,∗

We now use our method. Note that we penalize the jump with the addition of the term
Jh, as in Figure 2.5.

We preserve the consistency, and we have the uniform exponential stability with a
constant which has the same order as what we had at the continuous level as we can see in
Figure 2.7 (Left). When refining – see Figure 2.7 (Right)–, the consistency is improved. In
the end, we found dissipative terms that exponentially stabilize the system while preserving
consistency.
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2.7.2 A numerical example with an explicit leap-frog scheme

One of the objectives being to have an effective method, we present the leap-frog scheme
used in the numerical simulations that guarantees the energy conservation and dissipation
properties for damped and undamped systems respectively. We consider the damped wave
equation (2.42) discretized with an explicit scheme where the dissipation terms are off-
centered.

8
>>>>>>><
>>>>>>>:

un+1
h � unh

∆t
�R⇤

hv
n+1/2
h + �Dhu

n
h = 0

v
n+3/2
h � v

n+1/2
h

∆t
�Rhu

n+1
h + �Bhv

n+1
h

+�Jh
v
n+3/2
h + v

n+1/2
h

2
+ �D̃h,⇤v

n+1/2
h = 0.

(2.61)

The scheme is almost fully explicit thanks to the mass-lumping strategy and off-centering
of the newly added dissipative terms Dh and D̃h,⇤.
Note that:

• the centering of the jump term involves, at the algebraic level, to solve (N � 1) linear
system of size 2⇥ 2 at each iteration, where N is the number of elements

• off-centering does not imply here loss of consistency in time since it is used on terms
that are small when apply to interpolation of smooth solution of the problem.

To show the energy identity, we rewrite the scheme using the following trick
8
>>><
>>>:

Dhu
n
h = Dhu

n+1/2
h �

∆t

2
Dh

un+1
h � unh

∆t
,

D̃h,⇤v
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n+1
h �

∆t

2
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v
n+3/2
h � v

n+1/2
h

∆t
,

thus, we obtain
8
>><
>>:

M̃h
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∆t
�R⇤
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n+1/2
h + �Dhu
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h

∆t
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n+1
h + �Jhv
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h + �D̃h,⇤v
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h = 0,

(2.62)

where

M̃h = � �
∆t

2
Dh and M̃h,⇤ = � �

∆t

2
D̃h,⇤.

The energy identity for System (2.61) involves a new energy functional that is given below:

for unh 2 U r
h and v

n+1/2
h 2 V r

h ,

En
h,ex =

1

2

⇣
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⌘
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+

1
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⌘

h
�

∆t
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⌘

h
. (2.63)

Theorem 2.7.1 Let {unh, v
n
h}n�0 belonging to U r

h ⇥ V r
h be the solutions of (2.62). The

following energy identity holds,

En+1
h,ex � En
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Moreover if 8h, ∆t is chosen small enough such that

1� �
∆t

2
kDhkh > 0 and 1� �

∆t

2
kD̃h,⇤kh > 0, (2.64)

and

1�
∆t

2
kRhkh > 0, (2.65)

then En
h,ex � 0 and the scheme is stable.

Proof: We only show here the energy identity. The positivity of the energy and related
stability of the scheme are well-known results. We multiply the two equations of (2.62) by

u
n+1/2
h and vn+1

h respectively and we obtain,
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We use the follow identity
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We recognize the expression of the explicit energy (2.63). This concludes the proof. ⌅

Remark 2.7.2 Note that since Dh and D̃h,⇤ are bounded, condition (2.64) is not a CFL
condition. On the other hand, condition (2.65)corresponds to the classical CFL condition
for explicit schemes.

As in Section 2.2, we now look at the evolution of the shape of the solution and of the
energy over time, with the added damped terms. The numerical pollution due to parasitic
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Figure 2.8: Solution u discretized with P4 F.E.M. with h = 1/10 and dt = 1/1000 at time t = 2
(Left) and at time t = 4 (Right)

waves has completely vanished. We can observe on Figure 2.8 a totally smooth wave that
is not oscillating anymore.

While the system without the damping terms had an energy that became constant in
long time (Figure 2.9 in pink), we notice that with the addition of these dissipative terms,
we obtain a linearly decreasing energy (in logarithm scale) as can be seen on Figure 2.9
in blue. This confirms the result of Theorem 2.6.6, we succeeded in making the system
uniformly exponentially stable.
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Figure 2.9: ln (ku(t)k2 + kv(t)k2)
1/2

2.8 Conclusion

By penalizing the jump and introducing an additive dissipative term consistent with high-
order finite element schemes, we can adapt multiplier techniques at the fully discrete level to
obtain exponential stabilization results that are uniform with respect to the discretization.
The main perspective is to extend the results for 2-dimensional dynamics. The main
obstacle lies in the difficulties observed at the continuous level, namely that the variable
vh must be defined as a gradient on each element, which may not be the case for a weak
formulation of the equation. Moreover, we need the discrete energy uniform distribution
property for the first order formulation. Finally, it would be necessary to introduce a
numerical treatment of the boundary conditions.
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CHAPTER 3

Mathematical analysis of an observer for solving in-

verse source wave problem

L’espace efface le bruit.

— Victor Hugo

The objective of this work is to propose a practical method using observers to estimate
a source term of a wave equation, from internal measurements in a subdomain. The first
part of the work consists in proving an identifiability result from classical observability
conditions for wave equations. We deduce that the source reconstruction is an ill-posed
inverse problem of degree 1 or 2 depending on the measurements type. This inverse prob-
lem is solved using observers – a sequential strategy – that is proven to be equivalent
to a minimization of a cost functional with Tikhonov regularization. This chapter con-
tains a submitted article, realized in collaboration with Sébastien Imperiale and Philippe
Moireau.
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Abstract

The objective of this work is to propose a method using observers to estimate a source
term of a wave equation from internal measurements in a subdomain. The first part of the
work consists in proving an identifiability result from classical observability conditions for
wave equations. We show that the source reconstruction is an ill-posed inverse problem of
degree 1 or 2 depending on the measurements type. This inverse problem is solved using
observers – a sequential strategy – that is proven to be equivalent to a minimization of a
cost functional with Tikhonov regularization.

Keywords— Wave equation, Source identification, Observability

3.1 Introduction

Inverse problems applied to wave-like propagation phenomena has received a lot of at-
tention with numerous applications in geophysics [Blum et al., 2009; Zou et al., 1992],
tomography [Bergounioux et al., 2010; Haine, 2014a; Gebauer and Scherzer, 2008], medi-
cal imaging [Aguilo et al., 2010; Imperiale et al., 2021] with the development of elastography
[Bal and Imperiale, 2015; Imperiale et al., 2020], non-destructive testing [Albanese et al.,
2002]. In fact, several subcategories of inverse problems can be distinguished: the recon-
struction of initial conditions, the reconstruction of sources, and finally the identification
of constitutive parameters. First, the reconstruction of initial conditions has been widely
studied ([Ramdani et al., 2010; Imperiale et al., 2020]) and is based on the proof of a
so-called observability inequality. This inequality, which has been studied extensively by
the control community [Lions, 1988; Zuazua, 2005; Coron, 2007] quantifies the initial con-
dition to measurement operator invertibility which in this case is linear, allowing for the
analysis of reconstruction strategies [Cîndea and Münch, 2015; Burman et al., 2021]. At
the other end of the spectrum, parameter reconstruction is a nonlinear inversion problem
[Jellali, 2006; Roman et al., 2020], where identifiability and stability results are hard to
obtain in the general cases and often rely on Carleman inequalities, see for example [Bau-
douin et al., 2013, 2017, 2021] and references therein. Finally, source reconstruction is the
intermediate step between initial conditions reconstruction and parameter reconstruction.
In a first step, we consider a source term with a separate variable, i.e., the source is the
product of a time-dependent function multiplying a space-dependent function to be esti-
mated. This source term can take various forms, even being point sources ([Komornik and
Yamamoto, 2002, 2005]). One of the advantages of estimating such source terms is that
one can show identifiability by relying on initial condition observability inequalities ([Alves
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et al., 2009; Yamamoto, 1995]), while more general source terms may require the use of
dedicated Carleman estimates ([Mukanova and Romanov, 2016; Yamamoto, 1999]). From
a practical point of view, there are two main categories of methods for solving these inverse
problems: Least-squares minimization approaches [Bergounioux et al., 2010; Bonnet and
Aquino, 2015; Burman et al., 2021] – also known as variational approaches or 4D-var in
the data assimilation community [Lewis and Derber, 1985; Talagrand and Courtier, 1987;
Rabier et al., 2000] – or sequential approaches, where a new evolution problem integrating
the measurements as a feedback pursues the target solution. The least squares approach
is certainly the oldest strategy ([Sasaki, 1955, 1970]) and is typically solved using adjoint
equations ([Le Dimet and Talagrand, 1986]). The goal is to eventually find the optimal
trajectory that minimizes the discrepancy between the solution and the observations. The
sequential approach, also called the observer approach, is less studied. The principle is to
introduce feedback into the dynamics based on measurement to create a new system, called
the observer, which converges asymptotically to the observed system over time. Starting
from the reconstruction of the initial conditions of wave problems, algorithms were de-
veloped [Ramdani et al., 2010] combining the observer and time-reversal strategies in a
comparable spirit to the back-and-forth nudging introduced in data assimilation [Auroux
and Blum, 2008]. This strategy has been extended to unbounded domains by [Imperiale
et al., 2020]. The proposed feedbacks are often easy to compute, and their efficiency is
based on stabilization principles inspired by the so-called Luenberger observer introduced
for finite-dimensional control problems [Luenberger, 1963, 1971]. In the same community,
it is also known that the principles of dynamic programming [Bellman, 1966] can also help
to formulate observers that asymptotically solve the least square minimization problem.
Such a strategy is often referred to as optimal filtering, since the feedback is also called
a filter, and it is derived directly from an optimal criterion. It has been extended to the
estimation of initial condition for infinite dimensional systems [Bensoussan, 1971; Curtain,
1975] with recent works on numerical methods and their analysis, see e.g. [Aussal and
Moireau, 2022] and references therein. Observers for reconstructing sources or identify-
ing parameters have also been introduced in finite dimensional cases [Zhang, 2002] with
applications to discretized wave-like problems [Moireau et al., 2008; Imperiale et al., 2021].

In this chapter, our goal is to extend the definition of such an optimal observer to source
reconstruction in the infinite dimensional context of source inversion for wave problem.
Our contribution includes the formulation of the observer, namely its existence, but also
its asymptotic property, here called stability, and its robustness to measurement noise, as
in all inverse problems. Notably, we base our analysis on general field measurements on a
subdomain whereas most observability results for wave equations are classically based on
velocity measurements.

This chapter is organized as follows. In the first section, we present the problem
underlying the nature of the present observations. In the second section, we present how
observability inequality allows us to quantify how poor the reconstruction of source terms
is from the available field measurements. The next section is devoted to the formulation
and analysis of the observer in the infinite dimensional context, developing an infinite
dimensional Kalman filtering reduced to the source space. We then propose a discretization
strategy based on the same principles at the discrete level. Finally, we illustrate the strategy
with numerical experiments.
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Chapter 3. Mathematical analysis of an observer for solving inverse source wave problem

3.2 Problem setting

Let Ω be a bounded, connected open domain of class C2 in R
d. We consider the following

wave equation
8
>>>><
>>>>:

@ttu(x, t)�∆u(x, t) = �(t)✓(x), (x, t) 2 Ω⇥ (0, T ),

u(x, t) = 0, (x, t) 2 @Ω⇥ (0, T ),

u(x, 0) = u0(x), x 2 Ω,

@tu(x, 0) = v0(x), x 2 Ω,

(3.1)

where (u0, v0) is the initial condition, and f(t) = �(t)✓(x) with � 2 L2(0, T ) ✓ 2 P ✓
L2(Ω), a Hilbert space, to be recovered from available measurements.

3.2.1 Semigroup approach

We rewrite (3.1) as a first order system in the state-space Z := H1
0(Ω) ⇥ L2(Ω) equipped

with the semi-norm H1 and the L2 standard scalar product,
(
ż(t) = Az(t) +B(t)✓, t 2 [0, T ],

z(0) = z0,
(3.2)

where

z0 =

 
u0

v0

!
, B =

 
0

�(t)Id

!
, (3.3)

and the operator A is an unbounded skew-adjoint operator from D(A) ⇢ Z into Z defined
by

A =

 
0 Id

∆0 0

!
, D(A) = D(�∆0)⇥H1

0(Ω),

where ∆0 denotes the Laplacian operator with homogeneous Dirichlet boundary conditions
[Bensoussan et al., 2007, Part II, Section 1.2.10]. The operator A is maximal dissipative,
hence it is a generator of a C0-semigroup (�(t))t�0 on Z also denoted (etA)t�0. Note that
(B(t))t�0 is a one parameter family of bounded operator from P to Z. We recall the
various notions of solution and associated regularity.

Theorem 3.2.1 For all T > 0, the evolution equation (3.2) admits the following solutions:

1. For all z0 2 D(A), � 2 H1([0, T ]) and ✓ 2 P, there exists a unique strong solution
z 2 C0([0, T ];D(A)) \ C1([0, T ];Z) of (3.2) and (3.3).

2. For all z0 2 Z, � 2 L1(0, T ) and ✓ 2 P, there exists a unique mild-solution z 2
C0([0, T ];Z) of (3.2) and (3.3) given by Duhamel’s formula

z(t) = etAz0 +

Z t

0
e(t�s)A

 
0

�(s)

!
✓ds, t 2 [0, T ]. (3.4)

Moreover, the solution is a weak solution, namely z 2 Lp((0, T );Z), for all v 2 D(A⇤),
v, z(·) 2 W1,p(0, T ) and

8
<
:

d

dt
(v, z(t)) = (A⇤v, z(t)) + (B(t)�, v), t 2 [0, T ] a.e.,

z(0) = z0.
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Proof: See [Bensoussan et al., 2007, Part II, Chapter 1, Section 3, Propositions 3.1 and
3.2]. ⌅

Remark 3.2.2 From Theorem 3.2.1, it follows naturally:

1. For all (u0, v0) 2 D(�∆0) ⇥ H1
0(Ω), � 2 H1([0, T ]) and ✓ 2 P, there exists a unique

strong solution u of (3.1) belonging to

C0([0, T ];D(�∆0)) \ C1([0, T ]; H1
0(Ω)) \ C2([0, T ]; L2(Ω)).

2. For all (u0, v0) 2 H1
0(Ω) ⇥ L2(Ω), � 2 L1(0, T ) and ✓ 2 P, there exists a unique

mild-solution u of (3.1) belonging to

C0([0, T ]; H1
0(Ω)) \ C1([0, T ]; L2(Ω)).

We introduce the so-called sensitivity operators, namely the one parameter family
(L(t))t�0 of bounded operator, such that t 7! L(t)✓ 2 C0([0, T ];Z) is solution to

(
ż(t) = Az(t) +B(t)✓, t 2 [0, T ]

z(0) = 0,
(3.5)

then, the Duhamel’s formula (3.4) also reads z(t) = �(t)z0 + L(t)✓, t 2 [0, T ]. For further
use, we define L1 which corresponds to L in the case of � ⌘ 1 namely the one parameter
family (L1(t))t�0 of bounded operator, such that t 7! L1(t)✓ 2 C0([0, T ];Z) is solution to

8
><
>:
ż(t) = Az(t) +

 
0

✓

!
, t 2 [0, T ]

z(0) = 0.

(3.6)

3.2.2 Observation operator

We now need to describe the assumption concerning the available observations. In this
work, we suppose that we have at our disposal, at every time t, measurements during
the period (0, T ) of the restriction of u in ! ⇢ Ω an open and nonempty subset of Ω with
Lipchitz boundary @! and @(Ω\!) also being Lipchitz. Moreover, we assume that ! ◆ !gcc

where (!gcc, T ) satisfies the following condition [Burq and Gérard, 2020]

9T, 8⇠ 2 Ω, 9s 2 [0, T ], 9� > 0;!gcc � B(x⇠(s); �), (GCC)

where B(x⇠(s); �) is a ball centered in x⇠(s) with a radius of � and where a ray, starting
from ⇠ and following the Descartes law of refection in its most general senses [Bardos
et al., 1988; Burq and Gérard, 2020], is parametrized by {x✏(s), s 2 [0, T ]}. Note that is
well known that such subdomain should contain a part of the boundary that we denote
Γ = @Ω\@! with no cups. Otherwise, some whispering gallery rays may prevent the GCC
to be fulfilled.

Let us now present the definition of the observation operator C usually introduced in
control and observation theory – see for instance [Tucsnak and Weiss, 2009] and references
therein. We consider a restriction operator I! 2 L(H1

0(Ω),Y), where Y is the observation
space to be defined. Then formally, and in the absence of noise, at any time t 2 [0, T ], the
measurement procedure could produce a measurement y(t) = I!u(t). If we assume that the
wave equation solution u(t) 2 H1

0(Ω) for all t, it is then natural to consider that Y = H1
Γ
(!)
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x1

x2

F1F2

Γgcc

ωgcc

Ω ωΩ

Figure 3.1: An interior subdomain of observation ! which does satisfy the GCC condition (left)
or does not (right)

– the subspace of functions in H1(!) null on Γ. However, in practice, the measurements are
always polluted by noise, hence in our deterministic context, the resulting measurement
should belong to a less regular space, typically Y = L2(!).

If we consider regular measurements namely the observation space is Y = H1
Γ
(!), it is

rightful to introduce

C =
⇣
I! 0

⌘
2 L(Z,Y), where I! 2 L(H1

0(Ω),H
1
Γ(!)). (3.7)

As in [Chapelle et al., 2012a], we equipped this space with the norm k·kH1
!
= kE!(·)kH1

0(Ω),

where E! 2 L(H1
Γ
(!),H1

0(Ω)) is defined by

E!� :=  the solution of

8
><
>:

∆ = 0, in Ω \ !,

 = �, in !̄,

 = 0, on @Ω.

(3.8)

We recall the following lemma.

Lemma 3.2.3 The norm k · kH1
!

is equivalent to the norm k · kH1(!).

Proof: As in [Chapelle et al., 2012a], on the one hand, we show that E! is bounded
from H1

Γ
(!) to H1

0(Ω). Using a trace property as well as a lifting property, we obtain

kr(E!�)k
2
L2(Ω)  kr�k2L2(!) + Cstk�|@!k

2
H1/2(@!)

 Cstk�k2H1(!).

On the other hand, we have

k�k2H1(!) = kr(E!�)k
2
L2(!) + k�k2L2(!)

 kr(E!�)k
2
L2(Ω) + kE!�k

2
L2(Ω).

Using Poincaré inequality, we get

k�k2H1(!)  (1 + Cp)kr(E!�)k
2
L2(Ω).

⌅

For the sake of completeness and since it will be a central tool, for our results, we
define the observation operator adjoint. One can show the following orthogonality property
using (3.8)

8� 2 H1
!, 8 2 H1

0(Ω) such that  |! = 0, (r(E!�),r )L2(Ω) = 0.
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Therefore, we obtain that for all � 2 H1
! and  2 H1

0(Ω),

(r(E!�),r )L2(Ω) = (r(E!�),r(E! |!))L2(Ω) � (r(E!�),r(E! |! �  ))L2(Ω)

= (r(E!�),r(E! |!))L2(Ω) = (�, |!)H1
!
.

Then, with the Riesz representation, the adjoint of E! is I!, and we can directly infer that

C⇤ =
⇣
E! 0

⌘t
2 L(H1

Γ(!);Z).

We can see that the choice of norms for the observation operator is important, in particular
it directly impacts the definition of its adjoint. With this choice of observation operator
C, we restrict the space of observations to H1

Γ
(!). In practice, for noisy measurements,

the noise could be less regular, i.e. it could belong to a larger space such as L2(!). In
this case, we define an observation operator where the image space is larger than in the
previous case, namely L2(!) instead of H1

Γ
(!). The observation operator becomes

C =
⇣
I! 0

⌘
: Z ! L2(!) where I! 2 L(H1

0(Ω),L
2(!)). (3.9)

Then, the observation operator adjoint is given by C⇤ =
⇣
F! 0

⌘t
where F! 2 L(L2(!),H1

0(Ω))

is defined by

F!� :=  the solution of

(
�∆ = �!�, in Ω,

 = 0, on @Ω,
(3.10)

where �! is the characteristic function of !.

3.2.3 Inverse problem setting

We can now formulate the inverse problems. We consider an actual trajectory ǔ modeled
as the first component of a mild solution ž of (3.2) for a given and known (u0, v0) and �(t)
but an unknown ✓̌. Since the initial data are known, we can assume that they are zero
thanks to the linearity of the problem. Therefore, ǔ is a particular solution of the system

8
>>>><
>>>>:

@ttu(x, t)�∆u(x, t) = �(t)✓(x), (x, t) 2 Ω⇥ (0, T ),

u(x, t) = 0, (x, t) 2 @Ω⇥ (0, T ),

u(x, 0) = 0, x 2 Ω,

@tu(x, 0) = 0, x 2 Ω,

(3.11)

and its first-order formulation
(
ż(t) = Az(t) +B(t)✓, t 2 [0, T ],

z(0) = 0.
(3.12)

This actual trajectory is subject to measurements modeled by the bounded observation
operator C 2 L(Z,Y). We denote the available measurements (or observations) y� which,
as they are perturbed by some measurements’ error – also known as the noise in our
deterministic framework – are assumed to belong to L2(0, T ;Y) equipped with the standard
L2 norm, hence y�(t) is defined for almost all t 2 (0, T ). In our deterministic framework,
the measurement noise intensity is represented by saying that there exists � 2 R

+ such
that

ky� � Cžk2L2(0,T ;Y)  �2T.
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Therefore, estimating ✓̌ 2 P ⇢ L2(Ω) from y� consists in inverting the linear input-output
operator

ΨT :

�����
L2(Ω) ! L2((0, T ); L2(!)),

✓ 7! (t 7! CL(t)✓).
(3.13)

We immediately find that ΨT is bounded as C is bounded from Z to Y and L(t) is bounded
from P to Z for all t 2 [0, T ]. Our objective is to study the condition for which ΨT is
injective and more importantly when ΨT is surjective. In fact, we are going to show that
ΨT is not surjective in L2(0, T ; L2(!)) but define a mildly ill-posed problem of degree 1 or
2 (see [Engl et al., 1996]) depending on the measurements space. We will then propose a
regularization strategy to invert ΨT using observers’ methods.

3.3 From observability to identifiability

In this first part, our objective is to quantify the degree of ill-posedness of ΨT . In particular,
we prove that we have enough information in the measurements to reconstruct ✓. A
fundamental tool for measuring the degree of ill-posedness are observability inequalities.
These inequalities are used to control parameters from observations. The most important
elements are the norms that appear in this type of inequality which quantifies the ill-
posedness [Natterer, 1984; Engl et al., 1996]. Indeed, suppose we want to reconstruct the
source term in the Sobolev space Hk(Ω) from measurements available in Hl(!), and prove
the following observability inequality:

Z T

0
kCzk2Hm(!)dt � ck✓k2Hn(Ω), with n  k, l  m.

The problem is then said to be ill-posed of degree: |k � n|+ |m� l|.

3.3.1 Observability conditions for the wave equation

For the homogeneous wave equation with Dirichlet conditions in the case of field measure-
ments in a subdomain, we will first develop a so-called observability inequality.

In our framework, we present the proposition which allows us to express an observability
condition with field measurements by relying on the geometric control condition. We adopt
the observability condition shown in [Chapelle et al., 2012a], here revisited for observation
domains that potentially contain a boundary part. In our case, the observation domain
must contain part of the boundary.

Proposition 3.3.1 Let u be an arbitrary solution of (3.1) with ✓ = 0. Let T0 > 0.
Assume that there exists T > T0 such that the GCC condition is satisfied for some !gcc

strict subset of !, in the time interval (0, T ). Then the following observability condition
8(u0, v0) 2 H1

0(Ω)⇥ L2(Ω)

Z T

0
ku(·, t)k2H1(!)dt � cobs(T )

⇣
ku0k

2
H1

0(Ω) + kv0k
2
L2(Ω)

⌘
(3.14)

holds.

Proof: The proof extended the one of [Chapelle et al., 2012a]. In this proof, we write
a . b if there exists c > 0 independent of T and M such that a  cb. Since the geometric
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control condition of [Bardos et al., 1988] holds, we have the classical observability inequality,
with c0obs(T ) > 0

Z T

0

Z

!

|@tu(x, t)|
2dxdt � c0obs(T )

⇣
ku0k

2
H1

0(Ω) + kv0k
2
L2(Ω)

⌘
. (3.15)

We consider several subdomains satisfying !gcc ✓ !0 ⇢ !✏ ⇢ !. We define a cutoff function
 2 C2(Ω) satisfying

 (x) =

(
0, if x 2 Ω\!✏

1, if x 2 !0,

and 0   (x)  1 for every x 2 Ω. Particularly, we have

@ 

@n

����
@!\@Ω

= 0.

We introduce '(t) = t2(T � t)2. Successively, integrating by parts, we obtain

0 =

Z T

0

Z

!

' (@ttu�∆u)u dx dt

=

Z T

0

Z

!

'̈ 
|u|2

2
dx dt�

Z T

0

Z

!

' |@tu|
2 dx dt

+

Z T

0

Z

@!

'
@ 

@n

|u|2

2
d� dt�

Z T

0

Z

!

'∆ 
|u|2

2
dx dt

+

Z T

0

Z

!

' |ru|2 dx dt.

Using the definition of  , we get

Z T

0

Z

!

' |@tu|
2 dx dt+

Z T

0

Z

!

'∆ 
|u|2

2
dx dt

=

Z T

0

Z

!

' |ru|2 dx dt+

Z T

0

Z

!

'̈ 
|u|2

2
dx dt.

We recall that for the system (3.1) with ✓ = 0, we have classically the conservation energy
property namely

E(0) :=
1

2
ku0k

2
H1

0 (Ω) +
1

2
kv0k

2
L2
0(Ω) =

1

2
ku(t)k2H1

0 (Ω) +
1

2
k@tu(t)k

2
L2(Ω) = E(t). (3.16)

Therefore, for a time T > T0 and " such that T � 2" > T0, we find

E(0) = E(") . (c0obs(T ))
�1

Z T�"

"

Z

!0

|@tu|
2 dx dt

. (c0obs(T ))
�1

Z T�"

"

Z

!0

⇥
' |@tu|

2 + |ru|2
⇤
dx dt

. (c0obs(T ))
�1

Z T

0

Z

!

⇥
|ru|2 + |u|2

⇤
dx dt,

hence justifying (3.14). ⌅
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Proposition 3.3.2 The observability constant cobs(T ) of Proposition 3.3.1 satisfies, for T
large enough

cobs(T ) � cT,

where c > 0 is independent of T .

Proof: Let t > 0. Applying Proposition 3.3.1 for a time T0 > 0, we have
Z T0+t

t
ku(·, t)k2H1(!)dt � 2cobs(T0)E(t). (3.17)

Let T 2 [N T0; (N + 1)T0], N 2 N
⇤, we have

Z T

0
ku(·, t)k2H1(!)dt �

N�1X

n=0

Z (n+1)T0

nT0

ku(·, t)k2H1(!)dt.

Using (3.17), we get

Z T

0
ku(·, t)k2H1(!)dt �

N�1X

n=0

2cobs(T0)E(nT0).

For all weak solution of (3.1) with ✓ = 0, we have classically by energy conservation (3.16)
Z T

0
ku(·, t)k2H1(!)dt � 2N T0 cobs(T0)E(0) � 2 (T � T0) cobs(T0)E(0).

⌅

This proposition provides a rough estimate of the behavior in time T of the observation
constant cobs(T ). A more precise estimate can be obtained using micro-local techniques,
as in [Humbert et al., 2019].

3.3.2 Regular field measurements in H
1

3.3.2.1 Identifiability with regular field measurements

From the observability condition adapted to initial condition reconstruction, we are now
going to deduce the parameter identifiability of our source reconstruction problem. As a
first step, we start by studying (3.12) when � ⌘ 1.

Theorem 3.3.3 Let ✓ 2 P, when ! satisfies the GCC condition, then for T large enough,
there exists a constant cidf(T ) � cT where c > 0 independent of T such that

Z T

0
kCL1(t)✓k2H1

!
dt � cidf(T )k✓k

2
H�1(Ω), (3.18)

where the observation operator is the observation operator in H1(!), namely C = (I! 0) 2
L(Z,H1

Γ
(!)) and L1 is given by (3.6).

Proof: The idea is to introduce the Riesz representation of ✓ seen as an element of H�1

that we denote g 2 H1
0(Ω)\D(�∆0) and is given by g = ∆

�1
0 ✓. We introduce the following

dynamics which in fact is equivalent to (3.11) with �(t) ⌘ 1.
8
>>>><
>>>>:

@ttug(x, t)�∆ug(x, t) = �∆0g(x), (x, t) 2 Ω⇥ (0, T ),

ug(x, t) = 0, (x, t) 2 @Ω⇥ (0., T ),

ug(x, 0) = 0, x 2 Ω,

@tug(x, 0) = 0, x 2 Ω.

(3.19)

128



3.3. From observability to identifiability

Note that ug 2 D(∆0) and @tug 2 H1(Ω). We now proceed by standard energy estimate
using the following energy functional

Eg(t) :=
1

2
krug(t)k

2
L2(Ω) +

1

2
k@tug(t)k

2
L2(Ω).

Integrating in space and time the first equation of (3.19) multiplied by @tug, we get
Z T

0

Z

Ω

@ttug@tugdxdt�

Z T

0

Z

Ω

∆ug@tugdxdt = �

Z T

0

Z

Ω

∆0g@tugdxdt.

Integrating by parts while using that g is time-independent, we obtain

Eg(T ) = �

Z T

0

Z

Ω

∆0g@tugdxdt = �

Z

Ω

∆0gug(T )dx =

Z

Ω

rgrug(T )dx.

By Cauchy–Schwarz inequality, we get

Eg(T )  krgkL2(Ω)krug(T )kL2(Ω) 
p
2krgkL2(Ω)E

1
2
g (T ).

This calculation finally leads to

k@tug(T )kL2(Ω)  2krgkL2(Ω). (3.20)

We now introduce the system satisfied by ũg = ug � g in order to obtain an initial value
problem for which we can use the observability condition of Proposition 3.3.1.

8
>>>><
>>>>:

@ttũg(x, t)�∆ũg(x, t) = 0, (x, t) 2 Ω⇥ (0, T ),

ũg(x, t) = 0, (x, t) 2 @Ω⇥ (0, T ),

ũg(x, 0) = �g(x), x 2 Ω,

@tũg(x, 0) = 0, x 2 Ω.

(3.21)

Using the observability condition of Proposition 3.3.1, we get
Z T

0
kug � gk2H1(!)dt =

Z T

0
kũgk

2
H1(!)dt � Cobs(T )kgk

2
H1

0(Ω). (3.22)

In order to get rid of the variable g in the left-hand side, we write that
Z T

0
kug � gk2H1(!)dt =

Z T

0
kugk

2
H1(!)dt+

Z T

0
kgk2H1(!)dt� 2

Z T

0
(ug, g)H1(!)dt. (3.23)

The cross product can be controlled. Integrating the first equation of (3.19) in time times
∆

�1
0 and then multiplying by g in the sense of the scalar product, we have

Z T

0
(ug, g)H1(!)dt = Tkgk2H1(!) + (∆�1

0 @tug(T ), g)H1(!).

Injecting this result in (3.23), we get
Z T

0
kug � gk2H1(!)dt =

Z T

0
kugk

2
H1(!)dt� Tkgk2H1(!) � 2(∆�1

0 @tug(T ), g)H1(!).

From Cauchy–Schwarz and Poincaré inequalities, we obtain

Z T

0
kug � gk2H1(!)dt 

Z T

0
kugk

2
H1(!)dt� Tkgk2H1(!)

+ 2(Cp + 1)kr∆
�1
0 @tug(T )kL2(Ω)kgkH1(!). (3.24)
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Since r∆
�1
0 is a bounded operator from L2(Ω) to L2(Ω), there exists a positive scalar Cst

such that
kr∆

�1
0 @tug(T )kL2(Ω)  Cstk@tug(T )kL2(Ω). (3.25)

Injecting now (3.25) in (3.24), we have

Z T

0
kug � gk2H1(!)dt 

Z T

0
kugk

2
H1(!)dt� Tkgk2H1(!)

+ 2Cst(Cp + 1)k@tug(T )kL2(Ω)kgkH1(!).

Thanks to (3.20) and using Young inequality, we obtain

Z T

0
kug � gk2H1(!)dt 

Z T

0
kugk

2
H1(!)dt� Tkgk2H1(!)

+ 2✏Cst(Cp + 1)kgk2H1
0(Ω) +

2

✏
Cst(Cp + 1)kgk2H1(!).

From the observability condition (3.22), we finally obtain

�
Cobs(T )� 2✏Cst(Cp + 1)

�
kgk2H1

0(Ω) 

Z T

0
kugk

2
H1(!)dt�

✓
T �

2

✏
Cst(Cp + 1)

◆
kgk2H1(!).

Choosing ✏ =
Cobs(T )

4Cst(1 + Cp)
gives us

Cobs(T )

2
kgk2H1

0(Ω) 

Z T

0
kugk

2
H1(!)dt�

 
T �

8Cst2(1 + Cp)
2

Cobs(T )

!
kgk2H1(!).

For T large enough such that T �
8Cst2(1 + Cp)

2

Cobs(T )
, we have

Cobs(T )

2
kgk2H1

0(Ω) 

Z T

0
kugk

2
H1(!)dt.

We conclude by noting that, by definition, kgkH1
0(Ω) = k✓kH�1(Ω) and by Lemma 3.2.3,

kugkH1(!)  CstkugkH1
!
. ⌅

From the identifiability property with � ⌘ 1, we deduce an identifiability property for
the source reconstruction in (3.12) for a class of � 2 H1(0, T ).

Theorem 3.3.4 Let ✓ 2 P and u be a solution of (3.11). Let T0 > 0. Assuming �(t) 2
H1(0, T ) and �(0) 6= 0 and (!, T0) satisfies the GCC condition, for T � T0 large enough,
then there exists a positive scalar c0idf(T ) depending only on T such that

Z T

0
kCL✓k2Ydt =

Z T

0
kuk2H1

!
dt � c0idf(T )k✓k

2
H�1(Ω), (3.26)

where the observation operator is the observation operator in H1
Γ
(!), namely C = (I! 0) 2

L(Z,H1
Γ
(!)).
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3.3. From observability to identifiability

Proof: This proof is inspired by [Alves et al., 2009]. Given the scalar nature of �, we
use the first-order formulation of the system, so that observations of the solution read, for
all t 2 [0, T ]

u|!(t) =

Z t

0
Ce(t�s)A�(s)

 
0

✓

!
ds = CL(t)✓

=

Z t

0
�0(t� s)

 Z s

0
Ce⌧A

 
0

✓

!
d⌧

!
ds+ �(0)

 Z t

0
Ce⌧A

 
0

✓

!
d⌧

!

=

Z t

0
�0(t� s)CL1(s)✓ds+ �(0)CL1(t)✓.

We define a Volterra operator S : L2(0, T ;Y) ! L2(0, T ;Y) ([Gripenberg et al., 1990, Part
1, Chapter 2]),

Sy(t) = y(t) +

Z t

0
kT (t� s)y(s)ds, where kT (t) =

8
<
:

�0(t)

�(0)
t 2 [0, T ],

0 t > T.
(3.27)

Using this Volterra operator, we have

u|!(t) = �(0)S � CL1(t)✓, t 2 [0, T ]. (3.28)

We are going to show that S is an isomorphism from L2(0, T ;Y) onto L2(0, T ;Y). Since
kT 2 L1(R+), using [Gripenberg et al., 1990, Part 1, Chapter 2, Theorem 3.1], there exists
a unique rT 2 L1(0, T ) such that

y(t) = Sy(t)�

Z t

0
rT (t� s)Sy(s)ds. (3.29)

Consequently, we obtain

kykL2(0,T ;Y) 
�
1 + krT kL1(0,T )

�
kSykL2(0,T ;Y). (3.30)

Combining (3.28) and (3.30) with y = CL1✓, we have

kCL1✓kL2(0,T ;Y) 
�
1 + krT kL1(0,T )

� 1

|�(0)|
ku|!kL2(0,T ;Y). (3.31)

Combining the above equation with the observability condition of Proposition 3.3.3, we
conclude the proof. ⌅

We deduce from the observability inequality (3.26) that the observations should belong
to H1(!), for a stable reconstruction is only in a H�1 norm. As a consequence, we face an
ill-posed inverse problem of degree 1 for an expected reconstruction in L2 for measurements
in H1,

Remark 3.3.5 In some cases, it is possible to affirm that the identifiability constant of
Theorem 3.3.4 has the same dependence in T as that of the Theorem 3.3.3, for instance,
when � generates a persistent excitation. Let us take an example of such function

�(t) =
1

1 + �
(e�↵t + �), where �,↵ are two positive constants.
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In fact, this corresponds to a small perturbation of the case where �(t) ⌘ 1.
Following the proof of Theorem 3.3.4 one has to show that krT kL1(0,T ) is independent of T
where rT is defined implicitly by � (and kT ) in (3.29). On one hand, we have

����
�0(t)

�(0)

����
L1(0,T )

= kkT kL1(0,T ) =

�����
↵

1 + �
e�↵t

����
L1(0,T )


↵

1 + �

Z T

0
e�↵tdt,


1

1 + �
(1� e�↵T ) 

1

1 + �
.

From [Gripenberg et al., 1990, Part 1, Chapter 2], we have an explicit expression for rT in
terms of kT ,

rT =
1X

j=1

(�1)j�1 (kT )
⇤j ,

where (kT )
⇤j is the (j � 1)-fold convolution of kT with itself. Hence,

krT kL1(0,T ) 
1X

j=1

kkT k
j
L1(0,T )

.

The common ratio kkT kL1(0,+1) is smaller than one, hence,

krT kL1(0,T ) 
⇣
1� kkT kL1(0,T )

⌘�1


1

1�
1

1 + �

=
1 + �

�
,

which does not depend on time T .

As we have seen in the previous proof, the dependency of the identifiability constant
with respect time is not always explicit. When we consider the simpler case �(t) ⌘ 1, we
have a constant Cst(T ) ⇡ T as well as when � is defined as follows:

8T > 0,� = �̄|[0,T ]with �̄ 2 H1(R+) and

����
�̄0

�(0)

����
L1(R+)

 1,

as illustrated in the previous example in Remark 3.3.5. One can compute that any support
function will not satisfy this condition. Later, we use the following assumption when
explicitly mentioned.

Assumption 3 The identifiability constant of Theorem (3.3.4) satisfies

c0idf(T ) � cT, with c > 0 independent of T.

3.3.2.2 From the identifiability result to a generalized Tikhonov regularization
strategy

We recall that we assume that a target trajectory ǔ produced by a target source term
parameter ✓̌ has resulted in a set of measurements y� where

Z T

0
ky�(x, t)� ǔ(x, t)k2H1(!)dt  �2T, (3.32)

132



3.3. From observability to identifiability

for a parameter � > 0. We introduce a cost functional to minimize JT : H1
0(Ω) ! R defined

by

JT (✓) =
✏

2
k✓k2H1

0(Ω) +
1

2

Z T

0
ky�(t)� u|✓k

2
H1(!)dt

=
✏

2
k✓k2H1

0(Ω) +
1

2

Z T

0
ky�(t)� Cz|✓k

2
H1(!)dt, (3.33)

where u|✓ is the solution of (3.11) associated with the parameter ✓, C is defined by (3.7)
and ✏ > 0. Since the functional is quadratic and the application ✓ 7! u|! is continuous
and ✓ 7! k✓k2

H1
0(Ω)

is coercive, we have then the existence of a unique minimum of JT . We

denote the unique minimizer in H1
0(Ω) by ✓̄T := argmin

✓2H1
0(Ω)

JT .

Theorem 3.3.6 We assume that there exists M > 0 such that

✓̌ 2 H1
0(Ω) and k✓̌kH1

0(Ω)  M. (3.34)

Furthermore, we also assume that the available measurements are noise-free, i.e. we have
for all t 2 [0, T ]

y�(t) = ǔ|!(t).

Let T0 > 0. Assuming �(t) 2 H1(0, T ) and �(0) 6= 0 and (!, T0) satisfies the GCC
condition, for T � T0 large enough and ✏ small enough, then there exists a positive scalar
Cst(T ) depending only on T such that

k✓̄T � ✓̌kL2(Ω)  Cst(T ) ✏
1
4 M, (3.35)

where ✓̄T minimizes the cost functional (3.33).
Moreover, under Assumption 3, there exists a positive scalar Cst independent of T such
that

k✓̄T � ✓̌kL2(Ω)  Cst T� 1
4 ✏

1
4 M. (3.36)

Proof: In this proof, we write a . b if there exists c > 0 independent of T, ✏ and M
such that a  cb.
Let ũ = ū� ǔ be the solution of the following dynamics

8
>>>><
>>>>:

@ttũ(x, t)�∆ũ(x, t) = �(t)(✓̄T (x)� ✓̌(x)), (x, t) 2 Ω⇥ (0, T ),

ũ(x, t) = 0, (x, t) 2 @Ω⇥ (0, T ),

ũ(x, 0) = 0, x 2 Ω,

@tũ(x, 0) = 0, x 2 Ω.

(3.37)

Identifying L2 to its dual, we have

k✓̄T � ✓̌k2L2(Ω)  h✓̄T � ✓̌, ✓̄T � ✓̌iH1
0(Ω),H�1(Ω)  k✓̄T � ✓̌kH1

0(Ω)k✓̄T � ✓̌kH�1(Ω).

Using the identifiability property (3.26) of Theorem 3.3.4, we get

k✓̄T � ✓̌k2L2(Ω)  (c0idf(T ))
� 1

2 k✓̄T � ✓̌kH1
0(Ω)

✓Z T

0
kū� ǔk2H1

!
dt

◆ 1
2

. (3.38)

By triangle inequality and since we consider free-noise observations, we have

k✓̄T � ✓̌k2L2(Ω)  (c0idf(T ))
� 1

2

⇣
k✓̄T kH1

0(Ω) + k✓̌kH1
0(Ω)

⌘✓Z T

0
kū� y�k2H1

!
dt

◆ 1
2

.
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Using the definition of the cost-functional (3.33) taking into account the norm equivalence
of Lemma 3.2.3, and the prior on the parameter (3.34), we get

k✓̄T � ✓̌k2L2(Ω) . (c0idf(T ))
� 1

2

⇣�
2✏�1JT (✓̄T )

� 1
2 +M

⌘ �
2JT (✓̄T )

� 1
2 .

Remembering that y�(t) = ǔ|!(t) and using again (3.34), we can bound the cost-functional
as follows

JT (✓̄T )  JT (✓̌) 
✏

2
M2.

Eventually, we obtain

k✓̄T � ✓̌k2L2(Ω) . (c0idf(T ))
� 1

2

⇣�
M2

� 1
2 +M

⌘ �
✏M2

� 1
2 ,

which corresponds to the desired result (3.35).
In addition, under Assumption 3, we have that there exists c > independent of T such that

c0idf(T ) � cT,

which leads to (3.36). ⌅

Theorem 3.3.7 We assume that there exists M > 0 such that (3.34) holds. Let T0 > 0.
Assuming �(t) 2 H1(0, T ) and �(0) 6= 0 and (!, T0) satisfies the GCC condition, for T � T0

large enough and ✏ small enough, then there exists a positive scalar Cst(T ) depending only
on T such that

k✓̄T � ✓̌kL2(Ω)  Cst(T ) ✏�
1
4 �, (3.39)

where ✓̄T minimizes the cost functional (3.33).
Moreover, under Assumption 3, there exists a positive scalar Cst independent of T such
that

k✓̄T � ✓̌kL2(Ω)  Cst T
1
4 ✏�

1
4 �. (3.40)

Proof: In this proof, we write a . b if there exists c > 0 independent of T, ✏, � and M
such that a  cb.
Reasoning exactly as in the proof of Theorem 3.3.6, we can obtain (3.38). Inserting y��y� =
0 in (3.38) and by triangular inequality we find

k✓̄T � ✓̌k2L2(Ω) . (c0idf(T ))
� 1

2

⇣
k✓̌kH1

0(Ω) + k✓̄T kH1
0(Ω)

⌘

⇥

2
4
✓Z T

0
ku|✓̄T � y�k2H1

!
dt

◆ 1
2

+

✓Z T

0
kǔ� y�k2H1

!
dt

◆ 1
2

3
5 .

Using Lemma 3.2.3, the estimate on the noise amplitude (3.32) and the prior on the
parameter (3.34), we find

k✓̄T � ✓̌k2L2(Ω) . (c0idf(T ))
� 1

2

✓
M +

q
2✏�1JT (✓̄T )

◆✓q
2JT (✓̄T ) + �

p
T

◆
.

Using again (3.32) and (3.34), we can bound the cost functional as follows

JT (✓̄T )  JT (✓̌) 
✏

2
M2 +

1

2
�2T.
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Hence, we finally get

k✓̄T � ✓̌k2L2(Ω) . (c0idf(T ))
� 1

2

⇣
M +

p
M2 + ✏�1�2T

⌘⇣p
✏M2 + �2T + �

p
T
⌘
, (3.41)

which implies (3.39).
Furthermore, under Assumption 3, we have that there exists c > independent of T such
that

c0idf(T ) � cT,

which proves (3.40). ⌅

Finally, choosing ✏ = �2M�2 in (3.41), we obtain the following corollary

Corollary 3.3.7.1 Under the hypothesis of Theorem 3.3.7, for T � T0 large enough, there
exists a positive scalar Cst(T ) depending only on T such that

k✓̄T � ✓̌kL2(Ω)  Cst(T )
p
M

p
�, (3.42)

where ✓̄T minimizes the cost functional (3.33) with ✏ = �2M�2.
Moreover, under Assumption 3, there exists a positive scalar Cst independent of T such
that

k✓̄T � ✓̌kL2(Ω)  Cst T
1
4

p
M

p
�. (3.43)

3.3.3 Field measurements with L
2-noise

In the rest of this work, we assume – in order to model a more realistic case in practice –
that the measurements are less regular. Namely, we suppose that the target trajectory ǔ
generated by the target source term parameter ✓̌ has given rise to a collection of measure-
ments y� such that Z T

0
ky�(x, t)� ǔ(x, t)k2L2(!)dt  �2T, (3.44)

for a parameter � > 0.
We present a method to deal with this additional difficulty of regularity loss. This

approach consists in modifying the definition of the observation operator with second
observation operator C introduced in (3.9).

3.3.3.1 Identifiability from observability

The proof of the desired identifiability result for the identification estimation problem is
based on the following initial condition observability inequality – for a homogeneous wave
equation in weakened norms.

Proposition 3.3.8 Let u be an arbitrary solution of (3.1) with ✓ = 0. Assume that !
satisfies the GCC condition, then there exists cT  cobs(T ) with c > 0 independent of T
such that Z T

0
ku(·, t)k2L2(!)dt � cobs(T )

⇣
ku0k

2
L2(Ω) + kv0k

2
H�1(Ω)

⌘
. (3.45)

For the sake of completeness, we here recall the link between (3.15) and (3.45).

Proof: Since the geometric control condition of [Bardos et al., 1988] holds, we have
the classical observability inequality (3.15). Reasoning as in the proof of Proposition
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3.3.2, one can show that cT  c0obs(T ) where c > 0 independent of T . We introduce

w(t) =

Z t

0
u(s)ds+ � where � is solution of the following system

(
�∆� = v0, in Ω,

� = 0, on @Ω.

The variable w satisfies the following equation

@ttw �∆w = @tu�

Z t

0
∆uds�∆�

= @tu�

Z t

0
∆uds� v0.

Integrating in time the first equation of (3.1), we find that

@ttw �∆w = 0.

We can then apply the classical observability condition (3.15) on w which is the solution
of the following dynamics

8
>>>><
>>>>:

@ttw(x, t)�∆w(x, t) = 0, (x, t) 2 Ω⇥ (0, T ),

w(x, t) = 0, (x, t) 2 @! ⇥ (0, T ),

w(x, 0) = �(x), x 2 Ω,

@tw(x, 0) = u0(x), x 2 Ω,

which gives us

Z T

0

Z

!

|@tw(x, t)|
2dxdt � c0obs(T )

⇣
k�k2H1

0(Ω) + ku0k
2
L2(Ω)

⌘
.

Since the Laplace operator with Dirichlet boundary conditions �∆0 defines an isomor-
phism from H1

0 to H�1, the result follows immediately. ⌅

Theorem 3.3.9 Let ✓ 2 P. Let u be a solution of (3.11). Assuming �(t) 2 H1(0, T )
and �(0) 6= 0, and that ! satisfies the GCC condition, for T large enough, there exists
c0idf(T ) > 0, such that

kCL✓k2L2(0,T ;L2(!)) = kuk2L2(0,T ;L2(!)) � c0idf(T )k∆
�1
0 ✓k2L2(Ω).

Proof: One can show, as for Theorem 3.3.4, that we have the inequality

ku|!kL2(0,T ;L2(!)) � Cst(T )kCL1✓kL2(0,T ;L2(!)). (3.46)

As in the proof of Theorem 3.3.3, we introduce g 2 H1
0(Ω)\D(�∆0) the Riesz representa-

tion of ✓ (seen as an element of H�1) given by g = �∆
�1
0 ✓, and ug solution of the dynamics

(3.19). The difference ũg = ug � g satisfies the system (3.21) in the same way. We apply
the observability condition of Proposition 3.3.8 on this system, and we obtain

kũgk
2
L2(0,T ;L2(!)) = kug � gk2L2(0,T ;L2(!)) � cobs(T )kgk

2
L2(Ω). (3.47)
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Now we want to get rid of the variable g in the left-hand of (3.47). That is why, we develop
the following scalar product

Z T

0
kug � gk2L2(!)dt =

Z T

0
kugk

2
L2(!)dt+ Tkgk2L2(!) � 2

Z T

0
(ug, g)L2(!)dt. (3.48)

Applying ∆
�1
0 to the first equation of (3.19), then integrate in time and finally the resulting

equation given by the scalar product with g is

Z T

0
(ug, g)L2(!)dt = (∆�1

0 @tug(T ), g)L2(!) + Tkgk2L2(!).

Injecting this result in (3.48) and using Cauchy-Schwarz and Poincaré inequalities, we
obtain

Z T

0
kug � gk2L2(!)dt 

Z T

0
kugk

2
L2(!)dt� Tkgk2L2(!)

+ 2Cpkr∆
�1
0 @tug(T )kL2(Ω)kgkL2(!). (3.49)

We expect to bound kr∆
�1
0 @tug(T )kL2(Ω) by kgkL2(Ω). Therefore, we apply ∆

�1
0 to the

first equation of (3.19). Integrating in time, the scalar product with �@tug leads to

�

Z

Ω

(∆�1
0 @ttug)@tugdx+

Z

Ω

ug@tugdx =

Z

Ω

g@tugdx.

Inserting ∆0∆
�1
0 = Id in the first term we get

�

Z

Ω

(∆�1
0 @ttug)∆0∆

�1
0 @tugdx+

1

2

d

dt

Z

Ω

u2gdx =

Z

Ω

g@tugdx.

Integrating by parts, we obtain

1

2

d

dt

Z

Ω

(r∆
�1
0 @tug)

2dx+
1

2

d

dt

Z

Ω

u2gdx =

Z

Ω

g@tugdx.

Integrating in time and using Cauchy-Schwarz and Young inequalities, we get

1

2
kr∆

�1
0 @tug(T ))k

2
L2(Ω) +

1

2
kug(T )k

2
L2(Ω) =

Z

Ω

gug(T )dx


1

2
kgk2L2(Ω) +

1

2
kug(T )k

2
L2(Ω),

thus,
kr∆

�1
0 @tug(T ))k

2
L2(Ω)  kgk2L2(Ω).

Injecting this result in (3.49), we have

Z T

0
kug � gk2L2(!)dt 

Z T

0
kugk

2
L2(!)dt� Tkgk2L2(!) + 2CpkgkL2(Ω)kgkL2(!).

Using Young inequality, we finally have

Z T

0
kug � gk2L2(!)dt 

Z T

0
kugk

2
L2(!)dt� Tkgk2L2(!) + ✏Cpkgk

2
L2(Ω) +

Cp

✏
kgk2L2(!). (3.50)
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Gathering (3.47) and (3.50), we get

Z T

0
kugk

2
L2(!)dt �

✓
T �

Cp

✏

◆
kgk2L2(!) + (cobs(T )� ✏Cp)kgk

2
L2(Ω).

We choose ✏ =
cobs

2Cp
, then we have

Z T

0
kugk

2
L2(!)dt �

 
T �

2C2
p

cobs(T )

!
kgk2L2(!) +

cobs(T )

2
kgk2L2(Ω).

For T >
2C2

p

cobs(T )
, and setting �∆0g = ✓, we obtain

kCL1✓kL2((0,T );L2(!)) =

Z T

0
kugk

2
L2(!)dt �

cobs(T )

2
k∆�1

0 ✓k2L2(Ω). (3.51)

Gathering (3.46) and (3.51), we conclude the proof. ⌅

As in the previous section, we assume that the dependence of the observability constant is
in O(T ).

Assumption 4 The identifiability constant of Theorem (3.3.9) satisfies

c0idf (T ) � cT, with c > 0 independent of T.

3.3.3.2 Updated convergence rate for the Tikhonov regularization

We infer from Theorem 3.3.9 that we now face an ill-posed problem of degree 2. This will
modify the convergence rate of our Tikhonov regularization without further assumption
on the prior regularity. Let us first recall the following classical interpolation lemma.

Lemma 3.3.10 Let (µi, ei) be the orthonormal basis for the L2 scalar product such that
the Laplacian eigenvalues µi > 0 satisfies µi+1 > µi, and µi ! +1. Let ✓ 2 H1

0(Ω), we
have the interpolation property

k✓k2L2(Ω) 
⇣
k∆�1

0 ✓k2L2(Ω)

⌘ 1
3
⇣
k✓k2H1

0(Ω)

⌘ 2
3
,

where k∆�1
0 ✓kL2(Ω) =

qP
i |(ei, ✓)|

2µ�2
i .

We recall here the proof for the sake of completeness.

Proof: We express the L2-norm of ✓ in the orthonormal basis.

k✓k2L2(Ω) =
+1X

i=0

|(ei, ✓)|
2 =

+1X

i=1

|(ei, ✓)|
2µ

2q s
s�q

i µ
2s �q

s�q

i .

Using Hölder inequality, we have

k✓k2L2(Ω) 

 
X

i

|(ei, ✓)|
2µ2q

i

! s
s�q

 
X

i

|(ei, ✓)|
2µ2s

i

! �q
s�q

.
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Choosing s = 1
2 and q = �1, we obtain

k✓k2L2(Ω) 

 
X

i

|(ei, ✓)|
2µ�2

i

! 1
3
 
X

i

|(ei, ✓)|
2µi

! 2
3

=
⇣
k∆�1

0 ✓k2L2(Ω)

⌘ 1
3
⇣
k✓k2H1

0(Ω)

⌘ 2
3
.

⌅

Keeping the same regularization in our criterion, we introduce the cost functional to min-
imize

JT (✓) =
✏

2
k✓k2H1

0(Ω) +
1

2
ky� � Cz|✓k

2
L2(0,T ;L2(!)), (3.52)

where C is defined as operator in L2, namely C = (I! 0) 2 L(Z ! L2(!)). We can
then estimate the reconstruction error between ✓̄T the functional minimizer and the target
parameter ✓̌.

Theorem 3.3.11 We assume that there exists M > 0 such that (3.34) holds.
Furthermore, we also assume that the available measurements are noise-free, i.e. we have
for all t 2 [0, T ]

y�(t) = ǔ|!(t).

Let T0 > 0. Assuming �(t) 2 H1(0, T ) and �(0) 6= 0 and (!, T0) satisfies the GCC
condition, for T � T0 large enough and ✏ small enough, then there exists a positive scalar
Cst(T ) depending only on T such that

k✓̄T � ✓̌kL2(Ω)  Cst(T ) ✏
1
6 M, (3.53)

where ✓̄T minimizes the cost functional (3.52).
Moreover, under Assumption 4, there exists a positive scalar Cst independent of T such
that

k✓̄T � ✓̌kL2(Ω)  Cst T� 1
6 ✏

1
6 M. (3.54)

Proof: In this proof, we write a . b if there exists c > 0 independent of T, ✏ and M
such that a  cb.
We use the interpolation inequality of Lemma 3.3.10 to obtain

k✓̄T � ✓̌k2L2(Ω) 
⇣
k✓̄T � ✓̌k2H1

0(Ω)

⌘ 2
3
⇣
k∆�1

0 (✓̄T � ✓̌)k2L2(Ω)

⌘ 1
3
.

Using the identifiability result given by Theorem 3.3.9, we have

k✓̄T � ✓̌k2L2(Ω)  (c0idf(T ))
� 1

3

⇣
k✓̄T k

2
H1

0(Ω) + k✓̌k2H1
0(Ω)

⌘ 2
3

✓Z T

0
ku|✓̄T � ǔk2L2(!)dt

◆ 1
3

. (3.55)

Since we consider noise-free observations, we have y� = ǔ|!. Therefore, we obtain

k✓̄T � ✓̌k2L2(Ω) . (c0idf(T ))
� 1

3

⇣
k✓̄T k

2
H1

0(Ω) + k✓̌k2H1
0(Ω)

⌘ 2
3

✓Z T

0
ku|✓̄T � y�k2L2(!)dt

◆ 1
3

.

Using the definition of the cost-functional (3.52) and our prior on the parameter (3.34),
we obtain

k✓̄T � ✓̌k2L2(Ω) . (c0idf(T ))
� 1

3
�
2✏�1JT (✓̄T ) +M2

� 2
3
�
2JT (✓̄T )

� 1
3 .
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We can bound the cost-functional as follows

JT (✓̄T )  JT (✓̌) 
✏

2
M2.

Finally, we have

k✓̄T � ✓̌k2L2(Ω) . (c0idf(T ))
� 1

3
�
M2 +M2

� 2
3
�
✏M2

� 1
3 ,

which leads to (3.53). Furthermore, under Assumption 4, we have that there exists c >
independent of T such that

c0idf(T ) � cT,

which proves (3.54). ⌅

Theorem 3.3.12 We assume that there exists M > 0 such that (3.34) holds.
Let T0 > 0. Assuming �(t) 2 H1(0, T ) and �(0) 6= 0 and (!, T0) satisfies the GCC
condition, for T � T0 large enough and ✏ small enough, then there exists a positive scalar
Cst(T ) depending only on T such that

k✓̄T � ✓̌kL2(Ω)  Cst(T ) ✏�
1
3 �, (3.56)

where ✓̄T minimizes the cost functional (3.52).
Moreover, under Assumption 4, there exists a positive scalar Cst independent of T such
that

k✓̄T � ✓̌kL2(Ω)  Cst T
1
3 ✏�

1
3 �. (3.57)

Proof: In this proof, we write a . b if there exists c > 0 independent of T, ✏, � and M
such that a  cb.
On one hand, using the estimate on the amplitude noise (3.44) and the prior (3.34), we
intend to bound the cost functional.

JT (✓̌) 
✏

2
M2 +

1

2
�2T. (3.58)

On the other hand, as in the proof of Theorem 3.3.11, one can show that (3.55) holds.
Inserting y� � y� = 0 into (3.55) to reintroduce the cost functional and using the prior on
the parameter (3.34), we get

k✓̄T � ✓̌k2L2(Ω) . (c0idf(T ))
� 1

3
�
2✏�1JT (✓̌) +M2

� 2
3

⇥

✓Z T

0
ku|✓̄T � y�k2L2(!)dt+

Z T

0
kǔ� y�k2L2(!)dt

◆ 1
3

.

Again, using again (3.32) and the cost functional bound (3.58), we have

k✓̄T � ✓̌k2L2(Ω) . (c0idf(T ))
� 1

3
�
2M2 + ✏�1�2T

� 2
3
�
2�2T + ✏M2

� 1
3 , (3.59)

which corresponds to the desired result (3.56).
Furthermore, under Assumption 4, we have that there exists c > independent of T such
that

c0idf(T ) � cT,

which leads to (3.57). ⌅

Eventually, choosing ✏ = �2M�2 in (3.59), we obtain the following corollary.
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Corollary 3.3.12.1 Under the hypothesis of Theorem 3.3.12, for T � T0 large enough,
then there exists a positive scalar Cst(T ) depending only on T such that

k✓̄T � ✓̌kL2(Ω)  Cst(T )M
2
3 �

1
3 , (3.60)

where ✓̄T minimizes the cost functional (3.52) with ✏ = �2M�2.
Moreover, under Assumption 4, there exists a positive scalar Cst independent of T such
that

k✓̄T � ✓̌kL2(Ω)  CstT
1
3M

2
3 �

1
3 . (3.61)

3.4 Observer design

Our goal in this section is to propose a sequential method for computing ✓̄T and the
associated wave equation trajectory z̄T . By sequential, we mean that we want to update
the estimator when measurements are available, without recomputing the estimator each
time a new measurement is available. This leads to the definition of an observer in the
sense of [Krener, 1999], which is formally defined in a general framework of an observed
system of a dynamics of the form

(
ż = F (z, t)

z(0) = z0
(3.62)

where we observed a target trajectory ž with unknown initial state ž0 by measuring
(y�(t))t�0. We here propose to slightly simplify this definition.

Definition 3.4.1 An asymptotic observer of (3.62) is a function R+ 3 t 7! ẑ(t; (y�(s))st)
such that
1. Robustness to Noise: for all 0  ⌧ , and for all " > 0, there exist �,↵ > 0, such that

kẑ(0)� ž(0)kZZZ  ↵

ky̌ � y�kL2((0,⌧);Y)  �

)
) kž(t)� ẑ(t)kZZZ  ", t � ⌧.

2. Convergence: for all 0  ⌧ , and for all ",↵, � > 0, there exists T0 > 0 such that

kẑ(0)� ž(0)kZ  ↵

ky̌ � y�kL2((0,⌧);Y)  �

supp(y̌ � y�) ⇢ (0, ⌧)

9
>=
>;

) kž(t)� ẑ(t)kZZZ  ", t � T0 + ⌧.

Note that the two above properties correspond respectively to an asymptotic convergence
property in the absence of noise and property of robustness to noise. As the observer
can be computed at time t from measurements available at time s  t, we say that it is a
causal function of the measurements. Note also that, as a consequence of (i), an asymptotic
observer satisfies for all s � 0

ẑ(s) = ž(s),
�
y�(t) = y̌(t), t � s

�
)

�
ẑ(t) = ž(t), t � s

�
. (3.63)

In our case, we try to define such an observer for the joint dynamics of z = (z, ✓),
where the solution z of the wave equation is extended by the zero dynamics of the param-
eter ✓. Our method is based on a dynamic programming strategy that relate functional
minimization to Kalman observer, which we will apply to the dynamics of the state and
parameters. But let us first recall some results about Kalman filtering [Bensoussan, 1971;
Aussal and Moireau, 2022], adapted here to our infinite-dimensional system.
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3.4.1 Reduced-order Kalman filters for quasi-evolution operators

To present our strategy, we first need to review some results in the analysis of evolution
problems with non-homogeneous generators.

3.4.1.1 Quasi-evolution equation

Let us consider the following abstract dynamics defined in the state-space ZZZ
(
ż(t) = A(t)z(t) + ���(t), in (0, T ),

z(0) = z0.
(3.64)

from given z0 2 ZZZ, ��� 2 L2((0, T );ZZZ). Here, the operator

A(t) = A+G(t)

where (A,D(A)) is maximal dissipative and for all t > 0, G(t) is a strongly continuous
bounded operator, namely for all z 2 ZZZ, G(·)z 2 C0([0, T ],ZZZ). Note that by uniform
boundedness theorem, there exists cst > 0 such that kG(t)kL(ZZZ)  cst. Classical results
for evolution equation give the existence of a solution of (3.64) knowing z0 and ���(t) and
denoted z|z0,��� . Indeed, from [Bensoussan et al., 2007, II-1 Propostion 3.4], if z0 2 ZZZ and
��� 2 L2((0, T );ZZZ) then z|z0,��� 2 C0([0, T ];ZZZ) is a mild solution

z(t) = ���(t, 0)z0 +

Z t

0
���(t, s)���(s)ds, (3.65)

where ��� : ∆T ! L(ZZZ) with ∆T = {(t, s) : s 2 [0, T ], t 2 [s, T ]} is a quasi-evolution
operator in the sense of [Curtain and Pritchard, 1976, Definition 1.2].

Remark 3.4.1 Note that it is possible to give an implicit definition of ���. Indeed, consider
the system, (

ż(t) = Az(t) +G(t)z(t), in (s, T ),

z(s) = zs 2 ZZZ.

By definition of the quasi-evolution operator ���, we have, using Duhamel’s formula

z(t) = ���(t, s)zs = e(t�s)Azs +

Z t

s
e(t�⌧)AG(⌧)z(⌧)d⌧, (3.66)

which, using (3.66), finally becomes

���(t, s)zs = e(t�s)Azs +

Z t

s
e(t�⌧)AG(⌧)���(⌧, s)zsd⌧.

The mild solution (3.65) is also a weak solution in the sense that z|z0,��� 2 L2((0, T );ZZZ)\
H1((0, T );D(A⇤)), namely for all q 2 D(A⇤), (q, z(·))ZZZ belongs to H1(0, T ) and for almost
all t 2 (0, T ),

8q 2 D(A⇤),
d

dt
(q, z(t))ZZZ + (A(t)⇤q, z(t))ZZZ = (q,���(t))ZZZ . (3.67)

Moreover, from [Bensoussan et al., 2007, II-1 Propostion 3.5], if we further assume that for
all z 2 D(A), G(·)z 2 C0([0, T ],D(A)), z0 2 D(A) and ��� 2 L2((0, T );D(A)) then z|z0,��� 2
C0([0, T ];D(A)) \ H1((0, T );ZZZ). Finally, when for all z 2 D(A), G(·)z 2 C1([0, T ];ZZZ),
z0 2 D(A) and ��� 2 H1((0, T );D(A)) then z|z0,��� 2 C0([0, T ],D(A)) \ C1([0, T ];ZZZ).
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3.4. Observer design

3.4.1.2 Least-square estimation

We introduce a space VVV ⇢ ZZZ with continuous injection and a symmetric and coercive
bilinear form m : VVV ⇥VVV ! R. We want to minimize a criterion JT : VVV ! R defined by

JT (⇣) =
1

2
m(⇣, ⇣) +

1

2

Z T

0
ky�(t)�C(t)z|⇣(t)k

2
Y dt, (3.68)

where z|⇣ is the solution of (3.64) for an initial condition z0 = ẑ0 + ⇣, where ẑ0 is a
known prior. In this section, the observation operator is a time-dependent operator C 2
C0([0, T ],L(ZZZ,Y)). Note that depending on the choice of VVV , the bilinear form m can be
seen as Tikhonov regularization or a generalized Tikhonov regularization [Engl et al., 1996].

The functional JT is continuous, differentiable, and strictly convex, so it admits one
and only one minimizer denoted ⇣̄|T where we underline the dependency with respect to
T . Computing the derivative of JT , we have for all ⇠ 2 VVV ,

hDJT (⇣), ⇠iVVV 0,VVV = m(⇣, ⇠) +

Z T

0
(⇠,���(t, 0)⇤C(t)⇤(C(t)z|⇣ � y�))Y dt.

Therefore, introducing the adjoint dynamics for any trajectory z|⇣ 2 L2((0, T );ZZZ) and
y� 2 L2((0, T );Y),

(
q̇(t) +A(t)⇤q(t) = �C(t)⇤(y�(t)�C(t)z|⇣(t)), t 2 (0, T )

q(T ) = 0,
(3.69)

whose mild solution in C0([0, T ],ZZZ) is given by the Duhamel formulae – adapted to this
backward formulation –

q(t) =

Z T

t
���(t, s)⇤C(t)⇤(y�(s)�C(t)z|⇣(s)) ds, t 2 [0, T ), (3.70)

we find

8⇠ 2 VVV, hDJT (⇣), ⇠iVVV 0,VVV = m(⇣, ⇠)� (q(0), ⇠)ZZZ . (3.71)

If we now introduce the operator⇧⇧⇧0 2 L(ZZZ,VVV) such that for all q 2 ZZZ,⇧⇧⇧0q is the solution
of m(⇧⇧⇧0q, ⇠) = (q, ⇠)ZZZ for all ⇠ 2 VVV , we deduce from (3.71) the optimality condition

⇣̄|T =⇧⇧⇧0q̄T (0),

where q̄T is associated to the optimal trajectory z̄T = z|⇣̄|T through the two-ends optimality

system – as called in [Lions, 1988; Bensoussan, 1971]

8
>>>><
>>>>:

˙̄zT (t) = A(t)z̄T + ���(t), t 2 (0, T ),

˙̄qT (t) +A(t)⇤q̄T = �C(t)⇤(y�(t)�C(t)z̄T (t)), t 2 (0, T ),

z̄T (0) = ẑ0 +⇧⇧⇧0q̄T (0),

q̄T (T ) = 0.

(3.72)

Note finally that if VVV ⇢ D(A), then z̄ and q̄ belong to C1([0, T ],ZZZ) \ C0([0, T ],D(A)).
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3.4.2 Kalman estimator definition

The objective of this section is to present briefly the Kalman estimator strategy to solve
sequentially the two-ends problem (3.72). First, we introduce the Riccati dynamics

(
⇧̇⇧⇧(t) = A(t)⇧⇧⇧(t) +⇧⇧⇧(t)A(t)⇤ �⇧⇧⇧(t)C(t)⇤C(t)⇧⇧⇧(t), in (0, T ),

⇧⇧⇧(0) =⇧⇧⇧0,
(3.73)

where C 2 C0([0, T ],L(ZZZ,Y)). The initial condition ⇧⇧⇧0 2 S+(ZZZ) the space of bounded
symmetric operators. The following theorem gives the existence of solution of (3.73) in
S+(ZZZ). The resulting operator⇧⇧⇧ 2 S+(ZZZ) is called Riccati operator or covariance operator
for its interpretation in the context of stochastic filtering, see for instance [Bensoussan,
1971; Curtain, 1975].

Theorem 3.4.2 (Existence of Riccati solution)

The Riccati dynamics (3.73) admits one and only one mild solution ⇧⇧⇧ 2 C0([0, T ],S+(ZZZ))
given by

⇧⇧⇧(t) = ���(t, 0)⇧⇧⇧0���(t, 0)
⇤ �

Z t

0
���(t, s)⇧⇧⇧(s)C(t)⇤C(t)⇧⇧⇧(s)���(t, s)⇤ds. (3.74)

Moreover, for all (z1, z2) 2 D(A⇤), (⇧⇧⇧(·)z1, z2)ZZZ is differentiable and satisfies the weak
formulation

d

dt
(⇧⇧⇧(t)z1, z2)ZZZ = (⇧⇧⇧(t)z1,A(t)⇤z2)ZZZ + (⇧⇧⇧(t)A(t)⇤z1, z2)ZZZ

� (C(t)⇧⇧⇧(t)z1,C(t)⇧⇧⇧(t)z2)Y = 0, t 2 [0, T ]. (3.75)

Proof: We refer to [Curtain and Pritchard, 1976, Corrolary 2.2], for a proof of existence
of a mild solution of a Riccati equation where A(t) = A+G(t) with (A,D(A)) unbounded
and G(t) a bounded perturbation. The existence of a weak solution is a direct consequence,
see for instance [Bensoussan et al., 2007, IV-1 Proposition 2.1]. ⌅

From the Riccati operator definition, we can introduce the so-called Kalman observer
– also called Kalman estimator in the context of stochastic filtering.

Theorem 3.4.3 There exists one and only one mild solution in C0([0, T ];ZZZ) of the dy-
namics (

˙̂z = A(t)ẑ +⇧⇧⇧(t)C(t)⇤(y�(t)�C(t)ẑ(t)), t 2 (0, T ),

ẑ(0) = ẑ0,
(3.76)

in the sense that

ẑ(t) = ���(t, 0)ẑ0 +

Z t

0
���(t, s)⇧⇧⇧(s)C(s)⇤[y�(s)�C(s)ẑ(s)] ds. (3.77)

Moreover, this solution is the unique weak solution in the sense that, (1.) z 2 L2((0, T );ZZZ),
(2.) for all q 2 D(A⇤), (q, ẑ(·))ZZZ belongs to H1(0, T ) and (3.) for almost all t 2 (0, T ),

8q 2 D(A⇤),
d

dt
(ẑ(t), q)ZZZ + (ẑ,A(t)⇤q)ZZZ = (y�(t)�C(t)ẑ,C(t)⇧⇧⇧(t)q)Y . (3.78)

Proof: We know that ⇧⇧⇧ 2 C0([0, T ];S⇤
+(ZZZ)). Therefore, for all t 2 [0, T ], A(t) �

⇧⇧⇧(t)C(t)⇤C(t) is a uniform bounded perturbation of A, the existence enters exactly the
framework of quasi-evolution operator. ⌅
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3.4. Observer design

3.4.2.1 The optimal filtering property

We can now move to the understanding on how the Riccati operator and the associated
Kalman observer decouples the two ends problems (3.72). The following proof extend the
one proposed in [Aussal and Moireau, 2022] to quasi evolution operator.

Theorem 3.4.4 The Kalman estimator defined by the dynamics (3.76) satisfies the fun-
damental identity

8t 2 [0, T ], z̄T (t) = ẑ(t) +⇧⇧⇧(t)q̄T (t). (3.79)

Proof: Let us introduce ⌘ = ẑ � z̄T +⇧⇧⇧ q̄T and v 2 D(A⇤), and compute

d

dt
(⌘(t), v)ZZZ =

�
ẑ(t),A(t)⇤v

�
ZZZ
+
�
y�(t)�C(t)ẑ(t),C(t)⇧⇧⇧(t)v

�
Y

�
�
z̄T (t),A(t)⇤v

�
ZZZ
+

d

dt
(⇧⇧⇧(t)q̄T (t), v)ZZZ , (3.80)

where we need to properly define the last-term time derivative. In fact, as q̄ can be defined
from a Duhamel formula of the form (3.70), and ⇧⇧⇧ is mild solution of the Riccati equation
(3.73), hence is absolutely continuous, we have from [Curtain and Pritchard, 1976, Lemme
2.5] that

d

dt
(⇧⇧⇧(t)q̄T (t), v)ZZZ =

d

dt

�
⇧⇧⇧(t)q̄T (s), v

�
ZZZ

���
s=t

+
d

dt

�
q̄T (t),⇧⇧⇧(s)v

�
ZZZ

���
s=t

.

Moreover, as ⇧⇧⇧ is a weak solution of (3.73), we have from (3.75),

d

dt
(⇧⇧⇧(t)q̄T (s), v)

���
s=t

= (⇧⇧⇧(t)q̄T (t),A(t)⇤v)ZZZ + (q̄T (t),A(t)⇤⇧⇧⇧(t)v)ZZZ

� (C(t)⇧⇧⇧(t)q̄T (t),C(t)⇧⇧⇧(t)v)Y , (3.81)

and, as q̄T is a weak solution of (3.72),

d

dt
(q̄T (t),⇧⇧⇧(s)v)

���
s=t

= �(q̄T (t),A(t)⇤⇧⇧⇧(t)v)ZZZ

�
�
y�(t)�C(t)z̄T (t),C(t)⇧⇧⇧(t)v

�
Y
. (3.82)

Gathering (3.80), (3.81) and (3.82), we finally obtain
8
<
:

d

dt
(⌘(t), v)ZZZ = (⌘(t),A(t)⇤ �C(t)⇤C(t)⇧⇧⇧(t)v)ZZZ , t 2 [0, T ]

⌘(0) = 0

whence, by Theorem 3.4.3, ⌘ = 0 in [0, T ], which concludes the proof. ⌅

In particular, we see that by taking t = T that for all t > 0, ẑ(t) = z̄t(t). This why
the Kalman observer is also called optimal filtering estimator as it consists of sequentially
computing the trajectory associated with least-square estimator at final time.

3.4.2.2 The reduced order case

As we saw in the previous section, the inverse problem can be solved using the Kalman
filter, but this requires us to calculate a Riccati operator in the augmented space ZZZ. In
order to reduce the computational cost, we now show that we can instead compute another
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Chapter 3. Mathematical analysis of an observer for solving inverse source wave problem

Riccati operator on a reduced space ZZZr that takes into account a priori informations on
the inverse problem: in our case, described specifically later, only the source terms is not
known. The reduced space ZZZr is assumed to be a closed subspace of ZZZ (equipped with
the same scalar product) hence we can assume given a projection operator Pr 2 L(ZZZ,ZZZr)
in this space. Moreover, we also assumed given a compact subspace VVVr of ZZZr that is used
to define a regularized version of the functional to minimize. The minimization problem
reads

min
⇣r2VVVr

n
JT (⇣r) =

1

2
mr(⇣r, ⇣r) +

1

2

Z T

0
ky� �Cz|P ⇤

r ⇣r
k2Ydt

o
,

where z|P ⇤

r ⇣r
is solution of (3.64) for an initial condition z0 = ẑ0 + P ⇤

r ⇣r and mr is a
continuous and coercive bilinear form on VVVr. The associated two-ends problem reads

8
>>>><
>>>>:

˙̄zT = A(t)z̄T + ���, t 2 (0, T ),

˙̄qT +A(t)⇤q̄T = �C⇤(y�(t)�Cz̄T ), t 2 (0, T ),

z̄T (0) = ẑ0 + P ⇤
r Λ0Prq̄T (0),

q̄T (T ) = 0,

(3.83)

with Λ0 2 L(VVVr) defined such that

8(⇣r, ⇠r) 2 VVVr ⇥VVVr, mr(Λ0⇣r, ⇠r) = (⇣r, ⇠r)ZZZ .

The resulting Kalman observer can still be defined from the Riccati dynamics
(
⇧̇⇧⇧(t) = A(t)⇧⇧⇧(t) +⇧⇧⇧(t)A(t)⇤ �⇧⇧⇧(t)C⇤C⇧⇧⇧(t), t > 0,

⇧⇧⇧(0) = P ⇤
r Λ0Pr,

(3.84)

so that we continue to have z̄T (t) = ẑ(t) +⇧⇧⇧(t)q̄T (t) for all t 2 [0, T ]. But moreover, the
Riccati solution of (3.84) can be deduced from a reduced covariance operator Λ, solution
of a Riccati dynamics in the reduced space ZZZr, namely

(
Λ̇(t) = �Λ(t)PrΦ(t, 0)

⇤C⇤CΦ(t, 0)P ⇤
r Λ(t), t > 0,

Λ(0) = Λ0.
(3.85)

This dynamics satisfies the condition of existence since for all t 2 [0, T ], CΦ(t, 0)P ⇤
r can

be considered as a time-dependent bounded observation operator. Moreover, we have the
following decomposition.

Theorem 3.4.5 Let ⇧⇧⇧(t) the mild solution of the Riccati dynamic (3.84) and Λ(t) the
mild solution of the Riccati dynamic (3.85), then we have

⇧⇧⇧(t) = ���(t, 0)P ⇤
r Λ(t)Pr���(t, 0)

⇤. (3.86)

Proof: The mild solution of the Riccati dynamics (3.85) reads

Λ(t) = Λ(0)�

Z t

0
Λ(s)Pr���(s, 0)

⇤C⇤C���(s, 0)P ⇤
r Λ(s) ds.

Using this mild solution, we compute the following quantity ���(t, 0)P ⇤
r Λ(t)Pr���(t, 0)

⇤.

���(t, 0)P ⇤
r Λ(t)Pr���(t, 0)

⇤ = ���(t, 0)P ⇤
r Λ(0)Pr���(t, 0)

⇤

�

Z t

0
���(t, 0)P ⇤

r Λ(s)Pr���(s, 0)
⇤C⇤C���(s, 0)P ⇤

r Λ(s)Pr���(t, 0)
⇤ds.
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3.4. Observer design

Note that ���(t, 0) = ���(t, s)���(s, 0), therefore we obtain

���(t, 0)P ⇤
r Λ(t)Pr���(t, 0)

⇤ = ���(t, 0)P ⇤
r Λ(0)Pr���(t, 0)

⇤

�

Z t

0
���(t, s)���(s, 0)P ⇤

r Λ(s)Pr���(s, 0)
⇤C⇤C���(s, 0)P ⇤

r Λ(s)Pr���(s, 0)
⇤���(t, s)⇤ds.

Setting ⇧̃⇧⇧(t) = ���(t, 0)P ⇤
r Λ(t)Pr���(t, 0)

⇤, we get

⇧̃⇧⇧(t) = ⇧̃⇧⇧(0)�

Z t

0
���(t, s)⇧̃⇧⇧(s)C⇤C⇧̃⇧⇧(s)���(t, s)⇤ds.

Hence, ⇧̃⇧⇧ is a mild solution of (3.84) and by uniqueness of the solution of the Riccati
dynamics, we have

⇧̃⇧⇧(t) =⇧⇧⇧(t) = ���(t, 0)P ⇤
r Λ(t)Pr���(t, 0)

⇤,

which concludes the proof. ⌅

Therefore, a computational strategy can be based only on computations restricted to the
reduced-space ZZZr.

3.4.2.3 Application to source estimation

We will now define an observer, which is equivalent to the calculation of the optimum ✓̄T
with increasing time. To that purpose, we rely on the Kalman estimation theory presented
above and more precisely the Reduced-Order Kalman filtering approach of Section 3.4.2.2,
where the uncertainty space is, here, the parameter space, a subspace of the augmented
space ZZZ = Z ⇥ P. In particular, we set ZZZr = {0} ⇥ L2(Ω) and VVVr = {0} ⇥ H1

0(Ω). The
dynamics in the augmented space reads

d

dt

 
z

✓

!

| {z }
ż

=

 
A B(t)

0 0

! 
z

✓

!

| {z }
A(t)z

with

 
z(0)

✓(0)

!

| {z }
z(0)

=

 
0

✓

!

|{z }
ζ

. (3.87)

The least square minimization (3.33) rewritten with respect to the augmented variable
reads

JT (✓) =
✏

2
k✓k2H1

0(Ω) +
1

2

Z T

0
ky�(t)�Cz|✓k

2
Ydt. (3.88)

Introducing the projection operator

P✓ =

 
0 0

0 IdP

!

from the augmented space ZZZ to the reduced space ZZZr, we have, using Theorem 3.4.5,
8
<
:
⇧⇧⇧(t) = ���(t, 0)P ⇤

✓ Λ(t)P✓���(t, 0)
⇤,

⇧⇧⇧(0) = P ⇤
✓ Λ(0)P✓,

(3.89)

where Λ(t) is given by (3.85) with Pr = P✓. Then, we can specify the evolution operator
��� associated with the following system

A(t) =

 
A B(t)

0 0

!
,

(
ż(t) = A(t)z(t),

z(0) = z0,
)

8
>><
>>:

ż(t) = Az(t) +B(t)✓,

✓̇(t) = 0,

(z, ✓)t(0) = (z0, ✓0)
t,
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Therefore, for initial data of the form z0 = P ⇤
✓ (0, ✓0)

t = (0, ✓0)
t the solution reads

 
z(t)

✓(t)

!
= ���(t, 0)

 
0

✓0

!
,

and, using the definition of L given by (3.5), z(t) = L(t)✓0 is the mild solution of
(
ż = Az +B✓0, t > 0,

z(0) = 0,

Hence, we obtain that  
z(t)

✓(t)

!
=

 
L(t)

IdP

!
✓0.

Eventually, we have shown that for all ✓0, ���(t, 0)P ⇤
✓ (z0, ✓0)

t is given by
 
z(t)

✓(t)

!
= ���(t, 0)P ⇤

✓

 
z0

✓0

!
= ���(t, 0)

 
0

✓0

!
=

 
L(t)

IdP

!
✓0.

Therefore, we can simplify the Riccati dynamics (3.85) into
(
Λ̇ = �ΛL⇤C⇤CLΛ, t > 0,

Λ(0) = Λ0,
(3.90)

and (3.89) into

⇧⇧⇧(t) =

 
L(t)

IdP

!
Λ(t)

⇣
L⇤(t) IdP

⌘
. (3.91)

Note that, in our case mr(·, ·) =
✏

2
(·, ·)H1

0(Ω), therefore we can obtain an explicit expression

of Λ0 given by
Λ0 = �✏�1

∆
�1
0 .

Finally, we obtain the equivalent sequential estimator with the following result that is a
straightforward application of Theorem 3.4.3.

Corollary 3.4.5.1 The minimizer ✓̂ = ✓̄t is solution of the following dynamics
8
>>>><
>>>>:

˙̂
✓ = ΛL⇤C⇤(y� � Cẑ), t > 0,

✓̂(0) = ✓̂0

˙̂z = Aẑ +B✓̂ + L
˙̂
✓, t > 0,

z(0) = ẑ0.

(3.92)

Note that the present estimator can be defined for observations in H1 or L2 with an adapted
definition of the observation operator C and its adjoint C⇤.

Using the results obtained in Sections 3.3.2.2 and 3.3.3.2, we show that (ẑ, ✓̂) cannot
be entirely defined as observers in the sense of Definition 3.4.1, but that they satisfy the
second property (robustness to noise) and a necessary condition of the first (convergence).

Proposition 3.4.6 Assuming that we have at our disposal the perfect measurements y� =
y̌, then, under Assumption 3, the estimators (ẑ, ✓̂) asymptotically converges to the target
parameter (ž, ✓̌), namely

lim
t!+1

k✓̂(t)� ✓̌(t)kL2(Ω) = 0 and lim
t!+1

kẑ(t)� ž(t)kZ = 0.
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Proof: We here use the link between the observer and the functional minimization.
Under Assumptions 3 and 4, we know that (Theorem 3.3.6 and 3.3.11), for both types of
observation operator, there exists a > 0 and Cst such that

k✓̄T � ✓̌kL2(Ω)  Cst T�a,

which, combined with ✓̂ = ✓̄t gives the convergence of the parameter estimator

lim
t!+1

k✓̂(t)� ✓̌kL2(Ω) = 0.

Moreover, we have that
ẑ = z̄t(t) = z|✓̄t .

Therefore,
lim

t!+1
kẑ(t)� ž(t)kZ = lim

t!+1
kz|✓̄t(t)� z|✓̌tkZ = 0,

which concludes the proof. ⌅

Proposition 3.4.7 Assuming that we have at our disposal the noisy measurements sat-
isfying (3.32) or (3.44), the estimator (ẑ, ✓̂) is stable with respect to noise, namely there
exist two positive scalars Cst

1 and Cst
2 independent of � and dependent of t such that

k✓̂(t)� ✓̌kL2(Ω)  Cst
1 (t) � and kẑ � žkZ  Cst

2 (t) �.

Proof: We take advantage of the link between the observer and the functional mini-
mization. From Theorem 3.3.7 and 3.3.12, for both types of observation operator, there
exist Cst such that

k✓̄t � ✓̌kL2(Ω)  Cst �,

which, combined with ✓̂(t) = ✓̄t gives the stability of the parameter estimator

k✓̂(t)� ✓̌kL2(Ω)  Cst �.

Furthermore, we have that
ẑ(t) = z̄t(t) = z|✓̄t .

Therefore, we obtain
kẑ(t)� žkZ = kz|✓̄t(t)� z|✓̌kZ .

Classically using the Grönwall lemma, one can show that there exists a positive scalar Cst

depending only on t and � such that

kz|✓̄t(t)� z|✓̌kZ  Cst k✓̄t(t)� ✓̌kL2(Ω),

which concludes the proof. ⌅

Remark 3.4.8 Proposition 3.4.7 allows us to demonstrate the robustness to noise property
of Definition 3.4.1. On the other hand, Proposition 3.4.6 is a necessary condition for the
convergence property of Definition 3.4.1. Indeed, the second property of the definition is
obtained only in this case ⌧ = 0. We would have to take into account the possibility
of uncertainties in the initial condition for dynamics (3.92) to fall within the asymptotic
observer framework of definition 3.4.1.
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3.4.3 Observer discretization

We can now study the observer discretization, where we face two possible options. First we
could directly propose a time and space discretization of (3.92), or we could first discretize
the wave equation and then reapply the Tikhonov regularization strategy and observer
design to the discretized system. Following Zuazua [2005], we are going to follow this
second strategy.

3.4.3.1 Reduced-order Kalman discretization

As in the time-continuous case, let us first recall the Kalman discretization for a linear
discrete-time dynamics. Let ZZZh ⇢ VVV ⇢ ZZZ a finite dimensional space equipped with the
scalar product of ZZZ. Assuming a dynamics of the following form, with a given source term
���h 2 ZZZh 8

<
:
zh
n+1|⇣ = ���h,⌧zh

n|⇣ + ���hn+1, n � 0,

zh
0|⇣ = ẑh

0 + ⇣

associated with measurements y�,hn and an observation operator Ch 2 L(ZZZh,Yh) where
Yh is the finite dimensional space in which the observations belong. We first consider the
minimization of a discrete version of the criterion (3.68) (see Aussal and Moireau [2022])

min
⇣2ZZZh

n
JN (⇣h) =

1

2
m(⇣h, ⇣h) +

NX

n=1

⌧

2
ky�,hn �Chzh

n|⇣k
2
Yh

o
, (3.93)

where the time integral is replaced by a simple quadrature formula. We easily find the
corresponding two-ends problem associated with the minimization of this criterion,

8
>>>>>><
>>>>>>:

z̄h
n+1|N = ���h,⌧ z̄h

n|N + ���hn+1, 0  n  N � 1,

z̄h
0|N = ẑh

0 +⇧⇧⇧h
0 q̄

h
0|N ,

q̄hn|N = ���h,⌧⇤q̄hn+1|N + ⌧Ch⇤
�
y�,hn �Chz̄h

n|N

�
, 0  n  N � 1,

q̄hN |N = 0,

(3.94)

where the notation |N stresses the fact that the criterion is using the N first observations
and ⇧⇧⇧h

0 2 L(ZZZh) is the operator defined by

8(qh, ⇠h) 2 ZZZh ⇥ZZZh, m(⇧⇧⇧h
0qh, ⇠h) = (qh, ⇠h)ZZZ .

Then, we can uncouple these systems by solving the following Riccati equation,
8
<
:
⇧⇧⇧h

n+1� = ���h,⌧⇧⇧⇧h
n���

h,⌧⇤, n 2 N,

⇧⇧⇧h
n+1 =⇧⇧⇧h

n+1� � ⌧⇧⇧⇧h
n+1�C

h⇤
⇥
IdYh + ⌧Ch⇧⇧⇧h

n+1�C
h⇤
⇤�1

Ch⇧⇧⇧h
n+1� , n 2 N,

(3.95)

which defines a sequence of operators ⇧⇧⇧h
n� and ⇧h

n . The sequence of ⇧⇧⇧h
n� and ⇧⇧⇧h

n can be
interpreted as a splitting time-scheme for the Riccati dynamics (3.73) Aussal and Moireau
[2022]. Then, we introduce the estimator

(
ẑh
n+1� = ���h,⌧ ẑh

n + ���hn+1, n 2 N,

ẑh
n+1 = ẑh

n+1� + ⌧⇧⇧⇧h
n+1C

h⇤
⇣
y�,hn+1 �Chẑh

n+1�

⌘
, n 2 N.

(3.96)

Identically, (3.96) can be interpreted as a splitting time-scheme for the estimator dynamics
(3.76), see Aussal and Moireau [2022]. Then, we have the following equivalence results
proved in Aussal and Moireau [2022].
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Theorem 3.4.9 We have the following decoupling principle

z̄h
n|N = ẑh

n� +⇧⇧⇧h
n� q̄

h
n|N , 80  n  N + 1, (3.97)

and in particular for all n 2 N

ẑh
n� = z̄h

n|n. (3.98)

Let us now apply such equivalence to a reduced space configuration. For this purpose,
we define ZZZh

r ⇢ ZZZh a finite dimensional space such that ZZZh
r ⇢ VVVr ⇢ ZZZr. To simplify the

notation, we assume that Pr(ZZZ
h) ⇢ ZZZh

r – which is satisfied for our source identification
problem – hence Pr can be seen as an operator in L(ZZZh,ZZZh

r ). The discrete criterion here
reads

min
⇣hr 2ZZZ

h
r

n
JN (⇣hr ) =

1

2
mr(⇣

h
r , ⇣

h
r ) +

NX

k=1

⌧

2
ky�,hn �Czh

n|P ⇤

r ⇣
h
r
k2Yh

o
. (3.99)

The two ends problem remains as in (3.94) except for the initial condition that is changed
into

z̄h
0|N = ẑh

0� + P ⇤
r (U

h
0 )

�1Prq̄
h
0|N , (3.100)

Moreover, we have the discrete counterpart of Theorem 3.4.5.

Theorem 3.4.10 The solution of (3.95) with initial condition defined by

⇧⇧⇧h
0 = P ⇤

r Λ
h
0Pr

satisfies

⇧⇧⇧h
n =

⇣
���h,⌧

⌘n
P ⇤
r Λ

h
nPr

⇣
���h,⌧⇤

⌘n
(3.101)

where Λ
h
n satisfies Λ

h
n = (Uh

n )
�1 with

Uh
n+1 = Uh

n + ⌧Pr

⇣
���h,⌧⇤

⌘n+1
Ch⇤Ch

⇣
���h,⌧

⌘n+1
P ⇤
r , n � 0, (3.102)

Proof: We proceed by induction. We have at iteration 0

⇧⇧⇧h
0 = P ⇤

r (U
h
0 )

�1Pr.

Let us assume (3.101) is satisfied at iteration n. First, we directly have

⇧⇧⇧h
n+1� = ���h,⌧⇧⇧⇧h

n���
h,⌧⇤ =

⇣
���h,⌧

⌘n+1
P ⇤
r Λ

h
nPr

⇣
���h,⌧⇤

⌘n+1
,

Then, using (3.95) and the expression above of ⇧⇧⇧h
n+1� , we have

⇧⇧⇧h
n+1 =

⇣
���h,⌧

⌘n+1
P ⇤
r

h
Λ
h
n � ⌧Λh

nPr

⇣
���h,⌧⇤

⌘n+1
Ch⇤

⇥
IdYh + ⌧Ch

⇣
���h,⌧

⌘n+1

⇥ P ⇤
r Λ

h
nPr

⇣
���h,⌧⇤

⌘n+1
Ch⇤

⇤�1
Ch

⇣
���h,⌧

⌘n+1
P ⇤
r Λ

h
n

i
Pr

⇣
���h,⌧

⌘n+1
.

We therefore have

⇧⇧⇧h
n+1 =

⇣
���h,⌧

⌘n+1
P ⇤
r Λ

h
n+1Pr

⇣
���h,⌧

⌘n+1
,

as soon as

Λ
h
n+1 = Λ

h
n � Λ

h
nD

h,⇤
n

⇣
IdYh +Dh

nΛ
h
nD

h,⇤
n

⌘�1
Dh

nΛ
h
n

with Dh
n =

p
⌧Ch

�
���h,⌧

�n+1
P ⇤
r . By using Sherman–Morrison–Woodbury formula for op-

erators – see for instance [Deng, 2011, Theorem 1.1] – we obtain
�
Λ
h
n+1

��1
=
�
Λ
h
n

��1
+Dh,⇤

n Dh
n

which ends the proof since it is precisely (3.102). ⌅
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3.4.3.2 Application to source identification

We discretize the wave equation using Lagrange finite element. Let ✓h 2 Ph the finite
dimensional space corresponding to P. We use a conservative mid-point scheme, that
ultimately reads

8
>>><
>>>:

uhn+1 � uhn
⌧

=
vhn+1 + vhn

2

vhn+1 � vhn
⌧

�∆
h
0

uhn+1 + uhn
2

= �

✓✓
n+

1

2

◆
⌧

◆
✓h,

(3.103)

where ∆
h
0 is the bounded linear operator in Vh ⇢ H1(Ω) associated with the conform finite

element discretization of the unbounded operator ∆0 of L2(Ω). Note that this system can
be rewritten in a first order form by considering zhn 2 Zh = Vh ⇥ Vh solution of

zhn+1 = �h,⌧zhn +Bh,⌧
n+1✓

h,

where

�h,⌧ =

 
Idh � ⌧

2 Idh

� ⌧
2∆

h
0 Idh

!�1 
Idh ⌧

2 Idh

⌧
2∆

h
0 Idh

!

and

Bh,⌧
n+1 = ⌧

 
Idh � ⌧

2 Idh

� ⌧
2∆

h
0 Idh

!�1 
0

�
��
n+ 1

2

�
⌧
�
!
.

Note that Zh is equipped with the scalar product on Z that is the natural scalar product
on H1

0(Ω)⇥ L2(Ω).
We now apply this result to our source identification problem. The joint state-parameter

discrete dynamics in ZZZh = Zh ⇥ Ph reads
 
zhn+1

✓hn+1

!

| {z }
zh
n+1

=

 
�h,⌧ Bh,⌧

n+1

0 Idh

! 
zhn

✓hn

!

| {z }
���h,⌧zh

n

, with

 
zh0

✓h0

!

| {z }
zh
0

=

 
0

✓h

!

| {z }
ζ

. (3.104)

From Theorem 3.4.5, we know that
8
<
:
⇧⇧⇧h

n =
�
���h,⌧

�n
P ⇤
r Λ

h
nPr

�
���h,⌧⇤

�n
and ⇧⇧⇧h

n+1� =
�
���h,⌧

�n+1
P ⇤
r Λ

h
nPr

�
���h,⌧⇤

�n+1
,

⇧⇧⇧0 = P ⇤
✓ (U

h
0 )

�1P✓,

(3.105)
where Uh

n = (Λh
n)

�1 is solution of

Uh
n+1 = Uh

n + ⌧P✓

⇣
���h,⌧⇤

⌘n+1
Ch⇤Ch

⇣
���h,⌧

⌘n+1
P ⇤
✓ , n � 0. (3.106)

Moreover, we have
 
zhn

✓hn

!
=
⇣
���h,⌧

⌘n
P ⇤
✓

 
0

✓h0

!
=
⇣
���h,⌧

⌘n
 

0

✓h0

!
=

 
Lh
n

Idh

!
✓h0 ,

where the operator (Lh
n)n2N is defined by

Lh
n✓ = zhn|✓ with

8
<
:
zhn+1|✓ = �h,⌧zhn|✓ +Bh,⌧

n+1✓, n 2 N,

zh0|✓ = 0.
(3.107)
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Therefore, we can simplify (3.106) into

Uh
n+1 = Uh

n + ⌧Lh⇤
n+1C

h⇤ChLh
n+1, n � 0, (3.108)

and (3.105) into

⇧⇧⇧h
n =

 
Lh
n

Id

!
Λ
h
n

⇣
Lh⇤
n Id

⌘
, and ⇧⇧⇧h

n+1� =

 
Lh
n+1

Idh

!
Λ
h
n

⇣
Lh⇤
n+1 Idh

⌘
. (3.109)

Finally, we obtain the equivalent sequential estimator.

Theorem 3.4.11 The minimizer ✓̂hn = ✓̄hn is solution from (ẑh0 , ✓̂
h
0 ) of the recursive dy-

namics 8
>><
>>:

ẑhn+1� = �h,⌧zhn +Bh,⌧
n+1✓̂

h
n,

✓̂hn+1 = ✓̂hn + ⌧
�
Uh
n+1

��1
Lh⇤
n+1C

h⇤(y�,hn+1 � Chẑhn+1�),

ẑhn+1 = ẑhn+1� + Lh
n+1(✓̂

h
n+1 � ✓̂hn).

(3.110)

We already know that (3.110) is consistent. A direct convergence study of this splitting
scheme could be intricate. Here, by relying on the fundamental relation ✓̂hn = ✓̄hn we can
justify the stability from the minimization. This should lead us to the convergence of the
time-scheme (3.110).

3.5 Numerical illustrations

We consider a domain Ω, and assume we have access to observations in the observation
subdomain ! illustrated in Figure 3.2. As an example, we consider the following wave
equation 8

>>>><
>>>>:

@ttǔ(x, t)�∆ǔ(x, t) = �(t)✓̌(x), (x, t) 2 Ω⇥ (0, T ),

ǔ(x, t) = 0, (x, t) 2 @Ω⇥ (0, T ),

ǔ(x, 0) = ǔ0(x), x 2 Ω,

@tǔ(x, 0) = 0, x 2 Ω,

(3.111)

where

�(t) =
1

2
+

1

2
e�0.5t,

and ǔ0 is solution of (
�∆ǔ0(x) = 10, x 2 Ω,

ǔ0(x) = 0, x 2 @Ω,
(3.112)

and ✓̌ is solution of 8
><
>:

�∆✓̌(x) = 0 x 2 Ω \ Ωhole,

�∆✓̌(x) = 10, x 2 Ωhole,

✓̌(x) = 0, x 2 @Ω,

(3.113)

with Ωhole represented in Figure 3.2.
The initial conditions and the target source term defined respectively by (3.112) and the
(3.113) are illustrated in Figure 3.3 (left) and 3.3 (right). Note that the choice of � is the
same as that of Remark 3.3.5 with � = 1 and ↵ = 0.5.

We decompose the target source term

✓̌h :=

NmodX

i=0

✓̌hi �
h
i , (3.114)
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between the target source term decomposed on the basis and the observer at the final time
tn = 1 as a function of the noise level � in (3.115) for different values of M .
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M = 10000

Figure 3.9: Representation of the relative error according the values of � in loglog scale for
different values of M

First, we note that the larger the value of M , the lower the weight of the regularization.
In particular, we can see that the regularization with M = 104 (in red in Figure 3.9) offers
better results. In particular, for the different noise levels considered – from � = 0.01% up
to � = 10% in (3.115) – we reach a reconstruction of the order of the noise level.

3.6 Conclusion

We have proposed a strategy to estimate a source term in a wave equation using observers
from internal field measurements. We have divided the study into two parts depending
on whether we have access to regular or less regular measurements. The regularity of the
measurements leads to major changes in the definition of the inverse problem through in
the definition of the observation operator. The proposed approach follows three steps.
First we prove identifiability results which rely on observability inequalities. These iden-
tifiability results give us information about the degree of the ill-posedness of the inverse
problem. We then propose the minimization problem associated with the reconstruction
of the source term with a well-adapted Tikhonov regularization. This inverse problem is
solved using a sequential strategy that is proven to be equivalent to the minimization of
the cost functional. We have assumed that we have not only internal observations on the
system, but also perfect knowledge of the initial conditions, which can be a strong assump-
tion in practice. A possible perspective would be to assume that there are uncertainties
about the initial conditions. In this case, it would be necessary to further analyse the joint
state-source estimation initially proposed in [Pham et al., 1998a].
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CHAPTER 4

Solving inverse source wave problem – from Carle-

man estimates to observer design

La doublure de ma manche gauche est un petit peu

déchirée... Je n’ai plus de chatterton... Tant pis, je

vais mettre un clou.

— Boris Vian, l’Ecume des jours.

The aim of this work, in collaboration with Muriel Boulakia (Laboratoire de Mathé-
matiques de Versailles, Université Versailles Saint-Quentin-en-Yvelines), Maya de Buhan
(Laboratoire de Mathématiques d’Orsay, Université Paris-Saclay), Philippe Moireau (Inria
& Ecole Polytechnique, CNRS, Institut Polytechnique de Paris) and Sébastien Imperiale
(Inria & Ecole Polytechnique, CNRS, Institut Polytechnique de Paris), is to analyse a
sequential method to estimate in a wave equation a space dependent source term multi-
plied by a known time and space dependent function, from internal velocity measurements.
The first part of the work consists in proving an identifiability result from a new Carle-
man estimate. As in the Chapter 3, thanks to the identifiability result, we can quantify
the ill-posedness of the source reconstruction inverse problem. This inverse problem is
solved using a sequential strategy equivalent to the minimization of a cost functional with
Tikhonov regularization. We illustrate the resulting method with numerical simulations.
Eventually, two perspectives are studied: extension to the case where field measurements
are available and the case where we want to reconstruct a sharp source term.
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4.1. Problem statement

In this chapter we study the following inverse problem: reconstruct, from internal ve-
locity measurements in a subdomain, a space dependent source term multiplied by a known
space and time dependent function. This is an extension of the work in Chapter 3, where
the source term was multiplied by a known function that depended only on time. As in
Chapter 3, we rely on an observability property to establish an identifiability property. We
will use a multiplier strategy presented in Chapters 1 and 2, except that here we use Carle-
man’s estimates [Carleman, 1939; Buchgeim and Klibanov, 1981; Fursikov and Imanuvilov,
1996; Zhang, 2000]. This tool is widely studied in the literature for inverse problems, either
for parabolic [Bellassoued and Yamamoto, 2006; Yamamoto, 2009] or hyperbolic systems
[Puel and Yamamoto, 1996; Yamamoto, 1999; Zhang, 2000; Imanuvilov and Yamamoto,
2001b,a; Imanuvilov, 2002; Bellassoued, 2004], especially for wave equation [Kubo, 1995;
Baudouin, 2010; Imanuvilov and Yamamoto, 2003; Baudouin et al., 2011, 2007] and dis-
crete wave equation [Baudouin and Ervedoza, 2013]. The estimates can be either global
[Puel and Yamamoto, 1996; Baudouin et al., 2007, 2011] or local [Yamamoto, 1999]. Car-
leman estimates are often used for inverse problems [Imanuvilov and Yamamoto, 2003,
2005; Stefanov and Uhlmann, 2013], in particular for problems with a single measurement
[Imanuvilov and Yamamoto, 2003; Baudouin et al., 2007; Stefanov and Uhlmann, 2013]. In
this chapter, we establish a Carleman estimate for internal measurements. Thanks to this
Carleman estimate we prove the identifiability of the source term from the measurements
at our disposal. In fact, it allows us to quantify the ill-posedness of the inverse problem.
To solve this problem, we use a similar approach as in the Chapter 3, i.e., we use an opti-
mal observer – the Kalman estimator – equivalent to minimizing a cost functional with a
Tikhonov regularization term. As a perspective, we would like to extend the various results
when only field measurements are available. Another possible extending of this work is
to consider a sharp source term to be reconstructed. In this case, we study numerically,
in this case, the concept of adaptive basis. Namely, in Section 4.5.2, we propose an iter-
ative procedure where we adapt step by step both the basis and the domain mesh to the
reconstructed source term.

4.1 Problem statement

4.1.1 Model

Let T > 0 and Ω be a bounded, connected open domain of class C2 in R
d, d � 1. We

consider the following wave equation

8
>>>><
>>>>:

@ttu(x, t)�∆u(x, t) = f(x, t), (x, t) 2 Ω⇥ (0, T ),

u(x, t) = 0, (x, t) 2 @Ω⇥ (0, T ),

u(x, 0) = u0(x), x 2 Ω,

@tu(x, 0) = v0(x), x 2 Ω.

(4.1)

Here, (u0 v0) are the initial conditions and f(x, t) = �(x, t)✓(x), where � is a given function
and ✓ – assumed to depend only on the space variable x – is the parameter to recover from
available velocity measurements. As in the Chapter 3, we rewrite (4.1) as a first-order
system z = (u v)t 2 Z = H1

0(Ω)⇥ L2(Ω),

(
ż = Az +B✓, in (0, T ),

z(0) = z0,
(4.2)
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where

z0 =

 
u0

v0

!
, B =

 
0

�(x, t)Id

!
, (4.3)

and the operator A is an unbounded skew-adjoint operator from D(A) into Z defined by

A =

 
0 Id

∆0 0

!
, D(A) = D(�∆0)⇥H1

0(Ω), (4.4)

with ∆0 the Laplacian operator with homogeneous Dirichlet boundary conditions. The
operator A is maximal dissipative, hence it is a generator of a C0-semigroup (etA)t�0 on
Z.

We recall the definition of the sensitivity, i.e. the family (L(t))t�0 of bounded operators,
so that for a given ✓ 2 L2(Ω) the application t 7! L(t)✓ is solution in C0([0, T ],Z) of

(
ż = Az +B✓,

z(0) = 0,
(4.5)

then, the Duhamel’s formula also reads z(t) = etAz0 +L(t)✓, t 2 [0, T ] for the solutions of
(4.1).

4.1.2 Observation operator

We must now model the measurement procedure. We define a domain compatible with
stronger conditions than in Chapter 3, using the conditions presented in Chapter 1 i.e.
multiplier conditions. Namely, we introduce a part of the boundary on which the observa-
tion domain have to lean on. For every x0 2 R

d \ Ω, we define

Γ0 := {x 2 @Ω | (x� x0) · ⌫(x) > 0},

where ⌫ is the outward unit normal to @Ω. Then, for every ⇢ > 0, we define

!⇢,x0 := Ω \
[

x2Γ0

B(x, ⇢). (4.6)

xa

x0

xb

Γ0
ωρ,x0

Ω

Figure 4.1: An example of domain !ρ,x0
.

We assume that the observation domain ! is an open and nonempty subset of Ω such
that the boundaries @! and @(Ω\!) are Lipschitz, and that the multiplier condition is
satisfied: there exists x0 2 R

d \ Ω and ⇢ > 0 such that

!⇢,x0 ⇢ !. (4.7)
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4.1. Problem statement

We also assume that the observation time T satisfies the time condition:

T > T0 := sup
x2Ω

|x� x0|. (4.8)

We consider observations of y = @tu where u is solution of (4.1) (for an unknown ✓), in
the interior domain ! during the time interval (0, T ), or any of its time derivatives. When
measuring @ttu (or any high order time derivative), we can return to the case where @tu|!
is observed without loss of generality by simply integrating

@tu|!(t) = @tu|!(0) +

Z t

0
@ttu|!(⌧)d⌧.

Let us look at the definition of the observation operator, which is usually introduced
in control and observation theory – see for example [Tucsnak and Weiss, 2009] and the
references therein. The observation operator modeling the observation process is as follows

C =
⇣
0 I!

⌘
2 L(Z,Y), y = Cz, (4.9)

where Y = L2(!) and I! 2 L(L2(Ω),L2(!)) is the restriction operator.

4.1.3 Inverse problem setting

Let us present the inverse problem studied in this chapter. We consider an actual trajectory
ǔ, modeled as a mild solution ž of (4.2) associated with given (u0, v0) and �, and an
unknown ✓̌. Since the initial data are known, we consider, without loss of generality, that
they are null thanks to the linearity of the following inverse problem. More precisely, we
consider the following system

8
>>>><
>>>>:

@ttǔ(x, t)�∆ǔ(x, t) = �(x, t)✓̌(x), (x, t) 2 Ω⇥ (0, T ),

ǔ(x, t) = 0, (x, t) 2 @Ω⇥ (0, T ),

ǔ(x, 0) = 0, x 2 Ω,

@tǔ(x, 0) = 0, x 2 Ω,

(4.10)

and its first-order formulation (
˙̌z = Až +B✓̌, in (0, T ),

ž(0) = 0,
(4.11)

where B and A are respectively defined by (4.3) and (4.4). We assume that the measure-
ments are perturbed by some measurement errors of amplitude �

9� > 0 such that ky� � CžkL2(0,T ;L2(!))  �
p
T .

In particular, y� is assumed to belong to L2(0, T ; L2(!)). Therefore, recovering ✓̌ from y�

consists in inverting the linear input-output operator

ΨT :

�����
L2(Ω) ! L2(0, T ; L2(!)),

✓ 7! (t 7! CL(t)✓).
(4.12)

As in the previous chapter, we immediately note that ΨT is bounded, since C is a bounded
operator from Z to L2(!). We will show in Section 4.2.2 that ΨT in L2(0, T ; L2(!)) is
not surjective, but defines a mildly ill-posed problem of degree 1 when considering velocity
measurements. This will be done by proving adapted Carleman estimate in Section 4.2.1.
Then, in Section 4.3, we propose a regularization strategy to invert ΨT using observer
methods. Afterwards, we look at how this work can be extended to consider field measure-
ments such as in the previous chapter. Eventually, in Section 4.5.2 we present an adaptive
basis method to extend our strategy to a sharp source term.
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4.2 From observability to regularization strategy

4.2.1 Carleman estimate

In this section, we state Carleman estimate that will be useful for the study of the in-
verse problem. In order to apply the estimates to the source identification problem, we
adapt the classical Carleman estimate for the wave equation [Zhang, 2000; Imanuvilov and
Yamamoto, 2001b; Imanuvilov, 2002; Baudouin, 2010; Baudouin et al., 2013] through ade-
quate choices of the norms appearing in the observation term, namely the terms supported
by !.

Before stating our result, we need to introduce the adequate Carleman weights. For
� 2 (0, 1) and � > 0, we define, for all (x, t) 2 Ω⇥ (�T, T )

 (x, t) = |x� x0|
2 � �t2 + Cst

0 and �(x, t) = e� (x,t), (4.13)

where Cst
0 > 0 is chosen such that  � 1 in Ω⇥ (�T, T ).

Then we have the following Carleman inequality.

Theorem 4.2.1 We assume that ! satisfies (4.7). Let T � T0 defined by (4.8). There
exist � > 0, s0 > 0 and a positive constant Cst such that for � defined by (4.13), for all
s � s0 and for all w 2 L2(�T, T ; H1

0(Ω))\H1(�T, T ;L2(!)) such that Pw = @ttw�∆w 2
L2(Ω⇥ (�T, T )) and w(·, 0) = w(·,±T ) = @tw(·,±T ) = 0 in Ω, we have,

s1/2
Z

Ω

e2s�(0)|@tw(0)|
2dx+

Z T

�T

Z

Ω

e2s�(s|rw|2 + s|@tw|
2 + s3|w|2) dx dt

 Cst

Z T

�T

Z

Ω

e2s�|Pw|2 dx dt+ Csts2
Z T

�T

Z

!

e2s�(|rw|2 + s2|w|2) dx dt. (4.14)

In the proof of this result, we will not give all the details but mainly focus on the more
original part that corresponds to the derivation of our different observation term, i.e. in
[Baudouin et al., 2013] the considered observation term is a boundary term, while here it is
an internal observation term which is the last terms in (4.14). The proof follows [Baudouin
et al., 2013].

In this section we write a . b if there exists a positive scalar c > 0 independent of s such
that a  cb. Proof: In this proof, all the computations will be done for smooth functions
and lastly a density argument allows to extend the result to the regularity given in the
theorem. The beginning of the proof will closely follow the one of Theorem 2.1 in [Baudouin
et al., 2013]. More precisely, we will start from equation (2.13) in [Baudouin et al., 2013]
that we rewrite here with the difference that we do not highlight the dependence of the
inequality with respect to �: there exists s0 > 0 such that, for all s > s0, any function z
in C2(Ω⇥ [�T, T ]) such that z(·, 0) = 0 in Ω, z(·,±T ) = @tz(·,±T ) = 0 in Ω and z = 0 on
@Ω⇥ [�T, T ] satisfies

s

Z T

�T

Z

Ω

(|@tz|
2 + |rz|2 + s2|z|2) dx dt+

Z T

�T

Z

Ω

|P1z|
2 dx dt

.

Z T

�T

Z

Ω

|Pconjz|
2 dx dt+ s

Z T

�T

Z

Γ0

|@⌫z|
2d�dt, (4.15)

where
P1z = @ttz �∆z + s2�2�2z(|@t |

2 � |r |2), (4.16)
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and

Pconjz = es�P (e�s�z) (4.17)

= @ttz � 2s��(@tz@t �rz · r ) + s2�2�2z(|@t |
2 � |r |2)

�∆z � s��z(@tt �∆ )� s�2z(|@t |
2 � |r |2)�.

Let w be given in C2(Ω⇥ [�T, T ]) such that w = 0 on @Ω⇥ [�T, T ], w(·, 0) = 0 in Ω,
w(·,±T ) = @tw(·,±T ) = 0 in Ω. We define v by the classical change of variables v = es�w
in Ω⇥ (�T, T ).

We will apply inequality (4.15) to z = �v where � 2 C1(Ω) is a cut-off function such
that 0  �  1 and

�(x) =

(
0, if x 2 !1,

1, if x 2 Ω \ !2

(4.18)

where !1 = !⇢1,x0 and !2 = !⇢2,x0 are defined by (4.6) with ⇢1 < ⇢2 < ⇢ and illustrated in
Figure 4.2.

xa

x0

xb

Γ0 ωω1 ω2

Ω

Figure 4.2: Definitions of domain !1 and !2.

We notice that

@tz = �@tv, @ttz = �@ttv, rz = r�v + �rv,

∆z = ∆�v + 2r� · rv + �∆v,

P1z = �P1v �∆�v � 2r� · rv,

Pconjz = �Pconjv + 2s��r� · r v �∆�v � 2r� · rv. (4.19)

Using that v = z on Ω \ !2, we obtain

s

Z T

�T

Z

Ω

(|@tv|
2 + |rv|2 + s2|v|2) dx dt+

Z T

�T

Z

Ω

|P1v|
2 dx dt

= s

Z T

�T

Z

Ω\!2

(|@tz|
2 + |rz|2 + s2|z|2) dx dt+

Z T

�T

Z

Ω\!2

|P1z|
2 dx dt

+ s

Z T

�T

Z

!2

(|@tv|
2 + |rv|2 + s2|v|2) dx dt+

Z T

�T

Z

!2

|P1v|
2 dx dt.
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Therefore, applying inequality (4.15) to z, we get that, for s � s0

s

Z T

�T

Z

Ω

(|@tv|
2 + |rv|2 + s2|v|2) dx dt+

Z T

�T

Z

Ω

|P1v|
2 dx dt

.

Z T

�T

Z

Ω

|Pconjz|
2 dx dt+ s

Z T

�T

Z

Γ0

|@⌫z|
2d�dt

+ s

Z T

�T

Z

!2

(|@tv|
2 + |rv|2 + s2|v|2) dx dt+

Z T

�T

Z

!2

|P1v|
2 dx dt.

Eventually, since @⌫z = @⌫�v + �@⌫v = 0 on Γ0 and using (4.19), we get

s

Z T

�T

Z

Ω

(|@tv|
2 + |rv|2 + s2|v|2) dx dt+

Z T

�T

Z

Ω

|P1v|
2 dx dt

.

Z T

�T

Z

Ω

|Pconjv|
2 dx dt+ s

Z T

�T

Z

!2

(|@tv|
2 + |rv|2 + s2|v|2) dx dt

+

Z T

�T

Z

!2

|P1v|
2 dx dt. (4.20)

Next, using the definitions (4.16) and (4.17), we observe that

|P1v|
2 . |Pconjv|

2 + s2(|@tv|
2 + |rv2|+ |v|2),

thus, for s large enough, we can replace of the last term in (4.20) to obtain

s

Z T

�T

Z

Ω

(|@tv|
2 + |rv|2 + s2|v|2) dx dt+

Z T

�T

Z

Ω

|P1v|
2 dx dt

.

Z T

�T

Z

Ω

|Pconjv|
2 dx dt+ s2

Z T

�T

Z

!2

(|@tv|
2 + |rv|2 + s|v|2) dx dt. (4.21)

We want to add a term in @tv(0) to the left-hand side. According to the definition (4.16)
of P1, an integration by parts in space gives:

Z 0

�T

Z

Ω

P1v @tv dx dt =
1

2

Z 0

�T

Z

Ω

@t(|@tv|
2) dx dt+

1

2

Z 0

�T

Z

Ω

@t(|rv|2) dx dt

+
s2�2

2

Z 0

�T

Z

Ω

�2 (|@t |
2 � |r |2)) @t(|v|

2) dx dt,

and since v(·, 0) = 0 in Ω, v(·,�T ) = @tv(·,�T ) = 0 in Ω

Z 0

�T

Z

Ω

P1v @tv dx dt =
1

2

Z

Ω

|@tv(0)|
2dx

�
s2�2

2

Z 0

�T

Z

Ω

@t(�
2(|@t |

2 � |r |2)) |v|2 dx dt.

Therefore, by Cauchy-Schwarz, we obtain

s1/2
Z

Ω

|@tv(0)|
2dx .

Z T

�T

Z

Ω

|P1v|
2 dx dt

+ s

Z T

�T

Z

Ω

|@tv|
2 dx dt+ s5/2

Z T

�T

Z

Ω

|v|2 dx dt. (4.22)
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Injecting this inequality in (4.20), we obtain that, for s � s0,

s1/2
Z

Ω

|@tv(0)|
2dx+ s

Z T

�T

Z

Ω

(|@tv|
2 + |rv|2 + s2|v|2) dx dt+

Z T

�T

Z

Ω

|P1v|
2 dx dt

.

Z T

�T

Z

Ω

|Pconjv|
2 dx dt+ s2

Z T

�T

Z

!2

(|@tv|
2 + |rv|2 + s|v|2) dx dt.

Next, we come back to the initial function w = e�s�v. After classical computations that
we do not detail here (see for instance [Baudouin et al., 2013]), we get

s1/2
Z

Ω

e2s�(0)|@tw(0)|
2dx+ s

Z T

�T

Z

Ω

e2s�(|@tw|
2 + |rw|2 + s2|w|2) dx dt

.

Z T

�T

Z

Ω

e2s�|Pw|2 dx dt

+ s2
Z T

�T

Z

!2

e2s�(|@tw|
2 + |rw|2 + s2|w|2) dx dt. (4.23)

Now we will work on the observation term in the right-hand side. To do so, we define a
function ⇢ 2 C1(Ω) such that

⇢(x) =

(
1, if x 2 !2,

0, if x 2 Ω\!,

and observe that, from the definition of P , we obviously have

Z T

�T

Z

!

e2s�⇢(@ttw �∆w � Pw)w dx dt = 0. (4.24)

Let us consider separately the three integrals coming from this equality. For the first term
we have, thanks to integrations by parts in time,

Z T

�T

Z

!

e2s�⇢ @ttww dx dt = �

Z T

�T

Z

!

@tw @t(e
2s�⇢w) dx dt

= �

Z T

�T

Z

!

|@tw|
2 e2s�⇢ dx dt� s

Z T

�T

Z

!

@t(|w|
2) e2s� @t� ⇢dx dt

= �

Z T

�T

Z

!

e2s� ⇢ |@tw|
2 dx dt+ 2s2

Z T

�T

Z

!

e2s� |@t�|
2 |w|2⇢ dx dt

+ s

Z T

�T

Z

!

e2s� @tt� ⇢ |w|
2 dx dt. (4.25)
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For the second term in (4.24) we have, using Green formula

�

Z T

�T

Z

!

e2s�⇢∆ww dx dt =

Z T

�T

Z

!

r(e2s�⇢w) · rw dx dt

=

Z T

�T

Z

!

e2s� ⇢ |rw|2 dx dt+ s

Z T

�T

Z

!

e2s�r(w2) · r� ⇢dx dt

+
1

2

Z T

�T

Z

!

e2s�r(w2) · r⇢ dx dt

=

Z T

�T

Z

!

e2s�|rw|2 ⇢ dx dt� s

Z T

�T

Z

!

e2s�∆� ⇢ |w|2 dx dt

� 2s2
Z T

�T

Z

!

e2s�⇢ |r�|2 |w|2 dx dt

�
1

2

Z T

�T

Z

!

e2s�∆⇢ |w|2 dx dt

� 2s

Z T

�T

Z

!

e2s�r⇢ · r� |w|2 dx dt. (4.26)

Using (4.25) and (4.26) in (4.24), we obtain

Z T

�T

Z

!

e2s�⇢ |@tw|
2 dx dt�

Z T

�T

Z

!

e2s�⇢ |rw|2 dx dt

=

Z T

�T

Z

!

e2s�
✓
s @tt� ⇢+ 2s2|@t�|

2 ⇢�
1

2
∆⇢� 2sr⇢ · r�� s∆� ⇢

� 2s2|r�|2 ⇢

◆
|w|2 dx dt�

Z T

�T

Z

!

e2s�⇢Pw w dx dt. (4.27)

From (4.27) and by definition of ⇢, we deduce the following estimate:

Z T

�T

Z

!2

e2s�|@tw|
2 dx dt .

1

s2

Z T

�T

Z

Ω

e2s�|Pw|2 dx dt

+

Z T

�T

Z

!

(|rw|2 + s2|w|2) dx dt. (4.28)

Using this inequality in the right-hand side of (4.23), we finally get (4.14). ⌅

We have proved a new Carleman estimate for the wave equation with new a observa-
tion term in the right-hand side. This will allow us to establish an identifiability property
where the H1 norm of the velocity in a subdomain controls the source term.

4.2.2 Identifiability results

In this section, we will state stability estimates for the identification problem of ✓̌ thanks to
measurements on the solution @tǔ of (4.10). To do so, we will follow the method introduced
in [Buchgeim and Klibanov, 1981] and apply the Carleman estimate given by Theorem 4.2.1
to the time derivative of the solution.

Theorem 4.2.2 We assume that ! satisfies (4.7) and that � 2 H1(0, T ;L1(Ω)) is such
that |�(x, 0)| � ↵ > 0 a.e. in Ω. Let T � T0 defined by (4.8).
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Let u|✓ the solution of (4.10) associated with ✓ 2 L2(Ω). Then, there exists a positive scalar
Cst such that Z

Ω

|✓|2dx  Cst

Z T

0

Z

!

�
|r@tu|✓|

2 + |@tu|✓|
2
�
dx dt. (4.29)

Proof: Since the right-hand side �✓ of (4.10) belongs to H1(0, T ; L2(Ω)), a classical
existence result (we refer to [Lions et al., 1968] or [Bensoussan et al., 2007]) allows to
assert that u belongs to C2([0, T ]; L2(Ω)) \ C1([0, T ]; H1(Ω)) \ C0([0, T ]; H2(Ω)), and we
have

kukC2([0,T ];L2(Ω)) + kukC1([0,T ];H1(Ω)) + kukC0([0,T ];H2(Ω))  Cstk✓kL2(Ω). (4.30)

Following Buchgeim-Klibanov’s method, we introduce v = @tu that satisfies
8
>>>><
>>>>:

@ttv(x, t)�∆v(x, t) = @t�(x, t)✓(x), (x, t) 2 Ω⇥ (0, T ),

v(x, t) = 0, (x, t) 2 @Ω⇥ (0, T ),

v(x, 0) = 0, x 2 Ω,

@tv(x, 0) = �(x, 0)✓(x), x 2 Ω.

(4.31)

We extend the function v on (�T, 0) by setting v(·,�t) = �v(·, t). Then, for � > 0, we
introduce the cut-off function ⌘ 2 C1

c (R), plotted in Figure 4.3, such that 0  ⌘  1,

⌘(t) =

(
1, if � T + �  t  T � �,

0, if t  �T or t � T,
(4.32)

and we set w = ⌘v in Ω⇥ (�T, T ).

0 t

1

�T + ��T T � � T

⌘

Figure 4.3: Cut-off function ⌘ defined in (4.32).

And w satisfies w(·, 0) = w(·,±T ) = @tw(·,±T ) = 0 in Ω. Therefore, since ! satisfies
(4.7) and since the time condition (4.8) holds, we can apply the Carleman estimate (4.14)
of Theorem 4.2.1:

s1/2
Z

Ω

e2s�(0)|@tw(0)|
2dx

.

Z T

�T

Z

Ω

e2s�|Pw|2 dx dt+ s2
Z T

�T

Z

!

e2s�(|rw|2 + s2|w|2)dxdt. (4.33)

For the term in the left-hand side, we have @tw(x, 0) = ⌘(0)@tv(x, 0) = �(x, 0)✓(x) where,
by hypothesis, |�(x, 0)| � ↵ > 0 for x 2 Ω. Therefore,

s1/2
Z

Ω

e2s�(0)|@tw(0)|
2dx � ↵2s1/2

Z

Ω

e2s�(0)|✓|2dx. (4.34)
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For the first term in the right-hand side of (4.33), we notice that

Pw = ⌘ @t� ✓ + 2 @t⌘ @tv + @tt⌘ v. (4.35)

On one hand, since � 2 H1(0, T ; L1(Ω)) we directly have
Z T

�T

Z

Ω

e2s�|⌘ @t� ✓|
2 dx dt .

Z

Ω

e2s�(0)|✓|2dx. (4.36)

On the other hand, the derivatives of ⌘ vanish on [�T + �, T � �] and, by definition (4.13)
of �, we have

8t 2 [�T,�T + �] [ [T � �, T ], 8x 2 Ω,  (x, t) < Cst
0 <  (x, 0), (4.37)

if we take � sufficiently small and � such that

1

T
sup
x2Ω

|x� x0| <
p
� < 1. (4.38)

Therefore, using estimate (4.30), we have

Z T

�T

Z

Ω

e2s�|2@t⌘ @tv + @tt⌘ v|
2 dx dt . e2s exp(Cst

0 )

Z T

�T

Z

Ω

(|@ttu|
2 + |@tu|

2) dx dt

. e2s exp(Cst

0 )

Z

Ω

|✓|2dx .

Z

Ω

e2s�(0)|✓|2dx.

Hence, using this inequality, (4.34) and (4.36), estimate (4.33) leads to:

↵2s1/2
Z

Ω

e2s�(0)|✓|2dx .

Z

Ω

e2s�(0)|✓|2dx+ s2
Z T

�T

Z

!

e2s�(|r⌘ v|2 + s2|⌘ v|2) dx dt.

Therefore, if s is chosen large enough, we can absorb the first term in the right-hand side
by the term in the left-hand side. By this way we have

s2
Z T

�T

Z

!

e2s�(|r⌘ v|2 + s2|⌘ v|2) dx dt . e
2sk�(0)kC0(Ω)

Z T

�T

Z

!

|rv|2 + |v|2 dx dt.

Since v = @tu and v(0) = 0 and since the integrals on (�T, T ) are twice the integrals on
(0, T ), this concludes the proof of Theorem 4.2.2. ⌅

We deduce from the observability inequality (4.29) that the observations on @tu must
belong to L2(0, T ; H1(!)), such that a stable reconstruction of ✓ is possible in a L2-norm.
As a result, we are dealing with an ill-posed inverse problem of degree 1. However, note
that we here assume that we measure the velocity of the solution. When measuring only
the field, our estimate will indicate that the problem is ill-posed of degree 2.

4.3 From regularization strategy to observer design

4.3.1 Tikhonov regularization and error reconstruction

We recall that we assume that a target trajectory ǔ solution of (4.10) produced by a target
source term parameter ✓̌ has resulted in a set of measurements y� where

Z T

0
ky�(x, t)� @tǔ(x, t)k

2
L2(!)dt  �2T, (4.39)
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for a parameter � > 0. Following the methodology presented in Chapter 3, we introduce
the cost functional to minimize JT : H1

0(Ω) ! R defined by

JT (✓) =
✏

2
k✓k2H1

0(Ω) +
1

2

Z T

0
ky�(t)� @tu|✓k

2
L2(!)dt

=
✏

2
k✓k2H1

0(Ω) +
1

2

Z T

0
ky�(t)� Cz|✓k

2
L2(!)dt, (4.40)

where u|✓ is the solution of (4.10) associated to the parameter ✓, C is defined by (4.9) and
✏ > 0. Since the functional is quadratic, the application ✓ 7! I!(@tu) is continuous and
✓ 7! k✓k2

H1
0(Ω)

is coercive, we deduce the existence of a unique minimizer in H1
0(Ω) of JT .

We denote it by ✓̄T := argmin
✓2H1

0(Ω)

JT .

We want to show the reconstruction property, i.e. we want to quantify the approximation
between the target parameter ✓̌ and the minimizer of the cost functional ✓̄T with respect to
the noise level �. To do so, we introduce a regularization operator G↵

! that will regularize
L2(!) measurements in H1

0(!). Namely, for ↵ > 0 small, we define G↵
! 2 L(L2(!),H1

0(!))
satisfying for all y 2 L2(!), G↵

!y = y↵ where y↵ is solution of
8
<
:
�∆y↵ +

1

↵2
y↵ =

1

↵2
y, in !,

y↵ = 0, on @!.
(4.41)

Let us look at some properties of this regularization operator. First, we give a stability
property.

Proposition 4.3.1 The regularization operator G↵
! defined by (4.41) satisfies,

8y 2 L2(!), kG↵
!ykH1

0(!)


1
p
2↵

kykL2(!).

Proof: We denote y↵ = G↵
!y. The operator G↵

! satisfies the following variational formu-
lation 8v 2 H1

0(!), Z

!

ry↵rvdx+
1

↵2

Z

!

y↵vdx =
1

↵2

Z

!

yvdx.

Choosing the test function v = y↵ and using Cauchy–Schwarz and Young inequalities, we
finally get

kry↵k2L2(!) 
1

2↵2
kyk2L2(!).

⌅

In fact, this operator is a regularization of the identity operator. We can show the
following approximation theorem.

Proposition 4.3.2 The regularization operator G↵
! defined by (4.41) satisfies, 8y 2 H1

0(!)
such that ∆y 2 L2(!),

k(G↵
! � Id)ykH1

0(!)


↵
p
2
k∆ykL2(!).

Proof: We denote y↵ = G↵
!y. The operator G↵

! satisfies the following variational formu-
lation 8v 2 H1

0(!),
Z

!

r(y↵ � y)rvdx+
1

↵2

Z

!

(y↵ � y)vdx =

Z

!

∆yvdx.
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Choosing the test function v = y↵ � y and using Cauchy–Schwarz and Young inequalities,
we finally get

kr(y↵ � y)k2L2(!) +
1

↵2
ky↵ � yk2L2(!) 

↵2

2
k∆yk2L2(!) +

1

2↵2
ky↵ � yk2L2(!).

⌅

Let us state a regularity result for the solution of (4.10).

Proposition 4.3.3 Let �✓ 2 H2(0, T ; L2(Ω)) \H1(0, T ; H1
0(Ω)). Let u|✓ be the solution of

(4.10). Then u 2 C1([0, T ]; H2(Ω)) and there exists a positive scalar Cst depending on �

and T such that

sup
t2[0,T ]

kr@tu|✓kL2(Ω) + k∆@tu|✓kL2(Ω)  Cst(T,�)k✓kH1
0(Ω). (4.42)

Proof: From classical existence result (we refer to [Lions et al., 1968] or [Bensoussan
et al., 2007]), one can show that :

for �✓ 2 L2(0, T ; L2(Ω)),

9!u 2 C1([0, T ],L2(Ω)) \ C0([0, T ],H1
0(Ω)) solution of (4.10). (4.43)

Furthermore, let us study existence result for the system (4.10) derived in time. Namely,
we study the following system where v = @tu,

8
>>>><
>>>>:

@ttv(x, t)�∆v(x, t) = @t�(x, t)✓(x), (x, t) 2 Ω⇥ (0, T ),

v(x, t) = 0, (x, t) 2 @Ω⇥ (0, T ),

v(x, 0) = 0, x 2 Ω,

@tv(x, 0) = �(x, 0)✓(x), x 2 Ω.

(4.44)

Once again, one can prove that :

for (�(0)✓, @t�✓) 2 ⇥L2(Ω)⇥ L2(0, T ; L2(Ω)),

9! v 2 C1([0, T ],L2(Ω)) \ C0([0, T ],H1
0(Ω)) solution of (4.44). (4.45)

Again, we derive the system (4.44) in time. Denoting w = @tv, we have
8
>>>><
>>>>:

@ttw(x, t)�∆w(x, t) = @tt�(x, t)✓(x), (x, t) 2 Ω⇥ (0, T ),

w(x, t) = 0, (x, t) 2 @Ω⇥ (0, T ),

w(x, 0) = �(x, 0)✓(x), x 2 Ω,

@tw(x, 0) = @t�(x, 0)✓(x), x 2 Ω.

(4.46)

One can show the following existence result :

for (�(0)✓, @t�(0)✓, @tt�✓) 2 H1
0(Ω)⇥ L2(Ω)⇥ L2(0, T ; L2(Ω)),

9!w 2 C1([0, T ],L2(Ω)) \ C0([0, T ],H1
0(Ω)) solution of (4.46). (4.47)

Since �✓ 2 H2(0, T ; L2(Ω)) \ H1(0, T ; H1
0(Ω)) and gathering (4.43), (4.45) and (4.47), we

can deduce that the solution u of (4.10) belongs to C1([0, T ]; H2(Ω)).
Moreover, using classical energy identities and Grönwall lemma, one can prove that (4.42)
holds. ⌅

We can now express the reconstruction error theorem.
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Theorem 4.3.4 We assume that there exists M > 0 such that

✓̌ 2 H1
0(Ω) and k✓̌kH1

0(Ω)  M. (4.48)

Let �✓̌ 2 H2(0, T ; L2(Ω)) \H1(0, T ; H1
0(Ω)).

Let � 2 H1(0, T ;L1(Ω)) such that |�(x, 0)| � ↵ > 0 a.e.in Ω. We assume that !0

satisfies (4.7). Let ! � !1 � !0. Then for T � T0 where T0 is defined by (4.8), there
exists a positive scalar Cst independent of M and � such that

k✓̄T � ✓̌kL2(Ω)  Cst
p
M

p
�, (4.49)

where ✓̄T minimizes the cost functional (4.40) with ✏ = �2M�2.

Proof: In this proof, we write a . b if there exists a positive scalar c > 0 independent
of ✏, M and � such that a  cb.
First, using the prior on the parameter ✓̌ and the estimate on the noise amplitude (4.39),
we can bound the cost functional

JT (✓̄T )  JT (✓̌) 
✏

2
M2 +

1

2
T �2. (4.50)

Thanks to the observability inequality of Theorem 4.2.2 applied to ✓̄T � ✓̌ on !0, we obtain

k✓̄T � ✓̌kL2(Ω) .

✓Z T

0
k@tu|✓̄T � @tu|✓̌k

2
H1(!0)

dt

◆1/2

.

For a given ↵ > 0, We introduce a cut-off function ⌘ 2 C1(!̄) such that
(
⌘(x) = 1, if x 2 !0,

⌘(x) = 0 if x 2 ! \ !1,
(4.51)

and 0  ⌘(x)  1 for every x 2 !̄. Therefore, using Poincaré inequality and the definition
of the cut-off function we have

k✓̄T � ✓̌kL2(Ω) .

✓Z T

0
k⌘(@tu|✓̄T � @tu|✓̌)k

2
H1(!0)

dt

◆1/2

.

✓Z T

0
k⌘(@tu|✓̄T � @tu|✓̌)k

2
H1

0(!)
dt

◆1/2

.

We introduce the regularization operator G↵
! defined by (4.41).

k✓̄T � ✓̌kL2(Ω) .

✓Z T

0
k(G↵

! � Id)
⇣
⌘ (@tu|✓̄T � @tu|✓̌)

⌘
k2H1

0(!)
dt

◆1/2

+

✓Z T

0
kG↵

!

⇣
⌘ (@tu|✓̄T � @tu|✓̌)

⌘
k2H1

0(!)
dt

◆1/2

.

Adding and removing the noisy observations, we get

k✓̄T � ✓̌kL2(Ω) .

✓Z T

0
k(G↵

! � Id)
⇣
⌘ @tu|✓̄T

⌘
k2H1

0(!)
dt

◆1/2

+

✓Z T

0
k(G↵

! � Id)
⇣
⌘ @tu|✓̌

⌘
k2H1

0(!)
dt

◆1/2

+

✓Z T

0
kG↵

!

⇣
⌘ (@tu|✓̄T � y�)

⌘
k2H1

0(!)
dt

◆1/2

+

✓Z T

0
kG↵

!

⇣
⌘ (@tu|✓̌ � y�)

⌘
k2H1

0(!)
dt

◆1/2

.
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Using Propositions 4.3.1 and 4.3.2, we get

k✓̄T � ✓̌kL2(Ω) . ↵

✓Z T

0
k∆

⇣
⌘ @tu|✓̄T

⌘
k2L2(!)dt

◆1/2

+ ↵

✓Z T

0
k∆

⇣
⌘ @tu|✓̌

⌘
k2L2(!)dt

◆1/2

+
1

↵
k⌘kL1(!)

✓Z T

0
k@tu|✓̄T � y�k2L2(!)dt

◆1/2

+
1

↵
k⌘kL1(!)

✓Z T

0
k@tu|✓̌ � y�k2L2(!)dt

◆1/2

. (4.52)

For the first two terms in the right-hand side, we notice that for all v 2 H1
0(Ω) such that

∆v 2 L2(Ω), using Poincaré inequality and the definition of the cut-off function,

k∆ (⌘v) kL2(!)  kv∆⌘ + 2rvr⌘ + ⌘∆vkL2(!),

. kvkL2(!)k∆⌘kL1(!) + 2krvkL2(!)kr⌘kL1(!) + k⌘kL1k∆vkL2(!),

. krvkL2(Ω) + k∆vkL2(Ω).

Since k⌘kL1(!) = 1 and thanks to the regularity of �, ✓̌ and ✓̄T , we get

k✓̄T � ✓̌kL2(Ω) . ↵

✓Z T

0
k∆@tu|✓̄T k

2
L2(!) + kr@tu|✓̄T k

2
L2(!)dt

◆1/2

+ ↵

✓Z T

0
k∆@tu|✓̌k

2
L2(!) + kr@tu|✓̌k

2
L2(!)dt

◆1/2

+
1

↵

✓Z T

0
k@tu|✓̄T � y�k2L2(!)dt

◆1/2

+
1

↵

✓Z T

0
k@tu|✓̌ � y�k2L2(!)dt

◆1/2

.

Using Proposition 4.3.3 as well as the definition of the cost functional (4.40) and the bound
of the error measurements amplitude (4.39), we obtain

k✓̄T � ✓̌kL2(Ω) . ↵Tk✓̄T kH1
0(Ω) + ↵Tk✓̌kH1

0(Ω) +
1

↵
(2JT (✓̄T ))

1/2 +
1

↵
�
p
T .

Thanks to the prior on the parameter (4.48), we get

k✓̄T � ✓̌kL2(Ω) . ↵T (2✏�1JT (✓̄T ))
1/2 + ↵TM +

1

↵
(2JT (✓̄T ))

1/2 +
1

↵
�
p
T .

Using the bound of the cost-functional (4.50), we have

k✓̄T � ✓̌kL2(Ω) . ↵T (M2 + ✏�1�2T )1/2 + ↵TM +
1

↵
(✏M2 + �2T )1/2 +

1

↵
�
p
T .

Choosing ✏ = �2M�2 and ↵ = �1/2M�1/2, we finally obtain

k✓̄T � ✓̌kL2(Ω) . �1/2M1/2
⇣
T (1 + T )1/2 + T + (1 + T )1/2 +

p
T
⌘
.

⌅

As a result, we obtain a reconstruction error between the target source term and the
observer as a function of the noise level. Following the same process as in Chapter 3 and
using a very similar definition of the cost function (also the same choice of ✏), we find the
same power of � in the reconstruction error.
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4.4. Time discretization and numerical results

4.3.2 Observer design

To calculate the minimizer of the cost functional (4.40), we use an approach presented in
Chapter 3, i.e. use a reduce-order Kalman filter where a Riccati operator is defined on the
parameter space.

Theorem 4.3.5 The unique minimizer ✓̄t of JT (4.40) satisfies ✓̄t = ✓̂(t) where ✓̂ is solu-
tion of the following dynamics

8
>>>>>>>>><
>>>>>>>>>:

˙̂
✓ = ΛL⇤C⇤(y� � Cẑ), t > 0,

Λ̇ = �ΛL⇤C⇤CLΛ, t > 0,

˙̂z = Aẑ +B✓̂ + L
˙̂
✓, t > 0,

✓̂(0) = ✓̂0

z(0) = ẑ0,

Λ(0) = Λ0 := �✏�1
∆

�1
0 ,

(4.53)

where the operator (L(t))t�0 is such that z|✓(t) = L(t)✓ is the mild solution of (4.5), C is

defined by (4.9), ✓̂0 is a possible a priori on the source term and ẑ0 = z0 the correct initial
conditions.

Since this method is sequential, it has the advantage of not requiring multiple iterations
to obtain the result. In this case, hence it is very efficient for parameters discretized
in controlled-dimension spaces where the Riccati operator can be efficiently computed.
Moreover, we could also show that observer (4.53) is a convergent observer in the sense
of Definition 3.4.1 of Chapter 3. The proof of the reconstruction error in Theorem 4.3.4
is similar to that in Chapter 3 (Theorems 3.3.7 and 3.3.12), which guarantees robustness
to noise. Following the methodology of Chapter 3, we could also show the property of
asymptotic convergence in the absence of noise.

4.4 Time discretization and numerical results

4.4.1 Time discretization scheme

z
We discretize the wave equation as we did in the previous chapter, and then we apply

Tikhonov’s regularization method and observer design to the discretized system following
a discretize-then-optimize strategy. As in Chapter 3, we discretize the wave equation using
Lagrange finite element {uhn vhn}n�0 2 Vh ⇥ Vh where Vh ⇢ H1(Ω) in a finite-dimensional
space and ✓h 2 Ph the finite-dimensional space corresponding to P We use a mid-point
scheme which leads to

8
>>><
>>>:

uhn+1 � uhn
⌧

=
vhn+1 + vhn

2

vhn+1 � vhn
⌧

�∆
h
0

uhn+1 + uhn
2

= �h
✓✓

n+
1

2

◆
⌧

◆
✓h,

(4.54)

where ∆h
0 is the bounded linear operator in Vh associated with the finite element discretiza-

tion of the unbounded operator ∆0 of L2(Ω). We also recall the first-order writing of this
system by setting zh 2 Zh = Vh⇥Vh – where Zh ⇢ Z is equipped with the scalar product
of Z – solution of

zhn+1|⇣ = �h,⌧zhn|⇣ +Bh,⌧
n+1✓

h,
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where

�h,⌧ =

 
Idh � ⌧

2 Idh

� ⌧
2∆

h
0 Idh

!�1 
Idh

⌧
2 Idh

⌧
2∆

h
0 Idh

!
,

and

Bh,⌧
n+1 = ⌧

 
Idh � ⌧

2 Idh

� ⌧
2∆

h
0 Idh

!�1 
0

�h
�
n+ 1

2⌧
�
!
.

The time-and-space discretization of the cost functional (4.40) reads to

JN (⇣h) =
✏

2
k⇣hk2H1

0(Ω) +
NX

n=1

⌧

2
ky�,hn � Chzhn|⇣hk

2
Yh , (4.55)

associated with measurements y�,hn and an observation operator Ch 2 L(Zh,Yh) where
Yh is the finite dimensional space in which the observations belong. We now present the
fundamental theorem defining an observer from the minimization of the cost function in
Chapter 3.

Theorem 4.4.1 The minimizer ✓̂hN of the cost functional (4.55) is equals to ✓̄hN� which is

solution from (ẑh0 , ✓̂
h
0 ) of the recursive dynamics

8
>>><
>>>:

ẑhn+1� = �h,⌧zhn +Bh,⌧
n+1✓̂

h
n, t > 0,

✓̂hn+1 = ✓̂hn +
�
Uh
n+1

��1
Lh⇤
n+1C

h⇤(y�,hn+1 � Chẑhn+1�), t > 0,

ẑhn+1 = ẑhn+1� + Lh
n+1(✓̂

h
n+1 � ✓̂hn)

(4.56)

where the operator (Lh
n)n2N is such that zhn|✓ = Lh

n✓ is the solution of

8
<
:
zhn+1|✓ = �h,⌧zhn|✓ +Bh,⌧

n+1✓, n 2 N,

zh0|✓ = 0,
(4.57)

and Uh
n is given by

(
Uh
n+1 = Uh

n + ⌧Lh⇤
n+1C

h⇤ChLh
n+1, n � 0,

Uh
0 = �✏∆0.

(4.58)

We present some numerical illustrations to illustrate the results presented in this work.

4.4.2 Wave propagation example

We would like to illustrate the results obtained in the previous sections. In particular, we
give a numerical example of the source term reconstructed by the observer and show that
the reconstruction is accurate. We would also like to illustrate Theorem 4.3.4 and see the
evolution of the error as a function of the noise of the available observations. Consider the
following wave equation

8
>>>><
>>>>:

@ttǔ(x, t)�∆ǔ(x, t) = �(x, t)✓̌(x), (x, t) 2 Ω⇥ (0, T ),

ǔ(x, t) = 0, (x, t) 2 @Ω⇥ (0, T ),

ǔ(x, 0) = ǔ0(x), x 2 Ω,

@tǔ(x, 0) = 0, x 2 Ω,

(4.59)
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4.5 Perspectives

In this section, we present two possible perspectives of this work. The first is to extend the
results shown in the previous sections to field measurements. We establish a new Carleman
estimate, from which we deduce a new identifiability property involving the parameter in
its L2-norm and field measurements in H2-norm.
We have also seen that the method we proposed suits well when the source term to recon-
struct is smooth, i.e. it belongs to H1

0. In the last section, we look numerically at possible
solutions for adapting our strategy when considering a sharp source term. In particular, we
study the adaptive basis ([de Buhan and Osses, 2010; Baffet et al., 2021]). The theoretical
study is currently in progress.

4.5.1 Extension to field measurements

In this section, we would like to consider measurements of the field u, the solution of (4.1)
instead of the velocity @tu. We state Carleman estimate in order to apply this estimates
to our parameter identification problem. As in the Section 4.2.1, we have adapted the
classical Carleman estimate for the wave equation in order to modify the norms in the
observation term.

Theorem 4.5.1 We assume that ! satisfies (4.7). Let T � T0 defined by (4.8). There
exist � > 0, s0 > 0 and a positive constant Cst such that for � defined by (4.13), for all
s � s0 and for all w 2 L2(�T, T ; H1

0(Ω)) such that Pw = @ttw �∆w 2 L2(Ω ⇥ (�T, T )),
W 2 L2(�T, T ; H2(!)) and w(·, 0) = w(·,±T ) = @tw(·,±T ) = 0 in Ω, we have

s1/2
Z

Ω

e2s�(0)|@tw(0)|
2dx+

Z T

�T

Z

Ω

e2s�(s|rw|2 + s|@tw|
2 + s3|w|2) dx dt

 Cst

Z T

�T

Z

Ω

e2s�|Pw|2 dx dt+ Csts2
Z T

�T

Z

!

e2s�(|∆W |2 + s4|W |2) dx dt (4.65)

where W is given by W (t) =

Z t

0
w(⌧) d⌧ .

Proof: In this proof, we write a . b if there exists a positive scalar c > 0 independent
of s such that a  cb.
In this proof, all the computations will be done for smooth functions and lastly a density
argument allows to extend the result to the regularity given in the theorem. We restart
from the proven equation (4.27) On one hand, we can deduce from (4.27) that

Z T

�T

Z

!2

e2s�|rw|2 dx dt .
1

s2

Z T

�T

Z

Ω

e2s�|Pw|2 dx dt

+

Z T

�T

Z

!

(|@tw|
2 + s2|w|2) dx dt. (4.66)

Using this inequality in the right-hand side of (4.23), we get

s1/2
Z

Ω

e2s�(0)|@tw(0)|
2dx+

Z T

�T

Z

Ω

e2s�(s|rw|2 + s|@tw|
2 + s3|w|2) dx dt

.

Z T

�T

Z

Ω

e2s�|Pw|2 dx dt+ s2
Z T

�T

Z

!

e2s�(|@tw|
2 + s2|w|2) dx dt. (4.67)
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On the other hand, using the fact that w = @tW (since W is a time primitive of w), the
second term of (4.24) can also be integrated by parts in time to obtain

�

Z T

�T

Z

!

e2s�⇢∆ww dx dt = �

Z T

�T

Z

!

e2s�⇢∆(@tW )w dx dt

=

Z T

�T

Z

!

@t(e
2s�⇢w)∆W dx dt�

Z

!

e2s�⇢w∆Wdx

�T

�T

= 2s

Z T

�T

Z

!

e2s�⇢@t�w∆W dx dt+

Z T

�T

Z

!

e2s�⇢ @tw∆W dx dt.

Using this inequality and (4.25) in (4.24), we get

Z T

�T

Z

!

e2s�⇢|@tw|
2 dx dt = s

Z T

�T

Z

!

e2s�@tt�⇢|w|
2 dx dt

+ 2s2
Z T

�T

Z

!

e2s�|@t�|
2|w|2⇢ dx dt+ 2s

Z T

�T

Z

!

e2s�⇢@t�w∆W dx dt

+

Z T

�T

Z

!

e2s�⇢@tw∆W dx dt�

Z T

�T

Z

!

e2s�⇢Pww dx dt.

Using Young inequality for the last three terms, we obtain

Z T

�T

Z

!

e2s�⇢|@tw|
2 dx dt

.

Z T

�T

Z

!

e2s�
✓
s|@tt�|⇢+ 2s2|@t�|

2⇢+ s2⇢|@t�|+
s2⇢

2

◆
|w|2 dx dt

+

Z T

�T

Z

!

e2s�
⇣⇢
2
+ ⇢|@t�|

⌘
|∆W |2 dx dt+

1

2s2

Z T

�T

Z

!

e2s�⇢|Pw|2 dx dt

+
1

2

Z T

�T

Z

!

e2s�⇢|@tw|
2 dx dt. (4.68)

We absorb the last term on the right side of (4.68) by the left-hand side. Then, for s large
enough, we get

Z T

�T

Z

!

e2s�|@tw|
2 dx dt .

1

s2

Z T

�T

Z

Ω

e2s�|Pw|2 dx dt

+

Z T

�T

Z

!

e2s�(|∆W |2 + s2|w|2) dx dt. (4.69)

Let us now compute

s2
Z T

�T

Z

!

e2s�|w|2 dx dt = s2
Z T

�T

Z

!

e2s�w@tW dx dt

= �2s3
Z T

�T

Z

!

e2s�@t�wW dx dt� s2
Z T

�T

Z

!

e2s�@twW dx dt

.
s4

✏
s4
Z T

�T

Z

!

e2s�|W |2 dx dt+ ✏

Z T

�T

Z

!

e2s�(|@tw|
2 + s2|w|2) dx dt.
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Starting from (4.69), we use this inequality to obtain

Z T

�T

Z

!

e2s�(|@tw|
2 + s2|w|2) dx dt

.
1

s2

Z T

�T

Z

Ω

e2s�|Pw|2 dx dt+

Z T

�T

Z

!

e2s�(|∆W |2 + s2|w|2) dx dt

.
1

s2

Z T

�T

Z

Ω

e2s�|Pw|2 dx dt+

Z T

�T

Z

!

e2s�(|∆W |2 +
s4

✏
|W |2) dx dt

+ ✏

Z T

�T

Z

!

e2s�(|@tw|
2 + s2|w|2) dx dt. (4.70)

Taking ✏ small enough, we deduce that

Z T

�T

Z

!

e2s�(|@tw|
2 + s2|w|2) dx dt .

1

s2

Z T

�T

Z

!

e2s�|Pw|2 dx dt

+

Z T

�T

Z

!

e2s�
�
|∆W |2 + s4|W |2

�
dx dt. (4.71)

To conclude, we use the inequality (4.67) and apply inequality (4.71) to replace the obser-
vation term in the right-hand side. ⌅

Again, we follow the method introduced by Buchgeim-Klibanov [Buchgeim and Klibanov,
1981] and apply the Carleman estimate given by Theorem 4.5.1 to the time derivative of
the solution.

Theorem 4.5.2 We assume that ! satisfies (4.7) and that � 2 H1(0, T ;L1(Ω)) is such
that |�(x, 0)| � ↵ > 0 a.e. in Ω. Let T � T0 defined by (4.8).
Let u|✓ be the solution of (4.10) associated to ✓ 2 L2(Ω). Then, there exists a positive
constant Cst such that

Z

Ω

|✓|2dx  Cst

Z T

0

Z

!

|∆u|✓|
2 + |u|✓|

2 dx dt. (4.72)

Proof: In this proof, we write a . b if there exists a positive scalar c > 0 independent
of s such that a  cb.
Let v be the solution of (4.31) and V its time primitive such that V (·, 0) = 0. As in the
proof of Theorem 4.2.2, we extend the function v on (�T, 0) by setting v(·,�t) = �v(·, t).
We set w = ⌘v in Ω⇥(�T, T ) where ⌘ satisfies (4.32) and W its time primitive. Reasoning
exactly as in the proof of Theorem 4.2.2 and using the Carleman estimate (4.65) of Theorem
4.5.1, one can show that

↵2s1/2
Z

Ω

e2s�(0)|✓|2dx .

Z

Ω

e2s�(0)|✓|2dx+ s2
Z T

�T

Z

!

e2s�(|∆W |2 + s4|W |2) dx dt,

where, if s is chosen sufficiently large, we can absorb the first term in the right-hand side
by the term in the left-hand side. Moreover, we notice that

W (x, t) =

Z t

0
⌘(⌧)v(x, ⌧) d⌧ = ⌘(t)V (x, t)�

Z t

0
⌘0(⌧)V (x, ⌧) d⌧.
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cost functional by JT : L2(Ω) ! R such that

JT (✓) =
✏

2
k✓k2L2(Ω) +

1

2

Z T

0
ky�(t)� @tu|✓k

2
L2(!)dt

=
✏

2
k✓k2L2(Ω) +

1

2

Z T

0
ky�(t)� Cz|✓k

2
L2(!)dt. (4.74)

The observer (4.53) should be slightly modified into
8
>>>>>>>>>>><
>>>>>>>>>>>:

˙̂
✓ =

1

�2
ΛL⇤C⇤(y� � Cẑ), t > 0,

Λ̇ = �
1

�2
ΛL⇤C⇤CLΛ, t > 0,

˙̂z = Aẑ +B✓̂ + L
˙̂
✓, t > 0,

✓̂(0) = ✓̂0

z(0) = ẑ0,

Λ(0) = M2IdP ,

(4.75)

where the operator (L(t))t�0 is such that z|✓(t) = L(t)✓ is the mild solution of (4.5) and
C is defined by (4.9). We discretize this observer in time and space in the same way as
in section 4.4.1. To take into account that the source term to be reconstructed is sharp,
we propose to study the adaptive basis proposed by [de Buhan and Osses, 2010] and often
used in the literature [de Buhan and Kray, 2013; Grote and Nahum, 2019; Baffet et al.,
2021]. The idea is to adapt the basis of eigenfunction on which we decompose ✓̌ as in
[de Buhan and Osses, 2010] by

✓̌ =

1X

k=1

✓̌k�k, (4.76)

where the �k are the eigenfunctions satisfying the following elliptic boundary-value problem
8
><
>:
�r ·

 
1p

|r✓|2 + ⌫2
r�k

!
= µk�k, in Ω,

�k = 0, on @Ω,

(4.77)

with here ⌫ is a small positive scalar which ensure that the denominator is not zero and
µk are the eigenvalues. For piecewise constant functions, this decomposition has proven to
be remarkably precise and effective.

We explain how this adaptive basis can be used in the inverse problem. The principle
is as follows: we iterate the inverse problem, taking as a prior the source term to be
reconstructed in the previous iteration. In addition, at the end of each iteration, we
decompose the reconstructed source term into the adaptive basis, which will be used in
the next iteration. At each step, the mesh is adapted to the basis used to decompose the
source term. So we can reduce the number of eigenvectors used in the decomposition to
save computational cost.

As in Section 4.4.2, the measurements at our disposal are created using the direct
problem on the mesh with 56193 dofs (see Figure 4.8 (right)) over a time window [0, 1]
with a time step of ⌧ = 0.01, where the source term is that defined by (4.16). To solve
the inverse problem, we chose � = 10�5 and M = 50, with a final time tn = 1 for each
iteration with a time step of ⌧ = 0.01. In the first step, the source term is decomposed on
the basis of the Laplacian with 30 modes. For the other iterations, only 10 modes are used,
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priate norm for the source term ✓̌. One perspective would be to use a norm that takes
total variation into account. Indeed, this kind of norm is often used in image segmentation
problems [Mumford and Shah, 1989]. For instance see the total variation–based image
denoising model of [Rudin et al., 1992] and its many extensions [Chan and Vese, 2001;
Chan et al., 2006; Caselles et al., 2007].

4.6 Conclusion

In this chapter, we showed how to extend the methodology from Chapter 3 and what
differences arise when the source term to reconstruct is multiplied by a function that
depends on space and time rather than just time. Here, the identifiability result can only
be obtained through Carleman estimate. In particular, we prove here a new Carleman
estimate in the case of internal velocity measurements. Using this inequality we show that
we face an ill-posed inverse problem of degree 1. Using this inequality we show that we
face an ill-posed inverse problem of degree 1. However, when measuring only the field,
our estimate indicates that the problem is ill-posed of degree 2. We then define a cost
functional with a classical data fitting term and a Tikhonov regularization term. As in
Chapter 3, we estimate explicitly the reconstruction error. To solve this inverse problem,
we use the observer from the previous chapter, which we have shown to be equivalent to the
minimization problem. Finally, a new Carleman estimate for the field measurements case
was established. The rest of the analysis is still under investigation since the observation
operators presented in the previous chapter when considering field measurements, are not
adapted to the observability condition that we have proved here. Eventually, the second
perspective examined is the case in which the source term is piecewise constant. In this
case, the Tikhonov regularization is replaced by a L2 norm term. Although our theoretical
analysis is not complete for such inversion, the numerical results are promising. This is
due to the introduction of an adaptive basis that takes into account rapid changes in the
variations. Indeed, we then developed an algorithm to solve the inverse problem iteratively
by modifying the basis and the mesh at each stage, taking into account the reconstruction
of the source term at the previous stage. A way to improve the iterative algorithm would
be to use norms that are more appropriate for this type of problem, for example a total
variation norm.
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Chapter 5. Conclusions and perspectives

5.1 Conclusions et perspectives

L’assimilation de données pour les phénomènes d’ondes possèdent de nombreux champs
d’applications possibles. L’objectif de cette thèse était de formuler et d’analyser une mé-
thode séquentielle d’etimation de source pour l’équation des ondes par le point de vue du
contrôle optimal en dimension infinie. Après un premier chapitre de rappels sur l’estima-
tion d’état, nous avons développé les outils nécéssaires à l’analyse théorique et numérique
de l’estimation de source.

Chapitre 2
Une idée importante défendue lors de cette thèse concerne la discrétisation. Une méthode
adaptée est, dans un premier temps, de discrétiser la dynamique du modèle puis de for-
muler un observateur sur le problème discrétisé. Le Chapitre 2 illustre cette approche. Des
propriétés telles que la stabilité exponentielle, satisfaites au niveau continu, ne le sont plus
potentiellement après discrétisation (ici par des éléments finis spectraux d’ordre élevés).
Pour y remédier, nous introduisons un terme dissipatif évanescent, ce qui permet de retrou-
ver ces propriétés au niveau discret sans altérer l’ordre de convergence. Une perspective
intéressante du Chapitre 2 serait d’étendre tous les résultats obtenus pour des problèmes
en deux dimensions. Des difficultés sont déjà observées au niveau continu, notamment la
variable vh doit être définie comme un gradient sur chaque élément, ce qui peut ne pas être
le cas pour une formulation faible de l’équation. En outre, il serait nécessaire d’introduire
un traitement numérique adéquat des conditions aux limites.

Chapitre 3
L’objectif de ce travail est de proposer une stratégie s’appuyant sur des observateurs pour
estimer un terme source d’une équation d’onde à partir de mesures internes dans un sous-
domaine. Deux cas sont traités suivant la régularité des mesures. La méthode consiste dans
un premier temps à prouver un résultat d’identifiabilité à l’aide des conditions classiques
d’observabilité pour les équations d’ondes, à partir duquel on peut déduire que la recons-
truction de la source est un problème inverse mal posé d’ordre 2. Ce problème inverse
est résolu à l’aide d’une stratégie séquentielle dont il est prouvé qu’elle est équivalente à
la minimisation d’une fonction de coût avec régularisation de Tikhonov. Nous proposons
également une discretisation en temps qui permet de conserver cette propriété au niveau
discret. Le Chapitre 2 démontre que concernant la reconstruction d’état, les preuves d’ob-
servabilité ne sont plus nécessairement satisfaites après discrétisation. Pour aller plus loin,
On pourrait logiquement penser que c’est aussi le cas pour la reconstruction de sources. Il
faudrait essayer d’étendre la méthode présentée au Chapitre 2 et de rajouter des termes
dissipatifs qui permettraient de satisfaire ces propriétés après discrétisation. De plus, on
a supposé qu’en plus d’observations sur le système, on a la connaissance parfaite des
conditions initiales. Pour s’approcher d’un cas plus réaliste, nous envisageons le cadre de
l’estimation conjointe état-source, où l’on prend en compte des incertitudes sur les données
initiales dans la reconstruction de sources, voir Section 5.2.1.

Chapitre 4
Dans le dernier chapitre, nous étendons ces résultats pour un terme source multiplié par
une fonction connue dépendante de l’espace et du temps. La principale différence réside
dans les outils développés pour montrer l’observabilité à savoir ici des estimations de Carle-
man. Nous avons établi deux nouvelles estimations de Carleman, une adaptée lorsque l’on
a notre disposition des mesures de vitesses et la seconde pour des mesures de champs. Pour
le premier cas, on a pu adapter les stratégies présentées au Chapitre 3, à savoir la résolution
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à l’aide d’un filtre de Kalman et sa discrétisation en temps. Il faudrait maintenant pouvoir
faire de même dans le cadre des mesures de champs. En outre, nous avons présenté un
algorithme itératif, reposant sur l’introduction de base adaptative, qui semble approprié
lorsque l’on s’intéresse à la reconstruction d’un terme source constant par morceaux. Pour
aller plus loin, il faudrait étudier en détails l’erreur de reconstruction entre le terme source
cible et celui reconstruit par la méthode que nous proposons.

À titre de perspectives, nous n’avons pas abordé la reconstruction de paramètres, un
problème non linéaire qui possède de nombreux champs d’applications concrètes. Une des
pistes alors envisageables est de linéariser ce problème autour d’une trajectoire connue.
Cela permet de se ramener à un problème de reconstruction de sources. L’étape suivante
serait donc d’itérer ce problème de reconstruction comme détaillé Section 5.2.2.

5.2 Quelques perspectives détaillées

5.2.1 Vers l’estimation conjointe source-état

Dans le Chapitre 3 nous avons cherché à reconstruire un terme source en supposant avoir à
notre disposition des observations sur le système et la connaissance parfaite des conditions
initiales. En pratique, ceci n’est pas réaliste et l’on doit considérer des incertitudes sur la
donnée initiale également. Le but de cette section est d’esquisser une manière d’appréhender
ce problème. Pour cela, nous réutilisons le cadre défini dans le Chapitre 3, à savoir la
propagation d’onde (3.1). On se place directement dans un cas plus complexe lorsque
l’on suppose que les observations à notre disposition sont bruitées à l’aide d’un bruit peu
régulier, autrement dit les mesures disponibles appartiennent à L2(!). Dans ce cas précis,
on rappelle l’opérateur d’observation considéré

C =
⇣
I! 0

⌘
: Z ! L2(!) où I! 2 L(H1

0(Ω),L
2(!)), (5.1)

dont l’adjoint est donné par C⇤ =
⇣
F! 0

⌘t
où F! 2 L(L2(!),H1

0(Ω)) est défini par

F!� :=  solution de

(
�∆ = �!�, in Ω,

 = 0, on @Ω,
(5.2)

avec �! la fonction caractéristique du domaine !. Le Chapitre 3 présente un observateur
optimal (3.92) qui permet d’obtenir une estimation du terme source ✓ que l’on souhaite
retrouver. Cependant, nous n’avons ici plus connaissance des conditions initiales, mais
seulement d’un a priori que l’on notera ẑ0. L’état z du système est donc incertain. Nous
avons ainsi recours à l’une des méthodes présentées au Chapitre 1 et introduisons un
observateur de Luenberger sur la dynamique de l’état. Dans la Section 1.5.3 du Chapitre
1, nous avons vu que l’on pouvait considérer deux méthodes pour prendre en compte la
régularité du bruit. On décide dans cette section d’utiliser la méthode présentée en Section
1.5.3.1 du Chapitre 1. Dans la suite, l’opérateur d’observation classique est noté

C̃ =
⇣
I! 0

⌘
:

�������

H1
0(Ω)⇥ L2(Ω) ! H1

Γ(!),

z =

 
u

v

!
7! y = u|!,

(5.3)

où I! : H1
0(Ω) ! H1

Γ
(!) est l’opérateur de restriction. On rappelle que l’idée d’introduire

une régularisation G↵ de l’adjoint de l’opérateur d’observation classique défini par C̃⇤ =
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(E! 0)t où E! est donné par (1.95). On rappelle également que G↵ = (E↵
! 0)t où E↵

!

est défini par (1.113). Nous pouvons donc maintenant définir la fonctionnelle coût que l’on
souhaite minimiser et qui prend en compte le fait d’avoir des incertitudes sur les données
initiales,

JT (✓) =
1

2M2
k✓k2H1

0(Ω) +
1

2�2

Z T

0
ky� � ũ|✓k

2
L2(!)dt, (5.4)

où ũ est solutions de la dynamique de l’estimateur d’état z̃ = (ũ ṽ)
(
˙̃z = Az̃ + �G↵(y� � C̃z̃),

z(0) = ẑ0.
(5.5)

On comprend alors que la relation fondamentale qui lie minimisation de la fonctionnelle
coût et observateur optimal est conservée. À savoir, le minimum ✓̄T de la fonctionnelle coût
(5.4) satisfait la relation ✓̄T = ✓̂(T ) où ✓̂ est donnée par la dynamique

8
>>>>>>>><
>>>>>>>>:

˙̂z = Aẑ +B✓̂ + L
˙̂
✓ + �G↵(y� � C̃ẑ)

˙̂
✓ =

1

�2
ΛL⇤C⇤(y� � Cẑ)

Λ̇ = �
1

�2
ΛL⇤C⇤CLΛ

L̇ = (A� �G↵C̃)L+B

ẑ(0) = ẑ0, ✓̂(0) = 0,Λ(0) = �M2
∆

�1
0 , L(0) = 0.

(5.6)

L’analyse cependant se complexifie. En effet, deux opérateurs d’observation différents sont
introduits dans la dynamique (5.6), un pour le problème inverse de source et l’autre dans le
Luenberger pour l’estimation d’état. Une première difficulté pour l’analyse de l’observateur
(5.8) concerne l’opérateur de sensibilité L. En effet, cet opérateur apporte les informations
nécessaires à la reconstruction du terme source ✓. Or en rajoutant le terme de Luenberger,
l’opérateur devient dissipatif.
Puisque l’observateur de Luenberger ne filtre l’erreur d’état initial que de manière asymp-
totique, nous rajoutons un terme e⇢(T�t) appelé facteur d’oubli qui va augmenter le poids
de la mesure actuelle par rapport à la mesure passée. Une piste envisagée est de se donner
un degré de liberté supplémentaire en considérant la fonctionnelle coût suivante qui prend
maintenant en compte ce facteur d’oubli

J ⇢
T (✓) =

1

2M2
k✓k2H1

0(Ω) +
1

2�2

Z T

0
e�⇢(T�t)ky� � ũ|✓k

2
L2(!)dt. (5.7)

Nous pouvons alors de nouveau établir la relation fondamentale qui lie la minimisation
de cette fonctionnelle coût et l’observateur optimal (5.8). À savoir, le minimum ✓̄T de la
fonctionnelle coût (5.7) satisfait la relation ✓̄T = ✓̂(T ) où ✓̂ est donnée par la dynamique

8
>>>>>>>><
>>>>>>>>:

˙̂z = Aẑ +B✓̂ + L
˙̂
✓ + �G↵(y� � C̃ẑ)

˙̂
✓ =

1

�2
ΛL⇤C⇤(y� � Cẑ)

Λ̇ = ⇢Λ�
1

�2
ΛL⇤C⇤CLΛ

L̇ = A(L� �G↵C̃) +B

ẑ(0) = ẑ0, ✓̂(0) = 0,Λ(0) = �M2
∆

�1
0 , L(0) = 0.

(5.8)

La différence majeure entre cet observateur (5.8) et celui sans le facteur d’oubli (5.6) porte
sur la dynamique de Riccati Λ. Nous ne rentrerons pas dans les détails de la preuve, mais
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l’idée est semblable à la Section 3.4 du Chapitre 3. L’équation de Riccati donnée par (5.8)
est naturellement associée à des fonctionelles de Lyapunov (voir [Pham et al., 1998a]), ce
qui pourrait le rendre plus simple à analyser.

5.2.2 Estimation paramétrique : une méthode itérative

Nous présentons maintenant le problème de l’estimation de paramètre pour l’équation des
ondes. Le but est de se ramener à un problème d’estimation de source. On étudie l’équation
des ondes suivante

⇢(x)@ttu(x, t)�∆u(x, t) = 0. (5.9)

L’enjeu est d’estimer le paramètre ⇢ à partir d’observations sur ce système. Une possibilité
pour résoudre un tel problème est de réaliser une approximation asymptotique autour d’un
paramètre connu. Plus précisément, on suppose que l’on a un a priori ⇢0 sur le paramètre
⇢ et ce dernier est décomposé ainsi

⇢ ⇡ ⇢0 + "⇢1,

où " 2 R est un petit paramètre à choisir et ⇢1 la nouvelle inconnue à déterminer. On
décompose alors la solution u de (5.9) de la même façon

u ⇡ u0 + "u1,

où u0 est connu. Le problème d’estimation devient alors de reconstruire le terme ⇢1 appa-
raissant dans la dynamique suivante

⇢0@ttu1(x, t)�∆u1(x, t) = �⇢1(x)@ttu0(x, t).

Nous pouvons alors résoudre ce problème en utilisant la méthode développée au Chapitre 4.
En effet, en posant

⇢1(x) ⇡ ✓(x) et � @ttu0(x, t) = �(x, t), (5.10)

nous retrouvons la dynamique (4.1) étudiée lors du Chapitre 4. En résolvant ce problème
d’estimation de source par la méthode proposé au Chapitre 4, nous obtenons une estimation
de ⇢1. Pour améliorer l’estimation de ⇢, une idée consiste à itérer N fois le processus.
Autrement dit, on décomposera ⇢ itérativement de la façon suivante

⇢ =

NX

k=0

"k⇢k,

où cette fois l’a priori à l’itération n est

n�1X

k=0

"k⇢k,

et l’on cherche à estimer ⇢n. Il faudrait étudier la convergence totale du processus itératif
en se reposant sur les résultats établis au Chapitre 4 à chaque itération notamment la
condition d’observabilité et le résultat de stabilité.
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